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ABSTRACT

Three conce~tual models are proposed. for the
integration of the large systems of conduits responsible for
groundwater flow in, soluble rocks. These models are
supported by laboratory experiments with scaled SOlution
models, flow-field analogues, and evidence from exis~ing

caves.' I .

The three models reflect 'different boundary'
condi tions ilnposed by geologic structure and stratigraphy.
They have three characteristics -in ·common. First, .the
smaller elements of the larger systems propagate separately
from points of groundwater input toward points of - discharge
as distributary networks. Second, the integration of the
smaller networks proceeds headward from the resurgence, in a
stepwise fashion. Third, the result of the- integration
process in each case is a tributary system with many inputs
discharging through a single discharge point. •

\

The potential for growth of each of the smaller
networks, WJ. thin a~ common pressure. field, is related to its
distance from the qischarge boundary and the distributi9n of
other inputs. The first input to establish ~ low-resistance
link to the discharge boundary will effect a localized
depression within the 'potential field, thus attracting the
·flow and redirecting the growth of nearby networks' until
they eventually link with it". As additiopal orders of links'
develop, the system takes on a tributary pattern.

The first model applies to steeply dippin~ rocks.
Inputs occur where bedding planes are truncated by" erosion,
and discharge takes place to the strike. Conduits in this
case evolve as a rQughly rectangular grid of strike and dip
oriented elements. Dip elements are the initial form, with
SUbsequent integration along the' strike.' The type example
is the Holloch in Switzerland:

The second model applies to flat-lying rocks.
Inputs occur over a broad area, and discharge' takes ,place
along a linear boundary. Conduits in' this case evolve in a
trellised array with elements normal to the discharge
boundary predating- those parallel to it. These latter
conduits integrate the flow. The type example is the
Mammoth Cave Region, Kentucky .

The third moael applies
occur beneatn an impermeable cap
erosion has breached the capping
Cave Creek, Kentuckyv \

to simple systems which
rock. Inputs occur whe~e

beds. The type example is
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