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Abstract 

In problems of spatial choice, the choice set is often more aggregated than the one considered 

by decision-makers, typically because choice data are available only at the aggregate level. These 

aggregate choice units will exhibit heterogeneity in utility and in size. To be consistent with utility 

maximization, a choice model must estimate choice probabilities on the basis of the ma.ximum utility 

within heterogeneous aggregates. The ordinary multinomial logit model (OMNL) applied to 

aggregate choice unitS fails this criterion as it is estimated on the basis of average utility. In this 

thesis, the aggregated spatiallogit model, which utilizes the theory underlying the nested logit model 

to estimate the appropriate maximum utilities of aggregates, is derived and discussed. Initially, the 

theoretical basis for the model is made clear and an asymptotic version of the model is derived. 

Secondly, the model is tested in a simulated environment to demonstrate that the OMNL model lacks 

the generality of the aggregated model in the presence of heterogeneous aggregates. Thirdly, full 

endogenous estimation of the aggregated model is studied with a view toward finding the best 

optimization algorithm. Finally, with all the elements in place, the model is tested in an application 

of migration from the Canadian Atlantic Provinces. 
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Preface 

It should be noted that Chapters 3 to 6 in this thesis are papers which were prepared ,,;th the 

objective of having them published in journals. The papers follow a logical sequence though as they 

all represent results of this one body of research. It is an unavoidable fact, however, that there is some 

degree of repetition throughout the chapters, particularly in introductory sections. In some respects, 

this might be of benefit since the same mathematical arguments are discussed from slightly differing 

perspectives. In any case, the ordering of the papers is as follows: 

Chapter 3: Kanaroglou, P.S. and M.R. Ferguson (1995). "Discrete Spatial Choice Models for 
Aggregate Destinations." Aceepted for publication in the Journal o/Regional Science. 

Chapter 4: Ferguson M.R. and P.S. Kanaroglou (1995). "Utility Variability Within Aggregate 
Spatial Units and its Relevance to Discrete Models of Destination Choice", in (R. Florax 
and L. Anselin, cds.) New Directions in Spatial Econometrics, Amsterdam: 
Springer-Verlag. (Available in the autumn of 1995). 

Chapter 5: Ferguson M.R. and P.S. Kanaroglou (1995). "The Aggregated Logit Model: A 
Comparative Analysis of Estimation Methodologies", Accepted for publication in 
Geographical Systems. 

Chapter 6: Ferguson M.R. and P.S. Kanaroglou (1995). "An Empirical Evaluation of the 
Aggregated Spatial Choice Model", Submitted to International Regional Science 
Review. 

Notwithstanding the exception which is discussed below, the dissertation author has undertaken 

the role of primary investigator in all matters relating to the theory and implementation of the 

aggregated spatial logit model, with the supervisor acting in a supporting role. With regard to the 

papers which appear in this thesis, and which are co-authored with the supervisor, the dissertation 

author has undertaken the primary role with the supervisor contributing through critique of initial 

drafts and editorial advice. 

The exception to these statements occurs in portions of Chapter 3 where the supervisor bears 

primary responsibility for the content. In particular, Section 3 of this Chapter and the proof which 

appears in the appendix are primarily due to the efforts of Pavlos Kanaroglou. In response to our 

initial submission of this paper to the Journal of Regional Science, it was requested that we 

incorporate a section on the asymptotic properties of the aggregated logit model. In aceommodating 

xi 



this request, section 3 of Chapter 3 came about It is important to emphasize, however, that the 

primary thrust of this thesis has been the evaluation of this model when the assumptions Wlderlying 

the asymptotic version cannot be met, which is the case for most problems. An example is the 

application in Chapter 6. 
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Chapter 1 

An Introduction to Discrete Choice Models 

1.1 Introduction 

The purpose of this first chapter is to outline the theory underlying discrete choice models. The 

various forms are each derived and the logic associated with the derivations is discussed in an intuitively 

appealing way. The exposition is primarily aimed at readers with Iinle experience in discrete choice 

modelling and hence may seem too deliberate for experts in the field. Many geographers and environmental 

scientists have embraced a purely statistical approach to choice modelling (Wrigley. 1985) which is not 

based on a utility framework. It is hoped that this discussion will benefit that group of researchers and 

overall that readers will appreciate the major trade-offs and differences between the main model types. In 

general. this chapter forms the basis for what follows. including the aggregated spatial logit model. the 

main topic of this thesis. While the thesis is ultimately about spatial choice. the discussion in this chapter 

is generic to all choice scenarios. It is only in later chapters that the move to spatial choice situations 

is made after this initial discussion of the probit. ordinary multinomial logit (OMNL). nested logit and 

aggregated models. 



2 

L2 The Discrete Choice Model Family 

L2.1 Theory Common to the Models 

The models outlined below will be taken to be of the revealed preference type. In essence, this 

implies that the preferences of people are revealed through the choices that they are observed to make. 

Hence, provided with a data set containing choiee information, the assumption is that we should be able to 

infer something about the underlying preferences that motivated these choices. This assumption has been 

challenged in some quarters (Pirie. 1976; Sheppard, 1980) on the basis that. among other things, the actions 

of individuals are often motivated by forces beyond their control and hence are not really indicative of 

the true set of preferences. The aitemative is the stated preforence type of model popularized by Louviere 

(1983) which attempts to identifY peoples preferences in a controlled environment thus allowing for the 

development of more complex utility functions. 

Discrete choice models are premised on the tenets of random utility theory which has been 

formalized by Manski (1977). This framework provides a theoretical basis for the fact that choice-makers 

are not always observed to choose the aiternatives predicted by the analyst. In particular, it is assumed 

that the utility Uin for choice-maker n relating to alternative i is measured on an ordinal scale. The 

assumption is that U in is known ana deterministic from the perspective of the choice-maker who is able to 

perfectly assess the utilities associated with aiternatives in their choice set en. It is further assumed that 

the researcher views Uin as a random variable which hence cannot be pre,dieted with certainty. Manski 

describes four main sources of error which contribute to this uncertainty: I) a miSSing attribute which either 

varies only across alternatives or across both choice-makers and alternatives; 2) a missing socia-economic 

variable associated with taste variation which varies only across choice-makers; 3) imperfect measurements 

of included variables; 4) the use of proxy variables in cases where the true variable cannot be obtained. 



3 

As a starting point for a model. the total utility Uin can be written as: 

(I) 

where the new terms are the systematic utility 1I;n. a deterministic quantity estimated by the researcher. 

and Oin a random error component which accounts for the difference between 1I;n and Uin . The systematic 

utility 1I;n is a function of choice-maker characteristics. attributes of alternatives and variables measuring 

distance. cost or time. The rationale behind qualitative choice models is that. in the face of uncenainty. 

the best that can be hoped is to make probabilistic assessments of an individual's choice behaviour. If Vi" 

exceeds V;n. then intuitively it makes sense that alternative i should be associated with a higher choice 

probability than alternative j. Such a probabilistic assessment of their relative attractiveness. however. 

does not preclude the por.sibility that alternative j is in reality the chosen option. In the social sciences. 

this flexibility is very useful. 

The staning point for the actual estimation of probabilities is the following rule: 

Pn{i) = Pr{Uin > Ujn. far all j E Cn• j"# i) (2) 

which translates verbally into the likelihood that alternative i has a higher utility than any other alternative 

in the choice set and without ties being allowed. Substituting I in 2 we obtain: 

Pn{i) = Pr{1I;n + oin > V;n + Ojn. far all j E Cn, j "# i) 

which can be written: 

Pn(i) = Pr{ojn < 1I;n - V;n + Oin, far all j E Cn, j "# i) 

To funher clarify, assume that for some choice-maker n. 1I;n - V;n = 1, implying that alternative i should 

be associated with the higher probability in a binary choice situation. In that case, oJn could be ponrayed 

graphically as a function of Oin as in Figure J. J. For an area defined by any arbitrary circle centred on the 
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origin, note that the proportion below the line exceeds the proportion above the line since there are many 

more possibilities for Oin + 1 > OJ •• 

The relative areas above and below this line are a large part of what defines the choice prob­

abilities. The other part relates to the joint density function which defines the relationship between the 

error terms. If it was assumed that both errors had some uniform (constant) positive density then it is not 

difficult to derive the probabilities based on the volumes on either side of the demarcation line. 

It is when more general assumptions about the joint distribution of the error terms are made that 

the widely utilized qualitative choice models emerge. We can start by making the assumption that E(cj,,) 

and E(ci.) = 0 under the beliefth&t our estimates Vi" and Vj. of the true utilities Ui" and Uj. are located 

centrally on the distributions of the true utilities. So long as constants can be added to the systematic 

utilities. which is the case, then this is not a restrictive assumption (Ben-Akiva and Lerman. 1985. p. 64). 

Now intuitively speaking, it seems that the best choice model would not treat the error terms with uniform 

densities. Over repeated observations, we would expect to make frequent small errors in the prediction of 

the true utilities and large errors with less frequency. Hence it is reasonable that Oi" = 0 and OJ,, = 0 be 

associated with the largest densities and that we should have a bell-shaped joint distribution. As a result. 

for Vi. - Vj. = 1, P.(i) would be much larger with a bell-shaped density than with a uniform density 

because relatively more weight would be given to the volume defined below the demarcation line in Figure 

I.I. 

1.2.2 The Probit Model 

A natural choice for the bell-shaped joint density of random errors, and one which leads to 

the probit model, is the multivariate normal distribution. Such an assumption is the most general of those 

underlying the family of discrete choice models. As we consider models which result from more restrictiw 
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assumptions, we will see how such models only approximate the capabilities of the probit model. The 

multivariate normal distribution has the form: 

(3) 

where en is a column vector of error terms which apply over the set of altem.tives for choice-maker n, L 

indicates the number of alternatives, and On is the variance-covariance matrix of the error terms. 

In Figure 1.2 we see how two bivariate densities appear. The upper Figure 1.2a illustrates 

the density function when there is zero covariance between the errors while Figure 1.2b depicts a 0.9 

positive correlation. Given that Ein attains a certain value, the distribution of Ejn is under much more of 

a 'straightjacket' in the lower figure since the high level of correlation discourages & substantial deviation 

from e'n. This is not the case in the upper figure where the value of ejn is unrelated to that of e'n. An 

attractive aspect of the probit is that the pairwise relationships between the error terms of various alt~matives 

can be represented in different ways with a distribution perhaps qualitatively like Figure 1.2a applying to 

one pairing while Figure 1.2b simultaneously applies to a different pairing. Hence choice probabilities will 

not respond in the same relative way to an exogenous shift in the utility of one alternative. 

Figure 1.1 still applies in showing how a binary probit probability would be obtained given an 

exogenous difference v'n - V;n = 1. If Figure 1.1 is super-imposed on Figure 1.2a, for example, the 

demarcation line in the former figure becomes a plane which bisects the normal density surface. The 

choice probability emerges directly from the relative magnitudes of the two volumes defined by the plane. 

In Figure 1.3, we see two representations of the Ojn density in the joint distribution conditional on e'n = 0 

(Figure 1.3a) and on e'n = 2 (Figure J.3b) with the vertical lines in each indicating the position of the 

demarcation line given by V;n - V;n = 11. On an absolute basis, the value of Pn (i) will be increased more 

I The variances of the random error components are assumed to be '11'2/6 which is consistent with the variances assumed for the 
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when Ein = 0 since the area to the left of the demarcation line is much larger than it is when Ein = 2. On 

a relative basis though, it is clear that when Ein = 2 the contribution to Pn (i) is overwhelmingly larger 

than the contribution to Pn (j). 

Mathematically, the problem is one of evaluating a double integral. An infinite number of density 

surface cross-sections are taken, each one conditional on some value of Ein as in Figure 1.3. and for each 

the area to the left of the demarcation line is considered through integration along the Ejn axis. Integration 

along the Ein axis accumulates these conditional areas and provides the total volume lying below the 

demarcation line in Figure 1.1. The area defined by some exogenously fixed Ein is J.""~v ... -v," <1>(.:,,) £,,,--00 

dei ", where the upper limit on the integral of this example is "in + 1. In order to obtain the resuh for 

Pn{i)2, this integral is evaluated for every conceivable value of "in to yield: 

(4) 

The extension of this expression to three or more ahernatives is straightforward. In the calculation of P,,{i) 

for L alternatives, each additional alternative is :"eated as was ahernative j in the bivariate case. Hence 4 

is generalized into the form: 

00 

Pn{i) = J (5) 

where it can be seen that calculation of a single probability when there are L alternatives will require an 

error components in the logit model to be discussed later. Any assumption about the variance is arbitrary however and has no effeci 

on choice probabilities since systematic utilities will be scaled accordingly. 
21n practice. calculation of binary probit probabilities is reduced to an expression with one integral. Since the difference between 

error terms is also normally distributed, the probabilities can be estimated directly on the basis of the difference in systematic utilitic:s. 

The c:xpressions for the probabilities are presented as they arc here so that the generalization to three or more alternatives is easily 

grasped. Another important note about the binary probit is that choice probabilities are independent of any imposed On variance­

covariance matrix of the elTor disturbances. There must be a minimum of three alternatives for On to have an impact in the same 

way that there must be at least three aJtemalives for a nested logit structure to make any sense. 
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integration along L dimensions. The fact that computation becomes burdensome with a relatively small 

number of alternatives is the main disadvantage of the probit model and has led researchers to consider 

other models. 

Nevertheless, the pro bit model has many interesting features. The expressions in equations 4 

and 5 indicate that ;he multivariate normal distribution in 3 forms the basis for the model's mathematical 

form. The important component in equation 3 is {In. the variance-covariance matrix of the error terms for 

choice-maker n.. In theory. this matrix can represent all patterns of dependence Or independence exhibited 

in the unobservable components of utility. In practice. there are limitations but clearly the researcher 

has considerable freedom to model the impacts resulting from exogenous shifts in utility. Moreover. it 

is possible to do this for individual choice-makers. thereby accounting for taste variations in populations. 

How this is done is beyond the scope of this chapter but is covered elsewhere (Train. 1986: DaGanzo. 

1979). The main point though is that the probit probability functional form does not depend only on the 

specification of the systematic utilities (V;n) which define the upper boundaries of all the integrations. 

The hypothesized structure of {In. which can be generalized to account for unobserved taste variation. 

correlations in random errors and differences in the variances of the random errors. is also very important. 

1.2.3 The Logit model 

While the ordinary multinomial logit model (OMNL) is based on a more restrictive set of 

assumptions than the probit model. it has gained wide popularity because it is computationally much less 

demanding. especially for choice problems with many alternatives. At this point, the derivation of the 

OMNL is presented in detail to illustrate how the model's underlying assumptions are restrictive compared 

to the probit. 

The seeds for the OMNL had been around for several decades. having first appeared in the 

psychology literature as Luce's (1959) strict utility model. Luce's model however, was a constant utility 
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model in which the true utilities for all alternatives were assumed fixed and where choice-m::.'ers were not 

assumed to necessarily choose the option with highest utility Sign;ficantly though. the model featured thc 

Independence from Irrelevant Alternatives (II A) properry which is discussed in more detail below. In a 

widely quoted paper. McFadden (1974) derived a model similar to Luce's in a form consistent with random 

utility theory. Having given the OMNL model an attractive theoretical justification. McFadden had set the 

stage for the model's application to a wide range of choice problems in numerous disciplines. 

The derivation for the OMNL proceeds along similar lines as that of the probit. The end result 

is a model without the generality of the probit but with a closed form which requires no computationally 

intensive integrations. The major difference between the probit and the logit is thO! for the fonncr. we 

explicitly assume a joint multivariate normal distribution, while for the latter. no joint distribution is 

explicitly included anywhere in the derivation. Instead, McFadden (1974) ingeniously employs a series of 

independently and identically distributed Gumbel distributions which are used to effectively approximate 

a joint multivariate nonnal distribution. First, the logic behind McFadden's approach is described verbally 

and graphically. and then the derivation is outlined mathematically. 

Consider again the e.alculation of probabilities in a binary situation where v,,, - \0" = 1 as in 

Figure 1.1. Assume initially that for any exogenous em the ej" are Gumbel distributed. If this is the case, 

then the counterpart to Figure l.3a and Figure 1.3b would appear as in Figure 1.4 where we see a Gumbel 

2 
distribution with variance 71'6 . Instantly, it is clear that the distribution in Figure 1.4 does not serve in this 

capacity very well since the area under the curve is 1.0 while it is obviously much less in the cross-sections 

of Figure /.3. What is missed in Figure 1.4 is that the density of ejn is very much dependent on the level 

at which e'n is fixed. If e'n = 0, then the total area under the ejn is its largest, albeit much less than LO. 

The further that e'n deviates from zero, the smaller the area under the e jn density. 

The solution to the problem is simply to weight each ejn density cross-section with the density 
2 

of the associated e'n as taken from a Gumbel distribution with variance 71'6 . For example, when em = 0, 
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the associated Gumbel density is approximately 0.3i while it is approximately 0.11 when Oin = 2. Now if 

the Gumbel density in Figure 1.4 is multiplied by these scalar values. we now have the logit approximations 

to the distributions of gj" at gin = 0 and gin = 2 respectively. These are displayed in Figure 1.5 where it 

is seen that the results closely resemble those of Figure 1.3 with similar probabilities for P,,(i} ultimately 

resulting when the volumes under the full set of cross-sections are calculated. 

Mathematically. the derivation of the logit model proceeds as follows. As before: 

Pn(i} = Pr(ejn < Vin'- \1;n + gm' for nil j E e". j '" i) 

We choose some exogenous gin and attempt to define the density of g jn given this exogenous value. To 

this end. the Gumbel distribution has density function: 

f(g) = I' cxp ( -1'(., - 1))) exp ( - cxp (-I'(E - '/))) (6) 

and cumulative density: 

F(g) = cxp (- exp (-1'(0 - 'I))) (7) 

2 

where I' is inversely related to the variance of the distribution through the expression ;.., and 'I defines 
6/1 

the mode of the probability distribution. These can be made notationally simpler by assuming that /' = 1 

2 

so that the variance will be ~ as above and by assuming that 'I = 0 so that the maximum value of the 

density determines the point where gin and Bin = O. For a fixed Ein. it is necessary to integrate the E,,, 

density in Figure 1.4 from -00 to (gin + Vin - \1;n). Since. by definition. the integral of a density function 

from -00 is simply the cumulative distribution evaluated at the upper bound of the integral. we substitute 

this bound into 7 so that the area under 0 jn up to the demarcation line would be: 

exp (-exp (-(oin + Vin - \1;n))) 
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For Ein = 0, this area would be exp( - exp( -1» = 0.692 and for Ein = 2, it would be exp( - exp( -3» = 

0.951. These results are proportionally consistent with Figure 1.5, however to make them correct in the 

absolute sense, it is necessary to weight the distributions by the appropriate density of Ein. We substitute 

Ein into 6 giving: 

exp (-Ein) exp (- exp (-Ein)) 

This provides a density at Ein = 0 of 0.368 and a density at Ein = 2 of 0.118. The weighted areas are 

0.368 x 0.692 = 0.254 and 0.118 xO.951 =0.112 which are the areas seen to the left of the demarcation lines 

in Figure 1.5. In general, these areas are obtained as the product of the Gumbel density function evaluated 

at Ein and the cumulative Gumbel function evaluated at (Ein + Vin - \l;n) giving: 

[exp (-Ein) exp (- exp (-Ein))J [exp (- exp (-(Ei" + Vin - \I;,,»)J 

This expression is readily generalized if there are three or more alternatives. The Ei" term remains fixed 

and the alternatives other than j are assessed as j was, with the ultimate result being the product of all the 

individual pairings of i with each alternative. Hence: 

exp (-Ein) exp (- exp (-Ein)) IT [exp (- exp (-(Ein + Vi" - \l;n»)J 
JECn 
j#i 

Note that the density expression to the left of the product sign in 8 contains the term: 

exp (- exp (-Ein» 

(8) 

which can be taken as the cumulative density of (Ein + Vin - Vin). Since this term is a special case of 

what is seen on the right side of equation 8, it can be shifted so that the expression becomes: 

exP(-Ein) IT [exp (-exp (-(Ein + Vin - \l;n)))J 
JECn 
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For a problem with any number of alternatives. Pn{i) can now be evaluated for some fixed value of e;n. 

To assess the total probability, it is necessary to integrate over all values of e;n so that all possible ejn 

cross-sections are considered simultaneously. When this is done. the overall choice probability is: 

exp{-e;n) IT [exp{-exp{-{e;n+ 1!;n -1I;n)))J de;n 
iEC .. 

(9) 

The reasoning underlying the logit derivation has now been outlined along with its similarity to 

that of the probit model. The transfonnation of the expression in equation 9 into the well-known closed 

fonn logit probability: 

is a multi-step exercise in integration which is not reproduced here since the main objective is to make clear 

the conceptual framework underlying the model. Details of the integration can be found in Train (1986, p. 

54). An ahemative and more straightforward way of deriving the logit model is shown in Ben-Akiva and 

Lennan (1985, p. 106) where they make explicit use of properties of independent and identically distributed 

Gumbel variates to reduce multinomial choice situations to a binary problem. At that point. the calculation 

of the choice probability can be captured by a logistic distribution in one dimension where the error tenns 

are portrayed as differences rather than absolutes. While that approach gives a better intuitive feel of the 

fact that utility is relative in choice models, the method adopted here indicates better the relationship of 

the OMNL model with the probit. 

1.2.4 The Problem of Alternatives with Correlated Utilities 

A valid question is: under what circumstances does the use of LLd. Gumbel variates provide a 

poor approximation to the more general multivariate nonnal distribution? As it turns out, the answer to 

this question provides the rationale for the development of the nested logit approach. Consider a sample 
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problem which illustrates the potential shoncomings of the logit model. 

Assume that there is a situation with three alternatives i, j and k and that the latter two alternatives 

are perceived by choice-makers as being quite similar. We could assume that alternative i represents a 

brand of beer while alternatives k and j are competing soft drink brands. The correlation matrix of the 

associated utilities might appear as: 

Uin Ujn Ukn 

Uin 1.0 0.0 0.0 

Ujn 0.0 1.0 0.9 

Ukn 0.0 0.9 1.0 

in which high positive correlations among the random errors of the soft drinks are exhibited along with 

zero correlations in the pairings involving the beer option. The soft drink utilities would tend to share 

the same unobservable components while the beer utility would have its own distinct set of unobservable 

components. For some exogenous value of c"" the joint density of OJ,, and Ok" ideally would appear 

qualitatively as in Figure 1.2b3 . The other pair-wise distributions would ideally not have the distinct 

'cigar-shaped' appearance that is associated with strongly correlated normal variates. The distributions of 

Cin and Ejn conditional on Ekn and that of fin nnd Ekn conditional on E)11 would ideally appear qualitatively 

as in Figure 1.20. 

Assume that the price of the soft drinks is inversely related to the utility associated with them. 

How would the choice probabilities be affected through a 25% decrease in the price of alternative V, 

soft drink? Such an increase would result in a shift of the demarcation plane in both of the conditional 

distributions featuring Okn as a random variable since Vkn would increase. It is clear though that a fixed 

shift in the plane will have far more impact on the relative choice probabilities when there is a high 

30r course if ~in = O. the total volume under the surface would exceed that which would be the case if (1" =:1 since the former 

outcome is far more likely. Nevertheless. the same qualitJtivc characteristics would apply to the sct of conditional di~uibution!i 
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correlation in the relevant random errors as in Figure l.2b. With highly correlated errors. as is the case 

between lOin and Ckn. it is comparatively unlikely that V;n +Cjn will be sufficiently large to overcome the 

newly increased value of Vkn + ckn since ckn - c;n should be small. With uncorrelated random errors. as 

is the case between c'n and <kno there is a far greater likelihood of the C'n being able to cQ,npensate for 

the increase in Vkn . 

The net result for the behaviour of the probit model would be as follows. Since there will 

be no change in the systematic utilities governing the relative attractiveness of alternatives i and j. the 

model will predict no difference in the ratio of their choice probabilities. Since alternative k is made more 

attractive but the random errors are uncorrelated with the beer alternative i. then the ratio Pn(i)/ Pn(k) 

will decrease only slightly. However the ratio Pn(j)/Pn(k). between the two soft drinks. will be seen to 

decrease significantly since those alternatives were viewed as virtual substitutes before the price change. 

Since alternative k has been made more attractive than j. it is apparent that j should suffer a much larger 

loss of market share than alternative i. 

While the probit model is obviously general in the random error effects it can capture. the logit 

model is far more restrictive. All pairings of errors are characterized by the Gumbel approximation to 

the type of joint distribution seen in Figure l.2a. An increase in Vkn will reduce the ratios Pn(j)/Pn(k) 

and P,,(i)/P,,(k) by the same amount which we know to be an incorrect assessment of the changes 

which would take place. Fortunately. a compromise solution. which preserves some of the computational 

tractability of the OMNL along with some of the realism provided by the probit model, is available in the 

form of the nested logit model. 

1.2.5 The Nested Logit Model 

The nested logit model. like the OMNL. utilizes i.i.d. Gumbel variates but does so in a more 

elaborate manner. In particular. alternatives which are similar are grouped into nests in recognition of 
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the fact that an increase in the utility of one alternative will rlecrease the relative attractiveness of close 

substitutes much more than the relative attractiveness of alternatives which are unrelated. The restriction 

still applies that distributions qualitatively like Figure 1.2a must be used. However, there is a way in which 

utility dependencies can be accommodated within these constraints. 

Assume that options j and k form a composite alternative encompassing the two brands of soft 

drinks while alternative i forms its own distinct beer composite. In essence, an upper level choice between 

beer and soft drinks and a lower level choice between soft drink brands is assumed. The choice between 

having a beer or soft drink will still be modelled fundamentally as an OMNL choice process as will the 

choice between the two soft drinks. However to ensure that an increase in the systematic utility of the soft 

drink maker only slightly reduces Pn (i)/ Pn (k), there must be some mechanism in place to dampen the 

increase in the composite soft drink utility. 

This is accomplished through an important property governing the maximization of LLd. Gumbel 

variates (see Ben-Akiva and Lerman, Chapter 5). First define MJ as the number of alternatives in nest.1. 

Now when each of the options j E {I, 2, ... , MJ} within a nest is associated with a Gumbel variate having 

2 
mode V, and variance ~ ,the distribution of the maximum utility derived from the nest is characterized 

6J1. 
AI J 2 

by mode.!. In L exp (J1. V; land variance ~. As it turns out, the discounting mechanism is dependent on 
J1. ;=1 6/1 

the /1 parameter. For example, assume that the systematic utilities for both soft drinks are 0.0 for some 

choice-maker. If J1. = 2 then the mode of the distribution of the maximum would be 0.34, while if J1. = I, 

the mode of the distribution of the maximum would be 0.69. 

The various distributions are depicted in Figure 1.6. In Figure 1.6<1 the display represents, from 

left to right, the distribution of the two elemental utilities (which are identical) for the soft drinks and 

secondly the distribution of their maximum with J1. = 2. Figure 1.6b represents the same thing except the 

variances of the elemental utilities are larger since J1. = 1. When J1. is large, the expected maximum which 

can result from the two random variables is substantially lower than is the case when J1. = 1. 
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Figure 1.6a: Gumbel distributions of a) elemental and b) maximum utility with p. = 2 
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Figure 1.6b: Gumbel distributions of a) eJement.aJ and b) maximum utility with p. = 1 
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There is clearly a dampening effect with /l = 2 which would tend to decrease the impact of a soft 

drink price redu'.:'on at the upper level of the model. Moreover, despite the fact that the joint distribution of 

the elemental errors appear qualitatively as in Figure l.2a, shrinking the variance of these random variables 

ensures that a given change in elemental systematic utilities has a dramatic effect on the relative soft drink 

probabilities. The overall conclusion is that when there is a high degree of substitutability between subsets 

of alternatives. the nested logit model has the capability to reduce the strictly elemental variance in utilities 

so that the impacts of exogenous changes are felt mainly within the relevant nest. As such, the nested logit 

model mimics the probit model while utilizing nothing other than i.i.d. Gumbel variates. 

Consider now how the upper level marginal probabilities of the nested logit model would arise. 

The utility of the elemental alternative put forth to represent aggregate J would be given by: 

1 Af
J rr~ 

where V; = IJ-J In L exp (1lJVj~)and £~J is a composite random error component with variance Ti' For 
j=1 

the utility of a given elemental alternative. there are two sources of variance: one from the random error 

component o~ relating equally to all elemental alternatives in the nest J. and the other from the random 

error component oj" which is unique to all elemental alternatives in the nest J. All of the oj" errors. 

which are a<sumed Gumbel distributed. are taken to be independent among themselves and in relation to 

the 0;' errors which are distributed in such a way that E;;' is Gu~bel distributed. Hence the total variance 

for any elemental utility, including the representative one depicted by U;" is Var(o,,, + o~) which equals 

,,2 
Var(ojn) + Var(o~) since Ojn and o~ are independent. Also, Var(E;;') = Var(Oj") + Var(o;,) = 6' 

Since the upper level random error always has the same variance, the ultimate effect on aggregate utilities 

of a nest of highly substitutable elemental alternatives is transmitted through the impact of /lJ on the 

estimate of V;. Under these circumstances. an upper level marginal probability would be given by the 
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rule: 

Pn(J) = Pr(V,;' +c~J~: VnQ +E~Q,Q E {1,2, ... ,L},Q"I J) 

which is a very similar expression to that of the OMNL. Hence: 

Pn(J) = 
exp [V,;'] 

L 

Lexp [VP] 
Q~I 

(10) 

Conditional probabilities are given by the expression: 

Since E~ will be constant between any pair of elemental alternatives in the nest and hence will not affect 

the conditional probability: 

The result will be a standard OMNL probability: 

exp ["JVJ] 
n ( . I J) = r in 
I""n J MJ (II) 

L exp [,.,JVq~] 
q=l 

It should be noted that the upper level scale parameter, associated with E~J, is exogenously fixed to 

1.0 and hence does not appear in equation 10. However, the conditional probabilities in II are very 

much dependent on the endogenously determined scale parameter ,.,J governing the variance of the Ein 

error terms. Clearly this cannot be assumed away if the desire is to properly represent the conditional 

probabilities and associated parameter estimates. The nesting concept is generalizable to any number of 

nests containing any number of alternatives and to any number of levels although estimation would become 

unwieldy beyond three levels. 



Let us examine in more detail the pattern of dependency in utilities that will be pennitted by 

the nested logit structure. Clearly, the only source of correlation between elemental alternatives within 

the same nest is the fact that they share the same random error component e;, the variance of which is 

inversely related to ILJ. As the variance of the random error common to all elemental alternatives in the 

nest increases, the covariance between elemental utilities increases and vice versa. It can be shown that 

there is a functional relationship between the covariance applying to all pairs of elemental alternatives in 

a nest and the variance of the random error. The relationship is: 

Var(ef,) 

rr2 7r2 

= 6 - 6( ILJ)' 
,,2 1 
6(1- (ILJ)2) = 

Anned with this result, the variance-covariance matrix of the utilities for the beer/soft drink 

problem would be: 

u(I) 
In 

U(2) 
In 

U(2) 
2n 

U(I) 
,,2 

0 0 ]" 6 

U(2) 
,,2 ,,2 1 

In 0 
6 fi(l - (/,J)2) 

U(2) ,,2 1 ,,2 

2n 0 fi(l- (ILJ),) 6 

If this is standardized into a correlation matrix, the result is: 

U(l) 
In 

U(2) 
In 

v:(2) 
2n 

U(l) 
In 1 0 0 

U(2) 1 
In 0 1 1 - (IL(2»)2 

v:(2) 
2n 0 

1 
1 - (IL(2»)2 1 

Compare now the correlation matrices which result when IL(2) = 1 (on top) compared with the case when 
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1'(2) = 2 (on the bottom): 

U(l) 
In 

U(2) 
In 

V(2) 
2n 

U(J) 
In 1 0 0 

U(2) 
In 0 1 0 

V(') 
2n 0 0 1 

U(I) 
In 

U(2) 
In 

U(2) 
2n 

U(J) 
I,. 1 0 0 

U(O) 
h 0 1 0.75 

U(2) 
2,. 0 0.75 1 

As it turns out, a value of 1'(2) = 3 would come very close to generating the correlations of 0.9 originally 

assumed for the problem. Note that the correlations approach their limit of 1.0 for J1. J values which are 

quite small even though the upper value of JJJis 00. Another observation is that when J1.J = 1 and zero 

correlations result, the final model is identical to that of the OMNL. In that case, the two soft drink 

alternatives would behave as independent entities at the upper level with no dampening of the composite 

soft drink utility taking place. 

The nested logit model has been demonstrated here in a bottom-up context in which the basic 

building blocks have been utilized to develop an overall model structure. McFadden (1978) is responsible 

for showing that the nested logit model. as well as the OMNL, can be derived in a top-down manner 

whereby they emerge as a special cases of the Generalized Extreme Value (GEV) model. Interested 

readers are referred to McFadden's paper or Train (1986). 

1.2.6 Tbe Aggregated Logit Model 

Most choice scenarios do not generate nests of alternatives with more than two or three members. 

For example, in the beverage example, the two soft drink brands formed a nest of two. An exception is 
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found in the realm of spatial choice where the choice units are available at many different levels of 

aggregation. A province, for example, could be sub-divided quite easily down to the level of census 

sub-divisions which would imply a provincial 'nest' containing hundreds of elemental alternatives. In the 

beverage example, it is quite likely that a full set of choice information can be obtained: that is the analyst 

will have complete knowledge of what elemental alternative was chosen by a given person. In the spatial 

choice context, it is quite unlikely that a full set of choice information can be obtained. Micro-data may 

reveal, for example, the province of choice but not the census sub-division of choice implying a discrepancy 

between the spatial resolution of the choice data and that of the choice process. The aggregated logit model, 

which is what this thesis is fundamentally abollt, is a probably the best way of reconciling this discrepancy. 

The aggregated model can best be understood in light of the nested logit model since the two 

share the same underlying theory. The difference between the two is really related more to the means 

of implementation. Clearly, with the nested log it, the focus is on the correct representation of elemental 

probabilities and parameters associated with the employed variables. Hence a complete model utilizes both 

marginal and conditional probabilities to arrive ?t estimates of the overall elemental probabilities. With the 

aggregated model, the focus is on the correct repres .. llation of aggregate level marginal probabilities and 

the model parameters. 

The final form of the aggregated model is given by equation 10 which is also the expression for 

the marginal probability of the nested logit model. Note that the aggregate level probabilities are portrayed 

as a function of the elemental systematic utilities along with the characteristics of the random errors 

distribution about these elemental systematic utilities as determined by the p. parameters. Fundamentally, 

the aggregate level utilities are the outcome of a maximization process applied to the utilities of the 

constituent elemental alternatives in a given nest. The conditions determining the mode and variance of 

the distribution of the maximum are the same as is the case with the nested logit model. These maUers 

are covered in much more detail throughout the chapters of the thesis, particularly Chapter 3. 
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One expansion on the nested logit discussion, which will be repeated throughout the thesis, and 

which is particularly useful for the aggregated logit model, is if we rewrite the expression for V; according 

to the following: 

M' 
= 2y In L exp (!,JV;~) 

I' j=1 

AI' 
-J 11", (JJ-J) 1 J 

= Vn + Jln MJ ~exp I' (Vjn - Vn ) + -ylnM 
I' ~1 I' 

(12) 

This reveals that the expected maximum utility is given by the sum of a mean utility term, a heterogeneity 

term which captures the intra-aggregate variation in systematic utility, and a size term which depends on the 

number of elemental alternatives. In addition. these corrective terms depend on the pattern of dependency 

between elemental utilities. The individual properties t'f these corrective terms are discussed throughout 

the thesis. These concepts are mentioned here sirr.piy as a preliminary overview. 

1.3 Contents of Thesis 

Having provided a background to the theory of discrete choice models, the main task is to 

outline the progression that can be expe<:ted through the following chapters and to discuss the reasoning 

for the order of inquiry. As has been mentioned, ine main focus of this thesis is the aggregated spatiallogit 

model, an approach which has not been systematically addressed in the past. While much of the underlying 

theory is due to the transport demand research group (such as McFadden, 1978) who established links with 

the nested logit model, researchers have never utilized the model in its complete form. The objectives 

of this thesis are to fully describe, test, and e;timate the aggregated model using theory, simulations and 

an application. Since the issues of spatial aggregation of alternatives and similarity among spatial choice 

units are of so much importance in spatial choice modelling, it is felt that attaining these objectives will 

constitute a worthy contribution to the field. Using a brief precis of each chapter to follow, an overview 

is now provided of how these objectives are to be met. 
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Chapter 2 to follow is essentially a review paper. While Chapter I examined various discrete 

choice models in some detail, but not within the context of spatial choice. Chapter 2 is about spatial choice. 

In light of some of the key concepts outlined in this Chapter I, this chapter seeks to assess the usefulness 

of the various discrete choice models in the spatial choice context. The particular problems of interest are: 

the substitutability of spatial units. aggregation of spatial units and choice set definition. The latter concept 

is emphasized less than the previous two. As well as outlining the implications of these issues for spatial 

choice models, the work "f others in the spatial choice context is reviewed and critiques of this work are 

provided. 

Chapter 3 contains a detailed theoretical outline of the workings of the aggregated spatial choice 

model. The model is derived formally from first principles and its properties are described. A related 

topic of interest in this paper are the asymptotic properties of the aggregated logit model. It is shown 

that if the number of elemental alternatives is sufficiently large, it is not necessary to assume that the 

elemental random error components are Gumbel distributed for the distribution of the aggregate utilities to 

be Gumbel. Something which is not resolved in this thesis is whether these asymptotic insights are useful 

in the empirical context. In practice, the number of ~Iemental spatial units in all aggregates would need 

to be very large for implementation of the more general aggregated model to be feasible. This is a mailer 

of degree though and is not examined further in this thesis. While the theory of the aggregated model 

has always been oriented toward asymptotic properties (McFadden, 1978), we consider the functioning of 

the model when such properties clearly cannot apply. In that context, it is necessary to assume Gumbel 

distributed elemental errors. 

Chapter 4 provides the results of a simulation e'.periment comparing the aggregated logit model 

with the OMNL model. The main objective of this chapter is to show that one may be taking a big risk 

in applying the OMNL model at the aggregate level in order to predict the choice of aggregate spatial 

units. A Monte Carlo experiment is conducted in which the observed aggregate choices are assigned 
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based on randomly generated elemental utilities. In different trials. this procedure is done in such a way 

that the variance of elemental systematic utilities is gradually increased. As this occurs, the importance 

of the heterogeneity term in equation 12 increases. The fact that the OMNL does not account for the 

heterogeneity term but instead estimates the expected aggregate utility on a mean utility basis is shown to 

be a shoncoming which gets progre.sively worse in heterogeneous aggregates. One restrictive assumption 

enforced in Chapter 4 is that t~e scale parameter at the elemental level is fixed at /l = 1 implying that 

aggregates contain uncorrelated elemental utilities. If anything, this assumption would portray the OMNL 

in a more favourable light against the aggregated model than would be the case if /l was large. The reason 

for this conclusion is that the heterogeneity effect, which was the focus of the simulation. is maximized 

and thus its imponance magnified when there are highly correlated utilities. 

The work in Chapter 5 provides a basis for a relaxation of the restrictive assumption about /l. 

Clearly, the estimation problem with endogenous " is unlike that of the nested logit model and the OMNL. 

While simultaneous estimation of the nested logit model is complex. difficulties have been bypassed in the 

past through sequential estimation procedures. Such an option does not exist with the aggregated mdel 

since the elemental choice information needed to estimate conditional choice probabilities is, by definition, 

absent. As a result. this chapter focuses on the different algorithms available to estimate the aggregated 

model and conducts tests of their performance. It is found that the specification of the /l scale parameters 

has a lot to do with the speed and reliability of convergence. Most estimation difficulties occur when the 

number of endogenous scale parameters is equivalent to the number of aggregates. When the number of 

endogenous scale parameters is reduced, either through equality constraints or exogenous fixing, algorithm 

performance shows marked improvement. 

Having outlined the theory of the aggregated model, tested it in a simulated environment and 

sen led on estimation procedures, the remaining task for this thesis, the testing of the model with real-world 

data, is the subject of Chapter 6. In panicular, the test is undenaken in the context of modelling migration 
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from Atlantic Canada in the 1990-1991 time period. The micro-data used for the analysis is characterized 

by having detailed information about individual choice-makers but h3ving relatively poor spatial resolution 

regarding migration choices. While the data are such that it is difficult to make inferences about choices at 

the sub-provincial level. destination attribute information from other sources is available at as fine a level 

of aggregation as is desired. As a result. the data overall are a very good example of a problem suited to 

the aggregated model: detailed elemental attribute information but relatively coarse choice information. A 

series of models is estimated with the results indicating considerable potential for the aggregated model. 

Various specification techniques are explored and models which accommodate choice-maker heterogeneity 

are contrasted with models which emphasize only spatial heterogeneity and do not differentiate individuals 

in their systematic utilities. 

The brief Chapter 7 of this thesis is included to provide a concise summary of the important 

findings of this body of work and also to comment on directions for future research. 



Chapter 2 

The Use of Discrete Choice Models in the 

Spatial Choice Context 

2.1 Introduction 

The goal of this chapter is to provide an overview of the application of discrete choice models 

to spatial choice problems. There are many spatial choice contexts such as recreational choice. tourism. 

industrial location. migration and shopping. All of these have in common the fact that the choice units 

considered by individuals are spatial units. The spatial choice context is ;u::'ject to many complicating 

issues. Some of these are: that spatial units arc characterized by differential levels of substitutability based 

on the fact that different patterns of similarity are perceived. that the issue of aggregation is prevalent. 

unlike in most other problems, and that the definition of choice sets is probably much more uncertain than 

in other contexts. 

With regard to substitutability, it is clear that spatial units cannot be considered as independent 

choice entities. The utility of a given spatial unit is likely to be larger if it is located next to a particularly 

attractive spatial unit, something which would be unlikely if the two units were independent. Unfortunately, 

the ordinary multinomiallogit (OMNL) model is consistent with the Independence from Irrelevant Alterna­

tives (II A) property which essentially states that pairwise relative relationships between the probabilities of 

30 
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alternatives will be unaffected by exogenous changes. The fact this property ir. inconsistent with an~1hing 

other than independent alternatives has been Ihe main motivator of crilicism direcled toward the OMNL 

and has contributed towards the tesling of approaches such as the nested logil model. 

The second main issue is aggregation. Spatial units can be sub-divided in an infinite number of 

ways which mayor may nOl correspond to the fundamental aggregation level of the choice process. In 

a problem of inter-regional migralion, for example, it would be ludicrous to model housing unils as Ihe 

choice set members. In the inler-regional conlext it is far more plausible to assume that choice-makers make 

their major evaluations at the level of urban centres and Ihat the choice of Ihe aClual house is an incidental 

by-product of the fact that the city has been chosen. At Ihe olher extreme, there are studies of inler-regional 

migration (Liaw, 1990; Newbold, 1994) where the choices of provinces or regions are modelled without 

acknowledgment of the distinct utilities associated with metropolitan centres wilhin aggregates. Ideally, 

we would want our data to be at the same level of resolution as the choice process. While a!tribute data 

are typically available at any level, the fact that choice data may be too coarse is a problem in need of 

consideration. The desire for greater generality in the modelling of aggregate spatial units has led to the 

implementation, in this thesis, of the aggregated spatial choice model. 

The essential structure of the logit family of models is such that aggregation cannot be separated 

from substitutability. In the nested logit model and the aggregated model. nests arc determined by vinue 

of their characteristics of substitutability and the nests themselves form the basis for how spatial units 

should be aggregated. As was illustrated in Chapter I, a significant nest is defined in situations where, in 

the event of an exogenous change, we would expect the probability of an increasingly a!tractive elemental 

altemative to gain substantially at the expense of another within the nest but not significantly at the expense 

of others outside the nest. If such substitutability patterns are not observed, then there are clear grounds for 

questioning the given cluster of elemental alternatives which form an aggregate. Patterns of substitutability 

over space then, form the basis for how spatial units should be panitioned. 
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A third issue of imponance in spatial choice modelling is that of choice set defmition. Thill 

(1992) provides an excellent overview of this field and leaves the distinct impression that despite the best 

effons of researchers, the endogenous modelling of choice sets is very much work in progress. The basic 

problem in the definition of choice sets, it is thought, is that each choice-maker should be modelled only 

with respect to spatial units that are in the person's actual choice set. In spatial choice it is normally 

argued that the full set of alternatives which are available over space are too many to be considered by the 

typical choice-maker (Fotheringham, 1986) and hence that some means is required to make the choice sets 

realistic. The maner of choice set definition is not reviewed in detail in this chapter since the literature 

in this field embodies an approach which is quite distinct from the focus of this thesis. Nevertheless, a 

few comments are offered on how the framework designed to accommodate aggregation and similarity of 

alternatives is also relevant to choice set definition. 

The outline of this chapter is as follows: the first major section reviews substitutability issues 

while the second considers work on aggregation, panicularly as relevant to the aggregated spatial choice 

model. In a concluding section it is noted that the theory underlying the nested logit model and the 

aggregated model is such that it can r.ccommodate many of the modelling complexities outlined in the 

chapter while suggested alternative approaches typically leave something to be desired. 

2.2 Substitutability 

This first major section is itself divided in three. Initially, a chronicle of the spatial choice debate 

on substitutability is presented. It is noted that the gravity model approach was dominant in earlier years 

but that discrete choice approaches, panicularly the logit, have recently begun to dominate. Secondly, an 

examination of the Independence from Irrelevant Alternatives (I1A) property and its implications is offered. 

Spatial choice researchers have tended to diminish the applicability of the OMNL since it is consistent 
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with this property. Finally. a review is undertaken of approaches such as the probit and the nested logit 

model which are well-suited to non-JIA choice processes. 

2.2.1 The Spatial Choice Debate 

The issue of substitutability has been debated extensively in the spatial choice literature. The 

roots of the debate can be traced back to research done on the gravity model. While spatial choice 

was heavily biased towards the use of the gravity model in the 1970's after the contributions of Wilson 

(1970). the trend in the field beginning in the early 1980's was toward greater prominence for discrete 

choice models. Researchers such as Fotheringham (1986). who had earlier done work on gravity models. 

began to see limitations in the underlying theory of that approach and attempted to adapt ideas to the 

discrete choice framework. The shift in emphasis was encouraged by researchers such as Anas (1983) who 

demonstrated that While the gravity and logit approaches emerge from different theoretical backgrounds. 

their mathematical forms are identical for the purposes of implementation4 . Of the two. the logit approach 

can be more widely applied since it is formulated at the micro-level and hence is adaptable. without loss 

of generality. to the macro-level problems for which the gravity model is designed. 

At first. the essence of the gravity model was not well grasped. There was. for example. no 

direct discussion of the fact that the gravity model was consistent with the IIA property which is central to 

the issue of substitutability and hence to the understanding of the model. The main topic of interest was the 

behaviour of the impedance parameter and whether it was independent of spatial structure (Curry. 1972; 

Curry et al. 1975. Johnston. 1973; Griffith and Jones. 1980). Clearly much of the evidence in support of 

the fact that the two are not independent was explainable through the IIA property: the models of the time 

(In particular. Anas showed that the OMNL arises directly out of the constrained optimization problem by which the production· 

constrained gravity model can be derived. Also. he illustrated that the doubly constrained gravity model is analogous to a joint logit 

model of origin and destination choice. The tenn 'gravilY model'. when seen in the texl can be taken to rder to the production. 

constrained model since this is the counterpart to the OMNL. The outflows from origins arc taken as exogenous in both cases 
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were treating spatial units as independent entities when in reality they were not. Another problem was that 

the attractiveness of a given spatial unit was not conceptualized as a random variable. Hence, there was 

no mathematical basis for commenting on dependency among spatial units. A paper by Sheppard (1978) 

was one of the first, however, to consider the gravity model within a utility framework which at least 

acknowledged the presence of destination interdependence. 

In the mean time, the properties of the logit model were becoming increasingly well understood 

and a separate group of researchers, primarily oriented toward transport demand problems, began applying 

the model to intra-urban problems such as housing choice (Lerman. 1975). Soon after, the step was being 

made in the logit literature toward the generalization of the model to account for varying panems of 

substitutability, through the nested logit model, and also to account for aggregation (McFadden, 1978). 

While the random utility framework underlying the OMNL was being generalized for more 

complicated problems, the gravity modelling group took the course of anempting to accommodate spatial 

structure effects without generalizing the theory of the model. The most noteworthy proponent of this 

approach was Fotheringham (1981,1983.1985) and his competing destinations hypothesis. His improvement 

to the basic gravity model was essentially to include a variable which measured the accessibility of a given 

destination to surrounding destinations that were 'competing' for flows. When the new accessibility 

variable was introduced, it was found that the systematic spatial trend in origin-specific gravity model 

parameters was eliminated. In the logit context, Fotheringham's approach was to increase the chances 

that the OMNL type model would have independent random error components by incorporating as much 

relevant information as possible in the systematic utilities. The model was not new but the variables in it 

were. Fotheringham's claim that he had developed a new theory would be equivalent to a practitioner of 

the OMNL model saying the same because he had done a good job of specifYing the systematic utilities. 

It can only be concluded that the general acclaim which greeted the competing destinations model 

was attributable to the unimaginative and restrictive specifications which had plagued the gravity model 



35 

to that point. These specifications had a profound over-reliance on distance as an explanatory variable. 

Routine logit specification techniques. such as alternative-specific constants. were typically ignored In 

gravity models, causing the biased probability estimates to which Fotheringham (1983) alludes. The paper 

of Black (1983), for example, details techniques that had been known to discrete choice modellers for 

some time. Recent work by Lowe and Sen (1994) is noteworthy in that it tests the performance of 

alternative-specific constants in the gravity context. 

Fotheringham's work subsequently was subject to much criticism. Some took issue with the 

airline data that Fotheringham had used to test his model (Ewing. 1986). Gordon (1985) was one of 

the first to criticize the competing destinations model on the grounds that it attempted to explain the 

substitutability phenomena in purely spatial terms. He rightly points out that models of spatial interaction 

involve choices made by individual agents or consumers. However, the aggregate nature of the gravity 

model promoted a tendency to personifY origins as if they were autonomous decision-making units. As 

Webber (1980) says however, origins do not behave. Recently, Lo (1990, 1991 a, 1991 b, 1992) has expanded 

upon earlier themes. She joins Gordon in noting a preoccupation in the spatial choice literature to seek 

spatial explanations for interaction patterns. when economic and other non-Iocational relationships will 

often be at the core of the explanation. She notes after all. that spatial interaction is a derived demand; that 

is. it is a means and not an end and that there is an important distinction between locational substitutability 

and economic substitutability. She states that there is room for both in explaining spatial choice behaviour 

but that few processes are either one or the other. 

The second half of the 1980's marked the beginning of a clear trend in which discrete choice 

modelling approaches tended to supplant the gravity model as the preferred model for spatial choice. 

Gravity modellers such as Fotheringham (1986), who even in his earlier papers was using terms like 

'utility' and 'hierarchical choice', began to usc logit models. Applications in spatial choice were reported 

such as intra-urban migration (Boots and Kanaroglou, 1988), housing choice (Fischer and Aufhauser, 1988), 
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industrial location (Hansen, 1987); recreational demand (Caulkins et ai, 1986) and inter-regional migration 

(Liaw and Ledent, 1988; Kanaroglou et aI., 1986). The mainstream discourse on spatial choice modelling 

issues shifted unmistakably toward the discrete choice approach (Borgers and Timmermans, 1987; Haynes 

et aI., 1988; Haynes and Fotheringham, 1990; Thill, 1992). There is no question that much of this shift 

in emphasis had to do with the micro-perspective of the logit approach which was suited to the increasing 

availability of micro-data. The prospect of being able to model alternatives possessing differential levels 

of substitutability through the nested logit model was also an explanation. 

2.2.2 The IIA property 

In the spatial choice literature. there is a tendency to take the IIA property very literally (Haynes 

et. al. 1988; Haynes and Fotheringham. 1990; Fotheringham. 1986) with many researchers tending to 

dismiss the OMNL model out of hand. It is reasoned that since spatial alternatives are not viewed by choice­

makers as independenl entities. the IIA property does not apply and the OMNL model is inappropriate. 

There are. for example, slalemenlS to the effecI that. with substitutable subsets of alternatives. the OMNL 

will invariably result in pathological predictions of choice probabilities. Such conclusions are overstated. 

For this reason. an assessment of the IIA property is undertaken here. 

2.2.2.1 Implications of the IIA Property 

The IIA property was first proposed by Luce (1959) as an axiom underlying choice processes. 

Essentially the property implies that the relative attractiveness of any pair of alternatives should not de-

pend on the presence of other alternatives in the choice set. It is important to understand that the IIA 

property applies in a relative sense only. It certainly does not imply that absolute choice probabilities 

are independent of choice sel size and composition. Another important point is that an I1A process is 

one which holds generally for individual choice-makers, not only the aggregate market shares. This is 

a particularly important point in spatial choice where choice-makers are likely to have entirely different 
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conceptualizations of spatial units based on the location of their origin. 

Some choice scenarios are clearly not llA-consistent choice processes. In the much-quoted red 

buslblue bus problem, it seems clear that the addition of the blue bus option to a choice set containing 

red bus and automobile would tend to result in a new set of probabilities in violation of the llA property. 

The ratio of the red bus/automobile probabilities would not be maintained in the before and after scenarios 

since the new blue bus option would claim its market share from those who before used to ride the red bus 

and not from those who drove. Expressed alternatively, if there was some increase in utility of blue buses 

(perhaps their comfort level was improved) then the red bus probability would suffer much more than the 

automobile probability. If it is the automobile alternative which is removed from the choice set. though. 

then there is a good chance that the relative attractiveness between bus types would be unaffected. Hence 

llA clearly does not apply when the relative attractiveness of auto and one bus type is compared but is 

a much more reasonable assumption when the ratio of the two bus probabilities is considered. The clear 

implication is that it is often too simplistic to say whether an entire set of alternatives is consistent with 

the llA property. The more likely answer is that llA will apply within some subsets of the choice set but 

not others. This of course is the basis for the nested logit model. 

2.2.2.2 The IIA Property and the Logit Model 

The fact that the OMNL possesses the llA property has been the basis for much of the criticism 

it has received in the spatial choice literature. The property is reflected by the mathematical structure of the 

OMNL in that the ratio of two probabilities for any two alternatives will be independent of the presence 

of other alternatives. Hence: 
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(I) 

where it can be clearly seen that the final expression for the ratio of the probabilities for alternatives i and 

k relate only to the strict utilities of those two alternatives. 

An important point to make, howev,.r, and one which is typically overlooked in the spatial choice 

literature, is that an IIA choice process is not necessary to apply the OMNL (Train, 1986, pp. 21-24). Any 

choice scenario that can be expressed in choice probabilities can be represented in the form of an OMNL 

model. Such flexibility exists so long as alternative-specific constants are included in the specifications of 

utility for the various options. Constants are used to account for all systematic variation that is uncaptured 

by other elements of an alternative's systematic utility and their inclusion allows reliable estimates of 

the other parameters in a model. The magnitude of an alternative-specific constant, by definition. is 

dependent on the presence of all alternatives in a model since it responds to the proportions of choice-

makers choosing each of the alternatives. Hence V;n and Vkn themselves are functionally dependent on 

the systematic utilities of all alternatives. This result would seem to contradict. for example. the assertions 

by Haynes et al. (1988) that in the OMNL, probabilities for similar alternatives will necessarily be biased 

upwards and those of dissimilar alternatives will be biased downwards. By the same token, it supports the 

findings of Borgers and Timmermans (1987) that the OMNL was quite robust in their set of simulations. 

The fact that one is not really modelling substitutability per se when the OMNL with constants is 

applied is a limitation. Hence when the OMNL model is applied to a non-IIA process, a re-estimation would 

typically be required any time there is a change in circumstances, such as the inclusion of a new alternative 

or an increase in the utility of an alternative. Avoidance of re-estimations under such circumstances has 
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typically been rare, even when it was thought that the llA property stood a good chance of holding (Train. 

1978). The nested logit and probit models respond better to such changes since they are generalized to 

incorporate the pattern of similarities across subsets of alternatives and hence are not dependent on a set of 

calibrated constants. It would be a useful contribution if the constants in the OMNL could systematically 

be altered to respond better to exogenous changes. Perhaps the literature on choice-based sampling (Thill 

and Horowitz, 1991; Kanaroglou, 1994), in which adjustments to the constants are an integral part of the 

theory, might be of assistance. 

The OMNL can be made less dependent on constants by replacing them with attributes of 

alternatives. Such an approach attempts to model how the constants (or at least that portion of systematic 

utility which does not vary across choice-makers) would be affected in the event of an exogenous change. 

From the point of view that a more complete accounting of the choice process is implemented. this is a 

laudable action, but there are two difficulties. One is that since the role of the constants is only being 

approximated, there is a risk of substantially biased probability estimates and adverse effects on other 

parameters. Largely this is because attributes of alternatives are not specified in an alternative-specific 

manner; hence an attribute may represent the utility of one alternative very well but not the others. 

Secondly, the inclusion of several attributes of alternatives will often lead to collinearity problems. 

Overall. the OMNL is a more robust model than tends to be portrayed in the spatial choice 

literature. If the goal of an analysis is to provide a good overall explanation of choices from existing 

data, then the OMNL model will do an adequate job and with small computational cost. This will be 

true irrespective of whether the choice process is consistent with IIA. Typically. applications utilizing the 

OMNL and other models such as the nested logit and the probit find that the fit of the more sophisticated 

models might be only marginally better but at much greater costs in terms of time and effort and that 

conclusions often are not significantly altered. 
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2.2.2.3 Variability of IIA Across Origins 

In spatial choice problems, the patterns of substitutability between subsets of alternatives may 

well vary across choice-makers implying that spatial alternatives are classified or grouped in different 

ways. In applications, however, there has been a tendency to assume that the perceived patterns of 

similarity will be repeated across all choice·makers. The origin of the choice-maker, however, will have 

considerable bearing on how alternatives are grouped and therefore what the patterns of substitutability 

between alternatives are. In the migration context, for example. most residents of Ontario would tend to 

cluster potential destinations in the Eastern to"nships of Quebec, thus perceiving anyone as bei~g a perfect 

substitute for another. A resident of Quebec. having more intimate knowledge of the area. might well be 

able to make strong distinctions between alternatives and would not perceive them as being substitutes. 

As a solution. the technique of origin-specific models (Fotheringham. 1983) can be employed. 

In this case, a separate destination choice model is estimated for each origin in the data and a unique set 

of parameter estimates obtained in each case. Of course, different aggregation schemes can be employed 

across origins in acknowledgment of differing perceptions. It is desirable but complex to accommodate 

such phenomena within a single model. While probit models do so since they are capable of capturing 

taste variations in both the systematic and random error components of utility. these models do not handle 

spatial aggregation as easily as the logit family. 

2_2.3 Approaches to Modelling Substitutability in Spatial Choice 

In this section. some of the alternatives to the straightforward application of the OMNL model are 

considered. The potential approaches are: I) extensions of the basic OMNL formula and the use of models 

which are not derived from random utility theory, 2) use of the !'robit model, 3) use of the nested logit 

model. These are discussed in tum with comments offered on past applications of such techniques. While 

the previous section has pointed out that application of the OMNL model to spatial choice problems will 
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result in good estimates of probabilities. the alternatives below may offer more insight into the implications 

of sUbstitutability. 

2.2.3.1 Logit Extensions and Models Not Based on Random Utility Theory 

Several researchers have proposed extensions to the basic logit formula as a means of accom-

modating substitutability (Meyer and Eagle. 1982; Borgers and Timmermans. 1987; Fotheringham. 1983). 

In general, the extensions of the standard OMNL formula include an additional term which measures the 

average degree of similarity between one alternative and the others in the choice set. The general form is: 

Pn(i) = LR;exp[V;,,] 

L R; exp [V;n] 
j=1 

(2) 

where Ri is the measure of the average degree of similarity for alternative i. A variety of ad hoc 

expressions have been used for R; in an attempt to capture similarity effects. One suggested by Borgers 

and Timmermans (1987) is of the form: 

where x,m is the value of attribute m. on alternative j, m. = 1,2, ... , M, L is the total number of alternatives 

and ¢m are 'substitution' parameters to be estimated. The R; term is clearly a weighted measure of huw 

the attributes of one alternative differ from the attributes of all other alternatives. The term should be of 

small magnitude for alternatives which are clustered together in terms of attribute values. The substitution 

parameter should be zero for attributes which contribute nothing to assessing substitutability. Another 

approach to modelling R; was suggested by Hay"es and Fotheringham (1990) whereby the accessibility 

measure from Fotheringham's competing destinations approach: 

would be utilized where q, is a parameter to be estimated .. This accessibility term i> essentially a measure 
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of the pattern of alternate spatial opportunities in which W k is a measure of the attractiveness of the set 

of alternatives other then j and djk is some measure of the distance between the jth alternative and an 

alternate alternative. Unlike the Rj measure of Borgers and Timmermans which is small for alternatives 

perceived as 'similar', this version of Rj will get larger when there are several large spatial substitutes 

near alternative j. Clearly, this measure is inherently spatial, unlike the one of Borgers and Timmermans. 

In assessing this type of approach, it is important not to interpret such 'extensions' as gener­

alizations. First, it should be remembered that the OMNL is reasonably robust itself in handling cases 

where the IIA property does not apply. Secondly, these extensions do not proceed from first principles 

and are thus quite arbitrary in "ature. It has been extensively outlined in Chapter I that discrete choice 

models result from assumptions made about the joint distribution of the random error components. It was 

shown that the OMNL model arises from quite restrictive assumptions about the random error components: 

namely that they are uncorrelated and homoscedastic. Under these circumstances, the mathematical form 

of the model emerges and turns out to be consistent with the IIA property. Typically, in the papers which 

propose extensions to the basic logit formula. the properties of the random error components and their 

implications for the final form of the model are never extensively examined. It is never mentioned that 

any generalization of the OMNL model will arise from less restrictive assumptions about the variances and 

covariances of utilities relating to the set of alternatives. 

In the end, the proposed extensions are simply alternative specifications of the OMNL model. 

None of the expressions for R j above lead !(I different assumptions about the random error components. 

Since the same assumptions still apply, the outcome of the derivation would still be the OMNL as first 

outlined by McFadden (1974). In fact, the Rj terms are simply elaborate variable specifications which 

enter into the expressions for systematic utilities in the same manner as any other variable. This can be 

seen more clearly by writing equation 2 as: 



exp [Vin + In Ri ] 

L 

L:exp[Vjn+lnRj] 
j=1 

43 

where it can be seen that the essential OMNL structure is unaltered and that the additional term is simply 

incorporated into the systematic utility of each alternative. 

Another criticism of these models is that they assume all similarity or dissimilarity to be assessed 

on the basis of destination attributes which vary only across space and not choice-makers. As Ben-Akiva 

and Lerman (1985) point out, the incorporation of taste variation among the different population segments 

is an important component in model specification to ensure that the risks of serious violations of the IIA 

property are minimized. Such precautions relate to the fact that the IIA property should be obeyed for each 

choice-maker in the sample, not for the aggregate market shares. Since the R j terms do an inadequate job 

of capturing taste variation, they are an inadequate overall representation of substitutability patterns. 

There are other potential spatial choice models to consider which are not necessarily from random 

utility theory. The dogit model (Gaudry and Daganeis, 1979) is not considered as a prime candidate for 

spatial choice problems. First of all, in the original paper, there is no mention of random utility theory and 

whether the model was derived from such principles. McFadden (1981) is critical of the dogit model on 

the basis that patterns of substitutability are not general. Nevertheless, according to McFadden, the model 

is consistent with random utility theory. Regardless, the model has not gained favour with researchers and 

is not applied in spatial choice problems. 

Another model advocated for spatial choice is the trans log model described by Lo (1990). This 

model is not related to random utility theory although it arises from the transcendental logarithmic indirect 

utility function. It is interesting because it allows general patterns of substitutability between all pairwise 

arrangements of alternatives. Any two altematives can be perfect substitutes, perfect complements or 

independent. Using simulations, Lo illustrates that a system of close substitutes has the effect of increasing 
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the friction-of-distance since choice-makers have less incentive to overcome it, while a system of perfect 

complements has the effect of shrinking space since consumers are encouraged to visit mUltiple destinations. 

Lo (1991 aJ mentions that the modelling of complementarity is a matter of relevance for mUlti-purpose 

interaction behaviour while the issue of substitutability is within the domain of single purpose interactions. 

Her criticisms of discrete choice modelling are unfair in this context since these models are clearly designed 

for single discrete choices. 

Lo's account of the translog model in general is lacking because there are no empirical examples 

to back up the workings of the model and to show that it can be estimated. While the model seems quite 

general with respect to the patterns of substitutability. it appears limited in the extent to which a wide 

range of explanatory variable can be used to characterize spatial interaction. For example, it is mentioned 

that the friction-of-distance is not explicitly estimated. Distance enters only indirectly in the calculation of 

effective prices. Overall, spatial interaction is predicted on the basis of substitution parameters. household 

incomes and price relationships. The extent to which flexibility in specification is permitted. given these 

constraints. is not elaborated upon. 

2.2.3.2 The Probit Model 

There is no question that the probit model, in theory. has many capabilities that are desirable 

in a spatial choice model. A completely general pattern of substitutability among pairings of alternatives 

can be accommodated and these relationships can be specified to vary across choice-makers or origins. In 

this sense. the probit model certainly possesses the generality that Lo claims for the translog model. The 

difficulty with the probit model is one of implementation as was outlined in Chapter I. For computational 

reasons. it is extremely difficult to accommodate a large number of alternatives and the process of ob­

taining general patterns of similarity across alternatives is typically inefficient in the sense that 'nuisance' 

parameters proliferate. Ben-Akiva and Bolduc (1991 J suggest a partial solution to this problem in a paper 
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discussed in more detail below. 

In spatial choice contexts. researchers typically talk about the model's favourable theoretical 

properties (Haynes et al. 1988) but rarely apply it for the reasons mentioned above. A notable exception is 

the study by Miller and Lerman (1981) on the choice of shopping district within Boston although this model 

did not have a large number of spatial alternatives. Overall. the realm of the probit has been restricted 

to problems like mode choice with small numbers of alternatives. Spatial analysts have had more use for 

the probit in the modelling of binary response variables which are spatially referenced. which of course 

is a distinct problem from that of spatial choice. An example is the paper of McMillen (1992) where a 

binary highllow crime response variable is used in a probit which takes account of spatial autocorrelation 

and heteroscedasticity in the random errors. The approach is econometric and not associated with random 

utility theory. The autologistic model outlined in Haining (1991) is an example of a log it-type approach 

with a categorical response variable. 

The paper by Ben-Akiva and Bolduc (1991) represents an early initiative in the use of spatial 

statistical concepts for choice problems and is discussed here in some detail since some of the paper's 

features are relevant to spatial choice. In particular. they model random error components through a 

Generalized autoregressive process of the foml: 

where en is an LxI vector. W n is an L x L weight matrix and ~n is an L x L diagonal matrix 

containing standard normal variates on the diagonal. Additional sources of generality are the facts that 

they permit a random coefficients structure for the parameters associated with explanatory variables and 

that they include an i.i.d. Gumbel error structure in addition to the normally distributed errOrs so that the 

logit model is obtainable as a special case. All of this is accommodated within a probit model structure 

in which probabilities are estimated through simulation techniques. While their application. the choice of 
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different telephone service options, is aspatial. they mention how their technique is applicable to problems 

with large choice sets since the simulation technique is computationally much less burdensome. 

The other important aspect is the use of a binary weight matrix to determine which pairings of 

alternatives are to have mutual dependencies. Such an approach greatly reduces the number of 'nuisance' 

parameters which are associated with the variance-covariance matrix On of the random errors. With the 

autoregressive approach, the number of parameters increases only linearly with the number of alternatives 

whereas in less effective specifications, a geometric relationship would tend to apply. In particular, the 

structure of the On matrix they hypothesize is a function of only five parameters: the p autocorrelation 

parameter, which is a measure of the strength of the autoregressive process, and four variance parameters. 

While the model is impressive, the applicability of the approach to large-scale spatial choice 

problems remains in doubt. Innovations such as simulated probabilities and parsimoniOl'~ On specifications 

have greatly assisted in the applicability of the probit model but there is no indiee •• on that problems with 

upwards of 100 elemental spatial units can be adequately handled. In a later paper, Bolduc (1994) applies 

the technique to a mode choice problem of nine alternatives but as yet the effectiveness of the technique 

for an extremely large number of alternatives is unproven. 

2.2.3.3 The Nested Logit Model 

The nested logit model has been applied more frequently than the probit in the spatial choice 

literature, mainly because it is perceived as the best compromise between computational tractability and the­

oretical generality. Spatial choice applications have included: industrial location (Hansen, 1987), housing 

choice (Fischer and Aufhauser, 1988; Thill and Van de Vyvre, 1989), migration (Anderson and Papageor­

giou, 1994; Newbold. 1994) and recreational choice (Parsons and Needleman. 1992) to name a few. The 

capability of the model to accommodate differential levels of substitutability between subsets of alternatives 

is a major reason for the model's applicatio!l to problems where a perceived violation of the IIA property 
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exists. 

One criticism of the nested logit is that its estimation tends to be more involved than that of the 

OMNL. The sequential estimation approach has gained considerable popularity since it is implemented as 

a series of OMNL models linked by inclusive value terms which measure the expected maximum utility to 

be derived from lower level nests. Unfortunately, statistical inference is likely to be compromised in the 

case of parameters estimated at the upper level. Brownstone and Small (1989) discuss simulations where 

the standard error of the 11 parameter associated with the inclusive value is substantially downward biased 

and in need ofthe complex corrections advocated by Amemiya (1978) and McFadden (1981). The standard 

error bias stems form the fact that the inclusive value term. which is a random variable, is passed as a fixed 

term to the upper level when ideally all aspects of the model should be endogenously and simultaneously 

determined. Brownstone and Small go to the extent of saying that with sequential estimation, statistical 

inference should not be attempted without correcting the 11 standard error. 

Clearly the problem of statistical inference with the 11 parameter is troubling in the spatial 

choice context since this is an important theoretical parameter. However, this is a pr~,blem with the 

estimation procedure much more than the model. Vet spatial choice applications, to the best of my 

knowledge, have always utilized the sequential procedure. The clear solution is the widespread adoption 

of simultaneous full-information estimation which in reality is not any more burdensome than the process 

of going through sequential estimation followod by the correction. Also, as mentioned by Train (1986, pp. 

75-76) simultaneous estimation results in far more parsimonious models since there is no need to specify 

the same variables separately at different levels of the model. The types of algorithms which are available 

for simultaneous estimation are discussed in Chapter 5 and software for the simultaneous estimation of 

nested logit models is described in the Appendix. 

A destructive aspect of sequential estimation has been its effect on how researchers interpret 

the choice process. Since the model is estimated sequentially there is a tendency for some to assume that 
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this mirrors exactly how the choice is made. Fotheringham (1986), for example, states at the beginning of 

his paper: 'Consider an individual i who has made a decision to move but has yet to choose a particular 

destination j'. Such an interpretation ignores the fact that individual lower nest alternatives in a nested logit 

are not precluded from affecting how an upper level choice is made. Use of the nested logit model does 

not automatically assume a hierarchical choice process since the OMNL is a special case when elemental 

utilities are uncorrelated. 

The nested logit model has certainly not gone without criticism in how it handles substitutability. 

One of the major criticisms in the spatial choice context is that exogenous determination of a tree structure 

is too arbitrary and liable not to correspond to the actual panerns of similarity (Lo, 1991b; Fotheringham. 

1986; Borgers and Timmermans. 1987). In a non-spatial choice problem with a relatively small number of 

alternatives. the best grouping is usually intuitively obvious. The number of spatial ahernatives. however. 

is typically large. thereby resulting in several possible panerns of similarity. The problem of an accurate 

clustering of spatial units, however. is not one that is unique to the nested logit model. Such clustering is 

the only means to capture the panerns by which the IIA property applies and is an issue which underlies 

the choice process in general. The fact that the nested logit model provides a systematic means to test 

for these panerns is an asset more than a liability. Another asset is that unlike the competing destinations 

model, for example, it is not necessary to make an a priori assumption that substitutability must occur in 

purely spatial terms based on contiguity. A process which occurs based on an economic hierarchy can also 

be accommodated. 

The nested logit model also receives criticisms about the specific panerns of similarities that it 

can represent (Lo, 1991b, 1992). In assessing such criticisms it is important to remember that a model 

is by definition an abstraction of reality which is intended to capture the essential processes. As seen 

in Chapter I, a nested logit treats the correlation between all pairings of elemental alternatives within an 

aggregate as equal and positive while ahernatives within different aggregates will be represented as having 
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uncorrelated utilities. By downweighting the utilities of correlated alternatives, it can be argued that the 

model is capturing the essential mechanism at work when people assess a set of spatial units. The fact 

that the relationships governing similarity can be differentiated across nests or be made more realistic by 

adding another choice level is also not to be neglected and can result in quite sophisticated patterns of 

similarity. The translog model suggested by Lo (1990) on the other hand provides no mechanism for the 

phenomena of clustering and is guilty of incorporating too much detail since parameters are estimated for 

all pairwise relationships. 

2.3 Aggregation 

While the spatial choice debate on substitutability has been quite lively, with several papers 

written on the topic. The same cannot be said for the issue of spatial aggregation in choice models. This 

should become clear in the discussion below. This section on aggregation has three components. Initially, a 

background on some of the theory underlying spatial aggregation in choice modelling is offered. Secondly, 

the implications of this theory for choice set motlelling are briefly examined. Finally, a closer look at 

empirical applications central to the subject of this thesis is undenaken. 

2.3.1 Theoretical Background 

In spatial analysis, aggregation has received much more attention in the context of the modifiable 

areal unit problem (MAUP) which has to do with how various statistical measures can give vastly different 

results based on the level of spatial aggregation at which they are applied (Openshaw, 1984). Other 

researchers (Arbia, 1989) have devised theoretical constructs to assess whether such aggregation effects 

(more popularly known as 'scale effects' in the MAUP literature) can systematically be predicted. Still 

others (Amrhein, 1995; Amrhein and Flowerdew, 1992) have been testing econometric models at differing 

levels of aggregation in search of patterns. Aggregation in this body of literature, typically concerned with 
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modelling the variation of some attribute over space, is not to be confused with aggregation in the spatial 

choice literature. Nevertheless, the work of Jones and Bullen (1994), on the modelling of housing prices 

over space, bears an interesting resemblance to the aggregated logit model in the sense that their model 

incorporates random error components which function at different spatial levels of resolution. Still, what 

they consider is not a choice process. 

2.3.1.1 Spatial Aggregation versus Choice-maker Aggregation 

Even within the choice literature there are distinctions to be made in terms of the types of 

aggregation. On the one hand, there is aggregation across choice-makers. Each choice-maker in a given 

origin will have a different choice probabilit) for some destination. The question is, if variables can be 

collected at the level of the individual, how can this information be utilized to yield one choice probability 

to act as a representative for all members of that origin? There is an extensive body of theory (see 

Ben-Akiva and Lerman, 1985, Ch. 6 ) which says that obtaining a simple average of the set of relevant 

attributes across individuals and then using these representative variables to estimate choice probabilities 

is not the best approach. 

The second type of aggregation relevant to spatial choice models, and the one which is the main 

topic of this thesis, has to do with aggregation of spatial alternatives. Assuming that we are able to obtain 

a representative probability for a given origin by aggregating across choice-makers, it is important to note 

that the spatial interaction probabilities for prospective destinations will depend on how these destinations 

are partitioned. It is often the case that the partitioning will be such that the spatial units involved will 

be aggregations of the fundamental spatial units or elemental alternatives considered by choice-makers. 

In a problem of inter-regional migration, for example, a choice involving a move of several thousand 

kilometres might well be motivated by the attractiveness of a particular urban agglomeration. The best 

available choice data, however, might say only which province was chosen. 
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Most modelling efforts in the past would accept this limitation and apply the model in such a 

way that all attributes would be collected at the same level as the choice infonnation. In this respect. 

aggregation in choice modelling at present is viewed as spatial autocorrelation was in the early 1970's 

(Gould. 1971). It is seen more as a nuisance 10 be assumed away than an opponunity on which to define 

and distinguish spatial choice analysis. 

2.3.1.2 The Representation of Aggregate Utility 

The aggregated model assumes that the utility of a spatial aggregate is the outcome of the 

maximization of those random utilities which apply at the true level of the choice process. The modelling 

question essentially is: Given the distribution over space of explanatory attributes at the level of the choice 

process, what pattern of elemental utilities would be most likely to give rise to the observed pattern of 

aggregate level choice behaviour? In other words, we attempt to assess the ~lIractiveness of elemental 

alternatives even though we are unsure of those that are chosen. Since we have means to assess which 

destination attributes are imponant in molding the pattern of aggregate level choices, we can use elemental 

attribute infonnation to infer things about the attractiveness of elemental alternatives. Such a modelling 

approach is far more ambitious than that of simply applying the OMNL model at the aggregate level as 

has typically been the practice. 

The roots of this approach lie in the work of Lennan (1975) in the context of intra-urban housing 

choice where researchers are aware of the aggregate level neighbourhoods which are chosen but not Ihe 

panicular dwelling units. Using a first-order Taylor expansion, and assuming Gumbel distributed elemenlal 

utilities, the fonn he deduced for the systematic utility of aggregate J from the perspective of choice-maker 

n was: 

(3) 
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which corresponds tol2 in Chapter I except for: the omission of the heterogeneity term, the omission 

of the scale parameters, and the fact that the expression is an approximation. Lerman noted that this 

form had limitations when dealing with heterogeneous aggregates but states that in general the size effect 

would be of more prominence than any missing heterogeneity effect. Two ways in which the importance 

of the heterogeneity effect are minimized are, on the one hand if the elemental systematic utilities in a 

given aggregate are equal to V~, and on the other if the heterogeneity effect does not vary significantly 

from aggregate to aggregate. This contribution by Lerman was the first theoretical recognition that it was 

necessary to correct utility for aggregation, however, the approach did not go so far as to model elemental 

utilities. 

The result of the second-order Taylor series expansion of Kitamura et al. (1979), again assuming 

Gumbel elemental utilities, revealed that the systematic utility of an aggregate alternative could be even 

more accurately approximated as: 

(4) 

the essential improvement over 3 being the addition of a term measuring the variance of the elemental 

systematic utilities within the aggregate. It is important to emphasize that both 3 and 4 assume that all 

elemental random error components in the choice set are independent and that there is no random error 

which is unique to groupings of elemental alternatives so that degrees of similarity can be accommodated 

as in the nested logit model. The paper of Kitamura et al. is also interesting in that the implications of 

assuming other distributions for the elemental utilities are assessed. It is shown that a model similar in 

spirit to the aggregated model can be derived by assuming normally distributed elemental utilities. The 

resulting approximation for the aggregate systematic utility is: 
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where the most interesting differences are that the approximation to the heterogeneity effect is interactive 

with the magnitude of the size effect and that the size effect in relation to 3 and 4 will be smaller. 

particularly for large MJ. In addition it is shown that if elemental utilities are normally distributed. then 

the distribution of the maximum utility converges weakly. after a normalization. to the Gumbel distribution. 

Unlike the case with Gumbel distributed elemental utilities. where the variance of the distribution of the 

maximum never changes. with normally distributed utilities the distribution of the maximum has shrinking 

variance as the number of elemental alternatives increases. While this property is desirable. the resulting 

choice model does not have a closed form and is therefore much less amenable to application than the 

Gumbel model. 

The contribution by McFadden (1978) was important because the expression for the aggregate 

systematic utility: 

AI' J -J 1 1 ~ (J J -J) 1 J Vn = Vn + J In !vI J ~ exp 11 (V,n - V" ) + J III !vI 
11 j=1 11 

first shown in Chapter I and repeated frequently elsewhere in this thesis. is obtained as an equality instead 

of an approximation and because the theory which accommodates aggregation is shown to mirror that of 

the nested logit model. The Taylor series approximations of Lerman (1975) and Kitamura et al (1979) had 

certainly made no links to the nested logit model since no similarity among elemental alternatives could 

be accommodated. These issues are discussed in much more detail in later chapters. Suffice it to say that 

the capability to accommodate differing levels of similarity among subsets of alternatives allows for an 

elegant interplay between the size and the heterogeneity effects and a rich theoretical interpretation. 

2.3.L3 Asymptotics and Spatial Aggregation 

The literature on spatial aggregation in discrete choice models has put a lot of emphasis on 

asymptotic properties which apply when the number of elemental alternatives in aggregates becomes very 

large. In particular, asymptotics have been shown to be an issue with respect to the assumptions required for 
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elemental random error components and in regard to simplification of the heterogeneity term. Asymptotic 

properties have been emphasized based largely on the nature of intra-urban housing choice, the field for 

which choice models of spatial aggregation were first developed. Since elemental alternatives in that 

context are individual dwelling units, the typical aggregate alternative in such a problem would contain an 

extremely large number of elemental alternatives. 

With regard to the random error components, research in the statistics of extremes (Galambos, 

1978) indicates that random variables do not need to be Gumbel distributed to give rise to a Gumbel 

distribution under maximization. Much of this thesis is premised on the notion that elemental utilities are 

Gumbel distributed. Mainly this is because the types of choice problems considered, unlike McFadden 

(1978) and Lerman (1975), are not guaranteed to have a sufficiently large number of elemental alternatives. 

It is shown in Chapter 3 that the asymptotic result, which does not depend on assuming Gumbel elemental 

errors, yields the same model as the scenario we consider. In other words, the end result i, the same but 

the asymptotic model has less restrictive assumptions about the elemental errors underlying it. 

Turning to asymptotics and the heterogeneity term, if it can be assumed that the systematic 

utilities of elemental alternatives are normally distributed around V~, then as the number of elemental 

alternatives becomes large the heterogeneity effect approaches ~ Var(tr,n) which of course is consistent 

with the additional term arising from the second-order Taylor series expansion. According to McFadden 

(1 '}78), this asymptotic property is advantageous because it allows the use of standard logit estimation soft-

ware. Information detailing the relationships between attributes which enter tr,n can be used in conjunction 

with estimated parameters to obtain the variance of the systematic utilities. While this may be a useful 

result for some problems, in this thesis the approach has been taken that there is no need to approximate 

the heterogeneity term since use of a non-standard Iogit estimation will yield the exact results. Also, the 

numbers of elemental alternatives in some contexts will be inadequate and also the assumption of normally 

distributed systematic utilities within aggregates might be overly restrictive. 
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To conclude this section. while th~ literature on spatial aggregation in choice models is not 

voluminous, it is very insightful and is supported by a rich body of theory. Much of the original work has 

been done by researchers who are not primarily spatial analysts but found themselves having to deal with 

the intra-urban housing choice problem. When spatial aggregation has been considered in the core spatial 

choice literature, it has been in the context of the gravity model based on entropy theory and not utility 

maximization (Webber. 1980; Batty and Sikdar. 1982abcd; Schwab and Smith, 1985. Putman and Chung. 

1989). Like the wider comparison between discrete choice approaches and gravity model approaches. the 

discrete choice approach to spatial aggregation is the more likely to have a prominent future. 

2.3.2 Choice Set Definition and Aggregation 

A substantial amount of attention has been given to the issue of choice set definition in spatial 

choice modelling (see Thill, 1992 for a review). There have been questions about the extent to which 

choice-makers are capable of processing all the information associated with a large number of spatial 

alternatives. The general consensus is that if some alternative is not considered by an individual. then 

it should be removed from the choice set to avoid biased estimates of parameters and probabilities. The 

body of work is oriented toward modelling the likelihood that individual elemental alternatives are in the 

choice set. In the spatial choice context, however, there is a case to be made that choice-maker's do not 

consciously omit spatial units from their choice set but instead cluster spatial units, thereby considering 

the clusters as homogeneous entities. 

The spatial choice problem can be conceptualized in these terms. It can be assumed that choice­

makers perceive a continuous surface of utility over the study area and that they select their alternative 

based on where this surface is highest. This conceptualization is consistent with the so-called continuous 

spatial choice model (Ben-Akiva and Watanadada, 1981; Ben-Akiva et aI., 1985) which is derived as a 

limiting case as the number of elemental alternatives in an aggregate becomes large (see Chapter 3 for 
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further discussion).While it is unclear at this point, largely for reasons of data availability, whether the 

continuous model itself is implementable, the idea of a surface of utility unfolding over space is intuitively 

appealing. Nevertheless, using conventional choice models, the surface can be approximated at a number 

of discrete locations in keeping with the way that spatial attribute data are made available to researchers. 

Essentially, research on choice set composition is saying that we need to find means to separate the small 

discrete units that are in a person's choice set from those that are not. Thus at selected zones in space the 

surface presumably would be undefined. 

In a mode choice problem. if some mode is unavailable to a given choice-maker then there is 

little doubt that the given mode should be removed from the individual's choice set. This is a clear-cut 

problem with a clear-cut solution. In spatial choice contexts. it is a far more risky proposition to ascertain 

through some means what spatial units are considered, especially on an individualized basis. Perhaps 

a better approach is to make the assumption that choice-makers have a tendency to cluster that which 

they do not know much about. Most likely. the spatial region of uncertainty will encompass a cluster 

of several elemental alternatives; thus while the choice-maker might know little about the constituent 

elemental aiternatives. the aggregate zone itself will have some meaning. 

The theory of the aggregated model contains a mechanism for clusters of indistinguishable 

elemental aiternatives to be represented properly. In particular. the expression for the systematic utility of 

aggregate J is given by: 
hl J 

~ In L exp (ILJVj~) 
IL ]=1 

v.J -n -

which can be re-written as a function of a mean utility tenn and size and heterogeneity effects. As 

ILJ ~ 00. the expression has the interesting property that V,;' = max Vj~ or namely that the 
;E{I.2, .... hl J } 

aggregate systematic utility will correspond with the largest systematic utility from among the MJ elemental 

altematives in aggregate J. The implication i~ that the elemental aiternative with largest systematic utility 

will act as a representative for all within that aggregate. There is no chance of some other elemental 
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alternative offering a higher level of utility because random error components are perfectly correlated. The 

size effect goes to zero implying that the number of elemental alternatives is irrelevant to the predicted level 

of aggregate utility. The effect of all this is that individual elemental alternatives within that cluster. many 

of which will not be individually considered by the choice-maker. will have no effect on the aggregate 

level probabilities. On the other hand. if individual elemental alternatives are meaningful to the aggregate 

level probabilities, then pJ -+ 1, which will make the size term quite relevant and allow the individual 

elemental alternatives to behave as independent entities. 

This mechanism in theory should work well in the context of the aggregated model because 

the interest is in the correct representation or aggregate probabilities and the model is estimated on the 

basis of how well it conforms to the aggregate level choices. The clustering of lowly regarded elemental 

alternatives mirrors the type of process we would see in reality where the elemental members are not 

perceived individually but choice-makers are aware that a cluster of opportunities is available. Where 

problems occur is when the researcher tries to assess the set of conditional probabilities within a cluster 

of poorly understood elemental alternatives. Clearly. choice probabilities and parameter estimates will be 

very much affected if too many irrelevant alternatives are modelled. Hence the results of a full nested logit 

model. which operates at the elemental level, will be compromised. 

It might, however, be argued that it is unwise to incorporate spatially detailed choice information 

into a model where the vast majority of choice-makers perceive the individual options only as a member 

ofa cluster. When only one resident of British Columbia out of 10000 is observed to choose Comerbrook, 

Newfoundland in a migration data set, the wisdom of explicitly modelling the choices by B.C. residents 

of all elemental alternatives within Newfoundland has to be questioned. In that context, only choice 

information at the level of Newfoundland should be included (although perhaps SI. lohn's might be 

modelled as separate from smaller urban centres in the province). The aggregated model will estimate 

elemental utilities and the Jl parameter should confirm a lack of independence among the set of elemental 



58 

alternatives. Overall, it is relt that the spatial choice set definition literature could benefit from these 

types of conceptualizations. The issue may not be so much whether an elemental alternative is considered 

explicitly in a choice set as it a matter of how some insignificant spatial unit is clustered with other spatial 

units. 

2.3.3 Spatial Choice Applications Accounting for Aggregation 

The aggregated logit model as proposed in this thesis has never been applied. There are examples 

where the approach of Lerman (1975) has been adopted in an empirical context such as in Lerman (1979). 

Horowitz (1986) and Tay and McCarthy (1994) but in each of these cases, choices at the aggregate level 

are not modelled through the heterogeneity term. Instead the assumption is made that elemental systematic 

utilities within an aggregate are equal so that only a correction for size is necessal). ";'i,;s frees the 

researcher from haVing to explicitly define elemental sy~tematic utilities. It is shown in Chapter 4 that 

this is a potentially risky practice in heterogeneous aggregates. In this section. recent studies in recre.tion 

choice, one of the few spatial choice fields where aggregation is being acknowledged, are assessed in 

some detail. In panicular, several researchers (Parsons and Needleman, 1992; Parsons and Kealy, 1992 

and Tay and McCarthy, 1994) have taken advantage of the fact that there exist rich data on the destination 

choice behaviour of American recreation enthusiasts. The elemental alternatives for such problems are 

typically the numerous inland lakes and other small bodies of water that are found within the much larger 

administrative zones that would constitute the aggregate alternatives. 

Consider initially the study by Tay and McCarthy. They assess the behaviour of Indiana fisher­

men in terms of trips made to the 366 fishing zones administered in the United States. Since only 66 of 

these aggregates are actually chosen in their data, and since a model with 366 aggregate, is considered too 

many for estimation purposes, a stratified importance sampling of alternatives procedL '0 is undertaken to 

reduce the choice set for each person to five aggregates. The five alternatives are the result of sampling 
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from three strata and in the end are composed of the origin zone, two alternatives from nearby aggregates, 

and two alternatives from far off aggregates. Of COurse McFadden (1978) had shown that such a procedure 

is justified for any set of alternatives governed by an Independence from Irrelevant Alternatives process 

so long as the appropriate correction to the utilities is applied. 

Having reduced the choice set to five aggregates per person, Tay and McCarthy note that these 

spatial units themselves contain a massive number of elemental alternatives and hence allude to the need 

for correct:_'ns in the form of the size and heterogeneity terms. Largely for the reason that they do not 

have access to sofrware which will implement the heterogeneity term, they make the restrictive assumption 

that the elemental systematic utilities of all th" lakes in each aggregate are equal. This eliminates the need 

to collect attribute data, such as pollution levels, at the elemental level. 

The size term for each aggregate i~ not implemented directly as the number of eligible bodies 

of water but rather as the total surface water area within each aggregate. Since their size term does not 

explicitly consider the number of choice units within aggregates, the question must be posed as to whether 

their estimate of the J1 parameter is subject to bias. In general, the problem ofTay and McCanhy is similar 

in spirit to initiatives undenaken in this thesis. however their decision to abandon all attribute information 

relating to elemental alternatives removes a great deal of realism from their model. 

The papers by Parsons and Needleman (1992) and Parsons and Kealy (1992) are essentially two 

of a series and represent empirical tests on some of the more innovative discrete choice concepts. Unlike 

Tay and McCarthy, these researchers have access to data which have a high degree of spatial resolution 

in the choice information. In panicular, over 1000 residents of Wisconsin in 1978 were asked about 

their use of over 1000 Wisconsin lakes in tho previous year. Clearly, the individual lakes represent the 

elemental alternatives in the analysis while aggregates are defined at two different levels: counties and 

larger Wisconsin sub-regions. With such rich data available, a series of model types is applied: 

• a) The aggregate level OMNL with no corrections for size and heterogeneity effects; no use is made 
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of elemental choice infonnation 

• b) The aggregate level OMNL with a correction for the size of aggregates: again no use is made of 
elemental choice infonnation 

• c) A full nested logit model (estimated sequentially) which makes use of elemental choice infonnation 
ami which calculates size and heterogeneity effects from the lower level estimations before obtaining 
p. e,timates at the upper level 

• d) An OMNL applied at the elemental level which employs a sampling technique to reduco the number 
of elemental alternatives to a manageable amount. This is a non-nested model in every sense since 
aggregate alternatives are not assumed. 

In essence. the authors take the results from the latter two models in this list as being those 

providing the most accurate set of parameters with the other two models being judged in comparison. Of 

course. these comparisons are done using the two different definitions of aggregate alternatives (county 

and regional) with the authors' preconceived hypothesis clearly being that the greater the degree of spatial 

aggregation, the more unreliable the estimates of parameters. Indeed. the results indicate this hypothesis to 

be valid in that the parameters obtained from the two aggregate level OMNL models (a and b) bear little 

resemblance to the other two models when th,· aggregates are regions within Wisconsin. When the county 

definition of aggregates is employed, the perfi)nnance of the aggregate level models improves. 

There are grounds for criticism of this work. First of all, the aggregated model as it has been 

described in this thesis, does not appear anywhere in the analysis. Rather this paper employs extremely 

restrictive special cases of the aggregated model and then is highly critical of the results in relation to the 

models which have full infonnation at the elemental level (c and d). These are unfair comparisons. A 

general application of the aggregated model requires the estimation of sub-aggregate utilities so that the 

heterogeneity of aggregates is properly accounted for. There is no justification given for the assumption in 

this paper that elemental systematic utilities are equal. Certainly they do estimate the heterogeneity effect, 

but only in the context of the sequential estimation of the full nested logit model where the elemental 
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choice information is of course available. This shoncoming of the analysis is most likely due to the fact 

that their software estimates only the conventional OMNL. Such a limitation in and of itself should reduce 

confidence in the results. 

The poor performance of the aggregate level models is also not surprising given their restrictive 

definition of the size term (model b). In the most general case. there will be a single" parameter associated 

with the size of each aggregate. The arbitrary assumption that the" are equal across aggregates is likely 

to have a profound impact on the other parameters. especially when aggregates are large. The size elTeet 

in such models. like alternative-specific constants. plays the imponant role of absorbing all systematic 

variation not captured by other variables in the model. The assumption is that this unobserved systematic 

variation can be explained by the size of the associated aggregate. The fact that these models do not at 

least test for significant variation in the" parameter across aggregates is thus a serious oversight. A funher 

potential problem with their representation of the size effect is the use of proxy variables such as surface 

area and depth of lakes. The use of proxies is bound to affect the interpretation of" and may have much 

to do with cases in the analysis where" stray, uatside the theoretical range. 

The full nested logit and the elemental level OMNL (models c and d) applied in the paper arc 

also not without shoncomings. First of all. direct comparisons of parameters are made between the former 

and the laner despite the fact that one model is explicitly assuming an IIA process as the justification for 

the sampling while the nested logit. by definition. assumes no such thing. Hence. there really is some 

doubt about which model ty:::~ provides the 'tme' set of parameters to act as the benchmark. The sequential 

estimation of the nested logit model is subject to the same set of problems outlined by Brownstone and 

Small (1989) with the situation being exacerbated by the fact that the lower level conditional parameters are 

obtained using samples of 12 lakes from the much larger number which would otherwise define each nest. 

Actual calculation of the inclusive values however includes all lakes in each nest. Again, the restriction 

that the" parameter is equivalent across nest' is arbitrarily imposed. 
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While the paper by Parsons and Needelman has its focus the issue of aggregation biases, it is 

worth noting that the paper of Parsons and Kealy utilizes the same data set but has as its focus the sampling 

of alternatives as advocated by McFadden (1978), The results from this paper form the basis for the 

estimation of the fourth model type in the aggregation paper: the elemental level OMNL model employing 

sampling of spatial uni;;. Overall, the interest of the authors is in the best way to model the choices among 

spatial units given that the total number of alternatives is too large to facilitate within a model. The clear 

theme running through the papers is that a sampling approach is to be much preferred over an approach 

which would reduce the computational burden through aggregation. While there are obvious flaws in 

the implementation of their comparison, this conclusion is reasonable since it is undesirable to literally 

throwaway valuable elemental choice information. In cases where the elemental choice information is 

unavailable however, as is assumed in this thesis, these papers do little to discredit the approach advocated 

in the aggregated model. 

2.4 Conclusions 

The essential goal of this paper has been to advocate the use of the logit family of models for 

spatial choice problems. Logits have a clear advantage over gravity model formulations since they are 

derived at the level of the individual choice-maker. While logits can always be easily adapted to a gravity 

model type of problem that contains both aggregation across choice-makers and across space, the gravity 

model can be derived from the micro-level only under unrealistic assumptions. 

It has been pointed out that the ordinary multinomial logit model is not as sensitive to violations 

of the Independence from Irrelevant Alternatives property as is commonly thought by many spatial choice 

researchers. While the model does not explicitly attempt to model the patterns of similarities among 

alternatives, an OMNL with constants typically sacrifices very little in terms of fit and will yield parameter 
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estimates for explanatory variables which will often be similar to those of more sophisticated models. 

Statements that the OMNL will necessarily lead to substantially biased estimates of probabilities in a 

non-11A choice process are simply not true. 

On the subject of the IIA, it has been mentioned that it is particularly important in spatial choice 

models to allow for its variation across origins. Residents of one origin are likely not to cluster spatial 

altematives in the same way as those at another. The use of origin-specific models to capture differences 

in how alternatives are grouped represents an interesting avenue for future research. 

In the context of models that explicitly capture unequal substitutability among spatial units. it is 

suggested that the nested logit and the aggregated models are by far the best approaches for spatial choice 

problems. The framework inherent to both is the only one which easily accommodates the challenges 

posed by aggregation of spatial units and by the pattems of similarity across spatial units. The closest 

challenger. the probit model, remains computationally intractable for all but the smallest spatial choice 

problems and the underlying theory to accommodate spatial aggregation has never been implemented. It 

is felt that the nested logit model has been han:pered by the sequential estimation procedure with which it 

has always been associated but that more widespread application of simultaneous estimation will result in 

cleaner specifioation, and less reluctance to experiment with different decision trees for a given problem. 

Also, the statistical reliability of the important substitutability parameters will be greatly improved. 

Finally, it has been discussed that the issue of spatial aggregation has not received adequate 

treatment in the spatial choice literature, with there being a tendency for it to be assumed away. Other 

researchers wam of the dangers of aggregation and ~~"mpt to discredit the effectiveness of the framework 

for aggregation in choice models. However, it has been pointed out that their simulation experiments are 

not conceived suffiCiently well to be making sllch claims and were not conducted with full implementations 

of the aggregated logit model. 

Overall, there is a tendency in the spatial choice literature to advocate alternative models, some 



64 

of them quite arbitrary, before the conventional models have been completely understood. The logit family 

of models are based on a rich body of theory which provides an excellent medium through which spatial 

choice processes can be understood. Certainl}, there needs to be more widespread recognition that spatial 

aggregation and the substitutability of spatial units work hand in hand. Both of these issues, which are 

central to spatial choice, can be modelled simultaneously in the logit framework. 



Chapter 3 

Discrete Spatial Choice Models for Aggregate 

Destinations 

3.1 Introduction 

Choice models are useful in theoretical and empirical analysis in assessing the behaviour of a 

group of individuals (hereafter, decision or choice-makers) faced with a set of alternatives. Such models are 

derived from first principles of consumer choice behaviour based on utility maximization. When the choice 

set of alternatives consists of spatial units, the associated models are referred to as spatial choice models. 

As discussed in Tardiff (1979) elements of a spatial choice set are not readily or uniquely identifiable as 

in other choice problems. In most instances the choice set is dictated by the available data with the spatial 

units being, more often than not, larger than what decision-makers perceive. A related problem is the large 

number of spatial alternatives that in practice necessitate either aggregation into larger spatial units or the 

sampling of alternatives. The problem of aggregate spatial units is pervasive in studies of spatial interaction 

such as intraurban or interregional migration and the analysis of shopping trips. Yet, choice models are 

routinely applied to problems of spatial choice with little or no consideration of spatial aggregation effects. 

Because choice models are firmly rooted in behavioural theory, accounting for aggregation must 

result in models consistent with theory. Such an adaptation of the theory re4uires that one go beyond 

65 
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the strict problem of spatial aggregation and consider the wider problem of human choice behaviour in 

space. That this has not been done is perhaps the main reason why essential progress in capturing spatial 

effects in choice models has been modest. Researchers have tended to see the problem as stemming from 

the substitutability of spatial alternatives, a matter poorly handled hy the family of choice models sharing 

the independence from irrelevant alternatives (IIA) property (La, 1991). Solutions to this problem in the 

form of ad hoc changes to the logit formula have been proposed by Borgers and Timmermans (1987) and 

Haynes and Fotheringham (1990). 

Closer to the approach taken in capturing spatial effects in the standard linear model, Boots and 

Kanaroglou (1988) proposed a correction for spatial structure be included directly in the specification of 

the systematic utilities. Although this approach can be effective, it is not satisfactory because it provides 

no link between individual behaviour and the corrective term introduced. Thus spatial structure is viewed 

as a nuisance in need of correction rather than an integral part of the choice process. This philosophy is 

also shared by the model of Bolduc et. al. (1989). An additional difficulty with the latter model is that 

the functional form utilized (Iogit) implies Li.d. extreme value error structure for the utilities, while the 

errors are subsequently assumed to be spatially correlated and normally distributed. This inconsistency in 

assumptions is alleviated in the comprehensive probit model proposed by Ben Akiva and Bolduc (1991) 

and Bolduc (1994) at the expense of computational tractability in parameter estimation, given the typically 

large number of alternatives in realistic spatial choice problems. Similar in spirit are the probit models 

used by Case (1992) and McMillen (1992) that try to capture heteroscedasticity with a block covariance 

matrix structure. 

The models discussed in this paper have theoretical appeal, like the probit, but are much better 

suited to large problems with many spatial alternatives. They are capable of accommodating a block 

covariance matrix structure while permitting estimation with conventional means as opposed to the elaborate 

simulation approach advocated by Bolduc (1994) for the probit. The formative ideas for these models are in 
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the work of Lennan (1975). McFadden (1978) and Kitamura et. al. (1979). A useful summary of findings 

in this research is provided in Ben-Akiva and Lerman (1985. ch. 9). However. the theory underlying the 

models has never been fully developed and neither have such models been applied in their complete fom,. 

The purpose of our paper is to synthesize and clearly outline the theoretical underpinnings ofthes. 

models. Furthennore. we go bey~nd the existing theory by relaxing the conventional logit assumption of 

Gumbel distributed error tenns. This is accomplished by making use of the asymptotic theory of extremes. 

Following this intrOduction we derive the aggregated spatiallogit model. Finally. the asymptotic theory of 

extremes and its relationship to the aggregated model is discussed. 

3.2 The Aggregated SpatiliJ Logit Model 

The model in this section is discussed in the context of migration (intraurban or interregional). 

although it applies to any scenario where decision-makers. originating from some point in space. decide to 

locate. shop. or pursue leisure at some other point in space. We assume the use of data that are disaggregate 

with respect to choice-makers but aggregated across the spatial choice units. Studies which utilize this 

type of data include Liaw and Ledent (1988) and Liaw (1990). Others have used micro-level data but 

the elements of the choice set were not spatial units (e.g. Meyer and Speare. 1985). In sllch models. the 

choice set typically consists of two alternatives: stay or move. There are an abundance of studies which 

utilize data aggregated across both individuals and spatial units such as Shaw (1985) and Anderson and 

Papageorgiou (1994). 

3.2.1 Theoretical Framework 

We postulate that decision-makers (individuals. family. households) perceive space in the form of 

zones rather than points. Furthennore. we assume that all decision-makers identify the same zonal system 
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on average5 • We call the zones in this zonal system elemental". In intraurban migration, an elemental 

choice unit could be a city neighborhood while in other forms of migration it might be a single spatial 

labour market as discussed by Shaw (1985, p.202) and Kerr (1950). Any given decision-maker associates 

a level of utility with each elemental zone. Thus, each decision-maker perceives a unique utility surface 

over the study area which is discontinuous at the zone boundaries. 

Consider a study area which is divided into M elemental zones. Following Kanaroglou et al. 

(1986), we assume a two level model. In the first level, the departure sub-model. the probability of a 

potential migrant leaving a zone is expressed as a function of the difference between the utility of the 

decision-maker's origin and the expected maximum utility available from prospective destinations. In the 

second level. termed a destination choice model, the conditional probability of a migrant selecting one of 

the M - 1 potential destinations is expressed as a function of the expected utilities of those destinations. 

The product of the two probabilities is the probability that a given decision-maker will move ITom their 

origin to a destination. This paper focuses on the sub-model of destination choice which is affected by 

zonal aggregation. 

Consider that the M elemental spatial units are combined into L aggregat. units, each of which 

contains AI J , J E {J, 2, ...• L} elemental units. Thus: 

L 

LMJ=M (I) 
J=l 

From the behavioural point of view, one may postulate that individual decision makers process spatial 

information hierarchically (Fotheringham, 1986). The potential for a hierarchical selection process can be 

captured through the nested logit model. The model presented in this section has its roots in the theory 

of the nested logit. Detailed presentation of this theory is to be found in Train (1986, chapter 4) and Sen 

5Many authors have pointed out that in certain spatial choice cOntexts this assumption may lead to model misspecification. For a 

summa!')' of detailed arguments see Thill (1992). 
6This leon was first utilized by Lennan (1975) in the context of intra urban housing choice. 
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Akiva and Lennan (J 985, chapter 10). 

Let Uf represent the utility that decision-maker n perceives at elemental destination j, which 

belongs to aggregate destination J 7. It can be wrinen: 

(2) 

where: 

• F/ is determined by anrk "es which relate to the aggregate alternative J and/or the elemental alter­
native j E {I, 2, ... , MJ} and characteristics of individual n. 

• ,J captures unobserved variation that rela!es to the aggregate spatial unit J. 

• '1 captures unobserved variation that rela!es to the elemental spatial unit j E {1, 2 .... , AI J}. 

A variety of variables are used to define V/. These include anributes which relate only to 

aggregate alternatives such as federal transfer payments to states or provinces, or they may be anributes, 

such as housing prices, which differ among elemental alternatives. The fonner group of an rib utes unifonnly 

affects the choices of all elemental alternatives in an aggregate. Other variables included are characteristics 

of the decision-maker such as age or income. Variables which measure the physical or social distance 

between i and j are also utilized in V/. 
From the perspective of decision-maker n at origin i, Uj is a known quantity which is used to 

evaluate the anractiveness of destinations. From the perspective of the researcher however, Uj is a random 

variable. Thus, each elemental alternative is associated with a random utility variable. Across space, there 

is a level of dependency among the unknown utilities Ujwhich is influenced by relative proximity. This 

dependency is consistent with conceptualizations in spatial statistics. The systematic utility V/ can be 

considered a potential realization of the true utility uj. The assumptions underlying the model discussed 

7The morc proper eXpression U J
1
, is not used in order to maintain notational simplicity. The same applies for the systematic 

Jon 

utility V and the elementaJ error. 
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here are much more restrictive than this conceptualization, 

Assumption I: The random error components ,J and 'f are independent for all J E {I, 2, .. " L} 

and j E {I, 2, .. " M}, 

Assumption I implies three things: firstly, unobserved random components relating strictly to 

aggregate alternatives are independent of each other; seconely. unobserved random components relating 

strictly to elemental alternatives are independent of each other; thirdly. for any aggregate J, its unobserved 

variation is independent of the unobserved variation of any elemental alternative. either within or outside 

J, 

Assumption 2: The random error components 'f, j E {1,2, ... ,MJ
} are identically Gumbel 

distributed with parameters (0, JlJ),where JlJ > 0, for every J E {I, 2, ... , L}. 

The utilities of any two elemental alternatives are identically distributed only if both belong to 

the same aggregate, The mode of all distributions is zero and JlJ determines the variance as discussed in 

detail below. The assumption of a mode equal to 0, is not restrictive since a non-zero locational parameter 

is absorbed into the systematic component V/. 

Assumption 3: For any Gumbel variate, with parameters (O,llJ ), ,Jis distributed in such a 

way that ,J +, is also a Gumbel variate with parameters (0,1') for all J E {I, 2, ... , L}. 

The purpose of assumption 3 is to ensure that the random components of aggregate alternatives are iden­

tically distributed Gumbel variates. 

It is very important to understand at this stage that assumptions I to 3 do not imply that the 

total utilities Uf, j E {I, 2, .... MJ}, associated with elemental alternatives of the same aggregate, are 

independent. In fact, these assumptions imply a positive covariance of total utilities in the same aggregate 

since each total elemental utility shares a random component defined by unobserved variation operating 

at the aggregate level. Actually, given equation 2 and assumption I, for any J E {1,2, ... ,L} and 
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j,k E {1,2, ... ,MJ}: 

(3) 

While the utilities of any two elemental alternatives that belong to the same aggregate have 

the same covariance, elemental utilities that belong to different aggregates are uncorrelated. To put it 

differently, the variance-covariance matrix has blocks of non-zero covariances along the diagonal. The 

correlation coefficient of any two elemental utilities within an aggregate is related to the ratio I~. Since 
I' 

,} is Gumbel distributed with scale parameter I'J > 0 (assumption 2), then Vllr(f;) = ,,2/6(I'J)'. 

Similarly, by assumption 3, ,,2/61'2 = Var(fJ + f;) = Var(fJ) + Var(f;). The last equality is true 

because of the independence of the error terms (assumption I). 

Therefore: 

= 

(4) 

= 
c.ov(Uj. Uf) V J J 

1- ;;;:: = 1-corr(U"Uk ) 

V Var(Uj) JVar(Ut) 

It is important to elaborate on the range of potential values for the ratio ~. The above discussion 
I' 

suggests that the variance of the total utility for any elemental alternative has two components: 

(I) the variability of the random error component (V are ,J)) relating strictly to the aggregate 
alternative in which the elemental alternative is located 
(2) the variability of the random error component relating strictly to the elemental alternative 

(Var('i))· 

The first equality in 4 suggests that I'J depends on the relative magnitudes of uncertainty at the 
I' 
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elemental and aggregate levels and since the denomin.tor is larger than the numerator 0::; Il
J 

::; 18 . 
Il 

It is of interest to discuss the two e.xtreme cases. The largest possible value of 1 is approached 

when Var(,J) is insignificant relative to I'ar«j). In this circumstance, most unobserved variation relates 

to the elemental alternative, not the aggregate. Conversely, the smallest possible ratio of 0, is approached 

when Var('f) is insignificant relative to Var«J). Unobserved variation relating to the elemental alter-

native is strongly outweighed by aggregate variation. In this case, elemental utilities within an aggregate 

are highly (and positively) correlated, sharing the unobserved variation of the aggregate alternative. In 

practical applications, if assumptions I to 3 are valid, it is expected that ~ will be between 0 and 1. 
Il 

Note that this framework precludes negative correlations between elemental utilities since for any given 

aggregate J the random components 'f, j E {l. 2, .. " MJ} which might well contain such effects. are 

considered independent by Assumption I. 

3.2.2 The Model 

We now introduce the behavioural mechanism by which individual decision-makers select a 

spatial unit as a destination: 

Assumption 4: Decision-makers aim to maximize their utility. 

The model derived below assumes :hat decision-makers choose the single elemental alternative 

in the system which is associated with th' highest level of utility. Even if the available data contain 

aggregate choice units. it does not change the fact that choice-makers may well select on the basis of 

elemental spatial units. The strength of the resulting model is its ability to correctly represent probabilities 

at the aggregate level for choice processes which potentially occur at the elemental level. The proof of 

the proposition that follows is an adaptation of the nested logit model derivation. It is reproduced here 

because it makes clear the necessity of the four assumptions introduced in this section. 

J 
81n the strict sense, ~ > 0 because Il J ,J.l > O. This ratio however. can approach zero if IlJ > > p.. 
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Proposition 1: For any J E {I, 2, ... , L} : 

(5) 

Proof: 

The point of highest utility in aggregate alternative J is given by max Vj. There are L 
jE{1.2 ..... MJ} 

such 'utility peaks' in the system. one for each aggregate alternative. By assumption 4. a choice-maker will 

select the elemental alternative corresponding to the highest utility peak. thereby selecting the aggregate 

alternative that contains it. Thus. the choice probability for aggregate J is equivalent to the probability 

that J contains the highest utility peak: 

P(J) = Pr( max vj ~ max Vj'.J' E {1.2 .... ,L} . .I' #.1) 
jE.={I,2, ... ,MJI jE{1.2, .... MJ'1 

(6) 

Substituting 2 in 6: 

P(J) = Pr(,J + max ,V/ + 'j) ~ 
jE{1,2, ... ,AlJ f 

(7) 

J' (J' J')' { } J' ) ,+ max V, +'j ,.I E 1,2, ... ,L, #.1 
jE{l,2, ... ,MJ'1 

Because of assumptions 2, v,J +'1 is Gumbel distributed with parameters (\J/ ' /1-J )". Also. max (V/ + 
jE{1,2, ... ,MJI 

MJ 

1 """ J vJ 'j) is a random variable which is Gumbel distributed with parameters (J In L...c" J ,/1-J),". Finally. 
/1- j=1 

9PrOpeny of Gumbel: if £ is Gumbel with paramcter!- (11, Il), and b is a scalar constant, then (; + b is Gumbel with parameters 

(~ +b.p). 
lOPropc:rty of Gumbel: if £1,£2 .... , £k are Gumbel with parameters (711, II), (112.,l), .. " (11k. Il) n:spcctively. then 

max(£1.£2, ...• £k) is Gumbel with parameters (~In l:~=l eJ~"), Il)· 
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M J 

. J J J. . (1 '" JvJ ) due to assumptIon 3, f + max (V, + '; ) IS Gumbel wIth parameters J In ~ e" ',I'. Thus. 
jE{1.2, ...• MJI Jl j=1 

7 can be written as: 

prJ) = Pr(VJ + foJ ;:: vJ ' + ,oJ', J' E {I, 2, ... , L}, J' # J) 

MJ 

where V J = -; In L e··Jv/ and foJ is Gumbel with parameters (0,1'1. By the theol)' of the multinomial 
I' ;=1 

logit model then: 

Note that equation 5 is equivalent to the marginal probability model of a two level nested logit. 

Were we to employ the full nested logit form. we would complement 5 with the conditional probability 

model which provides a choice probability for an elemental alternative conditional on the aggregate to 

which it belongs. Although the conditional probability model is not utilized, it is important to note that 5 

provides the choice probability of an aggregate as a function of attributes relating both to aggregate and 

elemental alternatives. 

In applications of spatial choice problems, researchers have not conceptualized the utility of an 

aggregate as the utility associated with the point of maximum utility within. As a result, there is the tendency 

to assume that decision-makers consider the mean utility of an aggregate as opposed to its maximum utility. 

This tendency is equivalent to assuming that aggregate spatial units, such as the Canadian provinces. are 

elemental zones. a grossly inaccurate assumption. Under the assumption that elemental alternatives are 
M J 

relatively homogeneous with respect to size, let: VJ 
= ~ J L v,J, J E {I, 2, ... , L}, be the systematic 

;=1 
utility 01 IlI1 aggregate alternative when decision-makers are assumed to consider only the mean utility of 

an aggregate. If elemental utilities are not homogeneous then a weighted average is usually considered. 
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. • At J 

In modelS the systematic utility of an aggregate alternative J is provided by F J = ~ In L e"JI"/. The 
I' j=1 

following proposition manipulates the expression for F J in order to establish its relationship with FJ. A 

general description of this derivation is provided in Ben Akiva and Lerman (1985, chapter 9). 

Proposition 2: 

AlJ 

J ~J IlL J(vJ -J) 1 F =1/ +-In[- e" ,-v ]+-lnMJ 
" J i'viJ " J r 3=1 ,-

Proof: It is sufficient to show that the R.H.S. of 8 equals the L.H$ 

~J 1 1 1 "Al J "JvJ 1 J 
RHS = F +-yln[---=:r'OL...j-le ']+-ylnM 

J.l ellJ v Jl'l - Jl 

-J 1 1 1 1 1 "AlJ"J v J 1 J = F + -y In ---=:r + -y In lv.l J + -y In L...j=1 e ,+ -y In M 
I' ew'v I' I' I' 

= 
Al J 

I """'"' JvJ -ylnL.,e" , =LHSO 
I' j=1 

(8) 

Intuitively, because F J is the expected value" of the maxim"m utility while ifJ is the mean 

utility, one would expect F J ~ ifJ. Equation 8 confirms this to be true. The tenn .!. In M:, which can be 
I' 

interpreted as correcting for the size of an aggregate alternative, is necessarily non-negative since M J ~ I. 
M J 

1 '" (\oJ V'J)] It can also be shown that In[MJ L.,e" " - ~ 0 (Ben-A kiva and Lennan, 1985, p. 257), Hence 
j=1 

the estimate of maximum utility must exceed the estimate of mean utility. The relationship F J = ifJ is 

possible if MJ = 1. In this case, j is an elemental alternative itself and therefore there is no aggregation 

effect. 
MJ 

The term ~ In[ ~ J L e"J (V/ - IIJ)] can be interpreted as measuring the variability of utility 
I' j=1 

within aggregate alternative J. Since t .. ,S heterogeneity term is non-negative, it increases the systematic 

utility of aggregate alternatives which have a greater variation in opportunity. The hel.regeneity tenn is 

llStrictly speaking the ex""cted value is V J + 1., where..., is Euler's constant. but .l. is dropped with no effect on difTcrcncc:s in 
~- p ~ 

utility and hence the choice probabilities. 
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appealing if we consider several aggregate alternatives and their c'stributions of utility. Other things being 

equal. we expect that the alternative whose surface of systematic utility has the largest assortment of peaks 

and valleys is the alternative most likely to contain the elemental alternative of maximum utility. From the 

behavioural point of view. choice-makers seek the elemental zone of maximum utility. The heterogeneity 

term contributes toward the identification of the aggregate zone associated with this utility. A similar 

interpretation is true for the size term. The larger an aggregate alternative the more likely that it will 

contain the elemental alternative of highest utility. Thus. size tends to increase the systematic utility of an 

aggregate alternative thereby increasing the choice probability associated with it. 

3.2.3 The Uncertainty Parameters 

Assumptions I to 3 imply that Vm'(fj) = 7r2j6(/l.J)2 and Var(fJ + f:{) = 7r2j6/l? Because 

Var(,J + fj) > Var(fj) for all J, we have 0< J1. $ min J1.J. The case when J1. ..... a as J1. J 
JE{I.2,oo.,L} 

remains fixed at some positive value is of theoretical interest. It is equivalent to Var(fJ) ..... oc which 

makes the utilities of elemental alternatives that belong in J highly correlated. The systematic utilities 

contribute no information in predicting the probabilities of choosing an aggregate. Hence. in the absence 

of any information all aggregate alternatives are assigned equal probabilities as can be seen from model 5. 

which reduces to P(J) = ±.J E {1.2 •... ,L}. 

Parameter J1.. as in the ordinary multinomial logit model. is not identifiable during estimation. 

With a Iinear-in-parameters systematic utili!) form. the parameters estimated are all multiplied by the 

implicit but unidentified value of J1.. For opcration"lization purposes. analysts restrict J1. arbitrarily to a 

convenient value. usually I. Such an action sets the scale of measurement for the systematic utilities and 

allows identification of the relevant ratios J1.
J

' J E {1.2, .... L}. The total variance of model 5 is fixed to 
J1. 

Var(fJ) + Var(fj) =7r2j6 and 1 =J1. </l/ < 00 for all JE {1,2, ... ,L}. 

Before engaging in further discussion it is useful to examine the relationship between elemen-
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tal and aggregate systematic utilities. It is possible to re-arrange the systematic utility of ar, agg,egate 

alternative J as: 
AI J 

V J = v,J + ~ In(1 + "e~'(I'/-V,;'» 
k p.J L-

Nk 

where V': = max V/. A compatible form for the heterogeneity term His: 
jE{1,2 .... ,M'} 

AI' 
J -J 1 [1 L 'IV' V') H=V, -V +--In-(I+ e~ ,-.)[ 

k ItJ A<[J 
j# 

(9) 

(10) 

One can demonstrate that the second term in the right hand side of equation 9 is non-negative. This implies 

that V J 2: V,:. The estimated systematic utility of an aggregate, therefore, is at least equal to the highest 

elemental systematic utility within it. On th~ other hand, the third term in the right hand side of lOis 

non-positive, implying H ::; V': - V J
• The heterogeneity term of an aggregate. therefore. is at most eG""' 

to the highest individual discrepancy in elemental systematic utility from the mean systematic utility. The 

particular outcomes are dependent on J1. J . 

If J1. = 1, parameters IIJ, J E {I, 2 ... , L} are directly identifiable during estimation. and their val-

ues provide the researcher with important information regarding the employed spatial aggregation scheme. 

Therefore, it is of theoretical and empirical interest to examine the model for the two extreme values of 

(I) J1. J ~ 00 

The variance at the elemental level approaches zero asymptotically: lim V""('1) = O. At the 
I'J _00 

same time lim V art ,J) = ,,2/6. The elemental alternatives in J will be highly correlated since for any 
JlJ _00 

two such alternatives j and j' lim corr(Uj. UJ,) = lim (1- ( ~)2) = 1. At the limit then, the utility 
jJ.J_ oo J jJ.J_oo J1. 

of an elemental alternative j in aggregate J will be Uj = V/ + ,J since '1 is now a constant, absorbed 

into V/. The elemental alternative k of the highest systemati' utility in J can be identified with complete 

certainty to be associated with maximum utility: max U j = max V/ + ,J = V,: + ,J. 
Je{I,2, ,M'} ;e{1,2, ... ,M') 

The systematic utility of an aggregate J attains its lowest value V,:. At the same time, the 
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size tenn in this case approaches its lowest value which is zero, while the heterogeneity tenn approaches 

its highest value H = V,{ - ilJ
. Because of the absence of randomness at the elemental level and for 

a given aggregate, the elemental alternative associated with the maximum systematic utility can always 

be identified no matter how many elemental altematives the aggregate con!~;ps. This is why the size 

tenn becomes irrelevant and disappears. On the other hand, as Il-J gets smaller and uncertainty ,; at the 

elemental level increases, the maximum utility within J, identified by max {>jJ + ffl, is likely 
jE{1,2, .... MJ} 

larger than V,{, which is now only the central tendency of the random variable V,{ + ff. 

In this case Var('fl = ",,2/6 and thus Var(fJ) = O. Also, the elemental alternatives within J 

are perceived by decision make, n. as uncorrelated since, for any pair j and j' of such alternatives, equation 

4 now becomes corr(Uj. U}) = 1 - (:J)2 = O. Consider the event of decision-maker n selecting one 

elemental alternative out of the M J elemental alternatives in aggregate J. We have M J such events. one 

per elemental alternative in J. that are pair wise independent. This adaptation of equation 5 reflects the 

situation: 

Th;< model fonn implies that, if the data allow, elemental units in J can be grouped into aggregates in any 

desirable way. A further implication is that for varying aggregations of the MJ elemental alternatives, the 

same set of estimated parameters could be used. 

Further insight can be gained by examining expression 8 for the utility of an aggregate, which in 

this case anains its highest value. SiI.ce Il- J attains its minimum theoretical value, the size tenn becomes its 

maximum and equal to In MJ. On the other hand the heterogeneity tenn attains its minimum value, which 

according to equation lOis the maximum di,crepancy in systematic elemental utility augmented by the 
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AI' 

non-positive value In[ J\~ J (1 + LeW,' -".:'))1. Intuitively, the size tenn becomes so important in this case 
jf:.k 

because of the large amount of randomness unique to individual elemental alternatives. The identification 

of the maximum utility in this case becomes an uncertain process since many elemental alternatives in .J 

could provide the maximum. Also, heterogeneity in systematic utility becomes rather unimportant since 

the systematic utility is not a good representation of total utility. 

Having discussed the theoretically extreme values of p.J for a given aggregate J, an empirically 

valid question is: what is a large value and how could it be attained in practice? From equation 4 

Var(,J)j Var('f) = (,.,J)2 - 1. Thus, the ratio of aggregate to elemental variance changes with the 

square of p.J. A value of p.J = 10 implies Far(,J) = 99 Var('f). Thus, aggregate variance becomes 

very large relative to elemental variance, which in this case is the almost negligible value 71'2 j600. The 

variances of ,J and 'f are controlled by the independent variables in V/ for aggregate .J and by the imposed 

grouping of elemental alternatives. As is the case with the nested logit model, it would be desirable to 

have p.J = 10 since it implies that we are accounting for sub-aggregate systematic variation very well and 

that the grouping of elemental alternatives is relevant. The results for I,J reflect the possible need for an 

improved specification or perhaps are recognition of the fact that the imposed set of aggregate choice units 

are distorting representation of the elemental choice process. 

Another case of interest is when the maximum systematic utility Vi! is so much larger than all 

other elemental systematic utilities within aggregate.J that no matter how large Var('f), max U/ 
jE{1,2, .... MJ) 

is always provided by elemental option k. In such a case, the estimated value of p.J will tend to be larger 

than the true value and hence upward biased. 

3.3 Asymptotic Spatial Logit Models 

Assumptions I to 4 constitute the foundation of the aggregated logit model. In this sec, ion we 
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demonstrate that when the number of elemental alternatives within aggregates becomes large, then the same 

model can be derived after replacing assumption 2 (Gumbel distributed elemental errors) with a milder. 

behaviourally sound, assumption. This idea was first discussed in Leonardi and Papageorgiou (1992), in 

the context of the multinomial logit model. We first .,olore the nature of the new assumption and then 

we derive the aggregated logit model under the new set of assumptions. 

3.3.1 The Distribution of Elemental Errors 

Gumbel distributed errors in utility is a standard assumption in the derivation of the logit model. 

Besides. its mathematical convenience. Gumbel is justified as an approximation to the normal. No be· 

havioural justification is offered, however, as to why the utility error terms should be normally or Gumbel 

distributed. The asymptotic theory of extremes provides the possibility of replacing assumption 2 with 

another which is less restrictive. We shall think of errors as arbitrarily large. Beyond a cenain boundary 

C all errors obey the following: 

Assumption 2.1: For all 'j, j E {1.2, ... M J } : 

Pr( f; 2: x + c I ,; 2: c) = Pr( ,; 2: x) 

for all x > C and c 2: a 
(II ) 

Because C can be arbitrarily large, condition II can be thought of as referring to the right tail 

of the distribution of errorsl2 . Thus. condition II implies that if an error term is shifted by adding to it 

an arbitrary non·negative number, the distribution of its right tail remains unaffected. Equation 2 implies 

that a constant added to ,; can be absorbed into the systematic component of utility V/. In light of this, 

assumption 2.1 requires that adding a constant to the systematic component of utility does not affect the 

shape of the right tail of the corresponding error. To put it differently, no matter at what point on the line 

12Thc idea of the memoriless property holding for the right tail of the error distribution was suggested by an anonymous referee. 
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of real numbers the analyst starts measuring systematic utility. it is required that the distribution of right 

tail of errors remains unchanged. 

Equation II is known as the lack of memory property. For a random variable X ;:: 0 that 

represents the life length of an object or being. we say that X does not age (or lacks memory) if. given 

that the object lived c time units. the probability of its lasting for another x time units is the same for any 

c. Equation II is equivalent to: 

Pr(fj;::x+C) J 

Pr(fj ;:: c) = Pr(fj ;:: x) 

or 

or 

1 - F(x + co) = [1 - F(x)[[1 - F(c)] ( 12) 

The exponential distribution. which is a special case of the r distribution. has the lack of memory 

property. For.>.> 0 it is defined as: 

F(x) = Pr(X < x) = 1 - e-" /07' x> C (13) 

It is straightforward to verify that 13 satisfies 12. It is also possible to prove the inverse. that is. any 

distribution that satisfies 12 is an exponential distribution. Here we simply state the proposition. a proof 

of which is provided in Galambos (1978, pp.3I-32). 

Proposition 3: If the random variable X ;:: 0 has a continuous, nondegenerate distribution 

function F(x) that satisfies equation 12 for any x ;:: 0 and c;:: 0, then F is exponential as in 13 with 

.>. > O. 
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The above discussion suggests that assumption 2.1 is a necessary and sufficient condition for 

the right tail nf'f, j E {l, 2, ... M J } to be exponentially distributed as in 13 for any aggregate.1. Random 

variables (V/ + 'f), j E {l, 2, ... M J } share the same property and their distribution is a' follows: 

Notice that for every elemental alternative j E {l, 2, ... M J } within aggregate J there is a different 

distribution Fj • All distributions have arbitrary shapes. except that they are identical as far as the shape of 

their right tail is concerned. Furthermore. this shape is negative exponential. The fact that discrete choice 

theory emphasizes the distribution of maximum utility. highlights the interest placed here on the right tail 

of the distribution of errors. 

3.3.2 The Relaxed Aggregated Spatial Logit Model 

Assumption 4 requires that decision-makers compare aggregate alternatives on the basis of 

the peak of elem~ntal utility in them. For alternative .J the peak is expressed as lIlax Uj = 
JE{I,2 .... MJ} 

max (V/ + ef + eJ ) = eJ + max (V/ + 'f). We shall demonstrate that under assumptions 
jE{I,2, ... MJ} jE{I,2 .... MJ} 

I and 2.1 for any aggregate .J the normalized random variable. max J (V/ + 'j) tends to become 
JE{I,2, ... M } 

Gumbel as M J becomes large. 

Let ZMJ = max (V/ + eJ ). Normalization of ZMJ entails the formation of a random 
jE{I,2, ... MJ} J 

variable (ZMJ - aMJ )/bMJ, where aMJ and bMJ are sequences of constants dependent on MJ. In 

mathematical terms, we wish to demonstrate that lim (ZMJ - aMJ )/bMJ is a Gumbel variate. Because 
hf J _-Xl 

Fj , j E {l, 2, ... M J } are independent: 

(IS} 

In light of equation 15, our objective is to identify the sequences aMJ and bMJ, and to demonstrate that 

for those sequences the right hand side of 15 tends to the double exponential function as M J goes to 



infinity. This task can be accomplished with the help of the following proposition. 

Proposition 4: 

MJ 

< II Fj(x) 
j=1 
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The proof of this proposition is rather elaborate .cd is provided in the appendix to this chapter. 

Obviously. the double exponential, which is the functional form of the Gumbel distribution. provides an 

upper limit for the distribution of the maximum. A close examination of the inequalitios in proposition 4. 

not only provides a solution to the problem at hand, but it also suggests ways for the specification of aMJ 
M J 

and bMJ. Ifone specifies aMJ and bAtJ in a way that the limit of _>.l(UMJ +bh/Jx- >.~ In L.,J\,/) 
j=1 

At J 

exists and is finite. while at the same time Z=(e-,\J(U MJ +bMJ X-V/))2 tends to zero as AIJ goes to infinity. 
j=1 

then the asymptotic distribution of the maximum is indeed Gumbel. 

Obvious selections for aAtJ and I'MJ are: 

M J 

1 '"' .\JvJ 1 
aAtJ = Al In ~. 'and bMJ = Al 

J=1 

(16) 

Forthese selections we have -Al(aAtJ +bMJX- :1 InL:~:~ .,Jvl) = -x that does not vary with Ml. 

hl J 

We now demonstrate that L(c-,J(0"J+b" . .x-V/))2 becomes arbitrarily small as Ml becomes large. 
j=1 

Observe that aMJ > V/ for all j. Thus, a~t' > vt =. max V/ Also note that aMJ increases with 
,E{l,2, .. MJ} 

M 1 since new positive terms are added to its summation as J is split into increasingly smaller elemental 

alternatives. For a suitable value of x then ._,J (o"J+b"J%-V,;') < JI~ J' Forthis value of x this inequality 
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holds for all j. Therefore: 

These inequalities make the point. To gain further insight consider aM' at the limit. Elemental 

alternatives at the limit become points with coordinates (y, =). Let AJ be the collection of all the points 

(y,z) that make up J. Then VJ(y,z) for all (y,z) E AJ represents the surface of systematic utility over 

J. We now have: 

. 1 11 "V'( .) hm aM' = 'J e y.- dyd= 
/LfJ -'X ...... (y,:)EAJ 

The definite integral in the right hand side represents the volume between AJ on the (y,=) plane and the 

functional surface represented by e"\·'(Y.,). Clearly at the limit aM' becomes so large relative to V,I. 

the point of maximum utility. that e-.\J(o...,J+bMJx-V;) < A:J is true fm any x. 

What we have shown is that for large AIJ 
: 

This equation means that for large MJ, (ZM' - aM' )jb", is approximately Gumbel distributed with 

parameters (0,1). Let us assume that AIJ is large enough so that (ZM' -aM' )jbM" can be considered. for 

all practical purposes, Gumbel. ",ccording to the property of Gumbel (footnote 9) ZM' is also Gumbel with 

parameters (aM', IjbM,). This is equivalent to stating that for a suitably large AIJ lIlax (V/ + (1) 
jE{l,2, ... MJ} 

At' 
is Gumbel with parameters (>.IJ In L e"V,', >.J). Recall from the previous section that when '1, for all 

1=1 

j, are Gumbel distributed with parameters (O,J.LJ
) then. J max , (V/ + (1) is always Gumbel with 

JE,1,2 .... M } 

At' 
parameters (~In L e"'V,', J.L J ) irrespective of the size of MJ, The similarity between >.J and J.L J is 

J.L ;=1 

also obvious. Note that assumption 3 still holds so that asymptotically the total error for an aggregate is 

Gumbel. Furthermore. all the properties of the aggregated logit model discussed in section 3.2 hold for 

arbitrarily large M J • 
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3.3.3 Other A<;ymptotic Models 

Relaxing the assumptions of the aggregated model has clear theoretical significance and allows 

one to gain further insight into the model. The question aris.s whether the relaxation of assumption 2 has 

any practical significance. The asymptotic theory of extremes is rich in results. Different combinations 

of conditions for distribution F and specifications for the normalizing paramelers aMJ and bMJ lead to 

different types of models that can be useful in practice. An example of this is the set of models discussed 

by Kitamura et. al. (1979), one of the very few papers that deals with spatial aggregation in the context of 

discrete choice models. It is worth explaining further the contribution of this paper, using the mathematical 

nOlation introduced here. 

Kitamura et. al. (1979) fir.t deal with the aggregated logit modol except that V ar( ,J) = 0 

for all J. This is the equivalent case of pJ = 1. Thus, elemental utilities are independent even if they 

belong to the same aggregate alternative. The error terms of elemental utilities are assumed to be normally 

distributed. while the normalizing parameters are defined as: 

aM' = VJ + ~Var(V/)(2InMJ)! + (2InMJ)~ 

(2InMJ)~ 
bAt' = 1 + !Var(V/) 

where V ar(V/) is the variance of the systematic elemental utilities within aggregate J. Under these 

circumstances one can prove that the maximum of elemental utiHties within an aggregate J is an extreme 

value distributed random variable with parameters (aMJ,bMJ) (Galambos, 1978, pp.65). 

In this case aMJ. being the mode of the distribution, is the representative utility for aggregate 
M J 

J. The equivalent form in the aggregated logit model is VJ = In L eV/. The relationship between aM' 
j=1 

and VJ can be seen if one expands the latter into a second order Taylor series around the mean V
J 

as 
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McFadden (1978) has done: 

vJ ,., vJ + ~Var[V/l + InMJ (17) 

In fact, McFadden (1978) has demonstrated that if elemental systematic utilities within aggregates arc 

norm.lly distributed then the right hand side expression of 17 is an asymptotic representation of V J
. By 

direct comparison of 17 with 8 the above statement implies that the heterogeneity term is asymptotically 

equal to ~ Var[v/l. Thus. the heterogeneity term is directly linked to the variance of the systematic utilities 

in an aggregate. 

Comparison of 17 to the expression for aMJ clearly reveals the differences in the way utilitJ is 

calculated for the two models. The most important difference, however. is in the scale parameters of the two 

models. In the case of the Gumbel elemental alternatives, the scale parameter /' remains unaffected with 

maximization, meaning that the aggregate ulJity has the same scale parameter as the elemental utilities. 

Increasing the number of elemental alternatives has no effect on the scale parameter. In contrast, the model 

with no:mal elemental utilities is associated with aggregate utilities that have scale parameter IIMJ which 

increases with the size of aggregate J. But we know that the variance of a Gumbel variate is inversely 

proportional to the square of its scale paramet"r. Therefore, in this case the variance of an aggregate utility 

decreases with the size of the aggregate. 

Despite this nice asymptotic property of the aggregate utility, the model assumes no aggregate 

variance and thus Zero covariance between elemental utilities that belong to the same aggregate. Attempts 

to extend the model in this direction by Kitamura et. al. (1979) led to the probit model with its known 

computational problems during estimation. 

The aggregated logit model was first introduced by Lerman (1975). He actually used a first 

order Taylor series expansion of VJ around its mean V
J 

: 
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Through his ana;};is he acknowledged the existence of the heterogeneity term but he found the size term 

to be more important in practical applications. McFadden (1978) is responsible for deriving the form of 

the model with the heterogeneity term. 

Leonardi and Papageorgiou (1992) used the asymptotic theory of extremes in a different context. 

They contend that the assumrtion of the Gumbel distributed errOr terms in a multinomial logit model of 

location choice has no behavioural significance. Instead variations of the multinomial logit model can 

be derived by assuming that individuals associate a particular cO;Jsumption bundle with every location. 

Individuals arrive at a consumption bundle through a large number of trials each of which is associated 

with an error obeying an assumption such as 2.1. Thus, their derivation bears some similarity '0 ours. 

3.4 Conclusions 

This paper has proposed the notion that a fundamental spatial effect in models of destination 

choice is a direct result of zonal aggregation. Such an effect results from the fact that the potential 

destinations in a choice set are invariably aggregates of the zones perceived by choice-makers. Deri"ation 

of the aggregated spatial logit model makes use of the theory of the nested logit model. Furthermore, we 

demonstrated by invoking the asymptotic theory of extremes that when the number ofeiemental alternatives 

in aggregate zones becomes large then the assumption of Gumbel distributed error terms, inherent in any 

logit model, can be replaced with a more behaviourally sound assumption. 

The crucial assumption that is necessary for the derivation of the model is the independence of 

error terms. The formulation of the model allows error terms associated with elemental alternatives that 

belong to the same aggregate to be correlated and the level of correlation to vary between aggregates. This 

is in contrast to the multinomial logit model, where all error terms are uncorrelated. To put it differently, 

the multinomial logit model has a diagonal variance-covariance matrix of error terms while the aggregated 



88 

logit model allows certain blocks of the matrix correspondillg to elemental zones withm the same aggregate 

to have non·zero covariance. 

With respect to the structure of the variance-covariance matrix. the aggregated logit model 

is more restrictive than the model proposed by Ben-Akiva and Bolduc (1991). This loss in statistical 

generality is balanced by the gain in theoretical insight. The /1/, J E {I, 2, ... L} p=neters that were 

extensively discussed in this paper are similar to the autocorrelation coefficients in autoregressive models. 

Their significance. however, as demonstrated in this paper. is more important than merely conveying 

information on the spatial dependency of utility. Furthermore, the Ben-AkivaiBolduc formulation leads to 

the probit model with its known computational problems. given the typically large choice sets encountered 

in practical spatial choice problems. Thus. the aggregated spatial choice model combines a theorel1"ally rich 

formula::':n with computational tractability. In terms of the structure of its error term variance-covariance 

matrix, it strikes the middle ground between the multinomiallogit model and the Ben-AkivaiBolduc model. 

An estimation procedure for the aggregated logit model is discussed in Chapter 5. Although the 

performance of the aggregated model relative to the multinomial logit model is assessed extensively with 

simulated data in Chapter 4, there is a need to evaluate the model in real world applications. An initial 

artempt in this direction is taken in Chapter 6. More empirical work with Canadian interprovincial migration 

data is presently under way. Also, the asymptotic model derived here is viewed as an initial attempt to 

derive spatial choice models under different sets of assumption. More specifically, a possible development 

is the derivation of asymptotic models where the assumption of independence of errors between aggregates 

is relaxed. 

3.5 Appendix to Chapter 3: Proof of Proposition 4 

The proof of proposition 4 follow~ the ideas developed in lemma 1.3.1., theorem 1.3.1. and 
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corollary 1.3.1. of Galambos (1978. pp. 10-15). Those propositions are general for the maximum of 

independent and identically distributed random variables. In proposition 4 we deal specifically with the 

maximum of exponential distributions which are independent and identiclily distributed but which differ 

with respect to !he location parameter as shown in equation 14. 

Proposition 4: 

MJ 

< II Fj{x) 
j=1 

Proof: 

For the right hand side inequality we need to establish: 

But this is equivalent to: 

Al J 
J -'- ,~.vJ 

At} -l. (%-~In~£ J) MJ 

'" ,JI vJ) J=I L.. 1n(1 - e- X-,) < -e '"'" _>.,Jlx_V,J) =-L.J€ , 
j=1 j=1 

which will be true if: 

In(1- e-,Jlx-V,') < ·_e-,Jlx-v/) for all j E {1, 2 • ... M J } 

But the inequality In(1 - z) < -z is true for every 0 < z < 1. It is then sufficient to observe that >/ > 0 

and x > \jJ which leads to 0 < e-,Jlx-V,') < 1. 
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For the left hand side. let us stan from the inequality = In\=) > =-1. which is true for 0 < = < 1. 

Set z = 1 - e->'(,-v/). Then. for every j E {I. 2 • ... l\f J }: 

(1 ->'(,-V'»)I (I ->'(,-V'») ->'('-\'.') -e J fa -e J >e J 

Thus: 

Or: 

This inequality can be re-arranged as: 

Observe now that: 

M" 

< II(I- e->'(x-"/») 
j=l 

- II 

,,' 
~ _2"J~ .. _\,JI 
2~~ J 

< (~ J~ I 

This is because -In(1 - e->'(x-"/») < 2e-"('-v/). The result follows from the observation that: 



Chapter 4 

Utility Va:-iability Within Aggregate Spatial 

U nits and its Relevance to Discrete Models of 

Destination Choice 

4.1 Introduction 

In this chapter, we examine a logit model (the a"gregated spatial logit) designed specifically 

for spatial choice among aggregate destinations. Typically, the logit and gravity models are applied to 

problems of spatial interaction without due consideration for the aggregation scale of the data. There is 

of course a general awareness that models estimated at different levels of aggregation will yield different 

parameter estimates but most researchers proceed directly with their analysis at the aggregate level and 

make no adjustments. Research on aggregation issues has been intertwined with work on the 'modifiable 

areal unit problem' (MAUP). Research on MAUP examines how spatial statistical models and diagnostics 

are affected by the aggregation scale and spatial configuration of spatial units. Choice processes per se, 

as are present in all problems of spatial interaction, are not specifically addressed in this body of research. 

Rather the focus is on the univariate or bivariate spatial processes associated with one or two spatially­

referenced attributes (Arbia, 1989; Openshaw, 1984). Aggregation issues are relevant in both scenarios 
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but as will be illustrated in this paper, the theoretical framework to accommodate aggregation in a choi". 

context is quite different from that considered in analysis of the modifiable areal unit problem. 

From the perspective of geographers and regional scientists, the study of aggregation in the 

choice context has been confined mostly to work on the gravity model (Bany and Sikdar. 1982a. 1982b. 

1982c,1982d; Webber, 1980; Schwab and Smith, 1985; Putman and Chung. 1989; Amrhein and Flowerd.w. 

1992). Most research on aggregation in discrete choice modelling has been done by those outside these 

fields (Kitamura, 1979; McFadden, 1978) and is not widely applied by practitioners in the spatial sciences. 

Given the work by Anas (1983) on the strong similarity between the gravity and logit models, the insights 

gained from the work outside regional science and geography need to be understood and further developed 

in the spatial contex!. 

It is interesting that most contemporary work in spatial interaction modelling has tended to 

focus m: spatial substitutability and structure effects as the primary contributors to model misspecification 

(Griffith and Jones. 1980; Fotheringham. 1981. 1983; Haynes and Fotheringham. 1990; Borgers and 

Timmerman" 1987; Lo, 1991), often not recognizing the fact that the choice process is typically not at 

the same aggregation level as the data. Problems of substitutability among alternatives can often be solved 

with alternate aggregation schemes but aggregation biases cannot be eliminated through accounting for 

substitutability. As was pointed in Chapt.er 2, however, it is debatable whether much of this contemporary 

work has really gotten to the core of the substitutability problem. Fortunately, the framework described 

nere is capable of addressir.g each of these issues. 

In the practical terms of a choice problem, interaction data are often available only at the level 

of aggregate spatial units and in other cases, the inter.-tion data are so disaggregated that the number of 

spatial units involved would be prohibitively large. In either situation, the researcher is presented with a 

problem whereby the spatial choice units of the model lre more aggregated than those likely evaluated in 

reality by choice-makers. Considering the spatial aggregation of the data to be exogenous then, and not 
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necessarily optimal. how should a researcher correctly go about representing the utility of aggregates and 

obtaining appropriate parameter estimates? 

The central premise of this chapter is that to succeed in this objective it is necessary to account 

for utility variability within aggregates. In a study of inter-regional migration. for example. it is unlikely 

that choice-makers value each point within a regien equally. However. when the ordinary multinomial 

logit model is applied to a regional choice set. this is exactly what is assumed. All variables employed 

in the model are some form of regional avemge implying average regional utilities. Alternatively. it is 

possible to employ variables measured at the sub-aggregate level and then represent utility at a finer level 

of resolution. Using such an approach. a theoretically appealing aggregated model can be derived which 

postulates the utility of an aggregate to equal the point of maximum utility within the aggregate. While 

the choice data for spatial interaction are often aggregated over space and across decision-makers. there is 

no need to compound the problem by utilizing spatially aggregated explanatory variables. 

It is interesting to note that work in spatial econometrics has not found common ground with that 

of spatial choice analysis. particularly when aggregation is an issue. Typically. discrete choice models have 

found favour with spatial econometricians in studies utilizing a categorical spatially-referenced dependent 

variable. The problem is normally binary. with the alternatives being non-spati,1 since they usually represent 

some attrillute whiCh can be measured over space. and the model is typically statistical rather than being 

a manifestation of choice theory. Such a stud} is that of McMillen (1992) who employs a probit model in 

the examination of crime rates as a dependent variable. In a similar vein. Bolduc et al. (1989) examine 

issues such as spatial autocorrelation and heteroskedasticity but in the context of mode choice where the 

decisions of travellers are seen to be dependent on location. These examples are to be contrasted with the 

model in this chapter. which is clearly a choice model whose alternatives are mUltiple spatial units. Just as 

spatial econometric techniques apply to the work of McMillen and Bolduc et al.. they are of interest in the 

context of spatial choice but it must be recognized that such analysis is made more complex by the fact 
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that the number of alternatives is large~ that a heterogeneous population is choosing among these spatial 

units, and that issues of aggregation are present. In this chapter, we present a model which addresses the 

effects of aggregation elegantly but is less effective in accounting for complex spatial dependency. 

This chapter is clvided into five main sectior.s. !n the second section to follow. we summarize 

the theoretical basis for the aggregated model and provide necessary background information. In the 

third section, a basic estimation procedure is outlined and differences with the estimation of the ordinary 

multinomial logit model (OMNL) are stressed. In the fourth section. the specitication of the model 

when data are highly aggregated across choice-makers is contrasted to micro-data specifications. These 

specifications are then tested in a controlled environment. More specifically, the performance of the average 

utility model is compared with that of the maximum utility aggregated model when the utility heterogeneity 

of aggregates is systematically altered. In the concluding section. some synthesizing remarks arc otlcred 

with a view toward future work. 

4.2 Theoretical Background 

In problems of spatial choice. the study area is typically divided into zones necessitated by the 

available interaction data or by practical considerations which dictate that the aggregation level must be 

manageable. The resulting aggregate choice set does not necessarily correspond to the zones perceived by 

individual choice-makers in the spatial choice process. Usually. decision·makers will 'perceive' a more 

disaggregate zonal system composed of alternatives which are termed elemental. Although in reality the 

perception of elemental alternatives and hence the definition of individual choice sets may change with 

the characteristics and the origin of the decision-maker (Thill, 1992; Tardiff, 1979), it is assumed here that 

all choice-makers perceive the same zonal system on average. In practical models of spatial choice then, 

the problem of aggregation is always present where zonal systems are imposed. The particular model of 
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spatial choice examined below is the multinomiallogit (OMNL). Theory indicates that the use of aggregate 

choice units necessitates the introduction of corrective size and heterogeneity terms which modifY utility. 

'Size' refers to the number of elemental alternatives within an aggregate and 'heterogeneity' is a measure 

of the variation of elemental utility within that aggregate. 

The aggregated model in its most ba,ic form dates to the work of Lerman (1975). In a problem of 

intra-urban housing choice, Lerman showed that the utility of an aggregate spatial unit depends on its size. 

Simulations illustrated that his model was unsatisfactory when aggregates were heterogeneous, suggesting 

the incorporation ofa variance term in the utility of the aggregate. McFadden (1978) devised the improved 

theoretical framework which provides the necessary size and variance effects. Other things being equal, a 

heterogeneous aggregate alternative is more likely to contain a utility peak than a homogeneous aggregate 

and therefore will be more attractive to choice-makers. The heterogeneity term captures this effect and 

upgrades the estimated utility of heterogeneous aggregates, unlike the OMNL. 

With this background in mind, we now briefly outline the theory behind the aggregated model 

in the context of inter-regional migration. A more comprehensive theoretical discussion was provided 

in Chapter 3. The focus below is on means to model the process of destination choice where potential 

migrants have already made the decision to move. Consider that the study area is divided into M elemental 

alternatives. These are the actual spatial units which the typical migrant considers as potential destinations. 

Assume that the M spatial units are combined into L aggregates, each of which contains M J , J E 

{I, 2, ... , L} elemental units. Thus: 

L 

).MJ =M 
~ 

(I) 
J=1 

Given that individual n has decided to depart origin i, their utility for prospective elemental 

destination unit j within aggregate J is: 
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UJ _ vJ J 
ij" - i;n + fin + (ijn (2) 

where: 

• v';n is a deterministic component expressed as a function of attributes which relate to the aggregate 
alternative J, the elemental alternative j E {1,2 ..... 1HJ } and characteristics of the choice-maker. 
Physical and social distance variables between i and j are also utilized. 

• fin is a Gumbel distributed random component that captures unobserved variation relating to the 
aggregate spatial unit J. 

• fiin is a Gumbel distributed random component with parameters (O.I,J) that captures unobserved 
variation relating to the elemental spatial unit j E {l. 2 .... , MJ}. 

The fi,n terms are independent of each other within and between aggregates and are also inde-

pendent of the fin terms. The ftn terms are themselves assumed independent of eJch other. Funhermore. it 

is assumed that fiin +,tn are Gumbel variates with parameters (0./-,). In essence. these assumptions imply 

that the total error ';'n for an elemental alternative is the sum of two independent component errors. All 

utilities of elemental units within aggregate J share the same component 't., implying that the utilities of 

any two elemental units within the same aggregate are not independent. As is the case with many spatial 

econometric models. contiguity implies similarity. Of course in this context. contiguity is defined by an 

elemental alternative having a neighbour within the same aggregate. and the similarity evolves from a spa-

tial process which determines utility. While there is a positive correlation between intra-aggregate elemental 

utilities. inter-aggregate elemental utilities are uncorrelated in this model. 

In addition, the assumptions imply that elemental errors within the same aggregate are ho-

moskedastistic. which is potentially restrictive. Meanwhile Var('iin) is allowed to vary across aggregates. 

hence accommodating heteroskedasticity to some extent. In a context other than spatial choice, McMillen 

(1992) has examined the issue of heteroskedasticity over space in probit models. 

Since choice-makers are hypothesized to seek the elemental ZOne within an aggregate which 
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provides maximum utility. this zone's estimate of utility in effect determines the utility of the aggregate: 

Ui~ = ffn + max (Vi1n + fijn) 
jE{1.2 •...• MJ} 

(3) 

where the maximization term is a Gumbel variate with parameters 

(~ In ~ exP(IlJV;fn), IlJ) . 
Il j~l 

The first expression defines the mode of the distribution (which is interpreted as the aggregate systematic 

utility) and the second term is a scale parameter which is inversely proportional to the variance of the 

utilit) distribution. We can represent the choice probability of an aggregate in the general format of an 

ordinary multinomial log it which is also the expression for the aggregated model: 

exp [ IlJ In ~ exp (IlJV;lnl] 
Il j~l 

Pn(J) = 

t, exp [:K In ~ exp (IlKV;{<nl] 

(4) 

In this expression, Il J is related to Var«'in) while Il is related to Var«'in +<tn)' the combined uncaptured 

variation of strictly aggregate and elemental utilities. Note that IlJ is allowed to vary across aggregate 

alternatives, possibly being unique for each aggregate or unique for a subset of aggregates. The model 

is thus sufficiently general that the distribution of unobserved elemental variation is permitted to differ 

across aggregates. As a by-product of estimating maximum utilities, the proposed model yields estimates 

of elemental utilities within the aggregates. 

The ratio III IlJ is critical to the theoretical interpretation of the aggregated model and can be 

viewed as an overall measure of the correlation of elemental utilities within aggregate alternatives. We 

assume that elemental utilities within the same aggregate are positively correlated but that those between 

aggregates are uncorrelated. The correlation is assumed to result from common unobserved variation (Etn) 

of the aggregate which they share. not from correlation among <'in. j E {l, 2, ... , MJ}. It is clear that 
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these assumptions will prove problematic on any occasion when there is high correlation in utility between 

two elemental spatial units belonging to different aggregates. Similarly, the utility dependency between 

pairs of elemental alternatives within the sam. aggregate may v3/)'. Such violations of assumptions may 

require redefinition of aggregate units if possible. 

Irrespective of the definition of the aggregates, it is possible to show that: 

J!:... = Var(',j,,) = Jl- corr(U.J. ,UJ ) 
II J V ar(f" + f.f ) 11" 1kn 
/"'" I]" tn 

(5) 

One value applies to all pairs of elemental alternatives which belong to the same aggregate. If the 

correlation tends to become high then /1-1/1- J ~ 0, while 1111,J ~ 1 as the correlation becomes low. 

Estimation procedures allow for the identification of the ratio /1-1I1J , J E {I, 2, ... , L}, but not the true 

values of its components. Without loss of generality though. the convention /1- = 1 is typically adopted. If 

the unobserved elemental utility variation within aggregate J is small relative to the unobserved variation 

shared by all elemental alternatives within J. then /1-J is large relative to /1-, implying highly correlated 

total utilities among the elemental alternatives in J. In this case. the estimate of the expected maximum 

elemental utility corresponds closely with the largest of the elemental utilities predicted by the model. 

Conversely, if unobserved elemental variation is relatively large implying uncorrelated elemental utilities. 

then there is a lot of uncertainty with respect to the true levels of strictly elemental utilities. Given the 

individual expected values of Gumbel variates, the expected value of their maximum will be larger the 

greater the variance of the individual Gumbel variates. lt is this principle which upgrades the estimate of 

systematic utility for an aggregate which contains a set of elemental alternatives with uncertain utilities. 

In the context of the definition of aggregate alternatives, it is desirable that /1-1 /1-J ~ 0 as this 

implies that there is little uncertainty at the sub-aggregate level and that similar elemental alternatives form 

the aggregate. The factors affecting the choice of an aggregate are also a good representation of the choice 

behaviour at the sub-aggregate level. If the ratio is close to one, the implication is that the individual 
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elemental utilities are not being modelled very well within that aggregate when only the aggregate choice 

behaviour is used to estimate the model. 

If econometric estimation yields a value of I'/I'J outside the range (0, 1J then the result indicates 

a violation of assumptions or a poorly specified model. In practice, the ratio is often found to be greater 

than one indicating that elemental utilities are assigned a very large variance. Such a violation of theory 

has the effect of upgrading the utility of that aggregate and reducing the variance of elemental systematic 

utilities. It makes no theoretical sense however to increase the elemental variance beyond the total variance 

established by I' and thus an improved model specification is desirable. Similar conclusions apply for an 

estimated negative ratio, although such an event is rare in practice. 

Clearly, the behaviour of the ratio of scale parameters is critical to the interpretation of the 

model. The estimates of other explanatory variables as well as the goodness-of-fit of the model is very 

much related to the estimates of these ratios ,,:ross aggregates. These issues are s',fficiently important that 

their detailed discussion and analysis are reserved for future work. In this paper, the focus is on contrasting 

the performance of OMNL with that of model 4 when I'/I'J is given exogenously. 

It is important to understand the composition of the expected maximum utility for an aggregate 

alternative. Through algebraic manipulation. it is possible to show that the initial model in 4 can be wrirten 

as: 

p .. (J) = _""P [V;~l 
L 

L exp [V;~l 
K=l 

(6) 

-J I' [1 ~ (J _J)] I' J = I' \'in +J In AIJ L." exp I' (V;jn- V in ) + J InM 
I' ~l I' 

With I' = 1, note that the expected maximum elemental utility from the set of elemental al-
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ternatives in an aggregate (i.e. the systematic U[tility of thA~}ggregate) can be broke]n into a mean utility 

effect: V; .. a heterogeneity effect: (I/JlJ) In (l/MJ) L exp (JlJ (V;j"- V;"») ,and a size etTect: 
J=1 

(I/JlJ)lnMJ. In contrast, the OMNL utilizes only the mean utility term. However. the predicted mean 

utility with the OMNL will be different from that predicted by the prDposed model since the parameters 

estimated will be dependent on the presence of the additional corrective terms. The size effect is con-

~tant across decision-makers and is self-explanatory. The heterogeneity effect varies across choice-makers 

and aggregates and, as mentioned earlier. is a measure of the variability of elemental systematic utilities. 

Typically, the correction from the size effect will be larger than that of the heterogeneity etTect (Lerman. 

1975). 

A condensed form of 6 is also intuitively appealing: 

p"(J) = L [M" ] 
-K 1 K.-K L exp V in +1< In L exp (It (V,kn- V in ») 

K=1 Jl k=1 

(7) 

where the convention Jl = 1 has been used in this expression. The size and heterogeneity terms from 

6 are combined to form a term which measures the expected maximum deviation from the mean utility 

of aggregate alternative J. From the latter term it is easy to extract the heterogeneity and size etTects 

for each choice-maker and aggregate alternative since the size effect does not vary across choice-makers. 

Equations 4.6 and 7 are simply different ways of expressing the aggregated model, each of which makes 

different aspects of the model clear. Since in this chapter we are particularly interested in the heterogeneity 

of aggregate spatial units, the aggregated model as represented by these equations will be identified with 

the acronym HETRO. 

It is important to emphasize at this point that the mean utility term in 6 and 7 differs from mean 

utility as typically represented in applications of the OMNL. The V;" term is assumed to be the simple 

unweighted average of the constituent elemelltal utilities. By extension, this implies that the attributes 
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of aggregates are taken as the unweighted averages of the attributes measured at the elemental level. In 

practice, the attributes measured at the aggregate level and applied to represent the utility of aggregates in 

the OMNL are weighted averages of the contained elemental attributes. Typically, the aggregate averages 

in this context are weighted by the populations associated with individual elemental alternatives as would 

be the case with economic variables such as wages. With the exception of a perfectly even population 

distribution, the unweighted average of attributes relevant to 6 and the weighted average of the OMNL 

will not be the same. Of course for variables which cannot be related to choice-makers, such as climatic 

attributes, the concopt of a weighted average makes little sense. This discussion highlights another potential 

difficulty with the OMNL. namely that the elemental alternatives which contribute most to some weighted 

average of appropriate variable types may not be the ones which provide the likely point of maximum 

utility for a given choice-maker. 

To conclude this section . it should be mentioned that to the knowledge of these authors, no 

empirical study has utilized the heterogeneity and size effects in the manner advocated abovel3. In the 

ccntext of a full nested logit model of housing choice. Fischer and Aufhauser (1988) do acknowledge 

the presence of a heterogeneity effect in the choice of dwelling units within census tracts. They do not 

acknowledge though that the same idea also applies to the higher levels of their model where the spatial 

units are more aggregated. For that matter. it does not seem widely known that the theory behind HETRO 

transcends the field of intra-urban housing choice and that there is a heterogeneity effect to be considered 

in any spatial or non-spatial choice problem where the alternatives are aggregations of perceived elemental 

alternatives. The approach seems particularly applicable in problems ofinter-regional choice such as human 

migration or industrial location. 

13Since the paper on which this chapter is based was first wri~n. papers have been found. such as Parsons and Needleman (1992) 

which COme closer to the form of the aggregated model. These are discussed in detail in Chapter 2. Nevertheless. the statement 

made hen:. to the best of our knowledge, remains valid. 



102 

4.3 Estimation of the Maximum Utility Model 

In this section the estimation procedure for HETRO is outlined. Also. distinctions with the 

estimation normally used for the OMNL are highlighted. The proc,dure established in this section is 

utilized in the simulations which follow. 

The likelihood function for L aggregate zones and N observed choice-makers is: 

N L 

C(f3, Il) = II IT Pn(J)Y'" (8) 
n=I )=1 

where: 

• {3 is a vector of parameters that enter the systematic utility Vdn 

• Il is a vector of parameters representing (Jl', Jl2, ... , JlL) 

• YJn is a dummy variable defined as 1 when decision-maker 11 is observed to choose aggregate .1 and 
o if not 

The log-likelihood function is: 

N L 

C({3, Il) = L l:>Jn In P"(J) (9) 

n=lJ=l 

A suitable estimation procedure must identifY the values of (3 and Il that maximize C({3,Il). Endogenous 

estimation of Il complicates the estimation procedure considerably. Since the focus of this paper is not on 

estimation, it is accepted that the values of Il are specified exogenously. Discussion on their endogenous 

estimation is reserved for Chapter 5. Bearing this in mind, the log-likelihood function has a maximum 

where: 

8C({3) = 0 
8{3 

The flISt derivative of C ({3) with respect to the kth. parameter is: 

( 10) 

(II ) 



In general, the partial derivative of a logit probability with respect to 13k is: 

8Pn (J) = Pn (J) [8V;~ _ t 8V;~ Pn(Q)] 
8!3k 8!3k Q=l 8!3k 

Now for OMNL, the systematic utility V;~ is given by the mean utility term: 

which has the partial derivative: 

K 
J '" _J 

Vin = L- 13k X ink 
k=l 

811/ -J 
In -x 

8!3k - ink 

Substituting 14 into 12, the partial derivative of the OMNL probability is obtained: 

8P" (J) [ - J {-. - Q ] 813. = Pn IJ) X ink - L.. X ink Pn(Q) 
k Q=l 

The equivalent of 14 for HETR014 is: 

J ~(Xijnk- X:n.lexp [IlJ L!3,(Xijnl - X:nl)] 
8\'t" - J )=1 l=l 

8!3k =Xink + M" [ J ] 

f;exp /lJ 8 13, (Xi,nl- Xinl ) 

The derivative 8P,,(J)/8!3k for HETRO is obtained through the substitution of 16 into 12. 
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(12) 

(13) 

(14) 

(15) 

(16) 

Given the partial derivatives of the HETRO probabilities, the iterative solution is no different 

from that of OMNL, Cramer (1991) advocates the use of the method of scoring, a gradient technique similar 

to the Newton -Raphson approach. Like other methods in this family. the gradient vector q = 8[:((3)/8(3. 

also known as a score vector. and a direction matrix must be calculated at each iteration. The non-

linear system of equations defined by setting q equal to zero must be soived iteratively. A Taylor series 

approximation of q((3) around (3' in the vicinity of (3 is utilized: 

q((3) '" q((3') + H((3')((3 - (3') (17) 

14Here the derivative of the aggregate systematic utility afthe aggregated model is taken with respect to the expression in 7. In 

Appendix 2. it is shown that a more concise expression is obtained if the deriValive is taken with respect to the systematic utility in 

4. 
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where H k • = (PC({3)/(Oi3kOi3.) represents an element in the Hessian matrix H of second derivatives. 

Since q({3) = 0, 17 can be rearranged to yield: 

(18) 

When this approximation is applied repeatedly in the vicinity of the optimum, with {3 being substituted for 

{3', convorgence should occur. This forms the basis for the Newton-Raphson algorithm expressed as: 

( 19) 

With respect to either OMNL or HETRO. the most convenient expression for each element of q is: 

oC({3) = -f -.!:-lyJ _ P. (J)]oV;{. 
0(3. i...J L-" " iJfj . 

k n=IJ=1 k 

(20) 

which is obtained when 12 is substituted into II and the result simplified. 

The method of scoring differs from the Newton-Raphson approach in that the information matrix 

replaces the Hessian. Since the asymptotic variance-covariance matrix of {3 is directly related to the 

information matrix. this replacement is useful. The expression for any element of the information matrix 

is: 
N L 

Qk. = L L _1_ OP" (J) iJF" (J) 
P" (J) fJfh afi. 

n=1 J=:l 

(21 ) 

where 12 is substituted into 21. Since 16 for HETRO is quite different from 14 for OMNL, the results for 

Qk. will also differ. Because the information matrix is given by -EIH], the negative expectation of the 

Hessian, the Newton-Raphson sequence of 19 is revised: 

{3'+1 '" {3, + (-EIH({3,)])-1 q({3,) (22) 

McFadden (1974) has shown that for OMNL, the Hessian matrix will be negative definite under all 

but extreme circumstances. This implies that the information matrix should be positive definite. After 

extensive experimentation with simulated data we conclude that the convergence success rate is almost as 
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high for HETRO with IJ. exogenous as it is for OMNL. As will be shown in future work, this success 

rate is considerably lower when IJ. is endogenous. A modified estimation procedure is needed in such 

circumstances. 

An important issue affecting the convergence of HETRO is the possibility of high correlation 

among the different destination attributes. Such attributes, which are typically used in spatial choice models 

to specifY utilities, and which do not vary across individuals, can potentially create dependencies in the 

information matrix. In the cases where convergence does not occur, it is likely that the information matrix 

is near singular. Clearly, it is critical to thoroughly screen destination attributes, and any interaction terms 

related to them, beforehand. It is suggested that a teChnique such as principal components analysis might 

be applied in situations where many generic destination variables are used. By utilizing the significant 

principal components. most of the variance is accounted for without risk of multicollinearity. 

4.4 Model Specification 

To an extent. specification of the aggregated model depends on whether the interaction data are 

aggregated or disaggregated across choice-m"kers which is a problem distinct from spatial aggregation. 

Typically. the variables used to specifY utilities are classified as: destination attributes, measures of distance 

and socio-economic individual characteristics. The laner category is prevalent with data that are totally 

disaggregated across choice-makers while the first two categories are relevant to both aggregation levels. 

In this section. we consider differences in models which are aggregated spatially but mayor may not be 

aggregated across decision-makers 

4.4.1 Specifications with Data Aggregated Across Choice-makers 

Several studies of human migration utilize logi! models with interaction data aggregated across 

both choice-makers and destinations (e.g. Anderson and Papageorgiou (1994), Day (1992». While there is 
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no question that the true utilities choice-makers have for a particular destination are highly variable. the use 

of aggregate data precludes the differentiation of systematic utilities among choice-makers originating from 

the same zone. In essence, such a model works on the premise that the 'average' individual can be used 

as representative of all individuals from a given origin. Distance is one variable type which does introduce 

variation in systematic utilities across decision-makers since it can be used to segment the population based 

on the zone of origin's . A similar approach is the use of so-called 'social distance' variables. 

An issue of some importance is the use of alternative-specific versus generic speeification tech­

niques. The former implies that for a given variable. the marginal effect on utility of a fixed change 

in this variable differs across alternatives. while the latter implies that the marginal effect is constant. 

Alternative-specific specifications of distance variables and destination variables can be problematic. With 

respect to distance, there is the issue of whether it is theoretically valid to allow the friction-of-distance 

to vary across destinations. Are differences in parameters a product of the fact that distance interacts with 

destination attributes or does Lie friction-of-distance vary? Some argue that there is no single valid measure 

of the friction-of-distance (Lo, 1993). Alternative-specific specifications of destination attributes can cause 

problems in that each parameter associated with this variable type implies one fewer alternative-specific 

constant that can be used (see Chapter 2). If there are more than L - 1 such parameters. a model becomes 

indeterminate since it is no longer possible to measure utility in relative terms. 

With respect to HETRO, distance variables must be measured at the sub-aggregate level. In so 

doing, the systematic utility of a prospective aggregate destination from a given origin will tend to depend 

on the closest elemental zone within the aggregate, not the average distance to all elemental zones. In a 

completely homogeneous study area, we would expect people to choose the closest elemental alternative 

15In a model of destination choice. it is possible to specify origin characteristics in the alternative-specific manner associated with 

socio-economic individual variables. The main problem would tY.: that in a model with 2S aJtematives, up 10 24 parameters could in 

theory be associated with a given origin characteristic. Clearly. this approach does not result in parsimonious models and often it is 

impossible to develop reasonable hypotheses about which ~ubsets of alternatives should be constrained to the same parameter. 
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within the aggregate. That people do not do this in reality reflects the fact that other factors are at work 

which ought not be confused with the friction-of-distance. 

Destination attributes can be measured either at the aggregate level or the sub-aggregate level. 

Variables associated with, for example, climate or employment are really sub-aggregate phenomena which 

can never be properly captured by the OMNL. Their values fluctuate within aggregates and hence should 

introduce variability into utilities. Other attributes such as regional tax rates are constant across a given 

aggregate. Since there is no intra-aggregate utility variability introduced by such variables, they are 

specified as they would be in OMNL. 

4.4.2 Specification Issues With Micro-data 

Observations in micro-data are at the individual choice-maker level. Such data usually incor­

porate variables describing the socia-economic characteristics of decision-makers and are thus richer in 

information content than aggregate data sets. With the help of such variables, it is possible to differentiate 

the utilities of individual choice-makers or popUlation segments and capture the heterogeneity of tastes 

in the population. As in the case of aggregate data, however, destination attributes do not vary across 

decision-makers and act as substitutes for aitemative-specific constants. 

Socio·economic individual characteristics available in micro-data are specified in an aitemative­

specific manner since such variables will typically affect the utilities associated with different destinations 

in different ways. The mar~inal contribution to utility of a decision-maker's income, for example, might be 

positive for one destination but negative in another. However, since utility is a relative concept in the logit 

model, some spatial unit must act as a zero utility reference against which the utilities of other aiternatives 

are compared. The option is available to specify both OMNL and HETRO in this manner although the 

number of parameters may proliferate to unacceptable levels if there are many spatial alternatives. 

A difficulty in using this approach for HETRO is that the socio-economic variables can be 
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used to differentiate utilities only on an aggregate alternative basis. One might reasonably expect that a 

socio-economic variable will affect the perceived utility of elemental alternatives within the same aggregate 

quite differently. However, since the choice behaviour is unobserved at the elemental level and since the 

number of elemental alternatives is likely unmanageably large, alternative-specific specifications at the 

sub-aggregate level are not feasible. 

An alternative means of introducing variability into the elemental utilities associated with socio­

economic characteristics is to specify these variables interactively with destination attributes. This approach 

is appealing in the sense that utilities are modelled as a matching of decision-maker characteristics with 

those of potential destinations. It has been utilized by Liew and Ledent (1988) and Liaw (1990) in studies 

which interacted categorical socio-economic variables with destination attributes. There is, however, no 

practical or theoretical reason that this cannot be done with continuous socio-economic variables (see Thill 

and Van de Vyvere, 1989). A variable of this type is defined as: 

(23) 

where X;n is the observed value on the socioeconomic variable for individual n at origin i, and Xj is the 

value of the destination attribute at elemental alternative j in aggregate J. 

An interaction variable such as ZiJ" can be specified as generic in the context of one aggregate 

alternative since the same parameter will apply to all elemental alternatives within this aggregate. However 

it Can be specified as alternative-specific across aggregates meaning that elemental alternatives in different 

aggregates will be associated with different parameters. By allowing this alternative-specific specification 

of a generic interaction term, one captures essentially the same effects as would be obtained by specifying 

the socia-economic variable alone in an alternative-specific manner at the aggregate level. 

The usefulness of this interaction form, however, is that different choice-makers can be associated 

with different levels of utility heterogeneity within aggregates. Given a single aggregate and with all things 
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equal, the choice-maker in the sample with the minimum value of X in will necessarily be associated with 

less heterogeneous values of Zi~n in 23, and therefore V.1n' than the choice-maker with the largest value. 

Note that it might be necessary to transform the socio-economic variable in some circumstances since 

choice-makers associated with the smallest value. not the largest, might perceive the greatest amount of 

uti lity heterogeneity. 

4.5 Simulations on the Effect of Spatial Utility Heterogeneity 

4.5.1 Description of the Simulation Method 

The purpose of this section is to illustrate through simulations the model specifications just 

discussed and to demonstrate that as the heterogeneity of aggregate choice units increases, so does the 

potential bias of parameters estimated through tl:e OMNL. In parallel, it will be seen that HETRO is not 

subject to similar problems. To address these points. a Monte Carlo procedure is utilized. It should become 

evident that the mean utility of an aggregate. on which the OMNL bases its predictions. can become a 

minor determining factor in how decision-makers 50Iect aggregates. 

There are four types of simulations under study which can be classified on the basis of two 

criteria. The first is whether the variables are associated with a micro-data model or a model in which 

choice-makers are aggregated. The simulations with aggregate data are generated with a distance variable 

and a destination attribute as is typical in such a model of migration. The simulations with micro-data 

ar" generated on the basis of an interaction between a socio-economic individual characteristic, unique to 

each choice-maker, and a destination attribute. The second classification criterion is based on whether 

the alternative whose utility variability is altered has the highest level of mean utility or not. It turns out 

that the biases in OMNL differ if a heterogeneous aggregate has lower mean utility than other aggregates 

as compared to situations where the heterogeneous aggregate has the highest mean utility among all 
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aggregates. 

Some other general points to be noted about the simulations are as follows: 

• A bottom-up approach is used. That is, we generate true utilities at the elemental level and assume 
that the actual utility of an aggregate for that decision-maker is given by the largest of the contained 
elemental utilities. It is important to note that the aggregated model is not directly used to generate 
the true utilities at the aggregate level. 

• The effects of mean utility and aggregate alternative size are controlled by maintaining the same set of 
mean utilities for all levels of heterogeneity and by assigning the same number of elemental alternatives 
(four) to each aggregate. 

• It is assumed that the ratio Ii/ IiJ is exogenously set to one for all aggregates. Hence the random error 
components of the elemental utilities within and between aggregates are independently generated and 
therefore uncorrelated. 

• It is assumed that the attribute value for an aggregate alternative is simply the mean of the constituent 
elemental attributes. 

• Note that even though we generate data which are 'aggregate' across decision-makers in the sense 
that systematic utilities are not differentiated on the basis of socio-economic variables. the true utilities 
which determine the choice shares are generated one decision-maker at a time. 

A precise description of the data generation procedure is as follows: 

• I) A data set of attribute values is generated for a problem consisting of three aggregate alternatives 
each containing four elemental alternatives within. The data set is assumed to contain 50 choice-makers 
positioned at five different origins. None (If the five corresponds to any potential destination. The data 
consist of a destination attribute, a socio-economic individual variable, the interaction between the two 
and a measure of distance to the given potential destination. The destination attribute values. regardless 
of the prevailing level of heterogeneity, are adjusted to conform with predefined mean attribute values 
in the aggregates. 

• 2) for the appropriate specification, systematic elemental utilities are defined as a linear combination 
of the attribute values and known parameters. 

• 3) Actual utilities for a given choice-maker, are obtained with the addition to the systematic utilities of 
a Gumbel distributed error component having variance parameter Ii = 1 and hence a variance of".2 /6. 

• 4) In accordance with theory, the chosen elemental alternative for a given individual is taken as the 
one which provides the maximum utility of all elemental alternatives in the system. Obviously. this 
defines the chosen aggregate alternative also. 
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• 5) Steps 3 and 4 are repeated N times to correspond with the number of choice-makers in a given 
trial. The observed aggregate alternative choice behaviour and the known variable and attribute values 
provide the necessary information to estimate the unknown parameters of the two model types (OMNL 
and HETRO) for that trial. 

• 6) Steps 3, 4 and 5 are repeated appropriately to generate choice data for 100 trials at a given level of 
heterogeneity. Preliminary work revealed that little was to be gained by employing a larger number of 
trials. 

• 7) In order to alter the utility variance within a single aggregate in relation to the other two aggregates, 
the elemental destination attribute values in that aggregate are multiplied by some common factor and 
the result translat~d to maintain the same mean utilities across aggregates. The appropriate variances 
are obtained through the identity Var(ax) = a2Var(x) where Var(x) is the initial variance of the 
destination attribute in the aggregate alternative and a is the necessary constant used to obtain the new 
variance. Multiplying the destination attribute by some factor also affects the interaction term. Steps 
I to 6 are then completed for the new level of heterogeneity. 

• 8) For each new level of heterogeneity (the variances tested ranged from 2 to 50) or new specification. 
step 7 is repeated. 

4.5.2 Results 

4.5.2.1 Case #1: Aggregate data specific:ltion; aggregate with variable heterogeneity does not 

have largest mean utility 

In this case, data are aggregated across choice-makers with the exception of distance which 

introduces some variability into systematic utilities. The known parameter associated with distance is -0. I 

and the parameter for the destination attribute is 0.3. The latter implies that spatial units with high values 

on that attribute are perceived to have more utility than those with low values. The variance levels for the 

destination attribute in aggregate I range from 2, which is smaller than the corresponding variances in the 

other aggregates. to 50 which makes aggregate I far more heterogeneous than all other aggregates with 

respect to this attribute. All values in Table 4.1 represent mean results from the 100 trials on each model 

and at each level of variance. For a given variance level, the top row contains results for HETRO while 

the bottom row has results for OMNL. The average parameter estimates, t-scores, predicted standard errors 
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Table 4.1: Aggregate data; Variable aggregate does not have highest mean utility 

(VAR) p, p, t, t, se, se, p' sbares 

2 HETRO 0.35 -0.10 1.98 -2.48 0.17 0.04 0.12 16.9 23.1 9.9 
OMNL 0.29 -0.08 2.26 -1.85 0.12 0.04 0.11 

5 HErRO 0.31 -0.10 2.10 -2.42 0.14 0.04 0.11 18.5 21.5 9.9 
OMNL 0.26 -0.06 2.08 -1.58 0.12 0.04 0.09 

10 HErRO 0.31 -0.11 2.85 -2.59 0.11 0.04 0.13 20.8 20.1 9.1 
OMNL 0.26 -0.06 2.09 -1.39 0.12 0.04 0.08 

IS HErRO 0.29 -0.11 3.38 -2.54 0.09 0.04 0.13 22.4 18.8 8.8 
OMNL 0.25 -0.04 1.99 -1.08 0.12 0.04 0.07 

25 HETRO 0.30 -0.09 4.67 -2.18 0.06 0.04 0.17 26.8 16.0 7.2 
OMNL 0.26 -0.00 2.03 -0.04 0.13 0.04 0.06 

SO HETRO 0.31 -0.11 6.54 -2.06 0.05 0.05 0.33 34.7 10.4 4.9 
OMNL 0.26 0.06 1.90 1.50 0.13 0.04 0.07 

Table 4. 2: Aggregate data; Variable aggregate has highest mean utility 

(VAR) p, p, t, t. se, se, p' sbares 

2 HETRO 0.30 -0.10 2.52 -2.39 0.11 0.04 0.13 23.0 18.5 8.4 
OMNL 0.36 -0.08 2.88 -1.98 0.12 0.04 0.12 

5 HETRO 0.29 -0.10 3.07 -2.27 0.09 0.04 0.15 25.0 16.9 8.1 
OMNL 0.39 -0.07 2.97 -1.76 0.13 0.04 0.13 

10 HETRO 0.30 -0.10 4.04 -2.33 0.07 0.04 0.19 27.3 15.8 6 .• 
OMNL 0.46 -0.07 3.28 -1.65 0.14 0.04 0.16 

IS HETRO 0.31 -0.10 4.85 -2.22 0.06 0.05 0.23 30.1 13.6 6.3 
OMNL 0.51 -0.05 3.41 -1.26 0.15 0.04 0.18 

25 HETRO 0.31 -0.11 5.83 -2.17 0.05 0.05 0.31 33.6 11.5 4.8 
OMNL 0.64 -0.04 3.65 -0.98 0.17 0.04 0.24 

SO HETRO 0.31 -0.10 6.70 -1.48 0.05 0.06 0.48 40.3 6.3 3.4 
OMNL 0.91 om 3.64 0.15 0.25 0.05 0.37 



and rho-squared (p2) gOodness-of-fit statistic are displayed. The latter is calculated as: 

2 1 1:."(13) 
p = - C-(O) 

1I3 

where I:." (13) defines the value of the log-likelihood function at convergence and I:." (0) defines its value 

with a naive model of zero utilities. The column labeled 'share' represents the average number of choice-

makers out of the group of fifty, who choose aggregate J. The 'true' standard errors, which are given by 

the parameter standard deviations from 100 trials, are not displayed because they are almost identical, in 

this case, to the average standard errors derived from the variance-covariance matrix. 

Initially, the first aggregate has slightly lower mean utility than aggregate 2 which is also 

more heterogeneous. As the level of variance in the destination attribute of aggregate 1 increases, with 

unchanging mean utilities, it becomes progressively more likely that alternative 1 is chosen as reflected in 

the share column of Table 41. It is more likely to contain an attractive elemental alternative with regard to 

the destination attribute and, therefore, also contain the point of maximum utility in the system. On a mean 

utility basis the other aggregates are more attractive than I, but this fact becomes increasingly irrelevant 

to the utility maximizing choice-maker. 

At all but the smallest level of variance, there is a consistent downward bias in the OMNL 

parameters. At higher levels of variance, the OMNL model is unable to reconcile the patterns implied by 

the mean utility with that of the choice share;. On a mean utility basis, it makes no sense that aggregate 

I is more often chosen, hence the parameters of variables used to predict the mean utilities become less 

significant. Even though there are no huge biases in parameters, the fact that OMNL does not include 

the corrective terms is very damaging to its goodness-of-fit. It is noteworthy also that while the changing 

variance affects only the destination attribute directly, with all distances being fixed, there are indirect 

effects which reduce the significance of the distance parameter. In addition, OMNL consistently 
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underestimates the significance of the two variables and, for the destination attribute, is generally less 

efficient in relation to HETRO. 
4.5.2.2 Case #2: Aggregate data specificati"n; aggregate with variable heterogeneity has largest 

mean utility 

This simulation differs from Case # I in that aggregate I has the largest mean utility with regard 

to the destination attribute. Hence. for all variance levels. aggregate I is more often chosen than the other 

alternatives. In Table 4.2 we witness the opposite bias in the OMNL. With increasing variance. the OMNL 

destination attribute parameter begins to display a substantial upward bias. The sampling distributions 

for the destination attribute are displayed graphically in Figure 4.1 (a-c). At higher variances. the extra 

~hoices which accrue to aggregate I are on the basis of an increased heterogeneity effect which in tum 

increases the likelihood that alternative I contains the point of maximum utility. From the perspective of 

OMNL. however. the prevailing choice shares indicate that the destination attribute under consideration is 

very important. implying that too much Significance is associated with the corresponding parameter and 

therefore the impact of mean utility. HETRO properly separates the heterogeneity effect from the mean 

utility effect and consistently produces unbiased and efficient estimates of the two parameters. Apparently. 

OMNL so overestimates the effect of the destination attribute that the impact of distance is judged to be 

minimal. resulting in a severe mis-diagnosis of its significance. Again. HETRO results in better fitting 

models. 
4.5.2.3 Case #3: Micro-data specification; aggregate with variable heterogeneity does not have 

largest mean utility 

This scenario differs from those of Case #1 and #2 since the use of micro-data is assumed in 

which information relating to specific choice-makers is available. It is like Case # I in that aggregate I has 

lower mean uiility than aggregate 2. While destination attributes and distance variables could be included 

in the specification of Table 4.3. a one variable model in which a destination attribute interacts with a 
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Table 4.3: Micro-data; Variable aggregate does not have highest mean utility 

(VAR) p, t, ~ ae..., p' shares 

2 HErRO 1.11 2.29 0.46 0.49 0.10 20.6 22.0 7.4 
OMNL 0.36 2.66 0.32 0.33 0.09 

5 HErRO 1.05 2.68 0.38 0.43 0.11 23.8 19.3 6.9 
OMNL 0.76 2.46 0.30 0.:!6 0.07 

10 HErRO 1.05 4.13 0.25 0.25 0.17 27.7 16.6 5.7 
OMNL 0.73 2.39 0.30 0.21 0.06 

15 HErRO 0.98 4.90 0.20 0.19 0.21 30.4 14.2 5.3 
OMNL 0.67 2.24 0.30 0.22 0.06 

25 HErRO 1.02 6.19 0.16 0.16 0.35 35.9 10.2 3.9 
OMNL 0.59 2.03 0.29 0.16 0.04 

50 HETRO 1.02 6.53 0.16 0.18 0.57 41.9 5.6 2.5 
OMNL 0.52 1.85 0.28 0.09 0.03 

Table 4.4: Micro-data; Variable aggregate hdS highest mean utility 

(VAR) ~, t, sepred sew .. p' shares 

2 HErRO 1.03 3.41 0.30 0.31 0.22 30.7 14.5 4.9 
OMNL 1.29 3.65 0.35 0.39 0.21 

5 HErRO 0.99 4.33 0.23 0.19 0.26 33.1 12.5 4.4 
OMNL 1.50 3.86 0.38 0.38 0.25 

10 HETRO 1.03 5.39 0.19 0.21 0.36 36.4 9.7 3.9 
OMNL 1.94 4.06 0.47 0.69 0.32 

15 HETRO 1.02 5.89 0.17 0.17 0.43 38.5 8.1 3.4 
OMNL 2.31 4.21 0.54 0.70 0.38 

25 HETRO 1.03 6.20 0.17 0.17 0.55 41.4 5.9 2.7 
OMNL 3.06 4.37 0.69 0.86 0.48 

50 HETRO 1.06 5.86 0.19 0.22 0.71 44.9 3.3 1.7 
OMNL 5.08 4.36 1.20 2.13 0.64 
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socio-economic characteristic is utilized in order to focus on the behaviour of this type of variable. This 

interaction variable has a true parameter of 1.0. Therefore, a choice-maker who has a large value on the 

socio-economic variable will perceive more heterogeneity in intra-aggregate utility than someone with a 

small score. The positive true parameter implies that this interaction adds to utility, regardless of the level 

of the socio-economic variable, rather than acting as a disutility. 

The results in Table 4.3 indicate that OMNL provides biased estimates at any level (>f variance 

in aggregate I although the performance becomes progressively worse as this variance increases. The bias 

in the interaction parameter behaves qualitatively the same as did the destination attribute parameter in 

rable 4.1: when the choice shares are not explainable with the mean utilities, the OMNL parameter will 

be biased downward. In Table 4.3 the true standard errors exhibited in 100 trials are compared with the 

average of the predicted standard errors because there are some substantial differences. In particular, the 

predicted standard errors of OMNL are consistently larger than the true ones indicating that there is a 

tendency to underestimate the significance of this interaction parameter. Interestingly, as can be seen in 

Figure 4.1 (d-J), OMNL generally provides a more efficient estimate than HETRO albeit a substantially 

biased one. Nevertheless, HETRO by far produces superior fitting models l6 . 

4.5.2.4 Case #4: Micro-data specification; aggregate with variable heterogeneity has largest 

mean utility 

This case employs the same specification as Case #3 but the mean utility in aggregate I is 

always larger than in the other two aggregates. As the 'share' column in Table 4.4 indicates, the number 

of choices going to aggregate I is larger than is the case in Table 4.3 because of the differing mean utility 

16The fit of the OMNL would be improved if a full set of altcmativcaspccific constants were included. Constants are intended 

to absorb all systematic variation not captured by variables in a model. Since this is 8 controlled environment. however, we know 

that there is no other systematic variation to capture. Hence there is no sOWld theoretical argwncnt to be made for the inclusion of 

constants in the OMNL specification. 
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effects. At high levels of variance in aggregate I. the biases in the OMNL estimate of the interaction 

parameter become quite drastic. Again, as was the case in Case #2, the bias is upward since OMNL 

is over-estimating the impact of the mean utility effect while the inflated standard errors are indicative 

of considerable inefficiency. Moreover. the predicted standard errors for OMNL are biased downward 

resulting generally in over-estimates of signilicance. In contrast to Case #3. where the biases were not 

so severe, the poor parameter estimates do not compromise the overall goodness-of-fit very much. It can 

be concluded that the general pattern of biases in the interaction parameter estimate is similar to the type 

occurring with a destination attribute. In comparison, the performance of HETRO is good in all aspects 

and at all levels of variance. 

4.6 Conclusions 

The main contribution of this study has been to illustrate the potential importance of a utility 

heterogeneity effect in properly characterizing the utility of an aggregate spatial unit. The notion that sub­

aggregate attribute information should be applied when the available interaction data are at the aggregate 

level is a new perspective also. While it has long heen known that there are size effects which need to 

be associated with aggregates. this paper represents an initial attempt at illustrating to regional scientists 

the usefulness of a heterogeneity term. The proposed theoretical framework also provides the customary 

size effect but one which does not emerge in the ad hoc manner common to many empirical studies. The 

theoretical principle under which these corrective terms are derived is simply that decision-makers seek 

the point within an aggregate which provides them the maximum utility. With the ordinary multinomial 

logit model, parameters are incorrectly estimated on the basis of some measure of average utility within 

aggregates rather than through maximum utility. 

The simulations here have shown that this theor; of choice among aggregates performs very 
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well. The proposed model has excelled in a variety of circumstances whereas with the same data. the 

ordinary multinomial logit model suffers from potentially severe biases and inefficiencies, especially in a 

heterogeneous system. In particular, the parameters associated with destination attributes and the interac­

tions of destination attributes with socio-economic variables are prone to downward bias when the most 

attractive aggregates on a mean utility basis are less heterogeneous than other aggregates. The parameters 

are biased upward when the heterogeneity of aggregates tends to complement the differences in mean 

utilities. Also, the goodness-of-fit of the ordinary multinomial logit model is often seriously compromised 

in relation to the proposed model. 

Considerable work lies ahead in this area of research. Much of it relates to the estimation and 

interpretation of the ratio /l/ /lJ which is an index of the degree to which elemental alternatives within some 

aggregate are perceived as similar and as such it can be described as a spatial autocorrelation parameter. 

The endogenous estimation of this ratio is a considerably more complicated optimization problem than 

that of the exogenous treatment applied in this paper (see Chapter 5). Ultimately, it will be necessary 

to examine the sampling distributions of /lllt J under different circumstances to assess its reliability in 

remaining within the theoretically defined (0, 1 J interval. 



Chapter 5 

The Aggregated Spatial Choice Model: A 

Comparative Analysis of Estimation Methodolo-

• gles 

5.1 Introduction 

In spatial choice problems. destinations are often aggregations of elemental zones considered 

by decision-makers. For example. in a scenario of inter-regional migration. researchers may attempt to 

model movements between states or provinces while ignoring the fact that cities within regions are the 

actual units considered as potential destinations by migrants. Typically. employment of this approach 

results from the available choice data lacking sufficient spatial resolution. This problem can be resolved 

through application of the proposed aggregated spatial logit model. The superiority of this model over 

the Ordinary Multinomial Logit model (OMNL) or the gravity model stems from the fact that aggregate 

attractiveness is measured by an estimate of its internal maximum utility and not some measure of average 

utility. Hence the aggregated model, unlike the OMNL, is consistent with utility maximization theory and 

is an approach which acknowledges sub-aggregate variation in the attributes that determine utility. It is 

important to emphasize that the attributes used to explain a spatial choice process do not need to be at the 

120 
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same spatial aggregation level as the choice data. The aggregated spatial choice model exploits this fact 

while practitioners using the OMNL model have overlooked it. 

Important theoretical issues surrounding the aggregated model have been covered elsewhere 

(Lerman, 1975; McFadden, 1978; Chapter 3). This chapter, however, focuses on the practical issue of its 

estimation which is decidedly more complex than is the case with the routinely applied OMNL model. The 

added complexity is due to parameters which detennine the level of perceived independence of utilities at 

the sub·aggregate level. To some extent the past dominance of the OMNL and the basic gravity model in the 

spatial choice context is attributable to their relative simplicity and ease of application. with software being 

widely available for each. Also, these models have less onerous data requirements than the aggregated 

model which requires collection of attribute data and measurement of distances at the sub·aggregate level. 

The outline of the chapter is as follows. The next section presents a brief overview of the 

theoretical background for the aggregated logit model, outlines the nature of the estimation problem, 

and compares it to estimation of the nested logit model with which it has similarities. The following 

section provides an examination of estimation techniques suitable for problems of unconstrained non· linear 

optimization while a final section evaluates these techniques in the context of the problem at hand using 

Monte Carlo simulations. A concluding section summarizes these results and their implications in assessing 

the best approach for estimating the parameters of an aggregated spatial logit model. 

5.2 Background 

5.2.1 The Theory of the Aggregated Model 

The theory surrounding the aggregated spatial logit model has been discussed previously but 

to facilitate discussion in later sections, the main points are outlined here. Initially we focus on the 

conventional OMNL model before illustrating how the aggregated model is an important generalization 
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suitable for problems with aggregate spatial units. 

Consider that the study area is divided into L aggregate zones. Each aggregate zone J E 
L 

{1,2, ... L} is in tum divided into MJ elemental zones. with LMJ = AI being the total number of 
J=1 

elemental zones. The latter are the theoretical units considered by decision-makers in their spatial selection 

process. For the OMNL model a decision-maker 11 originating in zone i is assumed to associate with 

aggregate J a utility level Ui~' This utility. although deterministic from the decision-maker's viewpoint. is 

stochastic for the analyst. It is therefore written as the sum of a systematic component V,{. and a random 

component f.in: Ui~ = Vi~ + ein' Under the assumptions that decision-makers will select the aggregate 

J E {I, 2, ... L} that is associated with the maximum Ui~' and that the error terms ft., . .I E {l. 2 . ... L} arc 

identically Gumbel distributed with parameters (0. >.). the OMNL is derived as: 

exp [~~l 
Pn (J) = -L;-----"--"--

L exp [Vfl 
K=l 

(I) 

where Pn (J) is the probability that decision-maker 11 selects aggregate alternative .I. Parameter>. is related 

to the variance of the error terms as Var(f;',) = (" >.f /617 • This parameter. which must be fixed prior 

to estimation. defines the scale of the utiliti.,. In practice. it is set equal to the arbitrary value>. = I. 

This implies Var(ffn) = ,,'/6. The OMNL is hence characterized by error terms which arc spatially 

homoscedastic. 

In the case of the aggregated logit model. utilities are defined for each elemental alternative 

j within aggregate J as: Ui~n = v.}n + ffn + 'f;n' The utility of an aggregate is represented by the 

maximum elemental utility within it: Ui~ =, max Ui~n =, max (Vdn +~~'I) + ~~I' Thus, the 
JEHI.' .... M'} 'E{I.' .... M'} 

deterministic utility v.~ of the OMNL is replaced with the stochastic expression. max (V';" + '{J")' 
JE{1,2, ... MJ} 

17)n Chapter S. the tenn >. is utilized ror the first time. It is simply the inverse or J.t as defined in Chapter 3, The term )"J is 

equivalent to ..t.., also first used in Chapter 3, and is simply a more compact way or representing the ralio when 11 IS fixed to 1.0 
pJ 
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The more general errors: 'fn + 'f,n for all j E {I, 2, ... M J
} and J E {I, 2, ... L}, are assumed to be 

identically Gumbel distributed with parameters (0,1). As in the OMNL, this assumption implies A = 1. 

Note that 'fn applies to all elemental ahematives in aggregate J and is assumed to be independent of 

the errors 'f,n' j E {l, 2, ..• M J
} associated with them. Thus. the variance of an elemental utility is 

Within an aggregate J. error terms ,f,n are independent and identically Gumbel distributed with 

parameters (0, AJ). This implies that Var(,f,n) = (7r ).J)2 /6 and hence Var(,fn) = 11:2 /6 - (11: ).J)2 /6. 

Furthermore, the total utilities Ui~nof elemental ahematives within aggregate J share the same unobserved 

component ,t" and are not independent. One can show that for any two elemental ahematives j. k in J 

: COll(Ui~'" Uii,,) = Var(,fn)' Elemental ahematives that belong to different aggregates a;e. however. 

independent. The correlation coefficient between elemental utilities that belong to the same aggregate can 

be identified as corr(U'~n' Uiin) = 1- ().J)2. If j and k belong to different aggregates then this correlaiion 

is zero. 

Under these circumstances the aggregated model is expressed exactly as in equation I. The 

distinc.tion is that the systematic utility v.~ of an aggregate J is now taken as a function of the systematic 

i.!tilities 0f the elemental alternatives in it: 

At
J 

V,-?, 
v.~ = ).J In L exp[ ;~n I 

j=1 

(2) 

The difference between the two models can be seen more clearly if one rewrites 2 as: 

(3) 

Al J 

where V;n= ~J L V.~n is the mean systematic utility within aggregate J. Note that only in the absence 
J=l 

of aggregation. with M J = 1 for all J E {I, 2 . ... L },does the expression for v.~ reduce to the mean utility 

Vt., . In this case, v.~ is equivalent to the systematic utility given by the OMNL. 
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In 3 it can be seen that ,ccounting for aggregation introduces two additional terms into the 

systematic utility of an aggregate. The second term on the RHS of 3 is non-negative and measures the 

heterogeneity or variability of systematic utility within an aggregate. Intuitively. a heterogeneous aggregate 

is more likely to contain the most attractive destination and hence should be assigned a higher utility. all 

things being equal. The third term on the RHS of equation 3 is also non-negative and measures the size 

of aggregate J in terms of the number of choice units. Predictably. larger aggregates are associated with 

a higher level of systematic utility although the extent to which this i5 rrue depends on >.J . 

The uncertainty parameters >.J. J E {1. 2, ... L} are identifiable through estimation and arc im­

portant because they directly determine V ar( 'fn) and V ar( ,fin) and have much to do with the relative 

magnitudes of the size and heterogeneity terrns. The allocation of variance in utility between (;,n and 

ffn is a direct measure of the level of correlation, or degree of perceived similarity. between any pair of 

elemental total utilities within an aggregate. In genera\. the utility of an aggregate is decreased ifit contains 

highly correlated elemental utilities. Since by definition. we have that Var(ff" + (t,n) ~ Vm'(ft,n) and 

hence that 7r2/6 ~ (7r>.J)2/6, and since >.J cannot be negative. as a scale parameterofa Gumbel. it must 

be that 0 < >.J ~ 1. 

It is instructive to examine the two polar cases for )J. As >/ - 0, corr(UI~fI,UI{II) - 1. 

elemental uncertainty vanishes because Var(ft,n) ..... 0 and aggregate uncertainty attains its maximum 

value: V ar( ffn) ..... ,,2/6. For aggregate J the expected level of utility corresponds exactly to the largest of 

the contained elemental systematic utilities. Since the identity of the aggregate's 'representative' elemental 

alternative is known with certainty, the size term in equation 3 vanishes as M J is immaterial. while the 

heterogeneity lerm reaches its maximum. If >.J ..... 1, then for any pair of elemental alternatives j and k 

within aggregate J we have corr(Ui~n. U,{n) ..... O. This is equivalent to the aggregate error ff" vanishing. 

while the elemental variation in utility becomes large: Var(,t,n) ..... ,,2/6. Other things being equal, the 

size term in this case attains its highest value and the heterogeneity term its lowest. The former occurs 
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because with ff,n at its most unpredictable, many of the M J elemental alternatives could provide the true 

maximum utility. As a result, the systematic utility of the aggregate is upgraded. 

The differences between the widely used OMNL model and the aggregated logit model are not 

only theoretical. Specification of Vi;n obviously requires collection of independent variables at the ele-

mental level. While the aggregated model is thus more data-intensive than the OMNL, it makes use of 

micro-geographical data that the OMNL ignores. Also, in applications of the two models, identical aggre-

gate choice information and model specifications will, in general, produce different parameter estimates. 

different relative levels of systematic utility \I;~. and different predicted choice probabilities. In addition, 

the aggregated model permits estimation of elemental utilities Vi;n and elemental choice probabilities. 

More importantly. estimation of the aggregated model will yield estimates for >.J. J E {I, 2, ... L}, which 

as discussed in this section are parameters of primary importance for the process under study. The price 

to pay for these benefits is the need for a more sophisticated estimation procedure. 

5.2.2 The Aggregated Model Versus the Nested Logit Model 

While we have highlighted the superiority of the aggregated model over the OMNL for problems 

with aggregate spatial units, the actual estimation of the aggregated model, in terms of difficulty, is often 

more closely related to full-information estimation of the nested logit model. To undertake a full application 

of the nested logit model, we would need choice information at the elemental level since the nested approach 

is intended to model elemental choices. When such data are not available, the aggregated logit model must 

be used. Hence, in this section we compare estimation of the nested logitto that of the aggregated model. 

As is the case with other discrete choice models, parameters for the aggregated model are 

obtained by maXimizing the log-likelihood function: 

N L 

C"({3, >.) = L L y;~ In ?n(J) (4) 
n=lJ=l 

where: 
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• {3 is a vector of parameters that enter the systematic utilities V;f", j E {I, 2, "" AI J}, J E {I. 2. "" I.} 

• .\ is a vector of parameters representing (),',), 2, •.• , ), L) 

• Y;~ is a binary dummy variable which is 1 if decision-maker n selects aggregate J and a otherwise. 

The corresponding function for the two level nested logit model is dependent on the same 

variables: 
N L AfJ 

C-({3,.\) = LLLY;f"lnP,;'(j) 
n=1 J=1 j=1 

(5) 

N L N L AfJ 

= L LY;~ InP,,(J) + L L L Y;;" InP,,(j I J) 
n=1 J=1 n=1 J=1 )=1 

where the newly introduced elements are: 

• P,;' (j), the overall probability that elemental alternative j in aggregate J is chosen. 

• P" (j I J), the conditional choice probability of selecting j in J, provided .J has been selected 

• Y;j" which is 1 for the single elemental alternative in the study area that is chosen and 0 otherwise. 
M J 

Because L Ydn = i~~, the occurrence of fifn = 1 defines the aggregate for which y;~ = 1. 
j=1 

The first expression in 5 illustrates the ultimate objective of the nested logit: prediction of 

elemental probabilities. Since p;{(j) = P,,(.J)P,,(j/J), the log-likelihood function can be split into two 

components to allow meaningful comparison with the aggregated model. Comparing 5 with 4 we observe 

that the nested logit shares the marginal component of the log-likelihood function with the aggregated 

model but has an additional component given by the conditional model. The conditional segment of course 

cannot be implemented in 4 because Y;i" is unknown when the interaction data are at the aggregate level. 

The expression for P,,(J), given in I and 2 for the aggregated model, also applies to the nested 

logit model although specific results will differ since parameter estimation will clearly be affected by the 
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presence of the conditional model. The complete set of conditional probabilities is: 

[V.;n] 
p.' _ exp >:T 

n(1 I J) - MJ [J ]' 
'""' ~qJl 
~exp >:T 
q=l 

jE {1,2, ... ,MJ };JE {1,2, ... ,L} (6) 

Although the aggregated model does not actively employ Pn (j I J) in the optimization, alternative estimates 

of these probabilities can be obtained after estimation using the elemental systematic utilities. 

A prominent issue affecting the estimation of both models is the manner in which.>. are specified. 

The importance of this issue for the aggregated model is reflected in Figures 5.1 and 5.2 where graphical 

representations of the log-likelihood surface arc shown for a a single sample problem consisting of fictitious 

choices among two aggregate spatial units. The two aggregates contain 3 and 6 elemental alternatives 

respectively. The same choice data were used to generate each of the log-likelihood surfaces with distance 

affecting the systematic utilities of all spatial units as a generic independent variable. 

Figure 5.1 depicts a log-likelihood surface for which.>. of the two alternatives are constrained to 

equality implying that the function is dependent on two parameters: {3 and .>.. The greater concavity of the 

surface with respect to the friction-of-distance parameter ({3) is consistent with the much smaller standard 

error obtained for this parameter in the estimation of the model. As is expected. there is a pronounced 

discontinuity on the surface in the region where .>. ~ 0 and in fact, the surface is not defined in this 

region. Note however that the surface is defined for values of .>. well outside the unit interval both in 

terms of values larger than 1.0 and less than 0.0. Overall, obtaining the optimal values of {3 = -0.39 and 

.>. = 1.31 for this problem is not difficult providing the algorithm is not started near the discontinuity. In 

our experience, this conclusion applies in general to applications of the aggregated model with a single .>., 

irrespective of the number of elements in f3. 

Figure 5.2 illustrates a conditional surface where .>.1 and.>.2 are unequal and {3 is fixed at -0.35. 

Hence the data are the same as in Figure 5.1 but the specification differs. The optimal result for this model 
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FIGURE 5.2: AGGREGATED MODEL WITH UNCONSTRAINED A 
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is)..1 = 0.79 and)..2 = 1.02. It is not difficult to see that estimation of this model is more complex 

since the surface now contains discontinuities along two dimensions. In the following section. we describe 

optimization algorithms available to find the maximum on such surfaces. That discussion will be useful in 

generating insights to funher assess Figures 5.1 and 5.2. 

5.3 Estimation Techniques 

5.3.1 Optimization Algorithms in General 

The common theme among the diflerent unconstrained optimization methods is that any twice 

differentiable function should be reasonably well-approximated in the vicinity of an optimum by a quadratic 

function. If this is true. then convergence is likely. Each of the approaches discussed below possess the 

quadratic termination propeny which imply that a quadratic function in k variables will converge to the 

optimal solution in no more than k steps (AHiel. 1976). Unfonunately. the aggregated log it model and 

the nested logit model do not result in a likelihood function that is quadratic. implying that quadratic 

termination cannot hold. A viable alternative though is the approximation of the likelihood function by a 

quadratic through the use of a second order Taylor series expansion. 

Assume that the expansion takes place about the point defined by the current vector of parameter 

estimates ~t which we take to include the parameters associated with explanatory variables as well as the 

unceminty parameters. For ~t+l in the vicin ity of ~t : 

The objective is to find the values of the unknown parameters such that: 
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8t::(f3t+1) _ 8t::(f3t ) 82 t::(f3t) (13 _ 13 ) = 0 
8f3t+1 - 8f3t + (8{3t)2 t+1 t 

(8) 

which is simply a linear first order Taylor approximation of the true gradient at the point f3 t +1' Solving 

_ [82t::(f3t)]-' a.c'-({3,) 
{3t+1 - {3t - (8{3t)2 8f3t 

which for notational simplicity can be written: 

(9) 

where 13, is a vector of k parameters. H, is the k x k Hessian and q, is the k x 1 gradient vector. 

The step in 9 defines the well known Newton-Raphson method in which both the Hessian and gradient 

vectors are recalculated at every iteration t. This technique has gained considerable prominence in discrete 

choice modelling since it is straightforward and is extremely reliable in the context of the OMNL likelihood 

function which McFadden (1974) has demonstrated to be globally concave. However. the Newton-Raphson 

method is considerably less effective in problems which do not share this property. An improvement is 

the introduction of some scalar ~ to find the maximum improvement in the likelihood function along the 

direction defined by [Htr' qt. The result is that 9 is written: 

(10) 

With or without the line search invoked by ~, the Newton-Raphson method is recognized as being one of 

the most demanding algorithms computationally. Furthermore, it requires that the starting solution be in 

the vicinity of the optimum (Greene, 1990). Hence, this algorithm would not be the first choice for the 

problem in this paper. 

The gradient methods. of which Newton-Raphson is a special case, are defined when d t = 

[Qtr 1 q, represents the direction matrix, where the form of Qt depends on the particular technique. The 



simplest form is the method of steepest ascent in which Q, = I. A useful attribute of this method is that 
, 

the optimal line search for each iteration is known beforehand as: ~,= ~~q, . The algorithm will tend 
qt tqt 

to perform better than Newton-Raphson at points far away from the optimum on a surface which is not 

globally concave but will converge inefficiently in the region of the optimum since it does not possess the 

quadratic termination property. Overall, this method would rank as less attractive than the Newton-Raphson 

algorithm for the problem in this paper although it might be useful for an initial set of iterations preceding 

a switch to some other method. 

5.3.2 Methods Using Conjugate Search Directions 

A critical matter in algorithms more refined than Newton-Raphson is the concept of mutually 

conjugate directions. Assume that we seek to optimize a quadratic function in k dimensions (or in the case 

of aggregated logit model some form of quadratic approximation to the true log-likelihood function). Any 

quadratic function can be written in the simple matrix form: 

, 1 'A f(x) ., a + b X + 2x x 

where A is positive definite and symmetric. If two vectors y and z are found such that y' Az = 0, 

it can be said that y and z are mutually conjugate with respect to A. In other words, y is orthogonal 

to Az which is the more general case of the well-known situation where A = I and y is orthogonal to 

z itself. This is a matter of great importance since any unconstrained optimization algorithm which uses 

mutually conjugate directions of ascent in relation to A is quadratically convergent (Wismer and Chattergy. 

1978) implying that the optimum for a quadratic function will be found in no more than k steps. Once 

k mutually conjugate vectors are established, and if the function is quadratic, it is theoretically possible 

to find the optimal point through a sequence of line searches along these vectors and then taking the best 

result. 

The concept of conjugate directions manifests itself directly in a family of algorithms. Powell's 
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(1964) method uses propenies of conjugate vectors to develop a means by which conjugate directions 

are established without need for any derivatives and where repeated line searches ultimately yield the 

optimum. The conjugate gradient method accomplishes the same thing as Powell's method in a manner 

which requires the calculation only offunctional values and gradients and hence is well-suited to automated 

implementation. In panicular, the Polak-Ribiere conjugate gradient method works on the basis of generating 

successive mutually conjugate search directions until convergence occurs, something which is likely to 

take more than k iterations when the actual function is not quadratic. The algorithm is such that the 

direction vector at each iteration is defined as: d'+l = -q, + Bkd, where Bk = (q, -: q'-l),q, . With 
qk-l~-l 

the direction at each iteration t. defined in this manner. a line search is carried out in this direction to 

find the largest possible increase in the function. Information ITom previous iterations is a necessity in 

establishing a direction which is mutually conjugate to those previous. Overall, this method has obvious 

computational advantages over Newton's method because the obstacle of calculating and storing a Hessian 

matrix is removed. While the conjugate gradient methods perform better than the steepest ascent method. 

they are most likely less effective than the family of Quasi-Newton methods to be outlined now. 

5,3,3 The Quasi-Newton Methods 

A Quasi-Newton or variable-metric method is also characterized by the search direction d, = 

IQ,r 1 q, where Q, is a k x k matrix which varies at each iteration and which may not be negative 

definite or symmetric, especially in early iterations (Avriel, 1976). Typically, Qo might be set to the 

identity matrix so that the first step would mimic that of a steepest ascent iteration. With repeated steps 

an updating formula is applied which should eventually approach the Hessian matrix near the optimum. 

Hence, at a point near convergence, a Quasi-Newton method should behave in a manner similar to the 

Newton-Raphson algorithm since both are essentially using the Hessian to calculate the direction. Quasi-

Newton methods, however. operate on the b.,is of defining directions which are mutually conjugate and 
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hence are less likely to be led astray in regions far from an optimum unlike the Newton-Raphson method. 

The Quasi-Newton method known as Broyden-Fletcher-Goldfarb-Shanno (BFGS) is examined in 

this paper and is generally recognized to be one of the best performers. It is characterized by the updating 

formula: 

where Pk = 13k - (3k-l and Ik = qk - qk-l. The derivations of the updating formulae in the approxi-

mation of the Hessian are quite complex. Moreover. they have many variations. although Huang (1970) 

developed a general expression which encompasses all variable-metric possibilities as special cases. Such 

involved discussion is, however, beyond the scope of this paper. It is enough to appreciate that the Quasi-

Newton methods incorporate the strong points of the Newton-Raphson and conjugate directions approach 

and are generally the most powerful search algorithms available. While it is true that they may take many 

iterations to solve non-quadratic problems, the computational burden of each iteration is much less than 

that of a single Newton-Raphson step. 

5.3.4 Past Optimization of the Nested Logit Model 

Different gradient methods have been used in full-information maximum likelihood (FIML) 

estimation of the nested logit model. The Newton-Raphson algorithm is out of favour since there is the 

possibility of a Hessian which is not negative definite. One ahemative route is the quadratic hill climbing 

method of Goldfeldt et al (1966) in which a transformed Hessian is utilized: Ho = H - aI, where a is 

computed sufficiently large to ensure that H" is negative definite. Avriel (1976) likens this method to 

restricting the search within a circular region in which the function is guaranteed to be concave. 

The most popular method to ensure a negative definite Hessian replacement, at least in the 

context of the nested logit model (Brownstone and Small, 1989), is to utilize the negative expectation of 
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the outer product of the gradient vector across decision-makers, which assumes the form: 

(11) 

where p;{ (j) is the product of the marginal and conditional choice probabilities applying to each elemental 

alternative at the given parameter values. This approach is essentially a modified method of scoring which 

implies that an estimate of the information matrix is used in place of the Hessian. This is expedient 

since the information matrix is key to obtaining parameter standard errors. Cramer (1991) provides further 

discussion on the distinction between the method of scoring and the Newton-Raphson approach. The outer 

product form first proposed by Berndt et al. (1974) was designed for all maximum likelihood problems 

and has the more general form: 

Q, = L (8In£"(13,») (81nC'(13,))' 
813, 813, 

n 

(12) 

in which no expectations have been taken. The outer product approach was first advocated for the nested 

logit by McFadden (1981) and has been the favored method for the nested logit. Daly (1987) further 

advocates its use for a version of the aggregated logit model which contains only mean utility and size 

terms. The more advanced Quasi-Newton methods have, to the best of our knowledge, not been applied 

for the nested logit or the aggregated model. 

5.4 Estimation Trials 

5.4.1 Preliminary Observations 

Clearly. the important aspect affecting the performance of these optimization algorithms is the 

nature of the log-likelihood surface. Typically algorithms are dependent on a direct calculation or approx-

imation of the Hessian matrix which in tum is directly affected by concavity characteristics of the surface. 
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When in regions which do not possess desirable concave characteristics, it is clear that the Hessian may be 

near-singular and hence difficult to invert. Of course, the uitimate result of inverting a near-singular matrix 

will be an algorithm which takes a long time to converge, if indeed it does ultimately succeed. Also. in 

succesful convergences, parameter correlations will tenJ to be high and estimated standard errors may be 

inflated. In short, estimation can be inefficient both from the algorithmic and statistical points of view. 

Preliminary experimentation has shown that the aggregated model is potentially vulnerable to 

such problems and that the difficulties are closely related to the specification of the .\ parameters'. In 

general, the aggregated model becomes easier to estimate as the number of endogenous .\ are reduced 

either through equality constraints or by exogenous fixing. This is shown. for example, by the more 

complex nature of Figure 5.2 in relation to Figure 5.1. For an explanation. note that the influence of .\ J 

are particularly strong in the size terms: .\J In M J , J E {I, 2, ... , L}. Like all logit probabilities, those of 

the aggregated model are determined by differences in utility. Hence. estimation becomes more efficient if 

one or more size terms are fixed through .\ in some manner so that the others can be determined in relation. 

Convergence is still possible ifall'\ are endogenous, however it is often the case that all.\ can get uniformly 

much larger or smaller, often well outside the theoretical range, without inducing appreciable change in the 

log-likelihood function. This contributes to estimation inefficiency. Fixing or equating .\ results in a surface 

with a more clearly identifiable maximum, and hence provides a clearly defined algorithm direction in order 

to obtain appropriate relative utilities. Also, the chances of a theoretically valid outcome are increased 

since .\ tends to be more stable. These observations are confirmed in experiments undertaken and described 

below. 

5,4.2 Experiment Setup and Rationale 

In this section, using a simulated environment, we examine algorithm performance in estimating 

2From now on in this chapter. ,,\ is used to denote a scale parameter specific to an aggregate in the aggregated model instead of 

~J. 
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the aggregated logit model. The results are obtained using the GAUSS maximum likelihood module which 

implements a variety of optimization techniques. The module is activated in concen with a GAUSS shell 

which calculates the necessary functional values and gradients. Note, that the analytical gradients of the 

aggregated mod~1 are derived in an appendix. 

Extensive preliminary experimentation has been done in estimations by varying the number of 

aggregates and elemental alternatives as well as the number of explanatory variables. These tests have 

revealed that problems with mUltiple parameters in both {3 and .\ are manageable. The objective in this 

paper though, is to compare algorithms using the simplest experiment that captures the essence of the 

estimation problem. 

In this experiment then, ten elemental alternatives are assumed, distributed as 3, 4 and 3 among 

three aggregates. A Monte Carlo procedure is applied in which choice realizations are generated on the 

basis of known parameters. Subsequently. the aggregated logit model is estimated using the generated 

realization and the known underlying parameters as a staning point for each estimation. Each realization 

consists of 1000 decision-makers. assumed to be depaning from distinct points in space outside the three 

aggregate alternatives. The systematic utility of each decision-maker is a linear function of distance. 

Funhennore, distance is specified as a generic variable. implying that its marginal effect on utility is the 

same for all destinations. 

While the primary theme of interest in this paper is identification of a superior alg0rithm for 

estimation of the aggregated model. there are imponant secondary themes. In panicular, we examine the 

effectiveness of constraining uncenainty parameters to equality as well as the possibility of fixing some 

exogenously. The latter approach is similar in spirit to the specification of alternative-specific constants in 

which the constant associated with the reference alternative is arbitrarily fixed at zero while the remaining 

endogenous constants are estimated in relation. Another theme to be considered is the effectiveness of 

algorithm switching as it is anticipated that some algorithms, such as the method of steepest ascent and 
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the Newton algorithm, may be complimentary. 

5.4.3 Results 

Table 5.1 presents a sampling of the conducted trials, summarizing the essential findings of this 

analysis. E.ach trial consists of 100 estimations. The central tendency of the distribution approximated 

by the 100 estimated parameter values is reported (column three), as well as the standard deviation (in 

parenthesis) as a measure of the standard en'or for all the parameters. The number of estimations out 

of the 100 that actually converged in less than 50 iterations are reported in column four. Note that a 

reasonably specified OMNL model converges in four to six iterations. Tests indicated that if 50 iterations 

are exceeded then the algorithm is searching far from the optimum with linle hope of identirying the 

solution. The number of times out of the 100 that the 50 iterations limit was exceeded for each case is 

reported in column five. The following column six provides the number of times the algorithm crashed. 

Finally, for the cases of convergence in less than 50 iterations. the average number of iterations is presented 

in column seven. 

Note in Table 5.1 that the true values utilized for>. in the simulations are generally 1.0. Ex­

ceptions to this are experiments 2 and 9 to 12. Even for these the true>. are not less than O.li. In general 

it was found that with smaller >., it was difficult to run a Monte Carlo experiment since algorithm failure 

was frequent. The closer the true value of >. to 0, the greater the chance of failure. This is consistent 

with McFadden's (1981) observation relating to the nested logit model that the surface becomes highlY 

non-linear as >. ~ O. A possible solution to the problem of algorithm failure is the estimation of I' = 1/>. 

in place of >.. This approach greatly reduces the chance of algorithm failure, since the nature of the log­

likelihood surface is altered, however it has been unclear in experimenw,ions that the convergence rates 

are improved. As a result, we focus on >. despite the problems which occur when the true value is small. 



TABLE 5.1: ALGORITHM PERFORMANCE UNDER DIFFERENT SPECIFICATIONS 

ALGORITHM SPECIFICATION MEAN PARAMETERS AND CONVERGENCE EXCESSIVE FAILURE MEt~\j' 

Of UNCERTAINTY STANDARD ERRORS ITERATIONS ITERA1'IONS 

~ AI Al A3 A4 AS 
I. BfOS ll, l2" ).3 -0.21 1.02 1.01 0.93 76 22 2 20.09 

(I.0XI.OXI.O) a (0.02) (0.45) (0.35) (0.54) 
2. BFOS U .. ).2_).3 -0.20 0.69 0.89 1.11 73 22 5 18.96 

(0.6XO.8XI.0) (0.03) (0.51) (0.39) (0.54) 
3. STEEP·NEWT l.1.,.12"l.J -0.20 1.28 1.22 1.26 45 37 18 35.42 

(I.°XI.°XI.O) (0.02) (0.89) (0.71) (0.92) 
4. BFGS·NEWT AI. Al. A3 -0.21 24.44 19.56 24.40 94 5 24.79 

(I.OXI.°XI.O) (0.03) (52.44) (4U5) (52.51) 
5. PRCO·NEWT lit' J.2-l.J -0.20 1.70 US 1.71 44 35 21 3'.68 

(I.OXI.OXI.O) (0.02) (1.58) (1.25) (1.63) 
6. BfOS AI. A2; A3-1 b -0.20 0.98 0.99 100 0 0 S.20 

(1.0XI.0) (0.02) (0.10) (0.07) 
7. BFGS AI- Al- A3 -0.20 0.99 100 a a 6.54 

(LOX LOX 1.0) (0.02) (0.16) 
8. BFGS AloA2- A3-1 -0.20 1.00 100 0 0 5.7M 

(1.0) (0.04) (0.17) 
9. BFGS AloA2; A3-1 -0.20 0.61 0.80 100 a a 8.60 

(0.6XO.8) (0.02) (0.12) (0.07) 
10. BfOS AI- A2- A3 -0.23 0.67 100 0 0 7.01 

(0.6XO.8XI.0) (0.02) (0.16) 
II. BfOS A.1 .. ll" ,13"l4-lS -0.20 0.82 1.02 1.25 1.23 90 3 7 25.91 

(0.6XO.8XIXIXI) (0.02) (0.52) (0.42) (0.47) (0.43) 
12. BfOS AI. A2' A3. A4. AS -0.20 0.77 0.99 1.16 1.17 1.16 87 5 8 32.67 

(0.6XO.8XIXIXI) (0.02) (0.65) (0.58) (0.62) (0.56) (0.59) 

a • numbers in parentheses represent We values associated with endogenously estimated 1 
b.}'3. for example., is exogenously fixed to 1 

":'.' 

w 

'" 
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5.4.3.1 Performance of Individual Algorithms 

As Table 5.1 readily reveals. there is no question that the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm is the most successful in a stand alone fashion. providing the best combination of speed 

and stability. This judgment is made on the basis of trials I and 2 of Table I. In these. the>. are 

not constrained to equality and a single >. is estimated for each aggregate. As mentioned earlier. such 

a model is more complicated to estimate than one with constraints on the >. and hence should act ., 

a good test for algorithm effectiveness. While BFGS converged 76 and 73 per cent of the time under 

these scenarios. the performance of the other algorithms by themselves was very poor. In particular. 

the Newton-Raphson (NEWT). Polak-Ribiere conjugate gradient method (PRCG). and Berndt-Hall-Hall­

Hausman (BHHH) technique failed to record any convergences within 50 iterations from their 100 trials. 

By themselves. NEWT. PRCG and BHHH seem to perform quite poorly in the early iterations and therefore 

are never in a good position to converge. BFGS though is quite flexible in the early iterations as it mimics 

the steepest ascent algorithm (STEEP) and then imitates the Newton-Raphson algorithm near the point of 

convergence. The superior performance of the BFGS algorithm makes the absence of the Quasi-Newton 

algorithms in the nested logit estimation literature (McFadden. 1981; Hensher. 1986; Brownstone and 

Small. 1989) surprising since these authors mention estimation difficulties. Equally surprising is the bad 

performance of the BHHH algorithm. which is promoteG oy this literature. 

5.4.3.2 The Use of Algorithm Switching 

While the Newton-Raphson method was quite unsuccessful in a stand-alone fashion and appar­

ently had problems getting into the region of an optimum. it is reputed to be the fastest of the algorithms 

in actually reaching convergence when the optimum is nearby. As a result. it was paired in tum with 

STEEP. BFGS and PRCG in trials 3 to 5 to see if the overall rates of convergence could be improved 
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with an algorithm switch to NEWT taking place after 30 iterations. The combinations of STEEP-NEWT 

and PRCG-NEWT converged some of the time but proved to be substantially less stable than other means. 

The best convergence rates are provided by BFGS-NEWT where the algorithm switch can lead to a better 

convergence rate than with BFGS alone. In general it was noted that if the NEWTON portion of the 

switched algorithm does not converge within a few iterations, it will tend to cycle infinitely in the same 

sub-optimal zone. 

The comparatively poor performance of algorithms applied in experiments I to 5, where there 

is one endogenously determined A for each aggregate zone, is in need of explanation since even the 

BFGS algorithm was frequently unsuccessful. A frequent symptom of such difficulties is extremely high 

correlations exhibited in the parameter correlation matrices between A parameters. These reflect other 

problems relating to statistical inference, algorithm stability and violations of the model's theory. Certainly. 

the results for the standard errors and mean parameters in trial 4 dramatically illustrate potential effects on 

statistical inference. It is clear in this case that convergences are taking place in the context of a model 

with underlying specification problems. These results confirm earlier statements that estimation of A tends 

to be more inefficient and less stable when there are no restrictions on these parameters. This appears the 

case even when the underlying true A are unequal as is the case in trials 2 and 12. When restrictions on 

A are imposed however, statistical efficiency and estimation success improves since the near-singularity is 

removed, the direction matrix has more desirable characteristics and aggregate utilities can efficiently be 

adjusted in relative terms. 

5,4,3.3 The Use of Exogenous Parameters and Equality Constraints 

The convergence performance in experiments 6 to \0 is the most successful. It is clear that 

estimation is greatly simplified in the case of the aggregated model, both in terms of speed and convergence 

proportions, by imposing equality constraints on the A parameters or through fixing one or two of them 
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exogenously. The BFGS algorithm was used for these trials mainly because it proved itself as generally 

the most successful. The performance of other algorithms however. such as NEWTON and PRCG also 

improves under constrained>. estimation. 

The results for trial 10, in which one>. is estimated for all three aggregates, despite the fact 

that the true >. values are unequal, is an interesting case. Note that this is the only incidence where the 

parameter associated with distance has any substantial bias. What this result shows is that. while it may 

be expedient in an estimation sense to equate .\, t!:e researcher must be cautious or biases will result. 

While difficulty in attaining a convergence is prcbably a reOection of a misspecification. there ore cases. 

as trial 10 shows, where specification problems can be obscured by a relatively smooth convergence, with 

statistical efficiency being gained at the expense of introducing biases into estimation. 

Clearly statistical tests are needed to identify cases where two or more parameters are not 

significantly different. Such tests can be based on the parameter variance-covariance matrix. Given 

potential estimation and statistical difficulties, it is important for a researcher to estimate a variety of 

exploratory models before resorting to a specific one. Such an approach is analogous to the tests developed 

for assessing whether logit model parameters should be specified generically (Ben-Akiva and Lerman. 1985) 

or in assessing the IIA property of the logit model (McFadden, Tye and Train, 1977) in which various 

models with different subsets of alternatives need to be estimated before diagnostics can be performed. 

An important technique in the model exploration phase, is the fixing of individual .\ exogenously, 

especially if estimation seems poorly behaved and if there is no basis for equating various >.. This action will 

stabilize estimation while the exogenous>. can be incrementally changed to determine which conditional 

optimization provides the maximum. Once in the vicinity of the optimum, a complete estimation stands a 

better chance of converging. 
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5.5 Conclusions 

This paper has revealed that the aggregated logit model is amenable to current optimization 

algorithms although the log-likelihood surface may be less wen-behaved than that of the nested logit 

model. In particular. the Quasi-Newton family of methods, notably the Broyden-Fletcher-Goldfarb-Shanno 

algorithm, represent powerful means to obtain parameter estimates under the most difficult circumstances. 

Other algorithms, such as the method of steepest ascent. can be effective as initial methods preceding an 

algorithm switch. In particular. the Newton-Raphson technique behaved well in obtaining final convergence 

once in the region of the optimum, and hence is often a good algorithm to which a switch can be made. 

This same algorithm, however, was found to be inadequate for the aggregated model in a stand-alone 

fashion. As far as the closely related nested logit model is concerned. it is thought that full-information 

estimation, itself considered a difficult problem, would likely benefit from some of the methods in this 

paper. In particular. the Quasi-Newton approaches have been overlooked in the literature. 

Results indicate that specification of uncertainty parameters can have considerable bearing on 

whether an optimal solution is found. Also, difficulti,,_ " attaining convergence can be exacerbated 

by highly correlated parameters. often leading to predicted uncertainty parameters outside the theoretical 

range. Such problems can be combated by appropriately constraining uncertainty parameters to equality or 

specifYing some exogenously. Overall, researchers must remain aware that difficulty in obtaining solutions 

may not be because the problem is intractable but rather that some aspect of the specification is poor. 

Given a well-specified model, the Quasi-Newton methods seem well-equipped to successfully carry out 

optimization. 



5.6 Appendix to Chapter 5: Log-likelihood Derivatives for the 

Aggregated Model 

144 

Estimation techniques discussed in this paper require the first order derivatives of the aggregated 

logit log-likelihood function. Unless analytical formulas for the calculation of the derivatives are provided 

by the user. the GAUSS maximum likelihood module. for example. calculates derivatives numerically. a 

process that slows down estimation considerably. This appendix provides the derivative formulas used in 

this paper. 

Equation 4 gives: 

8C:({3,p.) = t t y,( 8F" (J) 

8( ,,=1 J=1 F" (J) 8( 
(13) 

where ( is any parameter in (3 or p.. For any logit probability formula. such as I. it is true that: 

8Fn (J) = p. (1) r8\~;' _ f.- 8V,~ p. (Q)] 
8( n' 8( L..8(n 

L Q=1 

(14) 

A linear-in-parameters elemental systematic utility is given by: 

K 

Vi;rt = L fJkX/;nk (15) 
k=l 

where Xi~nk is the k'th of K independent variables. For a parameter 13k in (3 equation 2 gives: 

M' [ J] J Vi," 
8V,;, 

?:Xijnk exp >7 
1=1 

= 
813k 

M' [W] ?:exp ;~n 
(16) J=1 

M' 

= LX~nkFn(j I J) 
j=1 

which applies only to the parameters associated with the explanatory variables, not the uncertainty param-
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eters . Substituting 16 into 14: 

(17) 

Similarly, for a ),J in A: 

1 ~ [Vij,,] 
MJ >,J /:- "'ijn exp AJ 

'" [Vij,,] 3=1 = In L..... exp >.J - --'-;-/.I;';J,------

3=1 '" [Vij,,] L..... exp ),J 
j=l (18) 

= .1J [v;~- f Vij"P" (j I J)] 
" j=1 

from which the reader can gather 8~:~J) , by substituting in 14. 

In the event that the Newton-Raphson method is being used, having the expressions for the 

gradient vector alone is not sufficient. It is necessary to calculate the Hessian matrix of second derivatives 

which is employed directly in the procedure unlike the Quasi-Newton methods in which it is approximated. 

The expression for the element of the Hessian matrix corresponding to parameters k and I is: 

N L 
Qk' = - L L _1_8P,,(J) 8P,,(J) 

,,=1.1=1 P .. (J) (k (, 
(19) 

This equation is combined with 14 to calculate elements of the Hessian matrix. 



Chapter 6 

An Empirical Evaluation of the Aggregated 

Spatial Choice Model 

6.1 Introduction 

This chapter constitutes an initial attempt at empirically testing a spatial choice model designed 

for situations where the choice destinations in the available data are aggregates of the actual spatial units 

considered by choice-makers. For example. we may have data on the choice of regions made by migrants 

but need a model to acknowledge that the choices are typically motivated at the level of metropolitan areas 

within each region. This proposed approach is henceforth referred to as the aggregated spatial choice 

model. a technique which explicitly links spatially aggregate levels of utility to the spatially disaggregate 

utility components and which raises the possibility that disaggregate attribute data can be used in the 

same model as the aggregate choice data imposed on the researcher. Theoretically. the model is logically 

premised on the notion that the utility of an aggregate for a given choice-maker is represented by the 

contained elemental alternative of maximum utility. The issues examined in this paper differ from those 

considered by the modifiable areal unit problem (MAUP) and should not be confused. The MAUP evaluates 

statistical properties of spatially referenced attributes in the presence of aggreeation (Arbia. 1989). Here 

we are dealing with a choice process as is also the case with the gravity model. 

146 
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The theory of the aggregated spatial choice model is closely linked with that of the nested logit 

model with much of the seminal work on both being done by McFadden (1978) and Lerman (1975) in 

the context of intra-urban housing choice. The mathematical form of the aggregated model differs since. 

by definition. it cannot exploit the sub-aggregate choice information available for the nested logit. In 

applications with aggregate choice data. the most popular tool has been the Ordinary Multinomial Logit 

Model (OMNL) but it has the shortcoming of not representing sub-aggregate variation in utility (Chapter 3). 

This misrepresentation can lead to erroneous parameter estimates in heterogeneous aggregates, particularly 

if a corrective set of alternative-specific constants is not employed. Fortunately. the aggregated model is 

more general in this respect and can accommodate a detailed surface of predicted utility. 

The purposes of this paper are essentially two-fold. Previous work in Chapters 4 and 5 has 

assessed the aggregated model in a simulated environment addressing matters such as whether unbiased 

and efficient parameters can be obtained and whether there is an optimization algorithm which is well 

suited to the problem. Hence the first purpose is to show that the model provides meaningful results 

with real-world data. The particular data in ques:ion relate to the aggregate destination choice patterns of 

Canadian Maritime migrants in the 1990-1991 period. Th. second purpose is to highlight advantages and 

disadvantages of the aggregated model in relation to existing approaches. 

The outline of this paper is as follows. In the section to follow. a brief theoretical exposition 

of the aggregated model is provided. highlighting its major features. The third section introduces the 

Maritime migration data we use, placing it in context and discussing its manipulation. The focus of the 

fourth section is on specification of the aggregated model using variables defined for this analysis. Also 

matters relating to estimation and model diagnostics are covered. In the fifth section, the results of the 

application are discussed. 
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6.2 Model Background 

In this section, only a summary of tile aggregated model's theory is presented since these matters 

have been previously covered in detail in Chapter 3. Assume that in some destination choice context. there 

are L aggregate spatial units which form a comprehensive choice set for a sample of choice-makers. In the 

interest of simplicity, we will assume that the zone of origin for the choice-makers is not itself eligible as 

a destination although this would not be a major complication. Each of the L aggregates . .} E {1.2 ... L) 
L 

can be sub-divided into M J elemental zones with L M J = M defining the total number of elemental 
J=l 

zones in the system. We assume that the set of elemental alternatives defines the finest level of resolution 

on which the choice-makers base their selection but that we. as researchers. have knowledge of the spatial 

choices only at the aggregate level. 

Each choice-maker selects the elemental destination associated with the highest utility. thereby se-

lecting the aggregate alternative in which the chosen elemental alternative belongs. Thus. an aggregate's true 

utility equals the true utility of the most amactive contained elemental alternative: U,{ = max Uf". 
iE{ 1,2 •... ,MJ} 

Our estimate of U~ is V;f, which can be thought of as EIU~]' while that of Uf" is Vi~" The relationship be-

tweenthelattertwo is through Uf" = v,~,Hin+f;'. whereFi",j E {1.2, .... M J
) and,;.,.} E {1,2 ..... L) 

are independently and identically Gumbel-distributed errors with Elfinl = 0 and Elf;'l = O. The system-

atic utilities v,~,j E {I, 2, ... , MJ} are a function of attributes of places, characteristics of choice-makers 

and/or distance variables. 

It is assumed that Varlfj" + f;'l =, Varlfinl + Varl,;'l = 1r
2 /6. The particular allocation of 

the total variance between fin and f;' may differ between aggregates and is determined by an aggregate 

specific parameter ),J. One can show that ),J = Varl'i"l/Varl'i" + f~l, which restricts the theoretical 
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range of AJ to: 0 ~ AJ ~ 1. When the elemental error tends to occupy all the possible variance: 

Var[f;,,) ~ ",2/6, Var[f;;] ~ a and AJ ~ 1. In this case the utilities of elemental alternatives within 

aggregate J are uncorrelated. The polar opposite is Var[,;,,] ~ 0, Var[f;;) ~ ",2/6 and AJ --> 0, resulting 

in highly correlated utilities. 

Under these theoretical circumstances the choice probabilities for aggregate J E {1, 2, ... , L} 

can be shown as: 

where: 

exp [Vi] 
Pn (J) = -L;-'--'--"-'--

L exp !V,f'] 
/(=1 

All J 

Vi = AJ In L exp[ ~'5'] 
j=1 

M J J-J 
-J J 1 "" [(\1;n- V n)) J J = Vn +>' In AI) ~ exp > . .J +,\ InN! 

j=J 

(I) 

(2) 

The systematic utility of an aggregate is decomposed into a mean systematic utility term V~, a positive size 

term AJ In M J , and the remaining term which can be shown to be positive and measures the variability of 

systematic utility within aggregate J. The larter is appropriately referred to as the heterogeneity term. It is 

important to note that parameter A J can be estimated empirically from model I and 2. Beyond its theoretical 

significance as a measure of utility autocorrelation within aggregate J. AJ is also linked theoretically to 

the size and heterogeneity terms. One can show that when A J --> 1 the size effect is maximized while 

the heterogeneity is minimized. Intuitively, this is because the large, uncorrelated elemental errors within 

aggregate J will make the identification of the elemental alternative of maximum utility a highly uncertain 

process. The opposite is true when >,J --> O.The behavioural rationale for the heterogeneity term is that the 

higher the variability in systematic utility within an aggregate, the more likely that this aggregate contains 

the highest elemental utility peak. The size term can be intuitively understood as measuring the extent 

to which several elemental alternatives are candidates to provide the maximum utility. With AJ ~ 0, for 
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example. size becomes irrelevant since the identity of the most attractive elemental alternative is precisely 

identified by the model. 

The OMNL applied at the aggregate level is a special case of the aggregated logit model in 

that it takes account only of the average utility in an aggregate. omitting the heterogeneity and size ternlS. 

From the behavioural perspective the OMNL postulates that choice-makers select the aggregate destination 

of highest mean utility, while the aggregated spatial choice model postulates that they select the aggregate 

containing the highest elemental peak in utility. The two rules applied to the same case may lead to 

different selections of aggregate alternatives. 

6.3 The Data and Their Context 

6.3.1 Migration from the Canadian Maritimes 

The Maritime or Atlantic region or Canada, composed of the four provinces: Newfoundland, 

Prince Edward Island, Nova Scotia and New Brunswick, has for many years been seen 3S the classic 

'have not' region within the country. As such it is characterized by an industrial sector which is rela­

tively underdeveloped compared to more prosperous regions such as Ontario and by a population which 

is comparatively dependent on social assistance. Resource sectors, which drive much of the Canadian 

economy and can be the salvation of otherwise struggling regions, are less well-developed in comparison 

to Western Canada. The single dominant resource over the past decades has been the Atlantic fishery on 

which the economy of Newfoundland in particular has been highly dependent. Unfortunately. poor fishery 

management practices have led to a ban on cod fishing and further stress on the Maritime economy. New 

Brunswick has been the one Maritime province to formulate progressive policies and in recent years has 

invested massively in human capital and technological infrastructure in an effort to eliminate dependency 

on resource industries and social assistance. 
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For many there remain clear economic disincentives associated with living in the Maritimes 

although it has been speculated that the costs are cushioned by the generous social safety net (Courchene. 

1994). The propensity of different Maritime population segments to migrate or stay within the region 

is an interesting maner. however, in this analysis we restrict ourselves to considering the destination 

choice patterns of those who actually change regions. Among this sub-population there are two dominant 

t.~denr.les. One is that Ontario is the location of choice for migrants and typically captures more than 

half of Maritime outmigrants among the various population segments. Clearly, easterners perceive Ontario 

as the province that drives the national economy and hence is associated with the largest proportion of 

opportunities. A second dominant aspect is the glaring unattractiveness of Quebec to the vast majority of 

migrants; this despite the fact that Quebec is the nearest alternative region to the Maritimes. It is avoided 

for reasons of cultural and language dissimilarity and uncertainties about Quebec's place in the Canadian 

Federation. These aspects and several others will be highlighted through the models which follow. 

6.3.2 The Data 

All the data for this analysis ultimately originate from the 199 I Canadian census. Data relating 

to the personal attributes of specific migrants have been taken from a special micro-data set: the public 

use sample of individuals. From the public use sample. we are able to assess the migrations of Canadians 

among the ten provinces and the two territories but are unable to obtain comprehensive information on 

sub-aggregate choices. Hence we are presented with real-world data possessing the exact limitation which 

the aggregated model seeks to address. 

6.3.2.1 Manipulation of the Micro-data 

A representative sample of over 800 000 persons from the Canadian population was compiled 

to form the public use sample data. This is almost a 3% sample of the population. Of the over 800 000 

individuals in the original sample, the overwhelming majority are removed for this analysis. Initially. the 



152 

sample is reduced by nearly two-thirds through the fact that we deal only with individuals who identify 

themselves as the primary household maintainer. It is assumed that such persons are the ones who can 

best be associated with the migration decision. Secondly. all persons who do not live in the Maritimes at 

the beginning of the time period are removed. thereby reducing the sample to 23 995. Of these persons. 

only 287 were observed to change regions between June 1990 and June 1991. the one-year reference time 

period for this analysis. This represents a departure rate in the sample of 1.2%. In earlier censuses. the 

researcher was obligated to use a five year time interval. something which is risky since many movements 

are hidden with this low level of temporal resolution. It is thought that the one year interval is a considerable 

improvement in this regar~ The down side of course is that the sample size of migrants is substantially 

reduced. 

6.3.2.2 Definition of the Spatial Aggregation Scheme 

The Yukon and the Northwest Territories were eliminated as potential destinations for Maritimers 

since the flows involved are tiny. This leaves six provinces which could act as potential aggregate destina-

tions. It was deemed that Manitoba and Saskatchewan be combined since they would tend to be perceived 

as similar entities ITom the perspective of a Maritimer and because the associated flows arc small. The four 

provinces of the Maritimes themselves of course are aggregated to form the Atlantic Canada region. In the 

end, six regions are employed in the model to define the set of aggregates: the Maritimes, Quebec, Ontario, 

the Prairies, Alberta and British Columbia. At the disaggregate level, elemental alternatives are based on 

urban agglomerations. It is felt that in an inter-regional context, census agglomerations (CA's) and census 

metropolitan areas (CMA's) represent the most realistic elemental choice entities both from behavioural and 

computational points of view. The distribution of these elemental alternatives by aggregate is as follows: 

Quebec (28), Ontario (35), the Prairies (10), Alberta (10), British Columbia (21) which together result in 

a choice set with 104 elemental alternatives. 
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The destination attributes used for the analysis are spatially referenced census data which Statis-

tics Canada derives from 20% samples of each census enumeration area. The results from these samples 

can be obtained at any desired level of aggregation supported by the census. We are interested in the 

CA/CMA data. In order to ensure that the spatial information is comprehensive, a residual elemental 

alternative is defined in all regions to capture the influence of rural areas and towns outside the CA/CMA 

boundaries. For destination attributes which are rates or averages, the estimated values for the residual 

elemental alternative in each region are calculated as: 

Nre.qXrcg - LNjXj 
j 

Nrcs 

where j indexes the non-residual elemental alternatives in a region, x relates to the particular variable, and 

N refers to population which is used as a weight. Destination attributes which are simple 'count' variables 

are easily obtained for the residual alternatives as: Xrc~ = Xreg - L 1, 

j 

6.4 The Variables and Their Specification 

This section's objective is to highlight the migration variables used in the analysis and to identifY 

the dominant specification techniques. some of which are not widely used with the OMNL, but become 

of more relevance when applied to the aggregated model. While it is possible to construct models which 

utilize all specification techniques at once, in this paper we wish to maximally differentiate the techniques 

through separate specifications. We wish to emphasize at the outset that all combinations of the techniques 

discussed below could be utilized within the context of a single specification. 

The range of variables tested in this analysis has by no means been comprehensive and does 

not pretend to constitute a thorough migration analysis. Their selection is based partially on the results of 

other research and partially on preliminary analysis. The descriptions are listed in Table 6.1. Clearly the 
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Table 6.1: Variables Employed in the Analysis 

Destination Attributes 

popsize: natural logarithm of population 
langl: proportion of population at that point speaking english only 
dist1: natural logarithm of elemental alternative distance from Maritime centroid 
temp: mean annual temperature in degrees Celsius 
precip: mean annual precipitation in thousands of millimcLres 

Choice-maker characteristics 

native!: I ifin 1990. the migrant resided in province of birth; 0 if a non-native 
english: I if migrant speaks english only; 0 if migrant is bilingual 
nfld: I if migrant moves from Newfoundland; 0 if not 
ns: I if migrant moves from Nova Scotia; 0 if not (note: nfld=O and ns=O defines migrants from NB and PEl) 
hskill: I if migrant is in a high skill occupation; 0 if not 
mskill: I if migrant is in a medium skill occupation; 0 if not 
!skill: I ifmigrant is in a low skill occupation; 0 ifnot 
(note: hskill=O. mskill=O. and Iskill=O dermes migrants who are not in the labour force) 

Interactions 

dist2: natural logarithm of distances from individual Maritime provinces 
(i.e. province of origin interacted with appropriate set of distances) 
lang2: Interaction of "english' with appropriate language proportions over space 
native2: Interaction of 'native I" with 5 year in-migration totals 
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types of variables which affect destination choice, the model type of this analysis, may differ considerably 

from those which affect the initial decision to move. Age for example is strongly associated with the 

likelihood of moving but it is less effective in predicting the choice of destination. 

6.4.1 Specifications Emphasizing Spatial Heterogeneity 

At one extreme. patterns of destination choice can be modelled as a function of spatially 

referenced attributes. implying that choice·makers will not be differentiated. Hence. Vj~ = f(zt]). 

k E {I. 2 ...• J(} where zti defines the value of the kfh destination attribute and J( indicat,,. the total 

number of attributes. The goal of such a model is to determine the main destination factors which ac· 

count for aggregate choice behaviour reco~!'!i7in1; ~:-::::t this characterization may not capture how individual 

segments of the population behave. 

The destination attributes used in this analysis are essentially self-explanatory and are defined 

in Table 6.1. The population size variable (POPSIZE), mean annual temperature (TEMP) and total annual 

precipitation (PRECIP) variables are included for obvious reasons. With respect to distance. D1STI is 

relevant to the model type of this section, which employs no systematic utility variation across choice­

makers. It is assumed that all choice-makers originate ITom one central point in the Maritimes which acts 

as the base for calculating the great circle distances over the earth's surface to each of the 104 elemental 

alternatives. These results are subsequently transformed by the natural logarithm since the ITiction-of­

distance is reputed in the literature to have a diminishing marginal impact. The language variable, LANG I 

is simply the proportion of the population at each elemental alternative which speaks English without 

knowledge of a second language. It is expect<'d that this variable will help capture the unattractiveness of 

Quebec to Maritimers. 

In specifying destination attributes for the aggregated model, it is important to keep in mind that 
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they bear strong resemblance to alternative-specific constants '10 Ihat both are used to explain the aggregate 

or market shares exhibited in the choices. Constants are described by Train (1986) as being used to absorb 

all systematic variation not captured by a model's variables. Since a full set of constants will result in 

L - 1 parameters to be estimated. it can be a rather pointless exercise to utilize this approach. especially 

if there are many choice alternatives. A prudent approach is the specification of as few as possibl< 

destination attributes in the place of constants which efficiently explain the aggregate choice shares while 

providing insights that constants do not. Hence. the number cf estimated parameters is greatly reduced 

because destination attributes are applied in a generic manner. with one parameter applying to all spatial 

alternatives for a given attribute. In our context. with the five aggregates that Maritimers can choose. 

the bigger problem in employing constants is the associated lack of insight rather than needing too many 

parameters. but the former is a problem we wish to address in the analysis. With constants a maximum 

of L - 1 parameters can be employed to differentiate the L aggregate utilities. When generic destination 

attributes are used instead. if K - L. near or even partial collinearity among the attributes will typically 

lead to estimation difficulties although in some cases a model may converge with /( = L. 

It is noteworthy that in 2 an aggregate level constant is essentially built into the model through 

the size term. Hence it is possible to set Vj~ .: a for all j and .1. implying that v:'= a and: 

and yet capture the market share probabilities through the size effect. Since many relevant variables might 

be omitted from such a model, theoretical violations with ), well outside the unit interval would tend 

to occur. If ),J, J E {1,2, ... ,L} are constrained to equality. however. explanation can be regained by 

specif)dng important destination attributes to complement the generic size effect. Such an approach will 

reduce the likelihood of theoretical violation. It should be remembered though that, as above, the number 

of parameters should not exceed the number of aggregates. 
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6.4.2 Specificatbns Emphasizing Heterogeneity Across Choice-makers 

It is possible to apply the aggregated model even without incorporating sub-aggregate variation 

in utility. One popular specification method for the OMNL in the discrete choice literature (Ben-Akiva and 

Lerman. 1985) relates to the use of characteristics of choice-makers in an alternative-specific manner. Such 

characteristics might be categorical, as in gender, or continuous. such as income. For example, in a three 

alternative OMNL model which is fully specified with respect to a single choice-maker characteristic (Xn ) 

we would have: V~ = {3,Xn, V; = {32Xn while V; = O. Hence there would be two parameters estimated 

({3, and (32) to account for the two differences in utility needed to discriminate among three alternatives. 

This variable type is important in that it allows segmentation so that choice-makers are not modelled as 

perceiving things in the same way. Indeed, it is through population segmentation that improvements on 

the fits of market share models are obtained. 

With respect to the aggregated mouel, such specification means are possible but of course 

these variables cannot generate sub-aggregate variation in utility since sub-aggregate choice information is 

unavailable. These variables can. however. introduce aggregate spatial variation but only through several 

parameters. In this context, the heterogeneity effect will be zero while V~may be non-zero. The >.J , J E 

{I, 2, ... , L} will be directly associated with the size effect and can be used to assess the nature of uncertainty 

and hence the need for potential re-specifications. In contrast. the OMNL uses alternative-specific constants 

to capture remaining systematic variation, but there is no theoretical interpretation associated with the 

resulting parameters. 

The particular choice-maker characteristics used for the models of this section are found in Table 

6.1 in the form of variables on nativity, language, province of origin and occupational skill level. The 

language variable (ENGLISH) contrasts the b~haviour of bilingual Maritimers with those who speak only 

English while the province of origin variables (NFLD. NS) add a spatial dimension to the classification of 

choice-makers. Note that Prince Edward Island migrants and New Brunswick migrants are joint members 
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of the reference category with no effort being made to contrast the two as there are only six PEl migrants 

in the sample. 

Other variables in Table 6.1 include nativity which has been a prominent factor affecting desti­

nation choices. In particular, natives who move (primary migrants), have been shown more responsive to 

choosing on the basis of economic opportunity than migrants who are non-natives (Liaw, 1990). Note that 

the definition for this variable (NATIVEI) does not preclude the possibility that the person was already 

a return migrant at the beginning of the period. The skill level of the migrant's occupation (HSKILL. 

MSKILL, LSKILL) is an interesting way to distinguish the abilities of migrants and its effect on migra­

tions. The high skill occupations include professionals and managers. the middle skills are associated with 

skilled trades and foreman, while the lower skills are associated with many service and retail occupa­

tions. Obviously, this is a gross simplification of the categories which apply at the most disaggregate level 

however the inclusion of more categories is beyond the scope of this analysis. 

6.4.3 Specifications with Full Heterogeneity Across Space and Choice-makers 

The previous two approaches hav,. been limited to some extent in that they omit important 

sources of variation either across choice-makers or across space. The OMNL is capable only of simulating 

spatial variation at the aggregate level although complete population segmentation is possible. From the 

behavioural point of view. the ideal model should combine detailed population segmentation with high 

spatial resolution of utility. The model should simultaneously assess what it is about choice-makers which 

causes them to select certain elemental destinations and what it is about these destinations which makes 

them attractive to some population segments. This can be accomplished through three general types of 

variables. 

6.4.3.1 Physical Distance 

A widely used variable in spatial choice models is the distance between the choice-maker at 
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the origin and the set of potential destinations. The spatial variation in utility induced by distance has a 

systematic linear spatial trend which can be made non-linear by employing the log of distance. A non-

linear effect is assumed in D1ST2 which differs from D1STI in that three potential origins in the Maritimes 

are considered as opposed to one. which leads to three sets of distances and utilities. The centroids of 

Newfoundland, New Brunswick and Nova Scotia are utilized to form D1STI. The physical distance variable 

in general is particularly well-suited to the aggregated model since distances to sub-aggregate locales are 

easily determined. Interestingly, the use of sub-aggregate distances provides a measure of the manner in 

which an aggregate's shape and orientation affects its utility, something which the OMNL is incapable of 

doing. 

6.4.3.2 Social Distance 

In the Canadian migration context. the language barrier between the predominantly French-

speaking province of Quebec and the remaining provinces. which are English-speaking, is often noted. 

In interactions involving Quebec, this barrier manifests itself in migration flows which seem unrelated to 

the friction-of-distance. This phenomenon has led migration researchers to define social distance variables 

which capture such effects (e.g. Anderson and Papageorgiou. 1994). The form of the social distance 

variable is dependent on whether the data are aggregate across choice-makers or if they are microdata. For 

the former. given an origin zone i. a destination zone j and some social characteristic ouch as language. the 

population can be divided into I categories based on the proportional shares S'k and S;k, k E {I, 2, ... , I} 

of each language group. The variable is defined as dljl = 2:~=1 IS'k - S;kl. The larger the cumulative 

absolute differences in the shares for the given social variable, the greater the social distance between 

zones i and j. A variable similar in spirit ilo devised by Sen and Soot (1991). 11 has the form d~;l = 

log [2:~=1 Js.k lS;.l which has the property that exp[d~;ll = 0 when there is a non-existent match 

between the proportional shares and exp[dWl = 1 when the shares correspond perfectly. 
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With micro-data. composite variables such as these make Iinle sense since a migrant of one 

group most likely will not factor the relative shares of many language groups in making an evaluation. 

Presumably, the interest is more in assessing the relative concentration of a person's own group as a 

proportion of the total population at each destination. In that case, following Newbold (1994) the social 

distance is simply 8j k for origin i migrant of group k. Unlike physical distance, we expect a positive 

associated parameter since migrants are more likely to choose those zones in which 8jk ~ 1. One problem 

with this form is that it systematically induces less spatial utility heterogeneity for those groups which 

everywhere constitute a small proportion of the population. This approach is the one used to define 

LANG2 (Table 6.1) in which the utility of English-speaking people is related to the English proportions at 

each elemental alternative while the utility of bilingual people is related to the concentrations of French. 

Hence, by this definition it is essentially assumed that bilinguals would prefer Quebec, all things bebg 

equal. 

In an alternative variable form, a person might evaluate the proportion that each elemental 

altern~tive contains of the country's total population in their group. For a French-speaking person, since 

Quebec contains the bulk of Canada's iTench people, it is the highest utility province. The same logic could 

apply at the sub-provincial level and form the basis for a social distance variable. A model with many 

such variables essentially contains multiple size effects, each measuring the distribution of opportunities 

for various population segments. Conceptually, these do not clash with the size term in 3 which expresses 

size as the number of behaviourally-based choice units. The size or density associated with each of these 

ch0ice uni:s i, a different maner but one which must be assessed, through popUlation or social distance 

variables, if plausible levels of elemental utility are to be estimated. 

6.4.3.3 Interactions 

An interaction variable in this analysis is defined by the product of a binary choice-maker 
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characteristic and a destination attribute. The purpose of such a variable is simply to recognize that some 

population segments will be influenced by a given destination attribute while other segments will not. 

For example, a reason for the poor performance of employment variables in many aggregate migration 

studies is that they are of concern mostly to unemployed people rather than those with established careers 

(DaVanzo, 1978). This type of effect can be accommodated in the aggregated model by an interaction 

variable which, for example, will generate a heterogeneous utility surface for the unemployed and a flat 

surface for others. The variable NATIVE2 is one of this type in that it is assumed that natives will be more 

re~ponsive to recent five year in-migration totals, a surrogate for economic opportunity, than non-natives. 

6.5 Estimation and Results 

6.5.1 The Optimization Problem and Model Diagnostics 

All parameters in this analysis are obtained through the maximum likelihood technique, the goal 

of which is to find those parameters {3, .>. which maximize the log-likelihood function: 

N L 

C({3,'>') = L LY,;'lnPn(J) (3) 
n=lJ=l 

where: 

• {3 is a vector of parameters that enter the systematic utilities Vj~, j E {I, 2, ... , M J}, J E {I, 2, ... , L} 
which in tum determine V,;' and Pn (J) which were defined earlier 

• Y,;' is 1 if choice-maker n. chooses aggregate J and 0 otherwise 

• N is the total number of choice-makers. 

In estimating the aggregated logit model, it has been reported in Chapter 4 that the ordinary 

Newton-Raphson algorithm may not be successful in obtaining plirllmeters, especially when confronted 
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by regions on the log-likelihood surface which are not concave. Considerable success has been achieved 

through the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique. which is a Quasi-Newton 

algorithm, and the one employed in this analysis. 

In devising goodness-of-fit statistics for the aggregated model. there are two useful benchmarks. 

The log-likelihood for a market share model, which does not differentiate choice-makers, is given by 

C(c) = ~yJln [~] 

where yJ defines the total selections of J. The second benchmark is the naive log-likelihood given by 

C(O) = Yin [±] which corresponds to assuming zero utilities for all aggregates. 

Goodness-of-fit is typically assessed on the basis of how well a model improves on these 

log-likelihood benchmarks. In particular, the p2 statistics are given as P5 = 1 _ C~~~~) and p~ = 

1 c- ({3, ).) Th 'II . h' h .. I I d I . hi' .. - .c"'(c)' ese measureS.3 Wit In t e unit mterva. n a rno e Wit popu atlOn segmentation. It 

is important to report P~ since this will illustrate the extent to which segmentation is improving the fit 

over the model with no segmentation. If P5 alone is reported. a high value is possible without significant 

contribution from the variables which create the segmentation. particularly when the market shares differ 

substantially from the naive shares. In general p~ <: 0.2 is considered a good fit. 

6.5.2 Results and Discussion 

6.5.2.1 Specifications Emphasizing Spatial Heterogeneity 

The results for this model type, which hypothesizes that destination attributes alone can be useful 

in describing the essenti~1 nature of Maritime migration, are in Table 6.2. Interestingly the p~ results in 

this table are almost as good as those of the more complex models in Tables 3 and 4. The true aggregate 

probabilities are displayed in Table 6.2 along with the aggregate probabilities predicted by each model. 

Overwhelmingly, Ontario is the destination of choice for Maritimers while Quebec is least attractive despite 
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the fact that it is the physically closest destination. 

At the aggregate level, we would expect that the population size associated with each elemental 

alternative would be a fairly good predictor, being a surrogate for the density of opportunities available 

over spacc. This does in fact tum out to be the case and overall, POPSIZE is the strongest and most 

significant variable. The other main significant result is obtained by controlling for the effects of language 

(LANG I), with the sign being positive as expected. Beyond these variables, it is difficult to find others 

which improve the model's explanatory power. This is related to issues raised in the earlier discussion 

where the difficulty of explaining four aggregate differences in utility with more than three or four generic 

variables was highlighted. In panicular, climate variables such as mean annual temperature (TEMP) and 

levels of annual precipitation (PRECIP) do not contribute much although the signs at least are as would 

be expected. With language being contro!!od for. the D1STI variable is also employed but provides an 

insignificant result. We would tend to conclude that distance is not a large consideration for Maritime 

migrants. 

The). values are consistently high indicating that the size effect is being maximized and the 

heterogeneity effect minimized. It seems that size, in terms of the number of choice units in an aggregate 

and in terms of the population in each of these choice units, is quite imponant and that unobserved 

variation most likely tends to be unique to individual elemental altemativ.s. An example of how ). can 

be used as a theoretic~1 check is given by model 4 which clearly has a specification problem. Note that 

the role of POPSIZE is minimized and that randomness unique to elemental alternatives is over-exploited 

in differentiating the aggregates as reflected by the large ).. Model 3 corrects the specification problem by 

controlling for language with the proof being that). becomes theoretically valid. 

Results from model 3, which is the best in terms of fit and in conforming to expectations, are 

graphically displayed in Figures / and 6.2. For prospective Maritime migrants, this is a representation of 

their probability surface over Canada (Figure 6./) and Canada's most populous region: the corridor defined 
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Table 6.2: Models Emphasizing Spatial Heterogeneity 

(1) 

Variable popsize 1.299 
(6.766)' 

distl -
temp -

prcctp -
langl 1.592 

(4.944) 
). 1.000 

(2.801 ) 

Probs Que 
( 0.098)' 0.098' 

Ont 
(0.551) 0.)55 
Prairies 
(0.059) 0.088 

Alta 
(0.146) 0.113 

B.C. 
(0.146) 0.147 

:£* -371.76 

Po' 0.195 

a - observed Quebec aggregate probability 
b - predicted Quebec aggregate probability 
c - t-statistics in parentheses 

(2) 

1.571 
(5.134) 
0.381 

(1.092) 
-

-

1.283 
(3.184) 
1.241 

(3.476) 

0.098 

0.550 

0.075 

0.112 

0.166 

-371.16 

0.196 

(3) (4) (5) 

1.321 0.625 1.277 
(5.897) (2.224) (6.421 ) 

- - -

- - 0.049 
(1.441) 

-0.092 -5.780 -
(-0.27) (5.763) 
1.583 - -

(4.826) 
0.994 3.234 1.162 

(2.279) (8.314) (7.497) 

0.098 0.101 0.255 

0.556 0.554 0.437 

0.089 0.106 0.064 

0.115 0.110 0.081 

0.142 0.129 0.162 

-371.73 -374.27 -397.55 

0.195 0.190 0.155 
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Figure 6.1: The Attractiveness of Canadian Cities to Maritimers 
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Figure 6.2: The Attractiveness of Ontario/Quebec Cities to Maritimers 
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by southern Ontario and Quebec (Figure 6.2). The figures are meant to give an intuitive feel for the 

relative attractiveness of the various elemental alternatives although problems with areal definition mean 

that the surfaces should not be over-interpreted. They are important because they clearly show that despite 

the total absence of sub-provincial choice data, we are able to differentiate elemental alternatives using 

sub-provincial attribute data and associated parameters. The dominance of population in model 3 explains 

why only a few of the approximately 50 cen,us agglomerations covered in Figure 6.1 have a substantial 

probability of being chosen and why Toronto towers above the rest. Montreal is represented by a much 

lower secondary peak even though its population is only marginally less than Toronto. Since it is in Quebec 

though, the impact of the language variable drastically reduces Montreal's comparative attractiveness. 

6.5.2.2 Specifications Emphasizing Hetet'Ogeneity Across Choice makers 

A selection of the results for this type of model is presented in Table 6.3. There are separate 

models for each of the main variables: nativity. language. province of origin and occupational skill level. 

For all variables, Quebec is used as the reference geographic aggregate. The reference categories for 

the variables are made clear in Table 6.1. The overwhelming dominance of positive parameters in the 

Table 6.3 is indicative of the fact that being a native as opposed to a non-native. speaking English only 

as opposed to knowing other languages, moving from either Newfoundland or Nova Scotia or being an 

employed worker with a skill all increase the chances of moving to a region other than Quebec. Clearly, 

the glaring unattractiveness of Quebec is the dominant theme in these results with the province tending to 

be attractive mostly to bilinguals and non-natives who are most likely return migrants. The fact that those 

not in the labour force are more likely to choose Quebec may explain the actions of such return migrants. 

It is important to note that the vast majority of the parameters are significantly different from Quebec's 

reference utility of zero. 
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Table 6.3: Models Emphasizing Population Segmentation 

Variable specific (I) (2) (3) (4) (5) 
10: 

nativeb ontario 0.997 (2.281)' 0.706 (8.209) 
prairies 0.981 (1.603) 1.016 (12.09) 
alberta 0.811 (1.590) 0.283 (2.775) 

be 1.194 (2.328) 0.846 (14.10) 

english' ontario 2.469 (5.414) 2.414 (10.23) 
prairies 1.974 (3.018) 2.095 (13.52) 
alberta 4.094 (4.921) 3.997 (10.89) 

be 3.100 (5.245) 2.828 (9.752) 

nfId' ontario 1.253 (2.238) 0.632 (5.643) 
prames -0.693 (-0.61) -1.303 (-6.12) 
alberta 1.163 (1.715) 0.433 (4.203) 

be 1.030 (1.471) 0.244 (2.416) 

ns' ontario 1.041 (2.324) 0.503 (3.445) 
prairies 0.693 (1.072) 0.214 (2.326) 
alberta 1.569 (2.889) 0.955 (7.520) 

be 1.609 (2.996) 0.958 (7.484) 

hskill' ontario 1.743 (3.047) 2.312 (11.86) 
prairies 2.329 (2.151) 2.798 (13.99) 
alberta 1.338 (1.758) 1.990 (15.79) 

be 1.743 (1.965) 2.293 (14.79) 

mskill' ontario 1.040 (1.567) 1.168 (1:;.12) 
prairies 0.469 (0.331) 0.564 (1.488) 
alberta 1.163 (1.381) 1.239 (7.538) 

be 2.416 (2.661) 2.462 (19.54) 

Iskill' ontario 1.478 (2.678) 1.493 (9.449) 
prames 1.791 (1.639) 1.808 (7.175) 
alberta 2.037 (2.798) 2.123 (26.54) 

be 2.079 (2.475) 2.054 (11.16) 

A quebec 0.830 (1.277) 1.199 (12.62) 0.900 (I !.69) 1.131 (8.378) 1.768 (23.89) 
ontario 1.165 (25.89) 1.242 (15.53) 1.152 (20.95) 1.197 (10.32) 1.216 (20.61) 
prames 0.833 (8.0 I 0) l.lll (6.816) 1.001 (8.556) 0.735 (2.543) 1.004 (12.24) 
alberta 1.259 (15.54) 0.714 (3.188) 1.098 (10.17) 1.211 (6.340) 0.605 (8.643) 

be 0.892 (12.93) 0.841 (5.964) 0.830 (8.737) 0.783 (3.575) 0.631 (10.52) 

g. -365.85 -344.44 -359.71 -355.24 -324.33 

P02 0.208 0.254 0.221 0.231 0.298 

p,2 0.008 0.066 0.025 0.037 0.121 

a - I-statistics are in parentheses 
b - quebec is acting as a reference altemati," 
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Secondary themes revolve around how the other regions fare relative to one other, something 

which can be assessed through the alternative-specific results for a given variable. A rigorous analysis 

was not taken out to assess the extent to which some alternative-specific parameters could be constrained 

to equality, with this being partly to show how parameters can prolifente under the technique of this 

section. Regarding nativity, the results are generally uninteresting with the main priority of natives being 

to avoid Quebec. The language results are more interesting with central Canada being more attractive 

to bilinguals. The province of origin variable is noteworthy for the only negative sign in the table, 

indicating that Newfoundlanders. being residents of the most easterly isolated province. find the Prairies 

to be less attractive than Quebec. The other interesting thing is the fact that Nova Scotians. having lived 

in the Maritime economic heartland, perceive more opportunity in the Western provinces than do those 

in Newfoundland and New Brunswick. Perhaps Nova Scotians were more aware of the extent to which 

recession was ravaging Ontario's economy at this time. If there is a general trend in the skill level variabl •. 

it is that high skill workers (i.e. professionals and managers) find central Canada more attractive while the 

lower and medium skill workers. related more to service and infrastructure jobs, are more oriented toward 

western Canada. Certainly the economies of central Canada were much later in their economic cycles than 

western Canada and thus perhaps less opportunity existed in lower level occupations. 

The results for A are important for the aggregated model of this section because these are 

the parameters which distinguish the model from the OMNL whose alternative-specific constants have 

no theoretical connotation. The results are consistently high reflecting the fact that fit is best obtained 

by letting uncertainty relate uniquely to individual elemental alternatives in the system. Utilities within 

aggregates have very low levels of correlation. By definition this version of the aggregated model does 

not allow intra-aggregate heterogeneity in systematic utility, hence if heterogeneity in utility is necessary 

to optimize fit, it is left to sets of independent elemental random errors to impose it. For the most part, 
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the theoretical violations with>. > 1 are minor with the exception of modelS where the restriction on the 

nature of systematic utility has its largest effect. The>. are directly associated with the size terms. since 

there are no heterogeneity terms, and the size terms are being forced to over-compensate. Perhaps the 

specifications might benefit from the judicious addition of relevant destination anributes. as employed in 

Table 6.2, to relieve the burden on the size terms. 

Note that these models provide fairly good fits although it takes a large number of parameters 

to achieve these results. Note especially that the p~ value describing the improvement in fit over the 

market share model is quite respectable. A study of the model 5 predicted choice probabilities revealed 

considerable success in describing differential behaviour across population segments. The combination of 

variables used seems to work very well with there being a substantial reduction in the standard errors when 

this more thorough appraisal of the migration process is utilized rather than the partial specifications of 

models I to 4. 

6.5.2.3 Specifications with Full Heterogeneity 

This third type of model attempts to simultaneously capture the important differences between 

population segments and also the manner in which the utility surfaces for these segments unfold vari-

ably over space. As we have seen. it is mathematically possible to specifY destination anributes and 

socio-economic variables separately but the most intuitively appealing method is to interact choice-maker 

characteristics with destination anributes. Such an "11; roach results in more parsimonious models and is in 

keeping with the assumption that migrants match their characteristics with certain key attributes of the des­

tinations they consider. In a GIS then, we could produce visual representations of elemental attractiveness 

as in Figure 6. I, except different surfaces or thematic maps could be used for the individual population 

segments. 
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Table 6.4: Models with Full Heterogeneity 

Variable specific (I) (2) (3) (4) (5) 
10: 

lang2 quebec 2.882 (2.335)' 9.200 (1.559) 1.212 (6.659) 1.558 (6.183) 
ontario 0.954 (1.963) 1.269 (0.859) " . " 
prairies 0.443 (1.280) 0.831 (0.546) " " 
alberta 2.569 (2.613) 2.941 (1.922) " " 

bc 1.570 (3.369) 1.951 (1.273) " " 

dist2 quebec -0.553 (-1.304) -0.362 (-0.49) 0.088 (0.633) 0.314 (0.509) 
ontario -0.221 (-0.580) 1.083 (1.078) " " 
prairies -0.493 (-1.494) 0.777 (0.879) " " 
alberta -0.359 (-1.122) 0.641 (0.740) " " 

bc -0.353 (-1.110) 0.715 (0.823) " " 

nativel b ontario 0.419 (1.383) 
prairies 0.487 (1.068) 
alberta 0.144 (0.391) 

bc 0.533 (1.464) 

native2 quebec 0.034 (3.400) 
ontario " 
prairies " 
alberta " 

bc " 

hskill' ontario 1.369 (3.315) 
prairies 1.852 (3.144) 
alberta 0.520 (l018) 

bc 0.576 (1.125) 

A quebec 0.488 (1.762) 0.026 (0.377) 0.282 (0.547) 1.499 (7.848) 1.016 (4.032) 
ontario 1.366 (7.806) " " " 1.188 (9.504) 
prairies 1.307 (3.913) " " " 0.647 (4.793) 
alberta 0.908 (10.20) " " " 1.297 (10.38) 

bc 0.988 (4.117) " " " 0.897 (6.847) 

51'" -344.44 -366.81 -342.63 -376.45 -340.50 

Po' 0.254 0.206 0.258 0.185 0.263 

p,' 0.066 0.006 0.071 - 0.077 

a - t-statistics are in parentheses 
b - quebec is acting as a reference alternative 
" indicates identical to parameter above (i.e. constrained to equality across aggregates) 
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The results in Table 6.4 show again that language considerations (LANG2) are dominant in the 

migration of Maritimers. In some specifications this social distance variable is specified generically and in 

others it is alternative-specific but in all cases the result is positive. This indicates that migrants are drawn 

to places that feature a high proportion of the population speaking the language(s) with which they are 

familiar. The alternative-specific specifications indicate that this variable is particularly strong for Quebec 

and the Western provinces. the former being a deterrent for those who are not bilingual and the latter 

attracting a large proportion of unilingual english. 

The DIST2 variable is employed because. unlike DISTI. it differentiates the distances of the 

individual Maritime provinces. Overall. this variable contributes much less to discriminating among choice­

makers than does language. Again. generic and alternative-specific specifications of this variable arc 

attempted and if anything. the results indicate that a friction-of-distance effect is absent since the results 

are 50nerally not significart and since the sign of the distance parameter shows volatility. The parameter 

tends to be negative when specified alone but tII",s positive in the presence of the language variable. 

Overall. it appears that little is gained through utilizing different distances depending on the prc>vince of 

origin and that treating all the Maritime provinces as one origin is equally effective. 

The NATIVE2 variable is an example of an interaction variable as opposed to a social or physical 

distance variable. To form NATIVE2. the NATIVE I variable is interacted with the inter-provincial in­

migration total from the previous five years. The five year migration total (1986-1991) is intended to 

capture those places which would be perceived by 1990-1991 migrants as having fast-growing economies. 

The interaction tests whether natives are more responsive to pure economic opportunity than non-natives. 

The parameter is positive and significant as expected (model 4) indicating that places with recent high 

in-migration totals are of more utility to natives than non-natives. 

The final specification (model 5) is included to show that choice-maker characteristics can 
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be employed as they wcre in the previous section along with social and physical distance variables to 

produce a model which can be plausibly interpreted. Such an approach can be used to enhance population 

differentiation while acknowledging spatial heterogeneity in utility. Overall the results seem consistent 

with those noted in previous models in terms of the interpretations. 

In general, the).. values in Table 6.4 do not stray far outside the theoretical range. When this 

does happen, most likely the size effect is required to capture variation not accounted for explicitly by other 

variables and that heterogeneity in elemental utility is inferred to exist in the fjn terms. In an improperly 

specified model, since the size term may be required to upgrade utility considerably, its associated parameter 

may be unfeasibly large. In general, Lerman (1975) showed that the size effect would tend to outweigh 

the heterogeneity effect. Logically. this implies that).. is typically influenced more by the size effect. 

Certainly, this seems to be the case in this analysis. Theoretical violations can be accommodated. however. 

through constraints on the).. aCross alternatives and the inclusion of some relevant destination attributes. 

In terms of goodness-of-fit, it appears that the aggregated spatial choice model will not perform 

better than the OMNL. Comparing the results of Table 6.4 with those of Table 6.3 bears this out in the sense 

that the models of the latter, with no sub-aggregate variation in systematic utility, have close resemblance 

to the OMNL . While the aggregated model incorporates sub-aggregate information, fit is determined 

by the ability to accurately forecast aggregate level probabilities, something that the OMNL does very 

well. However the aggregated model goes about predicting the aggregate probabilities in a manner which 

captures the underlying elemental processes, something that the OMNL ignores altogether. While i! is 

clear that considerable care needs to be taken in devising social distance and interaction variables for the 

aggregated model, it is felt that a thorough analysis would culminate in fits comparable to the OMNL. 
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6.6 Conclusions 

We are in a position now to reflect on the objectives of this paper as outlined at the beginning. 

First of all, there is little question that the aggregated model provides results that are reasonable and that 

would conform to preconceived hypotheses. The Maritime migrants were assessed using this model and 

it was found, for example, that language considerations dominate to the point that the generally reliable 

friction-of-distance measure is of only minor importance in discriminating the behaviour of migrants from 

different Maritime provinces. Examination of sub-aggregate estimated utilities conform also with what we 

would expect. Typically the large metropolitan areas tend to be associated with utility peaks. the levels of 

which however are moderated by the characteristics of the choice-makers. For example. Montreal is the 

acknowledged peak utility location within Quebec but its level of utility is very much dependent on the 

languages spoken by the choice-maker. 

The doorway to greater realism in choice model specifications is being opened through applica­

tion of this model. The use of social distance variables and interactions of choice-maker characteristics with 

destination attributes recognizes that spatial choice processes represent matching of what a choice-maker 

desires or has to offer with what is available at potential destinations. It is hence acknowledged that some 

destination attributes are of relevance only to certain segments of the population and that only a few are 

of broad importance to choice-makers. The greater spatial resolution of this model provides incentive to 

focus more on these types of variables than would typicaily be the case with the OMNL. This latter ,,,,,del 

represents no sub-aggregate variation in utility so there is a tendency to apply choice-maker characteristics 

which are specified very easily and result in good fit but which provide coarse spatial representations of 

utility. Such a model answers what it is about choice-makers that motivate choices but leaves the researcher 
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to speculate about what makes destinations attractive. 

The advantages and the disadvantages of the aggregated model in relation to the OMNL can be 

quickly summarized. The main advantage is that the aggregated model provides a more realistic overall 

representation of the choice process and one which takes better account of all factors. It is a model which 

is doubtlessly more complex to specifY and which leads to greater thought being needed to capture the 

process. It is a model whose high level of spatial resolution of utility is quite amenable to applications 

with Geographical Information Systems both in the model-building and final display phases. The main 

disadvantages are that specifications take longer to implement and that estimation is less reliable and 

predictable than is the case with the OMNL. Typically though. estimation problems are usually indicative 

of specification problems. This is an indicator which is not available in applications of the OMNL where 

even the most poorly specified model is almost guaranteed to converge. 



Chapter 7 

Conclusions 

Discrete choice models have risen to prominence in man)' choice contexts with the spatial choice 

context being no exception. The models are based on random utility theory which provides researchers 

an inherently probabilistic framework with which to explain the choices of individuals. This thesis has 

focused on a particular problem which is relevant in the spatial choice context and thus to spatial choice 

models. Namely, what approach should be employed when it is suspected that the choice process for the 

phenomena under study operates at a more spatially disaggregate level than the available spatial interaction 

data? A solution has been presented in the form of the aggregated spatia//ogit model. which is well-suited 

to the problem of utilizing available data in a theoretically plausible way. It is important to emphasize 

that the model is associated with spatial aggregation as opposed to the problem of aggregation across 

choice-makers. 

Spatial choice problems are unique in the number of potential complications they afTer for 

the application of choice models. It is suggested in this thesis that the aggregated model and its close 

cousin, the nested logit model, are the best able to strike a compromise between theoretical generality 

and a manageable computational burden. It was discussed in Chapter 2 how these approaches address the 

three main spatial choice complications: the non-independence of spatial units, the definition of spatial 

choice sets, and spatial aggregation of alternatives. The ordinary multinomial logit model (OMNL), since 

it is consistent with the independence from irrelevant alternatives property, is not capable of explicitly 
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modelling dependency among spatial units. Nevertheless, it is has been the preferred technique in spatial 

choice problems. The applicability of the probit model, a very general construct, is questionable since for 

reasons of computational burden, it has yet to be applied to a large scale spatial choice application with 

many altem,,!ives. 

7.1 Findings 

7.1.1 Theoretical Insights 

From the theoretical perspective, this thesis has provided the most comprehensive available ac­

count of the aggregated spatiallogit model. In so doing, the thesis has built on the seminal works of Lerman 

(1975) and McFadden (1978) who provided a theoretical basis for this research but never meaningfully 

implemented the ideas or discussed model properties in detail. The major theoretical contributions of the 

research in this thesis are: the formalizing of the properties of the basic form of the aggregated model, the 

evaluation of these properties, and the derivation of a relaxed asymptotic version of the model based on a 

less restrictive set of assumptions. These aspects are reviewed here in tum. 

This thesis makes it plain that in order to assess the utility of aggregate spatial units, it is 

important to make a distinction between aggregate alternatives and elemental alternatives. It is argued 

that elemental alternatives are the fundamental, spatially disaggregate spatial units potentially considered 

by choice-makers in the decision process while aggregate alternatives are often defined out of necessity 

given the aggregate nature of choice data. Since we wish to represent aggregate probabilities and associated 

parameters in the correct way, it is essential to consider elemental utilities since a proper model should 

have the capability to acknowledge an elemental choice process when it exists. 

Under the assumption that choice-makers pursue the elemental zone of maximum utility within 

an aggregate alternative, the utility of that aggregate can be shown to be a function of its mean utility, 
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its size in terms of the number of contained elemental choice units. and the variability in utility which 

occurs within the aggregate. Theoretical discussion in this thesis, unlike previous work. has put a lot of 

emphasis on how the size and heterogeneity components of aggregate systematic utility are linked to the 

behaviour of the random error components of utility. Results demonstrated to be true in theory have the 

added virtue of being intuitively sensible. For example. it is shown that the 'imponance of an aggregate's 

size in terms of the number of contained elemental choice units is inversely related to their degree of 

perceived similarity, Similarity is assessed based on the extent to which elemental alternatives have 

correlated random error components. The heterogeneity of systematic utility within aggregates is shown 

to be the largest when uncenainty about individual elemental alternatives is its smallest. Essentially. there 

is an elegant mechanism in place which is capable of assessing whether choice-makers cluster potential 

destinations in their decision process. Hence. the model is sufficiently general to identify which aggregates 

are associated with an elemental choice process and which are not. 

While the imponance of the heterogeneity effect is dependent on the nature of the random error 

components, it was also shown to be dependent on the spatial variability of the imponant destination 

attributes which affect utility. Results of simulations (Chapter 4) are of interest as it was demonstrated 

how the heterogeneity of spatial attributes could seriously undermine the performance of the OMNL which 

makes no distinction between elemental and aggregate alternatives, In panicular. it was clearly shown that 

the focus of the OMNL model on mean utility could cause it to miss the overwhelming attractiveness of a 

single elemental alternative and hence the essential nature of the choice process. This would also lead to 

severely biased parameter estimates. On the other hand, the aggregated model was shown to perform well 

under all circumstances. 

The asymptotic results examined in this thesis are of theoretical interest because they allow 

the aggregated mode! to be based on a less restrictive set of assumptions. In panicular, the assumption 

that elemental utilities are Gumbel distributed can be relaxed if the number of elemental alternatives is 
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sufficiently large and yet the distribution of the maximum utility will nevertheless be Gumbel. Since we 

are dealing with a maximization process in our assessment of aggregate utility. it is necessary ("lly to make 

an assumption about the right tail of the distribution of an elemental error. or that part of the distribution 

which could affect the maximum. It is shown that the 'lack of memory' property must be obeyed where 

this property states that the conditional probability of a random error being x units larger than some given 

value c is independent of c. Since the exponential distribution is the only one which obeys this property. 

the assumption is made by extension that the right tail of the random error distribution is exponentially 

distributed. 

7,1.2 Practical Insights 

On a practical level. the aggregated model offers researchers new opportunities to make best usc 

of the data which are at their disposal. There are cases where the data containing the observed choices 

are at a more aggregate spatial level than the choice process and the attribute data which could be used 

to describe the process. This was demonstrated in the context of Canadian inter-provincial migration in 

Chapter 6. The Public Use Sample of Individuals. on which that set of trials was based. is notorious for 

having quite detailed information on choice-makers with respect to most aspects except their geography. 

Hence. in the case of migrants. we are liable to know nothing more than wllii: ?rovincc the person has 

chosen. or in some cases, what census metropolitan area. On the other hand. c(;nsUs data contain useful 

attribute information about potential destinations at just about any level of spatial aggregation level we 

desire. It was shown empirically (and graphically) that the aggregated logit model offers a unique way 

to acknowledge, through elemental utilities, the potential for a sub-provincial choice process even while 

being restricted to provincial choice data. 

A clear practical contribution of this research is that a suitable algorithm for the estimation of 

the aggregated model has been chosen and for the first time. software for complete implementation of 
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the model has been developed (Appendix I). In the past. researchers may have recognized the merit of 

the basic theory. but never was the model implemented in its complete fonn. Typically. the assumption 

was made that systematic sub-aggregate variation in utility was non-existent and hence that elemental 

alternatives could not be differentiated from the perspective of the researcher when the available choice 

infonnation operated at the aggregate level. Even McFadden (1978) sought ways to simplify the model 

through an asymptotic approximation of the heterogeneity term and ultimately make estimation possible 

with conventional OMNL software. In Chapter 5 it was shown that the aggregated model in its complete 

fonn, with choice information being available only at the aggregate level and systematic utilities being 

differentiate~ 11 the elemental level. could be operationalized. 

It was concluded that in estimation of the aggregated model through the maximum likelihood 

technique. the Quasi-Newton family of optimization algorithms offered the best perfonnance. In particular. 

the Broyden-Fletcher-Goldfarb-Shanno algorithm. which avoids the use of second derivatives altogether but 

USes first derivatives to obtain an increasingly accurate appro}:imation of the Hessian matrix. was advocated 

as a superiour algorithm. It was noted that any instabi;it)' in obtaining parameter estimat~s would typically 

be due to the endogenous estimation of the scale parameters which control the relative impacts of the 

size and heterogeneity terms. Various options were explored to reduce the complexity of the problem 

such as imposing equality constraints on the scale parameters across aggregates or through the exogenous 

fixing of one or more scale parameters. Such adjustments were shown to greatly increase the likelihood 

of convergence and were advocated as excellent intennediate measures in the course of obtaining a final 

model. 
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7.2 Direc.ions for Future Research 

7.2.1 The Aggregated Model and GIS 

An imponant argument in favour of the aggregated model is its potential when used in ccmbi­

nation with a Geographica: Information System (GIS). Since one is typically modelling a large number of 

elemental ahematives in applications of the aggregated model. it can be very awkward to review resuhs 

without use of graphics. GIS pr<wides a graphical interface and maintains the spatial relationships betwten 

choice units. While a small amount of work was done in this thesis on linking the aggregated model to 

GIS (Chapter 6). it is fair to say that the full potential is much larger than has been shown. The capability 

of a GIS to quickly display mUltiple coverages for a given study area lends itself well to assessing the 

impacts of different variables on utili!), and on doing comparisons over various population segments. h is 

expected that use of GIS will quickly show that the ordinary logit model applied to aggregate spatial units 

providos fairly simplistic results. with very coarse and simplistic representations in utility. In contrast. with 

the aggregated model. one should be able to appreciate the full spatial diversity associated with choice 

units. 

While many software packages are capable of doing 'basic mapping·.a true GIS is one which 

facilitates more complex analysis by. for example. performing mathematical operations simultaneously 

on multiple overlays to produce a compesite coverage. h is with such capabilities that a researcher can 

produce a map which shows. for example. all places where a population segment has utility or choice 

probability above a cenain level, where two population segments simuhaneously have utilities below a 

cenain level, or where three spatial attributes have panicularly large values. In shol1, if the aggregated 

model is well-integrated with a powerful GIS, the model will be 'brought to life.' Clear benefit~ will 
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be realized in the rr.odel specification phase, where the researcher will visually be able to see the spatial 

impacts of different variables and certainly in the phase where results are reported to others. Without a 

GIS interfac:, it is questionable whether the aggregated model will gain favour in spatial analysis since its 

capabilities may not be fully appreciated. 

7.2.2 Other Topics 

The process of compiling this thesis has generated several ideas that are worthy of examination. 

One is that the aggregated model provides interesting theoretical results with respect to physical distance 

variables which measure the spatial separation between origin and destination. Typically. the distance 

between some origin and an aggregate destination is given by the centroid of the aggregate. thereby treating 

the aggregate as a dimensionless point. By measuring the individual distances to elemental alternatives 

within the aggregate however, the aggregated model is capable of capturing the shape and orientation of 

potential aggregate destinations and how this affects their choice probabilities. This is a fundamentally 

spatial issue which deserves further attention. 

One avenue which has not been explored in this thesis is the idea of hybrid models which 

combine the nested logit with the aggregated model. In the Canadian Public Use Sample Tape mentioned 

earlier. researchers have access to choice information about some sub-provincial units, namely selected 

census metropolitan areas, but not others. It is therefore possible to form groupings based on whether the 

choice information is available. In cases where it is available, elemental utilities will be estimated as they 

would with a nested logit model; in cases where it is not, the aggregated model can be used. All of these 

aspects can be accommodated within a single model structure which utilizes all the ?vailable information. 

Another example of a hybrid model is in the migration context, where the movelstay component of the 

migration decision, in which the required choice information is known, is operationalized at one level while 

the aggregated model is applied to the destination choice portion of the model. 
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It is apparent that more extensive comparisons between the nested logit model and the aggregated 

model are needed. In this thesis. the comparison with the OMNL model has been stressed because it has 

been the dominant spatial choice model. There is no question thut the aggregated model gives a much 

richer interpretation of the choice process than the OMNL. However. as micro-Jata sets become more 

highly developed. with more elemental choice infonnation becoming available. we have greater freedom 

to apply the nested logit model. It is hence important to understand what is given up if all available choice 

infonnation is not utilized and the aggregated model is applied. Prelimi"ary examination of the issue. 

which has not beer. reported here. indicates that for identical specifications. the aggregated model actually 

compares quite well to the nested logit. 

In a related topic. the sampling of elemental altematives. as opposed to their aggregation. is a 

possibility to consider when more elemental choice infonnation is available than can be accommodated. 

This approach is clearly motivated by a concern for computational burden. While the aggregated model is 

computationally intensive in accounting for all elemental utilities. it should be noted that the burden is less 

than is the case with a full application of the nested logit model where every elemental unit is explicitly 

considered as a model alternative. 

Insights gained from the aggregated model are of relevance in applications of the nested logit 

model. In particular. from the estimation perspective. there is the possibility that the Quasi-Newton methods 

will percnnn well in full-infonnation estimation of the nested logit. Typically. researchers are still utilizing 

sequential estimation procedures for the nested logit. with simultaneous estimation being considered a 

difficult process. There is every indication that the Quasi-Newton methods might reduce the level of 

difficulty. 

Finally. it is important in the future that the aggregated model be applied in a wide range of 

spatial choice contexts such as industrial location. tourism or retailing. The extent to which this will succeed 

depends on the validity of the maximum utility hypothesis which states that the utility of an aggregate 
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is equivalent to the utility of the most anractive elemental alternative. Generally, this hypothesis is most 

reasonable when it is applied in a context which will have long-term implications for the choice-maker. 

Migration is an example where this is true. On the other hand, a shopping mall might be conceptualized 

as an aggregate alter!1ative, however it douotful that the associated short-term choices are made on the 

basis of the maximum utility available within the mall. An additional complication is that more than one 

elemental alternative is likely to be chosen in a given trip. Clearly, for this type of complex choice process, 

an alternative theoretical construct is necessary. 
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Appendix 1: Software for the Specification and Estimation of Logit 

Models 

1 Introduction 

The purpose of this document is to provide a review of software designed by me to make 

possible the specification and estimation of a wide range of logit models. In particular. the ordinary 

multinomial logit model (OMNL). the two-level nested logit model and the aggregat.:d logit model can 

each be implemented. It is a characteristic of GAUSS. the language of this software. that problem$ of 

an imposing size can be easily manipulated and estimated with < high degree of computational effi"iency. 

This characteristic lends itself well to discrete choice problems. particularly those with a large number 

of observations. and those. such as the aggregated model. which are likely to have a substantial number 

of spatial alternatives. It should be emphasized that while this software has been developed with spatial 

choice applications in mind. it is readily applicable to aspatial choice problems also such as mode choice 

or the selection of consumer products. for example. The software code is not included in this manual since 

it is quite lengthy. 

2 Overview 

For this overview the reader will find it useful to consult the flow chart in Figure A which shows 

the components of this system: program files, data files, specification files and result files as well as the 

manner in which they are related. Note that in general, as we move further down the chart, the use of 

the associated components is likely to decrease. The data and variable creation program SETDATA will 

be used less frequently than th~ specification program SPEC which in tum should be used less frequently 
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than MODULE. The reasons for th;s are to be expanded upon. 

2.1 The Programs 

It is safe to say that all models. whether the OMNL. the nested l"git or the aggregated models. are 

implemented in two phases: specification and estimation. This software contains a specification program 

named SPEC. This program is used to correctly manipulate choice-maker, attribute and distance data ':1to 

a form which is consistent with the techniques of disc.ete choice model specification. Having set up a 

problem, it is then necessary to obtain the best set of parameters through the maximum likelihood technique. 

There are two programs in this software used for parameter estimation: MODULE and NEW­

TON, but only one of the two is required for any given attempt to attain convergence. MODULE presents 

a powerful assortment of algorithms for the estimation of complex problems, with the algorithm diversity 

being due to the maximum likelihood modu:. available in GAUSS. In MODULE the particular functional 

values and analytical results needed to estimate the three general types of models are calculated and then 

provided for use by an already existing GAUSS maximum likelihood estimation module. Its main advan­

tage is its ability to handle a wide range of difficult problems through its rich algorithmic diversity. Its 

main disadvantage is that the program. being based on a general maximum likelihood module, is relatively 

slow. On the other hand, NEWTON is designed specifically for speedy application of the Newton-Raphson 

algorithm and will typically converge many times faster than MODULE. This latter program was designed 

independently of any pre-fabricated GAUSS modules. The main disadvantage of NEWTON is that a lack 

of sophistication in optimization algorithms leads to situations where convergences cannot be obtained. 

Overall. MODULE is best-suited to difficult estimations of the nested logit and aggregated model while 

NEWTON will excel in estimation of the OMNL and simple specifications of the more involved models. 

In the discussion below, when mention is made of the usage of MODULE, it can be assumed. unless 

otherwise specified. that the comments apply also to NEWTON since the two programs are essentially 
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doing the same thing. 

There is one other program in the software. It is known as SETDATA and is used to conven 

ASCII data files provided by the user into files in the GAUSS data set fonnat used by the specification 

and estimation programs. Such conversion is imponant because storage is very efficient and because any 

ponion of the data can instantly be accessed and obtained. Another source of imponance is the fact that 

the names of variables are stored in these GAUSS data sets and are utilized in SPEC. This program is 

also responsible for controlling which of the GAUSS data sets are considered active by SPEC and which 

are inactive. Finally, this program has the capability of generating new variables on the basis of logical or 

mathematic,: statemems provided by the user. 

Now that the basic objectives of tho software are clear, the question might arise as to why the 

programs have not been combined in some integrated fashion so that specification and estimation can be 

carried out in a single. seamless step. There are two main reasons. 

The most obvious is that the different components are likely to be used at quite different ITequen­

cies. The first program SETDATA. may only be run once in a given session as it is responsible for creating 

GAUSS·data which can be accessed according to many combinations of specifications. It detennines the 

family of variables which can be accessed. The program SPEC will be run quite frequently. whenever 

different combinatior.s of /3 parameters are to be estimated. For the OMNL, SPEC and MODULE will 

be run equivalent amounts but for the aggregated model and the nested logit, the latter will be run more 

frequently as it is responsible for specification of the>. scale parameters. These parameters are typically 

subject to extensive experimentation for a given specification of ~. 

Secondly, it is imponant to separate the programs :0 allow for thorough checking of the previous 

actions. The process of incorporating raw data into a specification and estimating the model is quite 

involved and there are things that can go wrong. It is iml'nnant for the user to check that data has been 

set up as intended and that models have been specified a" desired before any potentially time-consuming 
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parameter estimation proceeds. Separating the entire process into these three distinct stages facilitates this 

type of validation procedure. 

2.2 Data Files 

The data for discrete choice models comes in two basic types: variables referring to choice­

makers (or population segments in the case of data aggregated across individuals) or destination attributes 

which are characteristics of the potential spatial alternatives. A third type, the distance variable, is essen­

tially a hybrid of the two primary types. The data needed to implement any specification will come ITom 

at most three distinct GAUSS data set files. The most important of these files is known as SOCIO.DAT 

and is the file which will contain all choice behaviour and all characteristics of choice-making units. No 

matter what the model or specification. this file must be accessible since it provides access to the choice 

information against which a model is judged. The file DEST,DAT, which contains destination attributes 

relevant to the spatial alternatives (or non-spatial attributes of alternatives in the case of an aspatial model), 

need be present only if destination attributes are part of the current specification in some manner. The same 

goes for D1ST.DAT which will contain all distance variables potentially relevant to a specification. Clearly 

there are particular details associated with the structure of each of these files, however such discussion is 

not relevant to this initial brief overview. It should be emphasized that the user will be working with these 

main file types but will be working under their own file names. The names SOCIO.DAT, DIST.DAT 

and DEST.DAT are reserved names for active GAUSS data sets. The discussion below will utilize these 

reserved file names in explanation of the main file types and will also define the concept of an 'active' 

GAUSS data set. 

2.3 Specification Files 

These files tell SPEC and MODULE how the data files should be manipulated to set up and 

subsequently estimate the model. These files are ASCII and constitute the tools at the user's disposal 
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to make the programs function as desired. There are two specification riles: DESIGN.SPC and DE­

FINE.DAT. Once the structure of these files. and in particular DESIGN.SPC. has been mastered. then use 

of the programs is mastered also. 

DESIGN.sPC is responsible for providing specification instructions to SPEC. It contains fun­

damental informatioH such as names of specified variables. how they are utilized and how elemental 

alternatives are distributed among aggregates. The reason for the existence of DEFINE.DAT is that SPEC 

cannot properly implement the instructions of DESIGN.SPC unless the set of alternatives available to each 

choice-making unit is known. For instance, in a mode choice example. the option of bicycle is presumably 

not open to someone who does not own a bike. In the spatial choice context, choice sets are freq',ently 

constrained in destination choice models since known migrants clearly are not considering their 'Jrigin as 

a potential destination. For this reason, the file DEFINE.DAT must be specified to differentiate a given 

choice-maker's choice set from the universal choice set. 

3 Detailed Outlines of the Data File Formats 

One question that might be answered has to do with why so many data files are needed to 

encompass the different forms of data. In the past, when software has been developed for the OMNL. 

it has been possible to develop one data file which will contain all variables no matter what their type. 

Of course such storage is inefficient in the case of a destination attribute, for example, since such a 

variable does not vary across choice-makers. Hence in a file with 10 000 observations on choice-makers. 

the same destination attribute value will repeat itself 10 000 times. Meanwhile, incorporating distance 

variables, which vary across both alternatives and choice-makers, into a data file adds a lot of confusion 

to matters. Such variables will be associated with many columns (alternatives) while other variables such 

as choice-:naker traits will be associated with only a single column. 



190 

It was felt that such structures for permanent data sets was not sensible for applications of the 

aggregated model where confusion and inefficiencies would be multiplied many times over. Consider that 

the utilities for a massive number of spatial units must be representod as opposed to the few typically 

modelled with the OMNL. Also, the distinction ~f the different data types through their separation by 

file allows a bener understanding of specification techniques and what meesures are appropriate for each 

variable. For these reasons, the data types are accommodated in the three files aiscussed below. 

Other general comments regarding ASCII data format need to be made. One is that columns of 

numeri. data should not contain any text headers. All relevant variable titles are entered interactively by 

the user during the runnine of SETOATA. Any text headers in the ASCII data will simply be translated 

into nonsensical numbers and will throw off the dimensions of matrices to subsequently be formed. hence 

triggering an error message. At the time of running SETOATA. the user shouid know the ASCII data and 

be able to appropriately name the columns. The second general comment is that the user should feel free 

to use comma delimiters in the ASCII data as the program is capable of interpreting these as well as data 

utilizing spaces instead of delimiters. The sample data in the appendices utilize spaces to separate fields. 

3.1 SOCIO.DAT 

The only compulsory file of the three main data file types is SOCIO.OAT because it is the 

one which contains choice information. In Appendix 2 we see a sample of this file's setup which contains 

the data used later in the examples section of the manual. The sample represents the 1981 to 1986 

migration behaviour of in excess of 175 000 persons. The number of rows in SOCIO.OAT depends on 

the number of choice-makers or population segments which are being modelled. Ir. the event that we are 

using individual level data then each row in socia. OAT will relate to a single choice-maker. If grouped 

data are employed, ;7. which choice-makers who are homogeneous in certain characteristics are aggregated 

into population segments, then it could be that each row in SOCIO.OAT will be relevant to thousands of 
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choice-makers. In Appendix 2 it is apparent that we are using grouped data. 

Notice that SOCIO.DAT has a distinct block structure to it. The block on the left contains 

choice information while each column of the block on the right contains a choice-maker characteristic. 

Multiple columns are needed to capture all the choice information since all choices typically will not go 

to one alternative. This is seen in Appendix 2 where the first six columns are allocated to capturing the 

choices. Column I shows the number of people in each segment who did not change regions in the live 

year period while the latter five columns capture the destination choices of those who did. On the other 

hand. in a micro-data model with six alternatives. the sum of each row from columns I to 6 would equal 

I since a given choice-maker will choose only one alternative. 

The storage of choice information is only one aspect ofSOCIO.DAT. The other important aspect 

is the delineation of the particular characterist:cs associated with a choice-maker or population segment. 

This is depicted in columns 7 to ! 7 of the sample SOCIO.DAT where variables which identify popUlation 

segments based on education level. age. nature of household and province of origin are employed. In 

column 7 for example, all population segments coded as one indi .. ate that the members have post-secondary 

education and hence are considered well-educated. While all characteristics are binary in our example from 

Appendix 2 since grouped data are being used. it is quite possible to have choice-maker characteristics with 

micro-data which are non-binary such as the observed income for an individual. 

One thing that the user should consider at this stage is what names are to be used for the choice­

maker characteristics featured in SOCIO.DAT. When the translation program SETDATA is run, the user 

will be prompted in tum for the names of these characteristics. These are the names which the user will 

need to recall in setting up the specification file DESIGN.SPC. 

3.2 DEST.DAT 

The simplest data file in structural terms is DEST.DAT. This file contains information on the 
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destination attributes available for specification. Certainly, for a spatial choice model, these attributes 

will be used to introduce much of a model's spatial variation in utility. The number of rows in this file 

corresponds with the total number of elemental alternatives in the model while each column is related to a 

different destination attribute. Note that while SOCIO.DAT is completely dependent on data for specific 

individuals or population segments, the data in DEST.DAT is unrelated to choice-makers. The setting up 

of DEST.DAT is essentially straightforward but there is one other matter which is of concern to spatial 

choice models. We will leave DEST.DAT for the moment until this matter is discussed and then point out 

its relevance for the file. 

In many spatial choice models, each choice-maker or population segment has the option of 

choosing their origin. As a result, an alternative is defined as 'stay' which attempts to capture the probability 

of not moving while the other alternatives are destination choice options chosen by those who do decide to 

move. Notice how the diagonal pattern of zeros in the choice information block of our Appendix 2 example 

reflect the fact that one's own origin is ineligible as a destination choice possibility but is available in the 

stay option cf column I. 

The key point in this discussion is that a variable associated with the stay option should be 

modelled as choice-maker characteristic rather than as a destination attribute. Mainly this is because the 

particular spatial unit associated with the stay option depends on the origin of the choice-maker. If the 

average provincial income is hypothesized to affect the utility of staying, than this is a characteristic which 

varies over choice-makers based on their origin. On the other hand, if the provincial income is hypothesized 

to affect the utility of migrants who consider a given province in a destination choice context, then the 

provincial in;ome will not vary across choice-makers. Hence provincial income could be considered as a 

destination attribute or a choice-maker (origin) characteristic depending on the context. 

For modelling purposes, the stay option in any spatial choice model can be considered a non­

spatial altemative in the sense that it does not make sense to associate spatial utility variation over the 
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surface of the origin. It is considered a non-spatial. point entity. The relevance of all this for DEST.DAT 

is that its number of rows should correspond to the number of elemental alternatives associated with the 

model structure. whether they are spatial or non-spatial. This issue is illustrated in Appendix 3 where 

DEST.DAT files used in later examples are presented. The data relating to the stay option is contained in 

row I where it can be seen that all destination attributes are forced. by a row of zeros. to have no efTect 

on the stay elemental alternative. Hence. even non-spatial alternatives can be represented in the otherwise 

spatially-oriented file DEST.DAT. 

3.3 DIST.DAT 

This file is designed to accommodate all variables which are simultaneously dependent on the 

origin of the choice-maker and the destination that is being considered. Such variables would include 

distance. travel time and travel cost. for example. The previous two files contained data that were dependent 

either on characteristics of the choice-maker or attributes of destinations but did not link the two in any 

way. While the first two files had distinct columnar structures. DIST.DAT is composed of a series of 

horizontally concatenated blocks of data. Like SOCIO.DAT. the number of rows in this file is determined 

by the number of choice-makers or population segments in the model. The number of columns however is 

dependent on the number of elemental alternatives being modelled (spatial and non-spatial) and the number 

of distance variables in the data. 

The DIST.DAT files used in sample estimations are shown in Appendix 4. Unfortunately. there 

is insufficient room on the page to show how DIST.DAT looks for our sample application of the aggregated 

spatial choice model. The first DIST.DAT has 60 rows which is consistent with the model assessing 60 

population segments. Also notice that there arc two distinct blocks in the data. The first block presents 

the distances in thousands of kilometers from the associated origin to each destination. The second block 

simply contains the natural logarithm of the actual distances in kilometers. Note how the sequence of 
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spatial alternatives repeats itself in the header row according to the number of distance variables. Note 

also that the same logic for the handling of non-spatial alternatives is applied in DlST.DAT as was done 

in DEST.DAT. This is reflected by the two columns associated with the stay option all being zeros in 

keeping with the fact that staying is not linked to measures of distance in any way. 

We should note how DlST.DAT would differ in the e'lent that an aggregated logit model was 

being applied. In that case. we would be using sub-aggregate distance measures to differentiate intra­

aggregate utility levels. In the first data set of Appendix 4. each column corresponds to one OMNL 

aggregate. Ifspeci!)-ing the aggregated model. the Jlh column would be replaced with MJ, J E {1. 2 ... , 6} 

columns of distance information since elemenlal alternatives within the J aggregates are all associated 

with unique distances. For all except the stay option (J = 1). M J typically will exceed 1. In the sample 

application of the aggregated logit model. the distribution of M J is (1, 17,28.35,20,21) while for the 

OMNL it is simply six ones. For a spatially disaggregate model, it is clear that DlST.DAT can have a 

massive number of columns. It is critical to keep in mind though that the number of columns is given 

directly by the product of the number of distance variables in the data and the total number of elemental 

alternatives being modelled. 

The opportunity will be taken now to show how DlST.DAT would be set up in a non-spatial 

choice problem. not to mention an example which employs micro-data as opposed to grouped data. In 

particular, we examine a small mode choice example which is outlined in Ben-Akiva and Lerman (1985. 

87-92) where the choice between public transit and automobile is modelled based on the respective travel 

times associated with each. Clearly in this case the altematives are the two modes: transit and car in 

contrast to our other examples where the alternatives are spatial units. 

The main variable, travel time, is considered to be in the general category of 'distance' variable 

since it is neither strictly an attribute of the two modes nor a choice-maker characteristic. The particular 

travel time incurred depends both on the mode and the spatial relationship between the residential origin 
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and the destination of the workplace. The latter are factors which depend on the person involved. In the 

second data set of Appendix 4. the one relevant to the Ben-Akiva problem, we see two columns of data 

which form a single block. This is in contrast to our previous example which had two blocks of distance 

variables. This single block with two columns corresponds to the two 'aggregate' alternatives in the model. 

Unlike space, these cannot be sub-divided into elemental alternatives but for the sake of consistency, they 

can be considered as two aggregates with each containing one elemental alternative. 

The number of rows in this version of D1ST,DAT corresponds simply to the number of choice­

makers in the micro-data. There are 21 people in this example with each row indicating the travel time 

that would be associated with the two modes given the person's circumstances. 

3.4 DEFINE.DAT 

This file is responsible for instructing SPEC as to which alternatives are available to a given 

choice-maker or population segment. Alternatives which are not an option must be omitted from the 

calculation of choice probabilities. Note that it is not enough to restrict an unavailable alternative to zero 

utility since an alternative which has zero utility can very easily be associated with a non-zero choice 

probability in a logit model. Technically this file should be considered as a specification file as it is 

providing SPEC a set of instructions. Nevertheless, its format is discussed in this section concerned with 

data sets. 

The setup of DEFINE.DAT is straightforward and is illustrated along with the DESIGN.SPC 

files for our sample applications of Appendix 5. As with SOCIO.DAT and D1ST.DAT, the number of rows 

in this file of binary elements will correspond to the number of choice-makers or population segments. The 

number of columns in the file will equal the total number of elemental alternatives (spatial and non-spatial) 

being modelled. Note that the sample file contains columns of zeros which form a diagonal pattern across 

the associated population segments. These zeros are associated with choice-makers choosing their own 
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origin in the destination choice component of the model. which of course is not possiole. As a result. the 

choice-maker's origin must be coded as zero in DEFINE.DAT. 

It should be noted that the user will be relieved from the responsibility of preparing an ASCII 

version of DEFINE.DAT if a model is fitted in which all alternatives are available to all choice-makers. 

The user will be prompted for whether this is the case by running SETDATA. If yes, then a DEFINE.DAT 

composed entirely of ones will automatically be created. This is what happens with the Ben-Akiva example 

where both modes are presumed available to all 21 choice-makers. 

4 Running SETDATA 

This program is an important one fOl' undertaking many of the 'housekeeping' tasks which are 

necessary. It provides four main functions which are not necessarily related but are nevertheless all included 

in this single program. In general. the purpose of this program is to manipulate the original ASCII data 

in such a way that the universe of potential variables is readily accessible through the running of SPEC. 

It is important to note that SETDATA is not intended for the creation of huge GAUSS data sets. For this 

purpose. it is probably better to use the ATOG utility available with the GAUSS software and the data 

transformation package which allows for the creation of data sets with proper variable names. Even if 

this route is taken some of the four main functions discussed below will need to be employed such as the 

activation of GAUSS data sets. 

4.1 The conversion of ASCII data into GAUSS data sets 

A major function of this program is to tum the user's raw ASCII data into GAUSS data which 

can be easily accessed and manipulated. The program is responsible for the creation of SOCIO.DAT. 

DEST.DAT. D1ST.DAT and DEFINE.DAT with all, or perhaps only one of them, being created in a 

single run. If distance variables for example are irrelevant in some choice problem. then there is no need 



197 

to create D1ST.DAT. Dummy versions of unneeded data sets though are automatically created since SPEC 

scans for each of the main variable types and needs to find data sets with the four names above. 

In running the program. the user will first be prompted for basic. but imponant infonnation 

about the characteristics of the model: 1) the number of observations (or population segments) in the data 

and 2) the number of elemental alternatives being modelled. In the creation of all files. this infonnation 

wiII be checked against the number of elements detected in the ASCII raw data for inconsistencies. If the 

user has set up the ASCII data in the fonnats described earlier. then there shoUld be no elTor messages. 

For each fonn of data file. the user will be asked if its creation is desired. If so. then the user will be 

prompted for the name of the text .ile containing the needed raw data. 

4.1.1 Defining SOCIO.DAT 

After entering the file name of the ASCll data. the user is asked to describe the data by column. 

As described earlier. the left column block (see AppendL< 2) will be associated with choice infonnation while 

the right column block will be associated with variables. The respective widths of the choice infonnation 

block and the variables block then. is infonnation that will be required of the user. 

Having defined the size of each block. the user is asked to provide the variable names associated 

with the columns in the variables block. This is done interactively and sequentially with the request being 

made to keep variable names to eight or fewer characters. 

The user is then asked if the raw ASCll data contain any non-integer values. If the data are only 

integers, they can be stored much more efficiently than if they contain real numbers and hence will take 

up less disk space. Finally, it is asked that a file name be provided (without the three letter extension) to 

store the GAUSS data. The result will be the creation of two files: one with the .DAT extension and the 

other with a .DHT extension. If one is accidentally erased, then the other will not be operational. 

4.1.2 Defining DEST.DAT 
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If the us.r chooses to define DEST.DAT then the only necessary infonnation is the number of 

columns or destination attributes that are contained in the file. As with the creation of SOCIO.DAT, the 

user will be asked for the names associated with the anribute~, whether the data contain non-integer values 

and what name should be used for the GAUSS data set. 

4.1.3 Defining DIST.DAT 

If the user chooses to define DIST.DAT then the number of distance variables contained in the 

data must be indicated. Then prompts will follow for their names.whether the data are integer or not and 

the name of the GAUSS data set.. 

4.1.4 Defining DEFINE.DAT 

The key aspect in the definition of this file will be whether all model alternatives are available 

to all choice-makers. If so. then DEFlNE.DAT will be a matrix of ones and will be automatically created 

based on infonnation that the program already knows. In this case. it would be unnecessary for the user 

to have previously defined an ASCII text file since it would go unused anyway. If all options are not 

available to all choice-makers however. then the text file of binary numbers must be accessible. The user 

will have created it on the basis of the fonnat previously outlined. Note that DEFINE.DAT will be created 

automatically as an integer file for obvious reasons. 

4.1.5 Processing large ASCII data sets 

In the event of massive raw ASCII data sets, the user might find that it is possible only to 

create one of the GAUSS data sets during a single run due to memory constraints. The program is run. 

one GAUSS data set is created. the memory is cleared. and then the program is run again to create more 

GAUSS data (Note that in GAUSS the workspace can be cleared by typing 'new' from the command 

prompt). With huge data, as in the case of choice-maker data with many thousands of observations, it 

might be necessary to invoke the GAUSS virtual memory capability so that the hard disk mimics RAM 
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memory. This action will slow maners down coosiderably but will eventually lead to the desired result. 

This can be activ.ted through the GAUSS run-time module by typing 'VMI' at the command prompt and 

then following the instructions. It is only in SETOATA that there is risk of having to resort to virtual 

memory. All other components in the system make use of the capabilities of GAUSS data to ensure that 

the data are broken into chunks which are easily managed by the available RAM. The size of chunks to be 

processed is controlled interactively when the specification and estimation programs are run. Alternatively. 

if GAUSS is activated when WINDOWS is running (either define a GAUSS icon or exit to DOS from 

WINDOWS) then the WINDOWS virtual memory capability should free up a large workspace. 

4.2 Determining the ACTIVE GAUSS data sets 

By definition. the active GAUSS data for any running of SPEC and subsequently MODULE 

will be those data sets named: SOCIO.OAT. OEST.OAT. DIST.OAT and OEFlNE.OAT. These names 

are reserved for this purpose. lt was felt that running SPEC would be tedious if the user needed to key 

in nearly a half dozen different file names everytime the same model was run with perhaps only a subtle 

difference in specification. Hence it made sense to designate certain GAUSS data sets as being active and 

hence perceived by SPEC as the data to be acted upon until advised otherwise. An important function of 

SETOATA then is the control over which data are active. 

Most likely, the user will have developed a library of different GAUSS data sets. relating to 

different model types, from undertaking the function described in the previous sub-section. If at any time it 

is desired to do one or more specifications of a particular model type then the associated GAUSS data must 

be activated. To do this the user will be prompted for the names assigned by the user to these data and 

then the data files will be copied automatically to SOCIO.OAT and whichever of the other main GAUSS 

data sets are to be activated. The user should see on the screen whether the copying has been successful 

based on the normal DOS messages which should be displayed. Whenever a different choice-maker file, 



200 

for example, is to be activated, the current SOCIO.DAT file is erased and replaced by a new SOCIO.DAT 

containing the infonnation in the current data. 

4.3 The Definition of new Choice-maker variables 

Often, the choice-maker or population segment variables which were in existence with an original 

ASCII data file will differ to some extent from the variables in the final model specified. There is always 

the desire to create new variables or design choice-maker interactions from the original set. Both the 

addition and deletion of variables is easily undenaken with SETDATA. 

To add a variable. the user is first asked the name of the GAUSS data set to be modified and then 

is asked to confirm that a new variable is being created. Now the name for this variable to be created is 

required. At this point the instruction is given to enter some logical or mathematical expression involving 

current variables available in the user-specified data. Some samples of acceptable statements are as follows 

where the user shoUld substitute the applicable variable names for VARI, VAR2 etc. 

• VARI.* VAR2 - the new variable will be t:,e product ofVARI and VAR2 

• VAR I .* VAR2 .. VAR3 - the new variable will be the product of three variables 

• VAR I .gt 2 - a binary variable will be formed which is I when VAR I exceeds 2 and 0 otherwise. 

• VAR I .ge 2 - the new binary variable is I when V.~ R I is greater than or equal to 2. 

• VAR I .I VAR2 - the new variable is results from I,.; division of VAR I by VAR 2. 

• VARI'2 - the new variable is the square ofVARI 

• In(VARI) - the new variable is the natural logarithm ofVARI 

• VARI + VAR2 + VAR3 - the new variable is the sum of three variables 

• exp(VARI) - the new variable is the result of VARI to the base e. 

• VARI - VAR2 - the new variable is the difference between VARI and VAR2 
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• VARI .gt2 .and VAR2 .It 3 - a binary variable is fonned which is I ifVARI exceeds 2 while VAR2 
is simultaneously less than 3. 

• VARI .gt 2 .or VAR2 .It 3 - a binary variable is fonned whkh is I either if VARI exceeds 2 or if 
VAR2 is less than 2. 

• VARI .eq 3 - a binary variable is formed which is I ifVARI .eq 3 

• VARI .ne 3 - a binary variable is fonned which is I ifVARI is unequal to 3. 

There are probably other types of expressions which are possible but these are most of the 

imponant ones. There are no limits on the number of tenns in a statement other than everything should fit 

within a line. The syntax in the statement must adhere to the rules of the GAUSS language which. as the 

user can see above. are quite intuitive. The dot operators in the fonn of .* . .I • . and •. gt .. le .. or and so on 

are indicative of the fact that the giver. operation must be carried out on an element-by-e1ement basis for 

the entire vector. If the variable creation is successful then the user will be asked if another action. either 

addition or deletion of a variable. is to be undenaken. 

The deletion of a variable is quite simple. After saying a deletion is required. the user is asked 

to name the variable to be removed from the GAUSS data set. Once named. the action is carried out. 

4.4 The Definition and Checking of INTERDAT 

Another imponant function of SET DATA has to do with the specification of interactions between 

choice-maker characteristics and destination attributes. A specification file known as INTER.DAT is 

dermed here according to the instructions of the user. This file says essentially what combinations of 

choice-maker characteristics and destination attributes are utilized when the interaction is actually fonned. 

The two matters of concern for this specification file are on the one hand how to create it and on the other 

how to check its contents. 

4.4.1 Defining INTER.DAT 
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INTERDAT is a specification file and not a data file. hence there is no chance of it causing 

memory problems. As mentioned, it gives instructions on how interaction ,;::-;ables r.re to be formed. The 

underlying logic of this variable type is that different population segments are assumed to assess different 

destination attributes over space in deriving their levels of spatial utility. There are two main types of 

interaction variables accommodated: similarity indexes which affect all population segments for a given 

characteristic (e.g. ethnicity) and simple interactions for which the given characteristic is relevant for only 

a few or one of the population segments. 

As an example of the former interaction type. perhaps we are postulating that migrants seek 

places which have high concentrations of their own ethnic group. We might have a series of three binary 

choice-maker char"cteristics which indicate whether or not the given migrant is a member of some group 

or not. Also. we might have destination attribute information which details the proportions of the three 

ethnic groups at various spatial units. By matching choice-makers with the relevant destination attribute. 

we have a means for assessing in general how ethnic similarity affects locational choice. 

An example of the latter form of interaction might be the fact that unemployment over space 

is not really a factor to those people who have a claim on jobs but may be a strong factor for those who 

are unemployed. Hence an interaction could be specified in such a way that those who are unemployed 

are the only ones to be affected by this destination attribute. For the employed people. we would need 

to define the 'zeroes' variable which is added automatically to the data in DEST.DAT. This is simply a 

column which is zero across all elemental alternatives. In this example, the employed would be interacted 

with that column. This is in contrast to the previous similarity type variable where all population segments 

were modelled as being affected by some destination attribute. 

This explains conceptually what these types of variables are about however it remains to mention 

how the actual specification of INTERDAT works. After saying that we desire to form such a file the 

question will be asked as to whether the newly specified variables are to be appended to a previous 
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INTER.DAT or are to fonn an entirely new INTER.DAT. If the latter is chosen. then any existing 

INTER.DAT files will be overwritten unless the .DAT and .DHT files are saved to an alias. Then 

the number of new interaction variables must be indicated. The user will then define the first interaction 

variable by indicating the total number of socio-economic categories. the names of the choice-maker binal)' 

variables. the names of the matching destination attributes. and finally the name of the new interaction 

variable itself. The same process follows for the remainder of the interaction variables to be fonned. The 

resulting GAUSS data file INTER.DAT contains all the relevant column numbers of the variables 1T0m 

SOCIO.DAT and DEST.DAT which are needed. 

Essentially INTER.DAT is storing numerically the column locations of needed variables as they 

were found in the SOCIO.DAT and DEST.DAT files active at the time. Clearly if radically dilTerent 

SOCIO.DAT and DEST.DAT files using similar variable names are active during the running of SPEC. 

then misspecifications will occur since different variables will occupy the same columns. The user must 

guard against the possibility of the wrong columns in the SOCIO.DAT and DEST.DAT files being used. 

However. as long as distinct variable names are used for the variables specified in INTER.DAT. then it is 

possible to store the specifications of interaction variables for many different model types within the same 

INTER.DAT file. 

4.4.2 Checking INTER.DAT 

To avoid mix ups, the manner in which INTER.DAT is interpreting the active SOCIO.DAT and 

DEST.DAT files must be monitored. Upon tho request of the user. SETDATA has the ability to check 

how INTER.DAT is relating to the current active data sets. In tum the status of each variable defined 

in INTER.DAT will be reviewed. For each variable, the number of categories and the manner in which 

these categories is fonned is indicated along with how destination attributes are matched to the defined 

categories. Presumably, the user will know which variables in SOCIO.DAT and DEST.DAT are required 
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to form a given variable. If the user does this checking procedure and finds that unexpected variables will 

be used to create the interaction, then it is clear that the wrong data sets are active or that the specification 

of some variable in INTERDAT is obsolete. If the former, then activating different data sets should solve 

the problem. 

5 The Specification of DESIGN.SPC 

Having set up data in the correct ASCII format, created GAUSS data sets and determined how 

interaction variables are formed (if needed), the stage is set to actually specify models. Integral to this 

process is DESIGN.SPC, the specification file responsible for getting SPEC and ultimately MODULE to 

operate as the user intends. It is a user-developed ASCII file containing both numeric and character data. 

Its format is relatively straightforward and is outlined here in terms of its important components. Since 

several different versions of this file will likely co-exist as many specifications are typically tested, the user 

will need to provide unique names for each of these files. These names will need to be remembered when 

it comes time to run SPEC and it should be emphasized that the three letter extension .SPC (indicating 

specification file) is compulsory. In the discus~ion to follow, the generic name 'DESIGN' is used. 

5.1 The distribution of elemental alternatives 

To this point, the data for any specification has been defined at the most spatially disaggregate 

level however there is no information about how these elemental alternatives should be grouped together, 

if at all. As a result, in the first row of DESIGN.sPC the user must define a (1 x alts) numeric row 

vector referred to a elem where alts defines the number of aggregate alternatives in the model to be 

specified. The number of columns in elem is determined by the number of aggregates in the model while 

the elements of the vector correspond to the number of elemental alternatives in the associated aggregate. 

It is important to understand the meaning of alt.s and the meaning of an aggregate in the context of the 
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different model types. For the OMNL. we consider that each alternative is an aggregate despite the fact 

that each contains only one elemental alternative. Hence. dem would simply be a (1 x aUs) vector of 

ones. The aggregated model differs i,om the OMNL in that some of the aggregates will contain multiple 

elemental alternatives but the spatial resolution of choice information will be the same: namely at the 

aggregate level. For the nested log it model. the spatial resolution of aggregate nests will not correspond 

to the spatial resolution of choice information. We might. for example. have knowledge of sub-provincial 

choices even though the aggregate alternatives are the provinces themselves. These definitions will be 

made clearer in examples to follow. 

5.2 The naming of alternatives 

Having delineated alternatives. the next task is to indicate their names through individual strings 

of up to eight characters in length. The number of columns in the string vector to be defined in the 

second row of DESIGN.sPC will exactly correspond in dimension to clem and is used simply to name the 

aggregates indicated in demo In the case of the nested logit model. there will be a more disaggregate level of 

alternatives at which choice information is available and at which the complete range of specification options 

can be exercised. Hence in addition to naming aggregate alternatives. in the third row of DESIGN.SPC 

the names of the nested model's elemental alternatives should be indicated. To review. the naming of 

alternatives is done in one row for the OMNL and aggregated models but will take up two rows for the 

nested logit. 

5.3 Parameter-specific Information 

The remaining block of information in DESIGN.SPC relates to how individual variables arc to 

be used to obtain associated parameters. The format is such that rows relate to parameters while columns 

relate to alternatives. Hence a tabular specification format is employed in the form popularized by Ben­

Akiva and Lerman (1985). One difference is that the tables for this software are transposes of the tables 
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in that work. Mai .. !y this is to take advantage of any text editor's capability to quickly cut and paste and 

hence rapidly respecilY a new set of parameters for a model with a fixed set of alternatives. A related 

question might ask why the whole table specification process does not take place interactively rather than 

in the form of the chosen external ASCII file approach. Again, an external file can take advantage of 

the features of text editors and can far more easily accommodate specifications with a large number of 

alternatives or parameters. In general, the approach seems to be far less tedious. We now examine the 

components of the block ccntaining parameter-specific information. 

5.3.1 The parameter starting values 

Define the number of rows in the block of data as kk. which represents the total number of 

parameters in the given specification. The first column in the block provides the desired parameter staning 

values for all (j parameters. that is, those associated with independent variables. Staning v.lues for the 

A scale parameters are not an issue in DESIGN.SPC. Staning values are important because the process 

of obtaining parameters through maximum likelihood is an iterative one. In many cases, initializing all 

pa:'ameters at zero is not a good idea. For example. the alternative-specific constant associated with the 

'stay' option in migration models is often much larger than zero since the vast majority of people are 

non-trigrants. 

5.3.2 The variable name~ associated with parameters 

For each parameter to be estimated. there is one associated variable. The name of the variable 

in question should be included in the second tolumn of the block in the appropriate row. This is the 

name which will appear in any output of the software. If some variable is specified in an alternative­

specific fashion, then the same variable name will be associated with more than one parameter. The output 

provided in the SUMMARY.OUT file. however, will indicate to which alternatives a given specificatio:! 

of a variable is relating. 
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5.3.3 Forming the design matrix 

The actions taken to this point will have defined the sequence of variables that will ultimately 

be observed in the specification matrix. however the results are not refined in the sense that no mention 

has yet been made of the spatial alternatives to which the variables and their associated parameters are 

related. For this reason. it is necessary to compose a binary design matrix. Entries of I indicate that the 

given variable is specific to the associated alternative while entries of zero' indicate that it is not. 

The matrix design is (kk x alts) for the OMNL and the aggregated logit model but is (kk x 

sum( elem)) for the nested logit model. The reason for this difference is the fact that with the nested 

logit model, altemative·specific specifications at the sub-aggregate level are possible while for the other 

two models, this is not the case. Hence. for the aggregated model. an element from desigll will affect all 

elemental alternatives within the associated aggregate in the same way. 

Those used to seeing specifications like those in Ben-Akiva and Lerman should note that variable 

names are not included in the design matrix, only binary numbers which indicate whether the variable is 

relevant to the associated alternative. The column adjacent to the design matrix provides the variable and 

applies it to the alternatives indicated by the design. The data sets for this software are set up in such a way 

that there is no chance of more than one variable being associated with a given row in the design matrix. In 

the Ben-Akiva example discussed earlier, auto travel time and transit travel time would conventionally be 

considered as two variables which are generically specified and hence associated with a single parameter. 

In this software, they are classified as a single distance variable: travel time. 

6 Running SPEC 

Most of the work relating to this program will have been done in setting up the ASCII specifi­

cation file DESIGN.SPC. Nevertheless, the user will be prompted for a few things. Initially, there will be 
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a prompt to indicate the particular name assigned to the DESIGN.SPC text file. Secondly the user will 

be requested to indicate what general type of model is being estimated: a nested logit on the one hand or 

the OMNLIaggregated model on the other hand. The distinction, as mentioned, relates to the respective 

spatial resolutions of the choice information versus the specification. It is necessary also to ask for the 

number of alternatives ( i.e. alts) so that the program knows how many elements to expect when it reads 

in the informatio •. on elem. The user should always ,emember that the number of alternatives equals the 

number of rows in elcrn. 

At this stage. all that is needed to interpret DESIGN.SPC has been provided and the program 

will set about the task of finding all the variables that are indicated in the specification. The only names 

which should not be found are those assigned to alternative-specific constants since such data are not stored 

in any data set but rather created as the program runs. If the program indicates that a variable name other 

than a constant is absent from each of the data sets. then this indicates a problem. Either the user has 

typed the variable name wrong in DESIGN.SPC or the data do not exist in the indicated data sets. If this 

is the case. then the user should answer the posed question accordingly and the program will stop so that 

the problem can be sought. 

Having confirmed that all the needed data can indeed be accessed, the remaining issue is whether 

the specification process should be split into portions because the enormity of a given problem overcomes 

the available RAM. If the user indicates that this may be a problem, then the program will ask for the number 

of observations ( population segments) to be processed at once. For large problems, some experimentation 

on the part of the user might be required to find the right amount to process at one time. If too much 

is demanded by the user. and the GAUSS virtual memory capability is not active, then the program will 

terminate with an error message. It is strongly recommended that use of the virtual memory capability be 

avoided at all costs. It is by definition heavily dependent on cumbersome interaction with the hard disk 

and will slow matters down much more than the processing by blocks. At this point all issues will have 
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been addressed and the implementation of the specification will commence. The user will be advised of 

the number of choice-makers or population segments that have been processed and a message will indicate 

whether the required output files have been generated. 

Two output files are created by the program. One is SPEC.DAT (SPEC.DHT) which is the major 

new GAUSS data set created by the user's instructions and is the information acted on by the estimation 

program. The user should not be concerned with tho contents of this data set since it is quite complex. 

Also, depending on the size of the problem, this file can be quite large and may take up considerable space 

on the hard disk. 

The other file is SUMMARY.OUT which should be checked by the user before running MOI)­

ULE. This file will illustrate which portions of the design matrix are associated with which variable types. 

It will also show how the variables (named earlier in the running of SETDATA) have been utilizod. If 

there are any surprises in this file. then the user should go back and respecify the DESIGN.SPC file until 

the desired result is obtained. Because these are still early days in the development of this software. it 

is possible that SPEC might run successfully despite the fact that some specification mistake has been 

made. For this reason, it is critical to carefully scrutinize the SUMMARY.TXT file for something out of 

the ordinary. 

7 Running MODULE 

The major task for the user in running this program is the specification ofth. >. scale parameters. 

Of course if the model is the OMNL, there is nothing to specify and using MODULE will pose no challenge. 

Other than speCification concerns, the only issue to address is the number of choice·makers (population 

segments) which can be processed at once. The need to also do this in MODULE is because its memory 

requirements are more demanding than is the case in SPEC, ilence fewer observations can be processed 
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at once. Again some experimentation on the part of the user may be required since generally. the more 

observations which are done at once, the faster a solution will be obtained. 

Assuming that we are estimating the nested logit model or the aggregated model, the main matter 

of concern will be the.>. parameters. In particular, the user will have to indicate which alternatives have 

exogenous.>. and which have.>. which are to be endogenously estimated. Of those that are endogenous. 

the user must identify which of the parameters is constrained across aggregates and what the pattern of 

contraints is. Implementing this information is not as complicated as it sounds. Essentially. the program 

will determine the number of.>. required based on alts and then prompt the user by providing the aggregate 

alternative name and then requesting that some information on the.>. for that aggregate be provided. Ifthe 

associated.>. is to be exogenously fixed, then the user simply indicates the value between a and 1 which 

should be forced to apply. Values outside this range of course would be a violation of theory and are not 

acceptable. Information on endogenous.>. is entered by using multiples often so as to be kept quite distinct 

from exogenous.>.. The first endogenous.>. should be indicated with 10, the second with 20. the third with 

:10 and so on. If the second endogenous.>. for example is being forced to apply to alternatives 3 and 6. 

then 20 should be entered when the.>. information for those alternatives is requested. For all endogenous 

.>., starting values will automatically be set to 1.0 which is typically the best place to begin in such models. 

Overall, the.>. specification process is quite simple and the user should have no problems in grasping it. 

As a brief aside, it is important to note that in the case of a nest of alternatives which contains 

only one elemental alternative (also known in the discrete choice literature as a 'degenerate node'), the 

associated.>. should always be set exogenously to 1.0. 

At this point. the estimation should commence and the User will be able to monitor its progress. 

Note that the parameter names specified in DESIGN.sPC will be shown next to the current parameter 

estimates. They may not be displayed in the same order as specified in DESIGN.SPC because sorting of 

the specification by variable type took place in the running of SPEC however results are easily followed 
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by noting the variable names during and after the estimation. At this point. either there will be a successful 

convergence, termination because of too many iterations (the maximum is 100), or termination from a 

floating point exception. The laner is liable to happen with the aggregated model or the nested logit model 

if an endogenous), strays too close to zero. In the first two cases, the main output of the program will 

be created: RESULT.OUT. This file will contain the final parameter estimates. information about their 

significance and various diagnostics which we assume here that the user will be able to understand. After 

the table of parameters. there is an imponant row vector displayed which indicates the current values of ), 

which are applying in sequence to the model's aggregates. Those), which have been fixed or endogenous 

should be readily apparent and associated with the proper aggregate. In addition. ), which have been 

constrained across aggregates should be readily apparent also. 

A potentially useful feature of MODULE is that you can interactively retrieve information on 

the final set of choice probabilities. The final set of choice probabilities at the aggregate level can be 

obtained by displaying the contents of the matrix PROB. The probabilities at the most disaggregate level 

can be viewed by typing the contents of the matrix PROBEL. In the following section. there is a shan 

discussion on displaying matrices interactively. 

8 Other Issues 

8.1 The GAUSS Environment 

In the package received by the user. the four programs in this software: SETDATA, SPEC, 

MODULE and NEWTON, are ir. complied form with the extension .GCG. When the user invokes GAUSS 

with the command: GAUSS I from DOS (unfonunately, the software is required to run even the compiled 

programs), the command prompt: », should be visible. By using the RUN command from this prompt 

and indicating the program name, the given program should stan running. Also, when the programs have 



212 

run successfully. the command prompt should again be visible. 

There are actions that the user can undertake interactively from the command prompt which 

might prove useful. A matrix in memory can be instantly printed to the screen by typing the name of the 

matrix. If the first column of matrix A is to be viewed. the user would type A[., IJ, the first row would be 

A[I, .J, the block of 16 elements in the upper-left comer of the matrix could be vi·~wed with A[I : 4, I : 4J. 

Clearly there are an infinite number of ways to view a large matrix. 

8.2 Troubleshooting 

This software still has much work to be done on it before it is bug free. No doubt there will be 

situations where the program will terminate rudely and perhaps without an adequate explanation of why. 

Here is a list of some of the more likely difficulties and what should be done to get around them. 

• I) A persistent 'file already open' error - This GAUSS error occurs when an attempt is made to open 
a GAUSS data set which is already open. Often this error will fall on the heels of another error which 
prevented closing of the data sets. There are two solutions: a) type CLOSEALL from the command 
prompt and attempt to run the program again. b) if that fails. then type NEW from the command 
prompt. which will clear the workspace. and then run the program again. 

• 2) Persistent 'file not found' errors - Probably these types of errors result when you type in an incorrect 
file name or else if you include the three letter DOS extension. This extension is unnecessary. The 
solution of course are simply to run the programs again in the hopes that you have not set the stage 
for error# I to occur. 

• 3) A crashing estimation program - There are a few things which can cause this problem. One is that 
data are not scaled very well. If you include a variable measuring annual income in dollars rather 
than in thousands of dollars in the same specification as some binary variable, then you are asking 
for trouble. Some crashes result from the A parameters in the more complex models straying too close 
to zero. The solution in that case is a respecification. Difficulties will also occur if the starting values 
for a specification are arbitrary ( e.g. all zeros) or if the NeWlon-Raphson algorithm is used to estimate 
models with complex surfaces. Remember. MODULE is based on the more flexible BFGS algorithm 
while NEWTON is based on the Newton-Raphson approach. 

• 4) Thefirst time you allemptto run SETDATA. you receive a message saying thotthe file TEMP.PRG 
was not found. TEMP.PRG is actually a program which is created by SETDATA and then executed 
while SETDATA is active. This program must be in existence at the outset though or SETDATA is 
not executed. If you do a directory and find that it is not there. then create a trivial one-line ASCII 
file: " "; (i.e. two quote marks and a semi-colon) and then save the file under the name TEMP.PRG. 
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Now SETDATA should run. 

• 5) You do not have much success in getting the program to recogni:e variable names in your GA USS 
data sets. Outright typographical errors are an obvious culprit but more likely it is because GAUSS 
data sets store variable names in a case-sensitive way. When you specify variables in an .sPC file. 
you will need to be sure that it is typed in the same way as when you first defined the variables in the 
associated data set. 

• 6) Insufficient memory errors - You are attempting too process too many observations at once. Make 
use of the ability of the software to sequentially process blocks of observations or. if you have some 
spare time. run the programs using virtual memory. 

• 7) MODULE will not run - This program requires information from SPEC that is kept in active memory. 
not written to file. Hence if the session starts with the running of MODULE. the program will not 
run because certain elements will be undefined. The solution is to always run SPEC before running 
MODULE unless you are simply respecifying a set of ~ parameters that youiust '.ried. 

9 Tutorial 

In this tutorial, the raw data which are specified for you on disk represent the starting point as 

you are taken step-by-step through everything that must be dor.e to specify and ultimately estimate two 

models: a nested logit model and an OMNL model. The files socia. TXT, DEST.TXT, D1ST.TXT and 

DEFlNE.TXT are used to test the specifications OMNLSPC and NEST1.SPC which appear in Appendix 

4. Please consult the data in the appendices and also examine the actual files in a text editor. 

9.1 Rnnning SETDATA 

9.1.1 Creating the GAUSS data sets 

Note that each of the bullet items below correspond with a single step. The user will need to 

hit the 'enter' button once for each of these steps although this is not explicitly mentioned below. It is not 

essential that each data set be created in the same running of SETDATA. 

• From the DOS prompt, type 'gaussi' 
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• From the GAUSS command prompt, type 'run setdata·. 

• You must now provide preliminary information about your ASCII data. In response to the query about 
the number of choice-makers (population segments), type '60', to the second question about the number 
of elemental alternatives, type '6'. 

Creation of choice-maker GAUSS data set 

• Type 'I' to indicate that we do want to create the choice-maker GAUSS data set. 

• Type 'SOCIO' to indicate that the raw data are called SOCIG.TXT. 

• Type '6' to indicate that 6 C.! the 17 columns in SOCIO.TXT are allocated to choice information. 

• Type' I I' to indicate that the remaining columns are allocated to choice-maker vC,lables. 

• You are now prompted for the n.mes of the I I variables. You should name them (in lower case) as: I. 
educ. 2. young. 3. middle, 4. single. 5. east, 6. que. 7. ont, 8. pray. 9. be, 10. notque. I I. noteduc. 

• Type in '0' to indicate that there are no non-integer elements in SOCIO.TXT. 

• Type 'SOCIAL' to indicate that the new GAUSS data set will be called SOCIAL.DAT (.DHT). 

• Type 'I' to continue. 

Creation of destination attribute GAUSS data setCreation of this data set is optional and depends on 

whether we will use destination attributes or interactions in our model specifications. 

• Type 'I' to indicate that we do want to create the destination attribute GAUSS data set. 

• Type 'DEST' to indicate that the raw data are called DEST.TXT. 

• Type '6' to indicate that the data contain six destination attributes. 

• You are now prompted for the names of the six attributes. You should name them (in lower case) as: 
I. english, 2. french, 3. univ, 4. income. 5. temp, 6. precip. 

• Type in 'I' to indicate that there are non-integer elements in DEST.TXT. 
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• Type 'DESTAGG' so that the new GAUSS data set will be called DESTAGG.DAT (.DHT). 

• Type 'I' to continue. 

Creation of distances GAUSS data setCreation of this data set is optional and depends on whether we 

will use distance variables in our model specifications. 

• Type 'I' to indicate that we wish to create the distances GAUSS data set 

• Type 'D1ST' to indicate that the raw data are called D1ST.TXT. 

• Type '2' to indicate that there are two distance variables in the data. 

• Name the two variables (in lower case letters) as: I. dist. 2. Indist. 

• Type 'I' to indicate that there are non-integers in the data. 

• Type 'D1STAGG' so that the new GAUSS data will be called D1STAGG.DAT (.DHT). 

• Type 'I' to continue. 

Creation of GAUSS data defining available alternatives 

• Type 'I' to indicate that we need to create this GAUSS data set. 

• Type '0' to indicate that for this example all the alternatives are not available to each population 
segment. 

• Type 'DEFINE' to indicate that the raw data are named DEFINE.TXT. 

• Type 'OEFAGG' to indicate that the new GAUSS data will be called OEFAGG.OAT (.OHT). 

• Type 'I' to indicate that we wish to return to the main selection list. 

9.1.2 Adding or Deleting Choice-maker variables 

Having sent the choice-maker data to the file SOCIAL. OAT (.OHT), we can add and delete new 
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variables to it if we wish. Since we will not be using a newly created variable in the final specification, 

here we will simply create one and then delete it for illustration purposes. 

• Type '4' to indicate that we are adding or deleting choice-maker variables to some GAUSS data set. 

• Type 'SOCIAL' to indicate that we will add or delete a variable to SOCIAL.DAr (.DHT). Note that 
the colum.,-by-column contents of this data set are displayed by narne. 

• Type 'I' to indicate that we wish to add a variable. 

• Type 'test' a< the name of the variable to be added. 

• Type 'educ .' single' as your mathematical definition of the new variable. TEST will simply be the 
product of the binary variables EDUC and SINGLE. The variable is created as soon as you hit 'enter'. 

• Type 'I' to indicate that again, we want to add or delete a variable, although now we will be deleting. 

• Type '0' to indicate that we are deleting a variable. 

• Type 'test' to indicate the name of the variable to be erased. 

• Type '0' to say that we are through with creation and deletion. 

• Type 'I' to return to the main selection list. 

9.1.3 Activation of GAUSS data for the specification 

• Type '2' from the main menu to indicate that we are activating GAUSS data sets. 

• Type 'SOCIAL' to activate SOCIAL.DAT (.DHT). 

• Type 'I' if the files were copied successfully. Typing '0' would stop the program. 

• Type 'I' to indicate that we wish to activate a specific destination attribute GAUSS data set. 

• Type 'DESTAGG' to activate DESTAGG.DAT (.DHT) 

• Type 'I' to continue. 

• Type 'I' to indicate that we wish to activate a specific distance GAUSS data set. 
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• Type 'DISTAGG' to activate DISTAGG.DAT (.OHT) 

• Type 'I' to continue. 

• Type 'OEFAGG' to activate OEFAGG.OAT (.OHT). 

• Type 'I' to continue. 

• Type 'I' to indicate that we have no INTEROAT file defined and that we would like a dummy file 
created to guarantee that SPEC will run. If this file were already in existence, we would type '0'. 
Actually, in this case. we are just about to create the new INTER OAT file so it matters little how we 
answer this question. 

• Type 'I' to return to the main selection list. 

9.I.4 Creation and checking of INTEROAT 

While we have created and activated the needed GAUSS data to do our specification and esti-

mation, we have yet to say how the interactions of choice-maker characteristics with destination attributes 

that appear in OMNL.SPC and NESTI.SPC are formed. This is what we will do here. 

• Type '3' from the main selection list to indicate that we are modifying or checking INTEROAT. 

• Type -I' to indicate tha: we are modifying and not just checking INTEROAT. 

• Type 'I' to indicate that we ~re creating a new INTER.OAT as opposed to adding to an old one. 

• Type '2' to indicate that we will form two interaction specifications. 

• Type 'lang' to indicate the name of the first interaction. 

• Type'S' to indicate that it has five categories. 

• The names of the five categories which you are prompted for should be: I. east, 2. que, 3. ont, 4. 
pray,S. bc. 

• The names of the five associated destination attributes are: I. english, 2. french, 3. english, 4. english, 
5. english. Note that we could have done the same variable in two categories have we had paired que 
and notque with french and english. 
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• Type 'postsec' to indicate the name of the second interaction. 

• Type '2' to indicate that it has two categories. 

• The two choice-maker names that are needed are: I. educ, 2. noteduc. 

• The two destination attribute names are: I. univ, 2. zeros. Note that this latter destination attribute 
was added automatically to DESTAGG.DAT (.DHT) and is simply a column of zeros. 

• Now that the interaction specifications are set, we can now check them by typing 'I' in response to 
the question. 

• Type 'I' after the specification for the first interaction has been shown. 

• Type 'I' after the specification for the second interaction has been shown. 

• Type '0' to indicate that we do not wish to return to the main selection list. The program will now 
tenninate. 

We have now done everything we need to do in SETDATA which is really the most involved 

part of the whole specification and estimation process. Now we proceed to run SPEC. Once SETDATA is 

complete, and before SPEC is run. it is necessary to create the appropriate .SPC file within a text editor. 

or course, that file has already been created for this tutorial problem but that will not be the case in your 

own applications. 

9,2 Running SPEC 

Initially we will use the data to specify a nested logit migration model of the move/stay type 

at the upper level with destination choice at the lower level. This requires use of the specification file 

NEST1.SPC which has been provided. 

• From the GAUSS command prompt, type 'run spec'. 

• Type 'NEST!' to indicate the name of the specification file we are using. 

• Type 'I' to indicate that this is a nested logit model 
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• Type '2' to indicate that there are two aggregates: namely: moving and staying. 

• Assuming now that the only variable name which has not been found in the data sets is 'stay'. type 
'0' to indicate that no variable names have been mistyped and that the unfound variable is in fact a 
constant. 

• Type '0' to indicate that this problem is sufficiently small that it need not be processed in blocks. 

Now the program should run and inform you how many observations have been created and 

whether the main output SPECK.DAT (.DHT) has been successfully created. The results of the specification 

should be checked in the liIe SUMMARY.OUT. 

9.3 Running Module 

Now we actually attempt to estimate the parameters of the model. 

• From the GAUSS command prompt, type 'run module'. 

• Type '0' to indicate that we do not need to estimate the problem in little pieces. 

• In response to the appropriate form of >. to associate with the two aggregates, type 'I' for the stay 
option to indicate that>. is exogenously fixed to 1.0 and type' 10' for the move option to indicate that 
this is the first endogenous>. and that it is specific to the move aggregate. 

Now the estimation should commence and a solution should be obtained within 100 iterations 

of the BFGS algorithm. The results can be found in RESULT.OUT. 

9.4 Specifying and Running the OMNL example 

We can now go straight into the OMNL example and obtain the parameter estimates within a 

minute or two. Note that OMNl..SPC acts on exactly the same GAUSS data sets as NESTI.SPC since 

the models have the same number of choice-makers and elemental alternatives. It is only the allocation 

of these elemental alternatives to aggregates that differs as far as the software is concerned. If a radically 

different model were now to be specified with different data requirements, we would need to return to 
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SETDATA to activate a new set of GAUSS data sets. Here are a list of the steps that differ for this model 

from the one that we just went through. 

• Starling with the re·running of SPEC, we type 'OMNL' initially to indicate that we are acting on 
OMNLSPC. 

• Type '0' to indicate that we are running an OMNL model. 

• Type '6' to indicate that now their are six aggregates. 

Everything else in the running of SPEC is the same. After checking the results in SUM-

MARY.OUT, we are ready to run MODULE for the new model specification. This is more straightfor. 

ward in this case because with the OMNL modol, we need not concern ourselves with the specification of 

A. The model will converge more quickly and again the final results will be stored in RESULT.OUT. 
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SOCIO.TXT DIST.TXT DEST.TXT DEFINE.TXT 

SOCIO.DAT 
.DHT 

DEST.DAT 
.DHT 

DIST.DAT DEFINE.DAT 
.DHT .DHT 

DESIGN.SPC 

---i.~ exchange of files 

~ indicates program 

c=J indicates data 
or text file 

.TXT raw ASCII data 

.OAT} 

.OHT GAUSS data set 

.SPC specification files 

.OUT resutt files 

r 

SPEC.GCG 

SPECK.DAT 

.DHT 

STOP 

INTER.DAT 

.DHT 

SUMMARY.OUT 

RESULT.OUT 

Figure A: Schematic for specification and estimation software 
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DATA SET #1 

The first table below illustrates the contents of the file SOCIO.TXT which contains the choice-maker 
variables and choice information fur the sample models utilizing grouped data. Clearly the original 
ASCII text file will not contain the additional formatting and headers displayed in the table. Note the 
clear division between the choice information block and the variables block. The definitions of the 
columns are provided underneath the table. 

SOCIO.TXT 

p N 
0 R N 0 

C! N A M S 0 T 
U T I Y I I T 

S E E A R E 0 0 N E P E 
T A B R I 0 U 0 G A Q 0 R Q 0 
A S E I E B U N L L S U N A B U U 
Y T C 0 S C C G E E T E T Y C E C 

1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 1 
1 0 0 0 0 1 
1 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 1 

0 0 0 0 1 1 

1 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 1 0 
0 1 0 1 0 0 1 0 
0 0 0 1 0 0 1 0 
0 1 0 1 0 0 0 
0 0 0 1 0 0 0 
1 1 0 1 0 0 1 

0 0 1 0 0 1 
1 0 1 0 0 
0 0 1 0 0 
1 0 1 0 0 

0 0 
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0 0 1 0 1 0 
1 0 0 1 0 1 0 
0 0 0 1 0 1 0 
1 0 0 1 0 1 0 
0 0 0 1 0 1 0 
1 0 0 1 0 1 1 
0 0 0 1 0 1 1 

1 1 0 0 1 0 1 1 
1 0 0 0 1 0 1 1 
0 1 0 0 1 0 1 1 
0 0 1 

1 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 1 
0 1 0 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 

Columns 1 to 6: Choice Information 

Stay - # of people who remained in the same region between 1981 and 1986 
East - # of people who moved to the Atlantic provinces from outside the Atlantic region from 1981 to l' \, 
Quebec - # of people who moved to Quebec 
Ontario - # of people who moved to Ontario 
Prairies - # of people who moved to the Prairie provinces 
BC - # of people who moved to British Columbia 

Columns 7 to 17: Population segment characteristics 

Educ - people who have some post-secondary education 
Young - 1 if person under the age of 30 in 1986; 0 otherwise 
Middle - 1 if person aged between 30 and 40 in 1986; 0 otherwise 
Single - 1 if person in a single-person household; 0 otherwise 
East - 1 if person lived in the Atlantic provinces in 1981; 0 otherwise 
Que - 1 if person lived in Quebec in 1981; 0 otherwise 
Ont - 1 if person lived in Ontario in 1981; 0 otherwise 
Pray -1 if person lived in the Prairie provinces in 1981; 0 otherwise 
BC -1 if person lived in British Columbia in 1981; 0 otherwise 
Not que - 1 if person did not live in Quebec in 1981; 0 otherwise 
Not educ - 1 if person has no post-secondary education 

Note that "Not Que" is the converse of "Que" and that "Not educ" is the converse of "Educ" 
While these variables may seem a bit redundant, they are actually very useful for the specification 
of interaction variables. 
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DATA SET #2 

Having seen what this file looks like for grouped data, we now consider a file for a problem with 
micro-data. These data are adapted from 8en-Akiva and Lerman (1985) and depict the choice of 
transit modes: either automobile or public transit In this data we have no choice-maker characteristic 
such as age or incdme so the file contains only choice information. 

BENSOC.TXT 

Auto Transit 

0 1 
0 1 
1 0 
0 1 
0 1 
1 0 
1 0 
0 1 
0 1 
0 1 
0 1 
1 a 
1 0 
0 1 
1 0 
1 a 
0 1 
1 0 
1 0 
0 1 
1 a 

Note that there are 21 rows which represents the fact that there are 21 choice-makers in the data. 
In contrast to data set #1, the choice information is binary since there is not a distribution of 
observed choices as is the case with grouped data. The two columns correspond to the number 
of alternatives with a "1" designating which alternative was chosen by the person. 
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DATA SET #1 

These data illustrate the set of destination attributes used for regional level analysis. These data 
are used in sample estimations #1 and 2. It is a simple file consisting of six rows (one for each 
aggregate and six columns (one for each destination attribute). Note that none of the row and 
column labels appear in the actual data. These are included here simply to define the data. 
The first row of zeros associated with the stay alternative is present because the variables have 
no meaning for that altemative. 

DEST.TXT 

en \ish french univ income tem 

Stay 0.000 0.000 0.00 0.0 0.00 0.00 
East 0.879 0.121 0.07 39.9 5.35 1.16 
Quebec 0.056 0.944 0.06 39.0 4.57 1.01 
Ontario 0.991 0.009 0.07 46-4 6.55 '0.87 
Prairies 0.999 0.001 0.07 43.4 1.87 0.43 
Be 1.000 0.000 0.06 44.1 8.01 1.04 

The first column, which lists the aggregate alternatives should be self-explanatory. The variable 
definitions are as follows: . 

english - proportion of the population that speaks english only 
french - proportion of the population that speaks french or is bilingual 
univ - proportion of the population with a university degree 
income - average income annual income in thousands of dollars 
temp - mean annual temperature in degrees celsius 
precip - average annual precipitation in thousands of millimetres 

DATA SET #2 

Here we examine a more disaggregate destination attribute set but one which contains the same 
variables. These are the data which are used in the application of the aggregated logit model. 
Note that the destination attributes for the non-spatial stay alternative are still depicted as a 
row of zeros and that aggregates are shaded alternately. 

DESTELEM.TXT 

english french univ income temp precip 

51. Johns 
Grand Falls 
Cornerbrook 
Charlottetown 
5ummerside 
Halifax 
Kentville 
Truro 

1.000 
1.000 
1.000 
0.999 
0.995 
0.999 
1.000 
1.000 

0.000 
0.000 
0.000 
0.001 
0.005 
0.001 
0.000 
0.000 

0.09 
0.04 
0.06 
0.09 
0.05 
0.13 
0.08 
0.07 

47.67 
39.19 
41.95 
41.78 
37.17 
46.79 
36.93 
37.29 

5.50 
4.60 
5.10 
5.40 
5.50 
7.60 
6.80 
5.30 

1.42 
0.99 
1.13 
1.17 
1.04 
1.28 
1.18 
1.14 



226 
New Glasgow 1.000 0.000 0.05 38.06 5.60 1.13 
Sydney 1.000 0.000 0.05 35.54 5.70 1.40 
Moncton 0.936 0.064 0.08 43.15 5.50 1.10 
Saint John 0.998 0.002 0.07 42.01 5.70 1.34 
Fredericton 0.992 0.008 0.15 45.63 5.40 1.11 
Bathurst 0.498 0.502 0.06 37.15 4.40 1.00 
Campbellton 0.565 0.435 0.05 35.36 4.10 1.05 
Edmundston 0.026 0.974 0.07 36.75 3.80 1.12 

0.930 0.070 

Ottawa 0.965 0.035 0.18 56.47 5.90 0 .. 85 
Brockville 0.999 0.001 0.07 44.87 7.10 0.97 
Kingston 0.998 0.002 0.12 47.10 6.70 0.87 
Belleville 0.998 0.002 0.06 44.74 7.40 0:86 
Cobourg 1.000 0.000 0.07 44.39 6.70 0.82 
Peterborough 1.000 0.000 0.08 44.30 5.80 0.79 
Lindsay 1.000 0.000 0.06 42.20 9.20 0.86 
Oshawa 0.998 0.002 0.06 55.46 7.70 0.86 
Toronto 0.999 0.001 0.13 59.45 7.90 0.83 
Hamilton 0.999 0.001 0.09 50.41 7.40 0.82 
SI. Catherines-Niag 0.997 0.003 0.07 44.93 8.90 0.81 
Kitchener 0.999 0.001 0.09 49.98 7.30 0.90 
Brantford 1.000 0.000 0.06 43.97 7.60 0.75 
Woodstock 1.000 0.000 0.05 43.13 7.30 0.86 
Simcoe 0.999 0.001 0.05 43.35 7.70 0.89 
Guelph 0.999 0.001 0.13 50.66 6.70 0.83 
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43.86 6.30 1.05 
london 1.000 0.000 0.11 47.69 7.30 0.91 
Chatham 0.999 0.001 0.07 42.50 9.10 0.81 
leamington 0.999 0.001 0.05 45.32 9.30 0.82 
Windsor 0.998 0.002 0.08 46.79 9.40 0.85 
Samia 0.999 0.001 0.07 50.01 8.00 0.89 
Owen Sound 1.000 0.000 0.07 40.60 6.90 1.02 
Barrie 0.999 0.001 0.07 51.51 5.80 0.95 
Orillia 1.000 0.000 0.05 43.63 5.60 0.91 
Midland 0.994 0.006 0.04 43.85 7.00 1.03 
North Bay 0.986 0.014 0.07 43.73 4.70 0.93 
Sudbury 0.969 0.031 0.07 48.27 4.00 0.79 
Elliott lake 0.952 0.048 0.05 44.01 4.10 0.93 
Timmins 0.918 0.082 0.05 45.12 1.10 0.85 
Sault Ste. Marie 0.999 0.001 0.07 41.89 4.40 0.90 
Thunder Bay 0.998 0.002 0.08 48.17 2.30 0.71 
Kenora 1.000 0.000 0.06 46.89 2.10 0.62 

0.983 0.017 0.05 0.90 

Penticton 1.000 0.000 0.06 37.31 8.90 0.28 
Kelowna 0.999 0.001 0.06 41.69 8.00 0.33 
Vernon 1.000 0.000 0.05 39.35 7.90 0.35 
Kamloops 1.000 0.000 0.06 44.44 8.70 0.24 
Chilliwack 1.000 0.000 0.04 40.55 10.20 '1.88 
Matsqui 1.000 0.000 0.05 46.67 10.20 1.20 
Vancouver 1.000 0.000 0.12 50.57 10.30 1.22 
Victoria 1.000 0.000 0.12 45.56 10.00 0.87 
Duncan 1.000 0.000 0.06 42.34 8.00 1.64 
Nanaimo 1.000 0.000 0.06 41.59 10.00 1.13 
Port Alberni 0.999 0.001 0.04 44.36 9.20 2.02 
Courtenay 0.999 0.001 0.05 40.82 8.70 1.50 
Campbell River 1.000 0.000 0.05 49.52 8.70 1.66 
Powell River 0.999 0.001 0.05 42.17 10.50 1.09 
Williams lake 1.000 0.000 0.04 42.13 3.90 0.41 
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Quesnel 1.000 0.000 0.04 42.36 5.00 0.53 
Prince Rupert 1.000 0.000 0.05 51.86 7.40 2.40 
Terrace 0.999 0.001 0.05 50.96 5.90 1.31 
Prince George 1.000 0.000 0.05 49.06 3.30 0.63 
other Be 1.000 0.000 0.05 42.12 8.00 0.80 
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APPENDIX 4: DISTANCE DATA 

The text files displayed below are the ones which would be used to make the GAUSS data set 
DIST.DAT. It will contain all variables representing physical distance, travel cost and time etc. In the 
sample estimations on grouped data to follow, two distance variables are used. For the example with 
the OMNL and the nested logit model, there are a total of six spatial altematives while for the example 
with the aggregated model there are 122 spatial alternatives. The structure of the distance file is such 
that the 60 by 244 distance data cannot be shown here for the aggregated model, only for 
the former two models. Also, the distance file for the 8en-Akiva example is shown. Please recall that 
the displayed headers and lines will not actually appeai in the ASCII text file provided by the user. 

DATA SET #1 

DIST.TXT 

dist indist 

0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0.53 0 0.36 1.68 2.4 0 6.28 0 5.89 7.43 7.78 
0 0 0.36 1.68 
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0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 
0 2.13 1.68 1.44 0 0.73 0 7.67 7.43 7.27 0 6.6 

2.1 1 0 7.67 7.43 6.6 

Variable Definitions 

dist - distance from associated orgin to given region in thousands of km 
Indist - natural logarithm of distance in km from associated origin to given destination region 

There are several things to note about the set up of this data. The first is that the number of rows 
is 60 which corresponds with the number of choice-makers. The total number of columns is twice 
the model's number of elemental alternatives because there are two distance variables. Each 
variable has its own block. The rows repeat themselves in blocks of 12 because for each block. 
the origin is the same although other choice-maker characteristics differ within each block. The 
identity of each origin can be gathered in this example by seeing which destination choice option 
has zero distance for a given population segment. Finally, note that the column of zeros which 
occupies the first column in each block has this value because the stay option is associated with 
zero distance. Nevertheless, this alternative, like all others, must be accounted for in the text file. 

As mentioned, the distance text file for an application of the aggregated logit model would have the 
same number of rows but 244 columns. The columnar contents of one variable within this file, 
that is 122 columns, would be as follows: column 1 - the stay option, columns 2 to 18 - distances 
to elemental alternatives within the Atlantic provinces, columns 19 to 46 - distances to elemental 
altematives within Quebec, columns 47 to 81 - distances to elemental altematives within Ontario, 
columns 82 to 101 - distances to elemental alternatives within the prairies and columns 102 to 122 -
distances to elemental alternatives within British Columbia. 

As an aside, it is a property of the way GAUSS reads ASCII data that the actual text files do not need 
to exceed 80 columns. If the user specifies that data are to be read into a matrix with 600 columns, 
then the data from the 80 column file will simply be read sequentially, on a rcw-by-row basis so that 
600 column rows are formed. 
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DATA SET #2 

Here we consider a distance text file for a problem with individual level micro-data and we note that 
there is little difference from the first data set. The distance data for the 8en-Akiva problem to be 
illustrated later is actually travel time data in a mode choice problem. Hence, in this example, unlike 
the previous one there is only one block of data since there is only one variable. It contains two 
columns because there are two aggregate alternatives in the' model (auto and transit) both of which 
are not sub-divided and hence are composed of one elemental alternative. 

time 

auto transit 

52.9 4.4 
4.1 28.5 
4.1 86.9 
56.2 31.6 
51.8 20.2 
0.2 91.2 

27.6 79.7 
89.9 2.2 
41.5 24.5 
95.0 43.5 
99.1 8.4 
18.5 84.0 
82.0 38.0 
8.6 1.6 

22.5 74.1 
51.4 83.8 
81.0 19.2 
51.0 85.0 
62.2 90.1 
95.1 22.2 
41.6 91.5 

It is probably for small problems like this that the idea of storing the different data types in different 
files becomes the most cumbersome. This software however, is fundamentally designed for 
spatial choice scenarios where the number of potential alternatives can be quite large. It is felt 
though that the data file format of this software should not be a substantial handicap for any 
application. 
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SAMPLE PROBLEM #1 

For this sample problem, we utilize the grouped choicemaker data illustrated in APPENDIX 2, the 
aggregate level destination attribute data in APPENDIX 3 and the aggregate level distance data 
shown in APPENDIX 4. To utilize these data in a specification, we would need to define an 
appropriate DEFINE. OAT file through running SETDATA. The correct ASCII text file for the OMNL 
and the nested logit model appears as below. There are 60 rows which corresponds to the # of 
population segments and there are six columns to correspond with the number of alternatives. Note 
that there are zeros where the associated alternative is unavailable to that segment. 
For example, in the first block, the east destination choice alternative is unavailable to people in the 
Atlantic provinces because such choices are captured by the stay option. 

DEFINE.TXT 

1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 0 1 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 0 1 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 0 1 1 
1 1 1 1 0 1 
1 1 1 1 0 1 
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An OMNL specification using this data and all the different variable types is shown below. Note 
that the first two lines are concerned with the distribution of alternatives and their names, while 
th,' remaining block provides parameter-specific information. The variable types are: temp 
(destination attribute), young and single (choice-maker traits), lang and postsec (interactions), 
and dist and Indist (distance variables). The variable stay is an alternative-specific constant. 
Note that order of variable types does not matter. Each variable will be applied to each alternative 
which is associated with a 1 in the design matrix. The two interaction variables are formed 
from the variables in the choice-maker and destination attribute data. The binary choice-maker 
variables and their associated destination attributes are as follows: 

lang 
choice-maker trait: 
destination attribute: 

postsec 
choice-maker trait: 
destination attribute: 

east 
english 

educ 
univ 

que 
french 

ont 
english 

noteduc 
zeros 

OMNL.SPC 

1 1 1 1 1 1 
stay east que ont pray bc 

o temp 
o young 
o single 
o lang 
o postsec 
5 stay 
o dist 
o Indist 

011 1 1 1 
100000 
100000 
011 1 1 1 
o 1 1 1 1 1 
100000 
011011 
000100 

pray 
english 

bc 
english 



234 

Remember also that the first column of parameter-specific information contains the starting values 
to be used in the estimation. Now below we see the results of this specification when it is 
processed by the program SPEC. These are written to SUMMARY.OUT: 

Here are the details of the specification as you have described it.. 

This is an ordinary multinomiallogit model 

The alternatives an~: 
stay east que ont pray bc 

The distribution of elemental alternatives is: 1 1 1 1 1 1 
There is/are 8 beta parameter(s) in the model 

•..•••...••.... _ .... _ ................................................... . 
There is/are 1 alternative-specific constant(s) to be estimated 
The design matrix IS .. 

10000 0 

......................................................................... 
There is/are 2 socio-economic parameter(s) to be estimated 
The associated choice-maker variable(s) is/are: 

young single 
The design matrix is .. 

1 0 0 0 0 0 
1 0 0 000 

•.•..•..••....•...•.••....•••...•......•....•.•..••...•.••...••••..••.. 
There is/are 1 destination attribute parameter(s) to be estimated 
The associated destination attribute(s) are: 

temp 
The design matrix is .. 
011111 

..•..•..•..•.••...•.•...•••............•....•••••.••.....•...•..•..•.• -
There is/are 2 distance parameters to be estimated 
The associated distance variable(s) is/are 

dist Indist 

The design matrix is .. 
o 1 101 1 
000 1 0 0 

...... -.............................................................. .. 
There is/are 2 interaction parameter(s) to be estimated 
The associ"ted interaction term(s) is/are: 

lang postsec 
The design matrix is .. 
o 1 1 1 1 1 
011111 

AAAAAAAAAAAAAAAAAAAAhAAAAAAAAAAAAAAAhAAAhAAAAAAAAhAAAhA 



Having confirmed that the specification looks fine. The program MODULE is run and for this 
specification. it will provide the following output: 
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============================================================================== 
MAXLIK Version 3.1.3 4/26/95 9:37 pm 

============================================================================== 
Data Set: speck 

retum code = 0 
normal convergence 

Mean log-likelihood -529.666 
Number of cases 60 

Covariance matrix of the parameters computed by the following method: 
Estimated Hessian from the secant update 

Parameters Estimates Std. err. Est.is.e. Prob. Gradient 

stay 
young 
single 
temp 
dist 
Indist 
lang 
postsec 

5.3727 
-1.0088 

-0.2131 
-0.0077 

-0.6019 
0.0120 
1.0278 

9.1500 

0.0478 112.484 0.0000 0.0007 
0.0281 -35.918 0.0000 -0.0002 

0.0265 -8.051 0.0000 0.0002 
0.0069 -1.123 0.1308 -0.0024 

0.0227 -26.552 0.0000 -0.0010 
0.0060 1.997 0.0229 -0.0008 
0.0321 32.017 0.0000 -0.0005 

0.3721 24.590 0.0000 -0.0000 

Correlation matrix of the parameters 
1.000 -0.113 -0.186 0.645 0.302 0.091 0.315 0.280 

-0.113 1.000 -0.130 0.047 0.053 0.032 -0.074 0.028 
-0.186 -0.130 1.000 -0.038 0.011 0.043 -0.036 -0.041 
0.645 0.047 -0.038 1.000 -0.134 -0.368 0.060 0.061 
0.302 0.053 0.011 -0.134 1.000 0.746 -0.339 -0081 
0.091 0.032 0.043 -0.368 0.746 1.000 -0.360 -0.115 
0.315 -0.074 -0.036 0.060 -0.339 -0.360 1.000 0.059 
0.280 0.028 -0.041 0.06i -0.081 -0.115 0.059 1.000 

Number of iterations 44 
Minutes to convergence 0.45950 

The final set of lambda values across the aggregates is .. 
1.000 1.000 1.000 1.000 1.000 1.000 

Naive log-Iikelihood .. -315299.497 
Log-likelihood with constants .. -34738.789 
Log-likelihood at convergence .. -31779.951 
Rho-squared.. 0.899 
Rho-squared with constant.. 0.085 
Adjusted rho-squared (Without c:mstants).. 0.899 



Likelihood ratio statistic using L(O) is .. 567039 
and has 8 degrees of freedom 

Likelihood ratio statistic using L(c) is .. 5918 
and has 3 degrees of freedom 

Expected percent right.. 93.501 
*hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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Note that the results for the variables are presented in a different order from the manner in which 
they were specified. This is because the variables have been sorted by type before the estimation 
took place. 



SAMPLE PROBLEM #2 

This problem utilizes exactly the same data but applies a different model. We will utilize a two 
level nested logit model where the upper level is move/stay and the lower level contains the 
destination choice options. The definition of aggregates changes however the total number of 
elemental alternatives has not changed. Hence DEFINE.TXT from the previous example still 
applies. The specification file for this model would be as follows: 

NEST1.SPC 

1 5 
stay move 
stay east que ont pray bc 

5 stay 
o young 
o single 
o temp 
o dist 
o Indist 
o lang 
o postsec 

100000 
100000 
100000 
o 1 1 1 1 1 
011011 
000100 
o 1 1 1 1 1 
011 1 1 1 
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This design matrix is actually identical to that of OMNL.SPC except that the parameter order differs. 
As mentioned though, the order in which variables appear in an .SPC file is irrelevant. Here is how 
the SUMMARY.OUT file looks: 

Here are the details of the specification as you have described it.. 

This is a nested logit model 

The upper level alternatives are: 
stay move 

The lower level alternatives are: 
stay east que ont pray bc 

The distribution of elemental alternatives is: 1 5 
There is/are 8 beta parameter(s) in the model 

*************.* •• ***************************.** ••• ***.*******.** •• ******* 

There is/are 1 alternative-specific constant(s) to be estimated 
The design matrix is .. 
100000 

*************** ••• ** ••• *.************ ••• *.******.***** ••••• *.**.********* 

There is/are 2 socio-economic parameter(s) to be estimated 
The associated choice-maker variable(s) is/are: 

young single 
The design matrix is .. 

1 000 0 0 
1 0 0 0 0 0 



....................................................................... 
There is/are 1 destination attribute parameter( S) to be estimated 
The associate':: destination attribute(s) are: 

temp 
The design matrix is .. 
a 1 1 1 1 1 

•••••••• *** ••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••••••• 

There is/are 2 distance parameters to be estimated 
The associated distance variable(s) is/are 

dist Indist 

The design matrix is .. 
a 1 101 1 
a a a 1 a a 

.** ••••••••••••••••• ** ••••• **.** •••• *** ••• ** ••••••••••• **.** ••••••••••• 

There is/are 2 interaction parameter(s) to be estimated 
The associated interaction term(s) is/are: 

lang postsec 
The design matrix is .. 
a 1 1 1 1 1 
01111 1 

And finally, we observe the results of the estimation: 
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============================================================================= 
MAXLIK Version 3.1.3 4/26/95 7:36 pm 

============================================================================= 
Data Set: speck 

return code = a 
normal convergence 

Mean log-likelihood -528.681 
Number of cases 60 

Covariance matrix of the parameters computed by the following method: 
Estimated Hessian from the secant update 

Parameters Estimates Std. err. Est.is.e. Prob. Gradient 
--------------. 

stay 6.8369 0.2013 33.963 0.0000 -0.0001 
young -0.9972 0.0257 -38.850 0.0000 0.0000 
single -0.2087 0.0248 -8.427 0.0000 0.0000 
temp -0.0312 0.0174 -1.788 0.0369 0.0006 
dis! -1.3763 0.1292 -10.653 0.0000 0.0001 
:ndist 0.0744 0.0134 5.536 0.0000 0.0006 
lang 1.3457 0.0468 28.746 0.0000 0.0001 
postsec 9.5975 0.3999 23.999 0.0000 0.0000 
lambda 2.4857 0.2195 11.325 0.0000 0.0001 



Correlation matrix of the parameters 
1.000 0.044 -0.079 0.041 -0.656 0.436 0.425 0.168 0.860 
0.044 1.000 -0.013 -0.028 -0.082 0.044 0.122 -0.052 0.085 

-0.079 -0.013 1.000 0.017 0.007 -0.018 -0.091 -0.040 -0.023 
0.041 -0.028 0.017 1.000 0.313 -0.541 -0.071 0.112 -0.369 

-0.656 -0.082 0.007 0.313 1.000 -0.133 -0.482 -0.064 -0.898 
0.436 0.044 -0.018 -0.541 -0.133 1.000 -0.101 -0.081 0.459 
0.425 0.122 -0.091 -0.071 -0.482 -0.101 1.000 0.053 0.412 
0.168 -0.052 -0.040 0.112 -0.064 -0.081 0.053 1.000 0.057 
0.860 0.085 -0.023 -0.369 -0.898 0.459 0.412 0.057 1.000 

Number of iterations 74 
Minutes to convergence 1.60733 

The final set of lambda values across the aggregates is .. 
1.000 2.486 

Naive log-likelihood .. -315299.497 
Log-likelihood with constants .. -34738.789 
Log-likelihood at convergence .. -31720.842 
Rho-squared.. 0.899 
Rho-squared with constant.. 0.087 
Adjusted rho-squared (without constants).. 0.899 

Likelihood ratio statistic using L(O) is .. 567157 
and has 9 degrees of freedom 

Likelihood ratio statistic using L(c) is .. 6036 
and has 4 degrees of freedom 

Expected percent right.. 93.511 
****.** ••••••••••• ** •••••• ** ••••••••• **** ••••• **** ••••••••••••••••••••• *** ••••• 
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Note that we can see the set of lambda values (both endogneous and exogenous) which are 
applying across the aggregates at the time of convergence. It is important to check this to make 
sure that the lambda speCification took place as planned. 
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Here a sample estimation of the aggregated logit model is illustrated. For this problem, our 
definition of an elemental alternative has changed and now represents cities within the regions we 
were modelling earlier as elemental altematives. We are still using the same SOCIO.TXT file since 
we have no knowledge of city-level choices however we must utilize more spatially detailed 
information in regards to the other data files. The destination attribute file is DESTELEM. TXT, the 
distance information is from DISTELEM.TXT and the matrix of available alternatives is found in 
DEFELEM.TXT. Due to the large size of these files, only the first of these three is found in the 
Appendices, in particular APPENDIX 3. 

AGG1.SPC 

11728352021 
stay east que ont pray bc 

5 stay 
o young 
o single 
o temp 
o dist 
o Indist 
o lang 
o postsec 

100000 
100000 
100000 
o 1 1 111 
011011 
000100 
o 1 1 1 1 1 
o 1 1 1 1 1 

Again, there is no difference in the design matrix. It cannot be made more spatially detailed 
since the spatial resolution of choice information is no higher. Each time we see a 1 in the 
design matrix though, we must remember that this applies to the associated aggregate and that 
each elemental alternative within the aggregate will be affected by the associated parameter. 
Note how the first row in AGG1.SPC, associated with the distribution of elemental alternatives, 
differs from that of OMNL.SPC. We have the same number aggregate alternatives but from the 
modelling perspective, what they contain is quite different. Here is what the SUMMARY.OUT 
file will look like with this speCification. Overall, not too much different. 

Here are the details of the speCification as you have described it.. 

This is an aggregated log it model 

The alternatives are: 
stay east que ont pray bc 

The distribution of elemental alternatives is: 1 1728352021 
There is/are 8 beta parameter(s) in the model 

••••••••••••••••••• _ •••••••• _ •••••• __ ••••••••••• __ ••• __ ••• * ________ .w._._ 
There is/are 1 alternative-specific constant(s) to be estimated 
The design matrix is .. 

1 0 0 0 0 0 

_ .. -............ _ ........................... -.......... _ ... -. __ .... _-.. --
There is/are 2 socio-economic parameter(s) to be estimated 
The associated choice-maker variable(s) is/are: 

young single 



The design matrix is .. 
100 0 0 0 
1 0 0 0 0 0 

..... *--_ ••••••••••••••••••••••• --_ •••••••••••••••••••••••••••••••••••• 
There is/are 1 destination attribute parameter(s) to be estimated 
The associated destination attribute(s) are: 

temp 
The design matrix is .. 
011111 

••• *.***.~.* •••• * •• ~ ••• * •• ** •••••• ** •• * •• * •••••••••••• ----••••••••••••• 

There is/are 2 distance parameters to be estimated 
The associated distance variable(s) is/are 

dist Indist 

The design matrix is .. 
o 1 101 1 
000 1 0 0 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

There is/are 2 interaction parameter(s) to be estimated 
The associated interaction term(s) is/are: 

lang postsec 
The design matrix is .. 
011111 
o 1 1 1 1 1 

_ .... _ .•••...•... _ ..•.•.....••••.•.... _--_ ...........•...............•• 
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Now we see the results of the estimation. Note how it takes much long;:;; to obtain a convergence 
since we are continually estimating 122 elemental utilities as opposed to the 6 that we did previously. 

============================================================================= 
MAXLIK Version 3.1.3 4/27/95 1 :56 am 

============================================================================= 
Data Set: speck 

return code = 0 
normal convergence 

Mean log-likelihood -527.967 
Number of cases 60 

Covariance matrix of the parameters computed by the following method: 
Estimated Hessian from the secant update 



Parameters Estimates Std. err. Est./s.e. Prob. Gradient 

stay 
young 
single 
temp 
dist 
Indist 
lang 
postsec 
lambda 

12.1878 
-1.0115 

-0.2169 
-0.0195 

-0.5226 
-0.1330 
1.3877 

9.3446 
2.1398 

0.3475 35.076 0.0000 -0.0001 
0.0274 -36.926 0.0000 -0.0001 

0.0271 -7.997 0.0000 -0.0001 
0.0072 -2.702 0.0034 0.0006 

0.0214 -24.468 0.0000 -0.0000 
0.0099 -13.411 0.0000 0.0004 
0.0376 36.924 0.0000 -0.0000 

0.3649 25.611 0.0000 -0.0000 
0.1074 19.929 0.0000 0.0003 

Correlation matrix of the parameters 
1.000 -0.018 -0.058 0.088 0.103 -0.801 0.620 0.140 0.990 

-0.018 1.000 -0.115 -0.004 0.019 0.004 0.013 0.040 0.004 
-0.058 -0.115 1.000 -0.007 -0.005 0.030 -0.005 -0.002 -0.036 
0.0&8 -0.004 -0.007 1.00(1 -0.098 -0.201 -0.036 0.070 -0.004 
0.103 0.019 -0.005 -0.09U 1.000 0.359 -0.191 0.013 0.057 

-0.801 0.004 0.030 -0.201 0.359 1.000 -0.625 -0.131 -0.815 
0.620 0.013 -0.005 -0.036 -0.191 -0.625 1.000 0.064 0.601 
0.140 0.040 -0.002 0.070 0.013 -0.131 0.064 1.000 0.098 
0.990 0.004 -0.036 -0.004 0.057 -0.815 0.601 D.098 1.000 

Number of iterations 73 
Minutes to convergence 12.98250 

The final set of lambda values across the aggregates is .. 
1.000 2.140 2.140 2.140 2.140 2.140 

Naive log-likelihood .. -315299.497 
Log-likelihood with constants .. -34738.789 
Log-likelihood at convergence .. -31678.031 
Rho-squared.. 0.900 
Rho-squared with constant.. 0.088 
Adjusted rho-squared (without constants).. 0.900 

Likelihood ratio statistic using L(O) is .. 567242.93 
and has 9.00 degrees of freedom 

Likelihood ratio statistic using L(c) is .. 6121.52 
and has 4.00 degrees of freedom 

Expected percent right.. 93.508 
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SAMPLE ESTIMATION #4 

Up to this point, all the estima~ions have been with grouped data where individual choice-makers 
have been grouped into homogeneous population segments. The purpose of this sample 
estimation is two fold: 1) to show that estimation with individual level micro-data is not really 
different from the perspective of the software and 2) to show that the software is equally 
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applicable to non-spatial choice problems. To do this, we replicate the results from the small sample 
problem shown in Ben-Akiva and Lerman (1985). There are some points to note about the 
required data. First of all, we need no extemal ASCII file for this problem in order to create 
DEFINE.DAT, this will be done automatically in SETDATA since all altematives are available to all 
choice-makers. The required choice-maker file to make SOCIO.DAT is found in APPENDIX 1 
under the name BENSOC.TXT. In that file there are no choice-maker variables, only choice 
information. This is perfectly acceptable. There is no destination attribute file required for this 
problem while the required DIST.DAT file is made from BENDIST.DAT found in APPENDIX 3. 
The data in this file are not distances per se, but travel times. The alternatives in this problem are 
not spatial units but modes of transportation. 

BEN,SPC 

1 1 
car transit 

.1 const 1 a 
-.05 time 1 1 

Note that the .SPC file for this problem is quite small given that there are only two parameters and 
two alternatives. We have a generic variable named time which encompasses transit travel time 
and automobile travel time. Typical specifications would have treated these variables as separate 
but associated with the same parameter. There is no circumstance in this software however, where 
more than 1 variable is associated with the same parameter. 

The SUMMARY.OUT file looks like this: 

Here are the details of the specification as you have described it.. 

This is an ordinary multinomiallogit model 

The alternatives are: 
car transit 

The distribution of elemental alternatives is: 1 1 
There is/are 2 beta parameter(s) in the model 

****.** ••• **** ••• ~* •••• * •• * •••••••••••••••••••••••••••••••••••••••••••••• 

There is/are 1 alternative-specific constant(s) to be estimated 
The design matrix is .. 

1 0 

••••••••••••••••••••••••••••••••• ** •••••••••••••••••••••••••••••••••••••• 

There is/are a socio-economic parameter(s) to be estimated 

There is/are a destination attribute parameter(s) to be estimated 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



There is/are 1 distance parameters to be estimated 
The associated distance variable(s) is/are 

time 

The design matrix is.. 1 1 

•••••••••••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

There is/are 0 interaction parameter(s) to be estimated 
••••••••••••••• ** •••• *** ••• ** ••••••• * •••• ** .......... ** •••••••••••••••• 

Finally, the results of estimation are as follows: 
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============================================================================= 
MAXLIK Version 3.1.3 4/26/95 10:04 pm 

============================================================================= 
Data Set: speck 

return code = 0 

Mean log-likelihood -0.293621 
Number of cases 21 

Covariance matrix of the parameters computed by the following method: 
Estimated Hessian from the secant update 

Parameters Estimates Std. err. Est./s. e. Prob. Gradient 

const 
time 

-0.2376 
-0.0531 

0.7604 -0.312 0.3773 
0.0207 -2.571 0.0051 

Correlation matrix of the parameters 
1.000 0.156 
0.156 1.000 

Number of iterations 7 
Minutes to convergence 0.01367 

0.0000 
-0.0000 

The final set of lambda values across the aggregates is .. 
1.000 1.000 

Naive log-likelihood.. -14.556 
Log-likelihood with constants.. -14.532 
Log-likelihood at convergence.. -6.166 
Rho-squared.. 0.576 
Rho-squared with constant.. 0.576 
Adjusted rho-squared (without constants).. 0.439 
Likelihood ratio statistic using L(O) is.. 17 
and has 2 degrees of freedom 

Likelihood ratio statistic using L(c) is .. 17 
and has 1 degrees of freedom 

Expected percent right.. 82.809 
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