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This thesis contributes to advances in Space Mapping (SM) technology in
computer-aided modeling, design and optimization of engineering components
and devices. QOur developments in modeling and optimization of microwave
circuits include the SM framework and SM-based surrogate modeling; implicit
SM optimization exploiting preassigned parameters; implicit, frequency and
output SM surrogate modeling and design; an SM design framework and
implementation techniques.

We review the state of the art in space mapping and the SM-based
surrogate (modeling) concept and applications. In the review, we recall proposed
SM-based optimization approaches including the original algorithm, the Broyden-
based aggressive SM algorithm, various trust region approaches, neural space
mapping and implicit space mapping. Parameter extraction (PE) is developed as
an essential SM subproblem. Different approaches to enhance uniqueness of PE
are reviewed. Novel physical illustrations are presented, including the cheese-
cutting problem. A framework of space mapping steps is extracted.

Implicit Space Mapping (ISM) optimization exploits preassigned
parameters. We introduce ISM and show how it relates to the now well-
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ABSTRACT

established (explicit) space mapping between coarse and fine device models.
Through comparison a general space-mapping concept is pmposeé. A simple
ISM algorithm is implemented. It is illustrated on the contrived “cheese-cutting
problem” and applied to EM-based microwave modeling and design. An
auxiliary set of parameters (selected preassigned parameters) is extracted to match
the coarse model with the fine model. The calibrated coarse model (the surrogate)
is then (re)optimized to predict an improved fine model solution. This is an easy
SM technique to implement since the mapping itself is embedded in the calibrated
coarse model and updated automatically in the procedure of parameter extraction.
We discuss the enhancement of the ISM by “output space” mapping
(OSM) specifically, response residual space mapping (RRSM), when the model
cannot be aligned. ISM calibrates a suitable coarse (surrogate) model against a
fine model (full-wave EM simulation) by relaxing certain coarse model
preassigned parameters. Based on an explanation of residual response
misalignment, our new approach further fine-tunes the surrogate by the RRSM.
We present an RRSM approach. A novel, simple “multiple cheese-cutting” problem
illustrates the technigue. The approach is implemented entirely in the Agilent ADS

design environment.

A new design framework which implements various SM techniques is presented.

We demonstrate the steps, for microwave devices, within the ADS (2003) schematic
design framework. The design steps are friendly. The framework runs with Agilent

Momentum, HFSS and Sonnet em. Finally, we review various engineering

v



ABSTRACT

applications and implementations of the SM technique.
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The manufacturability-driven design and time-to-market products in the
electronics industry demand powerful computer-aided design (CAD) techniques.
As signal speed and frequency increase, conventional electrical models for
components are no longer adequate. Design and modeling with
physical/geometrical information, including electromagnetic (EM)/physics
effects, become necessary.

The first CAD techniques in circuit design appeared in the sixties of the
last century. Temes and Calahan (1967) advocated CAD technology for filter
design. Since then design and modeling of microwave circuits applying
optimization techniques have been extensively researched.

With the dramatic increase in computer hardware performance, EM
simulators could be built to solve Maxwell’s equations for circuits of arbitrary
geometrical shapes. Analysis technologies such as the finite element method
(FEM), the method of moments (MoM), etc., are used. Rautio and Harrington
(1987a, 1987b) presentied excellent agreement between EM field solvers and

measurements. We can single out the High Frequency Structure Simulator
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(HESS) from Ansoft and HP (Agilent) as the flagship FEM solver(s) and the
MoM product em from Sonnet Software as the benchmark planar solver.

Due to the computational expense of EM/physics models, simply
substituting conventional equivalent electrical models by EM/physics mo@eis into
the design optimization process will not work, because‘ of extremely long or
prohibitive computation. CAD procedures such as statistical analysis and yield
optimization taking into account process variations and manufacturing tolerances
in the components demands that the component models are accurate and fast so
that design solutions can be achieved feasibly and reliably (Bandler, Cheng,
Dakroury, Mohamed, Bakr, Madsen and Szndergaard, 2004, Steer, Bandler and
Snowden, 2002). To achieve success in modern, high-frequency, circuit and
systems design optimization, we need EM/physics-based component solutions on
a much larger scale, a task‘beyond the reach of available design tools.

Space Mapping (SM) is an optimization concept, allowing expensive EM
optimization to be performed efficiently with the help of fast and approximate
“coarse” or surrogate models (Bandler, Cheng, Dakroury, Mohamed, Bakr,
Madsen and Sendergaard, 2004, Steer, Bandler and Snowden, 2002, Bandler,
Biemnacki, Chen, Grobelny and Hemmers, 1994, Bandler, Biernacki, Chen,
Hemmers and Madisen, 1995, Bakr, Bandler, Biernacki, Chen and Madsen, 1998,
Bakr, Bandler, Madsen and Sendergaard, 2001, Bandler, Georgieva, Ismail,
Rayas-Sénchez and Zhang, 2001, Bandler, Ismail and Rayas-Sé.nchczg 2002,

Bakr, Bandler, Ismail, Rayas-Sénchez and Zhang, 2000, Bandler, Cheng,
2
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Nikolova and Ismail, 2004). It has been applied with great success to otherwise
expensive direct EM optimizations of microwave components and circuits with
substantial computation speedup. Research is being carried out on mathematical
motivation, to place SM into the context of classical optimization. The aim of SM
is to achieve a satisfactory design solution with a minimal number of
computationally expensive “fine” model evaluations. Procedures iteratively
update and optimize surrogates based on fast physically-based “coarse” models.

Space mapping was first introduced by Bandler, Biernacki, Chen,
Grobelny and Hemmers (1994). In its ten-year history, researchers explored a
number of variations and enormously successful applications. The theory is still
in its infancy, but SM is accepted by the mathematical and engineering
communities as a significant contribution.

This thesis addresses advances in SM technology in the computer-aided
modeling, design and optimization. An objective is to present our developments
in modeling and optimization of microwave circuits. These developments include
the SM framework and surrogate modeling for SM technology (Bandler, Cheng,
Dakroury, Mohamed, Bakr, Madsen and Sgndergaard, 2004), implicit SM
optimization exploiting preassigned parameters (Bandler, Cheng, Nikolova and
Ismail, 2004), implicit, frequency and oufput SM surrogate modeling and design
(Bandler, Cheng, Gebre-Mariam, Madsen, Pedersen and Sendergaard, 2003), an
implementable SM design framework (Bandler, Cheng, Hailu and Nikolova,

2004) and various other implementations and applications.

3
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Chapter 2 addresses basic concepts and notation of Space Mapping. We
review the state of the art of SM technology and the SM-based surrogate
(modeling) concept and applications in engineering optimization. We recall
proposed approaches to SM-based optimization, including the original algorithm,
the Broyden-based aggressive SM algorithm, various trust region approaches,
neural space mapping and implicit space mapping. Different approaches to
ehhance uniqueness of parameter extraction are reviewed. Novel physical
illustrations are presented, including the cheese-cutting problem. SM framework
steps are extracted.

In Chapter 3, we discuss implicit SM (ISM) optimization exploiting
preassigned parameters. We show how it relates to the well-established (explicit)
SM between coarse and fine device models. Through comparison a general SM
concept is proposed. A simple ISM algorithm is implemented. It is illustrated on
a contrived “cheese-cutting problem” and applied to EM-based microwave
modeling and design. An auxiliary set of parameters (selected preassigned
parameters) is extracted to match the coarse model with the fine model. The
calibrated coarse model (the surrogate) is then (re)optimized fo predict a better
fine model solution. The mapping itself is embedded in the calibrated coarse
model and updated automatically in the procedure of parameter extraction. We
illustrate our approach through optimization of an HTS filter using Agilent ADS
(2000) with Momentum (2000) and Agilent ADS with Sonnet’s em (2001).

In Chapter 4, we discuss the enhancement of ISM by an “output space”

4
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mapping (OSM) or specifically, “response residual space” mapping (RRSM)
when the coarse and fine model cannot be aligned. We present a significant
improvement to ISM for EM-based microwave modeling and design. ISM
calibrates a suitable coarse (surrogate) model against a fine model (full-wave EM
simulation) by relaxing certain coarse model preassigned parameters. Based on
an explanation of residual response misalignment, our approach further fine-tunes
the surrogate by exploiting RRSM. An accurate design of an HTS filter, easily
implemented in Agilent ADS, emerges after only four EM simulations using ISM
and RRSM with sparse frequency sweeps. We also present an RRSM approach.
A new “multiple cheese-cutting” design problem illustrates the concept. Our
approach is implemented entirely in the ADS framework. An H-plane filter
design demonstrates the method.

In Chapter 5, we discuss a number of SM implementation frameworks and
examples. We present and demonstrate an Agilent ADS schematic framework for
SM. Using this framework, a number of SM techniques are implemented in ADS
with Momentum, Sonnet em, and Agilent HFSS in an interactive way. We review
significant practical applications done by various groups and researchers from
different engineering and mathematical communities.

We conclude in Chapter 6 with some suggestions for future research.

The author contributed substantially to the following original
developments presented in this thesis:

(1)  Development of a space-mapping framework for space mapping

5
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algorithms.
Development of an implicit space-mapping algorithm to simplify

microwave device design.

Development of an implicit and oufput space-mapping (RRS
algorithm to fine-tune microwave designs.

Contribution to the review paper: “Space mapping: the state of the
art.”

Implementation of the implicit and output space-mapping (RRSM)
algorithm.

Development of the software package SMX to automate the SM
optimization exploiting surrogates algorithm (Bakr, Bandler,
Madsen, Rayas-Sanchez and Sgndergaard, 2000).

Development of the demonstration “cheese-cutting” problem and
“multiple cheese-cutting” problem.

Design of an ADS schematic framework for SM. Entirely within

this framework, implicit SM and output space mappings (RRS

are implemented.



ODUCTION

2.1 INTR

Engineers have been using optimization techniques for device, component
and system modeling and CAD for decades (Steer, Bandler and Snowden, 2002).
The target of component design is to determine a set of physical parameters to
satisfy certain design specifications.  Traditional optimization techniqﬁes
(Bandler, Kellcrrhann and Madsen, 1985, Bandler and Chen, 1988) directly utilize
the simulated responses and possibly available derivatives to force the responses
to satisfy the design specifications. Circuit-theory based simulation and CAD
tools using empirical device models are fast: analytical solutions or available
exact derivatives may promote optimization convergence. Electromagnetic (EM)
simulators, long used for design verification, need to be exploited in the
optimization process. But the higher the fidelity (accuracy) of the simulation the
more expensive direct optimization is expected to be. For complex problems this
cost may be prohibitive.

Alternative design schemes‘ combining the speed and maturity of circuit

simulators with the accuracy of EM solvers are desirable. The recent exploitation

7
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of iteratively refined surrogates of fine, accurate or high-fidelity models, and the
implementation of Space Mapping (SM) methodologies (Bandler, Chgng,
Dakroury, Mohamed, Bakr, Madsen and Sgndergaard, 2004) address this issue.
Through the construction of a space mapping, a suitable surrogate is obtained.
This surrogate is faster than the “fine” model and at least as accurate as the
underlying “coarse” model. The SM approach updates the surrogate to better
approximate the corresponding fine model.

Bandler conceived the SM approach in 1993 for modeling and design of
engineering devices and systems, e.g., RF and microwave components using EM
simulators. Bandler er al. (1994, 1995) demonstrated how SM intelligently links

companion “coarse” (ideal, fast or low-fidelity) and “fine” (accurate, practical or

design reonses design _,| coarse TESpOnses
parameters \ parameters model
design _( \ JSPOnSeS design %Ci,@w | responses
parameters parameters b @
""‘rh

find & mapping to
match the models

Fig. 2.1 Linking companion coarse {empirical) and fine (EM) models through a
mapping.
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high-fidelity) models of different complexities. An EM simulator could serve as a
fine model. A low fidelity EM simulation or empirical circuit model could be a
coarse model (see Fig. 2.1).

Generally, SM-based optimization algorithms comprise four steps.

) fine model simulation (verification)

@) extraction of the parameters of a coarse or surrogate model

3) updating the surrogate

“4) (re)optimization of the surrogate.

The original SM-based optimization algorithm was introduced by
Bandler, Biernacki, Chen, Grobelny and Hemmers (1994), where a linear
mapping is assumed between the parameter spaces of the coarse and fine models.
It is evaluated by a least squares solution of the linear equations resulting from
associating corresponding data points in the two spaces. Hence, the surrogate is a
linearly mapped coarse model.

The aggressive space mapping (ASM) approach (Bandler, Biernacki,
Chen, Hemmers and Madsen, 1995) eliminates the simulation overhead required
in (Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994) by exploiting each
fine model iterate as soon as it is available. This iterate, determined by a quasi-
Newton step, optimizes the (current) surrogate model.

Parameter Extraction (PE) is the key to establishing the mapping and
updating the surrogate. In this step, the surrogate is locally aligned with a given

fine model through various techniques. However, nonuniqueness of the PE step

9
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may cause breakdown of the algorithm (Bandler, Biernacki and Chen, 1996).

Many approaches are suggested to improve the uniqueness of the PE step.
Multi-point PE (Bandler, Biernacki and Chen, 1996, Bandler, Biemacki, Chen
and Omeragic, 1999), a statistical PE (Bandler, Biernacki, Chen and Omeragic,
1999), a penalty PE (Bandler, Biemacki, Chen and Huang, 1997) and an
aggressive PE (Bakr, Bandler and Georgieva, 1999) are such approaches. A
recent gradient PE approach (Bandler, Mohamed, Bakr, Madsen and Sendergaard,
2002) takes into account not only the responses of the fine model and the
surrogate, but the corresponding gradients w.r.t. design parameters as well.

A mathematical motivation (Bandler, Cheng, Dakroury, Mohamed, Bakr,
Madsen and Sendergaard, 2004) places SM into the context of classical
optimization based on local Taylor approximations. If the coarse model reflects
the nonlinearity of the fine model then the space mapping is expected to involve
less curvature (less nonlinearity) than the two physical models. The SM model is
then expected to yield a good approximation over a large region, i.e., it generates
large descent iteration steps. Close to the solution, however, only small steps are
needed, in which case the classical optimization strategy based on local Taylor
models is better. A combination of the two strategies gives the highest solution
accuracy and fast convergence.

SM techniques require sufﬁcﬁenﬂy faithful coarse models to assure good
results. Sometimes the coarse model and fine models are severely misaligned,

i.e., it is hard o make the PE process work. The hybrid aggressive SM algorithm
10
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(Bakr, Bandler, Georgieva and Madsen, 1999) overcomes this by alternating
between (re)optimization of a surrogate and direct response matching. More
recently, the surrogate model based SM (Bakr, Bandler, Madsen, Rayas-Sénchez
and Sendergaard, 2000) optimization algorithm combines a mapped coarse model
with a linearized fine model and defaults to direct optimization of the fine model.

Neural space mapping approaches (Bandler, Ismail, Rayas-Sanchez and
Zhang, 1999, Bakr, Bandler, Ismail, Rayas-Sénchez and Zhang, 2000, Bandler,
Ismail, Rayas-Sanchez and Zhang, 2003) utilize Artificial Neural Networks
(ANN) in EM-based modeling and design of microwave devices. This is
consistent with the knowledge-based modeling techniques of Zhang and Gupta
(2000). After updating an ANN-based surrogate (Bandler, Ismail, Rayas-Sénchez
and Zhang, 1999), a fine model optimal design is predicted in NSM (Bakr,
Bandler, Ismail, Rayas-Sénchez and Zhang, 2000} by (re)optimizing the
surrogate. Neural inverse SM simplifies (re)optimization by inversely connecting
the ANN (Bandler, Ismail, Rayas-Sénchez and Zhang, 2003). The next fine
model iterate is then only an ANN evaluation.

The latest development of SM is implicit space mapping {(ISM) (Bandler,
Cheng, Nikolova and Ismail, 2004). An auxiliary set of parameters (selected
preassigned parameters such as dielectric constant or substrate height) is extracted
to match the coarse and fine model responses. The resulting (calibrated) coarse
model, the surrogate, is then (re)optimized o evaluate the next iterate (fine model

point).
11
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The SMX (Bakr, Bandler, Cheng, Ismail and Rayas-Sanchez, 2001)
system is a first attempt to automate SM optimization by linking different
simulators.

The SM technology has been recognized as a contribution to engineering
design (Zhang and Gupta, 2000, Hong and Lancaster, 2001, Conn, Gould and
Toint, 2000, Bakr, 2000, Rayas-Sénchez, 2001, Ismail, 2001), especially in the
microwave and RF arena. Zhang and Gupta (2000) have considered the
integration of the SM concept into neural network modeling for RF and
microwave design. Hong and Lancaster (2001) describe the aggressive SM
algorithm as an elegant approach to microstrip filter design. Conn, Gould and
Toint (2000) have stated that trust region methods have been effective in the SM
framework, especially in circuit design. Bakr (2000) introduces advances in SM
algorithms, Rayas-Sanchez (2001) employs artificial neural networks and Ismail
(Ismail, 2001) studies SM-based model enhancement.

Mathematicians are addressing mathematical interpretations of the
formulation and convergence issues of SM algorithms (Bakr, Bandler, Madsen
and Sendergaard, 2001, Sendergaard, 1999, 2003a, Pedersen, 2001, Sendergaard,
2003b, Vicente, 2002, 2003a, 2003b). For example, Madsen’s group (Bakr,
Bandler, Madsen and Sendergaard, 2001, Sendergaard, 1999, 2003a, Pedersen,
2001) considers the SM as an effective preprocessor for engineering
optimizations. Madsen and Sendergaard investigate convergence properties of

SM algorithms (Madsen and Sendergaard, 2004). Vicente studies convergence

12
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properties of SM for design using the least squares formulation (Vicente, 2002,

2003b), and introduces SM to solve optimal contro! problems (Vicente, 2003a).

SPACE MAPPING AP C

22 TH

The SM approach introduced by Bandler, Biernacki, Chen, Grobelny and
Hemmers (1994) involves a calibration of a physicaliy-based “coarse” surrogate
by a “fine” model to accelerate design optimization. This simple CAD
methodology embodies the learning process of a designer. It makes effective use
of the surrogate’s fast evaluation to sparingly manipulate the iterations of the fine

model.

2.2.1 The Optimization Problem

The design optimization problem to be solved is given by
x; & argxgc}ifn U(R,(x,)) @-1)
where Ry € R™! is a vector of m responses of the model, e.g., |Si1] at m selected
frequency points @ or sample points. Xy € R is the vector of n design
parameters and U is a suitable objective function. For example, U could be the

minimax objective function with upper and lower specifications. x; is the

optimal solution to be determined. It is assumed to be unique.

As depicted in Fig. 2.2, the coarse and fine model design parameters are
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denoted by x, and xr € R™!, respectively. The corresponding response vectors
are denoted by R, and Ry ¢ R™, respectively.

We propose to find a mapping P relating the fine and coarse model
parameters as

x, = P(xy) (2-2)

such that

R.(P(x;))= R (x/) (2-3)
in a region of interest.

Then we can avoid using direct optimization, i.e., solving (2-1) to find xf*.

Instead, we declare X, given by

X, 2P (x,) (2-4)

as a good estimate of x;, where x. is the result of coarse model optimization.

coarse R.(x.)

X, model

such that

Fig. 2.2 [Illustration of the fundamental notation of space mapping (Steer,
Bandler and Snowden, 2002).
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2.2.3 Jacobian Relationships

Using (2-2), the Jacobian of P is given by

T T
T Ar Ty )
Jo £ Jp(x;)= (aig = éM} 2-5)
axy acy

An approximation to the mapping Jacobian is designated by the matrix
BeR™, i.e., B =~ Jp{x;). Using (2-3) we obtain (Bakr, Bandler, Georgieva and
Madsen, 1999)

J,~J B (2-6)
where Jy and J; are the Jacobians of the fine and coarse models, respectively.
This relation can be used to estimate the fine model Jacobian if the mapping is
already established.

An expression for B which satisfies (2-6) can be derived as (Bakr,

Bandler, Georgieva and Madsen, 1999)

B=JJ)'JJ, @-7
If the coarse and fine model Jacobians are available, the mapping can be

established through (2-7), provided that J, has full rank and m2n.

2.24 Interpretation of Space Mapping Optimization

SM algorithms initially optimize the coarse model to obtain the optimal

° & ° » v e . o
design x. , for instance in the minimax sense. Subsequently, a mapped solution is

found by minimizing the objective function | ggaz , where g is defined by

|
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g =g(x;)2 R (x;)-R.(x,) (2-8)

Correspondingly, according to Bakr, Bandler, Madsen and Sendergaard
(2001), RAP(xp) is optimized in the effort of finding a solution to (2-1). Here,
RA{P(xy)) is an expression of an “enhanced” coarse model or “surrogate.” Thus,

the problem formulation can be rewritten as

X, =arg %%n U(R,(P(x;)) (2-9)

where X, may be close to x; if R is close enough to Ry, If x. is unique then the

solution of (2-9) is equivalent to driving the following residual vector f to zero

f=fx)2P(x,)-x, (2-10)

2.3 ORIGINAL SPACE MAPPING APPROACH

In this approach (Bandler, Biernacki, Chen, Grobelny and Hemmers,
1994), an initial approximation of the mapping, P is obtained by performing
fine model analyses at a pre-selected set of at least mq base points, me 2 n+l. A
corresponding set of coarse model points is then constructed through the

parameter extraction (PE) process

xU) 2 argzggnélﬁf{xy))—ﬁc(xﬁ 2-11)
[+

The additional mg — 1 points apart from x/ are required to establish full-

rank conditions leading to the first mapping approximation P®. Bandler,

Biernacki, Chen, Grobelny and Hemmers (1994) assumed a linear mapping

between the two spaces, i.e.,
16
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x, =PV (x;)=BYVx, +cV (2-12)

where BY ¢ ™" and ¢ ¥ ¢ ™.
At the jth iteration, the sets of points in the two spaces may be expanded to
contain, in general, m; points which are used to establish the updated mapping P,
Since the analytical form of P is not available, SM uses the current approximation

P%, to estimate x; at the jth iteration as

2 =2 = (POY () @13)

The process continues iteratively until Ry (xffm’ H)) is close enough to R,

(xca). If so, PY is assumed close enough to our desired P. If not, the set of base

points in the fine space is augmented by x;mf *D , and xﬁm’m , as determined by

(2-11), augments the set of base points in the coarse space. Upon termination, we
set the SM design as in (2-13).

This algorithm is simple but has pitfalls. First, mq upfront high-cost fine
model analyses are needed. Second, a linear mapping may not be valid for
significantly misaligned models. Third, nonuniqueness in the PE process may

lead 10 an erroneous mapping estimation and algorithm breakdown.

AC

24 AGGRESSIVE SPACE MAPPING

The aggressive SM algorithm (Bandler, Biemacki, Chen, Hemmers and
Madsen, 1995) incorporates a quasi-Newton iteration using the classical Broyden
formula (1965). A rapidly improved design is anticipated following each fine

17
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mode! simulation, while the bulk of the computational effort (optimization,

parameter extraction) is carried out in the coarse model space.

2.4.1 Theory

The aggressive SM technique iteratively solves the nonlinear system

Slx,)=0 (2-14)

for xz Note, from (2-10), that at the jth iteration, the error vector f ? requires an

evaluation of P")(xj(’)). This is executed indirectly through the PE (evaluation of
x7). Coarse model optimization produces x..

The quasi-Newton step in the fine space is given by
BWYRY) = —f(j) (2-15)
where BY, the approximation of the mapping Jacobian J, defined in (2-5), is
updated using Broyden’s rank one update. Solving (2-15) for &9 provides the

next iterate x /Y

x‘i{‘jﬂ) = x_{f}) +§£(1) {2_}6}
The algorithm terminates if ﬂme[ becomes sufficiently small. The output
of the algorithm is an approximation to X, = P'i{x:} and the mapping matrix B.

The matrix B can be obtained in several ways.

2.4.2 Unit Mapping
A “steepest-descent” approach may succeed if the mapping between the

two spaces is essentially represented by a shift. In this case Broyden’s updating
18
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formula is not utilized. We can solve (2-15) keeping the matrix B? fixed at BY =
I. Bila, Baillargeat, Verdeyme, Guillon (1998) and Pavio (1999) utilized this

special case.

2.4.3 Broyden-like Updates
An initial approximation to B can be taken as B? = I, the identity matrix.

B can be updated using Broyden’s rank one formula (1965)

GHO_ oD pD D)
S S BURY L or
h(J)Th(J)

BUD = p» 4 2-17)

When &9 is the quasi-Newton step, (2-17) can be simplified using (2-15) to

= gy LIV
BV = BY +h(f)Th(j) nv (2-18)
244 Jacobian Based Updates
If we have exact Jacobians w.r.t. xy and x. at corresponding points we can
use them to obtain B at each iteration through a least squares solution (Bandler,
Mohamed, Bakr, Madsen and Sendergaard, 2002, Bakr, Bandler, Georgieva and
Madsen, 1999) as given in (2-7).
Note that B can be fed back into the PE process and iteratively refined
before making a step in the fine model space.
Hybrid schemes can be developed following the integrated gradient
approximation approach to optimization (Bandler, Chen, Daijavad and Madsen,

1988). One approach incorporates finite difference approximations and the
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Broyden formula (Bandler, Mohamed, Bakr, Madsen and Sendergaard, 2002).
Finite difference approximations could provide initial estimates of Jr and J..
These are then used to obtain a good approximation to B®. The Broyden formula

is subsequently used to update B.

2.4.5 Constrained Update

On the assumption that the fine and coarse models share the same physical
background, Bakr, Bandler, Madsen and Sendergaard (2000) suggested that B
could be better conditioned in the PE process if it is constrained to be close to the

identity matrix 7 by letting

2
B=argngn " lel - el nabl .. nAb,{]THZ (2-19)
where 7 is a user-assigned weighting factor, ¢; and Ab; are the ith columns of E

and AB, respectively, defined as

E =J,-J.B
(2-20)
AB=B-T
The analytical solution of (2-19) is given by
B=(JJ, +7’D)'(JlI, +7°D) (2-21)

2.4.6 Cheese-cutting Problem
This simple physical example, depicted in Fig. 2.3, demonstrates the
aggressive SM approach. Qur “response” is weight. The designable parameter is

length. A density of one is assumed. The goal is a desired weight.

20



PhD Thesis — Q.S. Cheng McMaster — Electrical and Computer Engineering

Our idealized “coarse” model is a uniform cuboidal block (top block of
Fig. 2.3). The optimal lengh x, is easily calculated.

Let the actual block (“fine” model) be similar but imperfect (second block
of Fig. 2.3). We take the optimal coarse model length as the initial guess for the
fine model solution, i.e., cutting the cheese so that xjm =x. . This does not satisfy
our goal. We realign our coarse model to match the outcome of the cut. Thisis a
PE step in which we obtain a solution x. " (third block of Fig. 2.3). Thus, we
have corresponding values x/m and x". Assuming a unit mapping, we can write

forj=1

2D =5 4 x) - (2-22)

to predict the next fine model length (last block of Fig. 2.3).
Note that we assume that the actual block (fine model) perfectly matches
its coarse model, except for the missing piece; also that the first and second
attempts (cuts) to achieve our goal are confined to a uniform section. Our goal is

achieved in one SM step, a result consistent with expectations.

Observe that the Jength of the coarse model is shrunk during PE to match

our first outcome. The difference between the proposed initial length of the block

and the shrunk lengsh is applied through the (unit) mapping to predict a new cut.

This procedure can be repeated until the goal is satisfied.

2.5 PA

Parameter Extraction (PE) is crucial to successful SM. Typically, an
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optimization process exiracts the parameters of a coarse model or surrogate fo
match the fine model. Inadequate response data in the PE process may lead to
nonunique solutions. Sufficient data to overdetermine a solution should be
sought. For example, we may use responses such as real and imaginary parts of
the S-parameters in the PE even though the design criteria may include the

magnitude of Sy only.

2.5.1 Single Point Parameter Extraction (SPE)
The traditional SPE (Bandler, Biernacki, Chen, Grobelny and Hemmers,
1994)is described by the optimization problem given in (2-11). It is simple and

works in many cases.

%
optimal coarse model
®
3 &, @ xf *
initial guess x;(}) =x
N xig)
PE
% @ _ 0 iyt
prediction \) x7 = xp P (% %)
[ 5D = 5D 45— 50

Fig. 2.3 Cheese-cutting problem solved by aggressive space mapping of model
lengths.
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2.5.2 Multipeint Parameter Extraction (MPE)

The MPE approach (Bandler, Biernacki and Chen, 1996, Bandler,
Biemacki, Chen and Omeragic, 1999) simultaneously matches the responses at 2
number of corresponding points in the coarse and fine model spaces. A more
reliable algorithm is presented by Bakr, Bandler, Biernacki, Chen and Madsen

(1998) and improved by Bakr, Bandler and Georgieva (1999).

2.5.3 Statistical Parameter Extraction

Bandler, Biernacki, Chen and Omeragic suggest a statistical approach to
PE. The SPE process is initiated from several starting points and is declared
unique if consistent extracted parameters are obtained. Otherwise, the best

solution is selected.

2.54 Penalized Parameter Extraction
Another approach is suggested in (Bandler, Biernacki, Chen and Huang,

1997). Here, the point x.¥*" is obtained by solving the penalized SPE process

-]
Ko =X,

R.(x,)- R (x*D) §!+wg

G+ :
x¢") =argryin i (2-23)

where w is a user-assigned weighting factor.

2.5.5 PE Invelving Frequency Mapping
Alignment of the models might be achieved by simulating the coarse

model at a transformed set of frequencies (Bandler, Ismail, Rayas-Sénchez and
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Zhang, 1999). For example, an EM model of a microwave structure usually
exhibits a frequency shift w.r.t. an idealized representation. Also, available quasi-
static empirical models exhibit good accuracy over a limited range of frequencies,
which can be alleviated by frequency transformation. Frequency mapping
introduces new degrees of freedom (Bakr, Bandler, Madsen, Rayas-Séanchez and
Sendergaard, 2000).

A suitable mapping can be as simple as frequency shift and scaling given

by Bandler, Biernacki, Chen, Hemmers and Madsen (1995)
w,=P,(®)2ow+S (2-24)

where o represents a scaling factor and §is an offset (shift).
The approach can be divided into two phases (Bandler, Biernacki, Chen,
Hemmers and Madsen, 1995). In Phase 1, we determine op and & that align Ry

and R, in the frequency domain. This is done by finding

arg min
To

R,(%,,000,+80))~ R (x,)], i=1,2,..k (2-25)

In Phase 2, the coarse model point x, is extracted to match R, with R; starting
with o= oy and § = &. Three algorithms (Bandler, Biernacki, Chen, Hemmers
and Madsen, 1995) can implement this phase: a sequential algorithm and two
exact-penalty function algorithms, one using the /; norm and the other is suitable
for minimax optimization (Bandler, Biernacki, Chen, Hemmers and Madsen,

1995).
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2.5.6 Gradient Parameter Extraction (GPE)

GPE (Bandler, Mcohamed, Bakr, Madsen and Sendergaard, 2002) exploits
the availability of exact Jacobians Jyand J,. At the jth iteration x. is obtained
through a GPE process. GPE matches not only the responses but also the
derivatives of both models through the optimization problem.

This approach reflects the idea of the MPE (Bandler, Biernacki and Chen,
1996) process, but permits the use of exact or implementable sensitivity
techniques (Bandler, Zhang and Biernacki, 1988, Bandler, Zhang, Song and
Biernacki, 1990, Alessandri, Mongiardo and Sorrentino, 1993, Georgieva, Glavic,
Bakr and Bandler, 2002a, 2002b, Nikolova, Bandler and Bakr, 2004). Finite

differences can be employed to estimate derivatives if exact ones are unavailable.

2.5.7 Other Considerations

We can broaden the scope of parameters that are varied in an effort to
match the coarse (surrogate) and fine models. We already discussed the scaling
factor and shift parameters in the frequency mapping. We can also consider
neural weights in neural SM, preassigned parameters in implicit SM, mapping
coefficients B, etc., as in the generalized SM tableau approach (Bandler,
Georgieva, Ismail, Rayas-Séanchez and Zhang, 2001) and surrogate model-based

SM (Bakr, Bandler, Madsen, Rayas-Sédnchez and Sgndergaard, 2000).
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2.6 EXPANDED SPACE M
CASSIGNED PA

A design framework for microwave circuits is proposed by Bandler,
Ismail and Rayas-Sénchez (2002). The original SM technique is expanded by
allowing some preassigned parameters (which are not used in optimization) to
change in some components of the coarse model (Bandler, Ismail and Rayas-
Sénchez, 2002). Those components are referred to as “relevant” components and
a method based on sensitivity analysis is used to identify them. As a result, the
coarse model can be calibrated to align with the fine model.

The concept of calibrating coarse models (circuit based models) to align
with fine models (typically an EM simulator) in microwave circuit design has
been exploited by several authors (Bandler, Biernacki, Chen, Grobelny and
Hemmers, 1994, Bandler, Georgieva, Ismail, Rayas-Sénchez and Zhang, 2001, Ye
and Mansour, 1997). In Bandler, Biernacki, Chen, Grobelny and Hemmers
(1994) and Bandler, Georgieva, Ismail, Rayas-Sénchez and Zhang (2001), this
calibration is performed by means of optimizable parameter space transformation
known as space mapping. In Ye and Mansour (1997), this is done by adding
circuit components to nonadjacent individual coarse model elements. Here, the

SM technigue is expanded to calibrating the coarse model by allowing some

PP)) to

preassigned parameters (we call them key preassigned parameters (K

change in certain coarse model components.
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Exampies of KPP are dielectric constant and substrate height in microstrip
structures. It is assumed that the coarse mode!l consists of several components
such as transmission lines, junctions, etc. The coarse model is decomposed into
two sets of components. The KPPs are allowed to change in the first set and are
kept intact in the second set. Ismail (2001) presents a method based on sensitivity
analysis to perform this decomposition.

At each iteration, the Expanded Space Mapping Design Framework
(ESMDF) algorithm calibrates the coarse model by extracting the KPP such that
the coarse model matches the fine model. Then it establishes a mapping from
some of the optimizable parameters to the KPP. The mapped coarse model (the
coarse model with the mapped KPP) is then optimized subject to a trust region
size. The optimization step is accepted only if it results in an improvement in the
fine model objective function. The trust region size is updated (Bakr, Bandler,
Biernacki, Chen and Madsen, 1998, Alexandrov, Dennis, Lewis and Torczon,
1998, Segndergaard, 1999) according to the agreement between the fine and
mapped coarse model. Therefore, the algorithm enhances the coarse model at
each iteration either by extracting the KPP and updating the mapping or by
reducing the region in which the mapped coarse model is to be optimized. The
algorithm terminates if one of certain relevant stopping criteria is satisfied.
Possible practical stopping criteria are elaborated in (Ismail, 2001). Some
solutions to overcome the problems associated with the KPP extraction process is

alsc presented.
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OQUTPUT SPACE M

2.7 PPING

The “output” or response SM concept could address a residual
misalignment in the optimal responses of the coarse and fine models. For
example, a coarse model such as R, = x* will never match the fine model Re= x -
2 around its minimum with any mapping x~=P(xp), %, X € R. An “output” or
response mapping can overcome this deficiency by introducing a transformation
of the coarse model response based on a Taylor approximation (Dennis, 2001,
2002). Current research is directed to this topic (Bandler, Cheng, Gebre-Mariam,

Madsen, Pedersen and Sendergaard, 2003).

2.8 DISCUSSION OF SURROGATE MODELING AND
SPACE MAPPING

2.8.1 Building and Using Surrogates (Dennis)

In his summarizing comments (Dennis, 2000) on the Workshop on
Surrogate Modelling and Space Mapping (2000) Dennis integrates the
terminology “coarse” and “fine” from the SM community with his own. Dennis
uses the term “surrogate” to denote the function s to which an optimization
routine is applied in lieu of applying optimization to the fine mode!l . Another
piece of terminology he uses is “surface” to denote a function (it may be vector
valued) trained to fit or to smooth fine model data.

Dennis mentions several ways to choose fine model data sites, also known

as experimental designs. The surfaces are generated from the data sites. He notes
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that “surfaces (are) designed to correct a coarse model and to be combined with
the coarse model fo act as a surrogate in optimization.” Then he used the surface
concept to interpret SM. Here, “The surrogate is the coarse model applied to the
image of the fine model parameters under the space mapping surface.”

Dennis discusses “heuristics™ that optimize the surrogate and (perhaps)
correct the surface part of the surrogate. He classifies SM in terms of “local space
mappings and methods that use poised designs implicitly or explicitly
approximate derivatives. The former do this by Broyden updates and the latter by
the derivatives of the surface.”

Dennis’s definition of surrogate agrees with our definition in the sense that
the surrogate is an enhanced coarse model. Dennis regards the mapping as a
surface.

We think of the mapping as that part of the surrogate, an approximation to
which needs to be updated in each iteration. The mapping (surface) is the same

during all iterations.

2.8.2 Building and Using Surrogates

In an editorial, Bandler and Madsen (2001) emphasize that “surrogate
optimization” refers to the process of applying an optimization routine directly to
a coarse model, a surrogate, which is a function (or a model) that replaces the
original fine model. Some surrogates attempt to fit the fine model directly (e.g.,

by polynomials), in other cases the information gained during the optimization
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process is used to train the surrogate to fit the data derived from evaluation of the
fine model (e.g., by artificial neural networks). In the SM approach, coarse
models may be enhanced by mapping (transforming, correcting) the optimization
variables. In this case, surrogates of increasing fidelity are developed during the

optimization process.

2.8.3 The Space Mapping Concept

The SM-based optimization algorithms we review have four major steps.
The first is fine model simulation (verification). The fine model is verified and
checked to see if it satisfies the design specifications. The second is PE, in which
the coarse model is (re)aligned with the fine model to permit (re)calibration. The
third is updating or (re)mapping the surrogate using the information obtained
from the first two steps. At last the aligned, calibrated, mapped or enhanced
coarse model (the surrogate) is (rejoptimized. This suggests a new fine model

design iterate.

2.8.4 Space Mapping Framework Optimization Steps
A flowchart of general SM is shown in Fig. 2.4.
Step 1 Select a coarse model suitable for the fine model.
Step 2 Select a mapping process (original, aggressive SM, neural or ISM,
etc.)
Step 3 Optimize the coarse model (initial surrogate) w.rt. design

parameters.
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Step 4 Simulate the fine model at this solution,
Step 5 Terminate if a stopping criterion is satisfied, e.g., response mests
specifications.
Step 6 Apply parameter extraction using preassigned parameters
(Bandler, Ismail and Rayas-Sénchez, 2002), neuron weighis
(Bandler, Ismail, Rayas-Sanchez and Zhang, 1999), coarse space
parameters, eic.
Step 7 Rebuild surrogate (may be implied within Step 6 or Step 8).
Step 8 Reoptimize the “mapped coarse model” (surrogate) w.r.t. design
parameters (or evaluate the inverse mapping if it is available).
Step 9 Go to Step 4.
Comments
As shown in Fig. 2.4, we use symbol A, X and O to represent Step 6, 7
and 8, respectively. We let operator (*) represent implied. We can see that
rebuilding the surrogate (Step 7) may be implied in either the PE process (Step 6)
or in the reoptimization (Step 8). Steps 6, 7 and 8 are separate steps in neural
space mapping (fraining data is obtained by parameter extraction, the surrogate is
rebuilt by the neural network training process and prediction is obtained by
evaluating the neural network}). However, Step 7 may be implied in either the
parameter extraction process (Step 6), e.g., ISM, where the surrogate is rebuilt by
extracting preassigned parameters, or in the prediction (Step 8), e.g., aggressive

SM, where the surrogate is not explicitly rebuilt. Step 6 can be termed modeling
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for some cases.

select models and Neural Space Mapping AXO

mapping framework Implicit Space Mapping A(X)O
“ Aggressive Space Mapping A O(X)

optimize coarse model

v

simulate fine model

5

criterion
satisfied

parameter extraction

A
¥
update surrogate may be
(update mapping) implied

v

optimize surrogate
(invert mapping)

Fig. 2.4 Space mapping framework.

2.8.5 Space Mapping Classification

TABLE 2.1 classifies SM. In this table, 2 number of SM technologies are
categorized in 3 types: explicit/input, implicit and output SM. Their properties
are in two categories: model alignment and fine model prediction. Each category

has a few sub-categories to specify the details of the SM techniques. TABLE 2.2
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shows the explanations of these categories.

TABLE 2.1
SPACE MAPPING CLASSIFICATION
explicit SM/input SM OSM
= = B =
2 &8 S% % @
) g 8.8
HHHHEL L
o S22 §[F 88 ~ “
S & S
using upfront
finemodel | e e | e | e
poinis
fine model
* gradient o' ° e
So required
8 3 . ,
5 5 pnulti-point PE| o | e e | e ® ®
g2 ;
£ ‘3 by design ® ® ® ®
8 -8 | parameters
'§°-§ by non-
a& designable | e|le | e °° e e
3 § | parameters
.Qg) mOdeI @ ] (] 2 L] @ [
~ generation
lme(fr ® ') ot | of @ P o’ @
mapping
nonlinear 6
. @ @ @ ] ]
mapping
. by optimizing o e | o o R o
& surrogate
2R | byinverting
_E 3 . 8 @ @ [::]
S g mapping
'§ by gvaluating
8 inverse e
mapping

! applicable but not implemented

? extract neural weights

* extract preassigned parameters

* for single-layer perceptron case

* output SM only

¢ implicit SM only

7 modeling approach, can be used in optimization
® by solving system of equations
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TABLE 2.2

SPACE MAPPING CATEGORY EXPLANATION

category

explanation

using upfront fine model points

fine model gradient required
multi-point PE

by design parameters

by non-designable parameters

model generation

linear mapping
nonlinear mapping

by optimization surrogate

by inverting mapping

by evaluating inverse mapping

using more than one fine model point to
start the design

using fine model Jacobian in the loop

using several points to extract parameters
extracting designable parameters in PE
extracting non-designable parameters in PE

a calibrated model (surrogate) is available
for modeling purposes

the mapping is linear
the mapping is nonlinear

obtain the prediction by optimizing the
surrogate

obtain the prediction by inverting the
mapping i.e. solving a system of equations

obtain the prediction by evaluating the
inverse mapping

2.9 CONCLUSIONS

In this chapter we reviewed the SM techniques and the SM-oriented

surrogate (modeling) concept and their applications in engineering design

optimization. The simple CAD methodology follows the traditional experience
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and intuition of engineers, yet appears to be amenable to rigorous mathematical
treatment. The aim and advantages of SM are described. The general steps for
building surrogates and SM are indicated. Proposed approaches to SM-based
optimization include the original SM algorithm, the Broyden-based aggressive
space mapping, trust region aggressive space mapping, hybrid aggressive space
mapping, neural space mapping and implicit space mapping. Parameter
extraction is an essential subproblem of any SM optimization algorithm. It is
used to align the surrogate with the fine model at each iteration. Different
approaches to enhance the uniqueness of pérameter extraction are reviewed,
including the gradient parameter extraction process.

A design framework we call expanded space mapping exploiting
preassigned parameters is reviewed. This technique expands original space
mapping allowing some preassigned parameters (which are not used in
optimization) to change in some components of the coarse model. The mapped
coarse model is then optimized subject to a trust region size.

SM concepts and an SM framework are discussed. SM techniques are

categorized through their properties.
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In this chapter, we introduce the idea of implicit space mapping (ISM)
(Bandler, Cheng, Nikolova and Ismail, 2004) and show how it relates to the well-
established (explicit) SM between coarse and fine device models. Through
comparison a general SM concept is proposed. A simple ISM algorithm is
implemented. It is illustrated on a contrived “cheese-cutting problem” and is
applied to EM-based microwave modeling and design. An auxiliary set of
parameters (selected preassigned parameters) is extracted tc match the coarse
mode! with the fine model. The calibrated coarse model (the surrogate) is then
(re)optimized to predict a better fine model solution. This is an easy SM
technique to implement since the mapping itself is embedded in the calibrated
coarse model and updated automatically in the procedure of parameter extraction.
We illustrate our approach through optimization of an HTS filter using Agilent
ADS with Momentum and Agilent ADS with Sonnet’s em.

In Bandler, Biernacki, Chen, Grobelny and Hemmers (1994), Bandler,

Biernacki, Chen, Hemmers and Madsen (1995), Bandler, Ismail, Rayas-Sédnchez
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and Zhang (1999), Bakr, Bandler, Madsen, Rayas-Sénchez and Sendergaard
(2000), a calibration is performed through a mapping between optimizable design
parameters of the fine model and precisely corresponding parameters of the
coarse model such that their responses match. This mapping is iteratively
updated. In Ye and Mansour (1997), the coarse model is calibrated against the
fine model by adding circuit components to nonadjacent individual coarse model
elements. The component values are updated iteratively. The ESMDF algorithm
(Bandler, Ismail and Rayas-Sénchez, 2002) calibrates the coarse model by
extracting certain preassigned parameters such that corresponding responses
match. It establishes an explicit mapping from the optimizable design parameters
to preassigned (non-optimized) parameters.

The ISM approach does not establish an explicit mapping. We suggest an
indirect approach. In each iteration we extract selected preassigned parameters to
match the coarse model with the fine model. With these preassigned parameters
now fixed, we reoptimize the calibrated coarse model. Then we assign its
optimized design parameters to the fine model. We repeat this process until the
fine model response is sufficiently close to the target response. The preassigned
parameters, which are updated, calibrate the “mapping”.

Examples of preassigned parameters are physical parameters such as
dielectric constant in microstrip structures, geometrical parameters such as
subsirate height or mathematical concepts such as frequency transformation

parameters. Typically, they are not optimized but clearly they influence the
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responses. As in Bandler, Ismail and Rayas-Sanchez (2002) we allow the
preassigned parameters (of the coarse model) to change in some components and

keep them intact in others. We implement our technique in Agilent ADS (2000).

OGY

3.2 SPACE MAPPING TECEH
We categorize space mapping into (1) the original or explicit SM and (2)
implicit space mapping. Both share the concept of “coarse” and “fine” models.

Both use an iterative approach to update the mapping and predict the new design.

3.2.1 Explicit Space Mapping
In explicit SM, we should be able to draw a clear distinction between a

physical coarse model and the mathematical mapping that links it to the fine

design
parameters fine responses
'/ model -
I responses

coarse | |
model |,

mapping

surrogate

Fig. 3.1 [Illustration of explicit SM.
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model. See Fig. 3.1. Here, the mapping together with the coarse model constitute
a “surrogate™. In each iteration, only the mapping is updated, while the physical
coarse model is kept fixed. If the inverse mapping is available at each iteration,
then the solution (best current prediction of the fine model) can be evaluated
directly. Otherwise an optimization is performed on the mapping itself (not the
mapped coarse model) to obtain the prediction. Examples of explicit SM are the
original SM (Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994),
aggressive SM (Bandler, Biernacki, Chen, Hemmers and Madsen, 1995), neural

SM (Bandler, Ismail, Rayas-Sanchez and Zhang, 1999), etc.

3.2.2 Implicit Space Mapping

Sometimes identifying the mapping is not obvious: it may be buried
within the coarse model. If the “mapping” is integrated with the coarse model,
the (mapped) coarse model becomes a calibrated coarse model or enhanced coarse
model, which we also call a “surrogate”. See Fig. 3.2(a) (the rectangular box). In
the next step, the calibrated or enhanced coarse model is optimized to obtain an
“inverse” mapped solution. If the implicitly mapped model is not sufficiently
good after calibration, we may add an explicit mapping or oufput mapping
(Bandler, Cheng, Dakroury, Mohamed, Bakr, Madsen and Sendergaard, 2004,
Bandler, Cheng, Gebre-Mariam, Madsen, Pedersen and Sendergaard, 2003). See
Fig. 3.2(b).

Both explicit and implicit SM iteratively calibrate the mapped model when

approaching the fine model solution. Interestingly, the explicit mapping could be
40



PhD Thesis — Q.S. Cheng McMaster — Electrical and Computer Engineering
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Fig. 3.2 [Iliustration of ISM, (a) implicit mapping within the surrogate, (b) with
extra mapping and output mapping.

expressed in the form of ISM by using a simple mathematical substitution. We

discuss this in Section 3.3.
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3.3 IMPLICIT SPACE M

[APPING (ISM):

3.3.1 Implicit Space Mapping

At the jth iteration, we denote by x:(f } a coarse model optimum point
(usually designable parameters) for given x\Y, a set of other (auxiliary)
parameters, for example, preassigned parameters. The corresponding coarse
model (the surrogate) response vector is R, (x:(j ), %y,

As indicated in Fig. 3.3, at the jth iteration, ISM aims at establishing an

implicit mapping @ between the spaces x,, x, and x . We solve

O(x,,x,,x)=0 3-1)

w.rt x to obtain x indirectly by an optimization algorithm, during which we

set

.xf =X, = x*(j_l) (3-2)

[+

such that

Ry (2,7 = B (570, x) - G3)
over a region in the parameter space. We think of this as a modeling procedure,

also referred to as parameter extraction in this case.

As in Fig. 3.4, ISM then utilizes the mapping to obtain a prediction of x,.

Here, we set
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/ mapping

------ )
X, ¥ 7 coarse| (%, %)
—
—_ /model
X
X, X

such that
> R(x,x)= R (x/)

Fig. 3.3 [Illustration of ISM modeling. Here, @ = 0 is solved for x.

/ mapping

—py R (x,,x
Xe “.coarse (¥, X)
. ’3 .
— “model
X
2
X, X

such that

A\ 4

> x: = arg ﬁgn U(R,(x,,x))
c

Fig. 3.4 [Illustration of ISM prediction. Here, g = 0 is solved for x: .
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x=xY ) (3-4)
where x\) is obtained from the foregoing modeling procedure. Since the
mapping is usually nonlinear and implicit, the prediction is obtainable by

optimizing a mapped coarse model or surrogate, i.e., we find

x:(]) éargn}inU(Rc(xc’x(J))) (3-5)

4

Then the fine model parameters are assigned (predicted) as

x, =x,7 (3-6)

(4

In general, ISM optimization obtains a space-mapped design X, whose
response approximates an optimized R, target. X, is a solution, found

iteratively, of the nonlinear system (3-1) which is enforced through a parameter
extraction (modeling) w.r.t. x, and subsequent prediction of the fine model

solution (through optimization of the calibrated coarse model).

3.3.2 Interpretation and Insight

As mentioned before, the mapping is buried in the coarse model.
However, we can synthesize examples to develop insight into ISM, i.e., we can
construct and connect & known mapping to a physical coarse model to study the
behavior of the mapping. See Fig. 3.5. A set of intermediate parameters x; is
introduced for this purpose.

In a physically based simulation, design parameters such s physical

length and width of a microstrip line can be mapped to intermediate parameters
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such as electrical length and characteristic impedance through well-known
empirical formulas (Pozar, 1998). The mapping may, in that case, be extractable
(detachable), and it can be (re)optimized to obtain an “inverse” mapped solution
(the prediction). For a library of microstrip components, the transformation from
circuit parameters to physical parameters may be implicit, and the intermediate
parameters may not be directly accessible. The prediction is then obtained
through optimizing suitably (the preassigned parameters of) calibrated microstrip

components.

Assuming the intermediate parameters x; are accessible, a corresponding

hidden mapping in the modeling procedure can be thought of as finding

x) = P(xU7, x) 3-7)

to match the coarse and fine model responses.

design
parameters fine TESPONSEs

coarse
model |

surrogate
Fig. 3.5 Synthetic illustration of ISM optimization with intermediate parameters.
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Let x; be the intermediate solution producing coarse model optimum R..

Correspondingly, the prediction procedure can then be expressed as

2 =P, %) (3-8)
3.3.3 Relationship with Explicit Space Mapping

The first step in all SM-based algorithms results in an optimal coarse

model design xz for given nominal preassigned parameters x. The corresponding
response is denoted by R:. Once obtained, x: is fixed, as seen in Fig. 3.6(a). In

ISM, on the other hand, x.") starts with x, and depends on the current value of

x and will change from iteration to iteration through reoptimization, as in Fig.

3.6(b).

An interesting point that relates the ISM to the explicit mapping is when

we set the preassigned parameters at jth iteration

7 = Axﬁj) L xij) - x:(j-l) (3-9)

where x{/? is obtained through parameter extraction. We can show that after the

modeling procedure, the prediction is

x}j} = xff'n + x: - xij ) (3-10)
This agrees with the steps of aggressive space mapping (Bandler, Biernacki,
Chen, Hemmers and Madsen, 1995) using a unit mapping. The ISM in this case,
is consistent with the original SM with the difference, highlighted in Fig. 3.6, that
ISM extracts Ax, rather than x, during parameter extraction.
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In the case of neuro SM (Bandler, Ismail, Rayas-Sénchez and Zhang,

1999), if we set
xX=w 3-11)
where w represents the weights of the neurons, then by associating the artificial
neural networks (ANN) with the coarse model, neuro space mapping is
representable by ISM. Preassigned parameters x could also represent other
variables such as the space mapping parameters B, ¢, o, and &, in the SM-based
surrogate approach (Bakr, Bandler, Madsen, Rayas-Sanchez and Sendergaard,

2000), in frequency SM (Bandler, Biernacki, Chen, Hemmers and Madsen, 1995),

* 0 0
xf ;x f( ) xc*( ) ;x f(())
x ¥D
X =) %O
. PE / 4 #0 PE| -~
O 4 X
< xc
H 1 (
x 4/’—\“3{ x, 2 &
<
@ @ (0) @ 0(0)
xc
@ ®)

Fig. 3.6 When we set the preassigned parameters x = 4x,, ISM is consistent with

the explicit SM process. (a) The original SM. (b) The ISM process
interpreted in the same spaces.
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ete.

3.3.4 C(Cheese-Cutting Ilustration

The ISM process can be demonstrated by a simple example, the cheese-
cutting problem, depicted in Fig. 3.7. The goal is to deliver a segment of cheese
of weight 30 units (target “response”). The “coarse” model is a cubgidai block
(top block in Fig. 3.7). A unity density and a cross-section of 3 by 1 units are
assumed. The “fine” model has a corresponding cuboidal shape with a defect of 6
missing units of weight (the second block from top).

A length of 10 units will give 30 units of weight for the coarse model (top
block in Fig. 3.7). An unbiased cut of the same length in the fine model weighs
24 units (fine model evaluation). The width (preassigned parameter) of the
(coarse) model is shrunk to 2.4 units to match the fine model weight (parameter
extraction). A reoptimization of the length of the calibrated coarse model (the
surrogate) is performed to achieve the goal. Then the new lengthk of 12.5 units is
assigned to the irregular block (fine model). The procedure continues in this
manner until the irregular block is sufficiently close to the desired weight of 30
units. From the illustration, we see that the error reaches 1% after 3 iterations.

ISM, in this case, is an indirect approach. A direct approach would
extract the length in the parameter extraction process.

The weight of the coarse cheese model can be written as

R wy=Ixwxh
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Fig. 3.7 Cheese-cutting problem—a demonstration of the ISM algorithm.
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where /, w and 4 are the length, width and height, respectively, as in Fig. 3.8. An
intermediate variable x; is the area

X, =wx|
We can see that each prediction procedure returns x; to a fixed xf = 30, which

produces the optimal coarse model design. We can feed the parameters and
variables of the cheese-cutting problem in implicit SM diagram as shown in Fig.

3.9.

3.3.5 Three-section 3:1 Microstrip Transformer Illustration

We use an example of the three-section microstrip impedance transformer
(Bakr, Bandler, Biernacki and Chen, 1997). The filter structure is shown in Fig.
3.10(a). The fine model utilizes a full-wave electromagnetic simulator (Agilent
Momentum (2000)). The coarse model utilizes the empirical transmission line
circuit models available in the circuit simulator Agilent ADS Schematic (2000)
and the circuit parameters are converted (implicitly mapped) into physical
dimensions of the microstrip lines using well-known empirical formulas (Pozar,
1998). The coarse model is shown in Fig. 3.10(b). The designable parameters are
the width and physical length of each microstrip line. The intermediate variables x;

are the circuif parameters.
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Fig. 3.8 Cheese-cutting problem—illustration of an intermediate parameter,

x; =wxl.
! m R,
X;
g T TTgT T T T T T T i
L»  space | R,
w —|—> mapping coarse II
LT J
surrogate

Fig. 3.9 Implicit space mapping diagram for cheese problem.
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Fig. 3.10 Three-section 3:1 microstrip transformer illustration.
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3.4 IMPLICIT SPACE MAPPING

In Fig. 3.11 we represent a microwave circuit whose coarse model is
decomposed. We catalog the preassigned parameters into two sets as in (Bandler,
Ismail and Rayas-Sénchez, 2002). In Set A, we vary certain preassigned

parameters x. In Set B, we keep preassigned parameters x, fixed. We can follow

the sensitivity approach of Bandler, Ismail and Rayas-Sénchez (2002) to formally
select components for Sets A and B.
As implied in Fig. 3.11(b), in each iteration of the parameter extraction

process we set

x,=xg) (3-12)

Notice also that we do not explicitly establish a mapping between the optimizable
parameters and the preassigned parameters. This contrasts with Bandler, Ismail
and Rayas-Sanchez (2002), where the mapping is explicit (see Fig. 3.11(c)).
Therefore, our proposed approach is easier to implement in commercial
microwave simulators.

The algorithm is summarized as follows

Step 1 Select candidate preassigned parameters x as in Bandler, Ismail

and Rayas-Sénchez (2002) or through experience.
Step 2 Setj =0 and initialize x¥.
Step 3 Obtain the optimal (calibrated) coarse model parameters by

solving (3-5).
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(@&

& —p>
coarse model
Xp————>
X —p> Set A R ~R,
Xy —&> SetB
(b)
coarse model
—p> Set A R« .Rf
SetB
©

Fig. 3.11 Calibrating (optimizing) the preassigned parameters x in Set A results
in aligning the coarse model (b) or (¢} with the fine model (g). In (c)
we illustrate the ESMDF approach (Bandler, Ismail and Rayas-
Sanchez, 2002), where P(-} is a mapping from optimizable design

parameters to preassigned parameters.
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3.5

Step 4 Predict x%’ from (3-6).
Step 5 Simulate the fine model at xf,j ).

Step 6 Terminate if a stopping criterion (e.g., response meets
specifications) is satisfied.
Step 7 Calibrate the coarse model by extracting (parameter extraction

step) the preassigned parameters x (noting (3-12))
U = arg mxi?n "Rf (x(fj)) -R, (x(j)’x)“ (3-13)

Step 8 Incrementj and go to Step 3.

FREQUENCY IMPLICIT SPACE MAPPING

Frequency implicit SM is a special kind of implicit SM. In each iteration,

we extract selected frequency transforming preassigned parameters to match the

updated surrogate model with the fine model. Then we assign its optimized

design parameters to the fine model. We repeat this process until the fine model

response is sufficiently close to the target (optimal original coarse model)

response.

Algorithm

Step 1 Select a coarse model and a fine model.

Step 2 Select the frequency transformation and initialize associated
preassigned parameters. For example, we can use a linear

transformation of frequency @, =ow+dJ (Bandler, Biemacki,
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3.6

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Chen, Hemmers and Madsen, 1995). The preassigned parameters
are then [o 8], initialized as [1 01",

Optimize the coarse model (inifial surrogate) w.r.t. design
parameters.

Simulate the fine model at this solution.

Terminate if a stopping criterion is satisfied, e.g., response meets
specifications.

Apply parameter extraction (PE) to extract frequency transforming
preassigned parameters.

Reoptimize the “frequency mapped coarse model” (surrogate)
w.r.t. design parameters (or evaluate the inverse mapping if it is
available).

Go to Step 4.

Examples involving frequency implicit SM have been investigated.

E

LE

We consider the HTS bandpass filter of Bandler, Biernacki, Chen,

Getsinger, Grobelny, Moskowitz and Talisa (1995). The physical structure is

shown in Fig. 3.12(a). Design variables are the lengths of the coupled lines and

the separation between them, namely,

x,=[8 8, 8 L I, LT

- The substrate used is lanthanum sluminate with .= 23.425, F= 20 mil and
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substrate dielectric loss tangent of 0.00003. The length of the input and output
lines is Lo=50 mil and the lines are of width W= 7 mil. We choose & and H as the
preassigned parameters of interest, thus x=[20 mil 23.425]". The design
specifications are

18,1 < 0.05 for @ > 4.099 GHz and for @ < 3.967 GHz

1551|2095 for 4.008 GHz< w<4.058 GHz

This corresponds to 1.25% bandwidth.

Our Agilent ADS (2000) coarse model consists of empirical models for
single and coupled microstrip transmission lines, with ideal open stubs. See Fig.
3.12(b). Set A (Fig. 3.11(b)) consists of the three coupled microstrip lines.
Notice the symmetry in the HTS structure, i.e., coupled lines “CLin5” are
identical to “CLinl1” and “CLin4” to “CLin2”. Here, Set B (Fig. 3.11(b)) is
empty. The preassigned parameter vector is

x=[g, H; &, H, 64 Hy]'

The fine model is simulated first by Agilent Momentum (2000). The
relevant responses at the initial solution are shown in Fig. 3.13(a), where we
notice severe misalignment. The algorithm requires 2 iterations (3 fine model
simulations). The total time taken is 26 min (one fine mode! simulation takes
approximately 9 min on an Athlon 1100 MHz). Responses at the final iteration

are shown in Fig. 3.13(b). Sonnet em (2001)has also been used as a fine model.
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®

Fig.3.12 The HTS filter (Bandler, Biernacki, Chen, Getsinger, Grobelny,
Moskowitz and Talisa, 1995), (a) the physical structure, (b) the coarse
model as implemented in Agilent ADS (2000).
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It takes 74 minutes to complete a sweep on an Intel P4 2200 MHz machine. The
initial solution and the final result in 1 iteration (2 fine model simulations) are

shown in Fig. 3.14(a) and (b), respectively. TABLE 3.1 shows initial and final

| ; X OOOQ
-80 lllliiIlllllllillllllllllolqll
3.80 3.95 4.00 4.05 410 4.15 4.20
frequency (GHz)
(a)

'89 ii!!é!iili!Eii!iﬁ!iéﬁilgﬁiig

3.90 3.05 4.00 4.08 4,10 4.18 4.20
frequency (GHz)
(b)

Fig. 3.13 The Momentum fine (0) and optimal coarse ADS model (—) responses
of the HTS filter at the initial solution (a) and at the final iteration (b)
after 2 iterations (3 fine model evaluations).
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designs. TABLE 3.2 shows the variation in the preassigned (coarse model)

parameters.
The parameter extraction process uses real and imaginary § parameters
and the ADS quasi-Newton optimization algorithm, while coarse model optima

are obtained by the ADS minimax optimization algorithm.

(e} e]

’100 11lllllll|llll§l|Ilil!ll]llll

3.0 3.85 4.00 4.05 4.10 4.15 4.20
frequency (GHz)
(@

'166 ESEI%IEEEEEEEEEEEﬂﬁigflﬁﬁilﬁfi
3.80 3.85 4.00 4.08 410 4.15 4.20
frequency (GHz)
®)

Fig. 3.14 The Sonnet em fine (0) and optimal coarse ADS model (—) responses
of the HTS filter at the initial solution (&) and at the final iteration (b)
after one iteration (2 fine model evaluations).
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3.7 CONCLUSIONS

Based on a general concept, we present an effective technique for
microwave circuit modeling and design w.r.t. full-wave EM simulations. We vary
preassigned parameters in a coarse model to align it with the EM (fine) model.
We believe this is the easiest to implement “Space Mapping” technigue offered to
date. The HTS filter design is entirely carried out by Agilent ADS and
Momentum (3 frequency sweeps) or Sonnet em, (only 2 frequency sweeps) with
no matrices to keep track of. A general SM concept is presented which enables us

to verify that our implementation is correct and that no redundant steps are used.
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TABLE3.1
AGILENT MOMENTUM/SONNET em
OPTIMIZABLE PARAMETER VALUES OF THE HTS FILTER

Parameter Initial solution Solution {mil) Solution (mil)
(mil) Agilent Momentum Sonnet em
Ly 189.65 187.10 186.80
L, 196.03 191.30 192.68
L 189.50 186.97 185.86
Si 23.02 22.79 22.19
Sz 95.53 93.56 88.12
83 104.95 104.86 103.42
TABLE 3.2

THE INITIAL AND FINAL PREASSIGNED PARAMETERS OF THE
CALIBRATED COARSE MODEL OF THE HTS FILTER

l;?;i;gg:j Original values Fﬁi:tg:&in Final iteration em
H, 20 mil 19.80 mil 18.79 mil
H, 20 mil 19.05 mil 17.42 mil
H; 20 mil 19.00 mil 17.67 mil
&1 23.425 24.404 23.81
&2 23,425 24.245 24.45

&3 23.425 24.334 23.94
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As presented in Chapter 2, the space mapping (SM) concept exploits
coarse models (usually computationally fast circuit-based models) to align with
fine models (typically CPU intensive full-wave EM simulations) (Bandler, Cheng,
Dakroury, Mohamed, Bakr, Madsen and Sendergaard, 2004). The novel implicit
space mapping (ISM) concept, presented in Chapter 3, exploits preassigned
parameters such as the dielectric constant and substrate height (Bandler, Cheng,
Nikolova and Ismail, 2004). In the parameter extraction process these parameters
were exploited to match the fine model.

In this chapter, we present a significant improvement to ISM. Based on an
explanation of residual misalignment close to the optimal fine model solution,
where a classical Taylor model is seen to be better than SM, our new approach
further fine-tunes the surrogate by exploiting an “response residual space”
mapping (RRSM).

The RRSM we suggest is very simple to apply. It is consistent with the

idea of pre-distorting design specifications to permit the fine model greater
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latitude—anticipating violations and making the specifications correspondingly
stricter. Our RRSM exploits this to fine tune the surrogate model. An accurate
design of an HTS filter, easily implemented in Agilent ADS (2000), emerges after
only four EM simulations using ISM and RRSM with sparse frequency sweeps
(two iterations of ISM, followed by one application of the RRSM).

In this chapter we also broaden the concept of auxiliary (preassigned)
parameters to frequency transformation parameters. See, e.g. (Bandler, Biernacki,
Chen, Hemmers and Madsen, 1995). We embed a linear mapping to relate the
actual (fine model) frequency and the transformed (coarse model) frequency into
the surrogate.

At the end of this chapter, we present a microwave design framework for
implementing an implicit and RRSM approach. The RRSM surrogate is matched
to the fine model through parameter extraction. An intuitive “multiple cheese-
cutting” example demonstrates the concept. For the first time, an ADS
framework implements the SM steps interactively. A six-section H-plane
waveguide filter design emerges after four iterations, using the implicit SM and
RRSM optimization entirely within the design framework. We use sparse

frequency sweeps and do not use the Jacobian of the fine model.

SIDUAL SPACE

The RRSM addresses residual misalignment between the optimal coarse

model response and the true fine model optimum response Ry (x;). (In SM, an
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exact match between the fine model and the mapped coarse model is unlikely.)
For example, a coarse model such as R, = #* will never match the fine model Re=
x> — 2 around its minimum with any mapping x=P(xp), xc, xp € R. An “output” or
response mapping can overcome this deficiency by introducing a transformation
of the coarse model response based on a Taylor approximation (Dennis, 2001,
2002).

Fig. 4.1 depicts model effectiveness plots (Sendergaard, 2003) for a two-
section capacitively loaded impedance transformer (Sendergaard, 2003) at the

final iterate x}”, approximately [74.23 79.27]. Centered at & = 0, the light grid
shows || Rf(x}i) +h)-R.(L, (x(fi) +h))|l. This represents the deviation of the

mapped coarse model (using the Taylor approximation to the mapping, i.e., a

linearized mapping) from the fine model. The dark grid shows

| R (xP + k)~ L,(xP +k)||. This is the deviation of the fine model from its

classical Taylor approximation. It is seen that the Taylor approximation is most
accurate close to x/” whereas the mapped coarse model is best over a large region.

Response residual SM aims at establishing a mapping O between R,

(output mapped surrogate response) and R, (mapped coarse model response)
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R, =O(R,) (4-1)
such that
R ~R . (4-2)

We can predict the fine model solution using this surrogate.

SIDUAL SPACE

Our proposed algorithm starts with ISM (Bandler, Cheng, Nikolova and

ST,
SINSIERESAAS

Fig. 4.1 Error plots for a two-section capacitively loaded impedance transformer
(Sendergaard, 2003) exhibiting the quasi-global effectiveness of space
mapping (light grid) versus a classical Taylor approximation (dark
grid). See text.
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Ismail, 2004). If the calibration (PE) step in (Bandler, Cheng, Nikolova and
Ismail, 2004) does not improve the match, which will eventually happen close to
x;, then we create a surrogate with response R;. In this chapter we consider a

mapping of the form
R, =O(R,)2 R, (x,,x)+diag{}, 4, 2, } AR (4-3)
where
AR =R (x;)- R, (x,%,x) (4-4)
is the residual between the mapped coarse model response after PE and the fine

model response, and where the A4, are user-defined weighting parameters,

normally unity.
The coarse model parameters x. are obtained by (re)optimizing the

surrogate (4-3) to give

X200 & oo minU(O(R, (., x)) (4-5)

[4

Then we predict an update to the fine model solution as

x, = x,0 4-6)

[+

TS FILTER PLE

E

Again, we consider the HTS bandpass filter of (Bandler, Biernacki, Chen,
Getsinger, Grobelny, Moskowitz and Talisa, 1995) as in Chapter 3. The physical

structure is shown in Section 3.5. Design variables are the lengths of the coupled
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lines and the separations between them. The design specifications are the same as
described in Section 3.5. The fine model is simulated by Agilent Momentum
(2000).

The relevant responses at the initial solution are shown in Fig. 4.2 (a),
where we notice severe misalignment. Fig. 4.2(a) and Fig. 4.3(b) show the

response after running the ISM algorithm. After two iterations (3 fine model

£.00
0.95—
0.80
2 0.85
0.80—
0.75!'!]!]!‘!!][!‘!]!]'
3.84 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14
frequency (GHz)
@
1.00
0.95—
. 0.90-]
&
0.85—
0.80—
9.751112'1|111iﬁilgli5i|
3.94 3.86 388 4.00 4.02 404 4.06 408 4.10 4.92 4.14
frequency (GHz}
&)

Fig. 4.2 The fine (0) and optimal coarse model (—) magnitude responses of the
HTS filter, at the final iteration using ISM (a), followed by one iteration

of RRSM (b).
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simulations), the calibration step does not improve further, as seen in Fig. 4.3(b).
Since we believe we are close to the true optimal solution, we introduce the
output space mapping and use the output space mapped response in (4-3) with 4
=0.5,/=1, 2, ..., m as initial values. After one iteration of RRSM, we obtain the
improved response shown in Fig. 4.2(b) and Fig. 4.3(c). This is achieved in only
4 fine model evaluations. The total time taken is 35 min (one fine model
simulation takes approximately 9 min on an Athlon 1100 MHz). TABLE 4.1
shows initial and final designs. The initial and final preassigned parameters of the
calibrated coarse model of the HTS filter have the same values as in (Bandler,
Cheng, Nikolova and Ismail, 2004), i.e., x*¥) = [24.404 19.80 mil 24.245 19.05
mil 24.334 19.00 mil]".

The PE uses real and imaginary § parameters and the ADS quasi-Newton

optimization algorithm, while coarse model and RRSM surrogate optima are

TABLE 4.1
OPTIMIZABLE PARAMETER VALUES OF THE HTS FILTER
Solution reached .
o . Solution by the
Parameter Initial solution by the. ISM ISM and RRSM
algorithm

Ly 189.65 187.10 178.28

Ly 196.03 191.30 200.86

I3 189.5¢ 186.97 177.99

St 23.02 22.79 20.18

S 95.53 93.56 86.15

$3 104.95 104.86 85.17

All values are in mils
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obtained by the ADS minimax optimization algorithm.

OOQ
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Fig. 4.3 The fine (o) and optimal coarse model (—) responses of the HTS filter

in dB at the initial solution (a), at the final iteration using ISM (b), and
at the final iteration using ISM and RRSM (c).
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[APPING APP

In this section we introduce the response residual space mapping (RRSM)
approach. It differs from the approach described in (Bandler, Cheng, Gebre-
Mariam, Madsen, Pedersen and Sendergaard, 2003). Here, we match the
response residual SM surrogate with the fine model in a parameter extraction (PE)
process. A novel and simple “multiple cheese-cutting” problem is used as an
illustration. An implementation in an ADS (2003) design framework is presented
in the next chapter. Entirely in ADS, a good six-section H-plane waveguide filter

(Young and Schiffman, 1963, Matthaei, Young and Jones, 1964) design is

achieved after only five EM simulations (Agilent HFSS (2000)) or four iterations.

4.5.1 Surrogate

The response residual surrogate is a calibrated (implicitly or explicitly
space mapped) coarse model plus an output or response residual as defined in the
previous section. The residual is a vector whose elements are the differences
between the calibrated coarse model response and the fine model response at each
sample point after parameter extraction. The surrogate is shown in Fig. 4.4. Each
residual element (sample point) may be weighted using a weighting parameter 4,

j = 1...m, where m is the number of sample points.
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design parameters
from previous
iteration

v  residual
L Weighting

calibrated | | [ parameters

coarse model

design surrogate
_ response
parameters calibrated P
— %

coarse model

Fig. 4.4 Illustration of the RRSM surrogate.

In the parameter extraction, we match the previous output residual SM
surrogate (instead of the calibrated coarse model of (Bandler, Cheng, Gebre-
Mariam, Madsen, Pedersen and Sendergaard, 2003) to the fine model at each

sample point.

4.5.2 Multiple Cheese-cutting Problem

We develop a physical example suitable for illustrating the optimization
process. QOur “responses” are the weights of individual cheese slices. The
designable parameter is the /length of the top slice [see Fig. 4.5(a)]. A density of
one is assumed. The goal is to cut through the slices to obtain a weigh? for each

one as close to a desired weigh? s as possible. Note that we measure the Jength
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from the right-hand end. We cut on the lefi-hand side (the broken line).

The coarse model involves 3 slices of the same height x, namely, the
preassigned parameter shown in Fig. 4.5(a). The lengths of the two lower slices
are ¢ units shorter than the top one. The optimal length x: can be calculated to
minimize the differences between the weights of the slices and the desired weight
s. We use minimax optimization. The responses of the coarse model are given by

R

(4

R,=x(x,—c)1

1 =x%,-1

Rsy=x-(x,~c)-1
The fine model is similar but the lower two slices are f; and £ units
shorter, respectively, than the top slice [Fig. 4.5(b)]. The heights of the slices are

x1, X2 and x3, respectively. The corresponding responses of the fine model are

=

¥

=

I Ak

4
X
? <
o
f
-
d

(a) ®

Fig. 4.5 Multiple cheese-cutting problem: (a) the coarse model (b) and fine model.
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Fig. 4.6 “Muitiple cheese-cutting” problem: implicit SM and RRSM optimization:
step by step.
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Fig. 4.7 Parameter difference betweep the RRSM design and minimax direct
optimization. Finally, xr =xy = 12.

We demonstrate the implicit and RRSM optimization process. We set ¢ =
2 and f; = f2 = 4. The specification s is set to 10. The heights of the slices are
fixed at unity for the fine model, i.e, x; = x; = x3 = 1. The coarse model
preassigned parameter x is initially unity. Fig. 4.6 shows the first two iterations of
the algorithm, step by step. The RRSM algorithm converges to the optimal fine

model solution as shown in Fig. 4.7.
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4.6 H-PLANE WAVEGUIDE FILTER]

4.6.1 Optimization Steps

We use the ADS framework exploiting implicit SM and RRSM to design
an H-plane filter. The following iterations are employed: two iterations of
implicit SM to drive the design to be close to the optimal solution; one implicit
SM and RRSM iteration using weighting parameters 4, = 0.5,/ =1..m (4 <1
because the optimizer has difficulty reoptimizing the surrogate with the full
residual added); a second implicit SM and RRSM iteration with the full residual

added.

4.6.2 Six-Section H-plane Waveguide Filter

The six-section H-plane waveguide filter (Young and Schiffman, 1963,
Matthaei, Young and Jones, 1964) is shown in Fig. 4.8(a). The setup of the
problem follows Bakr, Bandler, Georgieva and Madsen (1999). The design
parameters are the lengths and widths: {Li, Ls, L3, W1, W2, W3, W4}. Design
specifications are

IS111 <0.16, for frequency range 5.4< @ <9.0 GHz;

iS1:1>0.85, for frequency @ < 5.2 GHz;

ISt} = 0.5, for frequency @ > 9.5 GHz.
We use 23 sample points,

A waveguide with a cross-section of 1.372 x 0.622 inches (3.485 x 1.58
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cm) is used. The six sections are separated by seven H-plane septa, which have a
finite thickness of 0.02 inches (0.508 mm). The coarse model consists of lumped
inductances and waveguide sections. There are various a:ppreaches to calculate
the equivalent inductive susceptance corresponding to an H-plane septum. We
utilize a simplified version of a formula due to Marcuvitz (1951) in evaluating the
inductances. The coarse model is simulated using ADS (2003) as in Fig. 4.8(b).
We the select waveguide width of each section as the preassigned

parameter to calibrate the coarse model. The frequency coefficient of each

., ferm
> | Term2

(®)

Fig. 4.8 (a) Six-section H-plane waveguide fiiter (b) ADS coarse model.
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inductor, for convenience PI, is also harnessed as a preassigned parameter (o
compensate for the suceptance change. The fine model exploits Agilent HFSS.
One frequency sweep takes 2.5 minutes on an Intel Pentium 4 (3 GHz) computer
with 1 GB RAM and running in Windows XP Pro. Fig. 4.9(a) shows the fine
model response at the initial solution. Fig. 4.9(b) shows the fine model response
after running the algorithm using the Agilent HFSS simulator. Since no Jacobian
is needed, the total time taken for five fine model simulations is 15 minutes on an
Intel P4 3 GHz computer. TABLE 4.2 shows the initial and optimal design

parameter values of the six-section H-plane waveguide filter.

4.7 CONCLUSIONS

We propose significant improvements to implicit space mapping for EM-
based modeling and design. Based on an explanation of residual misalignment,
our new approach further fine-tunes the surrogate by exploiting an “response
residual space” mapping. The required HTS filter models and RRSM surrogate
are easily implemented by Agilent ADS and Momentum with no matrices to keep

track of. An accurate HTS microstrip filter design solution emerges after only

four EM simulations with sparse frequency sweeps. We present a RRS

modeling technique that matches the RRSM surrogate with the fine model. A new
“multiple cheese-cutting” design problem illustrates the concept. Our approach is
implemented entirely in the ADS framework. A good H-plane filter design

emerges after only five EM simulations using the implicit and RRSM with sparse
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Fig. 4.9 H-plane filter optimal coarse model response (—), and the fine model
response at: (a) initial solution (©); (b) solution reached via RRSM after 4
iterations (0).

frequency sweeps and no Jacobian calculations,
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TABLE 4.2
OPTIMIZABLE PARAMETER VALUES OF THE SIX-SECTION
H-PLANE WAVEGUIDE FILTER

Solution reached via

Parameter Initial solution RRSM
Wi 0.555849 0.499802
W 0.519416 0.463828
Ws 0.5033 0.44544
Ws 0.49926 0.44168
L 0.591645 0.630762
L 0.660396 0.644953
Ls 0.67667 0.665449

all values are in inches
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DUCTION

S.1 INTI

The required interaction between coarse model, fine model and
optimization tools makes SM difficult to automate within existing simulators. A
set of design or preassigned parameters and frequencies have to be sent to the
different simulators and corresponding responses retrieved. Software packages
such as OSA90 or Matlab can provide coarse model analyses as well as
optimization tools. Empipe (1997) and Momentum_Driver (Ismail, 2001) have
been designed to drive and communicate with Sonnet’s em (2001) and Agilent
Momentum (2000) as fine models. Aggressive SM optimization of 3D structures
(Bandler, Biernacki and Chen, 1996) has been automated using a two-level
Datapipe (1997) architecture of OSA90. The Datapipe technique allows the
algorithm to carry out nested optimization loops in two separate processes while
maintaining a functional link between their results (e.g., the next increment to xris
a function of the result of parameter extraction).

We present an ADS schematic framework for SM. The steps of the

framework are listed. It uses Agilent ADS circuit models as coarse models. ADS
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has a suite of built-in optimization tools. The ADS component S-parameter file
enables S-parameters to be imported in Touchstone file format from different EM
simulators (fine model) such as Sonnet’s em and Agilent Momentum. Imported
S-parameters can be matched with the ADS circuit model (coarse model}
responses. This PE procedure can be done simply by proper setup of the ADS
optimization components (optimization algorithm and goals). These major steps
of SM are friendly for engineers to apply. We implement these steps upfront in
ADS Schematic designs. In the algorithm iteration we fill each design with
proper data and optimize it.

In this chapter we provide a brief summary of applications of SM by other

researchers and engineers, thereby placing our own work into context.

Term
Term2

Fig. 5.1  S2P (2-Port S-Parameter File) symbol with terminals.
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Agilent ADS (2003) has a huge library of circuit models that can be used
as “coarse” models. ADS also has a suite of easy-to-use optimization tools, e.g.,
random search, gradient search, Quasi-Newion search, discrete search, genetic
algorithm. An S-parameter file SnP in ADS can import data files (S-parameters)
in Dataset or Touchstone format. Here, n is the port number. Fig. 5.1 is a symbol
of 2-port S-Parameter File component S2P with terminals. Many EM simulators
{“fine” model) such as Sonnet’s em (2001), Agilent Momentum (2000), and
Agilent HFSS (2000) support Touchstone file format. Using this file, we import
S-parameters and match them with the ADS circuit model (coarse model)
responses in the PE procedure. The residual between the calibrated coarse model
and fine model can also be obtained using the SnP file and MeasEqn
(Measurement Equation) component. These major steps of SM are friendly for

engineers to apply.

S.2.2

ADS Schematic Design Framework for SM

Step 1 Set up the coarse model in ADS schematic.

Step 2 Optimize the coarse model using the ADS optimizer.

Step 3 Copy and paste the parameters into the parameterized fine model
(Agilent Momentum, HFSS/Empipe3D (2000), or Somnet’s ems).
In ADS, the Momentum fine model can also be generated using the
Generate/Update Layout command.

Step 4 Simulate the fine model and save the responses in Touchstone
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format (Agilent Momentum, HFSS, or Sonnet’s em) or Dataset
(Momentum).
Step 5 If stopping criteria are satisfied, stop.
Step 6 Parameter extraction
(a) Import the responses to the ADS schematic using SnP
component under Data Items.
(b) Set up ADS (calibrated) coarse model or response residual SM
(RRSM) surrogate to match the SnP component.
(c) Run ADS optimization to perform parameter extraction.
Comment: Here, you may extract the coarse model design
parameter or the preassigned parameters to implement explicit
(original or aggressive SM) or implicit space mapping,
respectively.
Step 7 Predict the next fine model solution by
(a) Explicit SM: transfer extracted parameters to MATLAB (2002)
(or other scientific computing tool) and calculate a prediction
based on the algorithm in (Bandler, Biernacki, Chen, Grobelny
and Hemmers, 1994, Bandler, Biernacki, Chen, Hemmers and
Madsen, 1995), or,
(b) Implicit SM: reoptimize the calibrated coarse model w.r.t.
design parameters to predict the next fine model design, and/or,

(c) RRSM: reoptimize the surrogate (calibrated coarse model plus
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< L se—— L, se—— L >

Fig. 5.2  The three-section 3:1 microstrip impedance transformer.

response residual) w.r.t. design parameters to predict the next
fine model design.
Step 8 Update the fine model design and go to Step 4.
We implement implicit and response residual SM optimization in the ADS
schematic framework in an interactive way. The fine model is Agilent

momentum, HEFSS, or Sonnet’s em.

5.2.3 Three-Section Microstrip Transformer

An example of ADS implementation ISM optimization is the three-section
microstrip impedance transformer (Bakr, Bandler, Biernacki and Chen, 1997)
(Fig. 5.2) as we described in Section 3.3. The coarse model is shown in Fig. 5.3.
The design specifications are

ISl <011 for 5GHz < w< 15 GHz
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Fig. 5.3 Coarse model optimization. Coarse model optimization of the three-

section impedance transformer. The coarse model is optimized using
the minimax algorithm.

The designable parameters are the width and physical length of each
microstrip line. Here, the reflection coefficient S;; is used to match the two model
responses. The fine model is an Agilent Momentum model. The designable
parameters for the fine model are the widths and physical lengths of the three
microstrip lines. The thickness of the dielectric substrate is 0.635 mm (25 mil)

and its relative permittivity is 9.7. The effect of nonideal dielectric is considered

Fine model simulated in ADS Momentum.

Fig. 5.4
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Fig. 5.5 Coarse (—) and fine (©) model responses |S1;| at the initial solution of
the three-section transformer.
by setting the loss tangent to 0.002. We use 11 frequency points in the sweep.
The first step is to obtain an optimal coarse model design using the ADS
Schematic (minimax) optimization utilities as in Fig. 5.3. In this schematic, we
show the starting point (in mils) of the coarse model design parameter values.
The coarse model parameter conversion components implement well-known
empirical formulas (Pozar, 1998). The schematic will sweep S-parameters in the
band. When we “simulate” the schematic, ADS provides an optimal coarse
model solution. We apply the obtained design parameters to the fine model (Fig.

5.4). To achieve this, we can create a Momentum layout from schematic layout
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directly or copy and paste the parameters to the parameterized Momentum fine
model. In the fine model preassigned parameters are (always) kept fixed at
nominal values.

We obtain the fine model response as Fig. 5.5. Imported by S2P (2-Port
S-Parameter File), the fine model real and imaginary responses are used in the
parameter extraction (calibration) step (Fig. 5.6). In this step, the preassigned
parameters of coarse model are calibrated to match the fine and coarse model

responses. The goal is to match the real and imaginary parts of S1; at the same

optimization frequency fine coarse design preassigned specifications
algorithm sweep model model parameters  parameters
i i) 1
[ o s
;t'zN w Goal
T CptimGoal3
éfz"'"‘ Tom2 Exprrsbogeal(311)welS3R)
Num=2 ShninstanceMamoa 88"
Fid Gz Ze150 Ohm
D — ight
Cplimizable_Varabies i
MMI!{’.?ZH Mo’?m;“"b ot :;;nlmud Parmetern o
Wmil: 547 noopt{
mm:m‘ gmt :ﬁ’ h1=0.635 op{ 0.001 to 10001

Roopl{ )
20,635 opi{ 0,001 % 1000 }
Optim2 E224*1.21000*80sqhiepsion_o 2y 0/0* 168 Limil=117.816 noopt{ 0.0001 to 1200}
OptimT ypeeQuasi-Hovia) E324'L314000°80(aq{epoion_o3) /00 108 1£2mil=$20.918 noopt{ 0,0001 to 1200 30,838 op{ 0.001 %0 1000}
iod r =23 L3mii=123.844 noopt{ 0.6001 to 1200 ; 'P““ng .7 0p{ 0.001 20 4000 }

ardterma100000 mitdmm=0.0254 opalon_12=6.7 opt{ 0.001 to 1000} CplimGoal2

P2 ! Wi=Wimi mil2mm epaion_13-0.7 0p{ 0.001 o 9000 } Exprrabafmeg(s 1 HmapB33)
DecirpdEmor—i000 \W2e\W2mil Siminstencoiame="8P1"
Statuslevelad Wa=WamE mil2mm bl

FinstAnalysis=Rone® Lt=Limit*mil2mm D001

MommalizGoateens L2={ 2mil*mil2mm Weight=1

SetBostvaluconyes | Y VAR 3L Imii*mil2mm RangaVadi}=Tog"

Soods Width_to_Z0 Rangelin{1 J=SGHZ
UseAliCasiempe Wm oia{apatoh_ri+1)2+{epslon_ri 1)«2‘ SRt 12°NIAMIR |, . Rengoba{t]=16CKe

I Ing8*hi AN « W A*n3}p aico (120°plieariopalon_oi) (V111 303¢0.66T NG MY o1 44N onalf §

msen_mpsm 201)2e(opslon ¢ my{rwmoqz-wwz» £
NG HRAN2s W2H(E*h2)} ofoe (120°pHiogRiopalon_ B2 (A2M2+1 30300 88T infA22e 1 4441) ondif

epmn cdelopotoh, foet2eforalon 15-THE" oaAlt o ZNSAS)

Z3= i (AVS/Mm3)eat) thon (@0/griepalon_o3ly InB*h3MG+ WI/E*h3)) olse (120°pliiagriopaion_s3) (W3M3+1 30500.657 InfAfImSe § 44411 andif

Fig. 5.6 The calibration of the coarse model of the three-section impedance
transformer. This schematic extracts preassigned parameters x. The
coarse and fine models are within the broken line. The goal is to match
the coarse and fine model real and imaginary S;; from S to 15 GHz. The
optimization algorithm uses the Quasi-Newton method.
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time. A quasi-Newton algorithm is used to perform this procedure.

Supposedly we obtain a good match between the fine and coarse model,
i.e., a set of preassigned parameter values providing the best match are found, we
proceed to the next step. With fixed preassigned parameters the new coarse
model (surrogate) is reoptimized w.r.t. the original specification. This is done as
in Fig. 5.7. This schematic is similar to Fig. 5.3, but with a different set of
preassigned parameter values. The ADS minimax algorithm is used again in this
case.

We apply the prediction to the fine model again. The fine model

simulation gives a satisfying result as in Fig. 5.8. It takes 2 fine model

simulations.
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Fig. 5.7 Reoptimization of the coarse model of the three-section impedance
transformer using the fixed preassigned parameter values obtained from
the previous calibration (parameter extraction). This schematic uses the
minimax optimization algorithm. The goal is to minimize [S1i] of the
calibrated coarse model.
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Fig. 5.8 Optimal coarse (—) and fine model (o) responses |Sy;| for the three-
section transformer using Momentum after 1 iteration (2 fine model
simulations). The process satisfies the stopping criteria.

TABLE 5.1
OPTIMIZABLE PARAMETER VALUES OF THE THREE-SECTION
IMPEDANCE TRANSFORMER
Parameter Initial solution Salut{en reached

via ISM

Wi 14,8217 15.354

W 5.91547 6.34991

W 1.70331 1.70155

L 117.616 113.749

L 120.918 117.141

L 123.844 121.733

all values are in mils
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5.2.4 Response Residual SM Implementation of HTS Filter

The Response Residual SM example of the HTS filter is described in
Chapter 4. We discuss the implementation technique in this section. A coarse
model is optimized as in the previous sub-section. A fine model is simulated
using the coarse model design parameters. The coarse model is calibrated to

match the fine model response. In Fig. 5.9, previous coarse model is the
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Fig. 5.9 Implementation of response residual space mapping in Agilent ADS.
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calibrated coarse model in which the design parameters and preassigned
parameters are fixed. The fine model response is imported from the fine model
simulation. The residual is calculated using weighted misalignment between the
fine model and previous coarse model. The new surrogate is generated using
residual and the calibrated coarse model. We optimize the surrogate to predict

next fine model design.

APPLICATIONS

5.3

5.3.1 RF and Microwave Implementation

The required interaction between coarse model, fine model and
optimization tools makes SM difficult to automate within existing simulators. A
set of design or preassigned parameters and frequencies have to be sent to the
different simulators and corresponding responses retrieved. Software packages
such as OSA90 or MATLAB can provide coarse model analyses as well as
optimization tools. Empipe (1997) and Momentum_Driver (Ismail, 2001} have
been designed to drive and communicate with Sonnet’s em (2001) and Agilent
Momentum (2000) as fine models. Aggressive SM optimization of 3D structures
(Bandler, Biernacki and Chen, 1996) has been automated using a two-level
Datapipe (OSA90/hope, 1997) architecture of OSA90. The Datapipe technique
allows the algorithm to carry out nested optimization loops in two separate
processes while maintaining a functional link between their results (e.g., the next
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increment to Xy is a function of the result of parameter extraction).
SMX system
The obiject-oriented SMX (Bakr, Bandler, Cheng, Ismail and Rayas-
Sanchez, 2001) (see Appendix A) optimization system implements the surrogate
model-based SM algorithm (Bakr, Bandler, Madsen, Rayas-Sénchez and
Sendergaard, 2000), which is automated for the first time. SMX has been linked
with Empipe and Momentum Driver to drive Sonnet’s em and Agilent
Momentum, as well as with user-defined simulators.
Six-Section H-Plane Waveguide Filter
Bakr (2000) consider to apply SM technique in designing a six-section H-
plane waveguide filter (Young and Schiffman, 1963, Matthaei, Young and Jones,
1964). The coarse model consists of lumped inductances and dispersive
transmission line sections. It is simulated using OSA%90/hope. There are various
approaches to calculate the equivalent inductive susceptance corresponding to an
H-plane septum. We utilize a simplified version of a formula due to Marcuvitz
(1951) in evaluating the inductances. The fine model exploits HP HFSS Ver. 5.2
through HP Empipe3D. A good result is obtained using HASM (Bakr, Bﬁandien
Georgieva and Madsen, 1999).

Automatic Model Generation, Neural Networks and Space Mapping

Devabhaktuni, Chattaraj, Yagoub and Zhang (2003) propose a technique
for generating microwave neural models of high accuracy using less accurate

data. The proposed Knowledge-based Automatic Model Generation (KAMG) to

93



PhD Thesis — Q.S. Cheng McMaster - Electrical and Computer Engineering

make extensive use of the coarse generator and minimal use of the fine generator.
Space Mapping Implementation of Harscher et al.

This technique combines EM simulations with a minimum prototype filter
network (swrrogate). Harscher, Ofli, Vahldieck and Amari (2002) present two
examples: a direct coupled 4-resonator E-plane filter and a dual-mode filter. The
EM solver is based on Mode Matching.

CAD Technigue for Microstrip Filter Design

Ye and Mansour (1997) apply SM steps to reduce the simulation overhead
required in microstrip filter design. They illustrated their technique through an
HTS filter.

SM Models for RF Components

Snel (2001) proposed the SM technique in RF filter design for power
amplifier circuits. He suggests building a library of fast, space-mapped RF filter
components. These components can be incorporated in the design of ceramic
multilayer filters for different center frequencies in wireless communication
systems. The library is implemented in the Agilent ADS design framework.

Multilayer Microwave Circuits (LTCC)

Pavio, Estes and Zhao (2002) apply typical SM techniques in optimization
of high-density multilayer RF and microwave circuits. They apply the SM
approach to a three-pole bandstop filter, Low Temperature Co-firing Ceramic
(LTCC) capacitor, LTCC three-section bandstop filter and an LTCC broadband

tapered transformer.
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Cellular Power Amplifier Output Matching Circuit
Lobeek (2002) demonstrates the design of a DCS/PCS output match of a
cellular power amplifier using SM. The design uses a 6-layer LTCC substrate, a
silicon passive integration die, discrete surface mount designs as well as bond
wires. Lobeek also applies the SM model to monitor the statistical behavior of
the design w.r.t. parameter values. Monte Carlo analysis with EM accuracy based
on the space-mapped model shows good agreement with manufactured data.
A Multilevel Design Optimization Strategy
Safavi-Naeini, Chaudhuri, Damavandi and Borji (2002) consider a 3-level
design methodology for complex RF/microwave structure using an SM concept.
Their technique is implemented in the WATML-MICAD software. Applications
include a parallel-coupled line filter, combline-type filters and multiple-coupled
cavity filters.
LTCC RF Passive Circuits Design
Wu, Zhang, Ehlert and Fang (2003) present an explicit knowledge
embedded space mapping optimization technique. They apply the proposed
scheme on the design of low temperature cofired ceramic (LTCC) RF passive
circuits, along with the required CAD formulas (knowledge) for typical embedded
multilayer passives. Wu, Zhao, Wang and Cheng (2004) propose a concept called
the dynamic coarse model and apply to the optimization design of LTCC

multilayer RF circuits with the aggressive SM technigue.
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Waveguide Filter Design
Steyn, Lehmensiek and Meyer (2001)consider the design of irises in
multi-mode coupled cavity filters. With the aggressive SM technique only 4
coupling coefficients were sufficient to obtain the same error.
Dielectric Resonator Filter and Multiplexer Design
Ismail, Smith, Panariello, Wang and Yu (2004) apply SM optimization
with FEM (fine model) to design a S-pole dielectric resonator loaded filter and a
10-channel output multiplexer. The proposed approach reduces overall tuning
time compared with traditional techniques.
Combline Filter Design
Swanson and Wenzel (2001) introduce a design approach based on the SM
concept and commercial FEM solvers. From a good starting point, one iteration
is needed to implement the design process.
CAD of Integrated Passive Elements on PCBs
Draxler (2002) introduces a methodology for CAD of integrated passive
elements on Printed Circuit Board (PCB) incorporating Surface Mount
Technology (SMT). The proposed methodology uses the SM concept to exploit
the benefits of both domains.
Coupled Resonator Filter
Pelz (2002) applies SM in realization of narrowband coupled resonator
filter structures. A 5-pole coupled resonator filter design is achieved with fast

convergence.
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Nonlinear Device Modeling
Zhang, Xu, Yagoub, Ding and Zhang (2003) introduce a new Neuro-SM
approach for nonlinear device modeling and large signal circuit simulation. The
Neuro-SM approach is demonstrated by modeling the SiGe HBT and GaAs FET
devices.
Comb Filter Design
Gentili, Macchiarella and Politi (2003) implement an accurate design of
microwave comb filters using SM technique. They use internal circuit model
parameters as preassigned parameters to apply the implicit SM.
Inductively Coupled Filters
Soto, Bergner, Gomez, Boria and Esteban (2000) apply the aggressive SM
procedure to build an automated design of inductively coupled rectangular
waveguide filters. The complete aggressive SM design procedure required 3
iterations to converge (10 times faster than directly using a precise simulation

tool).

5.3.2 FElectriczal Engineering Implementation
Magnetic Systems
Choi, Kim, Park and Hahn (2001) utilize SM to design magnetic systems.
They validate the approach by two numerical examples: a magnetic device with
leakage flux and a machine with highly saturated part. Both examples converge

after only 5 iterations (Choi, Kim, Park and Hahn, 2001).
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Photonic Devices

Feng, Zhou and Huang (2003) apply the SM technique for design
optimization of antireflection (AR) coatings for photonic devices such as the
semiconductor optical amplifiers (SOA). Feng and Huang (2003) employ the
generalized space mapping (GSM) technique for modeling and simulation of

photonic devices.

5.3.3 Other Engineering Implementation
Structural Design
Leary, Bhaskar and Keane (2001) apply the SM technique in civil
engineering structural design. Their aim is to establish a mapping between the
constraints of a fine model and a coarse model. They illustrate their approach
with a simple structural problem of minimizing the weight of a beam subject to
constraints such as stress.
Vehicle Crashworthiness Design
Redhe and Nilsson (2002) apply the SM technigue and surrogate models
together with response surfaces to structural optimization of crashworthiness
problems. Using the SM technique CPU time is reduced relative to the traditional

response surface methodology.

54 CONCLUSIONS

In this chapter, we discussed implementations and framework techniques.

We introduced an easy to use ADS schematic framework for SM. We
28



PhD Thesis — Q.S. Cheng McMaster — Electrical and Computer Engineering

demonstrate its implementation. We reviewed various successful implementa-
tions by other groups and researchers. This verifies that SM technology can be
applied to substantially different design and modeling areas in science and

engineering. It also places our work into context.
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This thesis presents innovative methods for electromagnetics-based
computer-aided modeling and design of microwave circuits exploiting implicit
and output space mapping (SM) and surrogate modeling technology. These
technologies are demonstrated by the so-called “cheese problem” and illustrated
by designing several practical microstrip structures. We also discuss various
implementations.

In Chapter 2 we review the SM technique and the SM-oriented surrogate
(modeling) concept and their applications in engineering design optimization.
The simple CAD methodology follows the traditional experience and intuition of
engineers, yet appears to be amenable to rigorous mathematical treatment. The
aim and advantages of SM are described. The general steps for building
surrogates and SM are indicated. Approaches reviewed include the original SM
algorithm, the Broyden-based aggressive space mapping, trust region aggressive
space mapping, hybrid aggressive space mapping, neural space mapping and
implicit space mapping. Parameter extraction is an essential subproblem of any
SM optimization algorithm. It is used to align the surrogate with the fine model at

each iteration. Different approaches to enhance the uniqueness of parameter
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extraction are reviewed, including the recent gradient parameter extraction
process. An expanded space mapping design framework is reviewed. This
technique expands original space mapping by aliowing certain preassigned
parameters (which are not used in optimization) to change in some components of
the coarse model. The space mapping concept and frameworks are discussed.
SM techniques are categorized based on their properties.

Based on a general concept, we present an effective technique for
microwave circuit modeling and design w.rt. full-wave EM simulations in
Chapter 3. We vary preassigned parameters in a coarse model to align it with the
EM (fine) model. We believe this is the easiest to implement “Space Mapping”
technique offered to date. The HTS filter design is entirely carried out by Agilent
ADS and Momentum (3 frequency sweeps) or Sonnet em, (only 2 frequency
sweeps) with no matrices to keep track of. A general SM concept is presented
which enables us to verify that our implementation is correct and that no
redundant steps are usgdi.

In Chapter 4 we propose significant improvements to implicit space

mapping for EM-based modeling and design. Based on an explanation of residual

misalignment, our new approach further fine-tunes the surrogate by exploiting an
“output space” mapping (OSM) or “response residual space” mapping (RRSM).
The required HTS filter models and RRSM are easily implemented by Agilent
ADS and Momentum with no matrices to keep track of An accurate HTS

microstrip filter design solution emerges after only four EM simulations with
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sparse frequency sweeps. We present the RRSM modeling technique that
matches the output residual SM surrogate with the fine model. A new “multiple
cheese-cutting” design problem illustrates the concept. Qur approach is
implemented entirely in the ADS framework. A good H-plane filter design
emerges gﬁer only five EM simulations using the implicit and RRSM with sparse
frequency sweeps and no Jacobian calculations.

Chapter 5 discusses the implementation framework techniques. We
introduce an easy ADS schematic design framework for SM and demonstrate in a
three-section transformer. We also review other successful implementations both
from our group and from other researchers or engineers. They prove that SM
technology can be applied to different design and modeling areas.

Appendix A describes the object-oriented SMX optimization system. It
implements the surrogate model-based SM (SMSM) algorithm, which is
automated for the first time.

Appendix B explains our so-called cheese-cutting problems. We utilize
the simple physics and geometry of ideal or contrived cheese blocks (slices) to
study and illustrate various space mapping techniques.

From the experience and knowledge gained in the course of this work the
author is convinced that the following research topics should be interesting to
investigate:

(1)  Implicit SM optimization is emphasized in this thesis. ISM is also

a modeling technique. We can explore further on this aspect. For
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example, we can use a set of preassigned parameters to calibrate a
coarse (large) grid EM simulator o match a fine (small) grid EM
simulator. Taking advantage of continuous preassigned parameters
we could interpolate the responses of structures that are not on the
discrete grids of the coarse EM simulator meshes. This ISM
interpolated coarse grid EM simulator could act as a fast but
accurate EM simulator.

The ISM discussed in this thesis uses the same preassigned
parameters for all the frequency (sample) points. This may not be
sufficient for frequency-sensitive devices. We can introduce a
frequency-based ISM. The ISM model uses different preassigned
parameters for different frequency points or different frequency
bands. The new ISM could make a better surrogate.

In this thesis, output SM or RRSM is only used to calibrate the

implicitly mapped coarse model. We could extend OSM/RRSM to
other types of space mapping. For example, we can use the output
calibrated coarse model in aggressive SM to speed up or increase
the probability of convergence.

Currently, the ADS schematic design framework for SM is
applicable to several kinds of space mapping (aggressive or
implicit/output SM) algorithms. It is possible to apply the design
framework to more SM algorithms. We could also support other
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EM simulators, e.g., Ansoft HFSS under this design framework.
More examples and illustrations could be done in this framework.

The ADS schematic design framework for SM described in this
thesis is not automated. It needs human intervention at each
iteration because of the current limitations of ADS. However,
Agilent is constantly updating its ADS. In the near future, the
semi-automated interactive implementation could be automated as
soon as a better sequential optimization method is available from

Agilent.
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The object-oriented SMX (Bakr, Bandler, Cheng, Ismail and Rayas-
Sanchez, 2001) optimization system implements the surrogate model-based SM
(SMSM) algorithm (Bakr, Bandler, Madsen, Rayas-Sinchez and Sendergaard,
2000), which is automated for the first time. SMX has been linked with Empipe
(1997) and Momentum_Driver (Ismail, 2001) to drive Sonnet’s em and Agilent
Momentum, as well as with user-defined simulators.

In the SMSM approach, a surrogate (Booker, Dennis, Frank, Serafini,
Torczon and Trosset, 1999) of the fine model is iteratively used to solve the
original design problem. This surrogate model is a convex combination of a
mapped coarse model and a linearized fine model. It can exploit a frequency-
sensitive mapping.

The SMX engine implements the SMSM algorithm. Object-Oriented
Design (OOD) abstracts the basic behavior of the models and optimizers modules.
A universal parameter sefting and results retrieval method is utilized for all
simulators and optimizers. The SMX architecture integrates these modules.

Anocther advantage of OOD is reusability and extendibility. SMX is
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intended to support a number of EM and circuit simulators. Here, the basic
functionality of simulators and optimizers is abstracted in the two basic classes
Simulator and Optmizer. Many commercial simulators and optimizers could be
derived from these classes.

The SMX system is described in the Unified Modeling Language (UML).
Using this language, a complicated system can be decomposed into relatively
independent small objects without losing readability and intuitiveness. The
structure of each object can be represented in UML.

SMX takes advantage of the multi-thread capability of the Microsoft
Windows operating system (Petzold, 1990). The user-friendly interface responds
smoothly while the SMX core is running in a different thread in the background.
Synchronization and communication between threads are properly arranged.

SMX is capable of optimizing while showing intermediate results and interacting

with the user.

SMX automates the algorithm and drives EM/circuit simulators. Object-
oriented design is employed to decompose the algorithm into independent
modules (objects). Here the module or object is an instance of a certain class.
Each module can carry out certain functionality. It includes data structures
describing the properties of the object. Using the encapsulation concept, the SMX

system is decomposed into 6 modules, as shown in Fig. A.1.
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The user interface and SMX engine run in two separate threads
concurrently. The user chooses the simulators and sefup problem specifications
through a user interface. The interface initiates the starting point x!¥, the
constraints and the control signals for the coarse and fine models. The SMX

engine performs optimization and returns the progress, the current status,

responses R, and R, etc., to the user interface. The user interface feeds back
the optimization status such as objective function, designable parameters and
critical mapping parameters B®, s, 1@, ¢®, ¢¥and yin graphical and
numerical format to the user. The engine can optimize a model using either

classical optimization methods such as gradient-based minimax or the SMSM

algorithm (Bakr, Bandler, Madsen, Rayas-Sanchez and Sendergaard, 2000).

SMX user

interface file system

SMX engine

e Optim i zer

simulator

Fig. A.1 The modules of SMX.
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Az AL SMX ENGINE

The SMX engine is abstracted as the sumx_Engine class. After setup, the

coarse model is optimized by the member function OptimizeCoarseModel from the

starting point x'¥. This function uses m_pCoarseModelOptimizer, & pointer to a

[+

minimax optimizer object to obtain x,. Then the member function OptmizeSurrogate
is called to optimize the surrogate model R{’(x,) starting from the optimized

coarse model. The Huber optimizer is used for parameter extraction in
OptimizeSurrogate. 1O carry out space mapping, three base classes, Optimizer, Simulator
and Model, are abstracted and built.

The optimizer base class is an abstract class. It provides the interface for
standard optimization routines. With override of optimization routines, additional
parameter setup and objective function, the Huver, Minimax or other optimization
classes can be derived from optimizer. Some of the important functions in Optimizer
are GeiNorm, GetErors, FOF and SetConstraintMatrix, Different optimizers use different
norms as their objective functions. The purely virtual function Getvorm is
overridden to obtain the appropriate norm. foF gets the error values and their
derivatives by perturbation. It calls GetEwors to evaluate the error used for
parameter extraction, as well as for minimax design optimization. SetConstrantMatrix
sets constraints in matrix form. The inheritance relation of Optimizer is shown in

Fig. A.2.
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Optimizer
GetNomm
FDF
Getkrror
SetConstraintiiatrix

Huber MinMax
GetNorm
SetHuberThreshold GetNorm

Fig. A.2 [Illustration of the derivation of basic optimizer class.

Similar to Optimizer, the simulator class is a parent class for different
simulators. Commercial simulators and user defined simulators are derived
classes. Interface functions are overridden for each new derived simulator class.
Additional parameters may also be added. OSA90/hope™ (1997) and Agilent
Momentum™ (2000) are commercial simulators currently derived from the
Simulator class.

The swmx_Engine utilizes SurogateModer Which is derived from a base wiodel
class. The wmodet class functions as a wrapper of a simulator. The responses are
obtained independent of the simulator. Obviously, simuator is one of the Model
members. The Model class sends data to the simulator and retrieves responses from

it. Since optimizer needs normalized parameters, scaling factors are added.

IPLE

S FILTERE

A3

We consider two cases of the HTS filter problem (Bandler, Biernacki,
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Chen, Getsinger, Grobelny, Moskowitz and Talisa, 1995). In Case 1, the “coarse”
and “fine” models are both empirical models of OSA%0/hope. The “coarse”
model uses the ideal open circuit for the open stubs while the “fine” model uses

empirical models.

The designable parameters are the lengths L, L; and L; of the coupled

Fig. A.3 Case 1: The initial response of the HTS filter for the “fine” model
(OSAS0).

Fig. A4 Case 1: The optimal “fine” model (OSA90) response of the HTS filter.
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lines and their separation §i, 5; and Ss.
The SMX system obtained the optimal solution in 4 iterations. The “fine”
model response in the first iteration is shown in Fig. A.3. The “fine” model

response at the final iteration is shown in Fig. A.4. TABLE A.1 shows the initial

@ SME Plotter

Fig. A5 Case 2: The SMX optimized fine model (Agilent Momentum)
response of the HTS filter.

& S Dlotter

Fig. A.6 Case 2: The final Momentum optimized fine model response of the HTS
filter with a fine interpolation step of 0.1mil.
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and final parameters obtained by SMX optimization.

In Case 2 we use Momentum as the fine model, while the coarse model is

the same as in Case 1. SMX obtains the solution in 4 iterations. Fig. A.5 shows
the fine model responses at the fourth SMX iteration. Then the minimax
optimizer in Momentum is used to refine this solution. It takes approximately 32
hours on an IBM Aptiva computer with AMD-K7 650MHz CPU and 384MB

RAM. We use fine interpolation resolution (0.1mil for all parameters). See Fig.

A6,

TABLE A.1
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL (OSA%0)
FOR THE HTS FILTER
Parameter xg’ x?)
L 187.50 185.55
Ly 198.84 191.71
L 187.91 185.82
Si 20.04 21.03
$ 98.08 99.44
S 160.90 114.21

all values are in mils




Our so-called cheese-cutting problems utilize the simple physics and
geometry of ideal or contrived cheese blocks (slices) to study and illustrate

various space mapping techniques.

B.1 CHEESE-CUTTING PROBLEM

The cheese blocks, depicted in Fig. B.1, demonstrate how the aggressive
SM approach may not converge in certain cases. Our “response” is weight. The
designable parameter is length. A height and a density of one are assumed. A
width of 3 units is used. The goal is a desired weight of 30 units.

Our idealized “coarse” model is a uniform cuboidal block (top block of
Fig. B.1). The optimal length x. = 10 is easily calculated. The response is
evaluated by

R =x.-31=30

In practice, coarse models may have limitations. For example, the range
of the coarse model may be smaller than the range of the fine model. The coarse
model may not be capable of matching the fine model in the parameter extraction.

However, in this one-dimensional linear cheese-cutting example, the coarse model
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range is not limited. To mimic limitations in higher dimensions and for non-linear

coarse models, we will confine the coarse model range, e.g., [30,+), by
rewriting the coarse model as follows
R, =max{30,3x,} 1
Let the actual block (“fine” model) be similar but imperfect (second block
of Fig. B.1). A six-unit part is missing. We take the optimal coarse model leng?h
as the initial guess for the fine model solution, i.e., cutting the cheese so that x, b

=x, = 10. The fine model response is
— D =

This does not satisfy our goal. We realign (calibrate the design parameter x.) our
coarse model to match the outcome of the cut (on the fine model). This is a
parameter extraction (PE) step in which we obtain a solution x = 10 (third
block of Fig. B.1, noting the coarse model constraint). This value is equal to x. .

The algorithm exits. In this example, we notice that PE is not able to generate a

Sy I
x, =10, R, =30
optimal coarse model 1
C o
% 5
initial guess xi,” = xz; R,=30-6=24
N
xP
PE X0 =10; f=x-x =0; exit

Fig. B.1 The aggressive SM may not converge to the optimal fine model
solution in this case.
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good match between coarse and fine model, an essential assumption in the ASM.
A response residual space mapping (RRSM) takes into account the
mismatch in the parameter extraction and is able to overcome the problem. We
calculate the residual AR after the PE (see 3rd block of Fig. B.2) and generate a
surrogate R using the original coarse model plus the residual AR. This procedure
can be thought of as to correct (relax or tighten) the coarse model specification by
a residual. We re-optimize the surrogate w.r.t. the original specification to obtain
a new (or updated) . , or in other words, re-optimize the coarse model w.r.t. the
new specification. Let x D= xc" = 12. We obtain the new fine model response.
The optimal fine model solution is obtained in 1 iteration (2 fine model

evaluations). See Fig. B.2.

X, .
x, =10, R, =30
optimal coarse model 1
initial guess P =x; R, =30-6=24
%0

¥ =10; AR=R,~R, =~6

X #
S =7 R=R,+AR=3x,~6; % =12

prediction \

P =x =12

Fig. B2 The RRSM solves the problem in one iteration (two fine model
evaluations).
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ULTIPLE CHEESE-CUTTING

We develop a physical example suitable for illustrating space mapping
optimization. This example is intended to examine the mismatch problem in the
parameter extraction. Our “responses” are the weights of individual cheese slices.
The designable parameter is the lengh of the top slice [see Fig. B.3(a)]. A width
and a density of one are assumed. The goal is to cut through the slices to obtain a
weight for each one as close to a desired weight s as possible. Note that we
measure the Jength from the right-hand end. We cut on the left-hand side.

The coarse model involves 3 slices of the same height x, namely, the
preassigned parameter shown in Fig. B.3(a). The lengths of the two lower slices
are ¢ units shorter than the top one. The optimal length x. can be calculated to
minimize the differences between the weights of the slices and a desired weight s.

We use minimax optimization. The responses of the coarse model are given by

! % -
X

t c

% 2
x -

t c
. v : i

% i
: i
@ ®

Fig. B.3 The multiple cheese-cutting problem: (a) the coarse model (b) and fine
model.
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Ry=xx.1
Ro=x{(x,—¢c)l (B.1)
Ry=x(x,—¢c)1

The fine model is similar but the lower two slices are fi and £ units
shorter, respectively, than the top slice [Fig. B.3(b)]. The keights of the slices are

X1, Xz and x3, respectively. The corresponding responses of the fine model are

sz =x1 x-f‘i
sz =X, -(xf ~-f-l (B.2)
Rey=x-(x, - f3)1

B.2.1 Aggressive Space Mapping

Before we apply ASM to the multiple cheese-cutting problem, we review
the following ASM algorithm (Bandler, Biernacki, Chen, Hemmers and Madsen,
1995)

Step 0 Initialize x}l) = x: , BV =1,70= P(x?))—xj , j=1. Stop if

O] <n.

Step 1 Solve BIRY) = - f for g,

Step 2 Set xf,,jm = x;(,j} + 059,

Step 3 Perform parameter extraction optimization to get xéj ) e,

evaluate P{xf,j”)} .

Step 4 Compute f Ul = P(xy"’”) —xj If II f UDil<py, stop.
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Step 5 Update B to BY*Y using the Broyden formula.

Step 6 Setj=j+1; goto Step 1.

We demonstrate the Aggressive Space Mapping algorithm using the
coarse and fine model in Fig. B.3. We show the ASM algorithm may not
converge to fine model optimal solution in this case (Fig. B.4). In this example
we set ¢ = 0 and f; = f2 = 4. The specification s is set to 10. The heights of the
cheese blocks are fixed at unity, i.e. x = x; = x = x3 = 1. The algorithm exits after
1 iteration since /= 0 as in Fig. B.4(5). We can see there is a significant residual
between the coarse and fine model. A new surrogate is needed to find the real
solution [Fig. B.4(6)].

We use the optimality conditions of ASM on this multiple cheese-cutting
problem to show the possible non-convergence to fine model optimal solution.
We assume the fine model parameters f; = f2 = fo, coarse mode parameter ¢ = ¢

and x; =x; =x3 =x=1. We obtain the optimality conditions for ASM

X, —Cy—10=10~x, (B.3)
2-(x, =xp)+4[(x. —cg)—(x, - f)]=0 (B.4)
x,—x, =0 B.5)

where (B.3) is from applying the minimax optimality condition to the coarse
model, (B.4) is the least-squares optimality condition (stationary point) for the
parameter extraction and (B.5) is the exit condition (stopping criteria, see Step 4
of the ASM algorithm).

From (B.3) we obtain

120



PhD Thesis — Q.S. Cheng McMaster — Electrical and Computer Engineering

% =10 +%fl (B.6)
From (B.4} we obtain

2 2
X, =xc—§cg -é-gf@ (8.7)

Incorporating (B.5) and (B.6) with (B.7) we obtain

Br-mmmmmg ST
|
1 l i
2 Lo :
| ] i
0 ] i
0 5 10 15
(1) 2
R(x); x =10
BO =1;
L it T
] ‘ i
4 . R T
2—‘_‘| | |
I Tttt |
—-—__1 I {
0 1 J
e 5 10 15
{3) {4}
RGOy~ R (x9); x¥ =7.3333; BOh=—f®; 4O = £/ BO =2.6667; xP = £ + 4
f“’ = xy) -—x: =7.333-10=-2.6667 x}z) =10+2.6667= 12.6667
] o ST
1
4 i
1 H i
i i ]
2 o X
i 1 i
o i I
0 5 10 15
{5} {6}
R~ R (50); 7 =10; R (), %, =12
FO=® _x =10-16=0<7

exit

Fig. B4 The ASM algorithm may not converge in this case.
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¢  2f
x,=10-2L 420 B.8

4 6 3 B8
Equation (B.8) shows the solution is a function of coarse model parameter

co. A misaligned coarse model may result in non-convergence of the ASM.
Letting ¢ = 0 and fy = 4, we obtain xr = 12.6667 which is consistent with the

solution obtained in Fig. B.4(4). The optimal solution is not reached.

B.2.2 Response Residual ASM
Based on the observation of the non-convergence, we revise the ASM
algorithm to include the response residual SM surrogate calibration. We

calibrate the coarse model using the residual.

The new algorithm uses the ASM stopping criterion to switch to an RRSM
surrogate calibration.
Step 0 Initialize xP =x,, BY=1,fY=PxP)-x], AR=0 and
j=1.
Step 1 Solve BYRY =~ for V).
Step2 Set xJ*V = Y + B If || < e, stop.
Step 3 Perform parameter extraction optimization to get xU*™V, ie,

is used as a coarse

evaluate P(x”*’”}. Surrogate R, =R +AR
7 g s c

model to perform PE.

Step 4 Compute fYU*7 = P(x¥*)-x].
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Step 5 If !E f U”””E <y or xY*V =%, update AR=R, - R,, minimize

o & #
the surrogate R, = R, + AR to obtain a new x, and f=x, —x,,

BYU*Y =1 else update BY to BY*Y using the Broyden formula.
Step 6 Setj=j+1;gotoStep 1.

In this algorithm, initial condition AR=0 is added in Step 0. A new

Br----- T Tt T T T Br-----q------ T T T
i 1 £
4 | I 4 4 ::::1 N 4
i | 1 1 1 i
I
2 , . : N — :
i —‘ﬁ i ]
0 1 J O H i
0 5 10 15 0 5 10 15
(1 3)
R:‘fm; x =10 R (=)= R(xP); 500 =7.3333;
BY =y IO =5 ol =7333-10=-2.6667
] e CT T T T §r----- - [
. | e EEE
i i i 1 } I
2 T ! """ 1‘ 2 T } ! ‘‘‘‘ ‘]
o | Do 11 l
0 5 10 5 0 5 10 15
@ ) ®)
x(lzl sx;l) +PYx - #P)=10+(10-7.3333)= 12.6667 Rg(x:”)zkf(x‘;’); 2@ =10, AR BR}” -R(x®)
B = i = -1 BY = 26667, £ = 2P +h® P 2 210-10=0<7
L s Bt Tt T T T
I
I EEm
{ 1 b
T 1 i
2 T [ttt 1
_—_———L_-_Tj i i
0 1 4
¢ 5 10 5
o @ )
min B, = & (%, )+ AR £ = P + K =126667-0.6667 =12 RGPym B (AP, 4 293333
% =9.3333 [P =¥ -z = 0.6667 FO= - 5 =03333-03333=0<y

5P = B = 0,667

{10 {1
bR =ED-R D) minR =R (x}+AR
% =93333 fP=-x =0
P = o exit

Fig. B.5 The response residual ASM algorithm converges in two iterations.
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stopping criterion is added in Step 2, which stops the algorithm when a very small
prediction is obtained. In Step 3, the parameter extraction uses the RRSM
calibrated coarse model to match the fine model. In Step 5, we change the
surrogate or update B according to the original stopping criterion.

We use this new algorithm to solve the same multiple cheese-cutting
problem as in Fig. B.4 again. In 2 iterations (3 fine model evaluations), we obtain

the optimal solution xy= 12 as shown in Fig. B.5.

B.2.3 Implicit SM

Implicit SM (ISM) may not converge for certain preassigned parameters if
the mismatch of the coarse model and fine model is not compensated. We
demonstrate this using the multiple cheese-cutting problem. Here we choose
coarse model Aeight x as a preassigned parameter, initially unity. We set the fine
model parameters f; = f; = 4, fine model heights x; = x, = x3 = 1 and coarse mode
parameter ¢ = 2. We obtain the convergence curve and solution x,=12.2808 as in
Fig. B.6. It shows that the algoritm does not converge to the optimal solution.

We investigate the optimality condition for ISM. We assume that the
least-squares solution is used for the parameter extraction and minimax for coarse
(surrogate) optimization. We consider general coarse model responses R, =

[R,..R,]1" and fine model responses R, = [R ﬂ..‘RﬁgET . Applying optimality

conditions, we obtain
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Zz°(Rﬁ“Rf">§? =0 (B.9)

X; =X, (B.10)
Ry—s|=|Ry 5| =Ry —s|=7 (B.11)
R, —s4| <y fori=k+1,...,n (B.12)

where y is the minimax “equal-ripple” peak deviation, R,,,...,R, are the active

calibrated coarse model function values. s;,..,s, are specifications for

7

corresponding response functions R,,...,R,,. Equation (B.9) is a necessary
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Fig. B.6 Parameter errors between the ISM salgorithm and minimax direct
optimization. Here x; = 12.2808 and x, = 12.
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condition for minimum in the parameter extraction. Equation (B.10) is the
condition enforced in each iteration. Equation (B.11) and (B.12) are the minimax
(equal ripple) optimality condition.

We apply the conditions to the multiple cheese-cutting problem. Let the
specification for all the responses be 10, the coarse model parameter ¢ of (B.1) be
co and fine model parameters f; and f; of (B.2) be fo. We assume fine model

preassigned parameters x; = x; =x3 = 1. Using (B.9)-(B.12), we obtain

2-(x, - x—%p) X, +4-[(x, —p) - x— (% — f)lx, — ) =0 (B.13)
X =%, (B.14)
(x,—¢g)-x-10=10-x-x, (B.15)

where (B.13) is from the derivative condition (B.9) and (B.15) is from the
minimax optimality condition (B.11).

From (B.15) we obtain

20
2x€ - CG

X =

(B.16)

Substituting (B.14) and (B.16) into (B.13), we have

12x2 = (120 + 8.1, +14¢y)x? + (12¢, fy +4¢2 +160c,)x, —4c2 f, —80cZ =0 (B.17)
We define

g(x.) 212x2 (120 +8 £, +14¢y)x2 + (126, f, +4ck +160cy)x, —4ct f —80c}
(B.18)

The root of equation (B.18) is the solution that ISM converges to. If we

choose [¢g fo] = [2 4], the root is 12.2808, as shown in Fig. B.7. It is consistent
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7000 -
- g= 2, {’ =4
000l % solution x¢=12.28@8
— = 4, f('} =4
o solusion x_=12.0000 /
5000 - O fine model minimax solution

glxy)

Fig. B.7 Case 1: ¢o = 2, fo = 4, the ISM solution is x, =12.2808 vs. minimax
solution xr = 12; case 2: ¢y = 4, fy = 4, the ISM solution is Xy =12 vs.

minimax solution xy= 12.
with the experimental solution shown in Fig. B.6. When we set [¢p fo] = [4 4], the
root of (B.18) is obtained as 12, which is the minimax solution of the fine model.
This shows that ISM may not converge to the optimal solution if there is a

misalignment (co # /o) between the coarse and fine model responses.

B.2.4 Response Residual SM Surrogate
If we assume that the coarse model is aligned with the fine model
directionally, i.e., the first-order derivatives match, a simple RRSM calibration will

push the solution to the optimum. We again use the multiple cheese-cutting

127



PhD Thesis — Q.S. Cheng McMaster — Electrical and Computer Engineering

problem as an example. We assume that the coarse and fine model gradients are
the same, €.g2., X = X;1= X2 = X3 = Xg, and that the parameter extraction cannot get a
better match by changing the preassigned parameters. Letting the coarse model
parameter ¢ of (B.1) be ¢p and the fine model parameters f; and f; of (B.2) be fy, we
have the residual between the coarse and the fine models (noting x. = xg) as

ARy =Ry —R;=xx-%,%=0
ARy =Rpy =Ry = (%, = fo) %y = (%, =) % =y = fo) % (B.19)

ARy =Ry — Ry =(x,— fy) %= (%, — o) %y =g — fo) - %
The new surrogate becomes

R +AR =x, %
R +ARy =Ry =(x,—cy) xg+(co— fo) % =(x, — fo) %o

(B.20)
Equation (B.20) has the same form as the fine model (B.2). When we find the

optimal solution of the surrogate, we obtain that of the fine model.

B.2.5 Implicit SM and RRSM

We demonstrate the response residual space mapping (RRSM) using this
multiple cheese-cutting problem in Chapter 4. We now show a variation of the
problem. The coarse model is the same as the previous coarse model. For the
fine model, the heights of the cheese blocks are x; =1, x; = 0.6 and x3 = 0.6 and
the lengths are the same: f; = /2 = 0. The algorithm will not converge to the fine
model optimal solution using ASM or ISM. With RRSM calibration, we are able

to find the solution. We show the two RRSM stepwise iterations in Fig. B.8. And
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the convergence is shown in Fig. B.9.
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Fig. B.8 RRSM step-by-step iteration demonstration—different heights for the
fine model.
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