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Abstract

The main object of this thesis is to investigate the hypersingular integral equations
whizh arise in Boundary Element (BE) models for crack problems. Although the
associated hypersingular integrals are not defined in the usual sense, we interpret
them in terms of Hadamard finite part integral operators or as pseudo-differential
operators in the distribution sense.

By introducing weighted Sobolev spaces to regularize the equations, we have
proved the well-posedness for such hypersingular integral equations. Global error
estimates are obtained in the thesis.

A new approach to the numerical solution of the hypersingular equations based
on the recently developed theory of wavelets is presented. Rather than applying
wavelet bases directly to obtain new discretizations, we exploit the wavelet bases
to obtain more efficient solution algorithms for the more classical discretizations.
We discretize the hypersingular integral equation using the piecewise polynomial
collocation method. The discrete wavelet transform is then used for the resulting
dense algebraic system. This procedure involves O(V 2) operations and leads to a
sparse matrix problem. Solving this sparse matrix system requires only O(N log® N)
operations whereas O(IN®) operations are required for the traditional BE method.
Exploiting an indexed storage structure, we reduce the memory requirements from

O(N?) to O(N log N) words. Furthermore, the method is applicable to all operator

iii



or matrix (with arbitrary geometries) problems as long as the operator or matrix
possesses only 2 finite number of singularities in some rows or columns.

We demonstrate that the wavelet-based method can be extended to higher
dimensional integral equation problems because these equations can also be dis-

cretized by the piecewise polynomial collocation approximation.

iv



Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Anthony
Peirce, for his guidance, encouragement, support and patience. I feel fortunate
that Dr. Peirce introduced me to such an interesting subject for the thesis. I am
also grateful for his careful review of this manuscript.

I am grateful to Dr. Pengfei Guan for his helpful discussions. My gratitude also
goes to Dr. John Chadam for his suggestions and comments.

I owe my gratitude to my grandmother and my parents for their love and en-
couragement.

I am especially grateful to my husband, Ning Liu, for his tolerance, support and
encouragement.

Finally, special thanks to Mrs. Debbie Iscoe for her expert typing of the
manuscript.

This research was generously supported by Natural Science and Engineering
Research Council of Canada and the Clifton W. Sherman graduate scholarship

program.



Contents

Abstract

Acknowledgements

Introduction
1.1 Motivation . » . .t ot e e e e e e e e e e e e e e e e e e

1.2 ReviawW & . v v v ot t e e e e e e e e e e e e e e e e e e e e e e e

1.3 Organization of Dissertation . . . ... ... ... ..........

Well-posedness

2.1 Weighted Sobolev Spaces . . . . . ... ... .
2.2 Existence, Uniqueness and Stability . . . ... ......... ...

2.3 Analytic Solution of the One-Dimensional Problem ... ......

Wavelets

3.1 Wavelet Transforms . . . . .. . . ... i it e
3.1.1 The Continuous Wavelet Transform . . . ... .. ......
3.1.2 The Discrete Wavelet Transform . . . . .. ..........

3.2 Orthonormal Wavelet Bases and Multiresolution Analysis . . . . . .
3.3 Compactly Supported Orthonormal Wavelets . . . . ... ......

iii

10

11
12
23
27



3.4 Wavelet Decompositions and Reconstructions . ... ........

3.5 Orthonormal Wavelet Bases on Finite Intervals . . ... ... ...

4 Wavelet Approximations

4.1 Piecewise Polynomial Collocation Approximations . . . . ... ...
4.2 Wavelet Approximations . . . .. .. ... ..ot
4.3 TheMatrix Problem . . ... ....... ... . ... ...,
4.4 Sparsity and Error Analysis . . . .. ... . ... ...
4.5 Numerical Solution . . ... ... .. .. ... . .

4.5.1 Schulz’s Fast Iterative Method . . . . . . .. ... ... ...

4.5.2 The Algorithm Complexity Analysis . ............

5 Error Analysis
5.1 Review of Some Results in Spline Approximations . . . . ... ...

5.2 Error Estimates in Weighted Sobolev

5.3 Numerical Results . . . & & & v v i i i i s e e e e e e e e e

6 Applications
6.1 Description of the Algorithm . . . . . . .. .. ... .. ... ...
6.2 One-dimensional Fracture Mechanics
Problem . . . . . . . . . e e s
6.3 Two-dimensional Fracture Mechanics
Problem . .. ... .. i e

7 Conclusions

Appendix A

vii

60
62
64
72
75
82
33
85

87
88

92
102

105
106

109

116

122

126



Appendix B 127

Bibliography ) 129

viii



List of Tables

3.1

6.1
6.2
6.3

6.4

The Coefficients h, (n=0, ---, 2M —-1), M =2, ---,10 .. ... 50
Run Time and Memory Statistics for PWC Crack Models . . . . . . 114
Run Time and Memory Statistics for PWL Crack Models . . . . . . 114
The Iterative Steps of Constructing a Preconditioner by Schulz’s

Method . . . . . i i i i i e e e e 115
Run Time and Memory Statistics for 2D Crack Models . . . . .. . 116



List of Figures

3.1
3.2

4.1

4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8

The Scaling Function of Daubechies Wavelets (M =2) . ... ... 49
The Mother Function of Daubechies Wavelets (M =2} ... .. .. 51

The Standard Form of PWC Influence Matrix (Entries above Thresh-

Old 1076, IV = 256) « « v vt e e e e e 79
The Standard Form of PWL Influence Matrix (Entries above Thresh-

old 1076, N = 256) . . . . . . ot i e 80
The Convergence Rate for PWC Approximate Solution . . . . . .. 103
The Convergence Rate for PWL Approximate Solution . .. .. .. 104
Solutions of the PWC Crack Model (N =256) ... ........ 110
Residual Error | %4 — 1, | for the PWC Crack Model . . .. .. .. 111
Solutions of the PWL Crack Model (N =256} . .......... 112
Residual Error | #4 — u | for the PWL Crack Model . . . . .. .. 113
Comparison Run Times of the PBCG and Direct Methods . . . . . 115
The Standard Form of the 2D Influence Matrix (Entries above Thresh-

old 0.002, N = 256) . . . . . . i i e e 117
The Standard Form of the 2D Influence Matrix (Entries above Thresh-
old5x 1075, N = 512) . . . .. o e 118
Solutions of the 2D Crack Model (N =256) . ............ 119



6.9 Solutions of the 2D Crack Model (N =512) . ............
6.10 Geometry of the 2D Crack Model for thecase N=16 . ......



Chapter 1

Introduction

1.1 Motivation

Fracture-related damage is one of the major concerns for designing underground
excavations, nuclear power plants, hydroelectric dams and offshore oil rigs, etc. [32]
[79]. Effective inspection, preventive maintenance and possible control techniques
cannot be established without powerful fracture analysis methods.

Given the complicated geometries and nonlinearities which characterize fracture
mechanics, analytical methods are limited. The common trend is to use numeri-
cal procedures to solve these problems. Among the popular techniques are finite
element (FE) and boundary element (BE) methods.

The finite element method can be used for stress analysis and crack propagation
simulation [56] [32]. When the stress field at a crack front is singular, we need
graded discretizations, i.e., small elements near the crack front and larger elements
elsewhere. Although this domain discretization method ultimately reduces to a
sparse influence matrix, the use of a refined grid near the crack will result in a

model which invoives an extremely large number of degrees of freedom. In the
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cases of multiple cracks [32] and cavity type problems in infinite domains [56], the
computation costs of solving the resulting large system of equations tend to be
prohibitive even with today’s supercomputers.

By reformulating the crack interaction problem in terms of boundary integral
equations, it is possible to only discretize the boundary of the domain instead of
the whole domain. The so-called boundary element method effectively reduces the
problem from that of discretizing on » dimensional volume to ann—1 dimensional
surface. This technique is therefore very effective when it is applied to infinite do-
mains — such as those typically encountered in models of mining excavations [56].
The boundary element technique is commonly used for modeling the interaction
of large-scale tabular excavations with isolated fault-planes in 2D and 3D elastic
media [57] [15] {60] [68]. There are, in fact, two distinct formulations of the BE
method. The so-called direct BE method, which is commonly used in the stress
analysis of cavities and machine parts, has difficulties in the representation of cracks
[32] [56]. To overcome these difficulties, indirect BE methods [56] [15] [5] have been
developed. One of the indirect BE methods, known as the displacement disconti-
nuity (DD) method [15] [16], provides perhaps the most efficient representation of
cracks, fractures and fault planes [59].

Consider a bounded region 2 in R* and define Q2 = R*\(Q2 U 82), where 09 is
the boundary of 2. Let oy, u; and @y, 4;, be the stresses and displacements in
and {2 respectively. For homogeneous, isotropic elasticity, the stresses in ( satisfy

the equilibrium equations of elastostatics:
Cijj + fi=0.

The stress-strain relation is given by Hooke's law:

_EF [
To(1+v) [1-20

Oij Sijerk + 25,-3'] )
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where the strain tensor ¢;; is defined by
1
& =3 (uig +u54)

FE is the Young’s modulus and v is the Poisson’s ratio for the elastic medium. The
same system of partial differential equations holds for the stress and displacement
field in .

Applying Green’s theorem, one can transform the above differential equations

in Q into the following integral equations defined on 02 for ux and oy, [56] [6]:

ux{p) = fa n{g(q'.-,1cuc)Ta(¢.ar) ~ G(gi» pi)ni(a) Di(q) }ds(q) (1.1.1)

ore(p) = -/;Q{T(Qi-:pkt)Ti(Q) + L'(gs5, pre)ni(9) Di(g) yds(g) - (1.1.2)

Where n; are the components of the normal directed toward the interior of £,
Ti(g) = (64;(q) — 0i;(q))nj(g) is the traction discontinuity, and D;(q) = %:(g) —ui(g)
is the displacement discontinuity between € and Q.

If we set the stresses and displacements &;; = %; = 0, then (1.1.1) gives the
classical direct BE formulation. By assuming that the tractions across 0§ are
continuous, we obtain from (1.1.1) and (1.1.2) the indirect BE formulation known
as the displacement discontinuity (DD} method [57).

The kernel G(g;;, px) [56] {58] in (1.1.1) is singular enough to require a Cauchy
principal value to define the integral. Recall that the Cauchy integral exists in the
principal value sense, which is defined as follows:

ORI {_[:_E—u—(t)— dt+f: ) dt} , (1.1.3)

L t—1 e—0 t—z +elt—zT

where the notation £° denotes the Cauchy principal value integral. Compared with
G(gi;, Px), the influence function I'(g;;, pxe) in (1.1.2) is more singular since I'(gi;, Pxe)
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is derived from G(g;;,px) by applying the appropriate derivative operations with
respect to p [56] [57]. In particular, we consider a special case of (1.1.2) which
represents a model of a crack located along the line ¥ = 0 in a 2D elastic medium
subjected to the normal stress distribution p(z). The DD formulation leads to [15]
[57] {39]:

1 st wu(t)

P s R e f K(t, z)u(t) dt = p(z) + o(z, u(z)) (1.1.4)

where u(z) is the convergence DD distribution and K(¢,z) is a smooth kernel. In
general, the stress intensity distribution o{, u(z)) is nonlinear [58]. If we consider

the case of the analytic stress intensity distribution [69]

o(z) = -  lzl<t (1.1.5)
-1, o> ¢,

then (1.1.4) becomes

f ,(tu_(t) dt + — f K(t,z)u(t) dt = f(z) - (1.1.6)

We call (1.1.6) a dominant equation if K(t,z) = 0. If a collection of tabular crack-

like excavations located on the plane z = 0 in a 3D elastic medium is subjected to
an induced normal stress p(z,y), then the DD formulation (1.1.2) gives [69] [39]:

u(€, ) dédn
8(1 -—'02 ,[_/ [(x £)? + (,y 7) 2]3/2 p(:c, y) ) (1.1.7)

where u(£,7) is the convergence DD distribution and 9Q is the boundary of a

bounded region Q c R3.

Notice that the integrals in (1.1.4) and (1.1.7) are not defined in any usual
sense and have been termed hypersingular. In addition, matrices that result from
the discretizations of these integral equations are fully populated. When the effect

of inelastic deformation is included and/or there are extensive discontinuity surfaces
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[

throughout the region 8 [59], a large number N of discretization points is required.
Therefore the computational costs and the computer memory requirements become
prohibitive. |

In brief, two difficulties we e¢ncountered when applying the BE technique to

solve fracture mechanics problems:
(i) Treating the hypersingular integral equations;
(ii) Solving the system of algebraic equations with large fully populated matrices.

The work of this dissertation is therefore motivated by developing an analytical
method to study the well-posedness of (i) and creating a novel wavelet approxima-

tion algorithm to handle (ii) which leads to more efficient solution procedures.

1.2 Review

The idea of finite part integrals was first introduced by Hadamard [34] in connection
with the solution of hyperbolic partial differential equations for cylindrical waves.

He encountered divergent integrals of the form

(t)
.[ (.’L‘ i t)p+2 (1'2.1)

where p is an integer. To explain Hadamard’s basic idea we consider the following

integral

I(z) = =20b-2)2, z<b. (1.2.2)

/b dt
z (t—I)ln

Differentiating both sides separately, we obtain

1 1 _1
iz I(z)= 5/; t—a) (t_a;)lﬂlt::c T T -

(1.2.3)
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Equation {1.2.3) tells us that the difference between a divergent integral and an

unbounded integrated term remains finite. We may now consider the derivative of
I(z) as a finite part of the divergent integral and define

dt 21 2
=2y

b
==lim[

b di

Similarly, we can define —T‘a-—i—z—)g— and F2 =2 +F°. Thus (1.2.1) can be defined
in the same way. Moreover, we can extend the definition of f: (_z—lt-)? dt when p is
an integer [34).

In general, we have (for p = 2) {34} [39]

u(t) buft) — u(z) ~ (t — 2)u'(2)
=, =ap d

+u(a:)f' T s dt+u (:r)j[b——— dt, (1.2.5)

where % is the Cauchy integral defined by (1.1.3).
By definition, a finite part integral can be obtained by the direct differentiation
of a Cauchy integral, i.e.,

_u®)_ f’ u(t) (1.2.6)

(t— ﬂv)2

Alternately, we can explain the hypersingular integral ba(T“_%; dt by the theory
of distributions [75] [46] and pseudo-differential operators [78} [51] [80].

The term pseudo-differential operator was first used by K. Friedrichs and P. Lax
[28] and J.J. Kohn and L. Nirenberg {41] for the operators of the type

Au(z) = [ a(n.£)a()e= de (12.7)

where #(£) is the Fourier transform of u(z) defined by

a(e) = () j u(z) e dz . (1.2.8)
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The function a(z, £) is called the symbol of the operator. If a € C* and satisfies
|DgDZa(z, §)| < Cap(1 + JN)™1! (1.2.9)

for all o, # € Z7, then the operator A is called a pseudo-differential operator of

order m.
A representation for the operator A can also be obtained without using the

Fourier transform. Substituting 4(§) = Ei# Jrn u(y) e”¥ dy into (1.2.7), we have

Au(z) = (2-%)_ L L almeuly) = aye
If we formally write
k(z,z —1) = fé?lrF fR.. a(z, €) €EVE dg | (1.2.10)
then
Au(z) = fm k(z,z - y)uly) dy . (1.2.11)

And (1.2.10) shows that the symbol of the operator A can be viewed as the Fourier
transform of the product (27)" and the kernel k(z,t) with respect to the second

argument. Thus formally we have

a(z,€) = fRﬂ k(z, t) e dt . (1.2.12)

Returning to the dominant part of the hypersingular integral equation (1.1.6):

;lF /_ze (t':fft;)z gt = 1(z), (1.2.13)

we define

Tu(z) = /—zt k(z,z — t)u(t)dt , (1.2.14)
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where k(z,z —t)=k(z —t) = (—z'—l_ﬁf
Since the Fourier transform of 2% is —7|¢] [46] [57], the symbol of T is as follows

a(z, §) = —7l¢| - £1.2.15)

Notice that the symbol is homogeneous which makes it possible to drop the smooth-

ness condition on the symbol at 0 [51]. Therefore by (1.2.9), we conclude that T’ is a
pseudo-differential operator of order 1. Moreover T is elliptic since |a(z, £)| = [¢].
(Recall that a pseudo-differential operator of order m is called elliptic if the symbol
a(z, €) satisfies |a(z, £)| > c|¢|™, where c is a constant.)

We rewrite (1.2.13) as a pseudo-differential operator equation
Tu=f. (1.2.18)
It is clear that the equation (1.2.16) can be solved provided
the inverse 7! exists and is continuous. (1.2.17)
‘The above statement (1.2.17) can be interpreted as follows:
(i} A solution exists;
(i) The solution is unique;
(iii) The solution depends continuously on the data f(z).

Before outlining our study of these three problems, let us look at an example.

Since [30]

17 1

_—t ———dt =0, 1.2.18

1r]£1\/1—t2(t-—x) ( )
then by the Hadamard finite part,

1l 1

—_F ——— dit =0. 2.

o vl (1:2.19)
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Equation (1.2.19) implies that if the domain of operator T contains u(t) = 71‘:;;,
then the solution of (1.2.16) is not unique.

We shall introduce a Sobolev space to restrict the domain such that the inverse
exists and is continuous.

It is difficult in general to find an analytic solution of (1.2.16) or higher di-
mensional cases such as (1.1.7). To solve {1.2.16) numerically, we will encounter
an associated algebraic system with a fully populated N x N matrix. Directly
solving such a system normally requires Q(N3) operations. For a large-scale prob-
lem, the computation costs and the memory storage requirements are prohibitively
expensive.

If the influence matrix is translation invariant, the spectral technique based
on the fast Fourier transform can be applied to overcome these difficulties [57].
Recently, Peirce and Napier {59] have established a spectral multipole method to
reduce memory requirements from O(N?) to O(N) words and computational costs
from O(N?®) operations to O(N?log N) operations for problems with arbitrary ge-
ometries.

We shall introduce a novel wavelet approximation method for the conversion of
dense matrices with arbitrary geometries to a sparse form. The conversion requires
O(N?) operations and the algorithm for solving the resulting sparse system requires
only O(Nlog® N) operations. This method reduces the memory requirement from
O(N?) to O(Nlog N) words.

Up till now, only one paper [68] gives a local error estimate with order O(h) for
the piecewise constant collocation approximation to (1.2.16). We shall discuss the
complete asymptotics of solutions on the whole interval and provide a global error

analysis for piecewise polynomial approximations.
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1.3 Organization of Dissertation

The objective of this dissertation is to study the hypersingular integral equations
both theoretically and numerically.

By introducing weighted Sobolev space, we establish a global existence of the so-
lution for the hypersingular integral equation (1.1.6) in Chapter 2. The uniqueness
and continuous dependence of solutions on data f(z) (see (1.1.6)) are also proved.
Moreover, in the one-dimensional case, we obtain analytic solutions of (1.1.6) in
terms of distributions.

In Chapter 3, we review some properties of wavelets which will be applied in
the following chapter.

A fast wavelet approximation algorithm is presented in Chapter 4. Combining
piecewise polynomial collocation approximations with direct wavelet approxima-
tions, we introduce the matrix problem which makes the extensions to high dimen-
sional problems possible. The Schulz fast iterative method for matrix inversions is
described.

We give the global error analysis in Chapter 5 for approximations based on
piecewise polynomial collocation.

Chapter 6 illustrates the theoretical results by numerical examples.

The conclusions will be drawn in the last chapter.



Chapter 2

‘ Well-posedness

Let us rewrite the dominant part of integral equations of the first kind (1.1.6) as

T u{z) = f(z), —f<z<?, (2.1)
where
Tu(:c)=%%i(t—u_(-2—)5dt, —f<z<t.

The symbol T can be viewed as an operator from a normed space X into a normed
space Y. It is well known that integral equations of the first kind, in general, are ill-
posed since compact operators cannot have a bounded inverse. Roughly speaking,

we say that equation (2.1) is well-posed provided
i. A solution exists;
ii. The solution is unique;
iii. The solution depends continuously on the data f(z).

Otherwise the equation (2.1) is ill-posed.
The ill-posedness of an equation will result in problems in its numerical solu-

tion. If the equation is ill-posed, then numerical approximations are sensitive to

11
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perturbed data. Therefore our work to establish well-posedness is motivated by the
need to develop a framework for the analysis of numerical approximations. To this

end we consider the following question:

Can we find suitable spaces X and Y such that tle integral equation
(2.1) of the first kind is well-posed?

To answer this question, we start by introducing the appropriate weighted

Sobolev spaces.

2.1 Weighted Sobolev Spaces

The Sobolev spaces H*((1), s € R — subsets of distribution spaces were first in-
troduced by Sobolev [76], where Q is an open set in R". Let us review defini-
tions of some basic properties of distributions. For more details, see Schwartz [75),
Hérmander [35], and Egorov [23].

We denote by C*(£2) the set of infinitely differentiable functions on €. The
class C§°(Q) is a subset of C*(2) consisting of function with compact support.

We shall say that ¢; — ¢ in C§°(2) provided

i. There is a compact subset X C 2 such that ¢; = 0in Q\K.

ii. For any &, a = (04,...,an) € ZT, the sequence D%p; converges to D%
uniformly in K.

The space C§°(§2), endowed with such a topology, is called the space of test functions
and is commonly denoted by D(2). (This notation was introduced by L. Schwartz
[75]).

Definition 2.1.1 A linear functional u that is continuous on the space D(S2) is

called a distribution.
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The set of all distributions is denoted by D'(f2).

The above distribution space is not the only possible one. We can consider
the space C®(Q2) as the space of test functions instead of C§°(2). We say that a
sequence (; converges to ¢ in C=(Q)}, if for every o, & € Z, and any compact
subset K CC Q the sequence D%p; converges to D%y uniformly in K. £(2) denotes
the space C*(Q2) equipped with such a topology [78].

Definition 2.1.2 £'(Q) is the space of linear continuous functionals on the space
E(Q2).

We know that Fourier transforms play an important role in developing analysis.
One task is how to extend the definitions and results of Fourier transforms from
functions on 2 = R" to distributions.

The Fourier transform of a function f € L! is a function F(f) = f on RP
defined by

1
(2m)"

where z§ = T7_ 2;{; and L' is a set of integrable functions on R™.

f6) =5 [ f@e ™ da,  feR (2.1.1)

If f, g € L}, we have f § € L'. By Fubini’s theorem, we obtain

fRn f(z)i(z) dz = Lﬂ a(6)f(ey de . (2.1.2)

We may try to extend the definition of the Fourier transformation according to
the above relation (2.1.2) by taking one of the two functions as a test function and

the other as a distribution. If we choose ¢ € D(R") then (2.1.2) may be written as

(fi9) = (£.8) (2.1.3)

which makes sense provided § is in D. This is, however, not true in general. Since

g is analytic when g € D and cannot have compact support unless it is identically
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zero. This means that D is too small as a space of test fun~tions, or, equivalently,
that D' is too large for extension.

If we take ¢ in £, § may not exist. In other words, £ is too big as a space of
test functions.

Schwartz [75] solved the above problem by introducing tempered distribution.

A function ¢ € C®(f2) is said to be rapidly decreasing if
sup [z°8Pp(z)| < o
el

for all pairs of multi-indices e and 8, &, § € Z%. This is equivalent to the condition
that

sup sup(l + Jz|*)?|8% ()] < o0
IBl<p =z€R

for all p € Z... We shall denote by S the set of all rapidly decreasing functions. A

sequence ¢; converges to 0 in § if and only if
228 p;(x) — 0
uniformly on £ as 7 — co.

Definition 2.1.3 The space of continuous linear functionals on S is called the

space of tempered distributions and denoted by S'.

It is clear that
PcScé

and
gcsScD.

We have:

Proposition 2.1.1 ([75],{77]) Ifp € S, then @€ S.
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Definition 2.1.4 For any T € &' the Fourier transform F(T) =T is defined by
T(p)=T@), ¢eS (2.1.4)
Proposition 2.1.2 ([75],[77]) T € S' for every T € S'.
Let @ = R"™, L?(R") be the set of square-integrable functions on R™.
Definition 2.1.5 For any s € R, we define
H'(R") ={u € §'(R") : (1 + [§")*/*a(€) € L*(R™)}

and y
2
el = ([, 0+ EPrIa©ra) " .

Ifs=me&Zy, then
H™(R™ = {u € LYR") : 3% € L*(R), |a| £ m}
where a = (ay,...,an) € Z7% and D%u is weak derivative, ie.:
| [Rn o Dudr = (—1)k fRn u D%p dz, @ € C°(R") .

The norm associated with H™ is defined by

1/2
lullm = [Z /,. ]Dnu(:z:)Fdz] .
lalgm “R
It is easy to see that
SCHCcH'CS, fors,teR, s>t.

When Q is a smooth bounded open subset of R", we define H*(f2) to be the
space of restrictions to Q of the elements of H*(R"), for any s € R.
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If s=meZ;, then
H™(Q) = {u € L}Q) : D*u € L*(Q), |a] < m}

with norm

1/2
fulln = [z i ID"u(:r)Izda:] .

la|<m

We now define the weighted Sobolev spaces.

Let € be an open set of R” and let m be a nonnegative integer, i.e., m € Z%.

Assume that
o= {o, =0a(z), 2€Q, || <m}

is a vector of nonnegative (positive almost every where) measurable function on 2,

where & = (01,...,0,) € Z% and |a| = a1 +az + -+ + an. We call o a weight.
Definition 2.1.6 ([42]) We define
H™(Q,0) = {u € & (Q): j; |D%u(z)|Poa{z) dz < o0, ja| < m} .

H™(,0) is a normed linear space when equipped with the norm

1/2
”u"m.a = ( Z [ﬂlDau(:B)lza'a(x)) .

lal<m

If m = 0, then H(Q,0) = L*}Q,0). f o = 1, H*(Q,0) = H™(Q) is a
“classical” Sobolev space.

Recall that

1t ut) _
;ft 0= a)? dt = f(z), —I<zx<t.

Without loss of generality, we assume £ =1 and Q = (-1,1) C R. For a crack in
an infinite strip, the solution is assumed to be of the form u(z) = F(z)w(z), where

w(z) = v/1 — 22 for an internal crack [40).
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Let p = ¢ = v/1 — 22, we consider some special cases. By definition 2.1.6, we

write

20 = {uslvlh, = ([ @fptais)  <oo)

o)

H? (%,p) = {u tu € L? (%) and Du € Lz(p)}

equipped with the following norm:

fulh g, = [l +10012,]”

Since 2, u3(z)p(z) dz < [}, u*(z)dz < J2 Y@ 12 We have

1 p(z)
J% (%) CI*c IXp).

It is clear that H? ( ) c L2
We shall claim that:

Theorem 2.1.1 H(Q) Cc H? (%,p), where = (-1, 1).

Proof:
L ju(z)? U Ju(z)?
2 — dr =
ity = L5 = Lama e
! Ju(@)? 0 fu(z)i?
= d dz
/o Vv1-—a? £ -14/1—2g?
Without loss of generality, we consider the term fo > dz.
u*(z) u*(z)
m \/rm
RIS

\/1_—7

fu: lulog = ([ W@P/o@1)  <oo

(2.1.5)
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- |—2\/T_—_:r,u2(:z:)|:. 4 4/: V1 =z u(z)Du(z) d:z:|

< 2|u?(0)| + 4 I'/: V1 — zu(z)Du(z) d:c|
=1+11. (2.1.6)

Let us estimate part II first.

I £c¢ Ifol u(z) Du(z) d:z:|

IA

1 12 , 1 1/2
c( _/; Ju(z)[? d:z:) ( fo ]Du(a:)|2d:c) (Cauchy inequality)

c ( f_ 1); |u(z)]? dx) v ( [_ 11 | Du(z)|? da:) v

|f 11 u(@)Pda+ [ 11 |Du(a) dz]
clluliz - (2.1.7)

IA

IA

For the first part I, we take a function ¢(z) € C§°(Q2), such that

(p(a:)={1 ol <

0 |z|>3
We define v(z) = u(z)p(z), then
v(z)=— ]: Du(t)dt = f: Do(t) dt ,

moreover, u(0) = v(0).

Now,

O = (@) = ||| Dota) ]

= |[ Oue)ote) +u(@)Dea)) ds|
< ([ wsrres)” ([ 1o es) "
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+([uers)” ([ peora) |
¢ |( ]_1 1Du@)f de) i (f 11 lu(a)P? da) v

< ¢ (f_ll |u(z)]? dz + ./-11 |Du(z)]? d:r:)
= clful (2.1.8)

2

where ¢ and ¢’ are constants. By (2.1.6), (2.1.7) and {2.1.8), we obtain

U u(z)? 2
) oot dz < c||uflin -
Similarly, we have
2
SO do < cful

Therefore, ]Iu“o’% < ¢|lu|lm. Obviously, ||Dulls, < §Dullz2 < ||ulla. Hence, we

obtain
2 2 1z '
Il 3.0 = Ity + 1Duld,] < Cluln
which completes the proof.

We shall now introduce the dual space of H™(Q, 7).

Definition 2.1.7 For 0 < m < oo, by (H™(£,0))* we denote the dual space of
H™(Q,0), i.e., the space of bounded linear functionals on H™(Q, 0).

By Theorem 2.1.1, one immediately has that
(H‘ (i,p)) c(H)cS. (2.1.9)

To characterize (H 1(%, p))*, we note that the following facts [66], [30]:
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1. The Chebyshev polynomials of the first kind
Ta(z) = cosnb, § = arccosz, —1<zr <1, n=0,1,2,.
form an orthogonal basis for L? (lp)

2. The Chebyshev polynomials of the second kind

sin{n + 1)4

Un(z) = sin 8

, 8=arccosz, -1<z<1, n=01,2,...
constitute an orthogonal basis for L%(p).

3. Ti(z) =nU,=(z), n=12,...

Assume now that u € H* (%, p), then
u(z) = Z(u, Tn)1Tn(z) (2.1.10)
and "~
Du(z) = i(Du, Un)oUn(z) . (2.1.11)
Where "
(w,T)y =f_113‘%§‘)(i) iz
and

1
(Du,U,), = L  Du(a)Un(z)p(a) d

Integrating by parts, we obtain

1 ] 1)8
(Du,Up), = [-1 Du(z) - %T_).._ V1—2z?dz , § =arccosz

= f_t Du(z) - sin((n + 1) arccos z} dx

= u(z)sin((n + 1) arccos z)|!
u(z) cos(n +1)4
+n+1) .[ V-2

= (o4 D Tan)y

dz
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The term u(z)sin(n + 1)8|1, = 0, since u(z) € L? (%) Hence, (2.1.11) can be
rewritten as

Du(z) = i(u, T,,H)%(n + 1)U, (z) . (2.1.12)

n=0

By Plancherel’s theorem

) o 1/2
o = [S@T3+ EwTum1y]

:) "= 1/2
= (2(1 +n?){x, T,,)'ﬁ) : (2.1.13)
n=0 4

Theorem 2.1.2 For F € (H1 (%,p))‘, we have

o0 1/2
| Fhiearn 3 ope = (20(1 + 712)_1|0n|2)
=i

where ¢, = F(T,) and T,, n=0,1,... are Chebyshev polynomials of the first kind.

Conversely, to each sequence {c,} satisfying

=]

S A+n) Mef* <0 (2.1.14)

n=_0

there ezists a bounded linear functional F € (H 1 (%, p))' such that F(T,) = cp.

Proof: Assume that the sequence {c,} satisfies inequality (2.1.14) and define a
functional F : H! (%, p) — R by

F(g) =3 antn »

n=0

where ¢ € H} (%, p) with a, = {¢,T,)1. By the Cauchy-Schwarz inequality, we
F

obtain

FOP < S0 +m) el S0 +72)anl?

n=0 n=0

= Ny, S0+ enl? . by (21.13))

n=0
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Therefore,

o 1/2
1Pl < (Xa+a )

Conversely, if F € (H 1 (%, p))‘ with ¢, = F(T,), we define for m € Z;

m
Pm = 2(1 + 1) en T

n=0
Then
1/2
Iz, = (IoalZs +1Denid,)
m 1/2
- (Sa+?ler)
n=>0
Moreover, _
Flpm) = X%(l +n?)Heaf? .
n=!
Therefore

1/2
IF(om)] ("‘ 2)-1 2)
, s Feml _ (g gn -
WFlang o 2 g 7= = ( B0+

Hence, we have

) 1/2
(2(1 +n2)'1|cn|2) < IFlanaay -

n=0
The proof is complete.

Let
o«
5= {{e): SO+l < of
n=0
From theorem 2.1.2, we have

Lemma 2.1.1 S, is isomorphic to (Hl (%,p))‘.

And we define
2] oo 1/2
§:= {u tu= Y el [lulls = (Z(l + n)“’lcnlz) < oo}

n=0 n=0

where U, are the Chebyshev polynomials of the second kind. It is easy to see that

Lemma 2.1.2 S is isomorphic to Si.
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2.2 Existence, Uniqueness and Stability

At the beginning of this chapter, we pointed out that existence, uniqueness and
stability are the three requirements of well-posedness. We shall make them more
precise by introducing the following definitions.

Let us consider an operator equation
Au=f,

and

A: XY
where X, Y are normed spaces. The range A(X) is defined by
AX) ={Au:ue X}.

Definition 2.2.1 If for each f € A(X) there is only one element u € X with

Au = f then A is said to be injective.
Definition 2.2.2 If A(X) =Y then A is said to be surjective.

Definition 2.2.3 The mapping A is called bijective if it is injective and surjective,

that is, if the inverse mapping A™! : Y — X exists.

Definition 2.2.4 The equation
Au=f

is called well-posed if A is bijective and the inverse operator A™' : ¥ — X is

continuous. Otherwise the equation is called ill-posed.

It is clear now that existence and uniqueness of a solution to an operator equa-
tion can be equivalently expressed by the existence of the inverse operator. Stability

is equivalent to continuity of the inverse operator.
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Recall that

jﬁ (t"(t) dt=f(z), -l<z<1 (2.2.1)

z)?

and the internal crack suggests solutions take the form [40]:
v(t) = V1 - uft) .

Therefore, we define

Au(z) == 7'; l(t—_t? u(t) dt (2.2.2)

where = denotes the Hadamard finite part.
It is well known that [30], [39]

-,rrfl I(Iif)(t) =~Twn(z), n=012,... (2.2.3)

where Ty (z) and U, (z) are Chebyshev polynomials of the first and the second kind
respectively. f exists in the principal value sense which is defined as follows
1 i) =e J@) g, F S0
][lt— dt_l-oﬂ(.[l t—x dt + x-;-cst—:z:diL )

By the Hadamard finite part and T}, (z) = (n + 1)Uy (z), we obtain

LT o s U@, n=0Le
i.e.,
AU (z) = —(n+ 1)U, (z), n=0,1,2,... (2.24)

Our main theorem, in this section, is as follows
Theorem 2.2.1 Let

Au=f (2.2.5)
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where A is defined by (2.2.2). Then A is bijective from L%*(p) to S, where p =
v1—22 and
=) o 1/2
S = {u cu=3 el luls =-(z(1 + n)"lcnlz) < oo} .
n=0 n=0

and A~ continuous. That is, the equation (2.2.5) is well-posed.

Proof: Assume u € L%(p), then
u(z) = Z(u, )oUn(z) -
n=0
From Plancherel’s theorem, we have
oo 1/2
ol = (3tw03) -

Moreover, by formula (2.2.4}, one has

Aulz) = > (u,Un), AU,
n=0
= _Z(uvUn)p(n+1)Un
n=0
Therefore,
(& U+ 02\
lauls = (3 B

= |lullz2 - (2.2.6)

For f € S, f(z) =2, cUn(z), we define

= +]
=_5 =
Bj= 14+n

n -
n=0

Then

54

2 \1/2
18100 = (5 2E) " < s 227)
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i.e., B is a bounded operator from S to L?(p). If we can show that B is the inverse
operator of A, then the theorem is proved.
By (2.2.6), Au(z) € S when u(z) € L*(p), hence

BAu{z) = f: (, Un)o(1 & ) Un(z)

= (1+n)
- i( Un), Un(a)
= u(z).

On the other hand, if f € S, f = X322, U, then

oo

Bf(z) = -3 —2— Un(z) -

ﬂ=01+n

By (2.2.7), Bf(z) € L*(p).

ABf(z)

= =]
Cn
-2 1+n AUn(2)

n=0
(= =]
= zc‘nUn
n=(
= f(z)
i.e., B = A~!, which completes the proof.

From Lemma 2.1.1 and Lemma 2.1.2, we have

Theorem 2.2.2 Assume that A is the same operator as in theorem 2.2.1, then

st (0 3

is bijective and A~ is continuous, i.e., the equation

Aulz) = f(z)

is well-posed.
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Note that since v(t} = v/1 — t* u(t), it follows that
v(z) € L* (%) < u(z) € L*(p) .
Therefore, we obtain

Theorem 2.2.3 For f(z) € S, there erists a unique solution v(z) € L? (lp) to
equation (2.2.1).

2.3 Analytic Solution of the One-Dimensional
Problem

This section is devoted to the study of analytic solutions of the one-dimensional

hypersingular integral equation:

;lr-fl (;)_(t;)z dt = f(z), -l<z<1. (2.3.1)

Let us review some results about Cauchy singular integral equations. Define

1 pw)u)
w1 (t—x)

[Houl(z) = dt, -l<z<l, (2.3.2)

where

] (2.3.3)

= , v=1.

{ vVi-2?, v=-1,
w,(z) =
Then we have (for proofs see [30]):

Lemma 2.3.1 Let T,(z) = cos(narccosz), ~1 <z <1,n=0,1,2,... denole the
Chebyshev polynomials of the first kind. Then

HT, =0,
e (2.3.4)
H]_Tn=Un_]_, TL=1,2,..., _1S$SI,
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where U,(z) = sin((n+1) arccos )/ sin(arccos z), n = 0,1,2, ..., are the Chebyshev

polynomials of the second kind.

Lemma 2.3.2
H_iUp = -Tp4, n>0 -1<z<1. (2'3'5)

Lemma 2.3.2 tells us that H_; is a shift operator from the Sobolev space L*(p)
to Sobolev space L? (%) H_, is, therefore, invertible from the left [65], [29], [63].
In fact, suppose u(z) € L*(p), then

o0

u(z) = D _{u,Un), Un() .

n=0

Applying (2.3.5), we obtain

How(d) = 3 (w Unp Haln(a)

n=0

= =S U, Ten(a) - (2.3.6)

n=0

From (2.3.4), we have

i (1, Un)p HiTn41(2)

n=0

= f:(u, Un)oUn

n=0

= u(z). (2.3.7)

- Hi(H_ju)(z)

Il

Formula (2.3.7) shows that the operator —H, is a left inverse of H_y, i.e., if

.—[ 'l_t u(t dt = g(z) , -l<z<1, (2.3.8)
then
][ \/T—_gig(a:——t dt = u(z) , -l<z<l. (2.3.9)
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By the Hadamard finite part, formula (2.3.8) gives

%ﬁl(t;_i;@ dt=g(), -l<z<1, (2.3.10)

where ¢'(z) is a weak derivative defined by

[ee@a=-[ s @i,  0eCr@).

where Q2 = (-1,1).

Comparing (2.3.10) with (2.3.1), we find that for any f(z) € S, if we can choose
g(z) such that ¢'(z) = f(z), then formula (2.3.9) gives a solution to (2.3.1). We
previously mentioned S C &’ C D'. The above discussion therefore gives rise to the

following question:
How can we define an antiderivative for a distribution?
We shall use some definitions and properties from [81].

Definition 2.3.1 Let F, G € 7', G is said to be an antiderivative of F if G' = F,
where G' is a weak derivative. A general form of all entiderivatives of F is called

indefinite integral, denoted by IntF.
We consider only the one dimension case.

Proposition 2.3.1 For any F € D', there ezists an antiderivative G. Moreover

IntF = G + ¢, where ¢ is a constant.

Proof: See [81].

Recall that

_ . _ o0 _ =] ___|_c_1|2_ 1/2
S=<u(z):u(z)= cnlnlz), lulls =D E <00} .

n=0 n=0 (1 +n
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Again T, and U,,, n = 1,2,... are Chebyshev polynomials of the first and second

kind respectively and they are related as follows:
T, 1 () = (n+ 1)Un(z), n=0,1,2,....
We define an operator Intl such that

It Un(z) = L U (£) d(t)

_ /’T;’zﬂ(t) dt
b N+1

= Tpn(z)/(n+1), (2.3.11)
where the b, are chosen such that
Tasa(bn)=0.

Thus, if u € S, and
oo
u(z) = 3 calip(2) ,

n=0
we obtain

o0
Intlu(z) = Y caIntlUs(z)
n=0
2]

= ni-l-l Tpia(z) - (2.3.12)
n=

Therefore, by Plancherel’s theorem, one has

o0

feal? )
atalisgy = (3 7225) = hulls. 2313

i.e., the operator Intl is bounded from § to L? (%) Moreover, from (2.3.12), we

have

(Intlu{z)) = iﬁ'ﬁ n+1(T)

= E cnlUn(z)

n=0

= 'u,(a;) . (2.3.14)
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which shows that Intlu(z) is an antiderivative of u(z).
Assuming now the operator Int is defined by definition 2.3.1, we shall show that
forany u(z) e SCc D’

Intu{z) — Intlu(z) =c, (2.3.15)
where ¢ is a constant.
Lemma 2.3.3 Let F ¢ D' and F' = 0 then F = Constant.
Proof: Choose py(z) € C§°(§2), such that
j;soo(&‘) dr=1.

where 2 = (-1,1).
For ¢ € C§°(Q2), we define an operator J

U@ = [ (w0 - ([ etrrar) ) at.
Then
Ed; Jo(z) = p(z) — f_l  P(r)dr polz) .
Hence
(Fo) = (Fasdo+ [ olr)dren)
= —(F, Jo) + f_ 11 o(t) di(F, o) -

Since F' = 0, we have
1
(Fs W) = j:.l(F:‘pO) (P(t)dt .
Hence,

F= (F, (po) = Constant,

which completes the Lemma.
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By the definitions of the operators Int and Intl:
(Int u(z) — Intlu(z)) = u(zx) - u(z) =0,

and from Lemma 2.3.3 one immediately has formula (2.3.15). From above discus-

sion, we obtain

Theorem 2.3.1 For any f(z) € S, there ezists a unigue solution u(x) € L*(p)

u(z) = —= Jl_ \/L’gl({ — ¢ (2.3.16)
for the equation
f v 1"tx;°2(t) dt = f(z) . (2.3.17)

Here we demonstrate this theorem by means of some examples.

Example 2.3.1 To solve

ut) o _
% Gy =1 -l<a<l. (2.3.18)
By definition 2.3.1, one has Intl = z + ¢. According to formula (2.3.16), we obtain
t+c
t-v1—2z2. 2.3.
u(z) = J[m(t_ dt-vVi-22 (2.3.19)

This is a Cauchy singular integral, one can use standard complex variable techniques
to solve it [30], [55], [64] and [1]. Applying the fact

t+c d=1
J[\/l—ﬁ(t—x) ’

we have
uw(z) =—-—v1-22, (2.3.20)

which is a solution of {2.3.18)
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Example 2.3.2 Consider

_jE (t“_(?:)z T—l_;r,z , -l<z<l. (2.3.21)

Assume ¢ € C§°(Q), Q = (~1,1), then

(2mgo0) = fl : — (p(x)dm

- 2 (1+a: - )(p(a:)d:c

1+a:
- 2 ln1--—:1: ¢'(z)ds
1+z
- ( ].Il xs‘P)‘
Hence,
1 14z

Intl

= = c
1——32 2 1-:1:+

where ¢ is a constant. From theorem 2.3.1, we have

1111-i+c
g dt-v1—-z2.
wz) J[\/1—t2(t— z) ¥
Since [64] 1
In +c 1
dt = —, -l<z<l,
1r27[ \/l—tz(t- ) Vv1-21?

one immediately has

u(z) = ——=
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Wavelets

The term wavelets is used for a family of functions of the form

Yosl@) = 0" (

generated from a single function % by the operations of dilation and translation.

z—-b
a

), a,beR, a#0 (3.1)

The idea grew out of seismic analysis [31}, [33]. Recent development has been led
by A. Cohen, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer and many others [9],
[17], [52], [48], [13], [14].

The subject of “wavelet analysis” has drawn much attention from both math-
ematicians and engineers alike. There are two important mathematical entities in
wavelet analysis: the “integral wavelet transform” and the “wavelet series”. Un-
like Fourier analysis, the wavelet transform and the wavelet series are intimately
related, see [8].

Wavelets need not be orthogonal. Both orthogonal and non-orthogonal bases
are important. Here we pay particular attention to orthonormal wavelet bases
since we would like to represent our hypersingular integral operator in terms of an
orthonormal basis of wavelets in a compact way. The standard method to construct

orthonormal bzses of wavelets is by multiresolution analysis which was introduced

34
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by Y. Meyer and S. Mallat [52] [49]. Though not every orthonormal wavelet basis is
derived from a multiresolution analysis, see [49], [19], however, if the basis has some
regularity and decay, it can necessarily be obtained by a multiresolution analysis
[44], [4], [38].

With the goal of applying wavelets to the numerical approximation of hypersin-
gular integral equations, we survey the properties of wavelets that we will require
later in the thesis. We start by discussing wavelet transforms which are a tool for
decomposing functions and operators in various applications. In the second section,
we introduce multiresolution analysis which provides a natural framework for the
understanding the wavelet bases. Daubechies’ compactly supported wavelets, which
have had a great impact on the development in this field, will be presented in the
third section. Bases on finite intervals and wavelet algorithms for decomposition
and reconstruction will also be covered in this chapter.

The development of this chapter will mainly follow Daubechies [17] [49], Meyer
[54], Mallat [48] and Chui [8].

3.1 Wavelet Transforms

3.1.1 The Continuous Wavelet Transform

Given a “mother wavelet” 1 with 1 € L?(R), we define the wavelet transform W f
of a function f(x) € L*(R) by

Wt =l [ 1@s(22) e

a
= anla? [ () F(ag) € de
(by Parseval’s formula), (3.1.1)
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where a,b € R, ¢ # 0 and “~” denotes Fourier transform of a function defined by

Fey=yo [ s as. (3.12)

If we define

a

d’a,b(-'r) = |a[—1/2¢ ($ — b)
then
(W 1)@ B) = (s - (313)

The inverse of a wavelet transform for an L?-function can be obtained through

the following proposition.

Proposition 3.1.1 For all f,g € L*(R),

[ [ 1) TG “o = culhia) (314
where
co= [ 6 BEdE < oo (3.1.5)
Proof:
[ [ e Wae 2
< [ e [ 4 T
x [217 f_ Z la|} 5E) e (ag’) d&’] d‘;fb . (3.1.6)
If we define
Fu(6) = lal 7€) B(et)
and

G (€) = lal23(€) B(a) .
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By Parseval’s formula it follows that

da db

[ [ wnen Waw
= 2 [~ ["R(® Ga(f)d =
=u [ ["fOF® w(asw d€ 11

o I G W GEGES
= cylfi9)-

With weak convergence in the L%-sense, we can rewrite (3.1.4) as

@)= o [T WD) s T (317)

We shall only consider “admissible” wavelets, i.e., functions 1 which satisfy the

admissibility condition (3.1.5). To ensure (3.1.5), we require that 1 has mean zero,

50 = [~ v@)ds=o0. (318)

Remark: We discussed only one-dimensional case, higher dimensional versions are

straightforward. For details, see [19], [20] and [18].

3.1.2 The Discrete Wavelet Transform

The formula (3.1.7) shows that a function f € L?(R) can be easily reconstructed
from its wavelet transform (W f)(a, b), provided these transforms are known for all
values of the parameters a,b. In practice, however, the parameters are restricted

to discrete data. Similar to the continuous version, we consider the family

Yos(z) = oI} @ ("" - b) (31.9)

a
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wherea € R, b€ R, a # 0, a,b are discrete values. Since a is restricted to positive

values only (just for convenience), the admissibility condition (3.1.5) becomes

o= [CEBOPE= [ IEBOR 2 < oo (31.10)

We choose the dilation parameter ¢ = af*, where ag # 1, m € Z. Without
loss of generality, we assume aqg > 1 fixed. For the translation parameter b we
choose b = nbpa]*, where n € Z and b is fixed. Formulae (3.1.9) and (3.1.3) can

be rewritten as

Ymn(T) = ag ml2¢ (i:%‘%)
0
= agm/2¢(agmx —nby) , (3.1.11)
and
W (F) = {f, Ymna{2)) . (3.1.12)

In the discrete case, there does not exist, in general, a reconstruction formula
analogous to the role played by (3.1.7) for the continuous case. Reconstruction of
f from the Wy, »(f) must therefore be done using alternative methods.

One would expect that the reconstruction for the discrete case is possible if the
discrete lattice has a very fine mesh. It is natural to ask what the threshold for the
lattice parameters is? Thus we shall introduce the concept of “frames” to study

the possibility of finding an inversion procedure for the discrete wavelet transform

Wonn(f) = g™ j_ ’: FEY0(az™t — nbo) dt . (3.1.13)

Duffin and Schaeffer [22} introduced Frames for nonharmonic Fourier analysis,
see also [82].



CHAPTER 3. WAVELETS 39

Definition 3.1.1 A family of functions (¢;)jes in a Hilbert space H is called a
frame if there exist 0 < A, B < co such that, for all f € H,

AllfI? < 1A el < BISFIE - (3.1.14)
jeZ
We call A and B the frame bounds. If A= B, i.e.,
> F 0 = AllfIP (3.1.15)
j€Z

then we say the (¢j)jes constitute a tight frame.

Definition 3.1.2 If (@;)jez is ¢ frame in H, then the frame operator T is the

linear operator from H to
&(z) = {c = (¢)jez | el = 2 lejl* < 00}
jeZ

defined by

(T ={fro5) . (3.1.16)

The formula (3.1.14) ensures that T is bounded, i.e., |Tf|*> < B|jf||>. The
adjoint operator T of T is given by
T*c= 3 cip; (3.1.17)
jeZ

in the weak sense since

(T*¢,f) = {Tf)
= > ¢i{fies)
jEZ

= Y ci{enf) -

jeZ
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Hence

T*'c=) cjp; -
JEZ

Using the standard notation T3 > T for two operators Ty, T3 if

(L Thf) 2 {f T2 f}
for all f € H, one can easily check that (3.1.14) can be rewritten as
AI <T*T < BI, (3.1.18)

where I denotes the unit operator, If = f. Since the constant 4 > 0, (3.1.18)
implies that the operator T*T is invertible [38], we define

(:aj = (T*T)—l(pj ’

then (9;);cz also constitutes a frame, with frame bounds B~ and A~%, for details
see [38]. We shall call (3;);ez the dual frame of (¢;);ez. Therefore, one has

f = (@TT)yHT'T)f
= (')~ _Z;Z(Tf)jw

= (T°T)7 2 (freide;

JEZ

= (e (3.1.19)

jeZ
Similarly, we derive
f=2 @) - (3.1.20)
jeZ
Formula (3.1.19) shows how to reconstruct f from its inner product (f, ¢;), and

(3.1.20) provides a formula to expand f in terms of a frame ¢;.
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In order to have a numerically stable reconstruction algorithm for f from the
inner product (f,¥mn), we require that i¥,,, constitute a frame.

Note that an orthonormal basis is a frame with frame constznts A = B = 1.
Conversely, a frame ; with frame bounds A = B = 1 and {|g;]| = 1 for every
7 € Z is necessarily an orthonormal basis. This statement can be verified from the

following two facts:
(i) v; span all of H. Since {f, ;) = 0 for all j € Z implies f = 0.
(1) {(winw;) =6;;. Since A=B=1andforany j€2Z

Haill> = > Kenend)? (by (3.1.15))
jez

= llesll” + 3= Kew s
&

From ||¢;|| = 1 and the above formula, we obtain the fact (ii).

We shall specifically discuss orthonormal bases in the following sections.

3.2 Orthonormal Wavelet Bases and Multireso-
Iution Analysis

A multiresolution analysis compresses a sequence (V;);ez of closed linear subspaces

of L?(R) which satisfies the following four conditions:

() Vi C Viaa, Nyez Vs = {0} and Ujaz ¥V} = LA(R); (3:2.1)
(i) f € V; &= f(27.) € V (dilation invariance); (3.2.2)
(iii) f € Vo = f(-— k) € V, for all k € Z (translation invariance); (3.2.3)

(iv) V} has a shift-invariant Riesz basis (g(z — k))iez. (3.2.4)
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The function g is called a scaling function for (V});cz-
Let us recall that {e,} form a Riesz basis of a Hilbert space H if both of the
following properties are satisfied [49] [54]:

(i} The linear space {ex, k& € Z} is dense in H. (3.2.5)

(ii) There exist positive constants A and B, with 0 < A £ B < o0 such that
2
Al{ecHiE < |2 ceen|, < Bll{ce}
keZ

for all {cx} € 2(Z). (3.2.6)

In other words, if the mapping defined by
T:{a}— Y cer
keZ
is an isomorphism between #2(Z) and H, then {e;}icz is called a Riesz basis. If
this mapping is a unitary isomorphism, {ex};cz is an orthonormal basis. The Riesz
basis g{z — k), k € Z is easily transformed into an orthonormal basis ¢(z — k) for
Vo [64]. Thus the last requirement of a multiresolution analysis can be replaced by

the following:

There exists a function ¢ € V} such that {¢(z — k)}}iez is an orthonorma!
basis of V4. (3.2.7)

In order to show how orthonormal wavelet bases can be constructed from a
multiresolution analysis, let us consider the example of the Harr basis.

Let,

Vin = {f € L}(R); f constant on [2™™n, 2 ™(n 4 1)) for all n € Z}, meZ.
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The conditions (3.2.1), (3.2.2) and (3.2.3) are clearly satisfied. We choose ¢(z) to

be the characteristic function of the interval [0,1), i.e.:

1 0<z<],
w(z) = )
0 otherwise.

It can be shown that ¢ € Vg, and
{©on; n € Z} is an orthonormal basis of V5 , (3.2.8)

where po.(z) = p(z —n), n € Z. Thus {V,,}mez constitutes a multiresolution
analysis.

Note that (3.2.2) and (3.2.8) imply that {¢mn, n € Z} is an orthonormal basis
of Vi, for all m € Z, where @, (z) = 2™/20(2™z — n). We define the projections
P,

om 2= (n41) is
Fnf I[z-mn.z-m(n+1» = j;_,,.,, /(@)

and
2-m(n41)
en(f) = (o) =272 | f@)dz .

2=mp

Then
Pyf = Z cmn(f)‘Pmu .

ne
We define @, to be the difference between Fp41 and Fp, i.e.,

me=Pm+lf"'me-

One can easily check that

1
Pman = 7@" (¢m+1 on T Pm+1 2n+1)

and
emn(f) = 715 (cmsr2a(f) + Cmsrzasi () -
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Hence
1
Qmf = 3 > [emi12a(f) = emurznna(f ) [@m+12n = Pmtran+1] - (3.2.9)
ned
We choose
1 0<z <1,
P(z)=p2z)—p2z—-1)=4 -1 }<z <], (3.2.10)
0 otherwise .
Then
Ymnlz) = 27%9(2™z — n)
1
= 7 (Pm+12n = Pms12ns1) -
If we define

dmn(f) = (f’ 1nbnm) = % (Cm+12n(f) - cm-i-l2n+1(f)) +

then (3.2.9) can be rewritten as

Qnf = dmal(f) Ymn - (3.2.11)

neZ
From (3.2.10), we know that for fixed m the 1, are orthonormal. The projection
Qm is from L?(R) onto the orthogonal complement of Vi, in Vip41. We denote
by W,. the complement. Above discussions together with (3.2.1) imply that the
W,, are mutually orthogonal. One can therefore show that {tymn, n,m € Z} is an
orthonormal wavelet basis for L2(R.), for details see {19]. In fact {t/mn} is the Harr

basis.

We now outline the steps that can be used to generalize this procedure:
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Assume that {V,,}mez is a multiresolution analysis and W,, is the orthogonal

complement of V},, in V5.
Vo =Va @ W,, WiV, meZ. (3.2.12)
By (3.2.1), one has
L*R) = m%z We . (3.2.13)

We can show that there exists a function ¢ such that [48] [50]:

W, = span{a} - (3.2.14)
Note that since
fFeEW, <= f(2™)eW,. (3.2.15)
We have
W =span{ymm}, meZ. (3.2.16)

In fact, the embedding Vy C V; immediately implies
e(z) =D {2z — ) (3.2.17)
neZ
where the ¢, decay rapidly for k tending to infinity. The corresponding wavelet
¥(x) is defined by
Y(z) =3 (-1)"e1_np(2z — n) . (3.2.18)
nez
Then ¥(z — n), n € Z, together with ¢(z —n), n € Z, constitute an orthonormal
basis for Vi. Thus ¥(z — n), n € Z is an orthonormal basis for the orthogonal
complement W, of Vj in V;. Because of (3.2.13) and {3.2.15), {¢¥mn, m,n € Z}

constitute an orthonormal basis of wavelets for L*(R).
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Up to now, we have discussed only the one dimensional case. It is easy, however,
to extend the orthonormal bases to higher dimensions. There are two natural ways
to construct wavelet bases [9] [52] [36] [37]. The first is using the one dimensional
construction. The second way is simply by the tensor product. We illustrate this

procedure in two dimensions.
Let V,, be the subspace of L*(R) defined by V, = V; ® V. Then

@iy ,nn)(ma Y) = Pmny (z)Pmna (y)

are an orthonormal basis for V,,. Define W,, as the orthogonal complement of V,

in Vpp1- We have

Vo1 = Vo1 ® Vi
= (Vi ® W) ® (Vin @ W)
= Vin ® Vi) @ (Win ® Vin) ® (Vi ® Wi)
(Wi @ W) .

so that
Wi =W ®@ Vi) ® (Vi @ W) @ (Wi @ W) .

A basis of Whp, is given by the function
¢!(7{?n = ¢g?(n1.m) = 2" 49 2"z =, 2"z — no)

where

$(z, 9) = P(2)e(y),
¥z, ) = p(z)¥(y),
PV (z, y) = Y(a)(y) -
It is clear that {¢U)}, m € Z, n = (n1,ne), ny,ne € Z, j = 1,2,3 constitute an

orthonormal bases of wavelets for L2(R?).
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The second possible construction of a wavelet basis for L?(R?) is given by

Yrmym (£)¥man. (). This basis, unlike the above one which we have just constructed,

has unrelated localizations in z, y directions. (Here m; # my.)

3.3 Compactly Supported Orthonormal Wavelets
Recall from the previous section that
e(z) = cnp(2z—n) (3.3.1)
ncZ
and the corresponding wavelet

W) = 3 (1) Ein {2z — ), (3.32)

ne
where

= [ @) e(x—n)ds.
It is clear that if ¢(x) has compact support, then only finitely many ¢, are nonzero.
It follows that 7 is a finite linear combination of compactly supported functions,
and therefore it has compact support as well.

Let us start by considering the scaling function ¢(z). Taking the Fourier trans-
form of both sides of (3.3.1), we have

- 1 —ink -
B(€) = 3 Sene 7 (%) . (3.3.3)
ne
The above formula can be rewritten as
3(6) = mo (g) s (-g) , (33.4)
where
1 )
my(€) = 3 Z c, e~ (3.3.5)

ncZ
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Moreover
m .
3(6) = @(0) T[] mo(277¢), with 3(0) #0 . (3.3.6)
Jj=1
Thus [%, ¢(z) dz # 0, and for orthonormality we require f°° ¢(z)dr = 1. Since

@(z — k) are orthonormal, one has

b = [ o) @—F) ds

= o [T Ipe)P ¢ e

i = )

2x .
- %./(; 2 1B(E +2n0)? ¢ de . (3.3.7)

£eZ
Note that the series T,z |B(€ + 27€)|* converges a.e. to an L(0,2x) function
because of ¢ € L?(R) and therefore $ € L*(R). Define
oo
G(z) = 3 i@(z+2x0)*.
f=—o0
Then (3.3.7) can be interpreted as the kth Fourier coefficient of G. Thus
S 1@ +2x0))? =1, a.e. . (3.3.8)
L€
Substituting (3.3.4) into (3.3.8)
3 mo(e +7OPIBE+7OP =1, ae. .
e
Since my is a 2x periodic function, we have

Ima(©)* 3 1¢(€ + 27k))*

keZ

+Hmo(€ +m)* Y |P(E+7 + 2km)* =1, ae. .
kel

From (3.3.8), one immediately has

o) +Ime(€ +m)P =1,  ae. . (3.3.9)
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If ¢ has compact support, then there are only a finite number of terms in (3.3.5),
which implies mg(£) is a trigonometric polynomial. It is clear now that to construct
the compactly supported wavelet v, we can start from mg rather than from ¢.

There are some necessary and sufficient conditions on mg which were discovered
mainly by Cohen [10] and Lawton [43]. A detailed discussion can be found in
Daubechies [19).

In general, orthonormal wavelet bases obtained in this way cannot be written in
a closed analytic form. Daubechies [17] constructed the first family of wavelets with
compact support (different from the Harr basis) by starting from the coefficients

¢n, Where ¢, satisfy
oM—1

mo(§) =-;- D e

n=0
Table 3.1 lists the hy = c,/v/2 for M =2 through M =10.  Figures 3.1 and

3.2 show Daubechies wavelets for M = 2. The corresponding scaling function ¢

1 4 p———m———n

Figure 3.1: The Scaling Function of Daubechies Wavelets (M = 2)

satisfies

[ o@ds=1
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M n hn M n h"
2 0 482962913145 8 0 054415842243
1 836516303738 1 .312871590914
2 224143868042 2 675630736297
3 -.129409522551 3 585354683654
3 0 2332670552950 4 -.015829105256
1 806891509311 5 -.284015542962
2 459877502118 6 1000472484574
3 -.13501102001¢ 7 128747426620
4 -.085441273882 8 -.017369301002
5 .035226291882 9 -.044088253931
4 0 .230377813309 10 013981027917
1 714846570553 n 008746094047
2 .630880767930 12 -.004870352993
3 -.027983769417 13 -.000391740373
4 -.187034811719 14 000675449406
9 030841381836 15 -.000117476784
6 032883011667 9 0 038077947364
T -.010597401785 1 243834674613
5 0 160102397974 2 604823123690
1 .603829259797 3 657288078051
2 .724308528438 4 133197385825
3 .138428145901 ] -.20327378327%
4 -.242294887066 6 -.096840783223
5 -.032244869585 7 .148540749338
6 077571493840 8 030725681479
7 -.006241490213 9 -.067632829061
8 -.012580751999 10 000250947115
9 1003335726285 11 022361662124
6 0 111540743350 12 -.004723204758
1 494623890358 13 -.004281503682
2 751133908021 14 .001847646883
3 .315250351709 15 000230385764
4 -.226264693965 16 -.000251963189
5 -.1297663867567 17 000039347320
6 .097501605587 10 0 026670057901
7 .027522863530 1 18817680078
8 -.031584039318 2 .52720118¢8932
9 000553842201 3 688459039454
10 004777257511 4 .28117234366.
11 -.001077301085 5 -.249846424327
7 0 077852054085 6 ~.195946274377
1 396539319482 7 127369340336
2 .729132090846 ) 093057364604
3 469782287405 9 -.071394147166
4 -.143906003929 10 -.029457536822
5 -.224036184994 11 033212674059
6 071039219267 12 003606553567
7 080612609151 13 -.010733175483
8 -.038029926935 14 001395351747
9 -.016574541631 15 001992405295
10 012550098556 16 -.000685856655
11 000429577973 17 -.000116466855
12 -.001801640704 18 000093588670
13 .000353713800 19 -.000013264203

Table 3.1: The Coefficients h, (n =0, ---,

IM—1), M=2, ---,10

50
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Figure 3.2: The Mother Function of Daubechies Wavelets (M = 2)
and the “mother wavelet” % has M vanishing moments, i.e.,

oo
f *P()dr =0, k=0,1,...,M—1.
oo

and

suppy = [0,2M — 1], suppy = [-(M — 1), M] .

3.4 Wavelet Decompositions and Reconstructions

The main question now is how to decompose a function into its wavelet coefficients,
and how to reconstruct the function from these coeflicients. We shall introduce the
Mallat’s pyramid algorithm {48] which makes these steps simple and fast.
Suppose we are given a fine-scale approximation to f, f7 = P;f (recall that P;
is the orthogonal projection onto V;). Since V; = V;_; @ W;_,, we decompose as
follows: f/ = fi~14 fi~1 where fi~! = P;_;f/ = P;_,f is the next coarser approx-
imation of f, f7~1 = Q;_1f7 = Q;_1f (Q; is the orthogonal projection onto W;). In
each of these Vj, W;, we have orthonormal bases (@jx)rez = (2’7 2 (2 ~ k))ke z
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and (Yjk)kez = (237 2 (2 — k)) rez respectively, so that

= ; st wik (3.4.1)
and

fi= ;df; Yik - (3.4.2)

Where
st = {, on) & = (F, i) -

Substituting A, = 2"%¢, and gn = 2-%(—1)"z;— into (3.3.1), (3.3.2) separately, we

have
o(@) = V2 3 hn p(22 —n)
and '
P(z) = V2 Zﬂ:gn p(2z-n).
Consequently,
piu(z) = P p(Pz—k)
= 29223 S h, o(2(¥z—k) - n)
= 25 3 hy (212 — (2k + 7))
= ;hn ©jt12k4n(T)
= ; ha—2k Pi+1n(T) - (3.4.3)
Similarly,

Yir(z) = 3 Gn-2k Pjs1n(T) - (3.4.4)



CHAPTER 3. WAVELETS 53

Hence,
sio= (o = o)
= Z hn—2k (fﬂ-ls Pi+1n) (by (3.4.2))
= Zm si+t (3.4.5)
and

& = (F, %)
= (7, i)
= 3 Gooak (P ojn)  (by (3.4.4))

= Egn__zk 8;7;+1 . (34.6)
n

The formulae (3.4.5) and (3.4.6) can be interpreted as a decomposition algorithm.

Returning to fi+! = f7 + f7, one has
= ;31 ‘ij+§di Wik -
Therefore,
st o= Ekj sh{@iks Pi+1n) + ; Wik, Pisin)

= 3 [rn—2kS] + gn-2xdi] .
(by (3.4.2), (3.4.4)) . (3.4.7)

This is a reconstruction formula. If we define
(La’)k = Z A2k —nbn
n
where @ = (@n)nez, & = (T3 )nez-

It follows that



CHAPTER 3. WAVELETS 54
Decomposition: Initialize s¥ = f. Forj = J,...,1,
J1'=Hs and & 1=Gs. (3.4.8)
Reconstruction: Start with s9,d%,...,d7 1.
§=H'¢ 4G

where H*, G* are adjoint operators of H and G, respectively.

Summarizing the above we obtain the decomposition algorithm

7 A, g1 H g Ho0

N N —

G G G
\ dJ’—l \ d.r-z \“ dD

and the reconstruction algorithm
0 K, g H, 2 . H O J
I / /
Gt Gn Gt
at 4 dt -

Both of these are fast algorithms which take a total of O(N) multiplications.
Let us consider the decomposition case. If we start with N points s’, 27 = N,
then we compute K § multiplications for s’1, K & for ¢/~1, K & for s7-2,
K Z for d’-2, and so on, where K is the number of coefficients of the filter, for
example I = 2 for the Harr basis. The total number of multiplications is therefore
2K (’—.:,’- + & 4. 4+1) = 2K(N —1). If we choose compactly supported orthonormal
bases, then only a finite number of the h, are nonzero. Let K be the number of

nonzero coefficients, then the full decomposition takes O(/N) multiplications.
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3.5 Orthonormal Wavelet Bases on Finite Inter-

vals

The wavelets we have discussed so far are for L? functions on infinite intervals.
In many practical situations, however, people are interested in only a compact
subinterval. The signal to be analyzed is restricted to an interval, or a rectangle
in the case of image. Numerical computation is usually related to finite intervals.
Without loss of generality, we consider only the one-dimensional interval [0, 1].

Let us start by illustrating the basic ideas in Meyer’s [53] construction which is
tased on orthonormal wavelet bases with compact support.

Since L?[0,1] is not invariant under translations and dilations, one needs to
redefine a multiresolution analysis. In particular, we only consider 7 > j; > 0
and define V' to be the space of restrictions to I of the functions in V;, where
I =[0,1]. Thus V] c V4, and Uj»; Vi = L?[0,1]. Suppose that ¢(z — k), k € Z
are an orthonormal basis of Vp, and ¢(z) with support [0,2M — 1]. (Recall that
M is the number of vanishing moments. See §3.3). The j, is chosen so that for
7 2 jo > 0, supp(y;,) = [0,27%(2M —1)) is included in [0, 1/2]. By this assumption
the wavelets or scaling functions near the left edge are supported away from the
tight edge. Instead of considering the two edges of [0, 1}, therefore, we just look at
a half line, i.e., one edge only. Let

ohe) = ¢ T
0 if z<0.

Vi = span{p%lf; ke Z} .

For convenience, we shift 1(z) so that suppy = [0,2M — 1] (suppy = [-M +1, M]
in the construction of §3.3). Then ¢!(z) =0if £ < —2M + 1. It is clear that all
but 2M —2 of these li2'(z} are untouched by the restriction. (We view V! as the
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space of restrictions to [0, oo} of functions in ¥;). These functions {©3¢¥(z), k > 0}
are therefore still orthonormal. The 2M — 2 functions @}E", k = -2M +2,...,-1
are all independent, and orthogonal to the interior go}‘ff, k > 0. Similarly, we
can define Y and introduce W = VA n (V)L Meyer [53], Lemarié and

Malgouyres [45] showed that:

(i) The interior Y2¢¥, k > 0 are all in W}*f since they are orthogonal to all the
@i and lie in VIR

(ii) The yhg¥ with £ = —2M +2,...,—M are in V*", Le., they are orthogonal
to vi/}la.]f-

(ifi) The ¢! with k = —M +1,...,~1 are in W}, They are independent of

each other and orthogonal to the interior ¥2¢¥, k > 0.

Hence we have that

{ehis k2 —2M + 2} U{¥E"s k> -M +1}
constitute a non-orthogonal basis for V%

By a Gram-Schmidt procedure. we orthonormalize this basis.

1. Orthonormalize the @B, k = —2M +2,..., -1, then the resulting functions
Pr, k= —2M+2,...,~1, together with g, k > 0, constitute an orthonormal

basis for V", Define
Binl(2) = 2Pp(Pz), €L, k=-2M+2,..., -1,

then {vj; & > 0}n{@j; k=-2M+2,...,~1} is an orthonormal basis for
tha.lf’ J A
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2. Orthonormalize Prongamb{;}:‘ f k=-M+1,...,~1, where

2M -2
PIOJWha.l"lng" f= ha'“ Z ('%k aﬁot)(Pt

then the resulting functions @, k = =M +1,..., -1, together with the ¥},

k > 0, constitute an orthonormal basis for Ws‘a’f. Again, we define
@jk($)=25/21ﬁk(2j27), i€, k=-M+1,...,-1.

Then {¥;; k> 0}U {'d.)jk; k=-M+1,...,-1} is an orthonormal basis for
W}“’”.

The union of all these bases
{oB, ¥ 720, 20} U {@o; k=-2M +2,...,~1}
U {1/;,-k; i>0, k=-M+1,...,~-1}
is an orthonormal basis for L?[0, c0).
Similarly, we can consider the right edge (corrasponding to (—oo, 1]). Note that
Lo l=view,ew, e ---Wfe
(where jg is chosen, such that suppyp;, C [0,1/2]).
We have that
{ofe; —2m+2< k<2 —1}
U{Wie; 7= Jo, 0 <k <2 —2M +1}
U{¥d; 72 G0, ~M+1<k< -1}
U{$h: 5240 2 —2M+2<k<¥ -1}
where we define
V(@) = 2(@a),  (left edge)
V(o) = PPYRE @ -1),  (Gight edge)
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and {pl,; —2M +2 < k < 2° — 1} is an orthonorraal basis for V.

We know that the fast algorithm for the wavelet decomposition and reconstruc-
tion must have the same format for the approximation. In Meyer’s construction,
however, there are 2M — 2 scaling functions, but only M — 1 wavelets at each edge.
Hence we have that dim(V}) = 2/ — 2M + 2 and dim(W]) = 2’. Some difficulties
in the computation will occur. It is hard to find adaptive filters at the edges in the
algorithm.

Cohen, Daubechies, Jawerth and Vial introduced another construction in {11]
[12] to avoid this problem. We state the results without proofs.

For more details, see [11] [12]. Let

Tip(z — k) =1=po(z)
Tik oz — k) = pi(z)
ik KM lo(z — k) = par-1(z)
where p;(z) is a polynomial of degree ¢ and suppy = [0,2M - 1].
We define, for 0 i< M -1

i(a) = (pi(:c) -2 Kol - k)) X0yt
k>0
= E ki(p(ﬂ? - k)X[D,-i-oo)
k<0

and

k<l—2M

= Z ki‘P(-’” - k)X(—oo,l]

k>1-2M

Theorem 3.5.1 For all jo (5o is chosen as before), V! C Vj; and

F(x) = (pi(z)— > k"so(x~k)) X(-so]

{#(2z), 7"(¥ (z — 1)) }ogier—1 U {pschskswiam

constitute o basis (non-orthogonal) for Vj’ .
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Again, we define, for 0 <i< M -1,
,J,!.,i(zjx) — ¢£,i(2j+1$) _ ijpg (‘Pt,i(zj-i-lx))

and
(2 (z — 1)) = ™ (27 (z ~ 1)) — Projy, (¢ (2 (z - 1)) .

Theorem 3.5.2
{95 (2z), 97 (P (2 - 1)), 0Si< M —1}U {9 1< k<P —2M}
constitute a basis for Wj.

Similar to Meyer’s construction, they orthonormalize these bases by a Gram-
Schmidt process and obtain an orthonormal basis for L?[0, 1].

Theorem 3.5.1 and Theorem 3.5.2 imply that dim{V/) = dim(W]) = 2. It
follows that the fast decomposition and reconstruction algorithms corresponding
to these wavelets have the same pyramidal structure as the standard algorithms.
However, for every step for the M first and last coefficients, one needs to use special

filters which correspond to the scaling relations and wavelets at both edges.



Chapter 4

Wavelet Approximations

Because of the associated dense matrices, numerical algorithms for solving integral
equations usually require order O(N3) operations, where NV is the number of degrees
of freedom in the model. For large-scale problems, the computational costs and the
memory storage tends to be prohibitive. In applications, however, the requirement
for models with a large number of degrees of freedom N is inevitable [59] [2].

In [7], Beylkin, Coifman and Rokhlin showed that a large class of operators such
as the Calderon-Zygmund and pseudo-differential operators have sparse represen-
tations in wavelet bases. We have seen in Chapter 3 that there are two significant
properties of compactly supported wavelet bases which lead to sparsity. One is the
vanishing moment condition. And the other is the narrow interval of support of
most of the basis functions. Therefore, by using wavelet bases in numerical approx-
imations to achieve sparse representations of the operators, it becomes possible to
consider models with large numbers of degrees of freedom which would otherwise
be intractable due to the fully populated matrices.

A gap remains, however, in the represen-ation of an integral operator in R (let

us consider one dimensional case first) for soiving the integral equation on a finite

60
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interval.

Since for wavelets with M vanishing moments (A > 2), the basis functions
overlap between intervals, and the basis functions need to be modified at the interval
end points. As we point out in Chapter 3, Meyer's modification [53] is not suitable
for implementing a fast algorithm because of 2M — 2 scaling functions and the fact
that there are only M — 1 wavelets at each interval edge. For Cohen, Daubechies,
Jawerth and Vial's construction, although one can find special filters at each edge
of the interval {11} [12], one must calculate inner products involving wavelets and
our hypersingular kernel in two dimensional space by costly integrations.

Another issue for solving integral equations is that the projection of the hyper-
singular integral operator onto the basis functions requires appropriate integration
quadratures. Since analytical expressions for the Daubechies compactly supported
wavelets are generally not available, the recursive form of wavelets will make those
integrations more costly.

To eliminate the above difficulties, Alpert, Beylkin, Coifman and Rokhlin [2]
introduced wavelet-like bases for the fast solution of second-kind integral equations.
They mentioned that, although conceptually the generalization of the wavelet-like
bases to high dimensions is quite straightforward, actual procedures to perform
the required orthogonalizations have not been developed. As a result, this issue
remains unresolved for two and three dimensional problems.

We shall consider matrix problems in this chapter to investigate the above dif-
ficulties. First, we extend the solutions of the hypersingular integral equations pe-
riodically outside the finite interval. Secondly, rather than applying wavelet bases
directly, we use the discrete wavelet transform to the dense influence matrix which
is obtained from the discretization by a piecewise polynomial collocation method.

The sparsity of the resulting matrix enables us to calculate the inverse matrix by
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Schulz’s method [74] which involves only O(N log? N) operations. Therefore, we can
reduce the cost for solution of the discretized problem to O(N log® N) operations.

In addition, for certain practical problems it is necessary to solve a system of
nonlinear equations by performing a sequence of iterations each involving a matrix
vector product. The sparse matrix representation makes it possible to perform one
of these iterations in O(V log N) operations rather than the O(N?) operations that
would be required to perform one iteration directly.

Since all numerical approximations to higher dimensional problems reduce to
a matrix problem, we can treat these problems similarly to the one dimensional
case provided that the matrix possess only a finite number of singularities in some
rows or columns. The convolutional structure of the matrix is not necessary for our

method.

4.1 Piecewise Polynomial Collocation Approxi-
mations

Let P2, d € Z,, be the space of piecewise polynomials of degree d on a uniform

mesh A of the interval [a, b]:
Ara=xp<nn<---<zy=b,

where z; =a + jh, 7 =0,1,...,N and h=1/N:

P? = {o(z) : ¢()|in+1)n) Is & polynomial
of degree <d, j=0,1,...,N—-1}. (4.1.1)
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We seek an approximate solution uy € Pg of the following hypersingular integral

equation:

Au(z) = f (tu_(ta):)2 dt=f(z), a<z<b. (4.1.2)

Without loss of generaiity, we choose ¢ = 0 and b = 1. Assume that {H;;(z),
i=1,2,...,N, j=1,...,d+1} is a basis of P{, then
N d+l
un(z) = E Z aijHij(z) . (4.1.3)
i=1 j=1
Substituting (4.1.3) to (4.1.2), we obtain the coefficients a;; to the following equa-

tion.
(Aun)(z) = flz),  i=1,...,N, j=1,...,d+1, (4.1.4)

where z;; € (#-1,%;), i =1,...,N, j=1,...,d +1 are collocation points. Since
interpolation at zeros of Chebyshev polynomials of the first kind is nearly optimal
[21} [62], we choose the zeros of the Chebyshev polynomial of degree d + 1 as

collocation points, i.e.,

Ty = [(.’B, + .’L‘i_1) - (:B,' - $§-1)COS((2j - 1)11'/(2(d+ 1))] /2 N
i=1,...,N, j=1,...,d+1. (4.1.5)

The algebraic equation (4.1.4) can be rewritten as a projection equation:
QrAuy = Qnf . (4.1.6)

where @ is an interpolation operator. Let QaA = A% and Q,f = fn, so that
(4.1.6) becomes

AﬂuN = fN . (4.1.7)
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The matrix associated with piecewise constant polynomials is as follows:

1
Pr: sy — ,i=1,...,N. .
Ay(5,5) RG— =1 ,j=1 N (4.1.8)

For piecewise linear polynomial collocation approximations, we choose

Hij(x) = ""al':.f-:;ik y TE (zi—lvzi)s
0 , otherwise .

i=12,....N, {ij=1, k=2}or {j=2, k=1}

as a basis of P}, where z;;, i = 1,2,...,N, j = 1,2 are collocation points. The
associated matrix A% is not translation invariant, see Appendix A.

Since the matrices resulting from piecewise polynomial collocation approxima-
tions are fully populated, direct solution of (4.1.7) for a large NV is prohibitive. We
therefore consider wavelet approximations with the view to obtaining a sparse rep-

resentation of the matrices, which can then be used in iterative solution algorithms.

4.2 ‘Wavelet Approximations

In this section we outline the procedures that are necessary for obtaining wavelet
approximations to the hypersingular integral equation (4.1.2). In addition, we
establish the required framework for a sparse representation of the resulting system
of z2lgebraic equations by means of the fast wavelet transform. Although such direct
wavelet approximations turn out to be inconvenient due to the hypersingular kernel,
the framework established in this section forms the basis for the fast solution of the
matrix problem outlined in the next section.

Wavelet approximations are similar to piecewise polynomial collocation approx-
imations, in which, instead of representing a function by a piecewise polynomial

basis, we expand the function in a wavelet basis.
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Recall from the previous chapter that the scaling function ¢(z) and the corre-

sponding wavelet 1(z), of the Daubechies compactly supported wavelets with M

vanishing moments, satisfy the following two recursive formulae respectively:

o(z) =\/§§§hk’¢(2x—k+1)

k=1
and
oM
Y(z) = \@nggo@x— k+1)
k=1
where

g = (1Y hapr—g41, k=1,...,2M

and hi, k=1,...,2M are given in Table 3.1 of Chapter 3. Moreover

/rp(x) dr =1
and
fa:"w(:c)dm=0, k=0,...,M~1.
Define
V; = span{p;x(z) = 29/%p(2z -k + 1), k € Z}
and

W; = span{v¥jx(z) = 29/29(2iz - k + 1), k € Z},

then (see Chapter 3)
ViCVin  and | V;=IR)

and

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)
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W; is the orthogonal complement of V; in V;,;.

Since suppy = [0,2M — 1] and suppy = [—(M — 1), M), p;r{z) and ¢¥;(z)
overlap between intervals. In order to represent a function u(z) € L?(0,1), we
extend the function periodically outside of the interval [0, 1]. This is equivalent to
imposing periodic conditions on the basis functions. We denote by () and ¥i(z)

the periodic versions of p;x(z) and ;x(2) respectively and define:

VJ-I' = span{pl(z), k=1,2,...,2}

and

ijj‘ = spa.n{’d)i(x), k=1,2,...,2},

where I' = (0, 1).

Then
VicVh, ad | VW =L1%0,1) (4.2.6)
J€Zy
and
wieVi=V],. (4.2.7)

Instead of applying the Meyer [53] or the Cohen et al. [11] [12] constructions, we
use the above construction which makes algorithms for solving our hypersingular
integral equations easier (see discussions at the beginning of this chapter). Again

let A be a uniform mesh on the interval [0, 1].
A:0=g<y< " <ay=1.

For simplicity of the algorithms, we always assume N = 27 for some j € Z,. We

. . LI
now seek an approximate solution uy € V,,I y le.,

N
un =3 SR, (4.2.8)
k=1
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where N = 2". Since there are no analytic forms of ¢}, £ = 1,...,2%, we have to
divide every interval (z;, z;;,) into small subintervals, then to calculate#cl,(—f:‘%} dt.
Therefore due to the hypersingular kernel (T-l‘t)_n it is hard to evaluate the integral
at a collocation point when it is located in the interval (z;, ziy1).

Hence we apply the Galerkin method to determine coefficients s, k= 1,..., N,

ie.,

ALuh = 1%, (4.2.9)
where
a6k = [ % dt dz

I (4.2.10)
B = [uei@ e g, (a:211)

and
FE(k) = f F@)ol(z) dz & s2(f), i,k=1,2,...,N . (4.2.12)

Remark: [ [ are integrations on suppy? X suppyp and [ are integrations on
supppy. For convenience, we write [ [ and [ instead of J5yppyn fsuppey and

fsuppp;; respectively in this section.

Note that
Vi=Wi,eW, e -oW oV .
Hence {¢%(z), ¥i(z), k =1,...,2%, j =0,...,n— 1} is a basis of V. We can
express uy € VL' in the form
n-1 2

uy =Y, > diwil + s}u)e} . (4.2.13)

=0 k=1
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And (4.2.9) becomes

Afuy =%, (4.2.14)
where
Af(m1,ma) = f f ﬁgtfb;)(f (4.2.15)

(my,mz = 1,...,N, and m;,mq are associated with (¢,7) and (k,¢) respectively,

for details see (4.2.18) - (4.2.24))

uhy = (@) ) - () 42 (w) - d(w) - u)sdw)] (4:2.16)
and

=@ N G - S ) - g2 - BN @217)

where ‘T" denotes transpose of a vector.

More explicitly, if we write
& =(ddf---d)]"

then (4.2.14) can be rewritten as:

[ Awy Br, BT - B2, B, | [ [ain)]
2., An B} --- B, BL, d"*(u) ar2(f)
et Il Apes - BRg B}.-s d"3(u) _ dr3(f)
P?:.—-—l rfzz-z F:za—a e Ap B& d® (u} d? (£

| a1 The Ty -+ T§ T ]| 8%(x) i I s°(f)

(4.2.18)

where A;, j =0,...,n — 1, are 2/ x 2/ matrices and

A5, =2 | (20t ‘“& ﬂ"l’gjm =4+ D Gids; (42.19)
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B_gf',j.:l,...,n—l, ' =2,...,n are 2/ x 272 matrices and

B [ A= e

dtdr;  (4.2.20)

I7,j=1,...,n—=1,7=2,...,n are 2% x 29 matrices and

criln w2y g i +
(s, =224 [ [HE Lo v@a o th )

(= dtdr;  (4.2.21)

B},j=0,...,n—1, are 2 x 1 matrices and

2
B, ) = 24 j f e t(t i+)1)‘p($) didz ; (4.2.22)
I} j=0,...,n—1,are 1x 2 matrices and
¥
T, £) = 23 f ‘p(t)w(f_xx)f"" D gtdz (4.2.23)

and

Ty = f £ 4oy (4.2.24)

(t —z)?
It is easy to see now that A% (4.2.18) is the representation of the operator 4 in
the two dimensional tensor product basis, for details see Section 3.2. We call this

representation the standard form (7).

We will show in section 4.4 that AY is sparse. However, if we discretize the
equation (4.1.2) directly using the wavelet basis {¢%(z), %i(z), k= 1,...,2%, j=
0,...,m — 1}, calculations of (4.2.18) - (4.2.24) make the problem more difficult.
Since ¥;i(z) X 9;.(x) supported on the rectangle I x J (I = suppv;i(z) = [l'M—" %‘V—]
and J = suppyj(z) = [" , &M ] the length of the two intervals is not
equal if 7 £ §', we have to ca.lculate A% (m;,m,) and A%(ny,np) using differ-

ent integration quadratures if my # mi, ma # ng, whereas A% (i, k) (4.2.10)



CHAPTER 4. WAVELET APPROXIMATIONS 70

i,k =1,...,N can be evaluated in a uniform integration quadrature because of
the lengths |suppy?| = |suppyp}i) for i,k = 1,2,...,N. However, A¥ is not sparse
since there are no vanishing moments on ¢%(z).
We would like to discretize (4.1.2) by {4.2.9) and to solve the problem using the
sparse system (4.2.14). Let us consider the relation between (4.2.9) and (4.2.14).
We define

P o (29t — i+ 1)p(2z — €+ 1)
L=2f] -2y ddz,
D o (2t — i+ )PPz - £+1)
v, = ¥ [ = dt dz

and

. , 23t — 4 g — 1
o, = 21//90( i+ 1)p(2z — €+ )dtd:c,
(t — z)?
W 6=1,...,%,j=0,...,n.
Then from the recursive formulae (4.2.1) and (4.2.2), we have

_ M .
iJ,u! = Z gkhmsiilzi—z,mq.ze_z ’ (4.2.25)

k=1

. 2M -
e = Y hagmShini_amsot—2 s (4.2.26)

k,m=1
and
j = =+1
sle = 20 hehmSiisiomize s - (4.2.27)
km=1
Note that the above integrations are calculated on the rectangle I x J with
|I] = |J]- For the case |I| # |J|, we can calculate the first step at j = n, then move

to the next step = — 1 by recursion. For example, from (4.2.20), one has

B = o [ | w(%‘”(lt)‘_”(j;:m'e D 4t do
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2 . .
- Bt — i+ 1)p(Dz — (m+ 20— 2) +1)
— of
?yom// -2y atdz
oM _
= 21 9m B msat—2 - (4.2.28)
We define
S oy ot P2t — i+ V(P lx - £+1)
SBit(i,0) = 2 f ] o op dt dz
2M )
= Z hmﬁij,m-i-ze-z . (4.2.29)
m=1

Comparing with (3.4.5) and (3.4.6), (4.2.28) and (4.2.29) can be viewed as a one
dimensional fast scheme for a fixed index 2.

Similarly, we have

. 2M o
Fﬁ'ﬂ (i1 E) = E gmﬂ}’;;+gi_2‘¢ (4.2.30)
m=1
and define
o+ _ ofimt (PN — i+ DY(Pz—€+1)
sTg = o [ f ey dt dz

2m .

= E hmﬁfn-i-zi-z,z . (4.2.31)
m=1

Moreover, applying (4.2.1) and (4.2.2) to (4.2.19), we obtain

M 2M

Aj@’ E) = Z Z gkgms{:i;i—?,m+21—2 . (4232)

k=1 m=1
Note that if, A%(,€) = sty, i€ = 1,...,2" (from (4.2.19)), are given, then
A;(,8), B}’-"'(i, £} and I‘j’:’(i, ¢) and therefore A% can be obtained via (4.2.25) -
(4.2.32) recursively. More precisely, A% can be obtained by transforming A% on its
first index (row or column) then on its second index (column or row).

We denote by “~" the wavelet transform, then (4.2.14) can be rewritten as

A% iy = f2 (4.2.33)
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Clearly, the transformation from A% to Ay requires O(N?) operations. How-
ever, since the structure of singularities of the kernel (tle)f is known, the procedure
requires only O(V log(V)) operations (we will show this in section 4.4).

We now focus on calculations of A% (%, £). From (4.2.10), we have

A%, 0) =2"]f""(2%““&11""2()2:“’4“) dtdz .

Because there is no an:lytic form of ¢(z), since ¢(z) is given recursively, the nu-

merical computations of A% (i, £) involving hypersingular kernel &Tlm)-,— tend to be
tedious. Therefore, we seek another approximation which we call the matrix prob-

lem approximation.

Remark: In formulae (4.2.25) - (4.2.32), we assume that all indices are periodic
with period N. Since the periodic extensions are performed on ¢ () and ¥;(x),

it is equivalent to performing periodic extensions on those indices with period N.

4.3 The Matrix Problem

For convenience, we write {¢}(z), k£ =1,...,2"} and {¢}(z), ¢i($), j=0...,0—
1} as {p;(z), 7=1,...,N} and {¢;(z), § =1,..., N} respectively, where N = 2".
Since both of these are orthonormal bases of V, there exists an invertible N x N

matrix B = (b;;) with B~ = BT such that

[ 2 bu b2 - bhiw W ! 1 ]
vl bf‘ b e by || 2| (4.3.1)
| ¥n | [ bm1 bvz ccr baw | | N
From (4.2.15), we have
A = [ [EIUD s
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= .[ _[ Tt bikior « Ty bise

(t—=z)?
N N
= ijt Zb"kAKf(k! £)
=1 k=1
ie.,
A% =B A% BT,
Similarly, we have
uly = Buf
and
=Bff.
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(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

Formulae (4.3.3), (4.3.4) and (4.3.5), together with (4.2.14) and (4.2.33), imply that

A% = BA% BT

0 ¢
'U-N = B'U.N
and

G=Br1.

Now we consider piecewise polynomial collocation approximations

P_P P
Avuy = fn .

(4.3.6)
(4.3.7)

(4.3.8)

(4.3.9)

And assume dN; = 2", where dN; is the dimension of the space PZ with h = 'NlI

Multiplying both sides of (4.3.9) by B, cne has

B AL BTBuf; = Bff .

(4.3.10)
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Clearly, this is equivalent to applying discrete wavelet transforms to both sides of

(4.3.9). Hence (4.3.10} can be rewritten as

AR ah = 1%, (4.3.11)
where
AL = BARBT, (4.3.12)
ik = Buk (4.3.13)
and
fE=Bff. (4.3.14)

We shall show in the next section that the wavelet representation jiﬁ resulting
from piecewise constant and piecewise linear approximations is sparse. Since the
discretization by piecewise polynomials is much easier than by wavelet bases, we
would like to discretize our hypersingular integral equation by piecewise polynomial
collocation approxim:tions rather than directly by wavelet approximations.

The generalization of this method to high dimensional problems is straight-
forward since any nigh dimensional problem can also be expressed in the following
matrix form

Avuny = fn -

The wavelet transform Ay of the matrix Ay is sparse provided that Ay has a finite

number of singularities in some rows or columns.
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4.4 Sparsity and Error Analysis

Beylkin, Coifman and Rokhlin [7] have shown that the integral operators with the
kernel k(t, ) satisfying

1
. C —
M M —
07kt 2)| + 1068, 2)] <

where ¢g is a constant, for some M > 1 have sparse representations in the Daubechies
compactly supported orthonormal wavelet bases. We can establish similar results
for the kernel k(t,z) = TE:I?F .

Note that our wavelet approximations for solving integral equations are based
on the discretization by the piecewise polynomial collocation method. This is equiv-
alent to using wavelet bases for the resulting apprr—"~:.te discrete kernels, suck as
the kernels in (4.1.8) and those in Appendix 4 ir~aud of applying wavelet bases
directly to the kernel k(t,z) = '(t—lT)z O1¢ .. s3: that the kernels in (4.1.8)
and Appendix A are more complicated than k(i z) = zm Moreover, the kernel
resulting from the piecewise linear appro..:nation is not translation invariant.

We must consider the question of whet 'er the keri.els based on piecewise poly-
nomial approximation have sparse represe.itations in terms of wavelet bases. To
a. . this question, we start by demonstrating the sparsity of the operator with
kernel k(t,z) = -(:TI:F

Let us consider the standard form of A% in (4.2.18). Since suppt(z) = [~ (M —
1), M}, suppy(2iz ~i+1) = [ﬂ;:_l‘ 5%"1] for some i,j. We define the distance

between two intervals ] = [‘—'—gf—-'i, %M-] and J = [_._r_‘"‘;“ =1 L-%-,‘m] by

d{I,J} = tEIRizréJH -z},

for some %,4,k,f. And A;; denotes the element of A'f’v which is associated with
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intervals f and J. Hence

J=2;12-5/.[1b(25t—i+1)¢(2"a:—2+1) dtds . (641)

(¢ —z)?

except for the Nth row and the Nth column of A%.

Remark: We wrap ¥(2/t — i+ 1) and %(2fx — £+ 1) around the right edge z =1
and the left edge 2 = 0 when I, J spill out of the interval [0, 1].

Without loss of generality, we assume |I| £ }|J|. For fixed z and d(I, J) > 0, we
expand u—__lay into a Taylor series around the center ¢; of I. Applying the moment
conditions

fx"‘1,b(x)dx=0, m=0,1,....M~1,

we obtain

Ay =d 2% j j G ::)’2“2 PPt —i+ 1Yz — €+ 1) dtdz, (44.2)

where £ € I and ¢’ = (~1)M(M +1).

Therefore

2] (d{, )M+
Lnd
(a(, )yt

where c is a constant, and || and |J| are the lengths of intervals I and J respectively.

M
vk |1 I
Al < 2T (U) el (sup )’

< c (/1)) (1.4.3)

We now compress the standard form A% according to the estimate (4.4.3). Let
A}‘&'b denote the approximaticn to A¥ which is obtained from A¥ by setting to zero
all coefficients of matrices A;, B;:', I"J’:', i=1...,n-1 7 =2,...,n outside of
bands of width b around their diagonals. Similar to Beylkin, Coifman and Rokhlin’s

estimate for the non-standard form, we can show that (refer to Appendix B)

Ih(A%° — ARl < bM logy, N , (4.4.4)



CHAPTER 4. WAVELET APPROXIMATIONS 77

where ¢’ is a constant, b = % and the norm || - || is defined by the row-sum norm
N
JAll=mgx 3 4G, @45)
=1
From (4.4.2) it can be seen that near the diagonals, }h Ars| > ¢1, where ¢; > 0

is a constant and h = <. Hence

A% > ¢ . (4.4.6)

The above inequality, together with (4.4.4) implies that

4% — 4% . <
< 037 oy N, (4.4.7)
4kl T8

where ¢ is a constant.

Given a threshold € > 0 and a fixed M, b has to be chosen such that

lA%° — A%l _ ¢
—tee=_ < — log, N < ¢, (4.4.8)
AR bM
ie.,
¢ 1M
b2 (-6- logzN) . (4.4.9)

The resulting compressed matrix A‘f{;b contains at most O(N log N} non-zero

elements, which is similar to the non-standard case (for details see [2]).

Remark: Since [A%(4,7)| = O(h™!), we can always multiply by h both sides of
(4.1.7) before applying discrete wavelet transforms to A% (see kernels (4.1.8) and
Appendix A). Otherwise we need to compare A%(i,5) to e = max;; |A%(1, 7).
If |A%(i,7)|/a < €, then we set the element A% (:,7) = 0. It is clear that this

procedure makes the algorithm complicated.

Clearly, the key fact which results in sparsity is not only the narrow support of
most basis functions and vanishing moments, but also the decay rates of the Mth

derivatives of the matrix elements with distance from the diagonal.
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We can show that the matrices resulting from piecewise constant approxima-
tions (see (4.1.8)) and piecewi:e linear approximations (see Appendix A) possess
the above-mentioned property. Therefore they can be compressed (to any fixed
accuracy) with only O(NNlog(N)) non-zero elements. See Figures 4.1 and 4.2.

Suppose A5P is the compressed form of AE. We consider the following algebraic

equation:
ARb gBr = fP (4.4.10)
where “~” denotes the wavelet transform. Let u be the exact solution of (4.1.2).

We shall ask:

Pb

Does the approximate solution %, converge to i as N — oo? (4.4.11)

Recall from (4.3.9) and (4.3.11) that
Avun =1y,
and
ARy = fN
We shall show in the next chapter that
luk —u|lz2 — 0 as N — o0

for the piecewise constant and the piecewise linear approximations. Therefore by

(4.3.13)

lay —allzz = [1B(uy — w)lizz

< 1Bl vl —ullz2—0 asN-—oo. (4.4.12)

Thus to establish the convergence described in (4.4.11), we only need to show that

for a given € > 0,

|28 - Rl <e . (4.4.13)
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Figure 4.1: The Standard Form of PWC Influence Matrix (Entries above Threshold
1075, N = 256)
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Figure 4.2: The Standard Form of PWL Influence Matrix (Entries above Threshold
1075, N = 256)
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provided N > N,.

We will make use of the following theorem:

Theorem 4.4.1 (Rudin [67])) Let X be a Banach space and A : X — X be a
bounded linear operator with ||Al| < 1. Then I — A is invertible and

_ 1
iiZ -4~ Sl_-—_

Ml (4.4.14)

where I denotes the identity operator.

We refer to Rudin [67], Chapter 10 for the proof.

We shall also show in the next chapter that (A%)~! exists for the piecewise
constant and the piecewise linear approximations and that there exists a constant
¢ such that

(A <e. (4.4.15)

Therefore, from (4.3.12), (A%)~! exists and
1AM <4, (4.4.16)
where ¢’ is a constant. We define the condition number of A% by
cond(AR) = [|IAR (AR - (4.4.17)

For €1 > 0 with cond(AE)e; < 1, we choose b > 0, such that

APb 3P
l—|A—N--—P—{1-N—” <EL. (4.4.18)
AR

Hence
(AR (AR — AR
7 o (IAR = AR
< ICAD)M 1AL (————)
HAxI
< cond(AR)e; < 1. (4.4.19)
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Applying theorem 4.4.1, we have that [I — (AF)~1(AE — A5®)]~? exists and
1

[I — (A HAL — ARN ] < . : (4.4.20)
" I g )~HAR ~ APl
Since [I — (A Y UAE — ARMHAR) = (ARP)™, we obtain
7 Pby~ ICAR)
AR < TP - (4.4.21)
v = I(AR)* (AR = A
Therefore, by (4.3.11) and (4.4.10),
ARral —ak) = ARPaf - ARk + AR af - AP af
= (A - ARk
Consequently, from (4.4.18), (4.4.19), and (4.4.21), one has
1552 — 2252 1A AR - ﬁff"ﬂ l[&x |l
T 1= (AR AR - Al
P 3 sPb
cond(AR) Mzl yag
1- (AR (AR - AN
i,

1— cond(A)- ¢
And (4.4.22) yields (4.4.13). Moreover, (4.4.22) shows that the compression rates

depend on the condition number of the operator.

4.5 Numerical Solution

In this section, we seek numerical solutions of sparse algebraic equations. Due to
Schulz’s method [74], the numerical algorithms require only O(N log? N) opera-

tions.
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4.5.1 Schulz’s Fast Iterative Method

Following Alpert, Beylkin, Coifman and Rokhlin [2], we apply Schulz’s method to
solve the sparse linear systems that result from the discretization of the integral
equation (4.1.2) and the subsequent wavelet representation.

For convenience, we write the resulting sparse matrix problems as follows:

Au=f. (4.5.1)

Assume the matrix Ag is an approximate inverse of the matrix A and let us
start the iterative procedure with this matrix A,. Define the residual matrix R of

Ag as
R=1I-A4;A. (4.5.2)
Therefore
ApA=I—-R. (4.5.3)
We consider

AT = ATNA47 A

= (AOA)_IAU
= (I —R)—I.Ag
= (I+R+R* 4 +R" 4+ )4 . (4.5.4)
And we define
Aom (I+ R+ B oee o R Ag (45.5)

and

up = Anf . (4.5.6)
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Then

Upaa = (I+R+"'+Rn+1)Agf
= (I-(I-R{I+R+---+R)+(I+R+---+R")AS
= up + (Aof — Aodu,)

= Up + Ao(f — Aun) - (4.5.7)
It is interesting that

24, — AnAA,

= 20+R+--+RYA -(I+R+---+RYWI-R){I+R+---+ R")A
= @2-{I+R+---+RY+RI+R+---+R))(I+R+---+R"A

= (I+R*"*"){I+R+---+R"4

= (I+R+---+R*+R" +.--+ R4,

= Ay n=0,137.... (4.5.8)

We can apply either the iterative formula (4.5.7) or the iterative formula (4.5.8)
to solve equation (4.5.1). However, the algorithm (4.5.8) converges quadratically

[74]. To show this, we define the following norm of a matrix A:
|4z = (largest eigenvalue of ATA? (4.5.9)

And denote by k(A) = || Aljz)iA~*||2 the condition number of A.

It is convenient that we rewrite (4.5.8) as follows:
Am+1 = 2Am - Am.AAm . (4.5-10)

Then we have



CHAPTER 4. WAVELET APPROXIMATIONS 85

Lemma 4.5.1 ([2] [74]) Suppose that A is an invertible mairiz, Ag is a matric
given by Ag = AT/||AT Ally, and for m = 0,1,2,... the matric Apmyy s defined by
the recursion (4.5.9). Then Amyy satisfies the formula

I - Ami1A = (I — ApA)? (4.5.11)
Furthermore, Ay — A™! and m — o0 and for any £ > 0, we have
“I - AmA"2 <€
provided
m > 2logy k{A) + log, log(1/e) . (4.5.12)
FProof: see [2].

Clearly, if the algorithm (4.5.8) converges at the mth step, then (4.5.7) will
converge at the 2™th step. However, we should notice that (4.5.8) involves two
matrix multiplications at each iteration. Each matrix multiplication requires V3
additions and multiplies when the matrices are fully populated. Therefore the
recursion (4.5.8) is practical only when the matrices have some special properties

which will allow these matrix multiplications to be performed efficiently. Our sparse

matrices of the standard form (4.2.18) possess these properties.

4.5.2 The Algorithm Complexity Analysis

Returning to the standard form of our operator in (4.2.18), we see that the standard
form is a representation in an orthonormal basis (a two dimensional tensor product
basis). Using Beylkin, Coifman and Rokhlin’s notation, we write the standard frrm

as follows

T = {Aj' {B;' };::;a {F'; }';l:-ga B;, I‘;, B&, Fa, Ao, To}jzl,...,n-l (4,5_13)
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Suppose that T and T are also two standard forms, i.e.,

T={4{B{ N3 OB T3 B Th Ao}, ., (4514)
and
7= {4, B/ Y (03 BLILBL I AT} (4515)

and suppose that we wish to compute T = TT.

Since the result of the muitiplication of two standard forms is also a represen-
tation in the same basis, T = 7T must have the same structure as that given in
(4.5.13).

Given a threshold of accuracy £ > 0, T, denotes the matrix obtained by setting
all the elements of T below the threshold to zero. Thus, the corresponding bl.cks
As, B;j', I‘;f (except for the Nth row '}, Nth column Bj, j =0,...,n—1and To)
are banded. 7. therefore contains no more than O(N log N} non-zero elements. It
is easy to check now that the multiplication of two such sparse matrices T, and 7.
requires at most O(IV log® N) operations.

Since for a given ¢ and the sparse representation of the matrix A, the iterative
step m can be determined from (4.5.12). Therefore, applying Schulz’s fast iterative
method (4.5.10), we take only O(N log® N) operations to solve the system (4.5.1).

By using indexed storage of sparse matrices, the algorithm needs only O(N log N )
words of computer memory. Moreover, this data structure of indexed storage allows
us to avoid having to multiply by zeros at each step of the algorithm, thereby losing

the advantage of che spaise structure of the standard form.



Chapter 5

Error Analysis

It is clear from the previous chapter that the framework of our wavelet collocation
approximations is based on the piecewise constant and piecewise linear collocation
methods. Therefore, we shall forus on error estimates for the piecewise polynomial
collocation approximations.

Let s¢, d € 2., be the space of d—1 times continuously differentiable splines of
degree d on the uniform mesh of the interval [a,b,a=%90 <21 <ZTp<--+<zZp=b

with z; = a4 jh and h = 7:

58 = {p € C%1 1 p|(jn,j+1)n) is a polynomial of degree <d, 7 =0,...,n— 1}.
(5.1)
The spline s¢ has a basis {Bj4}, j = 1,...,n — 1 of B-splines which are defined as
follows (deBoor [21], S. Présdorff and B. Silbermann {65])

1, 5 <T< 35,
Bjo(z) = _
0, otherwise
For d > 1, we use the recurrence

x_m. m- —
i B.’d_l(x).{__ﬁﬂi-l_f’i_ Bi1.4-1(z) -
T 2 ard,

Bju(r) = ——
Tjgd = Lj Ti+d+1 — Tj+1

87
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We can easily s ¢ that pilecewise constant polynomials belong to sj). And s}
is a special case of the piecewise linear polynomial space P;. In this chapter, we
consider error estimates in spline space sg.

From Chapter 2, we know that onr hyper-singular integral equations have an
intimate relationship witn Cauchy singular integral equations. There are some
papers [70] [24] {71] {72 [25] [73] [26] which deal with error estimates of spline
rollocation méthods and Galerkin metheds with splines for Cauchy singular integral
equations. We will review a few related results in section 5.1 and establish our error
estimates in section 5.2.

We mentioned in the introduction that only oue paper [68] gives a incal error
estimate of order O(h) for the piecewise-constant collocation method. We will show,
however, that if we take into account the complete asymptotics of solutions on the
whole interval, the rates of convergence are different. With our estimates, we can

explain the phenomena which were observed by Ryder and Napier in their paper
(68}

5.1 Review of Some Results in Spline Approxi-
nations

By H?, s € R, we denote the usual Sobolev space of order s on an open set Q. (See
the definition in Chapter 2.) Let Hj be the closed subspace of H*(R") consisting
of functions with support in 2. Without loss of generality, we consider Q = (=1,1)
for the one-dimensional case.

We introduce the following properties which we shall apply in the next section.
For proofs see [24] [27] [47].

Property 5.1.1 Hj = H*® when |s| < 1, and H} is a subset of H* when s > 1/2.
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Property 5.1.2 Forany k € Cand z € R, (1+x)*], (1—-z)*I and (14+z)Y(1-x2)*I

are continuous maps of H into H*+min(0Rek) where I is the identity operator.

Property 5.1.3 ([47]) Let 2 = (~1,1) and s > 1. Then the following two con-

ditions are equivalent:

u € Hy (5.1.1)
and
€ H*®
{ &y diy . . 1 (5.12)
Ez:—l— ’Ez=l=0’053<'s_-2-°

where d—‘i’} is the weak derivative.
Let A be any partition on the interval [-1,1]:
A={rp=-1<z < <zp=1}
and
k= max(z; — zj-1), k= min(z; - z;11), j=1,...,n.

A mesh A is said to be y-quasiuniform (y 2> 1) if h < ~h and the set of all 4-
quasiuniform meshes is denoted by D.. We denote by s% the space of d — 1 times
continuous differentiable splines of degree d on the mesh A. We have sé c H if
and only if s < d + 3 [65] 71]. Here we introduce two well-known approximations

and inverse properties of splines [65] [24] [3].

Approximation property (AP): Let s<r <d+1,s<d +3 and o < s. Then
for any u € H" and any partition A there exists ua € s4 such that

e = zalle < ct)F " Jul). (5.1.3)
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for all ¢ € [0, 5], where c(t) denotes a constant independent of u and A, and || - ||,

ijs the norm in H:.

Inverse property (IP): Let t < s < d+3 and v > 1. Then there exists a constant
¢ such that

flells < el (5.1.4)

for all p € s4 and A € D,.

In order to approximate an operator equation in spline spaces, we use the fol-
lowing notation and properties.
Let X and Y be Banach spaces and let {X,}2, and {Ya}5zo be sequences

of closed subspaces of X and Y, respectively. Assume {P,};2, is a sequence of

projections: P, : Y — Y,. We consider the equation

Az =1y, (5.1.5)

where A is an operator from X to Y. The projection method is defined by seeking

a sequence of elements z, € Xy, such that

Apzn = Py r, = xin X .

where A, = P, A.
We say the operator sequence {An} is stable if the operators A, are invertible
for all n large enough, and if there is a positive number ¢ independent of n such

that
| AnZnlly 2 cllznllx -

for all z,, € X,. Prossdorf and Silbermann [63] proved that:
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Property 5.1.4 If {A,} is stable, then the sequence x, = AP,y converges qua-

sioptimally to the solution z = A~'y, i.e.
- <ec i -
Iz — znllx < cu,}lelfc,. llz — vallx - (5.1.6)
We now define spline collocation methods for the approximate solution of equa-

tion (5.1.5):
Au=f.

Let A be a uniform mesh, i.e., o = h = k. Similar to piecewise polynomial

collocation methods, we find us € s¢ (defined in (5.1)) such that
(Aup)(zij) = fziy),  i=1l...,mi=1l..,d+1. (5.1.7)

The above collocation method can be interpreted as a projection method by means

of the interpolation operator Qn:Y — st,

QuAup = CQnf . (5.1.8)
Returning to our operator equation:
1t ut)
Au= ;fl gy =1 (5.1.9)

We mentioned in the introduction that the symbol of the operator A is [¢], i.e,, Ais
an elliptic pseudo-differential operator of order 1. Schmidt in his paper [71] proved
that

Lemma 5.1.1 Let A be a classical elliptic pseudo-differential operator of order m €
Z with convolutional principal part (i.e., the principal symbol apn(z,£) # 0 depends
only on the Fourier transformed variable § and is C* for § # 0). Furthermore,

assume A: X — Y, where X - Y are Banach spaces. Define

kerA={ue X: Au=10}
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and
a = (am{+1) + an(-1))/2.

-1
Ifa+# 0 and dimkerA =0, then (QhA d) erists, moreover
3

H (@nal,) )

From theorem 2.2.3, we have that equation (5.1.9) has a unique solution in
Lz(%) for any f € S, where Lz(%) and S are defined in Chapter 2. This means
dimkerA = 0, where A is defined in (5.1.9). Furthermore the symbol associated
with A4 : @, = —7|€|. Hence a = = (] + 1]+ | — 1|}/2 = —7 # 0. Therefore, by

Lemma 5.1.1, Q»A|' exists and
h
<c.

-1
‘ (QhAL,,)
g BN

Note that if u € s, then u € LQ(:‘;). Hence, we obtain

<c, (5.1.10)
Y—X

where ¢ 18 a constant.

-1
”uh”_rﬂ(%) = ”QhALg Qnf )
< cl@nflls
= c||Qndunlls - (5.1.11)
The above discussion implies that the sequence {QrA} is stable. (5.1.12)

5.2 Error Estimates in Weighted Sobolev
Spaces

Motivated by the crack problem introduced in Chapter 1 we consider [39]

u(1) = u(-1) =0. (5.2.2)
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Theorem 2.2.3 tells us that for any f(z) € S, equation (5.2.1} has a unique solution

L*(3). Furthermore, we have

Lemma 5.2.1 If f(z) € L*(p), then the solution u(x) of (5.2.1} and (5.2.2) belongs
to H'(2, p)-

Proof: It is clear that u(z) € L*(3) since L?(p} € S. We only need to show that

u'(z) € L*(p)-
Integrating by parts, one has

jL _uft) ¢ = ,:;][Iﬂ)_ dt  (since u(1) = u(-1) =0).

1(t—n:)2 it -z
Therefore
1d(t) o
o dt = f(z), -l1<z<1,
or
V1=t (1)
dt = , -1 1.
7[\/1_—?0&—) f(@) <z<
Then [30]
— 12
VI—22u/(z) = —= :,[ “1 tf(t dt+§eL2(%).

This is equivalent to
u'(z) € L*(p)

which completes the proof.

Lemma 5.2.2 u(z) € H'(3,p) and u(1} = u(—1) = 0 imply p*u(z) € H! for fixed
a > 1. Moreover p®u(z) € Hp.

Proof: We only need to show that (p®u(z})’ € L2. Note that

(Cu@) = (1-)%u@)
= —az(l -2 u(z) + (1 - 28 %' (2) . (5.2.3)
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Since & > 1, we have
f_l . (a- mz)%u’(:c))2 dz < f_ 11 Vi = 2 {u'(z)}2dz
= |lu'fiZa - (5.2.4)
We still need to prove that the first term (5.2.3) belongs to L2. In fact,
[ (~as(1 - )3 (@)’ @z
< o f_ll(l — ) ¥ z) dz

= o ([’1(1 — 2% %2 (z) dx + f_ol(l — 2°)* 23 (z) d:r:)
= o*(I+11). (5.2.5)

Integrating by parts and using «(1) = 0, one has
1
1 = jo (1 - 2)( + 2))*~2u2(z) dz
< 202 fl(l - 2> 2 (z) dx
- 0

< 20:11 (luzéo)l +.[01 |u(x)u’(x)|d:r:)

20:—-1
= o (11 -+ 12)

We estimate part Io first.

o s o[ 52 e) ([ were)

(Cauchy inequality)

< ( \(/uf(i)—xz ) (j \/__xi(u(a:)zda:)
< c(_llf/"‘;(i__));d +[ J“?(d(@f@)

= ¢ (HHHL(%) + [l "L’(P))

= ¢ lelngy -
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For the first part I;, we take a function ¢(z} € C§°(2), such that

1 |Jzf<3
w(z)={

0 |z]>1
We define v(z) = ﬁ(:r:)cp(:c), then
o) =~ [ CU(t) dt = [ v,

moreover, x(0) = v(0).

Now,

21 = WO = O = | [ Vi &
= V (w'(z)p(z) + u(z)'

< ¢l([ x/l'—_:zrzlu'(w)lz‘ix)ll2 U l‘l}’% ) )
(jl \|/u_—$2 )1/2 ([01 mw:(z)ﬁ da:)llz 2

< (/1 \/1_-:L'_2]u’($)|2d$)1/2+( ‘I/t;(i)_l; )

S (/1 \l;ii?dx+] Vi — 22 () [? dx)

- c||u”H‘(l,'P)’

Hence,we have
I< C(“)”“”%ﬁ(%,p)
Similarly, we obtain

1 < e(@)llulfina, -

95

(5.2.6)

(5.2.7)
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By (5.2.3), (5.2.4), (5.2.5), (5.2.6) and (5.2.7), we obtain

/_lll(p“u(m))']z dr < C(a)"u”im%'p)

where c(a) is a constant depending on a. Therefore p*u(z) € H'. This fact,

together with property 5.1.3, implies p*u(z) € H. Hence lemma 5.2.2 is proved.

We now apply similar techriques to those used in {65] [71] [25]. Let X = L’(-:;),
Y =S and 4, = QuA. It is clear that us € L*(3) when u € s§. The facts (5.1.11)
and (5.1.12), together with property 5.1.4, imply the following

Lemma 5.2.3 For any f € S, the approzimate solution uy converges in L*(3) to

the ezact solution u(z) of Au = f with

o™~ un)llo < eminflp™ (u = w)lo , (5:28)
ves,

where

-1 -1
lo4allo = llo¥ullzr = lullagy -

Theorem 5.2.1 Assume f(z) € L*(p), then the approzimate solutions up € sf
defined by

QrAup = Qnf

converge to the ezact solution u(x) of (5.2.1) and (5.2.2) at the rate
e — wnllze < ch*|| fll 2o - (5.2.9)

Proof: For any @ > 1, lemma 5.2.1 and 5.2.2 imply p* € H}. By property 5.1.2,

and p = v/1 — z?, we have

lulli-z < clloulln - (5:2.10)
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For any v € s%, one has

-1
llv = uallo < lo™2(v — ua)llo

< ot =)o+ lo~2 (e — ua)llo
< llo¥@=v)llo+cimin o7 (u - @)l (by lemma 5.2.3)
< dlp -l (5.2.11)

From property 5.1.2, we further have
-1
lo~t (- v)lo < clhu=lls - (5.2.12)
By the approximation property, we can choose v € s? such that

v —vllo < B % lufli-g (5.2.13)

e~ olly < B2 ulg (5214)

Therefore, we substitute (5.2.11), {5.2.12), (5.2.13) and (5.2.14) into the follow-

ing inequality and obtain

e —ualle £ lluw—vlio+ v — uallo
< o fulh-g
< b |lptulim (b (5.2.10))
< i |[u||H1(;p,p) {by lemma. 5.2.2)
< ch” (fllz2y  (by lemma 5.2.1) (5.2.15)
where r = % - %

Since (5.2.15) holds for any a > 1, let @ — 1, and we obtain

1
le — unllo < chi||fllzzq) -
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which completes the proof.

Since piecewise constant polynomials are in s, it follows that

Corollary 5.2.1 Assume f(z) € L*(p). Then the piecewise constant approzimate
solutions uy, converge to the ezact solution u(z) of (5.2.1) and (5.2.2) with the rate

llw = unllzz = O(hY) . (5.2.16)
Furthermore, the same rate holds for the linear spline approrimate solutions.

It is not surprising that the estimate (5.2.16), in general, cannot be improved
even if higher order elements are used. Since the approximation property tells us
that the error estimates of spline collocation methods depend on both the regularity
of the solutions and the degree of splines. Usually for an operator equation Au = f,
the smoothness of the solution u(z) depends on the régula,rity of the function f(z).
For our hyper-singular integral equations, however, this is not true. In the example
2.3.1 f(z) = 1 € C*, while solution u(z) = —/1 =22 ¢ H'. In another example
231, f(z) =

For special cases, however, the convergence rates can be improved.

7=, which does not even belong to L%(p), but u(z) =1 € C*.

Let us consider an example:

Example 5.2.1 Consider the solution of

L dt=gz, -l<z<l. (5.2.17)
—1{t —

By theorem 2.3.1, we obtain

—+c
wz) = f\/'th_z(t-—:r)
N

where ¥(z) = —7 € H™, any m € R.
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Now we deal with the following general case:

Assume that the solution u(z) of the problems 5.2.1 and 5.2.2 has the form
u(z) = vV1- 22 v(z) (5.2.18)

where v(z) € H™ with m > 1.

It is easy to see that p®u(z) € H! for any @ > 0. Assume u € s are the
approximate solutions. We apply the same techniques with the proof of theorem
5.2.1. Then

llu — uallo = O(R')

where r = 2 — £, for any & > 0. Let a — 0, and we obtain
llu — uallo = O (k%) . (5.2.19)
Thereafore, we have proved that

Corollary 5.2.2 If the solutions u(z) of (5.2.1) and (5.2.2) have the form u(z) =
V1 -z v(z), with v(z) € H™, m > 1, then the piecewise constani approzimate

solutions u;, € 8% converge to the ezact solution u(z) at the rate
llu — uallo = O(hY) . (5.2.20)
Furthermore, the same estimate O(h%) holds for the linear spline approrimations.

We are now ready to explain the phenomena which were observed by Ryder and
Napier in their paper [68]. First, we note that the special /T elements at the edge
grids (near z = 0) are equivalent to the weights +/1 —z (near z = 1) and Vitz
(near z = —1). Therefore, we introduce weighted splines. (See [68]) Let 3§ = pst,

where p = 1 - z2.
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Suppose that the exact solution of (5.2.1) u(z) = v1 —z?v(z}. For any ap-

proximate solutions u € 5§, we have
llu — uallo = | V1 = 2*(v — va)llo (5.2.21)

where v; € s¢. In fact, v(z) is a solution of the following equation
jl; VIi=2 v(t) g

(-
By theorem 2.2.1, for any f(z) € S, there exists a unique solution v(z) € L?(p).

If we choose X = L?(p) and Y = X, (5.1.10) implies (similar to (5.1.11))

f(z), -l<z<1. (5.2.22)

lve|lz2(o) < cl|@nAunlls (5.2.23)
where A is defined as
_lpvi-¢ TJ(‘i)
(o)) = 2 Y=

Then the inequality (5.2.23) and property 5.1.4 imply that

Lemma 5.2.4 For any f(z) € S, the approzimate solution vy, € s¢ converges in
L2(p) to the exact solution v(zx) of (5.2.22) with

6% (v —wn)llo < cmin 1% (@ = @)lo - (5.2.24)

Theorem 5.2.2 If the solution u(z) of (5.2.1) and (5.2.2) has the form u(z) =
V1= z2v(z) with v(z) € H™, m > 1, then the approzimate solutions us € 58 =

psé converge to the ezxact solution at the rate
[z — uallo = O(R")

where T = min {d+%,m}.



CHAPTER 5. ERROR ANALYSIS 101

Proof: By (5.2.21), we have

llw — unllo < flv—llo (5.2.25)

where v € s¢.

For any ¢ € s}, from lemma 5.2.4, one has

lote—wllo < Il —@)llo + 0% (v = va)l
< Ho*@=9)lo+ciminllp* (v - &)lo

< dlpF(v— Mo
< crv—allo - (5.2.26)

From the inverse property and the property 5.1.2, we obtain for any ¢ € s¢

ke — walle < ch=%||p — 'Uh”...}
< chtllpt(p —wa)llo - (5.2.27)

By the approximation property, we can choose ¢ € sd such that
llv — ello < A°l]ls (5.2.28)

where s <d+1and s <m.
Thus using (5.2.25), (5.2.26), (5.2.27) and (5.2.28), we have

lu—wunllo < llv—2sllo

IA

llv = @llo + llo — sllo
< Bl + ko]l

O(h") (choose s = min{d + 1,m}),

where 7 = min{d + 2, m} and the theorem is proved.

From the above theorem, one easily obtains:
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Corollary 5.2.3 If the solution u(z) of (5.2.1) and (5.2.2) has the form u(z) =
V1= 22 v(z) with v(z) € H™, m > 2, then piecewise constant approzimaie solu-

tions u, € 5% converge to the ezact solution at the rate
Hu—upllo =0 (h%) : (5.2.29)

While for the linear spline approzimations, the rate is
llu = unllo = 0 (R'3) . (5.2.30)

Therefore by using /T elements at the edges of the interval in conjunction
with the standard piecewise constant approximation within the interval, the gain
in accuracy is only from O(h"), r < 2 and r — 3 (5.2.20) to O(h?) (5.2.29).
This is why Ryder and Napier found only modest improvement in this case. They
observed that in the case of slits, using linear displacement discontinuity variations
with average-stress collocation (no special /= elements are used at the edge grids)
is ineffective. Our explanation of this phenomenon is that there is almost no gain in
accuracy because of corollary 5.2.2. However, by using the special V/x elements at
the edge grids for piecewise linear approximations, we can gain from O(h?) (5.2.20)
to O(h'%) (5.2.30). This coincides with their observation that special /z elements
with linear splines give meaningful gains in accuracy, while /7 edge elements with

piecewise constant approximation yield only a marginal improvement in accuracy.

5.3 Numerical Results

We consider the numerical solution of Example 2.3.1:

11 u(t) _
;fl(t—z)z dt=1, -l<z<l. (5.3.1)

Since (5.3.1) can be solved analytically, it is easy to check the accuracy of the
solutions obtained by the PWC or PWL collocation method.
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The numerical convergence rates for PWC and PWL approximate solutions
are plotted in Figure 5.1 and Figure 5.2 respectively. The numerical solutions
converge to the exact solution %(z) = —vI — z? at the rate O(h%®!) for the PWC
approximate and at the rate O(h%®?) for the PWL approximate. These numerical
results are consistent with the error estimate ||u — uyllzz < ch%"5, where ¢ is a
constant. In addition, because of Corollary 5.2.1 and 5.2.2, it is not surprising that
the accuracy is not improved with higher order elements. Since the effect of round-
off error propagation depends ox the condition number of influence matrices, the

convergence rate of the PWL approximate is slightly lower than that of the PWC

approximate.
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Figure 5.1: The Convergence Rate for PWC Approximate Solution
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Chapter 6

Applications

In this chapter we apply the wavelet approximation for matrix problems to il-
lustrate the performance of the algorithm. The first set of examples use wavelet
approximations to piecewise constant and piecewise linear discretizations to the
one-dimensional crack problem (4.1.2). The matrix of the piecewise constant dis-
cretization is translationally invariant — so a wavelet procedure to speed up a matrix
multiply by such an operator does not provide us with new tools as this can be
done by means of the fast Fourier transform (FFT). The matrix for the piece-
wise linear discretization is not translationally invariant and therefore a matrix
multiply by such an operator cannot be performed efficiently using the FFT. The
wavelet approximation for this operator makes it possible to perform matrix-vector
multiplications efficiently in O{/Nlog N) operations. This shows that the wavelet
approximation method represents a new device that can be used to solve large sys-
tems of equations associated with BE models with arbitrary geometries. In order
to establish the applicability of the wavelet approximation methods, we solve a
system of equations that arise in a two-dimensional piecewise linear displacement

discontinuity model for elasto-statics. We start by the description of the algorithm.

105
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6.1 Description of the Algorithm

Step 1. Set up the influence matrix Ay by using the piecewise constant or the
piecewise linear collocation methods for the integral equation Au = f (one or higher

dimensions). This step requires O(N?) operations.
Step 2. Derive the sparse matrix representation.

METHOD (I). Directly apply discrete wavelet transforms to the matrix AL ie.,
apply one-dimensional wavelet transforms to every row (column) then to every col-
umn (row). And discard elements below a threshold £; determined by the accuracy

criterion (4.4.22). This step also requires O(/N?} operations.

METHOD (II). Use the estimate (4.4.3) and the estimates for the non-standard
form (see Beylkin, Coifman, Rokhlin [7]) and only calculate elements of Ag-k'l), Bj-"(k'c),
I‘ﬁ'(k’e) for k, ¢ satisfying |k — €| < b, where b is determined by (4.4.7). Note that
there are interactions between scales for different bands. Therefore we need to calcu-
late those boundary elements involving different bands. Since the resulting matrix
contains only O(N logN) elements, this step requires no more than O(Nlog N)

operations. However, the program (II) is more complicated than ().

We denote the resulting sparse matrix from Step 2 by A,, and we use an indexed

data structure to store the matrix A,.
Step 3. Solve the sparse matrix problem A,% = f.

METHOD (I). Obtain an inverse Ap, by Schulz's method and calculate Ay, f =

um-

Use the row sum norm instead of ||-]|; norm in lemma 4.5.1. Start by computing
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Ay = aAT, o = o and discard elements whose absolute value is smaller than

£;- Then use iterations:

dom=20,1,...

while ||[I — AnAs|| 2 &1

Ami1 =24, — AnAsAm,

using the same data structure for m = 0,1,2,... to store the inverse
matrix A,,.

enddo

Since the multiplication of two sparse matrices of this type requires O(N log® N}
operations and iterative steps m,, which are independent of N and can be deter-
mined by (4.5.11), this procedure requires only O(N log® N) operations in total.

Although calculating the inverse matrix is not common practice in numerical
computations due to conditioning and storage problems, in this case conditioning
does not present a problem and the representation of the inverse operator is also in

the sparse standard form.

Note: Perhaps the most important application of this algorithm will be in the iter-
ative solution of nonlinear problems. Typically the most expensive component of
such iterative algorithms is the matrix-vector multiply that needs to be performed
to determine the influence of one element on another. In this case the wavelet ap-

proximation can be used to reduce the operation count for a matrix-vector multiply
from O(N?) to O(NlogN).

METHOD (II). Apply the preconditioned biconjugate gradient method (PBCG).

The PBCG algorithm can be stated as follows:
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(i) Initialization
Given iy the initial guess, Solve Czp = ( f = Aip) =g,

To=2=Z=ps=Po=To-

(ii) k =0,
If || Astix — FYI/IIFIl > € do

T

~ - Fi2p
(a.) Tgp1 = G + oppr, Where o = m,

(b) Te41 = Tk — QxAsPrs Tot1 =Tk — o ATy,
(c) Solve Czgs1 = Tkt1, CTZp41 = Fran,

T
(d) Prs1 = 2kt + Bers Prar = T -+ Biby, where fr = Jag2et,

k "k

k=k+1,
enddo

Here the matrix C is the preconditioner and can be regarded as an approximate
inverse of A,. We simply choose the trivial diagonal part of A, as a preconditioner
C. Note that the above iterative scheme only involves the multiplication of the
form A,p and ATp. Since the sparse matrix A, contains no more than O(Nlog N}
non-zero elements, only O(NN log N) operations are required in each iteration. This
method requires O(N;Nlog N) operations, where N; is the number of iteration
steps. In our numerical examples for solving PWC and PWL models, we note that
the number of iterations for PBCG remains constant (~ Of{log N)) so that the

operation count increases with O(N log? N) in these examples.

Step 4. Take inverse wavelet transform to 4 which gives a numerical solution uy.

Clearly, this step requires O(XN) operations.
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6.2 One-dimensional Fracture Mechanics
Problem

The interval [a,b] is divided into N elements over each of which the solution is
assumed to be constant or linear (as described in section 4.1). For the model
problem (4.1.2), we assume that @ = 0, =1 and f(z) = —# and vary the number

N of boundary elements in the discretization.

(I) Accuracy of the approximation
(1) Solution of PWC crack models

In Figure 6.1 the solution to the piecewise constant algebraic equation Au = f using
a direct elimination method is compared with the sparse matrix approximation for
n = 256, M = 6 and ¢ = 10~%. This matrix is the one whose sparse wavelet
approximation is shown in figure 4.1. The analytic solution \/m is also
plotted for comparison. The direct solution and the sparse matrix solution are
indistinguishable on this plot. In Figure 6.2 we plot the pointwise difference between
the direct solution and the sparse wavelet solution. The L,-norm of these errors
g — uwllz2 is 5.819 x 10~% which is in agreement with the estimate (4.2.22).
(Here cond(4) = 221, NV = 256.) Thus despite the terms that were discarded in
the process of obtaining a sparse wavelet representation, the approximate operator
contains sufficient information about the original operator to reproduce the solution
to the desired accuracy.

The Lo-norm and L,-norm of the errors for other values of N are given in Table
6.1.
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Figure 6.1: Solutions of the PWC Crack Model (N = 256)
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Figure 6.2: Residual Error | #4 — u,, | for the PWC Crack Model
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(2) Solution of PWL crack models

Similar to (1), in Figure 6.3 we plot the direct solution and the sparse matrix
approximation for N = 256, M = 6 and € = 10~® to the piecewise linear algebraic

equation Au = f.

solid - Analytic Solutin
o - Wavelet Solution

+ —PWL Solution

Figure 6.3: Solutions of the PWL Crack Model (N = 256)

The standard sparse form of the matrix A is shown in figure 4.2. The analytic
solution \/;(1-_5 is also plotted in this figure for comparison. The pointwise
difference between the direct solution and the sparse wavelet solution is shown in
Figure 6.4.

The Lo-norm of g — %y is 2.868 x 1075,
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(II) Efficiency of the algorithm

We define the compression rates Comp by the ratio of N? to the number of non-zero
elements in the standard form of A. In Table 6.1 we provide the solution times and

memory requirements using the PBCG method and the direct elimination method

N Memory (words) | Cecomp Run Time (sec.) Errors of g — tw
direct PBCG direct | PBCG WT Le-norm | Les-norm
32 1024 a0 1.14 0.0253 | 0.0089 | 0.6238 3.16e-4 1.63e-4

64 4096 2309 177 0.2753 | 0.0263 | 0.1064 § 1.07e-4 5.42¢-4
128 16384 8255 1.98 4.3120 | 0.2328 | 1.0145 | 1.73e-4 4.23e-5
256 65536 18317 3.39 25.286 | 0.7995 | 2.9119 | 5.82e-5 1l.4le-5
512 262144 50549 5.19 213.71 | 1.4576 | 13.540 | 1.80e-5 2.99e-6
1024 | 1048576 | 106111 0.88 1809.0 | 3.3644 | 67.22¢4 | 3.27e-5 3.15e-6

Table 6.1: Run Time and Memory Statistics for PWC Crack Models

respectively for the PWC algebraic equation. Column 7 in this table records run
times of wavelet transform which is required to transform the dense matrix to a
sparse representation. The run time and memory statistics for the PWL algebraic

equation are summarized in Table 6.2. The Lo-norm and Le-norm of ug — Uy

N Memory (words) | Ccomp Run Time (sec.) Errors of g — Uw |
direct PBCG direct | PBCG WT La-norm | Leg-norm
32 1024 870 1.18 0.0251 | 0.0163 | 0.0238 4.14e-4 2.05¢-4

64 4096 2631 1.56 0.2814 | 0.0383 | 0.1030 | 5.86e-4 3.01e-4
128 16384 8654 1.89 3.1129 | 0.2759 | 1.0900 | 2.05e-4 6.00e-6
256 65536 21725 3.01 25.238 | 0.8163 | 2.8400 | 2.87e-5 6.62e-6
512 262144 56556 4.64 214.82 | 2.3371 | 13.170 | 1.92e-5 3.37e-6
1024 | 1048576 | 128511 8.16 1800.6 | 4.1171 | 66.841 { 2.75e-5 2.91e-6

Table 6.2: Run Time and Memory Statistics for PWL Crack Models

are given in these two tables for different numbers of elements N.

In Figure 6.5 we plot run times (for PWL) of the PBCG method and the direct
method for comparison.

We also use Schulz's method to solve sparse matrix problems for N = 32, 64,
128, 256, 512 and 1024. However, the Schulz’s method takes relatively more time
than the PBCG method. The reasons are that (1) the compression rates Ceomp for
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Figure 6.5: Comparison Run Times of the PBCG and Direct Methods

the numbers of elements N considered are not large enough and (2) accessing the
link lists for the indexed data structure in each iteration takes time. Since for a
given ¢ and sparse representation of the matrix A, the number of iterative steps m in
Schulz’s method can be determined from (4.5.12), we can expect better performance
from Schulz’s method for large V (in which case the compression rates are large).
In addition, we can apply Schulz’s method to obtain a preconditioner using a small

number of iterative steps m. In table 6.3 we summarize the iterative steps m for

N Theoretical Results (m >) | Numerical Results (m =)
32 10.64 11
64 12.64 13
128 14.65 15
256 16.64 17
512 18.64 19
1024 20.58 21

Table 6.3: The Iterative Steps of Constructing a Preconditioner by Schulz’s Method
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different values of N (for the PWL model). The theoretical results are determined
by (4.5.12). The sparsity and representation of A and Schulz's method provide
the possibility of obtaining a preconditioner which will be efficient in reducing run

times even for non-linear problems. .

6.3 Two-dimensional Fracture Mechanics

Problem

Figures 6.6 and 6.7 illustrate the standard forms of the two-dimensional PWL
influence matrix for N = 256 and N = 512 respectively. The direct solutions and
the sparse matrix approximations are plotted for N = 256 and N = 512 respectively
in Figure 6.8 and 6.9.

We summarize the run time and memory statistics for 2D problems in Table

6.4. Comparing with the one-dimensional case, we find that the compression
N Memory (words) | Ccomp Run Time (sec.) __ | Errors of ug — Uy
direct | PBCG direct | PBCG | WT | La-norm | Leo-norm

256 | 65536 42158 1.55 22.20 5.04 2.58 6.70e-3 1.17e-3
512 | 262144 | 149831 1.76 188.46 | 28.91 | 16.02 | 2.48e-2 3.38e-3

Table 6.4: Run Time and Memory Statistics for 2D Crack Models

rate of the 2D problem for N = 256 is similar to the rate of the 1D, N = 64 case
and the rate of 2D, N = 512 case is similar to the rate of 1D, N = 128 case. So
we can expect that in order to be substantially more efficient than direct methods

for two dimensional problems, the algorithm requires N = 1024 or more elements.

Remark. The data files of the two-dimensional crack problems are derived from a
piecewise linear two dimensional displacement discontinuity formulation for solving

the equations of elastostatics. The model comprises two perpendicular interacting
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Figure 6.6: The Standard Form of the 2D Influence Matrix (Entries above Thresh-
old 0.002, N = 256)
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Figure 6.7: The Standard Form of the 2D Influence Matrix (Entries above Thresh-
old 5x 1075, N = 512)



CHAPTER 6. APPLICATIONS

15 T [] 1 L] L] 1 L 1§ 1
o — Wavelet Solution ®
10k + = Direct Solution Y i
®
L)
st -

-25 1 L
o

0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.8 1

Figure 6.8: Solutions of the 2D Crack Model (N = 256)
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Figure 6.9: Solutions of the 2D Crack Model (N = 512)
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cracks as shown in Figure 6.10. The model assumes a Young's Modulus of 70GPa
and a Poisson’s Ratio of 0.2 and that the boundaries of the cracks are subjected to

uniform normal and shear stresses.

Geometry of 2D crack problem with N =16

—— = one displacement discontinuity element

Figure 6.10: Geometry of the 2D Crack Model for the case N = 16



Chapter 7

Conclusions

A hypersingular integral equation associated with the BE technique that is used for
designing underground excavations, nuclear power plants, hydroelectric dams and
offshore oil rigs, etc. has been studied theoretically and numerically.

One of the major contributions of this thesis is that the global existence of so-
lutions for such hypersingular integral equations has been established. As we men-
tioned in the introduction these hypersingular integral equations can be viewed as
elliptic pseudo-differential operator equations. The local solvability has been inves-
tigated by many authors [23] for elliptic equations. However, no global solvability
has been obtained so far for the hypersingular integral equations considered in this
thesis.

By introducing weighted Sobolev spaces to regularize the equations, we also
proved that the solution is unique and stable (i.e. the solution depends continuously
on the given data). The existence, uniqueness and stability imply that it is possible
to obtain stable numerical procedures for solving the integral equation (Chapter 5).

Furthermore, the global solvability provides a theoretical basis for error esti-

mates. Up till now only one paper [68] has investigated the error characteristics

122
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of collocation approximations. This paper was restricted to deriving local error
estimates for the simplest piecewise constant collocation method. We have shown
in this thesis that if we take into account the global asymptotics of solutions, the
convergent rates are different. We also derive estimates, by which we can explain
the phenomena which were observed by Ryder and Napier in their paper [68].

Another major accomplishment of this thesis is the establishment of a new
highly efficient wavelet approximate method for solving integral equations. Similar
to other numerical methods, wavelet approximations are based on the discretiza-
tion of equations by expanding operatorc and vectors into a basis. Although the
Carlderon-Zygmund and pseudo-differential operators have sparse representations
in wavelet bases, which will result in memory savings and reduced computational
costs, a number of difficuities are encountered. The first difficulty is the overlap
of the wavelet basis {with M vanishing moments, M > 2) functions between in-
tervals or domains. The second difficulty arises from the special filters required at
the endpoints of the domain, which makes it necessary to compute expensive inner
products involving the wavelets and the integral kernel. The third difficulty is that
the projection of the integral operator onto the basis functions requires the evalua-
tion of the appropriate quadratures. Since analytical expressions for the Daubechies
compactly supported wavelets are not available, the recursive procedures necessary
to evaluate the wavelet basis functions make these integrations costly.

To eliminate the above difficulties, Alpert, Beylkin, Coifman and Rokhlin [2]
introduced wavelet-like bases for the fast solution of one-dimensional integral equa-
tions of the second kind. However, since the extension of these procedures to per-
form the required orthogonalizations for higher dimensional bases have not been
developed, the two and three dimensional problems remain unsolved.

The above difficulties are even worse for the hypersingular integral equations.
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However, instead of using wavelet bases directly, we discretize the hypersingular in-
tegral equations by the piecewise polynomial collocation method and then we apply
discrete wavelet transforms to the resulting discretized algebraic equations. This
procedure involves O(IN?) operations and lead to a sparse matrix problem. The
sparsity of the matrix enables us to solve the problem in only O(NV log? N) opera-
tions, whereas traditional iterative and elimization methods usually require O(N?)
operations. The memory requirement has been reduced from O(N?) to O(N log N)
words by this method. We have demonstrated several numerical examples in Chap-
ter 6.

Since higher dimensional boundary integral equations can be discretized by the
piecewise polynomial collocation method, the fast wavelet approximation technique
developed in this thesis can be extended to higher dimensional problems. This

extension was demonstrated in the two dimensional case in Chapter 6.

Directions for Future Work

The compact representation of the discretized Boundary Integral operators by
means of the fast wavelet approximation has a number of interesting applications

to industrial problems.

1. Nonlinear problems in geomechanics.

Peirce, Ryder and Napier, in their recent paper [58], have studied the performance
of a number of iterative schemes that can be used to solve the nonlinear algebraic
equations that arise in the modeling of tabular mining excavations with backfill,
the mobilization of faults, and the growth of fractures. The most costly component

of each iteration in these schemes involves a multiplication of the influence matrix
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with a vector. We can consider the application of wavelet-based methods to such
iterative schemes. This procedure will reduce the operation éount from O(N?) to
O(N log N) operations for each iteration. In addition, the compact representation
of an approximate inverse of the influence matrix opens the possibility of reducing
the number of iterations that need to be performed by using a preconditioned

conjugate gradient algorithm.

2. Electromagnetic problems.

Many problems of analysis of time-harmonic electromagnetic scattering can be for-

mulated in terms of an integral equation of the following form {61]

/ﬂk(a:, t)u(t)dt = f(z), T €, (%)

where u is the unknown field, f is a known source, and k(z,t) has a singularity at
z = t. We can therefore consider the application of our wavelet-based technique
directly to the discrete equations that result from an application of the method of
moments to (*). Current ‘fast’ methods for such problems make use of the Fast
Fourier Transform which requires a regular discretization grid and therefore suffers
from staircase errcrs in the discretization of oblique boundaries. The fast wavelet
approximation can then be used to speed up accurate discretizations that are not
restricted to a regular grid. This technique can be used in the eflicient and accurate

modeling of microstrip array antennae for example.



CHAPTER 7. CONCLUSIONS 126

Appendix A

The following matrix A% is associated with approximation of (4.1.2) by piecewise
g N

linear polynomials.

_ _ 1 2j-i)+2—0 2
P — - = e——— -
AR(2i-1,25 -1) Qsh[lg' 2(j—1)—a 2(j-i)+2-a
_ 2—-a )
2j-i)—af’
_ _ 1 2j—i)+2—a 2-a
P _ = -
AR(2i - 1,27) 5eh [1°g| 2 -i)—a | 2(-i)+2-a
o
“2(j—i)—a] ’
AB2i,2) —1) = —= el W
IUCRY) T 2%h j-i)-2+e] 2Ai-i+a
2-a
-2(j—i)—2+a} ’
AE@L) = g 8 |r s el " TG
MRS = en [Bl2G - -2+e| 2G-i)+e
(44
_z(j—i)—2+a] ’
i1j=1121°°'1N'

where ¢ = cosw/4, & = 1 — ¢ if we choose zeros of Chebyshev polynomials as

collocation points, see (4.1.5).




CHAPTER 7. CONCLUSIONS 127

Appendix B
We want to derive the estimate:
c
(A% — AR < 537 loga N (4.4.4)

where || - || is defined by the row sum norm.

Recall that A¥?® is obtained from A} by setting to zero all the elements of
matrices, Aj, B\ Tj";, j = 1,...,a =1, 7 = 2,...,n outside of bands of width b
around their diagonals. And the elements of AY, satisfy the following estimate:

L

a7 -

[Azs] < e(lTY/1T)M

where c is a constant and [I] < |J].

Without loss of generality, we consider the sum of the first row.

Note that the remaining terms in the sum satisfy a(I,J) = -29;, where I =
[-""—2-’{21—, %}-‘-’!—] and J = [5"—2‘%1, %] with |[I| < |J]. Therefore

N
RS 4%, 5) - A%

=1
ch 1 1 1
< “bﬂ[ b +bil tt
2n~=1 on=-1 2n—1

1 1 1
W=t T

IA

|
[ -3
N
ek

+

|

+

_|..

pary
e
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1 1
+§-_,;(1+-—+ e 4 Qn_k)

1
t7 ]

c
< 3 log, N, (B.2)

where ¢ is a constant.

Similarly, we have the estimate for ¢ = 2,...,n. Consequently (4.4.4) holds.
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