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- ABSTRACT

L4

1

' The magnetic excitation spectrum of the randomly

diluted ferromagnet, N12MnO 8 0.2

neutron inelastic gcattering techniques. The frequencies

Sn, has been measured by

are reduced from those bbserved_for'the non-diluted ferro-

,magnet, Ni MnSn, by a factor that depends on wavevector.

2
The shape of the frequency shift is characteristic of an
in-band resonance, Computer simulation calculations have

been performed for large finite arrays (~v15,000 spins)

including up to third nelghbour interactions. The predicted

frequenc1es agree with experlment. The calculations show a

resonant effect however it is.not as pronounced as the

observed effect.
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CHAPTER 1
INTRODUCTION.

There has. been considerable experimental and theoreti-

\
rd
- e . .
Lt .
e A e AT D T2 8

cal. interest in magnetic excitations in substitutionally dis-

e w

oxdered allois. Several mixed and diluted systems of anti-

ferromagnetic insulators have been studied, as reviewed by

Cowley and Bﬁyers1 and Cowleyz, but there has been no experi-

mental investigation of a disordered ferromagnet. This is

because suitable alloys have not béen available. However, 1
recent magnétic studies have suggested that the Heusier alloy,
NizMnl_xVxSn, is a randomly diluted ferromagnet3. The spins
reside on the Mn atoms and the interaction between them is

Heisenberg in nature4. In this work, to study the effect of

dilution, the magnetic excitation spectra for NizMno 8VO 2Sn

has been measured by inelastic neutron scattering technigques

and the results compared to a computer simu;atISH'calcd;étion. ,
Heusler alloys are intermetallic compounds, which Qzé

mepallic in lustre and conductivity but have an-ordered

structure. Most ﬁeusler’alloys have the chemicgl fgrmula,

X,Mnz, and the L2l lattice strﬁcﬁure, where X is a transition

element and Z is an s/p element. Many combinations of X and

Z are possible. For example, X cam be Cu, Ni, Co, Pd or Pt,

7’
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v : - l



£
T

;‘i . 2

and 7 can be Ge, Ga, Sb, Sn or Al. Recent tabulations are ' ]

- «

given by Campbell5 and Price el a£.6 In the Lzl structure,

which is face-centered cubic, the X atoms are arranged on a

.

simple cubic lattice while the Mn and Z atoms occupy alter-

nate body centres. The magnetic properties of these compounds

e e g

are somewhat surprising.( In N12MnSn, which is ferromagnetic

(Tc = 344 K), the saturation moment of 4 Mg per molecule is
localized on the Mn atoms, . The Ni atoms carry no appreciable
moment, in spite of the fact that elemental Ni is ferro-

magnetic while Mn is not. Thg momént of 4~“B per Mn atom, ~

which corresponds to a spin § = 2, is characteristic of all

Heuglef alloys except those containing Co or re' 10 or when Mn

is the X atomll. Polarized neutron studies of szMnSn, which
is isostructural and isoelectronic with Ni,MnSn, show that a

'small moment of ~0.05 Mg may exist at the Pd site and -0.05 Mg
9 -

at the Sn site The possibility of a small moment on the Ni

and Sn atoms is neglected in this work. The Mn atoms form a

fce lattice of spins. A o —\\\Q\
N >

he spin-wave dispersio b 4a i h e T
T pin-wa sper n has, een measure lnﬂt\}egd/ i

Heusler-alloys; in qugnSn and Ni2MnSﬂ by Noda and Ishikawa4,

ﬂ.lz The results for NiZMnSn at

‘50 K are shown in Fié. 1.1. Noda and Ishikawa observed well

" and in Cu,MnAl by Tajima et a

defined peaks out to the zone boundarf in the [00z], [zzo0]

and [zzrz] directions. Only 6né~brapch was present which is

—

/" L]
expected if the Mn atoms carry all the moment. No widths -



Fig. 1.1 Spin-wave dispersion relations for NizMnSn at _
50 K, after Noda and Ishikawa4. The selid line.
65£‘ is the six—neiéhgour fit to the Heisenberg model
(egn. 1.2). The corresponding exchange constants

are given in Table 1.1.

i
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intrinsic to tﬁe spin waves were observed, althdugh the
responses beyond the K—poinﬁ in the [zz0] direction were broad,
probably dﬁe to defocusing of the spectromete&. The ‘disper-
"sion curves in all three materials were similar in shépe,
increasing in energy from Pd,MnSn to Ni,MnSn to Cu,MnAl. At
higher Eemperatureskthe dispersion curves for szMnSn decreased
in-enexgy bgt retained the same shape, implying that the shape
is characteristic of the magnon dispersion and not due to a
magnon-phonon interaction. These curves were fit to a Heisen-
2

‘berg model where the energy contained” in the spins is given by

H=-2J,. 8.-8. (1.1)
lj l]\ 1 j -

assuming no anisotropy. Here Si is the spin at site i and Jij
is the exchange constant. For a perfect fcc lattice of
localized spins S, the spin-wave energjes are’given by

hw§‘= 28(3(0) - J(3) (1.2)

where J(q) is the Fourier transform of 550 The fit for
NiZMnSﬁ is also shown in Fig. 1l.1. The dispersion curves are

well reproduced by the Heisenberg model. Exchange parameters

2 2
CuéMnAl were required for a good fit, implying long range

out to 8 neiéhbours for Pd,MnSn, 6 for Ni. MnSn and 5 for
interactions. The exchange constants for NizMnSn are given in
Table 1.1. The first three are large and positive (ferro-
magnetic) however beyond the third neighbour the exchange
oscillates with distance. This is characteristic of indirect

coupling via the s-d in;eréctidn between localized and con-




Table 1.1

Exchange parameters Ji (meV) for NizMnSn determined

by a 6 neighbour least squares fit to Noda and
th

X

Ishikawa's data at 50 K.4 L2y is the number of i

neighbours. The uncertainty in each parameter is

0.02 meV.
EN 3, I, 3, I J
0.296 0.283 0.110 -0.095 0.023 -0.015
12 6 24 12 24 8

s, - <
RS oy ST
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duction electrons. The interaction polarizes the conduction

band which affects the spins on neighbouring sites. RKKY

theoryl3~15 for the s-d interaction, based on the nearly free -

electron model, predicts that the exchange oscillates with

Qistance and falls off as R_3 for large R. Caroli and Blandinls,

r

and later Carolil7, ﬁeveloped a double resonance exchange model

based on the Friedel-Anderson picture of a/local moment in a

18,19. The result is similar to the RKKY expression
H

except for an additional phase shift due to the resonant nature

metal

of the electron scattering. Noda and Ishikawa fit this expres-
sion to their data and obtaihed good aéreement for large R,
however the theory predicts the wrong magnitude and sign f&r
the n.n and n.n.n. exchange constants. '

Recently twd models have been proposed to explain the
3d exchange interactions in Heusler alloys. Price20 and
Malmstrom et aﬂ.Zl, using the same model as Caroli, calculated
the pre-asymptotic part of £he interaction and were able to
obtain positive values for the first three exchange constants.
The single iﬁteraction depends only on the average conduc;ion
electron concentration.' Stearnszz'has suggested th;t the
ferromagnetism is due mainly to Coulomb exchange between
itinerant énd localized d-electrons. In‘her model there are
three. exchange mechanisms: di—d1 exchange, indirect s-dl

exchange and antiferromagnetic superexchange via the Z-ligand.

Reitz and Stearns23 have fit this model to the. dispersion

\

e v
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curves for the three Heusler alloys and obtained reasonable
agreement between theory and experiment by varying only the
concentration of di electrons, believed to depend strongly on

the X atom. Howevér, studies of the magnetic phase transi-
24 ' 25,26
t

conclude that the overall s conduction electron cpncentration

tions in sz_xCuanIn and in the series sz In/Sn/Sb

determines whether these compounds are ferromagnetic or anti-
ferromagnetic, regardless of whetﬁer the X or Z atoms are
changed. This result favours the Price/MaiMstr&m picture, but
the presence of 6ther interactions cannot be ruled out.

The electronic structure of Cu2MnA127, Pd,MnSn and

2
NizMnSn28 has been calculated by the symmetrized augmented'
plane wave (SAPW) method. A muffin-tin crystal potential was
formed from a superposition of atomic potentials generated
from the free atom Hartree-Fock-Slater wave functions and the
exchange potential was determined by the x-o method with an
adjustable paramete£. In NizMnSn the most appropriate confi-
guration was found to be 3d64sl for Mn and 3d94sl for Ni. For
the majority spiP‘states the E(k) curves show flat d-bands for
Mn and Ni below fhe Fermi level whereas for the minority spin
states the d-bands of Ni are below the Fermi level but those
for Mn lie abave. It is dbvious from the curves thaﬁ ;he'
main carrie; of the magnetic moment in Heusler alloyé is Mn

and the magnetic moment of the X atom is nearly zero. Calcula-

tion of the magnetic form factor agrees with experiment.




PARN:

Hurd et af 2?

have measured the field and temperature
dependence of the electricél resistivity, the Hall effect and
the transverse magnetoresistance of N?zMnSn. Conduction in
NizMnSn is dominated by electrons moving in a s/p band but

they interact strongly with the iatﬁice and with the magﬂetic
electrons localized on the‘Mn ions. There is evidence of a
resonant s-d-s scattering mechanism, consistent with the Price
picture of coupling between the Mn ions, which dominates the
resistivity at temperatureé above 120 K but operates even at
4.2 K. Estimates of the electron mean free path are 30 A° at
4.2 K and 6 A° at 263, K. |

- In the Heusler alloy, Ni Mn; _V Sn, there is evidence
that V is non-magneticX,. The magnetization per unit volume and
the effective paramagnetic moment per molécule are proportional

to the Mn concentration. Also, the Curie temperature decreases

_linearly with the Mn concentration and extrapolates to zero at

h

a dilutioﬁ of x
tion limit ealculations for a fcc lattice with n.n. and n.n.n.
interactions30. The allo§ series is ferromagnetic aboveé the
critical percolation concentration and retains the Heusler .
structure for all values of x. As was mentioned above, the
spin-wave spectra for the perfect (x = 0) crystal, NizMnSn, has
been measured elsewhere and the exchange constants determined.
The exchange interac£ion was found to be . Heisenberg in nature

and there is some understanding of the coupling mecHanism.

Furthermore, the material is cubic and has only a small aniso-

0.9. This limit agrees favorably with percola-

L
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trépy energy (hw§=0 m10-4eV?4. For these reasons the above
series is ideal for studying the effect, on the spin-wave spectra
of a Hei;enberg ferromagnet, of randomly diluting the sping Qlth
non-magnetic ions. The spectra can be meaéured by inelastic
neutron scatteriné‘EEChniques.

There afé 3\:umber of theories31 that describe the

éffect of dilution op the T = 0 spin waves in a random lattice;

As the spin concentfation decreases, the sé&n—ane frequencies
decrease and the resbénse broadens. To treat this effect
theo;etically is not straightforward because in a random l;ttice
translational symmetry is lost and the crystal momentum, 6, is

no longer a good quantum number for the excitations. There aée
tﬁo simplé modéls. In the "vi;tual crystal"® model thg gisordered

1

lattice is replaced by a perfect lattice in which . all exchange

parametérs are scaled with the concentratidn of spiné. There is °

a consequent scaling of the spin-wave frequencies by the same
factor but the theory predicts no increase in the widths of the

’

response. The Ising cluster model, on the other'hand, recognizes
that resonances should occur at frequencies which correspond to
the energy required to flip a spin in the field of its rkduced
number of magnetic neighbours. This théory is useful in predict=
ing the freduencies of loéalized modes in mixed systems but can
give no information about dispersion.

The principal theoretical approach, used to obtain the

dispersion in a disordered system, K has involved the coherent "

RS N
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potential approxihation (Cea). A self-enexgy is found that
minimizes the multiple scattering at a singie site. The CPA

can be used to determine frequency shifts and widths, This

theory was originéily developed to treat electrons32 and

phonons33 and was first extended to magnetic systems by Buyers

|34, 35

et al. A fhll‘comparison of the results with experi-

ments has been made for.dilute ant;ferromagnéts3l'35. CPA -

resuits for the response of a three~dimensional diluted ferro-

magnet have.been. presented by Tahir-—Kheli36 37

and others>23°  for the simple cubic case but no full confront-

, Harris et al.

ation with experiment has been made. There hdve been some more
recent developments4q P41 but no CPA calculations>for the responée
in a fcc ferromagnet have been reported. Furthermore, the CPA

may produce spurious results arising from branch cuts42 and a

pseudopotentlal may have "to be 1ntroduced31 35,37 to remove
the unphysmcal response of the non-magnetlc ions at w ~ 0.

An alternativé approach is to solve this type of problem
by computer simylation techniques43-45. This.is the approach
chosen in the present work. It involves little more numerical
work than the CPA and fér large syétems tends to the exact
result. The technique is used in the form given by Alben et at 43

A large random array of spins with periodic boundary
condltlons is generated by the computer program. Using linear
spin-wave theory the neutron scattering response, S(Q E), is

determined numerically for the finite array. The method involves
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solving for the correlation functions that describe the spin
waves by integrating equations of motion forward in time.
These corfelation functions are then Fourier transformed in space
. and time to give S(a,E). 'By averaging the results éf several
érrays of different dimensions and with diffé;ent spin configura-
tions.an approximation to an infinite crystal is obtained. For
three arrays, of ~15,000 spins each, the error iq S(ﬁ,E) is ~5%,
but in égneral the'accuracy is limited only by computer memory
and time. The error in the fregquencies of peaks is considerably
less.

As part of this work, a‘computér program was written to
determine S(5,E) for a diluted, fcc, ferromagnetic lattice by
the numerical method described above. It is assumed £hat the
Heisenberg exchange constants between spiﬁs present in the lattice
do not change with dilution. Results have been obtained for n.n.
and up to third n;arest neighbour interactions for dilutions of
20% and 30%. A comparison is made between these calculations
and the experimental results for'NizMno_BVO.zsn.

Chapter 2 deséribes the inelastic neutron scattering
experiment to measure theispin-wave dispersion curves for Ni2MnSn

and Ni_Mn.' Sn inciuding a section on the growth and

2M0,8Y.2
characterization of the large single crystal samples. Chapter 3
gives an outline of linear spin-wave theory and shows how the
scattering function, S(a,E), for a diluted Heizenberg ferromagnet

can be expressed in terms of correlation functions.. Chapter 4

describes the computer’simulation téchnique for calculating

LR S,
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s(@,E), paying particular ;ttention to the various types of
errors which limit the accuracy of the technique. A
description and listing of the computer program is given in
the Appendix.. The experimental results are presented and
compared with the computer simulation results in Chapter 5,

and conclusions a¢e presented in Chapter 6.
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CHAPTER 2

EXPERIMENT

2.1 Samples

’

Large single crystals of leMnSn and leMn0.8v0.2sn

were grown for inelastic neutron scattering studies. They

were obtained in the following manner. Polycrystalline in-
gots of alloy were prepared by melting togethér stoichiome-
tric amounts of elemental material weighed to the nearest
0.0001 g. The elements were premelted, before weighing,

as a purifying procedure and to remove any entrapped gas:
For Ni.MnSn a Czochralski growth was begun. The ingots were

2
melted in an r-f furnace in an Al'O3 crucible with a graphite

2
susceptor. The furnace was backfilled with argon. An orien-
ted seed was lowered into the melt. The seed and melt were
counter-rotated at ~ 0.2 rev/sec. The pulliﬁé rate was set
at 1" per hour and the bouie‘size was controlled by regulating

the power to the r-f coils. The crystal was exéanded to about

2 cm in diameter when it caught 6nto polycrystalline charge

freezing in from the circumference of the crucible. The growth .

was immediately changed to a slow-cooling (Kyropoulos) tech-
nique. The crystal was cooled from N 1100 C to 300 C over a

period of 24 hr. Details on the temperature of the crystal as

I
-

13
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,
a function of time are unkhown. Neutron diffraction photo-
graphs showed that the center of* the boule was a single crys-
tal. There was no #further heat treatment.

The NizMno 8V0 2Sn crystal was grown by the Bridgman

technique. An Al,0, Bridgman crucible (20 mm ID and 100 mm
long) was filled with poiycgystalline alloy and sealed in a
guartz ampoule, backfilled to 0.25 atm of argon. The ampoule

was lowered through a platinum resistance furnace at v~ 2 mm

per hour. S&veral tries were nece:;;>k to produce a single

crystal.

The dimensions of the samples were ~ 25 mm in diameter

and 15 mm long for Ni MnSn and 15 mm in diameter and 30 mm

long for N12Mn0.8V0.ZSn. Photographs are shown in Fig. 2.1,
(a) and (b). "X-ray Laue énd‘neutron diffraction photographs
(using a polaroid neutron camera) showed that the samples
were single crystals.

- The samples were further characterized by measuring
the Lulk magnetization, the chemical disorder, the mosaic
spread and the chemical composition. To determine the magneti-
zation, slabs were removed from the crystals by spark erosion

\\3Pd measurements were taken on a vibrating-sample magneto-
meter. The results indicate a magnetic moment per Mn %tom of
4.120.1 pg in Ni,MnSn and 4.0#0.1 Mg in NiéMnO.Bvo.an' These
results agree with previous measurements3and with the general
{esults of ~ 4uB per Mn atom for all Heusler a;loys, and are
consistent with the nominal concentration of Mn atoms in the
sémples.

9
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Fig. 2.1 (a) Photograph of the Ni_MnSn crystal.

2

(b) Photograph of the Ni_Mn Sn crystal.

Mg .8Y0.2
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The chemical diserder was determined from elastic
neutron diffraction gxperiments on portions of the samples.
These were performéd at the McMaster University reactor by
Luc Martin. The results indicate a preferential Ni-Mn dis-
order of 3.5%1.2% for Ni_MnSn and 0.0*3.0% for Ni_ Mn

2 2M9.8V0.2
The mosaic spreads of the samples were measured on

Sn.

the double-axis spectrometer at the McMaster University reactor.
The monochromator was an Al(200), crystal set at 26 = 41.8° which
selectéd a wavelength of 1.444 i. The instrument was set for
the focusiné condition where the width of the ¥ rocking curve
depends only on the mosaic spreads of the sample and monochro-
mator and not on collimation. Rocking curves were measured
for the 220 reflection of a Ge crystal slab, which had a small
mosaic spread, and for the 220 reflection of each of the samples.
The mosaic spreads‘xjfe found to be 32.420.9' (minutes) for the
monochromator, 18x2' for NizMnSn and 34x4' for inMnO.SVO.zsn.
‘The chemical composition was measured by neutron ac-
tivation analysis at the McMaster Nuclear Reactors. The results,
are presented in Table 2.1. 'Ip terms of atomic per cent, the '

compositions were measured to ‘be Ni and

2.11™0.945"0.94
Ni2.08mn0.76V0.208n0.95' Both‘samples show an excess of Ni,
possibly due to evaporation of the other elements during the
crystal gro&th. The results indicate that ~ 3% of the Mn sites
may be occupied by Ni atoms.

For the inelastic scattering experiments the sémples were

fastened to aluminum posts with vanadium straps and mounted in

the vacuum space of a liquid nitrogen’dewar (see Fig. 2.2). The.

[




Fig. 2.2 Nitrogen dewar for neutron scattering experiments

showing position of sample.

.
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temperature of the sample in this arrangement was measured by
a copper-constantan thermocouple and found to be 93 K. The

holding time of the dewar was about 20 hr.

Table 2.1 Neutron activation analysis results. Error esti-
mates are based on counting statistics and six
replicate analyses

|

/
Sample identified as NizMnSn:
) o
$ by weight
Ni . 43.2+ .8
Mn 18.0% .4
Sn 39.,0*1.2
.Sample identified as leMno.BVO‘zsn: :

% by weight-

Ni 42.6*1.1

ﬁ Mn 14,6+ .2
v 3.5: .1 | ‘
Sn 39.4%1.2

2.2 Inelastic Neutron Scattering Experiment
The neutron scattering was done on the McMaster Univer-
4

sity triple-axis spectrometer at the N.R.U. reactor in Chalk

s, TG

N PRI,

B e s e emras S -
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River. Detailed{Sescriptions of this spectrometer have been -

47 A schemaﬁic

given by Brockhouse46 and Brockhouse et af.
diagram of the spectrometer is shown in Fig. 2.3.

A collimated hole in the wall of a nuclear reactor
allows a white beam of neutropns to be extracted. The double-
crystal monochromator, consistfing of two Cu(220) crystals sef
at GM, selects neutrons 65 a /particular wavelength,‘xo, to be
Y is the angle of the specimen with

incident on the specinen.
respect to the incomijg beam. Neutrons scattered through the

angle ¢ are detected by the He3

counter if they are of the
correct wavelength, A', to be Bragg scattered by the analysing

crystal set at BA. The analyser used was a Cu(200) crystal.

An essential part of the instrument is the thin U235

 fission
counter which monitors t@g_}ncoming beam intgssity. Scattered
neutrons are counted f&r a preset number of monitor counts.
The Soller-slit horizontal collimatofs set the resolution of
the spectrometer. Resolution is discussed in more detail in
Section 2.3. A photograph of the experimental apparatus is
shown in Fig. 2.4. ) :

The neutron is ap ideal probe for the study of magnetic
excitations in a crystal. It is. neutral in charge but has a
magnetic moment and therefore can interact with the electron
spins in the crystal. A thermal neutron has a momentum and
energy comparable to'the momentum and energy of a’ typical magnon.
It is therefore scattere§ through an appreciable angle and

undergoes a measurable change in energy when it creates or

.
o T Tup, e ash £ e p e AT T



Fig.

2.3

Schematic of Chalk River triple-axis spectrometer.

A
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= 4

t

‘hole in reactor wall

double crystal monochromator
monochromatic beam
beam incident on specimen

beam gate

. fission chamber monitor

Soller-slit collimators

sample angling apparatus

counter angling apparatus

helium counters

parifin and cadmium shielding barrel

analysing crystal
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Fig. 2.4

Photograph of the Chalk River triple-axis
spectrometer showing the beam port at the reactor
face, the nitrogen dewar which holds the sample

and the analyser, coated with parafin wax.
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annihilates a magnon. In such a collision, quasi-momentum and

enerqgy are conserved. That is,

Q =k -k'=7T-q (2.1)

and

=
h

EO—E' = Huw, (2.2)

where‘ﬁa is the momentum transfer and E is the energy transfer.
Eo and k' are the wavevectors of the incident and scattered
neutrons and EO and E' are the corresponding energies. T is a
reciprocal lattice vector while E and w are the wavevector and
angular frequency of the magnon involved. Brockhouse46 has
emphasized that 6 and E are the natural variables for the inelas-
tic scattering process.

When momoenergetic neutrons are incident on a crystal,
information about the excitations is present in the scattered
neutron spectrum in the form of "neutron groups" which are those
neutroné scattered by excitations of a particular E,w combi-
nation. The neutron groups c;n be observed if the spectrome-
‘ter is programmed to sweep through the corresponding area of
6,E space. A triple-axis spectrometer has the advantage over

other spectrometers in that GM, 9 ¢ and ¢y can all be moved

Al

independently.” There are several special modes of operation pos-
\

sible, most notably the constant 6 and constant E modes. These

are methods for obtaining one.point on the dispersion curves of

the magnons. Successive and adjacent scans allow the whole

dispersion curve -to be plotted out. These curves can be com-

~
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pared to theoretical models and fitted to obtain exchange para=-

meters. For‘these experiments the constant energy mode was

more favorable because of the relative steepness of the disper- '
sion curves.

The following is a description of the procedure used for
taking constant energy scans of the neutrons scattered by spin-
waves in NizMnSn and Niz““o.svo.zsn' The s?ﬁples were oriented
so that the (110) plane coincided with the scattering plane of
the spectrometer (defined by fl and kK'). * The spin-wave dis-
persion curves were measured in three symmetry directions about
the (111) reciprocal lattice point. At this point there’'is a
low dynamical structure factor, for phonon scattering yet 6 is
small enough so that the magnetic form factor does not drasti-
cally reduce the iﬁtensities. A diagram of the reciprocal lat-
tice is given in Fig. 2.5. On it are shown the centers of
observed peaks for constant energy scans in NizMno.SVO.ZSn.

In the constant E method, 6 is usually moved along a
symmetry direction in reciprocal space while E is held constant.
To measure a point on the dispersidh curve at energy E, one first
chooses the range of 6 expected tb correspond to that E. The

wavelength of the incident neutrons is selected by setting 8M.

Knowing Xo and E, X' is calculated from : ;

2 2
g=-R___h 5 (2.3)

omi? 2mnt
o]

and GA is set. Finally a triangle is formed from 3, Eo and k'
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Fig. 2.5

Reciprocal lattice of Heusler alloys in the (110)
plane. The points are wavevectors of observed

neutron scattering peaks.



24

) \/ o N\=1.16 A

x'A=1.60 A

L T N SUUN S T



25

i i
and the angles ¢ and y are calculated. The spectrometer angles

can be set to any multiple of 0.1° with a stated accuracy of
0.01°. The calculations are done for all points on the sweep

of 6 by a computer program that produces a paper tape which con-
trols the sbectrometer. The scattered neutrons are counted for
a preset number of monitor counts at each point. The observed
result is a neutron group, such as those shown in Fig. 5.1, and
the centre of the peak gives one point on the dispersion curve.

It is possible that the triangle cannot be closed, in
which case Ao must be changed. Resolution is another considera-
tion in choosing the incident wavelength. For weak scattering
a small AO is desired to decrease the energy resolution ;n the
analyser and increase the intensity. For these experiments a
wavelength of 1.6 i was chosen for energy transfers less than
3 THz and 1.16 g for transfers greater than 3 THz. The latter
corresponds to the iargest Eo obtainable from the double mono-
chromator of this instrument. &

At the beginning of an experiment it is necessary to
accurately determine the incident wavelength, the lattice con-
stant of the sample and the scale readings for the zero posi-
tions of all angles. These were obtained by the following pro-
cedures. Ao and ¢0 were obtained by measuring the positions of
diffraction peaks from Cu powder and least squares fitting the
angles to Bragg's Law. The centers of the peaks were estimated

o

te the nearest 0.01°. Five peaks were obtainable for AO= 1.16 A

R :
and four peaks for 1.6 A. The resulting error in Ao was

R 4
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. )
* 0.0007 A and in ¢0 was * 0.01°. a, the lattice constant of
the sample, and wo were determined by fitting the Yy angles of

Bragg reflections to Bragg's Law. The lattice constants ob-

tained at 93 K were

N o
a(NizMnSn) = -6.053+£0.010 A

o
a(leMnO.BVO.zsn) = 6.029+£0.010 A .

The value for NizMnSn agrees with other results3 however the

value for NizMn0 8V0 2Sn is slightly less than obtained by

previous workers. The error in wo was * 0,01°. eA and 26A
o) o]
were determined to * 0.01° by measuring isotropic elastic

scattering from V powder.

The samples were oriented by observing the (440),(440),

(006) and (003) reflections. The vertical collimation in the

incoming and outgoing beams was set to 1/160 radians

and the crystal orientation was adjusted for a maximum counting

rate.

2.3 Resolution

The resolution of a triple—axis spectrometer is deter-
mined by collimation and by the mosaic spreads of the mono-

chromator and analyser crystals. If the scattering function

of the sample is independent of w and 6 and the spectrometer
is set to observe a process (wo,ao) then the resolution func-
tion, R(w,wo.B,EO), is defined as the probability that a de-

tected neutron was scattered with an energy transfer -Aw and

The method is thought to be accurate to better than 0.05°.

ey pons e

PRI

b W%,yﬁmmﬁ”

S

M e ke T



27

a momentum transfer ﬁa. If the transmission functions of all
collimators and c¢rystals involved are assumed to be Gaussian

then the resolution function can be written in the form

: 4 4
- N 1
R(wO+Aw,§O+A'Q') = R exp{- 3 kil 221 M X, X, } (2.4)

where Xi = Qi-Qio for i = 1,2,3 and X4 = W . Conventionally
Xlis parallel to 60 and X3 is perpendicular to the scattering
plane. PX is called the resolution matrix. Cooper and
Nathans48 have derived expressions for the matrix elements in

terms of ko’ w_ and 60; the monochromator and analyser mosaic

o
spreads and plane spacings, Nyr Npv dM and dA; and the horizon-
tal and vertical collimation anglgs, Agr Gy Uyr Qg 80' Bl'

82 and 83. These expressions were used to choose the constant

energy scans most suitable from the standpoint of focusing.

The parameters of the spectrometer are listed in Table 2.2.

o e oo g <
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Table 2.2 Instrumental parameters for the triple~axis spectro-

meter
Scattering Plane,Spacing
Plane (A)
monochromator Cp'220 1.278
analyser Cu 200 1.807
t
specimen (NizMnSn) - -
(NiMn, gV¥p,250) = -
Collimation (FWHM)
Horizontal
(radians)
in pile ey = 0.1002
monochromator to sample a; = 0.0125
sample to analyzerxr a, = 0.0125 ¢
analyser to detector ay = 0.0833
\

Mosaic
Spread

20"
.30
jY

18

34"

Vertical

(

B3

radians)

0.1002

]

0.0300

I

0.0700

0.5000

Note: al and a, are typical for the Soller-slit collimators.
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2.4 Spin-Wave Renormalization

The energy required to create a spin-~wave decreases with
increasing temperature because of interactions between the

spin-waves. The spin-wave energies for Ni_MnSn and

2
N12Mn0 8 0. an( measured at 93 K in this experiment, are

therefore reduced from the energies at 0 K. To obtain the dis=

persion curves at T=0 K, a correction was applied by assuming

that the energies drop by the same factor as the bulk magne-

tization.

The magnetization of the compounds was measured on a
vibrating sample magnetometer using pieces cut from the same
samples used in the neutron scattering experiments. The re-~
sults are shown in Fig. 2.6 where the reduced magnetization,

M(T)/M(0), is plotted against temperature. The curve for
the diluted crystal is a different shape thén for the non-
diluted crystal, decreasing faster with'temperatufe. At 93 K

the magnetization has dropped by 2.0% for Ni MnSn, and by

v 8,0% for Ni Mn v Sn. The measured spin-wave energies

2770.8°0.2
were therefore increased by the corresponding factors to obtain
the spin-wave energies at 0 K. |
That the dlsper31on curves have the same temperature .
dependence as the bulk magnetlzatlon is only an approximation.
The assumption is supported by the Green function theory of
ferfomagnetism by H. Qallen49 and follows froﬁ the simple

physical picture of spin-wave renormalization, given by F.

5 . s
Keffer 0. As the temperature increases, more spin-waves are

i st
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Fig. 2,6

Temperatugs dependence of the reduced magnetization

for Ni

0.8V0. 250"

2MnSn:and leMn
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excited and the average angle, , between each spin and the

¢M '
direction of bulk magnetization®increases. This causes the

total magnetization, M(T), to drop. In the "first random

phase approximation" the components of each spin which are per-

pendicular to M are averaged to zero. This results in a sys-
tem of spins, S cos ¢M in length and totally aligned in the
magnetic field M(T). The eﬁergy required to excite another
spin-wave is thereby reduced by the factor M(T)/M(0). This
overestimates the renormalization at low temperatures be-
cause only long-wavelength spi;-waves.are excited. A better
approximation, called the "second random phase approximation”
is obtained by averaging the spin-components perpendicular to
the local magnetization. At higher temperatures the two
averaging procedures are equivalent and correcting the spin-
wave energies by the magrnetization should be a good approxima-
tion.

The spin-wave dispersion curves for Pd. MnSn were mea-

2
sured at different temperatures by Noda and IshikawaSl.
They compared their results witH a self-consistent renormali-
zation theory based on the two magnon dynamical interaction
and obtained éood agreement. However, this theory cannot
easily be applied to a diluted ferromagnet. For szMnSn at
T ~ 0.3 Tc the drop in magnetizétipn exceeds the spin-wave'

renormalization by about 25%. However the renormalization was

PO

D i
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found to be 1ndepend§nt of q. For NJLZMnO.BVO.2

overcorrection by 25% is thought to be within experimental

Sn the possible

error, given the suspected deficiency of Mn.




CHAPTER 3

THEORY

This chapter outlines the low temperature theory re-
quired to calculate the scattering function, S(5,E), for a
diluted Heisenberg ferromagnet. These calcﬁlations can be
compared directly with neutron scattering measurements and
they also give qualitative information about the energy of
the spin excitations in the diluted crystal: The fir step
is to obtain the linear Hamiltonian for spin-wav in Hei~
senberg ferromagnet. For a perfect crystal the spin-wave
dispersion relation follows readily. Next, an expression for
the scattering function,‘S(ﬁ,E), is derived in terms of corre-
lation functions. This expression simplifies for a perfect
crystal but not for a diluted crystal because there is 1o
translational symmetry. However, equations of motions for
the correlation functions can be obtained which leads to a com-
puter simulation technique for calculating S(a,E). The
temperature dependence of spin-waves is discussed in

’

Section 2.4. :

3.1 The Linear Spin-Wave Hamiltonian

The treatment below is standard and appears in many

places. See, for example, Marshall and Loveseysz. According

33
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to the Heisenberg model, a ferromagnetic crystal can be described

by a Hamiltonian expressed in terms of spin operators:

H=- 5% J,. 8.-8. . (3.1)

Jij is the exchange integral between spins at sites i and j.

It is positive for ferromagnetic coupling. In egn. (3.1) all
contributions from external magnetic fields and anisotropy have
been neglected. If the spin angular momentum raising and lowe-

. + - .
ring operators, Si and Si,are introduced where

st = g% + (Y (3.2)
b bR 1
and
» - N < _ ) y {
Si = Si LSi: 4 (3.3)

then the Hamiltonian can be written as

~
s

- +o- Z.2
H = 13 Jij{sisj + sisj} . (3.4)
1)
This can be expressed in terms of spin deviation operators by

means of the Holstein-Primakoff transformation53:

+

+ A G :
Si = (28) [l —i-é——] ai (3.5a)
- a+a
- _ o+ o Titik
Si = (28) ai[l —ig—] (3.5b)
s?=s - ata, . (3.5¢)
1 . 11
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aI and a; are boson creation and destruction operators which
obey the commutation relation

+ —
[ai,aj] = éij . (3.6)

Now n, = a;'ai is the operator for the number of spin deviations.

As the temperature decreases the average value of n; approaches

zexo. Therefore in the limit of low temperature and large

spins .
(1 - i%;i]* = [1 - ;§1* Xl (3.7)
Egns. (3.5) become
s; = (25)7a, ) (3.8a)
s; = (25)*az (3.8b)
si =5 - aja; . (3.8b)

* This is the first order Holstein-Primakoff transformation. Sub-

stitution of egns. (3.8) into eqgn. (3.4) gives

H=- £ J..85- ¢ 287..(ata.-ata.) . (3.9)
139193 9494

iy 3 i3 J
. + o
"We have used the fact that a; commutes with ay for i# 3j and that
‘ , + + . .
Jij = in. A term in aiaiajaj has been neglected, which is
consistent with the approximations made in the transformation.

The first term of egqn. (3.9) is the zero temperature

energy of the lattice. It is a constant, has no gffect on spin

20
pery
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excitations, and is therefore ﬁeglected. Egn. (3.9) becomes

= +,  __t .
H = fg ZS_Jij(aiai aiaj) . (3.10)

This is the quadratic, linear spin-wave Hamiltonian. It will

be used below to derive linear equations of motion for the

spins.

3.2 The Spin-Wave Dispersion Relation

To obtain the dispersion relation for spin-waves in
+
the perfect crystal we introduce the operators b& and ba through

the PFourier expansions

1 -
a, = —= L exp{4g°R,)b= - (3.lla)
Y 19
and
+ 1 - + ‘
a, = — L exp{(-{gq*R.)b~ . (3.11b)
1 /ﬁ'(—l , 1 q

+ -
ba and ba create or destroy a magnon of wavevector gq. The

following properties can be shown to hold:

. L+ L+ 4
b=,b=,] = [b= ,b= = i ~ D=, - = 3.
( a'"q ] ( q bq|] 0 i [.bqlbq ] = ‘Sq,ql (3.12)
5
+ + ~
I a,a, = I b=b- / 3.13)
i 3 ? g
fﬁ. L exp{»é(c-i'-c—l)'-ﬁi} =6 (3.14)

— '-'
i d.9
Substituting eqns. (3.11) into egn. (3.10) and using (3.13) and

- ©

e T
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(3.14) gives .
H =1 25(J(0)-J())b=b= | " ( 3.15)
a . q q <
where
J(g) =t J(S)exp(-ig-q) . (3.16)
§ - .
§ is the neighbour vector
$ =R -R, . (3.17)

+ J

The Hamiltonian is a sum of terms, each of which involves only
one a. There are no cross terms. Therefore the spin-waves do
not interact. This is a consequence of linear spin-wave theory.

A magnon is a quantized spin-wave. If eqn. (3.15) iswritten as’

et H = I #o-n= 3.18
‘ z wq 3 o )
where nwa is the energy of one magnon and n- = bgba is the num-

ber operator for magnons of wavevector g, then the magnon

dispersion curve is given by

ﬂ&a = 25(J(0)-J(T)) . (3.19)

3.3 The Scattering Function, S(é,E)
Neutrons can scatter off spin-waves because there is a
magnetic interaction between the neutrons and the unpaired elec-

tron spins. The scattering function, S(a,E), is that part of

the scattering'c;oss-section that depends on the dynamics of the.

. spin system and not on the properties of the incident radiation.

o e v nie s e bl lolit e <
e
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For a system of gpins localized on the sites §i of

a Bravais lattice, S(E,E) is given by

1 L{Et _ax % |
S(alE) = IWNAS J dt exp(fﬁ—) f} exp{ 45 (Ri Rj)} X f
+ - - + , %

If Eo is the wavevector of the incident neutrons and k' is the
wavevector of the scattered neutrons, then the scattering vec-

tor, 6, is given by
_ T i
Q= k-k' . (3.21)

E is the energy transferred to the system and can be written.as

ﬁZkZ ﬁ2k,2
E:___o.—- 2m *
2m

(3.22)

It is related to the energy of the excitation involved by con-
servation of energy. N is the total number of spins and S
is the spin quantum number. SI and Sz are the raising and
lowering operators for the spin at site i. S;(t) is the time
dependent operator in the Heisenberg representation:-
sy () = taﬁ‘;*“"'/*"sJ1{<a“*'Ht"ﬁ . | (3.23)

Tpe triangular brackets imply the thermal average over all states
at some- temperature T. At T=0 this becomes the expectation
value in the ground state.

Neutron scattering experiments measure the cross section
which is proportional to s(a,E). The partial differential cross-

section for inelastic scattering by spin waves is given by
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~

2 .
2 2 ' ~
Sh— =Ny 29 r@)? = 2 ()exp-WD Is@E B (3.24)
{ mec o} &

~

This cross section is the number of neutrons gcattered into

the solid angle dR, about Q,with energy betWeen E' and E'+dE’.
S(a,E) is the function given by egn. (3.20)., vy = 1.913, g is
the Landé splitting factor and F(a) is the magnetic form factor.
F(a) is the Fourier transform of the spin éSnsity about an ion
and causes the intensity of scattering to dedrease with increa-
sing |6|. (l+5§) is a factor that dependd onjthe orientation of

the magnetization of the sample (z-direc

n) with respect to

~ the scattering vector 6. For a cubic crystal with many ferro-~
magnetic domains the factor averages to 4/3. exp{—ZW(a)} is the

Debye-Waller factor.

To obtain the linear spin-wave expression for S(6,E),

eqn. (3.20) is rewritten in terms of spin deviation operators.
I
Thus
<«
> _ 1 LEt _E T2
S(Q,E) = STNE dt exp(fﬁ—) f} exp{ 46 (Ri Rj)} X
x <a, (t)al (o), + at(t)a, (0)> (3.25)
i j ¢ i j b . .

This expression is applicable to diluted lattices as well as to

perfect lattices. For the perfect lattice, however, the expres-

sion can be simplified.
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3.4 S(a,E) for a Perfect Crystal
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We wish to simplify eqn. (3.25) for a perfect lattice

by introdubing the operators bé and ba. For the Heisenberg:

. . + . S , .
representation of the operator, ba(t), the time derivative is

given by

oo d L+ o+
o= ba(t) = [bq(t)LH] .

Using eqgn. (3.18) for H this becomes

| o +
LA it b_.(t) = quba(t)

Ql +

-
We can therefore write

+ L4+
b-(t LWw=-t) b=~
Z(e) = exp(iwgt) b

and

it

b=(t ; -A{w=t)b-
q( ) exp ( 3 ) 3

These can be used with egns. (3.11) to obtain

+ 1 R . +
L (t) = =— I - *R,-w—t) }bo
a, (t) e exp{-4(q - ) } 5
and
1 = =
() = — I *R,-w=-t) }b= .
al( ) ¥ exp{4{(q i ?} 3

We therefore have that

’ + 1 L = >
<ai(t)aj(o)> 3 I exp{-i(q (Rj—Ri)ﬂ»at)} <nq+1>

q
and

<aI(t)aj(o)>

]
A
]

exp {4 ( ‘(§ -E )+w—t5} <n-~->
PLAIQeiRy=R ) TG 7 g

(3.26)

(3.27)

(3.28)

(3.29)

(3.30a)

(3.30b)

4
(3.31a)

(3.31b)
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where the thermal average, <na>, is given by

<na; = {exp(hwg/kT)~l}-l . (3.32)

Substituting egns. (3.31) into (3.25) gives the linear spin-

wave scattering function for a perfect:crystal:

S(Q,E) = I {6(8-3-7)6 (E~flw=)<n=+1>
1,9 q q
+ 5(6+§-?)5(E+ﬁu§)<na>}. (3.33)

T is a reciprocal lattice vector.

Eqn. (3.33) shows that the cross-section is the sum of
two terms. The first corresponds to the creation and the second
to the destruction of one magnon. The delta-functions insure
conservation of momentum and energy. The two conditions must
be satisfied simultaneously for scattering to occur.

It can be seen that for a particular 6,in a perfect
crystal, S(E,E) shows sharp peaks at the energies that corres-
pond to the excitations whose wavevector is selected by fixing
6. In an inelastic neutren scattering experiment it is pos-
sible to measure the cross-section as a function of 5 and E and
determine the dispersion relation of the magnons.

Eqn. (3.353 is only valid at:low temperatures. At T=0,
<na> = 0 and the pfobability of destroying a magnon is zero simp-

ly because there arenonepmeéent. S(a,E) is given by
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S(Q,E) = _I_ 6(Q-g-T)8 (E-~Hw=) . (3.34)
T,9 q

Notice that S(a,E) is normalized so that the integral of

S(a,E) over energy is unity.

3.5 S(Q,E) for the Diluted Lattice

If the crystal lattice is diluted, that is if a certain

N . ot e o b W < o
SR S A I Y

fraction of the magnetic ions are randomly replaced by non- {
magnetic ions, then we cannot proceed as above to obtain an

expression for the dispersion relation of the magdétic excita-

tions. This is because a diluted lattice does not have trans-

lational symmetry and therefore the Fourier expansion tech-

nique does not work. The operators aI and a; for a .vacant

site are non-physical because they create or destroy a spin

deviation where a spin doesn't exist. Hence the operators

b--t and ba are also non-physical as they involve complete sums

d .
over all the a; or a,. As a result, a is not a gooed quantum

i
number for the spin excitations in a diluted crystal. )

It is possible, however, to obﬁain qualiﬁative infor-
mation about the normal modes of a diluted crystal from Aeutron
scattering measurements of S(E,E); This is because, although f
in general, all modes participate';n the scattéring‘at a par-
ticular Q, certain modes contribute more strongly than others. i
The energies éf the contributing modes are usually concentrated
abéut some average value.

It would be useful to calculate S(a,E) to interpret

neutron scattering measurements and to obtain inforqugon about
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the low temperature magnetic excitations. S(a,E) can be cal-
culated for the linear’sPin-wave model of a diluted ferromag-
net by the equation of motion procedure44 described below.

In the following, the diluted lattice is viewed as a
three:dimenéional array of spins- in which the location of every
spin vacancy is known. The interaction between every pair of
spins in the a¥ray is also assumed to be known. A numerical
calculation of S(E,E) can be performed for a finite array.

Consider the correlation funptions, gia(t), which are
defined as . '

. ' ig-R,

g,3(t) = <a (t) L e J aj(o)>. (3.35)
3

There is a 9:3 for every occupied site i in the array. Eqgn.

Q
(3.25) for S(a,E) can be written in terms of the gia as

-i3-R,

1 J dt exp(*5) I e 9500 (3.36)
i

-
S(Q,E) = '

-—0

Q
by solving their equations of motion and hence obtain S(a,E).

The procedure is to determine the 9;3 as functions of time

The egquations of motion are found by differentiating egqn. (3.35).

One obtains

dg. = (t)  da, (8) i3-R, .

+

Now . .

. . L . i =
N TR e L i e st eSS
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da, (t) £§EY o=
i —_%E_— = [ai(t)'H] = et [ai(o),H]e-n (3.38)

where H is the Hamiltonian of egn. (3.10). The commutator can

be evaluated as

[a»i,H] = g' 28 Jij,[ai—aj.] (3.39)

and egn. (3.37) becomes

dg.x
a0 - 5 a5 g (g.2-9. %) (3.40)
dat i ij id j6 : :

The time derivative of gia for the site i depends on the g_.z's

JjQ
of its neighbours through the interaction of the spin at that

site with "¥he spins on the neighbouring sites. Furthermore,

from the definition of 953 and the commutation rules for the

spin deviation operators,
o
1Q°*R,

g;3(E=0) = e i (3.41)

For a given array tqp gia's are calculated by beginning with

this initial condition and integrating the coupled equations of

motion forward in time. The calculations are performed on a

computer and the details are presented in Chapter 4.

Eqn. (3.36) for S(Q,E) can be further simplified by

° 4]
dividing the integral J dt into two integrals, J

o

0
dt and J dt.

—-C0 00

0 -
By changing the variable of integration in the second integral

from t to -t and recognizing that

o« i

o e Mo
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Ie  tgal-t) = (1 e gz, - (3.42)
ij ij
(3.36) becomes
® I =
. -4Q*' R,
5(5,3) = F%B Re ] d{ exp(#§5)1§ e lgia(t{] . (3.43)
i
0 \

[}

+ . . . .
S(Q,E) in this form is more convenient.

RN

£ el et
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CHAPTER 4 o

COMPUTER SIMULATION TECHNIQUE

-

This chapter describes a computer simulation teéhnique
used to calculate the scattering law, S(3,E), for low-temperature
magnetic excitations in disordered s§stems. The system is as-
sumed to be at T=0 K and to consist of localized spins coup-
led by the Heisenberg exchange interaction. Near neighbour
(n.n.) and three neighbour (including All n.n., n.n.n. and third
n.n. interactions) calculations were performed for a diluted fcc
ferromagnet. ' The choice of various paraméters and the errors
involved in these calculations are discussed. The program,
along with a description; is given in the Appendix. The input
data for the various runs is presented at the end of the chapter
to illuminate the use of the program. The technique is very ’

similar to that reported by Alben ¢t a£.45

Y

4.1 Computer Simulation Technigue

‘(a) ,Equations of Motion

The normalized scattering intensity, 3(6,3), is given
in egn. (3.43) and can be wri£ten as .
. T
S(6;E)=alim lim —%ﬁ Re dt exp(%%g)ti exp(—ia—ﬁ.)g.+]exp(—kt2)
T T AT m i 1°°1Q
"0 " (4.1)

where the correlation functions, gia, are defined by

46
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3 >

16~Rj N
93(8) = <aj(6) Le Jaj(0)> (4.2)

+ , .
a; and ai are Boson creation and destruction operators. At

T=0 K the triangular brackets imply thé expectation value in
the ground state and equations of motion can be obtained for
the gia using linear spin-wave theory. They are
d9;3
 —== = I .. (g.z%x-qg. .
% o It ] ZSJlj(gla 36) (4.3)
with the initial condition that

exp(Lﬁoﬁi) (magnetic site)
g;3(t=0) = . (4.4)
0 (non-magnetic site)

The procedure is to integrate these coupled differential equa-
tions forward in time to obtain the gia as functions of time.

These functions are then substituted into egn. (4.1) to obtain

s(3.E) . _ g

(b) Numerical Method

The integrat;ons are performed numerically using the fi-

nite difference formula

A dgiﬁ(t)
gia(t+At) = gia(t—At) + 28t —3% . (4.5)

A Taylor expansion is used for the first time step:

2

dg.=(0) 2 d%g.x(0)
-+ = > “1Q ot iQ
giQ(At) giQ(O) + At at + = 5 . (4.6)

dt

P

JRUpU ot R
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Both of these equations are correct to -2nd order in At. The

time step, At, can be written as

At = = 2T (4.7)
n w
max

where Weax is the upper frequency bound of the magnon spectrum.

It has been reported that n ~ 15-20 gives sufficient accuracy44.
The limits in egn. (4.1) correspond to infinite resolu-

tion. In practice, only a finite resolution is required. The

parameters T and A are chosen to give the desired resolution.

A finite T cuts off the time Fourier transform integral causing

a broadening of the spectrum and "cut-off ripples”. The apodi-

zing function, exp(—ktz), introducés further broadening in the

form of a Gaussian but reduces the cut-~off ripples. A non-

zero A smboths out the spectrum and eliminates non-physical nega-

tive values of S(5,E).

The results for each calculation are in the form of a

plot of S(Q,E) vs. 'E for a particularyﬁ. The calculations are

-> . . B
performed for one Q at a time. For a perfect crystal the response

is a delta-function at the energy of the magnon designated by
the particular 3. The response of a diluted cryétal is lower
in energy and exténd; over a finite energy range. However, the
response is usually concentrated about some frequency, say w'.
/This implies that most of the gi6 vary as exp(-4w't). There-
fore the functions

. = (dw't)
hiQ 2 exp gi6 (4.8)

B

E—

s
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will vary slowly with time. It is computationally moxe effective
to solve for the quantities hia, rather than for the 9; % be-

cause a larger time interval, At, can be used in the numerical

integration.

The equations of motion for the hia are

dh.>

: 1Q _ - '
in It ; ZSJij(hia hja)-ﬁw hia (4.9)
]
with
i . .
exp(LQ~Ri) (magnetic site)
hia(t=0) = y
0 - (non-magnetic site) (4.10)

The hia are multiplied by exp(-{w't) before substitution into

(4.1). Note also that

h.a dh.x dh_ =2 dh. =~
( 1 = ‘lg - ) - ! 1Q
1 dt2 § ZSJij( It 3t ) Nw 3t (4.11)

The model latticeg on which the calculations are performed

are large, 3-dimensional fcc arrays in which a fraction x of the
spins have been removed. For the purposes of indexing, the fcc
array is viewed as a sc lattice of dimension NIXN2xN3 in which
half the sc sites are missing.” A lattice vector, Ry, .. is
given by

R a g
grL - 9 7 Xt K

i

where J, K and L are integers and J+K+L must be even. a is the

)

¢ +L%2 (4.12)

R e T “ ¢ o
NN i, tceempett SAP

SRR NP ¥

PR S
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lattice~sbacing of the fcc lattice. An example is given in
Fig. 4.1(a). To remain within the array, J, K and L can take
‘on values from 1 to Nl, 1 to N2 and 1 to N3 respectively. As
periodic boundary conditions are used, N1, N2 and N3 must be
even.
A reciprocal lattice vector is given by

?’hkx‘ <= (R + k§ + 23) ' (4.13)

where h, k.- and 2 are all even or all odd integers. The reci-

procal lattice is shown in Fig. 4.1(b). -

) 4Q°R
Consider the wave, e JKL

<R
. Q is the wavevector. For
an infinite lattice, 6 can be any vector in reciprocal space.
However, if periodic boundary conditions are imposed on the

wave, 5 must take the form

g =20 (2l g, 202 4, 203 4 (4.14)

s

-

where ‘nl, n2 and n3 are integers. The wave can be written

‘ ., dnl, ', .., Kn2 ;. (Ln3 >
e = e . e : c e (4.15)

The progrém calculates S(a,E) for one 3 at a time for éach ar-
ray. ‘N1, N2 §nd N3 determine the size of the array and nl, n2
and n3 define Q. - The intégers,:J, K and L, specify a ﬁérticﬁ-
-lar lattice point. The exponentials in (4.15) do not have to
be calculated every time they are required. Thé factors are

calculated at the beginning of the program and stored in lopk-

{ | ”




" Pig. 4.1 (a)

(b)

3

A fcc lattice array (N1=6, N2=4) illustrating
the J,K,L indexing of the lattice sites.

iJKL is a ;eal lattice vector and a is the fcc
latt%gf spacing.

L 4

The reciprocal lattice which corresponds to the.
- 3

lattice in (a). ahkl is a 'reciprocal lattice
vector. Some special points in reciprocal

space are also listed.

-

T R



(a) fcc lattice (N1 =

ﬁJKL

(

o

=32g2+k

2

x>

(b) reciprocal lattice

fcc lattice

. cr’////’ site
o .. .

a." a ~
-2'—_1*'[.-2—2

(JtK+L = 2n, n an integer)

s 2 TSI P

e I fal S SL SCUG YORICIS SN SRS s

boundary of first
Brillouin zone

020 220 1

B

(h,k,2 all even or all odd)
Z.B. at %} (.5,.5,.5) in (111) direction.

o = 2 (0% + kj + 22)

L point at gg-(l,l,O) in (110) direction.
2.B. at gaﬂ (1,0,0) in (100) direction.

wn
—
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up tables.

4.2 Errors

There are several sources of error in the computer simu-
lation technique. A slight broadening of the spectrum and small
ripples occur because X is greater than zefo and T is finite
(see egn. (4.l1)). These parameters determine the energy resolu-
tion of the calculation. There is an error that arises from the
integration procedure which causes a small shift in the response
to higher frequencies. This error can be reduced by decreasing
the time step, At. Wiggles occur in the response of diluted
arrays, some of which are caused by the periodic boﬁndary con-
ditions, and some arise from‘the particular aisordered spin
configuration chosen. These wiggles are errors in the sense

that they would not be present if the calculation were performed

for an infinite crystal. All of these errors can be quantified
and reduced to Qithin certain limits. We now discuss the choice
of the various pérémeters that set these limits.

To cheqk the acpuracy'of the program,.calculations are
performed for.égrfect crystal cases (x=0) and compared with'
the analytic solution for the dispersion curves (eqn. (3.19)).
For example, Fig. 4.2 shows a plot of S(a,E) for 3 = %} (0,0,1)

as a function of the reduced energy E = E/128J The result

1"
is from a n.n. calculation with x=0 for an array of dimension
28x38x26. 6 is at the zone boundary in the [00Z] direction, so
from egqn. (3.19) a delta function is expected at E =:2.6667.

The result of the program is a narrow Gaussian, with some rip-

-

T



Fig.

4.2

Computer simufétion result for the normalized

scattering law, S(a,E), as a function of

i
-~

normalized energy, E = E/lZSJl, for a puré (x¥0)

" fcc model of dimension N1xXN2xN3 = 28x38x26

(3458 fcc unit cells). 6 is at the zone boundary

in the (00l1) direction. There is only a single-

.mode excited. The result is a narrow Gaussian,

with some ripple, centered at E = 2,6679. The

analytic result is a delta function at E = 2.6667.
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ple, centered at E = 2.6679, very close to the correct energy.
The aéodizing constant, A, and the cut-off time, T

were choseh so that the width of the Gaussian in the perfect

crystal calculation was ~ 2 % of the full spgctxal width (wﬁax)

and the ripple was < 0.5% of the peak height. For these speci-

fications, A is readily calculated to be

0.02xw 2 )

T was obtained empirically by repeating the calculation with

different values. A value of

27

T = 50+ [~=—] (4.17)
max
satisfied the ripple criterion given above.
In the example of Fig. 4.2 there is a slight discre-

pancy between the energy where the narrow Gaussian occurred

and the energy expected from the aﬁalytic theory. This shift

in energy was found to depend on the time étep, At, and there-
fore must a;ise from the method of integration, i.e. egn. (4.5).

It was found empirically that the value

1 21 '
== [= 1 - (4.18)
10 emax

At =

resulted in a frequency shift of less than .05% of w over a

© max
max
2

spectral range centred at w'. This ‘frequency shift'is

—wasmade.

significant only for-the lowest values.of &, where a correction .

PN
. e
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Wiggles occur in the response because periodic boun-
dary conditions are imposed on the arrays. The location of these

wiggles depends on the array dimensions. Therefore, care was

taken to insure that N1, N2 and N3 were differept, and the results

of three arrays of different dimensions were a&eraged together.

The averaging had the effect of smoothing out the response.

To simulate diluted crystals, a certain fraction -of the
spins in the array are removed by use of a—ran om number'routiné.
The resulting spin configuration contains only |a finite sample
of the single spin envifonments present in an infinite crystal.
This causes an additional uncertainty in the response. The
error from this effect can be reduced by averég'ng over arrays
of diffe;ent spin configurations. For example,

and (b). mere § = 2L (0,0,1) and x=0.2. In (

see Fig. 5.5(a)

), S(Q,E) is
plotted for the n.n. calculation for three diffefrent arrays of
dimensions 28x38x26, 32x34x30 gnd’36X24X22, each\with a different
spin configurétiqn. All the arrays had 20% of the spins removed.
The average of the resplts ;n (a) is shown in (b). The results
in (a) differ from the average by less than 5%. his is taken
as a rough estimate of the error in“S(adE). The en;re fre-
quency of the calculated response was selected by |{taking the
centre of the'peag at half height. An uncertaintylis assigned

_ by considering the distribution of centre frequencies that arises

from the three spln conflguratlons used in, the average.» This

uncerﬁélnty was “*0.5% and essentially 1ndependent of 6.

—
£ e A e A

L PN
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4.3 calculations

In Tables 4.1 and 4.2'are presentéd the initial data
for the computer siﬁuiation calculations of S(a,E). z is the
reduced wavgvectdr; N1, N2 and N3 define the x, y and 2
dimensions of the array; and nl, n2 and n3 fix 6. The
taéles show the number of spin sites, the number of spins
present and ENORMP which is related to the w' in the defini-
tion of hia. In most case$ the results of three arrays weré
averaged together. Table 4.1 is for n.n. calculations with
x=0,2 for the [00z], [tz0] and [zzz] directions. Table
4.2 is for three neighbour calculations with x= 0.2 for the
[Oocl.direction. For these calculations the exchange con-
stants were Jl = 0.296 meV, J2 = 0.283 meV and J3 = 0.110 meV.
Otﬁer n.n. calculations‘with x=0.3 were perfofmed using the

same arrays as in Table 4.1. The results of the computer

runs are presented in the next chapter.

T

T A e
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Initial data for the n.n. computer simulation calcu-

Table 4.1
lations of S(ﬁ,E). The fraction of missing spins is.
x = 0.2. ' ’ :
(a) & =2 (0,0,2)
‘ ‘number of number of -
4 N1l N2‘§§ nl n2 n3 spin sites spins present  ENORMP
.0 52 28 22 0 0 O 16016 12773 0.0
46 26 24 00 0 0 14352 11485
34 32 30 Q 0 0 16320 13802
.1 20 36 44 1 0 O 15840 12631 0.0
40 30 26 2 0 0 + 15600 12493
40 32 24 2 0 0 15360 12323 -
2 30 38 26 3 0 O 14820 11776 . 0.2
40 28 24 4 0 0 13440 10695
50 22 20 5 0 0 11000 8789 ,
.3 20 36 44 3 0 O 15840 12601 0.3
40 30 26 6 0 0. 15600 . 12450
40 32 24 6 0 O 15360 12275
.4 30 38 26 6 0 0° 14820 11889 " 0.6
40 28 24 8 0 O 13440 10730
50 22 20 10 0 O 11000 8864
.5 28 38 26 7 0 O 13832 11031 0.8
32 '34 30 8 0 .0 16320 12970
36 24 22 9 0 0 9504 7525
.6 30 38 26 9 0 0 14820 11955 1.0
{ 40 28 24 12 0 O 13440 10780
50 22 20 15 0 O 11000 . 8791
7 20 36 44 7 0 0 - 15840 12761 1.3
40 30 26 14 0 O 15600 12492 T
40 32 24 14 0 O 15360 12327
.0 30 38-26 12 -0 O 14820 11925 1.4
40 28 24 le- 0 O 13440 10811
- 50 22 20 20 0 O . 11000 8921
.9 20 36 44 9 0 O 15840 127735 1.5
40 30 26 18 0 O 15600 12449 -
40 32 24 18 0 O 15360 12249 .
1.0 28 38 26 14 0 O 13832 11044 1.6
32 34 30 l6 0 O 16320 |, ~ 13044
> 36 24 22 18 0 -0 9504 7608

s o e s oA A8

oo e
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. , ,
Table 4.1 (continued) 7 .
) 8 =2 (g,z,0)

C N1 N2 N3 nl n2 n3 number of number: of

spin sites spins present ENORMP

— v

.0833 24 24 52 .1 1 0 14976 11935 0.06
48 24 28 2 1 0 16128 12929
48 24 22 2 1 0 12672 - 10206
1667 36 24 30 3 2 0 12960 10294 0.16
48 24 28 4 2 0 16128 12885
48 36_18 4 3 0 15552 12424
-2500 32 40 22 4 5 0 14080 ~ 11198 0.43
32 24 34 4 3 0 13056 10397
40 24 28 5 3 0 13440 10725
3333 48 24 22 "8 4 0 12672 10155 0.69
30 36 28 5 6 0 15120 9458
42 30 26 7.5 0 16380 13161
-4167 24 24 52 5 5 0 14976 11965 0.96
48 24 28 — 10 5 0 16128 12814
, 48 24 22 .10 5 O 12672 10049
5000 28 44 26 7 11 0 16016 12931 1.7
24 40 30 6 10 0 14400 11543
32 36 22 8 9 0 12672 10127
5833 24 24 52 7 7 0 14976 12055 1.38
48 24 28 14 7 0 16128 12903 :
48 24 22 14 7 0 12672 10168
6667 48 24 22 16 8 0 12672 10197 1.49
30 36 28 10 12 0 15120 - 12149 :
42 30 26 14 10 0 16380 13156
7500 32 40 22 12 15 0 14080 - 11234 1.6
32 24 34 12 9 0 \13056 10421 :
40 24 28 15 9 0 13440 10734 ‘
8333 36 24 30 15 10 0 12960 10373 1.6
48 24 28 20 10 0 16128 12906 :
48 36 18 20 15 0 15552 12333
79167 24 24 52 1T 11 0 14976 12047 1.6
. 48 24 28 22,11 0 16128 12788 .
48 24 22 22 11 0 12672 10106 -
170000 36 34 26 18 17 0 15912 12689 1.6
32 30 28 16 15 0 13440 10779
38 22 24 19 11 0

10032 7995

v



Table 4.1 (continued) _

(c)

3 =2 (¢,z,0)

59

a
Z N1l N2 N3 nl n2 n3 number of number of

S spin sites spins present ENORMP

.0667 30 30 30 1 1 1 13500 10717 0.0
30 30 30 1 1 1 13500 10743
30 30 30 1 1 1 13500 10767

.0833 48 24 24 2 1 1 13824 10997 0.1
. 48 24 24 2 1 1 13824 11000
48 24 24 2 1 1 13824 11019

.1250 48 32 16 3 2 1 12288 9859 0.2
v 48 32 16 3 2 1 12288 9794
48 32 16 3 2 1 12288 9889

.1667 48 36 12 4 3 1 12288 8291 0.3
‘. 36 36 24 3 3 2 15552 12366
éés 24 24 3 2 2 10368 8232

.2000 0 30 20 5 3 2 15000 *12100 0.5
. 40-30--20 4 3 2 12000 9635
50 20 20 5 2 2 10000 8001

.2500 48 24 24 6 3 3 13824 11126 0.6
40 32 24 5 4 3 15360 12295
32 32 24 4 4 3 12288 9866

.2857 42 28 14 6 4 2 8232 6567 0.7
42 28 14 6 4 2 8232 6614
, 42 28 14 6 4 2 8232 6612

.3333 48 36 18 8 6 3 15552 12527 0.9
) 42 30 24 7 5 4 15120 129075
36 30 24 6 5 4 12960 10342

.3750 48 32 16 9 6 3 15552 9811 1.0
48 32 16 9 6 3 15552 9844
. 48 32 16 9 6 3 15552 9822

.4167 48 24 24 10 5 5 13824 10950 1.1
48 24 24 10 5 5 -13824 11140
48 24 24 10 5 5 13824 10959

.4444 36 36 .18 8 8 4 11664 9295 1.1
' 36 36 18 8 8 4 11664 9363
36 36 18 8 8 4 11664 9290

.5000 44 32 16 11 8 4 11264 9040 1.2
40 36 20 10 9 5 14400 11468
36 32 24 9 8 6 13824 11127
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Input data for the_ third neighbour computer simulation

Table 4.2
calculations of S(a,E).- The fraction of missing spins
is x = 0.2. % = 2n/a (0,0,%).
z N1 N2 N3 nl n2 n3 number of number of
spin sites spins present ENORMP
.1 44 36 20 0 0 1 15840 12657 .37
.2 26 38 30 0 o0 3 14820 11839 1.38
24 28 40 0 0 4 13440 10825 p
20 22 50 0 Q0 5 11000 8764
K] 44 36 20 0 0 3 15840 12616 2.78
26 30 40 0 0 6 15600 12488
24 32 40 0 0 6 15360 12299
.4 26 38 30 00 0 6 14820 11876 4.22
24 28 40 0 0 8 13440 10728
20 22 50 0 0 10 11000 8775
.5 26 38 28 0 o 7 13832 11036 5.43
.6 26 38 30 0 0 9 14820 11847 6.21
24 28 40 0 0 12 13440 10733
20 22 50 0 015 11000 8787
.7 44 36 20 0 o0 7 15840 12757 6.54
26 30 40 0 0 14 - 15600 12414
24 32 40 0 0 14 »5360 12340
.8 26 38 30 0 0 12 I4829 11870 6.55
24 28 40 0 0 le 13440 10810
20 22 50 "0 0 20 11000 8850 .
.9 44 36 20 0 0 9 15840 12658 6.45
26 30 40 0 0 18 15600 12495
24 32 40 0 0 18 15360 12340
1.0 26 38 28 0 0 14 13832 11129 6.38
——
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Neutron Scattering Experiment

Inelastic neutron scattering experiments were per-

formed on the non-diluted ferromagnet, Ni,MnSn, and on the

2
20% diluted ferromagnet, NizMn0 8V0 2Sn. The samples were

1

orientéd with the [J10] direction vertical and the spin-wave
dispersion curves were measured in three symmetry directions
about. the (111) reciprocal lattice point. Fig. 2.5 is a dia-
gram of the reciprocal lattioce in the (110) plane showing’
the centres of peaks observed in constant energy scans. The
constant energy mode was used because of the steepness of the
dispersion curves. The sample temperature was approximately

93 K which is 0.27 Tc for NiZMnSn and 0.36 TC for NizMn

/
Some selected neutron groups are shown in Fig. 5.1 for

2MnSn and Fig. 582 for NizMn0 8V0 2Sn. The inteéensity of the

spin-wave scattering is weak compared to the background, and

Ni

'~ decreases as the frequency transfer increases. Some of this
decrease may be intrinsic'to the spin-waves, but for constant
incident energy, it is mostly due to the decrease'in efficiency
of the anal&sing spectrometer. A similar decrease was observed

for both crystals. 'The low signal to background ratio limited

mwasurements to frequency transfers of less than 6 THz.

)
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Fig. 5.1 Constant energy scans along the \00;) direction in

Ni,MnSn at 93 K. Counts are plotted against the
"~reduce§ wavevector, {, for several energy transfers,

. v. The incident neutron wavelength was 1.62 a° for

v < 4 THz and 1.17 A° for v > 4 THz. \
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Constant energy scans along the [zzz] direction
in N12Mn0.8V0'25n at 93 Kf' Counts are plotted
against the reduced wavevector, ;, for several
energy transfers, v. The incident neutron

wavelength was 1.60 a° for v < 3 THz and 1.16 A%

for v > 3 THz. N
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and in Table 5.2 for Ni_Mn
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Points on the dispersion curves were obtained by ta-
king the centre of the observed peak to correspond to.the fre-
quency transfer of the scan. Scans at low & were repeated with
increased horizontal and vertical collimation to check if a
resolution correction was necessary in this region. The posi-
tion of the peaks diq not change therefore the correction was
not required. The résults are given in Table 5.1 for Ni_MnSn

2

2 0.8V0.an‘ Also recorded-for

NiZMnO.BVO.an is R, the ratio of the frequency of the diluted
crystal to the frequency of the non-diluted crystal. As mea-
surements for the two crystals were ngﬁ taken at the same §
values, interpolated values for Ni2
bour fit, were used for the perfect crystal frequency. The
ﬁncerta;nty in the peak poéition‘and in R was assigned by con-
sideriné the statistical error in the number bf counts at each
point on the scan. ‘ - |
The experimentai frequengies for NizMnSh are plotted
in Fig. 5.3. Also shown is the six~neighbour fit théf Noda
and Ishikf'stwa4 made to their data on.the same material. fheit
data was taken at 50 K whereas this data  was taken at 93 K.

According to the magnetization curves for Ni MnSn (see Fig.

2
2.5), the ferromagnet is still. ~ 98% saturated at 93 K. There-
fore the frequencies of the spin-waves should have changed
little from their'r¥ 6 K values. Agreement Qith“Noda and

Iéhikawa's fit is good except in the. [00g] direction where the

MnSn, based on the six neigh-

s AL Attt ca s o
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[
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Table 5.1 Spin-excitation frequencies for Ni_MnSn at 93 K

2
(@) -3 =2 (0,0,¢)
frequency ‘ reduced
v ' wavevector
(THZ) A c
. 589 «117(5)
1.342 .197(4)
1.806 C7.220(7)
2.703 ) .280(7)
3.495 .326(7)
3.997 .350{(10)
4.040 .353(8)
4.503 . -408(10)
5.029 . .434(1l6)
6.006 . .533(19)
) =2 (g,z,0)
v
(THz) g
.543 - Lo .081(6)
1.265 .125(6)
1.704 .136(7)
2.496 . ] .180(7)
3.495 N :228(10)
ey g = %} (T,z,5)
v * 4
(THz)
.635 - .069(8)
1.418 . .105(4)
2.214 .136(4)
3.010 o .162(5)

,3.495 . ©.184(4)
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6.50 . .395(15)

Table 5.2 Spin-excitation frequencies for NizMno 8V0 ZSp at *93 K

(&) a = gél (0,0,7) -

- reduced perféct'crystal cqrfected
frequency wavevector - frequency ratio

v (THz) o C Ve (THz) \)./vt
.484 .115(6) .50075 1.04 (10)
.907 .192(9) 1.30842 .75(7)

1.291 .240(5) 1.93492 .72(3)

~1.998 .312(8) 2.95592 .73(3)

3.006 .418(10) 4.43428 .73(2)

3.980 .520(15) 5.66791 .7642)

5.004 .600(15) 6.48400 :83(2)

® =2 (0

v (THz) 4 vt_(THz) v/\)2
.484 " .085(5) .55291 .94 (12)
.907 .128(3) 1.21185 .81(4)

1.251 .161(3) 1.84959 .73(3)

1.994 ‘ .198(3) 2.65889 .81(2)

3.03 .281(7) 4.58018 ° .71(3)

4.27 362 (10) 6.15169  .75(2)

(c) a = '%al\ (z,z,T) -

v *(THz) G Vt (THZ) v/vt
.484 .071(4) '.58088 .90 (11)
.907 .106(2) 1.25868 .78(3)-

©1.291 .135(2) 1.97680 .70(2)
v 1,994 .170(3) 12.98208 .72(2)

4.260. .260(20) 5.80103 .79(9)

4.54 ,zqulz) 6.47445 .76(5)

5.521 . «316(10) 7.34924 ~ W81(3)

+ 8.72707

.80(2)

T oty e R e

e %t ey e o gt 4 e e
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Fig. 5.3

Spin-wave dispersion relations for NizMno.svo.zsn
and Ni MnSn corrected to 0 K. The solid line is
the six~neiéﬁbour fit tq Noda and Isﬁikawa's data
for NiMnSn. The broken line is thé result of
computer simulation(calcuiations for the 2@%
diluted ferromégnet; For the [00z] direct?oﬁ the
Proken line is the three-neighbour baiculétion plus
the virtual‘crystal result fort 4§b to 5§h neighbour
contributions. For the [zz0] and [ccé] digecfions
the line is the nearesé neighbour calculation plus

nd - th

0.8 of the 2— to 6= neighbour non-diluted-contri-

butions.
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'frequenc1es are sllghtly higher than the flt.. This dis-
crepancy may be due to a disorder eff.ect4 Careful examina-
tion of the s¢ans shows that ther? are possibly two peaks
suggesting two branches. One of the peaks occurs at the -fit
frequency. The higher ffequencies are ;s yet unexplained.
.The values for the exchange constants obtained by Noda and
Ishikawa wéke used in subseguent calculations because their
data is more complete. ‘ “

| fhe spin-wave dispersion relations for Ni Mn0 8 0. 2S
are also shown in Fﬁ@. 5.3. The experimental frequencies

measured at 93 K, have been corrected to 0 K by scaling with.

the temperature dependence of the maqnetizati n. The

correction increased all frequencies by B.ﬁ%. he validity

of this temperature correction is ‘discus i Section 2.4.

It is obvious from Fig. 5.3 that the effect of dilution
is-to lower the frequencies of the spin-waves. In the virtual
crystal model the iandom removal of a fraction x of the spins
" lowers the spin-wave freqﬁencies by a factor l-x. The factor
is independent of g. .In contrast, fhe measured ratio of the
frequency for the 20% diluted alloy to that of the non-diluted
alloy is found to very with g. This ratio is plotted in Fig.
5.4(a). The ratio is less than 0. 8 for low q and greater than
0.8 for hlgh q. This resuylt is characteristic of an in-band
resonancel. The virtual crystal model is ‘inadequate to explain

this phenomena bécause it does not properly account for ‘the

randomness in the local eflvironment of each spin.

v ol A



dilute/mnon-dilute
reduced wavevector, r, for the [00z], [zzo0]

ng. 5.4 (a) Frequency ratio, w ;, VS,

and [zzz] directions. .The measured frequencies
for N;ZMno.8YOZZSn'were d;vided'by the corres-
ponding frequency of the six-neighbour fit to
the data for Ni

2
ratio obtained from the n.n. computer simulation

MnSn. -The solid line is the
calculation andfthe broken line is the.result
of the three-neighbour calculation.

(b) Width of'the response qbtainéd from the computer

’simuiation calcﬁlations for n.n. idteréétiohs
with x=0.2 (solid line) qna x=0.3,(dotted line),
and for‘three-neighbour intéractions.ﬁith x=0,2

(dashed line).
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Ancther‘expected effect of dilution is an increase in
the width of the response due to a decrease in the lifetime of
the excitations. However, the low intensity of tpe scattering
made it necessary to set the spectrometer for low resélution
which Qrecluded accurate meaSuremeﬂt of the response widtﬁs.

The expécted increase in width was small compared to the re-

solution width of the instrument.

5.2 Computer Simulation Results .

The effects of dilution were first e#amiﬁed in a n.n.
' model. Fig. 5.5 shows results of the computer simulation for
a fcc lattice, including only n.n. matrices, with X = 0.2
(20% diluted). In the figure are plots of S(§,E), normalized
to 100, vs. the reduced energy E = E/lZSJl, as 5 increases
towards the zone boundary in the [00;] direction. The re-
sults are averages‘of three different arrays, each with a dif-
ferent configuration of spins selected by a random number géne-~
rator. By a&eraging the three Eaiculations, boundary effects
are minimized and ~ 40,000 single spin environments are con-
sidereé. The error in S(a,E) estimated from the difference
in the results from the three arrays, is approximately 5%.

The graphs in Fig. 5.5 show that the diluted cryséal
responses broad and decrease in frequency from the non-
diluted results, which are delta-functions at the frequencies

indicated by bars. The centre frequency of thé calculated

reséonse was selected by taking the centre of the peak. at

’

- g



Fig. 5.5

S(3,E) for various 8's in the [00z] direction from
the n.n.~computer simulation calculations. The
vertical bars are the deltg—function responses for
the non-diluted crystal. (a) S(ahE) for three
different arrays (28x38x26, 32x34x30 and 36x24x22)
at the same 6 kS) ~Average of the'three'arrays in
(a). (c), (d),(e) and (f) 5(5 Ea for vagious 5 s |

in the [00z] direction.
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half height. An uncertainty is assigned by considering the

. distribution of centre frequencies that arise from the three
spin configurations used in the é&erage. This uncertainty
was v 0.5% and essentially independent of 6. The frequen-

cies, frequency ratios and widths are presented in Table 5.3.

The frequency ratios fr the n.n. calculation are

alsg plotted in Fig. 5.4(a). The Shape of the measured ratiS,'

characteristic of an in-band resonance, is well reproduced
by the calculated curves of S(a,E) for the n.n. model. How~
’ever, because thé alloy is a metal and the exéhange interac~-
tioﬁs are long range, the contribution to the spin-wave fre-
quenciés from furthgr neighbours cannot b& neglected. To
exXamine the effects éf including more neighbours in the com-
puter simulation, a calculatign was done for the [00z] direc-
tion which included up to third A;iéhbours. These resulté
are presented in Table'5.4.. Thé frequency ratios for this
calculation are also shown in Fig. 5.4(a) (broken iines); It
can be seen that the ratios are closer to 0.8 and the reso-
nance behavior is notvas pronounced. This is to be expected
because the larger number of neighbours makes for smaller ‘
.fluctuations in the number of neighbourglinteracying with
each spin. However, the calculated resonance is now smaller
than phe'measured resonance, and there is not as good agreé—

ment with experiment. Note that the inclusion of neighbours

more distant than third should have little effect on the ratios

s iy S e b I st e o i

™

Y Pt
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Table 5.3. Spin-excitation frequencies, in THz, fora diluted

fcc lattice with n.n. exchange interactions, from
computer simulation calculations. The fraction of
missing spins is x= 0.2 and the éxchange constant

is Jl = 0.07k6 THz
(@) q=2% {0,0,¢)
reduced perfect crystal width of 6~-neighbour
wavevector frequency frequency ratio response frequency

o Y v v/v W Y

uncertainty: *,5% 1 :.5% +1% total

0 0 . 0 - .0933 0
.1 .0831 .11210 .741 .0940 .2291
.2 .3176 .43744 .726 .102 1.0939
.3 .689 . 94416 .730 .165 2.1602
.4 1.195 1.58266 .755 .295 3.2845
.5 1.786 2.29045. .780 . 465 4.3084
.6 2,42 2.99824 .808 ..526 5.2116
.7 3.00 " 3.63675 .825 ~.603 5.9687
.8 3.49 4.14347 -. 843 .781 6.6173
.9 3.87 4.46880 .865 .793 7.1106

1.0 4.00 4.58091 .873 .724 7.2933
- 2“-
(b) =T (Z,z, 0)

5 v Vi v/ W Vtotal
.0833 .1162 .15476 .751 .0940 .4180
.1667 .433 .59317 . 730 112 1.5330
.2500 .916" . 1.24347 137 . .202 " 3.0086
.3333 1.524 2.00415 .760 . .360 4.4480
.4167 2.19 2.76615 .792 .559 - 5.4499
.5000 2.83 3.43568 .824 .692 5.8777
.5833 3.34 3.95178 .844 .729 5.8578
.6667 3.70 * - 4.29460 .862 .749 . 5.8019
.7500 3.89 4.48266 .869 C . 749 5.9957
.8333 3.96 4.56035 .869 .749 6.4890
.9167 3.97 4,57958 .866 .769 7.0237

3.98 , 4.58091 .869 .733 7.2763

1.0000
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Table 5.3. (continued)
(© ~q =& (g.2,0),

4 v \‘)l \_)/\Jl W Vtotal
.0667 .1089 .14852 .733  .0943 .4009
.0833° .1686 .23015 .733  .0948 .6192
.1250 .3687 .50314 .733  .106 1.3384
.1667 .626 .85892 .729  .135 2.2440
.2000 .873 1.18700 .735  .202 3.0561
.2500 1.301 1,71784 .757  .304 4.3235
.2857 1.621 2.10009 .772  .398 5.1824
.3333 2.03 2.57676 .786  .533 6.1697
..3750 2.35 2.93254 .801 . .702 6.8578
L4167 2.60 3.20553 .812  .769 7.3478
.4444 2.74 - 3.33208 .822  .813 7.5804
.5000 2.84 3.43568 .826 .864 7.7511

)

TN
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Table 5.4 Spin-excitation frequencies,in THz, for a diluted
fcc lattice with n.n., n.n.n. and third n.n. ex-
change interactions, from computer simulation cal-~
culations. The fraction of missing spins is x=0.2
and the exchange constants are J, = 0.0716 THz,

J, = 0.0684, J, = 0.02660 THz, ~q = 2m/a (0,0,¢)
) perfect width \
reduced crystal ratio of 6 neighbour .
wavevector frequency frequency response frequency
¢ v V3 V/vs w Vtotal
uncertainty: *.5% *.5% *1%
.1 .3596 .46254 .777 . .1901 .2952
.2 1.347 1.72%00 . .779 .206 1.0901
.3 2.72 3.47675 .78 .332 2.1651
.4 4.21 5.28910 .796 .390 . 3.3336
.5 5.41 6.79011 .7977.523 4.3361
.6 6.29 7.75683 .811 .980 5.2708
.7 6.79 8.17058 .831 1.013 6.1289
.8 6.85 8.18951 .836 1.029 6.7307
.9 - © 6.69 8.05733 - .830 1.079 7.0614

1.0 6.64 7.98563 .831 1.012 7.2073

o ey e
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because their contributions to the spin-wave frequencies are

é
small.

The computer simulation results for the spin-wave dis-

persion curves are shown in Fig. 5.3. For those neighbours

Hl
¥

not included in the simulation the contributions were taken

~

to be 0.8 of their contribution to the spin-wave frequencies

g e
A e e

PO

in the non-diluted NizMnSn. It was found that the frequencies
obtained for the [00z] direction by hsing the three-neighbour
simulation results plus 0.8 of the rest were not significantly
different from those obtained-by using the n.n. calculation
plus 0.8 of the 2nd to 6th neighbour contributions. There-~
fore the three-neighbour calculation was not done for the
other direétions. The frequepcies are shown in Fig. 5.3. The
experimental data for the spin-wave dispersion curves in the
diluted ferromagnet is in good agreement with the curves
predicted by the computer simuiation techﬁiqug.

The computer simulation calculations can be compared
to other theories. Fig. 5.6 shows n.n. frequency ratios in
the [00z] direction‘for two spin-vacancy concentrations, x= 0,2
and x=0.3. (The x= 0.3 results are presented in Table 5.5). f“
Also plotted are the ratios for a n.n. CPA calculation using
the method of L.A. Roth4l, The ﬁalculation was perfsrmed
by D.W. Taylor54, Resonant frequency shifts are evident for
a;l'sets of data. Foxr x=0.2, the CPA results agree very well

.

with the simulation results but there is some disérepéncy'at



Fig. 5.6

Frequency ratios in the [00z] direction for a n.n.
fcc lattice for two spin-vacancy concentrations,

x = 0,2 and x = 0.3, The_open circies or triangles
are the computer simulation calculation results

and the continuous lines are from a CPA calculation.
The solid points are the results of a low g, high

spin-concentration theory by Izyumovss.
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Table 5.5 Spin-excitation frequencies in THz for a diluted
fcc lattice with n.n. exchange interactions, from
computer simulation calculations. The fraction of
missing spins is x = 0.3 and the exchange constant
is Jl = 0.0716 THz. q = 27/a (0,0,Z)

- mm»\twam.;;.-;ﬁﬁr'

perfect width of
reduced ) crystal reésponse
wavevector frequency frequency ratio
g v oV, \)/vl W
uncertainty: *.5% +,5% *1%
0 0 0 - | .0935
.1 .0671 .11210 .599 .0940
2 .260 .43744 .595 .1071
.3 .570 .94416 .604 .206
.4 1.010 1.58266 .638 .434
.5 1.569 2.29045 .685 - .644
.6 2,13 2.99824 712 .772
.7 2,66 3.63675 .732 .931,
.8 3.11 4.14347 .750 1.044
.9 3.43 4.46880 . .767 ‘ 1.005
1.0 3.50 4.58091 . .765 . 966
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low q for x=0.3. In this region the computer simulation tech-

nique is least accurate. However an analytic theory by~ Izyu-
mcvss, good at low spin-vacancy concentrations, calculates the
zero frequency response at low q and éives R=0.740 for x=0.2
and R=0.610 for x=0.3. These points agree with an extrapo-
lation of the computer_simulation results to §==0; {
The widths of ‘the respoﬁse for these calculations are
plotted in Fig. 5.4(b), although there is no experimental data
to compare. At large q the widths are la;ge but at low g the
widths approach the resolution of the program. In general the
responses are wider for lower concentrations. The three neigh-

bour calculations predict a wider response than the n.n. cal-
1}

culation, however the increase is small. The addition of n.n.n.

and third n.n. ferromagnetic interactions does not iﬁcrease

the width by much but does increase the frequencies signifi-
cantly. Therefore the relative width, W/v, decreases tending
to the virtual crystal or molecular field result of zero width.
This is another indication that increasing the number of neigh-

bours that interact causes the results to be more molecular

field-1like.

g

T



CHAPTER 6 -

CONCLUSIONS

The spin-wave dispersion in the 20% diluted ferro-
magnet, Ni2MnO.8VO.ZSn, has bgen measured at 93 K, by neutron
inelastic scattering techniques, and corrected to 0 K.
Excitations were observed only part way to the zone boundary
because the efficiency of the analysing spectrometer was low
for large enexgy transfers. The frequencies of-the spin
waves are reduced from those observed in NizMnSn and the
frequency shifts exhibit a resonant behaviour.

Frequencies for the diluted crystal have been calcu-
lated by numerical simulation on a large lattice, including
full randomngss in the large near—neié%bour interactions,
while the virtual crystal energies are used for further
neighbour interactions. The experimental frequencies for

*NiMn

manner,

0 8V0 2Sn agree with the frequencies obtained in this

To examine the resonance effect the ratio of the
frequencies for the diluted to the non-diluted crystal is

calculated as a function of Q. The effect is more pronounced

in the n.n. calculation than in a three-neighbour calculation.

A careful examination of the data shows that the measured

80
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frequency ratio shows more of a resonant effect than expected
from the three-néighbour‘calcuiation. This result is not
understood. One possible explanation is that the exchange
interactions change with dilution, which could happen if; for
example, the substitution of V for Mn changed the average
conduction electron concentration. A shift in the'reiatiVe
magnitudes of the exchange constants would change the shape
of the dispersion curves, conceivably in such é way as to
resemble an increased resonant effect. However, because of
the uncertainties in the model with respect to‘other sample
characteristics, for example, chemical disorder, the Mn
concentration and the temperature dependence of the dispersion,
it 1is not possible to make any definite conclusions regarding
the discrepancy. The answers lie in better experiments using
a more suitable spectrometer. The dispersion should be
measured over the complete Brillouin zone at liquid helium
temperatures. Better characterization of the samples,
possibly using a polarized neutron beam, would also be
necessary. |

The computer simulation technique for disordered 1
crystals can be used to compare with other theories. ?he

results agree very well with those from a CPA calculation.

The technique also gives information about response shapes

.
B R

P,



and widths. It can easily be éxtended to include many neigh-

bburs for long-range interactions and is reasonable in terms

\_‘)

of computer time and memory. e
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APPENDIX

Program DILUTC

.DILUTC is a computer program that calculates the scat-
tering function, S(a,E), for a diluted, ferromagnetic lattice
of spins which is fcc. The interaction between tﬂe spins is
of the Heisenberg form and the program includes up to third
n.n. interactions. This program description has been added to
complete the discussion of the computer simulation technique
given in Chapter 4. There are six sections to the appendix.
Section A.l introduces the arrays involveé in calculating the
hia(t) and Section A.2 gives equations involving these arrays.
Section A.3 describes how the array of spins is set up and in-
dexed, Section A.4 is an outline of* DILUTC and Section-A.S des-
cribes the variables and constants used in the time Fourier

transform. The last section is a listing of the program.

A.l1 The Arrays Involved in Calculating hié(t)

The array of spin sites has %% x %% x %} fcc unit

cells. If CC is the number of spin sites in the array then

cc = Nl><NzZXN3 (A.1)

hia is a complex number. Two complex arrays, G(I) and Gl (I),

of dimension CC are required in the program, one to contain
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hia(t) and the other to contain hi5£t*At)' Another array, C(I),
which is real and of dimension CC is required to contain the in-
formation as to whether or not a spin site is occupied. (In the
program a spin site I is not occupied if C(I) contains the num-~
ber 10000.0. If site I is occupied, then C(I) ig used to con-

tain additional information (see below).) Thus.a total of 5 x CC

memory locations are required to contain these arrays. CC is

usually ~ 16000 so the required memory approaches the usable core

memory limit of many computers. Both the computer memory and
time required are directly proportional to the number of spins

present in the array.

b

A.2 Equations Involving C(I), G(I) and G1(I)

For the program, eqn. (4.9) is written

dh.a
l = -.,2—— L » ™ —-—
3t 75 [(8J1-21, +8J2:22, +833-23;

Hw'

AT

-~ SJl L h, x-8J2¢ L h, -S8J3°¢ h. z] . (A.2)
i, 31ES i, 3,0 iy 330

Here, SJ1, SJ2 and SJ3 are S times the exchange constant between
a spin and its n.n.'s, n.n.n.'s and third n.n.'s respectively.

Zli’ ZZi and Z3i are the number of n.n.'s, n.n.n.'s and third

n.n.'s to spin i that are present. The sums over jl’ and j3

2
are sums over n.n. sites, n.n.n. sites and third n.n. sites. w'
is read into the program as a frequency, ENORMP, in THz such

. that

w' = 27+ ENORMP+ 1012 . (A.3)
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If we define

and

eqn.

The
the
but

SJ2

tain

comp

then

ENOREP = #r+ENORMP-10%2 (A.4)

let C(I) contain the information in the round brackets, in

(A.2) then

SJl-Zl{i + SJ2~ZZi + SJ3'Z3i - ENORPP (magnetic site)
c(I) = v

10000.0 (non-magnetic site)
. , (A.5)
random lattice is set up and the C(I) array is calculated at
beginning of the program. The number, 10000.0, is arbitrary
large compared to the magnetic site values of C(I). SJ1,
and SJ3 are also in THz.
Let us assume that G(I) contains hia(t-At), Gl(1) con-

s hia(t) and G(I) will contain hia(t+At)‘ If the following

lex constants are defined

F = 2/441 (A.6a)
F1 = 2F-At (A.6b)
F2 = F-At “(A.6c)
F3 = (F‘At)2/2 ' (A.64)

the integration formula to calculate hia, eqn. (4.5), becomes

61y = G(I)+F1+[C(I)-Gl(I)-8J1+I Gl(j,)
I (A.7)

- 832+I GL(j,)-SI3-I Gl(3,)] .
P I3

. . .
T e e g
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Note that if the site I i's unoccupied then G(I) = G1(I) = (0,0)

for all time.

|

, a%h3(0) {

For the first time step, if G(I) contains — if i

) dh.=>(0) dt ;

G1l(I) contains 1Q and if G(I) is to contain h,z (At then 1
(L) -3t (1) 16 ), :
eqgn. (4.6) becomes !
G(I) = e‘a'ﬁ(I) + F2+Gl(I) + F3*G(I) . (A.8) -

A.3 Indexing

Each site in the array is specified by giving either the
rﬁaices J, k and L or the corresponding index, I. The one-
dimensional arrays C(I), G(I) and Gl(I) can also be viewed as
the three~dimensional matrices, é(J,K,L), G(J,K,L) and Gl (J,K,L).
Both methods of indexing are used in the program, whichever is

most convenient for the purpose. The transformation from J,K

and L to I is

4

I = ((L~-1)°*N2<Nl + (K-=1)+N1l + J + 1)/2 (A.9)

where integer division is implied.

In the program, the cre-dimensional array index must be
determined for all neighbours of each site, I. The 12 n.n.
indices are labeled 11, I2,...,I9,IA,IB, IC; the 6 n.n.n. in-
dic?§ are I1l1, II2, ..., II6; and the 24 third n.n. indices are
III1n, 1112, ..., II10. The positions of the neighbours that
correspond to these indices are given in Table A.l. The value
of the indices for a given I can easily be obtained by adding

or subtracting certain integers. For example, IIIl, the index
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Table A.l

The location of neighbours to the spin at site I. A neighbour
is located at the position % (XR+Y9+22) from the site.

(a) nearest neighbours (b) next nearest neighbours

X Y 2 X Y z
1 1 1 0 111 2 0 0
I2 1 -1 0 112 -2 0 0
I3° -1 1 0 113 0 2 0
14 -1 -1 0 IT4 - 0 =2 0
I5 1 0 1 II5 0 0 2
16 1 0 -1 116 0 0 -2
17 -1 0 1
%g -é 2 Qi (c) third neighbours
IA 0 1 -1 X b4 Z
B o -1 1 ITTL 1 1 2
o o 1 1 III2 1 -1 2
’ III3 -1 1 2
II14 -1 -1 2
ITIS 1 1 -2
III6 1 -1 -2
III7 -1 L -2
III8 ~1. -1 -2
IIT9 1 2 1
IIIA 1 2 -1
IIIB -1 2 1
IIIC -1 2 - -1
IIID 1 -2 1
IIIE 1 -2 -1
ITIF -1 -2 1
IIIG -1 -2 -1
ITIIH 2 1 1
IIII 2 1 -1
1115 2 -1 1
IIXIK 2 -1 -1
IIIL -2 1 1
IIT™™M =2 1 -1
IIIN -2 -1 1

IIIO -2 -1 -1

i e A
L e TR

. o®

e o <t
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of the third n.n. at %(1,1,2) from the site I, is given by

III1l = I + N1°N2 + N1/2 +1 . (A.10)

However, for sites near the boundaries of the array, the neigh-

bours are not so easy to locate. For these points, the DO LOOPS E
are set up to make the necessary modifications to the ijdices.

The modifications are organized in groups. For example, GROUP :
2L (J=N1l) is the group of modifications to the n.n.n. indices %

that occur when J = Nl.

A.4 Program OQutline

The following outline describes the function of the major
blocks of code in DILUTC. Please refer to the program listing

in section A.6.

4+ Line
A 1-89 Variables are dimensioned, data is read in and con-

stants, defined in Section A.5, are calculated.

90-96 The fandom lattice is set up. A fraction X of the
spins are removed using a random number generator.
Sets C(I) = 10000.0 if site is non-magnetic.

97-113 This section insures that exactly X+*CC spins are re-
"moved.

114-127 The exponentials are calculated, and the look-up

L L]
table is created for determining e
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Line
133-149 (a) hia is put into G(I); i.e. sets
e‘a'ﬁi (magnetic site)
G(I) =
0 (non-magnetic site)
(b)) PT(l) is calculated where
~z6-§i iQ-R,
FT(l) = I e ‘e 1 = x.cc
i

150~-572 This is a two—-pass DO LOOP system. The program

passes twice through the J,K,L DO LOOPS. On the

first pass (IO = 1) the section

(a) sets C(I), for a magnetic site, to

C(I) = SJ1+21(I)+SJ2°+22(I)+S533+23(I)~ENORPP

dh.a
(b) puts d; into Gl(I), i.e. sets
éh, x>
diQ (magnetic site)
Gl(1i) =
0 (non-magnetic site)
dzhi+
On the second pass (I0 = 2) puts —«—fg into
dt
G(I) , i.e. sets
a’n
(magnetic site)
dt

G(I)

1

0 (non-magnetic site)



Line

573-591

592-974

975-988

989-998

999-1021

1022-1028

94

Puts hia(At) into G(I) and hia(O) into G1(I), i.e. sets

B
£LQ°*R,
e 1 4+ F2-Gl(I)+F3-G(I) (magnetic site) %
G(I) = :
0 (non-magnetic site) i
- ‘ : {
and . ‘
AQR;
e (magnetic site)
Gl(I)= )
0 (non-magnetic site)

Calculates FT(Z).

This is an alternating pass DO LOOP system. On odd
passes (IXK=1l) hia(t+At) is put into Gl(I), i.e. sets
Gl(I) = GL(I)+Fl+[C(I)*G(I)~SJl- L G(ji)

I
- 8J2- L G(jz)—SJ3-Z G(j.)]
: - 3
) I3
On even passes (IK==2)hi5(t+At) is put into G(I). The
contribution of hia to FT(t) is calculated as soon as

each new hia is known

If FLAG3 = 1, PT(t) is printed out. Note that

-iQ-R, Y
FT(t) = L e h.x(t) .
. iQ
i
' . : *th -w't —LEXPANDX'lOlZ't
FT(t) is multiplied by e , e and e

Fast Fourier Transform (FFT) routine.
The program calculates S(a,E) for NCELLS arrays. This

section calculates the average of S(ﬁ,E), given by



Line

1029~103é

1036-1045

1046-1056
1059-1073

1074-end

95

+
AVSQ(I), over the arrays and the index of the maximum

AVSQ(I) array element.

GFT(I) is loaded with the real part of the FFT in-
tegral, normalized by N, the total number of spins
present. The variable FFFF is equal to N. The

index of the maximum GFT(I) array element, IIT, is

found.

Prints out GFT(I). GFT(I) contains the function

s.t.
s@.B) = & GFT(&,E) . 7
The frequency that corresponds to the index I,
ENORM(I), ;n THz, is given by
ENORM(I) = DENORM'(I-l)-EXPANDX .
Prints out S(a,E) averaged over NCELLS arrays.
A printer plot of S(a,E) is produced.

Plots of 5(6,3) are produced. Curves for each of
the arrays considered are plotted on the same graph.

The average is plotted on another graph.

e ——
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A.5 Definition of Variables and Constants

The purpose of the program is to obtain a gréph of
S(Q,E) vs. E for a particular 4. s(3,E) at a finite energy re-

solution is given by

T _.6 ﬁ
. L{Q°R,
S(a’E)==F§ﬁ Re [ dt exp(igg)[g e lhialexp(--i.w't)exp(—ktz) .
. i

0 (A.11)

[

Evaluating this integral is equivalent to taking the Fourier

transform of the function F where

0 (t<0)
-iQ-R, 5
F=4[Le lhialexp(-iw't)exp(—kt ) (0<t<T) (A.12)
i
L 0 (£>T) .

The quantity in square brackets is calculated at finite time
intervals in the first part of the program. In the second part f
of the program, this quantity is multiplied by the factors .
exp(~-iw't) and exp(—xtz) to obtain F which is FoGrier transformed
to obtain S(3,E).

A fast Fourier Transform (FFT) routine is_ used. It

calculates the Fourier transforms.

* N-1

X = I A

S2mijk/N
k+1 .
i=0

541 (k=0,1,°+,N-1) (A.13)

where Aj+l corresponds to F at the time t = j-At and X, ., is I

the value of the Fourier transform of F at the frequency

w = 2TkANAT. N is the number of times at which F is known.

N

v 4
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(N =IMAXP in DILUTC).

Referring to Fig. A.l(a), F is known at the times
t=0, At, 2At, +-+, (IMAXP-1)At. The FFT routine is run for
ICON time intervaf;. ICON is large to obtain a smooth Fourier
transform gpectrum. The values of F from t = IMAXP-At to

(ICON-1) -At are set to zero. The frequency step in the spectrum

is
_ 2T
A = TEONTAE (A.14)

A value for the Fourier transfor;’::\bbtained at the frequen-
cies w =0, Aw,**+, (ICON-1)Aw, however, only part of this
range is of interest because there is an upper frequency bound
to the spin-waves as discussed below.

The upper frequency bound, EMAX, for the response of a
diluted crystal corresponds to the maximum energy that a spin
wave can have in the perfect crystal. For a crystal with ferro-
magnetic n.n., n.n.n. and third neighbour interactions the
spin-wave at the zone boundary in the [lll]) direction has the

largest energy which is given by

EMAX = 24-5J1 ﬁ@@#‘SJZ + 48-833 . - (A.15)

\\for this program the energies are specified by giving the cor-
responding frequencies in THz. Thus the SJ's and EMAX are in
THz. Therefore, whenever N occurs with any of these, I must be

expressed in THz.sec. 1i.e.

L i



Fig. A.1l

Series of graphs to illustrate the use of the Fast
Fourier Transform routine to evaluate the integral

in eqn. (A.l1l) for S(é,E). (a) F (eqn. A.12) is
calculated at the times 0, At, 2-At, ..., (IMAXP-1l)At.
The values for the times IMAXP-At to (ICON-1)At are
set to zero to obtain more points in the Fourier
transform plot. (b) The Fourier transférm of F
(proportionaloto S(3,E)) is calculated at the angular
frequencies, 0, Aw, 2:4w, ..., (ICON-1l)Aw. Only those
transforms for ENORM = 0 to EMAX are physically mean-
ingful. (c) The Fourier transform of F is calculated
and plotted for a slightly extended range, ENORM =
~EXPANDX to EMAX + EXPANDX to show any response beyond
the physically meaningful limits which may ar%se due

to the broadening function or numerical errors.
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-27
HBAR = 1.05445x%x10 erqg, sec.

=13 x 241.813 THz/eV . (A.1l6)
1.60208x10 erg/ev

This happens, for example, in eq. (A.2)

It is possible to express At (DELT in program) in texms
of EMAX. Let NCMF (number of cycles of the maximum frequency)

be the number of periods of the frequency EMAX which can occur
in the time interval 0 to T. If NTSPC is the number of time

steps per period, then the total number of times at which FT

is known, IMAXP, can be written as

IMAXP = NCMF-NTSPC . (A-17)

T is defined by

T = IMAXP.DELT . ' (A.18)

From egn. (4.7) it can be seen that

DELT = 1.0/ (NTSPC+EMAX+1.0E+12)

S(6,E) is plotted as a function of E in THz. Let ENORM be the
energy in THz. If the step size in the response is DENORM, then

from egn. (A.14)

_ NTSPC-EMAX
DENORM = TCON . (A.19)

So far the plot runs from ENORM = 0 to EMAX. However, because

of the finite regsolution and numerical errors, there may be some

response for ENORM< 0 or ENORM > EMAX. It is therefore desirable

fur o e s

P
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to expand the ENOBM scale by a constant, EXPANDX, so that the
energy runs from -EXPANDX to EMAX+EXPANDX. To shift from zero
to -EXPANDX, FT must be multiplied by FSHIFT before being

Fourier transformed where

FSHIFT = exp{~27i+EXPANDX 1012+ ¢}
‘ (A.20)
= CEXP(22+2.0+EXPANDX* (I-1)/ (NTSPC*EMAX)) .
It is now apparent that the first Fourier transform, X,, will

1
be the value of the response at the energy -EXPANDX (see Fig.

A.l(c)). For the plot to extend from -EXPANDX to EMAX+EXPANDX

the number of transforms plotted, NFTS, must be

_ EMAX+2 - EXPANDX '
NFTS = DENORM + 1

(A.21)

2 EXPANDX, , ICON
EMAX NTSPC

= [1 + + 1

Now we come to the other factors in egn. (A.12) that FT must
be multiplied by to obtain F. The first is exp(~iw't). Since

t = (I-1)*DELT and w' = 27 -ENORMP then

-Lw't

FSHIFF = e = exp (-2m.{+ENORMP* (I-1) *DELT)

’ (A.22)
P
= CEXP(22+2.0<ENORMP-*(I-1)/(NTSPC EMAX)) . *
. : &

Finally, there is the Gaussian apodization factor, exp(-ktz).

2 2 ‘

The Fourier transform of e re is proportional to e v /4A. The

FWHM of this function is

T e e, v, Y
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FWHM = 2/4A(-2n 0.5) = 3.3302184VX . (A.23)
For the FWHM to be ~ ﬁ% EMAX then
A = APDC = (m+EMAX+10.E+12/(25.0+3.3302184))°2 (A.24)

PT is then multiplied by EXP(-APDC°T2) where T

(I-1) ‘DELT.

N oA—

o i

B e i - en
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Program Listing .

10

15

20

25

390

k)

40

45

SU

r RbURAM LILOTC CLurUl st UTPUT oPL sl r ARESE IR LT s TAFF 6= UTHUT)

VICRINSION GF T (b T3) st iy (NFT3) e AV I INF TD)
CIMENSTON GF T{498) gnORM{4SK) 1AvSI1a4Sd)
Lol vaklabLEs

VIVELSTON GF (1OU) ok FFF (Q)

UIMENSTION FORN(S) o OkbA () s GFAT (JI)

INTEGEKR AstielibeCC

CCMPLEX FoFLoF 2k 30 ek SHIFTabSUILF

CLHPLEN FTTUIMARE)

CCMPLEX FT(%G0)

COMPLE X ELYohLYCC '

CCMPLEX tX(Nl)0hXCC(Ll)th(HZ)orYCLFh?)OLZ(hJ)vE;CC(hJ)
COHPLEX EA(S2) 1L ACC(52) sE Y (32) sr YO, (92) st 2 (92 ) oE2CC (52)

U IMELSTON CLC) 20 (h]
DIMERSICh C(15840) 20 (42)
COlPLEX Ul (1) e (]) wrbwe [=mAX(CLriCON) .
CCPPLEX GI5840) 101 (15840)
b AU (Hecll) WCLLLS
She FORMAT (11D
LL 63 LIFT=1enCRLLS /!
ch AL (Srcdu) Wloande el A b RY N Ll TORCtiCRF 9 IQEF D LAGLIFLAGZY ASE
LArANUX s E NG TP .
cUyU t CrrRT (Blgsilurstall)
arlle (69360) v ol ah3s LKenG Yy, bl

T300 FORMAT (Iagrnnl = wldeTn RS = vl ln N o= 2124080 MNOGX = 31084

1a0Y = slcobH il = olg) . . '
ARITL (69 3CY) HTSPCaNCME 2 ISEED F LA F LAGE yLXPARL X o ENOKMP

SOL FCRMAT (LA ubNISBC = o[ 2i0tr NCHE = 4[2410K  ISFEL = vI1ldslorn FLa

el 2 b4l lul FLAGEe = sFadlaladl BAFANLX = sF44lellH  ENUKNVE =
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640 ’
C GhQUP 3E (L=h3) .
ITIA9=1t1absITIALU=ITI]At=ITITAF=]LAU=TTTALSIITANSL])

38 QC 49 n=len2
645 E2YCC=ZCC (L) #uYCC(K) d
KP=L*K .
KQ=1leGe(=1,0)aaKF/2,0
¢ IF (R=2) 39+40s41

650 C GRCUF 10° (K=l)
39 Izl=A

fud==L ¢
[te3=n
Ires-22

655 leuyzlagen
Ida={nnen .
lek=lAg=L2
[HC=1AC~L2

660 C ° ukoUP 20 (K=1) T ) '
111s3=141 . . .
Hire==Ld

. ¢ GROUP 3F (K=1)
66D - 1T1ul=[1lAa}+a
I11U2=111A2~L2
11183=111A3+A .
[Ilbhaz]]llAa-t? . L
[11nb=lITASen
670 ITIbo=111AG-L2 .
TEIusi=T1TAT+a .
1IlBb=11A8-L2 .
TtIsy=111aven
. TIIUA=IT]AASr ]
675 ‘ ITlub=111AR+K]
ITIBC=111ACer]
IT16u=111A0~-LY . . R
[TIot=111Ak=LH . . ~ I .
I1Y0F =11 LAF =L . . . B
680 ITIuu=111a6-8 ° -
. ITIn=]]1AHeA
ITIGls11TAL«A
[TI8J=11EAJ=12
[TIdN=1T1AK=L?

e e v ——— g




‘685

6590

655

700

105

710

715

720

12%

740

. WNFERIWREI -

RESSLIAS S Y- IRY
TIItsMslTIAN¢A
[i¥on=llTAN-LY
ITIvo={l1AG=L2
uC Tu 4¢

C Gkeur 1E (k=c)

4y Itg==aA
jga=-a
Isp=iAB=-A
ieC=liC=a

C GRUUP 36 (K=2)
FTlbd=111A2-A
- 1113e=lT1A4=A
I1lde=1LiA6=A
1113&=111A8=-A
11isd=lI1Aau=-A
I11br=111AK=A
IIIoN=] 11 AN=A
I11b0=1I1AQ=-A

GC Tu 42

4] IF (noKEW3) 0O IC ldo

C LRLUP 2e (1 =)
Tips==nl
% GROUP 3H (K=3)

A llousllLAD=N]
11I8e=111AL-N1E
111Gk =1 T1aF=nt

Col1IBu=lllAau=nl
uC U 4z
136 [F (R=N2*1) 4dslbdyla])

¢ UROUP ¢F “ih=h2~=1)
1av 1Ib3=Lo S
C GROUP J1 (K=h2=])

11189=I1T1AG+Ls
1llva=i[lAaA+Ls
I1Is=11lAp+Ld
T1I8C=TIIAC+LA
GO fu a2’

[ GROUP 1P (k=ng)
14l jBl=L2
I183=L7°
189=2{aveL 2
IBA=IAA+L?

C LHOUF 3J (K=NZ)
LiTul=l1fAa}+L2
[rIus=1f1A3+L2

IB5s1LIASeL2

I
[Il187=11]1Aa7«2 ’
A1t

sh=][IAareL2
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755

760

765

770

775

740

784

790

79%

Iz

a2
Lag

o3

44
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L1IIsI=111AL+L2
I1luvL={l1AL«L2
IIEM=ITIANL2

LC 40 JSKCNl 2
1=1+1

IF (KO~2) luce il
IF (J=3) 43444445

chGUP 16 (u=1)
icl=181
iCe=1ind
1€C3=183+LE
1Ca=irasL6
ICL=EAY
ICo=iae
1CT=iVvisLes
1Cuslabslo

GHOUP 26 (J=1)
11CS=1]
I1Ce=te

ORCGUE oK (J=1)
11ICI=11}R1 "
11fCe=111ne -
111C3=11 3¢l 0
111Cu=]1}edaslts
111L5=]11lnb
qFlICe=111406
11ECT=111u7+L5
f11Ce=11138R+Lo
IT1uy=1I14489
I11CA=1118A
11ICu=illmieto
ITICC=111LCeLn
ICu=I113D
ICt=1[[ut
1CF =11 I0F b
ICO=TI1nGeLO
1CH=L1 e}
1ICI=]TIHL]
1Cu=111ug+l
TCA=]111sKel
ICL=Ti3L+LE
1LICHs]11AMeLO
P11Ch=1YTustel6
111Co0=111R0%L6
oC Tu a7 7

1
11
11
I
1
11
1}
1
11

GROUP 11 (u=3)
JLRE TR
1¢4=1ha=1
IC7s1AT-1

ICbzlAlL~]

GROUP 21 (u=3)
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800
595
810
815
820
325

830

8490
845 .
850

855

<

45

143

laa

11Co==],
\

GROLP 3M (U=3)
11103=111u3~1
[[iCu=ilitn-]
ITICI=Y11ul-1
T11C8=111us-}
IT1]Cub=11[nR=1
ITICC=LI1nC-1
ITICt=L11aF~1
ITICLU=11]1uG~1
ILICL=]11INL~1
111CM=ITlm-1
111Ch=11TuNn-]
11ICu=111w0-1
6C Tu a7

IF (JohEeNL=l) GO 10 47

GROUP 2K (g=n1=1)
1ICh=wib '

OGRGUP 30 (U=il=1)
11ivh=1110n~L0
1f1Cl=111a1-Lo
I11CJ=111du-Lo

JIHICh=111kr=Lo

ot Tu 47

IF (d=a) 144914591145

OROUP 1H (J=2)
ICI=11+1

12z igeel

1C3=1ind
ICL=[Hy
1C5=T145+1
1Ce=kAGy]
ICt=1A7
iCk=1ad

T okOUPR ¢H (U=<)

[IC5=],
LIChH=LG

ROV 3L (u=d)
111C =311t
1Lice=111u2+1 =
1TiC3=1 1ng”’
J11CA=[11Ha
I1ICS=111nbel
[EIC6=]T{46+ 1
111C7=111u7
11IC8={11y8
Lrrev=11fuge+
ITICA=1118Ar1
I11Cb=1{ue
I11¢C=11160C
ITICO=1T1A0+1

-(OPIE DE QUALITEE INFERIEURE |
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860

865

870

875

8Bvu

88S

890

s

909

905%

310

.

lus

1145
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IttCe=111ltsk+1
111Ck=]11eF
11IC0L=11vC
ITICh=1T11He}
JITICI=LT11] ¢}
IS IR L NE Y

CITICR=1 1K+l

[TICL=]11IRLsLE
ITICM=]ITINMeLS
I1ICNn=111onel o
111CY=11{a0rLo
ot fo a7

GRGUP 24 (J=4)
F1C6=w]

LUROUP 3t (J=z«4)
11ICL=1TL -1
ITICHs]TIuM-1
I11Cn=]111IRBA-]
11I1CuU=11180=1
e Tu a7

IF (JoNEeNL) GC

CARCUP 1J (UshD)
ICI=lIBl=-L&
ICe=lue~Lo

CICE=14a5-L6

a7

‘1Co=la6-L6

GrOUP 2L (u=bh1)

SLICh=—~16

LRUUE 3P (u=i])
111C1=11101=L6
f11Ce=111n2=L6
1131Co=11195-L6
Lllco=111a6-L06
111CY=1114s9-L6

1TICA=1]LRA-LS
ITICuU=111vb=Lo -

[11Ce=zl]llvt=L6
11IChs]lllhhelb
ITICl=11ERI-Lo
111Cu=111u~Lb
1110h;1}1hn-Lb

Ii=1+1C}
[2=1e1(C2
13=1+1C3
la=l+JC6
1S=1+1C5°
Ie=1+ICo
17=1+1C7
Ig=]+1CH8

C15=14109 '

IA=+IbA

~

10 47
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915
920
~925
93?
93%

940

945

950

95%

560

965

:HDOR [ . ) , ) .
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118

1e=[+ ]y

IC=t+{bC

111=1+11A1

112=1+11A2 !
113=1+11b3

Ila=sle]lva

115=1+11CY

fle=l+11Ck

IT1l=1«111C)
f112=1+111C2
1113=1«111C3
IT1e=]+111C
1113=]1+111¢S
p1Io=i+111Cs
JILTT=gSIT10Y
1118=1+111C8
FTI9=I+111CY
LITA=]+111CA
ISSTEI RIS §{¥T)
111c=1+111CC
frio=L+11{co
1lie=1+111CE
1[} =1+11ICF
1tjo=I+111CC
LTin=le[1ICH >
11ti=I+111CI .
[11d=I+111ICY
ITIK=T«ITICA
jhil=I+1lIcL .
1IIM=[«ITICn
[I1v=1eI1ICN
I1ju=l+111CO
IF (Ix=1) 1u7.1u¢
tao I+ (G (L) WEQCLDBDULY) o in a8
Gl spl([)eF 1t
. (L(1)90(1)°<J10(h(11)'0(12)*0(13)‘0(IA)ob(1=)qg([e)og({7)~g(r
lH)ou(IQ)'G({A)QG(IH)‘((IL))-“JZ“(bllIl)*b(IIé)oc(llB)QF(II“)»b(‘Is
E)eL P Y=Sd3«(UIITI) ¢l T] ) e UL ELI) ¢GUTIEIQ) 4GOI TIOY sGITTITIOY G (]
C3LITIAGMI LI *o T BT *0 LI TAY LT TAE ) *GUTITITE) QU TIM)I«GtITIR)+OUIT]
4E)AGUTITOY oG UIIIM «GOITLL) oG OITLEUI *GUITIRY QL tITIL Y sGUETIMY oG (TTTY)
SeC(1110)))
FYCIEYSFTLIE) sl (1) 9L ZYCLRFACC (D)
0C Tu u¥ -
147 1F (0(1) 4EL, 10000401 60 10 ae
GED 2GUI) op 10 . : ,
.. (CUIIBGL O =SJIR(GII DI« CL (1) *0L (T +GLl (LAY BT (ISY+01(16) +01 ¢
1173 v0 LB +QLEIYI 6L ETA) *+GT (iU +OLEICH ) =5u®(GL(TI T *+Q1 (L) «BL (LT
P SOLIT+GLUILS) +OL L6 =SUBRCOL (T «GLCTTIZ) eGLCTITTIY «0L 0TI
341 +OHtLLEN) «OL LI TOI+nl (LTI /) vl (LTI Gl ALETS) e (ITEA)*GL(TITTR)
"Gl CTITCI+0 L CLTTLY « Ll CETde ) sGLCTLIFY ¢ (VIO GO TIN) «GLITTT1)+G 1Y
SII1d et (IfIndeGLOITILI*Cl(TEIM vul (ITIN) 0 LETTICHT)
FIULEY=ETOLE) » GELI®e 2YCCor XLC ()
“y COrTILGE . . )
49 CCNTinLLE ’ -
50 CONTINML . : AL
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980

9885

590

595

1600

1005

101v

-1Q1s

1020

51
52
C
320
62
201
321
<
\
59
o
12
. 13
C
207
¢
G

wi1Tt

-

PP
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CCHTINGE .

CCRTINUE )
n2ATINE L))

wr1TE (61666) K

FLALGIZU W U-

IF (FLAGIWE140) GO TO <01

IC PRINTCLT 1

whITE (613c0) ’

s -
FORMAT (//71XsYAsS (B ALIFT)Y 14 X s BHIMUG(F T o4 X) 4 /)
ILL=IMAXP/S . .
IF (O#ILL Wb o [MRAP)
BC o2 I=l+ILL

whlTh (693210 FTCL) b T OEOTLL) 0F T L 22ILL) oF TCLe3RILL ) 2F TCL44®LL)
CenTIRLE . .
CCuTINUE

FURMAT ¢1X010612.0)

fee=ieel

i

FREVUENCY SHIFTS

T=0eu

UC 5% IslaIminy

ESHIFF=CLXRP (L2%¢ s UBENpRIF® (I=1) /INTSECREMFAR) )}
FSRIFT=CEXP (292 UREAPAULX® (1=1) /71 TSPCREMAK))
IF (FLAGLeEe)eU) FSolF12(1eVelev)

FYCE)2F TOLY A Conl-0CR TR ) #F Sk TOF SHIFF

AV euER T

CCrTIthuE

pELUWe THE MEMOGIY OF 6 ARND ul 1o UdkD FOr F I ANC LTS FGUKInw Xt ORrM
LC (e [=leIMAAP :

will=FT(1)

Ol(I)=(0abe0et))

CCH T INUE

IvAAFPS [MAAP* ]

UC 73 [=1MAXPR,ICON

OIEI=(0aUr 0o 0)

LICE)=(0eUg0eu}

CONT INUE )
FEFF(LEFT) IS Tk niusset K 00F SPT WS VRESENT
FFFFILIFT)sRLALGFT (L))

wnllt(osld?) FFREALIFT)

FCRMAT (/Z1XebHETLL) = 4FT7.0) .
n=Allng (L) ¢

wRITE (Byb6b) w

FOURIER TRANSFORM SUBROUT [ME
CALL FFT(GI L ICUN) .
HaaTlE (1)

(brarb) R

1C AVEKAGE ThL FTu8 GVER MCELLS CrilS
S EI ;
UG 2ub J=lont TS

AVER(E) 2xb AL (G} (1) ) *nvSuLT)

P (AVSO(DY JGT . Aavse (L)) Tel=)

otmarion 3



1030

1035
1040
1045
1050
1055
1060
1u65
"1070
1075

1080

Z00b

by

322

63

2lu

208
209

60

64

222

1

Poor Copy
(OPIE DE QUALITEE INFERIEURE

. ‘ o 120

LCNTINQL

TC NUPMALIZE GFT AMD FInb GFTMAA .
1171=1

UC 09 =1 NFTS

OF T srEALIOLLID Y ZFFFFALIFT) - .

IF (OFTUI) w0l oGFT(LITY) f1T=]

CChLTINLE .

TC PRINT CLT GHI

Wl TE (69322)

FORMAT (/71X 9 1A 10 (300G T99Y) )

ILLEUFTS/Z10 ) -~

IF (1OPTHL eNE Wk TS) TLL=ILL 4

LC €8 I=ll.lLL,

wrlTE (693210 OFT(I)oOF TCT@ILLY SOF LOTe2® B | ) oOFY(F+39ILL) 9OFT(4a®
llLL)'bPT(l'H“ILL)anT(I‘c“ILL)\:PF(IOT“ILL)pUPT(l'HGlLL)pan(I~99

2ILL)

CCNTINUE
IF (LIFTaNELRCELLS) L0 TC 206

1C PREINT QUT AVERAGED S(Lof ) AF Tk NCELLS kUNS

whlThk {09s210)

FCRMAT (/771X ennavERAGCL)

RG 208 I=1+1LL

whlTE (69321) aVSOLTI vANSCULIoTLL) o MSE (T «20]1LL) 9AVSOIT+38ILL) vAVSO

LAT+a® LY anvSutlena i) vavSy(len® Ll savas(lera L) vaVEQ(I+4®ILL)y -
2avSU(+991LL)

cCifintt © ’
CONTINUE
IF (FLaGZJNFol) LU TG o4

CIVES A FRINTER PLOT OF FFT [F (FL-G2EQelet)

JCEILF IS/ v+l ‘

wC ol ul¥=lkvJo0L .
VC oV k=14 10v

JACKAEK« (Yir=1)*1u0

GF (K) =rEAL (0] (JACK)) .

CCHL Tl ’
WF (1) 2GFT (11T N t .
OF (2)=ued AN

CaLL GrAPHM (GF) ’

cernllnue

CCr TInuE

1C NOKMALLIZE GET 10 10w’ .

TC SET UP X=aX]s VabUFS (F £ (=zrNQam) ¢
IF (LT Tebel) CGC TO 222 K

GF THAXSGFT(ILTY B

uC 71 I=s1.NF1S

GFTEL) =0l TUIIHIUQ.U/GE TN

ENCKM (1) SOT MO [ =k X AL -

CClT Ltk T, ..

TC PLOT ThE AsLVE mbSS

IF (LIFTeELL) GG TO 205

i b
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s

1085

1090

1095

1100

1105

1110

111%

1120

1125
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121

ALSdeH

YL6.Y

AN TINS=E AP AR A

AMAKSEMAR*E XFARKDX

¥ LN=0,0

Y aR=110e 0

TleA=1,0

TI(Y=10.0 .

CALL PLOT (1o AL oYL o XM INIAMAX 9 YMINOYMAX YICROYICY)
Catb Aaab Ity (Lun(Me (V) 4653015 UeE) (NCRMALIZED TU JUUI") e2beb
IH(E9 1) e yoH(FSed) 9]

FCRMODI=1O0M(12KG = (2

FCRAL2Y=LUMPLE/ZA) (er 8,

FORA(I)SLIONG s InesF S v
PCIMla)=10ryLttvsrdah,

FChM{b)=ar]t))

$12E=2.0

Vvik=0.0

ALCLS=LARPANDASU, T

YLC=lul e 25

CALL PLOT (3+FOkMeSIZE sUTH o XLOCIYLULCICHAT ¢ 3)

CFCHMATL) 210H(AMX = s 4

20%
U3

211

FCRMA(Z2) =ML 1) .

YLOCSY0.cY .
Catl PLOT (Jab kM ASST /et Th e ALOCY YLOC o X9 1)

rEn=l,y ;

SYLu=(,Q .

CALL RPLOT (PaPENeSY g dCPN o GF T oisk |S)

LCr.Tlwut

AVSUMzAVSG(TLET)

UC 211 I=1aniTs ) .

AVSULT)ISAVSR (1) 10U t/aveay

CONT INVE

CALL PLOT (LAl s YL o X4 e XVAK s YHING YMAX 4 TICATLCY)

CALL AXLIN (10h{vE (FHZ21%) 646 30RIMSIUE) (RORBALTIZED TH 10U ")y 2heb
Tretbael) s obMlES00) 4 5)

YLoL=1lul 2%

CAtL PLOUT (39FChMeST2h sUlne XLOCYYLOUC I GHAT v 3)

YLLC290 e 2%

CALL BLOT (3erOMAySLeb oL [Re ALULIYLOC X )

CALL PLOT (2erPthsSYilbiab e %Mo AVEL NI TS)

D

call HALT
el






