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• ABSTRACT " 

. 
I 

The magnetic excitation spectrum of the randomly 

diluted £erromagne.t, Ni2MnO• 8 V o. 2$n, ~as been 'measured by 

neutron inelastic ~catte~iflg techniques. The frequencies 
" . 

are reduced from those ~bserved for the non-diluted ferro-

,magnet, Ni2MnSn, by a factor that depends on wavevector. 

The shape of the frequency shift is characteristic of an 

in-band ,res.onance.. Computer simulation calculations have 

been peJ;'formed for large finite arrays .< "'15,000 spins >. 

including up to third neighbour interactions. The pred~cted' 
, ' 

frequencies agree with experiment. The calculations show a 

resonant effect however it is. not as pronounced as the 

observed effect. 
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CHAPTER 1 

INTRODUCTION, 

There has, been considerable experimental and theoreti-

cal, interest in magnetic excitations in substitutio~ally dis­

ordered allo~s. Several mixed and diluted system~'of anti­

ferromagnetic insula<t.ors' ~ave been, studied I as reviewed by 
'l 2 Cowley and Buyers and Cowley I but there has geen no experi~ 

mental investigation of a disordered ferromagnet. This is ' 

because suitable alloys have not been available. However, 
. 

recent magnetic studies have suggested that the Heusler alloy, 

Ni2Mnl V Sn l is a randomly diluted ferromagnet 3 
-x x The spins 

reside on the Mn atoms and the interaction between them is 

Heisenbe~g in nature4 • +n this work, to study the effect of 

dilution, the magnetic excitation sp,ec'tra for Ni2Mn O. 8 V O. 2Sn 

has been measured by inelastic neutron ~cattering techniques 

and the results compared to a computer simu~atran calcujation. 

Heusler alloys are intermetallic compounds, which ~ 

metallic in lustre and conductivity but have an'Q~dered 
. , 

structure. Most Heusler alloys have the chemical formula, 

X2MnZ, and the L2l lattice structure, where X is a transition 

element and ,Z is an sip element. Many combinations of X and 

Z are pos~ible. For example, ~ C~ be Cu, Ni, Co, Pd or Pt, 
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and Z call; be Ge, Ga, Sb, Sn or Al. Recent tabula·tions are 

given by campbel15 and Price e:t. a..e.} In the L21 stru~ture, 

which is face-centered cubic, the X atoms are arranged on a 

simple cubic lattice while the Mn and Z atoms occupy alter­

,na~e, body centres. The magnetic properties of' these compounds 

are somewhat surprising. In Ni2MnSn, which is' ferromagnetic 

(Tc = 344 K), the saturation moment of ~4 ~B per molecule is 

localized On the Mn atoms. \ The Ni atoms carry no appreciable 

moment, in spite of the fact that elemental Ni is ferro-

magnetic while Mn is not. The moment of 4 ~B per Mn atom, 

which corresponds to a spin S = 2, is characteristic of all 

. '. 7-10 Heusler alloys except those conta1n~ng Co or Fe er when Mn 

is the X atomll . Polarized neutron studies of Pd2Mn~n, which 

is isostructural ana isoelectronlc with Ni 2MnSn, show that a 

small moment of ~O.O~ ~B ~ay exist at the Pd site and -0.05 ~B 

at the Sn site9 .· The 'possibility of a small moment on the Ni 

~lnq Sn atoms is neglecte'd in this work. The Mn atoms form a 

fcc lattice of spins. ( . 'I ~ 
'" ----The spin-wave dispersion has been measured iI\ thr~,~_~/-------- , 

Heusler-alloys; in p~Mn~n and Ni 2MnSn by Noda and IShikawa4 , 

and in CU2MnA~ by Tajima et a.l~l2 The results for Ni 2MnSn at 

'50 K are shown in Fi~. 1.1. Noda and Ishikawa observed well 

defined peaks/out to the zone boundary in the [001;],- [l;l;0] .. 
'l , 

and [~~~} di~ectio~s. Only one branch was presen~ which is 
..:-

,expected if the Mn atoms carryall the moment. No widths 

/~ . 
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Fig. 1.1 Spin-wav~ dispersion relations fo'r Ni 2MnSn at 

50 K, after Noda and Ishikawa 4 The se1id line. . 
is the . . ., Iili 

s~x-ne~g our fit to the Heisenberg model 

(eqn. 1.2). The corresponding exchange constants 

are given in Table 1.1. 
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. 
intrinsic to the spin waves were observed, although the 

responses beyond, the K-poin't in the [r; r;O ] direction were broad, 

probably due to defocusing of the spectrometer. The 'disper-

'sion curves in all three materials were siIDilar in shape, 

'increasing in energy from Pd2MnSn to Ni 2MnSn to CU2MnAl~ At 

higher temperatures, the dispersion curves for Pd2MnSn decreased 

in·energy but retained the same shape, implying that the shape 

is characteristic of the magnon dispersion and not due' to a 

magnon-phonon interaction. These curves were fit to a Heisen-

berg model where the energy contained;in the spins is given by 

H = -E J .. S.· S . 
ij ~1. ~ J 

(lol) 

assuming no anisotropy. Here S. is the spin at site i and J .. 
~ ~J 

is, the exchange constant. For a perfect fcc lattice of 

localized spins S, the spin-wave ener~es are given by . 
hw- == 2S'(l(O) - leg) (1.2) 

q. ' 

where J (q) is the Fourier transform of J. .• The, fit for 
~J 

Ni2~Sn is also shown in Fig. 1.1. The dispersion curves are 

~ell reproduced by the Heisenberg model: Excha.nge parameters 

out to 8 n~ighbours for Pd~MnSn, 6 for NizMnSn and 5 for 

Cu2MnAl were requi~ed for a good fit, implying long range 

interact~ons. The exchange constants for Ni 2MnSn are given in 

Table 1.1. The first three are large and positive (ferro-
• 

magne"tic) however beyond the third neighbour the exchange 
, 

oscillates with distance. This is characteristic of indirect 

coupling via the s~d interaction between localized and con-

1 , 

1 



Table 1.·1 

·5 

Exchange parameters J. (meV) for Ni 2MnSn determined , ~ 

by a 6 neighbour' least squares fit to Noda and 

Ishikawa's data at 50 x.4 . zi is the number of i th 

neighbours. The uncertainty in each parameter is 

0.02 meV. 

J 
• ~ 1 

0.'296 0.283 0.110 -0.095 0.023 -O.0~5 

12 6 2'4 12 24 8 

. ,I , 
I 

I , 

I 
r. 
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; 
I 

1 , 
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duction electrons. The interaction polarizes the conduction 

band which aff~cts the spins on neighbouring sites. RKKY 

theoryl3-1S for th d' t t' b d th I f e s- 1n erac 10n, ase on e near y ree 

electron model, predicts that the exchange oscillates. with ·t 

distance and falls off as R- 3 for large R_ Caroli and Blandin16 , 

and later carolil7 , ~eveloped a double resonance exchange model 

bas'ed on the Friedel-Anderson picture of a ;local moment in a 

metal18 ,19. The result is simil~r to the RKKYexpression 

except fO.r an additio~al phase shift due to the resonant nature 

of the electron scattering. Noda and Ishikawa fit this expres-

sion to their data and obtained good agreem~nt for large R, 

however the theory predicts the wrong magnitude and sign for 
t. 

the n.n and n.n.n. exchange constants. 

Recently two models have been proposed to explain the 

3d exchange interactiops in Heusle~ alloys. Price 20 and' 

Malmstrom et a~.21, using the same model as Caroli, calculated 

the pre-asymptotic .part of the interaction and were able to 

obtain positive values for the first three exchange constants. 

The single interaction depends only on the average conduction 

I ' 's 22. h . d h h e ectrop concentrat1on. tearns as suggeste t at t e 

ferromagnetism is d~e mainly to coulo~ exchange' between . . 
itinerant and localized d-electrons. In her model there are 

three· exchange mechanisms: di-dl exchange, indirect S-d l 

exchange and antiferromagnetic superexchange via the Z-ligand. 

Reitz and stearns?3 have fit this model to the· dispersion 

, 
. '. 

" 

I 
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curves for the three Heusler alloys and obtain.ed reasonable 

agreement between theory and experiment by varying only the 

concentration' of d i electrons, believed to depend strongly on 

the X atom. However, studies of the magnetic phase transi­

tions in Pd2 eu MnIn24 and in the series Pd2~In/sn/Sb25 ,2,6 
-x x , f (-

conclude that the overall s conduction electron concentration 

determines whether these compounds are ferromagnetic or anti-
I 

ferromagnetic, regardless of whether the X or Z atoms are 

change~. This result favours the Price/Malmstrom picture, but 

the presence of other interactions cannot be ruled out. 

The electronic structure of cU2~127, Pd2MnSn and 
28, , 

Ni 2MnSn has been calculated by the symmetrized augmented 

plane wave (SAPW) method. A muffin-tin crystal potential was 

formed from a superposition of atomic potentials generated 

from the free atom Hartree-'Fock-Slater wave functions and the 
( 

exchange potential was determined by ~he x-~ method, with, an 

adjustable parameter. In Ni 2MnSn the most appropriate confi­

guration was found to be 3d64s l for Mn and 3d94s l for Ni. For 

the majority spin 'states the.E(k) curves show flat d-bands for 
I 

Mn and Ni below the Fer.mi level whereas for the minority spin 

states the d-bands of Ni are below the Fermi ~evel but those 

for Mn lie above. It is obvious from the curves th~t the 

main carrier of the ~agnetic moment in Heu~ler alloys is Mil 

and the magnetic momen,t of the X atom is nearly zero. Calcula­

tion of the magnetic form factor agrees with experiment. 

1 

, \ 

t 

I 
1 



HUrd ~t a!.29 have measured the field and temperature 

depenqence of the electrical resistivity, the Hall effect and 

the ~ra~sverse magne~oresistance ,of N~2Mnsn. Conduction in 

Ni 2MnSn is dominated by electron~ moving in a sip band but 

they interact strongly with the lattice and with the magnetic 

electrons localized on the Mn ions. There is evidence of a 

resonant s-d-s scattering mechanism, consistent with the Price 

picture of coupling between the Mn ions,' which dominates the 

resistivity at temperatures above 120 K but operates even at 

4.2 K. Estimates of the electro~ mean free ~ath are 30 AO at 

4.2 K and 6 AO at,~~K. 

, . In the Heus~eJ alloy, Ni2Mnl V Sn, there is evidence 
\1. -x x 

that V is non-magnetic""',. The magnetization per unit volume and 

the effective paramagnetic mome~t per molecule are proportional 

to the Mn concentration. Also, the Curie temperature decreases 

. linearly with ·the Mn concentration and extrapolates to zero at 

a dilution of x = 0.9" This limit agrees favorably with percola­

tion limit calculations for a fcc lattice with n.n. and n.n.n. 

interactions 30 . The alloy series is ferromagnetic above the i 

critical percolation concentration and retains the Heusler , 

structure for all values of x. As was men~ioned above, the 

spin-wave spectra for the perfect (x = 0) crystal, Ni 2MnSn, has 

been measured elsewhere arid the exchange constants determined. 

The exchange interaction was found to be.Heisenberg in nature 

al'l:d there is some unders'tanding of the coupling mecnan~sm. 
" 

Furthermore, the material is cubic and has only a small aniso-

'J 

'i 

I 
'I 
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) 

! 



\ 

, , }, 

tropyenergy (hw- ~IO-4ev)4. For these ~~asons the above 
<:$=0 

9 

series is ideal for studying the effect, on the spin-wave spectra 
( to , 

ot a Heisenberg ferromagnet,of randomly diluting the spins with 

non-magnetic ions. The spectra can be measured by in~lastic 

neutron scattering·techniq~es. 

There ar~ a\number of theories 31 that'describe the 

effect of dilution o~ the T = 0 spin waves in a random lattice. 

As the spin concentration decr'eases, the spin-wave frequencies 
, 

• J 

decrease and the response broadens. To treat t~is effect 

theoretically is not 'straightforward because in a random lattice 

translational symmetry is lost and the crystal momentum, 0, is , 

no longer a good quantum number for the excitations. There are 
, , 

t~o simple models. In the "virtual <?rystal ll mode.1 the ~isordered 
.' 

lattice is replaced by a perfect lattice in which ,all exchange 

parameters are scaled with the concentration of spins. Tbere is 

a consequent scaling of the spin-wave frequencies by the same 

factor but the theory p~edicts no incre~se in the widths of the 

response. The Ising cluster model, on the other hand, recognizes 

that resonances should occur at frequencies w~ich correspond to 

the energy required to flip a spin in ~he field of i ts r~.tluced 
, 

number of magnetic neighbours. This theory is useful in predict~ 

ing the frequencies of localized modes in mixed systems but'can 

give no information about dispersion. 

The principal theoretical approa9h, used to obtain the 
\. 

dispersion. in a disordered system,. ~as involved the coherent 
" , 

\ 

• 

D 
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, t 10 , \ . 
\ \, 

potential approximation (CPA). A self-energy ~s found that 

minimizes the multiple scattering at a sipg1e s.ite. The CPA 

can be used to determine frequency shifts and widths.. This 

theory w~s origin~i1y developed to treat e1ectrons 32 and 

phonons 33 and was first extended to magnetic systems by Buyers 

e:t a..e~34,35. A full 'comparison o'f the results 'with experi-
, . 

ments has been made for.di1ute antiferromagnets 31 ,35.' CPA 

results for the response of a three-4imensiona1 diluted ferro­

magnet have , been. presented by Tahir-Kheli 36 , Harris et a.e.37, 

and others 38 ,39 for the simple cUbic case but no full confront-

ation with ~xperiment has been made. There have been some more 

., . 

40 41 recent developments .. ' but no CPA calculations ~for the response 

in a fcc. ferromagnet have b~en reported. Furthermore, the CPA 

may produce spurious result~ arising from branch cuts 42 and a 

. 1 h . b' d ~ .. "d 31 , 3 5 , 37 t pseudopotentla may ave to e lntro uce 0 remove 

the unphysical response ?f the non-magnetic ions at w - 0: 

An alternative approach is to solve this type of problem 

by computer sim~lation techniques 43- 45 This is the approach 

chosen in the present work. It involves J.itt1e more numerical 

work than the CPA and for large systems tends to the exact 

result. The technique is used in the form given by Alben et at. 

A large random array of spins with period,ic boundary 

45 

conditions is generated by the computer program. Using linear 

spin-wave theory the neutron scattering response, S(Q,E), is 

determined numerically for the finite a~ray. The method involves 
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solving for the correlation functions that describe the spin 

waves by integrating equations of motion forward in time. 

These correlation functions are then Fourier transformed in space 

and time to give S(Q/E). 'By averaging the results ~f several 

arrays of different dimensions and with diff~rent spin configura­

tions an approximation to an infinite crystal is obtained. For 

three ar~ays, of -15,000 spins each, the error in S(a,E) is -5%, 

but in g~neral the' accuracy is limited only by computer memory 

and time. The error in the frequencies of peaks is considerably 

less. 

As part of this work, a computer program was written to 

determine S(Q,E) for a diluted, fcc, ferromagnetic lattice by 

the numerical method described above. It is assumed that the 

Heisenberg exchange con~tants between spins present in the lattice 

do not change with dilution. ResUlts have been obtained for n.n. 

and up t~ third nearest neighbour interactions for dilutions of 

20% and 30%~ A comparison is made between these calculations 

and the experimental results for' Ni2MnO.aVO. 2Sn. 

Chapter 2 describes the inelastic neutron scattering 

experiment to measure the spin-wave dispersion curves for Ni 2MnSn 
, , 

and Ni2MnO'.aVO.2Sn including a section on the growth and 

characterization of the large single crystal samples. Chapter 3 

gives an outline of linear spin-wave theory and shows how the 
+ . 

scattering function, S(Q,E), for a diluted Heizenberg ferromagnet 

can be expressed in terms of correlation functions.. Chapter 4 

describes the computerIsimulation technique for calculating 



12 

S(Q,E), paying particular attention to the various types of 

errors which limit the accuracy of the technique. A 

description and listing of the computer program is given in 

the Appendix. The exper~ental results are presented and 

compared with the computer simulation results in Chapter 5, 

and conclusions ~e presented in Chapter 6. 
J 
! 
i , 
l 
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CHAPTER 2 

EXPERIMENT 

2.1 Samples 

Large single crystals of Ni2MnSn apd Ni2MnO.aVO.2Sn 

were grown· for inelastic neutron scattering studies. They 

were obtained in the following manner. polycrystalline in-

gots of alloy were prepared by melting together stoichiome-

tric amounts of elem~ntal material weighed to the nearest 

0.0001 g. The elements were premelted, before weighing, 

as a purifying procedure and to remove any ~ntrapped gas. 

For Ni 2MnSn a Czochralski growth was begun. The ingots were 

melted in an r-f furnace in an Al20 3 crucible with a graphite 

susceptor. The furnace was backfilled with argon. An orien-

ted seed was lowered into the melt. The seed and melt were 

counter-rotated at ~ 0.2 rev/~ec. The pulling rate was set 

at 1" per hour and the bouie size was controlled by regulat:ing 

the power to che r-t cqils. The crystal was expanded to about 

2 cm in diameter when it caught onto polycrystalline charge 

freezing in from the circumference of the c~ucible. The growth 

was immediately changed to' a slow-cooling (Kyropoulos) tecti-

nique. The crystal was cooled from ~ 1100 C to 300 C over a 

period of 24 hr. Details on the temperature o·f the crystal as 

13 
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a function of time are unknown. Neutron diffraction photo­

graphs showed that the center of· the boule was a single crys-

tal. There was no~urther heat treatment. 

The Ni2MnO.avO.2sn crystal w~s grown by the Bridgman 

technique. An Al20 3 Bridgman crucible (20 nun ID and 100 mm 

long) was filled with polycrystalline alloy and sealed in a , 

quartz ampoule, backfilled to 0.25 atm of argon. The ampoule 

was lowered through a platinum resistance furnace at ~ 2 rom 

per hour. stveral tries were nece~ to p~oduce a single 

crystal. 

The dimensions of the samples were ~ 25 mm in diameter 

and 15 rom long fo~ Ni 2MnSn and 15 rnrn in diameter and 30 rom 

long for Ni2MnO.avO.2sn. Photographs are shown in ~ig. 2.1, 

(a) and (b). ·X-ray Laue and neutron diffraction photographs 

(using a polaroid neutron camera) showed that the samples 

were single crystals. 

The samples were further characterized by measuring 

the bulk magnetization, the chemical disorder, the mosaic 

spread and the chemical composition. To determine the magneti-

zation, slabs were removed from the crystals by spark erosion 

~nd measurements were taken on a vibrating,-sample magnet'o­

meter. The results indicate a magn~tic moment per Mn atom of 

4.l±0.1 ~B in Ni 2MnSn and 4.0±0.1 ~B in Ni2MnO.avO.2sn. These 

1 'h' 3 d 'h h 1 resu ts agree W1t prev10us measurements an w~t t e genera 

results of ~ 4~B per Mn atom for all Heusler a~loys, and are 

consistent with the nominal concentration of Mn atoms in the 

samples-. 

.l 

I 



Fig. 2.1 (a) Photograph of the Ni 2MnSn crystal. 

(b) Photog~aph of the Ni2Mno.aVO.2Sn crystal. 

I 



" ' 
/" " 

"" . 

t~ ---

; 

~ ., ," 
, ~~' " - ., 

. <c<' 
. , 

'. ' ,.. 
• ' ~j' 

" ~,1 r 
, " "" "\ . , 

Cl 

1"- : , 
__ .... I' " '" 

15 

. . 

\ . ,,': ':,'," ,: ",::' ',"" ; 

----- ,.,'" ""'", " '~ ""'1 , "' ' ~ . . . 



16 

The chemical diserder was determined from elastic 

neutron diffraction experiments on portions of the samples. 

These were performed at the McMaster University reactor by 

Luc Martin. The results indicate a preferential Ni-Mn dis-
t: 

order of 3.S±l.2% for Ni 2MnSn and O.O±3.0% for Ni2MnO.SVO.2Sn. 

The mosaic spreads of the samples were measured on 

the double-axis spectrometer at the M~Master University reactor. 

The monochromator was an Al(200), crystal set at 28 = 41.8 0 which 
o 

selected a wavelength of 1.444 A. The instrument was set for 

the focusing condition where the width of the ~ rocking curve 

depends only on the mosaic spreads of the sample and monochro-

mator and not on collimation. Rocking curves were measured 

for the 220 reflection of a Ge crystal slab, which had a small 

mosaic spread, and for the 220 reflection of each of the samples. 

The mosaic spreads ~e found to be 32.4±O.9' (minutes) for the 

monochromator, l8±2' for Ni2MnSn and 34±4' for ~i2MnO.8vO.2sn. 

The chemical composition was measured by neutron ac-

tivation analysis at the McMaster Nuclear Reactors. The results, 

are presented in Table 2.1. In terms of atomic per cent, the 

compositi'oris were measured to "be Ni2.llMnO.94snO.94 and 

Both sa~ples show an excess of Ni, 

possibly due to evaporation of the other el~ments during the 

crystal growth. The results indicate that ~ 3% of the Mn sites 

may be occupied by Ni atoms. 

For the inelastic scattering experiments the samples were 

fastened to aluminum pos.ts with vanadium straps and mounted 'in 

the vacuum space of a liquid nitrogen dewar (see Fig. 2.2). The, 



Fig. 2.2 Nitrogen dewar for neutron scattering experiments 

showing position of sample. 
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temperature of t~e sample in this arrangement was measured by 

a copper-constantan thermocouple and found to be 93 K. The 

holding time o~ the dewar was about 20 hr. 

Table 2.1 Neutron activation analysis results. Error esti­
mates are based on counting statistics and six 
replicate analyses 

Sample identified as 

Ni 

Mn 

Sn 

Ni 

Mn 

v 

Sn 

Ni
2

MnSn: 

% by weight 

43.2± .8 

IS.O± .4 

39.0±1.2 

% by ~eight" 

42.6±1.1 

l4.6± .2 

3.5± .1 

39.4±1.2 

2.2 Inelastic " Neutron Scattering Experiment 

\ 
) 

The neutron scattering was done on the McMaster Univer-

sitr trip~e-axis spectrometer at the N.R.U. reactor in Chalk 

I 
i 

l 
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River. Detailed-~escriPtions of this spectrometer have been 
46 . 47 given by Brockho~se and Brockhouse et ai. A schematic 

diagram of the spectrometer is shown in Fig. 2 .,3 ~ 

A collimated hole in the wall of a nuclear reactor 

allows a white beam of 5 to be extracted. The double-

crystal monochromator, ing of two Cu(220) crystals set 
• 

at eM' selects neutrons of a particular wavelen~th, .AO' to be 

incident on the speci en. ~ is the angle of the specimen with 

respect to the incomi g beam. Neutrons scattered through the 

angle ~ are detected by th~ He 3 counter if they are of the 

correct wavelength, AI, to'be Bragg scattered by the analysing 

crystal set at SA' The analyser used was a Cu(200) crystal. 

, 1 f th . . h h' u235 f' , An essent1a part 0 e 1nstrument 1S t e t 1n . 1SS1on 

counter which monitors the ipcominq beam int~sity. Scattered 

neutrons are counted for a preset number of monitor counts. 

The Soller-slit horizontal collimators set the resolution of 

the spectrometer. Resolution is dis·cussed in more detail in 

Section 2.3. A photograph of the experimental apparatus is 

shown in Fig. 2.4. 

The neutron is ap ideal probe for the study of magnetic 

excitations ia a crystal. It is. neutral in charge but has a 

magnetic moment and therefore can interact with the electron 

spins in the crystal. A thermal neutron has a momentum and 

energy comparable to the momentum and energy of a' typical magnon. 

,It is therefore scattered through an .appreciable angle and 
, 

undergoes a measurable'change in energy when it creates or 

\ 
" I 

~ 
,< 

" .J 
" , 
< c 

{ 



Fig. 2.3 Schematic of Chalk River triple-axis spectrometer. 

A .hole in reactor wall 

B double crystal monochromator 

C monochromatic beam 

D beam incident on specimen 

E beam gat~ 

F fission chamber monitor 

G Soller~slit collimators 

H sample angling apparatus 

I counter angling apparatus 

J helium counters 

K parafin and cadmium shielding barrel 
) 

L analysing crystal 
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Fig. 2.4 Photograph of the Chalk River triple-axis 

spectrometer showing the beam port at the reactor 

face, the nitrogen dewar which holds the sample 

and the analyser, coated with para fin wax. 

21 



./ 



22 

annihilates a magnon. In such a collision, quasi-momentum and 

energy are conserved. That is, 

and 

-+ 

Q - k -k' o 
-+ -+ = 1"-q 

E _ E -E' = ~w, 
o 

(2.1 ) 

(2.2) 

where ~O is the momentum transfer and E is the energy transfer. 

ko and k' are the wavevectors of the incident and scattered 
-+ 

neutrons and E and E' are the corresponging energies. 1" is a 
o 

-+ 
reciprocal lattice vector while q and ware the wavevector and 

angular frequency of the magnon involved. Brockhouse46 has 

-+ 
emphasized that 0 and E are the natural variables for the inelas-

tic scattering process. 

When momoenergetic neutrons are incident on a crystal, 

in~orrnation about the excitations is present in the scattered 

neutron spectrum in the form of "neutron groups" which are those 
-+ 

neutrons scattered by excitations of a particular q,w combi-

nation. The neutron groups can be observed if the spectrome-

ter is programmed to sweep through the corresponding area of 

-+ 
O,E space. A triple-axis spectrometer has the advantage over 

other spectrometers in that eM' eA, ~ and W can all be moved 

independently.~ ~here are several special modes of operation pos­
~" , -+ 

sible, most notably the constant Q and constant E modes. These 

are methods for obtaining one-point on the dispersion curves of 

the magnons. Successive and adjacent scans allow the whole 

dispersion curve -to be plotted out. These curves can be com-



pared to theoretical models and fitted to obtain exchange para-

meters. For these experiments the constant energy mode was 

more favorable because of the relative steepness of the disper-

sian curves. 

The following is a description of the procedure used for 

taking constant energy scans of the neutrons scattered by spin-

waves in Ni 2MnSn and Ni2MnO.aVO.2Sn. The s~ples were oriented 

so that the (110) plane coincided with the ~cattering plane of 

the spectrometer (defined by k~ and k') .. The spin-wave dis­

persion curves were measured in three symmetry directions about 

the (111) reciprocal lattice point. At this point there" is a 

low dynamical structure facto~ for phonon scattering ye~ Q is 

small enough so that the magnetic form factor does not drasti-

cally reduce the intensities. A diagram of the reciprocal lat-

tice is given in Fig. 2.5. On it are shown the centers of 

observed peaks for constant energy scans in Ni2MnO.avO.2Sn. 
-+ 

In the constant E method, Q is usually moved along a 

symmetry direction in reciprocal space while E is held constant. 

To measure a point on the dispersioh curve at energy E, one first 

-+ 
chooses the range of Q expected to correspond to th~t E. The 

wavelength of the incident neutrons is selected by setting eM. 

Knowing A and E, A' is calculated from 
o 

(2. 3) 

-+ -+ -to 

and SA is set. Finally a triangle ~s formed from Q, ko and k' 



., 

Fig. 2.5 Reciprocal lattice of Heusler alloys in th'e (110) 

plane. The points are wavevectors of observed 

neutron scattering peaks. 
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and the angles" </> and IjJ are calculated. The spectrometer angles 

can be set to a~y multiple of 0.1° with a stated accuracy of 

0.01°. The calculations are done for all points on the sweep 
...... 

of Q by a computer program that produces a paper tape which con-

troIs the spectrometer. The scattered neutrons are counted for 

a preset number of monitor counts at each point. The observed. 

result is a neutron group, such as those shown in Fig. 5.1, and 

the centre of the peak gives one point on the dispersion curve. 

It is possibl~ that the triangle cannot be closed, in 

which case Ao must be changed. Resolution is another considera­

tion in choosing the incident wavelength. For weak scattering 

a small Ao is desired to- decrease the energy resolution in the 

analyser and increase the intensity. For these experiments a 
o 

wavelength of 1.6 A was chosen for energy transfers less than 
o 

3 THz and 1.16 A for transfers greater than 3 THz. The latter 

corresponds to the largest E obtainable from the double mono­
o 

chromator of this instrument. 

At the beginning of an experiment it is necessary to 

accurately determine the incident wavelength, the lattice con­

stant of the sample and the scale reading·s for the zero posi-

tions of all angles. These were obtained by the following pro-

cedures. Ao and <1>0 were obtained by measuring the positions of 

diffraction peaks from Cu powder and least squares fitting the 

angles to Bragg's Law. The centers of the peaks were estimated 

t~ the nearest 0.01°. Five peaks were obtainable for A = 1.16 
0 

0 

and four peaks for 1. 6 A. The resulting error in Ao was 
".; 

° A 
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a, the lattice constant of 

the sample, and ~o were determined by fitting the ~ angles of 

Bragg reflecti?ns to Bragg's Law. The lattice constants-ob­

tained at 93 K were 

o 
a (Ni

2
MnSn) = ·6.053±0.OlO A 

o • 

a(Ni2MnO.avO.2sn) = 6.029±0.OlO A 

3 
The value for Ni 2MnSn agrees with other results however the 

value fo~ Ni2MnO.aVO.2Sn is slightly less than obtained ~y 

previous workers. The error in ~o was ± 0.01°. 8A and 2eA o 0 
were determined to ± 0.01° by measuring isotropic elastic 

scattering from V powder. 

The samples were oriented by observing the (440), (440), 

(006) and (006) reflections. The vertical collimation in the 

incoming and outgoing beams was set to 1/160 radians 

and the crystal orrentation was adjusted for a maximum counting 

rate. The method is thought to be accurate to better than 0.05°. 

2.3 Resolution 

The resolution of a triple-axis spectrometer is deter-

mined by collimation and by the mosaic spreads of the mono-

chromator and analyser crystals. If the scattering function 

-r 
of the sample is independent of wand Q and the spectrometer 

-r 
is set to observe a process (w ,Q) then the resolution func­o 0 

tion, R(w,w ,O,Q ), 
o 0 

is defined as the probability that a de-

tected neutron was scattered with an energy transferl1w and 

I 

1 
t 
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• -+ 
a momentum transfer ~Q. If the transmission functions of all .. 
collimators and crystals involved are assumed to be Gaussian 

then the resolution function can be written in the form 

(2.4) 

where X~ = Q.-Q. for i = 1,2,3 and X4 = W-hl. Conventionally 
• ~ ~o 0 

Xlis parallel to 0
0 

and X3 is perpendicular to the scattering 

plane. ~i is called the resolution matrix. Cooper and 

Nathans 48 have derived expressions for the matrix elements in 

terms of ko' Wo and 0
0

; the monochromator and analyser mosaic 

spreads and plane spacings, nM, nA, dM and dAi and the horizon­

tal and vertical collimation angl~s, ~O' aI' u2 ' ~3' 80 , 81 , 

82 and 8 3 • These expressions were used to choose the constant 

energy scans most suitable from the standpoint of focusing. 

The parameters of the spectrometer are listed in Table 2.2. 

, 
,~ 
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Table 2.2 Instrum~ntal parameters for the triple-axis spectro­
meter 

monochromator 

analyser 

specimen (Ni 2MnSn) 

(Ni2MnO.aVO.2Sn) 

in pile 

Scattering 
Plane 

C~ 2'20 

Cu 200 

Collimation 

monochromator to sample 

sample to analyzer 

analyser to detector 

PlaneoSpacing 
(A) 

1.278 

1.B07 

(FWHM) 

Horizontal 
(radians) 

-a = 0.1002 0 

0.1 = 0.0125 

0.2 = 0.0125 

0. 3 = 0.0833 

\ 

Mosaic 
Spread 

20' 

... 30 ' 

lB' 

34 ' 

Vertical 
(radians) 

.8 0 = 0.1002 

81 = 0.0300 

82 = 0.0700 

83 = 0.5000 

Note: 0.
1 

and a. 2 are typical for the So11er,-sli t collimators. 

I 
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I 
{ 

1 
"{ 



29 

2.4 Spin-Wave'Renormalization 

The energy required to create a spin-wave decreases with 

increasing temperature because of interactions between the 

spin-waves. The spin-wave energies for Ni
2

MnSn and 

Ni2Mn~.8vO.2sn,. measured at 93 K in this exper.iment, are 

therefore reduced from the energies at 0 K. To obtain the dis-

persion curves at T = 0 K, a correction was applied by assuming 

that the energies drop by the same lactor as the bulk magne-

tization. 

The magnetization of the compounds was measured on a 

vibrating sample magnetometer using pieces cut from the same 

samples used in the neutron scattering experiments. The re-

sults are shown in Fig. 2.6 where the reduced magnetization, 

M(T)/M(O), is plotted against temperature. The curve for 

the diluted crystal is a different shape than for the non­

diluted crystal, decreasing faster with 'temperature. At 93 K 
I ' 

the magnetization has dropped by 2.0% for Ni 2MnSn, and by 

~ 8.0% for Ni2MnO.8VO.2Sn. The measured spin-wave energies 

were therefor~ increased by the corresponding factors to obtain 

the spin-wave energies at 0 K. 

That the dispersion curves have the same temperature , 

dependence as the bu;tk magn~tization is only 'an approximation. 

The assumption is supported by the Green function theory of 

ferromagnetism by H. callen49 and follows from the simple 

physical picture of spin-wave renormalization, given by F. 

Keffer50 • As the temperature increases, more spin-waves are 

, 
• ! , 
I ., 
,; 
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I 
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Fig. 2,. 6 Temperature dependence of the reduced magnetization 
~ 

for Ni 2MnSn :and Ni.2MnO'.aVO.2Sn. 
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excited ana the average angle, ~M' between each spin and ~he 

direction of bulk magnetization' increases. This causes the 

total magnetization, M(T), to drop. In the "first random 

phase approximation" the components of each spin which are per­

pendicular to M are averaged to zero. This results in a sys­

tem of spins, 5 cos ~M in length and totally aligned in the 

magnetic field ~ (T). 'The energy required to excite another 

spin-wave is thereby reduced by the factor M(T)/M(O). This 

overestimates the renormalization at low temperatures be-

cause only long-wavelength spin-waves .are excited. A better 

approximation, called the "second random phase ,approximation" 

is obtained by averaging the spin-components perpendicular to 

the local magnetization. At higher temperatures the two 

averaging procedures are equivalent and correcting the spin-

wave energies by the magrtetization should be a good approxima-

tion. 

The spin-wave dispersion curves for Pd 2MnSn were mea­

sured at different temperatures by Noda and IShikawa
S1

. 

They compared their results with a self-consistent renormali-

zation theory based on the two magnon dynamical interaction 

and obtained good agreement. However, this theory cannot 

easily be applied to a diluted ferromagnet. For Pd2MnSn at 

T '" 0.3 T the drop in magnetizatipn exceeds the spin-wave c 

renormalization by about 25%. However the renorrnalization was 
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-found to be independent of q. For Ni2MnO.SVO.2Sn the possible 

overcorrection by 25% 'is thought to be within experimental 

error, given the suspected deficiency of Mn. 



CHAPTER 3 

THEORY 

This chapter outlines the low temperature theory re­

quired to calculate the scattering function, S(Q,E), for a 

diluted Heisenberg ferromagnet. These calculations can be 

compared directly with neutron scattering measurements and 

they also give qualitative information about the energy of 

the spin excitattons in the diluted 

is to obtain the linear Hamiltonian 

senberg ferromagnet. For a perfect 

dispersion relation follows readily. 

crystal, The fir~step 

for sPin-wa~Hei­

crystal the spin-wave 

Next, an expression for 

~ 

the scattering function,' S(Q,E), is derived in terms of corre-

lation functions. This expression simplifies for a perfect 

crystal but not for a diluted crystal because there is rio 

translational symmetry. However, equations of motions for 

the correlation functions can be obtained which leads to a com­

puter simulation technique fo~ calculating S(Q,E). The 

temperature dependence of spin-waves is discussed in 

Section 2.4. 

3.1 The Linear Spin-Wave Hamiltonian 

The treatment below is standard and appears in many 

places. 52 See, for example, Marshall and Lovesey According 

33 
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to the Heisenberg model, a ferromagnetic crystal can be described 

by a Hamiltonian expressed in terms of spin operators: 

H = - r J .. S. os. 
ij 1) ,,1 J 

(3.1 ) 

J .. is the exchange integral between spins at sites i and j. 
1) 

It is positive for ferromagnetic coupling. In eqn. (3.l) all 

"'" contributions from ex~ernal magnetic .fields and anisotropy have 

been neglected. If the spin angular momentum raising and lo~e­

ring operators, s: and s~,are introduced where 

and 

then the Hamiltonian 

(' 

H = -

s~ ::: s=:' + .-i..s':! 
1 1 l. 

s-:" = s~ 
1 1 

. y 
-<.5. I 

1 

can be written as 

+ - S~S~} L J .. {S. s. + 
1 J ij 1) 1) 

( 3 .2) 

( 3. 3 ) 

. ( 3 • 4 ) 

This can be expressed in terms of spin deviation operators by 

. . 53 
means of the Holstein-Primakoff transformat10n : 

+ 

s: (2S}~[1 
a.a. I.s 1 l. = 2S"1 a i 1 

(3.Sa) 

+ 

S. = (2'S) ~a ~ [1 aiai)1.s 
l. 1 2S 

(3. Sb) 

S~ s + = - a.a. 
1 1 1 

(3.Se) 
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+ a; and a. are boson creation and destruction operators which ,.... ~ 

obey the commutation relation 

<5 •• 
~J 

(3.6) 

Now n. 
~ 

+ _ a.a. is the operator for the number of spin deviations. 
~ .~ 

> 

As the temperature decreases the average value of n i approaches 

zero. Therefore in the limit of low temperature and large 

spins 
+ a.a. L n; L 

[1 - ~]~ = [1 - .]~ ~ 1 25 2S ~ . (3.7) 

Eqns. (3.5) become 

(3.8a) 

(3. 8b) 

(3.8b) 

This is the first order Holstein-Primakoff transformation. Sub-

stitution of egns. (3.8) into eqn. (3.4) gives 
c 

E J .. 52. - E 
ij ~J ij 

+ + i5J .. (a.a.-a.a.) 
~J ~ J ~ ~ 

(3.9) 

'We have used the fact that a. commutes with a: for i~ j an~ that 
~ J 

J .. = J ... 
1J J~ 

+ + A term in a.a.a.a. has been neglected, which is 
1 ~ J J 

consistent with the approximations made in the transformation. 

~he first term of eqn. (3.9)' is the zero temperature 

energy of the lattice. It is a constant, has no effect on ~pin 

1 
\ , , 
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excitations, and is therefore neglected. Eqn. (3.9) becomes 

+ + 
H = L 2SJ' j (a.a.-a.a.) • (3.10) 

ij ~ ~ ~ ~ J 

Thi~ is the quadratic, linear spin-wave Hamiltonian. It will 

be used below to derive linear equations of ~otion for the 

spins. 

3.2 The Spin-Wave Dispersion Relation 

To' obtain the dispersion relation for spi~-waves in 
+ 

the perfect crystal we introduce the operators b- and b- through q q 

the Fourier expansions 

1 L • - -+-a. :;: exp (-<.q • R. ) b-
~ IN q ~ q . . (3. ,lla) 

and 
" + 1 - -+- + a. = L exp (--i.q' R, ) b-

~ 1N"q , ~ q (3.llb) 

b: and b- create or destroy a magnon of wavevector q. The 
q 'l 

following p.roperties can be shown .to hold: 

• [b- I b- ,1 = [b: , b:!: 1 = 0 
'l 'l q q' 

+ [b-,b-,] '1= 6- -
'l q 'll'l' 

(3.12) 

i 

+ r a.a, 
~ ~ 

'(3.13) 

1 1: exp{-i.('l-'-q-) 'R,} = 6- '-
N ' q,q' 

i · 

.Substituting e'lns. (3.11) into e'ln. (3.10) and using' (3.13) and 

• 
( ... 
1 



(3.14) gives 

. where 

H = r 2S(J(O)-J(q»b~bq 
q 

6 is the neighbour vector 

8 = R. - R. 
~ ) 

/" 
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( 3.15) 

'(3.16) 

(3.17) 

The Hamiltonian is a sum of terms, each of which involves only 

-one q. There are no cross ter,ms. Therefore the spin-waves do 

not interact. This is a consequence of linear spin-wave theory. 

A magnon is a quantized spin-wave. If eqn. '(3.15) .iswritten as 

H = L i'rw-n-q q q 
(3.18) 

where Hw- is the energy of. one magnon and n- - b~b- is the num-q q q q 

ber operator for magnons of wavevector ,q, then the magnon 

dispersion curve is given by 

(3.19) 

3.3 The Scattering 'Function, S(Q,E) 
I 

Neutrons can scatter off spin-waves because there is a 

magnetic interaction between the neutrons and the unpaired elec­

tron spins. The scattering function, S(Q,E), is that part of 

the scattering c~oss-section that depends on the ~ynamics of the. 

spin system and not on the properties of the incident radiation. 

I 
1 
.' 
1 
"~ 

I 
,1 
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I 
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t 



" 

For a system of spins localized on the sites 

a Bravais lattice, S(~,E) is given by 

R. 
1. 

S(Q,E) 4ff~S r dt exp(~) 
Q -+ -+ == L exp{-~ ·(R.-R.)} x 

1. J ij 
_CXI 

+ - - + x <Si(t)Sj(o) + S. (t)S. (0» 
1. J 
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of 

(3.20) 

If ko is the wavevector of the incident neutrons ~nd k' is the 

wavevector of the scattered neutrons, then the scattering vec-

-+ • 
tor, Q, 1.S given by 

k -k' . o 

E is the energy transferred to 

-n 2k 2 
o 

E = 2iIl 

the system 

-tt 2k,2 
2m 

(3.21) 

and can be wr i t ten ~ a's 

(3.22) 

It is related to the energy of' the excitation involved by con-, 

servation of energy. N is the total number of spins and S 

is the spin quantum number. s~ and s-:- are 1. 1. 

lowering operators for the spin at site i. 

the raising and 

S1(t) is the time 

dependent operator in the Heisenberg representation:' 

(3.23) 

The triangular brackets imply the thermal average over all states 

at some' temperature T. At T = 0 this becomes the e~pectation 

value in the ground state. 

Neutron scattering experiments measure the cross ~ection 

• -+ 
which is proport1.onal to S(Q,E). The partial differential cross-

section for inelastic scattering by spin waves is given by 
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2 k' S 2 
g F(Q)} (1+0 )exp{-2W(Q)}S(Q,E) 

ko 2" z 
(3.24) 

.. 

1 
This cross section is the number of neutrons scattered into 

the solid angle dO, about O,with E' and E'+dE'. 

S(Q,E) is the function given by eqn. (3.20). y = 1.913, g is 

the Lande splitting factor and F(Q) is the agnetic form factor. 

F(O) is the Fourier transform of the spin ~Sity about an ion 

'\ 
and causes the intensity of scattering to de rease with increa-

sing I Q I. (1+62 ) is a factor that depend on the orientation of z 
the magnetization of the sample (z-direc n) with respect to 

the scattering vector O. For a cUbic crystal with many ferro­

magnetic domains the factor averages to 4/3. exp{-2W(Q}} is the 

Debye-Waller factor. 

To obtain the linear spin-wave expression fo~ S(Q:E), 

eqn. (3.20) is rewritten in terms of spin deviation operators. 
l-

Thus 

.... 
S(Q,E) 1 = 21TNt! exp(,{,~t) E exp{-.<.O· (R. -R.)} x 

ij ~ ) 

x <a. (t)a:(o), + a"!"(t)a. (-0» 
1) ~ ) 

(3.25 ) 

This expression is applicable to diluted lattices as well as to 

perfect lattices. For the perfect lattice, however, the expres-

sion can be simplified. 

I 
! 
t 

\ , 
·t 
" t 

,1 
t 
.t 
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3.4 S(Q,E) for a Perfect Crystal 

We wish to simplify eqn. (3.25) for a perfect lattice 

+ by introducing the operators b- and b q-. For the Heisenberg' q 

representati~n of the operator, b~(t), the time derivative is 

given by 

(3.26) 

Using egn. (3.18) for H this becomes 

(3.27) 

'-? 

We can therefore write 

b~(t) (3.28) 

and 

b-(t) = exp(-iw-t)b-
q q q 

(3.29) 

These can be used with eqns. (3.11) to obtain '. 

+ lr - - ' + (3.30a) a. (t) = exp{-i(q·R.-w-t) }b-
~ INq ~ q q 

and 

a, (t) = lr exp{i(q·R.-w-t)}b- (3.30b) 
~ INq l. q, q 

We therefore have that 

. + !. L - -+- -+- ... 
<a.(t)a.(o» = exp{-i(q· (R.-R.)+w-t)} <n-+1> (3. 31~). 

~ J N - J ~ q q q 
and 

+ !. L exp {i (q. (R. -it ) +w - t) } (3.3Ib) <a.(t)a.(o» = <n-> 
~ J N - . J l. q q q 
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where the thermal average, <nq>' is given by 

, -1 
<nq> ; {eXP(~Wq/kT)-l} • (3.32) 

Substituting eqns. (3.31) into (3.25) gives the linear spin-

wave scattering function for a perfect\crystal: 

S(Q,E) = E {6(Q-q-T)O(E~w-)<n-+l> 
- - q q T ,q 

(3.33) 

T is a reciprocal lattice vector. 

Eqn. (3.33) shows that the cross-section is the sum of 

two terms. The first corresponps to the creation'and the second 

to the destruction of one magnon. The delta-functions insure 

conservation of momentum and energy. The two conditions must 

be sa,tisfied simultaneously for scattering to occur. 

It can be seen that for a particular Q in a perfect 

crystal, S(Q,E) shows sharp peaks at the energies that corres-

pond to the excitations whose wavevector is selected by fixing 

-+ 
Q. In an inelastic neutrpn scattering experiment it is pos-

sible to measure the cross-section as a function of Q and E and 

determine the dispersion r~lation of the ma,gnons. , 
Eqn. (3.33) is only valid at 'low 'temperatures. At T = 0, 

<nq> = 0 and the probability o~ destroying a magnon is zero simp-

-+ 
ly because th'ere are none present. S(Q,E) i~ given by 
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-+- -+- - -S(Q,E) = L 6(Q-q-~)6(E-Hw-) (3.,34) 
t ,q q 

Notice that 
-+-

S(Q,E) is normalized so that!. the integral of 

-+-
S (Q, E) over energy is unity. 

3.5 S(,Q,E) for the Diluted Lati:ice 

If the crystal lattice is diluted, that is if a certain 

fraction of the magnetic ions are randomly replaced by non-

magnetic ions, then we cannot proceed as above to obtain an 

expres,sion for the dispersion relation of the magnetic exci ta-

tibns. This is because a diluted lattice does not have trans-

lational symmetry and therefore the Fourier expansion tech-

nique does not work. + The operators a. and a. for a ,vacant 
~ ~ 

site are non-physical because they create or destroy a spin 

deviation where a spin doesn't exist. Hence the op~rators 

+ b- and b- are also non-physical as they involve complete sums 
q q 

+ over all the a. or a.. As a result, q is not a g00d quantum 
~ ~ 

number for the spin excitations in a diluted crystal. 

It is possible, however, to obtain qualitative in for-

mation about the normal modes of a diluted crY,stal from neutron 

scattering measurements of S(Q,E) ~ This is because, although 

in general, all modes participate ~n the scattering'at a par-
-+- ,. 

ticular Q, certain modes contribute more strongly'than others. 

The energies of the contributing modes are usua~ly concentrated 

about som'e average value. 

It .would be useful to calculate S(Q,E) to interpret 

neutron scattering measurements and to obtain infQrma~on about 

t 

1 
- I 

\ 

\ 
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the low temperature magnetic excitations. S(O,E) can be cal-

culated for the linear spin-wave model of a diluted ferromag-

44 
net by the equation of motion procedure described below. 

In the following, the diluted lattice is viewed as a 
; 

three-dimensional array of spin~. in which the location of every 

spin vacancy is known. The interaction between every pair of 

spins in the a~ray is also assumed to be known. A numerical 

c'alculation of S (O,E) can be perf0rmed for a finite array. 

Consider the correlation functions, giO(t), which are 

defined as 

iO·R. 
=; <a.(t) r e J a.(o». 

l. j J 
(3.35) 

There is a giQ for every occupied site i in the array. Eqn. 

+ 
(3.25) for S(Q,E) can be written in terms of the giQ as 

.... 
S(Q,E) 

1 = ,21TNi1., (3.36) 

-00 

The pr~cedure is to determine the giO as functions of time 
.... 

by solving their equations of motion and hence obtain S{Q,E}. 

The equations of motion are found by differentiating eqn. (3.35). 

One obtains 

:..tt:. dgiQ(t) dai (t) .{,Q.'R'j + . ' 
..(;!l d t = ,< (.i.-t1 d t ) rea. (0) > • 

j , J 
(3.37) 

Now 

1 

I 
I 
! 
\ , 

'. 
\ , 

" I 
I 
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dai(t) 
.i:i'i dt = [ai(t),H] 

iHt iHt 
-:t1' 1r - e [a , (0) ,H] e 

1. 
(3.38) 

where H is the Hamiltonian of eqn. (3.10). The commutator can 

be evaluated as 

[a·, ,H] 
1. 

= L: 2S J. , , [a, -a, , ] 
j' 1.J 1. ) 

and eqn. ( 3 . 37) become s 

dg;Q+ 
-i.-t\ ... = --crt L 25 J., (g.:;:t-g.:;t:) 

j 1.J l.U JU 

(3.39) 

(3.40) 

The time derivative of giQ for the site i depends on the gjQ's 

of its neighbours through the interaction of the spin at that 

site with~e ~pins on the neighbouring sites. Furthermore, 

from the definition of giQ and the commutation rules for the 

spin deviation operators, 

. 
(3.41) 

For a given array t~ giO's are calculated by beginning with 

this initial condition and integrating the,coupled equations of' 

motion forward in time. The calculations are performed on a 

computer and the details are pres~nted in Chapter 4. 

Eqn. (3.36) for 5(Q,E) can be further simplified by 

di~iding the integral fOO'dt into tw~ integrals, Joodt and fO dt. 

- 0 - -By changing the variable of integration in the second integral 

fram t to -t and recognizing that 

. '. t 
t 
.1 



(3.36) becomes 

+ 
S(Q,E) in this form is more convenient. 

\ 

'; 

> 
i 
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CHAPTER 4 
\ 

COMPUTER SIMULATION TECHNIQUE 

This chapter describes a computer simulation technique 

used to calculate the scattering law, S(Q,E), for- low-temperature 

magnetic excitations in disordered systems. The system is as-

sumed to be at T = 0 K and to consist of localized spins coup­

led by the Heisenberg exchange interaction. Near neighbour 

(n.n.) and three neighbour (including all n.n., n.n.n. and third 

n.n. interactions) calculatio~s were performed for a diluted fcc 

ferromagnet. 'The choice of various parameters and the errors 

involved in these calculations are discussed. The program, 

along with a description, is given in the Appendix. The input 

data for the various runs is presented_at the end of the chapter 

to illuminate the use of the program. The technique is very 

45 
similar to that reported by Alben et at. 

4.1 Computer Simulation Technique 

'(a) ,Equations of Motion 
.... 

The normalized scattering intensity, S(Q,E), is given 

in eqn. (3.43) an~ can be written as 

S (Q, E) =.lim lim rrk Re 
. T-+-oo A-+-O + J

T dt exp (~!t) [E 

i 
-0 

.::t -+- 2 
exp(-~~·R. )g'-+-Q]exp(-\t ) 

~ ~ 

( 4 .1) 

wnere the correlation functions, giQ' are defined by 

46 
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(4.2) 

+ a. and a. are Boson creation and destruction operators. At 
~ ~ 

T = 0 K the triangular brackets imply the expectation value in 

the ground state and equations of motion can be obtained for 

the giQ using linear spin-wave theory. They are 

with the initial condition that 

(magnetic site) 

(4.4) 

(non-magnetic site) 

The procedure is to integrate these coupled differential equa-

tions forward in time to obtain the giQ as functions of time. 

These functions are then substituted into eqn. (4.1) to obtain 

S (O,E) • 

(b) Numerical Method 

The integrat~ons are performed numerically uSlng the fi­

nite difference formula 

(4.5) 

A Taylor expansion is used for the first time step: 

(4.6) 



48 

Both of these equations are correct to -2nd order in 6t. The 

time step, 6t, can be written as 

1 6t = n w max 
(4.7) 

where w is the upper frequency bound of the magnon spectrum. max 

It has been reported that n ~ 15-20 gives sufficient accuracy44 

The limits in eqn. (4.1) correspond to infinite resolu-

tion. In practice, only a finite resolution is required. The 

parameters T and A are chosen to give the desired re~olution. 

A finite T cuts off the time Fourier transform integral causing 

a broadening of the spectrum and "cut-off ripples". The apodi­

zing function, exp(-At2 ), introduc~s further broadening in the 

form of a Gaussian but reduces the cut-off ripples. A non-

zero A smboths out the spectrum and eliminates non-physical nega­

tive values of S(Q,E). 

The results for each calculation are in the form of a 

+. + 
plot of S{Q,E) vs. E for a particular,Q. The calculations are 

+ 
performed for one Q at a time. For a perfect crystal' the response 

is a delta-fUnction at the energy of the magnon designated by 

. + 
the part~cular Q. The response of a diluted crystal is lower 

in energy and extend~ over a finite energy range. However, the 

response is usually concentrated about some frequency, say w'. 

This implies that most of the 9 iQ vary as exp(-iw't). 

fore the functions 

h,+ 
~Q 

(iw't) 
- exp giO 

There-

(4 .8) 

\ 
I 

\ 
\ 
1 
:~ 
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" 

'j 
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will vary slowly with time. It is computationally more effective 

to solve for the quantities hiO' rather than for the giQ' be­

cause a larger time interval, 6t, can be used in the numerical 

integration. 

The equations of motion for the hiQ are 

with 

dh.+ 
-<'1'l ~Q = 

d't" E 2SJ .. (h. Q+-h. Q+) -i'rw I h.::t 
~J ~ J ~~ 

j 

(magnetic site) 

(non-magnetic site) 

(4.9) 

(4.10) 

The hiQ are multiplied by exp(-~wlt) before substitution into 

(4.l). Note also that 

dh.+ 
'~Q 

E 2SJij (CIt 
j 

- -i'iw I (4.11) 

The model lattices on which the calculations are performed 

are large, 3-dimensional fcc arrays in which a fraction x of the 

spins have been removed. For the purposes of indexing, the fcc 

array is viewed as a sc lattice of dImension NlxN2xN3 in wh~ch 

half-the sc sites are missing.~ A lattice vector, RJKL , is 

given by 

-+0 a a " a 
RJKL = J 2 x + K 2 y + L 2 z (4.12 ) 

where J, K and L are integers and J+K+L must be even. a is the 

I 

j 
I 
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lattice ,spacing of the fce lattice. An example is given in 

Fig. 4.l(a). To remain within the array, J, K and L can take 

'on values from 1 to Nl, 1 to N2 and 1 to N3 respectively. As 

periodic boundary conditions are used, Nl, N2 and N3 must be 

even. 

A reciprocal lattice vector is given by 

(4.13 ) 

where h, k, and ~ are all even or all odg integers. The reci~ 

procal lattice is shown in Fi~.+4.l(b). . " 
iQ·R . 

Consider the wave, e JKL. 0'i5 the wavevector., For 
l 

an infinite lattice, 0 can be any vector in reciprocal space. 

However', if periodic boundary conditions are imposed on the 

wave, 0 must take the form 

~ = 21T '(2nl " + 2n2 y" + 2n3 z) 
\l a Nl x N2 1i3 (4.14 ) 

where"nl, n2 and n3 are integers. The wave can be written 

21T.(.. (Jnl) , 21T.(.. (Kn2) 2Tr.i.. (Ln3) 
N.l N2 N3 

= e • e • e (4.15 ) 

The program calculates S(Q,E) for one 0 at a time for each ar­

ray. 'Nl, N2 ·~nd N3 determine ~he size of the array and nl, n2 

and n3 define O •. The integers, oJ, K and L, speoify a particu­

lar lattice, poillt. The exponentials in (4,.15) do not have to 

be calculated ever~ time they are~required. The factors are 

calculated at the beginning of the pr~~ram' and stored in lo~k-

I 
1 

\ 

I> 

I __ 

", 

i 



'Fig. 4.1 (a) A fcc lattice array (Nl=6, N2=4) illustrating 

the J,K,L.indexing of the lattice sites. 

RJKL is a real lattice vector and a is the fcc 

latt~e spacing. 
, 

(b) The reciprocal lattice which corresponds to the. 

lattice in (a). GhkR. is a'reciprocal lattice 

vector. Some special points in reciprocal 

space are also listed. 



(a) J~~~i!ttice (NI = 6. N2 = 4) 

4 0 0 

3 0 0 

2 0 0 

" y 
K = 1 LO x-

0 0 

. J :;·1 2 3 4 

* a' a" a" KJKl = j 2 ~ + K 2 Y + l 2 z 
if 

(J+K+l = 2n, n an integer) 

~fCC lattice 
site 

Or 
0 • a 

ot 

5 6 

.,~ 

~\, 
/! 

(b) reciprocal lattice 

. 
,020 

boundary of fir.st 
220 1 

Brillouin zone 4n 
a. 

. . 1 
000 200 

a - 2n (h~ ~ hkt - al x + ky + tz) 

.(h,k,t all even or all odd) 

Z.B. at ~n (.5 •. 5,.5) in (111) direction. 

l point at 2: (l,l t O) in (110) direction. 

Z.B. at 2; (I,OtO) in (100) dir,ection. 

,",-,,--'"'"'-_...t ~_ ~"'-- ~~"---" __ .' ___ -<_ ' .. ~."'~ ... ,;. '""~ •• ....".._~.~ ___ ........ ~.~.-...~ J._ - .' -.. ... - ~ 

U1 ..... 

• 
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up tables. 

4.2 Errorf? 

There are several sources of error in the computer simu-

lation technique. A slight broadening of the spectrum and small 

ripples occur because A is greater than zero and T is finite 

(see eqn. (4.1)). These parameters determine the energy resolu-

tion of the calculation. There is an error that arises from the 

integration procedure which causes a small shift in the response 

to higher frequencies. This error can be reduced by decreasing 

the time step, At. Wiggles occur in the response of diluted 

arrays, some of which are caused by the periodic boundary con-

ditionf?, and some arise from the particular disordered spin 

configuration chosen. These wiggles are errors in the sense 

that they would not be present if the calculation were performed 

for an infinite crystal. All of these errors can be quantified 

and reduced to within certain limits. We now discuss the choice 

of the various parameters that set these limits. 

To check the ac.curacy of the program, calculations are 

performed for ,perfect crystal cases .(x = 0) and compared with' 

the analytic solution for the dispersion curves (eqn. (3'.'19)). 

For example, Fig. 4.2 
~ ~ 2n 

shows a plot of S(Q,E) for Q = -- (0,0,1) a 

as a function of the reduced energy E = E/l2SJ .' The result 
I 

is from a n.n. calculation with x = 0 for an array of dimension 
~ 

28x38x26. + . 
Q ~s at the zone boundary in the [OO~] direction, so 

from eqn. (3.19) a delta ·function is expected at E =',2.6667. 

The resul,t of the program is a narrow Gaussian I with some rip-

1 

\ 

'r , , 
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Fig. 4.2 Computer simulation result for the normalized 

scattering law; SCO,E}, as a function of 

normalized energy, E = E/12SJ1 , for a pure (x=O) 

fcc model of dimension NlxN2xN3 = 28x38x26 

(3458 fcc unit cells). Q is at the zone boundary 

in the (001) direction. There is only a single 

.mode excited. The result is a narrow Gaussian, 
-with some ripple, centered at E = 2.6679. The 

-analytic result is a delta function at E = 2.6667. 

\ 

i 
I 
i 
L 

~I 

i 
f 



I I r 1 

f-

-
!-"- .. 

0 .. 
0 --~ 

0 
<, 

I: 
N 0 -

~ • u 

10 X 

I I I I 
0 0 0 0 
0 Q) (Q "it 

I 

I 
0 
N 

S3 

-' ----- It') - N 

- q 
N 

It') - ~ -

-3 

10 - 0 

0 - 0 

0 

.., 
en 
N 

..... 
UJ 

, . . 

i 
J 
J ., 

I 
! 
1 

j 
j. 

I 
I 
I 



54 

~ 

pIe, centered at E = 2.667~, very close to the correct energy. 

The apodizing constan~, A, and the cut-off time, T 

were chosen so that the wi4th of the Gaussian in the perfect 

crystal calculation was ~ 2 % of the full spect~al width (w~x) 

and the ripple was < 0.5% of the peak height. For these speci-

fications, A is readily calculated to be 

0.02xw 2 , max 
A = [ 3.'330 ] (4.1:6) 

T was obtained ~pirically by repeating the calculation with 

different values. A value of 

(4.17) 

satisfied the ripple criterion'given above. 

In the example of Fig,. 4.2 there is a slight discre-

pancy between the energy where the narrow Gaussian occurred 

and the energy ~xpec~ed from the analytic theory. This shift 

in energy was found to depend on the time step, ~t, and there­

fore must arise from the method of integrat'ion, i.e."eqn. (4.5). 

It was found empirically that the value 

llt 110 [~] 
~mq.x 

(4.18) 

resulted in, a frequency shift oT less than .05% 'of wrnax over a 
'w • 

spectral range ~ax centred at WI. This 'frequency shift'is 

s,ignificant only fo.r "the lowest ,values.of q, where a correction. 

• 
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wi9gles occur in 'the response because periodic boun-

dary conditions are Lmposed on the arrays. The location of these 

wiggles depends on the array dimensions. Therefore, care was 

taken to insure that Nl, N2 and N3 were differeljlt, and the results 

of three arrays of 4ifferent dimensions were ayeraged together. 

The averaging had the effect of smoothing out he response. 

To simulate diluted crystals, a certai fraction 'of the 

spins in the array are removed by use 

The resulting spin configuration contains only a finite sample 

of the singl~ spin environments present in an i finite crystal. 

This causes an additional uncertainty in ponse. The 

error from this effect can be reduced by averag ng o~er arrays 

of different spin configurations. For example, se'e Fig. 5.5(a} 

:t 21f :t and {b}. Here '..l = - {O,O,l} and X= 0.2. In, { }, S('..l,E) is a 

plotted for the n.n. calculation for three 

dimensions 28 x38 x26, 32x34x30 and 36 x 24 x22, 

spin configuratiqn. All tne arrays had 20% 

ent arrays of 

with a different 

spins removed. 

The average of the results in {a} is shown in (b). The results 

in (a) differ from the average'by less than 5%. ~is is taken 

as a r,ough estimate of the error in'S (0 .. , E) . The 

quency of the calculated response was selected by taking the 

centre of the peak at half height. An uncertainty' is. assigned 

by considering the distribution of centre frequenc eS,that arises 

from the three spin con;igurations used in. the ave age.~ This 

unceftlinty was ~±O.5% and essentially independent of O. 
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4.3 Calculations 

In Tables 4.1 and 4.2'are presented the initial data 

for the computer simulation calculations of S(Q,E). ~ is the 

reduced wavevecto~i Nl, N2 and N3 define the x, y and z 

dimensions of the array; and nl, n2 and n3 fix O. The 

tables show the number of spin sites, the number of spins 

present and ENORMP which is related to the WI in the defini-

In most cases the results of three arrays were 

averaged together. Table 4.1 is for n.n. calculations with 

x = 0.2 for the [OOZ;], [Z; Z; Oland [Z;.l; 1;] directions. Table 

4.2 is for three ne ighbour calculations with x = 0.2 for the 

[OOZ;] direction. For these calculations the exchange con-

stants were J l = 0.296 meV, J 2 = 0.283 meV and J 3 = 0.110 meV. 

Other n.n. calculations with x = 0.3 were performed using the 

sarne arrays as in Table 4.1. The results of the computer 

~uns are presented in the next chapter. 

, , 
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Table 4.1 Initial data for the 
" ~, 

calcu-n.n. computer s~mulat~on 
lations of S(Q,E). The fraction of missing spins is_ \ 
x = 0.2. I 

t 
'(a) Q = 2iT 

1 
- (O,O,?;) a 

'number of number of· 
r; Nl N2 N3 'n1 n2 n3 spin sites spins present ENORMP --.0 52 28 22 0 0 0 16016 12773 0.0 ~ 

46 26 24 0' 0 '0 14352 11485 . ~ 
34 32 30 0 0 0 16320 13802 * f 

.1 20 36 44 1 0 0 15840 12631 0: O. " 

40 30 26 2 0 0 • '15600 12493 I , 

40 32 24 2 0 0. ],,5360 12323 < 

.2 30 38 26 3 0 0 14820 117'16 ' 0.2 
46 28 24 4 0 0 134~0 10695. 
50 22 20 5 0 0 11000 8789 

.3 20 36 44 3 0 0 15840 12601 0.3 
40 30 26 6 0 o . 15600 ' 12450 
40 32 24 6 0 0 15360 12275 

.4 30 38 26 6 0 o ' 14820 11899 0.6 
40 28 24 8 0 0 13440 10730 
50 22 20 10 0 0 11000 8864 

.5 28 38 26 7 0 0 1383Z 11031 0.8 
32 '34 30 8 0 ,0 16320 12970 
36 24 22 9 0 0 9504 7525 

.6 30 38 26 9 0 0 14820 11955 1.0 
1 40 28 24 12 0 0 13440 1078Q 

'50 22 20 15 0 0 11000 _ 8791 
.7 20 36 44 7 0 0 15840 ,12761 1.3 

40 30 26 14 0 0 15600 12492 
40 32 24 14 0 0 15360 12327 

.8 30 38,26 12 ' 0 0 14820 11925 1.4 
40 28 24 1:6· 0 0 13440 10811 
50 22, 20' 20 0 0 11000 8921 

.9 20 36 44 9 0 0 15840 12 7 3-5 1.5 
40 30 26 18 0 0 15600 .12449 
40 32 24 18 0 0 15360 12249 _ 

l~O 28 3'8 26 14 0 0 13832 11044 1.6 , 

32 34 30 16 0 0 16320 13044 . 36 24 22 18 0-0 9504 7608 • 

/ 
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Table 4.J. (continued) /-
(b) Q ~ ~ 

a (1;,1;,0) 

z: Nl N2 N3 n1 n2 n3 number of number'of 
spin sit!=!s spins present ENORMP 

-
.OB33 24 24 52 1 1 ° 14976 11935 0.06 

48 24 28 2 1 ° 16128 12929 
48 24 22 2 1 ° . 12672 10206 

, ' 

.1667 36 24 30 3 2 0 12960 10294 0.16 
48 24 28 4 2 0 16128 12885 
48 36 IS' 4 3 0' 15552 12424 

.2500 32 40 22 4 5 0 14080 .. 11198 0.43 
32 24 34 4 3 0 13056 '10397 
40 24 28 5 3 0 13440 10725 

.3333 48 24 22 8 4 0 12672 10155 0.69 
30 36 28 5 6 0 15120 9458 
42 30 26 7 5 0 16380 13161 

.4167 24 24 52 5 5 0 14976 '11965 0.96 
48 24 28 ---\ 10 5 0 16128 12814 
48 24 22 .10 5 0 12672 10049 

.5000 28 44 26 7 11 0 16016 12931 ' 1.7 
24 40 30 6 10 0 14400 11543 
32 36 22 8 9 0 12672 10127 

.5833 24 24 52 7 7 0 14.976 12055 1. 38 
48 24 28 14 7 0 16128 12903 
48 24 22 14 7 0 12672 10168 

.6667 48 24 22 16 8 0 12672 10197 1. 49 
30 36 28 10 12 0 15120 12149 
42 30 26 14 10 0 16380 13156 

.7500 32 40 22 12 15 0 14080 . 
. 

1"1234 ,1. 6 
32 24 34 12 '9 0 \13056' 10421 
40·24 28 15 ·9 0 '1344'0 10734 

...s33~ 36 24 30 15 10 0 12960 10373 1.6 
48 24 28 20 10 0 16128 12906 
48 36 18 2'0 15 0 15552 12333 

.9167 
, 

24 24 5'2, 11 11 0 \ 14976 12047 1.6 
48 24 28 22_11 0 16128 12788 
48 24 22 22 11 0 1267.2 10106 

1. 0000 36 34 26 18 17 0 15912 1268.9 1.6 
32 30 28 16 15 a 13440 10779 
38 22 24 19 11 ,0 ,10032 7995 

" 
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Table 4.1 (continued) ---- ; , 

0 21T ~ 
(c) = - (/;,I;,t;) I 

a , 
I; N1 N2 N3 n1 n2 n3 number of number of 

spin sites spins present ENO~ 

. 
.0667 30 30 30 1 1 1 13500 10717 0.0 

30 30 30 1 1 1 13500 10743 I 

'j 30 30 30 1 1 1 13500 10767 
.0833 48 24 24 2 1 1 13824 10997 0.1 

48 24 24 2 1 1 13824 11000 
48 24 24 2 1 1 13824 11019 

.1250 48 32 16 3 2 1 12288 9859 0.2 
48 32 16 3 2 1 12288 9794 
48 32 16 3 2 1 12288 9889 

.1667 48 36 12 4 3 1 12288 8291 0.3 
36 36 24 3 3 2 15552 12366 

, ~~ 24 24 3 2 2 10368 8232 
.2000 30 20 5 3 2 15000 ti2100 0.5 

40 -30--20 4 3 2 12000 9635 
50 20 20 5 2 2 10000 8001 

.2500 48 24 24 6 3 3 13824 11126 0.6 
40 32 24 5 4 3 15360 12295 
32 32 24 4 4 3 12288 9866 

.2857 42 28 14 6 4 2 8232 6567 0.7 
4? 28 14 6 4 2 8232 6614 

• .42 28 14 6 4 2 8232 6612 
.3333 48 36 18 8 6 3 15552 12527 0.9 

42 30 24 7 5 4 15120 12Q75 
36 30 24 6 5 4 12960 10342 

.3750 48 32 16 9 6 3 15552 9811 1.0 
48 32 16 9 6 3 15552 9844 
48 32 16 9 6 3 15552 9822 

.4167 48 ,24 24 10 5 5 13824 10950 1.1 
48 24 24 10 5 5 ,13824 11140 
48 24 24 10 5 5 138'24 10959 

.4444 36 36,18 8 8 4 11664 '9295 1.1 
I 36 36 18 8 8 4 11664 9363 

36 36 J.8 8 8 4 11664 9290 
.5000 44 32 16 1·1 8 4 11264 9040 1.2 

40 36 20 10 9 5 14400 11468 
36 32 24 9 8 6 13824 11127 
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Table 4.2 Input data for the third neighbour computer simulation 
~alcu1ations ~f S(Q,E).· The fraction of missing spins 
~s x = 0.2. = 2rr/a (o,o,~). 

Nl N2 N3 nl n2 n3 number of number of 
spin sites spins present ENORMP 

.1 44 36 20 0 0 1 15840 12657 .37 

.2 26 38 30 0 0 3 14820 11839 1. 38 
24 28 40 0 0 4 13440 10825 ., 
20 22 SO 0 Q 5 11000 8764 

• 3 44 36 20 0 0 3 15840 12616 2.78 
26 30 40 0 0 6 15600 12488 
24 32 40 0 0 6 15360 12299 

.4 26 38 30 O· 0 6 14820 11876 4.22 
24 28. 40 0 0 8 13440 10728 
20 22 50 0 0 10 11000 8775 

.5 26 38 28 0 0 7 13832 11036 5.43 

.6 26 38 30 0 0 9 14820 11847 6.21 
24 28 40 0 o 12 13440 10733 
20 22 50 0 a 15 11000 8787 

.7 44 36 20 0 0 7 15840 12757 6.54 
26 30 40 0 o 14 15600 12414 
24 32 40 0 o 14 ~360 12340 

.8 26 38 30 0 o 12 ~829 11870 6.55 
24 28 40 0 o 16 13440 10810 
20 22 50 '0 o 20 11000 8850 ~. -

.9 44 36 20 0 0 9'- 158~rO 12658 6.45 
26 30 40 0 o 18 15600 12495 
24 32 40 0 o 18 15360 12340 

1.0 26 38 28 0 o 14 13832 11129 6.38 

• u,' 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Neutron Scattering Experiment 

Inelastic neutron scattering experiments were per-

formed on the non-diluted ferromagnet, NizMnSn, and on the 

ZO% diluted ferromagnet, Ni2MnO.avO.2Sn. The samples were . 
oriented with the- [110] direction vertical and the spin-wave 

dispersion curves were measured in three symmetry directions 

about. the (Ill) reciprocal lattice point. Fig. 2.5 is a dia­

gram of the reciprocal lattioe in the (.110) plane showing" 

the centres of peaks observed in constant energy scans. The 

~onstant energy mode was used because" of the steepness of the 

disPersion curves. The sample temperature was approximately 

93 K which is 0.27 Tc for Ni 2MnSn and 0.36 Tc for Ni2MnO.aVO.2Sn. 
I 

Some selected neutron groups 9re shown in Fig. 5.1 for 

NiZMnSn and Fig. 5.2 for NizMnO.8vO.2sn~ The intensity of the 

spin-wave scattering is weak compared to the background, and 

decreases as the frequency transfer increases. Some of this 

decrease may be intrinsic "to the spin-waves, but for constant 

incident energy, it is mostly due to the decrease in efficiency 

of the analysing spectrometer. A similar decrease was observed 

for bo~h crystals. 'The low signal to background ratio limited 

mwasurements to frequency transfers of le~s than 6 THz. 
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Fig. 5~1 con~tant energy scans along the \OO~) direction in 

Ni2MnSn at 93 K. Counts'are plotted against the 

'-r~duced wavevector, 'I for several energy' transfers, 
'\0 

, , 

v. The incident neutron wavelength was 1.62 AO for 

v :<4 THz arid 1.17 AO /or \I > 4 THz. 
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Fig. 5.2 Constant energy scans along the [~~~] direction 

in Ni2MnO.SvO.2sn at 93 ~., Counts are plotted 

against the reduced wavevector, ~, ror several 

I. 

energy transfers, v. The incident ~eutron 

wavelength was 1.60 AO for v < 3 THz and 1.16 AO, 

for v > 3 THz. \ 
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Points on the dispersion curves were obtained by ta-

king the centre of the observed peak to correspond to the fre­

quency transfer of the scan. Scans at low q were repeated with 

increased horizontal and vertical collimation to check if a . ' 

resolution correction was necessar¥ in this region. The posi­

tion of the peaks did not change therefore the correction was 

not required. The results are given in Table 5.1 for Ni 2MnSn 

and ~n Table 5.2 ,for Ni2MnO.SvO.ZSn. Also recorded for 

NiZMnO.SvO.2sn is R, the ratio of the frequency of the ~iluted 

crystal to the frequency of ~he non-diluted crystal. As mea-

-surements for the two crystals were not taken at the same q --
values, interpolated values for Ni2MnSn, based o~ the .six neigh­

bour fit, were used for the perfect crystal frequency. The 

uncertainty in the peak position and in R was assigned by con-

sidering the statistical error in the number of count~ at eac.h 

point on the scan. 
j 

The experimental frequen~ies for Ni2MnSn are plo~ted 

in Fig.' 5.3. Also shown is the six-neighbo~r .fit that Noda 

and Ishikawa 4 made to' their data on. the same material. Thei+ . ',' 

data' was taken at 50 K whereas this data was take,n at 93 K. 

According to the mag'neti~ation curves for Ni 2MnSn. (see Fig. 

2.5-), the ferro~agne,t is stilL tV 98% saturated at 9'3 K. There­

fore th~ frequencies ~f the spin-waves should have changed 
• ~ ~ .f 

little from their T = 0 K values. Agreement with' Noda and 

Ishikawa's fit is good except in the. {OOl;] direction",where the 

{ 
\. 

\ 

f 
f 
i 



65 

Table 5.1 Spin-excitation frequencies fpr Ni2MnSn. at 93 K 

(a) - 21T (0 0 l;) 'q = a " 

frequency reduced 
v wavevector 

(THz) l; 

.,589 ~117(5) 
1. 342 .197(4) 
1. 806 .220(7) 
2.703 .280(7) 
3.495 .326(7) 
3.997 .350{10) 
4.040 .353(8) 
4.503 _.408 (10) 
5.029 .434'(16) 
6.006 .533(19) 

(b) - 21T 
(l;,l;,0) q = -a 

v 
~THz) ~ . t 
.543 .081(6) 

1.265 .125(6) 

1 
1. 704 .136(7) 
2.496 . .180(7) 
3.495 . ~228(10) I 

21T ' . 
------. (c) - \ q = a (l;,l;,l;) 

I 
v ,. 

l; 

j (THz~ 
'. 

.635 .069(8) 
1.418 .105(4) "I 

I 2.214 .136(4) 
3.01.0 .162(5) 
3.495 .• 184(4) 

" \ . 
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Table 5.2 Spin-excitation fr~quencies fo~ Ni2MnO.8VO.2S~ at-93 K 

(a) - 21T . q = - (0,0,1;) a 

reduced 
frequency wave vee tor 

v (THz) r; 

.484 .115 (6) 

.907 .192(9) 
1.291 .240(5) 

·1.998 .312(8) 
3.0()6 .418(10) 
3.980 .520(15} 
5.004 . ,600 (IS) 

- 2rr 
(b) q =- (r;,l;,O) a 

v (THz) I; 

.484 .085(5) 

.907 .128(3) 
1.251 .161(3) 
1.994 .198(3) 
3.03 .281(7) 
4.27 .,362 (10.) 

- 21T 
(c) q = a-' (I;, l;, 1;) 

v . (THz) I; 

.484 

.907 
1.291 

, i .. 994 
3.0l.5 
4.260. 
4 •. 54 
5.521 
'6.50 

.071(4) 

.106(2) 

.135(2) 

.170(3) 

.220(10) 
:260(20) 
.'2~)12 ) 

.• 316(10) 
.395(15) 

perfect crystal 
- frequency 

v
t 

(THz) 

.50075 
1.30842 
1.93492 
2.95592 
4.43428 
5.66791 
6.48400 

.55291 
1.21185 
1.84959 
2.65889 
4.58019 . 
6 .. 15169" 

V
t 

(THz) 

.58088 
1.25868 
1.97680 

'2.98208 
4.55,292 

. 5.80103 
6.47445 
7.34924' 

. 8.72707 

. 
corrected 

. ratio 
v/vt. 

1.04{10} 
.75 (7), 
.72(3) 
.73(3) 
.73(2) 
.76;2) 
~83(2) 

.94(12) 

.81 (4) 

.73(3) 

.81(2) 

.71(3) 

.75(2) 

.90(11) 

.78(3)· 

.70 (2) 

.72(2) 

.71(5) 

.79 (9) 

.76(5) 
" '.81(3) 

.80(2) 

.... 
~ . 
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1 
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Fig. 5.3 Spin-wav~ dispersion relations for Ni2MnO.SvO.2sn 

and Ni 2MnSn corrected to 0 K. The solid line is 

the six-neighbo~r fit to Noda and Ishikawa's data 

for Ni2~Sn. The broken line is the result of 

computer simulation caLculations for the 20% 

diluted ferromagnet. For the [OO~J oirection the 
! . 

broken line is the three-neighbour c.alculation plus ... 
the virtual crystal result fo~ 4~ to 6th n~ighbour 

contrihutions. For the [~~6J and [~~~J di~ections 

the line is the nearest neighbour calculation ~lus 

0.8 of the 2nd to 6th n~'ighbour non-diluted'contri­

butions. 
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• 
frequencies are slightly' higher 'than tlle fit • .' This dis-

crepancy may be due to a disorder eff.ecl4 • Careful examina-' 

tion of the scans shows that ther, are possibly tw~ peaks 

suggesting two branches. One of the peaks occurs at the 'fit 

frequency. Th~ hi~her frequencies are as yet unexplained • 

. The values for the exchange constants obtai~ed by Noda and 

Ishikawa w~e used in subsequent calculat~ons because their 

data is more complete. 

The spin-wave dispersion relations for NizMnO.8vO.2Sn 

are also shown in pilg • 5.3. The experimentaI frequencies 

measured ,at 93' K, have been corrected to 0 K by scaling with. 

the tempe~ature dependence of the ~aqnetizati n. The 
. , 

correction increased all f.requencies by 8.7%. he validity 

of this temperature correction is 'dis us 

It is obvious from Fig. 5.3 that the effect of dilution 

is,to lower the frequencies of the spin-waves. In the virtual 

crystal model the random removal of· a fraction x of the spins' 

lowers the spin-wave frequencies by a factor I-x. The factor 

is independent of q. ·In con'trast, the measured ratio of the 

frequency for the, 20% diluted alloy to that of the non-diluted 

alloy is found to very with q. Thi~ ratio is plotted in Fig. 

5.4(a). The ratio is less than 0.8 for low q and greater tnan 

0.8 for high.q. This result is characteristic of an in-b~nd 

resonance~. The virtual crystal model is 'inadequate to explain 

this phenomena because it does not properly account for ,the 

r~naomnes.s in the local ei\yironment ~of each spin. 

( 
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Fig. 5.4 (a) 

\ 

Frequency ratio, w /w vs. dilute non-dilute' 
reduced wavevector, ~, for the [OO~], [~~OJ 

and [Z;l,; l,; ] directions. .The. measured frequencies 

for Ni2Mno.a'{O'.2Sn were divided by the corres .... 
, ' . 

pondinq frequency o~ the six~neighbour fit to 

the data for Ni2~sn~ -The solid line is the 

ratio obtained from the n.n. computer simulat'ion 

calculauion and "the broken 'line is the result 

of the three-neighbour calculation. 

(b) Width of the response obtained from the computer . 
simulation calculations- for n. n. interactions 

with x=O.2 (solid line) and x=O.3 '«(lotted line), . , 
, 

and for'three-neighDour interactions with x=O.2 

(dashed line): 

, 
\ 

1 
'1 
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Another expected effect of dilution is an increase in 

the width of the response due to a decrease in the lifetime of 

the excitations. However, the low intensity of the scattering 

made it necessary to set the spectro~eter for low resolution 
I 

which precluded accurate meaSurement of the response widths. 

The ex~cted increase in width was small compared to the re­

solution width of the instrument. 

5.2 Computer Simulation Results 

The effects of dilution were first examined in a n.n. 

'model. Fig,.' 5.6 shows results of the computer simulation for 

a fcc lattice, including only non. matrices,' with x = 0.2 

(20% diluted). In the figure are plots of S(O,E), normalized 

to 100, vs. the reduced energy E ~ E/12SJl , as Q increases 

towards the zone boundary in the [~O~] ~irection~ The re-
I 

sult~ are averages of three different arrays, each with a dif-

ferent configuration of spins selected by a random number gene-

rator. By averaging the three calculations, boundary effect's 

are minimized and ~ ,40,000 single spin environments are con­

sidered. The error in S(Q,E) estimated ~rom the difference 

• in the results from the three arrays " is approximately 5 % 0 

The graphs in Fig 0' 5.5 show that the diluted crys1::al 

responses broa~ and decrease in frequency from thenon-. 

diluted results, which are 'delta-functions at the fr~quen7ies 

indicated by bars. The centre frequency of the calculated 

response was selected by taking the centre o£ the peak. at 

\ 
i 

,1 

,0 
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Fig. 5.5 S(O,E) for various Q~s in the [OO~] direction fram 

the n.n. computer simulation calculations. The 

vertical bars are the delta-function responses for 

the non-diluted crystal. (a) S (O/E) for three 

different arr.ay.s (28 x38x26, 32x34x30 and 36x24x22) 

at the same 00" (b) Average of the' three arrays in . ' 

. If ' 
(a). (c), (d) , (e) and (f) S(Q,Ej~, for various O's 

~ 

in the [OO~] direction. 
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j 
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t, \, 

half height. An uncertainty is assigned by considering the 

distribution of centre !requ~ncies that arise from the three 
-

spin configurations used in the average. This uncertainty 

was 'V 0.5% and es!?entially iJ;ldependent of O. The frequen­

cies, frequency ratios and widths are presented in Table 5.3. 

The frequency ratios fQr the n.n. calculation are 
.. 

alsQ plotted in Fig. 5.4(a). The shape of the measured ratio, 
~ 

characteristic of an in-band resonance, is well reproduced 

by the calculated curves of S(Q,E) for the n~. -model. How-

ever, because the alloy is a metal and the exchange interac-

tions ~re long range, the contribution to the sp~n-wave fre-

quencies from further neighbours cannot be neglected. To 

examine the effects ~f including more neighbours in the com-

puter simulation, a calculati:,o.n was don~ for the [aOl;] direc--, 
'" ~ .... '" 

tion which included up to third neighbours. These results 

are presented in Tab1e '5.4. The frequency ratios for this 

calculation are also shown in Fig. 5.4(~) (broken iines). It 

can be seen that the ratios are closer to 0.8 and the reso-

nance behavior is not as pronounced. This is to be expected 

because the larger number of neighbours makes for smaller 

,fluctuations i~ the number of neighbours interacting with 

each spin. However, the calculated re'sonance, is now smaller 

than the 'measured resonance, and there is not as gopd agree­

ment with experiment. Note that the inclusion of neighbours 

more distant than third should have little effect on the ~atios , 
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Table 5.3. 5p~n-excitation frequencies, in THz, fora diluted 
fcc lattice with n.n. exchange interactions, from 
computer simulation calculations. T~e fraction of 
missing spins is x = 0.2 and the exchange constant 
is J l = 0.0716 THz 

-' 21T (a) q'= - (O,O,z:;,) 
a 

• reduced perfect crystal width of 6-neighbour 
wavevector frequency frequency ratio response frequency 

z:;, v v1 vlv1 W "total uncertaint:x:: ±.5% ±.5!5 ±·l% 

0 0 0 .0933 0 
.1 .0831 .11210 .741 .0940 .2291 
.2 .3176 .43744 .726 .102 1.0939 
.3 .689 .94416 .730 .165 2.1602 
.4 1.195 1.58266 .755 .295 3.2845 
.5 1. 786 2.2904,.S. .780 .465 4.3084 
• 6 2.42 2.99824 .808 _.526 5.2116 
.7 3.00 . 3.63675 .825 .603 5.9687 
• 8 3.49 4.14347 .. 843 .781. 6.6173 
• 9 3.87 4.46880 .865 .793 7.1106 

1.0 4.00 4.58091 .873 .724 7.2933 

(b) - 21T 
(z:;"l;, q = - 0) a 

l; v VI v/"l W "total 

.0833 .1162 .15476 .751 .0940 .4180 

.1667 .433 .59317 .7'30 .112 1. 5330 

.2500 .916· 1.24347 .'737 .202 3.0086 

.3333 1.524 2.00415 .760 .360 4.4480 

.4167 2.19 2.76615 .792 .559 5.4499 

.5000 2.83 3.43568 .824 .692 5.8777 

.5833 3.34 3.951'78 .844 .729 5.8578 

.6667 3.70 " 4.29460 .862 .749 5.8019 

.7500 3.89 4.48266 .869 .74.9 5.9957 

.8333 3.96 4.56035 .869 .749 6.4890 

.9167 3.97 4.57958 .866 .769 7.02'37 
1. 0000 3.98 4.58091 .869 .733 7.2763 
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Table 5.3, (continued) 
I 
1 

(c) - 'q 21T I 

=- (Z;,l;,l;). 

\ 
a 

Z; \) 
"l. V/v 1 

W \)to~a1 

.0667 .1089 .14852 .7.33 .0'943 .40,09 

.0833 ' .1686 .23015 .733 .0948 .6192 

.1250 .3687 .50314 .733 .106 1.3384 

.1667 .626 .85892 . . .729 ~ 135 2.2440 • J 

.2000 .873 1.18700 .735 .202 3.0561 ~ 

.2500 1.301 1.71784 .751 .304 . 4.3235 

.2857 1.621 2.10009 • 772 .398 . 5.1824 

.3333 2.03 2.57676 .786 .533 6.1697 
·.3750 .2.35 2.93254 .801 . .702 6.8578 
.4167 2.60 3.20553 ,.812 .769 7.3478 
.4444 2.74 3.33208 .822 .813 7.5804 
.5000 2.84 3.43568 . .826 .864 7.7511 

• 

1 ' 

.. 
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Table 5.4 Spin-ex~itation frequencies,i~ THi, for a diluted 
fcc ,lattice with n.n., n.n.n. and third n.n. ex­
change interactions, f~om computer simulation cal­
culations. The fraction of missing spins is x=0.2 
and the exchange constants,are J l _= 0.0716 THz, 
J 2 = 0.0684, J 3 = 0.02660 THz, q = 2n/a (O,O,~) 

reduced 
wavevector frequency 

I; \I 

uncertainty: ±.5% 

.1 ' 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 

.3596 

1.347 

2.72 

4.21 

5 •. 41 

6.29 

6.79 

6.85 

6.69 

6.64 

perfect 
crystal 
frequency 

"3 

ratio 
width 

of 
response 

W 

±l% 

.46254 .777 .1901 

1. 7 2 9 0 0 .~. 77 9 .206 

3.47675 

5.28910 

6.79011 

7.75683 

8.17058 

8.1-8951 

8.05733 

7.98563 

• 78~ .332 

· 79:-J 390 

• 797, .523 

.81'1 .980 

.831. 1.013 

.836 1.029 

.830 1.079 

.831 1. 012 

6 neighbour, 
frequency 

\ltota1 

.2952 

1. 0901 

2.1651 

3.3336 

4.3361 

5.2708 

6.1289 

6.7307 

7.0614 

7.2073 

( 

, 
I 

1 . 
! 

, 
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\ 



76 

because their contributions to the spin-wave frequencies are 

small. 

The computer simulation results for the spin-wave dis-

persion cu~ves are shoWn in Fig. 5.3. For those neighbours 

not included in the s'imulation the contributions were taken 

to be 0.8 of their contribution to the spin-wave frequencies 

in the non-diluted Ni 2MnSn. .It was found that the frequencies 

obtained for the [OO~J direction by using the three-neighbour 

simulation results plus 0.8 of the rest were not significantly 

ditferent from those obta~ned~by using the n.n. calculation 

plus 0.8 of the 2nd to 6th neighbour contributions. There-

fore the three-neighbour calculation was not done for the 

other directions. The frequencies are shown in Fig. 5.3. The 

experimental data for the spin-wave dispersion curyes in the 

l' diluted ferromagnet is in good agreement with the curves 

predicted by the computer si~ulation technique. 

The compute~ simulation calculations,can be compared 

to other theories. Fig. 5.6, shows n.n. frequency ratios in 

the [OO~J direction for two spin-vacancy concentrat~ons, x= 0.2 

and x= 0.3. (The x= 0.3 results are presented in Table 5.5). 

Also plotted are the ratios for a n.n. CPA calculation using 

the method of L.A. Roth41 . Th~ ~alculation was performed 

54 by D.W. Taylor. Resonant frequency shifts are evident for 

all sets of data. For x = 0 .2 1 the CPA resul ts agree very well 

with the simulation results but there is some dis~repancy'at 

;~ . ' 
", \ 

; 



Fig. 5.6 Frequency ratios in the [OO~J direction for a·n.n. 

fcc lattice for two spin-vacancy concentrations, 

x = 0.2 and x = 0.3. The open circles or triangles 

are the computer simulation calculation results 

and the continuous lines are from a CPA calculation. 

The solid ,points are the results of a low q, high 

spin-concentration theory by Izyumov55 . 
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Table 5.5 Spin-excitation frequenci~s in THz for a diluted 
fcc lattice with n.n. exchange interactions, from 
computer simulation calculations. The fraction of 
missing spins is x = 0.3 and the exchange constant 
is J 1 = 0.0716 THz. q = 2n/a (O,O,~) 

reduced 
wavevector 

t; 

,frequency 
\I 

uncertainty: ±.5t 

o 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 

o 

.0671 

.260 

.570 

1. 010 

1.569 

2.13 

2.66 

3.11 

3.43 

3.50 

perfect 
cry-stal 

frequency 
\/1 

o 

.11210 

-.43744 

.94416 

1.58266 

2.29045 

2.99824 

3.6367,5 

4.14347 

4.46880 

4.58091 

ratio 
\//\1 1 
±.5% 

.599 

.595 

.604 

.638 

.685 

.712 

.732 

.750 

.767 

.765 

width of 
rE!sponse 

W 

±It 

.0935 

.0940 

.1071 

.206 

.434 

.644 

.772 

.931 

1.044 

1.005 

.966 

\ 

- I 
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low q for x = 0.3. In this region the computer ~imula tion tech­

nique is least accurate. However an analytic theory by/Izyu-
55 mov , good at low spin-vacancy concentrations, calculates the 

zero frequency response at low q and gives R = 0.740 for x = 0.2 

and R= 0.610 for x= 0.3. These points agree with an extrapo­

lation of the computer simulation results to q = O. 
, 

calculatlons The widths of 'the response for these are 

plotted in Fig. 5.4(b), although there is no experimental data 

to compare. At large q the wid ths are large ~ -but at low q the 

widths approach the resolution of the program. In general the 

responses are wider for lower concentrations. The three neigh-

bour calculations predict a wider response than the n.n. cal-
• 

culation, however the increase is small. The addition of n.n.n. . t 
and third n.n. ferromagnetic interactions does not increase . 

the width by much but does increase the frequencies signifi­

cantly. Therefore the relative width, W/v, decreases tending 

to the virtual crystal'or molecular field result of zero width. 

This is another indication that increasing the number of neigh-

bours that interact causes the results to be more molecular 

field-like. 

j , 
1 
1 

1 

\ 
; 
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CHAPTER 6 

CONCLUSIONS 

The spin-wave dispersion in the 20% diluted ferro-

magnet, Ni2MnO.avO.2Sn, has b~en measured at 93 K, by neutron 

inelastic scattering techniques, and corrected to 0 K. 

Excitations wei~ observed only part way to the zone boundary 

because the efficiency of the analysing spectrometer was low 

for large energy transfers. The frequencies of the spin 

waves are reduced from those observed in Ni 2MnSn and the 

freque~cy shifts exhibit a resonant behaviour. 

Frequencies for the diluted crystal have been calcu-

lated by numerical simulation on a large lattice, including 

full randomness in the large near-nei~bour interactions, 

while the virtual crystal energies are used for further 

neighbour interactions. The experimental frequencies for 

·Ni~o.avO.2sn agree with the frequencies obtained in this 

manner. 

To examine the resonance effect the ratio of the 

frequencies for the diluted to the non-diluted crystal is 

calculated as a function of Q. The effect is more pronounced 

in the n.n. calculation than in a three-neighbour calculation. 

A careful examination of the data shows that the measured 

ao 

I 
! 
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~ 
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frequency ratio shows more of a resonant effect than expected 

from the three-neighbour-calculation. This result is not 

understood. One possible explanation is that the exchange 

interactions change with dilution, which could h~ppen if, for 

example, the substitution of V for Mn changed the average 

conduction electron concentration. A shift in the' relative 

magnitudes of the exchange constants would change the shape 

of the dispersion curves, conceivably in such a way as to 

resemble an increased resonant effect. However, because of 

the uncertainties in the model with respect to other sample 

characteristics, for example, chemical disorder, the Mn 

concentration and the temperature dependence of the dispersion, 

it is not possible to make any definite conclusions regarding 

the discrepancy. The answers lie in better experiments using 

a more suitable spectrometer. The dispersion should be 

measured over the complete Brillouin zone at ~iquid helium 

temperatures. Better characterization of the samples, 

possibly using a polarized neutron beam, would also be 

necessary. 

The computer simulation technique for disordered 

crystals can be used to compare with other theories. The 
• 

results agree very well with those from a CPA calculation. 

The technique also gives information about response shapes 

-; 
l 
; 
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and widths. It can easily be extended to include many neigh-

bours for long-range interacti9ns and is reasonable in terms 

of computer time and memory. 
1 

.. 
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APPENDIX 

Program DILUTC 

DILUTe is a computer program that calcul,ates the scat­

tering function, S(Q,E), for a diluted, ferromagnetic lattice 

of spins which is fcc. The interaction between the spins is 

of the Heisenberg form and the program includes up to third 

n.n. interactions. This program description has been added to 

complete the discussion of the computer simulation technique 

given in Chapter 4. There are six sections to the appendix. 

Section A.I introduces the arrays involved in calculating the 

hiQ(t) and Section A.2 gives equations involving these arrays. 

Section A.3 describes how the array of spins is set up and in­

dexed, Section A.4 is an outline o~DILUTC and Section A.S des-

cribes the variables and constants used in the time Fourier 

transform. The last section is a listing of the program. 

A.I The Arrays Involved in Calculating hiOl!L 

The array of spin sites has Nl x N2 x N3 fcc unit 
222 

cells. If CC is the number of spin sites in the array then 

CC = Nl x N2 x N3 
2 

(A. I ) 

hiO is a complex number. Two complex arrays, G(I) and Gl(I), 

of dimension CC are required in the program, one to contain 

87 
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hiQ(tl and the other to contain hiQ(t:+-At). Another array, e(I), 

which is real and of dimension ee is required to contain the in-

formation as to whether or not a spin site is occupied. (In the 

program a spin site I is not occupied if e(I) contains the num-

ber 10000.0. If site I is occupied, then e(l) is used to con­

tain additional information (see below).) Thus. a total of 5 x ee 

memory locations are required to contain these ar~ays. ec is 

usually ~ 16000 so the required memory approaches the usable core 

memory limit of many computers. Both the computer memory and 

time r~quired are directly proportional to the number of spins 

present in the array. 

A.2 Equationi Involving e(lJ, G(l) and Gl(I) 

For the program, eqn. (4.9) is written 

(A. 2) 

Here, SJ1, SJ2 and SJ3 are S times the exchange constant between 

a spin and its n.n. IS, n.n.n.'~ and third n.n. 's respectively. 

Zl., Z2. and Z3. are the number of n.n. IS, n.n.n. 's and third 
~ ~ ~ 

n.n.'s to spin i that are present. The sums over jl' j2 and j3 

are sums over n.n. sites, n.n.n. sites and third n.n. sites. w' 

is read into the program as a frequency, ENORMP, in THz' such 

, that 

12 w' = 2jf'ENORMp'10 • (A.3) 
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If we define 

(A. 4) 

and let C(I) contain the information in the round brackets,in 

eqn. (A. 2) then 

,~ 

{

SJ10Z1' + SJ2 oZ2 i + SJ3·Z3 i - ENORPP (magnetic site) 

C (I) = ~ 

10000.0 

" 

(non-magnetic site) 

(A. 5) 

I 
The random lattice is set up and the C(I) array is calculated at 

the beginning of the program. The number, 10000.0, is arbitrary 

but large compared to the magnetic site values of C(I). SJ1, 

SJ2 and SJ3 are also in THz. 

Let us assume that G(I) contains hiQ(t-~t), Gl(I) con- . 

tains hiq(t) and G(I) will contain hiQ(t+~t). If the following 

complex constants are defined 

iF = 2/.<.-n: (A.6a) 

Fl = 2Fo~t (A.6b) 

F2 = Fo~t . (A. 6c) 

F3 = (Fo~t)2/2 (A.6d) 

then the integration formula to calculate h iQ , eqn. (4.5), becomes 

G(I) = G(I)+Flo [C(I) oGl(I)-SJlo ,r. Gl(jl) 

Jl (A.7) 

- SJ2· r. Gl(j2)-SJ3 o ,r. Gl(j3)] 
j 2 J 3 

~ 
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Note that if the site I is unoccupied then G(l) = Gl(I) = (0,0) 

for all time. 

'For the fir'st time step, if G(I) contains 
d 2h iQ (0) 

dt2 
contain hiQ(~t) , 

, if 
. dh. -+ (0') 

Gl(I) contains d~ and if G(I) is to then 

eqn. (4.6) becomes 

G(l) (A. 8) 

A.3 Indexing 

Each site in the array is specified by giving either the 

i~dices J, K and L or the corresponding index, I. The one-

dimensional arrays C(I), G(I) and Gl(I) can also be viewed as 

the three-dimensional matrices, C(J,K,L), G(J,K,L) and Gl(J,K,L). 

Both methods of indexing are used in the program, whichever is 

most convenient for the purpose. The transformation from J,K 

and L to I is 

I = {(L-I) "N2"NI + (K-l) "NI + J + V)/2 (A. 9) 

where integer division is implied. 

In the program, the orie-dimensional array index must be ' 

determined for all neighbours of each site,!. The 12 n.n.' 

indices are labeled II, 12, ... ,I9,IA,IB, IC; the 6 n.n.n. in-

di~ are III, 112, ... , ,116; and the 24 third n.n. indices are 

III~, 1II2, ••. , 1110. The positions of the neighbours that 

correspond to these indices are given in Table A.l. The value 

of the in~ices for a given I can easily be obtained by adding 

or subtracting certain integers. For example, 1111, the index 
/ 

! 
l 
I 

\ 
1 
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Table A.1 

to the spin at site I. A neighbour The location of neighbours 

is located at the position a 
2" (XSC+Y9+Zz) from the site. 

(a) nearest neiglU;>ours (b) next nearest neighbours 
X y Z X Y Z 

II 1 1 0 III 2 0 0 
12 1 -1 0 112 -2 0 0 
13 / -1 1 0 113 0 2 0 
14 -1 -1 0 114 0 -2 0 
IS 1 0 1 lIS 0 0 2 
16 1 0 -1 116 0 0 -2 
17 -1 0 1 
IS -1 0 -1 
19 0 1 1 
IA 0 1 -1 
IB 0 -1 1 
Ie 0 -1 -1 , 

(c) third neighbours 
X Y Z 

1111 1 1 2 
1112 1 -1 2 
1113 -1 1 2 
!II4 -1 -1 2 
1115 1 1 -2 
1116 1 -1 -2 
1117 -1 1, -2 
1118 -1- -1 -2 
1119 1 2 1 
IlIA 1 2 -1 
IIIB -1 2 1 
IIIe -1 2 -1 
1110 1 -2 1 
IIIE 1 -2 -1 
IIIF -1 -2 1 
IIIG -1 -2 -1 
IIIH 2 1 1 
III! 2 1 -1 
IIIJ 2 -1 1 
IIIK 2 -1 -1 
IIIL -2 1 1 
lIIM -2 1 -1 
lIIN -2 -1 1 
IIIO -2 -1 -1 

\ 
i 
l 
\ 
.. 

.; 

I 
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a of the third n.n. at 2(1,1,2) from the site +r is given by 

IIIl = I + N1-N2 + N1/2 + ,1 (A .10) 

However, for sites near the boundaries of the ar~ay, the neigh-

bours are not so easy to locate. For these points, the DO LOOPS 

are set up to make the necessary modifications to the i~dices. 

The modifications are organized in groups. For example, GROUP 

2L (J=N1) is the group of modifications to the n.n.n. indices 

that occur when J = Nl. 

A.4 Prpgram Outline 

The following outline describes the function of the major . 
blocks of code in DILUTe. Please refer to the program listing 

in section A.6. 

t Line 

\.. 1-89 Variables are dimensioned, data is read in and con-

stants, defined in Section A.S, are calcu1a,ted. 

90-96 The random lattice is set up. A fraction X of the 

spins are removed usi,ng a random nwnber generator. 

Sets C(I) = 10000.0 if site is non-magnetic. 

97-113 This section insures that exactly X·CC spins are re-

. moved. 

114-127 The exponentials are calculated, and the look-up 
iQ·'R. 

table is created for determining e ~ \ 



Line 

133-149 

150-572 

(a) hiQ is put into G(1)i 

i
e.i.Q.Ri 

G (I) = 
o 

i.e. sets 

(magnetic site) 

(non-magnetic site) 

(b) FT(l) is calculated where 

-.i.Q-R
i 

.i.Q.R
i FT(l) = E e 'e = X.CC 

i 
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This is a two-pass DO LOOP system. The program 

passes twice through the J,K,L DO LOOPS. On the 

first pass (IO = 1) the section 

(a) sets C(I), for a magnetic site, to 

(b) 

Gl(1) 

C (I) = SJI-Z1(I)+SJ2-Z2(I)+SJ3-Z3(I)-ENORPP 

puts 
dh

iQ 
crt into Gl(I), i.e. sets 

dhiQ (magnetic site) d:t 
= 

o (non-magnetic site) 

d2h.~ 
On the second pass (10 = 2) puts ~ into 

dt 
G(I) I i.e_ sets 

d
2
hiQ 

dt2 (magnetic site) 

G (I) = 

o (non-magnetic site) 

\ 

\ 



Line 

573-591 

592-974 

975-988 

989-998 

999-1021 

1022-1028 

94 

Puts hiQ(~t) into G(I) and hiO(O) into Gl(I), i.e. sets 

f
eo~Q·Ri + F2 0 Gl(I)+F3·G(I) 

G (I) 

(magnetic site) 

(non-magnetic site) 

and 

e ~ (magnetic site) 

f 
~Q·R, 

Gl(I}= 0 
(non-magnetic site) 

Calculates FT(2} . 

/ ... 
I' 

This is an alternating pass DO LOOP system. On odd 

passes (IK=1) hiQ(t+~t) is put into Gl(l}, i.eo sets 

Gl(I) = G1(I)+Fl· [e(l) oG(I)-SJ1· r G(ji) 
j1 

- SJ2· ,r. G (j 2) -SJ3· :E G (j 3) ] 
J 2 J 3 

On even passes (IK= 2)hiQ (t+6t) is put into G(l). The 

contribution of hiQ to FT(t} is calculated as soon as 

each new hiQ is known . 

If FLAG 3 = 1, FT (t) is printed out. Note that 
, ........ () -..tQoR. 

FT(t) = L e ~hiQ(t) . 
i 

_;\,t2 -..tWIt . 1 12 
FT (t) is multiplied by and -~EXPANDX· 0 °t e I e e 

Fast Fourier Transform (FFT) routine . 
... 

The program calculates S(Q,E) for NCELLS arrays. This 

section calculates the average of S(Q/E) I given by 

\ 
f . 



Line 

1029-103' 

. 1036-1045 

1046-1056 

1059-1073 

1074-end 
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~ 

AVSQ(I), over the arrays and the index of the maximum 

AVSQ(I) array element. 

GFT(I) is loaded with the real part of the FFT in-

tegra1, normalized by N, the total number of spins 

~esent. The variable FFFF is equal to N. The 

index of the maximum GFT(I) array element, lIT, is 

found. 

Prints out GFT(I). GFT(I) contains the function 

s.t. 

S(Q,E) = TI~ GFT(Q,E) . 

The frequency that corresponds to the index I, 

ENORM(I), ~n THz, is given by 

ENORM(I) = DENORM- (I-1)-EXPANDX . 

Prints out S(Q,E) averaged over NCELLS arrays. 

~ 

A printer plot of S(Q,E) is produced. 

~ 

Plots of S(Q,E) are produced. Curves for each of 

the arrays considered are plotted on the same graph. 

The average is plotted on another graph. 

\ 
I 
\ 
f 
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A.S Definition of Variables and Constants , 

The purpose of the proqram is to obtain a graph of 

S(Q,E) vs. E for a particular O. S(Q/E) at a finite energy re-

solution is given by 

S (O,E) = n~ Re 

(A.ll) 

Evaluating this integral is equivalent to taking the Fourier 

transform of the function F where 

0 (t < 0) 

"0 -+--~ • R" 2 
F = u: e ~hiQ]exp(-~w't)exp(-At ) (Ost<T) (A .12) 

i 

0 (t > T) . 

The quantity in square brackets is calculated at finite time 

intervals in the first part of the program. I'n the second part 

of the program, this quantity is multiplied by the factors 

exp(-~w't) and exp(-At2) to obtain F which is Fourier transformed 

to obtain S(Q,E). 

A fast Fourier Transform (FFT) routine is used. It 

calculates the Fourier transforms. 

N-l 
Xk+1 = !: 

j=O 
A 2nijk/N 

j+le (k::O,l,"',N-l) (A. 13) 

where Aj +l corresponds to F at the time t :: j'6t and Xk+1 is 

the value of the Fourier transform of F at the frequency 

W :::: 2nkjN6T. N is the number of times at which F is known. 

\ 

~. 

I 
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~ =IMAXP in DILUTC) . 

Referring to Fig. 'A.l(a), F is known at the times 

t= 0, 6t, 26t, .•• , {IMAXP-l)6t. The FFT routine is run for 
~ 

ICON time intervals. ICON is large to obtain a smooth Fourier 

transform spectrum. The values of F from t = lMAXP·~t to 

(ICON-l)·~t are set to zero. The frequency step in the spectrum 

~w 
2TI = ICON·6t . (A.l4) 

A value for the Fourier tranSfo~btained at the frequen-

cies w = 0, 6w,···, {ICON-l)6w, however, only part of this 

range is of interest because there is an upper frequency bound 

to the spin-wave~ as discussed below. 

The upper frequency bound, EMAX, for the response of a 

diluted crystal corresponds to the maximum energy that a spin 

wave can have in the pe~fect crystal. For a crystal with ferro-

magnetic n.n., n.n.n. and "third neighbour interactions the 

. spin-wave at the zone boundary in the [111] direction has the 

largest energy which is given by 

EMAX = 24·SJl ,~4·SJ2 + 4S·SJ3 • 
@ 

(A.lS) 

~or this program the energies are specified by giving the cor­

responding frequencies in THz. Thus the SJ's and EMAX are in 

THz. Therefore, whenever ~ occurs with any of these, ~ must be 

expressed in THz.sec. i.e. 

J 



Fiq. A.I Series of graphs to illustrate the use of the Fast 
" Fourier Transform routine to evaluate the integral 

in eqn. (A.lI) for S (Q,E) • (a) F (eqn. A.12) is 

calculated at the times 0, 6t, 2·6t, ... , (IMAXP-l)6t. 

The values for the times lMAxp·6t to (ICON-l)~t are 

set to zero to obtain more points in the Fourier 

transform plot. (b) The Fourier transform of F 

(proportional to S(Q,E)) is calculated at the angular 
(J 

frequencies, 0, 6w, 2'6w, ... , (ICON-l)~w. Only those 

transforms for ENORM = 0 to EMAX are physically mean-

ingful. (c) The Fourier transform of F is calculated 

and plotted for a slightly extended range, ENORM = 
• -EXPANDX to EMAX + EXPANDX to show any response beyond 

the physically meaningful limits which may arise due . 
to the broadening function or numerical errors. 
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HBM 1.05445XlO-27 erg.sec. = - x 241.813 THz/eV • 
1.6020SXlO-1 2 erg/eV 

(A.16) 

This happens, for example, in eq. (A.2) 

It is possible to express 6t (DELT in program) in terms \ 
" 

of EMAX. Let NCMF (number of cycles o£ the maximum frequency) 

be the number of periods of the frequency EMAX which can occur 

in the time interval 0 to T. If NTSPC is the number of time 

steps per period, then the total number of times at which FT 

is known, lMAXP, can be written as 

IMAXP = NtMF-NTSPC (A-17) 

T is defined by 

T = lMAXP-DELT • (A. IS ) 

From egn. (4.7) it can be seen that 

DELT = 1.O/(NTSPC-EMAX-l.OE+12) . 

~ . 
S(Q,E) is plotted as a function of E in THz. Let ENORM be the 

energy in THz. If the step size in the response is DE NORM , t~en 

from eqn. (A.14) 

DENORM = NTSPC·EMAX (A.l9) 
ICON 

So far the plot runs from ENORM = 0 to EMAX. However, because 

of the finite resolution and numerical errors, there may be some 

response for ENORM < 0 or ENORM> EMAX. It is therefore desirable 
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to expand the ENORM scale by a constant, EXPANDX, so that the 

energy runs from -EXPANDX to EMAX+EXPANDX. To shift from zero 

to -EXPANDX, FT must be mul'tiplied by FSHIFT before being 

Fourier transformed where 

, 12 
FSHIFT = exp{ -21T i ° EXPANDX '10 ° t} 

(A. 20) 

= CEXP (Z2 ° 2.0· EXPAND X ° (1-1) / (NTSPC oEMAX» • 

It is now apparent that the first Fourier transform, Xl' will 

be the value of the re,sponse at the energy -EXPANDX (see Fig. 

A.l(c». For the plot to extend from -EXPANDX to EMAX+EXPANDX 

the number of transforms plotted, NFTS, must be 

NFTS = EMAX+2oEXPANDX + 1 
DENORM 

= [1 + 2°EXPANDX] 
EMAX 

ICON 
NTSPC + 1 . 

(A.21) 

Now we come to the other factors in eqn. (A.12) that FT must 

be multiplied by to obtain F. The first is exp{-iw't). Since 

t = (I-l)·DELT and Wi = 2n·ENORMP then 

FSHIFF 
_{Wit . 

- e = exp(-27T-<'°ENORMPo (1-1) °DELT) 
~Ao 22) 

= CEXP(Z202.0·ENORMP·{I-l)/{NTSPC EMAX» 

apodization factor, exp(-At2 ). 

~ 

Finally, there is the Gaussian 

-At 2 
The Fourier transform of e is proportional to e -w

2/4A The 

FWHM of this function is 

l 

i 
i 
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FWHM = 2{4X(-tn 0.5) = 3.3302l841A • (A.23) 

For the FWHM to be ~ 2% EMAX then 

A = APDC = (n·EMAX·lO.E+12/(25.0 0 3.3302l84))2 (A.24) 

FT is then multiplied by EXP(-APDCoT2) where T = (I-I) ·DELT. 

1 

t 



A.6 

10 

20 ., 

25 

30 

40 

102 

Program Listing 

. 
• "1·l·I< .. ~l L.1L:II!L (1,.-1; I tl LJl"\, I ,Pt J I, I AI",'I:.S= Jr.! L. r, TAr~ t--=t.lIT PIJl ) 

C 

, 1,·ll.Slt)1\ IJF r (I.~ i:;) ,l'.v"/<' (~FTS) .... '~(:-'f T:» 
u [H:.I,SIU1, (,1" r (',<'0) 'L"t\,('1(I+~ti) tA'''~'-JI'''~d) 
... Lvi VMdM'L~ ~ 
.,!.··tl.">lUI\ (]f (lull),~ FFf' (':J) 

lIl~\t.I.SIOl\ fOkll(~I.~ 01,11(, (t:) .(Jt-AT (ol) 

i:-..lE<>Et< 1\.tHI:tl.CC 
C01PtfX ~ 'FI,fc,~3.;'1'L?,f<:H1FT.r"",ltf 

CVll"'LEX ~ T II,. ,\At-) 
COWLE.x f T (':.00) 

CC~PLlX tLY,lLVCC 
CCHJL()' t.!l (N 1 ) • r .. .(CC (t ,I ) ,I:. Y (r 12) ,t YC(' t'r,(') • I:. Z (rd) t E; C C (L J I 
C('t,t>LEX tA ("2) 't..ACL(~;) ,tY(';).::),. 'tV (:>':1 H l. (~c::t,f.ICC (:;21 

L UJI1t.I.S!IJI. ClCC) ,LJ (1+<'1 
IJI~·t:.I,SIC" l (1~1::4\1) .0(4C) 

L C"';I PLE..X u I ( I ) .v ( I I 't.t"'~Yl 1 ="'IlX (CL, I C(;,\ I' 
CC~PLEx (,(IStl4u)'1J1(1~K41!) 
"I::AU (~.~()i' j,Ct..LLS 

":1), f-t ....... AT (11) 

L~ ie] LIFl=1.~Ct:.LL5 .I 
··t AI) .(~n~()I'1 l'l".c.r.J.I.')X.~:,n.,,~i, T::';.c,rJr;~f.l<:f.FI:.fL"(,1.FL'.()2IA.f. 

1 " ... A',U)\ ,~_I\IJ I</IP 
.:;\JU ,C"'''''' (bl~tlllJ':;~"'!) 

~.<llc. (o,J001 I,I',Ie.,,). J\.~':'1(,y, .. i.ol 
',j()O ~I,,'~"'~T (l~";)~"'d = .12.7" (.2 = ,J,:./" "'.., = ,12.el'< ~.r;)I = ,12.hrl 

I ~ .; Y = .r c • i- ti 1.\; L = • I .: ) 
:,"1 It.. (6.3(;1) 1·1S"C.,,,(·~,~, I<;:Etu;~ ,-,,'d ,FLAl,i,txPAH .. !l.f .. ",,\kl~1-' 

..,01 ~l;h~· .. r (l~.l1t"'I::'IlC ='.,12,91' IJC'~ = t12tlOt< 1<;F1:8 = oIIJtllJM Fl..! 
Il·1 :: .. ,f4.\.bdl tLA(]<, = ·,f"".ltl(~11 C.!lf'AI\L..X = .F',.I.II>; t",UII"P = , 

. 2t ".1 ) 
~.I\ I =,'10" 
"t.c:="')Y 
....... j~l.ol 
~~hr(Jl=~~I/~I*i.J 
'.t·" 11~1 =~t>."/"21>~. ,) 
.• I·A T ( .. Il :t<t.J/I ,)';",0 

""lit. (oduc) I,tl,\T (I) "JIiAT (i) tl ... >ll \ J) 
JOe:: f'CI-'I~4T (l(.l{>\(;:; (2f-l/ll)(.FI:.~tllt.'ttl.~,II",FP.5dl,)' 

.. hl.lI:. (0' )uJ) " 

J(jJ f CkMAT 0 .... 41'<X = ,f ',.1), 
L 11<(,(,1<.\11' I1Lt.lI!kLS S.J.~ 1 j fI-·z 

S=2.U ." 
~MI=~~U.C~hoU.2"1~IJ 
~J"=~OO. iI!JI>(.,. ,41.,1") 
~~J=~I>O.IIIII>U.c::41~lJ 
.~~AA=24.UI>~JI."4.0*SJ2 ... r.RI>SJJ 
Pl=4.00~TAN(I.u) 

.. IldA~= 1 .• U~4 .. ~t.-c' /0;1, 1." I J/I .ol!CO,·t.-I.! 
1 (1.1~=4lJ·;/t: 

.• ~ 1:,= ( 1 • v.;. U 01.. Xi- .u,IIA/t.. ."/- ~ ) "I C0 .lNT SP(. I 

.. "'I T t. ( b .:; (, ';, 1 ,. ~ ! '> 
.ill'> tC.·,.. .. 1 (l .... ·lh .. tT:, = .1 '.) 

r 
t , 

I 
l 
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70 

'f:, 

HO 

C 

100 

IIV 

If (L 1 r T .,\ t· .t 1 tl\,) 1 (J L. C '+. 
I,C .:u .. 1= l',;~F r!> ' 

• J 

AII!>td lJ =O.L 
.: 04 c.;rd I NUt:. 

1':04 eel\. TII~U~ 
l"Jl"=NCr'~ ~I. T~Pl/c: 
I "s\Al--=r,crr"rJl s~·c 
l'FL 1=1.01 (1\.1 ~fJl"I:'IAX"I. ot: .Ill 
·~~rC=(PI"(~AA"I.O~+lil (~~.O"J.~J~21b"»".2 
ucM)k~l=r, r S,'C"t.,r- il.A/I CUll 
t~UHHP=PIIENCk~P·l.O~·ll"H8Ah 
.~lT~ (o.306~ ~Jl,SJ':,SJJ,FMAX.cNU"pP 

JOo t rf"'AT '(P •• f)t'~Jl = .t.I;.~.Ptl ~J~ -= 'tll.~~!lh 
I~A = ,tli.~.llh' lNU~PP = ,~12.~) 

.... il TE. (0' JU4i IIJ,I)"f',DfL r, A~L>C • (.H .. M)"M 
J04'~C""<\J\T OA.~Hlf"j4)(~ = 01 .. ,·1 .... UlLI = .t:.1,7.10.':Iti 

1 l)t.I~OkM::. l'.l '( d LI 1 
~=2.U/«~.0.I.vl·~UAN) 

Fl:::f"t)tLT"2.0 
f 2=.)t.L T"f ' 
~3=(UELT"F)""2/2.0 
A=td/2 
L·"td"r~c'/': 
b~=t, 1",.,2 
lC='<!"IIJt'''t..31t' 
Ll="'li 
L':='\-d 
L3=U-CC 
1 .. 0=-\-1 
L7=ot..-lC 
Lt';:N!-t\ 

CALL .l.\I ... ~F. T ( I ~,U,L 1 
uC tl I'" 1 ,ec 
C(I)=IOU(l\).O 
yt"L=kAM (brf.(I) . 
If (YfL.bT.X) ((11=1.0 
If (HL.\:T.XI f.uL.::/'l'C·!.(, 

o lC t, Tl ~'lIE 

. 103 

API)C = .t-17.10tlIH 

TC t.1.SUf./f, THAT TH' .. ~"t.CTI(1t\ Cf ~t-'I,,!l ~ISSIM .. IS f.xACTL'I' ). 
\'.El fu:.=C\.:t>, 1.0-X) ·,Il)j) 
If ('.t::TlL~) <:. It .. 

<: rd<.KLt:.=-r.t rILl:. 
~~ b hUC~Lt=I.~IC~L~ 

~ Ll.C~=«AI,f 11 Setc" <scc 
If ·(\..(LuCrd.M£:..l.1l1 <>(' Ti. = 
C(LVLK)=O.1 

6 eCI. T 1 NU£ 
lIC Tv J 

~ uC I ~UC~LL~j.~l)rLl 
LLtK=~AN.~ISLI:.~I"~C 
If (CO (UJI-IO • r.t: • Ii • 1 1 l,O fl.; 
\.. (L uc. K ) e J • U 

, .:cr. r IM)~ 
J ecr,· T l ... lIt:: 

, il=Cr.lJlA (,).Itt"'j) 

\ 

·It 
" 

'! 
I, 
I 
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120 

13U 

13!:> 

ISO 

iSS 

160 

loS 

ITO 

tt'=Cl,PI.i\10.1),-r'11 
t..~ ~ l=i ",I' 
l ,.( I 1 ) =(.1:.)<. PILI <; 2. \l I> 1 .. I, /, ",/:'1. 1 ) 
!;.)<.CC(I)=C~)<.P(L~"2.~"I"~~X/~I) 

'I (.CI',T!.Jl·t. 
I.JC<'lu 1=1,l\l 
I:. Y 11) :CtAP 1/1"".01>1"""Y/1\21 
lYCC(I)=L~)<'P(l<'''~.u''I''~uY/~21 

III L~r-. T I "Ill!;. I 

U~ II 1=1,'~J 
1-1 (11 :::c..t:)<.p 1l1"?u"II>I\/"tr\J) 
.t.ZCC I I I =CL<P (Uo". 0" I O;-'<1L /1,J) 

11 CCr.TI,~lo£ 

DC l.G 10:1, 1 'fA"f­
~ TIll::: (O.O.U.O) 

U CCi, T ltJU[ 
" 

1=0 -
UC 1 .. L=l .. r-.J 
GC 14 ~,= 1.1,1. 
t:.lY=t.Zlt.)"c;.Ylf.) 
t:.l'~C:::~lCCIL)"!;.YCCI<) 
",F=t..·K 
KC:l.!:>+(·1.0)"oK~/2.v 
LlC 1'" J=KG,tll, <' 
1:: 1 -I 
IF 1 l. ( 11 .:.1;. • 1 I) V 0 0 • IJ I (,I' 1,1 I 14 
" ( 1 ) = (I. : \J • I, • \J I 
"e ,r u 1 .. 

114 GIII=EZY"t)<'(~1 
f- T 111 =f T (11+(, (.) 0t.lVLC ....... <.c Iv) 

1 .. Get, T IIJuE 

li~ j 1 10= 1,2 
I = II 
,)I; Ju L= 1, ,oJ' 
If (L-c) 1~.1~.17 

l. f,,1«JU.I/ 1A IL::1I 
10 I"S;i'fI,I 7;1'\'7=IAI,=lJ 

1 A~= 1 ... 8: 1 AA" 1 "I,.=-LJ 

L (,toOLJI- e:.A IL=11 
I It.l=rHJ 
'IIJ<~=-LI 

c ('.<cup 311 ,(1.=1) 
III"I=1IIJ<~=III~J~IIIA4=~~ 
IIIA~=IIlhh=IIIA'=11IA&=-L7 

J 

I I }., 't= I I 1 .. t1= 1 I 1/1,,;;; 1 I 1M::: I I I :\t- = I 11 J\J= III i.L= II 1 II" =1' 

111.:. .. =1111.(;=1 1 l"l ;,11111(,::1111\1=1 j lA"::11 IAl1=11\A"C=-1 J 
(JC I!J 1.1 

l. h"OIJI-' 1'1 (L=cl 
10 I~D=llIb=I"A~I"~=-" 

/ 
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" 

\ 

, '< 

". 

175 ' 

180 

190 

\9'5 

c u~UuP Jti (L=l) 
1 IrA ... = III.>\-= I I II~ L = 1 I J.'t, = 1 I I ,\ 1 = 1 11 A, ;; 11 I .'M'" II I A C =-" 
~·c 'rv IH 

II IF (L.ht..]) uu Tv II!:! 

c v~ou~ ~b (L=J) 
lIA2=-"tJ 

L ~ROU~ 3C (L=JI 
11 I 1\~=fllAu=I III' '=1 I I'.o"'-HI'< 
vl.l h .. III 

11:' H (L-r.J+lI 1l1.lloti17 
o 

, ur<",lJl-' .:C IL=I'.J-I) 
lIb 111l1=L7 

GhCUP 30 (L=~]-1) 
lII41=11IA~=IIIA3=IIIh~=L7 
("C 1 U l~\ 

C (fHuUfl Ie (L=ld) 
III 1 Ab= 1 :'7=IA'1=1 '\I'=L J 

, 

C uh()\J~ Jt;:' (L=NJ) 
lllA~=IIIArl=IIIAG=IIIA~=il!A~=lIIh~=lll.L=lIIA~=Lj 

IIJ uC e:;'1 ,,= 1 • r. 2 
200 Ku=l'~'(-l.U)~~IL~K)/~.V 

215 

2?O 

H (lI.-t) 1".'U • .:l ' 

C ' ukUUf-< III ('\= 1) 

c 

C 

1" U!l=A 
1 t'L=-Lc 
leJ=;. 
lc4=-Li 
IU,>"lA'1'/1 
I~A=IAA+., 
1~b=IAb·L2 
11H.=1 AC-L2 

u"('ul-' i::lJ (1\=1) 

I I l,J=~l 
II,''';:-Ltl 

vH!l..l-' .,r (1\= I) 
n Ibl=III.~l·A 
IlIQc:'=llIA"-U~ 
1\lb.J=lltA].J. 
lllu4=1 I 1.'4-Lc 
IIIU~:IIl/l'.>.A 

IlltJb=IIIAo-Ll 
Illtl/=III/l"'A 
II bo=1 I IMi-Lt 
1 I 113'1= 11.1 A ... t.\ 
11'11.11·: 111 /lA+I.l 
IlitH =lllAI,H.1 

105 

. , 

J 
! 
i 

I 
I 

i 
! 

, " 
~ 

1 



230 

240 

lllbC;"r I 1I\C .~d 
III tiv= II ltIU-U; 
III t1t_=l I lAl:. -u~ 
111t1t=llIM-LI! 
II It1lJ=11 I AC;-LIl 
II IUh=! IIAt'./\ 
Intit=!IIAI+" 
Illll') .. l 1 1A.J-Lt! 
I I I dK= I I 1.\11. -L t! 
IlItJl.-=111AL+4 
I I tUM=1 I IM'+/, 
I I I ~"'= I I 1A/,-L2 
I I I tlu.d 1 I.\O-Lt! 
\,e TO c~ 

C ~~0UP I~ (~=~) 

t!1) Ib~=-<\ 
I ti4.=-A 
Il'b= I A~-A 
fdC=lAl-A 

C ~h0~P 3G (~=2) 

IIJtlc =111A2-11 
11'IU .. =1 I 111 .. -1\ 
Illllb=llI.\t--" 
1 I llHI=lll.\!--A 
II 1 t:I.)= I IIA.J- A 
1 I 1 t:',,= 1 IIAt,-.· 
III JI.= III M .. -II 
III JlI:: 111.\(;-.\ 
\.IC Tu t2 

260 21 If (I\.M.d) vO TC lit; 

210 

'175 

~ \Jho.vr' 2t. (1'.=) 

118,+=-",1 

c ~~uUP JH (K=JI 
1 1 It.lI.)=llIA()-,~1 
I I lut.=ll 1 Ai;..-I\ I 
I I It)/o :lIIAr-~.l 
IIItJv=IIIAG-,.1 
loC Tv It:. 

1.1t) If ("-tlt;!'I) 22tlt!Ool':1 

(. (",,"OUH cF (K=~.2-1l 

lZI> I lfJJ:L~ 

l GROUP Jl (K=1>o2-1) 
I I lU,;,=I1 lA".L"; 
IIIUA=IIIA/I+U1 
Illbt>=IIIMuLt l 

I r ltiC=lllf\<..+Lh 
\ll) "v CC 

(. "I< (jIJI-' H (,K,,,r.<, ) 
121 Itll=L~ 

II·J=L; 

I 
106 

1 , 
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. "lb'l=1 ,I"'-l.c 
le}·"1 All-I.e! 

C \:hUWI-' .3J ("",''c) 
29\) 111"n==lllAl+t ~ 

IllbJ,q 11 A.3+Lc 
I I Id:'=lll/1',+L? 
I I ItJ7=1 I 1,\7+Le 
I I I UN: I I 1 M<+L '2 

, 29~ lIlll1=IIUI+LI., 
II I':1L::l I I.\L+L2 
1 I IlJ~l=lI IM'+le 

12 uC ~11 J::I\C'Nl.~ 
300 1=1 +l 

1) 
l~ (1\l'-21 12c.lc3 

122 If (J-J) 23t,4.~~ 

(. lJ';lIU~ ll> (J= I) 
30~ n II. 1:: 1 til 

IC,::! tIc:: 
ICJ=ltI3-1.t> 
1 C"" I',,, ·l.tl 
IC .. ::>=I.\b 

310 IU'=I,li, 
ICI=IAI+l.r. 
H,i'=IAI--Lo;, 

C IJh\.<UI> ~c. lJ= 1) 
Jib 1IL":>:,q 

11(,6;'1.0 

C (j"uUt- 31< U= I) 
ll1Cl=ll11'1 i 

; 32tl IfIC~::lll':" 

t 
III(;.)=JIIH3+th 
Illt"=1 I l,l"+L/> 
Illt~:::IIlll':> 

I 
llleo::111"t> 

3l<:l I IIC/::lll,j/+U;, 
Illl.b=IIltlM·L6 
I I IC'j:: I I !I;" 
L 11<.,\=1 IIIJI\- ! 
1 I lCu=111ilt<+L6 

330 r I ICC"llltlC+Lb 
I I I (.u .. I II tiLl 
IIICL=llll1t 
I IICr ",II IH~ -u) 
lIICl>::: I I 1,h.).L/) 

, 33!l III (;1'1:: 111<11,'1 
I I ICI,:} 11'11+1 
1 I It J:: II 1 f; J + 1 
1 I 1(.1\:: I I I ilK + 1 
IIICL=lllriL·l6' 

1~ J'tu 111(.1.:: lll,'~ -It> 
IIIC.,=III',r.+U, 
Ilj(.u=lI !'!O"l', 



350 

355 

)70 

31'5 

~,~ I u i.·f 

C <";';OUf.' 1 [ (J= J) 
~4 IC3;;[IIJ-l 

[C4;;I,\4-l 
IC7=11\7-1 
lC~=l"Ij-1 

, vi<QIJP 2[ (..)=3) 
l1C6=-1 

, G~uU~ 3M (J=J) 
IllC4=11hIJ-I· 
111<':4=1 I II~4-1 
1 IIe?=) Il1!1-1 
111Cb=1 ll~!!-l 
III t:u= III HI'-l 
I!ICC=IIIt-lC-l 
llIC~ =1 IJHI-l 
lIICI.>=111(11)-1 
Ill<-L=III'lL-l 
I I lC~,=I I 1<111-1 
111 ... ~=IIIH~.-l 
I I l<-u"l 1 l"l~-l 
IJC I \J 27 

..'':> L~ (.J.Nbl\l-l)' (,:\J Tn i:1 

""\.JU~· cK ("J=I\ I-I) 
1 I(,~=-l..b 

C GhUU~ JU (J=~l-l) 
IIICH=!III!H-Lh 
I II C I" 1 II f! 1 -L h 
J IIe..):1 1 IIl..)-L" 
II [(1\=11 I.,K-1..6 
('C Tv (., 

123 If (..)-4) 1t!4dC::!:>d~o 

(, hh0UP IH (J=~) 

124 H .. l=IIJ1+1 
I Cc!= Il!.:?-1 
1 C3= 1,1:) 

J~':> I (4= I "I. 

J90 

IC~=IA!>+l 
lCt>=IAo-l 
IC/=I,,( 
lC~=I'\H 

C "AuU~ c!H (J=ll 
11l.~:q 
IIC",;;LlJ 

(,,lOUt' JL (J=.:!) 
III L 1 = 1111, I - 1 
1 I [L,=II 1112-1 
1 11 (.; J= 1 I [.0 
I II (. .. :; l I 1"14 

108 

\. 

" 
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109 

401l I I 1t;!;):::J'll"!;)+l 
IIICo=lllho-l 
IIIC7=IIIt.7 
IIlCb=III~l' 
11!C"'=IIIe',hl 

.. oS lIICA=IIHtA-l 
1 t ICu: I I IliII 
lIIce"lll>!C 
III (;1):: 1 I hl!) - 1 
1 I 10-= 1 I 1 '1 t:: + 1 

410 IIIO::III~F 
IIICl.t=III~u 
1 I IeN=1 I 10lH 1 
II lel=11 I~l-I 
I I 1<':-1:011 FlJ-l 

.. IS 11 lCI'-::-1 1 It!K+l 
I I ICl:::I 1 I':L -Lo 
1 I ICM=lIl'W +Lb 
1 I ICN=I IlllN+Lt'> 
I1IeO,,'1111"1(,+Lo 

420 ~c I () 27 

C ""OlJP 2J (.1=" ) 
12!;) 11(.0=-1 

"25 .: "",vuP 31'1 (J:::Io) 
11 1C\..=1 1 If:l-l 
Ille~I=1 t 1'1~I-l 
1 IIC",=111 'jl\: .. 1 
lIICu=IIIH\'-1 

"" 430 " GC To 21 , 
12b IF (j. t.£ • r. ~ ) U\J lO ?I ! c.. "I'OUI' IJ (J=.\.l ) ! 

IC1=Inl-L.tJ 

~ 435 IC2=1Ilc .. lh 
lC'~=jA~-lb 
1 Ct·: I "I)-L" 

C (;H,I,JII 2L (J=r.ll 
440 I I ('~=-Lb 

C "",jUt' 3P (J=r-.I) 
I IIC1=1 (,1II1-L/) • 111(.c!:lrI I!c!-lt> 

.... 5 IIIC~=lllll~-Lo 
lllCt>=llIdh-Lb :' . 
1 11C'1=lIIH'i-Lb 
I I I C A::: 1 I 111,\ -L h 

I I I(,U:;1 IIHl'-L6 
450 Illl.t.=lll,·t-L6 

III UI: Illl·t<-Lb 
IIIC1:;1 I ltll-\." 
IIICJ=II I~IJ-U, 
I 1 1 l.r.:::I 1 I,!I\';"\./) 

4~S 
n 11" 1+1 (,1 

• 

• 



• ~= _L<' '~_ ..... ..,... _______ ..,... ..... _ .... __ ..... _,~"'''''~" 

460 

'+ 7.0 

47-:' 

4AO 

490 

500 

127 

SoS 

~lO 

I Q)pIE DE QJALITEE lNFERIEURi: I 

·lc=I+!(.2 
IJ=I+1(;3 
1'+:OI+IC'+ 
1·5=I·IC5 
lo=l+It.t> 
11;;1+1<"/ 
18=1+1<..0 
IY=I .1u~ 
lA=I+!bA 
Itl=I+·!.t.ltl 
IC=l·luC 

II1=1+UAl 
IlL ='1 + I 'A2 
113=1+llb3 
114=1·lld4 
11~=I+IICS. 
116=1+IIC6 

Illl=I+IIICl 
I 1I2=1 + Illt.?, 
111 J=L+'llleJ 

. If[4:o1+II1C/. 
11IS=I+11IC5 
I I I b~ I • III Ct, 
1 I U::I +11 IC7 
I 1 I,d': 1 + I lIe h 

11 1 "'= 1 + I 11 C9 
1 1 11\= [ • Il-I CA 
II I lie 1+111 Cd 

, l11C=I+'I1IC(; 
Illu=llllICU 
IIIt.=I+IHCE 
'IIlf=I+IIICF 
i I 1(,= 1.1 UCG 
II tti= r.1 II (.H 
11l1=I+IIICI 
IIIJ=>l+IHC.J 
111"=1+111(.1<. 
1 1 I L = 1 + 11 I CL 
111,"1= I + 111 C~I 
11 j,'=I+IIICN 
1 I 10= 1+ 1 I [CO 
IF tII1.£~.11 ,,0 T.) IJIJ 
lie lc!7 IJ=I,41-
1)(IJ)=o.U 
CCI-iT'J NUt:. 
IF (C«I.l;.Q.IOUU().OI (.0 TO Ids 
IF (COll.NE.loOOQ.OI lllll=1.0 
IF (C(lcl.NE.I0UOO.0) O(~I=I.O 
If I<"(lJI''''I:.lIl01)O.O) 0IJ)=1.0 
IF (~114}.N~~lovou.n) b(4)=1.0 
1 F , C I t!l I • M:. III I) Qv • 9} I) (!: ) = \ • 0 
IF ('l.ljt.}.Nf..lIlUIlO.UI .o1\;)~l.O 
iF (~(l/l.N[.lUoou.o) UI~)=l.~ 
IF IC(IAl.NE.luuou.o) UIU)=l.O 
If (1.(1'!I.I\E.,loOOj).llt 1,':-)::1.0 

'\ 
: ' 

r 
110 



SeO 

530 

53~ 

540 

550 

t 

soo 

\ 
570 

'. 

If ( l. <l "I • [, f • I 0000 • v I L' I HI) = 1 • u "'-
IF (1..1l~I.r ..... 10\)OIl.1l1 u(lll=l.O 
If (I';IlCI.hl .tOUOO •• )} Ll(t2t=1.O 
IF (C(I(lI.r .. ~.tOOOO.{)1 LlII:n::l.v 
t F (l.. ( II 2 I • "ll. 1 0 I,) 0 o. u I .) 114 I = 1 • lJ 

If (C ( I I 3} • NI:. • 10000 • v I Ll ( I" I = 1 • ) 
If (1..(II41.NI:..l0000.ul u(lel=I.1l 
n «(,.(Il~I."LolOOt.lO.vl d(llI=l.u 
1 F ( ~ (I I 0 I • t~!· .• 1000 U • 0 I tJ ( 1 ~ I = 1 • li 
IF ('(11111~~(.lvOOU.0t C(191=I.V 
If (Cllllc).~.t::.lOt.lUO.()1 L(201='1.u 

. l·f (C ( II 13 I • f.1 • 1000 'J •• 0 I C (211 = 1 • v 
If (l.. <i I I" I .1, l • 1 J 0'00 • 0 I L <Z a) = 1 • \I 
H (l..(IIISl,I,L.loooV.<l1 L(?JI=l.O 
.H (<: ( II i (, I • N~_ • III (J 0 u • u I L (? 1+ I = I • II 
H (CtIr'I7I.NE.l\J~OO.()1 C(2SI=1.U 
If 1('(U181.I\t.luouu.UI !.:1?61=1.IJ 
IF lC(IIl'9I.M .• l'lIOOO.UI C«('7I=l.v 
I·F (L(lIiA).t.L.lv\lOO.OI 1..(2'8)=I.u 
rF IC 11 I 1111 .r..€.loooo .1,11 L (2'J1 =1.0 
1 F (C ( II 1 C) • t.£ ol 0 Il 0 0 • I) ) 1,;!1 0 ) = I • U 
r F' Ie ( 11 10) • I.E. 10'000. u) t (~l ) = I .0 
IF «(,.nIlt:).IIE.ICOOU.~l) t.;(;3c)=I.U 
IF (·(.(IIlF'l.t.t;..lOOI1U.,I) C(3j)=I.U 
If (1..11 I !(,) .1.1:..1"000,0')) G (3'i) =I.V 
If ( (. ( 1 [ 1 hI. I ,~ •• 1 II (j 0 0 • 0 ) l. (3 S I .. I • lJ 

IF (C«(IIII.r.I:..IOOuu.o) C(}t,)=l.IJ 
IF (C(lll.J1.~,l.lIIUOo.,) v(J71=l.v 
H (l..(lIIKI.tlt.lUOOO.O) 1,;(Jt!I=l.v 
H (CUllu.r.l..loooO."O) !..(J,+)=l.U 
H «(. (l 11M) • hI;. • 1 0000. II) l; (1.0) = 1 • II 
If «. ( I I 1 ~d • M .• 1 \J 0 00.0 t I) (411 = 1 • u 
H .«(.<11101.I.L.10000.1;) C(4-G)=1.li 

111 

C ( 1 ) '" 5.; 1 0 ([; ( 1 I +0 (2) + L' (J ) • r) (4) ~u (=) .. U (u ) + u (7) + u·( e ),.ol) ('» +1)( I \J) +i.) ( I I) 
I .. L ( I" ) ) + !..; 2 to tu ( 13 I • [J ( 14) .. '1 ( I!: ) • u ( 1 (.. I .. C ( I 71 + U ( 1 P ) ) +" JJ" ( C ( I ~) +1) ( a (ll 
2 .oC (21 I + U (? c) + I) (c 3) +\1 ( ?'+ I +11 ( 2~ ) .. ) (~.) I +t) ( ell + U (cl'> I + I) ( ~4) + () ( 3 u) +() ( J 1 ) 
3 +0 (..;~) + l) UJ I +v (34) .0 IJ~ I +0 (Jb 1+\.1 (J () +u Uti) .. u (J91 +U (4 V '.1) (4 ~) + 1)( 4 -.!) 
.. ) -U-OHP;'> 

G 1 tI ) =l ( II 0<; (! ) ~~J 1 .. (t,( I J ) + G ( I,: I + U ( Jj) .. G ( 1.,"" '" 1.1!: ) +1;'( Ii- ) + \l ( I 7) • G ( 1 
101 + G ( 1 'f I .(,s ( I") .(j ( I,,) •. ; t-l C) ) -:: J2* (" U I 1 ) • G ( IIV +G , [ [ 3' + G ( 114) .o(, ( J 1 S 
<!) • I; ( I I h) I - S J.J" (u ( I I 1 1 ) • \} ( I [ Ii::) .. I.> { I I 1J) + I.l ( I '[ 1 .. I + G ( [ I 1 ~) • (,( [ I I 6 ) .. \) ( I 
J I I 7) + \, ( 1 I (13) .o" ( I I I 'J I "'J ( 1 I I r. ) • (, ( II J" ). + U ( 1 [ Ie) + G ( I·! J I) ) + G ( I I If ) • G ( I I 1 
'+ fl· u ( I I 1 u) • (, ( [ 11 ... ) • G ( I I I 1 ) • (J l I I 1';) + v ( I I I" I +v ( I I I L I + (, ( , I I ~ ) + G ( I I I II I 
~"G(llIo» , 

L>C hI 28 
121.; Gl(});:(O.o,o.O) 

vO Tv 2d 
IJO IF (CC II .EI:.IOOOO.u) (,(, II) c!3 

" ( 1 I =c II I "v 1 ( I ) - S J 1 " "II ( 11 I' + (; 1 ( 1 c: I + U 1 ( 1 3 j + \J 1 ( 14 I • G 1 ( 1" I + G 1 ( I 0) .. G 1 ( 
11 7 I +u 1 ( I e I • G I ( l'i) +'(J 1 ( 1,\ I + Co I ( 1 H) .. l.> 1 ( 1 C'" - S.U" ( G 1 ( I II ) • (j 1 ('1 12) .(, 1 ( I l 
~ J 1 +u 1 ( I 1 •• ) • (; 1 ( ( I !) I .+ tj 1 .( I 1 (; I ) - ~ J J <> (u l ( 11 1 1 I • {, 1 I 1 I [ ~ I • (, 1 ( I I 1 J) + lJ I ( I I 1 
J4 I + vl ( 11 1 :i I + \> 1 (1 1 I () + (, 1 ( 1 1 r 71 ·0'" 1 ( I 11 ~ I + U 1 ( 11 1 OJ ) • C 1 ( I 1 [ f\ ) t I; 1 ( Jill:! ) t 

41,} (11 ILl +\;1 (II /L;}'+I)1 ('( IlL ,'.ul (L 1 H) +,,1 (I I Iv l .(,1 q IIH) +Gl (11 Il).G \ ( . 
S 1 I I';) tv 1 ( HI" I • ~ 1 ( 1 I Il I • u ) ( 1 I J M) • \1.1 , 1 [ I N I .~,! ( I I 1 <: ) I I 

cb CCUl'\:Ut-. ,-
21t eel.rlllllE 
J() C01. T I NlIt: . 

" 

.,' 

I 
" , , 
f 

.1 
1 

y 
{ 
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'. 

575 

580 

sus 

590 

59;5 

bOt) 

60S 

615 

620 

620 

'4 

\ 

I..oPlE DE QUAUT~ ~INFERlEURE I . 
. , 

(\ 

Jl CCt. r !NUt-.. \-1=0 
lie 34 L=-,l.N3 
lJC 34 ,,:;:1.1',2 
l: tV=lZ ILl Ofy no \ 
l:lYCC=llCC(LI*~YCC(K) 
"~=K+L 
Kc=l.~+(-I.ol*oKP/~.u 
IJ~ J4 .)=1\0. til. c 
1=1+1' 
If «(.(l}.(C.IOllOU.()1 <>0 Ir. 34 
(, III =F 31>G ( I ) - f c: old ( 1 t -t. LV 01: x (J) 
rT(~l=.r(21.u(I)OELYCC~lxCC(~1 
,; 1 ( I ) =t l. Y 01:, x. ( _, I 

34 C Ct. T lI~ut: 

R=)lflH[(U 
~"I lL lo,6Mol f.l 

06b fCkMA1 (lx.l~HCP~ TINE 0~fr ~ .~ IO.~1 
vC ~<:: 11=2tIt-.AX 
lie ';>1 IK=1.2 
lE.=loll+IK-~ 
1=0 

vc ~U. l= 1.1 . .) 
IF (L-d J"'tJotJ/ 

-. 

~ ukr~~ I~ (L=l) 

(. 

c 

C 

C 

l. 

3!:o IA~=l""=l'\"'=IJ\d=r 

Jb 

J1 

l~h=IAb=IAA=IAC=-LJ 

Ukt,Ut" t.A (L=l') 
IlA I=Hb 
lI/I<!=-L7 

vI<OY'" 3A (l=11 
IIIAI=IIIAi:111AJ=111A4=~~ 
IIIA!:>=II1 Ab=IIIII'/=III'H<=-Ll . 
I I III '7= I I I A~,= I I 111,)= 1 r r II; =.1 1 I M' = I I I Av= 111.\L = 1 I 1 A/\ = I:? 
I I I .\A:: 1 I 1 ,\c= 1 II At = I I I .\lo= 1 I 1.1\ 1:;: I II Ar'. = 1 ( I MI= I I I lie = -I. 3 
~C Tv Jb ' 

('h(.I.JP 18 ll.=<!) 
I Ao= [A!'=l/IA=IA(.=-,j 

IIIAA=lIIAC=lliAl=lII~0=1Ii~1=II1"'ft~IIIA~=llIAC=-~ 
(,c lu JA 
11':- (L.~~.oJ) (..0 TI: lJ!:> 

• ul<(;t-I-' C:U (1.,=3) 
lIA.!=-h8 

ul<OUI-' JC I\.=:i I 
1 1 1 A~.;: I 1 I /I" = 1 H II 7.;: I I I t. t' = - ,<, J 

.: ., , 

l12 

.1 
! 

~ 

I 

\ 
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~30 

640 

645 

650 

655 

66U 

070 

675 

~ 

C 

c 

CoPI~ DE ~1:.IL~ 1~1faUBJRE I, ' 
'" ... ~~~ ... ::.~ ~~-:li>."'>{'~"' ~~ __ t_',.....,..~ ........ ~"""~ __ ~_ ............ 

lJC Til 3d 
IJ5 IF (L-NJ+l1 Jtl.IJt:>.IJl 

<>I'ul/f> 2C (L=I,J-l) 
130 I 1f"1 =L 7 

IIIAI=111A2=lIIAJ=III~~~L7 
\.Ie Tu 38 ~ 

"t-ul/I-' ·IC (L=t>.JI 
IJ7 I~S=lA?=IAY~IAb=l3 

GI<\lUP 31:: (L=f<j) 
lllA9=II1Ab=IIIAC=11IA~=lIIA~=IIIAJ=lIIAL:IlIA~=LJ 

J~ l'C 4':1 1"o.=I.r,2 
~l~C~=~ZCC(L)~~YCC(KI 
~P=L +K 
Kc=1.5·(-1.0)~~KF/~.O 
IF (I\-l) 3'1.40.'+1 

C (jhOUP 10' (K=I) 

,~ 

/ 

\~ , 

J':t 1l::'l=A 
li;c=-Lr , 
lI'J=A 
1'-"=-1."2 
It!'J:I4':/+.\ 
1':1\:iil.A·A 
ItHJ=lAIj .. L2 
W(";;IAC-L2 

IlhlJUr' EU (K=l) 
111,J=i~l 

Ilt''+::-Ld 

GI<QUf> Jf (1'.=1) 
IIltil=IIIAI·A 
I I Iti<!=l I 11\2-Li 
1 I-lijJ=llIAJ.A 
I I Ih4= IllA4-Lc 
I [l~!l=1 IrA'i'!> 
1 I 1110= I II.\b-Lc:! 
I! I" I:: 111 ,\ 7 + 4 
llltib=lllhij-L? 
1 I I (j'J = III ..... • I~ 1 
liluA:1I1AJ\+t I 
IllUb=lllhH.r,l 
IllbC=111.\C+l'.1 
II Iflu:l I 1,\O-Lb 
lIlot=IIIAt-Ul 
11 1 rif;:: I 1 I M -L 11 

IIItlv=lllA(,-Lll 
lil~h=IIIM1+A 
1·1 Iul=11 fAI+/I' 
111 HJ'= 1 I 1,\ J-I_ c 
III rll\= IliAK-Lt' 

" 

- " 

113 

I , . 
j 

1, 

" 
1 , 



, .. ~ weIE DE ~LITEE I t-lFERlEURE. I 

114 
" 

68':1 11 IllL=>111AL+t. 
1111)1'1;: 1 I I IW +A 
111"'1'.=1 I 1 M,-L~ 
11 luO=1 1 lAt.-I.e 
..,c ru ~(;: 

6<;0 
c GI<(.Ut-' 1£ (K=c!) .-

"Ii fHc=-A 
It!4;:-1I 
I~ll=lAB-A 

6<;~ l t:(.= 1:'<'''1. 
J . 

C (,IH;Ut> JG (K=l) ! 
1 II be= 111 Ae-t. 
1111~4=1 IIA4.1,\, 

700 11 Itlt'=1 HAo-A 
I I 1 !b=1 II Atl-A 
I I 1 tj"/;:l 1 1 IIJ-A 
111!jl\=lIIAK-A 
I I Itl1'<=l IIAN-t. 

7Q5 I I 1l<1):: I II A(l-A 
GC Tu .. 2 

41 IF (" • f.!:. • 3) l>d 10 IJu 

C ukCUfJ "t. (I =.1) 
flO 1: Ib .. =-~.i 

L Gl,llUfJ 3t1 (1<.:3) 

• L I IuU=1 IIAO-NI 
1 II Ht:. = I-I! Al-I,1 

71::5 1 I I ti~ ;: I 1 I .\ f' -~<l 
11 ltiv=1 1 lA~,-1\1 
uC lu 4, 

lJb If (1\-1<12+1 ), 4l,14uol41 

720 (.' lJI<OUf' d . (~=r.c-l) 
I'+v 1 LI.J=ll! 

C c,I<OUP JI (K=t.c-l) 
IIIIl':l=1 Ill1':/+L:1 

U'::J 1 I IIM=1 llAA+Lo 
} 1 II Hb= 1 II Atl +L d 

I I 1 U(':: 1 11 f\(. • L rI 
GO r(} 42' " .. 

7)0 C ('~OU'" 11- (K=I~c:!) 

141 lel:;L~ 
I~l=t.r 
It3'.1=lA'1·L2 
I~A=I"A+Lt' 

tE-~ . 735 
l.j! 

C l>hOUf- 3.,1 (K=N~) 

II l'ul<:11 fA I.\.2 
II'Itl..,=l! I AJ+L2 
lIltl;':::;lll'\~.Lt! 

740 I1ItH=111A7·1.2 
,II lUI"1=1 IIM'.L2 

4-: 
!. 

" 

. 

" I , 



" 

1 I ttH = II I '\ I +l~ 
1 I I tJL.= lilAl +l ~ 
I I l'IN=1 I 11\/I.L 2 

745 , .. ~ ~'C 't(j J:;KC,Nl • .: 
1" I +1 
H (I\O-~) 1 .. id4J 

14~ If (.)-31 43,44,"5 
750 

C ",I<OUP Iv (J:;1) 
4J lC"l=lAl 

lCG=1fic! 
lC3=ltjJ+L6 

755 lC4=IP4+L6 
lC~=I'\!:> 
ICt>=I.\() 
1 C 7 = J \ I + L ". ' 
lCt>=I'!t"Lb 

760 
GI<(JUP 26 (J= 11 
11C5.:'1 
Ill..O=U:l 

76!l L lJf<'l..Uf .,)K (J= 11 
llICl=lI ltH 
llIC<.=IIldt:: ' 
1 r ICJ=11 [,~.3;L~· 
lIIC"=I11d4+Lb 

170 11 IL!:>=I 11h!> 
'I I It.:o=I I l'H) 

11 Ie7=1 I I,'7+L':> 
£lll:o=IIlJI<+Lo 
11 1 l. ... =I Il·jr,j 

17~ IIICA=1118A 
11ICtJ=111hf,.U, 
1 I ICC= 111.)C+L,> 
1IICu=11IdO 
II Ie!;.=11 ["I:, 

7c\O 1 I lCf =1 I I'll' +Lo 
IIICu=ll1,'utLb 
I llCtl=H [,..1i!1 
IIIC1=IIIHI+1 
IJICJ=IIWJ+l 

78!:> InCI\=111,jK+l 
I I lCL=U l'IL'L6 
11ICh=11Irl.""+Lo 
111 C,_= 111 t,lt,+U, 
I J leO=1 I H\OoL6 

790 l>C Tu 47 

r; ('kOlJl.' II (J=JI 
44 Ie J= ItIJ-1 

J(,4=lh 4 - 1 
79!:> 10:;11\7-1 

lCb:zlAlo-l 

C (,1<(JlJP 21 (.)=.11 

.. 
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"' 

" 

{ 

" 

" 

I 

f 
j 

i, 
I 
I 
I 

1 
1 

I , 

1 
'l 

l 



", 

116 

1ICO =-1, 
800 \ 

C {;i:OvP '31'" (J=J) 
III(.J=111lJ3-1 
If 1C4=1l1b4-1 
II IC/::Ill'~'-1 

oOS 11 I Cti= II I t;tj-l ~ 

'. I I ICu=11!tll l -l 
IIICC=I.lltIC-l 
1 I I Ct :: ! I I dF • 1 
II ICu=lIl~G-l 

81U lIICL=lllHL-l 
1 I ) ett = 1'1 1 til-< - 1 
lllel,= II tHI\i-I 
III<':v::IIlbO-l 
()C Tv 47 

"' 8,1S 4~, IF (.) • r.[ • ", 1- I ) (,0 TO 47 

Co GRlIUt' 2K (,J=I\; 1-1) 
11C:,=-lh 

82U (. <>R(Jvl' Jll CJ::l'.l-l) " 
," 

1 II eH= I llllt'-Lb I I I 1<.:1:: llIflI-LQ 
IIICJ:: 1 IIllJ-l.o 
III CI\:: IIIHK.-LI) 4 

il2!) t,C Iv 47 f 14,3 If (,1 ... > 1'-14 "l'''S~ II"!:> 

C C,RCUI> 111 (J=2) 
144- lCI=PJ)+1 

630 "Ie ~= 11;~.l" 
ICJ=II>J 
IC4=II1'-1 
IC!>::" A~+ 1 
lCt;=!"lIu+l 

835 IC7=lA1 I 
ICb=lAtI 1 

C uf< ll!JP ~11 ,( ,J='::') 

f 11 Ca=l. 
840 11 VJ=Lh 

{; \)1-<01)1' JL (.J=':) 
IIICl=IIIH·l 
III C~='lll b 2+ 1 ,,,,", 

845 1 I lCJ::, Ilf~j . 
IIIC4=IIIH4 
IIIC~=)IIlIb+l 

850 

IIIC6=IIlI!(,+I 
lllC7=ltIH! ' 
llIeu=!I Ilia 
llrC~:;1IiH9+r 
II ICA= 11 11311 d " I llCb::,I I {Uk<, 
III tc= IllfIC 

tI!:>S II leD= 11 1I3U.l 

,.' 
", ' 
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. 117 I 

n (Ct.::: I II H f:.. I 
lllCt:::lIltlf 
IIIClJ:::lI1t~(1 
1 [JCh:::IIIPH+l 

A60 I IlGI:::l111l1+1 
, t 1 ~IGJ:::III"'J.l 

~~ . 1 1 1 CII.:: /.ll'flK - 1 .' 
!lICL=III.IL-L6 .. 
IIICM=II1H"'+Li) 

865 lIIC',=111tl""U;> 
1 I 1Cl;l=I11 riO'!./:) 
GC 10 47 .: 

(. c,1«,uP 2J (J=4, 
870 l .. S 11C6=-1 

C uROUP 31" (J=<I-' 
I IlCL;;i IltlL-I ~ I I IC,",=:II 1tW-l V 

,875 ill Cf\,:: III f\~.-I .; 1 1 11C()::lllt"v-l 
uC Tu 47 

! 

114~ IF (J.t\E.l\.l) (,e TO 47 

C l:,.CLJP IJ (J=I\, 1 , 
( 

I SHU ') 1 C 1;;: l~l-U' I 
rCc=llU-Lo , 

~ t I CS= 1 A!>-L.6 \ 

'leo=1 Ao-L6 i. 
885 i '\.. G;'OUIJ ~L (.J=t-.I, .' 

·11 t~=-L.6 

.\ L l>kuUl- :.II> (..1=1.1) 
890 I I ICI =11 1t\l:"Lo 

1 I I Cc;:=II I,\2-LI) 

I IIIC!>=lll'.lS-LQ 
II U· o = 111.'6-Lo 
IllC"Y=lllis9-Lh 

9;f~? 11 ICA=llltf~~~ 
IIICv=IIIIIU-Lb' 
! II tl:.=11 Hit. -L6 1 II1Ch=IIII.I1-Lb 
I I1Cl=111I~I-Lb I 

"OQ, 1 I] (,.J= 1111!J·LI) . { 
I IICt\;::lI-lt'K-Lt, • 

, 4'1 1'1=1+ICI I 12=1'+1(.2 , .-
90S 1J:;1+IC:I 

14=1+IC4 
1 s= l·lCS' 
16=1·1(;0 
17=['+IC7 

911l 111=1+1(8 
1<,=1·1,,4 
1.\=I+Jbf, 

'. 



915 

<)20 

925 

93\) 

9S0 

955 

. . 

It'=I+l~ti 
lC=l+lbC 

1l1=1+llAl 
112::I+llA2 
113;I--llb3 
114=1+llu4 
IIS=I.IIC~ 
!l (,::1 +I 1 CI':l 

1111;:1+111<'1 
II Il=-i.\ U(2 
lII3=1+IIICJ 
1114=1-IIIC4 
III:)=!+IlIC':i 
llItl= 1 + 1 IICb 

,II I 7=/01 I H,7 
Illtl=J+IIICII 
fII9=[+IIIC<.J 
1 [ I A= I + 1 lit A 
It'ltl=I-HILK 
l11C=I+IIICC 
11IU=I+111cD 
1I1t.=I-IIICE 
IljF=I+IIIU' 
11\ (,:::: I • II I tG 
11l11::::I-liICH 
1111"'1+111(1 
IlIJ=I+llICJ 
IIIK=I+IfICI\ 
~ HL::I -I IlCL 
1111'1=: [ + I I 1 C~I 
[1 I'~::::I .,IIIOJ 
IIlU=I"IlICO 
IF 1'1,,-11 141.l"~ 

t4tl H (\"(lI.[W.lUOOO.()1 r,u In 41:! 
Gll!)=l.>ll!)+Fllt' • 
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+ (C ( 1 ) "(, I I I - S J 1 " I (, ( 1 ! ) • (j ( 11) • (; ( I J 1.+1.:J ( 14) + {J ( [ '= ) + C, ( 1 E:) • (, ( I 71 + (, ( r 
I" 1 + ~ ( 19} +v ('[1\1 +(, ( I f1) + \. ( Ie) ) - SJ2!' (l, ( I 1 1 j' .. (, ( I 1" ~ +(;( I 13) +f; ( I ['+) "l> <' I J ';) 
c) +l ,( 1 I p) r -!:> J.:ll< (\] (II 1 1 ) +" ( 1 Jl t:I .. v ( I I I,) I +v I 1 H .. 1 • G ( I II!> ) .. (, ( I I r b) + (d I 

• :s 1 I 71,+(;'(1 11~1 "" ( I I 1'1) +( 011 I I A) +'" ( lilt I "v ( I 1 Ie) + G II I In) .. c; ( I [ I [) +c, ( [ I I 
10 ~ I • \; II 11'0 \ + (, ( I I I ~ ) + (; ( I, I 1 I ) • (. ( II 1 J) + C, ( I IlK) +..1.> ( I 111, I + (, ( I II ~II • (, ( 1 I H ) 
~+(;(lllOII) 

FT (H I ::fl (1[1 +1..1 (II "LLY(;loF;<'CC(JI 
I,e Tu .. ~ -

147 If CL( I) ,.e'\ .. LOOOtJ.UI 1,f.J 1('1 '+t! , 

(, ( 1 ) =(, ( I I • ~ 1" 
• , (C ( I ) .. lJ 1 CI ) .. ~ J 1 .. «(,j ( 1 I ) tel ( I "i • (, 1 ( I.)) + vI l14 I • (Of (' I C; I + \>\ ( 1 (, 1 + ('1 ( 
1 1 7 J tv 1 ( lI:ll + (-.1 , I" ) +(~ I ( [ 1\) + G 1 ( I \j) • U 1 ( 1 C) ) - :'Jc" ( G 1 ( 1 II ) + G 1 ( I Ie) .~ 1 ( I I 
t'.I) +\.> 1 11 1''' ) • r, 1 ( II S I + ld, ( I 1" ) ) -5 JJ* I (, I ( I I I II 'Co 1 ( I liZ) +r., 1 ( It I.) 1 "\1 1 \.lJ I 
J,+ ) + (.1 ( 1 L I ~) + u I ( I 1 I u I ·',1 ( 1 I I I ) + to 1 ( 1 { 1 U) • U 1 III I '1) • (. 1 ( I I I 4) • l> 1 ( 1 I I ~ I • 

• '+ l.> 1 ( I 11'(; 1 + (, 1 ( 11 llJ) + \} I ( I 11 to ) • C, 1 ( I I If 1 + u 1 ( I I I G) + li 1 ( I 1 I t;) • (j 1 ( I I 1 I ) + G 1 ( 
SIIl~I+l>l(ltI~)tUl(IIrL)'ul(IlIMI~ul (lIJNloulIIIICI!) 

f I i 1~1 =f T (11::)' G I I J<>t lY,Clo~ )(Le(.) 

"II CQ~ r l:.\:t. 
4'1 CCI\ I If.L't:. 
.,0 l.CI\ liNt L 

I 
t· , 

, 
t 
~ 
I -, 
i , 

·1 , 

I ' 



970 

975 

c 

980 

c 

1 COO 

1005 

101U 

,101!> 

l02() 

l02S 

fbOR I • " 

. Q)PIE DE GtJA,"-n~ INFElU~RE 
.. - • ~.... >-

~1 LCI.TlNl.E 
~c eer. r I NUt. 

"~,, f l~ll (1) 
... t<l H. 10'066) t< 

~L;.lJJZ:\J.O· 

iF (rLA(jJ.I'.f.tl.l)1 GO TO ':01 

Ie I-'t-{HIT ·ct. T ~ 1 
'\'11'<1 Tt:. (6 deO) , 

320 ~<"~NAT (//lx.l"',,!:l(~""U\l,.lrT) ... x.~tlIM .. GlfTl ... XI./) 
lLL=lMAl<Y/S 
IF C.>~ILL.',t:..Ir·,AXP) ILL=-ll.L.l 
LIe oc 1=1. ILL 

119 

"hIlt. (btJ211 ~T(1).~T(I'ILLl.t"l(I·""ILL).~T(1'3"ILLl.f-T(I'''''ILU 
62 <..e~Tl~~~ . 

cOl (;C .. Tl NIJt. 
J21 fv~,'I,\T nxtlO{.l2.e» 

~~EQ~ENCY SHIFTS 
T=U. u 
uC ';)~ 1:; 1 • I ~IA \P 
~ St' H f=O.XI-' (LZ"t .u"~ r--tuh'll-" (1-1) I I",-r !>f'-C"U' ,\ II I ) 
r St'1H l=U.XPILc"2.u"tXf'Atl!,;X" (1-1 }/i .1::.PC"fYAX» 
IF HL/.Gl.hf.ol.() r~'·lfl:(I.v.u."'} 
f TIL ) =~ T I.l ) "I:. .\1' (->lHIC ", .... ?) Of !>t' I ~ r"~ ::'1" I fr 

. \=1 • Ill'. I. T 
:,c;. eel.Tlt.lit:. 

H:L0 .... T~f ~H:."0~) of (, Af\O vi 1.> v.>U) f 0" f r A"C LT~ ~·r::IJI<lt.'" Xf- 01;'1-' 
IIC Ie. l=I.I,,,AMJ 
\J ( 11 =f T (1 ) 
,,1 (1l=IO.lJ,,).l» 

72 eel, T l'lli( 
11,/,1.1"[>= Il-'h",P'1 
lie 1 J 1 =lI-'AX~fJ. Ie.H', 
II I 1 ) =- ( 0 • II • 0 • II ) 
I> 1 I I ) :;: I 0 • 0 • 0 • u·l 

1 Jeer. T I ~ILJt 

fFH (Lift) IS Tt1t, tllli·"~k of SPI.~ I'Rt.SI:."lT 
F fFF ILIfT) ;~l.\L.(~ T (1» 
1, .. lTt.lo,~\)ll fFft ILr~l) 
FChMAT IIIX.l:tt~l(ll = .F7.1) 
.. =A T 1.,t. (1'1 
WIiIT.l,lb'b6bl,:, 

FCUHIE,H It'A'''~tl~f<l'. 5UI'houi PC 
CAl.I,. n T (Gl.I>, I Cl,r-. I . 
tl:,\ T \I~I:. ( 1) 
wlH Tl lo.ht-b) .< 

Ie AVE.RA~t: lt1L f T"~ .I)v[ H ~ ClLLS Ct,LL5 
ILLl::\ 
lie 2uo I=l.t.t T'J 

JIV5\J(I)="~AI «'I (1) )+.\vSJlII 
If (AV~:llll.GT.AvsulllLlll lLLl::l 

---~ ,. 

I 
j 
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I 
i 
l. 
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,t 

I 
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10'30 

1035 

1040 

104~ 

} 10~O 

1055 

lObO 

I v6~ 

1070 

I1l7? 

IOilO 

c 

FmR Copy t, 
,CoPIE DE ~!-ITI;E_ INFERIBJRE 

t 

. . 

TC NU~I'''Lllf ufl .\~fl rl'~l. GfTMA ... 
II T= I 
OC 0<,0 1=I.tjfT5 
\.)Flll)" ... tAlIulllll/HFf(LHTI ' 
IF (urT(I).l>l.lJrT(llT» Ill:l 

o~ lCI. T ltllll 

~ Te ~HI~T eLT G~I 
1o.f.IH: (0.)<:'2) 

322 f Ch"'.AT (//11. .11d III (3ltt,~ 1.9\(» 
lLL=rWTS/IO 
H (10-" Il.L. M:::: •• "f T S'l ILL = 1 i.. L .! 
vt: b,j 1 = 1 • Ill, 

120 

..... ITt. 10.321) ufllll.bf TII+ILLl.uf ~(1'C:"lLL).GF'l(I'3"ILLl.<'F"T(I'"'' 
II L l ) • L>f TIl .... " I toll • uf T ( I '(:" I LLl \~ r 11' 7 <>1 LLl " u~ t ( I 'k" 1 LL I • {J~ T ( I .~ .. 
21LLl ' 

03 Ci.:t.Tlt~U~, 
If (LlrT.~t.~CtLL5) 1.>0 TL 2\l~ 

~ lC "'HUIT OIJT Avth.\(,I:.,) SI ... f) M 1t.1< N('ELLS j.,lJt~!> 

.. hilt. (0 • .110) 
clu tCk~AT (1IIx.~"~vERAGCu) 

ue.: coa 1=ltlLL 
\,.,fH. (603?.ll ..... !::tJ«(l.A ... ':~'(l.IU.). V!>,;C!.;'''ILL).Av<.,Q(f'3''ILLl.AVC;O 

1 ( t • 4" I L II , .. II!l" 1 I .'~ ".I L Ll , ... v S'; 1 1 •• ~" I l.L I • A V ~,; ( I • (" I L Ll • Av Sll ( I • "\ltl LL) • 
~ .. V5~(I·~"ILLI -

?(}tj (;Ci. r ll\'l"t, , 
d U~ teN T I ~Jl..E 

II' If L"Gd.M .1) Lv T(, {,'+ 

Ullit.!> /I FI-IINTEh ['Lt.,'T (It fFT IF (tL·'{,~.€.Col.U) 
JC~=t.fl!)/luO"l 
uC tJl oJ II-''; I', .Jl.'lt. 
UC O\) l\=hlOlJ 
JACK~K·IJl~-ll"100 
vr(K)=~E~LIY1I.JAC~) ) 

00 <.cr.Thvt 
uP ~ II ",(}I' TIll 1 ) 
..,F(cl=v.U 
C;I LL (.KM'1'1 1 <>~ I 

101 CCr. r I",Ut 
64 cc"t T r tJU!:. 

tc NV"~ hL IlF: I.>f T I () 10,,' 
Te ~t.r ~p A-~Xl~ V~LGf~ ~r 
1 F (L 11 T.I\ 1'". 11 (.(; T (l 22 c! 
t~~ T:-1AX=l,ff (T I T r 
uC 11 I'" 1 • t.1' 1 S 
GfTII) "('~ TIl IIIIIJI).v/\1~ T'1",. 
t.t\(;1-<1--l (I) :oJ ~,orJp .. " I -l:.x"'I1/'LI~ 

1'1 cci, T 1 rjl'~ " 
Te Pl01 1Mt AllGVt f-41:.!>~ 
I~ (LUT.I,E.II GO. ro <!(\;, 
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1 
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1085 

11190 

1095 

11110 

llOS 

1110 

111 ~ 

112!l 

AL::d.,:> 
'1L::6.':> 

fboR . I 
' CaPlE DE Q..Lt\LI.Ie' It-.'FERIEURE 

,,'" I I~:;-l k~ 41.11'\ 
A~A~~E~AA'Ex~A~OA 
Yt" l"~=Il.O 
~:~ ""=110.0 
Tll.. l =I.0 
T 1< '1'=10.0 
(;'ILL PLOT (I,'(l .~L.),.~'IN ... ~Ax.YMIN.nIAX.t'IC>-'TlCY) 

121 

CALL 4.\Lit; (l\ltt(Ilc.,CTt'LlII) .6.JllttC":;,(u.r:) (t-.l'I'''Al.llEP TU 1(0)") .co.o 
IHt~ ... I) '''·H·H(~o:,.,,) • .,) 
r (,; k~1 <l ) = I IlII( L'~'(. = t c 
f C f,'~ , .? ) = bJl1 P II A) , , f tI • 

~ t.:>i,-I(:!)=lOl1o:,.lrH ,tJ<.~ 
t Clt~1(4)=10t', Itt.H ~.,>, 
f ChM (\» "'''Hlll)) 
$1':[=2.0 
vll·=O.O 
"Lt,,;L=-t.AP ,\1\1) .... V. 7 
rL\.C=lU!.?!:> 
CALL "LOT (J.FQK". Sll~_,ull")(LOC. YL,.C,,:tl,\ T .3) 
FC,.r I A(1)=lOH(4t,X = .f'" 
~Cr,"'A(2)=JH.l) , 
'l'LUC='1o.o::., 
CAlt. ,'LCl1 (),tl_k"A.~l/t~.\.II ... '<LOL"Yl..OC.X, 1) 
I"[t.=}.v 
51'A"=O.Q 

cO!:> Ct.LL PL,1T (?'I>'ll\.~,y·,d.l j(:P~''(;~l.I~~ I~) 
CO) Let. T hut. 

IIVS'}~\=,\" ~'.: C T Lt.l ) 
ve ell 1= 1 • l"r T ':> 
AV~U(rl=AvSQ(!)Uluu.u/~V~~" 

ell CCt.TlNV£ 
CALL fJLO 1 C 1 • At ... YL. ,('A It .. "'''11)(, '11'1"', HIAX. T I CA. 11 C. If) 
t,ALL A.\Lll. (IOld"!:.(fI·n"I.6.JOI-1(It';i\,itU (~(\kM4LIlf(\ T'l lOU)"I."t>.b 

1" (~ ... I) .... hH C ~ ~. II) • 'J) 
VLvL=lvl.G~ , 
C.ILL I'I-\:T IJ.FOhl'.SILL.u1 ... XLOC.'I'L,,(..l;HAT • .I) 
1 LCC;,-I(> • <'S 
CALL ~LCT IJ'~U~~A'~lLl.~I~.JLu~.YLUC.X.l) 
(..IILL ~L(J! C? ... t.r,tS~" ... tl".I;t-'.,l"!>, •• f'o., lS) 




