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Abstract

In problems of spatial choice, the choice set is often more aggregated than the one considered
by decision-makers, typically because choice data are available only at the aggregate level. These
aggregate choice units will exhibit heterogeneity in utility and in size. To be consistent with utility
maximization, a choice model must estimate choice probabilities on the basis of the maximum utility
within heterogeneous aggregates. The ordinary multinomial logit model (OMNL) applicd to
aggregate choice units fails this criterion as it is estimated on the basis of average utility. In this
thesis, the aggregated spatial logit model, which utilizes the theory underlying the nested logit model
to estimate the appropriate maximum utilities of aggregates, is derived and discussed. Initially, the
theoretical basis for the model is made clear and an asymptotic version of thc model is derived.
Secondly, the model is tested in a simulated environment to demonstrate that the OMNL model lacks
the generality of the apgregated model in the presence of helerogencous aggregates. Thirdly, full
endogenous estimation of the aggregated model is studied with a view toward finding the best
optimization algorithm. Finally, with all the elements in place, the model is tested in an application

of migration from the Canadian Atlantic Provinces.
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Preface

It should be noted that Chapters 3 to 6 in this thesis are papers which were prepared with the
objective of having them published in journals. The papers follow a logical sequence though as they
all represent results of this one body of research. It is an unavoidable fact, however, that there is some
degree of repetition throughout the chapters, particularly in introductory sections. In some respects,
this might be of benefit since the same mathematical arguments are discussed from slightly differing

perspectives. In any case, the ordering of the papers is as follows:

Chapter 3: Kanaroglou, P.S. and M.R. Ferguson (1995). "Discrete Spatial Choice Models for
Aggrepate Destinations." Accepted for publication in the Journal of Regional Science.

Chapter 4: Ferguson M.R. and P.S. Kanaroglou (1995). "Utility Variability Within Aggrcgate
Spatial Units and its Relevance to Discrete Models of Destination Choice", in (R. Florax
and L. Anselin, eds) MNew Directions in Spatial Econometrics, Amstcrdam:
Springer-Verlag. (Available in the autumn of 1995).

Chapter 5. Ferguson M.R. and P.S. Kanaroglou (1995). "The Aggregated Logit Model: A
Comparative Analysis of Estimation Methodologies”, Accepted for publication in
Geographical Systems.,

Chapter 6: Ferguson M.R. and P.S. Kanaroglou (1995). "An Empirical Evaluation of the
Aggregated Spatial Choice Model", Submitted to International Regional Science

Review.

Notwithstanding the exception which is discussed below, the dissertation author has undertaken
the role of primary investigator in all matters relating to the theory and implementation of the
aggregated spatial logit model, with the supervisor acting in a supporting role. With regard to the
papers which appear in this thesis, and which are co-authored with the supervisor, the dissertation
author has undertaken the primary role with the supervisor contributing through critique of initial
drafts and editorial advice.

The exception to these statements occurs in portions of Chapter 3 where the supervisor bears
primary responsibility for the content. In particular, Section 3 of this Chapter and the proof which
appears in the appendix are primarily due to the efforts of Pavlos Kanaroglou. In response to our
initial submission of this paper to the Journal of Regional Science, it was requested that we

incorporate a section on the asymptotic properties of the aggregated logit model. In accommodating

xi



this request, section 3 of Chapter 3 came about. It is important to emphasize, however, that the
primary thrust of this thesis has been the evaluation of this model when the assumptions underlying
the asymptotic version cannot be met, which is the case for most problems. An example is the

application in Chapter 6.
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Chapter 1
An Introduction to Discrete Choice Models

1.1 Introduction

The purpose of this first chapter is to outline the theory underlying discrete choice models. The
various forms are each derived and the logic associated with the derivations is discussed in an intuitively
appealing way. The exposition is primarily aimed at readers with little experience in discrete choice
modelling and hence may seem too deliberate for experts in the field. Many geographers and environmental
scientists have embraced a purely statistical approach to choice modelling (Wrigley, 1955} which is not
based on a utility framework. It is hoped that this discussion will benefit that group of researchers and
overall that readers will appreciate the major trade-offs and differences between the main model types. In
general, this chapter forms the basis for what follows, including the aggrepated spatial logit model, the
main topic of this thesis. While the thesis is ultimately about spatial choice, the discussion in this chapter
is generic to all choice sceparios. It is only in later chapters that the move to spatial choice situations
is made after this initial discussion of the probit, ordinary multinomial logit (OMNL), nested logit and

aggregated models.
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1.2 The Discrete Choice Model Family

L2.1 Theory Common to the Models

The models outlined below will be taken to be of the revealed preference type. In essence, this
implies that the preferences of people are revealed through the choices that they are observed to make.
Hence, provided with a data set containing choice information, the assumption is that we should be able to
infer something about the underlying preferences that motivated these choices. This assumption has been
challenged in some quarters (Pirie. 1976, Sheppard, 1980) on the basis that, among other things, the actions
of individuals are often motivated by forces beyond their control and hence are not really indicative of
the true set of preferences. The alternative is the stated preference type of model popularized by Louviere
(1983) which attempts to identify peoples preferences in a controlled environment thus allowing for the
development of more complex utility functions.

Discrete choice models are premised on the tenets of random utility theory which has been
formalized by Manski (1977). This framework provides a theoretical basis for the fact that choice-makers
are not always observed to choose the alternatives predicted by the analyst. In particular, it is assumed
that the utility U, for choice-maker n relating to alternative 7 is measured on an ordinal scale, The
assumption is that U;,, is known ana deterministic from the perspective of the choice-maker who is able to
perfectly assess the utifities associated with alternatives in their choice set ;. It is further assumed that
the researcher views U, as a random variable which hence cannot be pradicted with certainty. Manski
describes four main sources of error which coniribute to this uncertainty: 1) a missing attribute which either
varies only across alternatives or across both choice-makers and alternatives; 2) a missing socio-economic
variable associated with taste variation which varies only across choice-makers; 3) imperfect measurements

of included variables; 4) the use of proxy variables in cases where the true variable cannot be obtained.



As a starting point for a model, the total utility U;,, can be written as:
Uin = Vin +€in n

where the new terms are the systematic utility Vi, a deterministic quantity estimated by the researcher,
and £;n, a random error component which accounts for the difference between V;,, and U,,. The systematic
utility V;,, is a function of choice-maker characteristics, attributes of altematives and variables measuring
distance, cost or time. The rationale behind qualitative choice models is that, in the face of uncertainty,
the best that can be hoped is to make probabilistic assessments of an individual’s choice behaviour. If V,,
exceeds Vj,, then intuitively it makes sense that alternative 7 should be associated with a higher choice
probability than alternative 7. Such a probabilistic assessment of their relative attractiveness, however,
does not preclude the possibility that alternative j is in reality the chosen option. In the social sciences,
this flexibility is very useful.

The starting point for the actual estimation of probabilities is the following rule:

FP.(i)= Pr(Uin > Uj"v forall jeCy, j# 3) ()

which translates verbally into the likelihood that alternative i has a higher utility than any other alternative

in the choice set and without ties being allowed. Substituting 1 in 2 we obtain:
Ppo(3) = Pr(Vin + &in > Vin + &jn, for all j € Cn, j #1)
which can be written:
Po(i) = Pr(ejn < Vin ~ Vjn +€in, forall j € Cn, 7#1)

To further clarify, assume that for some choice-maker n, Vi, — V;, = 1, implying that alternative i should
be associated with the higher probabiiity in a binary choice situation. In that case, €;n could be portrayed

graphically as a function of ¢, as in Figure }.]. For an area defined by any arbitrary circle centred on the



Figure 1.1: A Choice Probability Demarcation Line



origin, note that the proportion below the line exceeds the proportion above the line since there are many
more possibilities for ;, + 1 > £5n.

The relative areas above and below this line are a large part of what defines the choice prob-
abilities. The other part relates to the joint density function which defines the relationship between the
error terms. If it was assumed that both errors had some uniform (constant) positive density then it is not
difficult to derive the probabilities based on the volumes on either side of the demarcation line.

It is when more general assumptions about the joint distribution of the error terms are made that
the widely utilized qualitative choice models emerge. We can start by making the assumption that E(g ;)
and E(ein) = 0 under the belief that our estimates Vi, and Vjy, of the true utilities Uy, and Uy, are located
centrally on the distributions of the true utilities. So long as constants can be added to the systematie
utilities, which is the case, then this is not a restrictive assumption (Ben-Akiva and Lerman, 1985, p. 64).
Now intuitively speaking, it seems that the best choice model would not treat the error terms with uniform
densities. Over repeated observations, we would expect to make frequent small errors in the prediction of
the true utilities and large errors with less frequency. Hence it is reasonable that €;, = 0 and €5, = 0 be
associated with the largest densities and that we should have a bell-shaped joint distribution. As a result,
for Vin = Vjn = 1, P,(i) would be much larger with a bell-shaped density than with a uniform density
because relatively more weight would be given 1o the volume defined below the demarcation line in Figure

L1

1.2.2 The Probit Model

A natural choice for the bell-shaped joint density of random errors, and one which leads to
the probit model, is the multivariate normal distribution. Such an assumption is the most general of those

underlying the family of discrete choice models. As we consider models which result from more restrictive
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assumptions, we will see how such models only approximate the capabilities of the probit model. The

multivariate normal distribution has the form:

B(en) = (2m)~L72 (det (£2,))/? exp(—(e.. 25 €4)/2) 3)

where &, is a column vector of error terms which apply over the set of alternatives for choice-maker n, L
indicates the number of alternatives, and £2,, is the variance-covariance matrix of the error terms.

In Figure 1.2 we see how two bivariate densities appear. The upper Figure I.2a illustrates
the density function when there is zero covariance between the errors while Figure 7.2b depicts a 0.9
positive correlation. Given that £;,, attains a certain value, the distribution of ¢;, is under much more of
a ‘straightjacket’ in the lower figure since the high level of correlation discourages & substantial deviation
from ein. This is not the case in the upper figure where the value of ¢, is unrelated to that of gin. An
attractive aspect of the probit is that the pairwise relationships between the error terms of various alternatives
can be represented in different ways with a distribution perhaps qualitatively like Figure 1.2a applying to
one pairing while Figure 1.2b simultaneously applies to a different pairing. Hence choice probabilities will
not respond in the same relative way to an exogenous shift in the utility of one alternative.

Figure 1.1 still applies in showing how a binary probit probability would be obtained given an
exogenous difference Vi,, — Vi, = 1. If Figure 1.1 is super-imposed on Figure 1.2a, for example, the
demarcation line in the former figure becomes a plane which bisects the normal density surface. The
choice probability emerges directly from the relative magnitudes of the two volumes defined by the plane.
In Figure 1.3, we see two representations of the €;, density in the joint distribution conditional on €;n, =0
(Figure 1.3a) and on g, = 2 (Figure 1.3b) with the vertical lines in each indicating the position of the

demarcation line given by Vi, — Vi, = 1. On an absolute basis, the value of P, (i) will be increased more

1The variances of the random error components are assumed to be w2 /6 which is consistent with the variances assumed for the



when g4, = 0 since the area to the left of the demarcation line is much larger than it is when ¢, = 2. On

a relative basis though, it is clear that when ei, = 2 the contribution to P,(i) is overwhelmingly larger

than the contribution to B, (j).

Mathematically, the problem is one of evaluating a double integral. An infinite number of density
surface cross-sections are taken, each one conditional on some value of &;,, as in Figure 1.3, and for each
the area to the left of the demarcation line is considered through integration along the €;,, axis. Integration
along the e;, axis accumulates these conditional areas and provides the total volume lying below the

demarcation line in Figure /./. The area defined by some exogenously fixed e;,, is [ EintVin=Vin ey )

EJ“ =00

de;, where the upper limit on the integral of this example is g, + 1. In order to obtain the result for

P.(i)?, this integral is evaluated for every conceivable value of ¢;, to yield:

[ o] E-n'&‘von-v:in

P,(i) = / / @(en)dejn dein (4}

Eyn==00 Ejn=—00

The extension of this expression to three or more alternatives is straightforward. In the calculation of P, (i)
for L alternatives, each additional alternative is «eated as was alternative j in the bivariate case. Hence 4

is generalized into the form:

06 Ein+Vin—=Vin €in+Vin—Van  Ein+Vin=VLa

Po(i) = f / S T A

APt ot. ] Elp==00 £2n=—00 ELpn=—m20

where it can be seen that calculation of a single probability when there are L alternatives will require an

error components in the logit model to be discussed later. Any assumption about the variance is arbitrary however and has no effect

en choice probabilities since systematic utilities will be scaled accordingly.
?in practice, calculation of binary probit probabilities is reduced to an expression with onc intcgral. Since the difference between

ermor terms is also normally distributed, the probabilities can be estimated dircctly on the basis of the difference in systematic utililies.
The expressions for the probabilities are presented as they are here so that the generalization to three or more altematives is easily
grasped. Another important note about the binary probit is that choice probabilities are independent of any imposed £2,, variance-
covariance matrix of the error disturbances. There must be a minimum of three alternatives for £y, to have an impaci in the same

way that there must be at [east three alternatives for a nested logit structure to make any sense.
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integration along L dimensions. The fact that computation becomes burdensome with a relatively small
number of alternatives is the main disadvantage of the probit model and has led researchers to consider
other models.

Nevertheless, the probit model has many interesting features. The expressions in equations 4
and 5 indicate that ihe multivariate normal distribution in 3 forms the basis for the model’s mathematical
form. The important component in equation 3 is {2, the variance-covariance matrix of the error terms for
choice-maker n. In theory, this matrix can represent all pattems of dependence or independence exhibited
in the unobservable components of utility. In practice, there are limitations but clearly the researcher
has considerable freedom to model the impacts resulting from exogenous shifts in utility. Moreover, it
is possible to do this for individual choice-makers, thereby accounting for taste variations in populations.
How this is done is beyond the scope of this chapter but is covered elsewhere (Train, 1986; DaGanzo,
1979). The main point though is that the probit probability functional form does not depend only on the
specification of the systematic utilities (V;,} which define the upper boundaries of all the integrations.
The hypothesized structure of £, which can be generalized to account for unobserved taste variation,

correlations in random errors and differences in the variances of the random errors, is also very important.

1.2.3 The Logit mode!

While the ordinary multinomial logit model (OMNL) is based on a more restrictive set of
assumptions than the probit model, it has gained wide popularity because it is computationally much less
demanding, especially for choice problems with many alternatives. At this point, the derivation of the
OMNL is presented in detail to illustrate how the model’s underlying assumptions are restrictive compared
to the probit.

The seeds for the OMNL had been around for several decades, having first appeared in the

psychology literature as Luce’s (1959) strict utility model. Luce's model however, was a constant utility
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model in which the true utilities for all alternatives were assumed fixed and where choice-makers were not
assumed to necessarily choose the option with highest utility Sigrificantly though. the model featured the
Independence from Irrelevant Alternatives (I1A) property which is discussed in more detail below. In a
widely quoted paper, McFadden {1974) derived a model similar to Luce's in a form consistent with random
utility theory. Having given the OMNL model an attractive theoretical justification, McFadden had set the
stage for the model’s application to a wide range of choice problems in numerous disciplines.

The derivation for the OMNL proceeds along similar lines as that of the probit. The end result
is a model without the generality of the probit but with a closed form which requires no computationally
intensive integrations. The major difference between the probit and the logit is that for the former, we
explicitly assume a joint multivariate normal distribution, while for the latter, no joint distribution is
explicitly included anywhere in the derivation. Instead, McFadden (1974) ingeniously employs a series of
independently and identically distributed Gumbel! distributions which are used to effectively approximate
a joint multivariate normal distribution. First, the logic behind McFadden’s approach is described verbally
and graphically, and then the derivation is outlined mathematically.

Consider again the calculation of probabilities in a binary situation where V;, ~ Vi, =1 as in
Figure 1.1. Assume initially that for any exogenous €;,, the €;, are Gumbel distributed. If this is the case,
then the counterpart to Figure 1.3a and Figure 1.3b would appear as in Figure /.4 where we see a Gumbel
distribution with variance %2 Instantly, it is clear that the distribution in Figure 1.4 does not serve in this
capacity very well since the area under the curve is 1.0 while it is obviously much less in the cross-sections
of Figure 1.3. What is missed in Figure 1.4 is that the density of ¢;,, is very much dependent on the level
at which &;, is fixed. If £;, = 0, then the total area under the e;,, is its largest, albeit much less than 1.0.
The further that £;,, deviates from zero, the smaller the area under the £;, density.

The solution to the problem is simply to weight each ;5 density cross-section with the density

2
. g . . n
of the associated £;, as taken from a Gumbel distribution with variance R For example, when &,, = 0,



3 2 U0 3 |

Figure 1.4: The Gumbel Distribution with mode zero and variance 72/6
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the associated Gumbel density is approximately 0.37 while it is approximately 0.11 when £, = 2. Now if
the Gumbel density in Figure 1.4 is multiplied by these scalar values, we now have the logit approximations
to the distributions of £, at £;, = 0 and &;, = 2 respectively. These are displayed in Figure 1.5 where it
is seen that the results closely resemble those of Figure !.3 with similar probabilities for P, (i) ultimately
resulting when the volumes under the full set of cross-sections are calculated.

Mathematically, the derivation of the logit model proceeds as foliows. As before:
Pn('i) = Pr(Ejn < Vi - Vjﬂ “+ Ein. for all JjE& Can. i3 1)

We choose some exogenous &;, and attempt 10 define the density of €;, given this exogenous value. To

this end, the Gumbel distribution has density function:

f(e) = pexp (—p(s - n)) exp (- exp (—ple — ) (6)

and cumulative density:

Fle) = exp (—exp (—pule — 1)) 7

- x2
where p is inversely related to the variance of the distribution through the expression 62 and 7 defines
the mode of the probability distribution. These can be made notationally simpler by assuming that 1 = 1
ﬁ
6

density determines the point where €,,, and £,, = 0. For a fixed e, it is necessary to integrate the €,

so that the variance will be as above and by assuming that n = 0 so that the maximum value of the

density in Figure 1.4 from —oo to (€in + Vin = Vjn). Since, by definition, the integral of a density function
from —oo is simply the cumulative distribution evaluated at the upper bound of the integral, we substitute

this bound into 7 so that the area under €, up to the demarcation line would be:

exp (—exp (—(eim + Vin — Vjn)))
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Figure 1.5a: Gumbel distribution of &;5, conditional on g;, =0
0.14:
0.12:
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Figure 1.5b: Gumbel distribution of €3, conditional on g;, =2
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For g;, = 0, this area would be exp(— exp(—1)) = 0.692 and for &;,, = 2, it would be exp{— exp(~3)) =
0.951. These results are proportionally consistent with Figure 1.3, however to make them correct in the
absolute sense, it is necessary to weight the distributions by the appropriate density of £;,. We substitute
&€ into 6 giving:

exp (—€in) exp (— exp (~&in))

This provides a density at g;, = ¢ of 0.368 and a density at £:;, = 2 of 0.118. The weighted areas are
0.368x0.692 = 0.254 and 0.118x0.951=0.112 which are the areas seen to the lefi of the demarcation lines
in Figure 1.5. In general, these areas are obtained as the product of the Gumbel density function evaluated

at £;, and the cumulative Gumbel function evaluated at {€in + Vin — Vjn) giving:
fexp (—&in) exp (— exp (—£:in))] [exp (— exp (~(gin + Vin = Vju)))]

This expression is readily generalized if there are three or more alternatives. The ¢;,, term remains fixed
and the alternatives other than j are assessed as j was, with the ultimate result being the product of all the
individual pairings of ¢ with each alternative. Hence:

exp (—&in) exp (—exp (—€in)) [] (exp (—exp(—(€in + Vin = Vin)))] (8)

jEC“
J#i

Note that the density expression to the left of the product sign in 8 contains the term:
exp (- exp(—¢in))

which can be taken as the cumulative density of (g;, 4 Vin — Vi ). Since this term is a special case of

what is seen on the right side of equation 8, it can be shifted so that the expression becomes:

exp(—ein) [ [exp(—exp (=(€in + Via = Vin)))]
J1€Cn
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For a problem with any number of alternatives, P,{i) can now be evaluated for some fixed value of in.
To assess the total probability, it is necessary to integrate over all values of €i, so that all possible £;n

cross-sections are considered simultaneously. When this is done, the overall choice probability is:

= ]

Pai)= [ exp(-cin) [T lexp(=exp(~(ein -+ Vin = Vin))] dein ©)

£4n=—00 j€Cn

The reasoning underlying the logit derivation has now been outlined along with its similarity to
that of the probit model. The transformation of the expression in equation 9 into the well-known closed

form logit probability:

exp [Vin]

S expVia)

JECH

F,{i)=

is a multi-step exercise in integration which is not reproduced here since the main objective is to make clear
the conceptual framework underlying the model. Details of the integration can be found in Train (1986, p.
54). An alternative and more straightforward way of deriving the logit model is shown in Ben-Akiva and
Lerman (1985, p. 106) where they make explicit use of properties of independent and identically distributed
Gumbel variates to reduce multinomial choice situations to a binary problem. At that point, the calculation
of the choice probability can be captured by a logistic distribution in one dimension where the error terms
are portrayed as differences rather than absolutes. While that approach gives a better intuitive feel of the
fact that utility is relative in choice models, the method adopted here indicates better the relationship of

the OMNL model with the probit.

1.2.4 The Problem of Alternatives with Correlated Utilities

A valid question is: under what circumstances dees the use of i.i.d. Gumbel variates provide a
poor approximation to the more general multivariate normal distribution? As it tums out, the answer to

this question provides the rationale for the development of the nested logit approach. Consider a sample
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problem which illustrates the potential shortcomings of the logit model.
Assume that there is a situation with three alternatives 7, j and & and that the latter two alternatives
are perceived by choice-makers as being quite similar. We could assume that alternative ¢ represents a

brand of beer while alternatives k and j are competing soft drink brands. The correlation matrix of the

associated utilities might appear as:

Uiu an Ukn
U 10 00 00
U; 00 10 09

Ukn 0.0 0.9 1.0

in which high positive correlations among the random errors of the soft drinks are exhibited along with
zero correlations in the pairings involving the beer option. The soft drink utilities would tend to share
the same unobservable components while the beer utility would have its own distinct set of unobservable
components. For some exogenous value of &;,, the joint density of ¢;,, and £, ideally would appear
qualitatively as in Figure 7.26%. The other pair-wise distributions would ideally not have the distinct
‘cigar-shaped’ appearance that is associated with strongly correlated normal variates. The distributions of
€in and £, conditional on &y, and that of £, and e, conditional on gyn would ideally appear qualitatively
as in Figure 1.2a.

Assume that the price of the soft drinks is inversely related to the utility associated with them.
How would the choice probabilities be affecied through a 25% decrease in the price of alternative &'s
soft drink? Such an increase would result in a shift of the demarcation plane in both of the conditional
distributions featuring e, as a random variable since Vi, would increase. It is clear though that a fixed

shift in the plane will have far more impact on the relative choice probabilities when there is a high

30f course if €in = 0, the total volume under the surfiace would exceed that which would be the case if €., = 3 since the former

outcome is far more likely. Nevertheless, the same qualitative characteristics would apply to the set of conditional distributions



18

correlation in the relevant random errors as in Figure 1.25. With highly correlated errors, as is the case
between £, and £, it is comparatively unlikely that Vi, + &5, will be sufficiently large to overcome the
newly increased value of Vi + €kn since exn — €5 should be small. With uncorrelated random errors, as
is the case between ¢;;,, and &4y, there is a far greater likelihood of the £, being able to cernpensate for
the increase in Vi,.

The net result for the behaviour of the probit model would be as follows. Since there will
be no change in the systematic utilities governing the relative attractiveness of alternatives 7 and j. the
model will predict no difference in the ratio of their choice prebabilities. Since alternative k is made more
attractive but the random errors are uncormrelated with the beer alternative i, then the ratio P, (i)/ P, (k)
will decrease only slightly. However the ratio Py (j)/Pa(k), between the two soft drinks. will be seen to
decrease significantly since those alternatives were viewed as virtual substitutes before the price change.
Since alternative k has been made more attractive than 7, it is apparent that j should suffer a much larger
loss of market share than alternative i.

While the probit model is obviously general in the random error effects it can capture, the logit
model is far more restrictive. All pairings of errors are characterized by the Gumbel approximation to
the type of joint distribution seen in Figure I.2a. An increase in Vi, will reduce the ratios P, (j)/ P, (k)
and P,(i}/P,(k) by the same amount which we know to be an incorrect assessment of the changes
which would take place. Fortunately, a compromise solution, which preserves some of the computational
tractability of the OMNL along with some of the realism provided by the probit model, is available in the

form of the nested logit model.

12,5 The Nested Logit Model

The nested logit model, like the OMNL, utilizes i.i.d. Gumbe! variates but does so in a more

elaborate manner. In particular, alternatives which are similar are grouped into nests in recognition of
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the fact that an increase in the utility of one altemative will decrease the relative attractiveness of close
substitutes much more than the relative attractiveness of alternatives which are unrelated. The restriction
still applies that distributions qualitatively like Figure J.2a must be used. However, there is a way in which
utility dependencies can be accommodated within these constraints.

Assume that options j and k& form a composite altemative encompassing the two brands of soft
drinks while altemnative i forms its own distinct beer composite. In essence, an upper level choice between
beer and soft drinks and a lower level choice between soft drink brands is assumed. The choice between
having a beer or soft drink will still be modelled fundamentally as an OMNL choice process as will the
choice between the two soft drinks. However 10 ensure that an increase in the systematic utility of the soft
drink maker only slightly reduces P,{(i}/P.(k), there must be some mechanism in place to dampen the
increase in the composite soft drink utility.

This is accomplished through an important property governing the maximization of i.i.d. Gumbel
variates (see Ben-Akiva and Lerman, Chapter 5). First define A< as the number of alternatives in nest .J.
Now when each of the options j € {1,2, ..., M} within a nest is associated with a Gumbel variate having

2

mode V; and variance ﬁ,the distribution of the maximum utility derived from the nest is characterized
m

Mt 2
by mode m anexp (£V;)and variance &5 As it turns out, the discounting mechanism is dependent on

the p paramet;:1 For example, assume that the systematic utilities for both soft drinks are 0.0 for some
choice-maker. If ¢ = 2 then the mode of the distribution of the maximum would be 0.34, while if 4 = 1,
the mode of the distribution of the maximum would be 0.69.

The various distributions are depicted in Figure 1.6. In Figure 1.6u the display represents, from
left to right, the distribution of the two elemental utilities (which are identical) for the soft drinks and
secondly the distribution of their maximum with u = 2. Figure |.6b represents the same thing except the

variances of the elemental utilities are Jarger since u = 1. When u is large, the expected maximum which

can result from the two random variables is substantially lower than is the case when z = 1.
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Figure 1.6b: Gumbel distributions of a) elemental and b) maximum utility with g =1



There is clearly a dampening effect with iz = 2 which would tend to decrease the impact of a soft
drink price reduction at the upper level of the model. Moreover, despite the fact that the joint distribution of
the elemental errors appear qualitatively as in Figure /.2a, shrinking the variance of these random variables
ensures that a given change in elemental systematic utilities has a dramatic effect on the refative soft drink
probabilities. The overall conclusion is that when there is a high degree of substitutability between subsets
of alternatives, the nested logit model has the capability to reduce the strictly elemental variance in utilities
so that the impacts of exogenous changes are felt mainly within the relevant nest. As such, the nested logit
model mimics the probit model while utilizing nothing other than i.i.d. Gumbel variates.

Consider now how the upper level marginal probabilities of the nested logit model would arisc.

The utility of the elemental alternative put forth to represent aggregate .J would be given by:

o pd e
U, =V, +e&,

ar? 2
. . . m
where V] = — ln E exp {p! V"‘r and 3 is a composite random error component with variance T For

the utility of a gwen elememal alternative, there are two sources of variance: one from the random error
component £ relating equally to all elemental alternatives in the nest J, and the other from the random
error component €7, which is unique to all elemental alternatives in the nest J. All of the €}, errors,
which are assumed Gumbel distributed, are taken to be independenl among themselves and in relation to
the &7 errors which are distributed in such a way that E"" is Gumbe] distributed. Hence the total variance
for any elemental utility, including the representative one depicted by U,/ , is Var{e,, + ;) which equals

2
iy
Var(ejn) + Var(e]) since ¢;, and £; are independent. Also, Var(e J") Var(en) + Var(e]) = —.

6
Since the upper level random error always has the same variance, the ultimate effect on aggregate utilities
of a nest of highly substitutable elemental alternatives is transmitted through the impact of 42 on the

estimate of V. Under these circumstances, an upper level marginal probability would be given by the



rule:
Py =PrVZ +e? 2 VO+2,Q{1,2,...L},Q £ J)

which is a very similar expression to that of the OMNL, Hence:

exp | —1InS er’Vin

(1] [ Z }
V2 3 !, - HVS

zexp[ ,.] > e | g3 ]

Q=1
Conditional probabilitles are given by the expression:

(10)

P(J) =

Paf | Iy =PV + el +ejn 2 Vi + 60 +6qn, g€ {1,2,.., M7}, g#j)

Since ;] will be constant between any pair of elemental altematives in the nest and hence will not affect

the conditional probability:
Pn(J | J) Pr( JI’! +E_1r| > %{1 +5qﬂ-. q e {1!29---»1‘(1.;}1 q #J)

The result will be a standard OMNL probability:

exp [w' V]
MY

Zexp -’V"

It should be noted that the upper level scale parameter associated with €7, is exogenously fixed to

Pu{giJ) = (11}

1.0 and hence does not appear in equation 10. However, the conditional probabilities in 11 are very
much dependent on the endogenously determined scale parameter u’ governing the variance of the ¢;n
error terms. Clearly this cannot be assumed away if the desire is to properly represent the conditional
probabilities and associated parameter estimates. The nesting concept is generalizable to any number of
nests containing any number of alternatives and to any number of levels although estimation would become

unwieldy beyond three levels.
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Let us examine in more detail the pattern of dependency in utilities that will be permitted by
the nested logit structure. Clearly, the only source of correlation between elemental alternatives within
the same nest is the fact that they share the same random error component ¢, the variance of which is
inversely related to p?. As the variance of the random etror common to all elemental alternatives in the
nest increases, the covariance between elemental utilities increases and vice versa. 1t can be shown that
there is a functional relationship between the covariance applying to 2!l pairs of elemental aliernatives in

a nest and the variance of the random error. The relationship is:

Cov (Us, UL.) Var(el)

w2 e

6 B(ul)?
e 1
T oy

Armed with this result, the variance-covariance matrix of the utilities for the beer/soft drink

)

problem would be:

U](l) Uf?) Ué?)
n n n
2
ki3
ull 5 {)2 2 0
(2) it LAPTRNE
Uln D ﬁ [ ( (“J )2)
2 2
(@) LSS L
Uz 0 6 (1 (#J)z) 6

If this is standardized into a correlation matrix, the result is:

2 2
Ul U Us
vl 1 0 0
(2) R
v® o 1 1- ooy
1
(2) S
Uszn 0 1 (n@)2

Compare now the correlation matrices which result when p!2) = 1 (on top) compared with the case when
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12) = 2 (on the bottom):

2
Ui Uy Uz
vy 1 0 o
v® o0 1 o
v o 0 1

1 2 2

Uiy U g

v 1 0 0

As it tums out, a value of p!?) = 3 would come very close to generating the correlations of 0.9 originally
assumed for the problem. Note that the correlations approach their limit of 1.0 for u’ values which are
quite small even though the upper value of u’is co. Another observation is that when u” = 1 and zero
correlations result, the final model is identical to that of the OMNL. In that case, the two soft drink
altematives would behave as independent entities at the upper level with no dampening of the composite
soft drink utility taking place.

The nested logit model has been demonstrated here in a bottom-up context in which the basic
building blocks have been utilized to develop an overail model structure. McFadden (1978) is responsible
for showing that the nested logit model. as well as the OMNL, can be derived in a top-down manner
whereby they emerge as a special cases of the Generalized Extreme Value (GEV) model. Interested

readers are referred to McFadden's paper or Train (1986).

1.2.6 The Aggregated Logit Model

Most choice scenarios do not generate nests of altemnatives with more than two or three members.

For example, in the beverage example, the two soft drink brands formed a nest of two. An exception is
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found in the realm of spatial choice where the choice units are available at many different levels of
aggregation. A province, for example, could be sub-divided quite easily down to the level of census
sub-divisions which would imply a provincial ‘nest” containing hundreds of elemental alternatives. In the
beverage example, it is quite likely that a full set of choice information can be obtained: that is the analvst
will have complete knowledge of what elemental altemative was chosen by a given person. In the spatial
choice context, it is quite unlikely that a full set of choice information can be obtained. Micro-data may
reveal, for example, the province of choice but not the census sub-division of choice implying a discrepancy
between the spatial resolution of the choice data and that of the choice process. The aggregated logit model,
which is what this thesis is fundamentally about, is a probably the best way of reconciling this discrepancy.

The aggregated model can best be understood in light of the nested logit model since the two
share the same underlying theory. The difference between the two is really related more to the means
of implementation. Clearly, with the nested logit. the focus is on the cormect representation of elemental
probabilities and parameters associated with the employed variables. Hence a complete model utilizes both
marginal and conditional probabilities to arrive 2t estirnates of the overall elemental probabilities. With the
aggregated model, the focus is on the correct representation of aggregate level marginal probabilitics and
the model parameters,

The final form of the aggregated maodel is given by equation 10 which is aiso the expression for
the marginal probability of the nested logit model. Nate that the aggregate level probabilities are portrayed
as a function of the elemental systematic utilities along with the characteristics of the random errors
distribution about these elemental systematic utilities as determined by the u parameters. Fundamentally,
the aggregate level utilities are the outcome of a maximization process applied to the utilities of the
constituent elemental alternatives in a given nest. The conditions determining the mode and variance of
the distribution of the maximum are the same as is the case with the nested logit model. These matters

are covered in much more detail throughout the chapters of the thesis, particularly Chapter 3.
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One expansion on the nested logit discussion, which wili be repeated throughout the thesis, and
which is particularly useful for the aggregated logit model, is if we rewrite the expression for V;{ according

to the following:

MJ
1
Vi = ] In z exp (n'V}])
=1

7 ur (12)

o 1 - 1
= V. + Flnm Zexp (u"(Vj",', -V )) + )L—r;lnMJ
=1
This reveals that the expected maximum utility is given by the sum of a mean utility term, a heterogeneity
term which captures the intra-aggregate variation in systematic utility, and a size term which depends on the
number of elemental alternatives. In addition, these corrective terms depend on the pattern of dependency

between elemental utilities. The individual properties «f these corrective terms are discussed throughout

the thesis. These concepts are mentioned here simpiy as a preliminary overview,

1.3 Contents of Thesis

Having provided a background to the theory of discrete choice models, the main task is to
outline the progression that can be expected threugh the following chapters and to discuss the reasoning
for the order of inquiry. As has been mentioncd, iite main focus of this thesis is the aggregated spatial logit
model, an approach which has not been systematically addressed in the past. While much of the underlying
theory is due to the transport demand research group (such as McFadden, 1978) who established links with
the nested logit model, researchers have never utilized the model in its complete form. The objectives
of this thesis are to fully describe, test, and estimate the aggregated model using theory, simulations and
an application. Since the issues of spatial aggregation of alternatives and similarity among spatial choice
units are of so much importance in spatial choice modelling, it is felt that attaining these objectives will
constitute a worthy contribution to the field. Using a brief precis of each chapter to follow, an overview

is now provided of how these objectives are to be met.
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Chapter 2 to follow is essentially a review paper. While Chapter 1 examined various discrete
choice models in some detail, but not within the context of spatial choice, Chapte;l’. is about spatial choice.
In light of some of the key concepts outlined in this Chapter 1, this chapter seeks to assess the usefulness
of the various discrete choice models in the spatial choice context. The particular problems of interest are:
the substitutability of spatial units, aggregation of spatial units and choice set definition. The latter concept
is emphasized less than the previous two. As well as outlining the implications of these issues for spatial
choice models. the work of others in the spatial choice context is reviewed and critiques of this work are
provided.

Chapter 3 contains a detailed theoretical outline of the workings of the aggregated spatial choice
model. The model is derived formally from first principles and its properties are described. A related
topic of interest in this paper are the asymptotic properties of the aggregated logit model. It is shown
that if the number of elemental alternatives is sufficiently large, it is not necessary to assume that the
elemental random error components are Gumbe! distributed for the distribution of the aggregate utilities to
be Gumbel. Something which is not resolved in this thesis is whether these asymptotic insights are useful
in the empirical context. In practice, the number of clemental spatial units in all aggregates would need
to be very large for implementation of the more general aggregated model to be feasible. This is a matter
of degree though and is not examined further in this thesis. While the theory of the aggrepated mode!
has always been oriented toward asymptotic properties (McFadden, 1978), we consider the functioning of
the model when such properties clearly cannot apply. In that context, it is necessary to assume Gumbel
distributed elemental errors.

Chapter 4 provides the results of a simulation experiment comparing the aggregated logit model
with the OMNL mode). The main objective of this chapter is to show that one may be taking a big risk
in applying the OMNL mode! at the aggregate level in order to predict the choice of aggregate spatial

units. A Monte Carlo experiment is conducted in which the observed aggregate choices are assigned
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based on randomly generated elemental utilities. In different trials. this procedure is done in such a way
that the variance of elemential systematic utilities is gradually increased. As this occurs, the importance
of the heterogeneity term in equation]2 increases. The fact that the OMNL does not account for the
heterogeneity term but instead estimates the expected aggregate utility on a mean utility basis is shown to
be a shoricoming which gets progressively worse in heterogeneous aggregates. One restrictive assumption
enforced in Chapter 4 is that the scale parameter at the elemental level is fixed at z = 1 implying that
aggregates contain uncorrelated elemental utilities. If anything, this assumption would portray the OMNL
in a more favourable light against the aggregated model than would be the case if u was large. The reason
for this conclusion is that the heterogeneity effect, which was the focus of the simulation. is maximized
and thus its importance magnified when there are highly correlated utilities.

The work in Chapter 5 provides a basis for a relaxation of the restrictive assumption about .
Clearly, the estimation problem with endogenous y is unlike that of the nested logit model and the OMNL.
While simultaneous estimation of the nested logit model is complex, difficulties have been bypassed in the
past through sequential estimation procedures. Such an option does not exist with the aggregated mcdel
since the elemental choice information needed to estimate conditional choice probabilities is, by definition,
absent. As a result, this chapter focuses on the different algorithms available to estimate the aggregated
model and conducts tests of their performance. It is found that the specification of the g scale parameters
has a lot to do with the speed and reliability of convergence. Most estimation difficulties occur when the
number of endogenous scale parameters is equivalent to the number of aggregates. When the number of
endogenous scale parameters is reduced, either through equality constraints or exogenous fixing, algorithm
performance shows marked improvement.

Having outlined the theory of the aggregated model, tested it in a simulated environment and
settled on estimation procedures, the remaining task for this thesis, the testing of the model with real-world

data, is the subject of Chapter 6. In particular, the test is undertaken in the context of modelling migration
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from Atlantic Canada in the 1990-1991 time period. The micro-data used for the analysis is characterized
by having detailed information about individual choice-makers but having relatively poor spatial resolution
regarding migration choices. While the data are such that it is difficult to make inferences about choices at
the sub-provincial level, destination attribute information from other sources is available at as fine a level
of aggregation as is desired. As a result, the data overall are a very good example of 2 problem suited to
the aggregated model: detailed elemental attribute information but relatively coarse choice information. A
series of models is estimated with the results indicating considerable potential for the aggregated model.
Various specification techniques are explored and models which accommodate choice-maker heterogeneity
are contrasted with models which emphasize only spatial heterogeneity and do not differentiate individuals
in their systematic utilities,

The brief Chapter 7 of this thesis is included 1o provide a concise summary of the important

findings of this body of work and also to comment on directions for future research.



Chapter 2
The Use of Discrete Choice Models in the
Spatial Choice Context

2.1 Introduction

The goal of this chapter is to provide an overview of the application of discrete choice models
1o spatial choice problems. There are many spatial choice contexts such as recreational choice, tourism.
industrial location, migration and shopping. All of these have in common the fact that the choice units
considered by individuals are spatial units. The spatial choice context is stbject to many complicating
issues. Some of these are: that spatial units are characterized by differential levels of substitutability based
on the fact that different patterns of similarity are perceived, that the issue of aggregation is prevalent,
unlike in most other problems, and that the definition of choice sets is probably much more uncertain than
in other contexts.

With regard to substitutability, it is clear that spatial units cannot be considered as independent
choice entities. The utility of a given spatial unit is likely to be larger if it is located next to a particularly
aftractive spatial unit, something which would be unlikely if the two units were independent. Unfortunately,
the ordinary multinomial logit (OMNL) model is consistent with the Independence from Irrelevant Alterna-

tives (11A) property which essentially states that pairwise relative relationships between the probabilities of
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alternatives will be unaffected by exogenous changes. The fact this property is inconsistent with anything
other than independent alternatives has been the main motivator of criticism directed toward the OMNL
and has contributed towards the testing of approaches such as the nested logit model.

The second main issue is aggregation. Spatial units can be sub-divided in an infinite number of
ways which may or may not correspond to the fundamental aggregaticn level of the choice process. In
a problem of inter-regional migration, for example. it would be ludicrous to model housing units as the
choice set members. In the inter-regional context it is far more plausible 10 assume that choice-makers make
their major evaluations at the level of urban centres and that the choice of the actual house is an incidental
by-product of the fact that the city has been chosen. At the other extreme, there are studies of inter-regional
migration (Liaw, 1990; Newbold, 1994) where the choices of provinces or regions are modelled without
acknowledgment of the distinct utilities associated with metropolitan centres within aggregates. 1deally,
we would want our data to be at the same level of resolution as the choice process. While attribute data
are typically available at any level, the fact that choice data may be too coarse is a problem in necd of
consideration. The desire for greater generality in the modelling of aggregate spatial units has led to the
implementation, in this thesis, of the aggregated spatial choice model.

The essential structure of the logit family of models is such that aggregation cannot be separated
from substitutability. In the nested logit model and the aggregated model. nests are determined by virue
of their characteristics of substitutability and the nests themselves form the basis for how spatial units
should be aggregated. As was illustrated in Chapter 1, a significant nest is defined in situations where, in
the event of an exogenous change, we would expect the probability of an increasingly attractive elemental
alternative to gain substantially at the expense of another within the nest but not significantly at the expense
of others outside the nest. If such substitutability paiterns are not observed, then there are clear grounds for
questioning the given cluster of elemental alternatives which form an aggregate. Patterns of substitutability

over space then, form the basis for how spatial units should be partitioned.
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A third issue of importance in spatial cheice modelling is that of choice set definition. Thill
{1992) provides an excellent overview of this field and leaves the distinct impression that despite the best
efforts of researchers, the endogenous modelling of choice sets is very much work in progress. The basic
problem in the definition of choice sets, it is thought, is that each choice-maker should be modelled only
with respect to spatial units that are in the person's actual choice set. In spatial choice it is normally
argued that the full set of alternatives which are available over space are too many to be considered by the
typical choice-maker (Fotheringham, 1986) and hence that some means is required to make the choice sets
realistic. The matter of choice set definition is not reviewed in detail in this chapter since the literature
in this field embodies an approach which is quite distinct from the focus of this thesis. Nevertheless, a
few comments are offered on how the framework designed to accommodate aggregation and similarity of
alternatives is also relevant to choice set definition,

The outline of this chapter is as follows: the first major section reviews substitutability issues
while the second considers work on aggregation, particularly as relevant to the aggregated spatial choice
model. In a concluding section it is noted that the theory underlying the nested logit model and the
ageregated model is such that it can rccommodate many of the modelling complexities outlined in the

chapter while suggested alternative approaches typically leave something to be desired.

2.2 Substitutability

This first major section is itself divided in three. Initially, a chronicle of the spatial choice debate
on substitutability is presented. It is noted that the gravity model approach was dominant in earlier years
but that discrete choice approaches, particularly the logit, have recently begun to dominate. Secondly, an
examination of the Independence from Irrelevant Alternatives (TIIA) property and its implications is offered.

Spatial choice researchers have tended to diminish the applicability of the OMNL since it is consistent
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with this property. Finally, a review is undertaken of approaches such as the probit and the nested logit

model which are well-suited to non-1IA choice processes.

2.2.1 The Spatial Choice Debate

The issue of substitutability has been debated extensively in the spatial choice literature. The
roots of the debate can be traced back to research done on the gravity model. While spatial choice
was heavily biased towards the use of the gravity mode! in the 1970’s after the contributions of Wilson
(1970), the trend in the field beginring in the early 1980°s was toward greater prominence for discrete
choice models. Researchers such as Fotheringham (1986}, who had earlier done work on gravity models,
began to see limitations in the underlying theory of that approach and attempted to adapt ideas to the
discrete choice framework. The shift in emphasis was encouraged by researchers such as Anas (1983) who
demonstrated that while the gravity and logit approaches emerge from different theoretical backgrounds,
their mathematical forms are identical for the purposes of implementation?. Of the two, the logit approach
can be more widely applied since it is formulated at the micro-level and hence is adaptable, without loss
of generality, to the macro-level problems for which the gravity model is designed.

At first, the essence of the gravity model was not well grasped. There was, for example, no
direct discussion of the fact that the gravity model was consistent with the 1A property which is central to
the issue of substitutability and hence to the understanding of the model. The main topic of interest was the
behaviour of the impedance parameter and whether it was independent of spatial structure (Curry, 1972;
Curry et al. 1975, Johniton, 1973; Griffith and Jones, 1980). Clearly much of the evidence in support of

the fact that the two are not independent was explainable through the 1IA property: the models of the time

1n particular, Anas showed that the OMNL arises direcily out of the constrained optimization problem by which the production-
constrained gravity mode) can be derived. Also, he illustrated that the doubly constrained gravity model is analogous to a joint logit
model of origin and destination choice. The term *gravity modcl’, when seen in the text. can be taken to refer to the production-

constrained mode] since this is the counterpart to the OMNL. The outflows from origins are taken as exogenous in both ceses
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were treating spatia! units as independent entities when in reality they were not. Another problem was that
the attractiveness of a given spatial unit was not conceptualized as a random variable. Hence, there was
no mathematical basis for commenting on dependency among spatial units. A paper by Sheppard (1978)
was one of the first, however, to consider the gravity model within a utility framework which at least
acknowledged the presence of destipation interdependence,

In the mean time, the properties of the logit model were becoming increasingly well understood
and a separate group of researchers, primarily oriented toward transport demand problems, began applying
the model to intra-urban problems such as housing choice {Lerman, 1975). Soon after, the step was being
made in the logit literature toward the generalization of the model to account for varying pattemns of
substitutability, through the nested logit model, and also to account for aggregation (McFadden, 1978).

While the random utility framework underlying the OMNL was being generalized for more
complicated problems, the gravity modelling group took the course of attempting to accommaodate spatial
structure effects without generalizing the theory of the model. The most noteworthy proponent of this
approach was Fotheringham {1981,1983,1985) and his competing destinations hypothesis. His improvement
1o the basic gravity model was essentially to include a variable which measured the accessibility of a given
destination to surrounding destinations that were ‘competing’ for flows. When the new accessibility
variable was introduced, it was found that the systematic spatial trend in origin-specific gravity mode!
parameters was eliminated. In the logit context, Fotheringham’s approach was to increase the chances
that the OMNL type model would have independent random error components by incorporating as much
relevant information as possible in the systematic utilities. The mode] was not new but the variables in it
were. Fotheringham’s claim that he had developed a new theory would be equivalent to a practitioner of
the OMNL model saying the same because he had done a good job of specifying the systematic utilities.

It can only be concluded that the general acclaim which greeted the competing destinations model

was attributable to the unimaginative and restrictive specifications which had plagued the gravity model
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to that point. These specifications had a profound over-reliance on distance as an explanatory variable.
Routine logit specification techniques, such as alternative-specific constants, were typically ignored n
gravity models, causing the biased probability estimates to which Fotheringham (1983) alludes. The paper
of Black (1983), for example, details techniques that had been known to discrete choice modellers for
some time. Recent work by Lowe and Sen (1994) is noteworthy in that it tests the performance of
alternative-specific constants in the gravity context.

Fotheringham’s work subsequently was subject to much criticism. Some took issue with the
airline data that Fotheringham had used to test his model (Ewing, 1986). Gordon (1985) was one of
the first to criticize the competing destinations model on the grounds that it attempted to explain the
substitutability phenomena in purely spatial terms. He rightly points out that models of spatial interaction
involve choices made by individual agents or consumers. However, the aggregate nature of the pravity
model promoted a tendency to personify origins as if they were autonomous decision-making units, As
Webber (1980) says however, origins do not behave. Recently, Lo (1990, 1991a, 1991b, 1992) has expanded
upon earlier themes. She joins Gordon in noting a preoccupation in the spatial choice literature to seck
spatial explanations for interaction patterns, when economic and other non-locational relationships will
often be at the core of the explanation. She notes after all, that spatial interaction is a derived demand; that
is, it is @ means and not an end and that there is an important distinction between locational substitutability
and economic substitutability. She states that there is room for both in explaining spatial choice behaviour
but that few processes are either one or the other.

The second half of the 1980°s tnarked the beginning of a clear trend in which discrete choice
maodelling approaches tended to supplant the gravity model as the preferred model for spatial choice.
Gravity modellers such as Fotheringham (1986), who even in his earlier papers was using terms like
‘utility’ and ‘hierarchical choice’, began to use logit models. Applications in spatial choice were reported

such as intra-urban migration (Boots and Kanaroglou, 1988), housing choice (Fischer and Aufhauser, 1988),
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industrial location (Hansen, 1987); recreational demand (Caulkins et al, 1986) and inter-regional migration
(Liaw and Ledent, 1988; Kanaroglou et al., 1986). The mainstream discourse on spatial choice modelling
issues shifted unmistakably toward the discrete choice approach (Borgers and Timmermans, 1987; Haynes
et al,, 1988; Haynes and Fotheringham, 1990: Thill, 1992). There is no question that much of this shift
in emphasis had to do with the micro-perspective of the logit approach which was suited to the increasing
availability of micro-data. The prospect of being able to model alternatives poésessing differential levels

of substitutability through the nested Jogit model was also an explanation.

222 The IIA property

In the spatial choice literature, there is a tendency to take the 1A property very literally (Haynes
et. al, 1988; Haynes and Fotheringham. 1990; Fotheringham, 1986) with many researchers tending to
dismiss the OMNL model out of hand. It is reasoned that since spatial alternatives are not viewed by choice-
makers as independent entities, the [IA property does not apply and the OMNL model is inappropriate.
There are, for example, statements to the effect that. with substitutable subsets of alternatives, the OMNL
will invariably result in pathological predictions of choice probabilities. Such conclustons are overstated.

For this reason, an assessment of the I1A property is undertaken here.

2.2.2.1 Implications of the 1IA Property

The 1A property was first proposed by Luce (1959) as an axiom underlying choice processes.
Essentially the property implies that the relative attractiveness of any pair of alternatives should not de-
pend on the presence of other alternatives in the choice set. It is important to understand that the IIA
property applies in a relative sense only. It certainly does not imply that absolute choice probabilities
are independent of choice set size and composition. Another important point is that an A process is
one which holds generally for individual choice-makers, not only the aggregate market shares. This is

a particularly important point in spatial choice where choice-makers are likely to have entirely different
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conceptualizatiens of spatial units based on the location of their origin.

Some choice scenarios are clearly not I1A-consistent choice processes. In the much-quoted red
bus/blue bus problem, it seems clear that the addition of the blue bus option to a choice set containing
red bus and automobile would tend to result in a new set of probabilities in violation of the ILA property.
The ratio of the red bus/automobile probabilities would not be maintained in the before and after scenarios
since the new blue bus option would ciaim its market share from those who before used to ride the red bus
and not from those who drove. Expressed alternatively, if there was some increase in utility of blue buses
{perhaps their comfort level was improved) then the red bus probability would suffer much more than the
automobile probability. If it is the automobile alternative which is removed from the choice set, though.
then there is a good chance that the relative attractiveness between bus types would be unaffected. Hence
I1A clearly does not apply when the relative attractiveness of auto and one bus type is compared but is
a much more reasonable assumption when the ratio of the two bus probabilities is considered. The clear
implication is that it is often too simplistic to say whether an entire set of alternatives is consistent with
the 1A property. The more likely answer is that [IA will apply within some subsets of the choice set but

not others. This of course is the basis for the nested logit model.

2.2.2.2  The I1A Property and the Logit Model

The fact that the OMNL possesses the HA property has been the basis for much of the criticism
it has received in the spatial choice literature. The property is reflected by the mathematical structure of the
OMNL in that the ratio of two probabilities for any two aiternatives will be independent of the presence

of other alternatives. Hence:
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where it can be clearly seen that the final expression for the ratio of the probabilities for alternatives 7 and
k relate only to the strict utilities of those two alternatives.

An important point to make, however, and one which is typically overlooked in the spatial choice
literature, is that an 11A choice process is not necessary to apply the OMNL (Train, 1986, pp. 21-24). Any
choice scenario that can be expressed in choice probabilities can be represented in the form of an OMNL
model. Such flexibility exists so long as alternative-specific constants are included in the specifications of
utility for the various options. Constants are used to account for all systematic variation that is uncaptured
by other elements of an alternative’s systematic utility and their inclusion allows reliable estimates of
the other parameters in a model, The magnitude of an alternative-specific constant, by definition. is
dependent on the presence of all alternatives in a model since it responds to the proportions of choice-
makers choosing each of the altematives. Hence Vj,, and Vi,, themselves are functionally dependent on
the systematic utilities of all alternatives. This result would seem to contradict, for example. the assertions
by Haynes et al. (1988) that in the OMNL, probabilities for similar alternatives will necessarily be biased
upwards and those of dissimilar altemnatives will be biased downwards. By the same token, it supports the
findings of Borgers and Timmermans (1987) that the OMNL was quite robust in their set of simulations.

The fact that one is not really modelling substitutability per se when the OMNL with constants is
applied is a limitation. Hence when the OMNL model is applied to a non-I1A process, a re-estimation would
typically be required any time there is a change in circumstances, such as the inclusion of a new alternative

or an increase in the utility of an alternative. Avoidance of re-estimations under such circumstances has
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typically been rare, even when it was thought that the 1IA property stood a good chance of holding (Train,
1978). The nested logit and probit models respond better to such changes since they are gencralized to
incorporate the pattem of similarities across subsets of alternatives and hence are not dependent on a set of
calibrated constants. It would be a useful contribution if the constants in the OMNL could systematically
be altered to respond better to exogenous changes. Perhaps the literature on choice-based sampling (Thill
and Horowitz, 1991; Kanaroglou, 1994), in which adjustments to the constants are an integral part of the
theory, might be of assistance.

The OMNL can be made less dependent on constants by replacing them with attributes of
alternatives. Such an approach attempts to model how the constants {or at least that portion of systematic
utility which does not vary across choice-makers) would be affected in the event of an exogenous change.
From the point of view that a more complete accounting of the choice process is implemented, this is a
laudable action, but there are two difficulties. One is that since the role of the constants is only being
approximated, there is a risk of substantially biased probability estimates and adverse effects on other
parameters. Largely this is because attributes of alternatives are not specified in an altemnative-specific
manner; hence an attribute may represent the utility of one alternative very well but not the others.
Secondly, the inclusion of several attributes of alternatives will often lead to collinearity problems.

Overall, the OMNL is a more robust model than tends to be portrayed in the spatial choice
literature. If the goal of an analysis is to provide a good overall explanation of choices from existing
data, then the OMNL model will do an adequate job and with small computational cost. This will be
true irrespective of whether the choice process is consistent with 1IA. Typically, applications utilizing the
OMNL and other models such as the nested logit and the probit find that the fit of the more sophisticated
models might be only marginally better but at much greater costs in terms of time and effort and that

conclusions often are not significantly altered.
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22,23 Variability of I1A Across Origins

In spatial choice problems, the patierns of substitutability between subsets of altematives may
well vary across choice-makers implying that spatial alternatives are classified or grouped in different
ways. In applications, however, there has been 2 tendency to assume that the perceived patterns of
similarity will be repeated across all choice-makers. The origin of the choice-maker, however, will have
considerable bearing on how altenatives are grouped and therefore what the patterns of substitutability
between alternatives are. In the migration context, for example, most residents of Ontario would tend to
cluster potential destinations in the Eastern townships of Quebec, thus perceiving any one as beirg a perfect
substitute for another. A resident of Quebec, having more intimate knowledge of the area, might well be
able to make strong distinctions between alternatives and would not perceive them as being substitutes.

As a solution, the technique of origin-specific models (Fotheringham, 1983) can be employed.
In this case, a separate destination choice mode! is estimated for each origin in the data and a unique set
of parameter estimates obtained in each case, Of course, different aggregation schemes can be employed
across origins in acknowledgment of differing perceptions. It is desirable but complex to accommeodate
such phenomena within a single model. While probit models do so since they are capable of capturing
taste variations in both the systematic and random error components of utility, these models do not handle

spatial aggregation as easily as the logit family.

2.2.3 Approaches to Modelling Substitutability in Spatial Choice

In this section, some of the alternatives to the straightforward application of the OMNL model are
considered. The potential approaches are: 1) extensions of the basic OMNL formula and the use of models
which are not derived from random utility theory, 2) use of the probit model, 3) use of the nested logit
model. These are discussed in tum with comments offered on past applications of such techniques. While

the previous section has pointed out that application of the OMNL model to spatial choice problems will
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result in good estimates of probabilities, the alternatives below may offer more insight into the implications

of substitutability.

2.23.1  Logit Extensions and Models Not Based on Random Utility Theory

Several researchers have proposed extensions to the basic logit formula as a means of accom-
modating substitutability (Meyer and Eagle, 1982; Borgers and Timmermans, 1987; Fotheringham, 1983).
In general, the extensions of the standard OMNL formula include an additional term which measures the

average degree of similarity between one alternative and the others in the choice set. The general form is:
Riexp [Virt]

P,(i) = T
> Rjexp [Vin]
i=1

where R; is the measure of the average degree of similarity for alternative 7. A variety of ad hoc
expressions have been used for R; in an attempt to capture similarity effects. One suggested by Borgers
and Timmermans (1987} is of the form:
M ) v
R; = H -1 Z |Zjm = Tierm|
m=1 k
where x,, is the value of attribute m on alternative j, m = 1,2, ..., M, L is the total number of alternatives
and ¢, are ‘substitution’ parameters to be estimated. The R; term is clearly a weighted measure of how
the attributes of one alternative differ from the attributes of all other alternatives. The term should be of
small magnitude for alternatives which are clustercd together in terms of attribute values. The substitution
parameter should be zero for attributes which contritute nothing to assessing substitutability. Another

approach to modelling R; was suggested by Hayiies and Fotheringham (1990) whereby the accessibility

measure from Fotheringham’s competing destinations approach:

@
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would be utilized where ¢ is a parameter to be estimated.. This accessibility term is sssentially a measure
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of the pattern of alternate spatial opportunities in which Wy, is a measure of the attractiveness of the set
of alternatives other then j and d,x is some measure of the distance between the jth alternative and an
altenate alternative. Unlike the R; measure of Borgers and Timmermans which is small for altemnatives
perceived as ‘similar’, this version of R; will get larger when there are several large spatial substitutes
near alternative j. Clearly, this measure is inherently spatial, unlike the one of Borgers and Timmermans.

In assessing this type of approach, it is important not to interpret such ‘extensions’ as gener-
alizations. First, it should be remembered that the OMNL is reasonably robust itself in handling cases
where the [IA property does not apply. Secondly, these extensions do not proceed from first principles
and are thus quite arbitrary in nature. 1t has been extensively outlined in Chapter 1 that discrete choice
models result from assumptions made about the joint distribution of the random error components. It was
shown that the OMNL model arises from quite restrictive assumptions about the random error components:
namely that they are uncorrelated and homoscedastic. Under these circumstances, the mathematical form
of the model emerges and tums out to be consistent with the 1IA property. Typically, in the papers which
propose extensions to the basic logit formula, the properties of the random error components and their
implications for the final form of the model are never extensively examined. It is never mentioned that
any generalization of the OMNL model will arise from less restrictive assumptions about the variances and
covariances of utilities relating to the set of alternatives.

In the end, the proposed extensions are simply altermnative specifications of the OMNL model.
None of the expressions for R; above lead to different assumptions about the random error components.
Since the same assumptions still apply, the outcome of the derivation would stil} be the OMNL as first
outlined by McFadden (1974). In fact, the R; terms are simply elaborate variable specifications which
enter into the expressions for systematic utilities in the same manner as any other variable. This can be

seen more clearly by writing equation 2 as:
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where it can be seen that the essential OMNL structure is unaltered and that the additional term is simply
incorporated into the systematic utility of each altermative.

Another criticism of these models is that they assume all similarity or dissimilarity to be assessed
on the basis of destination attributes which vary only across space and not choice-makers. As Ben-Akiva
and Lerman (1985) point out, the incorporation of taste variation among the different population segments
is an important compenent in model specification to ensure that the risks of serious violations of the I1A
property are minimized. Such precautions relate to the fact that the IIA property should be obeyed for each
choice-maker in the sample, not for the aggregate market shares. Since the R; terms do an inadequate job
of capturing taste variation, they are an inadequate overall representation of substitutability pattems.

There are other potential spatial choice models to consider which are not necessarily from random
utility theory. The dogit model (Gaudry and Daganeis, 1979) is not considered as a prime candidate for
spatial choice problems. First of all, in the original paper, there is no mention of random utility theory and
whether the model was derived from such principles. McFadden (1981) is critical of the dogit model on
the basis that patterns of substitutability are not general. Nevertheless, according to McFadden, the mode!
is consistent with random utility theory. Regardless, the maodel has not gained favour with researchers and
is not applied in spatial choice problems.

Another model advocated for spatial choice is the translog model described by Lo (1990). This
model is not related to random utility theory although it arises from the transcendental logarithmic indirect
utility function. It is interesting because it allows general patterns of substitutability between all pairwise
arrangements of alternatives. Any two alternatives can be perfect substitutes, perfect complements or

independent. Using simulations, Lo illustrates that a system of close substitutes has the effect of increasing
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the friction-of-distance since choice-makers have less incentive to overcome it, while a system of perfect
complements has the effect of shrinking space since consumers are encouraged to visit multiple destinations.
Lo (1991a) mentions that the modelling of complementarity is a matter of relevance for multi-purpose
interaction behaviour while the issue of substitutability is within the domain of single purpose interactions.
Her criticisms of discrete choice modelling are unfair in this context since these models are clearly designed
for single discrete choices.

Lo’s account of the translog model in general is lacking because there are no empirical examples
to back up the workings of the model and to show that it can be estimated. While the model seems quite
general with respect to the patterns of substitutability, it appears limited in the extent to which a wide
range of explanatory variable can be used to characterize spatial interaction. For example, it is mentioned
that the friction-of-distance is not explicitly estimated. Distance enters only indirectly in the calculation of
effective prices. Overall, spatial interaction is predicted on the basis of substitution parameters. household
incomes and price relationships. The extent to which flexibility in specification is permitted, given these

constraints, is not elaborated upon,

22.3.2  The Probit Model

There is no question that the probit model, in theory, has many capabilities that are desirable
in a spatial choice model. A completely general pattern of substitutability among pairings of alternatives
can be accommodated and these relationships can be specified to vary across choice-makers or origins. In
this sense, the probit model certainly possesses the generality that Lo claims for the translog model. The
difficulty with the probit model is one of implementation as was outlined in Chapter 1. For computational
reasons, it is extremely difficult to accommodate a large number of alternatives and the process of ob-
taining general patterns of similarity across alternatives is typically inefficient in the sense that ‘nuisance’

parameters proliferate. Ben-Akiva and Bolduc (1991) suggest a partial solution to this problem in a paper



discussed in more detail below.

In spatial choice contexts, researchers typically talk about the model’s favourable theoretical
properties (Haynes et al, 1988) but rarely apply it for the reasons mentioned above. A notable exception is
the study by Miller and Lerman (1981) on the choice of shopping district within Boston although this mode!
did not have a jarge number of spatial alternatives. Overall, the realm of the probit has been restricted
to problems like mode choice with small numbers of alternatives. Spatial analysts have had more use for
the probit in the modelling of binary response variables which are spatially referenced. which of course
is a distinct problem from that of spatial choice. An example is the paper of McMillen (1992) where a
binary high/low crime response variable is used in a probit which takes account of spatial autocorrelation
and heteroscedasticity in the random errors. The approach is econometric and not associated with random
utility theory. The autologistic model outlined in Haining (1991) is an example of a logit-type approach
with a categorical response variable.

The paper by Ben-Akiva and Bolduc (1991) represents an early initiative in the use of spatial
statistical concepts for choice problems and is discussed here in some detail since some of the paper’s

features are relevant to spatial choice. In particular, they model random error components through a

Generalized autoregressive process of the form:

En = pwnen + Eu

where &, is an L x 1 vector, W, is an L x L weight matrix and §,, is an L x L diagonal matrix
containing standard normal variates on the diagonal. Additional sources of generality are the facts that
they permit a random coefficients structure for the parameters associated with explanatory variables and
that they include an i.i.d. Gumbel error structure in addition to the normally distributed errors so that the
logit model is obtainable as a special case. All of this is accommodated within a probit model structure

in which probabilities are estimated through simulation techniques. While their application, the choice of
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different telephone service options, is aspatial, they mention how their technique is applicable to problems
with large choice sets since the simulation technique is computationally much less burdensome.

The other important aspect is the use of a binary weight matrix to determine which pairings of
alternatives are to have mutual dependencies. Such an approach greatly reduces the number of ‘nuisance’
parameters which are associated with the variance-covariance matrix €2, of the random errors. With the
autoregressive approach, the number of parameters increases only linearly with the number of alternatives
whereas in less effective specifications, a geometric relationship would tend to apply. In particular, the
structure of the €2, matrix they hypothesize is a function of only five parameters: the p autocorrelation
parameter, which is a measure of the strength of the autoregressive process, and four variance parameters.

While the model is impressive, the applicability of the approach to large-scale spatial choice
problems remains in doubt. Innovations such as simulated probabilities and parsimoniois €2, specifications
have greatly assisted in the applicability of the probit model but there is no indic~.ion that problems with
upwards of 100 elemental spatial units can be adequately handled. In a later paper, Bolduc {1994} applies
the technique to a mode choice problem of nine alternatives but as yet the effectiveness of the technique

for an extremely large number of alternatives is unproven.

2.2.3.3  The Nested Logit Model

The nested logit model has been applied more frequently than the probit in the spatial choice
literature, mainly because it is percejved as the best compromise between computational tractability and the-
oretical generality. Spatial choice applications have included: industrial location ([{ansen, 1987), housing
choice (Fischer and Aufhauser, 1988; Thill and Van de Vyvre, 1989), migration (Anderson and Papageor-
giou, 1994; Newbold, 1994) and recreational choice (Parsons and Needleman, 1992) to name a few. The
capability of the mode! to accommodate differential levels of substitutability between subsets of alternatives

is a major reason for the model’s application to problems where a perceived violation of the IIA property
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exists.

One criticism of the nested logit is that its estimation tends to be more invoived than that of the
OMNL. The sequential estimation approach has gained considerable popularity since it is implemented as
a series of OMNL models linked by inclusive value terms which measure the expected maximum utility to
be derived from lower level nests. Unfortunately, statistical inference is likely to be compromised in the
case of parameters estimated at the upper level. Brownstone and Small (1989) discuss simulations where
the standard error of the i parameter associated with the inclusive value is substantially downward biased
and in need of the complex corrections advocated by Amemiya (1978) and McFadden (1981). The standard
error bias stems form the fact that the inclusive value term, which is a random variable, is passed as a fixed
term to the upper level when ideally all aspects of the model should be endogenously and simultaneously
determined. Brownstone and Small go to the extent of saying that with sequential estimation, statistical
inference should not be attempted without correcting the x standard error.

Clearly the problem of statistical inference with the u parameter is troubling in the spatial
choice context since this is an important theoretical parameter. However, this is a problem with the
estimation procedure much more than the model. Yet spatial choice applications, to the best of my
knowledge, have always utilized the sequentiul procedure. The clear solution is the widespread adoption
of simultaneous full-information estimation which in reality is not any more burdensome than the process
of going through sequential estimation foliowed by the correction. Also, as mentioned by Train (1986, pp.
75-76) simultanecus estimation results in far more parsimonious models since there is no need to specify
the same variables separately at different levels of the model. The types of algorithms which are available
for simultaneous estimation are discussed in Chapter 5 and software for the simultaneous estimation of
nested logit models is described in the Appendix.

A destructive aspect of sequentia) estimation has been its effect on how researchers interpret

the choice process. Since the model is estimated sequentially there is a tendency for some to assume that
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this mirrors exactly how the choice is made. Fotheringham (1986), for example, states at the beginning of
his paper: ‘Consider an individual i who has made a decision to move but has yet to choose a particular
destination j°. Such an interpretation ignores the fact that individual lower nest alternatives in a nested logit
are not precluded from affecting how an upper level choice is made. Use of the nested logit modet does
not automatically assume a hierarchical choice process since the OMNL is a special case when elemental
utilities are uncorrelated.

The nested logit model has certainly not gone without criticism in how it handles substitutability.
One of the major criticisms in the spatia) choice context is that exogenous determination of a tree structure
is too arbitrary and liable not to correspond to the actual patterns of similarity (Lo, 1991b; Fotheringham,
1986; Borgers and Timmermans, 1987). In a non-spatial choice problem with a relatively small number of
alternatives, the best grouping is usually intuitively obvious. The number of spatial altemnatives, however,
is typically large, thereby resulting in several possible patterns of similarity. The problem of an accurate
clustering of spatial units, however, is not one that is unique to the nested logit model. Such clustering is
the only means to capture the patterns by which the 11A property applies and is an issue which underlies
the choice process in general. The fact that the nested logit model provides a systematic means to test
for these patterns is an asset more than a liability. Another asset is that unlike the competing destinations
model, for example, it is not necessary to make an a priori assumption that substitutability must occur in
purely spatial terms based on contiguity. A process which occurs based on an economic hierarchy can also
be accommodated.

The nested logit model also receives criticisms about the specific patterns of similarities that it
can represent (Lo, 1991b, 1992). In assessing such criticisms it is important to remember that a model
is by definition an abstraction of reality which is intended to capture the essential processes. As seen
in Chapter 1, a nested logit treats the correlation between all pairings of elemental alternatives within an

aggregate as equal and positive while alternatives within different aggregates will be represented as having
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uncorrelated utilities. By downweighting the utilities of correlated alternatives, it can be argued that the
model is capturing the essential mechanism at work when people assess a set of spatial units. The fact
that the relationships governing similarity can be differentiated across nests or be made more realistic by
adding another choice level is also not to be neglecled and can result in quite sophisticated patterns of
similarity. The translog model suggested by Lo (1990) on the other hand provides no mechanism for the

phenomena of clustering and is guilty of incorporating too much detail since parameters are estimated for

all pairwise relationships.

2.3 Aggregation

While the spatial choice debate on substitutability has been quite lively, with several papers
written on the topic. The same cannot be said for the issue of spatial aggregation in choice models. This
should become clear in the discussion below. This section on aggregation has three components. Initially, a
background on some of the theory underlying spatial aggregation in choice modelling is offered. Secondly.
the implications of this theory for choice set modelling are briefly examined. Finally, a closer look at

empirical applications central to the subject of this thesis is undertaken.
2.3.1 Theoretical Background

In spatial analysis, aggregation has received much more attention in the context of the modifiable
areal unit problem (MAUP) which has to do with how various statistical measures can give vastly different
results based on the level of spatial aggregation at which they are applied (Openshaw, 1984). Other
researchers (Arbia, 1989) have devised theoretical constructs to assess whether such aggregation effects
{(more popularly known as ‘scale effects’ in the MAUP literature) can systematically be predicted. Still
others (Amrhein, 1995; Amrhein and Flowerdew, 1992) have been testing econometric models at differing

levels of aggregation in search of patterns. Aggregation in this body of literature, typically concerned with
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modelling the variation of some attribute over space, is not to be confused with aggregation in the spatial
choice literature. Nevertheless, the work of Jones and Bullen (1994), on the modelling of housing prices
over space, bears an interesting resemblance to the aggregated logit mode! in the sense that their model
incorporates random error components which function at different spatial levels of resolution. Still, what

they consider is not a choice process.

23.1L1  Spatial Aggregation versus Choice-maker Aggregation

Even within the choice literature there are distinctions to be made in terms of the types of
aggregation. On the one hand, there is aggregation across choice-makers. Each choice-maker in a given
origin will have a different choice probability for some destination. The question is, if variables can be
collected at the level of the individual, how can this information be utilized to yield one choice probability
10 act as a representative for all members of that origin? There is an extensive body of theory (see
Ben-Akiva and Lerman, 1985, Ch. 6 ) which says that obtaining a simple average of the set of relevant
attributes across individuals and then using these representative variables to estimate choice probabilities
is not the best approach.

The second type of aggregation relevant to spatial choice models, and the one which is the main
topic of this thesis, has to do with aggregation of spatial alternatives. Assuming that we are able to obtain
a representative probability for a given origin by aggrepating across choice-makers, it is important to note
that the spatial interaction probabilities for prospective destinations will depend on how these destinations
are partitioned. It is often the case that the partitioning will be such that the spatial units involved will
be agpregations of the fundamental spatial units or elemental alternatives considered by choice-makers.
In a problem of inter-regional migration, for example, a choice involving a move of several thousand
kilometres might well be motivated by the attractiveness of a particular urban agglomeration. The best

available choice data, however, might say only which province was chosen.
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Most modelling efforts in the past would accept this limitation and apply the model in such a
way that all attributes would be collected at the same level as the choice information. In this respect,
aggregation in choice modelling at present is viewed as spatial autocorrelation was in the early 1970’s
{Gould, 1971). It is seen more as a nuisance {0 be assumed away than an opportunity on which to define

and distinguish spatial choice analysis.

23.12  The Representation of Aggregate Utility

The aggregated model assumes that the utility of a spatial aggregate is the outcome of the
maximization of those random utilities which apply at the true level of the choice process. The modelling
question essentially is: Given the distribution over space of explanatory attributes at the level of the choice
process, what pattern of elemental utilities would be most likely 1o give rise to the observed pattern of
aggregate level choice behaviour? In other words, we attempt to assess the wliractiveness of elemental
alternatives even though we are unsure of those that are chosen. Since we have means to assess which
destination attributes are important in molding the pattern of aggregate level choices, we can use elemental
attribute information to infer things about the attractiveness of elemental alternatives. Such a modelling
approach is far more ambitious than that of simply applying the OMNL model at the aggregate level as
has typicaily been the practice.

The roots of this approach lie in the work of Lerman (1975) in the context of intra-urban housing
choice where researchers are aware of the aggregate level neighbourhoods which are chosen but not the
particular dwelling units. Using a first-order Taylor expansion, and assuming Gumbe] distributed elemental

utilities, the form he deduced for the systematic utility of aggregate JJ from the perspective of choice-maker

T Wwas.

V,,J:Vi+1nMJ (3}
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which corresponds 1012 in Chapter 1 except for: the omission of the heterogeneity term, the omission
of the scale parameters, and the fact that the expression is an approximation. Lerman noted that this
form had limitations when dealing with heterogeneous aggregates but states that in general the size effect
would be of more prominence than any missing heterogeneity effect. Two ways in which the importance
of the heterogeneity effect are minimized are, on the one hand if the elemental systematic utilities in a
given aggregate are equal to I_/i, and on the other if the heterogeneity effect does not vary significantly
from aggregate to aggregate. This contribution by Lerman was the first theoretical recognition that it was
necessary to correct utility for aggregation, however, the approach did not go so far as to model elemental
utilities.

The result of the second-order Taylor series expansion of Kitamura et al. (1979), again assuming
Gumbel elemental utilities, revealed that the systematic utility of an aggregate alternative could be even

more accurately approximated as:

- 1
VI =V + 5Var(Va) +In M 4)

the essential improvement over 3 being the addition of a term measuring the variance of the elemental
systematic utilities within the aggregate. It is important to emphasize that both 3 and 4 assume that all
¢lemental random error components in the choice set are independent and that there is no random error
which is unique to groupings of elemental alternatives so that degrees of similarity can be accommodated
as in the nested logit model. The paper of Kitamura et al. is also interesting in that the implications of
assuming other distributions for the elemental utilities are assessed. It is shown that 2 model similar in
spirit to the aggregated model can be derived by assuming normally distributed elemental utilities. The

resulting approximation for the aggregate systematic utility is:

Vi~V + %Var(vj,,)dz InM7 +v2In M7
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where the most interesting differences are that the approximation to the heterogeneity effect is interactive
with the magnitude of the size effect and that the size effect in relation to 3 and 4 will be smaller,
particularly for large M. In addition it is shown that if elemental utilities are normally distributed, then
the distribution of the maximum utility converges weakly, after a normalization, to the Gumbel distribution.
Unlike the case with Gumbel distributed elemental utilities, where the variance of the distribution of the
maximum never changes, with normally distributed utilities the distribution of the maximum has shrinking
variance as the number of elementa! alternatives increases. While this property is desirable, the resulting
choice model does not have a closed form and is therefore much less amenable to application than the
Gumbe] model.

The contribution by McFadden (1978) was important because the expression for the aggregate
systematic utility:

At

J 1 1 J J —J 1 J
+ #—Jlnm;exp (,1 Vi -V, )) + M

vl =V,

first shown in Chapter 1 and repeated frequently elsewhere in this thesis, is obtained as an equality instead
of an approximation and because the theory which accommodates aggregation is shown to mirror that of
the nested logit model. The Taylor series approximations of Lerman (1975) and Kitamura et al (1979) had
certainly made no links to the nested logit model since no similarity among elemental alternatives could
be accommodated. These issues are discussed in much more detail in later chapters. Suffice it lo say that
the capability to accommodate differing levels of simiiarity among subsets of alternatives allows for an

elegant interplay between the size and the heterogeneity effects and a rich theoretical interpretation,

2.3.1.3  Asymptotics and Spatial Aggregation

The literature on spatial aggregation in discrete choice models has put a lot of emphasis on
asymptotic properties which apply when the number of elemental alternatives in aggregates becomes very

large. In particular, asymptotics have been shown to be an issue with respect to the assumptions required for
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elementa) random error compaonents and in regard to simplification of the heterogeneity term. Asymptotic
properties have been emphasized based largely on the nature of intra-urban housing choice, the field for
which choice models of spatial aggregation were first developed. Since elemental alternatives in that
context are individual dwelling units, the typical aggregate alternative in such a problem would contain an
extremely large number of elemental alternatives.

With regard to the random error components, research in the statistics of extremes (Galambos,
1978} indicates that random variables do not need to be Gumbel distributed to give rise to a Gumbel
distribution under maximization. Much of this thesis is premised on the notion that elemental utilities are
Gumbel distributed. Mainly this is because the types of choice problems considered, unlike McFadden
(1978) and Lerman (1975), are not guaranteed to have a sufficiently large number of elemental alternatives,
It is shown in Chapter 3 that the asymptotic result, which does not depend on assuming Gumbel elemental
errors, yields the same model as the scenario we consider. In other words, the end result is the same but
the asymptotic mode| has less restrictive assumptions about the ¢lemental errors underlying it.

Turning to asymptotics and the heterogeneity term , if it can be assumed that the systematic
utilities of elemental alternatives are normally distributed around V,":, then as the number of elemental
altematives becomes large the heterogeneity effect approaches %Var(an) which of course is consistent
with the additional term arising from the second-order Taylor series expansion. According to McFadden
(1978), this asymptotic property is advantageous because it allows the use of standard logit estimation soft-
ware. Information detailing the relationships between attributes which enter V;,, can be used in conjunction
with estimated parameters to obtain the variance of the systematic utilities. While this may be a useful
result for some problems, in this thesis the approach has been taken that there is no need to approximate
the heterogeneity term since use of a non-standard logit estimation will yield the exact results. Alsq, the
numbers of elemental alternatives in some contexts will be inadequate and also the assumption of normally

distributed systematic utilities within aggregates might be overly restrictive.
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To conclude this section. while the literature on spatial aggregation in choice models is not
voluminous, it is vély insightful and is supported by a rich body of theory. Much of the original work has
been done by researchers who are not primarily spatial analysts but found themselves having to deal with
the intra-urban housing choice problem. When spatial aggregation has been considered in the core spatial
choice literature, it has been in the context of the gravity model based on entropy theory and not utility
maximization (Webber, 1980; Batty and Sikdar. 1982abed: Schwab and Smith, 1985, Putman and Chung,
1989). Like the wider comparison between discrete choice approaches and gravity model approaches. the

discrete choice approach to spatial aggregation is the more likely to have a prominent future.

2.3.2 Choice Set Definition and Aggregation

A substantial amount of attention has been given to the issue of choice set definition in spatial
choice modelling (see Thill, 1992 for a review). There have been questions about the extent to which
choice-makers are capable of processing all the information associated with a large number of spatial
alternatives. The general consensus is that if’ some alternative is not considered by an individual, then
it should be removed from the choice set to avoid biased estimates of parameters and probabilities. The
body of work is oriented toward modelling the likelihood that individual elemental alternatives are in the
choice set. In the spatial choice context, however, there is a case to be made that choice-maker’s do not
consciously omit spatial units from their choice set but instead cluster spatial units, thereby considering
the clusters as homogeneous entities.

The spatial choice problem can be conceptualized in these terms. It can be assumed that choice-
makers perceive a continuous surface of utility over the study area and that they select their altemative
based on where this surface is highest. This conceptualization is consistent with the so-called continuous
spatial choice model (Ben-Akiva and Watanadada, 1981, Ben-Akiva et al., 1985) which is derived as a

limiting case as the number of elemental alternatives in an aggregate becomes large (see Chapter 3 for
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further discussion).While it is unclear at this point, largely for reasons of data availability, whether the
continuous model itself is implementable, the idea of a surface of utility unfolding over space is intuitively
appealing. Nevertheless, using conventional choice models, the surface can be approximated at a number
of discrete locations in keeping with the way that spatial attribute data are made available to researchers.
Essentially, research on choice set composition is saying that we need to find means to separate the small
discrete units that are in a person’s choice set from those that are not. Thus at selected zones in space the
surface presumably would be undefined.

In a mode choice problem, if some mode is unavailable to a given choice-maker then there is
little doubt that the given mode should be removed from the individual's choice set. This is a clear-cut
problem with a clear-cut solution, In spatial choice contexts. it is a far more risky proposition to ascertain
through some means what spatial units are considered, especially on an individualized basis. Perhaps
a better approach is to make the assumption that choice-makers have a tendency to cluster that which
they do not know much about. Most likely, the spatial region of uncertainty will encompass a cluster
of several elemental alternatives; thus while the choice-maker might know little about the constituent
elemental alternatives, the aggregate zone itself will have some meaning.

The theory of the aggregated model contains a mechanism for clusters of indistinguishable
elemental alternatives to be represented properly. In particular, the expression for the systematic utility of
aggregate J is given by:

M!
1
Vi = Flngexp(p“’%{!)

which can be re-written as a function of a mean utility term and size and heterogeneity effects. As

J

u? — oo, the expression has the interesting property that V/ = max V;,L or namely that the

J€{1,2,-.., M7}
aggregate systematic utility will correspond with the largest systematic utility from among the M elemental
alternatives in aggregate .J. The implication is that the elemental alternative with largest systematic utility

will act as a representative for all within that aggregate. There is no chance of some other elemental



57

alternative offering a higher level of utility because random error components are perfectly correlated. The
size effect goes to zero implying that the number of elemental alternatives is irrelevant to the predicted level
of aggregate utility. The effect of all this is that individual elemental alternatives within that cluster, many
of which will not be individually considered by the choice-maker, will have no effect on the aggregate
level probabilities. On the other hand, if individual elemental alternatives are meaningful to the aggregate
level probabilities, then g7 — 1, which will make the size term quite relevant and allow the individual
elemental alternatives to behave as independent entities.

This mechanism in theory should work well in the context of the aggregated mode) because
the interest is in the correct representation of aggregate probabilities and the model is estimated on the
basis of how well it conforms to the aggregate level choices. The clustering of lowly regarded elemental
alternatives mirrors the type of process we would see in reality where the elemental members are not
perceived individually but choice-makers are aware that a cluster of opportunities is available. Where
problems occur is when the researcher tries to assess the set of conditiona! probabilities within a cluster
of poorly understood elemental alternatives. Clearly. choice probabiiities and parameter estimates will be
very much affected if too many imrelevant alternatives are modelied. Hence the results of a full nested logit
model, which operates at the elemental level, will be compromised.

It might, however, be argued that it is unwise to incorporate spatially detailed choice information
into a model where the vast majority of choice-makers perceive the individual options only as a member
of a cluster. When only one resident of British Columbia out of 10000 is observed to choose Comerbrook,
Newfoundland in a migration data set, the wisdom of explicitly modelling the choices by B.C. residents
of all elemental alternatives within Newfoundland has to be questioned. In that context, only choice
information at the level of Newfoundland should be included (although perhaps St. John's might be
modelled as separate from smaller urban centres in the province). The aggregated model will estimate

elemental utilities and the u parameter should confirm a lack of independence among the set of elemental
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altemnatives. Overall, it is felt that the spatial choice set definition literature could benefit from these
types of conceptualizations. The issue may not be so much whether an elemental alternative is considered
explicitly in a choice set as it a matter of how some insignificant spatial unit is clustered with other spatial

units.

2.3.3  Spatial Choice Applications Accounting for Aggregation

The aggrepated logit model as proposed in this thesis has never been applied. There are examples
where the approach of Lerman (1975) has been adopted in an empirical context such as in Lerman (1979).
Horowitz (1986) and Tay and McCarthy (1994) but in each of these cases, choices at the aggregate level
are not modelled through the heterogeneity term. Instead the assumption is made that elemental systematic
utilities within an aggregate are equal so that only a correction for size is necessary. This frees the
researcher from having to explicitly define elemental systematic utilities. It is shown in Chapter 4 that
this is a potentially risky practice in heterogeneous aggregates. In this section, recent studies in recreation
choice, one of the few spatial choice fields where aggregation is being acknowledged, are assessed in
some detail. In particular, several researchers (Parsons and Needleman, 1992; Parsons and Kealy, 1992
and Tay and McCarthy, 1994) have taken advantage of the fact that there exist rich data on the destination
choice behaviour of American recreation enthusiasts. The elemental alternatives for such problems are
typically the numerous inland lakes and other small bodies of water that are found within the much larger
administrative zones that would constitute the aggregate alternatives.

Consider initially the study by Tay and McCarthy. They assess the behaviour of Indiana fisher-
men in terms of trips made to the 366 fishing zones administered in the United States. Since only 66 of
these aggregates are actually chosen in their data, and since a model with 366 aggregates is considered too
many for estimation purposes, a stratified importance sampling of alternatives procedu-¢ is undertaken to

reduce the choice set for each person to five aggregates. The five alternatives are the result of sampling
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from three strata and in the end are composed of the origin zone, two altematives from nearby aggregates,
and two alternatives from far off aggregates. Of course McFadden (1978) had shown that such a procedure
is justified for any set of alternatives governed by an Independence from lIrrelevant Alternatives process
so long as the appropriate cotrection to the utilities is applied.

Having reduced the choice set to five aggregates per person, Tay and McCarthy note that these
spatial units themselves contain a massive aumber of elemental alternatives and hence allude to the need
for corrections in the form of the size and heterogeneity terms. Largely for the reason that they do not
have access to software which will implement the heterogeneity term, they make the restrictive assumption
that the elemental systematic utilities of all the lakes in each aggregate are equal. This eliminates the need
1o collect attribute data, such as pollution levels, at the elemental level.

The size term for each aggregate is not implemented directly as the number of eligible bodies
of water but rather as the total surface water area within each aggregate. Since their size term does not
explicitly consider the number of choice units within aggregates, the question must be posed as to whether
their estimate of the g parameter is subject to bias, In general, the problem of Tay and McCarthy is similar
in spirit to initiatives undertaken in this thesis. however their decision to abandon all attribute information
relating to elemental alternatives removes a great deal of realism from their model.

The papers by Parsons and Needleman (1992) and Parsons and Kealy {1992} are essentially two
of a series and represent empirical tests on some of the more innovative discrete choice concepts. Unlike
Tay and McCarthy, these researchers have access 1o data which have a high degree of spatial resolution
in the choice information. In particular, over 1000 residents of Wisconsin in {978 were asked about
their use of over 1000 Wisconsin lakes in the previous year. Clearly, the individual lakes represent the
elemental alternatives in the analysis while aggregates are defined at two different levels: counties and

larger Wisconsin sub-regions. With such rich data available, a series of model types is applied:

e a) The aggrepate level OMNL with no corrections for size and heterogeneity effects; no use is made
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of elemental choice information

e b) The aggrepate level OMNL with a correction for the size of apgregates: again no use is made of
clemental choice information

¢ c) A full nested logit model {estimated sequentially) which makes use of elemental choice information
an«d which calculates size and bheterogeneity effects from the lower level estimations before obtaining
1 estimates at the upper level

s d) An OMNL applied at the elemental level which employs a sampling technique to reduce the number
of elemental alternatives to a manageable amount. This is a non-nested model in every sense since
aggregate alternatives are not assumed,

In essence, the authors take the results from the latter two models in this list as being those
providing the most accurate set of parameters with the other two models being judged in comparison. Of
course, these comparisons are done using the two different definitions of aggregate alternatives (county
and regional} with the authors' preconceived hypothesis clearly being that the greater the degree of spatial
aggregation, the more unreliable the estimates of parameters. Indeed. the results indicate this hypothesis to
be valid in that the parameters obtained from the two aggregate level OMNL models (2 and b) bear little
resemblance to the other two models when the aggregates are regions within Wisconsin. When the county
definition of aggregates is employed, the performance of the aggregate level models improves.

There are grounds for criticism of this work. First of all, the aggregated model as it has been
described in this thesis, does not appear anywhere in the analysis. Rather this paper employs extremely
restrictive special cases of the aggregated moclel and then is highly critical of the results in relation to the
models which have full information at the elemental level (c and d). These are unfair comparisons. A
general application of the aggregated model requires the estimation of sub-aggregate utilities so that the
heterogeneity of aggregates is properly accounted for. There is no justification given for the assumption in
this paper that elemental systematic utilities are equal. Certainly they do estimate the heterogeneity effect,

but only in the context of the sequential estimation of the full nested logit model where the elemental
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choice information is of course available. This shortcoming of the analysis is most Tikely due to the fact
that their software estimates only the conventional OMNL. Such a limitation in and of itself should reduce
confidence in the results.

The poor performance of the aggregate level models is also not surprising given their restrictive
definition of the size term (model b). In the most general case, there will be a single 1 parameter associated
with the size of each aggregate. The arbitrary assumption that the u are equal across aggregates is likely
to have a profound impact on the other parameters, especially when aggregates are large. The size effect
in such models, like altemative-specific constants, plays the important role of absorbing all systematic
variation not captured by other variables in the model. The assumption is that this unobserved systematic
variation can be explained by the size of the associated aggregate. The fact that these models do not at
least test for significant variation in the u parameter across aggregates is thus a serious oversight. A further
potential problem with their representation of the size effect is the use of proxy variables such as surface
area and depth of lakes. The use of proxies is bound to affect the interpretation of 1 and may have much
to do with cases in the analysis where u strays cutside the theoretical range.

The full nested logit and the elemental level OMNL (models ¢ and d) applied in the paper are
also not without shortcomings. First of all, direct comparisons of parameters are made between the former
and the latter despite the fact that one model is explicitly assuming an I1A process as the justification for
the sampling while the nested logit, by definition, assumes no such thing. Hence, there really is some
doubt about which model tvse provides the ‘true’ set of parameters to act as the benchmark. The sequential
estimation of the nested logit model is subject to the same set of problems outlined by Brownstone and
Small (1989) with the situation being exacerbated by the fact that the lower level conditional parameters are
obtained using samples of 12 lakes from the much larger number which would otherwise define each nest.
Actual calculation of the inclusive values however includes all lakes in each nest. Again, the restriction

that the . parameter is equivalent across nests is arbitrarily imposed.
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While the paper by Parsons and Needelman has its focus the issue of aggregation biases, it is
worth noting that the paper of Parsons and Kealy utilizes the same data set but has as its focus the sampling
of alternatives as advocated by McFadden (1978). The results from this paper form the basis for the
estimation of the fourth model type in the aggregation paper: the elemental leve] OMNL model employing
sampling of spatial umiis. Overall, the interest of the authors is in the best way to mode] the choices among
spatial units given that the total number of alternatives is too large to facilitate within a model. The clear
theme running through the papers is that a sampling approach is to be much preferred over an approach
which would reduce the computational burden through aggregation. While there are obvious flaws in
the implementation of their comparison, this conclusion is reasonable since it is undesirable to literally
throw away valuable elemental choice information. In cases where the elemental choice information is
unavailable however. as is assumed in this thesis, these papers do little to discredit the approach advocated

in the aggregated model.

2.4 Conclusions

The essential goal of this paper has been to advocate the use of the logit family of models for
spatial choice problems. Logits have a clear advantage over gravity model formulations since they are
derived at the level of the individual choice-maker. While logits can always be easily adapted to a gravity
model type of problem that contains both aggregation across choice-makers and across space, the gravity
modei can be derived from the micro-level only under unrealistic assumptions.

It has been pointed out that the ordinary multinomial logit model is not as sensitive to violations
of the Independence from Irrelevant Alternatives property as is commonly thought by many spatial choice
researchers. While the model does not explicitly attempt to model the patterns of similarities among

alternatives, an OMNL with constants typically sacrifices very little in terms of fit and will yield parameter
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estimates for explanatory variables which will often be similar to those of more sophisticated ‘models.
Statements that the OMNL will necessarily lead to substantially biased estimates of probai)ilities in a
non-l1A choice process are simply not true.

On the subject of the 11A, it has been mentioned that it is particularly important in spatial choice
models to allow for its variation across origins. Residents of one origin are likely not to cluster spatial
alternatives in the same way as those at another. The use of origin-specific models to capture differences
in how alternatives are grouped represents an interesting avenue for future research.

In the context of models that explicitly capture unequal substitutability among spatial units, it is
suggested that the nested logit and the aggregated models are by far the best approaches for spatial choice
problems. The framework inherent to both is the only one which easily accommodates the challenges
posed by aggregation of spatial units and by the patterns of similarity across spatial units. The closest
challenger, the probit model, remains computationally intractable for all but the smallest spatial choice
problems and the underlying theory to accommodate spatial aggregation has never been implemented. It
is felt that the nested logit model has been han:pered by the sequential estimation procedure with which it
has always been associated but that more widespread application of simultaneous estimation will result in
cleaner specifications and less reluctance to experiment with different decision trees for a given problem.
Also, the statistical reliability of the important substitutability parameters will be greatly improved.

Finally, it has been discussed that the issue of spatial aggregation has not received adequate
treatment in the spatial choice literature, with there being a tendency for it to be assumed away. Other
researchers warn of the dangers of aggregation and att~mpt to discredit the effectiveness of the framework
for aggregation in choice models. However, it has been pointed out that their simulation experiments are
not conceived sufficiently well to be making such claims and were not conducted with full implementations
of the aggregated logit model.

Overall, there is a tendency in the spatial choice literature to advocate alternative models, some
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of them quite arbitrary, before the conventional models have been completely understood. The logit family
of models are based on a rich body of theory which provides an excellent medium through which spatial
choice processes can be understood. Certainly, there needs to be more widespread recognition that spatial
aggregation and the substitutability of spatial units work hand in hand. Both of these issues, which are

central to spatial choice, can be modelled simultaneously in the logit framework.



Chapter 3
Discrete Spatial Choice Models for Aggregate

Destinations

3.1 Introduction

Choice madels are useful in theoretical and empirical analysis in assessing the behaviour of a
group of individuals (heteafter, decision or choice-makers) faced with a set of alternatives. Such models are
derived from first principles of consumer choice behaviour based on utility maximization. When the choice
set of alternatives consists of spatial units, the associated models are referred to as spatial choice models.
As discussed in Tardiff (1979) elements of a spatial choice set are not readily or uniquely identifiable as
in other choice problems. In most instances the choice set is dictated by the available data with the spatial
units being, more often than not, larger than what decision-makers perceive. A related problem is the large
number of spatial alternatives that in practice necessitate either aggregation into larger spatial units or the
sampling of alternatives. The problem of aggregate spatial units is pervasive in studies of spatial interaction
such as intraurban or interregional migration and the analysis of shopping trips. Yet, choice models are
routinely applied to problems of Qpatial choice with little or no consideration of spatial aggregation effects.

Because choice models are firmly rooted in behavioural theory, accounting for aggregation must

result in models consistent with theory. Such an adaptation of the theory reguires that one go beyond

65



66

the strict problem of spatial aggregation and consider the wider problem of human choice behaviour in
space. That this has not been done is perhaps the main reason why essential progress in capturing spatial
effects in choice models has been modest. Researchers have tended to see the problem as stemming from
the substitutability of spatial alternatives, a matter poorly handled by the family of choice models sharing
the independence from irrelevant alternatives (I1A) property (Lo, 1991). Solutions to this problem in the
form of ad hoc changes to the logit formula have been proposed by Borgers and Timmermans (1987) and
Haynes and Fotheringham (1990).

Closer to the approach taken in capturing spatial effects in the standard linear model, Boots and
Kanarogiou (1988} proposed a correction for spatial structure be inciuded directly in the specification of
the systematic utilities. Although this approach can be effective, it is not satisfactory because it provides
no link between individual behaviour and the corrective term introduced. Thus spatial structure is viewed
as a nuisance in need of correction rather than an integral part of the choice process. This philosophy is
also shared by the model of Bolduc et. al. (1989). An additional difficulty with the latter model is that
the functional form utilized (logit) implies i.i.d. extreme value error structure for the utilities, while the
errors are subsequently assumed to be spatially correlated and normally distributed. This inconsistency in
assumptions is alleviated in the comprehensive probit model proposed by Ben Akiva and Bolduc (1991)
and Bolduc (1994) at the expense of computational tractability in parameter estimation, given the typically
large number of alternatives in realistic spatial choice problems, Similar in spirit are the probit models
used by Case (1992) and McMillen (1992) that try to capture heteroscedasticity with a block covariance
matrix structure.

The models discussed in this paper have theoretical appeal, like the probit, but are much better
suited to large problems with many spatial alternatives. They are capable of accommodating a block
covariance matrix structure while permitting estimation with conventional means as opposed to the elaborate

simulation approach advocated by Bolduc {1994) for the probit. The formative ideas for these models are in
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the work of Lerman (1975), McFadden {1978) and Kitamura et. al. (1979). A useful summary of findings
in this research is provided in Ben-Akiva and Lerman (1985, ch. 9). However, the theory underlving the
models has never been fully developed and neither have such models been applied in their complete form.

The purpose of our paper is to synthesize and clearly outline the theoretical underpinnings of these
models. Furthermore, we go beyond the existing theory by relaxing the conventional logit assumption of
Gumbel distributed error terms. This is accomplished by making use of the asymptotic theory of extremes.
Following this introduction we derive the aggregated spatial logit model. Finally, the asymptotic theory of

extremes and its relationship to the aggregated model is discussed.

3.2 The Aggregated Spatial Logit Model

The model in this section is discussed in the context of migration (intraurban or interregional),
although it applies to any scenario where decision-makers, originating from some point in space, decide to
locate, shop, or pursue leisure at some other point in space. We assume the use of data that are disaggregate
with respect to choice-makers but aggregated across the spatial choice units. Studies which utilize this
type of data include Liaw and Ledent (1988) and Liaw {1990). Others have used micro-level data but
the elements of the choice set were not spatial units (e.g. Meyer and Speare, 1985). In such models, the
choice set typically consists of two alternatives: stay or move. There are an abundance of studies which
utilize data aggregated across both individuals and spatial units such as Shaw (1985) and Anderson and

Papageorgiou (1994).
3.2.1 Theoretical Framework

We postujate that decision-makers (individuals, family, households) perceive space in the form of

zones rather than points. Furthermore, we assume that all decision-makers identify the same zonal system
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on average®. We call the zones in this zonal system elemental®. In intraurban migration, an elementai
choice unit could be a city neighborhood while in other forms of migration it might be a single spatial
labour market as discussed by Shaw (1985, p.202) and Kerr (1950). Any given decision-maker associates
a level of utility with each elemental zone, Thus, each decision-maker perceives a unique utility surface
over the study area which is discontinuous at the zone boundaries.

Consider a study arca which is divided into M elemental zones. Following Kanaroglou et al.
(1986), we assume a two level model. In the first level, the departure sub-model. the probability of a
potential migrant leaving a zone is expressed as a function of the difference between the utility of the
decision-maker’s origin and the expected maximum utility available from prospective destinations. In the
second level. termed a destination choice model. the conditional probability of a migrant selecting one of
the M — 1 potential destinations is expressed as a function of the expected utilities of those destinations.
The product of the two probabilities is the probability that a given decision-maker will move from their
origin to a destination. This paper focuses on the sub-model of destination choice which is affected by
zonal aggregation.

Consider that the M elemental spatial units are combined into L aggregat= units, each of which

contains Af7,J € {1.2,...,L} elemental units. Thus:

L
S MI=M (1)
J=1

Frem the behavioural peint of view, one may postulate that individual decision makers process spatial

information hierarchically (Fotheringham, 1986). The potential for a hierarchical selection process ¢an be

captured through the nested logit model. The model presented in this section has its roots in the theory

of the nested logit. Detailed presentation of this theory is to be found in Train (1986, chapter 4) and Ben

5Many authors have pointed out that in certain spatial choice contexts this assumption may lead to model misspecification. For a

summary of detailed arguments see Thill {1992).
SThis term was first utilized by Lerman (1975} in the context of intraurban housing choice.
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Akiva and Lerman (1985, chapter 10).

Let UJ‘-" represent the utility that decision-maker n perceives at elemental destination j, which

belongs to aggregate destination J 7. It can be written:
J v )
Ui =V/ +e' +¢ ]

where:

. VjJ is determined by attri. tes which relate to the aggregate alternative J and/or the elemental alter-
native j € {1,2, ..., M} and characteristics of individual n.

o ¢’ captures unobserved variation that relates to the aggregate spatial unit J.

e ¢/ captures unobserved variation that relates to the elemental spatial unit j € {1,2...., M7},

A variety of variables are used to define VJ-" . These include attributes which relate only to
agpregate aiternatives such as federal transfer payments to states or provinces, or they may be attributes,
such as housing prices, which differ among elemental alternatives. The former group of attributes uniformly
affects the choices of all elemental altemnatives in an aggregate, Other variables included are characteristics
of the decision-maker such as age or income. Variables which measure the physical or social distance
between i and j are also utilized in V'

From the perspective of decision-maker n at origin i, U;’ is a known quantity which is used to
evaluate the attractiveness of destinations. From the perspective of the researcher however, UJ-J is a random
variable. Thus, each elementa!l alternative is associated with a random utility variable. Across space, there
is a level of dependency among the unknown utilities U;’ which is influenced by relative proximity, This
dependency is consistent with conceptualizations in spatial statistics. The systematic utility V;’ can be

considered a potential realization of the true utility U;' . The assumptions underlying the model discussed

TThe more proper expression UJ:’“" is not used in order to maintain notational simplicity. The same applics for the systematic

utility V and the elemental ermor.
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here are much more restrictive than this conceptualization.

Assumption 1: The random error components €’ and e_',-’ are independent for all J € {1,2,...,L}

and 7 € {1,2,..., M}.

Assumption | implies three things: firstly, unobserved random components relating strictly 1o
appregate alternatives are independent of each other; secondly, uncbserved random components relating
strictly to elemental alternatives are independent of each other; thirdly, for any aggregate J, its unobserved

variation is independent of the unobserved variation of any elemental alternative, either within or outside

J.

| Assumption 2: The random error components €7, j € {1,2,..., M’} are identically Gumbel

distributed with parameters (0, u2/),where »’ > 0, for every J € {1,2,...,L}.

The utilities of any two elemental alternatives are identically distributed only if both belong to
the same aggregate. The mode of all distributions is zero and u” determines the variance as discussed in
detail below. The assumption of a mode equal to 0, is not restrictive since a non-zero locational parameter

is absorbed into the systematic component V}J .

Assumption 3: For any Gumbel variate ¢ with parameters (0, /), «/is distributed in such a
way that €/ + ¢ is also a Gumbel variate with parameters (0, ) for all J € {1,2, ..., L}.

The purpose of assumption 3 is to ensure that the random components of aggregate alternatives are iden-
tically distributed Gumbel variates.

It is very important to understand at this stage that assumptions | to 3 do not imply that the
total utilities UJJ , 7 € {1,2,.... M7}, associated with elemental altematives of the same aggregate, are
independent. In fact, these assumptions imply a positive covariance of total utilities in the same aggregate
since each total elementa) utility shares a random component defined by unobserved variation operating

at the aggregate level. Actually, given equation 2 and assumption 1, for any J € {1,2,...,L} and
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ike{1,2,..,M%}:

cov(UJ‘-], Uy = co«u(er,}r +el el + !y =Var(e!) (3)

While the utilities of any two elemental alternatives that belong to the same aggregate have
the same covariance, elemental utilities that belong to different aggregates are uncorrelated. To put it
differently, the variance-covariance matrix has blocks of non-zero covariances along the diagonal. The
correlation coefficient of any two elemental utilities within an aggregate is related to the ratio -P:,— Since

;.’ is Gumbel distributed with scale parameter p’ > 0 (assumption 2), then Vm'(ej) = 72 /6{u’).

£
Similarly, by assumption 3, 72/6u® = Var(e! + ¢/) = Var(e!) + Var(e] ). The last equality is true
because of the independence of the error terms (assumption 1).

Therefore:

& Var(e_;') = - Var(e’)
wo Var(el} + Var(e;) B Var(ej +€t)

cov(U;, UyY)
1-
\/Var(U;’)\/Var(U,f

C))

= \/1 - corr(U_;’,U,;.’)
)

It is important to elaborate on the range of potential values for the ratio ’% The above discussion

suggests that the variance of the total utility for any elemental altemnative has two components:

(1) the variability of the random etror component (Var(e'})) relating strictly to the aggregate
alternative in which the elemental alternative is located

(2) the variability of the random error component relating strictly to the elemental alternative
(Var(e]))

The first equality in 4 suggests that -57 depends on the relative magnitudes of uncertainty at the
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elemental and aggregate levels and since the denominutor is larger than the numerator 0 < -5 <18

It is of interest to discuss the two extreme cases. The largest possible value of 1 is approached
when Var(e?) is insignificant relative to V ar(ej ). In this circumstance, most unobserved variation relates
to the elemental alternative, not the aggregate. Conversely, the smallest possible ratio of 0, is approached
when Var(e:,!r ) is insignificant relative to Var(e”). Unobserved variation relating to the elemental alter-

native is strongly outweighed by aggregate variation. In this case, elemental utilities within an aggregate

are highly (and positively) correlated, sharing the unobserved variation of the aggregate alternative. In

practical applications, if assumptions 1 to 3 are valid, it is expected that —%- will be between 0 and 1.
u

Note that this framework precludes negative correlations between elemental utilities since for any given

aggregate J the random components €], j € {1,2,....M”} which might well contain such effects. are

considered independent by Assumption 1.

3.2.2 The Model

We now introduce the behavioural mechanism by which individual decision-makers select a

spatial unit as a destination:
Assumption 4: Decision-makers aiin to maximize their utility.

The mode] derived below assumes that decision-makers choose the single elemental altemative
in the system which is associated with thz highest level of utility. Even if the available data contain
aggregate choice units, it does not change the fact that choice-makers may well select on the basis of
elemental spatial units, The strength of the resulting model is its ability to correctly represent probabilities
at the aggregate level for choice processes which potentially occur at the elemental level. The proof of
the proposition that follows is an adaptation of the nested logit model derivation. It is reproduced here

because it makes clear the necessity of the four assumptions introduced in this section.

. s N .
51n the strict sense, -"T > 0 because 47, 2 > 0. This ratio however, can approach zero if ¥ >> pu.



Proposition 1: For any J € {1,2,...,L}:

'# ato
exp --_:,-ane“ v
T

L " MQ a )
exp |~ In erTVy
o3 o]

Q=1

P(J) =

Proof:

The point of highest utility in aggregate altemnative J is given by “rgaxMJ} UJ*’ . There are L

Jg{1.2...,
such ‘utility peaks’ in the system, one for each aggregate alternative. By assumption 4, a choice-maker will
select the elemental alternative corresponding to the highest utility peak, thereby selecting the aggregate

alternative that contains it. Thus, the choice probability for aggrepate J is equivalent to the probability
that J contains the highest utility peak:

P()=Pr(_ max Uj> 'max U/ Je{l2.,L}J #J) (6)
7€{1,2,....At 7} FE{1.2,.. A1

Substituting 2 in 6:

P(J =Pl‘€J+ max VJ+5-!' >
(Jy=Prlel+ g% W +G)2

(N

e+  max (V' +el),Je{1,2,..,L},J #J)
jefr2,. M)

Because of assumptions 2, V;/ +¢; is Gumbet distributed with parameters (V;/, u/)°. Also, max  (V
2

{1.2,.., M1
1 M
. dyd A
€]) is a random variable which is Gumbel distributed with parameters (— anc“ Vi, 1), Finally,
i=1

8Property of Gumbel: if € is Gumbel with parameters (n, 1), and b is a scalar constant, then ¢ + & is Gumbel with parameters

{(n+b,p). ‘
10property of Gumbel:  if €),€2,...,¢x are Gumbel with parameters (m1,u), (72,8}, -, {fk, i) Tespectively, then

. : *
max(ey,€2, .., €&} is Gumbel with parameters (L In EFI e, pu).
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M7
due t tion 3, e V7 +¢]) is Gumbel with parameters (— 1 #7V5' | ). Thus,
ue to assumption 3, € +J'E{1§l.?fhf-”( 7 +¢€3) is Gumbe pa (= n;e 1)
7 can be written as:
P(J)=Pr(V’ +e? >V 27 T e {1,2,...,. L}, ] £ J)
1 M
where V/ = ] In Ze"‘J V7 and €* is Gumbel with parameters (0, 1£). By the theory of the multinomial
i=1
logit mode) then:
MY ,
exp -F—J ane“J vi
exp [uV7] |
P(J) = — =— G o
H yve
Z exp [pV9) Z exp [-—5 ane“ 4 ]
Q=1 Q=1 # g=1

Note that equation 5 is equivalent to the marginal probability model of a two level nested logit.
Were we to employ the full nested logit form, we would complement 5 with the conditional probability
medel which provides a choice probability for an elemental alfernative conditional on the aggregate to
which it belongs. Although the conditional probability model is not utilized, it is important to note that 5
provides the choice probability of an aggregate as a function of attributes relating both to aggregate and
elemental alternatives.
In applications of spatial choice problems, researchers have not conceptualized the utility of an
aggregate as the utility associated with the point of maximum utility within. As aresult, there is the tendency
to assume that decision-makers consider the mean utility of an aggregate as opposed to its maximum utility.
This tendency is equivalent to assuming that aggregate spatial units, such as the Canadian provinces, are
elemental zones, a grossly inaccurate assumption. Under the assumption that elemental alternatives are
MY

refatively homogeneous with respect to size, let: 7 = —JV}_-’ ZV;’, J € {1,2,..., L}, be the systematic
j=1

utility ot an aggregate alternative when decision-makers are aJssumed to consider only the mean utility of

an aggregate. If elemental utilities are not homogeneous then a weighted average is usually considered.
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\ ¥

In model 5 the systematic utility of an aggregate altemative J is provided by V7 = L lnie” VY. The

following proposition manipulates the expression for V7 in order to establish its rt:latitmsljﬁp1 with V7. A

general description of this derivation is provided in Ben Akiva and Lerman (1985, chapter 9).
Proposition 2:

M7
V=74 J1n[ Z V-V ljlnM" ®

Proof: It is sufficient to show that the R.H.S. of 8 equals the L.H.S. :

RHS = V"+£—1[ =377 2“’ "”]+ In MY
= V +-£;3-Ine“',.\7_,-| — In i lnz ; +FlnM
1 M Jypd
= —in) eV = [HSO
T

. . . - I
Intuitively, because V' is the expected value!! of the maximum utility while ¥V~ is the mean
aye Tr - . l " N
utility, one would expect V7 > VJ. Equation 8 confirms this to be true. The term — In M~ which can be
"

interpreted as correcting for the size of an aggregate alternative, is necessarily non-negative since M7 > 1.
J
1 ol (‘,'J_‘_IJ) .
It can also be shown that ln[—M—; Ze" ; ] 2 0 (Ben-Akiva and Lerman, 1985, p. 257). Hence
j=1
. . - . - . . o
the estimate of maximum utility must exceed the estimate of mean utility. The relationship V¥ = V"~ is

possible if MY = 1. In this case, J is an elemental alternative itself and therefore there is no aggregation

effect.

The tenn ln[ z w v -v? )] can be interpreted as measuring the variability of utility
i=1
within aggregate altemative J. Since tuis heterogeneity term is non-negative, it increases the systematic

utility of aggregate alternatives which have a greater variation in opportunity. The heierogeneity term is

LiStrictly speaking the expected value is VY 4 ﬁ where « is Euler’s constant, but -;-’; is dropped with no effect on differences in

utility and hence the choice probabilities.



76

appealing if we consider several aggregate alternatives and their 'stributions of utility. Other things being
equal, we expect that the alternative whose surface of systematic utility has the largest assortment of peaks
and valleys is the alternative most likely to contain the elemental alternative of maximum utility. From the
behavioural point of view, choice-makers seek the elemental zone of maximum utility. The heterogeneity
term contributes toward the identification of the apgrepate zone associated with this utility. A similar
interpretation is true for the size term. The larger an aggregate alternative the more likely that it will
contain the elemental altemnative of highest utility. Thus, size tends to increase the systematic utility of an

aggregate alternative thereby increasing the choice probability associated with it.

3.2.3 The Uncertainty Parameters

Assumptions 1 to 3 imply that Var(e]) = n2/6(p”)? and Var(e’ + ¢]) = n?/62. Because
Var(e! +¢f) > Var(e]) for all J, we have 0 < p < Je{ini’jn L},u". The case when 2 — 0 as p”

remains fixed at some positive value is of theoretical interest. It is equivalent to Var(e’} — oc which
makes the utilities of elemental alternatives that belong in J highly correlated. The systematic utilities
contribute no information in predicting the probabilities of choosing an aggregate. Hence, in the absence

of any information all aggregate alternatives are assigned equal probabilities as can be seen from model 5,
1
L

Parameter p, as in the ordinary multinomial logit model, is not identifiable during estimation.

which reduces to P{J) = =, J € {1,2,....L}.

With a linear-in-parameters systematic utility form, the parameters estimated are all multiplied by the
implicit but unidentified value of . For operationalization rurposes, analysts restrict p arbitrarily to a
convenient value, usually 1. Such an action sets the scale of measurement for the systematic utilities and
allows identification of the relevant ratios -;—J J € {1,2,...,L}. The total variance of mode! 5 is fixed to
Var(e')+ Var(e] ) =n?/6and 1 = p < p’ < o0 forall J € {1,2,...,L}.

Before cngaging in further discussion it is usefu! to examine the relationship between elemen-
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tal and aggregate systematic utilities. It is possible 1o re-arrange the systematic utility of an aggregate

alternative J as:
A

1 ,
Vi=V!+ =1+ S en 7=V )
! ik
where V,J = _E{]rgaxMJ}VjJ . A compatible form for the heterogeneity term H is:
2 1y
J 1 1 A Joyrd _yrd
H=V] -V +;Fln[m(l+29“ V7 =i (10)
i#k

One can demonstrate that the second term in the right hand side of equation 9 is non-negative. This implies
that V7 > V,/. The estimated systematic utility of an aggregate, therefore, is at least equal to the highest
elemental systematic utility within it. On the.other hand, the third term in the right hand side of 10 is
non-positive, implying H < V}/ — V7. The heterogeneity term of an aggregate, therefore, is at most equil
to the highest individual discrepancy in elemental systematic utility from the mean systematic utility. The

particular outcomes are dependent on g/,

If u = 1, parameters u’, J € {1,2..., L} are directly identifiable during estimation, and their val-
ues provide the researcher with important information regarding the employed spatial aggregation scheme.

Therefore, it is of theoretical and empirical interest to examine the model for the two extreme values of

pl

(N p! = oo
The variance at the elemental level approaches zero asymptotically: ~lrim Vm-(F;’ } = 0. At the
pd=sc0

same time lim Var(e’) = 72 /6. The elemental alternatives in J will be highly correlated since for any
pd —oc

two such alternatives j and §' lim corr(U.UJ) = lim (1- L) = 1. At the limit then, the utility
#J—-m J 3 }-I-J—'OQ (ﬂJ)2

of an elemental alternative j in aggregate J will be Uj = V;/ + ¢/ since ¢] is now a constant, absorbed

3

into Vj"' . The elemental alternative k of the highest systemati- utility in J can be identified with complete

certainty to be associated with maximum utility: max Ud=

5 max V/+el =V +¢,
J€{1,2,... M7} j€{1.2,...M’}

The systematic utility of an aggregate J attains its lowest value V. At the same time, the
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size term in this case approaches its lowest value which is zero, while the heterogeneity term approaches
its highest value H = v/ — 7. Because of the absence of randomness at the elemental level and for
a given aggregate, the elemental altemative associated with the maximum systematic utility can always
be identified no matter how many elemental alte;natives the aggregate contzins. This is why the size
term becomes irrelevant and disappears. On the other hand, as p” gets smaller and uncertainty ¢ at the
elemental level increases, the maximum utility within J, identified by jE{l,ILP,?f ,,}{I’}J + e;'}, is likely
larger than V;/, which is now only the centrai tendency of the random variable V/ + ¢{.

@p =1

In this case Var(e]) = n2/6 and thus Var(e/) = 0. Also, the elemental alternatives within J
are perceived by decision make: r as uncorrelated since, for any pair j and 4 of such alternatives, equation
4 now becomes corr(U;. UJ'.’,) =1-{ !%)2 = 0. Consider the event of decision-maker n selecting one

elemental alternative out of the M elemental alternatives in aggregate /. We have MY such events, one

per elemental alternative in J, that are pair wise independent. This adaptation of equation 5 reflects the

situation:
MY
S
—
P(J)= Yy - L L M9
Zexp v+ z exp l:—Q aneFQVvq:l
i=1 Q#J B =

This model form implies that, if the data allow, elemental units in J can be grouped into aggregates in any
desirable way. A further implication is that for varying aggregations of the MY elemental alternatives, the
same set of estimated parameters could be used.

Further insight can be gained by examining expression 8 for the utility of an aggregate, which in
this case attains its highest value. Sir.ce p7 attains its minimum theoretical value, the size term becomes its
maximum and equal to In M. On the other hand the heterogeneity term attains its minimum value, whici

according to equation 10 is the maximum discrepancy in systematic elemental utility augmented by the
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A
non-positive value ln[w(l + Z ¥ =¥¥)]. Intuitively, the size term becomes so important in this case
ik
because of the large amount ofJ:mdomness unique to individual elgmenta] alternatives. The identification
of the maximum utility in this ¢ase becomes an uncertain process; since many elemental alternatives in .J
could provide the maximum. Also, heterogeneity in systematic utility becomes rather unimporiant since
the systematic utility is not a goed representation of total utility.
Having discussed the theoretically extreme values of u’ for a given aggregate J, an empirically
valid question is: what is a large value and how could it be attained in practice? From equation 4
Var(e!)/ Var(fj ) = (41)? — 1. Thus, the ratio of aggregate to elemental variance changes with the
square of 27, A value of p/ = 10 implies Var(e/) = 99 Vm-(ejr ). Thus, aggregate variance becomes
very large relative to elemental variance: which in this case is the almost negligible value 7¢/600. The
variances of e/and €7 are controlled by the independent variables in Vj"' for aggregate J and by the imposed
grouping of elemental alternatives. As is the case with the nested logit model, it would be desirable to
have g7 = 10 since it implies that we are accounting for sub-aggregate systematic variation very well and
that the grouping of elemental alternatives is relevant. The results for g reflect the possible need for an
improved specification or perhaps are recognition of the fact that the imposed set of aggregate choice units
are distorting representation of the elemental choice process.
Another case of interest is when the maximum systematic utility ¥/ is so much larger than ali
other elemental systematic utilities within aggregate .J that no matter how large Var(ej ) je{]fgﬁmq UJ"

is always provided by elemental option k. In such a case, the estimated value of u” will tend 10 be Jarger

than the true value and hence upward biased.

3.3 Asymptotic Spatial Logit Models

Assumptions ] to 4 constitute the foundation of the aggregated logit model. In this seciion we



80

demonstrate that when the number of elemental alternatives within aggregates becomes large, then the same
- model can be derived after replacing assumption 2 (Gumbel distributed elemental errors) with a milder,
behaviourally_sound, assumption. This idea was first discussed in Leonardi and Papageorgiou (1992}, in
the context of the multinomial logit model. We first exnlore the nature of the new assumption and then

we derive the aggregated logit mode] under the new set of assumptions.

3.3.1 The Distribution of Elemental Errors

Gumbel distributed errors in utility is a standard assumption in the derivation of the logit model.
Besides . its mathematical convenience. Gumbel is justified as an approximation to the normmal. No be-
havioural justification is offered, however, as 1o why the utility error terms should be normally or Gumbel
distributed. The asympiotic theory of extremes provides the possibility of replacing assumption 2 with
another which is less restrictive. We shall think of errors as arbitrarily large. Beyond a certain boundary

C all errors obey the following:

Assumption 2.1: For all ¢/, 7 € {1,2,..M"} :
Pr(e] >z+c|ef 2 ¢)=Pr(e] 2 2z)

(1)
forallz>Cande>0

Because ¢ can be arbitrarily large, condition 11 can be thought of as referring to the right tail
of the distribution of errors’2, Thus, condition 11 implies that if an error term is shifted by adding to it
an arbitrary non-negative number, the distribution of its right tail remains unaffected. Equation 2 implies
that a constant added to ej can be absorbed into the systematic component of utility Vj"' . In light of this,
assumption 2.1 requires that adding a constant to the systematic component of utility does not affect the

shape of the right tail of the corresponding eror. To put it differently, no matter at what point on the line

12The idea of the memoritess property holding for the right tail of the error distribution was suggested by an anonymous referce.
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of real numbers the analyst starts measuring systematic utility, it is required that the distribution of right
tail of errors remains unchanged.

Equation 11 is known as the lack of memory property. For a random variable X > 0 that
represents the life length of an object or being. we say that X does not age (or lacks memory) if. given
that the object lived ¢ time units, the probability of its lasting for another x time units is the same for any

¢. Equation 11 is equivalent to:
J
EFi_z T +c)

J
- - _ f ~
Pr(fj ) Pr(ej 2 1)

or
Pr{e] > z+c¢) =Pr(e] > z) Pr(e] > ¢)
ar
1— F(z+¢)=[1 - F(z)][1 - F{c)] (12)

The exponential distribution, which is a special case of the I" distribution, has the lack of memory

property. For A> 0 it is defined as:
Fz)=Pr(X <u#)= 1~-e» for 2>C (13)

It is straightforward to verify that 13 satisfies 12. It is also possible to prove the inverse, that is, any
distribution that satisfies 12 is an exponential distribution. Here we simply state the proposition, a proof

of which is provided in Galambos (1978, pp.21-32).

Proposition 3: If the random variable X > 0 has a continuous, nondegenerate distribution
function F(z) that satisfies equation 12 for any z >  and ¢ > 0, then F is exponential as in 13 with

A>0.
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The above discussion suggests that assumption 2.1 is a necessary and sufficient condition for
the right tail of €], j € {1,2,...M”} 10 be exponentially distributed as in 13 for any aggregate .J. Random

variables (V7 + €}, j € {1,2,..M"} share the same property and their distribution is as follows:
Fi(z) = Pr(Vj" + F.;-r <z)= Pr(f",-J <zT-— VJ“') = 1o MEY) s v/ +C (id)

Notice that for every elemental alternative j € {1,2,..M”} within aggregate J there is a different
distribution F;. All distributions have arbitrary shapes. except that they are identical as far as the shape of
their right tail is concerned. Furthermore, this shape is negative exponential. The fact that discrete choice
theory emphasizes the distribution of maximum utility, highlights the interest placed here on the right tail

of the distribution of errors.

3.3.2 The Relaxed Aggregated Spatial Logit Model

Assumption 4 requires that decision-makers compare aggregate altematives on the basis of

the peak of elemental utility in them. For alternative .J the peak is expressed as {umx J}U e
JE{1,2,.M

J el Ly J
max (V7 +e +e')=e"+

(V7 + €7). We shall demonstrate that under assumptions
je{1,2,. AT} J 7

max
je{1.2. A1)

I and 2.1 for any aggregate J the normalized random variable 'e{lnz}ame}(Vf + rj ) tends to become
I ‘2.

Gumbel as M becomes large.

Let Zyo = (V; + ¢f). Normalization of Zy+ entails the formation of a random

max

FE(1.2,.. M7}

variable (Zxss — apro)/bpre, wWhere apys and bygs are sequences of constants dependent on M7, In

mathematical terms, we wish to demonstrate that ]Jim {Zpgs —taprs)/bpgs is a Gumbel variate. Because
MY o

Fj, j € {1,2,..M"7} are independent:

MJ

Pr(M <) = Pr(Zys < aps +bygsz) = [ Filaps +byrez) (15)
M7 -
=1

In light of equation 15, our objective is to identify the sequences axss and byys, and to demonstrate that

for those sequences the right hand side of 15 tends to the double exponential function as M J poes to



infinity. This task can be accomplished with the help of the following proposition.

Proposition 4:

MY
—A‘r(z-:\bthlA Y g FY L
—. i=1 M Al 2=V )2
e —4(Y (e ) I Fi=)
i=1 j=1
ar?
< [ Fit=)
3=1
A s
»-Ath—IlJ-lnEeAJ‘JJJ
< et =

The proof of this proposition is rather elaborate ard is provided in the appendix to this chapter.
Obviously, the double exponential, which is the functional form of the Gumbe! distribution, provides an
upper limit for the distribution of the maximum. A close examination of the inequalities in proposition 4,

not only provides a solution to the problem at hand, but it also suggests ways for the specification of a,;s
J
: : .. 7 1 o AJ‘;J
and bypys. If one specifies apps and by,s in a way that the limit of =A7 (apps0 +bpprz — v ane 1)
i=1

MY
L] 0 - - . -— J — B E -
exists and is finite. while at the same time ) _(e™*" {(“n7 *2s4#=Y))2 tends to zero as M7 goes to infinity.
j=1
then the asymptotic distribution of the maximum is indeed Gumbel.

Obvious selections for a,,s and by, s are:

i
1 J 1
aye = I-’-ln E Vs and byys = bV (16)
=1

. 1 PR N .
For these selections we have =\ (anss +bproz— — In M 2 V) = —z that does not vary with M.
Af M I i=1 ary

MY

We now demonstrate that Z(e"“(“m +byr12=Y'))2 pecomes arbitrarily small as M~ becomes large.
=1

Observe that ape > V) forall j. Thus, aps > V) =  max V. Also note that . increases with

ie{1.2.. M7}

M since new positive terms are added to its summation as J is split into increasingly smaller elemental

. ) 1 . - .
alternatives. For a suitable value of T then =" (@ar 82 07=Vi) Tk For this value of z this inequality
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holds for all j. Therefore:

M ) MY 1 1
J r 2
< =AM e by T=VIN2 v
<3 P <Xl = 5

These inequalities make the point. To gain further insight consider a,,s at the limit. Elemental
alternatives at the limit become points with coordinates (¥, z). Let A7 be the collection of all the points

(y, z) that make up J. Then V”(y, z) for all (y,=) € A represents the surface of systematic utility over

J. We now have:

1 AJVJ .
lim ape = —/] e (13 dydz
M e MT T NI (y.z)e A Y

The definite integral in the right hand side represents the volume between A7 on the (y, =) plane and the
functional surface represented by e’V (=) Clearly at the limit a s+ becomes so large relative to V.

. . - . i
the point of maximum utility, that e=*’ (@ary +0ars2=%) 377 is true for any z.

What we have shown is that for large MY :

Zagr — Qpga
AN M <.‘E)ﬁ(’e

Pr( oo

This equation means that for large MY, (Zpe — apgs)/bpss is approximately Gumbel distributed with
parameters (0,1). Let us assume that M7 is large enough so that (Z,,+ —apss)/bpss, can be considered, for
all practical purposes, Gumbel. A.ccording to the property of Gumbel (footnote 9} Zp;. is also Gumbel with

parameters (@ps4,1/bps4). This is equivalent to stating that for a suitably large M {lxgaxM”(V;’ +e])
Je{1.2,...
M7 e
is Gumbel with parameters (F lnz e*" Y5, A%). Recall from the previous section that when ¢}, for all
i=1

7, are Gumbe! distributed with parameters (0, /) then _ennzlaxMJ}(lf;J + €]} is always Gumbel with
1 MJ J IR Ll AR
parameters (— ane“J‘?J,u-' ) irrespective of the size of M. The similarity between A’ and p” is
J=1
also obvious. Note that assumption 3 still holds so that asymptotically the total error for an aggregate is

Gumbel. Furthermore, all the properties of the aggregated logit model discussed in section 3.2 hold for

arbitrarily large M7,
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3.3.3  Other Asymptotic Models

Relaxing the assumptions of the agpregated model has clear theoretical significance and allows
one to gain further insight into the model. The question arises whether the relaxation of assumption 2 has
any practical significance. The asymptotic theory of extremes is rich in results. Different combinations
of conditions for distribution F' and specifications for the normalizing parameters ayrs and byye lead to
different types of models that can be useful in practice. An example of this is the set of models discussed
by Kitamura et. al. (1979), one of the very few papers that deals with spatial aggregation in the context of
discrete choice models. It is worth explaining further the contribution of this paper, using the mathematical
notation introduced here.

Kitamura et. al. (1979) first deal with the aggregated logit mode] except that Var(e!) = D
for all J. This is the equivalent case of u’ = 1. Thus, elemental utilities are independent even if they
belong to the same aggregate alternative. The error terms of elemental utilities are assumed to be normally

distributed. while the normalizing parameters are defined as:

aps =V + %Va.r(Vj")(2ln MY w2l M)

(2In M7)3
1+ %Var(Vj“’)

bM'J -

where Var(V;’ ) is the variance of the systematic elemental utilities within aggregate J. Under these
circumstances one can prove that the maximum of elemental utilities within an aggregate J is an extreme
value distributed random variable with parameters (ap;s, bpss) (Galambos, 1978, pp.65).

In this case a,gs, being the mode of the distribution, is the representative utility for aggregate
MJ'
. . . . J —
J. The equivalent form in the aggregated logit model is V¥ = In E "7 . The relationship between apgs
i=1
. . . —
and V7 can be seen if one expands the latter into a second order Taylor series around the mean V" as
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McFadden (1978) has done:

- 1 ‘
viaV 4+ 5VarlVy']+1n g an

In fact, McFadden (1978) has demonstrated that if elemental systematic utilities within aggregates are
normally distributed then the right hand side expression of 17 is an asymptotic representation of V7. By
direct comparison of 17 with 8§ the above stalement implies that the heterogencity term is asymptotically
equal to %Var[V;’ 1. Thus. the heterogencity term is directly linked to the variance of the systematic utilities
in an aggrepate.

Comparison of 17 to the expression for a,ys clearly reveals the differences in the way utility is
calculated for the two models. The most important difference, however, is in the scale parameters of the two
models. In the case of the Gumbel elemental alternatives, the scale parameter s remains unaffected with
maximization, meaning that the agpregate ui.lity has the same scale parameter as the elemental utilities.
Increasing the number of elemental alternatives has no effect on the scale parameter. In contrast. the model
with normal elemental utilities is associated with aggregate utilities that have scale parameter b0 which
increases with the size of aggregate J. But we know that the variance of a Gumbel variate is inversely
proportional to the square of its scale parameter. Therefore, in this case the variance of an aggregate utility
decreases with the size of the aggregate.

Despite this nice asymptotic property of the aggregate utility, the model assumes no aggrepate
variance and thus zero covariance between elemental utilities that belong to the same aggregate. Attempts
to extend the model in this direction by Kitamura et. al. (1979) led to the probit medel with its known
computational problems during estimation.

The aggregated logit model was first introduced by Lerman (1975). He actually used a first

. . . =
order Taylor series expansion of V7 around its mean V™ :

v’ zVJ +In M7
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Through his anaiysis he acknowledged the existence of the heterogeneity term but he found the size term
to be more important in practical applications. McFadden (1978) is responsible for deriving the form of
the model with the heterogeneity term.

Leonardi and Papageorgiou (1992) used the asymptotic theory of extremes in a different context.
They contend that the assumption of the Gumbel distributed error terms in a multinomial logit model of
location choice has no behavioural significance. Instead variations of the multinomial logit model can
be derived by assuming that individuals associate a particular consumption bundle with every location.
Individuals arrive at a consumption bundle through a large number of trials each of which is associated

with an error obeying an assumption such as 2.1. Thus, their derivation bears some similarity :0 ours.

3.4 Conclusions

This paper has proposed the notion that a fundamental spatial effect in models of destination
choice is a direct result of zonal aggregation. Such an effect results from the fact that the potential
destinations in a choice set are invariably aggregates of the zones perceived by choice-makers. Derivation
of the aggregated spaiial logit model makes use of the theory of the nested logit model. Furthermore, we
demonstrated by invoking the asymptotic theory of extremes that when the number of eiemental alternatives
in aggregate zones becomes large then the assumption of Gumbel distributed error terms, inherent in any
logit model. can be replaced with a more behaviourally sound assumption.

The crucial assumption that is necessary for the derivation of the mode) is the independence of
error terms. The formulation of the mode! allows error terms associated with elemental alternatives that
belong to the same aggregate to be correlated and the level of correlation to vary between aggregates. This
is in contrast to the multinomia! logit model, where all error terms are uncorrelated. To put it differently,

the multinomial logit mode! has a diagonal variance-covariance matrix of error terms while the aggregated
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logit model allows certain blocks of the matrix corresponding to elemental zones within the same aggregate
to have non-zero covariance.

With respect to the structure of the variance-covariance matrix, the aggregated logit model
is more restrictive than the model proposed by Ben-Akiva and Bolduc (1991). This loss in statistical
generality is balanced by the gain in theoretical insight. The p’, J € {1,2,...L} parzineters that were
extensively discussed in this paper are similar to the autocorrelation coefftcients in autoregressive models.
Their significance. however, as demonstrated in this paper, is more impoertant than merely conveying
information on the spatial dependency of utility. Furthermore, the Ben-Akiva/Bolduc formulation leads to
the probit mode! with its known computational problems, given the typically large choice sets encountered
in practical spatial choice problems. Thus, the aggregated spatial choice model combines a theorenwally rich
formulaz:cn with computational tractability. In terms of the structure of its error term variance-covariance
matrix, it strikes the middle ground between the multinomial logit model and the Ben-Akiva/Bolduc model.

An estimation procedure for the aggregated logit model is discussed in Chapter 5. Although the
perfermance of the aggregated model relative to the multinomial logit model is assessed extensively with
simulated data in Chapter 4, there is a need 10 evaluate the model in real world applications. An initial
attempt in this direction is taken in Chapter 6. More empirical work with Canadian interprovincial migration
data is presently under way. Also, the asymptotic model derived here is viewed as an initial attempt to
derive spatial choice models under different sets of assumption. More specifically, a possible development

is the derivation of asymptotic models where the assumption of independence of errors between aggregates

is relaxed.

3.5 Appendix to Chapter 3: Proof of Proposition 4

The proof of proposition 4 follows the ideas developed in lemma 1.3.1., theorem 1.3.1. and
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corollary 1.3.1. of Galambos (1978, pp. 10-15). Those propositions are general for the maximum of
independent and identically distributed random variables. In proposition 4 we deal specifically with the
maximum of exponential distributions which are independent and identically distributed but which differ

with respect to the location parameter as shown in equation 14.

Proposition 4:

M7
_a-’tz_:brlr.ze* T ArY M7
= J J
T S O[] Fia)
=1 J=1
ar’
<[[ 5@
i=1
My
--.A"lf:r—;l:’-inzzA \J' )
J=l
<e "
Proof:
For the right hand side inequality we need to establish:
M M
A ; , Z |n(1_c_’J("",J') —AJtz—:Jj-an:n“‘i b
; =1
=1
But this is equivalent 1o:
M 2
At 5 -alte- g s ) a7
J =1 J S
Zln(l —eMEV ) < e ’ = —Ze“\ {==47)
j=1 i=1

which will be true if:
In(l - e=*" @YY ¢ e~ V) orali j e {1,2,...M7)

But the inequality In(1 — 2) < —z is true for every 0 < z < 1. It is then sufficient to observe that A’ >0

and = > V;! which leads to 0 < e~ M-V o,
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For the left hand side. let us start from the inequality = Inyz) > s—1. whichistrue for0 < = < 1.

Setz=1-e > =Y} Then, for every j € {1,2,..M7}:

(1- e"‘J(“"JJ)) In(1 - e“'\J(""f)) > e~ ==V)

Thus:
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This inequality can be re-arranged as:
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Chapter 4
Utility Variability Within Aggregate Spatial
Units and its Relevance to Discrete Models of

Destination Choice

4.1 Introduction

In this chapter, we examine a logit model (the azgregated spatial logit) designed specifically
for spatial choice among aggregate destinations. Typically. the logit and gravity models are applied to
problems of spatial interaction without due consideration for the aggregation scale of the data. There is
of course a general awareness that models estimated at different levels of aggregation will yield different
parameter estimates but most researchers proceed directly with their analysis at the aggregate level and
make no adjustments. Research on aggregation issues has been intertwined with work on the ‘modifiable
areal unit problem’ (MAUP). Research on MAUP examines how spatial statistical models and diagnostics
are affected by the aggregation scale and spatial configuration of spatial units. Choice processes per se.
as are present in all problems of spatial interaction, are not specifically addressed in this body of research.
Rather the focus is on the univariate or bivariate spatial processes associated with one or two spatially-

referenced attributes {Arbia, 1989; Openshaw, 1984). Agpgregation issues are relevant in both scenarios

91
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but as will be illustrated in this paper, the theoretical framework to accommodate aggregation in a choize
context is quite different from that considered in analysis of the modifiable areal unit problem.

From the perspective of geographers and regional scientists, the study of aggregation in the
choice context has been confined mostly to work on the gravity model (Batty and Sikdar, 1982a, 1982b.
1982c,1982d; Webber, 1980; Schwab and Smith, 1985; Putman and Chung, 1989; Amrhein and Flowerdew,
1992). Most research on aggregation in discrete choice modelling has been done by those outside these
fields (Kitamura, 1979; McFadden, 1978} and is not widely applied by practitioners in the spatial sciences.
Given the work by Anas (1983) on the strong similarity between the gravity and logit models, the insights
gained from the work outside regional science and geography need to be understood and further developed
in the spatial context,

It is interesting that most contemporary work in spatial interaction modelling has tended to
focus o spatial substitutability and structure effects as the primary contributors 1o model misspecification
(Griffith and Jones, 1980; Fotheringham. 1981, 1983: Haynes and Fotheringham, 1990; Borgers and
Timmermans, 1987 ; Lo, 1991}, often not recognizing the fact that the choice process is typically not at
the same aggregation level as the data. Problems of substitutability among alternatives can often be solved
with alternate aggregation schemes but aggregation biases cannot be eliminated through accounting for
substitutability. As was peinted in Chapter 2, however, it is debatable whether much of this contemporary
work has really gotten to the core of the substitutability problem. Fortunately, the framework described
here is capable of addressirng each of these issues.

In the practical terms of a choice problem, interaction data are often available only at the level
of aggregate spatial units and in other cases, the intera~tion data are so disaggregated that the number of
spatial units involved would be prohibitively large. In either situation, the researcher is presented with a
problem whereby the spatial choice units of the model are more aggregated than those likely evaluated in

reality by choice-makers. Considering the spatial aggregation of the data to be exogenous then, and not



necessarily optimal, how should a researcher correctly go about representing the utility of aggregates and
obtaining appropriate parameter estimates?

The central premise of this chapter is that to succeed in this objective it is necessary to account
.f'or utility variability within aggregates. In a study of inter-regional migration, for example, it is unlikely
that choice-makers value each point within a regicn equally. However, when the ordinary multinomial
logit model is applied to a regional choice set, this is exactly what is assumed. All variables employed
in the model are some form of regional average implying average regional utilities. Alternatively, it is
possible to employ variables measured at the sub-aggregate level and then represent utility at a finer level
of resolution. Using such an approach, a theoretically appealing aggregated model can be derived which
postulates the utility of an aggregate to equal the point of maximum utility within the aggregate. While
the choice data for spatial interaction are often aggregated over space and across decision-makers, there is
no need to compound the problem by utilizing spatially aggregated explanatory variables.

It is interesting to note that work in spatial econometrics has not found common ground with that
of spatial choice analysis, particularly when aggregation is an issue. Typically, discrete choice models have
found favour with spatial econometricians in studies utilizing a categorical spatially-referenced dependent
variable. The problem is normally binary, with the alternatives being non-spatial since they usually represent
some attribute which can be measured over space, and the model is typically statistical rather than being
a manifestation of choice theory. Such a study is that of McMillen (1992} who employs a probit model in
the examination of crime rates as a dependent variable. In a similar vein, Bolduc et al. (1989) examine
issues such as spatial autocorrelation and heteroskedasticity but in the context of mode choice where the
decisions of travellers are seen to be dependent on location. These examples are to be contrasted with the
model in this chapter, which is clearly a choice model whose altemnatives are multiple spatial units. Just as
spatial econometric techniques apply to the work of McMillen and Bolduc et al., they are of interest in the

context of spatial choice but it must be recognized that such analysis is made more complex by the fact
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that the number of alternatives is large, that a heterogeneous population is choosing among these spatial
units, and that issues of aggregation are present. In this chapter. we present a model which addresses the
effects of aggregation elegantly but is less effective in accounting for complex spatial dependency.

This chapter is ¢.vided into five main sectiors. !n the second section to follow, we summarize
the theoretical basis for the aggregated model and provide necessary background information. In the
third section, a basic estimation procedure is outlined and difterences with the estimation of the ordinary
multinomial logit model (OMNL) are stressed. In the fourth section. the specitication 6f the model
when data are highly aggregated across choice-makers is contrasted 1o micro-data specifications. These
specifications are then tested in a controlled environment. More specifically, the performance of the average
utility medel is compared with that of the maximum utility aggregated model when the utility heterogeneity
of aggregates is systematically altered. In the concluding section, some synthesizing remarks are oftered

with a view toward future work.

4.2 Theoretical Background

In problems of spatial choice, the swudy area is typically divided into zones necessitated by the
available interaction data or by practical considerations which dictate that the aggregation level must be
manageable. The resulting aggregate choice set does not necessarily correspond to the zones perceived by
individual choice-makers in the spatial choice process. Usually, decision-makers will *perceive’ a more
disaggregate zonal system composed of alternatives which are termed elemental. Although in reality the
perception of elemental alternatives and hence the definition of individual choice sets may change with
the characteristics and the origin of the decision-maker (Thill, 1992; Tardiff, 1979), it is assumed here that
all choice-makers perceive the same zonal system on average. In practical models of spatial cheice then,

the problem of aggregation is always present where zonal systems are imposed. The particular model of



95

spatial choice examined below is the muitinomial logit {OMNL). Theory indicates that the use of aggregate
choice units necessitates the introduction of corrective size and heterogeneity terms which modify utility.
*Size' refers to the number of elemental alternatives within an aggregate and ‘heterogeneity’ is a measure
of the variation of elemental utility within that aggregate.

The aggregated model in its most basic form dates to the work of Lerman (1975). In a problem of
intra-urban housing choice, Lerman showed that the utility of an aggregate spatial unit depends on its size.
Simulations illustrated that his model was unsatisfactory when aggregates were heterogeneous, suggesting
the incorporation of a variance term in the utility of the aggregate. McFadden {1978) devised the improved
theoretical framework which provides the necessary size and variance effects, Other things being equal, a
heterogeneous aggregate altemative is more likely to contain a utility peak than a homogeneous aggregate
and therefore will be more attractive to choice-makers. The heterogeneity term captures this effect and
upgrades the estimated utility of heterogeneous aggregates, unlike the OMNL.

With this background in mind, we now briefly outline the theory behind the aggregated model
in the context of inter-regional migration. A more comprehensive theoretical discussion was provided
in Chapter 3. The focus below is on means to model the process of destination choice where potential
migrants have already made the decision to move. Consider that the study area is divided into M elemental
alternatives. These are the actual spatial units which the typical migrant considers as potential destinations.
Assume that the M spatial units are combined into L aggregates, each of which contains M’,J €

{1,2,..., L} elemental units. Thus:

(n

[ ngle
2
I
g

Given that individual n has decided to depart origin i, their utility for prospective elemental

destination unit j within aggregate J is:
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Uy = Vifn + €l +€ijn )

ijn

where:

. V‘-}'n is a deterministic component expressed as a function of attributes which relate to the aggrepate
alternative J, the elemental alternative j € {1,2.... M’} and characteristics of the choice-maker.
Physical and social distance variables between i and j are also utilized.

e ¢l is 2 Gumbel distriouted random component that captures unobserved variation relating to the

aggregate spatial unit J.

® ¢, is @ Gumbel distributed random component with parameters (0, n7) that captures unobserved
variation relating to the elemental spatial unit j € {1.2...., M7}

The €5, terms are independent of each other within and between aggregates and are also inde-
pendent of the €7}, terms. The €], terms are themselves assumed independent of each other. Furthermore, it
is assumed that €;;,, +6;'n are Gumbel variates with parameters (0, u1). In essence, these assumptions imply
that the total error e;'jn for an elemental alternative is the sum of two independent component errors. All
utilities of elemental units within aggregate J share the same component ¢, implying that the utilities of
any two elemental units within the same aggregate are not independent. As is the case with many spatial
econometric models, contiguity implies similarity. Of course in this context, contiguity is defined by an
elemental alternative having a neighbour within the same aggregate, and the similarity evolves from a spa-
tial process which determines utility. While there is a positive correlation between intra-aggregate elemental
utilities, inter-aggregate elemental utilities are uncorrelated in this model.

In addition, the assumptions imply that elemental errors within the same aggregate arc ho-
moskedastistic, which is potentially restrictive. Meanwhile Var(e;;,,) is allowed to vary across aggregates,
hence accommodating heteroskedasticity to some extent. In a context other than spatial choice, McMillen

{1992) has examined the issue of heteroskedasticity over space in probit models.

Since choice-makers are hypothesized to seek the elemental zone within an aggregate which
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provides maximum utility, this zone’s estimate of utility in effect determines the utility of the aggregate:

J
Uin = €in +:‘E{121.§MJ}(%" * ign) ®

where the maximization term is 2 Gumbel variate with parameters
1 M7
o Iy, J
i In Y exp(u'Vid,) p
j=1

The first expression defines the mode of the distribution (which is interpreted as the aggregate systematic
utility) and the second term is a scale parameter which is inversely proportional to the variance of the
utility distribution. We can represent the choice probability of an aggregate in the general format of an

otdinary multinomial logit which is also the expression for the aggregated model:

MY
exp L&J- In> exp (1'V7,)
—
Po(J) = — e @
S exp | Hoin Y exp (uKVE)
K=1 p k=1

In this expression, u” is related to Var(e;;,) while i is related to Var(e;;, +¢7,, ), the combined uncaptured
variation of strictly aggregate and elemental utilities. Note that x4/ is allowed to vary across aggregate
alternatives, possibly being unique for each aggregate or unique for a subset of aggregates. The model
is thus sufficiently general that the distribution of unobserved elemental variation is permitted to differ
across aggregates. As a by-product of estimating maximum utilities, the proposed model yields estimates
of elemental utilities within the aggregates.

The ratio u/u” is critical to the theoretical interpretation of the aggregated model and can be
viewed as an overali measure of the correlation of elemental utilities within aggregate alternatives. We
assume that elemental utilities within the same aggregate are positively correlated but that those between
aggregates are uncorrelated. The correlation is assumed to result from common unobserved variation (e}

of the aggregate which they share, not from correlation among €,;,, 7 € {1,2,..., M7}. It is clear that
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these assumptions will prove problematic on any cecasion when there is high correlation in utility between
two elemental spatial units belonging to different aggregates. Similarly, the utility dependency between
pairs of elemental alternatives within the same aggregate may vary. Such violations of assumptions may
require redefinition of aggregate units if possible.

Irrespective of the definition of the aggregates, it is possible to show that:

"o Var(fu,.) _ 5
.U'J N Var (F:Jn+ F ) \/1 cor'r( ijnt ‘L“) &)

One value applies to all pairs of elemental alternatives which belong to the same aggregate. If the
correlation tends to become high then p/u’ — 0, while p/p? — 1 as the correlation becomes low.
Estimation procedures allow for the identification of the ratio p/p’, J € {1,2,..., L}, but not the true
values of its components. Without loss of generality though, the convention g = 1 is typically adopted. If
the unobserved elemental utility variation within aggregate J is small relative to the unobserved variation
shared by all elemental alternatives within J. then u” is large relative w0 u, implying highly correlated
total utilities among the elemental alternatives in J. In this case, the estimate of the expected maximum
elemental utility corresponds closely with the Jargest of the elemental utilities predicted by the model.
Conversely, if unobserved elemental variation is relatively large implying uncorrelated eiemental utilities,
then there is a lot of uncertainty with respect to the true levels of strictly elemental utilities. Given the
individual expected values of Gumbel variates, the expected value of their maximum will be larger the
greater the variance of the individual Gumbel variates. It is this principle which upgrades the estimate of
systematic utility for an aggregate which contains a set of elemental alternatives with uncertain utilities.
In the context of the definition of aggregate alternatives, it is desirable that j1/p’ — 0 as this
implies that there is little uncertainty at the sub-aggregate level and that similar elemental alternatives form
the aggregate. The factors affecting the choice of an aggregate are also a good representation of the choice

behaviour at the sub-aggregate level. If the ratio is close to one, the implication is that the individual
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elemental utilities are not being modelled very well within that aggregate when only the aggregate choice
behaviour is used to estimate the model.

If econometric estimation yields a value of u2/u” outside the range (0, 1] then the resuit indicates
a violation of assumptions or a poorly specified model. In practice, the ratio is often found to be greater
than one indicatiné that elemental utilities are assigned a very large variance. Such a violation of theory
has the effect of upgrading the utility of that aggregate and reducing the variance of elemental systematic
utilities. Tt makes no theoretical sense however to increase the elemental variance beyond the total variance
established by g and thus an improved model specification is desirable. Similar conclusions apply for an
estimated negative ratio, although such an event is rare in practice.

Clearly, the behaviour of the ratio of scale parameters is critical to the interpretation of the
model. The estimates of other explanatory variables as well as the goodness-of-fit of the model is very
much related to the estimates of these ratios across aggregates. These issues are sufficiently important that
their detailed discussion and analysis are reserved for future work. In this paper, the focus is on contrasting
the perfermance of OMNL with that of model 4 when p/u” is given exogenously.

It is important to understand the composition of the expected maximum utility for an aggregate
alternative. Through algebraic manipulation, it is possible to show that the initial mode] in 4 can be written

as:

J

Py = [Vial

> exp [VX]

K=1

(6)
-J i 1 M7 -J
Vi = eV g In | 577 Y exp (P‘J(Vijn_ Vm)) + fj In M7
=1

With 4 = 1, note that the expected maximum elemental utility from the set of elemental al-
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ternatives in an aggregate (i.e. the systematic utility of the aggregate) can be broken into a mean utility
J
effect: 17:,1, a heterogeneity effect: (1/u’)In [(1/M’ )ﬁiexp (,u" (Vijn— I;'f“)) , and a size effect:
(1/p7)In M. In contrast, the OMNL utilizes only the ni:aln utility term. However, the predicted mean
utility with the OMNL wili be different from that predicted by the proposed model since the parameters
estimated will be dependent on the presence of the additional corrective terms. The size effect is con-
stant across decision-makers and is self-explanatory. The heterogeneity effect varies across choice-makers
and aggregates and, as mentioned earlier, is a measure of the variability of elemental systematic utilities.
Typically, the correction from the size effect will be larger than that of the heterogeneity effect (Lerman,

1975).

A condensed form of 6 is also intuitively appealing:

MJ
-J i -J
exp (Vin +L—-j !nZexp (,u"'(V,-jn— V,-,,))
—
P.(J) = d

- (7

Z exp
K=l

where the convention u = 1 has been used in this expression. The size and heterogeneity terms from

MK

-K 1 . K

Vin +“_K In E exp (,Hh (Vikn— Vul))jl
k=1

6 are combined to form a term which measures the expected maximum deviation from the mean utility
of aggregate altemative J. From the latter term it is easy to extract the heterogeneity and size effects
for cach choice-maker and aggregate altemnative since the size effect does not vary across choice-makers.
Equations 4.6 and 7 are simply different ways of expressing the aggregated model, each of which makes
different aspects of the model clear. Since in this chapter we are particularly interested in the heterogeneity
of aggregate spatial units, the aggregated model as represented by these equations will be identified with
the acronym HETRO.

It is important to emphasize at this point that the mean utility term in 6 and 7 differs from mean
utility as typically represented in applications of the OMNL, The ?f“term is assumed to be the simple

unweighted average of the constituent elemental utilities. By extension, this implies that the attributes
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of aggregates are taken as the unweighted averages of the attributes measured at the elemental level. In
practice, the attributes measured at the aggregate level and applied to represent the utility of aggregates in
the OMNL are weighted averages of the contained elemental attributes. Typically, the aggregate averages
in this context are weighted by the populations associated with individual elementa) alternatives as would
be the case with economic variables such as wages. With the exception of 2 perfectly even population
distribution, the unweighted average of atributes relevant to 6 and the weighted average of the OMNL
will not be the same. Of course for variables which cannot be related to choice-makers, such as climatic
attributes, the concept of a weighted average makes little sense. This discussion highlights another potential
difficulty with the OMNL, namely that the elemental altematives which contribute most to some weighted
average of appropriate variable types may not be the ones which provide the likely point of maximum
utility for a given choice-maker.

To conclude this section , it should be mentioned that to the knowledge of these authors, no
empirical study has utilized the heterogeneity and size effects in the manner advocated above!2. In the
centext of a full nested logit model of housing choice, Fischer and Aufhauser (1988) do acknowledge
the presence of a heterogeneity effect in the choice of dwelling units within census tracts, They do not
acknowledge though that the same idea also applies to the higher levels of their model where the spatial
units are more aggregated. For that matter, it does not seem widely known that the theory behind HETRO
transcends the field of intra-urban housing choice and that there is a heterogeneity effect to be considered
in any spatial or non-spatial choice problem where the alternatives are aggregations of perceived elemental
alternatives. The approach seems particularly applicable in problems of inter-regional choice such as human

migration or industrial location.

MSince the paper on which this chapter is based was first written, papers have been found, such as Parsons and Needleman (1992)
which come closer to the form of the aggregated model. These are discussed in detail in Chapter 2. Nevertheless. the statement

made here, to the best of our knowledge, rematns valid.
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4.3 Estimation of the Maximum Utility Model

In this section the estimation procedure for HETRO is outlined. Also, distinctions with the
estimation normally used for the OMNL are highlighted. The proc.dure established in this section is

utilized in the simulations which follow.

The likelihood function for L aggregate zones and N observed choice-makers is:

N L
LB, u) = [] I Pes) ®

n=] J=1

where:

¢ (3 is a vector of parameters that enter the systematic utility V, ,Jﬂ

e p is a vector of parameters representing (u', 42, ..., u*)

e Y, is a2 dummy variable defined as 1 when decision-maker n is observed to choose aggregate .J and
0 if not

The log-likelihood function is:

N L
LBp) =Y > YihP(J )

n=1J=1

A suitable estimation procedure must identify the values of 3 and g that maximize £*(3, u). Endogencus
estimation of g complicates the estimation procedure considerably. Since the focus of this paper is not on
estimation, it is accepted that the values of u are specified exogenously. Discussion on their endogenous

estimation is reserved for Chapter 5. Bearing this in mind, the log-likelihcod function has a maximum

where:
oL (B) _
B 0 (10)
The first derivative of £*(3) with respect to the kth parameter is:
3L (B) ~n~_Yd 9P, () "
AR MW )

n=1J=1
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In general, the partial derivative of a logit probability with respect to 5, is:

8P, () av:; av‘?
=P (J . (12)
55— =P Z
Now for OMNL, the systematic utility V;7 is given by the mean utility term:
Zﬁk Kink (13)
which has the partial derivative:
vy o
=X, 14
aﬁk ink ( )
Substituting 14 into 12, the partial derivative of the OMNL probability is obtained:
L
ap,
Bﬁi) PoJ) [ - Z e } (15)
The equivalent of 14 for HETRO is:
A ) .
v Z(Xijnk- ink) €XD l: Zﬂi ijnl= ini)]
in o =1
Be =X g 2 T (16)

Zexp [ ’ Zﬁ: ignl= mi)‘l
The derivative 8P, (J)/88, for HETRO is obtamed through the substitution of 16 into 12.
Given the partial derivatives of the HCTRO probabilities, the iterative solution is no different
from that of OMNL. Cramer (1991) advocates the use of the method of scoring, a gradient technique similar
10 the Newton -Raphson approach. Like other methods in this family, the gradient vector q = 3£*(3)/88.
also known as a score vector, and a direction matrix must be calculated at each iteration. The non-
linear system of equations defined by setting g equal to zero must be solved iteratively. A Taylar series
approximation of q{3) around 8’ in the vicinity of 3 is utilized:

a(B) =~ q(8) + H(B')(B - #') (17

Y4Here the derivative of the aggregale systernatic utility of the aggregated model is taken with respect fo the expression in 7. In

Appendix 2. il is shown that a more concise expression is obtained if the derivative is taken with respect to the systematic utility in

4,
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where Hy, = 82L°(8)/(88.05;) represents an element in the Hessian matrix H of second derivatives.

Since q(B8) = 0, 17 can be rearranged to yield:

B=f -H(B)'q4) (18)

When this approximation is applied repeatedly in the vicinity of the optimum, with 3 being substituted for

B', convergence should occur. This forms the basis for the Newton-Raphson algorithm expressed as:

Bey1 = By — H(B,) 'a(B,) (19
With respect to either OMNL or HETRO. the most convenient expression for each element of q is:

az' B) ARSI N
A 2‘;;[} -P.(J dﬁk (20)

which is obtained when 12 is substituted into 11 and the result simplified.
The method of scoring differs from the Newton-Raphson approach in that the information matrix
replaces the Hessian. Since the asymptotic variance-covariance matrix of 3 is directly related 1o the

information matrix, this replacement is useful. The expression for any element of the information matrix

is:

N
_ - 1 6Pn (J) 6}:" (J)
Qu = Z =« P, (J) 8P as

(25

where 12 is substituted into 21. Since 16 for HETRO is quite different from 14 for OMNL, the resuits for
Qx will also differ. Because the information matrix is given by —E[H], the negative expectation of the

Hessian, the Newton-Raphson sequence of 19 is revised:

Bir = B+ (EMH(B,)) " a(B,) (22)

McFadden (1974) has shown that for OMNL, the Hessian matrix will be negative definite under all
but extreme circumstances. This implies that the information matrix should be positive definite. After

extensive experimentation with simulated data we conclude that the convergence success rate is almost as
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high for HETRO with g exogenous as it s for OMNL. As will be shown in future work, this success
rate is considerably lower when pt is endogenous. A modified estimation procedure is needed in such
circumstances.

An important issue affecting the cbnvergence of HETRO is the possibility of high comrelation
among the different destination attributes. Such attributes, which are typically used in spatial choice models
to specify utilities, and which do not vary across individuals, can potentially create dependencies in the
information matrix. In the cases where convergence does not occur, it is likely that the information matrix
is near singular. Clearly, it is critical to thoroughly screen destination attributes, and any interaction terms
related to them, beforehand. It is suggested that a technique such as principal components analysis might
be applied in situations where many peneric destination variables are used. By utilizing the significant

principal components, most of the variance is accounted for without risk of multicollinearity.

4.4 Model Specification

To an extent, specification of the aggregated modei depends on whether the interaction data are
aggregated or disaggregated across choice-makers which is a problem distinct from spatial aggregation.
Typically, the variables used to specify utilities are classified as: destination attributes, measures of distance
and socio-economic individual characteristics. The latter category is prevalent with data that are totally
disaggregated across choice-makers while the first two categories are relevant to both aggregation levels.
In this section, we consider differences in models which are aggregated spatially but may or may not be

aggregated across decision-makers

4.4.1 Specifications with Data Aggregated Across Choice-makers

Several studies of human migration utilize logit models with interaction data aggregated across

both choice-makers and destinations (e.g. Anderson and Papageorgiou (1994), Day (1992)). While there is
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no question that the true utilities choice-makers have for a particular destination are highly variable, the use
of aggregate data precludes the diﬂ'el:entiation of systematic utilities among choice-makers originating from
the same zone. In essence, such a model works on the premise that the ‘average’ individual can be used
as representative of all individuals from a given origin. Distance is one variable type which does introduce
variation in systematic utilities across decision-makers since it can be used to segment the population based
on the zone of origin'®. A similar approach is the use of so-called ‘social distance’ variables.

An issue of some importance is the use of alternative-specific versus generic specification tech-
niques. The former implies that for a given variable, the marginal effect on utility of a fixed change
in this variable differs across alternatives, while the latter implies that the marginal effect is constant.
Alternative-specific specifications of distance variables and destination variables can be problematic. With
respect to distance, there is the issue of whether it is theoretically vaiid to allow the friction-of-distance
to vary across destinations. Are differences in parameters a product of the fact that distance interacts with
destination attributes or does the friction-of-distance vary? Some argue that there is no single valid measure
of the friction-of-distance (Lo, 1993). Alternative-specific specifications of destination attributes can cause
problems in that each parameter associated with this variable type implies one fewer alternative-specific
constant that can be used (see Chapter 2). If there are more than L — 1 such parameters, a model becomes
indeterminate since it is no longer possible to measure utility in relative terms.

With respect to HETRO, distance variables must be measured at the sub-aggregate level. In so
doing, the systematic utility of a prospective aggregate destination from a given origin will tend to depend
on the closest elemental zone within the aggregate, not the average distance to all elemental zones. In a

completely homogeneous study area, we would expect people to choose the closest elemental altemative

151n a model of destination choice, it is possible to specify origin characieristics in the alternative-specific manner associated with
socio-economic individual variables. The main problem would be that in a mode) with 25 altenatives, up to 24 parameters could in
theory be associated with a given origin characteristic. Clearly, this approach does not result in parsimonious models and ofien it is

impossible to develop reasonable hypotheses about which subsets of alternatives should be constrained to the same parameter.
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within the aggregate. That people do not do this in reality reflects the fact that other factors are at work
which ought not be confused with the friction-of-distance.

Destination attributes can be measured either at the aggregate level or the sub-aggregate level.
Variables associated with, for example, climate or employment are really sub-aggregate phenomena which
can never be properly captured by the OMNL. Their values fluctuate within aggregates and hence should
introduce variability into utilities. Other attributes such as regional tax rates are constant across a given
aggregate. Since there is no intra-aggregate utility variability introduced by such variables, they are

specified as they would be in OMNL.

4.4.2 Specification Issues With Micro-data

Observations in micro-data are at the individual choice-maker level. Such data usually incor-
porate variables describing the socio-economic characteristics of decision-makers and are thus richer in
information content than aggregate data sets. With the help of such variables, it is possible to differentiate
the utilities of individual choice-makers or population segments and capture the heterogeneity of tastes
in the population. As in the case of aggregate data, however, destination attributes do not vary across
decision-makers and act as substitutes for alternative-specific constants.

Socio-economic individual characteristics available in micro-data are specified in an aiternative-
specific manner since such variables will typically affect the utilities associated with different destinations
in different ways. The marginal contribution to utility of a decision-maker’s income, for example, might be
positive for one destination but negative in another. However, since utility is a relative concept in the logit
model, some spatial unit must act as a zero utility reference against which the utilities of other alternatives
are compared. The option is available to specify both OMNL and HETRO in this manner although the
number of parameters may proliferate to unacceptable levels if there are many spatial alternatives.

A difficulty in using this approach for HETRO is that the socio-economic variables can be
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used to differentiate utilities only on an aggregate alternative basis. One might reasonably expect that a
socio-economic variable will affect the perceived utility of elemental alternatives within the same aggregate
quite differently. However, since the choice behaviour is unobserved at the elemental level and since the
number of elemental alternatives is likely unmanageably large, alternative-specific specifications at the
sub-agpregate level are not feasible,

An alternative means of introducing variability into the elementa! utilities associated with socio-
economic characteristics is to specify these variables interactively with destination attributes. This approach
is appealing in the sense that utilities are modelled as a matching of decision-maker characteristics with
those of potential destinations. It has been utilized by Liaw and Ledent (1988) and Liaw {1990) in studies
which interacted categorieal socio-economic variables with destination attributes. There is, however, no
practical or theoretical reason that this cannot be done with continuous socio-economic variables (see Thill

and Van de Vyvere, 1989). A variable of this type is defined as:

Z =X X! (23)

“ign 2

where X, is the observed value on the socioeconomic variable for individual ». at origin 7, and X is the
value of the destination attribute at elemental aiternative j in aggregate J.

An interaction variable such as Z,-Jj,‘, can be specified as generic in the context of one aggregate
alternative since the same parameter will apply to all elemental alternatives within this aggregate. However
it can be specified as alternative-specific across aggregates meaning that elemental altematives in different
aggregates will be associated with different parameters. By allowing this altermative-specific specification
of a generic interaction term, one captures essentially the same effects as would be obtained by specifying
the socio-economic variable alone in an alternative-specific manner at the aggregate level.

The usefulness of this interaction form, however, is that different choice-makers can be associated

with different levels of utility heterogeneity within aggregates. Given a single aggregate and with all things
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equal, the choice-maker in the sample with the minimum value of X, will necessarily be associated with
less heterogeneous values of Z}},, in 23, and therefore V,],,, than the choice-maker with the largest value.
Note that it might be necessary to transform the socio-economic variable in some circumstances since

choice-makers associated with the smallest value. not the largest, might perceive the greatest amount of

utility heterogeneity,

4.5 Simulations on the Effect of Spatial Utility Heterogeneity

4.5.1 Description of the Simulation Method

The purpose of this section is to illustrate through simulations the model specifications just
discussed and to demonstrate that as the heterogeneity of aggregate choice units increases, so does the
potential bias of parameters estimated through the OMNL. In parallel, it will be seen that HETRO is not
subject to similar problems. To address these points, a Monte Carlo procedure is utilized. It should become
evident that the mean utility of an aggregate. on which the OMNL bases its predictions, can become a
minor determining factor in how decision-makers szlect aggregates,

There are four types of simulations under study which can be classified on the basis of two
criteria. The first is whether the variables are associated with a micro-data model or a model in which
choice-makers are aggregated. The simulations with aggregate data are generated with a distance variable
and a destination attribute as is typical in such 2 model of migration. The simulations with micro-data
arz generated on the basis of an interaction between a socio-economic individual characteristic, unique to
each choice-maker, and a destination attribute, The second classification criterion is based on whether
the altenative whose utility variability is altered has the highest level of mean utility or not. It turns out
that the biases in OMNL differ if a heterogencous aggregate has lower mean utility than other aggregates

as compared to situations where the heterogeneous aggregate has the highest mean utility among all
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agpregates.

Some other general points to be noted about the simulations are as follows:

s A bottom-up approach is used. That is, we generate true utilities at the elemental level and assume
that the actual utility of an aggregate for that decision-maker is given by the largest of the contained
elemental utilities. It is important to note that the aggregated model is not directly used to generate
the true utilities at the aggregate level.

e The effects of mean utility and aggregate alternative size are controlled by maintaining the same set of
mean utilities for all levels of heterogeneity and by assigning the same number of elemental alternatives
(four) to each aggregate.

o It is assumed that the ratio p/u” is exogenously set to one for all aggregates. Hence the random error

components of the elemental utilities within and between aggregates are independently generated and
therefore uncorrelated.

o It is assumed that the attribute value for an aggregate alternative is simply the mean of the constituent
elemental attributes.

o Note that even though we generate data which are ‘aggregate’ across decision-makers in the sense
that systematic utilities are not differentiated on the basis of socio-economic variables, the true utilities
which determine the choice shares are generated one decision-maker at a time.

A precise description of the data generation procedure is as follows;

e 1) A data set of attribute values is generated for a problem consisting of three aggregate alternatives
each containing four elemental alternatives within. The data set is assumed to contain 50 choice-makers
positioned at five different origins. None of the five corresponds 1o any potential destination. The data
consist of a destination attribute, a socic-economic individual variable, the interaction between the two
and a measure of distance to the given potential destination. The destination attribute values, regardless
of the prevailing level of heterogeneity, are adjusted to conform with predefined mean attribute values
in the aggregates.

e 2) For the appropriate specification, systematic elemental utilities are defined as a linear combination
of the attribute values and known parameters.

e 3) Actual utilities for a given choice-maker, are obtained with the addition to the systematic utilities of
a Gumbel distributed error component having variance parameter y = 1 and hence a variance of 7% /6.

o 4) In accordance with theory, the chosen elemental altenative for a given individual is taken as the
one which provides the maximum utility of ali elemental alternatives in the system. Obviously, this
defines the chosen aggregate altemmative also.
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e 5) Steps 3 and 4 are repeated N times to correspond with the number of choice-makers in a given
trial. The observed aggregate altemative choice behaviour and the known variable and attribute values
provide the necessary information to estimate the unknown parameters of the two mode] types (OMNL
and HETRO) for that trial.

e 6) Steps 3, 4 and 5 are repeated appropriately to generate choice data for 100 trials at a given level of
heterogeneity. Preliminary work revealed that little was to be gained by employing a larger number of
trials.

» 7) In order to alter the utility variance within a single aggregate in relation to the other two aggregates,
the elemental destination attribute values in that aggregate are muitiplied by some common factor and
the result translated to maintain the same mean utilities across aggregates, The appropriate variances
are obtained through the identity Var(az) = a?Var(z) where Var(z) is the initial variance of the
destination attribute in the aggregate alternative and a is the necessary constant used to obtain the new
variance. Multiplying the destination attribute by some factor also affects the interaction term. Steps
1 to 6 are then completed for the new level of heterogeneity.

» 8) For each new level of heterogeneity (the variances tested ranged from 2 to 50) or new specification,
step 7 is repeated.

4.5.2 Results
45.2,1 Case #1: Aggrepate data specification; aggregate with variable heterogeneity does not

have largest mean utility

In this case, data are aggregated across choice-makers with the exception of distance which
introduces some variability into systematic utilities. The known parameter associated with distance is -0.1
and the parameter for the destination attribute is 0.3. The latter implies that spatial units with high values
on that attribute are perceived to have more utility than those with low values. The variance levels for the
destination attribute in aggregate 1 range from 2, which is smaller than the corresponding variances in the
other aggregates, to 50 which makes aggregate 1 far more heterogeneous than all other aggregates with
respect to this attribute. All values in Table 4.1 represent mean results from the 100 trials on each model
and at each level of variance. For a given variance level, the top row contains results for HETRO while

the bottom row has results for OMNL. The average parameter estimates, t-scores, predicted standard errors



Table 4.1: Aggregate data; Variable aggregate does not have highest mean utility

(VAR)

2 HETRO
OMNL

5 HETRO
OMNL

10 HETRO
OMNL

15 HETRO
OMNL

25 HETRO
OMNL

50 HETRO
OMNL

(VAR)

2  HETRO
OMNL

5 HEIRO
OMNL

10 HETRO
OMNL

15 HETRO
OMNL

25 HETRO
OMNL

50 HETRO .

OMNL

B,

0.35
0.29

0.31
0.26

0.31
0.26

0.29
0.25

0.30
0.26

0.31
0.26

B,

-0.10
-0.08

-0.10
-0.06

-0.11
-0.06

-0.11
-0.04

-0.09
-0.00

-0.11
0.06

1.98
2.26

210
2.08

285
2.09

3.38
1.99

4,67
203

6.54
1.90

-2.48
-1.85

-2.42
-1.58

-2.59
-1.39

-2.54
-1.08

-2.18
-0.04

-2.06
1.50

0.17
0.12

0.14
0.12

0.11
0.12

0.09
0.12

0.06
0.13

0.05
0.13

se

0.04
0.04

0.04
0.04

0.04
0.04

0.04
0.04

0.04
0.04

0.05
0.04

0.12
0.11

0.11
0.09

0.13
0.08

0.13
0.07

0.17
0.06

0.33
0.07

224

268

347

shares

23.1
21.5
20.1
18.8
16.0

10.4

Table 4. 2: Aggregate data; Variable aggregate has highest mean utility

Ps

0.30
0.36

0.29
0.39

0.30
0.46

031
0.51

0.31
0.64

0.31
0.91

B,

-0.10
-0.08

-0.10
-0.07

-0.10
-0.07

-0.10
-0.05

-0.11
-0.04

-0.10
0.01

2.52
2.88

307
297

4.04
3.28

4.85
3.41

5.83
365

6.70
364

-2.39
-1.98

-2.27
-1.76

-233
-1.65

-2.22
-1.26

-2.17
-0.98

-1.48
0.15

0.11
0.12

0.09
0.13

0.07
0.14

0.06
0.15

0.05
0.17

0.05
0.25

se,

0.04
0.04

0.04
0.04

0.04
0.04

0.05
0.04

0.05
0.04

0.06
0.05

0.13
0.12

0.15
0.13

0.19
0.16

0.23
0.18

0.31
0.24

0.48
0.37

23.0

25.0

273

30.1

336

403

shares

18.5

16.9

158

13.6

11.5

6.3

112

9.9

9.9

9.1

88

7.2

4.9

8.4

8.1

6.3

6.3

4.8

34



and rho-squared (p?) goodness-of-fit statistic are displayed. The latter is calculated as:

LB
z+(0)

=1

where £°(3) defines the value of the log-likelihood function at convergence and £*{0} defines its value
with a naive model of zero utilities. The column labeled ‘share’ represents the average number of choice-
makers out of the group of fifty, who choose aggregate 1. The ‘true’ standard errors, which are given by
the parameter standard deviations from 100 trials, are not displayed because they are almost identical, in
this case, to the average standard errors derived from the variance-covariance matrix.

Initially, the first aggregate has slightly lower mean utility than aggregate 2 which is also
more heterogeneous. As the level of variance in the destination attribute of aggregate 1 increases, with
unchanging mean utilities, it becomes progressively more likely that altemative 1 is chosen as reflected in
the share column of Table 4.1. It is more likely to contain an attractive elemental alternative with regard to
the destination attribute and, therefore, also contain the point of maximum utility in the system. On a mean
utility basis the other aggregates are more attractive than 1, but this fact becomes increasingly irrelevant
to the utility maximizing choice-maker.

At all but the smallest level of variance, there is a consistent downward bias in the OMNL
parameters. At higher levels of variance, the OMNL mode] is unable to reconcile the patterns implied by
the mean utility with that of the choice shares. On a mean utility basis, it makes no sense that aggregate
1 is more often chosen, hence the parameters of variables used to predict the mean utilities become less
significant. Even though there are no huge biases in parameters, the fact that OMNL does not include
the corrective terms is very damaging to its goodness-of-fit. It is noteworthy also that while the changing
variance affects only the destination attribute directly, with all distances being fixed, there are indirect

effects which reduce the significance of the distance parameter. In addition, OMNL consistently



Figure 4.1: Simulation Resulta: Sampling Distributions

a. case 2: variance = 5.0

b. case 2: variance = 15.0

c. case 2: variance = 50.0
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underestimates the significance of the two variables and, for the destination attribute, is generally less

efficient in relation to HETRO.
4522 Case #2: Aggregate data specificaticn; aggregate with variable heterogeneity has largest

mean utility

This simulation differs from Case #1 in that aggregate 1 has the largest mean utility with regard
to the destination attribute. Hence, for all variance levels, aggregate 1 is more often chosen than the other
alternatives. In Table 4.2 we witness the opposite bias in the OMNL. With increasing variance, the OMNL
destination attribute parameter begins to display a substantial upward bias. The sampling distributions
for the destination attribute are displayed graphically in Figure 4.7/ (a-cj. At higher variances, the extra
choices which accrue to aggregate | are on the basis of an increased heterogeneity effect which in twm
increases the likelihood that alternative 1 contains the point of maximum utility. From the perspective of
OMNL, however, the prevailing choice shares indicate that the destination attribute under consideration is
very important, implying that too much significance is associated with the corresponding parameter and
therefore the impact of mean utility. HETRO properly separates the heterogeneity effect from the mean
utitity effect and consistently produces unbiased and efficient estimates of the two parameters. Apparently,
OMNL so overestimates the effect of the destination attribute that the impact of distance is judged to be
minimal, resulting in a severe mis-diagnosis of its significance. Again, HETRO resuits in better fitting

models.
4.5.2.3  Case #3: Micro-data specification; aggregate with variable heterogeneity does not have

largest mean utility

This scenario differs from those of Case #) and #2 since the use of micro-data is assumed in
which information relating to specific choice-makers is available. 1t is like Case #1 in that aggregate 1 has
lower mean utility than aggregate 2. While destination attributes and distance variables could be included

in the specification of Table 4.3, a one variable model in which a destination attribute interacts with a



Table 4.3: Micro-data; Variable aggregate does not have highest mean utility

(VAR)

2 HETRO
OMNL

5 HETRO
OMNL

10 HETRO
OMNL

15 HETRO
OMNL

25 HETRO
OMNL

50 HETRO
OMNL

(VAR)

2 HETRO
OMNL

5 HETRO
OMNL

10 HETRO
OMNL

15 HETRO
OMNL

25 HETRO
OMNL

50 HETRO
OMNL

Bs

11
0.36

1.05
0.76

1.05
0.73

0.98
0.67

1.02
0.59

1.02
0.52

Table 4.4; Micro-data; Variable aggregate has highest mean utility

By

1.03
1.29

0.99
1.50

1.03
1.94

1.02
2.31

1.03
3.06

1.06
5.08

4

229
2.66

268
2.46

4.13
239

4.90
224

6.19
2.03

6.53
1.85

341
3.65

4.33
3.86

5.39
4.06

5.89
4.21

6.20
437

5.86
436

LSV )
0.46 0.49
0.32 0.33
038 043
0.30 0.26
0.25 0.25
030 021
0.20 0.19
0.30 0.22
0.16 0.16
029 016
0.16 0.18
028 0.09

§ epnd

0.30
0.35

0.23
0.38

0.19
0.47

0.17
0.54

0.17
0.69

0.19
1.20

s ek"

0.31
0.39

0.19
0.38

0.21
0.69

0.17
0.70

0.17
0.86

0.22
2.13

pl

0.10
0.09

0.11
0.07

0.17
0.06

0.21
0.06

0.35
0.04

0.57
0.03

0.22
0.2]

0.26
0.25

0.36
0.32

0.43
0.38

0.55
0.48

0.1
0.64

206

238

277

304

359

41.9

307

331

364

385

414

44,9

shares

220

193

16.6

14.2

10.2

5.6

shares

14.5

12,5

9.7

81

59

33

7.4

6.9

57

53

39

25

4.9

4.4

39

34

27

1.7
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socio-economic characteristic is utilized in order to focus on the behaviour of this type of variable. This
interaction variable has a true parameter of 1.0. Therefore, a choice-maker who has a large value on the
socio-economic variable will perceive more heterogeneity in intra-aggregate utility than someone with a
small score. The positive true parameter implies that this interaction adds to utility, regardless of the level
of the socio-economic variable, rather than acting as a disutility.

The results in Table 4.3 indicate that OMNL provides biased estimates at any level of variance
in aggregate 1 although the performance becomes progressively worse as this variance increases. The bias
in the interaction parameter behaves qualitatively the same as did the destination attribute parameter in
Table 4.1: when the choice shares are not explainable with the mean utilities, the OMNL parameter will
be biased downward. In Table 4.3 the true standard errors exhibited in 100 trials are compared with the
average of the predicted standard errors because there are some substantial differences. In particular, the
predicted standard errors of OMNL are consistenily larger than the true ones indicating that there is a
tendency to underestimate the significance of this interaction parameter. Interestingly, as can be seen in
Figure 4.1 (d-f), OMNL generally provides a more efficient estimate than HETRO albeit a substantially

biased one. Nevertheless, HETRO by far produces superior fitting models'®.
4524  Case #4: Micro-data specification; aggregate with variable heterogeneity has largest

mean utility
This case employs the same specification as Case #3 but the mean utility in aggregate 1 is
always larger than in the other two aggregates. As the ‘share’ column in 7able 4.4 indicates, the number

of choices going to aggregate { is farger than is the case in Table 4.3 because of the differing mean utility

18The fit of the OMNL would be improved if a full set of altemative-specific constants were included. Constants are intended
to absorb all systematic variation not captured by variables in a model. Since this is a controlled environment, however, we know
that there is no other systematic variation to capture, Hence there is no sound theoretical argument to be made for the inclusion of

constants in the OMNL specification,
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effects. At high levels of variance in aggregate 1, the biases in the OMNL estimate of the interaction
parameter become quite drastic. Again, as was the case in Case #2, the bias is upward since OMNL
is over-estimating the impact of the mean utility effect while the inflated standard errors are indicative
of considerable inefficiency. Moreover, the predicted standard errors for OMNL are biased downward
resulting generally in over-estimates of significance. In contrast to Case #3, where the biases were not
50 severe, the poor parameter estimates do not compromise the overall goodness-of-fit very much. It can
be concluded that the general pattern of biases in the interaction parameter estimate is similar to the type
occurring with a destination attribute. In comparison, the performance of HETRO is good in all aspects

and at all levels of variance.

4.6 Conclusions

The main contribution of this study has been to illustrate the potential importance of a utility
heterogeneity effect in properly characterizing the utility of an aggregate spatial unit. The notion that sub-
aggregate attribute information should be applied when the available interaction data are at the aggregate
level is a new perspective also. While it has long been known that there are size effects which need to
be associated with aggregates, this paper represents an initial attempt at illustrating to rggional scientists
the usefulness of a heterogeneity term. The proposed theoretica! framework also provides the customary
size effect but one which does not emerge in the ad hoc manner common to many empirical studies. The
theoretical principle under which these corrective terms are derived is simply that decision-makers seek
the point within an aggregate which provides them the maximum utility. With the ordinary multinomial
logit model, parameters are incorrectly estimated on the basis of some measure of average utility within
aggregates rather than through maximum utility.

The simulations here have shown that this theory of choice among aggregates performs very
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well. The proposed model has excelled in a variety of circumstances whereas with the same data, the
ordinary multinomial logit model suffers from potentially severe biases and inefficiencies, especially in a
heterogeneous system. In particular, the parameters associated with destination attributes and the interac-
tions of destination attributes with socio-economic variables are prone to downward bias when the most
attractive aggregates on a mean utility basis are less heterogeneous than other aggregates, The parameters
are biased upward when the heterogeneity of aggregates tends t0 complement the differences in mean
utilities. Also, the goodness-of-fit of the ordinary multinomial logit model is often seriously compromised
in relation to the proposed model.

Considerable work lies ahead in this area of research. Much of it relates to the estimation and
interpretation of the ratio 2/’ which is an index of the degree to which elemental alternatives within some
aggregate are perceived as similar and as such it can be described as a spatial autocorrelation parameter.
The endogenous estimation of this ratio is a considerably more complicated optimization problem than
that of the exogenous treatment applied in this paper (see Chapter 5). Ultimately, it will be necessary
to examine the sampling distributions of u/p”’ under different circumstances to assess its reliability in

remaining within the theoretically defined (0, 1] interval.



Chapter 5
The Aggregated Spatial Choice Model: A

Comparative Analysis of Estimation Methodolo-

gies

5.1 Introduction

In spatial choice problems, destinations are often aggregations of elemental zones considered
by decision-makers. For example, in a scenario of inter-regional migration. researchers may attempt to
model movements between states or provinces while ignoring the fact that cities within regions are the
actual units considered as potential destinations by migrants. Typically, employment of this approach
results from the available choice data lacking sufficient spatial resclution. This problem can be resolved
through application of the proposed aggregated spatial logit model. The superiority of this model over
the Ordinary Multinomial Logit model (OMNL) or the gravity model stems from the fact that aggregate
attractiveness is measured by an estimate of its internal maximum utility and not some measure of average
utility. Hence the aggregated model, unlike the OMNL, is consistent with utility maximization theory and
is an approach which acknowledges sub-aggrepate variation in the attributes that determine utility. It is

important to emphasize that the attributes used 1o explain a spatial choice process do not need to be at the
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same spatial aggregation level as the choice data. The aggregated spatial choice model exploits this fact
while practitioners using the OMNL model have overlooked it.

Important theoretical issues surrounding the aggregated model have been covered elsewhere
{Lerman, 1975; McFadden, 1978; Chapter 3). This chapter, however, focuses on the practical issue of its
estimation which is decidedly more complex than is the case with the routinely applied OMNL model. The
added complexity is due to parameters which determine the level of perceived independence of utilities at
the sub-aggregate level. To some extent the past dominance of the OMNL and the basic gravity modet in the
spatial choice context is attributable to their relative simplicity and ease of application. with software being
widely available for each. Also, these models have less onerous data requirements than the aggregated
mode] which requires collection of attribute data and measurement of distances at the sub-aggregate level.

The outline of the chapter is as follows. The next section presents a brief overview of the
theoretical background for the aggregated logit model, outlines the nature of the estimation problem,
and compares it to estimation of the nested logit model with which it has similarities. The following
section provides an examination of estimation techniques suitable for problems of unconstrained non-linear
optimization while a final section evaluates these techniques in the context of the problem at hand using
Monte Carlo simulations. A concluding section summarizes these results and their implications in assessing

the best approach for estimating the parameters of an aggregated spatial logit model.

5.2 Background

S5.2.1 The Theory of the Aggregated Model

The theory surrounding the aggregated spatial logit model has been discussed previously but
to facilitate discussion in later sections, the main points are outlined here. Initially we focus on the

conventional OMNL model before illustrating how the aggregated model is an important generalization
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suitable for problems with aggregate spatial units.

Consider that the study area is divided into L aggregate zones. Each aggregate zone J €
L

{1,2,..L} is in tum divided into M7 elemental zones. with ZM 4 = M being the total number of
J=1

elemental zones. The latter are the theoretical units considered by decision-makers in their spatial selection

process. For the OMNL model a decision-maker » originating in zone i is assumed to associate with
aggregate J a utility level Uz . This utility. although deterministic from the decision-maker’s viewpoint, is
stochastic for the analyst. It is therefore written as the sum of a systematic component V. and a random
component ¢f,: U7 = Vi + €. Under the assumptions that decision-makers will select the aggregate
J € {1,2,...L} that is associated with the maximum U},, and that the error terms ¢, .7 € {1,2,...L} are

n? ins !

identically Gumbel distributed with parameters {0, A), the OMNL is derived as:

=

exp | ==

A

Pold)= 4=
z exp [V‘—;]
K=1

where P, (J) is the probability that decision-maker n selects aggregate alternative .J. Parameter A is related

()

to the variance of the error terms as Var(e/,) = (7A)?/6'7. This parameter, which must be fixed prior
to estimation, defines the scale of the utilities. In practice, it is set equal to the arbitrary value A = 1.
This implies Var(el) = #n2/6. The OMNL is hence characterized by error terms which are spatially
homoscedastic.

In the case of the aggregated logit model, utilities are defined for each elemental alternative
J within aggregate J as: U;‘J"" = V,.:?-’ﬂ +e) + e;’jn. The utility of an aggregate is represented by the
maximum elemental utility within it: U, = max  UJ, = max (V] +el )+¢) . Thus, the

je{n2,. M2y T jefiz..my UM

deterministic utility V7 of the OMNL is replaced with the stochastic expression je{lrrzlz.ifth }(Mju + r;’J").

17in Chapter 5, the term A is utilized for the first time. it is simply the inverse of u as defined in Chapter 3. The term At s

cquivalent to %, also first used in Chapter 3, and is simply a more compact way of representing the ratio when 2 15 fixed to 1.0
I3
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The more general errors: €, + €7, for all j € {1,2,...M"7} and J € {1,2...L}, are assumed to be
identically Gumbel distributed with parameters (0,1). As in the OMNL, this assumption implies A = 1.
Note that ¢}, applies to all elemental alternatives in aggregate .J and is assumed to be independent of
the errors f;ﬂ-n, i € {1,2,..M7} associated with them. Thus, the variance of an elemental utility is

Var( “in + Etgn) = VG.T(Gm) + Var(fljﬂ) =% /6

J.
iin

Within an aggregate J, error terms ¢, are independent and identically Gumbel distributed with
parameters (0, A7). This implies that Var(e] ) = (727)2/6 and hence Var(e],) = 72/6 — (7A7)?2/6.
Furthermore, the total utilities U;j-nof elemental alternatives within aggregate J share the same unobserved
component ¢, and are not independent. One can show that for any two elemental alternatives j, & in J

: Cov{U . Us,) = Var(¢l,). Elementa) alternatives that belong to different aggregates are, however.

independent. The correlation coefficient between elemental utilities that belong to the same aggregate can

be identified as corr(U7

wint Ul ) =1—(A7)2 If j and k belong to different aggregates then this comelaiion

is zero.

Under these circumstances the aggregated model is expressed exactly as in equation 1. The
distinction is that the systematic utility V; of an aggregate J is now taken as a function of the systematic
utilities of the elemental alternatives in it:

ad
V=’ anexp[ "“ 2

The difference between the two models can be seen more clearly if one rewrites 2 as:

v
Vil =V +A’In —-; Ze "“ "‘] + X InM! €)

Afrd
where V Z i7n is the mean systematic utility within aggregate J. Note that only in the absence

of aggregation, wnh M 7 =1forall J € {1,2,...L},does the expression for V;J reduce to the mean utility

=J . R . e .
Vin - In this case, V;/ is equivalent to the systematic utility given by the OMNL.
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In 3 it can be seen that quounting for aggregation introduces two additional terms into the
systematic utility of an aggregate. The second term on the RHS of 3 is non-negative and measures the
heterogeneity or variability of systematic utilitv within an aggregate. Intuitively, a heterogeneous aggregate
is more likely to contain the most attractive destination and hence should be assigned a higher utility, all
things being equal. The third term on the RHS of equation 3 is also non-negative and measures the size
of aggregate J in terms of the number of choice units. Predictably, larger aggregates are associated with

a higher level of systematic utitity although the extent to which this is true depends on A7 .

The uncertainty parameters A”,J € {1,2,...L} are identifiable through estimation and are im-

portant because they directly determine Var(e],) and Var(e;-’j,,) and have much to do with the relative

magnitudes of the size and heterogeneity terms. The allocation of variance in utility between r;‘;" and

€] is a direct measure of the level of correlation, or degree of perceived similarity, between any pair of

elemental total utilities within an aggregate. In general, the utility of an aggregate is decreased if it contains
highly correlated elemental utilities. Since by definition. we have that Var(e}, + r;f,,,) 2 Vur((;’m) and

hence that 72/6 > (7A7)?/6, and since A’ cannot be negative. as a scale parameter of a Gumbel, it must

bethat 0 < A’ < 1.

It is instructive to examine the two polar cases for Y. As X — 0, corr(UJ Us,) — L.
elemental uncertainty vanishes because Var(e;-g-ﬂ) — 0 and aggregate uncertainty attains its maximum
value: Var{e/,) — 72/6. For aggregate J the expected level of utility corresponds exactly to the largest of
the contained elemental systematic utilities. Since the identity of the aggregate’s ‘representative’ elemental
altemative is known with certainty, the size term in equation 3 vanishes as M7 is immaterial, while the
heterogeneity ierm reaches its maximum. If A7 — 1, then for any pair of elemental alternatives j and &
within aggregate J we have corr(U;‘J'-n, U7} — 0. This is equivalent to the aggregate error ¢, vanishing,

while the elemental variation in utility becomes large: Var(e],,) — 7?/6. Other things being equal, the

size term in this case attains its highest value and the heterogeneity term its lowest. The former occurs
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because with r;-g-n at its most unpredictable, many of the M elemental altematives could provide the true
maximum utility. As a result, the systematic utility of the aggregate is upgraded.

The differences between the widely used OMNL model and the aggregated logit mode] are not
only theoretical. Specification of V};’n obviously requires collection of independent variables at the ele-
mental level. While the aggregated model is thus more data-intensive than the OMNL, it makes use of
micro-geographical data that the OMNL ignores. Also, in applications of the two models, identica’ aggre-
gate choice information and model specifications will, in general, produce different parameter estimates.

different relative levels of systematic utility V2, and different predicted choice probabilities. In addition,

in*

the aggregated model permits estimation of elemental utilities V;/, and elemental choice probabilities.

iin
More importantly, estimation of the aggregated model will yield estimates for A7, J € {1,2,...L}, which
as discussed in this section are parameters of primary importance for the process under study. The price

to pay for these benefits is the need for a more sophisticated estimation procedure.

522 The Aggregated Model Versus the Nested Logit Model

While we have highlighted the superiority of the aggregated madel over the OMNL for prabletms
with aggrepate spatial units, the actual estimation of the aggregated mode!l, in terms of difficulty, is often
more closely related to full-information estimation of the nested logit model. To undertake a full application
of the nested logit model, we would need choice information at the elemental level since the nested approach
is intended to model elemental choices. When such data are not available, the aggregated logit model must
be used. Hence, in this section we compare estimation of the nested logit to that of the aggregated model.

As is the case with other discrete choice models, parameters for the aggregated mode! are

obtained by maximizing the log-likelihood function:

N L
LB =) YilnPu(J) 4)

n=1J=]

where:
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(3 is a vector of parameters that enter the systematic utilities V], j € {1.2,...M’},J € {1.2,.... L.}

o A is a vector of parameters representing (A!, X%, ..., AL)

e Y is a binary dummy variable which is 1 if decision-maker n selects aggregate J and 0 otherwise.

The corresponding function for the two level nested logit model is dependent on the same

variables:

L*(B.A) Yin In P (j)

ijn

I
M=
M=

™

N L N oL oM
= Y VinP+Y Y S Vi mRG1D
n=J1.J=1 n=1J=1 3=1
where the newly introduced elements are:
» PJ{j), the overall probability that elemental alternative j in aggregate J is chosen.

e P.(j | J}, the conditional choice probability of selecting j in .J, provided .J has been selected

e Y, which is 1 for the single elemental alternative in the study area that is chosen and 0 otherwise.

MJ
Because 3 _ Y, = 17, the occurrence of Y/, = 1 defines the aggregate for which ¥} = 1.
J=1

The first expression in 5 illustrates the ultimate objective of the nested logit: prediction of
elemental probabilities. Since P/ (j) = Po(J)P.(j/J}, the log-likelihood function can be split into two
components to allow meaningful comparison with the aggregated model. Comparing 5 with 4 we observe
that the nested logit shares the marginal component of the log-likelihood function with the aggregated
model but has an additional component given by the conditional model. The conditional segment of course

cannot be implemented in 4 because Y,

is unknown when the interaction data are at the aggregate level.
The expression for P,{J), given in 1 and 2 for the aggregated model, also applies to the nested

logit model although specific results will differ since parameter estimation will clearly be affected by the
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presence of the conditional model. The complete set of conditional probabilities is:

Viin
exp ¥
Pa(j 1) = 75—

¥ (v
Yo | 2
g=1

Although the aggregated model does not actively employ P,,(j | J) in the optimization, alternative estimates

je{L2,. .M}, Je{1,2..,L} (6)

of these probabilities can be obtained after estimation using the elemental systematic utilities.

A prominent issue affecting the estimation of both models is the manner in which A are specified.
The importance of this issue for the aggregated model is reflected in Figures 5./ and 3.2 where graphical
representations of the log-likelihood surface are shown for a a single sample problem consisting of fictitious
choices among two aggregate spatial units. The two aggregates contain 3 and 6 elemental altematives
respectively. The same cheice data were used to generate each of the log-likelihood surfaces with distance
affecting the systematic utilities of all spaiial units as a generic independent variable.

Figure 5.1 depicts a log-likelihood surface for which A of the two alternatives are constrained to
equality implying that the function is dependent on two parameters: 3 and A. The greater concavity of the
surface with respect to the friction-of-distance parameter (/3) is consistent with the much smaller standard
error obtained for this paramelter in the estimation of the model. As is expected. there is a pronounced
discontinuity on the surface in the region where A — 0 and in fact, the surface is not defined in this
region. Note however that the surface is defined for values of A well outside the unit interval both in
terms of values larger than 1.0 and less than 0.0. Overall, obtaining the optimal values of 3 = —0.39 and
A = 1.31 for this problem is not difficult providing the algorithm is not started near the discontinuity. In
our experience, this conclusion applies in general to applications of the aggregated model with a single A,
irrespective of the number of elements in 3.

Figure 5.2 i\lustrates a conditional surface where A! and A? are unequal and 3 is fixed at —0.35.

Hence the data are the same as in Figure 5.7 but the specification differs. The optimal result for this model
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is Al = 0.79 and A2 = 1.02. it is not difficult to see that estimation of this model is more complex
since the surface now contains discontinuities along two dimensions. In the following section, we describe
optimization algorithms available to find the maximum on such surfaces. That discussion will be useful in

generating insights to further assess Figures 5.7 and 5.2

5.3 Estimation Techniques

5.3.1 Optimization Algorithms in General

The common theme among the different unconstrained optimization methods is that any twice
differentiable function should be reasenably well-approximated in the vicinity of an optimum by a quadratic
function. If this is true, then convergence is likely. Each of the approaches discussed below possess the
quadratic termination property which imply that a quadratic function in % variables will converge to the
optimal solution in no more than k steps (Avriel, 1976). Unfortunately, the aggregated logit model and
the nested logit model do not result in a likelihood function that is quadratic. implying that quadratic
termination cannot hold, A viable alternative though is the approximation of the likelihoed function by a
quadratic through the use of a second order Taylor series expansion.

Assume that the expansion takes place about the point defined by the current vector of parameter
estimates 3, which we take to include the parameters associated with explanatory variables as well as the

uncertainty parameters. For 3, ; in the vicinity of 8, :

8L (B,)
a8,

2 e
TP N sl L7 N N

LY(Begr) = L7(Be) + (Bry1 — By) (88, )

The objective is to find the values of the unknown parameters such that:
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aﬁ'(ﬁwl) ~ 5£'(,B'_) + 62£-(ﬁt
B 9B (8B,

which is simply a linear first order Taylor approximation of the true gradient at the point 8, , ;. Solving

)(ﬁt-n - Bt) =0 (8)

for B, q:

_ 82L"(B,)] " 9L (By)
Peia =P “[(aﬁt); ] B,

which for notational simplicity can be written:

Bes1 = By~ [Ht]—l Qe (9)

where 3, is a vector of k parameters, H, is the & x k Hessian and q, is the k& x 1 gradient vector.
The step in 9 defines the well known Newton-Raphson method in which both the Hessian and gradient
vectors are recalculated at every iteration . This technique has gained considerable prominence in discrete
choice modelling since it is straightforward and is extremely reliable in the context of the OMNL likelihood
function which McFadden (1974) has demonstrated to be globally concave. However, the Newton-Raphson
method is considerably less effective in problems which do not share this property. An improvement is
the introduction of some scalar £ to find the maximum improvement in the likelihood function along the

direction defined by [Ht]'l qe. The result is that 9 is written:

Bepr =8, -, H ' qe (10)

With or without the line search invoked by £, the Newton-Raphson method is recognized as being one of

the most demanding algorithms computationally. Furthermore, it requires that the starting solution be in

the vicinity of the optimum {Greene, 1990). Hence, this algorithm would not be the first choice for the
problem in this paper.

The gradient methods, of which Newton-Raphson is a special case, are defined when d; =

[Qt]‘1 q¢ represents the direction matrix, where the form of Q. depends on the particular technique. The
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simplest form is the method of steepest ascent in which Q¢ = I. A useful atiribute of this method is that
the optimal line search for each iteration is known beforehand as: §, = (;t—?_l"% The algorithm will tend
to perform better than Newton-Raphson at points far away from the optimum on a surface which is not
globally concave but will converge inefficiently in the region of the optimum since it does not possess the
quadratic termination property. Overall, this method would rank as less attractive than the Newton-Raphson

algorithm for the problem in this paper although it might be useful for an initial set of iterations preceding

a switch to some other method.

5.3.2 Methods Using Conjugate Scarch Directions

A critical matter in algorithms more refined than Newton-Raphsan is the concept of mutually
conjugate directions. Assume that we seek to optimize a quadratic function in &k dimensions (or in the case
of aggregated logit model some form of quadratic approximation to the true log-likelihood function). Any

quadratic function can be written in the simple matrix form:
/ 1 4
flx) ==a+bx+§xAx

where A is positive definite and symmetric. If two vectors y and z are found such that y'Az = (),
it can be said that y and z are mutually conjugate with respect to A. In other words, y is orthogonal
to Az which is the more general case of the well-known situation where A =1 and y is orthogenal to
z itself. This is a matter of great importance since any unconstrained optimization algorithm which uses
mutually conjugate directions of ascent in relation to A is quadratically convergent (Wismer and Chattergy.
1978) implying that the optimum for a quadratic function will be found in no more than k steps. Once
k mutually conjugate vectors are established, and if the function is quadratic, it is theoretically possible
to find the optimal point through a sequence of line searches along these vectors and then taking the best

result.

The concept of conjugate directions manifests itself directly in a family of algorithms. Powell’s
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(1964) method uses properties of conjugate vectors to develop a means by which conjugate directions
are established without need for any derivatives and where repeated line searches ultimately yield the
optimum. The conjugate gradient method accomplishes the same thing as Powell’s method in a manner
which requires the calculation only of functional values and gradients and hence is well-suited to automated
implementation. In particular, the Polak-Ribiere conjugate gradient method works on the basis of generating
successive mutually conjugate search directions until convergence occurs, something which is likely to

take more than k iterations when the actual function is not quadratic. The algorithm is such that the

—_ !
(cu‘ Q1) oy

qQyx—_19k-1
the direction at each iteration ¢ defined in this manner, a line search is carried out in this direction to

direction vector at each iteration is defined as: d¢41 = —q¢ + Byd, where By, =

find the largest possible increase in the function. Information from previous iterations is a necessity in
establishing a direction which is mutually conjugate to those previous. Overall, this method has obvious
computational advantages over Newton's method because the obstacle of calcuiating and storing a Hessian
matrix is removed. While the conjupate pradient methods perform better than the steepest ascent method,

they are most likely less effective than the family of Quasi-Newton methods to be outlined now.

5.3.3 The Quasi-Newton Methods

A Quasi-Newton or variable-metric method is also characterized by the search direction dy =
[Qc]™" q. where Q, is a k x k matrix which varies at each iteration and which may not be negative
definite or symmetric, especially in early iterations (Avriet, 1976). Typically, Qo might be set to the
identity matrix so that the first step would mimic that of a steepest ascent iteration. With repeated steps
an updating formula is applied which should eventually approach the Hessian matrix near the optimum.
Hence, at a point near convergence, a Quasi-Newton method should behave in a manner similar to the
Newlon-Raphson algorithm since both are essentially using the Hessian to calculate the direction. Quasi-

Newton methods, however, operate on the basis of defining directions which are mutually conjugate and
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hence are less likely to be led astray in regions far from an optimum unlike the Newton-Raphson method.
The Quasi-Newton method known as Broyden-Fletcher-Goldfarb-Shanno (BFGS) is examined in

this paper and is generatly recognized to be one of the best performers. It is characterized by the updating

formuta:

Qu = Qs + (1 + ‘riQk_nk) PPk _ Px%i Qi1 _ Que-1mPi
Pivk J PiMe  Pi Pi Tk

where px = 8y — By._; and 7y, = qx ~ qk—1. The derivations of the updating formulae in the approxi-
mation of the Hessian are quite complex. Moreover, they have many variations. although Huang (1970)
developed a general expression which encompasses all variable-metric possibilities as special cases. Such
involved discussion is, however, beyond the scope of this paper. It is enough to appreciate that the Quasi-
Newton methods incorporate the strong points of the Newton-Raphson and conjugate directions approach
and are generally the most powerful search algorithms available. While it is true that they may take many
iterations to solve non-quadratic problems, the computational burden of each iteration is much less than

that of a single Newton-Raphson step.

5.3.4 Past Optimization of the Nested Logit Model

Different gradient methods have been used in full-information maximum likelihood (FIML)
estimation of the nested logit model. The Newton-Raphson algorithm is out of favour since there is the
possibility of a Hessian which is not negative definite. One alternative route is the quadratic hill climbing
method of Goldfeldt et al (1966) in which a transformed Hessian is utilized: H, = H — al, where a is
computed sufficiently large to ensure that H,, is negative definite. Avriel (1976) likens this method to
restricting the search within a circular region in which the function is guaranteed to be concave.

The most popular method to ensure a negative definite Hessian replacement, at least in the

context of the nested logit mode! (Brownstone and Small, 1989), is to utilize the negative expectation of
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the outer product of the gradient vector across decision-makers, which assumes the form:

Q=3 3 R) (31"6‘;'3(”) (al“ag“j(j))' an

n=1j=1

where PJ(j) is the product of the marginal and conditional choice probabilities applying to each elemental
altemnative at the given parameter values. This approach is essentially a modified method of scoring which
implies that an estimate of the information matrix is used in place of the Hessian. This is expedient
since the information matrix is key to obtaining parameter standard errors. Cramer (1991) provides further
discussion on the distinction between the method of scoring and the Newton-Raphson approach. The outer
product form first proposed by Berndt et al. (1974) was designed for all maximum likelihood problems

and has the more general form:

-3 (P (2mg )

in which no expectations have been taken. The outer product approach was first advocated for the nested
logit by McFadden (1981) and has been the favored method for the nested logit. Daly (1987) further
advocates its use for a version of the aggregated logit model which contains only mean utility and size
terms. The more advanced Quasi-Newton methods have, to the best of our knowledge, not been applied

for the nested logit or the aggregated model.

5.4 Estimation Trials

5.4.1 Preliminary Observations

Clearly, the important aspect affecting the performance of these optimization algorithms is the
nature of the log-likelihood surface. Typically algorithms are dependent on a direct calculation or approx-

imation of the Hessian matrix which in tum is directly affected by concavity characteristics of the surface.
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When in regions which do not possess desirable concave characteristics, it is clear that the Hessian may be
near-singular and hence difficult to invert. Of course, the uitimate result of inverting a near-singular matrix
will be an algorithm which takes a long time to converge, if indeed it does ultimately succeed. Also, in
succesful convergences, parameter correlations will tend to be high and estimated standard errors may be
inflated. In short, estimation can be inefficient both from the algorithmic and statistical points of view.
Preliminary experimentation has shown that the aggregated model is potentially vulnerable to
such problems and that the difficulties are closely related to the specification of the A parameters?. In
general, the aggregated model becomes easier to estimate as the number of endogenous A are reduced
either through equality constraints or by exogenous fixing. This is shown, for example, by the more
complex nature of Figure 5.2 in relation to Figure 5.1. For an explanation, note that the influence of A’
are particularly strong in the size terms: M\’ In M7, J € {1,2,..., L}. Like all logit probabilities, those of
the aggregated model are determined by differences in utility. Hence, estimation becomes more efTicient if
one or more size terms are fixed through X in some manner so that the others can be determined in relation.
Convergence is still possible if all X are endogenous, however it is ofien the case that all A can get uniformly
much larger or smaller, often well outside the theoretical range, without inducing appreciable change in the
log-likelihood function. This contributes to estimation inefficiency. Fixing or equating A results in a surface
with a more clearly identifiable maximum, and hence provides a clearly defined algorithm direction in order
to obtain appropriate relative utilities. Also, the chances of a theoretically valid outcome are increased
since A tends to be more stable. These observations are confirmed in experiments undertaken and described

below.

5.4.2 Experiment Setup and Rationale

In this section, using a simulated environment, we examine algorithm performance in estimating

2From now on in this chapter, A is used to denote a scale parameter specific to an aggregale in the aggregated model instead of

A
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the aggregated logit model. The results are obtained using the GAUSS maximum likelihood module which
implements a variety of optimization techniques. The module is activated in concert with a GAUSS shell
which calculates the necessary functional values and gradients. Note, that the analytical gradients of the
agpregated mod-:l are derived in an appendix.

Extensive preliminary experimentation has been done in estimations by varying the number of
agpregates and elemental alternatives as well as the number of explanatory variables. These tests have
revealed that problems with multiple parameters in both 3 and A are manageable. The objective in this
paper though, is to compare algorithms using the simplest experiment that captures the essence of the
estimation problem.

In this experiment then, ten elemental alternatives are assumed, distributed as 3, 4 and 3 among
three aggregates. A Monte Carlo procedure is applied in which choice realizations are generated on the
basis of known parameters. Subsequently, the aggregated logit model is estimated using the generated
realization and the known underlying parameters as a starting point for each estimation. Each realization
consists of 1000 decision-makers, assumed to be departing from distinct points in space outside the three
aggregate altematives. The systematic utility of each decision-maker is a linear function of distance.
Furthermore, distance is specified as a generic variable, implying that its marginal effect on utility is the
same for all destinations.

While the primary theme of interest in this paper is identification of a superior algorithm for
estimation of the aggregated model, there are important secondary themes. In particular, we examine the
effectiveness of constraining uncertainty parameters to equality as well as the possibility of fixing some
exogenously. The latter approach is similar in spirit to the specification of alternative-specific constants in
which the constant associated with the reference alternative is arbitrarily fixed at zero while the remaining
endogenous constants are estimated in relation. Another theme to be considered is the effectiveness of

algorithm switching as it is anticipated that some algorithms, such as the method of steepest ascent and
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the Newton algorithm, may be complimentary.

54.3 Results

Table 5.1 presents a sampling of the conducted trials, summarizing the essential findings of this
analysis. Each trial consists of 100 estimations. The central tendency of the distribution approximated
by the 100 estimated parameter values is reported (column three), as well as the standard deviation (in
parenthesis} as a measure of the standard error for all the parameters. The number of estimations out
of the 100 that actually converged in less than 50 iterations are reported in column four. Note that a
reasonably specified OMNL model converges in four to six iterations. Tests indicated that if 50 iterations
are exceeded then the algorithm is searching far from the optimum with little hope of identifying the
solution. The number of times out of the 100 that the 50 fterations limit was exceeded for each case is
reported in column five. The following column six provides the number of times the algerithm crashed.
Finally, for the cases of convergence in less than 50 iterations, the average number of iterations is presented
in column seven.

Note in Table 5.1 that the true values utilized for A in the simulations are generally 1.0. Ex-
ceptions to this are experiments 2 and 9 to 12. Even for these the true A are not less than 0.6. In general
it was found that with smaller A, it was difficult to run a Monte Carlo experiment since algorithm failure
was frequent. The closer the true value of A to 0, the greater the chance of failure. This is consistent
with McFadden’s (1981) observation relating to the nested logit model that the surface becomes highly
non-linear as A — 0. A possible solution to the problem of algorithm failure is the estimation of 2 = 1/A
in place of A. This approach greatly reduces the chance of algorithm failure, since the nature of the log-
likelihood surface is altered, however it has been unclear in experimentaiions that the convergence rates

are improved. As a result, we focus on A despite the problems which occur when the true value is small.



TABLE 5.1: ALGORITHM PERFORMANCE UNDER DIFFERENT SPECIFICATIONS

ALGORITHM  SPECIFICATION MEAN PARAMETERS AND CONVERGENCE EXCESSIVE FAILURE MEAN
OF UNCERTAINTY STANDARD ERRORS ITERATIONS ITERATIONS
B Al A2 A3 A AS

1. BFGS Als AZe A3 021 102 10t 09 - s 76 22 2 20.09
(1.0¥1.0X1.0)a (0.02) (045) (0.35) (0.54)

2. BFGS Als 220 A3 020 069 08 LIl - . 7 22 [ 18.96
(0.6%0.8X1.0) (0.03) (0.51) (039) (0.59)

3, STEEPNEWT Ail» A2e 13 020 128 122 1326 - . 45 37 18 35.42
(1.0X1.0X1.0) (0.02) (0.89) (0.71) (0.92)

4. BFGS-NEWT  Als22e13 D21 2444 1956 2440 - - 94 5 1 24.79
(LOX1.0X1.0) (0.03) (52.44) (41.55) (52.51)

5. PRCG-NEWT  Als A2# A3 020 170 155 LTl - - 44 35 21 36.68
(1.0X1.0X1.0) (0.02) (158) (1.25) (1.63)

6. BFGS Als 22; A3=1b 020 0598 099 - . . 100 0 0 .20
{1.0%1.0) (0.02) {0.10) (0.07)

7. BFGS Al=22=13 020 099 - . N . 100 0 0 6.54
(1.0Y1.0X1.0) (0.02) (0.16)

8. BFGS Alv A2= A3=] 020 100 . . - . 100 0 o 578
(1.0) 0.04) (0.17)

9. BFGS Als 22;13=1 020 061 080 - - . 100 0 0 8.60
(0.6X0.8) (0.02) (0.12) (007

10. BFGS Al=12=23 023 067 - . - . 100 0 0 ‘1o
{0.6)(0.8X1.0) (0.02) (0.16) :

1L BFGS e A2+ 230 24=15 020 082 102 125 123 - 90 3 7 25.91
(0.6X0.8X1X1X1) (0.02) (0.52) (042) (047) (0.43)

12. BFGS Al 226232 24#45 020 077 099 116 L17T 116 87 5 8 32.67

(0.6X0.8X1X1X1) (0.02) (0.65) (0.58) (0.62) (0.56) {0.59)

a - numbers in parentheses represent true values associated with endogenously estimated A
b- A3, for example, is exogenously fixed to 1

6El
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5.4.3.1 Performance of Individual Algorithms

As Table 5.1 readily reveals, there is no question that the Broyden-Fletcher-Goldfarb-Shanno
{BFGS) algorithm is the most successful in a stand alone fashion, providing the best combination of specd
and stability. This judgment is made on the basis of trials | and 2 of Table 1. In these, the A are
not constrained to equality and a single X is estimated for each aggregate. As mentioned earlier, such
a mode] is more complicated to estimate than one with constraints on the A and hence should act &s
a good test for algorithm effectiveness. While BFGS converged 76 and 73 per cent of the time under
these scenarios, the performance of the other algorithms by themselves was very poor. In particular,
the Newton-Raphson (NEWT), Polak-Ribiere conjugate gradient methed (PRCG), and Berndi-Hall-Hall-
Hausman (BHHH) technique failed to record any convergences within 50 iterations from their 100 trials.
By themseives, NEWT, PRCG and BHHH seem to perform quite poorly in the early iterations and therefore
are never in a good position to converge. BFGS though is quite flexible in the early iterations as it mimics
the steepest ascent algorithm (STEEP) and then imitates the Newton-Raphson algorithm near the point of
convergence. The superior performance of the BFGS algorithm makes the absence of the Quasi-Newton
algorithms in the nested logit estimation literature (McFadden, 1981; Hensher, 1986: Brownstone and
Small, 1989) surprising since these authors mention estimation difficulties. Equally surprising is the bad

performance of the BHHH algorithm, which is promoted vy this literature.

5432  The Use of Algorithm Switching

While the Newton-Raphson method was quite unsuccessful in a stand-alone fashion and appar-
ently had problems getting into the region of an optimum, it is reputed to be the fastest of the algorithms
in actually reaching convergence when the optimum is nearby. As a result, it was paired in tumn with

STEEP, BFGS and PRCG in trials 3 to 5 to see if the overall rates of convergence could be improved
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with an algorithm switch to NEWT taking place after 30 iterations. The combinations of STEEP-NEWT
and PRCG-NEWT converged some of the time but proved to be substantially less stable than other means.
The best convergence rates are provided by BFGS-NEWT where the algorithm switch can lead to a better
convergence rate than with BFGS alone. In general it was noted that if the NEWTON portion of the
switched algorithm does not converge within a few iterations, it will tend to cycle infinitely in the same
sub-optimal zone.

The comparatively poor performance of algorithms applied in experiments 1 to 5, where there
is one endogenously determined A for each aggregate zone, is in need of explanation since even the
BFGS algorithm was frequently unsuccessful. A frequent symptom of such difficulties is extremely high
correlations exhibited in the parameter correlation matrices between A parameters. These reflect other
problems relating to statistical inference, algorithm stability and violations of the model’s theory. Certainly.
the results for the standard errors and mean parameters in trial 4 dramatically illustrate potential effects on
statistical inference. It is clear in this case that convergences are taking place in the context of a model
with underlying specification problems. These results confirm earlier statements that estimation of X tends
to be more inefficient and less stable when there are no restrictions on these parameters. This appears the
case even when the underlying true A are unequal as is the case in trials 2 and 12. When restrictions on
A are imposed however, statistical efficiency and estimation success improves since the near-singularity is
removed, the direction matrix has more desirable characteristics and aggregate utilities can efficiently be

adjusted in relative terms.

54.3.3  The Use of Exogenous Parameters and Equality Constraints

The convergence performance in experiments 6 to 10 is the most successful. It is ¢lear that
estimation is greatly simplified in the case of the aggregated model, both in terms of speed and convergence

proportions, by imposing equality constraints on the A parameters or through fixing one or two of them
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exogenously. The BFGS algorithm was used for these trizls mainly because it proved itself as generally
the most successful. The performance of other algorithms however, such as NEWTON and PRCG also
improves under constrained X estimation.

The results for trial 10, in which one A is estimated for all three aggregates, despite the fact
that the true A values are unequal, is an interesting case. Note that this is the only incidence where the
parameter associated with distance has any substantial bias. What this result shows is that, while it may
be expedient in an estimation sense to equate A, the researcher must be cautious or biases will result.
While difficulty in attaining a convergence is prcbably a reflection of a misspecification, there are cases,
as trial 10 shows, where specification problems can be obscured by a relatively smooth convergence, with
statistical efficiency being gained at the expense of introducing biases into estimation.

Clearly statistical tests are needed to identify cases where two or more parameters are not
significantly different. Such tests can be based on the parameter variance-covariance matrix. Given
potential estimation and statistical difficulties, it is important for a researcher 1o estimate a variety of
exploratory models before resorting to a specific one. Such an approach is analogous to the tests developed
for assessing whether logit model parameters should be specified generically (Ben-Akiva and Lerman, 1985)
or in assessing the A property of the logit model (McFadden, Tye and Train, 1977} in which various
models with different subsets of alternatives need to be estimated before diagnostics can be performed.

An important technique in the model exploration phase, is the fixing of individual A exogenously,
especially if estimation seems poorly behaved and if there is no basis for equating various A. This action will
stabilize estimation while the exogenous A can be incrementally changed to determine which conditional
optimization provides the maximum. Once in the vicinity of the optimum, a complete estimation stands a

better chance of converging.
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5.5 Conclusions

This paper has revealed that the aggregated logit model is amenable to current optimization
algorithms although the log-likelihood surface may be less well-behaved than that of the nested logit
model. In particular, the Quasi-Newton family of methods, notably the Broyden-Fletcher-Goldfarb-Shanno
algorithm, represent powerful means to obtain parameter estimates under the most difficult circumstances.
Other algorithms, such as the method of steepest ascent. can be effective as initial methods preceding an
algorithm switch. In particular, the Newton-Raphson technique behaved well in obtaining final convergence
once in the region of the optimum, and hence is often a good algorithm to which a switch can be made.
This same algorithin, however, was found to be inadequate for the aggregated model in a stand-alone
fashion. As far as the closely related nested logit mode! is concerned, it is thought that full-information
estimation, itself considered a difficult problem, would likely benefit from some of the methods in this
paper. In particular, the Quasi-Newton approaches have been overlooked in the literature,

Results indicate that specification of uncertainty parameters can have considerable bearing on
whether an optimal solution is found. Also, difficultic. = attaining convergence can be exacerbated
by highly correlated parameters, often leading to predicted uncertainty parameters outside the theoretical
range. Such problems can be combated by appropriately constraining uncertainty parameters to equality or
specifying some exogenously. Overall, researchers must remain aware that difficulty in obtaining sclutions
may not be because the problem is intractable but rather that some aspect of the specification is poor.
Given a well-specified model, the Quasi-Newton methods seem well-equipped to successfully camry out

optimization.
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5.6 Appendix to Chapter 5: Log-likelihood Derivatives for the
Aggregated Model

Estimation techniques discussed in this paper require the first order derivatives of the aggregated
logit log-likelihood function. Unless analytical formulas for the calculation of the derivatives are provided
by the user, the GAUSS maximum likelihood module, for example, calculates derivatives numerically, a
process that slows down estimation considerably. This appendix provides the derivative formulas used in
this paper.

Equation 4 gives:

Pr(J) aC (13)

where ¢ is any parameter in 3 or g. For any logit probability formula, such as 1, it is true that;

rJ Q
P (J) _ 6‘1,,, 6V ] (14)
a¢
A linear-in-parameters elemental systematic utility is given by:
IJJ'! ngxxjnk (135)
where X,“;M is the k’th of K independent variables. For a parameter 5, in 3 equation 2 gives:
g
X' . EXP [ IJH]
v _ =
aﬁk k’J v:.]l’!
Zexp
(16)
M!
= Y X.PallJ)
Jj=1

which applies only to the parameters associated with the explanatory variables, not the uncertainty param-
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eters . Substituting 16 into 14:

8P, (J) M L M9
a5 =Pl [ X Pald 1 ) - XZx,nkP (7 1 QP(Q) an
j=1 =1j=1
Similarly, for a A in A:
M
1 T/;"n
M7 by Z Vijn exp [TJT]
vy ) iin i=1
ax ngexp AT M7

]

(18)

j=1

i
1 J 3 .
= [v =Y VinPali| J)]

8P, (J)
Y

In the event that the Newton-Raphson method is being used, having the expressions for the

from which the reader can gather

. by substituting in 14.

gradient vector alone is not sufficient. It is necessary to calculate the Hessian matrix of second derivatives
which is employed directly in the procedure unlike the Quasi-Newton methods in which it is approximated.

The expression for the element of the Hessian matrix conesponding to parameters k and [ is:

Y& 1 8P.(J) AP
Qu==-3 > o eI 2Pl 19)

n=1./=1

This equation is combined with 14 to calculate elements of the Hessian matrix.



Chapter 6

An Empirical Evaluation of the Aggregated
Spatial Choice Model

6.1 Introduction

This chapter constitutes an initial attempt at empirically testing a spatial choice mode] designed
for situations where the choice destinations in the available data are aggregates of the actual spatial units
considered by choice-makers. For example, we may have data on the choice of regions made by migrants
but need a model to acknowiedge that the choices are typically motivated at the level of metropolitan areas
within each region. This proposed approach is henceforth referred to as the aggregated spatial choice
model, a technique which explicitly links spatially aggregate levels of utility to the spatially disaggregate
utility components and which raises the possibility that disaggregate atiribute data can be used in the
same model as the aggregate choice data imposed on the researcher. Theoretically, the model is logically
premised on the notion that the utility of an aggregate for a given choice-maker is represented by the
contained elemental alternative of maximum utility. The issues examined in this paper differ from those
considered by the modifiable areal unit problem (MAUP) and should not be confused. The MAUP evaluates
statistical properties of spatially referenced attributes in the presence of aggregation (Arbia, 1989). Here

we are dealing with a choice process as is also the case with the gravity model.
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The theory of the aggregated spatiat choice model is closely linked with that of the nested logit
model with much of the seminal work on both being done by McFadden (1978) and Lerman (1975} in
the context of intra-urban housing choice. The mathematical form of the aggregated model differs since,
by definition, it cannot exploit the sub-aggregate choice information available for the nested logit. In
applications with aggrepate choice data, the most popular tool has been the Ordinary Multinomial Logit
Model (OMNL) but it has the shortcoming of not representing sub-aggregate variation in utility (Chapter 3).
This misrepresentation can lead to erroneous parameter estimates in heterogeneous aggregates, particularly
if a corrective set of alternative-specific constants is not employed. Fortunately, the aggregated model is
more general in this respect and can accommodate a detailed surface of predicted utility.

The purposes of this paper are essentially two-fold. Previous work in Chapters 4 and 5 has
assessed the aggregated model in a simulated environment addressing matters such as whether unbiased
and efficient parameters can be obtained and whether there is an optimization algerithm which is well
suited to the problem. Hence the first purpose is to show that the model provides meaningful results
with real-world data. The particular data in ques:ion relate to the aggregate destination choice patterns of
Canadian Maritime migrants in the 1990-1991 period. The second purpose is to highlight advantages and
disadvantages of the aggregated mode! in relation to existing approaches.

The outline of this paper is as follows. In the section to follow, a brief theoretical exposition
of the aggregated model is provided, highlighting its major features. The third section introduces the
Maritime migration data we use, placing it in context and discussing its manipulation. The focus of the
fourth section is on specification of the aggregated model using variables defined for this analysis. Also
matters relating to estimation and model diagnostics are covered. In the fifth section, the results of the

application are discussed.
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6.2 Model Background

In this section, only a summary of the aggregated model’s theory is presented since these matters
have been previously covered in detail in Chapter 3. Assume that in some destination choice context, there
are L aggregate spatial units which form a comprehensive choice set for a sample of choice-makers. In the
interest of simplicity, we will assume that the zone of origin for the choice-makers is not itself eligible as
a destination although this would not be a major complication. Each of the L aggregates, J € {1,2,..L}

L
can be sub-divided into M elemental zones with Z MY = M defining the total number of elemental
J=1
zones in the system. We assume that the set of elemental alternatives defines the finest level of resolution
on which the choice-makers base their selection but that we, as researchers, have knowledge of the spatial
choices only at the aggregate level.

Each choice-maker selects the elemental destination associated with the highest utility, thereby se-
lecting the aggregate alternative in which the chosen elemental alternative belongs. Thus. an aggregate’s true
utility equals the true utility of the most attractive contained elemental alternative: U,/ = max v

je{12,...ady ™

Our estimate of U;! is V;/, which can be thought of as E[U,], while that of U7, is V/

iw 18 Vi3, The relationship be-

tween the latter two is through U, = V,/, +¢/, +¢], where e, 7 € {1,2,... M }and ¢, J € {1,2,.... L}
are independently and identically Gumbel-distributed errors with Ele;,] = 0 and Ele;1] = 0. The system-

atic utilities V], 7 € {1,2, ..., M} are a function of attributes of places, characteristics of choice-makers

and/or distance variables.

It is assumed that Varle], + ;) = Var[e],] + Ver[e]] = #?/6. The particular allocation of

the total variance between e;’n and €] may differ between aggregates and is determined by an aggregate

+ ¢}, which restricts the theoretica

specific parameter A/, One can show that A/ = \/ Varlef,]/Var(e],
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range of A7 to: 0 € AY < 1. When the elemental error tends to occupy all the possible variance:
Varlef,} — «2/6, Var[e]] — 0 and AY — 1. In this case the utilities of elemental alternatives within
aggregate J are uncorrelated. The polar opposite is Var[e/,] — 0, Var(e]] — n?/6 and A7 — 0, resulting
in highly correlated utilities,

Under these theoretical circumstances the choice probabilities for aggregate J € {1,2,...,L}

can be shown as:

exp [VHJ ]

Pad) = bl %)
S exp VK]
K=1
where:
Ar? v
v = AJanexp[:JJi
i=1 , y ( ; 1}-’) (2)
= v — in_Yn J J
= V, +A lnMJ;epr T A M

The systematic utility of an aggregate is decomposed into a mean systematic utility term I7i, a positive size
term A4 In M, and the remaining term which can be shown to be positive and measures the variability of
systematic utility within aggregate J. The latter is appropriately referred to as the heterogeneity term. It is
important to note that parameter A7 can be estimated empirically from model 1 and 2. Beyond its theoretical
significance as a measure of utility autocorrefation within aggregate .J, A7 is also linked theoretically to
the size and heterogeneity terms. One can show that when A/ — 1 the size effect is maximized while
the heterogeneity is minimized. Intuitively, this is because the large, uncorrelated elemental errors within
aggregate J will make the identification of the elemental altemative of maximum utility a highly uncertain
process. The opposite is true when A — 0.The behavioural rationale for the heterogeneity term is that the
higher the variability in systematic utility within an aggregate, the more likely that this aggregate contains
the highest elemental utility peak. The size term can be intuitively understood as measuring the extent

to which several elemental alternatives are candidates to provide the maximum utility. With A/ — 0, for
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example. size becomes irrelevant since the identity of the most attractive elemental alternative is precisely
identified by the model.

The OMNL applied at the aggregate level is a special case of the aggregated logit model in
that it takes account only of the average utilitv in an aggregate, omitting the heterogeneity and size terms.
From the behavioural perspective the OMNL postulates that choice-makers select the aggregate destination
of highest mean utility, while the aggregated spatial choice model postulates that they select the aggregate
containing the highest elemental peak in utility. The two rules applied to the same case may lead 1o

different selections of aggregate alternatives.

6.3 The Data and Their Context

6.3.1 Migration from the Canadian Maritimes

The Maritime or Atlantic region of’ Canada, composed of the four provinces: Newfoundland,
Prince Edward Island, Nova Scotia and New Brunswick, has for many years been seen as the classic
‘have not’ region within the country. As such it is characterized by an industrial sector which is rela-
tively underdeveloped compared to more prosperous regions such as Ontario and by a population which
is comparatively dependent on social assistance. Resource sectors, which drive much of the Canadian
economy and can be the salvation of otherwise struggling regions, are less weli-developed in comparison
to Western Canada. The single dominant resource over the past decades has been the Atlantic fishery on
which the economy of Newfoundland in particular has been highly dependent. Unfortunately, poor fishery
management practices have led to a ban on cod fishing and further stress on the Maritime economy. New
Brunswick has been the one Maritime province to formulate progressive policies and in recent years has
invested massively in human capital and technological infrastructure in an effort to eliminate dependency

on resource industries and social assistance.
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For many there remain clear economic disincentives associated with living in the Maritimes
although it has been speculated that the costs are cushioned by the generous social safety net {Courchene,
1994). The propensity of different Maritime population segments to migrate or stay within the region
is an interesting matter, however, in this analysis we restrict ourselves to considering the destination
choice patterns of those who actually change regions. Among this sub-population there are two dominant
tendencies, One is that Ontario is the location of choice for migrants and typically captures more than
half of Maritime ourmigrants among the various population segments. Clearly, easterners perceive Ontario
as the province that drives the national economy and hence is associated with the largest proportion of
opportunities. A second dominant aspect is the glaring unattractiveness of Quebec to the vast majority of
migrants; this despite the fact that Quebec is the nearest alternative region to the Maritimes. It is avoided
for reasons of cultural and language dissimilarity and uncertainties about Quebec’s place in the Canadian

Federation, These aspects and several others will be highlighted through the models which follow,

6.3.2 The Data

All the data for this analysis ultimately originate from the 1991 Canadian census. Data relating
to the personal attributes of specific migrants have been taken from a special micro-data set: the public
use sample of individuals. From the public use sample, we are able to assess the migrations of Canadians
among the ten provinces and the two territories but are unable to obtain comprehensive information on
sub-aggregate choices. Hence we are presented with real-world data possessing the exact limitation which

the aggregated model seeks to address,

6.3.2.1  Manipulation of the Micro-data

A representative sample of over 800 000 persons from the Canadian population was compiled
to form the public use sample data. This is almost a 3% sample of the population. Of the over 800 000

individuals in the original sample, the overwhelming majerity are removed for this analysis. Initially, the
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sample is reduced by nearly two-thirds through the fact that we deal only with individuals who identify
themselves as the primary household maintainer. It is assumed that such persons are the ones who can
best be associated with the migration decision. Secondly, all persons who do not live in the Maritimes at
the beginning of the time period are removed. thereby reducing the sample to 23 995. Of these persons,
only 287 were observed 1o change regions between June 1990 and June 1991, the one-year reference time
period for this analysis. This represents a departure rate in the sample of 1.2%. In earlier censuses, the
researcher was obligated to use a five year time interval. something which is risky since many movements
are hidden with this low level of temporal resolution. It is thought that the one year interval is a considerable

improvement in this regard The down side of course is that the sample size of migrants is substantially

reduced.

6.3.2.2  Definition of the Spatial Aggregation Scheme

The Yukon and the Northwest Territories were eliminated as potential destinations for Maritimers
since the flows involved are tiny. This leaves six provinces which could act as potential aggregate destina-
tions. It was deemed that Manitoba and Saskatchewan be combined since they would tend to be perceived
as similar entities from the perspective of a Maritimer and because the associated flows are small. The four
provinces of the Maritimes themselves of course are aggregated to form the Atlantic Canada region. In the
end, six regions are employed in the model to define the set of aggregates: the Maritimes, Quebec, Ontario,
the Prairies, Alberta and British Columbia. At the disaggregate level, elemental alternatives are based on
urban agglomerations. 1t is felt that in an inter-regional context, census agglomerations (CA's) and census
metropolitan areas (CMA’s) represent the most realistic elemental choice entities both from behavioural and
computational points of view. The distribution of these elemental alternatives by aggregate is as follows:
Quebec (28), Ontario (35), the Prairies (10), Alberta (10), British Columbia (21) which together result in

a choice set with 104 elemental alternatives.
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The destination attributes used for the analysis are spatially referenced census data which Statis-
tics Canada derives from 20% samples of each census enumeration area. The results from these samples
can be obtained at any desired level of aggregation supported by the census. We are interested in the
CA/CMA data. In order to ensure that the spatial information is comprehensive, a residual elemental
alternative is defined in all regions to capture the influence of rural areas and towns outside the CA/CMA
boundaries. For destination attributes which are rates or averages, the estimated values for the residual
elemental alternative in each region are calculated as:

NregZreg — Z Njfj
J

Nres

Trgs =

where j indexes the non-residual elemental alternatives in a region, T relates to the particular variable, and
N refers to population which is used as a weight. Destination attributes which are simple *count’ variables
are easily obtained for the residual alternatives as: Tres = Treg — ZJ_. )

J

6.4 The Variables and Their Specification

This section’s objective is to highlight the migration variables used in the analysis and to identify
the dominant specification techniques, some of which are not widely used with the OMNL, but become
of more relevance when applied to the aggregated model. While it is possible to construct models which
utilize all specification techniques at once, in this paper we wish to maximally differentiate the techniques
through separate specifications. We wish to emphasize at the outset that all combinations of the techniques
discussed below could be utilized within the context of a single specification.

The range of variables tested in this analysis has by no means been comprehensive and does
not pretend to constitute a thorough migration analysis. Their selection is based partially on the results of

other research and partially on preliminary analysis. The descriptions are listed in Tabie 6.1. Clearly the
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Table 6.1: Variables Employed in the Analysis

Destination Attributes

popsize: natural logarithm of population

fang1: proportion of population at that point speaking english only

dist1: natural logarithm of elemental altemative distance from Maritime centroid
temp: mean annual temperature in degrees Celsius

precip: mean annual precipitation in thousands of millimetres

Choice-maker characteristics

nativel: 1 if in 1990, the migrant resided in provinee of birth; 0 if a non-native

english: 1 if migrant speaks english only; O if migrant is bilingual

nfld: 1 if migrant moves from Newfoundland, 0 if not

ns: 1 if migrant moves from Nova Scotia, 0 ifnot {note: nfld=0 and ns=0 defines migrants from NB and PE[)
hskill: | if migrant is in a high skill occupation; 0 if not

mskill: 1 if migrant is in a medjum skill occupation; 0 if not

Iskill: 1 if migrant is in a low skill occupation; 0 if not

(note: hskill=0, mskill=0, and iskill=0 defines migrants who are not in the labour force)

Interactions

dist2: natural logarithm of distances from individual Maritime provinces

(t.e. province of origin interacted with appropriate set of distances)

lang?: Interaction of "english" with appropriate language proportions over space
native2: Interaction of "nativel” with 5 year in-migration totals
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types of variables which affect destination choice, the model type of this analysis, may differ considerably
from those which affect the initial decision 1o move. Age for example is strongly associated with the

likelihaod of moving but it is less effective in predicting the choice of destination.

6.4.1 Specifications Emphasizing Spatial Heterogeneity

Al one extreme, patterns of destination choice can be modelled as a function of spatially
referenced attributes, implying that choice-makers will not be differentiated. Hence, V;,’, = f (Z,:'j).
k € {1.2..,K} where Z}/, defines the valuc of the kth destination attribute and X indicates the total
number of attributes. The goal of such a model is to determine the main destination factors which ac-
count for aggregate choice behaviour recognizing ii:al this characterization may not capture how individual
segments of the population behave.

The destination attributes used in this analysis are essentially self-explanatory and are defined
in Table 6.1. The population size variable (PCHPSIZE), mean annual temperature (TEMP) and total annual
precipitation (PRECIP) variables are included for obvious reasons. With respect to distance, DISTI is
relevant to the model type of this section, which employs no systematic utility variation across choice-
makers. It is assumed that all choice-makers originate from one central point in the Maritimes which acts
as the base for calculating the great circle distances over the earth’s surface to each of the 104 elemental
alternatives. These results are subsequently transformed by the natural logarithm since the friction-of-
distance is reputed in the literature to have a diminishing marginal impact. The language variable, LANGI1
is simply the proportion of the population at each elemental alterative which speaks English without
knowledge of a second language. It is expected that this variable will help capture the unattractiveness of
Quebec to Maritimers.

In specifying destination attributes for the aggregated model, it is important to keep in mind that
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they bear strong reseniblance to alternative-specific constants m that both are used to explain the aggregate
or market shares exhibited in the choices. Constants are described by Train (1986) as being used to absorb
all systematic variation not captured by a model’s variables. Since a full set of constants will result in
L — 1 parameters to be estimated, it can be a rather pointless exercise to utilize this approach, especially
if there are many choice alternatives. A prudent approach is the specification of as few as possible
destination attributes in the place of constants which efficiently explain the aggregate choice shares while
providing insights that constants do not. Hence, the number cf estimated parameters is greatly reduced
because destination attributes are applied in a generic manner, with one parameter applying to all spatial
alternatives for a given atribute. In our context, with the five aggregates that Maritimers can choose,
the bigger problem in employing constants is the associated lack of insight rather than needing too many
parameters, but the former is a problem we wish to address in the analysis. With constants a maximum
of L — 1 parameters can be employed to differentiate the L aggregate utilities. When generic destination
attributes are used instead, if K — L. near or even partial collinearity among the attributes will typically
lead to estimation difficulties although in some cases a model may converge with A" = L.

It is noteworthy that in 2 an aggregate level constant is essentiatly built into the model through

the size term. Hence it is possible to set VJ{l = for all  and J, implying that I7,Jl= 0 and:

Ard J_ 37
1 in— Vn)
/\J ]ﬂﬁj ; exp[—i—)\—_)-—-—-—

=1

=0

and yet capture the market share probabilities through the size effect. Since many relevant variables might
be omitted from such a model, theoretical violations with A well outside the unit interval would tend
to occur. If A4, J € {1,2,...,L} are constrained to equality, however, explanation can be regained by
specifying important destination attributes to complement the generic size effect. Such an approach will
reduce the likelihood of theoretica! violation. It should be remembered though that, as above, the number

of parameters should not exceed the number of aggregates.
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6.4.2 Specifications Emphasizing Heterogeneity Across Choice-makers

It is possible to apply the aggregated model even without incorporating sub-aggregaie variation
in utility. One popular specification method for the OMNL in the discrete choice literature (Ben-Akiva and
Lerman, 1985) relates to the use of characteristics of choice-makers in an alternative-specific manner. Such
characteristics might be categorical, as in gender, or continuous, such as income. For example, in a three
altemative OMNL model which is fully specified with respect to a single choice-maker characteristic (X, )
we would have: V]! = 8, X,,, V2 = 3, X,, while V3 = 0. Hence there would be two parameters estimated
() and 57) to account for the two differences in utility needed to discriminate among three alternatives.
This variable type is important in that it allows segmentation so that choice-makers are not modelled as
perceiving things in the same way. Indeed, it is through population segmentation that improvements on
the fits of market share models are obtained.

With respect to the apgregated mouel, such specification means are possible but of course
these variables cannot generate sub-aggregate variation in utility since sub-aggregate choice information is
unavailable. These variables can, however, introduce aggregate spatial variation but only through several
parameters. In this context, the heterogeneity effect will be zero while I?imay be non-zero. The AY | J €
{1,2, ..., L} will be directly associated with the size effect and can be used to assess the nature of uncertainty
and hence the need for potential re-specifications. In contrast, the OMNL uses alternative-specific constants
to capture remaining systematic variation, but there is no theoretical interpretation associated with the
resulting parameters,

The particular choice-maker characteristics used for the models of this section are found in Table
6.7 in the form of variables on nativity, language, province of origin and occupational skill level. The
language variable (ENGLISH) contrasts the behaviour of bilingual Maritimers with those who speak only
English while the province of origin variables (NFLD, NS) add a spatial dimension to the classification of

choice-makers. Note that Prince Edward Island migrants and New Brunswick migrants are joint members
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of the reference category with no effort being made to contrast the two as there are only six PEl migrants
in the sample.

Other variables in Table 6.7 include nativity which has been a prominent factor affecting desti-
nation choices. In particular, natives who move (primary migrants), have been shown more responsive to
choosing on the basis of economic opportunity than migrants who are non-natives (Liaw, 1990). Note that
the definition for this variable (NATIVE1) does not preclude the possibility that the person was alrcady
a return migrant at the beginning of the period. The skill level of the migrant’s occupation (HSKILL.
MSKILL, LSKILL) is an interesting way to distinguish the abilities of migrants and its effect on migra-
tions. The high skill occupations include professionals and managers, the middle skills are associated with
skilled trades and foreman, while the lower skills are associated with many service and retail occupa-
tions. Obviously, this is a gross simplification of the categories which apply at the most disaggregate level

however the inclusion of more categories is beyond the scope of this analysis.

6.4.2 Specifications with Full Heterogeneity Across Space and Choice-makers

The previous two approaches have been limited to some extent in that they omit important
sources of variation either across choice-makers or across space. The OMNL is capable only of simulating
spatial variation at the aggregate level although complete population segmentation is possible. From the
behavioural point of view, the ideal model should combine detailed population segmentation with high
spatial resolution of utility. The mode! should simultaneously assess what it is about choice-makers which
causes them to select certain elemental destinations and what it is about these destinations which makes

them attractive to some population segments. This can be accomplished through three general types of

variables,

6.4.3.1  Physical Distance

A widely used variable in spatial choice models is the distance between the choice-maker at
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the origin and the set of potential destinations. The spatial variation in utility induced by distance has a
systematic linear spatial trend which can be made non-linear by employing the log of distance. A non-
linear effect is assumed in DIST2 which differs from DISTI in that three potential origins in the Maritimes
are considered as opposed to one, which leads to three sets of distances and utilities. The centroids of
Newfoundland, New Brunswick and Nova Scotia are utilized to form DIST2. The physical distance variable
in general is particularly well-suited to the aggregated model since distances to sub-aggregate locales are
easily determined. Interestingly, the use of sub-aggregate distances provides a measure of the manner in
which an aggregate’s shape and orientation affects its utility, something which the OMNL is incapable of

doing.

6.4.3.2 Social Distance

In the Canadian migration context. the language barrier between the predominantly French-
speaking province of Quebec and the remaining provinces. which are English-speaking, is often noted.
In interactions involving Quebec, this barrier manifests itself in migration flows which seem unrelated to
the friction-of-distance. This phenomenon has led migration researchers to define social distance variables
which capture such effects (e.g. Anderson and Papageorgiou,1994). The form of the social distance
variable is dependent on whether the data are nggregate across choice-makers or if they are microdata. For
the former, given an origin zone i, a destination zone j and some social characteristic such as language. the
population can be divided into ! categories based on the proportional shares S;; and Sk, k € {1,2, ...t}
of each language group. The variable is defined as dﬁ;) = ZL=1 |Six — Sjx|. The larger the cumulative
absolute differences in the shares for the given social variable, the greater the social distance between
zones @ and j. A variable similar in spirit is devised by Sen and Soot (1991). It has the form dg) =
log [Zi.:l \/SIM] which has the property that exp[dg)] = 0 when there is a non-existent match

(2)

between the proportional shares and exp[dij ] =1 when the shares correspond perfectly.
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With micro-data, composite variables such as these make little sense since a migrant of one
group most likely will not factor the relative shares of many language groups in making an evaluation,
Presumably, the interest is more in assessing the relative concentration of a person’s own group as a
proportion of the total population at each destination. In that case, following Newbold {1994) the social
distance is simply S;, for origin i migrant of group k. Unlike physical distance, we expect a positive
associated parameter since migrants are more likely to choose those zones in which Sj; - 1. One problem
with this form is that it systematically induces less spatial utility heterogeneity for those groups which
everywhere constitute a small proportion of the population. This approach is the one used 1o define
LANG2 (Table 6.1) in which the utility of English-speaking people is related to the English proportions at
each elemental alternaiive while the utility of bilingual people is related 1o the concentrations of French.
Hence, by this definition it is essentially assumed that bilinguals would prefer Quebec, all things being
equal.

In an alternative variable form. a person might evaluate the proportion that each elememal
altemnative contains of the country’s total population in their group. For a French-speaking person, since
Quebec contains the bulk of Canada’s french people, it is the highest utility province. The same logic could
apply at the sub-provincial level and form the basis for a social distance variable. A model with many
such variables essentially contains multiple size effects, each measuring the distribution of opportunities
for various population segments. Conceptually, these do not clash with the size term in 3 which expresses
size as the number of behaviourally-based choice units. The size or density associated with each of these
chuice uniis is a different matter but one which must be assessed, through population or social distance

variables, if plausible levels of elemental utility are to be estimated.

0.4.3.3 Interactions

An interaction variable in this analysis is defined by the product of a binary choice-maker
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characteristic and a destination attribute. The purpose of such a variable is simply to recognize that some
population segments will be influenced by a given destination atiribute while other segments will not.
For example, a reason for the poor performance of employment variables in many aggregate migration
studies is that they are of concern mostly to unemployed people rather than those with established careers
{(DaVanzo, 1978). This type of effect can be accommodated in the aggregated mode! by an interaction
variable which, for example, will generate a heterogeneous utility surface for the unemployed and a flat
surface for others. The variable NATIVE?2 is one of this type in that it is assumed that natives will be more

responsive to recent five year in-migration totals, a surrogate for economic opportunity, than non-natives.

6.5 Estimation and Results

6.5.1 The Optimization Problem and Model Diagnostics

All parameters in this analysis are obtained through the maximum likelihood technique, the goal
of which is to find those parameters 8, A which maximize the log-likelihood function:
N L
LB,A) =" ¥ In Py 3)

n=1J=1

where:

e B is a vector of parameters that enter the systematic utilities V7, j € {1,2,...M7},J € {1,2,.., L}
which in tun determine V;; and P,(J) which were defined earlier

o Y./ is 1 if choice-maker n chooses aggregate J and O otherwise

¢ N is the total number of choice-makers.

In estimating the aggregated logit model, it has been reported in Chapter 4 that the ordinary

Newton-Raphson algorithm may not be successful in cbtaining paremeters, especially when confronted
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by regions on the log-likelihood surface which are not concave. Considerable success has been achieved
through the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique, which is a Quasi-Newton
algorithm, and the one employed in- this analysis.

In devising goodness-of-fit statistics for the aggregated model, there are two useful benchmarks.

The log-likelihood for a market share model, which does not differentiate choice-makers, is given by

o) = JZ::IYJ In [YWJ]

where Y/ defines the total selections of J. The second benchmark is the naive log-likelihood given by
1 . . ‘s
L0)=YIn [E] which corresponds to assuming zero utilities for all aggregates.
Goodness-of-fit is typically assessed on the basis of how well a model improves on these

LB, A)

log-likelihood benchmarks. In particular, the p? statistics are given as p§ = 1 — “Z0y and p? =
1- UE(L(’C)A) These measures fall within the unit interval. In a model with population segmentation, it
is important 1o report p2 since this will illustrate the extent to which segmentation is improving the fit
over the mode! with no segmentation. If p? alone is reported, a high value is possible without significant

contribution from the variables which create the segmentation, particularly when the market shares differ

substantially from the naive shares. In general p2 > 0.2 is considered a good fit.

6.5.2 Results and Discussion

6.5.2.1  Specifications Emphasizing Spatial Heterogeneity

The results for this model type, which hypothesizes that destination attributes alone can be useful
in describing the essential nature of Maritime migration, are in Table 6.2. Interestingly the p? results in
this table are almost as good as those of the more complex models in Tables 3 and 4. The true aggregate
probabilities are displayed in Table 6.2 along with the aggregate probabilities predicted by each model,

Overwhelmingly, Ontario is the destination of choice for Maritimers while Quebec is least attractive despite
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the fact that it is the physically closest destination.

At the aggregate level, we would expect that the population size associated with each elemental
altemative would be a fairly good predictor, being a surrogate for the density of opportunities available
over spacc. This does in fact turn out to be the case and overall, POPSIZE is the strongest and most
significant variable. The other main significant resuit is obtained by controlling for the effects of language
(LANG1}, with the sign being positive as expected. Beyond these variables, it is difficult to find others
which improve the model's explanatory power. This is related to issues raised in the earlier discussion
where the difficulty of explaining four aggregate differences in utility with more than three or four generic
variables was highlighted. In particular, climate variables such as mean annual temperature (TEMP) and
levels of annual precipitation (PRECIP) do rot contribute much although the signs at least are as would
be expected. With language being contrelled for, the DISTI variable is also employed but provides an
insignificant result. We would tend to conclude that distance is not a large consideration for Maritime
migrants.

The A values are consistently high indicating that the size effect is being maximized and the
heterogeneity effect minimized. It seems that size, in terms of the number of choice units in an aggregate
and in terms of the population in each of these choice units, is quite important and that unobserved
variation most likely tends to be unique to individual elemental aiternatives. An example of how A can
be used as a theoretica! check is given by model 4 which clearly has a specification problem. Note that
the rote of POPSIZE is minimized and that randomness unique to elemental alternatives is over-exploited
in differentiating the aggregates as reflected by the large A. Model 3 corrects the specification problem by
controlling for language with the proof being that A becomes theoretically valid.

Results from model 3, which is the best in terms of fit and in conforming to expectations, are
graphically displayed in Figures ! and 6.2. For prospective Maritime migranis, this is a representation of

their probability surface over Canada (Figure 6./) and Canada’s most populous region: the corridor defined
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Table 6.2: Models Emphasizing Spatial Heterogeneity

m @ @) @ 5)
Variable popsize 1.289 1.571 1.321 0.625 1.277
(6.766)° (5.134) (5.897) (2.224) (6.421)
dist] - 0.381 - - -
(1.092)
temp - - - - 0.049
(1.441)
precip - - -0.092 -5.780 -
(-0.27 (5.763)
langl 1.592 1.283 1.583 -
(4.944) (3.184) (4.826)
A 1.000 1.241 0.994 3.234 1.162
(2.801) (3.476) (2.279) (8.314) (7.497)
Probs Que
(0.098) 0.098° 0.098 0.098 0.101 0.255
Ont
(0.551) 0.553 0.550 0.556 0.554 0.437
Prairies
(0.059) 0.088 0.075 0.089 0.106 0.064
Alta
(0.146) 0.113 0.112 0.115 0.110 0.081
B.C.
(0.146) 0.147 0.166 0.142 0.129 0.162
w* -371.76 -371.16 -371.73 -374.27 -397.55
Po’ 0.195 - 0.196 0.195 0.190 0.155

a - observed Quebec aggregate probability
b - predicted Quebec aggregate probability
¢ - t-statistics in parentheses
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Figure 6.1: The Attractiveness of Canadian Cities to Maritimers
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Figure 6.2: The Attractiveness of Ontario/Quebec Cities to Maritimers
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by southem Ontario and Quebec (Figure 6.2). The figures are meant to give an intuitive feei for the
relative attractiveness of the various elemental alternatives although problems with areal definition mean
that the surfaces should not be over-interpreted. They are important because they clearly show that despite
the total absence of sub-provincial choice data, we are able to differentiate elemental alternatives using
sub-provincial attribute data and associated parameters. The dominance of population in model 3 explains
why only a few of the approximately 50 census agglomerations covered in Figure 6. have a substantial
probability of being chosen and why Toronto towers above the rest. Montreal is represented by a much
lower secondary peak even though its population is only marginally less than Toronto. Since it is in Quebec

though, the impact of the language variable drastically reduces Montreal’s comparative attractiveness.

6.5.2.2  Specifications Emphasizing Heterogeneity Across Choice makers

A selection of the results for this type of model is presented in Tuble 6.3. There are separate
models for each of the main variables: nativity, language. province of origin and occupational skill level.
For all variables, Quebec is used as the reference geographic aggregate. The reference categories for
the variables are made clear in Table 6.7. The overwhelming dominance of positive parameters in the
Table 6.3 is indicative of the fact that being a native as opposed to a non-native, speaking English only
as opposed to knowing other languages, moving from either Newfoundland or Nova Scotia or being an
employed worker with a skill all increase the chances of moving to a region other than Quebec. Clearly,
the glaring unattractiveness of Quebec is the dominant theme in these results with the province tending to
be attractive mostly to bilinguals and non-natives who are most likely return migrants. The fact that those
not in the labour force are more likely to choose Quebec may explain the actions of such return migrants.
It is important to note that the vast majority of the parameters are significantly different from Quebec’s

reference utility of zero.
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Table 6.3: Models Emphasizing Population Segmentation

Variable | specific m 2 3) ()] (5)
to:
native® ontario | 0.997 (2.281) 0.706 (8.209)
prairies | 0.981 (1.603) 1.016 {12.09)
alberta | 0.811 (1.590) 0.283 (2.775)
bc 1.194 (2.328) 0.846 (14.10)
english® ontario 2.469 (5.414) 2.414 (10.23)
’ prairies 1,974 (3.018) 2.095 (13.52)
alberta 4.094 (4.921) 3.997 (10.89)
be 3.100 (5.245) 2.828 (9.752)
nfld® ontario 1.253 (2.238) 0.632 (5.643)
prairies -0.693 (-0.61) -1.303 (-6.12)
alberta 1.163 (1.715) 0.433 (4.203)
bc 1.030 (1.471) 0.244 (2.416)
ns’ ontario 1.041 (2.324) 0.503 (3.445)
prairies 0.693(1.072) 0.214 (2.326)
alberta 1.569 (2.889) 0.955 (7.520)
be 1.609 (2.996) 0.958 (7.484)
hskil® | ontario 1.743 (3.047)| 2312 (11.86)
prairies 2.329 (2.151)) 2.798 (13.99;
alberta 1.338 (1.758)| 1.990 (15.79)
bc 1.743 (1.965)| 2293 (14.79)
mskill® ontario 1.040 (1.567)| 1.168 (15.12)
prairies 0.469 (0.331)| 0.564 (1.488)
alberta 1.163 {1.381)] 1.239 (7.538)
be 2416 (2.661)] 2.462 (19.54)
Iskill® ontario 1.478 (2.678)| 1.493 (9.449)
praines 1.791 (1.639)| 1.808 (7.175)
alberta 2.037 (2.798)| 2.123 (26.54)
be 20792475 { 2.054 (11.16)
A quebec | 0.830 (1.277) | 1.199 (12.62) { 0.900 (11.69) [1.131 (B.378)| 1.768 (23.89)
ontario | 1.165 (25.89) | 1.242 (15.53) | £.152 (20.95) 11.197 (10.32)| 1.216 (20.61)
praines | 0.833 (8.010) { 1.111 (6.816) | 1.001 (8.556) 10.735 (2.543)) 1.004 (12.24)
alberta | 1.259 (15.54) [ 0.714 (3.188) | 1.098 (10.17) [1.211 (6.340)| 0.605 (8.643)
be 0.892 (12.93) | 0.841 (5.964) | 0.830 (8.737) |0.783 (3.575)| 0.631 (10.52)
cpx -365.85 -344.44 -359.71 -355.24 -324.33
o 0.208 0.254 0.221 0.231 0.298
Pcz 0.008 0.06i5 0.025 0.037 0.121

a - t-statistics are in parentheses
b - quebec is acting as a reference alternative
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Secondary themes revolve around how the other regions fare relative to one other, something
which can be assessed through the alternative-specific results for a given variable. A rigorous analysis
was not taken out to assess the extent to which some alternative-specific parameters could be constrained
to equality, with this being partly to show how parameters can proliferate under the technique of this
section. Regarding nativity, the results are generally uninteresting with the main priority of natives being
to avoid Quebec. The language results are more interesting with central Canada being more attractive
to bilinguals. The province of origin variable is noteworthy for the only negative sign in the table,
indicating that Newfoundlanders, being residents of the most easterly isolated province, find the Prairies
to be less attractive than Quebec. The other interesting thing is the fact that Nova Scotians, having lived
in the Maritime economic heartland, perceive more opportunity in the Western provinces than do those
in Newfoundland and New Brunswick. Perhaps Nova Scotians were more aware of the extent to which
recession was ravaging Ontario’s economy at this time. If there is a general trend in the skill level variable,
it is that high skill workers (i.e. professionals and managers} find central Canada more attractive while the
lower and medium skill workers, related more to service and infrastructure jobs, are more oriented toward
western Canada. Certainly the economies of central Canada were much later in their economic cycles than
western Canada and thus perhaps less opportunity existed in lower level occupations.

The results for A are important for the aggregated model of this section because these are
the parameters which distinguish the model from the OMNL whose alternative-specific constants have
no theoretical connotation. The results are consistently high reflecting the fact that fit is best obtained
by letting uncertainty relate uniquely 1o individual elemental alternatives in the system, Utilities within
aggregates have very low levels of correlation. By definition this version of the aggregated model does
not allow intra-aggregate heterogeneity in systematic utility, hence if heterogeneity in utility is necessary

to optimize fit, it is left to sets of independent elemental random errors to impose it. For the most part,



170

the theoretical violations with A > 1 are minor with the exception of model 5 where the restriction on the
nature of systematic utility has its largest effect. The A are directly associated with the size terms, since
there are no heterogeneity terms, and the size terms are being forced to over-compensate, Perhaps the
specifications might benefit from the judicious addition of relevant destination attributes, as employed in
Table 6.2, 1o relieve the burden on the size terms.

Note that these models provide fairly good fits although it takes a large number of parameters
to achieve these results. Note especially that the p2 value describing the improvement in fit over the
market share model is quite respectable. A study of the model 5 predicted choice probabilities revealed
considerable success in describing differential behaviour across population segments. The combination of
variables used seems to work very well with there being a substantial reduction in the standard errors when

this more thorough appraisal of the migration process is utilized rather than the partial specifications of

models 1 to 4.

6.5.2.3  Specifications with Full Heterogeneity

This third type of model attempts to simultaneously capture the important differences between
population segments and also the manner in which the utility surfaces for these segments unfold vari-
ably over space. As we have seen, it is mathematically possible to specify destination attributes and
socio-economic variables separately but the most intuitively appealing method is to interact choice-maker
characteristics with destination attributes. Such an - roach results in more parsimonious models and is in
keeping with the assumption that migrants match their characteristics with certain key attributes of the des-
tinations they consider. In a GIS then, we could produce visual representations of elemental attractiveness
as in Figure 6.1, except different surfaces or thematic maps could be used for the individual population

segments.
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Table 6.4: Models with Full Heterogeneity

Variable | specific (n {2) (3) {4) 3)
lo:
lang2 quebec | 2.882 (2.335) 9.200(1.559) |1.212(6.659) | 1.558 (6.183)
ontario | 0.954 (1.963) 1.269 {0.859) " "
prairies | 0.443 (1.280) 0.831 (0.546) "
alberta | 2.569 (2.613) 2.941 (1.922) " "
bc | 1.570 (3.369) 1.951 (1.273) . "
dist2 quebec -0.553 (-1.304) | -0.362 (-0.49) | 0.088(0.633) | 0.314(0.509)
ontario -0.221 (-0.5803 | 1.083 (1.078) " "
prairies -0.493 (-1.494)| 0.777 (0.879) * "
alberta -0.359 (-1.122) | 0.641(0.740) " "
be -0.353 (-1.110){ 0.715(0.823) " "
nativel® ontario 0.419(1.383)
prairies 0.487 {1.068)
alberta 0.144 (0.391)
be 0.533 (1.464)
native2 quebec 0.034 (3.400)
onlario "
prairies "
alberta "
bc "
hskill® onlario 1.369 (3.315)
prairies 1.852 (3.144)
alberta 0.520(1.018)
be 0.576 (1.125)
A quebec | 0.488 (1.762) | 0.026 (0.377) | 0.282 (0.547) 11.499(7.848) | 1.016 (4.032)
ontario | 1.366 (7.806) " " " 1.188 (9.504)
prairies | 1.307 (3.913) " " " 0.647 (4.793)
alberta | 0.908 (10.20) " " " 1.297 (10.38)
be 0.988 (4.117) " " " 0.897 (6.847)
P -344.44 -366.81 -342.63 -376.45 -340.50
P, 0.254 0.206 0.258 0.185 0.263
P2 0.066 0.006 0.071 - 0.077

a - t-statistics are in parentheses
b - quebec is acting as a reference alternative
* indicates identical to parameter above (i.e. constrained to equality across aggregates)



The results in 7able 6.4 show again that language considerations (LANG2) are dominant in the
migration of Maritimers. In.some specifications this social distance variable is specified generically and in
others it is altemative-specific but in all cases the result is positive. This indicates that migrants are drawn
to places that feature a high proportion of the population speaking the language(s) with which they are
familiar. The alternative-specific specifications indicate that this variable is particularly strong for Quebec
and the Western provinces, the former being a deterrent for those who are not bilingual and the latter
attracting a large proportion of unilingual english.

The DIST2 variable is employed because, unlike DISTI, it differentiates the distances of the
individual Maritime provinces. Overall. this variable contributes much less to discriminating among choice-
makers than does language. Again, generic and alternative-specific specifications of this variable are
attempted and if anything, the results indicate that a friction-of-distance effect is absent since the results
are yenerally not significart and since the sign of the distance parameter shows volatility. The parameter
tends to be negative when specified alone but turns positive in the presence of the language variable.
Overall, it appears that little is gained through utilizing different distances depending on the province of
origin and that treating all the Maritime provinces as one origin is equally effective.

The NATIVE2 variable is an example of an interaction variable as opposed to a social or physical
distance variable. To form NATIVE2, the NATIVE!? variable is interacted with the inter-provincial in-
migration total from the previous five years. The five year migration total (1986-1991) is intended to
capture those places which would be perceived by 1990-1991 migrants as having fast-growing economies.
The interaction tests whether natives are more responsive to pure economic opportunity than non-natives.
The parameter is positive and significant as expected (mode!l 4) indicating that places with recent high
in-migration totals are of more utility to natives than non-natives.

The final specification (model 5) is included to show that choice-maker characteristics can
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be employed as they were in the previous section along with social and physical distance variables to
produce a medel which can be plausibly interpreted. Such an approach can be used to enhance population
differentiation while acknowledging spatial heterogeneity in utility. Overall the results seem consistent
with these noted in previous models in terms of the interpretations.

In general, the A values in Table 6.4 do not stray far outside the theoretical range. When this
does happen, most likely the size effect is required to capture variation not accounted for explicitly by other
variables and that heterogeneity in elemental utility is inferred to exist in the €;; terms. In an improperly
specified model, since the size term may be required to upgrade utility considerably, its associated parameter
may be unfeasibly large. In general, Lerman (1975) showed that the size effect would tend to outweigh
the heterogeneity effect. Logically . this implies that X is typically influenced more by the size effect.
Certainly, this seems to be the case in this analysis. Theoretical violations can be accommeodated. however,
through constraints on the A across alternatives and the inclusion of some relevant destination attributes.

In terms of goodness-of-fit, it appears that the aggregated spatial choice mode] will not perform
better than the OMNL. Comparing the results of Table 6.4 with those of Table 6.3 bears this out in the sense
that the models of the latter, with no sub-aggregate varjation in systematic utility, have close resemblance
to the OMNL . While the aggregated model incorporates sub-aggregate information, fit is determined
by the ability to accurately forecast aggregate level probabilities, something that the OMNL does very
well. However the aggregated model goes about predicting the aggregate probabilities in a manner which
captures the underlying elemental processes, something that the OMNL ignores altogether. While it is
clear that considerable care needs to be taken in devising social distance and interaction variables for the

aggregated model, it is felt that a thorough analysis would culminate in fits comparable to the OMNL.
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6.6 Conclusions

We are in a position now to reflect on the abjectives of this paper as outlined at the beginning.
First of all, there is little question that the aggregated model provides results that are reasonable and that
would conform to preconceived hypotheses. The Maritime migrants were assessed using this mode! and
it was found, for example, that language considerations dominate to the point that the generally reliable
friction-cf-distance measure is of only minor importance in discriminating the behaviour of migrants from
different Maritime provinces. Examination of sub-aggregate estimated utilities conform also with what we
would expect. Typically the large metropolitan areas tend to be associated with utility peaks, the levels of
which however are moderated by the characteristics of the choice-makers. For example, Montreal is the
acknowledged peak utility location within Quebec but its level of utility is very much dependent on the
languages spoken by the choice-maker.

The doorway to greater realism in choice model specifications is being opened through applica-
tion of this model. The use of social distance variables and interactions of choice-maker characteristics with
destination attributes recognizes that spatial choice processes represent matching of what a choice-maker
desires or has to offer with what is available at potential destinations. It is hence acknowledged that some
destination atiributes are of relevance only to certain segments of the population and that only a few are
of broad importance to choice-makers. The greater spatial resolution of this model provides incentive to
focus more on these types of variables than would typicaily be the case with the OMNL. This latter 1nodel
represents no sub-aggregate variation in utility so there is a tendency to apply choice-maker characteristics
which are specified very easily and result in good fit but which provide coarse spatial representations of

utility. Such 2 mode! answers what it is about choice-makers that motivate choices but leaves the researcher
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to speculate about what makes destinations attractive,

The advantages and the disadvantages of the aggregated model in relation to the OMNL can be
quickly summarized. The main advantage is that the aggregated model provides a more realistic overall
representation of the choice process and one which takes better account of all factors. It is a model which
is doubtlessly more complex to specify and which leads to greater thought being needed to capture the
process. It is a mode] whose high level of spatial resolution of utility is quite amenable to applications
with Geographical Information Systems both in the model-building and final display phases. The main
disadvantages are that specifications take Jonger to implement and that estimation is less reliable and
predictable than is the case with the OMNL. Typically though, estimation problems are usually indicative
of specification problems. This is an indicator which is not available in applications of the OMNL where

even the most poorly specified model is almost guaranteed to converge.



Chapter 7

Conclusions

Discrete choice models have risen to prominence in many choice contexts with the spatial choice
context being no exception. The models are based on random utility theory which provides researchers
an inherently probabilistic framework with which to explain the choices of individuals. This thesis has
focused on a particular problem which is relevant in the spatial choice context and thus to spatial choice
models. Namely, what approach should be employed when it is suspected that the choice process for the
phenomena under study operates at a more spatially disaggregate level than the available spatial interaction
data? A solution has been presented in the form of the aggregated spatial logit model, which is well-suited
to the problem of utilizing available data in a theoretically plausible way. It is important to emphasize
that the model is associated with spatial aggregation as opposed to the problem of aggregation across
choice-makers.

Spatial choice problems are unique in the number of potential complications they offer for
the application of choice models. It is suggested in this thesis that the aggregated model and its close
cousin, the nested logit model, are the best able to strike a compromise between theoretical generality
and a manageable computational burden. 1t was discussed in Chapter 2 how these approaches address the
three main spatial choice complications: the non-independence of spatial units, the definition of spatial
choice sets, and spatiat aggregation of alternatives. The ordinary multinomial logit model (OMNL), since

it is consistent with the independence from irrelevant alternatives property, is not capable of explicitly
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modelling dependency among spatial units. Nevertheless, it is has been the preferred technique in spatial
choice problems. The applicability of the probit model, a very general construct, is questionable since for
reasons of computational burden, it has yet to be applied to a large scale spatial choice application with

many altematives.

7.1 Findings

7.1.1 Theoretical Insights

From the theoretical perspective, this thesis has provided the most comprehensive available ac-
count of the aggregated spatial logit model. In so doing, the thesis has built on the seminal works of Lerman
(1975) and McFadden (1978) who provided a theoretical basis for this research but never meaningfully
implemented the ideas or discussed model properties in detail. The major theoretical contributions of the
research in this thesis are: the formalizing of the properties of the basic form of the aggregated model, the
evaluation of these properties, and the derivation of a relaxed asymptotic version of the model based on a
less restrictive set of assumptions. These aspects are reviewed here in turn.

This thesis makes it plain that in order to assess the utility of aggregate spatial units, it is
important to make a distinction between aggregate alternatives and elemental altemnatives. It is argued
that elemental alternatives are the fundamental, spatially disaggregate spatial units potentially considered
by choice-makers in the decision process while aggregate alternatives are ofien defined out of necessity
given the aggregate nature of choice data. Since we wish to represent aggregate probabilities and associated
parameters in the correct way, it is essential to consider elemental utilities since a proper model should
have the capability to acknowledge an elemental choice process when it exists.

Under the assumption that choice-makers pursue the elemental zone of maximum utility within

an aggregate altemative, the utility of that aggregate can be shown to be a function of its mean utility,
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its size in terms of the number of contained elemental choice units, and the variability in utility which
occurs within the aggregate. Theoretical discussion in this thesis, unlike previous work, has put a lot of
emphasis on how the size and heterogeneity components of aggregate systematic utility are linked to the
behaviour of the random error components of utility. Results demonstrated to be true in theory have the
added virtue of being intuitively sensible. For example. it is shown that the importance of an aggregate’s
size in terms of the number of contained elemental choice units is inversely related to their degree of
perceived similarity. Similarity is assessed based on the extent 1o which elemental alternatives have
correlated random error components. The heterogeneity of systematic utility within aggregates is shown
to be the largest when uncertainty about individual elementai alternatives is its smallest. Essentially, there
is an elegant mechanism in place which is capable of assessing whether choice-makers cluster potential
destinations in their decision process. Hence, the model! is sufficiently general to identify which aggregates
are associated with an elemental choice process and which are not.

While the importance of the heterogeneity effect is dependent on the nature of the random error
components, it was also shown to be dependent on the spatial variability of the important destination
attributes which affect utility. Results of simulations (Chapter 4) are of interest as it was demonstrated
how the heterogeneity of spatial attributes could seriously undermine the performance of the OMNL which
makes no distinction between elemental and aggregate alternatives. In particular, it was clearly shown that
the focus of the OMNL model on mean utility could cause it to miss the overwhelming attractiveness of a
single elemental alternative and hence the essential nature of the choice process. This would also lead to
severely biased parameter estimates. On the other hand, the aggregated model was shown to perform well
under all circumstances.

The asymptotic results examined in this thesis are of theoretical interest because they allow
the aggregated mode! to be based on a less restrictive set of assumptions. In particular, the assumplion

that elemental utilities are Gumbel distributed can be relaxed if the number of elemental alternatives is
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sufficiently large and yet the distribution of the maximum utility will nevertheless be Gumbel. Since we
are dealing with a maximization process in our assessment of aggregate utility. it is necessary c.ly to make
an assumption about the right tail of the distribution of an elemental error, or that part of the distribution
which could affect the maximum. It is shown that the ‘lack of memory” property must be obeyed where
this property states that the conditional probability of a random error being x units larger than some given
value ¢ is independent of ¢. Since the exponential distribution is the only one which obeys this property,

the assumption is made by extension that the right tail of the random error distribution is exponentially

distributed.

7.1.2  Practical Insights

On a practical level, the aggregated model offers researchers new opportunities to make best use
of the data which are at their disposal. There are cases where the data containing the observed choices
are at a more aggregate spatial level than the choice process and the attribute data which could be used
to describe the process. This was demonstrated in the context of Canadian inter-provincial migration in
Chapter 6. The Public Use Sample of Individuals, on which that set of trials was based, is notorious for
having quite detailed information on choice-makers with respect to most aspects except their geography.
Hence, in the case of migrants, we are liable 1o know nothing more than wiiat vrovince the person has
chosen, or in some cases, what census metropolitan area. On the other hand, census data contain useful
attribute information about potential destinations at just about any level of spatial aggregation level we
desire. It was shown empirically (and graphically} that the aggregated logit model offers a unique way
to acknowledge, through elemental utilities, the potential for a sub-provincial choice process even while
being restricted to provincial choice data.

A clear practical contribution of this research is that a suitable algorithm for the estimation of

the aggregated model has been chosen and for the first time, software for complete implementation of
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the model has been developed (Appendix 1). In the past, researchers may have recognized the merit of
the basic theory, but never was the model implemented in its complete form. Typically, the assumption
was made that systematic sub-aggregate variation in utility was non-existent and hence that elemental
alternatives could not be differentiated from the perspective of the researcher when the available choice
information operated at the aggregate level. Even McFadden (1978) zought ways to simplify the model
through an asymptotic appreximation of the heterogeneity term and ultimately make estimation possible
with conventional OMNL software. In Chapter 5 it was shown that the aggregated model in iis complete
form, with choice information being available only at the aggregate level and systematic utilities being
differentiatec 1t the elemental level. could be operationalized.

It was concluded that in estimation of the aggregated model through the maximum likelihood
technique, the Quasi-Newton family of optimization algorithms offered the best performance. In particular,
the Broyden-Fletcher-Goldfarb-Shanno algorithm. which avoids the use of second derivatives altogether but
uses first derivatives to obtain an increasingly accurate approximation of the Hessian matrix. was advocated
as a superiour algorithm. It was noted that any instabitity in obtaining parameter estimates would typically
be due to the endogenous estimation of the scale parameters which control the relative impacts of the
size and heterogeneity terms. Various options were explored to reduce the complexity of the problem
such as imposing equality constraints on the scale parameters across aggregates or through the exogenous
fixing of one or more scale parameters. Such adjustments were shown to greatly increase the likelihood
of convergence and were advocated as excellent intermediate measures in the course of obtaining a final

model.
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7.2 Direciions for Future Research

7.2.1 The Aggregated Model and GIS

An important argument in favour of the aggregated model is its potential when used in combi-
nation with a Geographicz! Information System (GIS). Since one is typically modelling a large number of
elemental alternatives in applications of the aggregated model, it can be very awkward to review results
without use of graphics. GIS provides a graphical interface and maintains the spatial relationships between
choice units. While a small amount of work was done in this thesis on linking the aggregated model 1o
GIS (Chapter 6), it is fair to say that the full potential is much larger than has been shown. The capability
of a GIS to quickly display multiple coverages for a given study area lends itself well to assessing the
impacts of different variables on utility and on doing comparisons over various population segments. 1t is
expected that use of GIS will quickly show that the ordinary logit medel applied to aggregate spatial units
provides fairly simplistic results, with very coarse and simplistic representations in utility, In contrast, with
the aggregated model. one should be able to appreciate the full spatial diversity associated with choice
units.

While many software packages are capable of doing ‘basic mapping’.a true GIS is one which
facilitates more complex analysis by, for example, performing mathematical operations simultancously
on multiple overlays to produce a compesite coverage. It is with such capabilities that a researcher can
produce a map which shows, for example, all places where a population segment has utility or choice
probability above a certain level, where two population segments simultaneously have utilities below a
certain level, or where three spatial attributes have particularly large values. In short, if the aggregaied

mode] is well-integrated with a powerful GIS, the moedel will be ‘brought to life.’ Clear benefitc will
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be realized in the model specification phase, where the researcher will visually be able to see the spatial
impacts of different variables and certainly in the phase where results are reported to others. Without a
GIS interfacs, it is questionable whether the aggregated model will gain favour in spatial analysis since its

capabilities may not be fully appreciated.

7.2.2  Other Topics

The process of compiling this thesis has generated several ideas that are worthy of examination.
One is that the aggregated model provides interesting theoretical resuits with respect to physical distance
variables which measure the spatial separation between origin and destination. Typically. the distance
between some origin and an aggregate destination is given by the centroid of the aggregate, thereby treating
the aggregate as a dimensionless point. By measuring the individual distances to elemental alternatives
within the aggregate however, the aggregated model is capable of capturing the shape and orientation of
potential aggregate destinations and how this affects their choice probabilities. This is a fundamentally
spatial issue which deserves further attention.

One avenue which has not been explored in this thesis is the idea of hybrid models which
combine the nested logit with the aggregated model. In the Canadian Public Use Sample Tape mentioned
earlier, researchers have access to choice information about some sub-provincial units, namely selected
census metropolilan areas, but not others. It is therefore possible to form groupings based on whether the
choice information is available, In cases where it is available, elemental utilities will be estimated as they
would with a nested logit model; in cases where it is not, the aggregated model can be used. All of these
aspects can be accommodated within a single model structure which utilizes all the available information.
Another example of a hybrid mode! is in the migration context, where the move/stay component of the
migration decision, in which the required choice information is known, is operationalized at one level while

the aggregated model is applied to the destination choice portion of the model.
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1t is apparent that more extensive comparisons between the nested logit model and the aggregated
mode] are needed. In this thesis, the comparison with the OMNL model has been stressed because it has
been the dominant spatial choice model. There is no question that the aggregated model gives a much
richer interpretation of the choice process than the OMNL. However, as micro-Jata sets become more
highly developed, with more elemental choice information becoming available, we have greater freedom
to apply the nested logit model. 1t is hence important to understand what is given up if all available chaice
information is not utilized and the aggregated mode! is applied. Preliminary examination of the issuc,
which has not beer reported here, indicates that for identical specifications, the aggregated mode! actually
compares quite well to the nested logit.

In a related topic, the sampling of elemental altematives. as opposed to their aggregation, is a
possibility to consider when more elemental choice information is available than can be accommodaied.
This approach is clearly motivated by a concern for computational burden. Whils the aggregated model is
computationally intensive in accounting for all elemental utilities. it should be noted that the burden is less
than is the case with a full application of the nested logit model where every elemental unit is explicitly
considered as a model alternative.

Insights gained from the aggregated model are of relevance in applications of the nested logit
model. In particular, from the estimation perspective, there is the possibility that the Quasi-Newton methods
will periorm well in full-information estimation of the nested logit. Typically, researchers are still utilizing
sequential estimation procedures for the nested logit, with simultaneous estimation being considered a
difficult process. There is every indication that the Quasi-Newton methods might reduce the level of
difficulty.

Finally, it is important in the future that the aggregated model be applied in a wide range of
spatial choice contexts such as industrial location, tourism or retailing. The extent to which this will succeed

depends on the validity of the maximum utility hypothesis which states that the utility of an aggregate
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is equivalent to the utility of the most attractive elemental alternative. Generally, this hypothesis is most
reasonable when it is applied in a context which will have long-term implications for the choice-maker.
Migration is an example where this is true. On the other hand, a shopping mall m-ight be conceptualized
as an aggregate altermative, however it doubtful that the associated short-term choices are made on the
basis of the maximum utility available within the mall. An additional complication is that more than one
elemental alternative is fikely to be chosen in a given trip. Clearly, for this type of complex choice process,

an alternative theoretical construct is necessary.
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Appendix 1:  Software for the Specification and Estimation of Logit
Models

1 Introduction

The purpose of this document is to provide a review of software designed by me to make
possible the specification and estimation of a wide range of logit models. In particular, the ordinary
multinemial logit model (OMNL), the two-level nested logit model and the aggregated logit model can
each be implemented. It is a characteristic of GAUSS, the language of this software, that probiems of
an imposing size ¢an be easily manipulated and estimated with z high degree of computational efficiency.
This characteristic lends itself well to discrete choice problems, particularly those with a large number
of observations, and those, such as the aggregated model, which are likely to have a substantial number
of spatial altematives. It should be emphasized that while this software has been developed with spatial
choice applications in mind, it is readily applicable to aspatial choice problems also such as mode choice
or the selection of consumer products, for example. The software code is not included in this manual since

it is quite lengthy.

2  Overview

For this overview the reader wil! find it useful to consult the flow chart in Figure 4 which shows
the components of this system: program files, data files, specification files and result files as well as the
manner in which they are related. Note that in general, as we move further down the chart, the use of
the associated components is likely to decrease. The data and variable creation program SETDATA wili

be used less frequently than the specification program SPEC which in turn should be used less frequently
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than MODULE. The reasons for this are to be expanded upon.

2.1 The Programs

It is safe to say that all models, whether the OMNL, the nested logit or the aggregated models, are
implemented in two phases: specification and estimation. This software contains a specification program
named SPEC. This program is used to correctly manipulate choice-maker, attribute and distance data into
a form which is consistent with the techniques of disciete choice model specification. Having set up a
problem, it is then necessary to obtain the best set of parameters through the maximum likelihood technique.

There are two programs in this software used for parameter estimation; MODULE and NEW-
TON . but only one of the two is required for any given attempt to attain convergence. MODULE presents
a powerfu!l assortment of algorithms for the estimation of complex problems, with the algorithm diversity
being due to the maximum likelihood module available in GAUSS. In MODULE the particular functional
values and analytical results needed to estiinate the three general types of models are calculated and then
provided for use by an already existing GAUSS maximum likelihood estimation module. lts main advan-
tage is its ability to handle a wide range of difficult problems through its rich algorithmic diversity. Its
main disadvantage is that the program, being based on a general maximum likelihood module, is relatively
slow. On the other hand, NEWTON is designed specifically for speedy appiication of the Newton-Raphson
algorithm and will typically converge many times faster than MODULE. This latter program was designed
independently of any pre-fabricated GAUSS modules. The main disadvantage of NEWTON is that a lack
of sophistication in optimization algorithms leads to situations where convergences cannot be obtained.
Overall, MODULE is best-suited to difficult estimations of the nested logit and aggregated model while
NEWTON will excel in estimation of the OMNL and simple specifications of the more involved models.
In the discussion below, when mention is made of the usage of MODULE, it can be assumed, unless

otherwise specified, that the comments apply also to NEWTON since the two programs are essentially
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doing the same thing,

There is one other program in the software. It is known as SETDATA and is used to convert
ASCII data files provided by the user into files in the GAUSS data set format used by the specification
and estimation programs. Such conversion is important because storage is very efficient and because any
portion of the data can instantly be accessed and obtained. Another source of imporiance is the fact thal
the names of variables are stored in these GAUSS data sets and are utilized in SPEC. This program is
also responsible for controlling which of the GAUSS data sets are considered active by SPEC and which
are inactive. Finally, this program has the capability of generating new variables on the basis of logical or
mathematicz! statements provided by the user.

Now that the basic objectives of the software are clear, the question might arise as to why the
programs have not been combined in some integrated fashion so that specification and estimation can be
carried out in a single, seamless step. There are two main reasons.

The most obvious is that the different components are likely to be used at quite different frequen-
cies. The first program SETDATA. may only be run once in a given session as it is responsible for creating
GAUSS-data which can be accessed according to many combinations of specifications. It determines the
family of variables which can be accessed. The program SPEC will be run quite frequently, whenever
different combinations of 3 parameters are to be estimated. For the OMNL, SPEC and MODULE will
be run equivalent amounts but for the aggregated model and the nested logit, the latter will be run more
frequently as it is responsible for specification of the A scale parameters. These parameters are typically
subject to extensive experimentation for a given specification of 3.

Secondly, it is important to separate the programs o aliow for thorough checking of the previous
actions. The process of incorporating raw data into a specification and estimating the model is quite
involved and there are things that can go wrong. It is important for the user to check that data has been

set up as intended and that models have been specified a- desired before any potentially time-consuming



183

parameter estimation proceeds. Separating the entire process into these three distinct stages facilitates this

type of validation procedure.

2.2  Data Files

The data for discrete choice models comes in two basic types: variables referring to choice-
makers {or population segments in the case of data aggregated across individuals) or destination attributes
which are characteristics of the potential spatial altenatives. A third type, the distance variable, is essen-
tially a hybrid of the two primary types. The data needed to implement any specification will come from
at most three distinct GAUSS data set files. The most important of these files is known as SOCI0.DAT
and is the file which will contain all choice behaviour and all characteristics of choice-making units. No
matter what the model or specification. this file must be accessible since it provides access to the choice
information against which a model is judged. The file DEST.DAT, which contains destination attributes
relevant to the spatial alternatives (or non-spatial attributes of alternatives in the case of an aspatial model),
need be present only if destination attributes are part of the current specification in some manner. The same
goes for DIST.DAT which will contain all distance variables potentially relevant to a specification. Clearly
there are particular details associated with the structure of each of these files, however such discussion is
not relevant to this initial brief overview. It should be emphasized that the user will be working with these
main file types but will be working under their own file names. The names SQCIO.DAT, DIST.DAT
and DEST.DAT are reserved names for active GAUSS data sets. The discussion below will utilize these
reserved file names in explanation of the main file types and will also define the concept of an ‘active’

GAUSS data set.

2.3  Specification Files

These files tell SPEC and MODULE how the data files should be manipulated to set up and

subsequently estimate the model. These files are ASCII and constitute the tools at the user’s disposal
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to make the programs function as desired. There are two specification files; DESIGN.SPC and DE-
FINE.DAT. Once the structure of these files, and in particular DESIGN.SPC, has been mastered, then use
of the programs is mastered also.

DESIGN.SPC is responsible for providing specification instructions to SPEC. It contains fun-
damental information such as names of specified variables. how they are utilized and how elemental
alternatives are distributed among aggregates. The reason for the existence of DEFINE.DAT is that SPEC
cannot properly implement the instructions of DESIGN.SPC unless the set of alternatives available to each
choice-making unit is known. For instance, in a mode choice example, the option of bicycle is presumably
not open to someone who does not own a bike. In the spatial choice context, choice sets are freguently
constrained in destination choice models since known migrants clearly are not considering their origin as
a potential destination. For this reason, the file DEFINE.DAT must be specified to differentiate a given

choice-maker’s choice set from the universal choice set.

3 Detailed Qutlines of the Data File Formats

One question that might be answered has to do with why so many data files are needed to
encompass the different forms of data. In the past, when software has been developed for the OMNL.
it has been possible to develop one data file which will contain all variables no matter what their type.
Of course such storage is inefficient in the case of a destination attribute, for example, since such a
variable does not vary across choice-makers. Hence in a file with 10 000 observations on choice-makers,
the same destination attribute value will repeat itself 10 000 times. Meanwhile, incorporating distance
variables, which vary across both alternatives and choice-makers, into a data file adds a lot of confusion
to matters. Such variables will be associated with many columns (alternatives) while other variables such

as choice-maker traits will be associated with only a single cofumn.
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It was felt that such structures for permanernt data sets was not sensible for applications of the
aggregated mode] where confusion and inefficiencies would be multiplied many times over. Consider that
the utilities for 2 massive number of spatial units must be represented as opposed to the few typically
modelled with the OMNL., Also, the distinction of the different data types through their separation by
file allows a better understanding of specification techniques and what measures are appropriate for each
variable. For these reasons, the data types are accommodated in the three files discussed below.

Other general comments regarding ASCII data format need to be made. One is that columns of
numeric data should not contain any text headers. All relevant variable titles are entered interactively by
the user during the running of SETDATA, Any text headers in the ASCII data will simply be translated
into nonsensical numbers and will throw off the dimensions of matrices to subsequently be formed. hence
triggering an error message. At the time of running SETDATA. the user shouid know the ASCII data and
be able to appropriately name the columns. The second general comment is that the user should feel free
to use comma delimiters in the ASCI| data as the program is capable of interpreting these as well as data

utilizing spaces instead of delimiters. The sample data in the appendices utilize spaces to separate fields.

3.1 SOCIC.DAT

The only compulsory file of the three main data file types is SOCIO.DAT because it is the
one which contains choice information. 1n Appendix 2 we see a sample of this file’s setup which contains
the data used later in the examples section of the manual. The sample represents the 1981 to 1986
migration behaviour of in excess of 175 000 persons. The number of rows in SOCIO.DAT depends on
the number of choice-makers or population segments which are being modelled. Ir: the event that we are
using individual leve] data then each row in SOCIO DAT will relate to a single choice-maker. If grouped
data are employed, i which choice-makers who are homogeneous in certain characteristics are aggregated

into population segments, then it could be that each row in SOCI0.DAT will be relevant to thousands of
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choice-makers. In Appendix 2 it is apparent that we are using grouped data.

Notice that SOCIO.DAT has a distinct block structure to it. The block on the feft contains
choice information while each column of the block on the right contains a choice-maker characteristic.
Multiple columns are needed to capture all the choice information since all choices typically will not go
to one alternative. This is seen in Appendix 2 where the first six columns are allocated to capturing the
choices. Column ! shows the number of people in each segment who did not change regions in the five
year period while the Iatter five columns capture the destination choices of those who did. On the other
hand. in a micro-data mode! with six alternatives. the sum of each row from columns ! 10 6 would equal
1 since a given choice-maker will choose only one alternative.

The storage of choice information is only one aspect of SOCIO.DAT. The other important aspect
is the delineation of the particular characterist.cs associated with a choice-maker or population segment.
This is depicted in columns 7 to 17 of the sample SOCIO.DAT where variables which identify population
segments based on education level. age. nature of household and province of origin are employed. In
column 7 for example, all population segments coded as one indicate that the members have post-secondary
education and hence are considered well-educated. While all characteristics are binary in our example from
Appendix 2 since grouped data are being used, it is quite possible to have choice-maker characteristics with
micro-data which are non-binary such as the observed income for an individual.

One thing that the user should consider at this stage is what names are to be used for the choice-
maker characteristics featured in SOCIQ,DAT. When the translation program SETDATA is run, the user
will be prompted in turn for the names of these characteristics. These are the names which the user will

need to recall in setting up the specification file DESIGN.SPC.

3.2 DEST.DAT

The simplest data file in structural terms is DEST.DAT. This file contains information on the
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destination attributes available for specification. Certainly, for a spatial choice model, these attributes
will be used to introduce much of a model’s spatial variation in utility. The number of rows in this file
corresponds with the total number of elemental altematives in the model while each column is related to a
different destination attribute. Note that while SOCIO.DAT is completely dependent on data for specific
individuals or population segments, the data in DEST.DAT is unrelated to choice-makers. The setting up
of DEST.DAT is essentially straightforward but there is one other matter which is of concern to spatial
choice models. We will leave DEST.DAT for the moment until this matter is discussed and then point out
its relevance for the file.

In many spatial choiée models, each choice-maker or population segment has the option of
choosing their origin. As a result, an alternative is defined as ‘stay’ which attempts to capture the probability
of not moving while the other altematives are destination choice options chosen by those who do decide to
move, Notice how the diagonal pattern of zeros in the choice information block of cur Appendix 2 example
reflect the fact that one’s own origin is ineligible as a destination choice possibility but is available in the
stay option cf column |.

The key point in this discussion is that a variable associated with the stay option should be
modelled as choice-maker characteristic rather than as a destination attribute. Mainly this is because the
particular spatial unit associated with the stay option depends on the origin of the choice-maker. If the
average provincial income is hypothesized to affect the utility of staying, than this is a characteristic which
varies over choice-makers based on their origin. On the other hand, if the provincial income is hypothesized
to affect the utility of migrants who consider a given province in a destination choice context, then the
provincial income will not vary across choice-makers. Hence provincial income could be considered as a
destination attribute or a choice-maker (origin) characteristic depending on the context.

For modelling purposes, the stay option in any spatial choice model can be considered a non-

spatial alternative in the sense that it does not make sense to associate spatjal utility variation over the



193

surface of the origin. It is considered a non-spatial, point entity. The relevance of all this for DEST.DAT
is that its number of rows should correspond to the number of elemental alternatives associated with the
model structure, whether they are spatial or non-spatial. This issue is illustrated in Appendix 3 where
DEST.DAT files used in later examples are presented. The data relating to the stay option is contained in
row 1 where it can be seen that all destination attributes are forced, by a row of zeros, to have no effect
on the stay elemental alternative. Hence, even non-spatial alternatives can be represented in the otherwise

spatially-oriented file DEST.DAT.
3.3 DIST.DAT

This file is designed to accommodate all variables which are simultaneously dependent on the
origin of the choice-maker and the destination that is being considered. Such variables would include
distance, travel time and travel cost, for example. The previous two files contained data that were dependent
either on characteristics of the choice-maker or attributes of destinations but did not link the two in any
way. While the first two files had distinct columnar structures, DIST.DAT is composed of a series of
horizontally concatenated blocks of data. Like SOCIQ.DAT, the number of rows in this file is determined
by the number of choice-makers or population segments in the model. The number of columns however is
dependent on the number of elemental aliernatives being modelled (spatial and non-spatial) and the number
of distance variables in the data.

The DIST.DAT files used in sample estimations are shown in Appendix 4. Unfortunately, there
is insufficient room on the page to show how DIST.DAT loaks for our sample application of the aggregated
spatial choice model. The first DIST.DAT has 60 rows which is consistent with the model assessing 60
population segments. Also notice that there are two distinct blocks in the data. The first block presents
the distances in thousands of kilometers from the associated origin to each destination. The second block

simply contains the natural logarithm of the actual distances in kilometers. Note how the sequence of
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spatial alternatives repeats itself in the header row according to the number of distance variables. Note
also that the same logic for the handling of non-spatial alternatives is applied in DIST.DAT as was done
in DEST.DAT. This is reflected by the two columns associated with the stay option all being zeros in
keeping with the fact that staying is not linked to measures of distance in any way.

We should note how DIST.DAT would differ in the event that an aggregated logit model was
being applied. In that case, we would be using sub-aggregate distance measures to differentiate intra-
aggregate utility levels. In the first data set of Appendix 4. each column corresponds to one OMNL
aggregate. If specifying the aggregated model, the Jih column would be replaced with A7/, J € {1, 2...,6}
columns of distance information since elemental alternatives within the J aggregates are all associated
with unique distances. For all except the stay option (J = 1), M7 typically will exceed 1. In the sample
application of the aggregated logit model. the distribution of M7 is (1,17,28, 35,20, 21) while for the
OMNL it is simply six ones. For a spatially disaggregate model, it is clear that DIST.DAT can have a
massive number of columns. It is critical to keep in mind though that the number of columns is given
directly by the product of the number of distance variables in the data and the total number of elemental
alternatives being modelled.

The opportunity will be taken now to show how DIST.DAT would be set up in a non-spatial
choice problem. not to mention an example which employs micro-data as opposed to grouped data. In
particular, we examine a small mode choice example which is outlined in Ben-Akiva and Lerman (1985,
87-92) where the choice between public transit and automobile is modelled based on the respective trave!
times associated with each. Clearly in this case the aiternatives are the two modes: transit and car in
contrast to our other examples where the altematives are spatial units.

The main variable, travel time, is considered to be in the general category of “distance’ variable
since it is neither strictly an attribute of the two modes nor a choice-maker characteristic. The particular

travel time incurred depends both on the mode and the spatial relationship between the residential origin
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and the destination of the workplace. The latter are factors which depend on the person involved. In the
second data set of Appendix 4, the one relevant to the Ben-Akiva problem, we see two columns of data
which form a single block. This is in contrast to our previous example which had two blocks of distance
variables. This single block with two columns corresponds to the two ‘aggregate” alternatives in the model.
Unlike space, these cannot be sub-divided into elemental alternatives but for the sake of consistency, they
can be considered as two aggregates with each containing one elemental altemative.

The number of rows in this version of DIST.DAT corresponds simply to the number of choice-
makers in the micro-data. There are 21 people in this example with each row indicating the travel time

that would be associated with the two modes given the person’s circumstances.
3.4 DEFINE.DAT

This file is responsible for instructing SPEC as to which alternatives are available to a given
choice-maker or population segment. Alternatives which are not an option must be omitted from the
calculation of choice probabilities. Note that it is not enough to restrict an unavailable alternative to zero
utility since an alternative which has zero utility can very easily be associated with a non-zero choice
probability in a logit model. Technically this file should be considered as a specification file as it is
providing SPEC a set of instructions. Nevertheless, its format is discussed in this section concerned with
data sets,

The setup of DEFINE.DAT is straightforward and is illustrated along with the DESIGN.SPC
files for our sample applications of Appendix 5. As with SOCIQ.DAT and DIST.DAT, the number of rows
in this file of binary elements will correspond to the number of choice-makers or population segments. The
number of columns in the file will equal the total number of elemental altematives (spatial and non-spatial)
being modelled. Note that the sample file contains columns of zeros which form a diagonal pattern across

the associated population segments. These zeros are associated with choice-makers choosing their own
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origin in the destination choice component of the model, which of course is not possiole. As a result, the
choice-maker’s origin must be coded as zero in DEFINE.DAT.

It should be noted that the user will be relieved from the responsibility of preparing an ASCI]
version of DEFINE.DAT if a model is fitted in which all alternatives are available to all choice-makers.
The user will be prompted for whether this is the case by running SETDATA. If yes, then a DEFINE.DAT
composed entirely of ones will automatically be created. This is what happens with the Ben-Akiva example

where both modes are presumed available to all 21 choice-makers.

4 Runring SETDATA

This program is an important one for undertaking many of the ‘housekeeping’ tasks which are
necessary. It provides four main functions which are not necessarily related but are nevertheless all included
in this single program. In general, the purpose of this program is to manipulate the original ASCII data
in such a way that the universe of potential variables is readily accessible through the running of SPEC.
It is important to note that SETDATA is not intended for the creation of huge GAUSS data sets. For this
purpose,. it is probably better to use the ATOG utility available with the GAUSS software and the data
transformation package which allows for the creation of data sets with proper variable names. Even if
this route is taken some of the four main functions discussed below will need to be employed such as the

activation of GAUSS data sets.

4.1 The conversion of ASCII data into GAUSS data sets

A major function of this program is to tum the user’s raw ASCII data into GAUSS data which
can be easily accessed and manipulated. The program is responsible for the creation of SOCIOQ.DAT,
DEST.DAT, DIST.DAT and DEFINE.DAT with all, or perhaps only one of them, being created in a

single run. If distance variables for example are irrelevant in some choice problem, then there is no need
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to create DIST.DAT. Dummy versions of unneeded data sets though are automatically created since SPEC
scans for each of the main variable types and needs to find data sets with the four names above.

In running the program, the user will first be prompted for basic, but important information
about the characteristics of the model: 1) the number of observations (or population segments) in the data
and 2) the number of elemental alternatives being modelled. In the creation of all files. this information
will be checked against the number of elements detected in the ASCII raw data for inconsistencies. 1f the
user has set up the ASCII data in the formats described earlier. then there should be no error messages.
For each form of data file. the user will be asked if its creation is desired. If so, then the user will be

prompted for the name of the text {ile containing the needed raw data.

4.1.1 Defining SOCIO.DAT

Afier entering the file name of the ASCII data. the user is asked to describe the data by column.
As described earlier. the left column block (see Appendix 2) will be associated with choice information while
the right column block will be associated with variables. The respective widths of the choice information
block and the variables block then. is information that will be required of the user.

Having defined the size of each block, the user is asked to provide the variable names associated
with the columns in the variables block. This is done interactively and sequentially with the request being
made to keep variable names to eight or fewer characters.

The user is then asked if the raw ASCI] data contain any non-integer values. !f the data are only
integers, they can be stored much more efficiently than if they contain real numbers and hence will take
up less disk space. Finally, it is asked that a file name be provided (without the three letter extension) to
store the GAUSS data. The result will be the creation of two files: one with the .DAT extension and the

other with a .DHT extension. If one is accidentally erased, then the other will not be operational.

412  Defining DEST.DAT
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If the user chooses to define DEST.DAT then the only necessary information is the number of
columns or destination attributes that are contained in the file. As with the creation of SOCIO.DAT, the
user will be asked for the names associated with the attributes, whether the data contain non-integer values

and what name should be used for the GAUSS data set.

4.1.3 Defining DIST.DAT
If the user chooses to define DIST.DAT then the number of distance variables contained in the

data must be indicated. Then prompts will follow for their names.whether the data are integer or not and

the name of the GAUSS data set..

4.1.4  Defining DEFINE.DAT

The key aspect in the definition of this file will be whether all model alternatives are available
to all choice-makers. If so, then DEFINE.DAT will be a matrix of ones and will be automatically created
based on information that the program already knows. In this case. it would be unnecessary for the user
to have previously defined an ASCII text file since it would go unused anyway. If all options are not
available to all choice-makers however, then the text file of binary numbers must be accessible. The user
will have created it on the basis of the format previously outlined. Note that DEFINE.DAT will be created

automatically as an integer file for obvious reasons.

4.1.5  Processing large ASCII data sets

In the event of massive raw ASCII data sets, the user might find that it is possible only to
create one of the GAUSS data sets during a single run due to memory constraints. The program is run,
one GAUSS data set is created, the memory is cleared, and then the program is run again to create more
GAUSS data (Note that in GAUSS the workspace can be cleared by typing ‘new’ from the command
prempt). With huge data, as in the case of choice-maker data with many thousands of observations, it

might be necessary to invoke the GAUSS virtual memory capability so that the hard disk mimics RAM
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memory. This action will slow matters down considerably but will eventually lead to the desired result.
This can be activcted through the GAUSS run-time module by typing *“VMI' at the command prompt and
then following the instructions. It is only in SETDATA that there is risk of having to resort to virtual
memory. All other components in the system make use of the capabilities of GAUSS data to ensure that
the data are broken into chunks which are easily managed by the available RAM. The size of chunks to be
processed is controlled interactively when the specification and estimation programs are run. Alternatively,
if GAUSS is activated when WINDOWS is running (either define a GAUSS icon or exit to DOS from

WINDOWS) then the WINDOWS virtual memory capability should free up a large workspace.

4.2 Determining the ACTIVE GAUSS data sets

By definition, the active GAUSS data for any running of SPEC and subsequently MODULE
will be those data sets named: SOCIQ.DAT, DEST.DAT, DIST.DAT and DEFINE.DAT. Thuse names
are reserved for this purpose. It was felt that running SPEC would be tedious if the user needed to key
in nearly a half dozen different file names everytime the same model was run with perhaps only a subtle
difference in specification. Hence it made sense to designate certain GAUSS data sets as being active and
hence perceived by SPEC as the data to be acted upon until advised otherwise. An important function of
SETDATA then is the contro! over which data are active.

Most likely, the user will have developed a library of different GAUSS data sets, relating lo
different model types, from undertaking the function described in the previous sub-section. If at any time it
is desired to do one or more specifications of a particular model type then the associated GAUSS data must
be activated. To do this the user will be prompted for the names assigned by the user to these data and
then the data files will be copied automatically to SOCIO.DAT and whichever of the other main GAUSS
data sets are to be activated. The user should see on the screen whether the copying has been successful

based on the normal DOS messages which should be displayed. Whenever a different choice-maker file,
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for example, is to be activated, the current SOCIO.DAT file is erased and replaced by a new SOCIO.DAT

containing the information in the current data.

4.3 The Definition of new Choice-maker variables

Often, the choice-maker or population segment variables which were in existence with an original
ASCII data file will differ to some extent from the variables in the final model specified. There is always
the desire to create new variables or design choice-maker interactions from the original set. Both the
addition and deletion of variables is easily undertaken with SETDATA.

To add a variable, the user is first asked the name of the GAUSS data set to be modified and then
is asked to confirm that a new variable is being created. Now the name for this variable to be created is
required. At this point the instruction is given to enter some logical or mathematical expression involving
current variables available in the user-specified data. Some samples of acceptable statements are as follows

where the user should substitule the applicable variable names for VAR, VAR2 etc.

* VAR * VAR2 - the new variable will be the product of VAR] and VAR2

VARI * VAR2 * VARS3 - the new variable will be the product of three variables

s VARI] .gt 2 - a binary variable will be formed which is 1 when VAR exceeds 2 and 0 otherwise.
® VARI .ge 2 - the new binary variable is | when YARI is greater than or equal to 2.

s VARI] ./ VAR2 - the new variable is results from ihe division of VAR1 by VAR 2.

e VARI"2 - the new variable is the square of VAR]

¢ In(VARI) - the new variable is the natural logarithm of VAR]

¢ VAR + VARZ + VARS3 - the new variable is the sum of three variables

o exp{VARI) - the new variable is the result of VAR to the base ¢.

¢ VARI - VAR2 - the new variable is the difference between VAR] and VAR2
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o VARI .gi 2 .and VAR2 .It 3 - a binary variable is formed which is t if VARI exceeds 2 while VAR2
is simultaneously less than 3.

e VARI .gt 2 .or VAR2 .It 3 - a binary variable is formed which is 1 either if VAR exceeds 2 or if
VARZ is less than 2,

e VARI .eq 3 - a binary variable is formed which is 1 if VARI .eq 3

e VARI .ne 3 - a binary variable is formed which is 1 if VAR] is unequal to 3.

There are probably other types of expressions which are possible but these are most of the
important ones. There are no limits on the number of 1erms in a statement other than everything should fit
within a line. The syntax in the statement must adhere to the rules of the GAUSS language which, as the
user can see above, are quite intuitive. The dot operators in the form of .*, ./, .and, .gt,.le..or and so on
are indicative of the fact that the giver operation must be carried out on an element-by-element basis for
the entire vector. If the variable creation is successful then the user will be asked if another action, cither
addition or deletion of a variable, is to be undertaken.

The deletion of a variable is quite simple. After saying a deletion is required, the user is asked

to name the variable to be removed from the GAUSS data set. Once named, the action is carried out.

4.4 The Definition and Checking of INTERDAT

Another important function of SETDATA has to do with the specification of interactions between
choice-maker characteristics and destination attributes. A specification file known as INTERDAT is
defined here according to the instructions of the user. This file says essentially what combinations of
choice-maker characteristics and destination attributes are utilized when the interaction is actually formed.
The two matters of concem for this specification file are on the one hand how to create it and on the other

how to check its contents.

44.1 Defining INTERDAT
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INTERDAT is a specification file and not a data file, hence there is no chance of it causing
memory problems. As mentioned, it gives instructions on how interaction variables are to be formed. The
underlying logic of this variable type is that different population segments are assumed to assess different
destination attributes over space in deriving their [evels of spatial utility. There are two main types of
interaction variables accommodated: similarity indexes which affect all population segments for a given
characteristic ( e.g. ethnicity} and simple interactions for which the given characteristic is relevant for only
a few or one of the population segments.

As an example of the former interaction type, perhaps we are postulating that migrants seek
places which have high concentrations of their own ethnic group. We might have a series of three binary
choice-maker charucteristics which indicate whether or not the given migrant is a member of some group
or not. Also, we might have destination attribute information which details the proportions of the three
ethnic groups at various spatial units. By matching choice-makers with the relevant destination attribute,
we have a means for assessing in general how ethnic similarity affects locational choice.

An example of the latter form of interaction might be the fact that unemployment over space
is not really a factor to those people who have a claim on jobs but may be a strong factor for those who
are unemployed. Hence an interaction could be specified in such a way that those who are unemployed
are the only ones to be affected by this destination attribute. For the employed people, we would need
to define the *zeroes’ variable which is added automatically to the data in DEST.DAT. This is simply a
column which is zero across all elemental alternatives. In this example, the employed would be interacted
with that column. This is in contrast to the previous similarity type variable where all population segments
were modelled as being affected by some destination attribute.

This explains conceptually what these types of variables are about however it remains to mention
how the actual specification of INTERDAT works. After saying that we desire to form such a file the

question will be asked as to whether the newly specified variables are to be appended to a previous
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INTER.DAT or are to form an entirely new INTERDAT. If the latter is chosen, then any existing
INTERDAT files will be overwritten unless the .DAT and .DHT files are saved to an alias. Then
the number of new interaction variables must be indicated. The user will then define the first interaction
variable by indicating the total number of socio-economic categories, the names of the choice-maker binary
variables, the names of the matching destination attributes, and finally the name of the new interaction
variable itself. The same process follows for the remainder of the interaction variables to be formed. The
resulting GAUSS data file INTERDAT contaiﬁs all the relevant column numbers of the variables from
SOCIO.DAT and DEST.DAT which are needed.

Essentially INTER.DAT is storing numerically the column locations of needed variables as they
were found in the SOCIO.DAT and DEST.DAT files active at the time. Clearly if radically different
SOCIO.DAT and DEST.DAT files using similar variable names ar;e active during the running of SPEC,
then misspecifications will occur since different variables will occupy the same columns. The user must
guard against the possibility of the wrong columns in the SOCIO.DAT and DEST.DAT files being used.
However, as long as distinct variable names are used for the variables specified in INTERDAT, then it is

possible to store the specifications of interaction variables for many different model types within the same

INTERDAT file.

44.2  Checking INTERDAT

To avoid mix ups, the manner in which INTERDAT is interpreting the active SOCIO.DAT and
DEST.DAT files must be monitored. Upon the request of the user, SETDATA has the ability to check
how INTERDAT is relating to the current active data sets. In turn the status of each variable defined
in INFTERDAT will be reviewed. For each variable, the number of categories and the manner in which
these categories is formed is indicated along with how destination attributes are matched to the defined

categories. Presumably, the user will know which variables in SOCIQ.DAT and DEST.DAT are requircd
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to form a given variable, !f the user does this checking procedure and finds that unexpected variables will
be used to create the interaction, then it is clear that the wrong data sets are active or that the specification
of some variable in INTER DAT is obsolete. If the former, then activating different data sets should solve

the problem.

5 The Specification of DESIGN.SPC

Having set up data in the correct ASCII format, created GAUSS data sets and determined how
interaction variables are formed (if needed), the stage is set to actually specify models. Integra! to this
process is DESIGN.SPC, the specification file responsible for getting SPEC and ultimately MODULE to
operate as the user intends. It is a user-developed ASCII file containing both numeric and character data.
Its format is relatively straightforward and is outlined here in terms of its important components. Since
several different versions of this file will likely co-exist as many specifications are typically tested, the user
will need to provide unique names for each of these files. These names will need to be remembered when
it comes time to run SPEC and it should be emphasized that the three letter extension .SPC (indicating

specification file) is compulsory. In the discussion to follow, the generic name *DESIGN” is used.

5.1 The distribution of elemental alternatives

To this point, the data for any specification has been defined at the most spatially disaggregate
leve! however there is no information about how these elemental aiternatives should be grouped together,
if at all. As a result, in the first row of DESIGN.SPC the user must define a (1 x alts) numeric row
vector referred to a elem where alts defines the number of aggregate altermatives in the model to be
specified. The number of columns in elem is determined by the number of aggregates in the model while
the elements of the vector correspond to the number of elemental altematives in the associated aggregate.

It is important to understand the meaning of alts and the meaning of an aggregate in the context of the
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different model types. For the OMNL, we consider that each alternative is an aggregate despite the fact
that each contains only one elemental alternative. Hence, elem would simply be a (1 x alts) vector of
ones. The aggregated model differs irom the OMNL in that some of the aggregates will contain multiple
elemental alternatives but the spatial resolution of choice information will be the same: namely at the
aggregate level. For the nested logit model, the spatial resolution of aggregate nests will not correspond
to the spatial resolution of choice information. We might. for example, have knowledge of sub-provincial

choices even though the aggregate alternatives are the provinces themselves. These definitions will be

made clearer in examples to follow.

5.2 The naming of alternatives

Having delineated alternatives, the next task is to indicate their names through individual strings
of up to eight characters in fength. The number of columns in the string vector to be defined in the
second row of DESIGN.SPC will exactly correspond in dimension to elem and is used simply to name the
aggregates indicated in elemn. In the case of the nested logit model, there will be a more disaggregate level of
alternatives at which choice information is available and at which the complete range of specification options
can be exercised. Hence in addition to naming aggregate alternatives, in the third row of DESIGN.SPC
the names of the nested model’s elemental alternatives should be indicated. To review, the naming of

alternatives is done in one row for the OMNL and aggregated models but will take up two rows for the

nested logit.

5.3 Parameter-specific Information

The remaining block of information in DESIGN.SPC relates to how individual variables are to
be used to obtain associated parameters. The format is such that rows relate to parameters while columns
relate to alternatives. Hence a tabular specification format is employed in the form popularized by Ben-

Akiva and Lerman (1985). One difference is that the tables for this software are transposes of the tables
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in that work. Mais!lv this is to take advantage of any text editor’s capability to quickly cut and paste and
hence rapidly respecify a new set of parameters for a model with a fixed set of alternatives. A related
question might ask why the whole table specification process does not take place interactively rather than
in the form of the chosen external ASCII file approach. Again, an external file can take advantage of
the features of text editors and can far more easily accommodate specifications with a large number of
alternatives or parameters. In general, the approach seems to be far less tedious. We now examine the

components of the block ccntaining parameter-specific information,

5.3.1  The parameter starting values

Define the number of rows in the block of data as kk. which represents the total number of
parameters in the given specification. The first column in the block provides the desired parameter starting
values for all 3 parameters, that is, those associated with independent variables. Starting values for the
A scale parameters are not an issue in DESIGN.SPC. Starting values are important because the process
of obtaining parameters through maximum likelihood is an iterative one. In many cases, initializing all
pa-ameters al zero is not a good idea. For example, the altemative-specific constant associated with the
‘stay’ option in migration models is often much larger than zero since the vast majority of people are

non-migrants.

5.3.2  The variable names associated with parameters

For each parameter to be estimarted, there is one associated variable. The name of the variable
in question should be included in the second column of the block in the appropriate row. This is the
name which will appear in any output of the sofiware. If some variable is specified in an alternative-
specific fashion, then the same variable name will be associated with more than one parameter. The output
provided in the SUMMARY.OUT file, however, will indicate to which alternatives a given specificaticn

of a variable is refating.
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5.3.3 Forming the design matrix

The actions taken to this point will have defined the sequence of variables that will ultimately
be observed in the specification matrix, however the results are not refined in the sense that no mention
has yet been made of the spatial alternatives to which the variables and their associated parameters are
related. For this reason, it is necessary to compose a binary design matrix. Entries of 1 indicate that the
given variable is specific to the associated alternative while entries of zero'indicate that it is not.

The matrix design is (kk x alts) for the OMNL and the aggregated logit mode) but is (kk x
surmn{elem)} for the nested logit model. The reason for this difference is the fact that with the nested
logit model, alternative-specific specifications at the sub-aggregate level are possible while for the other
two models, this is not the case. Hence. for the aggregated model, an element from design will affect all
elemental alternatives within the associated aggregate in the same way.

Those used to seeing specifications like those in Ben-Akiva and Lerman should note that variable
names are not included in the design matrix, only binary numbers which indicate whether the variable is
relevant to the associated alternative. The column adjacent to the design matrix provides the variable and
applies it to the alternatives indicated by the design. The data sets for this software are set up in such a way
that there is no chance of more than one variable being associated with a given row in the design matrix. In
the Ben-Akiva example discussed earlier, auto travel time and transit travel time would conventionally be
considered as two variables which are generically specified and hence associated with a single parameter.

In this software, they are classified as a single distance variable: travel time.

6 Running SPEC

Most of the work relating to this program will have been done in setting up the ASCII specifi-

cation file DESIGN.SPC. Nevertheless, the user will be prompted for a few things. Initially, there will be
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a prompt to indicate the particular name assigned to the DESIGN.SPC text file. Secondly the user will
be requested 10 indicate what general type of model is being estimated: a nested logit on the one hand or
the OMNL/aggregated model on the other hand. The distinction, as mentioned, relates to the respective
spatial resolutions of the choice information versus the specification. It is necessary also to ask for the
number of alternatives ( i.e. alts) so that the program knows how many elements to expect when it reads
in the informatio.. on elemn. The user should always remember that the number of alternatives equals the
number of rows in elem,

At this stage, all that is needed to interpret DESIGN.SPC has been provided and the program
will set about the task of finding all the variables that are indicated in the specification. The only names
which should not be found are those assigned to altemative-specific constants since such data are not stored
in any data set but rather created as the program runs. If the program indicates that a variable name other
than a constant is absent from each of the data sets, then this indicates a problem. Either the user has
typed the variable name wrong in DESIGN.SPC or the data do not exist in the indicated data sets. If this
is the case, then the user should answer the posed question accordingly and the program will stop so that
the problem can be sought.

Having confirmed that all the needed data can indeed be accessed, the remaining issue is whether
the specification process should be split into portions because the enormity of a given problem overcomes
the available RAM. If the user indicates that this may be a problem. then the program will ask for the number
of observations { population segments) 1o be processed at once. For large problems, some experimentation
on the part of the user might be required to find the right amount to process at one time. If too much
is demanded by the user, and the GAUSS virtual memory capability is not active, then the program will
terminate with an error message. 1t is strongly recommended that use of the virtual memory capability be
avoided at all costs. 1t is by definition heavily dependent on cumbersome interaction with the hard disk

and will slow matters down much more than the processing by blocks. At this point all issues will have
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been addressed and the implementation of the specification will commence. The user will be advised of
the number of choice-makers or population segments that have been processed and a message will indicate
whether the required output files have been generated.

Two output files are created by the program. One is SPEC.DAT (SPEC.DHT) which is the major
new GAUSS data set created by the user’s instructions and is the information acted on by the estimation
program. The user should not be concemed with the contents of this data set since it is quite complex.
Also, depending on the size of the problem, this file can be quite large and may take up considerable space
on the hard disk.

The other file is SUMMARY.OUT which should be checked by the user before running MOD-
ULE. This file will illustrate which portions of the design matrix are associated with which variable types.
It will also show how the variables (named earlier in the running of SETDATA) have been utilized. If
there are any surprises in this file, then the user should go back and respecify the DESIGN.SPC file until
the desired result is obtained. Because these are still early days in the development of this software, it
is possible that SPEC might run successfully despite the fact that some specification mistake has been

made. For this reason, it is critical to carefully scrutinize the SUMMARY.TXT file for something out of

the ordinary.

7 Running MODULE

The major task for the user in running this program is the specification of the A scale parameters.
Of course if the model is the OMNL, there is nothing to specify and using MODULE will pose no challenge.
Other than specification concems, the only issue to address is the number of choice-makers (population
segments) which can be processed at once. The need to also do this in MODULE is because its memory

requirements are more demanding than is the case in SPEC, hence fewer observations can be processed
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at once. Again some experimentation on the part of the user may be required since generally. the more
observations which are done at once, the faster a solution will be obtained.

Assuming that we are estimating the nested logit model or the aggregated model, the main matter
of concern will be the A parameters. In particular, the user will have to indicate which alternatives have
exogenous A and which have A which are to be endogenously estimated. Of those that are endogenous,
the user must identify which of the parameters is constrained across aggregates and what the pattern of
contraints is. Implementing this information is not as complicated as it sounds. Essentialiy, the program
will determine the number of X required based on alts and then prompt the user by providing the aggregate
alternative name and then requesting that some information on the A for that aggregate be provided. If the
associated A is to be exogenously fixed, then the user simply indicates the value between 0 and 1 which
should be forced to apply. Values outside this range of course would be a violation of theory and are not
acceptable. Information on endogenous A is entered by using multiples of ten so as to be kept quite distinct
from exogenous A. The first endogenous A should be indicated with 10, the second with 20. the third with
30 and so on. If the second endogencus A for example is being forced to apply to alternatives 3 and 6.
then 20 should be entered when the A information for those alternatives is requested. For all endogenous
A, starting values will automatically be set to 1.0 which is typically the best place to begin in such models.
Overall, the A specification process is quite simple and the user should have no problems in grasping it.

As a brief aside, it is important to note that in the case of a nest of alternatives which contains
only one elemental alternative (also known in the discrete choice literature as a ‘degenerate node’), the
associated A should always be set exogenously to 1.0.

At this point, the estimation should commence and the user will be able to monitor its progress.
Note that the parameter names specified in DESIGN.SPC will be shown next to the current parameter
estimates. They may not be displayed in the same order as specified in DESIGN.SPC because sorting of

the specification by variable type took place in the running of SPEC however results are easily followed
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by noting the variable names during and after the estimation. At this point. either there will be a successful
convergence, termination because of too many iterations (the maximum is 100), or termination from a
floating point exception. The latter is liable to happen with the aggregated model or the nested logit model
if an endogenous A strays too close to zero. In the first two cases, the main output of the program will
be created: RESULT.QOUT. This file will contain the final parameter estimates. information about their
significance and various diagnostics which we assume here that the user will be able to understand. After
the table of parameters, there is an important row vector displayed which indicates the current values of A
which are applying in sequence to the model's aggregates. Those A which have been fixed or endogenous
should be readily apparent and associated with the proper aggregate. In addition, A which have been
constrained across aggregates should be readily apparent also.

A potentially useful feature of MODULE is that you can interactively retrieve information on
the final set of choice probabilities, The final set of choice probabilities at the aggregate level can be
obtained by displaying the contents of the matrix PROB. The probabilities at the most disaggregate level
can be viewed by typing the contents of the matrix PROBEL. In the following section, there is a short

discussion on displaying matrices interactively.

8 Other Issues

8.1 The GAUSS Environment

In the package received by the user. the four programs in this sofiware: SETDATA, SPEC,
MODULE and NEWTON, are i complied form with the extension .GCG. When the user invokes GAUSS
with the command: GAUSSI from DOS (unfortunately, the software is required to run even the compiled
programs), the command prompt: >3, should be visible. By using the RUN command from this prompt

and indicating the program name, the given program should start running. Also, when the programs have
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run successfully, the command prompt should again be visible.

There are actions that the user can undertake interactively from the command prompt which
might prove useful. A matrix in memory can be instanily printed to the screen by typing the name of the
matrix. If the first column of matrix A is to be viewed, the user would type A[., 1], the first row would be
A[l,.], the block of 16 elements in the upper-left comer of the matrix could be viswed with A[1: 4,1 : 4].

Clearly there are an infinite number of ways to view a large matrix.

8.2 Troubleshooting

This software still has much work to be done on it before it is bug free. No doubt there will be
situations where the program will terminate rudely and perhaps without an adequate explanation of why.

Here is a list of some of the more likely difficulties and what should be done to get around them.

o 1} A persistent ‘file afready open' error - This GAUSS error occurs when an attempt is made to open
a GAUSS data set which is already open. Often this error will fall on the heels of another error which
prevented closing of the data sets. There are two solutions: a) type CLOSEALL from the command
prompt and attempt to run the program again, b) if that fails, then type NEW from the command
prompt, which will clear the workspace, and then run the program again.

e 2) Persistent file not found’ errors - Probably these types of errors result when you type in an incorrect
file name or else if you include the three letter DOS extension. This extension is unnecessary. The

solution of course are simply to run the programs again in the hopes that you have not set the stage
for error# i to occur.

e 3} A crashing estimation program - There are a few things which can cause this problem. One is that
data are not scaled very well. If you include a variable measuring annual income in dollars rather
than in thousands of dollars in the same specification as some binary variable, then you are asking
for trouble. Some crashes result from the A parameters in the more complex models straying too close
to zero. The solution in that case is a respecification. Difficulties will also occur if the starting values
for a specification are arbitrary ( e.g. all zeros) or if the Newton-Raphson algorithm is used to estimate
models with complex surfaces. Remember, MODULE is based on the more flexible BFGS algorithm
while NEWTON is based on the Newton-Raphson approach.

o 4} The first time you attempt to run SETDATA, you receive a message saying that the file TEMF.PRG
was not found. TEMP.PRG is actually a program which is created by SETDATA and then executed
while SETDATA is active. This program must be in existence at the outset though or SETDATA is
not executed. 1f you do a directory and find that it is not there. then create a trivial one-line ASCII
file: ™ ™, (i.e. two quote marks and a semi-colon) and then save the file under the name TEMP.PRG.



Now SETDATA should run.

5} You do not have much success in getting the program to recognize variable names in vour GAUSS
data sets. Outright typographical errors are an obvious culprit but more likely it is because GAUSS
data seis store variable names in a case-sensitive way. When you specify variables in an .SPC file.
you will need to be sure that it is typed in the same way as when you first defined the variables in the
associated data set.

6) Insufficient memory errors - You are attempting too process too many observations at once. Make
use of the ability of the software to sequentially process blocks of observations or, if you have some
spare time, tun the programs using virtual memory.

7} MODULE will not run - This program requires information from SPEC that is kept in active memory,
not written to file. Hence if the session starts with the running of MODULE. the program will not
run because certain elements will be undefined. The solution is to always run SPEC before running
MODULE unless you are simply respecifying a set of A parameters that you just tried.

Tutorial

In this tutorial, the raw data which are specified for you on disk represent the starting point as

you are taken step-by-step through everything that must be dore to specify and ultimately estimate two

models: a nested logit model and an OMNL model. The files SOCIO. TXT, DEST.TXT, DIST.TXT and

DEFINE.TXT are used to test the specifications OMNLSPC and NEST1.SPC which appear in Appendix

4. Please consult the data in the appendices and also examine the actual files in a text editor.

Running SETDATA

9.1.1  Creating the GAUSS data sets

Note that each of the bullet items below correspond with a single step. The user will need to

hit the ‘enter’ button once for each of these steps although this is not explicitly mentioned below. It is not

essential that each data set be created in the same running of SETDATA.

¢ From the DOS prompt, type ‘gaussi’
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o From the GAUSS command prompt, type ‘run setdata’.

¢ You must now provide preliminary information about your ASCI! data. In response to the query about
the number of choice-makers (population segments), type ‘60, to the second question about the number
of elementa) alternatives, type ‘6'.

Creation of choice-maker GAUSS data set
¢ Type ‘1’ to indicate that we do want to create the choice-maker GAUSS data set.
e Type ‘SOCIO’ to indicate that the raw data are called SOCIG.TXT.
e Type *6’ to indicate that 6 of the 17 columns in SOCIO.TXT are allocated to choice information.
e Type ‘11" to indicate that the remaining columns are allocated to choice-maker va. rables.

¢ You are now prompted for the names of the 11 variables. You should name them (in lower case)} as: 1.
educ, 2. young, 3. middle, 4. single, 5. east, 6. que, 7. ont, 8. pray, 9. bc, 10. notque, 11. noteduc.

e Type in ‘0’ to indicate that there are no non-integer elements in SOCIOQ.TXT.
e Type 'SOCIAL’ to indicate that the new GAUSS data set will be called SOCIAL.DAT (.DHT).

e Type ‘1’ to continue.

Creation of destination attribute GAUSS data setCreation of this data set is optional and depends on

whether we will use destination attributes or interactions in our model specifications.

e Type ‘1’ to indicate that we do want to create the destination attribute GAUSS data set.
* Type ‘DEST’ 1o indicate that the raw data are called DEST.TXT.

* Type *6’ to indicate that the data contain six destination attributes.

e You are now prompted for the names of the six attributes . You should name them (in lower case) as:
1. english, 2. french, 3. univ, 4. income, 5. temp, 6. precip.

o Type in *1" to indicate that there are non-integer elements in DEST.TXT.



e Type ‘DESTAGG" so that the new GAUSS data set will be called DESTAGG.DAT (.DHT).

s Type ‘I’ to continue,

Creation of distances GAUSS data setCreation of this data set is optional and depends on whether we

will use distance variables in our model specifications.

e Type *1’ to indicate that we wish to create the distances GAUSS data set

o Type ‘DIST’ to indicate that the raw data are called DIST.TXT.

e Type ‘2’ to indicate that there are two distance variables in the data.

¢ Name the two variabies (in lower case letters) as: 1. dist, 2. Indist.

s Type ‘1’ to indicate that there are non-integers in the data.

e Type '‘DISTAGG® so that the new GAUSS data will be called DISTAGG.DAT (.DHT).

o Type ‘1’ to continue,

Creation of GAUSS data defining available alternatives
e Type ‘1’ to indicate that we need to create this GAUSS data set.

e Type ‘0’ to indicate that for this example all the alternatives are not available to each population
segment.

e Type ‘DEFINE’ to indicate that the raw data are named DEFINE.TXT.
» Type ‘DEFAGG’ to indicate that the new GAUSS data will be called DEFAGG.DAT (.DHT).

e Type ‘1" 10 indicate that we wish 1o return to the main selection list.

9.1.2  Adding or Deleting Choice-maker variables

Having sent the choice-maker data to the file SOCIAL,DAT (.DHT), we can add and delete new
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variables to it if we wish. Since we will not be using a newly created variable in the final specification,

here we will simply create one and then delete it for illustration purposes.

Type ‘4’ to indicate that we are adding or deleting choice-maker variables to some GAUSS data set.

Type ‘SOCIAL’ to indicate that we will add or delete a variable to SOCIAL.DAT (.DHT). Note that
the columi-by-column contents of this data set are displayed by name.

Type ‘1" to indicate that we wish to add a variable.
Type ‘test’ as the name of the variable to be added.

Type ‘educ .* single’ as your mathematical definition of the new variable. TEST will simply be the
product of the binary variables EDUC and SINGLE. The variable is created as soon as you hit ‘enter’.

Type ‘1’ to indicate that again, we want to add or delete a variable. although now we will be deleting.
Type *0" to indicate that we are deleting a variable.

Type ‘test’ to indicate the natne of the variable to be erased.

Type ‘0 to say that we are through with creation and deletion.

Type ‘1" to return to the main selection list.

9.1.3  Activation of GAUSS data for the specification

Type *2' from the main menu to indicate that we are activating GAUSS data sets.

Type ‘SOCIAL’ to activate SOCIAL.DAT (.DHT).

Type ‘1" if the files were copied successfully. Typing ‘0" would stop the program.

Type ‘1" to indicate that we wish to activate a specific destination attribute GAUSS data set,
Type ‘DESTAGG" to activate DESTAGG.DAT (.DHT)

Type *1” to continue.

Type *1" to indicate that we wish to activate a specific distance GAUSS data set.



o Type ‘DISTAGG’ to activate DISTAGG.DAT (.DHT)
e Type ‘1’ to continue.

¢ Type ‘DEFAGG’ to activate DEFAGG.DAT (.DHT).
e Type *1° to continue.

¢ Type *1" to indicate that we have no INTERDAT file defined and that we would like a dummy file
created to guarantee that SPEC will run. If this file were already in existence, we would type ‘0",

Actually, in this case, we are just about to create the new INTERDAT file so it matters little how we
answer this question.

e Type ‘1" to return to the main selection list.

9.1.4  Creation and checking of INTERDAT

While we have created and activated the needed GAUSS data to do our specification and esti-
mation, we have yet to say how the interactions of choice-maker characteristics with destination attributes

that appear in OMNL.SPC and NEST1.SPC are formed, This is what we will do here,

e Type ‘3’ from the main selection list to indicate that we are modifying or checking INTERDAT,
o Type *1’ to indicate tha: we are modifying and not just checking INTER DAT.

e Type ‘1’ to indicate that we are creating a new INTER.DAT as opposed to adding to an old one.
e Type ‘2’ to indicate that we will form two interaction specifications.

» Type ‘lang’ to indicate the name of the first interaction.

¢ Type'5’ to indicate that it has five categories.

o The names of the five categories which you are prompted for should be: 1. east, 2. que, 3. ont, 4.
pray, 5. bc.

e The names of the five associated destination attributes are: 1. english, 2. french, 3. english, 4. english,
5. english. Note that we could have done the same variable in two categories have we had paired que
and notque with french and english.
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o Type ‘postsec’ to indicate the name of the second interaction.
e Type ‘2’ to indicate that it has two categories.
® The two choice-maker names that are needed are: |. educ. 2. noteduc.

¢ The two destination attribute names are: 1. univ, 2. zeros. Note that this latter destination attribute
was added automatically to DESTAGG.DAT (.DHT) and is simply a column of zeros.

o Now that the interaction specifications are set, we can now check them by typing *1’ in response to
the question.

s Type ‘1’ after the specification for the first interaction has been shown.
o Type ‘1’ after the specification for the second interaction has been shown.
o Type ‘0" to indicate that we do not wish to return to the main selection list. The program will now

terminate,

We have now done everything we need to do in SETDATA which is really the most involved
part of the whole specification and estimation process. Now we proceed to run SPEC. Once SETDATA is
complete, and before SPEC is run, it is necessary to create the appropriate .SPC file within a text editor.
Of course, that file has already been created for this tutorial problem but that will not be the case in your

own applications,

9.2 Running SPEC

Initially we will use the data to specify a nested logit migration mode] of the move/stay type
at the upper level with destination choice at the lower level. This requires use of the specification file

NESTLSPC which has been provided.
o From the GAUSS command prompt, type ‘run spec’.
s Type ‘NEST! to indicate the name of the specification file we are using.

e Type ‘1" to indicate that this is a nested logit model



e Type ‘2" to indicate that there are two aggregates; namely: moving and staying.

» Assuming now that the only variable name which has not been found in the data sets is “stay’, type

‘0" to indicate that no variable names have been mistyped and that the unfound variable is in fact a
constant.

o Type '0’ to indicate that this problem is sufficiently small that it need not be processed in blocks.

Now the program should run and inform you how many observations have been created and
whether the main output SPECK.DAT (.DHT) has been successfully created. The resuits of the specification

should be checked in the file SUMMARY.QUT.

9.3 Running Module

Now we actually attempt to estimate the parameters of the model.
e From the GAUSS command prompt, type ‘run module’.
e Type ‘0 to indicate that we do not need to estimate the problem in little pieces.

¢ In response 1o the appropriate form of X to associate with the two aggregates, type '1° for the stay
option to indicate that A is exogenously fixed to 1.0 and type *10° for the move option to indicate that
this is the first endogenous A and that it is specific to the move aggregate.

Now the estimation should commence and a solution should be obtained within 100 iterations

of the BFGS algorithm, The results can be found in RESULT.OUT.

9.4 Specifying and Running the OMNL example

We can now go straight into the OMNL example and obtain the parameter estimates within a
minute or two. Note that OMNL.SPC acts on exactly the same GAUSS data sets as NESTLSPC since
the models have the same number of choice-makers and elemental alternatives. [t is only the allocation
of these elemental alternatives to aggregates that differs as far as the software is concerned. If a radicaily

different model were now to be specified with different data requirements, we would need to return to
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SETDATA 1o activate a new set of GAUSS data sets. Here are a list of the steps that differ for this model
from the one that we just went through.

» Starting with the re-running of SPEC, we type ‘OMNL’ initially to indicate that we are acting on
OMNLSPC.

s Type ‘0 to indicate that we are running an OMNL model.

e« Type ‘6’ to indicate that now their are six apgregates.

Everything else in the running of SPEC is the same. After checking the results in SUM-
MARY.OUT, we are ready to run MODULE for the new model specification. This is more straightfor-
ward in this case because with the OMNL model, we need not concern ourselves with the specification of

A. The moedel will converge more quickly and again the final results will be stored in RESULT.QUT.
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CHOICEMAKER DATA AND CHOICE INFORMATION
SOCIO.TXT

APPENDIX 2
The first table below illustrates the contents of the file SOCIO. TXT which contains the choice-maker

variables and choice information for the sample models utilizing grouped data. Clearly the original
ASCII text file will not contain the additional formatting and headers displayed in the table. Note the
clear division between the choice information block and the variables block. The definitions of the

columns are provided underneath the table.
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Columns 1 to 6: Choice Information

Stay - # of peaple who remained in the same region between 1981 and 1986

East - # of people who moved to the Atlantic provinces from outside the Atlantic region from 198110 1" V.
Quebec - # of people who moved to Quebec

Ontario - # of people who moved to Ontario

Prairies - # of people who moved to the Prairie provinces

BC - # of people who moved to British Columbia

Columns 7 to 17: Population segment characteristics

Educ - people who have some post-secondary education

Young - 1 if person under the age of 30 in 1986; 0 otherwise
Middle - 1 if person aged between 30 and 40 in 1986; 0 otherwise
Single - 1 if person in a single-person household; 0 otherwise

East - 1 if person lived in the Atlantic provinces in 1981, 0 otherwise
Que - 1 if person lived in Quebec in 1981; 0 otherwise

Ont -1 if person lived in Ontario in 1981; 0 otherwise

Pray - 1 if person lived in the Prairie provinces in 1981; 0 otherwise
BC - 1 if person lived in British Columbia in 1981; 0 otherwise

Not que - 1 if person did not live in Quebec in 1981; 0 otherwise
Not educ - 1 if person has no post-secondary education

Note that "Not Que" is the converse of "Que" and that "Not educ"” is the converse of "Educ”

While these variables may seem a bit redundant, they are actually very useful for the specification
of interaction variables.
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DATA SET #2
Having seen what this file looks like for grouped data, we now consider a file for a problem with
micro-data. These data are adapted from Ben-Akiva and Lerman (1985) and depict the choice of
transit modes: either automobile or public transit. In this data we have no choice-maker characteristic
such as age or incdme so the file contains only choice information.

BENSOC.TXT

Auto Transit

A0S A0 A0 Aa0000 A a00 00

O A 00200200 ik = A 0O =2 30 2

Note that there are 21 rows which represents the fact that there are 21 choice-makers in the data.
In contrast to data set #1, the choice information is binary since there is not a distribution of
observed choices as is the case with grouped data. The two columns correspond to the number
of alternatives with a "1" designating which alternative was chosen by the person.



APPENDIX 3: DESTINATION ATTRIBUTE DATA %

DATA SET#1

These data illustrate the set of destination attributes used for regional level analysis, These data
are used in sample estimations #1 and 2. Itis a simple file consisting of six rows (one for each
aggregate and six columns (one for each destination attribute). Note that none of the row and
column labels appear in the actual data. These are included here simply to define the data.

The first row of zeros associated with the stay alternative is present because the variables have
no meaning for that altemative.

DEST.TXT

english french univ_income temp precip
Stay 0.000 0.000 0.00 0.0 0.00 0.00
East 0878 0.121 007 399 535 1.16
Quebec 0.056 0944 006 390 457 1.0t
Ontario 0991 0009 007 464 655 087
Prairies 0.989 0.001 0.07 434 187 043
BC 1.000 0.000 0.06 441 8.01 1.04

The first column, which lists the aggregate altematives should be self-explanatory. The variable
definitions are as follows: ’

english - proportion of the population that speaks english only

french - proportion of the population that speaks french or is bilinguat
univ - proportion of the population with a university degree

income - average income annual income in thousands of dollars
temp - mean annual temperature in degrees celsius

precip - average annual precipitation in thousands of millimetres

DATA SET #2

Here we examine a more disaggregate destination attribute set but ene which contains the same
variables. These are the data which are used in the application of the aggregated logit model.
Note that the destination attributes for the non-spatial stay alternative are still depicted as a

row of zeros and that aggregates are shaded alternately.

DESTELEM.TXT

english french univ__ income temp  precip

LN

e Yigke o el
12 AR 0

St Johns 1000 0000 009 4767

Grand Falls 1.000 0.000 0.04 39.19
Comerbrook 4.000 0000 0.06 4195
Charlottetown 0.999 0001 009 4178
Summerside 0.995 0005 0.05 37.17
Halifax 0998 0001 013 4679
Kentville 1.000 0.000 0.08 3693

Truro 1000 0.000 0.07 37.29



New Glasgow
Sydney
Moncton
Saint John
Fredericton
Bathurst
Campbellton
Edmundston
other Atlantic

1.000
1.000
0.936
0.998
0.992
0.498
0.565
0.026
0.930

0.000
0.000
0.064
0.002
0.008
0.502
0.435
0.974

0.070

0957 0.043 005 3941 660
Ottawa 0.965 0035 018 5647 590 0.85
Brockville 0999 0001 007 4487 710 097
Kingston 0998 0002 012 4710 670 0.87
Belleville 0098 0002 006 4474 740 0.86
Cobourg 4.000 0000 007 4438 6.70 0.82
Peterborough 1.000 0000 008 4430 580 079
Lindsay 1.000 0.000 006 4220 920 0.86
Oshawa 0998 0002 006 5548 770 0.86
Toronto 0999 0001 013 5945 790 083
Hamilton 0.999 0.001 009 5041 740 0.82
St. Catherines-Niag 0.997 0.003 0.07 4493 890 0.81
Kitchener 0999 0001 009 4998 730 090
Brantford 1.000 0000 006 4397 760 0.75
Woodstock 1.000 0.000 005 4313 730 0.86
Simcoe 0999 0001 005 4335 770 088
Guelph 0999 0001 013 5066 670 083

226
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Stratford

London
Chatham
Leamington
Windsor
Samia
OCwen Sound
Barrie

Orillia
Midland
North Bay
Sudbury
Elliott lake
Timmins
Sault Ste. Marie
Thunder Bay
Kenora
_other Ontario

Penticton
Kelowna
Vernon
Kamloops
Chilliwack
Matsqui
Vancouver
Victoria
Duncan
Nanaimo

Port Alberni
Courtenay
Campbell River
Powell River
Williams Lake



Quesnel
Prince Rupert
Terrace
Prince George
other BC

1.000
1.000
0.999
1.000
1.000

0.000
0.000
0.001
0.000
0.000

0.04
0.05
0.05
0.05
0.05

4236
51.86
50.96
48.06
42.12

5.00
7.40
5.90
3.30
8.00

0.53
2.40
1.31
0.63
0.80

228
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APPENDIX 4: DISTANCE DATA

The text files displayed below are the ones which would be used to make the GAUSS data set
DIST.DAT. It will contain ali variables representing physical distance, travel cost and time ete. In the
sample estimations on grouped data to follow, two distance variables are used. For the example with
the OMNL and the nested logit model, there are a total of six spatial alternatives while for the example
with the aggregated model there are 122 spatial alternatives. The structure of the distance file is such
that the 60 by 244 distance data cannot be shown here for the aggregated model, only for

the former two models. Also, the distance file for the Ben-Akiva example is shown. Please recall that
the displayed headers and lines will not actually appeas in the ASCII text file provided by the user.

DATA SET #1
DIST.TXT
dist Indist

stay east que ont pray bc |stay east que ont pray bc

0 . 0 0 . 0

0 053 0 036 168 24 0 628 0 589 743 778
0 053 0 036 168 24 0 628 0 589 743 7.78
0 053 0 036 168 24 0 628 0 589 743 7.78
0 053 0 036 168 24 0 628 0 589 743 7.78
0 033 0 036 168 24 0 628 0 689 743 7.78
0 053 0 036 168 24 0 628 0 589 743 7.78
0 053 0 036 168 24 0O 628 0 589 743 7.78
0 053 0 03 168 24| 0 628 O 589 743 778
0 053 0 036 168 24 0 628 0 589 743 7.78
0O 05 0 036 168 24| 0O 628 0 589 743 7.78
0 053 0 036 168 24 0 628 O

589 7.43 7.78



230

589 0. 7.7 767
970 2T T
743 727 0
767 743 727 O
767 743 727 0
767 743 727 0O
767 743 727 O
767 743 727 0 66
0
0
0
0
0
0

767

767 743 7.27

767 743 7.27
767 743 727
767 743 7.27

0
0
0
0
0
0
. 0
073 0 767 743 727
0
0
0
0
0

Variable Definitions

dist - distance from associated orgin to given region in thousands of km
Indist - natural logarithm of distance in km from associated origin to given destination region

There are several things to note about the set up of this data. The first is that the number of rows
is 60 which corresponds with the number of cheice-makers. The total number of columns is twice
the model's number of elemental alternatives because there are two distance variables. Each
variable has its own block. The rows repeat themselves in blocks of 12 because for each block,
the origin is the same although other choice-maker characteristics differ within each block. The
identity of each origin can be gathered in this example by seeing which destination choice option
has zero distance for a given population segment. Finally, note that the column of zeros which
occupies the first column in each block has this value because the stay option is associated with
Zero distance. Nevertheless, this alternative, like all others, must be accounted for in the text file.

As mentioned, the distance text file for an application of the aggregated logit model would have the
same number of rows but 244 columns. The columnar contents of cne variable within this file,

that is 122 columns, would be as follows: column 1 - the stay option, columns 2 to 18 - distances

to elemental alternatives within the Atlantic provinces, columns 19 to 46 - distances to elementa!
alternatives within Quebec, columns 47 to 81 - distances to elemental alternatives within Ontario,
columns 82 to 101 - distances to elemental alternatives within the prairies and columns 102 to 122 -
distances to elemental alternatives within British Columbia.

As an aside, it is a property of the way GAUSS reads ASCII data that the actual text files do not need
to exceed BO columns. If the user specifies that data are to be read into a matrix with 600 columns,
then the data from the 80 column file will simply be read sequentially, on a rew-by-row basis so that
600 column rows are formed.
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DATA SET #2

Here we consider a distance text file for a problem with individual ievel micro-data and we note that
there is little difference from the first data set. The distance data for the Ben-Akiva problem to be
illustrated later is actually travel time data in a mode choice problem. Hence, in this example, unlike
the previous one there is only one block of data since there is only one variable. It contains two
columns because there are two aggregate alternatives in the model (auto and transit) both of which
are not sub-divided and hence are composed of one elemental alternative.

time
auto transit
52.9 44
4.1 28.5
4.1 86.9
56.2 316
51.8 202
0.2 91.2
276 79.7
89.9 2.2
41.5 245
95.0 43.5
99.1 8.4
18.5 84.0
82.0 38.0
8.6 1.6
22.5 74.1
51.4 83.8
81.0 19.2
51.0 85.0
62.2 a1
95.1 22.2
41.6 91.5

Itis probably for small problems like this that the idea of storing the different data types in different
files becomes the most cumbersome. This software however, is fundamentally designed for
spatial choice scenarios where the number of potential alternatives can be quite large. 1t is felt
though that the data file format of this software should not be a substantial handicap for any
application.
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APPENDIX 5: SAMPLE ESTIMATIONS 2

SAMPLE PROBLEM #1

For this sample problem, we utifize the grouped choicemaker data illustrated in APPENDIX 2, the
aggregate level destination attribute data in APPENDIX 3 and the aggregate level distance data
shown in APPENDIX 4. To utilize these data in a specification, we would need to define an
appropriate DEFINE.DAT file through running SETDATA. The correct ASCII text file for the OMNL
and the nested logit model appears as below. There are 60 rows which corresponds to the # of
population segments and there are six columns to correspond with the number of alternatives. Note
that there are zeros where the associated alternative is unavailable to that segment.

For example, in the first block, the east destination choice alternative is unavailable to people in the
Atlantic provinces because such choices are captured by the stay option.

DEFINE.TXT

JEE VRV [ (T QU (T N T I R S QDI T ] [ G G g e e g e g e s Feo e e ln o Na R e Ne R el o Nl
UGN [ QT WL YT (T (Ut G s gt SN o 3 o Bl o T o B o B o e I o o T o I e J o | [P T QU N N W ST AT T W W §
[ e | [JEE S G T N\ N W W U (Y P VU N R N G AT T Qi U WP ¥ DU IE I N QT G N QI W QT W WY
JEERNTY DU NN W U N S W WP WL QDU WY [ S 0t N G ST N UL W O W VE | T W N G QT (T N QP A N L Y

JUC Y [P T G Y W N QP W QU QU W O N S T N N QY W G S W Qs W) [N G G T QT G I QA S S S S
_ a0 00000 COOO000—- = v 3 3 = ] A A s
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—L_L_A—l_l—k—l-l_[_l_l_&-—l_&-l—l—l—ﬁ_.l_l-l—l
—l—l-.&_k_l—\-—l.—l—l.-.\—l_.l—l_}.—\—}—l—i_k—l—l—ﬁ
[T T T W N (T S SR G G Qg Y [P N W W N SR S S e e

—h_l_.l_l_)—l_l-—\_h_\_b.—l_l._l_l—l_l.—l_b.—l—l—l
ek el ek ek kb ek A S SOO0OO0 0000000

00000000 DOOO= = b 4 ch

An OMNL specification using this data and all the different variable types is shown below. Note
that the first two lines are concerned with the distribution of alternatives and their names, while
the remaining block provides parameter-specific information. The variable types are: temp
(destination attribute), young and single (choice-maker traits), lang and postsec (interactions),
and dist and Indist (distance variables). The variable stay is an alternative-specific constant.

Note that order of variable types does not matter. Each variable will be applied to each alternative
which is associated with a 1 in the design matrix. The two interaction variables are formed

from the variables in the choice-maker and destination attribute data. The binary choice-maker
variables and their associated destination attributes are as follows:

lang
choice-maker trait; east que ont pray he
destination attribute; english french english english english
postsec
choice-maker trait: educ noteduc
destination attribute: univ 2€r0s
OMNL.SPC
111111

stay east que ont pray be

0 temp 11111
0 young 100000
0 single 100000

0 lang 011111
O postsec 011111
5 stay 100000
0 dist 011011

0 Indist 000100
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Remember also that the first column of parameter-specific information contains the starting values
to be used in the estimation. Now below we see the results of this specification when it is
processed by the program SPEC. These are written to SUMMARY.OUT:

Here are the details of the specification as you have described it..
This is an ordinary multinomial logit model

The alternatives are:

stay east que ont pray be
The distribution of elemental alternativesis: 1 1 11 1 1
There isfare 8 beta parameter(s) in the model

vt tasbatrsernirevntrrsridtarrriddrartraerthdredvnadredirnpredrditpsrawdassrerie

There isfare 1 alternative-specific constant(s) to be estimated
The design matrix 1s..
100000

LA Rl gl R Al L As L Rl Ll eyt e il e d il i e talslissllellds]

There isfare 2 socio-economic parameter(s) to be estimated
The associated choice-maker variable{s) is/are:
young single
The desigh matrix is..
100000
100000

LA AR L R L el LI R I B T R g T e Pt s L e e g

There isfare 1 destination attribute parameter(s) to be estimated
The associated destination attribute(s) are:
temp
The design matrix is..
011111

LAt i A e DAl R T At Tl et e e e T Ll I L I 2R 22t g

There isfare 2 distance parameters to be estimated
The associated distance variabie(s) isfare

dist Indist
The design matrix is..

011011

000100

bl b el h L R bl d il L it e iRl el Tl ity a2l iinttlel ey ls eyl s)

There isfare 2 interaction parameter(s) to be estimated
The associated interaction term(s) is/are:
lang postsec
The design matrix is..
011111
011111

AAAAAAANAANAARANAANANAAAANAANAAAANAAAAAANNAARANAAAANANA



Having confirmed that the specification looks fine. The program MODULE is run and for this
specification, it will provide the {ollowing output:

MAXLIK Version 3.1.3 4/26/95 9:37 pm

Data Set: speck

returncode= 0O
normal convergence

Mean fog-likelihood -529.666
Number of cases 60

Covariance matrix of the parameters computed by the following method:
Estimated Hessian from the secant update

Parameters Estimates Std. err. Est/s.e. Prob. Gradient

stay 53727  0.0478 112.484 0.0000  0.0007
young -1.0088  0.0281 -35.918 0.0000 -0.0002
single -0.2131  0.0265 -8.051 0.0000 0.0002
temp -0.0077  0.0069 -1.123 0.1308 -0.0024
dist -0.6019  0.0227 -26.552 0.0000 -0.0010

Indist 0.0120  0.0060 1.997 0.0229 -0.0008

lang 1.0278  0.0321 32.017 0.0000 -0.0005

postsec 9.1500 0.3721 24590 0.0000 -0.0000

Correlation matrix of the parameters

1.000 -0.113 -0.186 0.645 0.302 0.091 0315 0.280
-0.113 1.000 -0.130 0.047 0.053 0.032 -0.074 0.028
-0.186 -0.130 1.000 -0.038 0.011 0.043 -0.036 -0.041
0.645 0.047 -0.038 1.000 -0.134 -0.368 0.060 0.061
0.302 0.053 0.011 -0.134 1.000 0.746 -0.339 -0.081
0.091 0.032 0.043 -0.368 0.746 1.000 -0.360 -0.115
0.315 -0.074 -0.036 0.060 -0.339 -0.360 1.000 0.059
0.280 0.028 -0.041 0.061 -0.08% -0.115 0.068 1.000

Number of iterations 44
Minutes to convergence 0.45950

The final set of lambda values across the aggregates is..
1.000 1.000 1.000 1.000 1000 1.000

Nzive log-likelihood..-315299.497

Log-likelihocd with constants..-34738.789
Log-likelihood at convergence..-31779.951
Rho-squared..  0.89%

Rho-squared with constant..  0.085

Adjusted rho-squared (without constants)..  0.899
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Likelihood ratio statistic using L(0) is..567039

and has B8 degrees of freedom

Likelihood ratio statistic using L(c) is ..5918
and has 3 degrees of freedom

Expected percent right.. 93.501

TAAAAAAAARNAAAADANAANANANANNARAANAAANAAARAANAAAANAAAARAAAANANAAAANANAANAANRA

Note that the results for the variables are presented in a different order from the manner in which
they were specified. This is because the variables have been sorted by type before the estimation
took place.
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This problem utilizes exactly the same data but applies a different model. We will utilize a two
level nested logit model where the upper level is move/stay and the lower level contains the
destination choice options, The definition of aggregates changes however the total number of
elemental alternatives has not changed. Hence DEFINE.TXT from the previous example still
applies. The specification file for this model would be as follows:

NEST1.SPC

186
stay move
stay east que ont pray bc

5 stay 100000
0 young 100000
0 single 100000

0 temp 011111
0 dist 011011
0 Indist Q00100
0 lang 011111

0 postsec 011111

This design matrix is actually identical to that of OMNL.SPC except that the parameter order differs.

As mentioned though, the order in which variables appear in an .SPC file is irrelevant. Here is how
the SUMMARY.OUT file looks:

Here are the details of the specification as you have described it..
This is a nested logit model

The upper level alternatives are:
stay move

The lower level alternatives are;
stay east que ont pray be

The distribution of elemental alternatives is: 1 5
There isfare 8 beta parameter(s) in the model

E e T R TR T R LT TS L R A T T L Ll L DT L Ll

There isfare 1 alternative-specific constant(s) to be estimated
The design matrix is..
100000

T ettt e T R R S R P L T R e R LR R R A DR L T Ll Ll

There is/are 2 socio-economic parameter(s) to be estimated
The associated choice-maker variabie(s) is/are:
young single
The design matrix is..
100000
100000
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AT RS A AN EARrEEAERrrrAEEEErRr A AR AR AR SR AR dard A

There isfare 1 destination attribute parameter(s} to be estimated
The associated destination attribute(s) are:
temp
The design matrix is..
011111

LTS 2 DT b et 2 L L LA L AL bt Ll L et bl el i i s te sl adlssdlyl)

There is/are 2 distance parameters to be estimated
The associated distance variable(s) is/are
dist Indist

The desi
011
000

n matrix is..

- O

11
00
A i o 0 i e vl o Aol o ol ol o 0 ol o o Ao oo o A e e R O o e e
There isfare 2 interaction parameter(s) to be estimated
The associated interaction term(s) is/are:
lang postsec
The design matrix is..

011111
011111

Lt b A TSt I Ll e Rl bttt bl at ittt et it i sdetdets] sl

And finally, we observe the results of the estimation;

Data Set: speck

returncode= 0
normal convergence

Mean log-likelihood -528.681
Number of cases 60

Covariance matrix of the parameters computed by the following method:
Estimated Hessian from the secant update

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

stay 6.8369 0.2013 33.963 0.0000 -0.0001
young -0.9972 0.0257 -38.850 0.0000 0.0000
single -0.2087 0.0248 -8.427 0.0000 0.0000
temp -0.0312 0.0174 -1.788 0.0369 0.0006
dist -1.3763 0.1292 -10.653 0.0000 0.0001
mndist 0.0744 0.0134 5536 0.0000 0.0006
lang 1.3457 0.0468 28.746 0.0000 0.0001

postsec 8.59875 0.3999 23.999 0.0000 0.0000
lambda 2.4857 0.2195 11.325 0.0000 0.0001



Correlation matrix of the parameters

1.000 0.044 -0.079 0.041 -0.656 0.436 0.425
0.044 1.000 -0.013 -0.028 -0.082 0.044 0.122
-0.079 -0.013 1.000 0.017 0.007 -0.018 -0.091
0.041 -0.028 0.017 1.000 0.313 -0.541 -0.071
-0.656 -0.082 0.007 0.313 1.000 -0.133 -0.482
0.436 0.044 -0.018 -0.541 -0.133 1.000 -0.101
0.425 0.122 -0.091 -0.071 -0.482 -0.101 1.000
0.168 -0.052 -0.040 0.112 -0.064 -0.081 0.053
0.860 0.085 -0.023 -0.369 -0.898 0.459 0.412

Number of iterations 74
Minutes to convergence  1.60733

0.168 0.860
-0.052 0.085
-0.040 -0.023
0.112 -0.369
-0.064 -0.898
-0.081 0.459
0.053 0.412
1.000 0.057
0.057 1.000

The final set of lambda values across the aggregates is..

1,000 2.486

Naive log-likelihood..-315299.497

Log-likelihood with constants..-34738.789
Log-likelihood at convergence..-31720.842
Rho-squared.. 0.899

Rho-squared with constant..  0.087

Adjusted rho-squared {without constants)..  0.892

Likelihood ratio statistic using L(0Q) is..567157
and has 9 degrees of freedom

Likelihood ratio statistic using L(c} is ..6036
and has 4 degrees of freedom

Expected percent right.. 93.511

Ll el i DL R bR L e R e e S LR R el Rl e L e b e bbb a el i la Ll d)

Note that we can see the set of lambda values (both endogneous and exogenous) which are
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applying across the aggregates at the time of convergence. It is important to check this to make
sure that the lambda specification took place as planned.
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Here a sample estimation of the aggregated logit model is illustrated. For this problem, our
definition of an elemental alternative has changed and now represents cities within the regions we
were modelling earlier as elemental alternatives. We are still using the same SOCIO.TXT file since
we have no knowledge of city-level choices however we must utilize more spatially detailed
information in regards to the other data files. The destination attribute file is DESTELEM.TXT, the
distance information is from DISTELEM.TXT and the matrix of available alternatives is found in
DEFELEM.TXT. Due to the large size of these files, only the first of these three is found in the
Appendices, in particular APPENDIX 3.

AGG1.SPC

117283520 21
stay east que ont pray bc

5 stay 100000
0 young 100000
0 single 100000

0 temp 011111
0 dist 011011
0 Indist 000100
0 lang 011111
0 postsec 011111

Again, there is no difference in the design matrix. It cannot be made more spatially detailed
since the spatial resolution of choice information is no higher. Each time we see a 1 in the
design matrix though, we must remember that this applies to the associated aggregate and that
each elemental alternative within the aggregate will be affected by the associated parameter.
Note how the first row in AGG1.5PC, associated with the distribution of elemental alternatives,
differs from that of OMNL.SPC. We have the same number aggregate alternatives but from the
modelling perspective, what they contain is quite different. Here is what the SUMMARY.QUT
file will look like with this specification. Overall, not too much different.

Here are the details of the specification as you have described it..
This is an aggregated logit model

The alternatives are:

stay east que ont pray be
The distribution of elemental alternatives is: 1 17 28 35 20 21
There isfare 8 beta parameter(s) in the model

RAR R AR AR R R R A AR d AR R R R Rk d d Rl ol

There is/are 1 alternative-specific constant(s) to be estimated
The design matrix is..
100000

L A I T T TR TR e L e e d s Ll 2 il b il il s A el s ettt el lidd)

There isfare 2 socio-economic parameter(s) to be estimated
The associated choice-maker variable(s) is/are:
young single



The design matrix is..
100000
100000
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There isfare 1 destination attribute pararmeter(s) to be estimated

The associated destination attribute(s) are:
temp
The design matrix is..
011111

Rl e il s T2t Al st el e st d sl a i ettt et el Ly

There isfare 2 distance parameters to be estimated

The associated distance variable(s) is/are

dist Indist
The design matrix is..

011011

000100

TR AW R A AR AR AR AR AR A AR AR AR A AT AATES RS R R

There isfare 2 interaction parameter(s) to be estimated

The associated interaction term({s) isfare:
lang postsec
The design matrix is..
011111
011111

WAk AT A R d AR R AN AR AT AR AR R R AR AR AR R R AR

Now we see the results of the estimation. Note how it takes much longsr to obtain a convergence
since we are continually estimating 122 elemental utilities as opposed to the 6 that we did previously.

Data Set: speck

return code= 0
normal convergence

Mean log-likelihood -527.967
Number of cases 60

Covariance matrix of the parameters computed by the following method:
Estimated Hessian from the secant update



Parameters Estimates Std. err. Est/s.e. Prob. Gradient

stay 12.1878  0.3475 35.076 0.0000 -0.0001
young -1.0115  0.0274 -36.926 0.0000 -0.0001
single -0.2169  0.0271 -7.897 0.0000 -0.0001
temp -0.0195  0.0072 -2.702 0.0034 0.0006
dist 05226  0.0214 -24.468 0.0000 -0.0000
Indist -0.1330  0.0099 -13.411 0.0000 0.0004
lang 1.3877  0.0376 36.924 0.0000 -0.0000

postsec 9.3446 0.3648 25.611 0.0000 -0.0000
lambda 2.1398 0.1074 19.928 0.0000 0.0003

Correlation matrix of the parameters

1.000 -0.018 -0.058 0.088 0.103 -0.801 0.620 0.140
-0.018 1.000C -0.115 -0.004 0.019 0.004 0.013 0.040
-0.058 -0.115 1.000 -0.007 -0.005 0.030 -0.005 -0.002
0.058 -0.004 -0.007 1.000 -0.098 -0.201 -0.036 0.070
0.103 0.019 -0.005 -0.096 1.000 0.359 -0.191 0.013
-0.801 0.004 0.030 -0.20%1 0.359 1.000 -0.625 -0.131
0.620 0.013 -0.005 -0.036 -0.191 -0.625 1.000 0.064
0.140 0.040 -0.002 0.070 0.013 -0.131 0.064 1.000
0.980 0.004 -0.036 -0.004 0.057 -0.815 0.6071 0£.098

Number of iterations 73
Minutes to convergence 12.98250

The final set of lambda values across the aggregates is..
1.000 2140 2140 2140 2140 2.140

Naive log-likelihood..-315292.497

Log-likelihood with constants..-34738.789
Log-likelihood at convergence..-31678.031
Rho-squared.. 0.900

Rho-squared with constant.. 0,088

Adjusted rho-squared (without constants)..  0.900

Likelihood ratio statistic using L(0) is..567242.93
and has 9.00 degrees of freedom

Likelihood ratio statistic using L{c) is ..6121.52
and has 4.00 degrees of freedom

Expected percent right.. 93.508

0.990
0.004
-0.036
-0.004
0.057
-0.815
0.601
0.098
1.000
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Up to this point, all the estimations have been with grouped data where individual choice-makers
have been grouped into homogeneous population segments. The purpose of this sample
estimation is two fold: 1) to show that estimation with individual level micro-data is not really
different from the perspective of the software and 2) to show that the software is equally
applicable to non-spatial choice problems. To do this, we replicate the results from the small sample
problem shown in Ben-Akiva and Lerman (1985). There are some points to note about the
required data. First of all, we need no extemnal ASCII file for this problem in order to create
DEFINE.DAT, this will be done automatically in SETDATA since all alternatives are available to all
choice-makers. The required choice-maker file to make SOCIO.DAT is found in APPENDIX 1
under the name BENSOC.TXT. In that file there are no choice-maker variables, only choice
information. This is perfectly acceptable. There is no destination attribute file required for this
problem while the required DIST.DAT file is made from BENDIST.DAT found in APPENDIX 3.
The data in this file are not distances per se, but travel times. The alternatives in this problem are
not spatial units but modes of transportation.

BEN.SPC

i1
car transit

.1 const 10
-05 time 11

Note that the .SPC file for this problem is quite small given that there are only two parameters and
two alternatives. We have a generic variable named time which encompasses transit travel time
and automobile travel time, Typical specifications would have treated these variables as separate
but associated with the same parameter. There is no circumstance in this software however, where
more than 1 variable is associated with the same parameter.

The SUMMARY.QUT file looks like this:

Here are the details of the specification as you have described it..
This is an ordinary multinomial logit model

The alternatives are:

car transit
The distribution of elemental alternatives is: 1 1
There is/are 2 beta parameter(s) in the model

WhA AR Ak h AR TR A AT A AR RA SR d b d kAR S A AR AR AR AR AR ddd

There islare 1 alternative-specific constant{s) to be estimated
The design matrix is..
10

P ettt tatrtasr ey e PR A A L L 2 L DL LA St L L L s L DLl

There is/are 0 socio-economic parameter(s) to be estimated

P L 2t e qa e e T TR L s LA L Al g s e DTl d byl a bl i

There isfare 0 destination attribute parameter(s) to be estimated

I I e rrrryrr 2 EL AT DR R AL S0 2 2l R f R DLl E bl d sl Ly ]s )l
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There isfare 1 distance parameters to be estimated

The associated distance variable(s) is/are
time

The design matrixis.. 1 1

LA D E YT LT P LA PR R L L g P L L P L e L

There is/fare 0 interaction parameter(s) to be estimated

ARt rh R R AR AR A R R R R EE SRR dr ik R Rk AR kR A

Finally, the results of estimation are as follows;

MAXLIK Version 3.1.3 4/26/95 10:04 pm

Data Set. speck

returncode= 0

Mean log-likelihood -0.293621
Number of cases 21

Covariance matrix of the parameters computed by the following method:
Estimated Hessian from the secant update

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

const -0.2376 0.7604 -0.312 0.3773  0.0000
time -0.0531 0.0207 -2.571 0.0051 -0.0000
Correlation matrix of the parameters

1.000 0.156

0156 1.000

Number of iterations 7
Minutes to convergence  0.01367

The final set of lambda values across the aggregates is..
1.000 1.000

Naive log-likelihood.. -14.556

Log-likelihood with constants.. -14.532
Log-likelihood at convergence.. -6.166
Rho-squared.. 0.576

Rho-squared with constant..  0.576

Adjusted rho-squared (without constants).. 0.439
Likelihood ratio statistic using L{0} is.. 17

and has 2 degrees of freedom

Likelihood ratio statistic using L{c) is .. 17
and has 1 degrees of freedom

Expected percent right.. 82.809
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