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ABSTRACT

A 2-dimensional d,2,2 symmetry superconductor is studied. The model
used is a two dimensional Hubbard mcdel with tight binding electrons in the plane
with both nearest neighbor and next nearest neighbor hopping. The
superconductivity is stabilized by anti-ferromagnetic spin fluctuations and is
described by the Eliashberg theory.

With this model a general set of Eliasiiberg equations are derived which are
valid for any electronic band structure and also the details of the electron-boson
interaction can be included, and impurity scattering of arbitrary strength. This is
possible because no model for the electronic density of states has been taken and
thus all of the details of the density of states including the van Hove singularity can
be accounted for fully. This leads to a non-trivial difference not previously seen
between impurity scattering in the Born limit and that of impurity scattering in the
unitary limit. The Eliashberg equations are solved numerically, and the effect of
band structure and impurity scattering on the critical temperature is examined.

General expressions for the London penetration depth and the optical
conductivity are derived. These are calculated for different impurity
concentrations and scattering strengths, and band structures. It is found that the
inverse square of the low temperature penetration depth is linear in temperature.
This behavior can be changed to quadratic by adding small concentrations of
impurity scattering in the unitary limit or by large concentrations of scattering in
the Bom limit. The conductivity of the normal state as well as that in the
superconducting state also have a large dependence on the type of scattering
included. The optical conductivity in the superconducting state shows no evidence
of a gap in the spectrum in contrast to conventional superconductors. These
results are compared with experimental observations on impurity doped high-7

superconductors where similar behavior is observed.
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1. Introduction

1.1.  Superconductivity

The discovery of ceramic superconductors in 1986 (Bednorz and Miiller,
1986) has sparked great interest in the field of high temperature superconductivity
where high temperature in this context refers to superconductors with critical
temperatures in excess of 30 K. Although this discovery of superconductivity in
the ceramic material Ba-La-Cu-O has a rather modest (by present standards)
critical temperature (7,=30 K), it is a large enhancement over the previous known
superconductors. These are for example, mercury (Hg; the first known
superconductor discovered in 1911) with 7. =4.2 X, lead (Pb) with 7. =7.2K

among others and the so called A-15 compounds. The A-15 compounds ( V3Si,
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ViGa , NbsAl, Nb;Ge , and others) had the highest critical teraperature until the
1986 discovery and were known superconductors in the 1970’s (Shen, 1972).
These compounds typically have critical temperatures of the order of 20 K with
Nb3Ge having the highest, 7.=23 K (Kihlstrom ez al., 1981; Golovashkin ez al.,
1981). All of the pre-1986 superconductors have the common features of a
metallic normal state including the organic superconductors first discovered in
1979 with (TMTSF).PF,' with 7.=/.2 K under a pressure of 6.5 kbar (Jerome et
al., 1980. see Ishiguro and Yamaji. 1990 for a complete lList of the organic
superconductors and their properties). and their superconducting state is well
described by electron-phonon mediated superconductivity (with the exception of
the organic superconductors and the heavy fermion superconductors (Stewart,
1984) where it is still unclear as to the underlying interaction which is responsible).
These electron-phonon coupled superconductors are also known as conventional
superconductors. The discovery of superconductivity in Ba-La-Cu-O quickly lead
to the discovery of superconductivity in other copper-oxides, for example Y-Ba-
Cu-O (Chu et al., 1987) with 7.=93 K; Tl-ba-Ca-Cu-O (Sheng and Herman.

1988a, 1988b; Hazen er al. 1988) with 7.=/25 K.

'bistetra-methyl-tetraselenaﬁxlvalene-hexaﬂourophosphate
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1.2. BCS Theory - Overview

Although the phenomenon of superconductivity was discovered in 1911, a
microscopic theory of superconductivity was not forth-coming until 1957. The
theory was proposed by Bardeen, Cooper and Schrieffer (1957) and is now known
as the BCS theory of superconductivity. A very detailed and lucid description of
BCS theory can be found in de Gennes (1966). The key element in the theory is
that a system containing an inert Fermi sea plus two electrons at the Fermi surface
in opposite momentum and spin states (|kT) and |-k{)) with an overall attractive
interaction (no matter how small) has a lower energy than the same system with
the two electrons being in any other momentum - spin state. This pair of electrons
is known as a Cooper pair and is the starting point for the BCS theory cf
superconductivity. The superconducting state arises when one constructs a system

of Cooper pairs such as
Id)) scs H("k +vuc;rcju¢ )l 0> : 1-1
k

where [®)gcs is the BCS wave function, |0) is the vacuum, the product is over all
electronic plane wave states. ¢’y creates an electron in plane wave state with
momentum q and spin o, wi(u) are variational parameters which turn out to be the
probability amplitude for finding an electron(hole) with momentum k. The theory

leads to a critical temperature
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1
T:_ o L130)‘e N(oW 1 1-2

where N(0) is the electronic density of states at the Fermi surface, ¥ is the pairing
potential between two electrons (and is positive) and w. is a cut-off energy for the
interaction®. Although T, cannot be predicted by microscopic means only, the

theory has been a great success and it does give several universal numbers such as

2A(0) _ s

— =354 :1-3
T,
TZ

e —017 ;14

c

where A(0) is the zero temperature [imit of the superconducting gap, 7 is the
critical temperature, £, is the thermodynamic critical field and y = 2 m*N(0).
3

While the BCS theory does not give quantitative agreement with experiment it

does however give excellent qualitative agreement in a wide range of materials.

1.3. Eliashberg Theory - Overview

While thz BCS theory gives qualitative behavior for so called weak

coupling superconductors (i.e. AL Sn) it fails for so called strong coupling

*Throughout this work the units are chosen such that A=kg=c=1.
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superconductors (i.e. Pb, Hg). A general theory was developed by Eliashberg
(1960a, 1960b). This theory takes into account the repulsive Coulomb interaction
between electrons and the attractive interaction between the electrons induced by
the electron-phonon interaction. The basis for the Eliashberg theory (or strong
coupling) theory is a system of Cooper pairs as in BCS (weak coupling) theory.
The two theories depart in the treatment of the interactions between the electrons.
BCS theory assumes there is a net attraction between electrons near the Fermi
surface and treats this interaction as a constant. Strong coupling theory includes
the interactions from a microscopic level and then the superconducting state arises
from the electron-phonon interaction. However the price one pays is that the
Eliashberg equations must be solved by numerical means. Despite this difficulty,
the solutions obtained and the physical properties, both thermodynamic and
transport are in excellent quantitative agreement with experimental results {see
Carbotte, 1990).

The Eliashberg theory has been a tremendous success in condensed matter
theory. Included in the success is the incorporation into the theory of electron
scattering from magnetic impurities in the weak limit, Born approximation
(Abrikosov and Gor’kov, 1960, 1961; Ambegaokar and Griffin, 1965; Skalski et
al., 1964, Maki, 1969; Schachinger ef al., 1980) and in the strong limit. T-matrix
approach (Rusinov, 1969a. 1969b; Shiba, 1968). Also studied has been

anisotropic effects of the Fermi surface (Allen, 1980; Daams and Carbotte, 1980a,
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1980b, 1981; Alien and Mitrovic, 1982; Zarate and Carbotte, 1983a, 1983b;
Whitmore, 1984). Energy dependent electronic density of states has also been
examined (Pickett, 1980, 1982; Mitrovic and Carbotte, 1981, 1983a, 1983b;
Carbotte, 1982; Kieselmann and Rietchel, 1982). This theory with all of these
additional features has been able to successfully account for the properties of many

superconducting systems.

1.4. High T. Superconductivity

The Eliashberg theory fails to properly describe the heavy fermion
superconductors and the high 7. ceramic superconductors. It is believed that the
heavy fermion superconductors can be described by an Eliashberg type theory
where the superconducting order parameter is anisotropic in k-space and with the
superconductivity stabilized by anti-ferromagnetic spin fluctuations (Fulde ez al.,
1988). The case of'the high 7, superconductors is less clear. There are many
different theories (Varma. 1988; Kresin et al., 1993) for explaining the properties
of the oxide superconductors br't as of yet there is no definitive theory. A
common point among these superconductors is that they are metallic in the a-b
plane due to the presence of Cu-O planes and closer to insulating in the ¢ direction
(Batlogg et al.. 1993). This makes these materials highly anisotropic and any

theoretical model must incorporate this aspect. Another aspect that must be
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incorporated is that the superconducting gap exhibits d,» symmetry in the a-b
plane (Annett and Goldenfeld, 1992). Many experiments indicate that this could
be the case, for example, the temperature dependent penetration depth (Hardy et
al., 1993), the superconducting quasi-particle density of states from tunneling
experiments (Jiang et al., 1993; Liu et al., 1993), angle resolved photoemission
(Wells et al., 1992 Shen e al., 1993). Another common feature is that the
undoped materials (i.e.. La,.,Sr,CuQ; with x=0) are insulators with an anti-
ferromagnetic ground state (Kitazwa. 1990). The superconducting state is
believed to be stabilized by anti-ferromagnetic spin fluctuations (Millis er al., 1988,
1990, Bulut and Scalapino 1992; Miyake ez al., 1986) which gives a repulsive
interaction between the electrons in the s-wave channel and an attractive in the d-
wave channel. A possible model which incorporates these ideas is a 2-dimensional
Hubbard model describing electvons hopping between lattice sites and an electron-

boson (anti-ferromagnetic spin fluctuation) interaction which is attractive in the d-

wave channel and having d,2,> symmetry (Millis ez a/., 1990, Monthoux et al.,
1991, 1992).
1.5. Thesis Layout

This 2-dimensional d*,° symmetry model is described in chapter 2 along

with the strong coupling theory of superconductivity. The Eliashberg equations
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within this model are solved numerically for the critical tenaperature and some
resuits for 7. as function of chemical petential and impurity scattering strength,
both in the weak and strong limits are given. Chapter 3 describes the London’
penetration depth ana presents resuits of the calculation and their relationship to
the experimental results. Chapter 4 is concerned with the optical conductivity
within this model. The theory of optical conductivity is described and results are
shown and compared with the results found via experiment. The final chapter
discusses results and gives conclusions concerning what can and what cannot be

described with this model as it pertains to the high 7. superconductors.



2. Theory

2.1. The Hubbard Hamiltonian

Since the superconductivity in the high 7. superconductors is believed to
occur mainly in the Cu-O planes and conduction occurs via electron hopping
between lattice sites, an appropriate model is the 2-dimensional Hubbard model on

a square lattice, The Hamiltonian for the model is (Hubbard, 1963}

- .
H = ZH/JCJGCH-JG 121

ise

where

W = [dFy (F)y .s(F) 2.2
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is the overlap integral in the tight-binding approximation between an electron on
site i and one on site i+5; ¢y (Cis) cTeates (destroys) an electron on site | with spin
o. For a square lattice with nearest neighbor and next nearest neighbor

interactions between electrons, ie.,

1 nearest neighbour,
W, =-t{-B next nearest neighbour, 123
0 otherwise

where ¢ is the hopping amplitude for nearest ncighbor hopping and B is the

strength of next nearest neighbor hopping. Then by transforming to k-space.

- Hery
Cia’ - Ze Cka
k

:2.4
=28 ey,
k
then the Hamiltonian becomes
H=3 EtinCis :25
ko
where ¢4, (ko) creates {destroys) an electron in state k with spin o and
E, = -2t(cosk a +cosk,a~2Bcosk.acosk,a) 2.6

and a is the lattice parameter (where from this point on a=7), and the summation

is over the 2-dimensional square Brillouin zone, ke[-7,-7]x{7,7]. Define

e. =k, —u
= —2t(cosk, +cosk, —2Bcosk, cosk ) — u

:2.7

where £ is the chemical potential.
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The Fermi surfaces for various chemical potentials and next nearest
neighbor hopping strengths (B=0, B=0.16 suitable for La-Sr-Cu-0, and B=0.45

suitable for Y-Ba-Cu-O) are shown in Figure 2.1. The electronic density of states
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Figure 2.1  Fermi surfaces for tight-binding Hubbard model dispersion in the first Brillouin
zone. (a) For B=0, and w/2t=3.5, 2.0, 0.5, 0.0, -2.0, -0.5, -3.5 from the outside curves and

inwards; (b) For B=0.16 and w/2t=2.0, 0.0, -0.64, -1.0, -2.0; (c) For B=0.45 and p/2r=2.0, 0. 0,
-1.8,-2.0,-2.15.
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for this tight-binding electron dispersion is shown in Figure 2.2. The feature to be
pointed out is the van Hove singularity at x=0 for the case with no next nearest
neighbor hopping and the additional van Hove singularity for the finite 3 cases
(most clearly evident for B=0.45). The original theories of superconductivity
(both BCS and Eliashberg theories) assumed that the density of states is constant
near the Fermi energy. This is a very good assumpticn for 3-dimensional
superconductors and energies within the Debye frequency of the Fermi energy. As
can be seen here. this is not a reasonable assumption for this tight-binding
dispersion. Later work on conventional superconductivity has incorporated a van
Hove singularity in the electronic density of states (Dzyaloshinskii, 1987; Xing ef
al. 1991; Newns et al., 1992; Pattnaik et al., 1992; Mansor, 1994) and explicitly
substituting this model for the density of states. This work does not use any
explicit form for the density of states. hence all of the features of the density of
states are included implicitly.

In past work the summations over k are replaced by density of states
integrals and the density of states is assumed to be constant and hence can be

pulled out of the integrand. The prescription then is

> F(s,) - N(©)| deF(s) :2.8
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Figure 2.2 Electronic density of states for the tight-binding dispersion. (a) B=0; (b) B=0.16;
() B=0.45. In all three figures N, is the density of states taken at the upper band edge. The
density of states is calculated by a direct summation over momentum: N(w)=Z, N,

where N(0) is the electronic density of states at the Fermi surface and #(&y) is

independent of the direction of k. For the case where F{&) can be separated into a
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function that depends on energy and one that depends on the angle of k then one

can integrate over the energy and angle separately by

S F(e,) > [deN(e) | * ek :2.9
L 4
and then a model density of states can be used to perform the integrations. For the

case in this work, the summation over k is converted to an integral over k:

I T +r
F(k) > —— | dk, | dk F(k) :2.10
; (27) _'[, ' I '
and it is these double integrals which will be carried out numericallv. Thus the van

Hove singularity in the density of states is accounted for fully.

2.2. The Strong Coupling Theory of Superconductivity

The strong coupling theory of superconductivity will now be discussed.
Excellent derivations and discussions of strong coupling theory exist (Allen and
Mitrovic. 1982: Schrieffer, 1964), hence a full derivation will not be repeated here,
only the key elements will be discussed and the Eliashberg equations which follow.

The strong coupling theory is most easily derived using quantum field
theoretic methods using Green’s functions and Feynman diagrams. There are
excellent texts on. this method of perturbation theory (Fetter and Walecka, 1971;

Mahan. 1981; Abrikosov et al., 1963; Rickayzen, 1980; Doniach and Sondheimer,
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1974) so a basic knowledge of Feynman-Dyson perturbation theory will be
assumed. For the superconducting state it is convenient to use a two component

field operator (Nambu, 1960):

C,
Lt
C_ul :2.11

+ +
Py =(c—k¢ ckT)

This representation equally well describes the normal state properties but is
generally not used due to the complications introduced by the matrix algebra.

With this representation the electron Green’s function

Gk, 7) = (T, (6,1 ()5, (0))) :2.12
the hole Green’s function

Gk, 1) = ~{T.(c2u (1), (0))) :2.13

and Gor’kov’s anomalous Green’s function

F(k,r}= —~<T,(ck1.(r)c_k¢(0))) :2.14

and

F(k,7)= w-(T,(cfk t(r)c:T(O)» £ 2.15

can be written in a condensed matrix notation:

Gk, 7) = (T, (. (1)%:19))

[(T:(Cm(r)CI:T(O))) (7. (61 (D)o () 216
(@) @)
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Here the operators are in the Heisenberg representation,

o, (r)=e"c e

:2.17
e (r)y=e el e™ g
and
(4)= ;{el_—ﬁ”}tr{e"’"/l} 12,18

is the grand canonical average for the operator 4. 8=1/T, tr{4} is the trace and the
Hamiltonian implicitlv includes the term -V, where 4 is the chemical potential and
N is the number of particles and T is Wick's time ordering operator. Wick's time
ordering operator orders operators in increasing values of 7, i.e. for a product of
operators (of boson or fermion typs) a.:

T.(a(r)ay(t )a (r,)=(-1)?a,(z,)a, (z, )y-a, (T, ) 12.19

where

:2.20
1"M > ’I'p_: Dere> TP..

and p is the parity of permutation of fermion operators such that 2.20 is satisfied.
It can be shown that in the range -5F< r<f that

Gk, 7+ p)=-Gk,7) . :2.21
This property is used for defining the Green’s function outside the range r&(-48)
and hence one can write a Fourier representation of the Green's function:

G(k.t) = L Ze"“’"'é(k,ia),,) 1222

Hm -
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where w,=(2n+1) 7/, neZ are the so called fermion Matsubara frequencies. The
Fourier coefficients ase given by

- 1% .

Gk iw,) = |dwe Gk, 7). :2.23

-A
Similarly one can define a boson Green’s function

D, (K, ) = ~(T, (b, ()L, () 224

where b4, and 54 are boson operators. The Fourier representation is

Dg(k,r)=-l— Ze“"’"'Dg(k,iv,,) :2.25

where v,=2mv/f, neZ are the so called boson Matsubara frequencies. Once the

Green’s function is known one can calculate the physical properties of the system.

A simple case is the system of non-interacting electrons, The Hamiltonian

is

+ .
H =3 60,05 % +2.26
ko

and then the Green’s function is

1
G (kjiw, )=—— . :2.27
d n Ehd
The electronic density of states is given by
Na(cu)=-—1-ZImC’u(k,w +i07) :2.28
Tw

where 0 is a positive infinitesimal number. By using Dirac’s identity
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I _p ! zizs(w-x) :2.29
w—xi0” w-x
where wx &R, P denotes the principal part and 5f%) is the Dirac delta function.

Hence
N (@)= 80~ ¢&y,) : 2.30
k
and by definition this is the density of states.
The superconducting state is conceptually no more difficult. The difference

is that the Green's function is generalized and is a 2x2 matrix. It can be

represented diagrammatically as shown in Figure 2.3.

~ ~ P ~..
=) > < )
\‘g (/ (/ (L
Figure 2.3 Feynman Diagram representation of the superconducting Green’s

function 2.16 as a 2x2 matrix using the Nambu representation, where the arrows signify
the direction in time of the electron.

The Dyson equation for the Green's function is given by

G '(k,iw,) = G;'(k,jw,)- I(k,iw, :2.31

where £( K.iw,) is the self-energy and G,(k.iw,) is the Green’s function

calculated in the normal state.
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- l 0
Go(k:imn)= 0n = Ex 1
0 —_—
iw, +&,
1 :232

i0, T, = E,T,
i@, Ty +EyT,
£ +@°

where the Pauli matrices have been introduced:

=l ) w0

Ta = T, =

“ o 1 'Y\ o 233

w0 o) | |

T, =

SRV
The most general form for the self-energy is

i(k’iajn) = Ja)n(l - Z(k':‘wn))%o + x(k'IIwn)%S +¢(k’iw")%l +$(k’lw")%2
1234

where Z, y,¢,¢ are four independent functions to be determined later. Then from

the Dyson equation the Green'’s function can be written

Gk iw,) =iw,Z(k,io,)t, - (& + 2(k,io,))?, - #k,io,)T, - $kio,)T,
:235

and hence

i, Z(k,iw, )7, + (6, + 2(k,iw,))7; +d(k,iw, )T, + (k,iw, )T,

(@,2(k,iw,)) +(&, + p(k,iw,)) +4* (kiw,)+9" (ki)
1236

G(k,iwn) =-

Since the Green’s function is diagonal in the normal state, then ¢ and ¢ must

vanish. It will turn out that ¢ is proportional to the superconducting gap. Also
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note that with ¢ = ¢ = 0 that the normal state Green’s function is obtained if one
solves for Z and y in the normal state.

Now the self-energy can be evaluated and hence Z, ¥,6,¢ canbe
determined. Since % has the effect of renormalizing the energy &, it will be
implicitly included in the chemical potential and will be dropped from here on.

Also ¢ and ¢ will satisfy identical equations, thus ¢ and ¢ areequaluptoa
proportionality factor and any solution that preserves ¢’ +¢* will be valid. Hence
there are solutions (§, #) = (4, cos2a. ¢, sin2a) , where 2 is an arbitrary phase.
Since physical observables can't depend on the phase and since BCS theory breaks

gauge symmetry, « can be set equal to zero and hence 6=0.

2.2.1. The Electron-Boson Interaction

The most important contribution to the self-energy is the electron-boson
interaction since this is the driving mechanism for superconductivity. For
conventional superconductors the bosons which mediate the superconductivity are
phonons. For a superconducting state stabilized by anti-ferromagnetic spin
fluctuations. the electron-boson interaction is given by (Millis e a/., 1988;

Monthoux ef al.. 1991 and 1992; Monthoux and Pines, 1993)
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Hy = Y Va[S.c—KVEIE Y, +S.(k KL ¥, +5,(k - KWEW ]
r
1 237
where S(q) is the spin fluctuation operator (S{q)= S{q)1 S{q)) with components

(Sx. S;. S:) and whose properties are determined by the spin-spin correlation

. - l -~ .~ r . . . .
function y;(q.@), 7, = E(r, *it, ) and Py is the interaction matrix element.

For conventional superconductors the electron-phonon interaction is given

H,_,= 3 {k+q¥ VK, ¥ 5%, : 238

qa
kgaoa

where (k + q|'5’aV|k> is the matrix element scattering electrons from an atom

displaced by an infinitesimal amount, and

Hyy = Z(ZNqu,)-maqf(bq! +by) 1239
i

is the displacement operator, with V= the number of atoms, Af is the mass of the
atom, @y, is the phonon dispersion of branch i, &; is the polarization and by, (6"q)
destroys (creates) a phonon with momentum q in branch . This system of
electrons interacting with phonons (Frélich, 1952) is the basis for conventional
superconductivity for both the BCS and Eliashberg theories. Migdal (1958)
showed that the dominant contribution to the electronic self-energy due to
phonons comes from the lowest order Feynman diagram (Figure 2.4) where the

wavy line is the phonon propagator and the solid line is the electron propagator.
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P .

- -~

Figure 2.4 Lowest order contribution the electronic self-energy from the electron-
phonon interaction. The wavy line is the phonon propagator and the solid line is the
electron propagator.

This is due to the fact that the ions in a crystal are much more massive than the
electrons and hence the response of the ions to the electrons is very small and this
leads to an electron-phonon interaction that is of the order of (m/M) - where m is
the clectron mass and M is the ion mass. This ratio is small and hence in higher
orders of perturbation the contribution is smaller and smaller and hence the lowest
order term is dominant. In systems where the dimension is less than three it is
possible that Migdal's theorem breaks down (Kostur and Mitrovic, 1993; Hirsch
and Fradkin, 1982: Allen and Mitrovic. 1982) and hence it is not reasonable to
retain only the lowest order contribution. There is no corresponding theorem to
Migdal’s for electron-spin fluctuation interactions. however it will be assumed that
there is a similar result and only the lowest order diagram will be calculated and
retained.

Within this approximation, the lowest order electronic self-energy due to

the interactions with spin-fluctuations is

Prk.k:Q) 20

Nty V2 +QF

m

7,G(K i, —iv, )T, £ 2,40

S (kiw,) = TZIdQ
ker o
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where [ is an interaction constant and N(4t)=(4mt)"" is the density of states at the

band edge.

2.2.2, The Coulomb Interaction

There is a Coulomb interaction between electrons. Due to the absence of
any small parameter it is not possible to deal with this interaction in a perturbative
manner satisfactorily. This Hamiltonian is given by

4me’
He = Z __’_'z_p:+k':0'k+k' 1241
™ (k -k )

where g is the Fourier transform of the electron density operator,

- ol .
oy = Z(q'|e f|q)‘{’:.r3‘Pq . 12,42
99’

The Coulomb interaction is repulsive and thus inhibits the formation of the
superconducting state. As long as it does not overcome the attractive electron-
boson interaction then the superconducting state will form and the Coulomb
interaction is less important. This is due to the formation of a condensate of
Cooper pairs and thus the electrons in a pair do not come in close contact with one

another. Within the Hartree-Fock approximation the contribution to the electronic

self-energy in the superconducting state can be written

Sekin,)=-TY pp(@ )@ 0,6 (K iv, )T, :2.43

'n’
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where 8(x) is the Heaviside step function

1 x20
8(x) = , :2.44
(x) {O x<0

G is the Green’s function with the diagonal terms set equal to zero and 4* is a
parameter representing the Coulomb interaction. * is called the Coulomb (or
Morel-Anderson) pseudopotential. In the constant density of states
approximation, ignoring any anisotropy,

#AEr) 1 2.45
EF
l+4uc(EF)ln'_#_
[43]

[

u¥lw,)=

where 1.(Ey) is an average Coulomb repulsion for electrons at the Fermi surface
and @ is a cutoff frequency typically of the order of the maximum boson
frequency. It is then possible to fit the parameter z.(Ep) to experiment by

tunneling (Galkin er a/., 1974; McMillan and Rowell. 1969).

2.2.3. The Impurity Scattering Interaction

Electron Scattering from impurities can also be included. Here only
scattering from nonmagnetic (normal) impurities will be considered. The

Hamiltonian in Nambu notation is

Hy =n > (k'V, K0T, P, :2.46
™
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where 7} is the interaction strength and 7, is the concentration of impurities. The
electronic self-energy will be calculated in the T-matrix expansion (Hirschfeld et
al., 1986 and 1988). The self-energy for the single impurity site approximation is

given by

3, (kio,) =nT(k ko) :2.47

where 7(k,k ".iw,) is the T-matrix which obeys the equation

Tk, kiw,) =V, (k kD, + 3V, (k k") 7,6k ", iw,)T(K" k" iw,)  :248
L
where ¥, (k,k’) = (k'|lV/,|k). The T-matrix expansion is shown diagrammatically

in Figure 2.5.

X X X

. .
———

Figure 2.5 Feynman diagrams for the T-matrix expansion. Here the dashed line
is the interaction with the impurity.

By taking Vifk k') to be constant, ¥; =Vyk,k'), then the T-matrix is independent of

momentum, hence

Tiw,)=V,t, +V, 7,3 G(k,iw,)(iw,) £ 2,49
k

or



26 ‘ 2 Theory

(%o - V,%ﬁ(m,,))f‘(m,,) —V,7, :2.50
where
é(iw,,) = Zé(k,iwn) X 1251
k

Solving for the T-matrix then gives

VI
[1 - 'Vlgll(ia)u )][l + V} G-zz(ia)u )] + sz GZI(iwn )612 (ia)n )

(1+V,(722(ia)") —V,G,(iw,) J
x — —
—V[Gll(jwu) —1+V,G”(ia)")

T(iw,) =

where (—},J (iw,) denotes the /jth element of G (iw,). By symmetry of the Green's

function (eq:2.36):

-iQiw )7, + Diiw,)T,

Tiw,)= :2.53
(o,) V7 +Qliw,)+ D iw,)
where
Niw,}= oy (i@,) 2.54
VK a oo, dilie,)
Diw,) =3 ——— ¢}‘ (w,) - . 2.55
& roylio,)+ (o, )
and where the renormalized Matsubara frequencies have been introduced,
o, (iw,)=0,llio,) . :2.56

The term proportional to 7, has been absorbed into y and hence absorbed into the

chemical potential. The electronic self-energy due to scattering from impurities is

-iQiw )T, + Diw,)T,
Vi +Ql(iw, )+ D (iw,)

1 2.57

Z(lw,)=n,
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Impurity scattering in the Born approximation can be found by taking the limit of
weak scattering (V,—0) in 2.57. The electron self-energy m the Born

approximation is

S8 (jgy,) = ¥ H(=iUiw, )T, + Diiw,)T,) - :2.58

For unitary scattering one takes the opposite limit of the strongest possible

scattering ( //—»<0) thus giving
i(lum‘mryj(iw") = ”’ _IQ(ZIQ)")T“ + ‘?(Iwn)rl 2.59
Qiw, )+ D ((w,)
2,2.4, The Eliashberg Equations
Summarizing each contribution to the electron self-energy (eq’s: 2.40,
2.43,2.57):
2 kiw,) =T Ag(@, - 0,)5,0K i), ; 2.60
—
ic(k,iw” = _T Z#;k' (wc)g(a)r—lwn'l)%JGDd(kfsiwn' )%} :2.61
Kk'n'
£,(w,)=n, ~ii, )7, ¥ o, )7, : 2.62

Q' iw,)+ D (iw,)
thus giving the total seif-energy,

Sk iw,) =L, (kio,)+E(kio,)+E, (K io,) : 2,63
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where

T 2Q7% y(k,k"; Q)

A R :2.64
v2 +QF :

e (V) T N@n

o

With G’(k,ia)”) given by 2.36 and by comparing eq’s 2.60, 2.61, 2.62, 2.63 with
2.34 then expressions for Z and ¢ can be extracted by examining the coefficients of

7, and 7, respectively:

o Q(CU")
o, (@)=, + T%Aw(a)" —w0,)Q,.(w,)+n 0 (w,) D' (@)
1 2.65
¢k(wu) = —‘TZ[AM"((U" "(U",)+IU‘(CU‘,)9((0‘.—¥(1Jmi)]Dk-(w“r)
K'n'
D(a)") : 2.66
+11, = 5 7
I +Q (Cun)-!-D (wn)
where
O (w,)=— ka(wn) - : 2.67
gl-i +w;&((0n)+¢k(a}n)
Dk((uu) = 4 -—1¢k(w”) - :2.68
g, +oy(w,)+ P (w,)
Qw,) =2 .Y (@,) 1 2.69
k
Dw,y=Y.D(w,) . :2.70
k

The eq’s 2.65 and 2.66 are the Eliashberg equations for a superconductor
stabilized by anti-ferromagnetic spin fluctuations. They are a pair of coupled

integral equations describing the superconducting state which is characterized by
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Z(k,iw,) the renormaliztion and the superconducting gap Ak, iw,)=

Z(k, i) ¢(Kk,ia,). In deriving these equations the usual approximation of a
constant density of states has been avoided and thus the effect of different band
structures along with the details of the band structure can be examined and thus
the van Hove singularity in the density of states can be accounted for fully. Also
note that these equations are valid for arbitrary momentum dependence of the

electronic interactions and thus this effect can also be studied.

2.2.5. The Padé Approximation

Equations 2.65 and 2.66 are the Eliashberg equations defined on the
imaginary frequency axis. The two quantities Z(k,iw,) and ¢(k iw,) are real
functions defined at the points i@, For thermodynamic properties it is sufficient to

have knowledge of Z(k,iw,) and ¢(k,iw,) defined on the imaginary axis, thus
solution of 2.65 and 2.66 determines the thermodynamic properties. Some
properties, such as transport properties require knowledge of Z(k,iaw,) and
#(k.iw,) defined on the real frequency axis. This can be accomplished by
analytically continuing Z(k,iw,) and ¢(k ie,) to the real axis by taking fw, —w+i0’
after the Matsubara frequency summations have been performed. This is

guaranteed to be the correct continuation by the Baym-Mermin Theorem(1961).
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Then one obtains a pair of coupled integral equations for the now complex
functions Z(k, «) and ¢(k, ). These equations involve principal part integrations
and hence are much more difficult to solve than the imaginary axis equations. It is
possible to perform the principal part integration analytically (Marsiglio et al.,
1988) but one is still left with more complex equations than the imaginary axis
equations. One still needs to know the solution of the imaginary axis equations.
Another possibility of acquiring the solutions of Z(k.ia,) and ¢rk.iw,) on
the real frequency axis is by means of Padé approximants (Vidberg and Serene.
1977: Leavens and Richie, 1985; Blashke and Blocksdorf, 1982). The Padé
approximation continues a function known on a discrete set of points to one
known on a continuous set. The algorithm for the approximation is as follows.
Given a function with values x; at N complex points z; (i=1,...,N), define the

continued fraction

a,

C,(2)= a==7) :2.71
1+ —
1+ BEZ5)

1

where the coeflicients a; are determined such that

Co(z))=u, i=1...,.N . :2.72

Then the coefficients are given by the recursion relation
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al=gf(:t)s gl(:f)=ulv i=13"'9N ’
=gp—1(:p—1)_gp-l(:)

g (2) , p=2
° :_:p—l)gp—l(:)
This gives
Ay (2}
C,(z)=—"—
v (2) 5.)

where 4x(z) and By(z) are given by the recursion relations

Alrﬂ (:) = Au(:) +(: - :n )anAn-l(:)
Bn+l('-) = Bn(:) +(: - ::r )aan-l(:)
A, =0, A =a,, B,=B =1

This gives an N-point Padé approximation to the function . The Padé

1 2.73

: 2.74

approximation technique is most reliable when the frequency and temperature are

small, i.e. in the region w<<(2,, and 7<<T, where (2., is the maximum boson

frequency. In this region there is excellent agreement between the Padé

approximation to the imaginary axis solutions and numerical solutions of the real

axis Eliashberg equations. The advantage is that the Padé approximation
combined with the solution of the imaginary axis Eliashberg equations is much

faster than a direct solution of the real axis Eliashterg equations. The

disadvantage is that this is an approximation and the effect of this will be discussed

later.
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2.2.6. The T, Equations

The critical temperature 7., can be found from the Eliashberz equations.
Since in the normal state ¢=0 and below T, ¢=0. then just below 7. one linearizes

the Eliashberg equations to first order in ¢. This gives

N Y Q, (@, ) L =7
- & 7 —w . Aw ., +n 1 s 4
{Uk((l)") w, E u‘(w" (0") l.( ")Tr IV’-—z +Qz(wn)lr
¢k((u,|)= —TZ[AM'((U,J —(u”-)"i"u.((l)l. )g(wc—{(uml)]Dk‘(w“' )|?;
k'n'
D(w" )I T 12,77
+ny, — TR
V! +Q (w")l‘r
where
0, (w,)
Q,(@,)], = 2T — 27
v, £y + 0y (@,)
Dk(wn)1T = ¢k(w") 7

£, + @ (@,)

and similar definitions to 2-69 and 2-79 for {2 w,) l T, and Diw,) | T, All
temperatures are at 7=7,. Once T, has been calcuiated, Z and ¢ can be calculated
(and hence the Green's function) for any temperature below 7. The
superconducting state is then. in principle, completely characterized. The catch is
that the equations all must be soived numerically except for the very simplest of

CaSCs.
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W
w

A solution of the Eliashberg equations always exists. It is a solution with

¢(k,iw,) =0 and thus describes the normal state. With ¢=0 the equation describing

the normal state is
4 ! QN(w )
oy (w,)=0,+TY Ay (0, -0, )% (0,)+n u :2.80
13 n é kk n n) k( n JVI_I +QN.(C()")
where
Y (@,) .

Q¥ (w,) =2 (w,)=2 -
x x & +w, (w,)

Thus the normal state is described by this single integral equation, where the

superscript NV signifies that the quantity is calculated in the normal state.

2.3. The d-wave Eliashberg Equations

2.3.1. The Boson Spectrum

If one knows the form of the boson spectrum FykK';£2), and hence Auw,
T. can be calculated from a completely microscopic basis. For the electron-phonon
interaction it is possible to calculate the phonon spectrum (called of F(k,k'; €2 for

the case of phonons) from first principles (Grimvall, 1981). Excellent agrecment
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between the calculation and the experimentally determined phonon spectrum is
obtained (Carbotte, 1990). A more fruitful method of obtaining the phonon
spectrum is by so called tunneling inversion (McMillan and Rowell, 1965 and
1969). This involves choosing an initial guess for o F(k k' ;€D and p*u, then
solving the real axis Eliashbery equations at zero temperature and calculating the
superconducting density of states. This is then compared to the density of states
obtained by tunneling experiments and then a second guess of  F(k.k':£D and
1%y, is found and the density of states is recalculated from scratch. This is
continued until the choice of & F(k.k':¢2 and u*u lead to a density of states
which matches with the experimentally found density of states. This method gives
both the phonon spectrum and the Coulomb pseudopotential, and then all the other
properties for a specific material can be calculated.

As of yet for the electron-spin fluctuation interaction there is no
satisfactory method to calculate the spin fluctuation spectrum P xkk':2). Millis,
Monien and Pines (1990) have developed a phenomenological model for
" y(k,k':£2) based on NMR data. Solution of the superconducting state in the
weak coupling limit leads directly to a gap with d..,° symmetry (Monthoux et al.,
1992). Here d,*,~ symmetry signifies a superconducting state with spin singlet
pairing (as in BCS theory) and a symmetry such that the gap changes sign as one

travels along the Fermi surface. For example Monthoux et al. (1992) find a gap of

the form
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A(k) = Au(cosk, - cosk_v) . 12.82
The key feature of this gap is that it goes to zero along the lines £,=2%,. Thus the
gap goes to zero at four points on the Fermi surface which leads to excitations of
infinitesimally small energy as opposed to a gap which is positive everywhere and
thus there is a gap in the excitation spectrum in all directions in k-space. This
leads to a power law temperature dependence of properties which depend on the
quasi-particle energy as opposed to exponentially activated behavior as in BCS
theory at low temperatures. Examples include the electronic specific heat which
goes as e*” for BCS superconductors and as T for superconductors in which the
gap goes to zero at points on the Fermi surface (Schachinger and Carbotte, 1991),
and a power law temperature dependence is also seen for the London penetration
depth (Prohammer and Carbotte, 1991). These d-wave calculations have been
done for a constant density of states and a spherical Fermi surface in relevance to

the heavy fermion superconductors.

2.3.2. The d.2,? Symmetry Expansion

The interest in the present work is not in the microscopic basis of the

electron-spin fluctuation interaction but in the consequences of a gap with d.=.,,°
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symmetry within this 2-dimensional model. For simplicity a separable model
(Clem, 1966) in momentum and frequency is taken for Fykk';$2 ie.

Ik k5Q) = IP (K K)BQ) 1283
Now the momentum dependence comes in via the separate function zakk’). To
examine the momentum dependence yok.k') is expanded as

ro(k,k") = 7, (1- gn(k)m(k")) :2.84
where all the momentum dependence is in the functions (k) which have 42,2
symmetry, g is a parameter representing the strength of the d-wave
superconductivity (g=0 is no d-wave superconductivity and g=/ is pure d-wave
superconductivity, no s-wave contribution). A complete represcntation of a gap
with d2.,» symmetry relevant to the high 7, oxides has been enumerated by Wengsr
and Ostlund (1993) using group theoretical techniques. The result for two

dimensions is

=

[
gl

A, =

. a (cc\sk_,rl cosk,r, — COSK.r, coskyrl) :2.85

nn

1

=

r: £
where a, ., are arbitrary constants. Thus in general for n(k) choose:
@ n-l

k)= >a,, (cosk,rl cosk,r, — cosk,r, cosk}vr,) :2.86

Rl =i

with the coefficients chosen such that k) is normalized to unity. Equation 2.86

can be rewritten as



2.3.3 The d-wave Eliashberg Equations: d,2,,2 Sjrmmetry 37
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Figure 2.6  The zeros (dark solid lines) in the first Brillouin zone of the first few terms in

the d,7,? expansion for the superconducting gap. Solution of (a) 17,4(k)=0; (b) 1726(k)=03(¢)
730(k)=05(d) 1724(k)=0.

w gl

mk) =2, 24,1, (k)

n=ln= : 2,87

17 (K) = cos pk_ cosqk  — cosqk, cospk,
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It is interesting to examine the first few terms of 2.87 to determine where in the
Briliouin zone they go to zero, and how and where they cross the Fermi surface.

This information will give the temperature dependence in the observed properties:

1,0(k) = cosk, —cosk, :2.88

17,,(K) = cos2k, —cos2k,

= 2(cosk_‘ +cosk, )(cosk, - cosk_,) e
n,,(k) = cos2k, cosk —cosk, cos2k, :2.90
n,(k) =cos3k, - cos3k, :2.91
1,,(k) = cos3k, cosk  —cosk, cos3k, :2.92
17, (k) = cos3k, cos2k, - cos2k, cos3k, +2.93
17.,(k) = cosdk, —cosdk, :2.94

and so on. 1;, is the usual term taken for a gap with d.°.,7 symmetry in the
literature. It has zeros along &, =%, as shown in Figure 2.6. Comparing this with
the Fermi surfaces in Figare 2.1 it can be seen that the gap goes to zero at poiats
on the Fermi surface for any values of g and B. 772 has zeros as shown in Figure
2.6. The point here is that for the special case of B=0 and x=0 the gap is zero
everywhere on the Fermi surface and goes to zero at points for any other values of
uand B. Shown in Figure 2.6 are the zeros of 77;0 and again as with 7710 the gap
poes to zero at points on the Fermi surface however it goes to zero at more points.

Shown in Figure 2.6 are the zeros of 77:;. Here the gap will go to zero only at
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points on the Fermi surface with the exception that it is everywhere on the Fermi
surface when the lines of zero coincide with Fermi surface for a particular u and B.
This type of behavior continues for each term in the expausion 2.87; i.e. 7, has
zeros at points on the Fermi surface when p is an odd integer and has zeros also at
points on the Fermi surface when p is an even integer with the bossibility of being
zero everywhere on the Fermi surface for a particular choice of the chemical
potential and next nearest neighbor hopping strength. In both cases the number of

points where the zeros of 77,, cross the Fermi surface increases as p increases.

2.3.3. The d.2,2 Eliashberg Equations

Once the expansion for the spin fluctuation spectrum has been made as in
2.84, it can be substituted into the Eliashberg equations 2.65 and 2.66, hence

obtaining the Eliashberg equations appropriate for a d-wave superconductor:

- Qw,)
= -w . < :2.95
oy(w,)=o, +T;A(a)" w, ) (w,. )+, Qe r Do)
@ (w,)=-gT> Mo,-0,)Q(w,), j>0 :2.96
¢0(a)n) = —TZ[i(a)n -wn')+.’u*(a)c)e(wc_|a)n'l)]Dn(w"')
" :2.97

Dy(w,)
+H' = 3 7
Vl +Qﬂ(wn)+D0(a)n)
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¢, (0,)=gTy Mw,-w,)D)(@,), >0 . :2.98

Here the functions have been expanded in terms of 7(k} as

@ (w,)= 2,8 ,(w,)n,k)
4

12,99
P(w,)= Z¢J(wn)r,-j(k)
J
and u*y has been taken to be isotropic (=x*),
0, (@ k
Qw,)=>— a_J.k( D7, ,)
Tentaiw,)+ (@,
:2.100
W k
Di{w,)=2 = {k:( LA 2)
=& to(w,)+o (@)
and with
Mva) = Idgw : 2,101
0 v, +Q

where the constant /° 7o has been absorbed into @) and n(k)=/ and (k) for
j>0 are the terms in 2-87. The usual model takes only the j=/ term, with

n,(k) =cosk, —cosk, . :2.102

Then by symmetry the equations 2.95 to 2.98 reduce to

Qﬂ(wl‘l)

3 > :2.103
V3 +Qli(w,)+ Dj{w,)

E)ﬂ((un) = (:)Jl + Tz /1((0" - (Uu' )Qﬂ(wn‘ ) +nl

p(w,)=gT> Ho,-0,)D(w,) :2.104

with
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E)k(mn)= (:'30

:2.105
$v(@,) = d(w,)r(k)
The equations for critical temperature now become:
5,(,) LY@, -0,)0@,) @),
w(w,)=0,_ +I1, W, —a, @, ), +1 — s
’ g p ’ e !V12+Qﬁ(“’~)z+D‘3(wn)n
:2.106
¢1(CU") = chZ’l(wn —ﬂ)"- )Dl(mn)|7; 12,107
where
o {w,)n, k)
Qf(a)rl)’ =z :( "")ZIJ(
N e ro(w,)
:2.108

¢ (@,)n,(k)
Dj(w,,)|r =Z+—:—j"—
‘ k gk + wk (Cl) n )
with all temperature taken at 7=7..
These equations will be the ones used throughout this work. At times
another term will be taken from 2.87 but only one term at a time will be taken
(i.e.; the coefficient of cos2k.-cos2k, will be taken to be nonzero and all other

coefficients will be zero). The effect of different terms from 2.87 will be seen in

the next chapter on the London penetration depth.
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2.4. SolutionsforT,

The solution of the Eliashberg equations requires that a choice be made for
the kernel or equivalently @(¢2 from 2.83. Also a choice of the other parameters
t B,y from the electron dispersion; g the ratio of d-wave to s-wave
superconductivity; 1, }; the impurity concentration and the impurity scattering
strength. Once these parameters have been fixed then the equations for 7. are
solved numerically by iteration for the critical temperature. The equations 2.103
and 2.104 for the superconducting state are then solved numerically by iteration
for Z and ¢ at temperatures below 7. The normal state is always given by 2.80 (a
single equation to be solved by iteration) for any temperature.

The results of the calculation for 7, as a function of u are shown in Figure
2.7. The choice of parameters are t=/00 meV, B=0, g=1, n;=0 and @(L)=Ao((>
wg), an Einstein spectrum with Einstein frequency wg=/00 me) and the amplitude
A chosen such that 7.(u=0)~/27 K. It can be seen that 7, has a maximum value at
=0 with a sharp decrease as |4| increases. Also note that the curve is symmetric
around =0 as this is due to particle-hole symmetry in this model. If one includes
next nearest neighbor hopping then 7. is also reduced from the case when there is
no next nearest neighbor hopping. This is shown in Figure 2.7 where the
parameters haven't changed except for the chemical potential has been fixed at 25

mel” and now 7,.>/ 15 K. A sharp drop-off in 7. from B=0 is observed as B is
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increased; For B=0.16 T has been reduced to 80% of its maximum and for
B=0.45 T has been reduced to 30% of its maximum. Hence the maximum value
of the critical temperature occurs at half-filling (z=0)with no next nearest neighbor
hopping and the value of 7. is very sensitive to changes in both the chemical
potential and the strength of next nearest neighbor hopping.

T. has also been calculated as a function of impurity scattering. The results
are shown in Figure 2.8 for r=/00mel", u=25 mel’. B=0. g=1 and P(Y=A5(52
wg), with wy=100 me} and the amplitude 4 chosen such that 7.(n=0)=115 K

(Arberg and Carbotte, 1995). T, has been plotted against the impurity term from

2.106

Qﬂ(wn )]T
ny — . < :2.109
V2 +Ql,),

For Bomn scattering ( ;—7) this becomes

l-mam,(wn)=”fV12-Qn(wn)|T : 2,110
and for unitary scattering (}7—0),

{wmitarv) l N
e y=n ———> . : 2111

Qﬂ(wn )|7;

For the case of constant density of states and an infinite band, these expressions

reduce to the more familiar terms (Prohammer and Carbotte, 1991),
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8™ = ZN(0)n, V] sen(@,)
n :2.112
r'(vm'wfv) - 7 S @,
Ty en(w, )

which have a simple dependence on w, (namely through the sign of w,). Forthe

case here. due to the more complicated density of states containing a vaz Hove
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Figure 2.7 The dependence of T. on band structure. The parameters are
=100 meV, B=0 and y varied for (a) and =25 meV and B varied for (b), g=/, n/=0
and Q(D=AN 2 wy), with @,=100 meV and the amplitude A chosen such that
T(1=0)~127 K in (a) and T.(B=0)~I15 K in (b). Figure (a) shows the dependence on
the chemical potential and (b) shows the dependence on the strength of next nearest
neighbor hopping. The bandwidth is 8t=800 meV.
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singularity, the dependence on w, of the scattering strength is much more
complicated. Hence for a measure of the scattering strength, 2.109 will be
evaluated only at the first Matsubara frequency, #=0 and this is the quantity T;c is
plotted against in Figure 2.8. This decrease of 7, as a function of impurity strength
is in direct contrast to the case of conventional (s-wave) superconductors.
Conventional superconductors for the isotropic case have no dependence of 7. on
normal impurity scattering, but scattering from magnetic impurities does reduce T
(Abrikosov and Gorkov, 1960 and 1961). Here in d-wave superconductivity 7. is
reduced by scattering from normal impurities and thus normal impurities act as

Cooper pair breakers as do magnetic impurities in conventional superconductivity.

The main difference between the conventional constant density of states
approximation and the work here is that now there is a difference with scattering in
the Born approximation and the unitary limit. This can be seen by wrting 2.112

which is the constant density of states limit as

%™ = rsgn(w, )
R :2.113

reme = ¢ sgn(w,)

With this approximation there is a single parameter (7 (7’) for Bomn (unitary )
scattering (compare with 2.112) but basically one measurable parameter - the
scattering time due to impurities) describing the impurity scattering strength and
hence the two types of scattering cannot be distinguished. However in the present

work the scattering terms in the two fimits are given by 2.110 and 2.111. There is
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now a non-trivial difference in these two terms that cannot be ignored: The Bomn
scattering term has

a {fw,) in the numerator while the unitary scattering term has it in the
denominator. Hence these two limits of impurity scattering strength are indeed

different.

0.9
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Figure 1.8 The change in the critical temperature as the scattering strength
from impurities is increased in both the Born and unitary limits. The parameters are
=100 meV, 1=25 meV, B=0, g=1 and & Q=AH > wy), with wg=100 meV and the
amplitude A chosen such that T.(n=0)=115 K, and rn; varied to reduce the critical
temperature. The solid curve is for Born scattering and T, is plotted against

nV¢ Qy(w,) evaluated at T, as in 2.110. The dotted curve is for unitary scattering and
T. is plotted against ny/{2(w,) evaluated at T, as in 2.111. This shows that for d-
wave superconductivity, normal impurities act as pair breakers whereas in
conventionai superconductors they have no effect. One can say that they are
analogous to magnetic impurities in conventional superconductors.
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2.5. Summary

In summary, the strong-coupling theory of superconductivity and the tight-

binding Hubbard model in 2-dimensions has been discussed. Eliashberg equations

for a 2-dimensional superconductor with d=.,2 symmetry with representations
derived via group theory have been derived. Within this model, the van Hove
singularity in the electronic density of states has been accounted for fully by
performing integrations in k-space over the entire Brillouin zone and not assuming
any model for the electronic density of states. This is evidenced in the strong
dependence of 7, on the chemical potential and the next nearest neighbor hopping
strength. It is also seen that for d-wave superconductors that pair-breaking can
occur when normal {(nonmagnetic) impurities are included. The next chapters use
the solutions of the Eliashberg equations to calculate some physical properties of

2-dimensional d-wave superconductors.



3. Magnetic Penetration Depth

The London penetration depth can now be calculated within the model
developed in chapter 2. This involves calculating the solution of the Eliashberg
equations and then calculating the current-current response function. In
conventional superconductors where the gap A. is positive everywhere on the
Fermi surface, there are no excitations with energy less than 4. This leads to
exponentially activated behavior in properties which depend on the population of
excited states such as the London penetration depth (which is related to the

number of condensed electrons in the superconducting state),
A(T) ~ (1 _e-m)"” for T<<T,, usually written as ((0)/A(7))" ~1-€ " and

this is proportional to the number of electrons in the superconducting state.

However if the gap goes to zero at points on the Fermi surface there are
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excitations at infinitesimal energies, thus the population of excited states is
proportional to the temperature and a power law temperature dependence is seen
in the London penetration depth, (/1(0)/ A( 7"))2 ~ 1= T . This linear dependence in
the penetration depth is exactly the behavior seen experimentally for 7<7. in the
High-T. superconductors (Hardy ez al.. 1993). A power law dependence has also
been identified in the penetration depth of the heavy fermion superconductors
(Einzel et al., 1986; Gross ¢t al., 1988) and calculated for a d-wave
superconductor with cubic symrmetry ,constant density of states and infinite
bandwidth (Prohammer and Carbotte, 1991). Now a general expression for the

London penetration depth will be derived.

3.1. The Current-Current Correlation Function

To calculate the penetration depth one needs to know the current-current
correlation function K,,.{q, @ where uv run over the spatial indices. Following
Nam (1967a, 1967b), the current operator in the presence of a vector potential

Alfqw is

! v
J(qw)=-—K (qw)d'(q,0) . :3.1
4
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K. is the sum of the paramagnetic response and the diamagnetic response,

K, (9,0)= K (q,0)+ K
where the diamagnetic part K, is proportional to the density of electrons and

thus is a constant independent of whether or not the system is superconducting.

Since in the normal state there is no induced current by a static field,

K (a0 =K (q0)+KD =0

uv v

or

K =-Ki2" (q.0)

uv

Then in the superconducting state

1 s * .
J(aw) = -={K (@.0)- K (@04 (a.0)
P
where the superscripts S(N) refer to the quantity taken in the superconducting

(normal) state. The current-current correlation function is given by

K,.(a,7) = 42{T,(j%"(a,7)/"(a,0)))

where j™(q, 7} is the paramagnetic current operator given by

SN = —eD W7 (k+ )W,
k

where

- - CE
Py =1, 2

1"

is the bare vertex function. Then one can write

: 3.2

133

134

1 3.7

:3.8
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K" q,iv,)=42"T Y. tr{;?”(k +%q)(§'(k +1iq,iw, +fV")f‘.(k - fQ)G(k +%q?imn)}
Kiw,

1 3.9
where this expression is shown graphically in Figure 3.1.
K =
Figure 3.1 Feynman diagram for the current-current correfation function where the

solid dot represents the bare vertex 7.

I:v(k) is the dressed vertex function shown graphically in Figure 3.2.

D D

Figure 3.2 Expansion of the full vertex function with phonon and impurity
interactions.

The electron-phonon interaction vertex corrections have the effect of
renormalizing the electron-phonon interaction o' to a transport electron-phonon
interaction, ¢’,,F. This does not change the essential physics of the current-current

correlation function, hence the electron-phonon vertex will be ignored. As for the
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impurity corrections, they are too complicated to inciude fully in a self~consistent
manner. However it is sufficient for most purpeses to ignore them as the
important physics is contained within the lowest order term, the bare vertex
(Rickayzen, 1980: For example if one includes the so called ladder diagrams, this
has the effect renormalizing the electron scattering rate from impurities. Hence

one can use an effective scattering rate and drop these diagrams). Fora first

approximation then take F(k)=7(k), then

K (q,iv,)=4m’ Ty wl7, (k +1a)G(k +1q.iw, +iv,)
e :3.10

<7 (k- +q)G(k +3'q,icu,,)}

The London penetration depth is given by (Nam, 1967b)

27 1
i (N=2ldgme—m——m— :3.11
e P (D)

where the temperature dependence has been shown explicitly. Hence

A (T)=K.x(00) . :3.12

v

Since the current-current response finction contains the two terms from the

paramagnetic and diamagnetic respense, 3.12 becomes by using 3.15

2,.(1)=[K5.(00)- K, (0,0)]"L3 , . 3.13

s

Hence the general expression for the London penetration depth is (Arberg ef al.,

1993a, 1993b)
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kio, " v

ATy = {47192Tz[%%(’r{és(k,fwn)és(k’i“’n)}_ (6" (i, )G (k’m")})}} “

where G5 (k,iw ) is given by

G (k,iw,) = -ia“(?")i"fgk%] +f“(w")%' :3.14
S; +wi(wn)+¢k(0)n)
and
L N - ~
G" (k.iw,)= _twk,(wn}z(:} +E, 7, 315
& o, (0,)
Hence
-1
- /2
. 2+ 2 _---‘_' 6‘2—-’\'“(0
3, (1) = {3 Ty Bn Fu | L HAL(0)"Bu(,) 64 7@, (@),
ia, K, K, (si+wi(a)")+¢k(w")) (£i+&3:’ (wn))
1 3.16

where the superscript M refers to the quantity to be calculated in the normal state

as according to 2.80. With g, given by 2.7, then

e _ 21(1 - ZBcosk_‘_)sin k,
X :3.17
(229 2¢(1-2Bcosk )s'mk
C‘kl x Y
From symmetry, then
AulT) = 2, (D)= AT)
:3.18

A (Ty=A,(T)=0

The equation 3.16 is a completely general expression for the London penetration

depth and thus any band structure and symmetry of the electron-boson interaction
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can be substituted along with any boson spectrum required to solve the Eliashberg
equations for the renormalization function and the gap.

One can calculate the penetration depth from a knowledge of the
renormalization function and the gap which are obtained from the solution of the
Eliashberg equations. Now results will be shown for the penetration depth and its

dependence on temperature, impurity scattering and band structure will be seen. It

is also calculated with different d..,~ symmetry functions from the expansion 2.37.

3.2. Strong Coupling Effects

One can calculate the penetration depth from a knowledge of the
renormalization function and the gap which are obtained by solution of the
Eliashberg equations. Results will be shown for the penetration depth and its
dependence on temperature, impurity scattering, coupling strength and band
structure through the chemical potential 4, and the next nearest neighbor hopping
strength B. The nearest neighbor hopping strength 1, and the ratio of d-wave to s-
wave superconductivity g, do not change the qualitative behavior of any quantity,
they do however change the magnitude of various properties (such as the critical
temperature) and hence will be considered as fixed parameters throughout. Unless

stated otherwise the hopping integral will be taken as r=100 me}” and the d-wave
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strength will be taken to be g=/ (a pure d-wave superconductor). The penetration

depth kas also been calculated with different d2.,2 symmetry functions from the

expansion in 2.87.
The penetration depth is calculated for different coupling strengths. Until

the section where different terms of the d2,.> symmetry expansion are examined
the interaction is taken to have the standard momentum dependence of only the

first term,

Mo (K} =cosk, —cosk, :3.19

and hence the gap has the form

A, (@)= Alw)7,,(k)
:3.20
= A(a))(cosk_, - cosk_,)

where 4(w) is independent of momentum. The parameters used are (=700 meV,

u=25meV, B=0, g=1, n;=0, and a Einstein spectrum for the boson interaction.

T e 2447
0.1 3.68
0.2 6.79
0.3 14.7
0.4 46.8

Table 3-1 4, is the gap edge defined by 4, =Red(4y.
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DY =AS(2>wg) with wz=100 meV and the values of 4 chosen such that
T/wg=0.1, 0.2, 0.3, 0.4. The ratio of the gap to the critical temperature are shown
in Table 3-1, and the results for the temperature dependence of the penetration
depth for the different coupling strengths are shown in Figure 3.3.

The low temperature dependence of A(T) is seen to be linear in temperature as
expected for a d-wave superconductor. For all coupling but the strongest shown,
A7(T) is also linear near the critical temperature. Also note that as the coupling

strength is increased. the slope of 4°(7) reaches 2 maximum and then decreases

again. This same behavior of the slope increasing and then decreasing as the
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Figure 3.3 Effect of coupling strengths on the penetration depth. The solid line is for

T/we=0.1; the dashed line is for T/w,=02; the dotted line is for 7/weg=0.3; and the dash-dash-
dotted line is for T /we=0.4.
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coupling strength is increased is also seen in electron-phonon theory for
conventional superconductors (Carbotte, 19%0).

Comparing the curves in Figure 3.3 with the experiment of Hardy e al.
(1993) it is seen that weaker coupling strengths (7/wg<0.3) give a more adequate
agreement between theory and experiment, and strong coupling (7/wx=0.4) is in
complete disagreement with experiment. Examining the weakest coupling curve
(T/we=0.1), the agreement between theory and experiment is best at low
temperatures ( 7<%7.) where the slope of A7(7) is near -/ while at higher
temperature (72>/T.) the theory underestimates the slope by about a factor of two.
Therefore a reasonable set of parameters has t=/00 meV, u=25 meV, B=0, g=1,
=0, &Y =A5(wg) with wg=100 mel and the values of 4 chosen such that
T/wg=0.1 or T,~115 K. The discrepancy at high temperatures (near 7.) between
the experimental results and the results here could be due to the fact that near the
critical temperature one must include fluctuations off the mean field (Inderhees et
al., 1988, 1991; Annet and Goldenfeld, 1992; Liang et al., 1992; Loram et al.,

1992; Ghiron et ., 1993; Ernst et al., 1993).
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3.3. Band Structure Effects

The effect of band structure can also be examined within this medel. This
is possible since the usual approximations of an infinite band and constant density
of states has not been made, hence the details of the band structure including any
van Hove singularities can be studied. First how variations in the chemical

potential affects the temperature dependence of the penetration depth will be seen.
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Figure 3.4 Effect of band structure on the penetration depth. The solid line is for
=25 meV (1=0.125 in units of 21); the dashed line is for 1=0 meV (u={ in units of 21); and
the dotted line is for 4=110 meV (1=0.55 in units of 21).

The calculation has been done with no next nearest neighbor hopping (5=0), no
impurity scattering (#,=0) and @€ =452 wg) with wg=100 me " and A chosen

such that T.(=0)=/27 K. Recall that the dependence of the critical temperature
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on the chemical potential is shown in Figure 2.7 and now in Figure 3.4 the
temperature dependence of A(T) for three different chemical potentials (=0, 25,
110 meV or w/2t=0, 0.125, 0.55) are shown.

The linear temperature dependence is quite apparent over the entire
temperature range with A2(7) o«c - 7. This behavior is not influenced greatly as
the chemical potential changes. This is in contrast to the large dependence of 7.
on u (Figure 2.7) where small changes in the chemical potential can affect great
changes in 7, and eventually destroying the superconducting state. The
dependence of the magnitude or zero temperature penetration depth on . is shown
in Figure 3.5. As can be seen, A(0) exhibits a small dependence on chemical
potential (~5% over the range of chemical potentials for which it is calculated:
4=0,...,110 meV). However when the chemical potential becomes large enough
such that 7,=0, then the penetration depth becomes infinite (as the material is no

longer superconducting) and this behavior is seen in Figure 3.5 as the sharp

increase as T, decreases.
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AT=0 p2)/ AT~ =)
L2 4

101 §
1.00 O
0.0 0.2 ng 0.6 0.8 1.0
T Telu =0
Figure 3.5 Effect of varying the chemical potential on the magnitude of the

penetration depth. The zero temperature penetration depth is plotted against the change
in the critical temperature as a function of the chemical potential for the solid line, and
the open circles is the zero temperature penetration depth for the three physical values of
next nearest neighbor hopping (B=0.0.16,0.45).

The dependence of A(7) on B, the next nearest neighbor hopping strength
is shown in Figure 3.6. The parameters have been kept the same with the
exception that 4 has been fixed at 25 meV, and the amplitude of the delta function
boson spectrum has been chosen such that 7.(B=0}~235 K (This last change is for
computational sumplicity due to the length of time required to run the computer
programs at lower temperatures), and B=0, 0.16, 0.45, 1.0. The B=0 curveis
with no next nearest neighbor hopping; B=0./6 is believed to be the next nearest
neighbor hopping strength in the La-Sr-Cu-O compounds; B=0.45 is believed to

be the relevant hopping strength in the Y-Ba-Cu-O compounds; and 5=1.0is
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unphysical but is included to push the limits on the effect of next nearest neighbor
hopping. Within this set of values for B, A”(T) remains linear in temperature but
the slope is increased over the entire temperature range. However for a reasonable
choice of next nearest neighbor hopping (B<0.45), the penetration depth does not
exhibit large deviations from the simplest case of no next nearest neighbor
hopping. The effect of next nearest neighbor hopping on the magnitude of the
zero temperature penetration depth is also small (~2% for reasonable values of B)

as seen in Figure 3.5 whereas the value of 7, has decreased substantially over this

Band Structure Effects

range of values (see Figure 2.7).
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3.4. Impurity Scattering Effects

Deviations from linearity in temperature of the penetration depth can be
caused by introducing impurity scattering. This effect can be seen in experiments
on the high 7. superconductors where small concentrations of Zn and Ni which act
as impurities are introduced into the pure samples and thus can change the
temperature dependence of the penetration depth to quadratic in temperature(Lee
etal., 1993). First the case of scattering in the Bom approximation is considered.
This is weak scattering (}7—0) and then the appropriate impurity term to be
included in the Eliashberg equations is given by 2.110. The results for the
temperature dependence of the penetration depth are shown in Figure 3.7 fer the
standard set of parameters now with the relevant parameter for Born scattering
nV”; varied from ;=0 (pure case), 0.6, 0.64, 0.75 with }; fixed at 50 mel’".

A more lucid measure of the impurity scattering is the ratio 7./ T°. where
7. is the critical temperature with no irapurity scattering and 7. is the critical
temperature for a given scattering strength. Then as the amount of impurity
scattering increases the ratio 7./7”. decreases uatil it reaches zero for a sufficient
amount of impurity scattering and the superconducting state is destroyed. As can
be seen from Figure 2.8 and Figure 3.7 Bom scattering can have a large effect on
the critical temperature but a much small: - effect on (A(0)/A(T))°. Thisis

evidenced by the fact that a drop in 7. to almost half of 7°. (1’}/7*J .=0.52) produces
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almost no change in (A(0)/A(T))" and hence remains linear at low enough
temperatures. Only at very high concentrations of Bom scattering centres does
(AOV/AT))° begin to show a T° dependence at low temperatures. For I near Tc
the temperature dependence remains linear with an almost constant slope. The
dependence of A{7=0) as a function of Bom scattering strength (or reduction of 7,
from the pure value) is shown in Figure 3.8 as the solid line. As impurity
concentration increases (7./7’. decreases) A(T=0) increases and will approach

infinity when the superconducting state is destroyed by the impurity scattering,
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Figure 3.7 Effect of impurity scattering in the Born limit on the penetration depth.
The solid curve is for T./7°.=0.90; the dashed curve is for T/T°.=0.52; and the dotted curve
is for T/T°.=0.40. Here 7°. is the critical temperature in the absence of any impurity
scattering and T is the critical temperature in the presence of impurity scattering. Hence
the ratio T./7°, is a measure of the amount of impurity scattering: i.e. As the amount of
impurity scattering increases, the critical temperature is reduced and hence the ratio
TJI"c decreases.
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Figare 3.3 The effect of impurity scattering on the magnitude of the penetration
depth. The zero temperature penetration depth is plotted against the reduction from one
of the ratio 7./7°, due to impurity scattering both in the Born limit (solid line) and the
unitary limit (dotted line).

The inclusion of strong scattering or resonant scattering in the unitary limit
(V,—>c0) has a much larger effect on the penetration depth. The appropriate
scattering term to be included in the Eliashberg equations is given by 2.111. The
penetration depth for the usual set of parameters with 7,=0, 0.005, 0.13. 0.03 is
shown on Figure 3.9. Now a 4% reduction in 7, from the clean limit gives a low
temperature behavior of T° in (A(0)/A(T))". As the impurity concentration
increases the 7° dependence occurs over an increasing temperature range until a
linear dependence can no longer be identified (T/T°) for any range of temperature.
Shown as the dotted curve in Figure 3.8 is the dependence of A(7=0) as a function
of impurity concentration in the unitary limit. This shows qualitatively the same

behavior as the effect of scattering in the Born limit but A(7=0) has a sharper
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increase due to the larger strength of impurity scattering in the unitary limit over

the Born limit.

These results can be compared with experimental results (Lee ef al.. 1993).
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Figure 3.9 The effect of scattering in the unitary limit on the penetration depth. The

solid line is for T./7°.=1.0; the dotted line is for T/T°.=0.96; the dashed line is for
7.7°.=0.90; and the dash-dash-dotted line is for T./7°.=0.75. Here T is the critical
temp.rature calculated in the presence of impurity scattering in the unitary limit.

The square of the ratio of the penetration depth at zero temperature and no
impurity scattering to the finite temperatuxe and finite impurity scattering,
(A(T=0,n=9)/A(T,n))" as a function of temperature is shown in Figure 3.10 for
=0, 0.01, 11.02 (or T/T°.=1.0, 0.92, 0.84). Lee et al. have performed
experiments on thin films of YBa,Cu;07.; with §=0 (their sample A or B) with
T/T°.~0.92 (where T’ is the critical temperature of single crystal YBa;Cu30.5)

and oxygen depleted (5>0 and chosen such that 7./ 7°.=0.85), their sample A'.
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The penetration depth for the films are both quadratic in temperature where the
pure (single crystal) penetration depth is linear at low temperatures. This can be
compared directly with Figure 3.10 where the quadratic behavior is seen for small
concentrations of impurity scattering. Additionally the value for
(A(T=0,1=0)/(T,n=0.01))" is =0.66 from the theory here and ~(.64 from the
experiment. (A(T=0.1=0)/A(T1=0. 02))° is ~0.50 from the theory and =0.32 from
the experiment. Hence the theory and experiment are in excellent qualitative
agreement and very good quantitative agreement (Arberg and Carbotte, 1995). It
should be noted that changing the oxygen content of the sample changes the
chemical potential and thus the dotted line should be calculated with a modified
chemical potential. However it was seen earlier that A(7=0) does not have a
strong dependence on the chemical potential (Figure 3.4) and thus over the range
of critical temperatures considered by Lee ef al., the dependence of A(7=0) on u
can be ignored within this model since for small changes in critical temperature due
to changes in u implies that i changes very little (Figure 2.7). The experiments of
Ulm ef al. (1993a, 1993b) performing Al, Ni and Zn substitutions for Cu in Y-Ba-
Cu-O shows that A(7T=0) for different impurity concentrations are always larger
(up to a factor of two) than the theoretical results presented here, however the

qualitative behavior is in agreement between the experiments and the theory.
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Effect of impurity scattering in the uniiary limit on the magnitude and
temperature dependence of the penetration depth. The solid kne is for T/T’ =1.0 (or
=0 the dotted line is for T./T°.=0.92 (or n,=0.01); and the dashed line is for
T/T’.=0.84 (or n=0.02). This graph is compared directly with experimental results of
Lee ef al., 1993 and their samples A(or B) with T/7°.=0.92; sample A’ with T/T°.=0.92;
and a single crystal of YBa,Cu;0, with T/T°.=1.0. See the text for a full comparison.

The behavior of the penetration depth as cne goes from weak to strong

scattering is shown in Figure 3.11. Here the impurity concentration has been

67

adjusted such that 7./7°. remains fixed at 0 90 while the scattering potential /7, has

been varied from ¢ (Born approximation) to o (unitary scattering). The

temperature dependence of (A(0)/A(T))° begins linear for small values of #; and

then quickly becomes a 7° dependence as ¥ is increased. Thus the behavior ()

that characterizes scattering in the unitary limit (/;—<0) is reached for rather

modest scattering strengths. The 7° dependence at low temperatures is readily

seen in Figure 3.11 for ¥;=500 me} while linear behavior can still be seen for
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V;=200 meV. Hence if the scattering is anything but very weak, it will make itself

readily apparent in the temperature dependence of the penetration depth.
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Figure 3.11 Effect of the strength of impurity scattering ... the penetration depth and
the crossover from strong to weak scattering. In each curve the ratio T/T’. has been fixed
at 0.9 and the strength of the scattering potential V}, has been varied. The top solid curve
has V;—a meV (unitary scattering limit); the highest dotted curve has Vy=1000.0 mel; the
dashed curve has V/=667.7 meV: the dash-dash-dotted curve has V;=509.¢ meV" the dash-
dotted curve has V,=333.3 meV,; the lower solid curve has ¥;=250.0 me}’; and the lower
dotted curve has Vi=200.0 meV.

3.5. Interaction Symmetry Effects

The dependence of the penetration depth on the band structure and

impurity scattering in both weak apd strong limits and intermediate values has been
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calculated. All of this has been done for a gap with momentum dependence cosk,-
cosk,. This is only one term (177;5(k)) in the expansion of a gap with d.2,°
symmetry, In principal one may take N terms of the series however then N pairs of
Eliashberg equations must be solved simultaneously, and hence quickly becomes
prohibitively long to solve as & increases. This is the general case but one can take
individual terms of the expansion which are still equally good functions to use for a
d¢., symmetry. This is exactly the procedure used to obtain results for the singie
cosk.-cosk, function. The effect of each term can be seen without mixing this term
with the other terms of the expansion. The Eliashberg equations will now be

solved and the penetration depth calculated for some different 2,2 symmetry

functions.

The general expansion of a gap with d,2,,> symmetry is fiom equation 2.85

Ak, w)=4(w) ntk) where

o A=l

nk)=> > a1, (k) :3.21
ri=l r,=0
where
Nma(K) = cOsmk_cosnk, - cosnk, cosmk, . :3.22

As 150(k) has been explored, consider the next term

Vye(k) = cos2k, - cos2k, :3.23

and expand york,k’) as in 2.84 with 7720(k) in the place of 77;0(k). This then leads

to a gap of the form
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Ak,w) = Aol (k) . :3.24
This gap has zeros along the lines shown in Figure 2.6. The gap goes to zero at
points on the Fermi surface (as with a gap with 77,o(k) momentum dependence) but
also has zeros everywhere on the Fermi surface at half-filling {+=0) with no next
nearest neighbor hopping (B=0). Also note that not only does the gap go to zero
at these points, so also does the interaction y,(k,k’) and this is actually the origin
of the zeros in the gap function. The penetration depth is shown in Figure 3.12 for
different chemical potentials. The parameters used are t=/00 meV’, B=0, g=1,
m=0, DY=A5({2wy) with w;=100 me} and A chosen such that 7.=/67 K for
4=100 meV and u is varied throughout the values 35, 40, 30, 60, 75, 100 me V.
Far away from half-filling, 1#/2r=0.5, corresponding to the top solid curve in Figure
3.12, the penetration depth is linear iz temperature and not too different from the
Mo(k) calculations with no impurity scattering. This is just as expected since the
gap goes to zero at points on the Fermi surface as shown in Figure 3.13. As p4=0
is approached the gap still goes to zero at points on the Fermi surface, but the
magnitude of the gap on the Fermi surface is decreasing as the Fermi surface is
becoming closer to the haif-filling case. where the gap is identically zero
everywhere on the Fermi surface. Since the magnitude of the gap is now smaller at
the Fermi surface and hence the gap in the excitation spectrum, it becomes easier
to excite electrons out of the superconducting state. This effect is seen in the

penetration depth since it can be shown (Fetter and Walcka, 1971) that
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(A0)/AT)" is proportional to the number of electrons in the superconducting
state. This is evidenced by the fact that (A(0)/A(T))° shows a more rapid decrease
near 7=0 as ;—0. However it was not possible to solve the Eliashberg equat‘ions
and hence compute the penetration depth at #=0 for this model with a reasonable

amount of computer time.
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Figure 3.12 Temperature dependent penetration depth for different chemical
potentiais with the 7;,(k) function. The top solid line is =108 meV’; the dashed line is £=75
meV the dotted line is =60 meV; the dot-dashed line is =50 meV; the dot-dot-dashed line
is 4=40 meV; and the lower solid line is 4=35 meV, or w2t=0.5, 0.375, 0.3, 0.25, 0.2, 0.175
respectively.

A range of d;>.,* symmetry functions has been examined. The penetration
depth is shown in Figure 3.14 for the d.*,,* symmetry functions 77:¢(k) (shown for

comparison), 1730(k}, 7ok, 77s0(k), 70(k}, 1sa(k). All even(odd) harmonics
(where even(odd) will refer to the function 7.,(k) where m is an even{odd)

integer) have lines of zeros crossing the Fermi surface at points. However the
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Figure 3.13 Zeros of 1750(k) (heavy solid lines) in the first Brillouin zone and the Fermi
surfaces (lighter solid lines) for the six chemical potentials: (/2t=0.5, 0.375, 0.3, 0.25, 0.2,
0.175 from the outside line to the inside line. As the magnitude of the chemical potential
decreases the Fermi surfaces approach the line of zeros of 72,(k). As the Fermi surface
approaches the zeros, the magnitude of the gap is also decreasing and hence it becomes
easier to excite quasiparticles out of the condensate and hence the decrease in the number
of electrons in the superconducting state.

even harmonics also have zeros along the Fermi surface when #=0 and B=0 just as
in the case for the zeros of 77:p(k). This is effect is seen in the penetration depth as
near half-filling (here y=25 mel” = t/4 = 8t/32, where 8t is the band width and
hence very closer to half-filling) for the even harmonics the magnitude of the gap is
small on the Fermi surface which leads to a small gap in the excitation spectrum
and hence (A(0)/A(T})” decreases more quickly from 7=0, while remaining linear

since the gap still goes to zero at points on the Fermi surface.
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There is however a competing effect. As the order of the harmonic
increases (i.e. m increases in 7a,(k)) the number of points at which the gap goes to
zero on the Fermi surface also increases and so does the slope of the gap increase
at these points. Hence the gap becomes larger more quickly away from the Fermi
surface and hence it becomes more difficult to excite the quasiparticles and the
slope of (A(0)/A(T))’ is driven back towards -/. This is seen in Figure 3.14 as the
penetration depth for 750(k) is closer to linear than the 7.0(k) case (and 720(k)
from Figure 3.12).

A similar effect of the competition between the number of points at which
the gap goes to zero on the Fermi surface and the increase in the slope of the gap
where it crosses the Fermi surface is also seen in the odd harmorics. The odd
harmonics have zeros on the Fermi surface only at points for all values of 4 and B,
and hence the slope of (A(0)/A(T))" will remain linear in temperature for all of the
odd harmonics. This is seen in Figure 3.14 that (A(0)/A(T))" is linear with slope -/
for 1710(k) but decreases in slope for 77,0(k/ and then increases in slope approaching
-1 for 7so(k), n770(k). noofk). The behavior of the penetration depth with the odd
harmonics should be relatively stable to small changes in z and B since the gap will
always and only have zeros at points on the Fermi surface. This can be seen for
the case of 7;(k) in Figure 3.4 where the penetration depth is shown for different

values of chemical potential and in Figure 3.6 for different values of next nearest
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neighbor hopping. In both figures the change in the penetration depth is noticeable
but the effects are small and the qualitative behavior has not changed.
The effect of band structure on the penetration depth for the higher order

odd harmonics are shown in Figure 3.15 and Figure 3.16. Also shown is a second
term from the d.>,> symmetry expansion,

115, (K) = cos5k, cos2k, —cos2k, cos3k, . :3.25
Adding next nearest neighbor hopping has changed the slope of (A0)/AT))’.

While remaining linear at both high and low temperatures the curve has shifted

closer to complete linearity over the entire temperatur range as B is increased.
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Figure 3.14 The penetration depth for different 4,2,7 symmetry functions 77.(k). The
solid curve is for 77;5(k); the top dashed curve is for 7750(k); the top dotted curve is for
s0(k)s ti- dot-dashed curve is for 77-(k); the dot-dot-dashed curve is for 7s0(k); the lower
dotted curve is for 77,,(k); and the lower dashed curve is for 75,(k). Note that all the even
harmonics fall below the 7,4(k) line while all the odd harmonics are above the 7,0(k) curve.
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For the mixed term 7752(k), the low temperature behavior of (A(0)/A(T))" has
curved in the opposite direction compared with the 775p(k) case. The effect of band
structure on an even harmonic is shown in Figure 3.16. Changing the next nearest
neighbor hopping from B=0 to B=0.45 has the effect of moving the Fermi surface
(Figure 2.1) away from the zeros of the gap ( and areas where the gap is small),
such that the gap now goes to zero only at points on the Fermi surface. This is
seen in (A(O)/E(T)): as it is almost linear over the entire temperature range. Also

shovwn in Figure 3.16 is the penetration depth for the mixed term
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Figure 3.15 Penetration depth with the 75(k) harmenic with next nearest neighbor

hopping. The solid curve has B=0; the dashed curve has B=0.45; and the dotted curve is
for ns;(%) with B=0.
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176, (K) = cos6k, cosk, —cosk, cos6k, . :3.26

This curve has the same shape as the 77s0(k) case but is much mors curved. Itis

seen that band structure has a much larger effect on (A(0)/2(T))? with the higher

harmonics than with the lowest order one, 7;0(k).
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Figure 3.16 Penetration depth with the 7,,(k) harmonic with next nearest neighbor

hopping. The solid curve has B=0; the dashed curve has B=0.45; the dotted curve has
B=1.0; and the dotted curve is for 77,;(k) with B=0.
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3.6. Summary

In conclusion, the penetration depth for a d.2,» symmetry gap has been
calculated and A7(7) is found to be linear in temperature and can be modeled

satisfactorily by only the lowest order term 7,4(k) = cosk_ —cosk, of the entire

expansion in &, functions, 7,.(k). With an electron-boson interaction having
this momentum dependence, the penetration depth both the temperature
dependence and the magnitude are stable to changes in the band structure {within
the limits that the superconducting state is well developed) but the effects are
noticeable, with more drastic differences occurring in the higher order harmonic
expansions. This is in contrast to conventional superconductors where the details
of the band structure have no effect on the penetration depth. However the even
order terms do not at all represent the experimentally measured penetration depth
(Hardy ef al., 1993,. The odd order harmonics (with no mixed terms, i.e., only

1cluding terms of the form 77.o(k) where m is an odd integer) do represent the
experimental results well with the best agreement coming at lower temperat’: -
(7<T.). Still the qualitative behavior of the penetration depth is described well by
the lowest order harmonic 77,0(k/, hence the addition of other terms can be, for the
moment. regarded as fine tuning to the model.

The inclusion of impurity scattering has a large effect on the penetration

depth both in the temperature dependence and the magnitude. Born scaitering has
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the smaller effect as the scattering has to reduce the critical temperature by half of
the pure value in order to have noticeable deviations in A*(T) from linear to
quadratic in temperatures near 7=0. However, when scattering in the unitary limit
(V,—00) is considered significant deviations in the low temperature penetration
depth are already observed for a 4% reduction in the critical temperature. This
change in the penetration depth is seen long before the actual limit of V;—
reached, hence even for small amounts of impurity scattering the temperature
dependence of 2°(7) will be noticeably different from linear behavior of the pure
behavior. That is to say that Bem scattering (/;—0) is a special case not likely to
make itself readily apparent. As discussed earlier the theoretical results agree quite

well with the experimentally measured quantities.

The described model of a 2-dimensional d2,,> symmetry superconductor

with a gap of the form

A(k.iw) = Alw)n (k)
:3.27
= A(a))(cosk, - cosk',,)

exhibits the same qualitative behavior for the penetration depth as seen in the high-
T, superconductors. Moreover, in the model studied here it is found that details of
the momentum dependence of the electron-boson interaction can be seen in the
penetration depth along with the details of the electronic band structure including
the van Hove singularity in the density of states and the effect of impurity

scattering in the range of the weakest possible scattering to the strongest possible
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scattering. The main features which are indicative of a d,2,,~ symmetry in the gap is
that at low temperatures A~(7} is linear in temperature for the pure case and has a

quadratic temperature dependence when impurity scattering is present.



4. Optical Conductivity

The optical conductivity within this 2-dimensional 4.2~ symmetry
superconductor model will now be calculated. The optical conductivity at zero
temperature in conventional superconductors has a delta function peak at zero
frequency (this is the zero dc resistance of a superconductor) and then as
frequency increases there is no optical conductivity (or optical absorption) until the
frequency reaches a value of 24,, where 4, is the superconducting gap (Schrieffer,
1963). Then there is a rise to a local maximum and then a drop-off as the
frequency is further increased. At high enough frequencies the optical conductivity
in the superconducting state will asymptotically approach the optical conductivity
of the normal state. This gap of width 24, in the optical conductivity spectrum is

due to the gap 4, in the electronic excitation spectrum. Tk gap in the optical
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spectrum is 24, since an electron-hole pair must be created in order for the photon
to be absorbed, hence there is one 4, energy required for the electron and one for
the hole.

This gap in the optical absorption spectrum is not the behavior when
excitations with energies less than A, are possible. Then the optical absorption will
begin at a frequency which scales with the minimum positive value of the gap.
Thus for a d-wave superconductor in which the gap goes to zero on the Fermi
surface the optical conductivity will be finite for all frequencies since excitations of
infinitely small energies are possible. Within this scenario it is not possible to pin
down the value of the gap as one half of the energy at which the optical absorption
begins. This type of behavior is observed in the high T, superconductors (Sumner
etal., 1993: Kim et al., 1993a, 1993b, 1993¢c; Basov et al. 1994, 1995; Zhang et
al. 1994).

Once again as with any property of a strong coupling superconductor the
Eliashberg equations must be solved. The optical conductivity also requires
knowledge of the current-current correlation function which was introduced in the
last chapter on the London penetration depth. However for the case of the optical
conductivity one requires knowledge of the current-current correlation function on
the real frequency axis. Recall that the penetration depth only needed the current-
current correlation function at zero frequency, and hence a direct substitution of

Z(k,iw,) and @(k,iew,) obtained from the Eliashberg equations could be performed.
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For the optical conductivity this is not the case. Thus there are two options to
obtain the optical conductivity. The first is to soive the Eliashberg equations on
the real axis for the complex functions Z(k,a) and ¢(k,w), hence obtaining the
Green’s function on the real frequency axis and thus computing the current-current
correlation function. For the case of isotropic superconductors the solution of the
Eliashberg equations on the real axis for'mZ(a)) and ¢(w) can be accomplished with a
reasonable amount of computer time. However this is not possible for
superconductors with more complicated symmetries. Another possibility is to
solve the Eliashberg equations on the imaginary axis and then to calculate the
current-current correlation function on the imaginary axis. Once the current-
current correlation function is known on the imaginary frequency axis it can be
analytically continued to the real frequency axis by the Padé approximation
(Bickers, et al., 1990). This method does have the disadvantage of failing at high
temperatures and/or high frequencies but at low temperatures and frequencies it
has the advantage that results can be obtained quicker than a real axis solution.
These results do give excellent agreement with the rea! axis solutions (see Nicol ez
al., 1991 for a comparison). The real axis solution in principle can give results at
any temperature and frequency however in all but the sirplest symmetries the
solution will take an extraordinary amount of computer time (Jiang, 1992). Due to

the complicated symmetry of the superconducting state and van Hove singularity

in the 2-dimensional d..,> symmetry model considered here it is the second
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technique of analytically continuing the current-current correlation function which

will be followed.

4.1. The Optical Conductivity

The optical conductivity is the response of a material to an external
electromagnetic field just as the magnetic penetration depth seen in the previous
chapter. The difference is that the penetration depth is the response to a static
electromagnetic field and the optical conductivity is the response to a time varying
electromagnetic field. An expression for the optical conductivity will now be
derived.

From eq.’s 3.2 and 3.4 the total response function is
v K u Y- ke .
K;:v(q?lvm) - K'uf (qﬂlvm) K,uv (q!o) 4.1
where K, (q,iv,,) is given by eq. 3.10. Again since the Green’s function is

peaked about the Fermi surface and the fact that the momentum of optical photons

is much less than the Fermi momentum one takes q—+), thus giving

K,liv,) = KPGv,) - K2 0) 42

Hv Hy

and
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K®uiv,) =37 tr{}?ﬂ(k)é(k,iwn +iv ) (k)G io, )}
Wi,
2 58]( agk gi "51‘(&)")5“(&)" +vm)+¢k(a)n)¢k(wu +Vm)
= 872 TZ 7 . ~ 2 2 ~2 2
K, ac,u xk, [Eu +wk(wn)+¢k(wn)lgk +wk(wn +Vm)+¢k(a)n + Vm)]
4.3

where all references to q—0 have been dropped. The conductivity is given by

(Nam, 1967a)

o (w):—i-K

ar yy— WiV, 2> +i0") : 4.4
where @ is the frequency and o,,./@/ is the optical conductivity, and
K,ofiv,—w+i0") is the analytic continuation of X,.{iv,) from here on written
simply as K,.{w).

This is the point at which ore chooses to calculate K,,(c) directly from Z
and ¢ found by solution of the real axis Eliashberg equations or to calculate
K, {iv) and analytically continue this function to the real axis by Padé
approximation. The latter is the method used here,

Since K,,{w) is a complex function o,{@) is also complex and can be

written as

I i
o wY=—-——ImK ) Re K o R + 4.5
,u\'( ) 4” -[JV( )+ 4” e }JV( )

From 4.2 and the fact that £‘?" (0) is a real function:

My

0 (@)= -7 mK P (@) + T Re KD (@)= K2 (O] - 146

From 4.3 and 3.18 and by symmetry then
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0 (@) =0 () = o(w)
1 4.7
o (w)=0,(0)=0

The expression 4.6 for the optical conductivity along with 4.3 is a completely -
general expression that can be applied to calculate the conductivity for any band
structure and any symmetry of the electron-boson interaction and any boson
spectrum used in the solution of the Eliashberg equations for Z and ¢. It can also
be used to calculate the optical conductivity in the normal state and in the
superconducting state. depending on whether or not one substitutes Z and ¢ from
solution of the Eliashberg equations or takes ¢=0 and calculates Z in the normal
state.

If one chooses to calculate ofw) on the real axis directly, rather than to
calculate it on the imaginary axis and obtain the conductivity by a Padé
approximation, the spectral representation of the Green’s function must be used.
The solutions to the Eliashberg equations on the real axis Z(k, ) and ¢k, w),
which are both complex functions, are also needed. The Green’s function is then
known on the real axis and one can perform the Matsubara frequency summation

in 4.3 by using the spectral representation:

: 4.8

Here ;I(k,icu") is the spectral function defined by

fi(k,w)=—%hnc’;(k,a)+:‘o*) ) :4.9
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Then by using the identity (Fetter and Walecka, 1971)

%Ziw l_a =f"(a) .:4.10

where a is real number and f ~(x) is the Fermi function given by

:4.11

S =

The Matsubara frequency summation in 4.3 can be performed. This gives

K" (iv,,) = 8re’ a2 ié r)rr{~i(k x)[ H(k,x+iv )+G(k t—wm)]}
k I
14.12
This expression can be analytically continued directly giving
K'P(w+i0") =8 2 axf " (x
el =8 3=k [ ()
ke T : 4.13
xtr{za(k,x) x [G(k,x +@ +i0+) +G(k,x -w- iO")]}
and hence giving the optical conductivity immediately
o (@)= [KL{” ©+i0") - K" (0)] . . 4.14

As can be seen, the gain of this method (namely that 4.13 is valid at any
temperature and frequency) is overshadowed by other complications in all but the
simplest cases. Comparing 4.13 with 4.3, the summation over Matsubara
frequencies has been replaced by an integral over a continuous variabie and the
integrand is now a complex function where in 4.3 it is a real function. One now

requires the solution of the real axis Eliashberg equations as opposed to the
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simpler solution of the imaginary axis equations. The advantage of 4.13 over 4.3
is that when the momentum dependence of the integrand is simple or non-existent
then the summation over k can be performed. A single integration can be
evaluated to give the conductivity without the added complication of a Padé
approximation at any stage. Hence, in this work, due to the complicated k
dependence of both the band structure and the superconducting gap function, the
response function will be calculated according to 4.3 and the optical conductivity
will be obtained by a Padé approximation (applied to K" (iv,) to give K”'(«w) and
hence the optical conductivity ofw)) as described in section 2.2.5.

Results for the optical conductivity will now be shown. Throughout this
chapter the boson spectrum used is a truncated Lorentzian centred at w, with

width /5 and truncation width /. given by

1 1
A - , |Q-w,|<T,
D(2) = ((Q—a)o)z-i-rj I'f+FjJ |

0, Q-w,|>T,

: 4,15

where wp=50 meV, I'y=5 meV, I'. =15 meV and is shown in Figure 4.1.

The parameters for the calculation are r=/00 meV, B=0, g=1, and @)
from Figure 4.1 but with 4 chosen such that 7°.~100 K when =0 and »=0 and
7°.290 K when ;=25 meV and n/=0. The c-axis lattice parameter is taken to be

107 cm. The 1,0(k) symmetry function has been used throughout since this is the

simplest @2, symmetry function which incorporates all of the important features
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of th= model. it also gave the best results in regards to the penetration depth and
hence will give the most consistent results between the conductivity and the

penetration depth.
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Figure 4.1  The boson spectrum as in 4.15 with A=1, w,~50 meV, =5 meV, [.=15
meV,

The solution of the Eliashberg equations 2.95 to 2.98 give Z(k,iw,) and
#(k.iw,), where ¢ is related to the gap function A by ¢=ZA. These are directly
substituted into 4.3 to calculate the response function on the imaginary axis which
is then analytically continued to the real axis by the Padé approximation. Some
general notes on the results of the Padé approximation will now be discussed.
First since an N-point Padé approximation is given by a continued fraction (see

equation 2.71) it is not always the case that choosing a larger N gives better
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results. The Padé :pproximation should give the best results for frequencies
w<<wvy=2NnT, the maximum boson frequency. Typically in the work here N~80,
T~0.7 meV and hence the region where the Padé approximation should give the
best results is w<<350 meV.

The optical conductivity in the normal state is found to be stable (i.e.. the
shape and the magnitude does not change) over the entire frequency range
considered to different Padé approximants. The optical conductivity in the
superconducting state is stable for ail frequencies with the exception of the low
frequencies where changes in the magnituce are evident with different Padé
approximants. Hence the optical conductivity in the superconducting state will be
cutoff for frequencies less than 0.5 meV. This does not present a problem since
this is a study of the optical conductivity and this region cannot be probed by far
infrared experiments (Basov, 1995).

Also it was not possible to obtain results for the conductivity with no
impurity scattering. This is due to the fact that with no impurity scattering to
conserve momentum, then only phonons are left to conserve momentum. In the
case here the minimum phonon energy is 35 me/ and the greatest number of
phorons are centred around 50 me) (see 4.15) and hence the photon energy will

have to exceed this value in order to be absorbed.
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Now results for different scaitering strengths and concentrations and
chemical potential will be shown. All calculations have been done at a temperature

7/T.=0.1 as the Padé approximation is best at low temperatures.

4.2. Impurity Scattering Effects - Born Srattering

The optical conductivity is shown first with the inclusion of impurity
scattering in the Born approximation. The real part of the conductivity for three
different scattering strengths (7.°"™/7.=0.90, 0.80, 0.54) is shown in Figure 4.2
for 4=0. First concentrating on the normal state conductivity (Figure 4.2a) it is
seen to be Drude like at low fiequencies due to the electronic part of the system.

For example a fit to a Drude conductivity,

Tq

—_— : 4.16
l+w'r

Reo . . (w)=
where 0y=23.47x710'" 57 is the dc conductivity and r=/.08x/0" 5 is the scattering
time, is shown as a dot-dashed line for comparison with the solid line
(T."%™/T°=0.90) in Figure 4.2. The fit is excellent at low frequencies and less so
at higher frequencies. This is due to the phonon assisted absorption (Dolgov ef
al., 1990) at higher frequencies. Similar fits to the other two curves have been

performed and the results are summarized in Table 4-1. The low frequency
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behavior is that expected for a normal metal with the dc conductivity decreasing

and the width of the peak increasing as the impurity concentration is inrreased.

BT s (x10"57) (10" )
0.90 235.47 1.108
0.89 12.85 0.59
0.54 7.06 0.33

Table 4-1 Parameters for the Drude conductivity fits to the normal state conductivity
shown in Figure 4.2a.

The conductivity in the superconducting state (Figure 4.2b) has a much
narrower peak at w=0 than in the normal state. This peak broadens as the
impurity concentration is increased. There is no gap in the optical conductivity
spectrum for any frequency. This is in contrast to an isotropic s-wave
superconductor. For the boson spectrum under consideration (equation 4.15) a
conventional superconductor has a gap in the optical absorption of twice the
superconducting gap (Bickers e a/.. 1990). Here there is obvious no evidence of
superconductivity in the optical spectrum.  This is not to say that
superconductivity is not present since it is known before hand by the fact that the
superconducting gap finction is not zero everywhere in the Brillouin zone. It is to
say that superconductivity is not present in the conventional sense (i.e., a gap of

24, in the optical absorption spectrum).
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Figure 4.2  The real part of the conductivity ir the normal state (a) and the
superconducting state (b) for three different impurity concentrations in the Born
approximation and 4=0. The solid curve is T./7.’=0.90; the dashed curve is T/T. =0.79; the
dotted curve is T/T.°=0.54. The dot-dashed curve in (a) is A Drude conductivity fit to the
T/T=0.90 curve with parameters gp=23.47x1 0" s and 7=1.08x10" s,
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The phonon structure is seesn at higher frequencies and is shown t Figure
4.3 for the single case of T.%°™/T.°=0.90. There is an increase in the normal state
conductivity at w~awy=6.0T, due to phonon assisted absorption. This increase has
shifted in the superconducting state to a significantly higher frequency =/0.0T.. A
large shift such as this is seen for conventional superconductors and it is given by
twice the superconducting gap. Such a large shift in the onset of phonon assisted
absorption in a d-wave superconductor is not seen from a calculation of the
conductivity on the real axis (Carbotte er al., 1995) with a constant density of
states. However this large shift is stable to different Padé approxamants. Hence it
is unlikely to be an artifact of the analytic continuation. Also a large shifi is seen
for ail the impurity strengths, impurity concentrations and chemical potentials
studied. Thus it appears to be a feature of this model. Since this large shift is
always present it will only be shown for the single set of parameters here.

The ratio of the conductivity in the superconducting state to the normal
state is shown in Figure 4.4, The features associated with the phonon assisted
absorption are readily seen. There is a2 maximum at @~6.07. due to the onset of
phonon assisted absorption in the normal state. There is a minimum at w=/0.07.
due to the onset of phonon assisted absarption in the superconducting state. At
high enough energies the ratio will approach one. This is the only figure of the
ratio as the features seen in it do not change significantly between the parameter

sets.
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The imaginary part of the conductivity for three different impurity
concentrations is shown in Figure 4.6. The normal state (Figure 4.6a) is that
expected for a Fermi liquid, increasing linearly from zero at ®=0 and crossing over
to a @™’ behavior as w increases. The position of the peak scales as the inverse of
the scattering time and thus becomes broader as the impurity concentration is
increased. The superconducting curve (Figure 4.2b) is much more sharply peaked

and then approaches the normal state curve at higher frequencies. The imaginary

Heofnl
perott et

0.0 X0 4.0 6.0 1.0 10,0 12.0
a /T,
Figure 4.3  The real part of the conductivity in the normal state (solid line) and the
superconducting state (dotted line) for 7./T, %=0.90. The onset of phonon assisted

absorption accurs at w=wy=50 meV ~6.0T, in the normal state and at w=/0.0T, in the
superconducting state,

part of the conductivity will only be shown for the case here since it does not show

any significant different behavior for the other sets of parameters.
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The next figure shows the optical conductivity calculated with finite
chemical potential (z=25 mel’) and three different impurity concentrations in the
Bom approximation (7, (Borml /T 820,90, 0.77, 0.59). The real part of the
conductivity is shown in Figure 4.5a. Again the normal state conductivity is Drude
like with parameters given in Table 4-2, Comparing the dc conductivities with
those for 4=0 (Table 4-1) it is seen that they have increased by ~50%. This is due
to the increased number of carriers as one moves away from half-filling and the

fact that the dc conductivity is proportional to this number.
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Figure 4.4  The ratio of the real part of the conductivity in the superconducting state to
the normal state for 7./7.7=0.90. Note the maximum at =6.¢ and minimum at =/0.0 due
to the onset of phonon assisted absorption in the normal state and the superconducting
state respectively.
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T, o (x10" 5y T (xI0"7 5)
0.90 38.26 1.94
0.77 17.82 .90
0.59 10.70 0.54

Table 4-2  Parameters for the Drude conductivity fits to the normal state conductivity
shown in Figure 4.5a.

There is a sharp peak at =0 in the superconducting state (Figure 4.5b) as
in the case with 4=0. Also there is no evidence of the superconducting gap in the
optical spectrum.

Other than the increase of the dc conductivity over that of the ;=0 case
there is little difference between the optical conductivity with £=0 and that with
1=25 meV. The normal state conductivity is Drude like for low frequencies and
there is no evidence of superconductivity in the optical conductivity of the
superconducting state.

‘The main feature to be seen in the conductivity is that there is no presence
or indication of a gap in the optical spectrum. This is different from the case of a
conventional superconductor where the superconducting gap can be obtained

directly from the optical conductivity.
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Figure 4.5 The real part of the conductivity in the normal state (a) and the
superconducting state (b) for three different impurity concentrations in the Born
approximation and finite chemical potential (4=25 meV). The solid curve is 7./7.°=0.90;
the dashed curve is 7./T.°=0.77; the dotted curve is T/T."=0.59,



98

imofe)
(a0 5

mojm)
it s

20.0

15.0 +

16.0

14.0 ¢+

128 T

5.0

4.0 ¢

.0

1.0

1%.0

16.0

14.0

12.0

10.0

0+

4 The Optical Conductivity
9.0 1.0 20 o 5.0 bR 6.9 oo 1.0 9.0 10.0
w T,
(@)
0.0 1.4 2.0 LN} 4.0 5.0 6.0 "0 ok .0 10.0
/T,
)

Figure 4.6 The imaginary part of the conductivity in the normal state (a) and the
superconducting state (b) for th:~e different impurity concentrations in the Born
approximation and z=0. The solid curve is T/T, %=0, 90; the dashed curve is T/T, =0, 79;
the dotted curve is T/T.’=0.54.
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4.3. Impurity Scatiering Effects - Unitary Scattering

The optical conductivity is now calculated for three different impurity-
concentrations in the unitary limit. The real part of the conductivity is shown in Figure
4.7 for =0 and a temperature and impurity concentration such that 7./7.°=0.90, 0.79,
0.71. The normal state conductivity (Figure 4.7a) is Drude like at low frequencies with
parameters as shown in Table 4-3. Also the peak at zero frequency is increasing in
width and decreasing in magnitude as the impurity concentration is increased just as

expected for a normal metal.

T funtany) 7 0 oo (x10 57) r(xlg" )
0.90 63.82 3.56
0.78 29.21 1.69
071 20.82 1.22

Table 4-3  Parameters for the Drude conductivity fits to the normai state conductivity shown in
Figure 4.7a.

Note that for the same reduction in the critical temperature with unitary
scattering and for Born scattering (compare Figure 4.2, Figure 4.7 and Table 4.1 and
Table 4-3) that unitary scattering gives a less reduction of the dc conductivity and also
has a substantially larger scattering time. This behavior is precisely that seen in
experiments on Ni and Zn doped Y-Ba-Cu-O (Bonn, ef al., 1994). It is found that Ni

provides as much scattering as Zn but has a much smaller effect on the critical
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temperature. This is seen in both the penetration depth and the conductivity
experiments. This same behavior is seen for the model under consideration in this work
both in the conductivity presented here and in the penetration depth in the last chapter.
This difference between Ni and Zn impurities stems from the fact that in this theory
there is a non-trivial difference between Bom scattering and unitary scattering (see sec.
2.4). This difference is not seen in the constant density of stateu approximation but it is
seen here where no such approximation is made.

In the superconducting state (Figure 4.7b) the conductivity exhibits a shoulder

whose magnitude is independent of impurity concentration for low frequencies and then

a drop-off. This shoulder at low frequencies has been predicted for a d¢,* symmetry d-
wave seperconductor with impurity scattering in the unitary limit (see Hirschfeld et al.,
1994). This feature can be taken as evidence of superconductivity if the
superconductivity is accompanied by the presence of scattering centres in the unitary
limit.

The optical conductivity with unitary scattering and finite chemical potential is
now calculated. This is shown in Figure 4.8 for =25 me} and the impurity
concentrations such that 7/7.°=0.87, 0.82, 0.73. The real part of the conductivity is
shown in Figure 4.8a. The normal state again is Drude like with the parameters as
shown in Table 4-4. The superconducting state (Figure 4.8b) exhibits a shoulder at low

frequency characteristic of unitary scattering.
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Figure 4.7 The real part of the conductivity in the normal state (a} and the
superconducting state (b) for three different impurity concentrations in the unitary limit
and z=0. The solid curve is 7./T.°=0.90; the dashed curve is 7,/T."=0.79; the dotted
curve is T/T.’=0.71. Note the difference in the y-axis scales between the normal state,
(a) and the superconducting state, (b).

101



102 4 The Optical Conductivity

130 4

100 4

30

Reerlwl
f=t0'"s") 00

oo

A (1) N Ta L) 0 h D TN L) T ivo

(@)

Reerioni
IR [ A R ARl

(b)

Figure 4.8  The real part of the conductivity in the normal state (a) and the
superconducting state (b) for three different impurity concentrations in the unitary
limit and z=25 meV. The solid curve is T/7."=0.87; the dashed curve is T/T.=0.82;
the dotted curve is T/7.°=0.73. Note the difference in the y-axis scales between the
normal state, (a) and the superconducting state, (b).
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(A oo (x10" 5') r(x10"s)
0.87 39.14 20
0.82 29.28 1.5
0.73 19.42 1.0

Table 44 Parameters for the Drude conductivity fits to the normal state conductivity
shown in Figure 4.8a.

The behavior of the optical conductivity with unitary scattering and finite
chemical potential is not different from that with zero chemical potential. In both
cases unitary scattering has a less drastic effect on the dc conductivity than Bon
scattering and now the presence of superconductivity is seen in the optical

conductivity if there is also impurity scattering in the unitary limit present.

4.4. Impurity Scattering Effects - Arbitrary Strength

The behavior of the conductivity as going from weak to strong scattering is
shown in Figure 4.9. Here the impurity concentration has been adjusted such that
T./T.” remains fixed at 0.90 while the scattering potential ¥}, has been varied
through 0 (Bomn scattering - see Figure 4.2), 20.0 meV, 100 meV, 1000 meV, «
(unitary scattering - see Figure 4.7). The normal state conductivity is shown in

Figure 4.9a for the three values of V. It is Drude like with the parameters as
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shown in Table 4-5. From this table one can see the differences of scattering in the
Born limit to that of unitary scattering both on the dc conductivity and on the
scattering time. Note that unitary scattering has a less drastic effect on the d¢”
conductivity and the scattering time than Born scattering for the same reduction in
the critical temperature. Comparing the solid line of Figure 4.2 (Bom scattering,
V; —0) with the dotted line of Figure 4.9 (V; =20 me V), it is seen that these curves
are both similar in shape and magnitude and there are no features which are

peculiar to any of them.

Iy (mel) gn (x107 5 (<107 s
@ funitary limit) 63.82 3.56
1000.3 64.10 356
100.0 32.39 1.65
20.0 2322 1.08
0.0 (Born limit) 23.47 1.08

Table 4-5 Parameters for the Drude conductivity fits to the normal state conductivity
shown in Figure 4.9a. The values for the Born limit and the unitary limit are taken from
Table 4.1 and 4.3 respectively.

When ¥; =000 meV then the real part of the conductivity in the
superconducting state has developed the shoulder at low frequency. This is the
feature seen in the case of scattering in the unitary limit (see Figure 4.8b). Thus
scattering other than Bom scattering is very easy to identify in the optical

conductivity due to the appearance of a shoulder at low frequencies. This is
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Figure 4.9 The real part of the conductivity in the normal state (a) and the
superconducting state (b) for three different impurity scattering strengths and =0 and the
impurity concentration adjusted such that T/T.’=0.96. The solid curve is V,=1000 meV; the
dashed curve is V=100 meV; the dotted curve is /=20 meV. Note the difference in the y-
axis scales between the ncrmal state, (a) and the superconducting state, (b).
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consistent with the conclusion reached from the penetration depth where the
presence of strong scattering is very easily identified by a quadratic behavior in
((AO)/AT))’.

The optical conductivity with finite chemical potential (=25 meV’) for the
same intermediate scattering strengths as above is shown in Figure 4.10. This set
of diagrams can be analyzed in the identical way to the set with =0 (Figure 4.9).
The normal state conductivity is shown in Figure 4.10a for the three values of /.

It is Drude like with the parameters as shown in Table 4-5. From this table one

can see the differences of scattering in the Born limit to that of unitary scattering
both on the dec conductivity and on the scattering time. Comparing the solid line of
Figure 4.6 (Bomn scattering, }; —0) with the dotted line of Figure 4.10 (V; =20
mel), it is seen that these curves are both similar in shape and magnitude and there
are no features which are peculiar to any of them. Comparing this set with ©=25
mel” with the Born scattering case (Figure 4.6) and the unitary scattering case
(Figure 4.8) it is seen that the same conclusions as for the case when x=0 are

reached.
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Figure 4.10  The real part of the conductivity in the normal state (a) and the
superconducting state (b) for three different impurity scattering strengths and =25 meV
and the impurity concentration adjusted such that 7./T.’=0.90. The solid curve is V=1000
meV; the dashed curve is V=100 meV; the dotted curve is ¥/=20 meV. Note the difference
in the y-axis scales between the normal state, (a) and the superconducting state, (b).
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v (mel} o (x10" 5) T(x10"s)
w0 funitary limit) 39.14 2.00
1000.0 50.12 2.53
100.0 43.80 2.23
20.0 40.10 2.03
0.0 (Born limit) 38.26 1.94

Table 4-6 Parameters for the Drude conductivity fits to the normal state conductivity
shown in Figure 4.102, The values for the Born {imit and the unitary limit are taken from
Table 4.1 and 4.3 respectively. The unitary limit is at a higher impurity concentration

(T fe=iram ;7 °=0. 87) and thus giving a smaller dc conductivity and scattering time than with
V=10600 meV.

Thus if there is strong impurity scattering present the optical conductivity
will readily demonstrate this as a shoulder at low frequency. Whereas for weak
scattering there will be no direct evidence of a superconducting gap or

superconductivity in the optical conductivity.

4.5. Summary

In conclusion, the optical conductivity for a 2-dimensional superconductor

with a d.>.,2 symmetry gap has been calculated. Impurity scattering of arbitrary
strength has been included in the calculation along with different chemical

potentials. The results are consistent with what is expected for a metallic normal
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state (Drude like conductivity) and a superconducting state with a gap that goes to
zero at points on the Fermi surface. This gapless behavior is in contrast to a
conventional superconductor which has no optical absorption (a gap) from zero
frequency to a value of 24, due to the gap of 4, in the electronic excitation
spectrum. For the superconductor under consideration here, there is no evidence
of superconductivity in the low frequency region, although it is known to be in a
superconducting state since A,#{). This gapless behavior is due to the fact that
electronic excitations are possible at arbitrarily small energy because the gap in the
excitation spectrum becomes zero at points on the Fermi surface.

When impurity scattering in the unitary limit is included there is evidence of
superconductivity as seen in the optical conductivity by the presence of a shoulder
in the optical spectrum at low frequencies. This behavior is seen long before the
actual limit for unitary scattering { /; —20), hence strong scattering should make
itself readily apparent if present. This is in agreement with the conclusions
obtained from the analysis of the magnetic penetration depth. However no
shoulder in the optical conductivity is seen in the experiments on the high 7
superconductors (Sumner et al., 1993; Kim et al., 1993a, 1993b, 1993c), whereas
the penetration depth does show possible evidence of unitary scattering on similar
samples (Hardy et al., 1993). Such low frequencies are difficult to probe by far

infrared optica! absorption.
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The optical conductivity has also been calculated with different chemical
potentials. This js seen to have no or at the most perhaps a small effect on the
conductivity. Hence the details of the electronic band structure cannot be probed
effectively in this manner.

A difference in the type of scattering (Born or unitary limit) has been seen
in the dc conductivity and also the scattering times. This same type of difference is
seen experimentaily (Bonn, ef a/., 1994) on Ni and Zn doped Y-Ba-Cu-O
compounds. They observe that Ni provides as much scattering as Zn but has a
much less effect on the critical temperature. This effect is seen in both the
penetration depth and the dc conductivity. It is also predicted in this model as a
non-trivial difference between scattering in the Born limit and scattering in the
unitary limit which is not seen in the usual constant density of states theories. This
shows the importance in the high-7, superconductors of the entire electronic
density of states including the van Hove singularity and how a complete theory

cannot ignore the structure of the density of states.

The main feature of a 2-dimensional d.2,2 symmetry superconductor is the
absence of any gap in the optical conductivity. Moreover it is difficult to identify
any feature with the superconducting gap and hence pin down a value for the gap.

It does make itself apparent when there is impurity scattering in the unitary limit.
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In conclusion a model for superconductivity relevant to the high-7.
superconductors has been studied. This model consists of a 2-dimensional

Hubbard model with tight binding electrons in the plane, and the superconducting

state having a gap with d,2.,> symmetry. The Hubbard model and some of the
properties have been described in chapter 2. These properties include a van Hove
singularity in the electronic density of states. This work accounts for this van
Hove singularity fully: a constant density of states has not been assumed at any
point nor has any model been taken for the density of states, This is accomplished
by performing the k-space integrations di: actly and not converting them to an
integral over energy with the density of states as is usually done. Thus the effect

of the details of the band structure have been examined.
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Strong coupling theory of superconductivity has been used to derive a set
of Eliashberg equations as seen in chapter 2. This includes an glectron-boson
interaction where the bosons are anti-ferromagnetic spin fluctuations (as opposed
to the conventional case where the bosons are phonons) which is a possible
mechanism for the high-7, superconductors. Impurity scattering of arbitrary
strength is included by using a T-matrix approach. The derivation of the
Eliashberg equations using quantum field theoretic techniques is discussed. The
resulting Eliashberg equations are completely general including any band structure,
any electron-boson interaction and impurity scattering of arbitrary strength. The
Eliashberg equations are then reduced to give a general set of equations for the
critical temperature and also reduced to give a single equation describing the
normal state.

To derive a set of Eliashberg equations for a d-wave superconductor, 2
separable model (in momentum and frequency) is used for the electron-boson
interaction. Within this model the superconducting gap takes on the form

Alk,iw,) = Ao, y(K)
where 7(k) is an expansion (2.87) in functions having the required d¢.,* symmetry.
The simplest function (and the most common used in the literature) having the

required symmetry is

M,o(k) = cosk, —cosk,
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A set of Eliashberg equations has been derived for a separable model with 2-
dimensional superconductor with d,>,,* symmetry and the corresponding equations
for the critical temperature.

This inclusion of impurity scattering leads to interesting results. There is
found to be a non-trivial difference between Born scattering and unitary scattering.
This is in contrast to the approximation that is usually made of a constant
electronic density of states which leads to a single parameter (the scattering time)
that can represents both types of scattering. This difference in the types of
scattering is evident in the reduction of the critical temperature and it is also seen
in both the penetration depth and the optical conductivity.

This set of Eliashberg equations has been solved for both 7. and for the
superconducting and normal states by numerical iteration. Included in the solution

have been various band s.ructures, impurity scattering strengths and concentrations

and d.2,7 symmetry functions. Band structure effects have made themselves
apparent in solutions for T, which show that 7, has a maximum when there is no
next nearest neighbor hopping and also that 7. is highly peaked about x#=0 (half-
filling). The dependence of 7, on impurity concentration both in the Born
approximation and unitary limit shows that normal (nonmagnetic) impurities act as
Cooper pair breakers. This is in contrast to conventional superconductivity where

normal impurities have no effect on the critical temperature.
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The magnetic penetration depth has been calculated for this model. A
general expression for the penetration depth has been derived and this has been
calculated using solutions of the Eliashberg equations. It has been calculated for

various coupling strengths, band structure parameters, impurity scattering

strengths and concentrations and for various d¢.,* symmetry functions.

The main feature found is that ((A(0)/A(T))" is linear when no impurity
scattering is present. This linear behavior is a feature due to the fact that the
superconducting gap goes to zero at points on the Fermi surface. If the gap were
positive everywhere as is the case for a conventional superconductor then there
would be an exponential dependence due to the finite gap in the excitation
spectrum. Varying the chemical potential or the next nearest neighbor hopping
strength produces small changes in the penetration depth but it remains linear.

This linear behavior is very robust to Born scattering as large amounts of
Bom scattering centres must be introduced to change the linear behavior to
quadratic. This is not the case for unitary scattering as small amounts will change
the linear behavior to a quadratic behavior. This stems from the non-trivial
difference between impurity scattering in the Born limit and that of scattering in
the unitary limit. Impurity scattering in the Born limit gives a large reduction in
the critical temperature for large concentrations of impurities but does not affect
the penetration depth in such a large manner. Impurity scattering in the unitary

limit for small concentrations can affect large changes in the penetration depth
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while reducing the critical temperature by a substantially lesser degree than that of
Born scattering. This result is consistent with experimental observations on Ni and
Zn doped Y-Ba-Cu-O where Zn has a much smalier reduction of the critical
temperature than that of Ni while providing the same magnitude of changes in the
penetration depth and the dc conductivity. This shows the importance of the
electronic density of states in the properties of the high-7. superconductors and
that it must be included in a realistic manner in a complete theory for these
materials. This resuit is consistent with that seen experimentally in the high-T.

superconductors.

The penetration depth has also been calculated with different d.2,,°
symmetry functions. Large effects can arise in the penetration depth as it is
possible for some of these functions to go to zero everywhere on the Fermi surface

for the case z=0 and B=0. These effects are reduced as u and B are varied away

from zero. Effects are also seen for other d.°.,2 symmetry functions but these
changes are not as dramatic as the ones where the function goes to zero
everywhere on the Fermi surface.

The results most consistent with the behavior seen experimentally are
obtained with the simplest d,2.,2 symmetry function, cosk,-cosk,. With this flf}lction
and different impurity concentrations excellent agreement with experimental results

is obtained at low temperatures.
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The optical conductivity has been calculated for this model. A general
expression for the conductivity on the imagmary frequency axis was derived. This
expression was calculated by substitution of the solutions of the Eliashberg
equations and then analytically continuing this to the real frequency axis by means
of a Padé approximation. The optical conductivity of the normal state has also
been calculated in a similar manner. Different chemical potentials and impurity
scattering of different strengths and concentrazions has been used in the
calculation.

The normal state conductivity is found to be Drude like at low frequencies
as expected for a Fermi liquid. No qualitative differences in the normal state
conductivity are seen for different impurity scattering strengths and concentrations
or for different chemical potentials. However the magnitude of the conductivity
does depend on these parameters.

The optical conductivity in the superconducting state is found to be
radically different from that of conventional superconductors. There is no gap in
the real part of the optical conductivity whereas for conventional superconductors
there is a gap of twice the superconducting gap. This gapless behavior is due to
the fact that since the superconducting gap goes to zero at points on the Fermi
surface it is possible to have excitations of arbitrarily small energy. Hence optical

absorption can begin at arbitrarily low frequencies. Not only is there no gap in the
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optical absorption spectrum, there is no evidence of a superconducting gap at low
frequencies.

The normal state conductivity exhibits the difference of impunty scattering
in the Born limit and that of scattering in the unitary limit. Unitary scattering does
not reduce the dc conductivity or the scattering times as much as Bomn scattering
for identical reductions in the critical temperature. This behavior is observed
between Ni and Zn doped Y-Ba-Cu-0 compounds.

Gapless behavior is seen for ail impurity strengths and concentrations and
chemical potential studied, although the magnitude of the conductivity does
change. There is however another feature when unitary scattering is included.
That is a shoulder at low frequency in the real part of the optical conductivity in
the superconducting state. The main feature in the conductivity is that there is no
evidence of a superconducting gap or any gap in the optical spectrum

Finally, the penetration depth and the optical conductivity have been

calculated for a 2-dimensional superconductor with d,>,» symmetry. This has been
done using the strong coupling theory of superconductivity along with the 2-
dimensional Hubbard model. In doing so, general expressions for the Eliashberg
equations, penetration depth and the ~ptical conductivity have been derived.
These are valid for any band structure, electron-boson interaction and impunity
scattering of any strength and concentration. It is found that there is a non-trivial

difference between impurity scattering in the Born limit and that of scattering in
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the unitary limit. The results found for the temperature dependence of the
penetration depth at low temperature as well as its magnitude are in excellent
qualitative agreement with experiments performed on the high-7. superconductors.
The results for the conductivity are also in qualitative agreement with the available
experiments. [t is not yet clear of the mechanism or details of the mechanism
responsible for the high-7. superconductors. However from the work here it is
found that within this model the details of the electronic density of states play a
crucial role in the properties of high-7 superconductors. The work here which is
based upon a 2-dimensional system consisting of a Fermi liquid, with d-wave
superconductivity stabilized by anti-ferromagnetic spin fluctuations where Migdal’s
theorem (or on equivalent theorem) is assumed valid does give a possible and
consistent description of the properties studied as compared with the

experimentally observed properties.
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