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ABSTRACT

This research develops a new methodology for the control of two link flexible arms.
The methodology is referred to here as "Nonlinear Integrated Tabular” NIT Control. Starting
with a new trajectory, the inverse kinematic problem is solved and adequate algorithms are
presented to evaluate the commanding voltages to guarantee that the wrist point will track
the desired trajectory. Continuous and discontinuous paths are tried with models which were
developed to account for the flexibility in the joints and the flexibility in the links. Lagrange's
equation and finite element formulation were used to construct realistic models. Computer
simulations were conducted to assess the control qualities for tracking using NIT. The
accuracy, smoothness as well as the levels of the command signals during tracking were
quantified to serve as criteria to evaluate the quality of tracking.

A number of classical controls were developed and applied to the elbow arm to
compare NIT with the current available approaches. A proportional plus derivative plus
pravity, a feedback linearization as well as a VEE-MOD-VEE controllers were tried. It was
shown that NIT compares well with the most successful conventional methods. In addition,
it was found to offer simple, smooth, robust, computationally economic controls. NIT
compares well with the majority of the conventional methods.

An experimental setup was constructed with the objectives of verifying the

analytical predictions. It was built in a2 modular form to allow continuity of research in this
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area at McMaster's laboratories. Great care and long hours were spent in the design,
fabrication, assembly, debugging of the hardware for the mechanical parts. The setup is
referred to here as FLEXROD. The up-to-date technologies available today were
implemented in the design of FLEXROD which include Harmonic Drives for speed reduction
and transputers for the controller. Enormous efforts went into streamlining the software and
in developing the interfaces between the sensory system and the controller. Experiments were
conducted to validate the transient dynamics of the elbow arm when the motors are brought
to a sudden stop by applying the brakes simultaneously. Reasonable agreement was found
between the analysis and the experiment. The thesis is concluded with recommendations for

future research in this area to implement and develop NIT using FLEXROD.
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LIST OF NOMENCLATURE

T, = Lorque exerted onJ, .
J,  =Mass moment of inertia of rotor about axis of rotation.
K,,K;, K, = Constant coefficients with K, = K, ¢;= K, K, i¢
i,,1; = Armature and field currents respectively with i; constant.
&  =Magnetic field in gap,
= K,is
t = Time
R,L= Resistance (ohms) and inductance (henries) of armature windings.

u(t) = Input voltage to D.C. motor (control input).

vy = Back electromotive force (e.m.f.).

K, = Back e.m.f. constant.

¢ = Angular displacement of output shaft of rﬁotor, just before the harmonic drive.
b, = Damping coefficient on the motor side.

T, = Net torque through shaft, just before the harmonic drive.

¢ = Angular displacement of output shaft just before speed reduction.

¥ = Angular displacement of driven link immediately after harmonic drive.

b, = Damping coefficient on link side.

T = Torque delivered to link less friction in the revolute.
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T = Dimensionless time.
w, = Time scaling coefficient
= Dimensionless torque applied to i'th link = v,/ (m;a;g)

m,a, = Mass and length of link.

g = Gravitational acceleration

u’  =Dimensionless control signal = u; / E,
E, = Reference voltage = 100 V

E = Young's modulus

p = mass density of the material.

X, Yo = coordinates of the center of the square
n = Tilt angle

Np  =Number of points on the trajectory.
[K,] = A diagonal (2 x 2) position gain matrix.

Ky = A diagonal (2 x 2) velocity gain matrnix.

r,q4 =(2x2) Vectors for the desired and actual positions of the wrist point.
I = Mass-moment of inertia,
a, = Distance from the motor to the center of mass of the link respectively.
.&.m = Longitudinal coordinates and lateral deflections of a point on the centre level
beam.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Space shuttle programs prompted the need for using large flexible manipulators
of the slave-master type which are used by the astronauts through joy-sticks and vision
cameras. CANADARM was designed and built by Canadian SPAR where simple
proportional and derivative (PD) controls were used for the actuators of the joints. The
design was done successfully and the overall performance of the manipulator was
satisfactory. However, the unwanted oscillations are adding to a high cost because of the
waiting time required for the transient vibrations to die out.

Today there is an ever increasing demand for robots which have lighter structure,
faster response and higher payload to weight ratio. The future generation of robots will have
more compliant structures to allow the manipulators to work together in a "cooperative
mode" and to ensure safer operation when impact loadings occur.

This research is a contribution to a better understanding and use of the dynamics

and controls of flexible robots which are at the heart of "fixtureless assembly” lines.



1.2 RELEVANCE

The robots which are currently in use have their parts oversized to achieve some
degree of rigidity and consequently are slow. They have high operational cost because most
of the energy is consumed to overcome the inertial forces of the oversized iinks. There is a
need for light, fast and precise robots to meet the industrial demands. Reduction of weight
induces flexibility which has to be treated with care.

Such flexible robots are in demand by space programs as well as by production lines
in automotive industry. There is also an incresing demand for these robots in assembly lines

for computer, electronic equipment, eletrodomestic appliances and textile industries.

1.3 LINES OF CURRENT RESEARCH IN ROBOTICS

There are two basic lines of research in robotics: namely, dynamics and controls.

The first line of research is essentially related to the dyramic modelling and
simulation of the manipulator with the objectives of predicting the instantaneous position,
velocity and acceleration of the wrist point or the gripper given a set of input torques and
forces at the joints and hand. Evaluation of natural frequencies and their associated modes is
an important part in this line of investigaiion.

The second line of research is associated with developing adequate control
strategies to guarantee that the manipulator will perform given movements and/or will exert
given forces and torques on the ambient. This line of investigation normally assumes that an

adequate dynamic model] of the system is available a priori.
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In most cases it is difficult to distinguish which line of investigation a given paper

is aiming at. Quite often a paper starts with dynamics and ends up with recommendations

for controls.

1.4 REVIEW OF LITERATURE (DYNAMICS OF MANIPULATOR)

The dynamics of robotic systems attracted the attention of several researchers in
the past. Today, a wealth of information exists in the literature in this area. The following
is a brief summary of the significant work which was reported recently.

Luh et al [29] and Carrara [7] used the Newtqn-Euler approach to develop simple
models to describe the dynamics of a manipulator assuming that the links are rigid. The
models were found adequate to size up the motors and the components of the system.
Hollerbach and Sahar [20] partitioned the inverse kinematic problem into a "wrist" problem
and a "link" problem.

Maizza-Neto [30] and Book et al [6] employed Transfer Matrices to conduct a
modal analysis for a flexible manipulator. Finite Element methods were applied to robotics
with Hurty [23] who established the theoretical fundamentals for the "component mode
synthesis" approach.

Bathe and Bolourchi {3] and [4], Mattiasson et al [33], Berkkan [5] and Low [27]
emphasized the need for adequate description of the dynamics to be able to evaluate the
associated large displacements. Hsiao et al [21], [22] obtained an efficient Finite Element

model for the beam element by using co-rotational formulation. They applied the method to
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flexible mechanisms but not to robots. Gandhi and Thompson [15] and Thompson and Gandhi
[48) developed design strategies for flexible arms which use composite material. Hsiao et al
[21] and [22] and Sunada and Dubowsky [44], [45], [46] showed that Hurty's method can
be adapted for robotics to reduce thé number of degrees of freedom , and consequently the
computational cost. Dado and Soni [13] and Naganathan and Soni [36] and {37] developed
complicated Finite Element models which account for the actuators. The models were not
validated. Hallauer and Wagie [17] validated a Finite Element model using an experimental
setup and used the results to design the controller. Alves et al [1] were able to perform finite
element computations using transputers and they obtained encouraging results. Tzou et al
[51] and [52] applied and developed the idea of using distributed sensors and actuators to
control the transient vibrations of the manipulator. Meirovitch and Kwak [35] compared the |
convergence of the Finite Element method compared with conventional approaches. Chang
and Hamilton [11] and [12] investigated the dynamics of the manipulator taking into account
the flexibility in the links . They combined the Finite Element method with Lagrange's
equations. The approach was computationally costly.

Recently Seering [42] assessed the vibration behavior of a larger and complicated
22 degrees of freedom (d.o.f) model representing the arm of the Space Shuttle and the
Shuttle itself using a software model developed at the Draper Laboratory. He proved that the
free vibraiions change drastically with the configuration of the arm. The arm tends to be stiffer
in the retracted compared to its extended position. A very unique and outstanding work from

Sakawa and Matsuno [32] is reported where they used perturbation methods to analyze the



dynamics of flexible robots.

Harmonic Drive Reducers were the center of attraction of many
investigations. Marilier and Richard [31], Cetinkunt and Book [9], Nikolic [40], Yang and
Donath [55], Hewit {19], Nicosia and Tomei [39], Tomei [49], Good et al [16] and De Luca
[14] investigated different aspects of the Harmonic Drives and evaluated their effect on the
dynamics of the links of the manipulator. Good et al [16] pointed out that including joint
flexibility caused by Harmonic Drives in the dynamic model would suppress large errors
caused by unmodelled dynamics. Nikolic [40] focused his investigation on prismatic joints
Yang and Donath [55] took into account the results obtained by Good et al [16] when they
conducted dynamic simulation of a one-link flexible arm with joint flexibility.

Marilier and Richard [31] studied the Harmonic Drive reducers and proposed a
stick-slip nonlinear model for the friction, Cetinkunt and Book [9] used symbolic computation
software to develop the dynamic model of a two-link flexible-joint flexible-link roboi. The
equations were simulated in a microcomputer and also in parallel computation using
transputers.

Hastings and Book [18] investigated one-link flexible arms using linear models. The
arm was modelled as a (pinned-free) and as a (clamped-free) cantilever beam. The results
were compared with the experimental findings. It was found that pinned-free boundary
conditions do not explain the frequency response as measured experimentally. Unless there
is significant backlash in the gears, tke clamped-free boundary conditions are the ones that

best reproduce the experimental frequency response.



1.5 REVIEW OF LITERATURE (CONTROLS OF MANIPULATORS)

The available research related to controls of manipulators addresses a wide
spectrum of topics. After reviewing the most significant publications, it was obvious that the
most crucial part of control development is the control design strategy itself rather than
developing the control theory.

Conventional PD controllers were applied by Nicosia and Tomei [39] for a
manipulator with flexible joints. They confirmed the difficulties encountered in achieving
acceptable performance in the presence of compliance in the joints. Lin et al [26] investigated
simple control strategies for a 6 d.o.f. flexible robot.

Distributed-parameter controls are reported by Balas [2] and Meirovitch et al [34]
for large flexible structures as encountered in spacecrafts. The proposed strategies called -for
the use of estimators such as Kalman filters, sophisticated observers and optimal controls
which require the repeated solution of Ricatti's equation in real-time. Although it is tempting
to implement these strategies for the control of flexible arms, yet the computation cost is
prohibitive and impractical at the moment.

Takegaki and Arimoto [47] reported a generalized method of control using output
feedback. Koivo [25] and Spong and Vidyasagar [43] reviewed the available methodologies
for the control of the position of the tip point of the manipulator, Pfeiffer and Gebler [41]
introduced a multistage concept where the system is driven to its nominal motion first and
then controlled around the equilibrium position. They conducted experimeatal investigations

using the multistage-approach and compared their findings with some published analytical



results. Wells et al [54] used feedforward and feedback controls to achieve better results.

Hewit [19] applied multistage control concepts to control a SCARA robot with
flexible joints. Tomei [49] investigated a simple PD and gravity controller for a 3 d.o.f. arm
with elasticity in the joint and showed that the controller is robust. De Luca [14] established
theoretical models for the controls of robots with flexibility in the joints. Adaptive control was
used to construct control strategies for a one-link manipulator with flexibility in the joint
where the parameters of the link itself are unknown.

Carusone and D'Eleuterio [8] used a linear optimal regulator and a linearized
control system for tracking a predetermined trajectory. No experimental validation was
reported.

A strong school in the early years in robotics pursued controls through Model
Identification. With the advent of adaptive control that approach gained incredible
importance. However, physical limitations of the hardware and software slowed down its
evolution. The linear speed of the wrist point is approximately 1 m/s or more and sampling
rates necessary for the controllers are about 7 msec. That does not leave room for adequate
estimation in real-time. .Tzes and Yurkovich [50], Yurkovich et al [58] and Cetinkunt and Wu
[10], contributed a gréat deal for that area.

The Variable Structure Control is by far the most outstanding school in the control
of robots because it respects the inherent nonlinear behaviour of the robot and still keeps the
control design simple and consistent. The concept was established by Vadim I. Utkin [53] and

later developed by Yeung and Chen [56], and by Young [57). Nathan and Singh [38]
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suggested a SLIDING MODE control formulation based on the theory of variable structure
systems. However this formulation was general and cannot be implemented for practical
systems. The approach does not lead to unique control policies.

Tt is known that nonlinear controls are generally accompanied by chatter. The
current efforts are aimed at minimizing chatter improving the model which describes the
interaction of the controller with the structure.

Luecke and Gardner [28] reported on the recent trends on cooperative robots .
They established conditions for the stability of the operation. No analytical or experimental
simulation was given. The most recent work on the control of flexible robots was reported
by Khorrami and Jain [24]. The experimental setup was designed in such a way that the two
links were driven in a horizontal plane. The arms were supported on air film to minimize the
friction and were commanded by a 486 PC. The actuators were chosen to be DC-motors. One
motor drove one link directly and the other drove the other link through an antibacklash

gearing. The use of linearization feedback control gave satisfactory results.

1.6 OBJECTIVES AND ORGANIZATION OF THESIS

The main objective of this thesis is to develop a new methodology for the control
of flexible robots which is referred to in this thesis as the "Nonlinear Integrated Tabular" NIT
Control. The algorithms are developed using adequate models which can take into account
the flexibility in the joints as well as the flexibility in the links. NIT was tested and simulated

to assess its scope and its limitations. To be able to compare it with coventional controls,
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elaborate models were developed for the two-link elbow arm. Comparisons between NIT and
some of the conventional controls showed that NIT offers a simple, Iow cost, robust and
smooth controller which compares well with other available strategies. Tracking of
continuous and discontinuous trajectories was attempted with satisfactory results.

An experimental setup was built to verify some of the analytical results obtained
in the previous part. It was not just a setup which would be scrapped at the termination of
the investigation. Guided by the designs of CRS Plus Corp., it was built in a modular form
which allows its adaptation and extension to conduct these investigations as well as future
ones in the area of flexible manipulators. Up-to-date technologies were implemented in its
making: Harmonic Drives, transputers and advanced sensory systems are but a few.
Hundreds of hours were spent in designing the parts and subsystems using AUTOCAD,
machining and milling, assembly and debugging the mechanical parts. Tremendous effort
went in streamlining, extending and debugging the software package for the industrial
controlier. Some simple experiments were conducted to check the interfaces which are
ldeveloped between the sensory system and the controller. Another series of experiments
were conducted to validate the dynamic prediction of a flexible arm when the brakes of the
motors are applied suddenly. Reasonable agreement was found between theory and
experiment. The experimental setup was given the name "FLEXROD" which stands for

FLEXible RObot Device. It will remain and will be used in the labs of McMaster for

sometime to come to conduct further experiments and to implement NIT and other strategies
of control on flexible robots. "FLEXROD" is a reality which is structured along the most

advanced designs of robots in its category.
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The thesis is organized as follows:

1. Chapter 1 contains the literature review, objectives and scope of thesis.

2. Three mathematical models were developed in Chapter 2 from basic principles using
Lagrange's equation and finite element formulation. The first model is termed "RAM"
assumes that there is no flexibility anywhere in the two link arm. Gravity terms are
included. The Coriolis components were suppressed from the model because of choice
of drives used. However the nonlinearities due to the centrifugal forces and due to the
gravity terms stayed with the model. The second model is termed "FIM". In that model
we assumed that the flexibility of the elbow arm is basically due to the harmonic drives
at the joints. The degrees of freedom doubled in number and the model became more
complex. The third model is termed "LLM" and the flexibility is assumed to be
dominated by the links themselves. Finite element formulation was used to develop the
model and special care was given to the nature of transmission of forces and torqueé at
the revolutes when assembling the global stiffness and mass matrices. The three models
are realistic representations of actual systems encountered in practice.

3. The NIT control strategy is developed in Chapter 3. Solving the inverse kinematic
problem one can evaluate the derivatives of the variables of the joint. Adequate and
numerically stable algorithms are developed and tested. The command voltages are
systematically evaluated and stored in a TABULAR form. Tracking of continuous as well
as discontinuous trajectories was tried. Criteria for comparisons were established.
Computer simulations for NIT are presented and analyzed.

4. Conventional methodologies of control were developed using "RAM", "FIM" and "FLM".
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In particular, the proportional plus derivative plus gravity control required high levels for
the command voltages. With the feedback linearization, the performance improved a little
but the controller was found highly sensitive to the variations of parameters. The "Sliding
Mode Control", and in particular the VEE-MOD-VEE was developed and simulated for
a single arm. In that case, tracking was found to be smooth in spite of the violent
oscillations (chatter) noticed in the command voltage. In all this chapter showed that NIT
compares well with the best conventional strategy.

5. Capter 5 covers the methodologies in designing, manufacturing and assembling the
mechanical parts of FLEXROD. Chapter 6 describes the acrchitecture of the industrial
controler and the details of the interface unit which was developed between the sensory
system and the controler. Experimental results are presented, compared and the motors
were activated suddenly.

6. Chapter 7 gives a summary and recommendations for future research.



CHAPTER 2
GENERALIZED DIMENSIONLESS MODELS

FOR THE DYNAMICS OF THE ELBOW ARM

2.1 OBJECTIVES

The main objective of this chapter is to develop mathematical models which
adequately describe the dynamics of the elbow arm. The models are used in the subsequent
chapters for the proper simulation and control of the manipulator. The models are rendered
dimensi.onless to cover a wide class of elbow arms.

The actuators are considered as armature-controlled D.C. motors with linear
damping in the revolutes. The forearm is assumed to be remotely driven as shown in Figure
(2.1). This architecture is typical of the arrangement used in a wide class of industrial
manipulators. The main advantage of such architecture is that it yields a dynamic model
which is free from Coriolis forces. However the centrifugal forces appear in the models.

Three models are developed in this chapter which are described briefly as follows:

(a) The Rigid Arm Model "RAM"
This model does not account for flexibility in the joints or links. It is simple and describes

the dynamics of the two-link elbow arm together with the associated actuators. The model

12
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is reported here because it is used as a basis for future comparisons. The model is casted in

the form of two coupled (nonlinear second order) differential equations.

(a) (b)

Figure 2.1: Elbow arm with remotely controlled forearm.

(b) The Flexible Joint Model "FJM"
The FIM model assumes that the flexibility is due to the presence of the "HARMONIC
DRIVES". The Harmonic Drives are speed-reducing elements implemented between the

output shaft of the D.C. motor and the driven link. The model, is shown to be expressed by
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four coupled second order nonlinear differential equations.

(c) The Flexible Link Model "FLM"
The FLM mode! assumes that the flexibility of the links are dominant. The flexibility in the
joints is ignored in comparison with the flexibility in the links. A finite element modelling is
developed where each link is considered as a structural beam element with the end nodes
coinciding with the revolutes. The model is shown to be given by eight second order
differential equations which are nonlinear and coupled.

In the analysis that follows new quantities are always defined as soon as they appear
the first time. Some of these quantities are included in fhe list of NOMENCLATURE to

facilitate future cross-reference. The S.1. system of units is used throughout the thesis.

2.2 THE ACTUATOR AND THE HARMONIC DRIVE

The actuator is considered to be an armature-controlled D.C. motor as shown in
Figure(2.2). A torsional spring K, is placed between the motor and the gear train to represent
the torsional stiffness of the HARMONIC DRIVE. The latter achieves a speed reduction N
from the D.C. motor to the associated link (normally N = 100).

The field-armature interaction is described by:

T © Kl ¢f ‘a = Km ia (2.1-3)
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Figure 2.2: The actuator.

where:

T = Torque exerted on J, .

Jm = Mass moment of inertia of rotor about axis of rotation.
K,K,, K, = Constant coefficients with K, =K, ¢,=K; K, i
i, I = Armature and field currents respectively with i; constant.
& = Magnetic field in gap,

= K¢

Applying KirchofP’s law to the armature circuit, one obtains:
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Rj +L, i‘ vy = u(f) (2.1.b)
where
t = Time
R,L, =Resistance (ohms) and inductance (henries) of armature windings.
u(t) = Input voltage to D.C. motor (control input).
Vi = Back electromotive force (e.m.f).
K, =Back e.m.f. constant.
¢ = Angular displacement of output shaft of motor, just before the harmonic drive.

One can thus write

Vy = K;, d) (2.1.0)
The following relation describes the dynamic equilibrium of the rotating parts on the motor's
side:

Jdebbet,=T, (2.1.d)

where:

b, = Damping coefficient on the motor side.

»

Tm = Net torque through shaft, just before the harmonic drive.
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For the speed reducer one can write:

NY-¢ (2.1.¢)
f N, - b @19
where:
¢° = Angular displacement of output shaft just before speed reduction.
b4 = Angular displacement of driven link immediately after harmonic drive.
b, = Damping coefficient on link side.
T = Torque delivered to link less friction in the revolute.

Assuming no flexibility in the joints, one can write
o - (2.1.2)

Laplace transforming and rearranging (2.1.a) to (2.1.g) inclusive and eliminating V,(s) and

T(5) one obtains:

R, +Ls) I(s) + K, s d(s) = UGs)
W, 52 . b, ) (s) + v.05) = K I(s)

N 1,(s) - b, s T(s) = t(s) (2.2.2,b,c)

where s is the Laplace variable,

Visualizing the dynamics of the links, reflected by the term t(s) as noise imposed
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on the system then relations {2.2.2,b,c) can be represented by the block diagram shown in
Figure (2.3). The output ¢(s) is considered as the superposition of an excitation due to U(s)
and another due to -1/N ©(s). The response due to the first is denoted by ¢,;,(s) and the

response due to the second is denoted by ¢(s). One can thus write:

o)
U b, s
© Rar o[ sten s L],k K,s
a N2
and
¢(2)(s) _ Ra + La s

1 b, s
-— TS - 2 + + L -
7O ® L, s, o |- &, K, s

From which one obtains

K, UGs) - % t6)IR, + L, 5]

¢(S) = ¢0) * ¢c2) =

) b, s
®R,+L,9) [, s 0,5+ N2]+Kmes

Taking the view that the contribution of (L,) to the time constant is negligible compared to

that due to (R,), one can replace L, by 0 in the previous expression to obtain:
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U(s}

+ 1 Ia(s)
—% Ra+L, S

¢ (s)

Figure 2.3: Link dynamics as noise.

4) ( R’: UGs) - — 1(s)
(s) =
bL Kb Km
[J"]sz*[b""}vz’ R 5

The equation of the actuator of the i'th link in terms of the link's angular

displacement ¥, , is thus given by:
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.. b,, K, K.\ -
wN,J)% .N|b o E T
1 mf i 1[ mi N: Ra.!
K
= | > ut) - 1 (0
o N, (2.2.d)

where i=1,2.
Introducing the dimensionless time T given by:

T=w,t 2.3)

where
w, = time scaling coefficient

relation (2.2.d) can be written in the following dimensionless form:

Ty, T = B, u D) - ¥, TUD @4)
where
T, = Dimensionless torque applied to i'th link = t;/ (m;a;g)
m;, a; = Mass and length
g = Gravitational acceleration
u = Dimensionless control signal =u;/ E,

Eq = Reference voltage = 100 V
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= [bn - ;w . Kb;fw] / [0 7]
B, - [E;Z’""]/[Nf 037y ]
v,-[m g a] [ 7 ;7 @5)

Primes on the variables refer to differentiation with respect to the dimensionless time T.
In case the flexibility of the joint has to be taken into account and assuming a linear

spring for the harmonic drive one replaces Eq.(2.1.g) by:
T, - K, (¢ - N w) (2.6.2)
where

K, = Torsional stiffness of the harmonic drive.

Relations (2.1.f) and (2.6.a) then relation (2.6.a) can be rearranged for the i'th link to read:

' 2
1,=-b, ¥ +NK, b -NK, ¥,

which can be written in the following dimensionless form
TIPS Y SR 3 (2.6.b)

where

2.7)
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The dynamics of the actuator with harmonic drive are constructed by substituting (2.6.a) in

(2.1.d) to obtain

J &b b+K, (6-NT) =1, (2.8.2)

Recalling that L,=0, then relations (2.1.a), (2.1.b) and (2.1.c) can be combined to read:

Km [ ]
T s 22 - K, b (2.8.b)

Substituting (2.8.b) in (2.8.a) and rearranging one obtains:

m
a

" Kme : Km
J befb, o - d+K, b-(X,N) ¥ = = u

The previous relation can be written for the i'th link in a dimensionless form as follows:
R TR IR SR (2.8:)

where

0 KMK
= o+ 2252/ [0 0]
aj
Bf:Ku/[JmJ“’i]
Yr:[KwNi]/[me“’u
1] K ED 2
"‘=( ;‘u )/[JM‘%] 2.9

Equations (2.4), (2.6.b) and (2.8.b) are used in future sections to construct the "RAM", the
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"FIM" and the "FLM" models.

2.3 THE RIGID ARM MODEL "RAM"

The model to describe the dynamics of the arm is constructed using Lagrange’s

equation which reads:

d L -

4oLy oL, sk =12,.n (2.10.2)

dt| og, q,
where
L = Lagrangian of system.
n = Number of generalized coordinates.
s = k'th generalized coordinate.
T = Total kinetic energy stored = X (T,

il
Vg = Total potential energy stored =X (V)
il
T, = k'th generalized force.
One can write
L=T,-7, (2.10.b)

The potential energy of the i'th link is given by:
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Vo, = m, {g}" {£} (2.10.c)

where bars undemeath the variables indicate vector quantities and the superscript T indicates

the transpose of the vector and,;

m, = Mass of 'th link.
g = Gravity vector in world coordinates = [0,-g]"
I = Position vector of center of mass of ith link in world coordinates.

The kinetic energy of the i'th link is given by:

1 1
(T = o m, () v} > {0} U] {} (2.10.d)
where
Vei = Velocity of the center of mass of i'th fink in world coordinates.
w; = Angular veiocity of i'th link in link-fixed frame.
(L) = Mass moment of inertia matrix about center of mass of i'th link.

The kinetic energy T; of the system can be expressed as follows:

T, = > & D@ @ (2.10.¢)
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where

q = (n x 1) vector of generalized coordinates.

[D(@)] = (nx n) symmetric positive definite inertia matrix.

Substituting (2.10.¢) and (2.10.e) in Lagrange's equations (2.10.a) one can show that the

governing relations are given by:

n n
p) dk_,-qj*z cf,u:qiqj’bkztk
) 151

ijk=12.n (2.11)

or in the more compact form

D(@)] {g} + [C@] {g} + (2@} = {x(} (2.12)
where
Cijik = Christoffel symbols of first kind.
ad, od,, od,.
SRR R it (2.13.2)
2 9g, dgq f ogq,
av,
b, = —_— (2.13.b)
o9,
dyv = The (u,v) element of [D(q)] matrix.
Cyj = The (k,j) element of [C(g,d)] matrix.

=Y € 4, (2.13.c)
-1
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It can be shown that for a constant k, the Christoffel symbols ¢;;; = ¢;;. Referring
to Figure (2.1.b) and assuming no flexibility in the joints or the links, one can see that ¥, and

¥, are natural choice for the generalized coordinates. One can thus write the following

relations
- T
r,=la,c ,a,s]
r =[a,c,+a,c,,a s +a,s T
S 15 a %7 2 2
L ] - T
2;]:{- a, % Tl"‘gd € Tl]
» L] - - T
Y-¢2=[’°1S1 Tl-adsz‘l’z,alcl‘l'l+adc2‘1'2]

@ , w = angular velocities of links 1 and 2.

=[030"P1]Ts[0=03T2]T

€, ,¢, .5 ,5 =cos T, ,cos ¥,,sin ¥ ,sin?¥,
€y » Sy = cos (¥, - ¥y, sin (¥, - 7)
a, ,a_ = distances as shown in Fig.2.1.b. (2.13.d)

The potential and kinetic energy of the elbow arm are obtained from relations

(2.10.¢) and (2.10.¢) as follows:
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V£=mlg(ads1)+m2g(als1+aesz)

1 . - wl
T = —2_ [Tl > wz] [D(Q)] .@

E
2
where
2 I
m oa +myay « I 1 m,a a,c,
Pl =]--~- - _.___:__. -—— =
m,a, a,c, ( m, a, 1, (2.13.&)

where I,, I, are the mass moments of inertia of links 1 and2 about axes through their
respective centers of mass and normal to the plane of motion. Using the [D] matrix as defined

by (2.13.¢) and the definition of the Christoffel symbols as given by (2.13.a) one can write:

od, 3y _ . %dy  0dy
9%, oY, 9%, oY,
od,, dd,, éd,, ad,,
ST T M8, 5, T T T T M4 42 5y
0¥, 0¥, d¥, oY,
from which one obtains:
€y = 056 =€y =056 =-mya a,s,
Cppg = My @) @, 5y 5 €y = €y = 0 52, =0
The [C] matrix as given by equation (2.13.c) is
0 -m,a a,s, ‘i‘z
Phoee (2.13.9)

{C] - .
m,a a,s, ¥, 0
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The {b} vector in equation(2.12) is obtained by using relation (2.13.b) which yields:

(”'1";1*’":"1)3"1
(b} = (.13.g)

m,a,8 ¢,

The equations describing the dynamics of the links of the "RAM", i.e. with no flexibility in the
jints or in the links are constructed by substituting (2.13.¢), (2.13.f) and (2.13.g) in (2.12).

One thus obtains:

s am b - e

________ | ..
¥
m,a a,cy | myag-+ 1, 2
| .
. 0 | m, a, a,s, ¥, ¥,
s T . +
m,a a,s, ¥, ] 0 ¥,

(mya,+m,a)gec, T
m,a,g e, e, (2.14)
where t, and 7, are control torques which are applied by the actuators to the respective links.

The previous relations can be written in the following dimensionless form:

73 3 2 L] - a .
] VB ey s, (F) BT

2

Faaye, Tlvays, (BN eBe =Y, (2.15)

where
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. m,a, a, . myaya,
e = ; &y =
m, a’ 2,1 2.1
1 Qg My ay + 5y m, dz+ 4y
. (mya,+m,a )g e m,a,g
Bi_ !Bz"
2 2, g 2 2 2
(myaj;+mya; +I ) o, (ma,+ 1) v,
. m, g a, L m, g a,
Y1 = 2 2 2 > Y2 T 2 2 2.16
(mya;~mya +1) o (myas+1) @ (2.16)

The rest of the variables and parameters are as defined before.
The required "RAM" is obtained by eliminating t,” and 1,” between equations (2.4)

and equations (2.15). One thus obtains:

where:
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2, ¥ . _ ) ¥,
an = ; » 4 = .
Y] + Y] Y‘[ + 'V:
By Y, B, v
a3 = . » By = 5
Yyt Y (¥, v,) N,
_ mz Y.Z . _ II; YZ
ay = . 38y T .
Yz + Y, Yz + Yz
a - p; YZ = Bg Y.z
3 . » B2 7 .
Yz + Yz ( Yz + Yz ) Ng (2'18)

2.4 THE FLEXIBLE JOINT MODEL "FJM"
The mode! is constructed using relations (2.8.c), (2.15) and (2.6.b) . 1t is written

in the following form:

” o, , o 0 0 -
o vy b+ B, -v ¥ =y

" . " . 2 .
Preayo, ¥ -ays, (80 B¢

Y1 T
b, ey b« By b, - 3 ¥, = wpu
Ty, By sy, (T +Bre,= ¥2 7Ty
e T bd -y ¥
NS TR 21 P P
Eliminating 7, and 7, from the previous equations and rearranging, one obtains the "FIM"

in the following form:
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F ’ 2 1] .
b+ by b 0y b, - b, Fy =y

T by B @; Fyor by oy B -8y 55 (F) - by b+ 80,0
" b ‘ 2 _ 0 .

Py + by b e 0y, -8, ¥, =1
it I 2 "

B by B v 0y Toe by B by sy (TN -by b, 0b,6,=0

where:
by = « ;wy = By 3 b = 1,
by = €Y > “’z =YY s by = oy
by = B\Y) 3By = Bl
b:"=mg ;m§=l32 ;bn:Yg
by = 0¥, : "")i = YY) s by = o,
by = By by = B2 (2.20)

Relations (2.19) can be written in the following matrix form:

MO ICX,DIX+[G1X-2@=[Blu (2.21.a)

where:
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X=1[¢, ¥, ¢, LA s u = [uy, u,]
[ o
1 0 0 0 u 0
0 1 0 (bn Cn) 0 0
= ; [B] =
M=l 0 1 0 o
0 (Buep O 1 o .
®,) 0 0 0 o
0 (b, 0 (- by 5, F)) Jb 221
[C] = : h =
0 0 (3,,) 0 0
0 by sy E)) 0 () 5w ©2
W) - b, 0 0
2
- 623 W, 0 0
[G] = \
0 0 W, ~ by,
| o 0 - b, w)

(2.21.b)

The derivation of relations (2.19) was obtained by combining a "Lagrangian”
approach for the dynamics of the links with 2 "Newton-Euler" approach for the actuator. It
can be shown that an "all-Lagrangian approach" can be used to obtain relations (2.19). In this

case the expressions for Vi and T, given by (2.10.c) and (2.10.d) are replaced by:

Vi= Vo« AV, ; T'.= Ty + AT,
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and

1 1
AV, = E K, (4, - N, wl)z * “E K, (&, - N2T2)2

AT, = % Ty @ e 2T @

The presence of A Vi will contribute with four more terms to Lagrange's equations due to the

partial derivatives:
e N K (b -N_T k=12
aTt k "ThE k k I.) 3 ?
v,
_=Ku(¢t-Nka) k=12
ab,

Similarly, the presence of ATy will contribute with two more terms due to the partial

derivatives:

4 (8T, T, .
— - - =J & s k=12
dt [aw,] o®, ™t

The generalized forces will receive four more terms due to the virtual work of the friction
forces: (byy Ci)k) and (b ; ‘i’k) fork=1.2.
The model given by (2.19) is a full representation of the dynamics of the elbow arm

in the presence of the flexibility in the joints. The model consists of four second order

differential equations which are nonlinear and coupled.
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2.5 FINITE ELEMENT IDEALIZATION OF FLEXIBLE LINKS

Each link of the arm is idealized as one dimensional finite element capable of
withstanding lateral forces in the form of shear forces and moments. These are associated with
lateral displacements and small rotations.

The nodes of each element are chosen to coincide with the joints themselves.
Conditions of compatibility are enforced at the nodes. A local set of axes (x,, y., 2.} is chosen
for the i'th link with the origin at the i'th joint, i.e. at the inboard joint of the link.

Figure 2.4 depicts the forces, torques, displacements and rotations of the i'th link.

The world frame frame is denoted by X, Y, Z and its origin at the base of the manipulator.

Y
Vi+l
link (i) e
N ’ joint (i+1)
Yo /9(\ N node (i+1)
Ny VI . =0
»1 Tisl
\\ . /7\ +*
Piv
/_ s + .)
1—/\/ join (.J.
2N g, node (i)
1
r/ wi
X
Z

Figure 2.4: Flexible link.

L., A;, L refer to the length, cross sectional area and area moment of inertia of the i'th link

about the neutral axis, The nodal displacement vector g,” of the i'th link is given by:
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g:' = [ V’, 3 Ti » v,',] ] w:’.] ]T (2-22)

The vector of generalized forces p,” is given by

gLV, V,.00 (2.23)

It should be noticed that the fourth entry of p,” is zero which implies that the frictional
moments at the outboard joint of the i'th link are ignored. The second entry 1, represents the
driving moment of the i'th link. q." and p, are expressed in the local x,, y., z. frame. The

superscript * is used as a reminder that the quantities are expressed in the local frame.

The i'th link is governed by
M )g K] g =20 20 2.24)

where p,."(t) is the vector representing the equivalent body forces acting at the joints. [K,’]
and [M,’] are the i'th link stiffness and consistent-mass matrix respectively expressed in the

local frame. The [K.'] and [M,] are given by:

6 3L 6 3p |
. | 3L 2L2 - 3L L?
(k7 - 22 (2.25)
1® | -6 - 3L 6 - 3L
| 3L L? - 3L 2L?

where E is the Young's modulus and
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156 2L 54 -13L
22L 4 L? 13 L -31?
[M]=24E (2.26)
420 54 13L 156 - 2L
|- 13 L -3 1L° -2 L 4 L% |

where p is the mass density of the material.
One then seeks a rotation matrix [R] for the i'th link such that it satisfies the

following relation

r=[RIr (2.27.a)

where r and r’ represent the components of the same position vector of a generic point in the
world and the local frames respectively. It is noticed that the (4x1) nodal displacement vector
g.” in the local frame will transform into a (6x1) augmented vector g, in the world frame as

shown symbolically after.

Q‘= .[X!,XZ,X3 ’X47X5’X6]T

For this reason, one should rewrite the g.” the displacement vector, in the following form:

g"=[0,V'.,¥l.,0,V“,T;J]T

to be able to perform the proper transformation to the world frame. The same strategy applies
for the vector p, which should be written in the following form:

E::[O,V‘,Ti,o,Vi_l,

o)

The [K."] and [M."] (4x4) matrices have to be expanded as shown symbolically after:
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‘ o 0o olo o o ]
Xll Xl2 XIS X'M 0 Xll Xl! : 0 XIS XM
X2l XZZ XZS X24 : (-)- —le _ ‘fzz_: E _ X_B _ ‘fﬂ_
X, X, X, X, o o olo o o
X, X, X, X, 0 X, X, : 0 X, X,

- - 0 'X4l X42 ]‘ 0 X‘B XM 3

where X; represents the (i,j)'th element of the [K."] or the [M,"] matrices.

It can be shown that the rotation matrix [R] is given by:

e, -5 0 | © 0 0]
|
§; L 0 : 0 0 0
[R] 0] 0 0 1 + 0 0 0
[R,] = sl e - o - S
| 0] [’ 0 0 6 1 ¢ -5 0
'
0 0 0 1 s ¢, 0
|
K 0 0 I 0 0 1]
(2.27.b)
where
s,=s5in B ;¢ =cos 6 (2.27.¢)

where 0, is the angle between the x, axis and the horizontal axis of the world system.

Premultiplying (2.24) by [R,] and recalling that [Ry1" = [R,]", one obtains:
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(R M]] RN (Ro] £) + (IRy] [K]) Re]) ([Ro)E)

= [R] 2, + Ry} 2,

~ which can be written in the following compact form:

Mig +[Klg =2, -2, (2.28)

where:

M) = [R,] IM]] [R]
(K] = [Ro] [K]) [Ro)
2, = R] 2},
e, = R £,

(2.29)

Now [M.], [K.], p, and p,, for the i'th link are all expressed in the world's frame.

They are given by:
.':,2 ¥, -5, Y, -5 1, : sf Y -5, ¢, 1, s; ¥,
-5, ¢, 1, "rz 7., ¢, ¥, :-.5'i ¢, ¥, r.'i2 Y, -¢, ¥,
M] = _-_si_lr_”_ - f.' f_z'i_ —_ Ej_ ....:_-_sffs."; S .ﬁ Zs.:__ _ ...-_Yﬂ -
512 Yo SEX o s, : S:Yu sed; 5755
S8 u C£2Y4J e : -sgdy, "tzyu e ¥
s¥s; ¥, 'Ys,; : sJ’u -chu Y”

(2.30.a)
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(2.30.b)

(2.31.2)

where
156 p 4, a, 22 p 4,4q] 4p4,a
u 420 »TH 420 T 40
54 p 4, a, 13 p 4,a’ 3p4,a
¥, = ——t JF, = — Ly, = P
420 420 420
(i=12)
and
> X ' x
Sy Ay -8 00X, -5 X, -s Ay 5, € Xy,
2 | 2
-5, ¢, X, ¢, Xy e, Xy, [ S ¢, X, - ¢ X,
- i
s, Xz.r c; X:,_‘j X3,t 5, X;,_,lf -c, Xu
[K,J =1 T Tt ST T T T + - ;‘ ————————————
-5 X s, ¢ Xy, 5; X, : 5p Xy, -5 6, X,
2 W 2
5, ¢ Xy, -6 Ay, - ¢, X, : -5 6, Xy, ey Xy,
-5, Xn c, Xu X‘u | S Xu - c, Xu
where
+ + + +
wEL  _SEL . _4EL  2E1
T s Ay T s Ay T T
g af’ af a, o
G = 1,2)

s; and ¢, are as defined in (2.27.c)

The g, and p, vectors take the form:

(2.31.b)
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Z,- [x.7, L SR TS A T;-l ]T

T
B,=[PuysPys Ts Pra s Ppya» 0]

where x, y;, ¥, represent the x-displacement, the y-displacement and the element's rotation
at the i'th node. p,;, p,; and <; are the external x-force, y-force and the moment applied to the
i'th node. All expressed in the world's frame.

The body forces vector p,, takes the form:

B, =m 818y : 8> 8. Busa» &yua > 8iia 1 (2.32)
where:
2
=0 . = _a_‘ . = .a_‘
gx'( » Syi - 2 » g;J 12
0 a, B a{z
g4 " > a - s 8 T T
xhl Yl 2 21 12

Relations (2.28) represent the governing equation of the i'th element in the world frame. It
is obvious that the overall "structural mass" and "stiffness” matrices cannot be assembled
directly using the conventional "direct stiffness" method. This is due to the fact that the
moments anplied on an element are not transmitted in full to the adjacent element because of
the nature of the revolutes. The only constraints enforced at a common junction pertain to the
linear displacements (x;, y;) and to the internal reactions (p,;, py;) at the common node. Only

these have to be equal in magnitude and opposite in direction for the two adjacent links.
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The consistent mass matrix [M.]; for the i'the link is given by equations (2.30). It

can be partitioned in the following form:

[ M,
M,
[ﬂ‘[3IJ]

4,

M, =

M,

(m,)

M)

(m 4u)

M 13;']
My,
M,

(A,

M

(m
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27
M

(m

gl

44,;) ]

(2.33.3)

The stiffness matrix [K_]; for the i'th link is given by relations (2.31). It can be also partitioned

in a similar manner

'
Kl
X

nd

K, =

o
K,

X))
(ky))
X

(* 42.:')

324

X
K,
X
(X
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2]

ad

7.4

*

X
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ldJ]

w)
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“) ]

(2.33.b)

The submatrices of [M,;] and [K;] are obtained from (2.30.a) and (2.31.2)

respectively. The vectors for nodal displacements, external and body forces are also

partitioned as follows:

-
u, ) ;
Vi d:
¥, - ¥,
i i ‘4'1.1
CHIR#
v,

(2.33.c)
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The vectors d,, p; and p,; are given by:
d=0x.»Y : p=1py.P, T 2, =1p,.p, 7  (233d)
Node 1 on link 1 is restrained in the x and y directions in the world frame, i.e. d, = 0. The

vector p, associated with node 1 represents the reaction components at joint 1. The equations

governing the dynamics of link 1 are thus given by:

- (mp) M) (m ) %,
iM 32.1] M 33.1] M 34.11 42 +
(m ) [M,,] (m 40y) 7 2

Upy) X (kpep) t

23.!1 1

Tl
Kyl [K354] Ky, dz =Bt R,
| * X (* L 0 (2.34.2.b,c)

42.1) 43.1] 44.1)

These are four relations in seven variables, namely,

T] ’42, ?;122’ T]
where p, represents the components of the unknown reactions exerted by link 2 on link 1 at
node 2.The equilibrium of link 2 contributes four additional relations. Node 2, considered as
a point on link 2, will be subjected to a force given by (-p,) and will have the same

displacement vector d,. The rotation associated with that point is ¥, which is different from

P.,’. Assuming zero external loads at node 3, one can write:
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(2.34.d,6,f,2)

These represent six additional relations in five additional variables, namely:

‘i’z,ds,‘l’;,tz

Relations (2.34.a) to (2.34.g) represent a total of ten equations in twelve vartables.

Two variables, namely T, and t, are known inputs. Thus relations (2.34) represent the

required finite element model; ten independent relations in ten unknowns. However, relations

(2.34) can be reduced to eight equations in the variables by eliminating the internal reactions

p, at joint 2. This is achieved by adding (2.34.b) and (2.34.d) and rearranging. One obtains

the following matrix relation:



my, My, mo, 0 0 0 T:l
My, My My, My, My, My, M, %
™ g, Mg, my, 0 0 0 7 .
0 My, 0 Myy Mypy My, ¥ 2
0 My, ¢ w2 My, My, .i;
0 My, 0 Moy Mg, My, ¥ 3
k) Koy Faux 0 0 0 W *, T, (0)
Koy K+ Ky, Ky Kpy Ky K2 42 1] P, R,
ke Kan kyy 0 0 PR _(of | ©®
0 Ky, 0 Fpo Kpa R 7, i T, (0)
0 K2 0 Koo Kuz Ky 4 0 Py
0 L 0 kpy  Kgp LI ¥, ) ©)
(2.35.a)

The required "FLM" is given by (2.35.a) together with the following two relations governing

the actuators which are obia.ned from (2.2.d):

N K
s

R,

w - WI) ¥, N} b, = 3
N, Ry (2.35.b)

i=1,2

The dimensionless form of "FLM" is obtained from (2.35.a) by substituting for the
torques (t,,T,) from (2.35.b). One can define the dimensionless coordinates (X, Y,) for joint

2 and (X,,Y,) for the wrist point as follows:
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X, = (al] ¥, [GI] ; Xy (ﬂl) i [al] (2.36)

The dimensionless "FLM" is given by:

MUl K=&

where each of [M], [C] and [K] is an (8%8) symmetric matrix. The vecter U reads:

U-1%,,x,%7,,%,%.X,,7,,% 7T (2.38.2)

2773

The nonzero coefficients of the symmetric [M] matrix are denoted by m; ; i=1,2,...,8 and

j=1,i+1,...,8 and are given by:



¥y + sz T

-a, (¥g)

a, (.<:,2 ¥,- s: Y.
1 Ty My = -5
- a (s, ¢, 7)

a, (e) ey ¥y

- al(sz €, Yu)

YS]

smy = -a (s, ¥g) smy = ay (e Tg)
smy=-a (5,6, ¥, +5,6, 1)

smy = ay (53 Yp)

s My = 8, Yo

:m34='c1Y21 ;m35=c2Y22
m. =a, (c27,) sm, = -¢, ¥

» My 6 Iy 3 My 2 4a

s meg = - a (s, Yg) smg = ay (e, V)
img=-a, (5,6, 7)) 5 mg=s517,

j Mg = - €, ¥y
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(2.38.b)

The [C) matrix is an all zero matrix except for two diagonal elements given by:

2
¢, = Ny bn_l*
\

r’
=N|b
Css = Na | Opa *

\

/ o
/ o

(2.38.¢)
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The non-zero coefficients of the symmetric [K] matrix are denoted by k;;; i=1,2,...8 and

j=1,i+1,...8 and are given by:

: 2
ky =X,/ o s Ry =a, (s X, / m:)
ki, = - a (chzllmb s By = "Xulmi

2 2 2 2
ky=ay (s; Xy, e85, X))/l w, kp=-a (556 X,+5,¢X)/ 0,
Ey = (5, X)) | 0 sk = - 8, X, 1 @)

2 2 2
ky=-a, (s, X))/ 0, s kp=a,(s,¢, X))/ 0,
2
ky=-5X,/ w0,
by =0, (el X v el XN 0, ky=-c X,/ 0,
k=, X/ mi sk =a, (5,0, X))/ w:
2 2 2

kp=-a (c; X))/ o, s ky =0, X,/ @
By =Xy / “’i
k= X,/ o, sk = a, (5, X,) | @)
kg =-a,{c; X)) / "".2:

2 2 2
k= a), (5, X)) [ @ s kg =-a (5,0, X) [ o

2

kp =5, X,/ 0,

2 2 2
ky=a, (c, X))/ o, s kg = -0, X,/ 0,

X,/ o (2.38.d)

f
o
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The vector R in (2.37) reads:

B=E[(r,u),0,(P),0,(,u),0,0FP)0F

where u,” and u,” are defined in (2.4) and

P, = Py * Py - Py
m, g ", g
r_NIKu.lED . r_"’lg _r_Nzkm.on
T STt T inT T o
R, o, o, R, ©, (2.38.¢)
2.7 SUMMARY

In this chapter, the RAM, the FJ'M and the FLM models have been developed and
casted in compact dimensionless forms. The models can be used for future investigations
pertaining to the dynamics and the controls of the elbow arm. Considerable care was taken
to define each coefficient in the models in terms of the physical parameters of the manipulator.

. This makes the model reliable and realistic.



CHAPTER 3
THE NONLINEAR INTEGRATED TABULAR

(NIT) CONTROL

3.1 OBJECTIVES

In this chapter, 2 new strategy is developed for tracking continuous and
discontinuous trajectories. The method is based on adequate algorithms for the evaluation of
the command voltages, in tabular form, which guarantee that the wrist point will follow a
prescribed trajectory. The control strategy takes into account the nonlinearities inherent in the
model as well as the flexibility of the joints or the links. For this reason, the new strategy is
referred to as the NONLINEAR INTEGRATED TABULAR (NIT) Control. The NIT
Control is simple, accurate, stable, computationally economical and can be easily implemented
in practical systems in the real-time.

Realistic mathematical models for the elbow arm were established in the previous
chapter. Some of these models are used here to develop the NIT Control. To that end the
elbow arm is treated as open loop system, i.e. the command voltages are constructed from
the sole knowledge of the desired trajectory and its kinematics and without taking into
account the actual outputs of the elbow arm. The transient response of the wrist point is also

assessed in this chapter by considering the case when the brakes are applied to bring the

49
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motors to a sudden stop during tracking.

3.2 REFERENCE PARAMETERS

The reference parameters, used to test NIT Control, are chosen as close as possible
to the parameters of the experimental setup described in a later chapter. The stiffness-
coefficients of the harmonic drives are deliberately varied around their nominal values to study

their role in the dynamics of the elbow arm. The reference parameters are:

g = 9.81 m/s?

al=az=0.305 m ;ad=ad=0.l45 m

m, = m, = 4803 kg ;I =1, = 0025 kg.m?

A = A, =000 m? s I = I, = 0.4996 x107 m*

E = 0.68x10" N/m? i p = 2700 kg/m?

N, = N, = 100 ; K, = K, = 209.8 N.m/rad

J,=J,= 09532 x10" kg.m?

b, = b, = 0.687 N.m/radls ; b,, = b,, = 0.687 N.m/iradls

K, 6 =K,= 0142 N.mlanps ; Ky, = K, = 0.3952 Virad/s

R,=R,= 084 ohms ; E, =100 ¥V 3.1)

The values of K, and K,, are selected much lower than the stiffness of the actual
harmonic drives used today. This choice is deliberately made to amplify the effect of the

compliance of the joint which have to be faced in future designs of the elbow arm.
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The diagram in Figure (3.1) depicts the basic steps which are followed in this

chapter to develop NIT controls for the elbow arm. Each step is discussed in some details in

the sections that follow:

@

®

©

@

3.4 THE DESIRED TRAJECTORY

A

definition
of desired
trajectory

command voltages

(NIT)

inverse
kinematics

time
markers

A

derivatives of
‘Pl and P 5

l

dynamic
simulator for
NIT

actual
trajectory

\
errors

stop

©)

®

®

Figure 3.1: Strategy of NIT Control and its validation.

Three trajectories are selected to represent continuous and discontinuous paths. An

ellipse, a three-leaved rose and a square are typical cases. The basic parameters for each are



as indicated in Figure (3.2).

(a) Ellipse (b) Three-leaved rose

I i et |

®

(=]
>

e
™

(c) Square

Figure 3.2: Desired trajectories.
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The coordinates (XT)g, (YT)g of 2 point P on the ellipse can be shown to be given

by:
(T), = x, + = (sin£ + cos )
2
(IT), = y, + == (sin§ - cos £)
3
af bf
R =

2 2 .
Jb, cos? £ + a, sin? E

Jor 0

IA

. m
£$2ﬂandn-3-‘-1- (3.2.2)

%o and y, are the coordinates of the center of the ellipse. 2, and b, are the semi major and semi
minor axes respectively. n and £ are angles as shown in Figure (3.2.a).

The coordinates (XT)g, (YT)g of P on the three-leaved rose are given by:

(KT), = x, + 7 cos E
(¥T), = y, + rsin &
r=Rcos(3 E)
for 0 < E<2m and R - constant (3.2.b)

%, and ¥, are the coordinates of the center of the rose and £ is an angle as shown in Figure
(3.2.b).
The coordinates of (XT)s, (YT)s of P on the square are obtained by using the

following relations:
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AT); = x" cosn -y’ sinn + X,

(IT); = y“cosm + x° sinn + Yy,
(3.2.¢0)

where (x,, o) are the coordinates of the center of the square and 7 is the tiit angle shown in

Figure 3.2.c. The X', y" are obtained as follows:

side AB : -R sx'<+R

p) y='R
BC : x" =R ;-Rsy" < +R
_ (3.2.d)
CD :-Rsx"s+R ; y =R
DA : x"=«-R ;-R sy s +R

3.5 THE INVERSE KINEMATICS PROBLEM

Step (b) in Figure (3.1) calls for the evaluation of the angles ¥, and ‘¥, when the
coordinates (XT,YT) of the wrist point are known. The Denavit-Hartenberg (D-H) notations
are adopted for our analysis and are as depicted in Figure 3.3 for a full 3-link elbow arm.
Given the desired cartesian coordinates (X,Y,Z) of the wrist point, i.e. of the point O; in the

world's coordinates, one can define the associated joint angles 8,, 6, and €, using the

following relations [43]:



link (2)
(upper arm)

2y ¥ link (3)
Ve (forearm)
A
el
link (1)
{shoulderx)
&y joint {3)
joint (1)
link (0) Z3 X3
{base)
Xp

wrist point

/

{X,Y,2)

Figure 3.3: The D-H notations.

0, = tan"1 (¥ / X)

) B, )
0, =t ' }|% — - tan”! {B, / Z}
Vﬂl' Bz' 22

Z-a, s,
8,=tan ' {—2 2 1.8,

pl -4 8

2 .2
B? +Z% v ay” - a
_|/2 2. -
ﬁl =yX*+ ¥, Bz = =
2 a,

¢, =cos 0,;5;=sn 0,
where
X=XT :;Y=0,2=1T

a, and a, are as shown in Fig (3.3).
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(3.3)
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Due to the absence of 0, in the elbow arm under study, it is obvious that P, is
equivalent to 8, and P, to (8, + 6,). The vectors ¥, and P, are evaluated using XT and YT
of the desired trajectory and relations (3.3). The vectors ‘¥, and ‘P, are stored in tabular form
in arrays YY2(I) and YY4(I) respectively for I=1, 2, ...Np where Np is the number of points
on the trajectory.

The coordinates of the desired trajectory, as obtained from the inverse kinematic

solution, are denoted by XTT(I) and YTT(I) and are given by:

XIT() = a, cos T () + a, cos T (I)
(3.4)
YIT() = a, sin ¥,()) + a, sin T,
Figure (3.4) demonstrates the plots of (XT,YT) and (XTT,YTT) on top of each other for the
ellipse, rose and square. The coordinates (XT,YT) and (XTT,YTT) are practically identical

as expected.

3.6 TIME MARKERS

Step (c) in Figure (3.1) requires that dimensionless time (T) to be assigned to the
trajectory points. A constant tracking velocity V along the trajectory, is assumed. One
considers two consecutive points on the trajectory (i) and (i+1) which are associated with the

times (T); and (T),,, respectively. One can thus write:

(D, = M, + [(XTE + 1) - XTOY + {ITT + 1) - ITTOY]" 1 V
(3.5

The reference point, i.e. position 1 is associated with T = 0.
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YTT v T
24 0.2+
0 0.6 XTT 0 oo wrT
(a) Ellipse
) 2, = 0.16 ; b, =0.08 (b) 3-Leaved rose
X, =03 ;y, =02 R =_0.15
=1 j;a,=1 X =03 ;y, =02
YTT
0.24
0 0.6 XTT
(c) Square
R =0.15
4 =03 3y, =02
n =n/6

All coordinates above in meters.

Figure 3.4: Inverse Kinematics.
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3.7 DERIVATIVES OF ¥, AND ¥, VECTORS
Step (d) in Figure (3.1) calls for the numerical evaluation of the first and second
derivatives of ¥, and 'F,. To achieve this task with the minimum generation of numerical
noise, a cubic polynomial is fitted to every three consecutive points on the trajectory. The
parabola is used to extract information only at the middle point of the span. Figure (3.5)

shows the variables used to construct the algorithm.

Figure 3.5: Cubic polynomial for derivatives.

A polynomial is assumed in the form:

Y'2a,+a, T+a, T’ (3.6.a)

The coordinates (T1, Y,"), (T, Y,') and (T;,Y;") have to satisfy (3.6.a). One can thus write:
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% T, T, 0, -, T, 0, T, T, o, ¥
1
a js —— |- L+ TPo, T +THPo, -(@+T)oe, | 77,
6, 0, 0,
a, o, -0, o, Y,
Wwhere :
0,=T,-T,;06,=T,-T,;0,=T,-T, (3.6.b)

Y, =a,+2a,T,; Y, -2a (3.6.c)

1t should be noticed that the cubic curve fitting is not the only possible approach.
One can use Chebyshev polynomials in the case of larger intervals between tabular points and
the derivatives are evaluated directly from the resulting Chebyshev coefficients. For noisy data
one can use Savitzky-Golay smoothing filters [59].

To assess the degree of smoothness of the algorithm proposed by relations (3.6),
Figures (3.6), (3.7) and (3.8) are prepared for the ellipse, the rose and the square trajectories
respectively for v = 0.3 m/s and w=5.671 rad/s. It is noticed that numerical differentiation
was achieved almost free of noise for the ellipse and the rose. Sharp spikes were noticed for
the second derivatives in the case of the square. As expected, the spikes appear at the corner
points of the square because of the associated sudden changes of the first derivatives of ¥,
and 'F, at these points. As will be shown later, these spikes neither degrade the simulation for

the rest of the points on the square path, nor degrade the quality of control of the tracking.
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Figure 3.7: ¥,,7P, and derivatives (3-leaved-rose).
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3.8 COMMAND VOLTAGES (NIT)

Step (e) calls for the evaluation of the command voltages.
(a) For the case of "RAM" given by equations (2.17), the command voltages u,” and u, , i.e.

NIT, are given by:

a 1 " Fi N 2
u, = ;"’ {P/+a, ¥'+a,c, T, -a,s, (Tz‘) +ay e}
1

uy = Il; (v ay B v aycy T« ays, (TH+a,c,) 37.3)
Every quantity on the RHLS. of the previous relations is known or has been evaluated in the
previous step. One can thus use relations (3.7.2) to define u,” and u,” at every point on the
trajectory. Figure (3.9) demonstrates the command voltages (NIT) required for tracking an
eliipse, a rose and a square.
(b) For the case of the FIM given by (2.19) additional steps have to be executed before
computing the command voltages. This is due to the appearance of ¢ ; and ¢ , and their

derivatives in the model. An examination of the model shows that ¢, and ¢, can be evaluated

using:
1 " , 2 ”
¢, = b (B by B+ 0y F v byoy T - by sy ()0 8y0)
L
1 " s 2 “
¢, = ' {B,) + by ¥+ 0y ¥yvbycy B4 0,5y ()" + by €3} (3.7.b)
a

Every quantity on the R.H.S. of the previous relations is known or has been evaluated before.

One can thus use (3.7.b) to define ¢ , and ¢ , at every point on the trajectory.
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The first and second derivatives of ¢ ; and ¢ , can be obtained using cubic curve
fitting,
With (¢ ,,& ,' and ¢ ,") and (¢ ,,$ , and ¢ ," ) available one can use relations

(2.19.a) and (2.19.c) to evaluate the control voltages u,” and u,, i.e. NIT, as follows:

1 n I
o {d," + by, $ « “’: ¢, - by, T}
By

LA

. 1 u ' 2
uy = = {b," + by &)+ @3 9, - by, T}
B2 3.7.¢)

Relations (3.7.c) are used to evaluate the command voltages at every point on the trajectory.

Figure (3.10.a) and (3.10.b) is a time history for ¢ , and ¢ , and their derivatives
for an arm tracking an ellipse with flexibility in the joints. The higher derivatives are noticed
to be contaminated with numerical noise. This is rather expected because they are the
outcome of four successive numerical differentiations. In spite of the presence of this

numerical noise, the associated command voltages, shown in Figure (3.10.c) are almost noise-

free.

(c) For the case of "FLM", cne can extend the previous strategies to extract the command
voltages. The steps in this case are as follows:
(i) The coordinates XT(I) and YT(I) of the points on the desired trajectory are essentially

the state variables X3 and Y3 which appear in the FLM given by equation (2.37).
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Figure 3.10: ¥, and ¥; command voltages (FJM) - ellipse.

(i) Using the inverse kinematic algorithm (3.3), one can obtain ¥, and '¥, at every point

on the trajectory.

(iii) The coordinates X,, Y, of joint 2 can be obtained for every point on the trajectory

using:

X, = a

cos ‘Pl

Y

a sin ¥, (3.8.a)

2 1

(iv) By now the following quantities are evaluated in tabular form:

Using cubic curve fitting one can evaluate the first and second derivatives of the previous

variables at every point on the desired trajectory.
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(v) An examination of the matrix relation given by (2.37) shows that only the first and
fifth equations contain informations regarding u,” and u,". Dropping these two equations

from the FLM model and rearranging the remaining six equations, one obtains:

[4°]{Z°}= (2"} (3.8.b)

where [A%] is a (6 x 6) matrix and {b°} is a (6 x 1) vector whose elements are already
known as functions of:

['F,, Xo Yo, Fa, X, V51T
and their derivatives. The {¥°} vector is defined as a (6x1) vector given by:

all

®0. (%), Y, ®Y, ¥y, Py, ¥ (3.8.0)

(vi) Solving for {¥°} using (3.8.b), one can evaluate the quantities ¥, (I) and '¥;"(T) and
their derivatives at every point on the trajectory.
(vii) Finally, one picks up the first and fifth equations in the model which have been

dropped before to write NIT:

L] 1 L
= - {lmy By o myp X7 e 3 X e my T,
1

2
Ny bL.l Km.l
— bm,l i

R Ty o [k By ek X e kg ¥y e By T3]}
(Y ‘l"l al

LI l af
H; T o {[mps X"« mag Yo' o mgg B o meg X5' vmgy ¥y o gy B 7]
2

2
f-?z- by * b’-f Ko
Wa N: Ra.,2

B o [kagXy o kyg ¥y o kgs Bo o kg Xy o kg ¥y 0 kg Fil}
(3.8.d)
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All the quantities on the R.H.S. of (3.8.d) have been evaluated before.

3.9 DYNAMIC SIMULATOR: (NIT) FOR (RAM)
Relations (2.17) are integrated starting with a given initial point in the state space.
In its canonic form, the mathematical model reads:
X/ =X,

X/ =-a, X, -a,csX,- X)X+ a,sin(X, - X)) X; - a, cosX, + g, u;

X,/

X

4

X/ = - a, X, - a,cos (X, - X)) X - a, sin(X, - X)) X; - a,, cosX, + p, u;
' (3.9.2)

where the state vector [ ¥,,%®, ", ¥,, ¥, ' " iswritten as [ X, , X,, X;, X, IR

The model has the following features:
(a) It contains strong nonlinear terms:

cos X, cos X;, cos(X; - X)), sin(X; - X)), X%, X

(b) The explicit appearance of X;' and X' on the R.H.S. of equations (3.9.a) can cause
numerical problems.
(c) u,” and u," are available only in tabular form. They are defined at instants which are not
equidistant.

A number of explicit and implicit algorithms were considered for the RAM. The
most appropriate was found to be a variable step Rung-Kutta. The adopted algorithm was

found to be numerically stable and reasonably accurate at an acceptable computing cost.
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Relations (3.9.a) are written in the conventional form:
X =10, X0 =& (3.9.b)

The Rung-Kutta algorithm advances the solution X, at T=T,, to X.,, at T=T,,, where,
(D1 (T =h

The algorithm reads:

N

h
X1=Xn+_g[K1*2Kz'2K3+K4]
where :

K L&) K I 2K)i B L& T K) K L&, K)
’ (3.9.0)

h is the substep size which varies from one segment to the other as depicted in Figure (3.11).
The flow diagram representation of the validation strategy is as shown in Figure 3.12. The

basic strategy of simulation is summarized as follows:

(a) The time span between two consecutive positions, i.e. from (T); to (T),., is divided into
a number of equal substeps h. The substep size h varies from one span to the other.

{b) From the tabulated values of u,” and u,", linear interpolation is used to upd;'ite the value
of the command voltages at the start of each substep h.

(c) At the start of each substep, the following quantities are updated and then held fixed
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Y
position (i+1)
position (i)
_—— substep h for
/4\ span ()
/ position (i-1)
substep h for ¢y i-1
span (i+1)
desired trajectory

Figure 3.11: The substep h.

during the four function evaluations: K;, K, K;and K,. These quantities are:

cos X,, cos X,, cos(X; - X)), sin(X; - X,), X% X2
(d) The terms X' and X,' which appear in (3.9.a) are updated at the start of each substep
using the backward differences of X, and X, as follows:

X (;Ez)n - (in-l } { (;tl)n - (Jr)n -1 }
= ; X =
&2, { h &, h (3.9.d)

(e) To be able to use relations (3.9.d) recursively, one should evaluate X, and X, tl.c first

time, from another source. Combining the second and fourth relations in (3.9.2),one obtains:
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Figure 3.12: Validation (NIT) for (RAM).
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. 1 .
Xz”"“l—““—'c_ -y Xy e 12‘21X Qi3 6y v By Uy
- Py @xp Sy

2 .
Py fay Xy + 0y 5y Xy 1ay 6, - 1y 4y ]}

1 2
’= e ————— - - - N
X, " - Ay Xy v - @y 5, Xy - @y 0+ By Uy +
- P2 8 Yy

p, la, X, - a,, 5, X @y € - By ]}
where :
£y = s (X, - X)) ;

c,=cos(X) ;e = cos( S 5 §y = sin(X; - X))

p] = a'lZ cz‘ ’ p2 = a22 c’.’.l
(3.9.e)

Relations (3.9.e)- are used only once, at the beginning of the simulation.

A computer routine TRKRAM was developed to perform the simulation using the
strategies previously presented. The coordinates XTT(I), YTT(I) of the desired trajectory
were compared with XTTT(I), YITT(I) of the actual trajectory. An almost perfect replica
was noticed as shown in Figure (3.13) for the ellipse, the rose and the square. To assess the

difference between the desired and the actual trajectories a performance index « is defined as

follows:

e(l) = | Distance from desired to actual points |

x 100 (3.10
| Distance from origin to desired point | (3.10)

¢ is essentially a measure of the deviation of the actual trajectory from the desired. The plots

in Figure (3.14), with @,= 5.67 rad/sec, demonstrate the variation of ¢ over the entire path.
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The highest percentage error is noticed in the case of tracking a square as expected.
Simulation of the full path, i.e. for 200 x 50 = 10,000 substeps, using the variable
Rung-Kutta algorithm took less than one minute of computing time using a 50 Mhz - 486 PC.
The results presented in this section demonstrate that the NIT control is simple,

accurate, reliable and can be extended for flexible arms as discussed in the following section.

3.10 DYNAMIC SIMULATOR : (NIT) FOR (FIM)

To validate (NIT) for (FIM) we use relations (2.21.a) which can be rearranged in

the form:

MX[CIX-KIX=-K (3.11.a)

where [M], [C] and [K]=[G] are (4x4) real matrices as defined by (2.21.b)and Ris a (4x1)

real vector given by:

RT = [ "1? u]. s 7 624 C‘ 3 llg uz‘ > T b“ C2 ]T (3-11.b)

The state vector X is to be determined starting with the initial vector X,. An adaptation to the

Newmark algorithm is used here to improve the efficiency and the numerical stability. This

was deemed necessary because of the heavy coupling among the variables in the model.
The Newmark algorithm, similar to Rung-Kutta, considers two instants in time (n)

and (n+1) separated by h such that:

h = (T)nq - (T),, (3.11.(:)
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The algorithm allows one to predict (X,.;, Xoy's Xon ") if (XL, X, X,") and the coefficients

of the model given by (3.11.2), are all known at (T),. The Newmark's algorithm reads:

X '=Xﬂ'+h(1-5)xn”+hﬁxn."

nel 1

Xn’1=xn+hx;+hz(%-ﬂ)X""*hzﬂx "

nel

pMx -1 KX =K (3.12.2,b,0)

1

where « and & are parameters that are chosen to obtain the desired integration stability and
accuracy. When «=1/6 ; 5=1/2 the algorithm is described as the "linear acceleration" method.
‘When a=1/4 ; 5=1/2 one obtains the "trapezoidal rule". h is the time step size.

One can rearrange (3.12.b) to express X,.,," in terms of X, as follows:

X "= 12 {Xn.l-X."-th’-h’(l_a)Xﬂ”}
h’e 2 (3.12.d)

Substituting (3.12.d) and (3.12.a) in (3.12.c), one obtains:

b e

h
&

[__1_] [M]{x -x-hz'-hz( -aJx_”},[C]{X_'.h(l-a))_('u
2& n.l n n n
h o

[xﬂ,l-x"-hx;-hz(%- a) xn"]}qK]xn_ - R

] ne 1
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| zz1 v+ 222 €1-w|x  -& |z .z €ix, -

1

[223 [M] + 224 [C]]xnu[zzs (M] - ZZ6 [C]]K""

where :
7zl - L . ZZ2 - 5 i 1
hiu he ho
7z4 - 2 m z ;225 - 2 2:“ s ZZ6 - h(bz'z z) (3.13.2)
Reiation (3.13.a) can be written in the compact form:
@i -z (3.13.b)
which has a solution:
X =ior'z (3.13.c)

for [Q] nonsingular.
Once X,,, is obtained using (3.13.c), one can evaluate X,.," using (3.12.d) which

can be written in the following form:

X "=2z21 X | -X)-73X'-705 X" (3.13.d)

X.., can be evaluated using (3.12.a) which can be written in the following form:

Xn'lf =an+ 227 XHH* 228 Xu. #

where :

ZZ7 - h (1 -8);728 - h 3 (3.13.e)
Normally X, and X,' are readily available at T=0. To be able to use the Newmark

algorithm it is necessary to evaluate X," as well. This is achieved by using (3.11.2) to write:
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1]

x -t {R -IC1X) - KX, } (3.13.0)

Té advance the solution one step h in time, the Newmark algorithm calls for an
inversion of a (4x4) matrix [Q] as depicted by equation (3.13.c). An efficient Gauss-Jordan
algorithm with pivotal condensation is used to achieve the inversion. [Q] is reassembled and
inverted on top of itself in each step of the solution.

The algorithm given by (3.13.2), (3.13.d), (3.13.e) are implemented in a computer
routine TRKFIM to simulate FIM. The algorithm is adapted to account for:

(a) The variable substep size h calls for updating of some of the ZZ's which appear in (3.13.a)
and (3.13.e).

(b)The [M], [C] and [K] matrices have to be updated every step, because of their dependence
on the variables X and X'.

(c) Linear interpolation for u,” and u,” since these are available in tabular form.

The Newmark's algorithm, similar to Rung's took less than one minute of
computing time using the 50 Mhz - 486DX PC. The flow diagram of the simulation is shown
in Figure (3.15). The (NIT) for (FIM) is as depicted in Figure (3.16) with w, = 7.317
rad/sec. 8, and &, refer to the deflection (P, - ¢, / N,) and (¥, - ¢,/ N,) across harmonic

drives 1 and 2 respectively. The max. deviation is found to be 2.13%.
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Figure 3.15: Validation (NIT) for (FIM).
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Figure 3.16: Validation of (NIT) for (FJM) (Tracking an ellipse).



3.11 TRANSIENT RESPONSE OF WRIST POINT

The transient response of the wrist point is assessed here by considering the case
when brakes are applied to bring the motors to a sudden stop during tracking. The arm is
considered to have compliant joints in the revolutes.

The model (2.19), describing the elbow arm has to be modified and interpreted in
a different manner. In fact, the dynamics of the actuators, represented by (2.19.a) and (2.19.¢)
are suppressed since ¢ , and ¢ , are suddenly held fixed at some prescribed values.
Consequently &,,¢,",d,,d." are all zero for T>0. In other words (2.19.a) and (2.19.c) serve
only to furnish the values of u,” and u," during the time the brakes are applied. This amounts
to saying that the governing equations, for T>0, are given by (2.19.b) and (2.19.d). These

equations can be exchanged for equations (2.15) with ;" and t,* given by:

N, K, N, K,
T - (¢1'N1T1)’ T, = (¢2-N2T2)
moga m, g d,
1 €, ¢y v, 0 - e L '
| %262 1 ¥, @, S ¥y 0 v,
Y, K, 0 { ¥, } By < Y, ¢
0 v, K, || V2 B} c, Y, 4,

where .

YW N K, Y/ (mga); v, = (Y, N, K,)/(m,ga,)

(3.14.2)
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A computer routine DYNFIM was developed to solve (3.14.2) Figures.(3.17) and

(3.18) are typical simulation-results for the FIM. The initial conditions are chosen as follows:

(), = 0.8727 rad  ; (T,), = 0.3491 rad

~
2o

(T, = 0.15 radfs 3 (T, = 0.15 radls
(¥"), = 0.001 rad/s® ; (¥"), = 0.001 rad/s’

W = 4.372 radls

1]

The remaining parameters are as defined by relations (3.1).

Figure (3.17) shows the phase plane trajectories as well as the time-domain history
of (8,=%,-¢,/N)); 3,=F,-y/Ny).

&, and ¢, are assumed frozen during braking at the values (¢,), and(¢.),
respectively. The plots show that the equilibrium point is not coinciding with the origin of the
phase plane because of the presence of the D.C. components (B, ’c,) and (B,’c,) in relations
which are a consequence of the effect of the gravitational field on the two links.

Figure (3.18.2) represents the positions of the two links during the application of
the brakes in the global frame. Figure (3.18.b) shows the path of the wrist point, during that

period as viewed by an observer located at the would-be equilibrium point (x*, y*) given by:

x" = a, cos (¥),+a,cos (¥T)

y'=a sin (¥)), +a,sin (T, (3.14.b)
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Figure 3.17: Deflections of harmonic drives (Brake Test).
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3.12 SUMMARY OF CHAPTER 3

In this chapter, a new strategy is developed for the definition of the command
voltages which are necessary to track a given trajectory. The strategy uses stable algorithms
which are applied to the realistic dynamic models developed in the previous chapter. The
smoothness of the predicted commands was assessed and found adequate. The strategy is the
heart of the Nonlinear Integrated Tabular “NIT” control which is also validated.

The transient response of the elbow arm, after applying the brakes, was also
obtained for the FIM. The theoretical prediction of the transient response compared with the

experimental findings in Chapter 7 of this thesis.



CHAPTER 4

NIT VERSUS CONVENTIONAL CONTROLS

4.1 OBJECTIVES

The objective of this chapter is to compare the “Nonlinear Integrated Tabular”, NIT
control developed in the previous chapter with other conventional controls. The evaluations
and assessments are made for the elbow arm for tracking continuous and discontinuous
trajectories. Rigid and compliant arms are considered. Comparisons are based on the
following criteria:
(2) The maximum of the percentage error "e", as defined by Eq.(3.10).
(b) The smoothness of the actual trajectory and its freedom from spikes.
(c) The oscillatory nature of the command voltages.
(d) The maximum levels attained by the command -voltages.

Conventional controls investigated in this chapter are:
* Proportional + derivative + gravity :PDG control.
* Feedback linearization : FBL control.

*  Variable structure (sliding mode)  : SLM control.

87
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4.2 STATE SPACE REPRESENTATION OF THE RAM

The governing relations for the RAM are given by (2.17) and can be written in the

following form:

N !’ - -
gy + a9, + )6 4y -8 9, 236 [

@+ Gy G, By Cop ) - Ay Sy )0 v @y Cy = By Uy (4.1)
where the ¥'s are replaced by q's:
=Y ;1=12
The coefficients in (4.1) are as defined by (2.18) and (2.13.¢). Equations (4.1) can be written

in the following matrix form:

[D(] g+ {c (g, @)} + {& @} + {& (@)} - {z} (4.2)
where:
D@ [dll dy, 1 a1%n ¥, } {q: }
= = ;4 = =
l dy dp dpfn 1 v, b
12
a4, 5y 1, a4, €
{c(g.g) = , ; {b () =
a5 54y 9 &
ay 4 THEN T
{h (@)} = ) ; {2} = ) ={ }
n 9 B, 4, T2
(4.3.2)

It should be noticed that [D(q)] is invertible and its inverse is written in the following form:
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D@ =1[4,]
where :
1 a4 €y - Ay Oy
d = i d_ = 3 d. =
n o n o 2 o
1 2
d, = — ;o=1-a,a,c
7 o 12 9n ¢n (4.3.b)

The state representation of RAM is given by:

-

g-_

1<

(4.4)

vV=D'{z-c(@g.vV-8(@-20:}

and its block diagram is as depicted in Figure 4.1.

inertia coupling
** > 4 0a || d ] 4
—>(¥)—-) 1)} — > |
-+ S S
+ dampin
(¥ € i h
+
centrifugal /
+  Coriolis
c 3
+ =
gravity
b |

Figure 4.1: State space representation of elbow arm.
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The central problem is essentially that of choosing = in equation (4.4} such that g follows a
prescribed vector 1 at all times. In the case of "RAM", r is given by [¥, ¥,])" which is
evaluated from the inverse kinema'ic problem of the arm at unequally spaced discrete points
on the desired trajectory. The first and second derivatives of r, i.e. r' and " can also be
evaluated at these discrete points.

The state space representation of the "RAM" as given by (4.4) consists of 4 (four)
first order differential equations which can be wntten in the canonic form:

X'=f{(X,X) where X' = [P, ¥, ¥,.¥,] (4.5)

4.3 "PDG" CONTROL FOR RAM
The proportional + derivative + gravity control (PDG) is widely used in practice

due to its simplicity. The error signal ¢ and the control law 7 in this case are chosen in the

form:

£=r-4

[l
I

Kle-[K]le+b (@ (4.6)
where:

[K,] = a diagonal (2 x 2) position gain matrix.

[K.} = a diagonal (2 x 2) velocity gain matrix.

I, @ = (2 x 2) vectors for the desired and actual positions of the wrist point,

Substituting (4.6) in equations (4.4), one obtains:
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’

=2
Y=DD@OI'{K)JC-D+KJEC-V-c@,0-2®} 4.7)
The state vector [g7,v"]" is denoted by {X}".
One can show that:
(i) The mathematical model (4.7) represents a closed-loop system which has one
equilibrium point:
(i) The equilibrium point is asymptotically stable in the sense of Liapunov.
(iii) The domain of attraction of {X} encompasses the entire state space.
The PDG control strategy, as given by (4.7), is depicted in the block diagram of

Figure 4.2.

(Kl

Kgls

dynamics

!

Figure 4.2: PDG Control for RAM.

The variable step Rung-Kutta algorithm is used for the computer simulation of the

PDG control for RAM. The strategy of simulation is implemented in a computer routine
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PDGRAM as depicted in Figure (4.3). The number of points on the desired trajectory is

denoted by M and the number of substeps by NS. The constant linear velocity along the path
is denoted by V.

At the start of each su‘bstep, the r and r' vectors are updated using linear
interpolation. The coefficients in the {D(q)]} matrix and the ¢, h, b vectors are updated each
substep using the current values of the state vector.

To investigate the role played by the gains [K)] and [K,], an elbow arm is
considered with parameters as given by relations (3.1). The following additional parameters
are also used:

V=3m/s; w,=56.7 rad/s ; NS =80

Figure 4.4 shows the desired trajectory superimposed on the actual path of the wrist

point with the following gains:
k= k= 0.1x10°; ky; =kgp=0.1
It is obvious that the choice of the gains is poor and no meaningful tracking is

obtained.
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Figure 4.3: PDGRAM routine.



0.5
—~ 0.4 7 T
)
Q
H
o
&
-r
o
Y
0
3]
7
Ny
0
-0.1 — : d
0 0.1 0.2 0.3 0.4 0.5 0.6
X-Coordinate (m)
(a) Ellipse. = — REFERENCE -s- ACTUAL
0.5
~ 0.4 T
E
Q
0.3 ¢
d
g
%'
q 0.2 ¢+
o
0
3]
1 0.1 +-
by
0
-0.1 . ‘
0 0.1 0.2 0.3 0.4 0.5 0.6
X-Coordinate (m)
(b) Square. = —— REFERENCE —~ ACTUAL

Figure 4.4: PDGRAM (poor choice of gains).

Kk, =k;=0.1x10°% ; ky=ks,=0.1; V=3 m/s ; =56.7 rad/s

94



95
Figures (4.5) to (4.7) show the performance of the same elbow arm after changing
k,, and k, from (0.1x10°) to (0.5x 10%). Tracking qualities improved but were still considered
poor because the errors are inacceptable in practice and the command voltages are noticed
to be oscillatory.
It is interesting to notice that the actual trajectories of the ellipse and the rose, are
relatively smooth in this case in spite of the fact that their associated command voltages u,"
and u,” are oscillatory.

Acceptable tracking with smoother controller performance is possible through the
use of higher gains. The price is paid through higher command voltages. For example, using:
ky, =k, = 03x10° ; kg =k, =0.1x10°
the (u,”, u,") plots become smoother as shown in Figure (4.8). The errors improved a great
deal. It dropped from (2.76 to 0.459%) for the ellipse, from (2.84 to 0.451%) for the rose and
from (4.65 to 0.958%) for the square. However the Jevel of the command voltages is still

considered high. Other control strategies are sought to lower these levels.
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4.4 PDG CONTROL FOR FJM
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The model describing the dynamics of FIM is given by (2.19). The goveming

relations of PDG control for FTM can be written in the following form:

where :

]

ic1

L

M1X-[CTX+[K1X =]

1 0 0 0
0 1 0 5,, ¢,
0 0 1 0
0 b, cy 0 1
(5 0 0 o |
0 b, 0 by sy X[ |
0 0 by + k&, 0 ’
0 by S5 X, 0 b,
2k b 0 0
Wy Ky -9
2
- b ©, 0 0
2 2
0 0 Wy + Ky by
0 0 - b, ©,
i 3 i
kpj ro+ k, r ¢,
0 tF:
P X = 9 *
kpi I‘g * kd.i r; ¢2
L o / . w J
= cosX, ; ¢, = 05X, ; ¢, = cos (XX 5 5, = sin(¥X)  (48)
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The remaining coefficients in (4.8) are defined in (2.20). The r and r refer to the desired
trajectory and its derivative. The k,'s and k,'s are the position and velocity gains in the PDG
control law.

As mentioned before, r, and r, in the £ vector are evaluated by solving the inverse
kinematic problem. Their associated first and second derivatives, i.e. r,), r,", ry’ and r," are
obtained through parabolic fitting as was explained in Section 3.7.

The variables (r, and 1,) in the r vector are obtained by using the second and fourth

relations cf(2.19). They are given by:

1 # ’ 2 " 2

Ty [’2 eby ry e 0y e by oy r - by sy (1) 4 By "1]
3

roe X (ol i 0ir b e r b s (P by

37 3 At % T, atar 9p 6Ty * 05 I “ €2 (4.9)
o .

The derivatives r), r,", r3' and r," are obtained through parabolic fitting. Thus one
can consider that r, r' and " are all known in advance for every point on the desired
trajectory. It should be noticed that the representation given by (4.8) is based on the following

control law:

o .
My u =k

'L 0« _ ’
€1 kg e 5 omaty ke ke

where i e, =r, - X, ;i=1,3 (4.10)

i

and the command voltages (u,” and u,’) are evaluated using relations (3.7.b) and (3.7.c). As
noticed, the choice of the error signals e, and e, is based on the fact that they are easy to

measure in practice.
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4.5 PDG CONTROL FOR FLM

The model in this case is given by (2.37) and the PDG control law can be

implemented as discussed in the FIM case. The r is an (8x1) vector [r, r, _r;]" given by:
L= [ T'I,Xz, Yg: TI;: T13X3:Y33 T;]r

It is noticed that (r,, 1) are obtained by solving the inverse kinematic problem. The

quantities (r,, r;) and (rg, 1;) are obtained using the following relations:

0
~

I
[~

rg=a c +a,c, 3P, = a8+ 4,8, (4.11.a)

The remaining quantities (r,, r;) are obtained by rearranging rows 2,4,6,and 8 of relations

(2.37) in the form
[4]1 {Z} = {&}
where

(Zy = [ry rg,rd . I (4.11.b)

and [A] is a (4x4) matrix and {b} is a(4x1) vector whose elements are all known in terms of
I),¥,13,05,T; and 1y and their derivatives.

Solving (4.11.b) one can define all elements of r, £’ and 1" completely at every point
on the described trajectory.

The strategies discussed in this section are implemented in a computer routine,
PDGFLX for the tracking of an elbow arm with flexibility in the joints. Typical results are

presented in the following section.
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4.6 SIMULATION OF PDG FOR FIM

The variable step Newmark algorithm, with «=1/6 and 8=1/2, is used to perform
tracking using an elbow arm with the same parameters as given by relations (3.1). Simulation
was performed using w, = 5.671 rad/s, V = 0.3 m/s, k, = ky; = 0.01 and the number of
substeps=20. The gains K,, and K,; were allowed to vary to satisfy Equation (4.10).

Figure 4.10 shows the results of simulation for an elliptical path using PDG control
with a maximum percentage error of 0.974%. The control voltages y,” and u,” were found to
be relatively smooth as seen in Figure 4.9.c. The time history for k,, and kg are given in
Figure 4.10 which shows oscillations and spikes. These are attributed to numerical noise. It
is obvious that the noise is filtered out by the dynamics and has little effect on the final
tracking performance of the elbow arm.

Figure 4.11 shows the results of the "PDGFLX" for the tracking of a rose.
Numerical noise and sharp spikes contaminate the velocity gains. However tracking is
achieved with a maximum percentage error of 3.4%.

It is noticed that the performance of the PDG control for FIM is highly sensitive
to the choice of the position and velocity gains. In spite of the adaptive approach employed
for adjusting the gains during tracking, there does not exist a simple rule for the selection of

the fixed gains, i.e. k;, and k.
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4.7 FEEDBACK LINEARIZATION CONTROL
This strategy is known in the literature under different names and with slight
variations. It is known as the “Inverse Dynamics Control" or the "Computed Torque Control"
when applied to manipulators with rigid links. The strategy assumes that the reference
trajectory is smooth and has first and second derivatives.
The approach makes direct use of the complete mode! describing the dynamics of
the elbow arm to cancel not only the effects of gravity, but also the centrifugal force, Coriolis

forces if present, friction and the manipulator's inertia tensor. Using (2.18), one can write:
D@ g +c(ga)2(@+02(@-={z} (4.12.2)
The control law to be used for "feedback linearization" is referred to have as FBL,
and is given by:
T-D@lvr-+c(@.g)2@+k@ (4.12.b)
where v is chosen in the following form:
v=[Kl{-g}-K){r-g}+0 (4.12.c)
where [K;], [K ] and r are as defined before in connection with equation (4.6). To verify that

the control law guarantees asymptotic stability, one substitutes (4.12.b) in {4.12.a) to obtain:

[D{g)] ¢ - [D(9)] x. =0
which yields

¢-KY}{r-g} - Kl{r-g}-2"=0 (4.12.4)
Recalling that the error ¢ is defined as:
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e=r-g (4.12.¢)
then relation (4.12.d) reads:
e+ [Kle-+[Kle=20 (4.12.)

Since (K] and {K,] are positive definite then the tracking error e converges to zero

exponentially. It is possible to choose

[X,] = Al ;K = 2 A

(4.12.)

N | N
where A is a positive number. This implies a critically damped system which converges
without oscillation. The closed loop system, using the FBL control law, can be represented
by the block diagram shown in Figure 4.13.

The inner loop attempts to cancel the undesired nonlinear dynamics while the outer

loop inserts the desired linear dynamics. If [K,] and [K,] are diagonal, the closed loop

equations of motion are not only linear but are also uncoupled.
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linear nonlinear nonlinear
compensator controller dynamics
r & e,¢ y X g
EQ4.12¢) |3 EQ4.12b) |5 EQ4.129) >
r inner loop
coordinate
transformation <
outer loop
(pole placement loop)
Figure 4.12: Architecture of feedback linearization.
For computer simulation, relations (4.12) can be rearranged to read:
g=yx
v=DPI'{z-c@,.V-2@-2M}
e=r-4g
t=c+bh DK 2-a} - KJ £ -a} '} (4.13)
4.8 FBL. CONTROL FOR RAM

The feedback linearization is applied here to the RAM and the results are compared

with the PDG control. Equations (4.13) are written in an expanded form as follows:
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(4.14.a)
Denoting X,=q,, X,=q,', X;=q,, X, = q,' the required equations for computer simulation

read:

X=X
X, = kﬂ (ry - X))« by (r) - X))+ 1)
(4.14.b)
X, = X,
X, = kpz, (- X)) sk (r) - XY+ 1)
The torques in this case are evaluated using:
11=c!+bl‘hl*dllU1+d12U2
=6 by v hyedy U +dy U,
where
U, = kp, (ry-X) + kg (r) - X)) + r’
Uy=ky (ry- Xp) o by () - XD+ 1) (4.14.c)

The quantities (¢,,¢,), (by,by), (hyhy) and (d,; ,d,, ,d;, ,d;,) are all as defined in relations (4.3.a)

and (4.3.b).

Relations (4.14.b) and (4.14.c) are implemented in a computer routine FELRAM
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to study the tracking aspects of the elbow arm using feedback linearization. Typical results
are shown in Figure 4.13 for tracking a rose and Figure 4.14 for tracking a square. Almost
perfect tracking is obtained. The accuracy of tracking is high and the control voltages vary
smoothly during tracking, i.e. they are free from noise.

The maximum percentage of the error is down to 0.0156% for the rose and down
to 0.273% for the square. It was impossible to reach these levels with any combination of
gains in the PDG case.

It should be noticed that the governing relations of the elbow arm contain strong
nonlinearities which manifest themselves in terms such as sin(g,-q,), cos(q,-q,), €os(q,),
cos(q,), (q,' ) and (q,' ). One cannot generalize or extrapolate the findings of one case to -
predict another. However, judging from the very large number of simulation cases which wére
performed, it was consistently found that the feedback linearization, for the same gains, gave
much higher accuracy and slightly higher torques in comparison with the PDG control. The

torques for the FBL were also found to be much smoother. The fact that the torques were
found to be consistently higher for the FBL in comparison with the PDG can be explained by
comparing the expressions for the torques t for the two regimes, i.e. equations (4.6) and
(4.14.¢).

Some unusual and unexpected results were encountered during simulation. The
results were repeatable and consistent for numerous simulations using different position and
velocity gains for both the PDG and the FBL. The following is a short list for our

observations:



112

0.4

o
+
[(M]

Y-Coordinatae (m)
[=]
o

0
0.1 0.2 0.3 0.4 0.5

X-Coordinate (m)
(a) Trajectories. —~ serzreNcE -o ACTUAL

_0.005
¢ ‘ ‘ .
0 0.5 ] .5 2 2.5 3 3.5
Dimensiconless Time T
{(b) Percentage error.
3
2 1 - _ f\ — e ol _/__“i .
e g L ; N ; S
s | \ .
| \ ! { ;
" \ S ————
+ ’ ! T
7 o1 .,,_A._.,‘l..._._._._..._‘\\, I - .- .In _‘ .
S / \\‘. " 5‘\ i
-2 L _.-----.--.___-_“‘.‘_-!‘_--..-.-... ...“.\..-.*j-
AV, ~—
-3 .
0 0.5 1 1.5 2 2.5 3 3.5

Dimensionless Time T
(¢) Command voltages., —ui+ —u2’

Figure 4.13: Feedback linearization-RAM (rose).

-almost perfect tracking(k,=k,,;=0.3%107* ky,=k,,=0.1x10° ; V=3 m/s ; ©,=5.671 rad/s)



Y-Coordinate (m)

o ©0.1 0.2 0.3 0.4 0.5 0.6
X-Coordinate {(m)

(a) Trajectories. —— RSFERENCE —- ACTUAL

0.4
€
002 domiim e e
0 A h — \\
0 1 2 3 4
Dimensionless Time T
(b) Percentage error.
3
i\.__./‘
.2 R i < -\
* . 1 .__._\]'. .......... }' ......................
0 — . l\
€_ 17 Koo T T TN
3 ™ | |
-2 “am - - __\ SEEREREENEE S
5 N
-4
o 1 2 3 ]

Dimensionless Time T
(c) Command voltages. —u1* — w2+

Figure 4.14: Feedback linearization - RAM (square)

113

- almost perfect tracking(k,=K;=0.3%10"; K4;=k,,=0.1x10° ; V=3 m/s ; ©,=5.671 rad/s).
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Many sets of gains failed to yield successful tracking using PDG. The same sets
when used with FBL gave almost perfect tracking.

Violent oscillations and sharp spikes in the command voltages are generally filtered
out by the dynamics, specially with FBL, and are never felt in the actual tracking,
There exists sets of gains which can give optimum tracking, i.e. with the lowest
possible percentage error for the lowest possible command voltages. These are
hard to define analytically. They are obtained here, for the simulation, by a trial-
and-error approach.

The FBL is indeed a robust control. The gains were brought down from (0.3 x107,
0.1x10°%) for k, and k; to (0.3% 10%, 0.1). Tracking for the rose and the square was
still possible and was smooth and acceptable with a maximum percentage error
equal to 0.0356% for the rose and 2.31% for the square. The only thing that
suffered was the command voltages which exhibited violent oscillations as shown
in Figure 4.15. In spite of the oscillatory nature of the command signals, the
smoothness of the actual tracking was not affected too much.

The PDG control was found to be super sensitive to the variations of the

parameters of the system and to the choice of gains.
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4.9 FBL CONTROL FOR FIM
The FIM is written in the form:
MX[C1X[GlX k=2 (4.15.2)
where:

X=1[¢,, F,,d,, P,]Tand [M], [C], [G] and h are as defined by relations (2.21.b}.
1:=[‘.'.I,O,12,0]T=[p?u;,0,ugu;,0]r
with 1,°, 1,°, u,”, u,” as defined by (2.4) and (2.9).
For feedback linearization, one makes use of the error vector e given by:
e=r-X (4.15.b)

where r and x are the desired and the actual position vectors for every point on the trajectory.
< in (4.15.a) is chosen in the following form:

=M y.[ClX+IGlX+k (4.15.¢)
where:
v:=[Kle«[K]e+V¥ (4.15.d)
[K,] = An all-zero (4x4) position gain matrix except for (k;),, =k, ; (k)33 = ks
[K,] = An all-zero (4x4) velocity gain matrix except for (ky),; = kg, 5 (ko) = kg

Substituting (4.15.c), (4.15.d) in (4.15.2) one obtains:
MX+[ClX+[GClX-k-[C1X-[GClX+b-M{[K)e~[K]e 1L}

which yields
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X+ KJX+K)JX=[K]r- KL (4.16)
Simulation in this case is performed using relation (4.16), where the RH.S. is

known for every point on the trajectory.
=X -161X-b-M{Kle - Kle 2}

Using relations (2.21.b) one writes the first and third relations of the previous

matrix equation in the following expanded form:
}l? 111' = b" Xl’ + m:: Xl - 612 XZ + ka (rl - 'Xl) - kd} (rlf _ le) . rln

“g u, = by X'+ "’iXs “ b X vk, (- X)) - ky (ry - X))+ 1)

(4.17.a)

One can select fixed values for (k,;, k,;) and evaluate (ky, kg;) using:
by = (WS a] - Gy X+ 0] X, -6, X) -k, (- X) - 7”1/ 0/ - XD

kys = [ ""g uy - (by Xy - mi Xy - by X) - kp3 (ry- X)) -1 / (r) - X))
(4.17.b)

The previous strategy is implemented in a computer routine FBLFLX using the
Newmark algorithm. Several cases were sim:_.ated using different gains, integration steps and
parameters.

Typical results are shown in Figure 4.16 for an elbow arm tracking an ellipse. The
parameters of the elbow arm are as given by Equation (3.1). The following additional

parameters are also used:
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w,= 5.67 rad/s ; V=03 m/s ; no. of points = 395;

no. of intermediate steps =3, a=1/6 ;6 =1/2
ky=10;ks=10

In all the simulations, the controller was found to be robust as expected. The
response was found to be insensitive to small deviations in the parameters and gains.
However, the accuracy of tracking was found unacceptable for the majority of the cases
simulated. The maximum error percentage for Figure (4.16) was found to be 8.45%. The
command voltages, as shown in Figure (4.16.b) and the position gains as in Figure (4.16.c),
were found oscillatory. However, these oscillations did not affect the smoothness of the
tracking.

The feedback linearization control is judged to be inefficient in the presence of

compliance in the elbow arm.
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4.10 VARIABLE STRUCTURE CONTROL
In this strategy, the control valtage is switched from a + i to - & and vice versa
according to a prescribed criterion. Figure 4.17 demonstrates the basic blocks which form the

"variable structure" control as applied to a tracking elbow arni.

e
I L i dynamics of X
+ computing u yD
switching switch > the elbow -
= boundary px arm
; SN
I ’ 1\ ~ -
,’ II \\ ~ -
u 4 [ o
7 ‘ 1 S N
/ ‘ ’ ,I \\ ~ ~
¥ / 1 S
/ / \ ~ N
I! /l \\ N .
/, / A ~_
* u u u
b ¢ ¥
A
swi{ching ideal saturation dead zone
dez
boundary Q) (sat) (dez)

Figure 4.17: Variable structure contrel.

The signal f(e,e’) obtained from the "computing switching boundary" block is

applied to a switch whick can be any one of the following types:

* Anideal relay: "SGN".

* A relay with a narrow linear band around the origin,

* A relay with a dead zone: "DEZ".

i.e. saturation: "SAT",
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The "SAT" and the "DEZ" types are used to introduce smoothness in the command voltages
during switching.

The "Variable Structure Control" has several advantages. The most important one
is attributed to the fact that it is essentially a "robust controller”, i.e. a control system which
is not sensitive to modelling errors. To implement variable structure control, one does not
have to use the exact parameters. Only upper and lower bounds of these parameters are
required. The approach is normally adequate as long as the variable bounds are reliable. To
formulate a "variable structure control” law, one has to set the dynamic model of the system
in terms of the error signal e and its derivatives. The "variable structure control” is known
in practice under different names and variations. The "ON-OFF", the "bang-bang” and the
"sliding control" are just a few. The strategy is essentially a minimum-time control problem.
Pontryagin's minimum principle can be used to show that this type of control is an admissible
class which achieves the transition frora an initial state to a target set in the state space in the
shortest time.

Here we develop the strategy for the control of a rigid single link manipulator. The
system is essentially a single degree of freedom positioning servo. One can use relation

(2.2.d) for the actuator to write:
. b k, k . k
NJMI¢N(bm+——£+bm)x=[—E)uo

where the coefficients in (4.18.a) are as defined before in Chapter 2. Referring to Figure 4.18,

°  (4.18.a)

L
N

one can write the following relation for the dynamics of the link:
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©°-IX+malX+mga cos x (4.18.b)

Figure 4.18: External forces and torques on link.
where I, m and a_are the mass-moment of inertia, the mass and the distance from the motor

to the center of mass of the link respectively.

Eliminating t° between (4.18.a) and (4.18.b) and introducing the dimensionless time

T defined by (2.3) one obtains:
X"+ ()) X' +bhcos X=0 & (4.19)

where:

- mga,

mg(Nsz.Ioma‘.z)

e
n-
|
try
o
[
o

(4.20)
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Primes refer to differentiation with respect to the dimensionless time T.

The mathematical model given by (4.19) can be further simplified by dropping the
term (b cos X) which implies that the link is now operating in a horizontal plane. The system
becomes linear and is described by: |

X"+ EX -u (4.21.2)
where u(T) is an unknown control command which is required to drive the state vector from
its initial position to its required target position in the state space in the shortest possible time.
Adopting the "SGN" control law, one can construct the block diagram shown in Figure 4.19

where b is a feedback gain.

dynamics of

switching
boundary switch actuator
T, e f(e,e')> aTIT_u) {1/k) X‘ .
- Il 5 S[1+(1/K)s]
e'

Figure 4.19:‘Variable Structure Control for a Single Link.

One can define
e=r-bX;e =r'-bX ,u=dsgm [f(ee)] (4.21.b)

where sgn{n) is a function which is defined as follows:
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sgn(n) = lforn> 0
=-lforn< 0

= 0 forn=10

1(T) is assumed to be a step demand given by:
rHD=4U0, D ;rrM=0
where: A, = Step height (constant) ; Uy(T) = Unit stepat A=0

Using equations (4.21.b) one can express the relation which governs the single link actuator

in terms of e and its derivatives as follows:
e’ + ke’ + b sgnfflee)] = 0 (4.22)

where:

Ll
n
o
+1)

For f{e,e') > 0, the previous relation has an exact solution. The phase plane

trajectory in this case can be shown to be given by

e=A‘- —-1: e’+ -f— In
)2 E?

which represents a family of trajectories which cover the e-e' phase plane with A, as a
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parameter. It is noticed that as T~e, &' approaches a limiting value (- B/ E) and e approaches
-, When plotted in the phase plane, the trajectories appear as distorted parabolas with their
branches pointing in the direction of the negative e-axis as shown in Figure (4.20.3).

The case of f{e,e') < 0 is associated with the trajectories given by:

They appear as shown in Figure (4.20.b}.

The phase plane portrait of the single link manipulator is as shown in Figure 4.20.c.
The representative point is confined to move along one of these trajectories at a time. When
fle,e) is positive, the movement takes place along a trajectory marked with (0). When fle,e")
is negative, the movement is confined along a trajectory marked with an (X). Switching from
one family to the other occurs whenever f(e,e') is zero.

One is free to select the switching boundary f{e,e") which has to pass by the origin
of the phase plane. A simple choice for f(e,e} is a straight line given by:

fleeY=¢e" «ve (4.24)

where v is a positive constant. This is not the best choice since the system takes a longer time
to reach its equilibrium state. Multiple switching and chatter are inevitable. The upper part
of the trajectory for f{e,e’) > 0 which passes through the origin and the lower part of the
trajectory for f{e,e') < 0 which also passes through the origin furnish an optimum switching
boundary. That boundary guarantees one switching and smooth sliding to the equilibrium

ctate in the shortest possible time.
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(a) Case f(e,e") > 0.
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(c) Phase plane portrait.

Figure 4.20: Step response of a single link manipulator.
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To facilitate the implementation of the previous strategy in practical systems, one
drops the damping term k from equation (4.22). One can show that the phase plane portrait

in this case is given by:

(=]

(eh? = A, Jor flee’ > 0

-
L
°‘.I

[ 3]

e,

(=]

(e) = A, for fle,e) < 0

[ 8]

(4.25)

,
[ 8]
Cat

.

These represent two families of symmetric parabolas in the phase plane as shown in Figure

(4.21).
4 ::_:—N._‘-'—.“le = I i~ -
/ = NN v _ v ¥
straight line T T
switching
R boundary
®
optimum
== - switching - -
= “:;‘-.‘:_T-;,'_.tbounda:y

e

Figure 4.21: Phase plane portrait for k = 0.
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The optimum switching boundary is formed by the upper part of the parabola
through the origin for fle, €') > 0 and the lower part of the parabola through the origin for
f{e , €') < 0 as shown in Figure (4.21). The governing relation of the optimum switching

boundary can be shown to be given by:

e+v e'le’l =0 (4.26)

where v = (1/2?).
This switching boundary is referred to as the VEE-MOD-VEE control. The name is selected
because of the presence of the term e'{e'|, 1.e. velocity-modulus-velocity of error.

Figure 4.22 shows typical step responses for the single link manipulator using a
straigﬁt line switching boundary. The parameters of the motor and links are as given by
relation (3.1). The slope v of the straight line was selected to be equal to 1.

It is noticed that the trajectories for A, = 12 and -8 are associated with more than
one switching. The trajectory which pertains to A, = 6 is unique. It is the only case in all
possible positive values of A, where only one switching is obtained followed by a direct
'movement along the only parabola that passes through the origin, i.e. without sliding along
the switching boundary. Thetrajectory associated with A,=-2 will have one switching
followed by a sliding mode towards the origin. The sliding mode in this case, although
appears as a smooth movement along the straight line boundary, is normally accompanied by
CHATTER. These are rapid and somewhat violent reversals of the command voltage as
shown in Figure (4.22.b) for the case A, = - 2, Figure (4.22.c) shows the responses of the

single link manipulator for four different sizes of the step input.
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The behaviour of the same system is shown in Figure 4.23 under the same inputs
when a VEE-MOD-VEE control is used. One notices a drastic improvement in the response
in spite of the fact that an approximate VEE-MOD-VEE switching boundary is used in place
of the exact one given by relations (4.23.a) and (4.23.b). Only one switching occurs
regardless of the step size. Comparing Figures (4.23.b) with (4.22.b), one notices that the

chatter almost vanished in the sliding mode when the VEE-MOD-VEE control is used.
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Figure 4.22: Straight line switching boundary (Step Response).

(Single link ©;=0.45x10* rad/s)
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Figure 4.23: VEE-MOD-VEE conirol (Step response).(Single link «,=0.45x10* rad/s)



4.11 SLIDING CONTROL FOR RAM

The equations governing the RAM are given by {4.2) which reads:
DI g +{ecla,.dN-{2@} {)} = {z} (4.27.a)
where

q=[¥,, ¥,]". The elements of [D], ¢, b and h given are as defined by (4.3.a) and (4.3.b).
is an unknown control command, yet to be determined, such that the wrist of the elbow arm
is guaranteed to track a prescribed reference vector r(T) which is known together with its

derivatives at any instant in time.

The model in (4.27.a) can be expressed in terms of the error vector e where:
e=[e ,el"=r-g
to obtain:
e = -DY'{z-c-b-Lk} (4.27.b)
Let x be the state vector of the system where
r=le e e, 1= [x.%5,%,%x])

Relations (4.27.b) can be written in the following expanded form:

x/ =x,; x, (or"-ow, +8, wz)/o

xl

. [
3 xd’xi%

(or'+B,0, - o, )/ o (4.27.¢)

where
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e
It
2y
R

£
I

-
]

R

n 1B » &2 1 13 12 571
Ky = dn 6, » By T dy » By = Gy Sy
B, =ap ¢y DBy =ay 0y
- -
o = T4y Ay Oy
c, =cos(r,-x1);c2=cos(r2-x3)
e, =cos [(r,-x,)-(r -x)]
s, =sin [(ry-x,)-(r -x) (4.27.c)

The a;s are as defined by (2.18).

The objective now is to find a control law, i.e. select = [t, t,]" as a function of x
such that tracking is achieved with the minimum possible deviation from the reference vector
r(T).

A switching boundary S(x) is chosen in the form of a hypersurface to perform the
same task as that of the straight line switching boundary discussed in the previous section.

S(x) is essentially a linear decoupled combination of e and ¢' in the following form:

JS, K, 0 x, X,
S (o) = - . 427.d
s s, 0 X, || =x z, #.27.d)

when K, and K, are any two positive numbers. The diagonal matrix [K] is known as the

sliding mode gain matrix. t is chosen to drive the system towards the chosen switching
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surface in a finite time after which the system is confined to slide on the surface towards the
equilibrium position. The last state is referred to as the "SLIDING MODE".

In the "sliding mode", the following condition is satisfied:

S =0 (4.27.¢)

An exanination of (4.27.d)and (4.27.e) shows that the error, in the SLIDING mode, is
independent of the parameters of the elbow arm. It is solely dependent on the [K] matrix
which controls the slope of the switching surface and consequently controls the "rate” at
which the error decreases. Since the solution of (4.27.e) is totally independent of the
parameters of the elbow arm, the SLIDING mode is ROBUST. Of course this is only true
when one has a smooth operation which does not excite the higher modes.

The desired control law, i.e. the definition of T , is achieved by considering a

Liapunov function V(x) for the system. A natural choice is given by

ll—l

V)= — S @ S @ (4.28.2)

[

It is obvious that V(x) satisfies the conditions

V)20,V (x)-0 only if §(x) = 0

It remains to enforce the condition required for negative slopes for V(x). For convergence to

the equilibrium position, the following inequalities have to be satisfied:
$8/<0;8,8'<0 (4.28.b)

To guarantee that the representative point approaches and reaches the switching
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surface in a finite time (T4, one should find two positive numbers, n, and m,, which satisfy

the following inequalities:

5,8/ '<-m | 851:88<-2,]8] (4.28.¢)
If 1), and n, are found, then (T),. is given by:

hy hY
e [ 21180

4.28.d
o, (4.28.d)

To construct the control law, one must first establish bounds on the robot’s
parameters including r' and r". One can thus assume:
+0 <0, <0 <0, s v/l £ e (G =12)

el € visi=12 sl € ey (= 1,2), G = 1,2)

» B} < By i =12 (4.29.2)

where the subscripts L and U refer to lower and upper bounds and the bar above the variable

refers to an average value.

Using relations (4.27.c), (4.27.€), (4.28.b), and (4.29.a) one can construct the

control law in a direct manner as follows:
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18 =8 K, x/+x))

s,(le,.{F o

rl”awl+[51m2}/o)

Y —_ _—
=T;%[Klux2+Grl”-‘rl*all*mlz(rli'xz)
2 2
@y () - x) By Ty- Byay - Byay () - By oy (7 - x) ]
—Sl S " '
-f(-t“ B, 1:2)* LYKy X ey ey - By y) g, () - X)) -

By ey () - X)) - By 0y () - x) - gy () - x) ] / ;}

From the previous relation one can write:

' S'l
SISI < f(-‘rlopl‘tz)qlsllo

Kiox),+r/+ [ (), - By &y) v e {r) - x)

By Gy () - X7 - By &y (1) -3 - 0y () - )] / o

;(-‘fl*pafz)*”l"’[

K, x,

+

nl I(“’u‘ B azl)l
fl * — +
g
2
I %, () - x) |+| B, ey () - x) |+l By @y (1) - %)

[¢]
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S » - - = L] L]
S_._l('fl’ﬁltz)"ISJ'{Kllle*vl" (“11’91“21)’“12(91*ile)*
o
B;a;’a(p.}'lle )2+l3'1a;2(p;+|r4|)vm;3(p;+|x4| )Z/OL]}
I Sl L4 S 2 2
S8, = "—T("t:’pi"z)*l1|'(F11*“12x2’|"13x4)*
¢ .
u;[‘g]xzi'u3|31x4|
where:
5‘u="1’[(“11*91“2:)*“1291*Bl“ﬂpl*Blanpz"“upz/cz.]
mp = B “;‘J/OL ’ "13=“';3/°L

ny s K[ (a2 By e) /o] 5 om = (Bene2anp) /o

(4.29.b)

The p;'s and p;'s are all known quantities in terms of the bounds given in (4.29.a). The

coefficient of (8,/&) in inequality (4.29.b) can be written in the form

-t By, = ¥
where

¥y= - [kysgn (S) «kysgm (S, %,) kysgn (5,%,)] (4.29.0)

where the k;’s are constants to be determined. Substituting (4.29.¢) in (4.29.b) and making
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use of the relation

n sgn(n) = |n|

one obtains:

Ay
5,8 < --:l[k"sgn S« kysgn (S, x,)kysgm (S,x,)]-
o

2 2
S| ’(1’11*“12"2*“13"4)"‘2'Slle*“3'31"4'

IA

k k
- -:ll ISI| - _.1_2 | Sl xz 1 = g 1 S] x4 l +
o o] (]

2 2
isll'(uu’uux;’“;gxd)*"lzlslx;l"‘lslslx‘l

k k
2 1 12
S‘Sl’g(pn+unx:ounx4-i]|81|+[p2-_]|Slx2|+
o

(o]
k
[F;“—l—:"] |S|x4l
o]

The previous inequality can be satisfied by choosing large gains for k;,, k;,, ki3 in specific,

(4.29.d)

these should satisfy:

— 2 R -
k11> [+ [Iln + p-u (xz)max"' [113 (x)m] ; k12> o ’, ; k33> p "3

(4.29.9)

It is obvious that a reasonable estimate for (Xy)p., and (X4)m. 15 Necessary to define the k;

gains.
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A similar treatment for the second inequality in (4.28.b) yields:

’ 2
S, S, <

alll

. 2
([321-',-1-'2)*|Sz|'(ll21+l-1221:*!-l3x4)*l-lzlszx2|+

|13|3214|

where:

. . . . . . . a2 . . a2
1‘21="2*(“21*Bz“u*B:“uP:*Bz“an*“zzpz"“zspl)/OL
“zz=“73/°1.

s oy = (Byan)/ o

u4=(B;“12*2“;3F'.1)/°L > “5=K2*(“-22’2B;“-139.2)/°:.

(4.30.a)
All the p;'s and the p;'s are known quantities. One can introduce
prr, - T, = ¥,
where
P,=-[k, sgn(S) + ky, sgn (S, x,) + ky sgn (S, x,)1
(4.30.b)

where the k;’s are constants to be determined. Substituting (4.30.b) in (4.30.2) one obtains

the following inequalities which have to be satisfied:
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- 2 2
k21 > g [ }12[ * 5122 (xz)m * Roy (x‘)m]

kp > o u,
k.> o T8
® ? (4.30.0)
Solving for t, and T, using (4.29.c) and (4.30.b) one finally obtains:
¥, - B; ¥, . B,
tl= _-—————T—T— 5 Tz= “__—__T_.. GLSI)
1- Bl ﬂz 1 - B) Bg

The previous strategy can be implemented in a computer routine to simulate the

tracking problem for RAM using SL]DING MODE control.

4.12 SUMMARY OF CHAPTER 4

A number of conventional strategies were developed for the control of the RAM
- and the FIM for elbow arms. Some were simulated and gave satisfactory results in terms of
accuracy, smoothness of traced trajectory and the levels of the command signals. However
the majority showed an oscillatory response for the command voltages.

The NIT control developed in the previous chapter compares very well with the
best performance obtained so far in terms of accuracy, smoothness and cost of computing

time. It may be only next to the “sliding mode” control in terms of response time.



CHAPTER 5

EXPERIMENTAL SETUP

5.1 OBJECTIVES

The objectives here are to build an experimental setup to validate some of the
control strategies which were developed in the previous chapter. The experimental setup is
referred to as "FLEXROD" for "Flexible Robot Device". FLEXROD was designed,
manufactured, assembled and debugged in the Laboratories of the department of Mechanical
Engineering at McMaster University. It was designed in a modular form to facilitate its
adaptation and extension to perform other future research activities in this area.

AUTOCAD was used to prepare the final drawings for the parts of FLEXROD.
"Harmonic drives" were used for speed reduction. "Transputers" were emp!rred for
computer hardware, Timing belts with steel cable as. core were used for power transmission.

FLEXROD as it stands today consists of an "upper" and a "lower" arm complete
with their actuators, controllers and sensors. The setup can be easily extended in the future
to include a "shoulder" for azimuth rotation and a "hand" for pitch and roll movements. In
other words "FLEXROD", when reaches maturity, will be a five-degrees-of-freedom
experimental manipulator which will serve a wide spectrum of research activities because of

its built-in modularities. It will then have the following characteristics:

141
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Payload 1.5 kg ; reach 0.6 m

linear speed 0.6 m/s ; repeatability = 0.08 mm
A brief description of FLEXROD is given in the following sections. The

architecture of the associated software is covered in the next chapter.

5.2 GENERAL LAYOUT

Figure 5.1 shows the general layout of FLEXROD. Joints (1) and (2) are equipped
with harmonic drives as speed reducers. Any or all of the links can be rigid or flexible as
required. Strain gauges and accelerometers can be attached to link 2. Figure 5.2 shows the

assembly of the upper and lower arms of FLEXROD. The assembly in Figure 5.2 consists

of:
ITEM NO. DESCRIPTION NO. OFF
1 Base plate (1)
2 _Fixed shoulder (two channels) (1)
3 DC motors complete with their encoders (2)
4 Motor supports 2)
5 Flexible couplings to connect motors
to respective axles (2)
6 Power-off brake (2)

7 Axles for joint 1 )
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link 2

spacer and bearing-housing

pulley and timing belt

harmonic drive

arle for joint 2

link 1

1035

spider coupling

shoulder

-—— e —— ]

motor support

~~——motor and encoder

“~——power-off brake

flexible coupling

ot} —-—————— 590 ——"‘—————“.:\\\\\\
base

Dimensions in mm.

Figure 5.2: Assembly of upper and lower arms of FLEXROD.
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ITEM NO. DESCRIPTION NO. OFF
8 Axle for joint 2 (1)
9 Harmonic drive (2)
10 Spider coupling between flexspline and
link @
11 Spacers and bearing housing 4
12 Ball bearings (10}
13 Links (2)
14 Pulley and timing belt transmission (1)

5.3 SUBASSEMBLIES FOR JOINTS 1,2 AND LINK 1
Figures (5.3),(5.4) and (5.5) show the details of the assemblies of joints 1, 2 and
link 1 respectively. They are drawn to scale. The following is a list of parts:
PART NO DESCRIPTION
1 D.C. motor complete with encoder.
2 Harmonic drive 1: three parts; wave generator (WG), flex spline (FS) and

circular spline (CS).

3 Pulley and timing belt transmission.
4 Hub to accommodate pulley.
5 Right spacer and bearing housing for joint 1.

6 Spider coupling to connect (FS) of harmonic drive 1 to link 1.



PART NO

10

il

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
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DESCRIPTION

Right axle for joint 1.

Securing nut for pulley at joint 1.

Adaptor ring for (FS) of harmonic drive 1.

Securing nut for outer bearings of the axles of joint 1.
Securing nut for spacer and bearing-housing for joint 1.
Left spacer and bearing-housing for joint 1.

Ball bearing housing for spacer at joint 1.

Left axle for joint 1.

Housing for axles of joint 1.

Motor support.

Fixed shoulder.

Lateral walls of link 1 at joint 1.

Lateral walls of fink 1 at joint 2.

Axial angles of link 1.

Axial angles of link 1.

Window with dowels for link 1.

Lateral bars for link 1.

Flexible coupling.

Washers for axles of joint 1.

Right spacer and bearing-housing for joint 2.



PART NO

27

28

29

30

31

32

33

34

35

DESCRIPTION
Axle for joint 2.
Securing nut for outer bearing of axle 2.

Securing nut for pulley at joint 2.

Left spacer and bearing-housing for joint 2.

Axial angle of link 2.
Lateral angle of link 2.
Lateral walls of link 2.
Spider coupling for joint 2.

Base.

147
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The detailed workshop drawing of each part was prepared using AUTOCAD.
Typical drawings for parts 5 and 6 are shown in Figures 5.6 and 5.7.
The following remarks shed some light on FLEXROD:
a) All parts, except for the axles and washers, are machined from stock using
ALUMINUM 6061-T6.
b) Dowels are used in the assembly and mounting of the windows and lateral strips of
links to ensure mechanical integrity and dimensional stability.
c) The base, machined of a heavy steel plate is anchored to a seismic concrete

foundation to isolate FLEXROD from unwanted ground excitation.

The remaining sections of this chapter deai with parts of FLEXROD which were

acquired from reliable manufacturers.
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5.4 THE ACTUATORS

Two identical DC servomotors are used to drive the upper and lower arms. The

technical specifications of each motor are as given after:

Servomotor

Rated power

Acceleration

Outer diameter of body of motor
Axial length of motor less spin axis
Diameter of spin axis

Weight

Mass moment of inertia

Viscous friction constant
Sfiction friction torque
‘Max RPM

Peak torque

Continuous torque

Time constant

Armature resistance

Volts at peak torque(stall)
Amps. at peak torque

Back e.m.f. voltage

M3515B - CRS PLUS
0.195HP =148 W
79,500 rad/s?

85.7 mm

127 mm

11 mm ¢

2.3 kgf

0.7 x 10* kg.m?
0.01 N.nvkRPM
0.04 N.m

3000 RPM

6.35 N.m

0.73 N.m

3.9 msec

0.84 ohms

5.81 Vdc

44.6 amps.

14.9 Volt/kRPM
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(cont.)

Motor torque constant 0.143 N.m/amp.
Encoder type 1000 lines differential
Amplifier PWM

5.5 THE HARMONIC DRIVE

Two identical harmonic drives are used as speed reducers to step down the speed
from the actuator to the associated link. The harmonic drive consists of three basic elements

as shown in Figure 5.8, namely,

* A Wave Generator (WG) in the form of an elliptic steel ball bearing assembly.

* A Flexspline (FS) in the form of a thin wall steel cup with external spline teeth.

* A Circular Spline (CS) which is essentially a thick wall ring with internal spline
teeth.

One of the three elements mentioned above has to be held fixed in inertial space.
An element is to be attached to the input axis and another to the output axis. For the elbow
arm, the input is imparted through the wave generator (WG) which is driven by the associated
motor through a flexible coupling. The output is tapped from the flexspline (FS) which is
coupled to the associated link through a spider cage. The circular spline (CS) of the harmonic
drive is held fixed to the housing of the input shaft. The technical specifications of each

harmonic drive are given after.



/\ P Flexspline Wave Generator
Circular Spline (FS) (WG)
(Cs)
as 6 UNTHREADED
o - HOLES35¢
l:- 14 -:1 y
| :3.4'—| J%\_\“_/
6 UNTHREADED | 1
HOLES 4.5 ¢ 1.4l sap| 7°°
il o
s il R
J_‘ér“ Si¢ %/ﬂ S0g
O]
S RN
/ Y

(KEYWAY)
3 mn» width X 1mm depth

Dimensions in mm.

Figure 5.8: Harmonic Drive.
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Harmonic drive HDUC-20

Rated speed ratio 100

Input speed 500-3600 RPM
Tabufated output torque 30-36 N.m

Max. output torque 54 N.m

Moment of inertia 0.14 x 107* kg.m?
Tabulated average spring rate 1.318 x 10* N.m/rad
Lubrication Harmonic Grease SK-1A

Figure (5.9) shows the schematics of a typical load deflection curve for the
harmonic drive. The curve is furnished by the supplier. The curve is obtained with the input
shaft locked. The tabulated load as well as the tabulated average spring rate are as given in

the list of specifications.
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Tabulated Load -
+ 4
/ .
Tabulated Average /’/ / '
SpringRate  — |
Defiection / /

Figure 5.9: Schematics of load deflection characteristics of a harmonic drive.

In this thesis a linear spring is assumed in all models. The inclusion of hysteresis and

the nonlinear characteristics of the drive are possible but are considered out of the scope of

this work.

5.6 THE COUPLING

A flexible coupling is used to connect the output shaft of the DC motor to the axle

which drives the wave generator (WG) of the harmonic drive. The coupling is used to
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accommodate parallel misalignment, skewed misalignment as well as the axial motion as
shown in Figure (5.10).

The used coupling is a monobloc which is carved in a way to contain multi-

overlapping curved beams. The specifications of the coupling are as given after.

Coupling ROCOM with six short curved beams
Part no BL0100-C10MM-C10MM
Material QQA225/6-2024-T3.51 Aluminum with

MIL-A8G25 black anodized
Misalignment parallel offset 0.01",

skewed offset = 5°, axial motion 0.01"

Max.torque rating 6.25 N.m
Life tests in accordance with MIL-HDBK-5A
Dimensions (see Figure 5.10):

D=1";L=1";E=028";F=041"

B1=0.375";B2=0.375"
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Figure 5.10: The coupling,

5.7 - THE POWER-CF¥ BRAKE
Each D.C. motor is equipped with a power-off brake which is activated when the
power is tumed off. The schematics of the brake are us shown in Figure 5.11. It consists of

a coil field assembly, a friction disc and a pressure plate. The specifications are as follows:

Power-off brake INERTIA DYNAMICS INC.
Type FSBROO07
Steady torque 0.79 N.m

Electrical Voit=24 dc ; Amps = 0.247 ; ohms = 97.3
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Dimensions (see Figure 5.11)
A=14";B=12";C=1255";D=0.722"

E=2465";G=0.781",; e = 0.01"

=\ coil field fricts
{ assembly dijé% ion pressure
C
/ 3] / plate

motor

IS ///14] ______ @ _ d ] % /’ A
7/

/////f///é‘W\WW\\ !
_______ I I O - -z__ﬂ_#__tfg_ E

y
AAIA1I777
7

71y
\
D
|

] ~r J
YA LIS Y

NN

> output shaft
- / B . ’\m motor
—_— A
keyway

Figure 5.11: Schematics of power-off brake.
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5.8 THE TIMING BELT AND PULLEY

The lower arm is driven by a D.C. motor which is attached to the shoulder of
FLEXROD. This calls for a power transmission of the belt-pulley type. The transmission has
to guarantee the "NO-SLIP" and “zero backlash" requirements. A timing endless belt and two
pulleys are used. The schematics of the parts are as shown in Figure 5.12. The specifications

are as follows:
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Gear drive BERG-BS

Belt endless molded with steel cable as core. Strength 20 1bf'; hardness
90A; DURO; weight 0.11 oz/ft ; width 13/64"

Pulley E-Z ENTRY-32D4-128
Pitch diameter 4" ; outside diam. 4.062" ; No. of teeth 128

Dimensions are as shown in Figure 5.12.

Figure 5.12: Timing belt and pulleys.

5.9 PARTS AND SUBASSEMBLIES OF FLEXROD
Figs. (5.13) to (5.24) show close ups to demonstrate the details of the parts and

subassemblies described before. Figure (5.13) shows the assembled Harmonic drive. Figures
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(5.14) to (5.16) show the average wave generator, the flexspline and the circular spline
respectively.

Figures (5.17) and (5.18) are close ups for joint 2 and its parts. They show the
harmonic drive, the spider and the tifne—belt.

Figure (5.19) is a :lose up of the D.C. motor and its support cage. The figure
shows the C-channel used for the fixed shoulder and shows the encoder. Figure (5.20)isa
close up for joint 1 and shows the two motors mounted to the two channels forming the fixed
shoulder.

Figure {5.21) is a close up showing the mounting to the seismic block. Figure
(5.22) demonstrates the assembled FLEXROD with the auxiliary equipmen. for its controls.

Figure (5.23) is a close up for an Industrial controller acquired from CRS-plus for
the investigation. Figure (5.29) shows FLEXROb during an investigation where link 2 was

assumed possible.
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......
!

Figure 5.14: Wave Generator.



Figure 5.16: Circular Spline.



Figure 5.18: Parts of joint 2






Figure 5.22: Assembled FLEXROD.
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Figure 5.23: Industrial Controller for FLEXROD.

Figure 3.24: "FLEXROD" with flexible iin ..
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5.10 SUMMARY OF CHAPTER 5

The mechanical setup was described in this chapter. The design, manufacture,
assembly and debugging were all made in the Laboratories of McMaster. The setup is
designed carefully in a modular form to allow for the investigators to be carried on for this

thesis and for future ones. The state of the art technology is used in its development.



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 OBJECTIVES
In this chﬁpter we start by a brief review of the controller’s hardware and its

architecture. This is followed by a description of the development of the interface between

the sensors and the controller. Typical test results are reported and analysed. These tests
have the following objectives:

a) Checking the data acquisition system and the developed interface units to assess
their accuracy and limitations. To that end, FLEXROD was equipped with 50 mm
by 3.2 mm of length 1000 mm flexible forearm which was adequately equipped
with sensors to measure the deflections at some selected points. The output signals
from the sensors were fed to the controller for processing. The experimental
resuits were compared with the analytical solutions using an available Finite
Element package.

b) Comparing the path of the wrist point when brakes are applied to the motors with

the analytical prediction.

171
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6.2 CONTROLLER HARDWARE AND ARCHITECTURE

An industrial robot controller was acquired from CRS PLUS. It is known as the
ALPHA C500 transputerized controller. This model was selected because of its open
architecture which allows the implémentation of the proposed controls for the elbow arm.
The ALPHA C500 has a host PC and two transputers known as T400 and T805 from
INMOS. These transputers allow the algorithms that control the motion and task execution
to be changed easily. One transputer is known as the “Kinematic Transputer” and the other
as the “Servo Transputer”. The first executes kinematics calculations during the motion of the
elbow arm and also can perform force-adaptive control. The second transputer executes a
Proportional plus Derivative plus Integral local joint control. The ALPHA C500 has the
capacity to handle six robot axes and can accommodate two additional signals. The controller |
has a parallel architecture which allows two tasks to be executed by different processors
independently. This parallelism is termed parallel pipeline system in computer literature.

The pipeline architecture is shown in Figure (6.1) and is interpreted as a computer
inside another computer. Further details regarding the transputers are furnished by the
marnuals from INMOS. Figure (6.2) shows the data paths between the individual units of the
T805.

PARALLEL C from “Logical Systems” was the language which was used
throughout this investigation. This choice was a consequence of the fact that the software
package which is already residing in the controller was coded in PARALLEL C. This

language provides vast options for compiling the programs through the "makefiles" and real-



time controls through several commands.
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— accelerometer 1

L accelercmeter 2

————1— strain gauge 1

— strain gauge 2

1 2
0 SLOT #3
SLOT #0
A/D TRAM
a
2 1
1 3 2
SLOT #3 SLOT #2
1
0 0
3 3
KINEMATICS SERVO
TRANSEUTER TRANSPUTER

80286 BUS TO 80286/80287 HOST PC

NOTE: NUMRERED BOX ENTRIES DESCRIBE NETWORK NODES.

L strain gauge 3

Figure 6.1: Parallel pipeline architecture of the controiler.
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6.3 DEVELOPMENT OF THE INTERFACE UNIT BETWEEN SENSORS AND

CONTROLLER

A three-axis accelerometer and three quarter-bridge strain gauges were installed
on the flexible link of FLEXROD. That prompted the need to develop an interface that allows
the controlier to communicate with its sensors. A conventional A/D converter will not solve
the problem because it is supposed to interface with sertal microprocessors. A Transputer
Mgodule ADTI108, known as A/D TRAM, is implemented in the controlier. Real-time
subroutines for the A/D TRAM were developed to perform the network communication
protocol as depicted in the architecture shown in Figure (6.1). Great care was taken in writing

the protocols to preserve the levels of priority of execution. Figure (6.3) shows the ADT108

A/D TRAM architecture,
Egﬁuﬂnn
FIPE-LINING
[ 1 PROCRANMABLE  SAMPLE REGISTERS INMOS
GAIN AMF & HOLD LIMNE
X coil e i
1 e
H het~ Sl e
- AOARTTR
? p—
RS
CHANNEL
SEB.LCT
EXTERNAL TRICCER
THYZCEH SELEeT |
scAN
st COMTROL
corTuaRy
THIwWLLR

PROCRAMMABLE
CRYSTAL
OSCILLATOR

Figure 6.3: A/D TRAM ADT108 architecture (source: Sunnyside [60]).
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6.4 CHECKING DATA ACQUISITION AND INTERFACE UNIT

Programs "IT" and "IT902X" were written in RAPL-II, the robot language, to
make the arm execute a series of movements as shown in Figure (6.4}, and Figure (6.5). The
HP dynamic analyser was connected to the rig and data from the strain gauges and the
accelometer were collected over a period of 48 s. The sensors were calibrated using a Nicolet
oscilloscope before the test. The experimental setup is shown in Figure (6.6).

Objectionable noise was observed and its source was traced to the PWM modules
of the DC-servomotors. The software filter which is available in the dynamic analyser was
reprogrammed and the problem was solved.

The following series of tests were conducted:

(2) Time history of the deflections of the flexible link and the accelerations at the wrist point.
(b) Power spectrum analysis of the captured signals received from the sensors.

The signals were directed as follows:

channel 1: _tangential component of acceleration
channel 2: radial component of acceleration
channel 3: middle span strain gauge

channel 4: root strain gauge

Figures (6.7) to (6.10) show typical results of the Lower spectrum of the 4 channels
for the IT and the IT902X programs is a plot of the first five mode-shapes. Figure (6.11) of

the flexible link as obtained from Finite Element analysis.
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PROGRAM "IT™
@ @ 1: SPEED 10
2: MI 2.5,-1.25
3: MI -2.5,1.25
4: RETURN

5:%

o,

—t

I

= ©,

R

Figure 6.4: Program "IT".
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PROGRAM "ITS02X"

i: SPEED 10

2: MI 0.8,-1.25
3: MI 0.8,1.25
4: MI -0.8,-1.25
5: MI -0.8,1.25
6: RETURN

7:$

PN ®

TITT77777TTT77777

Figure 6.5: Program "IT902X".
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Figure 6.11: Mode shapes of flexible link Finite Element Analysis.

One can draw the following remarks:

The power spectrum of the signals showed that the peaks correspond to the natural

frequencies. These are listed in Table 6.1 together with the Finite Element results.

Deviations attributed to the different configurations assumed by the link in space.
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TABLE 6.1 - EXPERIMENTAL AND ANALYTICAL FREQUENCIES

MODE EXPERIMENTAL FEM
Hz o’

1 231 0.27 1.91
2 | 12.58 1.5 13.2
3 23.34 0.58 na
4 32.82 2.62 na
5 43.56 3.49 38.6
6 5063 . 2.56 na
7 70.02 0.56 na
8 79.79 0.66 77.8
9 124.26 4.57 131.0
10 147.34 6.39 na

(b)

(d)

Small amplitude high frequency oscillations were detected. These are attributed to
the harmonic drives and the associated gear train.

It was observed that the amplitudes of vibration decrease as the arm stretches and
increase as the arm retracts..

The frequencies obtained from the experimental setup are in close agreement with
the FEM analysis, as shown in Table 6.1, in spite of the fact that the FE analysis is

a crude approximation of the actual link.
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6.5 COMPARING PATH OF WRIST POINT WITH ANALYTICAL PREDICTION
The signals generated by the 3-Axis accelerometer are acquired together with the
signals from the strain gauges placed on the flexible forearm. The strain gages used are
quarter bridges. The acceleration cdmponents are first transformed from the local frame to
the world frame then integrated twice using a simple trapezoidal rule with a time step in the
order of 1 msec. Using D-H inverse matrices one obtains the position of the tip at every one
msec. The developed parallel controller is able to sample at a remarkable speed of 1000 Hz.
Higher sampling frequencies are not possible at this stage of research because of the
calculations that the controller has to perform during the operation of the elbow arm.
Another limitation is also due to the 100 Hz clock cycle of the host processor which is
considered low for this type of application. However, the devised scheme proved to be very |
efficient in evaluating the position of the tip in real-time and also in providing most of the
sensory information that the flexible robot needs.

To transform the readings of the accelerometer at the wrist point to the world frame
we had to use the coordinate systems shown in Figure (6.12) with the proper D-H transfer
matrices. Flexibility of the links has to be taken into account.

One can isolate the second link and use the undamped vibrations solution of the

Euler-Bernoulli beam with clamped -free boundary conditions. This reads:

N(E,H) = {4 (cosh BE - cos BE) + B (sinh BE - sinBE) } sinw s (6.1)

where £ and 7 are the longitudinal coordinates and lateral deflections of a point on the centre

level beam. A and B are coefficients to be determined from the boundary conditions and
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Figure 6.12: Coordinate Systems for the Flexible Forearmn.

the constant B is given by:

p w?

B - ET

where p is the mass per unit length, E and I are Young’s modulus and the area moment of
inertia of the cross section respectively. In order to construct a simple solution only the first
fundamental mode w is considered. From the definition of Young’s modulus, one can write:

2cE1
M- S (6.4)

where b is the thickness of the beam and ¢ is the reading of the strain gauge. The chain slope
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A © between two points at £, and £, on the beam is given by:
AB - [ 2 & (6.3)

Integrating M = EI dn / d£% and using (6.1) one obtains:

AB(E,7) = B { A [sih PE + sin PE] + B[ cosh P& - cos PE ] } sinws  (6.4)
The strain is expressed in a similar form using (6.4) and the relation M = EI d’n / d&° to
obtain:

2 p?
b

{4 [cosh Px+cos Px ]+ B [sinh Px - sin Px]} sihws  (6.5)

Relations (6.5) and (6.4) can be rearranged in the form:

Lol o lla)

where the k;'s are functions of B£. One can express A and B in terms of £ and AB as follows:
A0

n={&ye-+K; A0) - (cosh BE - cos BE)

Ky Ky

K2l K22

Ky, Ky

Kn Kx

Finally, one can write

(X; £ + K}, AO)  (sivh BE - sin BE) ] sinot (6.3)

The signal from the accelerometer can be integrated after transformation to the world frame.
The above model was encoded in a real-time subroutine FLXTRF written in C++

to be integrated in the parallel network of FLEXROD. The parallel computer writes the
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sensor outputs to a datafile FLXTRF. The interface that saves the data was developed and
encoded using the parallel network and the A/D TRAM from Sunnyside Systems Inc.
Figure (6.13) shows the dynamic response of an elbow arm with flexibility in the
joint and another with flexibility in the link. They are staggered for clarity. The brakes were
applied for (8, = 50°, 6, = 20" for the first and were applied for (6, = 48° , 6, =20°) for the

second. Notice the length of the arch traced by the wrist point in each case.
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Figure 6.13: Dynamic response for the elbow arm with flexibility in the joint

(analytical) and an elbow arm with flexibility in the forearm (experimental).
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It is important to notice that the experimental results in Figure (6.13) are performed on an
elbow arm with flexibility in the joints and the forearm. The analytical prediction is made for
an elbow arm with exaggerated flexibility in the joints. If the trajectories shown in Figure
(6.13) are windowed and amplified one see a series of lobes as depicted by Figures (6.14) and
(6.15) the lobes dampen out. Figure (6.16) shows the window of the theoretical tip trajectory.
Again the agreement is reasonable taking into account the presence of flexibility in the arm
in the experimental setup. A damping assessment was done in Figure (6.17) and its window
on Figure (6.19). The structural damping of the flexible link was found to be 0.078 as

expected.
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Figure 6.14: Trajectory of tip of flexible robot in its path to stop position.
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195
6.6 SUMMARY OF CHAPTER 6

Experiments were constructed using FLEXROD to check the data acquisition
system as well as the sensors attached to the different points of the elbow arm to ensure
freedom of the data from noise and distortions. The output signals, after their capture by the
controller, were processed to predict the natural frequencies and modes of vibrations of the
elastic forearm. The experimental results were found to compare reasonably well with the
finite element solution.

Another set of experiments were conducted to validate the dynamical models
derived earlier. The readings of the accelometer and the strain gauges were processed to
predict the motion of the wrist point immediately after the sudden application of the brakes
to the two motors. It was found that the amplitudes of vibration for the experimental setup
are higher than the theoretical prediction as expected. This is attributed to the presence of
the additional elasticity on the forearm in the experimental setup.

The setup serves to conduct further experiments for the implementation of NIT and
other control strategies for comparisons. This was considered outside the scope of objectives

of the present work.



1.

CHAPTER 7

CONCLUSIONS

Adequate mathematical models have been developed to describe the dynamics of
a two link elbow arm with rigid links (RAM), with flexibility in the joints (FJM)
and with flexibility in the links (FLM). The majority of the reported work in the

literature is confined to one link.

A powerful algorithm; the nonlinear integrated tabular (NIT), was developed for
the tracking of prescribed trajectories by the wrist point. Numerous simulations
and evaluations were conducted to assess its feasibility, limitations for tracking

smooth and discontinuous trajectories.

Conventional controls for the flexible elbow arm were developed, simulated and
compared with NIT. Among the conventional strategies which were investigated
are the “proportional plus derivative plus gravity”, the “feedback linearization”
as well as the “variable structure” controls. It was found that NIT compares well
with all of them in terms of smoothness of tracking and computing cost in real

time,

196
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The Sliding Control was found to be a promising approach and the chatter
problem can be easily resolved if one uses the (SAT) function or (DEZ) function

with proper modifications.

The VEE-MOD-VEE, can be easily extended to handle higher order systems.

The experimental part consisted of the design, manufacture, assembly and
debugging of the hardware of a two link elbow arm using the up-to-date
technology available in terms of speed reducers and transputers. The design is
modular allowing further additions and adaptations to be introduced to the set up

to conduct further investigations.

The software of the controller was streamlined and an interface unit was
developed to act as a mechanism to acquire data from the sensors to be
processed by the transputers. The experimental set up was used to check the
dynamic models developed in earlier sections. Reasonable agreement was found

between the experimental findings and the theoretical predictions.

The parallel network that was developed proved to be efficient and
computationally adequate for performing up to 1000 samples/sec. Also, it

proved to be suitable for the inclusion of new processors that are eventually
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needed.

SUGGESTIONS FOR FUTURE WORK

1. Full implementation of NIT in FLEXROD and in depth comparisons of its

performance with the conventional controls.

2. Simulation and implementation of NIT for FLM.

3. The feasibility of applying sliding mode control for elbow arms with flexibility in
the links.

4, Advanced designs for compliant grippers and their controls to meet the challenge

posed by cooperative robots.
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