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Abstract 

The optimal linear block transform for coding images is well known to be the Karhunen­

Loeve transformation (KLT). However, the assumption of stationarity in the optimality 

condition is far from valid for images. Images are composed of regions whose local statistics 

may vary widely across an image. A new approach to data representation, a mixture of 

principal components (MPC), is developed in this thesis. It combines advantages of both 

principal components analysis and vector quantization and is therefore well suited to the 

problem of compressing images. The author proposes a number of new transform coding 

methods which optimally adapt to such local differences based on neural network methods 

using the MPC representation. The new networks are modular, consisting of a number of 

modules corresponding to different classes of the input data. Each module consists of a 

linear transformation, whose bases are calculated during an initial training period. The 

appropriate class for a given input vector is determined by an optimal classifier. The per­

formance of the resulting adaptive networks is shown to be superior to that of the optimal 

nonadaptive linear transformation, both in terms of rate-distortion and computational com­

plexity. When applied to the problem of compressing digital chest radiographs, compression 

ratios of between 30:1 and 40:1 are possible without any significant loss in image quality. 

In addition, the quality of the images were consistently judged to be as good as or better 

than the KLT at equivalent compression ratios. 

The new networks can also be used as segmentors with the resulting segmentation being 

independent of variations in illumination. In addition, the organization of the resulting class 

representations are analogous to the arrangement of the directionally sensitive columns in 

the visual cortex. 

iii 



iv 



Acknowledgements 

I would like to acknowledge the support of the Natural Sciences and Engineering Research 

Council of Canada for its funding of this work through a postgraduate scholarship and the 

financial support of the Department of Electrical and Computer Engineering, McMaster 

University. 

I would like to thank the numerous members of the Communications Research Labora­

tory, McMaster University, for their assistance with so many aspects of my work. 

I would also like to thank the members of the Department of Radiology at the McMaster 

University Medical Centre for their help in guiding me through the medical aspects of my 

research. In particular, I am indehted to Dr. Coblentz for his help and patiencP. in organizing 

and conducting the radiographic evaluations. 

I also wish to thank Dr. Nahmias and the other members of the Medical Imaging and 

Network Development laboratory in the Department of Nuclear Medicine at the McMester 

University Medical Centre for their continuing assistance and guidance.. 

In addition, I would also like to thank the other members of my supervisory committee, 

Drs. Capson and Yip for their direction and ~dvice during the course of my research. 

I would like to express my gratitude to my supervisor, Dr. Simon Haykin for giving me 

the freedom to pursue this course of research and the invaluable guidance and support along 

the way. 

P,ut above all, to my wife, Lisa, thank you. 

v 



vi 



Contents 

Abstract 

Acknowledgements 

1 Introduction 

1.1 Current Methods 

1.2 New Method 

1.3 Organization 

2 Neural Network Approaches to Image Compression 

2.1 Classical Image Compression 

2 .1.1 Transform Coding . . 

2.1.2 Vector Quantization . 

2.2 Transform Coding Using Neural Networks 

2.2.1 Linear PCA ............ . 

2.2.2 Generalized Hebbian Algorithm .. 

2.2.3 Adaptive Principal Component Extraction . 

2.2.4 Robust Principal Components Estimation 

2.2.5 Discussion of PCA Algorithms . . . . . 

2.3 Vector Quantization Using Neural Networks .. 

2.3.1 Self-Organizing ?ea.ture Map Algorithm 

2.3.2 Properties of the SOFM Algorithm . 

2.4 Summary ................. . 

3 Optimally Integrated Adaptive Leat"ning 

3.1 A Spectrum of Representations . 

vii 

iii 

v 

1 

2 

2 

3 

5 

6 

6 

8 

9 

9 

10 

12 

14 

14 

15 

15 

16 

16 

19 

19 



3.1.1 Principal Components ....... . 

3.1.2 Vector Quantization . . . . . . . . . 

3.1.3 A Mixture of Principal Components 

3.2 Adaptation . . . . . . . . . . . 

3.3 Subspace Pattern Recognition . 

3.4 Network Architecture ..... 

3.5 Optimally Integrated Adaptive Learning . 

3.6 Evaluation .... 

3.6.1 Method 

3.6.2 Results 

3.6.3 Generalization 

3. 7 Summary . . . . . . . 

4 Multi-class Maximum Entropy Coder 

4.1 Limitations of OIAL ...... . 

4.2 Information-Theoretic Approach 

4.2.1 Discussion ....... . 

4.2.2 Network Architec~ure 

4.3 McMEC Learning . . . . . . 

4.3.l Network Topology . 

4.3.2 Training Algorithm . 

4.4 Evaluation ... 

4.4.1 Method 

4.4.2 Results 

4.5 McMEC With Implied D.C. Component 

4.5.1 Approach ..... . 

4.5.2 Results ...... . 

4.6 Tree-Structured McMEC . 

4.6.1 Approach 

4.6.2 Training . 

4.6.3 Results . 

4.7 Computational Issues 

4.8 Comparison Between OIAL and McMEC 

viii 

20 

20 

21 

21 

23 

26 

26 

30 

30 

32 

35 

39 

41 

41 

43 

44 

45 

47 

47 

48 

50 

50 

51 

54 

54 

56 

57 

57 

62 

62 

65 

68 



4.9 Summary . . . . . . . . . . . . 

5 Application to l\fedical Imaging 

5.1 The Need for Image Compression . 

5.2 Application Area . . . 

5.3 Examination Type . . 

5.4 Materials and Method 

5.4.1 Training .... 

5.4.2 Opinion Score Evaluation 

5.4.3 Comparison to KLT ... 

5.5 Results . . . . . . . . . . . . . . . 

5.5.1 Opinion Score Evaluation 

5.5.2 Comparison to KLT 

5.6 Summary . . . . . . . . . . 

6 Self-Organizing Segmentor and Feature Extractor 

6.1 Image Formation Model ... 

6.2 OIAL Network as Segmentor 

6.2.1 Method ....... . 

6.2.2 Results ....... . 

6.3 McMEC Network as Segmentor . 

6.3.1 Method 

6.4 Results . . 

6.5 Summary 

7 Conclusion 

A List of Abbreviations 

Bibliography 

ix 

72 

75 

75 

78 

79 

81 

82 

82 

102 

102 

102 

107 

108 

111 

112 

114 

114 

114 

120 

120 

120 

123 

127 

131 

134 



x 



List of Tables 

3.1 Rate-distortion data. for 4-coefficient, 128-class OIAL network. 

3.2 Comparison between Lenna. image a.nd MR image used for training. 

4.1 Rate-distortion da.ta. for 512 class McMEC network. . ....... . 

4.2 Number of comparisons for a. tree-structured search for a. number of tree 

34 

37 

.'.i3 

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

4.3 PSNR for TS-McMEC compared to full search McMEC without qua.ntiza.tion. 64 

4.4 Number of floating-point operations per pixel for various McMEC network 

configurations of 512 classes, the DCT, a.nd the KLT for a.n 8 x 8 block size. 67 

5.1 Typical da.ta. volumes for digital exa.mina.tions. . . . . . . . . . . . . . . . . 76 

5.2 Network para.meters for the various compression ratios. . . . . . . . . . . . 101 

5.3 Fraction of times images of a. given compression ratio were assigned a. given 

opinion score rating image quality. . . . . . . . . . . . . . . . . . . . . . . . 105 

5.4 Fraction of times images of a. given compression ratio were assigned a. given 

opinion score rating the visibility of the pathology. 105 

5.5 Ordinal ranking of perceived image quality. . ... 107 

xi 



xii 



List of Figures 

2.1 Simplified linear neuron .......... . 

2.2 M principal components linear network .. 

2.3 Network for the APEX algorithm. . ... 

3.1 A spectrum of representations in two dimensions. 

3.2 Projection of x by P on Sp . ..... . 

3.3 Modular system architecture of OIAL. . .... . 

3.4 MR image for (a) training, (b) testing ...... . 

3.5 Learning curves for system with 4 coefficients and 128 classes. 

curve. (b) Ensemble average of 100 learning curves. . . . . . . . 

3.6 Rate-distortion for OIAL and KLT compression. . ...... . 

(a) Typical 

....... 

....... 
3.7 Details of coding at 0.25 bpp. (a) OIAL coding with 128 classes, 4 coefficients 

10 

11 

12 

22 

25 

27 

31 

31 

33 

per block, PSNR of 29.9 dB. (b) KLT coding, PSNR of 28.8 dB. . . 36 

3.8 Autocovariance for (a) Lenna image and (b) MR image for training. . . . . 36 

3.9 Lenna image for testing generalization. . . . . . . . . . . . . . . . . . . . . . 38 

3.10 Lenna image coded at 0.5 bpp using (a) OIAL, 128 classes, 4 coefficients per 

block, (b) KLT, 4 coefficients . . . 38 

4.1 Modular architecture of McMEC. . 46 

4.2 Method of network growing by insertion of new nodes. 48 

4.3 Ensemble average of learning curves for McMEC system with 128 classes. 51 

4.4 Non-quantized distortion vs. number of bits per pixel required to code the 

class information for each 8 x 8 block. . . . . . . . . . . . . . . . . . . . . . 52 

4.5 Rate-distortion curves for McMEC system. . . . . . . . . . . . . . . . . . . 53 

4.6 Details of coding at 0.22 bpp, (a) McMEC with 2048 classes, PSNR of 28.1 

dB., (b) KLT, PSNR of 28.3 dB. . . . . . . . . . . . . . . . . . . . . . 58 

xiii 



4.7 Architecture oflmplied D.C. McMEC (IDC-McMEC) network. . . . . . . . 59 

4.8 Rate-distortion curves for IDC-McMEC system. . . . . . . . . . . . . . . . . 60 

4.9 Details of coding at 0.29 bpp for (a) IDC-McMEC with 2048 classes, with a 

PSNR of 29.6 dB and (b) KLT, with a PSNR of 29.3 dB . . . . . . . . . . • 60 

4.10 Architecture of Tree Structured McMEC network. . . . . . . . . . . . . . . 61 

4.11 Training of a tree-structured network. . . . . . . . . . . . . . . . . . . . . . 63 

4.12 Comparison of coding performance of DCT and KLT. . . . . . . . . . . . . 66 

4.13 Rate-distortion comparison between OIAL and IDC-McMEC. . . . . . . . . 69 

4.14 Details of coding at 0.25 bpp. (a) IDC-McMEC coding with 512 classes, 

PSNR of 29.0 dB. (b) OIAL coding with 8 coefficients, 64 classes, PSNR of 

29.0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

4.15 Details of coding at 0.33 bpp. (a) IDC-McMEC coding with 512 classes, 

PSNR of 29.2 dB. (b) OIAL coding with 8 coefficients, 64 classes, PSNR of 

31.0 dB ...................................... . 

5.1 Schematic of an X-ray tube ................. . 

5.2 Diagram of the Fuji ACl CR system ............ . 

5.3 Chest 1. One of the two chest radiographs for training. . . . . . . . . . . 

5.4 Chest 2. The other chest radiograph for training. . . . ...... . 

5.5 Chest 3. Chest radiograph for preliminary testing. . 

5.6 Rate-distortion curves for chest radiograph. 

5.7 Image 805.. . ..... 

5.8 Image 7731. 

5.9 Image 9502. 

5.10 Image 9789. 

5.11 Image 10555. 

5.12 Image 16916. 

5.13 Image 19158. 

5.14 Image 26366. 

5.15 Image 31159. 

5.16 Details of image 16916 .... 

5.17 Details of image 16916 compressed to 10:1. 

5.18 Details of image 16916 compressed to 20:1. 

xiv 

71 

80 

81 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 



5.19 Details of image 16916 compressed to 30:1. . . . . . . . . 99 

5.20 Details of image 16916 compressed to 40:1. . . . . . . . . 100 

5.21 Details of image 16916 compressed to 30:1 using the KLT. 103 

5.22 Details of image 16916 compressed to 40:1 using the KLT. 104 

5.23 Mean opinion score across all images and evaluators. . . . . . . . . . . . 106 

5.24 Details of the absolute error with respect to the original of image 16916 

compressed to 40:1 using (a) McMEC and (b) KLT. . . . . . . . . . . . . . 110 

6.1 Map of second coefficient basis blocks for 32 class, 2 coefficient OIAL network.117 

6.2 OIAL segmentation map of test image with 32 classes, 2 coefficients per class. 117 

6.3 OIAL segmentation map of Lenna image with 32 classes, 2 coefficients per 

class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

6.4 Test images of same scene under different illumination. . . . . . . . . . . . . 119 

6.5 OIAL segmentation maps of (a) brightly illuminated test image, (b) dimly 

illuminated test image. . . . . . . . . . . . . . . . . . . . . 121 

6.6 Map of basis images for 32 class McMEC network. . . . . . 121 

6. 7 McMEC segmentation map of test image with 32 classes. . . . . . 124 

6.8 McMEC segmentation map of Lenna image with 32 classes. . . . . 124 

6.9 McMEC segmentation maps of (a) brightly illuminated test image, (b) dimly 

illuminated test image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

xv 





Chapter 1 

Introduction 

The combination of wide availa.\..ility of both digital computers and highly efficient commu­

nication networks means that tne exchange and processing of digital image data is seeing 

an unprecedented growth. It seems ironic that, in this day and age of gigabit per second 

transmission channels and gigabyte storage media, there is a need for image compression. 

However, the volume of image data being generated and processed keeps growing and there 

appears no end in sight to this trend. 

This is particularly evident in the medical imaging field. Today, a wide range of exami­

nations which produce digital images are commonly used. These include computed tomog· 

raphy (CT), digital subtraction angiography (DSA), digital flurography (DF), magnetic 

resonance imaging (MRI), ultrasonography (US), nuclear medicine (NM), single photon 

emission computerized tomography (SPECT), and positron emission tomography (PET). 

Emerging techniques such as computed radiography (CR) promise to add even more ways of 

generating digital medical images. It is not uncommon to measure the annual generation of 

digital imagery for a department of radiology in units of terabytes of data. At these rates, 

the archiving and retrieval of images for more than a few weeks worth of examinations 

becomes a significant problem. The successful application of image compression methods 

in this environment could result in a more effective utilization of today's limited medical 

resources. 

1 



2 CHAPTER 1. INTRODUCTION 

1.1 Current Methods 

Needless to say, with the large increase in the generation of digital image data, there has 

been a correspondingly large increase in research activity in the field of image compression. 

The goal is to represent an image in the fewest number of bits without losing the essential 

information content within an image. The study of image compression methods has been an 

active area of research since the inception of digital imaging. Since images can be regarded 

as simply two-dimensional signals with the independent variables being two-dimensional 

space, digital compression techniques for one-dimensional signals can be readily extended 

to images in many cases. 

Two of the main approaches for image compression are vector quantization and trans­

form coding. In vector quantization, the image data are transformed by a nonlinear operator 

which maps image blocks into codeword indices. Each codeword is a 0-dimensional Voronoi 

centre and is used as the reconstructed image block for the corresponding index upon decod­

ing. In transform coding, the input data undergo a linear transformation which produces a 

set of coefficients that are less correlated than the original data. The optimal transformation 

is the Karhunen-Loeve transform (KLT), whose basis vectors are the principal components 

of the input data. 

1.2 New Method 

Such "classic" techniques trace their roots back to the beginnings of contemporary statis­

tical signal processing theory. Fundamental to the classical theory are the assumptions of 

linearity, stationarity, and the sufficiency of second-order statistics or Gaussianity. Mathe­

matical tractability, of course, was the primary justification for these assumptions. However, 

it has been observed that within the field of statistical signal processing there is a shift away 

from such restrictive assumptions to an emerging paradigm termed "neurosignal process­

ing" [24]. It is being recognized that the classical assumptions are simply not valid for a 

large number of signal processing applications. Images, for example, by their very nature 

are highly nonstationary, with the statistics varying greatly from one region in an image to 

another. Neural networks provide a framework for developing solutions to signal processing 

problems which account for the nonlinear, nonstationary, and nongaussian characteristics 

of many signals. 

This thesis proposes a new method of representing the data which incorporates features 
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of both vector quantization (VQ) and the principal components analysis (PCA) of transform 

coding. A mixture of principal components (MPC) is used to represent the data. The data 

is partitioned into a number of regions or classes resulting in a nonlinear representation, 

a characteristic of VQ. Within each class, however, the data are represented by an M­

dimensional linear subspace defined by the M principal components of the data within the 

class. This novel representation is particularly appropriate for use in image compression. 

Using a combination of ueural network tools and the MPC representation, a new class 

of neural network is developed by the author. It addresses the problem of the nonstation­

ary nature of image statistics by allowing the transformation to adapt to local changes. A 

mixture model is used where a region in an image is assumed to come from one of K distri­

butions. Each distribution is represented by M principal components. In the network, each 

class or distribution is represented by a module which contains the principal components 

for the class. The class for a given input vector is chosen by a classifier which allows the 

system to adapt to the different regions in an image. The optimal criteria for adaptation 

are developed in this thesis and the resulting classifiers are used. 

The use of adaptation in an optimal manner allows the networks to compress image data 

with less distortion relative to the optimal nonadaptive approach. In addition, the network 

can represent the data in a more efficient manner, resulting in computational savings. As 

the thesis shows, these advantages can be realized for a variety of image types. 

1.3 Organization 

The thesis is organized as follows. 

Chapter 2: To provide the necessary backgrounc!, the current state-of-the-art in applying 

neural networks to the problem of image compression is reviewed. This overview 

highlights some of the advantages that current neural network approaches have over 

conventional approaches and thereby justifies continued research in this field. It also 

details many of the tools which will be used later in developing new approaches. 

Chapter 3: A novel neural network based image compression method is developed which 

addresses the need for adaptive processing in an optimal manner. It is an adaptive 

block transform coding scheme which uses the subspace classifier to classify input 

blocks. The network is trained by Hebbian learning in a. competitive learning frame-
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work. Its performa ... ce is shown to be superior to that of the optimal nonadaptive 

transform coder. 

Chapter 4: An alternative method is developed which addresses one of the deficiencies in 

the previous approach. It is derived from information-theoretic criteria :i.nd can be 

shown to be a special case of the above approach. Not only can the rate-distortion 

performance of the network surpass that of the nonadaptive approach, but the network 

has significant computational advantages over ''fast" block transform methods. A 

number of variations on this method are presented and evaluated. 

Chapter 5: The performance of the new networks is evaluated in a medical imaging appli­

cation. Digital chest radiographs are compressed using the new networks. The results, 

in the context of an educational application, are evaluated by expert Radiologists. In 

addition, a comparison with the classical approach is performed. The results of the 

evaluations are presented. 

Chapter 6: The use of the new networks as image segmentors is investigated. The classifi­

cation inherent in the adaptive mechanism of the networks is used to produce segmen­

tation maps of a number of images. These maps and the underlying representations 

are presented and compared. 

Chapter 7: The final chapter highlights the results and contributions made by the research 

presented herein and concludes the thesis. 



Chapter 2 

Neural Network Approaches to 

Image Compression 

Recently there has been a tremendous growth of interest in the field of neural networks 

[60, 40, 32, 28, 23]. Yet the wide range of applications and architectures which fall under this 

category make a specific definition of the term "neural network" difficult. A neural network 

can be defined as a "massively parallel distributed processor that has a natural propensity 

for storing experiential knowledge and making it available for use" [23]. Generally, neural 

networks refer to a computational paradigm in which a large number of simple compu­

tational units, interconnected to form a network, perform complex computational tasks. 

There is an analogy between such a computational model and the functioning of complex 

neurobiological systems. Higher-order neurobiological systems, of which the human brain is 

the ultimate example, perform extremely complex tasks using a highly connected network 

of neurons, in which each neuron performs a relatively simple information processing task. 

This model contrasts sharply with the classical serial computational model found in most 

general-purpose computers in use today. In the serial model, a highly complex processor 

performs computations in a rigidly serial manner. The way in which the two models are 

programmed is also fundamentally different. In the classical model, explicit program steps 

or states are provide<;! to the processor which must account for all poBSible input states. 

In contrast, neural networks are trained using examples of data which the networks will 

encounter. During training, the network forms an internal representation of the state space 

so that novel data presented later will be satisfactorily processed by the network. 

In many applications, the neural network model may have a number of advantages over 

5 



6 CHAPTER 2. NEURAL NETWORK APPROACHES TO IMAGE COMPRESSION 

the serial model. Because of its parallel architecture, neural networks may break down some 

of the computational bottlenecks which limit the performance of serial machines. Since 

neural networks are trained using example data, they can be made to adapt to changes 

in the input data by allowing the training to continue during the processing of new data. 

Another advantage of training is that since data are presented individually, no overhead 

is required to store the entire training set. This is particularly important when processing 

very large data sets, of which images are an example. The high degree of connectivity can 

allow neural networks to self-organize, which is an advantage when the structure of the data 

is not known beforehand. Finally, since there is an analogy between neural networks and 

neurobiological systems, existing biological networks could be used as models for designing 

artificial neural networks; it is hoped that some of the performance characteristics of the 

biological network will be inherited by the artificial network. 

2.1 Classical Image Compression 

Before embarking on a review of the current neural network approaches to image compres­

sion, a brief overview of conventional techniques is warranted. Most current approaches fall 

into one of three major categories: predictive coding, transform coding, or vector quantiza­

tion. In addition, a combination of these techniques may be applied in a hybrid approach. 

For more detailed descript:cns of these methods, the reader is referred to the following works 

[18, 29, 30, 31, 47, 49, 50, 59, 66]. 

2.1.1 Transform Coding 

A common approach to image compression is the use of transformations that operate on an 

image to produce a set of coefficients. The goal of this technique is to choose a transforma­

tion for which the set of coefficients after quantizing and encoding is adequate to reconstruct 

an image with a minimum of discernible distortion. 

A simple, yet powerful, class of transform coding techniques is linear block transform 

coding. An image is subdivided into non-overlapping blocks of n x n pixels which can be 

considered as N-dimensional vectors x with N = n x n. A linear transformation, which can 

be written as an M x N-dimensional matrix W with M $; N, is performed on each block 

with the M rows of W, w; being the basis vectors of the transformation. The resulting 
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M-dimensiona.1 coefficient vector y is calculated as 

y=Wx 

If the basis vectors w; are orthonormal, that is 

wrw, = { l, 
' J O, 

i=j 

i,j,j 

7 

(2.1) 

(2.2) 

then the inverse transformation is given by the transpose of the forward transformation 

matrix resulting in the reconstructed vector 

(2.3) 

The optimal linear transformation with respect to minimizing the mean squared er­

ror is th, Karhunen-Loeve transformation (KLT). The transformation matrix W consists 

of M rows of the eigenvectors corresponding to the M largest eigenvalues of the sample 

autocovariance matrix 

(2.4) 

The KLT also produces uncorrelated coefficients a11d therefore results in the most efficient 

coding of the data, since the redundancy due to the high degree of correlation between 

neighbouring pixels is removed. The KLT is related to principal components analysis (PCA), 

since the basis vectors are also the M principal components of the data. Because the KLT 

is an orthonormal transformation, its inverse is simply its transpose. 

A number of practical difficulties exist when trying to implement the KLT. While the cal­

culation of the covariance estimate and its eigendecomposition do not particularly tax even 

the most commonly available computing resources today, the algorithms used to do these 

computations are somewhat cor.1plex and therefore not sttitable for straightforward hard­

ware implementation. Further, the calculation of the covariance estimate requires O(N2) 

calculations per training input. As well, the calculation of the forward and inverse trans­

forms is of order O(N2) for each image block. Due to these difficulties, fixed-basis trans­

forms such as the discrete cosine transform (DCT) [57], which can be computed in order 

O(NlogN), are typically used when implementing block transform schemes. The Joint 

Photographies Expert Group (JPEG) have adopted the line~r block transform coding ap­

proach for its standard using the DCT as the transformation [72]. The two-dimensional 



8 CHAPTER 2. NEURAL NETWORK APPROACHES TO IMAGE COMPRESSION 

OCT for an M x N block, whose (m, n)th element is 9mn, is defined as 

G _ 2c(u)c(v) ~1~ [(2m+ l)uir] [(2n·:- l)v,r] 
uv - /','7., L.J L.J 9mn COS 2M COS 2N 

vMN m=On=O 

where u = 0, ... , M - 1, 11 = O, ••• , N - 1, and 

c(k) = { ~/v'2 k=O 
k :fa O 

(2.5) 

(2.6) 

For a first-order Markov process the OCT is asymptotically equivalent to the KLT (57]. 

Since this model is applicable for many real world im.ages, the coding performance of the 

OCT is c!:,se to that of the KLT while affording a significant reduction in computational 

complexity. 

2.1.2 Vector Quantization 

The process of quantization maps a signal x(n) into a series of K discrete messages. For 

the kth message, there exists a pair of thresholds tk and tk+i, and an output value qk such 

that tk < qk :5 t1+i · For a given set of quantization values, the optimal thresholds are 

equidistant from the values. The concept of quantizing data can be extended from scalar 

or one-dimensional data to vector data of arbitrary dimension. Instead of output levels, 

vector quantization (VQ) employs a set of representation vectors (for the one-dimensional 

case) or matrices (for the two-dimensional case) [1, 18, 20, 39, 48]. The set is referred to as 

the "codebook" and the entries a.s "codewords". The thresholds are replaced by decision 

surfaces defined by a distance metric. Typically, Euclidean distance from the codeword is 

used. The advantage of vector quantization over scalar quantization is that the high degree 

of correlation between neighbouring pixels can be exploited. Even for a memoryless system, 

the coding of vectors instead of scalars can theoretically improve performance. 

The standard approach to calculate the codebook is by way of the Linde, Buzo and 

Gray (LBG) algorithm [39]. Initially, K codebook entries are set to random values. On 

each iteration, each block in the input space is classified, based on its nearest codeword. 

Each codeword is then replaced by the mean of its resulting class. The iterations continue 

until a minimum acceptable error is achieved. This algorithm minimizes the mean squared 

error over the training set and converges to a local minimum in the MSE energy surface. 

However, it is not guaranteed to reach the global minimum. In addition, the algorithm is 
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very sensitive to the initial codebook. Furthermore, the algorithm is slow, since it requires 

an exhaustive search through the entire codebook on each iteration. 

With this brief review of conventional image compression techniques at hand, we are 

ready to consider the role of neural networks as applied to the problem of image compression. 

2.2 Transform Coding Using Neural Networks 

2.2.1 Linear PCA 

One solution to the problems associated with the calculation of the basis vectors through 

eigendecomposition of the covariance estimate is the use of iterative techniques based on 

neural network models. These approaches require less storage overhead and can be more 

computationally efficient. As well, they are able to adapt over long-term variations in the 

image statistics. 

In 1949, Donald Hebb proposed a mechanism whereby the synaptic strengths between 

connecting neurons can be modified to effect learning in a neuro-biological network [25). 

Hebb's postulate of learning states that the ability of one neuron to cause the firing of 

another neuron increases when that neuron consistently takes part in firing the other. In 

other words, when an input and output neuron tend to fire at the same time, the connection 

between the two is reinforced. 

For artificial neural networks, the neural interactions can be modelled as a simplified 

linear computational unit as shown in figt:re 2.1. The output of the neuron, y, is the sum of 

the inputs { xi, x2, ••• , XN} weighted by the synaptic weights { wi, w2, ••• , WN }, or in vector 

notation, 

(2.7) 

Taking the input and output values to represent "firing rates," the application of Hebb's 

postulate of learning to this model would mean that a weight w; would be increased when 

both values of x; and y are correlated. Extending this principle to include simultaneous 

negative values (analogous to inhibitory interactions in biological networks), the weights w 

would be modified according to the correlation between the input vector x and the output 

y. 

A simple Hebbian rule updates the weights in proportion to the product of the input 

and output values as 

w(t + 1) = w(t) + oy(t)x(t) (2.8) 



10 CHAPTER 2. NEURAL NETWORK APPROACHES TO IMAGE COMPRESSION 

y 

Figure 2.1: Simplified linear neuron. 

where Ct is a learning-rate parameter. However, such a rule is unstable since the weights 

tend to grow without bound. Stability can be imposed by normalizing the weights at each 

step as 
w(t) + ay(t)x(t) 

w(t + l) = llw(t) + oy(t)x(t)II (2.9) 

where II· II denotes the Euclidean norm. This rule has been shown to converge to the largest 

principal component of the input x (51, 53, 54, 55]. Oja linearized equation 2.9 using a 

series expansion to form 

(2.10) 

Equation 2.10 has also been shown to converge to the largest principal component (23]. 

2.2.2 Generalized Hebbian Algorithm 

Oja's rule (equation 2.10) has formed the foundation for extending Hebbian learning to 

simultaneously find the first M principal components. Figure 2.2 shows the architecture of 

such a system. Each output Yi corresponds to the output of the ith principal component 

neuron. In Vf "or notation, it can be written as 

y=Wx (2.11) 

with y ERM, WE RMxN, and M :5 N. 

Sanger's generalized Hebbian algorithm (GHA) (61, 62, 63] extends Oja's model to 

compute the leading M principal components using the fact that the computation of any 
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Figure 2.2: M principal components line:,.r network. 
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principal component is identical to that of the first with the data. being modified by re­

moving the previous principal components through Gram-Schmidt orthogonalization. The 

orthogonalization is incorporated into the lea.ming rule to form 

W(t + 1) = W(t) + a(t) (y(t)xT(t) - LT(y(t)yT(t)]W(t)) (2.12) 

where LT(·] is the lower triangular opera.tor, i.e., it sets a.11 elements above the diagonal to 

zero. Under the conditions that limHoo a(t) = 0 and I:l;;gc> a(t) < oo, W converges to a 

matrix whose rows a.re the M principal components (61). 

For performance evaluation, Sanger implemented the algorithm using 8 x 8 input blocks 

and an output dimension of 8. The network was trained on a 512 x 512 image using non­

overla.pping blocks with the image being scanned twice. The learning parameter a, was fixed 

in the range [0.01, 0.1]. The coefficients were non-uniformly quantized with the number of 

bits varying with the sample variance of each coefficient. At a compression of 0.36 bpp, a. 

normalized MSE of 0.043 resulted. When the same matrix W was used to code a second 

independent image, a compression of 0.55 bpp resulted in a normalized MSE of 0.023. 

Sanger also applied this algorithm to a. texture segmentation problem and has used it to 

model receptive fields. 
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y 

Figure 2.3: Network for the APEX algorithm. 

2.2.3 Adaptive Principal Component Extraction 

Sanger's method uses only feedforward connections for calculating the M principal compo­

nents. An alternative approach proposed by Foldiak [16] is to use "anti-Hebbian" feedback 

connections to decorrelate the components. The justification of this approach was based 

on earlier work by Barlow and Foldiak [2] on the visual cortex. Building on this approach 

and the work of Oja [51], Kung and Diamantaras [34, 10, 35] have developed a sequential 

solution, called adaptive principal component extraction (APEX), in which the output of 

•he mth principal component Ym can be calculated based on the previous m-1 components 

through 

y=Wx (2.13) 

and 

(2.14) 

where y is the vector of the first m - 1 components, W is the weight matrix for the first 

m - 1 components, w is the weight vector for the mth component and c corresponds to an 

anti-Hebbian removal of the first m - 1 components from the mth component. Figure 2.3 

shows the architecture of the network. 

The learning rule is stated as 

D..w = o(ymx - y;. w) (2.15) 
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and 

Ac= -f3(YmY - y;,c) (2.16) 

Kung and Diamantaras have shown that the weights w converge to the m-th principal 

component, given that the first m - 1 components have already been calculated. As the 

network converges, the anti-Hebbian weights c(t) converge to zeroes. The optimal learning 

parameters a and f3 are calculated as 

a=/3= (tyf)-t (2.17) 

where n is the number of input patterns. This choice of learning-parameters allows the 

network to adapt to slowly varying changes in the signal statistics. Further, the additional 

calculation of a further principal component requires only a linear order, O(N), of mul­

tiplications per iteration. For testing, the algorithm was applied to a set of n = 20 data 

points of dimension 5. An average squared distance between the principal components ex­

tracted from the covariance matrix and those computed using the algorithm was found to 

be 0.34 x 10-3 after 194 iterations. 

Chen and Liu [6] have extended the concept of using feedback connections to extract M 

principal components simultaneously from the training data, as opposed to the sequential 

computation of the APEX algorithm. The forward calculation of their network is identical 

to equation 2.14. In addition, the training rule for the orthogonal weights c is the same as 

equation 2.16. The learning rule for the principal component vectors {Wt, w 2, ••• , WM} is 

modified to become 

where 

and 

Aw;= a{B;[YmX - y;, w] - A;w;} 

A;= 

o, 

i-1 

~w1w[, 
j=l 

i = 1 

i = 2,3, ... ,N 

B; = I-A; 

(2.18) 

(2.19) 

(2.20) 

The matrices A; and B; perform the orthogonalization during training. Chen and Liu have 

shown that the weight vectors {Wt, w2 , ••• , w M} converge to the M principal components 

while the anti-Hebbian weights c; converge to the zero vector. 
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2.2.4 Robust Principal Components Estimation 

Xu and Yuille [74, 75] have addressed the problem of robustness in the estimation of the 

principal components. To account for outliers in the training set they first introduce a 

binary field which includes data from within the distribution and excludes outliers. As 

such a function is non-differentiable, they propose a weighting function based on a Gibbs 

distribution to account for the degree of deviation from the distribution a data sample may 

have. By establishing an energy function to be minimized, J(x, W), the gradient descent 

learning rule becomes 

W = W - oD/J,s(x, W)v'J(x, W). (2.21) 

where D/J,s(x, W) is a weighting function defined as 

D/J,s(x, W) = (1 + exp[,B(J(x, W) -17)])-1 (2.22) 

which effectively reduces the influence of data points from outside the distribution i.e., those 

having a large energy function value J(x, W). The parameter ,Bis a deterministic annealing 

parameter which starts as a small value and then increases to infinity. The parameter 17 

determines the region considered as being outside the distribution. As for the choice of 

the energy function J(x, W), a number of Hebbian rules can be expressed in terms of the 

gradient of some energy functions. 

2.2.5 Discussion of PCA Algorithms 

There are a number of advantages which these learning rules have in calculating the M 

principal components from a data set over standard eigendecomposition techniques. If 

M « N, the iterative techniques can be more computationally efficient [52]. As well, 

because of their iterative nature, they can be allowed to adapt to slowly varying changes in 

the input stream. A third advantage is that no extra overhead is required to store the data 

or its higher-order statistics. Finally, if an extra basis were to be required, its computation 

would be more efficiently performed using the iterative learning rules. 

These PCA algorithms using neural networks may be categorized into two classes: re­

estimation algorithms which use only feedforward connections, and decom!lating algorithms 

which have both feedforward and feedback connections [4]. The GHA is an example of the 

former. The learning rule of equation 2.12 may be restated as 

Wj{! + 1) = Wj{!) + o,(t)yj(t) [x(t) - x(t)] (2.23) 
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where x(t) is the re-estimator defined by 

j 

x(t) = :E wk(t)yk(t) (2.24) 
k=O 

The successive outputs of the network a.re forced to learn different principal components by 

subtracting estimates of the earlier components from the input before the data are involved 

in the learning process. In contrast, the APEX algorithm is a decorrelating algorithm. The 

anti-Hebbian connections decorrelate the successive outputs, resulting in the computation 

of different principal components. 

Recently, there has been some interest in extending the above approaches to a. new class 

of nonlinear PCA networks in which a. sigmoidal activation function is added to the model 

of a. neuron. With such a. model, it is possible to extra.ct higher-order statistics from the 

data.; however, the resulting basis vectors lose their orthogonality with respect to ea.ch other. 

While nonlinear PCA has been successfully applied to the separation of sinusoidal signals, 

their usefulness in image compression may be limited due to the loss of orthogonality. 

2.3 Vector Quantization Using Neural Networks 

2.3.1 Self-Organizing Feature Map Algorithm 

Another class of neural network based approaches to image compression applies Kohonen 's 

self-organizing feature map (SOFM) (33] to the problem of codebook design in vector quan­

tization. Kohonen introduced the concept of classes ordered in a. "topological map" of 

features. In many clustering algorithms such as K-mea.ns ea.ch input vector x is classified 

and only the "winning" class is modified during ea.ch iteration (14]. In the SOFM algorithm, 

the vector x is used to update not only the winning class, but also its neighbouring classes 

according to the following rule: 

For ea.ch vector x in the training set: 

1. Classify x according to 

x EC; if Jlx - w;JI = mjn Jlx- w;II 
J 

2. Update the features w; according to 

( ) { 
w;(t) + o(t)[x - w;(t)], 

Wj t+ 1 = 
w;(t), 

C; E N(C;, t) 

C; </: N(C;, t) 

(2.25) 

(2.26) 
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where w is the feature vector, a is a learning parameter in the range O < a < 1, an.~ 

N(C;, t) is the set of classes which are in the neighbourhood of the winning class C; at 

time t. The class features w; converge to the cla,;.; means. The neighbourhood of a class 

is defined according to some distance measure on a topological ordering of the classes. For 

example, if the classes were ordered on a two-dimensional square grid, the neighbourhood 

of a class could be defined as the set of classes whose Euclidean distances from the class are 

less than some specified threshold. Initia.lly; the neighbourhood may be quite large during 

training, e.g., half the number of classes or more. As the training progresses, the size of 

the neighbourhood shrinks until, eventually, it only includes the one class. During training, 

the learning parameter a also shrinks down to a small value ( e.g., 0.01) for the fine tuning 

(convergence) phase of the algorithm. 

2.3.2 Properties of the SOFM Algorithm 

The SOFM algorithm has a number of important properties which make it suitable for use 

as a codebook generator for vector quantization [23]. 

1. The set of feature vectors are a good approximation to the original input space. 

2. The feature vectors are topologically ordered in the feature map such that the corre­

lation between the feature vectors increases as the distance between them decreases. 

3. The density of the feature map corresponds to the density of the input distribution so 

that regions with a higher probability density have better resolution than areas with 

a lower density. 

2.4 Summary 

Investigations into the application of neural networks to the problem of image compression 

have produced some promising results. By their very nature, neural networks are well suited 

to the task of processing image data. The characteristics of artificial neural networks which 

include a massively parallel structure, a high degree of interconnection, the propensity 

for storing experiential knowledge, and the ability to self-organize, l)ara.llel many of the 

characteristics of our own visual system. In contrast, standard approaches to the processing 

of image data have been based on a serial paradigm of information processing which is more 

suited to sequential information such as language. As a result, neural network approaches 
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to image compression have been shown to perform as well as or better than standard 

approaches. 

Hebbian learning has formed the basis for a number of iterative methods of extract­

ing the principal components of image data for use as the basis images in block transform 

coding. Both the GHA and the APEX algorithms have been shown to converge to the 

M principal components. When only the first few principal components are required, sig­

nificant computational savings can be realized. Their iterative nature can allow the basis 

images to adapt over long-term variations. As well, memory requirements are reduced as 

there is no need to store the entire data set or its second-order statistics. 

The ability of SOFM to form ordered topological feature maps in a self-organizing fashion 

has given it a number of advantages over the standard LBG algorithm for the generation 

of VQ codebooks. It has been found to be less se!lsitive to initial conditions, have fast 

convergence properties and have the ability to produce a lower mean distortion codebook. 

However, none of the existing techniques reviewed herein addresses the short-term, 

region-to-region variation within an image. The local statistics of an image may vary 

abruptly from an edge to a flat region to a region of texture, all within a relatively small 

area. Because of the stability-plasticity dilemma, methods of adapting to long-term or 

macro variations are not suitable for short-term or micro variations. The stability-plasticity 

dilemma states that there is a trade-off between the adaptivity of a system and its stability 

[24]. A system which allows adaptation over an extremely short interval may become un­

stable due to its response to spurious disturbances. On the other hand, ignoring any change 

allows for a perfectly stable system but does not allow any adaptation. 

With the above discussion in mind, we are ready to proceed to address the issue of 

adaptive image coding using the neural network based tools presented. 
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Chapter 3 

Optimally Integrated Adaptive 

Learning 

For most image compression techniques, the optimal method based on some model of the 

image statistics is well known. However, the assumptions upon which the conditions for 

optimality have been based can be called into question. Specifically, the use of global 

statistics for generating an optimal coding scheme may not be appropriate. The use of 

adaptation in many compression techniques has resulted in significant improvements in 

performance. While these improvements clearly indicate that adaptive processing is of 

merit, there has been inadequate study into the optimality of the adaptation criterion. 

This chapter develops a new approach to adaptive transform coding in which the criterion 

for adaptation is shown to be optimal. 

3.1 A Spectrum of Representations 

The previous chapter has summarized two of the main representations used for image com­

pression, namely principal components analysis (PCA) and vector quantization (VQ). Both 

these representations, in effect, are the two limits of a potential spectrum of representations. 

Vector quantization is a zero-dimensional representation of an N-dimensional data set while 

principal components is a full N-dimensional representation. The author proposes a new 

approach which combines advantages of these two limiting cases. 

19 
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3.1.1 Principal Components 

The KLT uses up to the full N principal components to represent N-dimensional data. 

The representation is complete, i.e., if all N components are used, the data are represented 

exactly. Therefore, the representation is continuous since all possible input vectors may be 

represented. To reiterate, an N-dimensional data vector xis represented by N coefficients 

y which is calculated as 

y=Wx (3.1) 

where W is an N x N matrix whose ith row is the ith principal component. On recon­

struction 

x=WTy (3.2) 

The same holds true for other orthogonal basis functions such as the DCT. Because it uses 

all the components, it is a very powerful technique due to its complete and continuous rep­

resentation. The representation is also a linear mapping of the data set. This characteristic 

affords a high degree of mathematical tractability in the analysis and design of this ap­

proach. However, the usefulness of linear techniques on images is limited due to the highly 

nonlinear nature of most images. For example, the human visual system (HVS) which can 

outperform any artificial vision system in all but the most trivial tasks gains much of its 

power through the many nonlinear stages of processing and representation. 

3.1.2 Vector Quantization 

At the other extreme, VQ is a purely discrete representation of the data. Unlike PCA 

which uses up to the full N principal components, VQ uses only one of a number of Voronoi 

centres, (a codeword) for each input vector. For a set of K codewords, {w;li = 1, ... , K}, 

an input vector xis represented by the ith codeword such that the reconstructed vector, x, 
is 

K 
i=Wi where llx - w;II = l!lin llx - w;II 

J=l 
(3.3) 

Each of the centres or codewords is a zero-dimensional point in the N-dimensional input 

space. Therefore, the representation under vector quantization is a highly nonlinear function 

of the input vector. 
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3.1.3 A Mixture of Principal Components 

Between these two extremes lies the mixture of principal components (MPC) [26]. Like VQ, 

this approach partitions the data set into a number of non-overlapping regions. However, 

each region is represented not by a zero-dimensional point but by a M-dimensional linear 

subspace. Like PCA, each subspace is a continuous representation with only M orthogonal 

components where O < M < N. Each input vector is assigned to the most appropriate par­

tition and then represented by the M basis vectors of that component. This representation 

can be expressed as 

y = W;x, where x E C; (3.4) 

where W; is an M x N matrix whose rows are the M principal components of the partition 

C;. The reconstructed vector, x, is calculated as 

x = WTy, where x EC; (3.5) 

The MPC approach combines the features of both PCA and VQ representations. Within 

a class, an input vector is represented as a continuous, linear combination of the M basis 

vectors of the subspace in a manner analogous to the PCA representation. But, because of 

the partitioning of the data into a discrete number of regions or classes, the MPC effects a 

nonlinear mapping of the data as does VQ. 

Figure 3.1 illustrates the relation between the three representations for a two-dimensional 

example. The PCA approach forms a complete, continuous representation using a linear 

combination of the two basis vectors. With VQ, the input space is partitioned, in this 

example, into 10 regions. Each region is represented by a Voronoi centre. Under MPC, 

the space is also partitioned, in this case into four regions. Within each region, the data 

is represented by a single basis vector. For higher-dimensional input spaces, the number of 

basis vectors may be two or more, forming planes, hyperplanes or other higher-dimensional 

subspaces within the input space. 

3.2 Adaptation 

The hybrid approach of the MPC representation provides a new method of addressing the 

problem of adaptation in an image compression context. 

A major issue with many image processing applications is their implicit assumption 

of stationarity. The fallacy of this assumption is the reason why many image processing 
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Principal Components Vector Quantization 

Mixture of PCs 

Figure 3.1: A spectrum of representations in two dimensions. 

techniques perform poorly in the vicinity of edges since the image statistics around edges 

tend to be quite different from the global statistics. Methods such as the KLT which are 

globally optimal are, in effect, locally sub-optimal. Therefore, if processes were made to 

adapt. to local variations in an image, their performance would improve. 

To account for variations in the local statistics, a transformation must adapt locally. 

A transformation T(·) can be allowed to vary by specifying a parameter set!] such that 

y = T(rl, x). If the parameter set were to vary according to the neighbourhood around a 

given data point, Nx, then the transformation can be allowed to adapt to the characteristics 

oi the surrounding data. The transformation can then be represented as 

y = T(rl(Nx), x) (3.6) 

To simplify matters, the statistical variations can be quantized into a finite number of 

classes. Since many neighbourhoods may map to the same class or feature set, the explicit 

dependence on the neighbourhood may be omittedin equation 3.6. Therefore, regions within 

an image may be classified as belonging to one of the classes { C1, C2, ••• , CK}. There is a 

corresponding parameter set n = {!11,!12, ••• ,rlK}, where each element rl; describes the 
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characteristics of the corresponding class C;. The transformation is then represented as 

y = T(Q;,x), x EC; (3.7) 

It has been recognized for some time that the use of adaptation in coding can improve 

performance and there has been a great deal of success in the use of adaptation for some 

types of coding techniques [19, 47. 37, 36, 49]. In some of the earlier work, the adaptation 

occurs in the quantization stage while the transformation remains fixed [67, 69]. This 

approach has also been explored in more recent work [3]. Adaptation has also been applied 

to VQ methods [58, 38, 71]. However, in many cases, adaptation has been applied in a 

rather ad hoc manner. For example, "high frequency" components may be coded differently 

from "low frequency" components. Alternatively, edges of different orientations may be 

treated separately. In some cases, the adaptation occurs in the quantization stage while 

the transformation remains fixed. There has yet to be a treatment of the optimality of the 

criterion upon which the adaptation is based. 

The use of classes for adaptation introduces a significant measure of complexity to the 

process. To begin with, the nature of the classification must be determined. This is not a 

trivial matter. The classification criterion should somehow be related to the nature of the 

transformation process. If the classification is inappropriate, then the adaptation may not 

be optimal. As well, the appropriate parameters for each class must be determined. The 

parameters should be sufficient to describe what makes a given class unique. 

Instead of imposing a priori the classes for the adaptation, the data itself should provide 

the information on how to appropriately perform the segmentation. In such a self-organizing 

approach, features of the data are used to compute a measure of similarity between data 

points and each class. In an iterative manner, similar data are grouped together in classes 

and the resulting representation of each class is then used to re-classify the data. The 

problem, of course, is how to determine the appropriate features and measure of similarity, 

so that the resultant classes form the basis for optimal adaptation. 

3.3 Subspace Pattern Recognition 

In many classical pattern recognition techniques, classes are represented by prototypical 

feature vectors and class membership is determined by some transformed Euclidean distance 

between an input vector and the prototypes [14]. For example, with the K-means and LBG 
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vector quantization algorithms, the classes are represented by their means and the vector­

to-class distance is the Euclidean distance between the class mean and an input vector. The 

class boundaries form closed regions within the input space. 

Such class representations are not suitable for use with linear transform coding tech­

niques. If two input vectors were to differ only by a scalar multiple and one of the vectors 

were adequately represented by a set of basis vectors of a linear transformation, then the 

same set of bases would also adequately represent the other vector. It would be appropri­

ate, then, that the two vectors belonging to the same class have the same transformation 

bases. However, under a Euclidian distance-based classifier, the difference in vector norm 

between the two vectors would mean that they may belong to different classes. Therefore, 

a classification scheme which is independent of the vector norm of the data is required for 

adaptive linear transform coding. The linear subspace classifier has this property. 

In subspace pattern recognition, classes are represented as linear subspaces within the 

original data space and the basis vectors which define the subspace implicitly define the 

faatures of the data set [52]. The classification of data is based on the efficiency by which 

the subspace can represent the data as measured by the norm of the projected data. 

If the data are represented as x E RN, and U E RMxN is a.i orthonormal matrix with 

M < N, then the projector P is defined as 

(3.8) 

with projection of x by P being 

x=Px (3.9) 

The subspace Sp C RN is defined by 

Sp= {zjz = Px,x E RN} (3.10) 

and is spanned by the M N-dimensional row vectors of U. 

To adequately represent the data, the subspace should match the data as closely as 

possible. Referring to figure 3.2, this means that the expected norm of the projected vector 

is maximized, i.e., maximize 

E [IIPxjj] (3.11) 

Equivalently, the square of the norm of the residual x = x - x is minimized, i.e., minimize 

(3.12) 
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Figure 3.2: Projection of x by P on Sp. 

In other words, maximizing the expected norm of the projection is equivalent to finding 

the transformation which minimizes the MSE. A,; stated earlier, the linear transformation 

which minimizes the MSE is the KLT. Therefore, the optima.I subspace for a data set is the 

space spanned by the eigenvectors corresponding to the M largest eigenvalues of the data 

covariance matrix, or equivalently, the M principal components of the data. 

For classification purposes, one can define a. set of K classes which are defined by K 

subspaces {S1, 5 2 , ••• , SK}, Each subspace S; is defined by its projector P;, which can be 

calculated using equation 3.8 with the rows of U being the M principal components of the 

class data.. Once the classes are defined, a data. vector xis assigned to the class under whose 

projection its norm is maximized: 

(3.13) 

Since the use of equation 3.13 resulte in classes whose membership criterion is indepen­

dent of the norm of the input data, it may be used in an adaptive linear transform coding 

scheme. 

Based on the subspace classifier, the set of projection matrices partitions the input data. 

space into a number of regions and the M principal components or rows of U can be used 

to represent the data vectors within each region. This is simply the MPC representation. 

Referring to equat:ons 3.4 and 3.5, an input vector xis assigned a class C; according to the 

subspace classifier of equation 3.13. The projection matrix P; which defines the class C; is 

formed as 

P;=WTW; (3.14) 

where the M rows ofW; a.re the M principal components of the data of class C;. Therefore, 

the use of the MPC representation allows for optimal adaptation in a transform coding 

approach to image compression. 
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3.4 Network Architecture 

The incorporation of the subspace classifier into a.n a.da.ptive transform coding scheme using 

the MPC representation results in a. modular network whose coding sta.ge is shown in figure 

3.3. The network consists of a. number of independent modules whose outputs a.re mediated 

by the subspace classifier. Ea.ch module consists of M ha.sis blocks of dimension n x n which 

defines a. single linear tra.nsforma.tion. The inner product of ea.ch ha.sis block with the input 

ima.ge block results in M coefficients per module, represented a.s an M-dimensiona.l vector 

y;. Ea.ch module corresponds to one class of input da.ta.. The choice of class a.nd therefore 

the coefficient vector to be transmitted a.long with its class index is determined by the 

subspace classifier. The selection is ba.sed on the class whose projected vector norm llx;II 
is maximum. The projected vector x; is ca.lcula.ted by ta.king the inverse tra.nsforma.tion of 

the coefficient vector. 

The signal is decoded using the sa.me set of tra.nsforma.tions. The class index is used to 

choose the cla.ss for the inverse tra.nsforma.tion a.nd the resulting reconstructed ima.ge block 

x is ca.lcula.ted. 

The network efficiently represents both the linear tra.nsforma.tion a.nd the classification 

criterion. The sa.me set of ha.sis blocks is used to ca.lcula.te the coefficients for coding a.nd 

the reconstructed image block for decoding. As well, they define the module's cla.ss through 

the linear subspace they spa.n. Therefore, the network requires no extra. overhead in terms 

of information required to effect the a.da.pta.tion. 

3.5 Optimally Integrated Adaptive Learning 

The problem, then, is to ca.lcula.te the optima.I set of weights. Without knowing a priori the 

required classes, their defining projectors P ;, a.nd their corresponding tra.nsforma.tion ba.ses, 

a. learning algorithm is required to extra.ct the a.ppropria.te para.meters from the data.set. 

A new class of unsupervised learning algorithms is proposed which combines both prin­

cipal components extraction and competitive learning, and adapts tr. mixed data from a 

number of distributions in a. self-organizing fashion. The algorithms produce an a.da.ptive 

linear transformation that is optima.I with respect to minimizing the mea.n squared error 

between the input data. a.nd the decoded da.ta.. As such, they a.re pa.rticula.rly well suited to 

the ta.sk of ima.ge compression. 
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Figure 3.3: Modular system architecture of OIAL. Input are blocks of n x n pixels. The K 
transformations Wi consist of M basis blocks of size n x n and output an M-dimensional 
vector y,. The coefficient vector to be sent is chosen by the subspace classifier based on the 
maximum norm of the projected vector llx,11, 
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The general form of the class of optimally integrated adaptive learning (OIAL) algo­

rithms is as follows: 

1. Initialize K transformation matrices {W1, W 2, •. • , WK}· 

2. For each training input vector x: 

(a) classify the vector based on the subspace classifier 

(3.15) 

where P; = WTW;, and 

(b) update transform matrix W; according to: 

W; = W; + oZ(x, W;) (3.16) 

where o is a learning parameter, and Z(x, W;) is a learning rule such that equa­

tion 3.16 converges to the M principal components of {xJx EC;}. 

3. Repeat for each training vector until the transformations converge. 

In the first step, some care mu.st be taken in the choice of the initial set of transformation 

matrices. They should be representative of the distribution space of the training data. If 

some of the W;'s were to be initialized to values corresponding to regions outside of the 

distribution space, then they would never be used. Hence, the resulting partition would 

be clearly suboptimal. There are a number of methods to reduce the possibility of this 

occurring as described here: 

• Arbitrarily partition the training se, into K classes and estimate the corresponding 

transformations using either iterative learning rules or batch eigendecomposition. 

• Use a single fixed-basis transformation such as the DCT and add a small amount of 

random variation to each class to produce a set of unique transformations. 

• Use an estimate of the global principal components of the data with a small amount 

of random variation added to each class. 

It is this latter approach which we have used in the experimental section of this paper. 

Algorithms based on the above outline will produce K transformation matrices {W1, 

W 2 , ••• , WK}· Given the appropriate learning rule Z(x, W;) in equation 3.16, each matrix 
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will converge to the KLT for that particular class of data. Since the KLT minimizes the 

mean squared error, each W; is optimal for its class. The classification rule in equation 3.15 

is equivalent to finding the transformation which results in the minimum squared error for 

the particular vector. The combination of these two rules, therefore, produces the optimal 

set of linear transformations for the resulting partition. Conversely, for the resulting set of 

linear transformations, the partitioning of the data is optimal with respect to minimizing 

the MSE. 

Whether or not the resulting partitions are optimum raises the following question: has 

the algorithm converged to the global minimum or a local minimum in the energy surface? 

The energy surface for the OIAL, because of its nonlinear nature, can be quite complex. 

Like other nonlinear networks, the proof of convergence to a global minimum may not be 

mathematically tractable (23]. However, in all the experience the author has had with the 

algorithm on "real" data, the algorithm has cons:stently converged to a satisfactory result 

every time. 

The satisfactory results may be due to the use of an estimate of the global principal 

components to initialize the network. The network thus may have a better chance of finding 

a good local minimum or possibly the global minimum through this incorporation of prior 

knowledge. The network starts out with an adequate solution, and the training, in effect, 

fine tunes the network through an adaptative process. If the network were to be initialized 

to completely random values, the convergance of the network to a useful solution may not 

occur. 

Since there exists a number of learning rules which compute the M principal components 

of a data set, the choice of Z(x, W;) will depend on the desired computational efficiency 

and convergence properties. Whether the learning rule used is the linear Hebbian rule 

of equation 2.10 with recursive calculation of the M principal components, or the others 

mentioned in section 2.2, (62, 63, 10, 34, 6, 75, 76], the resulting set of transformations 

would be the same. In fact, if the algorithm were implemented in a batch mode, the 

explicit calculation of the eigenvectors of the class covariance matrices would also produce 

the same transformation bases. 

It is also interesting to note that the convergence of the transformation matrices to 

the M principal components of the class data implies optimality but not vice versa. Any 

orthonormal transformation whose basis vectors span the space defined by the principal 

components is optimal. For the subspace classifier, the projector P; would be identical and 
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the performance of the coding and decoding transformations in terms of MSE would also 

remain unchanged. 

Since the goal at hand is to demonstrate the validity of this technique, the choice of 

learning rule can be rather arbitrary. At this point, no attempt has been made to evaluate 

the characteristics of the various learning rules to determine the most appropriate one. 

Such an evaluation is left for future research. The rule chosen for the present study is the 

Generalized Hebbian Algorithm (GHA) devised by Sanger (61). 

3.6 Evaluation 

3.6.1 Method 

To evaluate the performance of the optimally integrated adaptive learning class of algo­

rithms, a set of experiments were performed. As just mentioned, the learning rule chosen 

was the GHA. The learning parameter°' in equation 3.16 for the ith component at iteration 

k was calculated using an adaptive form of equation 2.17 [10), 

(3.17) 

where I is analogous to the "forgetting factor" in the adaptive recursive least squares 

(RLS) algorithm [21]. For the results presented herein, 1 was chosen to be 1 = 0.995. The 

transformations were initialized to an estimate of the M global principal components with 

a small amount of random noise ( e.g., u = 0.001) added to each set of transformations. 

Figure 3.4a shows the magnetic resonance image (MRI) used for training. The image in 

figure 3.4b was the adjacent section from the same study (patient) and was used for testing. 

Each image consists of 256 x 256 pixels with the dynamic range of 8 bits or 256 gray levels. 

The training image was divided into blocks of 8 x 8 pixels for an input dimension of N = 64. 

The blocks were overlapped at two pixel intervals for a total number of training samples 

of 15,625. During training, the samples were presented in random order. A number of 

system configurations were evaluated. Both the number of coefficients, M, and the number 

of classes, J(, were varied. For comparison, the KLT was also calculated based on the same 

training data. 

A typical learning curve for a system with 4 coefficients and 128 classes is shown in figure 

3.5a. Each point represents an average MSE over 10 samples to reduce the block-to-block 
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(a) {b) 

Figure 3.4: MR image for (a) training, (b) testing . 
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Figure 3.5: Learning curves for system with 4 coefficients and 128 classes. (a) Typical curve. 
{b) Ensemble average of 100 learning curves. 
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variation. The curve shows that within 5000 iterations, the system has formed a sufficient 

representation of the data to reduce the MSE by approximately one third. The remaining 

iterations essentially fine tune the system. The ensemble average over 100 such learning 

curves is shown in figure 3.5b. The same set of initial transformation matrices was used 

in each training run but the order in which the data were presented varied. This curve 

shows that the network typically achieves convergence by two to three iterations through 

the entire training set for this configuration. 

The test image was divided into 8 x 8 non-overlapping blocks. These blocks were trans­

formed by the previously computed system into a set of coefficients, quantized, and then 

transformed back into image blocks. The coefficients were quantized in a similar manner 

to that of the JPEG standard (72]. The first coefficient was coded via first order DPCM 

using a uniform quantizer. The remaining coefficients were coded via PCM using a uniform 

quantizer. For a given coding rate, the same quantization interval was used for all the 

coefficients. The quantized data were then Huffman coded with a codebook optimized for 

Laplacian distributions. The number of bits assigned for the class information was simply 

log2 K bits per block. The data were quantized using a number of intervals resulting in a 

number of bit rates. For the KLT, the identical coding scheme was used except, of course, 

that no additional bits per block were required to code the class assignment. 

3.6.2 Results 

Figure 3.6 shows the experimental rate-distortion curves for the various O!AL network 

configurations. The distortion is measured in decibels ( dB) of peak-signal-to-noise ratio 

(PSNR) defined as 
2 

PSNR = 10 log10 E((:".'._ax:i:)2] (3.18) 

where x is the original data, x is the reconstructed data, and Xmax is the maximum data 

value which is in this case Xmax = 255. The figure shows that the use of adaptation has 

resulted in improved performance over the non-adaptive KLT. For a given coding rate, 

there exists a number of OIAL networks which can code the data with less distortion. For 

example, at 0.25 bits per pixel (bpp), the KLT results in a PSNR of 28.8 dB (MSE of 

84.8) while the 4-component, 128-class network has a PSNR of 29.9 dB (MSE of 66.5), an 

improvement of over 1 dB. Conversely, for a given distortion level, the network can encode 

the image using fewer bits. For example, at 30 dB PSNR, the KLT can encode the image 
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Figure 3.6: Rate-distortion for OIAL and KLT compression. 

at 0.321 bpp while the OIAL network can reduce the representation to 0.255 bpp, a savings 

of over 20%. 

Generally, as the number of coefficients increases, the allowable distortion decreases 

while the bit rate increases. The extra coefficients allows an image to be encoded with a 

higher fidelity. However, more bits are then required. According to the figure, for coding 

the image at less than 0.25 bpp, networks with 2 coefficients should be used, at between 

0.25 bpp and 0.3 bpp, 4-coefficient networks are best, and over 0.3 bpp, networks with 8 

coefficients are required. 

The figure also shows that increasing the number of classes decreases the distortion. 

Since the degree of adaptivity is directly related to the number of classes, this decrease 

in distortion clearly demonstrates the advantage of using a locally adaptive coding scheme 

over a non-adaptive method. Of course, an increase in the number of classes also increases 

the number of bits per pixel because of the extra class assignment information required. 

It is also interesting to note that the relative improvement due to doubling the number of 

classes is significantly less with 8 components than with 4 or 2 components. 

Table 3.1 shows the rate-distortion performance for the 4-component, 128-class OIAL 

network. For fine quantization intervals, the coding rate is high while the distortion is 

low. In this region, an increase in the quantization interval results in a decrease in the bit 

rate but minimal increase in distortion. As the quantization interval continues to increase, 
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Quantization 
Interval bpp PSNR 
4 0.481 30.96 
8 0.419 30.94 

12 0.387 30.94 
16 0.359 30.87 
20 0.340 30.81 
24 0.325 30.75 
32 0.300 30.62 
40 0.282 30.44 
48 0.267 30.23 
56 0.250 29.90 
64 0.236 29.50 
80 0.222 28.86 
96 0.205 28.05 

Table 3.1: Rate-distortion data for 4-coefficient, 128-class OIAL network. 

the distortion begins to increase with an accompanying decrease in bit rate. At the coarse 

quantization region, the increase in distortion becomes significantly greater that the decrease 

in bit rate as the quantization interval increases. 

It is interesting to note that the gray level entropy [49) for the image used for testing 

is 6.36 bits per pixel. At a quantization iterval of 32 for the 4-coefficient, 128-class OIAL 

network, the coding rate is 0.3 bpp. Out of those bits, 0.11 bits a.re used to encode the 

class information while 0.19 bits are used to encode the coefficient values. By reducing the 

over-all bit rate by a factor of 21 relative to the gray level entropy, a distortion of only 30.62 

dB is incurred. 

While performance measures based on squared error provide a quantitative measure of 

performance and are easily computed, they are no substitute for a qualitative comparison. 

Figure 3.7a shows details of the resulting image for a coding rate of 0.25 bpp using the 

OIAL algorithm with 4 coefficients and 128 classes. For comparison, figure 3.7b shows the 

corresponding details using the KLT at the same rate of 0.25 bpp. The PSNR for the former 

is 29.9 dB, and for the latter it is 28.8 dB. When examining the detailed structure of the 

two images, it is clear that the OIAL image preserves more features than the KLT image. 

In the upper forehead region near the skull, the dark line of the outer table of the skull 

between the outer white line of the skin and the white line of the diploe is visible in the 
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former, but completely obscured in the latter. The same is true of the detail in the top 

portion of the orbit. Not only does the KLT lose information, it also introduces texture 

variations in the bra.in tissue which are not present in the original nor in the OIAL image. 

This texture also interferes with the visibility of the folds in the outer portion of the bra.in. 

Generally, the boundaries of the image blocks are far more pronounced in the KLT image 

than in the OIAL image. 

Techniques do exist which can reduce the block effects for block transform coding meth­

ods. For example, Malvar's Lapped Othogona.l Transform (LOT) uses overlapping blocks 

to reduce blocking effects [44, 45, 43]. Coifman and Meyer have developed an orthogonal 

projector to extract overlapping blocks for a transform coding scheme [7]. However, such 

approaches were not used in this evaluation so that intrinsic differences between the two 

methods are clearly shown. 

3.6.3 Generalization 

As stated above, the claims of optimality are only valid for the class of images having 

similar statistical characteristics as the training data. For testing purposes, training and 

testing were performed on similar images, namely, adjacent sagittal head MRI scans of 

a single patient. While the general form of the two images is similar, at the block level 

there are significant differences. The promising results presented above are therefore a good 

indication that the network generalizes well within that particular class of image. In other 

words, its performance is similar for images outside the training set but within the defined 

class. 

While the "within class condition" may seem restrictive at first, in practice this would 

not be so. If the encoder and decoder both had a common set of networks, one for each class 

of images, then the appropriate network would be used by both the encoder and decoder 

depending on the type of image. For example, in a radiological application there could be 

separate networks for the various study types, e.g., head MRI, body CT, chest radiograph, 

etc. Because each network generalizes well within its class of image, there is no need to 

transmit or store a unique network for each particular image. 

While there is no claim being made here that there exists a single networlc configuration 

which would perform well as a general-purpose image compression scheme across a wide 

variety of images, it is interesting, nevertheless, to see how well a system trained on one 

type of image generalizes outside that image type. Figure 3.9 shows the Lenna image which 
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(a) (b) 

Figure 3.7: Details of coding at 0.25 bpp. (a) OIAL coding with 128 classes, 4 coefficients 
per block, PSNR of 29.9 dB. (b) KLT coding, PSNR of 28.8 dB. 
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Figure 3.8: Autocovariance for (a) Lenna image and (b) MR image for training. The solid 
line is the autocovariance in the :z: direction and the dashed line is the autocovariance in 
the y direction. 
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Lenna MRI 
Size 512 x 512 256 x 256 
Mean 109.7 51.4 
p., 0.955 0.978 

p'i. 0.979 0.982 

Table 3.2: Comparison between Lenna image and MR image used for training. 

is obviously quite different from the image used for training as shown in figure 3.4a. To 

begin with, the dimensions of the two are different; the Lenna image is 512 x 512 pixels 

in size while the MR image is 256 x 256. While both have a dynamic rage of 256 gray 

levels, the mean pixel value of the former is 109. 7 while the mean value of the latter is 

51.4. Examining the autocovariance further illustrates the differences. In the x direction, 

the autocovariance C.,(r) is defined by 

C.,(r) = E[(I(x + r, y) - mr)(I(x, y) - mr)] (3.19) 

where I(x, y) is the image value at pixel co-ordinate (x, y), mr is the image mean, and 

the expectation is taken over all pixels. The autocovariance in the y direction, Cy(r), is 

similarly defined. Figure 3.8 shows the autocovariances for the Lenna image and the MR 

image used for training. The MR image has a higher degree of correlation than the Lenna 

image. In addition, the autocovariance in the x and y directions for the Lenna image are 

quite different. For a stationary Markov-I signal, the autocovariance is given by 

C(r) = pl•I (3.20) 

for O < p < 1 where p is the adjacent correlation coefficient which is the correlation co­

efficient between adjacent image pixels. Applying this model to the two images under 

discussion and estimating the adjacent correlation coefficients for the x and y directions for 

the Lenna image yields p., = 0.955 and Py = 0.979 respectively. The respective values for 

the MR image are p., = 0.978 and Py = 0.982. Table 3.2 summarizes th,·;e differences. 

The same 4-coefficient, 32-class network used in section 3.6.2 was used to compress the 

Lenna image at 1 bpp. Figure 3.lOa shows the resulting image. The PSNR for this image 

is 30.2 dB. For comparison, the image was compressed using 4 coefficients of the KJ;f of 

itself and quantized to the same number of bits (1 bpp). The resulting image is shrJwn in 



38 CHAPTER 3. OPTIMALLY INTEGRATED ADAPTIVE LEARNING 

Figure 3.9: Lenna image for testing generalization. 

(a) (b) 

Figure 3.10: Lenna image coded at 0.5 bpp using (a) OIAL, 128 classes, 4 coefficients per 
block, (b) KLT, 4 coefficients 
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figure 3.lOb and has a PSNR of 28.3. These two images clearly show that the OIAL system 

trained on a head MR image performs better than the KLT optimized for the specific image 

being coded. As with figure 3. 7, the use of OIAL coding results in less noticeable block 

effects and better edge preservation. In addition, the OIAL method preserves more texture 

detail which is particularly noticeable in the feather and the hat band. 

3.7 Summary 

A new approach to adaptive compression has been developed, based on an optimally inte­

grated adaptive learning (OIAL) class of algorithms. The architecture for such a system 

consists of a number of modules, each consisting of a number of basis blocks. Each module 

corresponds to a class of input data and performs a linear transformation on its class data 

using the bases. Not only do the basis images specify the linear transformations, but they 

also define the classes by way of the linear subspaces in the input space that each set of bases 

forms. The system is trained by combining a subspace classifier to identify the appropriate 

class module and a recursive learning rule which extracts the principal components from 

the data. Since a transformation whose bases are the M principal components is the mini­

mum MSE linear transformation for compression and the use of the subspace classification 

method produces the minimum MSE classification, the network will converge to an optimal 

state in which the over-all MSE is minimized. 

The new method addresses some of the deficiencies with current image compression 

techniques. It has been realized for some time that image processing methods must take 

into account the mixture of the various region types found within images. Techniques based 

on global measures of optimality will not perform well on a local level. Therefore, processes 

must adapt to such local variations. While identifying the need for adaptation, there has 

been a lack of rigorous treatment of the optimality of the adaptation criteria. The following 

characteristics of the OIAL approach address this concern: 

• The adaptation is optimal, since both the transformation and the classification result 

in a minimum MSE representation of the data. 

• The adaptation of the system during training is self-organizing. 

• No assumptions about the importance of or relation between the various regions within 

an image are imposed beforehand. 
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• The adaptation is on a microscopic scale. It responds to variations on a block-to­

block basis. Other adaptive techniques respond to slowly varying changes over a large 

number of data points. 

• The adaptation criterion is efficiently represented by the system architecture, since 

each set of basis images serves the dual purpose of defining both the linear transfor­

mation and the class representation. 

The results presented herein have shown that the new method can outperform the 

globally optimal linear transform. The same image was coded at the same compression 

ratio using both the KLT and the new approach. For the new approach, the distortion was 

reduced and the image quality was improved. Also, more image details were preserved and 

fewer artifacts were introduced. 

The network has also been shown to have good generalization properties. On an image 

substantially different from the training image, the performance of the network is actually 

better than the KLT based on that particular image. 



Chapter 4 

Multi-class Maximum Entropy 

Coder 

The results presented in the previous chapter have shown that the use of an adaptive coding 

scheme can improve coding performance with respect to the optimal nonadaptive KLT. 

Furthermore, the optimal classifier in terms of minimizing the MSE for a given number of 

coefficients per block, M, is the subspace classifier. However, as the following discussion will 

show, there are some limitations to this approach as a result of how the optimality criterion 

was stated. This chapter presents an alternative optimality criterion based on Shannon's 

information theory which leads to another adaptive network for coding images. 

4.1 Limitations of OIAL 

The goal in the previous chapter was to find both a set of linear transformations, each 

with M basis vectors for which the mean squared error between the original data and the 

reconstructed data is minimized, and the corresponding optimal classification rule. It is 

clear that for a given partitioning of the data, the M basis vectors which minimize the MSE 

for a class are the M largest principal components or some linear combination thereof. 

Alternatively, for a given set of linear transformations, the classifier which minimizes the 

total MSE is the subspace classifier where the subspace of each class is spanned by its 

transformation basis vectors. 

However, this evaluation of optimality deals with only half the story in transform coding. 

Transform coding consists of two stages. In the first stage, a set of coefficients is calculated 

41 
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using the transformation. Then, the values of the coefficients are coded as a sequence of 

bits by a quantizer. This second stage is not accounted for in the above approach. The 

following example illustrates the type of problem this may cause. 

Suppose that among K classes, there is a particular class C. defined by the subspace S. 

of at least dimension 2. Now suppose that within that class there are two distinct subclasses 

C.1 and C.2 which have different distributions with different coefficient variances. Because 

the variance of a coefficient may be quite different for the two subclasses, the bit allocations 

requirements may also be different. For example, the first two variances of the two subclasses 

may be related as 

2 2 
0"1,k1 » 0"1,k2 

and 

Under these conditions, data from subclass c., would require more bits for y1, while data 

from subclass C.2 would require more bits for Y2· However, the subspace classifier would 

not be able to differentiate between the two subclasses and, the resulting bit allocations 

would therefore not be optimal. 

It is also interesting to see the effect of increasing the number of basis vectors, M, per 

class. At the limit, when M = N, the class subspaces are simply the original data space. 

In this case, there is no adaptation since the projection for each class is the same, namely 

the identity operator. Therefore, allocating log2 K bits per block for the class index is an 

inefficient use of bandwidth. Furthermore, the computational requirement for classifying is 

not required. In this case, the optimal network is simply the non-adaptive KLT. 

These simple examples demonstrate the inadequacy of neglecting the effects of quanti­

zation in deriving an optimally adaptive transform coder. While it is true that one could 

incorporate the quantization into the projector, the resulting subspaces would no longer be 

linear. Furthermore, this approach may require different networks optimized, i.e., trained, 

for different quantization conditions. This is hardly a practical approach. 

AltPrnatively, we could turn to information theory which deals with such issues in a 

principled manner. It is this latter approach which will now be pursued in establishing the 

optimal criterion for adaptation. 
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4.2 Information-Theoretic Approach 

The goal of lossy coding is to find a transformation of the image data in which the coding 

rate of the resulting representation is minimized given an upper limit on the allowable 

distortion level. The relation between coding rate and distortion is given by the rate­

distortion function R(D). It is defined to be the smallest coding rate or number of bits for 

which the average distortion does not exceed D. 

In linear block transform coding, an image block of N pixels in size undergoes a linear 

transformation which produces a set of N coefficients. The rate-distortion function per 

image block is, therefore, the sum of the rate-distortion functions of each coefficent, 

N 
R(D)block = LR,(D) (4.1) 

i=l 

where R,(D) is the rate-distortion function for the ith coefficient. For block transform 

coding, the goal is to find a transformation which minimizes the o~m in equation 4.1 given 

the distortion D. To solve this constrained minimization problem, we use Shannon's rate­

distortion theory [64]. 

For a random variable with a giv~;: variance, it can be shown that the upper bound of 

its rate-distortion function is the rate-distortion function for a Gaussian random variable of 

the same variance (22]. For a squared error distortion measure, the rate-distortion function 

can be calculated as 

R D) = { } log2 (u
2 

/ D) 0 $ D < u2 

( 0 u2 $D 
(4.2) 

By applying the Gaussian upper bound of equation 4.2 to the rate-distortion function 

for block transform coding (equation 4.1), it follows that to find the set of orthonormal 

basis vectors that minimizes the number of bits per block, the following function must be 

minimized 

Rblock(D) 

{4.3) 

= ,!. log (fr uf) - N log D 
2 i=l 2 

where uf is the variance of ith coefficient, y,, of the basis vector w,. 
For an orthonormal system, the sum of the coefficient variances is the average energy of 

the signal. For a given signal it is, in effect, a constant. To minimize the product D uf in 
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equation 4.3, given that the sum I: u; is constant, ul should be maximized. Therefore, the 

solution for the problem at hand is to find w1 which concentrates as much of the signal's 

energy as possible into the first coefficient, i.e., maximizes the variance of YI· The resultant 

vector w1 is simply the first principal component of the input data. 

In an adaptive approach, there are K classes. Each class, C;, has a corresponding basis 

vector, w;. To minimize the rate-distortion function within each class, the variance of the 

first coefficient of each class must be maximized. Therefore the optimal set of basis vectors 

must be the set of principal components for each class. 

The assignment of data vectors to the classes must be in accordance with the goal of 

minimizing the within-class rate-distortion function or equivalently maximizing the variance 

of the first coefficient. It then follows that a vector be assigned to the class whose weight 

vector Wk calculates the largest magnitude coefficient or equivalently the largest squared 

coefficient. Therefore, the optimal classification rule is 

x E Ck if Yl = rµ~y; (4.4) 
i=l 

where Yi = w[ x. Because an input vector is assigned to the class based the largest squared 

value of the coefficient, the use of equation 4.4 as a classifier maximizes the within-class 

variance. From equation 4.2, maximizing the variance has the effect of maximizing the 

entropy. Hence, equation 4.4 can be referred to as the maximum entropy classifier. 

4.2.1 Discussion 

The subspace classifier of section 3.3 assigns a vector to a class based 'al·. the maximum 

norm of the proj~cted vector. Equivalently, the square of the norm may also be used. To 

reiterate, the square of the norm is calculated as 

llxll2 = IJWf yklJ2 

=yfWkWfyk 

=yfyk 

= IJYklJ2 

(4.5) 

Using the norm of the projected vector for classifying is equivalent to using the norm of the 

coefficient vector. Therefore, the maximum entropy classifier is equivalent to the subspace 

classifier when the dimension of the subspace is M = 1. 

While the classification criteria of the two approaches has been shown to be equivalent, 

the maximum entropy classifier requires fewer computations per test. The calculation of y 
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must be performed for both the maximum entropy classifier and the subspace classifier and 

requires N multiplications and N additions. How,;ver, the calculation of the norm of the 

projected vector for the subspace classifier requires an additional 2N multiplications and 

N additions. 

The maximum entropy classifier may also be viewed as a feature detector. For a given 

feature to be detected, the optimal filter is the matched filter which is a time reversed 

version of the feature. Equivalently, it is also the first principal component of the data. 

For a set of such filters, one for each feature, the filter whose output energy is maximum is 

considered the winning feature. If the set of weights {wi,w2, ••• ,wK} were to be considered 

a set of such filters, then the maximum entropy classifier is equivalent to a feature detector. 

Since the weights arc the first principal components of the data corresponding to each class, 

then this classifier is using the most important or most informative feature of each of the 

classes. 

4.2.2 Network Architecture 

The incorporation of the maximum entropy classifier into an adaptive transform coding 

scheme results in the Multi-class Maximum Entropy Coder (McMEC). The modular archi­

tecture of the coding stage of the system is shown in figure 4.1 and is similar in form to that 

of the OJAL system. It consists of a number of independent modules whose outputs are 

mediated by a maximum entropy classifier. Each module consists of a transformation basis 

vector (block), wk, which defines two things: a single linear transformation and a class of 

input data. The input to the network consists of non-overlapping image blocks of size n x n, 

x. The inner product of each vector w; with the input vector results in a coefficient, y;, 

for each module. The choice of class is determined by the maximum entropy classifier that 

chooses the class for which the square of the coefficient is maximum. The encoder outputs 

the winning coefficient Yk and the class index k. 

The message is decoded using the same set of transformations at the decoder. The 

class index is used to choose the class for the inverse transformation and the resulting 

reconstructed image block x is calculated. 

When comparing the McMEC network and the OIAL network, two main differences 

are evident. First, the McMEC network has only one basis vector per module while the 

OIAL has M. Secondly, the classifiers are different. With McMEC, there is no need to 

calculate the projected vector IJx;IJ for each class since the classification is based only on 
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Figure 4.1: Modular architecture of McMEC. Input are blocks of n x n pixels. Each of the 
K transformation vectors w; of size n x n outputs a coefficient Yi· The coefficient to be 
sent by the system is that with the largest magnitude as chosen by the maximum entropy 
classifier. 



4.3. McMEC LEARNING 47 

the magnitude of the transform coefficients. Both these differences are a result of the 

differences in the optimality criterion. However, as the discussion in the previous section 

has shown, in a sense, the McMEC network can be considered as a special case of the OIAL 

approach. 

4.3 McMEC Learning 

As described above, the optimal representation of a class in terms of maximizing the in­

formation preserved by the network is its principal components. With labeled data, the 

eigenvectors of the class covariance matrices can be calculated to find the principal compo­

nent of each class. Similarly, iterative techniques such as those based on Hebbian learning 

or gradient descent can also be used to calculate the principal component. 

Without labelled data, the problem of determining the appropriate classes and their 

respective principal components is akin to the problem of clustering in classical pattern 

recognition theory. The OIAL class of learning algorithms as developed in the previous 

chapter produces an optimal set of classes in a completely self-organizing manner. The 

resulting set of weights can be used to classify data outside of the training set. A variation 

on this approach will now be developed for the McMEC network which incorporates a 

topological ordering of the classes. 

4.3.1 Network Topology 

In some applications, it may be advantageous to have some similarity between "neighbour­

ing" classes. Kohonen [33] introduced the concept of classes ordered in a "topological map" 

of features. In many clustering algorithms such as K-means or OIAL, each input vector x 

is classified and only the "winning" class is modified during each iteration. As discussed 

in section 2.3, in Kohonen's self-organizing feature map (SOFM), the vector x is used to 

update not only the winning class, but also its neighbouring classes. Each training vector 

x is classified according to the minimum Euclidean distance between it and the set of class 

feature vectors { m;}. The feature vectors of winning class and its neighbouring classes are 

modified according to their respective vector differences with respect to the input vector. 

The neighbourhood of a class is defined according to some distance measure on a topological 

ordering of the classes. For example, if the classes were ordered on a two-dimensional square 

grid, the neighbourhood of a class could be defined as the set of classes whose Euclidean 
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Figure 4.2: Method of network growing by insertion of new nodes. 

distances from the class are less than some specified threshold. Initially, the neighbourhood 

may bequite large during training, e.g., half the number of classes or larger. As the training 

progresses, the size of the neighbourhood shrinks until, eventually, it only includes the one 

class. 

However, instead of starting with a large update neighbourhood that shrinks during 

training, the same topological ordering of features can be achieved by growing the network 

while fixing the neighbourhood size [42, 70, 23]. This results in significant computational 

savings. Initially the network consists of a small number of classes. Once the network has 

converged for a given stage, the number of classes is doubled by inserting new modules 

between the existing ones. The new weights are initialized to the mean of the neighbouring 

weights and the new network is retrained. These steps are illustrated in figure 4.2. 

4.3.2 Training Algorithm 

The learning algorithm for the McMEC network can be derived from the OIAL class of 

learning algorithms developed in the previous chapter. Two modifications are necessary: 

the classifier is modified from the subspace classifier to the maximum entropy classifier and 

the topological ordering of the classes is incorporated. The following learning algorithm 

results: 
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1. Set the initial number of classes and initialize the first set of weights w;. 

2. Get the next input data vector x and calculate the coefficient 

(4.6) 

for each class weight w;. 

3. Classify the input vector according to the maximum entropy classifier of equation 4.4. 

4. Update the neighbours of the winning class Ck according to the rule: 

w; = { w; + a(y;x - vlw;) C; E N(Ck) 
w; C; ¢ N(Ck) 

(4.7) 

where a is a learning rate parameter such that O < a < 1, and N(Ck) is the set of 

classes that are in the neighbourhood of the winning class Ck, 

5. If the network has not converged, go to step 2. 

6. If the number of classes K is less than the desired number, double the network by 

inserting new classes between the existing ones, initialize the new weights to the mean 

of their neighbours, then go to step 2. 

Again, care must be taken in the choice of the initial values of the weights. However, 

based on comparisons between Kohonen's SOFM and the LBG algorithm [46], the incorpo­

ration of the topological ordering of the classes reduces the sensitivity of the algorithm to 

the initial conditions. In any case, a good initialization scheme would be to set the weights 

to the d.c. component with a small amount of random noise added to differentiate the 

classes. The choice of d.c. is a good approximation since that tends to be the dominant 

component for most images. 

Another advantage of using the network growing approach during training is that all 

the intermediate sized networks are simply a by-product of the training algorithm and so 

are "free." Before the network is expanded in step number 6, the existing network can be 

saved and possibly used for coding when a fewer number of classes is desired. Further, if 

more classes are desired, an existing network may be used to initialize the system thereby 

saving the computational load of training up to that existing sized network. 

Since the above learning rule with a neighbourhood size of one is equivalent to the 

OIAL algorithms presented in the previous chapter with the number of coefficients M = 1 
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the same optimality issues are valid. The use of Oja's rule in equation 4. 7 extracts the 

principal component of each class which maximizes the variance of its coefficient. For a 

given set of class basis vectors, the maximum entropy classifier assures that the within-class 

variance is maximized. The combination of these two rules, both of which ma;dmizes the 

variance of the class coefficients, ensures a minimum over-all bit rate for a given distortion. 

Equivalently, for a given bit rate, the distortion is minimized. Again, the issue of global 

vs. local optimality will not be dealt with formally in this thesis due to the mathematical 

intractability of the problem. However, in practice, the algorithm consistently converged 

to a useful result every time. In fact, the convergence behaviour was found to be better 

than that of the OIAL networks due to the incorporation of the topological ordering and 

the required convergance of only one component. 

Suffice it to say that in practice, the convergence properties of the algorithm have been 

satisfactory. 

4.4 Evaluation 

4.4.1 Method 

To evaluate the performance of the McMEC network, the same data which were used for 

training in the previous chapter, namely the MR image (figure 3.4a), were used to train 

the network. The training data consisted of randomly chosen 8 x 8 image blocks from 

the training image. The learning algorithm was that presented in section 4.3.2. The initial 

network size was chosen to be 4 and the weights were initialized to d.c. with a small amount 

ofrandom variation add,ed. The update neighbourhood was fixed at one, i.e., N(C,) = {C;}. 

Each intermediate sized network was saved up to the final size of 2048 classes. Again, the 

learning parameter was calculated as equation 3.17 with r = 0.95. 

An ensemble average of 1000 learning curves for a network of 128 classes is shown in 

figure 4.3. As outlined in the learning algorithm of section 4.3.2, the network was initialized 

using the 64 class network. The figure shows that the initial mean squared error after the 

network was doubled is very close to that of the final network. Because the initial network 

incorporates the experiential knowledge gained over the course of training the smaller sized 

networks, the initial representation is already very close to the optimal representation. The 

training is essentially a fine tuning of the network. In this example, the first 10 000 iterations 

result in a 7% reduction in MSE while the remaining iterations reduce the final MSE by a 
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Figure 4.3: Ensemble average of learning curves for McMEC system with 128 classes. 

further 7%. This demonstrates the efficiency of using the network growing approach during 

training when an existing smaller network is available. 

For evaluation, the same test image, tn.\t shown in figure 3.4b, was used. The quanti­

zation and encoding of the resulting coefficients was modified to the approach used in the 

JPEG standard [73]. The single McMEC coefficient was coded via first order differential 

pulse-code modulation (DPCM) using a uniform quantizer. The quantized data was then 

Huffman coded with a codebook optimized for a Laplacian distribution. The coding of 

the class information was not optimized. The coefficients of the KLT for comparison were 

similarly coded using first-order DPCM fo~· the first coefficient and pulse-code modulation 

(PCM) for the remaining coefficients with uniform quantization in all cases followed by 

Huffman coding. A number of quantization intervals were used. 

4.4.2 Results 

Figure 4.4 shows the error without quantization for the various sized network as a function 

of the additional number of bits per pixel required to code the class information for each 

block. Al; the figure shows, this relation is approximately linear with a slope of 35 dB per 

bit per pixel. For a network with 2048 classes and 64 pixels per block, the incurred bit rate 

for the class information is 0.17 bpp but the error reduces from 22.3 dB with no classes (the 

first component of the KLT) to 28.3 dB, a gain of 6 dB. 
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Figure 4.4: Non-quantized distortion vs. number of bits per pixel required to code the class 
information for each 8 x 8 block. 

The experimental rate-distortion curves are shown in figure 4.5. The Jines with individ­

ual points are the measured rate-distortion curves for various class sizes K of the McMEC 

system. The simple line is for the KLT trained on the same data. Each point represents 

a result for a specific quantization interval in the uniform quantizer. Table 4.1 shows an 

example of the rate-distortion data for the 512 class network. As would be expected, the 

number of bits per pixel decreases as the quantization interval increases. Increasing the 

quantization interval at fine quantization results in little decrease in PSNR. In this case, 

the dominant error is due to there being only one coefficient and the added quantization 

error is insignificant. As the quantization becomes progressively coarser, the over-all dis­

tortion begins to increase significantly. 

As the number of classes increases, the performance of the system improves. The relation 

between the number of classts and the distortion as shown in figure 4.4 is also evident in 

figure 4.5. When the number of classes is small, the McMEC network performs significantly 

worse than the KLT. However, as the class size increases, the performance gap shrinks. For 

the network with 2048 classes, the performance is very close to that of the KLT. Considering 

that the McMEC network is coding the image using only one coefficient while the KLT 

uses up to 64 coefficients, the similarity in performance is remarkable. If this trend were 

to continue, then a network of 4096 classes would perform even better. However, as the 

network size increases, so does the coding complexity. This issue will be dealt with in more 
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Figure 4.5: Rate-distortion curves for McMEC system. Lines with points are measured 
rate-distortion curves for various class sizes K while the simple solid line is the KLT. 

Quantization 
Interval bpp PSNR 

4 0.251 27.56 
8 0.236 27.56 

16 0.221 27.55 
32 0.207 27.52 
40 0.201 27.50 
48 0.199 27.47 
56 0.192 27.42 
64 0.190 27.38 
72 0.189 27.33 
80 0.188 27.25 
88 0.186 27.18 
96 0.184 27.10 

104 0.183 27.02 
112 0.182 26.97 
120 0.181 26.90 
128 0.181 26.75 

Table 4.1: Rate-distortion data for 512-class McMEC network. 
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detail later in this chapter. 

Referring to table 4.1, at a quantization interval of 48 for the 512-class McMEC network, 

the coding rate is 0.199 bpp. This is a reduction by a factor of 32 over the gray level entropy 

of 6.36 bits per pixel for the testing image. Out of these bits, 0.141 are used to encode the 

class information while 0.058 bits are used to represent the coefficient values. 

Again, while squared error is not without some merit as a performance measure, a 

qualitative comparison with the optimal nonadaptive KLT is still warranted. Figure 4.6a 

show3 details of the result of coding the image of figure 3.4b with the McMEC network using 

a 2048 class system, quantized to 0.22 bpp, a compression ratio of 36:1. The resulting PSNR 

was 28.1 dB. Figure 4.6b shows the results using the KLT at the same bit rate; the PSNR 

was 28.3 dB. Even though the two measures of squared error are relatively close, the types 

of error are significantly different. The fidelity of edges is much better when the McMEC 

approach is used. This is particularly illustrated around the skull. The block effects of 

the KLT introduce a jaggedness to the line of the sk•1JI which is not as pronounced in the 

McMEC results. As well, both methods ht;:;.:!uce a block-like texture in the brain tissue. 

It is interesting to note that while the &1uared error is higher for the McMEC approach, 

from a perceptual point of view, the fidelity of many features .is actually better. 

The improvement clearly justifies the use of adaptation. The KLT forms a representation 

based on an average over the entire image. As a result, the contribution from areas with 

strong edges and areas of no edge activity are all lumped together. When the KLT encodes 

edges at low bit rates, there is not enough information to adequately represent such regions 

due to the global nature of the transformation. On the other hand, with McMEC, each 

type of region within an image is optimally represented by its own class. Therefore, the 

coder can reconstruct each type of region with greater fidelity. 

4.5 McMEC With Implied D.C. Componeut 

4.5.1 Approach 

The results of the previous section have sho,0 ·n that the coding performance of the McMEC 

method can approach or even surpass that :,f the KLT. However, the range of distortion 

levels for which this performance comparison is made may be too high for some applications. 

To decrease the distortion with the KLT, the step size of the quantizer can simply be 

decreased. Of course, rate-distortion theory tells us that this will also result in more bits 

• 
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required to encode the image. Because of the nonlinear nature of the McMEC system, the 

relation between the coding rate and the distortion is r>ot so simple. For a given network, a 

decrease in the quantization interval will decrease the distortion only up to a certain point. 

This upper bound in distortion is a result of the fact that the transformation for each class 

is not complete, i.e., irreversible, since only one out of a possible N basis vectors are used. 

The omission of the remaining N - 1 basis vectors results in a "truncation error." The 

total distortion is then a sum of truncation error plus quantization error. So even with no 

quantization error, there will still be distortion. 

One approach to reduce the distortion would be to add more classes. Figure 4.4 shows 

that an increase in the number of classes results in a decrease in the truncation error. 

This relation appears to be a simple linear function of the logarithm of the number of 

classes (class bits per pixel) and the logarithm of the distortion (PSNR in dB). However, 

the number of classes cannot grow without bound. To begin with, doubling the number of 

classes doubles the encoding time, not to mention the training time. Practical limitations 

such as processor speed and time requirements for encoding would place an upper bound 

,,u th~ network size. AI; well, the number of weights for any neural network-based approach 

is limited by the number of training data available [23]. A practical limit is given by 

w N>­
e 

(4.8) 

where N is the number of training samples, W is the number of weights, in this case 

the product of the number of classes and the block size, and E is an accuracy parameter. 

Therefore, for a finite number of training samples and a given accuracy, the number of 

classes is limited. 

A second approach would be to add more basis vectors to each class. In this case, the 

network becomes the OIAL network of chapter 3, where Mis the number of basis vectors per 

class. The results in the previous chapter show that this approach .does work for higher bit 

rates and therefore can lower distortion levels. However, the discussion at the start of this 

chapter points out that the adaptivity from a rate-distortion criterion may be suboptimal 

when M > 1. 

Instead of, say, two unique basis vectors for each class, it may be possible to identify a 

component common to most classes. For most images, the strongest component, i.e., the 

principal component, tends to be the d.c. component. When examining the class basis 

vectors created in section 4.4.1 it was found that there was a strong d.c. component in 
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most of them. For the ne!work of 512 classes, the angle between the average of all the basis 

vectors and the d.c. vector was only 3.6°. A third approach, then, would be to extract 

the d.c. component and encode it separately, while passing the residual through a McMEC 

encoder. The computation of the residual would not be necessary if the class basis vectors 

contained no d.c. component. This can be accomplished by explicitly removing the d.c. 

component from the input data during training. The resulting network is shown in figure 

4.7. It is identical to that of the McMEC network shown in figure 4.1 except for the added 

calculation and output of the d.c. component of the input block. 

4.5.2 Results 

The training of the McMEC network with an implied d.c. component (IDC-McMEC) was 

performed in the same manner as described in section 4.4.1 except that the d.c. component 

of every training block was removed before presenting it to the network. Again, the image 

in figure 3.4b was used to evaluate the performance. For the rate-distortion evaluation, 

the d.c. coefficient was coded using DPCM with a uniform quantizer and the coefficient 

calculated by the network was coded using PCM with a uniform quanti~er. 

The rate-distortion curves for the resulting networks are shown in figure 4.8. The lines 

with individual points are the measured rate-d'-'nstion curves for various class sizes K of 

the IDC-McMEC system. The simple line is the KLT trained on the same data. Each point 

represents the result for a specific quantization interval in the uniform quantizer. When 

comparing the rate distortion curves for both the McMEC and IDC-McMEC networks, it 

is clear that the addition of the separate d.c. component allows for a decrease in squared 

error. Of course, with the decrease in distortion comes an increase in the bit rate. However, 

compared to the KLT, there is a marked improvement. For a network of 256 classes or 

larger, the IDC-McMEC approach out-performs the KLT in terms of rate-distortion. 

Figure 4.9 shows details of the results of coding at 0.286 bpp (a compression ratio of 

28:1) for a 2048-class IDC-McMEC network and the KLT. The PSNR for the former is 29.6 

dB and 29.3 dB for the latter. As with the OIAL and McMEC networks, the IDC-McMEC 

results show better edge and line resolution than the results for the KLT. Again, this is 

most noticeable at the line defining the skull. Furthermore, some of the details in the folds 

of the brain are better preserved under the IDC-McMEC compression and the texture-like 

artifacts are reduced. 

Generally, the use of the two-component network allows a greater fidelity on reconstruc-
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tion compared with the single component network. In addition, the performance of the 

IDC-McMEC network relative to the KLT is much better with respect to the squared error 

distortion measure. While both the one- and two-component versions of the network pre­

serve many of the finer structures of the images better than the KLT, the two component 

network would be preferred in applications where less distortion would be tolerated because 

of its improved performance. 

4.6 Tree-Structured McMEC 

4.6.1 Approach 

The OIAL, McMEC, and IDC-McMEC networks all require an exhaustive search through 

the entire set of classes during coding to determine the optimal class for each input image 

block. As a result, the time or computational load required for encoding the signal varies 

linearly with the number of classes. If the number of classes were to double, the encoding 

of an image would take twice as long. As the network size becomes quite large, the time 

required for encoding may become prohibitive. 

An effective technique for reducing search complexity is to organize the class modules 

in a tree structure as shown in figure 4.10 [5]. For an m-ary tree, each step in the search 

algorithm searches the current m nodes for the best match, and then continues the search 

on the m children of the winning node. This process continues until a leaf node, i.e., a 

node without any children, is !eached. For an m-ary tree with / levels, there are m1 leaf 

nodes in a fully balanced tree. For a McMEC network, each leaf node represents a final 

class with K = m1• The use of a tree-structured search reduces the search complexity from 

K comparisons to m logm (K) comparisons. Table 4.2 gives some examples of the required 

number of comparisons for a number of tree configurations. The table shows the dramatic 

savings in search time which the tree-structured approach affords. 

For coding, the total number of nodes in an m-ary tree with K leaf nodes is given by 

(K- l)m 
T=---­

m-1 
(4.9) 

Each node consists of a single basis vector. For each input vector x, the m coefficients 

are calculated, one for each of the m nodes at the first level. The winning node is chosen 

by the maximum entropy classifier and the search moves down one level in the tree to the 

m children of the winning node. When the winning node is a leaf node, its coefficient is 
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(a) (b) 

Figure 4.6: Details of coding at 0.22 bpp, (a) McMEC with 2048 classes, PSNR of 28.1 dB., 
(b) KLT, PSNR of 28.3 dB. 

No. of Full m=2 m=4 m=8 
Classes Search Tree Tree Tree 

4 4 4 4 
8 8 6 8 
16 16 8 8 
32 32 10 
64 64 12 12 16 
128 128 14 
256 256 16 16 
512 512 18 24 
1024 1024 20 20 
2048 2048 22 

Table 4.2: Number of comparisons for a tree-structured search for a number of tree config-
urations. 
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Figure 4.7: Architecture of Implied D.C. McMEC (IDC-McMEC) network. 
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Figure 4.8: Rate-distortion curves for IDC-McMEC system. Lines with points are measured 
rate-distortion curves for various class sizes K while the simple solid line is KLT. 

(a) (b) 

Figure 4.9: Details of coding at. 0.29 bpp for (a) IDC-McMEC with 2048 classes, with a 
PSNR of 29.6 dB and (b) KLT, with a PSNR of 29.3 dB 



4.6. TREE-STRUCTURED McMEC 

WJ 

WJ,/ 

WJ,2 

WJ,m 

111.1,J 

111.1,2 

111.1,m 

Kin,/ 

Kln,2 

Kln,m 

Figure 4.10: Architecture of Tree Structured McMEC network. 
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output by the encoder. Since there are K leaf nodes, there are K final classes. For decoding, 

only the K leaf nodes are required and the decoding proceeds in the same manner as the 

full-search approach. 

4.6.2 Training 

To train such a tree-structured network, a network growing approach may be used as illus­

trated in figure 4.11. Initially, the network consists of one level with m classes. During each 

stage in training, only the leaf nodes are modified. As each input vector is presented to 

the network, it is classified using the tree-structured search technique described above. The 

weights of the winning leaf node are modified using the Hebbian learning rule of equation 

2.10. New input vectors are presented to the network until the weights in the leaf nodes 

converge. If another layer is required, the set of weights for each leaf node is duplicated m 

times to form the m children nodes. A ~mall amount of random variation is then added 

to each set of new child's weights to differentiate the sibling nodes from each other. The 

training continues. This process is repeated until the desired network size is grown. 

One of the advantages of this tree growing approach is that all the intermediate sized 

networks are available after training. If the final number of classes for an m-ary tree is 

K = m1 where I is the final number of layers, networks of class size m1, m2 , ••• , and 

m1- 1 are contained within the final network. For one of these smaller sized networks, the 

classification tree-search simply stops at the appropriate intermediate layer and the output 

is the coefficient of that layer's winning node. 

If a larger network is required, the tree growing method can use an existing smaller 

network for initialization. In this manner, the new network already begins with a represen­

tation of all the experiential knowledge gained during the training of the smaller network. 

By initializing the leaf node weights to their parents' values, the same effect is achieved; 

the new weights are initialized to near optimum values. The training process becomes, in 

effect, a fine tuning of the weights. 

4.6.3 Results 

To evaluate the performance of the tree-structured McMEC (TS-McMEC) a number of 

network configurations were trained using the same training data as described in section 

4.4.1. The single coefficient method was used, i.e., the d.c. component was not removed as 
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Figure 4.11: Training of a tree-strnctured network. 
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No. of Full m=2 m=4 m=8 
Classes Search Tree Tree Tree 

4 23.6 23.5 23.6 
8 23.9 24.2 23.9 
16 24.6 24.7 24.8 
32 25.3 25.3 
64 25.9 25.8 26.1 26.4 

128 26.5 26.2 
256 27.1 26.5 27.1 
512 27.6 26.8 27.8 

Table 4.3: PSNR for TS-McMEC compared to full search McMEC without quantization. 

in the IDC-McMEC method. Three types of tree architectures were trained: a binary tree 

(m=2), a quad tree (m=4), and an oct tree (m=8). The final number of leaf nodes were 

512, 256, and 512 respectively. Except for the method of growing the network using the 

tree growing method as described above and the use of the tree-structured search for the 

final class, all the training parameters of section 4.4.1 for the full-search McMEC network 

training were used. 

The performance of resulting networks were evaluated using the MR image shown in 

figure 3.4b. To see if the substantial reduction in search complexity incurs any additional 

distortion, a comparison of the error due to truncation is sufficient. Therefore, there is no 

need for an exhaustive comparison of the final quantized error rates, hence the coefficients 

were not quantized. The resulting PSNR is shown in table 4.3 along with the corresponding 

distortion measures for the standard full-search McMEC networks. In most cases, the use 

of the tree-structured network resulted in no significant difference in squared error. In fact, 

the error actually decreased for some cases. 

The use of a tree-structured network can significantly reduce the encoding complexity 

of the McMEC technique. For a 512-class network, the number of comparisons to classify 

an input vector is reduced from 512 down to 18 for a binary tree or 24 for an oct ary tree. 

As the above data indicate, this substantial improvement incurs virtually no increase in 

distortion. 
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4. 7 Computational Issues 

One of the main reasons why the KLT has not found wide acceptance as a compression 

method is due to its computational complexity. For a block of N pixels, N coefficients 

may be calculated. For each coefficient, N multiplications and N additions are required. 

Therefore, 2N floating-point operations (flops) are required for each pixel. For an 8 x 8 

block, the KLT requires 128 flops per pixel. For decoding, the same number of operations 

are also necessary. 

Coding based on the DCT has gained widespread use due to the existence of fast al­

gorithms for its computation. For example, based on the implementation presented in 

appendix A.2 of [57], an 8 x 8 forward DCT transformation requires 22 multiplications and 

26 additions per block or equivalently 12 flops per pixel. The inverse DCT requires the 

same number of operations. This computational savings by almost a factor of 10 comes 

with a minimal loss in coding efficiency. It is well known that the DCT is asymptotically 

equivalent to the KLT for a first-order Markov process [57]. Since this model is a good 

approximation for most images, this means that the basis vectors of the DCT and KLT are 

similar and therefore their performance is similar. 

Figure 4.12 illustrates this similarity for the MR images previously used. The solid line 

is the rate-distortion curve for the KLT based on the estimates of the covariance matrix 

from the training image in figure 3.4a. The KLT was tested on the image shown in figure 

3.4b. The dashed line is the rate-distortion curve for the DCT on the same image (figure 

3.4b). The figure clearly shows that the performance of the two transformations is almost 

identical. 

An analysis of the computational complexity of the McMEC approach yields some in­

teresting results. Because an image can be represented by substantially fewer components 

in an adaptive transform scheme than a standard block transform such as the KLT or DCT, 

fewer computations are required. For decoding the one coefficient McMEC network with a 

block size of N pixels, only N multiplications per block are required or equivalently, one flop 

per pixel. For the IDC-McMEC network, N new additions are required for decoding for a 

total of two flops per pixel. Therefore, the decoding complexity of the McMEC approach is 

1/2N or 1/N that of the KLT. For the standard block size of 8 x 8, the use of the McMEC 

network affords a computational savings of 1/6 or 1/12 over the fast DCT at the decoder. 

Both the KLT and the DCT are symmetric coders, i.e., the same computational load is 
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Figure 4.12: Comparison of coding performance of DCT and KLT. 

required for both encoding and decoding an image. Because of the adaptive nature of the 

McMEC approach, it is an asymmetric coder due to the additional calculations required for 

classification at the encoder. For a full-search network with K classes, K separate coefficient 

calculations must be performed. For the one coefficient network, KN multiplications and 

KN additions per block or 2K flops per pixel are required for encoding an image. Since the 

d.c. component is calculated independently of the network on the implied d.c. approach, 

only N more additions per block are required for a total of2K +l flops per pixel. For typical 

network sizes of 512 or more classes, the McMEC encoder incurs a substantial penalty in 

terms of computational complexity even compared to the "slow" KLT. 

As the r0sults of the previous section demonstrate however, a significant savings in 

computation can be realized through the use of a tree-structured network. For an m-ary 

tree of I levels with K = m1 leaf nodes, ml coefficient calculations are required per input 

block for an average of 2ml flops per pixel. For an implied d.c. network, 2ml + 1 flops per 

pixel are required. Table 4.4 shows the required number of floating-point operations per 

pixel for a number of network co!lfigurations with 512 classes and an 8 x 8 block size. Also 

shown are the equivalent number for the DCT and the KLT. The use of tree-structured 

networks substantially reduces the computations required for encoding with respect to a 

full-search network. Compared to the KLT, the McMEC network requires between 28% and 
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Method Encode Decode 
Full-search McMEC 1024 1 
Full-search IDC-McMEC 1025 2 
Binary Tree McMEC 36 1 
Binary Tree IDC-McMEC 37 2 
Oct Tree McMEC 48 1 
Oct Tree IDC-McMEC 49 2 
KLT 128 128 
DCT 12 12 

Table 4.4: Number of floating-point operations per pixel for various McMEC network con­
figurations of 512 classes, the DCT, and the KLT for an 8 x 8 block size. 

38% fewer computations for encoding. However the encoder still requires more computations 

compared to the DCT, albeit only three to four times as many for this approach. 

The calculations of the forward and inverse transformations, while having the greatest 

impact on the total complexity, represent just two parts of the entire encoding and decoding 

process. Once the coefficients are calculated, they must be encoded in an efficient manner as 

a set of discrete messages or series of bits. One of the common approaches, which was used 

in the experimental sections of this chapter, is to quantize the coefficients and then encode 

them in a lossless manner using, for example, Huffman coding. For a uniform qi.:,;.ntizer, 

each coefficient must be divided by the quantization interval and then rounded. For the 

Huffman encoder, a look-up table operation is performed to encode the quantized coefficient 

based on a pre-calculated set of codes. Since these two operations must be performed for 

each coefficient, the DCT and the KLT both require up to N of these operations, whereas 

the McMEC method requires only one or two. While the quantizer and lossless encoder 

may ignore a number of coefficients at higher compression ratios, a substantial number still 

must be processed at typical coding rates further adding to the encoder complexity. 

Upon decoding, the message or bit stream must be decoded by a Huffman decoder 

and then multiplied by the quantization interval before the coefficients undergo the inverse 

transformation. The order of complexity of a Huffman decoder is proportional to the number 

of bits in the message. Therefore, the computational requirements of decoding the Huffman 

code would be similar for all the approaches, since the number of bits would be the same 

at the same compression ratio. However, because each coefficient needs to be multiplied by 
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the qua.ntiza.tion interval, the fa.ct tha.t the McMEC a.pproa.ch uses fewer coefficients mea.ns 

tha.t there would be a.dditiona.l savings in computation when decoding the bit strea.m before 

the inverse tra.nsforma.tion. 

The computational savings of the McMEC method upon decoding are substantial. This 

approach, though, incurs a.n increase in computational complexity a.t the encoder. The 

a.dded encoding complexity may or may not be significant depending on the type of appli­

cation. For a. one time, point-to-point transmission where an image is encoded, transmitted, 

a.nd then decoded, the McMEC network would require three to four times the computa­

tions over-all tha.n the DCT. However, if an image were ,o be encoded once and decoded 

many times, the extra complexity of the encoder would be more than offset by the reduced 

complexity of the decoder. This model of compressed ima.ge use is va.lid for a wide range 

of applications. One example is a database of archived ima.ges. An ima.ge may be encoded 

once, but many users may wish to view the ima.ge a number of times. In this case, the 

encoding time ma.y be imma.teria.l but the users would wa.nt the decoding of an image to be 

performed as quickly as possible. For example, a physician ma.y tolerate only a second or 

two delay in reconstructing a. previously archived radiologic image. In addition, the com­

putational power ava.ila.ble to the user may not be large, for example a personal computer. 

Any reduction in the computational requirement of decoding is then even more important. 

4.8 Comparison Between OIAL and McMEC 

While the McMEC approach developed in this chapter a.nd the OIAL approach of the pre­

vious chapter a.re both cases of the MPC representation, there are some differences between 

the two which warrant compari~on. To com pa.re the performance of the two approaches, it is 

important tha.t the comparison b,; pe,rformed on a.n equa.l basis. To begin with, the number 

of weights should be equal. It is obvious tha.t a. network with more weights has the potential 

to represent the data in a more complete fashion. As a result, a la.rger network may ha.ve 

an unfair a.dva.ntage over a smaller one despite a difference in network configuration. Com­

putational requirements should also be the sa.me. All things being equal, a computationally 

more complex method has a potential edge over a less sophisticated approach. 

Both the McMEC network of section 4.2.2 a.nd the IDC-McMEC network of section 4.5 

have K network weights for a K class network. An OIAL network with M components 

and K classes has M x K weights. Therefore, for the same number of weights, an OIAL 



4.8. COMPARISON BETWEEN OIAL AND McMEC 

30.5 ............ OIAl.:"'"8.K"""4 

30 - - - • • -IOCMcMEC:K-512 ... 

,,. 
27 .. ·· 

' ' ' 

/ 

, ........ 
_ ..... -

---:.·· 

,' 

-----------------

~.2 0.21 0..22 0.23 02, 0.25 a.a 0.21 o.29 o.a ......... 
Figure 4.13: Rate-distortion comparison between OIAL and IDC-McMEC. 

69 

network will have fewer classes relative to a McMEC network. For the comparison, an IDC 

McMEC network with 512 classes will be used. For an OIAL network with 8 components, 

this means that only 64 classes are allowed to maintain the same number of weights {512). 

Table 4.4 shows that the computational requirements of encoding for the 512 class IDC­

McMEC network is 1025 flops per pixel. The requirements for the equivalently sized OIAL 

network is 1024 flops per pixel for the forward transformations plus an additional 16 flops 

per pixel to calculate the squared norm of the coefficient vector for classification. The norm 

of the coefficient vector is equivalent to the norm of the projected vector in the subspace 

classifier. This gives a total of 1040 flops per pixel for the OIAL network. Therefore, the 

encoding complexity of both methods are similar. 

The 512-class IDC-McMEC network of section 4.5 and the 8-component, 64-class OIAL 

network of section 3.6 were used to compress the test :.nage of figure 3.4b at a variety of 

bit rates. The resulting rate-distortion curves are shown in figure 4.13. The figure shows 

that the use of a single adaptive coefficient can result in reduced distortion over the use of 

multiple coefficients. This is consistent with the theory outlined in section 4.2. The use of 

a single coefficient results in the optimal adaptation which translates into improved coding 

performance. 

The figure also shows that at higher bit rates, the multiple coefficient approach overtakes 

the single coefficient method. With only one adaptive component, the representation of the 

data is limited. Even neglecting quantization error, there may still be significant error in 
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the representation. With multiple components, a more accurate representation is possible. 

This simply demonstrates the power of a multiple component approach to representation 

such as principal components. These results also illustrate the flexibility that the spectrum 

of representations using the MPC approach allows. At one extreme, a one-dimensional 

subspace allows for the optimal adaptation which improves performance at low bit rates. As 

the dimensionality increases, the adaptivity may decrease, but the representation becomes 

more faithful to the original data space. 

To compare the nature of the distortion between the two networks, details of the com­

pressed test image at identical rates (0.25 bpp) and squared error (PSNR of 29.0 dB) are 

shown in figure 4.14. When comparing the edges of the skull, the McMEC image tends to 

preserve the continuity of the lines and edges better than the OIAL image which displays 

more block effects in this vicinity. The OIAL method appears to introduce a large degree of 

texture-like distortion in the brain region which is not as noticeable in the McMEC version. 

However, some of the details around the orbit are reproduced better in the OIAL image. 

At a bit rate of 0.33 bpp, the squared error of the OIAL is significantly lower in com­

parison to the McMEC. For the OIAL, the PSNR is 31.0 dB while the McMEC has a 

PSNR of 29.2 dB. The details for the two methods at this rate are shown in figure 4.15. 

Comparing these results to those at the lower bit rate shown in figure 4.14, the quality of 

the McMEC image increases marginally with the greatest improvement evident in the brain 

region. The OIAL shows a greater degree of improvement with an increase in the bit rate, 

especially around the skull and the orbit. When comparing the two compression methods 

at the higher bit rate, a number of differences is evident. 'fhe well-defined edges and lines 

at the skull and orbit are better preserved in the OIAL version. For example, the dark line 

between the skull and the diploe is more distinct in the OIAL version than in the McMEC 

version. However, the texture-like distortion is still quite evident in the brain region of the 

OIAL image, while the McMEC image shows no such distortion. So, despite the increase in 

squared error, some regions are still reproduced more faithfully by the McMEC approach. 

While this investigation has attempted to compare the two approaches on an equal foot­

ing, there remains a number of fundamental differences. The computing resources required 

for decoding are significantly different. For the IDC-McMEC, 2 flops per pixel are required 

while the decoding of an image using an 8-coefficient OIAL network requires 16 flops per 

pixel. The difference in training is also significant. The use of Oja's rule is a simple applica­

tion of Hebbian learning to extract the first principal component from a data set. However, 
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(a) (b) 

Figure 4.14: Details of coding at 0.25 bpp. (a) IDC-McMEC coding with 512 classes, PSNR 
of 29.0 dB. (b) OIAL coding with 8 coefficients, 64 classes, PSNR of 29.0 dB. 

(a) (b) 

Figure 4.15: Details of coding at 0.33 bpp. (a) IDC-McMEC coding wi~h 512 classes, PSNR 
of 29.2 dB. (b) OIAL coding with 8 coefficients, 64 classes, PSNR of 31.0 dB. 
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the extension to multiple components is not so straightforward as evidenced by the number 

of approaches to this problem surveyed in section 2.2. The extraction of multiple compo­

nents raises the issue of whether or not the components should be e~racted simultaneously 

as with the GHA or sequentially as with APEX. The effect these two approaches have on 

the convergence rate or stability of training is an open issue. 

Based on the above results and discussion, it can be concluded that, where possible, the 

one component McMEC or, even better, the IDC-McMEC is the preferred approach. In 

summary: 

• The adaptation is optimal which results in better coding performance. 

• For a given network size, the computational complexity is less - marginally so for 

the encoder and significantly so for the decoder. 

• The romplexity of the training is significantly reduced when only the first principal 

component needs to be extracted. 

4.9 Summary 

As chapter 3 has shown, the use of adaptation in coding images can allow better performance 

over the best nonadaptive coder. However, adaptation based on more than one basis vector 

per class may be suboptimal. From an information-theoretic point of view, the optimal 

adai:, .ation occurs when there is only one basis vector per class, that being the principal 

component of the class. The maximum entropy classifier assigns a vector to the class whose 

basis vector calculates the largest magnitude coefficient. It acts as a feature detector, or 

equivalently, a matched filter. The use of the first principal component ensures that the 

information retaintc from the original is maximized. As well, maximum entropy classifier 

has computational advantages over the subspace classifier. 

The performance of the McMEC network approaches that of the KLT. Considering 

that the McMEC network is encoding the image using only one coefficient while the KLT 

used up to 64, this shows that the network is indeed efficiently repr~senting the information 

contained in the original image. Further, the network is better at pres~rving finer structures 

and details in an image due to its adaptive nature despitu F'lme relative increase in squared 

error. 
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It was noted that the basis vectors of ev~ry dass of the McMEC network contained a 

significant d.c. component. To improve the coding fidelity, the d.c. component can be 

removed from the data and coded separat·aly. This allows the network a greater latitude in 

adaptation. The resulting over-all performance of the IOC-McMEC network can surpass 

that of the KLT. Again, the network was shown to have less distortion in fine detailed 

regions of an image. 

The McMEC networks have significant computational advantages over other block trans­

forms upon decoding. For an 8 x 8 block size, the KLT requires up to 128 flops per pixel for 

decoding and the fast OCT requires 12. In contrast, the McMEC method requires 1 or 2 

flops per pixel. On encoding, however, the adaptive nature of the McMEC network results 

in an increase in computations per pixel over the OCT. A tree-structured network can be 

employed to help improve the efficiency of the encoder with little if any cost in terms of 

increased distortion. Compared with the KLT, only 28% to 38% of the computations are 

required for encoding, while three to four times the comoutations are required relative to 

the OCT. For many applications of image coding, an image is encoded once and decoded 

many times. In this environment, the use of the McMEC network would allow a substantial 

reduction in the computational requirements. 

In comparing the McMEC approach to the OIAL of the previous chapter, a number of 

advantages are evident. First, the adaptation is optimal due to there being only one com­

ponent per class. This optimal adaptation results in improved performance for a network 

of a fixed size. Secondly, the computational complexity for decoding is significantly less. 

Finally, the training complexity is also reduced. 
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Chapter 5 

Application to Medical Imaging 

While the two previous chapters have demonstrated in a somewhat convincing fashion the 

usefulness of the new approach to image compression, the evaluations presented were of 

limited scope. To fully explore and evaluate the usefulness of any technique, not just image 

compression, the technique must be applied to a legitimate problem and its performance in 

that environment assessed. 

One of the most demanding application areas for the use of image compression is the 

compression of medical images. The implications of introducing any sort of distortion in this 

class of image are grave. There are numerous legal and regulatory issues which are of concern 

because of this [73]. As a result, there is an argument for the use of lossless compression in 

this field. However, this approach is of limited usefulness due to the theoretical limits on 

the maximum allowable compression. The study of the use of lossy techniques to overcome 

this limit is therefore warranted. 

For these reasons, the application of image compression to medical imaging was chosen 

as the environment in which a substantial evaluation of the new compression technique was 

conducted. 

5.1 The Need for Image Compression 

Within the medical imaging field, there continues to be tremendous growth in the avail­

ability and use of digital images. The number of imaging modalities in use includes such 

diverse methods as computed tomography (CT), digital subtraction angiography (DSA), 

digital flurography (DF), computed radiography (CR), magnetic resonance imaging (MRI), 

75 



76 CHAPTER 5. APPLICATION TO MEDICAL IMAGING 

Modality Images Image Megabytes 
per Exam Resolution per Exam 

CT 30 512 x 512 x 12 bits 16 
MRI 50 256 x 256 x 12 bits 6.5 
us 36 512 x 512 x 6 bits 9.5 
PET 62 128 x 128 x 16 bits 2 
SPECT 50 128 x 128 x 8 or 16 bits 0.8 or 1.6 
DSA 20 1024 x 1024 x 8 bits 20 
DF 15 1024 x 1024 x 8 bits 15 
CR 2 2048 x 2048 x 10 bits 16 

Table 5.1: Typical data volumes for digital examinations. 

ultrasonography (US), nuclear medicine (NM), single photon emission computerized to­

mography (SPECT), and positron emission tomography (PET). With this increasing use of 

digital imaging comes the need to handle larger volumes of digital data. It is estimated that 

in the United States alone the volume of digital image data being captured per year is on 

the order of petabytes (i.e., 1015 bytes) [73]. Even for a single digital radiology department 

in a 1500-bed university hospital, approximately 2.5 terabytes of data are produced per 

year [73]. Table 5.1 illustrates some of the typical data volumes generated by the various 

digital diagnostic imaging techniques [73]. 

Even with gigabyte storage media, the archiving of such data volumes still poses a 

problem. Currently, optical jukeboxes have a top storage capacity on the order of 100 

gigabytes. While this storage medium allows for relatively fast access, i.e., seconds, a 

jukebox could be full in a matter of weeks. For longer term storage, digital tape is commonly 

used. However, since the capacity of a single tape is only 2 to 5 gigabytes, a large number 

of tapes, on the order of one hundred per year, must be created and manually archived. 

The transmission time of such large data sets also becomes an issue. In many cases, 2 

seconds is the maximum allowable time for the transmission and display of an image [73]. 

For a typical local area network (LAN) with a peak bit rate of 10 megabits per second (10 

Mb/s) operating at an average 50% of the peak rate, the transmission of a single CR image 

would require 13 seconds. For teleradiology applications using a Tl link at 1.544 Mb/s, 

the delay would be much greater and if an Integrated Services Digital Network (ISDN) 

operating at 128 kb/s were used, such an image would require approximately 10 minutes to 

transmit. 

It is obvious, then, that there is a need in the diagnostic imaging field for some type of 
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image compression. Even if a modest 10:1 compression. were achieved, an optical jukebox 

may be able to store an entire year's worth of image data. At this rate too, the transmission 

of a CR image over a LAN would take under 2 seconds and over ISDN, the transmission 

time would be reduced to a more tolerable 1 minute. 

The question, of course, is how much compression can be achieved? For "lossy" image 

compression methods, this is the same as asking how much distortion can be introduced 

in the reconstructed image? If absolutely no distortion can be tolerated, then "lossless" 

compression must be employed. However, since the maximum compression ratio for lossless 

compression is fundamentally upper-bounded by the entropy of the image, ratios of only 

2:1 to 4:1 can be achieved [73]. Therefore, the usefulness of lossless compression is limited 

and the performance of lossy techniques must be investigated. 

To answer the question of how much -tistortion is tolerable, the end-us~ of the images 

must properly be defined. For example, one of the main uses of medical images is for 

diagnosis. Diagnostic images must clearly show the critical features of a pathology to 

enable a diagnostician, typically a Radiologist, to identify correctly the pathology and 

its attributes. In addition, no spurious features should be present which could lead to a 

misdiagnosis. For a compressed image to be used in a diagnostic setting, its diagnostic 

value must not be degraded. The compression technique must preserve the features in an 

image upon which a diagnosis is made. As well, it must not introd•Jce artifacts which could 

contribute to an incorrect diagnosis. 

How can this distortion be measured? A common measure of distortion is mean squared 

error (MSE), or equivalently, peak-signal-to-noise-ratio (PSNR). However, as many re­

searchers have rightly pointed out, despite its popularity as a distortion measure, MSE 

can be a poor indicator of the subjective quality of reconstruction [31, 49]. As a result, 

perceptually based criteria may be more appropriate. One example is the mean opinion 

score (MOS) [49]. A number of subjects view an image and rate its quality on a five-point 

scale of "bad," "poor," "fair," "go<Jd,' or "excellent." The MOS is simply the average rat­

ing assigned by all the subjects. In the case of diagnosis, receiver operating characteristics 

(ROC) curves can be employed [15, 9]. ROC curves plot the relation between the probabil­

ity of the correct detection of a pathology (Pd) and the probability of the false detection of 

a nonexistent pathology (a false alarm) (P1 0 ). As the distortion of the compression system 

increases, Pd will decrease for a given PJa· Again, the method of evaluation will depend on 

the end-use being considered. 
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5.2 Application Area 

The new image compression approach presented here will be applied to the educational use 

of medical images. Currently, Il.adiology residents acquire their diagnostic skills through 

the examination of actual clinical images containing various pathologies as well as normal 

images. Typically, these images are on film and are stored in a library of images. With 

the growth in digital imaging, it is now possible to store such a library of images digitally 

in a computer database. The residents would then be free to call up any of the images 

and d;splay them on a suitable cathode-ray tube (CRT) display and examine them at their 

convenienc~. The database n,ay reside in a central location on a network or it may be put 

on a CD-ROM for portability and at-home study on a personal computer. Such flexibility 

is particularly well suited to a problem-based learning environment. In addition, a number 

of imaging modes may be combined to allow the residents to compare the different types 

of examinations. With the addition of three-dimensional imaging and three-dimensional 

anatomical models, it would be possible to allow a resident to interactively perform any 

number of "virtual" examinations. 

The evaluation criteria for this environment are quite different from, say, a diagnostic en­

vironment. In the educational environment, the diagnosis or pathology is given beforehand. 

It is sufficient that an image show clearly the pathology in question or the characteristics of 

a normal image. The diagnostic value is not the criterion by which the performance of an 

image compression te~hnique should be evaluated. Instead, it is the over-all quality of the 

image and the visibility of the pathology as ju.dged by an experienced Radiologist which 

must be measured. 

Such a qualitative evaluation can be performed using the MOS method introduced in 

the previous section. While a simple judgement of "acceptable" or "unacceptable" would 

be adequate, a five-point scale of quality would provide more information with "excellent," 

"good," and "fair" being acceptable and "poor" and "bad" being unacceptable. A nl!mber 

of representative images is required for such a study. The images must include not only 

pathologies, but normal variations as well. The images would be compressed to a variety of 

degrees and the resulting images, including the originals, would be evaluated independently 

by a number of expert Radiologists. Of course, on presentation, the evaluators would not 

be told the degrees of compression or which image is the original. The highest compression 

ratio at which all the evaluations are rate,· to be "fair" or better, i.e., acceptable, would 
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determine the maximum allowable compression ratio for educational use for the examination 

type being evaluated. 

5.3 Examination Type 

For consistency, only one type of examination will be considered for the evaluation. The 

most demanding examination from a radiological imaging perspective is the chest radio­

graph. A chest image must contain a wide range of densities from the very unattenuating 

(dark) regions in the lungs to the very attenuating (light) region of the mediastinum con­

taining the spine and heart. Within each region, there must be sufficient local contrast to 

show the detailed structures. In many cases, the features which a Radiologist looks for in 

a radiographmay not even be visible to the untrained eye. As well, a chest radiograph may 

contain a wide variety of pathologies ranging from the very subtle pnuemothorax to very 

obvious deformations. Therefore, the chest radiograph provides one of the most rigorous 

tests of any image compression scheme. 

The fundamental principles of radiographic image formation have changed little since 

Roentgen produced the first X-ray images in the late Nineteenth Century. In an X-ray 

tube, as shown in the schematic of figure 5.1, electrons are emitted by the cathode's heated 

filament, are accelerated by the potential difference applied between the anode and the 

cathode, and strike the anode producing short-wavelength radiation referred to as X-rays. 

The spot on the anode on which the electron beam is focused is referred to as the focal 

spot and acts as a point source of X radiation. As the radiation passes through the subject, 

some of it is absorbed. The degree of absorption varies with the composition and density 

of the matter. For example, bones absorb more of the radiation than soft tissue. Behind 

the subject is placed a sheet of photographic film which is sensitive to X radiation. Upon 

development, the optical density of the film provides a record of the radiation to which the 

film has been expcs~d, and hence the degree to which the radiation has been attenuated in 

passing through the patient. 

Computed radiography (CR) is an emerging imaging technique which produces digital 

images using X radiation [68, 41]. Instead of a photographic film as the recording medium, 

an imaging plate (IP) is used. When an X-ray photon strikes a phosphor molecule in the 

IP, this molecule undergoes a chemical .:.hange. The change causes the molecule to fluoresce 

when illuminated. The plate is "read" by a laser scanner which records the intensity of this 
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Figure 5.1: Schematic of an X-ray tube. 

fluorescence and converts it to an array of digital pixel values. 

CR has a number of advantages over conventional film-based radiography: 

• The exposure-density relation is linear for a wide range of exposures. The dynamic 

range in X-ray dose of this linear response is on the order of 1 : 104• Because this 

latitude is much greater than that of photographic film, regions which would be over­

or under-exposed on a conventional radiographic film would be faithfully recorded 

under CR. 

• Since the raw data are digital, an image can be enhanced by a plethora of digital image 

processing techniques. These include global contrast enhancement, local contrast 

enhancement, edge enhancement, and other forms of digital filtering operations. 

• The fact that the raw data are in digital form means that there is no possibility of 

introducing distortion during the digitization process. For example, a digital image 

obtained by digitizing an exposed photographic film will incorporate the nonlinear 

contrast response of the film. On the other hand, the response of the CR system is 

linear. 

Because of the above reasons, digital CR chest radiographs were chosen to evaluate the new 

image compression method. 



5.4. MATERIALS AND METHOD 81 

orf•••-•"iii*•••···~ r:::::;§i:'ir=;"s"'i I ::!:::.' .... 

u! 
n=c-.=ael!;'W"c.;:c!:..c-;""Z.::.. ,u. °"' .. "' 

Stuhr 

l 

Seu.Mr 

Figure 5.2: Diagram of the Fuji ACl CR system (from [16)). 

5.4 Materials and Method 

All images used for this evaluation were clinical images generated by the Fuji ACl CR 

system located in the Department of Radiology at the McMaster University Medical Centre 

(MUMC). A diagram of the system is shown in figure 5.2. The exposure is obtained in the 

standard manner with a conventional X-ray tube except that an IP is used as the recording 

medium instead of film. The IP is read and digitized by the CR system. The digital image 

is then transferred to a disk attached to a Sun workstation. 

The images are nominally 2048 x 2048 pixels in size with 10 bits per pixel. The useful 

image area varies from image to image. The Medical Imaging and Network Development 

(MIND) Laboratory in the Department of Nuclear Medicine at MUMC has developed a 

program called MUMC Display which allows the viewing of these images in a number of 

formats with variable gray level mappings for contrast enhancement. The program also 

allows the printing of images to a digital film recorder. 
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5.4.1 Training 

The two images chosen for training are shown in figures 5.3 and 5.4. These were chosen as 

"typical" chest radiographs. A number of IDC-McMEC networks were trained using these 

images in the same manner as described in sections 4.4.1 and 4.5.2 with the input blocks 

being randomly choden from both images. The number of classes in the networks ranged 

from 2 to 1024 in steps of integer powers of 2. The following different block sizes were also 

used, 4 x 4, 5 x 5, 6 x 6, and 8 x 8. The variety of block sizes allowed a greater range of 

compression ratios to be investigated. The KLT was also generated from the same data for 

a single block size of 8 x 8. 

For a preliminary evaluation, the rate-distortion curves for the various networks were 

experimentally found using a third representative chest image shown in figure 5.5. The 

coefficients were quantized in the same manner as described in sections 4.4.1 and 4.5.2, 

namely, first-order DPCM for the d.c. coefficient and PCM for the second coefficient with 

a uniform quantizer for both using a common quantization interval. Similarly, the rate­

distortion curve for the KLT was also determined. The resulting curves are shown in figure 

5.6. Again, these curves show that the McMEC networks can perform better than the 

KLT. The figure also shows the effect of varying the size of the image blocks. For a given 

number of classes, decreasing the block size r'l<luces the distortion. This is simply because 

the input dimension is smaller and is therefote represented better by a set of subspaces of 

fixed dimension (e.g., 2 for the IDC-McMEC). 

5.4.2 Opinion Score Evaluation 

For the evaluation, nine clinical chest radiographs were chosen by a senior Radiologist who 

specializes in chest radiology. This set was chosen to contain a variety of pathologies as well 

as normal images and images with high contrast objects such as surgical staples or jewelery. 

The original images are shown in figures 5.7 through 5.15. The characteristics of the images 

are summarized below. 

• Image 805. Subsegmental atelectasis: bands of opacity, horizontal in image left lung 

and diagonal in image right lung. 

• Image 7731. Interstitial disease and pleural fluid: diffuse, patchy opacities and edge 

created by pleural fluid in image left lung. 
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Figure 5.3: Chest 1. One of the two chest • · diographs for trai11i11g. 
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Figure 5.4: Chest 2. The other chest radiograph for training. 
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Figure .5.5: Chest 3. Chest radiograph for preliminary testing. 
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Figure 5.6: Rate-distortion curves for chest radiograph. 

• Image 9502. Subtle pneumothora.x: faint line in apex of image left lung. 

• Image 9789. Normal, high contrast objects. 

• Image 10555. Air space disease: white opacities in top of image left lung, and top 

and middlri of image right lung. 

• Image 1691E. Normal: chosen to test for visualization of mediastinal line and edges. 

• Image 19158. Interstitial and air space disease: diffuse, patchy opacities in image 

right lung 

• Image 26366. Normal: chosen for support equipment and subdiaphramatic detail 

including contrast material in kidney. 

• Image 31159. Image left upper lobe volume loss. 

Each of the nine images was compressed at 10:1, 20:1, 30:1, and 40:1 relative to the 

useful image area coded at JO bpp. The networks and the quantization intervals used for 

these ratios were chosen based on the data of the preliminary evaluation shown in figure 

5.fi. These parameters are summarized in table 5.2. As an example, figures 5.16 through 

5.20 show the 512 x 512 details of a portion of image 16916 and the corresponding area at 

10:1, 20:1, 30:1, and 40:1 compression, respectively. 
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Figure 5.7: Image 80:i. 
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88 CHAPTER 5. APPLICATION TO MEDICAL IMAGING 

Figure 5.8: Image 7731. 
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Figure 5.9: Image 9.502. 
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Figure 5.10: Image 9789. 
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Figure 5.11: Image 10,5,55. 
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Figure 5.12: Image 16916. 
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Figure 5.13: Image 19158. 
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Figure 5.14: Image 26366. 
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Figure .5.1,5: Image 31159. 
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Figure 5.16: Details of image 16916. 
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Figure 5.17: Details of image 16916 compressed to 10:1. 
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Figme 5.18: Details of image 16916 compressed to 20:1. 
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Figure 5.19: Details of image 169W compressed to 30:1. 
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Figure 5.20: Details of image 16916 compressed to 40:1. 



5.4. MATERIALS AND METHOD 101 

Compression Block Number of Quantization 
Ratio Size Classes Interval 
10:1 4x4 512 12.0 
20:1 6x6 1024 14.1 
30:1 8x8 1024 7.7 
40:1 8x8 256 23.8 

Table 5.2: Network parameters for the various compression ratios. 

The resulting 36 images as well as the nine original images were each printed onto 

photographic film using a laser film recorder for a total of 45 films. Film was chosen as the 

presentation medium over a CRT display for a number of reasons: 

• Radiologists are most comfortable with the use of film. 

• Film has a much larger dynamic range in density than a CRT. 

• The laser film recorder also has a better spatial resolution than most CRTs. 

• Films are portable and light boxes for viewing are located throughout any radiology 

department. 

• A number of films may be viewed at once on a large light box. 

To evaluate the quality of the images, seven physicians took part in the study. Four 

were senior Radiologists, one of them, who initially selected the images, is a chest specialist. 

One of the other participants was a physician specializing in Nuclear Medicine, and the final 

two were Radiology residents. 

The sessions for each of the evaluators were conducted as follows. The five versions of 

an image, including the original, were presented to the evaluator simultaneously, in random 

order, on a large light box. The degree of compression for each film was hidden from the 

evaluator. The evaluator was given a sheet where he or she was asked to chose an opinion 

score for each of the five images, rating both the over-all image quality and the visibility 

of the pathology. If the physician did not detect a pathology, he or she was asked to rate 

the visibility of some landmark features. A five-point opinion sco,e was used with 5 being 

"excellent," and 1 being "bad." This procedure was repeated for each of the nine images. 

As a result, each degree of compression was assigned 63 opinion scores. 
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5.4.3 Comparison to KLT 

In order to compare the new compression technique to the globally optimal KLT, a second 

set of evaluations were performed. To compare the two techniques, the relative distortion 

of two images compressed to the same degree using the two different approaches must be 

compared. In this case, it would be sufficient to judge one as being better than the other. 

If more than one compression ratio were used, an ordinal ranking based on the relative 

distortion would indicate whether one method was superior to the other. 

Two compression ratios were chosen for this second evaluation, namely 30:1 and 40:1. 

These ratios represent the highest acceptable compression as shown by the results for the 

previous evaluation, presented in the following section. For the McMEC approach, the same 

images previously produced at these rates .,ere used. The KLT was used to compress the 

original nine images to the same compression ratios, and these images were printed on the 

laser film recorder. Figures 5.21 and 5.22 show the same details as figure 5.16 for the KLT 

compression of 30:1 and 40:1, respectively. Therefore, each image had four versions for a 

total of 36 films. 

It was decided that only one participant, the chest Radiologist, was required for this 

evaluation. Not surprisingly, he had the most "critical eye" in evaluating the subtle differ­

ences between the images in the previous evaluation. For this set of images, the differences 

are even less visible. 

The evaluation was conducted as follows. The four versions of an image were presented 

to the evaluator simultaneously, in random order, on a large light box. The degree and 

method of compression was hidden from the evaluator. The evaluator was asked to sort the 

four images in order of the amount of perceived distortion. It was acceptable to have more 

than one image ranked the same. This procedure was repeated for each of the nine images. 

5.5 Results 

5.5.1 Opinion Score Evaluation 

After the first set of evaluations, the data were collected and summarized. The results 

for the rating of image quality are shown in table 5.3. For each compression ratio, the 

table shows the percentage of times images were assigned a given opinion score. Sixty-three 

scores were assigned for each compression ratio. As the table shows, there is little difference 
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Figure 5.21: Details of image 16916 compressed to :30:l using the l(J;J'. 
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Figure 5.22: Details of image 16916 compressed to 40:1 using the KLT. 
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1:1 10:1 20:1 30:1 40:1 
excellent (5) 0.37 0.43 0.35 0.29 0.26 
good (4) 0.53 0.48 0.57 0.60 0.52 
fair (3) 0.10 0.10 0.08 0.11 0.19 
poor (2) o.o 0.0 o.o 0.0 0.03 
bad (1) 0.0 o.o 0.0 0.0 o.o 

Table 5.3: Fraction of times images of a given compression ratio were assigned a given 
opinion score rating image quality. 

1:1 10:1 20:1 30:1 40:1 
excellent ( 5) 0.42 0.41 0.35 0.32 0.33 
good (4) 0.48 0.44 0.56 0.57 0.47 
fair (3) 0.10 0.14 0.10 0.11 0.19 
poor (2) 0.0 o.o 0.0 o.o 0.02 
bad (1) 0.0 o.o 0.0 o.o 0.0 

Table 5.4: Fraction of times images of a given compression ratio were assigned a given 
opinion score rating the visibility of the pathology. 

between the ratings of the original and the 10:1 and 20:1 versions. In fact, the data show 

that the quality of the 10:1 image was actually rated higher than the original. At 30:1, 

the rating drops slightly with fewer images scored as excellent. However, there are still no 

unacceptable scores at this compression ratio. It is only at a compression of 40:1 that some 

images, albeit just 2 out of 63, were rated as unacceptable. Even still, over one quarter of 

the images evaluated at this degree of compression were scored as excellent. For all of the 

compression rates, no images were scored as bad. 

The results for the rating of the visibility of the pathology in an image are similarly 

shown in table 5.4. Again, the differences in scoring between the original and the 10:1, 20:1, 

and even 30:1 are relatively minor. At none of these compression ratios were any images 

scored as unacceptable. At 40:1, one image was rated in the unacceptable range as poor. 

Despite this, one third of the images were still assigned the top score of excellent. As was 

the case for the other scoring criterion, no images were assigned the score of bad at any of 

the compression ratios evaluated. 

Further summarizing the data, the plot of the mean opinion score taken across all images 
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Figure 5.23: Mean opinion score across all images and evaluators. 

and evaluators for both scoring criteria is shown in figure 5.23. For both criteria, the MOS 

at the various degrees of compression remains quite close to that of the original. For image 

quality, the MOS for the original is 4.28 and only drops to 4.01 at 40:1. The MOS for the 

pathology visibility is 4.33 for the original and 4.10 for the 40:1 compression ratio. 

The comments made by the evaluators were similarly encouraging. Many times the 

evaluators, after examining the five versions of an image, would comment that there was no 

difference between the images, or if any, that it was very slight. It was not uncommon for 

the compressed versions to be scored higher than the original. In fact, a number of times 

an evaluator would indicate with a high degree of certainty one of the versions as the best, 

showing the details most clearly, and this version would turn out to be the 40:1 version. 

In many instances, when an evaluator scored an image relatively low, he or she would 

comment that the scoring was based on the distortions visible in high contrast artificial 

objects in the image. Such objects include surgical staples, necklace chains, catheter tubes, 

and electrode disks. The image in figure 5.10 contains a number of such objects. The 

chest Radiologist was particularly adept at identifying such differences. Even then, the 

evaluators were quick to point out that the differences in the biological structures such as 

tissue structures, blood vessels, and bones, were far less visible, if visible at all. 
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McMEC KLT McMEC KLT 
Image 30:1 30:1 40:1 40:1 
805 1 2 3 3 
7731 1 2 3 3 
9502 1 3 2 3 
9789 2 1 2 2 
10555 1 2 1 2 
16916 1 2 1 2 
19158 1 2 2 2 
26366 1 2 3 3 
31159 1 2 3 3 

Table 5.5: Ordinal ranking of perceived image quality. 

5.5.2 Comparison to KLT 

The data collected in the second evaluation are shown in table 5.5. For each image, the 

numbers indicate the ordinal ranking that each of the different versions of the image were 

assigned. In all but one case, the McMEC 30:1 version was ranked the highest and in all 

cases, the KLT 40:1 was assigned the lowest rank. When comparing the two techniques at 

the same compression ratio, in 17 of the 18 cases, the McMEC version was rated better than 

or equal to the KLT version. At 30:1, the McMEC was rated better than or equal to the 

KLT 8 times out of 9 and at 40:1, this was the case for all 9 image pairs. It is interesting to 

note that for 4 of the 9 images, the 40:1 McMEC version was ranked better than or equal to 

the 30:1 KLT version. This data unequivocally demonstrate the superiority of the McMEC 

approach over the KLT in terms of reduced distortion for a given compression ratio. 

In commenting on the differences between the two types of compression techniques, the 

evaluator noted that the KLT images appeared grainier relative to the McMEC images. 

Figure 5.24 shows details of the absolute value of the error with respect to the original of 

image 16916 compressed to 40:1 using McMEC and the KLT. The KLT error image shows 

a slightly more uniform distribution of error compared with the McMEC error image. This 

distribution is consistent with the description of grainy. The distribution of error for the 

McMEC approach is not so uniform. In somewhat flat regions, the error is relatively small 

while in "busy" areas such as edges, the error is larger. It is well known that the human 

visual system is relatively more sensitive to error in flat regions than it is to error in busy 
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regions [49). Therefore, it appears that the McMEC takes advantage of this characteristic 

to improve the perceived quality of a compressed image. 

5.6 Summary 

The application of image compression to the medical imaging environment is a very chal­

lenging problem. The distortion introduced by a lossy technique must be evaluated carefully. 

The repercussions of introducing such distortion into an image used for diagnosis can be 

life-threatening. However, there is a real need for image compression in the medical field 

due to the large volumes of digital image data currently being generated and the potential 

growth in the field for the foreseeable future. 

One application for image compression in this environment is the use of medical images 

for educational purposes. This is quite different from the diagnostic use of medical images. 

In this application, the nature of the pathology portrayed in the image is known beforehand. 

The purpose of the image is to show this pathology and its attributes in a sufficiently 

faithful manner, such that it can be identified and its characteristics ascertained. This 

particular application and its requirements have not received much attention in the research 

community. 

To determine the usefulness of the McMEC approach to image compression, the follow­

ing investigation was performed. Nine representative clinical chest radiographs, acquired 

digitally using the Fuji CR system, were chosen for evaluation. The images were com­

pressed using various IDC-McMEC networks trained on two representative images outside 

the evaluation set. Four degrees of compression were used: 10:1, 20:1, 30:1, and 40:1. Seven 

physicians evaluated the images. The five versions of each image were shown simultaneously 

to e.ach evaluator, who was asked to rate each one on a five-point scale for image quality and 

visibility of pathology. To determine the relative performance of the new approach to the 

globally optimal KLT in this application, one of the Radiologists was later asked to rank, 

in order of the severity of the distortion, four versions of each of the nine image: McMEC 

at 30:1 and 40:1, and the KLT at 30:1 and 40:1. 

In the first evaluation, it was found that the mean opinion score differed very little from 

Lh;,.t of the original across all the compression ratios. Only for the 40:1 versions were there 

any unaccepti.ble ratings. Even then, these images received a substantial number of top 

ratings. Many times, the evaluators commented on how little difference there was if any 
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between the images. Occasionally, the physician would choose the 40:1 image as the best. 

When compared to the KLT, the McMEC versions were ranked better than or as good as 

the KLT versions 17 times out of 18. In addition, four out of nine times the 40:1 McMEC 

version was ranked as good as or better than the 30:1 KLT. 

It can be concluded, then, that it is possible to compress digital chest radiographs to 

between 30:1 and 40:1 with an IDC-McMEC network without losing the fidelity necessary 

for an educational use. In fact, it may be possible to further compress some images, since 

the number of unacceptable scores at 40:1 was very low and the number of top scores was 

still quite high. Based on the comparison between the new method and the KLT, the data 

show conclusively that for a given degree of compression, the distortion of the new approach 

is less than that of the KLT. 
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(a.) (b) 

Figure 5.2·1: Detaj]s or the absolute error with respect to the original of image 16916 com­
pressed to ·10:1 using (a) ~lcMEC a.nd (b) KLT. 



Chapter 6 

Self-Organizing Segmentor and 

Feature Extractor 

A useful by-product of coding an image with either the OIAL or the McMEC networks is 

the class assignment for each input block. Therefore, these techniques may be applied to the 

problem in pattern recognition of segmenting an image into a number of distinct regions. 

In classical pattern recognition techniques, there are two general phases in the analysis 

of data. First, features are extracted from the data. Typically, a number of attributes are 

measured and then some transformation is used to decorrelate and extract only significant 

features thereby reducing the dimensionality. For example in edge detection, the local pixel 

values may be transformed by a set of gradient operators to produce a number of directional 

gradient images. However, in many applications, this step resembles more an art than a 

science since, despite extensive analysis, the appropriate transformation may not be readily 

apparent. In the second stage, an analysis of the data is performed to partition the feature 

space into classes of data. In the case of edge detection, a threshold is typically applied to 

the gradient images based on some predetermined min;_mum gradient magnitude. Generally, 

the partitions tend to be based on a distance metric with respect to some representation 

of the classes. For example, in many clustering techniques, the classes are represented by 

the mean of the class data, and the metric is the Euclidean distance in the feature space. 

The class partitions form bounded regions in the feature space and the form of the decision 

surfaces between the regions are determined by the metric used. 

In subspace pattern recognition, both the feature extraction and class representation 

phases are combined. As discussed in section 3.3, the basis vectors of the class define 

111 
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both the class by the subspace they define, and the features of the ,4ata. The classifier 

defines unbounded regions due to the insensitivity of the classifier to the vector norm of 

the data. The classification of data is based not on some form of Euclidean distance, 

but by the efficiency with which a subspace can represent the data as measured by the 

norm of the projected data. For the maximum entropy classifier, these attributes also hold 

true. Further, the representation of the classes by their first principal component and the 

assignment of data based on the largest magnitude of the class output assures that the 

information preserved by the network is maximized. 

Because of the above characteristics of the classifiers upon which the adaptive nature 

of the OIAL and McMEC networks are based, their use as segmentors warrants some 

investigation. 

6.1 Image Formation Model 

The most interesting property from an image processing perspective of both the subspace 

and maximum entropy methods of classification is that the classification is independent of 

the norm of the data vector x. For any scalar multiple a, if x E C, then ax E C,. This 

is a very significant characteristic in light of the actual process of image formation. It is 

known that the luminance at a particular point in an image, L(x, y), can be modelled as 

the following product [65]: 

L(x,y) = E(x,y)p(x,y) (6.1) 

where E(x, y) is the illumination falling on that point, and p(x, y) is the reflectance of the 

physical object at that point. In real images, the illumination may vary across an image or 

it may vary between a number of images. However, this variation must be on a much larger 

scale than the variations in reflectance for the contents of an image to be useful. Therefore, 

for a small neighbourhood around a point, N(x, y), the illumination may be considered a 

constant, EN(z,,y), but its value, from region to region, may change. Equation 6.1 can then 

be rewritten as 

L(x, y) = EN(z,,y)P(x, y) (6.2) 

Typically, the goal in image analysis is to determir,e characteristics about the underlying 

physical objects of the scene being imaged. These are inferred from the reflectivity of the 

scene. Therefore, it is the reflectivity which conveys the information about the scene, and 
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any variation in the illumination can be considered as noise. This is the justification for a 

class of image processing called "homomorphic processing" [56]. 

Using vector notation to represent the luminance values of a neighbourhood of pixels as 

x, the image of this neighborhood, or feature, is formed as 

X1 = Ep (6.3) 

which is the vector equivalent of equation 6.2. If the same feature, having the same re­

flectance, p, were to appear elsewhere under different illumination conditions, oE, its image 

would be 

x2 = oEp {6.4) 

If some image analysis process were performed on these image vectors, one would expect the 

same result since both x 1 and X2 were created by the same underlying feature. For many 

classical pattern recognition approaches, this would not be the case since many use scale­

dependent metrics like Euclidean distance. For example, ir, vector quantization, Euclidean 

distance is used to measure the distance between input vectors and the codewords. As 

a result, the distance between x 1 and x2 may be quite large and result in the codeword 

representations of the two vectors being different. Both the maximum entropy and subspace 

methods, however, would treat the two vectors identically, since they would both project to 

the same subspace independently of the illumination values E and oE. It could be argued, 

then, that these methods act directly on the physical properties of the objects being imaged 

rather than indirectly on the illumination dependent image. 

Jllumination independence is a very important characteristic of the human visual system 

[8]. We have no problem in recognizing that the different retinal images formed by the 

same object under a wide range of illumination conditions do in fact correspond to the 

same object. It would be very hard indeed for us to function as we do if our visual system 

did not behave in such a manner. So, for an artificial system processing image data, such 

independence on variations in illumination would be similarly advantageous. Both the linear 

subspace classifier and the maximum entropy classifier have exactly this property. 
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6.2 OIAL Network as Segmentor 

6.2.1 Method 

As with the McMEC network, the concept of topologically ordered classes can be incorpo­

rated into the OIAL class of algorithms. Referring to the algorithm presented in section 3.5, 

the step for updating the transformation bases, (namely equation 3.16), can be modified to 

Wj = { Wi + oZ(x, Wj), 
Wj, 

C; E N(C;) 

C; 1/. N(C;) 
(6.5) 

where C; is the winning class according to the subspace classification rule of equation 3.15, 

and N(C;) is the set of classes which are in the neighbourhood of class C;. 

A simple topology appropriate for this investigation is a linear arrangement in which 

the distance between two classes is simply the absolute value of the difference between the 

class indices. To avoid discontinuities in the topology at the ends, a circular topology could 

be used where the first and final classes are adjacent. It is this circular arrangement which 

is used for the following investigation. A system consisting of 32 classes (K = 32) with 2 

coefficients per class (M = 2) was trained on samples from the training MR image shown 

in figure 3.4a. The training samples consist of overlapping blocks of 8 x 8 pixels (N = 64) 

as described in section 3.6.1. The learning rule was that shown above in equation 6.5 with 

Z(x, W;) chosen as Sanger's GHA. The initial neighbourhood size was 3/4 the size of the 

entire system or 24 classes. The size of the neighbourhood decreased by two classes for each 

iteration through the training set. 

6.2.2 Results 

Once the network was trained, the resulting sets of basis vectors were examined. It was 

found that the first basis vector of each class was very close to d.c. The mean across all 

classes of the d.c. gain of the first basis vector was 7.9424, which is very close to the 

normalized d.c. gain of ../N = 8. The minimum and maximum d.c. gains across all classes 

were 7.7056 and 8.0, respectively. As expected, the second basis vectors contained very 

little d.c. with a mean d.c. gain of only -0.0320. The value of all the weights of the second 

basis vector across all the classes varied from -0.3854 to 0.5259. 

Figure 6.1 shows the second coefficient basis blocks of the system. The class number 

progresses left to right, top to bottom with the top left class being arbitrarily chosen as class 
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1. Black represents -0.4 and the lightest colour 0.5. The basis images were colour-coded 

to match the class assignments shown in subsequent segmentation maps of test images. 

Examining the class weights shows the preference of the segmentor for edge and line features. 

This is a rather interesting result as no a priori conditions were imposed as to what features 

were important in the image. In the human visual system, edges and lines are two of 

the primary features used to construct higher-order representations of scenes [45). Even 

when one looks at the original images in figure 3.4, the areas to which one's attention 

is initially drawn corresponds to areas which the segmentation network has represented 

as being important, namely, edges and lines. The extraction of important features was 

accomplished entirely through a self-organizing mechanism. The figure also shows the high 

degree of similarity between adjacent classes. Bases with similar directional sensitivities 

tend to be near each other. The sequence of the basis blocks shows how the orientations of 

the classes progresses through 180°. This arrangement of feature orientations is remarkably 

similar to the way in which the visual cortex is arrangeo. 

In a classic set of experiments, Hubel and Wiesel recorded the response of neurons in 

the mammalian visual cortex to a variety of optical stimuii using microelectrodes [27). They 

found that groups of neurons arranged in columns responded only to very specific stimuli. 

In particular, a column would only respond when the eye was presented with lines of a 

particular orientation. If the angle varied even slightly, the column of cells would stop 

firing. In terms of the spatial organization of these columns, it was found that the angle 

of sensitivity differed only slightly (about 10°) between adjacent columns. Further, as the 

electrode was moved along, the direction of change in the angle, either positive or negative, 

remained the same. This continuity of change in angle sensitivity persisted, in some cases, 

up to 270° along a line of columns. 

Referring to figure 6.1, the above characteristics of the visual cortex are mimicked by the 

set of bases. Each basis block is, in effect, a feature detector. The features corresponding 

to the bases are either lines or edges of a specific orientation. When comparing adjacent 

classes, the angles of the features are similar. As well, the angles change in a somewhat 

regular manner as the class number progresses. 

It is also interesting to note the distribution of the orientations in the basis set. The 

training image shown in figure 3.4a contains more vertical and diagonal features than hori­

zontal ones. This non-uniform distribution of orientations is reflected in the basis set. Most 

of the basis images have either a vertical or diagonal orientation. Only a few correspond to 
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horizontally oriented features, namely classes 25, 26, and 27. 

This network was used to segment the te.0 t image of figure 3.4b. The segmentation was 

performed by taking the surrounding 8 x 8 block for each pixel in the image, classifying the 

block, and replacing the central pixel by the resulting class value. Since the class topology 

was circular, the class values were coded by colour with the colour of a class i being the 

hue at an angle of i/ K x 360° on a colour circle, where K is the total number of classes 

which in this case is K = 32. The intensities were weighted by the magnitude of the second 

coefficient for each block. Figure 6.2 shows the resulting class map; the same colour coding 

was used in figure 6.1. 

The figure clearly shows the preference of the segmentor for edge and line features. In 

most areas of the image, it is acting as either an edge or line detector. The edges around 

the skull, the orbit, and sinus cavity are dramatically shown. 

The continuity of the colour transitions shows the high degree of similarity between 

neighbouring classes. Since the class indices were coded as a spectrum of colours, similar 

colours indicate similar classes. Starting at the base of the skull in the lower left of the 

image and going around the skull in an anti-clockwise direction, the colours progress from 

green to yellow, orange, to red, to violet at the top of the skull, to blue, and finally back to 

green at the forehead. Throughout the image, too, features with the same orientations are 

consistently segmented with the same class. For example, the horizontal features around the 

the top and bottom of the orbit are mapped to the same classes as the horizontal features 

at the top of the skull. 

The class assignment of a feature with a particular orientation is independent of whether 

it has a positive going direction or negative going direction. For example, vertical edges 

are labelled green whether the gradient is to the right or to the left. The d.c. gain of the 

second basis vector of each class is approximately zero. Since the representation of an input 

vector by a subspace and hence its classification is independent of the sign of the coefficients, 

multiplying the basis vectors by -1 does not change the classification. Therefore, changing 

the gradient direction of an edge by 180° does not effect its classification. 

To examine the effect of the network on an image significantly different from the training 

image, it was used to segment the Lenna image of figure 3.9. Figure 6.3 shows the resulting 

segmentation map. Despite the fact that the network was trained on a very different image, 

the classification of features is the same as that of figure 6.2. Again, the network has 

identified perceptually important features. It has picked up all the significant edges and 
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lines and has classified them in a consistent manner. Horizontal features are blue to purple, 

vertical features are green, diagonals in the top-right to bottom-left orientation are orange 

and the opposite diagonals are blue to green. As was the case for the compression results 

using the OIAL network, these results indicate that the segmentation properties of the 

network appear to generalize well across different images. 

To test the performance of the segmentation under different illumination conditions, the 

network was used to segment the images shown in figure 6.4. Both images are 400 x 400 

pixels in size with 256 levels of gray. One image was captured with the scene being brightly 

illuminated while the other was captured after the lights were turned off. The respective 

segmentation maps are shown in figure 6.5. Because of the difference in dynamic range 

between the two input images, the intensity weighting of the segmentation map by the 

magnitude of the second coefficient was normalized for consistency. The hue as the indicator 

of class assignment, however, was not modified. As these two segmentation maps show, a 

substantial change in illumination has very little effect on the assignment of the features in 

a image to the various classes. As per the discussion in section 6.1, this result is consistent 
.,1&~~~~11~~h,Wftwt:i,would-..·be•ex:p~;lilj,;i,"iOt-'tXf~<x-:ii,•·:."::-·:;-~:,;~~:.,-:_:.;,·(:·>•,..::~"-$1~1iliQ<:~..;:;:-, .... 't~J~~,.- ....... ~-,~,, ... ;-.'.·:,t.'9:-1;~-..··1~~)'.;~·-·::,• ._. -;•(-i<M·,lf,·):,:-

Of course, in practice, there are limitations to the illumination independence charac­

teristic of this segmentation technique. A completely black image would have an arbitrary 

segmentation since a zero vector projects equally well in all the subspaces. Even with a 

very small input vector, any noise could substantially change the direction and hence the 

classification of the vector. Since actual digital images are inherently quantized in the il­

lumination dimension, the quantization noise for extremely poorly illuminated images may 

then present such a problem. Generally, if the signal-to-noise ratio is large, with the noise 

including both quantization noise and any sensor noise, then the illumination independenc!! 

characteristic of the segmentor is valid. However, as the illumination drops to the point 

where the SNR approaches 1, then the noise will begin to interfere with the performance 

of the segmentor and the illumination independence fails. At the other extreme, too much 

illumination may saturate the sensor thereby distorting the sig~al. Such distortion may 

degrade the performance of the segmentor. 
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6.3 McMEC Network as Segmentor 

6.3.1 Method 

The McMEC network used to investigate the segmentation performance was the single 

coefficient network with 32 classes which was trained as described in section 4.4.1 and used 

in the evaluation of compression performance in section 4.4.2. 

6.4 Results 

Examining the set of of basis vector weights for the McMEC network yields some important 

differences between the OIAL representation which uses two coefficients, and the McMEC 

representation which uses only one coefficient. In the former, the first basis vector for every 

class was approximately the d.c. vector. Because they were all the same, it was the second 

basis vectors which effectively defined each class and, as was noted before, the second basis 

vectors had no d.c. component. For the McMEC network, there is only one basis vector 

which defines each class. In this network, rach vector has a strong d.c. component. The 

mean d.c. gain across all ~lasses was 7.4112 and varied substantially from a minimum of 

5.8688 to a maximum of 8.0. Because of the strong d.c. component in each vector, all the 

values of the weights were positive and varied from 0.0129 to 0.2705. 

The resulting class weights are shown in figure 6.6. The class number progresses left 

to right, top to bottom with the top left class being class 1. Again, the figure was colour­

coded to match the class assignments shown in subsequent segmentation maps. This figure 

shows the preference of the network for not only lines and edge, but flat areas as well. 

In the OIAL network, flat regions were sufficiently represented by only the first coefficient. 

Therefore, there was no need for such a representation in the second basis vector and, hence, 

the zero d.c. gain. With only one basis vector per class, flat regions must be represented 

explicitly. Again, ,.he extraction of these perceptually important features was accomplished 

in an entirely self-organizing manner as no conditions were imposed beforehand on the 

importance of specific types of features. 

The progression of features across adjacent classes is quite regular. The orientations of 

the features of adjacent classes are similar. This shows that the network growing approach 

used to train this network, as illustrated in figure 4.11, produces a topologically ordered 

map of features. Again, there are parallels between the organization of this feature map and 
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the regular progression in the orientation sensitivity of the columns in the visual cortex. 

The distribution of features in the feature map, as in the OIAL representation of figure 

6.1, corresponds to the relative distribution of the same features in the training image. 

Vertical and diagonal features are well represented as they are quite prevalent in the training 

image. As well, the number of relatively flat features in the map corresponds to the relative 

predominance of slowly varying regions in the image. 

The segmentation map of the MR image in figure 3.4b for this network is shown in figure 

6.7. As before, the class assignments were colour-coded using 32 colours from a continuous 

colour circle. Since the McMEC network docs not have a second non-d.c. coefficient, the 

intensity of the segmentation map was not weighted. 

One of the first noticeable features of this segmentation map is the apparently random 

distribution of class assignments in the background. In this area, the values of the pixels 

arc low, but there is some degree of variation due to noise. Because of the relatively flat 

characteristic of the background, one would expect it to be assigned to a uniformly flat 

class. llowcvcr, adding a degree of variation to the relatively small magnitudes of the 

blocks in this region substantially changes the angle of the input vector and therefore can 

change the class assignment. This effect clearly illustrates the degraded performance of the 

scgmcntor in very dark regions with low SNR. Such a random variation is also present in 

the background region in the segmentation map for the OIAL network as shown in figure 

6.2, but is not visible due to the weighting by the magnitude of the second coefficient. 

The foreground figure of the head, however, is well classified. The edges and lines around 

the skull and orbit arc all distinctly assigned to the appropriate classes. Comparing this 

figure with the colour-coded feature map of figure 6.6, one can see that the classification 

of features in the image correspond to those in the feature map. As previously mentioned, 

one of the differences between the sets of features for the OIAL and McMEC networks is 

the presence of almost pure d.c. features in the latter. The relatively smooth areas in the 

brain tissue arc classified as such. In the OIAL segmentation map, such flat regions are 

arbitrarily classified, but again, this variation is not visible in the segmentation map due to 

the intensity weighting by the second coefficient. 

A further difference between the two segmentation maps is evident around the edge of 

the skull. The difference is well illustrated when comparing the class assignments along a 

line at right angles to the skull, crossing the top of the forehead, and going from the brain 

tissue just inside the skull to the outside of the skull. In the McMEC segmentation map, the 
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negative-going edge as the line crosses the edge of the brain, the flat black region between 

the brain and the skull, and the positive-going edge on the inside edge of the skull arc 

all classified differently with the colours green, blue and purple assigned, respectively. In 

the OIAL segmentation map, negative-going edges are classified the same as positive-going 

edges. This difference, again, is due to the presence in the former and the absence in the 

latter of a d.c. component in the basis vectors which effectively define the classes. 

The McMEC network was used to segment the Lenna image, and the resulting segmen­

tation map is shown in figure 6.8. The figure clearly shows that the network has captured 

the essential information required to represent an image, since the details in the original 

image are readily identifiable in the segmentation map. The features in the image arc clas­

sified in a consistent manner with areas of slowly varying intensity similarly labeled, and 

the various edges in the image are labeled according to their orientation. Since there arc 

no very dark background regions in the image, there is no failure of the segmcntor due to 

a low SNR. 

Again, to test the illumination independence of the network, it was used to segment the 

two images of the same scene under different illumination conditions as shown in figure GA. 

The resulting segmentation maps are shown in figure 6.9. As was the case for the OIAL 

network, the McMEC segmentation maps for the two images are virtually indistinguishable 

from each other. However, the random class assignments in the very dark regions for both 

images show how the segmentor can fail when the illumination is so low that there is very 

little signal in the image. But for most regions in the poorly lit image, there is still sufficient 

signal upon which to make an appropriate classification. 

6.5 Summary 

The use of both the OIAL and McMEC networks as segmentors yields some interesting re­

sults. The networks have been shown to extract features from the test image in a complet"1y 

self-organizing fashion. No a priori assumptions were imposed as to the importance of any 

type of feature, yet the features extracted by the networks, namely, flat regions, edg"s, an,I 

lines, are all of perceptual importance. 

The classification of similar features was consistent across an image. This consisknc:y 

of classification was valid not only for images similar to the training image, hut also for 

images with substantially different characteristics. 
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The topological ordering of the classes during training resulted in like classes being 

close together in a manner analogous to the ordering of directionally sensitive columns in 

the visual cortex. Both the network growing approach to training or the more conventional 

shrinking neighbourhood approach achieved such an ordering. 

The segmentation was also shown to be independent of variations in illumination. Con­

sidering that the human visual system has such a characteristic, these results are significant. 

Further, by examining this independence in the context of the multiplicative image fornrn­

tion model, it can be shown that these segmentors are effectively operating directly on the 

underlying physical properties of the scene as opposed to indirectly on the luminance values 

of the image which may be corrupted by noise in the illumination component. Segmentors 

based on distance measures such as Euclidean distance do not share this property. 

While the above characteristics are valid for both networks, there are some significant 

differences between them. These differences stem from how the two networks incorporate 

the d.c. information in their network. 

The OIAL network in this investigation represented the classes with two components per 

class. It was found that the the first component was approximately d.c. for all the classes, 

while the second components, which then effectively defined the classes, had no d.c. As a 

result, features which differed by a negative sign in the don-d.c. components, for example, 

positive- and negative-going edges of the same orientation, were assigned the same cl:css. In 

addition, slowly varying regions were arbitrarily classified. 

The McMEC r.etwork, on the other hand, used only one component per class so that 

each of those components contained a significant amount of d.c. In this case, features such 

as edges with opposite directions were assigned different classes. Further, flat or slowly 

varying regions were well represented in the set of features and therefore were distinctly 

classified. 
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Chapter 7 

Conclusion 

The main objective of this thesis is to apply neural network approaches to the problem 

of image compression. A number of characteristics of neural networks as signal processing 

tools make them particularly well-suited to this problem: 

• Their nonlinear nature can be used when the assumption oflinearity in image models is 

not valid. When used as nonlinear predictors for exami>le, performance improvements 

can be realized over linear methods. 

• They may be allowed to adapt over long-term variations in the signal. The iterative 

learning, whether during the initial training phase or the following adaptive phase, 

extracts the most important features from the data in a computationally efficient 

manner and without the overhead of estimating and processing higher-order statistics. 

For example, Hebbian learning rules can extract principal components without the 

need to estimate the covariance matrix and perform an eigendecomposition. 

• The self-organizing ability of these networks can be used to create topologically or­

dered maps of features. The structure of these maps may be exploited to improve 

coding performance and/or coding complexity. Further, these maps may mimic some 

of the characteristics of biological neural networks. 

Neither the classical nor current neural network-based image compression schemes ad­

equately address the locally nonstationary nature of images. Most classical techniques are 

based on optimizing some global measure of performance which assumes a stochastically 

stationary model. However, images contain a rich mixture of many types of regions. Tech-

127 
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niques based on a global measure of optimality will not perform well in such regions where 

the statistics differ from the global estimate. While there ha.s been recognition of the need 

for adaptation in the compression of images, there ha.s not been a sufficient treatment of 

the optimality of such adaptation. 

A new approach to data representation, a mixture of principal components (MPC) wa.s 

developed which, torP.ther with principal component analysis (PCA) and vector quanti­

zation (VQ), form a spectrum of representations. At one extreme is PCA, which is a 

completely linear transformation, using up to N dimensions of the original data space in a 

continuous representation. It is a very powerful representation, and ha.s found widespread 

use in data compression. At the other extreme, VQ is a highly nonlinear approach, which 

partitions the data space into a number of discrete regions. It uses zero-dimensional Voronoi 

centres to represent the data. Between these two extremes is the MPC representation. It 

partitions the data space into a number of discrete regions which form subspaces of the 

original space. As such, it is a nonlinear technique. However, within each subspace, the 

data are represented by the M principal components of the subspace and therefore this 

representation ha.s some of the characteristics of PCA. Because MPC incorporates features 

of both PCA and VQ, its use in image coding is justified. 

This thesis ha.s presented a number of novel neural network based image compression 

methods, which address the concern of optimality in adaptation using the MPC representa­

tion. These networks are modular in design. Each module consists of a set of one oi more 

basis vectors which performs a linear transformation on the input data. In addition, each 

module represents a class of input data and the ha.sis vector(s) of each module defines the 

class. During coding, an input vector is transformed by each module and the coefficient(s) 

of the winning class, as chosen by a classifier along with the class index, is output by the 

network. The classifier for the OIAL network developed in chapter 3 is the subspace clas­

sifier. An input vector is assigned to the class whose subspace best represents the vector. 

The subspace for each class is defined by the transformation basis vectors of the class. The 

McMEC approach and its variants as presented in chapter 4 uses only one basis vector per 

class and chooses the class which has the largest magnitude coefficient. 

These networks have the following significant characteristics. 

• The adaptation is optimal. The OIAL network minimizes the mean squared error 

representation of the data. The McMEC approach maximizes the information retained 

by the network. While two different criteria were used, the McMEC network turns 
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out to be a special case of the OIAL network. 

• The adaptation is self-organizing, since no assumptions on the importance of or the 

relation between the regions, or their defining features are imposed beforehand. 

• The adaptation responds to differences between regions in an image on a block-to­

block basis. Other adaptive approaches can only adapt to long-term variations in the 

data. 

• The adaptation criteria are efficiently represented by the networks, since the set of 

weights in each module defines not only its linear transformation but also the class of 

the module itself. 

• The performance of these adaptive networks can surpass that of the optimal nonadap­

tive KLT. 

• The networks have some computational advantage in terms of complexity at the de­

coder over the KLT and the fast DCT. While the complexity of encoding is worse than 

the DCT, the encoding complexity may be not as important in applications where an 

image is encoded once and decoded many times. 

The networks were applied to the problem of compressing digital chest radiographs for 

an educational application. Nine images were compressed to 10:1, 20:1, 30:1, and 40:1. Six 

Radiologists and a Nuclear Medicine physician rated the image quality and the visibility of 

pathology in the different versions of the images in a blind evaluation. A second experiment 

used the 30:1 and 40:1 versions of the images compressed with the new network and the 

30:1 and 40:1 versions using the KLT. An expert Radiologist ranked in order, based on the 

degree of distortion, the four versions of each image. The results of these evaluations can 

be summarized as follows: 

• Compression ratios of between 30:1 and 40:1 can be realized without an unacceptable 

loss in image quality. 

• Even at 40:1, the images received a substantial number of top ratings. 

• The evaluators commented many times on how little difference there was between any 

of the different versions of the images. 
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• When comparing the new method to the classical KLT, 17 out of 18 times the quality 

of the images compressed using the new technique was judged to be as good as or 

better than the KLT. 

• Further, four out of nine times the 40:1 version using the new method was ranked as 

good as or better than the 30:1 KLT. 

The use of these networks as segmentors has yielded some interesting results which may 

be summarized as follows: 

• Perceptually important features, namely, flat regions, line:;, and edge, were extracted 

by the networks in a completely self-organized fashion. 

• The classification of similar features was consistent across a variety of images. 

• The topological ordering of classes had some characteristics similar to the arrangement 

of directionally sensitive columns in the visual cortex. 

• The segmentation was shown, both theoretically and experimentally, to be indepen­

dent of changes in the illumination of a scene. 

• The two-component OIAL network and the one-component McMEC network differed 

in the way they represented d.c. information. As a result, the latter network seg­

mented flat regions well and separately classified features which differed by 180° in 

orientation. 

In conclusion, the new networks developed in this thesis represent a fundamentally new 

representation of data using the MPC. These networks can be applied not only to image 

compression but also to segmentation. Their use has been shown to result in significant 

improvements over existing methods due to their optimally adaptive nature. 



Appendix A 

List of Abbreviations 

APEX: Adaptive principal component extraction 

bpp: Bits per pixel 

CR: Computed radiography 

CRT: Cathode-ray tube 

CT: Computed tomography 

d.c.: Direct current 

DCT: Discrete cosine transform 

DF: Digital flurography 

DPCM: Differential pulse-code modulation 

DSA: Digital subtraction angiography 

flops: Floating point operations 

G HA: Generalized Hebbian algorithm 

IDC-McMEC: Implied d.c. multi-class maximum entropy coder 

IP: Imaging plate 

JPEG: Joint Photographies Experts Group 

KLT: Karhunen-Loeve transform 

LAN: Local area network 

LBG: Linde, Buzo and Gray 

LOT: Lapped orthogonal transform 

McMEC: Multi-class maximum entropy coder 

MIND: Medical Imaging and Network Development 

MOS: Mean opinion score 
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MPC: Mixture of principal components 

MRI: Magnetic resonance imaging 

MSE: Mean squared error 

MUMC: McMaster University Medical Centre 

NM: Nuclear medicine 

OIAL: Optimally integrated adaptive learning 

PCA: Principal components analysis 

PCM: Pulse-code modulation 

PET: Positron emission tomography 

PSNR: Peak signal-to-noise ratio 

ROC: Receiver operator characteristics 

SNR: Signal-to-noise ratio 

SOFM: Self-organizing feature map 

SPECT: Single photon emission computerized tomography 

TS-McMEC: Tree-structured multi-class maximum entropy coder 

US: Ultrasonography 

VQ: Vector quantization 
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