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Abstract 

This thesis deals with the following four topics: 

1. Multivariate statistical methods are used to analyze data from an industrial 

batch drying process. Principal Component Analysis (PCA) and Partial least-squares 

(PLS) methods were able to isolate which group of variables from the initial conditions 

and the process variables were related to a poor-quality product. The use of a novel 

approach to the time warping of the trajectories for batches, and the subsequent use of the 

time-warping information, is presented. 

2. In the procedure to monitor a new batch usmg the method proposed by 

Nomikos and MacGregor (1994), an assumption about the unknown future samples in the 

batch has to be taken. This work demonstrates that using the missing data (MD) option 

and estimating the score with an appropriate method are equivalent to the use of an 

adaptive-expansive multivariate time series model in the forecasting for the unknown 

future samples. The benefits of using the MD option are analyzed on the basis of (i) the 

accuracy of the forecast, (ii) the quality of the score estimates, and (iii) the detection 

performance during monitoring. 

3. laeckle and MacGregor (1998) introduced a technique to estimate operating 

conditions in order for a process to yield a product with a desired set of characteristics. 

This thesis provides a detailed study of the application of such technique in designing the 

operation of a batch process. The original technique is modified to include constraints 

and other optimal criteria onto the desired quality and the trajectories. A parallel 

approach based on derivative-augmented models is proposed to avoid the analysis of the 

null space. 
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4. An extension to the work by laeckle and MacGregor (2000) in solving the 

product transfer problem is proposed. The early technique does not consider all the data 

structures involved in the problem and particularly the operating conditions from the 

source plant. The Joint-Y PLS model is presented as an alternative to solve this problem 

using all the available data. 
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Chapter 1 

Introduction 

Batch processes playa key role in today's manufacturing of high value added 

chemicals like pharmaceuticals and polymer resins. Process systems engineering (PSE) 

has played a crucial role in developing techniques to improve the operation for batch 

units. 

Such improvements can be done at several stages of the life-cycle of the batch 

process. At the design phase where the geometry and nominal operation is determined, 

fundamental models are traditionally used to aid the design exercise and estimate the best 

possible design for the intended use. Once the batch is in production, the improvements 

can be done in the scheduling (usually done with optimization techniques); or in the 

production itself (e.g. by including new control strategies into the system). Finally at a 

certain time into the life cycle of the unit, the operation of the batch might be 

reconsidered and purposefully changed perhaps due to changes in the desired 

specifications of the final product. 

Once the batch is into the production stage of its life cycle, a certain amount of 

unwanted disturbances will enter the process, and the original design may not be suitable 

to protect the process against such disturbances (or the nature of disturbances changes 

from the ones assumed in the original design exercise). Improving a batch process in 

order for its operation to deal with these new (or modified) sources of uncertainty is a 
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difficult task due to the nature of these disturbances and the complex chain of 

consequences that they may bring to the operation. 

This thesis contains new ideas and techniques to aid the improvement of a batch 

process in its production stage, when it will suffer the presence of such uncertainties. This 

research focuses particularly in i) troubleshooting the operation; ii) building of a real-time 

monitoring scheme for the batch run; and iii) the re-designing of the operational 

conditions for the batch. 

The proposed techniques in this work use data based driven latent variable 

models, which have been shown to be an attractive alternative to fundamental 

deterministic approaches. The four main chapters of this thesis provide solutions to 

different needs from industry in the improvement of batch processes. Chapters 2 and 3 

deal with the troubleshooting and monitoring of the operation of batch processes. Chapter 

4 covers the optimal re-design of operating conditions. And chapter 5 presents a novel 

regression technique to be used in the re-design of process operation; when the desired 

new product has been already produced at another site. A brief summary of each chapter 

is given below. 

Chapter 2 elaborates on the troubleshooting and analysis of batch process 

operation by presenting a practical review of the techniques introduced by Nomikos and 

MacGregor (1994;1995a). This is done by applying such techniques to a set of data from 

an industrial drying process and interpreting the model parameters in great detail. The 

troubleshooting exercise is performed to the conclusion of the controller in place being 

the principal cause of product being off specification. The main contribution of this 

chapter is in the application itself; how the batch trajectories were synchronized; and how 

the time variable was included into the model for the analysis. 
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The techniques for batch process monitoring proposed by N omikos and 

MacGregor (1 995b ) are poorly understood by some researches when it comes to the 

monitoring of a new batch. Monitoring a new run at sample k (from K total samples) 

requires an assumption on how the variable trajectories will evolve for the rest K-k 

samples for the current batch run. Nomikos and MacGregor (1 995b ) propose three 

options: 

a) Consider the batch will return to nominal operation (referred to as Zeros 

because the value for the K-k unknown samples is set to zero) 

b) Assume that the current deviations from the mean trajectories are kept 

throughout the rest of the K-k samples (referred to as the Current Deviation option) 

c) Use the missing data handling features of a PCA model (referred to as the 

Missing Data option) 

Chapter 3 is a thorough study of the implications in using missing data when it 

comes to forecasting the K-k unknown samples in the batch, and how this impacts into 

the fault detection performance. This study is done along with a comparison among the 

three mentioned options. And for the missing data case, several missing data handling 

methods are also included in the comparison exercise. Doing so uncovers practical 

differences among these methods (even though some of them are theoretically 

equivalent). The comparison is done from three different perspectives: 

i) Accuracy of the forecast for the remaining K-k samples in the batch. 

ii) Quality of the score estimates as the batch evolves, and 

iii) Fault detection performance 

This chapter includes many new contributions to the area: It uncovers the implicit 

forecasting model embedded into missing-data-handling mechanism for a PCA model. 

Such forecasting model is derived by understanding the mechanisms behind the missing 
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data handling techniques. Then it is mathematically manipulated to the form of a 

multivariate time series; to understand its properties and compare them with a fixed 

traditional time series model. The comparison exercise is a novel contribution as well 

since it shows explicitly the accuracy of the forecasts done by the PCA model. Finally, 

the monitoring comparison presented in the later part of the chapter showed results 

(initially unexpected) about the on-line monitoring performance given by the various 

options and missing data handling methods. 

In the author's opinion, this chapter represents the missing piece in the technique 

for batch process analysis and monitoring as proposed by Nomikos and MacGregor 

(1994; 1995a; 1995b). It also gives theoretical foundations to the application of these 

multiway models for control purposes (Flores-Cerrillo and MacGregor, 2004). 

The optimal design of the operating conditions for a batch system using latent 

variable models is discussed in Chapter 4, where the design methodology proposed by 

laeckle and MacGregor (1998) is applied to the design of complete batch process 

operation. A parallel technique is proposed to introduce more information about the 

trends of the trajectories into the multiway model; which is later used in estimating the 

design. This technique is later reformulated to include an optimal criterion into the 

operation design. 

The main contributions of this chapter are: the proposal of derivative-augmented 

multi way models for the batch process operation design. The reformulation of the design 

equations which allows the solution to include operational constraints, and also allowing 

the optimization of the design estimate. This last technique is illustrated with the 

estimation of the operating conditions for an industrial emulsion polymerization process 

with minimal time consumption. Finally, new ideas on how to include partial derivatives 

of the trajectories with respect to each other in the multiway model are presented. The 
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benefits of doing so are a noticeable increase in the predictability of the characteristics of 

the final product as it is illustrated with industrial data. 

When the design of operating conditions is being done for a grade of product 

which has already been produced at another site, then the problem is referred to as the 

product transfer problem, this is dealt with in Chapter 5. Jaeckle and MacGregor 

extended their product design approach (1998) to solve the product transfer problem 

(2000). However, as the authors of this technique admit, this is a suboptimal solution 

since it does not use all the data structures available in the problem. 

Chapter 5 introduces a novel latent variable regression model (referred to as the 

Joint-Y PLS model) which makes possible the effective transfer of information from the 

source site, onto the target one. An industrial scale-up example from the pulp and paper 

industry is presented. 

This main contribution of this chapter is the JYPLS model, its mathematical 

foundations and parameter estimation options; and its application in solving the product 

transfer problem by including all the different data sets available. This chapter also 

provides a study on the scenarios in which it is desirable to include all data structures into 

the model. This chapter is perhaps the most innovative one in this research work. 

Each chapter of this thesis presents an original idea with tremendous potential in 

its application to industrial problems (4 industrial cases are studied throughout this 

thesis). A general summary ofthe overall findings is presented in Chapter 6. 



Chapter 2 

Analysis of Batch Processes using Multivariate Methods 

and Alignment Techniques 

This Chapter presents an application of the methodology introduced by Nomikos 

and MacGregor (1994) for batch process analysis, in particular to troubleshoot an 

industrial drying unit from which the product is often off-specification. The data is 

augmented by integrating the information obtained from the synchronization of the batch 

trajectories, as suggested by (Westerhuis et al., 1999). 

2.1. Introduction 

Batch processes play an important role in the pharmaceutical, semiconductor, 

polymer, and specialty chemical industries. Data collected over the duration of the batch 

has a time dimension for each process variable. As a result a data set from a batch process 

can be arranged in a three dimensional array (Fig. 2.1) consisting of data from a number 

of batches (I), with J process variables measured at K time intervals over the course of 

each batch. 

Nomikos and MacGregor presented methods for applying multivariate statistical 

process control (MSPC)(MacGregor and Nomikos, 1992; Nomikos and MacGregor, 

1994; 1995b) by using multi-way PCA (Wold et al., 1987) to an "unfolded" matrix of the 

batch data (Fig. 2.1). This strategy models the deviations of each batch from the mean 
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trajectory since it mean-centers the unfolded matrix column wise and scales each column 

to have a variance of one. These multi-way statistical models capture the correlation 

structure among all the measured variables over the entire time history of the batch, and 

compress this information down into a low dimensional latent variable space in which it 

is easy to compare and monitor batches. Nomikos and MacGregor (1995a) extended the 

methods using multi-way PLS (Wold et al., 1987) to incorporate the final product quality 

data (1') collected at the end of each batch. Kourti et al (1995) further extended the 

method to incorporate data on initial conditions and other discrete variables, such as 

operators and information from upstream processes, by using a multi-block, multiway 

PCA and PLS (Fig. 2.2). 

"Slice" the 3D Matrix into 
K slices. one per sample 

~,----y' ! \' ~---\ 

/[~D6 0 
.••.•...•.•. / .. / SAlotP'" 1 SAMPL.2 SAMPL" SAMPLE K i i 

1
,::::· :=:::Z::===============:::!.j~ iilJx K) 

NEW 2D MATRIX USED TO CALCULATE THE PRINCIPAL COMPONENTS 

Figure 2.1 Unfolding of the three way batch data set 

z 

Initial chemical analysis 
and warping Information 
from alignment 

x y 

Aligned process data Final chemical analysis 

Figure 2.2 Multi-block multi-way PLS matrices 
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The methods proposed by Nomikos and MacGregor have been applied widely in 

industry, with some applications reported in the literature (Kosanovich, Dahl, and 

Piovoso, 1996; Neogi and Schlags, 1998; Nomikos, 1996; Schlags and Popule, 2001; 

Tates et at., 1999) but most are still unpublished. Other variations of these multivariate 

methods for monitoring batch systems have also been reported (Boque and Smilde, 1999; 

Wold et at., 1998). 

This work presents an industrial application of the method proposed by N omikos 

and MacGregor with the additional inclusion of "time usage", a new trajectory that 

appears in the alignment exercise. 

This chapter is organized as follows: Sections 2.2 to 2.4 describe the process, its 

operation and its variables, and how the product is classified into on-spec and off-spec 

product using principal component analysis (PCA) on the product quality data. Section 

2.5 describes how the batch trajectories are synchronized, and presents a new approach to 

utilizing the time warping information from the synchronization. Sections 2.6 and 2.7 

describe the PLS modeling studies performed on the data and the use of these models to 

uncover the major operating problems with the process that are related to the production 

of poor quality product. Some conclusions are then given in Section 2.8. 

2.2. The drying process 

The unit is used to evaporate and collect the solvent contained in the initial charge 

(wet cake) and to dry the product to a target residual solvent level. During the drying, 

important chemical structural changes can occur that can lead to unacceptable product 

quality. With the aid of Figure 2.3, the operation is described as follows: 
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1. The batch is charged with a mass of wet cake that varies from 

batch to batch. The weight of the wet cake fed to the dryer is measured for each 

batch, but the solvent content is unknown 

2. At the beginning of the batch, the agitator is running at low speed 

(~ 8 RPM), and the heating jacket is already running with hot medium. As a 

result, the temperature in the dryer starts increasing slowly. 

3. At a certain point determined by the control system (marked as "1" 

in Fig. 2.3) the agitator is switched to high-speed (~30 RPM) and the temperature 

increases rapidly until it reaches its peak (point "2" in Fig. 2.3). The agitator is 

triggered down to slow-speed just before point "2" is reached. 

4. After the temperature peak (point "2") the product in the batch is 

cooled down, and then towards the end of the batch, the agitator is turned to high­

speed for some time. 

90~--~----~--~----~--~----~--~ 
,-------------------2 

so r ~\ 
/ -- Cole~tor Tank Level i \ \ 

70 i " , " Agitator Speed i I \ 
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Figure 2.3 Critical Variables and two critical steps in operation 

(Level in % fiU, Temperatures in Celsius, Speed in RPM) 
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As the batch evolves, the solvent that is being extracted from the wet cake is 

collected in a tank that is emptied after each batch. The time at which the agitator triggers 

from low to high speed, and vice versa is different for each batch; also the maximum 

temperature that the batch reaches is not the same for all batches because the operators 

adjust this set-point (peak temperature) from time to time to correct the quality of the 

product in a batch-to-batch manual feedback. 

2.3. The Data Set 

There are three sets of variables measured for each batch: a) An initial chemical 

analysis on the wet cake done before each batch, and the weight of the wet cake fed to the 

dryer (11 chemical variables and one weight), b) 10 process variable trajectories as they 

evolve throughout the batch, and c) 11 product quality variables measured at the end of 

the batch. 

The data on the initial chemical analysis and on the weight of the cake will be 

referred to as the initial condition matrix (Z), the process variable trajectories will be 

referred to as the process matrix (X), and the final chemical properties will be referred to 

as the quality matrix (Y) (Fig. 2.2). A more detailed description as well as the names used 

for each measured variable is presented in Table 2.1. The whole dataset consists of 71 

batches. 
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Matrix Variable Name Description 

Z WGTCAKE Total weight of the wet cake fed initially to the dryer 

Z Zl, Z2, ... ZlO 9 organic group concentrations and pH 

X CTANKLVL Level of the collector tank, always starts in zero (empty) 

X DIFF-PRESS Differential pressure in the dryer 

X Xl Pressure in the dryer 

X X2 Power to the agitator 

X X3 Torque resistance for the agitator 

X AGITSPEED Agitator Speed 

X JTEMPsp Set Point for the jacket heating medium 

X JTEMP Temperature of the jacket heating medium 

X DTEMPsp Set Point for the temperature inside the dryer 

X DTEMP Temperature inside the dryer 

Y Yl,Y2, ... YlO 7 organic group concentrations and 3 physical properties 

Y SOLVENT-CONC Weight percentage of solvent in the final product 

Table 2.1 Variables measured per batch 

2.4. Multivariate classification of quality 

The quality of a product has to be analyzed in a multivariate way, since "quality is 

a multivariate property, requiring the correct combination of all the measured 

characteristics" (Duchesne and MacGregor, 2003). Therefore to uncover the natural 

multivariate product classification within the data, we first build a PCA model on the 

final product properties (Y). 

After removing 12 obvious outliers (Fig. 2.4), a final PCA model for Y with 2 

components captures 70.0% of the variability in the data (51.2% captured by the 1st 

component, and 18.8% by the 2nd component). The tl-t2 score plot (Fig. 2.5) shows a 

natural clustering of what the company had classified as on-spec and off-spec products, 
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the dashed line ellipse represents the approximate 99% confidence region in this model 

and contains the 59 used observations. 
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Figure 2.4 SPE after 2 components in a peA for Y variables 

(Observations above the bold dashed line were considered outliers) 

The dashed line in Fig. 2.5 (drawn by eye) is drawn to show the separation 

between good and poor quality product, and it clearly shows the separation between good 

and bad quality product much more clearly than looking at the 11 Y variables separately. 

The model can be easily used to discriminate the quality of the final product by its 

position in the tl-t2 plane. Figure 2.6, shows the square prediction error (residuals of the 

PCA model) for each batch, together with their 95% and 99% confidence limits 

(Nomikos and MacGregor, 1995b). Aside from batch 41, the PCA model appears to 

explain the quality variation from the batches. 
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2.5. Alignment of the batch data 

One of the issues still under investigation in the application of multivariate 

methods for batch process analysis is how to handle a set of batches with different 

duration; this is referred to as the "alignment" or "synchronization" problem. To "align" 

or "synchronize" a data set of batch trajectories means to perform a certain 

transformation on each trajectory in such way that at the end of the "alignment" all the 

batch trajectories will line up and "evolve" similarly, and have the same number of 

samples. 

2.5.1. Alignment Technique 

In this industrial drying process, the amount of wet cake, the initial concentration 

of solvent and some operating conditions for each of the batches are different. As a result, 

the duration of each batch, and the duration of different stages within each batch, are 

different; thus the need for performing an alignment on the trajectories in order to make 

them comparable. Nomikos and MacGregor (Nomikos and MacGregor, 1995b) proposed 

the usage of an indicator variable in order to re-sample the trajectories and perform the 

alignment (e.g. sample at 1 % increments on conversion). Kassidas et al (Kassidas, 

MacGregor, and Taylor, 1998) proposed the use of Dynamic Time Warping, a technique 

used in speech recognition, in order to align the batch data when an indicator variable is 

not obvious. 

In these two suggested techniques, the authors emphasized the importance of not 

discarding the information that comes out of an alignment (e.g. the time required to 

complete any given stage). This information will be called "warping information" since it 

is a new piece of data for each batch, and it is not available until the alignment is 

performed. 
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There are many ways to use an indicator variable to align batch trajectories. If 

there exists a monotonically increasing variable that always starts each batch at the same 

value and ends the batch at another given value, then alignment can often be achieved 

simply by re-sampling at constant intervals of the variable. Industrial examples of such 

indicator variables are conversion information (Neogi and Schlags, 1998), and the 

cumulative weight of a key monomer added during each batch (Kourti, Lee, and 

MacGregor, 1996). If such an indicator variable does not exist over the whole duration of 

the batch, one may exist within each stage of the batch, allowing for a stage by stage 

alignment. 

The discrete events that, most of the time, determine the transition between stages 

within a batch, are triggered by operators or by the automation system in response to the 

achievement of certain conditions during the preceding stage. Kaistha and Moore 

(Kaistha and Moore, 200 1) proposed a mathematical filter to extract the events from the 

batch trajectories. However, in practice we often already know the events and there is no 

need to identify them from the trajectory. 

In this industrial study, no one "key" monotonically increasing or decreasing 

indicator variable existed during the batch. Therefore, to align the batches, we used prior 

knowledge about how the process was operated to define 3 clear stages in the batch (Fig. 

2.7). Stage 1 runs from the beginning of the batch and up to the time where the agitator is 

turned to high-speed; stage 2 runs from this point and up to the time where the 

temperature reaches its peak; and stage 3 is from this point until the end of the batch. 
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(Level in % fill, Temperatures in Celsius, Speed in RPM) 
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To align the batches we use 3 different indicator variables (one per stage). For 

stage 1 the chosen indicator variable is the level in the collector tank. The value of this 

level at the end of the stage is very different for each batch so it is not proper to simply 

re-sample using a fixed Mevel for all batches. Therefore, for any batch i, we assume that 

stage 1 is 0% complete when the tank is empty (time zero), and it is 100% complete when 

the level reaches the Levelli value at the end of the stage; to achieve n samples between 0 

and 100% of completion, each batch i is re-sampled at level increments given by 

Mevel; = Levell; I(n -1), and linear interpolation is used when needed. Aligning this 

way assures an equal number of samples, and a "line up" in the percentage of completion 

for all batches in stage 1. 

For stage 2 the indicator variable is the dryer temperature. The alignment strategy 

is similar to that for stagel, because the initial and final temperatures in this stage (Tempi 

and Temp2) are very different for each batch. In this case stage 2 is completed 0% when 

the temperature is at its Tempi i value, and is completed 100% when the temperature 
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reaches its peak value Temp2i. For each batch we calculate a b.Tempi and all variables 

(for stage 2) are re-sampled using this increment. 

In stage 3 there is no variable that can be used as indicator (the fact that the 

temperature in this stage appears monotonic in Fig. 2.7 is because this is a great mean 

from all batches), so we re-sample linearly with time in order to obtain 75 samples total 

from the start of stage 3 to the end of the batch. However, the total time in stage 3 for 

each batch is recorded in the Zw and, as discussed later in Section 2.4.2, detailed warping 

information is also introduced as a new variable in the X matrix. In this way information 

on the duration of this stage and on the variation of the time usage throughout the batch is 

retained in the next PLS models developed in further Sections. 

The alignment obtained can be appreciated by plotting some variables for all 

batches (Fig. 2.8.) All batches now have 325 samples each, and all the stages are 

synchronized making them comparable. Figures 2.9 and 2.10 show the aligned 

trajectories of the two indicator variables used: the level in the collector tank and the 

dryer temperature. With the definition of these stages we can calculate eight new discrete 

variables per batch that define the alignment information of the batches. This data is 

added to the Z matrix (Fig. 2.2) and will be included in the analysis in the later Sections: 

2. Levell: The level in the collector tank at the end of stage 1. 

3. Tempi: The temperature in the dryer at the end of stage 1. 

4. Temp2: The temperature in the dryer at the end of stage 2 (peak). 

5. Timei: Total length of stage 1 (time samples). 

6. Time2: Total length of stage 2 (time samples). 

7. Time3: Total length of stage 3 (time samples). 

8. Time4: Total length of high-speed agitation (time samples). 

9. Temp Slope: Slope ofthe dryer temperature trajectory in stage 2. 
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2.5.2. Inclusion of "Time usage" as one extra trajectory per batch 

From the new Z variables obtained from the alignment, four of them have the 

"signature" on how the batch "used" time (Timel, Time2, Time3, and Time4). These are 

indeed four discrete values of time that summarize important information on timing 

differences among the batches. However, there is a more detailed way that we can extract 

timing information from the aligning exercise. In the original trajectories, time has a 

linear evolution for all batches. However, in the alignment process, this time is stretched 

and/or compressed as we re-sample. If we include "Time" as an extra variable for each 

batch, and we re-sample this variable along with all the others; at the end we will have a 

very useful trajectory that will tell us how each batch was "using" time as it evolved 

(Westerhuis et ai., 1999). Therefore, batches, which evolve faster or slower at different 

stages, are readily apparent. Furthermore, if a fault is present in a particular batch, we 

will be able to say at what percentage of completion of the batch it happened. Figure 2.11 

shows how the "time" is distorted when we re-sample the batch trajectories for this 

particular data set. These trajectories are added to the X matrix (as the 11 th variable) and 

will be analyzed together with the other process variables in later Sections. 
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Figure 2.11 Distortion of clock time with the alignment of batch data 
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From an operational perspective, this time usage is of tremendous importance 

since, in most cases time represents the most expensive resource being consumed by the 

batch. Numerous deterministic studies are found in the literature, where the batch length 

is part of the overall objective function to minimize and compute an optimal trajectory 

(Biegler, Cervantes, and Wachter, 2002; Floudas and Pardalos 2001; Vassiliadis, Sargent, 

and Pantelides, 1994a; Vassiliadis, Sargent, and Pantelides, 1994b). This particular topic 

will be treated in the later Sections of chapter three of this thesis. 

2.6. Analysis of historical batch data 

The objective of this Section is to uncover possible causes for the occurrence of 

such a large number of batches that are producing off-specification product. PLS 

regression models are built to relate the final product quality (Y) to the aligned process 

trajectory data (X), and to the matrix (Z) containing the initial conditions for the batches 

(chemistry and charge) and the discrete timing variables. These PLS models project the 

information contained in the very large data matrices down into low dimensional latent 

vector spaces where it becomes much easier to visualize and compare the behavior of the 

batches and to diagnose the operational problems. 

The block nature of the data (Z, X, Y) matrices available in this study naturally 

makes this problem suitable for analysis by multi-block PLS methods (Wangen and 

Kowalski, 1989; Westerhuis and Smilde, 2001). Multi-block PLS methods give the same 

prediction models for Y as a single block PLS if the same weighting and scaling is 

applied to each variable (Westerhuis, Kourti, and MacGregor, 1998); but additionally 

allow for estimation of the separate effect of each block (see Appendix 1 for a brief 

example of a multi-block modeling exercise). In this study, with only two regression 

blocks (Z,X), separate single block PLS models relating Z to Y, and X to Y were found to 

provide essentially the same information as the multi-block approach. Therefore, for 

simplicity, only the former approach will be presented. 
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The analysis is presented in two Sections; the first one is to understand the impact 

that the variables in the Z matrix have on quality, and the second one to understand the 

impact that the trajectory variables in the X matrix have on quality. 

2.6.1. Impact of initial conditions and warping information (Z) on final 

quality (Y) 

The Z matrix, at this point of the analysis, contains two different types of 

variables: a) The information from the alignment and b) the initial chemical and physical 

analysis. It was decided to partition the Z matrix into two blocks Zw and Zch. 

Zw is made upon 9 columns of Z representing the variables arisen from the 

alignment (or warping), plus the wet cake weight (Levell, TempI, Temp2, Time I , 

Time2, Time3, Time4, TempSlope and WgtCake); and Zch is made upon the 11 columns 

of Z representing the chemical analyses, (ZI, Z2, Z3 ... Zll). It was decided to place the 

wet cake weight with the warping information because then all operating variables of the 

batch are together and separated from all the chemical analyses. 

The first step taken in this analysis is to remove from the data the 12 outliers 

found in Section 2.3, and 15 more observations for which the whole Zch information was 

missing. The final data set consists of 44 batches and 21 variables grouped in two blocks. 

These 44 batches are now used in the rest of the chapter. 

A PLS is fitted with the whole Z matrix, and for illustrative purposes, two more 

models are built individually for each block of Z (Zw and Zch). The percentage of the 

variance that each model captures is listed on Table 2.2; all models are built using 2 

latent variables, as determined by cross-validation. As expected; none of the individual 

models captures as much variance as they do together. The fact that the combined 
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captured variance (50%) is less than the sum of both individual captured variances 

(37.14+21.52=58.66) is an indication that both blocks are not entirely orthogonal to each 

other. This is because some of the variables in the Zw block are correlated with some of 

those in the Zch block. This analysis also shows that the process operating variables Zw 

have a much greater impact on the product quality (Y) that the initial charge chemistry. 

This is an important result as will be confirmed later. 

'X.Variance of 
Model 

Y Explained 

Z-YPLS 50.49 

Zw- YPLS 37.14% 

Zch - YPLS 21.52% 

Table 2.2 Percentage variance of Y explained by various PLS models with Z 

The PLS of the whole Z matrix versus Y may be used to show the relative 

importance of each of the variables in the model. The VIP (variable importance to the 

projection) (Eriksson et al. 1999) plot in Fig. 2.12 lists the variables in Z in their order of 

importance. Several important conclusions arise from this VIP plot; (i) it confirms the 

previous conclusion that the most important variables are those variables related to the 

operation itself, and not those related to the initial chemistry; (ii) the most important 

variable is the initial amount of solvent in the wet-cake; (iii) the variable "Temp2" 

appears to be the least important of an the variables, in spite of the fact that this variable 

was the one "adjusted" in the plant in order to correct the quality. Since this manipulated 

variable is involved in some sort of feedback loop to control some aspect of the final 

quality, its relationship with Y will be some combination of the open loop effect and the 

close loop effect on Y, and such result is not surprising. 
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Figure 2.12 VIP Plot for Z -Y PLS model 

Additional important results can be obtained by looking at the score space of this 

model (Fig. 2.13). It is clear from this plot, that most of the good quality batches have a 

positive value oftI, while the poor quality one have a negative value oft i . 

If the loadings for Zw (Fig. 2.14) and Zch (Fig. 2.15) are now analyzed in the light 

of this new piece of information (good quality batches have high positive values of tI), 

we can tell much more about the process. From the loadings map for the Zw variables 

(Fig. 2.14) it is clear that high quality product is associated with a high temperature slope 

in stage 2 and low values of the length of stage 2 (Time 2) and low high-speed agitation 

time (Time 4). All these imply that fast evaporation stage 2 is desirable. High quality 

product is also associated with low solvent level in the collector tank at the end of stage 1 

(Levell) and a low initial charge of wet cake (W gtcake), both implying that a smaller 

charge of wet cake (and hence low solvent) is desirable. A slow cool-down in stage 3 

(Time 3) and possibly a low Temp 1 might also seem desirable. From the loadings for the 

Zch variables (Fig. 2.15) it also appears that high quality might also be related to higher 

levels of chemicals Z6 and Z710wer levels of Zl, in the wet cake. 



CHAPTER 2. ANALYSIS OF BATCH PROCESSES 

6r------.-------r------.-------.------.------~ 

4 

2 

-2 

-4 

-6~----~------~------~----~~----~------~ 
-6 -4 -2 o 

t[1 J 

2 4 6 

Figure 2.13 Score plot for the Z - Y PLS model 

Off-spec (.), on-spec (.), on-spec but high residual solvent (II1II) 

(Numbered batches are references for analysis in Section 4.3) 

0.7 r-----r----,-----.----..,----..--------r--~____, 

0.6 II Level 1 

0.5 

0.4 

0.3 

..} 0.2 

\ 0.1 IIWgtCake ' 
i ~emp2 

o 11--------.----------------------:----------------------------------
Time 2 Time 4 ! 

·0.1 

·0.2 II : Temp 3 II 
Time: 1 

-01":-4 --0:"::.3:----::-0:7.
2

-.0-='.:-1 --=-0 --=0.":-1 -o:"::}:-::,e",,m,,::,Plo S7.;IO=D~e~:4 
w'Zw [1J 

Figure 2.14 Loadings plot for the Zw 

Variables in the Z - Y PLS model 

0.6 

0.5 

0.4 

0.3 

~ 0.2 

';, 
0.1 

IIZ11 .Z6 
o -----------------------------------:----------------------------------

II II II Z4 ! II 
-0.1 

-0.2 

Z3 ~5 ! Z2 
II II Z9 : 

II 
Z7 

Z1 Z10 : 
-0.3 '----': __ -'-__ 11=418"-----'-: __ -"I-__ ,L----' __ -:' 

-0.4 .0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
w' I.:h [11 

Figure 2.15 Loadings plot for the Zch 

variables in the Z - Y PLS model 

26 



CHAPTER 2. ANALYSIS OF BATCH PROCESSES 27 

2.6.2. Impact of process variable trajectories on the final quality 

This Section covers the analysis on how the shape and timing of the process 

variable trajectories (X) affect the final quality. It is important to keep in mind that the 

variables are evolving with time and the effect of a variable at different points of time is 

not the same. The analysis will not be done on single variables, but on their trajectories 

summarized in the X matrix. The X matrix has 11 variables - 10 process variables and 

the clock time from the alignment - each with 325 samples per batch giving a final 

unfolded X matrix with 3575 columns (variables at all time intervals) and 44 rows 

(batches). The multi-way PLS model captures 36% of the variance of the X matrix, and 

explains 48% of the Y matrix with 2 latent variables. 

The score-plot for the X space is shown in Fig. 2.16. Most of the batches with 

similar quality do cluster together except for batches 412, 411, 420 and 422; these 

batches will be discussed later in Section 2.7. Before doing so, we need to interpret the 

model in order to better understand the position of the batches in the score plot. 
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Interpretation of the multi-way PLS model 

Captured Variance 

The way the model is capturing the variable trajectory information can be 

analyzed in different ways since each variable in the X matrix varies with time, and has a 

different importance in each time interval. Although the model uses only 36% of the 

information in the X, this is the average for all variables at all time samples: Figure 2.17 

shows the total percentage explained per variable, per component; the variables 

CTANKLVL, DIFF-PRESS, JTEMPsp, DTEMP and TIME are variables that are used 

much more fully by the model and hence are the most important ones in describing 

quality. Notice the high importance of the time usage; this re-enforces our conclusion of 

the past Section about the importance of timing. In order to better understand the 

importance of each of the process variables overt their time history; we will analyze the 

weights of each variable trajectory as it changes with time. 
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Analysis of the PLS Model Weights 

Since each variable in the X matrix is a trajectory, their loadings (or weights in 

the case of PLS) are not single values but are trajectories indicating the importance of 

each variable at each point of time to the latent variables. If, for the first component, we 

plot the weight trajectory for variable 1 from sample 1 to sample 325 and beside it we 

plot the weight trajectory for variable 2 from sample 1 to sample 325 and we continue in 

a similar manner for all variables, we end up with Figure 2.18. The magnitude of the 

weight, for a certain variable, at a certain point in time, is an indication of how important 

that variable is, at that point in time, for the first component (tl). 

It is clear from the score plot in Fig. 2.16 that a high positive value of tl leads to 

high quality product. With this in mind we can therefore interpret the trajectory loadings 

in Fig. 2.18. 

0,04 

Batch Time Repeated For Each Variable 

Figure 2.18 Weights for 1 st component in the X space for the XY MPLS 
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A high quality batch will have the following characteristics: 

1. It will have low levels of the solvent collector tank level (CTANKL VL) with 

respect to its mean trajectory from the model, throughout the entire batch. This 

result is clearly consistent with the importance found previously in the PLS 

analysis of the Z variables, that a low wet cake fed to the dryer (wgtcake) and a 

low level in the collector tank at the end of stage 1 (Level 1) are key factors for 

on-spec product quality. 

2. It will have high levels of pressure in the dryer (Xl), the set point for the jacket 

heating medium (JTEMPsp), and the temperature inside the dryer (DTEMP) with 

respect to each of their mean trajectories from the model, for the first stage of the 

batch. These all appear to stress the importance of applying a high level of heating 

during stage 1. 

3. It will have low values of the time variable (TIME) relative to its mean 

trajectory from the model, throughout most of the batch. This implies that batches 

that progress faster tend to be those with high product quality 

To illustrate this, consider two batches on opposite sides of the score plot in the t1 

dimension (Fig. 2.16), batch 72 (which has a high negative value of t1), and batch 2 

(which has a high positive value of t1). For these batches we plot the collector tank level 

(CTANKLVL) for each of them along with the mean trajectory (Figure 2.19 top) and we 

see that the trajectory for this variable in batch 2 is always below the mean as opposed to 

batch 72. If we plot the temperature DTEMP for these batches (Figure 2.19 bottom) we 

see that batch 2 has a value of DTEMP above the mean for the first stage and below the 

men for the second and third stages of the batch; as opposed to batch 72 which has a 

value below the mean for the first stage and above the mean for the second and third 

stages of the batch. 
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The above analysis perfonned on the variable trajectory weighting for the h 

variable clearly provided insights into the operating policies that appear to lead to good or 

poor quality product. 

Figure 2.19 Differences in the trajectory of the collector tank level and 

temperature between batches 72 and 2 
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2.7. The Anomalous Batches 420, 411, 412 and 422 

In Figure 2.16 four batches were observed to lie in the off-spec region of the tl-t2 

score plot for the X-Y MPLS model. These same four batches clustered in the on-spec 

region in the Z-Y PLS score plot (Fig. 2.13) and eventually yielded good product at the 

end. The fact that these four batches cluster in the off-spec region in Figure 2.16 means 

that the process variable trajectories of these batches have the characteristics of other 

"bad" batches. However, it appears that some conditions in the Z matrix were sufficient 

to counter-balance these bad trajectories. 

To reassure the fact that the trajectories of these four batches have the same 

characteristics of any other 'bad' batch, we compared (looking for similarities) the 

contributions plots (Kourti and MacGregor, 1996; MacGregor et ai., 1994; Miller, 

Swanson, and Heckler, 1998), in tl (using the X-Y PLS model) for these four batches 

with the contribution plots in tl of other 'bad' batches in the vicinity of these batches. - tl 

is used because this component defines the on-spec/off-spec division, as illustrated in 

Figure 2.16. 

Figure 2.20 shows the contribution plots for tl for batches 420 and 412 

(anomalous batches) and 415 and 410 (bad batches) in the XY-MPLS model. Both plots 

show the same characteristics: the traj ectory for the collector tank level (CT ANKL VL) is 

above the mean during the entire trajectory; the variable Xl, JTEMPsp, and DTEMP are 

all below their mean during the first stage, implying too slow heating and this 

contributing to a long CLOCK-TIME. All these conditions are totally contrary to the ones 

related with good On-Spec quality product, according to our earlier conclusions. These 

contributions are very similar with other nearby batches in the score plot (like batches 

411 and 422). 
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Now consider the Z-Y PLS model score plot (Fig. 2.13). Most of the 'bad' 

batches that are near the anomalous ones in the X-Y score space (Fig. 2.16), appear apart 

in the Z-Y score space (Fig. 2.13) e.g. batches 415 and 420, 410 and 412. 
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Figure 2.20 Contribution plots to tl in the XY-MPLS model for bad batches 

415 and 410 (top), and anomalous batches 420 and 412 (bottom) 

Figure 2.21 is a contribution plot for tl in the score space for the ZY-PLS model, 

from bad baches (415 and 410) to anomalous batches (420 and 412). This contribution 
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plot shows that anomalous batches had a steeper slope for the temperature in stage 2 

(high value of Temp Slope and low value of Time 2) and a much larger cool-down time 

(Time 3). These two characteristics (high evaporation speed in stage 2, large cool-down 

time) also appear in all the contribution plots between the other anomalous batches and 

the bad batches; indicating that a fast evaporation in stage 2 and a large cool-down time 

are "strong" enough characteristics to compensate all the other adverse conditions in the 

trajectories, and made these batches yield a good product at the end. 
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Figure 2.21 Contribution plots to the scores t1 in the ZY-PLS model 

from batch 415 to batch 420 (left) and from 410 to 412 (right) 

2.8. Conclusions. 

Multivariate statistical methods were used to analyze historical data from an 

industrial batch drying process to uncover possible causes for a high level of poor quality 

product. The methods were able to show that the initial chemistry of the charge had little 

impact on the quality, and that it was variation in the operating policies of the batches 

that were the dominant contributions to the poor quality product. These methods were 

further able to isolate individual variables such as the initial wet cake charge, timing 
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variables such as the duration of the second and third stage, and process variables 

trajectories such as the temperature and pressure profiles during the first stage of the 

batch that were highly related to poor final product quality. This study illustrates the 

potential of these multivariate methods for analyzing historical batch data and for 

suggesting process improvements. Some new approaches to the alignment of the batch 

trajectories and the subsequent use of the alignment information in the analysis were 

introduced. 



Chapter 3 

Model Predictive Monitoring for Batch Processes 

The purpose of this chapter is to uncover the implications and forecasting 

mechanism behind a batch-monitoring scheme built with the method proposed by 

Nomikos and MacGregor (1994,1995a, 1995b) when the future unknown part of the 

trajectory (for the ongoing batch) is treated as missing data. This is contrasted with other 

forecasting options such as a multivariate time series model, the unconditional mean 

assumption and the current deviation from the mean. Furthermore the differences and 

implications of the several methods available to handle missing data are exposed and 

discussed in the context of batch process monitoring. All the forecasting options and 

missing data methods considered are then put in perspective in a fault detection 

comparison exercise. 

3.1. Introduction 

Multivariate methods based-on multi-way peA and PLS (Wold et al., 1987) have 

proven their usefulness in batch analysis and monitoring (Kourti, Nomikos, and 

MacGregor, 1995;Nomikos, 1996;Nomikos and MacGregor, 1994;1995a;1995b). These 

methods have been widely studied and extensively applied in industry (Kosanovich, 

Dahl, and Piovoso, 1996;Nomikos, 1996;Ramaker et al., 2002;Schlags and Popule, 

2001;Tates et al., 1999). They are essentially the only powerful approaches for the 

analysis and monitoring batch processes when there is no deterministic model available. 

Other variations of these multivariate approaches (Boque and Smilde, 1999;Wold et al., 

1998) are found in the literature, and have been compared (van Sprang et al., 
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2002;Westerhuis, Kourti, and MacGregor, 1999). This chapter focuses on the approach 

proposed by Kourti, Nomikos and MacGregor (1995;Nomikos, 1996;Nomikos and 

MacGregor, 1994; 1995a; 1995b), and in particular in the model predictive estimation of 

the missing trajectory information needed in the monitoring phase of the approach, and in 

batch control problems (Flores-Cerrillo and MacGregor, 2003). 

The methods introduced by Nomikos and MacGregor and later developments are 

very well covered in the review by Kourti (2003). In general, there are two stages: The 

first stage involves an analysis of a historical set of data to troubleshoot the process and 

correct for identified sources of unwanted deviation by modifying the process or the 

operating strategy. A recent industrial example of this analysis stage can be found in the 

work by Garcia et al (2003). Once the process has been analyzed and possibly corrected 

for any problems, then the second stage involves collecting a new set of data that defines 

the "common-cause variations" of the "Normal Operating Conditions" (NOC) for the 

process and this is used to build the monitoring model and to establish control limits for 

monitoring. The progress of new batches can then be monitored by testing if their 

operation remains within the established control limits. To assess a new batch in this 

monitoring stage there are two options: a) to wait until the end of the batch run and then 

assess its operation or b) to assess the batch in real-time at every time point throughout its 

execution. Industrial applications of each of these options for monitoring are found in 

early work by Nomikos (1996) and Nomikos and MacGregor (1995b). The focus of the 

present work is on the latter of these two monitoring approaches, namely on the real-time 

monitoring of the batch run as it evolves in time. 

In the Nomikos-MacGregor method the 3 dimensional batch dataset consisting of 

J variables, I batches and K time periods is rearranged as shown in Fig. 3.1. A natural 

problem to overcome when monitoring a new batch at time=k, where k<K is the fact that 

there are K-k unknown samples (Fig. 3.2) and therefore, the need to estimate or "fill in" 

these unknown samples for the ongoing batch in order to calculate a score value (note 
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that this problem does not exist when building the PCA model, when analyzing historical 

data, or when monitoring only at the end of each new batch). However, for real-time 

monitoring the quality of the current batch will depend strongly upon how events up to 

the current time will impact process variable trajectories for the remainder of the batch. 

Therefore, inference on these future trajectories is unavoidable in any efficient 

monitoring scheme. 

(J x K) 

11 ~I c:J~PLE) ~1~~l~;;::;:::;::::;:I~~J 
Unfolded 2D:atri:) 

Figure 3.1 Unfolding of the 3D batch data matrix 
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Figure 3.2 Unknown samples in monitoring a new batch 

In their work, Nomikos and MacGregor (1994; 1995b) acknowledge this issue and 

propose three different ways to handle this problem: to complete the observation vector 

with zero deviation from the nominal trajectories (zero option: Z); complete the 

observation assuming that the mean centered and scaled current deviation from the 

nominal trajectory will be maintained throughout the rest of the batch (i.e. current 

deviations option: CD), or estimate the "missing" values using the PCA model (missing 
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data option: MD). The control limits of the resulting monitoring charts are dependent 

upon the used option (Nomikos and MacGregor, 1995b). 

This "filling in" need of the method has been criticized by several authors (Cho 

and Kim, 2003;Meng, Morris, and Martin, 2003;Undey, Ertunc, and Cinar, 2003;van 

Sprang et al., 2002) without any convincing analysis to support their arguments. This has 

also led to alternative approaches to monitoring by unfolding the three way data array 

variable wise (i.e. as a IKx J matrix), then performing PCA or PLS (Undey, Ertunc, and 

Cinar, 2003;Wold et aI., 1998), and using the scores of this model for monitoring. The 

sole advantage of this approach is that it does not require any "filling in" mechanism for 

the remainder of the batch, because the scores only model the correlation among the 

variables at the local point in time and do not take into account the dynamic nature of the 

batch. Nomikos (1995) originally suggested this approach as an alternative, but dismissed 

it after a thorough investigation because it captures the wrong covariance structure in the 

data. Since unfolding in this direction followed by mean centering and scaling does not 

remove the mean trajectories from the data, this unfolding approach was shown to 

capture mainly the covariance among the mean trajectories of the variables, which is not 

the interest in monitoring. Rather, it is the covariance structure of the deviations of the 

variables about these mean trajectories that is of interest. This alternative unfolding 

approach also gives only a "steady-state" model that captures only the local covariance 

structure among the variables, and does not account for the dynamic behavior of the 

batch process (hence the reason for not requiring any estimate of the effect of 

disturbances on the future trajectories). Finally, it does not incorporate the time varying 

covariance structures that normally exist in batch processes (each component models an 

effect which is assumed constant over the entire course of the batch). Its deficiencies in 

modeling were found to greatly out-weight any advantage of not having to estimate the 

missing data for the remainder of the batch (Westerhuis, Kourti, and MacGregor, 1999). 

Some of the deficiencies of this alternative unfolding method for monitoring have been 

overcome to some extent by building multiple models for different stages of the batch, 
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within which the covarIance structure of the variables is more constant, and by 

monitoring about the mean trajectories of the resulting scores (UMETRICS AB 2002). 

Another alternative which avoids the need to estimate future trajectories is the adaptive 

modeling approach of Rannar et al. (1998). As in the Nomikos and MacGregor (1994) 

approach it unfolds batch-wise and mean centers from the average trajectories. It 

accounts for the time varying dynamic behavior through the use of an adaptive PCA 

model. 

In this work we demonstrate that using the missing data (MD) approaches to 

estimate the future unknown trajectories in a new batch is in fact a powerful model 

predictive monitoring scheme where the future trajectories are predicted with good 

accuracy even from the very beginning of the batch run. The missing data in the future 

trajectories are predicted much in the same way as an adaptive multivariate time series 

forecast, but with optimal use of all the available measurements up to current time and 

detailed knowledge about the time varying correlation structure among the variables 

throughout all the rest of the batch. This model predictive monitoring scheme gives much 

better estimates of the final overall batch scores and of the process variable trajectories 

for the remainder of the batch than the other options. 

In this investigation the three different "filling in" methods (MD, Z, and CD) are 

contrasted with each other, and with the use of a multivariate auto-regressive (AR) time 

series. Furthermore, in the MD case, several methods for handling missing data samples 

are included in the comparison: single component projection (SCP), projection to the 

plane using PLS or ordinary least squares (PPPLS, PPoLS), conditional mean replacement 

(CMR), trimmed score regression (TSR), and iterative imputation (II) (Arteaga and 

Ferrer, 2002;Nelson, Taylor, and MacGregor, 1996). This last method has proven to be 

equivalent to the projection to the plane (Arteaga and Ferrer, 2002), but we include both 

methods because even though the analytical estimator is theoretically the same, the 
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computations and error propagation are different. (A nomenclature Section is included at 

the end of this chapter for the many acronyms used) 

The compansons are made from different perspectives: i) accuracy in the 

prediction of the unknown samples in the batch, ii) the quality of the score estimates 

made during the progress of the batch and iii) fault detection reliability of the resulting 

monitoring schemes. 

This work is organized as follows: in Section 3.2 the "filling in" methods are 

discussed for the missing data case and it is shown how the future samples are predicted 

with the PCA model. Section 3.3 compares the accuracy of these predictions with the 

ones obtained with the other options considered. In Section 3.4 the score estimates are 

discussed and compared as they evolve throughout the execution of the batch. Section 3.5 

compares the ability of some of the approaches for monitoring the process and detecting 

various faults. Section 3.6 provides some remarks and a summary of our main 

conclusions. 

3.2. Forecast and filling in mechanisms 

3.2.1. Notation 

In the following sections, a is used to represent the total number of components in 

a PCA model; X represents the original data set used to build the model; T represents the 

known scores from the original model; P represents the loadings of the PCA model, x is 

used to represent a vector of data from a new observation; T is used to represent the 

estimate of the score vector corresponding to x in the presence of incomplete data and 't' 

is the value of the score vector with the complete data vector. The dataset X contains I 

batches, each batch has J variables sampled K times throughout the batch run. X E fJl
1xJK

, 

TEfJl
1xa

, PEfJlJKxa,xEfJlJKxl, TEfJl
ax1

, T EfJl
axl

. Lower case bold letters (x) denote a 
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vector; upper case bold letters (X) denote a matrix. For a certain observation x with 

missing elements, we will group all the missing elements at the end of the observation, 

the known samples in the observation will be denoted by x *, and the missing samples will 

be denoted by x#. So, for a certain observation x with missing elements all at the end of 

the vector, we denote as XI = [X*T X#T]. This notation is applied to other matrices or 

vectors as well, e.g. P* refers to those rows of a loading matrix P that correspond to the 

known variables (elements) of x (x*); and p# refers to those rows of P corresponding to 

the missing elements ofx (x#). These definitions are illustrated in Figure 3.3. 

r-____________________________ ~K a 

I TI X (unfolded 2D matrix) 

':1 ::::::~~p~T~~~~~~~:::J 
------,~,-----~,-------- ~------

P*T! P"T , 
:....... . x*\. 1 

C Knownsa~ : 

Current time k 

New batch 

Figure 3.3 Notation and definitions 

3.2.2. Data sets 

T 

Two data sets are used in this work: The industrial batch data set used by 

Nomikos and MacGregor (1995b) from an industrial nylon polymerization process; and a 

simulated set of batches for an emulsion polymerization process used by Nomikos and 

MacGregor (1994). The first data set will be referred to as the data set A, the second will 

be referred to as the data set B. 
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3.2.3. Future trajectory predictions and assumptions for batch monitoring 

From the different options to "fill in" the future unknown observations; the zeros 

and current deviation options use an assumption about the future trajectory that is easy to 

visualize; and AR time series model approach is also easy to illustrate, but what various 

missing data options yield for the unknown future part of the trajectories, is not obvious. 

The following sections aim to clarify and illustrate this. 

Zeros, current deviation and time series 

Filling the rest of the trajectory with zeros assumes that the batch will follow the 

nominal or mean trajectory from sample k+ 1 to sample K. Current deviation assumes 

that the deviation from the mean centered and scaled trajectories from sample k+ 1 to 

sample Kwill be the same as the deviation at sample k (Fig. 3.4) in its mean centered and 

scaled value. The current deviation approach is similar to the approach taken in the 

Dynamic Matrix Controller (DMC) algorithm where the deviation from the set point in 

the future horizon (P) is considered the same as in the present sample (Nomikos, 1995), 

doing so is equivalent to assume a random-walk disturbance in the future measurements 

(Kozub and MacGregor, 1992a). 

A detail not mentioned in some previous works with CD approach (Meng, Morris, 

and Martin, 2003;van Sprang et al., 2002) is to clearly define which deviations are being 

kept constant: the mean centered and scaled (MCS) deviations (as in Nomikos and 

MacGregor (1995)) or the deviations in the raw unsealed variables(Cho and Kim, 2003). 

Figure 3.4 compares these two assumptions on variable #2 from dataset A. It will be 

shown that the latter approach (CDRAw) is not acceptable. 
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Figure 3.4 Future trajectory prediction when using raw current deviations (x) and 

mean centered and scaled current deviations (dotted line), raw value scale (top) and 

MCS scale (bottom). Solid bold line: known measurements up to time 30; solid line: 

true unknown trajectory 
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To represent a batch trajectory with an AR multivariate time series we represent 

each batch as a set of vectors of measured variables at each time point k (xJJ such that 

xT=[xi ,X; ••• X~]. At time k, the model will be able to make the forecast for the values 

of the samples at time k+ 1 using Eq. 3.1 where q is the order of the model. 

(3.1) 

Several multivariate AR models can be built, one for each phase in the batch data 

(within which the autocovariance structure is reasonably constant). The order of each 

model is obtained by using the Akaike Information Criterion (AIC) (Akaike, 1974). The 

models are built using the mean-centered and auto scaled values of the batch trajectories 

in order to make the model comparable with the PCA forecast. Figure 3.5 illustrates the 

forecast made at time 30 for one variable in data set A using the corresponding AR 

model. Notice the forecast asymptotically returns to the mean, since an AR model is 

stationary in the mean. 

The time series forecast for the unknown part of the trajectory is fairly simple to 

understand, and the replacement of the unknown samples in the batch is easy to visualize. 

In the following Section an adaptive AR time series analogy is used to illustrate the 

missing data estimation option of PCAlPLS models, in order to establish similarities with 

the time series forecast for better understanding of their properties. 
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Figure 3.5 TS Forecast for the unknown samples. Solid line: known measurements 

up to time 30; solid bold line: mean trajectory; dashed line: true unknown 

trajectory; marked line ( .. ): forecast by the time series 
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Missing Data (MD) Options 

For the previous filling in options, it is easy to illustrate the values that are being 

used to replace the unknown samples at time k; however, in the MD approach, it is not 

obvious. In their earlier work, Nomikos and MacGregor (1 995b ) clearly state that, when 

using the MD approach, the missing unknown values will be replaced by predictions 

using the PCA model. 

The simplest way to estimate the score vector when an observation contains 

missing data is to use the single component projection method (SCP) (Nelson, Taylor, 

and MacGregor, 1996). This method will calculate each of the scores independently and 

sequentially as 

(3.2) 

where z· is x· at time k deflated by the first i-I components. This method is the 

simplest but generally the poorest performing of the missing data handling methods 

(Nelson, Taylor, and MacGregor, 1996). 

One natural improvement to the method is to use an initial estimate of the final 

scores such as given by SCP method (Eq. 3.2) to forecast the remainder of the 

trajectories, i!, (using their corresponding loadings) (Eq. 3.3) 

(3.3) 

create a new augmented vector using the known measurements and the new 

predicted values (Eq. 3.4); and recalculate the score estimate with this augmented vector 

(Eq.3.5) 
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(3.4) 

~T T P 
'tk = Xaug (3.5) 

This approach is taken by Meng et ai. (2003), and Lennox et al. (2000) to 

compute the score estimates and the forecast for the unknown part of the trajectory in 

their respective studies. However, this is only the first step of the more complete iterative 

imputation (II) method proposed by Arteaga and Ferrer (2002), in this method, one 

iterates between equations (3.2) and (3.5) until convergence. This II algorithm is a very 

illustrative way of understanding how the missing data elements of the trajectories are 

being replaced by the PCA forecast. 

SCP computes each of the scores independently of each other, and Nelson et al 

(1996) showed that superior results can be obtained by calculating all of the scores at 

once by projecting onto the hyper plane formed by the p* vectors. In the limit, when 

there are no missing measurements this will result in scores identical to SCP since the 

loadings vectors will be orthogonal. It is this loss of orthogonality as well as small values 

of the p;r p' (at the start of the batch) that causes the difficulties associated with 

estimating scores with missing data. Projection to the plane (PP) methods involve 

regressing the known X* vector onto the matrix defined by p'. Using OLS one gets 

PPOLS (Eq. 3.6). 

(3.6) 

However, with certain combination of missing measurements (early in the batch) 

some of the columns of p' may become highly correlated and hence the (p*Tp*) may be 

ill-conditioned. Therefore Nelson et ai. (1996) recommend that the projection be done 

using PLS, PCR or regularized least squares regression (PPPLS, PPPCR, etc). In the early 
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work by Nomikos and MacGregor (1995b), the missing data problem was treated with 

PPOLS, which has been proven to be analytically equivalent to the iterative imputation 

method (Arteaga and Ferrer, 2002). Finally, other methods are also available to overcome 

ill-conditioning problems that may arise in the use of the PP method. Conditional mean 

replacement (CMR) (Nelson, Taylor, and MacGregor, 1996) and trimmed score 

regression (TSR) (Arteaga and Ferrer, 2002) are methods that use the known T matrix 

from the training data in addition to the loadings (P *) and the available measurements 

(x*) to estimate the score vector. The theoretical background for these methods can be 

found in the work by Nelson et at. (1996) and Arteaga and Ferrer (2002). In solving the 

CMR problem, a singularity problem may arise. This problem is solvable by a 

workaround suggested in the work by Nelson et al. (1996), where T is calculated with 

the use of a new estimating parameter CP) computed by using PLS to fit the equation 

T = X'p where T and X' respectively represent the score matrix and those columns from 

the training data set corresponding to the known values. The parameter matrix /3 along 

with the current available data vector x' are then used to compute T . PLS can be used to 

estimate the /3 parameter matrix in order to overcome any ill conditioning present in the 

X* matrix. 

Figures 3.6 illustrate how the predicted values for the unknown part of the 

trajectory using PPPLS compare to the actual values (compare with Fig. 3.4 to contrast 

with the "Current Deviations" forecast). Note the detailed precision of this forecast, 

which is made possible by the use of the known time varying covariance structure of the 

process variables over the entire batch history. In the fonowing Section, a more complete 

comparison will be done in order to contrast the quality of the forecast for the unknown 

part of the trajectory, obtained by each of the considered methods. 
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3.2.4. The peA forecast model interpreted as a time series forecast 

Since it is clear that the MD option uses a forecast of the trajectory to "fill in" the 

unknown measurements, it is desirable to analyze the properties of the forecast model 

embedded in the PCA projection. In the following paragraphs, the embedded one-step a 

head time series prediction model is uncovered from the PCA prediction expression to 

illustrate the nature of the prediction model. However, equivalent expressions for any 

f-step ahead forecast could have been used to illustrate the same point. 

Previously, the vector X,k was defined as a column vector containing the J batch 

variables measured at time k, such that: xT=[xi ,X~ ... xi]. Using the notation defined 

previously, we can express the known batch samples at time k in terms of x'k (Eq. 3.7): 

(3.7) 

From these equations, it is clear that the one-step-ahead prediction Xk+l 

corresponds to the forecast ofthe first J elements of the :i:# vector (Eq. 3.8): 

(3.8) 

Eq. 3.8 can be expressed as a function of the loadings matrix (Eq. 3.9), from Eq. 

(3.3), and taking only the first J rows of the Pk# matrix: 

A A# p# A 
Xk+! = Xk[l:J] = k[l:J] T k (3.9) 

At time k, and assuming that projection to the model plane (PPoLS) is used to 

solve the missing data problem, the estimate of the score is (Eq. 3.10), 
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AT _ *Tp' (p*Tp' )-1 
Tk - X k k k k (3.10) 

Substituting Eq. 3.7 and Eq. 3.10 into Eq. 3.9: 

(3.11) 

The tenn P:[I:J] [ p; (p;Tp; r l r of Eq. 3.11 is a matrix of J rows and Jk columns. 

Re-expressing each element of this matrix as rAJ and grouping blocks of J columns as new 

square matrices <1>i' such that each <1>i has J rows and J columns gives raise to a 

multivariate AR prediction equation of order k with parameter matrices 

rA,1 rA,2 .•• rA,J rA,J+I rA,J+2 .•• rA,2J ... rA,Jk XI 

A ¢2,1 ¢2,2 ... ¢2,J ¢2,J+I ¢2,J+2 ... ¢2,2J "'¢2,Jk 
Xk+1 = 

Xk-I 

¢J,l ¢J,2" '¢J,J ¢J,J+I ¢J,J+2" '¢J,2J .. '¢J,Jk Xk 

<1>1 <1>2 <1>k 

= [ <1>1<1>2 ... <1>k ] = <1>lll + <1>2l2 + ... + <1> k-IXk-1 + <1>klk 
lk-I 

(3.12) 

lk 

This one step ahead PCA forecast model has unique characteristics: a) the order 

of the peA forecast equation (Eq 3.12) expands, as new measurements are available (k 

increases); b) even more importantly the parameters of this model will adapt as the batch 

evolves since the elements in p# and p* change as more samples become available. This 
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means that all the ~ elements in Eq. 3.12 are adapted as time progresses to account for the 

changing auto-covariance and cross-covariance structure captured by the PCA model, 

this is possible because the MPCA batch model has embedded within it knowledge of the 

time varying covariance among all the variables over the entire time history of the batch. 

This contrasts with the conventional time series model (Eq. 3.1) whose coefficients do 

not change and will always use the same number of past measurements in order to 

forecast the next sample. As a result, the PCA prediction equation is actually an adaptive, 

nonlinear prediction and hence provides a much more powerful prediction than any fixed 

multivariate time series model. The same form of adaptive PCA time series prediction 

equation can be derived for any f-step ahead prediction with the same conclusions as 

above. 

To further illustrate the adaptive nature of the PCA forecast model, consider the 

explicit forecast equation for the one step ahead prediction at different times (Eq. 3.13) 

At time =1 

At time =9 (3.13) 

A · 99 " .... 99 .... 99 .... 99 .... 99 
t tIme= XIOO =""1 Xl +""2 X2 +""3 X3 ... + ""99X99 

Figure 3.7 shows the values of the <D~(2,2) parameter: for j= 5, 10, 20, 40, 80; 

and k=j,j-l,j-2, ... ,1; for data set A. As seen in this Figure, the parameters adapt and 

expand as more measurements are available. A result of the adaptive nature of this model 

is that the behavior of the forecast, for the remaining unknown samples, changes with 

time in the batch. This adaptive behavior of the PCA predictive model is unique and 

results from the fact that the MPCA model built for a training set of complete batches has 

lmowledge of how the auto and cross-covariance structure of all the variables will change 

over the entire duration of the batch. 
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Each of the different options discussed to handle the future unknown samples will 

provide a different estimate of the future unknown trajectory. In the following Section, 

metrics are suggested to compare the accuracy of these predictions. 

3.3. Statistics for Comparing Future Predictions 

When monitoring a new batch, an estimate of the final score vector :r is done 

every time a new sample is available. Each missing data handling method will give a 

different estimate of the score vector and hence, a different forecast of the unknown 

trajectory every time a new measurement is available. In order to measure the accuracy of 

the forecast for the unknown part of the trajectory for each method, the errors in the 

prediction will be quantified and compared for all the batches in data set A and B. 
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For batch i at time k (given that k <K), the forecast for each variable j generates a 

vector of errors in the future prediction e~j = [e~j I e~j I e~j I e~j I e~j I ... e~j I ], defined 
1 2 3 4 5 K-k 

by Eq. 3.14, and illustrated in Figure 3.8. This (K-k) vector contains the individual errors 

in the prediction of the future unknown trajectory of variable j, for samples k+ 1, k+2, 

k+3, ... ,K. 

ij # "# 
ek = Xijk - Xijk (3.14) 

This e!j vector will decrease its length as the batch evolves, because there are 

fewer remaining unknown measurements (x#). 

\\[ 

At time k, for variable] in batch j 

k time K 

Figure 3.8 Future prediction error in batch trajectory forecasting 
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The original training batch data consists of I batches, each one with J variables, 

sampled K times throughout the batch. For each ijk sample in the original data set, we 

have a e!j vector. This set of error vectors can be computed for each option available to 

treat the unknown part of the trajectory. 

To compare all the error vectors among options, it is desirable to summarize the 

ef vector by one summary statistic in order to quantify the future prediction error as a 

scalar measurement of accuracy. This accuracy will vary in time and therefore can be 

plotted as a trajectory for each variable in each batch. To accomplish this, two different 

measures are proposed: 

a) Consider all individual errors ([ e~j I e~j I e~j I ... e~.i I ]) equally important and 
1 2 3 K-k 

simply square them, and add them to give one number, the Future Prediction Sum of 

Squares (FPRESS) defined by Eq. 3.15 

K-k 2 

FPRESS X= I (efU 
1=1 

(3.15) 

b) A second option is to weight each individual error (eX II ) by the inverse of the 

distance to the current time sample, in such way that the one step ahead prediction efl
l 

becomes more important than the (k-K) step ahead predictionefl ; the weighted Future 
K-k 

Prediction Mean Square Error (FPMSE) is defined in Eq. 3.16 

.. I!(enr 
FPMSE lJ = ....:../=...:..1-::

1:-:-__ 
k K-k 1 

I-
I=! I 

(3.16) 
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The FPRESS will provide a measure of global forecast accuracy, since it accounts 

for the error from time k+ 1 to time K, on the other hand, the FP MSE provides a measure 

of local forecast accuracy, considering the immediate forecast more important than the 

long term forecast. 

Figure 3.9 illustrates the shape of the FPRESS and FPMSE as they change with 

the evolution of the batch; the plot shows both calculations for all batches in the 

industrial data set A, using variable 3 and considering zeros (Z) as the filling in option. 

The calculation of these quantities should be done using a new set of NOC 

batches; in this case however, all the available observations are used to build the model 

and will be used to calculate the FP RESS, and FP MSE. The calculation sequence is 

similar to that used in computing the confidence intervals for the time varying scores 

(Nomikos and MacGregor, 1995b); the batches in the NOC data base are monitored with 

the model replacing at every time sample the unknown measurements with those of the 

considered option; then the scores are estimated; and in the case of MD, the forecast of 

the unknown part of the trajectory for each variable is calculated using these scores 

estimates. With this forecast the FP RESS and FP MSE are then calculated. 

The ten options considered in handling the unknown samples of the trajectory are: 

zeros (Z), mean centered and scaled current deviation (CD), raw current deviation 

(CDraw), a fixed AR time series (TS) based on an average fit to the complete batch data; 

and different score estimation methods for the missing data option: SCP, PP ols, PP pis, II, 

CMR and TSR (the missing data option will be referred to by the initials of the method 

used to estimate the score). 
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time 

time 

Figure 3.9 FPRESS and FPMSE for variable 3 in data set A, using zeros option 

Because FP RESS and FP MSE can be computed for all variables at all time 

samples, for each batch in the data sets, they can also be visualized as accuracy 

trajectories, and as such they can be compared. In order to make a comparison between 

the FPRESS trajectories for the 10 considered options (as well as for the FPMSE), we 

calculate an "average trajectory" for each of these new measures, for each variable over 

the whole data set. This will give us a better view ofthe behavior of each trajectory. This 

is illustrated in Fig. 3.10 where the plot shows all the individual FPMSE trajectories for 
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variable 1 (for all batches in dataset A) and the mean of these new trajectories using SCP 

option for the score estimation. 

Il.. 

~ 
.9 
~i.6 .. 

-:2 2 
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time 

Figure 3.10 Mean FPMSE for variable 1 in data set A, using missing data 

and solving with SCP 

In order to perform the comparison exercise, the FP RESS and FP MSE mean 

trajectories are plotted per variable, for each of the 10 different methods. A brief 

discussion of the results follows; only some representative results are included due to the 

large number of graphs necessary to include all the results. 

Figure 3.11 shows the FPMSE and the FPRESS for variable 4 in data set A. It is 

very clear how, from all the methods, the MD options have the least error in the forecast 

at every time period over the whole trajectory, even from the very initial samples in the 

batch. This behavior was found to be true in general for all the variables for this data set 

for both of the two different future error trajectory statistics (FPRESS and FPMSE) , 

although the CD and TS options on limited occasions showed slightly lower values at a 

few time intervals. 
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Figure 3.11 Mean FPMSE (top) and FPRESS (bottom) for variable 4 in 

data set A 
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Data set B was simulated from a theoretical model for styrene-butadiene emulsion 

polymerization (Nomikos, 1995). As a result, one can expect some artificial behavior. In 

this case it arises because deviations from the mean trajectories for the monomer feed 

rates were simulated as a time-invariant stationary AR time series (and hence the AR 

behavior is passed to other variables as well). Because of this prior knowledge about the 

data set, the expected result is that the prediction of the TS (and Zeros) will be the best 

forecasts. This is a very important benchmark to use in the comparison exercise. 

Figure 3.12 show the FPRESS and FPMSE for variable 1 in dataset B. The results 

in these Figures are very important since it is known that the AR time series model 

should give the best possible forecast for this data set. However the MD options, using 

CMR and TSR, give predictions as good as the ones from TS and Z, showing the power 

of the PCA model in capturing the dynamic relationships among the variables in the 

dataset. Aside from some early inaccuracies, the PP methods also provide good 

predictions These results are similar for the other variables in data set B. Together with 

the results from data set A, these findings illustrate the power of using the PCA model to 

predict the future unknown samples in the trajectory even from the very beginning of the 

batch, especially when one ofthe more efficient missing data inference methods is used. 

In their early work, Nomikos and MacGregor (1994;1995b) used the PPOLS 

approach which can sometimes be poor at the beginning of the batch as shown in Fig. 

3.12. Another expected result from this exercise is that; for most of the variables 

analyzed, the CD option (based on scaled mean centered trajectories) out-performed by 

far the CDraw option in the forecast of the future unknown samples. 
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Figure 3.12 Mean FPRESS (top) and mean FPMSE (bottom) for variable 1 in 

dataset B 
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3.4. Quality of the score estimates 

All the forecasts compared in this last Section are a function of the score estimate 

( T) for the end of the batch. In this Section a comparison exercise is done among the 

different T estimates given by each of the 10 options considered (Z, CD, MD and TS) 

and methods for score estimation (SCP, PPPLS, PPoLs, II, CMR and TSR). 

The estimates of the final batch scores, for a new batch are now contrasted for the 

different methods using the data set A (being of industrial nature). Nomikos and 

MacGregor (l995b) show how the trajectories of the estimated scores look like for the 

assumptions of Z, CD and MD using PPoLs. The results obtained with the additional 

methods considered here are not far from those previously shown by those authors. The 

score plots (Fig. 3.13) obtained using a fixed stationary AR time series are similar to 

those obtained by the Z option but starting from a different point than zero and with a 

much noisier evolution. It is proper to point out that applying the concept behind the Z 

option for any missing data problem (that is, replacing the missing values with the mean 

ones) is perfectly equivalent to the so-called trimmed score method proposed by Arteaga 

and Ferrer (2002). The score lines obtained using the CD option is much more stable and 

have a lower variance (Fig. 3.13) throughout the batch than those obtained with the CDraw 

option. All the score estimates using different MD methods behave in a similar way, they 

are all relatively horizontal lines, but with different behavior at the beginning of the batch 

(this will be brought up in later Section). The estimates obtained when using the II 

sometimes show slightly noisy score trajectories (in dashed circle in Fig. 3.13), compared 

to other methods like PPPLS this noisy behavior appears especially in the later 

components in the model (Fig. 3.13), finally, CMR score estimates were found to be very 

similar (almost identical) to those obtained with TSR (Fig. 3.13). 
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Figure 3.13 Monitoring score plots for different "filling in" options and missing data 

handling methods for dataset A 
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In their early work, Nomikos (1995) and Nomikos and MacGregor (1995b), 

acknowledge that the most rigorous solution to the monitoring process is to build as many 

models as time samples in the data set, and use the corresponding model at each time 

interval to calculate the scores (and thereby completely avoid the need to jill in). Score 

plots computed by this approach show several very important features: the covariance 

matrix calculated from the models built at each time sample always has two 

characteristics throughout the batch evolution (Fig. 3.14): i) the scores are always 

orthogonal, hence the off-diagonal terms of the score covariance matrix are zero; this 

property will be referred to as orthogonality; and ii) the variance of t1 is greater that the 

variance of t2, and so on for the entire batch, this property will be referred to as 

coherence. These results are exactly as expected, since each of the scores at each point in 

time is calculated from an independent PCA model. Hopefully, a single PCA model with 

a good missing data algorithm should provide accurate score estimates having 

orthogonality and coherence properties close to this ideal situation. 
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Figure 3.14 Variance and covariance of the scores from K models throughout the 

batch, dataset A 
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The different approaches to estimating the batch scores ( T) are now compared at 

different time periods (k) in terms of these characteristics computed from the estimated 

score variance-covariance matrix. In analyzing the covariance of the scores for the 10 

methods considered, for both datasets, it was observed that the only approaches that not 

only ensure orthogonal and coherent behavior in the score estimates, but also offer a 

stable and accurate value of the covariance throughout the batch time, even at the very 

beginning of the batch, are the missing data approaches solved with CMR, TSR and 

PPPLs. These three methods for handling missing data have already been shown to have 

superior performance in the estimation of the score vector (Arteaga and Ferrer, 

2002;Nelson, Taylor, and MacGregor, 1996). For the CMR, TSR and PPPLS option the 

off-diagonal elements of the covariance trajectories are kept close to zero throughout the 

batch (orthogonality). This does not happen entirely when using SCP, where the 

orthogonality is lost during some periods of time. 

The non-missing data options for the filling in mechanism generally fail in 

satisfying any of the two desired properties (orthogonality and coherence). Fig. 3.15 

illustrates how the CD and Z options lose orthogonality as well as the coherence. Finally, 

the covariance behavior of the CD always showed better properties than the CDraw; 

maintaining better orthogonality and coherence. Using the MD option, and solving with 

PPoLS or II gave good properties in the covariance trajectories for data set A, but not as 

good for data set B. CMR and TSR appear to give the best score estimates, with the best 

properties for both data sets. 

A final very important property is the stability of the score estimates during the 

first samples in the batch. When the MD approach is solved via SCP (and to a less extent 

when solving by PPPLS, PPOLS, and II) highly variable and un-reliable estimates of the 

score can sometimes be obtained during the first samples. However, if the missing data 

approach is solved with CMR and TSR, this problem disappears. Fig. 3.16 is a plot of the 

variances for t1, for the 10 considered methods for dataset B. Of course, the Z, and the TS 
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options give the lowest variance at the beginning of the batch (because they assume all 

the rest of the measurements are at its mean value); however these two options have 

shown not to fulfill orthogonality and coherence and their estimate of the final score is 

unreliable. The next lowest variances at the beginning of the batch are given by the CMR 

and TSR methods for the MD option; these methods have shown to keep orthogonality 

and coherence during the batch run and have proven to give accurate estimates of the 

final score, the rest of the methods for handling missing data give a high variability of the 

t1 estimate at the beginning of the batch. 

Time Series 
CMRandTSR 
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Time 

Figure 3.16 Evolving variance of tl for dataset B, using an the methods and options 

From all the above results, it can be concluded that the best score estimates, and 

the best forecast for the Uflknown samples, are the ones obtained when the PCA model is 

fully used (MD option) with CMR and TSR to estimate the scores, even from the 

beginning of the batch run. 
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3.5. Monitoring Performance 

As shown in previous sections, filling in by the MD options gives much better 

scores and process trajectory predictions for the remainder of the batch. The improved 

qualities of these trajectory predictions are important in process control applications 

(Flores-Cerrillo and MacGregor, 2002;2003) where manipulated variables are being used 

to control final product quality based on these trajectory predictions. However, in process 

monitoring for faults, it is not obvious that better predictions will necessarily yield better 

monitoring. The purpose of this Section is to investigate the impact of the prediction or 

filing-in method on the fault detection and isolation properties of monitoring schemes. 

A critical desirable feature in any monitoring scheme is to detect an abnormality 

in the batch evolution, and trigger the proper alarm as early as possible. The faulty 

batches included in the data sets A and B had several faults that were easy to detect by 

any of the methods. Because of this, a new dataset was created using a detailed 

simulation of the emulsion SBR polymerization process (Kozub and MacGregor, 1992b) 

(the original source of dataset B), and new faulty batches with more subtle deviations 

were simulated. The new dataset consists of 200 NOC batches; each batch has 9 

variables (total volume, conversion, accumulated composition, styrene feed, butadiene 

feed, chain transfer agent (CTA) feed, reactor temperature, jacket temperature, and 

density) sampled 350 times throughout the batch run. Each one of the 200 NOC batches 

is simulated using a second order AR stochastic disturbances in the input flow of the 

styrene and CTA (cr2a=0.0005, ~I= 0.98, and ~2= -0.03 for styrene feed; and cr2a = 

1.25 x lO-6
, ~1= 0.8 and ~2= 0.17 for CTA feed) and white noise disturbances in the rest of 

the variables with standard deviations given in Table 3.1. This data set is divided as 

follows: 100 batches are used as training, and the rest as validation data. A PCA model 

with 5 components is built, this model captures 72.4% of the total variance for the 

training set. 
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Variable Units a(noise) 

Temp. Celsius 0.1 

Cony. - 0.001 

Dens. gIl 0.25 

Composition % Styrene 0.0003 

Volume L 3.91 X 10-6 

Table 3.1 Standard deviation of the disturbances added to the simulation results 

A new set of 170 faulty batches is created: 10 repeats for faults 1 and 2, and 50 

repeats for faults 3, 4 and 5. The first fault is a thermocouple failure that occurs early in 

the batch (time=21) when the temperature happens to be above the set-point; the 

thermocouple measuring the reactor temperature breaks and keeps its zero-order-hold 

value (last good value recorded). The PID controller for the temperature in the reactor 

tries to cool the reactor and the cooling medium temperature is forced to its lower bound 

causing the reaction to die. Fault number two is a thermocouple failure as well, but in the 

thermocouple measuring the heating medium temperature and the fault occurs late in the 

batch evolution (time =290) just after the flow of styrene is interrupted. Fault number 

three is a very small bias (2 xl0-4 mol/min) in the feed of butadiene from early in the 

batch (time=l). Fault number four is a ramp in the flow of butadiene (with a final 

magnitude of 5xlO-4 mol/min) starting at time 151. Finally, fault number five is an 

increase of 20% in the noise variance for the styrene feed flowmeter (time=51). 

Monitoring charts (D and SPE) were then established based on the following five 

filling in schemes: Z, CD, II, PPOLS, and TSR. From the previous work it was shown that 

TSR and CMR gave almost identical predictions, and PPOLS and II, although theoretically 

equivalent (Arteaga and Ferrer, 2002), were seen to behave numerically different. For 

each filling in method, the D (proportional to the Hotelling' s T2) and SPE chart limits 

were determined by passing all the training batches through the monitoring charts and 



CHAPTER 3. MODEL PREDICTIVE MONITORING 71 

calculating the approximate 95% and 99 % confidence limits. The correct calculation of 

Hotelling's statistic (Dki) and its confidence limits are presented in the Appendix 2 (since 

this is different from the usual approximate approach (Nomikos and MacGregor, 1995b)) 

while the limits on the SPE were calculated as shown in Nomikos and 

MacGregor(1995b ). 

To check the validity of the approximate control limits, and to see that they are 

comparable across all the approaches, the total percentage of samples falling outside the 

calculated 95% confidence limits for all of the training set and test set data are shown in 

Table 3.2. As expected the percentage of samples falling outside the 95% intervals for the 

training set is very close to 5% for all approaches, while for the test set the percentage 

falling outside the 95% limits is slightly higher (especially for the SPE). However, the 

important point in this Table is that for "in-control-batches" the probability of violating 

the control limit is essentially the same for all approaches, thereby allowing valid 

comparisons to be made for the detection of faulty batches as discussed below. 

PERCENTAGE OF SAMPLES ABOVE 95 % ClOUT OF 35,000 
Data Set 

CD II PPois TSR Z 

HT2 4.54 4.96 4.96 4.96 4.96 Training Data 

SPE 5.17 5.22 5.18 5.13 5.24 Set 

HT2 6.85 5.04 5.04 5.04 5.04 Validation 

SPE 9.17 8.98 10.15 10.08 9.22 Data Set 

Table 3.2 Percentage of samples outside of 95% confidence limits for the validation 

and training data sets 
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To compare the detectability of the 5 faults under different "filling in" methods, 

all of the faulty batches were then passed through the control charts of the various 

methods. In this study an alarm is determined to have been generated when three 

consecutive samples are outside the 95% confidence limit in either the D or the SPE 

chart. 

Even though both the SPE chart (Nomikos and MacGregor, 1994;1995b) and the 

D chart were considered (this last statistic has been corrected to take into account the 

time-varying covariance of the scores, see Appendix 2) all of the faulty batches generated 

alarms in the SPE chart before they did on the D chart. As each faulty batch is 

monitored, the number of samples to detection or time to detections is recorded; this is 

the number of samples after the fault occurs, and until an alarm is generated. Table 3.3 

lists the mean times to detection (MTD) and standard deviation of the mean time to 

detection over all the repeats of a fault for each of the considered methods; all quantities 

have been rounded to the closest integer. 
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Fault Method MTD a(MTD) 

Z 3 0 

CD 3 0 

FAULT 1 II 3 0 

PPOLS 3 0 

TSR 3 0 

Z 16 3 

CD 17 3 

FAULT 2 II 16 3 

PPOLS 16 3 

TSR 16 3 

Z 120 11 

CD 120 9 

FAULT 3 II 115 10 

PPOLS 107 7 

TSR 106 9 

Z 93 6 

CD 108 5 

FAULT 4 II 102 5 

PPOLS 99 5 

TSR 94 6 

Z 68 1 

CD 53 7 

FAULT 5 II 64 10 

PPOLS 69 8 

TSR 65 9 

Table 3.3 Comparison of the Mean Time To Detection (MTD) and the standard 

deviation ofthe MTD (cr(MTD» of different methods 

73 
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The results in Table 3.3 and an Analysis of Variance (ANOVA) (Table 3.4) 

performed on all the repeats for all faults show no statistical evidence of any difference 

among the methods with any fault type, nor any consistently better method across fault 

types. A much more massive simulation study would be needed to show any small 

differences that might exist. The general conclusion is that, even if there are differences, 

these differences appear to be small, and any differences may depend on the type of 

faults. This may appear to be a surprising result, but upon reflection it might be 

reasonable. For each "filling in" method the control chart limits are determined separately 

to give identical "in-control" error detection rate. However, for every faulty batch, the 

"in-control" assumption has been broken for every control chart, regardless of the filling­

in method. Furthermore, in the presence of a fault, the foundation or theory behind all the 

"filling-in" methods has been violated. For example, in this situation, the correlation 

structure in the data is broken and none of the PCAlPLS models are valid, and thereby 

degrading the MD estimation based on them. As a result, the difference in the time to 

detection among the charts using the different "filling-in" methods will depend mainly 

upon how rapidly the fault will cause a significant deterioration in the prediction of the 

scores. If there is not a great difference in this rate of deterioration relative to the different 

control limits for each chart, then one might expect there to be little difference among the 

methods in the time to detection. The time to detection of a fault clearly does not appear 

to be strongly related to the quality of the "filling-in" or trajectory estimation 

performance of the "in-control" state. Hence, for the detection of faults, all the 

monitoring charts make efficient use of the existing data up to the current time and 

appear to perform well as long as the control limits are individually determined for each 

"filling-in" option used. 
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Table 3.4 Two Way ANOVA Table for the Times to Detection 

3.6. Conclusions 

In monitoring the progress of batch processes, the trajectories of all process 

variables from the current time until the end of the batch are unknown. These remaining 

trajectory-portions can be estimated in a number of ways: i) ad hoc approaches such as 

using the average trajectories (Z), or maintaining for the remainder of the batch the 

current deviations of the scaled trajectories (CD); or ii) more powerful statistical 

estimation approaches based on using the PCA or PLS models (MD approaches). The 

latter missing data (MD) approaches are shown to be capable of providing excellent 

predictions of the reminding process variable trajectories that optimally use all the 

available data and knowledge of the time varying covariance structure among all the 

variables over the entire batch, provided by the PCA or PLS models of the batch. 

For batch processes that are still in a state of control, the missing data estimation 

methods provide a powerful way of presenting the expected behavior of the process 

variable trajectories for the remainder of the batch, and of estimating the final product 

quality (Nomikos and MacGregor, 1995a). These are both extremely useful tools for 

monitoring. For the on-line control of final product quality these efficient PLS estimation 

methods have proven to be critical to the success of batch control (Flores-Cerrillo and 

MacGregor, 2002;2003;Yabuki and MacGregor, 1997;Yabuki, Nagasawa, and 

MacGregor, 2000). However, for the purpose of on-line detection of process faults (in 

process monitoring) the differences among the trajectory estimation methods appears to 
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be much less critical since the control charts used in each case are tailored to the filling in 

mechanism employed. All the approaches appear to provide powerful charting methods 

for monitoring the progress of batch processes. 

Acronyms 

AIC 

AR 

CD 

CTA 

CMR 

DMC 

FPRESS 

FPRMSE 

II 

MCS 

MD 

NOC 

PCA 

PLS 

PP 

PPPLS 

PPOLS 

SCP 

STD 

Akaike Information Criterion 

Auto regressive 

Current deviation option to fill in the unknown samples in the 

trajectory 

Chain Transfer Agent 

Conditional Mean Replacement 

Dynamic Matrix Controller 

Future Prediction Sum of Squares 

Future Prediction weighted Mean Square Error 

Iterative Imputation 

Mean centered and auto-scaled 

Missing data option to fill in the unknown samples in the trajectory 

Normal Operating Conditions 

Principal Component Analysis 

Projection to Latent Structures 

Projection to the model Plane 

Projection to the model Plane solved by PLS 

Projection to the model Plane solved by OLS 

Single Component Projection 

Samples to detection after fault occurrence and until alarm is 

generated 

TS Time Series 

TSR Trimmed Score Regression 

Z Zeros option to fill in the unknown samples in the trajectory 



Chapter 4 

Product Design for Batch Processes using Latent Variable 

Model Inversion via Constrained Optimization 

This chapter presents a novel and simple methodology to design optimal 

operating conditions for batch processes using latent variable regression methods. This 

new method is illustrated for the design of minimal-duration trajectories for an emulsion 

polymerization process for a given set of specifications in the final product. 

4.1. Introduction 

Batch processes play an important role in today's industry; specialty chemicals 

and most of the pharmaceutical industry use batch systems. One of the reasons to use 

batch processes is their flexibility to produce a wide range of products; this capability is 

due to the large range of process conditions in which a batch unit can be operated. 

Typically any batch system will have a determined set of operating conditions for each 

one of the products. For a continuous system, these operating conditions correspond to 

the desired values of the process variables at steady state, and it is left to the control 

system to maintain these operating conditions in the presence of disturbances and 

eventually, to change such operating conditions (e.g. transitioning from one grade to 

another). As batch systems are dynamic (time varying) systems, their operating 

conditions are time varying as well. Therefore it is not enough to define the starting point 

(e.g. initial temperature) for the process variables, but also the path to follow (e.g. heating 
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profile vs. time) and final point (e.g. final temperature). All these conditions will have 

great effects on the physical and chemical properties of the final product. 

Determining these operating conditions for batch systems is not an easy task due 

to the fact that the process variables are highly auto and cross correlated (Kourti, 2003), 

and to the need to estimate the design with additional constraints (e.g. due to equipment 

capacity). 

For example, the estimated operating conditions should achieve a certain set of 

specifications in the final product (e.g. molecular weight, tensile strength, PSD) while 

consuming the minimal resources for its operation (e.g. catalyst, raw material, time). 

Even more difficult is to satisfy these requirements (final product properties and minimal 

operational cost) when they are coupled with the batch scheduling problem. The solution 

to this problem is difficult not only because ofthe complexity of the phenomena involved 

in the batch operation (or the supply chain) but also because of the different sources of 

uncertainty. 

4.1.1 Background 

The design of batch process operation has been widely studied by researchers. 

The different methodologies used can be grouped and classified as (Scheme 1): 

Fundamental model-based; surface response methods; Control-based on empirical 

methods; and latent variable inversion methods. 
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Approaches to Product Design for Batch Processes 
(finding new operating conditions to yield a set of desi.red properties in the final product) 

iDOE (SRM)i 

Optimization 

Non-linear Control 
based on full NL model 
and NL observers 

Scheme 1. Classification of the different approaches to batch operation design 
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The fundamental model-based optimization for the design of batch process 

operation involves the use of a highly non-linear differential algebraic equation system. 

Several approaches have been proposed to solve the optimization of these dynamic 

systems. The first approach involves a one-time-solving of the complete equation system. 

This deterministic optimization will give as a result the trajectories for the manipulated 

variables so that they can be implemented into the system (Biegler, Cervantes, and 

Wachter, 2002; Vassiliadis, Sargent, and Pantelides, 1994a; and 1994b). 

A second approach within the fundamental model-based solutions is to use some 

simplifications to the full deterministic models and a recursive optimization to "move" 

the operation in real-time, updating the solution each time a new batch is available. 

Examples of these proposals are those from Srinivasan et al. (2003) who proposed to use 

a set of "arcs" which are determined from previous knowledge and are continuously 

updated in a batch to batch mode; the use of tendency models where the kinetics of a 

reaction system are simplified (Filippi et at., 1986; Fotopoulos, Georgakis, and Stenger, 

1998) and the use of non-linear observers with a full non-linear model which can be 

linearized at each time sample (Clarke-Pringle and MacGregor, 1997; 1998; Kozub and 
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MacGregor, 1992a; 1992b). The reader is referred to the review by Srinivasan et al. 

(2003) which covers most of the deterministic solutions available, and offers a 

comparison among them. 

Data-based models have also been proposed to solve the batch process operation 

design. Surface response methods (DOE- SRM) have been widely used in the design of 

laboratory conditions (Gorret et al., 2004; Rao et ai., 2002) for the production of 

specialty chemicals since these conditions are easily modified at a low cost. These 

approaches rarely involve the trajectory of a variable, and mostly involve a recipe for 

process conditions to be kept constant throughout the batch. 

A mixture of model base control techniques and iterative learning control are 

used to develop the Quality based Batch Model Predictive Control (QBMPC) method 

(Chin, Lee, and Lee, 2000). Such solution assumes that the batch system can be 

characterized by a single linear input-output model which involves the full trajectory. A 

more powerful approach is proposed by Flores-Cerrillo and MacGregor (2004) where a 

latent variable model is used within a recursive optimization using batch to batch 

information following the same mechanism as in iterative learning control (ILC). 

Finally, latent variable regression (L VR) models have also been proposed to 

estimate from historical data, the set of operating conditions that would yield certain 

characteristics in the final product (Jaeckle and MacGregor, 1998; and 2000a). In their 

work, the authors propose the use of model inversion to estimate the process conditions 

from a given set of properties (estimate x from y). They consider a continuous Linear low 

Density Polyethylene (LLDPE) process, and two industrial semi batch reactor examples, 

with a discrete characterization of the time profiles for the process variables. This is also 

a one-time solution which will give as a result the trajectories of the manipulated 

variables (MV' s) to be implemented into the process. Although the authors recognize that 
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their work is usable to estimate complete batch trajectories, there is no such application 

reported in the literature. Their proposed approach is summarized next. 

4.1.2 Design of operating conditions by L VR model inversion 

LVR models will not only describe an X-Y relationship, but will also include the 

information about the multivariate correlations in each of the spaces (X-X relationships 

and Y -Y relationships), distinguishing these correlation-structures from the noise present 

in the data (Burnham, MacGregor, and Viveros, 1999). laeckle and MacGregor (1998) 

propose a solution to the design problem with the use of L VR methods. Their approach is 

summarized in three steps, after proper mean centering and scaling of all matrices: 

i) Ensure the new desired set of properties (Ydes) has the same correlation 
~ 

structure as the rest of the Y matrix. Consider the properties plotted in Figure 4.1. In this 

example from the pulp and paper industry, the kappa (which indicates the relative lignin 

content of the pulp) and the viscosity are strongly positively correlated in the data from 

past operation. The desired new grade 2 (Fig. 4.1) has a completely different balance of 

these properties. And since there is no evidence that the process has ever yielded product 

with this balance of kappa and viscosity, the design exercise cannot be done with this 

grade. However, the desired new grade 1 does fall within the line of grades previously 

produced, and there is evidence that the process can produce grades with this new desired 

balance of properties, and the operating conditions can be estimated for it. The square 

prediction error (SPE) for the desired grade after projecting it onto a PCA model of Y is 

used to measure how close the desired grade is to the existing correlation structure of Y. 

In this step of pre-processing, a variable selection exercise is done in the Y matrix, and 

only one variable representative of each dimension of the Y space (or the A LV 

themselves) is kept. After this variable reduction exercise, the retained Y matrix is full 

rank. In the case of the properties shown in Figure 4.1, the effective rank is probably one 

given the noise in the data. In that case, either of the variables could be used (but only 
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one) since they are correlated, and the true dimension of Y is close to one; by doing this, 

it is assumed that the deviations from perfect correlation are due to measurement error. 

4550 • Previously Produced Grades 
l$ Desired New Grade 1 • >< Desired New Grade 2 

3900 

3250 • 
Z" • 

• 
. ~ 2600 

u 
til 
:> 1950 

• 
1300 

650 • 
19.5 26 32.5 39 45.5 52 

Kappa 

Figure 4.1 Kappa and Viscosity for a Product Family of Pulp 

ii) Use the inverse of the model to compute the scores that should yield Ydes. 

A PLS model (Eq. 4.1 - 4.5) describes the relation between X and Y through their latent 

variables or scores (T). The scores predict either one of the spaces (Eq. 4.4 and 4.5) by 

the use of their corresponding loadings. For this particular step, Eq. 4.5 is inverted (using 

the Moore-Penrose generalized inverse). Vis the best realization the model has about Y; 

using the pseudo-inverse of Q it is possible to compute the scores (l'new) that should yield 

Ydes (Eq. 4.6). Doing this assumes that Y des = Y des' hence the importance of step i in 

verifying that Y des is close to the plane (low SPE) and then this assumption can be held. 

(In this notation, 1'; is the row vector corresponding to the scores for the ith observation, 

for a model with I observations: TT = [1'1,1'2,1'3' ... , l'r], refer to Figure 3.3.). 
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X=TpT +Ex (4.1) 

Y=TQT +Ey (4.2) 

T=XW' (4.3) 

X=TpT (4.4) 

Y=TQT (4.5) 

Y des = Q1" new (4.6) 

iii) Use the estimated 1"new and the model for the correlation structure in X to 

estimate the new operating conditions. Once the new score is computed, then Eq. 4.4 is 

used to produce the estimate for the new process conditions xnew . This assures that the 

new operating conditions will have the same covariance structure as the ones already 

experienced at the plant with the assumption of xnew = xnew and hence a SPE of zero. The 

estimated Xnew is then re-scaled and the mean is added (the inverse exercise as in the pre­

processing of the data). 

In the framework proposed by Jaeckle and MacGregor (1998) steps ii and iii can 

be combined by expressing the new score vector as a function of the new process 

conditions. The solution (xnew) given by the method is unique except for the scenario 

where the rank of Y is smaller than the number of latent dimensions in X. The extra 

dimensions in X (which have no impact on Y) define a null space, this null space 

represents an operational region (multiple solutions to the problem) where Xnew can 

"move", and still yield the same Y des. The final operating conditions along this null space 

can be defined by specifying additional economical or safety criteria. 

4.1.3 Extensions to the model inversion approach 

To introduce physical constraints, Yacoub and MacGregor (2004), suggest the 

inversion of the model, by imposing constraints on the Hotelling's T2 statistic for the new 
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set of scores. Step it is then computed by minimizing Eq. 4.7 instead of using the 

inversion framework proposed by Jaeckle and MacGregor (1998). 

mm{ T } (y des - Q l' new) G! (y des - Q l' new) 
l' new 

st. (4.7) 

A 1'2 

T 2 - '" new,a < t - L. -2- - cons 
a=! Sa 

In Eq. 4.7, s~ represents the variance of each of the columns of T in the PLS 

model used, const represents the magnitude of the constraint (e.g. the 99% confidence 

limit of the Hotelling's T2 for the training data set), and G1 is a weighting matrix; other 

constraints can be added to this formulation. 

This model inversion approach has been successfully applied to industrial 

problems (Yacoub and MacGregor, 2004). In the absence of the Hotelling's T2 constraint, 

the result obtained by minimizing Eq. 4.7 is identical to the model inversion one. 

4.1.4 Contributions of this work 

In this chapter, the operating condition design technique proposed by Jaeckle and 

MacGregor (1998) is applied to the design of batch process operation. Special analysis is 

proposed to constrain the estimated variable trajectories in the case where multiple 

solutions exist to the design problem. 

A new parallel methodology is also proposed using a multi-way PLS model 

augmented with the derivative of the process variables with respect to its evolution index. 

This augmented model is used within an optimization formulation to estimate the 

trajectories which will yield a certain set of desired specifications in the final product. 

The solution is not limited to the time varying profiles as it may include initial conditions. 
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The augmentation of the model with the derivatives of the process variables with respect 

to its evolution index, and the way it is formulated into the objective function appears to 

give a stable and realistic solution. 

Furthermore, the equation to reconstruct the variable trajectories is reformulated 

as an optimization problem making possible the consideration of operational constraints. 

The proposed optimal design methodology is illustrated with an industrial emulsion 

polymerization process case. 

To the best of the author's knowledge, this is the first work considering the 

design of full trajectories for a batch process, and the inclusion of constraints using latent 

variable regression (LVR) models. 

4.2. First Industrial Example Description 

A relatively simple process is chosen as the illustration example: a pilot scale 

batch pulp digester. The equipment is under very tight control and disturbances are 

minimal (laboratory environment). 

The only process variable considered is the temperature trajectory in the reactor 

(the initial acid content is not considered in the design exercise since it is difficult to 

manipulate this variable in the process and there were no available measurements for this 

variable). The final product is characterized by two of its properties: the kappa number 

and the viscosity. To remove common-cause variation in the data, each observation in 

the data set is constructed by averaging three repeats per grade. 

In general it can be said that: the higher the temperature and the longer the cook 

time (batch length), the lower the viscosity and the kappa number. The data set was 

provided by Tembec Inc. and it consists of 6 grades of pulp, the final properties of each 
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of the grades is given in Table 4.1, and the temperature profiles to achieve each of these 

grades in the pilot reactor are shown in Figure 4.2. The quantities in Table 4.1 and Figure 

4.2 have been modified for confidentiality reasons; however, the data is still usable for 

the intended purpose of this thesis. 

Grade Kappa Viscosity 

A 14.24 639.93 
B 18.72 1706.9 
C 25.71 2372.37 
D 29.76 2796.3 
E 36.4 3347.63 
F 47 4175.21 

Table 4.1 Grades of Pulp produced in the Pilot Digester 
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Figure 4.2 Temperature Profiles for Different Grades of Pulp 

Because this data set is going to be fitted with a multi-way PLS model, it is 

necessary to perform alignment (see Section 2.5.1) on the temperature profiles because 

each batch run has a different length. To synchronize this data set, a simple re-sampling 
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is done to achieve 200 samples for all batches (interpolating linearly when needed) 

because the profiles are not monotonically increasing or decreasing. Other ways of 

alignment are possible by segmenting the batch run in different stages (as was done in 

Chapter 2), however for illustration purposes, this simple linear-alignment is enough. 

The temperature profiles after the alignment (Fig. 4.3) are referred to as XPBD 

(6x200 matrix), the total time for each batch is stored in a separate matrix referred to as 

ZPBD (6x l column vector), and the final properties for each grade are referred to as YPBD 

(6x2 matrix) - the PBD subscript stands for pilot batch digester. In general, the 

trajectories of a batch system will be referred to as X, the initial conditions as Z, and the 

set of properties of the final product as Y. 
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Figure 4.3 Aligned Temperature Profiles for Different Grades of Pulp 
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These three matrices ZPBD, XPBD and Y PBD are used to illustrate the optimal 

trajectory design method to be developed in the next Sections. As mentioned before, the 

proposed methodology makes use of a PLS model. In each of the "design exercises" 

throughout the next Sections, one grade at a time is left out from the known data set, and 

the final properties of the left out grade are specified as the desired characteristics (or 

desired quality). The design is computed and the estimated temperature profile is 

compared with the left out temperature profile which represents at least one known 

solution to the design problem. 

Because it might be possible to yield the same quality in more than one way 

(multiple solutions to the problem) this last comparison becomes a sub-optimal way to 

benchmark the estimates. The best way to validate any estimate would be to run the 

process with the estimated conditions and then measure the properties of the final 

product; however this was not possible in this study. 

As a reference for future Sections, Figure 4.4 presents a summary of a Multi block 

PLS (MBPLS (Westerhuis, Kourti, and MacGregor, 1998» model between the operating 

conditions ZPBD, XPBD and YPBD. The model uses two components and the percentage 

captured variance per component are 97.82% and 0.58% for ZPBD, 73.52% and 17.34% 

for XPBD and 85.43% and 12.61 % for the YPBD (total R2 is 98% for ZPBD , 91 % for XPBD 

and 98% for YPBD). The residual SPE plots for each these matrices are shown in Fig. 4.4 

along with the super-score plot (the block weights are set to one for all blocks in this 

MBPLS model). 
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Figure 4.4 Super Score plot (tl-t2) and square prediction error (SPE) 

for a MBPLS model with ZPBD, XPBD, and YPBD 

4.3. Batch Trajectory Estimation using latent variable models via 

optimization with multivariate constraints 

In this Section, the complete time profiles for each of the process variables are 

considered, and the model inversion (or analytical) solution is presented with a thorough 

analysis of the null space containing the multiple solutions to the problem The process 

described in Section 4.2 is used throughout this Section as an illustrative industrial 

example. 
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The general methodology to solve the design problem is now segmented in two 

steps: i) determine which point or region in the latent space, represented by a score vector 

('Tnew) corresponds to the desired set of properties (Ydes) and ii) use this score vector to 

reconstruct the operating conditions using the correlation structure captured by the LV 

model of the ZPBD and XPBD spaces. 

4.3.1. Solving for Tnew that will yield Ydes 

Jaeckle and MacGregor (1998) proposed the direct inversion of the latent variable 

model, once the Y is reduced to full rank ('Tnew = (QTQrlQTYdes)' 

However, in some circumstances the new desired quality may not be entirely 

defined as equality constraints (where all values of Ydes must have a determined value) 

but may include inequality constraints. In such cases, the corresponding desired score 

vector is not easily found by exploration or inversion. To find the desired score vector in 

such scenario, the following optimization is proposed. 

S.t (4.7b) 

AQ'Tnew <b 

The elements of the diagonal matrix of Gl may be zeros for those elements of Y des 

which are not subject to equality constraints. These elements will have a corresponding 

weight in the A matrix and a corresponding constraint given in b. Also in this equation, 

the Hotelling's distance has been included as a soft constraint with a given weight p. This 

soft constraint is particularly useful for selecting a reasonable solution when there are 

multiple solutions to the problem (i.e. a null space in X). 
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This objective function is flexible enough to be used instead of the model 

inversion using the pseudo-inverse of Q and will give the same solution in the 

unconstrained case. 

G1 is usually a diagonal matrix and the diagonal elements will determine how 

much weight is given to each quality variable Y des in the solution. This weighting matrix 

can impose more weight on those properties which are of more interest to the customer. If 

all the variables OfYdes are equally important to the customer, then the weighting can be 

assign to be proportional to the fractions of explained variance from the PLS model (Eqs. 

4.8 to 4.10). This is the approach taken in this work. This will down-weight a variable 

which is poorly predicted by the PLS model. In other words, G1 in Eq. 4.7b is an 

indication of how well predicted each quality property is. This is important to consider in 

Eq. 4.7b since not all columns ofY have the same predictability. 

G . =1- RSSY; 
1,1 TSSY 

1 

(4.8) 

J 

TSSY = "(y2.) 
1 L.... ),1 

(Where Y has i columns and) rows) (4.9) 
j=1 

.1 A)2 
RSSY = "(Y .. -Y .. 

I L.... )J )~ 
j=1 

(4.10) 

In equations 4.8 to 4.10, the i index runs along the columns ofY (variables), and} 

index along the rows of Y (observations), TSSYj is the total sum of squares per variable 

(Y is mean-centered), RSSYj is the residual sum of squares per variable (sum of squares 

of the residuals after deflating the Y matrix with the PLS model, Resy = Y - TQ T). 
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4.3.2. Re-constructing the operating conditions xnew from Tnew 

The use of latent variable techniques in modeling the trajectories of the variables 

in a batch process and their effect on the final quality is well documented (N omikos and 

MacGregor, 1995a). And, as shown in Chapter 3, the reconstruction of the variable 

trajectories using a score estimate and the corresponding loadings from the PCA model is 

an accurate approach. These modeling features of a multi way latent variable model are 

now applied in solving the design problem. 

The use of complete trajectories in the design exercise is proposed originally in 

(Jaeckle and MacGregor, 2000a), however this is the first work where the concept is 

applied and investigated in detail. 

Once the new score vector (Tnew) is calculated (Eq. 4.7 or 4.7b), the process 

conditions are estimated (Eq. 4.11). It is assumed that these conditions will follow exactly 

the correlation structure of the data used as a training set for the PLS model, and 

therefore the value of SPE will be equal to zero (xnew = xnew)' 

Xnew = PTnew (4.11) 

The problem is now extended to consider a set of new operating conditions xnew, 

which will: 

a) Project to the desired point of the latent space (given bYTnew )' while 

b) Tolerating a SPE different than zero but within control limits. 

These requirements could be built into Eq. 4.7b since the relationship between 

Tnew and Xnew is known (given by the W* loading matrix, Eq. 4.13). Building such an 
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equation will result in a single optimization problem as in Yacoub and MacGregor 

(2004). 

However, in batch systems, the size of Xnew is easily in the order of hundreds of 

elements. Solving the optimization problem which will estimate the Xnew vector that best 

predicts Ydes subject to the PLS model (Eq. 4.1 to 4.5); and subject to the constraints in 

the Hotelling's T2 becomes difficult to solve when the SPE is free to be different than 

zero. 

As soon as the SPE is free to be different than zero, then all the solutions lying in 

the residual space (orthogonal to the plane defined by the PLS) that project in the same 

point of the latent space - given by 'Tnew - will become a solution to the problem. This 

situation coupled with the hard constraint in Eq. 4.3 makes the problem difficult to solve 

in one single objective function. 

Because of this, the problem was divided in two optimization problems: 

a) Estimate the best set of scores ('Tnew) that better describe Ydes subject to the 

constraint in the Hotelling's T2 (Eq. 4.7 or 4.7b), and 

b) Estimate the best set of operating conditions (xnew) that will project in the latent 

point specified by 'Tnew (l st term of Eq. 4.12), while being at a constrained distance from 

the plane (second term ofEq. 4.12) 

mIn {( 'T xnew - 'T new) T G 2 ( T xnew - T new) + (Xnew - Xnew ) T A (Xnew - Xnew )} 
Xnew 

(4.12) 



CHAPTER 4. DESIGN AND OPTIMIZATION OF BATCH PROCESSES 94 

In equation 4.12, G2 and A are weighting matrices (taken to be diagonal in this 

thesis); the hard constraint given by Eq. 4.3 is converted into a soft constraint in the first 

term ofEq. 4.12 where Txnew is the score vector corresponding to the Xnew column vector 

(given by Eq. 4.3 and written explicitly in Eq. 4.13). The second term of Eq. 4.12 

provides for a small SPE. In this term, xnew is the prediction of Xnew given by the model 

(Eq. 4.l4). Incorporating equations 4.13 and 4.14 into Eq. 4.2 gives Eq. 4.15 (where 

Tnew is the solution to Eq. 4.7b) 

*T 
T xnew = W xnew 

Xnew = PT xnew 

(4.13) 

(4.14) 

mm {( *T ,,)T (*T ") ( *T)T ( *T)} W xnew -Tnew G 2 W xnew -Tnew + xnew -PW xnew A xnew -PW xnew 
xnew 

(4.15) 

Equation 4.15 can further be manipulated to the form of a standard quadratic 

programming (QP) problem (Eq. 4.16): 

where 

H = W*G
2
W*T +A_APW*T - W'pTA+ W'pT APw'T 

I T =_"T G W*T 
Tnew 2 

(4.16) 

The weighting matrix G2 is taken as a diagonal matrix with ones in the main 

diagonal (since it is desirable to have all the elements in Txnew equal to those in Tnew ); this 
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matrix has as many columns and rows as components in the PLS model. Finally, the 

weighting matrix A is established (in a similar way as G1 was) using the fractional 

captured variance, in this case for the columns in X from the PLS model (Eqs. 4.17 to 

4.19). 

Because of the unfolding performed on the 3D batch data converting it into a 2 

way matrix (Fig. 3.1) the final X matrix contains the complete time profiles for each of 

the process variables. Therefore the PLS model will explain for each variable, those 

periods of evolution where there is structure and information and disregard periods of 

noise or random behavior. By weighting the second term of Eq. 4.16 with the time 

varying captured variance per variable; the formulation will accomplish better prediction 

for those periods of the batch which are well explained by the PLS model, down 

weighting those periods of the batch which are noise and with poor structure in each 

variable. 

Defining G2 and A in this way will enable the objective function to emphasize the 

accuracy of the solution to those variables of Y and X respectively, which are better 

explained by the model and hence making the solution robust to the presence of 

uncertainty which can be filtered through the PLS model. 

A. =1- RSSXi 

I TSSX
i 

(4.17) 

.J 

TSSX = "(X2.) (where X has i columns and) rows) 
I L...J ),1 

(4.18) 
)=1 

.J A 2 

RSSX = "(X .. -X.) I L...J ),1 ),1 

)=1 

(4.19) 

The design methodology as proposed up to this point and the possible options are 

illustrated in Scheme 2. When direct inversion is considered in step 4 and, either direct 
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projection or optimization with no constraints in xnew is considered in step 5, the solution 

is identical to the one obtained by model inversion technique. 

ri. Pre..process data 
J Mean<:elller 
l Scale 

Z. BuDd a PLS model 
Y,oTx<if 
x",rxp' 

Determine desired 
tinai prodnct spedtiatiom 

Ydi>II 

S. Retoustruct 
tbe variable trajectories 

i_ 

6. Verify feasibility 
of tbe solution 

CMck SPE for ilUl!l 

IOptimization ,vllb 
. rd Constraints 

4.7 

Optimtzatlonwlthl 
,-................. _ .... - ... j Soft Constraints ' 

E 4.71> 

L·""'!iWithOl.lt con 
~--~. 

Equival~nt 

Scheme 2. Steps to follow and computational options in the design of batch process 

operating conditions 

In Section 4.3.3, this design method illustrated in Scheme 2 is applied to the 

industrial process described in Section 4.2. In the first part of Section 4.3.3 

(unconstrained solution) the design is done via direct inversion for step 4 and direct 

projection for step 5. In the second part of Section 4.3.3 (constrained solution), the 

multiple solutions to the problem, as solved in the unconstrained Section, are explored. 

Some of these multiple solutions are computed with the use of hard and soft constraints 

in step 4, and their corresponding trajectories are estimated using Eq. 4.16 with no 
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constraints on Xnew . In the later part of Section 4.3.3, direct inversion is used in step 4, 

and bounds are imposed on xnew in step 5 to contrast the estimated trajectories with the 

ones obtained when constraints are considered in step 4 of the methodology. 

In Section 4.4, the whole technique is extended to include the derivatives of the 

variable trajectories. This extension affects the model building in step 2, throughout the 

reconstruction step 5. Inclusion of constraints on Xnew is still optional. Further 

modification to the technique using derivatives is considered in Section 4.5 to include an 

optimal criterion, and is illustrated in Section 4.6 where the optimal trajectories are 

estimated for an industrial emulsion polymerization process. The flow of the following 

Sections and the additions to the design technique are illustrated in Scheme 3. 

Including Derivatives of X 
(additoll done in sectioll 4. 4) 

4. Determine new 
score vector 

5. Reconstruct 
the variable trajectories 

xnew 

Step 6 

r ... 1 Dil" ect Inversi on T now:::: illY ( Q T Q ) Q T Y de. I 

; : .. ·· ..... 1 Optimization witll Hard Constraints Eq 4.71 
i i ...... · ..... ··pptimiZation wi th Soft Constraints Eq 4.7ij 

! i 
... L .. U 

Direct Projection Xnew=TXpT 
Equivalent 

i:· ..... 1 Optimization Approach Eq 4.161 
..... _ ... t~., 

;········ .... 1 With constraints on Xnew I 

l ................. Without constraints onxnew 

, Optimization Approach ind uding derivatives 
........ and an optimal criterion 

(aildiiion done in section 4.5) 
, 

i ..... ·l With constraints 011 Xn ... 1 

i· ... ·· .... ·IWithout COilstfaints onxnew I 

Scheme 3. Additions to the design techniqu.e done in Sections 4.4 and 4.5 
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The final design methodology is flexible enough to consider constraints in the 

desired specifications for the final product; and to estimate the operating conditions in an 

optimal way with the possible inclusion of operational constraints. 

4.3.3. Application to an Industrial Pulp Digester 

a) Unconstrained solution 

The product quality variables for the grades being considered (listed in Table 4.1) 

are plotted in Fig. 4.4. The design exercise is first performed (leaving out one grade at a 

time) with no restrictions to the Hotelling's T2 in Eq. 4.7b, using both quality variables 

(kappa and viscosity) and the [znewxnew] solution is computed as P'Tnew (Eq. 4.11) unless 

it is indicated otherwise. The final results are presented in their raw values (re-applying 

the time scale to the trajectories). 

The MBPLS model for each case is built with two principal components. From 

Fig. 4.5, it is clear that the design exercise for grades A and F represent an extrapolation 

to the model, the design for grades B, C, D and E require an interpolation. Figure 4.6 

illustrates the solution for grade C (which is representative of all other intermediate 

grades), and for grades A and F. In this Figure, each of the subplots contain the 

temperature trajectories and the corresponding scores for the new design grades and the 

existing grades used in the model; these plots clearly show how the design for grades A 

and F represents an extrapolation in the super-score spaces. 
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Figure 4.5 Grades of pulp being produced by the pilot batch digester 

In Figure 4.6, the dashed ellipses correspond to the 90% confidence limit around 

the origin (Nomikos and MacGregor, 1995b). This unconstrained solution is found to be 

identical to the one obtained by model inversion (Jaeckle and MacGregor, 1998). In the 

case of the design of an intermediate grade (Fig. 4.6 top); the solution appears to be very 

accurate; this does not happen when the desired grade scores are outside the normal 

region of operation (Fig. 4.6 bottom subplots). 
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Figure 4.6 Score Plots (0 model, 0 'tnew, +txnew) and Design Estimates ( dotted line), 

known solution (solid black) and model building grades (gray lines), for grade C 

(top), A (bottom left) and F (bottom right) 
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In the following sub-Sections, these "unique" solutions are analyzed and 

contrasted with the multiple possible solutions to the problem which are obtained when 

only one quality variable is considered. 

b) Constrained Solution 

Jaeckle and MacGregor (1998) recognized the existence of a unique solution if 

the effective rank of Y is equal to the number of latent variables in X. The solution 

obtained in the past Sections was unique because it was assumed that the Y had a rank of 

two. Table 4.2 lists the percentage captured variance for a PCA model fitted for XPBD and 

YPBD separately. From this Table it is clear that X is well explained with 2 latent 

variables and Y with one. 

Component PCAR2 PCA PCAR2 PCA 
(X1'lm) R2CUM (Y PHD) R2CUM 

(X"IID) (Y PIID) 
1 75.68% 75.68% 99.00% 99.00% 

2 17.54% 93.22% 1.00% 100.00% 
3 6.78% 100.00% 

Table 4.2 Percentage captured variance of X and Y in individual peA models 

Performing a variable selection exercise in the YPBD space (keeping only kappa) 

reduces the rank of YPBD to be one. The solution to the design exercise from Section 

4.3.2, after performing this variable selection, includes a null space since the effective 

rank ofY is smaller than the rank ofX. Therefore the inversion is projecting from a lower 

dimensional space to a higher dimensional space (Jaeckle and MacGregor, 1998; 2000a). 

Since XPBD is only one dimension bigger than YPBD, then the null space is a one 

dimensional space (a line). This is illustrated in Figure 4.7 for the design of grade A from 

grades B to F. The solid line in this plot represents the nun space contained in the score 

space of the T; any T new along this line satisfies Y des = Y des = QT new· 
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When a null space exists (infinite solutions), the solution obtained by the 

optimization of Eq. 4.16 with no constraints will depend on the initial guess; while the 

solution given by the pseudo-inverse of Q gives the one with minimal Euclidean norm 

(Jaeckle and MacGregor, 1998). This latter solution is not the best possible solution since 

Euclidean distances in the score spaces are not meaningful. A minimal Hotelling's T2, or 

Mahalanobis distance should be used. To find this point along the null space, equation 

4.7b is used instead of equation 4.7 (using a soft constraint instead of a hard constraint in 

the Hotelling's T2). This formulation is easy to solve since the Mahalanobis distance is a 

quadratic function as well. The two solutions along the null space are illustrated in Figure 

4.7. The minimum Euclidean distance is found with a circle of minimum radius which is 

tangent to the null space, the minimum Mahalanobis distance is found with an elliptic 

function (given by the variances of the scores) which is tangent to the null space. 

Figure 4.7 Null Space and Minimum Euclidian Distance (+) and Mahalanobis 

Distance (.) Solution along the Null Space in the Design of Grade A in the Pilot 

Batch Digester 

The calculation of the null space is given by (Jaeckle and MacGregor, 2000a), for 

a PCR model; however, it is easily modified for a PLS model. The null space can also be 

found and understood in a more intuitive way as shown below. 
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One condition where a null space will exist is when the effective rank of Y 

(referred to as k in the work by Jaeckle and MacGregor, 2000a) is smaller than the 

effective rank of X (referred to as A). The dimension of the null space is given by A-k, in 

such case; there are (A -k) dimensions in which T new can move without changing the 

predicted value of Y des. This can be expressed as, 

(4.20) 

In order for the movement (AT new) not to affect the prediction of Y des, and hence 

become a null space, it is necessary that, 

(4.21) 

the Q matrix has k rows and A columns, so Eq. 4.21 is a linear equation system 

with k equations and A variables, 

(4.22) 

If the variables ofY are all independent of each other (as it is in the methodology 

proposed by Jaeckle and MacGregor), then for k<A the system in Eq. 4.22 has more 

variables than equations and there is an infinite number of solutions along the space 

described by the linear system given by Eq. 4.22 (which depends on the values of Q). 

For example in the case of the pilot batch digester, if only kappa is considered (k 

is equal to one and A is equal to two) the directions of movement in the t1-t2 plane 
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(A'tnew ) that will not affect the predicted Ydes are given by: q ll l1T1 +q1211T2 = 0 (the null , , 

line in Fig. 4.7 is calculated in this way). This mathematical path to compute the null­

space gives the same solution as the one proposed by laeckle and MacGregor (2000) 

(which performs SVD on the Q matrix) ifthe columns ofY are orthogonal. 

If, in the same design exercise, both properties are considered in the Y space 

(kappa and viscosity): The effective rank of Y is being set to two and the problem has a 

unique solution. However, due to the ill-conditioning of the Y space, the presence of 

noise, and the fact that this desired grade is outside the range of grades previously 

produced at this site; the desired scores for this unique analytical solution will appear 

well outside the 99% condifidence region for the Hotelling T2. This situation may arise in 

any case where the selection of orthogonal columns of Y is not easy nor clear, and 

correlated columns ofY are included in the design problem. 

In a situation like this, there are two paths to follow: 

a) Consider an alternative solution (with minimal Mahalanobis distance) along 

any of the univariate null-spaces. These univaraite null-spaces are given by 

each of the equations in the linear system described by equation 4.22. If the 

solution is moved along the null space for variable i in ydes (ydes j ), the 

prediction for this particular variable will not change (ydes; = ydes j ). 

However, the prediction for the rest of the variables of ydes will change more 

or less depending on how correlated these elements are with ydesi 

(ydes . :;t: ydes. for any element J#). Because of this, it is clear that the SPE 
.I .I 

for Ydes (SPE = (Ydes -Ydes)T X (Ydes -Ydes)) given by any alternative solution 

along the univariate null-spaces will be different from zero. 



CHAPTER 4. DESIGN AND OPTIMIZATION OF BATCH PROCESSES 105 

b) Re-consider the rank of Y, compute a pseudo-null space and find an 

alternative solution along this space. From a separate PCA model on Y, it is 

clear that the effective rank of Y is one (Table 4.2). With this in mind, a 

pseudo-null space can be computed using the same mathematical steps 

proposed by laeckle and MacGregor (2000a), which involve a SVD on the Q 

loadings matrix. This space is referred to as a pseudo-null space because the 

problem has a unique analytical solution and any solution along this pseudo­

null space will have an SPE (SPE = (y des - Y des) T X (y des - Y des) ) different than 

zero (any solution along a true multivariate null space has an SPE = 0). 

However, this pseudo null-space exhibits two imporant characteristcs. First, 

the pseudo-null space (computed by SVD on QT as shown in (Jaeckle and 

MacGregor, 2000)) falls in between the existing univariate null spaces, and 

second, it represents the path of minimal increment in the SPE for ydes. 

The first of these concepts is illustrated in Figure 4.8. The two univariate null 

spaces (computed using the equation system defined by Eq. 4.22) are very close to each 

other (because of the high correlation between kappa and viscosity) and the pseudo-null 

space (computed by SVD on QT as shown in (Jaeckle and MacGregor, 2000a)) is 

between the two univariate null spaces. 

Because the Y is considered to be full rank, then this problem has a unique 

analytical solution (+) since the considered rank of Y is two, and X has 2 latent variables 

as well. 
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Figure 4.8 Univariate nun spaces, pseudo-null space and several solutions for the 

design exercise in Section 4.3.2 

Solving the problem by minimizing Eq. 4.7 and 4.7b yields other solutions (Fig. 

4.8), these solutions appear along the pseudo-null space; hard constraint solutions (II 

marker in Fig. 4.8) appear at the intersect of the ellipse corresponding to the constraint 
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and the pseudo-null space, the solution with soft-constraints (+ marker in Fig. 4.8) is at 

the point along the pseudo-null space, tangent with the smallest possible ellipse. Other 

solutions are illustrated as well (Fig. 4.8), such as the ones obtained if any of the 

univariate null-spaces are followed with soft constraints on the Hotelling's T2 (~and 

T markers in Fig. 4.8). 

It is interesting to notice that the unknown true solution (*), which is the score 

vector obtained when the known trajectory for Grade A is projected onto the PLS latent 

space, projects very close to the solutions obtained with soft-constraints (+, ~ and T). 

The temperature trajectories corresponding to these solutions (Fig. 4.9) are all close to the 

known traj ectory for grade A. 
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Figure 4.9 Temperature Trajectories for the several solutions on the nuH and 

pseudo-nuH space for the design exercise of grade A in the pilot batch digester. 

Symbols in leyend correspond to the points in Figure 4.8 
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From an operational point of view, there is no doubt that the solution obtained 

with soft-constraints along the pseudo-null space is the best solution of all. It falls 

between the solutions obtained by following either of the univariate null-spaces, and the 

difference among these (see Fig. 4.9) is very small. 

It has been established that either of the univariate null-spaces will keep the 

prediction of its corresponding y unchanged. If these univariate null-spaces do not 

overlap into a multivariate null-space, the resultant pseudo-null space is the direction of 

minimum change in the multivariate prediction of Y. This implies that: as the chosen 

solution moves along this pseudo-null space and away from the analytical one, the SPE 

between Y des and y des will still increase. This SPE might become considerable compared 

with the SPE of the observations used to build the PLS model. The 95% confidence limit 

on the SPE for the Y space from the PLS model is used in Figure 4.10 to contrast the 

increasing SPE of the solution obtained as this solution moves along the null space. This 

comparison is not entirely valid since the Y used to build the PLS model includes 

measurement uncertainty, and Y des does not. The marked points along the parabolic curve 

are the solutions along the pseudo-null space illustrated in Figure 4.8. 

As illustrated in Figure 4.10, an alternative solution along the pseudo-null space 

will give a SPE for Y des which is different from zero and above the SPE observed in the 

training data set. This will introduce doubts about the feasibility of the alternative 

solution (it might not yield Ydes in the final product). 

In this situation there is a tradeoff between the alternative solution along the 

pseudo null-space (which is close to operational practices already experienced but with 

SPE::j:O), and the analytical solution (which is far from known operational practices and 

with and SPE=O). 
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0.1154 

t[2] t[1] 

Figure 4.10 Combined SPE for solutions along the pseudo-null space in the design of 

grade A for the pilot digester, dashed line is 95% confidence limit from the model 

(symbols as in Fig. 4.8) 

In practice, the final decision will come from the analysis of the estimated 

solutions and how far is Y des from y des' If the difference between Y des and y des is within 

tolerance, then the solution along the pseudo null-space with minimal Mahalanobis 

distance is the best. 

It is important to point out that using univariate constraints (or bounds) on the X 

space (which might be another way to anchor the solution) will not solve the problem, 

and the estimates will not be better (Fig. 4.11) since these constraints will break the 

correlations in the data. 



CHAPTER 4. DESIGN AND OPTIMIZATION OF BATCH PROCESSES 110 

The estimates in Figure 4.11 are obtained when the initial temperature is bounded 

within the range in the training data (since this is ambient temperature) and the aligned 

trajectories are bounded to be within 2.5 standard deviations from the mean trajectories 

(total range of 5 standard deviations) throughout the rest of the batch run. 
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Figure 4.11 Score Plots (0 model, D 'tnew, +'txnew) and Design Estimates (dotted line), 

known solution (solid black) and model building grades (gray lines) for grades A 

(left) and F (right) in the pilot batch digester, imposing bounds on the solution 

In the previous exercise, the null space was oriented in such way that alternative 

solutions, closer to the origin, could be found (Fig. 4.8). However this may not be 

possible if the null-space (or pseudo-null space) happens not to be oriented towards the 

origin of the score space (Fig. 4.12). 
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In such case the solutions with soft constraints on the Hotelling's T2 will be far 

from the origin as well. Furthermore, any solution with hard constraints will have a large 

SPE (since it is moving away from the direction of minimal change for Y deJ. 
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Figure 4.12 Null space oriented away from the origin 

For batch processes particularly, this could be problematic since it was shown that 

when the score fell outside confidence intervals (Fig. 4.6), the predicted trajectories 

included very unusual structural characteristics; in spite of the prediction being 

completely on the plane (SPE equal to 0). This behavior of the predictions suggests that 

there is certain structure about the trends in the trajectories that is not being entirely 

captured by the multi-way model, a solution to this problem is suggested in the following 

Section. 
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4.4. Model Augmentation with Derivatives 

In Section 4.3, it was shown that some unconstrained design estimates exhibited 

undesired structural characteristics, such as drastic changes in curvature and "jumps". 

These undesirable solutions occurred when the solution in the score space lay well 

outside the 95% confidence region of the training data. The inclusion of multivariate 

constraints (in the Hotelling's T2 of the estimate) was seen to correct the problem and is 

much more effective than the inclusion of univariate constraints in the process trajectories 

(bounds) in pulling the solution towards the origin. 

From the above discussion one might conclude that the multi-way PLS model for 

the batch system lacked some structural information about the trend of the trajectories in 

order for it to be incorporated into the design estimates. It might be desirable then, to 

augment the model to include trend structure, such as the derivatives of the trajectories. 

Such additional information in the PLS model on the normal behavior of the derivatives 

might lead to design solutions with acceptable trend and curvature behavior even without 

introducing constraints. The reason for this is that by inverting the augmented PLS 

model, the derivatives of the solution would also be forced to be consistent with past 

operation performance (i.e. constrained to lie on the model plane) 

Information about the trends is contained in the derivative of the trajectories of 

the process variables with respect to its evolution index (EI). Mean centering the batch 

data X matrix (Fig. 2.1) as suggested by Nomikos and MacGregor (1994) removes the 

major non-linear component of the batch trajectories. If the derivatives are calculated 

with the raw batch data, then part of the trend information contained in the derivatives is 

related to this nonlinear component that is being removed from the trajectories. Mean­

centering and auto-scaling these raw-trajectory-based derivatives will further distort the 

trend information. Because of this, the derivatives of the mean-centered and scaled 

trajectories are the ones to be incorporated into the model. 
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As shown in Chapter 2, when a set of batch trajectories is synchronized (or 

aligned) the time itself becomes an important process variable to be included in the 

analysis (see Fig. 2.11, Section 2.5.2). The indicator variable chosen to align the rest of 

the variables against becomes a variable in the system which will be known a priori and 

will not change for all batches. For example, if the trajectories are aligned against 

conversion (conversion becomes the evolution index), then the conversion trajectory is a 

known vector for all batches. The fact that this evolution index (EI) is a known vector 

allows the derivatives of the trajectories (with respect to this EI) to be expressed as a 

linear function of these. 

For a data set consisting of I batches, with L initial conditions, and J variables 

being measured K times during the batch, the unfolded X matrix can be re-ordered as 

shown in Figure 4.13, 

Val' #J Trajectory 

(J-l)K+l' • JK L Var #2 Trajectory 2 K 
K+l"' .. 

z x 
I 

I 1'" • K 
Var #1 Trajectory 

Figure 4.13 Data Structure and re-ordered X to be used in the augmented model 

The derivatives of the trajectories (X) with respect to their evolution index, can 

then be expressed as (Eq. 4.23), where D is a JKxJK matrix; modifying D by adding L 

columns of zeros (D modified is referred to as D A) allows the derivative to be a function 

of the augmented [Z X] matrix (Eq. 4.24), DA is a JKx(L+JK) matrix (Appendix 3). 

(4.23) 



CHAPTER 4. DESIGN AND OPTIMIZATION OF BATCH PROCESSES 114 

d(X) = [Z X]DT 
d 

. A 
el 

(4.24) 

The reordering of X is not essential, but simplifies the construction of D and DA . 

For this particular application, these matrices are built using numerical derivatives as 

shown in Appendix 3. 

The steps to be taken now are: to build a PLS model using Z, X, [Z X]DA
T and Y, 

and then re-formulate the optimization problem to use this augmented PLS model; 

estimate the new operating conditions [z!ewx!ew J, and illustrate how the estimates 

compare with the ones obtained in past Sections. 

4.4.1 Building the augmented multi-way PLS Model 

The multi-way PLS model to be built has to incorporate three different types of 

data into the X matrix: the initial conditions, the trajectories and the derivatives of the 

trajectories. The best way to balance these three types of data is to scale each block of 

data to unit variance, as in a multi-block PLS model (Westerhuis, Kourti, and 

MacGregor, 1998). This implies equal importance of each block in the analysis. 

However, this scaling is left to the discretion of the user. 

To achieve this, first the Z and X matrices are mean centered and block-scaled to 

unit variance as shown in (Westerhuis, Kourti, and MacGregor, 1998), then the matrix of 

derivatives with respect to the EI is computed (with Eq. 4.24 and referred to as dX) and 

scaled by the factor in Eq. 4.25 for dX to have block-unit variance as well. 

1 
JK 

"" s~ . L. ,J 
j=1 

where S~,j is the variance of the column} ofdX (4.25) 
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Further, the weight of each block can be manipulated if necessary to improve the 

predictability ofY. Now, the PLS model between the augmented matrix [Z X dX] and Y 

can be fitted. 

This augmented model will capture the information about the structure of the 

trajectories and the structure in the derivative of the trajectories. Using this multi-way 

augmented PLS model with the product design formulations in Eqs. 4.7 and 4.13 is a 

powerful way to simultaneously incorporate multivariate constraints on the trajectories 

and the curvature structure of the trajectories of the estimated design (xnew) to yield 

product with a certain desired quality (Ydes). 

4.4.2 Re-Formulating the Objective Function 

Once the 'Tnew is estimated (as described in Section 4.3.1), the reconstruction of 

the initial conditions and the trajectories is re-formulated to include the derivatives of the 

trajectories. Consider the augmented column vector xanew (Eq. 4.26), the derivative of the 

trajectories (xnew) with respect to EI can be expressed as a function of xanew and DA (Eq. 

4.27). If the augmented PLS model is used to build H andfin Eq. 4.13, and Xnew in this 

equation is replaced by a new column vector containing xanew and the derivative of xanew 

with respect to EI, Eq. 4.13 becomes Eq. 4.28. 

d xanew -D ----=-. "-- - A X3new 
del 

(4.26) 

(4.27) 
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(4.28) 

In Eq. 4.28, Ha and/a are constructed as in Eq. 4.16 but using the loadings from 

the augmented multi-way PLS model; Ha is a (2JK+L) x (2JK+L) matrix, and/a has 

2JK+L elements. The weighting matri~A is constructed in the same way (Eqs. 4.17 to 

4.19) but using the augmented matrix [Z X dX]. G2 continues to be a diagonal matrix 

with ones, and as many elements in the diagonal as components in the augmented PLS 

model. This equation (4.28) can further be manipulated to be reduced to a standard QP 

form. Ha can be segmented into 4 sub-matrices Hi, H2, H12, and H21 as shown in Figure. 

4.14, and/a can be segmented also intoft and/2, withft being the first JK+L elements of 

fa, and/2 being the rest JK elements of/a. 

JK+L 
JK+L+ 1 

2JK+L 

1 

JK+L JK+L+l 

H 2JK+L 

H H 
1 12 

[JK+L x JK+L] [JK+L x JK] 

H H 
21 2 

[JI<. x JK+L] [JKxJK] 

i 

Figure 4.14 Segmentation of Ha 

By doing these segmentations, Eq. 4.28 can be manipulated algebraically to 

become Eq. 4.29, which has a standard quadratic programming form. 
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where 

n =H1 +D~H21 +HI2DA +D~H2DA 

if? = J;T + f2TD A 

4.4.3 Application to industrial Pulp Digester 

(4.29) 

117 

The results for the design of the temperature trajectories for grades A and F for 

the pilot batch digester; obtained by building an augmented multi-way PLS model and 

solving the optimization problem in Eqs. 4.7 and 4.29 (with no constraints) are illustrated 

in Figure 4.15. 
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Figure 4.15 Score Plots (0 model, 0 'tnew, +'txnew) and Design Estimates (dotted line), 

known solution (solid black) and model building grades (gray lines) for grades A 

(left) and F (right) in the pilot batch digester using augmented PLS model 
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In Figure 4.15 notice a) the lack of drastic changes in curvature in the trajectories 

(compare these with Figs 4.6 bottom and 4.11), and b) the scores are no longer outside 

the boundaries of the normal operating region, and thus, the Hotelling's T2 constraint is 

no longer required for these grades. 

The inclusion of the derivatives with respect to the EI into the multi-way PLS 

model improves the solution without the need of bounds or extra constraints because the 

trend structure of the trajectories is being modeled. And since the solution is close to the 

normal operation region it is no longer essential to explore the null-space to find a 

realistic solution. The optimization formulation allows for the SPE to be different than 

zero; the SPE for both cases is practically zero because no constraints were imposed on 

the X space. 

In the next Section, the objective function used to estimate the batch trajectories 

(Eq. 4.29) is further expanded to include an optimization criterion into the design. The 

extended formulation is illustrated by estimating the trajectories with minimal batch 

duration. 

4.5. Optimal Trajectory Design - Minimize Batch Length 

In the previous examples, the designs obtained with the multi-way augmented 

PLS models show SPE's virtually equal to zero. The general idea is now to tolerate a 

certain amount of model-mismatch and moderate extrapolations in the score space to 

allow some exploratory designs. These new exploratory designs will contain distortions 

in the trajectories to achieve some optimal criteria, as long as the SPE is kept within a 

conservative limit. Using the augmented multi-way PLS model approach should yield 

acceptable distortions to the trajectories since the curvature and trajectory structure from 

past historic data is still being passed to the design estimate. 
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Designing batches with shorter durations is always a welcome improvement to 

any batch process; the economical benefits of such an improvement are obvious. 

The effectiveness of any data-based optimization approach depends on the 

information content of the data, and the power of the method to extract such information 

from the data (i.e. poor methods like OLS require very well conditioned data; and 

powerful methods like PLS can handle ill-conditioned data), but at the end, the 

information must be somehow contained in the data. To optimize the design of a batch 

trajectory with respect to time requires a data set with batches having different lengths. 

These batches should be aligned (or synchronized), and at the end, the time usage 

trajectory must be added to the data set (as shown in Section 2.5.2), since this is precisely 

the trajectory which will be minimized in the new design. 

The objective function (Eq. 4.9) can be expanded (Eq. 4.30) to consider a weight 

imposed to the time usage trajectory, such that the new design must: a) have scores 

('1' xnew) close to those desired ( l' new) in the quadratic space (term 1), b) be at a minimal 

orthogonal distance from the model plane (term 2), and c) have as low values as possible 

for certain trajectories (e.g. time usage) (term 3). This formulation is nothing but the 

transformation of the hard constraints in the reconstruction of Xnew given by equations 

4.13 and 4.14, into soft constraints. 

mIn {( l' xnew - l' new) T G 2 ( l' xnew - l' new ) + (Xnew - Xnew ) r A (Xnew - Xnew ) + l1Xnew } 
Xnew 

(4.30) 

This objective function can further be manipulated to include initial conditions 

(Eq. 4.26) and have a standard QP form .The loadings to build H andfshould be those of 

a PLS model where the initial conditions and the variable trajectory blocks are considered 

in the X space (e.g. by scaling each block to unit variance and using this block scaled [Z 

X] as X in the PLS model). 
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min {I T T} - xanewHo xanew + fo xanew xanew 2 

where (4.31 ) 

Ho = W·G
2
W·T +A-APW·T - W'pTA+ W·pT APW·T 

T T ·T 
fo = 11-'t'newG 2W 

Finally, the derivatives can be integrated into the formulation by usmg DA 

(Appendix 3), Ho andfo from Eq. 4.31 and segmenting these two last matrices, as Ha and 

fa were, to compute n and ~ to be used in Eq. 4.29. 

If 11 contains positive values in those elements corresponding to the time usage 

trajectory, then the solution to this final formulation should provide a design that will 

yield the desired quality, with a low usage of time, while keeping a conservative 

Mahalanobis distance from the existing training data, and a conservative orthogonal 

distance to the model plane. This approach is illustrated in the following Section with the 

use of an industrial data set from a polymerization process. 

4.6. Industrial Example: Optimal Trajectory Estimation for an Emulsion 

Polymerization Process 

The process consists of a semi-batch reactor, where an emulsion polymerization is 

executed. The data set, provided by Air Products and Chemicals Inc. consists of 55 

batches; for each batch there are 11 initial conditions (Zl, ... ,Zll)' 9 variable trajectories 

(conversion, xl, .. o,xs), and 13 quality characteristics (Yl, ... ,Y13). The trajectories for such 

process are illustrated in Figure 4.16. Prior to the alignment, a low-pass median filter is 

applied to smooth out some noisy peaks in the data. The trajectories are then aligned with 

respect to the conversion (sampling every 0.1 % for the first percent, and every 0.5% for 
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the rest of the batch, total 208 samples per batch); the time usage trajectory is computed 

as shown in Section 2.5.2, and this trajectory is added to the aligned data set (Fig. 4.17). 
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Figure 4.17 Aligned Process Trajectories and Time Usage for the emulsion 

semi-batch process 

The task now is to design a new product which has to satisfy the following 

requirements: 

Yl to Y6 and Ys are to be kept in normal range 

Y7 = Y7des and Y9 = Y9des 

YlO< Y10const, YlI< Yllconst, Yl2 < Y12const and Y13 < Y13const 

With the minimal possible use of time 

These equality and inequality constraints are included into Eq. 4.7b, which is 

solved to estimate 'tnew. Once the 'tnew is estimated, the trajectory design problem is 

solved by minimizing Eq. 4.31. 
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Several optimal trajectories are shown in Figures 4.18 and 4.19. Besides the usage 

of time, the solutions differ in their orthogonal distance to the plane (Table 4.3) which is 

still being kept at a very conservative value. Case 1 is the no-constraint design case, case 

2 through 5 use the optimization criterion (Eq. 4.30) with increasing weight on time 

usage (i.e. increasing 11). As the time usage is minimized the orthogonal distance to the 

plane increases. This is expected, since the structure in the trajectories is being distorted 

slightly to achieve shorter times. This distortion, however, is a structured distortion which 

obeys as much as possible the structure captured in the PLS model. This result is very 

significant, since it means that the deviations from the plane are being controlled and 

performed in a structured manner, especially in the way the curvature structure is being 

kept due to the inclusion of the derivatives (since there are no unexpected jumps in the 

solutions). Figure 4.19 illustrates with more detail how the different variable trajectories 

are being adjusted, allowing less time usage while maintaining the structure from the 

augmented multi-way PLS model; and since the structure is being kept the orthogonal 

distance to the plane is kept minimal. The fact that all the trajectories are being adjusted 

simultaneously proves that the solution is not just focusing in lowering the time usage 

trajectory alone, but performing adjustments in the entire solution for it to be consistent 

with the multivariate correlations among the different time profiles, which are captured in 

the augmented multi-way PLS model. 

Another important fact is that, all the five solutions project to the same point of 

the latent space, 'Txnew; and for the five cases, this point of projection in the score space 

corresponds to the desired one ('Txnew = 'Tnew). This is achieved by adjusting G2 along 

with 11 in equation 4.30, and it is very important to do so; since the primary objective of 

the optimal design exercise is for the final product to keep the desired quality 

characteristics in spite of the adjustments done to the variable trajectories (the G2 

weighting matrix has to be incremented along with 11 to keep 'Txnew = 'Tnew). The shape of 

the solutions plotted against time (and returning conversion as a process variable) is 

shown in Figure 4.20. 
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Case SPE SPE 95%, 
c.1. 

1 4.24E-019 6.88 

2 0.01 6.88 

3 0.04 6.88 
4 0.15 6.88 

5 0.6 6.88 

Table 4.3 Square prediction error for the five different optimal solutions 

In this illustrative industrial example, the time usage (Section 2.5.2) is a key 

concept in order to find the optimal design. The alignment exercise should uncover the 

differences in time usage in the data set. The optimal trajectory design method proposed 

in this work can also satisfy other optimality criteria like a minimal consumption of a raw 

material; the only factor to adjust are the values given to the 11 weighting vector. The 

solution (if close enough to the plane) is guaranteed to have the same correlation structure 

as the historical data and therefore not to show any abnormal behavior that may turn the 

design into a non-feasible solution from a practical point of view. Even though in this 

example multivariate constraints were not required, they may also be imposed on the 

overall Hotelling' s T2, or to the Hotelling' s T2 of one of the blocks considered (in which 

case, this summary statistic must be computed with the complete variance-covariance 

matrix ofthe block-scores because these are not necessarily orthogonal). 

The selection of the final solution to be implemented may depend on physical 

constraints of the system or on economical constraints, or may very well be determined 

by the scheduling problem. The implementation of the final solution should be done with 

care; the uncertainty in batch systems is time varying as well, and since the estimate for 

some periods in the trajectories may be more uncertain than for others, it is desirable to 

have confidence regions for the design estimate. The development of confidence regions 

for the design estimates is not obvious, and requires careful study since these operational 

windows must be multivariate (the trajectories are not independent from each other). 
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In the exercise of designing batch trajectories, the uncertainty in modeling Y is as 

important as the uncertainty in modeling X, both sources if uncertainty should be taken 

into account in the development of confidence regions for design estimates, in the 

variable trajectories and in the initial conditions. The construction of uncertainty regions 

is not considered in this thesis, but is left as an open problem for future research. 

4.7. Batch Modeling and Troubleshooting using Augmented Models with 

Partial Derivatives 

In past Sections, the derivative of the variable trajectories with respect to their 

evolution index (El) was included, along with the initial conditions and the trajectories 

into a multi-block, multi-way PLS model. The addition of the derivatives increased the 

information about the X space including extra information about the curvature structure 

of the trajectories. This became useful when the model was inverted to estimate new 

trajectories, since the structure ofthe derivatives was also included in the estimates. 

Since all the analysis is already done from a multivariate perspective, then it seem 

sensible to include the numerical partial derivatives of the trajectories with respect to 

each other, and examine the effects of doing so in the predictability of Y. This analysis is 

important, since the inclusion of extra information in the X space might yield to overfit in 

the Y space. Figure 4.21 illustrates how the R2Y cum increases and Q2Y cum is kept 

roughly in the same value for the same number of components, as more derivatives are 

included into the PLS model (for the emulsion polymerization industrial data set used in 

Section 4.5). Even though the R2Y increases (from 68% to 88%) not much is gained in 

the prediction of Y. The power of using augmented models with derivatives is (as 

illustrated in the past Sections) the fact that it brings more structural information about 

the X. This is illustrated in Fig. 4.22, where the Future Prediction Sum of Squares (Eq. 

3.15) with and without the model augmentation with the derivatives is plotted for all 

variables in the emulsion polymerization data. In general, the FPRESS decreases with the 
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use of derivatives in the model, which means that the accuracy of prediction for the X 

improves. 

The numerical partial derivative is a non-linear function of the trajectory; a very 

rough partial derivative can be linear if the local difference is taken into account 

(numerical derivative with one point), however this approximation will be very poor due 

to the presence of noise in the measurements. In this work, the numerical derivatives 

were calculated with 3,4, and 5 (for the partial ones) points to smooth out the presence of 

noise in the data. This nonlinear relationship between the trajectories and their numerical 

partial derivatives makes it difficult to include these derivatives into the objective 

function to be minimized in the design exercise (as it was done in Eq. 4.28), turning the 

linear optimization problem into a non-linear one. 
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Figure 4.21 R2Y and Q2Y as partial derivatives are included in the model 
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4.8. Conclusions and Future Work 

The design methodology proposed by Jaeckle and MacGregor (1998) was applied 

in the design of complete batch trajectories along with their initial conditions. In certain 

cases it is possible to have more than one solution to the problem. Several ways to 

constraint the solution were presented and the final estimates appear to be very close to 

the known solution from the original data. 

A parallel new design approach is also proposed to estimate the operating 

conditions of a batch process. The new approach uses historical data and an augmented 

multi-way PLS model, within an optimization framework. The use of multi-way PLS 

models augmented with the derivatives of the trajectories with respect to its evolution 

index is a powerful technique in the design of batch trajectories since it allows for the 

trend structure to be taken into account, and the constraints considered in the former 

technique might not be necessary. Derivative augmented multi-way PLS models could 

also bring in some benefit when the batch control problem is solved with latent variable 

regression models, where robustness is crucial and may require more trend structure to be 

considered into the model. 

If required, in any of the two approaches, multivariate constraints (constraining 

the Hotelling's T2) proved to be much better than univariate constraints (bounds). 

The optimization framework proposed, coupled with a good alignment technique, 

provides a way to compute designs that will meet the minimal time consumption optimal 

criteria. The two industrial cases presented in this work clearly show that, the proposed 

design and optimization technique is a feasible solution to some of the critical needs in 

the area, since the techniques suggested here will allow a shorter time to market for a new 

product, and an increase in throughput as welL 



Chapter 5 

Product Transfer Between Sites using Joint-Y PLS 

This chapter presents an extension to the work by Jaeckle and MacGregor (2000b) 

in solving the product transfer problem. More specifically in addressing the problem of 

calculating the operational conditions for a plant in order to produce a product of the 

same quality as the one being produced at another site. The methodology proposed by 

Jaeckle and MacGregor (2000b) does not consider in the calculations all the data 

structures involved in the problem and particularly the operating conditions from the 

source plant. The Joint-Y PLS model is presented as an alternative to solve this problem 

using all the available data. 

5.1. Introduction 

Moving the production of a certain grade of product from one site to another is an 

increasing need in industry since it results in significant cost reductions in the supply 

chain. Finding new opportunities in the product-manufacturing network represents a 

significant opportunity area for cost reductions in the strategic planning exercise. The 

scale-up of a product from pilot plant to an existing site can also be seen as a product 

transfer problem. This practice is most important for corporations who strive on the 

manufacturing of new products such as the specialty chemicals. The successful product 

transfer in industry requires a considerable amount of time and expertise, and it is a very 

challenging task. The use of a deterministic model of the plant is a viable solution if such 
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a model is readily available and it is validated to accurately model the behavior of the 

process. However, such models are costly, lengthy in their development and they require 

a degree of high complexity (in order to model all the sources of uncertainty). These 

factors make a deterministic model prohibitive in many cases. 

Latent variable empirical models built with historical data have proven their 

efficiency and robustness in modeling the region in which a process can operate (Garcia, 

Kourti, and MacGregor, 2003). Such models were used in Chapter 4 to design the 

required process conditions for a plant to yield a desired set of characteristics in the final 

product. 

laeckle and MacGregor (1998; 2000a; and 2000b) presented the concept of the 

null space. In practice this represents an operational window which corresponds to a set 

of allowable process conditions resulting in the same product quality. This concept is 

later used in a univariate fashion in the work by Zhou et al. (1999) to determine the 

conditions for a bioprocess; in that paper the operational windows are determined by 

plotting pairs of process variables. However, this approach is limited since the number of 

pairs needed to include all the variables in an industrial site is very large making it 

impractical. Furthermore, the full correlation structure will not be taken into account. 

Chen and Wang (2000) use the same approach but with multivariate operational regions 

defined by the scores of a PCA model done with historical data from a Fluidized 

Catalytic Cracking (FCC) unit. In their work contribution plots are used to interrogate the 

model and complement their engineering knowledge about the unit in order to make 

grade changes in the process; no mapping or regression is done against the product 

characteristics. Lakshminarayanan et at. (2000) approach the product design problem 

using the same strategy as in the work by laeckle and MacGregor (1998), but with the 

use of a neural net to introduce non-linearity in the PCA model. laeckle and MacGregor 

(1998) used a nonlinear PLS to account for non linearities as well. 
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To the author's knowledge there is no other published work trying to solve the 

product transfer problem beyond the solution proposed by Jaeckle and MacGregor 

(2000b). 

5.1.1. Product Transfer using Model Inversion 

The methodology presented by Jaeckle and MacGregor (2000b) to transfer 

product from one site to another is an extension to the product design methodology (see 

section 4.1). In this problem the "desired" grade has already been produced at another 

(source) site and the operating conditions in the target plant are the ones to be estimated 

(E.g. It is desired to produce in plant B one of the grades already produced in plant A, Fig. 

5.1). The scenario now includes more data structures than the ones available in the 

product design case (where there is only one X matrix, one Y matrix and the Ydes vector). 

Here we have a case (Fig. 5.1) where the number and type of process variables describing 

the operating conditions in the two plants maybe different; the number of grades 

produced in the two plants may differ too. Such data structures are easy to find in any 

scale-up scenario, where the number of variables measured in the pilot plant is not the 

same as the ones being measured in the full scale equipment. The number of observations 

differs as wen since the pilot plant might have produced a wider variety of grades than 

the industrial scale one. 
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Xa Ya 

Xb Yb 

I .-
ybT 

des 

Figure 5.1 Product transfer from plant A to plant B 

In these matrices (Xa, Ya, Yb and Xb) each multivariate observation (row) 

corresponds to a grade produced in that site. Each of these rows can be obtained as the 

average from several normal operating conditions (NOC) taken from historical data on 

the same grade. This consideration is important because the correlation structure of 

interest in the product transfer (and also in the product design case) is the one defined by 

the purposeful changes in the operating conditions to achieve a difference among grades. 

This is different from the correlation structure modeled for monitoring which is defined 

by the common unwanted disturbances entering the process during production of anyone 

grade. Taking the average conditions from several samples in the plant for a certain grade 

should work as a low-pass filter to remove the common cause variation from the data and 

leave only those wanted changes which will achieve a drift in the characteristics of the 

final product (from those of grade K to those of grade L). Once the data undergoes this 

pre-processing, the methods can be applied and to compute the new conditions for either 

plant. 

The method proposed by Jaeckle and MacGregor (2000b) uses an extended PCR 

(EPCR) model of Y, and the inversion of the this model to compute the new operating 
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conditions. The method can be summarized in seven steps (to transfer from plant A to 

plant B): 

i) Mean center and scale Xb with respect to its own mean and standard 

deviation, and mean center [~] using the mean and standard deviation 

from Vb. Since Xa is not used, the scaling of this matrix is not an issue. 

ii) Analyze of the quality data [Va Yb] to determine if Ya and Yb share the 

same correlation structure. This is done by fitting a PCA model with Yb 

and projecting Ya thru this model, the SPE for those observations ofYa to 

be transferred should be low and within confidence limits. Eliminate any 

grade with very large SPE values, since there is no evidence that they can 

successfully be made in plant B. 

iii) Perform an SVD on Xb and the extended [~:] such that both matrices 

can be modeled as: 

(5.1) 

[va] _[UyaJ. . T ~ - U :Ey Vy 
Yb yb 

(5.2) 

iv) Estimate a regression coefficient matrix between the latent variables ofXb 

andYb 

(5.3) 
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v) Invert the EPCR model to estimate USnew usmg the scores UyMes 

corresponding to the grade to be transferred in Ya (U~Mes is a row from 

(5.4) 

vi) Find the null space (if any) as, 

(5.5) 

where A is an arbitrary vector and G2 is defined by SVD on RB 

(5.6) 
(B x C) (B x C)(B x (B-C)) (B x C) (C x C) 

where B and C are the number of significant components of Xb and Yb 

respectively. If C < B then the null space exists as a set of multiple 

solutions in X which will give the same prediction ofY (see section 4.3.3 

of this thesis). 

vii) Estimate xBnew using the SVD loadings (V s) and the new score augmented 

by the nun space (if any). 

(5.7) 
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This methodology is in essence the same as the one used in the product design 

exercise, except for the use of the augmented [~:] matrix, By using this augmented 

matrix, Jaeckle and MacGregor (2000b) recognize the importance of the common plane 

defined by the joint quality matrix, and the need to use both Y matrices to better estimate 

this common plane from the data which (in these scenarios) will be poor in observations 

since the data set includes one observation per grade. This common plane defined by the 

joint quality matrix is a key concept in the development of the JYPLS model as it will be 

shown further in section 5.2. 

5.1.2. Motivation for a technique which uses all data structures 

In the method suggested by Jaeckle and MacGregor (2000b), the data from the 

source plant (Xa in Fig. 5.1) is not used at all. Before any attempt to even consider this 

matrix, a justification is needed to do so. Consider the scenario where plant A and plant B 

already produce a good number of common grades (Fig. 5.2, Yac and Ybc are the same 

grades, and they are produced in both sites) and the one non-common grade from plant A 

is to be transferred to plant B (Fig. 5.2). In such case, a PLS model could be fitted (Fig. 

5.2) using Xa as X, and Xb as Y because each of the rows in both sites correspond to the 

same grade (Yac = Ybc). Once fitted, the model (Xb=f(Xa)) can be used for prediction, 

and the conditions corresponding to the grade to be transferred can be used to obtain the 

sought operating conditions in plant B (xbnew= f (xanc). This approach is perfectly valid 

and makes no use whatsoever of the Y matrices. All the information required to do the 

transfer is in the Xb and Xa matrices. 
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Xa Ya c Xb 
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T
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Figure 5.2 Schematic use of PLS to directly estimate the conditions in plant B from 

those in plant A if enough common grades exist, with no use of the Y matrices 

In the above example, there is no doubt that Yac and Ybc will have the same 

correlation structure since these are equal. If a PCA model is fitted with Yac, the scores 

will fall in the same place as those of Ybc after being projected into the latent space 

defined by the loadings of this PCA model. If the grades produced in site A and site B 

are not common but share the same correlation structure, then the scores for each plant 

will span a region of the same latent plane. This suggests that, there should be a way to 

transfer information from Xa to Xb thru the latent space defined by the Y's; and this new 

approach should incorporate Xa into the solution. 

A novel latent variable regression method is now presented to achieve this goal: 

the Joint-Y PLS model. First its conceptual formulation is presented and an algorithm to 

estimate the parameters (loadings) for the model is presented and validated; then, the 

transfer problem is re-examined and solved with a JYPLS model. 
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5.2. The Joint-Y PLS (JYPLS) Model 

From a multivariate regression perspective, the most natural model to build with 

the four data matrices available (XA' Y A, XB and Y B) are two separate PLS models that 

will map correlations and higher directions of variance between each set of operation 

conditions and grade characteristics (Fig. 5.3). And since the basic assumption is that 

matrices Ya and Yb should define the same plane, then the loadings Qa and Qb for the 

two PLS models built should be just a rotation of each other and can therefore be defined 

by one single loading matrix Qj, where the sub index j stands for ')oint". This Qj defines 

the plane described by the Joint Y composed of Ya and Yb (Fig. 5.4). This latent variable 

regression technique where the plane of the Joint-Y matrix is being modeled is referred to 

as the Joint-Y PLS model (JYPLS). 

r-- -

Xb Tb Ub Yb 

"""- -

Figure 5.3 Loadings and Scores for two separate PLS models 

Dimensionally, the only restriction in the JYPLS is that Ya and Yb must have the 

same variables defining the columns. 
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Figure 5.4 Loadings and Scores for the Joint-Y PLS model 
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The JYPLS model should not impose restrictions on the number of columns of Xa 

and Xb, nor on the number of observations per site. The number of sites is not a 

restriction as well, however for simplicity; the rest of the analysis in this chapter is done 

assuming two sites. 

The loadings for the Xa and Xb matrices (Pa, Wa, Pb, Wb,) have the same 

interpretation as in the PLS model, but with respect to the combined plane mapped by the 

Joint Y matrix and defined by the loadings matrix QJ; the Wa and Wb loadings define 

the direction of variation in the X space most correlated with the variation in the Y space 

defined by QJ. The reader is referred to the work by Burnham et al. (1999) for deeper 

insight in multivariate regression models. The JYPLS model is defined by equations 5.8 

to 5.13. 

[Va] [Ta] T 
YJ = Yb = Tb QJ + EYI 

(5.8) 

Xa = TaPaT +EXa (5.9) 
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Xb =Tb PbT +EXb (5.10) 

Ta=XaWa* (5.11) 

Tb =Xb Wb* (5.12) 

u, =[:]=YJQ, (5.13) 

Where Wa * and Wb * are transformations of the loadings to compute the scores 

directly from the original Xa and Xb (Eq 5.14 and 5.15), and EYJ, Exa and EXb represent 

the prediction errors. And YJ and UJ are the joint matrices, 

Wa • = Wa(PaTWafl 

Wb* = Wb(PbTWbfl 

(5.14) 

(5.15) 

The JYPLS model makes sense from a practical point of view. If two plants are 

producing the same product family (e.g. film grade polyethylene), then their processes 

will involve similar physical and/or chemical phenomena, although these may happen in 

different types of units in each plant (separation columns in plant A and flash batteries in 

plant B) or in units with different configuration. Therefore, the two plants will have a 

common score space for their products (Ya,Yb). Because the process variables measured 

in each site are also related with the common plane (T J) defined by the grade family, then 

the variables between plants should be related as well. This brings the concept of 

observability: it is required for the differences between grades to be observable from the 

measured process variables in each site, even if the variables differ in nature. For 

example, plant A might be measuring the viscosity in a vessel while plant B measures the 

torque resistance in the agitator, these two variables are related to the resistance to motion 

of the mixture, and surely both will explain the same chemical characteristic in the 

product related to this intensive property of the mixture (e.g. Mw), and will appear in the 

same component of the model. 
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5.2.1. Parameter Estimation Approaches 

Having defined the JYPLS model in (5.8) to (5.13), its parameters (QJ, Pa, Pb, 

Wa and Wb) must be estimated from the data on the two plants (Xa, Xb, Ya and Vb). 

The natural path to follow in order to find a solution to the parameter estimation problem, 

is to position the JYPLS method within the framework established by Burnham et al. 

(1996), this requires that one define the objective function to be maximized in order to 

obtain the loadings matrices. 

This objective function can be written (Eq. 5.16) as a variation of the objective 

function for the PLS model (Burnham, Viveros, and MacGregor, 1996). The objective is: 

S.t. 

ta=XAwa 

tb = XBwb 

Ilwall=a 

Ilwbll=j3 

(5.17) 

In equation 5.17, the weight vectors (wa and wb) are normalized to some values 

(a and ~). However, it is not clear at this point, to which value these vectors should be 

normalized. The normalization of these vectors becomes clear in the analytical solution to 

the optimization problem in equation 5.17. 

To analytically solve the problem in Eq 5.17 in a similar way as it is done for PLS, 

a common weight is defined (Eq 5.18). The norm constraint imposed to the w loadings 

can be included into the objective function by the use of a lagrangian multiplier, only if 

this norm is equal to one (see Appendix 4). This gives a solution in the form of a 

eigenvector-eigenvalue problem (Eqs. 5.19) where wa and wb are segments of the w 
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vector, which is the eigenvector corresponding to the largest eigenvalue of the left hand 

matrix in Eq. 5.19 which involves all the data structures available. 

w=[::l 
[

XATYAYATXA 

XBTYBYATXA 

(5.18) 

(5.19) 

The solution obtained (Eq. 5.19) reduces to the ordinary PLS solution (5.20) in 

the absence of one of the sites, or in the case where both sites have the same number and 

nature of columns and can be joined into one X and one y. 

(5.20) 

Once the wa and wb loadings are computed, it is easy to compute the rest of the 

vectors for the JYPLS model. 

ta = Xa wa (waTwafl (5.21) 

tb = Xb wb (wbTwbfl (5.22) 

qJ =[~ n:: l[[ = n:: lr (5.23) 

[ na 1 [Y a 1 ' -I ub = Yb (b(hqJ) (5.24) 

In order to deflate, the p vectors can be also computed as: 

(5.25) 
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(5.26) 

The computed vectors wa, wb, ta, tb, qJ, ua, ub, pa and pb can now be stored 

and the data matrices deflated (Eqs. 5.27 to 5.30) before computing the loadings vectors 

for the next component. 

Xa = Xa-tapaT 

Xb = Xb-tb pbT 

Ya= Ya-taq/ 

Yb = Yb - tb qJ T 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Solving equation 5.19 using SVD and then following the calculations in equations 

5.21 to 5.30 is a way to build a JYPLS model one component at a time. 

Just as with ordinary PLS, an iterative NIP ALS algorithm can be formulated that 

will converge to the solution of the above eigenvalue-eigenvector problem. The major 

advantage of the NIP ALS algorithm would be that it can easily handle missing data in the 

X and Y matrices. 
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4 

3 

Figure 5.5 NIP ALS modified to compute loadings the JYPLS model 

The NIPALS algorithm for the JYPLS problem is (Fig. 5.5): 

1. Initialize ua and ub with the first column ofYa and Yb respectively 

2. Regress Xa and Xb onto ua and ub to compute wa and wb as: 

wa = XaT ua(uaTuarl 

wb = XbT ub(ubTubfl 

Normalize wa and wb as: 

wa 

(5.31) 

(5.32) 

(5.33) 
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3. Regress Xa and Xb onto wa and wb to obtain fa and tb (Eqs. 5.21 and 5.22) 

4. Regress the joint Y onto the joint t vector to obtain the joint q (Eq 5.23) 

5. Regress Ya and Yb onto qJ to re-compute ua and ub (Eq. 5.24), convergence 

is checked with respect to the original values of ua and ub if convergence 

fails, use new values ofua and ub and go to step 2. 

6. If converged, calculate pa and pb for deflation (Eqs 5.25 and 5.26) 

7. Deflate Xa, Xb, Ya and Yb (Eqs. 5.27 to 5.30) and estimate next component 
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The algorithm above is identical to the one used to build two separate PLS models 

with the exception of step 4, in which the qJ loading is computed with the joint score 

vector. This step will achieve the main goal ofthe algorithm which is to find the common 

plane defined by both Ya and Yb, since both matrices are being projected simultaneously 

on to the score space. 

In the case of the NIP ALS algorithm for PLS, it is possible to prove that, at 

convergence, the algorithm will provide the same solution as the eigenvector problem in 

Eq. 5.20; provided that the scaling of the weight vectors (Eq. 5.17) is done properly. 

Appendix 5 contains the mathematical proof that, the modified-NIPALS algorithm will 

provide the same eigenvalue-eigenvector solution as the one in equation 5.19 if the scalar 

values a] to a4 (Eq. 5.34) are equal. 

(wa Twarl(t~tJ rl(q~qJ rl(ua Tuarl 

(wbTwbrl(t~tJrl(q~qJrl(uaTuarl 

(waTwarl(t~tJrl(q~qJrl(ubTubrl 

(wbTwb rl(t~tJ rl(q~qJ rl(ubTub r 1 

= (5.34) 

For these scalars to be equal the norms of wa and wb should be equal as well as 

the norm of ua and ub. Since wa and wb are being normalized jointly (Eq. 5.33) then 

their individual norms will depend partially on the number of variables per site (and on 

the degree of correlation of each site with it's respective y). The norms of ua and ub are 

an indication of the total leverage per site with respect to the model; this is highly 

dependant on the number of observations per site. This condition (all a's to be equal) as 

well as intuition (since the JYPLS model is allowing Xa and Xb to have different number 

of columns, and each site to have different number of observations) suggests that a 

special scaling is required in the pre-processing of the data. A similar scaling as the one 

required for a multi-block model (Westerhuis, Kourti, and MacGregor, 1998) is proposed. 
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After mean centering each matrix individually, all elements in the matrices should 

be scaled as: 

Xa .. 
Xa.= 1,.1 

',J ~. 
la xma 

(5.35) 

Xb .. 
Xb. = I,J 

1,/ -J' . Ib x mb 
(5.36) 

Ya .. 
Ya .=_1_,.1 

I,J r;-
\j la 

(5.37) 

Yb .. 
Yb. = __ ',_J 

',.I .Jt: (5.38) 

where ia and ib are the number of observations in plant A and B respectively, and ma and 

mb are the number of columns in Xa and Xb respectively. Ya and Yb must have the same 

number of columns; these matrices do not require scaling with respect to their number of 

columns. 

A test set is prepared with no noise, in which Xa and Xb are equally explained by 

the 3 component JYPLS model (R2Xacum = 1 and R2Xbcum = 1) as well as Ya and Yb 

which are also equally captured by the model (R2Yacum = 0.95 and R2Ybcum=0.96), the 

test set contains 100 observations for site A and 50 observations for site B; 8 variables in 

Xa and 13 in Xb; Ya and Yb contain 6 columns. For this test, and applying the suggested 

scaling, Ul and U2 were equal to 0.33 while U3 and U4 were equal to 0.34 (both values for 

the first component). In spite of the strong differences in the number of observations per 

site and variables in each of the X spaces the loadings given by the modified NIP ALS are 

a very good approximation of those given by the SVD (by computing the eigenvectors 

and eigenvalues of the far left hand matrix in Eq 5.19). This verifies that the suggested 

scaling in Equations 5.35 to 5.38. does indeed make the NIPALS solution equivalent to 

the eigenvector problem in Equation 5.19. 
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The loadings for the first component computed by SVD are compared with those 

obtained with the modified-NIPALS algorithm in Table 5.1. The actual values ofXa, Xb, 

Ya and Yb for the test problem are available in the electronic supplement to this thesis. 

For 1st Mod- SVD 
Component NIPALS 

wal 0.36 0.37 

waz 0.2 0.2 

wa3 0.36 0.37 

wa4 0.39 0.4 

wa5 0.2 0.21 

wa6 0.06 0.06 

wa7 0.06 0.06 
wag 0.06 0.06 

wb1 0.29 0.29 
wbz 0.13 0.12 

wb3 0.16 0.16 

wb4 0.31 0.3 

wb5 0.29 0.29 

wb6 0.01 0.01 

wb7 0.13 0.12 

wbg 0.23 0.22 

wb9 0.33 0.32 

wb JO 0.13 0.13 

wbll 0.01 0.01 

wb12 O.oI O.oI 
wb J3 0.01 0.01 

Table 5.1 Values forwa and wb obtained with modified-NIPALS and with SVD for 

a JYPLS model fitted to the test set in Appendix 6 

S.3. JYPLS Model Diagnostics 

The JYPLS model has been conceptually presented, its mathematical foundations 

formulated as well as algorithms to compute its parameters. The proper diagnostics 

should now be established in order to asses the quality of a model. Such diagnostics are 

the same as those from two separated PLS models with some minor modifications in how 

the residuals for the Y's are computed. 
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The diagnostics to be considered are listed in Table 5.2. The R2 diagnostics 

measure the fraction (or percentage) of the total sum of squares that is being captured 

(explained) by the model; Q2 diagnostics are obtained by cross validation (Wold, 1978) 

and give a measure of the prediction capabilities of the model for each of the Y spaces; 

the square prediction error (SPE) is a measure of the orthogonal distance from the 

observation to its projection onto the model plane, and the Hotelling's T2 gives the 

distance of each observation on the projection plane from the origin of the model plane. 

Matrix R2 and Q2 SPE Hotclling's T2 

x a R2X R2X a., acum SPEX ai H tTX 0 ai 
Xb R2Xb., R2Xbcum SPEXbi HotT2Xbi 
Va R2Ya., R2Yacum SPEYai 

Q2Ya., Q2Yacum 

Vb R2Yb., R2Ybcum SPEYbi 
Q2Yb., Q2Ybcum 

Table 5.2 Diagnostics to be considered in the JYPLS model 

Sub index i indicates that the diagnostic is computed per observation and sub 

index a indicates the diagnostic is computed per component. The only significant 

difference in the computation of these values from separate PLS models is that the 

residuals for both of the Y matrices are computed using the same QJ loadings matrix. It is 

assumed that data underwent proper mean centering and scaling as in Eqs.5.35 to 5.38 

before building the JYPLS model. The diagnostics are computed with these mean 

centered and scaled matrices, the equations to compute these diagnostics are given below. 

R2Xa I = 1- RSSXaa 
a a:l~A TSSXa 

(5.39) R2Xb I = 1- RSSXba 
a a:l~A TSSXb (5.40) 

R2Ya I = 1- RSSYaa 
a a:l~A TSSYa 

(5.41) R2Yb I = 1- RSSYba 
a a:I~A TSSYb (5.42) 

Q2Yaala:l~A = 1-
PRESSYaa (5.43) Q2Yb I =1-

PRESSYba (5.44) 
TSSYa a a:l~A TSSYb 
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A A 

R2Xacum = I R2Xaa (5.45) R2Xbcum = IR2Xba (5.46) 
a;] a;] 

A A 

R2Yacum = IR2Yaa (5.47) R2Ybcum = IR2Yba (5.48) 
a;] a;] 

A A 

Q2Yacum = IQ2Yaa (5.49) Q2Ybcu1ll = IQ2Yba (5.50) 
a;1 a;] 

(5.51) 

1IIb 
SPEXbili:1~ib = I (Xb i -Tb iPbT)2 (5.52) 

n 

SPEYal. . = "(Ya -TaQJT)2 
I I:]~za L.... I I 

(5.53) 

n 

SPEYbjL~jb = I(Yb i -Tb jQ/)2 (5.54) 

A ta2 
A tb2 

HOTT2Xai =I~ (5.55) HOTT2Xbl = I-.iL (5.56) 
I i:]~ia cr2 I i:1~ib cr2 a;1 tja a;] tja 

ia ma ia rna 

RSSXaa = II(Xa-Ta[l:alPa~:al);'1II (5.57) TSSXa = I I Xa;'m (5.58) 
;;1 111;1 i;1111;1 

ih 1IIb ih mb 

RSSXba = II(Xb-Tb[l:alPb~:al);'m (5.59) TSSXb = II Xb;,m (5.60) 
i;1 m;1 i;1 m;1 

ia n ia n 

RSSYaa = I I (Ya - Ta[1:alQJ~:al);,m (5.61) TSSYa= IIYa;,m (5.62) 
i;1111;\ i;1 m;1 

ih n ia n 

RSSYba = II(Yb - Tb[l:alQJ~:al);'m (5.63) TSSYb= IIYb;'m (5.64) 
i;1 ",;1 ;;1 m;1 

1 ia+ib 

TJ ~[~: 1 cr; = I [T/ ] (5.65) (5.66) 
la . . 1 I,a 

1a + Ib - i;1 



CHAPTER 5. PRODUCT TRANSFER USING JYPLS 152 

5.4. Modifications to the JYPLS Model 

Once the JYPLS model has been defined, other modifications can be done to the 

model to achieve specific objectives. Three modifications are considered here: the 

extension to multiple sites, the multi-block JYPLS and the non-linear version of the 

JYPLS model. 

5.4.1. Multiple Sites 

As mentioned before, the JYPLS model is not restricted to two sites. Any number 

of sites can be considered (Fig. 5.6). The eigenvector eigenvalue solution becomes more 

complex (Eq. 5.67 for 11 sites). In this case it is much easier to consider the modified­

NIP ALS for the computation of the loadings for multiple sites. The modifications are 

quite straightforward; they involve regressing each of the multiple set of loadings and 

scores. The normalization of the loadings should be done in group as well (Eq. 5.68). 

Figure 5.6 JYPLS built with multiple sites 
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XaTYaYaTXa XaTYaYbTXb ... XaTYaYl1TXl1 

XbTYbYaTXa XbTYbYbTXb 

wa 

wb 
=1 

Wl1 

5.4.2. Multi-Block JYPLS Models (MBJYPLS) 

153 

W=AW (5.67) 

(5.68) 

Multi-block PLS (MBPLS) models (Wangen and Kowalski, 1989; Westerhuis, 

Kourti, and MacGregor, 1998; Westerhuis and Smilde, 2001) are useful to analyze data 

which can naturally be separated in blocks. These models have been successfully applied 

in the analysis of industrial data (Kourti, Nomikos, and MacGregor, 1995; MacGregor et 

ai., 1994). The JYPLS model is easily extended to handle multiple blocks per site (Fig. 

5.7). The only alteration to the original JYPLS model algorithm is the scaling of each of 

the blocks per site. For the example of two blocks per site, the scaling given in equations 

5.35 and 5.36 now becomes as follows: 

(5.69) (5.70) 

Za .. Za - I,j 

1,/ - ~ia x(ma +1 a)x I a 
(5.71) (5.72) 

where ta and h are the number of columns in Za and Zb respectively (Fig. 5.7). 

The scaling of the Y matrices does not change. After this scaling is applied, a JYPLS 

model can be built and the block scores and loadings can be computed as in the PLS to 

MBPLS case as given by (Westerhuis, Kourti, and MacGregor, 1998). 
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Figure 5.7 Multi-block JYPLS model data structures 

The MBJYPLS model does not restrict all sites to have the same number of 

blocks (as it does not restrict the number of columns). The block score matrix will 

contain different columns per site, and the super-weights will have different number of 

elements (extra block Ga with ia rows and lla columns illustrated in gray in Fig. 5.7). 

A MBJYPLS model is useful, for example, when the process involved operates in 

batch mode, and the data contains information of the initial conditions as well as the 

variable trajectories. 
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5.4.3. Non-Linear JYPLS 

The justification to perfonn multivariate linear analysis in process monitoring is 

the that, even if the process behavior is non-linear, the deviations from a set point or a 

nominal trajectory will be locally linear (although the covariance structure will change 

from time point to time point throughout a batch). In the case of product transfer, the 

region being spanned by the data is wider; and therefore nonlinearities may become an 

issue. The nonlinearities among the process variables can be dealt with transfonnations 

(as it is usually done) and the nonlinearities between process variables (X' s) and final 

product characteristics (Y' s) can be dealt with transfonnations as well, orland with a 

nonlinear version of the JYPLS. 

The nonlinear relationships among the scores (t's and u's) can be established as in 

a conventional nonlinear PLS model. For example, a quadratic relationship can be used 

as in the quadratic nonlinear PLS (Hoskuldsson, 1992), in this particular case, the scores 

are related by a quadratic function (Eqs.5.73 and 5.74). The algorithm to compute the 

loadings and scores for the nonlinear quadratic JYPLS is a natural extension to the one 

proposed by Wold et al. (1989) and is included for reference in appendix 6. 

ua~ =ba~ +ba;ta~ +ba;(ta~)2 

ub~ = bb; +bbttb~ +bb;(tb~)2 

5.5. Product Transfer using JYPLS 

(5.73) 

(5.74) 

The justification to study the inclusion of all data structures in the product transfer 

problem was given (see Section 5.1.2) and a modeling technique has been developed for 

this purpose (see Section 5.2). This section illustrates how the JYPLS model can be used 

to solve the product transfer problem. Throughout this chapter, the scenario considered is 
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the one where a grade from plant A is to be transferred to plant B; the sought operating 

conditions are those of plant B; the grade to be transferred YSdes is a row from Va. 

5.5.1. Transfer Technique 

1. Mean center Xa, Xb, Ya and Yb with respect to their own mean, and scale 

according to equations 5.35 to 5.38. 

2. Ensure that Ya and Yb share the same correlation structure. This can be 

done by building a PCA model with Yb and projecting Ya on to the model, 

the SPE for Ya should be within limits. Individual PCA models will give a 

good idea on the effective rank of each of the Y's, a PCA model on the joint 

[~:] matrix should have a rank equal to max {rank(Ya), rank(Yb)} if Ya 

and Yb do share a common correlation structure. The PCA model on the 

joint Y matrix may explain less percentage of the data since the signal to 

noise ratios may differ from site A to site B. 

3. Fit a JYPLS model to the data using the modified-NIPALS described in 

section 5.2.l. 

4. Assess the model using the diagnostics such as the SPEYa, SPEYb, SPEXa 

and SP EXb to find possible outliers. Particular attention should be given to 

the observation to be transferred. 

5. Mean center and scale YSdes using the same mean and scaling that was 

applied to Vb. 

6. Invert the JYPLS model to estimate 'tbnew which is the score vector which 

best predicts YSdes. The inversion of the JYPLS model can be done using a 

generalized pseudo-inverse of (Q; Q J) CEq 5.75) or via optimization as 

illustrated in chapter 4 (Eqs 4.7 and 4.7b), with the same effects as those 

illustrated in chapter 4 for the product design exercise. 
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(5.75) 

7. Estimate the null-space (~Tnull) if any (section 5.5.2) 

8. Construct :XBneWas 

(5.76) 

9. Remove scale and add the proper mean to :XBnew in the inverse way as it was 

done with Xb. 

5.5.2. Null Space in JYPLS 

Jaeckle and MacGregor (1998) give an extensive discussion about the null space, 

referring to it as the subspace of the score space in which 'tbnew can move and still 

produce the same Y Bdes . 

One case when this null space will exist is when the effective rank of Y is smaller 

than the effective rank of X, e.g. rank(Y) = A rank (X) = B and A <B, in which case there 

is a B-A dimensional null space. Another case where the null space will exist is when one 

or more dimensions of Y do not overlap with X. In this case the rank of Y may be equal 

to rank of X, but the rank of [X Y] is grater than the rank of Y (or X) e.g. rank(Y) = rank 

(X) = A, rank [X Y] = B, and B>A; in this case there are B-A dimensions which do not 

overlap between X and Y, giving a B-A dimensional null space. For the JYPLS model, 

these circumstances may happen, therefore the same considerations as those pointed out 

in section 4.3.3 apply for the JYPLS case. 
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If there is a null space, the desired operating conditions should be computed as: 

(5.77) 

where the null movement from the original solution ( lli'bnull ) lies in a subspace defined 

by SVD on Q/ (in Eqs. 5.78 and 5.79 below) A, is an arbitrary vector which is relative to 

the magnitude of the movement in the null space, and B and C are the dimensions of the 

latent spaces in X and Y respectively. 

(5.78) 

Q~ = [G 1 :G 2 ] LQI . V~I 
(5.79) 

(BxC) (BxC)(Bx(B-C)) (BxC) (CxC) 

Another (more intuitive) way to find the null space is to map each univariate null 

space by building the system of linear equations described by QJ i'bnull = O. In a pure 

multivariate null space, the univariate null spaces for those correlated columns of Y 

should be perfectly collinear (see section 4.3.3 for an extensive discussion on univariate 

null spaces and multivariate null and pseudo-null spaces). 

5.6. Product Transfer using EPCR vs. JYPLS 

The initial motivation to develop the JYPLS method was to include the 

information about the operating conditions at the source plant (Xa in Fig. 5.1), because it 

was not used in the EPCR approach of Jaeckle and MacGregor (2000b). Intuitively, the 

solution obtained when such information is considered will be better if the extra data (Xa) 

enhance the observability of latent structures present in the problem. This will heavily 

depend on the number of observations of Xa relative to those in Xb, and the amount of 

information on the latent variable structure that Xa brings, relative to that in Xb, Ya, and 
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Vb. If Xa does not bring significant new information into play, and because a JYPLS 

model is fitting two sites simultaneously, it is then expected that the estimate obtained 

with JYPLS will be no better than the estimate with EPCR, because the target site (Xb) 

and product data (Ya and Vb) already contains all the information necessary to find the 

latent structures involved. 

To illustrate this, consider the data sets described in Table 5.3 (and available in 

the electronic supplement to this thesis); all data structures are constructed from three 

latent variables (Appendix 7), and Xc is built in such way that the effect of the third latent 

variable on it is very low (notice low R2cum for Xc in Table 5.3); all observations are 

independent and normally distributed. In Table 5.3 also notice how the predictability of X 

and Y decrease dramatically when only 10 observations are used. 

Matrix Observations Variables R2cumPCA Q2cumPCA 
Xa 100 8 100% 96% 
Ya 100 6 100% 85% 
Xb 100 13 97% 94% 
Yb 100 6 92% 64% 

Xb (10obs) 10 13 97% 67% 
Yb (10obs) 10 6 91% -59% 

Xc 100 13 75% 53% 
Yc 100 6 92% 62% 

Table 5.3 Data structures used to compare EPCR with JYPLS 

Three transfers are performed with these data sets: i) Transfer all observations of 

Ya to site B, U) transfer all observations of Ya to site B, using only 10 observations from 

site B, and iii) transfer all Ya to site C; and each of these three transfers are done with 

EPCR and with JYPLS. The notation used to refer each of the estimates for are listed in 

Table 5.4 
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Transfer Estimate with Estimate with 
EPCR J¥PLS 

Ya-B ~ ~ 

XBnewEPCR XBnewJYPLS 
Ya - B (10 obs in B) ~ ~ 

XBnewlOEPcR XBnewlOJYPLs 
Ya-C ~ ~ 

XCnewJYPLS XCnewJYPLS 

Table 5.4 Notation to refer th.e estimates in th.e JYPLS-EPCR comparison exercise 

The solutions to all three transfers (XBnew, XBnewlO and XCnew) are known 

before hand, and because all X and Y spaces have the same effective rank, the solution to 

the transfer of each observation is unique, and therefore, to benchmark the estimate 

against the know solution is valid. A square prediction error (Eq. 5.80) is calculated for 

all observations, for each estimated matrix in Table 5.4. 

• ~ 2 
SP EZEPCR = (XBnew EPCR - XBnew) 

• A 2 
SP EzJYPLS = (XBnew JYPLS - XBnew) 

SP EiiEPCR = (XBnew 1 0EPCR - XBnew 10)2 

SPEiiJYPLs = eXBnewlOJYPLs - XBnewlQ)2 

SP EiiiEPCR = eXCnew EPCR - XCnew i 
SP EiiiJYPLS = eXCnew JYPLS - XCnew)2 

(5.80) 

and three analysis of variance (ANOVA) are performed: a) between SPEiEPCR and 

SPEiJYPLS, b) between SPEiiEPCR and SPEiiNPLS and c) between SPEiiiEPCR and 

SPEiihYPLS. The mean values for the SPE's for each problem are given in Table 5.15. 

For these three ANOVA exercises the p value obtained is close to zero (7.6694e-

013,0.0049 and 3.0732e-004 respectively) and hence, the null hypothesis that each of the 

compared SPE's to be drawn from the same population is rejected (Mathworks 1999). 
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Transfer mean(SPE~pc,~ ) mean (SPEJHLS ) mean(SPE~l'CI~ ) 

-mean (SPE~J\'PLs) 
Ya~B 39.122 875.06 -835.94 
Ya~B(10obsinB) 1707.9 1101.4 606.48 
Ya~C 5625.5 2657.4 2968 

Table 5.5 Mean square prediction error for aU the estimates in Table 5.4 
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For the first transfer case (Ya ---+ B), the mean square prediction error (Table 5.5) 

obtained with EPCR is less than the one obtained with JYPLS; in this case, all the 

information about the latent structures was already in Xb and Y J and the inclusion of Xa 

leads to a poorer estimate of XBnew most likely due to the additional need to model Xa. 

Figure 5.8 illustrates 3 of the known solutions for the observations transferred in the case 

with their estimates with EPCR and JYPLS. Notice in this Figure (5.8) that even though 

the estimate for each of the variables in XBnew with JYPLS is not as good as the one 

obtained with EPCR, the former estimate is still very close to the true solution. 

"'D< * 
0 Solution 

Q) £: • X JYPLS 
... 0 -5- .. .- + EPCR 
.!l;0 ~ ... en C! • >f: * ~ .. 
£: Q) 

to! en 0-
I-..c ~ 0 

2 3 4 5 6 7 B 9 10 11 12 13 

ca t 
0 Solution 

"'D£: .- X JYPLS 
~ 0 ~ .. ~ if ~ ~ + EPCR 
J!l;D • en C! .. .$-
£: Q) "' ns en ... .,e .. 1-0 

2 3 4 5 6 7 B 9 10 11 12 13 

0 0 Solution 
"'D£: ~ X JYPLS 
~ 0 

i + EPCR ..... ~ 
J!! ns I 

~tl Q "' .. ~ . .. W 
-i- •• ~ .. .. 

I I I I I I I I I I I I 

2 3 4 5 6 7 B 9 10 11 12 13 

XBVARIABLE 

Figure 5.8 Case Ya~B: Known and estimated values for XBnew for EPCR and 

JYPLS for three observations at random 



CHAPTER 5. PRODUCT TRANSFER USING JYPLS 163 

For the second transfer case (Ya ~ B 10 obs in B), the mean squared prediction 

error (Table 5.5) in JYPLS is less than the one obtained with EPCR (JYPLS outperforms 

EPCR). Using only 10 samples from plant B results in poor estimation of latent structure 

in the data (Q2 in Table 5.3 drops from 94% to 67%). This will directly affect the EPCR 

model which (for modeling the X space) only focuses in the latent structures observable 

from Xb and YJ . The inclusion of the observations from the much larger Xa brings more 

information about the latent structures giving as a result a better estimate for the new 

conditions in plant B. Figure 5.9 illustrates the known and the estimated values of 

XBnewl0 for three observations at random for both techniques. 
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Figure 5.9 Case Ya~B (10 obs. in B): Known and estimated values for XBnewl0 for 

EPCR and JYPLS for three observations at random 
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Finally, for the third transfer case (Ya ---+ C), the difference between JYPLS and 

EPCR is even grater. In this exercise, the inclusion of Xa reinforces the latent structure, 

which is poorly represented in Xc (particularly the third LV), and hence the solution with 

the combined spaces (JYPLS) outperforms the one obtained when only site C is 

considered. Three random observations for this transfer are illustrated in Figure 5.10, 

notice in this plot, how the estimate improves for JYPLS for variables 5,7 and 9 (which 

are the ones related with the third latent variable). 
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The estimates for the new conditions obtained with JYPLS are not always better 

that those obtained with EPCR. However, the scenario where EPCR was better (which 

could be considered a "best case" scenario for EPCR) was when all the information about 

the latent structure was already in XB and the data was nearly noise-free. But the 

estimates obtained with JYPLS were not to far from those obtained with EPCR. 

In practice, the case of having a source site with rich and precise information and 

a target site which contains more uncertainty is typical of the scale-up between a pilot 

plant and a full scale plant. A pilot plant will likely have many measurements from the 

system (with well calibrated and non defective sensors) and the runs will be performed 

under tight control and with very low unwanted disturbances entering the system; while 

the full scale plant may have less observations and measurements (or less sensitive 

sensors) and the system will likely be exposed to more unwanted disturbances. In this 

scale-up case, the JYPLS model will enrich the poor structured data from the full scale 

equipment with the well conditioned and structured information from the pilot plant, 

thereby providing a better transfer. 

In the following section, an example from simulated data and an industrial case 

from a pulp and paper plant are presented. 

5.7. Examples 

Following in this section are two examples to illustrate the use of the JYPLS 

model to solve the product transfer problem. The first example is built using the detailed 

deterministic simulation for a fluidized bed linear low density polyethylene (LLDPE) 

process, developed by McAuley et at. (1990). 
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The second example is constructed with data from an industrial pulp and paper 

site and a pilot plant used where the product being produced at the mill is often 

reproduced in the pilot equipment to calibrate analytical instruments used in the process. 

5.7.1. Simulation of an LLDPE Process 

LLDPE resin is commercially characterized by two properties: melt index (MI) 

and density (D). In the work by McAuley and MacGregor (1992) several process 

conditions are considered to achieve the best possible path for the transition from grade to 

grade. The product transfer problem does not consider dynamics, only the final steady­

state. Without considering the dynamics, the fluidized bed reactor model consists of two 

process variables: hydrogen and butene flow. These can be manipulated to achieve fairly 

independent changes in MI and D. 

As it is, this model does not make the best example to consider since it is a very 

low dimensional system (2 by 2) where the variables for each space are independent of 

each other (since MI and D are close to being independent of each other). However, if 

artificial correlation is introduced in the quality variables, it becomes a good example for 

illustration purposes since the results obtained with the JYPLS model can be contrasted 

with the results obtained with a highly complex non-linear controller for MI and D. This 

controller was built into the model in the work by McAuley and MacGregor (1993) and 

will be used to obtain exact solutions for the product transfer problem and will be used as 

a benchmark. 

For this example two different plants are used with the characteristics listed in 

Table 5.6. Besides the differences in the capacity, the plants operate at different 

temperature due to differences in heat transfer equipment. Different impurity levels are 

used which is to be expected if each plant has its own material supplier, and differences 

in the catalyst kinetics are also used assuming that the plants use catalyst from a different 
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source. For plant A, the same kinetics as the ones used in the original model by McAuley 

et al. (1990) are used; for the second site the formation, initiation and transfer kinetics for 

active site 2 of the catalyst is modified. 

Property Plant A Plant B 

Capacity 70 tons 40 tons 

Temp. 343 K 350K 

Impurities 5.5x 10'4 moVsec 3.0xlO'4 moVsec 

Kinetics As in McAuley et al. (1990) Site 2 is modified to be less active 

Table 5.6 Characteristics ofthe sites for the LLDPE example 

Once agam, for illustration purposes, a linear relation between MI and D is 

introduced to create a one dimensional latent space in the Y's. The author acknowledges 

this is not a representative scenario of the commercially available LLDPE grades. What is 

representative is the fact that for a set of quality measurements, there usually is a lower 

dimensional latent space in the Y's. Because of the linear relationship in the Y's and the 

low dimensionality of the problem (one) the results obtained by the JYPLS model 

approach are the same as those obtained with the model inversion approach (Jaeckle and 

MacGregor, 2000b). 

To build each observation in the data sets 1000 points of steady-state normal 

operating conditions (per grade) are averaged, each of these 1000 points includes 

disturbances; the non-linear controller is used to calculate the hydrogen and butene flow 

required in each case. For all cases in this example, the X matrix is formed with the 

values for hydrogen and butene flow and the Y matrix contains the values ofMI and D. 
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LLDP E Transfer - case 1 

This is the most simple of the cases presented; the set consists of 15 grades (Fig. 

5.11) odd number grades are produced in plant B and even number grades are produced 

in plant A. Notice that, even though the properties are very close to each other, the 

process conditions to obtain them are very different from one plant to the other due to the 

differences mentioned before (Table 5.6). A JYPLS model is built with the following 

diagnostics: R2XAcum= 99.52 %, R2XBcum= 99.98 %, R2YAcum= 99.57 %, and R2YBcum = 

99.60 % with only one significant component. 

The exercise now is to transfer all grades from plant A to plant B, and vice versa. 

The new conditions XAnew, and XBnew are shown in Fig. 5.12 (top) as well as the exact 

solution for each of the cases (obtained by using the non-linear controller in close loop). 

These X Anew, and X Bnew conditions are now passed through the simulation of each plant 

with the non-linear controller in open loop. The quality of the products obtained in plant 

A and B when running under the conditions X Anew and X Bnew respectively, are referred to 

as YBinA and YAinB, these quality properties obtained are shown in Fig. 5.12 (middle and 

bottom). 
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169 

Despite the simplicity of the case it does illustrate the fact that the solution 

obtained using latent variable modeling (in this case using the JYPLS model) is very 

close to the true solution, which in this case required a very complex deterministic model 

and a non-linear controller. In this particular case, none of the transferred grades are 

outside the region already covered by each of the plants. 
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LLDPE Transfer - case 2 

F or this example, the data set consists of 15 grades, three of which are common to 

both sites; the product quality properties as well as the process operation are shown in 

Figure 5.13. The exercise is to estimate the process conditions in plant A to produce the 

five grades of plant B which are not yet being produced in plant A. Each of these new 

grades represents an extrapolation from existing plant A grades. 
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The JYPLS model is built (R2XAcum= 98.20 %, R2XBcum= 99.80 %, R2Y Acum= 

99.12 %, and R2YBcum= 99.86 %) with one significant component. The same notation as 

in last case is used; the new operating conditions estimated for plant A (XAnew) are now 

passed thru the simulation of plant A with the non-linear controller in open loop. The 

obtained product quality properties are shown in Figure 5.14. 
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The new predicted operating conditions are shown together with the exact 

solutions (obtained by using the non-linear controller in closed loop). Notice that the new 

exact conditions have a slight non-linear behavior with respect to the ones already in use 

in plant A. Because this non-linearity is not evident in the dataset used to produce the 

model and because the new grades represent an extrapolation from plant A, the solutions 

obtained with the latent variable approach are not as good as the ones obtained in the case 

1. However, the solutions obtained by using the JYPLS model are a good starting point in 

the search of the true (or exact) solution; this by itself may be saving the engineers 

months of experimentation. 

5.7.2. Scale-up of an Industrial Pulp Digester from Pilot Plant Experiments 

This example is build with industrial data, collected from a full scale pulp digester 

with a nominal capacity of 249m3
, and from a pilot digester tank with a capacity of 20 L. 

Data on ten different pulp grades are available. In the full scale plant, several dozen runs 

where averaged to build each observation per grade. In the pilot plant, two or three runs 

per grade were used to construct each observation. 

The reactors are used to produce pulp from wood chips. The process in the full 

scale digester consists of several stages: a) Charging of the raw materials; b) first 

temperature ramp; c) second temperature ramp; d) cooking; and e) removal of product 

from the equipment. For this process, only stages c and d are considered since all the rest 

of the stages are automated and equal for all grades of pulp. The process in the pilot 

equipment is much simpler (due to the volume of the tank). There is no charging stage 

(since it is almost instantaneous), the complete cycle is considered for the pilot plant data. 

Grades of pulp are characterized by two properties: kappa number and viscosity. 

To achieve a change in these characteristics, three conditions (mainly) are manipulated: a) 

the initial acidity of the liquor, b) the cooking temperature and c) the cooking time. Due 
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to limitations in the data, the acidity of the liquor is not considered in this study (no 

acidity measurements available). However, if the acidity data was available, then it could 

be taken into account as a constraint in the design since this is a difficult condition to 

adjust in the full scale equipment. The trajectories will then be computed to be consistent 

with the given initial acidity in the batch (assuming that the temperature trajectory has an 

effect strong enough to compensate the effect of the initial acidity). Unfortunately the 

acidity levels were not available in the data and therefore the only manipulated variables 

considered for both sites are the temperature profile and the cook time. Both of these 

process conditions are contained in the temperature profiles from each site. By averaging 

many runs per grade the effect of varying acidities should be averaged out. 

Data for ten grades of pulp (total) are available (Fig. 5.15); six of which are 

produced in the pilot reactor, and 7 in the full scale equipment, with three common 

grades (D, F and I). The temperature profiles related to each of these grades for the pilot 

and full scale equipment are illustrated in Figures 5.16 and 5.7 respectively. 
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The exercise to be performed is the scale-up of grades D, F and I (the common 

grades for which full real solutions are available). In each case, the grade to be designed 

is removed from the training data set. Because the process conditions are batch 

trajectories with different time durations, it is mandatory to align these trajectories to the 

same number of samples. For simplicity each set of trajectories is re-sampled to 50 and 

200 samples for the full scale and pilot scale respectively (linearly interpolating when 

necessary). The total time is stored in a separate (Z) matrix and taken into account by 

using a multi-block scaling for the process conditions (the reader is referred to section 2.5 

for a deeper insight to batch process data alignment). 

Performing individual PCA analyses on the aligned temperature trajectories leads 

to the conclusion that, the temperature profiles can be modeled with two latent variables 

(approximately 75% explained for the 1 st LV and 18% for the 2nd LV). Doing PCA on the 

Y matrices points to the fact that the Y only requires one latent variable (99% explained 

in the 1 st LV). Since the process conditions contain 2 latent variables and the quality 

properties contains only 1, a null space (see section 4.33) has to be considered. 

The correlation between kappa and viscosity is not perfect, and so if the Y -space 

is considered as two dimensional, there will be one unique analytical solution to the 

design problem (Eq. 5.75). However, as discussed in section 4.3.3 this solution will be 

very ill-conditioned as there is effectively a pseudo-null space. Other solutions can be 

found along the pseudo-null space, but (as illustrated in Fig. 4.10) these solutions will 

have a prediction error different than zero. It is left to the judgment of the user to decide 

whether these designs are accepTable or not. 

For each design exercise, there will be one analytical solution and one solution 

with minimal distance to the origin (which is Euclidean in the EPCR case and 

Mahalanobis in the JYPLS case). These solutions and the pseudo-null spaces for the 

scale-up of grade Dusing EPCR and JYPLS are illustrated in Figure 5.18. 
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The estimated trajectory depends on which solution along the null space in the 

score-space is used. As the estimated score (Tnew) moves along a null-space (or a pseudo-

null space) it is expected that the estimated trajectory will not only change in shape, but 

also in length (Fig. 5.19), and these changes can be significant. For estimates of the score 

vector (Tnew) that are far from the origin (extrapolations), the predicted temperature 

trajectories are quite irregular. 
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Figure 5.19 Temperature trajectory for fun scale digester when the score ('tbnew) is 

moved along the null space 

For each of the scale-up cases, the two estimates (analytical and the null space 

solution with minimum distance to origin) are computed for each method (EPCR and 

]YPLS). These estimated trajectories along with the known solutions are shown in Figure 

5.20. This comparison is not the optimal way of benchmarking the estimates (the best 

way is to actually implement those conditions in the plant) but this is the only comparison 

which could be done in this case. 
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Notice that the estimated minimum distance trajectories along the pseudo-null 

spaces (right side plots in Fig. 5.20) are extremely similar for both methods. 
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The fact that the solutions with minimal distance to the origin for EPCR and 

JYPLS are very similar does not mean that both methods perform identical for this case. 

As illustrated in section 4.3.3, as the solution moves along the pseudo-null space the 

prediction of Y des will change as well. This is the strongest differential among the JYPLS 

suggested in this work and the EPCR technique proposed by Jaeckle and MacGregor 

(2000b). Table 5.7 lists the prediction for viscosity and kappa for the analytical solution, 

and the solution with minimal distance to the origin along the pseudo-null space. 

Desired Viscosity Viscosity Viscosity Predicted Viscosity Predicted 
Viscosity Predicted Predicted JYPLS Min. Dist. EPCR Min. Dist. 

JYPLS EPCR 

2796.3 2796.3 2796.3 2815.15 2895.23 
3347.63 3347.63 3347.63 3345.03 3325.53 
4175.21 4175.21 4175.21 4177.29 4219.8 

Desired Kappa Kappa Kappa Predicted Kappa Predicted 
Kappa Predicted Predicted JYPLS Min. Dist. EPCR Min. Dist. 

JYPLS EPCR 

29.76 29.76 29.76 29.52 30.67 
36.4 36.4 36.4 36.44 36.21 

47 47 47 46.97 47.4 
Desired SPEJYPLS SPEEPCR SPEJYPLSNULL SPEEPCRNULL 

Viscosity 
2796.3 0 0 210.86 5791.4 

3347.63 0 0 3.85 287.34 
4175.21 0 0 2.73 1178.5 

Desired SPEJYPLS SPEEPCR SPEJYPLSNULL SPEEPCRNULL 

Kappa 
29.76 0 0 0.03 0.49 

36.4 0 0 0 0.02 
47 0 0 0 0.09 

Table 5.7 Viscosity and kappa prediction and square prediction error (SPE) for th.e 

analytical solution and minimal distance to the origin along the null space solution. 

Even though the temperature trajectories close the origin along the pseudo-null 

space are very simlar for JYPLS and EPCR (right side plots in Fig. 5.20), for the later 

estimates, the expected value of kappa and viscosity is different from the desired ones 
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(with much higher SPE than the equivalent for JYPLS). This is most likely to the fact that 

the JYPLS method improves the predictability of kappa and viscosity by including the 

information from the pilot plant into the model. 

5.8. Assessing Parallel Plants using JYPLS 

Besides the product transfer, the JYPLS model can also be used in assessing 

parallel sites which are supposed to produce the same grades of product. This is done by 

analyzing the loadings from the JYPLS. 

The loadings from two separate PLS models cannot be super-imposed to infer 

correlation between the variables in site A and those in site B. The reason for this is the 

fact that each PLS is not capturing the exact same plane of Y, and if they are, the Q 

loadings from each PLS model might still be rotated versions of each other. Since the 

plane in Y is not the same, hence the loadings in X cannot be analyzed jointly (even if the 

Q's for separate PLS models where identical for Ya and Vb, the loadings on X can still 

rotate and have different sign). 

The loadings from JYPLS model however can be simultaneously plotted in the 

same graph because the model is capturing that plane in each of the X spaces which best 

explains the common plane in Y (hence the joint plane in Y is unique to both sites). This 

feature of the loadings from a JYPLS model is very powerful since it will provide a plot 

to determine which process variables among sites are related, in their effect to quality. 

Two examples are provided. 

Taking as a first example, the one provided in Section 5.7.2 for the pulp digesters: 

the stages for the temperature profile included in the data for the full scale digester are the 

so called "2nd ramp" (from first sample to approximately sample number 20) and "Cook" 

(from sample 20 to the end) . While for the pilot plant, the data included a "pre-heating" 
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stage (from first sample to sample number 42); a "1 st ramp" stage (for sample 43 to 

sample 75); a "2nd Ramp" stage (sample 75 to approximately 130); a "Cook" stage (from 

sample 131 to approximately sample 175); and a "Cool down" stage (from sample 175 to 

the end) for the temperature profile (see Fig. 5.17). 

The fact is that from all these stages, only the "2nd ramp" and the "Cook" stage 

have an influence in the final quality of the pulp. An analysis of the loadings (Fig. 5.21) 

for the temperature for both sites shows the loadings for the temperature at two stages to 

be correlated (close in the plot) and separated from the other stages. In Figure 5.21 The 

arrowed line illustrates the "movement" of the temperature loading as the batch evolves 

for the pilot digester. 
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Figure 5.21 Loadings plot for the temperatu.re in a JYPLS model for the pulp 

digester example used in Section 5.7.2. 
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In another study (not entirely shown in this thesis) two batch plants running an 

emulsion polymerization are simulated using a highly detailed deterministic model 

developed by Broadhead et al. (1985). The simulation is used to determine the process 

conditions in each of the plants to produce a certain number of grades with similar 

structure in their final quality. The quality of the latex being produced is determined by 

the styrene content in the copolymer (Sty %), the average molecular weight in number 

(Mwn) , the average molecular weight in weight (Mww) and the polydispersity of the 

resin (PD). 

Two plants are simulated a full scale and pilot plant. The operation of the two 

plants is similar: An initial charge of chain transfer agent (CTA), seeded particles, styrene 

and butadiene are fed to the reactor at time zero. During the run, styrene and butadiene 

are fed together in semi-batch mode until the tank is full. 

The main difference (besides geometry) among the plants is the way the CTA is 

injected: the full scale plant injects small but continuous flow of CTA during the run, 

while the pilot plant onI y does a second inj ection of CT A (proportional to the initial CT A 

charge). This operational difference has a strong impact in how the operation in each 

plant has to be modified to "adjust" the different properties ofthe polymer. 

The operation of the plants is then described by: Intial CT A (Ictapp and IctaFS); 

ratio of styrene flow to butadiene flow (IslIbpp and Is/IbFs ); flow of styrene (Fspp and 

FSFs); final conversion (Convpp and ConvFS); and flow of CTA for the full scale plant 

(F ctaFS) and 2nd injection of CTA for the pilot plant (2ndctapp). 

A JYPLS model is built with the data obtained by several runs (which were 

adjusted by trial and error to produce a set of Y's with the approximately the same 

correlation structure). An analysis of the loadings plot for both sites (Fig. 5.22) provides 

interesting insight into the operational "equivalences" among the plants. 
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Figure 5.22 Loadings plot for two simulated batch plants producing SBR latex 

From an analysis of Figure 5.22, it is clear that: 

i) The flow of styrene and the ratio of styrene flow to butadiene flow determines 

the final content of styrene in the copolymer in both sites. Since the loadings for Is/Ibpp, 

Is/Ibps, Fspp and Fsps are all close to the loading corresponding to Sty %. Additionally, 

for the full scale plant, the final conversion has a strong impact on this property as well. 

ii) For the full scale plant, the Initial CTA and Flow of CTA (Ictaps and Fctaps) 

are both inversely proportional to polydispersity (PD), but not entirely correlated with 

each other. This corresponds with the experience of the author in adjusting the 

polydispersity for this site, the initial charge of CTA was used for "gross" tuning and the 

flow of CTA was used for "fine" tuning of the polydispersity (PD). For the pilot plant 

however, the two injections of CTA were correlated and hence could not be used as 

separate variables to adjust the PD. It was not expected by the author (who is not 
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knowledgeable in polymer science) to find from this loadings plot that the final 

conversion in the pilot plant would have a positive effect in polydispersity and could 

hence be used for fine tuning along with the injections of CTA. This was later verified 

with the simulation to be true. 

The analysis of the loadings from a JYPLS may provide interesting insight into 

the operational equivalences among sites with different configuration or (like in the case 

of the SBR simulation) different operational policies. This kind of analysis is unique to 

the JYPLS loadings plot and cannot be achieved by separate PLS models. 

5.9. Conclusions 

To transfer the production of a grade from one site to other is a difficult industrial 

problem, and may involve several months of engineering and costly experimentation. To 

speed up this process will have a positive effect on the business, especially on those that 

are sensitive to this step of manufacturing like the specialty chemicals sector for whom 

the scale-up and transfer may represent competitive advantage. 

A data driven approach that uses existing plant and quality data from the different 

sites is developed to achieve this transfer. The JYPLS model is introduced to solve the 

product transfer problem. The fact that the JYPLS model is capturing the common plane 

in Y for all sites, and that this plane is explained by each of the individual X spaces is a 

unique characteristic to the JYPLS model and provides a powerful tool to analyze and 

troubleshoot parallel sites with different configuration, and to show how their variables 

are related with respect to the product family being produced. 

The product transfer technique using JYPLS will not always give better results 

than the previous proposal using EPCR, however in these cases the estimates are not too 

different, and still represent a good start point if experimental surface response methods 
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are to be used for fine tuning of the operating conditions. However, for cases in particular 

when there are few samples or limited information on the latent structure in the plant to 

which transfer is to be made, the JYPLS approach can offer a superior solution. It does so 

by considering the process data (Xa) on the transfer site to stabilize its latent variable 

structure. 

The features of the JYPLS model were illustrated with an industrial case where 

the difference between EPCR and JYPLS was not in the estimated operating conditions, 

but in the expected value for the quality properties. 

The JYPLS is powerful tool to solve the product transfer problem, and surely can 

have other applications in engineering, or chemistry such as calibration transfer. 



Chapter 6 

Conclusions 

Multivariate statistical methods based on latent variable (LV) models are applied 

throughout this thesis to solve problems related to the analysis, operation and monitoring 

of a batch process. Four different areas are investigated: i) the troubleshooting of the 

process operation, ii) the monitoring of new batches, iii) the optimal re-design of the 

operating conditions, and iv) the effective transfer of valuable information from one 

production site to another. 

The necessary steps to build an effective monitoring scheme involve a) a pre­

assessment of data which is representative of the process operation; b) taking the 

necessary steps to correct the process if any unwanted behavior is diagnosed in the pre­

assessment; and c) re-sample the process for model building and further monitoring. 

From these three steps, the pre-assessment of the process is critical for a robust 

monitoring scheme to be built. Chapter 2 is an illustration of such pre-assessment and the 

kind of conclusions that might come from such an analysis when it is done on a batch 

system. 

The analysis shown in Chapter 2 presents a practical example that illustrates the 

state of the art of batch process analysis using latent variable methods. This application 

involves a complex industrial process from which data is available from several sources. 

The available historical data from the process is analyzed using both conventional and 

multi-block LV methods in order to determine which of the multiple sources of 

variability is related with the production of off-specification product. 
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Several indicator variables are used to synchronize the trajectories, along with a 

new technique that is applied to compute the used amount of time for a certain evolution 

level in the batch. Doing so creates an additional profile (referred to as the time usage) 

and is to be included into the multivariate model of the process variable trajectories. This 

new trajectory is analyzed as an additional variable along with the rest variable 

trajectories of the batch. The time usage trajectory enables the model to monitor and 

identify the periods of operation where the batch system consumes more or less time. 

This piece of information is valuable for process improvement purposes as illustrated in 

this chapter. 

The approach taken to include the time consumption differences among batches 

allows a detailed troubleshooting of the process. By interpreting the several loadings 

matrices and contribution plots, it is found that the timing of the different stages in which 

the unit was operated was the source of off-specification product, and not the initial 

chemical conditions of the raw material as it was thought in the beginning. 

Taking into account the time variable is shown (in Chapter 2) to be powerful and 

necessary to effectively capture the operation of a batch system. And this is not restricted 

to the pre-assessment (or off-line analysis) stage, but also in the monitoring stage. 

Chapter 3 presents a thorough analysis on the implications of using the missing 

data handling capabilities of the PCA model in monitoring a new run before its 

completion. Six different missing data methods are considered, extending the previous 

work by Nomikos and MacGregor (1994) where only one method is considered. 

When monitoring a new batch, at any time before the completion of the run, it is 

possible to "fill in" the future unknown measurements with missing data and estimate the 

final score; there are several methods available for this task. The mechanism behind the 

estimation of the final score uses an implicit forecast of the unknown samples of the 
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batch trajectories; this forecast is uncovered and studied in detailed. This study shows 

that (when filling in with missing data) any of the possible f step ahead forecasts is 

performed using an adaptive-expanding multivariate time series which will evolve non­

linearly as more samples are available. This forecasting model will include tailored 

coefficients for each of the possible f step-ahead estimates that can be computed at any 

sample before the completion of the batch, and the accuracy of such forecasting 

mechanism is shown to be superior of the one obtained by other means. 

The score estimates obtained in the same way are proven to have the best set of 

properties among the considered methods. The score estimates obtained when the missing 

data option is effectively used will preserve their orthogonality, stability and coherence 

throughout the entire batch. Such performance is only obtained by using an appropriate 

method (such as conditional mean replacement, iterative imputation or projection to the 

model plane) to handle the missing measurement scenario. 

A final comparison exercise in Chapter 3 is performed to contrast the considered 

methods in the fault detection exercise. For this purpose, a new data set is created with a 

detailed deterministic simulation of an emulsion polymerization. The goal is to simulate a 

set of subtle faults which will also resemble realistic situations. The methods are 

benchmarked in detecting five faults which differ in magnitude and nature. At the end, 

there is no statistical evidence of any difference in the mean time to detection among 

methods. The fact that the control limits are tailored for each of the methods might result 

in similar detection capabilities as shown in this chapter. If there is any difference, an 

extensive study is required to uncover them. 

The first half of this thesis presents solid evidence of the modeling power of a 

multi way method in capturing the operation of a batch process, not only in its variable 

time-profiles but also in its initial conditions. These modeling capabilities are used in the 

second half of the thesis for design purposes. 
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In previous related work (Jaeckle and MacGregor, 1998), latent variable methods 

were used to design the operating conditions to achieve a desired quality in the product. 

In Chapter 4, these techniques are now applied to the design of batch process trajectories. 

This Chapter presents the reformulation of the earlier technique in order to include 

constraints in the desired quality characteristics; and to consider operational constraints 

and an optimal criterion in the design of the operational conditions for the batch. 

The analysis of the multiple solutions available in the exerCIse of estimating 

operating conditions for a certain industrial problem is shown. This is the first work that 

further illustrates the concept of the null space and its application in estimating process 

conditions for an industrial case. 

The augmentation of the model with the derivatives of the trajectories is proposed 

to strengthen the information about the trends into the model and hence avoid the analysis 

of a null space. Such augmentation is proven to greatly enhance the structure of the 

trajectories and how this structure is passed to the new estimates. Derivative augmented 

models will not increase or decrease in a significant amount the predictability of the final 

properties in a PLS model. 

The gIven reformulation of the problem allows the inclusion of an optimal 

criterion in the sought operating conditions. This feature of the technique is illustrated 

with an industrial case, where the operating conditions of an emulsion polymerization 

process are estimated to fulfill the customer requirements for the final product, while 

consuming the minimal amount of time for its execution. 

This new optimal trajectory design methodology represents an attractive 

alternative to the use of deterministic models and represents the equivalent off-line 
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technique to the iterative on-line method proposed by Flores-Cerrillo and MacGregor 

(2004). 

Finally Chapter 5 revisits and solves the product transfer problem studied before 

by Jaeckle and MacGregor (2000) by proposing a new multivariate latent variable 

regression method: the Joint-Y PLS model. 

The conceptual form of the JYPLS model is shown and its mathematical 

foundations are established. The analytical solution to the parameter estimation problem 

is given as an eigenvector-eigenvalue equation. This work provides a modification to the 

NIPALS algorithm (traditionally used to compute the loadings of a PLS model) to 

compute the loadings of the new JYPLS model. The proposed algorithm is proven to give 

under certain conditions, the same solution as the analytical eigenvector-eigenvalue 

solution. 

Several modifications to the JYPLS model are given, such as the multi-block and 

the quadratic non-linear forms of the model. The extension of the JYPLS model to 

consider several multiple sites is also given. 

After the JYPLS model has been properly defined, a thorough analysis is done to 

determine under which conditions, the JYPLS model will give a better estimate of the 

sought process conditions, than the earlier proposed EPCR technique(Jaeckle and 

MacGregor, 2000). This analysis is done with simulated data. It is shown that the 

estimate from the JYPLS model will be better in the case where the matrix corresponding 

to the operating conditions from the source plant contains more information (than the rest 

of the data structures) about the latent structures which are driving the system. 

An industrial scale-up and a simulation case are used to illustrate the application 

of the JYPLS model to the product transfer scenario. The results from these two cases 
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show that the estimates obtained by using the JYPLS are very close to the "known" 

solutions (which in the simulated case required a highly detailed deterministic model to 

find). The concepts detailed in chapter four to estimate optimal trajectories will apply 

straightforward when using a JYPLS model. 

In summary, this thesis contains the following novel concepts and their 

application to industrially relevant cases: 

• The time usage for a batch system and its interpretation 

• The interpretation of the forecast equation in a multiway-PCA model for batch 

trajectories as a multivariate adaptive time series equation. 

• The use of forecast-accuracy measures such as the FPRESS and FPRMSE, and 

the concepts of coherence and stability of the score estimate for a new evolving 

batch 

• The reformulation of the product design equations (Eq. 4.7b, 4.15 ), and the 

optimal trajectory design formulation (Eq. 4.30) 

• The derivative-augmented multi-way model and its application m trajectory 

estimation 

• The Joint-Y PLS model concept 

• The solution to the JYPLS parameter estimation problem 

• The application of the JYPLS model to solve the product transfer problem 

• The application of the JYPLS model in assessing parallel plants 

The results shown from such applications are encouragmg and should give 

practitioners (and vendors) the confidence to try them out in commercial solutions. 



Appendix 1 

Analysis and Troubleshooting of Batch Processes using 

Multi-block Latent Regression Models 

This appendix discusses the batch process presented in Chapter 1 and presents the 

reasoning sequence to get to the same conclusion in regards of the changes needed by the 

process in order to reduce the production of off-specification product; but by using a 

single multi-block PLS model (Westerhuis, Kourti, and MacGregor, 1998). Many 

conclusions can be obtained from multi-block models; however, the discussion in this 

appendix is conducted to reach the same conclusions as in Chapter 1. 

A1.I Multi-block PLS models for batch processes 

Kourti et al ( 1995) introduced the analysis of batch data with multi-block models 

in order to include the initial conditions available at the beginning of the batch run, 

acknowledging that: i) these conditions may have a strong impact in the final product 

characteristics and ii) these initial conditions are certainly correlated with the process 

trajectories. 

For a given batch data set, there will be a set of M of initial conditions, and J 

process variables measured K times during the batch (Fig.2.1 and Fig. 2.2), a simple 

approach to handle this data set is simply to augment the unfolded X matrix (Fig 2.1) by 

adding the ofthe initial condition columns to it, and doing PLS. However, it is very likely 
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that M« JxK and hence, the PLS model will not extract all the possible information 

from the initial conditions because these are outnumbered by the JxK columns from the 

unfolded trajectories. By a using a multi-block model the weight is being balanced 

between Z and X; and the M columns of Z and the JxK columns of the unfolded X matrix 

will both have the same weight in the regression model since each block has variance 

equal to one (Westerhuis, Kourti, and MacGregor, 1998). Furthermore, the weight given 

to a certain block can be modified to increase the prediction of the model. 

In the analysis of the batch data from chapter 1, the 20 initial conditions the 11 

variables (sampled 350 times) and the 11 quality variables are used to build a multi-block 

PLS (MBPLS) model. Two components capture 55% of the quality data, 32% of the 

process trajectories and 26% of the initial conditions. These two components are enough 

to appreciate the differences between the product that is within specifications (on-spec) 

and less value added product, which properties are outside the desired established ranges 

(off-spec). In the following sections, the model is interpreted to obtain valuable 

information about the process conditions and how they affect the quality of the product. 

A1.2 Score and loadings plots 

Multi-block PLS models have two sets of scores to be analyzed: the super-scores 

and the block scores. The super scores give an overall picture of the observations 

accounting the effect from all blocks in explaining the Y matrix; the block scores will 

give information about the effect of a particular block on the Y matrix. Figure Al (top) 

shows a score plot for the super-scores; notice that on-spec batches cluster in the positive 

quadrant Oftl while off-spec ones cluster in the negative side Oft1 - with the exception of 

four anomalous on-spec-batches that cluster in the negative side of tl. Analyzing the 

block loadings for t1 it is possible to find out which characteristics of each block are 

related to high values oftl and hence to on-spec product. 
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Figure At. Score plot for overall scores (top) the initial conditions block scores 

(middle) and the process trajectory block scores (bottom) 
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Analyzing the loadings for the first principal component corresponding to the 

initial conditions block (Fig. A2) helps to determine when are high values oft1 obtained. 

High values of t1 are obtained with low levels in the collector tank at the end of stage 1 

which is possible with low quantities of wet cake fed to the reactor; this plot also suggests 

that a fast evaporation during stage two (high slope and low time 2) and an extended 

cooling down time (high time 3) are also related with on-spec product. 
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Figure A2. Loadings plot to the first component for the initial conditions 

The loadings for the same component but for the process trajectories (Fig. A3) 

suggest some of the same conclusions, low levels in the collector tank, and low time 

usage (fast batches) with high temperatures in the dryer and the heating jacket during the 

first two thirds of the batch along with high values of Xl during the same period of time 

approximately. Notice that these conclusions are no different than those obtained from 

separated PLS models in chapter 2 of this thesis. 
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Figure A3. Loadings plot to the first component for the process trajectories 

A1.3 Contribution plots for troubleshooting 

When plotting the super-scores, four anomalous on-spec batches were spotted. 

More insight can be obtained by plotting the block scores; notice that these four batches 

fall within the on-spec region for the score plot corresponding to the initial conditions 

(Fig. AI. middle) and at the same time fall in the off-spec region in the score plot 

corresponding to the process trajectories block (Fig. AI. bottom), this suggests that, the 

reason for these batches to yield on-spec product is not present in their trajectories, but in 

the information captured by the Z matrix (notice the unusual shape of the confidence 

limits in these two plots, due to the fact that the block scores are not entirely orthogonal 

and the limits must be computed using the complete covariance ofthe block scores). 

The troubleshooting exercise is now to figure out which were the characteristics 

in those four anomalous on-spec batches that were enough to counteract the effect of the 
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process trajectories and yield good quality in the final product. To answer this, four 

batches are selected: anomalous batches 420 and 412, and off-spec batches 415 and 410 

(Fig Al middle and bottom). These batches cluster together in the score plot 

corresponding to the process trajectories, and cluster separately in the score plot 

corresponding to the initial conditions. 

Figure A4 is a plot of the contributions to the first component in the process 

trajectories block scores for the off-spec batches and figure A5 contains similar 

contributions, but corresponding to the anomalous on-spec batches. Each pair of plots 

contains the traditional contribution plots where the time effect is appreciated, and the 

integral under the curve for each variable, which gives an overall idea of which was the 

process variable that contributed the most. To the best of the knowledge of the author, 

this is the first time the contributions are presented in such way (integrated with respect 

to time), a similar variable-wise contribution plot is shown in (Nomikos, 1996) and 

(Kourti, Nomikos, and MacGregor, 1995), however these contribution plots are to the 

instantaneous SPE chart. 

The contribution plots shown in figure A4 and A5 do suggest that the two off­

spec batches and the two anomalous on-spec batches are in the same space of the block 

score plot for the same reasons: high values of CTANKLVL and TIME, which are 

contrary characteristics to those found necessary to achieve high values oft1. 

This comparison between the contribution plots to the first component (the one 

that separates on-spec from off-spec) for these batches: 420, 412, 415 and 410 validates 

the fact that the process trajectories for the anomalous ones have the same characteristics 

of the off-spec batches and hence isolating the sought answer to the initial conditions 

block. 
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Figure A4. Contribution plots to the process trajectory block scores for two 

off-spec batches 415 (top) and 410 (bottom) 
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Figure A5. Contribution plots to the process trajectory block scores for two 

anomalous on-spec batches 412 (top) and 420 (bottom) 
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And so it is that the initial conditions block in now interrogated to find out which 

were the conditions in the anomalous on-spec batches such that the final product was 

within specifications, in spite of having all the characteristics of an off-spec batch in the 

process trajectories. Analyzing the contributions (in the initial conditions block score 

space) to the movement/rom an off-spec batch to an anomalous on-spec batch in the first 

component (Fig. A6) will point to those conditions that must change in the process 

variables to achieve such movement in the score space. 

o 

Contribution Plot to the I.C. Block Scores for: 415 -> 420 Training Data. Component #1 
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Figure A6. Contribution plots from off-spec batches to anomalous on-spec 

batches: from 415 to 420 (top) and from 410 to 412 (bottom) 
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The two contribution plots being analyzed are those to the movement from off­

spec batch 410 to anomalous on-spec batch 422 (Fig. A6 top); andfrom off-spec batch 

415 to anomalous on-spec batch 420 (Fig. A6 bottom); and both plots suggest the same 

answer: fast heating during stage two and long cooling time. These two characteristics 

were "strong" enough to compensate for all the other adverse characteristics present in 

each of the anomalous batches, and made the process yield product within specification. 

And this is the same conclusion obtained in chapter 1 using separate PLS models. 



Appendix 2 

On-line Hotelling's T2 Statistic Calculation using the 

time-varying variance- covariance of the scores for Batch 

Process Monitoring 

In the early work by Nomikos and MacGregor (1995), the Hotelling's statistic for 

the analysis of batch process data is shown to be calculated as (Eq. AI): 

(AI) 

where tR is a vector containing the R retained components of the model, and S represents 

the covariance matrix of the R retained score vectors. The S covariance matrix is referred 

as a diagonal matrix due to the orthogonality of the scores, which is true for the final 

score estimate. However, when computing this statistic for the on-line monitoring of 

batches, two considerations are to be taken: a) the covariance of the scores changes with 

time, and b) the scores might become non-orthogonal (Fig. 3.15). In this work, the 

Hotelling's statistic is computed using the correct and complete variance-covariance 

matrix that corresponds to each time sample, as suggested by Nomikos and MacGregor 

(1995). This time-varying variance-covariance is computed using the reference set of 

batches. The Hotelling's statistic is then computed as (Eq. A2): 

(A2) 
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(A2) 

where the estimate of the Hotelling statistic at time k for batch i (Dki ) is a function of the 

estimate of the score vector for the R retained components at time k ( i Rki) for batch i , 

and the covariance matrix of the scores at time k (S0. This Hotelling's statistic is 

distributed as an F(R,I-R) distribution. Notice that Dki will change depending on the 

selected method to solve the missing data problem (or the option selected to "fill in"), 

since it is a function of i Rki' which has been shown throughout this work, to differ from 

method to method, and option to option. Using this corrected version of the Hotelling's 

statistic dramatically improves abnormality detection. 



Appendix 3 

N umedcal Derivative and Partial Derivative Calculation 

for Batch Trajectories 

In this appendix, the derivatives of a set of batch trajectories with respect to its 

evolution index (ei) are formulated as a linear function of the trajectories. Consider, to 

begin with, the case of a single trajectory X (column vector) which has k measurements 

(X E lRkxl). It is assumed that each sample of this trajectory corresponds to a unique point 

in the evolution of the batch, which can be time, or conversion in the case of a chemical 

reactor (e.g. for time = k there is only one corresponding value of X, referred to as Xk)' 

and for simplicity, assume that the evolution index is equally sampled at h intervals (this 

is not a requirement, and the formulation can still be obtained if this assumption does not 

hold for specific case). 

A simple solution in the computation of the derivative of 'lk with respect to its ei 

(referred to as dXk) is to calculate a single point derivative (Eq. A3). This however may 

yield very noisy derivatives due to presence of noise in the process measurements. A 

better calculation of the numerical derivatives is required. 

(A3) 
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High accuracy numerical derivatives can be obtained if a Taylor senes IS 

analytically differentiated. The higher the order of the Taylor series, the more points the 

numerical derivative will require for its calculation. In this work, a three point derivative 

ahead (Eq. A4) is considered for the first two samples in X, three point behind (Eq. AS) 

for the last two samples of X, and a four points centered (Eq. A6) derivative for the rest 

of the samples(Chapra and Canale 1985). 

(A4) 

(AS) 

(A6) 

The fact that the actual magnitude of h is not considered is so that the derivatives 

will have the same units as the evolution index. These formulas can be formulated as 

matrix operations. For example, if X consists of S samples, 

-3 0 1 0 0 0 0 2 -1 
4 -3 -8 0 0 0 2 0 

-1 4 0 -8 1 0 0 12 

dxT 
= xT 0 -1 8 0 -8 0 12 

0 0 -1 8 0 -4 1 0 12 

0 0 0 -1 8 3 -4 2 

0 0 0 0 -1 0 3 2 

(A7) 

If all the two numerical matrices are referred to as D, 

(A8) 
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D is a square matrix which has as many elements as samples in X. In the case 

where the batch trajectory X is preceded by L elements corresponding to the initial 

conditions, the D matrix can be modified by adding L columns of zeros. For the case 

where there are J variable trajectories, a bigger matrix DA can be built with D and as 

many columns of zeros as L initial conditions in Z (Eq. A9 illustrating the case for L=2 

and J=6) such that, the complete derivative of the trajectory can be expressed as Eq. All, 

by previously ordering the trajectories as Eq. AIO, where XuT corresponds to the 

transpose of the unfolded batch data matrix where the columns are grouped by variables 

(Fig. 4.14). 

D 
0 0 

D 0 
0 0 

D 
0 0 

DA = D (A9) 
0 0 

0 D 
0 0 

D 
0 0 

X1,1 X1,2 X1,3 
XI,I l 

X2,1 X2,2 X2,3 X2,! 

XuT = X3,1 X3,2 X3,3 X3,I which is a JKxI matrix. (AIO) 

XJ,l XJ,2 XJ,3 XJ,I _ 

dXuT = 
(All) 

[JK x J] = [JK x (JK + L)] x [( JK + L) x J] 
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The numerical partial derivative formula used was obtained with the analytical 

derivative of a third order Lagrange polynomial interpolation (which does not require 

equally spaced data) which uses four points (XO,XI,X2,X3): 

<5f(x) I = f(xo) 3X2 -2x(xj +X2 +X3)+XjX2 +XjX3 +X2X3 
<5 x x (xo - xI)( Xo - x2)( Xo - X3 ) 

+ f(x
j
) 3X2 - 2x(xo + X 2 + x3) + XOX2 + XOX3 + X2X3 

(xj -xo)(xj -xJ(xj -x3) 

+ f(xJ 3X2 -2x(xo +Xj +X3)+XOXj +XOX3 +Xj X3 
(X2 -XO)(X2 -xj)(x2 -x3) 

+ f(x
3
) 3X2 -2x(xo +Xj +X2)+XOXj +XOX2 +XjX2 

(X3 -XO)(x3 -xJ(x3 -xJ 

(AI2) 



as: 

Appendix 4 

Analytical Solution to the Optimization Problem in 

JYPLS 

The objective function for the first component of the JYPLS model can be written 

s.t. ta j =XA wa j 

tb j =XB wbj 

T wa j wa j =a 

wb?wb. =/3 
J J 

(AI3) 

To obtain the eigenvector-eigenvalue solution, a change of variable is needed: 

(A14) 

Substituting into Eq. A13, we obtain Eq. AIS. 

(AIS) 
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Notice that now the w vector is being normalized to one, this constraint will have 

the same function as the normalization of the individual loading vectors, which is to keep 

the solution from being infinity. After algebraic manipulation and including the constraint 

into the objective function with the use of a Lagrangian multiplier, Eq. A15 becomes Eq. 

A16, 

max 

w 

(A16) 

To obtain an analytical solution, we now take the derivative of the objective 

function (<I» with respect to w gives equation A5, and solving this to zero gives the 

eigenvector-eigenvalue solution to the JYPLS model (Eqs. A17 to A20). The W vector is 

in fact the eigenvector corresponding to the highest eigenvalue of L. 

(A17) 

(AtS) 

(A19) 

I:.w = J.w (A20) 



Appendix 5 

Proof of the NIPALS-Modified Algorithm to Give the 

Analytical Eigenvector Solution to the Optimization 

Problem in JYPLS 

At convergence, in the JYPLS model w=Xu(u'ur l in each site 

(A21) 

at convergence u= Y q( q' qr1 for the joint space of Y 
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at convergence q=Yt(t'tr1 for the joint Y space, 

o l 
Xb'Yb[ Ya'Yb' J[: Jtq,u, 

and working the internal matrix operations, 

o 

o 
q'u' 

(A23) 

o 
tj'q 'U I 

[Xb'Yb Va' Xb'Yb Yb'J[::] 

(A24) 

at convergence, t=Xw(w'wr1 for each considered site 

r ta] _ [xawa(waTwaf1 ] (A25) 
L tb - Xbwb(wbTwbf1 
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Substituting Eq. A25 in A24, 

[::] = 

(waTwarJ 

[
xaTYaYoaTxawa XaTYaYbTXbwb 0 0] (wbTwbrJ 

o XbTYbYaTXawa XbTYbYbTXbwb 

=[xaTYaYoaTxawa XaTYaYbTXbwb 0 0 lW't"' 'u' 
o XbTYbYaTXawa XbTYbYbTXbwb ] q 

Expanding the right hand terms in Eq. A26, 

a1 

w'tj'q'u'= 

(waTwarl(tjTtjrl(qTqr\uaTuarl 

(wb TWb r 1 (tjT tjr1 (q T qr1 (ua Tua r 1 

(wa Twa)-1 (tjTtj)-1 (q T q)-1 (ub Tub )-1 

(wbTwb )-1 (tjTtj)-I( q Tq)-I(ubTub )-1 

= :: ' where q = [:: 1 
a4 

Substituting these scalars from Eq. A27 in Eq. A26, 

[
wal = [xa

T
YaYa

T
Xawaul + Xa

T
YaYb

T
Xbwbu2 ] 

wb XbT YbYaT Xawau3 + XbT YbYbT Xbwbu4 

If a 1 = a 2 = a 3 = a 4 = a-I in Eq. A28, then this expression can be reduced to an 

eigenvalue- eigenvector form: 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 



Appendix 6 

N onlineal" JYPLS Algorithm 

This algorithm can be modified to include any non-linear function between the 

T's and the U's. The present algorithm is specifically for the case of u' s being a quadratic 

function ofthe t's (Eqs. A30 and A31), each of the scores for each plant holds it's own 

nonlinearity having each set its corresponding vector b. 

(A30) 

(A31) 

The algorithm is similar to the one for the nonlinear quadratic PLS proposed by 

Wold (1989) as follows (subindex a denotes component) : 

1. Define Yj=[Ya T Yb T] T, define n as rows in Ya and m as rows in Vb. 

2. Mean center and scale Xa, Xb,Ya and Yb 

3. a=l 

4. Initialize uaa 
, uba ,waa ,wba , taa ,tba ,with the linear JYPLS algorithm 

5. Fit ba~ and bb~ with the initial uaa ,uba ,taa 
, and tba using ordinary least 

squares and Eqs. A30 and A31. 

6. Calculate iiaa and iiba using ba~ ,bb~ , taa , and tba and Eqs. A30 and A31 

7. Regress the columns of the Joint Y onto the joint uj" ~ [ !:: l to obtain q" : 
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T ~. TY'/(~'T~' ) qa = uJa J uJa uJa 

9. Update waa and wba by nonlinear regression such that 

uaa =ba~ +bat(xa waa)+ba;(xa waai 

10. normalize waa and wba with Eq. 5.33 

11. Compute new t scores: tana = Xa waa and tbna = Xb wba 

12. Calculate uana and ubna 

13. Regress the columns ofthe Joint Y onto the joint Unj. ~ [ !::::: 1 to obtain q. : 

q~ = unj/Yj /(unj~unja) 

14. Compute unja = Yj qa /(q~qa) 

15. Check convergence in taa, tba and tana, tbna 

16 a a ba b a a . I ba • I . ta = tan ,t = tn, ua = unJa i(l:n) , U = unJa (n+l:lII) 

17. If not converged return to step 5 

18. If converged, calculate paa and pba as paa = Xa taa /(taaT taa) and 

pba = Xb tba /(tb aT tba
) 

19. Deflate Yj=Yj_[uaa]qa, Xa=Xa -taapaaT,Xb=Xb _tbapbaT 
uba 

20. a=a+ 1, got to step 4 to compute next component. 

215 



Appendix 7 

Building the test set for chapter 5 

The data set used in chapter 5 was constructed starting with a latent space. A 

latent space consists of an nxA matrix (T) where each column is independent and the 

variance of the first column is grater than the variance of the second, and so on. The 

construction of such matrix is illustrated with the MATLAB® code used. The code lines 

are numerated for clarity in table AI. 

Line Num Code 

1 clear 

2 T1=randn(100,1)*5i 

3 T2=randn(100,1)*3i 

4 T3=randn(100,1)*1.5i 

5 [T1 T2 T3]' * [T1 T2 T3] 

6 T2=[T2-T1*inv(T1'*T1)*T1'*T2]i 

7 [T1 T2 T3]' * [T1 T2 T3] 

8 T3=[T3-[T1 T2]*inv([T1 T2] '* [T1 T2]) * [T1 T2]' *T3] ; 

9 [T1 T2 T3]' * [T1 T2 T3] 

10 T=[T1 T2 T3]i 

Table AI. MATLAB® code to build a three dimensional latent space (T) 

The goal is to generate three column vectors with decreasing variance (as column 

number increases), and to introduce orthogonality among the columns. 
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Lines 1 to 4 will generate three column vectors with independent and normally 

distributed elements, the scalars 5, 3 and 1.5 are introduced to modify the variance of 

each one of the vectors. Once the vectors are generated, these will not be orthogonal; this 

is evident when executing line 5, which will give an estimate of the correlation among 

columns (a sample output is shown in table A2), notice that the off-diagonal terms are 

different from zero which indicates a certain degree of correlation among the column 

vectors. 

2813.7 -92.97 -27.77 
-92.97 854.46 -87.97 
-27.77 -87.97 281.43 

Table A2. Correlation among TI T2 and T3 showing some non-orthogonality 

To introduce orthogonality between T2 and Tl, a regressIOn coefficient is 

estimated to fit the equation T2 = TIP, and now T2 is substituted with the residuals 

from this regression function (T2 = T2 - TIP), this is achieved with line 6 of the 

provided code (where OLS is used to estimate /3). Once this is done, TI and T2 will be 

orthogonal and this can be seen by executing line 7 (same as line 5), a sample output is 

shown in table A3. Notice that the off-diagonal terms corresponding to the TI-T2 

relationship are now zero. 

2155.8 0 25.23 

0 511.49 -17.35 
25.23 -17.35 112.55 

Table A3. Correlation among TI T2 and T3 after orthogonality is introduced 

between Tl and T2 

The same exercise is done in line 8 between T3 and the matrix formed with T 1 

and T2. T3 is substituted with the residuals from an OLS fit between T3 and [Tl T2]. 
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Once this line is executed, the output from line 9 will show all the off-diagonal terms 

equal to zero, a sample output of this command is shown in table A4. 

2155.8 0 0 
0 511.49 0 
0 0 111.66 

Table A4. Correlation among Tl T2 and T3 after orthogonality is introduced 

between Tl and T2 and T3 

All the column vectors are orthogonal to each other, the latent space T is 

constructed with these column vectors (line 10). These lines will result in a T matrix with 

variances of approximately 25,9 and 2 for Tl, T2 and T3 respectively. 

Once the latent space T is constructed, the idea is to generate one Y matrix where 

each observation is a linear transformation of T as: 

Y = 

(m x n) 

T 

(m x A) 

x Q 

(A x n) 

(A32) 

The Q matrix will define how much is each column of Y correlated with the 

columns of T. The Q matrix used in this work is given in table A5. The resultant Y space 

will become the Y J matrix. Two X spaces will be generated in the same way as the Y 

space was generated (but with different number of columns each). These X spaces will be 

highly correlated with the YJ space. 

2.43 5.09 0.5 2.53 2.02E-005 0 
0.44 1.52 4.55 10.33 3.50E-006 0 

0 0 0 0 0 5.03E-005 

Table AS. Q matrix used to generate the Y space 
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In this thesis, two X spaces were generated as, 

Xa = T x PI (A33) 

(m x 1) (m x A) (A x 1) 

Xb = T x P2 (A34) 

(m x k) (m xA) (A x k) 

The values ofP! and P2 used in this work are shown in tables A6 and A7. 

1.5 a 4 5.1 0.03 1.E-005 2.E-008 i.00E-007 
a 5 a 1.7 4 a a 2.30E-006 
a a a a a 9 5 8 

Table A6. Values of PI used in this work 

Table A7. Values ofP2 used in this work 

At this stage, the available data structures are as shown in figure A7. To generate 

two sets of data Xa,Ya and Xb,Yb the first rna rows ofXa and YJ are taken to become 

Xa and Va, and the last rnb rows ofXb and Yj will become Xb and Yb respectively (Fig. 

AS). 
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In this work, the original structures consist of 200 rows, and rna and rnb were 

taken as 100 each. The unused part of each of the structures (last rnb rows of the original 

Xa, and first rna of the original Xb) are the known solutions for the transfer problem. 

Ink 

Xa YJ Xb 

m m ~rn~ ________ ~ 

Figure A 7. Data structure generated 

1 
Xa Ya 

m a 

k 

Xb Yb 

Figure AS. Partition of original data structures to generate Xa, Xb, Ya and Yb 

Finally, noise is introduced in Xb and Vb. The noise is introduced per column is 

independent white noise with standard deviation equal to the 8% and 2% (for Xb and Yb 

respectively) of the standard deviation of the corresponding column. 
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