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Abstract 

Asthma and other allied allergic diseases represent a significant burden to health care and 

are recognized as endemic in the Western World. While a diverse array of effective 

pharmacopoeia provides reprieve from symptoms, no preventive or curative therapies are 

currently available. This is in part due to the paucity of understanding how allergic 

diseases develop. Recently, remarkable progress has been made in this regard, largely 

due to the discovery of regulatory mechanisms that control responsiveness to antigen in 

the airway. Indeed, to understand fully why people develop asthma requires an 

understanding of both allergic sensitization and tolerance. Work presented in this thesis 

contributes to our knowledge of inhalation tolerance. Using a classical mouse model of 

allergic airways inflammation, we show in Chapter 2 that inhalation tolerance is a 

persistent and active process as it prevents the generation of airway eosinophilia, antigen

specific IgE and airway hyperresponsiveness upon secondary immunogenic challenge, 

independently of IL-lO or IFN-y. Building on these observations, in Chapter 3 we show 

in a mucosal model of allergic sensitization that inhalation tolerance cannot be broken 

with the expression of GM-CSF, a potent growth factor and cytokine that has been 

associated with asthma and allergy in both human and animal subjects. However, 

concomitant expression of decorin, a natural inhibitor of TGF-f3, reverses inhalation 

tolerance, thus implicating TGF-f3 as putatively important in regulating responsiveness in 

the airway. In Chapter 4, we identify an alternative mode of tolerance. We show that 

chronic exposure to innocuous antigen in sensitized mice does not lead to chronic 

inflammation but to abrogated eosinophilia that can, nevertheless, be reversed with the 

expression of GM-CSF. Collectively, these findings enrich our understanding of 

tolerance and provide a framework for new discoveries that may, ultimately, lead to 

novel and powerful therapies for allergic disease. 
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Chapter 1: Introduction 
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ALLERGY, ASTHMATIC INFLAMMATION AND TOLERANCE 

A sthma is a complex and heterogeneous disease characterized by eosinophilic airway 

inflammation, intermittent reversible airway obstruction and airway 

hyperresponsiveness. The incidence of asthma, atopic dermatitis and hayfever has nearly 

doubled in developed countries over the last twenty years, with the present cost of care for 

asthmatics estimated at about six billion US dollars per year in the United States alone (1, 2). 

Although genetic susceptibility is a factor (3), the rate at which incidence of allergic diseases 

is rising implicates the environment as key in modulating, if not orchestrating, the process. 

Among the hypotheses put forward to explain the rise of allergic disease, the <hygiene 

hypothesis' is most recent and deserving of attention (4). It proposes that decreased exposure 

to immune-stimulating infectious agents early in life predisposes to the development of 

allergic disease. Factors associated with decreased incidence of allergy, asthma or both, 

include infection with k!Jcobacteri1ll11 tuberculosis (5), measles virus (6), and hepatitis A virus (7); 

increased exposure to infections through contact with older siblings (8); and attendance at a 

day-care facility during the first six months of life (9). The hygiene hypothesis then, "best 

accommodates the link between allergy and social class, the urban to rural gradient, infant 

diet, over-use of antibiotics and the East to West gradient of disease" (Stephen Holgate) (10). 

Uatil the mid-1980's, investigations of allergic disease focused on allergen-specific 

IgE, mast cells, and immediate type 1 hypersensitivity responses. Understanding of allergic 

disease was, therefore, limited to this acute phase component triggered through allergen-

induced cross-linking of specific IgE antibody bound to mast cells through high-affinity 

receptors. Mast cells release a range of granule-associated preformed mediators that are 

responsible for immediate syJl1ptoms of the acute allergic response. Although evidence that 
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inflammation is a component of asthma was initially derived from findings at autopsy in 

patients with fatal asthma, more recent studies have subsequently shown inflammation from 

bronchial biopsy specimens from patients with mild disease (4). Specifically, denudation of 

the airway epithelium, deposition of collagen beneath the basement membrane, mast-cell 

degranulation, and infiltration of the airway by lymphocytes and eosinophils have been 

found in patients with mild-to-moderate asthma (11-14). 

The elucidation of mechanisms that lead to inflammation was finally made possible 

in 1986 when Mosmann and Coffman showed that (fn 1 and T1l2) cells cross-regulate each 

other (15). After the delineation of these subsets it became clear that CD4+ TH2 cells are at 

the epicenter of the allergic process, as they control and amplify the allergic inflammatory 

response by, among other things, secreting key cytokines: IL-4 leads to enhanced IgE 

synthesis, IL-5 to eosinophil growth and differentiation, IL-9 to enhanced mast cell 

differentiation, and IL-13 to increased mucus production and airway hyperreactivity (16). 

Much research has also focused on the role of dendritic cells in the initiation and 

maintenance of the asthmatic phenotype. DCs are crucial in detennining the outcome of 

antigen encounter and integrate signals that are derived from the antigen, its inflammatory 

context and the host environment into a signal that can be read by naive T cells in the 

lymphoid tissues (17). The list of mediators of allergic disease has grown substantially over 

the years, and includes nearly every type of leukocyte, as well as a myriad of cytokines, 

chemokines, growth factors, and transcription factors (4). Currently, airway inflammation is 

regarded as the central component contributing to airway damage and dysfunction. 

Correspondingly, a wealth of pharmacopoeia has emerged. New therapies for allergic 

diseases have been developed by improving existing classes of drug or by discovering new 

classes of drug through research. Corticosteroids are the most effective in treating atopic 
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diseases and represent the first-line treatment for chronic asthma in patients of all ages and 

severity of disease (18, 19). Their mechanism of action involves binding to a cytosolic 

glucocorticoid receptor that normally translocates to the nucleus and binds as a monodimer 

to DNA to activate the genes. Corticosteroids may also elicit their anti-inflammatory activity 

irrespectively of binding to DNA (20). The principal action of corticosteroids is to suppress 

multiple inflammatory genes, including cytokines, inflammatory enzymes, adhesion 

molecules and inflammatory mediator receptors. Although a high level of anti-inflammatory 

action with minimal side effects has been documented, corticosteroids do not cure the 

disease and allergic inflammation recurs when treatment is stopped (18). Histamine Hl

receptor antagonists (antihistamines) have a long history in the treatment of atopic diseases. 

These drugs are effective in rhinitis and reduce itch in atopic dermatitis, but have no clear 

benefit in asthma (21). Multiple other antagonists and modulators have been developed, or 

are currently in development, including antileukotrienes (22), monoclonal antibodies to IL-5 

(23), or soluble IL-4 receptors (24). In addition, several strategies to inhibit inflammation are 

being tested in animal models, including chemokine inhibitors, anti-inflammatory cytokines, 

transcription factor inhibitors, and cell adhesion blockers (18). By no means an exhaustive 

list, it nevertheless represents a wide variety of approaches in the treatment of atopic disease. 

Yet, in all cases, the treatment focuses on the effector phase of an allergic response: this is 

likely reflettive of the paucity in our understanding of mechanisms that lead to sensitization. 

Although it is certain that CD4+ T H2 effector T cells have an important role in generating 

the inflammation that characterizes allergic disease, including airway eosinophilia and mucus 

hypersecretion in atopic asthmatics, less is known about how these T H2 cell responses are 

first induced. The elucidation of mechanisms that lead to sensitization remains, therefore, 

one of the most prescient tasks facing immunologists. 
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The discovery in the last several years of mechanisms that limit, and in some case 

prevent the development of, inflammation has greatly revolutionized our understanding of 

how the immune system initiates the response to antigen. Until the late 1990s, immune 

homeostasis was regarded as relatively inert; antigen recognition was understood to lead to 

sensitization and subsequent inflammation only in the presence of additional signals, as 

provided by costimulatory molecules or certain cytokines. It was believed that the absence of 

such signals leads to tolerance. For the last several years we have known that tolerance is the 

result of an active process that involves DCs, costimulation, cytokines and regulatory T cells 

(25). This reconceptualization makes it possible to envision novel treatment strategies 

directed at preventing the development of atopic disease. Future therapies may, for example, 

harness the regulatory capacity of tolerogenic DCs (26-28) or T cells (29-32), thereby 

preventing the development of the T H2 phenotype with greater sophistication than that 

afforded by the blockade of downstream mediators. While there is still very little evidence to 

suggest that such approaches will dominate therapies of the future, recent findings provide 

impetus for these studies to continue. 

Work presented in this thesis enriches our knowledge of mechanisms that limit 

immune-inflammatory responses to inhaled innocuous antigen. The work was conducted 

between 1998 and 2003, a timeline that closely parallels the explosion of our understanding 

of mechanisms behind tolerance. My work hinges on three hypotheses, each corresponding 

to a chapter found in this thesis. In chapter 2, I hypothesize that inhalation tolerance is an active 

process that, once induced, prevents the generation of ainvt!} inflammation upon subsequent immunogenic 

challenge. Chapter 3 builds on the findings in Chapter 2 and proposes that established inhalation 

tolerance can be broken in the presence of two signals: one that tJPicalfy leads to sensitization (GM-CSF<) 

and one that mt!} inteifere with established regulatory activity in the aif'1llt!} (decorin). At first glance a 
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departure from previous studies, work described in Chapter 4 is instructive to the extent that 

negative regulation of immune responses is heterogeneous and largely dependent on the 

context of initial exposure to antigen. In the chapter, I hypothesize that chronic exposure to 

innocuous antigen in sensitized animals leads to a unique and less robust state of tolerance that can be 

reversed with one pro-inflammatory signal, GM-CSF. Together, my work proposes that inhalation 

tolerance may have both active and passive components, some of which likely involve 

suppression in an organ specific manner. It further argues that the relationship between 

tolerance and disease is fluid and interchangeable, but that the 'favoured' response is largely 

dictated by initial context of exposure. My work, then, not only builds on how the immune 

system responds to innocuous antigen, but also adds to existing paradigms that aim to 

delineate the conditions that lead to allergic disease. 

I divided the remainder of this Introduction into two parts. In the first, I discuss the 

role of the dendritic cell in mucosal immune responses while in the second I focus on T 

cells. I have elected to take this 'cell-centric' approach for several reasons: First, I believe that 

an understanding of dendritic cells and T cells in mediating allergic airways inflammation and 

tolerance is essential background information to my thesis. While certain aspects of my work 

may not address direcdy everything that is discussed, I believe that the value of my work is 

gready enhanced when viewed through this prism. Secondly, this approach allows the 

exploration of other aspects of allergy and tolerance, namely, the role of cytokines, 

chemokines, and co-stimulatory molecules. So as to avoid repetition, concepts unique to, 

and discussed in, subsequent chapters are left out of the Introduction. For example, the role 

of GM-CSF in allergic airways inflammation, the role of decoM as it pertains to TGF-{3 

biology, and literature on chronic exposure, while discussed in their respective chapters are, 

to a large extent, absent in * Introduction. Chapter 5 is a <meta-discussion' in which ideas 



PhD Thesis - f.K. Swirski McMaster University 7 of 97 

explored in the respective chapters are re-examined and woven together in an attempt to 

acquire a novel perspective on an observation. 

MUCOSAL IMMUNE RESPONSES - THE ROLE OF THE DENDRITIC CELL 

DCs are pivotal in controlling responses to inhaled antigen. A network of DCs is located 

immediately beneath the basement membrane of respiratory epithelium (33, 34). Studies using 

fluorescently labeled macromolecules have shown that airway DCs capture antigen and carry 

it to T cell rich areas of draining mediastinal lymph nodes (MLNs) (35). DCs lining the airway 

are specialized at capturing antigen but illlable to stimulate T cells - they are immature. 

Under steady state conditions, these cells continually migrate to the lymphoid tissue; there, 

they express an intermediate array of co-stimulatory molecules and high levels of MHC class 

II molecules, thereby inducing the activation of naive T cells (35). Airway DCs, then, playa 

sentinel role by picking up antigen in the airways and presenting it to T cells in the lymphoid 

tissue (36). The functional outcome of the resultant T cell activation, however, is tolerance; 

this may explain why continuous migration of airway DCs illlder baseline conditions does 

not lead to autoimmunity (37). Indeed, studies have shown that the T-cell priming activity of 

dendritic cells illlder steady state conditions is restricted to low-level, T H2-skewed responses 

(36, 38). On the one hand, TH2 skewing during hannless (OVA only) or self-antigen 

presentation protects against TH 1-associated chronic inflammatory pathology; on the other, 

the observed low level activation may be indicative of an airway DC network that reaches 

only 'partial' maturation, thus inducing an abortive proliferative response (39, 40). According 

to studies investigating the consequence of short or weak stimulation of the T cell receptor, 

this would lead to death by neglect (41). Alternatively, hannless or self-antigen may be 

presented by specialized airway DCs that generate regulatory T cells that inhibit subsequent 
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inflammatory effector responses (32, 42). The exact subtype of DC that mediates tolerance 

induction in the respiratory mucosa is still unknown, although naturally occurring DC 

subsets putatively involved in the in vivo generation of regulatory cells have been described in 

the gut mucosa, spleen and lymph nodes (43-45). Figure 1 is a conceptual representation of 

the response to innocuous antigen. 

antigen 

EFFECTOR ORGAN 

CIRCULAIDN 

DRAINING 
LYMPH NODES 

Figure 1: Schematic representation of the response to innocuous antigen 
during homeostatic conditions. Antigen is captured by DC in the effector organ and 
transported to the draining lymph nodes where it is presented to naive T cells (ThO). 
This results in either anergy or death by neglect (crossed cell) and/or a regulatory 
phenotype (Trag) that then may migrate to the effector organ. 

When exposure to inhaled OVA is accompanied by inflammatory stimuli, such as 

GM-CSF, 1NF-a, IL-l, or bacterial and viral products such as LPS or dsRNA, migration of 

DCs to lymph nodes is accelerated and is associated with full maturation, characterized by a 

rapid and dramatic increase in the ability of these cells to induce T-cell immunity (36, 40, 46, 

47). The distribution of chemokines is vital in regulating DC migration from peripheral 

tissues to the draining lymph nodes. In the early phase of inflammation, local production of 
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chemokines such as macrophage inflammatory protein (MIP)-3a will attract immature DC 

to non-lymphoid tissue; immature DC express CCR6, a receptor for MIP-3a (48). Upon 

antigen uptake DC lose their responsiveness to MIP-3a by downregulating CCR6. 

Concurrently, they upregulate the expression of CCR7, a chemokine receptor specific for 

chemoldnes constitutively expressed in the paracortical areas of lymphoid tissue, most 

important of which are MIP-3f3 (ELC) and 6-C-kine (SLC). Consequently, maturing CCR7-

bearing DC leave the inflamed tissue, enter the lymph stream and migrate to peripheral 

lymphoid tissue (49-51). The arriving DC may themselves become a source ofMIP-3f3 and 6-

C-ldne, thereby amplifying and maintaining the chemotactic signal (49). It is likely that these 

chemoldnes facilitate the interaction between mature DC and naiVe T cells, which are also 

responsive to 6-C-ldne and MIP-3f3 (52, 53). 

In the presence of strong but non-polarizing danger signals, the functional outcome 

of OVA exposure are fully mature DCs that lead to stable TH2 immunity, as assessed by TH2 

recall responses in the airway mucosa (54-57). Moreover, exposure to commonly encountered 

environmental allergens such as HDM or ragweed leads to TH2 immunity, characterized by 

airway eosinophilic inflammation, and likely resulting from the inherent protease activity or 

other danger signals associated with allergens (58-60). In this regard, exogenous proteases 

have been shown to degrade proteins forming tight junctions in airway epithelium, thereby 

facilitating antigen access to the subepithelial DC network (61). It is likely that allergens 

interact with epithelial cells to induce the release of signals that favour the maturation and 

activation of DC (56). The discrepancy between the inability of OVA in generating strong 

T H2 responses on its own, and the tendency of environmental allergens such as HDM to 

overcome tolerance and lead to T H2-type inflammation, leads to at least two important 
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conceptualizations: one, that the extent to which OVA is a surrogate allergen is limited to its 

biochemical but not its immunological properties - it is a protein, the peptides of which are 

presented on MHC class II molecules by DC, but it does not have the built-in danger signal 

that real-life allergens possess. Secondly, the observation that OVA acquires allergen-like 

properties when concomitantly exposed to naturally occurring pro-inflammatory signals such 

as GM-CSF (55), suggests that the nature of a real-life allergen depends on built-in or 

external signals that are supplementary to the secondary structure of the molecule. 

Consequently, OVA will continue to be used as a surrogate allergen because it may, among 

other things, clarify the precise nature of those signals. 

Concurrent exposure to OVA and strong T H 1 polarizing signals such as high doses 

of LPS, leads to stable THl responses (62). The tendency of the respiratory mucosa, and 

mucosal tissues in general, to induce T H2 polarized responses is consistent with the low-level 

T H2 activation as observed under steady state conditions, and may depend on the particular 

profile of resident cells in the tissue (38, 56, 63). 

It is becoming increasingly clear that initiation of both effector and regulatory T cell 

immunity requires antigen presentation in the lymphoid tissUe in the context of a specific 

costimulatory molecule profile (64-66). Although all the major costimulatory pathways such as 

CD28/B7, ICOS/ICOSL, and OX40/0X40L have been implicated in generating polarized 

responses;it is unclear to what extent a particular costimulatory molecule profile dictates the 

polarization. Indeed, a growing number of studies have implicated these pathways not only 

in TH2 (67-69) but also in THl responses (10-73). Costimulatory molecules are also important 

to tolerance. In this regard, Umetsu and colleagues have shown that the ICOS/ICOSL 

pathway is critical to the generation of regulatory T R cells that control hyperresponsiveness 

and airway inflammation duoliing antigen recall (32). Other molecules of different pathways 
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may also be involved (74, 75). Notable among these is cytotoxic T lymphocyte-associated 

antigen 4 (CTLA-4), a CD28 homologue expressed on T cells. It binds to B7.1 and B7.2 and 

provides a negative signal for T cell activation (76). CTLA-4 is known to inhibit the 

development of colitis (77) although these findings are still controversial (30). Importantly, it 

had been reported that the induction of T cell anergy in vivo is due to an abortive T cell 

response that requires recognition of B7 molecules by CTLA-4, since blocking B7 

maintained T cells in an inactivated but functionally competent state (78). While this study 

did not address the suppressive potential of anergic T cells (see below), it provided 

additional evidence that costimulation may not be as important to polarization as it is to the 

generation of effective T cell responses. 

Clearly, other DC-generated signals are necessary to educate T cells to perform the 

necessary function. Studies have shown that DC-generated IL-12 influences THl 

polarization, while its relative absence leads to TH2 responses. For example, IL-12 deficient 

mice fail to prime for THl responses but develop TH2-type cells (79). The Till polarization 

that occurs during high doses to LPS, peptidoglycan, or CpG motifs, involves the induction 

of IL-12 by DCs (80), while exposure to nematodes leads to TH2 polarization, likely because 

nematodes do not stimulate DC IL-12 production (81). Notable other cytokines shown to 

influence IL-12 production, and consequently T cell polarization, are IL-10 and IL-6 (82). 

Indeed, freshly isolated, lung DCs produce IL-l0 and IL-6, suggesting that the primary 

physiological role of these cytokines is in controlling the generation of TH 1 responses (57). 

IL-l0 may also be important in tolerance. ,\}(;'hile it inhibits MHC class II and costimulatory 

molecule expression on DCs (83, 84), IL-l0 also controls the development of eosinophilic 

airway inflammation (85), and may be involved in generating tolerogenic DCs (42,44). 
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Recent studies show that DCs may be important not only in the generation of an 

immune response but also in its maintenance. There is, for example, an 80-fold increase in 

the number of myeloid DCs in the airway mucosa and BAL fluid of mice and rats with 

experimentally induced asthma (86-88). These DCs have a mature phenotype, suggesting an 

interaction with primed T cells in the airway. Interaction between airway DC and T memory 

cells in the airway mucosa may also lead to local maturation of DC function (89). The 

observation that airway DC produce chemokines that selectively attract CCR4-expressing 

memory TH2 cells makes it more plausible that DCs interact locally in the lung (90). There is, 

moreover, increased migration of airway DCs to the lymphoid tissue during antigen 

challenge of primed mice, implying that re-stimulation of resting central memory T cells 

takes place, thereby inducing their proliferation and differentiation into effector T cells (17, 

39, 89,91). Finally, while some studies have shown that the administration of DCs induces 

and exacerbates TH2 eosinophilic inflammation (92, 93), potentially through the .. 
OX40/0X40L pathway (94), removal of DC from sensitized mice eliminates asthmatic 

features induced by antigen aerosol (17,34). It is still unclear whether, and to what extent, 

DCs maintain tolerance in the lung. Figure 2 is a simple conceptualization of an 

inflammatory response to antigen. 

Although DCs are the most potent APCs and are believed to be indispensable to the 

initiation of T cell immunity (95) other APCs may also be involved in the pathogenesis of 

asthma and airway inflammation. Alveolar macrophages are scavenger cells that ingest 

particulate antigen and suppress adaptive immunity (96). When depleted, both primary and 

secondary immune responses are greatly enhanced (97). Macrophages are, therefore, 

predominantly protective against TH2 responses. Although B cells can function as APCs 

during cognate interaction. TH2 cells, sensitized B-cell-deficient mice show no signs of 
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reduced levels of TH2 type effector cytokines, airway eosinophilia or goblet cell hyperplasia 

(98). Epithelial cells and eosinophils have also been shown to present antigen, but little is 

known as to their role in vivo (17). 

antigen 

lYMPH NODES 

Figure 2: Schematic representation of the Inflammatory response to antigen. In 
the presence of a danger signal such as GM-CSF, antigen is captured by DC in the 
effector organ and transported to the draining lymph nodes where it is presented to 
naive T cells (Tn). This results in generation of Th2 cells that then may migrate to the 
effector organ and orchestrate allergic airway inflammation. 

MUCOSAL IMMUNE RESPONSES - T CELLS AND BEYOND 

It has been known for a long time that atopic individuals express high levels of allergen 

specific IgE, but the reason for these responses were not well understood until the discovery 

of TH1 and Tn2 subsets of CD4 T cells (15, 99). TH1 cells are defined by their ability to 

produce IL-2, IFN-yand 1NF-a, whereas Tn2 cells produce IL-4, IL-5, IL-6, IL-9, IL-l0 

and IL-13. TH1 cytokines mediate cytotoxic and inflammatory functions as well as delayed-

type hypersensitivity reactions (100, 101); in contrast, TH2 cytokines mediate inflammatory 
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responses that involve mast cells and eosinophils as well as IgE (102). A number of immune 

responses in vivo appear to be predominandy mediated by THl or TH2 polarized T cells, and 

it is now well established that asthma and other allied allergic inflammatory diseases are 

mediated by TH2 cytokines. The presence ofTn2 cytokines at sites of allergic inflammation is 

consistent with a TH2 etiology of the disease (103-106). A more definite proof that CD4+ TH2 

cells are responsible for the generation of allergic inflammation was shown when T-cell 

receptor transgenic TH2, but not TH1, cells were adoptively transferred to mice (107-110). 

Although other cell types such as CD8+ T cells have been shown to participate in asthma 

pathophysiology, particularly in mediating airway hyperresponsiveness (111,112), CD4+ TH2 

cells are the main orchestrators of allergic-type inflammation. 

The individual roles of T H2 cytokines in mediating allergic airway inflammation have 

now been described Cytokines involved in generating airway eosinophilia include IL-5 and 

IL-13 (113-120), while IL-4 and IL-9 are important in enhancing the response (121-124). Mucus .. 
hypersecretion has been attributed to IL-13 and 1L-9 (117-119, 122, 124); and airway 

hyperresponsiveness to IL-13 (117, 118, 120). General effects on TH2 type responses, including 

T H2 differentiation and IgE isotype class switching have been associated with IL-4 and IL-13 

(125-130). 

regulate one another (15, 101, 131). This gave rise to the notion that THl responses can 

prevent asthma. Initial findings have shown that allergen specific T cells generated from 

non-allergic individuals express a THl cytokine profile (132). Additional studies have shown 

that allergen immunotherapy for allergic disease converts TH2 cytokine profiles into THl 

profiles, correlating with symptomatic improvements in both human subjects (133-135) and in 

animal models (136-138). Th~ findings are consistent with the hygiene hypothesis, which, as 
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discussed earlier, suggests that decreased exposure to Till-type infections leads to the 

development of TIl2 responses and increased incidence of allergic disease (5,6). The findings 

also correlate with the concept of immune deviation as a mechanism for tolerance (139). To 

this end, it has been shown that the suppression of IgE responses in an animal model of 

allergic inflammation depends on the expression ofIFN-Y (140), although these findings have 

been contested (141, 142). Several other lines of evidence argue against Till responses as 

protective for the generation of asthmatic airway inflammation. Not only have TII2 allergic 

diseases been on the rise in recent years, but the prevalence of Til I-associated diseases such 

as Inflammatory Bowd Disease (lED) and Type I diabetes has also risen (2). Given that Till 

cells are pro-inflammatory, the devdopment of a THI-associated inflammatory response is 

unlikely to downmodulate asthma and allergic disease (143, 144). In human subjects, 

inhalation of recombinant IFN-y resulted in increased number of lymphocytes in the airways 

(145, 146). Together, these findings argue against THl-based therapy as a likely treatment 

option for allergic disease. 

The characterization in recent years of T cell subsets that suppress the function of 

other cells has greatly revolutionized our understanding of immune processes, challenging 

investigators to expand, if not abandon, the TH1/TH2 paradigm. To date, at least four 

populations of regulatory cells have been described: CD4+CD25+ cells, TRI cells, Tl13 cells, 

and TR cells. First identified by Sakaguchi and colleagues (147, 148), CD4+CD25+ cells are 

the most widely studied (149, 150). These naturally occurring, poorly-proliferating, thymus 

derived CD4+ T cells constitutively express CD25, express low levels of CD45RB and high 

levels of CTLA-4 (30,77,151,152), and constitute ~1O% of the peripheral murine and human 

CD4+ T cell population (153-156). They possess potent regulatory activity both in vitro (30,157) 

and in vivo (77, 147, 148, 158); they inhibit autoimmune diabetes in mice and rats (151, 154), 
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induce tolerance to alloantigens (159,160), impede anti-tumor immunity (161), and prevent the 

development of gastritis (155) and colitis (77). CD4+CD25+ T R cells likely use multiple 

mechanisms by which they suppress immune responses, although the ability to inhibit 

proliferation of other T cell populations by specifically inhibiting the production of IL-2 is a 

defining feature of their function (30, 157, 162). Suppression in vitro requires activation of 

CD4+CD25+ TR cells via their TCR (163), does not involve killing of the responder cells and 

is mediated through cell contact (30, 157). Strikingly, although CD25+ T R cell activity depends 

on antigen-specific activation, once activated, these cells inhibit both CD4+ and CD8+ T 

cell responses in an antigen-nonspecific manner (163). 

The role of suppressive cytokines, particularly IL-l0 and TGF-~, is still 

controversial. Although addition of neutralizing antibodies specific to IL-l0 or TGF-~ does 

not reverse suppression (30, 157, 162, 164-167), and CD25+ T cells from IL-4 or IL-l0 KO 

mice are competent suppressors in vitro (30), the plasticity of the immune system, as well a~ 

possible involvement of a cell-bound cytokine, or a cytokine acting over short distances, 

keeps this issue from being resolved (150). Studies by Nakamura and colleagues suggest, for 

example, that suppression should be reversed with high concentrations. of antibody; 

otherwise, the interface between the CD4+CD25+ and CD4+CD25- T cells is difficult to 

penetrate (168). The controversy is further underscored by different in vivo studies that 

implicate either IL-l0 or TGF-~ in controlling autoimmune disease (169, 170). These studies 

caution against relying on in vitro studies for the analysis of regulatory cell function. 

Collectively, the phenotypic and functional characterization of CD4+CD25+ T cells has not 

only enriched our knowledge of central and peripheral tolerance, but also bridged the gap 

between anergy and active suppression, mechanisms of tolerance formerly believed to be 

unconnected (139, .155). Com'elling evidence currendy links anergy with suppression and 



PhD Thesis - F.K. Swirski McMaster University 17 of 97 

APC function (171-173). Identification of markers that will reliably distinguish suppressor T 

cells from other T cell populations, as well as the characterization of molecular pathways 

responsible for mediating suppression, are only two of many challenges facing investigators 

in this field (174-176). 

When human or murine CD4+ T cells are stimulated in vitro to allogeneic antigen in 

the presence of IL-l0, anergic clones are generated (177) that, upon repetitive stimulation 

secrete high amounts ofIL-lO, moderate amounts ofTGF-~, and inhibit immune responses 

(29). Termed TR1, these T cell clones suppress the immune response of other T cells in vitro 

and in vivo, and inhibit the development of colitis (29), and other inflammatory processes 

(178), including, possibly, Tu2-associated diseases like asthma (179). Whether TR l-like cells 

occur naturally, and if so, whether they are ontologically or functionally related to 

CD4+CD25+ T R is still to be determined, although recent studies argue against such 

association (180). Interestingly, in vitro culture of bone marrow cells in the presence of IL-l0 

induces the differentiation of a distinct subset of dendritic cells with the capability to 

generate T R 1 cells (44). 

TH3 regulatory cells were first isolated from mesenteric lymph nodes of animals 

rendered orally tolerant to low dose feeding of MBP in a TCR-transgenic Experimental 

Allergic Encephalomyelitis (EAE) model. These cells produce high levels of TGF-~ and 

moderate levels of IL-4 and IL-lO (181, 182). TH3 cells suppress both Till and TH2 cells, are 

triggered in an antigen-specific fashion requiring B7.2 engagement, but suppress non

specifically (31). It is likely that anergic T cells, TRl cells and TH3 cells are derived from the 

same population: they have a similar phenotype and usually mediate their suppressive 

activities via the release of the cytokines TGF-~ and IL-l0 (149). 
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At least two regulatory mechanisms specific to the respiratory mucosa have been 

described. We, and others, have shown that respiratory administration of OVA induces 

inhalation tolerance, as characterized by inhibition of AHR and airway inflammation upon 

subsequent immunogenic challenge (141, 183). These studies were consistent with earlier 

findings that depicted IgE hyporesponsiveness and reduction of peripheral blood 

eosinophilia in tolerant animals (142, 184). Because production of OVA-specific IgG 1 and 

IgG2a was increased in tolerant animals suggested that immune deviation or divergent 

tolerance was induced. Importandy, exposure to OVA involved activation of OVA-specific 

T cells, as assessed by expression of activation markers CD69, CD25, CD44, and maturation 

of DCs as assessed by high levels of B7.1, B7.2, CD40 and ICOSL (42). Mature DCs from 

tolerant animals produced IL-10 as depicted by RT-PCR or intracellular cytokine staining, 

and induced OVA-specific T cells to proliferate and produce IL-4 and IL-I0 but not IFN-y 

or TGF-~ (42, 131). When these TR cells were adoptively transferred into mice previously 

primed with OVA they inhibited the development of AHR and airway inflammation via an 

IL-10 dependent mechanism, since neutralization ofIL-lO with anti-IL-10 mAb reversed the 

inhibitory effect. The inhibitory function was also dependent on the ICOS-ICOSL 

costimulatory pathway (32). Umetsu and colleagues have argued that, since both TR and TH2 

cells require ICOS-ICOSL co stimulation to develop, and both produce IL-4 and IL-lO 

\ 

(albeit at different concentrations), suggests that these two forms of immunity are related 

(131). They propose that normal exposure to respiratory allergen should result in the 

development of T R cells and tolerance; TJl2 cells develop as an aberration of T R cell 

development, possibly as a result of inadequate production of IL-10 or enhanced IL-4 and 

IL-13 (131). The observation that tolerance develops in the absence of IL-10, however, 

suggests other mechanisms i1hy be involved (141). 



PhD Thesis - F.K. Swirski McMaster University 19 of 97 

Another possible candidate in mediating tolerance is TGF-~. Studies have shown 

that T cells engineered to secrete TGF-~ reduce airway inflammation and AHR (185). The 

effect is dependent on TGF-~ since neutralization with anti-TGF-~ abolishes the effect. 

Moreover, blockade of TGF-~ signaling enhances airway inflammation and AHR in animals 

sensitized to OVA, suggesting a role for TGF-~ dependent regulation (186). The first 

evidence that TGF-~ may playa role in regulating inhalation tolerance in ;nlJO came from our 

recent studies (Chapter 3). In this study, we demonstrate that over-expression of the pro

inflammatory cytokine GM-CSF is insufficient to break established tolerance, and that 

additional immune modulation in the form of TGF-~ sequestrations is concurrently needed. 

We argue that two signals are needed to break established tolerance in vivo: a signal that leads 

to sensitization (GM-CSF) and a signal that interferes with regulation (decorin). Most likely 

both IL-10 and TGF-~-dependent mechanisms are important in regulating responsiveness in 

the airway and future studies will determine their relative contribution. The role of IFN-y in 

regulating tolerance has been hotly disputed in the past, although interest in the molecule has 

dwindled in recent years (141, 142, 187). 

Although it is well established that T cells are the central orchestrators of allergic 

airways inflammation and asthma, many questions remain as to the precise mechanisms 

involved. It is still unclear, for example, to what extent T cells influence airway remodeling. 

Nonetheless, since the recognition that immunologically mediated responses are integrally 

linked to the development of airway inflammation and, therefore, the inception, persistence, 

and severity of disease, treatment of asthma is now directed at those factors. Importantly, in 

order to understand fully why people develop asthma, mechanisms governing both 
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sensitization and tolerance must be elucidated. Our increased understanding of these 

mechanisms will yield novel approaches to the treatment of disease. 
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Chapter 2: Inhalation of a harmless antigen (Ovalbumin) elicits immune activation 

but divergent immunoglobulin and cytokine activities in mice. 

This article appeared in Clinical and Experimental Allergy (2002); 32:411-421. 

Exposure to aerosolized harmless antigen such as ovalbumin (OV A) has previously been 

shown to induce inhalation tolerance, a state characterized by inhibition of IgE synthesis 

and airway inflammation, upon secondary immunogenic antigen encounter. In this study, 

we investigated cellular and molecular mechanisms underlying this state of 

unresponsiveness. We show that initial exposure to OVA establishes a programme that 

prevents the generation of funy functional immune-inflammatory processes, including 

airway eosinophilia and airway hyperresponsiveness. These data describe inhalation 

tolerance in the airway and provide a foundation for subsequent studies. I generated the 

data and wrote the article. B. Gajewska helped with flow cytometry; D. Alvarez and 

M.D. Inman helped with AHR; S.A. Ritz and M.J. Cundall developed the RT-PCR 

technology; A.J. Coyle and J.-C. Gutierrez-Ramos provided the probes for RT-PCR; M. 

Jordana was instrumental in developing the project; and M.R. Stampfli supervised the 

project. 
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Hntroduction 

Summary 
Background Exposure to aerosolized harmless antigen such as ovalbumin (OVA) has previously 
been shown to induce inhalation tolerance, a state characterized by inhibition of IgE synthesis and 
airway inflammation, upon secondary immunogenic antigen encounter. Immune events associated 
with this phenomenon are still poorly understood. 
Objective The aim of this study was to investigate cellular and molecular mechanisms underlying 
this state of 'unresponsiveness'. 
Methotis; After initial repeated OVA exposure, mice were subjected to a protocol of antigen
induced airway inflammation, encompassing two intraperitoneal injections of OVA adsorbed to 
aluminium hydroxide followed by airway challenge. We assessed immune events in the draining 
lymph nodes after sensitization, and in the lungs after challenge. 
Results In animals initially exposed to OVA, we observed, at the time of sensitization, considerable 
expansion ofT cells, many of which expressed the activation markers CD69 and CD25, as well as 
increased numbers of antigen-presenting cells, particularly B cells. While these animals produced low 
levels oflgE, the observed elevated levels oHIO 1 signified ootype switching. Splenocytes and lymph 
node cells fl'OJIl OVA-exposed mice produced low levels ofIL-4, II.·S, IL-13 and IPN-y, indicating 
aborted effector function of both T helper (Th)2- and Th l-associated cytokines. Real time quantita
tive polymerase chain reaction (PeR) (faqMan) analysis of costimulatory molecules if the lungs 
after in vivo challenge showed that B7.1, B7.2, CD28 and CTLA-4 mRNA expression was low in 
animals initially exposed to OVA. Ultimately, these events were associated with abrogated airway 
inflammation and attenuated airway hyper-responsiveness. The decreased inflammation was anti
gen-specific and independent of IL-IO or IFN-y. 
Conclusion Initial exposure to OVA establishes. a programme that prevents the generation of 
intact, fully functional inflammatory responses 'upon secondary antigen encounter. The absence of 
inflammation, however, is not associated with categorical immune unresponsiveness. 

Keywords airway hyper-responsiveness, allergy, costimulation, cytokine, immunoglobulin, 
inflammation, inhalation tolerance, ovalbumin 
Submitted 22 February 2001; revised 6 July 2001; accepted 16 August 2001 

The respiratory tract is, by necessity, constantly exposed to a 
multitude of environmental agents, both pathogenic and non
pathogenic. While the ability to mount inflammatory responses 
against harmful viral, bacterial and parasite antigens is critical 
for survival, such responses are unwarranted for innocuous 
agents such as aeroallergens. That the prevalence of allergy in 
the industrialized world is c. 15%, implies that c, 85"10 of the 

population tolerates aeroallergens, in spite of likely universal 
exposure [1,2]. This attests to the fine, and extremely effective, 
regulatory networks that maintain homeostasis in the airway/ 
lung compartment [3,4]. 

Peripheral tolerance, a process that may involve immune 
deviation, suppression, anergy or clonal deletion, has been 
described in the gastrointestinal, urogenital and respiratory 
mucosae [5-8J. With respect to the respiratory tract, it has 
been shown that initial exposure to aerosolized antigens such 
as ovalbumin (OVA) induces inhalation tolerance in rodents 
[9-11], characterized by inhibition of both OVA-specific IgE 
synthesis and peripheral blood eosinophilia. More recent data 
show that OVA delivery into the nasal cavity inhibits subse
quent airways inftammation and bronchial hyper-reactivity [12]. 
The ceUular and molecular bases underlying this phenomenon 
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remain to be elucidated, and evidence supporting specific mech
anisms is, in some instances, controversial [10, 11,13-IS]. 

In this study, we investigated immune events following initial 
repeated OVA inhalation in mice subjected to an established 
protocol of allergic airways inflammation. To this end, mice 
received 10 consecutive exposures of OVA aerosol, or saline 
control, followed by two intraperitoneal OV Afaluminium hy
droxide injections [16]. We show that, at the primary site of 
sensitization, the thoracic lymph nodes, initial OVA exposure 
correlated with clear evidence of immune activity, as assessed by 
expansion of T and B cells and up-regulation of the activation 
markers CD69 and CD2S on T cells. Systemically, this was 
associated with an altered immunoglobulin response, from 
IgE to IgGI. However, this immune response was, from an 
effector, pro-inflammatory standpoint, aborted. Indeed, lymph 
node cells and splenocytes from mice initially exposed to OVA 
were unable to produce either Th2 or Thl cytokines, when 
recalled with OVA in vitro. Moreover, lung mononuclear cells 
from mice initially exposed to OVA, compared with those ex
posed to saline, expressed low levels of mRNA for the costimu
latory molecules B7.1, B7.2, CD28 and CTLA-4. The inability 
to trigger an effector programme translated into remarkably 
blunted inflammatory and physiological responses in the lung. 
This phenomenon was antigen-specific and independent of 
IL-IO and IFN-y. 

Materials and methods 

Animals 

Female Balb/c mice (6-8 weeks old) were purchased from 
Harlan (Indianapolis, IN, USA). CS7BLl6, IL-IO knock-out 
(KO) (CS7BLl6-IHOImICgn) and IFN-r KO (Balb/c-IfngtmITS) 

mice (6-8 weeks old) were purchased from Jackson Laboratory 
(Bar Harbor. ME, USA). AU mice were maintained in level B 
housing conditions in a 12-h light-dark cycle. Level B is an 
access-restricted area; cages, food and bedding are autoclaved, 
and all mice manipulations are carried out in a laminar flow 
hood by gloved, gowned and masked personnel. All experi
ments described here were approved by the Animal Research 
Ethics Board of McMaster University. 

Initial exposure to aerosolized antigen 

Mice were placed in a plexiglass chamber (lOcmx lScmx2S 
em) and exposed for 20min daily over a period of 10 consecutive 
days to aerosolized OVA (1% wtlvoL in 0.9% saline). Control 
mice were exposed to saline only. The aerosol was produced by 
a Bennet nebulizer at a flow rate of 10 Llmin. The mice were then 
left for a period of 2 days before undergoing the sensitization 
and antigen challenge protocol. 

Sensitization and antigen challenge 

Mice were sensitized and challenged according to a previously 
described protocol [16]. Briefly, mice were sensitized either with 
8Jlg OVA (Sigma Chemicals, St Louis, MO, USA) or 200llg 
ragweed (Greer Laboratories, Lenoir, NC, USA), both adsorbed 
to 4mg aluminium hydroxide (Aldrich Chemicals, Milwaukee, 
WI, USA) at 4"C overnight in O.5mL phosphate buffer saline 
(PBS), twice, S days apart, by intraperitoneal (i.p.) injection. 
Seven days following the second sensitization mice were either 
placed in a plexiglass chamber (JOcmx IScmx25cm) and 

exposed to aerosolized OVA (1% wtlvol. in 0.9'Yo saline) for I h 
twice,4hapart,orreceived200Jlgragweed in 30 JlL Coca's buffer 
(0.085m NaC!, O.064m NaHC03; pH=8.1) intranasally. The 
aerosol was produced by a Bennet nebulizer at a flow rate of7 LI 
min. In the experiments involving airway hyper-responsiveness 
(AHR), mice were exposed to OVA aerosol daily for I h over a 
period of 3 days. 

Collection and measurement from specimens 

Bronchoalveolar lavage (BAL) was performed as previously 
described [16]. In brief, the lungs were dissected and the trachea 
was cannulated with a polyethylene tube (Becton Dickinson, 
Sparks, MD, USA). The lungs were lavaged twice with PBS 
(O.2SmL followed by 0.2mL). Approximately 0.2SmL of the 
instilled fluid was consistently recovered. Total cell counts were 
determined using a haemocytometer. After centrifugation, 
supernatants were stored at -20°C for cytokine measurements 
by ELISA; cell pellets were resuspended in PBS and slides were 
prepared by cytocentrifugation (Shandon Inc., Pittsburgh, P A, 
USA) at 109 for 2min. The HEMA 3 Stain Set (Biochemical 
Sciences Inc., Swedesboro, NJ, USA) was used to stain all 
smears. Differential counts of BAL cells were determined 
from at least 500 leucocytes using standard haemocytological 
procedures to classify the cells as mononuclear cells, neutrophils 
or eosinophils. Additionally, blood was obtained by retro-or
bital bleeding. Serum was obtained by centrifugation after in
cubating whole blood for 30min at 37°C. Finally, lung tissue 
was fixed in 10% formalin and embedded in paraffin; 3 ~-thick 
sections were stained with haemotoxylin and eosin. 

Cytokine and immunoglobulin measurements 

ELISA kits for IL-4, IL-I3 and IFN-r were purchased from R & 
D Systems (Minneapolis, MN, USA), while kits for IL-5 were 
obtained from Amersham (Amersham, Buckinghamshire, 
UK). The threshold of detection for IL-4, IL·13 and IFN-y 
was <2pglmL, and for IL-S was SpglmL. 

Levels ofOV A-specific IgE were detected with an ELISA that 
has been described in detail previously (16). For OVA-specific 
IgG 1 and IgG2a, Maxi-Sorb plates (NUNC Brand Products, 
Naperville, IL, USA) were coated with S~g OVA in borate 
buffer pH8.3-8.5 overnight at 4°C. Subsequently, coated 
wells were blocked with 1% BSA in PBS for 2h at room tem
perature (21 Qq. After washing, serum samples were incubated 
overnight at 4°C, washed, and developed with biotin-labelled, 
anti-mouse IgG 1 and IgG2a (Southern Biotechnology Associ
ates, Birmingham, AL, USA) overnight at 4°C. Plates were 
washed and incubated with alkaline-phosphatase streptavidin 
for 1 h at room temperature, The colour reaction was developed 
with p-Nitrophenyl phosphate tablets. Samples were compared 
with a standard serum containingOV A-specificIgG I and IgG2a. 
Units correspond to maximal dilution that results in an OD that 
is greater than the blank plus two standard deviations. 

Airway hyper-responsiveness 

Airway responsiveness was measured based on the response of 
total respiratory system resistance (RRS) to increasing internal 
jugular vein doses of methacholine (MCh) as previously de
scribed [17,18]. Exposed tracheas were cannulated and a con
stant inspiratory flow was delivered by mechanical ventilation 
(RV5, Voltek Enterprises Inc., Toronto, Canada). Paralysis was 
achieved using pancuronium (O.03ms.(kg Lv.) to prevent 
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respiratory effort during measurement. RRS was measured 
following consecutive i.v. injections of saline, then 10, 33, 100 
and 330v.glkg of MCh (ACIC (Can), Brantford, Ontario, 
Canada), each delivered as a 0.2-mL bolus. Evaluation of 
airway responsiveness was based on the peak RRS measured 
in the 30s following the saline and MCh challenges. 

Splenocyte, lymph node and lung cell isolation 

~pleens and thoracic lymph nodes, inciuding the hilar, medias
tinal and tracheobronchial, were removed and adjacent con
nective tissue was dissected away. They were immediately 
placed in cold WC) HBSS (Gibco BRL, Grand Island, NY, 
USA). The spleens were triturated between the ends of sterile 
frosted slides and the resulting suspension was filtered through 
nylon mesh (BSH Thompson, Scarborough, Ontario, Canada). 
The cell suspension was centrifuged at 300g for lOmin at 4°C. 
Red blood cells were lysed with ACK lysis buffer, and the 
splenocytes were washed with HBSS and resuspended in RPMI 
(Gibco BRL) supplemented with 10010 fetal bovine serum (FBS), 
1% I-glutamine (Sigma Chemicals Co.) and 1% penicillin/ 
streptomycin. The nodes were ground between the frosted 
ends of slides and filtered through a nylon mesh (BSH 
Thompson). The cell suspension was centrifuged at 300g for 
tOmin at 4°C, and resuspended again in PBS. After this wash
ing step, the cells were resuspended either in fiow cytometric 
analysis buffer (pBS supplemented with 0.2%, BSA) or in RPMI 
(Gibco BRL) supplemented with 10% FBS, 1% I-glutamine 
(Sigma Chemicals Co.) and 1% penicillin/streptomycin. 

-. For isolation of lung cells, lungs were fiushed via the right 
ventricle of the heart with 10mL of warm (37°C) HBSS 
(calci~ and magnesium free) containing 5"10 PBS (Sigma 
Chemicals Co.), lOOU/mL penicillin and lOOIng/mL strepto-

J'nycin (Gibco BRL). The lungs were then cut into small (ap
proximately 2mm in diameter) pieces and shaken at 37"C for 1 h 
in 15mL of lSOU/mL collagenase In (Worthington Biochem
ical, Freehold, NJ, USA) in HBSS. USing a plunger from a 
S-mL syringe, the lung pieces were triturated through a metal 
screen into HBSS, and the resulting cell suspension was filtered 
through nylon mesh. After lysing red blood cells with ACK lysis 
buffer (O.5m NltJCI, 10mm KHC03 and O.lnm Na2EDTA at 
pH7.2-7.4), cells were washed twice and mononuclear cells 
were isolated by density centrifugation in 30010 Percoll (phanna
.cia, Uppsaia, Sweden). 

Flow cytometry 

Panels of monoclo~ antibodies were selected to study the 
phenotype of cells in the lymph nodes. To minimize non-specific 
binding, 106 cells were incubated with 0.5v.g Fc Block (CDl6I 
CD32, Pharmingen, Mississauga, Canada) at 0-4°C for IOmin 
and subsequently with first stage monoclonal antibodies at 
0-4°C for 30min. Cells were then washed and treated with 
second stage reagents. Data were collected using a FACScan 
and analysed using WIN-MDI software (Becton Dickinson, 
Sunnyvale, CA, USA). The following antibodies and reagents 
were used: anti-CD3, biotin-conjugated 145--2CIl (Phar
mi~gen); anti-CD4, FITC-conjugated L3T4 (pharmingen); 
antl-CDS, FITC-conjugated Ly-2 (pharmingen); anti-CD69, 
PE-conjugated HI 2F3 (pharmingen); .. nti-CD25, PH
conjugated Pal (pharmingen); and Streptavidin PerCP 
(Becton Dickinson. San Jose, CA, USA). Titration was per
formed to determine theoptimalconcmtration of each antibody. 
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Splenocyte and lymph node cell culture 

Splenocytes and lymph node cells were cultured in medium 
alone or with 4Ov.g OV Alwell at S x lOs cells/well in a 96-well 
fiat-bottom plate (Becton Dickinson, Lincoln Park, NJ, USA). 
After 5 days of culture, supernatants were harvested for cyto
kine measurement. 

Collection, extraction, separation and isolation of RNA from 
tissue 

Thoracic lymph nodes and lung mononuclear cells were 
collected and placed in I mL TriPure Isolation Reagent, a 
monophasic solution of phenol and guanidine thiocyanate 
(Boehringer Mannheim Canada, Laval, QC, Canada). The 
tissues were then homogenized with a Polytron 7mm power 
homogenizer (Kinematica, Luzerne, Switzerland). The sample 
homogenates underwent phase separation and RNA was isol
ated according to the procedure provided with the TriPure 
Isolation Reagent. RNA pellets were resuspendtid in 20v.L of 
diethylpyrocarbonate (DEPC)-treated RNase-free water. To 
determine the concentration of total RNA collected, the optical 
density (OD) was calculated using an Ultrospec 1000 UVI 
Visible spectrophotometer (Pharmacia Biotech (Biochrom) 
Ltd, Cambridge, England). The RNA was stored at - 70°C 
until needed. 

TaqMan: real time quantitative polymerase chain reaction 

CD2S, CTLA-4, B7.1 and B7.2 expression was evaluated using 
real-time quantitative polymerase chain reaction (PCR) analy
sis on an AB! PRISM Sequence Detector 7700 (PE Applied 
Biosystems, Foster City, CA, USA). In brief, an oligonucleotide 
probe was designed to anneal to the gene of choice between 
two PCR primers. The probe was fluorescently lalJelled with 
FAM (reporter gene) on the 5' end and with TAMRA 
(quencher dye) on the 3' end. A similar probe and PCR primers 
were purchased for mGAPDH (PE Applied Biosystems). The 
probe for this gene incorporated VIC as the reporter dye. PCR 
reactions were run that included the primers and probes for 
these two genes as well as cDNA made from cells isolated from 
lymph nodes. As the polymerase moves across the gene during 
the reaction, it cleaves the dye from one end of each probe, 
which causes a fluorescent emission that is measured by the 
Sequence Detector 7700. The emissions recorded for each 
cDNA can then be converted to determine the level of expres
sion for the genes normalized to the expression of mGAPDH. 
Expression ofCD2S, CfLA-4, B7.1 and B7.2 was determined 
on cells isolated from mononuclear lung cells following OVA 
challenge. 

Data analysis 
Data are expressed as mean ± SEM. Statistical interpretation of 
results is indicated in the figure legends. Differences were con
sidered statistically significant when P<0.05. 

Results 

Activation marker expression on CD4+ and CD8+ T cells 

Mice were exposed to aerosolized OVA or saline daily for 20 
min over a period of 10 days. Subsequently, mice were subjected 
to two intraperitoneal injections of OVA in conjunction with 
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aluminium hydroxide as outlined in Materials and methods 
(sensitization). Twenty-four hours after the second injection, 
lymph node cells were collected and pooled. In naive mice, the 
average total cell number, out of 8-10 animals, was 0.6x 106 

cells/mouse. The cell number of sensitized mice initially exposed 
to repeated OVA aerosolizations was almost five times greater 
(2.& x 106 cells/mouse). This cell number was even greater in 
mice initially exposed to saline (5.9 x 106 cells/mouse). Next, 
we performed flow cytometric analyses on these cells. In 
naive animals, 42.2% of the total cells obtained stained for 
CD3JCD4. In animals initially exposed to OVA aerosolizations, 
this number was lower (29.4%) and similar to that observed in 
animals initially exposed to saline (28.8"10). Hence, the total 
number of cells staining for CD3/CI>4 was 0.25 x 106 cells/ 
mouse for naive mice, 0.82 x 106 cells/mouse for mice initially 
exposed to OVA and 1.7 x 106 cells/mouse for mice initially ex
posed to saline. 

A similar pattern was observed for cells staining for CD3/ 
CDS. While in naive animals 16.5% of the total cells stained for 
CD3/cD8, in animals initially exposed to OVA this number was 
lower (12.5%) and similar to that observed in animals initially 
exposed to saline (11.0%). As a result, the total cell number of 
cells staining for CD3/CD8 was O. lOx I if' cells/mouse for naive 
mice, 0.35 x 106 cells/mouse for mice initially exposed to OVA 
and 0.65 x 106 cells/mouse for mice initially exposed to saline. 
We then evaluated the levels of activation of these cells, as 
assessed by CD69 and CD25 expression. Figure 1 depicts the 

004 

256. 

f 
m 
o 

Nal've 

I. I···• .. 

o 

levels of CI>69 expression on CI>4+ and CDS+ T cells in naive 
animals, and animals initially exposed to either OVA or saline. 
In naive animals, CD69 expression was low on both CI>4+ cells 
(7.9%) and CDS+ cells (5.6%). Animals initially exposed to 
OVA expressed higher levels of CI>69 on both CD4+ cells 
(15.0%) and CDS+ cells (18.0%). Animals initially exposed to 
saline expressed similar levels of CD69 on both CD4+ cells 
(18.2%) and CDS+ cells (23.2%). The experiment was repeated 
three separate times yielding similar results. Expression of 
CD25 was similar to that ofCD69. Specifically, the proportion 
of CI>4+ T cells that also expressed CD25 was 17.7% in animals 
initially exposed to OVA and 16.9% in those exposed to saline 
control. 

With respect to antigen-presenting cells (APC), we found 
that, in naive mice, 16.5% of the total cells stained for MHC 
class II. In animals initially exposed to OVA aerosolizations, 
this number doubled (33.7"10), similar to that observed in 
animals initially exposed to saline (33.4%). In fact, most of the 
MHC class II cells also stained for B220, a marker of B cells. In 
naive mice, 15.9'110 of the total cells stained for MHCIIIB220. 
This number doubled in animals initially exposed either to OVA 
(32.5%) or saline (33.0%). The total number of cells staining for 
MHC class II and B220, then, was 0.095 x 106 cells/mouse 
in naive mice, 0.91 x 106 cells/mouse in mice initially exposed 
to OVA, and 1.9 x 106 celis/mouse in mice initially exposed to 
saline. The experiment was repeated three separate times 
yielding similar results. 
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Fig. 1. Effect of passive OVA exposure on the expression of the activation marker CD69 on T cells in the thoracic lymph nodes after sensitization. 
Mice were initially exposed to either 1% OVA or saline (Sail via a8f"osol for 2Om!n on 10 consecutive days. Twenty..four hours after the second i.p. 
eensitizatlon, mice were killed. their thoracic lymph nodes removed and the activation of T cells was evaluated according to CD69 expression gated on 
either CD4ICOO or CD81CD3.lymph nodes from naive mice were also characterized (one of four representative experiments is shown; 11=8-10 mlcel 
group). 
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Immunoglobulin levels in the serum 

In the light of the considerable lymphocyte expansion that we 
documented in the lymph nodes, we investigated whether this 
led to a humoral response and, jf so, the nature of that response. 
To this end, we measured the immunoglobulin levels in the sera 
of mice following in vivo OVA challenge. Table I shows a robust 
OVA-specific IgE response after OVA challenge in mice initially 
exposed to saline. This response was diminished by over 70% in 
mice initially exposed to OVA. Notably, the observed reduction 
was isotype-specific since both OVA-specific IgGI and IgG2a 
were readily detectable in the sera of mice initially exposed to 
either saline or OVA. Indeed, for IgG I, we observed signifi
cantly higher levels of the immunoglobulin in mice initially 

(a) 
1.5 

0.0 
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Table 1. Serum levels of immunoglobulins 

IgE 

IgG1 

IgG2a 

Naive 

NO 
49±22 

5±3 

Sal 

274±50# 

368000 ± 54200 
616 ± 452 

OVA 

77±26'# 
1360000 ± 28000"# 

1260±295 

Mice were exposed daily to aerosolized OVA or saline for 10 days. Two 
days after the last exposure, both groups were then sensitized Lp. and 
challenged with OVA aerosol. Three hours after challenge serum was 
collected. Serum was also collected from naIve age-matched mice. 
Results are expressed as mean ± SE (U/mLl. Statistical analysis was 
performed using an ova with the Fisher LSD method. 'P < 0.05 compared 
with mice exposed to saline, #P < 0.05 compared with naTve mice, n=3 
for naive, 5 for other groups. ND=not detectable. 
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fig. 2. Cytokine expression from lymph node 0.0 ..... __ 
and spleen cells recalled in culture with OVA. 
Mice were initially exposed to either 1 % OVA 
or saline (Sal) via aerosol for 20min on 10 
consecutive days. Twenty-fourhours after the 
second i.p. sensitization, mice were killed and 
Iheir thoracic lymph nodes (a) and spleens 
(bl were removed. Cells derived from pooled 
lymph nodes or individual spleens were placed 
inlo culture for 5days with OVA. No cytokines , .. 
were produced in medium alone, in the absence .. 
of OVA. Cytokines were measured with a 
sandwich ELISA. For splenocyte cultures, data 
represent mean ± SEM from four individual 
spleens. For lymph node cells, data represent 
mean ± SEM from four individual culture wells. 
Statistical analysis was performed using a 
Student's Hest; 'p < 0.05; ··P=O.077. 
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exposed to OVA. For IgG2a the levels were not significantly 
different. The levels in naive mice were either undetectable, or 
very low. 

Ex vivo Th2 and Th 1 cytokine production 

Given the evidence of T cell activation, as assessed by levels of 
CD69 and CD25 expression in mice initially exposed to OVA or 
saline, we investigated the effector function of these cells. To 
this end, lymph node cells and splenocytes were removed, 
placed into culture and exposed to OVA or medium alone for 
5 days. The supernatants were then harvested, and the levels of 
IL-4, IL-5, iL-13 and IFN-y were measured. Splenocytes were 
included to gain insight into effector activity in the systemic 
compartment. While the lymph node cells and splenocytes from 
animals initially exposed to saline produced high levels ofIL-4, 
IL-5, IL-13 and IFN-y, animals initially exposed to OVA pro
duced very small amounts of these cytokines (Fig. 2). We 
detected only negligible levels of cytokine expression in medium 
alone or in splenocytes and lymph nodes cells from naive mice 
cultured with either medium or OV A (data not shown), indicat
ing that the observed response was OVA-specific. 

Costimulatory molecule expression in lung mononuclear 
cells 

Having observed a decreased ability of both lymph node and 
spleen cells from mice initially exposed to OVA, but not saline, 
to carry out an effector programme upon antigen recall in vitro, 
we proceeded to examine the expression of costimulatory mol
ecules, known to be important in generating effector responses, 
upon antigen recall in vivo. To this end, 24h after challenge lung 
mononuclear cells were isolated and total RNA was extracted. 
CD28, CTLA-4, B7.1 and B7.2 mRNA expression was assessed 
with real time quantitative peR (TaqMan). Compared to naive 

animals, we observed an up-regulation of CTLA-4, 87.1 and 
S7.2 mRNA expression in animals initially exposed to saline 
(Fig. 3). In animals initially exposed to OVA, the levels of 
these molecules were low, and similar to those observed in 
naive animals. Interestingly, the level of CD28 expression in 
naive mice was relatively high and similar to that detected 
in mice initially exposed to saline. Remarkably, the levels of 
CD28 expression in mice initially exposed to OVA were clearly 
lower than, even, in naIve mice. Figure 3 depicts a representative 
of two separate experiments. 

Impact of aerosol exposure to OVA on lung/airway 
responses 

Next, we investigated the impact of such lung compartmental
ized immune hyporesponsiveness at the cellular, histological and 
physiological levels. Figure 4 depicts lung histology and the 
cellular profile in the SAL after in vivo OVA challenge. At the 
tissue level (Fig. 4a), mice initially exposed to saline developed 
extensive peribronchial and perivascular inflammation. Note the 
evidence of goblet cell hyperplasia and mucus in the airway. This 
inflammatory response was eosinophilic in nature (Fig. 4a(ii». 
In contrast, inflammation was markedly reduced in animals that 
were passively exposed to OVA prior to sensitization and chal
lenge (Fig. 4a(iii». The few focal areas that showed an inflamma
tory infiltrate were largely devoid of eosinophils (Fig. 4a(iv». In 
addition, goblet cell hyperplasia was absent in these mice. 

Figure 4(b) shows that initial exposure to OVA markedly 
decreased inflammation in the BAL. Most notably, the number 
of eosinophils was reduced by > 95%. Indeed, statistical analysis 
revealed that the cellular profile of mice initially exposed to 
OVA was not significantly different to that observed in naIve 
animals. No neutrophils were observed in any of the groups at 
this time point (data not shown). 
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Naive Sal OVA Na'MJ Sal OVA 

B7.1 B7.2 fig. 3. Effect of initial OVA exposure on the 
costimulalory molecule profile. Mice were 

S- o 12 initially exposed to either 1% OVA or saline via 
.- aerosol for 20min on 10 consecutive days. Both 
~ groups were Ihen sensitized i.p. and challenged 

t 
with OVA aerosol. Twelve hours after the last 
OVA challenge, mice were killed and their lungs 

3 
removed. lung mononuclear cells were 
isolated and lotal RNA was isolated. Real time 
quantitative peR (TaqMan) was run. Panels 

@) depict the relative expression, to mGAPDH. of 

~ costimulatory molecule mRNA from the lung 

«I mononuclear celis of naive animals and 

~. 0 
animals initially exposed either to saline (Sal) 
or OVA (one of two representative experiments 

Na~ ~ OVA is shown; n=6 mice/group). 
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(a) 

(b) TotaIceIs Mononuclear eels Eosinophils 

Fig. 4. light photomicrograph of paraffin-
4 4 2 

embedded sections of lung tissues and SAL I cellular profile after aerosol challenge. Mice 
were initially exposed to either 1% OVA or 2 
saline (Sal) via aerosol for 20min on 10 "b consecutive days. In (a) and (b). both groups ... 
were then sensitizedi.p. and challenged with .!So 
OVA aerosol. In (c) • both groups were then 0 
sensitized i.p. and challenged intranasally Na1Ve Sal OVA Naive Sal OVA NaTve Sal OVA 
with ragweed. Animals were killed 72h after 
the last challenge. In (a). panels depict tissues 

-.ffom mice Initlatty exposed to either saline (C) TofaIceIs Mononuclear eels EosInophIls 
(I and II) or OVA (Ill and Iv). All sections were 4 
ataioad with haematoxylin and eosin. Note the I:' 
magnitude of eosinophilia in (III) and (Iv) as i compared with (I) and (1/). Magnification of 
panels: (I) x 250; (i/) x 640; (Iii) x 250; (Iv) x 640. S 2 
In (b) and (c). data show total cell number. "b 
mononuclear cells and eosInophIla in the BAL. .... 
Mean ± SEM; 0=4-5; ataliatlcal analysis was .!So 
performed using one way anova with Fisher 0 
LSD method; .p < 0.05. Na1Ve Sal 

Figure 4( c) shows that inhibition of airway inflammation was 
antigen specific. Mice initially exposed to OVA and then sensi
tized and challenged with ragweed developed robust eosinophi
lic inflammation. 

We have previously documented the Th2 cytokine profile in 
the BAL associated With airway inftammation [16]. Based on 
this information, cytokine levels in the BAL were measured 24 h 
after OVA aerosol challenge .. Figure 5 demonstrates dramatic
ally decreased levels of IL-4, IL-5 and IL-I 3 in mice that were 
initially exposed to OVA. For 1L-4 we excluded one sample 
since it was identified as an outlier (I-test, 99"10 confidence) 

To assess whether decreased inflammation was mediated by 
IL-IO or IFN-y, we conducted the protocol in IL-IO and IFN-y 
KO mice. Figure 6 shows that eosinophilic airways inflamma
tion was similarly inhibited in both KO strains. 

To link the cellular response in the Jung to airway physiology, 
we assessed airway responsiveness to increasing intravenous 
(i. v.) doses of MCh 72h after antigen challer. Figure 7 dem
onstrates significantly increased airway responsiveness in mice 
that were initially exposed to saline. as compared to naive 
controls. This responsiveness was significantly reduced in mice 
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CNA NaTve Sal OVA Naive Sal OVA 

that were initially exposed to OVA. Nevertheless, these mice 
showed significantly greater responsiveness compared with 

. naive controls at the higher (100 and 300I1g!kg) concentrations 
of MCh. 

Discussion 

It has been known for a number of years that passive exposure 
to the soluble antigen OVA. used as an allergen surrogate, 
prevents the production of OVA-specific IgE, that would other
wise occur in animals subjected to an experimental protocol of 
allergic airways inflammation [9J. More recently, it has been 
documented that such passive exposure is also ass<X..-iated with 
decreased eosinophilia in both peripheral blood [II] and BAL 
[12]. Against this background of 'anti-inflammatory' outcomes, 
the objective of our study was to investigate the state of immune 
responsiveness elicited by passive antigen exposure in both the 
primary site of sensitization, i.e. the thoracic lymph nodes, 
and the site of immune-effector activity, i.e. the lung/airway 
compartment. In brief, our data provide evidence that initial 
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Fig.5. Cytokine levels in the BAL. Mice were initially exposed to either 1% OVA or saline (Sal) via aerosol for 20min on 10 consecutive days. Both 
groups were then sensitized i.p. and challenged with OVA aerosol. Mice were killed 24h after the last challenge. Cytokines were measured by ELISA. 
Mean ± SEM; n=5--9; statistical analysis was performed using Student's t-test; .p < 0.05. 
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Fig. 6. Cellular profile in IL-10 and IFN-y knock-out mice. Mice were initially exposed to either 1% OVA or saline (Sal) via aerosol lor 20min on 10 
consecutive days. 80th groups were then sensitized i.p. and chailenged with OVA aerosol. Animals were killed 72h after the last OVA challenge. 
The Wild-type controls are C57BL/6 mice. Mean ± SEM; n = 3-4: statistical analysis was performed using anova with Tukey post-hoc test; 'P < 0.05 . 

exposure to OVA leads to immune activation in the thoracic 
lymph nodes thatis, however, associated with divergent effector 
activities in the immunoglobulin and cytokine profiles. 

The protocol that we used to elicit allergic airway inflamma
tion involves two distinct phases: a sensitization procedure 
carried out intraperitoneally (i.p.), followed by aerosol chal
lenge [16,19,20]. We have established such a model in our la
boratory and have previously detailed cellular changes in the 
BAL, lung tissue and peripheral blood compartments as well as 
serum levels of immunoglobulins and cytokine profiles in serum 
and HAL [16]. First, we investigated the phenotypic changes in 
the lymphocyte population in the lymph nodes in mice that had 
been initially exposed to repeated aerosolizations of either OVA 
or saline control. We selected 24h after the second Lp injection 
because this is the time point of maximal T and 13 cell expansion 
in the lymph nodes (Gajewska et ai., personal communication). 
Our data provide three lines of evidence indicating that initial 
repeated OVA aerosolization was associated with an immune 
response at this site. First, we documented a considerable expan
sion in the T ceil compartment, regardless of whether mice had 
been initially exposed to OVA or saline, when compared with 
naive controls. Secondly, we observed high expression ofT cell 
acti.vation markers in mice initially exposed to either OVA or 
saline, specifically CD69 [21,22] and CD25 [23J. Thirdly, mice 
initially exposed to OV Aor saline !lad a considerable expansion 

. of APC, particularly 13 cells, as assessed by MHC class II and 
13220 expression. Notably, the proportion ofT cells in OVA-and 
saline-exposed animals was lower than that observed in naive 
mice. This is because of the comparatively greater expansion of 
MHC class II cells vs. that of T cells. It is more noteworthy, 
however, that the APC: T cell ratio was almostidentical between 
the animals initially exposed to either saline or OVA. 

The considerable expansion in the B cell compartment in 
animals initially exposed to OVA led us to investigate the func
tional significance of this event. Upon in vivo antigen challenge, 
animals initially exposed to OVA expressed low levels of OV A
specific IgE, but significantly higher levels of OVA-specific 
IgG I, when compared with animals initially exposed to saline 
(Table 1). While several independent groups have shown iso
type-specific inhibition of OVA-specific IgE in mice initially 
exposed to OVA [10,12,24], our data, specifically the elevated 
levels of the Th2-associated IgG I [25] in mice initially exposed 
to OVA, demonstrate isotype switching, rather than isotype 
inhibition. Similar levels of IgG2a were observed in mice ini
tially exposed to saline or OVA. Therefore, initial exposure to 
OVA did not categorically inhibit the effector function of 13 
cells, but rather, led to an altered, but still Th2-predisposed, 
immunoglobulin profile. 

That CD69 and CD25 expression was grtater in mice initially 
exposed to OVA or saline indicates T cell activation. 
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Furthermore, since isotype switching requires T cell help [26], 
the changes in the immunoglobulin profile discussed above 
provide additional independent evidence of T cell activation. 
Therefore, we next assessed another important etT~tor function 
of these lymphocytes in vitro, namely, cytokine production. 
Interestingly, when lymph node cells of OVA-exposed animals 
were placed into culture and re-stimulated with OVA, they 
were unable to produce either Th2- or Th I-associated cytokines 
(Fig. 2). That we observed minimal levels of IFN-)" argues 
against immune deviation being an important mechanism in 
inhibiting IgE responses, as has been suggested in the past 
[10]. That we observed decreased cytokine production by sple
nocytes, indicates that such aborted effector function was mani
fested systemically. 

Ultimately, the impact of an immune response should be 
assessed in the target organ, the site of antigen exposure. 
Hence, it was important to investigate the activation state of 
immune cells infiltrating the lung. Here, we focused our analysis 
on the expression of a number of molecules that have been 
reported to play critical roles in immune-inflammatory re
sponses, including allergic responses [27-32]. Specifically, we 
looked at costimulatory molecules expressed on T cells (CD28 
and CTLA-4) and APC (B7.1 and B7.2) [33]. CD28, expressed 
on all T lymphocytes, binds to B7.1 and B7.2. The interaction 
serves as a second signal in initiating productive immune re
sponses. Upon activation, T cells up-regulate their CTlA-4 
expression which, by binding with higher affinity to the APe 
costimulatory molecules, serves to down-regulate further T cell 

- activation and expansion [33,34]. 
Our rationale for isolating lung mononuclear cells was to 

focus on cells present in the lung at the time of challenge. As 
Fig. 3 attests, CD28, CTLA-4, B7.1 and B7.twere highly ex
. pressed in the lungs of animals initially exposed to saline. In 
contrast, animals initially exposed to OVA expressed very low 
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levels of these molecules. Indeed, the levels were either similar 
to, or, in the case of CD28, even lower than, those observed in 
naive animals. While much of the work investigating the impact 
of initial exposure to antigen has focused on T cells and their 
function [10,13], our data introduce costimulation as a marker 
and, possibly, as a mechanism by which T cell etTector function 
may be controlled. Indeed, the steady discovery of novel costi
mulatory molecules maintains the utmost interest in the regula
tory potential of costimulation [35]. 

That initial OVA exposure resulted in such dramatic lack of 
up-regulation of costimulatory molecule expression in the ef
fector organ, at the time of in vivo OVA recall, led us to investi
gate the cells, molecules and physiological changes associated 
with airway inflammation. In animals initially exposed to OVA, 
we observed a dramatic reduction of airway inflammation char
acterized by decreased numbers of mononuclear cells and eo
sinophils, compared with mice initially exposed to saline (Fig. 4). 
At the tissue level, we observed a reduction of eosinophilia in 
the pen"bronchial and perivascular regions ofthe lung, as well as 
a marked reduction of goblet cell hyperplasia. Furthermore, the 
levels of Th2 cytokines such as IL-4, IL-5 and IL-13 were 
considerably decreased in these mice (Fig. 5). This airway unre
sponsiveness was antigen specific as we observed marked in
flammation in animals initially exposed to OVA and then 
sensitized and challenged with ragweed extract. 

IL-IO and IFN-"\, have previously been shown to play an 
important role in tolerance [10,17,18]. Our studies in IL-IO 
and IFN-y KO mice indicate that these cytokines are not neces
sary to the induction and maintenance of this process (Fig. 6). 
That we were not able to detect IL-IO or IFN-)" in the BAL of 
mice initially exposed to either saline or OVA further substanti-
ates our findings (data not shown). • 

We also observed a significantly decreased airway response to 
methacholine in OVA-exposed mice compared with animals 
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-o-NaiVe 
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Flg.7. Effect of passive OVA exposure on 
MCh-induced Increases in MS. Mice were 
initially exposed to either 1 % OVA or saline 
(Sail via aerosol for 20mln on 10 consecutive 
days. Both groups were then sensitized I.p. 
and challenged with OVA aerosol. Seventy-two 
hours after challenge airway function was 
assessed. Mean ± SEM;n=3 for naive; n= 7 
for other groups; statl$tlcal analysis was 
performed using anova with Newman-Keuls 
post-hoc test; *RRS was signiftcantly greater 
compared with naive control mice (P < 0.05). 
#RRS was slgnlficanUy greater compsred with 
sensitized and challenged mice Initially 
exposed to OVA (P < 0.05). 

o+---------~--------~--------~---------, 
o 10 33 100 330 

MethachOline dose (lIglkg) 
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initially exposed to saline (Fig. 7). Interestingly, RRS was 
increased in mice initially exposed to OVA at 100 and 300J.Lg/ 
kg methacholine doses when compared with naive controls. 
This incomplete reduction may be attributed to the increased 
levels of IgG I in the serum. In this regard, Oshiba et aI. demon
strated that passive transfer of either allergen-specific IgE or 
IgG I mediates immediate hypersensitivity and airway hyper
responsiveness [36]. That we observed increased AHR in mice 
initially exposed to OVA is therefore consistent with the 
presence of OVA-specific IgGl. Together these data suggest 
that initial aerosol exposure to OVA induced inhalation toler
ance insofar as subsequent subjection of mice to a protocol 
of antigen-induced airways inflammation, did not result 
in the expected up-regulation of molecules, the infiltration 
of cells, or the physiological conditions, associated with this 
phenomenon. 

In conclusion, our data indicate that passive exposure to an 
innocuous antigen such as OVA does not elicit unconditional 
unresponsiveness but, rather, an active immune response. The 
response is unique insofar as it is characterized by an altered and 
comprornized effector programme. It is an antigen-specific pro
gramme that manifests itself with a distinct immunoglobulin 
profile, an aborted production of pro-inflammatory Th2 and 
Thl cytokines, as well as an unengaged CD28/CfLA-41B7 
costirnulatory pathway. That this immune response is ultim
ately not associated with inflammation in the target organ is 
what makes it homeostatic, a state that, at least intuitively, is to 
be expected given the harmless nature of the antigen. 
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Chapter 3: Concomitant Airway Expression of GM·CSF and Decorin, a Natural 

Inhibitor ofTGF.~, Breaks Established Inhalation Tolerance 

This article was submitted to the European Journal oj Immunology (2004). 

We previously showed that GM-CSF breaks tolerance induction. The objective of this 

study was to determine whether GM-CSF breaks established inhalation tolerance. Using a 

model of mucosal anergic sensitization, we show that GM-CSF alone cannot break 

established tolerance, but that concomitant expression of GM-CSF and decorin, a natural 

inhibitor of TGF-fl breaks tolerance in the airway. These findings lead to the generation 

of the hypothesis that at least two signals are required to break established tolerance: one 

that leads to de novo sensitization (GM-CSF) and one that interferes with regulatory 

mechanisms (decorin). This is the first observation that established tolerance can be 

broken in vivo. I generated the data and wrote the manuscript. B.U. Gajewska, C.S. 

Robbins and l.R. 10hnson helped with Flow Cytometry; A. D'Sa and M.A. Pouladi 

helped with experiments and reviewed the manuscript; M.D. Inman helped with AHR; 

and M.R. Stampfli supervised the project. 
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SUMMARY 

We previously showed that GM-CSF breaks tolerance induction. The objective of this study was 

to determine whether GM-CSF breaks established inhalation tolerance. To induce tolerance, 

Balb/c mice were exposed to aerosolized ovalbumin (OVA) for ten consecutive days. A control 

group was exposed to saline. Subsequently, tolerant and control animals were exposed to OVA in 

a GM-CSF-enriched airway microenvironment. We found that tolerant animals, unlike control 

animals, did not develop airway and peripheral blood eosinophilia, had diminished levels of OVA

specific (gE, and reduced airway hyper-responsiveness. While tolerant animals did not express 

Il-4, Il-5 and Il-13, levels of the regulatory cytokines Il-1O, IFN-yand TGF-J3 were similar 

between tolerant and non-tolerant animals. lung CD4+ T cells were activated according to CD69, 

CD25 and T1/ST2 expression, but systemic responses characterized by splenocyte proliferation 

and ex vivo Th2 effector function were dramatically reduced. Concurrent expression of GM-CSF 

and decorin, a small proteoglycan and a natural inhibitor of TGF-J3, reversed eosinophilic 

unresponsiveness. OUf study suggests that the breakdown of tolerance and, by extension, the 

emergence of eosinophilic inflammation, requires two signals: one that triggers sensitization and 

one that interferes with negative regulation. Moreover, our study shows for the first time that 

dysregulated expression of an extracellular matrix protein may break established tolerance and 

lead to eosinophilic airway inflammation. 
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INTRODUCTION 

Accumulating evidence suggests that the immune system has evolved powerful regulatory 

mechanisms that control responsiveness to innocuous agents (1, 2). Such regulatory 

mechanisms are crucial for survival since unwarranted inflammation may compromise the primary 

function of a specific organ. The effectiveness of these mechanisms is underscored by the 

observation that, in spite of universal exposure to aeroallergens, the majority of the population 

does not develop allergic disease (3, 4). 

Animal studies have shown that intra-nasal or aerosol exposure to harmless antigen such 

as OVA induces a state of antigen-specific unresponsiveness, referred to as intra-nasal or 

inhalation tolerance. Previously regarded as immunologically dormant, we currently understand 

this type of tolerance to be governed by increasingly complex cellular and molecular pathways, 

likely involving co-stimulation (5), functional inactivation by macrophages (6), T cell activation (7) 

and suppression (8), expression of several regulatory cytokines such as Il-10 (9) and IFN-y(10), 

and other related mechanisms (1). The role of TGF-p, a molecule critical in the regulation of oral 

tolerance (11, 12) and organ-specific autoimmune disease (12, 13), remains largely unexplored in 

inhalation tolerance (14). 

We previously reported that GM-CSF expression in the airway microenvironment of mice 

breaks tolerance induction and allows for allergic mucosal sensitization to OVA (15). The ensuing 

inflammatory response is characterized by a Th2-associated cytokine profile, ai~y ,eosinophilia, 

goblet cell hyperplasia and bronchial hyper-responsiveness, all of which are hallmarks of human 

asthma. Hence, the development of allergies may reflect in part the failure to induce tolerance; 

antigen is \ initially encountered in the context of a Signal that triggers allergic sensitization. 

However, the development of allergies may also reflect a breakdown of established tolerance. 

The objective of this study was to determine under what conditions established tolerance 

is broken. While we were unable to break tolerance with GM-GSF alone, concurrent expression of 

GM-CSF and decorin, a proteoglycan associated with human asthma (16) and a natural inhibitor 

of TGF-p (17), broke tolerance in the airway. Our study shows for the first time that increased 

expression of decorin is assotiated with dysregulated airway responses that lead to eosinophilic 
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inflammation. Although tolerance has been transferred before, this study is the first to show, to 

our knowledge, that established inhalation tolerance can be broken in vivo. Furthermore, we 

provide evidence that two signals are required to break established tolerance: one that allows for 

sensitization and one that interferes with regulatory pathways. 



PhD Thesis - F.K. Swirski McMaster - Medical Sciences 38 of 97 

RESULTS 

Cellular response in the BAL and the peripheral blood of tolerant mice exposed to OVA in the 

context of a GM-CSF-enriched airway environment 

To address whether GM-CSF breaks established inhalation tolerance, Balb/c mice were exposed 

for ten consecutive days to either OVA (tolerance induction) or saline aerosol (control). After 2 

days of rest, both groups were then exposed to aerosolized OVA for a period of nine days in the 

context of a GM-CSF-enriched airway environment. GM-CSF was expressed using an adenovirus 

mediated gene transfer approach. We previously reported that intra-nasal delivery of 3x107 pfu 

leads to expression of GM-CSF for 8-10 days, reaching peak levels of 80pg/ml seven days post 

instillation (18). 24 h after the last exposure animals were killed and BAL was collected. We 

observed a Significant increase in total cell number as well as mononuclear cells and eosinophils 

in the BAL and peripheral blood of animals initially exposed to saline only and subsequently to 

OVA in the context of GM-CSF (Fig. 1). Prior exposure to OVA alone resulted in striking reduction 

of total cells in the BAL and peripheral blood when compared to animals initially exposed to 

saline. In both compartments, the difference was owing to a significant reduction of eosinophils 

(>80%), with only a modest and statistically insignificant reduction of the mononuclear cell 

population in the BAL These findings suggest that expression of GM-CSF did not break 

established airway tolerance. 

Cytokine Expression in the BAL 

Given the preeminent status of cytokines in orchestrating and regulating the central features of 

allergic airWay inflammation, we measured expression levels of Th2-associated (IL-4, IL-5, IL-13) 

and regulatory (IL-10, IFN-y, TGF-P) cytokines in the BAL Balb/c mice were exposed for ten 

consecutive days to either OVA (tolerance induction) or saline aerosol. Both groups were then 

exposed to aerosolized OVA for a period of nine days in the context of a GM-CSF enriched 

airway environment 24 h after the last exposure mice were killed and BAL was collected. 

Cytokines were measured by ELISA. While IL-4, IL-5 and IL-13 were secreted at high 

concentrations in animals initiay exposed to saline and then to OVA in the context of a GM-CSF-
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enriched airway environment, expression of these cytokines was significantly decreased in 

animals initially exposed to OVA, reaching levels comparable to those observed in naive mice 

(Fig. 2). Conversely, the expression of IL-10, IFN-y and TGF-~ was unaffected by initial exposure 

to OVA, since levels of these cytokines were similar in both groups. 

Impact of initial OVA exposure on humoral responses in animals exposed to OVA in context of 

GM-CSF 

To assess whether expression of GM.,CSF breaks IgE unresponsiveness in tolerant mice, we 

measured serum levels of OVA-specific IgE and IgG1. Balblc mice were exposed for ten 

consecutive days to either OVA (tolerance induction) or saline aerosol. Both groups were then 

exposed to aerosolized OVA for a period of nine days in the context of a GM-CSF enriched 

airway environment. 28 d after the last exposure, both groups were exposed for three 

consecutive days to OVA (in vivo recall challenge) and killed two days later. Their serum was 

collected and antibody titers were assessed. Our results show a divergent expression pattern of 

these Th2-associated immunoglobulins; whereas animals initially exposed to OVA and then to 

OVA in the context of GM-CSF secreted nearly undetectable levels of IgE when compared to 

mice initially exposed to saline and then to OVA in the context of GM-CSF, IgG1 expression was 

similar in both groups and significantly higher than in naive mice (Fig. 3). 

Impact of initial OVA exposure on lung physiology in animals exposed to OVA in context of GM

CSF 

We next assessed airway responsiveness to increasing intravenous (i.v.) doses of MCh during in 

vivo recall challenge, as described above. Fig. 4 demonstrates significantly increased airway 

responsiveness in mice that were initially exposed to saline and then to OVA in the context of 

GM-CSF expression, as compared to naive controls. This responsiveness was significantly 

reduced in mice initially exposed to OVA. At no MCh dose measured did we observe differences 

in airway responsiveness between naive animals and animals initially exposed to OVA. BAl 

cellular data obtained at this time point was similar to findings observed during the acute phase of 
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OVA exposure in the context of GM-CSF expression, as documented in Fig. 1 (unpublished 

data). 

Activation status of CD4'" T cells in the lung 

Because CD4+ T cells are indispensable to the development of allergic airway inflammation their 

phenotypic profile was assessed. CD4+CD3+ T cells from animals subjected to two sets of daily 

OVA exposures 10 days each, both times in the absence of GM-CSF, expressed low levels of the 

activation markers CD69 (9.8%) (19) and CD25 (6.5%) (20,21), and negligible levels of the Th2-

effector marker T1/ST2 (4.4%) (22-24) (Fig. 5). In contrast, animals initially exposed to saline and 

then subjected to OVA in the context of GM-CSF had dramatically increased levels of CD69 

(28.4%), CD25 (13.0%), and T1/ST2 (13.8%). In animals initially exposed to OVA and then 

subjected to OVA in the context of GM-CSF the expression of CD69 (26.3%), CD25 (13.1%), and 

T1/ST2 (10.7%), remained high and similar to levels observed in animals initially exposed to 

saline. 

Ex vivo T cell effector function 

To gain insight into effector activity of T cells in the systemic compartment, mice were initially 

exposed either to OVA (tolerance induction) or saline, and then subjected to OVA in the context 

of GM-CSF. 24 h after the last OVA exposure, mice were killed, and splenocytes were isolated 

and placed in culture. fig. 6A shows significantly increased proliferation of splenocytes from 

animals initially exposed to saline compared to the other groups. In contrast, modest proliferation 

was observed in animals initially exposed to OVA, not differing significantly from those of naTve 

animals. \ 

Fig. 6B shows expression of the Th2-associated cytokines Il-4, Il-5 and Il-13 and the 

regulatory cytokines Il-10, IFN-yand TGF-J:} by splenocytes cultured for five days in the presence 

of OVA. Il-4, Il-5, Il-13, and Il-10 levels were significantly reduced in animals initially exposed 

to OVA and then to OVA in the context of GM-CSF when compared to animals initially exposed to 

saline and then to OVA in the context of GM-CSF, while the levels of IFN-yand TGF-J:} remained 

similar between the groups. ~ugh splenocytes from naive animals cultured with medium alone 
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did not express any cytokines measured (unpublished data), some expression of IFN-yand TGF

~ was observed in splenocytes from naIve animals cultured with OVA (1615 ± 218 and 640 ± 229 

pg/ml, respectively). Splenocytes from animals initially exposed either to OVA or saline and then 

cultured in medium alone did not express Il-4 or Il-S but expressed ~60 pg/ml Il-i3, ~25 pg/ml 

Il-10, ~2 • ng,tnIlFN-yand ~100 pg/ml TGF-~. 

Impact of concomitant expression of decorin and GM-CSF in the lungs of tolerant mice on airway 

and systemic responses 

To mechanistically address how unresponsiveness is maintained, mice were initially exposed to 

saline or OVA; both groups were then exposed either to adenovirally encoded GM-CSF and 

decorin, or GM-CSF and empty control virus (RDA), one day prior to nine daily and consecutive 

OVA aerosolizations (GM-CSF/Decorin/OVA and GM-CSF/RDNOVA, respectively). Decorin, a 

proteoglycan and a component of the extracellular matrix, has previously been shown to 

sequester TGF-~ in the airways (2S). Fig. 7 A shows that animals initially exposed to OVA and 

then exposed to OVA in the context of GM-CSF and decorin, mount an eosinophilic response that 

is comparable to animals initially exposed to saline and then subjected to OVA in the context of 

GM-CSF and RDA. As a control, tolerant mice exposed to OVA in the context of GM-CSF and 

RDA maintained a state of airway unresponsiveness. Additionally, tolerant mice exposed to GM

CSF and decorin in the absence of OVA, or tolerant mice exposed to decorin and RDA in the 

absence of GM-CSF. did not develop airway eosinophilia (Fig. 78). Moreover, mice initially 

exposed to saline and then to OVA in the context of GM-CSF and decorin mounted an 

eosinophilic response that was comparable to animals initially exposed to OVA and then to OVA 

in the context of GM-CSF and decorin (Fig. 78). To address whether this reversal of tolerance 

was accompanied by a systemic effect, splenocyte proliferation and Il-5 production to OVA was 

assessed. Fig. 8 shows that splenocytes proliferated poorly in animals initially exposed to OVA, 

regardless of the presence of decorin. This is in contrast to the robust proliferation of splenocytes 

from animals initially exposed to saline and then to OVA in the context of GM-CSF and RDA. low 

levels and inSignificant differences were observed when splenocytes were cultured in medium 
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alone. Expression of Il-5 remained low in animals initially exposed to OVA and then exposed to 

OVA in the context of GM-CSF and decorin, compared to animals initially exposed to saline and 

then exposed to OVA in the context of GM-CSF and RDA. To ensure that administration of 

decorin sequestered TGF-p, we measured TGF-p in the BAL In accordance with previous 

findings, neither active nor total TGF-p was detected in decorin treated animals ((25) and 

unpublished data). 
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DISCUSSION 

Allergic diseases likely arise because mechanisms governing homeostasis break down or are 

subverted. Therefore, a comprehensive understanding of allergic diseases requires the 

elucidation of mechanisms that not only lead to allergic sensitization but also break tolerance. To 

date, investigators have identified a number of ways by which the immune sys.tem maintains 

apparent unresponsiveness to a harmless antigen, but many questions remain. Within this 

framework, our study addressed the regulatory potential of GM-CSF, a growth factor and pro

inflammatory cytokine associated with human asthma and experimental airways inflammation, 

and decorin, a small leucine-rich proteoglycan of the extracellular matrix and a natural TGF-p 

inhibitor (17). 

An extensive body of work in human asthma and experimental allergic inflammation 

demonstrates increased production of GM-CSF at both the RNA and protein levels in allergic 

asthma. Initially described as a hematopoietic growth factor, GM-CSF is currently known to 

enhance antigen presentation by inducing proliferation, activation and maturation of DC (reviewed 

in (26». Hence, GM-c5F may play a more prevalent role in the expression of the allergic 

phenotype than previously assumed. Indeed, there is a close association between GM-CSF 

expression and the breakdown of tolerance induction to innocuous antigen. We have previously 

reported that sustained but transient expression of GM-c5F in the respiratory mucosa breaks 

induction of inhalation tolerance. The ensuing inflammatory response encompasses all the 

hallmarks of allergic inflammation, including airway eosinophilia and bronchial hyper-reactivity. 

Therefore, GM-CSF provides a context that privileges Th2 sensitization, thereby subverting 

tolerance induction (27). 

In this study, we asked whether GM-CSF breaks established tolerance. We exposed 

animals to OVA alone, and subsequently exposed animals to OVA in the context of a GM-CSF

enriched airway environment. We show diminished airway and blood eosinophilia and negligible 

levels of Th-2 associated cytokines. During in vivo long-term recall, we observe diminished OVA

specific IgE expression and reduced responsiveness to methacholine challenge. We argue, 
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therefore, that GM-CSF is unable to break inhalation tolerance, and that context of initial 

exposure is remarkably important, especially given the pre-eminent role of GM-CSF in inducing 

allergic sensitization. However, that a small population of eosinophils is observed suggests that 

AdlGM-CSF may partially reverse tolerance, especially given that exposure to OVA alone does 

not lead to eosinophilia (25). This may be indicative of the plasticity or 'leakiness' of the immune 

regulatory system. Our data also show that CD4+ T cells are activated in the lungs, as assessed 

by the early activation marker CD69 (19), the IL-2 receptor CD25 (20, 21) and T1/ST2, a marker 

of Th-2 effector cells (22-24). The high titres of Th-2 associated IgG1 point to a T-cell dependent 

and OVA-specific iSotype switch, and argue that T cells of tolerant mice retain some activity 

related to humoral immunity. The attenuation of ex vivo effector function in tolerant mice, as 

documented with proliferation and cell culture experiments, suggests that surface expression of 

activation markers observed in the lung is not synonymous with inflammation, a discrepancy on 

which we have previously reported (27). Alternatively, the observation that CD4+ T cells of 

tolerant mice express markers of Th-2 activation and effector function but remain refractive to 

OVA-specific proliferation and, Th2-associated cytokine expression may be reflective of a 

regulatory moiety actively suppreSSing OVA-specific effector responses. In this regard, it h~ 

been proposed in a protocol utilizing intra-nasal exposure to OVA that IL-10 plays a vital role in 

suppressing airway inflammation (9). However, previous studies from our laboratory in KO mice 

with inhaled OVA argued IL-10 was redundant (27). Although IFN--y has long ~n associated 

with inhalation tolerance, several relatively recent studies, including our own, have shown intact 

tolerance in the absence of this cytokine (10, 27. 28). Nonetheless, these data do not negate a 

role for IL-\10 or IFN--y in tolerance but draw attention to the redundancy of the immune system, 

and suggest that other regulatory mechanisms may be compensating. 

Studied as much for its fibrogenic as for its anti-inflammatory properties, TGF-p is an 

important, if not defining, cytokine in Tr1 and Th3 regulatory cell-dependent suppression (29) 

(30). Although TGF-p dependent regulation has been described in oral tolerance and organ

specific autoimmune disease (11-13), its role in inhalation tolerance is still largely unknown (14). 

In this study. we exposed tolerant animals to OVA in the context of concomitant expression of 
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decorin and GM-CSF. Our rationale for utilizing a viral vector carrying the decorin transgene is 

two-fold. First, it is well established that decorin binds to, and inactivates the activity of, TGF-~ in 

murine and human airways (31-33). Moreover, administration of a replication-deficient adenovirus 

carrying the decorin transgene introduces an attractive alternative to mouse transgenics and 

protein-based interventions: TGF-~ null mice die early of multiple causes (34), Smad knockouts 

may not exhaust complete TGF-~-mediated activity (35, 36), and antibody treatments may lead to 

serum sickness and are expensive, especially when multiple administrations are required. A 

single delivery of adenovirally-encoded decorin, on the other hand, ensures continuous 

expression of the protein for the entire exposure period to antigen and, by extension, disruption of 

TGF-~-dependent activity in the airways (25). 

Our data show that exposure of tolerant animals to OVA in a GM-CSF and decorin-rich 

airway environment reverses eosinophilic unresponsiveness and leads to robust airway 

inflammation. The event is localized to the lung compartment because OVA-specific proliferation 

of splenocytes and the associated Il-S production remains ablated. Despite the observation that 

TGF-13 was undetectable in deconn-treated animals, it is yet to be determined whether this 

reversal of airway tolerance is TGF-~ sufficient or whether TGF-~ independent mechanisms are 

also involved. The observation that decorin reduces experimental pulmonary fibrosis by a TGF-j3-

mediated mechanism (25, 33) combined with recent studies in patients with rhinitis and asthma 

depicting that unresponsiveness to house dust mite and birch pollen allergens can be reversed by 

neutralizing TGF-13 (37), is compelling corroborative evidence that the molecule is critical to the 

airway changes we observe following decorin administration, and further supports the notion that 

fibrosis and inflammation may be inversely related. Not unlike Il-10 or IFN-y, the similar 

expression of TGF-j3 in SAL and culture supernatants in both tolerant and non-tolerant animals 

may be indicative of immune plasticity; TGF-(3 is known to be vastly pleiotropic (38). Alternatively, 

the similar levels may be indicative of a decorin-dependent, TGF-~-independent mechanism. 

Indeed, decorin has recently been shown to affect expression of several molecules in cultured 

human gingival fibroblasts, including metailoproteinases, tissue inhibitors of metalioproteinases, 
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Il-1~, Il-4 and TNF-a (39), while human glioma cells engineered to express the proteoglycan 

have been shown to stimulate alloreactive immune responses independently of TGF-~ (40). That 

increased expression of decoMn has been observed in human asthma further solidifies a role of 

this molecule in allergiC diseases (16). We propose that the combined expression of GM-CSF and 

decorin generates an airway microenvironment with compromised regulatory activity likely by 

disrupting TGF-~-mediated suppression. That OVA was necessary to establish robust 

eosinophilia argues for antigen dependence. That decorin alone was unable to break tolerance 

argues that a pro-inflammatory environment must accompany decorin expression if these 

changes are to take place. Together, these data suggest a broader context in which decorin 

contributes to biological processes. The data also suggest that airway tolerance is overcome by 

two interventions: one that allows for allergic sensitization (GM-CSF) and one that inhibits 

regulatory activity (decorin). It remains to be elucidated whether such intervention permanently 

changes the phenotype of the response to OVA. 

Our study is the first to document that GM-CSF alone cannot break already established 

tolerance, a process that may be governed by TGF-~ and other decorin-related mechanisms. It is 

also the first observation that expression of decorin affects airway inflammation. Typically a 

negative regulator of TGF-p-dependent fibrosis, this new role for decorin cautions against 

narrowly defined intervention strategies. Indeed, while decorin plays an important role in 

regulating fibrosis, it may be effective at eliciting airway inflammation. The inability to break 

tolerance with GM-CSF, a cytokine with well-defined pro-inflammatory properties, argues that 

context of initial exposure to antigen has significant and remarkably persistent influence on 

subsequent intervention, a notion we have previously explored in a model of chronic exposure 

(41). The concomitant expression of decorin, however, shows that airway unresponsiveness 

breaks under conditions where regulatory activity is suppressed. These findings serve to further 

situate tolerance as an active and resilient process governed by a network of diverse mediators. 
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MATERIALS AND METHODS 

Animals 

Female Balb/c mice (6-8 weeks old) were purchased from Harlan (Indianapolis, IN). Mice were 

kept in a 12 h light-dark cycle with unlimited access to food and water. Cages, food and bedding 

were autoclaved, and gloved, gowned and masked personnel carried out all animal manipulations 

in a laminar flow hood. The Animal Research Ethics Board of McMaster University approved all 

experiments. 

Tolerance induction 

Mice were placed in a plexiglass chamber (10cm X 15cm X 25cm) and exposed for 20 min daily 

over a period of 10 consecutive days to aerosolized OVA (1% wt/vol in 0.9% saline) (Sigma 

Chemicals, St. Louis, MO) (27). Control mice were exposed to saline only. The aerosol was 

produced by a Bennet/Twin nebulizer (Puritan-Bennett Corporation, Carlsbad, CAl at a flow rate 

of 10 litres/min. 

Delivery of Adenoviral Constructs 

We utilized replication-deficient E11E3-deleted human type 5 adenoviral (Ad) constructs carrying 

the transgenes for murine GM-CSF (AdIGM) (42) or human decorin (AdlDec) (33) in the E1 

region of the viral genome. As control, we inciuded an E1-deleted replication-deficient human 

type 5 adenoviral (RDA) construct carrying no transgene (43). All adenoviral constructs were 

delivered intra-nasally in a total volume of 30: I of PBS vehicie (two 15: I administrations 5 min. 

apart) into animals anaesthetized with isoflurane (Baxter Corporation, Toronto, ON, Canada). 

AllergiC Mucosal Sensitization 

Two days after tolerance induction, mice were exposed to OVA in the context of a GM-CSF

enriched airway microenvironment as previously described in detail (15). GM-CSF was expressed 

using an adenovirus-mediated gene transfer approach. A dose of 3x107 pfu AdlGM-CSF 

construct was delivered intra-nasally one day prior to OVA exposure. In some experiments, a 
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concurrent dose of 3x107 pfu Ad/Dec or 3x107 pfu RDA was delivered. Mice were exposed to 

OVA aerosol (1% wt/vol in 0.9% saline) for 20 min daily for nine days, and killed 24 h later. A 

nine-day protocol is superior to ten days in that it allows for concurrent measurement of 

cytokines. In experiments involving airway hyperresponsiveness (AHR) and immunoglobulin 

measurements, mice were rested for a period of 28 days, re-exposed to OVA aerosol daily for 20 

min over a period of three days, and killed two days later. 

Collection and Measurement from Specimens 

Bronchoalveolar lavage (BAl) was performed as previously described (44). In brief, lungs were 

dissected and the trachea was cannulated with a polyethylene tube (Becton Dickinson, Sparks, 

MD). The lungs were lavaged twice with PBS (0.25 ml followed by 0.2 ml). Approximately 0.25 ml 

of the instilled fluid was consistently recovered. Total celt counts were determined using a 

hemocytometer. After centrifugation cell pellets were resuspended in PBS and slides were 

prepared by cytocentrifugation (Shandon Inc., Pittsburgh, PA) at 300 rpm for 2 min. HEMA 3 

Stain Set (Biochemical Sciences Inc., Swedesboro, NJ) was used to stain all smears. Differential 

counts of BAl cells were determined from at least 500 leukocytes using standarg 

hemocytological procedures to classify cells as mononuclear or eosinophils. Peripheral blood was 

obtained utilizing heparin-coated capillaries (Fisher Scientific Pittsburgh, PA). Total white blood 

cell counts were determined after lysing red blood celis, and cell differentials were assessed on 

smears stained with the HEMA 3 Stain set. For serum, animals were bled with non-heparin 

capillary tubes. Serum was prepared by incubating whole blood for 30 min at 371'C and spun for 

15 min at 4!!C. 

Cytokine and Immunoglobulin Measurements 

ELISA kits for Il-4, Il-5, Il-13, Il-10, IFN-y, and TGF-~ were purchased from R&D Systems 

(Minneapolis, MN). The threshold of detection for Il-4, Il-13, and IFN-ywas < 2pg/ml; Il-10 was 

< 4pg/ml; TGF-~ was < 7 pglml; Il-5 was < 5pg/ml. To obtain total TGF-~ levels samples were 

incubated with HCI prior to ELISA, as directed by the manufacturer. 
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levels of OVA-specific IgE were detected with an ELISA that has been described in 

detail previously (44). For OVA-specific IgG1, Maxi-Sorb plates (NUNC Brand Products, 

Denmark) were coated with 5119 OVA in borate buffer pH 8.3-8.5 overnight at 4°C. Subsequently, 

coated wells were blocked with 1 % BSA in PBS for 2 h at room temperature. After washing, 

serum samples were incubated overnight at 4°C, washed, and developed with biotin-labeled, 

anti-mouse IgG1 (Southern Biotechnology Associates, Birmingham, Al) overnight at 4°C. Plates 

were washed and incubated with alkaline-phosphatase streptavidin for 1 h at room temperature. 

The color reaction was developed with p-Nitrophenyl phosphate tablets. Samples were compared 

to a standard serum containing OVA-specific IgG1. Units correspond to maximal dilution that 

results in an 00 that is greater than the blank plus two standard deviations. 

Airway Hyperresponsiveness 

Airway responsiveness was measured based on the response of total respiratory system 

resistance (RRS) to increasing internal jugular vein doses of methacholine (MCh), as previously 

described (45, 46). Exposed tracheas were cannulated and a flow interrupter technique was 

applied by mechanical ventilation (RV5, Voitek Enterprises Inc., Toronto, ON, Canada). Paralysis 

was achieved using pancuronium (0.03 mg/kg i.v.) to prevent respiratory effort during 

measurement. RRS was measured following consecutive i.v. injection of saline, then 10, 33, and 

100 pglkg of MCh (ACIC (Can), Brantford, ON, Canada), each delivered as a 0.2 ml bolus. 

Evaluation of airway responsiveness was based on the peak RRS measured in the 30 s following 

the saline and MCh challenges. 

Lung Cell and Splenocyte Isolation 

Spleens were ground and filtered through a nylon mesh (BSH Thompson, Scarborough, ON, 

Canada). The cell suspension was centrifuged at 1200 rpm for 10 min at 411 C. Red blood cells 

were lysed with ACK lysis buffer, and the splenocytes were washed with HBSS and resuspended 

in RPMI (Gibco BRl) supplemented with 10% FBS, 1% l-glutamine (Sigma Chemicals Co.), 1% 

penicillin/streptomycin (Bibco, BRl), and 0.5% 2-mercaptoethanol (Sigma Chemicals Co.). 
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For isolation of lung cells, lungs were flushed via the right ventricle of the heart with 10 ml 

of warm (37°G) HBSS. The lungs were then cut into small (approximately 2 mm in diameter) 

pieces and shaken at 37°C for 1 h in 15 ml of 150 U/mi collagenase I (Worthington Biochemical, 

Freehold, NJ) in HBSS. Using a plunger from a 3 ml syringe, the lung pieces were triturated and 

filtered through a nylon mesh into HBSS. Cells were washed twice and mononuclear cells were 

isolated by density centrifugation over a 30% and 60% Percoll gradient (Pharmacia, Uppsala, 

Sweden). 

Splenocyte Cell Culture 

Splenocytes were cultured in medium alone or with 80 ~g OVAlml at 8X105 cells/well in a 96-well 

flat-bottom plate (Becton Dickinson, lincoln Park, NJ). After 5 days of culture, supernatants were 

harvested for cytokine measurement For proliferation, splenocytes were cultured in medium 

alone or with 40, 80 and 160 ~g OVAlml at 8XW5 cells/well in a 96-weU round-bottom plate 

(Becton Dickinson). After two days of culture iJ.l,Ci of 3H-thymidine (Perkin Elmer life Sciences, 

Boston, MA) in 20J,LI of RPM I was added to each well. 24 h later, 3H-thymidine incorporation was 

assessed with TopCount NXT microplate scintillation & luminescence counter (Packard 

BioScience Company, Meridan, CT). 

Flow Cytometry 

Panels of monoclonal antibodies were selected to study the phenotype of cells in the lung. To 

minimize non-specific binding, 106 cells were incubated with 0.5 ~g Fc Block (CD16/CD32; 

Pharmlngen, Mississauga, ON, Canada) at 0-42 C for 15 min and subsequently with first stage 

monoclomli antibodies at 0-42 C for 30 min. Cells were then washed and teated with second 

stage reagents. Data were collected using a FACScan and analyzed using WIN-MOl software 

(The Scripps Research Institute, La Jolla, CA). The following antibodies and reagents were used: 

anti-CD3, PE-conjugated 145-2C11 (Pharmingen); anti-CD3, cy-Chrome-conjugated 145-2C11 

(Pharmingen); anti-CD4, FITC-conjugated l3T4 (Pharmingen); anti-C04, cy-Chrome-conjugated 

RM4-5 (Pharmingen); anti-CD69, PE-conjugated Hi 2F3 (Pharmingen); anti-CD25, PE

conjugated PC61 (Pharmingttl); anti-TlIST2, FiTC-conjugated 3E10 (kindly provided by AJ. 
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Coyle, Milienium Pharmaceuticals, Inc., Cambridge, MA) labeled in-house according to a 

standard protocol (17); and Streptavidin Cy-Chrome (Pharmingen). The experiment was 

controlied with appropriate isotypes (Pharmingen). Titration was performed to determine the 

optimal concentration of each antibody. 

Data analysis 

Data are expressed as mean ± SEM. Statistical interpretation of results is indicated in figure 

legends. Differences were considered statistically significant when p<O.05. 
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FIGURE LEGENDS 

Figure 1. BAL and peripheral blood cellular response in tolerant mice following exposure to OVA 

in context of GM-CSF. Balb/c mice were initially exposed to OVA (tolerance induction) or saline 

aerosol on 10 consecutive days. Both groups were then subjected to OVA in the context of GM

CSF. Panel A depicts BAL cellular data; panel B shows peripheral blood. Data represent mean ± 

SEM. Statistical analysis was performed using one-way ANOVA with the Fisher least significant 

difference (LSD) post hoc test (*, p<0.05). n = 8 mice/group for BAL; n = 4 mice/group for 

peripheral blood. 

Figure 2. Cytokine expression in the BAL of tolerant mice following exposure to OVA in context of 

GM-CSF. Balblc mice were initially exposed to OVA (tolerance induction) or saline aerosol on 10 

consecutive days. Both groups were then subjected to OVA aerosol in the context of GM-CSF. 

Cytokine expression was assessed in the BAl. Data represent mean ± SEM. Statistical analysis 

was performed using one-way ANOVA with the Asher LSD post hoc test (*, p<o.05). n = 4-9 

mice/group. 

Figure 3. OVA-specific IgE and IgG1 levels in the serum of tolerant mice foHowing exposure to 

OVA in context of GM-GSF. Balblc mice were initially exposed to OVA (tolerance induction) or 

saline aerosol on 10 consecutive days. Both groups were then subjected to OVA aerosol in the 

context of GM-GSF. 28 d after the last exposure, mice were challenged with aerosolized OVA for 

20 min on 3 consecutive days and killed two days later. OVA-specific IgE and IgG1 levels were 

measured ,in the serum. Data displayed represent mean ± SEM. Statistical analysiS was 

performed using one-way ANOVA with Fisher LSD post hoc test (*, p<o.05). n = 5 mice/group for 

naive; n = 8 mice/group for other groups. 

Figure 4. Impact of GM-CSF expression on airway hyperresponsiveness in tolerant mice. Mice 

were initially exposed to either OVA (tolerance induction) or saline aerosol on 10 consecutive" 

days. Both groups were then s_ublected to OVA aerosol in the context of GM-CSF. 28 d after the 



PhD Thesis - F.K. Swirski McMaster - Medical Sciences 59 of 97 

last exposure, mice were challenged with aerosolized OVA for 20 min on 3 consecutive days and 

airway function was assessed two days later. Data displayed represent mean ± SEM. Statistical 

analysis was performed using ANOVA with Newman-Keuls post hoc test (*RRS was significantly 

greater compared to naive control mice (p<0.05), #RRS was significantly greater compared to 

sensitized and challenged mice initially exposed to OVA (p<0.05)). n = 5 mice/group for naive; n 

= 8 mice/group for other groups. 

Figure 5. T cell activation status in the lungs of tolerant mice following exposure to OVA in 

context of GM-CSF. Mice were initially exposed to either OVA (tolerance induction) or saline 

aerosol on 10 consecutive days. Both groups were then subjected to OVA aerosol in the context 

of GM-CSF. Another group of animals was subjected to two blocks of OVA exposure ooly. 24 h 

after the last exposure, mice were killed. Data show the expression profile of CD69, CD25, and 

T1/ST2 on CD3+CD4+ T cells. Five animals were pooled per experimental group. One of two 

representative experiments is shown. 

Figure 6. Splenocyte proliferation and cytokine production. Mice were initially exposed to either 

OVA or saline aerosol for 10 consecutive days. Both groups were then subjected to OVA aerosol 

in the context of GM-CSF. 24 h after the last exposure, mice were killed, their splenocytes 

Isolated and placed into culture. In A, data show 3H_ Thymidine incorporation to increasing doses 

of OVA in vitro after three days of culture (mean ± SEM). Statistical analysis was performed using 

one-way ANOVA with Rsher LSD post hoc test (*, P<O.05 compared to all other groups). In S, 

data show expression of cytokines measured by ELISA after five days of culture with 8OJ.1QImi 

OVA (mean ± SEM). Statistical analysis was performed using one-way ANOVA with Fisher LSD 

post hoc test (", p<0.05). n = 3-5 mice/group. 

Figure 7. BAL cellular profile in tolerant mice exposed to OVA in the context of GM-CSF and 

decorin expression in the airway. Mice were initially exposed to either OVA or saline aerosol for 

10 consecutive days. A. Mice exposed to OVA were then subjected to OVA aerosol in the context 
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of GM-CSF and Decorin or OVA in the context of GM-CSF and empty control virus (RDA). Mice 

initially exposed to saline were subjected to OVA in the context of GM-CSF and RDA. Animals 

were killed 24 h after the last of nine consecutive daily exposures to OVA. Data represent the 

cellular profile in the BAL (mean ± SEM). Statistical analysis was performed using one-way 

ANOVA with Fisher LSD post hoc test (*, p<0.05). n = 6-8 mice/group. B. Mice initially exposed to 

saline were then subjected to OVA in the context of GM-CSF and decorin while mice initially 

exposed to OVA were then subjected either to GM-CSF and decorin in the absence of OVA or 

decorin and RDA in the presence of OVA. Animals were killed 24 h after the last of nine 

consecutive daily exposures to OVA. Data represent the cellular profile in the BAL (mean ± SEM). 

Statistical analysis was performed using one-way ANOVA with Fisher LSD post hoc test (*, 

p<0.05 compared to all other groups). n = 3 mice/group. 

Figure 8. In vitro proliferation and IL-5 production in tolerant mice exposed to OVA in the context 

of GM-CSF and decorin expression in the airway. Mice were initially exposed to either OVA or 

saline aerosol for 10 consecutive days. Mice exposed to OVA were then subjected to OVA 

aerosol in the context of GM-CSF and decorin or OVA in the context of GM-GSF and empty 

control virus (RDA). Mice initially exposed to saline were subjected to OVA in the context of GM

CSF and RDA. Animals were killed 24 h after the last of nine consecutive dally exposures to 

OVA. Data represent proliferation of splenocytes and IL-5 production from indiyidual animals 

cultured for three days (proliferation) or five days (IL-5 production) in medium (gray bars) or OVA 

(black bars) (mean ± SEM). For proliferation, statistical analysis was performed using one-way 

ANOVA with Asher LSD post hoc test (*, p<o.05). For IL-5 production, statistical analysis was 

performed using Kruskal-WaUis one-way ANOVA on ranks (*, p<0.05). n = 6-8 mice/group. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Chapter 4: Chronic Exposure to Innocuous Antigen in Sensitized Mice Leads to 

Suppressed Airway Eosinophilia That Is Reversed by Granulocyte Macrophage 

Colony.Stimulating Factor. 

This article appeared in the Journal of Immunology (2002); 169: 3499-3506 .. 

In this study we investigated the impact of chronic allergen exposure on airway 

inflammation and humoral responses in sensitized mice. We show that continued 

exposure to OV A does not lead to persistent inflammation but to abrogated eosinophilia. 

Delivery of recombinant GM-CSF during long term re-challenge fully restored airway 

eosinophilia. This study shows that a unique tolerant state may be generated in sensitized 

mice. It suggests that understanding principles that lead to or prevent chronic 

inflammation elicited by innocuous antigen is key to our understanding of allergic 

diseases. I generated the data and wrote the manuscript. D. Sajic helped with 

experiments; C.S. Robbins and B.U. Gajewska helped with Flow Cytometry; M. Jordana 

was involved in the conceptualization of the project; and M.R. Stampfli supervised the 

project. 
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Chronic Exposure to Innocuous Antigen in Sensitized Mice 
Leads to Suppressed Airway Eosinophilia That Is Reversed by 
Granulocyte Macrophage Colony-Stimulating Factor1 

Filip K. Swirski, Dusan Sajic, Clinton S. Robbins, Beata U. Gajewska, Manel Jordana, and 
Martin R. Stimpfie 

In this study we investigated the impact of chronic allergen exposure on airway inflammation and humoral responses in sensitized 
mice. We observed marked eosinophilia in the bronch6alve61ar lavage, lung tissue, and peripheral blood after 2 wk of exposure. 
(n contrast, eosinophilia was markedly reduced by 3 wk and completely resolved by 4 wk of exposure, despite the continued 
presence of Ag. Decreases in airway eosinophil.ia were associated with a robust humoral response. We observed that levels of 
OVA-specific I gE, Ig(~ 1, and IgG2a increased during the course of exposure. To assess whether continuous exposure til Ag impacts 
the ability of the lung to respond to subsequent Ag challenge, mice were exposed t6 either 2 6r 4 wk of OVA in the context of 
GM-CSF. All groups were then rested for 28 days and exposed to OVA on three consecutive days. We observed a significant 
decrease in airway eosin6philia and 1L-5 expressi6n in the br6nchoalveolar lavage and serum in mice initially exp6sed to 4 wk 6f 
OVA, compared with animals exposed t6 2 wk 6nly. H6wever, in both groups expression 6f B7.2 Oil dendritic cells as well as CD25, 
CD69, and n/8T2 on CD4+ T cells was enhanced, suggesting immune activation. Delivery 6f rGM-CSI<' fully rest6red airway eosin
ophilia. This study shows that exposure to innocuous Ag alone does not lead to persistent e6sinophilic airway inflammation, but rather 
to abrogated eosin6philia. This suppression ean be reversed by GM-CSF. Tile Journal of Immunology, 2002, 169: 3499-3506. 

stbma is a disorder characterized by paroxysmal or per
sistent symptoms, with variable airflow limitation and 
airway hyperrcsponsiveness to a variety of stimuli (1-3). 

It is argued that allergens contribute significantly to the initiation 
and persistence of airway inflammation, which is believed to be the 
central abnonnality that leads to airway damage and dysfunction 
(1-3). It is now well established that expression of a distinct cy
tokine profile comprised particularly ofIL-4, IL-5, and IL-131eads 
to peribronchial and perivascular eosinophilic airway inflamma
tion, IgE secretion, and bronchial hyperresponsiveness (4-7). All 
of these events are largely dependent upon interactions between 
allergen, APCs, T cells, and B cells, a concept that defines asthma 
as an Ag-induced, immune-driven process. 

That allergen exposure to perennial allergens, such as house dust 
mite or cat dander, is rather continuous overall seems to be at 
variance with the "intermittent" nature of asthma. Indeed, if exac
erbation of inflammation were attributed solely to allergen expo
sure, one would predict unabated symptoms among individuals 
presenting with allergic asthma. While cellular and. molecular 
mechanisms underlying allergic sensitization and acute inflamma-
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tion are subjects of intense research, comparatively little is kno",m 
with regard to the impact of persistent Ag exposure on immune 
inflammatory processes in the airway. This understanding is fur
ther limited by the fact that research examining the effect of 
chronic allergen exposure on airway inflammation has produced 
controversial results. Studies showing that chronic allergen expo
sure does not lead to persistence of airway inflammation (8, 9) 
suggest that allergen alone is insufficient in perpetuating the in
flammatory response. Others have documented persistent airway 
eosinophilia (to, II); however, the focus of these studies was on 
airway remodeling and lung physiology rather than on immune 
inflammatory processes. 

The objective Of this study was to investigate the impact of 
chronic OVA exposure on immune inflammatory processes in the 
lung. We have recently established a ·model of mucosal allergic 
sensitization, which, like the conventional models, elicits some of 
the important features of asthma (12-14). In this model, mice are 
exposed to OVA in the context of a GM-CSP-enriched airway 
microenvironment for 10 consecutive days. While we argue that 
this is a better reflection of the route in which sensitization occurs 
in humans, Ag exposure is transient. Hence, to investigate immune 
inflammatory processes in the airway associated with chronic Ag 
exposure, we sensitized mice mucosally and exposed them to OVA 
for up to 4 wk. Expression of GM-CSF is required to allow for 
allergic mucosal sensitization, because exposure to OVA alone 
induces inhalation tolerance, as we and others have previously 
shown (15, 16). Importantly, GM-CSF on its own does not elicit 
airway eosinophilia (2); hence, its effects are likely due to its 
adjuvant-like properties (17-23). After 2 wk of exposure, we ob
served marked eosinophilia in the bronchoalveolar lavage (BAL),3 
lung tissue and peripheral blood but, despite the continuous presence 
of the Ag, eosinophilia was substantially diminished by 3 wk and 

) Abbreviations used in this paper: BAL, bronchoalveolar lavage; DC, dendritic cell; 
MHClI, MHC class II; LSD, least significant difference. 

0022·1767/021$02.00 
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resolved after 4 wk. In contrast, similar OVA-specific 19B and in
creased IgG 1 and IgG2a levels were observed after 4 wk, compared 
with 2 wk, of exposure. Next, we exposed mice to OVA for either 2 
or 4 wk, rested them for 28 days, and subsequently re-exposed them 
to OVA only. We observed a significant decrease in aiJway eosino
philia as well as BAL and serum IL-5 in animals initially exposed to 
4 wk, compared with 2 wk, of OVA. Nonetheless, the diminished 
airway eosinophilia was associated with a robust humoral response as 
well as activated dendritic cells (DC) and T cells. Delivery of rGM
CSF in the context of OVA recall challenge reestablished airway e0-

sinophilia. The data demonstrate that chronic exposure to OVA does 
not lead to sustained airway inflammation but to a state of unrespon
siveness that is overcome by GM-CSF. Therefore, we suggest that 
additional factors, other than Ag, are required to elicit persistent air
way inflammation. 

Materials and Methods 
Animals 

Female BALB/c mice (6-8 wk old) were purchased from Harlan Breeders 
(Indianapoli8. IN). Mice were maintained in a 12-h light-dark cycle with 
unlimited access to food and water. Cages, food. and bedding were auto
c1aved and all animal manipulations were conducted in a laminar flow hood 
by gloved, gowned, and masked personnel. All experiments were approved 
by the Animal Research Ethics Board of McMaster University. 

AllergiC mucosal sensitization 

Mice were exposed to OVA in the context of a GM-CSF-enriched airway 
microenvironment. Prolonged expression of GM-CSF was achieved using 
an adenovirus-mediated gene transfer approach, as previously descn"bed 
(24). Briefly, a replication-deficient human type 5 adenoviral construct car
rying the transgene for GM-CSF in the EI region of the viral genome 
(AdlGM-CSF) was delivered intranasally. A dose of 3 X 101 PFU Ad! 
GM-CSF construct was delivered in a total volume of 30 #£I of PBS vehicle 
(two 15-,...1 admini8trations 5 min apart) into anesthetized animals. Subse
quently, mice were placed in a Plexiglas chamber (10 X IS X 25 em) and 
exposed to aerosolized OVA (1 % w/v in 0.9".4 saline; Sigma-Aldrich, St. 
Louis, MO) for 20 min daily. Mice were exposed 5 days per week from 
Monday to Friday. The aerosol is produced by a Bennettlfwin nebulizer 
(Puritan-Bennett, Carlsbad, CA) at a flow rate of 10 Umin. 

Delivery of rGM-CSF 

In a limited number of experiments. we delivered I ,...g of JOM-CSF (Bio
Source International, Camarillo, CA) in 10,...1 PBS intranasally over five 
consecutive days to achieve sustained levels of GM-CSF in the airways. 

Collection and measurement from specimens 

BAL was performed as previously described (25). In brief, the lungs were 
dissected and the trachea was cannulated with a po1yethylene tube (BD 
Biosciences, Sparks, MD). The lungs were lavaged twice with PBS (0.25 
rol followed by 0.2 ml). Approximately 0.25 ml of the instilled fluid was 
consi8tently recovered. Total cell counts were determined using a hemo
cytometer. After centrifugation cell pellets were resuspended in PBS and 
slides were prepared by cytocentrifugation (Thermo Shandon, Pittsburgh, 
PAl at 300 rpm for 2 min. HEMA 3 Stain sel (Biochemical Sciences, 
Swedesboro. NJ) was used to stain all smears. Differential counts of BAL 
cells were determined from at least 500 leukocytes using standard hemo
cytological procedures to classifY the cells as mononuclear cells, neutro
phils, or eosinophils. Peripheral blood was obtained using heparin-coated 
capillaries (Fisher Scientific. Pittsburgh, PAl. Total white blood cell counts 
were determined after lysing RBCs and cell differentials were assessed on 
smears stained with the HEMA 3 Stain set. For serum, animals were bled 
with nonheparinized capillaty tubes. Serum was prepared by incubating 
whole blood for 30 min at 37°C. Finally, lung ti8sue was fixed in 10% 
formalin and embedded in paraffin. Three-micrometer-thick sections were 
stained with H&E. 

Cytolcine and Ig measurements 

1L-5 was detected using a commercially available ELISA kit (Amersham, 
Little Chalfont, U.K.). The threshold of detection was 5 pglml. Levels of 
OVA-specifie 19B were detected with an ELISA 1hat has been described in 
deIail previously (25). For OVA-specifie IgGI and IgG2&, Maxi-Sorb 
plates (Nune, Roskilde, Denmark) were coated with 5 p.g OVA in borate 

buffer (pH 8.3-8.5) overnight at 4°C. Subsequently. coated wells were 
blocked with 1% BSA in PBS for 2 h at room temperature. After washing, 
serum samples were incubated ovemight at 4°C, washed, and developed 
with biotin-labeled, anti-mouse IgG I and IgG2a (Southern Biotechnology 
Associates, Birmingham. AL) overnight at 4°C. Plates were washed and 
incubated with alkaline-phosphatase streptavidin for I h at room temper
ature. The color reaction was developed with p-nitrophenyl phosphate tab
lets. Samples were compared with a standard serum containing OVA-spe
cific JgGI and IgG2a. Units correspond to maximal dilution that results in 
an 00 that is greater than the blank + 2 SO. 

Lymph node and lung cell isolation 

Hilar, mediastinal, and tracheobronchial lymph nodes were dissected. 
ground between the frosted ends of slides, and filtered through a nylon 
mesh (BSH Thompson, Scarborough. Ontario, Canada). The cell suspen
sion was centrifuged at 1200 rpm for 10 min at 4°C and resuspended in 
PBS. Cells were resuspended in flow cytometric analysis buffer (PBS sup
plemented with 0.2% BSA). 

For isolation of lung cells, lungs were flushed via the right ventricle of 
the heart with lO ml of warm (37°C) HBSS (calcium and magnesium free) 
containing 5% FBS (Sigma-Aldrich), 100 U/ml penicillin. and 100 mglml 
streptomycin (Invitrogen Life Technologies, Burlington, Ontario, Canada). 
The lungs were then cut into small (-2 mm in diameter) pieces and shaken 
at 37°C for 1 h in IS ml of 150 U/ml collagenase III (Worthington Bio
chemical, Freehold, Nj)in HBSS. Using a plunger from a 5-ml syringe, the 
lung pieces were triturated through a metal screen into HBSS, and the 
resulting cell suspension was filtered through nylon mesh. Cells were 
washed twice and mononuclear cells were isolated by density centrifuga
tion over a 30 and 60"10 Percoll gradient (Pharmacia Biotech, Uppsala, 
Sweden), 

Flow cytometry 

Panels of roAbs were selected to study the phenotype of cells in the lymph 
nodes and lung. To minimize nonspecific binding, 10" cells were incubated 
with 0.5 ,...g Fc Block (COI6/CD32; BO PharMingen, Mississauga, Can
ada) at 0-4°C for 10 min and subsequently with first-stage mAbs at 0-4°C 
for 30 min. Cells were then washed and treated with second-stage reagents. 
Data were collected using a FACScan and analyzed using WIN-MOl soft
ware (BD Biosciences, Sunnyvale, CA). The following Abs and reagents 
were used: anti-CD3. biotin-conjugated l45-2CII (BD PharMingen); anti
CD4, FITC-conjugated L3T4 (BD PharMingen); anti-CD69, PE-conju
gated HI 2F3 (BD PharMingen); anti-CD2S, PE-conjugated PC61 (BO 
PharMingen); anti-TI/ST2, FITC-conjugated 3EIO (kindly provided by 
A. J. Coyle, Millennium Phannaceuticals, Cambridge. MA) labeled in
house according to a standard protocol (24); anti-MHC class II (MHCII). 
FITC-COIYugated 25-9-17 (BO PharMingen); anti-CDlle, PE-COIYugated 
HL3 (BD PharMingen); anti B7.1, biotin-conjugated 16-IOAI (BD Phar
Mingen); anti-B7.2. biotin-conjugated Gu (BD PharMingen); and strepta
vidin PerCP (BD Biosciences, San Jose, CA). Titration was performed to 
determine the optimal concentration of each Ab. 

Data analysis 

Data are expressed as mean ± SEM. Statistical interpretation of results is 
indicated in the figures. Differences were considered statistically significant 
when p < 0.05. 

Results 
Cellular profile in the HAL and peripheral blood of mice 
expased to OVAfor 1,2,3, or4 wk 

BALB/c mice were infected intranasally with 3 X 107 PFU Ad! 
GM-CSF. We previously reported that GM-CSF is expressed in 
the airways for -10 days, with peak expression of -80-1 00 pglml 
in the BAL at day 7. GM-CSF was undetectable in the serum (26). 
Three days later, mice were exposed to aerosolized OVA daily for 
1,2,3,01'4 wit. Fig. IA shows that we observed only few eosinophils 
in the BAL after the first week of OVA exposure. After 2 wk of OVA 
exposure, mice developed significant eosinophilia in the BAL. De
spite continued exposure to OVA, airway eosinophilia was decreased 
by 95% after 3 wk and was completely resolved after 4 wk~ 

Similarly. after 2 wk of exposure to OVA, peripheral blood eosin
ophilia and total ceU Dtmlber was significantly i~ compared 
with naive animals (Fig. lB). These levels were significantly de
creased and were similar to naive levels after 4 wk of exposure. 
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FIGURE 1. Inflammatory response during prolonged exposure to OVA in the context ofGM-CSF. A, The BAL cellular profile in naive mice and in mice 
exposed to I, 2, 3, or 4 wk of OVA (mean :!: SEM). B. TIle peripheral blood cellular profile from naive animals and animals exposed to either 2 or 4 wk 
of OVA (mean:!: SEM). Statistical analysis was perfonned using one-way ANOVA with the Fisherieast significant difference (LSD) post hoc test (*,p < 
0.05 compared with naive; #,p < 0.05 compared with 2 wk). n = 5-8 mice per group. 

Impact of 2 and 4 wk of OVA exposure on /g production 

Next, we assessed the impact of continuous OVA exposure on 
Ag-specific Ig production (Table I). Mice were subjected to OVA 
exposure in the context ofGM-CSF according to tbe protocol out
lined above. Serum Ig levels of OVA-specific IgE increased sig
nificantly during the first 2 wk but remained similar after 4 wk. In 
contrast, we observed significantly increased levels of OV A-spe
cific JgG I and IgG2a after 2 wk, and these were further elevated 
after 4 wk of exposure. 

Impact of 4-wk Ag exposure on subsequent in vivo Ag recall 

Given that continuous exposure to OVA did not result in persis
tence of eosinophilia and airway inflammation. we investigated 
whether continuous exposure to Ag impacts the ability oftbe lung 
to respond to subsequent long-term Ag exposure. To this end, we 
first exposed mice to either 2 or 4 wk of OVA in the context of 
GM-CSF. Animals exposed to OVA for only 2 wk were subse
quently subjected to saline aerosol to control for the handling. All 

Table L 19 le~>els during prolonged exposure to OVA" 

19 

IgE 
IgG! 
IgG2a 

Naive mice 

2.33 :!: 1.80 
0.246 :t 0.246 
0.216 :!: 0.073 

OVA 

2-wk exposed mice 

29.5 :!: 9.4* 
6.11 :!: 0.90" 
12.6:!: 6.5* 

4-wk exposed mice 

26.1 :!: 7.4* 
20.7 ± 1.9"'t 
69.3 :!: I.S'"t 

" Mice were exposed to OVA aerosol ill the context mtM-CSF for a period of 
2 and 4 wk. Three days after tile last aerosolization. Ig levels wen: measured in the 
serum (mean :t SEM). Data are measured as follows: IgE, X 100 V/mi; igGl, X 10" 
U/ml; ig{l2a, x 102 VIm!' Statistical analysis was perfOl111ed using one-way ANOVA 
with Fisher LSD post hoc test. ... 

$. P < 0.05 when compared to naive. 
t. P < 0.05 when compared to 2 wk. " = 4 mice per group. 

groups were then rested for 28 days and exposed to OVA on tbree 
consecutive days. Forty-eight bours after the last exposure, mice 
were sacrificed and tbe inflammatory infiltrate in the"'BAL was 
assessed. We observed a robust mononuclear and eosinophilic re
sponse in animals initially exposed to 2 wk of OVA (Fig. 2A). This 
response was significantly greater than that observed in naive mice 
and similar in magnitude to tbe inflammation observed after 2 wk 
of OVA exposure, as depicted in Fig. 1. In c.ontrast, animals ini
tially exposed to OVA for 4 wk exhibited a significant decrease in 
total cell number and negligible eosinophilia following OVA re
call. indeed, the cellular profile in these animals was statistically 
not different from naive mice. 

Histological evaluation of lungs from animals initially exposed 
to eitber 2 or 4 wk of OVA and then rechallenged corroborated our 
SAL findings. While animals initially exposed to 2 wk of OVA 
demonstrated extensive peribronchial and perivascular inflamma
tion, including mononuclear cells and eosinophilia (Fig. 2B, i and 
ii), animals initially exposed to 4 wk of OVA had dramatically re
duced tissue inflammation, with no eosinophilia (Fig_ 2B, iii and iv). 

Next, we assessed IL-5 expression in the SAL and serum after 
recall challenge_ Twenty-four hours after the first OVA exposure, 
we observed significantly reduced levels of IL-5 in both the SAL 
and serum in animals initially exposed to 4 wk of OVA when 
compared with animals initially exposed to 2 wk only (Fig: 3). A 
similar trend was observed 24 h after tbe second OVA exposure, 
but the levels of IL-5 expression were lower (data not shown). No 
iL-5 was detected in naive animals (data not sbown). 

Assessment of serum Igs sbowed similar levels of OVA-specific 
igE and IgG2a between the groups and elevated levels of IgG 1 in 
mice initially exposed to 4 wk, compared with 2 wk, of OVA 
(Table II). Levels of all Igs were markedly bigher than those ob
served in naive mice (Table I). 
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FIGURE 2. Inflammatory response 
during long-tel111 in vivo recall. Mice 
were exposed to 2 and 4 wk of OVA 
in the context of GM-CSF. After 28 
days of rest following the exposure 
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Naiw t .-

""'1'1 .,....,.t ...... 
protocol, both groups were chal- B 
lenged with OVA on three consecu-
tive days and killed 2 days later. A, 
The BAL cellular profile in naive 
mice and animals initially exposed to 
2 and 4 wk of OVA (mean ± SEM). 
Statistical analysis was perfOl111ed us-
ing one-way ANOVA with the Fisher 
LSD post hoc test (*, p < 0.05 c0m-

pared with naive; #, p < 0.05 com-
pared with 2 wk). n = 4-8 mice per 
group. B, A micrograph of paraffin
embedded sections of lung tissue 
from animals exposed to 2 wk (i and 
il) and 4 wk (iii and iv) of OVA at 
magnifications of X 50 (j and iii) and ' 
x200 (ii and iv). 

T ceU onrJ APe phenotype during in vivo Ag recall 
Given that our histological assessment showed residual mononu
clear inflammation in mice initially exposed to 4 wk of OVA, we 
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quantified tissue mononuclear cells in the lungs and draining 
lymph nodes following in vivo recall to OVA As Table III shows, 
lungs from animals initially exposed to 2 wk of OV A had 
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FIGURE 3. Expression of IL-S in the BAL and serum during long-tenn ,in vivo teeall. Mice were exposed to 2 and 4 wk of OVA in the context of 
GM-CSF. After 28 days of rest after the exposure protocol, both groups were challenged with OVA and killed 1 day tater. Data show the expression of 
1L-5 in the BAL and serum (mean ± SEM). Statistical analysis was perfOl111ed using the Student's I test (*, p < 0.05). n = 5 mice per group. 
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Table II. Ig levels durillg IOllg-term ill vivo recall" 

19B 
IgGl 
IgG2a 

2-wk exposed 

46.9 ± 12.1 
1.35 :!: 0.38 
41.0 :!: 7.8 

OVA 

4-wk exposed 

53.5 ± 4.5 
4.11 :!: 1.05* 
49.8 + 3.3 

a Mice wen: exposed to OVA aerosol in the context of GM-CSF for a period of 
2 and 4 wk. MIce were then rested for 28 days. Both groups were then exposed to 
OVA for 3 days, and 24 h after the last exposure Ig levels were measured in the serum 
(mean ± SEM). Data are measured as follows: \sE, x 10° Ulml; IgG I, X)06 U/ml; 
IgG2a. X)O' VIm!. Statistical analysis was performed using Student's t test. 

*. P < 0.05. n = 3-8 mice per group. 

approximately twice the number of mononuclear cells com
pared with animals initially exposed to 4 wk of OVA (11.8 X 
106 vs 4.94 X 106 cells per mouse in experiment I and 16.2 X 106 

vs 7.8 X 106 cells per mouse in experiment 2). In naive mice, we 
previously documented only 2.2 X 106 lung cells per mouse (27). 
Similarly, in the draining lymph nodes we observed substantially 
fewer cells at 4 wk compared with 2 wk (6.89 X 106 vs 3.64 X 106 

cells per mouse in experiment I and 10 X 106 vs 4.5 X 106 cells 
per mouse in experiment 2). Naive mice had only 1.2 X 106 lymph 
node mononuclear cells per mouse (27). 

To investigate the phenotype of the residual inflammatory infil
trate, we assessed with flow cytometry the expression ofB7.1 and 
B7.2 on DCs and the activation markers CD69 and CD25 on 
CD4 + T cells. Furthermore, we characterized the expression of 
TJIST2, a surface marker found on Th2 CD4+ T cells. DCs were 

-identified on the basis of MHCII/CD11c expression (28). Fig. 4 
shows increased expression of B7.2 on lung DCs in both groups. 
We observed 19.5 and 28.7% ofB7.2 in animalsJnitially exposed 
!O 2 and 4 wk, respectively, while historical data shows that only 
5.4% of lung DCs express this molecule in naive animals (27). 
Similarly, we observed increased expression ofB7.2 in the lymph 
nodes. Compared with naive mice (3.4%) (27), 27.5 and 33% of 
lymph node DCs expressed B7.2 in animals exposed to 2 and 4 wk 
of OVA, respectively. No differences in the expression of B7.1 
were observed between the groups in either the lung or the lymph 
nodes (Fig. 4 and Ref. 27). Fig. 5 shows that the levels of CD69 
and CD25 in animals exposed to OVA for 2 or 4 wk were similar, 
and were substantially higher than the levels we observed and 
previously dOcumented in naive mice (15, 27). Specifically, in the 
lungs 20.2 and 27.8% ofCD4+ T ceIls expressed CD69 in animals 
exposed to 2 and 4 wk of OVA, respectively. Likewise, CD25 was 
expressed at 17.8 and ~()O/o in 2- and 4-wk exposed animals, re
spectively, with <2% expression in naive animals. A similar pat
tern of expression was observed in the lymph nodes (data not 
shown). Finally, TIIST2 was expressed on 12% of lung CD4+ T 

Table III. Lung and lymph node mononuclear cells during ltmg-Ierm in 
vivo Ag recall" 

Cells Exposure 
Expt. I 

(X Itt cellslmouse) 
Expt.2 

(X Itt celis/mouse) 

Lungs 2wkOVA 11.8 16.2 
4wk OVA 4.94 7.80 

Lymph nodes 2wkOVA 6.89 10.0 
4wkOVA 3.64 4.50 

• Mice wen: elIJIOSed to OVA in the context of GM-CSF for 2 or 4 wk. After 28 
days ofJat, mice wen: elIJIOSed to OVA on thtee CODSCCUtive clays. F~ homs 
A- the IMtClljlOllUl\: mice wen: I8Crificed, their.tullp and thoneic ellailling lymph 
BOdes mIIIM!CI and pooled (four mice), and the IIIOIIOIIUCIcar ceUs were isolated. Two 
rcpmrenlalive experiments 111: shown. 
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cells in animals exposed to OVA for 2 wk, and on 12.7% of lung 
CD4+ T cells in mice exposed for 4 wk, while typically 3.6% of 
CD4 + T cells of naive animals express this molecule (27). 

Impact of rGM-CSF administration at time of long-term recall 

Next, we investigated whether the expression of GM-CSF at the 
time of long-term recall could reconstitute airway eosinophilia. 
Mice were exposed to OVA for 4 wk and then rested for 28 days. 
Subsequently, we delivered rGM-CSF intranasally on five consec
utive days and exposed the animals concurrently to OVA daily for 
nine consecutive days, with the first challenge coinciding with the 
day of the first rGM-CSF delivery. We observed that animals ex
posed to OVA in the context of rGM-CSF, but not PBS, had sig
nificantly higher levels of eosinophilia in the airway (Fig. 6). The 
total cell number and level of airway inflammation was similar to 
that observed in animals initially exposed to OVA for 2 wk, as 
depicted in Fig. 1.4. In contrast, inflammation could not be reca
pitulated in control animals receiving OVA and PBS. 

Discussion 
An understanding of processes underlying allergic inflammatory 
diseases has benefited from experimental models that have aimed 
to recapitulate, in animals, the human pathology. Conventional 
mouse models of Ag-induced airway inflammation generally in
volve two distinct phases: a sensitization procedure conducted i.p. 
followed by aerosol challenge (25, 29,30). While these models 
are, and will continue to be, of great value, their route of sensiti
zation and the acute nature of the airway challenge sharply contrast 
with allergen exposure in humans. Therefore, in the present studies 
mice were sensitized using a protocol of mucosal allergic sensiti
zation (12). To investigate immune inflammatory processes in the 
airway associated with chronic Ag exposure, mice were exposed to 
OVA for up to 4 wk. 

First, we investigated the cellular changes in the ait:;'ay during 
chronic exposure to OVA. We found that 2 wk of exposure re
sulted in peak inflammation, both eosinophilic and mononuclear 
(Fig. 1). That we observed eosinophilic airway inflammation at 
this time point corroborates our previous findings (12). Note that 
GM-CSF is eJq>ressed in the airway for -10 days (12) and pre
cedes peak inflammation by -I wk. After 3 and 4 wk of OVA 
exposure airway eosinophilia was dram8tically reduced. Similarly, 
peripheral blood eosinophilia peaked after 2 wk and was resolved 
after 4 wk. That both airway eosinophilia and peripheral blood 
eosinophilia were decreased after 4 wk of exposure argues against 
an· impairment in eosinophil TeCtllitment. 

While we observed decreased cellular responses in the lung dur
ing prolonged exposure, the increased levels of Igs in the serum 
(Table I), particularly IgG 1 and IgG2a, indicate that immune re
sponsiveness was not fully silenced. This finding suggests that 
processes involved in isotype switching and Ig production were 
not affected. That we did not observe preferential up-regulation of 
the Thl-associated IgG2a, oVef>lgGl, which is Th2 associated 
(31), argues against a Th2-Thl skew during prolonged exposure 
toAg. ...... . 

Our observation in the airway is in agreement with studies by 
Haczku et al. (8) and Cui et al. (9), who have shownJhat.clu:oniL. 
allergen exposure in rats does not lead to persistenee of inflam
mation. In sharp contrast, other studies have documented persistellt 
airway eosinophilia (10, 11). With respect to Igs, it has been shown 
in one study that prolonged exposure leads to persistent 19E pro
duction (1 I), while in another, prolonged exposure leads to tran
sient IgG and 19B expression (9). While these discfepanciCi inay 
reftect differences in the experimental models, our observations 
demonstrate that, in the mouse, chronic exposure to Ag does not 
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FIGURE 4. Costimulatory molecule expression on DCs during long-term in vivo recall. Mice were exposed to 2 and 4 wk of OVA in the context of 
GM-CSF. After 28 days of rest following the exposure protocol, both groups were challenged with OVA on two consecutive days and killed I day later. 
Data show the expression of B7.l and B7.2 on MHCn+COllc+ cells in the draining lymph nodes and lungs of 2- and 4-wk exposed mice. n = 5 mice 
per group. One of two representative experiments is shown. 

result in persistence of airway and peripheral blood eosinophilia 
but does result in increased or sustained Ig expression. 

The diminished airway eosinophilia but elevated Ig levels dur
ing prolonged Ag challenge led us to investigate whether such 
exposure influenced in vivo memory recall responses. To this end, 

TIIST2 
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10' 

4weeb 
.OVA 

FIGURE 5. Activation of T cells in the lungs after Iong-tenn in vivo 
recall. Mice were exposed to 2 and 4 wk of OVA in the context of GM
CSF. After 28 days of rest following the exposure protocol, both groups 
~ challenged with OVA on three consecutive days and killed 2 days 
JFr. Data show the expression profile of CD69, CD25. and TIIST2 on 
CD3"'CD4+ cells in the lungs of 2- and 4-wlt exposed mice. n = 5 mice 
per group. One of two representative experiments is shown. 

following either 2 or 4 wk of OVA challenge, mice were rested for 
28 days and rechallenged with OVA. Animals initially exposed to 
4 wk of OVA and subsequently rechallenged had significantly re
duced airway eosinophilia (Fig. 2) and reduced BAL and serum 
IL-5 levels (Fig. 3) compared with 2-wk exposed animals. In con
trast, Ig levels were similar (lgE and IgG2a) or increased (lgG]) in 
the 4-wk, compared with the 2-wk, exposed mice (Table II). These 
findings may suggest that levels of IgE may be of limited predic
tive value for inflammatory responses in the lung. We are currently 
pursuing studies assessing the impact of chronic Ag exposure on 
airway hyperresponsiveness. 

Airway eosinophilia is a terminal event that relies on DC pre
senting Ag to T cells (32) in the context of the appropriate co
stimulatory signals (33). To investigate whether chronic exposure 
altered the phenotype of DCs in 4-wk exposed animals at the time 
of in vivo recall challenge, we assessed the number and activation 
status of these cells. We observed elevated levels of B7.2 on DCs 
in the .lymph nodes and lungs of animals initially exposed to 4 wk 
of OVA (Fig. 4), suggesting DC activation. 

To investigate whether the changes observed in the APC com
partment were associated with T cell activation, we evaluated the 
phenotype ofCD4+ T cells in the lungs at the time ofin vivo recall 
challenge (Fig. 5). CD4 + T cells from animals initially exposed to 
2 and 4 wk of OVA expressed not only similar levels of the early 
activation marker CD69 (34, 35) and the lL-2R CD2S (36, 37), but 
also similar levels of Tl/ST2, a marker ofTh2 differentiation and 
a necessary factor in the development of eosinophilic airway in
flammation (38-40). The level of expression of these molecules 
was substantially higher than previously documented in naive an
imals. Interestingly, these phenotypic observations did not trans
late into expression of the Th2-associated cytokine, IL-5. Our data 
suggest that chronic exposure to OVA does not alter T cell acti
vation while preventing the generation of airway eosinophilia upon 
in vivo recall. Importantly, that a seemingly differentiated Th2 

_CD4 + T cell is incapable of e)i~s,~.J:Way eosinophilia may 
argue for the presence of regulatory mechanisms in the airway 
microenvironment, as has previousl~ been suggested (41, 42l- ..G? 
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FIGURE 6. Exposure to OVA in the context of rGM-CSF during long-tenn in vivo recall. Mice were exposed to 4 wk of OVA in the context of 
GM-CSF. After 28 days of rest following the exposure protocol, mice were challenged with OVA on nine consecutive days and killed 1 day later. One 
group of mice received intranasal delivery of rGM-CSF on the first five consecutive days of the rechallenge protocol, while another group received 
intranasal delivery of vehicle control (PBS). Data represent the BAL cellular profile from animals receiving either rGM-CSF or PBS in the context of OVA 
recall challenge (mean::!: SEM). Statistical analysis was perfonned using the Student's I test (*, p < 0.05). n = 8 mice per group. 

The fact that animals were first exposed to OVA in a GM-CSF
enriched environment led us to investigate whether re-exposure to 
OVA with GM-CSF at the time of in vivo recall could recapitulate 
the eosinophilic airway inflammation. To this end, animals initially 
exposed to OVA for either 2 or 4 wk were rechallenged with the 
Ag in the context ofGM-CSF. To avoid an immune response to the 
adenovirus that may confound the interpretation of our data, we 
opted to use the recombinant protein rather than the adenovirally 
encoded GM-CSF. We found that animals initially exposed to 
OVA for 4 wk and subsequently re-exposed to the Ag in the con
text of GM-CSF developed robust airway eosinophilia. Our data 

"suggest that persistent airway inflammation is dependent on not 
only Ag. but also additional factors such as GM-CSF (Fig. 6). 
Therefore, GM-CSF not only is required for sensitization and de
velopment of airway eosinophilia in a protocol th8t otherwise leads 

·10 inhalation tolerance (12), but it may also be required for the 
persistence of airway inflammation in the context of continued Ag 
exposure. 

The ability to reconstitute eosinophilic airway inflammation 
with the help of GM-CSF in seemingly unresponsive animals is 
likely of clinical relevance. It has been shown that exposure to 
environmental pollutants, as well as viral and bacterial agents, up
regulates GM-CSF production (43-46). Indeed, these agents have 
been associated with exacerbation of asthma. Therefore, we hy
pothesize that exacerbation of symptoms among asthmatics may 
require not only Ag, but also additional agents that, along with Ag, 
generate sustained Th2-mediated eosinophilic airway inflamma
tion. This may serve to explain, at least in part, why exacerbations 
are intermittent even if'the Ag is continuously present Therefore, 
we suggest that our experimental protocol provides a good model 
system to study mechanisms that regulate inflammation in the con
text of chronic exposure to innocuous Ag. 

In sununary, we show that prolonged exposure to OVA in the 
context of GM-CSF leads to abrogated eosinophilic airway inflam
mation, which is nevertheless associated with a robust humoral 
response and an activated CD4 + T cell and DC phenotype. This 
unresponsiveness is reversible with GM-CSF. Understanding the 
principles that lead to or prevent chronic inflammation elicited by 
innocuous Ag is key to our understanding of allergic diseases. We 
propose that the elucidation of these principles and mechanisms 
may help us to reveal intrinsic protective m~jsms and design 
new ways of controlling allergic diseases. 
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Chapter 5: Discussion 
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A n understanding of mechanisms behind inunune tolerance is likely to lead to novel 

treatment strategies for a myriad of pathologies, among them allergic diseases. Until 

the late 1990s inunune tolerance was defined as failure to respond to antigen. Studies on 

central tolerance identified apoptosis in the thymus as the predominant mechanism by which 

potentially autoreactive T cells are prevented from responding, while generation of anergy, 

defined as the inability of T cells to respond to stimulation, was deemed the main 

mechanism in the periphery. In themselves active processes, the consequence of deletion 

and anergy is a passive state; the associated absence of T cells, or their dormant phenotype, 

precludes the existence of a dominant, and therefore transferable, component. 

Epidemiological evidence suggested, however, that other mechanisms are involved. In spite 

of universal exposure to common environmental antigens such as house dust mite, a 

relatively small proportion of the population suffers from allergic asthma, suggesting the 

presence of robust and long lasting mechanisms that maintain homeostasis. Given that T 

cells bearing a vast diversity of receptor affinities to antigen exit the thymus continually, it 

may be argued that the healthy immune system is in a state of constant readiness. It is likely 

then, that passive mechanisms of tolerance co-evolved with dominant mechanisms and 

these, together, maintain homeostasis. 

More compelling evidence that tolerance to inhaled antigen depends on dominant 

mechanisms was generated in animal studies. Holt and colleagues were the first to show in a 

rat model that initial exposure to OVA compromises expression of OVA-specific IgE upon 

subsequent inununogenic challenge (184), and demonstrated thirteen years later that a subset 

of IFN-y expressing T cells from animals rendered tolerant to OVA prevented IgE 

expression when adoptively transferred to a non-tolerant host (187). Although it was later 
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demonstrated by several groups, including our own, that IFN-y is redundant in maintaining 

unresponsiveness (141, 142), this observation was nevertheless critical in establishing that 

inhalation tolerance may be governed by a dominant, T cell mediated mechanism. 

Given that IgE is only one of several markers that characterize the asthmatic and 

allergic phenotype, notable others being airway eosinophilia, expression of Th2-associated 

cytokines and airway hyper-responsiveness, we (141) and others (183) conducted a 

comprehensive analysis of immune-inflammatory and physiological processes following 

immunogenic challenge of tolerant animals. To elicit tolerance in our study, mice were first 

exposed to ten daily OVA aerosolizations in the absence of adjuvant, according to a protocol 

established earlier (142). Control mice were exposed to saline. Subsequendy, both groups were 

exposed to OVA in the context of aluminum hydroxide (alum), and adjuvant that, when 

delivered with OVA to naive mice, leads to the development of OVA-specific inflammation 

(188, 189). Animals initially exposed to OVA and then to OVA in the context of alum did not 

develop airway eosinophilia and exhibited dramatically reduced airway inflammation 

compared to control animals, as described in Chapter 2 and (141). Notable among our 

findings was that tolerance is induced and maintained in the absence of IL-l0, and IPN-y, 

molecules previously shown to regulate airway responses (187, 190). Our study was also 

consistent with findings that costimulation plays an important role in the effector organ 

during challenge (191,192). 

Since these initial observations were made, work on respiratory tolerance in 

particular and immune tolerance in general has flourished, largely because of the discovery of 

regulatory mechanisms involving tolerogenic dendritic cells and T regulatory cells such as 

CD4+CD25+ TR, TR1, TH3, and TR• Regulatory cells may develop as part of a homeostatic 

mechanism designed to shuAdown immune responses to infectious agents. The generation 
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of regulatory cells would depend on the recognition of P AMPs on the surface of microbial 

agents. Regulatory cells also develop independently of P AMP recognition. These are 

involved in the induction and maintenance of a state of unresponsiveness to innocuous 

agents such as allergens. The function of regulatory cells is believed to rely on cell surface or 

secreted expression of regulatory cytokines such as IL-l0 or TGF-~ (2). In a series of studies, 

Umetsu and colleagues have shown that, following respiratory exposure to innocuous 

antigen, dendritic cells may be used to generate IL-l0 producing regulatory T cells, termed 

TR• The interaction depends on the ICOS-ICOSL costimulatory dyad. When transferred to a 

host, these CD4 T cells markedly reduce both lung inflammatory responses and airway 

hyper-responsiveness. The inhibitory effect is blocked with an antibody specific for IL-10. 

These findings not only provide a mechanistic framework for respiratory tolerance but also 

suggest that tolerance and sensitization are closely related. 

That development of tolerance or sensitization follows parallel mechanisms (one is 

not a default response for the other) forces researchers to re-examine one of the central 

tenets of immunology: the prescient question is no longer whether to respond or not to 

respond, but when and how to respond. This seemingly trivial modification of paradigm more 

fully encompasses the growing sophistication of our understanding of immune system 

biology. It is well established that the outcome of a specific intervention largely depends on 

initial exposure: it has been very difficult, for example, to reverse or break established 

tolerance. While successful at transferring the active component, the studies by Umetsu and 

others did not attempt to break established tolerance. Yet, to break a system in mfJO is to 

exhaust that system's capacity to function, while the transfer of an active component 

identifies one, but not necessarily the most effective, aspect of an immune state. 



PhD Thesis - F.K. Swirski McMaster - Medical Sciences 82 of 97 

In an attempt to break established tolerance in vivo, we exposed mice to OVA alone 

(tolerance induction) and then to OVA in the context of GM-CSF. GM-CSF, a growth and 

maturation factor for DCs, is a natural activator of adaptive immunity, and has been 

associated with human and experimental asthma (193). We have previously shown that 

aerosol exposure to OVA in the context of transient but sustained GM-CSF expression in 

the airway, delivered intra-nasally as an adenovirally-encoded transgene, subverts the 

establishment of tolerance and leads to airway eosinophilia, IgE expression and airway 

hyper-responsiveness, all of which are hallmarks of allergic asthma (55, 85, 194). Data 

presented in Chapter 3 show that established tolerance is not broken when tolerant animals 

are exposed to OVA in the context of GM-CSF. TIlls is compelling evidence that tolerance 

is remarkably effective at protecting against development of allergy, even in the presence of a 

molecule that is as strongly associated with airway inflammation as GM-CSF. Tolerance 

literature instructs, however, that tolerance induction may generate regulatory T cells that 

control unresponsiveness by expressing regulatory cytokines (131). This suggests that 

blockade of a specific regulatory cytokine may be an effective strategy in breaking established 

tolerance. We therefore exposed tolerant animals to OVA in the context of GM-CSF and 

decorin. Our rationale for this approach was several-fold. First, decorin is a small leucine-

rich proteoglycan of the extra-cellular matrix and a natural inhibitor of TGF-13 (195). Not 

only is it iinportant in suppressing fibrosis but it is also expressed at elevated levels in human 

asthmatics (196). Secondly, we have shown in knockout animals that other regulatory 

cytokines, IL-I0 and IPN-y, are redundant in our model, while the role of TGF-13 as it 

pertains to inhalation tolerance is still poorly understood. Finally, for reasons discussed in 

Chapter 3, delivery of a replication-deficient adenovirus harboring the decorin transgene is 

an attractive alternative to 1I$lSe transgenics and protein-based interventions. 
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DRAiNiNG 
lYMPH NODES 

Figure 1 A: GII/I-CSF alone does not break inhalation tolerance. In mice with 
established tolerance, expression of GM-CSF alone leads to the generation of Th2 
cells but not to the breakdown of tolerance. TGF-~, presumably secreted by 
regulatory cells (Treg) prevents generation of allergic airway inflammation. 
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We show that expression of GM-CSF and decorin in the airway breaks local but not 

systemic inhalation tolerance to OVA: while eosinophilic airway inflammation is elevated in 

animals initially rendered tolerant to OVA and subsequendy exposed to OVA in the context 

of GM-CSF and decorin, systemic responses, notably splenocyte proliferation and IL-S 

expression, remain ablated. Importandy, expression of decorin alone does not break 

established tolerance. Our data may therefore suggest that, in addition to the antigen, two 

signals are required to break established tolerance: one that leads to de nOl!() sensitization 

(GM-CSF) and one that disrupts regulatory activity (decorin) (Figures 1 & 2). Because of the 

timing of our experiment, it also suggests that regulation occurs at the effector phase. These 

data are clinically relevant to the extent that they mimic how allergies may arise. Indeed, that 
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a significant percentage of allergic diseases develop in the adult population argues that 

allergies appear because established tolerance to otherwise innocuous yet universally present 

agents is broken. It is yet to be determined whether viral or bacterial infections lead to 

dysregulated expression of decorin or decorin-related molecules. 

SIGNAL 1 

decorin 

G} ....... ~""'~::j.L~-· 

CIRCULATION 

DRAINING 
LYMPH NODES 

Figure 2: A second signal is required to break airway tolerance. In mice with 
established tolerance, two signals are required to break airway tolerance: (1) GM-CSF 
leads to generation of Th2 cells while (2) decorin sequesters TGF-p In the airway, 
thereby preventing negative regulation in the effector organ. 

That at least two additional signals are required to break inhalation tolerance in the 

airway emphasizes the idea that the immune system is generally committed to respond to 

antigen according to the context in which the antigen is first encountered. To explore this 

further, we developed a model of chronic exposure in which GM-CSF was delivered to mice 

prior to four weeks of daily (Monday to Friday) OVA aerosolizations. Since GM-CSF is 

expressed in the airway for approximately two weeks, the remaining two weeks consisted of 

exposure to OVA in the absence of GM-CSF. In addition to exploring the effect of initial 

exposure on subsequent responses, the model was designed to more closely reflect allergic 
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asthma, a disease of chronic exposure to antigen. To our surprise, while IgE responses 

remained elevated and T cells expressed markers of activation, continued exposure to OV A 

did not lead to persistent inflammation but to a tolerant state in which airway and peripheral 

blood eosinophilia, and Th2 cytokine expression were significandy reduced (Chapter 4, 

(197). The observed tolerance of sensitized and chronically exposed animals was broken 

(eosinophils returned to the airways) on subsequent exposure to· OVA in the context of 

GM-CSF. These data indicate a tolerant phenotype with a distinct regulatory activity from 

that observed when animals are initially exposed to OVA only. Future studies will explore, 

for example, whether continued exposure to OVA results in clonal deletion or the 

generation of a regulatory T cell. Does exposure of sensitized animals preclude the 

generation of regulatory cells, thus rendering the animals susceptible to the development of 

allergic inflammation? Importantly, the data may reconcile the apparent discrepancy between 

persistent exposure to antigen and the intermittent nature of symptoms associated with 

asthma and other allied allergic diseases: exacerbations among sensitized individuals may 

depend on a second signal (GM-CSF in our experimental setting), associated either with 

certain allergens (protease activity) or provided by viral or bacterial infection. 

Experimental models have shown that exposure to an innocuous agent such as 

OVA does not lead to airway inflammation in mice unless the antigen is co-administered 

with an adjuvant (55, 188). These studies have been instructive to the field of asthma and 

allergy because they suggest that context in which antigen is encountered is paramount to the 

ensuing immune response. For example, the failure to generate airway inflammation to 

OVA, when delivered in the absence of adjuvant, is consistent with epidemiological data in 

that it argues that innocuous agents are typically non-allergenic. To the extent that OVA is a 

surrogate allergen, it follows that allergens alone may not be sufficient· at eliciting airway 
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inflammation. On the other hand, that allergic airway inflammation and airway hyper

responsiveness can be generated to OVA in the context of an adjuvant, suggests that a 

second signal is necessary if sensitization is to take place. Indeed, allergen exposure does not 

occur in isolation, but likely in the context of immunogenic agents such as viruses, bacteria, 

and environmental pollutants, agents that generate defined cytokine profiles in the airway 

microenvironment. 

The work presented in this thesis argues that tolerance, a process that until the late 

1990s was regarded are immunologically inert, follows parallel mechanisms to those 

associated with sensitization. It may be argued that the two signals required to break 

tolerance are akin to the two-signal model of sensitization. That only one signal, GM-CSF, is 

required to break airway tolerance in chronically exposed but sensitized animals, further re

conceptualizes tolerance as a state governed not by a single mechanism but a more diverse 

context-inclusive set of immune interactions. This broader view will allow researchers to 

design novel treatment strategies for allergic diseases and other pathologies. 
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