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This thesis encompasses a number of problems related to the number fluctuations from
the ground state of ideal particles in different statistical ensembles. In the microcanonical
ensemble most of these problems may be solved using number theory. Given an energy
E, the well-known problem of finding the number of ways of distributing N bosons over
the excited levels of a one-dimensional harmonic spectrum, for instance, is equivalent to
the number of restricted partitions of E. As a result, the number fluctuation from the
ground state in the microcanocnical ensemble for this system may be found analytically.
When the particles are fermions instead of bosons, however, it is difficult to calculate the
exact ground state number fluctuation because the fermionic ground state consists of many
levels. By breaking up the energy spectrum into particle and hole sectors, and mapping the
problem onto the classic number partitioning theory, we formulate a method of calculating
the particle number fluctuation from the ground state in the microcanonical ensemble for
fermions. The same quantity is calculated for particles interacting via an inverse-square
pairwise interaction in one dimension. In the canonical ensemble, an analytical formula
for the ground state number fluctuation is obtained by using the mapping of this system
onto a system of noninteracting particles obeying the Haldane-Wu exclusion statistics. In
the microcanonical ensemble, however, the result can be obtained only for a limited set of
values of the interacting strength paramster.

Usually, for a discrete set of a mean-field single-particle quantum spectrum and
in the microcanocnical ensemble, there are many combinations of exciting particles from
the ground state. The spectrum given by the logarithms of the prime number sequence,
however, is a counterexampie to this rule. Here, as a consequence of the fundamental
theorem of arithmetic, there is & one-to-one correspondence between the microstate and the
macrostate, resulting in the vanishing of number fluctuation for all excitations. The use of
the canonical or grand canonical ensembles, on the other hand, gives a substantial number

fluctuation from the ground state. For a related spectrum, that given by the logarithms of
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an integer n, the microcanonical number Huctuation is non-zero but the application of the
other ensembles is still not valid. These two spectra are examples of systems where canonical
and grand canonical ensembles averagings yield answers different from the microcanonical
resuit.

Some models in physics may be used to obtain formulae known in the theory of
number partition. For the same problem of N ideal bosons in a one-dimensional harmoenic
oscillator potential mentioned earlier, it is well known that the asymptotic (N — 00) density
of states is identical to the Hardy-Ramanujan formula for the number of partitions of an
integer n. The same statistical mechanics technique for the density of states of bosons in a
power-law spectrum yields the partiticning formula for the number of partitions of n into
a sum of sth powers of a set of integers. By considering only the particle sector of the
fermionic spectrum, a formula for the number of distinct partitions of n is obtained. For
the s = 1 case and for finite N, the Erdos-Lehner formula for the restricted partitions, and
a new formula for the distinct and restricted partitions are derived.

As a diversion, we discuss the microcanonical entropy which may be uniquely de-
fined in terms of the macrostate, or equivalently the many-body degeneracy of the state, at
a given energy. The many-body degeneracy factor, however, is exceedingly difficult to cal-
culate in general. It is thus desirable to find a different way to calculate the microcanonical
entropy. It has been recently suggested that the microcanonical entropy may be accurately
reproduced by including & logarithmic correction to the canonical entropy. This claim is
readily tested using some of the models mentioned above, where the many-body degeneracy
may be determined exactly. In addition, we also consider a system of N distinguishable par-
ticles in a d-dimensional harmonic energy spectrum. In this case the many-body degeneracy

factor can be obtained analytically in a closed form.
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“The beginning is the most important part of the work.”
Plato (427-347 BC), The Republic

In the last two decades there have been tremendous advances in the experiments of
trapping atoms. Following the experimental discovery of Bose-Einstein condensation (BEC)
of trapped atoms in 1995, the ideal Bose gas has been attracting considerable theoretical
interest with a wide range of topics. One such topic is the number fluctuation from the
ground state, discussed in this thesis. Here, we focus on systems of particles which are
essentially noninteracting in different traps. For the most part, these systems have an

interesting link to number theory.

1.1 eview of Previous Work

Some aspects of the work in this thesis are a continuation of previous work, which
in turn was motivated by the problem of number fluctuation of a system of Bose gas. In
standard statistical mechanics, the usual textbook approach is based on the grand canonical
ensemble (GCE). The number fluctuation is found to be related to density-density corre-
lation, and to the thermal compressibility of the system [1]. A connection between the
ground state number fluctuation and the cross section for light scattering off a BEC has
been proposed [2]. It is well known that the standard expression for the number fluctuation
of Bose gas in the GCE is divergent at low temperatures [1, 3, 4, 5]. This expression is
given by

(ang) = (ng) (1 + (m3)), (1.1)
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where (n;) = (el #F _ 1)1 is the average occupation with energy ¢; at temperature
kT = 1/8, and u is the chemical potential. As the temperature of the system ap-
proaches zero, the average cccupancy of the excited states becomes small while that of
the ground state becomes macroscopic, and approaches N, the total number of parti-
cles. Using the above formula, the ground state number fluctuation is thus (ANg) & (NV)
which is clearly nonphysical since the number fluctuation should vanish at zero tempera-
ture. In an attempt to overcome this problem, the authors in Ref. [4] proposed instead
(ANg?) /N2 — (N/ (No) — 1)? which goes to zero with temperature. Recall that the GCE
aliows particle exchange between the system and its surrounding. However, in the exper-
imental setting of BEC in a trapped dilute gas at ultra-low temperatures [6, 7, 8], the
number of particles does not fluctuate when the cooling process is over. It is therefore more
appropriate to calculate the ground state number fluctuation within the canonical ensem-
ble (CE), or the microcanonical ensemble (MCE) formalism (a detailed discussion of the
different ensembles is given in section 2.1).

To have an understanding of what the fluctuation of the ground state occupancy
number means, consider a simple example given in the figure below. We assume the particles
are noninteracting bosons. The single-particle energy spectrum is taken to be harmonic,
€n = m, and the total number of particles N = 3. At T = 0, all the particles reside in the
lowest state. For a given fixed excitation energy Fe., in this case F,; = 5, there are many
ways the particles can share this energy and be excited to the higher levels. The number
of ground state particles does not remain constant and thus fluctuates as a function of

excitation energy.

) ) by )
T=0,B, =0 T#0, B, =5

Figure 1.1: Illustration of the ground state number fuctuation for a one-dimensional har-
monic trap. &) The system is at zero temperature, all the particles are in the ground state.
b) Given an excitation energy E,, = 5, there are many ways for the particles to share this
energy. The number excited particles, Ne,, may vary from 1 to N. Note that the higher
energy levels are not shown.
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The calculation of the microcanonical ground state number fluctuation for ideal
bose gas confined in a one-dimensicnal harmonic trap has been done analytically [9] in
the limit of large N. For higher dimensions the results were obtained using approximate
methods. In all cases the fluctuation of the ground state occupancy number were shown to
vanish at zero temperature when either the CE or the MCE is used [9, 10, 11, 12, 13, 14,
15, 16, 17, 18]. Using different methods of approximation, the number fluctuation was also
considered for weakly interacting bose gas [19, 20, 21, 22, 23, 24].

The microcanonical or canonical approach is in general very difficult. For ideal
bosons in a one-dimensional harmonic trap, the problem is greatly simplified due to the
connection to number partitioning theory [9]. A direct connection to number theory was
not possible for ideal fermions, however, due to the fact that the fermionic ground state
consists of many levels. In our previous work, we formulated a method for calculating the
exact microcanonical fluctuation using combinatorics for ideal bosons and fermions as a
function of excitation energy [25, 26]. Comparisons between the different ensembles were
also made. The work on fermions was inspired by the experimental observation of quantum
degeneracy in trapped fermionic gas at low temperatures by the authors in Ref. [27, 28].
The combinatorics method is, however, very time-consuming computationally. One of the
objectives of the present work is to formulate an efficient method, using results from number
theory similar to the bosonic case, to calculate the ground state number fluctuation for ideal
spinless fermions. In the presence of interaction, the difficulty is greatly increased, even in
the GCE. However, for certain kind of interaction, this can be done analytically [29]. One
other objective of the present work is to calculate the number fluctuation of interacting
particles in the CE and MCE.

1.2 Scope of the Present Work

The present work was in fact set out with the two main objectives mentioned
earlier, namely, to effectively calculate the fermionic number fluctuation in the MCE and
to find the fluctuation for interacting particies in the CE and MCE. During the research,
the results of which were reported in Refs. [24, 30|, some related questions were raised and
induced more work. Therefore, this thesis may be thought of as a collection of results that
are interconnected. For this reason, the next chapter is devoted to introducing some of the

ideas in statistical physics and number theory necessary to the rest of the thesis. Chapter 2
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thus serves to prepere the background for the subsequent chapters, and presents an overview
of the ground state number fluctuation in different ensembles. Certain quantities in a many-
body quantum system and their connection to the generating functions, found in the theory
of number partitioning, are alsc discussed.

In Ref. [24] we calculated the number fluctuations for particles interacting via a
two-body inverse square potential in one dimension, and a contact delta potential in two
dimensions. At this point the calculations were only done in the GCE and CE. In the second
part of Ref. [30], we carried on the work on interacting particles in one dimension and in the
MCE. This was however possible only for a few values of the interaction strength parameter.
We present these results on interacting particles in chapter 5. In the first part of Ref. [30],
we reported a method for calculating the exact ground state number fluctuation for ideal
fermions. By dividing the fermionic energy spectrum into hole and particle sectors, we were
able to use results from the theory of number partition to greatly simplify the fermionic
problem.

The one-dimensional harmonic trap is one of the many examples that illustrates an
interesting link between physics and additive number theory. In fact, connections between
statistical mechanics and additive number theory have been recognized for a long time (see
e.g., [31, 32]). Over the past decade, however, there have been theoretical works on newly
connecting physical systems to multiplicative number theory. Julia [33, 34], for example,
defined the so-called Riemann gas with the Riemann zeta function as its partition function.
The zeta function was also used as partition function by Knauf [35] in his work on one-
dimensional spin chains, and by Fivel [36] in connection to quantum entanglement. Recently,
Boos et al. [37] showed that the correlations function in spin-1/2 Heisenberg XXX antiferro-
magnet can be expressed in terms of the values of Riemann zeta function at odd arguments.
These are only a small number of examples, a more complete listing with the relevant pub-
lications may be found on line at www.maths.ex.ac.uk/~mwatkins/zeta/surprising.htm.

After the successful application of additive number theory to calculate the ex-
act ground state number fluctuation for fermions, we examine different systems that have
links to multiplicative number theory. Noninteracting particles in traps with energy spec-
tra given by Inp where p is prime, and Inn where n is integer, belong to this category.
Using the fundamental theorem of arithmetic, the number fluctuation and the entropy in
Though the

same remarkable outcome does hold for the Inn model, it nevertheless exhibits some other

the first model is found to vanish for all ezcitation energy in the MCE [38]
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interesting characteristics. Both of these models are counterexamples to the principle of
thermodynamic equivalence. This and the work on ideal fermions in the one-dimensional
harmonic spectrum are presented in chapter 4, where we discuss number fluctuation of non-
interacting particles. Also discussed in chapter 4 is the correction to the canonical entropy
to obtain & formuls that approximates the microcanonical entropy. Given N particles in
a mean-field single-particle energy spectrum, the microcanonical entropy is given by the
logarithm of the multiplicity of states. This quantity is in general difficult to find. On
the other hand, the canonical entropy is relatively easier to determine once the partition
function is known. If the quantum fluctuations are neglected, the microcanonical entropy
may be obtained by subtracting a term involving energy fluctuations from the canonical
value [39, 40, 41]. Previous to our work in [41], a special case of this formula was applied
to the Bekenstein-Hawking Area Law (BHAL). In the last part of chapter 4, we derive the
formula more generally, and test it for three different models where the multiplicity of states
may be exactly found.

Chapter 3 is devoted to finding asymptotic formulae for different types of number
of partitions of an integer n using methods of statistical mechanics. It is already well known
that the Hardy-Ramanujan formula [42], which pertains to the number of partitions of n,
is identical to the density of states of a system of bosons in a one-dimensional harmonic
oscillator potential. The fermionic problem mentioned earlier, with the hole sector removed,
bears close resemblance to the unrestricted but distinct number partition due to the Pauli
principle. Some results and ideas from this work are used tc derive an asymptotic formula
for the number of partitions of n into a sum of s** powers of a set of distinct integers < n.
In addition, we also derive asymptotic formulae for partitioning an integer n into a sum of
st powers of other integers, where the integers need not be distinct. In both cases the size
of the set of integers may be unrestricted or restricted. The formula for the unrestricted
partitions with s = 1 reduces to Hardy-Ramanujan formula [42], and that for the restricted
partitions to the Erdos-Lehner formula [43].

Finally, in chapter 6 we summarize the main results presented in this thesis. In
addition, we alsc discuss some questions yet to be addressed. As is the story of this thesis,

the quest for the answers to these questions might induce more future research.



“ All intelligent thoughts have already been thought,
what is necessary is only to try to think them again.”
Johann Wolfgang von Goethe (1749-1832)

Most of the concepts and techniques used in this work are quite basic and require
no more than fundamental knowledge in quantum statistical mechanics. They are, however,
essential tools for uncovering many results reported in this thesis. We review and summarize
some of the methodologies which shall be constantly used in this thesis. It must be noted
that these theories are by no means complete, but are presented in such a way that enables
one to apply them directly in this work. Section 2.1 discusses the ground state number
fluctuation in different ensembles in statistical mechanics. Section 2.2 discusses the quantum
degeneracy and the quantum density of states. Finally, section 2.3 introduces the so-called
generating functions, which are found in additive number theory, and which are largely
accountable for the work in chapter 3. Note that in all the treatments here the particles are
assumed to be noninteracting. This might be regarded as an independent-particle picture,

or a mean field picture in which the quasiparticles are noninteracting.

2.1  The Different Ensembles

2.1.1 The microcanonical ensembie

The concept of an ensemble is an important idea in statistical mechanics. The first
ensemble considered is called the microcanonical ensemble (MCE) following the nomencla-
ture introduced by Williard Gibbs. It is a collection of similar systems all prepared identi-

cally with the same number of particles, energy, volume, shape, magnstic field, etc. All the
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systems are isolated from one another, such that the energy and the number of particles of
each system are fixed. To be concrete, consider the example in section 1.1, whose quantum
spectrum is shown in Fig. 1.1. This system is completely isclated from the surrcunding.
Defining the microstate w(Eey, Ney, N) to be the number of ways of exciting N, particles

given an excitation energy F,,, then the probability of doing this is
P(Eey,Nez, N) = C w(Eey, Neg, N), (2.1)

where C is the normalization constant determined by

N N
1_—_ z P(Eew,N@m,N):C z W(EewaNervN)'

Nem:l Nez’—‘l
Therefore,
C= ! __ 1
Y w(Eeys Newy N) — Q(Eez, N)’
where
N
VUEBex; N) = Y w(Eeg, Neg, N) (2.2)
Nez=1

is the macrostate or equivalently, the multiplicity of the quantum states having the same
energy. We shall see that this is identical to the degeneracy of the many-body energy level
with eigenvalue Ky, where {E,} is the many-body quantum spectrum. The meaning of this
quantity with respect to a many-body system shall be more clear as we discuss it in more
detail in section 2.2.1. For now, it is sufficient to interpret it as a sum of the microstates
as given by Eq. (2.2). From Fig. 1.1, Q(Ee, N) = (5,3) = 5, and the corresponding

probabilities are

1
1,3) = =
P(5,1,3) 3
2
P(5, 2, 3) = g,
and
P(5,3,3) = 2
Uy 2y ) 5
The first and second moments of the excited particles may be determined using
N
(Nex> - z Nez P<Eem,NewsN}7 (2'3)
Nez=1
N
<-Nea:2> = E Nex2 P(«EemaNemaN}a (24)

Nemzl
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where N = 3 in the example. The ground state number fluctuation, by definition, reads
(ANG®) = (No®) = (No)?, (2.5)

where Ng is the number of particles in the ground state. We need, however, to express
(ANp?) in terms of (N.;) and (Ne,”). Note that since the system is completely isolated,
the total number of particles IV in the system is fixed, while Ny and N, may vary such
that

N = (No) + (Nez) - (2-6)

Using Eq. (2.6), the ground state number fluctuation may be rewritten in terms of (Ney)
and (Ng?) as
(AN*) = (No”) = (No)”,
= (N = N)?) = (N = (Nea))?,
(V2 = 2N (Nea) + (Nea?)) = (N2 = 2N (Nea) + (Nea)?)
= (Neo’) = (New)”. 2.7)

It can clearly be seen that the whole problem of calculating the microcanonical ground state
number fluctuation rests in finding the exact microstate w(E, Neg, N) and the macrostate
Q(E, N). In general, however, finding these two quantities is a difficult enterprise for large
E and N. We shall see that depending on the symmetry of the problem, there are simpler
means to obtain the macrostate (2(E, N) from which the microstate w(E, Neg, V) and the

ground state number fluctuation may be found.

2.1.2 The canonical ensemble

When the system considered in the previous section is put in a heat bath, the
resulting ensembile is called the canonical ensemble (CE). The system and the heat bath are
now in thermal contact such that heat is allowed to transfer from one to ancther. Therefore
the energy of the system fluctuates. The system and the heat bath eventually reach thermal
equilibrium at a temperature 7. It is important to note that the only difference between
the CE and the MCE is that heat transport is now allowed. The total number of particles
of each system is fixed since particle transport is still prohibited in both ensembles.

The formulae given in section 2.1.1 no longer apply here since one of the constraints

is now relaxed. The treatment in the CE, to be presented in this section, might seem more
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involved mathematically and less straightforward in appearance compared to the MCE.
However, the determination of some thermodynamics quantities are computationally more
feasible. In general the less number of constraints there is in a given system, the more
feasible the calculations are.

We start with a many-body quantum mechanical system which is in contact with
g heat reservoir and whose eigenenergy spectrum is described by a set of {E£,}. The prob-

ability for the system to be in the state with the energy eigenvalue £, is

p= (2.8)
n — ZN ’ ‘

B = 1/kpT is the inverse temperature, kp is the Boltzmann constant. For simplicity we
shall put kp to be unity. Eq. (2.8) is called the Boltzmann probability distribution. The

quantity Zy is determined from the normalization condition and is given by
Zy =) e PEr, (2.9)
n

We have attached a subscript 'N’ in Zy to emphasize the many-body nature of the system
considered. It must be stressed that the sum on the RHS of Eq. (2.9) is a sum over states
and not over energy eigenvalues E,. In general there may be more than one state for a
given eigenenergy. The symbol Z is an abbreviation of the German word ’Zustandssumme’,
which means ’sum over states’. This quantity is called the partition function and is of
utmost importance in statistical mechanics. Its importance arises because it enables one
to make a connection between the quantum states of the system and its thermodynamic
properties, such as the free energy, the entropy, etc. 'To see this, we start with the definition
of the entropy [44]:

Sy=->_ P, P, (2.10)

n

Using Eq. (2.8),
Sn = > P, (BE.+1nZy),
n
= 8> Py E,+hZy,
n

= BE+InZy, (2.11)

J

where F is the mean energy of the system, and we have used the fact that 5 P, = 1 in the
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above. Eq. (2.11) can be rearranged to give

1 1
'—-/é].nZN = E-— ESN,

= Fy, (2.12)

which gives & relationship between the free energy Fy and the partition function Zy =
e BFN
The partition function Zy may be alternatively expressed as a sum over eigenen-
ergy level Ey, instead of summing over states. If there are (}(E,, N) quantum states all with
energy F,, then Zy may be written as
Zy =) QEn, N)e 5, (2.13)
En
where the sum now is over the eigenenergy levels, and Q(E,,, N) is the many-bedy quantum
degeneracy of the level with energy eigenvalue E,. This is the same quantity as given by
Eq. (2.2) and which, as already mentioned, shall be discussed in more detail in section 2.2.1.
It is difficult, or even impossible to find a closed form of Zy. There are two cases where
the many-body partition function is trivial. In the first case the particles are classical and

distinguishable, the partition function reads
Zyn =7V, (2.14)
where 77 is the partition function for a single particle:

Zy =Y e Pe (2.15)
i

In the above, {¢;} is the single-particle eigenenergy spectrum, and the sum is again over
states. Similar to Zy, Z; may also be expressed as a sum over eigenenergy in which case
the degeneracy factor of the level with eigenenergy value ¢; must be included. In the second
case the particles are classical but indistinguishable {Boltzmann particles), and
zy
N

In quantum statistics the particles are either bosons or fermions and are indistinguishable.

Zy

(2.16)

A recipe for calculating the many-body partition function for these particles, assumed to

be noninteracting, is given by [45]:

N
1 NS ;.
Zn(B) =+ > (T Z:(68) Zn-3(8), Zo(B) =1, (2.17)
=
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where {+) is for bosons and (-) for fermions.

One of the quantities that we are interested in is the ground state number fluctu-
ation for both bosons and fermions. As will be clarified in section 2.2.1, for noninteracting
particles the N-body problem pertains to filling up N particles in the single-particle energy
levels ¢,. The first and second moments of the occupation number of the energy level &

may be expressed in terms of the N-particle partition function as [46, 47):

1 .
(ng) = —;E £)i+lg=iben 7y s, (2.18)
1 & A
(ng) = 7 Z £ £ G - D]e P 2y, (2.19)
=1

Detailed derivations of Egs. (2.18) and (2.19) are given in appendix A. The ground state

number fluctuations for bosons, in terms of the occupation number, are simply
(ANG?) = (nd) — (no)?, (2.20)
and for fermions,
(@8) = 5 (k) = ),
() = (),

>
k

D ) (1= (mg)) - (2.21)
k

The sum % runs over all levels defining the fermionic ground state at zero temperature.

In Eq. (2.21) we have used the identity <nk> = (ng) (see appendix A). The ground state

number fluctuation for fermions may thus be determined solely from the knowledge of the

first moment. It must be noted that Eqgs. (2.20) and (2.21) are general and not restricted to

the CE. The exact form of (n;) and (n?) are, however, dependent on the ensembles used.

2.1.3 The grand canonical ensemble

In section 2.1.1 we considered the MCE where the system is completely isolated,
while in section 2.1.2 it is allowed to be in thermal contact with a heat reservoir. Now,
if the system is immersed in a reservoir such that both heat and particle transports are

allowed, then the resulting ensemble is called the grand canonical ensemble (GCE). The
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number Auctuations, in general, are given by Egs. (2.20) for bosons and (2.21) for fermions.

However, the mean occupation number is now different and is given by 1]

1

- - {
eles—wB x 1’ (2.22)

(ng) =

where the {—) and (+) signs correspond to bosons and fermions, respectively. The chemical
potential p is fixed by the requirement that the sum of all (n;) ylelds the assigned average

number of particles (),

(Ny =" (m). (2.23)

k
Note that in the grand canonical treatment, even though the system is allowed to exchange

particles with a reservoir, the average total number of particles is still fixed. The occcupation
numbers of the single-particle states fluctuate, both because there are transitions between
the states, and also because the system exchanges particles with the reservoir. The mean
squared fluctuation of the quantum state k£ may be obtained from

10 (ng)

B ou’

elex—m)B
[e(ﬁk—#)r@ F1)? ’
= () (1 (), (2.29

(anf) =

where the upper sign is for bosons and the lower fermions. Note that the bosonic ground

state Huctuation may now be determined without the need of the second moment:
(ANo?) = (no) (1 + (no)). (2.25)

This formula was earlier quoted in section 1.1, and the corresponding GCE fluctuation

catastrophe was also described.

2.2 The Many-Body

antum Systems

In this section we examine in a more detail the many-body multiplicity of states
Q(E,, N) of the energy eigenvalue E,. This quantity was cited earlier in sections 2.1.1 and
2.1.2. Here, we shall study it more closely, starting from a single-particle energy spectrum.

We shall alsc lock at a related quantity called the quantum density of states.
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2.2.1 The multiplicity of states

For a given single-particle quantum energy spectrum, the single-particle multiplic-
ity is the degeneracy of the state ¢ with energy ¢;. Given N noninteracting particles, or
noninteracting quasiparticles in the mean field, the corresponding eigenenergy spectrum is
the many-body E,, and the corresponding quantity of interest is the many-body multiplic-
ity Q(E,, N). In principle this quantity may be found by filling up the N particles in the
single-particle energy spectrum ¢;, then counting the number of configurations that have

the same energy such that

E= Z NZ'GZ', (226)
{N:}

where N; is the number of particles occupying level 4, {N;} denotes all the possible config-
urations having energy E£. The different values of F form a many-body energy spectrum
E4, Es,.... The number of configurations that have the same energy E,, n = 1,2, ..., is the
many-body multiplicity of states §}(E,, N). Clearly, this is identical to the degeneracy of
the many-body energy level with eigenvalue F,,.

For clarity let us consider an example. For simplicity we take the particles to
be bosons. Let the single-particle energy spectrum assume squared integer values in some
suitably scaled units, i.e., €, = m?, m = 0,1,2,.... Fig. 2.1a shows the different con-
figurations in which the particles are distributed in increasing excitation energy E, up to
E = 5. We assume the number of particles N to be large. This is represented by a thick
line at ¢¢g = 0. The lowest state is the one in which all the particles are in the ground
state, where £ = 0, and there is only one configuration for this. Thus Q(0,N) = 1.
For some values of E there is only one configuration that satisfies Eq. (2.26), such as
when B = 1,2, and 3. For other values of E, there may be more than one configu-
ration that satisfy the same condition, such as when £ = 4,5 and so on. These en-
ergies constitute the many-body energy spectrum £, = n, where n is integer, shown

in Fig. 2.1b. The corresponding degeneracy for each level is also shown in brackets.
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a}
(E=() (E=1} (E=2)
9 g 9
4 4 4
i g { —— 1
g 0 —
(E=3) (B4 ) {E=5)
g 9 9 9 £
4 %= 4 4 4 =4
—— ] H i o ol | S ] ——k——{})
0 th g 0
®) {2
__f'—— B o
—2 gy
{1} 4
(1 E=
— BE=
{1} 2
H=1
[¢)] 1
E=

Figure 2.1: a) Example of distributing N particles over the levels of a single-particle energy
spectrum, given by €,, = m?, m = 1,2, 3.... The number of particles are assumed to be large.
The higher energy levels are not shown. The total energy E of each configuration is shown
in brackets. b) The many-body energy spectrum E, = n, n integer. The corresponding
degeneracy for each level is also shown in brackets.

To list, the degeneracies of these many-body energy levels are

Q0,N) =1,
QL N) =1,
Q2,N) =1,
Q(3,N) =1,
Q4,N) = 2,
Q(5,N) = 2.

The process may be continued on for larger energies. Clearly, the degeneracy QU(E,, N}

increases with increasing energies. It may be noted that this calculation is quite tedious,
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especially for larger energy, and an analytical formula for the multiplicity is much preferred.
This formula shall be derived in chapter 3. Note that the single-particle energy spectrum
considered in the example is non-degenerate. In general, however, it may not be, and as a
result, there would be more combinations of configurations for a given energy F.

Few remarks are in order here. (i) Each configuration shown in Fig. 2.1a is called
a microstate w(F, Ng,, N), where N, is the number of particles in the excited states. Thus,

from the figure,

w(0,0,N) =1,

w(,1,N) =1, w(1,Ney#1,N)=0,
w(2,2,N) =1, w(2,Ne, #2,N)=0,
w(3,3,N)=1, w(B N #3,N)=0, ete

Recall in section 2.1.1 the multiplicity Q(E, N) is defined as a sum of these microstates for
a fixed energy. By summing the microstates above over N, one gets the multiplicity or the
many-body quantum degeneracy }(E,, N) listed earlier, in accordance with the definition.
(ii) The many-body energy spectrum F, is given by a set of integers, even though the
single-particle energy spectrum is not. This is in fact true for any power-law single-particle
energy spectrum and noninteracting particles. We shall see that this fact is extremely useful
when we look at integer partitioning in chapter 3. (iil) Once the degeneracy $}(E, N) are
found for a given energy F, then the N-particle partition function may easily be calculated
using Eq. (2.13). The exact microcanonical entropy of the N-particle system, denocted by
Sn(E), is uniquely defined as

Sn(E) = Q(E,N) (2.27)

for a given energy E. We next look at a different quantity, known as the density of states,

and establish its relationship with the above quantum degeneracy.

2.2.2 The density of states

The N-particle partition function given by Eq. (2.13) may also be cast in a different
form [48]:
oo
Zy = jf on(B)e PPdE, (2.28)
0
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where py(F) is the quantum density of states and is defined as
pn(E) = Q(En, N)§(E - Ey). (2.29)
T

Y

The density of states may be found by taking the Laplace inverse of Eq. {2.28):
. 1 fioo

on(E) = L5 Zn = o— . ZnePPdg. (2.30)
Note that in quantum statistics and thermodynamics 3 has the physical significance of an
inverse temperature, 8 = 1/T (recall we have put the Boltzmann constant kg to be unity).
Here, however, it needs not have that meaning, but is only a mathematical dummy variable.
After doing the inverse transform Eq. (2.30), § is no longer present and pny(F) is only a
function of the energy E. Let us consider a concrete example. For the N-particle quantum

spectrum considered in the example in previous section, the partition function is given by
In=1+eP e 2P 30 42740 4 258 4 2¢768 4+ 278 4 3730 .
Taking the Laplace inverse term by term and using
£5 () = 8(E - 0),
we see that
pN(E) = L3'Zy

= §(B)+6(E—1)+38(E—~2)+6(E—3)+26(E —4) +25(E —5) + 25(E — 6)
+26(E —7) +36(E —8) + ...

which clearly has the form given by Eq. (2.29).
One basic feature of the density py(F) is that it may be decomposed into an

averaged smooth part gy (E) and an oscillating part Spn(F) [48]:
pn(E) = pN(E) + bpn (E). (2.31)

To see this, assume the many-body eigenenergies E, to be given by a function f(n), where
f(n) has a differentiable inverse f~i(z) = F(z), such that n = F(E,). The quantum
degeneracy of the states at energy E, is given by ((E,, N). Changing variable from E to

n in the delta function

S(E - Bn) =4(E — f(n)) = é(n — F(E)|F'(B)],
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then Eq. (2.29) may be rewritten in as [49]
3
= > QUEBa, N)é(n - F(E)|F'(E),
n

= QE N)F(E)|Y_b(n~F(E),
n

O
= Q(E,N)|F'(E)| |1+2) _ cos(2mkF(E))| . (2.32)
k=1
In the last step of the above we have used the Poisson sum formula

o0 o
Z 5(.’13 _ n) — z €2m‘km
n=0

k=—00

[ o]
= 1+ 22003(2#1{:1:), E>0.
k=1
The first term on the RHS of Eq. (2.32) is the smoothly varying part of the density of states

pn(E), while the second is the oscillating component dpn (E). In this work we are mainly
interested in the smooth part (see Ref. [48] for the significance of the oscillating part in

connection to periodic orbits theory). We then obtain an important relation
pn(E) = Q(B, N)|F'(E)). (2.33)

Note that when the change of variable E,, — E is made in {}(E,, N), where E is a continuous
variable, the function (&, N) is now a smooth function of E and N. As mentioned before,
this quantity is in general exceedingly difficult to determine. This can be clearly seen even
from the simple examples shown in Figs. 1.1 and 2.1. However, if an analytical formula for
the smooth part of the density of states gy {E) can be found, the quantum degeneracy may
be determined using relation (2.33). With the help of the saddle point method, the smooth

part may be obtained from Eqg. (2.30). The result is (see Appendix B for detail)

eSN(ﬁo)
oN(E) = — (2.34)

pN( - /————27L_S§<[(50)7

where Sy (8o) = BoF + In Zy is the canonical entropy evaluated at the stationary point Fg.

2.3 The Generating Functions

This section serves to review some background and insight into the number par-

titioning theory, and introduces the so-called generating function which, as shall be seen,
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is very useful for our work. The connection between the materials presented here to the
number Huctuation shall be made clear in subsequent chapters.

The problem that we are interested in is fundamental in additive number theory.
1t is that of partitioning an integer n into summands consisting of positive integers or their
powers < n. The summands are called parts, and the order of the parts is irrelevant. We
focus the discussion on the case where the parts are positive integers first, and consider the
other cases after. As an example, the integer 5 may be partiticned into 1, 2, 3, 4 and 5

parts as follows:

5 = B,
= 144, 243,
= 14143, 14+2+2
= 1+1+1+2
= 14+14+1+1+1
(2.35)

In the above example, there is no restriction on the number of parts and the parts are
allowed to repeat. The number of ways an integer n can be written as a sum of summands
without any restriction on the number of parts and with repetition is known as unrestricted
integer partitioning and is denoted by p(n). From the example, it can be seen that p(5) = 7.
The generating function for p(n), due to Euler, is given by [42]

e}

= 2p<n) z", (2.36)

n=0

f)= |

where |z] < 1.

If the number of parts {or the size of partitions) is restricted, the problem is
then known as restricted infeger partitioning. We denote this quantity, i.e. the number
of partitions of n in which at most N parts appear, to be py{n}. We wish to find the
generating function for py(n). In number theory there are a number of partition problems
which may be solved by using a graphical representation, including the problem that we
are interested in. In the graphical representation, a partition is represented by horizontal

rows of dots. Consider the integer 5. One partition of 5, given by

14141472,
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can be represented by 5 dots arranged in 4 rows as follows:

Reading this graph vertically from left to right, one gets another partition of 5,
44 1.

Note that the number of parts in the first partition (which is equal to 4) is equal to the
largest part in the second partition (which is also equal to 4). This brings us to an important
theorem in number partitioning theory [50, 51): if we denote my(n) to be the number of

partitions of n in which each part is no larger than N, then
pn(n) = wy(n). (2.37)

In words, Eq. (2.37) states that the number of partitions of n into at most N parts is equal

to that in which each part is no larger than N. The generating function for 7y (n) is known:

1 >
= > wn(n) 2™ (2.38)
m=1 n=0

Since py(n) = mn(n), Eq. (2.38) is therefore also the generating function for the number of

restricted partitions of n, py(n):

. 1 0
T = > pn(n) 2™ (2.39)
- n=0

m=1

So far we have considered unrestricted and restricted partitions in which the
parts are allowed to repeat. We shall also consider the cases in which the parts are
distinct. In general, integer partitioning may fall in one of the following four categories

(with the corresponding notation used in brackets):

1) Uunrestricted partitions (p(n)): the number of parts is unrestricted and
repetition is allowed;

2) Unrestricted distinct partitions {d(n)): the number of parts is unrestricted but
repetition is not allowed;

3) Restricted partitions {(py(n)): the number of parts is restricted and rep-
etition is allowed;

4) Restricted distinct partitions (dy{n)): the number of parts is restricted and rep-
etition is not allowed.
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In addition to being in one of the four categories described above, an integer n
may also be partitioned into parts which are odd, even, primes, squares, cubes,... etc. For
our purpose we consider the case in which n is partitioned into sum of s powers of a set of
integers, where s = 1,2,3,.... We have so far locked at the s = 1 case. For other values of s
we shall add a superscript (s) to the symbols used in the different partitioning categories.
As an example, consider partitioning the integer 5 into sum of squares, i.e. s = 2. The
partitions are

124922 12412412412 412

Thus,
2P (5) = 2.

There is only one way of partitioning 5 into distinct squares, however, since only
12 + 22,

is admissible. Thus
d?(5) = 1.

In the case of unrestricted partitions, with repetition or distinct, the generating
functions are known for a general s. However, in the restricted case, the only generating
function known is for the number of restricted partitions of n, pn(n) (8 = 1). Recall that
this is found using the identity (2.37). There is no such relation for other values of s, and
the generating functions for these cases are not known. As shall be shown in section 3.4, by
using a model consisting of the particle sector of N fermions in a one-dimensional harmonic
spectrum, the generating function for the number of restricted distinct partitions of n with
s =1 (dy(n)) is determined. In table 2.1 we list the generating functions for the cases just
discussed and in the four categories mentioned earlier [50, 52]. Those that are not known
are listed as N/A.
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Unrestricted Restricted
. N N 1
s =1 With repetition (p(n) & pn(n)) et =57 N

Distinct (d(n) & dn(n)) TToe1(1+2™)  To be found in section 3.4
s>1 With repetition (p®)(n) & pg\?) (n)) il ﬁs‘ N/A

Distinet (d®)(n) & dg\s,) (n)) T 1+2™) N/A

Table 2.1: List of the generating functions of the number of partitions of n into sum of
powers. The generating functions for the restricted cases with s > 1 are not known, and
are listed as N/A.



“One of these men is Genius to the other;
And so of these. Which is the natural man,
And which the spirit? who deciphers them? 7
William Shakespeare, Comedy of Errors, Actb, Scene 1

It is well known that for ideal bosons in a one-dimensional harmonic trap, the
problem of counting the number of ways of exciting particles for a given energy E is the
same as the number of ways of partitioning an integer n into a sum of other integers. In
fact, in the example shown in Fig. 1.1b, each microstate corresponds to a partition of the

integer 5 into N, parts, i.e.,
Negz=1 -5 = 5,

Nez=2 — 5 = 14+4, 243,
Nepzp=3 — 5

1+1+3, 1+2+2

Here, the number of parts (= N,;) is restricted by the number of particles N = 3, which is
known as restricted integer partitioning. Recall in section 2.3 we denote this as py(n).
Clearly, py{n) in number theory is equivalent to the many-body guantum degeneracy
(i(E,N) discussed in chapter 2, when F is identified with n. Had we chosen N to be
very large in the example, with either N > F or N — oo, the problem would then corre-
spond to unrestricted integer partitioning, which we denoted by p(n). An asymptetic (large
n) expression for p(n) is given by the famous Hardy-Ramanujan formula, which was derived

using advanced mathematics [42]. Grossmann and Holthaus have made use of this formula

22
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to calculate the microcanonical number fiuctuation from the ground state of bosons in the
one-dimensional harmonic system [9, 10]. In this chapter we use the connection between
the many-body quantum degeneracy and the density of states (see section 2.2.2), the latter
of which may be derived using the methods in statistical mechanics, to obtain the Hardy-
Ramanujan formula as well as those for partitioning of an integer into a sum of squares
{s = 2), or a sum of cubes (s = 3), etc. In general, the problem is equivalent to distribut-
ing N bosons over a set of energy levels given by the single-particle power-law spectrum,
em = ms, m=0,1,2.... While the "physicists derivation” of the number partitions has
been known for a while and has been extensively used in the analysis of number fluctuation
in a one-dimensional harmonically trapped bose gases, the derivation for a general power-
law spectrum given above is novel even though the result was derived long ago by Hardy
and Ramanujan using more advanced methods. In addition to deriving the asymptotic
formulae for the number of partitions of 1, both unrestricted and restricted, we also show
that by extending the method, we are able to obtain similar formulae for the number of
distinct partitions. Some of the results pertaining to the partitions of an integer into a sum
of distinct powers, to the best of our knowledge, are new, and will be pointed cut as they

appear in the text.

3.1 The number of partitions of n

In this section we consider a general unrestricted integer partitioning, that of
partitioning an integer n into a sum of s'® powers of a set of integers. Our purpose is to
find an asymptotic formula for p(s)(n). Recall in section 2.2.2, for s = 1 this is equivalent
to finding p(E), which is given by

_ eS(BO)
PE) = —ee,
/218" (Bo)

and use relation (2.33) to obtain the asymptotic formula for (I(n), which is identical to

(3.1)

p{n). To simplify the notation, we have excluded the “N” in {i(n) and p{(n) for unrestricted
partition. We shall apply the same technigue for general s, and obtain a general formuia
for unrestricted integer partitioning known in the literature.

The single-particle energy spectrum is given by €, = m®, wherem =0,1,2..., and
s > 0 for a system of bosons. The energy is measured in dimensionless units. For example,

when s = 1 the spectrum can be mapped on to the (shifted) spectrum of a one-dimensional
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oscillator where the energy is measured in units of Aiw. For s = 2, it is equivalent to setting
energy unit as A2/2m, where m is the particle mass in an infinite one-dimensional square
well of unit length. Note that for this case a connection to number partitioning theory
is possible only when a fictitious ground state of zero energy is added to the square well
spectrum. We have already assumed this in the example given in Fig. 2.1. This is also true
for other values of s # 1. The only two physically interesting cases are s = 1, and 2. We
however keep s arbitrary even though for s > 2 there are no quadratic hamiltonian systems.
In particular s needs not even be an integer except to allow a comparison between the
number theoretic results for p{®)(n) and the density of states p(*)(E) that we obtain here.
Before we proceed, it is important to note that the many-body eigenenergies are given by a
set of integers, E, = n, for a general single-particle power-law energy spectrum (see section
2.2.1, in particular the example shown in Fig. 2.1 where the single-particle energy spectrum

is given by a set of squares). This implies that the factor |F'(E)| in Eq. (2.33) is unity:
F(E)| = 1.

Thus, in general for a single-particle power-law spectrum,
p(n) ~ p(E),

pn(n) ~ pn(E),
where the symbol “~” means “asymptotically equals”.
The many-body partition function for N noninteracting bosons in a single-particle
power-law spectrum, with N — o0, is given by the generating function for the number of
unrestricted partitions of an integer n into sum of s** powers of a set of integers. From

section 2.3, table 2.1, this is given by

zp) =

(3.2)

where we have identified z = e %, and made explicit that Z is a function of 8. We now

proceed to calculate the asymptotic formula for p(®)(n) using Eq. (3.1). The entropy is given



CHAPTER 3. THE QUANTUM DENSITY OF STATES... 25

by

= ﬂE—im (1—6—@'3). (3.3)
=1

Using Euler-Maclaurin summation formula !,

InZ(8) = —jéh(i—e_ﬁjs),

&0 s 1 s
— 1 _ B Py S
j{; In (z e )dj+2m,@ ~ln2r +0(8),
i s

where I'(z) is the Gamma function and the zeta function ((z) is defined as
=1
(@) =) —. (3.4)
=17

Defining
O(s) =T(1+ 1)1 +1/9),

the entropy becomes

S(8) = BE + %f/ij + %m@ - gln@w) +O(B). (3.5)

Assuming small 3 (large E), we neglect terms of order § or higher. Further, for determining

the stationary point, we ignore the In 3 term in the cerivative of §. Thus in the leading

order,
iy L _C(s)
S(ﬁ)—E—gm. (3.6)
The saddle point is found by setting the above to be zero and is given by
B C{S) s/(1+3)
Go = < F > . (3.7)

The nctation may be simplified by setting

(s)\ THs
Kg = <CKS)> - R
8

114 is easier to use mathematical computer program for this, such as Maple, the syntax of which is:
readlib(eulermac), eulermac(f(n),n=a..b} where a and b are the upper and lower summation limits.
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so that
Bo = ks B Ths, (3.8)
The entropy, evaluated at the saddle point, is
1 1 8 8
S(ﬁ{}) = (1 + S}HSE‘/(1+8) —+ 5 in Keg — m nFE — 5 In 2. <3g>
Next, the second derivative, evaluated at the saddle point, is
1428
1+s5C(s) s T+s
Si// \ — E
\ﬁﬁ/ s 3 C(S) s
1+ s ETre
- 1FesEm (3.10)
8 K

Substituting Egs. (3.9) and (3.10) in the saddle point expression for the density of states
Eq. (3.1) and simplifying, we obtain
79 (B) = —L ° _ETO0E exp [re(s + 1)ETH | . 3.11
7(B) (270(_8_;&\/8le p [e(s +1)B™ | (3.11)

The above equation is identical to that given for p(*)(n) in Ref. [42], the number of ways

of expressing n as a sum of integers with s?* powers, if we replace F by the integer n. For

s = 1, for example, we have

exp|m %]
HE)= —————, 3.12
pE) 1V3E (3.12)

which is the well known Hardy-Ramanujan formula. For s = 2, the asymptotic density of

—2 ]2 ke exp[3xg B3]
,0( )(E) - \/;(271')3/2 E7/6 9 (313)

with xe ~ 1.10247. This is the same as the asymptotic formula derived by Hardy and

states is

Ramanujan for the number of partitions of E into squares. It is to be noted that in making
the identification of p(®)(n) with 5 (E), E = n is to be identified as the excitation energy
of the quantum system with a fictitious ground state at zero energy added to the square
well.

In Fig. 3.1 we show a comparison between the exact {computed) p(n) (solid line),
and p{F) (dashed line), as given by Eq. (3.12). We note that the Hardy-Ramanujan formula
works well even for small n. Similarly, in Fig. 3.2, the computed p(@(n) is compared with
7 (E), as given by Eq. (3.13). The comparison for s = 3 is made in Fig. 3.3. In all these
figures the computed partitions p(8) (n) have step-like discontinuities, unlike the smooth

behavior of 508 (E), specially for small n (or E).
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Figure 3.1: Comparison of the exact p(n) (solid line) and the asymptotic p(E) (dashed
line), obtained from Eq. (3.12) for s = 1.
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Figure 3.2: Comparison of the exact (¥ (n) (solid line) and the asymptotic 52 (E) (dashed
line), obtained from Eq. {3.13) for s = 2.



CHAPTER 3. THE QUANTUM DENSITY OF STATES... 28

10600

pm) & p(E)

L | ) | . | 1 | s
l0 200 400 600 800 1000

n (or E)

Figure 3.3: Same as Figs. 3.1 and 3.2, except s = 3. The asymptotic (3 (E) is obtained
from Eq. (3.11) with s = 3.

3.2 The number of restricted partitions of n

We now apply the same method to obtain the asymptotic density of states for
systems with finite size, that is when the number of particles is kept finite and equal to V.
This corresponds to allowing the number of parts to be at most N, i.e., restricted integer
partitioning. However, we restrict to the s = 1 case only, since the restricted partition
functions for other s are not known.

Our quantum mechanical system is a system consisting of N bosons in a one-
dimensional harmonic oscillator, where N is finite. Our purpose is to calculate the asymp-
totic density of states of this system. The many-body partition function in this case is given

by the generating function for the number of restricted parsitions of an integer n into a sum
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of other integers < n. From section 2.3, Eq. {2.39) or table 2.1, this is given by

ZnB) = D Y En,N)e PP,

7

[o o]

= > pn(n)z",
n=1

- T : (3.14)

= . 14)
L e sme

Henceforth we shall use the condition of large N and F such that
N>1, exp(-8N) < 1,
B < L (3.15)

Again using Euler-Maclaurin summation formula,

InZy(B) = —iln(l—e_ﬁjs),

e~ INB 1 e INB

i 1
ilnﬁ—ﬁhﬂw 52

1
_ﬁﬁ'

Q
Q|:L° Q
Ql'—‘ H
uMg

Next, we need to compare all the terms in the above. To do this we choose N = 1000 and

B = 1/98 (note that these values satisfy condition 3.15), then

2

1% term  — & ~ 161.2,

27 term  — %Eoozi %ﬁ ~ 3.6x1073+34x1078%4+.. .,
34 term  — % ng ~ -2.3,

4% term  — fIn2r ~ 0.9,

5% term  — 132, & 18x1070434x107104. .,
6% term  — 48 ~ 43 x 1074

Thus, ignoring terms of order 1072 or higher, we have in leading order

lnzNﬁ)_”Q znﬁ——mzw—le NG
T 6B g
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The entropy for finite N is thus
Sny(B) = BE+InZy(B),
N
— — B
= BE ;m ( 1—e )

2 1 1 1
- ﬁE+g—ﬁ+§inﬁ—§in2ﬁ—Ee_Nﬁ. (3.16)

To leading order, the first derivative of the N-particle entropy is

/ = ——
and the saddle peint is
T
= —, 3.18

which may be obtained from Eq. (3.7) with s = 1. The entropy and its second derivative

evaluated at the saddle point are given by

1 T 1 VvV6E _n_z_
= — —_— — ——
Sn(Bo) TV2E/3+ 51 (\/FE> 52w — ———e VB, (3.19)
(6E)3/2

Sy(Bo) = 5 — (3.20)

Thus, the density of states for finite IV is given by
1 1 _N_&_
IN(E) = ———exp | T/2F/3 — =vV6FEe = Vv8E |. 3.21
aw(E) = e exp (nyIES - - ) 21)
The above expression reproduces the well known correction to the unrestricted partitions
due to the restriction on the size of parts (see Erdos and Lehner [43]). With the condition

(3.15), we see that Eq. (3.21) is valid in the region

71'2 ﬂ.Z
— <« E < =—N?,
g S¥<%

In Fig. 3.4 we compare the two differences, [B(E) —pn(n)] (dotted line), and
n(E) — pn(n)] (solid line) for N = 20 (Fig. 3.4a), and N = 30 (Fig. 3.4b). In the above,
7(F) is Hardy-Ramanujan formula for the unrestricted integer partitioning and is obtained
from Eq. (3.12), pny(F) is the Erdos-Lehner formula for the restricted integer partitioning
as given by Eq. (3.21), and py(n) is the exact {computed) number of restricted partitions
of n. Clearly, the former is much larger than the latter, indicating that Eq. (3.21) gives a

better approximation to py(n).
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Figure 3.4: (a) Comparison of [p(E) — pgo(n)] (dotted line) and [pyy(E) — pao(n)] (solid
line) for N = 20, where 5(F) is obtained from Eq. (3.12), poq(F) is the Erdos and Lehner
formula as given by Eq. (3.21), and pog(n) is the exact (computed) restricted partitions.
(b) Same for N = 30.

3.3 The number of distinct partitions of n

We now modify the method to obtain an asymptotic formula for the number of
distinct partitions of an integer n into s** powers, denoted by de) (n). For example, for
s = 1, n = 5, the number of distinct integer partitions are 5, 2+3, and 1+4, so d(5) = 3.
For distinct partitions, one might tempt to draw a parallel with the bosonic case, and
reason that this is equivalent to distributing IV (spinless) fermions over the energy levels of
the single-particle power-law spectrum since the distinctiveness of the parts is immediately
ensured by the Pauli principle. However, this is not quite so. Consider the § = 1 spectrum
and with finite N. The fermionic partition function is given by (setting z = exp(—0) and

E,, = n as before},
ZnB) = ™72 Qn,N)a",
7

V2T (3.22)
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which is the same as the bosonic partition function in a harmonic potential, except for the
prefactor which is related to the ground state energy of N fermions in the trap. Obviously,
the Q(n, N) is the same for both fermions and bosons even though dy(n) is different from
pn{n). This is because the quantum mechanical ground state of fermions consists of oc-
cupied levels up to the fermi energy, unlike the bosons which all occupy one single lowest
energy state. Clearly, to make a connection to the distinct number partition, one should
imagine distributing the N fermions from the fermi level (particle space) and disregard the
levels below (hole space). The separation of the fermionic levels into 2 separate spaces has
been discussed in Ref. [30] in a different context and will be detailed in section 4.1. For the
present time, we imagine a system of “pseudo fermions” in which a large number of fermions
are put in the Fermi level Fr. They are to be distributed over excited levels according to
Pauli principle. The partition function of the particle space, for N — oo and general s, is
now given by the generating function for the number of unrestricted partitions of an integer

n into sums of s powers of a set of distinct integers. From section 2.3, table 2.1, this is

given by
Z(P) =
= (3.23)
We next proceed as before. To leading order the entropy is
_ D(s) 1

S(6) =BE + B ~3 In2, (3.24)

where
1

D(s)=T{1+ g)n(l +1/s).

In the above, n(s) = Y 1=, (_21_1 denctes the alternating zeta function. Note that there is

no In{(B) term in Eq. (3.24). The saddle point 3 is obtained by setting §'(3) = 0 as before.
Defining

As = (D(s)/8)*FY,

the saddle point is given by

Drgy 3/(1+9) .
Bo = (-ﬁ> =X, B T, (3.25)
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The entropy and its second derivative, evaluated at the saddle point, are thus given by

, i
S(G) = (1+3)A5E‘/(1+5)—§1n27;’, (3.26)
1_1_ Ell—:?s
8 s
§"(B) = ~———— (3.27)

After some tedious algebraic manipulations, the asymptotic expression for the number of

unrestricted distinct partitions of an integer £ = n is given by

exp [(1 + s))\sE'l%E]

PE(E) = Vsh (3.28)

25+1

24/ m(1+s)Es+ T

where the subscript F in the above formula is to emphasize that Fermi statistics has been
used (taking into account only particle space). Once again for s = 1 we recover the well
known asymptotic formula for the number of unrestricted but distinct partitions d(n) of an

integer [53], namely

B exp[m g]
Pr = 4 x 3L/4 34" (3.29)

where, as usual, F should be read as n. Similarly the asymptotic expression for de) (n)
is given by Eq. (3.28). Though the asymptotic expression for p(®)(n) is known, we have
not found the general asymptotic expression for d(®) (n) in the literature. This is quite
astonishing since the theory of number partition is an old problem, dated back from the
time of Euler.

In Fig. 3.5, we show a comparison of the asymptotic density 7z(E) and the exact
distinct partitions d(n) of integer n for s = 1. As in the case of bosonic partitions p(n),
the asymptotic formula for d(n) works reasonably, except for n < 10. Fig. 3.6 shows sim-
ilar comparison between the exact computations of d?(n) and Eq. (3.28) (with s = 2).
Due to more restrictions in partitioning, the magnitude of d® (n) is smaller than that
of d(n), and the fluctuations of the data points are more prominent. Despite this, the
asymptotic density of states seems to produce a reasonable average of the exact d®@ (n).
The absolute ratio of the amplitude of the oscillations to its smooth average value, de-
fined as R = |[d@(n) — p;@ (E)|/ pg) (E), decreases from about 1.5 to 0.2 as n is increased
to 1000, as shown in Fig. 3.7. This means that for n — oo, the smooth part will even-
tually mask the fluctuations. Fig. 3.8 shows the same comparison for s = 3. Here,

there are now even more restrictions since the integer is partitioned into distinct cubes.
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As a result, the magnitude of d® (n) is much smaller than the others, and the fluctua-
tion is now much more pronounced. Similar to the s = 2 case, the asymptotic density
of states produces a reasonable average of the exact d(®(n). Due to more fluctuation,

the ratio R decreases much more slowly for this case as compared to the s = 2 case.
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Figure 3.5: Comparison of the exact d(n) (symbol with dotted line) and the asymptotic
pr(E) (dashed line), obtained from Eq. (3.29) for s = 1 and distinct partitions.
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Figure 3.6: Comparison of the exact d¥(n) (symbol with dotted line) and the asymptotic
ﬁg) (E) (dashed line), obtained from Eq. (3.28) for s = 2 and distinct partitions. Note that
the y-axis is no longer in log scale.
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Figure 3.7: Plot of the absolute ratio of the amplitude of the oscillations of d(n) to its

average value pg—z)(E)ﬁ defined as R = |d®@(n) — pg) (EY)/ pg)(E). The ratic R decreases
from about 1.5 to 0.2 as n (or E) increases to 1000.
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Figure 3.8: Same as Fig. 3.6, except for s = 3.
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3.4 The number of restricted distinct partitions of n

In the last section of this chapter, we present the finding of an equivalent asymp-
totic formula to Eq. (3.21) for the number of restricted and distinct partitions of n. What
we need is the partition function for the particle space for finite N. One might speculate
that in parallel to the finite N bosonic case where repetition of the parts is allowed, the
partition function for this distinct case would be Eq. (3.23) with “N” replacing “o00” in the
upper limit of the product. However this is incorrect. The reason for it to work in the
bosonic case is due to the identity (2.37), discussed in section 2.3. There is no such identity
for the distinct case. Fortunately, there is a different theorem known in number theory
which we may appeal to [51] (also see Ref. [30] and section 4.1.2): if we denocte w?(n, i) to
be the number of partitions of n into ezactly ¢ distinct parts, then
i(i+1)

2

wi(n,i) = pi(n — ), (3.30)

where, as before, p;(n) is the number of partitions of n into parts < i. Therefore, the

(restricted) number of partitions of n into at most NV distinct parts dy(n) is

N
dy(n) = Y win,i),
i=1

N L.
B Zm(n—z(lgl))- (3.31)

The generating function for p;(n) is known and is given by Eq. (3.14). Relation (3.31)
implies that the N-particle partition function for the particle space, or equivalently, the

generating function for the number of restricted and distinct partitions dy(n) is given by

Zn(B) = S dw(n)a",

N

= 3 git/2 ] _
s _ 7 \7
=1 a1 (B 27
oo 00 o 1
= (3. -+ $n) - z xz{H—l)/Q —/—1‘—,”\ {332)
n=1 i=N+1 et VT T

The first term on the RHS of Eq. (3.32) is the generating function for the number of
unrestricted distinct partitions Eq. (3.23) with s = 1, and the second term is a sum of

the generating functions for the number of restricted partitions Eq. (3.14) with the integer
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shifted by (¢ + 1)/2. To find an asymptotic formula for the number of restricted distinct
partitions dy(n), as usual, we take inverse Laplace transform of Eq. (3.32). Defining A; =

i(¢ +1)/2, we have:

< s 1
dn(n) = <1+x“>}— > ﬁﬁ{f“ erols
i $=N+1 n=1\
[o/0]
= z pz(n-Al) 9
i=N+1
X0
~ Pr(BE) = > BE- D).
i=N+1

The formulae for the unrestricted and distinct partitions pp(E) and the restricted partition

7;(E) have already been derived and are given by Egs. (3.29) and (3.21). Thus,

explm @]

dn(n) 4 x 3U/AESA
m kid
D R ( AE=5) 1 e A)Nr> |
o WB(E - Ay 3 p
= pyr(E). (3.33)

The above is the asymptotic formula for the number of restricted and distinct
partitions of an integer n when E is identified with n. Note that py(E) is valid only for
72/6 < E < 7?/6N?, Eq. (3.33) is thus valid only in this range. In Fig. 3.9 we display
the two differences, [pr(E) — dy(n)] (dotted line), and [py #(E) — dn(n)] (solid line) for
N = 20 (Fig. 3.9a), and N = 30 (Fig. 3.9b). In the above differences, pp(E) is obtained
from Eq. (3.29), Py r(E) from Eq. (3.33), and dy(n) is the exact (computed) number of
restricted distinct partitions. Again, similar to the case where repetition of the parts is
allowed (Fig. 3.4), the N-correction asymptotic formula gives a better approximation to the

exact finite N partition than the infinite one.
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Figure 3.9: (a) Comparison of [pp(E) — dgo(n)] (dotted line) and [Byy p(E) — dao(n)] (solid
line) for N = 20, where pp(E) is obtained from Eq. (3.28), Py p(E) from Eq. (3.33),
and dag(n) is the exact (computed) number of restricted distinct partitions. (b) Same for
N = 30.

Before concluding this chapter, it is important to stress again that many results
derived here are known in the mathematical literature. However, the general formula for
d®)(n) (Eq. 3.28) and the formula for the number of restricted distinct partitions (Eq. 3.33)
are, to the best of our knowledge, new. We emphasize again that we have not found these
expressions in the literature. If they are indeed new result, then it is quite surprising that
they have not been discovered before, since the theory of partitions has been extensively
studied and developed since founded by Euler. The work in this chapter has been reported
in Ref. [54].
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To conclude this chapter, we show a graph of the exact (computed) multiplicities
or the numbers of partitions of n for the different cases discussed here and for N — oo. Note

that the more restriction there is (distinct and/or larger value of s), the less the number of

partitions.

T

106 T 7 T

»—=x s=1, with repetition
e--0 s=1, distinct
+—e s=2, with repetition
=--a =2, distinct
+—+ §=3, with repetition
«--a =3, distinct

Number of partitions

n (or E)

Figure 3.10: Comparison of the different numbers of partitions. The smallest curve, which
almost lies on the x axis, corresponds to the one with the most restriction, i.e., s = 3 and

distinct.



“Symmetry, as wide or as narrow as you may define it, is one idea by which
man through the ages has tried to comprehend order, beauty, and perfection.”
Hermann Weyl (1885 - 1955)

4.1 Ideal Gas in a one-dimensional Harmonic Trap

The problem of an ideal gas in a one-dimensional harmonic trap has served as a
paradigm for many interesting theoretical investigations. Ever since the the observation of
BEC in magnetically trapped dilute atomic gasses [6, 7, 8], there had been considerable
interest in calculating the ground state number fluctuation of a bose gas in a trap outside
the framework of the GCE (see alsoc chapter 1). The one-dimensional harmonic potential
is one system that can be treated analytically. Using a number partitioning theory-based
approach, a simple expression for the microcanonical number fluctuation as a function of
temperature T was derived [9, 15]. In [25, 26], we formulated a combinatorial method
for calculating the exact microcanonical number fHuctuation from the ground state as a
function of excitation energy for both bosons and fermions. Although for fermions there is
no grand canonical catastrophe (see chapter 5 for more discussion on this), the work was
inspired by the experimental observation of quantum degeneracy in trapped fermionic gas
at low temperatures [27, 28]. Even before the experimental work, several theoretical papers
had studied the properties of a trapped dilute gas of fermionic atoms. Butts and Rokhsar

[55] studied the momentum and spatial distribution of the noninteracting system in the

40
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Thomas-Fermi approximation. Schneider and Wallis [56] looked into other thermodynamic
properties of such & gas and the effect of shell structure on the specific heat. The effect
of an attractive interaction on the low temperature properties of a trapped fermi gas was
investigated by Bruun and Burnett [57]. The collective excitations of the system in the
normal phase have been examined by Bruun and Clark [58] and in the superfluid phase
by Baranov and Petrov [59]. Recently, resonance condensation of fermionic atom pairs has
been experimentally observed [60].

The combinatorics method is, however, very time-consuming computationally. In
the case of an ideal boson ges in a one-dimensional harmonic trap, the problem is greatly
simplified due to its connection to number partitioning theory. This enables the bosonic
microstate w(E, Neg, N) to be expressed in terms of the macrostate Q(F, N), which is easier
to be determined in comparison. As a result, the number fluctuation may be found without
the knowledge of the microstate, and thus the computation is speeded up tremendously.
The connection to number theory in the bosonic case is possible because the energy spec-
trum of a one-dimensional harmonic trap is equally spaced, and the N, bosons are excited
from a single lowest energy level. On the other hand, the fermionic ground state consists
of N energy levels, and this prevents a direct connection to number partitioning theory.
It is well known, however, that in one dimension a fermionic problem may be transmuted
into a bosonic one, whether the gas is interacting, as in the Luttinger liquid model [61],
or noninteracting, as discussed in Ref. [62]. The Fermi-Bose duality has also been shown
in (1+1) dimensions [63, 64, 65]. This bosonization property in one dimension strongly
suggests that there must be some means, albeit indirect, by which a similar relationship be-
tween the microstate and macrostate for fermions in a one-dimensional harmonic spectrum
may be established. This shall be, in fact, presented in this section. First, we shall review
the bosonic problem in section 4.1.1 to simplify the discussion on fermions, which is to be

discussed in section 4.1.2.

4.1.1 DBosons in a one-dimensional harmonic trap

We have seen from previous chapters that the problem of distributing N, bosons
over a set of single-particle excited levels given an energy E is equivalent to partitioning
an integer £ = n into smaller parts. Because N, < N always, if N — oo then there is

essentially no restriction on the size of the partitions. The problem then pertains to unre-
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stricted integer partitioning. It is restricted integer partitioning otherwise. The microstate
w(E, Nez, N), which denotes the number of ways of distributing £ quanta over exactly N,
particles, is equivalent to the number of partitions of an integer E into Ng, parts. To make
the discussion more complete, we shall again go over the example in section 1.1, Fig. 1.1b
even though this has already been done at the beginning of chapter 3. In the example, the
spectrum is that of a one-dimensional harmonic trap with N = 3 and £ = 5. The first
partition of 5, i.e.,
5=35

corresponds to the first configuration in which Ng, = 1 bosons takes up all 5 quanta and

excites to the fifth level above the ground state. Thus
w(5,1,3) = 1.
The next two configurations with N, = 2 correspond to the partitions
5=1+4, 2+3,
and the last two with Ng, = 3 correspond to
S5=1+1+3 1+2+2.

Thus, respectively,

w(5,2,3) =2,
and
w(5,3,3) =2.
The macrostate is s
0(5,3) = > w(5,Ne,3) =5.
Neg=1

In words, §2(5,3) is the number of partitions of 5 up fo 3 parts. In order to differentiate
from the fermionic microstate to be discussed later, we shall henceforth attach a superscript
B for bosons, or F' for fermions in w(E&, Ny, N). After obtaining the bosonic microstate
for all excitation energy E, the microcanonical ground state number fluctuation may be

found using Egs. (2.3}, (2.4), and (2.7). Obviously this is a cumbersome and therefore not
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desirable method of determining the microstate. Fortunately, an identity in number theory

provides another way of finding the microstate [51]:

WwB(n,k,N) = Qn—-kk), n>k,
= 0, otherwise. (4.1)
In words, Eq. (4.1) states: The number of partitions of n into k parts is equal to the number

of partitions of n — k into parts not exceeding k. For instance, consider ¥ = 2 from our

example above, then the identity reads
B —
w”(5,2,3) = 0(3,2).
Since 3 =3, 1+ 2; s0 Q(3,2) = 2 which is the same as w?(5,2,3) = 2. For k = 3, we have
B —
w?(5,3,3) = Q(2,3),

and since 2 = 2, 1+ 1; Q(2,3) = 2 which is again the same as wP(5,3,3) = 2. Note that
Eq. (4.1) implies that w?(n, Ny, N) = wB(n, Neg, M), New < min{N, M}, i.e., changing
the system size does not affect the microstates for Ny < min{N, M }. This can be clearly
seen from our example. If N = 4 instead of 3, then the next admissible partition of 5 is

14+ 1+ 1+ 2, and the microstates are

WwB(5,1,4) = 1 = WB(51,3),
wP(5,2,4) = 2 = wP(5,2,3),
wB(5,3,4) = 2 = wP(5,3,3),
wB(5,4,4) = 1
This brings us to an another identity [51]:
wB(n, Nog, N} = Q(n, Nog) — Q(n, Noy — 1). (4.2)

This property was in fact used by the authors in Ref. [9, 26] to calculate an analytic formula
for the ground state number fluctuation of bosons as a function of temperature. We shall
see shortly, however, that the identity given by Eq. (4.1) is more useful when we discuss the

fermionic case in the next section.
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4.1.2 Fermions in a one-dimensional harmonic trap

To understand why the fermionic ground state levels prevent direct application of
number theory, consider an example similar to the one for bosons given in previous section
with £ = 5 and N = 3. Each state is filled with one single fermion which is assumed to
be spinless. This assumption corresponds to the spin-polarized fermions in experimental
setting where only one spin orientation is confined by the magnetic trap. The microstates
are dragwn in Fig. 4.1. Note that the ground state consists of three lowest levels. Unlike the
bosonic case, there are 3 distinct configurations corresponding to N, = 1, and there is no

configuration for Ng, = 3 since it takes at least £ = 9 quanta to excite all 3 fermions.

a3 b}
T=0,E,_=0| Tx0 5=5 5=1+4 243
bi
G $ E:
EF’" ” X < X = X P
Nex:() Nele Nexzz

Figure 4.1: Illustration of the fermionic microstates for a harmonic spectrum with E = 5,
and N = 3. a) The particles occupy the lowest states up to Fermi level, denoted by Er. b)
An energy of E = 3 quanta are shared amongst the particles which are then excited to the
levels above Er. The partitions of 5 for each configuration are shown on the top. Upward
arrows indicating the transitions to higher states are also drawn to guide the eye. Note that
the higher energy levels are not shown.

Thus the microstates are:
wf(5,1,3) = 3,
wf(5,2,3) = 2,
w?(5,3,3) = 0.

Note that as expected, the macrostate is the same as the bosonic one,

3 3
05,3y = > w3, Neg,3)=5= Y wB(5 N, 3).
I\fezzl Nemzl

If the system size were 4 instead of 3, then clearly there would be 4 ways of exciting one
y y ¥

particle,
wi(5,1,4) = 4 £ wF(5,1,3) = 3,
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in contrast to the bosonic case where the microstate remains the same. This is cbviously
due to the fact that the fermionic ground state consists of N energy levels instead of a single
one, as is the case for bosons. Thus, for fermions relations {4.1) and (4.2) do not apply.

It may be noted that due to Pauli principle the distribution of particles above the
fermi level Er resembles the distinct partitions of an integer n. Direct application of the
theory is not possible, however, due to complications caused by the fermionic multi-level
ground state. This strongly suggests that we treat the fermionic energy levels separately.

We proceed as followed. Given n quanta of energy, consider breaking up n into two parts:
N = Np + Ny, (43}

where ny, is the number of quanta it takes to bring Ne, particles to the fermi level Er (which
is equivalent to the distribution of N, holes to the states below and including Er), and n,
is the number of quanta it takes to distribute these N, particles in the excited states above
Ep. This effectively divides the fermionic energy levels into two sectors: the particle space
above Er and the hole space below and including Er. Let wi (ng, Neg, N) be the number
of ways to distribute N, holes in the hole space, and wf (np, Nez, N) the number of ways
to distribute N, particles in the particle space, both according to Pauli principle. Then

given n quanta and N, particles,

WE(n, Neg, N) = > wf(nh, New, N) wy (np, Nea, N), (4.4)
{nn.np}

where the set {np,n,} satisfies Eq. (4.3) for a given . The problem now pertains to finding
wf (np, Neg, N) and wp(F Np, Nep, N} At first glance this seems to be more complicated
than finding a single quantity w®(n, Neg, N). However, recall that w®(n, Neg, N) is the
number of ways of distributing N, particles above Er with respect to a set of N ground
state energy levels. By breaking up the fermionic energy levels into two parts we are now
distributing N, particles above Er and N, holes below Ep, both with respect to a single
energy level. As shall be seen shortly, this allows us to map the fermionic problem to &
bosonic one, which may be solved using number partitioning theory. Let us now look at

these two spaces separately.
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Particle space

First we consider the particle space. This space is unbounded starting from the
fermi level Fr. We now imagine a system of 'pseudo fermions’ in which N, particles are
in the fermi level. These fermions are to be distributed in the particle space. Thus, n,
quanta are distributed among N, fermions with respect to only one energy level Ep. The
problem is now similar to the bosonic one, except the distribution of particles must comply
with the Pauli principle. In the language of number theory, wf (n, Nez, N) is the number of
partitions of n into exactly N, distinct parts, with N, < N. We have already encountered

this quantity in section 3.4. The desired identity is given by Eq. (3.30):

Negp(Nep +1
Wg(np,NemN) = Qfnp — "‘e‘w(_;z—_)a Nez),
= Qnp — Opy Neg). (4.5)

Remarkably, this is the same form as Eq. (4.1) for bosons with the shift Ng, in energy
replaced by Ap = Neg(Neg + 1)/2. This shifted energy is in fact the minimum energy it
takes to excite N, particles from Ep,

(Nex + 1)Ne:v

nmz’n ( Nem) — 5

" (4.6)

Note that the partition function of this space is no longer given by that of N fermions in a
one-dimensional harmonic trap, whose expansion coefficients are given by the (n, N) (see
Eq. (2.13)). The multiplicity in Eq. (4.5) should therefore be thought of as the boscnic
multiplicity. This notion is most helpful when we discuss the hole space. In other words,
the problem is now mapped onto a similar bosonic problem, with the restriction that the

parts of an integer being partitioned are distinct.

Hole space

We now consider taking N, particles out of the multi-level ground state and put
them in the fermi level Ep (or equivalently, creating N, holes in the ground state). Given
np quanta, we wish to find w,f (rh, Neg, V), the number of ways of doing this. Unlike the
particle space, the dimension of the hole space is bounded, set by the number of particles N
of the system. For a given number N, of particles, the Hilbert space dimension of gvailable

states for Ng; holes is dependent on the value of N, itself and is given by:

Ny = N — Ne,. (4.7)
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We need to find the partition function of this space for each N, and derive a formula similar
to Bq. (4.5) for wi'(ng, Ney, N). This may be done by considering a new system containing
N, bosons, whose energy space is bounded and is given by Ny + 1 levels including the
ground state, which is set at zero energy. The goal is to determine Zj’{]m (B), the bosonic
partition function for the hole space, and expand this in terms of the coefficient Qp(np, Neg)
as in Eq. (2.13). We have attached a subscript "2’ in {3;(4, Ny ) to differentiate from that of
the particle space. Using the recursion formula Eq. (2.17), the N, -hole partition function

of this hypothetical system is

N,
1 ex )
Zo(8) = 5= D_ Z0(58) 2y s (8), (48)
exr ]:1
where Z{‘(B) is the cne-particle partition function of the system containing N, bosons and
is given by:
Ny .
@) =) e (4.9)
=0

It is important to stress that the one-particle partition function needs to be determined for
each Ngg, and Z]’\‘,Ez (z) may then be found from (4.8). The Z]}\L,ez (z) is now the generating

functions of Qp(n, Neg):
ZJ}{’em ("E) = Z Qh(i, Nem)xia (4.10)
i

where, as before, z is a mathematical parameter < 1. We are now ready to determine a
formula for w,f (nh, Neg, N). Because the hole space includes Er, the minimum energy to
create a hole (or dig a particle) and put it in the fermi level is zero, since there already is a
particle there; for two holes the minimum energy is one, for three holes it is three, etc. In

general,
{N 2 1)N exr
—

Similar to Eq. (4.5), with the energy shift Ay, given by (4.11), the number of ways of creating

ﬂ;,nm(Ner> - (4.11)
N holes in the hole space wf (np, Neg, N) is given by:

Ne:r(Nem - 1)
2

Using Egs. (4.5) and (4.12), the number of ways of distributing N, fermions to the excited

wg(nh,Nez,N) = Qp(np — s Nez). (4.12)

states, Eq. (4.4), now reads

Nex(]\];x + 1} 9 Ne%

Nez(Ne:r - 1

. 3
W, Newy, N) = > Q(np — ) Qulng — 5" Nea). (£13)

{nh’np}
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It is obvious that if there is no hole space, wf (ny, New, N) = Qa(np—Ap, Neg) = 1,
the sum over the set {n, n, } vanishes since nn = ny, the energy shift A, = n;"’m(Nez) = Neg,
and Eq. (4.4) thus reduces to Eq. (4.1) for bosons.

As an illustration, let us use Eq. (4.13) to calculate w”(5,1,3), w¥(5,2,3), and
w¥(5,3,3), already determined at the beginning of this section by direct counting. The

boseonic partition function in power of x for the particle space for N, = 1,2, 3 are:

Z = E+x+z2+3:3+:64+935+...,
Zy = 14+z+222+22° +322 +35+ ...,
Zy = 14+z+22° +3° +42* +52°+...,

where the coefficients of z are the macrostates {i(n, N). These partition functions may be
obtained from expanding the function

Nex 1
Zn. = |1 T
m=1

in power of x. Next, the bosonic partition functions for the hole space are:

Zt = 1+z+2%
ZF = 14+z+2%
zh = 1.

Note that these partition functions are finite since the Hilbert space dimension of the hole

space is finite. Also, due to symmetry, Zz-h =7} _;- Using Eq. (4.13), therefore,

wF(5,1,3) = Q0,1)0,(4,1) +Q(1, 1)0:(3,1) + 02, D2, 1) +
Q(S, 1)Qh(17 1) + Q(47 }—>Qh(@7 1}7
= (1)(0) + (1}(0) + (1)(1) + (1) (1) + (1){(1),
= 3
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which is what we obtained before by directly enumerating the microstates. Similarly,

wF(5,2,3) = Q(=2,2)Q(3,2) + Q(=1,2)Q(2,2) + Q(0,2)Q5(1,2) + Q(1,2)Q4(0, 2),
= {0)(0) + (0)(1) + (1)(1) + (1)(1),
= 2,
wF(5,3,3) = Q(=5,3)0(1,3) + Q(—4,3)04(0,3) + Q(=3,3)0x(—1,3) +
Q(-2,3)04(-2,3),
= 0. (4.14)

Since the multiplicities are zero for n < 0, it is more computational convenient to define
Teutof f = NIO% — Nt = — N,z?, then Eq. (4.13) becomes

Ncutof f

WF(naNemaN) = Z Q(i>Nex)Qh(ncutoff - iaNem)- (4-15)
i=0

In appendix C we give a list of the (bosonic) partition functions for both the
particle and hole spaces for N = 10. Also shown are computer algorithms for computing
the microstates using the method described in this section. The mathematical program
used is Maple V.

In Ref. [25] where the direct combinatorial method was used, the fermionic cal-
culation of the ground state fluctuation was restricted to a low number of particles NV and
guanta n using a normal office computer (Pentium III, 500 MHz). For a relatively small
number of particles (e.g., N = 10), at higher excitation n the combinatorics method is more
time-consuming due to the rapid increase in the number of possibilities with n. The method
described in this section translates the problem in combinatorics into a problem of calcu-
lating the partition functions of the hole space, the lafter being simpler computationally.
Although this method is still time-consuming and the calculation for larger N (IV > 100)
is still not possible using our office computer, it is more effective for higher number of
guansa and relatively small number of particles. For demonstration we display the ground
state fluctuation of fermions as a function of energy quanta n in Fig. 4.2 for N = 30. We
alsc show the corresponding curve in CE, which is the same as GCE except at very low
temperature {see e.g., Ref. [25]) for comparison. As expected, both go to zero as 7' — 0,
with the microcanonical fluctuation less than that given by the CE for all n. Note that the

two fluctuations are very different, even for very high excitations. At n = 6000 which is
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200 x Ep, the canonical curve still differs from the microcanonical one by about 14%. It
was shown in Ref. [25] for N = 15 that the ground state occupancy (Ng) = ZEF (ng) for
the two ensembles are very similar. Clearly, the number fluctuation is more sensitive to the
ensemble used. Therefore, for a relatively small particle number, while it may be adequate
to use the CE (or GCE) to describe a thermodynamic quantity such as the ground state

occupancy, it should be used with caution when calculating the number fluctuation and

related quantities.

0.08 1~ /

0 ) I . | L
0 2000 4000 6000

E

€X

Figure 4.2: Ground state number fluctuation of fermions as a function of excitation energy
E (in unit of hw) for N = 30 (solid line). The result in the CE (dashed line}, calculated
using the method outlined in section 2.1.2, is also shown for comparison.
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4.2 The Special Traps

We have seen that for bosons the use of the CE or the more restricted MCE pro-
duces the correct ground state number fuctuation as ' — 0, while the GCE gives unphysical
result. With respect to the number fuctuations, therefore, the GCE is neither thermody-
namically equivalent to the CE nor to the MCE, where the total number of particles N is
fixed and is not subject to fluctuations. The fluctuations in the latter two ensembles have
been shown to respect the principle of thermodynamic equivalence in a one-dimensional
harmonic trap but they differ in higher dimensions [9, 11, 15, 16, 17]. A good discussion on
the difference between the CE and MCE is given in Ref. [17]. While the number fluctuation
is sensitive to the ensemble used, the mean number in the ground state, however, is found
to be thermodynamically the same in all statistical ensembles.

In this section we consider a system of noninteracting particles in hypothetical
traps whose energy spectra are given by In p, where p is a prime number, and Inn, where n
is an integer. Because of the peculiarity of the spectra, the usual thermodynamic equivalence
is not obeyed here. These spectra serve as exceptions to the general rule and therefore are
of some interest. In the previous section we encountered an example of the additive number
theory being applied to a physics problem, in this section it is the multiplicative number

theory that plays a role.

4.2.1 Inp spectrum

Fluctuation in the microcancnical ensemble
We consider N bosons in a hypothetical trap with a single-particle spectrum (not

including the ground state, which is at zero energy)
ep =Inp, (4.16)

where p runs over the prime numbers 2, 3,5,.... Suppose that there are N bosons in the
ground state at zerc energy, and an excitation energy F., is given to the system. We
would like to know in how many ways this energy can be shared amongst the bosons by
this spectrum. Recall that as long as N > FE,,, the enumeration is insensitive to the
value of N. In what follows we shall not specify N, and assume that it is large. For

E.; = In2, only one particle gets excited to the first level above the ground state. Thus,
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win2,1,N} = 1, w(ln2, Ny, N) = 0, for Nz > 1, and Q(In2,N) = 1. Similarly for
E,, =1In3. For B, = In4, there cannot be one excited particle, since the energy level with
¢ = In 4 does not exist. The only case possible is to excite two particles. Since ln4d = 2In 2
these two particles both get excited to the level with energy ¢ = In2. Thus w{ln4,1, N) =
0, wiin4,2,N) =1, w(n4, Nz, N) =0, for Noz > 2, and (Q(In4, N) = 1. Clearly, for a
given excitation energy E., = Inn, where n is integer, the multiplicity Q(E.,, N} equals the
number of ways Inn may be expressed as sums of Inp, where p is prime. This is the same
as the number of ways that an integer n may be expressed as a product of prime numbers.
Without doing any calculation, we know the answer. According to the fundamental theorem

of arithmetic 1, there is only one unique way of expressing n as a product of primes:
n=p'py?...o0 ..., (4.17)

where p,’s are distinct prime numbers, and n,’s are positive integers including zero, and need
not be distinct. It immediately follows from Eq. (4.17) that if the excitation energy E., =
In n, where the integer n > 2, there is only one unique way of exciting the particles from the
ground state. Note that if F,, # Inn, the energy is not absorbed by the quantum system.
Since the number of bosons excited from the ground state is unique for this system, the
microcanonical number fluctuation in the ground state is identically zero for any excitation
energy. In table 4.1 we list the microstate and the macrostate for a few excitation energies.
As expected, the macrostate is always equal to unity.

Fig. 4.3 shows a graph of the excited particles (N,,), calculated using Eq. (2.3),
versus excitation energy Fe,. For clarity we present (Ne,) instead of (Ng) since N, is equal
to the number of prime factors of integer n. The number of ground state particles may be
easily calculated using (Ng) = N — (Ng;). Due to the peculiarity of the In p quantum
spectrum, the graph has an interesting zigzagging pattern. Note that the result here is
independent of N. We shall see in the next section that this result is dramatically different

from the smooth one obtained from the CE.

*Proven by Euaciid (~ 325-265 BC) around 306 BC.
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By Ney W(EeanNewa) Q(EemsN)
In2 1 i i
n3 1 1 1
Ind 1 G
=2In2 2 i i
ns i i 1
ng i G
=n2+In3 2 i 1
In7 i 1 1
In8 1 G
2 0
=3n2 3 1 1
Ing 1 0
=2n3 2 i 1
In10 1 0
=mn2+In5| 2 1 1
1

Table 4.1: Enumeration of the microstate w(FEez, Neg, V) and the macrostate Q(Ee,, N) for
a few excitation energies for IV bosons. The single-particle spectrum is taken as ¢, = In p,
where p is prime number sequence. The ground state is at zero energy. Note that in the
last row, the value of the macrostate in the last column is always equal to 1 regardless of
the values of the first 3 columns.

ex

W

Figure 4.3: Plot of the average bosonic occupancy in the excited states (Ng,) as function of
E., =1n n, where n is an integer. The data points are joined by dotted lines to emphasize
their zigzag character. To give an example, the sixth point (including 0) corresponds to
E., =In6, and gives Ny = 2, corresponding to the prime factor decomposition 2 x 3.
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We next ask what happens to the microcanonical ground state number fuctuation
in the presence IV ideal fermions. While the distribution of the excitation energy is more
constrained due to Pauli principle, the N-level fermionic ground state might allow more
possibilities, which might render the fluctuation t¢ be non-zero. To examine what the case
might be, we consider an example with N = 5. The ground state of this system consists of

five lowest energy levels as shown:

r_iﬁxi"i
‘4*1%13
inii
n?
ins
a3
2

L

I

To excite one particle, one needs an excitation energy of

Ep=Inp—1In pO::ln }%,

where

p>7, °=¢{1,2,3,57}

For instance, for Bz = In %, the particle in the Fermi level (Er = In7) will be excited to
the first excited level with € = In11. For each excitation energy given by ln p/pY, there is
only one way of exciting one particle. For two particles, the energy required is
B = inp%é —%—Enp%,
i Y9

where

p1# D2 & {p1,p2} > 7, 0¥ # 05 & {99, 09} = £{1,2,3,5,7}.
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i3
5.

1

An example is F.; = In % +In Note that this is equivalent to In (% 1073) =

In (%%) =In 1—73 +1In 15—1, both belongs to the same configuration as shown:

&
o
o

5,

v el 13 R | 13
Eﬁx—lnmg ﬁnm,? E&X—in Eg?,,_ﬂn +

Even though each particle absorbs different energies in two pictures, the final configurations
are identical since the particles are indistinguishable. Therefore, Q(In (%%) ,N)=1.
In general, for N fermions, the excitation energy is of the form

Bp = W 4mP2y
P Dy

Ne$
In IiHi:l P

TTives

where the p; and p? must be distinct due to Pauli principle. Since they are distinct primes,

, (4.18)

the ratio inside the square bracket of Eq. (4.18) is irreducible and is thus unique. In other
words, if n1 = [ p; and ng = []% p?, then there is no other 7} and n), such that

ny, n

nh s
unless n; = n} and ng = n5. Compared to the bosonic case, there are more energies that are
not absorbed by the quantum spectrum. The inadmissible energies are those that cannot
be expressed as In n, and those that do not satisfy Eq. (4.18). Since there is one unique
way, if possible, of expressing F., as In(n;/ng), the fermionic microcanonical ground state

number fluctuation is also identically zero at all excitation energies.

Fluctuation in the cancnical and grand-canonical ensembles
We next calculate the fuctustion in the CE and GCE for N bosons and com-

pare with the microcanonical results. To do the numerical work, we need to truncate the
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spectrum. The canonical cne-body partition function is then given by

o
Zi(B)y=1+ Z exp(—fBlnp), (4.19)
p=2

where p* is the cutoff prime. The N-body partition function may be found using Eqg. (2.17).
Once Zy{B) is found, the canonical ground state cccupation and the ground state number

fluctuation can be readily computed from Egs. (2.18)-(2.20).
In the MCE the ground state occupancy and the fluctuation are calculated exactly,
and the energy is well defined. In the CE, however, the system is in thermal equilibrium
with a heat reservoir, the energy is therefore defined only in the average sense. For a given

temperature 7', the most probable energy of the system in the CE is

(Eez) = —ﬂ1~$—@. (4.20)

The calculations in the CE are thus done for a range of energy of finite width, the peak
of which is given by (4.20). Therefore, the CE effectively samples more than one energy
level at a time. The multiplicity is thus no longer unity and the fluctuation is non-zero.
In Figs. 4.4 and 4.5, we display the results of the canonical calculations (solid lines) for
the ground state occupancy fraction (Ng) /N and the ground state fluctuation (ANp) /N
for N = 100 as a function of temperature T with the truncated spectrum of 108 primes.
For comparison, we also show the results of the corresponding grand canonical calculations
(dashed lines). The grand canonical quantities are calculated from Egs. (2.22) and (2.24).
Interestingly, the ground state occupation graph appears to have a transition temperature,
and shows signature of BEC. We defer the discussion on this later so that the subject on
fluctuation is not interrupted. While the average ground state occupancy in the two ensem-
bles agree quite well, the grand canonical catastrophe for the number fluctuation is clearly

evident.



CHAPTER 4. NUMBER FLUCTUATION OF NONINTERACTING... 57

0.8

0.2~

Figure 4.4: Average occupancy in the ground state (Ng) /N versus temperature T for
N = 100 in the canonical (solid line) and grand canonical (dashed line) ensembles. The
spectrum is truncated to 108 primes.

0.08

0.02

T

Figure 4.5: Plot of the relative ground state number fluctuation in the canonical (solid line)
and the grand canonical {dashed line) ensembles for the truncated spectrum of 10% primes.
Note the steep rise in the grand canonical fluctuation.
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Clearly, the canconical fluctuation does not vanish except at zero temperature.

This result is dramatically different from the microcanonical one which is zero everywhere.

0.08 .

Figure 4.6: Same as Fig. 4.3 except with the canonical
curve (dashed line) superimposing for comparison. For
the canonical calculation, the ensemble-averaged (Fey)
is identified with the excitation energy E.,. Note that
the microcanonical result is identical to the previous
shown in Fig. 4.3 (N — oo). This is because at this
scale of the excitation energy, the number of factors of
n is still < N = 100.

We next compare the fraction of
number of particles in the ex-
cited states (Ngy) /N in the MCE
and CE for the same number of
particles.  This is displayed in
Fig. 4.6, which shows that the
two results are dramatically dif-
ferent. While the canonical ratio
(Nez) /N keeps on increasing for
larger F until it saturates at unity,
the zigzagging pattern of the mi-
crocanonical result will still per-
sists no matter how large the en-
ergy is. In particular, whenever
E., = Inp, the microcanonical ra-
tic (Neg) /N will always be equal
to 0.01. This means that the mi-
crocanonical result can never be

smooth.

We expect the same conclusion holds true for fermions. The fermionic ground state

number fluctuation in the CE will be smooth and non-zero except at zerc temperature. The

microcanonical ratio (Ng,) /N will still show the zigzagging pattern, though the magnitude

wiil be less than the bosonic case due to Pauli principle.

The next question to be addressed is whether the same cutcome holds if the

spectrum is not cut off and the number of particles N — oco. Since N — oo, the number

of factors is not restricted. The many-body energy is given by lnn, and the degeneracy is

always unity. The canonical partition function is thus given by

o0

Zn(8) = ;e—ﬂE _ ze—mnn =3 %ﬁ., (4.21)

n=1
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This is nothing but the well known Riemann zeta function,

Zn(B) = (A=Y =5 (4.29)
n
It is to be noted that mathematically the zeta function may be analytically continued on
the complex [ plane. Nontrivial zeros on the complex plane are believed to lie only on the
real § = 1/2 axis. This is known as the Riemann hypothesis, which is yet to be proven.
For real 8 Eq. (4.22) converges for 8 > 1. Thus this system may only be realized at low
temperatures. We have encountered the generating functions in additive number theory (see
table 2.1 and chapter 3). Likewise, the zeta function is a multiplicative generating function,
with all the degeneracy factors being unity. This system of a collection of bosonic gasin Inp
spectrum, referred to as Riemann gas, was first introduced by Julia [33] who thereby made
a connection between a quantum mechanical system and a mathematical entity, namely
the zeta function. Henceforth we shall concern only with the region 8 > 1. Note that the
problem of divergence in the partition function did not arise earlier because the spectrum
was cut off. The grand canonical partition function of this system may also be determined:
=60 = [[—

1 — eBlu—es)’

€

(4.23)

where the factor Lz
—e

- is due to the ground state which is at ¢¢ = In1 = 0 energy, and

Zex(B 1) = ﬂ;f__Q W is the grand partition function of the excited states. Note that
Eex(B, 1) with ¢ = 0 is none other than the Euler product representation of the Riemann

zeta function [66]:

(-3 -] 20

i

The corresponding gas for non-zero y is termed Riemann-Beurling gas [34]. To address the
question raised earlier, i.e., whether the outcome from the previous case of finite N and
a cut-off spectrum still holds for this system where N — oo and the spectrum is not cut

off, we shall use the method developed by Navez et al. [16, 17]. These authors pointed out
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that for a trapped bose gas below the critical temperature, the microcanonical result for
fluctuation could be cbtained solely using the canonically calculated quantities, which in
turn may be obtained from the so called Maxwell’s demon (MD) ensemble. Note that we are
not addressing the issue of whether the Riemann gas truly condenses, this shall be discussed
later. The treatment here applies as long as (INp) becomes macroscopic at a temperature,
as shown in Fig. 4.4. In this MD ensemble, the ground state (for T' < 7} was taken to
be the reservoir of bosons that could exchange particles with the rest of the subsystem (of
the excited spectrum) without exchanging energy. Defining o = [y, it was shown that
the canonical occupancy of the excited states, (Ne;), and the number fluctuation <ANew2>
could be obtained from the first and the second derivative of S, (5, o) with respect to «,
and then putting o = 0. It was further noted that the microcanonical number fluctuation

for the excited particles was related to the cancnical quantities by the relation

(AN AE) o) _

<ANem2> 2>CE - <AE2>CE

= (AN (4.25)

MCE

This worked beautifully for harmonic traps in various dimensions. These calculations, for

our system, are also easily done for 3 > 1:

(np)p? 2
(AN, 2) _ Z P’ _ [ZP ('p"—l)z}
ez ) MCE - (PP — 12 > (np)2p?

P (pP-1)?

(4.26)

Clearly, the RHS of Eq. (4.26) is non-zero, and therefore does not agree with the actual
microcanonical result. Remarkably, the canonical partition function Eq. (4.21) is not needed
at all for this calculation.

Normally the occupancy is not as sensitive as the number fluctuation with respect
to the ensemble used (see e.g., Fig. 4.4). The microcancnical occupancy is generally less
than that of the other two ensembles but possesses similar features. To simplify the dis-
cussion, we shall focus only on the microcanonical and canonical results. Here, even the
occupancies in these two ensembles are dramatically different, not to mention the number
fluctuation. This failure of the CE in predicting the MCE results is not a shortcoming of
the methodologies, but is due to the exotic nature of the single-particle quantum spectrum.
Recall that in the MCE there is one and only one microstate for any given excitation en-
ergy. This implies a one-to-one correspondence between the microstate and the macrostate.

Since there are not a large number of microstates corresponding to a macrostate, the usual
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concept of statistical mechanics breaks down. Albeit nonphysical, this guantum spectrum
is still a highly interesting example illustrating the non-eqguivalence of the ensembles.

We now return to the issue of whether bose gas in Inp spectrum displays BEC.
As noted earlier, Fig. 4.4 appears to show a transition temperature 7, below which the
ground state occupation becomes macroscepic. The transition is indeed sharper than the
one-dimensional harmonic case for the same number of particles, as shown in Fig. 4.7.
The transition temperature may be

1 . . i
readily found in the GCE using the i— N=10"
AN 43
density of state approach: AN N=10',

N~ Ny = j:oo n(e)p(e)de, (4.27)

z osk i
and letting Ng — 0, and the \Z;OM—_ |
fugacity z = e*® — 1 (the )

energy of the ground state has ozf- 1
been taken to be zero). In |
(4.27), n(e) = [z_lemp(eﬂ)—l]—l K | T/lch | ’

is the usual Bose-Einstein occupa-

Figure 4.7: The relative ground state occupation for
finite number N of bosons in & one-dimensional har-
particle density of states. In the monic potential versus (relative) temperature. Plots
one-dimensional harmonic case, it is are shown for N = 102 (solid line) and N = 103

well known [67, 68] that BEC does (dashed line).

not occur in the thermodynamic limit (N — oo and w — 0 such that Nw =constant).

tion number, and p(e) is the single-

However, for finite N the system does undergo a 'quas?’ BEC (see Fig. 4.7) [9, 69]. In fact,

the transition temperature of this system was estimated to be [69]

N
T, = hw———. (4.
g ﬁuln(QN) (4.28)

Eq. (4.28) was derived using a 'summation’ approach which does not require the knowledge

of the density of state. The detail of the calculation is shown in appendix D. Since the

density of states for the In p spectrum is not known, we follow this 'summation’ approach.
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The total number of particles, Eq. (D.2), is

o9}

— j —Jj€i
N = zj§:euﬁ,
1 i

o

I}

co 7*
= Ng+ Z P Z e iFlnp, (4.29)
j=t p=2

where as before, p* is the cut-off prime. In the harmonic case, the second summation over
the energy level is a geometric progression series (Eq. (D.3)). Here, it cannot be summed,
and as a result T, may not be found analytically. Fig. 4.8 displays (Ng) /N as a function
of temperature for several values of N. Clearly, larger number of particles yields larger 7.
However, for a given N, larger value of p* reduces it. The same behavior can be seen in
Fig. 4.9 which shows a plot of the chemical potential i versus the temperature 7. Since the
transition is sharper for larger number of particles, we expect the Riemann gas (p* — oc and
N — o0) to exhibit BEC. Recall that this system is realized only for 3 > 1, the transition

temperature is thus found in the region 7' < 1.

: 1,857,859 primes
6 .
- 10 primes
08— —
0.6 —
£ _
Z
04k -
0.2~ ]
¢ i
0 1 2

Figure 4.8: Plot of the relative ground state occupation for several N. In order of increasing
T, the values of N are N = 10,20, 100, 206. The calculations are done for p* = 1,857,859
and 105.
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— 1,857,859 primes

b
10" primes

Figure 4.9: Plot of the chemical potential y versus the temperature 7. The number of
particles used are the same as in Fig. 4.8.

4.2.2 Inn spectrum

We next consider a related model in which the single-particle spectrum is given

by the logarithm of an integer
en=Ilnn, n=1,2,.... (4.30)

Thus the single-particle partition function is the Riemann zeta function ((8). Unlike the
In p model considered in previcus section where a Hamiltonian is not known, it is possible
to construct the corresponding dynamical Hamiltonian in this case. This may be done
by inferring from the Hamiltonian of a one-dimensional oscillator, which is given by H =
P2 $?, where P and Q are the momentum and potential operators (in suitably scaled
units). The eigenenergy spectrum is ¢, = (n +1/2}, n = 0,1,2,... in unit of Aw. Since
the eigenvalues of the Inn model is a function of those of the one-dimensional harmonic

oscillator, it follows that the Hamiltonian of the former is given by [70]
H=mn(P2+Q%+1). (4.31)

However, this Hamiltonian is not separable into the usual kinetic and potential operators

(H = T+V). Nevertheless, it has been shown in Ref. [70] that the classical partition function
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derived from this dynamical Hamiltonian yields a good approximation to the canonical
partition function ({3). Using the WKB semiclassical approximation, it was shown that
the potential given by V ~ Inr in three dimensions yields energy spectrum E,; ~ In(n +
{/2—1/4) [71]. For larger n, these WKB eigenvalues agree better with the exact values found
numerically. In one dimension, the potential varies as ¥V ~ In z semiclassically produces the
eigenenergies E, ~ Inn.

We now return to the problem of number fluctuation of this spectrum, and compare
the results in different ensembles as well as with those of the ln p single-particle spectrum.
We consider IV bosons in the ground state at zero energy, where N is large, and calculate the
number of ways the excitation energy given by F., = Inn is shared amongst the particles.
Clearly, in the MCE this problem pertains to finding the number of ways an integer n
may be decomposed into N, factors, where Ng, = 1,2,.... In contrast to the lnp case,
there is more than one way of doing this, since the single-particle spectrum given by (4.30)
now admits non-prime factorization of n. For illustration we show an example in table 4.2

for a few excitation energies. Since (}(F, N) is not always unity, the number fluctuation

Eey New W(Eem,Nem,N) Q(EemN)
In2 1 1 i
In3 1 1 i
In4d 1 1

=2In2 2 i 2
In5 1 i 1
Inég 1 1

=mn2+In3| 2 1 2
In7 i i i
In8 1 1

=1n24+1nd 2 1

=3n2 3 1 3
ng 1 1

=23 2 i1 2
inl10 1 1

=hn2+1ns 2 i1 2

Table 4.2: Enumeration of the microstate w(Fey, Nez, V) and the macrostate (H{ E,,, N) for
a few excitation energies for N bosons. The single-particle spectrum is taken as ¢, = In n,
where 7 is integer > 1. The ground state is at zerc energy.

from the ground state in this case is not always zero. In spite of this, there remains the

guestion of whether the relative ground state number fluctuation in the MCE and the CE
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asymptotically agree. We shall see shortly that the same conclusion for the Inp spectrum
alsc holds here. The resuits of the two ensembles differ no matter how large ¥ and N are.
Fig. 4.10 displays a graph of the averaged excited particles (Ng,) in the MCE, calculated
using Eq. (2.3), versus the excitation energy E.;. The calculation is done for only a few
excitation energies, since it is not trivial to find the number of factorizations for large values
of n. This is actually sufficient for our analysis. The graph in Fig. 4.10 is similar to the one
in Fig. 4.3. Due to the fact that the microstates are all non-zero for small values of Neg,
the magnitude of (INo;) in this case is however smaller (alsc compare the second and third
columns of tables 4.1 with 4.2). Note also that apart from zero (Ng;) has the minimum
value of one whenever F,, = Inp, and it has a maximum ’envelope’, resulted by joining
the data points at energies E,, = In2", r = 1,2,.... This implies that the zigzag pattern
persists no matter how large the energy is, and that (N,;) lies between the range of unity

and the envelope.

(N_)

66 & 66 6o o

Figure 4.10: Plot of the average bosonic occupancy in the excited states (V) as function
of Fep = In n, where n is an integer. The single-particle energy spectrum is given by
e, = In n. Note the zigzag pattern, which is similar to Fig. 4.3. The energies E., =rin2
are also indicated.

Note that F., = In2" may also be written as F,, = rIn2. For these values of F,,
the problem is the same as that of a one-dimensional harmonic oscillator with the energy

spectrum in unit of (In2 %w). Thus Q(rln2, N) is the same as the number of partitions of
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rinto Neg, Nez = 1,2,..., N parts. This can be clearly seen from the many-body partition
function, calculated for a few energies (assuming N — oo):
Zn(B) = 1 +xPZ 4 pin3 4 9u2l02 | 5 | o n6 | In7 4 g 8182 | 5.0 L o Inl0
Lpmll g gplnl2 | plni3 | o lnld | oo In15 | godln2 L Inl7 L 4o ln18 | Inid
P4z L g 7BIn2 162

where, as usual # = e~%. The coefficients (in bold face) of "2 are indeed the same 2s

those of a one-dimensional harmonic spectrum, whose partition function is

=142+ 222 +32° + 524 +72% + 1128 + 1527 + 2228 . . ..

o

In fact, the B, = lnn spectrum might be thought of containing, amongst others, many
harmonic-like spectra in units of (Inp Aw), where p is prime. One thus expects the next
‘envelope’ is given by joining the data points at energies E., = rIn3. From Fig. 4.10, it

can be seen that this is indeed the case.
The above discussion on (N.,) holds also for the microcanonical relative number
fluctuation from the ground state, (ANy) /N, as shown in Fig. 4.11, where we take NV = 100.
The fluctuation (ANy) /N is

minimum and is equal to zero

0.02 ; : . T . T . T

whenever the energy is In p, since

there is only one unique way

o

o

73
T

of exciting N, (= 1) parti-
cles at these energies. As in
the (Ngp) case, it alsoc has a
maximum envelope below which

lie all the other data points.

Since there exist infinitely many
primes, (ANg) /N oscillates be-

tween zero and the envelope

Figure 4.11: The microcanonical relative number fuctu-
ation from the ground state for the same single-particle
energy spectrum as in Fig. 4.10. The number of particles
is taken as N = 100. The corresponding canonical curve case. Therefore, even though the
(dashed line) is also shown for comparison.

and thus remains non-smooth for

large energy, similar to the (Ngg)

microcanonical number fuctua-

tion in this case is non-zero, it
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still does not agree with the canonical one, no matter how large N and £ are. While
the zigzag pattern of the microcanonical number fluctuation always persists, the canonical
curve is smooth for all energies, as shown by the dashed curve in Fig. 4.11. A comparison
between the exact relative number in the excited states with its canonical counterpart is
similar to the one shown in Fig. 4.6 and is therefore not shown.

It is clear that the Inn spectrum has similar pathological properties as the Inp
spectrum. In the Inp case, it is recognized that the pathology stems from the fact that
there is a one-to-one correspondence between the microstate and the macrostate. In this
case, however, the use of the CE or the GCE is still invalid even though there is not a one-
to-one correspondence. Instead, the source of the pathology here is the intrinsic oscillation
of the many-body multiplicity of states (}(E, N), which varies from unity when the many-
body E, = Inp to some value which can be very large when E, = rin2. This oscillation
gets progressively larger when the energy is increased. Since the microcanonical entropy is

given by the logarithm of the multiplicity Q(E, N), it too has the same peculiar behavior.

4.3 The Microcanonical Entropy

In this section, we focus our discussion more on a different thermodynamics quan-
tity, namely the entropy, rather than the number fluctuation. In a mean-field model, or a
model in which the particles are noninteracting, one is generally given a set of single-particle
guantum spectrum. From this, a set of many-body eigenenergy is constructed (see section
2.2.1) and the many-body degeneracy factor §}(E, N) is determined. The microcanonical
entropy of such system is then given by Eq. (2.27):

Sv(E) = mQ(E, N).

We have seen, however, that finding the exact degeneracy QU(E, N} is not an easy task,
especially for large energy. Consequently one generally resorts to the CE, or the GCE. The
exact microcanonical entropy is desired, however, for systems which are totally isolated.
Since the canonical entropy differs from the microcancnical one due to thermal fluctuation,
efforts have been made to find ways to correct for this, especially in the discipline of black
hole physics [39, 40, 72, 41] (assuming quantum fluctuation is small). It is not our intention
to discuss black hole physics here, however. Rather, our approach is general, and applies

for any system where a many-body eigenenergy spectrum is known. For a given many-body
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eigenenergy spectrum, we derive a formula to approximate the microcanonical entropy. This
has already been done in Ref. [39]. However, the formula has not been explicitly tested.
This is done here for several models, where the microcanonical entropies may be determined

exactly.

4.3.1 Correction to the canonical entropy

Consider a many-body quantum system with eigenenergies E,, that are completely

specified by a single quantum number n,
E,=f(n), n=0,12,..., (4.32)

where we assume f(n) to be an arbitrary monotonous function with a differentiable inverse,
f' = F(z), such that n = F(E,). We know from chapter 2, section 2.2.2 that the
multiplicity of states and the smooth part of the density of states of such system are related
by (Eq. (2.33)):

pN(E) = QE, N)|F/(E)],

where the oscillating part of the density of states has been neglected. The microcanonical

entropy is thus given by

Sn(E) = InQE,N)
~ lnpy(E) —In|F'(E)|. (4.33)

The next step is to find py(E). This has already been shown in section 2.2.2 using the
canonical partition function Zn(5) (Eq. (2.34)):
o (E) = eSn{Be)
V/2m 85 (Bo)’
where Sy (fo) is the canonical entropy evaluated at the equilibrium inverse temperature .

The final expression for the microcanonical entropy is thus:
1
SN(E) ~ Sn(Bo) — 5 1n 275K (6o) —In [F'(E)]. (4.34)

The energy and the equilibrium inverse temperature are related by

E=(B)=— <§mgﬁ_ﬂ>ﬁ , (4.35)
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Note that the second derivative of the function Sy(8) = BE +In Zn(() is given by

32
SxiB) = é—ﬁganN(ﬁ),
_ 1 a%(ﬁ)_( 1 azN<ﬁ>>2
T Zn(B) 882 Zn{8) 0B ’
= (E%) - (B), (4.36)

Therefore, S¥(5o) is the thermal fluctuation squared of energy from the equilibrium. Thus,
ignoring the In |F'(E)| for now, the microcanonical entropy may be obtained from the
canonical one with the energy fluctuation subtracted out, both evaluated at the equilibrium
temperature. We shall see that whether the In|F'(F)| term contributes depends on the
nature of the single-particle energy spectrum.

The approximation (4.34) for the microcanonical entropy Sy (F) is useful since it
is prohibitively difficult to calculate it directly from Eq. (2.27). Generally, in a mean-field
model, a single-particle quantum spectrum is cobtained. As we have seen from previous
chapter, the direct computation of the many-body degeneracy factor Q(E, N) from this
starting point is very time consuming. Instead, it is much simpler to obtain the canonical
many-body partition function and then compute the canonical entropy S(Gp). Going one
step further, one may calculate the canonical energy fluctuation, and use Eq. (4.34) to
obtain Sy(E). By following this canonical route, no computation of {}(E, N) is necessary.
We now test the formula for three models, where the exact entropies can be determined. In
the first model considered, the system consists of N bosons in a power-law single-particle
spectrum. In the second, N distinguishable particles in a d-dimensional harmonic energy

spectrum. Finally, we consider N bosons in the Inp spectrum in the last model.

4.3.2 The power-law single-particle spectrum

For our first model, we consider N noninteracting bosons confined in a mean field
with a single-particle spectrum given by ¢,, = m®, where the integer m > 0, and s > O.
This model is considered here because of its connection to number partition theory which
makes analytical work possible (see chapter 3). The N-body canonical partition function is
given by the generating function for {F, N) and is exactly known. We shalllet N — oc in

this model and omit the "N’ in the notation. The microcanonical entropy is found by taking
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the logarithm of Q(F), which is determined by expanding its generating function, given by

(table 2.1, also see Eq. {3.2)), in series of z. Recall from chapter 3 that for the single-particle
power-law eigenenergy spectrum, |F/(E)| = 1. Thus this term does not contribute to the
RHS of Eq. (4.34). The canonical entropy and its second derivative, as functions of energy
E are given by Egs. (3.9) and (3.10):
S(B) = (1+ s)msEl/(Hs) + %lnms — mlﬂE - gln%’,
i42s
S"(Bo) = Lhe P :

8 Ks

where ks is a function of s only. The comparison is done for s = 1,2 and is shown in
Figs. 4.12 and 4.13. The dashed curve denotes the canonical entropy S(E) without the
correction, and the continuous curve the exact microcanonical entropy S(E) for the two
power laws. We see from these curves that the two differ substantially as a function of
the excitation energy E, specially for s = 2. Inclusion of the logarithmic correction to the
canonical entropy using Eq. (4.34) results, however, in almost perfect agreement, as shown

by the dot-dashed curves in these figures.

60

Entropy

L i .
0 100 200 300 400 500

Figure 4.12: Comparison of the exact microcanocnical entropy S(E) (solid line) and the
canonical entropy S(E) (dashed line) for the e,, = m® spectrum, where s = 1. The particles
are taken to be N noninteracting bosons, where N — o00. The dot-dashed curve, given by
Eq. (4.34), overlaps with the exact solid curve. The inset shows & zoom-in for £ = 320—400
to reveal how closely the dot-dashed curve follows the exact solid curve.
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Figure 4.13: Same as in Fig. 4.12, except s = 2. The zoom-in is omitted here.

Note that in the exact microcanonical calculation, there is an oscillation due to
the discrete nature of 3(E). This oscillation is however extremely small and cannot be seen
in this scale, except at very low energy. For s = 1 (corresponding to the one-dimensional
harmonic spectrum), the partition function of noninteracting bosons and fermions are the
same, apart from the ground state energy. This means that the degeneracy Q(F) and
consequently the entropy are the same for both, so that the result shown in Fig. 4.12
applies for fermions also. The same conclusion cannot be made for other values of s since
the fermionic partition functions for these cases are not known. For variety we next test the

accuracy of Eq. (4.34) for distinguishable particles in d-dimensional harmenic oscillators.

4.3.3 Distinguishable particles in d-dimensional harmonic spectra

To get a feeling of how the counting of states for distinguishable particles differs
from that of indistinguishable particles, we work out an example for a few energies explicitly
for d = 1,2. A superscript of (1) for one dimension, or (2) for two dimensions, is attached
to the w and Q to differentiate between the two cases. First, consider a one-dimensional
harmonic spectrum. Without loss of generality, we shift the ground state o zero, i.e.,
€ =7,7=0,1,2,... in unit of Aw. At zero temperature the N particles are in the ground
state. For a given excitation energy, we need to find the number of ways that this energy
may be shared amongst these distinguishable particles. For Eg; = 1, only one particle can

get excised, and there are @7 ) ways of doing this since the particles are all different. Thus
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wB(1,1,N) = N, w1, Nop, N) = 0 forN,, # 1 and QU (1, N) = N. For E,, = 2, there
can be one or two excited particles. Again for one excited particle there are (]Y )
w1(2,1,N) = N. For two there are (J;J} ways. Thus, QU (2, N} = N + {g} = we For
comparison, in the case of boson statistics W (1,1, N) =1 =001, N); (2,1, N) =1,

w® (2,2, N} =1, and oW N ) = 2. Consider next the two-dimensional case. Note that in

ways and

this case there is a degeneracy in the single-particle energy spectrum, given by g{j) =7+ 1.
This degeneracy renders the counting more complicated, as will now be demonstrated for a
few excitation energies. The picture below depicts the single-particle energy level of a two-
dimensional harmonic oscillator. Each horizontal line represents a state, and the number of
lines is the degeneracy g(j). The ground state is singly degenerate, the first excited state
is doubly, etc. There are N (distinguishable) particles in the ground state, represented by
the thick line.

e H N
L]

ol

For B, = 1, there are (JY ) ways of choosing one particle from the ground state. This particle
can then be put either in the ’left’ or the 'right’ state of the first excited state with ¢; = 1.
Thus w® (1,1, N} = 2N and Q&) (1, N) = 2N. Similarly, for B, = 2, w?(2,1,N) = 3N.
1t is also possible to excite two particles for F., = 2. In this case, there are {1;] ) ways of
choosing two particles from the ground state. The two chosen particles, say X and O, may
each take one excitation quantum of energy to the first excited level. There are four distinct

configurations for this, as shown in the following diagram:
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Therefore, w®(2,2,N) = 4(}), and so QP (2, N) = 3N + 4 = w, Again,
for comparison, in the bosonic case w@(1,1,N) = 2 = Q2)(1,N); wD(2,1,N) = 3,
w?(2,2, N) = 3, and Q@ (2, N) = 6. The multiplicities in the bosonic case in both dimen-
sions are much less than the distinguishable case. In table 4.3 we show the counting for

several values of &, for one- and two-dimensional harmonic spectra.

‘ Eea: } Nx } UJ(l)(Ee:mNex:N) ] ﬂ(l)(EexyN) ] W(Q)(EexaNem7N> ' Q(Q)(EescuN)
11 N 2N
2 0 0
N 0 N 0 2N
2 | 1 N 3N
N N
2 ( ) ) 4( 2 )
3 0 0
N 0 N(J\27+1) 0 2N(é\§f+1)
3 |1 N AN
2 2(% 2 x3x2(§
3
3 (s) 2+ (] G)
4 0o 0
. : N(N+1)(N+2) : 2N(2N+1}{2N+2)
N 0 3l 0 31
E N(N+1).. N+ Eez—1) : 2N (ZN+1)...(2N+Eep—1)
ex ex . : Eem!

Table 4.3: Tabulation of the multiplicity of states (I(E.,, N), where the single-particie
spectrum is ¢; = 0,1,2,.... The superscript (1) denotes the nondegenerate case, g(j) = 1,
and (2) the degenerate case, g(j) = j + 1.
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It is obvious that the determination of the microstates for distinguishable particles is even
more difficult as the energy is increased. However, the multiplicity which is given by the
sum of the microstates at a given energy is simple. By inspection, it can be seen from the

table that a general expression for QD (F, N) is given by

EN(AN +1){dN +2)...dN+E - 1)

(d)¢ —
QEOEN) = =

[1725 (dN +1)

= =T (4.37)

Instead of explicit counting as shown above, the multiplicity may also be easily
determined using the partition function. For a d-dimensional harmonic spectrum, the one-

body partition function is given by

Zy(z) = (1—_17)(1, (4.38)

where as before, z is identified as e(~?) in statistical mechanics. Here, it serves as a mathe-
matical parameter < I in the generating function for the multiplicity. The N-body partition

function for distinguishable particles reads

Zn(z) = Zi(z)V,

= (1 - x)_dN 5
N 1
= 1+ (dN)z+ d (d;’ * 1)332 + dN(dN +3i)(dN +2) 3 +...,
r—1 .
— z i=0 (dN + ‘L) iBT,
ri
= > 0@ Nz (4.39)

Clearly, the expression for Q@ (r, N) is identical to Eq. (4.37), obtained by direct counting.
Unlike the case of bose statistics where the multiplicity (3(E, N) is found only by expanding
the partition function or by exact counting, here, due to the distinguishability property of
the system it is given by an explicit formula. For d = 1, the multiplicity in this model is much
larger than that of bosons in a one-dimensional harmonic trap, since the distinguishability
property allows more configurations compared to the indistinguishable case. We expect the
same is true for higher dimensions. Fig. 4.14 displays a graph of the exact entropy obtained
by taking the logarithm of (4.37) for d =1 and N = 500.
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£X

Figure 4.14: Plot of the microcanonical entropy & for N = 500 distinguishable particles.
The single-particle energy spectrum is ¢; = j, g(j) = 1.

We next obtain a the microcanonical entropy in a closed form. Using the Euler-

Maclaurin summation formula and the Stirling’s series ?(assuming large £ and N):
E-1
Sn(E) = IQE,N)=> In(dN +4) —InEl,
=0
— N+E—1/2(dN+E—1)—E+1—dNndN +1/2IndN +O(Zzlﬁ
—(F+1/2)mE+E—1/2In2m,

dN + E dN + F 1 E N\

Q

We next evaluate the RHS of Eq. (4.34), and see whether it agrees with with Eq. (4.40).
Note that as before, the many-body E,, is given by a set of integers, so that [F'(E)| = 1.

The canonical entropy reads:
Sn(8) = BE —dNIn(1 —e™P), (4.41)
The equilibrium f; may be evaluated by setting the first derivative of Sy(F) to zero:

fo=In <%ﬁ—7 + 1) : (4.42)

mEix(E+1/2)nE~E+1/2In%7
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Using this By, Sn(E)} and S} (E) can be easily obtained. After some algebraic manipula-

tious, they are given by:

Sn(B) = Eln(dN;E>—i—dNEn(dZig;E>,

E
Eil+—1.
(14 i¥)
Putting these in the RHS of (4.34) we cbtain:

Sw(Bo) — %m 278% (%) = Eln (ng E} +dNIn (fi:]-\;]':f—E) - %En |:27rE (1 + EEN‘H

which is the same as expression (4.40). Thus, formula (4.34) also works well for distinguish-

Sk (E)

able particles.

4.3.4 The logarithmic spectra

We have seen in section 4.2.1 that the many-body multiplicity of states Q(EF) =1
for all E. Therefore the microcanonical entropy S(E) is exactly zero for the lnp single-
particle spectrum. The canonical entropy is not zero however, as shown in Fig. 4.15 as
a function of temperature 7' on the left, and excitation energy (Fe;) on the right. The

calculation is done for N = 100 bosons for the first 10° primes.

wWweo - 1000
2
&
[ ]
& 00 500
m
Py - N R P A R R
0 1 2 3 o 300 1060 1500
" E
T (E,)

Figure 4.15: Plot of the canonical entropy as a function of temperature 7' on the left, and
excitation energy (E.;) on the right, for N = 100 bosons. The calculation is done for a
truncated spectrum, consisting of first 10% primes. The microcanonical entropy is zero.
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We next evaluate the RHS of formula (4.34), assuming N — oo. Recall that the
many-body spectrum is given by E,, = Inn, and therefore n = F(E) = . Using Eq. (2.32)

r [eS)
o(E) = Q(E)|F'(E)| 3 1425 cos (2nkF(E)) |,
L k=1
the density of states reads
[e o]
p(By=¢f (142 E cos (27rkeE)l . (4.43)
k=1 J

It is important to note that the density of states has an oscillating part, which is the
intrinsic quantum fluctuation due to the E,’s taking only discrete values. We now proceed
to calculate the canonical entropy. Using the smooth part of p(E) in Eq. (2.28), the smooth

part of the partition function may be evaluated:

26) = [ o®)rar,

o0
= f ePePEJE,
0
1

= —— 4.44

5 (4.44)

This requires that 8 > 1 which is expected. Recall that the exact partition function of this
system is known and is given by the Riemann zeta function Zn(8) = ¢(B) which is valid

only for 3 > 1. Using (4.44), the canonical entropy is thus

S(8) = BE —In(8 - 1).

The saddle point, the equilibrium entropy and its second derivative can be easily determined.

These are given by:

i
B = z+5h (4.45)
S(EYy = E+hlhE+1, (4.46)
S"E) = E% (4.47)

Putting these in the RHS of {4.34), and using |F'(E)| = ¥ we obtain
i
S(E)y = E+lmE+1- 5o (2rE?) - E,

= 1- %in 27 ~ 0.081, (4.48)
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which is independent of F, and the small residue constant is due to the use of the saddle-
point method.

We thus see that formula (4.34} applies equally well in this model, where the
term F'(E) # 1. Recall that one peculiar phenomenon of this system is that it is always
locked in one microstate, no matter how large the energy is, so that the usual concept of
statistical mechanics fails to apply. Therefore, the result found above is rather interesting.
For completeness we display a graph of the microcanonical entropy S(F) in Fig. 4.16 (with

N — o0) for the Inn spectrum. The entropy is computed exactly by taking the logarithm

3 T T T T T T T T TS

Figure 4.16: Plot of the microcanonical entropy S(F) for the Inn single-particle energy
spectrum. Note the increasing oscillations as the energy gets larger.

of Q(FE), tabulated in appendix E for a few energies. Similar to the result for the ground
state number fluctuation (Fig. 4.11), the entropy is zero when the energy is B, = lnp.
The oscillation clearly gets larger for larger energy. In this case we cannot test Eqg. (4.34)
since the many-body density of states is not known, analytical evaluation of the canonical
entropy is therefore cannot be done. For comparison, in Fig. 4.17 we show the canonical
entropies, obtained numerically, as functions of temperature 7 and excitation energy for
both logarithmic spectra considered. As before we identified the exact excitation energies
with the ensemble-averaged (F,,). The two results are very similar, with those of the Inn

spectrum larger due to larger number of accessible microstates. These two logarithmic
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Hiedal

500~ 500

Entropy

1500

Figure 4.17: Plot of the canonical entropies as functions of temperature T on the left, and
excitation energy (Fez) on the right, for N = 100 bosons. The calculations are done for
truncated spectra, consisting of either first 10° integers (In n spectrum, solid lines) or primes
(Inp spectrum, dashed lines).

spectra considered, each with its own pathology, provide an interesting counter-example to
the principle of thermodynamic equivalence.

We have thus tested formula (4.34) extensively in different models. As mentioned
earlier, this formula finds application in biack hole physics. It has been used to obtain the
leading logarithmic correction to the Bekenstein-Hawking Area Law [39, 40, 72, 41], assum-
ing quantum fluctuation is small. A discussion on the quantum versus thermal fluctuation

for the entropy of a black hole can be found in Ref. [72].



“A complexr system that works is invariably found to have evolved
from a simple system that works.”
John Gaule

In previous chapters we considered several systems in which the (quasi)particles
are noninteracting. Recall that the grand canonical divergence of the number fluctuation
of ideal bose gas at low temperatures is removed when the more careful canonical or micro-
canonical ensembles are used. Within the framework of the conventional grand canonical
formalism, the divergence of the particle number fluctuations of a bose gas can be removed
by intreducing inter-particle interaction [1, 4]. The thermal compressibility x, of a gas of
density po is related to the number fluctuation of the system in the GCE via

(AN)
N

=TpoXr- (5.1)

Thus, the compressibility diverges as the fluctuation diverges. The compressibility x, is

defined in terms of the volume and pressure of the system by

1 /0V
— _ )
Xr 1 <§P> ﬂ (52)

For T'— 0 (or T — T, if there is BEC), the pressure is independent of volume, so that
X, — oo and hence AN ~ (V). With interaction, however weak, there is a pressure due to
interaction to ensure the fluctuation to be finite. In the case of ideal fermions, there exists
a Pauli pressure even though the gas is noninteracting so that the ground state Huctuation
is finite (Eq. (2.24)).

80
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Not long after the renewed interest in calculating the number fluctuation of ideal
bose gas outside the GCE framework, the question of how interatomic interactions affect
the fluctuations of the condensate was examined [20, 22, 73, 21, 23]. Unlike the case of the
ideal gas however, the number fluctuation in the presence of interaction is not a well-defined
problem. The difficulty arises from the fact that there is no unique way of defining the con-
densate fraction, and no exact energy spectrum of the interacting system is known. Different
methods of approximation for the interacting bose gas yield different results, though they
all give finite compressibility. Using the Bogoliubov number nonconserving description at a
temperature T, Giorgini et al. [20] predicted an anomalous scaling of the fluctuation with
the box, <AN02> ~ V4/3, which ensures that <AN02> /V2 ~ V™23 5083V — co. Thisis
different from the grand canonical result which gives <AN02> = No(No+1) ~ V2. However,
Idziaszek et al. [22] found that (ANg?) ~ V using the lowest-order perturbation theory and
a two-gas model. Soon after, Illuminati et al. [21] reached the same conclusion as Idziaszek
et al., and also obtained the same formula (4.25) which relates the fluctuations between the
MCE and the CE for interacting particles. The authors in these last two references argued
that the result of Giorgini et al. is questionable due to the number nonconserving method.
Using the number conserving operator formalism, however, the prediction of Giorgini et
al. was supported by Kocharovsky et al.. Recently, Xiong et al. [23] investigated the prob-
lem using both the lowest-order perturbation theory and the Bogoliubov theory within the
CE and obtained the same scaling as Giorgini et al.. In fact, this anomalous scaling of
the particle fluctuation with volume has been shown tc be a general property of a Bose
condensed system [74].

In this chapter we use exactly solvable interaction models, and examine what hap-
pens to the number fluctuations from the ground state as functions of temperature in all
three statistical ensembles. In one dimension we consider the inverse square two-body inter-
action (the Calogero-Sutherland, abbreviated CSM) [75, 76]. This interacting model may
be mapped onto the Haldane-Wu generalized exclusion statistics {also known as fractional
exclusion statistics, FES) whose quasiparticles are noninteracting, characterized by a pe-
rameter g {77, 78, 79, 80, 81, 82, 83, 84, 85]. The value of g represents various degrees of
"Pauli blocking’. Thus, ¢ = 0, 1 correspond to free bosons, fermions respectively. The model
is solvable, and the quasiparticle energy spectrum is exactly known. In two dimensions we
use a self-consistent Thomas-Fermi model for a repulsive zero-range interaction and calcu-

late the number fluctuation in the GCE. This model may also be mapped onto a system
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of noninteracting particles obeying the Haldane-Wu exclusion statistics. In one dimension
our choice of these models has a two-fold advantage. First, it serves as a theoretical tool to
demonstrate that the divergence in the GCE is removed when an interaction is introduced,
no matter how weak. Second, owing to the mapping to noninteracting FES particles, the
model enables us to show that the divergence is remaoved even for an ideal gas provided that
the Pauli blocking is not zero. In the first section, we review the concept of Haldane-Wu's
exclusion statistics, whose properties are used in later sections to calculate the ground state

number fluctuation of interacting particles.

5.1 Fractional Exclusion Statistics

A way of characterizing the statistics of particles is through their properties under
exchange, such as the case of fermions and bosons. Whereas fermions and bosons may
exist in all dimensions, certain low dimensional systems have elementary excitations which
obey exotic quantum statistics. One example of such system is the celebrated fractional
quantum Hall effect (FQHE), where the quasiparticles are anyons [86]. These particles are
related to braiding properties of particle trajectories in two spatial dimensions whose many-
body wave functions pick up a phase ¢?®™ under the exchange of any two particles [87, 88].
The parameter « is called the exchange statistics parameter. Thus o = 0 corresponds to
completely symmetric wave function, and o = 1 antisymmetric. In the first case the particles
obey boson statistics, in the second fermion statistics, and anyons are characterized by
other arbitrary values of a. The concept of anyons is, however, specific to two dimensions.
While studying ’spinons excitations’ in one-dimensional antiferromagnets, Haldane [77] was
motivated to formulate an alternate definition of fractional statistics which is based on
a generalized exclusion principle, and is independent of space dimension. Rather than
modifying the many-body exchange phases, this new notion of statistics generalizes the
Pauli principle by introducing new rules for occcupying single-particle quantum states. The
basic idea is that a change in the number of particles, AN, to a system blocks Ad; of the
states available for the next particle. Assuming that the relation is linear, Haldane defines

the statistical interaction via
Ad;

Gij = — X35
“ AN;
while the size of the system and the boundary conditions are kept fixed, and ¢,j denote

(5.3)

different quantum numbers. Since the numbers of available single-particle states d; are
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independent of N; for bosons, g;; = 0. For fermions, they decrease by one for each particle
added to the same state 4, and is unaffected otherwise, g;; = J;;. Thus Bose and Fermi
statistics belong to a class in which statistical interaction operates only between particles
in the same state. The CSM also belongs to this class [81, 89, 90]. An example of the more
general case where statistical interaction exists between particies of distinct momenta is the
repulsive one-dimensional §-function Bose gas [91]. In this work we shall consider only the
first type of interaction. Eq. (5.3) then simplifies to

Ad

The parameter g is thus a measure of the partial Pauli blocking in the system. This concept
is further elaborated in the example shown below. The first column lists the number of
particles, which vary from 1 to N. In the next three columns are the corresponding values
of d¥, d9, dB, the available states for fermions, 'g-ons’, and bosons respectively. For instance,
for N = 1, the available states for all three types of particles are d states. When N is changed
from 1 to 2, the number of states available for this second particle in the case of fermions
is d — 1, since one state is already blocked by the first particle (Pauli principle). However,
there is no Pauli blocking for bosons so that the number of available states remains equal
to d. For ’g-ons’, there is a partial Pauli blocking, characterized by g, and the number of

available states for this second particle is therefore d — g. In general, the remaining number

N ar ds dB
1 d d d
2 d-—1 d—g d
3 d—2 d—2g d

N d—(N—1) d—g(N—-1)

of available states after NV particles have been added to the system is given by

d = d—(N-1), (5.5)
4@ = d—g(N-1), (5.6)
d® = d=dF + (N -1). (5.7)

Since AN =1, it can be seen from the example that the parameter g is indeed as given by

relation (5.4). This definition of statistics is known as the Haldane-Wu statistics [77, 92],
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or the Fractional Exclusion Statistics (FES) [80, 81]. This new definition was applied by
Haldane to the one-dimensional spin chain system, as well as the FQHE system where he

showed that the anyons gas confined to the lowest Landau level satisfy FES with ¢ = a.

5.2 One-dimensional Model

In chapter 4, section 4.1.2, we encountered an explicit example of fermions to
bosons mapping for ideal gas in a one-dimensional harmonic trap. As mentioned before,
it is in fact well known that in (1+1) dimensions, fermionic theories may be mapped into
bosonic ones and vise versa [63, 64, 65]. It was further realized that there exist several
models of interacting particles in one dimension which exhibit a continucus boscn-fermion
interpolation, when the coupling constant varies in appropriate range. One such model
is the well-known CSM, whose particles interact via a two-body inverse square potential.
Using the thermodynamic Bethe ansatz [91], it was shown that the statistical interaction in
the CSM is purely between particles with identical momenta. These particles are equivalent
to free particles obeying FES [78, 81, 83, 93, 94, 95, 96]. The Hamiltonian in the CSM is
given by (A=1, m = 1) [75, 76, 81]:

N

182 1,5,
Hzg{zafL w'ai| 22 a— (5:8)

z<] ]
The many-body wave fune-

tion vanishes as |®; — z;|9 ,

whenever particles ¢ and j
approach each other. For 151 &
g = 0 and 1, the model €O -

describes free bosons and g -

fermions respectively. Obvi-

.

ously, the two solutions to 05
the equation A = g(g — 1) kbi‘anch
0 L o |

0 0.5 1

given by

144X

Figure 5.1: Plot of the two branches as described in text.
The upper branch (F branch) is for fermions and the lower
—1/4. These two solutions (B branch) for bosons.

with ¢ real require A >
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correspond to two branches, as plotted in Fig. 5.1. Since the upper branch contains the
noninteracting fermionic value of ¢ = 1, this branch is chosen when one works in the
fermionic basis, and vice versa for the lower branch. Thus, in the fermionic basis g > 1/2
while for bosons 0 < g < 1/2. Here, we shall assume the particles to be interacting fermions

with interacting parameter g. The many-body spectrum reads [76, 81]

Blfng)] = zeknk (- MY (5.9)
where {ny} are the (free) fermionic occupancies = (0,1), and € = (k — sw) denotes the
harmoenic oscillator energy levels. Although g may not be varied continuously without
changing the basis, the energy, as given by Eq. (5.9) is continuous as function of g and is
insensitive to the existence of the branches. Therefore, for all practical purpose involving
the energy spectrum we may assume that g > 0. As can be seen from Eq. (5.9), the effect
of the interaction is that each particle shifts the energy of every other particle by a constant
w(g—1). This scale invariant energy shift is the basic reason for the occurrence of nontrivial
exclusion statistics [80]. In fact, it is known that quasiparticles with nontrivial exclusion
statistics exist in a system that can be solved by the thermodynamic Bethe ansatz [91].
This includes the one-dimensional §-function gas mentioned earlier, where the statistical
interaction operates between particles with different momenta.

The FES single-particle energy level may be obtained by rewriting the energy as
)
El{n} = z exny —w(l — z Mg, (5.10)
i<j=1
where we have replaced N(N —1)/2 by > oo

shown:

i<j—1 Tun;. That these two are equal can be easily

0 1 o<
% nyn; = 5 % T4,

i<j=1 i#j=1
i |
= 52?’51 an—ﬂij,
= %Enz N —ny,
i
= %[NZnL—an]i
% 3

N(N —1)
T
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To this end, we define
g =ex —w(l — g) Ny, (5.11)

where N = Ef’l n; denotes the number of particles below energy level k. Eq. (5.11) is
nothing but the FES single-particle energy since the total energy (5.10) can now be written

a8

E{ng}] = Zegnk, (5.12)
k=1

Using Eq. (5.11), one may determine the spectra of FES particles for any value of g. In

Fig. (5.2) we show an example

of how to find the spectrum of B 0 Byt

e,
semions (g = 1/2) for three val- L

-
ues of excitation quanta F., = . ::{:'—ah—
1,2,3 and number of particles =
N = 5. The 'Fermi level’ k¥, is € 3

z 2
. . . . —_—
defined at zero excitation, with _’?'__ -
_ : - E g
krp = N for fermions. Starting - ==
. . o T —e— § L —
from the fermionic spectrum on S = e
B A EY "
the left, for each value of E., Nyt Nt B2
the spectrum of semions is drawn B3
1+-' .'. _—_.V.
and the resulting particles which N o I
are in the excited states are de- e e A
termined. In the case of E,; = 3, ~— R = S
N B — N——

for instance, the only possibil- N1 Ny=i  Ng=2 Hu-l N=2

ity for fermions is to excite one

Figure 5.2: Spectra of semions (g = 1/2) derived from
those of fermions using Eq. (5.11). The (quantum me-
doing this as shown. Therefore, chanical) ground state is defined at E,, = 0. The spectra
w¥(3,1,5) = 8, and w7 (3,2,5) = for different energies are separated by boxes. Within a
box there may be more than one configuration, each of
which contains the spectrum of ideal fermions on the left
are too few to excite 2 or more and semions on the right. The number of excited par-
particles. For semions, however, ticles, Neg, are indicated in each case. The dotted lines
are to guide the eye, showing the flow of energy leveis
from fermions to semions.

particle and there are 3 ways of

wf(3,3,5) = 0 since 3 quanta

w?(3,1,5) = 1, w%(3,2,5) = 2,
and w%(3,3,5) = 0. Note that
{1(3,5) = 3 in both cases.
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5.2.1 Fluctuations in the MCE

‘We have seen that the energy spectrum of the interacting particies in the CSM or
equivalently, of ideal FES particles, are given by those of free particles (fermions or bosons)
plus an energy shift that is g dependent. The canonical partition function of these particles

thus reads

(5.13)

where, as before, we identify F = n, where n is integer. Note that the multiplicity Q(n, N)
is still the same for FES particles as for bosons and fermions, as already verified by the
example shown in Fig. 5.2. The only effect of the interaction strength g is to alter the
overall ground state energy E%,(0) = gN (N —1)/2+ N/2 which reduces to that of fermions,
bosons for ¢ = 1,0 respectively. As with bosons or fermions, the counting method gets
more cumbersome for larger values of n and N. Ideally, one wishes to be able to determine
w9(n, Neg, N) from w¥'(n, Nz, N) or wB(n, Neg, N), or from §(n, Ne;) similar to Eqgs. (4.1)
and (4.13). This general formula for w9(n, Negz, V) for any g, if it exists, is yet to be found.
Here, we present the formulae of the microcanonical multiplicities for only two values of g
2 1

[30]: g = _%_:T (close to fermions), and g = = (close to bosons). Both of these are found

N-2
empirically. For g = %, wN=1(n, N, N) is found to be given by:

b

WN=T (1, Neg, N) = W (1 + N, Nea, N) = (1 + N, Nea, N = 1), (5.14)
For g = N1_1
leTl(nyNe:caN> = WB(naNeauN)a Nez # N —1,N
wﬁ(n,]\]—l’]\m = (,‘)B(TL,N—}.,N>‘§‘WB(TL—LN'_1,N)7
W¥T(n, N, N) = wB(n—N,N,N). (5.15)

These multiplicities must, of course, satisfy

N
Qn, N) = > w(n, Nez, N). (5.16)
Nez=1
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For N < 5 and n < 16, the values found using Eq. (5.14)-(5.15) were verified with those
found using the direct combinatorial method. Using Egs. (2.3), (2.4), and (2.7}, we calcu-
lated the exact ground state number fuctuations of interacting particles in the CSM, or
equivalently, ideal particles obeying FES. In Fig. 5.3 we display the fluctuations for N = 5,
g = 3/4,1/4. For comparison we also show the fluctuations of free fermions and bosons.
The values for g = 3/4,1/4 obtained using the direct combinatorial method for n < 16 are
also shown in the inset. Note that the curves agree with these values exactly. Note also
that the number fiuctuations for free fermions and free bosons cross at a certain energy,
with the fermionic one starting from smaller at small quanta, to larger at high quanta. This
is because the number of possibilities of creating holes within the fermi sea and distribut-
ing particles above, which starts from low at small energy, increases more rapidly than for
bosons whose ground state consists of only one level. Similar behaviours are observed for
FES particles, whose g values (g = 3/4,1/4) represent partial Pauli blocking which are both
less than that of fermions. Eqgs. (5.14) and (5.15) in principle may be applied for any N.
However, since they involve the addition of two quantities which may be very large at large
quanta and number of particles, there is a difficulty in obtaining their values accurately.
Therefore, without loss of accuracy, we restricted the calculations to N = 10. Fig. 5.4 shows
the ground state number fluctuation for N = 10, ¢ = 1,8/9,1/9,0. Note that the curve
for g = 8/9 (N = 10) is closer to that of fermions than for ¢ = 3/4 (N = 5). Similarly,
the curve for g = 1/9 is closer to that of bosons than for g = 1/4. As N gets larger we
expect the fluctuation graphs for g = % to come very close to those of free fermions and
= to free bosons. The formulae (5.14) and (5.15) are therefore useful only for systems
with a small number of particles. Other peint to note is that in both graphs, the results
for g = %:—2 are closer to those of fermions than for ¢ = ﬁ to bosons. This can be
understood from comparing Hgs. {5.14) and (5.15). Eq. (5.14) involves the difference of
the fermionic microcanonical multiplicities of two system sizes, whose values may be very

similar especially at low quanta. Eq. (5.15), however, involves the addition of two bosonic

microcanonical multiplicities. This brings the microcanonical multiplicities of g = Ni T

further from those of bosons than ¢ = 2=2 from those of fermions.
9= N1



CHAPTER 5. NUMBER FLUCTUATION OF INTERACTING...

89

A o g=3/4
: -- g=1/4
i =+ Bosons

— Femions foa,

(AN N

400 600

Figure 5.3: Plots of the ground state number fluctuation in the MCE as functions of exci-
tation quanta n for N =5, g = 1,3/4,1/4,0. For clarity the low energy part is shown in
the inset. The data represented by the symbols are obtained using the direct combinatorial
method as shown in Fig. 5.2; O for ¢ = 3/4, and O for g = 1/4.
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Figure 5.4: Same as Fig. 5.3, except N = 10 and ¢ = 1,8/9,1/9,0. Unlike Fig. 5.3, however,

there is no data from the direct counting in this case.
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Although a general formula for the microcanonical multiplicities for any g has
not been found, an important peint concerning them is cbserved. For a given number of
particles IV, consider a set of discrete values of g,

_ N-2N-3 1
IZYN T N-U"N-1

0. (5.17)

Since the levels of the FES particles are shifted by an amount which depends on the value of
¢ and the number of particles below (see Eq. (5.11)), for some values of g a particle might lie
very close to the 'Fermi level’ k%. However, the particles are considered excited if and only
if they lie above k‘g no matter how close. This results in the multiplicities w9(n, Ngg, N),

(Hl) ,t=1,..., N —1 to be the same. Note the equal sign in g > ﬁ—)

For znstance,

For

N_179 >0, Wl (n, Noy, N) = 0B (n, Ny, N).

Note that for these values of g given by Eq. (5.17), the 'Fermi level’ k% = N—(1—g)(N —1)
is integral. So for g = (N — j)/(N — 1), where j is an integer, the 'Fermi level’ lines up
with the (§ — 1)** level below kr of fermions. In the top left box (E., = 0) of Fig. 5.2, for
instance, where N = 5 and g = 2/4 (j = 3), the 'Fermi level’ lines up with the second level
below kp. This explains why the microcanonical multiplicities for some range of g such that
the "Fermi level’ lies between the 7% and (j 4+ 1) levels of fermions are the same. This is

a consequence of the discrete nature of the energy levels.

5.2.2 Fluctuations in the CE

Using the energy spectrum in CSM given in Eq. (5.9), the N-particle partition

function in this one-dimensional model is given by

N(N 1

Z4 = 09075 78, (5.18)
Z{, is the N particle fermionic partition function. Setting ¢ = 0, the bosonic partition
function is obtained,

N(N-1)

ZE =7 7L, (5.19)

To avoid confusion, in this section we shall put brackets around guantities like the partition

functions when they are raised to some powers, e.g., Zj?,# denotes the bosonic partition
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function but (Z8)9 denotes the partition function raised to the power g. From (5.19) we
obtain

e=Pust S _ (zB)-9(zE)s. (5.20)

Using this and Eq. (5.19), Eq. (5.18) may be rewritten as

N(N 1)
£ —Bw
ZN - 6 A ZN

= (ZR)J(ZR). (5.21)

The canonical partition function given above is exact and may be used for calculating
the thermodynamic properties of the system in the CSM within the canonical ensemble
formalism. The moments of the occupation number and the number fluctuation are related

to the partition function by (appendix A, Egs. (A.5), (A.6), and (A.15)):

1 075
g _
(ng)? = 77 By, (5.22)
9\ g i 15} ( 6Z§{,>

- 9 (24N 5.23

8 ()’

An2Y = = .

< nk> Yk BuE (5.24)

where 3, = exp(—Sex). Using Egs. (5.22) and (5.21), (ng)? can be expressed in terms of

those of fermions and bosons via:

1 02 g
g __

_ 3 1321\1 Byi—g Frg B\—gaZﬁ

= Zzgvyk a(ZR)? B —(Zr) T+ (ZN) (1 - 9)(Zn) B

1 8zf 1 87§

= Zﬁgy”ayk+ZN( —g)ykay

= g’ +(1—g) (ne)®. (5.25)

Using Egs. (5.24) and (5.25), the number fluctuation reads
8 <7’L;g\g
Ang) = g,
(i) Oy
0 F
= — 3 (1— b
g 90" + (1= 9) (me

= g(and)" +(1-g)(an2)’. (5.26)

)2

j 5



CHAPTER 5. NUMBER FLUCTUATION OF INTERACTING... 92

Eq. (5.26) gives only the fluctuation in the occupation of & given level k, while the quantity
we are seeking is the ground state number fluctuation. The latter is formally defined in any

ensemble as:
(ANG) =) (Anf) = E«n@ — {np)?) (5.27)
k k

where the sum k& runs over only the levels which are completely occupied at zero temperature.
Thus, in an ab initio calculation, one would formally sum over the quasiparticle levels which

are occupied at 7" = 0 to get <AN§>9 . Fig. 5.5 shows the level flow in CSM as a function

16 \. T

14 —

12 —

10 =

=nergy

Figure 5.5: The level flow of quasiparticle energy levels in CSM as a function of g

of g obtained from Eqg. (5.11) at 7' = 0. It can be seen that as g changes from the fermionic
to the bosonic end, the number of levels contributing to the ground state remains constant,

while the Fermi energy decreases accordingly. This means that one may obtain <AN§ >g by
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simply substituting the ground state fluctuations for fermions and bosons, i.e.
(AN3)® = g (AND)" + (1 - g) (AND)”. (5.28)

Thus to find the ground state number fluctuation for FES particles, one needs both those
of bosons and fermions.

Given the fact that these are interacting particles in the CSM, Eq. (5.28) is fairly
simple. The reason for this is of course due tc the mapping of the interacting particles to
ideal particles obeying FES. This mapping allows the FES partition function to be expressed
in terms of those of fermions and bosons (Eq. (5.18)), which results in the simple expression
for the ground state number fluctuation. Note that for g = 0 or 1, Eq. (5.28) reduces to
that of bosons or fermions respectively. In Figs. 5.6 and 5.7 we compare the microcanonical
ground state number fluctuations with the corresponding canonical ones for g = %, Tv—l_—l,
N = 5,10. In both graphs the microcanonical fluctuations are less than the cancnical ones
for all excitation energy as expected. Note that the canonical curves for different values of
g also cross each other as in the MCE. This property has already been discussed in previous
section. The canonical formula (5.28) allows one to calculate the fluctuation for any g.
The determination of a general formula for the microcanonical multiplicity, w9(n, Neg, V),

and hence the ground state number fluctuation for any g in the MCE, if exists, remains a

challenge.
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Figure 5.6: Comparison between the microcanonical fluctuations with those in the CE

(Eq. (5.28)) for N =35, g =3/4,1/4.
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Figure 5.7: Same as in Fig. 5.6, except for N = 10, and ¢ = 8/9,1/9.
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B.2.3 Fluctuations in the GCE

The thermodynamic properties of an ideal gas of exclusion statistics particles have
been widely investigated [29, 92, 97, 98, 99]. While the results in the MCE and CE in
previous sections are entirely new, those in the GCE have already been obtained. However,
for the sake of completeness we shall discuss them in this section. Specifically, we show the
formula for the number fluctuation in the GCE and compare the results obtained here with
those from the CE. In the GCE, we point out that the number fluctuation is finite as long

as g # 0.
The distribution function for FES particles reads [92]

1
— - 5.29
) = ey (5.29)
where wy, is the sclution of the equation
(we)? (1 +wy) ™9 = PR, (5.30)
At zero temperature we have,
1
(ng) = 7 for e < p (5.31)

and zero otherwise. Note that the distribution function reduces to the usual Fermi and Bose
distribution functions Eq. (2.22) for g = 1 and g = 0 respectively. The distribution function
as given above is in fact valid in general and not necessarily restricted to one-dimensional
models. However, while it is valid for all temperatures in one dimension, in twc dimensions
it is valid only for 7' > 7, in the bosonic basis and thus describes only the non-condensate
density. This shall be clarified in the next section, where we discuss the two dimensional
case.

The number fluctuation at a given energy ¢ is given by

18 (nk>
An? — ,
< k> B &,U,
E Buwy On (5.32)
Using Eq. (5.30),
Sy wi(1 + wg)

Op =k g+ wy



CHAPTER 5. NUMBER FLUCTUATION OF INTERACTING... 96

Therefore,

l {_ 1 ] ﬂ_ wk(1+wk/1§
Bl (wp+92?] | Wk + g
wk\i+wk,

(we +9)%
= wk1+wk>< >37

- ____g} P— (1-g }<nk>3,
= - gl [+ (1 9) (] (e (5.33)

?

(Dng) =

Eq. (5.33) reduces to Eqg. (2.24) for fermions, bosons when g = 1, 0 respectively. Thus we

have for the number fluctuation from the ground state [29],
(ANo%) =D [1— g (me)] [1+ (1 = g) ()] (i) (5.34)
k

where the sum runs over the levels defining the ground state at 77 = 0. The number
fluctuation vanishes at T — 0 since (ny) — 1/g below the Fermi energy, and zero otherwise.
This result holds no matter how weak the interaction strength is. However, at g = 0, the
bosonic limit, the number fluctuation diverges.

In the above we have recourse to the mapping between the CSM and FES and
obtained an expression for the number fluctuation at finite temperature. We showed that
the fluctuation is finite as 7' — 0 as long as g # 0. There is a different approach which
makes use of the relationship between the correlation function and number fluctuation [1].
However, this approach works only at 7 = 0 and is not as general. We therefore present
the method in appendix F (see also Ref. [24]).

We now compare the ground state number fluctuations obtained in the CE and
GCE. Due to numerical difficulty at low temperatures, we are able to do the comparison
only for N = 10 particles. Despite this limitation, some interesting points can be made. In
Fig. 5.8, we show the behavior of the relative ground state fluctuation against temperature
of interacting fermions for both ensembles for interacting strengths of g = 1,1/2,0. In the
ideal Haldane-Wu gas picture the g = 1/2 case corresponds to semions and the g = 1 (0)
case is the noninteracting fermionic (bosonic) limit. Note that as 7 — 0 the GCE fluc-
tuation for free bosons diverges as expected, whereas those for interacting bosons (g # 0)
remain finite and approach zero. The grand canonical fluctuation for semions is found using

Egs. (5.29), (5.30) and (5.34), where p is determined by the constraint that the average
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total number of particles is V.
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Figure 5.8: The ground state fluctuations for the one-dimensional CSM system in the CE
(Eq. (5.28)) (top panel) and the GCE (Eq. (5.34) (bottom panel) as functions of temperature
for N = 10. We show the results for fermions, bosons and also semions (g = 1/2).

Fig. 5.9 shows the low temperature region of Fig. 5.8. Unlike in the GCE, the
canonical ground state fluctuation for free bosons remain finite as 7' — 0. The ground state
fluctuation of free bosons, however, approaches zero exponentially, contrary to previous
results that found a linear dependence with 7' all the way to T = 0 [9, 26]. In appendix
G we give the low temperature expansions of the fluctuation squared <AN02> in powers of
z, where z = e %, At very low temperatures <ANG2> is independent of the number of
particles N (in both GCE and CE). Therefore, the exponential behaviour of the fluctuation
of free bosons at low temperatures should remain valid even in the large NV limit. In the
case of fermions the canonical and grand canocnical fluctuations are similar except at very
low temperatures. Clearly, the canonical and grand canocnical curves of fermions approach
zero differently as 7 — 0. For high temperatures, on the other hand, both ensembles give

identical results, as expected.
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Figure 5.9: Same as in Fig. 5.8 but using the low temperature expansions (see appendix
G).

5.3 Two-dimensional Model

While the results in one dimension were derived using the mapping between in-
teracting particles in the CSM to ideal FES particles, extension to higher dimensions is
nontrivial since there is no suitable exactly solvable many-body model. However, in the
thermodynamic regime, it has been shown that models with short range interactions in
two dimension may be regarded as obeying exclusion statistics in the mean-field picture
[85, 100, 101]. As mentioned in section 5.2.3, the grand canonical treatment of ideal FES
particles applies for all dimensions. In this section, the number fluctuation is derived in the
GCE within the mean-field interacting picture. An expression for the number fluctuation
is also obtained in the GCE within the noninteracting Haldane-Wu particle picture. These
two expressions for the number fluctuation in the two pictures are the same when the in-
teracting strength g in the first picture is identified with the statistical parameter ¢ in the

second picture.

5.3.1 Fluctuations in the interacting model

Consider a two-dimensional system of bosons interacting via a zero-range repulsive

pseudo-potential. The quantum dynamics is then approximated by the following Hamilto-
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nian

H= Z( + mwr>—L—~—025 ; : (5.35)

i<j

where the momenta and coordinates are planar vectors. This Hamiltonian has been in-
vestigated by several groups in connection to atoms in highly anisotropic traps [102, 103,
104, 105]. Using the finite temperature Thomas-Fermi (TF) method [106, 107], it has been
shown that the one-body potential generated by the above zero-range interaction, including
exchange, is given by

2mh2
——gn(r), (5.36)

Un(r) =

where n(r) is the local number density of the system. It has been observed that the thermo-
dynamic properties of this system have the same form as those of an ideal gas obeying FES
[85, 100, 101]. The interaction parameter g in (5.36) plays the role of the statistical param-
eter, with g = 0 for noninteracting bosons. At finite temperature, the TF approximation
yields [85, 108]

1 eo d*p
n(r) = , 5.37
©) = Gy, [exol(£ + V() - )] - 1] o

where
2

;mwr +g}~nf~gn() ()+gig“()

It is important to stress that Eq. (5.37) is the non-condensate density, and is equal to the

V(r)=

total density only for 7' > T,,. Otherwise the condensate density must be included to give
the total density. It was shown in [85, 108] that a self-consistent solution of this equation
satisfying [ n( r)d?r = N may be obtained right down to T=0 for a nonzero positive g. This
indicates that the system does not Bose condensate. Accordingly one may take 7, = ¢ for
g > 0. However, a condensate solution of this system was recently found using a Hartree-
Fock (HF) scheme [109]. Yet when these authors included the presence of phonons in the
HF approach (Hartree-Fock-Bogoliubov), they were not able to find BEC solution. These
theoretical works are few of the many which contribute to the long-standing debate whether
interacting bose gas in two dimensions condensates [109]. In fact, the matter was already
settled experimentally when the creation of BEC in a quasi two-dimensional harmonic trap
was reported [110]. Adequate theory is yet tc be established, however.

In what follows we shall calculate the number fluctuation of the system at finite

temperature 7' > T,. Thus in this section we go a little out of the general theme and
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consider the total number fluctuation instead of the fluctuation from the ground state. The
issue of divergence in the GCE is not dealt with either since Eq. {5.37) does not describe
the system at low temperature. Rather, the aim here is to show that the fluctuation in
this interacting mean-field model is the same as that of ideal FES model, which shall be
determined in the next section.

The momentum integration may be done analytically:

m
n(r) = — 5 In L — expl=A(V () ~ )] (5.38)
The local number fluctuation (between r and r + dr) in the GCE is given by
1 9n(r)
AN = = :
(BN = 55,
i m 1

B2 VPP —14g (5.39)

The chemical potential u is a function of temperature, and is determined by the condi-
tion that [ n(r)d*r = N and in the thermodynamic limit it approaches the lowest energy
eigenstate as the temperature goes to 7.. The thermodynamic limit is obtained by taking
N — o and w — 0 such that N1/2w = constant. In this limit the local number density
becomes a constant and the fluctuation reads
5 i m 1

(AN = B 2rh? exp[(%gn —w)Bl—1+4g (5:40)
We next work in the ideal FES gas picture, and show that the expression for the fluctuation
is identical to Eq. (5.40).

5.3.2 Fluctuations in the noninteracting FES model

The local density as a function of the radial coordinate is given by [24],
d*p/(2rh)?
n(r) = | ——————, (5.41)
0= [ (5.41)

where the local variable w{p, r) is defined through Wu’s equation within TF approximation:
2

() (1 +w)'™? = explB(£= + Vo(r) — w)l, (5.42)
and ¢ is the exclusion statistics parameter which we identify with the interaction strength
in the mean-field interacting picture. Using Eq. (5.42),

2nm fg  l1-—g
dip = AR B AT A
p = wd(p®) 5 <w+1 >dw,
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and therefore

n(r) = m_. 1+wg
g 27?%2,3 Wy ’

where the local variable wg(r) is determined through

(wo)? (1 + )¢ = exp[B(Vo(r) — p)]-

The fluctuation is thus

10n(r)
ANY = — :
(AN = 575,
_1lm
~ BorR?wo+g

181

(5.43)

(5.44)

(5.45)

The equivalence between the noninteracting exclusion statistics picture and the mean-field

description is established using the following relationship

wo(r) = exp[B(V(r) — )] - 1,

(5.46)

where V'(r) is the self consistent mean-field potential. Substituting this in Eq.(5.45), and

taking the thermodynamic limit yields Eq. (5.40). This equivalence allows one to calculate

fluctuations in either the mean field picture or in the noninteracting exclusion statistics

picture.



“The world is round and the place which may seem like the end
may also be only the beginning.”
Ivy Baker Priest, in Parade, 1958

In this thesis we have investigated a number of problems relating to the number
fluctuation from the ground state. Our focus is on problems in which the macrostate or
the number fluctuation may be found analytically, mainly by applying the connection to
number theory. This can be done more readily for noninteracting particles. For interacting
particles, we considered models in which the particles may be thought of ideal, but with
modified statistics.

In chapter 2 we review some background theories on how to calculate the number
fluctuations in different ensembles, and discuss the many-body multiplicity of states and its
relationship with the many-body density of states. Chapter 3 is devoted to the derivation
of the different formulae in the theory of number partition using the method of statistical
mechanics. Given an energy £, the problem of distributing bosons over the excited states of
a one-dimensional harmonic spectrum has been recognized to pertain to integer partitioning.
The main quantity is the many-body multiplicity of states, which is identical to the number
of partitions of an integer £ = n. Asymptotic formuls for the density of states was obtained
for many-body energy spectra given by E, = n®, where n is integer > 0 and s > 0. Using
the relationship between the density of states and the multiplicity of states, this asymptotic
formula is shown to be equivalent to that of the number of partitions of an integer n into

% powers of a set of integers < n. By considering the particle sector of the

a sum of s
fermionic energy spectrum, an asymptotic formula for the number of distinct partitions of

n was also obtained. For ¢ = 1, using the partition function for finite number of particles N,

102
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we derived the Erdos-Lehner formula for the number of restricted partitions of n. Similarly,
by imposing a finite particle condition in the pseudo-fermion model, the generating function
and the corresponding formula for the number of restricted and distinct partitions of n were
derived. This last formula for the number of restricted and distinct partitions of n, to our
best knowledge, is new.

In chapter 4, we calculated the number fiuctuation from the ground state of nonin-
teracting particles in different traps in the first two sections, and examine a formula for the
microcanonical entropy in the last section. In 4.1.1 we review the microcanonical fluctua-
tion for a system of bosons in a one-dimensional harmonic trap. To calculate the number
fluctuation from the ground state in the microcanonical ensemble, one needs to find the mi-
crostate, which is a function of energy ¥, number of excited particles Ng,, and total number
of particles N. The microstate may be determined exactly using an identity in number the-
ory which connects it and the macrostate. Since the macrostate may be determined by
expanding the partition function, in principle it suffices to use the identity to calculate the
number fluctuation. However, one may go one step further. The macrostate, as previously
discussed, is related to the density of states and may be found asymptotically (large E).
Thus, for a system of bosons in a one-dimensional harmonic trap, the number fluctuation
from the ground state may be analytically calculated. For fermions in the same energy
spectrum, discussed in 4.1.2, there is no such analytical formula for the number fluctuation.
The difficulty arises from the fact that the fermionic ground state consists of many levels.
Although there is no such analytical formula, we have derived an identity relating the mi-
crostate and the macrostate similar to that of bosons to calculate the number fluctuation
in the MCE for fermions. The identity involves the macrostates of both the particle and
hole spaces, and reduces to the formula for bosons when the macrostate for the hole space
is set to unity.

The mean occupation number in the ground state is in general thermodynamically
equivalent in the GCE and CE, and at high temperature {or energy) to the MCE. The
ground state number fluctuation, however, is very sensitive to the ensemble used. In section
4.2 we considered two models in which neither the fluctuation nor the occupation number
are thermodynamically equivalent. The single-particle energy spectrum in the first model is
given by the logarithm of the prime number sequence, and in the second model the logarithm
of the natural number sequence. Consider the first model. The excitation energy is given by

the logarithm of an integer n. Since there is no energy fluctuation in the MCE, the problem
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of distributing the particles over the excited states above zero is equivalent to counting the
number of ways that the integer n may be expressed as a product of prime numbers. By
applying the fundamental theorem of arithmetic, we showed that the macrostate and the
microstate are unity for all excitation energies. As a consequence, the number fluctuation
from the ground state is identically zero. Since the system is in equilibrium with a heat
bath in the CE, the energy fluctuation is non-zero, with an average energy (E), being
identified with the excitation energy Eg,. The CE thus effectively samples more than one
level for a given excitation energy, and consequently the macrostate is greater than unity.
This results in a non-vanishing ground state number fluctuation (except at zero excitation
or temperature), in contrast to the microcanonical case. For the same reason the mean
occupation number is dramatically different in the MCE and the CE, while it is very similar
in the CE and the GCE. The number fluctuation in the GCE is, as well known, divergent
at low temperature. The result above holds whether the number of particles is finite or
very large. Further, it also holds in the case of fermions. The same outcome regarding the
differences of the occupation number and the number fluctuation from the ground state
in the different ensembles also applies in the second model. Although the single-particle
energy spectrum of this model admits more possibilities, the fact that it also contains the
Inp case is the reason for the inequivalence of the ensembles. The excitation energy in this
case is also given by the logarithm of n. Whenever n is a prime number, the microstate
and the macrostate are the same and equal to one. The fluctuations for these values of
the excitation energy vanish in the MCE. Therefore, even though the ground state number
fluctuation in the second model does not vanish for all excitations, it oscillates between
values of zero and non-zero, while the CE always gives a smooth result.

In the last part of this chapter, section 4.3, we examined a formula which corrects
for the thermal fluctuation of the canonical entropy to approximate the microcanonical
entropy. In the treatment, the quantum fuctuation is assumed to be small. The mi-
crocanonical entropy is by definition given by the logarithm of the macrostate, which in
general is very difficult to find. On the other hand, it is much simpler to find the canonical
counterpart once the many-body partition function is known. Thus, such formula which
approximates the microcanonical entropy is very useful. In this section we tested the accu-
racy of the formula explicitly for three different models. The merits of these models lie in
the fact that their macrostates may be computed exactly. In the first model, we considered

N noninteracting bosons in a mean fleld with a power-law single-particle energy spectrum.
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The macrostates of this model have been determined in chapter 3. In the second model,
we considered N distinguishable particles in a d-dimensional harmonic spectrum. Due to
the distinguishability property of the particles, a formula for the macrostate in this case
may be obtained exactly. The last model consists of V bosons in a hypothetical trap with
a single-particle energy spectrum given by the logarithm of the prime number sequence.
In this special model the macrostate has been shown to be unity for all energy E. In all
three cases the approximated formula was found to be in excellent agreement with the exact
microcanonical entropy.

Chapter 5 is devoted to the number fuctuation of interacting particles. In one
dimension we considered the integrable Calogero-Sutherland model, where the many-body
energy spectrum is exactly known. The particles in this model may be looked upon as free
and obey the Haldane-Wu statistics, characterized by the statistical parameter g. The mi-
crocanonical calculation in this model is difficult. Emperically we obtained the expressions
for the microstates and calculated the ground state number fluctuation exactly for only two
values of g. In the CE, however, the calculation may be done analytically. An expression for
the ground state number fluctuation of these interacting particles was obtained and found
to be dependent on both bosonic and fermionic fluctuations. Comparison was made be-
tween the results from the different ensembles. The GCE case has been discussed before by
different authors but was included here for completeness. In two dimensions we considered
a contact interaction. Within the Thomas-Fermi mean-field model we obtained the number
fluctuation and showed that it is the same as that of ideal particles obeying Haldane-Wu
statistics.

To conclude this thesis, we discuss some problems for future investigation. Due to
the equi-spaced and non-degenerate properties, a system of N bosons in a one-dimensional
harmonic spectrum pertains to integer partitioning. Since the higher dimensional spectra
are also equi-spaced but degenerate, a question arises of whether there is any connection
to the theory of number partition. On a similar note, it is interesting to find out whether
there exists a connection between number partition and distributing the FES particles over
the excited states. We have seen that the statistical parameter ¢ = § corresponds to
the integer partition case, and g = 1 (pseudo-fermions) corresponds to the distinct case.
Intermediate values of g may result in some form of integer partition. Next, formula (4.34)
in section 4.3 which approximates the microcanonical entropy is only for spectra depending

on a single guantum number. For it to be applicable in other cases, extension to spectra
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depending on two or more quantum numbers is needed. Finally, the last problem involves
the microcanonical entropy of FES particles. Since there is no known formula nor & method
for obtaining the microstate or the macrostate of these particles, the microcanonical entropy
cannot be determined. A possible line of research is to use the method of approximating the
microcanonical entropy from the canonical counterpart, and extend it for the FES particles.
If this is successful, a checking can be done using the exact values for small energies that

we obtained by direct counting.



The N-particle partition function for either bosons or fermions may in general be

written in the occupartion number representation as
Zy =) e, (A1)
{m}
where n; is the occupation number of the energy level [, Ey,, y is the energy of the N-particle
system for a given set of occupancy {n;}. For noninteracting particles, the energy of the

system Ejy,} is given by
Eqy = 2 € Ny, (A.2)
l

where ¢ is the single-particle energy level. For (spinless) fermions n; = 0,1 and may take

any value up to N for bosons. Using Eq. (A.2), Eq. (A.1) may be rewritten as

Zy = ze—ﬁzmm,
{ri}

(A.3)
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where y, = e 7. Differentiate the above with respect to yy,

0Zn g1
Oy 2 R
{ni}

Next, multiply both sides by yi/Zn and change the dummy index { to k, we have

yr 04y 1 —8E
= = — nge i,
Zn By Zn :Z:} k

The right hand side of the above is just the definition of the first moment of the occupation

number. Therefore,

(ng) = % > nge PE,
{nx}
1 0Zn
= — Y- A5
7Y B0 (A.5)
Similarly, the second moment of the occupation number reads
H A
() = 7= 2 mie W,
{n&}
1 a 0z N}
= — Y |Y—1- A6
70 Y 5 [yk o (A.6)

It is convenient to express formulae (A.5) and (A.6) in terms of the partition

function itself. Using the constraint that N = >, (ng),

ZNN = Zn Y (m),
k

8Zn
= Yl (A7)
= Ot
From the recursion relation (2.17) and using Z1(j8) = S e /P =57, y?;
N
Nzy = Y (&Y Z1(B) 2N,
j=1
N “
- (&S iz (A.8)
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Equating (A.7) and (A.8),
N

S @&y Zn;. (A.9)

=1

8Zy
Oy

Yu

Comparing (A.5) and {A.9), the first moment of the cccupation number is simply

N

) = 5= S iz (4.10)
j=1

We next look at the second moment. From (A.6),

o) = g ]

9
i=1

| IURR— |

T I A
RANET {Z(i)jﬂyizfvj
_ 1 ZN g1 | g=1, .5 0 ,

Repeating the steps from Eq. (A.7) to Eq. (A.9), it can be seen that

N—j
BZn o
Yk 6N L= ()i 2y (A.12)
Yk =1

Using this in the second term of Eq. (A.11), the second moment of the occupation number
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is given by

(rd) =

where we have let [ =

—J

N
1 1 )
—Z——z )J+ jy}]cZN—] + == Z z z<i)l+] I ZJ\I —i—3

N = j=11i=1

LA 1 XX .
— Y ElZn s+ =— D > (B Zn,

2 i ’ Iy o5

N ] M=t
2—— Z(i)j_i—ijykZN_] + == VA z Z(i)lychN—fn

N j=1 NiZ5=

1 & 1 &
— ST Zns 4+ =— > () = Dk Zay,
ZN;;( Yyl 2 ZN;< (1~ 1)y Zn—

| X
Zn ;2:;( ) jyk N—j+ 7= Zn 2 .7 N—js

1 & 1 N . .
7o S @&yl Zn-; + 7 S @& - Dyl Zn-,

N Jj=1 N j=1

1L .
ZV'Z B G0 -] iy (A.13)

3,
Il
—

i+ j and switched the order of the sums of the second term in the

second and third steps. It follows from (A.10) and (A.13) that (ng) = (nl) for fermions.

The number fluctuation may also be conveniently expressed in terms of the N-

particle partition function. Starting from (A.6) and using (A.5),

Thus,

1 F 3ZN]
ykﬁ”yk iyk Oy

ZNykggg (e} 2],
8 (nx)

1
Sy | Z
ZN%Q N 0w Oyx

1 0Zx

() =

i

87z
+ () _—ﬁyﬂ

(A14)

(A.15)




We start by using

SN(B) = BE +1n Zy,
Eq. (2.30) becomes

L [ oBE L™ swis)
E)=— Z = — NPl dg. 1
on(B) = 5 [ ZwePds= o [ eSO (B.1)
The integration over the parameter 3 is along the imaginary axis, and the function Sy(3)
is complex. This results in the integrand being oscillatory, with most of the contribution
coming from a point fp on the real axis at which Sy (f) is stationary. For a given E, this

stationary point may be found from

@SN(5)> ~0 B.9
(%% M (B2)
This gives
a 3
= <% in ZN> 4 . (BS}

This is in fact the thermodynamic definition of the ensemble average E for an equilibrium

temperature 1/5. Next, expanding Sy (3) about the stationary point Sy,
i
SN (8) = S (Bo) + 57 (6~ o) S} (Bo) + ...

Substituting this in the expression for py(E), we obtain the smooth part of the density of

states py(E):

o(E) = es(ﬁ?) j[ioo oz [(ﬁ — Bo)? 5%(5@/2} .

21 J oo
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Letting 3 — fBg = iz, the integral becomes [111]:

S oo
ﬁN(E) _ e N(ﬁﬂ)j e_SK](BO) m2/2’

2r —oo

= — (D

V2185 (Bo)




The followings are two Maple programs for caiculating the microstate and the
number fluctuation for ideal fermions in an one-dimensional harmonic trap. The first de-
termines the multiplicity using direct combinatorial counting (function Part(}), while the

second uses the method outlined in section 4.1.2.

Version 1.

Initialization.

> restart; N:=3: nmax:=10:

Function Part() partitions an integer n into at most M parts, whose part
value <=NH, the number of level defined for hole states. For particle spaces
put NH >=n.

> Part:=proc{(n,NH,M,t)

local i: global count:

if NH=0 or NH=1 then

if t+n<=M then count:=count+l else count:=count fi: else

for i from 1 %o NH do Part{m-i,min(n-i,i),M,t+1) od:

fi: count; end:

Coefficients Omegah( ) for the hole space.

> fer n from $ to nmax do

for Nex from 1 to N do Omegah(n,Nex):=0 od: od:

if type(N,odd)=true then Nmid:=(N-1)/2 else Nmid:=N/2 £i:

for Nex from 2 to Nmid do:

NH:=N-Nex; numterm:=NHxNex;

for n from 2 to0 numbterm do:

count :=0:
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Omegah(n,Nex) :=Part(u,NH,Nex,0): Omegah{n,NH):=Omegah(n,Nex}:

#print (n,Nex,Omegah(n,Nex));

od:

Omegah(0,Nex) :=1:0megah(i,Nex):=1: Omegah(0,NH):=%1:0megah(l,NH):=1:

od:

for n from O to N-1 do: Omegah(n,1):=1: Cmegah(n,N-1):=1i: od:
Partition function of an one-dimensional harmonic trap, expanded in power
of x. Call this Zp-partition function for particle space.

> §(0):=0:

for Nx from 1 to N do:

Zp (Nx) :=product (1/(1-x"j),i=1..Nx):

Sp(Nx) :=series(Zp(Nx),x=0,nmax+1):

od:

Calculate the microstates and and the ground state number fluctuation as

function of E=n.

> Ffluc(0):=0:£fluc(1):=0:

barnot (0) :=N:barnot (1) :=N-1:

for n from 2 to nmax do:

for Nex from 1 to N do:

nhmin:=(Nex-1)*Nex/2: npmin:=(Nex+1)+*Nex/2: nhmax:=n-npmin:

if nhmax > nhmin then

ncutoff :=nhmax-nhmin:

w(n,Nex) :=add (Omegah (a,Nex) *coeff (Sp (Nex) ,x" (ncutoff-a)) ,a=1..ncutoff- 1)+
coeff (Sp(Nex) ,x"ncutoff)+0megah (ncutoff ,Nex):

elif nhmax=nhmin then w(n,Nex):=1: else w{n,Nex):=0: f£fi:

#if w(n,Nex) > O then print(n,Nex,w(n,Nex)) fi;
P(n,Nex):=w(n,Nex}/coeff(Sp(N},x™n):

od:

bar(n):= sum(L*P{(n,L),L=1..N): barnot(n):=evalf(N-bar(a)):

sgbar (n) :=sum{J"2%P(n,J),J=1..N): fluc(n):=evalf (sqrt(sgbar(n)-bar(n)~2)/N):
od:

Results.
> print(w(s,1),w(5,2),w(5,3));

3,2, 0.
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Version 2.

Initialization.

> restart; with(linalg): N:=3: nmax:=10:
Define matrices to store the Omega_p, Omega h.

> A:=array(sparse,i..N,i..nmax+1): B:=array(sparse,il..N,1i..nmax+i):
for m from 1 to N do &Alm,3i]:=1: Blm,1i]:=1: od:

Procedure for the recursive formula (Eq. 4.8).

> parth:=proc(iM)

local j:

if M=0 then 1 elif M=1 then Z1(1) else

for j from i to M do: temp(j,M):=simplify(Z1(j)*parth(M-j)):od:
sum(temp(i,M),i=1..M)/M:£1i:

end:

Partition functions for the hole space.

> Zh(N):=1:

if type(N,odd)=true then Nmid:=(N-1)/2 else Nmid:=N/2 fi:

for nex from 1 to Nmid do:

NH:=N-nex:

Zi:=j->sum(x" (j*n),n=0..NH): Zh(nex):=parth(nex): Zh(NH):=Zh(nex):

od:

for ii from 1 to N do: Sh(ii):=series(Zh(ii),x=0,degree(Zh(ii))+1): od:

Partition functions for the particle space.

> 8(0):=0:

for Nx from 1 to N do:

Zp(Nx) :=product(1/(i-x"j),j=1..Nx): Sp(Nx):=series{Zp{Nx),x=0,nmax+1):
od:

Extracting the macrostates.

> for i from 1 to N do

for j from 2 to degree(Zh(i))+1 do Ali,jl:=coeff(Sh{i),x"(j-1)): od:
for k from 2 to nmax+l do B[i,kl:=coeff(Sp(i),x"(k-1}): od:

od::

Print to files.

> filel:=fopen{‘f0megahlQ.mat® ,WRITE):

file2:=fopen(‘flmegapil.mat‘, WRITE):

> writedata(filel,A,integer);writedata(file2,B,integer);
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> fclose{filel):fclese(file2):
Using the stored values of the multiplicities, the fluctuation may then easily be calculated
using any computer programming language. As a representation, we next list the partition

functions for both particle and hole spaces for N = 10.

Particle Space.

1 = 1—%—36—.‘—932+$3+3:4+335+a:6+m7+$8+x9+x10+9¢11+x12—i—mm—!—...,

Zy = 1+z2+222 4228 +32° +325 + 428 + 42" +528 +52° + 620 +
62l + 722+ 728 482 820+,

Zy = 1424222 4+32° +42 +525 +725+82" + 1028 +122° + 1421 +
162t + 1922 + 2128 + 242 12725

Zy = 1+2+222 +32° +522 +62°+928 + 1127 + 1528 +182% + 23210 +
27xM + 34212 439218 4 472 5428 ..,

Zs = 1+2+222+328+52+72°+102% + 1327 + 1828 + 232° + 30210 +
37z + 4722 + 57213 + 702 + 8420 4.

g = 1+2+222+32°+522 +72° + 1128 + 142" + 2028 + 26 2° + 35210 +
442 458212 + 71218 +902M + 11021 + ...,
Zr = 1424222 +323 +524 + 728 + 1128 + 1527 + 2128 +282° + 38210 4+

492 + 6522 + 8221 + 105214 + 131215 + ...,

Zs = 14+2+222+322 +524 + 725 + 1125+ 1527 +222% +292% + 40210 +
522 + 7022 + 89218 + 1162 + 146215 + .|

Zog = 14+2+222+323 +52* + 728 + 1128 + 152" +222% +302° + 41210 +
54z 47322 494213 + 1232 + 15720 + ...,

Zio = l14+z4+22°+32°+524+725 +11284+ 1527+ 2228 +302° +4221° +
55z 4 75212 497213 + 12821 416420 ...
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Hole Space.

VA 1tz+?+28 +ot 425 428 427+ 28 4 20,

A3 1+2+222+22° +32% +325 4+ 428 4+ 42" + 525 +42% + 4210 +
3%11—5—35512—5—23313-{—2%14—{—1’15—}—@'16,

zZb T+z24+222+32° +428 +52° + 728 482" +92° +102° + 1020 +
102" + 102" 4+ 92" + 82 + 72 + 52 + 427 + 3218 + 221% + 220 + £,

VAR 1+24+222+32% + 52 +62° 492541027 +132% +142° + 16210 +
162 + 1822 + 16213 + 162 + 142" + 13218 + 1027 + 928 +621° +
5%20+3x21+2x22+x23+x24,

A 1+2+222+32° +524 + 725+ 928 + 1127 4+ 1428 +162% + 18210 +
192 + 2022+ 2028 41921 + 18215 + 16210 + 1427 + 1128 4922 +
7220 + 522 + 3272 4+ 228 4 22 4 2%

zbk 1+2+222+32° +52* + 625+ 925 + 1027 +132% + 142% + 16 21% +
162 + 1822 + 16213 + 162 +142'° 41321 + 102! + 9218 + 621° +
5$20+3x21+21’22 +$23+1‘24,

zZh 14+z4+20+32° +424 +52° + 725 +82" + 928 +102° + 10210 +
101‘11+10$12—|—9$13+8$14+7Q}15+53316+4$17+3$18+2$19+$20+.’1}21,

zh 14+z+222 +223 +32* +32° + 428 + 42" + 528 +42% 44210 +
33:11+3m12+2$13+2x14+3315+:c16,

A4S 14+ +a8 ot + P + 28+ 27+ 2% + 20,

A 1.

As expected, the partition functions for the hole space are finite.



The population of a state with energy ¢; is given by the usual Bose-Einstein dis-

tribution
1 ze~€if

(TLz> - e(ei_#),@ —1 = 1-— ze“eiﬂ’ (Dl)

where z = e#? is the fugacity. The energy of the ground state has been taken to be zero.
The ground state occupancy is Ng = z/(1 — z). The total number of particles is determined
from

o0
R

i=0

i dgmieil, (D.2)

JIDMS I Je

The above result is general for any single-particle spectrum {¢;}. We now apply it to a one-

dimensional harmonic trap. The spectrum is given by ¢; = ifw, ¢ =0,1,2,.... Eq. (D.2)
becomes
[e el o} )
N Sy e
i=0 j=1
o0 co
- a3
j=1 =0
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The second summation is a geometric progression series. This may be summed to give

oo

; 1
= -
N o= Ezi_e_jw

j=1
i zfe Fhw

For hwf@ < 1 (the temperature is larger than the level spacing), the above is approximated

1 & [ze‘ﬁ“’fm]j 1
N =N, = Np— ——1In |1 —ze ™P/2| :
O+hwﬂ;§ i 0 hw,@n[ sl (D-3)
The transition temperature is found by letting z — 1 and Ny — 0. Thus
T 2T,

To solve for T;, we replace T, = AiwN in the logarithmic in the first approximation:

thN N

The transition temperature may also be obtained from the density of state ap-

proach. From Eq. (4.27), with p(e) = 1/Fw,

ze —&8
N—Ngsz< )m hwzzjfﬁ Jeﬁde (Dﬁ)

To avoid low frequency divergence, the lower limit in the integral is set to be Aw/2. Thus,

I e )
N-Ny, = %zzjjf e T8 e,

which is the same as Eq. (D.3).



Tabulation of the many-body multiplicity (3(E,), with N — oo. The many-body

eigenenergy spectrum E, = Inn. The single-particle is ¢, = Inn and is nondegenerate.
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n By, UE) [ » E, OEN [ = B, Q(E,)
i 0 1 | 34 | 3526360525 | 2 || 67 | 4.204692619 | 1
2 | 6931471806 | 1 || 35 | 3555348061 | 2 || 68 | 4.219507705 | 4
3 | 1.098612280 | 1 || 36|3.583518938 | 9 | 69 | 4.234106505 | 2
4| 1.386294361 | 2 || 373610017913 | 1 | 70 | 4.248495242 | 5
5 | 1.609437912 | 1 || 38| 3.637586160 | 2 | 71 | 4.262679877 | 1
6 | 1791759466 | 2 || 39 | 3.663561646 | 2 || 72 | 4.276666119 | 14
7 | 1945010149 | 1 || 40 | 3.688879454 | 7 | 73 | 4.200459441 | 1
8 | 2.079441542 | 3 || 41| 3.713572067 | 1 | 74 | 4.304065093 | 2
0 | 2197224577 | 2 || 42 | 3737669618 | 5 || 75 | 4.317488114 | 4
10 | 2.302585093 | 2 | 43 | 3.761200116 | 1 | 76 | 4.330733340 | 4
11 | 2.397895273 | 1 | 44| 3.784189634 | 4 | 77 | 4.343805422 | 2
12 | 2.484906650 | 4 | 45 | 3.806662490 | 4 | 78 | 4.356708827 | 5
13 | 2.564949357 | 1 || 46 | 3.828641396 | 2 | 79 | 4.369447852 | 1
14 | 2.639057330 | 2 | 47 |3.850147602 | 1 | 80 | 4.382026635 | 12
15 | 2.708050201 | 2 || 48| 3.871201011 | 12 | 81 | 4.394449155 | 5
16 | 2772588722 | 5 | 49 | 3.801820208 | 2 || 82 | 4.406719247 | 2
17 | 2.833213344 | 1 | 50 | 3.012023005 | 4 | 83 | 4.418840608 | 1
18 | 2.800371758 | 4 | 51 |3.931825633 | 2 | 84 | 4.430816799 | 8
19 | 2.944438979 | 1 | 52 | 3.951243719 | 4 | 85 | 4.442651256 | 2
20 | 2.995732274 | 4 | 53 | 3.970201914 | 1 || 86 | 4.454347296 | 2
91 | 3.044522438 | 2 | 54 | 3.988084047 | 7 | 87 | 4.465908119 | 2
92 | 3.091042453 | 2 || 55 | 4.007333185 | 2 || 88 | 4.477336814 | 7
93 | 3.135494216 | 1 || 56 | 4.025351691 | 7 || 89 | 4.488636370 | 1
94 | 3.178053830 | 7 | 57 | 4.043051268 | 2 || 90 | 4.499809670 | 11
95 | 3.218875825 | 2 | 58 | 4.060443011 | 2 || 91 | 4510859507 | 2
2 | 3.258096538 | 2 || 59 | 4.077537444 | 1 || 92 | 4521788577 | 4
97 | 3.205836866 | 3 | 60 | 4.004344562 | 10 || 93 | 4.532599493 | 2
98 | 3.332204510 | 4 | 61| 4.110873864 | 1 || 94 | 4543294782 | 2
29 | 3.367295830 | 1 | 62| 4.127134385 | 2 || 95 | 4553876892 | 2
30 | 3.401197382 | 5 | 63| 4143134726 | 4 | 96 | 4564348191 | 19
31|3.433987204 | 1 | 64 |4.158883083 | 11 | 97 | 4.574710979 | 1
32 | 3.465735003 | 7 | 654174387270 | 2 | 98 | 4.584967479 | 4
33 | 3.496507561 | 2 || 66 | 4189654742 | 5 || 99 | 4595119850 | 4




We consider N particles, either bosons or fermions, interacting in the CSM whese
Hamiltonian is given by Eq. (5.8). In the thermodynamic limit, which is obtained by taking
w — 0 as N — oo such that wN = constant, the correlation functions are known exactly

for three values of g [76]:

: 2
g = 1: v(r)=s(r)? = [SIDTE—;”")} (F.1)
g = 1/2:y(r)=s(r)2+§§ / " it [s(t)] (F.2)
s(2r) [
g = 2: v(r)=s(2r)? - %i_) ; dt [s(t)], (F.3)

where the Fermi momentum kp is set equal to 7 so that the maximum central density is
unity. Let v(r) denotes the two-particle ground state density-density correlation function in

the ground state, with r = |21 — 23|, then the number Auctuation is related to the correlation

[ 2 oo
(ON)” _ 1= -ij v(r)dr. (F.4)
N —c0

Note that the ground state correlation function v{r) is defined only for » > 0. However, in

function as [1]

computing the above integral it is necessary to assume v(r) to be even function, and extend

the domain of integration to negative values of » [112].

g=1: )
7o} OO [ i/
2| w(r)dr=—2 sinlmr) |\ © g, (F.5)
0 0 ™ ’

g=1/2:
—2} v(rydr = ~2j/ s(r)dr — 2j! fjf s{t)dtj §(rydr = —1. (F.6)
0 0 0 Lir
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=2:

co o] oo £ p2r
—Qj[ vi{r)dr = —2} s(2r)%dr + jS/ Uf s(t)dt} §'(2r)dr = —1. (F.7)
0 0 0 0

Thus it follows that for interacting bosons in CSM the fluctuation vanishes identically at
T=0.

While we cannot obtain the exact v(r) in CSM for all g, the same may be calculated
for all values of g in the harmonic lattice approximation. The correlation function so
obtained compares very well with the exact correlation functions for g = 1/2,1,2 and is
given by [113]

)= 3 (WQ Q))m exp [—%‘%—J} ~ o, (F.8)

where pg = N/L is the average density and
1 [ 1-cos(yi) 1 o 1 — cos(yi)
gF'(i,0 —_— = — —22, F.9
(.0 =5m [ W=l =g [ (F.9
The above expression is given for completeness and its exact form is not needed for further
calculations. Again integrating over the real line we get a result identical to that obtained
using the exact correlation functions in CSM. Thus the fluctuation vanishes identically for

all g in this approximation at zero temperature.



The low temperature behaviour of thermodynamic quantities in the GCE are well
known for bosonic systems. However, a comparison between the grand canonical and the
canonical calculations at low temperatures is not usually discussed for either Bose or Fermi
systems. Further, making use of some asymptotic expansions, the canonical number fluc-
tuation for bosons in a one-dimensional harmonic trap was earlier found to be linear right
down to 7' = 0 [9, 26]. However, we give here the expansion of the fluctuation squared at
low temperature in power of z, where £ = e, and show that the canonical fluctuation of
bosons is in fact exponential at very low T'. In the GCE only expansion for fermions is pos-
sible, since the fluctuation tends to infinity at low temperature for bosons. Both expansions

are possible in the CE.

Grand Canonical Ensemble In the GCE the (fermionic) occupation number is:

1 i

plo—er) 41 = plu—k—1/2) L 1 (G-l)

(nk)oor =

for a one-dimensional harmonic trap. The ground state number fluctuation squared is given
by:
ke (u—k-1/2)

ANE =
< O>GCE Zd [x(u—k—lﬂ) + 1]2

(G.2)
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where kp is the Fermi level. At low temperatures, for the one-dimensional harmonic oscil-

lator, =~ po = N. Therefore,

(AN oy = VE—22+30Y? — 4a? + 527 —62® + 7572 — &2t +..., N=1
= Vz—20+42%? —42? +52%7 83 + 772 — 8zt + ..., N=2
= Jr—2zx+42%?% — 4?1+ 627 — 83 + 7272 — 8zt + ..., N=1.
= Vz—-2+42%? —42? +62%7 —82° + 8272 — 8z +..., N=4.

Thus,
(AN ooy = VT — 20+ 42%% —42? + 6257 — 823 + 8272 - 82 +..., N>4. (G3)

Note that the terms up to O(x*) are independent of N for N > 4.

Canonical Ensemble In the CE the first and second moments of the occupation number
are given by Egs. (2.18) and (2.19):

1 X

(ng) = EZ(i)ﬁlxﬂszN_j, (G.4)
1 J]V . .

(n?) = Z—J\f—Z(:&:)”“[j:t(j——1)]1’36’921\7_3', (G.5)

J
where the upper and lower signs refer to bosons and fermions respectively. Summing over

the ground states up the Fermi level gives the fermionic ground state number:

N iN
1 a2l =% (
<NG>CE‘ = E E(—}.) T 1—_1:5“ N—j5 \G@)
J
where we let ¢ = k — 1/2, with k = 1,2, .... Therefore,
N N
<AN§>CE = E(ﬂw - <nk>2
k=1 k=1
= z+22%+... , N>4, (G.7)

where we have used (ng) = (n%} and again the first few terms are independent, of the system

size N for N > 4.
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For bosons the ground state consists of one single lowest level, the low temperature

expansion of the number fluctuation is given by

(AN er = (ng) — (no)?
= z+32%+4+72r+... , N>4 (G.8)
Again as in the fermionic case the first few terms in the low temperature expansions are

independent of the system size. Indeed it is interesting to note that in CE, the fluctuations

in both systems approach zero as 7' — 0 in exactly identical fashion.
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