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ABSTRACT

The work described in thts tnesis .concerns. tne investigation of,

the properties of a new type of eoZ laser, one which operates in ~~e

wavelength region near 4.3 ~m rather than in the 9-11-~m region where

most CO2 lasers operate. Lasing at.4.3 ~m t~ achieved "by uslng.a 10-~m

sequence CO2 laser to ~ptically pump CO2 molecules.which have been

excited in·an electrical discharge. The laser is based on ~xlsting

CO2 laser technology, and therefor~ It is potentially ,a very useful

source of coherent ,radiation In a spectral r~gion where there are

presently few 'lasers suitable for widespread use.

Pre·limlnary exper'iments are described which serve to identify

the various physical processes involved in 4.3-~m IQs~r action.

Efficient optical pumping is demonstrated· and peak'output 'powers of. .
I kW are observed. A theoretical model of the laser Is developed'.

The model can accurat~ly predict the observed 4.3-~m output and Jt is

. shown that the lifetime of the upper laser level Is thecrftic~l1

factor In determining the gain dynamics of th~ laser system.

Two.princlpal oper.atlng regimes are identified. The first is

a high repetition rate Q-swltched mode s~ltable for the production of

high average power. A Q-swltched' 4.3-~m laser is constructed,

employing continuous discharge tubes and SF
6

is 'used to passive.1Y .Q-

. switch the sequence .oscillator. The average output power at 4.3 um

is 120 mW.
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The other operating regime Is a high power pulsed mode."This

Involves scaling the laser to hi~f1er operating pressures, which requi,res

the use of high levels of sequence, pumping power. To this end, a TEA

sequence CO2 laser having output energies of up 'to 6 J per pulse was

developed~ and design criteria for such lasers are presented. The

scalabil lty.of the 4.3-~m laser~ using the TEA sequence laser as the

pump sou-rce, is discussed •. The factors which limit the maximum output

power at~ainable are Identified, and guidelines for the construction of

high power 4.3-pm lasers' are presented.
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