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In this thesis, we discuss some properties of indicator polynomial functions. We
extend some existing results from regular designs tc non-regular designs. More
general results which were not obtained even for regular designs are also provided.

First, we study indicator polynomial functions with one, two, or three
words. Classification of indicator polynomial functions with three words are
provided. Second, we consider the connections between resolutions of general two-
level factorial designs. As special cases of our results, we generalize the results
of Draper and Lin [14]. Next, we discuss the indicator polynomial functions
of partial foldover design, especially, semifoldover designs. Using the indicator
polynomial functions, we examine various possible semifoldover designs. We show
that the semifoldover resolution I77.x design obtained by reversing the signs of
all the factors can de-alias at least the same number of the main factors as the
semifoldover design obtained by reversing the signs of one or more, but not all,
the main factors. We also prove that the semifoldover resclution IV.z designs
can de-alias the same number of two-factor interactions as the corresponding full
foldover designs. More general results are alsc provided. Finally, we present our

conclusions and ocutline possible future work.
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1.1 General Introduction

In practice many processes or systems are affected by two or more factors. Thus
scientists are often interested in the study of effects of several factors simultane-
ously. An experiment which involves several factors is called a factorial experi-
ment.

Suppose a factorial design has m factors with each factor at two levels.
A complete replicate of such a design would require 2™ observations and such a
design is called a 2™ factorial design (see, for example, Figure 1). To distinguish
it from fractional factorial designs (which are studied in this thesis) (see, for
example, Figure 2), it is also called a full factorial design. This experimental
design would enable the experimenter to investigate the individual effects of each
factor and also to determine whether the factors interact or not. The experiment
can be replicated, which means some runs of experiment are carried out two or

more times.



Factor

run A B C Factor

1 - - - run A B C

2 + - - 2 - -

3 - + - 3 - + -

4+ o+ - 5 - -+

5 - - + &8 + + o+

6 + - o+

7 - +  + Figure 2. 237! Fractional Factorial
8 + + + Design with Defining Relation

ABC = 1.
Figure 1. 23 Full Factorial Design

However, quite often in practice, full factorial design is infeasible both
from time as well as resource points of view. For instance, if there are ten factors
with each factor at two levels, then a full factorial design would need 2'° = 1024
observations; if there are five factors with each factor at five levels, then it would
need 3% = 3125 runs. Thus, for large number of factors, full factorial designs may
not be affordable in practice and fractional factorial designs, which consist of a
subset or fraction of the runs, are more economic and are therefore commonly
used in practice.

Fractional factorial designs have been studied for many years. In this
area, many problems have a geometric, algebraic or combinatorial flavour. For
example, if A and B are two factors of & full 2? factorial design, then the main
effects A and B and the interaction effect AB with the identity element [ form
a group; if z1,29,...,26 are six factors such that x5 = zi24 and zg = 223,

then the runs which satisfy these two conditions form a fraction of the full 2°



factorial design; we call z5 = zix4 and zg = Zox3 as generators or defining
relation, and T1XsTs = Zoksxg = T1X2T3T4TsZg = 1, where T1Z9232425%6 =
T1T4Ts5 * LaX3Tg, 18 called a complete defining relation. Moreover, the set G =
{1,x1x4335,932x3$5,x1m2$3w4x53§5} forms a group and each element except 1 in
G is called a word, an interaction effect or an effect, the fraction is called 2672
fractional factorial design, since this fraction has only 2572 rums, “6” represents
6 factors and “2” represents 2 generators; we also say, for example, x5 is aliased
with z1z4 since x5 = xi1x4. In general, a 2™7P design is a fraction of a full
m-factor design with p generators and, thus, contains 2™7P runs. A fractional
factorial design which has defining relations is called a regular design. This design
has a group structure. Thus, the classical method for studying this area uses
algebras such as linear algebra and finite groups. Early works in this direction
have been summarized in Raktoe, Hedayat and Federer [25] and Dey [11]. For
recent reviews, we refer to Dey and Mukerjee [12] and Wu and Hamada [30].

A fractional factorial design which has no generator or defining relation is
called a non-regular design. Non-regular designs have not been well studied since
these designs have no defining relation. However, sometimes non-regular designs
are more useful than regular designs since they need fewer runs; see, for example,
Addelman [2], Westlake [29] and Draper [13].

In 1996, Pistone and Wynn [23] introduced a method based on Grdbner
bases (see; for example, Cox, Little and O’Shea [8] or Adams and Loustaunau
[1]), an area in computational commutative algebra, to study the identifiability
problem in experimental designs. Grébner bases form a very useful tool to deal
with problems in polynomial ring. The basic idea in their article is to represent
the design as the solution of a set of polynomial equations. This application of
Grobner bases in experimental designs gives a completely new interface between

computational commutative algebra and experimental designs, and it turns out



to be a powerful tool in some areas of experimental designs (see Holliday, Pistone,
Riccomagno and Wynn [17] and Bates, Giglio, Riccomagno and Wynn [4]).

In fact, it should not be surprising that there is such an interface be-
tween computational commutative algebra and statistics, since the mathematical
structure of real random variables is a commutative ring, and other commutative
rings and ideals appear naturally in distribution theory and modelling (see Pis-
tone, Riccomagno and Wynn [24]). This interface attracts considerable interest
from both the algebraic community (see Robbiano [26]) as well as from the sta-
tistical community since the publication of the paper by Pistone and Wynn [23].
As mentioned in the preface of the book Algebraic Statistics [24],

“Just as the introduction of vectors and matrices has greatly improved
the mathematics of statistics, these new tools provide a further step forward by
offering a constructive methodology for a basic mathematical tool in statistics
and probability, that is to say a ring.”

After the publication of Pistone and Wynn [23], Fontana, Pistone and
Rogantin [15] introduced the indicator polynomial function (see Section 1.2) as
a tool to study fractional factorial designs without replicates, which was sub-
sequently extended to the case of replication by Ye [31]. Indicator polynomial
functions unify regular designs and non-regular designs and provide an effective
tool for studying non-regular designs.

In Section 1.2, we introduce indicator polynomial functions and review
some of their properties. The definition of fractional resclution and the con-
nections between regular fractional factorial designs of resolution I77 and V are
presented in Section 1.3. In Section 1.4, we introduce foldover designs and semi-
foldover designs. Some related work is also reviewed in this section. Finally, we

present in Section 1.5 an outline and notation used in this thesis.



anctions

1.2 Indicator Polynomial F

Let Dom be the full two-level m-factor design, ie.,

4

Dom ={z={z1,29,...,2m} | zs=10r =1, 1=1,2,...,m},

M=1{1,2,...,m},

Lom = {a={ai,a0,...,am}t |z =10r 0 Vi € M},

a1 .02

2% =z rom

m !

and .
[ all= Zai-
i=1

Then, || @ || is the number of letters of z*.
Let F be any two-level m-factor design such that for any z € F, x € Dom,
but z might be repeated in F. The indicator polynomial function of F is a

function f(z) defined on Dom such that

r, fzelF
0 ifzé¢F,

flz) =

where 7, is the number of appearances of the point z in design F. In particular,
if 7 =0 (i. e., there is no runs in F) or F contains all the points in Dom (i.e.,
F is a full 2™ design), the indicator polynomial function of F is f(z) = 0 or
f(z) =, for any z € F, respectively. In this thesis, we assume that F contains
some but not all the points in Dom.

Fontana, Pistone and Rogantin [15] and Ye [31] showed that the indicator
polynomial function f{z) of F can be uniquely represented by a polynomial
function

flz)=Y_ baz® (1.2.1)

aELgm



where the coefficients {by, @ € Lam} can be determined as

1
ba = 5 >z (1.2.2)

TEF
In particular,
By
=<1 (1.2.3)
bo
and
7

where n is the total number of runs.

Thus, given a design, we can find the coefficients of its indicator polynomial
function. For a regular design, its indicator polynomial function is easy to find.
For example, if x5 = 124 and xg = 222314 are generators of a two-level 6-factor
design, then we can easily check that the corresponding indicator polynomial

function is
1 1
f(l’) = -2—5(1 + x1x4:1:5)(1 + 56'2333!1741'6) = Z(l -+ T1T4T5 + ToT3T4Tg -+ I1CCQ:E3€E5335).

Conversely, given an indicator polynomial function of a two-level factorial
design F, we can check whether it represents a regular design or not. Proposition

1.2.1 below was proved by Fontana, Pistone and Rogantin [15] and Ye [32].
Proposition 1.2.1. F is a reqular design (with or without replicates) if and only
if

| bo/bo |= 1
for all nonzero by, in the indicator polynomial function of F.
Example 1.2.2. [15] An indicator polynomial function of o two-level 5-factor de-
sign F without replicate is f(z) = 3 — jT1%2%3+ §ToT3Ta+ $TaT3T5+ 1 T1T2T3L4T5.
Since |ba/bo| # 1 for all nonzero by, F is not a regular design. By (1.2.4), this

design contains 16 runs. It is a half fraction of the full 2° factorial design.



Any word in the indicator polynomial function indicates alias relations.
For example, if 2% = x1222476 is & word in an indicator polynomial function,
then x1xe, T124, T1%g, ToXa, ToTe and T.Tg are aliased with zazg, Toms, T2%4,
T1Zg, 1%4 and z174, respectively. If |b,/bo| = 1, then they are fully aliased; if
|bo/bo| < 1, then they are partially aliased.

Let F be a fraction which does not allow replicates. Then, its complemen-
tary fraction contains the runs which are in Dom but not in F. Proposition 1.2.3
is a part of Corollary 3.5 in Fontana, Pistone and Rogantin [15] which provides

the relations of indicator polynomial functions of the two fractions.
Proposition 1.2.3. If F and F' are complementary un-replicated fractions and

be and b, are the coefficients of the respective indicator polynomial functions

defined as in (1.2.1), then
bo=1—-by and by=-b, Ya#0.

When one or more factors are not important in a factorial design, one
might be interested in the projection of the design. Some projection properties of
fractional factorial designs have been studied (see, Wang and Wu [28] and Cheng
[6]). Theorem 1.2.4 provide the indicator polynomial function of the projection
given the indicator polynomial function of the original design and was provided

by Fontana, Pistone and Rogantin [15] and Ye [31].

Theorem 1.2.4. Let (1.2.1) be the indicator polynomial function of F, P be its

projection to {z1,%a,...,%}, and
S={a€lom|a;=0,Vi=1+1,...,m},
Then the indicator polynomial function of P is

f'p = Zm-l E 5a$a.

aeS



esolutions and Their Connections

1.3

The traditional definition of resolution is defined through the complete defining
relation, that is, the resolution of a regular design is the number of letters in the
shortest word of the complete defining relation. Deng and Tang [10] and Tang
and Deng [27] defined the generalized resolution, that is , fractional resolution,
and generalized aberration criteria for non-regular designs. These criteria were
redefined through indicator functions by Ye [31] and Li, Lin and Ye [19]. In this
thesis, the definition of fractional resolutions by Li, Lin and Ye [19] is used.
First, Li, Lin and Ye [19] extended the traditional definition of the word
to non-regular designs by calling each term (except the constant) in the indicator

function of a design a word. If ¢ is a word, its length is defined as
| 2% [|=] o || +(1 = [ba/bol)-

Thus for regular designs, since |b,/bo| = 1, for each word z%, its length is the
number of letters of the word; for non-regular designs, the length of words may
be fractional since |b,/bp| may be less than 1. In Example 1.2.2, the length of
the word zi2923 18 3.5.

Next, Li, Lin and Ye [19] defined the extended word length pattern of F as

(fla vy f1+(n—1)/na f21 ey f?-I—(n—l)/m s 7fma e 7fm+(n—1)/n)-,

where fi1;/m is the number of length (5 + j/n) words.

Finally, the generalized resolution is defined as the length of the shortest
word. Thus the generalized resolution may be fractional. In this thesis, we will
denote fractional resolutions by N.z, where N is an integer and z is a fraction.
Thus, the resolution of the design in Example 1.2.2 is [71.5.

Given the extended word length patterns of two designs, the aberration
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criterion is defined by sequentially comparing the two extended word length pat-
terns from the shortest-length word to the longest-length word.

Resolution I77* regular designs are regular resolution 777 designs in which
no two-factor interactions are confounded with one another. These designs are
valuable in composite designs and were first examined by Hartley [16]. Draper
and Lin [14] found the connection between resolutions 7717* and V designs so that
one can study resolution /77* designs through well-known resolution V designs.

The following Theorems and Corollaries are taken from Draper and Lin

14].

Theorem 1.3.1. Any m-factor two-level fractional factorial design of resolution
IIT* forms a base that can be converted into a (m — 1)-factor design of resolution

V' in the same number of runs.

Corollary 1.3.2. If m is the mazimum number of factors that can be accommo-
dated in a resolution II1I1* design, then the mazimum number of factors that can
be accommodated in a resolution V' design with the same number of runs is at

least m — 1.

Theorem 1.3.3. Any (m — 1)-factor two-level fractional factorial design of res-
olution V' can be converted into a m-factor design of resolution ITI* in the same

number of runs.

Corollary 1.3.4. If m—1 is the mazimum number of factors that can be accom-
modated in a resolution V' design, then the mazimum number of factors that can
be accommodated in a resolution ITI* design with the same number of runs is at

least m.

Theorem 1.3.5 is the extension of Theorem 1.3.1 by Draper and Lin [14].



Theorem 1.3.5. Any m-factor two-level fractional factorial design of resolution
(21 — 1)* forms a base that can be converted into a (m — 1)-factor design of

resolution (21 + 1) in the same number of runs.
J ]

1.4 Foldover Designs and Semifoldover Designs

When two effects are aliased, it is difficult to estimate one of them. Foldover is a
classic technique to de-alias effects. Define a foldover of a factorial design as the
procedure of adding a new fraction in which signs are reversed on one or more
factors of the original design. The combined design has the double size of the
original runs. A foldover design is also called a full foldover design.

For regular resolution I7] designs, some main effects are aliased with two-
factor interactions. It is well-known ( see, for example, [22] ) that if we add to a
resolution 177 fractional a second fraction in which the signs for all the factors
are reversed, then the combined design has resolution IV.

For regular resolution IV designs, all the main effects are de-aliased with
two-factor interactions. However, some two-factor interactions are aliased with
each other. Box, Hunter, and Hunter [5] studied the foldover design obtained
by reversing the sign of one factor. Montgomery and Runger [21] considered
reversing the signs of one or two factors to de-alias as many two-factor interactions
as possible. They stated that the complete defining relation of the combined
design from a foldover consists of those effects in the complete defining relation
of the original fraction that are not sign-reversed in the new fraction.

Li, Lin and Ye [19] studied foldover non-regular designs using indicator
polynomial functions and extended above well-known results to non-regular de-
signs. They provide the following three properties of indicator polynomial func-

tions which are useful for studying foldover designs:



1. Let f(z1,%q,...,%,) be the indicator polynomial function of a design. If
the sign of factor zy is reversed, then the indicator polynomial function of

the new design is f(—x1,2Z2,...,Zm).

2. Let fz, and fr, be the indicator polynomial functions of the designs 77 and
F>, respectively. Then the indicator polynomial function of the combined

design F1 U Fs is given by frum = fr + [5-

3. Let f(z1,22,...,2,) be the indicator polynomial function of a design.
Without loss of generality, assume that the signs of factors z1,zs, ..., .

are reversed; then, the indicator polynomial function of the foldover design

is f(xl,w27 .- -,Im) +f(_ml’ —Z2, .oy — Ty Tpgd, - ,xm)

Although foldover designs can de-alias all the main effects for resolution
ITI.z designs and as many two-factor interactions as possible for resolution I'V.x
designs, they involve twice the original runs. Therefore, it will be much more
efficient to do a partial foldover. One of the partial foldover designs is the semi-
foldover design.

Semifoldover designs are obtained by reversing signs of one or more fac-
tors in the original design and adds half of the new runs to the original designs.
Thus, semifoldover designs save half of the original runs compared to the full
foldover designs and are more valuable sometimes. A semifoldover design ob-
tained by reversing signs of one factor in a resolution [V regular design with
generators T1Zo23rs = 1 and zozazyze = 1 was first studied by Daniel [9] and
then investigated by Barnett et al. [3] through a case study.

Mee and Peralta [20] studied various possible semifoldover regular resolu-
tion FI{ and IV designs.

Let

FO={zeF|z=¢}, (1.4.1)
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where e = 1, —1, and z is a main effect or an interaction. Denocte by F, the
new fraction obtained by reversing the signs of z;,z5,...,2,. Then, we can add
either the fraction .7-"51) or the fraction f}g_l) to the original design to get the
semifoldover design. In this case, according to Mee and Peralta’s notation, we
say that the semifoldover design is obtained by foldover on ®1,zq,...,z, and
subset on z.

For resolution IV designs, Mee and Peralta [20] proved Theorem 1.4.1.

Theorem 1.4.1. For any regular 27,7 design and any two factors z and y, the
full foldover design obtained by folding over on x and the semifoldover design
obtained by folding over on x and subsetting on y permit estimation of the same
two-factor interactions, assuming that three-factor and higher-order interactions

are negligible.

Mee and Peralta [20] studied semifoldover resolution 717 design through an
example. Although semifoldover resolution 777 designs usually can not de-alias
as many two-factor interactions as the corresponding full foldover designs, Mee
and Peralta [20] pointed out that the half new runs can be used as comfirmation

runs which verify the validity of one’s assessment of active versus inactive factors.

1.5 utline and Notations

Define a resolution N.”z design is a resolution N.z design such that its indicator
polynomial function contains no (N 4 1)-letter word. The thesis is organized as
follows:

Ir Chapter 2, we study some properties of indicator polynomial functions
and N.”z design. We discuss indicator polynomial functions with one, two or

three words. In particular, we show that the indicator polynomial functions with
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only one word must be a regular design or replicates of a regular design; there
is no indicator polynomial function with only two words; we also classify the
indicator polynomial functions which contain only three words.

In Chapter 3, we discuss the connections between designs of general two-
level factorial designs. First, we prove that a resolution (2! — 1).* z m-factor
design can be converted into resolution (2] + 1).z (m — 1)-factor design. The
relations between designs of resolution 2l.z and (2{ — 1).x are also provided.
Next, we show that a resclution I77* m-factor design can be obtained from any
design with resolution equal or bigger than V. Some illustrative examples are
also provided.

In Chapter 4, we study indicator polynomial functions of partial foldover
designs. We study indicator polynomial functions of semifoldover designs first.
Then we extend them to partial foldover designs.

In Chapter 5, we discuss semifoldover resolution I7/.z designs. We show
that the semifoldover design obtained by folding over on all the factors can de-
alias at least the same number of the main effects as the semifoldover design
obtained by folding over on one or more, but not all, the main effects when
subsetting on a same factor. We also study the semifoldover design obtained by
subsetting on a two-factor interaction. Some illustrative examples are provided
at the end of this chapter.

In Chapter 6, we consider semifoldover resolution IV.r designs. After
proving that the semifoldover non-regular design obtained by folding over on
s factor and subsetting on a factor can de-alias the same number of the two-
factor interactions as the corresponding full foldover design, we present a sufficient
condition for a semifoldover design to de-alias the same number of the two-factor
interactions as the corresponding full foldover design. Finally, we provide some

illustrative examples.
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In Chapter 7, We present some conclusions based on the results in this

thesis. Then, several interesting problems for future work are outlined.

The notation used in this thesis are as follows:

In Chapter 2, we denote
={a € Lon | by # G and {|a|| # 0},

O ={aeQ]||le||iseven }U{a € Lom | ||| = 0},

and
Qy={aecQ|||a is odd }.
In Chapter 3, we denote
Q" ={a€Lym | bo #0and || a0},
F ={ae’ | |a] isodd},
and

Qf ={aeQf | | a] iseven}.

In Chapters 4 - 6, we denote
FO={zeF|z=el}

where e = 1, —1, and z is a main effect or an interaction.
)

Without loss of generality, we assume that the partial foldover design is

obtained by reversing the signs of z1, zs, ..., z,. Denote by (. theset of all o € Q2

(1.5.1)

such that there are 0 or even number of the first r entries which are 1 and {3, the

set of all o € ) such that there are odd number of the first r entries which are

1. Let
We = {z% | a € Qc},

W, = (2% a € Q,}.



Then, the indicator polynomial function (1.2.1) of F can be written as
flz)y= Z baz® + z Box.
o€lle @€,

Note that the constant term is in boz?.
a€Qe Y&

16

(1.5.2)



2.1 Introduction

Indicator polynomial functions have been in the literature for several years, and
yet only a few of their properties have been studied. In this chapter, we study
some properties of indicator polynomial functions.

It is known that there is no regular desigr with only two words in their
indicator polynomial functions, but there are regular designs with one or three
words. Theoretically, one might be interested in knowing whether there exist non-
regular designs with only one, two or three words in their indicator polynomial
functions, and if they exist, what forms do those indicator polynomial functions
have. In this chapter, we study some properties of indicator polynomial functions
and, especially, indicator polynomial functions with only one, two or three words.

In Section 2.2, we study when a indicator polynomial function represents

a half fraction and show that there is no (2] + 1)-factor design of resolution

[Ray
-3
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(20 — 1).*z when the run size of the design is not equal to 2%. Section 2.3 shows
that the indicator polynomial functions with only one word must be a regular
design or replicates of a regular design. Indicator polynomial functions with more
than two words but only one odd or even word are also studied in this section. In
Section 2.4, we establish that there is no indicator polynomial function with only
two words. Indicator polynomial functions with more than two words but only
two even words are also considered in this section. We prove that the indicator
polynomial functions with only three words must have one or three even words
and provide the forms of indicator polynomial functions for each case in Section
2.5.

In this chapter, we call a set of factors whose signs are reversed in the

foldover design a foldover plan [19].

2.2 Indicator polynomial functions which rep-
resent half fractions and N*.z designs

Lemma 2.2.1. Assume that F is a two-level m-factor design and (1.2.1) is its

indicator polynomial function. Then the run size of F does not equal 2™r, where

r=f(1,1,...,1), if and only if 3 cq ba # 0.

Proof. Since f(1,1,...,1) = bo+ X ncabas 2oaeqba = 0 if and only if by =

F(1,1,...,1) =7 and if and only if the run size of F equals 2™r. O

Proposition 2.2.2. Assume that F is o two-level m-factor design. For any
z € F, if all the words in its indicator polynomial function are odd words, then

the sum of the number of replicates of the points x = (1, %9,...,%m) and —z =
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(—x1, —Z2, ..., —Tp) s 2by. If all the words in its indicator polynomial function
are even words, then the points x and —z hove the same number of replicates.
If there is no replicate and all the words in its indicator polynomial function
are odd words, then either the point z or the point —z is in F and by = 1/2. In
other words, if by # 1/2, then there exists at least one o € Q such that || « || is

even.

Proof. Assume that (1.2.1) is the indicator polynomial function of F. Then
forany * € F, f(x) = by + ) cqbax® If all the words are odd words, then
f(=z) = bo — > heq baz®. Thus f(z) + f(—z) = 2by. If all the words are even
words, the proof f(z) = f(—=z) follows similarly.

If there is no replicate and all the words in its indicator polynomial function
are odd words, since #F # 0,2™, by Lemma 2.2.1, . bs # 0. It then follows
that f(z) # f(—z), that is, either the point z or the point —z is in F. Thus
f(z) + f(—z) can only be 1. Therefore, by = 1/2.

O

Proposition 2.2.2 shows that a design with only odd words implies a half
fraction. The result “If all the words in its indicator polynomial function are
even words, then the points z and —z have the same number of replicates” is
also informally given by Cheng [7]. He showed that a design with only even words
is a foldover of another design.

Example 1.2.2 shows that in the case of non-regular designs without repli-
cate, if bp = 1/2 and #€1 > 2, then it is possible that all the words in the indicator

polynomial function are odd words.

Proposition 2.2.3. Assume that (1.2.1) is an indicator polynomial function of
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a two-level factorial design without replicates. If there exists a foldover plan such
that the indicator polynomial function g(x) of the foldover design contains no

words, then this design is a half fraction.

Proof. If the indicator polynomial function of the foldover design dees not contain

any word, then g(z) must be 1. So 2bg =1, i.e., by = £. O

Corollary 2.2.4. Assume that (1.2.1) is an indicator polynomial function of a
two-level factorial design without replicates. If there exists a main effect which is

contained in all the words, then this design is a half fraction.

Proof. Choosing the foldover plan as reversing the sign of the factor which is

contained in all the words in f(z), then the result. O

By Proposition 2.2.3, we also can get the result “if all the words in the
indicator polynomial function are odd words, then the design is a half fraction”
in Proposition 2.2.2 by reversing the signs of all the factors.

Note that a resolution N.*z design is a resolution N.x design such that its
indicator polynomial function contains no (N + 1)-letter word.

95-2

Hartley [16] pointed out that there is no regular 277 design. Proposition

2.2.5 shows that this is also true in general.

Proposition 2.2.5. Assume that F is a (2l+1)-factor resolution (21 —1).z design
without replicate. Then, it is not a resolution (21 — 1).*z design if #F # 2%,
Proof. Since the design F has only 2] + 1 factors, it has no (2] + 2)-letter word.
If #F # 2% then by # 1/2. By Proposition 2.2.2, it must have a (2[)-letter
word. O

Example 1.2.2 shows that when F is a 5-factor design and #F = 24, there

exists & design of resclution 777.*5.



21

2.3 Indicator polynomial functions with one even
or odd word

Proposition 2.3.1. Assume that F is a two-level m-factor design and f(z) =
by + bax® s its indicator polynomial function. Then all the points in F have the
same number of replicates 2bg and F is a regular design. If there is no replicate,

|ba| = bo = %

Proof. For any x € Dom, % can only be 1 or -1. Thus, f(z) equals either by + b,
or by — by. Since for any =z ¢ F, f(z) = 0, we have either by + b, = § or
bo — b, = 0. Consider by + by = 0. Let by — b, = a # 0. Then, any point z such
that f(z) = by — by, = a is in F and has the same number of replicates a. In
this case, we have a = 2bg and b, = —bg. When by — b, = 0, the proof follows
similarly. In this case, a = 2by and b, = by. Thus, |b,/be| = 1. By Proposition
1.2.1, F is a regular design.

If there is no replicate, 2bp = 1. Thus, |by| = by = % O

Note that in this thesis, we assume that F does not contain all the points
in Dom. If F contains all the points in Dgm, then |b,| may not equal by. For
3

example, f(z) = 3 + %:ca, for any z € F, f(z) = 1 or 2, this means F contains

all the points in Dym and each point has one or two replications.

Lemma 2.3.2. Assume that (1.2.1) is the indicator polynomial function of F.
Then the points © = {z1,22,...,Tm} and —z = {~z1, ~Z2,...,—Zm} have dif-

ferent numbers of replicates if and only if ) cq, baz® # 0. Moreover,

3 b= -;(f(l, Lo )+ (=1, =1, =1)) (2.3.1)
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and

S b= %(f(l, 1. 1) = f(=1,=1,...,—1)). (2.3.2)

a€fly
Proof. (1.2.1) can be written as

flz) = Z bax® + z bax®.

o€l a€lly

So

f(—z) = z box® — Z box®.

acfly aclly

Thus Y ,cq, ba?® # 0 if and only if f(z) # f(—7) and if and only if z and —z

have different numbers of replicates. Note that

FL L) => bat Y ba (2.3.3)
[ 1=1941 a&lly
and
F-1,-1,..,=1)= Y by Z ba, (2.3.4)
aely acfly
we get (2.3.1) and (2.3.2). O

Proposition 2.3.3. Assume that (1.2.1) is the indicator polynomial function of

a design which does not allow replicates; then, Y .o ba = % and

T b= L. ) EF, (<1, —1) ¢ F
et 1, D) EF (-1,-1,.. 1) eF

if and only if 3 cq, ba # 0, and

[y

S = #F(1,1,...,1), (=1,—1,...,~1) e F
e 0 if(1,1,...,1), (=1,-1,...,—-1) ¢ F

if and only if 3 cq, ba = 0.
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Proof. By (2.3.3) and (2.34), > cq,be # 0 if and only if f{1,1,...,1) #

f(—1,—-1,...,—1). Note that f(z) can only be 0 or 1, thus, f(1,1,...,1) #
f(—=1,—1,...,=1) ifand only if f(1,1,...,1)+ f(-1,-1,...,—1) =1 and
1 (L, ) EeF (-1, —1)¢F

-1 i(1,...,)eF, (-1,...,-)eF.
By Lemma 2.3.2, we get the first result.
On the other hand, by (2.3.3) and (2.3.4), > cq, bo = 0 if and only if

f(1,1,...,1) = f(-1,-1,...,-1) if and only if
2 if(1,..., 0, (=1,...,-1) e F
Ff,. )+ f(=1,...,=-1) =
0 if(1,...,1), (=1,...,—-1) ¢ F.
By Lemma 2.3.2, we get the second result. a

Corollary 2.3.4. If there is only one odd word x° in the indicator polynomial

function of a design which does not allow replicates, then either (1,1,...,1) or
(=1,-1,...,=1) isin F and
Loy, ) eF, (-1,-1,...,-1) ¢ F
bo=1{ ° ( ) ( ¢ (2.3.5)
-3 if(1,1,...,1)¢F, (-1,-1,...,-1) € F.

Proposition 2.3.5. If there is only one even word z® in the indicator polynomial

r

function of a design which does not allow replicates, then,

1 3
bozbazz0'r‘bo=——36a=g@either(l,l,...,}) or(—=1,-1,...,=-1) isin F,
1 1 i 3 4
bO:ba:§7bOZ—ba:Z OT’bgnga:z@(l,l,..a,i), (——1,—i,...,—1)€f,
and
b —b—ll 34:>f11 1), (-1,-1 ¢F
0 — 01—4)207‘4 Lty &y syt ) s yee ey .
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Proof. The indicator polynomial function of the foldover design obtained by fold-

ing over on all the factors is g(z) = 2by + 2b,2°. There exist y and z such that

g(y) = 2bo + 2b, and g(z) = 2by — 2by. Thus by = 3(g(y) + g(2)). Since g(z) can
il

be0,10r2 bp=3,3o0r3

Note that b, # 0, we get

bo=b,=—or by —3ba-—§¢?bo+ba-——,
; 1 1 1
bozba:§,boz-§ba—zOrbg—3ba——<::>bo+ba——*,
and
11 3
bo——bazz,éf OI1<—_—‘—>b0+ba—0,
by Proposition 2.3.3, we get the results. |

2.4 Indicator polynomial functions which con-

tain two special words

In this section, we prove that when all the runs in a design have the same number
of replicates, the indicator polynomial function of this design can not contain only

two words. To prove this, we need the Remark 2.4.1 below.
Remark 2.4.1. Let z® and z° be two different words. Then, we can choose a
point ¥ € Dym such that y® = ¢® = +1 or y* = —y® = +1. This point can be

chosen as follows:

1. When all the factors in z® are also in z°. Assume that z; is in 2% and =z,

is in 2% but not in 2. We can choose a point y such that its ith entry is
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+1 and other entries are I so that y® = y° = +1 or its ith entry is &1, jth

entry is —1 and other entries are I so that y® = —y® = £1.

2. When there exists a factor z; which is in 2 but not in z? and a factor T;
which is in z® but not in z°. We can choose a point y such that its ith and
jth entries are 1 and other entries are 1 so that y* = y® = £1 or its ith

entry is &1, jth entry is 1 and other entries are 1 so that y* = —y® = £1.
Now, we are ready to prove Theorem 2.4.1.

Theorem 2.4.1. There is no two-level factorial design such that all the points in
it have the same number of replicates and its indicator polynomial function has

only two words.

Proof. Assume that f(z) is the indicator polynomial function of a design F;
which does not allow replicates. Let F; be the design which contains the same
points as F; and each point has n replicates. Then, using the formula (1.2.2),
it is easy to check that the indicator polynomial function of 7, is nf(z). Thus,
if f(x) can not contain only two words, the indicator polynomial function of F;
also can not contain only two words,

Now we establish that f(z) can not be only two words.

Assume that there exists a design such that its indicator polynomial func-
tion is f(z) = bo + bz + bgz®. By Remark 2.4.1, we can choose a point y such
that y* = y® = 1 and a point z such that 2% = 2® = —1. Then, f(y) = bo+ba+bs
and f(z) = bo — by — g, and thus, by = 2(f(y) + f(z)), which can only be 0, 1,
and 1. But by can not be § and 1, therefore by = % We can alsc choose another

point h such that A% = —hP = 1, then, we get bg = 3(f(y) — f(h)), which can be
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:i:-21-. Similarly, b, = i%. Since z® and 2% can only be 1 and —1, f(z) can never

be an integer.

We can also prove the resuit through the following three cases using Propo-

sition 2.3.3 and Proposition 2.3.5:

1. If ¢ is an odd word and z? is an even word, then, by Proposition 2.3.3
and Proposition 2.3.5, f(z) = % + %aza + 2% or & £ 22 — {zP, which are

impossible since when % = —1, f(z) can not be an integer.

2. If both z® and 2? are odd words, then, Zaeﬁl be =bg = % By Proposition
2.3.3, by +bg can only be 1. Thus f(z) = $+ba2®-+ (3 —ba)z”. Choosing
a point y such that y* = —1 and y° = 1, then f(y) = (3 £ 3) — 2b,. Since
f(y) can only be 1 or 0, by = 0 or 3 if f(y) = 1 — 2b, and —3 or O if

f(y) = —2b,. Since b, and bg can not be 0, all the solutions are impossible.

3. If both 2 and z® are even words, then, since Zang b, = 0, by Proposition

233, bp+by+bg=10r0.

(8) If bg + by + bs = 1, then f(z) = b + boz® + (1 — by — by )2®. When
g = 2P = —1, we get by = 3. Then f(z) = 1 + bo2% + (3 — by)7",

which is impossible by the proof of (2).

(b) If bg + by + bg = 0, then f(z) = by + boz® + (=by — bs)x”. When
z* =z = —1, we get by = . which is again impossible by the proof
of (2).



27

Remark 2.4.2. Proposition 2.3.1 implies that when all the runs in a design have
the same number of replicates and by # %, then there are at least two words in
the indicator polynomial function. By Thecrem 2.4.1, if by # %, then there are

at least three words in the indicator polynomial function.

Lemma 2.4.2. If there exists a foldover plan of an un-replicated two-level facto-
rial design such that the indicator polynomial function of the foldover design has
only two words, then this design is a half fraction. Moreover, if the two words

are £ and 2, then by = £ and bg = +1.

Proof. Assume that (1.2.1) is the indicator polynomial function of the original
design and the indicator polynomial function of the foldover design is g(z) = 2by+
20,z + 2bgzP. Then, we can choose y, z € Dam such that g(y) = 2bg + 2b, + 2b5

and g(z) = 2by — 2bs — 2bs. So, by = $(g(y) + g(2)). Since g(z) can only be

0, 1, or 2, by can only be 1,3, or 2. We can also choose h € Dom such that

g(h) = 2bg — 2bs + 2bg. So by = }(g(y) — g(h)), which can be +1 and +1.

Similarly, b = :i:i, i%.

1. When by = 3. If |by| = |bg| = 3, then g(z) = 3 + 2* + 2%, which can not

be an integer. If |by| = |bg| = 1, then g(z) = % + 2* £ 27, which can
also not be an integer. If one of by and bg, say ba, such that |by] = § and
another one |bg| = §, then g(z) = £ + * & 22, which may be negative for

some points in Dym. Thus by # 3.

2. When by = 3. If |by] = |bg| = 4, then g(z) = 1 & 2* £ 2P, which may
be negative. If one of b, and bg, say b,, such that |by| = % and another

one |bg| = 1, then g(z) = 1+ z* £ £z°, which can never be an integer.
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If |ba| = |bg| = 3, then g(z) = 1 £ 3z & 12P, which is always an integer

between 0 and 2. Thus, when by = 3, |ba| = |bs] = 3.

3. When by = 4. If |bs| = |bg| = 3 or %, then we can similarly get g(z) can not
be an integer. If one of b, and bg, say by, such that |by| = % and another
3

one |bg| = 3, then g(z) = & £ 2% & 12, which may equal to 3 for some

points in Dom. Thus, by # 2.

O

Theorem 2.4.3 provides the coefficients of the two even words in more

detail if there are two even words in the indicator polynomial function.

Theorem 2.4.3. If the indicator polynomial function of a two-level un-replicated
factorial design F has more than two words but only two of them are even words,

say z® and z°, then this design must be a half fraction and

oy or(=1,-1,...,-1) e F

LD (-1L,-1,., =) e F (2.4.1)
), (=1,-1,...,-1) ¢ F

[y

Proof. Assume that the indicator polynomial function of a design is f(x) = be +
bax® + bgmﬁ + Z’YEQz b,z", where % and 2% are even words. Then, the indicator
polynomial function of the foldover design obtained by reversing the signs of all

the factors is g(z) = 26y + 2boz® + 2bgz®. By Lemma 2.4.2, by = 1.

1 If ) peq, 0 # 0, by Proposition 2.3.3, by + bo + s = Since by = %,

BN 1t

bo +bg = 0. By Lemma 2.4.2, b, = —b3 = i%.
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2. If 5 cq, ba = 0, by Proposition 2.3.3, by + b, + b5 =1 or 0.

Hbhy+by+bg=1 then by +bg= % By Lemma 2.4.2, by = bg = %.

L L

If b+ 6o + b5 =0, then by + b = ~%. By Lemma 2.4.2, b, = bg = —

g

When there are two odd words, say =% and 2P, in the indicator poly-
nomial function, it is hard to say their coefficients when either (1,1,...,1) or
(-1,—1,...,=1) is in F, but when both (1,1,...,1) and (-1,—1,...,—1) are
either in F or not in F in the case of replicates, the sum of the two coefficients

is equal to 0 by Proposition 2.3.3. Thus, b, = —b3.

2.5 Indicator polynomial functions with only three

words

In this section, we discuss indicator polynomial functions with only three words
and give the classification of the indicator polynomial functions.

Assume that f(z) = by + byz® + bgz® + byz” is the indicator polynomial
function of an un-replicated design F. By Remark 2.4.1, given «a, § € {2, there
exists & point € Dym such that @ and 2° have either the same sign or different
signs. Given «, 8 and z, i.e., given 2% and z®, 27 is either 1 or —1. The following

claims will be used later in this sectiomn.

Claim I  Given the indicator polynomial function f(z}, if there exist y, z € Dom

such that y® = 2 and ¢® = 2%, but y? # 27, then by = j:%.
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By assumptions, f(y) — f(z) = b,(y" — 27). Since f(y) — f(z) can only be

0,1 and —1 and 37 — 27 can only be £2, b, = i%.

Claim 2  There is no indicator polynomial function of three words satisfies

|bal = [bs] = |6y = by = 3.

In this case, |by/bo| =

bs/bo| = |by/bs| = 1, and thus by Proposition 1.2.1,

the design is a regular design. But, then |by| = |bs| = |by| = bp has to equal 1.

Claim & There is no indicator polynomial function which has the form

1
f(z) = 5+ br® — ba® £ %af*. (2.5.1)

When z® and z¥ have the same sign, f(z) = 0 or 1. When 7 and z have
different signs, f(z) = 14 2b or £2b. For f(z) to be 0 or 1, [b] has to equal 1.
This is impossible by Claim 2.

Now, we are ready to prove Theorem 2.5.1.

Theorem 2.5.1. Assume that f(z) = by + baz® + bgz? + b,z” is the indicator
polynomial function of an un-replicated design F. Then, either one or all of the
three words are even words and F is either a ;} fraction or a % fraction. More

specifically,
1. When there is only one even word, say z”,

(a) if F is o 1 fraction, then, f(z) has the forms:

s+ P2 (L ) eF (-1, -1)¢F
fley=9q 1-dge_ 1P Loy yr (1, 1) ¢ F,(=1,...,—1) € £2.5.2)
Tt F it =l (L. 1), (-1, -1) ¢ F.



(b) if Fisa % fraction, then, f(z) has the forms:

Splze+ 3P -t (L. D eF (-1, -1 ¢F
fz $olpe 1P 1 if(1,... 1) ¢ F,(-1,...,—1) € £25.3)
dxiett i (L. 1), (-1, - eF

2. When all the words are even words,

(a) if F is a § fraction, then, f(z) has the forms:

| Ll 18 1y 11
+x®+ 2P 227 (1,00, (5., eF
flmy=¢ ¢ 4 4 4 A Y (2.5.4)
| $+%— 2P -3 (1. 10 (=1...,-1) ¢ F.
(b) if F is a 3 fraction, then, f(z) has the forms:
8 _lgo 10810y 4f(1,...,1),(—1,...,-1) € F
fl@y=¢ * * ‘ ¢ & i ) (2.5.5)
Stz -1 — 22 df (L, 1),(-1,...,-1) ¢ F.

Proof. 1. If all the three words are odd words, then, by Proposition 2.2.2,
by = 1. By Proposition 2.3.3, either (1,1,...,1) or (=1,—1,...,—1)isin

F and

f2) L4 boaa® +b52° + (3 —ba —bg)z” i (1,1,...,1) €F
) =
L4+ ba2% + bpzP + (=3 — by —bg)a”  if (—1,-1,...,—1) € F.

(a) When f(z) = 5 + baa® + bsz” + (3 — by — bg)z”. Since there exists a
point z such that 2% = —zf = 1, if 27 = 1, then, f(z) = 1—2bg, which
yields bg = % So f(z) = % + bax® + %xﬂ — b,2”, which is the form
(2.5.1), by Claim 3, this is impossible. If 27 = —1, then, f(z) = 2b,,
which yields by = 3. So f(z) = 5 + 52 + bgz® — bga?. This is again

the form (2.5.1).
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(b) When f(z) = 1+ 8,2 +bg2” + (—% — by — bg)z”. There exists a point
z such that 2% = —3% = 1. f 27 = 1, then, f(z) = —2bg, which yields
bg = —3. So f(z) = & +baz® — 227 — box”, which is the form (2.5.1),
by Claim 8, this is impossible. If 27 = —1, then, f(z) = 1 + 2b,,
which yields b, = —1. So f(z) = § — 12* + bgz® — bga”. This is also

impossible by Claim 3.

2. If there are two even words, say 2% and #?, in the three words, then, by

Corollary 2.3.4 and Theorem 2.4.3, we get

sz — P+ (L. 1) eF,(-1,...,-1)¢F
f(z) =
_+._

1
371

T+t -1 =1 (1, 1) ¢ F (-1,...,-1) € F,
which has the form (2.5.1). By Claim 8, this is impossible.

3. If there is one even word, say z”, in the three words, then, by Proposi-
tion 2.3.3 and Proposition 2.3.5, the indicator polynomial function has the

following possible forms.

(a) flz) =3 +baz®+ (3 — ba)z? + 127 or 24 boa® + (5 — bo)x? — 327, if

1,1,...,1) € F, (=1,~1,..., ~1) ¢ F.
i. When f(z) = Z + box® + (3 — ba)z® + 127, considering various

cases, we have the table below.



Case# | =% | 2° | 27 | f(=) ba, bg, by
1 111 1
-1 % impossible
2 -1 -1]1 0
-1 - % impossible
3 I |=1] 1] 2b bo = 3
—1|2b—3%] ba=1,2
4 1] 1|1 [1=2b| bo=1%
—1|3=2b4 | ba=1 -3

Since b, # i%, by Claim 1, for each case, ¥ = 1 or —1. From

Case 4, by = 3,

contradiction. If b, = —

integer. If b, = %, then, f(z) in other 3 cases can be 0 or 1. Thus

1
q

and —

1
yQ
1
R

bo = 7. This gives the first form of (2.5.2).

ii. When f(z) = 3 +baz®+ (3 —ba)z® — 327, we have the table below.

Ifba=%,then,bﬂ:%—ba:0,a

then, in Case 8, f(z) can not be an

Case# | 2% | 2% | 27 | f(=) ba, ba, by
1 1 1 1
-1 % impossible
2 —1]-1]1 0
-1 % impossible
3 1 (=11 | 2b, bo = 1
1| 2a+35|ba=13—1
4 1] 1] 1 |1-2b, bo =3
1|t | ba=13
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Similarly, we get b, = %. This gives the first form of (2.5.3).
(b) f(2) = 7 +baz®+ (=5 —ba)z’ + 227 or § + bz + (—3 — ba)z? — 227,
(1,1, )¢ F, (-1,-1,...,-1) € F.

i. When f{z) = 2 4+ b,z® + (—5 — by)2” + 7. Counsidering various

cases, we have the table below.

Case # | z® | z° | 27 fl=z) ba, bg, by
1 1 1 1 Y
-1 — % impossible
2 -1|-1]1 1
-1 -;— impossible
3 1 =1] 1| 142 | ba=—3
—1| §4+2b | bo=-11
4 -1 11 —2b, bo = 3
=1 | =5 —2bs | bg=—3%,-32
Similar as the discussion in (3a), we get b, = —;. This gives the

second form of (2.5.2).

ii. When f(z) = 3 4 boz® + (=3 — ba)z? — 127, we have the table

below.



Case# | z% | 2% | 27 | f(z) ba, bg, by
1 1 i 1 0
-1 5 impossible
2 —11 -1 1 1
-1 3 impossible
3 1| —1] 1 |1+42by]| bo=—3%
—1| 242, | bo=~1,-2
4 -1 1] 1] =25 bo = 3
—1(3—-2bs| ba=—1,1

Similarly, we get b, = —;. This gives the second form of (2.5.3).

(e) flz) =1
baxﬂ+ .zll'x77 if (171a R 1)’ (—-1’_1"’ ’—1) €F.

+ boz® — b + %337, % + box® — by + %:J:'Y or % + boz® —

i. When f(z) = % + box® — boxP + %x“’, we have the table below.

Case # | 2% | 2° | 27 f(z) ba bg, by
1 1 1 i 1
-1 -1 impossible
2 -1l -1] 1 1
-1 — %— impossible
3 |1 -1 1| 142 | ba=-1
—1| —$+2b,| bo=1,2
R TN R B I b = L
—1 =225, | bg=—-1 -2

From Case 8 and 4, f(z) can not always be an integer for any b,.

Thus, f(z) can not be this form.
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ii. When f(z) = 1 4baz® — baz® + 327. This is the form (2.5.1) and,
so, is impossible by Claim 8.

ili. When f(z) = % + boz® — boaf + Zj‘x"’, we have the table below,

Case# | % | 2° | =7 | f(z) ba, bg, by
1 1 1 i 1
-1 % impossible
2 -1 -1} 1 1
-1 % impossible
3 1) =1] 1 | 1426 bo=—%
1| 142, | ba= 11
4 —1] 1 | 1 |1—=2b| bo=1%
—1|3-2bs | ba=1%,—1

Since b, = %, similar as the discussion in (3a), we get by, = 3.

This gives the third form of (2.5.3).
(d) f(z) = +baz® = boa? — 327, 1 + baz® — boz” — 327 or 3 + boz® —

b mﬁ—zﬁ if(1,1,...,1), (-L,-1,...,-1) ¢ F.

i. When f(z) = % + boz® — bozP — %cﬂ, we have the table below.
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Case # | z¢ | 2% | 27 | f(z) bay b3, by

1 1 i 1 0

-1 % impossible
2 —-1]-1]1 0

-1 % impossible
3 1 ]-171 2by by =

1 1 1
~1 1= | ba=1,—1
t

=

Since b, = ——%, similar as the discussion in (3a), we get b, = £7.

This gives the third form of (2.5.2).
ii. When § + boa® — boz® — 127. This is the form (2.5.1). By Claim
3, this is impossible.

iii. When f(z) = 2 4 boa® — baz® — 227, we have the table below.

Case # | 2% | 2% | 27 | f(=) ba, bg, by

1 i 1 1 0
-1 % impossible
2 —1i-1] 1 ¢
3 . .
-1 5 impossible
3 1| =1 1] 2b bo =3
3 _ 3
—1| 2420, | bo=—2—3
4 =1l 11| =2k | ba=-1
3 13
-1 5 26& ba =317
From the Cose 3 and 4, we can see that f(z) can not be an integer



for any b,. Therefore, f{z) can not have this form.
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4. If all the three words are even words, then ) | .o b, = 0. By Proposition

2.3.3, f(z) has two possible forms.

(a) f(z) = botbaz®+bszP +(1—by—by—bs)z?,if (1,1,...,1), (=1, -1,...

F.

Considering various cases, we have the table below.

,—1)6

Case # | z% | 2% | 27 f(z) ba, b, by
1 1|1 |1 1
—1|2(bo+ba+bs)—1|bo+ba+bs=13,1
2 —1]{-1] 1 1 — 2(bg + b3) ba +bs=0,3
-1 —1+2bp bo =13
3 1]-1]1 1 — 2bg bs = 3
—-1 2(bg + by) — 1 bo+bo =3,1
4 -1 11 1 —2b, ba = 3
—1| 2(by+b5) -1 bo+bg = 3,1

i. Show that by # % Assume that by = %

be =

Then, for Case 4, if

3, then f(z) has the form (2.5.1), which is impossible; if

bo + bg = %, then, bg = 0, a contradiction; if by + bz = 1, then,

bs = 5 and f(z) also has the form (2.5.1), which is impossible.

Thus, in Case 2, that is, when z® = z® = —1, 27 must be 1, which

needs

g)a—i—égzﬁ

(2.5.6)
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or

(2.5.7)

[N

ii. Show that bg # % Assume that by = % Then, since b # 0,
bo +bs # 2. So by +bg = 0 by (2.5.6) and (2.5.7) and, thus,
by = —%. Therefore, for Case 4, we have by + bg = % or 1, which

ields by = 0 or %, respectively, a contradiction. Thus, in Case 3,
Y 0 2 D Y 3

that is, when 2% = —zf = 1, 27 must be —1, which needs
1
bo + ba = 5 (258)
or
bp + b, = 1. (2.5.9)

iii. Show that b, # 3. Assume that b, = 3. Then, by (2.5.8) and

2.5.9), by = 0 or i, which is impossible. Thus, in Case 4, that is,
2

when ¢ = —2% = —1, 27 must be -1, which needs
1
by + bg = 5 (2.5.10)
or
bo + bg = 1. (2.5.11)

iv. By (i), (2.5.6) and (2.5.7), we know that by + b, + bg can not be
% or 1. Thus, in Case 1, that is, when z¢ = 2% = 1, 2" must be 1

and f(z) =1

Now, by (2.5.6), (2.5.8) and (2.5.11), we get by = 2, b, = —bg =
—b, = —21, which gives the first form of (2.5.5). By (2.5.6), (2.5.9)
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and (2.5.10), we get by = %, bo = —bg=0b, = %, which also gives the
first form of (2.5.5). By (2.5.7), (2.5.8) and (2.5.10), we get by = b, =
bs = b, = 1, which gives the first form of (2.5.4). By (2.5.7), (2.5.9)
and (2.5.11), we get by = %, bo = bg = —by, = 21;'7 which again gives
the first form of (2.5.5). All the other combinations of the equations
(2.5.8) or (2.5.7), (2.5.8) or (2.5.9), and (2.5.10) or (2.5.11) lead to the

solutions with by equals -;-, contradictions.

(b) f(x) = bo+baz¥+bgzP+(—bo—by—bg)z?,if (1,1,...,1), (=1, —1,...,—1)
¢ F.
Considering various cases, we have the table below.
Case # | z% | 2° | 27 f(x) ba, ba, by
1 1111 0
—1]2(bg+ba+bg) | bo+by+bg=0,3
2 —1|=1] 1 | =2(by+bp) bo +bg=0,—2
—1 2bo bo =3
3 1 |-1|1 —2bg bg = —3
-1 2(bo + ba) bo+ba =0, 3
4 ~111 |1 —2b, bo = —3
~11 2(bo +bg) bo+bg =0, 3

i, Show that by # ; Assume that by = % Then, for Case 4, if
by = —%, then f{z) has the form (2.5.1), which is impossible; if
bo + bg = 0, then, bsg = —5 and f(z) also has the form (2.5.1),

which is again impossible; b+ g can not be %, since, then, bg = 0.



Thus, when z® = z° = —1, 27 must be 1, which needs
b +b3=20 (2.5.12)
or
bo +bg = —é. (2.5.13)

ii. Show that bs # —%. Assume that bg = —1. Then bo+bg # —3. So
bo +bg =0 by (2.5.12) and (2.5.13) and, thus, b, = 3. Therefore,
for Case 4, we have by + bg = 0 or 3, which yields by = 3 or 1,
respectively, a contradiction. Thus, when 2% = —2® = 1, 27 must
be —1, which needs

bo + by = 0 (2.5.14)

or

. (2.5.15)

N =

bo + b =

<o

iii. Show that b, # —3. Assume that b, = —%. Then, by (2.5.14)

and (2.5.15), by = 3 or 1, which is impossible. Thus, when z* =

—27 = —1, 7 must be —1, which needs
bo+bg=20 (2.5.16)
or
. 1
b(}, + b5 = 5 (2517)

iv. By (i), (2.5.12) and (2.5.13), we know that by + b, + bg can not be

0 or 3. Thus, when z* = z° = 1, 27 must be 1 and f(z) = 0.

Now, by (2.5.12), (2.5.14) and (2.5.17), we get by = —by = bg = —by, =
1, which gives the second form of (2.5.4). By (2.5.12), (2.5.15) and
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(2.5.16), we get by = by = —bg = —b, = %, which also gives the
second form of (2.5.4). By (2.5.13), (2.5.14) and (2.5.18), we get by =
—ba = —bg = by, = 1, which again gives the second form of (2.5.4).
By (2.5.13), (2.5.15) and (2.5.17), we get b = 2, by = bg = by = —1,
which gives the second form of (2.5.5). All the other combinations of
the equations (2.5.12) or (2.5.13), (2.5.14) or (2.5.15), and (2.5.16) or

(2.5.17) lead to the solutions with by equals % or 0, contradictions.
O

By Proposition 1.2.3, the % fractions with the forms of indicator poly-
nomial functions in (2.5.3) and (2.5.5) are corresponding complementary frac-
tions of the % fractions with the forms of indicator polynomial functions in
(2.5.2) and (2.5.4). For example, when there is one even word, the fraction
f(z) = 3+ 32* + ;2% — 127 is the complementary fraction of the fraction
fl@) = 3
fraction f(z) =

fl@) =3+ j2° — 32 — 327

% — %wa + %ﬁ; when all the three words are even words, the

[N [N

- %ma + %mﬂ + %x” is the complementary fraction of the fraction



Resolutions of General

Two-Level Factorial Designs

3.1 Introduction

Regular resolution JII* designs are regular resolution /7] designs in which no
two-factor interactions are confounded with one another. Draper and Lin [14]
showed that resolution 777* m-factor regular designs can be converted into res-
olution V' {m — 1)-factor regular designs and, conversely, resolution V m-factor
regular designs can be converted into resolution II7* (m + 1)-factor regular de-
signs. In this chapter, using indicator polynomial functions, we not only extend
these results to general two-level factorial designs, but alsc obtain even more
general results.

Remember that a resolution N.*z design is a resolution N.zx design such

43



44

that its indicator polynomial function contains no (N + 1)-letter word.

In Section 3.2, we provide a way to convert resolution (2! — 1).*z desigas
to resolution (2! 4+ 1).z designs. A link between resolution (2! — 1).z designs and
resolution 2{.z designs is also presented in this section. In Section 3.3, we show
that resolution 777"z designs can be obtained from designs whose resolutions

are equal or bigger than V.

3.2 Changing solutions by Converting a m-

Factor Design into a (m — 1)-Factor Design

In this section, we extend Theorems 1 and 2 of Draper and Lin [14] to general
two-level factorial designs. A more general theorem is also proved in this section.
As another special case of this theorem, a relation between designs of resclution
(21 —1).z and resolution 2[.z is also presented. For this purpose, we use the same
transformations as Draper and Lin [14] used in their work.

Assume that x1, zo, . . ., Z,, are the m factors that form a two-level factorial
design F with the indicator polynomial function (1.2.1). Let z; be any of the m

factors and let

Yi = TpZj, J=1,2,...,m (J £ k). (3.2.1)
Then y1,Y2, - - - » Yk—1, Yk+15 - - - » Ym form a (m — 1)-factor two-level factorial design
F. Define
of=a; i=12,...,m({#k).
Then

) = )y (3.2.2)
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and
[ el fap=0

o' || -1 fap=1.

Lemma 3.2.1 gives the indicator polynomial function of F. Lemma 3.2.2
provides the resolution of F and follows from Lemma 3.2.1 and the above discus-
sion directly.

Lemma 3.2.1. Let F be a two-level m-factor design and F be the corresponding
(m — 1)-factor design. If (1.2.1) is the indicator polynomial function of F, then
g9(y) = 2bg + 2 z boy™

acQf

is the indicator polynomial function of F.

Proof. By (3.2.2), the indicator polynomial function of F can be written as
f(.’l?) =bo + Tk Z baya, + Z baya,-
aeQl aeQl
This can also be seen as the indicator polynomial function of the design with the
factors y1, y2; - - - s Yk—1, Bk Yk+1, - - - Ym- When it is projected onto y1, ¥, . . ., Yk—1, Yr+1,

.., Um, the resulting projected design is F. By Theorem 1.2.4, the indicator

polynomial function of the projected design is

g(y) = 2bp + 2 z bay® .

aeQl

O

Although g(y) is only related to the even words in f(z), the words in g(y)
can be odd words. When there is only one even word in f(z), ¢{y) has only one
word. By Proposition 2.3.1, the design is a regular design. When all the words in
f(z) are odd words, F is a full two-level (m — 1)-factor design with 2b; replicates

for each point in F.
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Lemma 3.2.2. Let F be a two-level m-factor design and F be the corresponding
(m — 1)-factor design. Assume that 2r is the number of letters in the shortest
even word of QF . Let

A={aeqZ | ||lal=2r}.
Then, the resolution of F is

R (2r — 1).x  if there exists an o € A s.t. o =1
j: =

2r.x otherwise.

Theorem 3.2.3 shows the relation between the resolutions of the original

design F and the resolutions of the transformed design F.

Theorem 3.2.3. Let F be a m-factor two-level fractional factorial design with
the indicator polynomial function (1.2.1). Assume that 2r is the number of letters
in the shortest even word of Q7. Then regardless of what resolution F is, F can
always be converted into a (m — 1)-factor design F of resolution (2r — 1).z in
the same number of runs. If there exists a k € {1,2,...,m} such that for any
o € Ayap # 1, then F can be converted into a (m — 1)-factor design F of

resolution 2r.x.

Proof. Let o € A. Take any k such that o = 1. By Lemma 3.2.2, we get the

first result. The second result follows from Lemma 3.2.2 directly. O

The following corollaries are obtained readily from Theorem 3.2.3. Corol-
lary 3.2.4 is a generalization of Theorem 1.3.1 and Theorem 1.3.5 which were
obtained by Draper and Lin [14], while Corollary 3.2.5 is an extension of Corol-

lary 1.3.2 obtained by Draper and Lin [14].
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Corollary 3.2.4. Let F be a m-factor two-level fractional factorial design of
resolution (20 —1).*z. If there is a (21 +2)-letter word in the indicator polynomial
function of F, then F can be converted into a (m—1)-factor design F of resolution

(20 + 1).z in the same number of runs.

Corollary 3.2.5. Assume that a design of resolution ITI.*x can be converted
into a design of resolution V.z. Then, if m is the mazimum number of factors
that can be accommodated in the design of resolution I11.*x, then the mazimum
number of factors that can be accommodated in the design of resolution V.z with

the same number of runs is at least m — 1.

Example 3.2.6. An indicator polynomial function of a 6-factor design is

f() 1—1—1:1: +1 1 1 1

r) = —+ —T114% —ToT3Tg — —TL1LsTg — —TaX3Ly — —ToTs5T

481458236815682348256
1:v 1 1 +1 .
— =123 — =T — —=ZT1X3% —T1L9X3T4T5L6.
81368233433581344123456

This is a resolution I11.*5 design. Take, for example, k = 6 ( one can take any
i, 1 =1,2,...,6 ), that is, y; = zgz;, 1 = 1,2,...,5. Since f(z) only contains
one even-letter word T1xox3z4x5xg, by Corollary 8.2.4, F can be converted into

a resolution V design and

1

(W) =2+
Qy) = 9 2y1ygy3y4y5.

For the regular resolution 777* design, when there are at least two 3-letter
words in the indicator polynomial function, there is always a 6-letter word in
the indicator polynomial function. But when there is only one 3-letter word, it
is possible that there is no 6-letter word in the indicator polynomial function.
Draper and Lin pointed out in their Example 3 that when there is only one 3-
letter word in the defining relation, one may get a resolution V design by deleting

one variable in the 3-letter word.
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Example 3.2.7 shows that when a resolution 7/7* design has only one 3-
letter word in its indicator polynomial function, it may be converted into two
designs with different resolutions. Example 3.2.8 shows that one can not possibly
convert it to a resolution V design by deleting a variable in the 3-letter word, but

possibly convert it to & design with resolution higher that V.

Example 3.2.7. An indicator polynomial function of a 8-factor design with gen-
erators t7 = T1x4 and Ty = ToT3T5Ts 1S

i 1 i 1
f(a:) = 1 + Zx1x4m7 + ZZ’Q.’I/‘3$5ZE55L‘8 + lexzxgng,xgxwg.

This is a resolution IIT* design and 2r = 8. If we take k = 1, then after the
transformation (8.2.1), F is converted into the design of resolution VII and its

indicator polynomial function is

1 1
g(y) = 3 + o Y2YsYaYsYsyrys-

If we delete, for example, the variable z, as in Example 8 of Draper and
Lin [14], then this design can also be converted into the design of resolution V

and its indicator polynomial function is

11

B(y) = = + = ‘
(y) 5+ 5Y2Ysysysys

Example 3.2.8. An indicator polynomial function of o 10-factor design with
generators Tg = T1ZT4 and T1p = TaT3TsTeL7Ts 18

i

i i 1
f(x) = Z + Z!Eﬂwg =+ Z$2$3x5$6$7$8$16 + 1$1$2953$435‘51E6$7338939$10~

This design can not be converted into a design of resolution V' by removing

one variable in the 8-leiter word as Ezample 8 of Draper and Lin [14]. If we
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delete, for example, the variable xq, then the indicator polynomial function of the
resulting design is

1 1
9(y) = 5 + 5Y2YsYstsyrYsyio,

which is a resolution VII design.

Example 3.2.9 shows that the condition, that a (2] + 2)-letter word is
needed in the indicator polynomial function of F in Corollary 3.2.4, is necessary

even in the regular case.

Example 3.2.9. An indicator polynomial function of a 10-factor design with

generators Ty = T1T4Ts5Ty and Tig = ToT3Telg S

1 1
flz) = 1 + Zm1$4w5:c7:c9 + Z$2$3$6I8$10 + Zx1x2x3x4x5x6m7x8x9xm.

This is a resolution V* design and 2r = 10. If we take k = 2, then after the
transformation (8.2.1), F is converted into a resolution IX (not VII) design

and its indicator polynomial function is

1 1
9(y) = B + 5 Y19sYaYsYsYrUsyoyio-

Corollaries 3.2.10 and 3.2.11 provide connections between two-level designs
of resolution (2! — 1).z and resolution 2/.z. In particular, when [ = 2, they show

connections between two-level designs of resolution 7//.z and resolution IV.z.

Corollary 3.2.10. Let F be a two-level m-factor design of resolution (21 —1).z.
If there is a 2l-letter word in the indicator polynomial function of F and there
ezists ¢ k € {1,2,...,m} such that for any o € A,ap # 1, then F can be
converted into a (m — 1)-factor design F of resolution 20.z in the same number

of runs.



Corollary 3.2.11. Let F be a two-level m-factor design of resolution 2{.x. Then,
F can be converted into a (m — 1)-factor design F of resolution 20 — 1.z in the

same number of runs.

Example 3.2.12. An indicator polynomial function of a 7-factor regular design

with generators xs = T1%9%s, Tg = T1%3, and Ty = TaX3 18

f(a:)—i—i-la:a;m-i-lxxas—l-lx:z:a::c%-iscmxw
= g T g¥i®sle + gTalsly + SL1Talals + SRaT5T6ly

1 1 1
+§$1$‘2l‘6$7 + §$2$3$4$5.’E6 + "8-111.’L'3$4$5£E7.

This is a resolution I11 design. Since there exists a k (= 3) such that z3 is not
in all the 4-letter words, F can be converted into a 6-factor design of resolution

IV and its indicator polynomial function is

1 1 1

1
g@%—1+zmww%+zm%%w+zmw%m'

Example 3.2.13. An indicator polynomial function of a 7-factor design is

1 1
T1T3T4T7 + 15121:52334375 + Z$2x3m5w7 + §x2x3x4x6x7.

w
e

fla)=7+

This is a resolution 4% design. If we take k = 1, then F is converted into a

6-factor design of resolution I1I and its indicator polynomial function is

1 1 i

3
y_ 22 e iedia i b aietiadls
g(y) 5 T 3YsYaYr + Sabays + SUaysYsyr.



btaining a

Converting a m-Factor

(m + 1)-Factor

Assume that

_ C _
v = (Tpx)2zs, 1= 1,2,...,M, Yne1 = Tl

Then, y1, Y2, - - -, Ym+1 form a (m + 1)-factor two-level factorial design and

T =Yg, Te =Y, and x; = Yy, Vi £ kL

Since -
H Yeyiyi)® yk y;"k = [H (yi)ai]y}ia“_akyl”a”_m,
i=1 i
kil i#kl,l
we define
[ o if 1 <i<mandi#k,l,
o = | a| — ak(mod2), ifi=k,
Z | o || — ay(mod2), ifi=1,
\ 0, fi=m+1
Then z°® = y*.

design.

(3.3.1)

Lemmas 3.3.1 gives the indicator polynomial function of the transformed

Lemma 3.3.1. Let F be a two-level m-factor design and F be the transformed

(m + 1)-factor design. If (1.2.1) is the indicator polynomial function of F, then

the indicator polynomial function of F is

(> Bay®™ + D bay® ™),

a€lom a€Lym

l\:)lewt
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where @ s a 1 x (m + 1) vector such that k,{ and (m + 1)-th eniries are I and

all others are 0.

Proof. The indicator polynomial function of the 20"+D~! design with defining
relation ¥my1 = Yy is

1.
foly) = §(i + YrYiYmt1)-

!

From above discussion, the right hand side of (1.2.1) can be writtenas ) ., bay® .

Thus, the indicator polynomial function of the design formed by the factors

Y1, 92,1 Um is

hily) = Z ba?;’a’-

O(ELQTV‘L

Therefore, the indicator polynomial function of Fis

9y) = folw)frly)

1 ,
= S(1+pUymer) D bay®

2 ac€lom
1 / /
- 5( Z bay® + Z bay® +<p).
aELom aELom

d

The following theorem is a generalization of Theorem 1.3.3 which was

obtained by Draper and Lin [14].

Theorem 3.3.2. Any m-factor two-level fractional factorial design F of resolu-
tion V or bigger can be converted into a (m + 1)-factor design F of resolution

Iir.
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Proof. By (3.3.1),

ol =2, if ||ea] isodd, and ap =1, 04 =1,
1 ll=9 el +2, if | o] isodd, and g = 0,04 =0, (3.3.2)
ol otherwise,
(aia ifl1<i<mandi#k/|
(o + o) = 1 | @| —ax+1(mod 2), ifi=Fk,

| o] —ar+ 1(mod 2), ifi=I,

o ifi=m+1,

and therefore
||l =1, if ||« iseven, and oy = 1,04 = 1,

& +¢ll=9 [|lal|+3, if || ol iseven, and g = 0,00 =0 (3.3.3)

la|l+1, otherwise.

By (3.3.2) and (3.3.3), for any a € Q% such that ||« ||[>5, || a| and || &/ + ¢ ||
are all at least 3 but not equal to 4. From Lemma 3.3.1, the indicator polynomial

function of F has a word y? = YrUiYm+1 and its length is 3. Thus, the resolution

of Fis ITT*. O

The following coroliary is an extension of Coroliary 1.3.4 obtained by

Draper and Lin [14].

Corollary 3.3.3. If (m — 1) is the mazimum number of factors that can be ac-
commodated in a design F of resolution V.z, then the mazimum number of factors
that can be accommodated in a resolution I1I* design with the same number of

runs 1s at least m.
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Example 3.3.4. An indicator polynomial function of a two-level 9-factor design
8

1 1
T1X3T4LeT7 + Z$2$3$5CE6£9 —+- Z$1$2$4$5$7$9 + 5&71%‘2375256@"82’)9.

P | bt

3
f(w) = Z -

If we take k = 1 and [ = 6, then X1T304Te27 = YsYalr, To¥3T5TeLy =
Y1Y2YaYsYe, T1ToTsTsTrTy = Y1YaYalsyrys, and T1ZToTsTeTsTo = Y1Y2UsYslslo.

Thus, by Lemma 8.8.1, the indicator polynomial function of the transformed de-

stgn s
3 3 1 1 1
gly) = 3 + gylyﬁylo + §y3y4y7 + gylyQQBysyg + gylyzy4y5y7y9 + Zylyzysyaysyg
1 1 i 1
+§y1y3y4y6y7ym + gyzysysysygym =+ Zyzysysygylo + gyzywsyengylo-

The word lengths of the 3-letter words y1Ysy10 and ysysyr are 3 and 3%,
respectively. Thus, the resolution of the transformed design is III. Since there
15 no 4-letter word in its indicator polynomial function, the transformed design is
therefore of resolution I111*.

If we take k = 4 and | = 8 (note that zg is not in any 5-letter word),
then T1T3T4TeTr = Y1YsYsYryYs, T2T3TsTeTe = YaYsYa¥sYsYsls, L1T2T4T5T7ly =
Y1YolaYsYrYe, and T1ZaT5Te TeTg = Y1Y2YsysYsYe. Lhus, the indicator polynomial

function of the transformed design is

‘E %

3 3 1 1
gy} = <+ svaysyro + gY1YsYsYrys + FY1YaYsYslsys + gYryzyaysyrls

8 8 4 8
1 1 1
+§y1y3y4yey7y10 + '8-?/2931/5%993/10 + Zyzyzyzlysyeygyw
1 1
+'8fyzy3y4ysyﬁysyg + gylystywsygyme

There is only one 3-letter word yaysyio and its word length is 8. Note that there

is no 4-letter word in the indicator polynomial function and hence this is also a



resolution I17* design. However, if we compare the two transformed designs by
the minimum aberration criteria, the second design is better since it has only one

3-letter word.

Hence, when we choose & or I, it is better to choose the one whose factor

is not contained in any B-letter word.



of Partial Foldover Designs

4.1 Introduction

Partial foldover designs save half or more of the original runs comparing to cor-
responding full foldover designs. The new runs which are added to the original
design is used to de-alias some effects. Mee and Peralta {20] studied various pos-
sible semifoldover regular designs. John [18] considered to add a fraction of %
original runs to the original regular design. We study partial foldover general
two-level factorial designs, regular or non-regular.

The powerful tool we use for this purpose is indicator polynomial func-
tions. As we mentioned earlier in Section 1.2, indicator polynomial functions
provide alias structure of the designs, that is, any word in the indicator poly-
nomial functions implies an alias relation. Conversely, if a word is not in the
indicator polynomial function, then the alias relations caused by this word are

de-aliased. Note that for a regular design, if two effects are aliased with the same



effect, then this two effects are also aliased; but for a non-regular design, this is
not true in general.
For example ([15]), an indicator polynomial function of a 5-factor non-

regular design is:

f(:c) = + L -+ L = + L
==+ -7z - T -1z —T1T3T4T5.
5 4$1w2$3 4331732 4T 1 1Z2X3T5 4391 2T4Z5

Although z3 and x4 are partially aliased with z1x9, 23 and x4 are not (partially)
aliased. Also, z3x5 and z4x5 are partially aliased with zixq, but z3zs and z4z5
are not {partially) aliased since xsz4 is not in the indicator polynomial function.

In Section 4.2, we study the indicator polynomial functions of semifoldover
designs. In Section 4.3, we extend some results in Section 4.2 to a more general
case and, especially, the indicator polynomial functions of partial foldover designs

obtained by adding a fraction of % original runs are obtained.

4.2 Indicator Polynomial Functions of Semifoldover

Designs

In this section, we study indicator polynomial functions of semifoldover designs.

Lemma 4.2.1 below is obtained directly from the properties in Section 1.4,
and this result will be utilized later. One can see that the words that are left are
those in the original design which are not sign-reversed in the new fraction. This
shows that the “Foldover Rule 17 in Montgomery [21] is also true for non-regular
designs. Thus, foldover of a non-regular design can also de-alias all (or as many as
possible) the two-factor interactions which contain factors of interest as foldover

of a regular design.



Lemma 4.2.1. Assume that (1.5.2) is the indicator polynomial function of F.
If we fold over on z1, 29, ..., z,, then the indicator polynomial function of the full

foldover design is

fo@) =2 ) baz™ (4.2.1)

aele

Lemma 4.2.2 below is useful for getting indicator polynomial functions of

semifoldover designs, and is easy to verify.

Lemma 4.2.2. Let F, and Fy be fractions of a two-level factorial design and
fo(z) and fio(z) be the corresponding indicator polynomial functions, respectively.

Then, the indicator polynomial function of F, N Fy is fo(z) fo(z).

Lemma 4.2.3 provides the indicator polynomial function of F(©.

Lemma 4.2.3. Let (1.5.2) is the indicator polynomial function of F, then

£ (z) = -;-(1 +ex)f(z) = %(1 +en)(S bazt + Y bas®) (4.2.2)

a€fle aEQ,

is the indicator polynomial function of F(@.
Proof. The indicator polynomial function of the half fraction which satisfies ez =
1(or z=¢)is fr(z) = 1/2 + ez/2. By Lemma 4.2.2, the indicator polynomial

function of F is
1) = f(@)ale) = 51+ e2)f (@)

We can also prove this in the following way by using the definition of
indicator polynomial functions:

Since F = F U F9, Dym = FO U F U (Dom \ F). To prove (4.2.2)
is the indicator polynomial function of F(¢), we consider the value of f(¢)(z) in

the three subsets separately.
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[y

.Ifz € F then z € F and z = e. It follows that f(z) = 1 and ez = 1.

Thus f®(z) = f(z) = L.

2. Ifz € F9) then z = —e. It yields ez = —1 and, therefore, f(e){:y) =0

(%]

. If £ € Dym \ F, then f(z) = 0. It follows that f)(z) = 0.
By (1),(2) and (3), we obtain

1 ifzeF©
fOz) =
0 ifx € Dym \ F©.

By the uniqueness of the indicator polynomial function, we know that f©(z) is

the indicator polynomial function of F(®,

d

Remember that F, is the new fraction obtained by reversing the signs of
Z1,T2,-..,Zr. Note that for regular designs, number of runs in the fraction Fge)
is exactly half runs of the original design. But for non-regular designs, number
of Tuns in the fraction Fi° may be less or more than half runs of the original
design.

Proposition 4.2.4 below provides the indicator polynomial function of the
semifoldover design. It shows that the words in the two semifoldover designs
obtained by adding the fraction F or the fraction 75V to the original design

are the same. Thus, the two semifoldover designs have the same alias sets.

Proposition 4.2.4. Assume that (1.5.2) is the indicator polynomial function of
F. If we subset on a main effect or an interaction effect ez, e = 1, —1, then the

indicator polynomial function of F© U F® 4s

fi(z) = z box® + ez Z box®.

QEQe aeﬁe
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The indicator polynomial function of F(- U FLE s

faolz) = z bot™ — ez Z baz”.

€l asl,
Proof. By Property (1) in Section 1.4, the indicator polynomial function of F, is

folz) = E box® — 2 baz”

a€le a€flo
If we subset on ez, then, by Lemma 4.2.3, the indicator polynomial function of

{©) is given by

f(e be—zba@‘ +ez2bm—eszax

a€le aell, agll, a€fl,
By (4.2.2) and the Property (2) in Section 1.4, the results follow easily. a

Note that any word in f.(z) is also in fi(x) and fo(x) and, consequently,
all the alias relations in the full foldover design are still in the semifoldover de-
sign. Thus, the semifoldover design can not de-alias any additional two-factor
interactions than the full foldover design.

It is well known that for a regular design F, its run size must have the
form 2™7P if there are m factors and p generators, thus, the combined fraction
FU .7-'(56) is a non-regular design since its run size is 2™7P + % < 2MTP = -32- - 2mTP,
But for a non-regular design F, it is hard to see if the run size of the combined
fraction FUFS has the form 2P , 80 we can not tell whether it can be a regular
design. Proposition 4.2.5 provides the indicator polynomial function of F U Fy (©)

which allow us to answer this question easily.
Proposition 4.2.5. Assume that (1.5.2) is the indicator polynomial function
of F. If we subset on ez, e = 1,—1, then the indicator polynomial function

fslz) = ZaeLzm caz® of the combined semifaldover design F U F 4s

fo(z) = sz + = Zbax + ez be +Zbaw . (4.2.3)

aEQe aEQo a€fl, 1S9
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Proof. By the proof of Proposition 4.2.4, the indicator polynomial function of
F is
v 1 , ,
flo(z) = 5{2 boz® — Z boz® + ez E boz® — ez z box}.
a€fe acfl, acSie acll,
Thus, the indicator polynomial function of the combined semifoldover design

FUF® is fo(z) = f(z) + £9(z), whick is (4.2.3). O

One can see that the constant of the indicator polynomial function (4.2.3)
iscg = %bo, but other coefficients are ¢, = %ba or —%ba. Thus, by Proposition

1.2.1, (4.2.3) represents a regular design if and only if
|ca/col =1

and if and only if
16y /bo| = 3,

which is impossible by (1.2.3). Therefore, this combined fraction can never be a
regular design no matter the original design is a regular design or a non-regular

design.

4.3 Extensions

In Section 4.2, we obtained the indicator polynomial functions of semifoldover

design. In this section, we consider the addition of a smaller fraction to the

original fraction and extend some resuits in Section 4.2 to a more general case.
It is easy to check that Lemma 4.2.2 can be extended to a more general

case as follows.
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Lemma 4.3.1. Let 71, Fa,--+ , Fp be fractions of a two-level factorial design
and f1(x), fo(z), -+, folz) be the corresponding indicator polynomial functions.

4

Then, the indicator polynomial function of FiNFaN- - -NFy is fi(z) folz) -+« fp(z).
Let
Fleveznnep) — {zeF |mn=enz2=¢...,2 =€}, (4.3.1)

where ¢; = 1 or —1,1 = 1,2,...,p, and z; be a main effect or an interaction.
We can add a smaller fraction F(€1:¢2-€s) to the original design to get a partial
foldover design.

Lemma 4.3.2 provides the indicator polynomial function of Fle1e2ep),

Lemma 4.3.2. Assume that (1.5.2) is the indicator polynomial function of F,

then
Y4

f(e1,ez,...,6p)($) — %f(:l?) H(l + eizi) (432)

i=1
is the indicator polynomial function of F(evez-ep),
Proof. The indicator polynomial function of the half fraction which satisfies e;z; =
1 (or z; =€) is fi(x) = (1 + &;2). By Lemma 4.3.1, we get the results. O

From the proof of Proposition 4.2.4, we know that the indicator polynomial

function of F is

folz) = Z boz® — E box®.

a€fle o€l
Thus, by Lemma 4.3.2, the indicator polynomial function of Fleveren) i given
by
e (z) = — (o) (433)
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By (4.3.2) and (4.3.3), we can get indicator polynomial functions of partial
foldover designs.

Proposition 4.3.3 below provides the indicator polynomial functions of the
double semifoldover designs which is obtained by adding % fraction to the original

design.

Proposition 4.3.3. Assume that (1.5.2) is the indicator polynomial function
of F. If we subset on e;jz;, j = 1,2, then the indicator polynomial function of

Fleen)  FED s
1 o
fil@) = 51 +ez) (1 + esza) Y baa™
€2
The indicator polynomial function of Flen—e2) U Flevea) g

fa(z) = %(1 +erzn)( ) baz® — €220 ) baz®).

a€fe a€Q,

The indicator polynomial function of F(—e1e2) U Fiee2) g

fa(z) = %(1 + 6222)(2 baz® — €121 Z boz®).

a€fle agl,

The indicator polynomial function of F(ev—e2) U FLe1e) 4g

1
falz) = 5[(1 + e1e92127) Z boz®™ — (€121 + €223) z baz?].

a&fle a€Qlo

Proof. By (4.3.2) and (4.3.3), we get

. 1
fée“ez)(x} = 55{1 +e121)(1 + egz0) folz),

1

f(el’EZ)(v"’v') = 53

(1+e121)(1 +exze) f(z),

N

1
f(el’_ez)(@“) = ?(1 + ez ){1 — e222) (),
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1
%
1
22

(1 —_ 6121}(?1 + 5232)./1.(95)5

fee(z) =

[\

For (@) = (1 - e (1 - ep2) (e,

Thus the indicator polynomial function of Fleve2) y FiEve) ig

file) = e @)+ [ (@)
1
55(1 +e121)(1 +ez22) f(z) + 2—2'(1 + e12:)(1 + e222) fo(T)

1
P 5(1 + 6121)(1 + 8222) Z bailla.
el

Similarly, we can get other indicator polynomial functions. O



esigns

5.1 Introduction

It is well known that folding over a resolution 171 design can de-alias all the
main effects. Li, Lin and Ye [19] studied foldover non-regular designs using
indicator polynomial functions. They showed that the foldover non-regular de-
signs obtained by folding over on all the main effects can also de-alias all the
main effects. Mee and Peralta [20] considered semifoidover resolution 777 de-
signs through a example. Although semifoldover resolution 777 designs can not
de-alias all the main effects as the corresponding foldover designs, but Mee and
Peralta [20] pointed out that the half new runs can be used as confirmation runs
which verify the validity of one’s assessment of active versus inactive factors.

In this chapter, we assume that F is a resolution 771.z design. From a
practical point of view, we assume that F is a design without replicates. When

we say a main effect can be de-aliased, we mean it can be de-aliased with its

65
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aliased two-factor interactions and ignore its aliased three-factor and higher-order
interactions.

We study a semifoldover design obtained from a two-level resolution 7//1.xz
factorial design, regular and non-regular. We examine when a semifcidover design
can de-alias one or more main effects. In Section 5.2, we consider semifoldover
designs obtained by subsetting on a main effect and provide necessary and suffi-
cient conditions for the semifoldover designs de-alias a main effect. We show that
the semifoldover design, obtained by foldover on all the factors, can de-alias at
least the same number of factors as the semifoldover designs obtained by folding
over on one or more, but not all, main effects. In Section 5.3, we consider a semi-
foldover design obtained by subsetting on a two-factor interaction and provide
necessary and sufficient conditions for the semifoldover designs de-alias a main
effect. Finally, we present a number of illustrative examples in Section 5.4 which

compare various semifoldover designs in more detail.

5.2 Subsetting on a main effect

When subsetting on a main effect, by Proposition 4.2.4, the indicator polynomial
function of F© U £ is

filz) = Z box® + e z ozt

€, a€Qe

The indicator polynomial function of (¢ U F¥ is
folz) = z box® — e Z bz tes.
a€le a&fls
Since fi(z) contains a one-letter word z,;, any main effect z,(# z,) is
J Y J
(partially) aliased with at least the two-factor interaction z;z; in the combined

fraction F(& U fo(e), and therefore can not be de-aliased in this fraction.
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Proposition 5.2.1 provides a sufficient and necessary condition for a partial

foldover design to de-alias a main effect from its sliased two-factor interactions.

Proposition 5.2.1. Assume that the semifoidover design is obtained by folding

[—-Y

over on all the main effecis and subseiting on ¢ main effect ex;, e = 1,-1,
J=1,2,...,m. Then, z; can be de-aliased in Foy fée) and a main effect
zn(# z;) can be de-aliased in F(~°) U Fio if and only if it is not in any three-

letter word which contains z;.

Proof. Let z), be any main effect. Since Zaeﬂe box® contains four and higher-
letter words, any word in (D _,cq. ba®®) is at least three-letter word.

If zj = j, then 2,3 cq, baz?tei) = > acq, bat®, which contains only
three and higher-letter words. It follows that z, = z; can be de-aliased in the
combined fraction F(-¢ U .7:0<e) .

If z;, # x;, then, for any five or higher-letter word z2, z,z%7% is at least a
three-letter word. If a three-letter word z* does not contain z;, then z,z®% is
either a three-letter word, if z;, is in x®, or a five-letter word, if xj is not in z%. If
a three-letter word z* contains z;, then z,2°"9% is a three-letter word if and only
if zp, is not in z*. Thus, all the words in z4(}",cq, ba®®?) are three or higher-
letter words if and only if zj is not in any three-letter word which contains z;.
It follows that z, can be de-aliased from its aliased main effects and two-factor
interactions in the combined fraction F(-9 U F5? if and only if zj is not in any
three-letter word which contains z;. |

From Proposition 5.2.1, we should choose the z; which is in as few three-

letter words as possible. When there exists a factor which is not in any three-letter

word of the indicator polynomial function of the original design (in this case, the
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factor is not aliased with any two factor interaction), then subset on this factor
permits the semifcldover design de-alias all the main effects from their aliased
two-factor interactions.

Remark 5.2.1. Mee and Peralta [20] found in their example that the semifoldover
design obtained by folding over on all the main effects (say S1) can de-alias most
main effects. This is true in general when subsetting on the same main effect z;.
Similar to Proposition 5.2.1, it is not difficult to prove that a main effect z;, can
be de-aliased in F2) U ¥ obtained by folding over on one or more, but not all,
main effects (say Ss) if and only if z;, is not in any three-letter word in W, and,
if zp, # z;, any three and four-letter word which contains z; in W,. It means
that if zj, can be de-aliased in S5, then it is not in any three-letter word which
contains z;. Thus, the semifoldover design obtained by folding over on one or
more main effects can not de-alias more main effects than the semifoldover design
obtained by folding over on all the main effects if subsetting on the same main
effect. Thus, we only need to consider the semifoldover design obtain by folding

over on all the main effects and subsetting on a main effect.

5.3 Subsetting on a two-factor interaction

When subsetting on a two-factor interaction z;z;, then, by Proposition 4.2.4, the
indicator polynomial function of F¢) U Flo g
f-(ﬂf) = Z bz + e z ba$a+¢i+¢j
a€lle a€le
and the indicator polynomial function of F(-¢ U Flo) s

folz) = Z bzt ~— e z bar TPt

aefle acil,
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Note that fi(z) contains a two-letter word z;z;, z; and x; are aliased in

the fraction F© U f}ge).

Proposition 5.3.1. Assume that the semifoldover design is obtained by folding
over on one or more main effects and subsetting on ex;x;, e = 1,1, 4,7 =
1,2,...,m. Then, z;(z;) can be de-aliased in F=¢) U Fe if and only if z;(z;)
is not in any three-letter word in W, and z;(x;) is not in any three-letter word
in W,. zn(# x4,7;) can be de-aliased in F(© U Fi if and only if z;z; and xp, is
not in any three-letter word and xp, is not in any four and five-letter word which
contains T;x; in We; and can be de-aliased in F <'e)UF§e) iof and only if x;x; is not
in any three-letter word in W,, xj is not in any three-letter word in W,, not in

any three-letter word which contains x; or x; and not in any four and five-letter

word which contains T;x; in W.

Proof. Let z;, be any main effect. The results can be obtained from the following
facts:

a. All the words in z,(D_,cq, baz®) are at least three-letter words if and
only if zp, is not in any three-letter word in W..

b If 2 = z4(z;), then 24(P4cq, baz® %) = Y cq, baz®t9i(®). Thus,
any word in it is a three or higher-letter word if and only if z;(z;) is not in
any three-letter word in W,. It follows that z, = z;(z;) can be de-aliased in
FOUFD if and only if z;(x;) is not in any three-letter word in W, and z;(x;)
is not in any three-letter word in W,.

c. If z, # z4(z;), then, for any six or higher-letter word z%, z,z%t¢+%
is at least a three-letter word. For a three-letter word 2, zpz®t% 1% is at least

a three-letter word if and only if 2% does not contain z;z; and z is not in z®
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if it contains z; or z;. For a four or five-letter word 29, Rzt +% is at least a

three-letter word if and only if x), is not in z® if it contains z,z;. O

Corollary 5.3.2. If the semifoldover design is obtained by folding over on all the
main effects and subsetting on ex;z;, e = 1,—1, 4,7 = 1,2,...,m, then, z;(z;)
can be de-aliased in F9 U F if and only if z;(z;) is not in any three-letter
word. Any main effect z,(# x4, 2;) can be de-aliased in F© U Fio if and only if
it is not in any four-letter word which contains x;x;, and in F =)y foe) if and
only if it is not in any three-letter word which contains x; or x;, in any five-letter

word which contains x;z; and any three-letter word does not contain z;xz; .

From Proposition 5.2.1, Proposition 5.3.1 and Corollary 5.3.2, one can see
that it is hard to say which semifoldover design can de-alias more main effects.

Examples presented in the next section will explain this in detail.

5.4 Illustrative examples

In this section, we give some examples which explain how Proposition 5.2.1,
Proposition 5.3.1 and Corollary 5.3.2 can be applied to get the semifoldover de-
signs and also compare which semifoldover design can de-alias more main effects.

Example 5.4.1 shows that for this example, if subsetting on a proper main
effect, the semifoldover design obtained by folding over on all the main effects
can de-alias more main effects than the semifoldover designs obtained by folding

over on all the main effects and subsetting on any two-factor interaction.

Example 5.4.1. An indicator polynomial function of a 7-factor regular design
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F with generaiors T5 = T1%a, Tg = T1T3 and Ty = ToX3T4 1S
; 2

] i 1 1 1

+ =Z1X2%5 + ST1T3Ts T SL2T3T5Te T ST2T3TATy
8 8 8 8

1

-y

flz) =
1

-
—ZaTsTeLy + —T1X3TaTsT7 + g$1£2$4$5$€7.

8 8

4 ool

Since there are two three-letter words, the alias seis are: {x1, ToZs, T3Zs}, {T2, T125},
{3, 2126}, {25, x122} and {z6, z123}.
When folding over on all the main effects, let x; = xa, then the indicator

polynomial function of F9 U FS is

f(z) ! + ! + = + . Tel7 +
= = 4 —Zox32 —Z9T3T4T7 + —L4TsTeTr + —T1X
88235376 g T2t3Taly T odalsTeTr T g5
1 1 1
+§$1m2x3x6 + §x1w2x3x4x5x7 + §x1x4:c6m7.
Since z3(f(z) — §) and z6(f(x) — §) contains only three or higher-letter words, 3

and xg are de-aliased with their aliased two-factor interactions in the combined
fraction Feay .7:06). This can also be done by subsetting on z; = x5. Stmilarly,
subsetting on x3 or xg permits the semifoldover design de-alias xo and x5 from
their aliased two-factor interactions.

Note that z4 and z7 are not in any three-letter word, let ©; = x4, for

ezample, then, the indicator polynomial function of F(~¢ U FLO s

1 1 1
f(Z) = =+ cxoxsTss + STol3ZaTr + STAT5LT7 + ST1T2T4Ts
8 8 8 8 8
1 H 1
+ T1Z3T4Ts + §w1$3$5$7 -+ g$1$2$6$7,

which contains only four-letter words. Thus, any main effect in this combined
fraction is not aliased with two-factor interactions.

Since x1 is in both three-letter words, subsetting on this factor does not
permit the semifoldover design de-alias any other main effect from their aliased

two-factor interactions.
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Since x1 1s not in any four-letter word, subsetting on r1x;, 1 = 2,...,7 can
de-alias all the main effects except 1 and z; in the combined fraction F(€) UFY.
Since x4 and x7 are not in the three-letter words, subsetting on zpxp, £ =1,...,7,
h=4,7 k # h, can de-alias z;, in FO U fg(e). However, subsetting on xszy
can de-alias both z4 and zy in FO U F. Subsetting on any other two-factor

interaction can not de-alias any main effect in both fractions.

Examples 5.4.2 and 5.4.3 show that when there are several three-letter
words but no four-letter word in the indicator polynomial function, subsetting on
a two-factor interaction usually can de-alias more main effects than subsetting

on a main effect.

Example 5.4.2. [15] An indicator polynomial function of a two-level 5-factor

non-regular design F 1is

1 1 1
T1Tox3 + Z$2$3.’D4 + Z.’L‘Q.’L‘3$5 -+ Zl’1$2$33§'4.’l}5.

[NSRAY
> =

flz) =

There are three three-letter words in the indicator polynomial function.
The partial alias sets are: {zy, Toxs}, {z2, T123}, {@a, T3z4}, {2, z3z5}, {T3, 7122},
{xs, zoxs}, {v3,Box5}, {z4, 2223}, {T5, Toxs}.

When folding over on all the main effects, note that x1, x4 and x5 are in
different three-letter words, subsetting on any of them permits the semifoldover
design separate the first and the last two alias sets. But subsetting on xo or z3 can
not separate any set since all the three-letter words contain o and xs. Since there
is no four-letter word in the indicator polynomicl function, subsetting on any two-
factor interaction z;xy, 1,7 = 1,...,5, © # j, separates all the partial alias sets,

but z; is aliased with z;, in the combined fraction F )y J’-—o(e). However, since
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any man effect is in some three-letter word and the five-letter word contains all
the main effects and possible two-factor interactions, subsetting on any two-factor

interaction can not de-alias eny main effect in F-O U Fa(e).

Example 5.4.3. An indicator polynomial function of a 6-factor non-regular de-

sign F is
f( ) 1 " 1 n i
x = - —T1Z4%5 —T9X3xg — =L1T5Tlg — —=ToX3Ty4 — —=T2XT5Tg
4 8 8 8 8 g8 e
1 1 1 1
—§$1$3:176 — ’8—$2$4$5 — §x1x3$4 -+ Z$1$2$3x4$5$6.

The partial alias sets are: {z1, 3z}, {z1, 23x6}, {x1, T4x5}, {T1, T526}, {T2, 324},
{z2, z3z6}, {Za, xaws}, {Zo, x526}, {@3,T124}, {23, 2126}, {3, 2224}, {x3, 2276},
{z4, T123}, {74, 175}, {24, D273}, {T4, T275}, {75, 2124}, {25, 2126}, {5, T274},
{z5, zaz6}, {zs, 123}, {z6, 125}, {6, Tozs}, {6, T2z5}.

When folding over on all the main effects, subsetting on any main effect
zi, 1t = 1,2,...,6, only permits the semifoldover design part the alias set which
contains x;, since the three-letter words which contain x; include all the main
effects. Since there is no four-letter word in the indicator polynomial function,
subsetting on any two-factor interaction z;x;, 1,7 = 1,2,...,6, can de-alias the
other four main effects in F© U ’f,@, but can not de-alias any main effect in
Flay fée), since all the main effects are contained in some three-letter words

which contain z;, T;, or T,T;.

Examples 5.4.4 and 5.4.5 show that when we properly choose the main ef-
fect and the two-factor interaction, the semifoldover designs obtained by folding
over on all the factors and subsetting on a main effect and a two-factor interac-

tion, respectively, can de-alias the same number of main effects. Example 5.4.5
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also shows that the semifoldover design obtained by folding over on a proper
main effect and subsetting on a proper two-factor interaction can also de-alias
all the main effects. Moreover, Example 5.4.5 shows that the semifoldover de-
sign obtained by folding over on one factor can de-alias more main effects than
the semifoldover design obtained by folding over on all the main effects when

subsetting on the same two-factor interaction.

Example 5.4.4. (Montgomery [22], p.690) A 9-factor regular design F with gen-
erators Ts = T1Zox3, Lg = Tolsly, L7 = L1T3Ty, Ty = T1Toxy and Tg = T1T9T3T4.
There are four three-letter words, T12¢Zg, ToX7Xo, T3TeTyg and T4TsTg, N its in-
dicator polynomial function. The aliases are: {z1, 269}, {22, T7xo}, {3, Tsxg},
{z4, 2529}, {T5, TaZo}, {6, T1%o}, {7, T2xo}, {ws, 329} and {xg, 126, 27, T35, Tas}.
When folding over on all the main effects, subsetting on x;, i = 1,2,...,8,
permits the semifoldover design de-alias 7-factors. For instance, if z; = z,
then Ti,xs, T3, x4, X5, T7 and xg can be de-aliased from their aliased two-factor
interactions in F(=€) U fée). However, if x; = g, then the semifoldover design
can only de-alias xg from its aliased two-factor interactions. There are fourteen
four-letter words in the indicator polynomial function, but none of them contains
zg. Thus, subsetting on z;x9, @ = 1,2,...,8, de-alias all the main effects in
Fe) Ufo(e) except x; and Tg. Since T1%g, Tokz, T3Lg OT T4Ts 1S 0 only one of the
three-letter words and not in any five-letter words, subsetting on any of them can
de-alias all the main effects which are not in the two-factor interaction except
zy in FO U F, But, subsetting on any other two-factor interaction can only

de-alias zg in F© U F.

Example 5.4.5. [15] An indicator polynomial function of a two-level 5-factor



non-regular design F is

1 1 1 1
f T} = =+ —Z129%T3 + ~L1X9X3Ty + —T:1LoX3Ts — —L1X9T3L4%5.
(z) 2 4 4 4 4 ?

There 15 one three-letter word in the indicator polynomial function. The
partial alias sets are: {1, %223}, {®a, z123} and {3, z1249}.

When folding over on all the main effects, since x4 and x5 are not in the
three-letter word, subsetting on x4 or xs permits the semifoldover design separate
all the partial alias sets. But subsetting on xzx, k = 1,2,3, only part the partial
alias set which contains x,. Since x4z is not in any four-letter word, subsetting
on a5 permit the combined fraction F(© u]—"ée) de-alias x1, x5 and x3 from their
aliased two-factor interactions. But subsetting on z;x;, k = 1,2,3, 1 = 4,5, can
only de-alias xy, in F=) U F, Subsetting on any other two-factor interactions
can not de-alias any main effect in both fractions.

When folding over on any xy, k = 1,2,3, all the words belong to W,.
Thus, subsetting on z4zs can separate all the partial alias sets in F© U Fée);
subsetting on zxx; can separate the partial alias sets which do not contain z; in
FO U FE and separate the partial alias set which contains =y, in F(¢ U F,
that 1is, subsetting on zpx; can separate all the partial alias sets; subsetting on
any other two-factor interaction can only de-alias one main effect in the partial
alias sets which do not contain vy in FO U F.

When folding over on z;, the three-letter word belongs to W, and, therefore,
can not de-alias any main effect.

Note that all the words in the indicator polynomial functions of Examples

5.4.2 and 5.4.5 contain one or two same factors (This is only possible for non-

regular designs). For the designs which have this property, when folding over on
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the factor which is contained in all the words, W, = {1}. By Corollary 2.2.4, the
constant in the indicator polynomial function of the original design is -;— So, the
indicator polynomial function of F) U F is filz) = % + %xkxl. Therefore, all
the main effects except z and z; can be de-aliased in F& U Fée).

Example 5.4.6 shows that for some designs, the semifoldover design almost

can not de-alias any main effect.

Example 5.4.6. (Montgomery [22], p.685) A 7T-factor reqular design F with
generators T4 = T1Tg, Ty = T1T3, Te = ToZ3, Ty = T1ToTs. L1here are seven
three-letter words, x1x2%4, T1Taxs, ToTsTe, T4Tskg, TaLaly, TolsLy, and T1TgLy,

and seven four-letter words: xoX3T4Ts, T1T3T4Te, T1T2X5Lg, T1ToL3L7, L1L4T5TT,
ToT4Zelr, and x3Tsrexy. The alias sets caused by the three-letter words are:

{z1, TaT4, T3T5, TeX7 }, {Z2, T124, Tals, T5T7 }, {T3, T1T5, Tals, TaZr }, {T4, T1T2, T3T7, T5T6 },
{5657 T123, TaZs,

ToZ7}, {T6, Tols, TaTs, T127}, {27, T3Ta, TaTs, T126}-

When folding over on all the main effects, subsetting on any main effect
zi, 1= 1,2,...,7, only permits the semifoldover design part the alias set which
contains x;, since the three-letter words which contain x; include all the main
effects. There are seven four-letter words in its indicator polynomial function
and any two-factor interaction is in two four-letter words. Thus, subsetling on
any two-factor interaction can only de-alias one main effect in F(© U F&. For
a two-factor interaction z;x;, any main effect which is not z; and x; is in some
three-letter word which contains either x; or x;, therefore, subsetting on any two-
factor interaction can not de-clias any main effect in F (=e) .7—"0(6).

When folding over on one or more factors, subsetting on any two factor

interaction can not de-alias any main effect.



Designs

6.1 Introduction

Montgomery and Runger [21] showed that a foldover on one or more factors
for regular resolution IV designs can de-alias all (or as many as possible) the
two-factor interactions that we are interested in. Mee and Peralta [20] studied
various cases when semifolding a regular resolution IV design. They showed that
the semifoldover resolution 7'V design obtained by folding over on one factor and
subsetting on a main effect can estimate all the the two-factor interactions as the
corresponding full foldover design. The full foldover design obtained from a non-
regular design has been studied by Li, Lin and Ye [19] using indicator polynomial
functions.

In this chapter, we assume that F is a resolution I'V.z design which does
not allow replicates. When we say a main effect can be de-aliased, we mean it

can be de-aliased with its aliased two-factor interactions and ignore its aliased

77
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three-factor and higher-order interactions.

In this chapter, we study a semifoldover design cbtained from a general
two-level resolution I'V.z factorial design, regular and non-regular. We examine
when a semifoldover design can de-alias all (or as many as possible) the two-factor
interactions that we are interested in as the full foldover design. In Section 6.2, we
show that a semifoldover design, obtained by foldover cn a factor of interest for
a non-regular resolution I'V. x design, can de-alias all the two-factor interactions
which contain that particular factor. We alsc discuss the same problem for the
semifoldover design, obtained by foldover on a factor of interest and subset on
a two or three-factor interaction for a general factorial design. In Section 6.3,
we consider a semifoldover design obtained by reversing the signs of two or more
factors for a general factorial design and provide a sufficient condition for de-
aliasing as many two-factor interactions as the full foldover design. Finally, we

present in Section 6.4 number of illustrative examples.

6.2 Folding Over on a Main Factor

Mee and Peralta [20] showed that a semifoldover design, obtained by folding
over on a main effect and subsetting on a main effect for a regular resolution
IV design, can estimate as many two-factor interactions as the full foldover de-
sign. In particular, they showed that the semifoldover design can de-alias all
the two-factor interactions which contain the factor of interest. In this section,
we study this problem for a non-regular design. We also investigate the cases
when the semifoldover design is obtained by subsetting on a two and three-factor
interactions.

Let ¢; be the 1 x m vector with the ith entry being 1 and all other entries

being G.
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Theorem 6.2.1. Let F be a two-level m-factor design of resolution IV.x with
the indicator polynomial function (1.2.1). Assume that we fold over on the main
effect zp, and subset on a main effect ex;, e =1,-1, 7 = 1,2,...,m. Then, the
semifoldover design con de-alias ail the two-factor interactions which contain zp

from other two-factor interactions as the corresponding full foldover design.

Proof. By Proposition 4.2.4, the indicator polynomial function of F(®) U Fi9 s
fl(w) = Z baxa +e Z ba$a+¢j-
a ey a€Qp
The indicator polynomial function of F(~¢ U F is

folz) = Z baz® — € Z bz tei,

agflp g
If z;, = x;, then any word in > e bar®T% is at least a three-letter word and
does not contain zj. Since x5 does not appear in any word in Y wen, 0az®, all
the words in zpxy, (fo(z) — by) are at least three-letter words for any two-factor
interaction xpzy,, k1 # h. Thus, z,x;, can be de-aliased with other two-factor
interactions in the combined fraction F(—¢ U F{9.

If z, # z;, then any four-letter word in ) .o bax® %5 is either a three-
letter word which does not contain z; or a five-letter word which contains z;. It
then follows that all the words in z,z;(fa(x) — bo) are at least three-letter words.
Thus, z,z; can be de-aliased with other two-factor interactions in the combined
fraction 79U 759, Since any word in fi(z) —ez; is at least a three-letter word
and z, does not appear in any word in fi(z), all the words in zpzy, (f1(z) — bo)
are at least three-letter words for any two-factor interaction zpzy,, ko # 1,7

Thus, z,zk, can be de-aliased with other two-factor interactions in the combined

fraction F© U FE,
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From the above discussion, we observe that the semifoldover design sepa-
rates the two-factor interactions which contain z; from their aliased chains. Thus,
they can be estimated in the semifoldover design, and the left alias chains can be

estimated in the original design.

g

Propositions 6.2.2 and 6.2.4 below provide necessary and sufficient condi-
tions for a semifoldover design, when subset on a two or three-factor interaction,
to de-alias all the two-factor interactions which contain z;, with other two-factor

interactions.

Proposition 6.2.2. Let F be a two-level m-factor design of resolution I'V.x. As-
sume that we fold over on a main effect xy, and subset on a two-factor interaction
exprj, e =1, —1,j=1,...,h—1,h+1,...,m. Then, the semifoldover design
can de-alias all the two-factor interactions which contain xp with other two-factor
interactions if and only if x; is not in any four-letter word of F which contains

Zp.

Proof. By Proposition 4.2.4, the indicator polynomial function of F(© U Fge) is
fi(z) = Z boz® + € z bz TOnTs
O(EQ& QEQB
and the indicator polynomial function of F(=¢ U ]-"ée) ig

folz) = Z baz® — e z baztortes,

a€lle a€l,
If z; is not in any four-letter word which contains zp, then, for any o €
: ! ! ; ;o
0, z® has the form xp [ [, &k, OF Zp%; [ 12k, 3 < I < m =2, &k # h,j

Thus, 2%+9*% has the form z; []._, zx, or []., 24, Note that any two-factor
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interaction which can be de-aliased in the full foldover design is not in the four-
letter words which do not contain z,; one can thea check that all the two-factor
interactions which contain z, can be de-aliased in the fraction F(~¢) UFS. Thus,
the semifoldover design can de-alias all the two-factor interactions which contain
xp, with other two-factor interactions.

If z; is in some four-letter word which contains zj, let that the four-letter
word be of the form z® = zpz;z4,21,. Then, a € Q,. Thus, fo(z) contains a
two-letter word zy, xy,. It follows that zzy, (f2(z) — bo) contains a two-factor
interaction i, and zpar,(fo(z) — by) contains a two-factor interaction zpzy,.
Therefore, xpzi, and x,zy, are aliased in the fraction F (=€) Ufée). Similarly, since
f1(z) has a two-letter word z,x;, xpak, and zpzy, are aliased with z;zy, and z;z,
(these two-factor interactions may be different from those which zpxy, and zpzy,
are aliased with in the original design) in the fraction F(®) U fc(,e), respectively.
Therefore, the semifoldover design can not de-alias all the two-factor interactions

which contain z; with other two-factor interactions. O

If the original design is a regular design and all the two-factor interactions
which contain z, can be de-aliased in the semifoldover design, then the semi-
foldover design can estimate as many two-factor interactions as the full foldover
design. Mee and Peralta [20] explained, in terms of degree of freedom, that sub-
set on a two-factor interaction usually does not permit a semifoldover design to
estimate as many two-factor interactions as the full foldover design. Since such
an z; in Proposition 6.2.2 does not exist for many resolution 7V designs, Propo-
sition 6.2.2 also explains, from a different point of view, the reason why subset

on a two-factor interaction does not allow a semifoldover design to estimate as
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many two-factor interactions as the full foldover design (Note that for a two-
factor interaction which dces not contain zj, to be de-aliased with the two-factor

interaction which contains zy, it also needs a strong condition).

Corollary 6.2.3. Let F be a two-level m-factor regular resolution I'V design.
Assume that we fold over on a main effect zp, and subset on a two-factor inter-
action expzrj, e = 1,—1, 7 =1,...,h— 1, h+1,...,m. Then, the semifoldover
design can estimate as many two-factor interactions as the full foldover design if

z; is not in any four-letter word of F which contains zj,.

Proposition 6.2.4. Let F be a two-level m-factor design of resolution IV.x.
Assume that we foldover on the main effect xj, and subset on a three-factor inter-
action expz;Ty, € = 1,—1, 5,k # h. Then, the semifoldover design can de-alias
all the two-factor interactions which contain xp with other two-factor interactions

iof and only if x;xy s not in any four and five-letter words in either W, or W,.

Proof. By Proposition 4.2.4, the indicator polynomial function of ) U F¥ is

A = 3 b e Y e

a€fle a€Sle

The indicator polynomial function of F(~9 U FL9 is
fao(z) = Z boz® —e z bzt onteiter,
P o€
A two-factor interaction which contains zp has one of the two forms: 2y,
and zpZp, Kk # h,j,k, p = 7, k. One can similarly check that all the words in
znzp{fo(z) — bo), p = J, k, are at least three-letter words. And if z;z; is not in

any four and five-letter words in Wi, then all the words in zpzk, (f1(z) — bo) are
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at least three-letter words; if z;z is not in any four and five-letter words in W,
then all the words in zpzg, (fo(x) — bg) are at least three-letter words.

Therefore, any two-factor interaction which contains z, can be de-aliased
in either the combined fraction £ U F ¥ or the combined fraction F(—¢ U FL.

If 22y, is in some four-letter word, say ;25 %k, Tk,, in We, then, zpzy, (f1(z)—
bo) contains a one-letter word zy, and zpzk, (f1(x) —bo) contains a one-letter word
zy,. Thus, zpzy, and zpzy, are aliased with xy, and zy, in the fraction Flo U]-"Lge),
respectively. If z;zy is in some five-letter word, say z;TiTk, T, Zpy, in We, then
Thar, (f1(z) =bo), Thar, (f1(z) —bo) and zpzr, (f1(z) —by) contain two-factor inter-
actions Ti,ZTr,, Tk, Thy and Ty, Tk,, respectively. It then follows that xpzy,, Thzk,
and zpTk, are aliased with zy,xk,, o, Tk, and xg, ok, in the fraction F @y fée),
respectively. Similarly, if z;z; is in some four or five-letter word in W, then some
two-factor interactions which contain z), are aliased with some main or two-factor
interactions, respectively. Thus, the semifoldover design can not de-alias all the

two-factor interactions which contain zy,. [

Corollary 6.2.5. Let F be a two-level m-factor regular resolution I'V design.
Assume that we foldover on the main effect xy, and subset on a three-factor inter-
action expT;Ty, € = 1,—1, j,k # h. Then, the semifoldover design can estimate
as many two-factor interactions as the corresponding full foldover design if z;zy

is not in any four and five-letter words in either W, or W,.

6.3 Folding Over on R Factors

Mee and Peralta [20] pointed out that it is not always true that folding over

on two factors permits the semifoldover design to estimate as many two-factor
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interactions as the full foldover design. In this section, we consider the case
when foldover on two or more factors for general two-level factorial designs. In
particular, when the original design is a regular design, we provide a sufficient
condition for the semifoldover design, obtained by reversing the signs of r factors
and subset on a main efiect, to estimate as many two-factor interactions as the
full foldover design.

Note that if the full foldover design separates a alias set in the original
design, then the alias set is divided to two alias sets, say set A and set B, in the
full foldover design. All the two-factor interactions which have the forms z,z,,
p=12...,randg=r+1,7+2,...,m, belong to one alias set, say set A. Since
the alias relations in set A are also in the semifoldover design, if one two-factor
interaction in set A can be de-aliased with the same two-factor interactions as the
full foldover design in one combined fraction, then, the set A can be separated
from other two-factor interactions as the full foldover design, although in the case
of non-regular designs, some two-factor interactions in set A may be (partially)

aliased with some other two-factor interactions.

Theorem 6.3.1. Let F be a two-level m-factor design of resolution I'V.x. Assume
that we fold over on the main effects x1,xs, ..., z,, v > 2, and subset on the factor
exj, e = 1,—1. Then, for any alias set which can be separated to set A and set B
in the full foldover design, the semifoldover design can also separate set A from
other two-factor interactions if there exists one two-factor interaction in set A
which either contains z; or not in any four and five-leiter word in either W, or

Wo.

Proof. By Proposition 4.2.1, any word in the full foldover design is also in the

semifoldover design. Thus if two two-factor interactions are aliased in the full
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foldover design, they will also be aliased in the semifcldover design.
By Proposition 4.2.4, the indicator polynomial function of F(¢) U F is

file) = baz®+e Y ozt

aefle a€fle

and the indicator polynomial function of F(~¢ U F is

folz) = z bz — e Z bo®t%, (6.3.1)
a€Qle a€ll,

From the above discussion, we only need to show that the two-factor in-
teractions which satisfy the condition in this theorem can be de-aliased with the
same two-factor interactions as the full foldover design. To prove this, we need
to show that any word in either zpz, Y oeq. baZ®% OF LpLg D cq, bat® % is at
least a three-letter word.

For any word z® € W, 2 has the form z® = H?;l Ty, 4 < hy <mor
xa:a:jH?ilmki, 3<hy<m-—1,wherek; =1,...,5—1,5+1,...,m. Thus,

h1 h2

2% = z; | [ 2y, or 2%7% =

(6.3.2)

f=1

i=1

(1) If z; appears in the two-factor interaction z,z4, then, by (6.3.2), one
can check that for any word z% € W,, mpqua+¢j is at least a three-letter word.
Thus, all the words in 7,74 ) cq, boz®t9s are at least three-letter words.

(2) If z; does not appear in the two-factor interaction z,z, and z,z, is not
in any four and five-letter words which contain z; in W,, then, by (6.3.2), one can
check that any word in z,Z, ) 4cq bo2®% is at least a three-letter word (Note
that the only one-letter word «; in 3 cq baz®% also becomes the three-letter

word xpzex;). Similarly, if z,z, is not in any four and five-letter words which
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contain ; in W,, then any word in 2,2, > cq. a®™? is at least a three-letter

word.

O

Corollary 6.3.2. Let F be a two-level m-factor regular resolution I'V design.
Then, foldover on the main effects x1,z2,...,2z,, v > 2, and subset on the factor
exj, e = 1,~1, permits the semifoldover design to estimate as many two-factor
interactions as the full foldover design if for any alias set which can be separated
in the full foldover design, there exists one two-factor interaction which has the
form zpzy, p=1,2,...,7, and ¢ = 1,2,...,m, and either contains x; or not in

any four and five-letter word in either W, or W,

6.4 Illustrative Examples

In this section, we study semifoldover designs obtained by folding over on two or
more factors through examples.

Example 6.4.1 below was first considered by Daniel [9] and then by Mee
and Peralta [20] with foldover on one factor. It was also discussed through a case
study by Barnett ef al. [3]. Here, we discuss the case of foldover on two factors

with the use of indicator polynomial functions.

Example 6.4.1. A siz-factor design with generators x129x3x5 = 1 and 2oT3x4x¢ =
1. Its indicator polynomial function is

1

1 1
f(2) = =+ —2120%3T5 + —T3T3TaTg + —T1T4T5T6.
(z) 4 4 4 4

If we foldover on z; and x4, then by Proposition 4.2.1, the indicator polynomial
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function of the full foldover design is

1
fc(l’) = 5 + 5@’11’22732’:5.

Thus, the full foldover design can de-alias the following two-factor interactions:
T1T4, T1Tg, ToZa, ToLe, T3Td, T3Te, Tals, TaZe and Tsxg. One can check that
subset on any main effect permits the semifoldover design to estimate as many
two-factor interactions as the full foldover design.

For instance, if we subset on x1, then by Proposition 4.2.4, the indicator
polynomial function of FU U F s

f(a:)—1+1zx —1—1 +1 (6.4.1)
P — — .—x -— . .
1 1 4 1X9T3T5 4 1 4I21335L'5

and the indicator polynomial function of F=1 U FO s

1 1 1 1
fQ(.'L") = Z + Z$1$2m3$5 — -4-264.275"136 + ZCE1(E25L‘3$4$6. (642)

Since x174 and x1xg both contain x1, by the proof of Theorem 6.3.1, any word
in T124(fo(x) — 1/4) and zixe(fo(x) — 1/4) is at least a three-letter word. So,
124 and T1xg can be de-aliased with other two-factor interactions in the fraction
FEDy .7-"0(1). Since zoxy and Tozg are not in any word which contains 1, they
can be de-aliased with other two-factor interactions in both fractions FO U F
and FD U FY.

If we subset on 3, then the indicator polynomial function of F&) Ufo(l) 18

fl(x\zl Exlxgxz’ +Ew3+£x Tok (6.4.3)
g =7+7 8%5 + 7 1 51%2%s 4.

and the indicator polynomial function of FD U }‘(Sl) is

1 1 i i
folz) = 7+ 7 71%2%3%5 — 7 21T8T4T5T6 — T L2T4Te. (6.4.4)
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Since x1x4 and 1% are not in any word which contains zs, they can be de-
aliased with other two-factor interactions in both the fractions. Since xoz4 and
Tokg are mot in any word in W, they can be de-aliased with other interactions
in the fraction FO U FV. One can check these using the indicator polynomial

functions.

Example 6.4.2. Mee and Peralta [20] considered the 27%,° design with generators
Ty = T1TaT3, Tg = ToX3¥y and Tp = x1Z3x4. 1he indicator polynomial function

of this design is

f(x) 1 n 1 L 1 n 1 n 1
= - —I1ToT3x —XToT3T4T —L1X4T5T —T1T3T4T
8 R 1424345 ] 2434446 ] 1445406 ] 1434447
1 1 1
+§$2$41‘5$7 + §$1m2$63}7 -+ §$3LL‘5.’E6$7.

If we foldover on x1 and xs, then the indicator polynomial function of the full
foldover destgn is

1 1 1 1
felz) = r + lemgxg% + lexgxﬁm -+ Zx3x516x7.

The full foldover design separates the two-factor alias sets as follows:

(1) {z12s, BaT5, 2427} — {2123, o5} and {z4z7}
(2) {z1z5,T973, T4Te} — {2125, 2273} and {z4z6}
(3) {zsze,z327, 2124} — {256, 2327} and {z124}
(4) {z176, Toz7, 2425} — {21286, Toz7} and {z4z5}
(5) {z127, mozs, 2324} — {2127, 2225} and {z3z4}
(6) {zsrs, 577, T224r — {Z3%s, 2527} and {zazs}

() {z172, T375, 2627} — (n0 change)
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If we subset on x:, then the indicator polynomial function of F&) UF 4s

1 1
( s —_ —_ el —_ P R le5) —_
filz) = + SZ1X3T3T5 + ST1TTeTr + $T3TET6T7 + 521
(z) 8 87" 8 8 8
1 i i
+§£‘2$3$5 -+ §£L'2$61237 + '8‘£1E3335$6£L‘7

and the indicator polynomial function of F=V U FSY 4s

1 1 1 i 1
fg(x) = =+ =Z1ToX3Ls + =T 1T2TeL7 + =T3T5TeL7 — =T 1L2T3T4Lq
8 8 8 8 8
i 1 1
—=TyT5xg — =X3LyLy — —T1X9X4T5T7.
8 8 8

The four-letter words which contain x1 in W, are £1xox3x5 and x1Z22e7, and in
W, are XoT3T4ke, T1X4TsLg, T1T3T4L7 and ToZaTsT7, One can check that the semi-
foldover design can estimate as many two-factor interactions as the full foldover
design, since the condition of Theorem 6.3.1 s satisfied in this case.

For instance, for the first alias set, since rix3 contains x; = x1, by the
proof of Theorem 6.3.1, it can be de-aliased with T4y in the fraction F(~1 uFEY.
So, xexs can also be de-aliased with x4x7 in the fraction f(‘l)Ufél), this can also
be explained by the reason that xexs is not in any four-letter word which contains
z1 in W,. For the third alias set, since z1x4 contains x1, it can be de-aliased with
z5zg and T3z in the fraction FCU Uf}gl). And for the sizth alias set, since xoxy
is not in any four-letter word which contains 1 in W, it can be de-aliased with
zszs and Tszy in both fractions FO UFY and FEOUFY. We can check these
in detail using the indicator polynomial functions of FU UFY and F Uﬁgl).

Since

8 8 8

1 1 i
—§z1$3x4x5m6 — §$1£L'4:L‘7 — §$2$3$4$5$7

) 1 1 1 1 1
E173 <f2(35> —5) T %%t gEalsTeTr + gLITsTeTT — ST2T4Ts
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and
1 1 1 1 1
£ /0 o
ZToZs5 { j2\T) — g = §$1333 + §$1235!E6£E7 + §$2Z3$6I7 — §$1333334w516
1 1 1
—=XoXaxg — —XoT3T4T5T7 — —X1X4T7
8 8 ° 8 ’

z1Z3 and Toxs are still aliased with each other, but de-aliased with z.xy7. Since

i 1 1 1
7174 | foZ) — = | = =ToT3TyTs + —ToTaTeTr + —T1T3T4T5TeT7 — = T2Z3Te
8 8 8 8 8
1 1 1
—ZT1X5Tg — 5T1X3T7 — 5Talsd7
8 8 8 ’

z1x4 1S de-aliased with other two-factor interactions. Note that

1 1 1 1 1
zoxy | fi(z) — 3] = §$1233$4$5 + §$1$4$6$7 + §$2w3$45€5$6$7 + §$1$2$4
1 1 1
‘|"§CL'3:ZT4JI5 + §1‘4$53}7 -+ -8-561562.’]33334565335337
and
1 1 1 1 1
ToX4 f2($) - g = §$1$3$4$5 + §$1$41‘69«"7 + §$2$4$3$5$6$7 - §$1ﬂ?3$6
13; . 1
- Tg — =ToX3T7 — —T1T5L7,
8256 8237 8157

and consequently xoxy is de-aliased with all other two-factor interactions in both
fractions.
Similarly, one can check that subset on any main effect permits the semi-

foldover design to de-alias as many two-factor interactions as the full foldover

design.

Example 6.4.3. Montgomery ([22], p.691). The 23, design is with generators

Tg = Eol3Xals, L7 = T1X3T4T5, Ty = T1ZLoTaTs and Tg = T1Tox3xs. 1 he indicator
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polynomial function of this design is
11 1 1 1
f(x) = ﬁ -+ %$2$3$4x5$5 + ‘E$1$3$4$5$7 -+ %zlzgxﬁxy -+ Té$1$2$4$5$8

1 i 1
“f"}folfL‘g:Eﬁl’g + 1—672725633)7178 -+ 1—6'$4$5$6$7338 -+ ]Téxlmgﬂjgxg,wg

1 1 1
+——=T1Z4T5%g + —LoX4aZT7ZTg + '1‘61,‘3935.1}59373’59 -+ 1633335‘4:68:69

16 16
£

1 1 1
+1—6'IL‘2$5$6:E83]9 + 1—6x1x5x7x8$9 + E$1$2x3$4$6$7$8$9.

If we foldover on z1 and o, then the indicator polynomial function of the full

foldover design is

1 1 1 1
fc(m) = 5+ ST18ele%r T ST1TaT4T5T8 + ST4X5TeT7Ls -+ -8—3513323335055%

8 8 8 8
1 1 1
+§$3$52’}5:L'71'9 -+ -8-1‘337421381’9 + §$1$QCE3$4$6.’E7$8I9.

Thus, the full foldover design separates the two-factor interaction alias sets as
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(1) {zizs3,2628} — {T123} and {zsz3}
(2) {zizrs,zem9} — {z124} and {z6z5}
(8) {mizs,z3z6} — {z178} and {zazs}
(4) {zimg, 246} — {T129} and {z4z6}
(5) {wows,zrzs} — {T2x3} and {zrzs}
(6) {zox4,Zrx9} — {zoz4s} and {x7z9}
(7)  {zozs, z327} — {2228} and {z3z7}
(8) {zowg, xazr} — {w229} and {z4z7}
(9)  {z1z6, Tomy, T3T8, T4T9} — {T1%6, oz} and {T3xs, T4Tg}
(10) {z1xq,ex7} — (o change)

(11) {z1z7, 2226} — (no change)

(12) {z3z4, 379} — (NO Cchange)

(13) {z39, T4ws} — (no change)

One can check that subset on any main effect except xs permits the semifoldover

design to

estimate as many two-factor interactions as the full foldover design,

since they satisfy the conditions of Theorem 6.8.1. For instance, if we subset on

zg, then the indicator polynomial function of F& U F 4s

filz) =

1+
16 16
+1m$x +1 —|—1 +
— IrX —X3T4Z — X1 X9L3T 4L LT —Z
16 3Zs5TeL7Tg 16 3L4Z3%9g 16 102X3T4TeL7X8Tg :{6*6

4
H

1 1 1
T1T2T6ZT7 + I‘é$1$2$4$51‘8 + :é$4395336$7$8 + Té’ﬁl&?ﬂsxsxg

H i 1 1
+—1 T1X9T7 + ==X 1LoX4T5TeTs T ~—ZaT5T7%8 + —L1X9E3L5L6Tg
i6 18 16 16

-

i 1 1
+——Z3T5T7Tg + —=T3T4LeT8Tg + —=T1T2T3T4L7LTY
16 16 16
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and the indicator polynomial function of F~D U FY s

1

i 1 B
folz) = T + ?61'1%%337 + =TT T5Ts + T TaT5TeT7Ts T < T1X2T3T5Tg

1
16 16 16

T1ToT3T4TeL7TeTg + Eﬁfgxsst

1
—Z3T5TeT7Tg + T=SX3TaLTg + =
16 i6 i6
1

+E$1£3x41‘525$7 -+ 1—6351.1?33?8 -+ %xgxgxgmxg —+ 1%.%1%41‘9
i 1 1

+ =TTy TE7Tg + —=ToT5T3Lg + —=T1T5L5L7L8Tg.
16 16 16

The four and five-letter words which contain xg in W, are 1ToTex7, T4X5TeL7Ts
and T3TsTeT7xg, and in W, are X1TsTely, T1T4TeTy, TaX3TaTsLg GNGA ToX5LeTeTy.
Since T1%3, T1T4, T1Xg, T1Tg, Tals, Loy, ToXs and Takg are not in any four and
five-letter words in W,, they can be de-aliased with other two-factor interactions
in the fraction FOy .7-}51). Since x1xg contains 1 and xoxy is not in any four
and five-letter words in W,, they can be de-aliased with xsxs and x4xe in the
fraction F=1 UFEY. One can check this from the indicator polynomial functions
of FOUFY and FEV U FY.

Note that xg appears in the first four sets, and so from the proof of Theorem
6.8.1, the two-factor interactions which contain xg in the first four sets can also

be de-aliased with other two-factor interactions in the fraction F&U U F,



7.1 Conclusions

In this thesis, we have studied some properties of indicator polynomial functions.
Using indicator polynomial functions, we have extended some existing results of
regular designs to non-regular designs and also established some general results
which did not exist even for regular designs.

In Chapter 2, we have considered some properties of an indicator polyno-
mial function with all its words are odd words or even words. We have established
that in the case without replicates, an indicator polynomial function with cer-
tain property must represent a half fraction and a factorial design which is not
a half fraction must has at least three words in its indicator polynomial func-
tion. We have also proved that there is no (2! + 1)-factor design of resolution
(20 — 1).*z when the run size of the design is not equal to 2%. After proving
that an indicator polynomial function with one word is a regular design or repli-

cates of a regular design, we have shown that there is no indicator polynomial
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function which contains only two words. Moreover, we have investigated indica-
tor polynomial functions with three words and gotten that indicator polynomial
functions with three words must contain one or three even words. The forms of
the indicator polynomial functions with three words have also been obtained.

In Chapter 3, we have proved that a m-factor resolution (20 — 1).*z design
can be converted into a (m — 1)-factor resclution (2! + 1).z design in the same
number of runs and any m-factor design with resoiution equal or bigger than
V can be converted into a (m + 1)-factor resolution II7*.z design in the same
number of runs. We have also shown that a m-factor resolution (2/ — 1)-factor
design can be converted into (m — 1)-factor resolution (20).z design in the same
number of runs and a m-factor design with resolution (2[).z can be converted
into a (m + 1)-factor resolution (2/ — 1). z design in the same number of runs.

After obtaining the indicator polynomial functions of semifoldover designs,
we considered the addition of a smaller fraction to the original design and provided
a way to find the indicator polynomial functions of partial foldover designs in
Chapter 4. Especially, we have obtained the indicator polynomial functions of
the partial foldover design which is obtained by adding a 41 runs of the original
design.

In Chapter 5, we have studied various semifoldover resolution [17.z de-
signs. When subsetting on a main effect, we have established that the semi-
foldover design obtained by folding over on one or more, but not all, the factors
can not de-alias more main effects that the semifcidover design obtained by fold-
ing over on all the factors. When subsetting on a two-factor interaction, we have
provided necessary ancd sufficient conditions for a semifoldover design to de-alias
g main effect. Some illustrative examples are alsc provided in this chapter.

In Chapter 8, we have studied semifoldover designs obtained from gen-

eral two-level resolution 7V.z designs. When folding over on one factor, we have
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proved that a semifoldover design, obtained by subset on a main effect, can es-
timate as many two-factor interactions as the full foldover design; the necessary
and sufficient conditions for a semifoldover design, obtained by subsetting on a
two or three-factor interaction, to de-alias all the two-factor interactions which
contain the foldover factor are also presented. We have also provided a sufficient
condition for a semifoldover design, obtained by folding over on two or more fac-
tors and subsetting on a main effect, to estimate as many two-factor interactions

as the full foldover design. Finally, we have presented some illustrative examples.

‘uture Work

7.2

Indicator polynomial functions are new and powerful tools. Their applications
in factorial designs need to be explored further. There are several interesting
problems for future research:

In Chapter 2, we have studied some properties of indictor polynomial
functions. Specifically, we have shown that some forms of indicator polynomial
functions must be a half fraction and we have also studied indicator polynomial
functions with only one, two or three words. The following problems will be of

further interest to study in the future:

1. If a factorial design is a half fraction, what can we say about its indicator

polynomial function 7

2. When the indicator polynomial function contains four or more words, what

are the possible forms of the indicator polynomial function 7

In Chapter 3, we have studied the connections between two-level facto-
rial designs of resolution [II*.z and resclution V.r using the transformations

proposed by Draper and Lin [14]. If we use different transformations, we may



get different connections between resolutions of two-level factorial designs. This
certain is worth examining in a future work.

In Chapter 4, we have provided the indicator polynomial functions of
partial foldover designs. This allows us to study partial foldover designs obtained
by adding smaller fractions, such as % fractions, to original designs. One possible
future work is to consider alias structures in such partial foldover designs and
explore when an effect can be de-aliased in the partial foldover designs.

Chapters 5 and 6 have examined when a main effect or a two factor in-
teraction can be de-aliased in a semifoldover design. But, this consideration is
under the condition that there are no blocks. One possible future work is to study
alias structures of blocked semifoldover designs and consider when an effect can

be de-aliased in such a blocked semifoldover design.
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