. LOW RATE ENCODING OF
(AUTOREGRESSIVE SOURCES

by

MADAN L. SETHIA, B.Sc. (Cal.), B.Sc. Eng. {U.K.)

A Thesis oo

- [~
“

Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Engineering

McMaster University

e March 1981

~

.S - v AR — e i

T T A YRR S



£
MASTER OF ENGINEERING (1981) McMaster University
(Electrical Engineering) Hamilton, Ontario
Ly TIT%E: Low Rate Encoding of Autoregressive Sources

AUTHOR: Madan L. Sethia, B.Sc. (Cal.), B.Sc. Eng. (U.K.)
SUPERVISOR: Dr. J. B. Anderson

NUMBER OF PAGES: vi ,. 99

SCOPE AND CONTENTS: Varijous methods of digital encoding of auto-
regressive sources are examined. The relevance of the results to

Tow rate waveform encoding of speech is stressed.

o aem e

S e e S Tk e St

Y son o 3

“ !!zearw-mt;;ww -
» .



ABSTRACT

Various approaches, traditional as well as non-traditional,
are utilized to encode Gaussian and Laplacian distributed general
autoregressive sources at rates of 1 and 2 bit per source letter.

The performance of the traditional DPCM encoder is evaluated. At
these Tow rates, DPCM turn out to be rather ineffective from a data
gomprq§sidn point of view. Underlying laws governing the performance
loss caused by the quantiser non—]iﬁearity&in the predictor loop are
detected experimentally. It is found that tree searchinglimproves

the performance suBstantia]]y and the gain is a very well behaved
function of some well known source statistics. Effect of tFee search-
ing on mismatched source predictor is examined: The resu1t§ indicate
thaf tree searching is not a substitute for a matched predictor. The
performance.of an intution-based smoothiﬁg filter in cascade with the
DPCM encoder is evaluated when the predictor is matched as well as
when mismatched to the source. Such smoothing is not helpful. Final-
ly,'a certéin random coding scheme is used at rate 1. The perform-
ance of such an information theoretic inspired scheme is compared

with the tree searched DPCM. MWherever appropriate, the relevance of

results to low rate waveform encoding of speech is stressed.
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CHAPTER 1

INTRODUCTION

!\

The first half of tﬁjs century was an era of prolific growth
in analogue rad:o communication. Since then, there has been a gradual
but accelerating trend from analogue to digitq1 communication. Earlier,
the emphasis was main]y‘on telephony. Digital techniques in satellite
communications are now:commonp1§ce. More recently, terre%tria] digital
radio has appeared.

Discussions 6f ménifo1dfadvantages of digitally coding an anal-
ogue siqna] are widespread-in literature [1]. In brief, digital system;
offer ruggedness, the capability of regenerat%ng the signal as many
times as required without cuﬁu1ative increase in distortion as long as
fading is not too severe, ‘an attractive power-bandwidth product, and a
uniform format for all kinds of signals.' These, glong with the evol-
ution of solid state electronic techno]ogy'needéd to support the devel-
opment of efficient, flexible and error-free digital communication
systems, are‘the reasons of this phenomenal grthh in digital commun-
ication. : : v |

The theoretical foundations df digital communica%ion were laid
toward the end of the first half of this century by the celebrated

“Mathematical theory of communications" papers of Claude E. Shannon [2].

Since then, relentless effort has been directed toward refinement, embel-,
1
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lishment and practical realization of the theory; so uniquely per-

ceived and deduced by Shannon. a

1.1 Digiga] Transmission of Speech

An area of current research interest is the digital transmission
of speech [1, 3]. Low cost, }ew’;;te digital voice coders that produce
high quality, highly intelligible speech while retaining the robustness
to impairment are-still not avpractical‘rea1ity.

For an analogue source such as speech to be transmitted by
digital means, the source must be convérted to digital form. Digital
i{cr‘ansmission of speech has prdaﬁessed along two entire]ygﬁifferent
Tines. In the so-called vocoders, only certain imggrtant feéyures of
speech are extracted, encoded and sent over the ch;nnel. On fhe re-
ceiving side, speech is synthesized from the received featuresf‘ The
method, though efficient from dafa compression point of view, is ve;}
complex. The other approach is waveform eﬁcoding. In such schemes, .
a time-continuous waveform is sampled, at Nyquist rate and the sampled
éﬁp]itudes are digitised and sent ?ver tbe channel. The recgiver
‘recovers/the origingl waveform/fpém the received samples. T}ough con-
siderab]}k]ess complicated than the vocodpr,‘waveform~encoders have

so far not been able to fully utilize the redundancy of speech.

The earliest waveform digitisation scheme is Pulse Code Modul-

T

7\‘;\
ation and\Tf\is\siill in wide use. For'sources with correlated samples,

—

PCM is not very effective from the data compression point of view.

Delta Modulation attempts to reduce redundancy\due to memory but suffers
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from slope overload. An amplitude adaptive form 6$ Delg& modul- -
ation which lessens the slope overload prob]em when, uséd to encode
speech requires 30 K bits/sec. for a telephone qua11§y reproduction.
One promising technique is the so-called differential PCM which
assumes the source (e.g., speech) to be an auto-regressive source
and quantises the deviations from the predictions based on previous
samples in an LMS (least mean square érror) sense.

-

1.2 Scope of Thesis

In the remainder of this chapter, we 5ha1f‘f0rma]]y introduce
auto-regressive sources and differential SEM in some detail. In Chap-
“ter 2, genera1 concepts of rate d1stort1on theory will be discussed,
some‘of which if not directly applicable to the situation at hand, SQL
at least 1nstruct1ve where no other more relevant theory exists. ST

In Chapter 3, we shall discuss anq investigate the effect of
the quantiser non-linearity which lies in the predict{vé loop of DPCM,
when used to. encode auto-regressive sources with both normal as wei]
as Laplacian distriButions at low rates of 1 bit and 2 bit per sou}ce
]etterl At these low rates, tmg presence'of memory has a strongly
adverse efféct on the performance of an encoder. In Chapter 4, we
shall use a multipath search algorithm (the M~ al rithm) as an éncoder
a]ong with the DPCM code generator to f1nd if tfee searching.can fix
the damage that the quantiser causes at -these lotrates. It very "

nearly does. Effects of tree, searching on ‘mismatched source-predictor

pairs will also be studied. In these, the prediczfi;ﬁkructure is not

o
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matched to the source correlation.

According to rate-distortion theory, a source-encoder pair,
s

o

even if matéhéé, is not 6pt1m51. The theory‘requires that a certain
smoothing filter be cascaded with the matched decoding filter to
achieve optimal digitisation at high rates; Unfortunately, at Tow
rates, we have an additional problem in thét the theory does not tell\
how to find such a filter. In Chapter 5, we shall use a smoothing
filter derived on intuitive grounds in cascade with the matched or ,
mismatched decoding filter tg encode auto-regressive sources. We find
that such smoothing has relatively Yittle effect on SNR performance.
Finally, 1n.Chapter 6, we use random tree codes to encdde auto-
regressive sources at low rates of 1 bit per source letter. We sha]]t
find the comparison between the SNR performance of random codes and
predictive quantiser codes at this low rate interesting.
This work will never involve speech directly; nonetheless,

our whole effort is directed toward encoding of‘speech-]ike sources.
’Speéch has been frequently and quite successfully modelled as an auto-
regressive source [See 33 among others]. Léw rate encoding of speech
is a matter of considerable interest to commﬁnications engineers.
Recently, a lot of emphasis has been placed on tree encoding of auto-
regressive]meode1]ed speech at low rates.and there are reports of
substantial performance improvements. However, the origin of the gain
has been mysterious: Does tree-searching replace and enhance predic-
tion, or does the gainghave a pureF"coding" origin? We establish here

that the tree coding gain is, in fact, independent of gains due to

1
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prediction, and that it primarily depends on the;encoder bit raté.
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1.3 Auto- ragress1ve Sources .

The auto regressive mode] constitutes one of the most common]y

used representat1ons of pract1ca]]y occurring time ser1e§:bboth stat1on—

ary as well as non-stationary. Many sources of interest such as speech,

music, and pictures to name a few, are submused under the.general cate-

i
| ~

gory of auto-regressive sources. Z ‘ ‘

In this model, the current value of the process is expressed as

a f1n1te, ]1near—aggregate of préV1ous values; that is, the current

value is regressed on the orev1ifs va{ues of |+seUf, S
A pth drder time-discret auto-regress{veE(AR(p)) source
{xt, t=20,1, ; ...} s descr1beq by the di%fe?ence équatﬂon,
P . - “ .
Xy [= 151 a; Xy stey (1..1)

Where a's are called auto-regression‘constants and {et} is a sequence
of independent random variables %rawn from sdme fixed distribution. P
is called the order of the auto-regressive source. Fig. 1.1 shows the

block schematic diagramkof a recuLsive circuit that generates Xy -

Define an operator z suchf that,
|

S
Xt-]/" :

. |
, ) S
!
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X, = e (1.2)
! t 1 - 3 21 3, 2% ... a Pt

The behaviour of a typical realisation of a real auto-regressive
source is solely determined by the magnitude of the roots {G} of the pth

order polynomial [34].

a(z) = 1- g 271 a, 272 . ap'z'p ©(1.3)

Depending on the location of the poles in a complex plane, AR(p)

sources are broadly classified in four mag ategories:

—— -~
Type 1: |G} < 1, all G; i({é.>—411 roots 1ie Tma unit circle.

This type is asymptotically stationary and the’jransients in

the response die Out in an exponential fashion. This modeT~has
been frequently used to model speech, and due to the ease with
which it lends itself to experimental and analytical tools, it

has found considerable favour. The model is stationary in the

mean, i.e., the time series fluctuates about a fixed mean.

X,

Type 2: One or more roots lie on unit circle but not all.

This type exhibits non-stationarity. Though capable of model-

ling quasi—s%ationary sources like speech more precisely than Type
1, they have not been used very frequently. This model can take

]
account of fluctuations in the-mean of a time series.

Type 3: A1l roots lie on the unit circle, |G| = 1, all G.

This tvpe is also non-stationary but the variance of Xt grows only
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algebraicly. More commonly known as a Weiner sequence or un-
impeded random walk, the prob]ém of encoding these has been

studied by Berger [14] among others.

Type 4: One or more roots lie outside the unit circle,

This type is also non-stationary but here the series breaks loose,i.e.,

the variance of Xy grows exponentially with time. The explosive
growth is limited only by the system energy. Even though physical
phenomena such as bectirié] growth and nuclear chain reactions fall
in ;his category; this type has not been very popular because of its
pathological behaviour.
When a communications engineer talks about an auto-regressive
source, he generally implies Type 1, and it is this type with which we

concern ourselves mainly in this thesis. Unless indicated otherwise,

by auto-regressive source, we shall imply this type.

1.4 Philosophy of Differential PCM

The purpose of a source-encéding scheme is to minimise the
information content of the source output subject to some fidelity
criterion, before it is handed over to the channel for transmission.

In case of auto-regressive sources, encoding involves one more step
than is needed for encoding sources with independent identically distri-

buted outputs.

——

1.4.1 Prediction

An auto-regressive source is characterised by some form of

P e A "
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memory as is evident from the difference equation,

A fhys, if the past history of source outputs is known, it is
possible to say something about,the next source output. A data com-
pression scheme must naturally take advantég§ of this situation. In-
stead of encoding Xt itself, an attempt should be made to encode the
difference between the current value %I and the prediction based on
the previous values assumed by $he Droce§§\ This is the basis of
Differential Pulse Code Modu]aFion and distinguishes it from simple
Pulse Code Modu]qéion. The n%t effect of encoding the prediction
error is a reduction in the p&“er of input td the quantiser and con-
sequently in improved performaﬁce. The performance improvement achieved
by D1fferent1a] PCM over PCM 9t high quantiser rates is called the
Signal- to Noise Improveme?t Rat1o [5, 6] denoted by SNI.

N Prediction, in addition to the fundamentally important role

., it plays in compression @f sources with memory, plays an equally impor-

tant role in forecasting,hﬁich has become a part of our daily life.
So important is its role iﬂ time series analysis that one can hardly

overstate jt.

1.4.2 Quantisation

An N Tevel quantiser has an input x, the domain of which is

a real line, and .an output that can assume only one of N discrete

i Jprone
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~
The quantiser input is output y
the real 11ne,xl=—oo,
x6=+cv.The five discrete
output y's correspond to ---y5 —
five subintervals of _..y4
the real line.
Y3
| i |
X, x4 X input x
LY,
—Y4

Fig.1l,2 A five level guantiser characteristic
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real values Y = y; < Yo < Y3 e, < Yy- The quantiser subdivides
its input range into N intervals by t?resho]ds Xy < Xy < Xg X ... XN-1
such that the quantiser output is Yk if and only if Xg1 <X < XK: |
The input-output characteristic of a five-level quantiser is shown

in fig. 1.2.

In a uniform quantiser, the spacing between successive thres-
holds is equal. At coarse quantisation, a uniform level quantiser is
nearly optimal for Gaussian sources but as the number of quantisation
levels increases, the gap between uqiform quantise} and the optimaa
ron-uniform quantiser broadens. It.is never very great for Gaussian
sources but for Laplacian and Gamma distributed sources a non-uniform

quantiser is desirable even with coarse quantisation.

The representation of a continuous amplitude signal by certain

discrete levels inherently introduces an error, giving rise to the so- .

‘called quantisation noise. The signal-to-quantisation noise ratio of
a standard differential PCM sysfem is given by the well known 6 dB/
octave law [6, 7]. For Gaussian sources the law states,

S/N = 6.02 n+ SNI - 7.2 (in dB) (1.4)

where 2" is the number of quantisation levels. n is sometimes called
the rate, i.e., the number of binary symbols required to encode the
amp]ftude of one sample. The law is an approximation and holds for n
above 5 or 6. It holds exactly for dniform]y distributed sources with-
out the 7.2 term in equation (1.4) at a]1‘rates: For PCM or a §8urce

. : =4,
without memory the SNI becomes zero. Exact upper-bounds for S/N per-

e
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formance of DPCM and PCM are derived by 0'Neal [7].

1.5 DPCM Code Generation and Code Trees

Even though suboptimal from rate distortion theoretic point
of view,-DPCM has attracted considerable interest because of its simplic-
ity of implementation and its attractive signal-to-noise ratio ga%ns.

A block diagram of DPCM encoder is shown in fig. 1.3. The’

similarity between the filter in fig. 1.3 and the recursive filter of

-

fig. 1.1 théf generates the auto-regressive time series is ¢lear. In
fig. 1.3, source output X4 is fed to the encoder and in the mean time
the Linear predictor in the dotted box makes an estimate of the current
\’input Xy on the basis of previous inputs to the encoder. The differ-

ence e, between the current input X4 and the predicted value x - js fed

t

to the quantiser to produce the encoder output e ( The dotted box

q(t)”

Tn fig. 1.3 considered with € (t) 25 the input and x, as the output is

the DPCM decoder filter (or DPCM code generator). The output Xy of the
DPCM code generator filter can be mapped onto a treq-like structure as
we shall see.

f

In. fig. 1.3 the operation of the recursive'filter inside the
\ “
dotted box can be expressed as,

~t 1-a _ 3, 272 .. a 2z " ®q(t) = alz) “qlt)

-1 -2 -k _
22t bz +oul) eq(t) (1.5)

>
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-\ e-f q(t)
/\ >i quantiser
X
t iy G n— S— ettt Sem— S

R S - | M

!
| Ah N
l /\/q I
! : [
f ) l
l {
: a '
l [
l e
| |
l l
l I
| I
| : Z(_'f.'.~\2 l

|
[ 1 |
| t I
l l |
l l
I
l DPCM N
| Code Generator
has input a low pre-~ X

| cision eq(t) but an o/p ~tem”
| ét of high precision.
b o e e e e e —— e~ —————— J

Fig.l.3 Schematic diagram of DPCM encoder.
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where c¢'s are the impulse response of 1/a(z). In practice, the

sequence of c¢'s converge quite rapidly, fherefore we can turncate it

-~

at some k. The result is a transversal realization of the filter in

the DPCM circuit. This realization will have a longer, but séill)
~ .

quite manageable order. Fig. 1.3a shows the transversal realdzation

_of DPCM encoder.

Rewriting (1.5) in matrix notations,

Lt = [], C.l C2 e Ck] req(t)
®q(t-1)
’ (1.6)
fq(t-k): e
= T [Teg(e)
®q(t-1) :
Calt-k)
where,
o= [ ¢y o nnn ck]
Assuming zero initial cenditions, at t =1, 2, ..., t, we
have

L,

L
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é
k +\///~\\\ ®t eq(t)
,\\;_P/// P Quantiser >
— Xt
{ Sate-)
eq(t—2) >

i
i o
i

Cq(t=K)

Fig. 1l.3a The transvarsal realization of DPCM
encoder. c's are the impulse responce
of 1/a(z).

¢

.,.,
'

Xa

FATGETIPNT S

poe—y

Ver e

VPR

R RIS e T




e ~ . F -]
®q(1) %q(2)
0 0.
X = f X = f
2 A
f’/ .
, R o
- -
®q(t)
€q(t-1)
g = f
| “alt-Kk) |,

Clearly, the code generator maps the k-dimensional input vector

ontq real line TR, f: eqk

» TR. As an example, a rate one system
accepts at each time a binary symbol either 0 or 1 (in practice.a 0 and
1 impTies inputs +1 and -1 times the quantiser step size, respectively)
and outputs a reproduction symbol X4 - Since the current output depends
only on current input and previous inputs, the output of such a code
generator can be expressed on a tree-like strhcture shown in fig. 1.4.
An input zero specifies an upper branch of bifurcation while a one
specifies the Tower one.

A path through the tree is specified by its pathmap. ?or
instance, the path map 1010 specifies moving up at the first bfénching

level, down at second, up at third and again down at the fourth to

produce the output indicated along the branches traversed: f(000...0),

e i

T s g At e o
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£(000...00)

branch
lebel

£(00..... 00 ‘

£(010...00)

. f(loo...oo)>

£(011...00)

£(210...00) | \
_—-_————-—-—-< '

W

level 3 s
g

Fig, 1.4 The binary rate one code .tree

level | level 2

3
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£(100...0), £(0100...0), f(1010...0). f operates on k digits; one
current digit and k-1 past digits. YK is called the constraint length.
If b branches come out of a node ané B symbols correspond to each
branch then the rate of tree code is,

1092b
B

bits/source symbol

Based on the error between the current source output Xt and
the current generator output g}, the encoder makes a final decision
to branch either upward or downward. From the source coding point of
view, this single line of decision developed by DPCM code generator is
its clearest shortcoming. In a multipath searqh, the encoder pursues
several paths at any given time and chooses among” them at some latter"
point based on some fidelity criterion usually called the path metric
Most tommonly used path metric is the cumulative squared’error. We

shall return to methods of searching.in sec. 4.2 and 4.3.

B e
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CHAPTER 2
.REVIEW OF RATE DISTORTION THEORY

A1l practical channels have a finite capacity, which is to
say. ihat they can only carry a finite amount of information in a
ngen time, whereas most sources of information in real life have
infinite entropy because the space of their probable outputs occupies'
a part of the real line TR. The implication is that we cannot commun-

icate the information generated by an analogue source to a user with

exact reproduction. Some distortion is inevitable. Rate distortion

theory serves to lower-bound this distortion.

2.1 Basics of Rate-Distortion Theory
The aforementioned character of physical world legds to the

necessity of some kind of matching device between the channel which

carries the information but only at a finite rate and the §gaiie thqﬁ’r
! e

generates the information at an infinite rate or at least at some
higher rate. Source encoding achieves just this end. A soufce en-
coder in general maps a sequenceof outputs X4 of a discrete-time
source into a set of preselected messages. It partitions the space
of source outputs, usually the real line, into a set of equivallence
classes and tells the channel encoder to which of these classes the

s o
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source output belongs. The whole operation can Be conveniently
described by the mapping f : R" »»Ak, where blocks of n source
output symbols are the input to the encoder, blocks of k symbols
are its output, and A is the encoder odfbut alphabet. In’caée of
non-continuous source-outputs, R can always be replaced by the
appropriate discrete space.

If A= {0, 1}, we define the rate of encoding to be the
average number of binary digits.at-the. encoder output per source
letter. In fixed rate systems, the same number of source symbols
are input to the encodér each time and a fixXed number of binary
digits-éppear at the output of the encodef. A lower rate results
in higher compression because fewer digits are used to encode a
given source symbol. Finally, use of term time-discrete in des-
cribing a source encoder is comp]éte]y general, since a band-Tlimited
time-continuous source can always be converted into a time-discrete
source without loss of any information, by:isampling or some other -
convenient transformation. |

In arriving at its ultimate performance bounds, rate-
distortion theory makes usé of random coding arguments; it does
not, however, make clear how practical codes may be designed. The
approach inherent in random coding is to populate the tree branches
with random deviates drawn from an appropriate digtrgbution. Un-
fortunately, fhis results in a time-varying decqﬁér and storage and
computafion that grow exponentially with n. Though much research has

° been directed toward‘overcomiqg these difficulties, much remains to

T g o g BBt
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©

{;’be done to find practical codes. Encoding schemes such as PCM, DPCM
and Delta Modulation, the so-called ad-hoc schemes as the information
theoretician prefers to call them, have been very popular. There are
good reasons for this. DPCM, which is suboptimal from rate distortion
theory point of view, has performed quite well for sources with memory
and particularly well when used in conjunction with some kind of search
algorithm [23]. PCM and Delta Modulation have great simplicity and at
the same time give good performance. Vocoders, though complex, give

similar performance at a much lower rate.

2.2 Some Theorems

Analytical evaluation of predictive quantisation (the DPCM
encoder) has had only a limited success at low rates. The difficulty
arises from the combination of the nonlinearity introduced by the
quantiser and the memory inherent in such systems. Thé problem of
optimal DPCM at low rates for auto-regressive sources of order higher
than one is still to be solved, a theorem by Gray [5] does give some
insight into this. Gray's theorem does not apply to DPCM, but rather
shows the existence of a che with structure as yet unspecified at Tow

rates.

Theorem 2.1
Let {xt} be a p-th order auto-regressive source generated by
. .
an i.i.d. N(O, 02)+ sequence {zt} and the auto-regression coefficients

é], 55 - ap. Then MSE (meadn sduared error) rate distortion function
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of{xt} is given parametrically by,

m

/ win [6, §T%7] dw

1
6 2m -

m

) 1o (s
and R(DB) = 5 -i max [0, 5 log {EETETJ] dw

The rate distortion function R(D) is the lower bound on rate requjred

to encode the sequence with fidelity D.

-jwkq (2
eduky

* independent identically distributed

T zera-mean normal density with variance o?

A second theorem relates the rates required for autoregressively

correlated sources to that required for memoryless Gaussian source.

Theorem 2.2
Let {x%}, {zt} and g{w) be as in Theorem 2.1 and let RX(D)
and RZ(D) denote the MSE rate-distortion fucntions of {xt} and {zt},

respectively. Then where A is the essential supremum of g(w), we have

- 1_
‘Rx(D) = RZ(D) for 0 <D < ic D,
1 3
and RX(D) > RZ(D)- for D > i .

o e

9

et 3,



v
Y s 23
This result is remarkable in that it implies that a suitable
coding strategy can always be found such that the rate required to
with some D j_l'is the same as z

t A
itself, despite the larger variance of the weighted sum.

reproduce a weighted sum of z ¢

By low rates for autoregressive sources, we imply rates which
result in a D which is either greater than or in the vicinity of 1/A.
At. these low rates, Theorem 2.2 says that all codes must suffer some
1055 in performance; for DPCM, the situation is perhaps made worse by
the destructive interaction of the quantiser nonlinearity and the
feedback. At rates higher than the so-called low rates, it is at
least possigle in principle to recove} completely the damage caused
by the quantiser. ’

Quantitative®evaluation of the performance loss caused by
the quantiser in the predictive Toop of practical DPCM is still an
unanswered question for general autoregressive sources. It is oné of
the goals of this thesis to answer this questipn through egperimenta]
analysis, and in particular to see if DPCM performance depends on 4,

the essential infimum 1/a of the spectrum 1/g(w) in theorem 2.2.

A can be conveniently calculated from the following relation,

A= (]+]a][+la2[+...+lap{)2- (2.1)

* L
Here a's are the autoregression coefficients of the source.

v
[

2.3 Some Comparison Between Rate Distortion Theory and Quantiser
Codes.

%ﬁThe principal original application of information theory to

¢
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déta compression system design was a demonstration by Gish and Pierce

[8] and Goblick and Holsinger [9] that for Gaussian memoryless sources,
entropy coded PCM performed within 0.25 bit of theoretical limits qt

rate 2 and upwards. It is clear that little is to be gained by more
sophisticated techniqﬁzglof coding. Even at rate 1, where entropy coding
and simple PCM become essentially the same, the performance gap was
similar. Although [9] showed that at low rates simple PCM performeg
quite near the R(D) lower bounds, however, the gap steadily widened as
the rate increased. .

The situation is entirely different with Laplacian and Gamma
distributed sources. The performance gap between theoretical lower
bounds and simple PCM in these cases is very_wide even at low rates
(see,e.g. Noll and Zelinski [11]). And this gap widens with increas%%g
rate. Entropy coding, which Ties about halfway between rate distortion
theoretic coding and simple PCM, has given large performance gains over
simple PCM at rate & and 3 [11] for these distributions. However, the
performance gap of 6.76 dB and 3.61 dB for Gamma and Laplacian distri-
buted sources [11], respectively between rate distortion theoretic ]ower
bounds and the simple PCM (and hence entropy coding) at rate 1 has not
been exploited. ’

Sources with memory are of greater 1ﬁ§%rtance than memoryless
sources since the potential gains of data compression are usually more
for the latter as they have more redundancy to remove. Our simulations

indicate that at high rates DPCM performs quité well when encoding

Gaussian autoregressive sources. Further improvements of the order of

. - [
e o Y
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2.8 dB for Gaussian sources and 5.6 dB for Laplacian sources are
poss?ﬁ]e by eﬁtropy coding the quantised error output of the DPCM
encoder (see 0'Neil [12]). But there ?s no rigorous counterpart of
the results of [8, 9] for these correlated sources. wpether such
systems perform close to the optimum is an'important opeﬁ problem in
information theory. Many sources of interest such as speech are best
modelled as Laplacian or Gamma distributed autoregressive sources.
Very little is known about what scheme will work well-at..low rates
with these as welT as the Gaussian AR(p) sources. *he topic of inter-
est to us in this work. While at rate 2, entropy coding is able to
reduce theWQap between theory and simple DPCM but at ratéf] suitable

techniques are yet to be devised to improve the poor performance of

existing systems.

2.4 Tree and Trellis Coding

Tree codes have already been introduced in sec. 1.5. To
illustrate the trellis structure, consider the constraint length k
to be 3 (to make matters simple) in the code tree of sec. 1.5. The
branch labels for the unlabelled branches of.the tree at level 4 in
fig. 1.4 will be determined by the mapping f which will operate on
K(=3) inputs which 1né1ude 2 previous inputs corresponding to level
2 and 3 and 1 input corresponding to level 4. Nodes a and a' in fig.
1.4ﬁ:9ecify two paths differing only in the input cérresponding to
1ev21 1. Since the branch 1abels at .level 4 independent of input

at Tevel 1, the branches emanating from nodes a and a' will have the
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same 1adels on them. Clearly nodes a and a' can be joined together.

Similar argument can be extended to other.node pairs as well. The

resulting tree diagram with collapsing branches is called a Trellis

diagram and the code a trellis code. Fig. 2.1 shows a trellis diagram.

Recently many results have been proved in information theory
that show that nearly optimal performance can be achieved by a class
of data compression systems called tree or trellis encoding systems.
Jelinek [10] broke the traditional block approach (In block coding
the encoder accepts at each time a non-overlapping block of source
output letters and outputs a non—over]appﬁng block of encoder output
digits) of rate distortion theory" and proved that codes having a tree
structure can achieve the optimal performance with memoryless time-
discrete sources. Davis and Hellman [13] further generalized the
“results of Jelinek. Gallager [18] and Angérson and Jelinek [30]
developed algorithms capable 6f achieving a distortion as close to
the lower bounds as desired with tree source codes. Vitérbi and
Omura [31] and Gray [36] proved corresponding results for trellis
source codes. In essence, these results establish the existence of
tree or trellis codes which are capable of achieving the optimal
performance.

in practice, tree or trellis code désign generally involves
designing a good linear or nonlinear digital filter (possibly time
variant), Once a good code is found, the function of the encoder is
to find a good path through this tree (or trellis). ﬂIn an ideal case,

‘ the encoder, with increasing tree depth, must explore an exponentially

i
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increasing number of code words in order to find the one that matches
the source word best.‘ Therefore, in a practical situation,one has to
use a suboptimum method of exploring the tree (or trellis) in a sparse
but inteiligent manner. It is important to stress that the nature of
an efficient search algorithm for tree (or trellis) encoding of source
outputs differs fundamentally from that of an efficient search algor-
ithm for sequential channel decoding. The reason is that in sequential
decoding, the tree path corresponding to the transmitted word is tﬁe
only one that is acceptable, whereas in tree (or trellis) encoding of
sour;és there are ysué]]y many acceptable paths. Additionally, the
search algorithm should be chosen to suit the source. Thus there are
two' design problems in practical encoders: The code and the search
algorithm.

The search algorithm may take one of two basic forms. In a

block search, the encoder inputs a block of source symbols, then

searches for an encoding that will yield the best reproduction. Once
the best path is found, the encoder outputs the whole string and
proceeds to the next non-overlapping block. In case of an incre-

mental search, the encoder. inputs a string of source symbols and

searches for the best path; then the first step along this best path

is outputted. The next input symbols is then read in: the best path

is found again and the first step is outputted for the second over-
lapping block. {

Though most of the results in rate distortion theory have

been arrived at by using a block approach, it has been found through
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simulation that incremental searches generally prdduce better results
for a given search effort. It should be pointed out as well that the
incremental search bears a natural relationship to the tree structure.
A tree introduces statistical dependencies between code words in that .
if two code words share a common path in the lower echelons of the
tree, then the corresponding computation need not be repeated. An
incremental search capitalizes on this feature of a tree code while

g /
the block approach does not.

2.5 Smoothed R(0) Codes

Berger [14] proves the existence of an optimum code with a
tree structure by the following theorem.

\1

Theorem 2.3 . . *

Let {xt} be a type 1-3 (see Chapter 1)_autoregressive source
generated by ani.i.d, N(O, 02) sequence and autoregression coefficient,
Ays ees ap,i Let R(+) denote the MSE rate distortion function of {xt}
and letUA denote thke essential supremum of g(w) defined in Theorem
¢.1. Then, given e > 0 and D < 1/A-there exists a tree code for {x,}

of sufficiently large block length with rate less than R(D) + e and

ySE per letter distortion 1es§ than D + ¢.

///,,//A . The corresponding decoder is shown in fig. 2.2. The coeffic-
A ients b, ..., bp are determined by the relationship,
B = o - djA))? (2.2)

e Lk e W <
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F19.2.2 Circuit to generate optimal random tree codes

for autoregessive sourceg at high rates.

R b F e




\ o
Here A(z) is the pth order polynomial described by (1.3). By calcul-
ating the frequency response, one can see that the b's tonstitute a
smoothing filter. For D < 1/A, the right-hand sjde of (2.1) is almost
everywhere positive and the Fezer-Rieszrrepresent;::;n of non-negative
trigonometric polynomials [29] assures us that b's can always be found
to satisfy the above relationship. At D > 1/A it is clear that (2.1)
fails. We can still conjecture that the decoder filter which is just
matched to the source with no 'B' filter may not be optimal at these

low rates as well. In Chapter 5, we shall discuss a smoothing filter

designed intuitively and investigate its performance.
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CHAPTER 3

AN EXPERIMENTAL METHOD
AND THE PERFORMANCE OF ORDINARY DPCM

A standard DPCM digitiser is shown in Fig. 1.3. The prediction
error et’is fed to the quantiser and the quantiser outputs a quantised
version eq(t) of e Apart from being the final output of the encoder,
eq(t) is also the input to the LMS'predictor shown in the ?otted box
in Fig. 1.3, whose next predigtion is based on this quantised predic-
tion error eq(t)' C1ear1y‘;;¢;q(t) is in error because of quantisation
noise, the predicted value of the next sample will be suboptimal. When
the qugntisation is coarse the feedback effect'may be severe. \}h what
follows, we shall experimentally analyse the effect of the quadtiser
non-lingarity at low rates when encoding auto-regressive sources with
randoﬁ innovations drawn from both Gaussian and Laplacian distributions.

In a realistic experimental analysis involving probabilistic

sources, the concept of confidence intervals is vitally important.

3.1 Confidence Intervals

Before embarking upon the notion of confidence intervals, for
the sake of completeness, we shall briefly discuss some of the concepts
which shall be used frequently in the ensuing work.

To\gttach quantitative meaning to the performance of an encoder,
. ; ) '
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we introduce one of the most commonly used measures, the signal-to-

quantisation noise ratio,

K 2
<Xt2> k=1 *
SNR = T X 2 (3.1)
<Oxg = xg)™ Lo(x, - x)°
. - ko =k
k=1
or in dB
-SNR (dB) = 10 Log]O SNR
Here Xt and x, are those shown in Fig. 1.3. We shall denote the above

t
SNR as, segmentwise SNR to distinguish it from the sample average SNR

(or SNR in brief).

(3.2)

where SNRn denotes the n-th 'segment SNR, and N is the sample size.

Likewise, the estimated sample variance is defined as,

2 _ 1 2
Y ﬁ (SNRn - SNR) (3.3)
and the standard deviation o, as,
. e enp211/2
Iy {N E (SNRn SNR)“} (3.4)
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When doing experiments with probabilistic sources, the tendency
has been to talk about the-performance of an encoder in terms of sample
averages a]one? The sample averages at times may give correct SNR
figures but it may happen with highly correlated sources that from
experiment to experiment the SNR fluctuates wildly with large deviation
on either side about the sample average. Such an average will be largely
meaningless from an experimental point unless we can form an estimate of
its variance. In general, therefore, we associate a certain interval
about a sample average and associate with this interval a likelihood
that the outcome of'othér experiments will stay within this interval.

The necessity for such intervals of confidence becomes even more urgent

when comparing the performance of two (or more) different encoderg whose

performances in the sense of sample averages are not too far apart.

Statistically speaking, "apart" is meaningful only if considered in

.conjunction with confidence intervals. | j
Tchebyceff's Inequality allows us to make a probabjlity state-

ment about an estimator and how it is distributed around a population

. \r'™

mean without knowledge of the form of this distribution. One of the
most important tools of statistics, the inequality, provides a theoretical

basts for when a particular distribution is assumed or justified.

2

If 0° = VAR(x) exists and E(x) = m, then,

J e e R B A

~

E2 82 (3.5)

2, 2
P{l{(x -m)1>e} < E{{(x - m)"} _ o

e
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Equation (3.5) is the classical statement of confidence intervals.

IR

If x is an estimator of m, then the inequality provides the probabil-
ity that interval (x - ¢, x + ¢) contains m.
An even stronger statement due to central limit theorem states

that,

|5 x -t

P { < w}h o= 9(w) (3.6)

0N1/2 -
where ¢ is the Gaussian distribution. This stronger version is valid
whenever {xk} are identically distributed and the variance exists [15].
But in our case, there are good reasons to beliézz)that all the moments
exist. This implies that even for a relatively small sample size use %
of CLT is justified. Setting w= 1'and X, = SNRn in (3.6), we derive
the one sigma (one standard deviation) confidence interval. Provided
the distribution of anA/W is close to Gaussian, the average of experi-
ments an/N lies within to//N of its true mean with probgbi]ityruO.GS.
Although we shall not make use of them, the "two sigma" confidence !
interval is perhaps more common in §tat{stica] analysis: Here the .
interval is *20A/N, and the average of experiments lies in this range
with probability ~0.95. In either case, one must have knowledge of o.
Use of theorem (3.5).or (3.6) clearly requires the knowledge
of & which in turn depends on knowledge of the sampling distribution
of an estimator, information we cannot possess. However, 02 for a
population may be estimated from samples by the unbiased estimator of

2
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If the variance of sampling distribution is not known, and is estimated

2

by oy then the statistic

in equation (3.6) does not follow a strictly normal distribution. The

probability statement

L x_ - mN
n

n .
P{-‘—O—NT/'Z—-— i]}

holds with probability less than 0.68, or saying it another way, at a
probability ~0.68 and using oy instead of o the confidence limits
Xt Zé are too narrow.
VN

The basis for such discussion lies in a few theorems concerning
the xz-distribution (chi-squared distributioh). However, we can over-
come most of the objections by having a sufficiently large number of
observations (degrees of freedom in_chi-square‘sense) that are inde-
pendent. An important observation about the distribution of t is that
it becomes eésentially described by the Normal law with degrees of
freedom greater than 120 [16]. For most ca]cylations, however, the

significance figures will not be seriously disturbed by use of the
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theorem (3.6) with an estimate of variance whenever the degrees of

freedom are about 20 or more.

3.2 Linear Least Mean Square Prediction

Figure 1.3 shows an m-tap differential PCM encoder. The
encoder is fed with a sequence of time-discrete inputs {xt} whose
variance is assumed to be unity for convenience. At the same time,
the predictor makes an estimate ; of the current input Xt based on

t
previous input to the predictor,

a.(xt_ﬁ + qt-i) (3.7)

25 (xpq + 9py) (3.8)

9 is called the quantisation noise.

Define the signal-to-quantisation noise ratio of a DPCM encoder

to be
2
S/N_ = EEEE7} S I ~EE
D E{q,."} o 2 02 o z
t q q
By taking logarithms,one gets '
SR = -10 Login o2 + 10 Log.. -
- 910 %10 772
q

2
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Here 02 = E{etz} and ¢

2 _ 2
q - {qt }.

The total SNR can be expressed as

SNR

SNI + SNRq (3.9)

&

where SNI is called the signal-to-noise improvement ratio. Ideally,

this is the gain obtained by DPCM over PCM when encoding sources with
memory. SNRq is the SNR obtained by a simple PCM system when used to

encode the sequence f{e.}.

From equation (3.8) the prediction error power becomes,

~ m
of = Ellx - 2 =E((x, - E 2 x, )% S (3.10)

where the equality becomes exact in the limit of fine quantisation.

In matrix notation, we can rewrite (3.10) as,

62 = 1 -2aT6 + ATRA (3.11)
where,
& "
N 32 ]”2
s
A = 6 =
am l"m
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r— -
1 g r2 -1
" 1 r] rm—Z
R = . (3.12)
1 g
r r r ry 1
m-1 "m-2 "m-3 1
L _

Here r, = E{x, - x,_, } is the auto-correlation coefficient of sequence

(x,} at the kth lag.

Minimisation of 02 with respect to A yields

Aopt = R 6 (3.13)
2 _ T IR,
B opip T V-Age 6= 1-6RG (3.14)

When the coefficients {ai} are chosen to satisfy (3.13),‘we call the
predictor "matched" to the soﬁrce. Any other values of {ai} will give
rise to a "mismatched" source-predictor pair, and a lower SNR.

Ciearly the above results deduéed by assuming that the quant-
isation noise is negligible will not hold at low rates. The quant-
isation noise will be fairly substantial at rates 1 and 2, too much so

for it to be ignored in comparison with x The probtem of DPCM en-

&
coder performance at these low rates has not been solved analytically.
Qur approach in this work will be to inQestigate the DPCM encoder at
these low rates through experimental analysis when (3.9) & (3.10) do

not hold, for the case of Normal as well as Laplacian distributions.

TR X S
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Having collected sufficient data, we shall compare them with what

we should have obtained had the above simplification been true.

——————
4 BN
~
N~ -’

3.3 Optimum Quantiser

: , A
For our purpose, we shall refrain from_di§9u35ing the optim-

ality of a quantiser and rather refer the reader to available Titer-
ature on the subject. Normally distributed memoryless sources have
been analysed by\MEX“{ZOJ, while quantisation of Laplacian and Gamma
distributed sources has been discussed by Paez and Glisson [21]. Opti-
mum Quantiser for general auto-regressive sources is a question still
very much to be answered. However, first order auto-regressive soufces
have been dealt with by D. Arnstein [22] at Tow rates.

Our approach in this work will be to find the optimum gquantiser
through simulation and rather attack the other aspect of the proB]em,
i.e., to investigate the extent of performance degradation caused by
the optimum quantiser at low rates and the meansﬁof redressing it in

the predictive Toop of DPCM.

3.4 Experimental Design

”

Broadly speaking, the experimental setup involves three major

steps, as shown in Fig. 3.1:

Generation of Encoding and Analysis of Results
Auto-regressive [ = SNR Including
Time Series Evaluation Curve Fitting

Fig.. 3.1 The Experiments Involve Three Major Steps

+
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e

Generation of auto-regressive time series: An auto-regressive

time series is generated by passing the random aeviates of appropriate }
distribution through the colouring filter of ‘Fig. 1.1 with autoregres-
sion coefficients from one to three taps chosen to span the range of
autocorrelation. Gaussian random deviates N(0,1) are generated using )
the IMSL subroutine GGNMP [32] while the Laplacian deviates are drawn

from the distribution L(u = 0, 02 = 1) <

P (x) = %e'o‘?x‘ (3.15)

where o= v

ISR

With o so chosen, the resulting shape of the distribution is believed

to closely resemble the distribution of speech. The random deviates

.2

with such a distribution are obtained through appropriate transformation
of uniformly distributed random deviates which are generated using the
IMSL subroutine GGUBS [32].

The important issues at this stage are, firstly, how many of
random deviqtes shgu]ﬂ make up a segment and secondly, what should be
‘the size N of the sample. The answer to the first is quite straight
forward. The segment .length should be ]argé enough so that‘the sample }
average SNR remains more or less fixed as we vary the sample sfze N. !
A small segment length tends to inflate the overall sample average. P
The reason for this becomes quite obvious-if we consider an extreme .

case where each segment consists of only one source letter. In this

-3
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situation, it is highly likely that the value of some particular source
letter comes very close to a guantiser output, reducing the quantising
noise to a very small value and in effect producing an extremely high
SNR for that segment of one source letter. This high value will tend
to swamp all other segment SNR's, causing the overall samp]é average

to appear much higher. '

Based on these considerations, we shall use segments of length
1000 source letters. Furthermore, in order to keep the statistics
manageable, i.e., to be able to use central 1itit theorem as discussed
in sec. 3.1 to calculate the confidence intervals, we shall use a
segmentwise SNR sample size N = 20.

Encoding: Statistical consideration of sec. 3.1sclearly requires
the independence of each segment SNR. Therefore, the encoding is per-
formed using a run of 1000 source letters at a time and the DPCM en-
coder of Fig. 1.3. The encoding performance is evaluated in terms of
SNR as defined by (3.1). A1l the initial conditions are set to zero
before starting the encoding of the next segment. (This is partiG-
ularly important for experiments in coming Chapters). Whgﬁ performing.
experiments with matched source-predictor pairs, the predictor taps
are chosen the same as the auto-regression coeff}cients of the source
undergoing encoding.

The best guantiser steb—size is found by performing the en-
coding af different step sizes, fitting a SNR vs. size curve, and
takjng tpg‘best SNR so obtained as the SNR corresponding to the,

optimum quantiser. When working with Normally distributed sources,

&
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we empioy the uniform quantiser, since the performance gap between
the uniform quantiser and the optimal non-uniform quantiser is very
small. When dealing with Laplacian distribution, we shall find ;the
optimal non-uniform quantiser, since the gap between uniform and
optimal non-uniform quantiser SNR performance in this case is signif-
icant.

Curve fitting: Generally, this involves finding an approp-
riate source-predictor statistic which is 1ikely to have played an
imbbrtant part in a particular situation and plotting that particular
performance criterion as a function of this statistic for various
sources. This is done to detect an underlying law in the results.
However, this is only possible if some pattern can be made out of

the results. Wherever possible at least an attempt will be made.

3.5 Results: The SNR Loss

In most cases,othe ghR obtained through simulations fell well
short of (SNRq + SNI) expected at high rates from (3.9). We shall
define the SNR loss caused by the quantiser non-linearity at Tow rates
as (SNR - (SNR, + SNI)); i.e., the SNR obtained minus the SNR that we
should have achieved were it not for the quantiser.

To make the results more meaningful, an attempt will be made
to fit a curve to the loss as'a function of an appropriately chosen
source statistic, since the performance degradation varied a great

deal from one source to another. The most obvious course would be

to Took for a relation between th{s toss and SNI. But we could find
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no definitive pattern in the results for various sources.

Next, the SNR loss was plotted as a function of 10 Log]o {1/a}

the critical distortion in Gray's theorem [see Sec. 2.2]. The results

are shown, ﬁgr both Gaussian as well as Laplacian sources in Fig. 3.2
and Fig. 35%, respectively. The fitted curve follows the plotted points
well. To check the goodness of fit, the points corresponding to D.
Arnstein's [22] single tap auto-regressive sources are also shown for
Gaussian distribution. These points support the presence of strong
secondary effects that the fitted curve does not account for, since
the points are too wildly scattered about it. (The one sigma confid-
ence intervals are small, too small to be shown well on the plot.)

The above criterion appeared a little too complicated for this
particular situation, therefore some simpler function of AR taps
deserves attention. Another likely sourcs\statistic is ATA = ; a 2

k .
k=1
The resulting plotted points and the fitted curve are shown in Fig. 3.4

and Fig. 3.5 for Gaussian and Laplacian distributed sources respectively.

Theoretically calculated points from D. Arnstein [22] for one tap
Gaussian auto-regressive sources are also shown and these seem to agree
well with the fitted curve.

The plots for rates 1 and 2 diverge from the rate 7 plots when
the correlation between successive source letters increases. The
perfdrmance drop at rate 1 for large ATA is rather suBstantia]. Thus
it is not unreasonable to expect that proper source encoding strategy
should give a proportionately large SNR improvement with.tightly

correlated sources. Sources like speech, which often exhibit very
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tight corre]a;ion are probably not encoded very efficiently at low
rates by even the best adaptive DPCM systems. Another rather unex-
pected result is that the results-do not discriminate in a substantial
way between Laplacian and Gaussian distributions, keeping in mind the
limitations of the experimental setup. However, the loss appeared

™

less in case of Laplacian sources by'about one dB at very t)ght cor-
¥

relation. "
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- CHAPTER 4
TREE ENCODING OF AUTOREGRESSIVE SOURCES

We discussed in Chapter 1 that the output of traditional DPCM
code generator can be mapped onto a tree-like gtructure shown in fig.
41.4. However, the traditional DPCM code generator pursues only a
single path through this tree. In a superior abproach the encoder
performs a multipath search. Numerous search algorithms are known
which pﬁrsue several paths through the tree at any time and choose
among them at a later point. In the ensuing work, we shall use such

a tree search algorithm as the encoder along with the traditional DPCM

encoder to encode autoregressive sources.

4.1 Implications of Previous Work
<

Fuelled by rapid strides made by the rate distortion theory,

there has peen a recent interest in the application of tree encoging
to Sources like speech and images. Real speech is a source whose
exacf distribution is not known and which exhibits quasi-stationarity.
The early impefus was provided by a paper by Andersbn_and Bodie [23j
who used a tree search algorithm along with traditional DPCM encoder
of fig. 1:3 to encode speech at rates of 1 and 2 bits'per source
. letter. The scheme being non-adaptive did not take ipto account the

quasi-stationary nature of the source. With the quantiser stép4sfze
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fixed, it did not correct for local power variations in speech. Yet,
a moderate degree o} search yielded a SNR improvement of the order of
3 dB over the traditional DPCM. s

The SNR improvement due to multipath search was attributed to
among other things, mismatched source predictor pair on a local basis
or an unmatched stepsize. The last possibility was discounted by

Jayant and Christensen [24] who studied a fixed predictor and an adap-

tive guantiser along with tree searching and still reported a comparable

gain. Wilson and Hussain [25] used an adaptive predictor/quantiser
scheme and reported a similar gain at comparable intensity of search.
Most recently, Chan andiéjhefson [26] applied M-algorithm along with
maximum entropy method JMEM) to.compute a new predictor every 64 ms,

a short duration designed to account for the quasi-stationarity of
speech, and they reported SNR gain over traditional DPCM ranging from
1.5 to 2.5 dB. These last two studies tend to agree against the gain
coming from a mismatched’source and predicibr.. .

There has been a good deal of speculation as to the origin of
this quite substantial performance improvement at a rather moderate
search effort. In non-adaptive schemes, the improvement could be
attributed to non-stationarity of speech. But in the case of adaptive
schemes, the improvement has been attributed to many different causes
including the qué]ity of adaptatién,and the distribution of speech,
which ;gsembles the Laplacian distribution more closely than the

designed for Gaussian distribution. But the recent work of Chan and

Anderson questions the belief that this relatively large gain is due
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to a local mismatch between the source and predictor. However, several
questions remain unanswered. ‘

The results of Chapter 3 are rather illuminating in this regard.
These results establish beyond any reasonable doubt that the quantiser
in the predictive loop of DPCM at Tow rates does lower the performance
considerably below that expected from estimation theory and raises many
questions about the effectiveness of traditional DPCM at these low rates
even with a perfectly matched source-predictor pair when the source is
tightly correlated. The possibility exists that tree-searching might
fix a fair amount of damage done by the quantiser non-linearity in the
predictiye loop of DPCM. .This would be quite consistent with the
results of many authors, including Chan and'AnQerson, whose results
1ndicate*t@at SNR imprqvement due tp tree searching is largely inde-
pendent of‘ daptation.

To put all these speculations to rest and locate the real
origin of the'perforﬁance improvement, in what fo]]ows‘we shall discuss
and app]y'a tree search algorithm to this end. fhe algorithm along
with the traditional DPCM code generator will be used to encode auto-
regressive sourceg_at low rates as well as high rates. The performance
of such a scheme Q%]] be evaluated in detail for the case when pre-
dictor is matched to the source as well as the case when predictor is
mismatched to the source in ordér to find if tree searching recovers
the performance degradgtion due.to,mismatched source pﬁedjctor and to

what extent. Furthermore, autoregressive sourtes will be generated

by using random deviates drawn from both Gaussiah and Laplacian distri-
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butions to determine the role of the distribution.

4.2 Tree Encoding
Traditional DPCM penetrates the code tree through a single path

approach. The code generator outputs the final output digits {corres-
ponding to a tree branch) on the basis of previous branching decisions
and the current input to the encoder. In this single path search the
encoder retains only one path through the tree and decisions are made
instantaneously without any regard for the future behaviour of the
path. Clearly the encoder can make more efficient use of information
available to it if it can delay its final decision for the time being,
retain all the options available to it at a given Tevel in the tree,
and choose eventually a path (code word) that satisfies the approp-
riate fidelity criterion best. Since such an exhaustive search will
find the best path through a tree while the traditional encoder finds
a path (some other) through the tree, the performance of tﬁe new system
cannot be worse than that of the traditional system and actually a
significant gain may result. Even if only a few good paths are re-
tai?ed at a given level instead of all the possibilities, performance
can only improve. However, the overall improvement might be reduced

compared to the exhaustive case.

4.3 M-algorithm

Many effective algorithms are known, each differing from the

others in how paths are retained or dropped. Accordingly, their
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effectiveness varies. Some are more effective at lower intensity of
search while others are more effective at higher search intensity and

" of course the source plays its part too in decidiqg which particular
algorithm is more suited to~}t. At low intensity of search, the M-
algorithm, with its modest complexity and synchronous operat®on has
been found quite effective when encoding speech. Since in this work
we are more interested iy the effectiveness of tree searching rather
than the merits of a particular algorithm that accomplishes it, we will
not go into great deal of detail about search algorithms. We choose
M-a{gorithm as a benchmark degree of searching.

Though it is not uncommon to find detailed description of
M-algorithm in literature, we shall briefly describe it to achieve a
measure of self-containedness.

Being a breadth-first algorithm, the M-algorithm views all
the branches it will ever view at a given tree-level before penetrating
any further into the tree. The scheme pursues a fixed number M of tree-
paths at any given tree-level. At each level of the tree, all the bM
branches are extended out of the M saved paths. from the previoys level,
and only the best M of these bM extended paths (b is the number of
branches out of a node) are saved for the next level. The M—a]gorithﬁ
(as do.all other breadth—fifst algorithms) operate synchronously; i.e., -~
the lengths of all the retained paths at any given instant are the same.

In the steady-state operation 6f the algorithm, this commén
path length is called the memory-length L of the search and in practice

is required to be a small number due to memory constraints. The path-
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map symbols can vary over this length. At the Nth source letter input
to the encoding algorithm (N-L) becomes the point of decisions among

path alternatives leading to level N. Here path-map symbols corres-

ponding to the (N-L)th branch are released as final output. This impiies

that the algorithm delays its decision by L source letters after it has

received an input source letter.

4.4 Experimental Setup <

Much of the material discussed in the experimental setup of
previous chapters carries on to the present case with the following
additions and modifications.

Unless indicated to the contrary, throughout this thesis we
shall use M = 4 and L = 32. It has been reported that M = 4 extracts
much of gain that can be had from M-algorithm and our work will only

strengthen this point. We do have a few runs using M

8 and it is
clear that the SNR improvement achieved in going from M = 4 to M = 8
is only a small fraction of that achieved in.going from M = 1 to 4.
L = 32 is larger than common in applications, but when encoding a
source with very tight correlation between successive letters, it is
essential to have a sufficieﬁt]y large memory length. o
In such a situation, it takes quite a while for the source
letter correlation to die out effectiye]y so that a final deéision
can be made by the algorithm. A premature turncation of memory
length in these cases will adversely affect the performance of the .
search. This follows ‘from the fact that a final d?cision at a partic-
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ular level (N-L) in the tree has already been made while the effect

e et

of this decision is still Felt in the upcoming branches (> N).

Now turning to autoregressive sources, which include both with‘
Laplacian as well as Gaussian distributions, we encode in exactly the
same fashion as in sec. 3.4. We employ again a sample size of 20 with
each segment consisting of 1000 source letters and one sigma confidence
intervals., ‘ %

Furthermore, to faci]itgle comparison with other works which
are relevant to this work, the well known signa]—to-quantigption noise
ratio as defined in section 3.1, will be used as the metric for the
search algorithm. The SNR so defined is equivalent to the cumulative
squared error. The metric will be 1ndependent‘across runs, i.e., the
search a]gorithm will find a path of length 1000 in the tree which'has
the greatest metric and then set the metric back to zero and start
éfresh'to encode‘a new segment of 1000 sgurce'lettehs. This is essential
in a statistjca] seﬁse as discysseq in sec. 3.1; the.segmentwise SNR's
that constitute the sample SNR's must be independent.

Since the SNR improvement involves the difference between the
SNR's with and without searching, two distinct statistical quantities

appear with different standard deviations. The confidence interval

for the difference (the SNR improvement) is simply.the sum of confid- .

.
ot A A

ence intervals of the two quantities.

4.5 Analysis of Results

From a number of experiments with varying degrees of AR order

t
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SNR wmprovement Gausslan AR(P) Sources . ’
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and source letter correlation it was not difficuit to see a pattern
in the results. The SNd performance improvements due to tree searching
seems to increase with source letter correlation. Now it remains to
see if an appropriate source statistic can be ¥found that plays a crucial
part in determining the amount of gain due to tree searching.

Again, the simplest and most obvious choice appears to be the
SNI. The resulting plotted points\and associated one sigma confidence
intervals are shown in fig. 4.1 and fig. 4.2 for Gaussian autoregressive
sources at rates 1 and 2 bits per source letter. It is interesting to
note that points corresponding to the first order sources split apart

from the rest in both cases.

Anothgr possibility is the eigenvalue spread of the autocor-

relation matrix of the source:

1 r] r2 rp
r] 1 r] rp_]
R, = : : (4.7)
r r r
P p-1  p-2 ]
L. -

where P is the order of the source and {rk} are the autocorrelation
coefficients defined in seé. 3.2. The eigenvalue spread plays a vital
role in deciding the speed of convergence of ada tive algorithms such
as LMS, Goddard's algorithm (Kalman Filtér), etcl.; the narrower the

spread, the faster the convergence. It is an agcepted measure of i11-
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conditioning of the autocorrelation matrix of a source [27].

A word of caution here is essential since the eigenvalues
that are Being considered here are not exactly the same as those that
come across in rate distortion theory. In this later situation, the
correlation matrix is of infinite order or at least of very high order
and the spread is the ratio of supremum to infimum of the (SPECtFUm)_]
g(w) considered in sec, 2.2. The eigenvalues of a pth order autocor-
relation matrix under consideration approaches the later ones in the
Timit of large P [29].

Let Ana

and A stand for the largest and smallest eigen-

X in
values respectively of the pth order autocorrelation matrix (4.1),

then the eigenvalue spread p is defined in dB as, -

p = 10Logyy [roo /Apind (4.2).

max’ “min
Fig. 4.3 and fig. 4.4 shows corresponding plotted bbints for Gaussian
autoregressive sources at rate 1 and 2 bits per source Tetter. The
reépective plotted points for Lap]acién AR(P) sources are shown in

fig. 4.5 and fig. 4.6. Each plotted point has associated with it

the appropriate one standard deviation confidence interval. Again,

-the SNR improvements for single tap sources split apart from the rest

which represent multi-tap sources.
Another promis}@g source statistic that ought to be considered
is the critical distortion in Gray's theorem discussed in sec, 2.2.

Fig. 4.7 and fig. 4.8 shows the respective plotted points and the

"~ fitted curve for Gaussian and Laplacian sources and the associated
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Y
confidence intervals. Fig. 4.7 also shows a few points corresponding
to the rate 7. Agreement is now good for all sources.
Ay

>

4.6 Mismatched Source-Predictor

There are situations in real life when we doﬁ‘t know the source
exactly, such as in speech encoding, whicﬁ naturally gives rise to mis-
matched source-predictor pairs. In order to investigate the effect
of tree searching in such situations, we also encoded sources with a
mismatched predictor. The predictor i% fixed to be the "Butterworth"
filter with AR taps 1.231, -0.625, 0.119 in each case; and we varied
the source. Fig. 4.9 shows the case whep the source is tightly correl-
ated and is-of order 3 at rate 7. Fig. 4.10 and 4.11 shows the per-
formance of Butterworth fi]ter'predictor when used to en;ode two
single tap gources, one 11§ht1y correlated and the other tightly
correlated. In either case, tree searching does not give much more
than a token improvement. The corresponding cases for rate 2 are
shown in fig. 5.3 to 5.8 of the following chapter. In this case, the
improvement is more pronoune¢ed but nothing of the nature of removing
or fixing the mismatch.

One major drawback of the source statistics considered thJ;
far, apart from SNI, is that they are meaningful only in the situations
when the predictor is matched to the source. The SNI, which does take
account of source as well as the predictor structure, has not been
particu]arly'usefu1 in predicting searching-gain. Therefore, it

becomes highly desirable to seek a source statistic through which we
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Fig, 4,10 syn performance of DPCM encoder with a mate-~
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can unify the SNR improvement that can be achieved when the predictor
is matched to the source a;ﬁwel1 as when it is mismatched.

One such statistic is our SNR loss as defined in sec. 3.5 at
low rates. The SNR improvement as a function of SNR loss is shown in
fig. 4.12 and 4.13 for rate 1 and 2. It is interesting to note that
both curves hold irrespective of the distribution. It is also worth
poiﬁtjng out that fit of the curve for rate 2 is rather excellent; i.e.,
almost every point that we tried fell close to the fitted curve, regard-
less of distribution. Furthermore, as far as mismétched,source-predictor
pairs are concerned, the statistic has failed to deliver. The SNR
1ﬁproVements in such situations do not follow the curves even approx-

imately.

4.7 General Discussion

Examination of plots clearly indicates that we gained most
through tree searchiné where the traditional DPCM predictive quantiser
did the most damage, something that. we anticipated when discussing
the régults of Chapter 3. Clearly, tree searching of moderate inten-
sity has had a considerable success in fixingea subsiantia]*part of
the. damage doné by quantiser non-linearity in the pre&icti?e loop of
DPCM. The SNR improvement is quite substantial both at rate 1 and 2.
Furthermore,'considering fhe statigticél nature of results, the SNR
improvement appeﬁrs to be a very well-behaved functien- of the critical
distortion and the DPCM SNR loss.

. -3 )
The results obtained thrgigh these controlled experimentations
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confirmthe SNR improvements obtained by other authors at comparable
search intensity with‘speech. The results also establish the iﬁdis—
pensibility of tree searching when working at low rates with auto-
regressive sources even when the predictor is perfectly matched to the
source. Thus, the opinion expressed by Chan and Anderson is completely
justified: That the SNR 1mprovements available from adapting and tree
searching are independent, at least for speech modelled as an auto-

regressive source. Also, the role of distribution in determining the
¢

A7

gain due to tree searching seems to be quite limited at these low rates.

Furthermore, we see no sign of widely held belief that tree
searching can recover to any substantial extent the loss caused by a

mismatched bredictor at either high rates or at low rates. However,

" the critical distortion 1/a seems to play a vital role in determining

the gain due to, searching.
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CHAPTER 5
SMOOTHED CODES

The theorem by Berger [14] discussed in sec. 2.5 clearly
establishes that at rates for which the distortion D is less or
equal to the critical distortion, even if a decoder filter is
perfectly matched to the source, such a source decoder is not
optimal. The theorem advocates a mismatched decoder filter on
purpose by introducing zeroes in the matched decoder filter transfer
function in a certain fashion described in sec. 2.5. The net affect
of these zeroes is that we require a smoothing filter cascaded to
the matched decoder filter to achieve optimality. A counter-part
of the above result at low rates, rates that are of interest to us
in this work, has not been reported since. However the significance

of b-coeffients specifying the.smoothing filter at high rates

increases as the rate goes down,i.e., as the distortion D approachesv

the critical value Do,so it is very Tikey that we need a smoothing

filter even for D > Do.

In what follows, we shall discuss a rather ad hoc scheme

brought about only by intuitive considerations. We combine it with the

traditional DPCM decoder filter and investigate the résu]ting
performance. The scheme' was initial{y proposed by Anderson and Bodie
[23] to encode speech but it has not been studied in a careful
manner with probabilistic sources.
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5.1 Smoothed LMS Predictor Codes

The principal effect of the qﬁantiser in the predicti&e loop
of the ﬁ§CM encoder is to superpose on the source output {xt} a "zitter",
or an f /2 note (fS is the sampling frequency). One approach in the
design of a smoothing filter will be to remove or at least lessen as
much as possible this high frequency note.

The approach suggested by Anderson and Bodie [23] achieves
this through a small additional increase in complexity. When the DPCM
\predictor output is smoothed by a fi]ter with the following specific-

ations, we denote the set of outputs as a smoothed LMS predictor code.

1. Zeroe§ at fS/2

2. Some attenuation near fs/2

3. Short impu]sé response (to avoid lengthening the
total predictor filter order, and keep down its
impulse response)

4. Minimal delay

These requirements can be met by a first order or a second

order transversal filter. However, a second order filter seems to

do a distinctly better job compared to a first order filter. The
transfer functions of first and second‘order filters can be expressed
;s: ' . |
f

ot oz (5.1)
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Fig, 5.1 Gain-Phase responce of the smoothing filters
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Here p (1/2 < p < 1) is free parameter. According to Anderson and
Bodie [23] a p = 0.6 has been found particularly useful with speech.
For a filter of given order p. determines the shape 6? gain-phase
response of the filter. With the substitution z—] = e'jw, fig. 5.1

gives plots of phase and gain vs. frequency.

5.2 Experimental Setup

~In the ensuing experimentations, we shall use a second order
filter with p = 0.6. The filter will be cascaded with the traditional
DPCM encoder of fig. 1.3 as shown in fig. 5.2. The rest of experi-
mental setup remains exactly the same as in Ch;pter 4. Autoregressive
sources with innovations having Laplacian and Gaussian distributions
will be encoded using the encoder of fig. 5.2 and the M-algorithm with
M=4and L = 32. Matched as well as mismatched source-predictor pairs
are examined at rate 1 and 2.

A uniform step-size quanfiser is utilized with Gaussian auto-
regressive.sources. From Paez and Glisson [21] the optimum quantiser
step size at rate 2 'is (0.395, 1.410) for independent letter source
with Laplacian distribution. When encoding coloured Laplacian sources,

in this case, we shall use a multiplier b on these 'steps and optimize

the size b. Therefore, the SNR plots in this case will be against b.

5.3 Results
The results at rate 2 are shown iﬁ fig. 5.3 to fig. 5.5 for

Gaussian autoregressive sources. We have used the Butterworth filter.
Y _
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taps as predictor in all cases. Butterworth filter (a] = 1,231,

= -0.625, a, = 0.119) is quite popular in speech encoding. The

32 3
source is varied from a very lightly correlated single tap source

with 4 = 0.5 in fig. 5.3 to a tightly correlated 3 tap source in.

%19. 5.5. Smooth%ng is used both'when the predictor is matched to

the source and when it is mismatched. The corresponding results for
Laplacian autoregressive sources are shown in the fig. 5.6 to %1g.

5.8.

In the case of lightly correlated sources (a] = 0.5) in fig.
5.3 and %ig. 5.6, we see that the smoothing filter has made matters
significantly worse compared to non-smoothed case, regardless of if
the source is matched to the predictor or mismatched. However, when
the source is tightly correlated as in the case of fig. 5.5, we see
that the smoothed code performance is comparable to non-smoothed code
at M = 4,with the source matched to the predictor. A very slight gain-
even appears.

When the source and predictor are mismatched, one can see in
fig. 5.5 that there is a significant gain of ~ 0.5 dB. However, this
is far from making up the loss due to mismatch. Fig. 5.9 and fig. 5.10
show the rate 1 results. Here again, there seems nothing prdmising.

On the whole, the smoothing filter appears to have made matters
worse when the source is lightly correlated. It has given an insignif-
icant gain wﬁen the source is tightly correlated and the predictor is
matched to the source. There is some improvement when the source is

tightly correlated and the predictor is misﬁatched to the source.
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These results'agree with the observations of Chan and Anderson (261,
who used the same smoothing filter in cascade with the traditional
DPCM code generator to encode speech. Furthermore, the role of the

distributionlas in all previous. cases seems to be quite limited.



CHAPTER 6

. RANDOM CODES

Minimum Mean Square Error quantisation is n;t very efficient
if a signal having probaBi]ity density function (pdf) with long tails
is to be encoded at Tow rates. That is, the SNR performance of MMSE
(optimal) quantiser is best when encoding uniformly aistfibuted sources,
it is not so good with normally distributed sources, it ;; bad with
Laplacian distributed source, and it is even worse wi'th Gamma distri-
buted soﬁrceg. On the contrary, the rate distortion théory says that
greater data compression is possible with Laplacian and Gamma distri-
buted sources whose pdf has long tails. '

We notfced in Chapter 3 that the overall SNR obtained with
Laplacian sources was significantly 10Qer than that obtained with
_ their Gaussian counterparts. This foi]owé from the fact that we
ideally expect the'MMSE quéntiser SNR to be SNR

q
and SNI are as-defined in Chapter 3) and at rate 1 the SNR

-+ SNI ‘(where SNRq

q (ideally)

for Laplacian sources is. 3 dB while for Gaussian sources it is about
4.4 dB. In addition, the SNR loss at low rates for the two cases
was of more or less similar magnitude, thus leaving us with a signif-

icantly Tower net SNR in case of both memoryless as well as correl-

_ ated sources. S ‘
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Tree searching did-improve the performance of op%ima1 pre-
dictive quantiser codes (DPCM codes) but{it gave more or ]éss the’
same improvement with Gaussian and Laplacian sources. Thu§ the large
potenfia] gains with Laplacian sources remained untapped. In other
words, tree searching could not fix the inherent shortcomings of the
quantiser codes’when encoding sources with a pdf with long tails; all
it did was to make up- for the damaging interaction of the quantiser
nonlinearity aﬁ; the feedback present in a DPCM circuit irrespective
of the p&% of the source.

Although at rates‘higher than 1 entropy coding ha$ had con-

siderable success in reducing the margin of performance between rate

distortion theoretic lower bounds and conventional DPCM (or PCM with

L

memoryless soyrces), our knowledge of coding strategies that can tap

the‘large potential gains at rate 1 is very limited. The rate dis-
tortion theory which establishes the existence of these possible but
yet untapped gains used random coding arguments in arriving at these

results. Accordingly, our approach in-the following work will be to

use certain random tree codgs to encode Gaussian and Laplacian distri-

buted autoregressive sources at rate 1. We.expect that even though
'suboptima], these random codes may do well, considering the pdor per-
formardce: of traditiéna] schemes such as PCM and DPCM at these low

v

rates. To.

6.2 Random Tree Coding

To generate a random ensemble of tree codes for a p-th
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order, Gaussian autoregressive source when D < 1/A, one choosés a
tree with o branches per node and g symbols on each branch so that
8'] log o is the rate of encoding. Each‘branch of this tree is next
populated with independént identically distributed N(0, 1) random
variables. The resulting code is called a white tree code and each
path through this tree is ca]]ed a white code word. According to
rate distortion theory the ensemble performance of such white tree
codes (with é certain scaling operation on the variance of the random
variables) shouid achieve the rate distortion theoretic lower bounds
with memoryless Gaussian sources in the limit of large tree depth and
an exhaustive search, Next let each white code word be passed through
the—filter of fig. 2.2 with the shift registers set to their initial
zero state between guccessive input wdrds. The a's in fig. 2.2 are
the autoregression coefficients of the sourse and b's are calculated
using the relationship (2.1). The resulting set of output words
constitute a typical code in the ensembie. Thus, we generate.a tree
code that is matched te the memory of the autoregressive source by
appropriéte1y'co]ouring the white tree codes that one uses for encoding
i.i.d. Gaussian source. . '

. 1f the source encoder were ideal, it would find that word in
the white code which results in a co]ohring filter output word that
approximates the source word best. 1It, then,. would forward thé path
map o% this white cdﬁe word to the cﬁanné[ encoder. Assuming noj
channel impairménts, the. source decoder only needs ‘to but the white

code word §peéifﬁed by the path map into the colouring filter and
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-all the experiments, irrespective of the distribution.
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‘present the resulting output word to the user.

Clearly, this scheme requires an exponentially increasing

memory and'computations as the tree depth grows. In practice, there-

_fore, one needs to modify the above scheme in various ways to incor-

porate memory and computational constraints. We shall accomplish

this with the M-algorithm and by constraining the depth of the tree.

6.2 Experimental Design

At rate 1' for many of the sources tHat are to be encoded,

.D > 1/4; this implies that we do not have a valid method for computing

the b-coefficients in fig. 2.2. Furthermore, the coding strategy of
section 2.5 has been proven only for Gauss$ian éutoregressive sources.

Taking all these facts into account, our approach in this work will

be to set all the b's to zero éxcept for b, which is setA0 1, in
This will
reduce fhe colouring filter of fig. 2.2 to that of fjg. 1.1.

Autoregressive sources are generated exactly in the same
fashion as described in the ekperimeﬁtg of Chapter 3. Inaddition,
a segment length of 1000 source letters, a samb1e size of 20, one
%tandard deviation (one sigma) confidence intervals and the M-algor-
ithn with M = 1, 4 and 8, and L = 32 are utilized.

A segment ]ength of 1000 implies 2]000

1000

dlfferent code words

and-will requlrg a generation of I° 2k 2]001 1 random variables (r v.)

: k=1
to fill a tree of depth-1000. Even though we overcome most of the

computational problem by using the M-algorithm, since the algorithm
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will exp]oré only a limited number of good paths, storing 20 trees

et Aagmin i o oo e o .

of depth 1000 each is not a very pleasant task. For our purpose,
we overcome this difficulty by sacrificing the idea 6f using the
same white code for all the sources to be encoded. We shall use
the following modified scheme:
A source letter is fed to the encodgr, the encoder will
call the random number generating suQroutine to generate M2R . E
random variables. (In case of Gaugsian AR(P) sources we use
the’ subroutine GGNML [32] and for Laplacian sources, we use ]
. the same subroutine GGUBS which is used to generate the Laplacian
.AR(P) sources but.wigh a different SEED. In our work the rate |

R is 1, and.in the colouring filter of fig. 1.1, the a's are ;

PRI SN

chosen the same as the source autoregression coefficients). ‘In
the steady state operation of encoder we have M retéined paths

from the previous encoding. The contents of the shift register

ISR SRS

in fig. 1.1 are set to contain the P most recent branch lebels B

of one of these M retained paths and a r.v. is fed to the circuﬁf.

5 B

' (At the start of the encoding it is assumed that the M paths have

s .,
SR

their branch tabels that are all-.zero). The shift. register is
.set to its original condition and another r.v. ié fed to the

filter. Once 2R r.v. have been fed, the contents of«the shift

register are changed to gontaiﬁ the P most rgceht branch lebels.

from another of the M .retained paths. 2% new r.v. are presented g

to the filter as before. The .process is repeated till all the M

R

path§ are éxtended to gene%pte M2" new paths. As usual, the encoder

N
s
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retains the M best of these MZR extended paths. The same pro-

. cedure is repeated till the whole string of 1000 source letters
is encoded. The best of these M paths is taken as the encoder

output.

The path metric in this case is the signal-to-noise ratio,

SNR = " : (6.1)

Here Xy is the branch lebel of the coloured random tree.

A careful examination of the above scheme sugéests that we will n,

not only have a different white tree code from one source to another
but a different code even for the same source but a different M. This
follows from the fact that we onty generate MR random’numbérs at each
level of tﬁe tree and. these ZRM random numbers‘will fi1l only certain
branches of the tree at'that Tevel degending on where we were, the
level beforehand.

g Ihe main difficﬂ]ty with this scheme is that information
theoretic lower bounds are derived, based on ensemble arguments, i;e.;
the average pgrf;;mahce of an-ensemble (collection) of codes achieves
the specifieﬁ_ipwer bounds. * Therefore, it is not necessary that all
the codes belonging to an ensemble are good. The theory only says

that the col]ebtibe performance of the ensemble will be as good as

the -lower bounds.  Thus, we do not have & unique whité code to encode
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all the sources. But with a fairly large sample size and segment
length, the meaningfulness of the results should not be seriously

disturbed.

6.3 Results and Conclusions

Fig. 6.1 and 6.2 show the actual SNR obtained with various
Gaussian and Laplacian sources plotted aga%nst the SNI. At M =1,
the random coding scheme has given more or less zero SNR in either
case. However, at M = 4 we get a substantial improvement in both
cases and this performance is further improved at M = 8. Here
again, Tike DPCM codes, we see SNR as a function of SNI splits into
two trends. Those autoregressive sources for which D S-Do obtain
a larger SNR than those for which D > Do' Actually, we have no
hesitation ip fitting curves for points for whiéh D S-BO:J The,sNR
obtained is proportional to the SNI. But this does not appear to -be
the case for sources for which D > Do’ since the confidence intervals
are very small and points are very widely scattered. But we have
drawn a dotted curve to ease the comparison between the two cases.

It is also worth pointing out that many of the sources for
which D 5_Do'are single tap spurées whi1e all the others are multi-
_ tap spurces. Also, the SNR improvement in going from M = 4 to 8 is
more for saurces for which D > Do' Anotheriimportant oﬁservation
about the plots, is that at a moderate searéh Tike the one we have
usedu'SNR‘s obtained with Laplacian and Gaussian sources are more

or less of the same magnitude at Tow SNI valies. - With DPCM, this
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is not the case as we have already pointed out.

Fig. 6.3 shows the SNR improvement in going from M = 1 to 4
for Gaussian AR(P) sources as a function of the critical distortion
Do' Clearly, it is not possible to detect any underlying law in the
plotted points 1ike we did in the case of DPCM (see Fig. 4.7 and 4.?).
Since at M = 1, the random coding scheme has not given a significant
SNR white DPCM codes gave most of their SNR performance at M = 1,
this comparison won't be very realistic. A more meaningful Eomparison
will be the one in which we choose an M which gives more or less the
same SNR with random codes as did M = 1 for DPCM. Then we multiply
the M fn both cases by 4 and compare thé SNR gain as a function of
1/5. ’ *

Fig. 6.4 and fig. 6.5 show the SNR\¥@provement in going from
M =4 to 8 as a function of 1/A for *both Gaués{aﬁ\and Laplacian AR(P)
sources, respectively. The SNR improvement now is a fairly well-
behaved function of the critical distortion. Furthermore, untike
DPCM, we have obtained SNR improvenent with memoryless Gaussian and
lap]acian sources in this scheme‘jn going for a higher M.

Fig. 6.6 shows the gain in SNR obtained by thg random codes -
at M = 4 and 8 over the DPCM codes with M = 4 for Gaussian AR(P)
sources. It is clear that at M = 4 random codes performed poorly
compared to DPCM codes at M= 4. At M =38 there is signifi;ant
improvement with the random codes over M = 4 but still DPCM codes
at M =-4 outperform them. It has been pointed out‘jn previous

chapters thaf there is Iitf]e to_beﬁgafned by going from M = 4 to
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M = 8 with DPCM codes. But this is not theﬂcase with random codes
and if we search harder, the performance of these codes will improve
and eventually should overtake DPCM. However, it is also clear that
at least with Gaussian AR(P) sources, random codes will requive an
intense search for a significant improvement over the traditional
schemes such as DPCM with tree searching. This is not unjustified
considering the fact that performance of DPCM with tree searching is
not very far from rate distortion theoretic lower bounds with Gaussian
sources.

The SNR performance improvement obtained with Lép]acian AR(P)
sources at rate T with M = 4 and 8 over DPCM at M = 4 is shown in '
fig. 6.7. ' As expected, we see a different situation in this case.
Random codes at M = 4 outperform the DPCM codes at M = 4 when the
sources are uncorrelated or very lightly correlated. At M = 8 we
see an even greater improvement in the gap between the performances
of a random code and the DPCM. In the region of Tight correlation,
the random codes outperform DPCM codes at M = 4 by as much as 1 dB.
This figure is significant since M = 8 is by all means a moderate
search effort. However, in the absolute SNR terms, we havé not
achieved a higher SNR than the Gaussian case. The gain over DPCM
resulted only because DPCM performed poorly with long tailed Laplacian
distributed sources.

Another important observation is that with tightly correlated
sources (large 4) the random codes even at M = 8 did not perform well,

compared to DPCM codes with tree searching. The reason for this may
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be twofold. With tightly correlated sources, randbm codes appear

to require a more intense search, Secondly, as 4 grows, our sub-

optimal coding scheme becomes more and more suboptimal and this ma
have a more pronounced effect on ranme codes than DPCPMcodes,
in any case, the amount of SNR imérovement that materiaiised at low
L-values is very encouraging and makes one wonder if random coding
could be a viable scheme at low rates for sources whose pdf has a

long tail. g ~
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SUMMARY AND CONCLUSION

—+ One important result of this work is that the traditional
.DPCM encoder is ill-equipped to perform an efficient encoding of
autoregressiQe sources at low rates. The widespread myth that
better techniques of adaptation are the answer to low rate wave-
form encoding of speech appear quite il1-founded. The results in :
Chapter 3 establish that even a perfectly matched predictor causes
severe performance degradation at Tow rates and is clearly far from
an optimal scheme. In addition, we have been able to devise certain
xZ;perimgptal Taws which describe the performance of the DPGM encoder
at low ;ates for general autoregressive sources. The quantiser non-

Tinearity combined Qith the feedback present in a DPCM circuit has

frustrated all attempts so far for an analytical evaluation of the

-

|
' DPCM encoder perforimance at low rates for general AR(P) sources.

Thus, these experimental laws will be useful whenever it is not
convenient to evaluate the encoder performance through actual simul-
ation, :

A hoderaté amount of tree searching has been very successfuf
in improving the performanée of the DPCM encoder and this improvement
resulted because the tree searching checked with a considerable success
the feedback effect of the large qughtisation errors at these low rates.
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The results clearly establish that tree searching is not a replace-
ment for better adaptation: The SNR improvement due to adaptation
is nearly independent of the gain due to searching. Our results also
establish that tree searching with DPCM codes will not help at high
rates but at low rates a moderate degree of searching is indispensible,
particularly with tightly correlated sources.

Here again we have been able to detect experimentally the
underlying laws governing the gain due to tree searching. The gain
is a very well-behaved function of the critical distortion DO (= 1/8)
in Grays theorem (see sec. 2.2) and the SNR Loss defined in sec. 3.5.

The smoothing filter that we uti]izeé in Chgpter 5 made thé
performance worse in many cases and gave only a slight 1ﬁprovemeqt
when the source was very tightly correlated. Therefore, it is possible
that the smoothing filter design needs to take into account thé source’
statistics. In fact, the R(D) theory smoothing filters discussed in
sec. 2.5 did téke into account the source statistics. The smoothing
filter scheme in this work which did not account for the source stat-
istics, however, is an unproductive additional complexity.

The aone results holds by and large, irrespective of the
distribution of the source, be it Gaussian or Laplacian. In short,
to achieve best results with a DPCM encoder at low rates the.predic-
tor must be well matched to the ;0urce, with or without tree searching.
An important, though rather unp1easant conclusion of this work is that
even tree searched DPCM with a perfectly matched predictor may not be

adequate to achieve the goal of rate 1 waveform encoding of speech

N
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with a telephone quality reproduction. (Something that has so far
eluded us and the many reasons e.g. faster and better adaptation
éttributed to this/Byavarious authors in the past appear very incon-
vincing now). This feaves us with no choice but to look for a better
code generator different from DPCM., DPCM has been particularly
1neffect1ve'in performing efficient data compression with Laplacian
distributed sources. According to rate distortion(}heory there are
large untapped gains here. Though tree §earched DPCM did improvi the
performanée, a lot of ground is yet to be covered. *

Random coding scheme of Chapter 6 performs poorly with
Gaussian AR(P) sources compared to tree searched DPCM at modérate
search efforts. However, this was not the case with Laplacian AR(P)
sources: We obtainedva significant amount of gain over tree searched
DPCM with Tightly correlated sourcés at a hoderate search. This is
very interesting since speech can be considered a Lqp]aéian AR(P)
source. An even better approximation to the distribution of speech

is the Gamma distribution and the random coding scheme may perform

. even better with these sources, compared to DPCM with tree searching.

Thegfbgoretical gap between the performance of quantiser codes and
rate distortion theoretic lower bounds in this case is almost double

that for Laplacian sources. - - '

- 4

?

However, the performance of random’codes dropped significahtly
. ! .

at tight cqrre]ations compared to DPCH with tree-searching, perhaps

due to the fact that our scheme becomes very suboptimal at these

‘correlatfons. Thys, it is essential that we find the optimal (or

¢
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néar]y optimal) code generator to perform an efficient encoding,of

.these sources at low rates.
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TABLE

Sty

Autoreoressive sources used in the exneriments and their
relevent statistics:

AR(P) coefficients | Autocorrelation Eigen:va1ueﬂ SNI 10Log10(1/A)
coefficients Soread (dB) | (dB)

0.25 0.25 0.28 2.6
0.5 0.5 4.8 1.25 -3.5
-0.5 -0.5 4.8 1.25 ] -3.5
0.7 0.7 7.5 2.92 -4.6
0.9 0.9 ° 12.8 7.21 -5.6
0.93 0.93 14.5 8.69 | --5.7 "
0.95 0.95 15.9  '{10.11] -5.8
0,97 0.97 . 18.0 12.28 |- -5.9
0,99 0.99 , 23,0, 17.01 ] '~6.0
.0.656 0.6 8.4 1.97 -4.9
-0.09&', 0.3

1.029 >~ 0.75 12.8 4,2 -7.6
-0.371 . 0.4 «

1.116 0.76 13,6 4.82 -8.25
~0.468 0.38 .

10.95 0.85 14.4 5.64 -6.31
-0.117 0.69

1.421 0.9 19.5 8.98 -9.55
-0.579 0.7

1.333 0.8 16.6 6.98 -9.55
-0.667 0.4

1.725 0.968 27.5 16.45 | -10.92
-0.78] ) 0.889

1.807 Y 0.98 31.4 19.44 | -11.25
.0.843 0.927

P



TABLE  (cont.)

¢

98

AR(P) Coefficients| Autocorrelation | Eigen-value | SNI- 10Log]0(1ﬁg)
. Coefficients *| Spread(dB) | (dR) '
1.23% 0.790 17.1 5.5° ~9.45

-0.625 0.447 /
0.119 0.17
1.526 0.9 23.0 9.25 -10.62
-0.773 0.691
0.10] 046 )
1,869 0.968 31,0 17.0 -12.37
-1.10 0.889
0.185 0.781 .
1.748 0.864 _ 9.9 " -12.6
-1.222 0.557
0.301 0.227
/
a3
-~
C .
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