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ABSTRACT

This thesis examines the lattice-structure prediction-error filter,
and its application to alr-traffic-control radar for the detection of tar-
gets (such as aircraft) obscured by clutter (unwanted reflections from the
ground or weather systems). The digitally implemented lattice-structure
*filter adapts to and eliminates the clutter.spectrum, producing an output
only when a target causes a change in ghe input signal. Conventional MTIL
filters do not perform this detection as reliably.

Adaptation to an input signal results from the recursive calcul-
ation of the lattice~structure filter's reflection coefficienté. Six
algorithms for this calculation were examined and compared using simulated
radar data. A number of adaptive methods for continuously implementing
these algorithms were also analysed. These included the standard gradient
and least-squares methods, and two new methods deveioped in this thesis,
the simple gradient and adaptive gradient methods. The harmonic-mean
algorithm and the standard and simpje gradient methods were selected as
most apgrop}iate for this application.

The adaptive learning characteristics (both stationary and non-
stationary) of these lattice methods were gtudied theoretically and ex-
perimentally, and quantitative relationghipé‘wcre developed descr&bing
their behaviéur. The performance of the lattice-structure as a radar
clutter filter was exém}ned in terms of improvemen; factor, receiver-

operator-characteristic, and sub-clutter visibility. -Both simulated and
i1ii




actual radar data were used. The actual radar data included’ signals
from aircraft, bird flocks, ground clutter, and several types of weather
clutter. The performance of the lattice-structure filter with this data

was found to be more consistent and consistently better than the con-

ventional MTI filter.
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CHAPTER 1

INTRODUCTION

1.1 The Detecticn Problem with Scanning Radar

This thesis is concerned mainly with the design and analysis
of a specific type of adaptive digital filter having a lattice struc-
ture, and with the analysis of its performance for radar enhancement
using both simulated and actual radar data. Therefore, before dis-
cussing the filter structure in detail, it would be useful to describe
the problem to which it is directed.

The radar signals in question come from a scanning radar used
for air-traffic control in an airport environment. This radar uses
a very directional antenna which repeatedly transmits a short, mono-
tonic pulse of radio energy and then listens for echoes from objects
(such as aircraft) in the environment. (The time delay between pulse
and echo indicates the object's range.) While this is happening, the
antenna is slowly scanning around in a clockwise direction to cover
the entire area in azimuth.

This leads to an important concept, the radar resolution cell.
This cell is a small segment in range and azimuth of the radar environ-
ment, which may be thought of as the space efiectively occupied by a

point object, as seen by the radar. Alternatively, the cell may be

defined as the closest spacing objects may havd to be resolved separately
1



by the radar. In range, the cell dimension is determined by the pulse
length and is typically about 0.1 km. In azimuth, the dimension is
determined by the half-power beamwidth of the antenna pattern, generally
less than two degrees.

In typical radars, because of this antenna pattern, between ten
and twenty pulses may pass through the cell before the antenna has
scanned past the cell. An object in the cell may return an echo from
each of these pulses, forming a ti;e series of samples representative
of the object. If these pulse echoes are detected coherently by the
radar receiver, then the time series contains both amplitude and phase
information; the amplitude being related to the size and reflectivity
of the object (radar cross-section), and the phase being related to
the change in range of the object (Doppler shift). This time series
of samples, taken at a single range and analysed either in blocks or
continuously, forms the basis for many radar signal processing systems,
including the lattice-structure filters studied in this thesis.

The need for some type of processing of the radar signal is
dictated by thg fact that the desired echpes from a target (qugh as an
aircraft) are not the only signals detected. The’aﬁditional,\unwanted
signals, known as "clutter', come from a number of sources within thé
radar environment and can easily obscure the unprocessed target signal.

The most common source of clutter is reflections from the ground,
or from objects at ground level (trees, buildings, etc.). This clutter
is especially strong near the radar site, but may occur at any range

from high objects or hilly terrain. Another major source of clutter is

1]



weather disturbances. Rain, snow, and other storm conditions can
result in strong reflections from large areas of the sky, obscuring any
targets in the area. A different sort of weather-related clutter re-
sults from atmospheric inversion; areas of denser air which reflect or
refract the radar pulse. Echoes created this way are often moving and
may resemble targe;s or cover significant areas. Even small objects

such as birds can be detected (especially in flocks) and may be mis-

taken for aircraft.

1.2 Traditional Versus Adaptive Processing

(3

Processing of the radar signal, for the purposes of this thesis,
will be limited to the function of filtering o&@ a clutter signal, which
might be obscuring ; target signal, while leaviﬁé the target signal (if
present) in detectable form. (Other processing functions may be applied
to the same signals for other purposes.)

The traditional processing technique commenly in use today is
the moving-target indicator (MTI) filter which assumes that the target
of interest is moving (radially to the radar).and that the clutter i;

.
not. It is essentially a high-pass filter applied to detect the Doppler
signal ?n the time series of samples from a constant range. This is

A,

usually implemented using a fixed tapped-delay-line (TDL) canceller,

14
comparing two or more succegsive pulses for any changes.
The assumption that the target is moving and the clutter is not

results in two problems. First, strong targets may be lost duc to a

low radial velocity. This includes slow-flying bird f{locks, which\are

- -



a definite threat to air safety near airpov%s. Second, storms of

even moderate intensity are often moving fast enough to break through
the MTI filte; and thus obscure much of the radar screen. Yet, it is
during such storms that reliable radar service is most needed for air
safety. What is needed i1s a technique not requiring the MIl assumption.

One such technique is to use an adaptive f{ltering system, which
assumes only that the target and clutter have different radial velocities.
This presents a new problem, namely, how to tell what is a target and
what is clutter. To solve this, we may use other characteristic differ-
ences between the two signals. Clutter returns (weather, ground, etc.)
normally have consistent statistical characteristics over a large area
(and thus a large number of samples-in the time series). Target returns,
on the other hand, have different spectral statistics, normally covering
a very small area limited by the resolution cell of the radar.

A number of different schemes have been proposed to take advan-
tage of these characteristic differences. One method of doing this in-
volves classifying the clutter on the basis of spectral information
from-conventional analysis, and then choosing a fixed filter having
appropriate clutter-rejection characteristics (based on the classific-
ation) [2, 30]}. This method has been shown to be an improvement over
the fixed MTI filter. However, the results are not as good as they
might be, largely due to the limited response of the classification,
end-bias effects, and other limitations. Another scheme showing some
success uses a bank of filters (or a fast Fourier transtormer [FFI))

centered on different frequency bands covering the Doppler spectrum.

o



A thresholding system is used to reduce the outputs of filters respond-
ing over a large area (the clutter bands) [42]. This scheme, however,
is limited to a small number (e.g., 8) of filters having correspondingly
wide responses, and targets falling within these bands are also reduced.
Another approach is to use a filter which adapts itself to
remove the clutter signal. (This thesis falls into this category of
approach). A filter which performs this function is known as.a pre- .
diction-error filter (PEF), where the output of the filter is the error
in the prediction process; that is, any signal components which were
not predicted, so as to be filtered out. In ghe fielq of signal pro-
cessing, it is often desirable to make use of é filter like this, which
adapts itself to the input signal in such a way that the error output
is minimized (e.g., to eliminate noise, interference, echoes, ®r other
unwanted signals). This is one aspect of linear prediction (1], the
Pasic assumption of which is that the signal in question can be modelled
as a linear combination of previous inputs and/or outputs of the filter,
One way in which the PEF may be used to detect a target in
clutter takes advantage of the different area coverage of the two types
of signals. By using a large number of previous samples of the time
series and their statistlcs, the value of the next sample in the time
series can be predicted. If the predicted value is then subtracted
from the actual value{ a signal component with similar statistics
(e.g., the continuing clutter signal) will be subtracted (filtered out)
while signal components with different statistics (e.g., targets) will

not.

P
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Another way in which the target may be detected is quite
similar to this, eicept that the filter is allowed to adapt quickly,
so that it adapts to targets as well as clutter. Then, there.is a
significant output from the filter only during a sudden change in the
spectral characteristics of the input signal. This occurs during the
transition from no-target to target conditions, whether or not clutter
is“present.

In previous attempts to use the PEF for this type of applica-
tion, a tapped-delay~line structure has been used [43]. This structure,
in different forms, has been studied for many years and its character-
istics are generally well known {37. However, some of these character-
istics make this particular structure a bad choice for this type of
processing. One of the most important of these is the convergence prop-
erties. As the clutter and target signals have specific lengths of
Lime during which they are present in the time series, it is desirable
that the adaptive f{ilter converge to a new signal in a set period of
time (for instance, so that the clutter may be adapted to, while the

\
target is not). Other negative characteristics include tendencies to
instability, poor resolution, large levels of quantization noise with
higher filter orders, and the inability to alter the filter order during
|

operation. Most of these characteristics are related to the fact that

this structure is adapted by minimizing a single, global error criterion

(4],



1.3 Lattice-Structure Filtering

The negative characteristics of the tapped-delay-line structure
have led to the examination of a more recently developed structure for
adaptive predictloh-error filtering, the lattice structure. This struc-
ture was originally proposed by Burg [5, 6], for use in spectral estima-
tion, and independently derived by Itakura and Saito [7]. Unlike the
tapped-delay-line structure, the operating criterion for the lattice-
structure PEF minimizes the error output of each filter stage indepen-

7 »
dently. Due mainly to this difference, the lattice structure escapes
those negative characteristics peculiar to the tapped—delay—iine struc-
L 3
ture,

The convergence properties of the adaptive lattice-structure
PEF are well behaved; they are independent of the signal statistics and
may be controlled over a“wide range by a simple adaptive constant. In
addition, the lattice coefficients (called reflection coefficients) may
be chosen to guarantee stability and the filter order may be adjusted
at will (i.e., §ntermediatc tilter-order outputs are always available).
Also, the lattice-structure PEF generally shows higher resolution than
its tapped-delay-line counterpart in reflecting the signal spectrum,
and shows high insensitivity to quantization noise, regardless of
filter order [8]: These factors suggest the lattice structure would
be a good choice for application to radar, and this suggestion is
at firmed by the results presented later in this thesis.,

In addition to filtering the signal, the lalticeiélruclurc PLF
also provides spectral information about the signal, and thus could be

used as the basis for a radar Doppler processor [ 31]. Alternatively,



this information may be used for clsssification of the clutter signal,
which was the first radar application for which this structure was
suggested [14].  The lattice-structure PEF has also found application
in the fields of geophvsics [ 9], speech analysis "4, 10, 11, channel
equalization 127, and noise cancelling 713},

The basic development of the lattice~structure PEF is presented

in Chapter 2. This reviews the construction of the lattice structure,

[

starting from the basic tapped-delay-line structure, and presents some
important properties of the,lattife structure. Also analysed are a
number of basic algorithms which have been proposed for minimizing
the prediction=-error of the filter. One of these, the harmonic-mean
algorithm,"fg chosen as the best available for this application.

Chapter 3 deals with methods by which the algorithm used may
be implemented as a continuously adaptive filter. Several methods
are developed and these are compared with those developed by other
researchers. The learning characteristics of these methods are
studied in Chapter 4, and the formulae developed to describe their
primary convergence properties are confirmed by experimental simul-
ations.

Application of the lattice structure to radar signals begins

X,

in Chapter 5 ;ith the analysis of simulated signals and presentation
ot the performance measures and standards used in the analysis of
radar data processing. Analysis of actual radar data and discussion
of the same are given in Chapters 6 and 7, and the results and recom-

mendat tons for further work are summarized in Chapter 8.



CHAPTER 2

THE LATTICE-STRUCTURE PREDICTION-ERROR FILTER

2.1 The Prediction-Based Lattice Filter

The prediction-error filter (PEF) may be defined as a structure
which combines successive samples of the input signal multiplied by
coelticients, so that the output (predictign error) of the filter is
minimized. There are two kinds ot tapped-dgylay-line PEF, depending
on the form of prediction error utilized. Based on a given sequence
of input samples, a forward PEF is designed to minimize the mean-square
value of the torward prediction error, defined as the difﬁe;gnce between
the predicted value of the input on€ step into the future and its actual

T oo—sgdie. On the other hand, a backward PEF is designed to minimize-the
mean—squaf; value of the backward prediction error, defined as the differ-
ence between the predicted value of the inpug one step into the past and
its actual value,

In chis thesis, the input is denoted by %(n), the forward pre-
diction error by fm(n), and the backw;rd prediction error by bm(n),

+

where the subscript m denotes the filter order.

.o

Consider the tapped-delay~-line filter of Fig. 2.1, which is a
forward PEF operating on an input x(n) to produce an output fm(n). By

»
definition, the first coetticient a0 is unity. The remaining PEF
. .

[coefticients am i (i=1, 2, ..., m) are adjusted to minimize the mean-

9



10

x(n)
Gm.o*’/
(a)
| @fm(n)
=/
pﬁ(
x(n]| " “
Pm
2

=/
b (n)

Figure 2.1: Prediction-Error Filter Structures

(a) Tapped-Delay-Line (Forward), (b) Lattice
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square value of the output fm(n) by predicting the value of the input
x(n). The corresponding backward PEF has the same form as Fig. 2.1(a)
except that the PEF coefficients am,i (i=0, 1, ..., m) are complex-—
conjugated and reversed in order. With an input x(n) applied to the
backward.PEF, the resulting output is bm(n). A forward PEF and a back-
ward PEF may be combined in the form of a lattice structure [14], as
shown in Fig. 2.1(b). The number of stages (filter orders) contained
in the forward, backward, and lattice-structure PEF's are the same.

The forward and backward outputs of stage m+ 1 of the lattice are given

by, respectively,

fm%-l(n) = fm(n) + pm4_l(n) bm(n— 1) (2.1)

and

b (n)

o1 bm(n—l) +o;+1(n) fm(n), (2.2)

for n > 1 and 0 <m s M-1 where M is the filter order, pm(n) are the
reflection coefficients (also known as partial correlation or PARCOR
coefficients) and p;(n) are their complex conjugates. (The name ''reflec-
tion coefficient”" comes from comparing the coefficient's effect on the
reduction of predictioh error power in each lattice stage with the trans-
mission of power through a terminated, two-pogt network [15].) The out-
puts of each stage of the lattice are the same as the final outputs of
forward and backward PEF's of corresponding orders.

There are a number of definite advantages in using the lattice-
structure PEF. One of the most important of these is the fact that the

backward prediction errors are orthogonal to each other (15]. (They are
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2+

also arthogonal to the forward‘preﬁiction errors, other than of the
same order.) This allows for the decoupling of successive stages.
Thus, the reflection coefficient and prediction errors can be c;lcul—
ated separately for each stage of the filter, without reference to any
other stages. This independence results in the desirable convergence
and stability properties of the lattice structure, as noted in the
previous chapter. In addition, as with other predictipn-error filters,
the lattice structure is minimum phase (minimum delay) [lSj.

Let us now consider the relationship of the reflecéion coeffic~
ients to the PEF coefficients of the tapped-delay-line filter shown in

Fig. 2.1. The PEF coefficients normally obey the constraints:

a 1 for i =0,
m, i
am,i =0 fori >mor i< 0, (2.3)
and -1 < a <1 .
~ “m,m —

The lattice filter in Fig. 2.1 can be replaced by an equivalent tapped-
delay-line PEF of the same order to give an identical filtering action.
The basic relationship between the two types of filters is that the
reflection coefficieht pi(n) equals the final coefficient ai’i of an
1th order tapped-delay-line PLF for 1 < i < m. The PEF coefficients
are then calculated from the Levinson recursion [15]:

a = a + . g% 5
m, 1 m-1,1% am,m am--l, m-1i (2.4)
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by starting with m = 2 and working up to the order of the filter.
This relationship can also be developed empirically by equating the

outputs of the two filters and working recursively through the equations

fm(n) = fm--l(n) * am,m ) bm--l (n-1)
m
= T a _+x(-1) (2.5)
j=g ™1
and
bm(n) = bm- 1 (n-1) + a;’[n . fm__l(n)
o .
= I ax o cox(n-i) : (2.6)
i=0

The reflection coeffié&gnts are also directly rTelated to the
autocorrelation function of the input time series. The autocurrelation
values may be uniquely determined from the reflection coefficients,

provided the zero-lag autocorrelation value is known [15].

2.2 Some Observations on Spectral Characteristics

Having computed the PEF coefficients, the spech;l estimate of
the signal can then be computed using the maximum-entropy method devel-
‘oped by Burg [6]. The idea of this method is to choose the spectrum
(in the form of a non-negative function of frequency) which cozgesponds
to the most random ox the most unpredictable time series whose auto-

correlation function agrees with a set of known values. The method

s ettt
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derives its name from the fact that this condition corresponds to the
concept of maximum entropy as used in information theory. According
to this method, the power spectrum of the signal is given as:

p /W
P(f) = R— (2.7)

m
1+ ¢ a ; exp f—jani(At)le

over the frequency range -W < f < W where W = 1/[2°(At)Jand At is the
Qﬁﬁ;ling period. The P is equal to the ouLpu& érror power, that is

. 2
P, = h[[fm(n)| 7.

Building on the above theoretical development, a number of
practical observations can be made about the application of the lattice
filter to signals for which some characteristics og the spectrum are
already known:

(1) As the transfer function of a lattice filter is made up only of
a number of zeros, the filter responds best to a signal having a
spectrum fitting the all-pole or autoregressive model. An example
of this is shown in Fig. 2.2, which shows the frequency response
of a lattice filter adapted to a single frequency equal to 0.5.
We see that changing the filter order from 1 to 5 has a negligible
effect on the frequency response of the filter, confirming the fact
that with the input spectrum containing a single pole, a single-
order filter is sufficient. Zeros in the spectrum may be represent-
ed in an all~-pole model by approximating the spectrum with a large

number of poles [16]. To do this accurately would require a very
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large filter order. However, there is often some physical justific-
ation for only approximately locating zeros (with a lower filter
order) while accurately locating poles in the spectrum. The justif-
ication is that most sensing devices (e.g., seismometers, micro-
phones, and even ears) only approximate the troughs in a spectrum
while accurately representing the peaks [16]. Thus, as the data
collected often does not accurately represent the spectral zeros,
there is no point in having a filter of greater accuracy with
respect to the zeros. (A modified form of the lattice structure

has been developed [17, 181 which responds well to all sero spec-
tra.) The use of an autoregressive (AR) model to represent the
clutter signal we wish to eliminate is also justified. Indeed,

some of the earliest work on this question suggests that a Gaussian
spectrum is good approximation for clutter [32]. More recent work
has resulted in a-second-order AR model for both ground and weather
clutter [40]. This model fits the clutter's power spectral density

P(f) with the formula

|n

P(f) = 1/(1 + |f/£C ), ‘ (2.8)

where fc is the cutoff freguency. The constant n, which determines
the high frequency rolloff rate, has been experimentally observed
at values ranging from 2 to 4 (depending on the radar frequency

and the clutter type) [41], corresponding to a filter having one

or two poles. Power spectra recorded for bird clutter [33] also
appear to fit this model. However, a comprehensive study of avail-

able models has led one researcher to conclude that there is "no
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unique representation for the power spectral density of the clut-
ter" [30). The matter is further complicated by the assumption

in such models of a stationary signal, which is not the case for
scanning radar. Also, the spectrum of a small clutter sample area
may be quite untypical of the whole clutter population. This is

not a great problem, however, as the clutter spectrum can be rep-
resented as a fairly simple envelope function containing the actual
complex, finely detailed structure of the spectrum. This fine detail
is mainly related to the short-term variations and disturbances ot
the clutter, while LLe envelope is derived from longer term para-
meters. Thus, it is only necessary fér the filter to adapt to the
optimum clutter spectrum envelope in order to do its job. As this
envelope can almost always be drawn as a bf?ad spectral peak (excep-
tions apparently being séa—clutter and some @an—madc interterence),
the envelope can be represented by an autoregressive model.

The number of filter stages needed to filter akgiven signal proper-

ly will be equal to or greater than the number o} peaks in the

spectrum of the signal, For sharp spectral peaksagn equal (or
slightly greater) number of filter stages would be‘sufficieﬁt.
However, for broad peaks (e.g., Gaussian) more than one filter
stage is needed for each peak. A broad peak is treated, in effect,
as the super-positioning of a number of narrower peaks. Generally,
the number of stages needed for each such peak would be quite small

(typiecdlly, two or three). This property will be discussed further

in Chapter 5.



(3) Burg [6] has shown that an important property of the sequence of
reflection coefficients is that it converges to zero if the in-
finite~order output error power p_ does not vanish. This means
that om(n) goes to zero as m goes to infinity. This limit can be
useful in determining whether much higher order coefficients need
be calculated for unknown complex spectra. The sequence termin-

ates with P if equals zero, resulting Iin a maximum-entropy

Pn+1
spectrum ‘specified by m coefficients. An exception is o= 1, in
which case the sequence terminates and the spectrum consists only
of a pure set of m delta functions. (Note: b, may often approach
very close to one without equalling one).

(4) Finally, as can reasonably be expected, the variance of successive

ﬁ2§re}lection coefficients becomes larger as the coetiicient value
becomes smaller [9]. Therefore, a sensible place to end the
series would be a filter order at which this variance is on the
verge of becoming a significant factor in obscuring the true re-
flection coefficient value. (Note: Several consecutive orders
should be tested above the order in question to ensure it does not
‘represent a local abnormality). Typically, this po&nt occurs with

. “t having an approximate value of 0.1 n.

Now, let us consider the manner in which these reflection

coefficients are calculated.

2.3 Reflection Coefficient Algorithms

The adaptive nature of the PEF is a direct consequence of choosing
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-

the filter coefticients to minimize a measure of the prediction error
of the filter. The measure almost universally used is the least-
squares error, which originated with Gauss in the early 1800's [1].
To satisfy this measure, the mean (or, more generally, the expected
value) of the squared prediction error is minimized by adaptively con-
trolling the coefficients. (This can be done by setting the partial
derivative of the mean squared-error with respect to each coefficient
equal to zero, and solving for that coefficient). In the case of the
lattice-structure PEF, this is effected locally for each filter stage,
with each reflection coefficient chosen to minimize the prediction error
of that stage. However, as there are two prediction errors (fm(n) and
bm(n), see Fig., 2.1) for each lattice filter stage, there are a number
of different algorithms for minimizing the expectations of the squared
prediction errors, depending on how the expectations of these values
are combined. S$ix algorithms, having been suggested from various
sources, are presented below.

To simplify the presentation of these algorithms, let us deline
the expectations of the sqﬁared value of the forward and backward pre-

diction errors, respectively, as

2 .
F () = E[[f (m)]"], (2.9)

and

B (n) Etlb (n)lzj. (2.10)
m m

Another factor which occurs in all the algorithms is the expectation ol

the negative cross-power of the forward and backward prediction errors,



given by

.cm(n) = —ELfm(n) . b;(n-nj. (2.11)

N

(It should be noted that, although these algorithms were originally
developed using only real-valued variables, they are broadened here to
deal also with complex values [38]. The asterisk denotes complex con-
jugation).

2
(1) One of the simplest algorithms is the forward algorithm, which

simply minimizes the forward mean square error, Fm(n). This results in

reflection coefficients with values of
F( ) = ¢C (n) /B (n-1) (2.12)
Pt m-ln m-1 *

(where the superscript F denotes the forward algorithm). This may seem
an obvious choice, as it is generally only the forward prediction errors
that are of interest in a particular application. However, it should be
remembered that the backward prediction errors are still used for the
calculation of higher filter orders. This algorithm has fogci/jayour
with a number of:fesearchers (e.g., [19]) who consider its resu&ts\E? be
better than any other algorithm for steady-state signals. Actu fI&f this
algorithm gives generally better results only for signals Wh?§ amplitude
is inctreasing with time, a fact which does not appear to hé;; been realiz-
ed by anyone else. (The typical "steady-state" signal is really a spec-
ial case of this, with the increase all occurring at time zero). Thus,

this algorithm would not be a good choice for most non-stationary sig-

nals. (An example of this behaviour will be given in Chapter 5).
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(2) A similar algorithm is the backward algorithm, which minimizes

the backward mean square error Bm(n). For this algorithm, the reflec-

tion coefficients take the values

B . »
v = )/ Fo_o (2.1

-1

(where the superscript B denotes the backward algorithm). This algorithm
is much like the forward algorithm, except that it pertorms better tor
signals with decreasing amplitudes, and it does not seem to have tound
any favor.
(3) A method using both forward and backward algorithms (as pre-
sented above) was introduced by Gritfiths [20]. This forward and back-
ward algorithm (denoted I' & B) uses ditferent values ot the retlection
coefficient to calculate the forward and backward predi.tion errors of
ecach lattice stage. (Thus, for this algorithm only, the forward and
backward retlection coetficients are not complex conjugates ot each
other, as shown in Fig. 2.1(b)). The reflection coefficient used to
give the torward prediction error is calculated using the torward
algorithm, and the backward retlection coetficient is calculated using
the backwgfq algorithm.

All three of the above algorithms have a common theoretical

problem. Tu ensure the stability of the tilter, it is necessary that

\om(n)E <1, (2.14)
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a condition that these three algorithms cannot generallv meet, In
practice, this does not appear to be a problem (as will be seen in
Chapter 5). However, the tollowing three algorithms all meet the con-
dition in eq. (2.14).

N , : . . F
(4) Makhoul [4) has shown that {f the magnitude ot either um(n)

B . . ,
or pm(n) is greater than one, the magnitude ot the other is necessarily
less than one. Based on this, he has suggested the minimum algorithm,

. : . F B . \
which chooses tor each stage either um(n) or vm(n), depending on which

is lesser. This is given by

C (n)

M m-1

b)) m e e 2.15)
m max “m_ l(n), By (n-1)]

(where M denotes the minimum algorithm and max | © | takes the maximum

ot its arguments).
(5) Next, there is the geometric-mean algorithm, used first by
ltakura and Saito [ 7], which uses the geometric mean of the values

computed Dy-using the torward and backward algerithms, as shown by

¢
p_(n) = e e e (2.106)
m (r (n) - B (n-1)7"

m- m- 1

(where G denotes the geometri¢-mean algorithm). This algorithm does
not directly minimize any error criterion.
(6) Perhaps the commonest algorithm is the harmonic-mean algorithm

developed by Burg [9]. This algorithm minimizes the sum of Fm(n) and



Bl
23
Bm(n), which is a reasonable error criterion for both stationary and

non-stationary signals. This results in a reflection coefficient which

is the harmonic mean of o:(n) and p:(n), as gi;en by

—.../
2 C (n)
H m- 1
p (n) = AR — (2.17)
m Frn'—/l(n)"'\Bm— 1(n 1)

(where H denotes the harmonic~mean algorithm).

The last three algorithms above were shown by Makhoul [4] to be

special cases of a more general formula,

1/r

L) = s - Daelm T x i DT, (2.18)
where S is the sign of Cm- l(n) and r < 0 (to guarantee stability).
Specifically, r » 0 results in Dg(n), r > - results in pﬁ(n), and r =
-1 results in pg(n). It is worth noting that, for a true steady-state
signal, all six algorithms would converge to the same value.

To choose the algorithm which best suited our application, these
algorithms were compared experimentally using simulated radar data. The
results of these simulations are presented in Chapter 5. Based on those

results, the harmonic-mean algorithm was chosen as the most promising,

and in the following chapters (except Chapter 5) this algorithm alone

is used to calculate the reflection coefficients pm(n). The implementation

of this algorithm, as a practical adaptive system, is the subject of the

next chapter.

N
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CHAPTER 3

ADAPTIVE LATTICE IMPLEMENTATION METHODS

3.1 Introduction

The equations in section 2.3 calculate the lattice reflection
coefficients in terms of theoretical "expected'" values of the E;edic—
tion error statistics. In the case of block processing (for a station-
ary signal), the transition from a theoretical model to the practical
worid merely involves replacing the expectations of the various terms
with the averages (summations over n) of those terms for all available
data samples.

For a continuously adaptive system, however, the transition is
more copplex; The reflection coefficients are now computed recursively
(i.e., updated with each new sample rather than being totally recomputed).
Starting with an initial (arbitrary) value, the reflection coefficient
is updated by correction terms, which are calculated to provide the
greatest reduction of prediction errors éer correction unit. This is
known as a steepest descent, or gradient approach [21:].l Also, it is -~
gene;ally desirable to apply a weighting factor to the prediction error
terms u;ed in‘these calculations. This allows the filter to essentially
"forget" the effects of samples beyond a certain distance or time (which

may not represent current signal statistics), including any start-up
24
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effects. It should be noted that weighting (or windowing) the pre-

diction errors is not in any way equivalent to weighting the input
\

samples, which would result in a stationary signal of reduced resolution.

3.2 Simple Gradient Method

Our first method of recursively calculating the reflection

coefficients may be called the simple gradient method, due to the use

of an approximation which results in a simpler implementation than the

more common standard gradient method. The simple gradient method starts

by considering the new coefficient as being the sum of the old coefficient
and a correction term. This correction term is just the difference between

the new and old values of the coefficient, as given by

n
-2 I ffm(i) . b;(i—l)]
_ i=1
Prat1 (M = Py (n1) = — - )
L L, @1+ b (-0 7]
i=1
(3.1)
n—-1
2 151 [fm(i) . b;(1~1)]
+
n~1 ’ 9
T [lfm(i)l + |bm(i—l)| ]
i=1

- (Note the difference between n and n-1 as the limits on the summations).
This equation can be rewritten as the sum of the old coefficient and a
new update term ypich contains only information from the prgsent time
inter;al (i.e., the inputs to that filter stage), both multiplied by a

third texrm. This results in the equation
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-2 fm(n) : bg(n—l)

P (™) = P, (1=1) = = Oy (07D

2
£ @]%+ fo_(a-1)]?

2 2
|fm(n)! + |bm(n—l)l

(3.2)
. 12 2
iil[tfm(1>| + b, G-DITT
Rearranging equation (3.2) gives:
2y (n) - £ _(n) - b*(n-1)
Py @ = [y ()] e . (n-1) - T = m ) (3.3)

£ (]® + bo_(a-1)|?

where

£ 1%+ (b (n-1)]?
v, () = (3.4)

Cle @))%+ b G-1 1%

[ aclie

i=1

It can be seen that for the steady state (constant power) case, Ym(n) ~ 1/n
where n is the number of data samples processed. If, however, Ym(n) =y
is held constant in the calculation, then it may be replaced by using the

weighting factor w as defined in the formula
w =1-y=1-1/n'
v =1/n' (for n' >> 0), . (3.5)
e
where n' is the theoretical data adaptive length of the filtering action.

(For n' > 10, the exponential form of (3.5) is less than 0.5 percent from

the actual value). The resulting constant w has a value in the range .
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0 <w < 1, with smaller values giving quicker adaptation. Rewriting

equation (3.3) with w gives:

pmﬂ(n) = w-onH_l(n—l) + O‘m(“) : fm(n) . b;‘](n-l), (3.6)

where pm+l(0) = 0 (for the normal case) and the adaptive step size um(n)

is given as
« () = ~2(1-)/L ()| + PRCSIR (3.7)

The recursive relationship in equation (3.6) can also be written as the

sum:

n ‘
m =t WY e g @ - bra-nT L (3.8)

An implicit condition on this recursive rélationship is that the
power of the prediction error fm(n) or bm(n) is not a time-varying func-
tion, This condition,as will be seen in Chapter 4, results in a somewhat
poorer response f{or non-stationary signals, when compared with the standard
gradient method. However, this shortcoming is partially offset by the .
desirable comnvergence properties, and the reduced storage and cvomputation
time requirements (less than the standard gradient method by 207% and 30%,
respectively) of the simple gradient method.

The simple gradient method was first presented in 1979 by the
author of this thesis [23], and the derivation and performance of the
method were detailed in a paper [24] which followed. The computer imple-

mentation of ,this method can be found in Appendix A. The equations can
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f

be easily modified to apply to any of the algorithms presented in
section ?.3. ‘

An interesting variation on the above method is to adjust the
data adaptive length n' (and therefore w) dynamically within the com-
putation, so as to be proportional to the rate ot change of the signal

statistics. One way of doing this, which shall be called the adaptive

gradient method, is to replace ym(n) in equation (3.3) with the factor
(Ipm(n—l)—pA(n)|)/2, where p$(n) is the instantaneous estimate of pm(n),

as given by

-2 fm(n) bm(n—l)

ph+1(n) = . (3.9)

£ 1%+ |o_(n-1)|?

This substitution results in the reflection coefficients being calculated

recursively by

(Jp (n-1) - p%(n)l) (b, (0=1) = p!(n))
Pan) = NG DR 5 . (3.10)

(Some results from the adaptive gradient method are presented in Chapter 6).

3.3 Standard Gradient Method -

We will call the second method of recursively calculating the

reflection coefficients the standard gradient method because it is the

method that is generally arrived at by applying gradient techniques to
t
the lattice equations {10, 11, 12]. This is a more rigorous approach,

which avoids the constant power assumption of the simple gradient method,

at the expense of increased complexity of operation and performance.
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The standard gradient method consists of replacing the expec-
tations of the various terms, used for the reflection coefficient cal-
culation, with corresponding averages in which an exponentiial weiéhting
has been added to the individual values. This weighting ailows the
characterigtics of older data samples to be progressively torgotten,
giving greater importance to current data. The reflection coefficients
thus calculated are given by

n .
27 GO e () - bk aeD)]

g (M) S o S B (3.11)

U(H-i) . [‘lim(l)!z + ]bm(l—l)(zj

it

1

where 1 is a weighting constant, normally in the range 0 - u < 1. This
is equivalent to weighting the forward and delayed backward prediction
errors by U(n-i)/Z. (As noted in the previous section, this weighting
has no eftect on the stationarity of the input). Small values of
result in quick adaptation to new signal characteristics, while values
of u near one result in slower convergence and the reduction of noise
(by integration).

The exponential form of the weighting function is chosen because

{t can be applied as part of a simple recursive implementation. Thus,

with each new sample, a new value for om+l(n) is calculdated f{rom

vm+l (n)

() = o,

0 (3.12)
mt+1 Yt (n)

where
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m+l(n) T Vm+l(n_l) -2 fm(n) : bg(n—l) (3.13)

and

Yo ) =u oy L (-l) |fm(n)[2 ¥ ]bm(n-l)|2 . (3.14)

(In the normal case, the initial conditions are vm+l(0) = ym+l(0) = 0).
This method may be easily modified to apply to any of the algorithms
presented in section 2.3. The computer implementation of this method
is presented ig Appendix A. ‘
A number of researchers (e.g.: [ 10, 20, 22]) have derived this

gradient equation in a different torm, generalized here to apply to complex

data as:

-

fm(n) b$+l(n) + fm+l(n) b;(n—l)
(n) ’

Dm+1(n+1) = wm+l(n) - (3.15)

Yt 1

?

By using equations (2.1) and (2.2) to substitute for the values of
fm+l(n) and bm+l(n) in equation (3.15), this equation takes a form similar
to that given by equation (3.12). —\\:)

Another derivation for the standard gradient method results from
the application of Kalman filtering theory [21, 25] to the lattice strug—
ture. Because each stage of the lattice is optimized independently, the
Kalman filtering equations are appliéd to a single stage. The basis for
this is to rewrite equation (2.1) and the complex conjugate of equation

(2.2) in the form of the Kalman measurement equation for that stage,
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fm_l(n) bm_l(n—l) fm(n)
= [—Om(n) :l + (3.16)
b%_ (n=1) * () b*(n) ,

When the Kalman equations are used to minimize the measurement noise
vector [fm(n), b;(n)], the resulting solution is the harmonic mean
algorithm using the standard gradient method (eq. (3.11) to (3.15))

with u = 1 (the Kalman approach does not allow for an adaptive constant).
If only Im(n) is used for the measurement noise, the solution becomes

the forward algorithm, and likewise using bm(n) results in the backward
algorithm. The application of Kalman filtering theory' to the lattice

structure is developed in detail in Appendix B.

3.4 Comparisons with Other Methods

At this point, it would be useful to compare the above two methods
of implementing the lattice structure\adaptively, with algorithms proposed
by other researchers. There are two methods in particular which deserve
attention: the modified least-mean square (LMS) approach of Griffiths
[13], and a least-squares method developed by Morf, et. al. [26, 27].

Griffiths [13] has proposed the use of an algorithm, which is

generalized to apply to complex data, as shown by

o

p, (ntl) = o (n) - [fm(n) . b[’;_l(n—l) + fm_l(n)'b:‘(n);] , (3.17)

om(n)

. Lo 2 . .
where o is an adaptation parameter, and om(n) is the power estimate at

the mth stage given by
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2 2
oi(n) =g 'oi(n—l) + (1-8) Ufm_l(n)l + Ibm_l(n—l)| 1 . (3.18)

Using equations (2.1) and (2.2) to replace f (n) and b (n) with £ (n)

and bm_l(n—l) gives:

a - [f ~l(n)l2 + ibm_l(n—l)lzj
p () =1 1- o 5 p_{(n-1)
m m
om(n)

- 5= [ () - bx(-D] . (3.19)

The novel aspect of Griffiths' algorithm is the introduction of the second
adaptation parameter B, Two values of 8 are of special interest, namely,
B=0and 8 =1 - a. Setting B = 0 results in equation (3.19) taking on
the same form as equation (3.6) (where w = 1 - a) which is the simple
gradient as described previously. On the other hand, setting. R =1 - «
results in equation (3.19) being identical with the standard gradient
method (equations (3.12-14) , where u = (; - a)/a). Other values of B
may ‘be used in the range 0 «+ 8 <1 - a (# » 1 - o is unstable).
However, there geems little justification in doing so, as § = 1 - «a
has Lhe strongest theoretical basis, and there are no computational
imbroyements until 8 = O.

The methad recently developed by Morf and Lee [26, 277 is gener-
ally known as the "least-squares' method (although all the methods pre-
sented 1g'this thesis minimize a measure of the least-squares error). A

detailed derivation of this method is presented in {28]. Generalizing
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Morf's method to complex data and summing the recursions of Morf's
equations results in the forward reflection coefficient (used to cal-

culate the forward prediction error) having the value

n “n-i
; UL EETRCE IR
_i=l U m
P (M) = i ; B (3.20)
iil G [b (i-1)| ]

and the backward coefficient having the value

n un—i
- E [é:§“71:33 fm(i) ba(l—lﬂ
By = m (3.21)
Pl n n-1 2 ’ :
Lo |f (1)
i=1 [l—ym(i—l) m ]
where
b, m)]°
Ve ()= v () F 1 ; (3.22)
=< b (D]
i=1 1~V‘m(l) m

and Yo(n) = 0, (In one version [26] of this equation, the summation in
(3.22) is multiplied by 1-u). This method, as presented by Morf, et. al.,
is an implementation of ghe forward and backward algorithm for reflection
coefficient calculation (see section 2.3). However, only one value of
ym(n) is used for both forward and backward coefficients at each order,
that value being in this case calculated from only the backward prediction
errors. It is suggested in some papers (e.g., [27]) that the equation

(3.22) cduld also be written as
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RO
n-1i

U 2
[T GD (D]

Y (n) = Ym(n~1) +

=]

m+]

n ot

i

However, this equivalence would hold only for a truly statifonarv input
(for large n). Also, in implementing the forward and backward algorithm,
this method fails to ensure the stability of the resulting reflection
coefficients,

Morf's "least-squares" method can be casily applied to implement
any ot the reflection coefficient algorithms in section 2.3. For instance,

the harmonic-mean algorithm, implemented by Morf's method, becomes

n Un—i
-2 - —_—r N s _
2 1—1 [l-w Gy faD bAG l)}
(n) = —= - g (3.24)
pm+1

n “n—i _ 9 2
151 [ETE;FEiii {Itm(lz! + }bm(x—l)! }]

lfm(n)[z + Xbm(n-l)[2
Y @) = 7 (1) + T T (3.25)
| o e ]

i=1

Comparing equation (3.24) with the corresponding equation (3.11) fur the
standard gradient method of implementation,, it can be seen that the only
difference is the introduction in Morf's method of an additional weighting
term, [l—ym(i—l)]—l. In fact, as Yo(n) = 0, the calculation for the first

reflection coefficient p,(n) is identical. (Note also the similarity ot
l Kl
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\n(n), as given by equation (3.25) to the corresponding value in equation
1
(3.11), used for the derivation of the simple gradient method).

The term Ym(n) deserves caretul ALtentioq. For a true steadv-

§ 2
state signal ({x(n)[2 = E[ [x(m)|" D, we can show that

ym(n) > ] - um as n > w (3.26)

For lower values of n, the value of ym(n) would be larger than that given
in equation (3.26), starting at n = 1 with ym(l) = 1 and quickly converging
towards the value given above. As n increases, the Ym(n) terms in equations
(3.20), (3.21), and (3.24) become constant and cancel out, so that Morf's
method approaches the standard gradient method, becoming identical as
n + «, Thus, the only behavioural difterence between the two methods Lor
steady-state signals would be a somewhat quicker convergence by Mortf's
method during the initial "start-up" period of the tilter, and this only
it the reflection coefficients were given initial, non-zero estimates to
start from,

Let us now examine the behaviour of this method for signals with
non-stationary or changing statistics. (We will assume that the filter
has run long enough to "forget" the initial start-up period mentioned

above). Deviating from the derivation of equation (3.26), we can make

a good approximation of Yl(n) as

B C M EYCY I (337
1 . 2

E[ [x(n) ]
with similar approximations for higher orders. (Note: E[|x(n){“] is

N
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calculated such that ,l(n) is alwavs < 1). Mort and Lee [26] state

that Ym(n) is a log-likelihood variable related to the input, in that

it is a measure ot the deviation of successive samples from a Gaussian
distribution, with ,m(n) tending to one tor non-Gaussian components.
However, it is clear trom equation (3.27) that yl(n) is actually
responding to deviati?ns in the power of the signal from its expected
value, In fact, 1f the change in signal statistics includes an increase
in signal power, the result will be an increase in the value ot yl(n),
(and quicker convergence to the new statistics). If the change includes
a decrease in power, 1l(n) will decrease in value (resulting in an un-
desirable, slower-than-normal convergence). Similar conditions apply

to higher filter orders. ym(n) is also quite sensitive to nolise. Based
on this examination, the validity of the statement of Morf and Lee given
above Is questionable.

A better indicator of signal non-stationarity, based on the forward
and backward algorithm, was suggested by Griffiths [20]. The forward and
backward reflection coetficients for each state have the same optimum
values for a stationary input, moving apart as the input becomes less
stationary. Griffiths' indicator of signal change is formed of the
innér product between a vector with components pg(n) and a vector with
components og(n).

Satorius and Pack [8) hgye compared Morf's method to the standard
gradient method and reported the convergence of Morf's method to be
slightly better. However, they used the harmonic-mean algorithm for the

standard gradient method (as compared to the forward and backward algorithm
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for Morf's method), and preloaded the lattice using Morf's method

while only giving the gradient lattice an initial estimate [29]. As
will be seen in the following chapters, the forward and backward algor-
ithm in general converges better than other algorithms (although having
some undesirable characteristics), and preloading the lattice greatly
reduces the convergence time, thus rendering the comparison of Satorius
and Pack next to meaningless. A more recent comparison by Honig and
Messerschmitt [44] finds no discernable differences in performance
between the two methods, for stationary signals.:

In fact, there appear to be no advantages to Morf'é method
significant enough to war;ant the increased complexity involved. (For
cases where quicker adaptation to signal changes is required, the adap-
tive gradient method discussed in section 3.2 would prdgébly be a
better cho?ce). Fiﬁally, Morf and Lee [26] describe their method as an
"exact solutionJ to the least-squares problem while the gradient methods
are "approximations'". Considering the above analysis, this statement is

-~

unjustifiable.’



CHAPTER 4
1

LEARNING CHARACTERISTICS OF THE ADAPTIVE LATTICE FILTER -

4.1 First-Order Convergence Properties for’Ehe Simple Gradient Method

In Chapter 3, two major recursive methods were developed for

Fa

éontinuously updating the calculétion of the reflection coefficients of °
the adaptive lattice-structure PEF. These methods alldw the lattice to
adapt to a signal by progressively learning its statistical properties in
a controlled manner. .In o§def to use these methods properly, it is
necessary to'understand these learning characteristics. In this section,
we shall begin by examining the primary characteristics of the si@ple
gradient method, as applied to the‘harmonic;mean lattice algorithm.

An important characteristic of the adaptivé filte; is the rate at
which the reflection coefficients converge to ghéir'opt%mum values for
given (stationary) input signal sta%istics. This rate of convergence is
controlled by the adaptive weighfing factor (w). A small value-of this
factor results in a quickly convefging filter which is sensitive to mom-~
entary fluctuations in signal statistics (moise), while a large value
results i; slower convergence and integrates out the noise. A quantit-
ative evaluation of .this relationship for the simple gradient meﬂhéd is
developed below, as applied to-the f£rst stage of the filter. Higher
filter orders haQe similar convergence properties, but they must first

. deéouple from lower orders of Ehe filter. This decoupling action will
- |- 38 ~
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be discussed in section 4.3,
The instantaneous estimate of the first reflection coefficient

at time n-can be defined as

. -2‘f0(n) . bg(n—l)
Oi(n) = 5 2 . (4.1)
|f0(n)| + ]bo(n-l)( :

/
Combining equations (3.6), (3.7), and .(4.1) results in the recursive

relationship:

pl(n) = mpl(n—l) + (l-w) oi(n) . (4.2).

n

" For a truly stationary process beginning at time n = 0, the instantaneous

estimation of équation (4.1) for n > 1 will, in fact, be equal to the
optimum (asymptotic) value of the reflection coefficient, Sl. Using

this fact.and given the initial value of. the reflection coefficient pl(O),
(for egample,the‘filter's start-up values, or the vaiue for a previous

time series to which the filter has adapted), the filter's convergence

equation can be compqted by répeated application of the recursion equation

"(4.2) as

n-2 -
L [wi P
i=0

p () = w0 (0) + (Law) " o + U-u) N

(4.3)

W 0 + () W )+ ™ o

»
s

From this, the fractional error in the reflection coefficient at time n

can, be computed as

WerS VB
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e - Py : Py () ol - w p,(0) + fl-w) Py (1)
6

(4.4)
1 ‘ P1

The factor pi(l) need not be known for most practical applications of
this filter. Indeed, {or the initial start-up case where pl(O) = x(0) =

0, we have pi(l) = 0, resulting in the simplified versions

—-— - n_l L] N -
O “.5)
and |
! n-1
‘ ei(n) - w (4.6)

for equation (4.3) and (4.4), respectively. Such a case is plotted in
Fig. 4.1 (along wit{ the standard gradient method), where the filter is
adapting to an ideal signal consisting of a single frequency. The expdh-
ential nature of ‘this curve is easily observed.

For the transition case where pl(O) is known but not equal to
zero, given values of w approaching unity (which is the common case),
and therefore pi(l) n pl(O), equations (4.3) and (4.4) can be simplified

as follows, respectively:

-

p () N (=" o+ 0) .7

and

e ¥ (e (0 /6. (4.8

This measure of convergence error can also be written in terms of

N
teen
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the ratio of the data length actually processed to the theoretical data
adaptive length n' by applying equation (3.5). Thus, for example,

equation (4.1) becomes

-(n-1)/n’

el(n) = e ; forn > 0 and, n' >> Q . (4.9)

Although these convergence formulae are developed only for the

reflection coefficients, the component of the signal to which the filter

rmide — r

stage is responding will show the same convergence (in reverse) at the
output. This can be seen in Fig..4.1(b), where we have plotted the output
of the first stage of the filter (corresponding to the reflection coeffic-
ient in Fig. 4.1(a)) adapting to an ideal signal égﬁ;isting of a single
frequency. The output converges exponentialiy (log-scale) from the initial
input value to a value approaching zero. (The minimuﬁ value is set by the
noise level i; the signal).

4.2 First-Order Convergence Properties for the Standard Gradient Method

In this section, we shall examiné the convergence properties of
the standard gradient method governing the adapta£ion of the first stage ;
of the filter to a stationary input. (This development parallels that of
tﬁe simple gradient method in the previous section). The rate of conver-
gence is controlled by an adaptive weighting factor (u). Small values of

ive quicker convergence, and larger values result in less sensitivity

to noise statist;;;T‘~‘H~“ﬁ~k““‘Nh‘\“‘-\\ﬂ\\

e~

As with the development of the simple gradi;;;\;;EEBBT\in§£3?taneous

estimates can be made for the numerator and demoninator terms used in the ~ -~ ™
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calculation of the first reflection coefficient by the standard gradient
method. For 4 truly stationary process, these estimates vi(n) and yi(n),

as defined by

Vi(n)

and

I

y] (@) |fo(n)[2 + {bo(n-l)lz, (4.11)

are equal to the optimum values vy ang_yf'(for n > 1), such that vl/y1 =
Py Combining equations (3.13) with (4.10) and (3.14) with (4.11) gives

the recursion relationships:’

vl(n) =1fvl(n—l) + Vi(n) (4.12)

and

yl(n) =uy,(n-1) + yy(n) | (4.13)

Repeated applications of these recursions result in the following formula

for the reflection coefficient:

-2 i - n-1 n
. . ' .
v. () .E Cu vlj + u vi() +u v, (0)
o (m) =~ = 20 (4.14)
1 ypy) m2 4 n-1 n :
: e sy dtw c oyl (1) +u -y, (0)
1 1 1
i=0
or, for u # 1,
1- n-1 . -1 o
) —Tg*—-— vy + pn “ Vi(l) + " Vl(O)
p (n) = ——H . : L (4.15)
1-u L n~-1 n
I y, tw y (1) +u yl(O{

-2£,(n) - bg(n-l) (4.10).

.
e o e D

ko

——— A « o



44

These equations are difficult to simplify significantly, except for the
initial start-up case where vl(O) = yl(O) = X(0) = 0. Then, bO(O) =0,
and: therefore vi(l) = 0, and yi(l) = |f0(l)|2. In a stationary environ-
ment, the forward and backwagd prediction-error powers are equal, so that

yi(l) = yl/2, simplifying equation (4.15) to

n~1 ~
-y Coy n-1 N
- 1l-u 1 . 2 Q- ) e
pl(n) - n~1 n-1 R n-1 n, 1 . . (4.16)
1-u + Cy 2=y T-p)
1-p 2 1

From this, the fractional error in the reflection coefficient at time n

can be computed as

— - p = p .
cl(n) = ry 4.17)

Another special case of interest is when u = 1, for which equation

(4.14) simplifies to

(n-1) GD# vi(i) + v, (0)

pl(n) = -
(n-l)\'/yz+ yi(l) + Y1(0>

For the initial start-up case as described above, this simplifies further

to

i (n) = ———t— = 2022 I T (6.19)
(n-1/2) y, 71

The corresponding yalue of the fractional error in pl(n) then becomes

(4.18)
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Py~ pl(n) !

el(n) = z = el " (4.20)
°1

s

G

As with the simple gradient method, these convergence rates can
also be applied to the relevant signal component at the filter stage out-
put. The reflection coefficients and filter ouépuc for the case above
are plotted in Fig. 4.1. 1In cémparing the response to ;n ideal signal
(consisting of a single frequency) shown in these figures for the two
methods here described, two observations are worth noting. First, the
standard gradient method does not exhibit the simple exponential behaviour_
observed in the-simple gradient methodt Second, although iqitially the
standard gradient method converges more quickly than the simple gradient
method, lagey on (at time n = 43 in this example), the simple gradient
metho; catches up with and begins to converge faster than the standard
gradient method .

Finally, tﬁough no theoretical justification can be given at this
time, it would“be reasonable to assume that equations (4.17) and (4.20)
could be multipl&ed by the factor (1 + pl(O)/g) for thg more general case
when pl(O) # 0. This assumption is based on the convergence results for

the simple gradient method.

4.3 .  Decoupling and Higher-Order Convergence

Determination of the convergence behaviour of higher-order stages
of the filter is a more complex procedure than that detailed above for the

first stage. This is because each successive stage must 'decouple” from

[P
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the preceding stage before it can begin to converge to its optimum value.
Both the time taken to decouple and the starting values of the reflection
coefficients are very much dependent on the input signal, as well as the
action of all preceding stages.

The decoupling action p;oceeds as follows: Each sta%g of the
filter attempfs to minimize its error output by adapting to the most ;

.

prominent spectral component of the input signal for that stage (the out-
put of the preceding stage). Thus, when a new signal is presented to the
filter, the first stage starts to adapt to the most prominent spectral
component of that signal. At Ehe samé time, because the first stage has
’not yet started to filter it out, the second stage (and higher orders)
also is attempting to adapt to the same coméonent of the signal. However,
as that component is continually changing Que to the improving action of
the first stage, proper adaptation by the ;econd stage is impaired. This
continues until a point at which the first stage has adapted sufficiently
to that signal component so that it is no longer the most prominent spec-
tral coﬁponent in the output of the first stage. As further adaptation
by this stage has little overall importance with respect to fhe signal
as perceived by the following stage, the first stage can be said to be
"adapted" at that point (aithough further adaptation takes place). The
second stage then '"decouples' from the first (i.e., its aééion becomes
independent of it) and begins‘adapting to the next Wost prominent com-
ponent remaining in the signdl after filtering by the first stage. Higher

. A
order stages of the filter decouple in the same fashion.

A good example of this decoupling action is shown in Fig. 4.2,
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where the filter (simple gradient method) is adapting to an.ideal signal
consisting of only one frequency. As can be seen, all three filter orders
(as well as higher orders) initially attempt to adapt to the same signal.
This goes on until a point (at time n % 60) where the first coefficient
has reduced the single frequency to a level below the quantization noise
of the gsystem, at which point the higher order stages become erratic as
they respond to that noise. (At n = 60, the fractional error in pl is

€ = 6.3 x 10—14 = 2#44. As the computer used had a nominal accuracy of
48 bits, an accuracy of 44 bits is very reasonable for the trigometric
functions involved).

After decoupling, the convergence of the higher—-order stages
follows approximately the same form;lae as the convergence of the first
stage (for example, n-1 for the first stage in equations (4.5) to (4.9)
is replaced by n~2 for the second stage, and so on). HHowever, a complic-
ating factor in this convergence is that the filtering action of the first
stage can, and often will, affect to some degree signal components other
than the one to which it has adapted. This results in resid;al coupling
after the major decoupling has taken place, which will impair to some
extent the convergerice behaviour of the higher stages resulting in in-
creased conéergence time [20]. Under such-conditions, the filter stéges
may never bécome completely orthogonal (decoupled) - although in a prac-
tical sense they may be considered as such. |

Obviousl; from the above discussion, besides being dependent on
the filter's addptive weighting constant, the time taken to decouple the

A 4
-second stage from the first is very much dependent on the characteristics
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of the input signal. This stage decoupling time (1) for a specific

ignal can be defined for the simple gradient method as

T = an’ (4.21)

whrere a is a dimensionless decoupling constant unique to the specific
type of signal in question. Using this definition, the adaptive weight-

ing factor of the filter (equation (3.5)) can be rewritten as

-a/t

w = e ) (4.22)

‘(There is no similar development for the standard gradient method).

The above relationship of w and 1 haé a very useful application
in selective filtering. In such ca;es, it may be desired to filter out
interference in the form of a co;Einuous signal component while not
filtering out information in the form of a temporary signal component,
or to identify a signal of known duration by its reflection coefficients
while providing optimum rejection of” short-term statistfcal deviations
(noisé). This generally can be done by setting the relaxation time

subject to the constraints

£ << T << ¢t

a b * (4.23)

where ta is the maximum duration of the signal not to Be adapted to and

t. is the minimum duration of the signal to be adapted to. .(tr may be

b

given any value in this range. However, as the filter order-increases,
values closer to ta are to be preferred to give higher filter orders a

chance to adapt).

Knowing the‘value of the decoupling constant 'a' for a given
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signal type {(determined experimentally), the filter can be'set to
accept or reject signals of any desired duration by the use of equation
(4.22) with the desired value of 1. (This subject will be dealt with
further in the following chapters).

[t may seem at first that the total relaxation time of the
filter, not the stage relaxation time, should be used in equation (4.23),
but two considerations argue against this for many types of signals sucﬁ
as intermittent information in interference (for example, in a radar
environment the signal of interest may consist of a target embedded in a
background of clutter). First, the short-term signal is often responsible
for the most prominent signal spectrum component while it is present.
Therefore, the first stage is the most important consideration as it tries
to adapt to the short-term signal and b, << 1 is desirable. Second, many
commonly encountered continuous signals, especially of the interference
type, can be modelled as a coloured-noise process whose spectrum has
essentially a single peak with a Gaussian distribution. In such cases, it
is prerminantly the first stage which filters the signal out while succes-
sive stages deal with the rémaining residuals, as was discussed in section

.

2,2. Thus, for 1 < ¢t that signal will essentially be filtered out, al-

b’
though not perfectly.
However, there will be exceptions to this rule where it may be

desirable to use a smaller value tb/m' in place of t in equation (4.23) .

b
to allow the higher order stages of the filter to adapt to the signal as
well. The constant m' may assume any of a number of values, generally

ranging from 1 (as above) to m (the filter order) or even above for

~—
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cases where residual coupling increases the higher-order convergence
and decoupling time. It should be noted, however, that the lower the
value of m', the better the rejection of short-term signal variations
as factors in the calculation of the reflection coefficients.

As noted previously, 1 may have any value in the range covered
by equation (4.23). Two such values are the arithmetic and geometric

means of t, and tb/m', given respectively by

1= (ta + tb/m')/z (4.24)

‘ .
[ca- tb:r
o -5 (4.25)

One or other of these values should generally prove to be a good compromise

and

in the choice of 1. The arithmetic mean has proved closer to the experi-
mentally optimum value in our studies.

Before we leave this discussion of.stationary learning character-
istics to examine some non-stationary characteristics of the lattice struc-
ture filter, there are ;everal other factors affecting convergence which
are worth mentioning. One area of interest is that of reducing the con-

-

vergence time of the filter by pre-setting the initial values of the re-

flection coefficients (for example, to their first instantaneous estimates),

or by pre-loading the filter with data before allowing adaptations to begin.

This is especially advantageous when the filter is set for a.long conver=-

gence time. This procedure assumes knowledge beforehand as to the starting

.
R —

i
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point of the signal which is to be adapted to, an assumption-which(g:y
not be valid for many circumstances. (A comparison of the filter be-
haviour when pre-loaded may be found in Chapter 5). Other factorg which
may affect'the convergence bghaviour‘;} these filters include low signal-
to-noisé ratios, gradient noise, and Quantization n;ise. These factors
deserve further attention but were not examined for this thesis.

N—

{4 Non-Stationary Learning Characteristics . t

<

]

We have thus far‘discussed‘thé response Sf the filter to a station-
ary signal; ?owever, for a non—stationaﬁj signgl, the calculations become
much more complex. 0bviousl§, the reflection coefficients could never
hdbe to achieve-cgeir obtimum values. . How close they come to these values
becomes a t;hde-off'between theterror %ptrodpced by the filter lagging
behinq in the édqptive process (i.e., giving too’muéh weight to older,
out—of-date sampies),.and the error in;rédu@ed by noise (i.é.i giviné too
much weight to the latest samples and their statisti;ai vqriation?u As
the érror due tq lag in the adapéive process is‘greater for high valles
of the adapfive weighting factor and éhe error due to noise is greater
for lo@er values, there 1s.;§~SEE1mum value .of this weighting faét;r for

o

which the total error is minimized. This value would depend both on the

rate of vhange of the signal statistics and on the signal's-felative

» o

pwer in a complex mannef, and where these are not known beforehand,

bexomes a purely experimental determination. ~ Because.it does not have .
w

mplicit assumption of a stationary signal, the standard gradient method

of determining the reflection coefficients detailed above would be expected
“ ) ’ -

+ .
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2%

to perform better for non-stationary signals.'

A signal may ‘be described as non-stationary when its statistical
characteristics vary with time. One way of simulating such a signal is
to take a single frequency (complex sinewave) carrier, and modulate it
with another sinewave; While in a strict sense, this noise-free modulated
sinewave cannot be called non-gtationary, on a sample-to-sample basis its
statistics (frequency content and/or complex amplitude) are changing with
time. Linear prediction-error filters are unable to predict this modula-
tion ‘(such filters can predict, at best, the instantaneous carrier
signal, tracking the modulation). As a result, the adaptive filter re-

sponds to the modulated signal in the same way as it would to a true non-

stationary. signal (the filter cannot tell the difference), and the use of

a modulated sinewave as the experimental fepresentation of a non-stationary

signal is justified for this case. In fact, such a signal is ideal for
gxperimental investigations because it has few parameters to be varied.
In this section, we shall use double-side-band suppressed carrier

.(DSB*SC) and standard amplitude mpdulation (AM) , and'freque;cy modulation

(FM) techniques to study the effects of these parameters on the lattice
fi;ter performance. (Huph of the work presented in this section is also
being published.sepafately by the author [49]). The DSB;SC modulated
signal will be examined first because it is the simplest of these signals,
_having only two frequency components in its spectrum.

The convergence behaviour for such a signal is.plotted in Fig.

4.3 (for the reflection ¢oefficients and the filter outputs, respectively).

.

This indicates that, as expected, the standard gradient method gives much
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better results for this type of signal, giving about 32 dB of attenuation
as opposed to the simple gradient method, which reduces the signal by

5

only about 7 dB over the period observed. (The larger attenuation dips
in the response result from the large variations in the input level due
to the beating of the two frequencies). The plots shown are for a filter
of order 2; for filter order 1, the two methods give very similar results,
with much less attenuation. For orders above 2, little improvement is
seen. The initial convergence follows the formulae given in the previous
sections, but the convergence soon reaches an azimotopic value and gées
no further.

Let us now examine how this azimotopic value of the filter error
outputs (or equivalently, the signal attenuation) varies as we vary
the parameters of the filter and of the signal. The filter parameters
to be varied consist of the filter order and the adaptive constant (u).
The only important parameter of the signal is the modulating frequency
fh, which déterminés the rate of change (or degree of non-stationarity)
of the signal. Our investigations have shown that the results afe inde-
pendent of ‘the carrie; frequency (f& is normalized to the sampling
f}equency). The adapted filter outputs as a function of ﬁ& are plotted.
in Fig. 4.4, for different values of H. As can bef;e;n, for the'firgt
order filter thput, the results are ipdependent.of the adaptive constant.
Only the standard gradient method is presented in these pldts, as the
results with the simple gradient method are similar, although nst as

smooth. For the second-order output, while the simple gradient method

shows little improvement over the first order, the standard gradient
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method shows a significant improvement in reducing the siggal level.

This reduction 1is very dependent on the adaptive constant, with the

optimum value of, u beipg in the range of 0.98. There is no significant i
improvement for ‘the third-order output. iﬁ

One step up in complexity from DSB-SC is the standard AM signal,

where a third frequency component (the carrier) énd another parameter
(percentage modulation) have been added. The édapted filter-error out-
puts for modulations of 100%, 33%, 14%, and 7% are plotted in Fig. 4.5,
(a) to (;{, for the filter orders 1 to 3, respectively. (The dotted lines
in ;hesé\pigts are the next lowver order outputs using DSB-SC, included
for comparison). These AM curves are very similar té tﬁe DSB-SC curves,
except that: (a) a third filter order is needed to handle the additional
frequency component, and (b) the modulation 1evei is a new factor; as it
decreases, so does the error ouwtput. ’
Figure 4.5(d) replots the filter outputs with 33% modulation for
different values oflthe adaptive constant u. Comparison of this Figure
with -Fig. 4.4 s;ows basically similar performance to that obtained using
DSB-SC. In this case kfor AM), the first two filter orde£§‘are inde-
pendent of p (and of the choice of aéaptive method), while the.third-
order ohtput shows a strong dependence on,u, with the obtimum value now

being around 0.95. (There is no significant improvement from using £il-

ter orders above 3 with the standard gradient method). As before, this
method out-performs the simple gradient method.
Finally, let us examine the results using frequency modulation

to create the signal. Again, the first 3 filter orders are plotted in

Fig. 4.6, with the percent modulation parameter now being reblhbed by’
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the parameter of frequency deviation. For FM signals, there is a small

but noticeable dependence ‘on p for the first two filter orders, as can

be seen in Fig. 4.6(b) for the first order. Comparing Fig. 4.6 with
the corresponding Fig. 4.5 for AM signals, it is apparent that the
behaviours are quite similar. (fhis similarity grows more pronounced
if the FM plots are redone with the modulation index 8 held constant
instead of the freéuency deviation Af). As with the previous signals,
the error output for the third filter order shows a strong dependence
on the adaptive constant, with optimum valuéﬁ of u ranging from 0.6 for

"Af = 0.16, to 0.9 for Af = 0.01. Also, there is again no sigpificant

improvement for filter orders above three.

A theoretical explanation of tﬁe non-stationary behaviour
‘described here is, at th; present time, not possible. Howgver, certain
trends are visible:

(1) There is a definite limit on the number of filter stages needed,
beyond which there is little improvement in éerformance (3 stages
for standard AM and.FM, 2 stages for DSB-SC).

(2) The highest of these stages has a performance whfch‘is strongly
-dependent on u, the optimum-value of which appears to bé a fuhci

. t;on of the modulation level énd type. The standard gradient
method performs much better than the simple gradient ﬁethod at
- this stage. l_ ‘ ’ . -
(3) The lower stages of the fil&er‘show ;'performance which is largely

independent of adaptive constant or method chosen, as well as taking
. %

a very basic shape when plotted.
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(4) The response of the filter to the varying signal is basically the

same whether it is the amplitude or the frequency of the signal

which is being varied.
o
(5) Finally, as could be expected, the filter performance improved as

the modulation level decreased and as the rate of variation (%)

approached zero.

The non-stationary behaviour of the lattice-structure PEF is a
subject of which little is understood (in a quantitative sense). Partic-
ularly needed are explanations of the dependence of this behaviour on
the adaptive constant and the modulating frequency. Such research goes

beyond the scope of this thesis, but definitely deserves future attention.

[ PR



CHAPTER 5

ANALYSIS USING SIMULATED RADAR DATA
&

5.1 Introduction and Performance Measures

* In the previous chapters, some of the properties of the lattice-
structure PEF were analysed using sinusoidal waveforms as the filter in-
put. Such simple input signals are very useful fo; examining basic
characteristics of the filter, but they are not adequate for dealing
with the response of the filter to a complex signal, such as radar clutter
qhd targets. In Chapters 6 and 7,\actua1 radar data will bé examined,
allowing tﬁe proper evaluation of the filter under some specific oper-
,ating conditions. However,'as only. a limited number of discrete cases
could be covered this way, there is also a need for artificially synthes-
izing radar signals representing the general case, which may Bq varied to
determine how the filter responds with different signal parameters. Such
a signal is achieve{ through compute; simulation, and will be used in
this ;hapter for qualitative comparisons of the differeng lattice algor-
ithms and judging the effects of néise and target velocity (and other
parameters) on the response of tﬁe filter.

The simulated radar data used for this analysis consis}gd—og/ .
signals representative of weather clutter and target signals&' The weather

clutter signal was generéted by an algorithm developed by Hawkes (301,
- 6[‘ N e
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based on a generalized form of thé autocorrelation function of radar
clutter, starting from a random distribution. Data sets representing-
widely different c}utter conditions were generated by varying the clut-
ter algorithm's parameters and were used to test the resﬁonse of the
different adaptive lattice filtering set-ups. Most of the performance
data presented in this chapter resulted from the use of a data set
representative of an "average' rainstorm which was uniform and non-
moving over the region of interest. These results are consistent with
those from the other data sets. (Another example, a data set repre-
senting a very heavy rainstorm with some velocity, is presented at the
end of this chapter). The target signal was simulated by the product
of abcomplex sinusoid representing the Doppler modulation related to
target radial velocity, and a Gaussian envelope a;proximating the hori-
zontal beam-pattern of éhe radar antenna.

At this poinpt, it is mnecessary to define and describe some of
the performance measures used to analyse radar clutter filters. Perhaps

the most important [34, 35] of these is the Improvement Factor, defined
as: "The signal-to-clutter ratio at the output of the system divided
by the. signal-to-clutter ratio at the input of the system, averaged

uniformly over all target radial velocities of interest'" [36]. With

f
the simulated data, it is easy enough to ayerage over all possible target

[ -

radial velocities (at the end of this chapﬁer, some examples are plotted

of the improvement factor as a function of velocity). However, for the
j "

real data in Chapters 6 and .7, only a limited number of radial velo-

. cities were available, sb that averaging ﬁakes place using only those

J
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‘receiver-opergtor-characteristic ‘(ROC) curves,:  which prt the prob- .
N

-

avallable targets.

Another useful radar performance measure consists of the

!
|
|

ability of detection of a radar target versus the probability of false

alarms under various circSﬁstances. When detérﬁined experimentally;
these probabilities are simply the numbers of detectioes and false
alarms reco;ded (peeks exceeding a set signal thresholdrlevel). This
neasure impliee some edditional processing beyond the ciutter filter,
whicﬁ in the‘cases presented bere consists of q'simple amplitude detec-—
tor and threshold circuit. Another important perfoymance measure, the

.

sub~clutter—visibility:(§€V) will be preeented‘in,Chapte; 7.

B

5.2 Comparisons in Adapted Response

Our first application for the simulated radar clutter ariles

in.the selection of ‘the lattice algorithm to be used for subsequent

‘ieseareh. As will be seeg,’thefe is no “right" choice for all possible

. : . -]
signals, as different algorithms may perform better or worsé for differ-

ent types of eignals. This‘is why it is i portant te use a representative
radar signal, such es the average raihstor:jclutter mentioned above, to
eompare these algorithes. .(Most'ef the resulte presented in this sec~
tion we;e previousiy published by the author [37]). - -

Figure 5.1'p102§ Fhe clu;ter etteﬁeation (reciprocal of filter
éain) of the‘adapEeq (fifth order)‘lattice filter ;ersus adaptive coe—

staét for four of the réflection coefficient algorithms presented in‘

séction 2.3 ~ These are the harmonic-mean (H), the minimum (M), the -
K

- . . . -7



Clutter Attenuation (Ratio)

Clutter Attenuation (dB)

h:1

.2 4 .6 .8 1.0

' Adaptive Constant (u or w)

160
(See page 70 for key)

0 .2 N .6 8. 1.0
Adaptive Constant (u) '

Figure 5.1% :Attenuation of Clutter §ignal Uéing Different
. Lattice Algorithms (m=5)



68

geometric-mean (G), and the forward-and-backward (F & B) algorithms,
all of which attempt to minimize both forward and backward prediction
errors. Tbe two other algorithms (forward (F), and bgékward (B)) are
QZmpared to these using a different approach in the next section. Only
the first three of these algorithms guarantee the stability of the filter
structure. Also represented in this figﬁre are the two adaptive imple-
mentation methods (as developed in Chapter 3); plotted for the harmonic-~
mean algorithm only .(this relationsh;p is representative of all the algor-
ithms):

The sddden Qrop in attenuation as the adaptive constant goes
above ~0.97 in'Fig..S.l is a result of the limited length of the data
sample (n'; 256), which does not give enough time for the filters to
a@apt properly with higher values of the constant. The relativé per~
formance ofjﬁﬁe two methods of adaptive impleﬁéntation is basically as
might be expected, with the simple gradient method fesbonse equal to
that of the_standard gradient metpod at w =y =0, and éetting progres:
sively worse ;s the adaptive constant approaches 1.0 (due to the inherent
assumption of signal statigna;ity\for this method). . ;

It may see% from Fig. 5.1 that the F & B algorithm has‘a large
advantage over.the other algorithms for this radar.ilutter,-an advantage
which increases as the adaptive constant approaches zero. ihis is prbg—
ably due to the reflection ;géfficient; being able gq assume independent
values for the forward and backward branches, thus providing an'addit~

. ilonal degree of freedom to deal with short-term statistical variations

° . ! {
in the signal. It has been noted .that the differences between thé forwagd
’ /
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and backward coefficients are a good indication of the degree of
these variations [20]. ‘

The seeming advantage of the F & B algorithm described above
disappears, however, when we examine the improvement factor performance
measure, plotted in Fig. 5.2 for the same conditions as Fig. 5.1. The
same freedomewhich allows the F & B algorithm to do so well in atten-
uating the clutter signal also.appears to m;ke it difficult for this
algorithm to distinguish between targets and clutter., Although tﬁig
algorithm does not perform wéli in this regard, there i5 no sign of
Instability in the filter, although this.algorithm is 'the only one of
tﬁe’fou; not guaranteeing stability. :

Anothgr consistently poor performer is the minimum algorithm,
The p;oblem with ;his algorithm probably results from the rgcu}sive
"implementation. ‘In a block-procgssing implementation, the forward or
backward decision of this élgorithm would be made only once for each
‘filter stage, whiie in'éhe recursive implementation, each stag;.could

be switching back and forth in response to new data.

A notable f;ctor in Fig. 5.2 (and also in 5:1) is that the
curves are not smooth, but show considerable variations in response as
the adaptive constant chénges. This can be attributed go the fgct that
as the constant is’ increased, the algo;{thmf are more strongly influenced
by data samgles furtﬂer in’ the past. The geometric-mean algoriﬁhm seems
to be particularly sénsitive to this influence{ suggesting that its re-
sponse to non-stationary siénals may be éqmewhat exratic.

The harmonic-mean'algoriphm,-on the other hand, shows little of this
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influence, Based on this fact, and on the fact that this algorithﬁ
apparently gives the highesé improvement of the four fof this method, the
harmonic-mean algorithm was selected as the best for this applicatign:
Unless otherwise noted, this algorithm will be ghe one usgd throughout
the remainder of this thesis. (It should be remembered that, although
this algorithm may be best for the fadar’filtering problem, gt is not
necessarily so for other types of signals), The filter order used
(m = S)Qdid not appear to be a major factor in these measurements. The
filter responded well at m = 3 and above for this clutter signal. As
. 4
the filter order increased, there was a gradual decline in improvement .
factor  (especially for the F & B algorithm).

In comparing the two methods of recursive implementation, the
standard gradient method does better for most measurements, as expected.
The peak enhancement found with Fhe simple gradient method near w = 1.0
is less expected. ‘In this range, neither method has time to adapt
to the target signal. The standard gradient method, however,‘would
start to adabt to the target, while the simple gradieq} method may be
unabl’® to respond appropriately ;o the target éignal.due to its assump-
tioﬁ of signai invariance, an assqution which increases as w increases.
Although both methods are plotted ohly for tﬂe harmonic-mean algorithm,
.their relative perf&rmance is representative of all the aléorithms.

) Before leaving this section on comparisoms in édapéed résbonse,
let us éxamine the filtér response in the frequency domain- Figure 5-3'
compares the effects ofiglgor%thm, method and filter order on lattice

filters adapted to the same average clutter signal as .before. The actual

clutter spectrum is Gaussian in shape, centered at zero frequency and

g -

L
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having a dynamic range of about 60 dBi The filters approximate tRe
spectrum as ; series of zeros, filtering out narrow bands close to-
gether. (This can Se clearly seen in the frequency responses of the
ha;monic and geémetric~mean algorithms). As can be seen in Fig. 5.3(c),
the first three orders of the lattice filter are used to approiimate the
inverse of this Gaussian spectrum. The fourth stage of the filter pro-
vides some attenuation to flatten the artificial gain introduceq by the
first three orders, away from the main peak. Fifth and higher-order
stages have little effect on the spectrum. More complex clutter éiénals
require higher filter ofders. These spectra need not be symmetrical
around zero frequency.

1]

5.3 Some Comparisons in‘Convergence Properties

Let us now turn our attention to the.convergence. properties
of the lattice filters in response to the simulated radar clutter;
first to confirm that these properties agree with the theoretical devel-

: e
opment presented in Chapper 4, and second, as a basis for further com-

parison.

Figures 5.4 and 5.5 plot the convergence behaviour of the lgt—
tice filter qeflection_coefficients using the simple and standard grad-
ient methods réspectively, in response to the same simulated radar
clutter signal as was used earlier in this chapter. It‘can be seen
that thg convergence béhaviour of the first reflection coefficient for

each method (the top plots in Figures 5.4 and 5.5) does indeed follow

the theoretical relationships presenteq earlier, with irregularities

S o Amve———
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Figure 5.4: Convérgence Behaviour for Radar Clutter Using the Simple
. Gradient Method (w = 0.9) (a) Reflection coefficients, (b) Output
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Time,n
Figure 5.5: Convergence Behaviour for Radar Cluttqr Using the Standard
Gradient Method (u = 0.9) (a) Reflection Coefficients (b) Output
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caused by statistical fluctuations in the data. Similarly, after de-
coupling, the second order tends to exhibit the same behaviour, although
the irregularities are more pronounced, especially with the standard
gradient method. Also;, the filter outputs, as seen in the lower plots,
tend to exhibit the éxpected behaviour at first, B t quickly reach a
point beyond which the average attenuation of the\j}htter is near con-
stant. (The variations beyond this point are due to fluctuations in

the data).

The decoupliﬁg point of the second order of the filter is quite
important to our study. For the reflection coefficients calculated by
the simg}e gradient method with the clutter data decoupling takes place at
about n= 25‘(= 1) for w = 0.9. This corresponds to a fractional error in the
fir;t reflection coefficient given by El(T) = (.08 which gives a de-
coupling constant for this particular signal type as a = 2.64. (See
sections 4.1 and 4.3 for defi;itions). Having thus determined the de-
coupling constant, a value for the adaptive constant w can be chosen
to discriminaté between target and clutter. Assuming typical values
of target duration as 20 samples and clutter duration as 100 samples
or more, a good value of w ié discriminate the two 1s approximately 0.95
(for a second—orde; filter), assuming the clutter is completely station-
afy «(which is not generall; true).

The decoupling point using the standard gradient method of 1

-

reflection coefficient calculation occurs at n = 8 for p = 0.9 (Fig. ©

»
’

11). This, in turn, éorresponds to an error in the first coefficient

of el(r) = 0.044, approximately half the error level at which the simple’

i
¥
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gradient method coefficients decoupled. There is no clear explan-

ation as to why the standard gradient coefficient must be twice as
accurate as the simple gradient coefficient before decoupling occurs.

As with the simple gradient method, the adaptive weighting factor u

of the standard gradient method may be adjusted to provide tﬁe Optim;m
decoupling time for a given signal, although no corresponding decoupling

-

constant exists.

In comparing Figures 5.4 and 5.5, it may appeax that the filter
using the standard gradient method calctlation results in greater atten-
uation of the data. However, this'is largely due to the fact that with
this method the filter has an effectively smaller.adaptive constant,
allowing faster convergence to statistical fluctuations in the data.

. ) .
In practice, tbe filter using the égéndard gradient method is slightly
better than that using the simple gradient method, for this type of

data. As noted before, the first method is computationally more effic-

iént, as well as being more easily used.

ey

The convergence behaviour of the lattice-structure PEF may
also be used to compare the relative merits of different algorithms
for the reflection coefficient calculation. - This is especially true

in the case of the forward and the backward algorithms, as the conver-

éence behaviours demonstrate an interesting property of these algorithms,

Figure 5.6 compares the behaviour of these two algorithms (denoted T and
B) with that of the harmonic-mean algorithm (denoteﬁ H), which is
initially the harmonic mean of the two;' It can be seen in Fig. 5.6(a)
that fmitially the forward algorithm does Better and the backward algor-

ithm does worse than the median value of thc harmonic mean. Th1§ is -due

P
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to the fact that the forward algorithm favours a time series growing

in amplifude with time, while the backward algorithm favouré a time =
series decreasing with time. Because of the initial conditions normally
used, the time series in question effectively has a large grpwth at time

n =0 (from zero to its average vaiue), which accounts for the observed

RN

behaviour, However, when the filter\has adapted long enough to forget

the injitial conditions, or when it has been prefloaded with data, as
"t Fig. 5.6(b), the true advantage of the harmonic-mean algorithm for
time-varying data can be seen.

Finally, bearing in mind the relationship of the standard gradient

ﬁethod with the Kalman filtering theory (see section 3.3 and Appendix 2),
it is informative to compare the convergence behaviour of the lattice to
that of a Kalman tapped-delay-line filter (TDL). 'This is done in Fig.
5.7. In this case, the TDL filter initially converges more quickly than

the lattice, but when both have been allowed to adapt, or are pre-loaded,

R 4

the lattice provides better clutter attenuation. Also, with the lattice,
we have the option of adjusting the adaptive constant to further improve
its performance and cont?ol its adapéive rate. (There is little signif-
icant difference in performance between the forward Kalman TDL, as pre-

sented here, or the backward TDL, or a Kalman filter constrained to mini-

mize both forward and backward TDL prediction errors).

5.4 Other Factors Affecting Performance

In this section, we shall briefly examine the effects of noise,

target velocity, and changes in clutter parameters on the lattice filter
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performance [23]. (For this examination, we shall use the simple
_gradiént method of. lattice implementation with w ; 0.9 and m = 2).

Figure 5.8 ploks the improvement factor as a function of target velocity,
and part of the frequency response of the lattice filter. The signal is
the same simulated average rain clutter data that was used previously,
with varying amounts of thte Gaussian noise added, as indicated.

A number of interesting points arise from Fig. 5.8. First,
although the filter performance is progressively degraded by the addition
of noise, this degraded pergormance is not ill-behaved. 1In fact, for
high white noise conditions, an improvement factor neaf unity and a
basically flat frequency response are to be expected, as the filter i;
basically igactive. Thus, the filte£ is behaving properly in the preéence
of noise. Second, at no point does the improvement factor drop signific-
antly below unity, which is important because otherwise targets might be
lost due to the action of the filter (this happens witk\conventional MTI
filtering). Third, the improvemént factor curves roughly reproduce the
frequency response curves of the filter, as might be ekpected. The adap-
tive constant has some effect on the shape of these curves, especially
those of the improvement factor. Reducing the constant results in a
lover overall improvement curve, as the filter partially adapts to the‘
targets. Increasing the constant above wy= 0.9 tends to raise the low
point of the improvement curve. ‘

The observations given above also apply when the clutger con;
ditions are alt;red significantly. Figure 5.9 plots’the same parameters

as Fig. 5.8, this time using a simulated clutter signal corresponding

to a very severe storm, moving through the radar area with a significant

£
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radial velocity. Two additional observations may be made about this
figure. First, the improvement factors are reduced from those in the
previous figure, as might be expected due to the fluctuating nature of
the severe storm clutter data. Second, the response curves are no longer
centered at zero frequency, due to the radial velocity of the storm.

This is unlike most conventional clutter filters, which are generally
centered at zero frequency. Thus, using the latLice filter would improve
the chance of detecting a target with ze%§~?adial velocity obscured by
‘ a moving weather disturbance. Overall, the adaptive lattice filter per-
formed reasonably well with the strong clutter, especially considering
that the conventional MTI.filter would actually degrade the radar per-

formance under these conditions.

»

Finally, a limited examination was made of the probability of
false alarm versus probability of  detection statistics for the above
cases. The results were much the same for both types of clutter, with
the response growing worse as the target signal became weaker, and as
the noise became stronger. However, such performance measures become
much more meaningful when applied to actual radar data, as will be dqne
in the next chapters. (Some preliminary results, based on actual radar

data, have been published by the author [50].)
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CHAPTER 6

ANALYSIS OF ACTUAL RADAR-DATA

6.1 Introduction

In the previous chapter, simulated radar data was used to
analyse some properties of the lattice-structure PEF. In Chapters 6
and 7, actual radar data will be used as the basis of our study, It
vill be seen that the simulated and actual radar clutter have signific-
a;tly different characteristics, necessitating a corr;sponding adjust-
ment of the lattice PEF parameters. In particular, the actual clutter
is quite non-stationary and more r;ndo; than the simulated data. This
chapter examines examples of the various typeg of actual radar clutter
and tagget data which were recorded, and the resulting responses of
standaré MII and lattice structure filtegs. Chapter 7 presents perform-
ance-measure statist%cs based on this data. '

The data used for this analysis was pollectedvover the period of
6ctober 2 - 15, 1978, at the Bagotville Canadian Forces Base-in Quebec,
It was recorded from a Texas Instruments ‘ASR-8 surveillance radar (air~
traffie control) on a wideband video recorder for later anal§§is on the
Hp COmpute; 6[ the Communications Research Laboratory at McMaster Univer-
sity. - Details of the radar and'recording system are providéd in Appendix

C. The data was selectively sampled and transferred into the computer

using a control and interface unit designed as a part of this thesis,
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and described in Appendix D.
Computational requirements limited the amount of the recorded

data which tould be fully analysed. Selected range rings of data were
#hnalysed, including several examples of every type of clutter present

in the data. In all cases, the performances of the filters were very

similar for all the samples of a particular clutter type, even though

these samples were from different ranges and recorded at different times.

In this presentation, generally onlf results frgm ;ne.or two examples of

each clutter type will be shown. The clutt;rxanalysed this way<include;

rain, snéw, ice pellets (freezing rain), invérsidg, and ground clutter.

In addition, all aircraft and bird flocks which coﬁ@d be found in the

data and properly identified were sample&. \

The results presented in this chapter consist meinly'of plots of
the actual radar signal and the associated filter output\@ignals. These
plots are presented in the form of signal amplitude versu; sample number
:(corresponding to azimuth) for a small section of a range rng,having

_ typical (or special) characteristics. Accompanying some of tgese plots
are-périodograms of the signals. : There are generally four lines on the
plots, these being the input signal and the outputs of a multi-pulse
canceller MTI filter (see Appendix A for ‘details)” and two lattice-struc-
ture filters, one using the simple gradient method and the other using the
standard gradient method fwa adaptive implementation. Unless otherwise
noted, a filter order of five was used for the camparison éf the three

filter types. ‘

|
The radar installation from which the dataswwas collected made use
\

of a staggered pulsg-repetition fréhuency (PRF), with four sequenced

\

| \
4
\

\

Aty

v —
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periods (as discussed inoAppe;dix C). This can present a problem to

the lattice-structure filger,‘which assumes a donstant time period
between samples. The solution used in this thesis was the parallel
operation of four separate lattice filters, each taking only every
fourth sample in series. (Actually, the same filter was used with four
separate memories). This qolutioy w;s compared with the use of one
lattice filter on all the data, and wa§\found to be sfightly better. When

\

plotted, Ehe_outpubs of the four lattice filters were averaged together
for simplicity, as were the input and MTi output signals for the same
four sample pulses. :
Because of the parallel filteriné structure, and the non-
stationary nature of the’data, it could Be expected that the optimum
values of the adaptive constants used fo£ the lattice-structure filters‘
would be lower than those of the stationary simulated data of the prev-
ious chapter. In fact, as will be shown in section 7.1, the best per-
formance is achieved with w = 0.0 for thé simple gradient method aAd
u = 0.1 for the standard gradient method; At these values, the filters
are able to partial}y adapt to the targets as well as the clutter, and
target detection is based on the response to the transition region bet~
ween clutter and target. In this region, tﬂe signal statistics belong
to neither clutter nor gangeq, but are’'changing between the two. These
values of w (Q.0) and u (0.1) are used throughout this chapter, unless

otherwise noted.

PRI

g
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6.2 Target Data
6.2.1 Aircraft '

In the course of examining the recorded data, six aircraft
targets which could be identified were found. Of these, one whs later
discarded as Jnreliable, leaving the five described in .Table 6.1. (These
five targets may seem to be a small data base from which to form any con-
clusions or derive any statistics. However, they are representative of
the mid-size aircraft found at many airports, and more importantly,
cover the range of radial velocities, including zero, typical of such.
aircraft. As such, they do fqrm an acceptable data b;se). The original
identification of these aircraft took plaée at the airport where the
radar data was being recorded. Figure 6.1 shows typical primary radar ?Pl
(plan-po;;tion—indicator) displays available from the radar for air-
Crafficlcontrol. Figure 6.1(a) is a "normal video'" display of ground
clutter surrounding the radar loéation,_while Fig. 6.1 (b) shows the

"MTI video" display of an aircraft shortly after take-off. (The radar

processor which created these displays is described in Appendix C).

TABLE 6.1: Aircraft Targets
Range
Alrcraft Description (nautical Predominant
Record # . miles) Movement
1 ‘Qoeing 737 jet (dn light snow) 44 Radially (inward)
2 ﬁxeing 737 jet 22 Radially (inward)
3 Viscount propjet 7 [Tangentially '
4 Viscount propjet 12 Radially (outward)
5 Hellcopter (military) 7. Radially (inward)
\ i

! -

\ “
|

i
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(a)

(b)

Figure 6.1: Operating PPI Displays (Negatives of Actual Photographs)
(a) Enhanced "Normal Video" (no targets visible), 10 nautical mile
range rings
(b) "MT1 video" (aircraft at 3% nautical miles in NW), 1 nautical mile
range rings



After the recordings were taken back to the laboratory, they
were played back into another PPI, and a suitable range ring containing
the target was selected and transferred into the computer for analysis.
An example of tgis is given in Fig. 6.2, for the same aircraft as above,
taken ayfew minutes later at a greater range (aircraft record #4). This
figure shows the laboratory PPI display (with the selected range ring), _
and the corresponding amplitude display from the computer. Besides the

<

target, there are peaks in the amplitude display from ground clutter and
a noise background (presumably from the record;r).

(in comparing Figures 6.1(a) and 6.2(a), "it may appear that Fig.
6.2(a) is more finely detailed. 1In fact, this is because much of the
data displayed in Fig. 6.1(a) was lost to the PPI in Fig. 6.2(a), be-
cause the laboratory system was geared for accurate data transferral,
rather than maximum visibility. The laboratory PPl displayed only the
positive half of the in-phase channel of data, with three out of four
scans eliminated and without the limiting/integration enhancement of
the radar PPI display).

Let us now turn our attention briefly to the response o{ the
lattice and MTi tilters to the aircraft target signals. (Aircraft re-
cord #5 will be used as an example):' Figure 6.3 shows the amplitude
response of the input and outputs uéing the standard MTI and lattice~
structure {ilters (using thé two methods of adaptation) for this target.
A very noticeable factor in Fig. 6.3(a) is that the target peaks in the
filter outputs are much lower than the peak in the input. This is tvpical

of the lattice-~filter outputs, but the MTI filter output is generally

closer to the input peak level for many targets. The lower level here
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Data for Aircraft Record #4

(a) Laboratory PPI bisplay (aircraft at 12 nautical mi]és in NW,
crossing ring)
(b) Signal Amplitude Plot of Range Ring shown above



(a)

Signal
Amplitude

(b)

Normalized
Signal
Amplitude

Figure 6.3:

93

8a.

Input Time Serted
Stmple Gradiers — —— -_—
Stendord Grodient — ——
70. M. T. 1. Ftleer —————————e
» Target—y
8. |—
58, b
42, | -
i
30. {—~
20, |~
19, j—
“~ .
°. ZI | i L9 1 N /N
2000 2099, 21002, 2110. 2120, 2130, 2140. 2150, 2100, 2170, 2189,

Sample Number (Azimuth)

5 l
Irpue Tiwe Gertes
Simple Gradient —— — -
Svandor GCradimnt == ——— =———=
M. 7. 1. Filesr
A,
A\
J
. \
/ \\
2.
. \
/ \k i r—/
>/ >4 Va N
o. { IR
2Weea. ‘2100, . 21e9. 2“0 T ois0. 2160.

Sample Number
Comparisons of Filter Outputs for Aircraft Record {5
(a) Absolute Amplitude
(b) Amplitude‘Normalized Over 100 Samples



-

94

is due to the target's relatively low radial‘velocity. (The lattice
filter's output peak level is basically insensitive to target velocity).
A less noticeable but equally important factor is that the background
noise and clutter are also reduced in these outputs, so that when the
plotted signals are normalized (as in Fig. 6.3(b)), the peak values
assume their proper prominénce. In the normalized ploté of all five
aircraft targets, tU@ lattice-structure filters produced higher peak
responses than the MTI filters, and the lattice response was approx-
imately the same for all five aircraft, although the input signal peak
structures varied significantly. .(Plots of aircraft data in the presence
of clutter will be presented latef in thig chapter).

The response of the filteﬁs to the above aircraft signal in the
frequency domain is also of inter%st. Figure 6.4(a) plots the periodograms,

|

calculated as the squared magnitube of the discrete Fourier transform

'

‘of the target area (the central AO‘data samples of Fig. 6.3(a)), cover-
ing the frequenc& range of theairtraft's Doppler signal. This can be
compared with the. corresponding periodograms of a faster moving aircraft
(aircraft record #1) shown in Fig.|6.4(b). The most noticeable difference
between the two plots is in the response of the MI1 filter, which for the
faster aircraft responds strongly at the‘Doppler frequency, and for the

slower aircralt misses this frequency completely. (It does, in this case,

respond to some higher frequency harmonics from the slower aircraft, which
are not shown here). The lattice-d4tructure filters, on the other hand,’
show basically the same responses fpr both target signals. (The relative-

ly low ievel of these responses is not a problem; it is largelngue to the
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lack of normalization of the output data, as well as the partial whiten-
ing of the output spectrum by the filter).

Finally, Fig. 6.5 compares the output of a lattice-structure
filter using the adaptive gradient method with the output using the
simple gradient method (w = 0.5) for the same aircraft as above. As
éan:be seen, the outputs are very similar. Other comparisons have shown
that, in terms of both amplitude response and improvement factor§, the
adaptive gradient met%pd performs almost ident{cally with the simple grad-

ient method set at w = 0.5, for this data.

6.2.2 Bird Flocks
The inclusion of bird flock-data as a type of target signal may

.at first seem contradictory, as radar returns from birds are generally
considered to be a form of clutter. But there aré several good arguments
for considering bird flocks as t;rgets. The first of these is the nature
of the data itself. As will be seen, the data from bird flocks is very
similar to that from slow-moving aircraft. Because the spatial distri-
bution of birds within the flock is typically close to the limits of
resolution of the radar cell, the flock often appears to the radar to be
essentially’a point—;ource reflector. Also,the velocity spread of birds
within the flock is .generally less than or of the same order as the
velocity spread of an dircraft target,due to antenna scanning modulation.
(1t should be noted that this thesis deals with birds in flocks only.
Birds moving indepeﬁdently over a wide area could be expécted to have

completely different characteristics).
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The second major argument for considering bird flocks as
targets is the consideration of air safety. Birds pose a real col-
lision threat to aircraft, especially when the aircraft are landing
and taking off. One New York airport reported forty million dollars
worth of aircraft damage from bird collisions in the year 1975 alone,
and in Canada, twelve Starfighter jets have been lost due to bird.strikes
over an eight-year period, Thus, it seems very desirable to treat bird-
glock returns as targets to be avolded, rather than as clutter to be
ignored and eliminated.

The performance of the standard MI1 filters presently used by
most radars can best be described as hit-and-miss for this sort of data.
Faster flocks are detected as taréets, while returns from slower flocks
are eliminated as clutter. The lat}ice—structure filters present;d here,
however, detect the flocks as targets with a high degreevof reliability.
In practice, this detection of bird flocks as targets could lead to a
confusion between the flocks and slow aircraft. This is not a serious
problem, however, as the basic safety procedure for both types of targets
.is the same; other aircraft must avoid this area. On the other hand, to
mistake bird flocks for another type of clutter would be extremely danger-
ous. The consistent detection of bird flocks as targets could make air
travel much safer. |

The time period over which this data was recorded 4t Bagotville
was chosen to coincide with the annual sOuthward‘migration of snow geese
through the area. Although the expectgd large-scale migration did not

occur in the vicinity of the radar location, a number of smaller f{locks
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did pass through the area and were recorded. A complicating factor

in dealing with the bird-flock data was the desire to have visuai con-
firmation of the flocks recorded, which effecgively limited the range
to a very few miles around the radar. At these ranges, there was also

a large contribution from ground clutter, making it difficult to obtain

a confirmed recording of birds and nothing.else. However, it was possible

'
’

to isolate a few examples of recorded bird-flock clutter signals, which
ar; described in Table 6.2. (Although these flocks resembled snow geese
in size and behaviour, it was generally impossible to make a positive
identification at the ranges involved).

Figure 6.6 presents examples of the normalized response of lattice
and MTI filters to two of the bird-flock records, typical of the variety
present in this data. The top plot belongs to a large, fast-moving flock,
and both data'and filter responses are very similar to those recorded for
aircraft targets. The bottom plot belongs to a much slower flock. (There
is a significant background clutter level in the lower plot). As can be
seen, the MTL filter detects the one flock well and completely misses the

other flock, while the lattice filters detect both these flocks (and the

TABLE 6.2: Bird-Flock Recordings

Flock Range
o¢ Description (nautical Predominant
Record .
miles) Movement
1 Large flock in formation 24, Radially (inward)
2 50 birds in "V" formation 5 Radially (outward)
3 (5ame) 6 Radially (ouLwaEd)
4 Uncertain due to range 11 Tangentially
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others) equally well. Figﬁre 6.7 shows a typical response in the spec-
tral domain, again for a slow-moving flock. (Note the contribution of

ground clutter at zero frequency).

6.3 Clutter Data

6.3.1 Rain Clutter

N ..

Duiring fine weather conditions, when only ground clutter is
present (for example, see Fig. 6.1), the performance of conventional
MT1 filters is generally acceptable (except for the loss of tangentially
moving targets). With the addition of any weqther clutter, however, the
situation changes gre:tly. Consider the case of a "light" rainstorm
(as defined by the weather office), carried by 14 knot winds from the
east. The operating PPI displays during‘such a rains®rm are shown in
Fig. 6.8. Even though the radar was using circular polarization at the
antenna, which reduces the returns from rain considerably, significant
areas of the screen are obscured by the rain, for MII as well as normal
displays. This 1s especially true in the enhancement mode, as seen in
frames (c) and (d) of Fig. 6.8 which also show the effect of switching
from high to low antenna beam at about 15 nautical miles. ("Enhancement"
was the normal operating mode at the Bagotville installation. As des-
cribed in Appendix C, it includes limiting and integration of the sig-
nal). Obviously, aircraft in the region obscured by the rainstorﬁ could
not be detected.

In order to remove the rainstorm returns from the MTI display,

many radars (including the ASR~-8) use what is called constant-false~

alarm-rate (CFAR) processing. This processing tests each data point

. Aawad
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(a)

()

Figure 6.8: Rain Clutter PPI Displays (10 Nautical Mile Rings)

(a) "Normal" (no enhancement), (b) "MTI" (no enhancement)
(¢) "Normal" (enhanced), (d) "™TI" (enhanced)

(b)

(d)
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from the MIT filter against a threshold of the average value from
surrounding points. Thus, detected returns covering a large area (such

as weather clutter) are reduced to the level of system noise, while
isolated returns (targets) are largely unaffected (in theory). An example
of the application of CFAR processing, to the MTI display in Fig. 6.8(d),
is shown in Fig. 6.9. The lower picture of this figure includes a weather
outline map. (Details of this processing are presented in Appendin C).
The CFAR display is not much of an improvement, however, as target returns
occur}ing in regions of strong clutter (such as within the central out-
line of Fig. 6.9(b)) are also eliminated trom the display. Thus, the con-

. -
ventional MTI filter's inability to distinguish between moving clutter

ané tqrgeks becomes a real problem. This is the problem for which the
adaptive lattice-structure filter is intended to be a solutlon.

Figure 6.10 presents the data for a range ring sampled from the
above storm. Comparing the amplitude plots of this figure and Fig. 6.2,
it can be seen that the rain clutter is a large part of the signal. The
MTI and lattice filter outputs are compared for sectors of this ring in
the plots of Fig. 6.11. Plots (a) and (b) compare these outputs for sec-
tors where the rain ig moving tangentially (no radial velocity) and rad-
ially. All the filters perform approximately equally for the low-velocity
clutter. For the higher-velocity clutter, on the other hand, the lattice-
structure filters still do approximately as well as before, while the MTI
filter does much worse.

The effects of Qarying the filter orders can be seen by comparing

plots (b) and (¢), for the same sector of data. In plot (b),i}he filter
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(a)

(b)
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<
Figure 6.9: Rain Clutter PPI Displays Using CFAR (10 nautical mile rings)

(a) CFAR alone
(b) CFAR plus Weather Map
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order is five for all filters. In plot (c), the MTL filter order has

been decreased to f;o (identical to that of the radar instaklacion);'with

a marked worsening in perfo;mance. The lattice filgers in plot (¢) had

a filter order of nine (the higﬁest tested), and svoy a slight improvement
in performanée. For all types of clutter; the lattice filters showed

this same gradual improvement with filter order, with performance remain~
ing fai;ly_goodi{or filter orders down to about two., The MTI filter, on
the othe£ hand, showed a significant improvement with higher filter orders
for rain clutter only. For other clutter types, there was 1i£tle signific-
ant difference between filter prders of two and five. (More details are
presented in Chapter 7). Finally, plot (d) of Fig. 6.11 compares the per-
formance of the simple gradient (with o = 0.5) and adaptive gradient imple-
mentations of the lattice filter, for the same sector. As noted in section
6.2.1, the performance of the two is very similar.

% Periodograms of the filter outputs for two sectors of the rain-
clutter range-ring are presented in Fig. 6.12. The sector in the upper
plot has a low average Doppler frequency, while the other is much higher.
As can be seen, the lattice filters have basically the same performance
for‘%oth, reducing the higher peaks in the spectrum by 20 to 30 dB, thus
whitening the spectrum. Thé MT1 filter, on the other hand, does as well
as the lattice filters for the low Doppler frequengy case (beLter near
zero), but for the higher’Doppler frequencies does very poorly, as can be
seen in the lower plot. ‘

0f great interest is the performance of these filters when a target

is present in addition to the clutter. This can be tested by adding a known
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target to the clutter record, and then comparing the resultant filter
outputs. An example of this is presented in Fig. 6.13. (The target,

#5 in Table 6.1, is added to rain clutter of the same sector as in Fig.
6.11, b-d). In this example, the target is badly obscured by the clutter,
and the M1l filter fails to sort the mixture out. The lattice filters,

however, provide a reasonably good detection.

6.3.2 Other Precipitation Clutter ot

Rain was not the only precipitation clutter seen during the time
at Bagotville. Periods of snow and of ice pellets (freezing rain) were
also recorded, and an example of each is given here. The example of
snow clutter comes from a moderate snow storm, during which there were
light surface winds from the south-east. Figure 6.14 is a picture of the
M{I display, taken during this storm. From this picture, it can be sur-
mised that the winds at higher altitudes were probably of higher velocity
and from a more southerly direction (common weather conditions), resulting
in the clutter "breaking through'" the MTL filter. The examplé of ice-
pellet clutter comes from a period of light ice-pellet precipitation,
with light winds from the north-west. In both these cases, as with the
rain tlutter, significant portions of the raéar PPI screen were obscured
by the clutter, creating the problems discussed in the previous section.

Comparisons of the MI1l and lattice-structure filter outputs are
presented in Figures 6.15 and 6.16 for sectors of ice-pellet clutter and
snow clutter, respectively, taken from the storms described ;bove. In

both figures, the upper plots come from sectors of clutter having a large
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Figure 6.14: MTI Display of Snow Clutter on Operating PPI
(5 nautical mile range rings)
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radial velocity, while the lower plots come from sectors where the move-
ment is basically tangential. The ice-pellet clutter data was from a
ring sampled at a range of 10 nautical miles, while the snow clutter

was sampled at a range of 6% nautical miles. As can be seen, the re-
sponse in these figures 1is similar to that for rain clutter (as shown

in Fig. 6.11). The lattice-structure filters performed consistently
well, while the MTI filter's performance ranged from almost as good as
the lattice f{ilters' performance (for low radial velocity), to a very
poor response,

Figure 6.17 plots the periodograms of the filter outputs (as
shown in Fig. 6.15) for ice-pellet clutter. Again, the results are
similar to the peridograms for rain clutter (in Fig. 6.12), except that
the MT1 response for radially moving ice-pellel clutter is much worse,
This is because the Doppler velocity of this clutter happens to be
centered at exactly the frequency where the MTI filter has its maximhm
gain, (i.e., 0.5, normalized to the sa;pling frequency. (The lower plot
also includes a peak resulting from ground clutter).- Figure 6.18 plots
the periodograms of the filter outputs (aé shown in Fig. 6.16(a)) for
a sector of snow clutter. The slight increase in randomness of this
plot, compared to previous plots, may have resulted from the lower
density of the snow-flakes, allowing greater wind-related turbulence.
The response curve of the MIT filter can be viewed in this plot, having
unity gain at a frequency of 0.5, and dropping to zero gain at zero
frequency. As with rain clutter, the lattice filters provided between

20 and 30 dB of attenuation of the periodogram peaks for both ice-pellet

Vv
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de snow clutter, significantly whitening the clutter spectrums.
Finally, the responses of the filters were compared, with

known target signals added to the clutter input. The example shown

in Fig. 6.19 is tor the addition of an aircraft target (#1 in Table 6.1)

to the ice-pellet clutter from Fig. 6.15(a). As can be seen, the MTI

filter fails to detect this target, while the lattice~-structure tilters

do so quite well. In summary, then, the effects of snow and ice-pellet

clutter on the performance of lattice-structure and MTI filters are very

similar to the eftects of rain clutter, as presented in section 6.3.1.

6.3.3  Ground and Inversion Clutter

This section deals with two types ot clutter noc-caUSed.by pre-
cipitation, namely ground clutter and inversion c¢lutter (thought to be
ground echoes ref;acted or reflected by layers of denser air near the
ground). This may seem to be a strange grouping, but as will be seen,
the éhdracteristics of these two types of ‘clutter are quite §imilar.

Ground clutter is always present in a radar gnvironment. A typical
set of operating displays with only ground clutter (and a target) present
were shown in Fig. 6.1. The lower display in the tigure showed how the
ﬁfl filger almost completely eliminated the ground clutter, as it was
designed to do. This figure may be compared with Fig. 6.20, containing
the corresponding displays with inversion clutter present. This data
was recorded on a clear, cold evening with moderate (13 knot) winds trom
the south-east. The MIT display shows two "blobs'" of scattered points,
aligned with the wind. (In other displays of this type of clutter, the

points have short tails, all aligned radially to the display center).
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(a)

(b)

-

Figure 6.20: Inversion Clutter PPI Displays (10 nautical mile range rings)

(a) "Normal' Video, (b) "MTI" Video
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Figure 6.21 shows the data for a range ring sampied from this clutter,
This may be compared with Fig.‘6.2 for ground clutter. (Note: Figure
6.2 is for a range ring at 12 nautical miles. The ground clutter range
ring analysed in this section was sampled at 6 nautical miles, but is
similar in appearance.) The high, random level of the inversion clutter
is apparent.

The identification of atmospheric inversion as the source of
clucter attributed to it here is not certain. This sort of clutter is
often called "angel clutter", and some reports suggest that it is caused
mainly by birds [42]. This seems unlikely for three reasons. They are:
(a) No birds were seen in the area at the times when the clutter was
present; (b) The clutter movemenp was aligned with the wind direction
(and therefore presumably related); and, (c¢) The clutter always occurred
during the same weather conditions. The;e were late afternoons or even-
ings with clear skies when the temperature was dropping rapidly. These
are conditions which often lead to the formation of an inversion layer
near to the ground [487]. This comes about when the ground cools faster
than the air masg above it, resulting in a fairly stable layer of denser
air. Movement of the layer or its boundaries could iméart a Doppler shift
to signals refracted or reflected by it, resulting in MTI detection. How-
ever, whether or not this is the true cause of this type of clutter is not
very impbrtant to this study.

Figure 6.22 compares the MI1 and lattice-structure filter outputs
for sectors of the ground cluFter and inversion clutter range-rings,
respectively. Both filter types do very well for both types of clutter,

although the response to inversion clutter 1s slightly noisier than the
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response to ground clutter. The small peaks in the lattice filter out-
puts for ground clutter are due to sudden changes in the clutter. The
MT1 response is slightly worse than that of the lattice structures for
inversion clutter, but not significantly so.

Periodograms of the response§ for these same sectors of ground
and inversion clutter are plotted in Fig. 6.23. Although the filter out-
put responses were plotted in this figure, they are not readily visible,
as they are too close to the zero axis. In comparing the two plots, it
is notable that: (a) the central peak for inversion clutter is offset
from zero slightly, and (b) the inversion plot contains a number of lower-
level, spurious peaks away from the central peak. Larger spurious peaks
probably account for the points décected by the MTI filter in the clutter
area (such as in Fig. 6.20). 1In general, the lattice filters provided
about 30 dB of attenuation of the higher peaks for both ground and in-
version clutter.

Finally, Fig. 6.24 compares the filter outputs when a known target
signal (#1 in Table 6.1) is added to the same ground clutter record. It
can be seen that both types of filter do a good job of detecting targets
obscured by this type of clutter. How good a job they do will be the

subject of the next chapter.
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CHAPTER 7

PERFORMANCE MEASURES FOR ACTUAL RADAR DATA

7.1 © Improvement Factors

The improvement factor of a radar clutter filter (as discussed
in section 5.1) 1is defined as: "The signal~to-clutter ratio at the
output of the system divided by the signal-to-clutter ratio at the input
of the system, averaged uniformly over all target radial vélocities of
interest" [36].

This can be written as

(r_./C )

out’ out

I = ) L (7.1)

(rhllpin

where T and C are the target and clutter powers. In applying this per-
formance measure to the actual radar data collected as part of this thesis,
the improvement factors (1) were calculated from the ratios of the éarget
gains in the filter (Tout/Tin) to the clut;er gains in the same filter
(CouL/Cin)'

The target amplitudes used in computing these gains were measured
by first taking the amplitudes of individual data samples, and averaging
over four samples. Then, the largest of the averaged values in the target
area was selected, for both the input and the output of the filter. This

averaging is short enough to ensure that the antenna pattern does not
‘ 4

become a factor, but long enough to reduce the effect of noise and elim-

128
7
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inate interference from the staggered pulse-repetition-frequency of the
radar. (By taking the largest averaged value, the target is measured at
the peak of the antenna pattern).

The above process was applied to the five aircraft signals des-
cribed in section 6.2, and the five resulting gains were averaged to-
gether to form a single target gain for each filtering set-up. This

corresponds to the ",

.. averaged uniformly over all target velocities of
interest" part of the definition quoted above. Five targets may seem
to be a small number to form a "uniform" 5§erage, but these targets do
represent a fair cross-section of the possible velocities (including
zero).” Besides, these were the only such signals readily available, and
thus became the targets "of interest".

The clutter gains were measured by averaging‘the signal amplitudes
over'the entire range ring, and taking the ratio of the average output
power to the average input power. These gains were measured for more than
one range-~ring of each type of clutter, with these rings generally recorded
at different ranges and times, to ensure uniformity of the results.

The improvement factors plotted in this chapter were calculated
using the average of clutter gains from several such range-rings ot each
clutter type; however, improvement factors were also calculated using the
gains of the individual rings. In general, the measured improvement fac-
tors for the single clutter rings and for the average for a clutter type
were within 1/2 dB, except where noted. The exceptions involved only the
MTI filters and apparently related to the overall velocity of the specific

clutter record. As the above variance was much less than that between

different clutter types, this was taken as evidence that the selected range-

-,
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°

rings were representative of the clutter present.

The measured improvement factors, as a function of filter order,
are plotted in Figures 7.1 to 7.5 for rain, snow, ice-pellet, ground,
and inversion clutter, respectively., Each of these plots has five separ-
ate curves; one for the MTI filter, and two each for the simple gradient
and standard gradient implementations of the lattice filter, The lattice-
structure filters had adaptive constant values of 0.2 and 0.6. (These
values were chosen to be representative of the useful range of these con-
stants.,

4

The set of curves for the {attice filters presents a very similar
pattern in each of these five figurés, with the only significant differ-
‘ence being in the overall leve} of the set of curves. Even this was
fairly constant, with rain, snow, and ground clutter all resulting in
approximately the same improvement factor levels (for each lattice filter).
The improvement factors were about 3 dB higher for inversion clutter and
2 dB lower for ice-pellet clutter. A common factor in all the lattice
filter curves is the increase in improvement factor with increasing filter
order. The rate of this increase slows down at higher filter orders,
suggesting that there is an upper limit to the improvement.(Lattice fil-
ter orders above nine were not tested due to a desire for simplicity in
the final system, and becduse little additional improvement was expected).
As expected, the standard gradient method of adaptively implementing the
lattice filter performed better than the simple gradient method.

Another factor of interest in the lattice filter response is the
\effect of the adaptive constant. As can be seen in Figures 7.1 to 7.5,

lower values of adaptive constant resulted in better performance. Figure
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7.6 plots improvement factors versus adaptive constants for both imple-
mentation methods (filter order = 9), and for three of the clutter types.
(The other clutter types give very similar performance). The best values
of adaptivé constant for the standard gradient method occur in the range
from 0 to 0.2, with an optimum value of p = 0.1l. For the simple gradient
method, on the other hand, the optimum performance occurs only at w = 0.
(Note: At w = 0 = u, both methods simplify to a common set of equations).

The curves in Figures 7.1 to 7.5 for the MTI filter, unlike those
for the lattice filters, show considerable variation with the type of
clutter., The MII filter performed best for ground clutter and worst for
ice-pellet clutter. In addition, there was some variation in performance
within specific clutter types, probably due to the velocity of the clutter.
In particular, the single range-rings presented in section 6.3 for snow
and inversion clutter both resulted in MTI performance about 2 dB below
that shown in Figures 7.2 and 7.5 for an average of several rings. Some
tests were also made using bird targets (from section 6.2.2) instead of
the aircraft. This resulted in a-further 3 dB reduction in MTI berform-
ance, with little effect on the .lattice filters. The effect of MITI fil-
ter order also varied, depending on the type of‘clutter. For rain clutter,
the improvement factor increased with filtér order, up tom = 5., For Fhe
other ;luttef types, however, there was little increase beyondwm = 2. (In
fact, fo; some range-rings of clutter, there was a decrease in level with
increasing filter o;def). This tends to validate the common choice of
m = 2 for conventional radar MTI {ilters.

The relative performance of thg lattiée.and MT1 filters can be

assessed from Figures 7.1 to 7.5. (In this instance, we will compare the

\
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fifth orders of the MT1 and standard gradient method lattice filters,
with u = 0.2). The most important observations are that the lattice
filter always performed as well as,or better than,‘the MTI filter, and
that the lattice filter performed consistently well. The improvement
factors of the lattice and MTI filters were approximately the same for
ground clutter, while for inversion clutter the lattice was 3 to 5 dB
better, and for the precipitation clutter the lattice was 4 to 6 dB better.
This does not tell the whole story, however. When the whole range-
ring is analysed as a unit, the performance is averaged over the whole
spread of Doppler velocities present in the clutter. Also, some ground
clutter is present in every range-ring. If orily small sections of a range-
ring are considered (as was done in Chapter_6), the performance ranges from
nearly identical (for well-behaved clutter moving  tangentially), to improve-
ment factors with as much as 20 dB difference, in favour of the lattice.
Figure 7.7 shows a histogram of the improvement factors‘fbr 21 such sections,
selected from all types of clutter (mainly at points of highest and lowest
clutter velocities). Although not too significant in a statistical sense,
this figure does show the wider spread of improvement factor values for
the MII filter compared to.the lattice filter. -Also, the MIT filter im-
provement factors are often negative (degrading performance), unlike the
lattice filter improvement factors, which never go negative.
It would be desirable to compare these results to the results of
researchers using ogher new techniques on actual radar data. ﬁowever,
this 1s difficult for a number of reasons. The most important of these

is that the numerical results presented here are significantly degraded

>
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from their potential values by the limited dynamic range of the data

used. This was a result of the signal-to-noise ratio of the video re-

corder (see Appendix C), which limited the dynamic range to a maximum of

about 6 bits. Somewhere between 12 and 16 bits would have been desirable.
Another problem is that very little has been published analysing

new techniques using actual radar data, and what has been published often

does not include a comparative, quantitative analysis. One adaptive

approach, which has received atténtion recently, is the Moving Target
Detector (M£D) system [427]. This complex system uses an adaptive ground
clutter map to detect,slow targets and an MTI filter followed by an FFT
to detect faster térgets in weather clutter. The FFT outputs (u;ually 8
points) are stored in bins which are tested against a threshold based
on the response of the surrounding area for that bin. Detection depends
on weather and target returns being found in separate bins. Additional
proceésing of the FFT bin and ground-clutter map outputs determines the
detection. Tt should be noted that this system uses several adaptive
techniques together, while the lattice-structure filter (as described in
this thesis) is only a single technique. 1In fact, the lattice filter
could be used as one component of a similar system, as will be discussed
in Chapter 8. '

Some results are available using actual radar data to compare the

-

MTD.system against MIT filtering alone [47]. However, direct comparison
of the MTD system with lattice-structure filtering wouldAhavé to take

account of the fundamental differences between the adaptive clutter can-

cellation of the lattice and the clutter classification and non-parametric
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detection of the MID. To make a valid comparison, the lattice filter
should be part of a system similar to the MID, with Maximum Entropy
spectral estimation (calculated from the lattice reflection coefficients)
taking the place of the FFT stage. Simulation studies (using block-
processing for the lattice) have shown that this system is significantly
better than the MID with ground clutter, and only slightly inferior with
weather clutter [31].

In conclusion, the results presented ﬁere should not be considered
as an absolute measure of the performance of the lattice-structure {ilter
for this application. Rather, this presentation should Be consgidered as
a "proof-of-concept" for this application of the structure. What has
been shown here (and in the following sections of this chapter) is that
the lattice filter reliably reduces clutter signals (compared to target

signals) and consistently out-performs the MI'I filter, and that it does

so using a simple structure and under adverse conditions.

7.2 Receiver-Operator-Characteristics

Improvement factors are not the only performance measure applied
to radar systems. Often, the performance of a system is evaluated on
the basis of the probabilities of false alarms and of detections, for
given signal-to-interference ratios of a particular system. Such values
form the receiver-operator-characteristic (ROC) of the system. ‘

Unlike the improvement factor, the ROC applies to the whole radar
system, from antenna to detection and display, and not just to a partic-
ular section of the system. For our use, we will hold all Fhese other

factors constant, except for the clutter filtering system (lattice or

3
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MIL), to allow a comparative analysis of the response. Also unlike the
improvement factor, the ROC approach to the data is non-linear (non-
parametric). The data is tesked against a threshold, and if it exceeds
this, it is judged to be a target. If this is correct, it becomes a
"detection"; if incorrect, it is a "talse alarm"”. The proportionate
numbers of these two cases at a particular threshold become the basic
ROC statistic. Obviously, the desire is to maximize the number of detec-
tions while minimizing the number of false alarms, or to reduce the signal-
to-interference ratio required to achieve specified limits on these values,
The probability of false alarm (PFA) and probabiliéy of detection
(PD) values may be determined, for specified conditions, either theoretic-
ally or experimentally (as is done in this thesis). Theoretically; PFA
and PD are defined only given a specified value of the ratio of signal
to receiver noise. When receiver noise is replaced by a correlated inter-
ference source (clutter), as is the case here, these values are not well
defined, and depend largely on the clutter probability density. (Such
factors as range, weather, wind, temperature, etc.,all have effects).

The PD and PF values presented here were measured for targets combined

A
with cluttef at specified signal-to-clutter ratios (SCR). This is unlike
th; imprdévement factor results, where clutter and target gains were eval-
uated separately. No averaging was applied to the signals before th%es—
hold measurements,

The probabilities of detection used in this analysis were calculated

by repeatedly adding a target to different locations in the clutter signals

(using the five aircraft targets described in section 6.2.1) and testing
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the resulting signals against 25 levels of threshold. The same thres-
holds were used with the clutter signals alone to calculate the probab-
ilities of false alarms. This process was repeated for each SCR.

(The SCR values were measured using the peak target signal and
average clutter signal amplitudes. The peak target levels could possibly
have a significant noise component. Expected levels Bf these peak signals,
determined by fittigg the target returns to the approximate antggna pat-
tern, were found to be an average of 3.4 dB below'the measured peak
signals for the five aircraft targets. The measured peak levels are
generaily considered the more appropriate choice of value, and were used
here. However, adjustment for the expected values could be achieved if
desired by subtracting 3.4 dB from the SCR values presented in this sec-
tion).

ROC curves resulting from analysis of the actual radar data are
presented in Figures 7.8 and 7.9 for rain and ground clutter, respectively.

¢
FA versus the SCR (in dB), with the prob-

These figures plot the log of P
ability of detection set at 0.5. This is a reasonable value for P and
was chosen because measurement at this value is more accurate thdn that
at any other value. Four curves are shown in each plot. These are the
responses of MTI filtering, lattice filtering using the simple gradient
method (w = 0), lattice filtering using the standard gradient method

(u = 0.1), and the unfiltered data, for refetsnce purposes. (These
values of  and y were determined to be optimum in section 7.1). All

filters were f{ifth order. The ROC curves were calculated using 20 rangb—

rings of each clutter type (105 data points). Thus, the points plotted
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for log (PFA) = -5 do not have the same accuracy as the rest of these
plots. This data was sampled from the rain and ground clutter conditiouns
described in section 6.3.

These figures indiCQCe that for SCR values above approximately
5 dB, reliable detection with low false alarm rates occurs regardless
of any processing used. As the SCR drops to negative values, however,
the probability of false alarm 1increases. In this region, both MT1
and lattice filtering provide some reduction of false alarms, with the
lattice filtering doing significantly better than tlie MTI. The perform-
ance of the two methods of lattice filtering was approximately equal.
From additional data not presented here, it is clear that the lattice
filters not only gave lower pFA values than the MTT filter, but also were
more consistent in their performance. For SCR values below -20 dB, the

/

measured P_,

FA values were close to the values at -20 dB.

Only the two clutter types presented in Figures 7.8 and 7.9
were analysed to the level of accuracy shown in these figures, due to
the great amount of computing required to produce statistical results
of this type. Each of these figures represents about 60 hours of cen-
tral-processor time on the CRL's HP-1000 éomputer. However, less accur-
ate results were obtained with all five types of clutter described in
section 6.3 (using only one range-ring of each type), for a la;ge variety
of filter orders and adaptive constants. (This required over 300 more
coméuter hours.) These results were consistent with those presented
above, and were dsed in the calculation of sub-clutter visibilities in

the next section.
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7.3 Sub-Clutter Visibility

Sub-clutter visibility (SCV) is defined as "The ratio by which
the target eche power may be weaker than the coincident clutter echo
power and still be detected with specitied detection and false-alarm
probabilities. Tlarget and clutter powers are measured on a single
pulse return and all target radial velocitdies are assumed equally
likely." [36]. For this thesis, we shall soften the definition slightly

by assuming that the radial velocities ot the five aircraft targets

used (see section 6.2.1) are a good enough approximation of "...equally

likely". P._ and PF

D are here specified as 0.5 and 0.01l, respectively;

A
and SCV values are derived from the corrésponding SCR values measured
as part of the ROC analysis for section 7.2.

. Fhe sub-clutter visibility, as a function of filter order,
is presented in Figures 7.10 to 7.14 for rain, snow, {ce-pellet, ground,
and inversion clutter, respectively. Higher SCV values indicate better
pertormance. There are four curves in each figure, one for MII {ilter-
ing, one for lattice filtering using the simple gradient method (w=0.2),
and two for lattice filtering using the standﬁrd gradient method (u =
0.2 & 0.6). This presentation is similar to the improvement factor
presentation in section 7.1. The SCV performance ot the lattice filters
as a function of adaptive constant was also similar to that for improve-
ment factors (in Fig. 7.6). The SCV for the simple gradient method
peaked at w = 0 for all clutter types, while for the standard gra?ient
method, the peak values were found with w in the range from 0 to O.%.

As before, these figures show the lattice filters out-performing
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or equalling the MTI filter. Looking at the SCV performance, given
a filter order of five for example, the best lattice filter response
equalled the MTI filter response for ground clutter, and exceeded it
by 5 dB for ice-pellet clutter, 6 dB for rain clutter, 9 dB for snow
clutter, and 11 dB for inversion clutter. The lattice filters showed
a steady increase in performance with filter order, while the perform-
ance of the MII filter was relatively independent of filter order. The
standard gradient method (p = 0.2) gave the best performance of the
lattice filters in these examples. For inversion clutter, the lattice
filters did especially well on the absolute scale.

In summary, the SCV results presented here, and the other results
presented in this chapter amply demonstrate that the application of the
lattice-structure-filteér in radar systems, replacing the conventional

processing, is very desirable.
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CHAPTER 8

CONCLUSION

8.1 Summary of Major Findings

The contributions of this thesis fall into two main categories.
These are: (a) additions to the body of theory on lattice-structure
prediction-error filtering (particularly in adaptive implementation and
convergence properties), and (b) demonstration of the usefulness of
this technique for radar sigﬁa}'processing (the elimination of clutter),

After studying the basic lattice structure, a comparative anal—.
ysis was made of the different algorithms (i.e. minimization criteria)
used for the calculation of the lattice reflection coefficients.
Tﬁeoretical considerations favoured the harmonic-mean'algoriphm, and
this was confirmed by simulation studies using computer-generated radar
data. |

To implement the lattice structure in‘a continuously adaptive
form, a meth;d of recursively updating the reflection coefficients is
needed (generally, a gradient approach to the minimization cgiteria).
Several existing methods were examined, the best suited being the stan-
dard gradient.method. Tw; new methods were developed as bart of this
research, a simple gradient method and an adaptive gradient method.
The simple gradient method performed almost aé well as the standard

gradient, but required less computer time and memory. -The adaptive

154
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gradient method adjusts its adaptive rate according to the degree of

change in the signal statistics. As this was not appropriate for the

particular application undeq study, only the standard ana simple gradient !

methods were used extensively in this thesis. ‘ i
A major contribution was made to the understanding of the learning

properties of lattice filters implemented by these methods. Equations (’-\\\\;\

describing the stationary convergence properties of the lattice‘structure :

(using both standard and simple gradient methods) weée developed theoretic-—

ally and COAfirmed experimentally. The decoupling action of higher lattice

stages for convergence was also examined in detail. In addition, a brief

study was made of the non-stationary learning characteristics of the lattice.
All of this led up to the application of the lattice-structure PEF

to the problem of eliminating radar clutter, in order to detect radar Lar—

gets., This was examined first using simuléted radar data, and then with

actual radar d;ta. Thé filters' output signals and performance measures

used to determine .the filters' effectiveness were examined in detail.

Performance measures examined included imprévement factors, receiver-

operator-characteristics, and sub-clutter visibility. These results were

compared with the results using a conventional MII filter. 1In all cases,

the lattice filters performed cansistently well, -and consistently better

than the MTI filter, which at times performed very poorly. This led to

the conclusion that the lattice-structure PEF is well suited to application

as a clutter_elimination filter, and would make a good replacement for the

systems presently‘in use.

The need to eliminate clutter signals from the radar return is a
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very real concern. In conventional radar systems, kargets (such as air-
craft) can often be obscured by clutter, or lost due to the processing
used to remove clutter. This is a definite threat to air safety. There
is a strong theoretical basis for using the lattice-structure PEF in this
situation. All téat can generally be assuméd about the targets and clut-
ter is that they have different Doppler spectra, and that targets are
concentrated spatially while clutter, tends to be diffuse.

Conventional MTI filters often fail completely because they require
the target and clutter Doppler ;ignals to fall into specific, pre-defined
rané;s. The performance of Doppler radar processors using banks of filters
or FFTs 1s degraded by the spectral inefficiency of these techniques in
responding to the Doppler spectra of the signals. To give the best per-
formance in separatipng targets from clutter, the clutter filter response
must be a good estimate of the actual clutter spectrum. An adaptive filter
is the only reasonably simple solution for all types of cluttqr. 0f the
adaptive (predictionverror) filter structures, oniy the lattice structure
has the properties needed to differentiate the targets and clutter on the
basié of‘spatial distribution (so as to eliminate only the clutter). Given
this theoretical basis, and the experimental result; confirming it, the

arguments for using the lattice structure for radar clutter filtering are

very strong.

8.2 Recommendations for Future Research

Arising out of this research, there are a number of areas which

could be suggested for future study. These can be roughly divided into

e
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two groups, those dealing with the theory and operation of the lattice
structure, and those dealing with the application of this structure to
radar signal processing.

Some of the suggested research areas falling into the first group
include:

(1) Lattice algorithms - With some justification, the harmonic-mean

algorithm received the most' attention in this thesis. However,
some of the other algorithms (especially the forward and backward
algorithm) deserve further attention, including simulation studies

and statistical analysis.

(2) Adaptive gradient methods - Although not appropriate for this

resea;ch, these methods could be very useful in other applications.
In particular, the adaptive gradient method developed in section
3.2 should be pursued and compared with the ”least—squarés" method
of Morf and Lee [26,27]. (Tpis least~squares meghod was judged in

section 3.4 to have serious theoretical flaws).

(3) Decoupling and convergence properties of higher-order lattice
stages ~ Obtaining a satisfactory theoretical solution for this
problem may prove very difficult, if not impossible. However, it

. 1s an area which should be examined.

(4) Non-stationary learning characteristics —.This thesis barely
scratched the surfa;e of this important field; much more could
be done.

Falling into the second grouping, concerning &he application

of the lattice to radar clutter, are the following suggestions:
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(5) Further analysis of existing data - This could include analysis of
/

S

the actual radar data using other lattice algorithms and methods,

as well as direct comparisons to other adaptive.clutter filtering
systems presently being researched.

(6) Classification of radar clutter - Preliminary results from this

research indicate that the lattice filter using biock processing
provides much better spectral estimates (used for classification)
'than‘the coﬁtinuous implementation. However, there may exist some
way of manipulating the reflection coefficients of the continuous
" implementation, so as to take advéntage ol the best properties of
both the block and continuous implementations. In either case,
the classification could be based directiy on the reflection coeffic-

A
ients; rather than the spectral estimate.

(7) Real-time operation - This is perhaps the most important recommendation
of those presented here. If the lattice filter is ever to be applied
operatiogally to radar signal processing (and this wéuld be very
desirable), a necessary first step is a lattice radar-processor oper-
ating in real time. This would provide a demonstration of the system's
usefulness, a large v?lume of statistical results (necessary for measur-
ing ghe system's true gérformance), and a tool for further system re-
finement and de§elopment. ‘The following paragraphs examine some of the
practic;l considerationg for a real-time proceé;fng sfstem of this type.

The system would start with the digitized I and.Q signals from
the radar receiver. (See Appendix C).. The analog-to~digital conversion

»shoulq have a dynamic rangeof 12 to 16 bits and a sampling rate in excess

‘v

of 2 MHz, These signals would then be fed into the lattice-structure

filter system. There would be, in effect, one lattice filter for each
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range bin in the data, with each filter operating independently on its
own range ring. In practice, there would probably be only a single
lattice filter structure, for which the memory (reflection coefficients
and backward filter outputs) would be switched between range bins. The
memory switching could be either by sequential addressing, or by memory

rotation (as is used for the MTI filtering of the radar processor des-

l

>

cribed in Appendix C). The filtering could be shared among a small
number of filter structures if a single structure would not cycle fast
enough. | &
,The filter structures might be implemented either as hard-wired
digital circuitry or programmed in a dedicated computer, depending on
economic and processing séeed considerations. An array processor would
be well suited for this application,. when providea with direct input
capabilitiés. The most economical lattice filter to implement in this
system would use the simple gradient method with w = 0. (Constraining w
to be zero reduces the memo: requirements by 50% over the simple gradient
method, and 607 over the standard gradient method, and reduces comput-
étion tiﬁe by eliminating multiplications of w). However, for research
purposes more flexibility of the filter would be useful. The filter
order could be set as high as the processing equipment would allow, with
an order of five o; above desirable.

One environmental factor, which would degradé the lattice filter
performance for separating targets from clutter, is points of sharply
defined ground clutter (such as towers and some buildings). These points

would look like zero-velocity targets to the lattice filter. This problem

could be eliminated by prefacing the lattice filter with an adaptive ground-

P L T A i T

PR

BT B s s et el ¥ 8. e il e < T s



160
A

clutter map. This map would store continuously the non-moving I and Q
signals from multiple rotations of the radar antenna. The appropriate
map values would then be subtracted from the I and Q signals before
filter{ng. (This process requires phase coherence between pulses).

The lattice-radar processing system described above could be
used in a variety of operational environments. Some of the most inter-
esting of these are the automated target tracking setups to be used for
air-traffic control. To operate properly, these tracking systems require
a greater level of clutter rejection (especially weather clutter) than is
available with conventional systems. They also require that tangentially
moving targets not be lost for long periods. Figure 8.1 shows a block
diagram of a lattice-radar processor, as it would be applied for a tracking
system. The lattice processor would fulfil the same role as the MTD system
(42] in automated tracking setups, and could potentially perform better.
However, whatever the radar application, the lattice filter can offef

significant improvements in clutter rejection and target enhancement.

PR —



161

~

Video from Radar Receiver
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Figure 8.1: Lattice Radar Processor

R i,



[

[1]
[2]

3]
(4]

(5]
Cel

£7]
(8]
[9]
[16]
[11]

(12]

REFERENCES

J. Makhoul, "Linear Prediction: A Tutorial Review", Proc. IEEE,
vol. 63, pp. 561-580, (1975).

S. Haykin and C. Hawkes, "Adaptive Digital Filtering for Coherent
MT1 Radar", Information Sciences 11, pp. 335-359, (1976).

B. Widrow, J. McCool, M. Larimore, and C. Johnson Jr., "Stationary
and Nonstationary Learning Characteristics of the LMS Adaptive
Filter'", Proc. IEEE, vol. 64, pp. 1151-1162, (1976).

J. Makhoul, "Stable and Efficient Lattice Methods for Linear Pre~
diction", IEEE Trans. on Acoustics, Speech, and Signal Processing,
vol. ASSP-25, pp. 423-427, (1977).

.J. Burg, "Maximum Entropy Spectral Analysis", presented to 37th

Mtg. of Society of Exploration Geophysicists, Oklahoma City, (1967).

J.wBurg, "Maximum Entropy Spectral Analysis", Ph.D. Thesis, Stanford
University, (1975).

F. Itakura and S. Saito, '"Digital Filtering Techniques for Speech
Analysis and Synthesis", presented at the 7th Int. Cong. Acoustics,
Budapest, paper 25-C-1, (1971).

E. Satorius and J. Pack, "Application of Least Squares Lattice

Algorithms to Adaptive Equalization", LEEE Trans. on Communications,

vol. COM-29, pp. 136-142, (1981). v

D. Riley and J. Burg, "Time and Space Adaptive Deconvolution Fil=-
ters", presented to 42nd Mtg. of Society of Exploration Geophys-
icists, (1972),.

T. Carter, "Study of an Adaptive Lattice Structure.for Linear
Prediction Analysis of Speech", Proc. 1978 IEEE Int. Conf. on
ASSP, vol. 78CH1285-6, pp. 27-30, (1978).

R. Viswanathan and J. Makhoul, "Sequential Lattice Methods for
Stable Linear Prediction', Proc. EASCON-76 (IEEE), pp. 155A-H,
(1976) .

J. Makhoul, "A Class of All-Zero Lattice Digital Filters: Prop-
‘erties and Applications", IEEE Trans. on ASSP, vol. ASSP-26,
pp. 304-314, (1978).

162




[133

[14]
[15]
C16]
[17]
[18]

£19]

(203

- [23]

£26]

[25]

(26

. "‘\ ’ i

. 163

L. Griffiths, "An ‘Adaptive Lattice Structure for Noise-Cancelling
Applications", Proc. 1978 IEEE Int. Conf. on ASSP, vol. 78CH1285-6,
pp. 87-90, #£1978). :

S. Kesler, "Nonlinear Spectral Analysis of Radar Clutter', Ph.D.
Thesis, McMaster University, (1978).

S. Haykin (editor), '"Nonlinear Methods of Spectral Analysis',
(Springer-Verlag, 1979).

I3
M. Alam, and A. Sage, 'Sequential Estimation and Identification
of Reflection Coefficients by Minimax Entropy Inverse Filtering',
Comput. and Elec. Engng., vol. 2, pp. 315-338, (1975).

M. Atashroo, "Autocorrelatian Prediction', Proc. 1977 IEEE Int.
Conf, on ASSP,’ vol. 77CH1197-3, pp. 5-9, (1977).

-D. Parikh, N. Ahmed, and S. Steérns, "An Adaptive Lattice Algorithm

f%eg;acurs‘ive Filters', IEEE Trans. on ASSP, vol, ASSP-28, Pp. 110-111, .
M. Honig and D. Mgsserschmitt, "Convergence Properties of the
Adaptive Digital Lattice Filter', Proc, 1980 IEEE Int. Conf. on
ASSP, vol, CH1559-4, pp. 984-988, (1980).

Continuously-Adaptive Filter fmplemented as a
attice Structurely Proc. 1977 IEEE Int. Conf. on ASSP, vol.
77CH1197-3, pp. 68X-686, (1977).

Private. communication fr@m Dr, S Haykin, "Adaptive Systems ,
EE776 course notes, McMaster University, (1980).

J. Makhoul and R. Viswanathan, "Adaptive Lattice Methods for
Linear Prediction", Proc. 1978 IEEE Int. Conf. on ASSP, vol.
78CH1285-6, pp. 83-86, (1978). /j

C. Gibson, S. Haykin, and S. Kesler, "Maximum Entropy (Adaptive)
Filtering Applied to Radat Clutter', Proc. 1979 IEEE Int. Conf.
on ASSP, vol. 79CH1379-7, .pp. 166-169, (1979).

c. Gibson and S. Haykin,, 'Learning Characteristics of Adaptive
Lattice Filtering Algozithms", IEEE Trans. on ASSP, vol. ASSP-28,
pp. 681-691, (1980). ,

R. {Kalmanjy "A‘Néw Approach to Linear Filtering and Prediction
Problems'",.Trans. ASME, Journal of Basic Engineering, vol. 82D,

’ pp. .34-45, (1960).

M. Morf and D. Lee, fRecursive Least Squares Ladder Forms for
Fast Parameter Tracking", Proc. IEEE 1978 Conf. on Decision and
Control, vol. CH1392-0, pp. 1362-1367, (1978).

%955 ' )

iy
>

£ Vacm e -



£27]

(28]

[29]

[30]

[31]

[32]
[33]

34
[35]

(36]

[373
[38]

[39]

f40]

164

D. Lee and M. Morf, "A Novel Innovations Based Time-Domain Pitch
Detector", Proc. 1980 IEEE Int. Conf. on ASSP, vol. CH1559-~4,
pp. 40-44, (1980).

ithms', Naval Ocean Systems Center, Technical Report 423, Sa

J. Pack and E. Satorius, "Least Squares, Adaptive Lattice Al;or—
Diego, Calif., (1979).

i

E. Satorius and S. Alexander, "Channel Equalization Using Adaptive
Lattice Algorithms", IEEE Trans. on Communications, vol. COM-27,
pp. 899-905, (1979).

C. Hawkes, "Adaptive Digital Filtering for Coherent MTI Radar",
Ph.D. Thesis, McMaster University, (191?).

S. Haykin and H. Chan, ''Computer Simulation tudy of a Radar
Doppler Processor Using the MEM", Proc. IEE, wol. 127, pt. F,
#6, pp. 464-470, (1980). )

E, Barlow, "Doppler Radar', Proc. IRE, vol. 37, pp. 340-355, (1949).

W. Flock, "Radar Signature Studies Applicable to Bird-Aircraft
Collision Avoidance", Final Report for period June 18, 1970 to
Nov., 15, 1973; Air Force Weapons Laboratory, Air Force System Com-
mand, Kirtland Air Force Base, NM.

H. Ward, '"Clutter Filter Performance Measures', Proc. ‘1980, IEEE

Int. Radar Conf., vol. CH1493-6, pp. 231-239, (1980).

F. Nathanson, "Further Thoughts on Clutter Filter Performance
Measures', Proc. 1980 IEEE Int. Radar Conf., vol. CH1493-6, pp.
240-242, (1980). .

IEEE Standard Dictionary of Electrical and Electronics terms, 2nd
Ed., J. Wiley and Sons, (1977).

C. Gibson and S. Haykin, "A Comparison of Algorithms for the
Calculation of AHaptive Lattice Filters", Proc. 1980 IEEE Int,
Conf. on ASSP, vol. CH1559-4, pp. 978-983, (1980).

S. Haykin and S. Kesler, "The Complex Form of the Maximum Entropy
Method for Spectral Estimation', Proc. IEEE, vol. 64, pp. 822-823,
(1976) . )

"A Brief Description of the ASR-8 Airport Surveillance Radar',
Publ, No. SPOSA-EG76, Texas:Instruments Inc., (1976).

W. Fischbein, S. ‘Graveline, and O. Rittenbach, "Clutter Atten<
uation Analysis", Tech. Report ECOM 2808, (1967).

e e it i el T ?



[41]

C42]
[43]
[44]

(45]

L46]
[47]

[48]

L49]

[s0]

165

N. Currie, F. Dyer, and R. Hayes, "Radar Land Clutter Measurements
at Frequencies of 9.5, 16, 35, and 95 GHz", Tech. Report #3, Pro-
ject A-1485, Georgia Inst. of Tech., Engineering Experiment Sta-
}ion, (1975).

L. Cartledge and R. 0'Donnell, "Description ang Performance Eval-
uation of the Moving Target Detector", Project Report ATC-69,
Lincoln Laboratory, Mass. Inst. of Tech., (1977).

W. Burdic, '"Detection of Narrowband Signals Using Time-~Domain
Adaptive Filters", IEEE Trans. on Aerospace and Electronic Sys-
tems, vol, AES-14, pp. 578-591, (1978).

M. Honig and D. Messerschmitt, "Comparison of LS and LMS Lattice
Predictor Algorithms Using Two Performance Criteria", submitted
to IEEE Trans. on ASSP, (1981).

S. Tretter, "Intro. to Discrete-Time Signal Processing"; John
Wiley and Sons, (1976).°

D. Godard, "Channel Equalization Using a Kalman Filter for Fagt

Data Transmission", IBM J. of Research and Development, pp. 267-
273 (1974).

T. Irabu, et, al., "On the Performance of a 2-Dimensional Clutter
Rejection System", Proc. 1980 IEEE Int. Radar Conf., pp. 311-316,
(1980) .

Environment Canada, "Weather Ways", Supply and Servicés Canada,
(1978).

C. Gibson and S. Haykin, ''Non-Stationary Learning Characteristics

‘of Adaptive Lattice Filters', accepted for publication in Proc.
"1982 IEEE Int. Conf. on ASSP,

C. Gibson and S. Haykin, "Performance Studies of Adaptive Lattice
Prediction-Error Filters for Target Detection in a Radar Environ-
ment Using Real -Data", Proc. 1981 IEEE Int. Conf. on ASSP, vol.
81CH1610-5, pp. 1054~1057, (1981).

r



APPENDIX A

LCOMPUTER IMPLEMENTATION OF ADAPTIVE
LATTICE FILTERING METHODS

e

This appendix describes the computer routines used to implement
the various methods of lattice-structure adaptive filtering developed in
this thesis. Figure A.l is the flow diagram of these routines., Figures
A.2, A.3, and A,4 contain the fortran listings of routines using the
simple gradient, adaptive gradient,‘and standard gradient approaches,
respectively. (As presented, these routines all implement Burg's har-
monic-mean algorithm; however, they are easily modified to implement the
other algorithms ‘detailed in section 2.3). Finally, the routine used
for MIT filtering is presented in Fig. AJS. fhis routine implements a
" normalized multi-stage delay-line canceller, as shown in Fig. A.5(b).
These four routines are designed to be interchangeable within a program.
The lattice filtering routines are called once for each data sample,
When a new data sample is received, it is passed through the filter, the
filter is updated, and the outbu;s and new filter reflection coefficient
value; are returned to the calling program. The input sample is sent in
the first positions’of the A array, which on its fetu;n contains'thé fil—‘ .
ter outputs‘(the forward prediction errors fo(n) to fm(n)). The B array
contains the backward prediction errors, and the C'array contains the re-

flection coefficients. (For the standard gradient method routine, the
166
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Get Data Element x(n) is data
fo(n) < x(n)

series (input)

v

m<« 1

v

v

Calculate pm(n)

Simple gradient: by equations 3.6 and 3.7
Adaptive gradient: by equations 3.9 and 3.10

v

Standard-gradient: by equations 3.12-14

Calculatﬁ‘fm(n)

by equation (2.1)

R}

m<em+ 1

~ &

M is maximum filter order

no

yes

i

Calculate bm(n)

bo(n) < fo(n)

M

by equation (2.2)

-

n<+n+1

Figure A.1: Tlow Diagram of Lattice Filtering Routines ¢
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OO OO OO OO0 GO OOCO0

SUBROQUTLNE ADrEF (A,B,0,N, XA

ADMEF USES BURG LATTICE TO wDRPTIVELY FILTER
LOMPLER DATA SERIES.
ADHEF HANDLES ONE ELEMENT OF SERIES AT A TIHE,
¢ FORWARD FILTER OUTPUTS ARE IN R,

BACKWARD FILTER OUTPUTS ARE IN B,

FILTER COEFFICIENTS ARE IN C ).
WRITTEN BY C. GIBSON, JUNE 1378,

acl ), ACZ) ARE COMPLEX INPUT DATA FUR ONE ELEMENT OF SERIES,
AC2H+1), AC2M+2) ARE COMPLEX OUTPUT OF FILTER ORCER M (li=1 TO Hy.
B(2N) IS ARRAY OF BACKUWARD FILTER OUTPUTS.

Cczh) 1S ARRAY OF FILTER COEFFICTENTS.

N 15 HAXIMUR FILTER ORDER.

%4 15 EXPFONENTIAL MEMORY FACTOR ¢ FRACTION OF OLD FILTEW

COEFF, USED FOR NEW FILTER COEFF. .

B AND T ARRAYS ARE UPDATED BY ADMEF AND MUST BE
INITIALLIZED (=05 BEFORE FIRST CALL.

IN ALL ARRAYS, ODD SUBSCRIPTS ARE REAL PART, EVEN
SUBSCRIPTS ARE IMAGINARY PART.

REAL AC1D, BC1D), CCID

KB = 2.%XA - 2.
DO 16 I=§,H,2 3
w1+
X w ACTIACT) + ACIdwadJ) + BOIIwBCT) + BCJpxBC Y
IF(X.EQ.0.) X = 1§,
CelY = XACCID + XBwC(ACTB(L) + ACIIMFBCIIIZK
CCJY = XARC(J) + XBw(ACSMB(I) -~ RCIIMBCJIIX
ACT+42) = ACT) + BCEXRC(I) - BCJHIRCC J)
ACJ+2) = ACY) + BCUOICCT ) + BCLOwC( U
10 CONTINUE
IF(N.LT.2) GO TO 30 .
DO 20 K=3,H,2 -
[ =M -K+ 1
d =1+
BCI+42) = BCI) + ACIIAC{I) + ACIMC(Y)
BCU+2) = B(J)Y + ACIIRLCT) — RETISECID
20 CONTIHUE

S 30 BUEY = Adly

B(Z) = AcZ)
RETURN
EHO

\

\

N

Figure A.2: Routine Implementing Simple Gradient Method
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i SUBROUTINE AUTLY <A,B,C,N)

AUTL1 USES BURG LATTICE TO ADAPTIVELY FILTER

COMPLEX DATA SERIES.

AUTL1 HANDLES ORE ELEMENT OF SERIES AT A TIME,

{ FORWARD FILTER OUTPUTS ARE IN n, “
BACKWARD FILTER OUTPUTS ARE IN B8,
FILTER COEFFICIENTS ARE IN C ).

WRITTEN BY'C, GIBSON, 1981,

R(C1),A(2) ARE COMPLEX INPUT DATA FOR ONE ELEMENT OF SERIES.
AC2M+1 ), AC2H+2) ARE COMPLEX OUTPUT OF FILTER ORDER M (M=i TO
B(2N)> IS ARRAY OF BACKWARD FILTER DUTPUTS,

CC2H) 1S ARRAY OF FILTER COEFFICIENTS. :

N IS MAXIMUM FILTER ORDER.

B AND C ARRAYS ARE UPDATED BY ADMEF AND MUST BE \
INITIALLIZED (=0) BEFOJRE FIRST CaALL.

IN ALL ARRAYS, 0DD SUBSCRIPTS ARE REAL PART, EVEN
SUBSCRIPTS ARE IMAGINARY PART.

OGO OOCO0OO0OCGTO0

REAL ACH)Y, BC1)Y, €YD
M = 28N - }
DO 10 I=f,H,2
Jg =1 + 1
JRom CACTORACT) + ACdIwacd)d + BCT BTy + BCJowBCdy /2,
IF(K.EG. 0.0 X = 1,
Y % CCIY + CACT#BCIY + ACHIHB( I I/X
2 = C{J) + CACUIRBCT )Y = ACTHI*B(IIHI/X
D = SQRTC YxY + Z#Z2 )/2.
C{I> = CC1) - DxY
CCJ) = CCJ) - D=2
CACT42) = ACL) 4+ BCIDMCKCDD) BCJH¥C( DD

ALJ42) = ACY) + BCHC(T) + BCTIOX#C(I)D

§0 CONTINUE .
IFCH.LT.2Y GO TO 30
DO 20 K=3,M,2
I =N ~K+ 1
J=1l+1 3
BEI+2) = BAIY + ACLO*CCI) + add)rwCcd)d
B(J+2) = B(J) + ACIHI*C(I) AC T H)*CE D

. 20 CONTINUE

30 B{1y = Act)d
B{2) = a(2)
RETURN
END

Hy.

Figure A.3: Routine Implementing Adaptive Gradient Method
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CICI OO OO0

A

B,
IN

Cr O i C OO T O OO

20
+ 30

LATT USES BURG LATTICE METHID TD wADAPTIVELY
FILTER COMPLEX DATA SERIES.

LATT HANDLES ONE ELEMENT OF SERIES AT A TIHME,
¢ FORWARD FILTER OUTPUTS ARE IN #,

BACKWARD FILTER ELEMENTS ARE IN B,

FILTER COEFFICIENTS ARE IN € AND D ).
WRITTEN BY C, GISSON, MARCH 1979.

A¢1),AC2) ARE COMPLEX INPUT DATA FOR ONE ELEMENT OF SERIES.
AC2M+1),AC(2M+2)> ARE COMPLEX OUTPUT OF -FILTER ORDER M (M=t TO N).
B(2N) IS ARRAY OF BACKWARD FILTER ELEMENTS.

CL2N) IS ARRAY OF FILTER COEFFICIENT NUMERATORS,

DCRY IS ARRAY OF FILTER COEFFICIENT DENOMINATOKS.

N IS MAXIMUM FILTER ORDER.

COEFF. USED FOR NEW FILTER COEFF. ».

THEY MUST BE INITIALLIZED BEFORE FIRST CALL.

SUESCRIPTS ARE IMAGIHARY .PART,

SUBROUTINE LATT (A,B,C,D,N,XAD

I3 EXPONENTIAL MEMORY FwCTOR ¢ FRACTION OF OLD FILTER

C, AND D ARRAYS ARE PPEYIOUSLY SET AND UPDATED BY LATT.

R,B,C ARRAYS GDD SUBSCRIPTS ARE REAL PART, EVEN

REAL A¢1)Y,B<C1),C01),001)

Ho= 2+N - |

K =0 °

D0 10 I=1.M,2

J= I 4+ 1

K= K+ 1 ‘

B(K) = XAsDC(K) + ACII™ACT)Y + ACYI«add) + BCIxB(1) + BCJIxB(J)
[FCOCKY.EQ.0.) DC(K)> = 1,

STy = RArC{I) = 2.4CRC1IBL ) + A +BCYD) !
CEdY » XA4C{JI) = 2.4CACIMBUT) = wcIOxBL YD)

WCI+2) = ACI) + (BCIO((LD) - BCJ ML I I/DCKD

ALJ+2) = Add) + (BCIMCLT) + BCIHHECIIIDCKD
CONTINUE )
IF(N.LT.2)\G0 TO 3¢

DO 20 L=3,M,2

+ 1 .

BCI4Z) = BEID + (AL =G + ACI I IZDLKD
B(J+2) = BCJYY) + CACUMMCCTY = ACIDACCII I/DCKY
CONT INUE

B> = ACL)

B2 "= A(2)

PETURN

END

Figure

A.4: Routine| Implementing Standard Gradient Method
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SUBROUTINE dTI <A, N, M) )
c .
C COMPUTES NORMALLIZED H.T.I. DIGITAL FILTER.
C UWRITTEN BY C. GIBSON, JaN. {9381,
€ COMPLEX INPUT IN AC1),A(2).
C COMPLEX OUTPUT IN ACZ2H+1), A(2N+2),
C N IS FILTER ORDER (MIN.=1, MAX.=10),
C M=0 FOR ND NORMALLIZATION.
C
REAL AC1),BCE0),CE10D
DATA B,C/20%0./
I =1
BOID = BCIy + A
ClId = CCIy + AC2ZD
X = 2, '
to I =1 +
IFCT.GT.4) GO TO 20
BCID = BeIy + B(I-1)
C{I) = C<1) + C(I~1)
X =X + X .
GO TO 10
20 J = N+ N + 2
ACd=1) = BCN)
ACJ) = C(H)
IF(M.NE.t> GO TO 30
ACI=1) = Ald—1)/%
ACJY = ACJI/X
301 = ] -
IFCTLER.I) GO TO 40
BCID> = =B(I-1)
CeI> = =CCI=1)
60 TO 30
40 Buld> = -aC1) ) )
C{l> = -A(2)
RETURN (a)
END
.’F
. Higher
First Order Second Order Orders
+ +
—4 s i ea e —d
- } OQutput
H -l Il
2z Z
Input
(b)

Figure A.5:

o
Routine Implementing MTI Filter
(a) Printout, (b) Block Diagram
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C aFray contains only the numerators of the reflection coéfficients, -
and the D array contains the denominators). Tbe other two arguments, N
and XA, are the filter order (m) and the adaptfve contstant (u or w),
respectively. p

These routines perform complex functions on complex values;
however, they do so using real arithmetic and variables. This is done
using two real variable locations in each linear arra; for each complex
value. The two variables are located adjacently, with the real part
first, féllowed by the imaginary part, This arrangement is similar to
that used in most computers fo? storing compiex arrays. Thus, for use
in most programs using complex variables, only an EQUIVALENCE statement
wg;ld normally be needed to relate the A? B, and C arrays to their com-
plex counterparts. (Note: The D array contains only real values).

The B and C arrays must be dimgnsioned.to 2 x N for the complex
values bl(n) to bm(n) and pl(n) to pm(n), and the A array to 2 x N + 2
for the complex values fo(n) to fm(n) (fo(n) = bo(n)). This dimensioning»
takes place in the calling program, allowing the subroutine to take any
filter order. There is no storagé of these values within the lattice
routines., The MTI routine, on the other hand, does store its inter-
mediate. values internally, thus limitiqg its filter order. So as to

be interchangeable with the other routines, the MII output is placed in

the locations of the A array corresponding to the selected filter order.




APPENDIX B

KALMAN FILTERING THEORY APPLIED TO THE
LATTICE STRUCTURE

B.1 Tapped-Delay~Line Prediction-Error Filter \
Let us first review the application of Kalman filtering to the

tapped-delay-line (TDL) structure. Figure 2.1(a) shows the basic struc-

ture of a tapped-delay-line prediction-error filter (PEF) of order m,

operated in the forward direction. (The operator z is the unit-delay

operator). The structure of Fig. 2.1(a) implements the equation

-

£ () = d@) - u @) at), (B.1)

where fm(n) is the forward prediction error measured at the filter output,
and d(n) is the desired response (pame}y, the input u(n), which is label-
led x(n) in Fig. 2.1) for the filter to predict. The superscript T de-
notes tfansposition. The u(n) and a(n) are vectors of ﬁreviéus input

samples and' filter tap-weights, respectively, as shown by

u(n) = ’-u(n--l).—1 . a(n) = pal(nyw
u(n<2) % az(n) ‘
) (B.2)
L_.u (n-—m)_ Lam(n) |

We assume that both u(n) and a(n) are complex-valued.
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In an adaptive prediction filter, the tap-weight vector a(n) is
continuously"updated to‘minim%ze the error output fm(p) by best predicting
the input data stream. The Kalman filtering implementation of this adap-
tive process is accompliéhed through the series of identifications given
in Table B.l. Using the formulas for khe complex form of Kalman filtering
theory [25, 45], the PEF ca; then be computed, for the steady-state case,
through the recursive application of the following pros;dure (the asterisk
denotes complex conjugation):

(1) Compute the error output fm(n) using eq. (B.1) ;

(2) Compute the Kalman gain G(n):

G(n) = P(n) u(n) [u' (n) P(a) ut(m) + ¢ T (8.3)

min

where cmin is the minimum value of the mean-square error and P(n)

1s the error-covariance matrix;

(3) Compute the new estimate of a(n):

a(n+l) = a(n) + G(p) £ (n); (B.4)
(4) Compute the new estimate of the error covariance matrix P(n):

P(n+1) = P(n) - G(n) u'(n) P(n) ; (B.5)
(5) Increase n by one, and repeat from step (1).

The initial values of a(0) and P(0) are normally set to zero
except for thE diagonal elements of P(0) which are set to an estimate of
- the average value of the optimum tap-weight magnitudes (e.g.: 0.75). The

minimum value of mean-square error € nin is normally chosen between 0.01
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Table B.1l:

Kalman-TDL Identifications

Kalman Filter

Tapped Delay Line PEF

State vector

State transition matrix

State noise vector

Observed data vector

Measurement matrix

Measurement noise vector

x(n)
?(n+l, n)
v(n)
ALY
?(n)

w(n)

a(n)

I (identity matrix)
0 (null vector)
d(n) (=u(n))

gT(n)

fm(nO

Table B.2:

Kalman~Lattice Identitications

Kalman Filter

Lattice Filter,

to Minimize -

Im(n) bm(n) both
St t - -
ate vector §(n) —pm(n) pm(n) om(n)
State transition
I I
matrix ¢ (n+l, n) - ~ "
State noise 0
vector v{(n) ~ - N
Observed dat f * - [
s ( ata m_l(n) bm_l(n 1) fm_l(n) B
vector n * -
Y ) Hvlhllﬂ
Me r t - * [ 1)
asuremen bm—l(n 1) fm_l(n) bm—l(n 1)
matrix C(n) f*x _(n)
-~ m_
M t noi B
easurement noise fm(n) bx(n) fm(n)
vector w(n) b*(n)
i m
L

Y

"



176

and 0.001. These initial values have little effect beyond the first few

iterations of the filter [46].

B.2 Lattice-Structure Prediction-Error Filter

An intrinsic property of the lattice structure PEF is that the
output error signal of each successive stage is orthogonal to every otherc
stage [4, 15]. This allows the adaptation of cach stage tuv be optimized
independently ot each other, rather than the global optimization applied
to the tapped-delay-line PEF., Thus, in applying the Kalman filtering
theory to the lattice structure, only a single stage of the filter need
be conside}ed.

The adaptive operation of the lattice structure consists of con-
tinuously upd%iing the reflection coefficients Dm(n) to minimize the
prediction errors fm(n) ana bm(n) in some form. The Kalman filtering
implementation of khis process depends on the identifications given in
Table B.2. (Note that in deriving Ehese identifications, the complex con-
jugate of equation (2.2) was used).

Using € as the minimum mean-square error, for the steady-state

in

N
case, the correlation matrix R(n) of the measurement noise vector takes

thg value:

R(n) = min (B.6)

€
min

The Kalman gain can then be computed as [25, 45]

6(n) = P(n) ) [c) Py iy + RIT (B.7)

A

p————-

a @ e et ——— =
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@here the superscript H denotes Hermitian transposition, and the error
covariance P(n) is a scalar. Define

€ .
a_(n) = p?;; ‘ ‘ (B.8)

Then, substituting (B.6) and tﬁg'definition of the measurement matrix C

which minimizes both fm(n) and'bm(n) into eq. (B.7), we get the Kalman gain

[b*_ (a-1), £ (n)]

G(n) = 5 '2 (B.9)
- ?m(n) + !fm_l(n) | + |bm_l(n-l)|
Next, the state vector is given by [25, 45]
x(ntl) = x(n) + G(n) [y(n) - C(n) x(n)] . (B.10)

~

Substituting (B.9) and the definitions of the state vector x(n), the

observed data vector y(n) and the measurement matrix C (see Table B.2) in

eq. (B.10), we get

a (n) p (n) -2 £ .(n) b* _(n-1)
p (ntl) = = L 2—1 m-1 > . (B.11)
. am(n) + ‘fm—l(n)l + |bm_1(n—l)|

The new estimate of the error covariance P(n) is calculated as

P(n+i) P(n) - G(n) C(n) P(n)

am(n)

P(n) . (B.12)

ag -+ E 2+ b 1) |

e W A e ® e - = =

ES
i»
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Using thié result, the new value of am(n) becomes:

]

-1
am(n+l) £ nP (n+1)

mi

@+ le @+ @l @y

Thg recursivg procedure for calculating the filter reflection coefficients
thus becomes the calculations of eq. (B.11l) and (B.13) in sequehté for each
filter order m, incrementing the time index n, and repeating the cyéle.
The initial values of Pm(O) and emin(and thus'am(O)) are normally zero.
Thié procedure is mathematically identical to the standard gradient

method implementation, as formulated in sectioh 3.3, but with p = 1. As

: a result, these calculations apply only for the steady-state (stationary)
case, They can, however, be extended to the non-stationary case by the
use of‘the adaptive éonstan; u. As a consequence of choosing the Kalman-
lattice identificationg to minimize_both forward and backwgrd prediction
errors, the harmonic-mean algorithm has been implemented. 1If either of
the ather two identifications of Table B.2 were used, either the forward

algorithm or the backward algorithm would be implemented in the same way.
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APPENDIX C

RADAR INSTALLATION AND RECORDING SYSTEM

Cc.1l Radar Transmitter and Antenna

This appendix describes'the more important features of the
ASR-8K Air-Surveillance Radar -installed at the Bagotville CFB, Quebec..
Also described is the video recorder used to record ﬁata from this
radar. A block diagram of the total system is shown.in Fig. C.1.
Details of the radar installation come from the system manual [39]. °

Table C.l1 presents the pertinent details for the radar trans-
mitter. In fact, two separate transmitters were available (Channel A
and Channel B), using the same antenna and processing. The radar could
be operated with A, B, or both transmitters operating‘?aiversity mode) .
For this research, only the Channel A transmitter was in use. (The
diversity mode interlaces the returns from both transmitter;).

An important feature of this radar is the staggered PRF, where
the pulse-to-pulse period takes one of four values, in sequence. This,
is done to eliminate blind speeds (using conventional MTI filtering)
to velocities in excess of 2150 knots (“Mach 3). With a constant PRF,
these blind speeds would occur at multiples of 109 knots.

The radar antenna is described in Table C.2. This antenna has

two feed horns resulting in two beams, each Naving approximately the

same pattern. One of these beams, known as the active beam, is used for
179



180

> Transmitter

URF

A

\CP Antenna »
ARP System

RF

4

Receiver

Video

'
A B A B

-Aux.- ~Video-

Processor

Video Recorder

Video

- Displays

]

Figure C.1: Radar System Block Diagram
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both transmitting and receiving. %YThe other, passive beam is for receiving
only, and has ;ts pattern elevated 3.5? with fespect to the active beam,
so as to reduce ground clutter returns. The radar releiver switches
between the two beams by way of a programmed range-azimuth gate (RAG).

The passive (high) beam ié used close to the radar site, while the active

(low) beam is used further out,.

C.2 Radar Receilver

Figure C.2 is a block diagram of the radar receiver. Of particular
note are the PIN diode RF attenuators in the input paghs from'the antenna
horns. These allow the operator to remotely control both receiver sen-
sivigity (one.of six preset levels), and STC (sensitivity—time—constaht,

one of three preset curves plus off) for each of the antenna signals.

Table C.1: Transmitter Characteristics

Type -~ S-band Klystron (coherent, pulse-to-pulse)
Frequency -~ 2786 NH% (Channel A), 2714 MHz (Cﬁannel B)
Power - 1.08 MW (Channel A, VSWR = 1.13:1), 1.10 MV (Channel B)
Pulse width - 0.6 wsec.
Resulting range resolution --%96 meters
Pulse repetition frequency (PRF) - Average of 1041 Hz (stapgered)
Interpulse periods - 871, 961, 830, and 1177 usec.

(960.8 usec. average)

Resulting range limit (including allowance for recycling) - 61 naut. mi.
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Table C.2: Antenna Installation Characteristics

_Scanning antenna (clockwise in horizontal plane)
Rate of rotation - 12.5 rpm
Gain - Active beam: 33.5 dB
Passive beam: 32.5 dB
Vertical pattern - Cosecant over 30°
Horizontal beamwidth - 1,35° (-3 dB) </«\
Pulses per beamwidth - i9
Polarization -~ Circular (horizontal also available)

Additional outputs -

ARP (Azimuth reference pulse): one per rotation,

when antenna points north

ACP (Azimuth change pulse): 4096 per rotation,

giving positional accuracy < 0:1°

" RAG beam switching (in receiver) -
’
Azimuth I Passive Beam Range Active Beam Range

90°-345° 0-15.1 naut. mi. > 15.1 naut. mi.

345°-90° 0-24.8 naut. mi. > 24.8 paut. mi.
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The STC attempts to correct for the decrease of signal amplitude with
range by applying an exponential gain function to the return from each
pulse. Most of the recordings used in this research were made with the
STC off; however, some were made using the STC-1 response, which is
shown in Fig. C.3.

After passing through the initial receiver stages, the IF
signal is sent to three different detector blocks in the receiver. A
non-coherent detector producés a normal video signal, which will be used
in the normal display (mainly ground clutter). A logarithmic detector
(similar to the normal detector) produces a video signal used for
weather mapping. Two coherent detectors,.one shifted from the other
by 900, produce coherent inphase (I) and quadrature (Q) video signals,
which are used by the processor to.generate the MT1 video display.
These bipolar 1 and Q signals (un-processed) were recorded on the wide-
band video-recorder and returned to the laboratory for analysis. (The

normal video signal can be recreated from these I and Q signals).

Cc.3 Radar Processor

A block diagram of the processor is shown in Fié. C.4. Although
the processor outputs were not used in this research (being very non-
linear), a description of the features available is useful for comparison
purposes. The four receiver signals described above are hgre processed
into two signals, a normal video and an MTI video, which can‘then be
displayed on the air-controller's PPI screen. The signals are processed

digitally, with a sampling rate of 2.14 MHz.
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The I and Q signals go through separate MII filters before
being combined as one signal. The ASR-8 allows several modes of MTI
filtering; in’ this installation, the mode selected was to cascade two

single delay (two-pulse) cancellers with no feedback to form dual (3
i

pulse) cancellers (see Fig. A.5) having a typical sine-squared response.

Each canceller stage has storage for 1665 range bins. After being
combined, the MII signal may go through any of three additional, oper-
ator-selected processing steps. These are: CFAR (constant false alarm
rate), enhancement, and the addition of a weather outline., After these
steps, the MTI signal goes through a range-azimuth gate which switches
to the normal channel beyond 30-45 nautical miles, so as not to.lose'
weak, outlying targets. (The theoretical system improvement factor for
the MTI channel is 34 dB).

The normal channel also has the three operator-selected steps,
which are basically identical to those of the MTI channel. The CFAR
(also known as log-FIC-antilog) takes the logarithm of each range bin,
subtracts the average of the log of the previous {ive range bins, and
takes the anti-log to reduce signals covering large areas té the level
of receiver noise. The enhancement mode uses a feedback integrator to
smooth out the responses and reduce noise. The weather background uses
a level detector and encoder to produce an overlay of wegther systems,
There are several weather modes available on the ASR-8; the one in use
consisted of ; multi-level outline with blanking, which is diagrammed in

Fig. C.5,

”~

- —

IRUSSI
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C.4 Video Recorder

The radar data and reference signals were recorded on an RCA
ADVISER-series wideband video recorder/reproducer. (ADVISER stands for
Airborne Duai—channel Variable Input, Severe Environment Recorder/
Reproducer). This tape deck allows about 45 minutes of recording time
using 10% inch reels of 2-inch wide tape, running at 15 inches per sec~
ond. The unit has two wide-band video channels, which were used to
record the I and Q video signals, and two 15 kHz bandwidth auxiliary
channels, which were used to record the ACP and ARP signals. (The system
trigger was &ixed into the I video signal before recording).

Each video channel on the recorder had a frequency response of
10 Hz-6 MHz * 3 dB and a maximum SNR of 36 dB. This frequency range
was more than adequate for these signals. The SNR, however, limited
the effective dynamic range of the signals to 6 bits, when digitized
for analysis. As.the radar's MTI processor worked with a 10-bit dynamic
range, it is to be expected that there would be some degradation of
performance as a result (up to 18 dﬁ). However, this did not greatly
affect the validity of the data analysis‘in this thesis, which was mainly

comparative in nature.



APPENDIX D

LABORATORY DATA TRANSFER SYSTEM

&3
. This appendix describes the experimental systém which was used
for laboratory analysis of the actual radar data. The data was recorded
as deséribed in Appendix C. The system described here recovers the
data from the video recorder, displays it, samples sele;ted range rings

from the data, and transfers these samples into the computer for analysis.

Figure D.1 i1s a block diagram of this system. The video signals
&

" played back by the video recorder (described in Appendix C) are split
into two routes, one léading through wideband amplifiers to the PPI
display, the other leading through low-pass filters (1 MHz) for dafa
sampling. These low-pass filters feed an oscilloscope and two anarﬁg—

~
to-digital (A/D) converters, which are controlled by and feed into the

~—

Interface and Cont;ol Unit (ICU). The 1 video signal is also fed into
the System Trigger Detector, which strips the trigger from the video
(previously combined as one signal durifig recording) for use by the

ICU and PPI. (The trigger is shaped by a pulse generator for the PPI).
The auxiliary channels from the recorder, containing the ACP and ARP
radar signals, are fed into the Synchro Generator, which uses them to
form the three-phase servo-motor signals required by the PPI.for scan-
ning. (In the PPI's normal environment, these signals would be supplied

by a servo-generator attached to.the antenna). The Synchro Generator
190
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also supplies a shaped AkP pulse to the ICU.

The Synchro Generator unit was designed by Brian Currie, of
the Communications Research Laboratory (CRL) at McMaster University,
for this sort of application., The System Trigger Detector and the
ICU were designed and built by the author of this thesis, specifically
for the research hereifﬁ The A/D units, which feature 8 bits output
and a conversion time under 200 nsec., were assembled by CRL staff using
commercially available units. All the other devices shown are standa?d,
general-purpose laboratory instruments, with the exception of the PPI,
which was 4 military system on loan to the CRL.

figure D.2 shows the oscilloscope traces &f the I ande video
channels. The system trigger is the negative-going pulse at the begin-
ning of the I channel return data. This Aata is preceded by a pulse
burst (actually part of the waveform for the preceding return), which
is used to reset the radar system. This burst of pulses, and strong
negative peaks in the data both make the detection of the system trigger .
difficult at times. This is solved by the System Trigger Detector c¢ircuit
diagrammed in Fig. %.3. Thi§ circuit works by detecting the pulse burst

and locking out for a period to cover the burst, and then detecting the

next negative signal (the system trigger). After this, the circuit locks

out any further detections for the remainder of the return period.
Finally, the ICU is presented in Fig. D.4 and Table D.l. In

addition to'what is shoyn, this unit also contains line drivers for the

16 bits of data from the A/D's, drivers for the LED indicators corres-

.

ponding to the numbered boxes in, the figure, and a power subply. These

o e et
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Figure D.2: Oscilloscope Displays of 1 & Q Channels

(a) 4 Pulses (showing staggered PRF)
(b) Single Pulse
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Table D.1l: Interface and Control Unit Key
Label Meaning
A System trigger input (from gystem trigger detector)
B Range delay output (for time measurement)
C Range mark output to PPI
, D ARP input (from synchro generator)
E "Encode" output to A/D's
F "Ready,”” input from A/D #1
G "Ready" input‘from A/D #2
H Flag output to computer (data ready)
1 Flag input from computer (computer ready)

System trigger fault (L.E.D.)
Preset to start tfansfer (L.E.D.)
Running transfer (L.E.D.)
Computer fault (L.E.D.)

A/D fault (L.E.D.)

196



197

line and LED drivers, and the line driving gates Gl to G3 in Fig. D.4,
are all high level, 50 ohm output NOR gates designed for line driving.
The ICU serves two main functions. These are the control of the range-
ring selection and sampling, and the indication of system faults. The
system trigger is fed into variable monostable M1, which delays for a
period equal to the desired range, and then triggers monostable M2 to
give a short pulse. This p?lse is sent to the PPl to form the range-ring
display, to reset the "A/D ready" fiip—flops F1 and F2, and to the A/D
encode lines if a '"run" signal is present. If M2 does not fire within
a prescribed time, M3 and F3 Indicate a fault.’

The north mark (ARP) is fed into a circuit formed by F4, F5, and
G6, which starts the data transfer at the next north mark in the data
(when preset) and ends the transfer on the following north mark (unless
set to run continuously). When both A/D's have completed their conver-
sions, a signal is sent to the compuier (by circuit F1, F2, G1l, G4 and
G5) saying that the data is ready to be picked up. If an A/D fails to

signal ready in a reasonable time, or if the computer is not ready when

the data is, a fault is indicated (by flip-flops F6 and F7, respectively).

The data 1is transferred into the computer as one 16-bit integer word,

which is later broken down into I and Q parts.

{





