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ABSTRACT

A new shell element for the analysis of thin and thick plate and shell
structures has been formulated along with the compatibie beam element. The
new elements are referred to as the consistent shell element and the consistent
beam element. By combining the consistent shell element and the consistent
beam element a finite element model for the analysis of reinforced concrete
structures has been formulated. The scope of the study is broadened further
through the modification of the new elements to allow for the analysis of

laminated fiber-reinforced composite beams and shells.

Many of the currently available beam and shell elements exhibit
spurious variations of the transverse shear stress(es). To obtain improved
responses when thin beams or shells are analysed the reduced integration
technique has typically been employed. This approach is not acceptable since
the reduced integration technique cannot be applied with complete confidence.
In the present study it is found that the unsatisfactory behaviour of these
elements is due to an inconsistency in their formulation. In the formulation of
the new elements a consistent formulation has been ensured. The new elements
behave very well in the analysis of both thin and thick beams and shells and
contain no spurious zero energy modes. In addition, they provide a quadratic
variation of the transverse shear stress(es), and a cubic variation of the
displacement(s) through their thicknesses. Therefore, the shear correction

factor x which is usually required to correct for the assumption of constant

iii



transverse shear strain through the thickness is not required. Both elements
include material non-linearity. Special attention has been given to the efficient
implementation of the consistent shell elemenIt by employing a sub-matrix
formulation in conjunction with a modified frbhtal solution algorithm. The
numerical results show the new elements to be highly accurate and

computationally efficient.

The reinforced concrete finite element model employs a rational
elasto-plastic constitutive relationship for concrete, discrete bar elements for
modelling of reinforcement, joint elements for bond slip between concrete and
reinforcement, beam elements for supporting girders and shear connector
elements along the concrete/girder interface. The numerical results show that
the model accurately predicts the behaviour of reinforced concrete slabs,
including punching shear failure under point loads. Thé constitutive model
employed has been found to be reasonably objective with respect to refinement

of the finite element mesh.

The consistent laminated beam element and the consistent laminated
shell element, have been formulated for the analysis of laminated
fiber-reinforced composites.  Special attention has been given to the
approximation of stresses through the thickness of the laminate because of their
importance in predicting delamination failures. This has been achieved by
allowing the transverse shear strain(s) to be discontinuous at the interface of two
layefs while still maintaining continuity of the global displacements across the
interface. The numerical results show that the elements provide very accurate
predictions of stresses through the thickness of both thin and thick laminates.
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CHAPTER ONE
INTRODUCTION

1.1 General Review

1.1.1 Plate and Shell Finite Elements

Over the last three decades a considerable amount of work has gone
into the development of plate and shell finite elements which can be used to
model curved surfaces and boundaries, and be applied to the analysis of both
thin and thick structures. This has led to the development of a popular group of
elements generally referred to as ’degenerate elements’, since they result from
degeneration of three dimensional brick elements. Among the most popular of
the ’degenerate elements’ are the eight node isoparametric plate element
(Ergatoudis et al. 1968) and the nine node isoparametric shell element (Ahmed
et al. 1970). By employing Mindlin (1951) theory in the formulation of these
elements the effects of transverse shear deformation are approximately
accounted for. Thus, they are applicable to both thin and thick plates or shells.
In addition, the elements employ an isoparametric formulation which allows

them to be distorted into arbitrarily curved shapes.

Both the eight node isoparametric plate element and the nine node
isoparametric shell element have been found to perform well in the analysis of

moderately thick plates and shells, However, for thin plates and shells, overly



stiff solutions have been obtained and as such the results were deemed to be
unreliable. This behaviour has commonly been referred to as ’locking’.
Furthermore, the predicted transverse shear stresses were found to be erroneous
for both thin and thick plate or shell structures. One of the earliest
investigations of these problems was conducted by Zienkiewicz et al. (1971). In
their work the elements were found to exhibit spurious variations of the
transverse shear stresses when loaded in pure bending.  According to
Zienkiewicz et al. the application of a selective reduced integration scheme can
improve responses for thin plates and shells. It was also found that the only
reliable points for sampling of the transverse shear stresses are at the locations
of the (2x2) reduced integration points. Despite the improved results obtained
through application of the reduced integration technique they were unable to
provide a detailed explanation as to why it works. Furthermore, beyond the
elastic limit the ability to predict the spread of plasticity within the element is
restricted by use of the reduced integration technique. Following their work
many researchers worked to explain the reduced integration technique and also
to determine its limitations. Even at the present time it is still a topic of

investigaticn; see for example Kreja and Cywinski (1988) and Kamoulakos
(1988).

Parisch (1979) found that application of the reduced integrétion
technique leads to development of zero energy modes. These modes are not
rigid body motions but deformation modes which actually produce zero strain
energy. They occur when the stiffness matrix obtained using reduced
integration is rank deficient. For certain boundary conditions the rank

deficiency of the element may lead to singularity of thie global stiffness matrix,



or to a solution which is obscured by the zero energy modes. For this reason
use of the reduced integration technique is not desirable as it can not be applied
with complete confidence to very general situations. This has lead to a
" considerable amount of research into the identification and suppression or
stabilization of such zero energy modes, Briassoulis (1988), Belytschko et al.
(1989) and Vu-Quoc and Mora (1989). While some of the methods perform
well there is as yet no method that is generally applicable. In addition these
techniques are usually complicated, difficult to implement and understand at

large.

Degenerate elements based on Mindlin’s theory, such as the eight
node isoparametric plate element and the nine node isoparametric shell element,
are frequently used for analyses of thick plates and shells, It is important to
recognize that Mindlin’s theory only approximately accounts for transverse
shearing effects, i.e., the transverse shearing strain is assumed to be constant
through the thickness and a shear correction factor & is introduced to account for
this approximation. A number of higher order plate theories exist such as those
given by Lo et al. (1977), and Kant (1982). These theories eliminate the need
for use of the shear correction factor x by assuming a quadratic variation of the
transverse shearing strain through the thickness. Furthermore, by allowing the
out of plane normal strain to vary across the thickness its effects are included.
In an effort to more accurately model thick plates Kant et al. (1982) used a
higher order plate theory to formulate a new thick plate element. Although
good results were reported they pointed out that further investigation was
required to determine the behaviour of the element for those boundary

conditions known to lead to the development of zero energy modes.



Based on all of the preceding con§iderations the main features of an
’ideal’ shear deformable plate or shell eleﬁ;ént, according to Hinton and Owen
(1984), would be as follows:
1. The element should not 'lock’ in thin plate or thin shell structures.
2. The element should not contain any spurious zero energy modes.
3. The element should satisfy the usual isotropy and convergence
requirements.
4, The formulation should not be based on numerically adjusted
factors i.e. such as the shear correction factor &.
5. The element should be capable of predicting accurately
displacements and stresses.
6. The element should be easy to implement and use.
Much research activity in recent years has been directed towards the
development of such an element. However, as of yet there appears to be no

element available which satisfies all of the above criteria.
1.1.2 Finite Element Modelling of Reinforced Concrete Structures

One of the earliest applications of the finite element method to the
analysis of reinforced concrete structures was by Ngo and Scordelis (1967).
During recent years interest in the nonlinear analysis of concrete structures has
increased steadily because of the wide use of reinforced and prestressed concrete
as structural materials. Most of the past efforts have been directed toward
improving the mathematical description of the concrete constitutive relations.
To date a variety of constitutive models have been proposed. They include, but

are not limited to elasticity Cedolin et al. (1977), elasto-plasticity Chen (1982)



and Pietruszczak et al. (1988) and endochronic theory by Bazant and Shieh
(1978). However, at this time there is still no generally accepted material law

available for modelling the complex behaviour of concrete.

While there have been developments in concreté constitutive relations

there have also been developméntsl _.in the finite element models of reinforced
concrete structures. In an early attempt by Ngo and Scordelis (1967), simple

) beams were analysed in which the concrete and steel were represented by
constant strain triangular elements. Concrete cracking was modelled using the
discrete crack concept with predefined cracking patterns. This approach was
later modified by Nilson (1968) who traced the progress of the discrete cracks
by splitting the finite element nodes along the predetermined crack paths and
then defining a new topology for subsequent analysis. At the same time another
crack model was developed by Rashid (1968). In this model a discrete crack is
numerically replaced by many finely spaced cracks perpendicular to the
ﬁrinciple tensile stress direcﬁ_on. This model is referred to as the smeared crack
model and has received extensive use since its introduction. Although attractive
in its simplicity, questions have been raised regarding the smeared crack model.
It was first pointed out by Bazant and Cedolin (1979) that when using the
smeared crack model infinitesimally small element sizes may produce
self-propagating cracks requiring negligible energy. This has raised concerns
regarding the objectivity of the finite element solutiohs. This problem is
currently being actively investigated; see for example Bazant and Oh (1983),
Gajer and Dux (1989) and Choi and Kwak (1990). Developments have also
taken place with regard to the modelling of the reinforcement. Most of the

early reinforced concrete models employed the layer approach for modelling



reinforcement, see for example Hand et al. (1973) and Lin and Scordelis (1975).
In this approach an element is divided into a number of layers through its
thickness. Each layer is defined to be either concrete or steel depending upon
the actual distribution of the reinforcement within the structure. The properties
of the steel layers are determined by assuming that the reinforcement is smea;ed
uniformly within the layer. This assumption can only be used when the steel
bars are spaced at uniform distances and when all bars in a layer are oriented in
the same direction. However, even in simple reinforced concrete slabs different
regions have different spacings of the reinforcement. Even though the layered
approach is still employed (for e.g. Harmon and Zhangyuan (1989), and Choi
and Kwak (1990)) many researchers now employ discrete reinforcement
elements within their models to enable them to more accurately model the
response of the structure, see for example Marchertis et al. (1988), Bathe et al.
(1989), Ranjbaran (1991) and Saturappan et al. (1992).

1.1.3 Finite Element Analysis of I aminated Fiber-Reinforced Composites

A composite is a mixture of two or more materials that are
microscopically distinct but together form a single macroscopic entity.
Although they have a long history, it has only been in the past two decades that
they have found wide spread usage, specifically in the aerospace industry. The
most commonly used composites are of the fiber-reinforced variety. They
contain long continuous fibers imbedded in a matrix material. The fibers are
either unidirectional or interwoven and are usually layered to form a laminate in
which the fiber orientation varies from layer to layer. As a result, the strength

and stiffness can be tailored to meet the specific design requirements of the



structural element being built by carefully choosing the fiber orientation in each
layer of the laminate. For more information on laminated fiber-reinforced

composites refer to Jones (1975) or Tsai and Hahn (1980).

In view of the increasing interest in composite materials the accurate
analysis of Jaminated composite structures has become essential. A number of
articles have appeared in the literature in this regard. In general they can be
classified as being either global models or local models. Global models such as
those given by Whiteney (1972), Panda and Natarajan (1979) and Phan and
Reddy (1985) .are displacement based formulations in which an effective
laminate modulus is used. Although they adequately predict global responses
such as displacements, natural frequencies and buckling loads they are not
sufficiently accurate for stress prediction. On the other hand local .models such
as hybrid stress elements (Mau et al. 1972, Spilker 1982) or a highly refined
three dimensional analysis (Barker et al. 1974) which represent each layer
individually have yielded considerably better stress predictions. Although these
models are superior to the global models with respect to the prediction of
stresses they have certain disadvantages. The hybrid stress element formulation
proposed by Mau et al. has been reported by Chaudhuri (1986) to give
inaccurate predictions of the transverse shear stresses near an edge.
Furthermore, the applicability of this method to asymmetrically laminated plates
has not been demonstrated. Three dimensional finite element analyses become
uneconomical even for a laminate with very few layers. A different approach
first proposed by Pryor and Barker (1971) involves finding the inplane stresses
first and then utilizing the equilibrium equations in terms of stresses to obtain

the transverse shear stresses and out of plane normal stress. This method is



commonly referred to as the Equilibrium Method. Numerous researchers
(Engblom and Ochoa 1985, Chaudhuri 1986, Pandya and Kant 1988, Kant and
Manjunatha 1990) have adopted this approach. Although the results reported by
the researchers show a definite improvement in the accuracy of the predicted
laminate stresses as compared to the global methods there are still significant
differences in many cases with the available elasticity solutions. Many
researchers continue to work on the development of new finite element models
which can predict all laminate stresses accurately. This has become

increasingly important because of the role they play in the prediction of

laminated composite failures.

1.2 Objectives and Scope

The objectives of the present study are as follows:

1. Development and testing of a new shell element which exhibits no
'locking’ when applied to the analysis of thin plates or shells, is
free of spurious zero-energy modes, does not use any numerical
approximation factors, predicts accurately displacements énd
stresses and is easy to use and implement.

2. Development and testing of a beam element compatible with the
new shell element, o

3. Development and testing of a model for the analysis of composite
structures of steel and concrete which includes a rational
elasto-plastic model for concrete, discrete reinforcement elements,
bond slip between concrete and reinforcement, supporting girders

and shear connection between concrete and the supporting girders.



4. Development and testing of a new beam element and a new shell
element for the analysis of laminated fiber-reinforced composites.
They should provide accurate predictions of the stresses through
the laminate thickness directly i.e. without requiring the use of

any post analysis schemes such as the Equilibrium Method.

In Chapter Two the consistency of the formulation of the quadratic
isoparametric beam element with respect to the polynomial approximations used
is investigated. The existence of a spurious transverse shear strain mode is
shown to be due to an inconsistency in its formulation. The formulation of a
new beam element is discussed. The new element employs a consistent
formulation and an improved representation of ther transverse shear strain
through its thickness. This eliminates the need for use of the shear correction
factor k. Material non-linearity is also included, and the nonlinear finite
element analysis procedure is presented. Several examples are presented and

comparisons are made for performance evaluation of the new element.

In Chapter Three a new shell element compatible with the beam
element described in Chapter Two is formulated. Special attention has been
given to the efficient implementation of the element by employing a stiffness
sub-matrix formulation in conjunction with a modified frontal solution
technique. Material non-linearity has also been included. Numerical results for

a variety of problems are presented for performance evaluation of the new

element.

In Chapter Four, a finite element model for reinforced concrete
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structures is formulated. The new shell element described in Chapter Three is
used to model reinforced and/or prestressed concrete plates or shells
inconjunction with an elasto-plastic constitutive model for concrete, A
one-dimensional curved bar element is formulate:i and used for modelling of the
plane and prestressed reinforcing bars. The influence of the bond between the
concrete and reinforcement is included through a joint element. Supporting
girders are modelled using a modified form of the beam element described in
Chapter Two. The connection of the supporting girders to the concrete shell is
handled through a shear connector element. Predicted results are compared

with the experimental data for veriﬁcation and evaluation of the model.

In Chapter Five a new beam element and a new shell element are
formulated for modelling of laminated composite beams and shells. The new
elements are extensions of the beam element and the shell element described in
Chapter Two and Chapter Three, respectively. In the formulation of the new
elements special attention has been given to the accurate prediction of the
stresses through the laminate thickness. For verification of the element
formulations, and evaluation of their accuracy, several examples are presented

and comparisons are made with the available elasticity solutions in the

literature.

Conclusions drawn from this study, and recommendations for future

research are presented in Chapter Six.



CHAPTER TWO
CONSISTENT BEAM ELEMENT FORMULATION
AND APPLICATIONS

2.1 Introduction

Curved beam finite elements, which accommodate shear deformation
by allowing independent displacement and rotational degrees of freedom, such
as the quadratic isoparametric beam element (Hinton and Owen 1977), have
been used extensively since their introduction. However, it is well known that
these elements possess a spurioﬁs shear strain mode. This mode leads to overly
stiff behaviour when the elements are applied to the analysis of thin beams and
arches, and to unreliable predictions of the shear stress. The consistency of the
formulation of these elements, with respect to the displacement fields used is
examined in this chapter and the requirements for a consistent formulation

which eliminates the spurious shear mode are determined.

A new curved beam element is formulated as an extension of the
quadratic isoparametric beam element. This new element is referred to as the
consistent beam element. The order of the polynomials used for approximation
of displacements and rotations within the new element are chosen to ensure a
consistent formulation. A new rotation, which varies quadratically through the
thickness of the consistent beam element, is included. This new rotation allows

for a parabolic representation of the shear stress and hence eliminates need for

11
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use of the shear correction factor « which is usually required to correct for the
assumption of constant shear strain across the depth (Timoshenko 1955). In
addition, the new rotation provides a cubic variation of the longitudinal

displacement through the element depth. Thus warping of the section due to

shearing is accounted for.

For material non-linearity an incremental elasto-plastic constitutive
relation is used which employs the Huber von Mises yield criterion, an
associated flow rule and isotropic hardening. The nonlinear finite element
analysis is performed using a modified Newton Raphson method. Numerical
results for a variety of problems are presented for performance evaluation of the
consistent beam element. These include elastic, and elasto-plasiic analysis of

thin and thick beams and arches, and comparisons with results predicted by the

quadratic isoparametric beam element.

2.2 Consistency of Formulation

The shear stress variation for beams and arches calculated using the
quadratic isoparametric beam element reveals the existence of a spurious shear
strain mode. A cantilever with a concentrated load applied at the free end as
shown in Figure 2.1, was analysed using four quadratic isoparametric beam
elements. The predicted variation of the average shear stress along the length of
the cantilever is plotted in Figure 2.2 along with the variation given by
Timoshenko beam theory. The existence of the spurious shear mode is apparent

in the quadratic isoparametric beam element. This is explained next.
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The potential energy II for the beam is given by

L 2 L
n=ﬁj [d_e] dx+%J [gﬂ-ﬂ]zdx-Pw(L). Q.1
27,%dx 2 Jo tdx

where
w = transverse displacement
§ = total rotation of the 'normal’ to the centroidal axis

[ g%] = flexural rotation of the 'normal’ to the centroidal axis

[ gg] = pseudo - curvature

EI = flexural rigidity
GAy = shear rigidity
P = concentrated load

L = length of cantilever.

Taking the first variation of the potential energy II yields the following Euler

equations:
2
50 EI[Q—"]-»GAV[?E-G]:o
dx? dx (2.2,a-b)
2
5w - GA, [‘-‘-‘”-d"] 0
dx? dx
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dw ; w(x=0) =0 GAy [d_w_ ] p =P (2.3,a-b)
dx x=

The transverse displacement w, and the total rotation of the 'normal’ to the

beam axis 4 can be approximated using quadratic polynomials as

_ 2
w(x) = a; + asx + agx (2.4,a-b)

0(x) = by + bax + bax?

These are also used in the quadratic isoparametric beam element. Substituting

the polynomial approximations, equations 2.4, into the Euler equations,

equations 2.2, and collecting the like terms gives

EI(2b;) + GAv(@z-by) =0
GAy(2a3-b3) =0
GAv(-by) =0
(2.5,a-e)
-GAy(2az-bz) =0
- GAy(-2b3) = 0.

Similarly, substituting the polynomial approximations, equations 2.4, into the

boundary conditions, equations 2.3, and collecting the like terms gives

b1 = (
El(by + 2bsL) =0 (2.6,a-d)
a; =0

GAvy(az + 2a3L. - by - boL. - baLz) = P,
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One possible solution of equations 2.5 and 2.6 is a trivial solution i.e. the
applied load P and all coefficients of the polynomials in equations 2.4 are equal

to zero. The only non-trivial solution possible is given by

a1=0

b1=0

_ 1 L?
as =P -
GAy ( 2EI + GAL? )
(2.7,a-f)
by = 2PL
2 —
{ 2EI + GAyL? )

PL

a3 =
( 2EI + GA,L?)

by = -P
3 ——
( 2EI + GAL? )

where coefficient bs is determined to be non-zero from flexural considerations

according to

EI(2bs) + GAv(az-by) = 0. (2.8)

As a result an inconsistency arises with equations 2.5, which require bs to be
equal to zero. This leads to a loss of equilibrium since the Euler equations will
not be satisfied. This conclusion is not restricted to the cantilever example
presented. For a different configuration or loading condition only the boundary

conditions change as the Euler equations remain valid in all situations for the
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given formulation. It should be noted that only for the case of pure bending, is

the coefficient bj calculated to be zero from Equation 2.8.

Following the Timoshenko beam theory, the shear strain is calculated

as the difference between the flexural rotation [ g%] and the total rotation & as

7=[%‘i’--0]. 2.9)

Substituting the polynomial approximations for w and @, equations 2.4, into the

expression for the shear strain, Equation 2.9, gives

g = [ (a2 + 2a3x) - (by + bex + b3x2)]',. (2.10)

Examination of Equation 2.10 reveals the absence of a quadratic term in the
flexural rotation component to match that found in the total rotation. As
coefficient bj is determined to be non-zero from flexural considerations the lack
of the matching quadratic term in the flexural rotation allows a spurious
quadratic mode to be superimposed over the legitimate constant and linear
modes. This inconsistency in the displacement fields used in the formulation of
the quadratic isoparametric beam element is responsible for the spurious shear
stress variation shown in Figure 2.2. Only for the case of pure bending will no

spurious shear stress variation appear.

A consistent formulation can be obtained if the transverse
displacement w and the total rotation § are approximated by cubic and quadratic

polynomials, respectively, as
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w(x) = a; + ax + azx? + agx®

8 (x) = by + bax + bax? (2.11,a-b)

Substituting the polynomial approximations, equations 2.11, into the Euler

equations, equaﬁorlé 2.2, and collecting the like terms yields

EI(2b3) + GAv(az) = 0
GAy(2a3-b2) =0
GAy(3a3-b3) =0 (2.12,a-¢)
- GAy(2a3-by) =0

- GAy(6a4 - 2bg) = 0.

Similarly, substituting the polynomial approximations, equations 2.11, into the

boundary conditions, equations 2.3, and collecting the like terms gives

a1 = 0
b;=0
EI (bg + 2b3 L) = 0 (2.13,2-d)

GAvy(as + 2a3L + 3asL? - by - byl - baLz) = P,

All coefficients of equations 2.12 and 2.13 can be uniquely determined as

Hence the formulation is consistent and the equilibrdium will always be satisfied.
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The expression for the shear strain using the polynomial

approximation for w and 4 in equations 2.11 is given by

7= [-:ilﬂ- ] = [(az + Zazx -+ 33.4)(2) - {by + box + baxz)] . 2.15)
X

Examination of Equation 2.15 reveals that the missing quadratic term in the
flexural rotation component is now present. In the following sections it will be
shown that the provision of a consistent formulation in this manner effectively

eliminates the spurious shear strain mode.

In general, those beam elements in which the shear strain is
determined as the difference between the total rotation and the flexural rotation
contain an inconsistency in their formulations if the same degree polynomial is
used for approximation of both displacements and rotations. A consistent
formulation can be achieved for these elements by employing a polynomial for

approximation of the displacements which is one degree higher than that used

for approximation of the rotations.

2.3 Consistent Beam Element Formulation

2.3.1 Co-ordinate Systems and Geometry

Co-ordinate systems used in the formulation of the consistent beam
element are shown in Figure 2.3, and defined as follows:
1. Global cartesian co-ordinate system x and z and the corresponding

global displacements u and w.
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2. Natural co-ordinates s and t where s is tangent to the curved line
defined by t=constant, and t is normal to the s axis.

3. Local cartesian co-ordinate system x’ and z’ to define local
strains and stresses; x’ is tangent and z’ is perpendicular to the

curved centroidal axis in general.

For geometric distortion of the element a curvilinear transformation is
used in terms of the s co-ordinate, and a linear transformation is used in terms
of the t co-ordinate. The cross section of the beam can be arbitrary. The
location of any point \ﬁimin the element in the global co-ordinate system (x,z) is

determinje‘d\“by the co-ordinates of the nodal points (X,Z3) and vector V; at each

X X1 t
_t=5Ni{ b+ NS Vs (2.16)
i 2

where Nj are the quadratic interpolation functions and are given in Appendix Al

node as

and vector Vj is defined as

Xi X3
vi={,t 141 @2.17)
TOP BOTTOM

2.3.2 Displacement Field

To construct cubic approximations of displacements u and w, the

displacement degrees of freedom at the end nodes and the one-third point nodes



20

are used. Quadratic approximation of rotations « and ¢ is achieved using the
rotational degrees of freedom at the end nodes and the mid-side nodes. Thus,
the number of degrees of freedom per node is different. Assuming that each
node has four degrees of freedom (u;, wi, @i, ¢;) then there are twenty degrees
of freedom per element, however only fourteen of these are active. It should be
noted that while rotation « is constant through the depth of the element, rotation
¢ varies quadratically. Hence, a produces a linear variation of displacements u

and w through the depth, while ¢ gives a cubic variation as depicted in Figure
2.4,

The element displacement field is given as

u [ uy cos i cos 7
w = ¥ Nj Wi -Y N M, sin 7 a; - ¥ N; My sin % ¢; (2.18)

where Nj and Nj are the quadratic and cubic shape functions, respectively, and
7; is the angle between the local axes (x’,z’) and the global axes (x,z) at the it
node. Shape functions M and M, approximate the displacement field through

the depth due to rotations @ and ¢, respectively, and are given by

M; = hst M, = hit (1-1t% (2.19)
2 2

where h; is the beam thickness at the i*! node. The derivation of the through

thickness displacement field due to ¢ is given in Appendix B and shape
functions Nj and Nj can be found in Appendix Al.
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The cosine and sine of angle 7 are given by

=g/ [15]+ 137

(2.20)

re2/[TET 18]

where 3- and %Z- are determined using Equation 2.16. It should be noted that
S S

the consistent beam element is subparametric because u and w are approximated

cubically while the geometry is interpolated quadratically.
2.3.3 Strain-Displacement and Stress-Strain Relationships

The relationship between local strains {e’} at any point within the
element and the degrees of freedom is required. For small deflections, the

strains in the local (x’,z’) co-ordinate system are given by

. o]
ex’ s’ o’

{y=4 1= i 9 (2.21)
gz Ox’
L

where displacements u’ and w’ are along x’ and z’, respectively. The local
displacements (u’,w’) are calculated from the global displacements (u, W)

according to
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u’ u [ cos v sin 7] u
{w' =[0] w[ " |-siny cosv]]w ) 2.22)

The transformation matrix [# ] is composed of the sine and cosine of the angle v
between the local axes (x’,z’) and the global axes (x,z) at the point in the

element where the displacements are to be transformed.

Using Equation 2.18 the product in Equation 2.22 yields the local

displacements in terms of the global degrees of freedom as

u’ ) cos v _ [siny COSY COS7Y3
w' [ =ENIY Cgin g ui + EN; cos wi-ENiMid qiny cosy

+ siny siny; cosy cosy; + sinysinmi
+ cosy sinTi a; - X Nj M» _siny cosy; + cosv sinTi ¢i. (2.23)

Substituting Equation 2.23 into Equation 2.21 and carrying out the required
differentiation yields the desired relationship between the local strains and the

global degrees of freedom as

[ N | a8 i . |
et ! a—b—:‘cos'r gﬁ‘sin'y -M CU; 9Nt
x'x ax’ | ox | dx ’ |
S B | a5 | .
e -@‘sin'r gN—‘cos'y -NiCUiaM1 - M, CWi-‘?—I\i‘
LBx' | ox’ | dz’ ax’ |
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| |
-Ma CU1 — uj
l ox W
| ' (2.24)
R 431
Ny Mz oy, ew B
| dz’ ax’ 1
where CU; = cos<y cos?; + sinvy sinyi
CW; = -sin7y cosy; + cos7 sinvi.
Equation 2.24 may also be written as
{e'} = B']1{d} (2.25)
where [B’] = strain matrix relating degrees of freedom to local strains

{d} = vector of global degrees of freedom.

The stress-strain relationship used is the generalized Hooke’s Law
given by

'
Ox'x

(o} = =t y-(ey) +iey @29

,rxl Z'
where  [D’] = elasticity matrix in the local co-ordinate system
{ e; } ={ a; } = vector of initial local strains and stresses,

respectively.

The elasticity matrix [D’] for the beam problem is given by
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D] = [88] (2.27)

where E and G are the modulus of elasticity and shear modulus, respectively. It
should be noted that the shear correction factor « is not required because of the

parabolic approximation of the shear stress through the thickness.

2.3.4 Stiffness Matrix

Application of the principle of virtual work leads to the following

expression -fm‘,the discretized equations of equilibrium (Zienkiewicz 1977)

[k] {d} = {f}. (2.28)

The element stiffness matrix [k] is given by

i = [, B DB (2.29)

and the element load vector {f} is given by

{f} = JV[N]T{b} dv + JS[N]T{T} ds + [N]T {P} (2.30)

where

[N]T

= matrix of shape functions relating the degrees of freedom to
the global displacements u and w
{b}, {T}, {P} = body force, surface traction and point load vectors,

respectively,
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Both the stiffness matrix and the load vector are obtained using numerical

integration by employing the Gaussian-Quadrature scheme.

The partial derivatives with respect to the local (x’,z’) co-ordinate
syétem found in the strain-displacement matrix [B’], Equation 2.24, can be
written in terms of derivatives in the curvilinear co-ordinate system using the

chain rule as

8 _8sd8 , 0t 8
o' ox' s Ox’ @
9 _9 8 [ot 8

82/ Bz 8s 8z &

(2.31,a-b)

Since the local axes x’ and z’ are coincident with the curvilinear co-ordinates s
and t, respectively, then

gt _ ds

x oz

'%= /1 [ gx_]2 + [%]2 (2.32,2-C)

o _ 2 ”
o /[T 2T + (2]
at ot
and Qx_’ Qz_, o and Lir4 are determined using Equation 2.16.
ds ds ot ot

Finally, the element stiffness matrix is calculated using the following
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equation:

1 4l

kK] = J- J [B’]T [D’][B’] det}J| b dsdt (2.33)
1Y -1

where the determinant of the Jacobian matrix is given by

det]J| = [Q"-.@] ; [@.@] (2.34)
ds 0Ot

and b is the width of the beam. Integration of Equation 2.33 is performed using

three integration points along the s co-ordinate and three integration points

through the thickness along t.

1t should also be noted that an eigenvalue test of the element stiffness
matrix [k] was performed. The results verified the existence of the required

rigid body motions and the absence of any spurious zero-energy deformation

modes.
2.4 Elasto-Plastjc Formulation

For elasto-plastic analysis of beams and arches an incremental
approach is adopted. This requires use of an instantaneous elasto-plastic
constitutive relationship and formulation of an incremental load analysis

procedure.
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2.4.1 Elasto-Plastic Constitutive Relationship

The nonlinear material behaviour is described using plasticity theory.
This requires the definition of three properties in addition to the elastic
stress-strain relationship. These are a yield condition, a flow rule and a
hardening rule. The construction of the elasto-plastic stress-strain matrix is"
performed in the usual manner. Only the information which is specific to the
present formulation is presented. For more information on plasticity theory

refer to Mendelson (1970) or Chen and Han (1988).

In this study the Huber von Mises yield criterion is adopted. The
yield function F corresponding to the Huber von Mises yield criterion and a

general state of stress is given by

F = a-'O'Y=[";-(Uxx'a'yy)z'l'i'(ayy‘azz)z+i‘(azz'axx)2

/ (2.35)
+ 37xy? 4 31y + 31y 1Y% -0, = 0.

Yielding occurs when the effective stress o equals the uniaxial yield stress o,
i.e. when the yield function F is equal to zero. For gyy = 0zz = Txy = Tyz =

0 the effective stress becomes
o =[x + 372 V2. (2.36)

Now re-writing the yield function F in terms of local stresses ox’x’ and 7x’»’

gives
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F=0-0,=[0¢x?+ 352120, = 0. 2.37)

Beyond the proportional limit an incremental stress-strain relationship

is employed which is expressed as

dox’ <’ deg’ '
{d'!‘x'z’ } = [Dep ]{d'Yx'z' }

(2.38)
where [Dep’] is the instantaneous elasto-plastic constitutive matrix referred to
the local co-ordinate system. For an associated flow rule and isotropic

hardening it takes the following form (Zienkiewicz 1977)

} {?E }T D]. (2.39)

Dep’] = [D'] - [D'] 1 £
a

w{ETofZ]"

do do

do

Parameter H’ is the plastic modulus and is the slope of the uniaxial stress-strain
curve beyond the yield limit, Assuming a bilinear uniaxial stress-strain curve

for elasto-plastic material behaviour the plastic modulus H’ is given as
H' =E /(1-E;/E) (2.40)

where E and E, are the elastic and tangent moduli, respectively.

Using Equation 2,37 the vector { 98 } can be obtained as

do
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ox’ x’
o
{ E} = - (2.41)
oo By’ g’
| o
Substituting { 9E } and the elastic stress-strain matrix [D’], Equation 2.27, into
do

Equation 2.39 and performing the required multiplications gives the

elasto-plastic constitutive relation as

1 - Ea.xlxl2
y 1 E —
{Dep’] = 5 > o2
B’ +[ox'x' “+9G7y’ 2" “]
— 2 3EGax’x’Tx’Z_,_
0- —
I o

SEGUX, x"rx’z, W
5.2

1 - 9G'rx’zl 2 ‘
G -
0.2

2.4.2 Nonlinear Finite Element Analysis Procedure

(2.42)

Using the principle of virtual displacements the discretized equations

of equilibrium can be written as
J BT {¢'} dV + {R} = 0 (2.43)
v

where {R} is the applied load vector. In an incremental analysis the total load
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{R} acting on the structure is applied in increments. Because of the impending
nonlinearity a certain unbalance of forces will exist between the external and the

internal forces. This unbalance is minimized to a tolerable magnitude by

employing an iterative procedure.

For the m*" iteration during the n* load increment Equation 2.43 can

be re-written as
@1y = JV B1 {o'}7 dV + (R} (2.44)

where {¢} is the unbalanced force vector called the residual vector. In this
study a modified Newton-Raphson iterative method is adopted.  The

displacement increment corresponding to the residual vector {¢}r[111 is calculated

as

(A = K (o)™ ()" (2.45)

where [KT(cr’)I[?] is the tangential stiffness matrix evaluated at the beginning of
each load increment. The updated displacements and stresses are then
calculated and the residual vector for the niext iicration {d)}?:"'1 is determined.
This process continues until the magnitude of the residual load vector is suitably

small. The combined incremental/iterative approach is shown schematically in

Figure 2.5.

The frontal solution technique is used to solve the discretized

equations of equilibrium. It has been designed to minimize the core storage
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requirement and the number of arithmetic operations. For more information

refer to Irons {(1970) and Hinton and Owen (1977).

The steps used in the nonlinear analysis algorithm are summarized as

follows:

1. After the iterative approach has converged for the (n-1)** load
increment in m iterations, the residual load vector is {c|>}IrI:_1
which will be reasonably negligible. The tangential stiffness
matrix [K (c7)%] for the next load increment (i.e. the n*t Joad
increment) is evaluated using the elasto-plastic constitutive matrix,

+.._. Equation 2.42, and the state of stress at the end of the previous
load increment. For the first iteration of the n*® load increment,

the displacement increment {Ad}rl1 is given by
(bl = ot [ @) + AR, | (2.46)

where {$}7 = @37

2. Update the displacements
{d}7 = {0 + {ad}] (2.47)

where {d}l‘,’l = {d}r:_1 for the first iteration of the n'™ load
increment and {d}g = {d}r:ll'1 for subsequent iterations.
3. For each element the elemental vector of displacement increments

{:’_\de}':l1 is extracted from {Ad}[: and the following steps are
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performed at each Gaussian integration point;

(a) Compute incremental strains and stresses
{ae® = [B7] {Ad°}T. (2.48)

Determine the loading state (i.e. plastic loading, elastic loading,
or unloading) corresponding to the strain increment. Using the

appropriate constitutive matrix calculate the stress increment
{Ag’®}7 = [Dep’] {Ae' YT (2.49)

The algorithm for stress calculation follows that given by Owen
and Hinton (1980).

(b) Update stresses and strains

)0 = {30 + {2’}

(2.50,a-b)
8™ = (' + (Ao’ ST

where {e’e}g and {o"e}ﬁ are equal to {e’e}r]?_l and {a,e}r:_l,

respectively, for the first iteration of the nt? load increment and

{G,C}m-l

n and {o’®) ':11-1, respectively, for subsequent jterations.

(c) Compute the elemental residual load vector

@90 = [ BT ST v + &, (2.51)
v
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(d) Add the elemental residual load vectors {(1)3}';i to obtain the
global residual vector {cb}r:.

4. Compute the new displacement increment
oyl
AG™! = K@) @3] 2.52)

using the new residual load vector.
5. Repeat steps 2 to 4 until the solution has converged to the desired

tolerance which is achieved when

{ady" T 937 < ToL (2.53)

a1

i.e. mth increment in the internal energy (i.e. the amount of work
done by the out of balance loads on the displacement increments)
is compared to the initial internal energy increment (Bathe 1982).
Convergence is reached when the specified value of TOL is
obtained. A typical value for TOL is between one and five
percent.

6. Apply the next load increment.
2.5 Numerical Examples
In the following numerical examples the results have been obtained

without employing the reduced integration technique for either the consistent

beam element or the quadratic isoparametric beam element.
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2.5.1 Elimination of Spurious Shear Stress Mode

To illustrate elimination of the spurious shear stress mode the
cantilever shown in Figure 2.1 has been analysed using four consistent beam
elements. The variation of the average shear stress along the length of the
cantilever as calculated by the consistent beam element model is plotted in
Figure 2.2 and compared with that given by the quadratic isoparametric beam
element and Timoshenko beam theory. The figure clearly iliustrates that the
consistent beam element is free of spurious shear stress oscillations which
plague the quadratic isoparametric beam element. Thus, the existence of the
spurious shear stress oscillation in the quadratic isoparametric beam rlement is a

direct result of the inconsistency in its formulation.
2.5.2 Degeneration to Slender Beam Solution

The behaviour of the consistent beam element, as the length to depth
ratio increases, is now investigated. A prismatic beam fixed at both ends and
subjected to a uniformly distributed load as shown in Figure 2.6 is used for this

purpose.

The beam is modelled using four consistent beam elements and has
been analysed for aspect ratios ranging from ten to two hundred. The
normalized middle span deflection of the beam as predicted by the consistent
beam element model versus the aspect ratio is plotted in Figure 2.7 and
compared with the deflection from the beam theory. Also plotted in the figure

is the normalized deflection predicted by the quadratic isoparametric beam
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element. As the aspect ratio is increased the consistent beam element model
exhibits convergence to the thin beam solution. However, the deflections
predicted by the quadratic isoparametric beam element approach the thin beam
solution and then diverge, yielding overly stiff results. This example clearly
illustrates that the poor response exhibited by the quadratic isoparametric beam
element for analysis of slender beams is a consequence of the inconsistency in

its formulation.

2.5.3 Thick Beam Under Sinusoidal Transverse Loading

A simply supported thick beam has been analysed to illustrate the
ability of the consistent beam element to predict the normal stress and shear
stress distributions through the depth of the beam. The material properties,
dimensions, and loading are as shown in Figure 2.8. Half of the beam has been
modelled using four consistent beam elements by making use of symmetry. The
beam has also been analysed using four quadratic isoparametric beam elements.
The predicted mid-span deflection and stress distributions are compared with

those determined using an elasticity solution given by Little (1973).

The predicted normal stress and shear stress distributions through the
beam thickness are plotted in Figure 2.9 and Figure 2.10, respectively. Also
plotted are the stress distributions given by the elasticity solution. As can be
observed the normal stress and shear stress distributions predicted by the
consistent beam model are in excellent agreement with the elasticity solution
unlike the stress distributions predicted by the quadratic isoparametric beam

model. In Table 2.1 the mid-span deflection predicted by the consistent beam
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Table 2.1: Thick beam normalized mid-span deflections.

Elasticity 1.00
Consistent beam model 1.09
Quadratic beam model 1.20

model and the quadratic isoparametric beam model are normalized with respect
to the deflection given by the elasticity solution. The deflection predicted by
the consistent beam model is seen to be in good agreement with that given by
the elasticity solution and is considerably better than that predicted by the

quadratic isoparametric beam model.

This example illustrates that by including the additional rotation ¢
excellent predictions of the normal stress and shear stress distributions through

the thickness of the consistent beam element can be achieved.

2.5.4 Thin Pinched Ring

To illustrate the performance of the consistent beam element when
distorted, the pinched ring shown in Figure 2.11 is analysed. The analysis has
been performed using four consistent beam elements to model a quarter of the
ring from point A to B. The quadrant AB has also been analysed using four
quadratic isoparametric beam elements. An energy solution for the radial
deflection at point A is given by Prathap and Babu (1986). In Table 2.2 the
radial deflection at point A predicted by the consistent beam model and the

quadratic isoparametric beam model are normalized with respect to the
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Table 2.2: Pinched ring normalized radial deflections.

Elasticity 1.00
Consistent beam model 0.913
Quadratic beam model 0.183

deflection given by the energy solution. The deflection predicted by the
consistent beam model is in excellent agreement with that given by the energy
solution, unlike that predicted by the quadratic isoparametric beam model. This
example confirms that the consistent beam element performs very well when
distorted. It also illustrates the severe effect the spurious shear mode has on the

performance of the quadratic isoparametric beam element.

2.5.5 Elasto-Plastic Analysis of a Thick Beam

An elastic perfectly plastic analysis of a deep beam fixed at both ends
with a concentrated load applied at mid-span is performed using ten consistent
beam elements to model half of the beam. The predicted mid-span deflection,
axial and shear stress distributions are compared with the resuits obtained using
the ten node triangular planar elasto-plastic element. Six planar elasto-plastic
elements through the depth and ten in the longitudinal direction have been
employed for a total of one hundred and twenty elements. The geometry,

material properties, and loading are as shown in Figure 2.12.

A plot of the applied load versus the mid-span deflection as predicted

by the consistent beam element model and the planar elasto-plastic model is
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shown in Figure 2.13. It is seen that the fcsponse predicted by the consistent
beam elements is in very good agreement with that given by the planar
elasto-plastic elements. The normal and shear siress distributions through the
depth of the beam at the fixed end are plotted in l‘i‘:Figure 2.14 and Figure 2.15
for load levels P = 3.0 MN (elastic) and P = 70 MN (uitimate), respectively.
For P = 3.0 MN it is observed that the consisten%t“’ beam element model predicts
a normal stress distribution which is very close to that given by the planar
elasticity elements. Also, the nonlinear distribution of the normal stress due to
the restraint of warping is clearly visible. Even after yielding of the cross
section (i.e. P = 7.0 MN) it is seen that the consistent beam element model
predicts a normal stress distribution which is very close to that given by the

planar elasto-plastic elements.

The shear stress distribution predicted by the consistent beam elements
for P = 3.0 MN is seen to be in very good agreement with that given by the
planar elasticity model. However, for P = 7.0 MN there is a significant
difference in the two solutions. It is observed that the distribution predicted by
the planar elasto-plastic model does not satisfy the stress free conditions on the
top and bottom surfaces of the beam. It is believed that if the mesh used in the
planar elasto-plastic model were refined through the depth of the beam the
predicted distribution would more closely approximate the stress free conditions,
and also the distribution of shear stress as given by the consistent beam

elements. Needless to say that the stress distributions at the fixed section are

generally very cdmplex.

The normal stress and shear stress distributions through the depth of
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the beam at 12 cm from the fixed end are plotted in Figure 2.16 and Figure 2.17
for load levels P = 3.0 MN and P = 7.0 MN, respectively. For both load
levels the shear and normal stress distributions predicted by the consistent beam
elements are observed to be in excellent agreement with the distributions given
by the planar elasto-plastic elements. Also, the effect of the warping restraint at
the fixed end on the normal stress distributions at one-fifth depth away is seen to

be insignificant.

To illustrate the spread of plasticity effective stress contours predicted
by the consistent beam elements and the planar elasto-plastic elements are
. plotted in Figure 2.18 and Figure 2.19 for load levels P = 3.0 MN and P = 7.0
MN, respectively. For P = 3.0 MN a very good agreeme;nt is observed.
However, for P = 7.0 MN the consistent beam model predicts effective stresses
near the fixed end at the centroidal axis which are higher than those predicted
by the planar elasto-plastic elements. This discrepancy is due to the difference
in the shear stress distributions predicted at the fixed end as discussed
previously. Thus, the consistent beam element model presented is an accurate
and computationally efficient model for the inelastic analysis of thin and thick

beams.
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CHAPTER THREE
CONSISTENT SHELL ELEMENT FORMULATION
AND APPLICATIONS

3.1 Introduction

A new thick shell element compatible with the consistent beam
element described in Chapter Two is formulated in this chapter. This new

element is referred to as the consistent shell element.

By employing cubic polynomials for approximations of displacements
and quadratic polynomials for approximations of rotations, a consistent
formulation is ensured thereby eliminating the spurious transverse shear modes
which plague other shear deformable shell elements, such as the eight and nine
node isoparametric shell elements (Ergatoudis et al. 1968, Ahmed et al. 1970).
A triangular parent element is adopted to provide complete polynomials for
displacement and rotation approximations. Like the consistent beam element the
new shell element employs two types of rotations. Those which are constant
through the shell thickness and the others which vary quadratically. The
quadratically varying rotations allow for a parébélfc representation of the
transverse shear strains through the depth of the element. This eliminates the
need for use of the shear correction factor & which is usually required to account
for the assumption of constant shear strain across the depth (Mindlin 1951). In

addition, the quadratically varying rotations produce a cubic variation of the

51
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tangential displacements and hence the 'normal’ to the middle surface does not
remain siraight or normal after bending and shearing. The stress normal to the

middle surface is assumed to be negligible.

Special attention is given to the efficient implementation of the
consistent shell element. For the same degrees of freedom per node the use of
different order polynomials for approximation of displacements and rotations
leads to the presence of many inactive degrees of freedom. These inactive
degrees of freedom can result in increased computation time and the
unnecessary use of memory. By employing a stiffness sub-matrix formulation in
conjunction with a modified frontal solution technique these problems are

avoided.

For material non-linearity an incremental elasto-plastic constitutive
relation is used which employs the Huber von Mises yield criterion, an
associated flow rule and isotropic hardening. The nonlinear finite element
analysis is performed using a modified Newton Raphson method. Numerical
results for a variety of problems are presented for performance evaluation of the
consistent shell element. These include elastic, and elasto-plastic analysis of
thin and thick plates and shells, and comparisons with results predicted by other
shear deformable isoparametric shell elements, such as the eight and nine node

isoparametric shell elements.

3.2 Consistent Shell Element Formulation

3.2.1 Co-ordinate Systems and Geometry
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Co-ordinate systems used in ihe formulation of the consistent shell

element are shown in Figure 3.1, and defined as follows:

1. Global cartesian co-ordinate system x, y, and z and the
corresponding global displacements u, v, and w.

2. Curvilinear co-ordinate system (r,s,t), r and s are tangent to the
surface defined by t=constant, and t is not necessarily normal to
the r-s tangent plane,

3. Local cartesian co-ordinate system x’, y’, and z’ to define local
strains and stresses, z’ is normal to the surface defined by

t=constant and x’ and y’ are tangent to the surface.

For geometric distortion of the element a curvilinear transformation is
used in terms of the parent r and s co-ordinates, and a linear transformation is
used in terms of the t co-ordinate. The location of any point within the element
in the global co-ordinate system is determined by the co-ordinates of the nodal

points (xi,yi,2:) and vector Vs; at each node as

X Xi t
yt =%Ni{yi +ENi-2-V3i 3.1)

z zZ3

where quadratic interpolation functions Nj are given in Appendix A2 and the

thickness vector V3 is defined as

Xi Xi
Vii=1Vi -1Vyit- (3.2)
Zilpop L 2iJporTONM
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3.2.2 Displacement Field

To construct cubic approximations for displacements u, v and w, the
displacement degrees of freedom at the corner nodes, one-third side nodes and
center node are used. Quadratic approximations ¢€ rotations a, f, ¢ and ¢ are
achieved using the rotational degrees of freedom at the comer and mid-side
nodes. Rotations a and ¢ are about the local y’ axis and rotations g and ¢ are
about the local x/ axis. Like the consistent beam element there are different
number of degrees of freedom per node. Assuming that each node has seven
degrees of freedom (us, vi, wi, @i, Bi, 95, ¥3) then there are ninety-one degrees
of freedom per element. However, only fifty-four of these are active. It should
be noted that rotations a and S are constant through the depth of the element
while rotations ¢ and 7 vary quadratically. Thus, a and § provide a linear
variation of displacements u, v and w along t while ¢ and 7 lead to a cubic

variation of u, v and w.

The global displacements (u,v,w) can be written in terms of the nodal

degrees of freedom as

u [ ui . (e .| #
[V]=2Ni[vi]+ENiM1[Vi][ﬂ‘}+ENiM2[Vi][¢_] (3.3)
w wi g !

where Nj and Nj are the quadratic and cubic shape functions, respectively, and
are given in Appendix A2, Matrix Vil = [ Vi , - Vai] where unit vectors Vi
and Va; are directed along the x‘ and y’ axes, respectively, and form an

orthogonal basis with ‘unit vector V3; at the i** node as shown in Figure 3.2.
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The procedure for construction of the orthogonal basis (\7 1i,v2i,\.’3i) is
presented in Appendix C. The shape functions M; and M, approximate\‘:,*he
displacement field through the depth due to the constant and quadratic rotations,
respectively, and are given by

M, = Bit M, = Bit 1.1} (3.4)
2 2

where h; is the shell thickness at the it® node. The derivation of the through
thickness displacement field due to quadratic rotations ¢ and ¢ is given in
Appendix B. Note that the consistent shell element is subparametric since u, v
and w are approximated cubically while the geometric transformations are

performed using quadratic expressions.

3.2.3 Strain-Displacement and Stress-Strain Relationships

For small deflections the local strains {¢’} are given by

[ e 'y ] (4 o o |
o’
&'y’ 0 %y 0
i ul ’ u
{ey={Py t=M1{, = % % o |87, (3.5)
,.r o ; 7 ’
X 2z w a_ 0 .a—-
~'Yy’z’_ 8z’ ax’
o & &
| 82"y

where u’, v/ and w’ are displacements directed along the the local x’, y’ and
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z’ axes, respectively, and {L] is the linear opcrator matrix. Transformation
matrix [6] is composed of the direction cosines between the local and global

axes at the point where the displacements are to be transformed and is given as

Xy z
x| limgng
[l =y {lamany|. (3.6)

z/ 13 M3 I3

Matrix [4] is established using the Jacobian matrix as described in Appendix C.
Using the transformation matrix [f] and the expression for the global
displacements, Equation 3.3, the local displacements can be written in terms of

the nodal degrees of freedom as

u’ _ uj o ¢i
{ v’ ] = X Ni[d] { Vi] + B NiM;{[Ci] { ﬁ] + ¥ N;Ms[Cy) { ¢] (3.7}
wl W1 1 1

where

[ cll g1z 1
i 4
- (glyi+memyi+nngs) (1ilai-mymai-ninag)
[Cil =[A[Vi = Ci Ci = | (lolyi+maemys+nangs) (-l2las-mamos-nane;)
C3t 032 (13133 +mamyi+nangs) (lalai-marmai-nana;)
L8 Ty oo

The stress-strain relationship used is the generalized Hooke’s Law

given by
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(3 ={ =1t y- L]+ 6o

where {¢’} and {a;} are the initial local strain and stress vectors, respectively.
0
The elasticity matrix [D’] is derived by substituting ¢,’,’ = 0 into the general

three dimensional constitutive relation and then eliminating €,’,. This yields

(3.9)

O O O O

P
[}
w

L)

where E and v are the elastic modulus and Poisson’s ratio, respectively. It
should be noted that the shear correction factor & is not required in [D’] because
of the parabolic approximation of the transverse shear strains through the
thickness.  Furthermore, at this stage we can incorporate any general

constitutive equation, e.g. for orthotropic or anisotropic materials.

3.2.4 Sub-Matrix Formulation of Elastic Stiffness Matrix

For the same number of degrees of freedom per node there are
ninety-one degrees of freedom per element. However, the number of active

degrees of freedom per element is only fifty-four. When calculating the element
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stiffness matrix in the usval manner through multiplication of [B]T[D][B]
(Zienkiewicz 1977) the presence of the inactive degrees of freedom, and the
banded nature of the elasticity matrix [D] result in many unnecessary
multiplications with zero. This leads to a significant increase in the computer
time required for problem solving, unﬁecessary use of large memory and
potential loss of accuracy. These problems are avoided by employing a
sub-matrix formulation which aliows the stiffness matrix to be calculated at the

sub-matrix level without performing any unnecessary multiplications.

The expression for the local displacements, Equation 3.7, can be

re-written in terms of the degree of freedom sub-vectors and the shape function

matrices as

(¢ o2}l i)
v/ b= [N9T (v} + M INT) + Ma [N"] (3.10)
’ {8} {v}

w

dx 3o {W} 3x 12 Ix 12
ix1 30 % 1 12x1 12x!
11 mp ny
_d _ - T
where [NY] = {N} Il ma ng

3x 30 1x10

I3 m3 n3

{N}T = < N; N; N3 Ng¢ Ng Ny Ny Ny Nyp Ny >
eyt Nyt
{Nzl}T {N22}T
Ny ey

[N} =

ix 12
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(NI = < NiCl NoCH NiC}l N:Cli NyC NyCll >.
The degree of freedom sub-vectors are given by

{u}f = < u; u2 ug U Ug U7 Ug Ugo Ugz Ugs >

{V}T = < V| V2 V3 V4 Vg V7 Vg V1o V12 Vi3 >

{W}T = < W) W2 W3 Wg Wg Wy Wy Wio Wiz Wi3 >

{cae}T =< @ 0 03 G5 Qg Q> (3.11,a-g)
{8y = < By B2 Bz Bs Bs Pu >

(YT = < ¢ ¢2 63 #s 65 du>

(=<9 o s P5 Y5 Yu >

where the subscripts denote the node number to which the degrees of freedom

belong. Note that only those degrees of freedom which are active are included.

To establish the discretized equations of equilibrium the principle of

minimum potential energy is used. The potential energy II is given by
I=U-W (3.12)

where U is the strain energy and W is the work done by the external forces.
For more information refer to Zienkiewicz (1977). The minimization of the
potential energy II with respect to the degree of freedom sub-vectors yields the
clement stiffness coefficients in terms of the shape function matrices and the

element load vector.
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Using the expression for the local displacements, Equation 3.10, and

the linear operator matrix [L] from Equation 3.5 the local strains can be written

in terms of the displacement sub-vectors as

T T T
' = 1L ) + m 2 gy 200 gy

M AN 3MI{N11}T]{Q} N [MIB{N”}T N aM,{Nu}T] 8
ox’ ax’ ax’ ax’

+ [M‘B{N”}T + BM"{N“}T]W} +
ox’ d

x!

T .
[MP{N"} + ""Mﬂ{N*?}T] W (3.13,2)
ax’ ax’ .

&'y’ = lzg{mT{u} + ng{ﬁ}_'r{v} + nTmT{w} -+
ay’ ay’ ay’

o ey ey + 2B+ Bigenyt
ay ’ av’ ay ’ 6

y y'
+ [M,"’{N“}T + aM?{N“}T]w} +
ayl T ay /

[Mf’{N23 + 3M2{N”}"’] ) (3.13,0)

ayl ay ’
'y = gf(l:]} +1 giN} }{u} + [m,—{—}- + mz—{—}- }{v} +

B{N} + ng a{N} ]{w} +
5)" ox’
a{Nl_} + aMIINll} + M a{Nzl} + aerN?.l} ]{a} +

L 6y’ oy’ ax’ ax’

[ B{Nm} + aerNlﬂ} + M, aN2y” + aersz} ]{ﬂ} +
dy’ dy’ ax ax’

M“a{NJ + aM?{Nll}T + M{a{N } + aMZ{Nﬂl}T]{¢} +
dy’ dy’ ox’ dx’
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MAND | Mg g BN +%{N”}T]{¢} (3.13,0)

6y’ dy’ ax’ ax’
ety = [ 2 4 2 ]{u} 4 [ AR maa{ﬁf] vy +
L azl ax azf axl

—{—}- +nm]{w}+

a{N“} + 5M1erl} + My B{NJ aMuNal} ]{a} +

-

{ 62" dz’ ax! ax’
a{NIZ} + 3M1rN12} + My a{N } + aMUNM} ;ﬁ} +
sy 8z o’ dx

v Moyt + M2 My | (9} +
oz’ gz’ ox ! ox’
M2 | Moy 4y OOV aM“N”} W} 3.13,4)
Bz’ dz’ ox’

[11 + g —Ll ]{u} + [ ggr}T + ma‘;f}:r] v} +

[nla{N} + g 3{NJ ]{w} +

[M1 {NI} + aMHNll} + M; a{N ZMI{NM}T]{G} +
y
[M,B{le} + 3M1rN12} + M, A{N® } + aleN32} ]{ﬁ} +
by’ 9y’
[M‘B{N”} . BMuNu} + M, giN B . :M'”N“} ]{q&} +
y
[ 6{N‘2} . 5M2 ;le} Vi g + Mgy ]{¢} (3.13,¢)
by’ ay’

For the components of strain given in equations 3.13 the strain energy U is

given by
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U=

E 2j- [Exfxd + Eytyf! + ZVEx’x’Ey'y'
21y (3.14)
+ l-v r 2 ¢+ 22 i 2 d

'—2—(%: y ot et oyl )dV.

The minimization process described above gives the stiffness contributions to
each sub-matrix of the element stiffness matrix in terms of the shape function
matrices prior to integration over the element volume. The element stiffness

matrix [k] is divided into stiffness sub-matrices [kS]ij as follows

{u} M v {g {88 {4 (¥}

KT K2 s s s Klis iz | {u)

Kot T2 128 Ka¢ [KTes [ K20 | {V}

a1 002 590 (K%1s 005 (KTse [Klz7 | {w}
a6 K Kl Kes lis Kar | {2} (.19)
s K552 (K553 [Ks4 K55 [K'lse [KJsz | {6}

61 052 165168 T4 %005 [K'lse (Ko7 | {9}

S 02 T 51 K1 Tne [KDer | {4}

(54x54)

(k]

The stiffness sub-matrices [kS]ij are deﬁned in terms of the shape function
matrices in Appendix D. The integration of these sub-matrices is performed

numerically using the Gaussian-Quadrature scheme.

Derivatives in the curvilinear (r,s,t) co-ordinate system are related to
the derivatives in the global (x,y,z) co-ordinate system through the Jacobian

matrix as
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o] [xaya|fo]
o | _joxdy )]0 |
Os ds ds 0Os dy
[ & oy oz| |4
| Ot | | Ot dt 8t ] | 6z ]

where the components of the Jacobian matrix i.e. _g_x, ?, etc. are determined
r or

using Equation 3.1. The differential volume dV is transformed as
dV = det|J|drdsdt (3.17)

where det!J| is the determinant of the Jacobian matrix. The Jacobian matrix is
also used to compute the direction cesine matrix [d], Equation 3.6, as described
in Appendix C. The partial derivatives with respect to the local x’,y’',z’)
co-ordinates appearing in the sub-matrices in Appendix D can be writien in

terms of derivatives in the curvilinear co-ordinate system using

o | [eas o ][] Ea
ax’ ox’! ox’ ox’ or or
| — = r 8 ot || ‘_3_.-_-[11]'1‘6_ (3.18)
dy’ oy’ By’ oy’ || O ds
o | |a s o ||e 2
| 8z’ ] | 8" 8z’ 0z’ | [ 8t L at |

where matrix [J/] relates derivatives in the local co-ordinate system to the

derivatives in the curvilinear system and is given by
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& Byt gzt
dr or or
0] = o' &y o | (3.19)
ds 0Os ds
ox’ oy’ 9
| 0t ot at

The components of [J’] are determined using Equation 3.1, the matrix of

direction cosines {f] and the chain rule as

da’ da’ 6a da’
B 0 By g
dr Or Ox drdy Oroz or or
da’ 3a c"?a
BB P e k08 (32040
Os Js 0x ds 6y as 61 Os ds Js
da’ Ba da’ oa’
O S e TN T R
ot at ox ot dy ot oz ot at ot
where a’ = x’, y’, z’. Using the above transformations the sub-matrices

i=1,2, 3

are integrated numerically using seven integration points in the r-s plane and

five integration points along t.

It should also be noted that an eigenvalue test of the element stiffness
matrix [k] was performed. The resuits verified the existence of the required
rigid body modes and the absence of any spurious zero-energy deformation
modes. In addition, the validity of the formulation was further verified through

constant stress and constant curvature patch tests.
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Following the minimization of the potential energy the element load

vector {r} is obtained as
{1} = fv )" (b} dv + fS N® {T} ¢S + IN]” {p} (3.21)

where {b}, {T} and {p} are the body force, surface traction and point load
vectors, respectively. Matrix [N] relates the nodal degrees of freedom to the

global displacements and is given by

()T | 0 | 0 T
0 ll (T : 0
= 0 0 (g 3,22
N M M T M () -

M N m )T | - navt, (3T
Mo T L mMa ) aMa ()T
- le 2 {N}T l - sz 2 {N}T - nzM 2 {N}T

The element load vector {r} is integrated numerically through use of the

Jacobian matrix, Equation 3.16, to accommodate the required transformations.

3.2.5 Assembly and Solution of Global Equilibrium Equations

Having established the stiffness sub-matrices, the global equations of
equilibrium can now be assempled. For this purpose the frontal solution scheme
(rons 1970, Hinton and Owen 1977) is used. Incorporation of the degree of
freedom sub-vectors and the stiffness sub-matrices into the frontal solution

scheme requires modification of the present algorithm.
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The modified frontal solution algorithm allows the global equations of
equilibrium to be assembled directly without the use of the full element stiffness
matrix. This is accomplished with the use of seven new vectors which are
referred to as sub-variable location vectors. They locate each term of the
degree of freedom sub-vectors in the vector containing all ninety-one degrees of

freedom (active and inactive) and are given by

{LSu}® = < 1 8 15 22 36 43 57 64 78 85 >

{LSv}T = <2 9 16 23 37 44 58 65 79 86 >

{LSwiT = < 3 10 17 24 38 45 59 66 80 87 >

{LSa) = <4 11 18 32 53 74 > (3.23,2-g)
(LSAT = <5 12 19 33 54 75 >

(LS@T = < 6 13 20 34 55 76 >

LSy = <7 14 21 35 56 77 >

For example the sub-variable location vector {LSu} contains addresses of the
degrees of freedom in the displacement sub-vector {u}. The sub-variable
location vectors allow each term of a specific ..iffness sub-matrix to be added
directly into the appropriate positions in the global stiffness matrix. Solution of
the equations then proceeds in the usual manner. If an alternate solution
scheme, such as a banded solver, is employed the global stiffness matrix can be
assembled in a manner similar to that described above using the sub-variable
location vectors at the sub-level. The ordinary referencing for the sub-level

formulation, in terms of the sub-level vectors is shown in Figure 3.3.
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3.3 Elasto-Plastic Formulation

For elasto-plastic analysis of plates and shells an incremental approach
is adopted. The instantaneous constitutive relation is formulated using the
Huber von Mises yield criterion, an associated flow rule and isotropic
hardening. Special attention is given to the formulation of the elasto-plastic
element stiffness matrix to ensure computational efficiency. The nonlinear
finite element analysis procedure is the same as that described in Chapter 2

section 2.4.2.

3.3.1 Elasto-Plastic Constitutive Relationship

The nonlinear material behaviour is described using plasticity theory.
Only the details which are specific to the present formulation are presented.
For more information on plasticity theory refer to Mendelson (1970} or Fan and

Chen (1988).

The onset of plastic deformation is determined by the yield criterion.
The yield function F corresponding to the Huber von Mises yield criterion and a

general state of stress is given by

1==| 31, -0, =0-0,=0 (3.24)

where ¢, and ¢ are the uniaxial yield stress and the effective stress,

respectively, The second stress invariant of the stress deviator tensor J; can be

written as



=1 Sij Sij (3.25)
2
where sij is the stress deviator tensor which is given by

8ij = 0Oij - ﬁij Om ' (3.26)

and oy = 04i/3 is the first invariant of the stress tensor. Yielding occurs when
the yield function F, Equation 3.24, is equal to zero i.e. when the effective
stress o equals the uniaxial yield stress a,..

Beyond the proportional limit an incremental stress-strain relationship

is employed which can be written as

d{o’} = [Dep’} d{e’} (3.27)

where [Dep’] is the instantaneous elasto-plastic constitutive matrix in the local
co-ordinate system. For an associated flow rule and isotropic hardening it takes

the following form (Zienkiewicz 1977)

= M- M’ 1 gF, ( OF /
[Dep’] = [D’] [D]H’-i-{a_F.}T[Df]{QF_}{ }{aa}T[D] (3.28)

do do

where [D’] is the elastic constitutive matrix, Equation 3.9, and H' is the plastic
modulus which is the slope of the uniaxial stress-strain curve beyond the yield
limit. Assuming a bilinear stress-strain curve for elasto-plastic material

behaviour the plastic modulus is given by
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* =E,/(1-E,/E) (3.29)

where E and E,, are the elastic and tangent moduli, respectively.

After substituting J,, Equation 3.25, into the yield function F,

Equation 3.24, the vector { Z—F-] can be obtained as
o

T
{ 3_F. = --% Sij (3.30)
do 20

which for a;’;" = 0 gives

[ ax’x’ = (J'y"y.'lz.1

aF 1 Uy'y' ~ o'xlxllz
9l 31 3y L (3.31)

37-x! zl
L 3Ty’z’

Having defined all of the terms, one can now compute the elastic-plastic

constitutive matrix [Dep’] as given in Equation 3.28.

3.3.2 Elasto-Plastic Stiffness Matrix

As described previously in section 3.2.4 many unnecessary
multiplications with zero occur when the stiffness matrix is calculated in the
usual manner using [B]T[D][B] due to the presence of inactive degrees of

freedom and the banded nature of [D]. However, once yielding has occurred
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the elasto-plastic constitutive matrix [Dep] is used in place of the elastic
constitutive matrix [D]. Since [Dep] is a fully populated matrix the only
unnecessary multiplications which occur when [B]T[Dep][B] is carried out are
those with columns of [B] which correspond to inactive degrees of freedom.
Elimination of these columns from [B] prior to calculation of [B]T[Dep][B]
allows for more efficient and accurate computation of the elasto-plastic element

stiffness matrix.

Substituting the expression for the local displacements, Equation 3.7,

into the strain-displacement relation, Equation 3.5, and multiplying yields

{e'} = [B'] {d} (3.32)

where matrix [B’] relates the nodal degree of freedom vector to the local strains

and is presented in Appendix E.

After applying the principle of virtual work (Zienkiewicz 1977) the

elasto-plastic element stiffness matrix is calculated as
k1= [ (B°]" [Dep’] B’} dV (3.33)
T v r T

where [B;] and [kr] are the reduced dimension strain displacement and element
stiffness matrices, respectively. Matrix [B;] is obtained from [B’] by
eliminating those columns which correspond to the inactive degrees of freedom.
Obviously, the resulting reduced matrix has fifty-four columns instead of

ninety-one,
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Inizgration of Equation 3.33 is performed numerically by employing
the Gaussian Quadrature scheme. The partial derivatives with respect to the
local co-ordinates in matrix [B;] are transformed to derivatives with respect to
the curvilinear co-ordinates as described previously in section 3.2.4. After

which the stiffness matrix is calculated as follows

+ #l A
K] = f+11f S 01 [B/1" Dep’] [B'] det]J| drdsdt. (3.34)

The integration is performed using seven integration points in the r-s plane and

three integration points along t.

3.4 Numerical Examples

3.4.1 Convergence to Thin Plate Solution

A simply supported thin square plate subjected to a uniformly
distributed load has been analysed. Due to double symmetry only one quarter of
-the plate has been modelled using 8 (2x2) consistent shell elements. Analyses
have been made using the full matrix formulation and the sub-matrix
formulation. For the full matrix formulation the computer time required for
analysis was 114 seconds and for the sub-matrix formulation the computer time
required was 58 seconds. Thus, by employing the sub-matrix formulation a

50% reduction in the computer time required for problem solution is achieved.

This problem is typically used in the literature as a test for shear
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locking. For this purpose the ratio of the plate width to thickness is increased
and the predicted solutions are checked for convergence to the theoretical
solution. In the present case plates having width to thickness ratios ranging
from 10 to 200 have been analysed. The predicted deflections of the center of
the plate have been normalized and plotted in Figure 3.4 along with the
theoretical solution given by Timoshenko (1959). Also plotted are results
obtained by Zienkiewicz et al. (1971) using four eight node isoparametric shell
elements with full 3x3 quadrature in the r-s plane. It can be seen that the
transverse displacements predicted by the consistent shell element becomes
asymptotic to the theoretical solution while those predicted by the eight node
isoparametric shell element are divergent. By ensuring a consistent formulation
the consistent shell element is free of the spurious transverse shear strain modes

which plague the eight node isoparametric shell element.

3.4.2 Cylindrical Panel

A cylindrical shell roof with two edges simply supported and the
remaining two edges free as shown in Figure 3.5 is now considered. The panel
is loaded vertically by its uniform dead weight. The analyses using the
consistent shell element have been carried out using three different meshes. The
first uses 2 elements (1x1), the second 8 (2x2) and the third 32 (4x4). Only one
quarter of the panel has been modelled because of double symmetry. In each
case two solutions have been obtained. The first using the full matrix
formulation and the second using the sub-matrix formulation. The results of
these analyses are shown in Table 3.1 which gives the normalized vertical

deflection at point A, and the computer run times. The exact deflection at point
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Table 3.1: Results of cylindrical panel analysis using the consistent thick
shell element.
Elements Degrees of Normalized Time (sec.)
Freedom Deflection ~Sub  Full
2 57 0.630 15 26
8 188 0.930 55 95
32 576 0.968 281 448

A has been taken as 0.3024 (MacNeal and Harder 1985). The efficiency of the

sub-matrix formulation over the full matrix formulation is again quite obvious.

The computing time required is approximately 40% less than that required by

the full matrix formulation.

As this problem is dominated by its membrane response it has been

used by numerous investigators as a membrane locking test. For the purpose of

comparison, the results from an analysis of the shell using the nine node

isoparametric shell element with full 3x3 quadrature in the r-s plane, as given by

Belytschko et al. (1989), are shown in Table 3.2, The slow convergence

exhibited by the nine node isoparametric shell element is a result of the

Table 3.2: Results of cylindrical panel analysis using the nine node
isoparametric shell element without reduced integration.
Elements Degrees of Normalized
Freedom Deflection
4 96 0.265
16 352 0.818
64 1344 0.987
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inconsistency in the displacement fields us>d in its formulation. This is because
the spurious shear modes are not suppressed even though the transverse shear
stresses are negligible. ‘The consistent shell element on the other hand
demonstrates very good accuracy even for coarse meshes since the locking
problem has been eliminated through the provision of a consistent formulation

and use of complete polynomials.

3.4.3 Hemispherical Shell Under Point Loads

A quadrant of a hemispherical shell (because of double symmetry)
subjected to two concentrated loads at the equator is shown in Figure 3.6. All
degrees of freedom at the pole at point A are constrained, while those along the
equator are free. Analysis of the shell quadrant has been performed using from
9 to 121 consistent shell elements as indicated in Table 3.3. The radial
deflections predicted at node B by the consistent shell element models are
normalized with respect to 0.0924, which is the deflection obtained by Morley
and Morris (1978). The normalized deflections are listed in Table 3.3.

The shell has aiso been analysed by Belytschko et al. (1989) using two
different versions of the nine node isoparametric shell element. The first
employs full 3x3 quadrature in the r-s plane and the second employs selective
reduced integration (i.e. 2x2 quadrature for transverse shear stiffness and 3x3
quadrature for flexural stiffness). The results of the analysis are given in Table
3.4. The results obtained using the consistent shell element indicate
convergence to a displacement which is approximately 10% less than that

obtained by Morley and Morris. However, Vu-Quoc and Mora (1989) question
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Table 3.3: Results of hemisphenical shell analysis using the consistent
‘ shell element.
Elements Normalized Elements Normalized
Deflection Deflection
9 0.116 64 0.819
25 0.538 31 0.849
36 0.684 100 0.868
49 0.770 121 0.880

the correctness of the analytical solution given by Morley and Morris.
Specifically, they point out that the solution obtained by Morley and Morris has
been obtained without considering the local effects due to the concentrated
forces. In this light the deflections predicted by the consistent sheli element can
be considered good. However, the deflections predicted by both of the nine
node isoparametric shell element models appear to be in very poor agreement
with the reference solution. This again illustrates that the provision of a
consistent formulation eliminates the locking behaviour associated with the

presence of the spurious transverse shear strain modes.

Table 3.4: Results of hemispherical shell analysis using the nine node
isoparametric shell element.

Elements Normalized Deflection
Full Int. Reduced Int.
3 0.001 0.004
15 0.014 0.032
63 0.173 0.196
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3.4.4 Elasto-Plastic Thin Plate

An elastic perfectly plastic analysis of a simply supported thin square
plate subjected to a uniformly distributed load as shown in Figure 3.7 has been
performed. A quarter of the plate (due to double symmetry) has been analysed
using eight consistent shell elements. The predicted load deflection curve at the
center of the plate is shown in Figure 3.8. Also plotted in the figure are the
results obtained by Owen and Hinton (1980) using four selectively integrated
(i.e. 2x2 quadrature for transverse shear stiffness and 3x3 quadrature for
flexural stiffness) Heterosis plate elements (Hughes and Cohen 1978). The
Heterosis element employs the nine node Lagrangian shape functions for
approximation of rotations and the eight node Serendipity shape functions for

approximation of the transverse displacement w.

The load deflection curve predicted by the consistent shell element
model is in very good agreement with that given by Heterosis model in both the
elastic and elasto-plastic ranges. The plate was analysed using the full matrix
formulation and the reduced strain-displacement matrix formulation of the
consistent shell element. The computer time required for solution of the
problem using the reduced strain-displacement matrix formulation was 46% less
than that required by the full matrix formulation. This example illustrates the
accuracy of the elasto-plastic formulation of the consistent shell element and the

computational efficiency of the reduced strain-displacement matrix formulation.
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3.4.5 Consistent Shell Element Convergence

Consider an element similar to the consistent shell element but which
employs a quadratic and linear appreximation of the displacements and
rotations, respectively, instead of cubic and quadratic approximations. In this
example the consistent shell element is referred to as the cubic-quadratic shell
element and its lower order counterpart will be referred to as the quadratic
linear shell element. The purpose of this example is to compare the
convergence and accuracy of the consistent shell .9lei]}ents to each other and to

solutions obtained using the nine node isoparametric shell element.

A thin clamped square plate subjected to a uniformly distributed load
js analysed using the cubic-quadratic and quadratic-linear consistent shell
elements. The elastic modulus, Poisson’s ratio and length to thickness ratio of
the plate are 30000, 0.3 and 200, respectively. Any units can be assumed. Due
to symmetry only one quarter of the plate has been analysed. The céﬁtral plate
deflection predicted by the finite element models is normalized with respect to
the solution given by Timoshenko (1959) and plotted against the number of
degrees of freedom in Figure 3.9. Also plotted are the results predicted by the
nine-node isoparametric shell element. For each finite element model,
subsequent analyses have been carried out after uniform refinement of the

‘previous mesh. The cubic-quadratic model converges rapidly to the reference
solution, followed by the nine-node shell element model and then the
quadratic-linear model. This is because in both the cubic-quadratic element and
the nine-node isoparametric shell element the bending moments vary linearly,

while in the quadratic-linear element they are constant. In addition, the
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transverse displacement is approximated by a cubic polynomial in the
cubic-quadratic element, and by a quadratic polynomial in both the nine-node
isoparametric shell element and the quadratic-linear element. The results show
that the cubic-quadratic shell element converges more rapidly and provides a
more accurate solution than either of the other elements. Of course, the
cubic-quadratic shell element will always yield better results than its

quadratic-linear counterpart.

A clamped thick circular plate subjected to a uniformly distributed
load has also been analysed using the cubic-quadratic and quadratic-linear shell
eloments. The radius, thickness, elastic modulus and Poisson’s ratio for the
plate are 5, 2, 30000 and 0.3, respectively. Again, any units can be used. The
central plate deflection predicted by the finite element models is normalized
with respect to the solution given by Young (1989) and plotted against the
number of degrees of freedom in Figure 3.10. Also plotted are the results
predicted by the nine-node isoparametric shell element. Again the accuracy and

rate of convergence of the cubic-quadratic sheil element are excellent.
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Figure 3.1: Consistent shell element co-ordinate systems and nodal
degrees of freedom.

Figure 3.2: Consistent shell element nodal unit vectors.
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Figure 3.3: Stiffness sub-matrix referencing using sub-variable location vectors.
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thickness ratio for a simply supported square plate
under uniform load q.

Normalized Central Plate Deflection



81

pmmmmsmme e an
...............

R=25
L =50

thickness = 0.25
\ / y = 0.0

E = 432 x 10°
weight = 90 per unit area

Figure 3.5: Cylindrical shell roof dimensions, loading and material properties.

N rading = 10.0
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E = 6.825x10°
v = 0.3

Figure 3.6: Hemispherical shell geometry, loading and material properties.
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Figure 3.7: Geometry, material properties and loading for simply supported
thin square plate.
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Figure 3.8: Total applied load versus center plate displacement
for a simply supported square plate loaded by
uniform load q.
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CHAPTER FOUR
FINITE ELEMENT MODEL FOR COMPOSITE STRUCTURES
OF STEEL AND CONCRETE

4.1 Introduction

Composite steel and concrete construction has been applied in many
important areas such as buildings, bridges, off shore oil platforms, nuclear
containment structures, dams and pressure vessels. In this chapter a finite
element model for the analysis of composite structures of steel and concrete is
developed as an extension of work done by Chow (1984), Jiang (1985), Jiang
(1988) and Zhou (1991).

The behaviour of a composite structure of steel and concrete involves
a complex interaction between its constituents. These constituents commonly
include concrete, embedded reinforcement either plain or prestressed, shear
connectors and supporting girders as shown in Figure 4.1. The concrete
constitutive model developed by Pietruszczak et al. (1988) and Jiang (1989) has
been shown to adequately reflect certain typical trends in concrete behaviour.
This constitutive model in combination with the consistent shell element
formulated in Chapter Three is used to model concrete plates and shells. A
required one dimensional curved bar element is formulated and used for
modelling of the plain and prestressed reinforcing bars. The influence of bond

between the reinforcement and the surrounding concrete on the response of the

85
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structure is simulated through a joint element which can allow slippage to occur
along the interface. Supporting girders are modelled using a modified form of
the consistent beam element formulated in Chapter Two. These supporting
members are typically connected to the concrete plate or shell by means of
mechanical connectors. Due to the deformable nature of these connectors
slippage can occur at the interface of the supporting member and the concrete.
This behaviou.i: is modelled through a shear connector element which zllows for
slippage along the interface depending upon the load deformation characteristics
of the connectors. For verification of the model a reinforced concrete plate and
a multi-girder prestressed concrete deck have been analysed and the predicted

results have compared with the available experimental data.

4.2 Finite Element Models

4.2.1 Reinforcement Element

A one dimensional cubic isoparametric bar element is used to model
both the plain and prestressed reinforcement. Co-ordinate systems used in the
element formulation are shown in Figure 4.2, and defined as follows:

1. Global cartesian co-ordinate system X, y* and z' and

corresponding globa! displacements u’, vFand w'.
9. Curvilinear co-ordinate ¢ tangent to the element.
3. Local dimensional co-ordinate ¢ tangent to the element to define

the local axial displacement d7, local strain € and local stress o7 .

For geometric distortion of the element 2 curvilinear transformation is



87

used in terms of {. Thus, the location of any point along the element in the

global co-ordinate system is given as

X’

xF i
y I =3N }’Ii‘ 4.1)

r 1 zF

where cubic interpolation functions N are given in Appendix A3 and x', y" and
1 1 1

z" are the global co-ordinates of the i** node.
1

Cubic approximations of displacements u*, v* and w' are constructed

using the global displacement degrees of freedom (u’,v’,w?) at each of the four
1 1 1

nodes. This gives a total of twelve degrees of freedom per element. The axial

displacement dF at any point along the element can be written in terms of the

nodal degrees of freedom as
ul'
i
4 = BNF[X AT A7) vi 4.2)
t o

where direction cosines (AZ,A;,A;) relate the local co-ordinate axis ¢ to the

global axes (x*,y",z") at the point along the element where displacement d’ is to

be calculated. Using Equation 4.1 the direction cosines are computed as follows

Arzﬂlﬁr/j [gir]2 + [glr]2+ [gﬂz-r]2
bod¢ d¢ d¢ d¢
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A = O J[d_ ]u [éf]u [d_] 43,20
2 4« d¢ d¢ d¢

,\r=§£r/] [gz(—r]2 N [glr]2 + [QEI‘]Z.
Pod¢ d¢ d¢ d¢

The local axial strain efc is given by

ut
ddr g AN o

ef =—(= 5 — [ATA] SN (4.4)
¢ dt adt -

which can also be written as ¢f = [B"] {d"}. Here vector {d'} is the vector of

nodal degrees of freedom and matrix [B7} is the strain-displacement matrix.
Matrix [BT] contains the derivatives of the shape functions N¥ with respect to the

local dimensional co-ordinate . The relationship between the axial stress of

and the axial strain ¢* is defined as

Ef ¢ when oF ¢ a,;

of = ¢ ¢ (4.5)
¢ Ef €& when " > o
T e Y

where oy is the uniaxial yield stress and E* and E, are the elastic and tangent

moduli, respectively. It should be noted that all strains other than the axial

strain are assumed to be zero.
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The element stiffness matrix [k*] is computed according to
k7] = f (8" EF [B7 dV. (4.6)
v

and the load vector {p"} due to the internal prestress ¢” is calculated as
{7} = f BT V. “.7)
v

Both [k*] and {p'} are integrated numerically using the Gaussian Quadrature
scheme. Differential d¢ in the non-dimensional co-ordinate system is related to

differential dC in the dimensional co-ordinate system through

dZ=J [d—"r]2+{9f]2+ [d—zr]gdc. @.8)
dc d¢ d¢

Using Equation 4.8 and the chain rule the shape function derivatives in Equation

4.4 are transformed as follows

B-a- T T (4] o
d¢ d¢ dt  d¢ d¢ d¢ d¢ ).

Finally, the element stiffness matrix [k*] and load vector {p’} are calculated

using the following equations

[kr]=f+l[Bl]TEr[Br]ArJ [d_x'r ]‘2 + [glr ]2 + [Elir]zdc
-1
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7} = f“ BT UEA"J [%’g ]2 + [Qf ]2 + [Qf ]2dC (4.10,a-b)
-1

where AT is the cross-sectional area of the element. Integration of equations

4.10 is performed using three integration points along the ¢ co-ordinate.

4.2.2 Joint Element

A joint element is used to simulate bond slip along the
concrete/reinforcement interface. The element is composed of springs which
are tangent and uniformly distributed along the concrete and reinforcement
interface. The joint element stiffness matrix is formulated in terms of the
relative tangential displacement d-j_:i“" along the concrete/reinforcement

~interface which is given by

di°;n"- =d¢-dt (4.11)
re < c

where d€ is the displacement of the concrete at the interface in the direction
tangent to the reinforcement element, and d” is the axial displacement of the
reinforcement element. Displacement d” is given in Equation 4.2 in the

previous section. It should be noted that the concrete and reinforcing bar are
assumed to have the same displacement normal to the interface. However, the

transverse stiffness of the reinforcement has been ignored.

The concrete displacement at the interface in the direction tangent to
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the reinforcement element is given by

c c
u (0
dS =[ATATAT]Y vE} = {AT}" § vE© 4.12)
C 1 2 3 w¢ wt
where displacements u®, v® and w® are the global displacements of the concrete
(i.e. the consistent shell element) at the interface. The global displacements
(u,v,w) of the consistent shell element have been given in terms of the shell
element nodal degrees of freedom in Equation 3.3 of Chapter Three.
Substituting Equation 3.3 into Equation 4.12 and multiplying gives displacement

d¢ in terms of the consistent shell element nodal degrees of freedom and the

¢

direction cosines {A"} as

d° =3I N; {z\r}T { 5;] + % Ni M, {Ar}T Vil { gl}
¢

Wi i
+ BN; My 0 [Vi] { 3* } .13)

The nodal degrees of freedom of the consistent shell element {d} and

the reinforcement element degrees of freedom {d"} are combined to give

{d} ]
{djoint} = 1 91x1 (4.14)
103x1 {d"} J |
12x1

which is the joint element degree of freedom vector. Substituting the

expressions for d°, Equation 4.13, and df, Equation 4.2, into Equation 4.11
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gives the relative displacement in terms of {di°int} as

d
] djoint = [[NC] - [Nl']] [i } ] = [Njoint] {d.ioint} (4_15)

rel 191 1x12 dr} 1x103  103x1

where

4
J'1 = T \INT A INT
LORRIE R

13 _ - ..
N =% [ z\’lNi )\;Ni A‘;Ni MxNi(Arllli+A;mli+A:n1i)
i
'MlNi()\?2i+A;m2i+/\;n2i) MzNi(Arlhi'l'/\;mli'*“/\;nii)
-MgNi(/\:lgi-l- A;mgi-l-,\:ngi) ].
Interpolation functions N; of matrix [N] are evaluated at { corresponding to the
point along the interface where the relative displacement is to be calculated.
Similarly, functions Nj, Nj, M; and M, of matrix [N are evaluated at
curvilinear co-ordinates r, s and t which correspond to the point of interest on

the concrete/reinforcement interface.

The strain energy due to the relative displacement df_‘;i“" is given by
1 L - -
u=2 f Kijoint (d101%)? d{ (4.16)
2Js rel

which then leads to the stiffness matrix [ki®""%] of the joint element as
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[kioint] = J-Lmjoim]'r Kjoint [Nioint) gz @.17)
103x103 o 103xI 1x103
and kjoint Tepresents the distributed stiffness along the interface due to bonding.
Since a simple general expression for kjoint is not yet available, various values
of Kjoint are assumed and the effect on the predicted response of the structure
can be investigated. It should be noted that the influence of Kjoine in siabs is
usually negligible. Integration of Equation 4.17 is performed numerically using
the Gaussian Quadrature scheme. Changing the limits of integration in Equation

4.17 and transforming d{ using Equation 4.8 gives

[kioiny) =J‘+1[Njoint]T Kjoint [Njﬂinf-]J [g}—‘]z + [911]2 + [-qz'-‘]zd( (4.18)
. d¢ d¢ d¢

which is integrated using three integration points along the ( co-ordinate
direction. The element load vector {pi°"¢} due to bond stresses along the

interface is calculated from

{pjoinb} — [kjoint] {djuint} (4.19)
103x1 103x103 103x1

according to linear elastic theory. An incremental approach must be adopted for

the case of deteriorating kjoint.
4.2.3 Transformation_of Boundary Degrees of Freedom

Nodal degrees of freedom at a joint element or a reinforcement
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element boundary node must be transformed in order to satisfy deformation
compatibility on the boundary. This is accomplished by expressing the degrees
of freedom at the boundary node in terms of the consistent shell element nodal

degrees of freedom.

For example, when node one of a reinforcement element is on the
boundary the vector of reinforcement element degrees of freedom {d'} is equal

to

{d'} = [T {d"'} (4.20)

12x1 12x100 100x1

where {d*’} is obtained by combining the shell element nodal degrees of
freedom and the remaining independent reinforcement element degrees of

freedom at nodes 2 through 4 to give

()" = < {d)" uz v2 wa Uz Vi W3 U4 Ve Wa > (4.21)
1x100 {x91

Transformation matrix [T1] is given by

Ri0 0 NeMily NiMilzs NiMzlu -NiMzlas 7

13 -
[T ={2} 0 N; 0 NiMmy N;Mms; NsMamyi -NiMamas 01} (4.22)

12x 100 i - ax9
0 0 Nj NiMiny -NiMpngi NiManyi -NiMazn i

L [0 1]

9x 51 9x9°

where N; and Nj are evaluated at curvilinear co-ordinates r, s and t
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corresponding to the location of node one of the reinforcement element. Using
transformation matrix [Ty the transformed reinforcement element stiffness

matrix [k*/] and transformed load vector {p’’} are given by

T
k] =[T} [k [Td
100x100  100x12 12x12 12x100
(4.23,a-b)
T
P’} =[T1 {7}
100x1  100x12 12x1
When node four of a reinforcement element is on the boundary the degrees of
freedom, the stiffness matrix and load vector are transformed in a similar
manner. However, transformation matrix [T4] is used instead of transformation
matrix [T;]. Transformation matrix [T4] is given in Appendix F. For joint
elements having nodes on the boundary the same procedure is employed.
However, instead of using transformation matrices [Ty] and [T4) matrices
[le"i"“] and [Tf'1 0int] are employed in their place. Matrices [le"i“t] and [TJ; ointy

are also defined in Appendix F.

4.2.4 Girder Element

A beam element similar to the consistent beam element formulated in
Chapter Two is used to model the supporting members such as girders. The
co-ordinate systems used in the formulation are shown in Figure 4.3, and
defined as follows:

1. Global cartesian co-ordinate system x&,yE and 28, and

corresponding displacements u8, v& and w&,
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2. Natural co-ordinates ¢ and § where ¢ is tangent to the curved
line defined by ¢=constant, and ¢ is normal to the ¢ axis.

3. Local dimensional co-ordinates ¢ and ¢ to define local
displacements, strains and stresses; ¢ is tangent and £is

perpendicular to the curved centroidal axis in general.

The element is distorted geometrically using a curvilinear
transformation along the ¢ co-ordinate direction and a linear transformation in
the ¢ co-ordinate direction. The Jocation of any point within the element in the

~ global co-ordinate system is given by

xB
x8 i
gt =ane] Vil +Enedve (4.24)
i i 28 ig i

where xg yg and zg are the global co-ordinates of the ith node and Ng are
quadratic shape functions which are given in Appendix A4 and vector Vg is

defined as

X8 X8
1 1

ve=1%} - S 4.25)
2B

2B
y | TOP i | BOTTOM

The girder element, like the consistent beam element employs cubic
polynomials for approximation of the displacements and quadratic polynomials

for approximation of the rotations.  For displacement interpolation the
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displacement degrees of freedom (u?,vgi,wg) at the end nodes and one-third point
nodes are used. The rotations are interpolated using the rotational degrees of
freedom (af, ¢§) at the end nodes and mid-side node. For the same number of
degrees of freedom per node there will be twenty-five degrees of freedom per
element. However only seventesn of these are active. Rotation a8 produces a
linear variation of the displacements through the thickness while ¢& gives a

cubic variation. The element displacement field is given as

ué AE B
us i 1 i
— E
vE Ll =1 N% Vit-3 Ng Mg Azl o:g1 > Ng Mg Agx ¢’§ (4.26)
we wé A8 : AB
i 3i k31

where N6 are the cubic interpolation functions which are defined in Appendix
1
A4, Direction cosines '\gﬁ’ )\gi and Ag, relate the global axes (x8,y8,z8) to the
1

local T axis at the i*® node and are determined using Equation 4.24 as follows

3 (T (T (]
’\g_élg/j [ ]2 + [g%gr + [‘;—zg]z (4.27,a-)
/(T (7 (]

Shape functions Mgl and Mg approximate the displacement field through the

depth due to rotations o5 and ¢8, respectively, and are given by
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Me = hid M = L& (1 ¢y (4.28)
1 g M T

where h; is the girder thickness at the {th node.

For small deflections the local strains {8} are written as

€& % 0 d%
{REAlx
¢ oc 0E) L ¢

where the local displacements d% and d8 are directed along the { and ¢ axes,

respectively, and can be expressed in terms of the global displacements using

the direction cosines as follows

d-gc AE A )8 usé né _
= 1 gl = g1, 4.30
- A AE A v [68] 4 v (4.30)
; 17273] | w8 wé

Direction cosines Agl, Ag and A§ are directed along the local € axis and are

determined using Equation 4.24 as follows

w2 BT (5T 1)
=0 [P (2] [E] wnao
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Ag=@/J aE ), ng]u 928 )7
3¢ o o¢ o¢
It should be noted that the direction cosines in transformation matrix [0€] are

determined at the point within the girder element where the local displacements

d% and d€ are to be calculated. Substituting the expression for the global
£

displacements, Equation 4.26, into Equation 4.30 and multiplying gives the
local displacements in terms of the nodal degrees of freedom. This expression

is then substituted into Equation 4.29 to yield the local strains in terms of the

nodal degrees of freedom as

€8 2E ONE | g ONE | g ONE | Mt cp1; IN¢ l
- 5 1 — 1 9 1 3 — X 1 1
l_g| 'oC 1 *ac | *ag | a¢ |
| A NG | g ONE | g ONS | e copp; OME e opo; NG
to¢ | %o¢ | ol | 2¢ ! 8¢ |
| M8 CPlia—N-E ugiﬂ
| vE
| ~ecp1; EME e cpo, :
| Ni CPli P Ez Mz CP2i BZI ‘ W? ' (4.32)
al
1
e
where CP1; = ABAE + ABAE + ASAE. e
i 11 2 21 3 N -

CP2; = AB)E + ABAE + ABAE |
1 1 2 2 I N

Equation 4.32 may also be written as
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{e8} = [BF] {dE} (4.33)

where [B8] = strain matrix relating degrees of freedom to local strains

{d8} = vector of nodal degrees of freedom

The stress-strain relationship used is the generalized Hooke’s Law

given by

]

L

=] ¢

{0} 8
¢

= e | {5} - (5] + 9 4.39)

el

where {EE} and {ai} are initial local strains and stresses, respectively. The
matrix [D8] is identical to matrix [D’], Equation 2.27, given for the consistent
beam element. Beyond the proportional limit the elasto-plastic constitutive

matrix [Dep’], Equation 2.42, is used in piace of [DE].
The element stiffness matrix [k8] is given by

T |
k8] = { (BE]" [DF] [BE]dV (4.35)
25x25 Va2sx2 2x2 2x25
which is integrated numerically using the Gaussian Quadrature scheme. The
partial derivatives with respect to the local co-ordinates (¢,%) found in matrix

[B8] can be expressed in terms of the derivatives in the curvilinear co-ordinate

system as follows
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et/ T (5T (%)
o o¢a¢ o¢t ' L a¢ 8¢

(4.36,a-b)
v ai /T (5T (5]

It should be noted that local axes ( and £ are parallel to the curvilinear
co-ordinates ¢ and £, respectively, After transforming and changing the limits

of integration the element stiffness matrix is calculated using the following

. equation:

1 = | " [ *B5" [DF] [B€] b DA d(dé @.37)
-1 -1

where b is the width of the girder and DA is the area of the parallelogram
formed by differentials d¢ and d€ and is given by

a¢ a6 a¢ o¢ a¢ o a¢ ot
+ [?}.é‘z_élﬁ‘.-’, (4.38)
a¢ o¢  o¢ ot |

Integration of Equation 4.37 is performed using three integration points along

both the { and ¢ co-ordinates.
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4.2.5 Shear Connector Element

Shear connectors between the concrete shell and the supporting girders
are assumed to act as a continuous spring between the concrete/girder interface.
To model the shear connectors an interface element similar to the joint element
defined ir‘1.section 4.2.2 is used. The relative displacement diz‘i'“ between the

concrete and the girder at their interface is written as

dshiar = d¢ - d8 (4.39)
re C g

where d°¢ and d€ are the displacements of the concrete and the girder,

respectively, in a direction tangent to the concrete/girder interface i.e., along the
local € axis of the girder element. It is assumed that the concrete and the girder

have the same displacement normal to their interface.

The concrete displecement at the interface d® is given by

uc
¢ = [\ AE \B c _
dZ [A8 )8 \3]{\\;0} (4.40)

where u®, v¢ and w® are the global displacements of the concrete (i.e. the
consistent shell element) at the interface. The consistent shell element global
displacements are given in terms of the shell element nodal degrees of freedom

in Equation 3.3 of Chapter Three. The girder displacement d& at the
¢

concrete/girder interface is given in terms of the girder nodal degrees of
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freedom in Equation 4.30 of the previous section.

The nodal degrees of freedom of the censistent shell element {d}, and

the degrees of freedom of the girder element {d8} are combined to yield

{d}
dshear =] 91x1 (4.41)
{llﬂxl } {dg}

25x1

which is the shear connector element degree of freedom vector. Substituting the

expressions for d%, Equation 4.40, and d8, Equation 4.30, into Equation 4.39

gives the relative displacement in terms of {dshear} as

{d}
dshtliar - [ [Nc] - [Ng]] { } — [Nsheal] {dshear} (4.42)
re g1xt  25x1° | {d¥} Ix116  116x1

116x]

where
5 _ _ -
[NB] = L[ ABNE )BNE )\BNE -MECP1;N8 -MECP1;NE ]
3 1 i 2 1 311 1 1 2 i
13 _ - -
Nl =2 [ /\glNi AgNi /\iNi MlNi(/\gllli+z\§mli+/\§n1i)
;

-MlNi(Agllgi-i-/\%mgi-i- z\ganzi) MgNi()\gll it Agm 1i+)\§n1i)
-MzNi(Agllzi'*')\gmzi'i-Agnzi) 1.

Interpolation functions N8, NE, Mg1 and Mg of matrix [N®] are evaluated at ¢
1 1
and ¢ corresponding to the point on the concrete/girder interface where the

relative displacement is to be calculated. Similarly, functions Ni, Nj, M; and
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M, of matrix [N¢] are evaluated at r, s and t corresponding to the point of
interest on the concrete/girder interface. Note that direction cosines Agl, z\g and
Ag, Equation 4.27, define the unit vector tangent to the interface at the point

where the relative displacement is to be calculated.

The strain energy due to the relative displacement di:‘;‘“ is given by
1t .
U=-= J‘ Kshear (d°2€20)2 d (4.43)
2Jo rel
and the ensuing shear connector stiffness matrix fksbear] is as follows

L
[kshear] = [Nsheu]T Kehear [Nshear] d¢ (4.44)

116x 116 o 116x1 1x118

and Kshear is the distributed connector stiffness. An elastic-perfectly plastic
shear spring model proposed by Mirza and Koral (1983) is used to estimate
Kshear as

Kehear = SAshear (4.45)

dhD

where G is the shear modulus, dh is the effective thickness of the shear layer,
Ashear is the cross-sectional area of the connector and D is the spacing of the

connectors.

Integration of Equation 4.44 is performed numerically using the

Gaussian Quadrature scheme with three integration points along (.
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Transforming d¢ using Equation 4.36 and changing the limits of integration

gives

1 2 2 2
1201 = [0 v | (274 (294 (2 0t a0
-1 ¢ a¢ a¢
The shear force {p*2€3r} acting along the interface is calculated as

{pshear} o= [kshear] {dshear} 4.47)
f16x1 116x116 116x1

in the linear elastic range. Apgain, an incremental approach must be adopted for

the case of nonlinear behaviour, i.e. due to deterioration.

4.2.6 Elastc-Plastic Constitutive Model For Concrete

The constitutive model developed by Pietruszczak et al. (1988) is
adopted in this study for modelling concrete behaviour. This model fairly
adequately reflects certain typical trends in concrete behaviour. These being: a
progressive transition from compaction to dilatancy; sensitivity of material
characteristics to confining pressure and a continuous transition in failure
mechanism from a ductile mode to a brittle mode. The theory is given within
the framework of rate independent plasticity theory. Deformation is governed
by a non-associated flow rule and involves a progressive evolution of the yield
surface which is described in terms of a hardening/softening parameter. The
theory is applicable to the modelling of concrete response under monotonic

loading conditions. Only the key components of the constitutive model will be
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described. For more detailed information refer to Pietruszczak et al. (1988) and

Jiang (1988).

In the adopted concrete constitutive relationship the following stress

invariants are used

a: l .1_ Sij Si_] (4.48,3.‘0)
2

0=lsin'1 Mh] ﬂsos
3 6

o 1

where 7 is the effective stress and sij = @ij - 6ij okk / 3 is the stress deviator
tensor. The angle ¢ is a measure of the third invariant of the stress deviator

tensor J3 = Sij Sjk Ski/ 3.

For any combination of stresses the concrete strength is defined by the

failure criterion which is given as
=g-g®)oc=0 (4.49)

and which describes the failure surface shown in Figure 4.4. Constant o is

given by

T = -a;+f(a2+4ag(a3+llf’))
c = i (i

229 ¢

(4.50)
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where the concrete uniaxial compressive strength is denoted by f; and a,, az and
az are dimensionless material constants, Function g(f) defines the shape of the

m-plane sections and is influenced by the magnitude of the confining pressure.

It can be written as

g(ﬂ) = (\/_(1+a) - J-(l'a))K - (4.51)
Ky (1+a)-y (1 - a)+ (1-K)y/ (1 -asin38)
where a = 0.999 and K is given by
K = 1-Koe K1@ 1), (4.52)

The yield function f is described by a function similar to that used to

define the failure criterion, namely

=o-fE)gl) oc=0 (4.53)

where f(¢) represents a hardening/softening function. Parameter £ is defined by
¢= [d¢ where d¢ = d—f (4.58)

and deP is a measure of the plastic deformation given by

deP = (deI;jdeli’j) (4.55)

where deP is expressed as
ij
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P = deP - §:: deP
de? = deP - Bij deb, /3. (4.56)

Parameter § in Equation 4.54 allows for simulation of a variation in material

characteristics with respect to 1and & and is given by

¢, 0 = [g(ﬂ)[ as + 1f ] ]2 = ¢. (4.57)

[

The available experimental results show that as the confining pressure decreases
a gradual transition from ductile to brittle behaviour takes place. The transition
from a stable (ductile) to unstable (brittle) response is modelled by the

hardening/softening function A(€) which is given by
- - - v
ﬂ(§)='A_E_BE[1'¢r(1‘eC<£ >y (4.58)

where A, B and v are material constants, ¢r defines the residual strength of the
concrete and &5 represents the value of £ corresponding to the maximum value

of A i.e. f¢. Constant C is written as

cen <(I/f;)T-(1/f;)f> b 59
[ as+(UF)s ] '

where 4 and H are material constants, (I/f;)f is evaluated at § = fr and (Uf)T
denotes the normalized confining pressure at which the transition from ductile to
brittle behaviour takes place. Angular brackets < > represent the singularity

function defined as



x <0
x ifx > 0. (4.60)

Function f(€), Equation 4.58, reflects a gradual change in material
characteristics from strain hardening (high confining pressure) to strain

softening, with a progressively increasing rate.

Experimental evidence indicates that in the ductile regime concrete
undergoes a smooth transition from compaction to dilatancy prior to failure.
This behaviour is accounted for through the plastic potential function ¥ which is

given by

¥ =g+ ncg(ﬂ)iln[

p=it |

0] =0 @6l

where I = aof; + I and 2, is a constant which defines the lccation of the apex
of the plastic potential surface in the tensile domain. Parameter 7c represents
the value of 7 = o/(g(#)I) at which the transition from compaction to dilatancy

occurs i.e. at 7 = 7 deP_ = 0. It is assumed that this transition takes place
11

along the locus defined by
fT=0-ag®o.=0 (4.62)

where « is a material constant. The meridional section of the family of plastic
potential surfaces is shown in Figure 4.5. In order to satisfy the condition of
irreversibility all plastic potential surfaces are assumed to be convex with

respect to the origin of the stress space. To comply with the convexity
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requirement, an appropriate evolution law for the plastic potential surfaces,
Equation 4.61, is provided. Denote by 70 the value of fc at I = 0 and ap = 23

as

af-ay+y (a2-+4azns))
o = ! (4.63)
2asa 3

and let the corresponding plastic potential surface be ¥y as shown in Figure 4.5.
It is assumed that for n¢ < 7o all subsequent plastic potential surfaces are
obtained by an isotropic expansion of ¥o = 0 under a; = ag = constant. If the
stress point falls inside the domain enclosed by ¥ = 0 all subsequent loci are
reduced in size and the apex gradually migrates towards the origin i.e. 0 $ a5 £

as.

Having defined the failure criterion, yield surface and plastic potential
surface it can be shown (Pietruszczak et al. 1983, Jiang 1988) that the

incremental stress-strain relationship takes the following form

o {2) (2] o

He+Hp

do’ = {[D']-

de’ (4.64)

where the hardening moduli Hy, and He are given by

S A Ll

(4.65,a-b)
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/2
orasl “lae g | |

H, =
T apde §

In the hardening regime where Hp > 0 the following conditions

f=0 and X do >0 (4.66)
da’

define an active loading process during which irreversible deformations are

generated. In the softening regime where Hp < 0 the criteria for an active

loading process are

f=0 and 2f [D/jde >0 (4.67)

do

which state that plastic deformation occurs whenever the stress increment
obtained from the elastic solution is directed outside the yield surface. It should

be noted that Equation 4.67 is only valid for cases where He + Hp > 0.

The material parameters involved in the constitutive model have been
determined through calibration with experimental data available in the literature.
For more information on the calibration procedure refer to Pietruszczak et al.
(1988) and Jiang (1988). The results of their calibration are as follows:

1. Hardening function parameters

A = 0.000085 B =0.95 (4.68,a-b)

2. Dilatancy parameter

a = 0.95 (4.69)
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3. Failure envelope parameters

a; = 1,9253 az = 0.5635 ag = 3f’t/f;

K; = 1 In [ LK, ] (4.70,2-¢)
(F//8)2(Gbol7) | 1-Kee

Ko = (1-Kpe? X1/

where K; and Ky represent values of K correspondinig to uniaxial

tension and biaxial compression, respectively

N ' '
3 art [ s 16
(a1+8a2f t;/fc)
(4.71,a-b)
a'_)fbc/f;
Kpe = - 2J_3

3 -t/ (ai+4a2(3f’t/f;-2fbc/f;)

and fpe =1.16f;. If the uniaxial tensile strength f’t is unavailable
then the usual approximation f; = 0. lf; is used.

4. Strain softening parameters H, g, 7, (Uf))T and ¢r cannot be
determined precisely due to lack of experimental data
(Pietruszczak et al. 1988, Jiang 1988). However, based on the
results obtained by Jiang (1989) the following values are assumed

y=2 (I/f;)T =2 ¢r=07t00.8 (4.72,ac)
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This leaves H and g which control the rate of strain softening.
Both of these constants can be determined from a uniaxial
compression test by matching the predicted and actual strain
softening characteristics. =~ However since the actual strain
softening behaviour from such a test is dependent on the size of
the specimen it is reasonable to assume that H and g will alsobe a
function of size i.e. show a dependency on the size of the finite

elements. This will be investigated in a following numerical

example.

In addition to the parameters specified above, the elastic properties i.e. elastic

modulus E and Poisson’s ratio v are required.

4.3 Numerical Examples

The finite element model described in the previous sections has been
implemented in the program called RCSHL (Reinforced Concrete Shell
Element). The non-linear finite element analysis procedure follows that
described in section 2.4.2 of Chapter Two with one exception, The initial
stiffness method is employed instead of the modified Newton-Raphson
procedure. Thus, the tangential stiffness matrix is evaluated only at the

beginning of the first load increment, instead of at the beginning of each load

increment.
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4.3.1 Simply Supported Reinforced Concrete Slab

A simply supported square reinforced concrete slab subjected to a
uniformly distributed load has been analysed in order to verify the finite element
model. The geometry of the slab and reinforcement details are shown in Figure
4.6. The material properties of the concrete and steel are given in Table 4.1.
An experimental investigation of this slab has been conducted by Taylor et al.

{1966).

Table 4.1: Reinforced concrete slab material properties.
Concrete Reinforcing Steel
E = 32420 MPa EF = 206910 MPa
f; = 35.04 MPa E,; = 13790 MPa
f; = 3.60 MPa a; = 375.9 MPa
v=0.18

Due to the double symmetry of the structure only one quarter of the
slab has been analysed. This has been done for three different meshes which
consist of 2, 8 and 32 consistent shell elements, respectively. The material
parameters used in the concrete constitutive model are the same as those given
in section 4.2.6 with the exception of the values for the residual strength
parameter ¢r and the strain softening parameters H and p. The residual strength
parameter ¢r has been set equal to 0.8 which is consistent with the values
recommended by Jiang (1989). The strain softening parameters H and p used in
the analyses are 50 and 3, respectively. These values were found to be the

optimum values through a trial and error process. The distributed stiffness
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Kioint ajong the concrete/reinforcement interface due to bonding has been
assumed to be 100x10° MN/m. The load deflection responses of the slab (at the '
center) predicted by the three finite element meshes are plotted in Figure 4.7l'-"‘-'
along with the experimental curve obtained by Taylor. 1t can be seen from
Figure 4.7 that overall the predicted responses are in very good agreement with
the experimental data. However, the results indicate that the predicted response
improves in the cracking range with improvement of the finite element mesh.
The discrepancies could be due to a dependence of the strain softening
parameters on the finite element size as alluded to earlier. It must also be
recognized that the actual test has been carried out using displacement control
whereas in the present analysis it is the load that is controlled. This example
demonstrates the ability of the present finite element model to accurately predict

the behaviour of reinforced concrete plates.
4.3.2 Multi-girder Prestressed Concrete Slab

A multi-girder prestressed concrete slab subjected to a concentrated
load has been analysed. The geometric details of the composite structure are
shown in Figure 4.8. The dimensions of the prestressed and non-prestressed
reinforcement as well as its arrangement is shown in Figure 4.9. The
supporting girders are connected to the concrete slab using the shear connectors
depicted in Figure 4,10, There are a total of 128 shear connectors per girder.. -
They have been assumed to be uniformly distributed in the present analysis with
k°hear equal to 200x10° kN/em. The material properties of the concrete,
reinforcement, girders and shear connectors are given in Table 4.2. An

experimental investigation of this structure has been conducted by Batchelor

0
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(1990).

As a result of the symmetry only half of the structure has been
analysed. The consistent shell element grid used is shown in Figure 4.11. The

residual strength parameter ¢r has been set equal to 0.8 and the strain softening

Table 4.2: Multi-girder concrete slab material properties.
Concrete: Reinforcing Steel:
E = 33910 MPa E' = 166850 MPa
f; = 46 MPa E; = 11120 MPa
f; = 3.168 MPa cr; = 427 MPa
v=0.18 Prestressing Steel:
Girder and Shear Connectors: Ef = 205460 MPa
E = 200000 MPa r = 68410 MPa
v =0.25 7" = 1450 MPa

parameters H and p have been chosen to be 100 and 2, respectively. These
values are different then the values (H = 50, £ = 3) used in the previous
example. This is to be expected since the concrete material parameters are
different and also the concrete in the present example is subjected to an initial
prestress. The distributed stiffness ki°"* along the concrete/reinforcement
interface has been assumed to be 100x10% MN/m. The load is incremented until
the aémage functions at the integration points in the vicinity of the loading point
all approach unity i.e. f(§) - 1. When this state is reached local failure has
been predicted and the analysis is terminated. The load deflection response of

the structure at the loading point predicted by the finite element model is plotted
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in Figure 4.12 along with the response determined experimentally by Batchelor
(1990). The predicted load deflection response is in very good agreement with
the experimental response and also predicts a failure load which is very close to
the experimental value. The finite element predictions for this application are
much better than the previous application. This fact can be attributed to the
delayed cracking in the slab due to the transverse prestressing. A remarkable
fact is that the finite element model is capable of predicting the punching shear
failure mode in the vicinity of the point load as shown in Figure 4.13. This
example demonstrates further the applicability of the finite element model by

accurately predicting the punching shear failure of the structure.

4.3.3 Plain Concrete Tension Test

In this example the objectivity of the adopted concrete material model
with respect to refinement of the finite element mesh is investigated. For this
purpose the notched plain concrete specimen shown in Figure 4.14 has been
analysed. Due to the double symmetry only one-quarter of the tension specimen
has been modelled using three different finite element meshes. The first
employs 6, the second 16 and the third 36 consistent shell elements. The finite
element solutions have been obtained using a displacement control scheme

which involves the prescription of equal displacement increments along the

upper surface of the specimen.

The force versus displacement along the upper surface of the specimen
is plotted in Figure 4.15 for analyses using all three meshes with H and g equal

to 10 and 1, respectively. The finite element predictions for all three meshes
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are the same up to the peak load after which some variations occur. The
softening behaviour predicted by the 6 element model and the 16 element model
is very nearly the same. However, the softening behaviour predicted by the 36
element model is somewhat different. These discrepancies tend to indicate that
there is a dependency of the predicted behaviour on the finite element size
employed. However, the difference is not more than the improvements in
stresses expected with the improvement in the finite element mesh. To further
study this issue the specimen was analysed again using all three finite element
models. However, this time p was increased from 1 to 3. The predicted force
versus displacement curves are plotted in Figure 4. 16. It can be seen from the
figure that the predicted load displacement curves for all three meshes are
almost identical even in the post peak load region. This is due to the fact that
very little softening occurs in this case. Instead a brittle response has been
simulated. Considering these results together with those of the previous test it
can be concluded that in general the strain softening behaviour predicted by the
constitutive model is fairly objective with respect to refinement of the finite
element mesh. The specimen has also been analysed using the 6 element mesh
with H equal to 10 and 4 varied from 0.5 to 3. The predicted load displacement
curves are plotted in Figure 4.17 and indicate the expected post peak load
behaviour. To further investigate the sensitivity of the softening behaviour to
variation of the parameters H and p the specimen was again analysed using the 6
element mesh. However, this time p was set equal to 1 and H was varied
between 10 and 110. The predicted load displacement curves are plotted in
Figure 4.18. When compared with the curves plotted in Figure 4.17 it can be
seen that the predicted softening behaviour is more sensitive to variations in p

than to variations in H. Finally, the specimen was analysed using the 6 element
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mesh for values of the residual strength parameter ¢r equal to 0.8 and 0.975.
The constants H and g were held constant at 10 and 1, respectively. The
predicted load versus displacement curves are shown in Figure 4.19 and indicate

the post peak load behaviour anticipated.

The simply supported reinforced concrete slab, example 4.3.1, and the
multi-girder prestressed concrete slab, example 4.3.2, have been tested using
displacement control and analysed using load control. Considering the above
results it is likely that a large portion of the discrepancy between the predicted
and experimental results for the simply supported reinforced concrete slab is due
to the different method of analysis i.e. load control versus displacement control.
However, for the multi-girder prestressed concrete slab the influence of the load
control analysis is much less significant due to delayed cracking of the siab

caused by the initial prestress.



120

~

¥ %5’. } %
v ey A A A A 4 /.
N Y [

. ST RN s .

<

P

-
b

2

<
N\

shear connectors

T ey Y

reinforcement

slippage along
concrete/girder interface

N

supporting girder

Figure 4.1: Components of reinforced concrete finite element model.
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CHAPTER FIVE
FORMULATIONS AND APPLICATIONS OF CONSISTENT LAMINATED
BEAM AND CONSISTENT LAMINATED SHELL ELEMENTS

5.1 Introduction

Laminated composites are receiving increasing use as structural
elements in applications where high strength to weight and stiffness to weight
ratios are desired, such as in aerospace applications. In this chapter two new
elements are formulated. These are the consistent laminated beam element and
the consistent laminated shell element which are extensions of the consistent

beam element and the consistent shell element, respectively.

Laminated fiber reinforced composites are constructed by stacking
several layers of fiber reinforced material. The fibers within each layer are
unidirectional. However, when built up to form a laminate the layers are
typically arranged so that the orientation of the fiber varies from layer to layer.
This allows laminates to be constructed which have strengths and stiffnesses
which change with direction. Thus, the strengths and stiffnesses of the laminate
can be carefully chosen to satisfy the specific design requirements of the
structural element being built.  Fiber reinforced composite materials are
primarily orthotropic since they usually possess three orthogonal planes of
material symmetry. These orthogonal planes define the principal material

 directions denoted by 1, 2, and 3 as shown in Figure 5.1. Material axis 3 is
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normal to the material layer which is defined by axes 1 and 2. Material axis 1
runs parallel to the fibers while axis 2 is transverse to the fibers. Special
attention is given to the prediction of the variation of the transverse shear
stress(es) through the thickness of the laminate because of their importance in
causing delamination failures in composites. In this regard the displacement
fields of the consistent beam element and the consistent shell element are
modified in order to allow the transverse shear strain(s) at the interface of two
plys to be discontinuous. However, continuity of the global displacements is
maintained across the interface. Numerical results for a variety of problems are
presented for performance evaluation of the consistent laminated beam element
and the consisfent laminated shell element, These include analyses of laminated
beams, lﬁ;ninated plates and a laminated cylindrical shell. Comparisons are

made with the elasticity solutions available in the literature.

5.2 Consistent Laminated Beam Element

5.2.1 Co-ordinate Systems and Geometry

The co-ordinate systems used in the formulation of the consistent

laminated beam element are shown in Figure 5.2 and are the same as those
defined for the consistent beam element with one exception. A new natural
co-ordinate t, is defined in addition to the existing natural co-ordinates s and t
defined in section 2.3.1 of Chapter Two. Co-ordinate t, is parallel to the t
- co-ordinate and varies from -1 to +1 in the L'® layer instead of through the

thickness of the beam like t.
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The consistent laminated beam element is distorted using the same
transformations that were used for the consistent beam element. Therefore, the
location of any point within the element in the giobal co-ordinate system (x,z) is

also given by Equation 2.16 of Chapter Two.
5.2.2 Displacement Field

Global displacements u and w are approximated by cubic polynomials
within the element by employing the displacement degrees of freedom (u;,ws) at
the end nodes and one-third point nodes. Rotation @, which produces a linear
variation of the displacements u and w through the element depth, is
approximated by a quadratic polynomial within the element. This is achieved
using the rotational degree of freedom a; at the end nodes and mid-side node.
Thus far the displacement field is identical to that given for the consistent beam
element in Chapter Two. However, the approximation of the nonlinear
variation of the displacements u and w through the element depth is achieved in
a different manner. For each layer of the laminate two rotational degrees of
freedom (¢§,L, ¢]:,L) and two displacement degrees of freedom (dd)Ti’L, dtﬁI:,L)
are employed. Superscripts T and B designate the top and bottom, respectively,
of the lamina as shown in Figure 5.3. Taken together these degrees of freedom
provide a cubic variation of displacements u and w through the thickness of each
lamina. Displacement degrees of freedom d¢'1i‘,L and dgbI:,L are directed along
the local X’ axis. Rotational degrees of freedom ¢'Ii‘,L and ¢I:’L at the end nodes
and mid-side node are used to construct quadratic approximations of rotations
¢§ and ¢§ along the beam axis. Quadratic approximations of displacements d¢:

and drﬁg are achieved in a similar manner. Like the consistent beam element
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there are a different number of degrees of freedom per node. For the same
T T B B B

degrees of freedom (ui’wi’ai’¢i,L’d¢i,L’¢i,L’d¢i,L’ e ,d¢>i,NL) at each

node there are 15+20*NL degrees of freedom per element, where NL equals

the total number of layers. However, only 11+ 12*NL of these are active.

The global displacements (u,w) are written in terms of the nodal

degrees of freedom as follows

u _ uji COS 74 cos 7; | KL T
wi=5Ni{ g P-ENiMiq oo o5 -INi 3 gip oy f Mi ¢,

+ My d¢'§,L + M; ¢‘:’L + M d¢‘§’L (5.1)

where N; and Nj are the cubic and quadratic interpolation functions,
respectively, and 4; is the anéle between the local axes (x’,z’) and the global
axes (x,z) at the i*® node. Shape functions Nj and Nj are given in Appendix
Al. Angle 7i is computed according to Equation 2.2 of Chapter Two. Shape
function M; approximates the displacement field through the depth of the

element due to rotation « and is given by

M, = Hit (5.2)
2

where H; is the beam thickness at the i*® node. Functions M3, M4, Ms and Mg
approximate the nonlinear displacement field through the thickness of each layer

and are given by
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My =h (-t +t +t}-1)/8

My =(2+3t - tg)/4
(5.3,a-d)
Ms = h (-t -t2 + ¢} + 1)/8

Mg = (2-3t + tg)/4

where h_ _is the thickness of the L'™ lamina at the i** node. The derivation of

sl

the Jamina through thickness displacement field due to degrees of freedom qﬁz,
¢§, d¢§ and d¢§ is given in Appendix G. Non-dimensional co-ordinate t
varies from -1 at the bottom to +1 at the top of the L layer and is related to

curvilinear co-ordinate t according to

L.
t+1DH-2%Yh
K k
t, = - 1. (5.4)

by

where H is the thickness of the beam. It should be emphasized that
displacements dqbz and dgbg, and rotations ¢: and ¢§ are used to approximate
the through thickness variation of displacements u and w only within the L'
layer of the laminate. Also, the thickness of each lamina need not be the same

nor are the laminae required to be symmetric about the centroidal axis.

To transform the global displacements (u,w) to displacements u’ and

w’ directed along the local axes (x’,z’) Equation 5.1 is substituted into
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Equation 2.2 of Chapter Two to give the local displacements in terms of the

nodal degrees of freedom as
u’ _ cos ¥ _ [siny CU;
w’ = 5N _sinq ui + I Nj cos 7 vi-INiMi{ oy, [ ¥

CU;i | hL T T B B
-INj CW; f M3 ¢i,L 4+ My d¢i,L + M3 ¢i,L + M; d¢i,L (5.5)

where CU; = cosy cosvi + siny siny;

CW; = -sin?y cos7i + cos7 sinvi.

5.2.3 Strain-Displacement and Stress-Strain Relationships

The local strains ex’x’ and 7x’z’ are defined in terms of the local
displacements u’ and w’ by Equation 2.21 of Chapter Two. Substituting the
expression for the local displacements, Equation 5.5, into Equation 2.21 gives

the local strains in terms of the nodal degrees of freedom as
{e'} =1B1{d} (5.6)

where matrix [B’] relates the nodal degrees of freedom to the local strains and
is given in Appendix H. Vector {d} is the vector of nodal degrees of freedom.
The stress-strain relationship employs the typical orthotropic elaéticity

matrix. The fibers within a lamina can be either parallel to the centroidal axis
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of the beam (i.e. along the local x’ axis) or directed normal to the piane of the
beam (i.e. normal to the plane defined by the local axes x’ and z’). In the first

case the material matrix [D‘] can be written as

[D’] = [81 813] 5.7

] = [32 823] (5.8)

where E; is the elastic modulus in the i*® material direction and Gj; is the shear

modulus in the i-j plane.
5.2.4 Element Stiffness Matrix

The element stiffness matrix [k] is given by

0 = [, 37 DBV 69

which is integrated numerically using the Gaussian-Quadrature scheme. The

integration is performed along co-ordinates s and t instead of along

co-ordinates s and t. This gives

1L

+1 NL +1 T h
(k] =J )} “ 1[13£] D181 I—-{-L dt, det|J|bds (5.10)
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where det|J| is the determinant of the Jacobian matrix which has been given
previously in Equation 2.34 of Chapter Two. The width of the beam is denoted
by b. The constant h /H relates differential dt; to differential dt and is
computed using Equation 5.4 which expresses t, in terms of t. Matrix [D]] is
the material property matrix for the L' layer (i.e. Equation 5.7 or Equation
5.8) and the strain-displacement matrix [B/] is given in Appendix H. The
partial derivatives of the interpolation functions Nj, N and M; with respect to
the local (x‘,z’) co-ordinate system found in [Bi] must be transformed to
derivatives in the curvilinear co-ordinate system. These transformations are
performed in a manner similar to that used for the consistent beam element
which has been described in section 2.3.4 of Chapter Two. Interpolation
functions Mj, M4, M5 and Mg however are functions of £, Derivatives of these
functions with respect :o the local z’ axis can be written in terms of derivatives

with respect to t; using the chain rule as

dz’ dz’dt dz’dt dt dz’ hLdtL

(5.11)
where factor dt /dt is computed using Equation 5.4. The integration of
Equation 5.10 is performed using three integration points along the s co-ordinate
and three integration points through each of the layers along t . The
computation of the stiffness matrix in this manner requires that columns of [Bf}
associated with degrees of freedom other than those associated with the current

layer should be zeroed.
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5.3 Consistent Laminated Shell Element

5.3.1 Co-ordinate Systems and Geometry

The co-ordinate systems used in the formulation of the consistent
laminated shell element are shown in Figure 5.4. They are identical to those
defined for the consistent shell element in section 3.2;1 of Chapter Three with
one exception. In addition to curvilinear co-ordinates r,s and t a new
curvilinear co-ordinate t has been included. Co-ordinate t, is in the t direction

“but varies from -1 to +1 within the L*® layer. The same transformations used
for distortion of the consistent shell element are used for the consistent
laminated shell element. Thus, the lbcation of any point within the consistent
laminated shell element in the global co-ordinate system (x,y,z) is also given by

Equation 3.1 of Chapter Three.

5.3.2 Displacement Field

Approximation of global displacements u, v and w and rotations & and |
3 within the consistent laminated shell element is achieved in a manner identical
to that employed in the consistent shell element. Refer to section 3.2.2 of
Chapter Three. However, instead of using rotations ¢ and % to provide a cubic
variation of the global displacements through the full shell thickness, as in the
consistent shell element, the approach employed in the consistent laminated

beam element is adopted. This is described next.

For each lamina, rotations ¢§, 1‘{{, qﬁg and 1,bB, and displacements d¢€,
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d1lJT, d¢2 and dqbi are used to provide a cubic variation of the global
displacements through the thickness of the L' lamina. Superscripts T and B
designate the displacements and rotations at the top and bottom of the layer,
respectively. Rotations gbz and qbg are about the local y’ axis and rotations qbllr‘
and 'qbg are about the x’ axis. Displacements d¢§ and dqi:g are directed along
the local x* axis and displacements dw‘f‘ and dxbi are directed along the y’ axis.
Rotations qBE, 'qb‘II‘, ¢E and wi are approximated quadratically within the
consistent laminated shell element using the nodal degrees of freedom
(¢§’L,¢§’L,¢€’L,¢‘:,L) at the corner and mid-side nodes. Displacements dgbg,
dv,b'i, dqbf: and dwpg are interpolated quadratically within the element in a similar
manner. For the same degrees of freedom (u3,vi,Wi, czi,ﬁi,qﬁi,L,qbfi’L,dqbiL,

d1,b'1i‘,L,qb}?,L,apl:’L,d(p]:,L,d@bE:’L, A ,dl,bl:,HL) at each node there are
65+ 104*NL degrees of freedom per element, where NL is the total number of

layers. However, only 42+48*NL of these are active.

The global displacements (u,v,w) are written in terms of the nodal

degrees of freedom as

u _ ui R (a9 - NL ¢T L
v b =3N;¢ vit + 3N M [Vi] ﬁl 4+ IN;[Vil 2 Ms{ %’ }
w Wi i L YL

d¢’ | & . dg®
+ M4{ ,;’ } -+ Ms[ 1;’ ] + Ma{ l;, } (5.12)
e v v )|

where N; and Nj are the cubic and quadratic interpolation functions,

respectively, and are given in Appendix AZ. Matrix [Vi] = ™Vii, - Vil
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where unit vectors \-71,*. and Vz,i are directed along: .h_e local x’ and y’ axes,
respectively. The procedure for calculatio af "y and Va,i is presented in
Appendix C. Interpolation function M; approxin.-. tes <he displacement through

the shell thickness due to rotations « and § and is given by
M, = Hit (5.13)
2

where Hj is the shell thickness at the it® node. Functions M3, My, M;s and Mg
which approximate the nonlinear displacement field through the thickness f
each layer are the same as those given previously in section 5.2.2 by Equation
5.3. It should be emphasized that degrees of freedom ¢§, 1,DE, d@i, CWJE, ¢i,
1,DB, (:1(,?5{3r and dwi approximate the cubic variation of the global displacements
only within the L*® layer of the laminate. Also, the laminas can have different

thicknesses and need not be symmetric about the middle surface of the shell.

Transforming the global displacements in Equation 5.12 by employing
transformation matrix [] given in Equation 3.6 of Chapter Three gives the local

displacements u’, v/ and w’ in terms of the nodal degrees of freedom as

u’ _ ui ‘ . KL qb‘]EL
{v’}=ENi[9] Vi]"'ENiMl[Ci][ﬁl}+2Ni[cﬂz Ms} o’
w’ Wi i L v

i,L

af’ Kz d¢!
+ M4{ ¢,}"‘ + Ms el Mf,{ };’L] (5.14)
L) Vi L)
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where
-Cllcl2-|
i 4
21 o2 (Lily3+mymys+ngngs) (1ilas-mymas-ninzi)
cig =0 vl =| i €5 | = | (aly+memys+nang) (aloi-mamai-nangs) |.
| e (Lals;+mamyi+n3ng3) (alai-mamai-nanag)
[ i i

5.3.3 Strain-Displacement and Stress-Strain Relationships

The local strains (ex’x’,€y'y’»¥x’y s 7x'2 »7y’s") are expressed in
terms of the local displacements (u’,v’,w’) in Equation 3.5 of Chapter Three.
Substituting the expression for the local displacements, Equation 5.14, into the

strain displacement relation, Equation 3.5, and multiplying yields

{¢'} = B'] {d} (5.13)

where matrix [B’] relates the nodal degrees of freedom to the local strains and

is given in Appendix 1.

The stress-strain relationship employs the typical orthotropic elasticity
matrix. It is derived by substituting o, = O into the three dimensional

orthotropic material matrix and then eliminating €z;. This yields (Jones 1975)

(Q11 Qiz 0 0 O
Q12Q2z 0 0 O
[D¥] = 0 0 G2 0 O
¢ 0 0 Gz O
0 0 0 0 Gz

(5.16)




where Qu=Cy- Ci13Cus

Q22 = Cop - Co3Cos
Cis

Gz, Gi3, Gos = shear moduli in the 1-2, 1-3 and 2-3
material planes, respectively.

Constants Ci; are defined in terms of the elastic moduli and Poisson’s ratios as

follows
C11=1 - VaaVs Cp =22t Vs
EzEaA EzE-aA
Cgp = L= V13Vs1 Cpa =23+ Vaivs
E(E;A E;E;A (5.17,a-g)
Cas = 1 - viavy Cyy = Y32+ Via¥sn
EE.A E | E3A
A = L= Vivsy - vastsa - vas - 2Wavavis
E(EsE;
where

Ei, Eg, E3 = elastic moduli in principal material directions 1, 2 and
3, respectively.
vij = Poisson’s ratio for transverse strain in the j*® direction when

stressed in the i*® direction.



148

The selection of the material parameters should be done carefully to not violate

the laws of thermodynamics.

As mentioned previously the fiber orientation typically varies from
layer to layer. In order to analyse such a structure the fiber orientation for each
layer must be referenced to some common geometric axis. The local x’ axis
has been chosen as the reference axis. The {iber orientation with respect to the
x’ axis is defined by the angle @ as shown in Figure 5.5. Since the strains are
referred to the local axes the elasticity matrix {D'?], Equation 5.16, must also be
referred to the Jocal co-ordinate system. This is accomplished through the

following transformation

D] = [T D T 5.18)

where transformation matrix [T ] relates strains (ex’x’,€y’y"»x"y »Tx"2 s
1y'z’) in the local co-ordinate system to strains (€1,€2,712,713,723) in the

material co-ordinates and is given (Cook et al. 1989) as

cos?d sin?f cosfsind 0 0 ]
sin?f cos2f -sinficos? 0 0
[T]= 2cosfsinf 2sinfcosd (cos?d - sin?f) 0 O (5.19)
0 0 0 cosf -sinf
L 0 0 0 sinfd cosd |

It should be noted that local 2xis z‘ and material co-ordinate 3 are coincident.
Therefore, the above transformation represents a rotation of the material axes 1

and 2 in the local x’-y’ plane.
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5.3.4 Element Stiffness Matrix

The element stiffness matrix is calculated as
K] = J; 87" [D’1[B']dV (5.20)

which is integrated numerically using the Gaussian-Quadrature scheme. The
integration is performed along co-ordinates r, s and t, instead ofalong r,sand t
as was done for the consistent shell element. This then gives the element

stiffness matrix [k] as

+1 XL

+1 +1
w=f,0, %[, B PR ir, dt, |detT|drds  (5.21)

where det|J| is the determinant of the Jacobian matrix given by Equation 3.16
of Chapter Three. The constant hL/H relates differentials dt and dt and is
calculated using Equation 5.4, The elasticity matrix [D/] for the L% layer is
given by Equation 5.18. The partial derivatives of the shape functions Ni, Nj
and M, in the strain-displacement matrix [B;] with respect to the local
co-ordinates (x’,y’,z’) are written in terms of derivatives in the curvilinear
co-ordinate system (r,s,t) as described in section 3.2.4 of Chapter Three.
However, interpolation functions Ma, Mi, Ms and M are functions of t,-
Derivatives of these functions can be written in terms of derivatives with respect
t using the chain rule as follows

@ @

@ @
I
2|

= n
@@

2 _aa_n
&' I ot ox
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8 _o 9 _d a3 _dH2
dy' oy’ & oy o o, Oy hy Bt
(5.22,3-¢)
o &8 _ o8 _0tHZ
bt ' Bt 2o o, 0z h ¥

Integration of Equation 5.21 is performed using seven integration points in the
r-s plane and five integration points through each layer along t . One can use
three integration points through a layer to save on computation time.
Calculation of the element stiffness matrix in this manner requires that columns
of matrix [B/] associated with degrees of freedom which do not approximate

strains in the current layer be zeroed.

5.4 Xinematic Constraints

In order to maintzin displacement continuity through the thickness of
the consistent laminated beam element and the consistent laminated shell
element certain kinematic constraints must be imposed. In the case of the

consistent laminated beam element these constraints can be written as

d¢® =0
i1
dqb]:’L = d¢’i-"L_l (5.23,a-c)
T _
a4y, = 0.

The above constraints specify that displacement d¢ is equated at the interface of
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two plys to maintain continuity of u and w through the beam depth. In addition,
since the shear strain at the top and bottom of the beam is known to be zero,
displacement d¢ which is the displacement due to shearing is equated to zero at
these points. The kinematic constraints imposed on the consistent laminated

shell element nodal degrees of freedom are as follows A

(5.24,a-d)
B _ T
d¢i7L d¢i:L-l
T  _ T
dd’a,NL =Y, g, =0
which are required to maintain continuity of the displacements u, v and w

through the shell thickness and also to satisfy the zero shear strain condition on

the top and bottom surfaces of the shell.

These constraints lead to a reduction in the number of active degrees
of freedom per element. The number of active degrees of freedom for the beam
element is reduced from 11+12*NL to 10+11*NL and for the shell element the
active degrees of freedom are reduced from 42+48*NL to 40+46*NL. These
constraints have been imposed internally in the consistent laminated beam

element and the consistent laminated shell element programs.
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. 5.5 Numerical Examples

5.5.1 Deep Laminated Composite Beam

Two thick laminated composite beams have beern analysed using the
consistent laminated beam element in order to verify its formulation and also to
assess its accuracy. Both beams are composed of layers of a unidirectional
fibrous composite material which simulates a high modulus graphite/epoxy
composite. The first beam is a two ply laminate with the fibers parallel to the
centroidal axis in the bottom layer and transverse to it in the top layer. Both
layers are of equal thickness. The second beam is a tl{ree ply laminate with the
fibers aligned with the centroidal axis in the top | and bottom layers and
transverse to it in the middle layer. Again all layers have the same thickness.
Both beams are simply supported, have the same geometry and are subjected to
a sinusoidal load. The dimensions and material properties for the beams are
shown in Figure 5.6. The results predicted by the finite element models are

compared with the elasticity solutions given by Pagano (1969).

Four consistent laminated beam elements have been used to model one
half of each of the beams due to symmetry. The predicted normal stress
variation through the thickness of both beams at the mid-span is plotted in
Figure 5.7. It can be seen that the predicted variations are in excellent
agreement with the elasticity solutions. The predicted shear stress variation
through the depth of both beams at x = 0 is plotted in Figure 5.8. Again the
consistent laminated beam element predictions are in excellent agreement with

the elasticity solutions. Especially noteworthy is the excellent agreement
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between the predicted stresses at the interface of two layers. The stresses are
seen to be very nearly continuous. In addition, the predicted stresses at the top
and bottom surfaces are very nearly zero as required. The predicted
deformation of the normal to the centroidal axis for both of the beams at x = 0
is plotted in Figure 5.9. Again there is excellent agreement between the
elasticity solutions and the finite element predictions, even for the three ply
laminate whose cross-sectional deformation is very nonlinear. The predicted
mid-span deflections for both beams are compared to the deflections given by
the elasticity solutions in Table 5.1. They are seen to be in excellent

~ agreement. This example verifies the formulation of the consistent laminated

Table 5.1: Mid-span deflections for laminated composite beams.

Consistent Laminated Elasticity (in.)
Beam Element (in.)

2 ply -0.00613 -0.00606
3 ply -0.00373 -0.00364

beam element and also demonstrates that it is capable of providing accurate
predictions of stresses and displacements in thick laminated beams. This is true

even when the laminas are not symmetrically distributed about the centroidal

axis.
5.5.2 Laminated Composite Plate

To verify the formulation of the consistent laminated shell element and

also to assess its accuracy two laminated composite plates have been analysed.
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Both plates contain nine plys of a unidirectional fiber reinforced composite
material arranged symmetrically about the mid-surface. In both plates the fiber
orientation alternates between 0° and 90° with respect to the x axis. The 0°
layers are at the outer surfaces of the laminates. The total thickness of the 0°
and 90° layers within a laminate is the same, while layers which have the same
orientation have equal thicknesses. Both plates are square and have the same in
plane dimensions. However, they have different width to thickness ratios. The
first is a moderately thick plate with a width to thickness ratio of 10 and the
second is a thick plate with a width to thickness ratio of 4. The material
properties of the plys are representative of a high modulus graphite/epoxy
composite and are given in Figure 5.10 along with the dimensions of the
laminates. Both plates are simply supported along their boundaries. The results
predicted by the finite element models are compared with the elasticity solutions

given by Pagano and Hatfield (1972).

Only one quarter of each laminate has been modelled due to the
double symmetry. Each model is composed of 32 consistent laminated shell
elements. The predicted normal stress variation through the thickness of both
laminates at the center of the plates is given in Figure 5.11. It can be seen that
the predicted stresses are in excellent agreement with the elasticity solutions.
The predicted variations of the transverse shear stress Txz atx =0andy = L/2
through the depth of the plates is depicted in Figure 5.12. The stresses
predicted by the consistent laminated shell element models are again seen to be
in excellent agreement with the elasticity solutions. It is important to mention
that the stress plotted at the interface of two plys is not an average value. The

finite element models predict stresses at the interface which are very nearly
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continuous. Also, the stresses predicted at the top and bottom surfaces of the
plates are seen to be negligible. The cross-sectional deformation of the plates at
x = 0 and y = L/2 is plotted in Figure 5.13. The variation of the inplane
displacement through the thickness of the moderately thick laminate is seen to
be almost linear while the variation through the depth of the thick laminate is
highly nonlinear, The displacements predicted by the consistent laminated shell
element models are in very good agreement with those given by the elasticity
solution for both the moderately thick and thick laminates. The center plate
deflection and the maximum inplane shear stress 7xy at x = y = 0 for both of
the plates are given Table 5.2 along with the values given by the elasticity
solutions. Both the deflections and the inplane shear stresses are seen to be in

excellent agreement with the elasticity solutions. This example verifies the

Table 5.2: Deflections and inplane shear stresses for laminated composite

plates.

L/H Consistent Laminated Elasticity

Plate Element

we (in.) -0.001142 -0.001126

4
Txy (psi) 56.0 52.48

0 we (in.) -0.006543 -0.006520

1

Txy (Psi) 244 234

consistent laminated shell element formulation and also demonstrates that it is
able to predict very accurately the stresses and displacements through the

thickness of laminated fiber reinforced composite plates.
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5.5.3 Thin Laminated Composite Cylindrical Shell

A thin fibrous composite cylindrical shell has been analysed using the
consistent laminated shell eleﬁ*aent. The shell is subjected to a uniform internal
pressure and is composed of two layers of orthotropic material. The fiber
orientation in the inner layer is in the longitudinal direction and in the outer
layer in the circumfrential direction. Both layers are of equal thickness. The
shell is supported at both ends in such a way that the radial deflection is
restrained but the longitudinal displacement and the rotation about the
longitudinal axis are free to occur. The dimensions and material properties for

the shell are shown in Figure 5.14.

Due to the symmetry of the problem only one-eighth of the shell has
been modelled using sixty-four consistent laminated shell elements. A
closed-form solution for this problem has been obtained by Chaudhuri et al.
(1986) using classical lamination theory (CLT). The variation of the shear
stress Ty 7 through the thickness of the shell at its end (i.e. y = 0) is plotted in
Figure 5.15. The stress distribution predicted by the finite element model is
seen to be in very good agreement with the stresses given by the CLT solution.
The radial displacement at the mid-span of the cylinder predicted by the
consistent laminated shell element model is 0.002505 in. which agrees very well
with the value given by CLT of 0.002565 in. This example verifies the
formulation and accuracy of the consistent laminated shell element when it is

distorted to model curved surfaces.
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Figure 5.1: Definition of principal material directions for fiber reinforced
composite lamina.
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Figure 5.2: Consistent laminated beam element co-ordinate systems
and degrees of freedom.
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Figure 5.3: Laminae degrees of freedom and co-ordinate tat the ith node.
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Figure 5.4: Consistent laminated shell element co-ordinate systems and nodal
degrees of freedom.

Figure 5.5: Definition of fiber orientation with respect to the local x' axis.
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q(x) = qsin(mx/L)

X
H >
L
H =35 in L = 20 in. unit width qo = 100 lbs.
- 6 .. _ 6 _ ..
E = 25x10" psi Gy3 = 0.5x10" ps1
E, = 1x10° psi G,y = 02x10° psi
Vip = 0.25
2 Ply Laminate 3 Ply Laminate

L denotes layers in which the fibers are parallel to the x axis
and T denotes layers where the fibers are transverse 10 the x-z plane.

= AN o s

Figure 5.6:

Dimensions and material properties of laminated fiber
reinforced composite beams.
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Figure 5.7: Normal stress distribution at the mid—span of
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Figure 5.8: Shear stress distribution at x = 0 for the
(a) 2 ply laminate (b) 3 ply lominate.
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L
l
| L = 100 in
: Sinusoidal transverse load
! q = 100sin(rx/L)sin(my/L) psi
_________ _;[________# L Simply supported
I
|
1
|
|
|
) X
! »
E, = 25x10° psi E, = 1x10° psi
. 6 .
G, = Gy = 05x10° psi G,y = 02x10° psi
Vig = V13 = Vo = 0.25
00
NN 90°
00
NN\ 90°
00
NN N 9Q°
00
NN 90°
00

0° and 90° denote the fiber orientation with respect to the X axis

LH =4 L/H =10
? = 0.25 in f=011in
© = 0.3125 in t° = 0,125 in

Figure 5.10: Dimensions and material properties for laminated fiber
reinforced composite plates.
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Figure 5.11: Normal stress o, through thickness of 8 ply
laminate; (a) L/H = 4 (b) L/H = 10.
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Figure 5.12: Shear stress 7y through thickness of 9 ply
laminate; (a) L/H = 4 (b} L/H = 10.
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Figure 5.13: Variation of inplane displacement u through thickness
of 9 ply laminate; (a) L/H = 4 (b) L/H = 10.
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Figure 5.14: Dimensions and material properties of thin laminated
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Figure 5.15: Composite cylindrical shell shear stress Tyo

distribution at y = 0.



CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

~ It has been shown that the spurious transverse shear modes result from
an inconsistency in the order of the polynomials used for approximation of the
displacements and the total rotations in the formulation of the beam and shell
finite elements which approximate the transverse shear strain as the difference
between the total rotation and the flexural rotation (i.e. according to
Timoshenko beam theory or Mindlin plate theory). Specifically, the use of
quadratic polynomials for approximation of both displacements and total
rotations yields a linear expression for the flexural rotation and a quadratic
expression for the total rotation. Consequently, there is no quadratic term in the
flexural rotation to match the quadratic term in the total rotation. Therefore,
the quadratic term of the total rotation remains undetermined in the expression
for the transverse shear strain. This leads to the so called spurious transverse
shear strain mode(s). Even though the inconsistency in the approximation of the
transverse shear strain has been illustrated using the quadratic isoparametric
beam element it can be generalized to all elements (beam or shell) in which the
transverse shear strain(s) is/are calculated as the difference between the total
rotation(s) and the flexural rotation(s). Therefore, spurious variations of the
transverse shear strain(s) will exist whenever polynomials of the same order are

used to approximate the displacements and the total rotations. This fact leads to

169
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the following assertion.

"A consistent formulation is achieved when the displacements are
approximated by a polynomial which is one order higher than that used for
approximation of the total rotations. This ensures that the flexural rotations and
the total rotations are approximated by the same order polynomial. Hence, all
polynomial coefficients in the transverse shear stain expression are uniquely

determined and the element will be free of spurious mode(s)."

The newly formulated consistent beam element and consistent shell
clement have been shown to be free of spurious variations of the transverse
shear strain(s). Hence, the reduced integration technique is not required to
provide improved responses for thin beams or shells. This has been achieved by
providing cubic polynomials for approximations of displacements and quadratic
polynomials for approximation of rotations, thereby ensuring a consistent
formulation. Patch tests and eigenvalue analyses of the consistent beam element
and the consistent shell element confirmed the existence of the required rigid
body modes and the absence of any spurious zero-energy deformation modes.
The numerical results show that the elements provide excellent predictions of
the responses of thin and thick beams and shells. Both elements provide a
quadratic variation of the transverse shear strain(s) through their thicknesses.
This eliminates the need for use of the shear correction factor & normally
required by Timoshenko beam theory and Mindlin plate theory to account for
the assumption of constant shear strain across the depth. Also, a cubic variation
of the global displacements through the thicknesses of the consistent beam and

shell elements accounts for cross-sectional distortion and hence takes care of
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warping. The numerical results show that the elements provide excellent
predictions of the normal stress(es) and shear stress(es) across the thickness for
thin and thick beams and shells. Material non-linearity has also been included
in both elements and comparison. wwith the available solutions show that the
elements predict accurately the progression of plasticity through the thickness.
The consistent shell element contains a relatively large number of degrees of
freedom per element. Many of these however are inactive. By employing a
sub-matrix formulation in conjunction with a modified frontal solution scheme,
the computational efficiency of the element improves considerably, "The
sub-matrix formulation reduces the computationai time by forty to fifty
percent.,” Overall, the consistent beam element and the consistent shell element
have been shown to be highly accurate elements for the prediction of
displacements and stresses, easy to use and computationally efficient. "The
consistent shell element meets all of the requirements of the so called ’ideal’

shell element (Hinton and Owsen 1984), listed in section 1.1.1."

The comparison of the numerical results with the experimental data
shows that the finite element model formulated for the analysis of reinforced
concrete structures is capable of providing very good predictions of the overall
reinforced concrete structural behaviour. In the case of point loads it has been
found that the model is capable of predicting punching shear failure in
reinforced concrete slabs. The finite element results were obtained using a load
control scheme whereas the experimental data has been obtained using the
displacement contro! test. This discrepancy is most likely responsible for the
differences in the predicted and experimental responses of the structure in the

cracking range. Displacement control analyses of a plain concrete tension
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specimen were carried out using three different finite element meshes which
contained 6, 16 and 36 elements, respectively. "The adopted constitutive model
is found to be reasonably objective with respect to refinement of the finite
element mesh, irrespective of the rate of softening in the post peak load region."
The sensitivity of the post peak load behaviour to variation of the strain
softening parameters H and g for the concrete specimen was examined. The
values of H and g, as employed in the analysis of the reinforced concrete slab
and the multigirder prestressed concrete slab, were found to simulate a brittle
response in the post peak load region for the concrete specimen. This suggests
that the fracture of concrete in the slabs is essentially a linear elastic

phenomenon.

The laminated composite beam element and the laminated composite
shell element are capable of providing excellent predictions of laminate
displacements and stresses. The predicted variation of the transverse shear
stresses through the laminate thickness have been shown to be very nearly
continuous across the interface of two layers and also very nearly zero at the top
and bottom surfaces of the laminate as required. No post-analysis of the stresses
is required, unlike other currently popular methods such as the Equilibrium
Method. This has been achieved by allowing the transverse shear strains to be
discontinuous across an interface while maintaining continuity of the
displacements by allowing additioﬁal rotation and displacement degrees of
freedom for each layer. In addition, the elements perform equally well
regardless of whether the laminate is symmetric or unsymmetric. Comparisons
of the predicted results with the available elasticity solutions show that the

elements are capable of providing excellent predictions of the cross-sectional
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deformation and transverse displacement for both thin and thick laminates. The
accuracy of the consistent laminated shell element has been shown to be
unaffected by distortion of the element. Overall, the consistent laminated beam
element and the consistent laminated shell element have been found to predict
with a high degree of accuracy the displacements and stresses of laminated fiber

reinforced composites.

6.2 Recommendations for Future Research

The consistent beam element and the consistent shell element are
applicable only to small displacement analyses with material non-linearity. It
would be desirable to extend the formulation of these elements to include the
effects of geometric non-linearities so that the range of problems to which they
can be applied ic broadened. It is expected that they will prove to be efficient
and accurate elements for the large displacement analyses of beam or shell
structures. In the analysis of an actual shell structure it may be necessary to
mode! shell intersections, and shell to solid intersections. Thus, the formulation
of a finite element which would act as a transition element between the
consistent shell element and a three dimensional solid element would also be

desirable.

For the analysis of complex reinforced concrete structures such as
nuclear containment vessels the reinforced concrete finite element model should
be extended to include temperature dependent strains and cyclic Joading. This
will require further development of the adopted constitutive model. The

development of analytical models for the interaction between concrete and
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reinforcement, and the interaction between concrete and girders would allow
more rational modelling of bond slip and shear connection in the finite element
model. Most experimental dawa for reinforced concrete structures is obtained
using displacement control. Therefore, extension of the incremental finite
element solution procedure to include a displacement control scheme would
enable more realistic comparisons' flo be made between the predicted and the
experimental results. This could possibly be achieved using the arc length
method. Further investigation is required into strain softening parameters H and
1. The effects of concrete prestress and reiiii’o}é%ment should be investigated so
that H and g can be determined more rationally. This may require further ;
experimental investigation into the softening behaviour of concrete uni-:ller these

conditions.  Also, more experimental data for reinforced concrete shell

structures is required for calibration and verification of the finite element model.

The consistent laminated beam element and the consistent laminated
shell element are capable of predicting deformations and stresses through a
laminate thickness with good accuracy. It is recommended that they be applied
to the study of failure mechanisms in laminated composite materials. This will

require the introduction of some type of damage progression model so that the

laminate failure could be followed.
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Appendix Al

Consistent Beam Element

Quadratic Interpolation Functions:

Ns) = - -és(l-s) Na(s) = 0

Ni(s) = (1-8)(1+5) Nu(s) = 0) (Al.1,a-e)

Ns(s) = -l—s(1+s).
2
Cubic Interpolation Functions:
Nis) = - 2(-9E+9)¢d - )
16 3 3
Nofs) = i+90-9¢ - 9
16 3

Nas) =0 (Al.2,a-€)

Ny(s) = 21 +5)(1-5)E+5)
16 3

Ns(s) = - 2(1+8)E+9)t - 5)
16 3 3
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Appendix A2

Consistent Shell Element

Quadratic Interpolation Functions:

Ni(L1,L2,L3) = Li2L1-1)

N3(Li,Lz,L3) = L3(2Ls-1)

Ns(L1,L2,L3) = 4LL2

Nz(Ly,La,L3) =0

Ny(Ly,L2,L3) =0

Np(Ly,Lo,La) = 4L4L3
Nia(L1,La, L)

Cubic Interpolation Functions:

Ry, La,Lo) = -‘2-L;(3L1-1)(3L1-2)
Ny(Ly,La,La) = -:1;13(3L3-1)(3L3'2)
Ns(Ly,La L) =0

No(L1,La,La) = §L2L3(3L2-1)

No(L,La,L3) = %L2L3(3L3-1)

Nz(Ly,L2,L3) = La(2L2-1)

Ni(L;,Lz,L3) = 0

Ng(Ly,L2,L3) =0

Ng(Li,La,Ls) = 4LoLs (A2.1,2-m)
Nio(Ls,Le,L3) =0

Nja(L1,La,L3) =0

= (.

No(Ly,La,Ls) = §L2(3L2-1)(3L2—2)
N4(Ly,La,L3) = %L1L2(3L1-1)
Ne@iLa,Ls) = §L1L2(3L2-1)
Ns(LiLz,Ly) =0  (A2.2,2-m)

Ny(Li,La,Ly) = %LaLl(e‘L:i‘l)
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Nyi(L1,La,L3) = 0 Nia(Ly,La,La) = %L3L1(3L1-1)

Nya(Ly,La,L3) = 27LiLsL3.

Note that area co-ordinates (LiLs,Lj;) are not independent. Only two
co-ordinates need to be specified to uniquely locate a point. Let these two
co-ordinates be denoted by r and s. Area co-ordinates Ly, Ly and Lj are defined

in terms of r and s as follows

Ly=r Lo=s IL3=1-r-s. (A2.3,a-c)
Appendix A3
Reinforcement Element

Cubic Interpolation Functions:
N(Q) = - 2(1-0C+OE - O
16 3 3
N(Q = 1+0(1 O(- - Q)
(A3.1,a-d)

N(Q) = 1+0(1 O(-+O

NI(O = - 21+0C+0E - 0
16 3 3
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Appendix A4
Girder Element

Quadratic Interpolation Functions:

N&(O = - 210 NEQ) = O
2 2
NE(Q = (1-Q)1+¢ NE(C) =0 (Ad.1,a-€)
N&QO = 1¢1+0)
2
Cubic Interpolation Functions:.
RE(Q) = - 201-0E+0¢ - 0
16 3 3
&0 = Z1+0-0¢ - 0
16 3
FI%(C) =90 (A4.2,a-€)
N80 = Za+001-06+0)
4 16 3

NE(Q = - 2(1+0C+06 - O
16 3 3
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APPENDIX B
DERIVATION OF THROUGH THICKNESS
INTERPOLATION FUNCTION M2

Let rotation ¢ vary quadratically through the thickness and be
approximated by

#(2) = a + bz + cz? B.1)

where Z is the dimensional co-ordinate in the thickness direction and a, b and ¢

are unknown constants. The displacement u é due to ¢ is calculated as
uy@ = f 4@ dz. ®.2)

Substituting the expression for ¢ given by Equation B.1, into the above equation

and integrating gives

u¢(E)=aE+_l£7._2+p_E_3+d B.3)
2 3

where d is an additional unknown constant. The following boundary conditions

are imposed
h h = e .
u ¢(-£) =0 u ¢(—2) =0 ¢(0) =0 ¢0) = ¢i. (B.4,a-d)
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where ¢; is the allowed rotational degree of freedom. Substitution of the above
boundary conditions into the approximations for ¢ and u & i.e. equations B.1

and B.3, respectively gives four equations for the unknowns as

2 3
A+ b el 4 d=0
2 8

24
2 3
A+l et +da=0 (B.5,a-d)
2 8 24
d=20 a'—'¢1

Solving equations B.5 for the unknown constants yields

a=¢;i b=0 c=-2 4d=0 (B.6,2-d)

h2
~which are substituted into the approximations for ¢ and u é given by Equation
B.1 and Equation B.3, respectively, to give
$3) = [ 1-1252] g;

h2

o4

(B.7,a-b)

uy@) = [5_4;253: és.

The relationship between the non-dimensional co-ordinate t and the dimensional

co-ordinate z is given as



z =0t (B.8)
2
which is used to re-write equations B.7 in terms of t as
B = (1-3t%) ¢
(B.9,a-b)

ug® =2 (1-17) g1 = Mags
2

Interpolation function M3z defines the displacement variation through the

thickness due to rotation ¢.



8%

184



APPENDIX C
CONSTRUCTION OF ORTHOGONAL BASIS

The Jacobian matrix can be written as

R
M=48 (C.1)
T

where vectors R and § are tangent to the surface defined by t = constant. A

vector V3 normal to this surface is found as
Vi =RxS. (C.2)
The remaining vectors Vg and V of the orthogonal basis are given by
V:=V3;xR
(C.3,a-b)

Vi=V:x Vs

Normalizing Vi, Vz, and V3 gives the set of unit vectors V1, \72, and V3 from

which the transformation matrix of direction cosines is constructed as

185



(4

Xy 2
1y myny

lzmznz .

13 M3 N3

(C.4)



APPENDIX D
CONSISTENT SHELL ELEMENT STIFFNESS SUB-MATRICES

5 = -—E;- y [ [1 2+1;V(122+132)] [Al+ [122+_1_-_Il_(112+132)] i€l

+[1112£j-1"] (E]+(E] )+——[(1113)(m+m )+ A2+1H[0]

+Q+) eV

K’]12 = (f,ﬂ) f; [ [l1m1+7(12m2+13m3)] [A]+[12m2+—(11m1+13m3)] [C]

[u11m2+1——m112] [E]+ [Vmilz'i--l—llmz] [E]T-i'l-—!{[(hma)[ﬂ +
2 2
QamOUT +Qmy+m 0]+ ([ QI+ Gsma) Q)| av
Ky = E——-—- f [ [11111'1‘11/(12112'!'1303)] fAl+ [12n2+1_—y(11n1+13n3)] (€]
ving +-1——ﬂ112] [E]+ [Vﬂ112+——ylxn2] [E] +—[(1 n3z)[J]
2 2

+QdUT+ g+ 0]+ Qo) [Q+ Qan)IQ) [av

Kl = E f [ 3M1[H11] +1 3M1[[21] +ul BM;[HN]T 1- u[ M,
(1- y2) 9x ’ ; 8 dy’

11741 Mgy T (1,0, M) gy B

oy’ 9z’ Ox’
1,200 g [1, M4, M gy ML
gz’ ox’ ay* ax’
121 o, iy 29 Tdv
dy’ dz’
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K)s = —2 f[ 6M‘[I22]T+13M1[H12]T+ulngmzz] +Lv v[ M

1-vH v dy’ ax’ ay
[-112] +1 aMl[IZ?]T [ ml+l aMl] 12]T+ 1 6M1+
ax’ M dy’ @ M ax
][H”]TH By 2y [1, M1, s ‘][L“]
Bz dz’ 6x dy’
136—M—‘+13-‘3—Mi] [H”]T+1z———‘[L”]] ]dv
ox’ dy’ dz’

0l = 2)f (121, gt Do e
(1-v y
4T +1 5M2[121] +[ gMz,H gM:ﬂ [H“] +[ ZM2+

ax’ y z' X
a:[\/12 [}IEI} +1 6M2[Lll]+ 16M2+1 aM?.] [L31]+
az dz’ ax dy’
135M2+1 M2 3T +1 5M2[Lz1] ]dV
ax* Oy’ dz’

W =B [ [Pt Bl Moy L, M2
¢! vz) ay’ ax ay’ amz dy
iy +1,Mz, gMz[Izle [ ZM2+1 gMz] i+ {1 p 2+

X y z x’
3M2] 2T+, M2 6M2[L12]+[ 5M2+1 3M2] L3+
dz’ ax’ _dy’
[ 6M2+1 3M2] [H32] +1 5M2[L22]] ]dv
ax’ dy’ dz

Kl = —E— [[mﬁ+l'—”(mz=+mf)]m+[m22+kﬂ(mf+ms2)][01
+[m mg”-;f—l] (EI+E] )+—[(mlma)(m+m Y+ (> moA[O]

+mam([Q1+Qh)] Jav

K523 =

(1-v%) jv:r [ [mm1+1_;i(m2“2+m3“3)] [Al+ [Vﬂ1mz+1;—um1nz] El"

+ [mznz+kz(m1n1+ m;n:;)] [C]+ [meﬂz+l;-zn xmz] (E]+
2



189

L )+ man )"+ (mincHmang{O]+ (mans) Q1+
(maﬂz)[Q]T] ]dV

%24 = E f [[ 3M141 V[ f"’M1+m 3M1H[Hn] +m 3M1[121] +
(1-vH)°v ax’ 2 dz’ dy’ d
le-%-+-1—'z[m 3M1+m M) | m2y® +Lv [ 5M1{Iu] +
dy’ 2 dz’ Bx 2 dy’
m aM*[{"] +m —1[L“]+ [m;———-&-mg——] L3+
_ax! ax’ dy’
st mg o [1-131] +mg———[L”]] Jev
“ax ay’

0 = [ [ mage 4 m g om g+
y’ X y
L %[I”JT+m1;‘I‘£‘-[I”]T+ [mz——ng +maZ—M—l] L
! ! y A

AL 4O [H”]T+m1 l[L12]+[ m ¢
Bx: gz’ ax’

m aMl [L32]+[m aMl+m 3M1 [H32] +m aMl[L22]] ]
ay’] ox’ dy’ 0z

K2 = 'mF%+l—z[m,aM2+m Mo | " +m aMz[Izl] +
(1 V2 | 9x’ 0z’ ay’ dy’
%+li[maa_M._2.+m2__aM2 ][[.121]T+1 V[ aMZHn] +
ay 2 gz’ gx’ 2 ay
m M2 L | 2][L“]+
az’ ax ay
[ 8M2+m BMz] 3 +m aMz[Ln]] ]dV
ax’ 8z

K27 = E f [ aMz[122] +m c‘.;’M”[I-I”] +vm aM’[I—I”] +
-y dx’ By’
L_U[ml 2[112] 4m 6M2[122] +(m 6M2+maaM2 [H121T+
2 ax’ dy’ dz’
[ Mg+m aMz][szlT+m oM 12]+ mM2 3M2+

6A
3M2 L+ |m 3M2+m 3M2 [H”]T+m 3M2[Lzz]] ]dV
By 8x ! dy’ dz’
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Kl = —E f [[n12+1'—"(n22+n32)][A1+[nz=+ﬂ(n1’+na’)][01

+[nm2‘-’ii] @E+ED+1Y "[(nma)(mﬂn )+ -+n23(O0]

+am) QD) |ev

k’fas = [[ n, M1y LoV 0™ g, Ml | a4 3M1[[21] +
(1 vy ax 2| 6z’ 6y 8y
0y 2 6z’ 6x’ 2 ay
n aMl[IM] +n 6M1[L11]+ 1+n [L31]+
ox’ az 9x’ dy’
(0 IM Ly M) sy +n2§1‘ﬁ[1,21]] ]dV
L Ix’ dy’ 8z

k3]as = E f [ 3M1[I22] +n 3M1[-H12] T 3M1[sz] +
Q- vz) vl ay’ ax’ il
-V[ aMl[I12]T+n aMl[I22] +|n 6M1+n§_M__l [Hl2]T+
dy’ ax’ By dz’
s M pgae® 4, B 2 [, M B 3M1] L7+
X! dz '’ dz' Bx dy’
n36M1+n3

ax’ ady’

[kS]as — E f [[ 3M2+1 V[ 6M2+n aMz]][Hu] +n aMz[Izll +
v Bx 2 a

(1-v y’
’t 6M2+ 5M2+n BM:z ][HM]T +1- V[ 1%[111] +
oy’ 2| oz’ ox’ 2 By’

3M2[121] 1 3M2[Lu]+ n, M2
ax’ oz’ ax’ 6y

nai%]m“] +n, M2y 21 ]dv
ay’ dz’

[HSZ] +n ZMTLH]] dv

0% = B f [ a2l n Py +im M2+
(1-03) *V dx

dy’ dy’
1-v [ 3M2[Ix2]T+n 3M2[[22] +(n 3M2+n oM, [le]'l‘+
2 U gy ox’ "oy’ 0z

0, 2M2 4 M) T 5M’[L“]+[ 3M2+n2——5M9][L"]+
Bx oz’ dz’ ax’ 0y’
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M3 4 0 M) rgany® 4, Mgy ,22]] Jav
ax’ dy’ dz’

2
4 = E ; f [ME[[P““]+[R2‘2‘]] +%2[G““]+5;—M—: (G221 +
Q- y
UM 2[F2+ gM [G1121]+ [[3M1 +ZM1’][G1111]+
y’'dx’ y z
‘;M“;M‘[G““]+M12[[R““]+[F1m] + [P+ MU+
yf xl

[K““]+[P313‘]+[Mm‘]+[S”“]+[R3‘31]] + [6_M_12+

ox’

M [G““]+6M16M‘[G“31]+ M2, OMy (G331 +
dz’ dz'dx’ ax’ dy’

OM 1[02131]] ]
dz'ady’

(K45 = —= f [Mlz[[Pllli’]+[R?122]] +-%2[G“12]+%2[G212"‘]+
(1-vH "V dx’ oy’
VME[F‘M].[-;,;___@MI@M_ 1[G1122]+1-V[ 6M12+6M1’][Gu12]+
8y ’0x’ 2 Llayr az’

ZM: ZM:I[GHH] +M,? [[R‘112]+[F“22]T+|_'P2122] HEI MY
y’dx

+[K1132]+[P3132]+m2122]+[82132]+[53132]] +ZMIZM1[GH32]
z/8x
3M13M1[G2132]+ 13M1[G3122]+5M13M1[Ga112]+ M, 2
dz 'y’ dz'dy’ dz’'ax’ ax’

3M17][63132]+ IM,? 4Oy [G2122]+3M13M1[Gz112]] ]dV
dy’ ax’ oz’ ax’dy’

K45 =

f [Mle[[p1111]+[R2121]] LM My (G114
(1-vH "V dx’'ox’
gMigMz[G2121]+yM M2+, 2M20M gMzle[Gum]_,_
y'ay’ y'ox

1- V[ 3M13M24_3M13M2 (G 1111]+3M25M2[G1121]+
2 L|dy’dy’ 0dz'dz’ dy‘ox’

M1M2 [Rllll]+[Fll21} +[P2121]+[F21H]+m1111]+[K1131]
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+[S’131]+[Mm‘]+[R3131]+[S“2‘]] +3M13M2[Gm1]+
dz/dx’
3M13M2[62131]+3M23M1[Ga121]+3M23M1[Gn:1]+

az’agM dz'dy’ oz’
LM 24_3M13M2] [G3131]+[3M13M2_,_3M13M2] [G2121]+-
a

x‘dx’ dy’dy’ dx‘0x’ dz’'dz’
__#[Gﬂll]] ] dv
dk‘dy’

il = B [ | e[+ o) + LML (G

1-v4 v ax’
aMlaM""[G””]+uM Mg[‘F“”]-i-uaMzaM 1G22+
dy’dy’ dy’'dx’

1- u[ 5M13M2+3M15M2][G1112]+5M23M2[sz]+
2 L|dy’dy’ 0dz’'0z’ dy’'dx’

M Mo [R1112] 4 [FU22] 4 [P2122] + [F2112) 4 ML12] + [K197) +
32132]+m2122]+[R3132]+[33122]] +5M13Mz[sz]+

dz'dx’

aMlaMzr 2132]_1_6M26M1r 3122]_L6M26MITG3112]+

gM y’ dz’'dx’
LM 5M aMQ] G3132]+[6M16M2_L6M16M2] [G2122]+
d

x‘dx’ 6y’6y dx’'dx’ dz’dz’

W[sz]] ]dV

—_E 1212] 4 (R 2222 3M1 G212 +5M1 G222+
[T (1-uz)fv[ o) + 2 Sl

UM 2[F1222] + 3M13M1[61222]+1 U[ [5M1 +3M|7][01212]+
dy’dx’ dy’' 0oz’
oMM

a . l[G1222]+M [[R1212]+[Fi222] +[P2222]+[Ml212]+
y’'ax’

[K”"]+[P:"m]+[M2”2]+[52232]+[R3232]] +[_Q_M_1_2+

ax’
M, [G2222]+3M13M1[G1232]+[3M1 +3M12][03232]+
0z’ 0z’ dx’ ax’ dy’

1 ‘[sz]] ]dV
dz'0dy’
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55 = E j; [Mle[[Pl2lll+[R22Zl]] +3M13M2+[G1211]+

(1-v%) ax‘ax’
aM‘aM’[Gm‘]—i-uM;Mg[Fm‘]-%- dM M, G221+
dy’dy’ 6y’6x’[

I-V[ oM 10Ms  GM10M; [G”“]+6M26M2[G‘221]+
2 Ligy‘’dy’ 0z'0dz’ dy’ox’
MM, [R12‘1]+[F1”‘]T+[Pm‘]+[F”“]+['M‘2“]+[K1231]+

[32231]+[M2221]+[R”31]+[S 3221]T+[Pazax]+

a1 L OM 1Mo, 1231y OM10Mar 2031y, IMaOM 13221

iyt |+ BR1 Ry Grasy RIS GRIN =2 G 1+
dz'dx’ 62:’651\'/I 2’0y’

3M23M1[G32u]+ oM 0M3 , 6M 1OM> (G311 + MM,

dz'adx’ ax'dx’ dy’dy’ ax‘adx’

3M13M2] [G”“]+6M16M2{G22“]] Tdv

dz‘dz’ x'dy’

K157 =

2 f [M1Mg[[le]+[Rm’]]+aMlaM2 (G212 +
(1-v"v ax’'dx’

ZM1ZM2[G2222]+UM1M2[F1222]+l'ZM23M1[G1222]+
y ' 4 / X r

l-V[ oM M, | M 10M [G1212]+5M25M2[61222]+

2 L\ady’dy’ 0z’0z’ dy’dx’

MM, [R‘m]{F1222]T+[P””] +[F2212]+[l\41212]+[1(1232]+

[82232]+[Mz222]+[R3232]+[83222]T+[P3232]+[K3212]T] +
3M13M2[61232]+3M13M2[Gzzaz]+3M23M1[G:4222]+
dz'dx’ gz'dy’ dz’dy’
M[Gﬂm]_i_ OM1OM; | 3M13M2] (G5 + [MM_2+
dz'0x’ ox’dx’ 8y’dy’ dx’'dx’
dM 1M, [62222]+5M15M2[G2212]] Tdv

dz'0z’ ax'ady’

[ks]ﬁﬁ = E f [M22 [[P1111]+[R212l]] +Z_M2_2[G1111]+QM_2_2[G2121]+
x’ .

(-3 "V ay’
VM22E“2‘]+:'6M26M2[G“2‘]+ll£[ 3M22+3M27][Guu]+
dy’dx’ 2 L|dy’ az’

nggMz[Gun],*_Mzz [[R”“]+[F”’l]T+[Pm‘]+[M““]
y'ox’
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Iy

1-vH"v

(1-v%) "%y
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+ K3 +[P“‘“]-i—[IVI““]+[S“3‘]+[R“31]] + [%2+

xl
6M21aG2121]+6M26M2[01131]+[aMQ +3M27][G:5131]+
dz’ 0z’dx’ ax’ dy’

OM 3 2[G2m]]]
dz 0y’

E f [Mg’[[P“12]+[Rm"’]] +%111_?_2[Gu12]+g_1\4_32[G2122]+
X y

uMzz[F1‘22]+z'aM26M2[G“”]+1'”[ 3M22+3M2 G112+
dy’0x’ 2 V\ey’ 8z’
dM M

2[Guzz] +M, [[R1112]+ [F'1227T 4 [P2122) 4 [F2117) 4
dy’dx’

[M“”]+[K“”]+[Sm"’]+[M21"’2"+[R:“32] +[S 3122]T + [Kam]'l‘
[P3132]] + My aMz[G1132]+3M2 3M2.-Gn32]_1_ M3 3M2rG3122]

dzdx' dz'dy’ dz'dy’
aMzaMz[G3112]+[3M2 +3M2’][sz]+[ 2%
0z'dx’ ax’' dy’ ax’
6M27][G2122]+6M26M2[G2112]] ]dV
dz’ dx’a3y’

f [ M,? [[P1212]+[R”22]] +M2[61212]+%2[Gm2]+

M 2[F1222]+L6M26M2FG“”]¢1 V[ M2 +3M2 (G212 +
dy‘ax’ 2 L\gy’ dz’
ZMQZMZ[G”“]%—MJ[[R””]+[F'm] +[P2227] - [M1212)
yf xl

+[Kl232]+ [P3232]+ [M2222] +[S 2232]+ [R3232]] +

M,?, My [62222]+3M23M2[G1232]+ M,
dx’ 4@z’ dz'adx’ ax’

aMz'] (G¥32]+ aM, 3M2[Gzza2] ] ]
dy’ dz'0dy’

and k)= [T} where i = 2,7 and j = 1,(i-1). The shape function matrices



are given by

ax’ ox’
ax’ By’

Gklmn = C¥! C" Ny Nj
1) 1 ]

= g B
ij i ay:

ghlon — Cckl con @I_w._a_N_L
i P71 gz’ ox

Miklan — ckl ¢mn _@1_ ONj
4 1 gzt a2

primn - Cckl cmn @_I\T_LQ&
i i3 ax’ ax!

Rklmn - ckl cmn _Bﬂl_@_ﬂi]_
ij i ] dy’ By’

195

gy’ dy’

phlmn — okl oo ON; N
ij i gx’ ayf

HE = CEIN; ;.
ij i x’

gz’ Ox'

ij i fz/
O _ ON;3 0N
dz’ 0z’
Qsj = ON; 0N
dz’ oy’

gklmn - Ckl gmn ON; ONj
ij i i gzt By
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APPENDIX E
CONSISTENT SHELL ELEMENT
STRAIN-DISPLACEMENT MATRIX [B’]

QAR m,ONi n oM
ax’ ax’ ax‘
N ON; N ;

dy’ oy’

lCEl[Ml—-‘-+ Ming
‘ 1 ox’ ax’

, cx M 4 MM

Loy gyt

| ennfpNs 4 Min) 4 o[ 4 Miyg|
| 1l a9y ady’ | il Bx' ox’

| ctim N 4 Mung) ool B 4 My
I 1 8z’ z! ] IL ax’ x’

C?l Ml_l Q,l\_d_l_ i Cal MlaNl aMlN;
| 'y 98z @8z’ il gy’ dy’
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z' ax dz’ X | z ax
146N‘ + 1, | mf’lNi + nzﬁaﬁ—i + ng—>
| 9z’ 8y’ dz’ dy’ gz’ dy’



M, N

M,—aN i
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-I-—-aMlNi l
ax’ - |
+ g—M—lNi |
ay’ |
Bl 4 o D)
| ax’ ax’ |
-}-..2..‘1\4_1.1\1T C32 MlaNl alV[lN1 I
dz’ . ox’ Odx'’ |
+ M+ ooz, N 4 My %
az’ 1 oy ay’ |
+ Moy, |
ax’ |
4+ Moy, |
ay’
SNy Mo ~4~C“ N Moy |
dy’ “ox'  ax’ )
y 1 . ]
Ny Mo oo, 4 Mayg )
8z’ | 1 8x’ dx’ 5
+ Mo 4 o3[,y My
az’ 1 dy’ dy’ |
+ May
ax’
+ Moy,
dy’ ]
+ Moy 4 o[, 4 M2 i]
dy’ | 1 ax’ - ax’

+ Man] 4 o7, M 4 IMa ]
dz’ | 1 o' 9x’
NGy Mo ooz, 2N . IM2 ]
dz’ I | By ay’




APPENDIX F
JOINT ELEMENT AND REINFORCEMENT ELEMENT
BOUNDARY NODE TRANSFORMATION MATRICES
Transformation matrix [T4] to be used when node four of reinforcement

element is on the boundary:

[0] |
gxg8 1 9x9
N;0 0 N;M;ly -NiMjla NiMalys -NiMalo (F.D)

13 _
T| 0 N;0O NMmy -NiMma; NiMamyj -NiMgmy; | [0]
ix9

i ~
L0 0 Nj NjMjny -NjMinoai NiManyi -NiManas
12x100

Transformation matrix [le°‘:n‘] to be used when node one of a joint element

is on the boundary:

(1] ol
g1x91 91x%
N;i0 0 N;M{ly -NsM log NiMalyi -NiMalai
13 - .
%10 N;O NMmy -NiMpmg NiMamg -NiMomy; | [0] F.2)
i - 3x9
0 0 Nj NiMiny -NiMina NiManyi -NiManoi
[0] 1
9x91 9x9]
103x100
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3. Transformation matrix [Tfl 0int] 14 be used when node four of a joint element

is on the boundary:

(1] [0]
g1x01 91x9
[0] [
9x91 9x9
N:0 0 NiMily -NiMilag NiMaly -NiMala (F.3)

13 -
|0 N;0 NMmy -NijMimgi NiMamg; -NijMamg; | (0]
i 3x9

0 0 Ny NiMinyi -NiMnzi NjMzny -NiManoj

103x100



APPENDIX G
DERIVATION OF LAMINA THROUGH THICKNESS INTERFOLATION
FUNCTIONS M3, M4, M5 AND M6

Let rotation ¢L vary quadratically through the thickness of the lamina
and be approximated by

¢ (@) =a+ bz + c2? (G.1)
where z is the dimensional co-ordinate in the lamina thickness direction and 2, b

and ¢ are unknown constants. The displacement d¢L due to rotation ¢L is

calculated as
dp, @ = [ 6,() dz. (G.2)

Substituting the expression for qﬁL, Equation G.1, into the above equation and

integrating gives

d¢L(E) =az +bz? +cz® +d (G.3)
2 3

where d is an additional unknown constant. The displacements and rotations at

the top and bottom of the layer are taken as degrees of freedom ie.

201



dg( ) = a4}
2

d¢(-§n ) = dgy
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h
H(L) = ¢

h
h(-20) = ¢

(G.4,a-d)

where subscripts T and B designate the top and bottom of the layer respectively

and h, is the thickness of the lamina. Substituting the expressions for ¢, and

d¢L, Equations G.1 and Equation G.3, respectively into the above equations

gives the degrees of freedom in terms of the unknown constants as

A,
d¢L
B
L d¢L »
T
b

B
L6

r 2 3
h /2 hL/ 8 h;/24
2 3
-hL/2 h;/8 -hp/24
2
1 hLIZ hL/4

1 -h/2 h/2

il [a)
1 b
0 ‘c
0] {d]

(G.5)

Since there are four equations and four unknowns the above equation can be

solved to give the unknown constants a, b, ¢ and d in terms of the degrees of

freedom as

[a] '3/(2hL) -3/(2hL) -1/4 -1/4 ]
‘b _ 0 0 lth -lth

- 3 3 2 2
¢ 6/hd  6/hd  3/n} 3/h}
L d | 1/2 1/2 -hLIS hLIS_

(dgy )

¢,

dqbi

L 47 ]

(G.6)

The above expressions for the constants are now substituted into the expression

for ¢, and d¢L equations G.1 and G.3, respectively, and the terms having like
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degrees of freedom are grouped. This yields

b, @=Lelze gl + (2 -0 74
4 hL hﬁ 'ZhL hg

Ll (2 4820
2 2, h?

4 hL hL L L
(G.7,2-b)
d¢,@ = (12 s Ll gty (33 25 + Lygg?
4" 2, n? o8 o, b2t

+ ('li-—l z? +12£3 +}—]L)¢§ + (23 £+33§3+§)d¢§.

4 2h hi 8 2h, h

The relationship between the dimensional co-ordinate z and the non-dimensional

co-ordinate t_ is given by

_ ht
7 =L (G.8)
2
which is used to re-write equations G.7 in terms of t, as

- 2 2
8,00 = (Lt 43yl 4 (2 -2 g
4 2 4 2hL 2hL

- 2 _ 2
P (Lb 38 4 (B 42 g
42 4 21, 2h
(G.9,2-D)

dg, () = %n( 4 2+ 1)4] + i(stL -t +2)dg]
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h 2 3 B, 1 3 B
+§L(-tL-t.L + + )¢ + =(-3 + 7+ 2)dg;.
4
Equation G.9(b) can also be written as
d it ) =M g% + M dg® -~ M ¢° + M dgy (G.10)
v 3’L 4 'L 5L g L '
where interpolation functions Mz, My, Ms and M define the displacement

variation through the thickness of the lamina due to degrees of freedom qbz,

dg;, ¢; and dg;.



APPENDIX H
CONSISTENT LAMINATED BEAM ELEMENT
STRAIN-DISPLACEMENT MATRIX [B‘]

1
we Do

|

ax’ | ax’ | x’
I
I

ax’ | ax

, l .
M, cu; B .M, cu; R
ox/ | ax!
|
cNpou M v oows B onpou M LM, ows
z ax’ | z’
. |
-M;s cu; R ‘M, cu; A
dx’ | X
Ny CU 2Ms g owi BN o 2Me LM, oWy
dz’ x/ gz’

205

o~y | a5 :
N Gin oy Wiy Ny CUs ‘;Mj -M; cw; &
/ .




»

206



207

APPENDIX I
CONSISTENT LAMINATED SHELL ELEMENT
STRAIN-DISPLACEMENT MATRIX [B’]

Ilm | le.N_i. l n[—'—aNi |
ax’ I ax" l 6x’ l
1, N my 0N 0, 0N

ay: | dy | Ty

t s s 3. ~g 9
[Bf] - 23 116N1 + 1‘8N1 l mlaN'l + m‘aN, l nlaN]. 4+ n 3N1 I
{ dy’ ox' | dy’ ax’ | ay’ ax’ |
llaNi + laaN] | mlaNi + maaNi | nlaNi +n ON; I

dz’ ax’ | oz’ ox’ | oz’ ax
l‘aNi_]_haNx | mlaNi_*_mJBNi | n, N +n§3Ni|

| 9z’ dy’ dz’ oy’ dz’ dy’

| onfm, N 4 My |

l 1 L ax’ ax’ I
C21'M aNi +QM__1- J

I i.. dy’ ay’ | |

epfds Bn] - cyfuli e SN

| y y'o L ox ax’ ] |

| cu aN; . My J + o MI%, aM‘NJ |

| Y19z’ dz’ | dx’ 0dx 3
o2, AN +5M1 +C3‘ MlaN‘ aM‘NJ

| 'L 9z’ az’ il gy ay’ )|




| c%z[Mt——i + My W
l 1 3}(’ 3x'
‘ C?z[Ml—i + MMy
1 ayf ayi
| C!"’[Ml-—-—i— + Ml 4 oM@ 4 My | 4
l 1 ayl ayl 1 axf axl
| sz[Ml—‘ + M| + oo [m, 2 My,
| b dz' 0Oz’ 1 ax’ ax’
C?:2 M— + oM, J + C32 Nf[laNI + aMlNl
I 1 azt Bz’ 1 ay: ayf
CII’M3%+-—6M3 l
1 ax’ dx’ |
c2[m 2 4 My, |
. 1 l_ ayl 6yl
g | co{m@N 4 Man] 4 ca[p, s 4 Moy} |
1 L dy’ oy’ 1 Ix’  ax’ l
oM B 4 Mapg) o oo Ns  Maygl
1 dz’' 0z’ 1 ax’ dx’ |
ci Msﬁ + —6M3Ni + Cc¥ M:,—al\li + M3 i
1 dz' Bz’ ! dy’ 0Oy’ |
l Cf2[M3——-i- + 203N, |
| 1 ox’ 9dx’ |
| C?’[Mg———i + Moy, |
YLoayr ady’ |
l ch M2 4 —aMsNi + C* Mag& + oMy i1 |
| 1 dy’ dy’ | 1 ax’ dx’ | |
| ci2fn N 4 DMang] o2l B 4 Mayg]
! gz’ 09z’ | ! ox’ 9x’ |
| ol sy Mgy 4 ooy, BN 4 Do) |
| gz’ 9z’ i dy’ a8y’ )|
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| oonfp i 4 My,

I i ox’ ax’

o M4@-‘-+——3M4N1]
1 i ayf ayl

l Cfl M4_6_N_i+._aM4 3
i L ay’ dy’

|

| cifp, B 4 May

| v 8z @z’ |

c M4-6£i + My 11

! dz’' 0z’

| oo, B 4 May

l 1 L ax" ax, )

e M2 4 May
YLoey’ dy’ |

| cnofpg 2 4 May,) 4

| 1 L ayf ayl

| ol L 4 Moy
il 8z o8z’

| oo s . DMay

| i| adz' @8z’

| ciufpg s 4 Moy

| L axt ax’

| c¥ Msa—N-i-'i'-—aMsN;
1 i ayl ayf )

| onfp, s 4 Moy

| L gy’ @y’ |

| Cfl 3N1 4 M5 1

| N | 81 dz’

c2|m ONs SNJ
| 1| 8z’ &z’

+ C?‘[ By My,
! ax’ ox’ |
+ c?l[M4a-§4 4+ Mg
! ax’ odx’ |
C-‘:l[M M | M|
1 y : ayf
sz[ 3N1 + BM"Ni]
ax’ ax’
+ Caz[ N My My,
ox’ ax’
+ c“[ (HNi g My
ay’ By’
+ Cn[ 3N1 + QM-EN;
ox’ adx’ |
+C31[ 6N1 +6M5 7
ax’ dx’
+ c“[M N My,
gy’ 9y’




(M, N
L ax’
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ax’

M. 1]

dy’

M| + o2[m, Nt 4 Ma]
! ox’ 9x’ |

dy L )

M +CP MsaN‘+——fNi
! 1 ax’ ox’ |

dz’ | o

My + o2, B + =Ny

oz’ YLody’ dy’ )

aMGNi

ax’ |

% i‘

dy’ | 1

: : oM
Meny] + c21fngpPNs 4 Moy,

! ! ax’ adx’ |
dy’ L o~ e

) 3[F ‘1+ 8 3
%Ni i MGE;_’ ox’

) - . OMan ]
o] + coifelNi 4 Moy,
gz’ LU dy’ Oy
My
ax '

@4__6 i‘

dy’ |

i 6

Mons| + 22 melt 4+ Mo

ay’ 1 dx’ Ox :
Man] + c32[meht 4 Doy,
z' i ax’ 0x J
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