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ABSTRACT

The main contributions of this thesis are the development of new clustering algorithms (with
cluster validation) both off-line and on-line, the performance analysis of the new algorithms
and their applications to intrapulse analysis.

Bayesian inference and minimum encoding inference including Wallace’s minimum mes-
sage length (MML) and Rissanen’s minimum description length (MDL), are reviewed for
model selection. It is found that the MML coding length is more accurate than the other
two in the view of quantization. By introducing a penalty weight, all criteria considered
here are cast into the framework of a penalized likelihood method.

Based on minimum encoding inference, an appropriate measure of coding length is
proposed for cluster validation, and the coding lengths under four different Gaussian mixture
models are fully derived. This provides us with a criterion for the development of a new
clustering algorithm. Judging from the performance comparison with other algorithms, the
new clustering algorithm is more suitable to process high dimensional data with satisfactory
performance on small and medium samples. This clustering algorithm is off-line because it
requires all the data available at the same time.

The theoretical error performance of our clustering algorithm is evaluated under rea-
sonable assumptions. It is shown here how the dimension of data space, the sample size,
the mixing portion and the inter-cluster distance affect the performance of our clustering
algorithm to detect the true number of clusters. Furthermore, we examine the impact of the
penalty weight under the framework of the penalized likelihood method. It is found that
there is a range of the penalty weight within which the best performance of our clustering
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algorithm can be achieved. Therefore, with some supervision we could adjust the penalty
weight to further improve the performance of our clustering algorithm.

The application of our clustering algorithm to intrapulse analysis is investigated in de-
tail. We first develop the pre-processing techniques including data compression for received
pulses and formulated the problem of emitter number detection and pulse-emitter associ-
ation into a multivariate clustering problem. After applying the above (off-line) clustering
algorithm here, we further develop two on-line clustering algorithms, one is based on some
known thresholds while the other is based on a model-based detection scheme. Performance
on intrapulse data by using our pre-processing techniques and clustering algorithms is re-
ported, and the results demonstrate that our new clustering algorithms are very effective
for intrapulse analysis, especially the model-based on-line algorithm.

Finally, the DSP implementation for intrapulse analysis is considered. Some relevant
physical parameters are estimated such as the likely maximal incoming pulse rate. Then
a suitable system diagram is proposed and its system requirements are investigated. Our
on-line clustering algorithm is implemented as a core classification module on a TMS320C44
DSP board.
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BIC

MDL
LRT
pd.f

LPF

PRI
PRF

flop
SRAM
EDF

Bayesian Inference Criterion
Minimum Message Length
Minimum Description Length
Likelihood Ratio Test
probability density function
Maximum Likelihood

Low Pass Filter

High Pass Filter

Pulse Repetition Interval

Pulse Repetition Frequency
rotation per minute

floating point operation

Static Random Access Memory
Empirical Distribution Function
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Notations
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Iln

wT
w-!
tr(W)
W1
diag(W)
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E[R]
Var(R]
N(u,X)

Fvl.u2(6)

WM(ﬂ, 21 n)

Natural logarithm

Summation over n

Product over n

Transpose of W

Inverse of W

Trace of W
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Diagonal matrix of W

L2 norm of

Expectation value of R

Variance of R .

Multivariate normal distribution

with mean vector u and covariance matrix ¥
Noncentral F distribution

with v1, v2 degrees of freedom and noncentral parameter §
Noncentral Wishart distribution

with the number of variates M, freedom degree n,

covariance matrix £ and noncentral matrix €2
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Chapter 1

Introduction

1.1 Intrapulse Analysis

Radar emitter classification based on a collection of received radar signals is a subject of
wide interest in both civil and military applications. The signals received usually consist of
sequences of pulses emitted from multiple radar transmitters. If different radars transmit
pulses with different carrier frequencies or pulse repetition intervals (PRIs), then it is not
difficult to distinguish them from one another. However, in modern radar systems, more
sophisticated signal waveforms have been used and inter-pulse information alone may not
be enough to separate those received pulses according to their originations. To classify
radar emitters in such an environment, we need to explore the detailed structure inside
each pulse, i.e. the so called intrapulse information. This is because each emitter has its
own electrical signal structure inside each of its transmitted pulses due to both intentional
and unintentional modulations. This structure motivates us to explore the possibility of
using intrapulse information of a collection of pulses to determine the number of emitters
present and to classify those pulses according to their originations. In other words, the
objectives of the research are to: (1) determine the number of emitters present; (2) classify
the incoming pulses according to the emitters. The physical scenario in detail is illustrated

in Section 5.2.



There are three important issues in the design of a processing algorithm for intrapulse
analysis:

e The algorithm is suitable to process high dimensional data because in most cases more

than 40 data points are required to describe a pulse.

e The performance of the algorithm is satisfactory for small or medium sample cases

since it is desirable to identify the emitters present by using a few received pulses.

e The algorithm is computationally effective and on-line clustering is required for near

real-time implementation.

In practice, a radar pulse intercepted by a passive receiver may be contaminated by an
absolute amplitude and phase, time delay and residual carrier frequency. We first develop
pre-processing techniques including data compression for received pulses and then formulate
our objectives into a multivariate clustering problem. In the cluster analysis literature
(1,23,31, 39, 49, 69], the first objective is known as cluster validation while the second is
called clustering. Generally speaking, the current clustering methods range from those that
are largely heuristic to more formal procedures based on statistical models. One major
advantage of model-based methods is that they provide a precise theoretical framework for
assessing the clustering structure of a given data set, especially for determining a relevant

number of clusters. In next section, model-based cluster analysis is discussed in detail.

1.2 Model-Based Cluster Analysis

In model-based cluster analysis [28,39], it is assumed that the data under consideration are
generated from a finite mixture of probability distributions (e.g. normal distributions) and
each component of the mixture represents a different cluster. Given N observations from K
clusters, there are two ways to formulate the mixture model: one is the so-called classifica-
tion approach which assigns an observation to one of the K clusters deterministically, and

the other is the so-called mixture approach which assigns an observation to the K clusters



probabilistically. An empirical comparison [15] in a finite sample setting between these two
approaches suggested that the classification approach is preferred for small sample cases,
although from the studies in [13, 14, 30], asymptotically, the mixture approach tends to
perform better than the classification approach when classifying ill-separated components,
with a sufficiently large sample.

Given a data set and underlying models, the first question to be considered is how to
select a model which best fits the data? This is a critical question common to the fields of
Statistics, Machine Learning and Artificial Intelligence. Two principles can be applied to
search for the answer, one is Bayesian Inference [17,28,35,48,54] and the other is Minimum
Encoding Inference [50,52,62,64]. In the Bayesian framework, a model is chosen as the
best if it has highest posterior probability. In the minimum encoding inference framework,
the best model is the one that yields the minimal coding length of the data. For the
latter principle to interpret the encoding process, there are two different approaches, one
by Wallace [64], termed the Minimum Message Length (MML) criterion; and the other by
Rissanen [52], termed the Minimum Description Length (MDL) criterion. A comparative
study of Bayesian inference, MML and MDL was reported in [8,44,45]. There will be a
further discussion of this important issue in the next chapter.

After establishing a criterion, either an ad hoc or a model-based, is chosen for cluster
validation. There is the question of how to classify the observations under an assumed
known number of clusters. A simple and common method is k-means (33] which minimizes
the within-group sums of squares. It starts with an initial estimate, and then regroup the
given data set a few times until the cluster centers are convergent. The k-means method can
be used for the classification approach. Another common method is the EM algorithm [66]
which maximizes the underlying likelihood. Starting with an initial estimate, the EM al-
gorithm consists of two steps: the expectation step which estimates the model parameters
including the probabilities of an observation belonging to each cluster, and then the max-
imization step which evaluates the resulting likelihood. The EM algorithm is suitable for
both the classification approach and the mixture approach. However, the EM algorithm is



more computationally intensive than the k-means algorithm.

In model-based cluster analysis, cluster validation and clustering are combined by first
formulating a statistical model for the problem which is parameterized by k, the number of
clusters, then selecting the hypothesis that best fits the data. Among statistical models for
cluster analysis, Gaussian mixtures are widely used. Three Gaussian clustering algorithms
are listed below:

1. MCLUST: Developed by Fraley and Raftery [6,27-29]. MCLUST incorporates eight
different Gaussian mixture models in terms of the covariance matrix X, allows a
choice of either the classification approach or the mixture approach, and applies an
asymptotic criterion of Bayesian inference for assessing the number of clusters. This
algorithm works well for medium and/or large sample cases but might not provide
satisfactory results for small sample cases.

2. Autoclass: Developed by Cheeseman, Self and Kelly [16,17]. Autoclass only assumes
the general covariance matrix structure, follows the mixture approach, and applies
Bayesian inference for cluster validation. Since only the general covariance matrix
structure is assumed, it weights the model complexity too much for high dimensional
cases so that it is not suitable to process high dimensional data.

3. SNOB: Developed by Wallace and its co-workers [10,11,61,63]. SNOB assumes the
covariance matrix is diagonal, follows the mixture approach, and applies MML infer-
ence for cluster validation. It works for both high dimensional cases and small sample

cases.

Another important issue is the error performance analysis. Following the terminology in
statistical signal processing [58], if one cluster is present for a given data set but a clustering
algorithm detects two clusters, then a false alarm occurs; On the other hand, if two clusters
are present but the clustering algorithm only says one, then a miss occurs. The error
analysis of model-based clustering is related to the question of the number of components

in a mixture, which is a problem that has not been completely solved in statistics. A general



method to this question is the Likelihood Ratio Test (LRT). Suppose that a random sample
Y is available and we wish to test the following two hypotheses:

Hy: Y is generated from a mixture of K normals
H : Y is generated from a mixture of K* normals (K* > K)

However, the regularity condition for the usual asymptotic theory fail when the null hypoth-
esis Hy is true, see details in [39, Page 21] and [56]. It is indeed a difficult problem, even
for detecting a univariate normal mixture with two components. For the aforementioned
“simple” case, empirical tabulation and an asymptotic analysis were presented in [24, 32]
by following the classification approach; Empirical tabulation was presented in [41,42] and
an asymptotic analysis was derived in [9] by following the mixture approach.

1.3 Major Contributions of The Thesis

Motivated by exploring the possibility of using intrapulse information of a collection of
pulses to identify the emitters present, extensive research on model-based clustering have
been conducted. The major contributions are twofold: model-based cluster analysis and
intrapluse analysis.
Model-Based Cluster Analysis

Bayesian inference and minimum encoding inference including Wallace’s minimum mes-
sage length (MML) and Rissanen’s minimum description length (MDL), are reviewed and
compared for model selection. It is found that the MML coding length is more accurate
than the other two in the view of quantization. All model selection criteria considered here
consist of two parts, one is the log-likelihood function which measures the goodness of fit
between the data and the model, and another is a penalty function which measures the
complexity of the model. An inference aims to balance the trade-off between goodness of fit
and model complexity. Hence in practice, we can introduce a penalty weight for the penalty

function to control the trade-off. We call this approach the penalized likelihood method.



Applying minimum encoding inference to the classification approach of model-based
clustering, we propose an appropriate measure of coding length for cluster validation. The
coding lengths under four different Gaussian mixture models in terms of the covariance
matrix X are derived. The first covariance structure is the simplest and mainly used for the
purpoee of a theoretical error performance analysis. The second and fourth are successfully
applied to intrapulse analysis. The third one might be useful for other applications so we
include it for completeness. Correspondingly, we develop an effective clustering algorithm
which starts with viewing a given data set as a cluster and then repartitions and regroups
the data to get a new cluster in each step. The new algorithm is off-line since it requires
all the data available at the same time. Extensive empirical results show that the new
clustering algorithm (with cluster validation) is more suitable than SNOB to process high
dimensional data with better performance on small sample cases. In fact, our algorithm
is well designed for the clustering problem in intrapulse analysis, in terms of the first two
issues pointed out in Section 1.1.

The theoretical error performance of our clustering algorithm is evaluated under rea-
sonable assumptions. It is shown in this thesis how the dimension of the data space, the
sample size, the mixing portion and the inter-cluster distance affect the performance of the
clustering algorithm to detect the true number of clusters. Furthermore, by introducing a
penalty weight, we investigate our élustering algorithm as a penalized likelihood method.
The impact of the penalty weight is investigated. With some supervision, we could adjust
the penalty weight to further improve the performance of our algorithm. Testing our clus-
tering algorithm on intrapulse data, we have found that the best performance is usually
achieved by using the fourth covariance structure when no supervision is available (i.e., the
penalty weight is 1, the default value), and that the best performance is usually achieved by
using the second covariance structure when supervision is available (i.e., the penalty weight

can be adapted).
Intrapulse Analysis

First, we develop pre-processing techniques to remove nuisance parameters from received



pulses such a3 an abeolute amplitude and phase, time delay and residual carrier frequency.
As a result, we formulate the problem of emitter number detection and pulse-emitter asso-
ciation into a multivariate clustering problem. In order to reduce the computational cost
for clustering, a suitable data compression method based on a wavelet decomposition is also
included in pre-processing. The pre-processing techniques are intuitive in nature and are
carried out so that after pre-processing, the pulses received from the same emitter maintain
the resemblance to each other, while those from different emitters maintain their distinctive
features.

Second, after applying the above new clustering algorithm to the clustering problem, we
investigate how to achieve on-line clustering, that is, to perform classification dynamically
as pulses arrive. To solve this problem, we propose to set up some thresholds and distance
measures which can be used to indicate to which existing cluster an incoming pulse should
be assigned, or whether it should form a new cluster. To achieve an accurate classification
result, we have to adapt the thresholds as the statistics of the received pulses changes in
time. Unfortunately, it is usually difficult to modify the thresholds appropriately when a
priori knowledge of the incoming pulses is not available. To overcome this drawback, a
novel on-line algorithm based on a model-based detection scheme is developed in which
no explicit thresholds are required. This new on-line algorithm dynamically incorporates
cluster splitting, merging and regrouping operations by using the model-based detection.
The performance of this on-line model-based clustering algorithm is almost the same as
that of the off-line model-based algorithm but is much faster.

Third, to effectively implement our pre-processing techniques and clustering algorithms
for the emitter number detection and the pulse classification in near real-time, we estimate
the relevant physical parameters such as the likely maximal incoming pulse rates. Based
on these estimates, we then propose a suitable system diagram and investigate the system
requirements. Finally, we implement our on-line clustering algorithm as a core classification

module on a TMS320C44 DSP board.



1.4 Outline of The Thesis

This introduction chapter has been mainly concerned with placing this thesis in context.
We have reviewed the problems in intrapulse analysis and model-based cluster analysis, and
outlined our major contributions to these two fields.

In next chapter, we review some criteria for model selection, compare Bayesian infer-
ence and minimum encoding inference (including MDL and MML), and cast them into the
framework of a penalized likelihood method.

In Chapter 3, applying minimum encoding inference to the classification approach to
model-based clustering, we propose an appropriate measure of coding length for cluster
validation, and derive the coding lengths under four different Gaussian mixture models.
Then we describe a new clustering algorithm, compare it with SNOB, and demonstrate
by extensive simulations that our algorithm is more suitable than SNOB to process high
dimensional data with better performance on small sample cases. In addition, we also
examine the performance of the coding length measure based on an asymptotic method for
Bayesian Inference.

In Chapter 4, we conduct the theoretical performance analysis of our clustering algo-
rithm, in terms of two types of errors: miss and false alarm. We also study the impact of the
_ penalty weight under the framework of the penalized likelihood method. The conclusion
is that there is a range of the penalty weight within which the best performance of our
clustering algorithm can be achieved.

Intrapulse analysis is carried out in Chapter 5. We first describe the pre-processing
techniques including data compression for received pulses and formulate our objectives
into a multivariate clustering setting. After applying the model-based clustering algorithm
developed in Chapter 3 to the clustering problem, we further develop two on-line clustering
algorithms, one is based on known thresholds while the other is based on a model-based
detection. Performance on intrapulse data by using our clustering algorithms and SNOB are
reported, and the results demonstrate that our new clustering algorithms are very effective
for intrapulse analysis, especially the on-line model-based algorithm.



In Chapter 6, the DSP implementation for intrapulse analysis is considered. we estimate
the relevant physical parameters such as the likely maximal incoming pulse rate, then
propose a suitable system diagram and investigate the system requirements. The benchmark
of DSP coding of our on-line clustering algorithm is reported.

Finally, the last chapter concludes the thesis with a summary of what has been achieved,
and outlines areas of future research.



Chapter 2

Model Selection Criteria

2.1 Introduction

In this chapter, we review Bayesian Inference [17,35,48,54] and Minimum Encoding Infer-
ence [50,52,62,64]. For Bayesian Inference, two inference techniques are introduced: one
is using Laplace’s method [17,36] and the other is an asymptotic method [54]. For Mini-
mum Encoding Inference, there are two approaches: one is called the Minimum Description
Length (MDL) criterion [52] and the other is called the Minimum Message Length (MML)
criterion [64]). For MDL, its coding steps are briefly described and the idea of a universal
prior is introduced. For MML, its coding steps are briefly described and a sensible prior is
required. In ihe end of this chapter, Bayesian Inference, MDL and MML are cast into the
framework of a penalized likelihood method.

2.2 Bayesian Inference

Given a data set Y = {y,,---,yn} and a set of model classes ! parameterized by K (K =
1,---,Kmax), let @ denote the model parameter vector under a model class, f(Y'|9, K)
denote the conditional probability density function (p.d.f.) of the data given 6 and K, and

1For instance, in model-based cluster analysis, K is the number of clusters, and different partitions which
form K clusters belong to the same model class.

10
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h(8|K) denote the prior p.d.f. of @ given K. Then the conditional p.d.f. of Y given K is
1K) = [ £(¥18, K)h(OIK)dB. (21)

Further let f(Y) denote the p.d.f. of Y occurring and let P(K) be the prior probability of
the model class K. Then Bayes’ theorem tells us P(K]Y), the posterior probability of K
given Y, is given by

_ f(Y|K)P(K)
P(K|Y) = - (2.2)
If we take a uniform prior for K, then P(K|Y’) is proportional to f(Y|K), i.e.,
P(K|Y) < f(Y|K). (2.3)

By using Laplace’s method [17,36] to approximate the integral in Eq. (2.1), we have
(21r)

where 0 is the maximum likelihood (ML) estimate of 0, ¢ is the number of free parameters

J(Y|K) =~ (Y|9 K)h(8|K) (24)

in @, | - | is the determinant of a matrix and FO is the Fisher information matrix evaluated
at 8. The Fisher information matrix is defined by

& log f(Y)6,K)
- 0% .

Fg= (2.5)

. - Usually we examine Eq. (2.4) in the logarithm form. Hence, Bayesian inference criterion
can be described by
. argmin(- log P(K]Y)]
= argmin[-log f(Y|K))]
= a.rgnnn[ log f(Y0, K) + —log Fol+ 2 -log logh(0|K)] (2.6)
It is shown in [54] that asymptotically
—log f(Y|K) = —log f/(Y]0,K) + glog N. (2.7)

The above asymptotic criterion is usually referred as Bayesian Inference Criterion (BIC).
The advantage of using BIC is that it does not depend on the prior distribution h(8|K).
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However, this large-sample criterion may not work satisfactorily for small or medium sample
cases. This drawback can be compensated to some extent by specifying a sensible prior
probability A(8|K) in Eq. (2.6) if we have some knowledge of the given data set.

A model selection is actually performed in two levels. The first level is to choose the
best model class to fit the data and the second level is to choose the best model under the
chosen model class. The ML estimate & under the chosen model class is usually taken as
the best model.

Notations

Throughout this thesis, if a model @ is considered, it is under some model class K. For
notational simplicity, we choose not to record this dependence explicitly with the under-
standing that @ is dependent on K implicitly.

2.3 Minimum Encoding Inference

There are two major approaches of minimum encoding inference: one by Wallace [62, 64]
and the other by Rissanen [50, 52]. Wallace termed his inference method the Minimum
Message Length (MML) criterion while Rissanen termed his the Minimum Description
Length (MDL) criterion. MDL appears more widely known in engineering fields [47, 65,
70-72]. Wallace and Rissanen’s Royal Statistical Society meeting review papers on MML
and MDL were shown side by side in 1987 [52,64]. A comprehensive comparison between
them was presented in 1994 [8]. The fundamental ideas of MML and MDL are the same:

Given a data set and a family of competing statistical models, the best model
is the one that yields the minimal coding length of the data.

We assume that there are a data set Y = {y;,--,yx} and a statistical model determined
by ¢ parameters which is described as 8, @ € R%. To assess the goodness of fit between
the model and the data, we construct a code length L(@) of the model and a code length
L(Y'|0) of the data in terms of the model under a proper encoding scheme. A good model is
one leading a concise total description length L(Y’,8) which is the sum of L(#) and L(Y'|6)
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— the shorter the better. i.e. the minimum encoding inference is to find
0° = argmin L(Y, 0) (2.8)
where
L(Y,0) = L(Y'|0) + L(0) (2.9)

Let f(Y|0) be the conditional p.d.f. of Y given 6, we regard — log f(Y'|0), known in
information theory as self-information, to be the number of “nits”? it takes to encode Y
with an ideal code relative to the assumed model of the data. i.e.,

L(Y,0) = —log f(Y|0) + L(6). (2.10)

To encode 8, we need to know its prior probability. In addition, we can only encode 8 to a
limited precision, so an optimal quantization is needed to yield the total coding length as
short as possible. Briefly, the differences between Rissanen’s MDL and Wallace’s MML are

the view of the prior and the selection of the optimal quantization.

2.3.1 Rissanen’s Description Length

The major steps of Rissanen’s Minimum Description Length procedure [51] are described

as follows:

1. Quantization: partition the parameter space into regions with centers 6;, 6; €
R¢, i € N and quantization volumes V(8;).

2. Indexing: map 0; into a positive integer j.

3. Encoding a prior: use a so-called universal prior for positive integers to encode j

by the length L(j).
4. Total description length:

—log £(Y6;) + L(j). (2.11)

2The unit is called “nit” by using the natural logarithm. In fact, we are concerned with calculating the
length of description for the inference but we do not need really to transmit it. Therefore, we use codes that
are efficient in terms of code length, but may not be efficient in the time required to encode/decode data.
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Note that for each i, we have a probability model f(Y'|0;).
The procedure is not complete until we specify:
e the optimal quantization volumes V(8;), i € N.
e the mapping from 0; to a positive integer j.
e the universal prior for integers.

A universal prior for integers
Since the codes of both j and Y are strings, we can not just attach them next to each other.
If the decoder always reads the code string from left to right, then a necessary and sufficient
condition for the decoder to be able to separate the codeword from whatever string follows
it, is that the codewords for the integers form a prefiz set. This means that no codeword
is allowed to be a prefix of another. Based on this point, the optimum length of a positive
integer j used by Rissanen is '
L(j) =log’ j +logc (2.12)
where log® j = logj + loglogj + logloglog j + - - -, only including positive terms, and c is a
small constant (= 2.865064). Therefore, the universal prior is defined as

. 1 1 1 1
P(j) = ; x Tog7 X oon log -~ Tog7 x = (2.13)
For simplicity, the first-order approximation of the length L(j) is used, i.e.,
L(j) ~logj. (2.14)

Furthermore, a lattice quantization is used here. In his approximation to the optimal
quantization, Rissanen obtained his description length as

L(Y,0) ~ —log f (Y6) + glog(éTFbé) - %—1 logf + élog(21reN ) (2.15)

where 8 is the ML estimate and the Fisher information matrix is defined by

_Plogf(Y]0) . (2.16)

Fa = 392
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2.3.2 Wallace’s Message Length

The major steps of Wallace’s Minimum Message Length procedure [64] are briefly described

as follows:

1. Quantisation: partition the parameter space into regions with centers 8;, 6; €
R¢, i € N, and quantization volumes V(6;).

2. Choosing a prior: specify some sensible prior 4(8;).
3. Total message length:
—~log f(Y16;) - } / h(6)d8).
og f(Y10:) ~ logl | , (6)ds]

Note that for each i, we have a probability model f(Y'|0;). It is convenient to ap-
proximate the integral (for sufficiently small V(8;)) as follows

— log £(¥'10;) — log[V'(8:)h(6:)]. (2.17)

The procedure is not complete until we specify:
e the optimal quantization volume V'(6;).
e a prior probability density h(@;) over the parameter space.

By a calculation similar to the optimal lattice quantization, Wallace derived his message
length as

L(Y,0) ~ —log f(Y'|) + %log |Fgl + g + glogG'g —logh(0) (2.18)
where @ is the ML estimate, | - | denotes the determinant of a matrix and G, is the ¢-
dimensional optimal lattice quantization constant which can be found in [18, Page 61], and
h() is the prior p.d.f. of 8.

2.4 Framework: Penalized Likelihood Method

By comparing Eqs. (2.6) and (2.18), we observe that the major difference between them
is a quantization constant. Specifically, the hyper-sphere constant Ql; is used in Laplace’s
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method for Bayesian inference but the optimal lattice constant G, is used in the MML
message length. In the view of optimal quantization, the MML coding length is more
accurate. In addition, we believe that we should specify a sensible prior if we have some
knowledge of a given data set, instead of some universal prior. Hence, we prefer the MML
message length formula Eq. (2.18) for our application to model-based cluster analysis.

We also notice that all model selection criteria considered here consist of two parts,
one is the log-likelihood function which measures the goodness of fit between the data and
the model, and another is a penalty function which measures the complexity of the model.
An inference aims to balance the trade-off between goodness of fit and model complexity.
Hence in practice, we can introduce a penalty weight for the penalty function to control the
trade-off as follows:

L(Y,0) = L(Y'|6) + AL(6) (2.19)

where A is the penalty weight.
Roughly speaking, an inference tends to underestimate when X is large, and it tends to
overestimate when ) is small. Therefore, we have to determine the suitable range A which

guarantee the true estimation. This is investigated in detail in Section 4.4.



Chapter 3

Model-Based Clustering

3.1 Introduction

In model-based clustering (28, 39], it is assumed that the data under consideration are
generated from a finite mixture of probability distributions; each component of the mixture
represents a different group or cluster. Therefore, given a set of observed data vectors, our

objectives are
e cluster validation, to determine the number of components in the mixture;
e clustering, to determine which data vectors arise from each component.

In the previous chapter, Bayesian inference and minimum encoding inference (MDL and
MML) for model selection were discussed. In addition, different clustering algorithms for
Gaussian mixture models were briefly compared in Section 1.2. These algorithms include
MCLUST, Autoclass and SNOB. Only SNOB is suitable for both high dimensional cases
and small sample cases.

In this chapter, we apply minimum encoding inference to model-based clustering, pro-
pose an appropriate coding length measure for cluster validation, and fully derive the coding
lengths under four different Gaussian mixture models. Then we describe our model-based

clustering algorithm, compare it with SNOB, and demonstrate by extensive simulations that

17
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our algorithm is more suitable than SNOB to process high dimensional data with better
performance on small sample cases. In addition, we also investigate the performance of the
coding length measure based on the asymptotic method to Bayesian Inference. Part of this
chapter has been published in [68].

3.2 General Coding Length Measure

Given a data set Y consisting of N observed data vectors y,, ¥y, . .., ¥, €ach of dimension
M, the data vector y, (n = 1,2,...,N) is to be assigned among K clusters. Let an
association parameter vector & = [a1,az,...,an]T, such that if a, = k, then the data
vector y,, is assigned to the kth cluster. In a model-based method, the k-th cluster (k =
1,---,K) is assumed to be a sample of a simple distribution, denoted by fi(-) with its
parameter vector 8. Therefore, the conditional density function for the data is

N
f(Y18,a) = [] fau(va) 3.1)
n=1

where the mixture model parameter vector @ consists of independent parameters in the set
{61,6:,...,0;} and ¢ is the dimension of 8.

Now, from Shannon’s coding theorem [19], the minimum code length is given by the
entropy of the data. Thus, using the natural logarithm, the minimum code length in “nits”
(see the footnote of Section 2.3) is

L(Y,K) = E[-1og f(Y))
~ —log f(Y'|0, &) — log f(8) — log P(&) (3.2)

In Eq. (3.2), we have used the evaluation of the coding length at the maximum likelihood
(ML) estimates & and & to approximate the expected coding length, where f (@) is the
probability density function evaluated at 8 = 0, and P(a) is the probability of a = a.
First, let us examine the last term in Eq. (3.2). a is a particular association vector,
the nth element ay, of which denotes the association of the nth data vector with the anth

cluster. Now, to partition N data vectors into K clusters, the number of different ways as
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shown in Appendix A is

N! 1

— X , 3.3
Nl!Ng!---NR!(K— 1) my!ma!---my! (33)

S(N,a) =

where N; is the number of data vectors assigned to the kth cluster (k = 1,---,K; Ny +
Nz +---+Ng = N), and my, is the number of clusters with n data vectors n=12,---,N).

If a uniform a priori probability is assumed for a, then
—log P(@&) = log S(N, &). (3.4)

The first and second terms in Eq. (3.2) can be described by the message length formula
of Eq. (2.18). Therefore, we have the total coding length

L(Y,K)=-log f(Y0,&) + %loglFél + % + %logGg —logh(0) +log S(N,&) (3.5)

where £ is the number of independent parameters in 8, G, is the /-dimensional optimal
lattice quantization constant which can be found in [18, Page 61}, h(8) is the prior p.d.f. of
8, | - | is the determinant of a matrix and Fg is the Fisher information matrix defined by

logf(Y)6,a)
- T i

The first term in Eq. (3.5) is the negative log-likelihood which measures the goodness
of fit between the data and the model. We denote it by L(Y|8, &), i.e.,

Fg= (3.6)

The rest of the terms in Eq. (3.5) forms the penalty function which measures the model
complexity. If the dominant penalty term %logN shown in Eq. (2.7) is used, we have the
asymptotic coding length

Lasy(Y,K) = L(Y 18, &) + élogN +log S(N, &). (3.7)

3.3 Coding Lengths Under Gaussian Mixture Models

In this section we investigate how to calculate each term in Eq. (3.5) under Gaussian mixture
models. We start with L(Y'|, &), the log-likelihood term. In this case, fi() is assumed to
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be the density function of a multivariate normal distribution with its mean vector s, and
its covariance matrix ;. Suppose that a particular association vector a = [ a2 ... an|T

partitions N data vectors into K groups such that we have

Yo={ W, .. yw,@Oh--. 81K, ..., yn (K} },

the conditional density function for the data [43] is

K K N,
f(Y18,a) = @) MM I] |4~ M/? exp [-% 33 walk) - ) TS (walk) - m;)] :
k=1 k=1n=1
(3.8)

Hence, the L(Y'|§, &) term is expressed as

. K K Ng T MN
L(Y]8,&) = Y Nilog|Bel+ Y tr [ B¢ 3 (wn(k) — ) (wn(k) — )" | + —5—log(27)

k=1 k=1 n=1
K K
= z Ni log | Z¢| + Z tr [2;‘Wk] + # log(27) (3.9)
k=1 k=1
where
1 & .
=3 2 Ualk), E=1,....K; (3.10)
kn=1
and
Ny
We=Y (n(k) — ) (wn(k) — )" (3.11)
n=1

The Fisher information matrix Fé in the second term of Eq. (3.5) is very sophisticated
for a general structure of ;. Furthermore, the dimension M for our application is usually
higher than 40 so there are more than 40 x 40 parameters in just one covariance matrix !
This general structure will generate severe numerical problems when only small, or medium
samples are available. To avoid the above limitations, we assume that the covariance matrix
3, is diagonal. In this case, It is easy to verify that

Otr(Wy)
O

-

=0, fork=1,...,K. (3.12)
Be=pb,
Therefore, F@ is a diagonal matrix according to that

8’L(Y|6,a)

ao‘,aoj =0, fori#j i,j=1,... A (3,13)

6=6
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As we see, codingisusuallyba.sedonésincethetrueaisunknown. 0 is a vec-
tor with £ elements 6;, i = 1,---,£. These elements are statistically independent when
%, k= 1,---, K, are diagonal, so each ; is quantized independently. In other words,
the quantization here is actually performed in one-dimension, instead of ¢-dimension. For
the one-dimension case, the optimal quantization constant is ;5 [18, Page 61]. Hence, the

optimal quantization constant we used is

1
Ge=Gi=g. (3.14)

Below we consider four different covariance structures:

e Covariance Structure 1: £ =021, Vk
e Covariance Structure 2: By =o2l, Vk
e Covariance Structure 3: £, =D, Vk

e Covariance Structure 4: Z; = Dy, Vk

The first covariance structure is the simplest, and mainly used for the purpose of theoretical
performance analysis in Chapter 4. The second and fourth structures have been success-
fully applied to intrapulse analysis in Chapter 5. The third one might be useful for other
applications so we include it here for completeness.

To fully derive a coding length, we assume a uniform prior probability for each parameter
in pg = [Bk1,° s pim]T and the underlying covariance matrix I over some certain regions.

Let ji; and Wy be the mean vector and the covariance matrix of the whole data set Y

respectively, i.e.,
1 N
f‘o = ﬁ Z Yns (315)
n=1
N
Wo = Y (Un— fto)yn — o). (3.16)
n=1

Parametric regions will be determined by jio and W according to the underlying covariance

structure, as detailed in the following subsections.
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3.3.1 Covariance Structure 1: £, =o2I, Vk

Under the assumed covariance structure, we have only one parameter o to characterize
all covariance matrices, and KM parameters {skm| k = 1,...,K; m = 1,...,M} to
characterize all mean vectors. Therefore, the number of free parameters are

(=KM+1. (3.17)

A. The log-likelihood term L(Y|9, &)
Let & be the ML estimate of 0. From Eq. (3.9), we obtain

L(Y|8,&) = yzﬂ log(62) + 5;—2tr(W) + “—‘g log(27) (3.18)
where tr(-) is the trace of a matrix and
K N
W=3" 3 (unlk) - ) (walk) — )T (3.19)

k=1n=1
with ji, given by Eq. (3.10).

Differentiating Eq. (3.8) with respect to o and equating it to zero, we have the ML estimate

of o given by
. _  [tr(W)
o o=\ N (3.20)
Substituting Eq. (3.20) into Eq. (3.18), we have
~ .. MN_ tr(W) MN MN
L(Y|0,&) = 5 log MN + 3 + 3 log(2n). (3.21)
B. The Fisher term %logIFal
Under this mixture model,
1 1, LYha) 1 E M PLyie.a)
5108|Fpl = 3log —5-—+3 Z_:lmgl log T (3.22)
Differentiating Eq. (3.8) twice with respect to o and using Eq. (3.20), we have
D A 2
L(Y|0,&) 2(MN) (3.23)

902 T otr(W)



23

Differentiating Eq. (3.8) twice with respect to s, and using Eq. (3.20), we have

PLYp,a) _ 1, (PW) _Ne
W B \OuE,) &
N:NM
= t:(_W) (3.24)

Substituting Eqs. (3.23) and (3.24) into Eq. (3.22), we have

(KM +1)

Kk
5 logtr(W)+%Zlog(MNNk)+log(\/§MN). (3.25)

1
5 log IFOl - k=1

C. The prior term — logh(6)
Denoting the ranges of jixy, and & by rim and p respectively and assuming a uniform
distribution for each, then

=111 2 (3.26)
h(68) = - —_— 3.26
P gZim=1 Tkm
Let &9 be the standard deviation of the whole data set Y. From Eq. (3.20),
- tr(Wo)
6o =\ —3m (3.27)

where W has been defined by Eq. (3.16). For simplicity, we further assume that

Tem = 2&o,m=1,---,M;

p = 0p.

Hence, the prior term contributes to the coding length by

—logh(®) = KiMlog2 + KM+ 1,0, ir(Wo)

> TR (3.28)

D. The total coding length L(Y, K)
Eqs. (3.21), (3.25), (3.17), (3.14) and (3.28) form the total coding length defined in
Eq. (3.5). By removing the parts independent of K (because they are inconsequential to

the subsequent minimization), we can simplify its expression to

.. _ MN KM+1, tr(Wy)
Li(Y.K) = -—2—logtr(W)+ 3 log (W)

ME KM e .
3 g log Nk + - log 3t log S(N, &) (3.29)
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where W, W, and S(N, &) are defined in Eqgs. (3.19), (3.16) and (3.3), respectively.

3.3.2 Covariance Structure 2: T, = oI, Vk

Under the assumed covariance structure, we have K parameters {ox| k=1,...,K} to char-
acterize all covariance matrices, and KM parameters {uxm| k=1,...,K; m=1,..., M}

to characterize all mean vectors. Therefore, the number of free parameters are

t=KM+K. (3.30)

A. The log-likelihood term L(Y|8, &)
Let 6% be the ML estimate of ox. From Eq. (3.9), we obtain
L(Y|d,&) Z Ni log(33) + 2 logtr(W) + @ log(2r) (3.31)
k
where W} is given by Eq. (3.11).
Differentiating Eq. (3.8) with respect to ox and equating it to zero, we have the ML estimate

of o} given by

A tf(Wk)
oy = MN, (3.32)

Substituting Eq. (3.32) into Eq. (3.31), we have

K
L(Y|8,&) = % z & log tr(Wy) — - Z Ni log(MN) + M + Ml g(2r). (3.33)

k=1

B. The Fisher term ;log|Fy|

Under this covariance structure,

1 & 2L, &) . M asza &)
_log IFgl =3 kz_:ll —5—2— 5 El’gl (3.34)
Differentiating Eq. (3.8) twice with respect to o and using Eq. (3.32), we have
H A 2
?L(Y |0, &) - 2(M Ni) . (3.35)

8 (W)
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Differentiating Eq. (3.8) twice with respect to u; and using Eq. (3.32), we have
82L(Y|0 &) _ MN}

. 3.36
WL, (W) (3.36)
Substituting Eqs. (3.35) and (3.36) into Eq. (3.34), we have
llogIF',,I = —ML Z logtr(Wy) + (M +1) Z log Ni + (— +1)KlogM + -Ii{-log2
k=1 k=1
(3.37)

C. The prior term - log k()
Denoting the ranges of /i, and ax by rim and p; respectively and assuming a uniform
distribution for each, then

. koM
@ =11(=1 =) (3.38)

k=1 \Pk =) Tkm
Similarly to Covariance Structure 1, we further assume that

Tem = 2&01m=11"'vM;
do, k=l,---,f(.

Pr

Hence, the prior term contributes to the coding length by

P KM+K_ tr(Wo)
—logh(8) = KM log2 + ——5——log — 2=~

(3.39)

D. The total coding length L(Y, K)
Eqgs. (3.33), (3.37), (3.30), (3.14) and (3.39) form the total coding length defined in
Eq. (3.5). By removing the parts independent of K (because they are inconsequential to

the subsequent minimization), we can simplify its expression to

ME
N _ M+1 tr(Wo)
Ly (Y ,K) = g Nilogtr(Wy) ZNI: log N + —— > ogt—r(W_.,)
K RM K
+(M+1)k§logNk+ 5 logsN 7 logGN+logS(N &) (3.40)

where W, W, and S(N, &) are defined in Eqs. (3.11), (3.16) and (3.3), respectively.
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Differentiating Eq. (3.8) twice with respect to o and using Eq. (3.55), we have
PL(Y|8,&) _ 2N?

3.58
o km Wim ( )
Differentiating Eq. (3.8) twice with respect to 4, and using Eq. (3.55), we have
PL(Y|8,a) N2
— =k 3.59
a"‘km Wgm ( )
Substituting Eqs. (3.58) and (3.59) into Eq. (3.57), we have
11 Fal= Rl diag(W 2MRIN KM12 3.60)
§'°G| gl—-z og |diag(W )| +2M ) log k+ ——log2. 3.

k=1 k=1

C. The prior term — log h(6)
Denoting the ranges of i, and xm by rem and pg, respectively and assuming a
uniform distribution for each, then

) K M 1
h6) =1 II . (3.61)

k=1m=1 PiemTkm

Similarly to Covariance Structure 3, we further assume that

-

Tkm = 2&0"!’ k=11"'vK;
Pkm = Oom, m=1,--- M.
Hence, the prior term contributes to the coding length by

—logh(8) = KM log2 + K log EE%W—O)I . (3.62)

D. The total coding length L(Y, K)
Eqgs. (3.56), (3.60), (3.53), (3.14) and (3.62) form the total coding length defined in
Eq. (3.5). By removing the parts independent of K, we can simplify its expression to

Z 1 : ME K \diag(W
L(Y,K) = 3 ;21 N log |diag(W )| - o kz_:l Nilog Ny + kz_:l log I.ldia:EW:; :

X . Ve R
+2M ) log Ne + KM log v FlogS(N, &) (3.63)
k=1

where W, W, and S(N, &) are defined in Egs. (3.11), (3.16) and (3.3), respectively.



3.3.5 Summary of Coding Lengths

For easy comparison and reference, the coding lengths under the above four covariance

structures are listed below:

Covariance Structure 1: £, = oI, Vk

. MN KM+1, tr(W
L(Y.K) = —2-logtr(W)+ L log t"((W"))

+— Z log Ni + ﬂlog +1log S(N, &) (3.64)

2 3
k=1
where W, W, and S(N, &) are defined in Eqs. (3.19), (3.16) and (3.3), respectively.

Covariance Structure 2: £; = ajl , Vk

_ ME X
Ly(Y,R) = ?g klogtr(wk)-—ENklosNH %8 (W)

k=1

KM K e
+(M +1) ) log Ny + — log — + — log — + log S(N, &) (3.65)
g 2 3N 2 6N

where W, Wy and S(N, &) are defined in Eqgs. (3.11), (3.16) and (3.3), respectively.

Covariance Structure 3: £, = D, Vk

z N oz idi K+1 _|diag(W
kM
5 Z log N + =5~ log < + log S(N, &) (3.66)

k=1
where W, Wy and S(N, &) are defined in Egs. (3.19), (3.16) and (3.3), respectively.

Covariance Structure 4: I = Dy, Vk

5 |diag(Wo)|
LyY,K) = N log|diag(W)| = 5 3 Nelog N + 3 log it
a( ) z k log |diag(W )| Z k& log Ni Z % [ Tiag (W)l
+2M 2 log Ni + KM log —— Ve +log S(N, &) (3.67)
6N

k=1
where Wy, Wy and S(N, &) are defined in Egs. (3.11), (3.16) and (3.3), respectively.
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3.4 A Model-Based Clustering Algorithm

Given N data vectors (denoted by Y) and K clusters, we need an appropriate clustering
procedure to determine the optimal partition (or grouping) of these vectors Y into K
clusters. Here by “optimal”, we mean that, for a given K, the optimal partition & achieves
the maximum likelihood. In other words, the negative log-likelihood L(Y'|, &) is minimal.
The procedure we propose to optimally repartition K existing clusters into K +1 new
clusters is as follows: we obtain K candidate partitions, each by a binary splitting of one of
the K existing clusters, followed by a regrouping of the data into K +1 clusters; The optimal
clustering among the K candidates is the one which achieves the maximum likelihood.
Therefore, the clustering analysis consists of two loops: (a) In the outer loop K starts
from 1 to Kmax, a pre-selected upper bound; (b) In the inner loop the optimal partition
& of Y into K clusters is chosen and L(Y, K) is calculated according to 8, &. Finally, the
number of clusters K* is selected if it yields the minimal L(Y,K). In the following, the
procedure of the clustering algorithm is presented in Section 3.4.1 and its computational

complexity is analyzed in Section 3.4.2.

3.4.1 Procedure

The flow chart of the clustering algorithm is shown in Fig. 3.1. The algorithm is off-line
since it requires all the data available at the same time.

1. Start from K = 1, i.e., the whole data set Y is viewed as one cluster.

2. For each of the K existing clusters, compute the mean vector fi, as the cluster center

and the standard deviation vector & as the cluster deviation, k = 1,..., K.

3. In this step we will obtain K candidate partitions, each by a binary splitting of one
of the K existing clusters, followed by a regrouping of the data into K + 1 clusters.

For k = 1,...,f(, compute

i‘f(.ﬂ A i‘k + 6%
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i‘k L d ﬂk - a’k. (3.68)

(a) Use fa), fig, .-, )P, 3 the initial centers to repartition the data into (K +
1) new clusters and obtain the association vector, according to the minimum
distance principle. In other words, each data vector will be classified into a

cluster whose center is the closest. Here the distance measure is the £2 norm.

(b) Compute all K + 1 new cluster centers, and repeat the repartition process a few
times (say N, times) until the cluster centers converge. Thus, the association

vector &y is obtained.

(c) Compute the negative log-likelihood L(Y|0, ax).

4. There are K different splittings in Step 3 to repartition K existing clusters into K +1
new clusters. The optimal splitting rule here is to choose the best splitting p which
yields the minimal L(Y'|0, &y). i.e.,

p=arg min_L(Y|0,éx). (3.69)
kell,... K]

Set & = &p; ie., Gp is the optimum association vector obtained from the above

splittings and repartitions.

5. K = K+1and L(Y, K) is calculated according to 8, &. Go to Step 2 until K reaches

Kmax.

6. Choose the optimal number K* such that L(Y, K*) is minimal among all L(Y, K).

3.4.2 Computational Complexity

Given N M-dimensional data vectors, we start by viewing the whole data set as a cluster
and then repartition the data to get a new cluster in each step until the number of clusters
K reaches Kmax. Below one addition, subtraction, multiplication and division are counted
1 flop (floating point operation), respectively.

As we observed in Section 3.4.1, the dominant cost occurs in Step 3. At the k-th stage

-

(k=1,...,K):
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Y — data set

— number of clusters assumed in Y 1i - mean vector of the k-th cluster
Kmax — maximal number of clusters assumed in Y & — standard deviation vector of the k-th cluster
L(Y.R) — coding length of ¥ with R clusters assumed d — association vector of Y

K* - detection number of unknown clusters inY
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Figure 3.1: The diagram of our model-based clustering algorithm
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(a) Repartition N data vectors according to the K + 1 cluster centers.
To compute the distance square ! between a data vector and a cluster center, it
requires M subtractions, M multiplications and M additions. Thus, MK +1)
flops are required for computing the distance squares between one data vector and
all K + 1 cluster centers. To choose the minimum distance square, it appraximately
takes logy(K + 1) comparisons. The cost of these comparisons is negligible compared
to 3M(K +1) flops. Thus, to assign the N data vectors into K +1 clusters, it requires

N [3M(f{ +1) +logy(K + 1)] ~3MN(K +1).
(b) Update all K + 1 cluster centers, and repeat the repartition process N times until
the cluster centers converge.

To compute the k-th cluster center, it requires M N additions and M divisions. Thus,

to compute all K + 1 cluster centers, it requires
K+1 .
Y (MNi+ M) = M(N + K +1) = MN,
k=1

where we assume N 3> K. Hence, to repeat (a) and (b) by N, times, it requires
N [MN +3MN (K + 1)] = MNN,GK + 4).
(c) Compute the negative log-likelihood L(Y)0, &x).
The computational cost in (c) is negligible compared to those in (a) and (b).
There are K candidate partitions in Step 3. Hence, the computational cost for Step 3 is
K [MNN.(ai( + 4)] = MNN,(3K? + 4K).

Step 3 is repeated from that K =1 to that K = Kmax — 1. Therefore, the total computa-

tional cost of the clustering algorithm described in Section 3.4.1 is approximately

Kmax-—1 ) .
Cof = Z MNN,(3K? + 4K)
K=1

= MNN, [(Kmax - 1)* +3.5(Kmax ~ 1)* + 2.5(Kmax - D). @70

170 find the minimum distance of a data vector to all cluster centers, it is equivalent to find the minimum
distance square. In this way, one square root operation is saved.
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It is shown in Eq. (3.70) that the computational complexity is approximately propor-
tional to K} ax. Thus, the computational cost increases dramatically as Kmax increases.
To alleviate the computational burden of the model-based clustering scheme, a fast algo-
rithm is developed in Section 5.5. In this chapter, we emphasize on the development of our
clustering scheme and comparison with existing algorithms.

3.5 Comparison with SNOB

Wallace [62] started his idea on the minimum message length (MML) criterion from clas-
sification. Over the past three decades, Wallace and his co-workers [10, 11, 61,63] have
developed and maintained a clustering program called SNOB. Basically, SNOB probabilis-
tically assigns a data vector y, to a cluster k, say in probability P(an = k). Hence, the
data is conditionally modeled by

N K
F(v10) = T 3_ pe x fi(yn) (3.71)

n=1 k=1

where 8 = {p1,-** ., P, 1, "1 B B1, -+ B} and

1 N
Pk'-"ﬁzP(an:k)-
n=1

It is also assumed in SNOB that each covariance matrix Zi is diagonal, and then the
message length formula of Eq. (2.18) is directly applied for cluster validation. Detailed
descriptions of the SNOB approach were presented in [46] and {7, Chapter 7]. Here the
differences betw;een SNOB and our method are summarized below:

o We follow the classification approach using the deterministic assignment which only
allows P(ayn = k) to be 0 or 1, instead of the mixture approach using the probabilis-
tic assignment in the SNOB program, so the mixture models are different (compare
Egs. (3.71) and (3.1)).

e Our model parameter vector  does not require p;. This results in a simpler coding
length.
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e The theoretic analysis of our approach is mathematically tractable but the analysis
of SNOB'’s approach is far more difficult (see next chapter for details).

e The deterministic assignment can be done by a simple procedure such as the k-means
algorithm [33] but the probabilistic assignment requires a more complicated procedure
such as the EM algorithm [66], Therefore, our clustering algorithm is computationally
simpler than SNOB.

o For clustering, we start by viewing the whole data set as a cluster and then repartition
and regroup the data to get a new cluster in each step. The SNOB program starts
with a randomly initial estimate of the clustering structure and then split a cluster or

merge two clusters recursively.

3.6 Experimental Results

An empirical comparison of Autoclass, SNOB and two neural network classifiers (Kohonen's
network and Adaptive Resonance Theory) was made in [59,60], where the conclusion is that,
overall, statistical classifiers, especially SNOB, perform better than the neural network clas-
sifiers on both cluster validation and clustering. For our coding length measures described
in Section 3.3, we demonstrated that it outperforms some well-known non-parametric cri-
teria in [37,67). Here to fairly comi)are the performance of our clustering algorithm with
that of SNOB, we incorporate the same prior specification h(#) as SNOB, which has been
described in Section 3.3. We also examine the performance of the coding length measure of
Eq. (3.7) based on the Bayesian Inference Criterion (BIC).

To simulate a mixture of two clusters, let N' be the sample size of the two clusters in
total and ¢ be the mixing portion. Then the populations of the two clusters are cN and

(1 - )N respectively. We define the following measure for the inter-cluster distance:
D =27 - 27wy - (3.72)

For simplicity, we have chosen the covariance matrices of the two clusters to be identical such

that £, = B, = 02Iy. Let the inter-cluster distance be D, we define u; = [0,0,--- Lo
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and p, = [Vuﬁ' 727’ ey ﬁ]T. Furthermore, for the high dimension case (M = 22), data
is generated by adding Gaussian noises in two noiseless pulse patterns, such examples are
shown in Fig. 3.2.

In the following, we create various two-cluster mixtures when the data vector dimension
M = 1,2,22, the mixing portion ¢ = 0.5,0.2, the sample size N = 40, 100, 1000 and the
distance measure D = 2,3,4,6,8. We also create the case of one cluster when M =1,2,22
and the sample size N = 40,100,1000. We employ our clustering algorithm under four
covariance structures which are denoted by L1, Lo, L3 and L, respectively, and the SNOB
algorithm to perform cluster validation and clustering. We also employ our clustering
algorithm under the BIC of Eq. (3.7) based on Covariance Structure 4. In this way, we
can fairly compare the performance of Ly, BIC and SNOB. Ten trials of each mixture are
carried out using Ly, L2, L3, L4, BIC and SNOB. In each trial, we assume the number
of clusters from 1 to 4 and then choose the number at which the corresponding cﬁteﬁon
is minimal. The results of cluster validation for all criteria examined here, as represented
by the number of times out of 10 trials that the correct number of clusters is determined,
are shown in Tables 3.1 - 3.9. To further compare our clustering algorithm and SNOB, the
accuracy of the corresponding clustering results are shown in Tables 3.10 - 3.12 for N = 100
when both algorithms have made the correct decision on cluster validation out of 10 trials.

From Tables 3.1 - 3.12, it can be observed that

1. None of the criteria is reliable for small and medium samples (N = 40,100) when
D<3. )

2. The performance of all criteria is improved as the distance D and the sample size N

increase.
3. The performance of Ly, Lz and L3 is very similar to that of Ls.

4. BIC is inferior to L, and SNOB in cluster validation in general but performs very well
for the medium and large samples (N = 100, 1000).
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5. The performance of L4 is superior to that of SNOB in cluster validation for the small
and medium samples (N = 40, 100).

6. In the cases where both algorithms perform perfectly in cluster validation, SNOB

yields slightly more accurate results in clustering than L4.

Observation 1 is easy to justify since if D < 3, the overlap between two clusters is very
extensive, which makes it difficult for any of the criteria to work properly. Observation 2 is
intuitively clear: the larger is the inter-cluster distance D, the less overlap is there between
the two clusters, and the higher accuracy is achieved in parameter estimation. Also, since
the data here is generated by using £, = X = %I, the performance of L,, L, L3 and
L4 is likely to be more or less the same, as confirmed by Observation 3. Observation 4 is
. natural because the BIC of Eq. (3.7) is an asymptotic criterion. In fact, BIC has been used
in many applications due to its simplicity and the fact that no prior knowledge is required.

From Observations 5 and 6, our clustering algorithm shows much higher reliability in
cluster validation than SNOB, while sacrificing marginally on the accuracy in clustering.
Recall that an extra set of parameters p; is included in SNOB whereas such parameters
have not been taken into consideration in the development of our algorithm. These param-
eters prescribe the probabilities of the nth data vector being generated by the kth cluster
- and must be estimated. This difference between SNOB and our algorithm has profound
implications in their performance. For cluster validation, the probability that the nth data
vector associates with the kth cluster is irrelevant, i.e., regardless of the values of these
probabilities, tixe number of clusters remains the same. Therefore, for cluster validation,
these extra parameters are nuisance parameters and their inclusion will lower the accuracy
of the determination of the number of clusters, and hence the new algorithm shows better
performance than SNOB in cluster validation. On the other hand, the probabilities of as-
sociating the data vectors to the clusters are highly relevant parameters in the process of
clustering. Therefore, their inclusion provides more information gained from the data and

renders SNOB the more accurate algorithm in clustering.
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Figure 3.2: Simulated data for M=22, where z-axis is the index of data sample points and
y-axis is the amplitude of simulated data.



YELB2Y T Sample Sise | L1 La Ls Le BIC | SNOB
N=4 | 1710 1716 | 1/10 1710 1710 0710

D=2 N=100 0/10 | o710 | o/10 0/10 0/10 0/10
N=1000 0710 | os10 | o/10 0/10 0/10 1/10

RN=10 3710 | 3/10 | 3/10 3710 3/10 9/10

D=3 N=100 4/10 | 4710 | 4710 4/10 4/10 2/10
Na=1000 3/10 | 3710 | 3710 3/10 3/10 | 10/10

N=40 1 1 1 10 8/10 1/10

D=4 N=100 10/10 | 10/10 | 10710 | 10710 | 10/10 | 10/10
N=1000 10/10 | 10/10 | 10710 | 10710 | 10/10 | 10/10

N=40 9/10 9/10 9/10 10/10 | 6/10 9/10

D=6 N=100 10/10 | 10710 | 10710 | 10710 | 10/10 | 10/10
Na=1000 10/10 | 10210 | 10710 | 10710 | 10/10 | 10/10

= 9/10 | 10/10 | 9/10 | 10710 | 6/10 | 10/10

D=8 N=100 10/10 | 10710 | 10710 | 10/10 | 10/10 | 10/10
Nx=1000 10710 | 10710 | 10710 | 10720 [ 10/10 | 10/10

Table 3.1: Cluster validation results for two true clusters: M=1, c=0.5

YE=B2T T sample Sise | L3 Ly Ly Le BIC | SNOB
N=40 | 1/10 | 1710 | 1710 1716 | 0/10 74
D=2 Nax100 0/10 | o710 | o/10 o/10 | o0/10 0/10
Na=1000 0/10 | o710 | o/10 0/10 | 0/10 2/10
= 1 /10 3710 | 2/10 fl
D3 N=100 3n0 | 30 | s/no 3710 | 3/10 0/10
N=1000 0/10 | o710 | o/10 o/10 | o710 | 10/10
=0 ¥/10 3710 | 1/10 8/10 3/10 o/1
D=4 N=100 10/10 | 10/10 | 10720 | 10/10 | 10/10 | 7/10
N=1000 10710 | 10/10 | 10710 | 10710 | 10710 | 10/10
N=4® | 0/10 | 10710 | 9/10 | 10/10 | *?/10 9710
D=6 N=100 10710 | 10/10 | 10/10 | 10710 | 10720 | 10/10
N=1000 10710 | 10710 | 10/10 | 10710 | 10710 | 10/10
N=40 | 9/10 | 10710 | 9/10 | 10/10 | */10 | 10/10
D=8 N=100 10/10 | 10/10 | 10710 | 10710 | 10/10 | 10/10
N=1000 10710 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10

Table 3.2: Cluster validation results for two true clusters: M=1, ¢=0.2

00 10/10 | 10/10 | 10/10 | 10/10 10/10 10/10

ample Sise ) A 12 Ty Te BIC | SROB |

N=‘° 8710 | 10/10 | 8710 | 10/10 | 8/10 | 10/10
=]

N=1000 10710 | 10710 | 10710 | 10/10 | 10/10 | 10/10

Table 3.3: Cluster validation results for one true cluster: M=1



Y1 =820 T Sample Sise Ly La Ls Lo BIC | SNOB

N=® 1710 1710 1710 1710 1710 0710

D=2 N=100 1/10 1/10 1/10 1/10 0/10 0/10
Nax1000 0/10 | o/10 | 0/10 0/10 0/10 | 10/10

N=40 8/10 1/10 /10 k740 T/10 0710

D=3 N=100 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 5/10
N=1000 10710 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10

= /1 —r/'rn 10 | 10/10 | 9/10 4/10

D=4 N=100 10/10 | 10/10 | 10710 | 10/10 | 10/10 | 10/10
N=1000 10710 | 10710 | 10/10 } 10/10 | 10/10 | 10/10

N=40 10710 | 10/10 [ 9/10 10/10 | 9/10 | 10/10

D=6 N=100 10710 | 10/10 | 10/10 { 10/10 | 10/10 } 10/10
N=1000 10710 | 10710 | 10710 | 10/10 | 10/10 | 10/10

“N=40 16/10 | 10/10 | 10/10 | 10/10 | 9/10 | 10/10

D=8 N=100 10710 | 10710 | 10/10 | 10/10 | 10/10 | 10/10
N=1000 10710 | 10710 | 10710 | 10/10 | 10710 | 10/10

Table 3.4: Cluster validation results for two true clusters: M=2, ¢c=0.5

TELE2Y T Sample Sise | Ly La Ls Le BIC | SNOB
N=0 1718 1710 1710 1710 0/10 0710

D=2 N=100 0/10 | 0/10 | o710 | 0710 | 0710 | o/10
N=1000 0/10 | o110 | o710 0/10 | o/10 | 6710

" Nm=40 VAU BRI /10 8/10 | /10 | 0/10

D=3 N=100 6/10 | 6/10 | 6710 | 6/10 | 5710 | 3710
N=1000 9/10 | 9/10 | 9/10 9/10 | 9710 | 10/10

= ¥/i0 | 8/10 | 7/10 9/10 | 8/10 | 3/10

Do4 N=100 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10
Nax1000 10710 { 10/10 | 10710 | 10/10 | 10710 | 10/10

N=40 | _6'/1'6_ Ji0 | 9/10 | 10/10 | 9/10 | 10/10

D=6 N=100 10/10 { to/t0 | 10/10 | 10/10 | 10/10 | 10/10
Na=1000 10/10 | 10710 | 10710 | 10/10 § 10/10 | 10/10

N=® | 10/10 | 9/10 | 1 _6'/xo 10/10

D=8 N=100 10710 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10
N=1000 10710 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10

Table 3.5: Cluster validation results for two true clusters: M=2, c=0.2

Sample Sise Ly La Ls Le BIC | SNOB |
d:‘o 9/10 10/10 9/10 10/10 10/10 10/10
N=100 10/10 | 10/10 | 10/10 | 10/10 10/10 10/10
N=1000 10/10 | 10/10 | 10/10 | 10/10 10/10 10/10

Table 3.6: Cluster validation results for one true cluster: M=2



LD

= Sample Sise Ly La Ly Ly BIC | snoB
= 1710 | 0710 | 0/10 | 0710 | 0710 0/10
D=3 Nw=100 o/10 | o/10 | o/10 | o/10 | o/10 0/10
N=1000 o710 | o/10 | o/10 | o710 | o/i0 0/10
= 3710 | 3/10 | 1/16 [ 0/10 | o/10 3/10
D=3 N=100 9/10 | 9710 | 4710 | 0710 | o710 0/10
N=1000 10/10 | 10710 | 10710 | 10710 | 10710 | 10710
= 1 T \ 10 9/10
D=4 N=100 10/10 | 10/10 | 10/10 | 10/30 | S/10 0/10
N=1000 10710 | 10710 | 10/10 | 10/10 | 10/20 | 10/10
N=40 | 0/10 | 10/10 | 8/10 | 10/10 | 10/10 | 0/10
D=6 N=:100 10710 | 10710 | 10710 | 10/10 | 10/10 | 10/10
N=1000 10710 | 10710 | 10710 | 10/10 | 10/10 | 10710
= 10 | 10/10 | 10/10 | 9710
D=8 N=100 10710 | 10710 | 10/10 | 10710 | 10/10 | 10/10
Nax1000 10/10 | 10710 | 10710 | 10710 | 10710 | 10/10
Table 3.7: Cluster validation results for two true clusters: M=22, c=0.5

[YE=E2L | Sample Sise | L3 La Ls | L. | BIC | sNoB
= o710 o710 /10 | 0/10 B/10 | 0/10
D=3 N=100 0/10 | o/10 | o/10 | o710 | o/10 0/10
N=1000 0710 | 0710 | o710 | 010 | o/10 0/10

= hl)"'ﬂ_x —85"6—1 —65"6—1 _691'6_79"6_1 _66'1'6_
D=3 N=100 2710 | 2710 | o710 | 0710 | 0110 0/10
N=1000 10710 | 10/10 | 6/10 | 2710 | o710 | 10/10
= 3/10 | 4/10 | 3/10 | 3/10 | 0/10 0/10
D=4 N=100 10/10 | 10/10 | o710 | 8710 | o/10 0/10
N=1000 10710 | 10710 | 10/10 | 10/10 | 10710 | 10/10
= 9/16 | 9/10 | 9/10 | 7/10 | 6/10 1710
D=6 N=100 10/10 | 10710 | 10/10 | 10/20 | 10/10 | 10/10
N=1000 10/t0 | 10/10 | 10710 | 10710 | 10/10 | 10/10
= 10/10 o'/l'd“ﬁ/’b_x _dxo 10/10 | 4/10
D=8 N=100 10710 | 10/10 | 10/10 | 10/10 | 10710 | 10/10
N=1000 10710 | 10710 | 10/10 | 10710 | 10710 | 10/10

Table 3.8: Cluster validation results for two true clusters: M=22, ¢=0.2

Sample Sise T; 2y ) 2 T, BIC | SNOB ]
=40 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10710
N=100 10710 | 10710 | 10710 | 10/10 | 10720 | 10/10
N=1000 10/10 | 10710 | 10/10 | 10/10 | 10710 | 10/10

Table 3.9: Cluster validation results for one true cluster: M=22



SROB T
D T M=M= "1 MNM=0.N=8 | N =50.Nz=50 ] = 10, =
validation ciuun'n vﬂﬁ‘.’n‘on ciulun'ng uﬁi‘.‘n‘on ciuun'n_l validation ckuum_:_u
D= 3710 _"1_17’6—'— 8/10 0710
A 31 /10 3/10 310
= 10/10 — T 3% 710 10/1 P7.0% 0/10 05.7% |
15/10 “RI% 10710 0IX 10/1 X 10 X
D=3 10/10 100.0% 16/10 100.0% 10/1 100. J10 0.9%

Table 3.10: Comparison of performance of SNOB and our algorithm, M=1

—SNOB T
D N =0 Nl 1 M=l N2=8 | N;=30,82= =!B_"_N_m N =80 |
ﬂ'n*n'on ﬁulun' validation | clusterin m cimun’n‘ validation ciu-unn
D=3 —0/10 ’2“—67!'6'__‘ 1710 0710 S
3/10 3/10 07 93.1% 3/10
= / IR T w15/ SR :
0/ X (741 X o/ ; 10/10 X
=8 0/ 100.0% ofx T00.0% 0/1 100.0% xo; 0 100.0% |

Table 3.11: Comparison of performance of SNOB and our algorithm, M=2

— SNOB T
D —N—W_l!‘—_u—w TN = N =N =0 = Y A U =
1gation clustening 1dation clustenng v‘hdluaon éulunnl valhidation clustering
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Table 3.12: Comparison of performance of SNOB and our algorithm, M=22



3.7 Summary

In this chapter, model-based clustering has been considered. Based on minimum encoding
inference, an appropriate coding length measure is proposed for cluster validation, and
the coding lengths under four different Gaussian mixture models are fully derived. The
corresponding clustering algorithm is developed.

Judging from the performance comparison, our coding length measure outperforms the
BIC in cluster validation since it is not based on the large sample assumption. More
importantly, our clustering algorithm shows much higher reliability in cluster validation than
SNOB, while sacrificing marginally on the accuracy in clustering. Indeed, our clustering
algorithm is well designed to effectively process high dimensional data with satisfactory
performance on small and medium samples. Thus, the new algorithm is an attractive
approach for the clustering problem in intra-pulse analysis, in terms of the first two issues

pointed out in Section 1.1.



Chapter 4

Detection Performance Analysis

4.1 Introduction

The error analysis of model-based clustering concerns about the estimation accuracy of
the number of components in a Gaussian mixture. This is a problem that has not been
completely solved in statistics, as stated in the end of Section 1.2. In this chapter, we con-
duct a binary detection performance analysis of our clustering algorithm under Covariance
Structure 1 described in Section 3.3.1, by estimating the two types of errors: miss and false
alarm. We also examine the impact of the penalty weight on the error probability under
the framework of the penalized likelihood method described in Section 2.4.
Under Covariance Structure 1, each of all K clusters is assumed to be a sample from
a multivariate normal distribution N(p,02Ias). The log-likelihood function Eq. (3.21) is
rewritten here
LK) = -‘1211 log(trW) (4.1)
and the penalty function, obtained by combining Eqgs. (3.25), (3.17), (3.14) and (3.28), is

given by

2 trw 2
where N; is the number of members in the kth cluster; W, W and S(N, &) are defined in

N R -
mE) = + XM 11 T Wo | % 3 log N + 22 log +logS(N,&)  (42)
k=1

Eqgs. (3.19), (3.16) and (3.3), respectively.
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Therefore, the total description length is that
DL(K) = L(K) + II(K). (4.3)
The detection will select the number of clusters to be K* if

K* =arg min DL(K). (4.4)
1<K<N

We investigate a binary detection performance here. Given a data set with V observation
vectors, let W be the sample covariance matrix when taking the whole data set as a cluster.
By some classification, the data set is partitioned into two clusters, one with a sample size
N, and a sample covariance matrix W, and the other with a sample size N; and a sample
covariance matrix W,. In addition, we let ¢ be the mixing portion, i.e, Ny = ¢cN and
N, = (1 = ¢)N, where 0 < ¢ < 1. Define

MN_ . tr(W,;+W3)

AL=L(2) - L(1) = - log—— o (4.5)
and
AT =T11(2) -T(1) = —2M2+ 1o "“::};,)Wz)
M. c1-¢N N
+-2-log cl=c)Ne 30) ‘+ log N =M (4.6)
Then
DL(2) - DL(1) = AL + AIL (4.7)

Therefore, to evaluate the error performance, we have to know the distribution of the trace

ratio & Vt‘r’(l-rV)V, or its variation.

4.2 Probability of A Miss

A miss occurs when two clusters are embedded in a data set but the binary detection says
that only one cluster exists. A simple illustration is shown in Fig. 4.1. Let H, and H,
denote respectively the hypotheses of one cluster and two clusters, the miss probability

given H; is

P = P{DL(2) - DL(1) > 0|Hy} = P{AL + AIl > 0|H;}. (4.8)
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Figure 4.1: Two Gaussian clusters

Let
_ tr[W - (W, + Wz)]
Bm=WN-— "y vwy)

Different partition criteria may result in different values of R;,. Here we assume that

(4.9)

our clustering algorithm can separate two Gaussian clusters perfectly. This assumption
is reasonable when two clusters are well separated. We expect more deviation from the
assumption when two clusters are closer to each other in distance. Under the perfect
separation assumption, it is proven in Appendix B that Rp, is distributed as a noncentral

F distribution Fpsaq(n—2)(6) with the noncentral parameter

_ NN, "Ml = W "2 A — 2
b= N p =¢(1 - c)ND?, (4.10)
and D is the normalized inter-cluster distance defined by

D= ||u|| (4.11)
(24

Substituting Eqs. (4.5) and (4.6) into Eq. (4.8), we have

_ MN-2M -1, tr(W;+Wj)
P = P{ 2 log = W)

+M-lo ¢(1 —c)Ne +lo N!
7 %7 3 & (cN)((1 — o)N)!

>0 |Hz}.

Rewriting the above equation in terms of Rm, we then have

» = P{Rm < Fp,, |H2} (4.12)
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Figure 4.2: The illustration of Py

where the threshold

! ]mv:’m-—x - 1} (4.13)

e = N
Fra =N ‘2’{[§°‘1 -an] [ea=am
and the value of P, is represented by the shadow area in Fig. 4.2.
From [34, Chapter 30], the mean and variance of a non-central F distribution with v;, v;

degrees of freedom and a non-central parameter § are given respectively by

ElFom(@) = 22 m>2, (@414
2 2 _
Var(Fu, (8] = 2(:’—1) (”““("))2“:;';;(:2 2?2';’ D (n>4). (415

Here vy = M, v = M(N —2) and § is specified by Eq. (4.10). substituting these values
into Eqs. (4.14) and (4.15) and assuming that N > 1, we have

_ 2
PRl x 148 21490y 16
- - 2
Var(Rm] = 2¢3(1 - ¢)2D* A.; 34c(1 DM (4.17)

Property 1: Given the dimension M, the mixing portion c, we define Dy such that

_ M
“Ve(l-¢

Do {[c-c(1 —o-t-aF _ 1}. (4.18)

If D > Dy, then P,, tends to 0 as the number of observations N increases. If D < Dy, then

P,, tends to 1 as the number of observations N increases.
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Proof: By some mathematical manipulations, we have

Nli—lonco ET;:,,] = c(1 _Alc)Dz {[C—c(l - C)—(l-c)] % - 1} . (4.19)

To obtain Eq. (4.19), we have used the knowledge that W“{—'_;m ~ [e¢(1 — ¢)~ (-
for large N, as shown in Appendix C.

First, let us check the case when D > Dg. Given M and ¢, we know from Eq. (4.19) that
Fp,, < E[Rp) asymptotically if and only if D > Dg. By using Chebyshev’s inequality (53,
Page 69}, we have

Var[Rp]
P{IRm— BlRnl 2 (BlRnl - Fra)} < o gy U

From Eqs. (4.13),(4.16) and (4.17), we know that Var{R;] is proportional to N but
(B[R] — Fp,,)? is proportional to N2. Thus,

Jim_P{|Rm = E{Rn]| 2 (E[Rm] - Fr,)} =0. (4.21)

The left hand side of Eq. (4.20) is the area under the p.d.f. of Ry, over the intervals
(—oc, Fp, ] and [2E[Rs] — Fp,,, +00). Hence,

Jim Pn = lim P{Rm < Fp,}=0. (4.22)

Second, we check the case when D < Dy. In this case, Fp, > E[Rpy] for a sufficiently large
N. Similarly by using Chebyshev’s inequality for N — oo, we have ’

Jim P {|Rm — E[Rm]| 2 (Fp, — E[Rm])} =0. (4.23)

Thus,
lim P{2E|{Rm)— Fp, < Rm or Rm > Fp,} =0.
N-oo

This further implies
lim P{2E[Rm)- Fp, < Rm < Fp,} =1. (4.24)
N—=oo

Consequently,
Nh_x’l‘},° Py = Nli_& P{Rn < Fp,} =1. (4.25)



M 1 2 22
c | 05)]02]05}]02]05]02
Dy {347 | 3.28 | 2.83 | 2.85 | 2.40 | 2.53

Table 4.1: The critical distance Dy

Therefore, Property 1 holds. Q.E.D.

If it happens that D = Dg, then Fp_ is asymptotically equal to E[Rn] and Pn is a
positive number between 0 and 1. Some values of Dy given M and c are listed in Table 4.2.
Indeed, Dy is a critical distance. While D > Dy, the two clusters are well separated, the
probability density function (p.d-f.) of the mixture is bimodal and our clustering algorithm
can successfully separate these two clusters. While D < Dy, the p.d.f. of the mixture
becomes unimodal, the overlap between the two clusters is very extensive and the similarity

makes it difficult for our algorithm to work properly, as for other existing algorithms.

Property 2: P, is a monotonically decreasing function of the normalized inter-cluster
distance D = || BBz,

Proof: P{Fpam(n-2)(6) < Fp,} is a decreasing function of 4, see {34, Page 193] for details.
Property 2 holds since § is proportional to the square of D as shown in Eq. (4.10). Q.E.D.

Figs. 4.3 - 4.8 show the theoretical P, and the testing P, vs. the number of observations
N for the mixtures of two clusters considered in Section 3.6. The dotted lines in these figures
are the theoretical P, curves and the solid lines are the testing P, curves based on 1000
trials for each N. From these figures, Properties 1 and 2 are clearly observed. We also
notice that there is a discrepancy between the theoretical P, and the testing one. The
reason is that the actual partition may deviate more or less from the ideal partition which
separates the two clusters perfectly. This discrepancy increases as the two clusters become

closer in distance.
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4.3 Probability of A False Alarm

A false alarm occurs when one cluster is embedded in a data set but the binary detection
says that two clusters exist. A simple illustration is shown in Fig. 4.9. So the false alarm

probability, given H; (the hypothesis of one cluster), is
Py = P{DL(2) - DL(1) <O|H:} = P{AL + A < 0|H,}. (4.26)

In the miss case, P, is exactly analyzed according to the Gaussian mixture model. However,
in the false alarm case, the model is a mixture of truncated normal distributions, whose

exact analysis is still incomplete in statistics.

- -

R R TR

Figure 4.9: One Gaussian cluster

The key to the analysis is the ﬁnderstanding of how our clustering algorithm will parti-
tion a N(is,02I ) sample data into two clusters. Given a large sample, the sample mean
vector ji and the sample standard deviation vector & of the data are close to the true ones u
and o respectively. By our partition described in Section 3.4, two new clusters are centered
in i — & and j3 + & respectively. Therefore, the partition is near symmetric to the true
mean vector and produces two clusters of about equal size, i.e., the mixing portion ¢ = 0.5.

Define
tr[W — (W, + W)
tr(W,+W,)

Ry =log (4.27)
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Assuming that the sample is reasonably large and following Hartigan’s work [32], Hawkins
[23, Page 339] suggested that asymptotically, Ry is approximately normal N(ug,, 0% ,) with

the mean

2
ury = log(=3r—s) (4.28)

and the variance
s _ 2m2M(nM —2M - 1)

UR! = N(WM — 2)2 (4-29)
Substituting Egs. (4.5) and (4.6) into Eq. (4.26), we have
_ MN-2M-1_ tr(W,+ W)
Py =P 2 log —=- W)
M_ eN N!
+?log—l—2-+log(0TN)!—(ﬁN—)! <0 |Hi}.
Rewriting the above equation in terms of Ry, we then have
Py = P{Ry; > Fp, |H1} (4.30)
where the threshold
o= 1 P IR
Fp, =log [ﬂ i [—-N—} -1 (4.31)
12 (0.5N)!(0.5N)!

and the value of Py is represented by the shadow area in Fig.(4.10).
pdf of Rf

Figure 4.10: The illustration of P

Property 1: Py tends to 0 as the number of observations N increases.
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Proof: It is easy to verify that

. 2
dim (Fe, - un,) = log2% 1)~ log(37—5) > O, (4.32)
Nli-lgo or, =0. (4.33)

Some of these limiting values are listed in Table 4.3. By using Chebyshev’s inequality (53,

M 1 2 22
limy_o(Fp, — pir,) | 0.54 | 0.77 | 0.78

Table 4.2: Limiting values of (Fp, — pr,)

Page 69], we have

P{1R,~ BRI 2 (Fe, - ERAD} < G (43)
From Egs. (4.32) and (4.33), we know that
Jim P{IR; - B[Ry}l > (Fe, - E(R{])} =0. (4.35)

The left hand side of Eq. (4.34) is the area under the p.d.f. of Ry over the intervals
(-0, 2E[Ry] — Fp,] and [Fp,,+00). Hence,

Nli-lo%o Py = Nli-xonoo P{R; > Fp,} =0. (4.36)
Therefore, Py tends to 0 asymptotically. Q.E.D.

Figs. 4.11 - 4.13 show the testing Py vs. the number of observations N for the one truth
cluster cases considered in Section 3.6. The solid lines are the testing Py curves based on
1000 trials for each N. The corresponding theoretical values of Py are very very small, less
than 10~3. It is observed from Figs. 4.11 - 4.13 that the testing Py is negligible for medium
and large samples, although a small probability of false alarm does exist for small samples.
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Figure 4.12: False alarm probability curves for one true cluster: M=2

Figure 4.13: False alarm probability curves for one true cluster: M=22
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4.4 Optimal Range of Penalty Weight

If the penalty function in Eq. (4.3) is multiplied by a penalty weight A as described in

Section 2.4, then under Covariance Structure 1, we have

i Fra = M () _ y-0-a]¥ _
N ElFar v 0] (1 -c)D? {[° (1 =70~ 1}' (4.37)

Jim (Fp —pr;) = log(2} —1) — log(

). (4.38)

2
M -2
By the same reasoning as that used for Property 1 in Section 4.2, we require that

Fp,

lim <1
N-ooo E[FM'M(N-Q) (6)]

in order to make P, — O asymptotically. This requirement lets us determine an upper
bound for the penalty weight

_0.5M log(1 + ¢(1 — c)D*/M)

clogc+(1—c)log(l —¢) ° (4.39)

Amazr =
Similarly, by the same reasoning used to prove Property 1 in Section 4.3, we require that
Nh-xb!cln(FPI -I-"R[) >0

in order to make P; — 0 asymptotically. This requirement lets us determine a lower bound

for the penalty weight
M M

Amin = -?log ™ -2

According to Eqs. (4.39) and (4.40), we can tabulate in Table 4.3 the (asymptotically)

(4.40)

optimal penalty weight ranges for the cases considered in Section 3.6.

M 1 2 22

D 3 4 3 4 3 4

c o5](]02[05]02[05]02]05([02]05]02]05] 02
Amaz | 0.85 [0.89 [ 1.16 | 1.26 | 1.08 | 1.08 [ 1.58 | 1.64 | 1.54 | 1.39 | 2.65 | 2.42
Amin 0.54 0.77 0.78

Table 4.3: Optimal ranges of the penalty weight

Apparently, penalty weights within the optimal ranges listed above may have different

impacts on our clustering algorithm performance for processing small or medium samples,
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[YEL=E2Y | Sample Sise | L, La Ly Lo BIC
N =4 0710 (740 9710 | 0710 /10

D=2 N =100 0/10 o710 | o/10 0/10 0/10

N = 1000 0/10 gjm 0/10 0/10 0/10

N=4 3710 Ji0 0/10 0/10 0/10

D=3 N =100 8/10 8/10 1710 | o/10 0/10

N = 1000 10710 | 10710 | 10710 | 10/30 | 9710

= 16/16 | 8/10 6/10 0/10

D=4 N =100 10710 | 10/10 | 10/10 | 10/10 | 3/10

N = 1000 10/10 10/10 | 10/10 10/10 10/10

N =4 10/10 10/10 9/10 10/10 a8/10
D=6 N =100 10/10 10/10 | 10/10 10/10 10/10
N = 1000 10/10 l%{ﬁ 10/10 10/10 10/10

N =4 10/10 10/10 $/10 10/10 10/10
D=§8 N =100 10/10 10/10 | 10/10 10/10 10/10
N = 1000 10/10 10/10 | 10/10 10/10 10/10

Table 4.4: Cluster validation results for two true clusters: M=22 ¢c=05A=1.1

Sample Size T Lo T3 | L, BIC ]
= 10/10 10/10 10/10 10/10 10/10

N = 100 10/10 10/10 10/10 10/10 10/10

N = 1000 10/10 10/10 10/10 10/10 10/10

Table 4.5: Cluster validation results for one true cluster: M=22 A =1.1

although their impacts are the same in the asymptotic sense. In practice, the number of
clusters is searched from 1 to a pre-selected upper bound Kmax (> 2), one true cluster
might be partitioned into a few groups if the penalty weight is not large enough. In this
case, we could choose the penalty weight slightly larger. For example, Tables 4.4 and 4.5
show the clustering results by using A = 1.1 for the case M = 22. It is observed that the
performance of our clustering algorithm on small samples are slightly improved when the
penalty weight increases from 1 (see Tables 3.7 and 3.9) to 1.1 (see Tables 4.4 and 4.5).

4.5 Summary

In this chapter, we have conducted a binary detection performance analysis of our clustering
algorithm under Covariance Structure 1. We assumed that a partition can separate two
Gaussian clusters perfectly in order to analyze the miss probability, and that the partition
of one Gaussian cluster is nearly symmetric to the cluster center in order to analyze the false
alarm probability. Extensive tests show that these two assumptions are satisfied fairly well
by using our clustering algorithm developed in Section 3.4. Among four factors considered

here (the dimension of the data space M, the sample size N, the mixing portion ¢ and



60

the inter-cluster distance D), D is the most important factor. There is a critical distance
Dy defined in Eq. (4.18), when D > Dy, our clustering algorithm can successfully separate
two clusters. On the other hand, when D < Dy, the overlap between the two clusters is
very extensive and it is difficult for our algorithm to work properly, as for other existing
algorithms.

Furthermore, we have examined the impact of the penalty weight under the framework
of the penalized likelihood method as described in Section 2.4. It is found that there is a
range of the penalty weight within which the best performance of our clustering algorithm
can be achieved. Therefore, with some supervision, we can adjust the penalty weight to

further improve the performance of our clustering algorithm.



Chapter 5

Application to Intrapulse Analysis

5.1 Introduction

We consider the situation where a radar intercept receiver collects incoming pulse samples
from a number of unknown emitters. Our objectives are to (1) determine the number
of emitters present (cluster validation); (2) classify the incoming pulses according to the
emitters from which they originate (clustering). The concept of intrapulse analysis has been
introduced in Section 1.1. Briefly, the determination in intrapulse analysis is only based on
intrinsic pulse shapes, without any inter-pulse information such as pulse repetition intervals,
directions of arrival, carrier frequencies, or Doppler shifts.

In this chapter, we first describe the pre-processing techniques including data compres-
sion for received pulses, and then formulate the problem of emitter number detection and
pulse-emitter association into a multivariate clustering problem. After applying the new
clustering algorithm developed in Chapter 3 to the clustering problem, we develop two on-
line clustering algorithms, one is based on known thresholds while the other is based on
a model-based detection scheme. Performance on intrapulse data by using our clustering
algorithms and SNOB are reported, and the results demonstrate that our new clustering
algorithms are very effective for intrapulse analysis, especially the on-line model-based al-
gorithm.
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5.2 Signal Model And Pre-Processing of Received Pulses

Let us first examine the signal representation of the received pulses. The physical scenario
is illustrated in Fig. 5.1 in which there are, in total, K distinct emitters. The radar intercept
receiver receives altogether N non-overlapping pulses from the emitters. We designate the
nth received pulse by z,(¢;a,), n =1,...,N. Here a, is an association parameter which
assumes an integer value, a, € (1,...,K}, such that if a, = k, then the nth pulse is

determined to be from the kth emitter. We can therefore express the nth pulse as
Zn(t; Qn) = nGa, (£ — Tn)ed¥ntunlt=Ta)+ean(t-m)l L} (¢ — 1) (5.1)
where

e 7, denotes the absolute amplitude of the received pulse;

¥n denotes the added phase of the received pulse after transmission;

T, denotes the time delay of the received pulse with respect to the reference;

wp, denotes the residual carrier frequency of the nth pulse;

@a, (t) is the original envelope for the nth pulse such that

Gan (t) € {al (t)v 02(‘), ey BK (t)};

@a, () is the original phase for the nth pulse such that
¢au (t) € {¢l (t)! ¢2(t)1 ) ¢K(t)};

vn(t) is the Gaussian noise accompanying the nth pulse.

The received puise in Eq. (5.1) contains several nuisance parameters: 7n, ¥n, Tn, and wy.
These parameters are of no use in intra-pulse analysis and should be removed. This is carried
out by the pre-processing techniques which are introduced in the following paragraphs.
These pre-processing techniques are intuitive in nature and are carried out so that after
pre-processing, the pulses received from the same emitter maintain the resemblance to each

other, while those from different emitters maintain their distinctive features.
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Figure 5.1: Radar pulses received for intrapulse analysis
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Noise Suppression
The received pulses are passed through a band pass filter suppressing the out-of-band
noise. We now define the amplitude and phase profiles of the received signal respectively

as:
sa(tian) = 1mGa,(t— Tn), (5.2)
sh(tian) = Yn+walt—Tn) + daa(t — ™). (5.3)
In the rest of the pre-process, it is assumed that the SNR is reasonably large so that the

noise contribution has negligible effects.

5.2.1 Amplitude Normalization

Let S%(w;ayn) and Ag, (w) be the Fourier transforms of sj(t; an) and aq, (t), respectively.
We remove the parameter 1, by a simple procedure of normalization resulting in 58 (w; an)

such that

Salw;an) _ Mnda, (w)e 7™
Sa(0;an)  7nAa.(0)

S':(w; Qn)

= A7}(0)Aq, (w)e ™. (5.4)

Therefore, 53(¢; ap), the inverse Fourier transform of S’;‘,(w; ay), can be viewed as the nor-

malized amplitude profile.

5.2.2 Time Alignment Based on Thresholding

After amplitude normalization, the removal of time shift is considered. The time shift can
be removed by locating the first point, 33(to; an), of 33(¢;an), whose magnitude is larger

than a pre-set threshold A, i.e.,
to = min{t : §3(t; an) > A} (5.5)
We then set 7, = ty, and define

(tiap) = 3§(t+ Thian)

= Azl(0)ga,(t) (5.6)
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and

R(tan) = sB(t+ Ta;an)

= tp +wnt + Pq, (t). (5.7)

We use the same threshold A for all amplitude profiles to align the pulses on the time axis.

5.2.3 Phase Adjustment Based on Polynomial Fitting

After time alignment, the linear slope in the phase profile should be removed. The linear
function can be estimated by polynomial curve fitting. Let

g(t) = wnt + ¥, (5.8)

by minimizing the error between g(t) and 33(¢; @) in a least square sense, the coefficients
wy and ¥y, can be determined. Then, the original phase ¢,, (t) can be recovered in a new
coordinate system with the time axis being ¥ + wnt (Fig. 5.2) when we define

#(;an) = |3#(tan) — Yn — wat|cosy

ban(t), (5.9)

where v = arctanwy.
We denote by yn(?; an) the resulting nth pulse with noise after pre-processing to remove

the nuisance parameters, i.e.,

Un(tian) .= 3t an)e o) 45 (1)

= 84,(t) + Un(t), (5.10)

where ,(t) is the noise after pre-processing; sa,(t) = Az!(0)aq,(t)ei®n(®) is the ideally
pre-processed pulse waveform. Notice that sq, () is only dependent on ay, the index for
the emitter with which this pulse signal associates.

In practice, the above pre-processing procedures of the received pulses are carried out

in discrete time. Thus, Eq. (5.10) can be written as

yn(mT; an) = 8a,(MT) + op(mT), m=12,.. .M (5.11)
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Figure 5.2: Polynomial fitting for phase adjustment

where T is the sampling interval of the pulses and M’ is the number of samples in a pulse;
or in a vector form

Ynlan) = 8q, +p (5.12)
with

Yn(an) = [yn(1; an), ..., Un(M'; an)]r’ 8a, = [3an(1),--1 S0, (M’)]T, U = (1), ... ﬂn(Ml)]T-

5.2.4 Data Compression Using Wavelet Decomposition

The number of samples M’ in each pre-processed pulse is typically over 100. Thus, the
number of samples to be processed for cluster validation and clustering is very large. In
order to lighten the computational and processing load, we have to compress the data.
We note that the classification of pulses by intra-pulse analysis is based on pulse shapes
(amplitude and phase). Now, the low frequency components of a pulse reflect its basic
shape. A suitable technique for compressing the data while retaining the basic pulse shape
is by means of wavelet decompasition [21, 38] by which the low frequency coefficients can
be extracted retaining the pulse shape information. Wavelet decomposition is carried out
by using a chosen filter bank in which each one of the filters is followed by down-sampling
by 2. In our case, only the low frequency components are needed and undergo further
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Figure 5.3: Data compression using wavelet decomposition

decomposition as shown in Fig. 5.3. Due to the process of down-sampling by 2, the size of
each of the outputs of the low pass filter (LPF) and of the high pass filter (HPF) after one
stage of decomposition is only half that of the input. Therefore, for a three-staged wavelet
decomposition, the output sample size is only one-eighth of the original input sample size.
The number of stages in a wavelet decomposition is a trade-off between the amount of data
compression and the details of the pulse shape information retained. Here, we employ a
three-staged filter bank with symlet{ filters [21]. The coefficients of these LP and HP filters
are indicated in Fig. 5.3.

We denote the data vector of Eq. (5.12) after compression by y,,(ay) which is comprised
of compressed signal and noise. Each of these complex data vectors is of dimension M which

is only a fraction of the dimension of the original data vector.
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5.3 Clustering Algorithms for Intrapulse Analysis

After pre-processing, all received pulses are aligned well. Then intrapulse analysis is con-
sidered as a multivariate clustering problem: given a compressed data set ¥ consisting of
N observed data vectors y,(ay), ..., yn(an), each of which dimension is M, our objectives

are
1. cluster validation, to determine the number of emitters present K;

2. clustering, to determine the association parameter a, so that for a, = k, y,(an) is

determined to be from the k-th emitter.

The pre-process is done in the complex domain because amplitudes and phases are consid-

ered separately. For clustering, we form each data vector in the real domain by putting its
real part first and then its imaginary part, i.e., '

[reat(wT), imag(yD)]"

From now on, each data vector y,, is assumed to be in the real domain.

Generally, the noise accompanying a radar pulse vector is Gaussian. Hence, a set of pulse
vectors emitted by the kth emitter is the sample of a muitivariate normal distribution. Is
Gaussianity still maintained after pre-processing? In Appendix D, Monte Carlo simulations
show that compressed pre-processed pulses can be still assumed as Gaussian in relatively
high confidence. Hence, a set of pu!se vectors from K distinct emitters can be modeled by a
mixture of K muitivariate normal distributions [43]. Therefore, the model-based clustering
algorithm developed in Chapter 3 can be directly deployed.

As introduced in Section 1.1, a clustering algorithm for intrapulse analysis should be
capable to process high dimensional data and to produce satisfactory results for small
or medium sample cases. In Chapter 3, we developed a suitable model-based clustering
algorithm and demonstrated by extensive simulations that it outperforms other existing
algorithms such as SNOB. Indeed, the model-based clustering algorithm we developed is
well designed in an off-line mode to effectively process high dimensional with satisfactory
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performance on small or medium samples. In some cases, on-line clustering would be more
desirable because we may wish to classify received pulses as they arrive dynamically. This
motivates us to develop on-line clustering algorithms. Omne approach is to set up some
thresholds, and then assign an incoming pulse to an existing cluster or form a new cluster
according to the thresholds. One realization of this approach is described in Section 5.4.
However, this simple approach may not provide satisfactory results when the statistics of
received data change in time. To overcome this drawback, we develop in Section 5.5 a novel
on-line clustering algorithm in which no explicit thresholds are required. Performance on
intrapulse data is reported in Section 5.6 by using the model-based clustering algorithm,
SNOB, and the two on-line algorithms.

5.4 An On-line Clustering Algorithm Using Thresholds

We first fix two thresholds ¢; and ¢z, the possible candidates being the maximal intra-
cluster dispersion and the minimal inter-cluster distance, respectively. Let d be the minimal
distance between a pulse and each cluster center. Then, an incoming pulse is assigned to
an existing cluster when d < ¢, or assigned to a new cluster when d > t3, or held to some

stores for subsequent classification. This algorithm is on-line.

5.4.1 Procedure
The diagram of this algorithm is shown in Fig. 5.4.

1. Initialization:
i) Choose two thresholds
t; — possibly maximal intra-cluster dispersion,
to — possibly minimal inter-cluster distance,
with 0 < t; < t;. These two thresholds can be determined experimentally
using existing data (with known ground truths).

ii) Take data vector y, and assign it to C);
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m+« 1; (m counts the number of clusters)

n«1; (n counts the number of data vectors)

2. The main process:

While there is another data vector do

begin

end;

n « n + 1; Take vector y, from the input;
Compute d = minge(y,....m] [|yn — mean of Cilj;
Find k for which d is minimum,;
ifd<t,
assign yy, to Ci;
elseifd > tp
mem-+1;
assign y, t0 Cm;
else
store Yn;
if the storage size > T, then goto step 3;
end;

end;

3. The storage process:

If the store is empty,

else

goto step 2;

n « 0;
execute step 2 but now the vector y,, is taken from the store;
if the store has changed,
goto step 3;
else
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save the current y,, to a post-identification store;
end;

end;

4. The post-identification process:
For each data vector y,, in the post-identification store,
assign it to the cluster which is nearest.

5.4.2 Computational Complexity

Suppose that after the on-line process N M-dimensional data vectors are assigned to K
clusters, resulting in that the kth cluster has Nj data vectors (k = 1,---, K). Obviously,
Ni+Na+---+Ng=N. The store size T, is usually set to be a small number so that
the computational cost of the storage process is negligible compared to that of the main
process. However, The computational cost of the main process may vary when the same set
of pulses arrives in a different sequence. This makes the exact complexity analysis difficult.
In this subsection, An upper complexity bound and an average complexity are analyzed;
Then an example is illustrated in the end.

Upper Bound

In the main process, there are two dominant operations:

1. For each incoming data vector, its distances to all existing k clusters are computed
and then the minimum distance is chosen.
As discussed in Step (a) of Section 3.4.2, this operation approximately requires 3Mk
flops. There are at most K clusters so that the computational cost of this operation

to process all N data vectors is upper-bounded by

N(3MR) = 3MNK.

2. After an incoming data vector is assigned to an existing cluster, the cluster center has

to be updated.
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2. The main process
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4. The post-identification process
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(b) The storage and post-identification processes

Figure 5.4: The diagram of our on-line clustering algorithm using thresholds
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As discussed in Step (b) of Section 3.4.2, if the nth member of a cluster arrives, it
requires M(n + 1) flops to update its center. Note that there is no cluster center
update as the first member of a cluster arrives. Thus, the computational cost of this

operation to process all N data vectors is

K N K
Y S M(n+1) = 05M Y Ni-05MN
k=1n=2 k=1

< 0.5MN2? -0.5MN
where we have used the fact that

N2+NZ+---+ N2 < (N1 +Np+---+ Ng)? = N2

Therefore, the upper complexity bound of the on-line clustering algorithm described in
Section 5.4.1 is
Bop1 = MN(3K - 0.5) + 0.5MN>. (5.13)

Average Complexity
Let us examine the case where each cluster has the same number of members (ie.,

Ny =N =--- = Ng = ¥). Since the computational cost of Step 1 in the main process is
sensitive to the sequence in which the pulses arrive , we assume that the members of the
first cluster arrive first, and then those of the second cluster arrive next, and so on. The
computational cost for this case is roughly an average complexity of the on-line clustering
algorithm. Similarly as in the upper-bound analysis, the computational costs of Step 1 and
Step 2 in the main process here are given respectively by

N & .

M= k = L5MN(K +1)
K k=1
k Nk 0.5MN?

Y3 Mn+1) = —=——05MN
k=1 n=2 K

Therefore, the average complexity of the on-line clustering algorithm described in Sec-

tion 5.4.1 is approximately

Conl = MN(1L5K +1) + 0—5-1;—”3 (5.14)
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Example: Let us consider the example shown in Section 5.6.2, there are 100 44-dimensional
preprocessed pulse vectors (N = 100,M = 44) and 5 emitters (K = 5). Substituting the
values of N, M and K in Eqs. (5.13) and (5.14), we have the upper bound and the average

complexity as follows:

Bypp = 0.28Mflops,
Conl = 0.08Mflops.

Now consider using the off-line model-based algorithm developed in Section 3.4. Given
that N = 5 (IV; is the number of iterations for cluster center convergence) and that Kmax =
8 (Kmax is the maximal number of clusters to be gsearched), then according to Eq. (3.70)

we have
Coff = 11.70Mflops

which is the computational cost by using the model-based algorithm for the above example.
Obviously the on-line algorithm is much faster than the off-line model-based algorithm.
Unfortunately, the performance of the on-line algorithm is usually inferior to that of the
model-based algorithm as will be shown in Section 5.6.2.

5.5 A On-line Model-Based Clustering Algorithm

A major advantage of the following new algorithm is that no explicit thresholds are re-
quired. The algorithm dynamically incorporates cluster splitting, merging and regrouping
operations by using the model-based detection modified from the clustering algorithm in
Section 3.4.
On-line Process

As incoming data vectors are being classified into clusters, the sizes of clusters will
continue to grow. A size increment counter is set for each cluster, and a cluster is checked if
its size increment counter reaches a preset threshold, T. In the very beginning, the first T,
pulses are assigned to the first cluster. Checking a cluster or two clusters involves a binary
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detection function defined as follows:
[K®, Cx1, Cxa] = bdetector (data).

o If data comes from a single cluster, the bdetector function returns
either K* = 1 indicating no splitting the cluster;
or K* = 2 indicating splitting the cluster into Cy; and Cx2.

e If data comes from two clusters, the bdetector function returns
either K* = 1 indicating merging the two clusters into one;
or K* = 2 indicating regrouping into the clusters C;; and Cya.

This binary detection function is easily formed by setting Kmax = 2 in the clustering
algorithm describe in Section 3.4.

As mentioned previously, a cluster is checked when its size increment counter reaches a
preset threshold T.. If the returned value K* = 1, then the size increment counter is reset
to 0; If K* = 2, then the cluster is split into two new ones Cy3 and Cyy. Since these two new
clusters need to be merged or regrouped with other existing clusters, the closest existing
cluster is found for each new cluster and both of them are sent to bdetector to check
if they should be merged or regrouped. Therefore, as pulses arrive, the sizes of clusters
increase, and the algorithm conducts cluster splitting, merging and regrouping operations
appropriately by using the above scheme.

Post-processing

In fact, the same set of pulses arriving in a different sequence may result in a different
clustering structure since each pulse is classified into a cluster according to the previously
arrived pulse information during the on-line process. In other words, the pure on-line process
is coarse, though it is very fast. Therefore, a post-processing scheme is introduced below
to improve the classification accuracy. After the on-line process, we regroup all received
pulses according to the existing cluster centers and then compute the new centers. The
regrouping process is repeated a few times (say N, times) until the centers converge. Then
each cluster is checked if it should be split, merged or regrouped with another cluster. This
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final splitting, merging and regrouping process is repeated a few times (say Ny times) until
the clustering structure converges. After the post-processing, the performance of the on-line
clustering is aimost the same as the off-line algorithm in Section 3.4 but it is much faster.

5.5.1 Procedure
The flow diagram of this algorithm is shown in Fig. 5.5.

1. Initialization:
i) Define a binary detection function: [K*,Cy,Cy2] = bdetector (data).
ii) Take data vector y, and assign it to Cy;
m+« 1; (m counts the number of clusters)
n+1; (n counts the number of pulse samples)

isc.1 + 0; (increment of the size of C,)

2. The main process:
While there is another sample do
begin
n +— n + 1; Take data vector y,, from the input;
Compute d = minge1,...m) l[Yn — mean of Cell;
Find k for which d is minimum,;
Assign y,, to C, and increase isck by 1;
if isc.k < T,
goto Step 2;
else
data = C}, check data by the binary detector;
ifkg=1
isck + 0 (reset isck);
goto Step 2;
end

if k§ = 2, then goto Step 3;
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end;

end;

3. The cluster splitting/regrouping/merging process:
After Step 3, the number of the clusters, m, may either increase by 1, or decrease by

1, or remain the same. The counter index still ranges from 1 to m.

mem+1;
Cm + Cz;
Cr + Can;
Find C; which is closest to Cy;
data = C; + Ck, check data by the binary detector;
if k] = 1 (indicates merging)
Ci «Cj+Cy; iscj+0
Ci « Cn;
delete Cp; me—m-—1;
Find C; which is closest to Cy;
data = Cj + Cy, check data by the binary detector;
if k&3 = 1 (indicates merging)
Ci « Cj+Cy; isc.j«0;
Ck + Cn; isck «0;
delete Cp; mem-—1;
end
if k3 = 2 (indicates regrouping)
Cj « Cn; iscj«0;
Cm + Cz2; isc.m « 0;
end
end
if k&} = 2 (indicates regrouping)

Cj «+ Cz1; isc.j «+0;
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Ci «— Cz2; 8¢k «0;
Find C; which is closest to Cpm;
data = C; + Cn, check data by the binary detector;
if k3 = 1 (indicates merging)
Cj « Cj + Cp; isc.j « 0;
delete Cpp; m—m—1;
end
if k3 = 2 (indicates regrouping)
Cj « Cyy; isc.j « 0;
Cm + Cz; isc.m + 0;
end ‘

end

5.5.2 Computational Complexity

Suppose that after the on-line process N M-dimensional data vectors are assigned to K
clusters, resulting in that the kth cluster has N, data vectors (k = 1,---, K). As mentioned
in Section 5.4.2, the exact complexity analysis is difficult due to the fact that the compu-
tational cost of on-line process may vary when the same set of pulses arrives in a differnet
sequence. In this subsection, An upper complexity bound and an average complexity are
analyzed; Then an example is illustrated in the end.

Upper Bound

There are three steps in this on-line clustering algorithm:

1. The first is the main process.

The main process here is the same as the one considered in Section 5.4.2. Hence, the

computational cost of this process according to Eq. (5.13) is upper-bounded by

MN(3K - 0.5) + 0.5MN2.
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(b) The cluster splitting, merging and regrouping process
Figure 5.5: The diagram of our on-line model-based clustering algorithm
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2. The second is the cluster splitting/regrouping/merging process.

The dominant complexity for the binary detector is to partition the given number of
data vectors into two clusters, i.e., Kmax = 2. According tc Eq. (3.70) in Section
3.4.2, this computational cost is 7MnN;, where n is the number of data vectors
sent to the binary detector and N, is the number of iterations for cluster center
convergence. We need to use the binary detector % times to check if a cluster should
be split, and such a checking may result in one or two more binary detections to
pursue cluster regrouping and merging. Thus, the total number of times (the binary
detector being used) varies between 4 and 37-. Obviously the number of data vectors
sent to the binary detector is at most N. Hence, the computational cost of the cluster
splitting/regrouping/merging process is upper-bounded by

MN?N,
T

3N aMNN) =21
T.

3. The third is the post-process.

To regroup all data vectors according the K cluster centers by N, times (see Steps (a)

and (b) in Section 3.4.2), the computational cost is
N, [MN + 3MNK] = MNN,G3K +1). (5.15)

The final splitting on K clusters requires using the binary detector K times so the
computational cost of the final splitting is

TMN¢(Ny + N2+ + Ng) = TMNN.

There are 0.5K(K — 1) different combinations to send two clusters to the binary

detector for the final regrouping/merging purpose so the computational cost for the

final regrouping/merging is
TMN[(N1 + N3) + (N1 + N3) +------ + (N1 + Ng)
+(Na2+ N3)+ -+ + (N2 + Ng)

+ (Ng_,+Ng)=TMN(K —1)N.
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Furthermore, The final splitting/regrouping/merging operation is repeated N times.
Hence, the computational cost of the final splitting/regrouping/merging operation is
approximately

N.(TMNN + TMN(K — 1)N) = TMNN;N,K.

Therefore, the total computational cost of the on-line clustering algorithm described in
Section 5.5.1 is upper-bounded by

Bona = MN(3K -0.5) +05MN?
MNZ2N,
T
+MNN,(3K + 1) + TMNN.N,K. (5.16)

+21

Average Complexity

As in Section 5.4.2, we examine the case where each cluster has the same number of
members (i.e, Ny = Np =--- = Ng = -I’-Z-). Since the computational cost of the on-line
process is sensitive to the sequence in which the pulses arrive, we assume that the members
of the first cluster arrive first, and then those of the second cluster arrive next, and so
on. The computational cost for this case is roughly an average complexity of the on-line
clustering algorithm. Now we examine the three steps in this on-line clustering algorithm
again:

1. The first is the main process. The computational cost of this process according to Eq.

(5.14) is approximately

MN(15K +1) + O'SgNz .

2. The second is the cluster splitting/regrouping/merging process. We need to estimate
the times the binary detector being used, and the number of data vectors involved
each time. For simplicity, an average number 1.54% is used here, and an average size
of data sent to the binary detector is assumed to be % Hence, the computational

cost for the cluster splitting/regrouping/merging process is approximately
MN2N,
T.K

N N
1.5—(7TM—=N,) = 10.5
Tc( 2 t)
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3. The third is the post-process. The computational cost of the post-process is the same
as the one in the upper-bound analysis, i.e., MNNi(3K + 1) + TMNN,N,K.

Therefore, the average complexity of the on-line clustering algorithm described in Section

5.5.1 is approximately

Con2 = MN(1.5I‘{+1)+°‘WN2

K
MN2N,
T.K
+MNN,(3K +1) + TMNN,N, K. . (5.17)

+10.5

Example: Let us consider the same example as in Section 5.4.2, there are 100 44-
dimensional preprocessed pulse vectors (N = 100, M = 44) and 5 emitters (K = 5). Given
that T, = 10, N; = 5 and N, = 2, Substituting the values of N, M, K, T, N; and N, in
Eqgs. (5.16) and (5.17), we have the upper bound and the average complexity as follows:

Bgpo = 6.79Mflops,
As illustrated in Section 5.4.2, the computational cost by using the off-line model-based
algorithm for the same example is 11.70 Mflops. Obviously the on-line algorithm is faster

than the off-line algorithm while its performance is almost the same as that of the off-line
counterpart as will be shown in Section 5.6.2.

5.6 Numerical Experiments on Intra-pulse Data

To illustrate the data pre-processing techniques and the effectiveness of the clustering algo-
rithms developed in this chapter, we have carried out numerous experiments using computer
simulated data. All programs including those for pre-processing and data compression are
written in MATLAB and the simulations are run on a Pentium PC (400MHz).

5.6.1 Pulse Generation

We generate the pulses according to the signal representations Eq. (5.1), such that
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the distribution of absolute amplitude 7y, is uniform in [0.5, 1};

the distribution of initial phase v, is uniform in [, 7];

the distribution of time delay 7, is uniform in [0, 5T};

the distribution of carrier frequency wy is Gaussian and its standard deviation is 10

percent of its normalized mean value;

the distribution of additive noise v,(t) is Gaussian with zero mean and the standard

deviation about 0.05.

From a given set of signature signals {sk(t)}, we can generate received pulses using the
above parameter distributions.

5.6.2 Example 1

Fig. 5.6 (a) and (b) show the amplitude and phase of a group of 100 pulses received by the
detector. These are from 5 different emitters each transmitting 20 pulses. The five emitters
are numbered by 1,2,---,5. If a pulse is from the kth emitter (k = 1,2,---,5), then its
emitter index is k. Suppose that K clusters are determined by a clustering algorithm and
that these K clusters are numbered by 1,2,---, K. if a pulse is assigned to the kth cluster
(k = 1,2,---,K), then its cluster index is k. By cross-checking cluster indices against
emitter indices, we can count the classification accuracy in percentage.
Pre-processing

For the pulses shown in Fig. 5.6 (a) and (b), the pre-processing techniques of amplitude
normalization, time alignment and phase adjustment as described in Section 5.2 are applied
to remove the nuisance parameters. The amplitude and phase of the pre-processed pulses are
shown in Fig. 5.7’ (a) and (b) respectively. Each pulse is represented by 128 time samples.
A 3-level wavelet decomposition using symiet{ filters is then applied to each of these pre-
processed pulses and only the low frequency filter output samples are retained. Each pulse
is now represented by 22-dimensional samples (The number 22 > 128/8 is used because of




Figure 5.6: Amplitude and phase of 100 received pulses from 5 unknown emitters, where
z-axis is the index of data sample points.

Figure 5.7: Amplitude and phase of the pre-processed pulses, where z-axis is the index of
data sample points.

(b)

Figure 5.8: Amplitude and phase of the compressed pre-processed pulses, where z-axis is
the index of data sample points.
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Figure 5.9: Determination of the number of emitters using our (off-line) clustering algorithm

Cluster | Number Emitter index
index | of pulses assigned to the pulses
1 20 11111111111111111111
2 19 2222222222222222333
3 21 222233333333333333333
4 20 44444444444444444444 |
3 20 55555555555555555555

Table 5.1: Clustering results for Example 1 by the off-line model-based clustering algorithm

the transient effect of the filters). As a result, data compression has been achieved. The
amplitude and phase of the compressed pulses are shown in Fig. 5.8 (a) and (b) respectively.
In the following, clustering is based on the compressed data. Furthermore, to compare our
clustering algorithm and SNOB on a fair basis, Covariance Structure 4 is assumed.

The off-line model-based clustering algorithm

The clustering algorithm developed in Section 3.4 is applied to the compressed data.
The evaluation of L(Y, K) for various values of K is plotted in Fig. 5.9. The number of
clusters which is the value of K at which L(Y’, K) is minimum is correctly determined to be
5. The association of the pulses using the clustering algorithm is shown in Table 5.1. It can
be observed that apart from the seven pulses in Emitters 2 and 3, all the other pulses have
been correctly associated. The classification accuracy in this case is 93%. For this example,
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Figure 5.10: Determination of the number of emitters using the SNOB program

[ Cluster | Number Emitter index
index | of pulses assigned to the pulses
1 20 11111111111111111111
2 40 22222222222222222222
33333333333333333333
3 20 44444444444444444444
4 20 5555555555555655565550

Table 5.2: Clustering results for Example 1 by the SNOB algorithm

the clustering algorithm takes approximate 20 seconds to produce the above results.

SNOB

The SNOB algorithm has also been applied to this example, and the evaluation for
different values of K is plotted in Fig. 5.10 while the clustering results are shown in Table
5.2. It is observed in Table 5.2 that the SNOB algorithm fails to identify all the emitters
and the signals from Emitters 2 and 3 cannot be distinguished. SNOB is written in Fortran
so it is difficult to compare its speed with our MATLAB program. As discussed in Section
3.5, SNOB in principle is more complex than our off-line clustering algorithm.
The on-line algorithm using known thresholds

We apply the on-line algorithm developed in Section 5.4 to the example with ¢, =
0.04, t; = 0.08, T, = 20. The clustering result is shown in Table 5.3. The number of
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Cluster | Number Emitter index

index | of pulses assigned to the pulses
1 12 111111111111
2 8 11111111
3 21 222222222222222222333
i 19 2233333333333333333
o 20 44444444444444444444
6 20 55555555555555555555

Table 5.3: Clustering results for Example 1 by the on-line clustering algorithm using known
thresholds

clusters is 6 and the classification accuracy is 87%. Comparing the results of the on-line
with the off-line methods, we find that this on-line result is slightly inferior. However,
from the computatiox;a.l standpoint, the on-line algorithm based on the two thresholds is
much simpler than the off-line counterpart. This on-line algorithm takes less than 1 second
to produce the above results. Recall that the off-line clustering procedure described in
Section 3.4 includes cluster splitting and regrouping operations. Obviously, we may improve
the performance of this origimﬂ on-line algorithm by introducing cluster splitting, merging
and regrouping operations appropriately. However, more thresholds are needed.
The on-line model-based algorithm

We apply the on-line algorithm developed in Section 5.5 to the example. The clustering
result is shown in Table 5.4. The number of clusters is 5 and the classification accuracy is
93%. The results are the same as those in Table 5.1 produced by the off-line model-based
algorithm. This on-line algorithm takes approximately 6 seconds to produce the above
results. We also note that, for a given data set, the computation cost of the on-line algorithm
is much lower than that of the off-line. From Eq. (3.70), we know that the computational
complexity of the off-line model-based algorithm is appraximately proportional to K ax.
The computational cost is reduced significantly by binary partitions Kmax = 2 involved in
the on-line model-based algorithm. In this sense, we conclude that this on-line algorithm is
a fast version of the off-line model-based algorithm.
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Cluster | Number Emitter index
index | of pulses assigned to the pulses
1 20 11111111111111111111
2 19 2222222222222222333
3 21 222233333333333333333
4 20 444444444444444444414
5 20 55555555555555555555

Table 5.4: Clustering results for Example 1 by the on-line model-based clustering algorithm

5.6.3 Conclusions

Many other simulation examples have been carried out using different number of received
signals, different number of emitters, and different distributions of random signal param-
eters. The following are general observations drawn from the results of cluster validation
and clustering:

1. The results of clustering employing compressed data from a 3-stage symlet{ wavelet
filter bank are in general the same as those employing uncompressed data.

2. Judging from performance, our model-based off-line clustering algorithm shows much
higher reliability in cluster validation than SNOB, while sacrificing marginally on the
accuracy in clustering.

3. The performance of our model-based on-line clustering algorithm is almost the same
as that of the model-based off-line algorithm but is much faster.

For Observation 1, it seems that the original pulse contains redundant information,
so by compressing it, adequate information is still retained. The performance of the new
off-line clustering algorithm and SNOB has been compared intensively in Section 3.6; The
results there well justifies the second observation. The last observation show that our on-
line model-based clustering algorithm is a faster version of model-based clustering while
retaining the quality of performance.

Furthermore, it is found that the best performance of our clustering algorithm for in-
trapulse analysis is usually achieved by using Covariance Structure 4 described in Section
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3.3.4 if the default penalty weight (A = 1) is used, and that the best performance is usually
achieved by using Covariance Structure 2 described in Section 3.3.2 when supervision is
available (i.e., the penalty weight can be adapted).

5.7 Summary

First, we have developed pre-processing techniques to remove some nuisance parameters
from received pulses. These include the absolute amplitude, initial phase, time delay and
residual carrier frequency. As a result, we have formulated the problem of emitter number
estimation and pulse-emitter association as a multivariate Gaussian clustering problem. In
order to reduce the computational cost for clustering, a data compression method based
on wavelet decomposition has also been included in pre-processing. The pre-processing
techniques are intuitive in nature and are carried out so that after pre-processing, the
pulses received from the same emitter maintain the resemblance to each other, while those
from different emitters maintain their distinctive features.

After applying the new off-line clustering algorithm developed in Chapter 3 to the clus-
tering problem, we have developed two on-line clustering algorithms: one is based on known
thresholds while the other makes use of the model-based detection modified from the off-line
clustering algorithm. Although the on-line clustering based on thresholds is computation-
ally very effective, it is difficult to adapt the thresholds as the statistics of received pulses
changes in time. In contrast, the on-line model-based clustering algorithm does not require
explicit thresholds; It can dynamically incorporate cluster splitting, merging and regrouping
operations as the statistics of the received pulses changes.

The performance of our clustering algorithms and SNOB on intrapulse data have been
reported. The results demonstrate that our new clustering algorithms are very effective
for intrapulse analysis, especially the on-line model-based algorithm. Therefore, the on-line
model-based clustering algorithm is suitable for near real-time implementation, which will
be explored in the next chapter.



Chapter 6

DSP Implementation

6.1 Introduction

In the previous chapters, we have developed several radar pulse classification algorithms
based on Minimum Encoding Inference, and described the framework of the penalized like-
lihood method. Extensive simulations show that the performance of our new algorithms is
promising, especially the on-line model-based algorithm which is well suited for dynamically
classifying incoming radar pulses. As a result, we have implemented this on-line clustering
algorithm as a core classification module on a TMS320C44 DSP board.

In this chapter, the DSP implementation for intrapulse analysis is described. We do
a simple analysis of the physical scenarios at a radar intercepter and estimate the likely
maximal incoming pulse rate. We then propose a suitable system diagram and investigate
ihe system requirements. The benchmark of the DSP coding of our on-line clustering
algorithm is reported.

6.2 Physical Scenario Analysis

In this section, we describe some examples and discuss how radar characteristics [57] can
affect the operation of a typical radar intercepter. Here and throughout we assume that the
radar intercepter is passive in all directions.
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- t (emitting)
. Emitter 2

llﬂuusﬁ" _______ Y JHHH”“  Geceiving)

Figure 6.2: Physical scenario example 2

6.2.1 Probability of Receiving Overlapped Pulses

Given a radar, let PRF (Pulse Repetition Frequency) be 1000 pulses/sec and c be the speed
of light, then the maximum range of the radar is

c

Rm=2xPRF=150hn'

Let range resolution AR be 150 m, then the pulse width is

2x AR
T= = lus.
c
So the duty cycle
1
-rxPRF—l——:“.

It means that even if a radar interceptor receives pulses from two radars with the same
specifications given above, the probability of receiving overlapped pulses is only 1/1000,

assuming a perfect time synchronization. The illustration is shown in Fig. 6.1.
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pulses from emitter 1 pulse from emitter 2

t (receiving)

Figure 6.3: Physical Scenario example 3

6.2.2 Receiving Pulse Sequence

Given a radar with antenna beamwidth BW, the average incoming pulse rate to the intercept

receiver generated by the radar emitter is

PRF _ PRF x BW

360°/BW ~ 360° (6.1)

rate; =

Let a radar emitter with PRF = 1000 pulses/sec and BW = 1°, then at the intercept
receiver, rate; ~ 3 pulses/sec. If the antenna rotation rate RPM is 30 rpm (rotations per
minute), we will observe 6 incoming pulses from the intercept receiver in every two-second

period. The illustration is shown in Fig. 6.2.

6.2.3 Near-Far Phenomenon

The signal power of an incoming pulse at the intercept receiver is inversely proportional
to the square of the distance between the radar and the interceptor. Consider the case
that one emitter is close to the interceptor and another is far away, it is possible that at
the interceptor, the incoming pulse amplitude generated by a sidelobe of the close emitter
overwhelms the pulse amplitude generated by the mainlobe of the far away emitter. This
means that in a given geographic area, the number of detectable emitters is limited by this
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Frequency Band: 3GHz or 9GHz

[ PRF Pulse Width (1) Duty Cycle (r-PRF)
3.40KHz 0.05us 0.17 x 103
1.70KHz 0.25us 0.43 x 10~3
0.85KHz 0.5 ~ lus 0.43 ~ 0.85 x 10—3

Antenna Beamwidth (BW): 0.8 ~ 2.5 degrees
Antenna Rotation (RPM): typical 30 rpm (rotation per minute)
Sidelobes relatives to main beam: around -25 dB

Table 6.1: DECCA Groups 9A and 12A relative motion marine radars

near-far phenomenon. The illustration is shown in Fig. 6.3.

6.3 Maximal Incoming Pulse Rate

Some important parameters for a set of typical marine radars (73] are listed in Table 6.1.
Suppose there are a number of ships in the surveillance area, each equipped with two
radars. Under normal circumstances, the number of ships may be around 20. However, the
ships usually have different types of radars, which can be identified according to inter-pulse
information such as carrier frequency and pulse width. It is very rare that 40 same type
radars are operating at the same time in the same area. Nevertheless, we assume for the
worst case that the maximum number of the same type radars present is 40.

Assume that the radar types are given in Table 6.1. Then the maximal incoming pulse
rate generated by a radar emitter is attained by using Eq. (6.1) when PRF = 3.4 KHz and
BW = 2.5°

ratejmax = 3400 x 2.5/360 = 24 pulses/sec.

The minimal incoming pulse rate generated by a radar emitter is attained by using Eq. (6.1)
when PRF = 0.85 KHz and BW = 0.8°:

ratejmin = 850 x 0.8/360 = 2 pulses/sec.

Therefore, when 40 same type radars are operating at the same time in the same area, the

incoming pulse rate in the intercept receiver is at most 40 * 24 = 960 pulses/sec.
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Initial On-line
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 grouping sSRAM|» clustering
pulses/sec |( el) : (module 2) | &° (module 3)

20-second latency introduced

Figure 6.4: The DSP system diagram for intrapulse analysis

In the following sections of this chapter, we will assume the maximal incoming pulse
rate at the intercept receiver is 1000 pulses/sec.

6.4 System Diagram And Requirements

As described in Section 5.5, the on-line clustering algorithm dynamically performs cluster
splitting, merging and regrouping operations as pulses arrive. It is also suggested that we
can not determine the pulse-emitter association right away since the clustering structure is
being updated continuously. Here we assume that the maximal incoming pulse rate is 1000
pulses/sec and we output the pulse-emitter Mation after 20 seconds, i.e., a 20-second
latency is introduced. Therefore, we need to process up to 20,000 pulses in every 20-second
period. The whole process is divided into three independent modules: pre-process, initial
grouping and on-line clustering; see the system diagram in Fig. 6.4. Next let us discuss the

computational cost and memory requirement on each module.

6.4.1 Pre-processing

The pre-processing described in Section 5.2 consists of four steps: curve rotation, amplitude
normalization, time alignment and data compression. Counted by our MATLAB programs,
it requires 25 Kflops to pre-process a pulse with around 128 sampling points to a 44
dimensional vector. So 20,000 pulses require 500 Mflops. To totally store the 20,000 pre-
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processed pulses, we need a memory:

20, 000 pulses x 44 floating points/pulse x 4 Bytes/floating point =~ 3.5 MBytes

6.4.2 Initial Grouping

The purpose of this module is to reduce the workload of the on-line clustering (Module 3).
This is achieved by grouping 20,000 pulses into a certain number (say 512) of groups. Then
in Module 3, we only deal with the mean vectors for the 512 groups, instead of the whole
data set. In the following, we consider how to group N M-dimensional vectors into K
groups.

One simple approach is by using the following batch scheme: split the whole data set
into two groups, and then split each group into another two groups, and so on. If a group
size is less than -1’% = 50, then this group is not split any more. The illustration is shown
in Fig. 6.5. In the first stage, N M-dimensional vectors are split into two groups with the
sizes being N; and N» respectively (N} + N2 = N). One effective method is the k-means
algorithm which has been used in Section 3.4.1. Let N; be the number of iterations for
cluster center convergence, then the computational cost for this stage is roughly TM NN,
by using Eq. (5.15). At the second stage, each group is further split into two new groups,
and the computational cost is

TMNN; + TMN2N; = TMNN,

Assume that the average number of splitting stages is L, then the total computational cost
for initial grouping is roughly TM NN, L.

To split 20,000 pulses into 512 groups, we need do in average 9 stage splitting (512 = 29,
i.e., L =9). Hence, given N = 20,000, M = 44, K =512, N, = 5, and L = 9, the

computation cost is roughly
TN MN x L ~ 280 Mflops

To store the mean vectors of the 512 groups, we need a memory: 400 x 44 x 4 = 70 KBytes.
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Figure 6.5: The tree structure for initial grouping

6.4.3 On-line Clustering

The procedure of the on-line clustering algorithm has been described in Section 5.5.1. When
a pulse arrives, it is assigned to one of existing clusters according to the minimum distance
principle. A cluster is checked if its size increment counter reaches a preset number T.. After
on-line process, the final regrouping is repeated by N, times and the final splitting/merging
is repeated by Ny times. The computational cost of the on-line algorithm has been analyzed
in detail in Section 5.5.2. The maximal number of same type radar emitters in a surveillance
area is assumed to be 40 (see details in Section 6.3) so that the largest number of clusters
here is around 40. Given that N =512, M = 44, K = 40, T. = 10, N; =5 and N, = 2,
Substituting them in Eq. (5.17), we have

Con2 = 80Mflops

which is the average complexity for the on-line clustering module. The memory for keeping
the clustering structure is 40 x 44 x 4 = 7KBytes < 10KBytes.

6.5 C/DSP Coding of On-line Clustering

In this section, we briefly introduce our C/DSP coding of the model-based on-line clustering
algorithm as a core clustering module on a TMS320C44 DSP board. The tools to complete
this task are

e TMS320C3x/C4x floating-point DSP code generation tools [74-77).
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Program size 2.5Kwords
Maximum data size 448K words
CPU processing time | on-line processing: 0.2 seconds
(example 1 in Section 5.6) | post-processing: 0.3 seconds

Table 6.2: The benchmark of DSP codes of the on-line clustering

e Code Composer [78] (coding and debugging) for C and Assembly from GO DSp

Corporatiun.

e TMS320C44 (60Mflops) development board (Dakar) and its SDK (software develop-
ment kits) [79,80] from Spectrum Signal Processing Inc.

The MATLAB programs developed before are redesigned into C programs which are
converted to DSP codes by TI DSP code generation tools [74-77].

To efficiently locate memory for data and program, we need to study the physical con-
figuration of the DSP board [79, 80], the local memory (SRAM) provided for the C44 is
2M bytes, i.e., 512K words. We could use the small memory model because all large ar-
rays in our programs are allocated at run-time from a global pool, or heap (using malloc).
Therefore, we partition the local 512K-word memory into two parts: one with 64K words
is reserved for the small memory model and another with the rest 448K words is provided
for the heap. With this memory allocation, our codes will run without any problem in the
small memory model even when 10,000 pulses and each with 40 data points are processed
(Note: 10,000 x 40 < 448K). In addition, the system stack is allocated in a 2K word
internal RAM of the C44 chip.

To process the compressed data of Example 1 in Section 5.6. The C44 processing time
itself takes 0.5 seconds, counted by the profiling fea.turé of the Code Composer [78]. In
fact, the on-line process takes 0.2 seconds and the post-processing takes the remaining 0.3
seconds. Thus, there is a tradeoff between the speed and the performance.

As shown in Table 6.2, our on-line clustering module for the TMS320C44 development
board is very efficient in size and speed. It has the capability to process data array as large



98

as 448K words. This on-line clustering module is ready for deployment on a multi-processing
DSP board together with other modules such as pre-processing.



Chapter 7

Conclusions

In this thesis, we have reviewed Bayesian inference and minimum encoding inference includ-
ing Wallace’s minimum message length (MML) and Rissanen’s minimum description length
(MDL) for model selection. It is found that the MML coding length is more accurate than
the other two from the standpoint of quantization. All model selection criteria considered
here consist of two parts, one is the log-likelihood function which measures the goodness
of fit between the data and the model, and the other is a penalty function which measures
the complexity of the model. An inference method aims to balance the trade-off between
goodness of fit and model complexity. As such, a penalty weight for the penalty function
to control the trade-off has been introduced.

Based on minimum encoding inference, an appropriate measure of coding length has
been proposed for cluster validation. Furthermore, the coding lengths under four different
Gaussian mixture models have been fully derived. This provides us with a criterion for
the development of a new clustering algorithm. Judging from the performance comparison,
our coding length measure outperforms the Bayesian Inference Criterion (BIC) in cluster
validation since it is not based on the large sample assumption as is BIC. More importantly,
the new clustering algorithm shows much higher reliability in cluster validation than a well-
known clustering algorithm SNOB, while sacrificing only marginally on the accuracy in
clustering. Indeed, our clustering algorithm is well designed to effectively process high
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dimensional data with satisfactory performance on small and medium samples.

The error performance of our clustering algorithm has been evaluated under reasonable
assumptions. Two types of errors have been analyzed: miss and false alarm. Among four
factors considered here (the dimension of the data space M, the sample size N, the mixing
portion ¢ and the inter-cluster distance D), D is the most important factor. There is a
critical distance Dq defined in Eq. (4.18) such that when D > Dy, our clustering algorithm
can successfully separate two clusters and that when D < Dy, the extensive overlap between
the two clusters will cause our algorithm to fail, as like other clustering algorithms such
as SNOB. Furthermore, we have examined the impact of the penalty weight under the
framework of the penalized likelihood method. It is found that there is a range of penalty
weights within which the best performance of our clustering algorithm can be achieved.
Therefore, it is suggested that with some supervision, we could adjust the penalty weight
to further improve the performance of our clustering algorithm.

Another important contribution of this thesis is the application of our clustering algo-
rithm to intrapulse analysis. We have developed the pre-processing techniques to remove
nuisance parameters from received pulses and formulated the problem of emitter number
detection and pulse-emitter association as a multivariate clustering problem. In order to
reduce the computational cost for clustering, a suitable data compression method based on
wavelet decomposition has also proposed. These pre-processing techniques are intuitive in
nature and are carried out so that after pre-processing, the pulses received from the same
emitter maintain the resemblance to each other, while those from different emitters retain
their distinctive features.

There are several factors that make the task of clustering a challenging one: (1) the di-
mension of data vectors is high; (2) satisfactory performance on small samples is desirable;
(3) near real-time implementation is required. The model-based clustering algorithm devel-
oped in Chapter 3 well addresses the first two factors. Furthermore, it is found that the best
performance of our clustering algorithm for intrapulse analysis is usually achieved by using
Covariance Structure 4 (see Section 3.3.4) when no supervision is available (i.e., the penalty
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weight is 1, the default value), and that the best performance is usually achieved by using
Covariance Structure 2 (see Section 3.3.2) when supervision is available (i.e., the penalty
weight can be adapted). To achieve on-line clustering, that is, to perform classification
dynamically as pulses arrive, we have further developed two new algorithms, one is based
on known thresholds while the other is based on a model-based detection scheme. Although
the on-line algorithm based on thresholds is computationally very effective, it is difficult
to adapt the thresholds as the statistics of received pulses changes in time. In contrast,
the on-line model-based algorithm does not require explicit thresholds and dynamically
incorporates cluster splitting, merging and regrouping operations as the statistics of the
received pulses changes. Performance of our clustering algorithms and SNOB on intrapulse
data have been reported. It demonstrates that our new clustering algorithms (the on-line
model-based algorithm in particular) are very effective for intrapulse analysis due to their
low computation costs and high performance.

Our model-based clustering algorithms have been further implemented on a DSP board
for intrapulse analysis. Some relevant physical parameters have been estimated such as the
likely maximal incoming pulse rate. Then a suitable system diagram has been proposed
and its system requirements have been suggested. The on-line model-based algorithm has
been implemented as a core classification module on a TMS320C44 DSP board.

7.1 Future Work

In this thesis, we have developed new model-based clustering algorithms both off-line and
on-line, and successfully applied them to intrapulse analysis. There are several issues worthy
of further investigations in future research:

1. Applicability of other statistical models to clustering. In Chapter 5, Gaussian mixture
models are applied for the clustering probiem in intrapulse analysis since the noise
accompanying a radar pulse is usually Gaussian. For different applications, other sta-
tistical models may be more suitable. For example, a mixture of uniform distributions
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was explored in [3-5] where observations are edge elements in an image. Statistical
models using von Mises distributions [26] were applied in [22] to find clusters in data
of several thousand sets of protein dihedral angles.

. Other promising criteria for cluster validation. As introduced in Section 1.2, the
number of clusters in Gaussian clustering is the number of components in a Gaussian
mixture. The determination of the number is formulated as a likelihood ratio test.
However, the analysis for the null hypothesis case is very difficult since the regularity
condition does not hold. In fact, the asymptotics that justify the penalized likelihood
criteria (BIC, MDL and MML) are the same as those underlying the likelihood ratio
test. One different approach is the use of Monte Carlo (bootstrap) tests. A study for
bootstrapping the case of Gaussian mixtures was reported in [40]. However, empiri-
cally observed rejection rates may not quite match the expected levels under the null
hypothesis, and it would be of interest to investigate the discrepancies involved.

. Radar pulse classification by using inter-pulse information. In the field of applications,
we have focused on using intrapulse information of a collection of pulses to identify
the emitters present. However, radar emitter classification in practice is also based on
interpulse information. Our model-based clustering schemes can be directly applied if
the statistic of the interpulse information are provided. Furthermore, it would be of
great interest to achieve the maximum integration gain by combining interpulse and
intrapulse information. A simple approach is layered classifications by using interpulse
and intrapulse information separately. Another approach is to form an integrated data
vector for classification by using interpulse and intrapulse information together. If this
is the case, the weighting between the interpulse part and the intrapulse part should
be examined carefully.



Appendix A

The Value of S(NV, &)

S(N,a) is the numbel: of different ways to partition N data vectors into K groups, resulting
in that each group k (k = 1, -, K) has N; data vectors. Obviously, Ny +Na+---+Ng = N.

At the first stage, we take N; data vectors out of the whole data set, the number of
different combinations is Cﬁ‘; Then at the second stage, we take N> data vectors out of
the rest of the whole data set, the number of different combinations is Cy2 N, and so on.
At the (K — 1) stage, we! take (N %) data vectors out of the rest, the number of different
combinations is Cgk r . The last group is already determined in the end when the

—-Ni==Ng_,
first K — 1 groups have been selected. Hence, the total number of different combinations is

N1 N2 o Ng_1
CN CN-N1 TTVUN-Ny—-=Ng_,

_ N! g N-N) (N=Ny—---=Ng_,)!
NN -N)! N}(N — Ny - No)! Ne /{(N=Ny—--—Ng_,)!
N
T NiINg!-- Nl

In fact, the same groups in a different order construct the same clustering structure. If mp
clusters contain the same number of data vectors, we can swap these cluster order without
changing the clustering structure. Let m, be the number of clusters with n data vectors,
n=1,2,---,N, then the number of different partitions is that

N! . 1
Ni!Np!-- - Ngl(K —1)! " mylma!---mpl’

S(N,a) =
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Appendix B

Rm ~ Fy pm(n—-2)(9)

We need two theorems to derive it.

Theorem 1: Suppose that an association vector & partitions the N data vectors into K

groups such that we have

Ya = { {yl(l),”- ,yN1(1)}1--- 1{”1(R)s'-- nyk(f{)} }7

and assume that these groups are the samples from multivariate Gaussian distributions
with different means but the same covariance matrices, respectively, i.e., the k-th group is
a sample from N (g, $). The sample mean ji; and the sample within-group scatter matrix
W for the k-th group are defined in Egs. (3.10) and (3.11) respectively, and the total
scatter matrix W for the whole data set is defined in Eq. (3.19).

A likelihood ratio criterion ( [25, Page 165]) for testing the hypothesis Ho : 4 = B2 =

= g I8 |
Wi+Wat---+Wgl
ANZ = K (B.1)
(W
which is called Wilks’ A-statistic.
Denote
E=W,+Wy+---+Wg (B:2)
and

B=W—(W1+W2+'"+Wf(). (B.3)
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Then
N/2 _ IEI B.4
A |E + B (B-4)
where
e E ~ central Wishart distribution Wy (N — K, ).
o B ~ non-central Wishart distribution Wa (K —1, S, ), where @ = B~ TK| Ne (s~
w) (i — p)T and p = 7},2{‘:1 Nips. In addition, when Hp is true §2 = O so that
B~Wy(K-1,3).

e E and B are statistically independent.

Theorem 2: If A is Wy (N, £, ) where N is a positive integer and a(# O) isa M x1 fixed
vector, then aT Aa/aT Sa is x%/(8), with § = aTE0Na/a’ Ta ( [43, Theorem 10.3.6]).

From Theorem 1, we know that, under the assumption of perfect separation, our situa-

tion is the special case of the above when K = 2. Thus in our case,
E=W),+W,~Wyn(N -2,02Ixm)
B =W — (W1 +W3) ~ War(L,0* 1, Q)

where 0 = % [Ni (s, — 1) (151 — )T + Na(ag — 1) (s — )] and s = 3 (N1pay + Nopsg).

We can write

(1] [0 ] 0

0 1 0
trB=[10---0B| |+[01---0B |l +...+po.-yB| |. (BS

0] [0 [ 1

Denote that I‘{ = [“11' $12,° " ’“IM]TJ‘%' = [“211 757 T 1“2M]T: and »= [l‘lv H2,° al‘M]T-

According to Theorem 2, we have

trB ~ >3 (81) + 2 (8) + -+ + a3 (0m) (B.6)
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where
b = Ny Emy2 Ny (IR =1, M. (B.7)

In addition, x3(81), - - - , 2 x3(0a) are mutually independent since £ is diagonal. Therefore,

trB ~ 02)3.(0) (B.8)
and
d = +8+---+0m
- pnli? — a2
= w2t ]
o 4
_ MM " # -m"’
= - (B.9)
where || - || represents the £2 norm.

By the same reasoning as the above, it is obvious that

trE ~ 0’2X2M(N_2).

Hence,

— o (W = (W1 + W))]
Bn = N =2— W +wy)
M-trB
IV —2))-TorE"

Since E and B are statistically independent according to Theorem 1, we have by the
definition of a noncentral F distribution:

Rm ~ Fym(n-2)(0)

where

By = Ha |2

g

_ N1 N>

0==N




Appendix C

(e (1_01y ~ [c™(1 — C)_(l—c)]N

The Stirling’s formula for the Gamma function ( [12, Page 70]) states that

Lt+1)~ e~ttiond, (- ).

Thus for large N, we have

N! _ I(N +1)
EMA—oN)! — TEN+DNA-9N+D
a1 - o)~ -V N-$(2m)~E.

Then by simple mathematical manipulations, we have

N!
im — —clogc — (1 -c)log(l —c).

Noo N 5o N - N

Therefore,
N!

A =gy = =97, (V> o).

107



Appendix D

Multivariate Normality

In this appendix, we introduce a set of empirical distribution function (EDF) statistics,
and describe how to test multivariate normality based on the EDF statistics. Then we use
Monte Carlo simulations to assess Gaussianity of compressed pre-processed pulses 1 when
original pulses are generated from a Gaussian distribution.

D.1 EDF Statistics

Suppose a given random sample of size N is z1,Z2,---,zZn and let z() < Z(2) <:-- < Z(w)
be the order statistics. Let F(z) denote the distribution function of z, then the empirical
distribution function (EDF) Fy(z) is defined by

Fy(z) = 0, z < z();
Fx(@) = % 3w ST<Tey A=l N-L (D.1)
Fy(z) = 1, v Sz

A statistic measuring the difference between Fiv(z) and F(z) is called an EDF statistic. To

test a null hypothesis

Hy : arandom sample z;, 22, -, Zx comes from a distribution F(z),

1The pre-process and compression procedures are presented in Section 5.2.
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[ Statistic Expression
D+ maxXn{§ — z(n)}
D" maxa{zm) = %7}
|4 Dt + D~
w2 2,.[2(1.) - g!nﬁl]z +1 :
U? W2 — N(z — 0.5)2, where Z = 1 3, Z(n)-
A? -N-% ;n(2"' — 1)[log, 2(n) +log(1 — Z(N+1-n))]

Table D.1: Six EDF statistics

Significance level o
Statistic Modified statistic 025 0.10 0.05
Threshold in the upper tail

D+ D+(VN +0.12+ %3) 0.828 1.073 1.224
D- D~ (VN +012+$3) 0.828 1.073 1.224
14 V(sqrtN +0.155 + °7-2§) 1.420 1.620 1.747
w2 | (w?- f,f +28)1.0+ ,;llf) 0.209 0.347 0.461
U2 | (U-%+ 300+ %) 0.105 0.152 0.187
A? Forall N>5 1.248 1.933 2.492

Table D.2: Modified EDF statistics
an EDF test procedure was presented in [20, Section 4.4):
(a) Put the z,, in ascending order, z(;) < Z(2) <" < Z(N)-
(b) Calculate z(p) = F(z(n)), n=1,""" ,N.
(c) Choose and calculate an appropriate test statistic listed in Table D.1.

(d) Modify the test statistic as in Table D.2. If the modified statistic exceeds the threshold
in the upper tail at given level a, H is rejected at significance level a.

In Step (b), by using the probability integral transformation (PIT), z = F(z), the new
variable z is uniformly distributed between 0 and 1 when F(z) is the true distribution of
z. Hence, the six EDF statistics [55] in Table D.1 are actually designed to test if the new
variable z is from a uniform distribution between 0 and 1. In general, D* and D~ are
powerful in detecting whether or not the z-set tends to be close to 0 or to 1, respectively;
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W?2 and A? are powerful in detecting a shift of the mean in either direction; V and U? are
powerful in detecting a change in variance, either a grouping of z values at one point, or a
division into two groups near 0 and 1.

D.2 Multivariate Normality Test

The goodness-of-fit assessment is to test the null hypothesis
H): a multivariate sample y,,y2," - -, ¥y comes from a multivariate normal distribution.

Let the dimension of y be M, the sample mean be § and the sample covariance matrix be

$, then under the null hypothesis Hy the values
Tl .
Zn=(Un—9)TE (Wn-9), n=1--,N; (D-2)

will have approximately a X2 distribution with M degrees of freedom. As suggested in [20,
Section 9.7] and [2], instead of directly assessing multivariate normality, we test the following

hypothesis:
H{ : the values z;,22,- -, ZxN come from a X%, distribution.

Hence, the EDF test procedure described in Section D.1 can be directly applied to test Hy,

and correspondingly to assess Hj.

D.3 Gaussianity Test of Compressed Pre-processed Pulses

In this section, we use the multivariate normality test described in the previous section to
examine the problem encountered in Section 5.3, i.e., to test whether or not Gaussianity is
still maintained after received pulses are pre-processed and compressed.

Here we simulate received pulses by using the covariance matrix £ = o%Iy, o = 0.05.
Figs. D.1 and D.2 show the real and imaginary parts of 50 simulated pulses and those of
the compressed pre-processed pulses, respectively. In the following, we generate 100 sets of
received pulses when N = 20,50 and 100, respectively. To make the test more convincibe,
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Original (simulated) pulses | DY D- V W’ U’ A?
Rejection rate based on 100 trials
M =256, N=20 0/100 2/100 0/100 4/100 0/100 0/100
M =256, N =50 0/100 0/100 1/100 2/100 0/100 0/100
M =256, N =100 | 0/100 0/100 0/100 0/100 0/100 0/100

Table D.3: Gaussianity test of original (simulated) pulses at significance level 0.05

Compressed pre-processed pulses DY D- Vv WZ UZ A?
Rejection rate based on 100 trials
M=44, N=20 4/100 5/100 6/100 10,100 7/100 4/100
M=44, N=50 2/100 2/100 5/100 6/100 2/100 4/100
M =44, N =100 0/100 3/100 2/100 7/100 3/100 2/100

Table D.4: Gaussianity test of compressed pre-processed pulses at significance level 0.05

all the six EDF statistics introduced in Section D.1 are used. Tables D.3 and D.4 list the
EDF test results at significance level 0.05 on original (simulated) pulses and compressed pre-
processed pulses, respectively. In both tables, a result like 2/100 means that Gaussianity
is rejected 2 times out of 100 trials. From Tables D.3 and D.4, it can be observed at
significance level 0.05 that

1. The rejection rates for the compressed pre-processed pulses are slightly higher than
those of original (simulated) pulses.

2. The rejection rates for the compressed pre-processed pulses are still smaller than
10/100.

The pre-process and compression procedures presented in Section 5.2 include non-linear
operations, Gaussianity of the compressed pre-processed pulses may not be strictly held,
as justified by Observation 1. On the other hand, the rejection rates for the compressed
pre-processed pulses are still very small (< 10%) from Observation 2; Hence, Gaussianity
of the compressed pre-processed pulses can be still assumed for simplicity.
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Figure D.1: Real and imaginary parts of 50 simulated pulses, where z-axis is the index of
data sample points and y-axis is the amplitude.

|
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(a) (b)

Figure D.2: Real and imaginary parts of the compressed pre-processed pulses,where z-axis
is the index of data sample points and y-axis is the amplitude.
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