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ABSTRACT

A detailed study is presented of the far-infrared ab-
sorption of eiectron—hole drops in germanium. Experimental
observations in the frequency range 1 to 50 meV and at super-
fluid He temperatures are reported. The lineshape agrees
well with Mie's theory of scattering of .electromagnetic radia-
tion from spheres with a dielectric constant that includes
interband hole transitions and a frequency dependent damping,
produced by electron-hole interaction. The electron-hole
density is found to be (2.02£0.05)x10%’ cm 2. The lineshape
changes with excitation level. At low excitation surface
effects are important, since drops are very small: within
a layer of the excitonic Bohr radius the drops have a lower
density, and the absorption is damped by collisions with the
surface. At high excitation levels, the drops are larger
and the absorption lineshape is explained including higher
multipole terms in éhe Mie expansion. Estimates for the drop
sizes are presented.

A study of the effect of uniaxial stress on the far-
infrared absorption is conducted. Large variations in po;i—
tions and lineshaée are observed for different stress values
and direction of polarization of the electric field Qith respect

to the stress direction. The fit to the experimental results
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to a theory with band structure modified by stress, allows the
determination of the electron-hole density as a function of
[111] stress, as well as a clearer understanding of the gene-

ral properties of the fluid under the different conditions.
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CHAPTER 1

INTRODUCTION

The phenomenon %Eyelectron—hole condensation has drawn
consideFablg attention from physicists in the last decade. The
electron-hole liquid is a metal of a unique kind, being a bet-
ter solid state plasma than regular metals. A weaker coupling
exists between its particles since they have low effective
masses and the dielectric constant is larger. The fact that

a Fermi Dirac condensation of electron-hole pairs into a metal-
lic liquid oécurs in semiconducting crystals is a fortunate
circumstance. These solids, mostly Ge and Si, havg a simple
band structure which is well known, allowing the study of metals
with relative;y simple Fermi surfaces.

]

How and why . is the liquid formed? When light of energy

larger than the band gap strikes on a semiconductor crystal,

electrons are exoited to the conduction band, leaving behind
noles in the valence band. At low temperatures, the electrons
bind with the hales into hydrogen-like particles: the excitons. .
In indirect gap semiconducéors, the recombination.of electrons
and holes is a slow process since the simultaneous participa-
tion of a phonon is necessary to conserve crystal momentum;
hence high densities of exgitons can be established. At suf-

ficiently high concentrations and low temperatures a gas-

& %



liquid phase transition occurs: the excitons condense into a
metallic liquid, generally in the form of small drops in which
the electron and holes are no 1onéer bound 1nto pairs. This
plasma-like fluid was first proposed by Keldysh (1968) as the
most stable phase for electrons and holes in his interpretation
of photoconductivity experiments by Asnin et al. (1968). Se-
veral review articles have appeared about electron-hole drops
(EHD); the most recently published are the ones by Rice (1977)
for the theoretical aspects and Hensel et al. (1977) for the
experiments. The dielectric response and conductivity of the
fluid in a given ;pectral region can be obtained from the study
of its electromagnetic properties at these. frequencies. A parti-
cularly good probe for the study of EHD is far-infrared radia-
tion,since the plasma frequency and inter valence band transi-
tions occur in this region of the spectrum. The density of
electron-hole pairs in the drop, the droplet size and relaxa-
tion times affect the absorption and scattering cross sections,
hence the study of the far-infrared absorption spectra gives
measures of these quantities.

In this thesis a detailed study of the absorption spec-
trum of the electron-hole liquid in Ge in the far-infrared is
presented. The experimental results obtained by Fourier trans-
form spectroscopy are compared with calculations of the dielec-
tric function and conductivity.

The properties of the electron-hole fluid are deter-

mined by the particular band structure of the semiconductor that



1s 1ts host. Any alteration in the valence or conduction band
will clearly affect the fluid. For this reason, application

of uniaxial stress is clearly useful in the study of slow chan-
ges in the electron~hole liquid properties under small variations
in band structure. In this thesis, the effect of uniaxial

stress on the far infrareg absorption 1s studied and the varia-
tions in the electron-hole fluid properties that produce such

a change, 1s considered. ‘

Chapter two of this thesis is a description of the ex-
perimental techniques used. Chapter three is a study of the
basic lineshape of the EHD absorption spectrum. Experimental
results are presented in this chapter as well as the theory
necessary to understand them. Chapter four considers the
influence of the droplet size on the plasma resonance, dif-
ferent droplet size being produced by changing excitation con-
ditions. Chapter five is a study of the effect of uniaxial
stress in the plasma resonance. Finally in chapter six re-

sults are summarized.



CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Introduction

Electron-hole drops are obtained when a high purity
germanium crystal is excited with a laser at a temperature be-
low the critical point of the electron-hole liquid, which for
Ge 1s around 6°K. If the crystal is at superfluid helium tempe-
ratures, most of the excitons are in the condensed phase and
high concentrations of drops are generated with the laser.

Electron-hole drops have their plasma frequency in
the far infrared. This makes radiation with wavelength in this
region of the spectrum a good probe for the study of properties
of the fluid. The best tool for the study of any optical pro-
perties 1in the far infrared is Fourier Transform Spectroscopy,
and sensible detectors for these wavelengths are bolometers

cooled at 0.3°K.

2.2 Sample Preparation

The experimental absorption of EHD in unstressed Ge
was measured on two-samples with a concentration of electrically
active impurities of less than 2X1010,cut from crystals purchased
from General Electric Company, Valley Forge, Pa. The dimensions
of the samples were 1x6x15 mm3 and 3x15x15 mm3. Most of the

experiments were performed with the larger sample since a crystal



of large surface area minimizes the resistance to heat flow as
described in section 6 of Chapter 3.

The large surface had a [100] orientation. This
surface was exposed to the incoming radiation and was polished

with 1 p AlZO then with Syton (a commercial product of Dow

37
Corning Co.) and finally etched in CP4 (HF: acetic acid: HNOé:
liquid bromine in the approximate ratios 50:50:80:1). After three
or four experiments the sample was repolished with Syton and
etched‘. The samples used in the stress experiments were cut

from a dislocation free Ge disc of 4 cm diameter and .8 cm thick-
ness with the plane gacevperpendicular to [100], donated by

E. E. Haller and grown by W.L. Hansen and E.E. Haller (E.E. Haller
and W. L. Hansen, 1974). The concentration of electrically ac-

11 -3

tive impurities in this crystal was (NA—ND) < 2x10 cm

where NA and ND are the concentration of acceptors and donors
respectively.

After orientation using the Laue method, several rec-
tangular samples were cut with sides along [111], ({110] and
{112]. The longer dimension was always {(1l11]) along which the
sample was stressed, and the smallest [112] was in the direction
of the incoming radiation. The two samples used in most of the

experiments had dimensions 8.76x5.54x2.30 mm3 and 9.85x3.56x2.36

mm3. The second sample was generally preferred, especially for
large stresses due to the smaller area perpendicular to the [111]

direction.



The samples were cut with a diamond saw and the
damage produced by the process removed by grinding and polishing.
The surface facing the light as well as the two perpendicular
to the stress direction were optically polished. Only the first
one was etched with CP4A sometimes diluted with distilled water,
and extreme care was taken that no etching of the [11l1] surfaces
would occur to avoid any dirregularities produced by the etching
that would affect the homogeneity of the stress.

To generate electron-hocle drops in the crystals a c.w.
Y AlG:Nd laser was used . The 1.06 um wavelength of this laser
(energy=1.17 eV) falls close to the band gap of Ge and provides
a minimum amount of sample heating (Ge band gap: 0.744 eV at 0°K).
In order to obtain a broad range of excitation levels, the out-
put power of the laser and the focused spot on the crystal were
varied. Absorbed powers ranging from 0.1 to 40 mW and spot
sizes from 1 to 5 mm diameter were obtained. For the stress ex-

periments the spot size was kept constant with a diameter of ap-

1
4#"
//

The far infrared absorption experiments were done using

proximately 1 mm.

2.3 Experimental Set-up

Fourier transform spectroscopy. For measurements in the spectral

range 4 to 50 meV (32 to 360 en L

) a RIIC FS729 Michelson inter-
ferometer was used. Its moving mirror was initi&lly driven by a
Slo-Syn #S25V stepping motor and in the later exéerlments by a

linear motor with a hydrostatic pumped-oil bearing for rapid scan-



ning operation (T. Timusk, F. Lin (1979)). A lamellar grating
interferometer (Beckman LR 100) was used for the measurements of
the threshold region of EID 1in unstressed Ge (1.5 to 5 meV).

The latest measurements 1n stressed Ge were performed with a
polarizing interferometer in the spectral region 0.4 to 18 meV.

The light source was always a lig lamp 1n a fused guarz envelope.
After going through the sample, the light was filtered and detec-
ted. The amplified and processed signal was digitized with a

A/D converter and its values stored i1n the memory of a 16 bit
computer (Nova II, Data General Co.). After storing the data
corresponding to a complete path of the moving mirror, that is

an interferogram, the computer calculated the Fast Fourier Trans-
form to obtain the spectrum. The computer also operated the in-
terferometers through a series of interfaces, recorded and averaged
the ;pectra, plotted and displayed them. Generally two sided
iﬁterferograms were collected. Sometimes, as with the rapid
scannlng interferometer, interferograms were one sided and only

a few points to the left of the central maximum were taken to allow
phqse correction of the interferogram. Light pipes take the
infrared radiation from the interferometer to the sample, éhd

from it to the detector. The radiation from the interferometer

i§ fed through the window at the top of the light pipe in the upper
"fight of figure 2.1. It is reflected towards the bottom at the

flat mirror at 45° of the incoming light. A window at the centre,
of the mirrogbadmits the laser beam into the light pipe to excite
the sample in the same area where the f.i.r. was condensed to pass

through by a cone.



Fig. 2-1

Inner view of the cryostat used in the experiments. It
consists of two parts: the sample chamber, at the bot-
tom of which the sample is mounted, and the detector cham-
ber, almost completely thermally isolated from the first

one. (After: Navarro, (1979)). .
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The sample 1s sandwiched between indium pads to 1mprove
the thermal contact with the sample holder and 1ncrease the ef-
fective area exposed to the superfluid He, minimized the super-
heating of the sample produced by the laser. The bath tempera-
ture was measured monitoring the he vapor pressure; for most of
the experiments 1t was 1.2°K. The sample temperature was occasio-
nally checked with a copper-gold 0.07¢% He thermocouple.

The detector is a heavily doped Ge bolometer (Drew and
Severs, 1967), cooled to 0.3°K by a closed He3 refrigeration sys-
tem; 1ts temperature was checked with a calibrated carbon resis-
tor.

various band-pass filters were placed between the sample
and the detector to tailor the detected frequencies to the needs
of the experiments. A sapphire window which eliminated the ra-
diation above 360 cm—l (45 meV) was used in most cases. To study
the high energy tail of EHD in unstressed Ge, this window was
replaced by one of silicon that 1s transparent below 700 cm—l
(85 meV). When necessary, the maximum transmitted frequency was
further resolved using alkalide halide filters, principally NaCl
with a low cut-off of 170 cm_l (21 meV). White and near infrared
light were eliminated either with black polyethylene or depositing

a carbon layer on the alkalide~halide filter.
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2.4 The Stress Sytem

The stress device used allows the control of the force
applied to the crystal from outside the cryostat. The stress
chamber is illustrated schematically in figure 2.2. The 1/8°
diameter steel rod at the left of the figure is pulled from the
top of the cryostat and the necessary force 1s provided by a
spring with a force constant k = 0.65 kg/mm. The compression 1s
controlled by a micrometer situated at the top of the pull rod.
The small brass cylinder shown in the fiéure at the bottom of the
pull rod constrains it to move only in the vertical direction.
’The vertical force is converted into horizontal and multiplied
by the couple provided by the stress transmitter around the
pivot axis. The dimensions of the system are such that the
horizontal force is 10:0.5 times the one provided by the spring.
The stress transmitter pushes the 1 cm disc brass cylinder shown
in the figure through a ball bearing to eliminate non-horizontal
components of the force. It, in turn, compresses the crystal
against a wall. Resultant forces range between 0 and 100 kg,
with a force constant of 16 kg per micrometer unit (0.1'). Thin
folds of indium are placed before and after the sample to avoid
non .uniform étress. The system is generally prestressed at room
temperature to partially compress the indium, get good reprodu-
cibility of results and obtain best étres; uniformity.

In order to check the calibration of the stress appara-
tus a cépacitor was built by evaporating'Al on two 6 mm diameter

polished quartz rods and using a 50 G mylar sheet as dielectric



Fig. 2-2
The stress system: The rod at the left of the figure is
pulled from outside the cryostat by a spring system (not
shown). This vertical force is converted to a horizontal
one and multiplied by the torque produced by the stress.
transmitter around the pivot axes. The crystal is pushed
through a ball bearing perpendicularly to the incoming

infrared light.
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(see' fig. 2-3). A force applied to the'éointed ends of this éppa—
ratus will chagge the dielect;ic thickness hence the capacitance.
Using the capacitor as one of the frequency determining parts of
an oscillator, allows one to get a table of spring lengths againsp
oscillator frequencies. By caiibrating this capacitor using known

forces the forces of the system can be obtained. " The calibration

-

2
<As is cléa; from figure 2-2, the infrared light and ex-

was done at room and N, temperatures.

citing laser reaches the sample perpendicularly to the stress
direction. A polarizer piaéed betwéen the sample and detector
allows one to study the effect on the absorption of the angle
formed by the electric“fgeld and the stresﬁ directién. The polari-

aer used is a gold grid’polariéer (Buckbee-Mears Company) with

100 lines per inch on a mylar base.
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C
Fig. 2-3
Capacitor used as stress calibrator. The thickness of
the mylar dielectric changes when a force is applied
to the quartz pointed enhds, hence the capacitance varies,
and these variations can be used to calibrate the forces

14

on the stress apparatus.
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CHAPTER 3

BASIC LINESHAPE OF THE PLASMA RESONANCE

3.1 Introduction

Previous to this thesis, the far infrared absorption
spectrum of electron-hole drops (EHD) in germanium has been
measured by several investigators over a restricted range of
energies and excitation levels (Vavilov, Zayats and Murzin,
(1969); Timusk and Silin, (1975)). The absorption is a broad
asymmetric line peaking at 9 mev. Vavilov et al. identified
it as the resonant absorption of an electron-hole plasma. The
" position of thg peak is related to the plasma frequency and
can be used to obtain the density of the electron-hole fluid
using elementary Drude theory. The fact £hat the line is very
broad and asymmetric suggests a large and frequency dependent
damping - -of the plasma oscillations; the aforementioned au-
thors considered electron-hole collisions to be resbonsible for
this damping. They used.a quadratic frequency dependence that
produces an asymmetric line.'_The quadratic frequency deﬁen~

dence is only valid for ffw << E_ (Gurzhi and Kaganov 1965) and the

¥
absolute value of the damping necessary to fit the data was too
high, even for a strong mechanism such as electron-hole collisions.

Murzin, Zayats and Kononenko (1975) and independently

Rose, Shore and Rice (1975,1978) pointed out that for a complete

14
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description of the EHD dielectric constant it is necessary to
include interband transitions between the heavy and light hole

“in the frequency range of the plasma

valence bands that occur
absorption. This extended model gave a good fit to Vavilov's
experimental results, butiit was still necessary to include
damping constants as adjuétable parameters for both the interband
and intraband contributions. Since the damping affects the peak
position, its calculation .is necessary before an accurate esti-
mate of the electron—hole pair density can be made.

In this chapter measurements of the EHD absorption over
the range 1.5 meV to 50 meV are presented. This range includes
the threshold and cutoff of the interband transitions. The aim
of this chapter is a study of this line in some detail. 'Section
3.2 descriges the band structure of Ge jand shows the approxima-
tions used in the rest of the work. Section 3.3 deals with the
calculation of the absorption cross section; a brief description
of Mie theory for scattering and absorption by a sphere is pre-
sented. In section 3.4 the electron-hole liquid dielectric con-
stant is calculated following Rose, Shore énd Rice. Section 3.5
preéents a calculation of the frequency dependent damping pro-
duced by electron-hole intéractions. The treatment is based on
calculations in the static approximation by Tzoar and Platzman
(1976). The effects produced by the anisotropy of the conduc-
tion band and the splitting of the valence band are considered

(Zarate, Carbotte and Timusk, 1980). Sectionf3.6 presents the

¥
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experimental results at 1.%°K and at an excitation level such
tﬁat the dipole approximation holds. The experimental results
are fitted to the thebry presented in Sections 3.2, 3.3, 3.4
and 3.5 with the density as the only adjustable parameter. The
electron~hole pair density is obtained from this fit and from
the threshold and cut-off of the interband transitions.

Most of the results in this chapter have been published
previously (Timusk and Zarate, 1977; Zarate and Timusk, 1979;
Zarate, Carbotte an@ Timusk, 1980). In the second of these pub-
lications, a fit to th? absorption spectrum using the damping
calculated by Tzoar'ana Platzman for a set of parameters clo-
ser to the case of EHD in Ge, is presented. The experiments
however show a sharp threshold at 2.8 meV; this fact can not
be explained within that model since the predicted absorption would
be larger than is actually observed. 1In that work the damping
was reduced in the low energy region by an order of magnitude be-
low the value calculated by Tzoar and Platzman to qualitatively
account for anisotropy; 1in this way-a very good fit to the data
was obtained. This reduction of the damping at low ‘frequencies
is necessary to explain the far infrared absorption as well as
the magnéto plasma resonance results of Gavrilenko et al. (1976),
who obtained damping values Qg;iiéerably smaller than those pre-

dicted by Tzoar and Platsman i he range 1.5 to 3 meV, and

- motivated the calculation of the frequency dependent damping

presented in this thesis.
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3.2 Band Structure

Germanium has the diamond structure, an fcc Bravais lat-

-

tice with a primitive basis of two atoms at positions (0,0,0) and

111
('4'1 ‘4‘1 Z’) .

led and empty states. Figure 3.1 shows the valence and conduc-

Being a semiconductor, an energy gap separates the fil-

tion bands (Hexrman, 1955). The valence band maximum occurs
at k = 0 (T point) and in the absence of spin orbit coupling it
would be six<fold degenerate at this point. However, the spin-

orbit interaction breaks it into a four-fold degenerate state

(3 = % and I} symmetry) and a two-fold "split-off" band (j = %

8
symmetry F; with an energy difference between them of 0.29 eV.

+
8

level splits into heavy. and light hole bands. These bands

When k moves away from the centre of the Brillouin zone the T

have a warped energy surface, and near k = 0 are given by

(Dresselhaus, Kip and Kittel, 1955:

O

E, (k) = ak? = (8% + c? ok

1/2

2 2
+k kz+k kx)] . (3.2.1)

N o

2,.2
Yy Y
The values of the parameters A, B and C, determined by éyclotron
resonaﬁce (Hensel and Suzuki, 1974) are listed in Table 1.

The electron minima are located at the L points, which
are at the zone boundaries in the {111} directions, producing
foﬁr equivalent electron minima. The constant éne;gy surfaces

are very elongated ellipsoids of revolution, with ratio between

the major and minor axes of around 20.

-



Fig. 3-1
Schematic energy band structure for germanium. The conduc-
tion and valence bands are shown. The conduction band mini-
mum'at.the L point is .744 eV above the valence band maxi-
mum at the I' point. The two upper valence bands correspond
to electron states with J = %. The split-off band of
J = % is .29 eV below the two other valence bands at the

I' point.
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The fact that the conduction band minimum and valence
band maximum are separated in k space makes Ge an indirect gap
semiconductor. In these materials optical recombination 1s a
slow process since it can occur only with the simultaneous emis-
sion or absorption of a phonon in order to conserve crystal mo-
men%um. In the effective mass model, an electron near one of
the conduction band maxima can be described (Kohn, 1965) as a
particle with negative charge and a mass determined by the local
curvature of the band. Similar considerations apply to a hole
at one of the maxima in the valence band, assigning it positive
charge.

The transverse (met) and longitudinal (mel) electron
effective masses (Levinger and Frankl, 1961) are given in Table
1, as weil as the density of states average (mde) and optical

average (moe) given by:

3 2
Mie = melmet (3.2.2)
) -1 -1 -1
3moe = mel + 2met . (3.2.3)

Also- listed in Table 1 are the heavy and light hole densities of

states masses m obtained by taking the average (Brink-

anh’ MaLh’
man and Rice, 1972):

3/2 El/é
L, H = % §[E-E (k)] (3.2.4)
/3 1253 k :

(Ex (k) given by equation 3.2.1).
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Ge band structure parameters and effective masses

Electrons: m m m

et el oe
1.58 0.082 0.12
Holes:
A B
13.38 8.48
M HR ML M anh
0.275 0:042 0.347

Static dielectric constant EO: 15.36

de

0.022

13.15

M4aLh

0.042
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Optical or conductivity average masses were defined originally
by Lax and Mavroides in 1955. They found that, for a single

band:

JE JE 3
—h = 1 5 akE é\)kE 5’-}% K24 (3.2.5)
iy an 34 1 Ky

where n is the density of particles in the band

1 _ 1, 1° 1 1
= = §[m + = = ] . (3.2.6)
o} XX vy z2z
The optical effective masses T ih and M Lh (Murzin, Zayats

and Kononenko, 1975) are also listed in Table 1.
An approximation commonly used is to neglect the valence

band warping and to define heavy and light hole masses as

ro

1 oas 2
"L, H

}-—‘IO
o)}

In this approximation the bands are taken as spherical and there

is no difference between optical and density of states masses.

3.3 Absorption of Light by Spheres: Mie Theory

The scattering and absorption of electromagnetic radia-
tion by a homogeneous sphere is fully described by classical
Mie theory (e.g., see van de Hulst, 1957 or Kerker, 1969). In
isotropic media .the fields E and H satisfy a vector wave equa-

tion

V°A + k"eA = 0 (3.3.1)
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where k is the wavevector of the radiation and ¢ the dielectric

constant of the medium. Solutions to the wave equations are

E = Vx(rv) + —— VxUx u) (3.3.2)

— — —

kve

H o= Jo(=¥x(ru)) + — 7xx (xv)) (3.3.3)
R/e

taking the z axis along the direction of propogation of the

-

incident wave,.u and v in spherical coordinates are given by:

a) Outside incident wave: (r > R: sphere's radius)

_ _lwt - _:yh _2n+l 1 .

u = e coso nil ( i) NEYSS) pn(cosﬁ)Jn(klr) /el (3.3.4)
_ et S ._.n 2n+l 1 . :

vV =e sing nil (-1) NCIS) pn(cose)jn(klr) /el (3.3.5)

where pi are Legendre polynomials and jn spherical Bessel func-

tions.

b) Outside, scattered wave: ¥ >R

lwt = . 2n+1

g = olw cos Ve, nzl —an(-l) HT%iiT p,(cosd)h (k) (3.3.6)
_ lwt . - _ _:y N 2n+l1

v = e snubveo o1 bn( l) m p (COSG)h (k I') (3.3.7)

where an, bn: coefficients to be determined

hn: spherical Haenkel functions.
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¢c) Inside wave: (r < R)

_ ilwt =z — _: 0 2n+l 1 . ‘
u = cosd E Ve cn( i) nnEly pn(cosﬂojn(kzr) (3.3.8)
n=1 . N
[
_ lut . o Co- _.,n _2n+l 1 T
v = sind L v dn( i) ATESH) pn(cose)Jn(kzr) (3.39)

n=1

where C dn: undetermined coefficients

60, kl are the dielectric constant and wave vector 1in the

outside medium and € and kl inside the drop.

Using the boundary conditions the coefficients a, . bn’ <y and

dn can be determined; 1in particular a and bn are given by:

. p) . . 9 :
I (koR) = [rj (K R)1=j (KyR) == [ri (k,R))
d

an= ) : 5 ﬁ (3.3.10)
hn(klR’ 3 [rJn(k2R)]—Jn(k2R) 7 [rhn(kl )]
. 3 . . 2 .
N Jn(sz) 3T (rjn(klk)]—ajn(klR) Py [rJn(sz)l .311)
n £ 3 . c. 9 e
0 hncklR) 3% [rjn(sz)]*Eogn(sz) 3 [rhn(klR)]

The cross section for absorption and scattering by the sphere
are obtained as the sum of the contributions from the various
multipole orders obtained as functions of these coefficients.
The total, or extinction, cross section is the sum of scattering
and absorptian contributions:

_ 27
ext = k2
1

8

(2n+l)Re(an+bn) (3.3.12)

n=1

“The scattering cross section 1is given by:
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2y

o " = 21 |2
scattering k2
1

+ b |

n (3.3.13)

z

(2n+1){|an

n=1

Elect;on—holé drops (o drops). usually have radii of a fraction
of a micron to a few microns; for electromagnetic radiation in
the far infrared region, the drop radii are small compared to
the wavelength both inside and outside the drop; in this case
only the lower order terms of the expansion contribute to the
cross section. Retaining terﬁ; up to second order in klR, the

extinction and scattering cross, sections are given by:

\

) 2
. - (k. R) - 2 -2 -
- - +
Oue = ATk RIIm[(Ed) + —F— (E2h) (2221438, .
€+2 ‘ e+2 2¢e+1 ‘
; (3.3.14)
» £-1. % i o
- 2 (kR Re (5h) ) ;
e+l
3 E-i‘z 3
o = 471k,R —=1 (k,R) - (3.3.15)
scatt 1 e42 1
Here € = fﬁ is the dielectric constant relative to the mediunmn.
0 : ‘

For spheres with radii lower than lﬁ'and infrared radiation with

wavelength of the order of 100p only the term ian3 contributes

to the absorption. In this region (Rayleigh‘limitf’the cross-

section of each drop is proportional to its volume and’ the ab-

so}ption'line‘shape is independent of the &rOp size. If N drops

fer unit volume contribﬁte to the absorption, the absorp;ion co-
r efficient in the dipole approximation is given by:

4

*
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a(w) = Neo(w) = 41 £ /&- NR3Im(E2d) . (3.3.16)
c 70 E+2

(60, the dielectric constant for Ge, is given in table 4.)

3.4 The Dynamic Dielectric Function

In order to evaluate the absorption cross section as
given in the previous section, the dielectric response function
of the metallic drops to the incident radiation must be calcula-

ted.

In the genera% case the dielectric constant of a semi-

conductor, within the random phase approximation, is given by

(Ehrenreich and Cohen, 1959)

(£i-g3 y(ei-gd )

2 k "k+ k "k+ . 2
4’n'e — — g. — -— g. l:]
e(q,0) = e, - P ——3 o (3.4.1)
0 g ki) (Ej-E), ) 2o (w+iy) | KokTQ

Here the indices i,j are summed over k states in the different
bands; péj denoteg the matrix element of the density operator
between the stéte k in the ith band and the state Efg_;ncf@e j
band; f; and fi+g are the thermal occupation factors of these

1 states. —In thi;:expressibn Y is an infinitesimal, but it has
\generally been appliéd to real problems in which damping proces-
ses produce finite width states; for these cases vy is a finite
damping constant.

The summation over the bands can be divided into two

parts. The intraband part contains those transitions in which
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the initial and final states are in different bands.

The q vector of the incoming electromagnetic radiation
is very small as compared with the k vectors of the electron
and hole states. 1In this case the contribution of intraband -

transitions to the dielectric constant is the Drude expression

2
“p
eintra = _80 w(w+iy) (3.4.2)
2 _ 2 2
Yp T Ype * “ph (3.4.3)
2 n
wiy = H = (3.4.4)
pe €0 Moe -
2 n n
won = e —) (3.4.5)
P 0 oHh oLh

wpe and wph are the plasma frequencies for electrons and holes;
ngr Ny and n, are the densities of electrons, heavy holes and
light holes inside the drop. Charge neutrality determines

n, = ny + ng . Another equation relatipg n, and n. can be ob-

H L
tained considering that holes in both bands have the same Fermi

enerxgy EFh
2 2/3 2 2/3
‘h 2 N 2
E. = [37°n ] = [31%n_]
Fh 2deh H 2mdLh L
. (3.4.6)
n m 3/2
L _ dLh - 3/2
ao - W) =
H dHh

With these considerations (3.4.3) can be written as
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2 ane? 1 1 1 1 p3/?
wy = G+ & 377 * 373
oe oHh 1l+p

- (3.4.7)
oLh l+p

Vavilov et al (1969), when fitting the first EHD far infrared

absorption measurements, considered ¢,

as the only contri-
intra

bution to the dielectric constant and took the Rayleigh limit

for the cross section. This choice, for y=10, gives a Loren-
w

tzian lineshape with a resonance at L. The finite value of vy
/3

shifts the position of the peak. Considering only intraband
terms, the relative dielectric constant is:

2
w

g =1 - (0t iv) (3.4.8)

The effect of y on the peak position can be seen easily expan-
ding € in powers of % . The calculations of y(w) of the next
section show that, for every frequency, y(w) is at least one

order of magnitude smaller than w. Then second érder terms in

% can be neglected. With this approximation:
2 2
z “pyiv Op
= - + — o3
€ 1 % o0 o2 (3-4.9)

The absorption coefficient is obtained replacing (3.4.9) in

(3.3.17):
2
=~ 3y w
a(w) ¥ oIn(El) = B 5 (3.4.10)
£+2 © o 9 2 o W
wl (3w ~w’) + v _%]
p w
Eq. (3.4.10) has a maximum for:
4 ‘*_’;_ v? .
.wo = 9 (L + 2 —7) (3.4.11)

®o
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Obviously the intraband damping has the effect of shifting the
resonant frequency towards higher values than the predicted

w
L. 0of all the possible interband transitions between the va-

{znce or conduction bands in Ge, only transitions between the
heavy and light hole bands have energies in the far infrared
region.

Fig. 3.2 shows that vertical transitions are possible
between two energy limits hwl and ﬁwz determined by the Fermi

enexrgy of the holes and the structure of tﬁe two bands. For

each direction of k, ﬁwl and hw2 are given by:

E_(6,¢)
ﬁwl(e,q)) = EFh(l —m] (‘3.4.12)
E+(6,¢)
. ﬁwz(eld)) = EFh(m - 1) | . (3.4.13)

~

The extremum values of ﬁwl and ﬁwz are obtained in the direc-

tions (100) and (111). As a function of the Fermi energy:

ﬁwmin = EFh' (.776) (3.4.14)
ﬁwmax = EFh' (11.39) . (3.4.15)
The plasma resonance W is such that ®oin < wy <wméx'

The evaluation of the interband contribution to equation
(3.4.1) requires the knowledge of the interband matrix elements.
~Combescot and Nozieres (1972) have calculated them in the spheri-

cal approximation obtaining



Fig. 3-2
Heavy and light-hole valence bands in germanium. In EHD

the bands are filled to EF and interband transitions can

h

occur only between a threshold 4w, and a cutoff ﬁwz.

1
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H,L, S _3 .2
<E,Hlpg |k+q,L> = 7 sin (8&r5+3) (3.4.16)
and
<koHloglkrg bo = <k Lo |ktq L = + (1+3cose) (3.4.17)
For small g, (3.4.13) becomes:
H,L, 3 q° _. 2
Lim|p "] = 2 L sin‘u (3.4.18)
7.2
q~0 k

where o 1is the angle between k and (.

Averaging (3.4.18) for all possible o values, the interband di-

electric function is:

) [£) () ~£,(K) ) [E, () =E_(K) 43,

= - 4we 5

€, (3.4.19)
inter (217 | (B, (K)-E_(K) 1%~ (w+y") k

with E, given by eq. (3:2.1).

Eq. (3.4.19) was evaluated by numerical integration at T=0, in

which case the Fermi distribution functions can be replaced by 6

functions. Fig. 3.3 shows thé real (el) and imaginary (52) parts

= 3.5 meV, and

of €int obtained using a hole Fermi energy E

Fh
y' = 0.001 meV. Q‘;

The- interband transitions affect the condition for reso-

nance whiqh becomes:
2
w

2 _
wo = ‘31?19(“%7 ,(3°4'20)

A positive € shifts the resonance condition towards lower
w-
frequency than that predicted by the Drude value 7&. A larger
3

~



Fig. 3-3

Real (£,) and imaginary (52) parts of the interband di-

1

electric constant in units of €g° The interband damping

used is very small compared with the Fermi energy. Note

the sharp threshold near 3 meV (hwl in fig. 3-1).
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value of y' would smooth the dielectric function. Fig. 3.4 shows
El and ts for y' = 2.5 meV. It can be seen that for w ~ 9 meV

(close to the resonance condition) €, is increased by the damping.

1
Interband damping not only contributes to the width of the ab-
sorption but affects the resonance condition. If we then use

the position of the peak to obtain the plasma frequency and hence

the density of the fluid we will find that the result depends

on the value of interband damping chosen.

3.5 The Frequency Dependent Damping

1) Isotropic bands

A calculation of the conductivity of an electron-hole
plasma was performed by Tzoar and Platzman, (1976) using the tem-
perature dependent Greeh's function formalism for several ry
values (rs: radius of the volume occupied by a particle in units
of the Bohr radius) and electron-hole mass ratios. They started
from the general expression of the long wavelength conductivity

for a system of charged particles as given by Kubo (1957).

o B
0, ) = ’ dxel‘“J dr<j, (t=ihn) 3§ (0)> (3.5.1)

<l

0
where w is the frequency of the electromagnetic wave, j is the
current operator in‘the Heisenberg representation and B the in-
verse of the temperature in energy units. Integrating eq. (3.5.1)

by parts they obtained:



Fig. 3-4
Real (sl) and imaginary (52) parts of the interband di-
electric constant for damping comparable with the hole
Fermi energy. Considerable broadening appears and the

threshold is erased. The values are given in units of

EO.
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0,0 =0!% ) 40 () (3.5.2)

(W) =- 7o dr<j (-ifN) 3 (0)> (3.5.3)
0

Calculation of (3.5.3) yields:

(0) _ . P N - T
Ouv (w) = 100(w)6uv =1 4= (£ 47 = } OUV
S s
T ! 2
=1 = wpéuv (3.5.4)
and . -
(1) _ 11 iwt_ . . §
Ouv (w) = o v dte <[ju(T),jv(0)]r . (3.5.5)
0
For a cubic crystal Ouv reduces to a scalar, then:
o(w) = i (w) + o) (w) ' (3.5.6)

0(w) can be obtained in terms of the resistivity of the system

1 9
R = Re(a) = —;5 for real ol.
‘ 0
Then
w2 w2 2
o(w) =1 41w + R(4nw)

and the effective dielectric constant of the system:

4w w2 w4 .
£ =1 - =L g(w) =1 - -+ i —B_R (3.5.7)
iw 2 3 .
w 41w

Comparing (3.5.7) with (3.4.9), we have the usual relation bé—

tween damping and resistivity:
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2 .
W
= P
Y T (3.5.8)
For a medium with static dielectric constant €0 these equations
are generalized to:
‘ ] 6 fé w4 ‘
£ = — =1 - + ie. —E_ R (3.5.9)
€0 w? 0 4my3
and 2
w REO
= _%F—— (3.5.10)

//&zoar and Platzman found that both at very low and at very high
(1)

frequencies o

can be dealt with using the static approxima-
A ’

tion. Electrons and holes interact via a statically screened
Coulomb potential. The calculations presented in this section

are all performed within this approximation.

‘where Bq and Qq are the polarization functions for free holes

R:.—.

ElO
a"o|8

w . ) .
I gx Im Bq(x)Im Qq(w—x) {3.5.11)

and electrons respectively.

For free electrons (Lindhérdf 1954) ;- ,

f2me 2m€ 5
—5 X for q<:kF and —5- X 2 2qu—q
4 ' A :
2m 2m .02 . : 2m '
e 1 L2 e, 4% L _q2|3_8 < 2
Iqu(x)— -2 Tonq {kF (h2 x-q) 4q2 for |2k.g-q l.hz 2kq+q
0 otherwise ' - (3.5.12)

The expression for Im Bq(x) is the same replacing m_ (hole mass)

h
for m, (electron mass); ¢q and x are the transfer of momentum.-
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and energy respectively and aq is the Lindhard static dielec-

tric function:

2
e =1+ 3% (g (0)+B_(0)) (3.5.13)
q q’e q q
0
2 q2
2m k (k=L f2k_+q
0, (0) = —= L+ E A an| =) (3.5.14)
H° 4n 4 *p F 43

and similarly for Bq(O).

The constant at the front of (3.5.11) is:

3012 (2 4+ Ly
= -

’ e mh
C = (3.5.15)
. 3(wz + o2 )2
pe ph

where wpe and wph are the plasma frequencies for electrons and

holes.

In this thesis I present an application and generalizé—

tion of these equations to the case of EHD in Ge using different
approximations. I will treat the heavy and light héle bands as

parabolic with density of states effective masses as given in

[

Table 1; the optical effective masées are employed in the cal-

culation of C. The spatial degeneracy is taken into account by
k
. . Fh
considering the electron Fermi wavevector kFe as ZT7—“ where th

is the Fermi wavevector for the holes; in the Tzoar and Platz-
man calculations, kFe = th since no band structure effects are

considered and EO = 1.

In the simplest approximation, the splitting of the va-

lence band is neglected and the holes are considered to have .an
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average effective mass: ;

3/2 2/3

3/2
m MaLh)

ah = Magn ¥

(3.5.16)

In this approximation the equivalent to eq. (3.5.12) for Im Bq(x)

is valid. The results of eqgs. (3.5.10) to (3.5.15) for EFh = 3.5

meV obtained by numerical calculations are shown in figure 3.5

(dashed line):

2) Band structure egfects

Equation (3.5.1) has to be generalized when the effect
of anisotropy of the conduction band is taken into account. The.
polarization functions B and Q depend now on the wavevector q,

not only on its absolute value. The corresponding expression 1is:

3(1)
_ _C | dgq _ L
= o I 5 1 dx Im Bq(x)Im Qg {w=x) (3.5.17)
g e
)

The polarization function for an ellipsoidal band can be ob-
tained directly from the spherical case with the aid of the co-

ordinate transformation:

- - - - _ _et
Ay = 9y ¢ qy = qy T Yo g with p = =
el
We have -then:
Q.. (q,x) L Q(q'x)
ellip ! ‘/6
q'? = qi g, pqi (3.5.18)
]

K - p1/2k



Fig. 3-5
Fregquency-dependent damping produced by electron-hole sca£~
tering in Ge. The dashed line has been calculated assuming
isotropic conduction and valence bands with effective mas-
ses 0.22 m and 0.347 m, respectively. The solid liné has

been obtained considering the anisotropy of the conduction

band.
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With these consideratiﬁﬁ% we can integrate (3.5.17) in cylindri-
cal coordinates. After computation, the solid curve in fig. 3.5
is obtained. As can be seen, the overall result is a reduction
of the damping in the frequency region considered of around 30%.
The inclusion of the valence band structure is much more
complicated, even when both light and heavy hole bands are taken
as isotropic. The hole bands are coupled by the Coulomb interac-
tion, and matrix elements of the density operator pq(ki,kj)
need to be considered. 1In general Im'Bq(x) has the form (Ehren-

reich and Cohen, 1959):

| 2
3 2 (k+q) 2
d’ k N - k
Im B_(x) = <k.lo |k+q.>{8(x = 5 (—— - =)) +
4 J(zn)3 B 2 omymy
52 2 (k+q) 2
+ 0(x + 5 (=— - —_ﬁ——_))} ' (3.5.19)
i j
with the integration limits:
1 keg|®
2m, > EF
i
2.2
Ak
2mj < EF )

Two kinds of contributions will occur: when an electron interacts
with a hole, the hole can either go to aﬂ empty state in its. own
band (intraband transitions) or jump from the heavy hole band to
the light hole band that is nearly empty (interband transition).

The matrix elements are Biven by eq. (3.4.18) and (3.4.19).

-
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a) Interband

2
In units of gﬁ = 1 the imaginary part of the polarization
function is:
a*k () 2 2 (ra)?
Im B, (q,x) = {8 (x- [ - ]+ 8(x+ - )} x
inter (2n)3 LN Tyh mHh mLh
x 2 sin’g (3.5.20)
with the integration limits: .
= 1/2
|ktal > kpy = (Eppmpp)
- 1/2
ko< kFl - (EFhmHh)

M and LIS in units of the electron mass m and B 1is the
angle between k and k+qg.

For x> 0, the second ¢ function in eq. (3.5.20) does
not contribute to the polarization. Writing it in spherical co-

ordinates we have:

1
2 2 2 2 2
m Binter(ﬂ’x)=:£? kzdk aus (x - K +ikqu+q +[r ) % qz(l-u) - x
Lh Hh * k“+2kq +q
2 2 172
x0 ((k™+2kqu+q”™) -k, )6 (k. -k) (3.5.21)
2 Ry

where u‘= cosa (o angle between k and q)

and 6 denotes the step function.

From § and 8 functions, we find that the integral is different

from zero only if:
2 1/2 2
q}(xmLh(l-R)+Rq ) q+(xmLh(l-R)+Rq )

(1-R) (1-R)

1/2

PA
=
A

(3.5.22)
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and
2 1/2
(kpy = mypx) < k< kpy
m
" = mLh
Hh

This equation determines the integration limits for k; the

result of the integration in p is

mo, (%b o 4k%q®-[m, x-(1-R)kZ-q°%)?
Im B (q,%) = —— L8 ak Lh
incer BT T I28T Tq : (m,  x+kR] 2
MLh
k
a
2 2
m (m., x+q"R) k
3 Lh Lh 2 b
= o ' +
Im Binter(q’x) 1287q q { -~ xR2 [Rn(mLh+k R)]k
2 L . & (3.5.23)
2
(mp, x-q7) k o 2 k
PR O N [2n k] b, (1-R} = [k2R+m x] b}
My h* k 2 Lh™ k
Lh a 2R a
k, and kb are obtained using equation (3.5.22); different inte-

gration regions are determined by the value of the wavevector q;

as we can see in figure 3.6 a,b and ¢ for g« (kFl—sz),

kFl_kFZ‘(q <kFl+kF2 and q:>kFl+kF2 respectively.
The intersections between the four inequalities of eq.

(3.5.22) determine the points El’ E2, Fl and Fz; they are given

by:
_ _1- 2 oY el I
1’::1’2 = = [sz(l,R) Rq” + ZszqR]
- Lh |
(3.5.24)
1 2 _ 2 -
Fl,2 = a;; [kFl(l R)+q~ + 2kqu]

Calculating (3.5.23) in the regions shown in fig. (3-6.a) we have,



Fig. 3-6
Integration regions for the hole interband polarization
function in Ge. (a) for g < kFl'-kFZ (the figure corres-
ponds to q = 0.138 kFl; (b) for kFl-kF2< q < kFl+kF2
(g = 0.91 kFl); (c) for q > kFl+k.F2 (q - 1.45 kFl)' The
guantities kFl and kFZ are the Fermi momenta of the heavy-

and light-hole bands, respectively and g is the momentum

transfer of the hole.
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for g<k k

F1 'F2°
0 x < El
Il(q,x) for El <X < E2
Im Binterfq'x)= 11,(q,x) for E, < x = Fy (3.5.25)
I3(q,x) for Fl < x < F2
|0 for X 2 F2
From fig. (3-6.b):
For kp)=Kpy < @ < kpytkg,
I&(q,x) for x < E2
Im Binter(q’x) = I3(q,x) for E2 < x < F2 (3.5.26)
0 for x > F2
From fig. (3-6.c¢)
For g » kFl+kF2
0 for x < Fy
Im Binter (/%) = IB(q,x) for Fi<_x g F,y (3.5.27)
0 for x > F2
with
I, (q,x) = 3 m X
17 128wg Lh
5 2 5 0 , 1/2
m., x+q R) (xm_ . +Rq”) (1-R) +2qR(m_, x(1-R)+Rq”“)
Cox (= Lh - en Lh P 5 Lg 1+
2mthR sz(l-R)
1 ‘ , 1/2 2 5 5
* 3R [(g + (q+(mth(l—R)+Rq ) ) )= (kFi'mHhX)(l-R) ]
m x—q2)2 g+(m x(l—R)+RqZ)l/2 :
+ Lhm — an[— Lh . 1} © (3.5.28)
Lh [kF -m._. X] (1-R)
Hn

1



] .

B 3
Tl = = oy,
2 2 2 2 1/2
(m_, x+q“R) ®(1-R) "+R[q+(m_, x(1-R)+Rq“) ]
PTG S P ; R AN T
2mthR mth(l—R) +R[—q+(mth(l-R)+Rq ) )
5 2 , 1/2
nox- +(m  x(1-R)+R
. (thx a’) on q (Lh\c(l ) +Rq ") -
mLh'\ ‘—q+(m x(l—R)+Rq2)l/2|
Lh
5 2 1/2
R q(mth(l-R)+Rq ) } (3.5.29)
I (q,%) = - =o— m. . x
39 128ng "Lh
2 2
(m x+q2R)2 (mLh*+kF ) (1-R)
Lh . 2
x {_ - ’nl 0 2 l/l’) ] "
2mthR“ mth(l—R)“+R[—q+(mth(l—R)+Rq ) T
2
2 {1~
(mth~q ) kFl\l R)
T TR w tnl 12t
Lh’ |~ q+ (xm; | (1-R) +Rq") */ * |
1/2 2
1 2 2 2
+ 3R [kFl(l-R) = (=g+(m; x(1-R) +Rq") ) 1} (3.5.30)
I,(q,x) = - ——m
47! 128n1q Lh
2
2.2 2
m_. x+q R) (m_, x-gq7)
x {- -Lh 5 in(l + Ex ) - %‘2 in(l + E———l )+
2m_. xR Fh Lh* | Fh
Lh \
2
(1-R) .
SR T ManX) - (3.5.31)
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In the limit of g - 0, Im Binter(o’x) gives the known depen-
1/2

dence in x as obtained by Sherrington and Kohn (1968)

2 n 1/2 E
Lh Fh
- < 1-R
87 (—(-FR—)X) for EFh(l R) < x < R ( )
Im B. (0,%x) =
inter 0 otherwise (3.5.32)

The contribution to the damping of the interaction of an elec-
tron with a hole that jumps from the heavy hole to the light

hole band is obtained from eq. (3.5.11) with Im Bigter as given

by eqgs. 13.5.25) to (3.5.31). The result of the numerical inte-

gration is shown in Fig. 3-7 (dotted line).

b) Intraband
The imaginary part of the intraband polarization func-
tion is given by eq. (3.5.21) with i=j and the matrix element

of eq. (3.4.18). In this case m stands for m or m and kF

Hh Lh

for kFl or sz depending on which contribution is going to be

calculated (heavy hole or light hole). After considerable
calculations similar to the ones used for the interband contri-

bution, an algebraic expression for B,

lntra(q,x) is obtained:



oo iy AW T

@
46

For q =« 2kF and X < % (—q2+2qu)
2,2
i . _m _ _3m (mx+q”7) X
Torg T T2emg I on (LH E;) ¥
2.2
+ {mx-q7)~ in(l - X
2mx EF
ImB, (q,x)=%1 (3.5.33)
intra 1 2 1 2 .
For = l-q +2qu[ < x < = (gTt2gkg)
2
m 2 (mx~-aq“)
= (k - —1) ¥
l6n F 2
q 4q
2 2 4g?(mx+k2) 2. 29k
. 3 (- (g~ +mx) tn T F (mx-q~) , F
128nq 2mx 2,2 2mx 0 2
(mx+q“) [ mx-q“!

= 0 otherwise

The result of computing the resistivity from eq. (3.5.1) with

(3.5.33) for Im B(g,x) and the usual free electron value given

by (3.5.12) for Im Q(g,x) is shown in fig. 3-7. The full line

corresponds to heavy holes and the broken line to light holes.
It can be seen that the contribution to the damping coming from

holes that have initial and-final states within the heavy hole

band is by far the most important. The light hole intraband

and the interband contribute only a few percent to the total.

The correct damping is obtained considering the com-
bined effect of valence band splitting and conduction band aniso-
tropy. The value obtained by adding heavy hole, light hole and

interband contributions is corrected for the anisotropy of the

“electron banjjagﬂfg figure 3-5.

<F



Fig. 3-7
Frequency-dependgnt damping calculated considering the ef-~
fect of the degeneracy of the valence bana but taking thé
conduct;on band as isétropic. The solid line gives the
contribution to the démping p;oduced by electrons interac-
ting with heavy holes and the dotted line with light holes.
The dashed line corresponds to tﬁé interaction of electrons

with holes in the heavy-hole band that.jump to empty

states inh the light-hole band. .

————
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Figure 3-8 shows the final results for the electron-
hole damping in the static approximation. It can be seen that
it first rises quadratically, reaches a maximum value of 1.9 meV
at around 20 meV and then decreasés very slowly. For energies
below or about 3 meV the damping.is at least one order of magni-
tude smaller than its maximum value. This very small damping at
low energies makes possible the existence of a threshold in
the EHD absorption, produced by the onset of interband transi-

tions. 1In contrast the r, = l, a = — = 3 case calculated by
e

Tzoar and Platzman predicts too high a damping in this region,
completely wasﬂing cut any sharp onset (at 2 meV, their value
is Q.9 meV as compared with that calculated ﬁere, 0.185 mevV).
The value at the maximum is questionable since dynamic corre-
létipns were neglected‘in this caiculation and they are iﬁpor—
tant in the frequency region where the maximum appears (Tzoar
and Platzman, 1976). This fact and its effect in the EHD absorp-
tion are discussed in section 3.6 below. ‘

‘In chapter 6 the calculations for frequencies below 10
meV are compared with expérimentai values for®*the damping ob-

tained using different experimental techniques.

3.6 'Exp®rimental Results

Figures 379, 3-10 ahd 3-11 show the measured absorp-
.tion spectrum of EHD in pyre Ge immersed in a He bath tempera-
{

ture of 1.2°K. In figurel3-9 the region of 2.5 meV to .30 meV

I
2

is shown. .The vertical scale is &n T where Io is the signal



Fig. 3-8
Overall electron-hole damping in Ge as a function of ffequen—
cy. The line has been calculated considering the effects

of anisotropy of fhe conduction band and splitting of the

valence band.
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Fig. 3-9
Absorption spectrum of EHD at 1.2°K from 2.5 to 30 meV.
A resonant peak occurs at 9.3 meV near 1//3 of the plas-

ma frequency.
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Fig. 3-10
The low energy region of the absorption spectrum of EHD
at 1.2°K. A clear threshold can be seen at 2.8 meV that

is identified with the onset of interband transitions.
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Fig. 3-11
The high-energy region of the absorption spectrum of EHD
at 1.2°K. The material becomes transparent at around 40

meV at the cut off of interband transitions.

Iy
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with the exciting laser off and I with the laser on; the specc-

trum shown corresponds to an incident power on the sample of

29; . The absorption is a broad and asymmetric line peaking
mm
at (9.3:0.1) meV, for this particular laser power the maximum

I
of Qn(ig) is 0.57. Figure 3-10 shows in detail the low energy

region from 1.5 to 7 meV; the exciting power for this case is

slightly less than that of figure 3.9, the corresponding absorp-
)

tion at the maximum being estimated as £n( 7 max

= (0.39:0.02).
The clearest feature in the figure is a sharp threshold at 2.75
meV: the material is completely transparent for lower energies.
fiéure 3-11 shows a measurement of the high energy region from

25 to 55 meV. It is very clear that the material becomes trans-
I

parent again at around 40 meV; from there on %n i? = 1 and

just an increased noise level produced by the poorer response of

the equipment at high frequencies is observed. The estimation
I
for the absorption at the resonance frequency is Qn(jg) =
’ . max

0.58%0.04, at experimental conditions similar to those that pro-

duced graph 3-9. For a sample with a uniform concentration of
I

absorbers, the quantity &n 7? = ad where d is the thickness of .

the absorbing region. At medium excitation conditions like the

ones presented here, Worlock et al (1974) found that the concen-
/

tration of drops decreases exponentially with depth; in this -~

case o = on(O)e'-X/d where «(0) is the absorption constant at the

" surface. It is easy to show that in this condition &n £L¢=a(0)d.
- h O

For a high excitation intensity produced by focussing the opti-

cal excitation into a small point, generally less than 100y
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diameter, several investigators (e.g. Alekseev et al, 1974;

Voos et al, 1974) found that the drops distribute in a hemis-
pherical cloud around the excitation point. This cloud has a
sharp edge and the density changes smoothly inside it ; for
these cases clearly, the pengtration depth d is the cloud radius.
In general 4 changes between 0.3 and 2 or 3 mm depending on the
excitation conditions (Pokrovskii and Svistunova, 1974; Bagaev
et al, 1976). Under our conditions d is less than 1 mm and

considerably smaller than the sample thickness. We can assume

I
n 3? ﬂ/ao = oNO and consider our spectrum to be proportional

to the absorption cross section.

Another uncertainty in the experiment is the real crys-
tal temperature. The bath temperature stayed in all experipmpents
fixed at 1.2°K, but the optical excitation can produce a local
raise of temperature. Comparing with data taken with temperatuféf
controlled samples in exchange gas, we can safely put an upper
limit of 2°K in our cases. This is clear from figure 3-12
where we can see the low energy region of the spectrum at dif--
ferent temperatures: at 1.2°K the sharp threshold is evident‘
and there are no signs of'excitons. At 2.14°K we note the first
appearance of the 3.5 meV exciton absorption, which grows to
dominate the thresholq region as the temperature is further
raiséd to 2.9°K. Following Manenkov et al (1974), an estiméte

of the superheating product by the laser excitation may be found

from the threshold resistivity of Kapitsa R =

gAT (cmzdeg)
W W



Fig. 3-12

The low energy region of the spectrum at different tempera-
tures (lines are shifted in 0.05 with respect to each other).
At a bath temperature of 1.2°K the sharp threshold at 2.8
meV stands out. As the temperature is raised to 2.14K, the
exciton absorption at 3.2 meV can be seen and it completely

dominates at 2.9°K.
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where ¢ is the sample exposed area, w is the laser power_and AT

the difference in temperature with respect to the bath (Kapitsa

50
73

the surface area of our sample (11 cm ), irradiation with a 50

1941). . For a He-Ge boundafy R = (K.N. Zinov'eva, 1971). For
mW laser would produce an increase in temperature of oniy .1°K.
The certainty that the sample temperature was low validates the
use of the approximation T=0'in the calculation of the inter-
band dielectric constant of section 3-4 and intraband damping

of seotion‘3—5. The effect of finite temperature in € nter WS

discussed by Murzin et al; at 1.2°K it is equivalent to increase
h L]

by a few percent the interband damping, and is negligible as

-~ compared with uncertainties that will be discussed later. The

‘effect on v, is similar.

intra

As will be discussed in the next chapter, the excitation
conditions and-temporaturo in our experiments are Euch that .
drop sizes are around lu,_vef& small as compared with the wave-
length thus, they absorb in the Rayleigh limit. The absorp-
tion cross section can,  in thls case, beacalculated us;ng equa-
tion (3.3.16). Fig.-3~ 13 (SOlld line) shows the theoretlcal
curve calculated using a dlelectrlc constant that includes intra-
band and interband transitions os'in section 3.4 and with the

frequency dependent damping of section 5. The line shown has

been obtained using ‘a plasma frequency wp==15.2 meV correspon-
17

ding to an electron-hole pair density of 2.02x10 cm°3'and a

hole Fermi energy’ of 3.5 meV. . The experimental points in the



Fig. 3-13 .

Overéll absorption spectrum of EHD in Ge. The solid line °
is a theoretical curve that includes intraband and inter;
band transitions and(a frequency dependent electron-hole
damping; the electron~hole pair density is z.OZXl017 em” 3.,

The dots are the experimental results corresponding to the -

matching of figures 3-9, 3-10 and 3-11.
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figure correspond to the matching of figures 3-9, 3-10, and
3-11, the large error bars above 25 meV reflect the uncertainty
in the matching of the two curves. Theoretical and experimen-
tal points have been normalized to the maximum.

To explain the line shape in the ‘region around 10 meV
a damping of 2.7 meV is required, while the maximum calculated
value is‘only 1.9 meV. 1Indeed, a very good fig to the/experi—
ment is possible if the damping curve of fig. 3-8 is(just mﬁlti—,
plied by the constant factor of 1.4. There are two §ffects
that can contribute to this discrepancy:. firdt, xhq static
approximation used in the calculation of section 3;5. Tzoar
and Platzman find that dynamic correlation‘effects are impor-
tant in the freguency region wheré plasma oscillations occur,
and have the effect of increasing the damping considerably.
The second effect is the interband dampiﬁg: the solid line in
fig. 3-13 was obtained as;Pming it was the same as the intraband
without any particular justification. Within the random phase
approximatioﬁ used in section 3.4 for thé calculation of the ‘die- .
electric constant there is no broadening of the states involved;
usually the broadening is phenomenologicaily fitEgd to the
?xpérimental pointg. A seif'consisteﬂt éaléhlat;on si@ilar to that
Bf Tzoar and Platzman or that of S$ilver and Aldrich (1978), who
calculated the interband absorption for heavy hole-split off
band transitions usingnmuitiple scattering theory, would be -
required. As was diécussed in section 3.4 (eq.:(3.4.ll) and

(3.4.20), damping values for both the intraband and interband
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terms change the fesonénce condition affecting the electronrhole
pair density value obtained from it. If smaller interband dam-
ping is assumed for the same intrabahd value a better fit to the
experimental results is obtained; actually both dynamical corre-
lation effects and interband damping should he includgh at the
same time in a calculation if a good value of n from the peak
position is required; since both effects are of the ééme order,
it makes no sense to include one of them without considering the
other.

At high frequencies (30 meV and over) the theoretical
absorption is slightly higher than the experimental results.

At these frejuencies the absorption is mainly produced by the

interband transitions and any discrepancy can be attributed to

thé approximations used in the calculation of the interband di
electric constant. In the appendix I calculate the matrix

element§ for the interband t;ansitions in the valence band of,
Ge under Illl] uniaxial stress. As it is discussed there, eq.
(3.4.18) is just a particular case of eqs:(A.22) to (A.24) for
zero stress and sphericél approximation. -.A calculation of the

Im(e

inter) with the matrix elements of egs. (A.22) to (A.24) is

shown in fig. 3-14, together with one where the spherical
approximation.ﬁatrix elements were usgd.’ The cofreéﬁ matrix
elements give a slightl} larger value of.Im(ei at low frequen-
cies and smaller Ime at frequepcies larger than 15 meV; the

difference becomes relafiveiy’important at high frequencies. At



Fig. 3-14

Imaginary part of the interband die'lectric constant with

different matrix elements. The solid line corresponds

to the spherical approximation;- the broken line uses

the correct expression from the appendix at zero stress.

WS



60

(ABUW) A9H A N3
0

o 0

AW G g =435

ABWLO 0= A

T

)

al



61

30 meV it is about 30% of its approximate value. The magnitude and
'sign of this correction agrees with the discrepancy observed at high
energies. Clearly the spherical approximation used in the calcu-
lation of the curve of fig. 3-13 is what produces the difference
with the experimental points at high energies.

The value for the density obtained from the plasma
frequency can be compared with the result obtained from other
features in the curve. As shown in sec;ion 3—4, the threshold
and cutoff of the interband transitions are related to the
electron hole density via the Fermi energy (egs. (3.4.14) and
(3.4.15). Experimentally they appear at 2.8 and 42 meV res-
pectively (after correction for resolution broadening). These
values are in agreement with a density of 2.02><10l7 cm-3. A
"summary of results is presented %n table 2.

The electron-hole pair density changesswith tempeiature._
Minimizing the Landau theory free.energy, it can be easily shown

that it decreases as T2:
DT = n.(1-6_ (k.T)%) .
0 n B

X %
Gn is a factor‘of the order of 1 in Ge. Thomas e% al" (1973) -

measured .a value of 0.94, Lo (1974) gives 1.35 a 4 theoretical
" calculations by Vashista et al (1974) gives l.Zf(value in meV-z);

n, is the d%psity at 0°K. Using T==l.2°K.and Gn =-1.3, a value

17

of n_ larger than n by 0.03x107" cm > at 2°K. / :

a

.C/'
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Table 2

Experimental values of electron-hole
pair density for EHD in Ge

Method Result | nd (10%7em™%) (r=1.2°%)
Peak position (9.3 meV) wp=515.210.l 2.02%0.05
Threshold at 2.8 meV EFh= 3.5%0.13 2.04:0.10
Cutoff at 42 meV B =3.6:0.3 2.1 0.3

Fh



CHAPTER 4

THE INFLUENCE OF DROPLET SIZE ON THE PLASMA RESONANCE

4.1 Introduction

Slight variations in the lineshape of the EHD plasma
resonance line have  been reported by earlier investigators
(Vavilov et al, 1969; Timusk and Silin, 1975). This effect
seemed surprising in the light of the model of dipolar absorp-
tion used to interpret the data. Within the Rayleigh limit
for the absorption cross section keq. 3.}é16), ad is propor-
tional to the filling factor of electron-hole drops in the
absorbing region and the cross section per electron-hole pair
is a constant at a given frequency. Then, if the density of
electron-hole pairs is kept constant, oﬁly the maximum value
of the absorption should change and the lineshape should re-
main the same for the different experimental conditions. The
small vafiations in lineshape (especially line broadening)
can be traced to sample heating produced by the.excitation
source. This heating contributes in two ways to thé lineshape
changes. At temperatures larger than 2°K the vapor pressure
of the exciton gas is high enough to cause an observable exci-
iton absorption between 3 énd 6. meV. The photoionization tail

acts to distort the droplet linéshape. This effect was already

. H
63 ,’

4
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discussed 1n section 3. At high temperature and/or high ex-

citation, ?fops are ¥9rger (Bagaev et al, 1976; Aksenov and

Zhurkin, 1980) andi this change in size affects the lineshape.
Distortion in the spgctra is observed, too, when the tempera-
ture and excitation level are very low. It is shown in this

chapter thét in these conditions drops are so small that sur-
face effects are important and change the lineshape.

The aim of this chapter is to study these effects. I
present here line;ﬁapes measured over a wide range of excita-
tion intensities. The corresponding absorption‘at the peak of
the line varies from 0.06 to 1.6. Special precautions have
been taken to avoid sample hedting, and in this way obtein
the lineshape at different excitation intensities with minimum
temperature influence. Size effects can be observed at both
very high and very low excitation. Estimates of the droplet
sizes were obtained by numerical fit.

The results of this chapter were previously published
(Timusk and Zarate, 1977; Zarate and Timusk, 1979).

4.2 The Line Shape of Drops with Radii Comparable to the
Wavelength of Electromagnetic Radiation

Rose, Shore and Rice (1978) realized that when the drop-

Y
let radius begins to approach the wavelength of the electromag-
netic radiation in the medium, the dipolar approximation for
the absorption cross section doés not hold and the full Mie

%

theory for homogeneous sphere of section 3.3 has to be applied

to study the plasma resonance of EHD. They calculated the
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extinction cross section for a variety of drop sizes and found
that below 1 ym lines do not change and the 1imiting case for
small drops is applicable (eq. 3.3.16).

In section 3.3 it is shown that if particles remain
smaller than the wavelength of the incoming radiation
(%g /EE R < 1), the coefficients an and bn of the Mie expansion
(egq. (3.3.10 and 3.3.11) are ﬁsually computed by expanding

3

them in a power series in klR‘ In this way equation (3.3.14)

for the extinction cross section o© , and (3.3.15) for the

ext
scattering cross section are obtained. .In (3.3.14) the term

aR3 is the Rayleigh limit and describes the scattering for

EHD with R < 1 q For drops of the order of 2 ym terms aRS
and aR6 become important and the lineshape becomes a function

of drop size. The absorption cross section, in this case, is:

2

Co= k,R © = -2 -
- - +
Tape=dT RO (IML(ETd) + () (E2hy (EEEIER38y)
€+2 €+2 2e+l
(4.2.1)
-2 -2 .
+ (gRP- 3RS 4 SRy
€+2 €+2

-

\"\

The line obtained with this approximation for 2°um drops agrees

with the results of Rose et al using the full Mie equations.

4.3 Sgrface Effects

At 1.2°K and very low-excipétiOn.intensity EHD in Ge are
expected £o 5e very small. Etienne et al (1975) worked with
excitation levels between 20 and 430 uW/mm2 founddxopssﬁailer
than 0.15 pm. An estimate of their gize can be found Ey setting

I
LI ‘\
" .

A
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the rate of decay of the carrier in the drop equal to the rate
of inflow of excitation. This approximation neglects evapora-

tion and surface energy contribution to the radius. With thuis

method (Pokrovskii and Svistunova, 1970):

v..n_ g
R = 3 _ex ex’o

4 n
where Vex and n_, are the velocity and density of excitons; 7
and n the lifetime and density of EHD. ‘
/!

Values as low as 0.2 um have been obkéined with this
method by Gefshenzon et al. (1976).

When drop sizes in Ge become this smail, surface wffects
are important. Two effects would affect the lineshape iﬁ this
case. First, the electron-hole density near the surface de-
creases from its bulk value to zero in a continuous fashion;
£hus the drop has a skin of the order.of the excitonic Bohr
radius rg of lower density surrounding the core of bulk density
(Kalia and Vashishta, 1978). As the dfop radius decreases more
of the volume fraction of éhe drop, belongs to this skin and its
elecﬁromagneti¢ properties are modified. At the same time,

collisions with the surface begin to affec¢t the lifetime of- the

cayriers; as a consequence the damping is increased.
. 2

-

The effect of the lower 'surface density is approximatea‘
with the "coated-sphere" model for the electron-hole drop. The
drép is éssumed'to have a core characterized by a dielectric

constant €, and to be surrounded by a coating of thickness r,

1
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with a different dielectric constant £, uniform throughout the

coating. The absorption constant for a coated sphere with ra-

dius R much smaller than the wavelength of the medium 1is

~r

(Kerker, 1969);

3 -
3 (ez—l)(£l+2€2)+u (2a2+l)(tlf£2)

0o = 4nklR Im( 3 )} (4.3,2)
(£2+2)(el+2az~)+u (2e2—2)(€l—€2)
p
where
- _1 1
o = (R 3 ro)/(R + 5 ro)

s
%

For R >> ro, a~+1 and eq. (4.2.3) reduces to the dipolar absorp-

tion fof a sphere. If R > r,  the absorption depends on the size

0

of the drop and the difference between ¢, and ¢.,. 1In the model

1 2
El is the bulk dielectric constant calculated in (3.4) and
€, is equal to the dielectric constant of the bulk EHD of section

3.4, but with only half the density.

For these small drops the damping is given by

[ vm
1.1 ,_F (4.3.3)
T Tl R .

where %L-is the damping in absence of surface effects and Ve is
l .
the Fermi velocity. The second term VF/R is the time between

collisions with the surface of#a‘Sphere of radius R (ﬁuler, 1954).

This term adds a further size dependence.

4.4 Experimental Results

. The far infrared absorption of EHD in Ge was studied

under a larger range of optical excitations., The corresponding

)

Goom—
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absorption at the peak of the line varies from 0.02 to 1l.6. //*7“//

The dependence of ad(max) with the excitation density changes
I I

at Qn(—g) = 0.2. Below this value we found Qn(ig aw3
max I0 0.7 I0 max
:and above this Kn(?f) aw T, 9n(if) = 0.2 corresponds
max max

to an incident power density of W = 2mW/mmZ2, The values of od
obtained are somewhat smaller than thosé expected for the power'
and wavelength of the exgiting radiation. A top limit to

the value of od(max) as a function of the inci@ent power can be
easily obtained assuming that every photon incident on the ’

sample produces an electron-hole pair that condenses in EHD.

Ih this case:

* g =i (4.4.1)
0
where g: number of photons incident per second
¢
N: number of non equilibrium carriers in the sample
» ¥
Tat lifetime of EHD.

With the assumption that the electron hole fluid occupies a
volume equal to the area of the laser spot (A) times the penetra-
tion depth (d), od(max) is given by:
g Ioo(max)
< ad{max) < ——————— (4.4.2)

” An
where o(max) is the maximum value of the cross section per elec-
tron hole pair and n is the density of electron-~hole pairs in

AN

the drop. From eq. (4.4.2) an incident power {Jensity of 2mW/mm2

would give a maximum possible value ad(max) of 0.6.
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When the excitation is such that the absorption at the
maximum of the peak od(max) is between 0.4 and 1.2 no variation
of the lineshape with excitation can be seen. The results
agree with the theory of chapter 3 and the line is given by
fig. 3-13. Outside these limits the lineshape does begin to
change. Figqure 4-1 shows the absorption at very low, medium
and very high excitation levels. At very low excitations the

peak shifts towards lower frequencies and there is some addi=-

\1 tional broadening. A similar effect occurs at very high levels
i

L - "//\‘/i

\  Of excita%}bn. These curves. have been fitted to the Mie theory
using'thf'droplet size as an unknown parameter. For the

ad (max) =\§7% curve a radius r = 2.0#0.2 pm has been obtained.
For the low/éxcitation curve fitting the coated sphere model of
eq. (4.3[2) together with the damping of (4.3.3) gives a droé4
radius ?f 0.06 um. No observation of drops with ad(max)f 0.03
was poséible. LThis corresponds to R < 0.05 um. Figure 4-2
shows thé far-infrared spectrum obtained in this gase. At 3.5
meV an exciton absorption with ad(max) % 0.004. is observed. At
higher excitation levels the exciton absorption cannot be
observed at this temperature. The presence of excitons allows
us to obtain another estimate of the drop sizes using the Pokrov-

skii radius of eq. (4.3.1), for ad(max) = (0.004. and

exciton

using the effective exciton mass of Kane (1975), - a radius of

approximately 0.07 um is obtained. These droplet sizes are



Fig. 4-1
Effect of the excigation level on the shape of the EHD
absorption. ‘The filled circles correspond to a medium
level of excitation. At low levels of excitation (the
triangles), the line shifts to lower frequencies. Also,
at very high levels of excitation (oéén circles) the , kline

shape chéanges.,
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Fig., 4-2

Far-infrared spectrum of EHD at very low excitation le-

vels. The line corresponds to the lower level at which

2

drops were observed. The estimated drop size is

R % 0.05 um.

7

e
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clearly near the minimum stable radius of EHD at 1l.2°K. Wes-
tevelt (1976) has calculated” using nucleation theory, a

a radius of 0.04 pm near threshold at 1.2°K assuming homoééneous
nucleation.

The size of the drops as a function of the strength

-

?f the absorption at the peak ad(max) can be obtained using

the coated sphere model. Th; simplest way of doing this is to

fit the experimental value of El/2' the frequency of the low

frequency half maximum, to the value predicted by the coated-

sphere model. Fig. 4-3 shows the experimental El/2 plotted as

a function of ad(max). It can be seen that at very low excita-~

tions where ad(max) < 0.1, the line begins to move to lower fre-
S

quencies very rapidly. The slight drop in the pgints at

ad(max) > 1.6 is due to higher-order terms in the Mie expansion.

Figure 4-4: shows the drop sizes calculated this way: the coated-

sphere model is used %E fit E1/2 for small od(max) and the

higher~ordf§/Mie terms for ad'w'z.b. There are no points for

,0.3 < ad(max) < 1.5 since here the line shape is almpst inde-

pendent of drop size. ™ From these points it appears that‘the

droplet size varies approximately linearly with ad(max). This

fact should not be considered too seriously. The error bars ig

fig. 4-4 come only from experiﬁenfal uncertainties. The model

used. to fit the data is subject to several uncertainties such

as the assumptions of a cénstant density surface layer and un-

modified scattering rate: The actual error bars of the radii

can be larger, especially at low ad values. If the concentra~



Fig. 4-3

.’w

of

Change in the frequency of the low-energy half-maximum
absorption point (El/z) as a function -of maximum absorp-

tion.
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Fig. 4-4

_—

Calculated droplet radii as a function of absorption le-
vel. The points for ad < 0.3 were obtained by fitting
the El/2 point to the coated sphere model of the EHD ab-
sorption. For ad = 2.1 the calculation was extended to
include higher-order terms in the expansion. Between
these values the lineshape is independent of the drop

radius.
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%

tion of drops remains constant, R should be proportional to

(ad)+/3

. A fact that can contribute to the stee?fd dependence
observed ?s the lncrease in drop temperature wizh excltation.
Higher temperature decreases the concentration of EHD (Bagaev
et al, 1976) and hence the absorption coefficient for a given
droplet size and cross section for electron-hole pair.

The size of drops observed agrees with the size ob-
served by other investigators under comparable conditions.
Etienne et al (1975) worked with excitation levels between 20
and 430 uW/mm2 and foﬁnd drops smaller than 0.15 um and a good
'fit to a linear relationship between droplet radius and the
excitation level. Extrapolating their data to our conditions
we find our sizes range between 0.1 and 1.5 um. Bagaev et al
measured drops at 3.8 and 8 mW on a 200 um spot from 2 to 4°K. ,
Extrapolating their curves gives values similar to the ones

v
shown in fig. 4-4.

The shift of tﬁe plasma resonance towards low frequency ’
at very high excitation levels was observed by Zayats et al

(1977) aé well, They worked with exciting powers of aréund

10 mW/mm2 but with very small "bounded" samples with thickness
much -smaller than the penetration depth (d ¥ 0.06 mm). Under

these conditions they observed shifts of the line towards lower

frequencies that they explain in terms of a distribution of

drop sizes ranging up to 16 pm. ] -H§§?\
Fd ) ) - . {)
N

\'
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( . CHAPTER 5 - 1 -
THE INFLUENCE OF UNIAXIAL STRESS ON éHE
PLASMA RESONANCE ‘ \
N
\‘//
5.1 Introduction e

3

Since very early in the history of the electron hole
drops, the study of the effect produced on-the fluid by defor-
mation of the semiconductor crystal has received the attention
ef several investigators. The early studieé of the luminescence
spectra by Bagaev et al. (1969), %en%it 2 la Guillaume et al.
(1970-1972), Alekseev et al. (1973) and Pokrovskii and SVlStJnOV&
(1974) showed \the existence of the liquid phase and that it
was modified by \stress (shift ;; peak position and change in
‘linewidth and intensity of the luminescence line were observed). !
These changes were qualitatively consistent with a decrease [")
in the liquid b;;iéﬁgyenergy and density of the fluid with

stress.

4

Application of{g [l1l] stress- to germanium removes se-
veral of the degenéracies of the conduction and valence bands.
The conduction ellipsoid whose main ax;s is parallel to the
stress is lowered in energy while the three others are raised.
The valence-band maximum is split into two branches but consi-

derable coupling between them remains until large stresses.

In the limit of very large stress the two hole bands become

76 | -
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ellipsoids and the calculation of the electron-hole liquid pro-
perties becones very simple. For this reason all the early
thevretical studles were in the "infinite" stress limit. The
first calculations of Combescot and Noziéres (1972) and Brink-
man and Rice (1973) gave an electron-hole liquid barely bound
or not bound with respect to the.exciton state. A more sophis-
ticated calculation of Vashishta et al. (1974) showed that the
liquid is stable at infinite stress with a density considerably
reduced from the zero stress ca é. Vashishta et all (1976)
also studied a ‘{deal system with electron effective masses
corresponding 3;,infinite stress and hole effective masses at
zZero stress; they found this sfstem to also be stable and
with an EHL density intermediate between the other two cases.
Calculations of the electron-hole density and binding energy
at finite stress values were carried out recently by L. Liu
(1978 a,b), Markiewicz and Kelso (1978), Kirczenbw and Singwi
(1979) and Kelso (1979) using different approxima@ions.

Some recent luminescence studies with uniform uniaxial
[111] stress in Ge by Chou, Wong and Féldman (1977), Feldman et al.
(1977, 1978) and Thomas and Pokrovskii (1958) give experi-
mental results for the electron—hole;density at several stress
values which agree reasonably well with\the theory at ihter- /// \>
mediate and high stresses, but there iz/gZ; 1 some uncertainty .
about the behaviour at low stress, especially in the region
around 3 kg/ 2. Near -this stress the upper ellipsoids empty

&

and current™theory predicts a very sharp decrease ofqdeng}ty
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in a very narrow range of stress. The luminescence results
are not sensitive enough to draw any conclusions about this re-
gion.

No observations of the far infrared absorption of EHD
1n Ge under uniform uniaxial stress existed previously to this
thesis. Aurbach et al. (1976) measured the far infrared ab-
sorption in inhomogeneously stressed Ge along the [110] and.
[100] directions obtaining a spectrum very similar to that of
the unstressed EHD but broader, particularly in the low energy
region for [110] stress. Similar results were obtained by
S. Pak (1975). - Aurbach et al. interpreted their daga as the
absorption produced by a giant drop (y drop), 250 p in size,
confined because of the stress and with a reduced electron-hole
density and dampiﬁg constant. They obtained a fairly good fit
with those values without including interband transitions and
mass anisotropy. The similarity with the zero stress case sug-
gests another possible explanation: the spectrum is just that
gf "normal" drops broadened at low energies because of the
stress inhomogeneity. Presumably ordinary drops occur in the
low stress‘regions of the crystal near the surface and are ob-
served as they diffuse toward the stress well. The large drop
in the well itself is not observable because of its small cross-
section relative to the broad infrared bﬁéﬂ;»’/

A theoretical estimate of the far infrared absorption of

. ’ -
EHD under uniform stress was given by Markiewicz (1978a). He
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studied the effect of electron mass anisotropy on the plasma
resonance and found that in EHD in Ge stressed along the [111]
direction the absorption would depend on the direction of polari-
zation of the electric field.

The purpose of this chapter 15 the experimental study
0of the effects of uniaxial stress on the resonance absorption
of electron-hole drops in Ge. In the next sections I inves-
tigate theoretically the effects of uniaxial [11l] stress in
the Ge band structure and hence in the far infrared absorption.
Section 5.2 gives the absorption cross section for small drops
under uniaxial stress. In Esction 5.3 the dielectric function
as a sum of the Drude intraband contributions and the inter-
band transitions between the stress split valence band branches,
is calculated. The experimental results are presented and dis-
cussed in section 5.4 and a summary and conclusion are given

in section 5.5.

N

~

5.2 The Absorption Cross Section for Small Drops Under Uniaxial
Stress i

Application of uniaxial stress to a Ge crystal destroys
its cubic symmetry. The conductivity and dielectric constant
are no longer scalars. For a coordinate system with the z axis
along the stress direction the conductivity tensor is diagonal

and the dielectric tensor has the form:

€ 0 0
B 1
€=10 el 0 (5.2.1)
0 0
€
|
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-
where Ei and cll stand for the components of the dielectric

constant perpendicular and parallel to the stress direction,
respectively. We have seen in Chapter 3 that for small

particles the absorption cross section can be calculated in

the Rayleigh limit (only electric-dipole terms considered).

In this case eq. (3.3.16) can be generalized using depolari-

zation fields (see for example vande Hulst, Chapter 6), to include
an anisotropic medium. The absorption coefficient for a small

sphere with an anisotropic dielectric constant (5.2.1) is:

€ i
_ 4w 3 2 0
a(w) = G /EONR {cos 61m(€II+2€0)
3 —eo .
.2 %
+ Sin GI]’H(‘E"‘;_—‘??—) (5.2.2)
1 70

where 6 is the angle between the electric field and the z axis.

5.3 The Dielectric Function

Generalizing eq. (3.4.2) to (3.4.5) the intraband con-
tributions to the dielectric function, parallel and perpendicu-
lar are given by:

2 n n n

dne e H L
£, = - : { + + ] (6.3.1)
| |intra w(w+1yll) Moag Mouh?  MoLhg
2 n n n
- 4ne e H L
£ . = - : [ + + ] (5.3.2)
| intra wlotdy|) Moer  Mopnt  MoLht

The subscripts ¢ and t stand for longitudinal and transverse.

-
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The quantities D n., n

H e m

m
L oe' Monnhs’ Torn: ! Moet’

M oHht and Mmorht 2r€ stress dependent. /
The first term of the right hand side of equations
(5.%.1Y and (5.3.2) is dJe to the conduction band. As 1t was
discussed 1in section 5.1, application of stress along the [111]
direction lowers 1in energy the ellipsoid along this direction (j»x~j
/

and raises the other three (see fig. 5.1). For Ge,the split-

ting between these bands is (Heﬁsel and Suzuki, 1974): —

+

b, = 1.03 meV/(kg/mmZ)-isf (5.3.3)

where S 1s a compressive stress (negative sign) in kg/mmz.

If the stress is large enough that the electron Fermi
energy is smaller than the splitting, then only one valley is
occupied. Assuming that the valleys retain the same effective

mass as for S=0 then for A > E_ :
e Fe

n_ =n
e
moét(s) =M, = 0.08152 m, . (5.3.3)
mer(S) =M,y = 1.588 M, (5.3.4)

If the splitting is smaller than the Fermi energy, all four

valleys are partially occupied up to E with n, electrons in

\Fe. 1

the lower valley and n, in each of the other three. 1In this

2

situation:



.\Fi . 5—1

5pli£ting of the conductionfand valence bands for uni-
axial compression along the [111] direction in Ge. The
ellipsoid along the stress direction is lowered in energy
relative to khe other three. For a medium stress this
splitting is larger than the Fermi energy of the elec-
trons EFe’ and only one ellipsoid is populated. The ba-
lence bands are both populated until stresses near 7

kg/mm2 when the splitting between them becomes larger

than the hole Fermi energy EFh
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Ge 111> stress
Conduction band Valence band

Stress 0

Stress 3kg/mm’

WAVAVAVI m™

Stress kg /mm?
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Infinite stress
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e 1 5 1 4 1
= + n, (8) [ — + z —] (5.3.5)
/" moet(s) met 2 3 met 3 meﬁ
n n,(s)
—= - 1 nz(S)[% al— + % L1, (5.3.6)
oel ef 7 et el

If the/;ntervalley relaxation time is small compared to the

~

lifetime of an electron-hole pair, then:

A 3/2
n, =nfl+ 3(1 - EE*—) ]. (5.3.7)
Fe
. Ae 3/2 Ae 3/2 -1
n, = n{l - E——) [1+3(1 - E*-) ] (5.3.8)
Fe Fe

The energy eigenvalues of the valence band under stress are dis-
cussed in detail in part a) of the appendix. The density of
states masses have been calculated as a function of stress by
Markiewicz and Kelso (1978) and the optical masses by Kelso
(1979). Their results are shown in figures 5-2 ané 5-3. The
independent variable is E/% where E is the energy of the band
and S the stress. These optical masses have been\used together

with theoretical values of E to calculate (5.3.lidahd (5.3.2).

Fh

n, and n, were obtained froT the density of states masses of

fig. 5-1 using:

- mdLh 3/2 EFh_Ah 3/2
T ) =) for Ep > 4y
h dHh Fh
1 (5.3.9)
N ‘
L _
ﬁ; = { ‘ for Ah > EFh
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Fig. 5=2

Density-of-states masses for heavy and light holes in
stressed Ge, as a function of reduced energy E/S. The
arrows indicate the values at zero stress (after Kelso,

»

1979).

A
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Fig. 5-3

Longitudinal and transyerse optical masses for heavy and
light holes for [l1ll] stressed Ge, as a function of re-
duced energy E/S. The arrows indicate the values at zero

stress, (Aftexr Kelso, 1979).
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e
where Ah is the valence band splitting in meV.
From A-10:
°h 2
TET = 0.366 meV/(kg/mm"”) (5.3.10)

. "y
+the i1nterband contribution to the dielectric constant is:

3

(f -) (EZ-EZ =)
Lim ¢ (q,0) = Lin 4ne? . a’k E k*?—z k_ktg
q*0 g0 (2m) (E}_(-EE*'&) ~w(wiy)
lop poz]
Pe ~
x —~5L%i3v~ . (5.3.11)
a ,

!

Thé energy eigenvalues of the two valence bands Ei are ob-
tained in section b) of the appendix. Their values measured
from the vertex of the heavy hole band, for Ge stressed in the

[111] direction, are: .

t

' = (-a)k% + |E.| t E(k) (5.3.12)

ol *
and

4 2 g L/2
E(k) = [B k +c (k y+c.p.)+4y3Eo(kxky+c.p-)+E0]

where ¢.p. means cyclic permutation.

A
The constants A, B and C are given in Table 1. EO = E? is
half the valence band splitting at k=0 given in table 3, and
1 2, 2. 1/2 Z
Yy = —— (3B7+C) .
2/3

The matrix elements pE R+q depend on the polarlzatlon :

direction q, a calculation of their value to second order in q
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Table 3

Parameters used in Ge [111l} calculations

Parameter Value Referentce
Du (deformation potentaial) (3.81:0.25) eV a
$,4 (elastic constant) 1.443<10"% mm?/kg b
A 4 .

e (conduction band split- 2
T§T fing at k=0) 1.05 meV/kg/mm c
A .

h (valence band split- 2 a
TST ting at k=0 0.366 meV/kg/mm
my . (infinite stress hole 0.130 m e
' transverse mass)
m o (infinite stress long. 0.040 m e

mass)
‘:mdh (infinite stress den- 0.080 m e

sity of state mass)

a Hensel and Suzuki, 1974

b) taken from Ch. Kittel (4th edition)

A
e__i : -
c) T§T =3 Bu,s44 with 6u = 16.6 eV (I. Balslev, 1966)
A
h _ 2
4 78T = 3 Pu Sua

e) In the high stress limit the hole bands are ellipsordal'with

longitudinal and transverse mass given by

-1
Mhe 1 /3B%+c?
—— = (A + = )
m 2 3

-1
"ht oo oL 3B2+C2)
nm 2 3
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is given in section d) of the appendix for {111] stressed Ge.

$ - = - 1 Fl (k,q)
p-(k,/ktq) = — [F,(k,q) 5 ] ' (5.3.14)
2E“ (k) E“ (k)
with
_ 2_.2 .3~ 3~ 34 2,22~
Fl--q{lz(v2 Y3)[kqu+kyqy+kzqz]+-(12Y3 4y5)k (k g, ,*tc-p.)
+ 2Y3eo[(qx+qy+qz)(kx+ky+kz)-(qux+c.p.)]} (5.3.15)
,= a2 242y 2 (2 f,+c p.) + 12v2k’q” + (12v3-8v2) (x @ +c.p.) )
(5.3.16)
qg = g(qx,qy,qz) .

Figures 5-4 and 5-5.show the result of computing the imaginary
part of the interband dielectric constant from eqgs. (5.3.11) to
(5.3.16), for several stress values and hole Fermi energies at

T=(0. Figure 5-4 corresponds fo the polarization parallel to

the stress direction (a -3 1 ——), and Fig. 5-5 to perpen-
3 3
dicular polarization (q = —i, - —L, 0). It can be seen that,
: /2 /2.

for the same stress values ahd\Fermi energies, the longitudinal
dielectric constant is larger than 'the transverse one. Increa-

sing stress value detreases Im(eg, ) considerably, as the two

inter

valence bands separate. Thus at high stresses the relative im-
. ‘ /
portancé of the interband contribution decreases and the intra-

band plasma peak dominates the absorption.
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Fig. 5-4
Imaginary part of the interband dielectric constant for
several stress values for light polarized parallel to
the stress direction. The stress values (S) are given
in kg/mm2 and the hole Fermi energies EF in meV. 1In

these calculations the interband damping has been assumed

very small as compared to the Fermi energy.

>
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Fig. 5-5

N

Imaginary part of the interband dielectric constant for
several stress values for light polarized perpendicular-
ly to the stress direction. The stress values (S) are

given in meV. The figure corresponds to interband dam-

ping y' ~ 0.
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5.4 Experimental Results and Discussion

a) Electric field of the incoming radiation perpendicular. to the
stress direction (E|S)

Figures 5-6, 5-7 and 5-8 show the measured absorption
spectra of light polérized along (110] by EHD in pure Ge stressed
along [111). Fig. 5-6 corresponds to a stress of 2 kg/mmz, fig.
5-7 to 5 kg/mm2 and 5.8 to 10 kg/mmz. These experiments were
performed with the sample immersed in a He bath at a temperature
of 1.2°K. Data on fig. 5-6 and 5-8 have been taken at similar
laser power, fig. 5-7 with approximately 30% less. At 2 kg/mm2
the lineshape is very similar to non stressed Ge and the line
peaks at around the same value as at zero stress. The main dif-
ference between both cases is that admax is smaller for S=2
than for,&g\g; in some of the experiments there is almost a fac-
tér of two difference between the two cases. These features do
not change up to a stress value of about 2.5 kg/mmz. Between
2.5 and 3 kg/mm2 there is a\dramatic shift of the line towards
lower frequencies. At 5 kg/mm2 (figure 5-7),  the line peaks

at (5.6%0.1) meV, is narrower and more symmetric than S= 0. When

the stress is increased further, the line continues to narrow and

shifts slowly towards lower frequencies. At 11 kg/mm2 {figure
5-8) admax occurs at w = (4.3*0.1) meV. At the same laser power
admax (S=11) > admax (s=5).

Figure 5-~9 gives the change of resonance frequency for

perpendicular polarization (wol) as a function of stress. The

rs
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Fig. 5-6

Far-infrared absorption spectrum of EHD in Ge under small
unlax1al stress for light polarized perpendicularly to

thé stress direction. The observed specﬁrum is similar to
unstressed Ge, the main differences are a broadening of

the line, specially at low frequencies, and a smaller value

of the absorption at the maximum.
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Fig. 5-7

Far-infrared absorption spectrum of EHD in Ge under inter-
mediate uniaxial stress along [111] for light polarized
along [110]. The data shown corresponds to 5 kg/mm® and
1.2°K. Note that the plasma peak has moved from its un-

stressed position at 9 meV to near 6 meV.
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Fig. 5-8

Far-infrared absorption spectrum of EHD in Ge under 11
kg/mm2 of [111] stress for light polarized along ([110].
The plasma peak is close to 4 meV; the absorption at
high frequencies is smaller relative to its value at -.

the maximum than for small or medium stresses.

£
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Fig. 5-9

Plasma resonance frequency of electron-hole drops for
infrared light polarized perpendicularly to the stress
direction as a function of stress, at 1.2°K. The dif-
ferent symbols in the figure cofrespond to different runs;
the squares and dark circles have been obtained with a
different samp%e. The sharp decrease in wol occurs .
when the upper cogduction valleys empty.

r
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different symbols in the figure correspond to different sets
of experiments. The most striking feature in the figure is

. _ 2
the strong decrease in wol at SE = 2.5 kg/mm~. For S < SE'wol

is approximately a constant 9 meV; for S > S decreases

E Y0
slowly from 6.5 meV to 3.8 meV at 13 kg/mmz. These changes in

w l can be explained in terms of the variations of electron-

0
hole pair density and effective masses that occur when the Ge
band structure is altered by [11ll] stress. For small stress,

when the conduction band splitting is smaller than EFe' the

upper valleys are partially populated and the electrons per-
pendicular optical effective mass (when averaged over the

valleys) decreases from its S=0 value to the much smallexr one
that occurs when only one ellipsoid is occupied (see egs. (5.3.5),
(5.3.7) and (5.3.8)). At these stresses the hole effective mas-
ses are'almost constant and equal to their zero stress values
(fig. 5-3). The change in LS should shift the line towards
higher frequencies. The fact that wol does not change clearly
indicates a slight decrease of the electron hole pair density
in this region. At a stress very close torbut smallér than SE
the best fit to the line that peaks at 9 meV with the theorxry
of sections 5.2 and 5.3 dan be obtained with an electron-hole
pair density of (1.520:2)x10Y7 cm™> in agreement with the cal-
culations of Kirczenow and Singwi. The large error limits re-

flect the uncertainty of the damping at this stress which was
r

taken as an adjustable parameter.. We have seen in section 3.4
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that vy shifts the peak position affecting the estimation of
the density.

The sharp decrease in wo_L at around 3 kg/mm2 is con-
sistent with the change in the equilibrium density expected
when the upper conduction valleys empty and only the lower
valley remains occupied. This change occurs when EFe = Ae
and theoretical models predict it at stresses between 2.5 and
3 kg/mm2 (Kelso, 1979; Kirczenow and Singwi, 1979). Our ex-
perimental value of SE is somewhat uncertain, due to problems
in knowing the zero of the stress calibration. But even 1f the
value is not known accurately, it is certain that the transi-
tion between four valleys and one vélley occupied (Ge(4,2)
and Ge(l,2) respectively), occurs within less than 0.5 kg/mmz.

The further decrease in wol for s> SE reflects the
variation in equilibrium density (n) produced by the splitting
and deformation of the valence bands. At these stresses, the
absorption of light with Elg is a good probe for the study of
density variations, since changes in the hole effective masses
and interband transitions are not vef& important in this pola-
rization. The main contribution to wol comes from the electrons
due to the small valpe of mel (see table 3). The non para-
bolicity and change with stressAof the hole effective masses
is then masked by the large value of the electron contribution

to the plasma frequency. Since the conduction bands do not de-

form with stress w2 is approximately proportional to n.
|plasma
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As in non-stressed Ge, the position of the resonance peak chan-
ges from its Drude value wp//§ due to damping and interband
transitions (eqs. (3.4.11) and (3.4.20)). The latter ones be-
come less important for high stress (fig. 5-5), producing

an increasing symmetry and narrowing of the line.

The solid line in fig. 5~10 shows the result of a calcu-
lation of Ol with the theory of sections 5.2 and 5.3 for a
stress of 7 kg/mmz. The e%perimental data correspond to the
same stress value; the peak position at 4.9 meV and overall
fit agrees with the parameters n = O.47><10l7 cm-3 and Y = 1.5
meV, used to calculate the theoretical line.

Table 4 gives the peak positions for several stress
values and the electron hole pair density calculated from wol
corrected for the intraband damping and interband transition
contributions. The values of y necessary to fit the curves
at § > SE are generally around 1.5 meV. The experimental re-
sults agree very well with the theoretical values of Kirczenow

and Singwi except at just above S = S for example at S =3,

E'
the electron-hole pair .density is somewhat larger than the
theoretical value of .67. Our measurements agree very well
with the last luminescence results of Chou and Wong (1978) for
S > SE; for S < SE unlike us, they report a continuous de-

crease of n with increasing stress.

In order to estimate the density of the electron-hole



Fig. 5-10

“

Absorptioh spectrum of electron-hole drops in Ge under
[111] stress and perpendicular polarization. The experi-
mental curve was obtained with a stress of 7 kg/mm2 at
1.2°K. The filled line is a theoretical calculation
with the theory described in the text for the same stress
value and a density of 0.47><1017 cm-3. The Aamping con-

stant was chosen to fit the linewidth.

-
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Table 4

rpendicular plasma frequency and density
for selected stress values

100

Stress (kg/mmz) gol (meV) ni(x 1087 em”
0 9.340.1 2.02+0.05
2.5 9 0.2 1.5 20.2
3 6.7:0.3 0.75x0.06
4.5 6.1+0.2 0.62:x0.04
5.5 5.520.2 0.55+0.03
7 - 5.0£0.2 0.4620.03

10 4.220.1 0.35+0.02
13 3.920.1 0.30£0.01
20 . . 3.420.2 0.24%0.02
0 2.6x0.2 0.11+0.02
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fluid at infinite stress, an extrapolation of wgJ as a function

of é for é + 0 is used. Figure 5-11 shows the points for

S > 4 kg/mm2 (% < 0.25 mmz/kg). It can be seen that wgi is

linear within error limits with L and the intercept at =0

S
corresponds to wgl(w)= (7+1) (meV)2. Using the infinite skress

W+

masses of table 3 an electron hole pair density n_ = 0.105:0.015x
17

10 cm_3 is obtained in good agreement with theoretical cal-
culations (Vashishta et al, 1974).

b) Electric field of the incoming radiation parallel to the
stress direction (E||S) .

Figure 5-12 shows the plasma resonance for E||S|]|[l1l1]
and at a stress of 1.5 kg/mmz. It can be seen that, unlike the
case of perpendicular polarization, the line shifts towards
lower frequencies for very small stress. The reason for this
shift is twofold: a slight decrease in density and the strong
increase in electron optical effective mass when the upper con-
duction valleys become depopulated (egs. (5.3.6) to (5.3.8))
lower the plasma frequency. Assuming zero intervélley relaxa-’
tion time and correcting for intraband damping, woll = 7.5 meVv

for S = 1.5 kg/mm® gives n = 1.93x10%7 em™> of which 1.13x10%’

en”3 are in‘the lower valley and 0.80X1017 cm 3 in the three
upper valleys. The lineshape remains similar to the zero stress
case since the interband coptribution is about the same. At
stress values between 3 and 5 kg/mm2 lines similar to figure

5-13 are observed. The absorption is generally weaker than at



Fig. 5-11

Square of the perpendicular resonance frequency as a
function of reciprocal stress values. At small values
of S_l a linear relationship is observed™with an extra-
polated value of wgi = 7 meV2 at « stress. The dif-
ferent symbols in the figure correspond to different

runs.
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Fig. 5-12

Far-infrared absorption of EHD in Ge with 1.5 kg/mm2 of

stress along [l111] and parallel polarization. Even small
stress values shift the plasma peak with respect to its
zero stress position ‘when the light is polariéed paral-
lel to the stress direction. The shift is mostly pro-

duced by the change in electron optical mass.

Q‘)
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Fig. 5-13

Far-infrared absorption of EHD in Ge with 3.5 kg/mm2 of
stress along [111] and parallel polarization. The

broad line around 7 meV correspond$ to interband tran-
sitions, the plasma peak is near 4 meV. The absorption
at 12 meV can not be explained with the presented theory

and is discussed in the text. -
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lower stress or than with perpendicular polarization. At these

stress values, assuming n » 0.6><10l7

cm~3 gives fﬁll 3 or 4
V3

meV but a peak seldom appears at these frequencies. Generally
the broad line around 6 or 7 meV obscures any other features.

This broad line is produced by the interband transitions.
As shown in figures 5;4 and 5-5 the contribution to the dielec-
tric constant of the interband transitions is larger for the
parallel configuration than for the perpendicular. This effect
is emphasized by the plasma absorptioﬁ which is decregsed con-
siderably ‘-by a factor of 3§ll .

3 . (Dp_l-

" The shoulder between 10 and 12 rneV cannot be explained
with this theory and will be discussed in the next section.
At 7 kg/mm2 the plasma peak is again visible, as can

be

n in fig. 5-14, ewven if the interband transitions are still
ong and the line asymmetric. A good theoretical fit to the
experiment is ostained for a density of (.44&0.02)Xl515 qm_3

in agreement with the observed values for E!S, and a damping
constant of 0.5 meV. The asymmetry disappears at higher.stres—
ses due to the decreéase of the interband tranéitions, and for

S & 11 kg/mm2 thevlihe resembles OJ since there is a slight

.

increase of wpll produced by the decrease in mohl| .

e N



Fig. 5-14

Absorption spectrum of electron-hole drops in Ge under
7 kg/mmz,-[lll] stress and parallel polarization. The
solid line is a calculation with the theory described
in the text for the same stress value as the experi-
mental data aﬁd a density of 0.44><10l7 cm—3. A damping

constant of 0.5 meV was chosen to fit the experiment.
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5.5 Summary and Conclusions

It was shown in the last section that the far infrared
absorption lineshapes of electron-hole drops in Ge under stress
can be successfully explained in terms of intraband and inter-
band transitions in the stress modified bands. These bands
are occupied by electrons and holes with a density that agrees
in most cases with calculated values for EHD in Ge under ([l11]
stress.

fhe most important assumptions of the model used to fit
the experimental results is that the EHD remain spherical under
uniaxial stress and with a radius much smaller than the wave-
length in the outside medium (dipolar absorption). This hypo-
thesis is justified by the experimental results. No important
variation of the lineshape with absorbed power was detected
and there is a usual linear dependence between adma; and the
exciting laser power. It is well known that drops increase -
in size with generation rate. 1f the drop size were comparable
with the wavelength, the absorption lineshape would be strongly
affected by the change in laser power. The fact that this
does not occur seems to support the assumption of small drops.
Besides, the resonant frequency of large size drops would have
been strongly shifted towards lower energies aqd additional
structure would have been present in the absorption l}ne. These
effects were not observed and the good agreement between the
experimental and expected values of n shows that there ;re no

large shifts-of the plasma line.
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The assumption of sphericity is supported by the good
agreement between Qensities obtained fitting lines with paral-
lel and perpendicular polarization. If anisotropic surface
tension produced elliptical drops then eq. (5.2.2) would not
apply. The correct expressions for parallel and perpendicular
polarization wouid be quite different and the use of (5.2.2)
would yield different results for n if applied to the absorption
of perpendicylar or parallel polarized light.

An observation that remains unexplained by the theory
is the larder than expected absorption in the region 9 - 14 meV,
where a clear shoulder appears. This effect can be seen in
figures 5-7, 5-8 and 5-10 for Ol and in fig. 5-13 for o‘l.

There is some evidence that this absorption is produced by the
presence of hot electrons in the system. It has been assumed
here that for S > SE the uppef conduction valleys are empty;
this is not always the case. Chou et al (1977) showed that at
intermediate stress values in very pure, homogeneously stressed
crystals, these valleys are partially occupied by electrons
with a lifetime comparable with that of the "cold" electrons
and they detect their presence in the eleétroh—hole liquid.
Kirczenow, and Singwi (1978) proposed that when the concentra-
.tion of these hot electrons is not very high, én additional
liquid phase of highef density containing hot and cold electrons
could form. fhe absorption by a coated sphere with a central

high density phase and a coating of the normal "cold" liquid
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could explain our results (Timusk and Zarate, 1981), but fur-
ther studies are required in order to confirm the existence

of this controversial second phase.



CHAPTER 6

CONCLUSIONS

The study of the absorption of far-infrared radiation
by electron-hole drops is a powerful tool in the understanding
of its properties. R

The threshold and cutoff of the absorption line are re-
lated to the Fermi energy, and the peak position to the plasma
frequeﬂcy, allowing the determination of three independent va-
lues of the electron-hole density in the fluid with the same
experimental technique. The peak position, the easiest of
these values to measure, is affected by the interband transi-
tions and intraband damping. Calculations of these quantities
were needed to give an accurate value of the density as well
as to understand the general line shape.

The plasma oscillations are heavily damped as is ap-
parent from the width of the line. This damping, produced by
electron-hole collisions, is strongly frequency dependent. At
frequencies less than the Fermi energy it is small enough as
to allow the existence of a sharp threshold at the onset of the
interband transitions. Near the plasma peak it is at least one
order of maénitude larger. It is found that the main contri-
bution to this damping comes from electrons that collide with

holes in the heavy-hole band. The contributions from the scat-

110
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tering with holes in the light-hole band, as well as with

ones that when scattering occurs jump from one valance band

to the other, are considerably smaller. No dynamic corre-
lations have been considered in this calculation of the elec-
tron-hole damping. This approximation gives an overall value
somewhat smaller than that necessary to explain the width of

the plasma resonance, but agrees well at low frequencies with
the experimental results of magneto-plasma resonance of Gavri-
lenko et al., (1976), Muro and Nisida, (1976), and Gavrilenko
et al., (l1977) as can be seen from figure 6-1.

The overall fit with the theoretical model to the ex-
perimental far infrared absorption is very good but there are
still some discrepancies with the value of the electron-hole
pair density obtained from luminescence experiments, (Thomas
et al., 1973). The variation of the EHD line shape with laser
power is consistent with an increase in droplet size with exci-
tation level. At very low powers the drops can no longer be
considered uniform spheres, since surface effects are important;
within a éoat of the order of the excitonic Bohr radius the
density is lower than that of the bulk. At these levels the
Rayleigh approximation hoids;' At high laser powers a complete
Mie theory is necessary to explain the line shape.

Application of uniaxial stress alters the band structure
of Ge affecting the prbperties of the electron-hole liquid and

thus its far infrared absorption. The changes are stronger

5



Fig. 6-1

Comparison between theoretical and experimental values
of damping in Ge. The solid line is the same as fig.
3-8. The experimental points come from magnetoplasma-
resonance measurements: the circles are from Gavrilenko

et al. (1976), the squares from Muro and Nisida (1976),

and the stars from Gavrilenko et al. (1977).
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when the stress if applied parallel to one of the conduction
band main directlgns ([111] in Ge). The strong anisotropy of
the conduction band produces a strong dependence of the plasma
frequency on the direction of the electric field with respect
to the stress axes. Its value and hence the electron-hole
density decreases with increasing stress with a sharp jump
when the conduction valleys that are not aligned along the
stress direction empty. Further decreases in the plasma reso-
nance are produced by changes in the valence band. At the
highest stresses applied in these experiments the plasma reso-
nance is still considerabiy larger than the value extrapolated
at infinite stress, indicating that the valence bands are still
strongly coupled.

In general, the approximations and models used in the
calculation of the theoretical lineshapes give very good agree-
ment with the experimental results. The only exception is the
high energy region of Ge under intermediate [l11ll] stress where
an additional maximum appears. A possible explanation for this
extra absorption is the presence of hot electrons in the system
condensed in an electron-hole fluid of higher density than
the normal phase. Many interesting experiments are possible in
this area: the study of the variation of hot electron concen-
trations as a function of temperature, the possible condensa-
tion in the high density phase and its phase diagram, are just

a few examples.
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APPENDIX

EFFECTS OF STRESS IN THE VALENCE BAND OF Ge

a) The energy bands:

The effects of deformation on the hole energy band of
germanium and silicon was originally considered by G.E. Pikus
and G.L. Bir (1959). J.C. Hensel and G. Feher (1963) obtained
the inverse mass parameters and deformation potentials in uni-
axially stressed silicon using cyclotron resonance. A similar
study in Ge was done by J.C. Hensel and K. Suzuki (1974).

As I discussed in section 3.2,in the absence of stréss
and spin-orbit interaction, the valence band in Ge and Si is

sixfold degenerate at the zone centre with symmetry T Thas

25°
multiplet is comprised of three bands each two fold degenerate
due to spin. In the vicinity of k =‘0 the shape of the bands
can be determined using k+p perturbation theory (p = momentum
operator) (G. Dresselhaus, A.F. Kip and C. Kittel, 1955).

Spin-orbit interaction parﬁially removes the degeneracy
at k=0. It is quite strong in Ge with a splitting at k=0 of
300 meV, much larger than the stress effects and the effects of
the E~§ perturbation near the zone centref In this case the
'six7dimensional space is broken into a four-dimensional j = %
subspace and a two-dimensional j = % subspace.

Application of uniaxial stress breaks the j = multi-

W
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plet into two Kramers doublets and the cubic symmetry is re-
moved.

Kleiner and Roth (1959) constructed a strain Hamilto-
nian in terms of the angular momentum operator J (j = %) to
describe the splitting of the states at k=0. It is-a Hamilto-
nian to first order in the strain components and reflects the

symmetry of the system.

= v 1 2_1 .2
He - Dd(exx+eyy+ezz) * 3 Du{(Jx 3 J )exx tep.}
(A-1)
l ]
t 3 Du{{Jny}exy + {3, e+ {JyJZ}eyz}
. v !
exx,exyetc.are the strain components. Dd . Du and Du are

T .

deformation potentials with the last two describing the split-
tings for unigxial stress aldong the [0,0,1] and [1l,1,1] direc-
tions respectivelf. For k # 0 the Hamiltonian for the k-p per-
“turbation Hk’ mﬁst be added to A—} (Luttingexr, 1956). There

are no linear terms-in k in the expansion of E{k) near the

minimum, second order terms are the only ones to be considered.

2 2 , 1 .2..2 ‘ _
H, = Ak" + \(2{[Jx + 3 JE1k, + c.p. #+ YB{{Jny}kxky+ c.p_.‘} (A-2)

where Y, and Y; are related to the Kittel notation band con-

stants from Table 1 by: o . {
- - B -
Y, = -3 o (A-3)

Y3 = == (3B%+c%), (A-4)
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The non-diagonal part of Ho=q§el-ﬁk applied to the eigenfunc-

tions of j = % gives the matrix below:

¢ L M N 0
M* - 0 N
Hg . kﬂ (A-5) .
) N 0 ~-L -M
*
0 N -M* L/
with

2 (
3Y2(k§ B %T’ * Du(ezz - 3

=
Il

— iy __2_. ! L3 +
M= 2/§Y3(kykz+ lkxkz) + s Du(eyz+1exz)

' D .
- 2_,2 u _ . 2i !
N = /§Y2(ky kx) + 75 (eyy exx) + 21/§y3kxky + —; Duexy

The eigenvalues A of Hg are the solutions of the fourth order

determinant:
2
‘ Ho AL l[.. (A-6)
The soiutions to (A-6) are"e12 = +¢ with:
£ = /I}2+|M|2+|N|2 . (A-6)

Clearly a twofold degeneracy remains (Kramers theorem)

o

.
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b) Stress parallel to [1ll1] \\-\,ff

For s|| [111] the strain components are related to the

applied stress S by:

exx = eyy = eZZ = (sll+2312)s (2-8) ’
$,,S
e = e = e = _._4.4_
Xy X2z V4 3

where'Sll, S, and S,, are cubic elastic compliance constants.

-

For energies measured from the vertex of the heavy-hole band

(positive energies), then:

—

2.4, 2 2

= (en) k2 2 -
= (~A)k +-|Eoli / 824 (k Y+c.p,)+4YBEO(kay+c.p.)+Eo (A-9)

. . _ 1
where c.p. means cyclic permutation E0 = 3 DuS44

The expression (A-9) reduces to the heavy hole and light hole
o
energies for S=0. ~ i

The splitting A,_ of the two bands at K=0 is:

h

= 2l8,| =% |ps, 5| = 0.366 —2V |5 (A-10)

A
h uCa4®!  (kg/mm?)
for Ge under [1l1l] stress.

c) Wave functions €9

We have seen that (A-5) gives the effect of the pertur-

bing Hamiltonian on the basis wi'(eigenfunctions of j = %), then:
e ) - .

= 3 | - {g® -
HV, -‘§ aijlz,mj% ) (aij = {Ho{) - (A-11)
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The basis functions ¢k for the Hamiltonian can be obtained in

terms of the wj

H¢, =E¢
o'k k'k (A-12)
6, = I b, .|2 mh>
k=% Pyl
j
then:
I by lagoE lJ)|2,m3> i (A-13)
ij N )

\

-
From A-13 we can obtain the coefficients bki that give th:\§h$§:>

" functions as a linear combination of the |%,mj> .

The degenerate eigenfunctions corresponding to E_ are:

»

1 3
. = [MI >+N |z, -= >+(E L)I
1 ((e- L)zE)l/2 (A-14)
1 1
¢, = - [NI > -M 2% (E- L)|— -1 .
2 ((g-1)2E)1/? I é?,§ a
For E_ . | a ( o
.
¢, = [ (E- L)I > -M | > N*!—,-—>]
37 (5o1)2m1 /2 2 a1y
by = = 1 177 [(E- L)[ > N| >+M(2 —o]

[(E-L)2E]

d) - Absorption matrix elements

As it was discussed in Chapters 3 and 5, interband and

intraband matrix elements between the heavy and light hok valence
band are necessary to obtain the dlelectrlc constant f elfctron-

hole drops. For stressed Ge these matrix elements wege first
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calculated by A. Manoliu (1976). I will follow his procedure.

Combescot and Nozieres (1972) consider the density fluctuation

pg that describes transitions from k to (k+q) inside the va-

lence band, they show that pé is’'a unit matrix in the Kohn-

Luttinger basis (eigenfunctions of j = é).

2

elements between two eigenstates kn,k'n' are:

(p.)
q kn,kn

= <kn|e

iger

lk'n'> =1L U

Zi(E)Uin
i .

(k')

At k# 0 the matrix

(A-16)

where U(k) is the rotation that brings the eigenfunctions ¢

(from (A-14) and (A-15)) to the Kohn-Luttinger basis:

( M N (E—L)l/z 0
leE-1)Y?  (2E(E-1)) Y2 2B
- B-p, /2 M -N
(S5 0 172 1/2
(2E(E-L)) (2E(E-L))
U = (A-17)
o 172 ~n* M
0 ST (2E(E-1)) /2 (2B (E-L)) /2
N* ~M* : 1/2
0 E-1L
(2E(E-1)) Y% (2B(E-1))1/2 ()

given by

L 2

2

pintra

An equivalent expression holds for E_ with ¢, and ¢, replacing

¢l and ¢2.

. ‘ .
For the band with eigenvalue E, the intraband matrix element is

=l <oy (R) [e*9 F o (K1) >|P+] <4 (K) |e

t

L

iger

Y
o> 7

.

. (A-18)
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From (A-14), (A-15) and (A-17), it can be seen that

2 . o .
Ointrals'the same for both bands and is given by:
2 _ 2EE'+2LL'+MM'*+M'M*+NN'*+N'N* -
Pintra = 4EE" (A-19)

where the prime indicates that they are functions of k' instead

of k.
The interband matrix elements are given by:
02 = <o et T g0 24 o, 1T T [g,5 ]2 (A-20)
inter 1 3 Tl 4
2 oy 2 _ 2EE'~(2LL'+MM'*+M*M'+NN'*+N*N1) _
pinter =1 pintra - 4ER" (A-21)

with E, L, M aﬁd N given by .equations (A-6) and (A-8).

For stress along [1,1,1]:

2 . 2 2_ 2 §.2_ 2 2_,2 12_1.2
pintra x 2EE' = 2[(3kz k )(3kz k )+3(kx ky)(kx ky ) (3-22)
+. 2 K k‘ |+ 4 K + 'k‘+ 2
l2Y3(kx y Xky c.p.)+2Y3E0[kx y.c.p.+kx y c.p.]+E0
where

' . U o
k, = kqta, o k,=koq . ko= k +a,

q = q(axl&ylﬁz) .

For optical tran51t10ns g is very small as compared with the

I
Fermi wavevector. Expanding (A—Zl) in powers of q, and consi-
dering second order terms, the following expression is obtained

(Markiewicz, 1978b)
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F2

2 1 1
o — [F, - =] (A-23)

inter 2E2 2 E2

2 2,3~
q{lZ(Y2 73)(kqu+c-p.) +

+

2 2,,2 ~
(12Y3-4Y2)k (kqu+c.p.) + (A-24)

+

2Y3E0[(qx+qy+qz)(kx+ky+kz)—(qux+c.p.)}}

i

2 2 2,272 2.2 2
q {24(Y2'Y3)(kqu+c'P-)+12Y3k q +

(A-25)

+

(12vy3-8v2) (k g _*c.p.)?

At zero stress and in the spherical approximation for the energy

bands (A-23), (A-24) and (A-25) give. the same result that Combe-

scot and Noziere's. In this case with Ty = Y

E2

= 4ng4

_ 2,.3
Fl-q(BYz)k cos®

Fy

(6: angle between

= q24ygk2cosze-+12Y§k2q2

g and k) '

S T - e (A-26)
inter 3 kz . )
(s=0

Y2=Y3)
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