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ABSTRACT

In the search for an adequate and efficient method for power
system dynamic stability analysis, it is illustrated in this thesis that
eigenvalues, eigenvectors and their sensitivities with respect toc system
parameters are very important and useful tools.

The eigenvalue-eigenvector sensitivities are generalized by
deriving expressions for the Nth-order sensitivities. These expressions
are recursive in nature, hence the calculations of the high-order terms
do not 1involve tog much additional computation, but lead to considerable
improvements in evaluating the actual changes in the eigenvalues and
eigenvectors due to large variations in the system parameters.

A comprehensive and efficient eigenvalue tracking approach has
been presented to track a subset of the-system eigenvalues over a wide
range.of parameter variations.

We have achieved an interesting result that the first- and the
Nth-order sensitivities of any eigenvalue of the aggregated model with
respect to a certain parameter of the original system are identical to
the corresponding Ssensitivities of the same eigenvalue of the original
system with respect to that parameter regardless the choice of the

aggregation matrix. .
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A criterion has been developed for answering one of the most

demanding questions in the model reduction area, which is how to choose

the order of the reduced model.
The significance and applicability of the previous theoretical

achievements have been tested by considering different problems in power

systém dynamic studies. These show consistency with previous results..
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CHAPTER 1

INTRODUCTION

With the increasing demand for electrical power, the controls for
maintaining power system stability are becoming more complex. Longer
and higher vecltage transmission lines are required as well as larger
capacity generating units with lower 1inertia p.u. This has resulted 1in
detrimental effects on dynamic and transient stability of electric power
systems'. Transient stabiliy 1s the ability of the system to maintain
synchreonism during large disturbances. Dynamic stability 1s concerned
with small disturbances. Traditionally the stability problems 1n power
systems were those of transient stability - 1t was generally true that a
system which was transiently stable was also dynamically stable [1].
However, in the last decade dynamic stability problems have emerged as
majer considerations 1in power system planning and operation (2], The
most significant factor 1s the 1inclusien of fast r:esponse, high ceiling
static excitation schemes for synchronous generators. Tnese have the
capability of significantly improving the transient stability properties
of the system. However, they have an adverse effect on dynamic
stability i1n that they degrade the.lnherent damping 1n machine rcotor
¢oscillations. As a consequence, static exciters are usually supplied
Wwith power system stabilizers which add, at the exciter input, a signal

which results in rotor oscillation damping (2]. The adverse effect of



static exciters on stability and the design of power system stabilizers
can be analysed using linear system models. The salient advantage of
the whole concept of dynamic stability is that it admits the use of
linear system theory and many of the results of control theory are
applicable.

The differential and algebralc equations describing the
performance of a power system are basically nonlinear. System
per formance can be described by a set of first-order differential

equations (33, (4]

f(x) + g(u)

-3
i

n(x) + k(u)

where x, u, and y are the state, 1input, and algebraic (output) vectors
of dimension n, p, and m, respectively, and f, g, h, and k are vector
functions (517,

When dealing with small disturbance stability of a system,
equation (1.1) can be expressed in terms of deviations from the
equilibrium point, If the disturbance is sufficiently small, second-
and higher-order terms are negligible in a Taylor series expansion. The

equations therefore take on the linear form:

A Ax + B au

o
>
u

. Ay = C ax + D au

where A, B, C, and D are real constant matrices with appropriate

dimensions. The entries of these matrices are functions of all the



system parameters and depend on the steady-state operating conditions.
The state-space form, equation (1.2), is convenient for the application
of control theory concepts (6], [7]. After the system equations are
formulated in the state-space form, system stability can be analyzed
using different approaches. The ﬁost straightforward method i3 the
direct integration of the system differential equations. However ,
numerical integration 1is not an efficient tool to determine system
dynamic stability. An alternative and economical approach is to apply
mcdern control theory techniques. The most widespread practical method
of determining dynamic stability 1s the use of eigenvalue analysis (1],
(8)-{11). Most computer libraries contain subroutines for the solution
of the matrix eigenvalue problem [12].

The advantages of complementing eigenvalue calculathgs with
those of eigenvalue sensitivity has also been reported by a number of
authors (1], (13]-(15]). Eigenvalue methods have also received practical
application in transient stability studies where power system sections
remote from the 'study area' are replaced by 'equivalents' (167,

The concept of eigenvalues and eigenvectors 1s not only a good
mathematical tool, but also physical meanings may be attached to them.
The eigenvalues are related to the different modes in the system. Also,
the mode shapes depend upon the eigenvectors of the system. All real
eigenvalues and the real parts of complex eigenvalues, with dimensions
of sec~], must be negative for system stability. The 1imaginary parts of
complex conjugate pairs of eigenvalues, with dimensions of rad/sec,

indicate a frequency of oscillation which is damped if the real parts,



called the damping coefficients, are negative. Moreover, the value of
the damping coefficient i3 a measure of system damping. The reciprocal
of the absolute value of Adamping coefficient gives the time constant of
the variable, hence, it 13 a measure of the time required for the system
to reach a steady state condition.

System eigenvalues are, 1n general, functions of all control and
lesign parameters. The change 1n any one of these parameters affects
the system performance. Hence, 1t causes a shift 1n the whole eigen-
value pattern. The amount of shift depends on the sensitivity of the
different elgenvalues to a parameter as well as the actual change i1n the
value of that parameter. In order to predict the system performance
under Jifferent parameter settings, the elgenvalues can be recomputed at
every parameter selection. However, the relatively high system orders
and the multiplicity of parameter variation possibilities make 1t
impractical to carry out repeated eigenvalue computations. 3o, a great
deal of work has been done [ 17], [{18] in evaluating power system dynamic
stability wusing first and second-order eigenvalue sensitivities with
Taylor's series expansion at a nominal set of parameter values (base
case). The results presented in [17], [18] and [(19] (by a aroup of
researchers at McMaster University) demonstrate the advantages of
employing eigenvalue sensitivites over repeated eigenvalue computation.
The main advantages are the reduction in the computational cost and the
ldentification of different system modes. The inclusion of second-order
sensitivity terms makes it possible to obtain a closer approximation to

the changes in the eigenvalues with realistic changes 1n the parameters.
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It has been shown (19] that this requires only 2a small additional
computational effort. Whereas this 13 a significant improvement, there
exist some cases where such eigenvalues are related to the 3ystem
parameters in a nonlinear manner, and the inclusion of the second-order
term is not sufficient for adequate approximation [19]. To handle this
problem the authors 1in [19] proposed the use of an 1inverse lteration
method developed by Wilkinson [20] and the modification Adeveloped by Van
Ness (21] to find accurate eigenvalues with the corresponding eigen-
vectors for different parameter settings. In 3spite of the 4drawbacks of
the 1nverse 1teration method, the main question which had not been
answered is 1ow one can predict the error 1n the approximate =estimate
without c¢alculating the exact value. T™his 1s necessary, to decide
whether to wuse the 1nverse 1teration method or not. Hence,
lnvestigations are required to handle this problem and to add a new ring
to the research chain at chaster University.

The order of the differential equations required to represent 1in
detail the dynamic response of a large power system, with 1ts associated
voltage regulators and governors, i3 30 high that 3ome degree of
approximation is almost always necessary. In fact, additional
complications have been introduced by the growth of 1interconnections
between operating utility systems. The only practical way that has been
found for solving these systems 1s direct simulation 1n most cases.
Because of their large si1zes and other characteristics, the solution
time i3 often very slow. Typically, the computer time required 13 many

times the real time being simulated on the system. When a large number



of studies need to be made of such a system, some sort of approximation
must be made in order that a lower order model of the system may be used
1n the study. The relation between the original system and the reduced
model must be carefully studied. The ~hoice »f the srder »f the reduced
model 1is important and needs i1nvestigation, The sensitivities of the
reduced model with respect toc (Ww.r.t.) the large system parameters are
important too.

This thesis deals with aspects of eigenvalues, eigenvectors and
their sensitivities w.r.t. system parameters due to “heir 1mportance 1n
studying and analyzing the dynamics of electric power systems. The work
presented in this thesis prcovides a comprehensive approach for analysing
power system dynamics. It establishes an efficient :omputational
approach (based on previous work {[28]) for evaluating the dynamicz
stabillity of an 1interconnected power system, It explores the
possibilities of avercoming the shortcomings in the previous work (197,
(28] and {49]. Some theoretical developments have been achieved. The
problem of deriving a reduced-order model for a large power 3system has
been 1nvestigated. Mainly, the applicabllity of recently developed
methods [34] to power system dynamics 138 1nvestigated. Also,
theoretical aspects concerning the sensitivities of the aggregated
reduced models w.r.t., the large system parameters as well as a criterion
for choosing the reduced-model order have been proved. The
applicability of the previous theoretical developments to power s3ystem
dynamic studies has been 1investigated. The results are consistent with

previous work (28] and (55]7.
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The thesis {s organized as follows: In Chapter 2 complete
derivations are given for the Nth-order eigenvalue and eigenvector
sensitivities w.r.t., system parameters. The formulas are recursive 1n
nature, 380 the calculations of the higher-order terms do not involve
much extra computation, but lead to considerable improvement 1n the
jetermination of the actual changes 1n the eigenvalues and eigenvectors
due to system parameter variations. In Chapter 3, a3n eigenvalue
tracking techmique {3 developed, in which a critical subset of eigen-
values 18 tracked over a practical range of parameter variations. An
answer 13 glven to the question concerning the error obtained in the
ergenvalue estimate without computing the exact value. Moreover, an
attempt has been made to answer the mailn Aquestion of deciding the
maximum order of sensitivities to be calrulated for a specified
accuracy. Two examples of power systems with different complexity have
been considered to emphasize the advantages and the limitations of the
proposed technique. Chapter U reviews four different methods for
obtaining reduced order models for large linear systems. The
applicability of these methods tc power system dynamics 13 discussed.
One of the recently proposed methods 1s the aggregated partial
realization (34]. The advantages and the 1isadvantages of this method
as applied to power system dynamics are outlined in the same <hapter.
Chapter 5 13 devoted to theoretical investigations concerning both the
sensitivities and the order of the reduced models. We have been able to
prove that the th—order (N = 1, 2, ...) eigenvalue sensitivities

(w.r.t. the large system parameters) of the aggregated’ mcdel are

g R



identical to the corresponding eigenvglue sensitivities in the 1large
system regardless of the choice of the aggregation matrix. Also, a
criterion has been presented for selecting the order of the aggregated
reduced model of a given iarge system. The eigenvalues of the system
are not restricted to be realq only. Applications to three specific
areas are given in Chapter 6. The first, is the dynamic stability
evaluation of a relatively large scale power system. The second, is a
reduced aggregated dynamic model for a synchronous generator connected
to an infinite bus system. Fhe last is an algorithm for stablizing
decentralized systems. This is based on partial modal feedback control
together with the Nth-order eigenvalue and eigenvector sensitivities,
In Chapter 7 ihe main conclusions of the thesis are summarized and the
specific conﬁributions of the research as well as suggestions for future

work, are outlined.

AR RS I £ T = = 7 T



’ CHAPTER 2
A\

EIGENVALUE-EIGENVECTOR SENSITIVITIES

~ s

2.1 "Introduction

-

" Consider an unforced linear multivariable system described by

% = Ax ' (2.1)

where x is an n-dimensional state vector and A is an nxn matrix with

real elements., Let the eigenvalues of A be 11. Xy e An and let Voo

v2. ..f. vn be the corresponding eigenvectors. A problem of

considerable practical importance is the determination of the change Axi

in a particular eignevalue xi due to a change A& in the value of 2

parameter & of the system. A Taylor's series expansion around the

nominal value Eo gives

\ ‘ 3
Ay 37y e)2 M| a3
i At 2 o2 3 31

3k 3¢
. o (2.2)

If one is concerned with the per unit change in Xio corresponding

to a certain per unit change in 50. equation (2.2) may be rewritten as

it tn
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10

2
AX;. a(xi/xio) AE 3 (xi/xio) ! st 2
———— | . — 4 C = (=)
Ao 3(5/50) 5 alg/k )2 2t %
EO ° E0
3
3 (xi/xio) — 3
b | o () o+ : (2.3)
2(E/E ) 3E,
Q EO

It is evident that if the change A£/Eo is infinitesiﬁally small,
it may be adequate to retainh only the first-order term in equation
(2.3). This has been the most common approach to sensitivity analysis
in the past [13], but it is seldom useful 16 practical cases where the
changes in the paraqeter are not extremely small.

The inclusion of second-order sensitivity terms makes it possible
to obtain a closer approximation to the changes in the eigenvalues with
realistic changes in the parameters, and it has been shown (22,23] that
this requires only a small additional computational effort. Whereas
this is a significant improvement, there exist some cases where such
. eigenvalues are relatedlto the system parameters in a nonlinear manner,
and the inclusion of the second-order term is not sufficient for
adequate approximation [19]). Two questions arise naturally. The first
{8 to determine whether it i{s possible to calculate. the third- and
higher-order eigenvalue sensitivities without muqh additional
complication. The second and equally important matter is to de§ermine
how many of these terms are needed for a suitable ;pproximation with a

s
given percentagé change in the parameter value.

The objective of this chapter is to present a method for the

Ml e e
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calculation of third- and higher-order eigenvalue-eigenvector
sensitivities w.r.t. Systém parameters. It may be noted that no such
method existed previously. The method is then applied to two simplified

examples to illustrate the advantages [24].

2.2 Derivation of Third- and Nth-order Eigenvalue-Eigenvector
Sensitivities

L ..
_ et wT, w2,

corresponding to the eigenvalues, x1.'x2, ooy xn. respectively, and let

oy W be the eigenvectors of the transpose®of A,

these be normalized so that

i Yy 1j . (2.4)

where the superscript T represents transpose and Gij is the Kronecker

delta.

It has been shown by previous authors [13,23] that

i 3A
-'5—5—-'wi 'a—é"vl (2.5)
avi n
_— = . 2.6
3L J§1 aiJ Vj ( )
J#i
and [25] that
T
awj n
'5"&‘_ - if] (lij wl (207)
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where
A
w —
jag 't
s I3

ljz-__(Ti_"—k—j—)'liJ. (2-8)

Differentiation of equation (2.6) leads to

N v A e~ R,

3%V, day s 2, ~
V-"'ai-__ . (2'9) v

1 g J J 3¢
i .

4

N
"

b G R e |
Q>

Equation (2.9) can be further simplified by differentiating

equation (2.8) and substituting for aaij/az as follows

aaij 1 3 X, 2

J i n 3A 3 A
=z —— (a (— = —) = (¢ «qa.. wT) — Vv, 4+ w? —= vi
g xi-xj 1§ “ag 3L 1=1 ij 17 3¢ i J 22
i#j
T 3A n
. — . v.Y . 2.10
MY 351 o5 Vs (2.10)
J£i

Proceeding in this manner, it can be shown that

N N-1- N-2
3 vi n ~ 3 aij 3 aij avj
2 L ——— v 4 (Ne1) —— —
35N 521 ac”" j ag"'e 2L
341
N-3 2 N-1
-y =2y 0 %y Yy oy
+ . . + ... Q L2.11)
21 2eh3 | 2c2 LS e

Bl a0 w, wew
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Also {
N-1
3 aij 1 axl 3 3 aij
= {{-N (s~ - ) -
as” (xi-xEY g g aEN--1
2 2 N-2 N N
N(N-1) 3 xi ] XJ 3 aij 3 Xl 3 xj ‘
- ( - ) - vee = (. ) a, )
1 -
2 32 352 aEN 2 aEN a[:N ij
'\
N+1 N N-1 2 N
_ 1y 3" Vi N1y Nty ATy an Yy
+ W ( V., + N — e+ — ]
1 : 21 -
3 a€N+ i agN Y3 2 acN 1 352 s aEN
T N-1
awJ 3"A 5 aN-lA av1 3A 3 Vi
+ N e [— v, + (N=1) TE Ot e ¥ )
g azN aCN--1 £ 3k aEN—)
2T N2
N(N=1) 3 wj N-1A 3N—2A avi " 3 v
+ [ V. + (N=2) ——— —— e + — ]
2! 352 aEN-1 i aEN--2 L N3 aCN-2
+ .
aN T
A Y <
+3—EW— [-3?‘,1]}' (2.12)

Derivation of the second-order eigenvalue sensitivity proceeds [13,23)

from the following equation

" 2 2 2

32A 3A avi 3 vi 3 Xi axi av1 3 vy

—_—=V, + 2 —~— —— L A TV, 4 2 e — ), —— (2.13)
2 1 2 2 i i 2

3 SRAR 3 3L e 3

Premultiplication of (2.13) by wz and cancelling out common terms (23}

gives

B e, e o S R

el oS 4



3 Xi . a2A 2 A avi
'z W, —3z V, + 2 W, — —
aE2 i 2t i i 3¢ o
T avj
noting that Wy EE— = 0

14

2. 14)

(2.15)

To obtain the third-order eigenbalue sensitivity, we

differentiate equation (2.13) partially w.r.t. §

2 2 3
i 2 2 2 -
at i 352 £ 2 Y3 a:a 13 2 2
3 3 3 A, 3 vV M, 3V ]
: Xi v, + : Ai o + 2 Xl —Zi + 2 Ai i + i + A
i
353 i 35;2 3L 352 3 3E 852 1 352 3

premultiplying by wz we get

2 3
wT 33& v, + 3 wT EEA 311 + 3 wT iﬁ : Vi + wT A : vi =
i 853 i i 352 3L i 2 352 i aE3
33A 32A oV 3 82v 83v
W v, + 3 _ 1 wT 1 + 3 1 wT +’wT A i
~i aE3 i aE2 i 9§ 13 i aE2 i1 aE3

Cancelling out equal terms and also noting that

av

=T . T

Wy EE_ = 0 and Wi vy s 1
these yield:

2 3 2
wTﬁv +3ngif_ti_+3wTa_A_aVi_aki+3a)‘inaV1
i aC3 i i a{z 3L i e aE2 aE3 Y S § 852

In a more compact form 3311/353 is given by

(2.17)

(2.18)
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3 : 2
A - 2)3A 32A vy 2 A 3 vy Ay 3 vy
—~— =W, [ Vv, +3 55— +3 — — -3 — 1. (2.19)
ags  * agS 1 ag° % 9T 4¢° LTS
Proceeding in this way, it can be shown that *
b 3
3 Ai auA a3A av1 32A ) \ 2 A 3 vy
— g Ly g e 6+ By
3L 3k 14 & 3 3k (13
2 2 3
394 37y, My A7V,
-6 -y ] (2.20)
2 2
1KY 9 353
and
N 2 N-1
A M Ay WA T T R PRt/ S ah Vi
s W, [ —= v, + N . + oot N —— ————0—
3G§ i 3EN i aEN--1 E 21 aEN—2 aE2 13 3£N—1
N-2 2 N-1
Nen-y 2 e Y My d Yy
- . - teo =N — ] .N>1 (2.21)
2 N- N-1
} 3 2 aE2 3L Y

It can be seen from the above that each of the eigenvalue-
eigenvector sensitivities depends upon eigenvalue and elgenvector
sensitivities of lower order. Hence, they can all be calculated in a
sequential manner. The only other requirement is to obtain successive
partial derivatives of the matrix A w.r.t. the parameter g. Thus it is
evident ﬂﬁat the determination of the higher-order sensitivity terms
does not involve much additional work. N

We shall now show the use of the higher-order eigenvalue-‘

eigenvector sensitivities for determining the changes in eigenvalues

caused by large changes in a parameter. From equation (2.3), it follows
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that the per unit change Axi/xio will depend on the magnitude of the
change AE/EO a3 well as the relative magnitudes of the various
eigenvalue sensitivites. If, for the sak; af simpliecity, it {3 assumed
that the various logarithmic sensitivities in equation (2.3) are of the
same order of magnitude, it is possible to estimate the effect of each

term for different percentage changes in the parameter £. These results

are summarized -in Table 2.1. v

Table 2.1 Effect of Different Orders of Sensitivity

Percentage Effect of Effect of

Effect of
Change in Second-order Third-order Fourth-order
Parameter Term Term Term
10 5% 0.17% -
50 25% U, 17% 1%
100 50% 16.67% by

This table shows that the effect of the second-order term 1is

small but not negligible, for 10% change. On the other hand, for

parameter variations of more than 50%, the third-order term must be

taken into account.

H

2.3 A Simplified Second-Order Example

In small perturbation studies of a synchronous machine at a

certain frequency of oscillation, the machine braking torque can be

analyzed into two components [2): the damping component in phase with

the machine rotor speed deviation (Aw), and the synchronizing component

in phase with the rotor angle deviation (468). Hence, the system can be

.
aa

(e

s e
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described by the block diagram in Fig. 2.1. The two eigenvalues of this

system are:

dv u)d = 2H 2 (2.22)

wher? wO and H are the angular synchronous speed and the inertia
constant respectively. It 1is desirable t& study the effect of changing
the damping torque component on the synchronizing torque component [2],
in other words, to study the effect of changing the damping coefficient
D on the natural frequency of oscillation, Typical values of the
parameters for a hydraulic machine are shown in Fig. 2.1. Hence, the
corresponding eigenvalues and their normalized sensitivities are
obtained and are shown in Table 2.2. The sensitivities are normalized
in the sense that they give directly the shift in the eigenvalue due to
a unit ch;nge in the corresponding parameter. First-, second-, third-,
and fourth-order estimates of the imaginary part of the complex pair of
the eigenvalues are plotted in Fig. 2.2 together with a plot of directly
computed values over a wide range of damping coefficient. The amount of
démping hin the mode 1s adequate [28] if the equivalent second-order
damping ratio lies between 0.2 and 0.6 which corresponds to values of
0.09 and 0.26 respectively for tﬁe damping coefficient D, Under the
prescribed range of the damping ratio variatipn, the corresponding

change in the frequency of oscillation is relatively small. Hence, the

© L ot v R o 7 e
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Table 2.2 Eigenvalues and Their Normalized Sensitivities for
2nd-Order System

(%4
o

X1'2

s
(e

D=. 16 D=.16 ‘ D=.16 D=.16 D=.16

-3.52 + j8.8 -3.52 + j1.42 5.0 t §.82 0.0 t j.12 0.0 ¢t j.06

first-order estimate {3 adequate for representation. But for larger
values of the damping, 1including higher-order terms i{s necessary for
better repﬁesentation.. For example, the contribution the third-order
term of the Taylor's series (equation 2.2) 1is about 15% of the
second-order term for a per unit change in the damping coefficient. It
may appear from this example that including the higher—order terms is

not really necessary in this case. The following example will

illustrate a situation where the higher-order terms cannot be neglected.

2.4 Simplified Single Machine-Infinite Bus with Static Exciter

In this example, eigenvalue and eigenvalue sensitivity techniques
are employed to examine the effect of static exciter parameters on‘the
dynamic s;ability of a steam unit connected to an infinite bus through a
transmission line. A single line diagram of the system is shown in
Fig. 2.3. The system data are obtained directly from reference (2).
This model neglects the effect of damper windings, stator resistance,

flux derivatives and governor action. The block diagram. model, in spite

of its simpliecity, has been used by many authors [2] and (26] to analyze

-,
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and design machine excitation systems under a variety of conditions;
The block diagram coefficients (K1-K6) are functiongjof the machine and
tie line parameters and the system operating conditions. The values of
these coefficients, as obtained in (2], are given in Fig. 2.4, The
system eigenvalues as well as their normalized sensitivities w.r.t.
exciter gain (Ke) qsd time constant (Te) are listed in Tables 2.3 and
2.4, Eigenvalue sensitivities are then used to obtain estimates for the
movement of the s;stem eigenvalues *around the base case. These
estimates as compared to‘ the exact movement are illustrated in Figs.
2.5, 2.6 (E denotes exact, 1 = 1,2,3,4 denotes the ith-estimate). It is
apparent from Fig. 2.5 that the second-corder estimates are significantly
better than the first-order estimates and are quite édeguate for
representing the movement‘ of the eigenvaiues with variations in the
exciter gain (Ke). O the- other hand, by examining Fig. 2.6, the
second-order estimate ig not sufficient to represeﬁt eigenvilue
movement . Furthermore, it is clear from Fig. 2.6c that for cert;in
values of exciter time constant (Te > 0.06), the second-order estimate
indicates that the system i; mor e stable than at Te < 0.06 which is not
actually true. Including th; third- and the fourth-order sensitivities

of this eilgenvalue for this case gives better estimates for the
(\gagiglalue mgvements. Table 2.5 shows the error im including tge
.first-. second-, third- and fourth-order sensitivities for different

percentage chahges of Te' The error is calculated as follows:

Error = (actual value - estimated value)/actual value,.

o s ke ot o e



Table 2.3 Eigenvalues and Their Normalized Sensitivities
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w.r.t. Exciter Gain
2 3 y
\ 4 EIY a7 I
3 2 3
e 3K K K
Ke= 25 Ke=25 e Ke-25 e Ke-25 e K =25
.056+311.2 .22+j.06 .02+3.035 ~.007+j.005 .002+ jO
- 2.724 -2.92 -. 148 -4y - -.072
-17.851 2.48 Ly . 157 ~.,0069
Table 2.4 Eigénvalues and Their Normalized Sensitivities w.r.t
Exciter Time Constant
A I 32)‘ 33X aux
IS 32 5,3 %
T =.05 e T =.05 e T =,05 e T =.05 e T =.05
e e e e e
.056%311.2 - .08%j.08 - .02%j.05 .03+3.002 - .005%30
- 2.724 - .u6 - T - .0856 - 050
-17.851 20.62 -19.78 '20.03 -20.05
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Fig. 2.4 Block Diagram Representation of Single Machine-Infinite Bus °
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Fig. 2.5a Re(A1 2) vs. Exciter Gain
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Table 2.5 Error Analysis for Different Tn Percentages

Change in Error using Error using Error using Error using
Te First-order Second-order Third-order Fourth-order
) % g % )

A
+20 - 5. 1. - .84 .038
~20 -, B - TH - .03Y
+40 ~18,96 7.748 - 3.07 1.262
=40 -16.88 - 6.797 - 2.714 - 1,08
+60 -4y, 55 27.5 ~-16.28 10.02
-60 -37.23 ~22.44 ~13.45 - 8.05
+80 -83.6 69.56 -54,52 hy, 85
-80 ~65.03 -52.14 -41,69 -33.33

From that table it can be seen that for a percentage change in Te larger
than 20%, including the third-order is important, also for 60% change,
fourth-order is needed. For 80% change, including higher orders than
the fourth is necessary for good representation. It should be clear by
examining equations (2.19) and (2.20) that including higher-order terms

requires only small additional computational effort.

2.5 Conclusions

Formulas are derived for the third- and the Nth-order eigenvalue-
eigenvector sensitivities.

The effect of large changes in the values of certain design and
control parameters on the eigenvalues and eigenvectors of the dynamic
model of a system can be investigated more accurately by using the

proposed method for calculating the higher-order sensitivities.

rah e
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Application to two simple power system examples indicates that in
some situations, using only the first- and second-order sensitivities
giveé poor approximations.

Since the derived formulas are recursive in nature, the
calculation of the higher-order terms does not involve too much extra
computation, but leads to a considerable improvement in the
determination of the actual changes in the eigenvalues and eigenvectors
due ;o parameter variations.

The method proposed in this chapter can be applied to the
stability analysis of any engineering system subject to large variations

in the parameters,



CHAPTER 3

DYNAMIC STABILITY ANALYSIS: AN EIGENVALUE TRACKING APPROACH

In this chapter a comprehensive tracking approach is proposed to
track a subset of the system eigenvalues over a wide range of the system
parameter variations. The formulas derived 1in Chapter 2 for the
er1genvalue-eigenvector sensitivites are the backbone of the approach.
The Nth-order derivative of the system matrix required for evaluating
the Nth-order eigenvalue sensitivity is derived. An application to a
system of 1lightly loaded hydraulic machine connected to a nonlinear
static load will be considered to illustrate the advantages and the

limitations of the tracking approach.

3.1 Formulation of the System Matrix and It's Successive Derivatives

In dynamic stability studies, the set of linearized differential
and algebraic equations describing the system performance are

manipulated in the fcllowing form [27):

P [i] =Qx +Ru (3.1)

['4
where x ¢ Rn, Yy € Rp. u e Rq are the states, the outputs, and the inputs

-1 .
vectors respectively. Pre-multiplying (3.1) by P ', one obtains

[;] =S x+Eu (3.2)

33
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where

Q=M. anae=p"r= (B (3.3)

By proper partitioning of eqn. (3.3), the following state equations can

be obtained:

b3
u

Ax +Bu (3.8

y =Cx + Du. (3.5)
The eigenvalues of tﬁe system matrix A are indicative of the dynamic
stability. Let a system parameter £ changes by a large change ag. A
problem of considerable practical importance 13 the determination of the
corresponding change AAi

recomputing the system eigenvalues, a Taylor's series expansion around a

in a particular eigenvalue Xi. So instead of

nominal value Co gives: -

N
2 2 3 A N
Ax = 25— AE + ——-a x (AE) + .. + 1 (AE) . (3-6)
1 3 £ 3 2 2! 3 N N!
o £ EO £ EO
In order to compute Axi. it 1s required to obtain the different

eigenvalue sensitivities up to the Nth-order. Moreover it is required
te obtain the value of N to be used to give an adequate approximation of
Axi for a certain change Agf. A complete derivation of all eigenvalue
and eigenvector sensitivities of all orders is given in Chapter 2 and

the Nth-order eigenvalue sensitivity can be stated as:

e T B Moo ses

e

bR
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N N=1 3v. N-2. 3%y,
wz [3_5 vi +N 3 - ? i, N(N:1) 3 - g 21
3 agh—1 38 Y Y
N~1 N-2 2
A2V N SV
+ . + N Y N3 5
3 4¢ : ag IE
PP\ aN'1
{ Vi
- - N 35 NS 1.
Y

35

(3.7

It is clear from the derivation of the state space matrices that

the A-matrix is a result of matrix manipulations including inverse and

product of constituent matrices. Therefore, the following technique can

be used. Differentiating eqn. (3.3) with respect to the parameter £, we

have

which gives

Hence

3S -1 3Q 3P
3 -0 3t g Q
-1
Since P P = I (Identity matrix), so
3,

L S R
Y + 3t =
3p”! 1 3P -1
& - -p7 =p”
€ 13
3S . o=1 2P -1 39
TN P 3% S +P T

-

(3.8)

(3.9)

(3.10)

Most of the control variables appear in the Q-matrix and seldom in the

P-matrix. Thus, one of the two terms in eqn. (3.8) can be zero. Let

3P/3f = 0, so that the Nth-derivative of S will be in the form

i

[T YO R
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N r N L]
a's -1 3'Q
- = P S (3.11)
ag ag
or, %% is zero, so the Nth-derivative of S will be in
the form: ;
=
s . ! 2P s , N-1) 2%p 2" 25 .. a'p 3]
- bnd — - ' - ¢ . 0 hamamn-v-d .
e 3 yel- 2T 2 52 e

If both terms in eqn. (3.J05 are nonzero, it can be shown that:

aNs -1 aP aN‘1s N(N-1) 22P 3" 25 2'p 2Q
—y = P [N-a—E T Y T3 5§ttt W S - s - £3.12)
13 g BT ¥ g A

Hence, the derivati&es can all be calculated in'sequential manner. In
evaluat:ing_‘P-'1 matrix, the efficient method by Zein E1-Din (28] has been
used for the multi-machine system. The matrices P, aNS/asN are
extremely sparse so that sparse matrix techniques [68)] can be employed
to reduce both the computation time and the memory requirements.

4

3.2 Eigenvalue Tracking Procedure

Returning to eqn. (3.6); we see that a good approximation to the

actual change s\, in the eigenvalue li will be obtained if a

i
sufficiently high value of N is choéén. We sAall'now consider the
problem of selecting an appropriate value of N consistent with a
specified accuracy.. The following eigenvalue tracking procedure 1is
proposed, and wil)l be applied in the next s;ction.

To test whether a given value of N will be satisfactory for a

specified accuracy, it is proposed to first caleculate the change in the

\ . v

~.
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eigenvalues Xio and the eigenvectors (direct and transposed) for a given
variation Asi in the parameter EO. At the new location of the eigen-
value, in' Just obtained, the Nth-order sensitivities are again

L4

calculated. These are, then, used for calculating the eigenvalue Xio

for a backward change, AE, in the parameter from 8, * AL to Eo' The

“

difference between the values of Xio and Kio is a measure of the
accuracy of the truncated Taylor's series approximation. If this error
is within specified tolerance limits, this value of N may be ulSed for
obtaining an adequate approximation. On the other hand; if the error is
too large the value of N must be increased.
The procedure'can be summarized in the following steps:
£3,
1. Formulate the system equations in the state-space form linearized

about an appropriate base operating conditions.

2. Compute the system eigenvalues, and the normal and transposed

eigenvectors at the base conditions,

3. Compute the Nth-order normaliZed eigenvalue-eigenvector
sensitivities w.r.t. system parameiers of interest, (starting

with N=1), if N is greater than 1 go to step S.-

uy, Considering a specific parameter, identify the sensitive subset
of eigenvalues and choose the one(s) to be tracked over different

settings of the parameter ¢,

s
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Estimate the change in the eigenvalues and the eigenvectors. due
to a given (large) change Af in the parameter £ using Taylor's
series expansion and the Nth-order normalized sensitivities (the
sensitivities are normalized in the sense that they give directly
the shift in the eigenvalue due to a unit change 1in the

corresponding parameter),

Using the updated eigenvalues and eigenvectors at Eo + AL,

calculate the Nth-order eigenvalue sensitivities at £, * AL,

Take a step At in the reverse direction to that in step 5, using
Taylor's series expansion at 50 + Af, obtain an eigenvalue

sti X, AE - AL,
estimate io at Eo + Af AL

Compare iio to the exact value xio obtained in step 2. The error

obtained e, = x;o - X}o'

If the error obtained is still larger than the specified
tolerance, increase the order by one and go to step 3. It should
be noted that ;he procedure is recursive in nature, in the sense
that each piece of information obtained at N=J is uséd f0rﬁN =
J+1. In other words, only the Jth-term in the Tayl;r's series is

required to be computed at N=J.

J P o e
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3.3 Applications
3.3.1 Simplified Single Machine-Infinite Bus with Static Exciter

The proposed procedure is applied to the simple example
considered in Chapter 2 to track one of the eigenvalues over a wide
range of the exciter time constant. Table 3.1 shows the results
obtained. The error included in this tracking procedure is also given

in the same table.

Table 3.1 Eigenvalue tracking for the case
Te = 0.05, and N = 4, )‘io = ~17.851

Percentage _ Error
ATE Change in TE Estimated kil Estimated Xio xio - Xio E%act in
.01 - 20 -14, 39 ~17.853 0.002 -14, 38
.02 40 -12. -17.95 0.1 ‘-11.85
.03 60 -10. 87 -18.7 0.85 -9.88
.04 80 -11.97 -21.27 3.42 -8.27
It can be seen from this table that the error Xio - xio is a good

measure of the error between the actual xi and its estimated value.

1
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3.3.2 Lightly loaded Hydraulic Generator

This section demonstrates the significance of the proposed
technique in clarifying the interaction between load characteristics and
the excitation control loop. This is especially important under light
load when a generator with static exciter has been equipped with a
stabilizer designed to improve stability under heavy load conditions.
Figure 3.1 is a single line diagram of the generator connected to a
large interconnected system (represented by an infinite bus) through a
transmission line. The generator has a static exciter equipped with a
supplementary stabilizing signal, governor effects are included. The
terminal bus is feeding a composite load with its power consumption

represented as an exponential function of the bus voltage:

where

0
"

L active consumed power

O
"

L reactive consumed power

c§ = load active power index (megawatt sensitivity coefficient)
cq = load reactive power index (megavar sensitivity coefficient)
K1, K2 = constants,

Jem e A A i e e

L

a2



SYNCHRONOUS TRANSMISSION

MACHINE LINE
‘ INFlNITE
Ny —— 77T E
NON LINEAR
LOCAL LOAD
Fig. 3.1 Hydro-System Configuration

Machine 66 MVA, 13,8 KV rating
In P,U. based on machine rating:
Xad = .567, xaq = .33, Xgq = .087, qu = .14, xl = . 123, Xy = LA,
r, = .00279, l"f = .0035, Ted = .02, qu = .04, H =z 4,29 sec.,

PG = .2, QG = .7, D (damping coeff.) = .002

Exciter-Stabilizer

KE = 200., KQ = 20., TE = .902. TQ :Al.u, T = .033, Tv = .033 sec.
Governor
T1 = LU, T3 = .U, 'I‘S = .35 sec., KG = .04
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The block diagram of the hydraulic generator is shown in Fig. 3.2. The
details for the synchronous machine, exciter-stabilizer, and the
governor are given in Appendix B. The system has 14 states, 7 for the
synchronous machine, Y4 for the exciter and 3 for the governor. The set
of equations describing the performance of the system are well
documented by Alden and Zein El1-Din [15) and Zein El1-Din (28]. The
generator parameters are shown in Fig. 3.1. .

Before tracking Athe subset of the eigenvalues wh;ch are of
primary concern in this study, it should be noted that the
characteristics of the local load presented in this system are
significant. If the load approximates constant active power combined
with constant reactance (cp = 0, cq = 2), then the system is unstable,
The eigenvalue pair corresponding to the synchronous machine torque-
angle is .é041J8.09. If the load approximates constant impedance (cp =
2, cq = é), then the system 1is stable (the eigenvalue pair is
-1.36%36.54). Thus we know that for this system, stability is related
to the value of cpkthat describes the load characteristics [28].

Table 3.2 1lists the eigenvalues of thé system at specified base

_values. Rows 1-3 are the eigenvalues corrésponding to the stator and
rotor modes. Zein El-Din and Alden [18] have identified the eigenvalue
at -503.24 as a stator-rotor mode. The analysis, however, shows that

this is an exciter mode. This can be seen from the sensitivity of that

mode w.r.t. the exciter time constant TE' or by considering the exciter
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Table 3.2 System Eigenvalues

Base values: PG = .2, QG = .7,
PL = 1.25, QL = 1, cp = 2

1 -132.5 t j702

2 ~70.6

3 -55. 145

4 -12.06 % j27.14
5 -.74

6 -503.24

7 ~30.98

8 -1.36 * j6.54

9 ~3.15 + j1.8
10 -1.45

separately which has -,71, -30.3, -33.3, and -500 as eigenvalues. Also
Zein El1-Din and. Alden (18] identified the eigenvalue at -.74 as a
governor mode, however the analysis shows that as a stabilizer mode.

This can be seen by tracking this mode with the stabilizer time constant

TQ as will be shown later.

The eigenvalues corresponding to the automatic voltage regulator
(AVR) are listed in row U4, the exciter in rows 5§ to 7 and the main
torque-angle mode in row 8. The governor modes are listed in rows 9 and
10. Table 3.3 shows the sensitivities of the eigehvalues corresponding
to the torque-angle mode with respect to the active power index of th;
load, cp. Figure 3.3 illustrates the improved accuracy obtained by
including the third- and the fourth-order sensitivitigs in tracking the

real part of the torque-angle mode over a wide range of

T U P e e
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Table 3.3 Normalized First and Higher-Order Sensitivities
of Torque-Angle Mode w.r.t. cp

Base values: PG = .2, QG = .7, PL = 1.25, QL = 1, cp = 2., cq = 2.
\ DY azx l 83X I aux ’
— AN 22 R
¢ =2 cp ¢ =2 3c2 c_ =2 303 ¢ =2 acu c =2
p P a p P P P
-1,36%36.54 ~.97t31.46 LU32j.17 -.15%31,2E~4 .032%40.0

values of cp. Although the normalized fourth-order sensitivity is much
smaller than the second- and third-order terms, as can be seen from
Table 3.3, for a 100% decrease in cp' we get an error of only 2% when
the fourth-order term is retained, whereas, with up to third-order terms
the error is 14%, and retaining up to the second-order terms gives an
error of 87%. This change in cp corresponds to changing the load from a
constant impedance to a constant active power combined with a constant
reactance.

Figures 3.4 and 3.5 illustrate the movement of the' real part of
the torque-angle and the AVR modes respectively over a wide range of the

stabilizer gain K Using the proposed method for tracking these modes,

9
it was found that sensitivities up to the third order were sufficient
for obtaining good estimates of these modes. It is &mportant to note
from these figures that improving the damping in the torque-angle mode
by increasing the stabilizer gain affects the damping in the AVR mode,

so the design of a good stabilizer involves introducing sufficient

damping in the torque-angle mode without sacrificing the stability of
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the exciter (AVR) mode. Higher orders than the fourth are needed to
track the torque-angle mode over a wide range of values of the
stabilizer time constant TQ using the proposed method as can be seen
from Fig. 3.6. Table 3.4 lists the normalized sensitivities which
emphasize the importance of including the higher orders.

Table 3.4 Different Normalized Sensitivities of Torque-Angle
Mode w.r.t. T

Q
Ty aré arg arg arg
TQ:1 4 TQ:1.4 TQ:L“ TQ:1.U TQ=1.u TQz'I Y
~1,36%36.54 -.12+j.08 .13:5.08 -.13£3.08 L12+£3.09 - 11§01

Tracking the dominant mode -.74 (whiéh was identified by previous
authors [18] as a governor mode) over a wide range of the stabilizer
time constant is shown in Fig. 3.7. This figure shows an important
phenomenon which was not considered before in the literature in tracking
the eigenvalues. This is the change in the eigenvalue from real to
complex and back to real over the corresponding range of the parameter
TQ. It is caused by interactions with other modes. In this case
choosing one base point only gives misleading results as can be easily
seen from the unséooth curve in Fig, ,3.7 (for TQ = .2, using the
tracking procedure up to Sth-order sensitivities gives i1 = -2,1, however
the exact value is -5.,). For TQ in the range .2 to .6, the mode is
initially real, it changes to complex in the range .6 to .9 and back to

real at TQ > .9, In this case and similar cases using more than one
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base case 1is recommended for obtaining a good estimate using the
proposed tracking procedure,
Static'exciters are used because of their fast,;esponse and hence
ability to provide synchronizing torque under transient conditions. The
concurrent disadvantage is the reduction of damping torque under dynamic
conditions (2] which can be seen from Fig. 3.8 for the case of zero
stabilizer gain. Consequently stabilizing signals may be included to
improve damping as shown in Fig. 3.8 for KQ = 20. Figure 3.8 is an
interesting case to be examined and discussed carefully, increasing the
exciter gain (KQ = 20) improves the damping, but after around KE = 70.,
it begins to worsen it. In this figure the relation between the
torque-angle mode, and the exciter gain is nonlinear with a turning point
around KE = 70. Here 1s another case where the proposed procedure fails
to track the torque-angle mode over a wide range of the exciter gain

using only one base case. It is recommended in gsuch cases to use more

than one base point to track the concerned modes.

3.4 bonclusions
A comprehensive tracking approach has been proposed (based on the
.one proposed in [28]) for determining the changes in the system
eigenvalues for a large change in system ,parameters. This requires
determining higher order éigenvalue sensitivities, which can be computed
without much additional' effort. An attempt has been made to answer the
.main question of deciding the maximum order of sensitivities to be

calculated for a specified accuracy. Two examples of power systems with

R
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different degrees of complexity have been considered to emphasize the
advantages and the limitations of the proposed method.  The effect of
large variations in a parameter can be studied with greater confidence
without repeating the solution of the eigenvalue problem for the whole
system. From the examples it can be seen that a great amount of insight
is obtained into the behaviour of the system with large parameter
variations.

It was observed that sometimes eigenvalues may change from real
to complex or vice versa with large variations in parameters. The
proposed method may give misleading results in this case if only one
base point is used. In such cases, it is suggested that two base points

will give better results.
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CHAPTER U
'METHODS OF REDUCING THE ORDER OF POWER

SYSTEM MODELS IN DYNAMIC STUDIES

4.1 Introduction

The major problem in any study involving the dynamic characteris-
tic; of an interconnected power system is the size of the system. The
order of the differential equations needed to completely represent the
dynamic characteristics is so high that analysis is beyond the
capability of modern computing eqﬁipment in many cases. Hence, in or@er
to study large systems it is necessary to have a method for obtaining an
equivalent reduced-order system. These re@uced systems are required to
represent the major characteristics of the high-order systems while
simplifying computational procedures. Among the methods which have been
considered for reducing power.system dynamics are the classical, the
médal. the topological methods [29] and coherency grouping. In the last
decade, several analytical techniques fo} order reduction of a linear
model have been developed ([30]. ihes; methods are based on the
retention of dominant eigenvalues (31], aggregation ([32], éartial
realization (33], aggregation with partial realization ([34], singular
perturbation (351, and error-minimization (36].

The applicability of these methods to power system dynamics wfll

be discussed .in this chapter by considering a synchronous generator

55
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connected to large system through a transmission line. Also, a

comparison will be made between the various methods.

§,2 Statement of the Problem

Gonsider a linear multivariable time-invariant system described

by the equations

X Ax + Bu

y = Cx (4. 1)

n

where x ¢ R, y ¢ Rm. and u ¢ RP are the state, output, and input

vectors respectively.
The objective of model reduction is to obtain the system

equations

1

Fx + Gu
r r

Y. = er (4.2)

>
1

whére xr € Rr and r < n, so that yr e.ﬁm is a close approximation to y

for all inputs u.

-

Alternativef&n the system, for =zero intial state, may be
described by its transf;r function matrix G(s), through the equation
Y(s) = G(s) U(s) \ (4.3)
In this case, the reduced~order transfer function matrix Gr(S) shohld be
such that
Yr(s) z Gr(S) U(s) (.4)

is a close approximation to Y(s) in the time domain.
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4,2.1 Methods Which Retain Dominant Eigenvalues

In the classical approach to system modelling, it has been
customary to ignore certain unimportant .parameters. which were known
intuitively to have relatively little effect on the overall response.,
For instance, in the modelling of power systems it is quite common to
ignore the small time constants introduced by voltage regulators,
whereas the larger time constants of the mechanical components play a
more significant role. It is, therefore,'not surprising to note that
some of the‘earliest methods o% model reduction [37,38) were based on
retaining the dominant eigenvalues of the system in the low-order modél.
In developing his method of optimal projection Mitra [39] showed that
Davison's method {38] was a special case. Aoki [32] developed the more
general approach based on aggregation, and it has been shown [34] that
the optimal projection method is a special case of aggregation. This
method is based on the intuitively appealing relationship
x = Kx ) (4.5)

r

where K is the rxn aggregation matrix. It is easily seen that

FK = KA (4.6)
G = KB . . : .7
and HK = C ) ‘ . (u.8)

where the last equation can only be satisfied approximately, as
indicated. A minimum-norm solution is obtained by using the pseudoin-

verse [34], and this leads to the following relationships

F = kA" ‘ ) C(4.9)

G = KB 4 -(4.10)

S e Rt
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H = cxk¥ .11)
where k" Lkt kT (.12)

i1s the Moore—Penros‘e pseudoinverse of K, with the superscript T
representing transposition. It is also known that a non-trivial
solution for F is obtained only if all of its eigenvaﬁues are also
eigenvalues of A. In other words, in the a_g_gregation method certain
eigenvalues of the original high-order system are retained in the low~
order approximation,

It took many years after MAoki's work for the development of a
straightforward procedure for determining the aggregétion matrix [34].
This method requires the determination of the eigenvectors of AT. For
the sake of simplicity, it will be assumed that the eigenvalues o-f A are
distinet, and these will be denoted by\;\1. 12, ,\. The
corresponding eigenvectors Will be denoted by Vs v2, veey vn, so that

the modal matrix is obtained as

Vs vy, Vo eees V] (4.13)
The eigenvalues of AT are the same as those of A, but the
eigenvectors W i = 1,2,...;n will be different from vy It is
possible to scale them in such a way that
" Wos v (4,14
where ' W= [_w1, Woy eees Wyl (4.15)
The aggregation matrix can be obtained c_lirectly as
K = R"‘N;r | (4.16)
where R is an arbitrary rxr non-singular matrix and
wr = [w1. Wor eees wr]- _ (4.17)
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corresponding to the eigenvalues Apr Age eeen A of the original system
which are retained in the aggregated model. It follows that the choice

of K is not unique due to the arbitrariness of R. Making R equal to the

identity matrix gives a special aggregatioﬁ matrix, which we shall

denote by KI. Hence,

K. =Wl (4.18)
I r

T .
and FI = wr A Yr = diag. (x,. Agr ween

To avoid handling complex quantities, the following algorithm is useful

XD (4.19)
r

for determining K.

(1) Perform eigen analysis on AT. i.e. find W such that ATw = W diag.
Ay Ape weev 2. Then v™' = w7 and the rows of V™' are the
columns of W.

(2) Suppose A is real and xj. Xj+1 is complex pair for some i,j to
be retained in the reduced model. Then the ith-row of K is taken
as the ith-column of W and the jth- and j+1 st-rows of K are
taken as the real and imaginary parts of the jth-column of W.
Also fii = and rjj =z fj+1,j+1 J). fj,j+1 = 'fj+1,} =

-Im(xj), where FI = [fiJ] and £, j =1, 2, ..., I,

= Re(X

It is evident that for any other choice of the matrix R, the aggregated

model is simply a linear transformation of F_, given by

I
FI R - (4.20)
and represents the transformation

. _1
= R
xr er

(4.21)
of the reduced states. Since such transformation does not alter the
input-butput description of the aggregated model, the choice of R does

‘
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not affect the quality of the approximation between y and yr.

4.2.2 Methods Based on Padé Approximation

Another approach to model reduction, which is based on Padé
approximation, 1s attractive from the computational point of view. The
frequency response of the system G(s) at low and/or high frequencies is
matched with that of Gr(g) by essentially retaining the first few terms
of the Taylor series expansion of G(s) about s=0 and/or s = . Hickin

and Sinha (33] have presented a more generalaresult in terms of partial

realization which will be discussed briefly.

If we formally expand G(8) in a Laurent series, we get

G(s) = C(sI-a)~' B = ; 4 s=(i#D) (4.22)

where

J = CAlm (4.23)

are called the Markov parameters of the system.
If G(s) has no poles at the origin then we can obtain the Taylor

series expansion

G(s8) =~ g T, 87 (4.24)
where

T =c g4+ 3 (4.25)

It may be recognized that {1/T1} is the set of time moments of the

inverse Laplace transform of G(s). It may also be noted that
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Jy =T, for i1 (4.26)

Next, define a Hankel matrix of order (i,j) and index k as

cak ca®*lg ... cakrd-Tp
ca¥*lg ca¥*%g ... cak*dp
(k) . . .
H - : : : 4.27)
ij : : X (
_pAk+l-1B CAk+iB L CAk+i+j_28J

If 1 > a and §j > B, where a and 8 are the observability and control-
(k)

lability indices of the system, respectively, then the rank of Hij is
n, and a minimal realization of order n is easily obtained following the
reduction to Hermite normal form [40]. If this procedure is stopped
after r < n steps a partial realization is obtained which matches some
of the generalized Markov parameters instead of all, as would be the
case with minimal realization. Hence, partial realization may be viewed
as the generalization of Padé approximation to the multivariable case.
The procedure i3 conceptually easy and computationally straightforward.
One important drawback of all Padé approximation methods is that
somet imes an unstaple low-order model is obtained even if the original

high-order system is. stable. Several solutions have been proposed for

overcoming that difficulty (41,42].

4,2.3 Aggregation with Partial Realization

A combination of agéregation with partial realization [34]
retains the aanntages of matching time momenés (and/or Markov
parameters), as well as guaranteeing stability of tﬂe reduced order if

the original system is stable. Since the matrices F and G in the
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canonical form, are determined entirely by the eigenvalues to be
retained, one may select the elements of H so that some of the Markov
parameters (including time moments) of the two systems are matched. In
general, a good correspondence between the steady-state responses is
obtained by matching .the first few time moments. The 'details for a
single-input single-output systems ardgiven in (347.

For the case of multivariable systems, the state equations must
first .be transformed to the column-companion form ([34], This
transformation can be carried out without any matrix inversion using the
transformation to Hermite normal form following the method proposed by
Hickin and Sinha (43], and will, in the generic case, result in a block
upper triangular A-matrix.. One may now determine an aggregated model
matrix F, which has the same structure as A, by deciding which of the
eigenvalues are to be retained in each block. The calculation of the
aggregation matrix K satisfying the relationship FK = KA is now
straightforward in view of the canonical structures of &, F, B and G.
Finally, the elements of the matrix H may be -chosen in such a way that
some of the generalized Markov parameters o} (A,B,C) and (F,G,H) are
matched [38].

The followinh are the advantages [34) of the method of aggregated
partial realization: '

1. It retains éll the good features of the method of state
aggregation, e.g., ’

-~ a relationship between the states of the original and reduced

model . v

it Mt 2

PR P

[

e s i v ¥

e T



Q2

63

- the invariance under LSVF (Linear State Variable Feedback).
~ a stable (unstable) reduced model of a stable (unstable)
original system.
2. The use of canonical forms permiﬁs considerable simplification of
the generalized Markov parameters.
3. The invariance property of matched moments under LSVF is
retained.
The disadvantages of the method ;re many. First the tendency of many
real systems to be controllable through the first input results in a
trade~-off of modelling accuracy for the remaining inputs to increase the
accuracy with respect to the first input. The second disadvantage is a
serious point which has not been mentioned before. This is that using
the column-—companion form, and retaining the dominant eigenvalues in
each ﬂlock does not necessarily result in retaining the domipant
eigenvalues of the whole system. The idea behind using the generalized
column-companion form is to remove the necessity of calculating the
inverse modal matrix wT (34). This is a good theoretical achievement.
But in practical applications, for example in power system dynamies, it
is nét feasible, in general, to obtain such column-companion form (in
block upper triangle form). This is, in genéral, due to the fact that
the system can be controllable from only a few of the inputs. This

- . .
means that the elements of the matrix B in the column-companion form

equation

X =KX +Bu - (4.28)

ALY w e N
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are in the form (e1 €. «c. © is the ith-unit

5 g %109 cce ap-!,)' whe:re e

i

vector. It yas noted in this case that some elements of the remaining

Y L]

vectors>u1; LPYRRERY ap-z of the B matrix as well as some columns of the
& matrix are quite largef The weak point in this method is that it is
not possible to know beforehand if it is gging to work before applying
it. The other altern;ti.ye to test that is by obtaining thé modg-
controliabilify matrix (g = WTB) défined by Porter and Crossley [22].
The system will be controllable from the ith-input if and only if all

the elements of the vector hiL (t =1, 2, ..., n) are 'non-zero. . This

N

calculéping wT, one can use equation¢£4.19) for the reduced order moJel
¢ e

. instead of the previous column-companion form which is in general not

suitable for power syséem dynamic stability studies. It should be
mentioned that with the reduced system in th; diagonal férm (4,19), one
can still matéh the same number of generalized Markov parameters as in
the column-companisn fOr;pmethod, "These points will be ciarified later

by consideripg'an example.

AN

. " ' /}.

y,2.4 " Singular Perturbation Method

This method reduces the model order by first neglecting the fast
phenomena. It then improves the'approximation by reintroducing their
effect as' 'boundary 'iayer' corrections- calculated 1in separate time

sqp;es. . In this case, the system is temporarily decouﬁled into two

lower-order,subéystems which represent the 'slow' and 'fast' parts of

the system. Such'a"system described by equation (uk1> i3 .decomposed as

‘requires the calculatioé"bf the inverse of the modal matrix (wT). After

LR
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. MX, = A21 Xy + A22 Xy + 82 u ) (4.29)
where u > 0 is small scalar, x, ¢ R and Xy € R™™". An rtheprder low-
frequency model is obtained by setting u = 0, and eliminat;Z; X, from

equation (4.29).

In general in power system dynamics it.is' not easy at all to
formulate the system equations in the form'givep by equation (4.29).
Hence, an alternative method has to be adapted in this case. In
reference [44] a matrix norm condition is given under which the large
e;genvalues of a two~time scale , system will be sufficiently separated
from the small eigenvalugs. The mgthod appears to be promising for
powér system dynamic studies. A brief' deseription of the method is

outlined below.

A Two-Time-Scale Property

A linear time-invariant system described by equation (4,1) is
said to possess a 'two-time-scale' property if it can be decomposed into

‘two sybsystems described by

X [A 6 X (
K] ’ 8 - 8 A)
] e - (4.3
~ Xf LO A xf

and if the largest eigenvalue of As is mudh'smaller than the smallest

eigenvalue of Af

that is, .
IAmax

It is assumed that (4.1) is an already designed feedback system and

hence its eigenvalues are not only stable, Re(A(A)) < 0, but also well

(A << A (A (4.31) -

e
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damped. Thus, the meaning of equation (H.35) i3 that e ° tends to zero

Aft
much slower than e .

J .
The system will possess the two-time-scale property (4.31)

-1
187

where ||A|| is the Euclidean norm of matrix A.

-1
| << 1187

Now to relate (4.32) with a-partitioned form of (4.1), let

where dim. x1 sz dim. xs =r, dim. x2 = dim.'xf = n-rf and

)(1 = xs-o-fo
x2 = Lxs + (I+LM)Xf = xf + Lx1
Select the (n-r)xr matrix L to be a real root of
. A22'L -L A11 - L A12 L + A21.= 0
and the rx(n-r) matrix M to be a real root of
. (A11 + A12 L) M - M (A22 - L A12) + A12 =0
If L and M exist then the substitution of (4.34) and (4.35) in
yields
Ag = A AL
and A .=

£ A22 - L A12

if

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
(4.33)

(4.38)
(4.39)

The sufficient éondition (44] for a system to possess the two-time-scale

property is . _
-1 : \ -1
ISR TN TEYRTRTINTP
where : '
Ly = -AZ) A
0" 22 "21° -
L IRRETIRM PRYS ’

(4.40)

(4.41)

(4,42)

-
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This condition gives approximate expressions for the states x1 and x2 as
-1
Xy = Xgo = Rp Ay Xpg (4.43)
-1
Xy = -A22 A21 X, + Xeo (u.4y)
where X56 and xfo are obtained from simplified sub-gsystems:
A 0 X
S0 o sof -
g . = ' . (4,45)
“of % t2g [*ro

It should be noted that if the original system:possesses a two-time-
scale property, but the matrix A is nst in the form satisfying condition
(4.40), the twﬁ—time-scalg property can still be exhibited. This can be .
carried out by transformations, such as reindexing and rescaling the
state variables. To rescale the ;tates, consider the transformation

z = Sx (4.46)
where S is q‘diagonal matrix. Substitute (4.46) in ku.33). the system

caﬁ be described by

where

=l
"
n
>
w
"

The diagonal elements of S are chosen such that condition (4.40) is
satisfied. It should be noted that the eigenvalues of KO and K22 are

exactly the same as of Ao and A__ ‘respectively. This can be shown as’

22
follows:

. let -. . S = 1, 8 =1
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SO 1
S 0 A A ST 0
-1 11 1
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0 Sy Ay Ay 0 S22
s 4. sV s oa s
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-1
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0 21 ./
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- S11 A Siy =51 A2 S §2é A2 S22 322 Aaq Sy

-1 -1 -1
311 A11 311 - 311 A12 A22 A21 311

_ -1 -1
=S,y (A - A Ap A ) S

i
=511 % Sy4

£
n
S
+
Fo
(g ]

"

S%qce S11 is a nonsingulaé matrix of ordér r.'so the eigenvalues of ﬁo
and Ao are identical, Also since
Fap = 520 A2 532
itAfmplies that thé-eigenvalues of K22 and A22 are identical too.
The idea behind this method is that without computiné the
eigenvalues for tﬁe large system, one can split the system into the fast

and the slow parts, provided that condition (4.40) is satisfied. This

will be illustrated by an example,.
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4.3 Single Machine-Infinite Busbar

Consider the example of a synchronous machine connected to an
¥

infinite busbar [45] through a transmission line Fig. N1, Neglecting
both the exciter and the governor representations, the states of the
system are wd. wfd’ de. Wq' qu, w, and 8, The system has two input
(vf. Th) and two outputs (w,8). The data for the machine paramebers are

listed in Table 4.1,

. | Xe=.1 ‘ ,
A e

Infinite Bus

Fig. 4.1 Single Machine-Infinite Bus Configuration

The 'mathematical equatioﬁs deseribing the state of the model at any

instant consist of .machine equations and power transfer equations

reiating the mechanical input power and the. electric output power.

T
These equations are well documented in reference [27]. The equations
after matrix manipulations can be wrjtten in the form of equation (4.1)

where the matrices A, B, and C are given below

(6,20  15.054  -9.8726 K—376.58 251.32 -162.2 66.8 |
0.53  -2.0176  1.4363 0 0 0 0
16,85  25.079 % -13.55 0 0 0 0
A=[377.4  -89.449 '<162.83 . 57.988 -65.514  68.6 157.6
oo 0 0 , 107.25 -188.05 0 0
0.37  -0.1445 -0,26303 -.6472  0.499  -.21 0
| o 0 0 0 0 37699 0 |

et e A
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Table 4.1 Machine Specifications

Type of Generator-Fossil Steam

Rated MVA = 160 MVA

Rated KV = 15 KV, Y connected
Excitation voltage = 375 V
Stator current =z 6158.4 A
Field current = 926 A

No load field current = 365 A

Power factor = .85 lag.

™p
r
Q

18,42 mo
18,97 mg -

Ld = 6.34 mH, Lf = 2.19 H
LO = 5.99 nmH, Lq = 6,12 mH
L. =

Q 1.42 mH, Ly = Lq = .56 mH
KMD 2 5.28 mH, KMQ = 2.78 mH
r (125 C7) = 1.54 mQ

re (125 c®y = .375 a

i

Inertia constant = 1,76 K.W.S,/HP

Frequency

60 HZ

s
s
i

,,
bt
*

PPy

ol

Y e




71

89.353 376.99 0 0 0 0 0

BT=
0 0 0 0 0 0.21 0
0 0 0 0 0 1 0

C=
0 0 0 0 0 0 1

The eigenvalues of the system are located at -0,20813, -0,46526 ¢
j9.3538, -13.547 & J§376.34, -37.482 and -46.339. Retaining the first

three eigenvalues, the following aggregation matrix K. using equation

I
(4.18) is obtained

-.005355 -1.7121 -,088888 .602275 .00Qu666  4.0937 -.002
KI = 1-.0001483 .58617 .058232 .003243 -.01127 -1.5353 1,01
-.053365 -.11333 .078472 -.37291 ~-.07842 -40.632 -.006

Using equations (4.18), (4.19), and (4,11), the aggregated model is

,pbtained as below

-. 20418 0 0 ~645.93 .86512
FI‘: 0 . -, 46526 -~9.3538 |, G = 220.97 -.32445
0 9.3538 -. 46526 -37.957 -8.5869
and
.0016365 -. 00020462 -. 02445y
H =

. 34005 .99045 -.0031656

o

a7 e e et s it P e it A PAIRIER AT i e i g te 7

A et Bt s o

S n ey e
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Next, partial realization was tried. It was found that the reduced-
order model matching the Markov parameters JO and J1 was unstable. The

same result was obtained with the model matching J . and JO. The latter

1

model is given below

0 0 1 0 .21133
F = 376.99 0 0 . G = 0 0 ,
23183 -.019201 41,17 =21, 421 8.7468

and

Aggregation with partial realization was investigated using two
.different procedures. The first was to put the system into the column-

companion form, the system matrices (A, B, ¥) are obtained as shown

below
(0 0 0 0 o o - umo' 1 756.2
1 0 0 0 0 0 -.22¢10" 0 -u7.17
NdJoor 0 0 0 0 -.13x10'0 0 -9.63 !
E=l0 0 1 0 0o 0 -21x107 |, 8=]o0 _.508 ],
0 0 0 1 0 0 -.12x108 0 -.006
0 0 0 0 1 0 -.15x10° 0 0

6 0 0 0 0 1 - 11x10° 0 0




and

[Sr 3 |
"

0
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21 0 -22. 06 666.15 ~.2x10°  -.7x10° ax10'0
J .
9.6 0 8317 25x10°  —.8x107  -.26x10

Examining these results, it may be possible to note:

(a)

(b)

~(e)

(d)

(e)

The system matrix A is one block upper trlaﬁgle not two as
expected for the success of the method.

This means that in order to obtain the system eigenvalues, it is
necessary to solve an eigenproblem for the whole system instead
of breaking 1t into two subsystems and solving two eigenproblems
with smaller order, as this would be the case if the system after
transforming into the column-companion form was 1in the form of
two upper triangular blocks.

The simplicity and the straightforwardness of calculating both
the aggregation matrix as well as the elements of the F matrix
are not available any more.

Some parameters of the A, B and C matrices are so large as to
indicate that the system is unrealizable.

The system is controllable from the first- input.

From the previous discussion it is evident that the success of the

method 1is Qetermined after implementing a column-companion form

algorithm. The alternative method of determining that, is to obtain the

mode-controllability matrix (B = WTB) which is given below

Pl ™



Tu

-645.9 110.5+319 110.5-319 -.T4-3.27 -.Th+§.27  -327.8 10.4
.86 -.16+34.3 ~.16-j4.3 .002-3.0007 .002+3.007 -.419 .92

which indicates that the system is controllable from the 1st-input as
well as from the 2nd-input.

This means that one has to obtain the inverse of the modal matrix.
The alternative approach for obtaining an aggregated partially realized
model {3 to use equations (4.18) and (4.19) and still match some of the
generalized Markov parameters. The aggregated model retaining the three

dominant eigenvalues and matching J : is given below

20818 0 0 2645.93 .86512
FI =10 -. 46526 -3.35381, G = 220.97 -.324485 ] ,
0 9.3538  -.46526 -37.957  -8.5860
and
H L18368x107>  -.0013039  -.02458

.35428 1.00077 -.0021203

The singularly perturbed model {s obtained first by reordering the
states using the transformation
X = Sx
where S 13 a nxn matrix defined by the equation
)

S = (eu e e

5 e5 7 ec e, e3
where ei is the ith unit vector. This reordering has been based on a
descending order with respect to the norm of each row of the matrix A.

Secondly the states are scaled using the transformation

x =5 x
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where

22' ¢ Snn)

is chosen to satisfy condition (U4.40). The choice of the different

§ = diag. (s.,, s

11
elements of 3 is carried out by trial and error procedure, This is the
maln drawback in this method. A systematic procedure for calculating
these elements should be investigated. The eigenvalues of Ao are
-.208+39.2534 and ~.2147, Also the eigenvalues of A22 are
~13.546+3376.334, -36.311, and -46,562.

The response y2 (power angle §) calculated for 10% step change in
the field voltage (vf) for the original system, as well as for each
reduced order model, is shown in Fig. 4,2, It is seen that the best
approximation i3 obtained by the aggregated model matching the time

moment TO(J_ ). The response of the model obtained using singular

]
perturbation is fairly close in the steady-state part and shows some
deviations in the transient part. This is expected since we neglect the

fast part of the system. Further improvement can be obtained using

equation (4,43).

4.4 Summary

An investigation [46,47] has been carried out to explore the
applicability of different analytic techniques for model reduction for
power system dynamic studies. The method of aggregation with partial
realization seems tofbe the best one. Also it should be mentioned that

singular perturbatioé using the norm condition to assure that the system

e
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possesses two-time scale property i{s a promising approach. This 1is
mainly due to lower computational requi;ements besides the retention of
the physical interpretation of the states. This method requires more
investigation, mainly regarding the choice of the scaling matrix. A
systematic procedure i{s quite important especially for applications to

large scale power systems.



CHAPTER 5

ORDER AND EIGENVALUE SENSITIVITITES OF THE AGGREGATED MODELS

5.1 Introduction

The idea of retaining the dominant eigenvalues to simplify the
model of.a high-order power 3system to a low-order model using in general
the aggregation Epproach has been discussed in the previous chaptér. It
1S not clear how small the approximate model c;n be and yet accurately
represent the process. Moreover, in practice, there is always a certaln
amount of uncertainty about the values of some parameters of the system
model. An important problem is the sensitivity of the reduced model to
variations 1n the parameters of the original high-order system. These
are necessary when satisfactory dynamic as well as sSteady-state
responses in the low-order model are desired.

Recently, Mahapatja (48] presented a criterion for selecting the
order of the reduced-order model retaining the dominant eigenvalues
which 18 an extension of his earlier work [49). Although his results
are very interesting, their usefulness 1s limited by the fact that 1in
his derivations only real eigenvalues are considered. However, this is
not the case in some applications, for example, in the models for
dynamic stability evaluation there is quite a number of péirs of complex
conjugate eigenvalues. In this chapter, a new criterion ({507 is

presented which is applicable to the case of real as well as ~omplex

78
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eigenvalues,

{511 which 1introduces an improvement

Mahapatra [48].

Regarding the gsensitivities of the reduced-order model with

respect to the parameters of the original high-order system, a complete

derivation for the first- and Nth-order eigenvalue sensitivities 1is

presented in this chapter (52].

5.2 Selection of the Reduced-Model Order

Consider a linear time-invariant system described by

x(t) = A x(t) + B ult): t >0 (5.1)

with

x(0) =0 (5.2)

Where x ¢ Rn, u € Rp. and A and B are constant matrices of appropriate

dimensions.

Equation (5.1) can be rewritten in the partitioned form as

xi(t) A11 A1 x1(t) B

o

+ u(t) (5.3)

X t
x2(t) XZ( ) B

A A
21 22
where X, ¢ R" represents the states to be retained in the low-order

model.
Consider the linear transformation

x(t) = V x(t) (5.1)

where V i{s the modal matrix of A.

It alsc takes into account the recent work by Rao et al.

in the criterion proposed by

e e o W e

PP T
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Hence we may write

T(t) = D X(t) + V-1 B u(t) (5.5)

where

D=V AV

Using (5.3), (5.4), and (5.5), X may be partitioned into §1 e R" and §2

€ Rn‘r and the following equations are obtained:

21(t) =D, §1(t) + R, u(t) (5.6)
x2(t) = 02 xz(t) + R2 u(t) (5.7
where )
. ] T T
‘ Wi Vi LRI
V = . V-l = WT = .
‘ T T
Va1 Vo 21 Yoo
3 T T
.
D, 0 R, Wiy By + Wi, B,
D = . and =V B - _ . (5.8)
ot T
1
[o D, R, 1, By + 4L B,

For the sake of simplicity, it will be assumed that all’the eigenvalues
of A are distinet, so that D will be a diagonal.matrix. It may be noted
that in the case of repeated eigenvalues, D will be in the Jordan form

and the columns of V will be the generalized eigenvectors of A. Let

D = diag. (x1. xz, ';",Xr' xr+1. ey xn) (5.9)

where the Xi are, in general, complex and the real part of A is greater

i

than or equal to the real part of 2 for 1 =1, 2, ..., n=1.

1+1’
From (5.4) and (5.8), the solution for xl(t) is given by

o s & ¥

ks

B LI TOV L e
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X.‘(b) =V

» §1(t) + V12 xe(t). (5.10)

To obtain satisfactory steady-state response, iz(t) {s given by the
equation

1

Yz(t) = - D’2' R2 u(t). (5.11)

Following the works of [48] and [49], the solution for approximate model

is obtained from (5.10) and (5.11) as

! - -1
z(t) = V11 x1(t) - V12 D? R2 ult). (5.12)

In order that the reduced-order model may be a good approximation to the

original system, the order r must be selected such that the error .

involved by neglecting the modes Ar+1' veey xn. given by the following
equation, is small (48] and (49]:
- -1 '
E(t) = V,2 [xz(t) + 02 RZ u(t) 1. (5.13)

Following Mahapatra (52], E(t) can be written as

t
E(t) = v12 (r exp (D

(t-0)) R, u(r) dr o=t R u(e)] (5.18)
(o]

2 2 2

so the norm of the error satisfies the inequality

t
-1
Cr {lexp (D, (t=x)) def| + { (D, {] []R,]] flute)| gl .

(5.15)

HE] <V,

Let u(t) be a step input vector, so that

Hut ] = v (5.16)
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Since

. T
TVl < TIVEE: TIRSTE < HIWS LT THBTT + 118,51 1) (5.17)
From (5.1%), (5.16), and (5.17)

HET <ug 11V W' | CHEBy I + 118,113

r ‘
s |lexp (D, (t=1)) d|]| + [[DI'1]] . (5.18)
° 2 2
CK D3N] (lexp Dy &) = T|] « 1], (5.19)
where
T
K= g HIVHE = 1911 LB+ 148110, (5..20)
We shall now obtain the values of ||D;1[[ and || exp 02 t - I|| for the
general case where D2 has complex eigenvadues, Xi = -oithi with 9y >0
and wt'> 0.
We have ’
||exp th - I|] = ||diag [exp(xr+1t)—1, exp(kr+2t)—1. s exp(xnt)-1]||
(5.21)
But . .
CHexpOy ©)=11 < 2. (5.22)
Hence,
[fexp Dt - I < 2(n-r) /2, ) (5.23)
Similarly, f
n
-1 1 .1/2
=r+ Ixil
n
1 .1/
e 51172

Tizred qi+w

i

DR N L
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-
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N-r ]1/2
2 2

Cog+0y ) nin

<t

. . S /
: n

r
< .24
“'EI_TKZW: (5.24)

where r+1 < i i n. Therefore, we have

HE@]] <K T (5.25)
where
/n-r .
r _m[2/n—-m+ 17; r+1 <1< n. (5.26)

-

Fog the sake of comparison, the criterion function obtained by Mahapatra

[43], applicable to real eigenvalues only, is given by

u = /nrx 1 (5.27)
rooIa ]
, r+1
s
For real eigenvalues, where W = 0 Vi, equation (5.26) will be
/n-r ner oo
0 = ——— [/B=F + 1] = vo=t + 1]
r " minjy | S
= /n-r Ur' (5.28)

It seems that Mahapatra has made an oversight, his Ur should equal Ur
for the real eigenvalues case. The "oversight" was his approximation in

equation (20) in [48] which is given by the equation

n

-1 131 1
A T e et (5.29)
i=zr+1 Xi r+1
: -1 -
Indeed it should have been ||D2 1< /m=r/ia_ 41

s Bl A i T
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Following Rao et al. {51], we may define the ratio

Vv =z —x— and ¢ > 1

which can be considered as a measure of the improvement achieved by
inecreasing the order of the model from step t-1 to step .

As an example consider the example given in the previous chadter
for the synchronous generator connected to an infinite bus, The
eigenvalues of this system are -,2082, -,4653%39,3538, -13.547tj376.34,
-37.482, and -U46.339, Table 5.1 gives the values of the criterion

functions Ur and Vr for this system.

Table 5.1

Ur and \72 Calculations

Stip . Model :rder Ur=ﬁl ) Vl
1 1 1a5u -
2 3 .27 5.7
3 5 4 1.93
4 6 .06 2.33",

A maximum in Vz ocecurs for =2 (r=3) ., Thus r=z3 is the best choice for
the model order. Responses of 3rd, S5th, and 6th order modelg and the
7th order system are shown in Fig. 5.1. The responses correspond to a
step input in the field voltage. It is evident that the 3rd. order is

superior and that the improvement in model response by increasing the

e ke e,

£ DA b A W
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model order to 5, is not significant. This agrees with the values of VL

in Table 5.1.

5.3 Eigenvalues Sensitivities of Aggregated Models

Since, in practice, there 1is élways a certain amount of
uncertainty about the values of some parameters of a model, an important
problem is the sensitivity of. the model response to variations in these
parameters. The object of this section 1is to extend this analysis to
reduced-order systems, and determine expressions for the first and
second as well as the Nth-order sensitivities of the eigenvalues of the

aggregated models to the parameters of the original high-order system,

5.3.1 First and Second-Order Eigenvalue Sensitivities

The expressions in.the previous chapters give the first- and
second-order eigenvalue sensitivities of the originél hikh-order system
with respect ‘to its parameters. Since r of these eigenvalues are
retained in the aggregated model, it 1s interest to determine the
sensitivities of the eigenvalues of this model with respect to the
parameters of the high-order system.

These sensitivities can be written immediately as (where the

subscript r denotes the reduced-order model)

3
ir_ T oF
T wi.r Y vi.r (5.30)
v, . m
st - L Pt Vi (5.30)
J=1
341

-
it e A AN i SOl
N

. v e S

[ PR EVC R
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ji.r J i wi.r 3t Jur J . -
and ‘
2
DY 2
i,r T aF
— - w [2—V_ »p + =3 v, ] . (5.33)
352 ‘ i,r 3g r “i,r aE2 i,r

where pi r is the ith-~column of the matrix P = In these
]

[pij’r].

equations vi r is the eigenvector of F and w1 r is the eigenvector of
FT. corresponding to the eigenvalue xi. and scaled such that

T

Wp Yy S 1 (5.34)

In order to relate these sensitivities to those of the original system,
we must express 3F/3g in terms of 3A/3¢. First, we recall from (4.19)
and (4.20) that

-1 T

F=R "W AV R (5.35)
r r

Since the arbitrary matrix R does not depend upon the parameter f, we

may write
T
aVv aW
oF -1 T r T 23A r
— = R A — + W —V — AV R .36
ot [Wr T W T + T r] (5.36)
But
WHT"
1
3V av, v v
T r T 1 2 r
WA T Wy |A [BE TR ] , . (5.37)
T
W
L I

E Y S S

VUSROS

-

bt A b S

= PSR P
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T
T 3A T 3A
wr i Vr = |, m [v1 Vo een Vr] , (5.38)
: :
T
"
and
.. T
™
CRA
aw: awg
E—A Vr = 3—5—' A [V] V2 Vr] . (5.39)
8wT
_r
9§

Substituting in the above expression for the eigenvector

sensitivity from eqn. (2.6) and recalling that

W, v, = §, ) (5.40)

where Gij is the Kronecker delta, eqn. (5,36) simplies to

F . R~ diag (w! A VIR L= 1,2, e r . (5001

Y3 i 3¢

From eqn. (2.5), each element of the diagonal matrix 1is recongized as
the eigenvalue sensitivity of the high-order system to the parameter ¢

for the eigenvalues 2 Aps which are retained in the

1q 2. sy

aggregated model.

Noe—

L T PR L
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Hence,
! 3
-1 R
F . g giag [;EL] R, £ =1, 2, «oov 1o (5.42)
Substitution of this expression into eqn. (5.30) gives.the first-order

eigenvalue sensitivity of the aggregated model in terms of that of the

original system,

D) X,
i,r T =1 i
YRk Wi R diag [ag ] Rvi.r (5.43)

In order to appreciate this relationship better, let us first
consider the case when R 18 an identity matrix. In this case, from eqn.

(4.19), the resulting matrix F_ is diagonal, so that its eigenvector

I
v, = € (5.‘“‘)

where el is the ith-unit vector. Similarly for this case,

W, o= oe; (5.45)
30
3 I
i,r 1 .
z — =1, 2, ..., r. 4
Y; T i 1, 2 r (5.46)

In other words, the sensitivity of the eigenvalue i, to the parameter ¢§

i
is the same for the reduced-order model as for the original system for
the case when R is the identity matrix.
This result will now be shown to apply to any arbitrary non-
singular R. Since from egn. (4.20) we may write
Fr=R FRY - diag [Ays Aye -ee, xr] (5.47)
it follows that R~ is the modal matrix of F. Therefore,

Rv = e, (5.48)

cas g s Wmn
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and
T -1 T .
LIge R = e (5.49)
In a similar manﬁer. it can be shown that (52] and [53)
2%F 1 azxi‘ ©
——5 = R- diag [——E—] R. i =1, 2. essy U (5-50)
3k g
and
[4
3%F j 32‘1
3t3n = R diag [—a-m] R, i = 1, 2, vy o 0(5-51)

Substituting eqns. (5.42), (5.50) and (5.51) into (5.33) the

second-order eigenvalue sensitivity of the aggregated model is given by
»

2
3 A D 3
i,r T -1 i i
—T R —_— di —31 RV
. wi.r (diag (36 1R Vr pi.r + diag [35 ] BT
32Xi
+ diag [5-5—5-;‘-] R Vi'r]. (5:52)

Noting the relationships between R and Vr, as before, it can be

easily shown that, for any non-sfhgular R

2 2 s
] Xi,r ) ] Xi /

3Ean  3fan

(5.53)

To 1illustrate the results obtained above, a simple numerical

example will be considered. Consider a single-input single-output

third-order system described by the equations

B o e e A ——————
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x = [1 0o -ttegl x +{0]u, y=00 1 -2) x
0 1 -6 0
where § has a nominal value of zero.

It is required to determine the eigenvalue sens;tivities of the
two dominant eigenvalues of the s}stem. as well as those for the
aggregated second-order model retaining these eigenvalues. It is also
desired to use these'sensitivities to determine the eigenvalues when ag
= =0.11, and compare these with the actual eigenvalues for this value of

A ]

The eigenvalues of the original system are‘—l, -2 and -3. The

corresponding matrix of eigenvectors is obtained as
3 -3 1
Vv = [|5/2 -4 372

172 -1 172

It méy be verified that

WTV:I.

Assuming R = I, the aggregation matrix is obtained as

&
(S B

LY SR

b b el o A A =



and

- 3 -3
vV = |[5/2 -4
r
1/2 -1
o
Hence,
1 0
Fr o= w: AV
0 -2
Also,
T T
w1'r = [1 0], w2,r = [0 1]

From egqn. (2.5)

60 o o]l [3

o,

=0 -1 fo o af fss2 = -0.5, for ¢
o o o [1/2

and

0 o o] -3

N,

-3_E—= (1 -2 4] 10 0 1 -4 =2, for £ =
o o ol l-1

From eqn. (5.42),

oF 0.5 0
R S

98 0 2
Hence, -
. 1

. 1

, 0.5 0
' : L2 1 0] = -0.5, for £ = 0
5 0 2 lo

e i PF R s e
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0.5 0 0
2”‘2 r 1
.= [0 1) =2, for £ =0
3t 0 2t |
pe]
With
1 -1 [2 1 ]
R = l- . R-1 = ! %
1 2l R 1 ;
For this case, N - )
. \
DU LR
F =R FI R = \
! -3
2 1
V1'r = N \/2.r =
1 1
T T
LR (v =11, Wy ® (-1 2]
Hence, from (5.43)
. 2 1] [-0.5 o\ T B
1,r i
35' = [1 -1} i t = "0.50 fOF E=0
11 15 Lo 2. -1 21 1
2 1] [o.5 ol 1 -1 1]
ax, .
35' = [-1 2] J: 2, for £ = O.
1 1] Lo 21 -1 2] 2

Thus, these sensitivities are the same for the three cases.

Similarly, for the original system, from eqn. (2. 14)

5 o 0 03 -3 " "0
—— =0 -1t 132 o 1| 5/2 -4 372 -1 +0] = -
3E '

PP A



and
> 0 o0 o,
37,
—= =01 -2 4)[2|0 o0 1)
g ‘5
o 0 o0
From eqn. (5.50),
2 =5 /4
1
5 =
3 0

For the case when R = I,

p12'r = (=2 + 1) (1
P21,r = (-1 +2) {0
Hence,
~ -~ ~—
.2 0.5 0 |1
21" = (1 0) (2 .
% |l o 2 0
azxz 0.5 0| 1
L -0 1] ¢(2
352 |
Lo 20
-~ -

0

-4

"-1/2 01
1]) “
[ o 250
ol{o] -5
SRR
oy o
i e B
0( IO ~5/4
o J +
1_) LO 0

94

for & = 0.

=0

=0

0'"| 11

| 1= -5/,
4]0
for £ = 0
ol 0
] = “u'
-l 1

for ¢

u
fen)]

-

PREON OIS (IS
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For the case when R = | ,

12
£ -~ -\i -
0.5 O 1‘
p = (=2 + 1) [1 -=1) = 2.5
12,1 0 2 1
-
L 0.5 o |2
p = (=1 +2) (-1 2] ! =5,
2lr 0 2t |1
From egn. (5.52),
.2, P 1_' 0.5 o[t 17k 1770
——12'—’l=[1 -1] ‘Ee
> RN o 2|1 2t 1|25
B o —
Ssm 0 ol{1 -1][2
. ]=_5/u. for £ = 0
L0 a - 2|1
and
,2, [2 4 0.5 ol[1 17k '5]
2,r _
5 (-1 2] [2
£ 1 0 2|t 2l oJ
s/ 0 1 21
. ] = -, for £ = 0
o -4l -1 2|1

Thus, the second-order sensitivities are identical for the three cases.
Now consider calculating the eigenvalues from these
sensitivities, for 4¢ = =0.11,

Using the first-order sensitivities only,

D

Ay o= A,00) 4 i K = =1 + (=0.5) (=0.11) = -0.9U50

T e .

vt | e S
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DY

Ay = A5(0) 2 AE = =2 + 2 (=0.11) = =2.2200
3E E:O

Using both the first- and second-order sensitivities,

N, 32x1 i 2
A= A 00) + 3F | 8 + —> 5 (4%)
£=0 g £=0 ~
5 2
= -1 + (=0.5) (~0.11) - T (-0.11)" = -0.9526
I 32X2 1 >
’ Ay = A, (0) + T— Ag + 5 (4g)
2 2 3% £=0 352 £=0 2

= =2 + 2 (-0.11) - U (--0.11)2 = =2.2u42

The actual values of A1 .and x2 can be easily calculated as
-0.9513 and -2.2691, respectively.
These results show that, as expected, using the second-order
sensitivities better approximations are obtained.
-

5.3.2 Third- and Nth-order Eigenvalue Sensitivities

* Following (53], one can write the equation

2

32 T oo Vi T 2%,
-2w —

i,r

YT i,r T3 %, r (5.5

where & is the high-order system parameter.
Alos, from Chapter 3, third- and Nth-order eigenvalue sensiti-

vities can be written as

P

e 23 o Vorbon Hn

o
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3 2 2
} Xi,r s w (aBF v .3 iEE avi.r .3 aF 8 Vi,r 3 axi,r 3 vi.r]
363 i,r 353 i,r agz b g 852 3L 352
(5.55)
N 2
N -1 -
"Moo T aF Ly A Noen oM Y
aEN i,r IE i,r azN“1 3L 2! 35N-2 352
N-1 N-1 N=-1
G O Ve owm-n Y Mir Y Vi N“i,r vi.r]
-+ e - Y - . - .
3 - ! - 3 -
- 2! eV 52 Y
(5.56)
Let
F :FI -
which leads to
\'4 = e
i,r i
wT = e? (5.57)
i,r i
where ei is the ith unit vector. Hence,
2
2 37X
a F i
5 = diag. { > ],
35 3§
(5.58)
a3F a3xi
—3 = diag. [——§—], and i = 1, 2, r.
FEA 3¢
Let us consider equation (5.55) term by term
i,r 853 i,r i 353 i
(5.59)
33Xi
= 5 where 1 = 1, 2, y T
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and
oVir r
3=1
Jéi
where
_WT oF i
uij = wi.r ; j.r/(kj xi) 143 (5.61)
It follows that
' 2
A v
T . i i,r _
LA diag. [ 5 ] T 0. (5.62)
(13
Al so
32Vi r r-3 13 r av r
Looop oy + I «a . (5.63)
. T . i
33 j=1 0% g1 1 .
Jj£i AL
so
IF a2vi T "oF . § 2% v o
3% g &= 3 g b e Vit E %y ag'r] .
] E ag 1] j_-‘ E 1] j=1
J# J£1 (5.64)
since
T
wi.r vj.r = Gij (5.65)
where Gij is the Kronecker delta. Thus, the first term is zero. The

second term is given as

r
T oF
3 wi.r 3{ .z
-J=
4
Since

aF

r

o L .u \' .
1 13 oy Jk kr

i

N
— = diag. [—

ki §

J, i =1, 2, ..., r
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T Ny
oy * wi,r diag. [32_] vj.r/(xj-xi).

This implies that the second term goes to zero. In the same way

2
: an, 37V
I W Lo V1 ) (5.66)
i,r 2t aE2

Substituting the previous equations in equation (5.55) yields

3A. a3x.
i,r i

]

i=1,2, ..., r. (5.67)

3&3 353 '

In a similar manner, it can be shown that

5.4 Conclusions

A criterion has been presented for selecting the order of the
aggregated reduced model of a given high-order sysﬁem. The eigenvalues
of the system are not restricted to'be real only. This is an important
result. The idea is to evaluate the error included by neglecting
certain part of the system, not only that but also evaluating a certain
measure (VL) for the improvement achieved by increasing the order from
step -1 to step 2.

Expressions for the first- and the Nth-order eigenvalue
sensitivities of the aggregated models with respect to the parameters of
the original system have been derived. It has been shown that these

sensitivities are identical with the corresponding eigenvalue

= N,i:1,2, I (5.68)‘

.

P e
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sensitivities of the original high-order system regardless the choice of

- L J

‘.the aggregation matrix, This result is not surprising since the

eigenvalues of F are a subset of the eigenvalues of A. Hencé, with a
change in the parameter § in A, the corresponding eigenvalues of A and F
change by the same amount.

These are useful characteristics of aggregated models, and
represent advantages of aggregation over other methods of model

reduction,

N e R e e oA,

e S Do s
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CHAPTER 6

APPLICATIONS

6.1 Introduction

In Chapter 2 a derivation for eigenvalue-eligenvector
sensitivities has been given, These sensitivities serve as the basis
for the eigenvalue tracking approach developed in Chapter 3.

In Chapter S5 these sensitivities have been extended to aggregated
models of large scale systems. Moreover, a criterion for selecting the
order of the aggregated model has been developed.

In this Chapter applications are considered for three specific

areas:
1. Dynamic stability evaluation of a multi-machine system. This
consists of a three-generator five-bus system supplying power to

both dynamic and static loads.

2. A reduced aggregated dynamic model for a thermal generator

connected to an infinite bus system.

3. An algorithm for stabilizing decentralized systems,.

101
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6.2 Dynamic Stability Evaluation for a Multi-Machine System

This section demonstrates the application of the tracking
procedure to the dynamic stability analysis of a five-bus system ([19].
This is one of the available examples in the literature in which the
authors wused an elgenvalue sensitivity approach for analysing the
system's performance. It is used here in order to compare the results
with already published results., Figure 6.1 shows the construction and
the operating conditions of the 1interconnected system. Table 6.1 and
Table 6.2 show the data for the different machines and 1nduction motors
used i1n the problem. The values given 1in the tables are 1n per unmt
based on 600 MVA and 24 XV. The system comprises three generating units
at buses 1, 2, and 3, the first 1s fossil, the second i3 nuclear, and
the third 1s a small hydro unit., The first two machines are equlpped
with static exciters and stabilizing signals derived from each machine
speed, while the third machine 13 equipped with IEEE type 1 exciter.
Governor effects are 1ncluded in the simulation of the three machines.
System loads are represented as linear static elements at buses 2, 3,
and 4, 1n addition to two dynamical equivalents for 1induction motor
loads at buses 1 and 4. The system equations, linearized around the
operating point, were developed in the state space form using the
efficient technique described in [28). The data used 1in this problem
was taken directly from reference [(28]. Fig. 6.3 shows the main stages
in both modelling and analysis. A standard load flow program (which is
given in Appendix A) hag been used to evaluate the operating point. The

subsystem models for the synchronous machine, the exciter, and the

e s .
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Table 6.1:

Data for the Multi-Machine System

EEAaCar i gl
g %2

Machine 1 Machine 2 Machine 3
555 MVA, 24 KV 635 MVA, 24 KV 66 MVA, 13.8 KV
= 1.232, = 1.12, = 0841 = = ,0Q72, = 072 = 1.7, = . . = .4
xma 23 xmn xm 8 xma xmn 1 xﬁ 7 xma T xmn 99 xw 2
xn = .171, xxa = .096, xxn = .2U45 xn = .097, xxa = .08, xxn = .08 xn = .37, xxa = .261, xxn = .h9
1m = .0008, 1m = .0017 1m = .001, 1m = .0084 re = L0011, r, = .0081
= . ’ = . = ., y = .12 = . . = .1
T xd 0088 1xn 0027 M d 06 1xa 12 g 06 1xn 2
Exciter-Stabilizer Exciter IEEE Type 1
= = = . = 200, = 10, = .00 = 200, = -, R = .04, = .
xm 350, xo 6, Hm 002 xm 00 xo 0 Hm 002 x> 200 xm 17 xm 0 mm 95
HO = 1.4, H< = .03, H> = .121, HO = 1.4, H< = .03, H> = .12, ﬁ> = .05, Hm = .95, Hﬂ = 1, Hc = .03 sec
Hx = ,033 - ﬂx = .03
Turbine-Governor
- _ _ - _ " - 1 - - -
NO = .04, Aw = .1, Hc = .3 sec. xa = .04, 4w = .4, Hz = .3 xo = .0u, H_ = .4, Hw = .4, Hm = .35 sec
Table 6.2: Induction Motors Data
M x = 62 x = h? X = 61,2 r = .084 r = .0608 H = .3
S r sr 3 r m
IM2 x = U6.4 x = U6 4 X = 46 r = .0304 r = .6304 H += .575
s r sr s r m
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governor are given in Appendix B. These models are taken from reference
{28). The system has 50 states, 13 for the fossil unit (including tﬁe
exciter and the governor), the same for the nuclear unit, 14 for the
hydraulic unit, and 5 for each of the induction motors. The eigenvalues

listed in Table 6.3 were obtained.

Table 6.3: System Eigenvalues at the Base Case

-.528%31.999 -2.587+39.025 -10.364 ~19.97+3376 -49, U494
-.669+5.988 -2.828 -10.443 -20.704 ~52.198
-.693+3.1183 -3.196 -12.123 -30.663 -152.1
-.74928 -3.22+3j2.006 -13.41%319,03 -31.142 -168.3
-1.0008 -7.576t320.97 -13.575 -32.9685 -239. 4+ 31364
-1.33273 ~-8.226%329.45 -14.413¢£3375  -34.012 -500.7
-1.407+36.072 -8.312%j21.23 =15.17£3430 -34.4% 561 -502.4

Eigenvalue sensitivities of the whole eigenvalue pattern were
obtained w.r.t. a variety of control parameters. Using this information
the three complex pairs of eigenvalues corresponding to the main
torque-angle loop performance of each machine were identified as well as
the AVR modes. The eigenvalues corresponding to the torque-angle loops
are listed in Table 6.4, along with their normalized sen;itivities.

The third row of the table shows the torque-angle mode of the
first machine and its normalized sensitivities. It can be noticed that
higher-orders than the second are negligible, Figure 6.3 illustrates

the exact movement of the real part of this mode as well as the

e ——n
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Table 6.4: Normalized Eigenvalues Sensitivities
w.r.t. Exciter Gain (KE1 = 350)

2 3

x 2 . L
E1 e e
Kg 42350 Kg 12350 Kg 12350 Kg 42350
- .669%35.988 .034%3.001 - .08:3.906 0.£j0.
-1.407¢ 36,072 - .076%3.089 .11£3.067 0.%30.
-2.587%39.025 1.003%3.089 -1,198+3.01 0.003%j0,

different estimates over a wide range of the exciter Rain KE1 (E denotes

exact, i = 1, 2 denotes the ith estimate). The second-order =stimate is
a good representation for the exact movement up to 30% decrease and for

any increase in K This is due to the fact that the change in this

E1’
eigenvalue for KE1 > 250 18 very small compared to that which occurs 1in

the range K.. = 75 - 250, therefore, choosing K

E1 = 350 (19] as a base

E1
case is not a good choice. To make the previous notice clear, a new
base case KE1 = 200 was chosen. Table 6.5 lists the torque-angle and
the AVR modes of the first machine with their normalized sensitivities.
The table demonstrates clearly the importan;e of including higher—orger
eigenvalue sensitivities, Figures 6.4 and 6.5 illustrate the movement
of these modes. Fb;’tracking the torque-angle mode, it 1s necessary to
include higher-order eigenvalue sensitivities in order to obtain a good

estimate without resolving an eigenvalue problem. For the AVR mode, it

is important to include such higher-orders and two base points to give

o mw——ea

[ R
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better results. The sensitive modes to the stabilizer time constant TQ2

are listed with their normalized sensitivities in Table 6.6. Figures
6.6 and 6.7 illustrate the movement of one of the dominant modes and the
real part éf the torque-angle mode of the second machin? over a wide
range of TQ2. Again, Fig. 6.7, ‘illustrates the case where the
eigenvalue changes from real to complex and back to real. As mentioned
“before 1n Chapter 3, it is recommended to use more than one base case to

\
have satisfactory results.

Table 6.5: Normalized Eigenvalues Sensitivities w.r.t. KE1(=200')

2 3
A 3\ 3 A 37X
3KE1 aKé\ BKE‘

KE1=200 KE1=200 KE1=2OO KE1:2OO
-3.451£39,.018 2.43%£5.17 - 3.54%3,587 2.33t3.64
-8.439%320.75 ~2.78%116.29 16.31t31.6 9,03*323.81

Table 6.6: Normalized Eigenvalues Sensitivities w.r.t. TQ2
A 3A 32A 33A
T2 3ng . arg3

T02:1.u TQ2:1.‘4 TQ2:1.U TQZ:T,U
- .7514 .799 . -.8939 ‘ .5436
~1.465¢ j5.9988 -.1503£3.1562 JATHIE,1522 -, 148343,1563

+

oo e ekl mbie P
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~

6.3 A Reduced Aggregated Model for a Thermal Generator ~ Infinite Bus

sttem
6.3.1 System Model

This consists of a synchronous machine with its control equipment
connected to an infinite bus-bar as shown in Fig. 2.3. The block
diagram of* the thermal generator is shown in Fig. 6.8. The mathematical
equations describing the state of the model at any instant, consist of
machine equations, power transfer equations relating the mechanical
input power and the electrical output power, and both the excitation
system and the turbine-governor system. Of these, the first two can be
obtained from previous work (Anderson [27]) 1n which the synchronous
machine is modelled in detail. The excitation system considered 13 a
IEEE type 1 system (a continuously acting regulator), shown in Appendix
B, the exciter .data is given in Table 6.7. A general governor model
that can be used for both steam and hydra turbines 1s used. Data for
the different constants included 3s well as the block diagram
representation are shown 11n Fig. 6.9. The data for the machine
parameters are listed in Table 4,1,

The system can be described by the equations

x(£) = A x(t) + B u(t) : (6.1)

y(t) = C x(¢%) (6.2)

where x(t) ¢ R,S. u(t) € R2. and y(t) ¢ RS are the states, inputs and

the outputs respectively. The fifteen states are seven states for the
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Table 6.7: IEEE Type 1 Excitation System Data

25. .2 -.0us .56 . 0896 .35 .06 0.

machine dynamic representation and four states each for the excitation

and governor-turbine systems. The states are as follows:

vy beg ¥uq Yq Yqk 2 5 Y1 Y3 YR %rd Ta T T2 Pyl
T

- [
4 ‘Vref. Pmo]

y=(v v e . o 6JT
d q fd

T
The matrices A, B and C are given on the next pages. The eigenvalues

of the system are given in Table 6.8.

Table 6.8: Eigenvalues &f the System

s
7

-. 12502466 0.44913661+39. 148968 -1.3189234+3.93799557

~5.036724 ~9.,481705+ j14.702115 -9.929984
-13.546994+)376. 336 ~20.0178 -37.062862

-46.34988 -10000.




§:

118

6.3.2 Choice of the Order of the Reduced Model

Using the criterion presented in Chapter 5 for choosing the order
r for the reduced model, the results obtained are shown in Table 6.9.
This table does not show a unique choice for the problem. Of course,
r=14 is the best which is obvious. But on the other hand, this table
glves more than one choice, for example, r could be either 5 or h. Also

r could be 9. For this example r = 6 was considered.

Table 6.9: The Choice of the Reduced Model Order

Stip Modeerrder Ur = E%%;f%:T [2/76-r + 1] Vl = —%:l‘
5, L

1 1 14,44 -

2 3 12. 49 1.16
3 5 4,6 2.72
4 6 2.1 2.18
5 8 1.68 1.26
6 9 .72 2.33
7 11 .5 1.48
8 12 21 2.38
9 13 .12 1.75
10 14 . 0003 400.

s A, Mre s
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{u&5m1 .15E+02  -,99E+01 -.38E+03 .25E+03 -.16E+03 .67E+02 0
.53E+00  -.20E+01 .14E+01 O 0 0 0 0
J1TE+02  .25E+02 -, 43E+02 0 0 0 0
.38E+03  -.89E+02 -,16E03 .58E+02 -.66E+02 .69E+02 .16E+03 O
0 0 0 .11E+03 -, 12E+03 0 0 0
.37E+00  -.14E+00 -.26E+00 -.65E+00 .50E+00 -.21E+00 O 0
0 0 0 0 0 .38E403 0 0
-.43E+02 .12E+04  .18E+04  -.T1E+03 .32E+03 .19E+05 -.12E+O04 -,10E+05
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ~.80E+0U
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 J10E+02 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 .75E=01 O 0 0 0

0 0 .32E+00 0 0 0o 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 ’
0 0 0 0 0 0 0

0 0 0 .21E+00 0 0 0

0 0 0 0 0 0 0

0 0 .T2E+00 0 0 0 )
-.10E+01 .U2E=01 .28E-02 O 0 0 0
-.80E+04 -.20E+02 O 0 0 0 0

0 J11E+01  .59E-01 O ‘o 0 0

0 0 0 -.13 0 L6E+01 -.59E+01
0 0 0 0 -.1E402 0 0

0 ) o, 0 .5E+01 -.5E+01 0

0 0 0 0 0 L2E+02 -, 28402

>~
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T 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 .8E+04 0 0 0 0 0
0 0 0 0 0 .SE+«1 0
.39E+01 -, 1UE+02  .11E+02  -.U41E+00 -.25E403 -.25E+03 -.6TE+02
-4 .B9E+02  .16E+03  —-.6E+02  .68E+02  .1UE+04 -.16E+03
c =10 0 0 0 0 0 0
0 0 0 0 0 . 1E+01 0
0 0. 0 0 0 0 . 1E+01
0 0 0 -.75E-01 0 0 0 0
0 0 0 0 0 0 0 0
00 0 JIE+01 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 |

o A A e e e
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6.3.3 The Reduced Model Matrices

Using the aggregation law defined in equation (4.5) (Chapter #), where K is
defined in equation (4.18) and is given below

L 12E-06  -.28E-05 -.14E-06 ,26E-06 ~.14E-05 -.26E-03 -.53E-03
.5 J1TE402  .23E401 298 ~0.13E+01 —.U6E+03  .2UE+02
-, 15E+01 LT6E+01 -~ 19E+01 -, 89 .85 .95E+03 . 1ME+02
K=l 82E-01  .93E+01 .62 -0.11E-01 .13 -.3E402  -.59E-01
-.13 .20E402 .54 -.31E-01  -.66 -, 2UE+02 .63
-.2UE02  .75E-01 =-.23E-02 -.11E-02 =.13E-02  .11E+01  .54E-01
- 14E-07 -,16E-03 .18E-07 .68E-05 .22E+01 .2E-01 .UE-01 -.65 |
~.69E-02  .15E402 .86E-02 -.28 -.22E+02 -.78 -.55E+01 L UE+O1
-, 14E-01 ~,84E+01 ,18E-01 .59 -.11E+02 -, 22E+01 -, 27E+01 ,83E+01
.258-02  .92E402 ~-.32E-02 -.37E+01 .53E+01 =.11 -.26 ~ 17E401
-. 11E-01 .59E+02 .13E~01 -,21E+01 .88E-01 -.32 -.53 -. 11
~.57E-04 .11 .T2E-OH -,46E-02 -.WQE-01 -.25E401 -.25E+01 .19E~01]

The reduced order ,model matrices F, GT and H are obtained wusing

equations (4.19), (4.7) and (4,8). These are given below

-.125 0 0 0 0 0
0 .15 .91E+01 0 0 0
0 -.91E+01  -.U5E+00 0 0 0
i 0 0 0 -. 13E401 .938 0 ' ;‘
0 0 0 -.938 ~.13E+01 D
L 0 0 0 0 0 -.5E+0 1]

B et
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-.17SE+01 . U7E+05 . 21E+05 . T3E+03 . 2UE+OU -, 22E403

T
5 = . and
.35E402  .S8E+ON  —.12E405 . 14E403  -.25E403 . 14E+02
J18E401 -.16E-01 .11E-01 .15 -.37 -.66 |

L9401 -.T1E-03  .16E-01  .292 .60 .75
H= [-.33E=01 =.16E-02 =.83E-03 -.28E-02 .6UE-02 —.B8E-02

.47E-03 .67TE-06 . 14E-05 .58E~05 -.27E-04 . 12E-04

-.67E-02 .31E-04 ~,78E-04 -.9UE-03 L21E-02 -.UE-03

Examining the matrix F, which is in the Jordan form, it 1s clear
that the dominant eigenvalues are retained in the reduced model. These
are assocliated with (using sensitivity analysis) steam reheat time
constant, torque-load angle loop, interaction between the machine
dynamics and the excitation system and servo-time constant respectively.
As stated in the earlier chapters, the torque-load angle loop mode is

very important and should be retained in the reduced model due to its

importance in dynamic stability. A detailed sensitivity analysis for.

the large system has been presented by Elrazaz and Sinha [45]. The pair
of the complex eigenvalues -9.48+j14.7, which is associated with the
Automatic Voltage Regulator (AVR) is not included in the reduced model
(s4]. This has been done to investigate the effect of céanging system
parameters on an eigenvalue which is not retained in the reduced model.
Table 6.10 shows the sensitivities of such a mode w.r.t. both the
exciter and stabilizer time constants. These indicate that such a mode
1s quite sensitive to these parameters. So 1t should be checked for

satisfactory performance. Tables 6.11 and 6.12 show the eigenvalues

O SO
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Table 6.10: Normalized Sensitivities w.r.t.

Exciter and Stabilizer Time Constants

Sensitivities w.r.t. T

E Sensitivities w.r.t. ﬂo
Eigenvalue
1st - 2nd - 3rd-order 1st-~ 2nd -~ 3rd- Yth-order
-9. 48+ 3514, 7 <3310 --05+37.6 -08+36. 35 2.22+j12.6 . 67+36.20 4.66+3U4.66 - 10+350.
Table 6.11:

to Exciter Parameters Axm. amv

Normalized Sensitivities of the R

educed Model Eigenvalues With Re spect

Sensitivities w.r.t K

Sengitivities w.r.t T
. E E
Eigenvalues
1st -~ ’nd-order ist- 2nd- 3rd-order
-3 -1 -6 -2
-. 45+ 349,15 - 16x10 ~+3.03x10 -05x10 "+3.05x10 - 1543.02  -.01+j.12 -.02+3.01
~1.32+j.94 u.ooioLuu.of_oL .o_ioumﬁ..m:oum -.05+7.08  -.004+3.015 -
\
V :
. o

B ek £ andonad



124

Table 6.12: Normalized Sensitivities of the Reduced Model
Eigenvalues w.r.t.Governor Parameters

Sensitivities w.r.t T5 (steam reheat time constant)
Eigenvalue
1st 2nd 3rd 4th-order

~-. 12502 . 125 -. 125 . 125 -. 125

sensitivities of the reduced model w.r.t. the original system control
parameters. These sensitivities have been calculated using the formulas
derived in Chapter 5, It should be mentioned that these sensitivities
are exactly the same as those obtained for the corresponding eigenvalues
in the original system [(45] and {55]. Moreover, it is important to
notice that tracking these modes in the reduced model w.r.t. variations

1n these parameters 1s much easier (less computations) than in the

original system.

6.4 An Algorithm for Stablizing Decentralized Systems

6.4.1 Introduction

The problem of stabilizing large-scale sSystems through
decentralized feedback has been a subject of considerable interest in
recent years as appears from the comprehensive survey by N,R. Sandell et
al. [56]), also as in [57] and (58]. Siljak and Vukcevic (59, 60] have
studied the question of stabilizing large-scale systems through
decentralized constant state feedback. These authors have considered

the control law in the following hierarchical form:

B e RS Y
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T
£ %46 (6.3)

T m

ui(t) z - K1 xi(t) - I K j xJ
j=1
J#1

for the system described by the following equations

3
xi(t) z Aixi(t) + Jf1 AinJ(t) + B1 ui(t) (6.48)
J#1
yi(t) = Cy xi(t). (6.5)
ni m, q,
where xi e R °, ui e R ' and yi e R are the states, inputs, and

outputs vectorg of the ith-subsystem respectively.
Siljak and Vukcevic have considered Ki and Kij a3 gain vectors
representing the feedback.of the local and global states. Also they

considered u, as scalars for all 1. In this algorithm these

i
restrictions are removed. Ki and Kij are gain matrices and uy is a
vector of dimension mi. By making use of Siljak's Lyapunov theoretic

condition for stability of large-scale systems, these authors have

developed a technique for computing the gain vectors Ki and Ki Their

j°
procedure’is an jiterative one and if the Sevastyaniv-Kotelyanski
conditions are not satisfied at the last step, one has to go to the
first step again. They have included examples for which the gains are
rather large and impractical. But it should be clear that their

approach is quite good because most of the computations are carried out

on the subsystem level,.

Sw o Vas ot
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In this section, an algorithm is presented for stabilizing the
system using decentralized state feedback and small part (if necessary)
of global state feedback. This algorithm is based on the ideas of

partial modal control, multistage control and eigenvalue sensitivities.

6.4.2 Multistage Partial Modal Feedback Control

N
1

Le . 1 =1, 2, ..., n be the eigenvalues of the transpose of

the closed-loop system matrix at stage Kk, in descending order with

respect to their real parts, and let ka). i =, 2,

., n be the
i

corresponding eigenvectors.

-

The decentralized state feedback law is described by the equation

PTG L (6.6)
where
L
| (k) (k)
- T
Gy D 2=1 (9 o) 2 (K)
gi = I T - wJ . (6.7)
j=1 w{k) b1 T—T (x;k) _ X(k))
J =1 J
L£]
(k) . .
In the above equation, the vector wJ is obtained from the
-
eigenvector w(k) by making all elements of w{k) zero except those which
J J
correspond to the subsystem i. Also o:k) are defined as the critical

elgenvalues which i3 the set of all eigenvalues lie to the right of

specified vertical line in the complex frequency plane (as shown in Fig.

ot b, is the largest

6.10) which are being adjusted at stage k, and wJ i

PR
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Critical Eigenvalues

oy

o
()

ol .
0
b

Fig. 6.10 Locatlons of Eigenvalues in the Complex Frequency Plane
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o

element in the jth-row of the mode-controllability matrix defined by
Porter and Crossley [22].

Using only multistage partial modal control, it may be possible
to stabilize the system but, generally, a rather large number of
iterations will be required. This may often be very time consuming
since an elgenvalue problem has to Dbe 3solved in each iteration.
Moreover, in some cases, it may not even be possible to achieve the
desired degree of 3tabilization due to the constraints on the gains Ki'

Another technique to stabilization 1s to wutilize eigenvalue
sengitivities for adjusting the gains l(.1 such that the critical
eigenvalues are shifted to the desired region in the S-plane. Because
of the very nature of these sensitivities, they are valid only for small
changes, unless higher-order terms are used.

A suitable combination of these two techniques is much more
power ful than using either of them alone. This is the main 1dea behind
this algorithm, and will be discussed in further detail i1n the following
sections. In some cases, it may be necessary to add a small amount of
global feedback in addition to the decentralized local feedback in.order
to achieve a desired degree of stability. This can also be handled very

well using only eigenvalue sensitivities.

[
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6.4,3 Effective Eigenvalue Sensitivity Region

First and second-order eigenvalue sensitivities w.r.t., a change
in the system parameter § are given in Chapter 2. For a change Af in
the system parameter £, (in this case £ is an element of the gain
matrices Ki and Kij)' using Taylor's series expansion, the corresponding

change in the ith eigenvalue xl can be approximated as

I, BZX.
1 1 i >
e U TR B (a8)
§ g g

neglecting higher order terms.

Evidently, this approximation 1s valid only for small changes Agf.
Using higher-order eigenvalue sensitivities inlarge the effective
eigenvalue sensitivity region. If we use the above in an iterative
scheme to shift the eigenvalue xr by gain adjustment, it must be kept in
mind that this is possible only over a certain region in the complex
frequency plane. This region will be defined asAthe effectlive

eigenvalue sensitivity region.

6.4.4 Statement of the Problem

The problem can now be stated as follows: For a given decentra-
lized system described by equations (6.3) and (6.5), it is required to
obtain a complete (or partial) decentralized feedback control based on
combining multistage partial modal control and eigenvalue sensitivities
which will shift the critical eigenvalues to a specified region 1in the

complex-frequency plane subject to the following constraints:
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(1) All the critical ergenvalues lie to the left of the vertical line
g = -M in S-plane, where s = g + Jw 1is the complex-frequency

variable and M > 0,

(ir)  All the noncritial eigenvalues should lie to the left of the

vertical line ¢ = -(M+(C), where C > 0.

(111) The elements of the feedback matrices Kl and KlJ must lie between

the lower and upper limits &1, Klj and Kl, Klj' respectively.

\

(1v) The direction of information flow between the various subsystems
may not always be bidirectional, for example, it may be possible
to feedback the states from subsystem 1 to subsystem ), but not

vice-versa.

6.4.5 The Proposed Algorithm

An 1terative algorithm 1s shown 1i1n the digital computer flow

chart shown in Fig. 6.11. The various steps are outlined below.

(1) Determine all the eigenvalues of A and then the eigenvectors

corresponding to the critical eigenvalues.

(iv) Design the multistage partial modal control subject to the

constraints on Ki'

[N PP P

= i+



START

k=0, L=0, NN=0, KMAX, LMAX, NMAX, M,

!

Form the svstem
A,B, matrices

Compute

OUTPUT:
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1

y

FND

OUTPUT:
A,K K
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Vi
(k)
Compute: u, T =gy x(t)
(%) Design multistage .
2 iven by partial modal control ____Jlnpuc which has a
:q (5.7 subject to the large etrect on one
R contraints on K, or more ot cthe ,
elements 1 critical eigenvalues 3
-k —(k-1) :
RY ) = A - b.?,,(k !
i”i ;
NO
NO YES
} | Compute:
NN=0 v L=l 20
YES - !
Using Tavior serie: Effective eigenvalue Nth - order eigenvalue
to update Xi’wi’vl sensitivity region and elgenvector sensi-
. N for - subject to constraints|[™ ™ rivicies w.r.v. K
=9t oy ’
. > e n
8K, hange on kl lements
YES
L < LMAX Lsl+l
?
NO
Using Tavlor serieg Effective eigenvalue Nth - order eigeavalue
to update Xi,wi.v sensitivity region and eigenvector sensi-
s '™ subject to constrailnts[®*] tivities w.r.t. X
1=1,2,...,n, for . 1]
s on K,, elements
Akii change 1]
MN=NN+]

OUTPUT:
XK LK
1’71

END

Fig. 6.11 Flowchart of the Algorithm Used to Shift the Critical
Eigenvalues of the Closed-loop Svstem
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(ii1) Calculate tﬁé eigenvalues based on the above design and check for
the stability constraints. If these are not met, repeat step 2.
This should be done for only a reasonable number of iter;tions as
specified by KMAX. '

(iv) Use the eigenvalue sensitivities with respect to Ki to shift the
critical eigenvalues to the desired region.

(v) With these values of Ki' determine the new nominal locations for
all the eigenvalues using the Taylor's Series expaﬁsion. if
necessary, repeat step (iv).

(vi) Calculate all the eigenvalues of the closed-loop system with the
values of Ki now obtained. If these d& not satisfy the stability
constraints, some global feedbéck is required.

6.4.6 Examples

Example 1
This example has been taken from the work of Siljak and Vukcevic

[60]. Consider the system described by the equation

x(t) = Ax(t) + Bu(t)
whe}e

0 1 0 2 0 0 o
0 0 1 3 y 0 0
A s [-2 -1 -1 2 -2, B = |1 0
0 0 0 0 1 100
5 6 0 3 -2 0 1
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The open loop eigenvalues are:
5.1, 1,7, =1.3, -4.3 + j1.8
The critical eigenvalues are 5.1 and 1.7.
Assuming M = .85 obtain a decentralized state feedback law using

the suggested algorithm and subject to the following constraints:

1. M = 0.8
2. C = 3.15
3. Elements of Ki must lie between -50 and S0.

The following are the closed loop eigenvalues obtained:
-.9, -1.3 + j.8, ~4.5, =25
and-the corresbonding decentralized gains K1 and K2
| K} = (37.6 25.5 6.1, and K} = (39.4 23.9] -
The same example was considered by Siljak and Vukvevic (591]. Their
procedure gave the following closed loop eigenvalues:
-25.9 + j3.5, -36, -68 + jb

with

Kf = (93748. 6874. 149.] and Kg = (1247 73] .

hne

Example 2

Consider the system described by the pair fA.B] where

1.0 . 11.5 86.5 4.0 22.5 1 0
0.45 0.0 - 4.09 8.91 - 0.82 0 o0
A=10.18 1.0 8.36 0.36 3.27 B= '0 O
0.0 1.25 14.75 5.0 2.75 ! 1
0.18 0.0 - 9.8 0.18 - 6.36 0 1

£ S
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The open loop eigenvalues are:
11.54, 0.76 + j1.83, -1.15, -3.89
The critical eigenvalues are 11.54 and 0.76 £ j1.83.

For this example M = 0.5 and C =z 0.3 and no information [lows
from subystem (1) to subsystem (2). Also the upper constraint on Ki and
Kij elements are 100 and 10 respectively.

Using the proposed algorithm the closed loop eigenvalues are

-0.54 + j1.9, -0.64, 0.8, -18.9

with
T T
K1 = [2.07 10.23 72.751, K12 = [3.0 10.6 )
T T
K21 =(o0 0 0 1, K2 = [(7.46 9.67)

The same example was considered by Siljak and Vukcevic [5)] and the

closed 1loop eigenvalues were found to be -1.0 + j.16, -10,3, =~11,9,
~15.2 with

K\ = [-127.58  96.33 105.20) K, = [166.25 36.63]

T T

K21 = [ .05 .68 .62] K2 ={ 0.2 -071]

The computations (61,62]) are carried out on the overall system
level only for the partial modal control iterations. Which is small in
general. It appears from the algorithm steps that it is based upon
trial-and-error procedure, However it should be emphasized that the
solution for a failed iteration is a starting point for the next :one.
Moreover the sensitivities obtained in this iteration are of great help.
It is possibie that only eigenvalue sensitivities will be used to
stabilize the system in the next iteration specially using higher-order

sensitivities.

PO
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6.5 Summary

The techniques and the concepts developed in Chapters 2 to 5 have
been applied to three specific areas.

The first is the dynamic stability evaluation for a multi-machine
system in which the effect of the subsystem control parameters on the
overall system eigenvalues pattern has been examined. The importance of
including high-order eigenvalue sensitivities has been emphasized.
Also, the limitations in the proposed tracking approach are given.
These are, specifically, the cases where the eigenvalue changes its
nature (real <--> complex). Also, the cases in which the eigenvalues
characteristics have a turning point. To overcome these limitations, it
is recommended to use more than one base case, The results obtained
agree with the previously published results of a Ph.D. thesis at
McMaster University [28]. In the second, the concepts developed in
Chapter S5 have been applied to produce a reduced-order ,model for a
system of synchronous machine connected to infinite bus. These concepts
provide a great insight into the problem of choosing the order of the
reduced model as well as the sensitivities of the reduced model w.r.t.
the original system parameters, The results obtained for the
sensitivities of the reduced model agree with the results of a M.Eng.
thesis at McMaster University [55].

The third application is to the area of stabilizing the
decentra%}zed control systems. This latter application is a good start

for future work.

e =
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CHAPTER T

CONCLUSIONS

This thesis demonstrates the importance of the eigenvalues and
eigenvectors and their sensitivities with respect to system parameters
for power system dynamic stability analysis.

The eigenvalue-eigenvector sensi£1v1ties are generalized by
deriving expressions for the Nth-order sensitivities. These expressions
are recursive in nature, hence the calculations of the high-order terms
do not 1involve much additional computation, but lead to considerable
improvement 1in evaluating the actual changes 1in the eigenvalués and
eigenvectors due to large variations in the system parameters.

Better identification of the different system modes can be
achieved by proper interpretation of higher-order eigenvalue-eigenvector
sensitivities especially in the case of existing saddle points in the
relation between the eigenvalues and the system parameters.

A comprehensive and efficient approach has been presented for
tracking a subset ‘of the system eigenvalues ov;r a wide range of
parameter variations. This approach is an extension to the approach
presented in a recent Ph.D. thesis at McMaster University. The problem
of estimating the error involved in caiculating an estimate for the new
location of 4n eigenvalue without computing the exact value has been
solved. The limitations of the approach has been discussed.

This approach can be applied to any engineering system dynamic

137
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stability study subject to large parameters variations. For example, in
structural dynamics, the sensitivities of eigenvalues and eigenvectors
can be used to identify the unknown elements in the stiffness and mass
matrices of a structure for which a limited number of eigenvalues and
eigenvectors have been measured [69] and t70].

An interesting result which has been achieved is that the first-
and Nth-order sensitivities of any ergenvalue of the aggregated model
with respect to a certain parameter of the original system afe identical
to the corresponding sensitivities of the same eigenvalue of the
original system with respect to that parameter regardléss af the choice
of the aggregation matrix. The resultg obtained for the aggregated
models of power system dynamic stability models are consistent with
previous studies (551].

A criterion has been developed for answering one of the most
demanding questions in the model reduction area, which is how one can
choose the order of the reduced model.

A deep understanding for the aggregated modél for the single
machine-infinite bus system has been achieved by implementing the
eigenvalue sensitivities and the criterion for choosing the reduced
model order,

The results obtained for both the lightly hydro-electric
generator and the multi-machine examples have shown consistency and
agreement with previously published results [28].

The following. are the original contributions claimed ’for this

work :

S En e e et



(n

(2)

(3)

(4)

(5)

(6)

139

The third- and the Nth-order -eigenvalue and eigenvector
sensitivities with respect to system parameters have been derived.
These are generalizations to what had been presented in an earlier
Ph.D. thesis at McMaster University.

An efficient eigenvalue tracking approach has been extended and
generalized for determining the effect of( large changes in the
system parameters on the eigensystem pattern. This approach
enables the choice of the order up to whieh the. eigen;alue
sensitivities should be calculated 1in order to obtain a good
estimate of the new location of the eigenvalue.

Analytical expressions are derived for the first- énd the Nﬁh-order
eigenvalue sensitivities of the aggregated models withgrespect to

the parameters of the original high-order system. It is shown that

these sensitivities are identical to the <corresponding

sensitivities of the original system and independent of the choice
of the aggregation matrix.

A criterion has been developed for selecting the order of. the
reduced- aggregated model of a given high-order system. The
eigenvalues of the system are not restricted to be real.

A comparison of four different methods of model reduction as
applied- to power system dyanmics has been given. This is the first
application of the aggregated partial realization method of model
reduction to power systems,

The significance and applicability of the previous .theoretical

achievements have been tested by considering different problems in
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power system dynamic studies and have shown consistency with

previous results [28] and [(55].

This research work has revealed various promising topics for

further investigation such as:

(1) The need to obtain analytical expressions for the changes in the
eigenvalues withou§ using Taylor's series expansion. This may be
achieved by considering special structure for the A matrix in the

/ equation ; = Ax.,

(2) The formulas derived in Chapter 2 for the gigehsystem sensitivities
have been used in analysing the podér system dynamics. It will be
desirable to apply these to design problems, such as evaluating
adequate parameter settings for both the exciter and stabilizer
models [71] and [72].

(3) Examining the formulas of both the eigenvalue and eigenvector
sengitivities indicates the sparsity of the matrices involved.
Implementing sparse-matrix techniques [68]) will reduce both the
computation time and the storage memory requirements.

(4) A necessary condition for multiple load flow solutions has been

derived in (6U4] and [65] as

a Bb =0
where
2N
B = Z Hi'
1

Jroc Bty o bt
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Hi is the matrix of the node admittance, a and b are the eigen-
vectors of the matrix B. It may be worthwhile to use eigenvectors
sensitivities to study the sensitivities of these multiple

solutions with respect to system parameters.
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APPENDIX A

LOAD FLOW ANALYSIS [66)

The primary function of an energy system is to provide the real
and reactive powers demanded by the various loads connected to the
system. Simultaneously, the frequency and the various bus voltages must
be kept within specified tolerances, independent of the fact that the
load demands undergo large, and to a certain extent, unpredictable
changes.

The 1load flow analysis of a power system consists of the
calculation of the power flows and voltages of the network for specified
terminal or bus conditions. A single phase representation of the system
is adequate since the power system is usually balanced. Associated with
each bus (say the ith) are the following four quantities:

Pi' Qi - real and reactive powers respectively
Vi' Oi - voltage magnitude and phase angle respectively

There are three different types of buses in the system which are
classified as type 1, type 2 and type 3.busé;r[66]. This c%fss}fication
is done on the basis of the data supplied at each bus and the unknowns

which are to be determined, as follows:

Type 1 - Generation or load bus: P, and Qi are”specified at this bus

i
and Vi and c{ are the unknowns.
Type 2 - Voltage controlled bus: Pi and Vi are 8specified at this bus

and Qi and o, are the unknowns.
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Type 3 - Slack bus or reference bus: Vi and oy (usually zero) are

specified at this bus and P, and Qi are the unknowns.

i
For any system orne bus is selected as a reference bus. This
implies, for example, that for a two bus system there are 4 unknowns and

I equations to be solved.

The Static Load Flow Equations

The static load flow equations of a power system are nonlinear
algebraic equations; for a two bus system such as shown in Fig. A.1

These equations are given as follows:

2

\'f V.V i
. i, iy _
PGi - PDi - R sin o + X[ sin [a - (ci—aj)] =0
(A.1)
vf vl Vv,
Q. ~-Q. +— - cos a + cos {a + (0,~-0.,)] =0
Gi Di Xo X XL i7j
i=1,2
=21

where the suffix G represents generation and D represents demand.

Zger T JXL-
y 4L
sh X
- C
a é-;-(a«n
L
where r, xL and x° are the transmission line series resistance, series

reactance and shunt admittance respectively. For an N bus system.otherq

ek e

et e R
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Figure A.1 Two-Bus Example System - its Equivalent Circuit

will be 2N equations and 2N unknowns.
Some important charactéristics of (A.1) are given as follows:
These equations relate voltage and power in the power system.
\Frequency does not enter explicitly into the equations, but it does
enter into the reactances of the power system:'since the variation in
the frequency of the system is very small, the reactances in the system
are normally taken to be constants_in a load flow analysis:
and o, appear in -(A.l) in the form of

i J

differences, and thus only the difference of g, and c- can be

i J

determined. For this purpose, one bus is chosen to be a slack bus with

The phase angles ¢

a phase angle of zero and all other angles are then determined with

reference to this bus.
5 These eguation§ form a set of simultaneous nonlinear algebraic
. Y

equations and any suitable method may be used to solve these equations

(66,67]. In this study, the Gauss-Seidel method was used to solve the
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load flow equations resulting from Fig. 6.1, which consists of a total

of 10 simultaneous nonlinear algebraic equations. All buses, except the

fifth (I.B.) (which was taken as the reference bus), were assumed to be

type 1 buses. The method of load flow analysis is given by algorithm

A.1 [66] as follows:

Algorithm A.1

NxN

let Y ¢ C be the nodal admittance bus matrix with elements

1,j°
Step 1.

Step 2.
Step 3.

Step 4.

Step 5.
Step 6.
Step 7.

Step

<o

Step 9.
Step 10.

Step 11.

Input: Bus series and shunt impedances, Starting and End
points indices, load impedances, Slack bus voltage,
Real and Reactive power for other buses, number of
buses interconnected (N). Convergence criterion
parameter (e). Assume the Nth bus as a reference bus.
Assemble nodal admittance bus matrix ¥ e C X\
Assume initial values of Vf, i=1 ..., N1
Calculate parameters Ai' Bi,u'
eosy N (u # 1) using equation (A:2) and (A.3)

i=1 2, ooy N=13 1

f

-
-

n
-

Set iteration count v = 1
Set Bus count i = 1, AV =0
max
v+1
Calculate Vi using equation (A.4)
Calculate |AV¥+1| uging equation (A.5)
If lAVI+1| Z-Avmax go to Step 10, otherwise go to Step 11
vl

Set avV .o = |'AVi J

Set 1 = 1+1

——

wE e v




Step 12.

Step 13.

Step 14,

Step 15

Step 16.

If 1 < N-1 go to Step 7

1 =2 1' 2' seny N"1

If av > e, let v = v+1 and go to Step 6
max

Calculate PN' QN using (A.6)

Calculate 60, i=1,2, ..., Nusing equation (A.T).

i

Where equations (A.2)-(A.7) are given as follows:

Where Y

i,u

Py -39
A1=——Y;—i—'i=]'2' .+ N=1
Y.
B, S A o9 2, .. Niwu=1,2, ..., N
Low 2 4y
! (except y ¥ 1)
A N
v;’*”‘——i—-.zai Vo, 1=1,2 ..., Nel
<v;’>* ys1 C'H M
u#l

i

- N
PN JQN iy y
T !

is the admittance between buses i and u.
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(A.2)

(A.3)

(A, 4)

(A.5)

(A.6)

V; is the voltage of the ith bus in the vth iteration and (+)¥

denotes the complex conjugate of (),

where @

QA

0 0
61 = arg. EQi - 94y i=1,2, ..., N

A i .
z Vi + JI1 xqi.

(A7)
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APPENDIX B
SUBSYSTEM MODELS

B.1 Synchronous Machine

The modeling of a synchronous machine in state space form has
been considered by many authors. Two different approaches have been
adopted in choosing the states of the model. Anderson [73] used the
stator and rotor currents as states. lAlternatively. Undrill [74] used
the stator and rotor fluxes as states. The second is followed in this
thesiéi The equations of a model based on linear approximation around
appropriate operating condition, for a synchronous machine, are taken

directly from reference [28)]. These can be presented in matrix form as

follows.
Bea | 9 fa b gq 8l
A‘l)d —(A)ors Aid wo
By | wo'Kd g | * 8y
A\bq ~0, g ai a W,
A\l,qu- . mOqu_] -Aqu_ . ]
M’fd morfd/xaf'd bw
Yo ¥y Va0 Berd
+ Boeq | +
Yo M’q -wdo
A
L. J L ‘qu_ . o
(B.1)
154 .
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Yegl | *ra *ag %ag 1[teq
8 Ya %4 *aq Big
- - i
Bpq | = Xad Xad XKd Ain! (B.2)
Ay ~-X X Al i
q qQ ‘aq | q
_Aqu‘ i _Xaq XKqJ _Aqu
or Ay = X Al
v v v,
sy = 522 99 [ d (.3)
to to |av
q
- d
AVd] 81y |
_ 1
APO = [ido iqo] + {Vdo qu] (B. W)
Aqu Aiql
4] N
ATy = [igy =iyl [+ [vy  Pgo) | (B.5)
YT .S
a | i q

- - -

B.2 Excitation Systems

Throughout this thesis two types of exciters are used. These are
a modern static exciter and an IEEE type 1 rotating exciter (74].
Machines equipped with static exciters are likely to be providéd with a
supplementary stabilizing signal.

The block diagram describing a static excfter and a power system
stabiliéer. using a signal derived from machine rotor speed, i; shown in
Fig. B.1. This model has been developed and used by Ontario Hydro [75].
A state space representation of this model is given in reference [5).
The exciter is represented by a single time constant transfer function.

The inputs are the stabilizing signal (es) énd the . difference between

-

v o e

ke

[
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the reference voltage (eref) and a signal corresponding to the machine
terminal voltage (ev). The function of the washout circuit is to
eliminate any steady state offset of the speed'signal into the exciter
input. The phase lead compensator is used to cancel out the phase lag
contributed by the machine and exciter. The equations describing the

performance of the exciter-stabilizer subsystem are arranged in state

space form as follow

r- - 1 - - -
e [/t ) ev'l F/Tv
}
efd -KE/TE -I/TE (1+(TA/TX)) KE/TE KE/TE €rd .
- + AVt
ex -1/TQ ex ;
2
e ~T /T -1/T e
y A x X y J
L R e Jd L -
(1 « T,/T Y KK /T K./T
+ A x QE E Aw + EE eréf (B.6)
KQ/TQ
~T
i AKQ/'I‘x | L i
A A
where ex = eb - KQ Aw and ey = ea - TA/Tx ey

The block diagram desecription is shown in Fig. B.1.
The block diagram representing an IEEE type 1 (rotating) exciter
. [74], is shown in Fig. B.2. The equations describing the performance of

a type 1 exciter are arranged’ in state space form as fpllows

JRpRgp—

T e ek e temr s -

£ 5 rm Y A £
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Sensor Exciter
Av, 1 Kg 814
1"'STv 1+STE
Auw K STQ N STA e
‘ Q T*STQ f"'ST; +
washouf circuit| compensafor *le,
4]
Fig. B.1 Static Exciter - Stabilizer Block Diagram
Saturation function
Sg
Sensor Amplifier Exciter
Av 1 K ea ~~
t A 1 84q
— 1+57, T*T%T'A + KetSTg -
S
1+STF
Stabilisation loop
fig. B.2 1EEE Type 1 Excitation System Block Diagram
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e [ -1/T e, 7 VT

v v v ‘ {‘ v
ey ) -(KE+SE)/TE 1/'1’E ey . | i

= . N
-K /T -1 -
eA KA/ A /TA KA/TA e,
e, —KF(KE+SE)/TETF KF/TETF -1/TF ex J ‘
- o (. JL - 3
+ eref (8.7)
KA/TA

B.3 Turbine-Governor Systems

In this section two simplified models for turbine-governor system
are described. The block diagram representation for turbine-governor
model for thermal and nuclear units 13 shown 1n Fig. B.3. The turbine
is modeled [76] by a single time constant transfer function. The input
is the difference between the control power Pc and the feedback signal
through the governor g. The governor is also described by a single time
constant transfer function. The state space representation of the model

is given by the following equation

[ W VG PR VPR UL I 7 PP
‘ I

-1/T K./T

8| 3] 8 [%6""3

-
The dynamic model for a hydraulic turbine-governor subsystem ([76] is

sw (B.8)

shown in Fig. B.4. The state space representation is given by the

equation

s B e =



-l/T1

1/7
3

-1
/T3

—3/T5

-1/T

5

J
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Fig. B.3 Steam Unit Turbine - Governor Block Diagram
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_______ £
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Fig., B.4 Hydro Unit Turbine - Governor Block Diagram
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