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Abstract 

Self-cycling fermentation is a computer-aided process used for culturing microorgan­

isms. Cells feeding off a growth-limiting nutrient in a tank grow and reproduce until 

a computer determines the time to end the cycle. At this point, a fraction of the vol­

ume of the tank is removed and replaced with an equal volume of fresh nutrient. The 

remaining cells then consume the fresh medium, grow, and reproduce. The process 

continues, releasing a fraction of the tank containing only a small amount of nutrient 

at the end of each cycle. Applications include sewage treatment, toxic waste cleanup, 

the production of antibiotics, and the examination of cell evolution. A basic model 

of growth will be formulated in terms of a system of impulsive differential equations. 

The predictions of the dynamics of the model will be discussed. The model will be 

refined to better describe the process for nutrient-minimizing applications such as 

sewage tr~atment. Criteria to ensure a positive, orbitally attractive periodic orbit 

with one impulse per period will be given. The predictions of the analysis will be 

supported by numerical simulations. The model will also be refined to include size­

structured populations and a more accurate description of cell reproduction. The 

predictions of these refined models will be described. Competition of populations will 

also be considered and criteria for coexistence of more than one population on a single 

nonreproducing growth limiting nutrient will be given, and supported by numerical 

simulations. 
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Outline 

The aim of this thesis is to provide a comprehensive look at the process of self-cycling 

fermentation from the perspective of impulsive differential equations. The first two 

chapters are an extensive preamble, outlining the process as it appears in the literature 

and illustrating some potential problems with the oxygen-driven process, especially 

when the application is nutrient minimizing problems. We then reformulate the model 

in Chapter 3 to overcome some of the problems and prove the first set of main results, 

giving conditions that will ensure indefinite cycling in the form of an asymptotically 

stable periodic orbit with impulsive effect. 

Chapter 4 further refines the model formulated in Chapter 3 to take the size of 

microorganisms into account and better describe reproduction. In Chapter 5, we 

look at competition in the self-cycling fermentation process. We prove further main 

results, combining impulsive Floquet theory and a persistence argument to prove that 

under certain conditions two species can coexist on a single nonreproducing nutrient. 

Chapter summary 

In Chapter 1, we introduce the self-cycling fermentation process. We discuss appli­

cations of the process to industry and its various uses and benefits. We also describe 

impulsive differential equations and list some of the aims for our analysis. 

In Chapter 2, we analyse the oxygen-driven model for self-cycling fermentation. 

The amount of nutrient a!1d biomass in each cycle is related by constants. We show 

that these constants converge to the input value of the nutrient. We illustrate a. 
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potential problem with the model described in Wincure, Cooper and Rey [38]. It 

predicts that the amount of dissolved oxygen in the tank could theoretically become 

negative. Numerical simulations demonstrate further problems with this model: the 

process may never begin to cycle or the process may cycle a finite number of times, 

but not thereafter. We provide conditions on the input data and known constants 

that will guarantee that the system will run indefinitely. We then prove that if a 

periodic orbit exists, it will be stable. 

In Chapter 3, we refine the model to better reflect the situations where the goal is 

to minimize nutrient. We include the death rate of the population that consumes the 

nutrient, and consider a more general uptake function. The nutrient-driven process 

relies on a predetermined level of nutrient, called the tolerance. This level will ensure 

that the amount of nutrient released into the environment will always be suitably 

small. We provide conditions for the existence of a positive periodic orbit with one 

impulse per period and state the initial conditions necessary to converge to this orbit. 

The convergence is shown to be monotonic, in terms of the concentration of the 

microorganisms at the end of each cycle. We also discuss the cycle times of solutions 

that converge to the periodic orbit. Numerical simulations demonstrate the various 

cases for the initial conditions and the monotonicity of the convergence. We discuss 

the impa~t this refined model has in practice and discuss appropriate choices for the 

tolerance. 

In Chapter 4 we refine the model again to consider size-structure. Based on simple 

assumptions, we develop a model involving partial derivatives and then reduce this 

model to a system of ordinary differential equations with impulsive effect. We use 

impulsive theory to show that the model can be reduced to a two dimensional system 

for which the theory in Chapter 3 applies. Next we show that the average cell sizes 

and the standard deviation both approach a constant value, implying that the number 

of unnaturally large cells is negligible. We then consider a size-structured model for a 

population that reproduces by unequal fission. We reduce this model to a model for 

which the results of Chapter 3 again apply. This model is a more realistic description 
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of cell reproduction, where the ratio of mother to daughter size at fission is considered 

to be a random variable. 

In Chapter 5, we turn to two-species competition in the nutrient-driven model. 

We consider the Monod form of the function, the one most often used in the literature. 

We ignore the death rate, to simplify the calculations. We prove that coexistence is 

not possible if the uptake function of one species dominates the other. We then use 

the impulsive Floquet theory to give conditions ensuring that the nontrivial Floquet 

multipliers of each species are greater than one. By letting certain parameters in 

one uptake function vary over all possible positive values, we find a central region of 

coexistence in parameter space. Numerical simulations demonstrate that we do in fact 

have coexistence of two competitors, as a stable positive periodic orbit. We then use 

a suitable map and apply the analogue of the Butler-McGehee theorem for maps to 

prove that we have persistence in the regions where the nontrivial Floquet multipliers 

are greater than one. Numerical simulations demonstrates that coexistence of three 

populations is also possible. 

Appendix A contains background material on systems with impulsive effect. We 

discuss impulsive semi dynamical systems, define impulsive trajectories and periodicity 

and give simple examples. We discuss existence, uniqueness and continuability of 

impulsive solutions, redefine stability notions for impulsive differential equations and . 
discuss autonomous systems. 

Appendix B contains the Floquet theory for impulsive differential equations. We 

define the Floquet multipliers and discuss impulsive Floquet theory. We provide 

the calculation of the nontrivial multiplier of a periodic orbit in a two dimensional 

system. An analogue of the Poincare criterion provides a useful result for determining 

the stability of periodic orbits in two dimensions. 
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Chapter 1 

An Introduction to Self-Cycling 

Fermentation 

1.1 Introduction 

The microbial quality of drinking water is the most important aspect of 

drinking water quality because of its association with waterborne diseases. 

[. . .j The introduction of a well managed water treatment system with ef­

fective chemically-assisted filtration and disinfection, an adequately main-. 
tained chlorine residual in the distribution system and the implementa­

tion of bacteriological surveillance programs to ensure the delivery of safe 

drinking water are measures that have demonstrated their effectiveness in 

eliminating water-related illnesses. 

- Ontario Drinking Water Standards [25], page 12. 

The issues of sewage treatment and toxic waste cleanup are important in today's 

industrialized society. Many approaches have been taken to deal with these and 

other, similar, problems. Continuous and batch fermentation are two processes that 

involve bacteria consuming the waste to produce a cleaner environment. In this thesis 

4 



we will be concentrating on a relatively new approach to such problems, known as 

self-cycling fermentation (SCF). 

Although the SCF process has been used with considerable success since its de­

velopment in 1990 (see Sheppard and Cooper, [30]), very little analysis of the model 

has been carried out. It is important to analyse the underlying structure in order to 

understand both the benefits of the process and also the drawbacks. It is the goal of 

this thesis to provide a comprehensive analysis of the model as it has been used and 

also suggest some potential improvements that can be made. 

The process of self-cycling fermentation can be described as follows. A culture 

in a tank feeds off a limiting nutrient. It is assumed that the tank is well-stirred, 

so cells and nutrient are distributed uniformly throughout the tank. Oxygen diffuses 

into the tank from the air above the surface of the tank. The cells use this dissolved 

oxygen to process the nutrient in order to grow and reproduce. Cell biomass is 

measured, accounting for cell size and population. When the nutrient is almost 

entirely consumed, the cells decrease their use of oxygen. There is a correspondingly 

sharp increase in the dissolved oxygen level in the tank. 

A probe inserted in the tank measures the dissolved oxygen level and relays the 

information back to a computer. The computer monitors the situation until it de­

tects a minimum in dissolved oxygen concentration. A set fraction of the volume of . 
the tank, usually half, is then removed (containing cells, nutrient and oxygen) and 

replaced by an equal volume of fresh medium (containing nutrient and oxygen, but 

not cells). The time of this action is referred to variously as the time of impulsive 

effect, the harvesting time, the moment of impulse or the end of cycle time. The time 

between impulsive effects is referred to as the cycle time. 

Once the fresh medium has been added to the tank, the culture is again left 

undisturbed until the computer next detects a dissolved oxygen minimum. The same 

fraction of the contents is again removed and then replaced with an equal volume of 

fresh medium. This process continues, hopefully indefinitely. See Brown and Cooper 

[7] or Sheppard and Cooper [30] for more information. 
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In practice, of course, the time taken to empty and refill the tank is not zero, but 

compared to the cycle time, it is quite short. It can thus be useful to assume that 

this process occurs instantly, although it should be noted that this means there is at 

least a slight discrepancy between theory and practice from the beginning. 

The main advantage of the SCF process over other culturing methods is the fact 

that the cycle time is incorporated in the process as a dependent variable (depending 

on the cellular metabolism). If the requirements of the cells change over succes­

sive generations then the system automatically responds. With no specific period of 

nutrient dosing imposed on the cells, there is also no prior knowledge of the specific 

growth rate of the cells required. Another advantage is the production of two identical 

portions of synchronized cells at the end of each cycle. 

A potential disadvantage is that we have no way to guarantee the indefinite cycling 

of the system. We cannot guarantee that the system will necessarily reach a dissolved 

oxygen minimum in the first place, nor can we guarantee that it will continue to reach 

subsequent dissolved oxygen minima indefinitely. 

1.2 Applications to industry 

Although,Self-Cycling Fermentation is a relatively new technique, it has already been 

applied in various situations. One practical example is that of sewage treatment, as 

described in Sarkis and Cooper [28]. In this case, the nutrient is effluent and the 

organism is one that feeds on effluent and thus purifies the water. The goal here is 

to have as little nutrient remaining as possible at the end of the cycle and in practice 

the SCF process leaves very little. 

The uses of self-cycling fermentation have been quite versatile. In Wentworth and 

Cooper [36], the aim is to cultivate a synchronous population of a strain of Candida 

lipolytica cells. The harvested volume is then used to produce citric acid in a second 

stage reactor. It is also possible to use the synchronization of cell populations to 

observe developments at a particular stage in the growth cycle of an organism, as in 
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Zenaitis and Cooper [40]. 

In Hughes and Cooper [18], the SCF process is used for the removal of pollutants. 

There are aromatic organic compounds that are toxic at low concentrations and resis­

tant to degradation in the environment. Maximal elimination of these compounds is 

vitally important, since at even very small concentrations they can actually be more 

toxic than at the original levels. In Brown and Cooper [8], the SCF process is used 

to eliminate industrial pollutants, such as insoluble carbon. 

Because the cycle time is a dependent variable, the SCF also allows observation 

of the stability rate of various organisms consuming nutrients. In Sheppard and 

Cooper [30], it was observed that Pseudomonas putida consumed sodium benzoate in 

a significantly shorter time period than Pseudomonas fiuorescens. In Wentworth and 

Cooper [36], Candida lipolytica consumed ammonium sulphate in the SCF process 

and the production rates were compared to the rates from other processes in the 

literature. Their observations demonstrated a full order of magnitude improvement 

in the rate of biomass production using the SCF process. 

Self-Cycling Fermentation can also be used to produce antibiotics. In Zenaitis 

and Cooper [40], the SCF process was used for both a first and second stage reaction. 

Streptomyces aurofaciens was grown and harvested in a self-cycling fermenter using 

sucrose as a nutrient. As a result of stress placed upon the microorganism, it produced . 
tetrocyclines and its derivatives. 

The production of antibiotics is quite desirable and the SCF process is a consider­

able improvement over other methods in terms of stabilization. However, as a result 

of harvesting, half the amount of antibiotic remains in the tank at the beginning of 

each cycle. Since antibiotics can act as an inhibitor to the growth of the microorgan­

isms which produce them, this is a problem. To overcome this problem, a two-stage 

method can be used to obtain the antibiotic products exclusively (or at least mostly) 

in the second tank. In this case, while the SCF process is not used in the second 

stage, it still plays a significant part in the rate of stabilization of the growth of the 

mlcre>orgamsms. 
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In Pinchuck, Brown, Hughes and Cooper [26], the SCF process lends itself to 

testing biological models through a genetic algorithm. The SCF process provided 

sufficient richness with which to generate data required for the modelling purposes. 

It can thus be seen that the applications of self-cycling fermentation are quite 

varied. Whether the goal is optimizing the cell count or minimizing the nutrient, the 

same process appears to work quite well. 

1.3 Impulsive differential equations 

Impulsive Differential Equations are usually given in the form 

dy 

dt 

!:::.y 

f(t,y) 

I(t, y) 

¢(t, y) =f. c 

¢(t,y) = c 

where !:::.y _ y+ - Y describes the (usually discontinuous) change in state when the 

criterion ¢( t, y) = c is fulfilled. Here y+ is the value immediately after the impulsive 

effect; in general it is not equal to y. We assume continuity from the left. 

The motion is continuous for ¢( t, y) =f. c and there are a finite or infinite number 

of instantaneous changes in state occurring when ¢(t, y) = c. It is also possible to . 
consider partial differential equations with impulsive effect. 

The theory of impulsive differential equations is relatively new. The main results 

are found in Lakshmikantham, Bainov and Simeonov [20] and Bainov and Simeonov 

[2], [3]. The theory has found applications in many areas where evolutionary processes 

undergo rapid changes at certain times of their development. In the mathematical 

simulation of such processes, the duration of this rapid change is ignored and instead 

it is assumed that the process changes its state instantaneously. The theory has 

been applied to problems in mechanics, radio engineering, biotechnology and control 

theory. 

- Since the self-cycling fermentation process undergoes a rapid change when the 

dissolved oxygen reaches a minimum, it can be modelled by a series of impulsive 
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differential equations, which describe both the intracycle evolutionary process and 

the impulsive effect taking the end of one cycle to the beginning of the next. 

Most of the theory of impulsive differential equations has been carried out for 

non-autonomous equations, where the times of the impulsive effect are fixed. This 

makes the analysis relatively straightforward, although it should be noted that the 

detail is still quite complicated. The equations modelling self-cycling fermentation 

are autonomous, with variable (and non-explicit) moments of impulse. There is some 

material in Lakshmikantham, Bainov and Simeonov [20] and Bainov and Simeonov 

[2], [3] that deals with these types of equations, but the majority deals with simpler 

systems. 

Further details can be found in Appendices A and B. 

1.4 Aims 

Our aim in this thesis is to investigate self-cycling fermentation from a mathematical 

viewpoint. The relatively new theory of impulsive differential equations will be ap­

plied to the system. The fact that solutions of impulsive differential equations are non­

continuous trajectories means that we have to redefine our notions of stability. We 

can apply the Floquet theory for impulsive differential equations to low-dimensional 

systems to determine the orbital stability of (impulsive) periodic orbits. 

We shall examine some of the problems inherent in the oxygen-driven model and 

postulate some improvements. Some of these improvements have been suggested in 

Sheppard and Cooper [30]. It can be demonstrated that in the oxygen-driven model, 

the impulsive effect may not be reached, or may only be reached a finite number of 

times. 

Our aim is to refine the model so that the system cycles indefinitely. We intend to 

provide conditions that will determine in advance whether a stable periodic orbit can 

be reached for a given species. Furthermore, we wish to guarantee that the amount of 

waste product released into the environment by the self-cycling fermentation process 
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is never greater than the maximal allowable concentration set by the Ontario Ministry 

of the Environment. 

We also examine the nutrient-driven system as a size-structured model, since it is 

possible that some cells may grow quite large. We will also use a model for self-cycling 

fermentation, where the nature of reproduction is taken into account. 

Finally, we shall look at competition in the nutrient-driven self-cycling fermenta­

tion process. We will investigate the question of whether more than one species can 

coexist in the SCF process and whether we can predict this in advance. 
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Chapter 2 

The Oxygen-Driven Self-Cycling 

Fermentation Process 

2.1 Introduction 

In this chapter we examine the model of self-cycling fermentation used in Wincure, 

Cooper and Rey [38], which uses a dissolved oxygen minimum to end each cycle. We 

shall demonstrate that there are potential problems with this model. This model is 

not suitable for describing a biological process and there are further problems with 

the use of oxygen to trigger the impulsive effect. The process may cycle indefinitely 

(the desirable outcome), cycle a finite number of times or not at all. Furthermore, the 

oxygen-driven process may not be the best method for nutrient minimizing problems 

such as sewage treatment, since we cannot guarantee that the output will be within 

acceptable environmental limits. 

One solution to the problem is to find conditions on the input data so we can 

predict whether the system will cycle indefinitely. In the case that a periodic orbit 

does exist, we will show that it is always stable. 
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2.2 The oxygen-driven model 

The equations for the self-cycling fermentation process, as described in Wincure, 

Cooper and Rey [38], but given here as impulsive differential equations, are 

ds f-txs 
[02] [02]min 

Y(Ks+s) 
f 

dt 

dx f-tXS 
[02] [02]min 

dt Ks + s 
f 

d[02] 
-g(S, x, [02]) + k ([02]* - [02]) [02] f [02]min (2.2.1) 

dt 

b.s -rs + rsi [02] [02]min 

b.x -rx [02] [02]min 

b.[02] -r[02] + r[02]i [02] [02]min, 

where 

• 8 is the limiting substrate concentration (giL) 

• x is the biomass concentration (giL) 

• [02f is the dissolved oxygen concentration (giL) 

• t is the time (min) 

• f-t is the maximum specific growth rate (min-i) 

• Ks is the half saturation constant (giL) 

• [02]min is the dissolved oxygen concentration at dissolved oxygen minimum 

(giL) 

• Y is the cell yield (g biomasslg limiting substrate) 

• g(8, x, [02]) is the oxygen transfer function. We assume 
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1. g : 1R3 -t IR is continuously differentiable, 

11. g(O, x, [02]) = g(S, 0, [0 2]) = g(S, x, 0) = 0, 

Ill. g is increasing in s, x and [02], 

IV. g(s, ax, [02]) = ag(s, x, [02]) for any a E IR, 

v. g is bounded. 

The specific function chosen in Wincure, Rey and Cooper is 

}of.tXS 
g(s, x, [02]) = [{ , 

s+s 

where Yo is the oxygen consumed per limiting substrate consumed (g[02]/g 

limiting substrate). This function does not depend on [02], and hence does not 

satisfy criteria (ii). See section 2.5 for more discussion. 

• k is the liquid-side dissolved oxygen mass transfer coefficient (min-I) 

• [02]* is the dissolved oxygen concentration at saturation (g/L) 

• r is the emptying/refilling fraction; r can be any number strictly between zero 

and one 

• si is the nutrient input concentration at the beginning of each cycle (g/L) 

• [02]i is the dissolved oxygen input concentration at the beginning of each cycle 

(g/L) 

The conditions for a dissolved-oxygen minimum are 

d[02] 
0 [02] [02]min -

dt 
(2.2.2) 

d2[02] 
> 0 [02] [02]min. 

de 
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The dissolved oxygen minimum is assumed to be a true minimum due to the sharp 

increase in oxygen content near the exhaustion of the limiting nutrient. 

Let x = xx and S = ss. In (2.2.1), we obtain 

d(ss) 1 f-lXXSS 

dt Y Ks + ss 
A 

ds 1 f-lxxss 
s-

dt Y Ks + ss 
ds x f-lxs 

dt SY Ks/s + s 

Ll(ss) -r.ss + r.sisi [02] [02]min 

sLls -rSs + r.sisi [02] [02]min 

Lls -rs + r.s i [02] [02]min 

and 
dx f-lXSS 

[02] [02]min x- x =I 
dt Ks + SS 

dx J-lXS 
[02] [02]min 

dt Ks/s + s 
=I 

Ll(xx) -rxx [02] [02]min 

xLlx -rxx [02] [02]min 

Llx -rx [02] [02]min. 

Let us choose s = Ks, x = Ks Y and rescale 9 as appropriate. Note that we 

have rescaled si, Then, removing the tildes for notational convenience, we obtain the 

dimensionless form of the equations 
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ds f-tXS 
[02] - --- =I [02]min 

dt l+s 

dx f-tXS 
- [02] =I [02]min 

dt l+s 

d[02] 
-g(S, X, [02]) + k ([02]* - [02]) [02] =I [02]min (2.2.3) 

dt 

~s - -rs + rsi [02] - [02]min 

~X -rx [02] - [02]min 

~[02] -r[02] + r[02]i [02] - [02]min' 

2.3 The non-impulsive system 

Before looking at the impulsive system, we shall analyse the dimensionless system of 

ODEs 

ds 
dt 
dx 
dt 

d[02] 
dt 

f-txs ---
l+s 

f-txs 
l+s 

with initial conditions s(O) :::: 0, x(O) :::: 0 and 0 ~ [02](0) ~ [02]*, 

Notice that 

s(t) + x(t) = c = s(O) + x(O) 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

for all t :::: O. Solutions remain in the region s(t) 2:: 0, x(t) 2:: 0, 0 ~ [02] ~ [02]* for 

all t. 

The critical points are 

and 
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Using (2.3.7) to substitute for x in equation (2.3.4) gives 

ds f.LS 
dt = - 1 + / c - s), 

a separable first order ODE. Solving, we obtain 

(~) l/c (c _ s(O)) 1+1/c 

s(O) c - s(t) 
(2.3.8) 

Using (2.3.7) again, we have 

. (S(t))l/C (X(O))1+
I
/
C 

hm -- --
t-+oo s(O) x(t) = o. 

Since ~~ > 0, the biomass is increasing, so x(t) remains positive for any solution 

with initial conditions in the interior of the first octant. Furthermore, x(t) ::; x(O) + 
s(O), so x(t) is does not approach infinity. Thus s(t) -+ 0 as t -+ 00, for any solution 

with positive initial conditions. Since s(t) approaches zero and g(O, x, [02]) = 0, it 

follows that [02](t) approaches saturation. 

2.4 Convergence of the constants 

Although t1}.e dynamics of the system of ordinary differential equations are rela­

tively straightforward, the system with impulsive effect becomes more complicated. 

Throughout, we shall assume that all functions are continuous from the left at the 

impulse points, so x(tk) X(tk), where tk is the time of impulse in the kth cycle. 

We shall denote the impulse points with a subscript for notational convenience. 

Thus, Xl is the first impulse point, X2 the next and so forth. This is done with the 

understanding that these points of impulse are occurring at times of impulse tk. That 

is, Xn = x(t~) and x~ = x(t~). The only exception to this is the initial conditions, 

where we shall have x(O) = x(O+), to ensure that there is no impulsive effect at the 

initial point, in accordance with impulsive theory. 
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Our analysis in the remainder of this chapter will involve the dimensionless system 

of impulsive differential equations given by (2.2.3). 

When considering the impulsive effect, the practical upshot of this is that each 

cycle begins anew, with the same differential equations but a 'new' set of initial 

conditions (which are defined in relation to the set of final conditions for the previous 

cycle). This means that the relationship 

x(t) + s(t) = c 

is still true, except that the value of the constant will be different for each cycle. In 

particular, for all positive integers n, 

x(t) + s(t) = Xn + Sn - Cn 

For the moment we shall assume that the impulsive effect always occurs and that 

there are an infinite number of moments of impulse. If the impulsive effect does not 

occur, or there are only a finite number of impulse times, then the nutrient runs 

down, as we have seen and the system halts (and in practice, the death rate would 

subsequently become non-negligible and the cells would die off). Some conditions are 

provided at the end of this chapter that guarantee indefinite cycling. 

Since x~ = (1 - r)xn and s~ = (1 - r)sn + rsi, we have the recurrence relation 

which has the solution 

and thus, since 0 < r < 1, 

lim en = st, 
n-+oo 

which is independent of the emptying/refilling fraction r. 
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Furthermore, 

(1 - r)Cn + rsi - (1 - r)Cn-1 - rsi 

(1 - r)(cn - Cn-l) 

(1 - rt-I (C2 - CI) 

(1 - rt-l ((1 - r)cI + rsi - CI) 

r(1 - rt- l (si - CI) 

and hence the sequence {cn } is increasing if CI < si and decreasing if CI > si. We 

thus have monotone convergence of the constants. 

2.5 Potential problems and numerical simulations 

There are some serious problems that can arise from the oxygen-driven model for 

self-cycling fermentation. First, the function 9 given in Wincure, Cooper and Rey 

[38] by 

(2.5.9) 

is inappropriate for describing behaviour in the mathematical model. With this choice 

for g, model (2.2.3) predicts that the dissolved oxygen could become negative. For 

example, if [02](0) = 0 and x(O) and s(O) are sufficiently large, the model predicts 

that the dissolved oxygen level decreases and becomes negative. This is obviously 

unrealistic. 

To overcome this problem, in the remainder of this section we assume that 

With a suitably small choice of a, we have a~?0121 ::::::: 1, except when [02] is near 

zero. This choice of 9 approximates the function used in Wincure, Cooper and Rey 
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[38], but satisfies g(8, x, 0) = 0 and does not allow negative values of any variables. 

Other examples of oxygen transfer functions can be found in Grady and Lim [16] and 

Sundstrom and Klei [34]. 

Next we illustrate certain features of model (2.2.1) using numerical simulations. 

All simulations were run using ODE45 in MATLAB, with adjustments to incorporate 

the impulsive effect. The constants used in all simulations were taken from actual 

data used in Wincure, Cooper and Rey [38]. All simulations were run using the 

original (unscaled) equations (2.2.1). 

Figure 2.1 shows a set of initial conditions and input data where the trajectory of 

(2.3.4)-(2.3.6) does not reach a dissolved oxygen minimum. The initial data used is 

8(0) = 0.015, x(O) = 0.004, [02](0) = 0.0035, with constants r = ~, [02]* = 0.0078, 

Ks = 0.007, f1 = 0.01, Y = 0.73, Yo = 0.63, a = 0.00001 and k = 1.2. 

Figure 2.2 shows a trajectory which reaches a minimum once, but thereafter does 

not reach a minimum again. The initial data used is 8(0) = 0.2, x(O) = 0.03, [02](0) = 

0.0055, with constants r = ~, [02]* = 0.0078, Ks = 0.007, f-l = 0.01, Y = 0.73, 

Yo = 0.63, a = 0.00001, k = 1.2, 8
i = 0.04 and [02]i = 0.004. 

Figure 2.3 shows an example of initial conditions and input data where we have a 

stable periodic orbit, with indefinite cycling. This is the situation most desirable for 

the SCF process. The initial data used is 8(0) = 0.35, x(O) = 0.95, [02](0) = 0.0075, . 
with constants r = !, [02]* = 0.0078, Ks = 0.007, f-l = 0.01, Y = 0.73, Yo = 0.63, 

a = 0.00001, k = 1.2, 8i = 0.8 and [02]i = 0.0066. 

Simulations were also run using the oxygen transfer function (2.5.9) and similar 

behaviour was exhibited, as well as negative values of dissolved oxygen. 

The fact that solutions may not undergo impulsive effect or may undergo impulsive 

effect a finite number of times raises questions about the practical application of 

the oxygen-driven SCF process. Conditions will be provided to ensure that these 

situations cannot occur, but the restrictions may be difficult to implement in practice, 

or may be violated following an unexpected disruption. Another approach for dealing 

with these problems will be given in the next 'Chapter. 
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Figure 2.1: An example of initial conditions where the system does not undergo' 
cycling. The oxygen is increasing to saturation, the nutrient approaches exhaustion 
and the microorganisms approach a constant value. We zoom in on the oxygen 
behaviour in the second part. 

2.6 Conditions to guarantee indefinite cycling 

In the previous section we explained one of the potential drawbacks of the oxygen­

driven model of the SCF process. It is not clear how to predict that a given set of 

initial conditions will reach a dissolved oxygen minimum. Furthermore, even if such a 

minimum is reached, this does not necessarily guarantee that the next cycle will also 

reach a dissolved oxygen minimum. We would like to start with initial conditions so 

that a dissolved oxygen minimum is reached in finite time and use input conditions 

so that every subsequent cycle will also reach a dissolved oxygen minimum. We refer 

to such a scenario as indefinite cycling. ThiEr is still not an ideal solution, since in 
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Figure 2.2: An example of initial conditions and input data where the system un­
dergoes cycling only once. The oxygen reaches a minimum, so the system undergoes 
cycling, but trajectories are transported to a location where the oxygen is increasing 
to saturation, so there is no further cycling. We zoom in on the oxygen behaviour in 
the second part. 

practice there may be disturbances in the system which could cause the process to 

halt. 

It is somewhat distressing to realize that this question has not been addressed thus 

far. Self-cycling fermentation relies on computer monitoring and does not require the 

presence of an operator to oversee the process. If there is a real chance that the 

system could halt, then this is a cause for concern. It would be highly desirable 

to know in advance that a given set of initial and input conditions will guarantee 

indefinite cycling for the system. 

21 



x10~ 
1.2.,---,------,--,--..,.----r--::> 

concentration 8 
(giL) 

x(t) 

7 

6 

0.8 

5 

0.6 
4 

0.4 
1\ \ \ \ 3 

2 

0.2 s(t) 

1\ \ \ \ \ \ \ \ \ \ 
O~--~~~~--~--~---J 

o 200 400 600 800 1000 1200 
o time 
o 200 400 600 800 1000 1200 

Figure 2.3: The system undergoes indefinite cycling.We have a stable periodic orbit, 
where the cycle time corresponds to the minimum doubling time of the microorgan­
isms. This is the most desirable outcome of the SCF process, since a dissolved oxygen 
minimum is reached every time. The corresponding value of the nutrient at the end 
of each cycle is low and the biomass is quite high, so the output of every cycle is 
favourable. We zoom in on the oxygen behaviour in the second part. 

A solution to the problem of not reaching a dissolved oxygen minimum is men­

tioned in Sheppard and Cooper [30]. We can set a predetermined period as the max­

imal allowable cycle time, meaning that if the system has not undergone impulsive 

effect by the end of this period, then we trigger the impulsive effect artificially. 

The advantage of having a maximal allowable cycle time is that we will have 

indefinite cycling. The disadvantage is that we have lost the cycle time as a dependent 

variable. Determining an appropriate maximal period in advance requires knowledge 

of the characteristics of the species; such foreknowledge is ordinarily unnecessary in 

the SCF process. 
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Another way to ensure that we continue to reach a minimum in subsequent cycles, 

is to adjust the input to guarantee that after every impulse, solutions are transported 

to a suitable location from where they will be guaranteed to reach a minimum again. 

Consider the oxygen content of the input. Since the fresh medium has presum­

ably been prepared for some time, it is not unreasonable to suppose that the oxygen 

concentration of the input volume might be close to saturation. In fact, in Wincure, 

Cooper and Rey [38] the authors specifically make this assumption in their experi­

ments. 

That is, 

(2.6.10) 

so 

We similarly assume that the oxygen is at saturation at the start of the process. 

That is, 

(2.6.11) 

This is not an unrealistic assumption, since it would be relatively easy to prepare the 

tank in advance and let the oxygen approach saturation before any microorganisms 

are introduced. If x(O) and 8(0) are positive, then 

d[~2] (8(0), x(O), [02](0)) _ k ([02]* - [02](0)) - g(8(0), x(O), [0 2](0)) 

- -g(8(0), x(O), [0 2]*). 

Since 9 is increasing in [02] and g(8, x, 0) = 0, it follows that g(8, x, [02]*) =J O. 

Therefore, we have 

Since the dissolved oxygen approaches saturation, we must reach a minimum in finite 

time. 
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Assume that a dissolved oxygen minimum is reached at least once and sup­

pose condition (2.6.11) holds. Let (sn' X n, [02]n) be a point of impulse, with image 

(s~, x~, [02]~). We have 

[02]* - «1 - r)[02]n + r[02]*) 

(1 - r) ([02]* - [02]n). 

Furthermore, since d[~21 = 0 at the minimum, we have 

Thus, 

d[~2J (s~, x~, [02]~) = k ([02J* - [02J~) - g(s~, x~, [02J~) 

= (1 - r)k ([02J* - [02]n) - g«l - r)sn + ri, (1 - r)xn' (1 - r)[02Jn + r[02J*) 

= (1 - r)g(sn, X n, [02]n) - (1- r)g«l - r)sn + rsi, X n, (1 - r)[02]n + r[02]*)' 

since 9 is assumed linear in x. 

Now, since [02Jn :::; [02]*, we have 

[02Jn < [02Jn + r([02J* - [02Jn) 

(1 - r)[02Jn + r[02J*. 

If we have the initial condition 

s(O) + x(O) < si, (2.6.12) 

then the constants Cn strictly increase to si, as shown in section 2.4. Hence, Sn < 

Cn < si. Thus 

Sn < Sn+r(si- sn ) 

(1 - r)Sn + rsi. 

Therefore, since 9 is increasing in sand [02J, 
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Thus 

It follows that the oxygen will reach a minimum in finite time. 

Remarks. Instead of condition (2.6.12), we might impose the condition 

except that we cannot guarantee anything about the end of nutrient cycle values 

Sn. However, in practice this revised condition is not an unreasonable one, since the 

value of the nutrient at the end of each cycle is usually much smaller than the input 

concentration. In the next chapter we will deal with this in more detail and impose 

a similar condition. 

In terms of the original variables, condition (2.6.12) is 

x(O) . 
s(O) + y < s'. (2.6.13) 

Thus, conditions (2.6.10), (2.6.11) and (2.6.13) guarantee that a dissolved oxygen 

minimum will be reached after every impulse point. 

2.7 Stability of periodic orbits, if they exist 

In the previous sections, we demonstrated that there may not be a periodic orbit in 

the oxygen-driven self cycling fermentation process. However, we can show that if a 

periodic orbit exists, then it is stable. 

Suppose conditions (2.6.10), (2.6.11) and (2.6.12) hold. Since the constants con­

verge to si, we can assume that c takes this value for the periodic orbit. Consider 

the two-dimensional impulsive differential equations under the assumption that the 
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input concentration of oxygen is at saturation. 

ds 
-(si-s)f(s) 

dt 
[02] -# [02]min 

d[02] -g(s, si - s, [02]) + k([02]* - [02]) [02] -# [02]min (it 

.6.s -1's + 1'si [02] [02]min 

.6.[02] -1'[02] + 1'[02]* [02] - [02]min' 

We assume f(s) = ft. However, for our argument we assume only that f(s) is a 

differentiable function which is increasing in s and zero at the origin. 

Let s = ((t), [02] = v(t) be a T-periodic solution with one impulsive effect. 

Introduce the following notation: 

From the T-periodicity, (t = (0 and vt = Vo. Then since .6.( = -1'( + 1'si we have 

and so 

Thus, 

and similarly, assuming (2.6.10), 

1 . 
--((0 - 1's') 
1-1' 

VI = 1 ~ l' (vo - 1'[02 ]*), 

(2.7.14) 

(2.7.15) 

(2.7.16) 

Notice that from condition (2.6.12), we have (0 + x(O) = (1 + Xl < si and so 

(1 < si. Then from (2.7.14), we have 
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and thus (0 > (1' 

Using the Floquet theory for two-dimensional impulsive differential equations (see 

Appendix B), we have 

p 

a 

_(Si - s)f(s) 

-rs + rsi 

Q - -g(s, si - s, [02]) + k([02J* - [02]) 

¢ - _g(s,si - s, [02]) + k([02J* - [02]) 

Notice first that, since d[~2J (T) = 0, 

(2.7.17) 

implying that Q( (1, vd = 0. Thus 

.6. - 1 r (si-(0)f((0)*+(-g((0,si_(0,vo)+k([02J*-Vo))(~+k) 
1 - ( - ) (si - (df((d~ . 

Note that .6.1 is positive. 

Now, 

so 

agds 
---

as dt 
. ag 

- (s' - (t)f((t) as > 0, 

since [02](t) attains a minimum at T. It follows that the denominator of .6.1 is 

positive. 

Suppose VI > Vo. Then 

_1_(vo - r[02J*) 
1-r 

Vo - r[02J* 

[02]* < Vo, 
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which is a contradiction, since the oxygen is always below saturation. Thus VI :s; VO. 

Note also that 

. 1 . 
_ s' - --((0 - rs') 

1-r 
1 . 

- 1 _ r ( s t - (0). 

From (2.7.15), (2.7.16) and (2.7.17), we have 

k ([02]* - vt) - g( (1, si - (1, vd 

k ([02]* - _l_(vo - r[02]*)) -
1-r 

1 ~ rk ([02]* - vo) -
1 . 

g((I, 1 _ r (s' - (0), vd 

1 . 
- 1- r g((1,S' - (o,vd 

1 . 
< 1 _ r g( (0, s' - (0, vo), 

since 9 is increasing in sand [02] and we showed VI :s; Vo and (1 < (0. 

Thus 

Furthermore, 

i T (8P 8Q ) 
o as + 8[02] dt 
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Thus 

112 < 
(1 _ r) (Si - (O)!((O) . (Si - (d!((d 

(Si - (d!((d (Si - (O)!((O) 
1- r, 

which is strictly less than one. Hence the periodic orbit, if it exists, is asymptotically 

stable. 

2.8 Discussion 

There is, of course, no guarantee that a periodic orbit exists. However, we can at least 

choose suitable initial and input conditions so that the system undergoes indefinite 

cycling. Condition (2.6.13) might be difficult to verify and is somewhat restrictive. 

The possibility that the system may halt is a very real one, as Figures 2.1-2.2 

demonstrate. Furthermore, the implication that the dissolved oxygen could be nega­

tive means that the model in Wincure, Cooper and Rey [38] loses biological relevance. 

One of the advantages of the self-cycling fermentation process is that it does not 

require the presence of an operator and should, in theory, continue forever. The 

systems also reset themselves fairly quickly following an unexpected disturbance (for 

example,.a power failure, as observed in Sheppard and Cooper [30]), but even if 

our initial conditions and input guarantee indefinite cycling, such a disturbance may 

potentially cause the system to cross over into the domain of attraction of a critical 

point. 

In order to make sure this does not happen, the system would need at least regular 

monitoring (which may not be desirable and cancels out one of the advantages of 

such systems) or some sort of process control loop could be set up, but this may 

interfere with the property that cycle time is a dependent variable in the system. In 

order to retain many of the advantages of the oxygen-driven self-cycling fermentation 

process, especially knowing in advance that the conditions to begin cycling are met 

and whether we have continuous cycling, we shall propose an alternate means to 
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instigate the emptying/refilling process at the end of each cycle. Such an alternate 

method will be the topic of the next chapter. 
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Chapter 3 

A Nutrient-Driven Self-Cycling 

Fermentation Process 

3.1 Introduction 

If we want to apply the self-cycling process specifically to the problem of sewage treat­

ment, or any similar problem where the goal is to reduce nutrient levels below some 

threshold, there are potential problems. We have already seen that the oxygen-driven 

process may not begin cycling or cycling may not continue indefinitely. Even when 

the oxygen-driven process converges, the system takes a while to settle down into its 

steady, periodic state. This means that the first few cycles may release unacceptable 

levels of waste before the system settles down. Furthermore, if there is some sort 

of interruption to the system, there may again be a release of an unacceptable level 

of sewage immediately following this interruption, or the system may be sufficiently 

disturbed so that the oxygen level does not reach a minimum. 

Although it is well known that the SCF process converges fairly quickly, either 

initially or after an interruption (see Wentworth and Cooper [36] for example), this 

may still be a cause for concern. When the goal of the SCF process is to clean up 

industrial pollutants, this may cause further difficulties, since the pollutants are often 

more toxic at medium concentrations than at their original levels. See Hughes and 
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Cooper [18] for example. It would thus be desirable to avoid this situation if possible, 

even for a few cycles of the process. 

The Ontario Ministry of the Environment sets a Maximum Acceptable Concen­

tration (MAC) standard and an Interim Maximum Acceptable (IMAC) standard for 

health-related parameters in drinking water (see Ontario Drinking Water Standards 

[25]). The MAC is a health related standard established for parameters present above 

a certain concentration, whereas the IMAC is a health related standard established 

for parameters for which is it infeasible, to establish a MAC either through insufficient 

toxicological data or for practical reasons. 

Any treatment process which exceeds the MAC or IMAC, even for a few cycles, 

will not pass the guidelines. Furthermore, if we cannot guarantee in advance that 

the system will never exceed MAC or IMAC standards, then the SCF process cannot 

be implemented, even if the amount of waste is less than the MAC or IMAC level in 

practice. 

In this chapter we suggest a modification to the process that avoids the problems 

in the oxygen-driven model and tailors the self-cycling fermentation process more 

specifically to nutrient minimizing problems such as sewage treatment. 

One way to alter the SCF model is to use nutrient level as the triggering factor 

instead of a dissolved oxygen minimum. While the SCF model has many advantages, 

not least of which is its versatility, an adaptation such as this should maintain most 

of the advantages and tailor it to the particular case of reducing nutrient levels below 

some threshold. 

Furthermore, one of the potential adjustments to the model, as seen in Sheppard 

and Cooper [30], is to trigger the impulsive effect early so as not to allow total nutrient 

depletion and hence biomass starvation. The nutrient-driven version of the model that 

we propose addresses this as well. 

We shall also include the death rate (j of the organisms, as a partial refinement of 

the oxygen-driven model. This is done with the understanding that we can simply 

assume-(j = 0 if we wish to compare this model with the one in the previous chapter. 
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The idea is to choose some value 8 of nutrient (in practice fairly small but nonzero, 

although we will quantify allowable values later) and use that as the maximum value 

of nutrient allowable at the end of the cycle. That is, the impulsive effect only occurs 

when the nutrient level is definitely below 8. This allows us to set the guidelines for 

the system in advance. We call 8 the tolerance. 

We can ignore the oxygen equation in this model, since the nutrient and biomass 

equations are independent of oxygen. We also consider a general uptake function 

/(s), which is continuous, increasing and zero at the origin. Examples can be found 

in Sundstrom and Klei [34] and Grady and Lim [16]. We will use the specific form 

f( s) = K~~s when running simulations. 

3.2 The nutrient-driven model 

Suppose the impulsive effect occurs when s = 8, rather than at a dissolved oxygen 

minimum. Using the notation of the previous chapter, x = Xn and s = 8 at the nth 

moment of impulse. The image of the impulsive effect is the same as before, so that 

x! = (1- r )xn and 8+ = (1- r)8 + rsi, where si is the fixed concentration of nutrient 

coming in from the next input. 

Model (2.2.1) is replaced by . 
ds 1 

--f(s)x s =I 8 
dt y 

dx 
-dx + f(s)x (3.2.1) s =I 8 

dt 

.0..s -rs + rsi s 8 

.0.. x -rx s 8, 
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where f satisfies: 

1. f: ~ -+~, 

11. f is continuously differentiable, 

111. f(O) = 0, and 

lV. 1'(s) >0, 

and we assume J 2 O. 

(3.2.2) 

We assume continuity from the left for the impulse points. We shall also assume 

that s(O) =f:. s, so there is no impulsive effect initially. Furthermore, we shall make 

the assumption that si > s. Then for any 0 < r < 1, 

s+ = (1 - r)s + rsi > s. 

Define A to be the value of the nutrient that satisfies f(A) = J. If f is bounded 

below d, then we define A = 00. 

3.3 The associated system of ODEs 

The associated system of ordinary differential equations is 

ds 1 

dt 
--f(s)x 

y 
(3.3.3) 

dx 
-dx + f(s)x, 

dt 

with initial conditions satisfying s(O) 2 0, x(O) 2 O. Solutions with these initial 

conditions satisfy set) 2 0, x(t) 2 0 for all t. 

Equilibria are of the form (s*, 0), where s* 2 O. The Jacobian matrix at (s*, 0) is 

J(s*,O) _ 0 - y [ &:l] 
- O_f(s*) - J ' 

so (s*, 0) is unstable if s* > A. 
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If s(O) > 0 and x(O) > 0, then set) is decreasing for all t. Furthermore, we have 

- 2 1 2 I 
x" = x[j(s) - d] - yX f (s)f(s). 

When s = A, x' = 0 and x" ::; 0, since I'(s) > 0 for all s. Furthermore, x" = 0 only 

when x(O) = O. Thus x has a maximum value when s = A and set) ::; s(O) for all t. 

Hence solutions are bounded. 

Lemma 3.1. If s(O) > A, x(O) > 0 and s -+ s*, x -+ 0 then 0 < s* < A. 

Proof. Suppose s(O) > A, x(O) > 0, s -+ s* and x -+ O. 

Assume s -+ s* ~ A. Then, since x =J 0 in the interior, we have the differential 

equation 

dx 

ds 

y --1 ds 18* (d ) 
8(0) f(s) 

y --1 ds 18* (d ) 
8(0) f(s) 

18(0) (d ) 
y 8* f ( s) - 1 ds 

y (ff.) -1) 
10 1dx 

x(O) 

-x(O) 

= x(O). 

Since x(oj > 0, the right hand side of (3.3.5) is positive. 

If s -+ s* ~ A, then f(s) ~ f(s*) ~ d for s E [s*,s(O)]. Thus 

18(0) (d ) 
y 8* f(s)-l ds::;O, 

(3.3.4) 

(3.3.5) 

so the left hand side of (3.3.5) is less than or equal to zero. This is a contradiction, 

so the assumption that s* ~ A does not hold. Thus, 0 < s* < A. 

o 

Theorem 3.1 (Poincare-Bendixson Trichotomy). Let ,+ (yo) be a positive semi­

orbit of y' = g(y) which remains in a closed and bounded subset [{ of~2 and suppose 

that [{ contains only a finite number of rest points. Then one of the following holds: 
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i) w(yo) is an equilibriumj 

ii) w(Yo) is a periodic orbitj 

iii) w(yo) contains a finite number of equilibria and a set of trajectories whose alpha 

and omega limit sets consist of one of these equilibria. 

Since s(t) is decreasing, there are no periodic orbits. For each Yo, let K = ,(Yo), 

the closure of the orbit through Yo. Then K is closed and bounded and contains two 

equilibria. Suppose J > O. If Yo has initial conditions s(O) > 0, x(O) > 0, then one 

equilibrium (sr,O) satisfies sr > s(O) and hence (sr,O) ¢ w(Yo), since s is decreasing. 

Furthermore, since 8 is decreasing, there cannot be a trajectory 'IjJ such that 'IjJ ~ w(Yo) 

and w('IjJ) = o:('IjJ) = (s;,O). Hence, by the Poincare-Bendixson Trichotomy, solutions 

approach the equilibrium (s;,O) satisfying 0 < 8; < A. If s(O) = 0, x(O) > 0 then 

8 ' = 0 for all t and x' < 0 so solutions approach (0,0). 

If J = 0, then A = 0 and there are equilibria (8*,0), 8* ~ 0 and (O,x*) where 

x* > O. In this case solutions are along lines Y 8 + X = Y 8(0) + x(O) and x(t) is 

increasing. If Yo has initial conditions 8(0) > 0, x(O) > 0, then one equilibrium (8*,0) 

satisfies 8* > 8(0) and hence (8*,0) ¢ w(yo). Furthermore, since x is increasing, there 

cannot b~ a trajectory 'IjJ such that 'IjJ ~ w(yo) and w('IjJ) = o:('IjJ) = (8*,0). Hence, 

by the Poincare-Bendixson Trichotomy, solutions approach the equilibrium (0, x*) 

satisfying x* > O. 

3.4 Conditions to ensure a positive, attracting pe­

riodic orbit 

For a given species, we would like to be able to control some parameters in the SCF 

process to ensure indefinite cycling. Each species will have a predetermined death 

rate and monotone uptake function. The MAC or IMAC will determine the tolerance 

in advance. This gives the experimenter control over the choice of microorganism 
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in the tank and the emptying/refilling fraction r. There is some possibility that the 

experimenter could control si, but in most cases, si would represent the incoming 

level of contamination and hence would not be under the control of the experimenter. 

Notice from the impulsive system (3.2.1) that s(t) is decreasing between moments 

of impulse. Define 

rU-r)S+rs
i 

( d ) 
Sint = Y is 1 - f(s) ds. 

Lemma 3.2. a) If s+ > s ~ >. then Sint > o. 

b) Ifs < s+ ~ >. then Sint < O. 

Proof. 

a) Since s ~ >., f(s) > f(s) ~ d for s E (s, s+). Thus 

Y [' (1 - It)) ds > O. 
Hence Sint < O. 

b) Since s+ < >., f(s) < f(s+) < d for s E (s, s+). Thus 

Y{(l-It))dS<O. 
Hen.ce Sint < o. 

o 

Proposition 3.1. If s(O) ~ s+ > >. > s, x(O) > 0 and Sint ~ 0, then solutions will 

reach s in finite time. 

Proof. Suppose x -+ 0, S -+ s* ~ s. Then from (3.3.5), we have 

Y 1.S

(0) (f~) - 1) ds 

Y [ ct) -1) ds +Y t (It) -1) ds 
+Y 1:(0) (ft) -1) ds 
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Thus 

18(0) (J ) 
x( 0) - y - - 1 ds 

s+ J(s) 

18(0) ( J ) 
x(O) + Sint + Y s+ 1 - J(s) ds. (3.4.6) 

We have A < 8+ ~ s for all s E [8+, s(O)]. Thus J(s) ~ J(8+) > J, so 

18(0) ( J ) 
Y s+ 1 - J(s) ds ~ 0, 

since s(O) ~ 8+. Since x(O) > 0, the right hand side of (3.4.6) is positive. 

If s -* s*, then s* < A. Thus, since J is increasing, J(s*) < J. By assumption, 

s* ~ 8, so J(s) ~ J(s*) < J for s E [8,S*]. Hence 

r· ( J ) Y } s 1 - J (s ) ds ~ 0, 

so the left hand side of (3.4.6) is less than or equal to zero. This is a contradiction, 

so the assumption that s* ~ 8 does not hold. Thus, s* < 8, so 8 is reached in finite 

time. 

o 

Remark: Solutions which have initial conditions satisfying (s, x) = (8+, f) for any f > 

o will thus reach 8 in finite time. Solutions that reach (s, x) = (8, xn ), with Xn > 0, are 

transported under the impulsive effect to the location (s, x) = (8+, (1 - r )xn ), which 

are the new initial conditions for the next cycle. Since these new initial conditions 

satisfy the hypotheses of Proposition 3.1, they must therefore reach (s, x) = (8, Xn+l) 

in finite time. Hence, if solutions reach the impulsive surface once, they will reach it 

infinitely often, when Sint 2: o. 

Theorem 3.2. Assume Sint > o. Then there exists a unique periodic orbit with 

exactly one impulse per period. This periodic orbit has the property oj asymptotic 

phase. 
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i) If s ~ >. then the periodic orbit attracts all solutions with initial conditions 

satisfying s(O) > sand x(O) > O. 

ii) If s < >. then the nontrivial periodic orbit attracts all solutions with initial condi­

tions satisfying Y J:(O) (1 - it)) ds ~ 0 and x(O) > 0, or Y J:(O) (1 - it)) ds < 

0, but x(O) sufficiently large. 

The periodic orbit satisfies 

s, 
~ 

r , 

s+ 
n (1 - r)s + rsi, 

(1 - r)~, 

for all positive integers n. One of the following holds: 

a) Xn = S~nt for all positive integers n,o or 

b) Xn < S~nt, Xn < X n +1 for all positive integers nand Xn -+ ~ as n -+ 00,0 or 

c) Xn > S~nt, Xn > Xn+1 for all positive integers nand Xn -+ ~ as n -+ 00. 

iii) If s(O) < s or s(O) satisfies Y J:(O) (1 - it)) ds < 0 and x(O) > 0 is sufficiently 

smail, then there are no moments of impulse and x(t) -+ 0, s(t) -+ s*, where 

o :::; s* < >.. 

Proof. Suppose s = ((t), x = e(t) is a T-periodic solution with one impulsive effect 

per period. We use the notation 

From the condition of T-periodicity, (i = (0 and ei = eo. The impulsive conditions 

give us 

(0 (l-r)s+rsi 

(1 s 

6 
1 -I-eo. -r 
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From (3.3.4), we have 

1
~1 

dx 
~o 

x leO/(l-r) 

~o 
r 

--eo 
1-r 

1(1 (J ) 
Y (0 f ( s) - 1 ds (3.4.7) 

Y --1 ds 1
s (J ) 

(l-r)s+rsi f( s) 

Thus a nontrivial periodic orbit exists if Sint > O. The periodic orbit in x has 

initial point 

and final point 

1-r 
--Sint 

r 

t _ Sint 
<,,1 - -. 

r 

(3.4.8) 

We shall apply the impulsive Floquet theory (as described in Appendix B) to 

the two-dimensional system (3.2.1). If we calculate the nontrivial impulsive Floquet 

multiplier, as in Appendix B, we have 

Therefore, 

.6.1 

P 
f(s)x 

---, 
Y 

Q -dx + f(s)x, 

a -rs+rsi , b - -rx, 

¢ s - s. 

- f((o)eo( -r' 1 - 0 + 1) + Y( -Jeo + f((o)eo)( -r' 0 - 0 + 0) 

(1 _ ?f((o) 
r f((I) , 

- f((d6 + Y( -d6 + f((d6)(0) 

since eo = (1 - r)6 > O. Furthermore, 

l-
T (OP + OQ) dt 

o as Ox 
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Then the nontrivial multiplier is 

(1- r)2f(Co) . f(Cd . _1_ 
f(Cd f(Co) 1 - r 

1- r. 

Thus, the periodic orbit is orbitally asymptotically stable and has the property of 

asymptotic phase. 

First we show that if the impulsive surface is reached once it is reached infinitely 

often. 

i) Suppose s -+ s*, x -+ O. Then since, s* < A :S 8, 8 is reached in finite time. 

ii) Suppose Y f;(O) (1 - Its)) ds ?: O. Assume x -+ 0 and s -+ s* ?: 8. From (3.3.5), 

we have 

18(0) (J ) 
y 8. f(s)-l ds x(O) 

Js (J ) 18

(0) (J ) 
Y 8. f ( s) - 1 ds + Y s f ( s) - 1 ds x(O) (3.4.9) 

If s :S s* < A, then f(s) < J for s E [8,S*]. Hence 

r· ( J ) Y } s 1 - f ( s ) ds:S O. 

Then since Y f8
8
(0) (Its) - 1) ds < 0, it follows that the left hand side of (3.4.9) is less 

than or equal to zero. This is a contradiction if x(O) > O. Hence solutions will reach 

8 in finite time. 
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Suppose Y J;(O) (1 - It)) ds < 0 and 

x(O) > Y(s+ - s(O)) (1 - f(;+)) . (3.4.10) 

Assume x --+ 0 and s --+ s* 2:: s. Then from (3.3.5), we have 

1
S

(0) (d ) 
y s. f(s) - 1 ds x(O) 

y l (It) -1) ds +Y ( (It) -1) ds 

1
S
(0) (d ) 

+ Y 8+ f (s) - 1 ds x(O) (3.4.11) 

As above, 

is. ( d ) 
Y 8 1 - f(s) ds ~ O. 

If s(O) ~ s ~ s+, then f(s) ~ f(s+) for s E [s(O), s+]. Thus 

d d 
1 - f(s) ~ 1 - f(s+)" 

Hence 

18+ ( J ) (J ) Y s(O) 1- f(s) ds~Y(s+-s(O)) 1- f(s+) . 

Since Sint.> 0, it follows that the left hand side of (3.4.11) is less than 

Y(s+ - s(O)) ( 1 - f(;+)) . 

This contradicts (3.4.10). Hence s is reached in finite time. 

Solutions that reach (s,x) = (s,xn), with Xn > 0, are transported under the 

impulsive effect to the location (s,x) = (s+,(1 - r)xn)' which is the new initial 

conditions for the next cycle. Since these new initial conditions satisfy the hypotheses 

of (i) or Proposition 3.1, they must therefore reach (s,x) = (s,xn+d in finite time. 

Hence, if solutions reach the impulsive surface once, they will reach it infinitely often. 

Next we show that if the system cycles indefinitely, the-convergence is monotone and 

all solutions that cycle indefinitely approach the periodic orbit. 
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From (3.3.4) we have 

Xn+1 X~ + Sint 

(1 - r )Xn + Sint· 

This has the general solution 

If Xl = 8i~t, then 

Sint 

r 

for all positive integers n. 

If Xl < Si~t ,then 

Xn < (1 _ rt-1 S~nt + Sint (1 - (1; r)n-l) 

Sint 

r 

for all positive integers n. Furthermore, from (3.4.12) we have 

(1 - r)xn + Sint - Xn 

Sint - rXn 

> Sint - r [S;t] 

0, 

since (3.4.14) holds for all positive integers n. 

If Xl > 5m.,then 
r 

Sint 

r 
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for all positive integers n. Furthermore, from (3.4.12) we have 

(1 - r)xn + Sint - Xn 

Sint - rXn 

< Sint - r [S~t ] 
0, 

since (3.4.15) holds for all positive integers n. 

Finally, note that from (3.4.13) we have, in all cases, 

lim Xn 
n-too r 

iii) If s(O) < s then s is never reached, so there are no moments of impulse and 

S -t s*, where 0 :::; s* :::; s(O). 

Suppose s -t s* < s. If s(O) satisfies Y J:(O) (1 - jts)) ds = -8, where 8 > 0, 

then from (3.3.5), we have 

(3.4.16) 

If s* :::; S :::; S < A, then f(s) < J for s E [s*,s]. Hence 

Y 1: (ff.) -1) ds > O. 
Thus, the left hand side of (3.4.16) is greater than t:. Hence if we choose 0 < 

x(O) < t, then we have a contradiction. Thus s :::; s* < A. 

We shall now demonstrate that there are no periodic orbits with more than one 

impulse point per period, i.e. no higher order periGdic orbits. 
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Suppose we have a T-periodic solution with k moments of impulse, at t l , t2, ... , 

tk-l, T. Then 

for i = 1, ... ,k; and 

(3.4.17) 

From (3.4.7), we have the following. For t E (ti' ti+1), 

l
ei+l 

dx = Sint, 

et 
and so 

= Sint + (1- r)Sint + ... + (1- r)k-2 Sint + (1- r)k-l Sint . 

Thus, since et = (1- r)ei, the interior values on the left hand side cancel, so we have 

Hence, using (3.4.17), 

so 

1 ( )k 1 --eo - 1 - r - eo, 
1-r 

1-r eo = --Sint· 
r 

This is the same value of eo as for the first order period (from (3.4.8)). Since the 

ordinary differential equation with initial condition (s(O),x(O)) = ((1- r)8" + rsi, eo) 
has a unique solution, it follows that (8",6) is the first point of impulse. However, 

from the results in the case of the single order period, et = eo. Hence there are no 

non-degenerate higher order periodic orbits. 
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o 
Theorem 3.3. Assume Sint = O. Then there is no nontrivial periodic solution and 

lim inf x ( t ) = O. 
t-too 

If s(O) ;:: s+ and x(O) > 0 or s(O) > sand x(O) is sufficiently large, then there are an 

infinite number of impulses. If s(O) < s or s < s(O) < s+ and x(O) > 0 is sufficiently 

small, there are no impulses and s( t) -+ s*, where 0 :::; s* < A. 

Proof. Since Sint = 0, we must have s+ > A. Hence by Lemma 3.1, if s(O) ;:: s+, 

x(O) > 0, then s is reached in finite time. The nature of the impulsive effect takes 

solutions at (8", xn) to (8"+, (1 - r)xn), so if s is reached once, it is reached infinitely 

often. However, from (3.3.5), we have 

y 1: (ff.) -1) ds l
x n +1 

Idx 
x;t 

o Xn+1 - (1 - r )xn. 

Thus Xn+1 = (1 - r )xn < Xn for all n, so there is no nontrivial periodic orbit. Since 

Xn = (1 - r)nxi and x! = (1 - r)xt, Xn -+ 0 and x! -+ 0 as n -+ 00. Hence 

liminft-too x(t) = O. 

Suppose 8" < s(O) < s+ and 

x(O) > Y(s+ - s(O)) ( 1 - f(;+)) . 

Then, as in the proof of (ii) in Theorem 3.2, s is reached in finite time. Hence there 

are an infinite number of impulses if x(O) is sufficiently large. 

If 8(0) < s then s is never reached, so there are no moments of impulse. 

If s < 8(0) < s+ and x(O) is sufficiently small, suppose 8 -+ s* < s. There are two 

cases to consider. In the first case, if A :::; s(O), then by (3.3.5), we have 

Y 1:(0) (ff.) - 1) ds = x(O) 

y [Cf.) -1)dS+Y { (ff.) -I) ds 

+Y 1:(0) (ff.) - 1) ds x(O). (3.4.18) 
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If s* ~ s < s < >., then f(s) < J for s E [s*,s]. Hence 

y 1: (ft) - 1) ds > O. 

If >. ~ s(O) ~ s ~ s+, then f(s) ~ J for s E [s(O), s+]. Thus 

18+ ( J ) 
y 8(0) 1- f(s) ds~O. 

The left hand side of (3.4.18) is positive, say E, so we can choose 0 < x(O) < €. This 

is a contradiction, so s* ~ s and hence we have s ~ s* < >.. 
In the second case, if s(O) < >., then by (3.3.5), we have 

Y to) (It) -1) ds x(O) 

y 1: (ft) -1) ds + Y 18

(0) (ft) -1) ds - x(O). (3.4.19) 

As above, 

Y 1: (ft) - 1) ds > O. 
If s ~ s(O) < >., then f(s) < J for s E [s, s(O)]. Thus 

18(0) (J ) 
Y 8 f( s) - 1 ds > O. 

The left hand side of (3.4.19) is positive, say" so we can choose 0 < x(O) < ,. This 

is a contradiction, so s* ~ s and hence we have s ~ s* < >.. 

o 

Theorem 3.4. Assume Sint < O. Then there is no nontrivial periodic orbit. For 

any initial conditions, there are at most a finite number of impulses and eventually 

s(t) -+ s* and x(t) -+ 0, where 0 ~ s* < >.. 

Proof. Suppose Sint < O. Note that we must have s < >.. Suppose s(O) = s+, 

o < x(O) < -Sint. 

47 



Assume x ---7 0, S ---7 S* ~ s. Then from (3.3.5), we have 

x(O) 

x(O) 

x(O) 

= x(O) + Sint. (3.4.20) 

The right hand side is negative, by our choice of initial condition. 

If S ---7 s* ~ s < A, then f(s) ~ f(s) < J for s E [s*,s]. Hence 

y 1: (ff.) -1) ds > 0, 
so the left hand side of (3.4.20) is positive. This is a contradiction, so the assumption 

that s* ~ s does not hold. Thus, s ---7 s* > S. 

Assume we have initial conditions s(O) = s+, x(O) > -Sint such that the solution 

has an infinite number of moments of impulse. However Xn+1 - x! < 0, so Xn+1 < 
(1 - r )xn < x n . Hence Xn ---7 m ~ O. If m > 0, then we have a periodic orbit with 

Xn+1 = Xn for all n. This is not possible with a strictly decreasing sequence of impulse . 
points, so we must have m = O. 

If Xn ---7 0 then x! ---7 O. Hence there exists N such that 

Ix~ - 01 < -Sint 

whenever n > N. Thus x! < -Sint, so from the argument above, S ---7 s* > s. Thus 

there is no further moment of impulse, which is a contradiction. Hence there are at 

most a finite number of moments of impulse. 

Thus, solutions with s(O) = s+, x(O) > -Sint undergo k moments of impulse, until 

o < xt < -Sint and then x ---7 0, s ---7 s* > S. 

For any other initial conditions, either the impulsive surface is reached or it is 

not. If the surface is not reached, then there are no impulses and limHoo(s(t), x(t)) = 
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(s .. , 0) where s .. ~ o. If the surface is reached once, then the initial conditions for 

the next cycle satisfy s(O) = s+, x(O) > 0 and hence thereafter undergo only a finite 

number of impulses, by the above reasoning. 

Remarks. When f(s) = d::s' we have 

l (l-r)s+rs
i 

( d(Ks+s)) 
Sint = Y 1 - ds 

8 pS 

Y (
d) (i -) YdKs I (l-r)s+rsi 1- - r s -s - -- n . 
p p s 

Suppose s < A < s+. We have 

OSint 

or 
OSint 

Osi 

Y (1- f(;+)) (s' - s) 

Y ( 1 - f (!+ )) r 

o 

If s+ > A, then both a~i~t and 8;~~t are positive. Thus Sint is increasing as rand si 

increase, so if Sint ~ 0, we may be able to increase the emptying/refilling fraction 

or the input until Sint > o. In most practical applications, si will be fixed, so it is 

more likely that we would have control over r. However, it is interesting to note 

that increasing si and effectively increasing the amount of pollutant, may make the 

problem easier to solve. 

3.5 Cycle times 

One of the factors to consider in environmental cleanup processes is the amount of 

time the system takes to clean each batch. Explicitly determining the cycle times in 

impulsive systems can be quite difficult. However, we can make some estimates. 

Lemma 3.3. Suppose (s(t), x(t)) and (s(t), x(t)) are two solutions of system (3.3.3), 

with initial conditions (s(O), x (0)-) and (s(O), x(O) + t) respectively, for some t > o. 
Then if s(t2 ) = s(td, it follows that x(t2 ) = x(td + L 
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Proof. Let S(tt)Se(t2) = s*. From (3.3.4), we have 

and similarly 

Thus 

--1 ds 1
s

• (d ) 
s(O) f(s) 

[0) ct) -1) ds -

l
X (td 

dx 
x(O) 

x(O) - x(tt) 

x(t,) - x(O) + < - [0) ct) -1) ds 

- x(tt) + € 

o 
Theorem 3.5. Suppose (s(t), x(t)) and (Se(t), xe(t)) are two solutions of system (3.3.3), 

with initial conditions (s(O), x(O)) and (s(O), x(O) + €) respectively, for some € > O. 

Then if Se (t2) = s(tt), it follows that t2 < t l · 

Proof. First consider y(t) = s(t) - se(t). We have 

y(O) 

y'(t) 

y'(O) 

s(O) - se(O) = 0 
f(s(t))x(t) f(se(t))xe(t) 

- - y + Y 

f(s(O))x(O) f(se(O))xe(O) 
- - y + Y 

f(s(O))x(O) f(s(O))x(O) f(s(O))€ 
-- Y + Y + Y 

> 0 

Thus y(O) = 0 and y(t) is initially increasing. Suppose there exists l> 0 such that 

y(t) > 0 for 0 < t < l, but y(l) = O. This means that y'(l) ~ O. However, 

s(l) - se(l) 

x(l) - xe(l) - € 
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by Lemma 3.3. Thus, at t, we have 

s'(i) 
x ( i) f ( s ( i) ) 

y 
x€(i)f(s(i)) f(s(i)) 

- y +E y 

s~(l) + Ef(s;.i)) 

Hence y'(i) > O. This is a contradiction, so there does not exist 1 such that y(t) > 0 

for 0 < t < t. Since y(t) is initially increasing, we must therefore have y(t) > 0 for 

all t. That is, 

s(t) > s€(i) for all i > 0 (3.5.21) 

Suppose the time taken to travel from (s(O), x(O)) to some point (s*, x*) is i l and 

the time take to travel from (s€(O),x€(O)) to some point (s*,x;) is t2. We have 

s(O) s€(O) 

x(O) x€(O) - E 

s(i l ) s€(i2) 

x(i l ) x€(i2) - E 

by Lemma 3.3. Assume t2 ~ t l . Then, since s€(t) is decreasing, se(t2) ~ se(tt}. Thus, 

This contradicts (3.5.21). Hence i2 < i l . 

o 

Since x~ ~ (1-r)~ monotonically in Theorem 3.2, it follows that if x~ is decreasing 

to (1 - r) Si~t, then the cycle times increase to the period T of the periodic orbit. 

Conversely, if x~ is increasing to (1 - r) ~, then the cycle times :Ie crease to the 

period T of the periodic orbit. 
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3.6 Numerical simulations 

We demonstrate the various results in this chapter by means of numerical simulations. 

All simulations were run using ODE45 in MATLAB. All graphs were presented as 

subplots, with the graph on the left showing the behaviour of the nutrient and biomass 

with respect to time and the graph on the right showing the phase portrait in s-x 

space. The straight lines joining the endpoints of one cycle to the initial points of the 

next cycle are not actually part of the trajectories. Thus, in Figure 3.2 for example 

the periodic orbit in phase space consists of the curved part on the right and not the 

straight part on the left. 

The five examples are 

1. Sint > 0, S > A, s(O) > s, x(O) > 0 to illustrate case (i) in Theorem 3.2. In this 

case the endpoints of each cycle were monotonically decreasing to the endpoint 

of the periodic orbit, thus illustrating (c). See Figure 3.1. 

2. Sint > 0, S < A < s+, s(O) = s+, x(O) = (1 - r)~ to illustrate the first part 

of case (i) in Theorem 3.2. In this case, the initial conditions were equal to 

the initial points of the periodic orbit, so the orbit was the periodic orbit, thus 

illustrating (a). See Figure 3.2. 

3. Sint > 0, S < A < s, s(O) > s, x(O) > Y(s+ - s(0)(1 - J(~+») to illustrate 

the second part of case (ii) in Theorem 3.2. In this case the endpoints of each 

cycle were monotonically increasing to the endpoint of the periodic orbit, thus 

illustrating (b). See Figure3.3. 

4. Sint > 0, Y f8%) (1 - jts») ds > Sint, x(O) > 0 sufficiently small to illustrate case 

(iii) in Theorem 3.2. In this case, there was no impulsive effect and the solutions 

approached (s*,O), where s* > s. See Figure 3.4. 

5. Sint < 0, s(O) = s+, x(O) > -Sint to illustrate Theorem 3.4. In this case there 

were a finite number of impulses and then the-solutions approached (s*,O), 

where s* > s. See Figure 3.5. 
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Figure 3.1: When Sint > 0, there is an orbitally stable positive periodic orbit with the 
property of asymptotic phase. In this case Sint = 0.3197, s > >., 8(0) > s, x(O) > 0 
to illustrate case (i) in Theorem 3.2. The endpoints of each cycle were monotonically 
decreasing to the endpoint of the periodic orbit. 

The case Sint = 0 was not illustrated, due to the knife-edge effect of such a condi­

tion. 

The monotone uptake function used was f( 8) = II.:s' The constants used in all 

simulations were 8
i = 1.333, s = 0.1, r = 0.6, f..l = 0.01, Ks = 0.007, Y = 0.73. These 

last three values were taken from actual constants used in Wincure, Cooper and Rey 

[38]. 

The initial conditions and the death rates for each simulation were as follows: 

1. 8(0) = 0.5, x(O) = 0.6, d = 0.004. In this case Sint = 0.8398. 

2. 8(0) = 0.8398, x(O) = 0.01295, d = 0.00945. In this case 8int = 0.01943. 
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Figure 3.2: When Sint > 0, there is an orbitally stable positive periodic orbit with 
the property of asymptotic phase. In this case Sint = 0.01943, s < >. < s+, s(O) = s+, 
x(O) = (1 - r)~ to illustrate the first part of case (i) in Theorem 3.2. In this case, 
the initial conditions were equal to the initial points of the periodic orbit, so the orbit 
was the periodic orbit. 

3. s(O) = 0.5, x(O) = 0.002, d = 0.00945. In this case Sint = 0.01943. 

4. s(O) = 0.135, x(O) = 0.00001, d = 0.00945. In this case Sint = 0.01943. 

5. s(O) = 0.8398, x(O) = 0.4, d = 0.00986. In this case Sint = -0.00316. 

3.7 Discussion 

The Ontario Ministry of the Environemnt sets a maximum acceptable concentration 

(or interim maximal acceptable concentration) of contaminants in the water and this 
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Figure 3.3: When Sint > 0, there is an orbitally stable positive periodic orbit with 
the property of asymptotic phase. In this case Sint = 0.01943, S < A < s, s(O) > s, 
x(O) > Y(s+ - s(O)(l - (:+)) to illustrate the second part of case (ii) in Theorem 
3.2. In tkis case the enipoints of each cycle were monotonically increasing to the 
endpoint of the periodic orbit. 

value would make an ideal choice for S. With this value, we are guaranteed not to 

be releasing batches of water that are anything less than the maximal acceptable 

concentration (as opposed to the oxygen-driven SCF model). Furthermore, since Sint 

is increasing as s increases, this means that we are more likely to ensure that Sint > O. 

Furthermore, if Sint was already positive, a higher value of s will result in a higher 

value of the endpoint of the periodic orbit and thus a higher yield of microorganisms 

in each cycle. 
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Figure 3.4: Sint = 0.01943, Y f8%) (1 - jts)) ds > Sint, x(O) > 0 sufficiently small to 

illustrate case (iii) in Theorem 3.2. There was no impulsive effect and the solutions 
approach~d (s*, 0), where s* > s. 

We require 

s < i 

for the system to run. This is not an unreasonable restriction, since if si < s then 

the input is already below the MAC or IMAC, so there is no need to clean it up. The 

'knife-edge' case, s = Si means that s = (l-r)s+rsi, so the nutrient is at an impulsive 

equilibrium of instantaneous impulsive effect. However, the microorganisms are being 

continually depleted, so they are being reduced by a fraction r at every instant and 

thus approach extinction. This case does not arise in reality. 

With control over the choice of microorganism or the emptying/refilling fraction, 
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Figure 3.5: When Sint < 0, there is no nontrivial periodic orbit and solutions undergo 
at most a finite number of impulses. In this case Sint = -0.00316, s(O) = s+, x(O) > 
-Sint to illustrate Theorem 3.4. In this case there were a finite number of impulses 
and then -the solutions approached (s*, 0), where s* > s. 

we can determine Sint. There is a unique positive periodic orbit with the property of 

asymptotic phase if and only if Sint > o. 
If Sint > 0 and s ~ A, where A is the value of s such that f(A) = J (or A = 00 

if f( s) < J for all s) then the nontrivial periodic orbit attracts all solutions with 

initial conditions satisfying s(O) > sand x(O) > o. If Sint > 0 and s < A then the 

nontrivial periodic orbit attracts all solutions with initial conditions satisfying s(O) ~ 

(1 - r)s + rsi and x(O) > 0, or s(O) > s but x(O) sufficiently large. The endpoints 

of each cycle in x will approach the endpoint of the periodic orbit monotonically. 

Furthermore, the cycle times will mon;tonically approach the period of the periodic 
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orbit. 

If d () - () . fi y r(l-r)Hrs
i 

( cI ) d 
Sint > 0 an S 0 < S or S 0 sabs es Js(O) 1 - /(8) S > Sint and 

x(O) > 0 is sufficiently small, then there are no moments of impulse and x(t) -+ 0, 

s(t) -+ s*, where s:::; s* < A. 

If Sint = 0, then there is no nontrivial periodic solution and 

liminfx(t) = O. 
t-+oo 

If Sint < 0, then there is no nontrivial periodic orbit and solutions undergo at most a 

finite number of impulses and eventually s(t) -+ s* and x(t) -+ 0, where s :::; s* < A. 

Impulsive theory requires that s(O) =f=. s so that we do not undergo cycling im­

mediately. The initial condition s(O) = i > (1 - r)s + rsi is a reasonable one in 

practice, since the first batch to clean is presumably as polluted as the others. This 

means that we can measure Sint in advance, or choose an appropriate microorganism 

and emptying/refilling fraction so that Sint > O. We will thus be guaranteed to cycle 

indefinitely for appropriate initial conditions. This is the most desirable situation. 

We can also force the microorganism to wash out for appropriate constants or 

initial conditions, should this be desirable. An example where this might occur is 

if the microorganism x is a pest that is eating a neutral nutrient S until this nu­

trient is depleted below some value s. If the microorganism switches nutrient at s . 
to a nutrient that is valuable, it would be desirable to gradually eliminate the mi-

croorganism, without letting the neutral nutrient fall below s. If we can choose an 

emptying/refilling fraction r such that Sint < 0, then the population will decrease over 

each cycle without causing the microorganism to switch nutrients and eventually we 

will have s(t) -+ s* > sand x(t) -+ 0 as t -+ 00. 

The biggest potential problem with the nutrient-driven model is the practicality 

of detecting the nutrient. However, in Sheppard and Cooper [30], the computer is 

programmed to cycle the nutrient (nitrogen in this case) at the precise time of nutrient 

exhaustion, suggesting that detection of the nutrient levels by a computer is viable, 

at least for some choices-of limiting nutrient. 

It is possible that detection may not be possible at low nutrient levels. However, 
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if s > s is the lowest value of nutrient that the computer can detect, we can program 

the computer to delay the moment of impulsive for a fixed period after detecting the 

level s. This is not an ideal solution, but it should provide a reasonable approximation 

to s. 
The oxygen-driven SCF process may be better if the goal is maximizing biomass or 

examining the evolutionary aspects of cells in response to nutrients. It is also possible 

that setting the computer to monitor nutrient levels may affect the life-cycle of the 

organisms, so it should be noted that we are assuming this effect is negligible for the 

purposes of this model. Comparison with the oxygen-driven model when d = 0 shows 

that we are guaranteed to cycle indefinitely for any initial conditions with 8(0) > s 
and x(O) > O. 

The nutrient-driven model retains many of the advantages of the SCF process. 

Cycle time is still a dependent variable, which was the main advantage of self-cycling 

fermentation over batch fermentation and other techniques. No cycle time needs to 

be specified in advance. There are also two identical batches at the end of each cycle. 

There is a further advantage the nutrient-driven model has over the oxygen-driven 

one. In practice, a computer will never trigger the impulsive effect at a dissolved 

oxygen minimum, since there is a small time delay between the detection of the 

dissolved oxygen minimum and the emptying/refilling process. See Figure 2.3 for . 
example. This delay corresponds to a time when the oxygen begins to rise rapidly. 

There is also a delay in triggering the nutrient-driven model, but in this case it is to 

the advantage of the system. Our aim with the nutrient-driven model is to improve 

efficiency of systems where the goal is to reduce the nutrient below some threshold, 

so this means that the nutrient level will only be smaller. Furthermore, if we know in 

advance that the delay corresponds to an amount € of nutrient, then we can instruct 

the computer to detect the nutrient level at s + €, on the assumption that the delay 

in the system means that we will actually be emptying the tank when the nutrient is 

at level s. 
For the remainder of this thesis we shall consider the nature of impulsive effect to 
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be nutrient-driven. The next questions that arise concern the size of the microorgan­

isms and the nature of reproduction. We shall address such concerns in the context 

of impulsive differential equations in the next chapter. 
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Chapter 4 

A Size-Structured Model for the 

Nutrient-Driven Self-Cycling 

Fermentation Process 

4.1 Introduction 

With the process of self-cycling fermentation, it is possible that some cells in the 

tank may continue to grow in size indefinitely. Although we are regularly removing 
. 

a fraction the contents of the tank at the end of each cycle, there is still the distinct 

possibility that some cells may not get removed and may instead grow to relatively 

large sizes. It becomes necessary to consider what effect this will have on the process. 

Size consideration has been a factor in practice. In Wentworth and Cooper [36], 

it was observed that after the exhaustion of the limiting nutrient, the cells continued 

to increase in size, but the total number of cells did not change. 

In previous chapters, only the average mass of the organisms was considered. Some 

of the cells may be much larger than others, or there might be a greater number 

of small cells. Measuring biomass does not reflect the physical properties of the 

tank if we consider the effects of growth. In order to accommodate this, we will 
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examine population density, length, surface area and the number of cells. A model 

that accounts for individual variations in one or more characteristics, such as size, is 

called a structured population model. 

The last part of this chapter takes a more realistic approach to modelling cell re­

production. The existing model is adapted to include impulsive effects, so it describes 

a model of self-cycling fermentation that accounts for cell division. 

Some of the work in the first part of this chapter follows the approach of Cushing 

[12], although we have adapted the model to accommodate impulsive effects. The 

model in the last part is from Metz and Diekmann [22], and is also adapted to include 

impulsive effects. As in the previous chapter, the impulsive effect is driven by the 

nutrient reaching a predetermined tolerance s. 

4.2 Development of the model 

Suppose an individual in the population is characterized by its length l. We assume 

all individuals have the same length lb at birth and they do not shrink, so h :::; l. 

We assume that the rate of nutrient uptake is proportional to the superficial 

surface area. For example, filter feeding species such as Daphnia absorb nutrient in 

this way. Although the actual cell surface area may be quite complex, the superficial . 
surface area is approximately spherical. For an individual of length l the rate of 

uptake is given by [2 f(s), where f(s) is the uptake rate per unit surface area. We 

assume that f satisfies the conditions in (3.2.2). 

Some sources require lims-too f(s) < 00 to ensure that the uptake function does 

not lose biological relevance for large values of s. However, since the nutrient levels in 

the SCF process are between fixed values, unbounded uptake functions do not pose 

a problem for our system. 

Suppose a fraction /'\, of energy derived from ingested nutrient is used for growth, 

and 1 - /'\, is used for reproduction. The energy required for maintenance of the 

organism is assumed to be insignificant in comparison and is neglected. Let w be the 
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conversion factor relating nutrient to biomass and w be the conversion factor relating 

nutrient units to weight of offspring. 

The growth rate of the organism is 

or 

dl = ~f(s). 
dt 3w 

The remaining fraction of uptake is (1 - K)[2 f(s). This is used for reproduction. 

Each offspring requires wl~ units of resource. Thus the birth rate for individuals of 

length l is 

l-K 
birth rate = -l3 f(s)l2. 

wb 

Let p(t, l) be the density of individuals of size l at time t. p has units in grams 

per litre. The number of individuals with length a ~ l ~ b, at time t, is given by 

J: p(t,l)dl. 

Consider individuals of length a ~ l ::; b at a fixed time to > O. At time t > to, 

this group of individuals occupies size range a(t) ::; l ::; b(t), where 

a(t) 

b(t) 

l
t K 

a + -f(s(r))dr 
to 3w 

lt K 
= b + -f(s(r))dr. 

to 3w 

(4.2.1) 

(4.2.2) 

During each cycle, the number of individuals in this group can only change due 

to mortality, so 

d l b
(t) l b

(t) 
-d p( t, l)dl = -d p( t, l)dl 

t a(t) a(t) 
s =1= s, ( 4.2.3) 

where J is the death rate, which we assume to be constant and independent of l. 

Each cycle is defined in the same manner as the previous chapter, so the tolerance s 
is assumed to satisfy s < si. 
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For the impulsive effect, we have to consider the difference between the population 

at time t"k and time tt, where tk is the time at which the nutrient reaches the tolerance 

level s. Note firstly that 

itt '" 
a + -f(s(r))dr 

to 3tv 

l fk '" 
a + -f(s(r))dr 

to 3tv 

a(t"k), 

since the integral is not affected by the impulsive effect. Similarly, b(tt) = b(t"k). Now 

at the end of each cycle, the number of individuals of size 1 (and hence the density of 

individuals of size l) is reduced by a fraction r. That is, 

p( tt, 1) - p( t"k ,1) 

-rp(ri;, l) s = s. 

Turning now to the number of individuals at the impulse point, we have 

l
b(t k ) 

~ p(tk' l)dl = 
a(tk) 

s = s. 

(4.2.4) 

Without impulsive effect, we have, using the Leibniz rule applied to Equation 

(4.2.3), 

l
b(t) a (t 1) l b(t) 

p a' dl + b'(t)p(t, b(t)) - a'(t)p(t, a(t) = -d p(t,l)dl 
a(t) t a(t) 

Now, by the fundamental theorem of calculus applied to (4.2.1)-(4.2.2), b'(t) = 
a'(t) = 3':zJ(s(t)) , so we have 

l
b
(t) a (t 1) '" l b

(t) 
p a' dl + -3 f(s(t)) [p(t, b(t)) - p(t, a(t)] + d p(t, l)dl 

a(t) t tv a(t) 
0, 
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or 

l
b
(t) [8p(t,l) + ~f(s(t))8p(t,l) + Jp(t,l)] dl = O. 

a(t) 8t 3ro at 

We can take the (length) limits to be a and b such that h < a < b. Suppose the 

integrand is not identically zero as a function of 1 for any fixed to with to i=- tk. Then 

there is a point lo where it is (say) positive and hence a range of lengths around lo 

where it would be positive (since continuous in l). Taking a and b to be the endpoints 

of such an interval leads to a contradiction. Thus the integrand must be identically 

zero. Hence, for t =1= tk, 

for h < land s i=- S. 

At time t = 0, 

8p K, 8p - + -f(s(t))-
8t 3ro at 

p(O, l) = po(l) 

-Jp 

for 1 ~ h, where po is the initial density of the population. 

(4.2.5) 

(4.2.6) 

The number of offspring born in the time interval (t, t + ot), where c5t > 0 is small, 

is obtained by adding the individual contribution of each size class. This is given by 

1 - K, 100 

-l3 f(s(t)) l2 p(t, l)dl c5t. 
U) b lb 

We choose ot small so that offspring born of offspring in this period can be neglected. 

We allow unbounded sizes, but we shall see later that the number of such individuals 

is negligible. See section 4.5. 

At time t +ot, the length of the offspring that were born at time t is approximately 

K, 

lst = lb + -f(s(t))c5t. 
3ro 

The newborns occupy the size range lb ~ 1 ~ lOt at time t + ot, so an expression 

for the number of individuals at time t + c5t, is given by 

1/6t p(t + c5t,l)dl = 1 -l3K, f(s(t)) 100 

l2p(t,l)dl ot, 
4 U)b 4 
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or 

3m 1.
16t 

K,f(s(t))5t Ib p(t+5t,l)dl 

Let 5t -+ O. Then 

p(t,h) = 3m(1~K,)1.ool2p(t,l)dl 
K,wlb Ib 

giving us a boundary condition at l = h. When t 

becomes, 

(4.2.7) 

tk, the boundary condition 

( 4.2.8) 

The rate of consumption of nutrient by an individual of length 1 is proportional 

to the surface area and the uptake function. Thus 

dd
s = -f(s(t)) 1.00 

12p(t,l)dl 
t Ib 

s =I- s, ( 4.2.9) 

where we determine the rate of uptake of nutrient at time t by summing over indi-

viduals of all sizes. 

The impulsive effect for nutrient is to reduce the amount of nutrient remaining 

at the end of a cycle by a fraction r and then to add in an equal volume of fresh 

medium. This gives us the conditions 

s(O) 

C1s -rs + rsi s = s. 

(4.2.10) 

(4.2.11) 

In summary, the ordinary and partial differential equations for nutrient and pop­

ulation density are given by 

ds 
dt 

ap K, ap - + -f(s(t))­
at 3m at 

C1s 

C1p(tk, l) 

_f(s(t))jOO l2p(t,l)dl 
lb 

-dp 

-rp(tJ;, I) 
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with boundary conditions 

and initial conditions 

s(O) SO 

p(O, l) po(l). 

Remark. We shall see shortly that both the average individual length and the 

standard deviation in length approach a constant value as t -+ 00. Thus, while some 

individuals may grow unnaturally large, they represent a negligible fraction of the 

total population. This is partly due to the fact that the tank is assumed to be well­

stirred and so the cells are removed uniformly. We also expect po(l) = 0 for 1 ~ lm. 

This implies 

for 1 ~ lm(t), where 

p(t,l) 0 

lm(t) = lm + r ~ f(s(r))dr. io 3w 

4.3 Reduction to a system of impulsive ordinary 

differential equations 

Let 

1100 

A(t) [2 p(t, l)l2dl 
b lb 

1100 

L(t) -l p(t, l)ldl 
b lb 

P(t) - 100 

p(t, l)dl. 
lb 
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A(t) represents the total surface area of the population at time t, L(t) the total 

length and P(t) the total number of individuals. Our aim is to derive a system of 

impulsive ordinary differential equations for these new variables. 

Notice first that 

From (4.2.5), we have 

Therefore, 

[2 ap 

l~ at 

~ 1.00 

l2 ap dl 
l~ Ib at 

A'(t) + 3;l~ f(s(t)) 1.00 

l2~ dl 

A'(t) + ~l2f(s(t))l2p(t,l)100 - ~l2f(s(t)) 1.00 

2lpdl 
3ro b l=lb 3ro b Ib 

-dA(t) 

-dA(t). 

Now, p vanishes for large lengths, so we can take l2p(t, I) -+ 0 as 1-+00. Thus, 

21>: - I>: 
A'(t) = 3roh f(s(t))L(t) - dA(t) + 3rof(s(t))p(t, h). 

From (4.2.7), p(t, lb) = 3ro"~4") A(t), so we have 

2P Q -
A'(t) = 3h f(s(t))L(t) + h f(s(t))A(t) - dA(t) s =I- s. 

where Q = 1:" and p = ;;,. When s = S, we have 

1 100 

(+ ) 2 1 100 

(- ) 2 -[2 P t k ,l l dl - [2 p t k ,l l dl 
b ~ b ~ 

2" /:lp( tk, l)l2dl 1 100 

lb l~ 

-; 1.00 

P(t"k' l)l2dl 
b Ib 

- -rA(tk)· 
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Using (4.2.6), at time t = 0, we have 

1 J.oo A(O) - [2 p(O, l)dl 
b lb 

1 J.oo - [2 po(l)dl 
b lb 

- Ao. 

We now look at the length equation. 

L'(t) _ ! 100 

8p(t, l) ldl 
h lb at 

- :b 1.00 

( - 3: f (s(t)) 8p~z' l) l - dp(t, l)l) dl 

_ --"'-f(s(t)) J.oo l8p(t, l) dl - dL(t) 
3wlb lb at 

- - 3"'l f(s(t))lP(t,l)l
oo 

+ ~l f(s(t))100 

p(t,l)dl- dL(t) 
w b l=lb 3w b lb 

'" '" -- 3wf(s(t))p(t, lb) + 3wh f(s(t))P(t) - dL(t) 

1-", '" -- -:;;z; f(s(t))A(t) + 3wh f(s(t))P(t) - dL(t), 

using (4.2.7). Hence we have 

L'(t) = la f(s(t))A(t) + f3
l 

f(s(t))P(t) - dL(t) s i- s. 
b 3 b . 

When s = S, we have 

.6.L(tk) 1 100 

- T .6.p(tk' l)ldl 
b lb 

r 100 

- -r p(t;, l)ldl 
b lb 

- -rL(t;) 

and at t = 0, we have 

L(O) 1 100 

- T p(O, l)ldl 
b lb . 

1 100 

- r Po(l)ldl 
b lb 

- Lo. 
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Finally, we turn to the population equation. 

P'(t) _ 1.00 

ap(t, l) dl 
lb at 

- 1.00 

( - 3: f( s(I)) iip~/) - dp( I, l)) dl 

_ _~ f(s(t)) 1.00 

ap(t, l) dl _ Jp(t) 
3w lb 8l 

- ~ f(s(t))p(t, l)/oo - Jp(t) 
3w l=lb 

I\, -

3w f (s(t))p(t, lb) - dP(t) 

I-I\, -
- -l f(s(t))A(t) - dP(t), 

Wb 

using (4.2.7). Hence we have 

P'(t) 
a -

- h f(s(t))A(t) - dP(t) s =I- s. 

When s = oS, we have 

and at t = 0, we have 

P(O) - 1.00 

p(O, l)dl 
lb 

- 1.00 

po(l)dl 
lb 

Po. 

We have thus reduced the problem to a system of impulsive ordinary differential 

equations 
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s' - f(s)l~A s =I s 

A' 
- a 2{3 

=I -dA + -f(s)A + -f(s)L s s 
lb 3h 

L' 
- a {3 

=I -dL + -f(s)A + -f(s)P s s 
h 3h 

- a 
=I 

( 4.3.12) 
P' -dP + -f(s)A s s 

h 

I::!..s -rs + rsi s S 

I::!.. A -rA s - s 
tlL -rL s s 
tlP - -rP s s. 

4.4 Further developments 

If we let 

and H 

then the impulsive system is 

s' - f(s )l~A s =I s 

p' d"'+ f(s)Ht ... - p - p 
h 

s =I s 

I::!..s -rs + rsi s S 

tlp ... -rp s s. 

If we make the change of variable q = Ttp, where T is a nonsingular matrix, then 

... -dq + f(s) (T- 1 HT)t q -# s q - S 

lb ( 4.4.13) 

tlq-= -rq s S. 
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Using Lemma 1 (page 845) of Cushing [12], H has a positive eigenvalue fi. From 

Lemma 9.3.1 (page 216) of Smith and Waltman [32], H has a corresponding eigen­

vector 

3J.1. 
If 
1 

where fi = fie 0:, (3) is smooth and strictly increasing in 0: and f3, with fie 0:, 0) = 0: and 

fiCO, (3) = O. 

The characteristic polynomial of H is 

3 2 2 \ 2 f32 
>. - 0:>. - -0:f3/\ - -0: = O. 

3 9 
( 4.4.14) 

Corresponding to the eigenvalue fi, Ht also has a positive eigenvector w, which 

satisfies w . v = 1 and which has first component 

Wl= . 
9 fi3 + 60:f3 fi + 40:f32 

The remaining eigenvalues of H are I ± iv, where I < a and v > O. There is a 

nonsingular matrix T such that 

The first column of T is the eigenvector v and the first row of T- 1 is wt • fi is the 

physiological efficiency coefficient of the population, reflecting both reproductive and 

growth efficiency. 

In the new variables, we have 
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where 
...... 9 (fl)2A 3fl L P 

x = v·p = 2 ~ +73 + > 0 

is a weighted average of A, Land P that serves as a measure of population size. Note 

that 

where 

is the first column of T-I, containing the first component WI > 0 of the positive 

eigenvector w. Consequently, from (4.4.13), the impulsive differential equations are 

s' - f(s)lt (WIX + C2Y + C3 Z ) 

x' 
- f-l 

-dx + -f(s)x 
h 

y' 
- f(s) 

-dy + -by - vz) 
lb 

z' 
- f(s) 

-dz + -(vy + /,z) 
lb 

fls - -rs + rsi 

flx -rx 

fly -ry 

flz -rz 

Proposition 4.1. Consider model (4.4.15). Let u 

t -+ 00. 

Proof. For s "I s, we have 

- 2yy' + 2zz' 

s =I s 

s "I s 

s =I S 

=I 
(4.4.15) 

s S 

s s 
s - s 
s - s 
s s. 

y + iz. Then u(t) -+ 0 as 

2y [-dy + Z g(s)y - ~g(s)z] + 2z [-dZ-+ ~ g(s)y + Z g(s)z] 
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- 2 [-d + ~g(S(t))] (y2 + Z2) 

- 2 [-d + Z g(s(t))]IUI2 

< -2dlul2 (4.4.16) 

since'Y < O. 

Either (4.4.16) holds for all t sufficiently large, or there exists a sequence {tk}k:l 

with tk -7 00 as k -7 00 such that s(tk') = S. In the first case, lul2 -7 0 as t -7 00. 

Otherwise 

dlul
2 

< -2dlul2 
dt - , 

Since !1y(tk) = y(tt)-y(tk') = -ry(tk'), it follows that y(tt)+y(tk') = (2-r)y(tk') .. 

Thus y2(tt) - y2(tk') = -r(2 - r)y2(tk'). Similarly z2(tt) - Z2(tk') = -r(2 - r)z2(tk'). 

Hence !1luI2(tk) = (y2(tt) + Z2(tt)) - (y2(tk') + Z2(tk')) = -r(2 - r)luI2(tk'). 

With (4.4.16), we obtain the impulsive differential inequality 

We thus have 

d 
-lul 2 < -2dlul2 
dt 

!1lul2 -r(2 - r)lul 2 

luI2(t) ::; luI2(tt)e-2d(t-tk) 

luI2(tk'+1) ::; luI2(tt)e-2d(tk+1-tk) 

Now, luI2(tt) -luI2(tk') = -r(2 - r)luI2(tk'), so luI2(tt) = (1 - r?luI2(tk'). Thus, 

luI2(t) < (1 - r)2IuI2(tk')e-2d(t-tk) 

< (1- r? [(1- r?luI2(tk'_1)e-2d(tk-tk-d] e-2d(t-tk) 

_ (1 - r)4IuI2(tk'_1)e-2d(t-tk-d 

< (1 - r?kluI2(tl)e-2~(t-td 

< (1 - r)2kluI2(O+)e-2d(t-to). 
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Now, 0 < r < 1. Therefore, as t -+ 00, k -+ 00, limHoo luI 2(t) = O. 

o 

By Proposition 4.1, it follows immediately that in model (4.4.15) we have 

lim y(t) = lim z(t) = O. 
t-+oo t-+oo 

Therefore, the omega limit set of (4.4.15) is contained in the set {(s,x,y,z) E IRt : 
s 2:: s, y = z = O}. 

Next, we study the dynamics of (4.4.15) with initial conditions restricted to this 

set, giving the autonomous impulsive system 

s' -g(S)ltWI X s =1= s 

x' -dx + filf:lg(S)X s =1= s 

~s -rs + rsi s S 
( 4.4.17) 

~x -rx(t"k) s s. 

s(O) > s, x(O) 2:: o. 

Define 

Sintsize = l (l-r)s+rs
i 

( fi d) 
-3- - ()l2 ds. 

s lb WI 9 s b WI 

In the notation of Theorem 1, 

Sint Sintsize 

f(s) 
fig ( s) 

h 
y f1 

llWl 

By Theorem 3.2, if Sintsize > 0, then there exists a periodic orbit with one impulse 

per period, and solutions with s(O) 2:: (1 - r)s + rsi and x(O) > 0 approach this 

periodic orbit as t -+ 00. The periodic orbit cycles between ((1- r)s + rsi, l~r Sintsize) 

and (s, ;Sintsize). If Sintsize < 0, then x(t) -+ 0 as t -+ 00. If Sintsize = 0, then 

liminft-+oo x(t) = o. 
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Thus, in order to control the fermentor, one needs to understand how to manip­

ulate Sintsize. Define 

Po 

[tr(i - s) 
d f?-r)s+rs i [g( s )]-lds ' 

dh fs(l-r)S+rs
i 
[g( s )]-lds 

r(si- s) 

It follows that if h < ho or equivalently if [t > [to, then Sintsize > o. That is, 

if the size at birth is sufficiently small, or the physiological efficiency coefficient is 

sufficiently large, then the population of microorganisms will survive in the self-cycling 

fermentation process. Otherwise, Sintsize :::; 0, and so the population will be eliminated. 

4.5 Average Cell Size 

- ~ - ~ Consider model (4.3.12). Let A(t) = P(t) and L(t) = P(t) denote the average surface 

area and the average length of the population at time t. 

Either A, L, and P are continuous for all sufficiently large t, or there exists a 

sequence {tdk:l with tk --+ 00 as k --+ 00 such that s(tk) = s. 
Wh - AA-() - A(t+) A(tk) F d 1 (43 2) . c 11 h en t - tk, u tk - p(tf) - P(t

k
). rom mo e .. 1, It 10 ows t at 

A(tt) = (1 - r)A(tk)' P(tt) = (1 - r)P(tk ) and L(tt) = (1 - r)L(tk). Therefore, 

~A(tk) = O. Similarly ~L(tk) = O. 

Differentiating A and L and using (4.3.12), it follows that 

dA 
li:1g(s(t)) 1-~- 2~- 1-~_2] 

- --A+-L---A t =I tk 
dt w 3w w 

dL 
lb1g(s(t)) 

1-~_ ~ 1-~ __ ] 
(4.5.18) - --A+----AL t =I tk 

dt w 3w w 

~A 0 t tk 

~L 0 t tk. 

Thus, there is no discontinuity, and A and L satisfy the first two equations for all 
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t > o. This seems reasonable, since the tank is well-stirred and the harvesting is 

applied uniformly. 

Define 

1- K it 
T - -l- g(s(r))dr, 

W b 0 
k ~ 1, 

with the understanding that T is evaluated piecewise over the values tk. 

Equations (4.5.18) can thus be transformed into the system of ordinary differential 

equations (without jump discontinuities) 

dA 

dT 

dL 

dT 

K 
A+ -AL 

3ro(1-K) 

A(O) > 0, L(O) > O. 

( 4.5.19) 

The following theorem is an immediate consequence of results in Smith and Walt­

man [32] (Chapter 9). 

Theorem 4.1. For any solution of (4.3.12) with A(O), L(O), P(O) > 0, 

lim (A(t), L(t)) = (l ilW 
,1 + 3~ ). 

t-+oo - K pw 

Furthermore, the standard deviation, given by aCt) = h [A(t) - L2(t)] t satisfies 

limHoo u(t) = ~A:. 

4.6 Numerical Simulations 

Numerical simulations were run on model (4.3.12), using a Michaelis-Menten uptake 

function, g( s) = :-;8. In this case 

I", _ i'mr(~; - s) [KIn ((1 -r~ + r8;) + r(8; _ sf' 

flo (J~b _) [KIn ((1 - r)! + rsi) + r(si - s)]. 
mr s' - s s 
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0.1 0.1 

5100 5200 .5300 5400 5500 

Figure 4.1: The dynamics of the nutrient concentration, surface area, length and total 
population for model (4.3.12). The surface area, length and population approach a 
periodic orbit. 

Simulations were carried out in MATLAB usmg ODE45 with the appropriate 

events option to calculate the moment of impulsive effect. We set si = 1.333, s = 0.1, 

m = 0.0167, J{ = 0.007, d = 0.005, r = 0.6, h = 1, W = 0.822, K, = 0.45 and 

tv = 0.7. This produced corresponding values of WI = 0.6409 and fl = 1.6123. The 

calculated value of Sintsize was 3.598, flo was 0.377 and ho was 3.314. Note that fl > flo 

and h < Lbo' The initial conditions used were s(O) = 0.8, A(O) = 0.3, L(O) = 0.5, 

P(O) = 0:8. See Figure 4.1. 

Figure 4.2 was obtained by dividing the curves A(t) and L(t) in Figure 4.1 by P(t) 

and thus shows the corresponding average surface area and average length. These 

exhibited no discontinuities and the curves equilibrated, as predicted. 

4.7 A model for a cell population reproducing by 

unequal fission 

A drawback with the model of Cushing [12], is that simplyfing assumptions are made 

about reproduction. Bacteria undergo cell division, with a mother cell dividing into 
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Figure 4.2: The dynamics of the average surface area of the population and the av­
erage length of the population for model (4.3.12), demonstrating equilibrating values 
and no discontinuities. 

two daughter cells. In this section, we take this process into account, in order to 

demonstrate that the impulsive effect can be applied to more realistic models of cell 

behaviour. 

We consider a model for the growth of a cell population that reproduces by un­

equal fission and is subject to impulsive effect. We adapt the model from Metz and 

Diekmann [22], so that the impulsive effect is triggered when the nutrient reaches a 

tolerance level s. 
We assume that a cell is fully characterized by its size x. Fission (asexual repro-. 

duction, in which a mother cell divides into two independent daughter cells) will not 

necessarily result in cells of equal size. 

There is a ratio X between the birth size of a daughter and the size of her mother at 

division. We consider X to be a random variable, described by a smooth probability 

density function p(X) which does not depend on the division size of the mother. 

p is symmetric around X = !, since size is conserved at division. Furthermore, 

fol p(X)dX = l. 

The equations for reproduction by unequal fission, when s =I- s, are 

on 0 
ot(t,x)+f(s(t))ox(~n(t,x)) = -dn(t,x)-b(x)n(t,x)+ 

79 . 



where 

• x is the size of the cells, 

ds(t) 
dt 

11 p(x) (x) ( x) 
2 0 x b X n t, X dX 

1 11 -yf(s(t)) Xmin xn(t,x)dx, 

• n(t,x) is the size distribution per unit volume of cells of size x, 

• s(t) is the concentration of limiting nutrient, 

• J is the death rate of the cells, assumed constant 

• b( x) is the division rate, 

• Y is the yield constant, 

• Xmin is the minimum size and 

• f is the uptake rate of nutrient. 

(4.7.20) 

(4.7.21) 

We now wish to add in the impulsive effect corresponding to the emptying and 

refilling of the tank. As before, when the nutrient level reaches the tolerance s, the 

size distribution per unit volume of cells of size x is reduced by a fraction r. Thus 

-rs(tk) + ri 

n(tt, x) - n(tk'x) 

-rn(tk, x) 

The growth rate is V = f(s(t))x. 

s 

(4.7.22) 

s. 

Our aim is to reduce the model of partial differential equations to one of ordinary 

differential equations with impulsive effect. 

We make the following assumptions: 

(Hi) f(O) = 0, f is continuous and lims-+oo f(s) = F exists and is finite, 
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(H2) P(X) > 0, X E (! -,,! +,) and p(X) = 0 outside this interval. p(X) is 

symmetric about X = !, fol p(X)dX = 1 and p is continuously differentiable on 

[! -,,! +,J, and 

(H3) b is continuous on [0,1), b(x) > 0, for x E (a, 1), b(x) = 0, for x ::; a, 

limlx b(e)de = 00, 
xtl a 

and the function 

g(x) b( x) exp [_ (X b( ~) d~l 
Fx Ja F~ 

is bounded. 

Remarks. We extend the definition of band n so that b(~n(t, ~ = 0 if ~ > 1, as in x x x 
Heijmans [17], so that equation (4.7.20) is well-defined. 

Metz and Diekmann [22] postulate that each cell has a stochastically predeter­

mined size at which fission has to occur, provided the cells do not die before reaching 

that size. The function g( x) in assumption (H3) is the probability density of the "size 

at division precluding death" . 

In accordance with accepted biological wisdom, we assume that there exists a 

maximal size Xmax in the sense that cells will divide with probability one before 

reaching ;;max. By scaling, we can set Xmax = 1. Assumptions (HI )-(H3) ensure that 
') 

all cells will divide before reaching maximal size, so there is no size distribution for 

cells of maximal size. Thus 

n(t,l) = o. (4.7.23) 

Note that this is not a boundary condition for the partial differential equations, but 

rather a statement of fact that coincides with the assumptions above. 

The minimum size for division is a and the minimum possible division ratio is 
1 
'2 - " so 

Xmin = (~-,) a. 
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From (H2), we assume that there are no cells with division rate actually equal to 

~ -" so this gives us a lower bound on the size and hence the boundary condition 

n(t, Xmin) = O. 

We also have the initial conditions 

For a function <p, define 

n(O,x) 

s(O) 

W[1>] = L. x1>(x)dx. 

(4.7.24) 

( 4.7.25) 

(4.7.26) 

This quantity can be interpreted as the biomass of a population with size distribution 

described by the function <p. 
Define W(t) = W[n(t, x; so, nO)] whenever a solution 

of (4.7.20), (4.7.21), (4.7.24), (4.7.25), (4.7.26) exists. 

Theorem 4.2. W(t), s(t) obey the impulsive differential equations 

ds 1 
--f(s)W s =l- s 

dt y 

dW 
-dW + f(s)W s =l- s (4.7.27) 

dt 

.6.s -rs + rsi s s 

.6.W -rW s s, 

with initial conditions W(O) = W[nO] and s(O) = so! 
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Proof. The differential equation in s follows easily from (4.7.21). We also have the 

initial condition W(O) = W[n(O, Xj so, nO)] = W[nO]. 

Differentiating W(t) gives us 

W'(t) = l:in x~~(t,x)dx 
Em [-X/(S) :x (xn(t,x)) - dxn(t,x) 

-xb(x)n(t, x) + 211 xp~) b (~) n (t,~) dX] dx 

from (4.7.20). Integrating by parts, we have 

W'(t) = -x2f(s)n(t,x)l:min + f(s) l:in xn(t,x)dx -l:in dxn(t,x)dx 

-iI, xb(x)n(t,x)dx + 211, t x p(x)b (x) n (t, x) dxdx 
Xmm Xmm } ° X X X 

-x2f(s)n(t,x)l:min + f(s)W(t) - d l:in xn(t,x)dx 

III 

-lmin xb(x )n(t, x )dx + 21 xp(x) l:min yb(y)n(t, y)dydX, 
x 

where we make the change of variable y = !E. in the last integral. 
x 

Now X E (~ -" ~ + ,), so i > 1. Furthermore, Xmin = (~ -,) a, so Xmin < ax, 
or in other words lXmin < a. Thus x 

1 l x 
yb(y)n(t, y)dy = 11 yb(y)n(t, y)dy, 

X'Xmin 

since b(y) = 0 outside the interval (a, 1). Hence 

W'(t) = _x2 f(s)n(t, x)l:min + f(s)W(t) - dW(t) 

-11 xb(x)n(t,x)dx+21
1 

xp(x)dx 11 yb(y)n(t,y)dy 

_x2 f(s)n(t, x)l:min + f(s)W(t) - dW(t), 
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since fol Xp(X)dX is the expected value of the probability density function, which 

equals ~, by symmetry. Then, since n(t, Xmin) = n(t,l) = 0, from (4.7.23) and 

(4.7.24), we have 

W'(t) = -dW(t) + f(s)W(t). 

When s = S, we have, using (4.7.22), 

~W(tk) W(tt) - W(tk) 

{;, xn(tt,x)dx -1~, xn(t.,x)dx 

- 1~, xD.n(t.,x)dx 

-r l:in xn(tk, x )dx 

- -rW(tk). 

o 

Equations (4.7.27) are analogous to equations (3.2.1), so we can apply Theorem 

3.2. That is, if 

Sintfission = y 1s 
. (f(d) - 1) ds 

(l-r)Hrs' S 

satisfies Sintfission > 0, then there there exists a unique periodic orbit with one impulse 

per period and this periodic orbit has the property of asymptotic phase. 

4.8 Discussion 

The size of individuals is an important factor in controlling the outcome of the self­

cycling fermentation process. The approach of Cushing [12], who included size in 

his model of the chemostat, was modified to produce a size-structured model for 

self-cycling fermentation. 
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Our model resulted in a system of impulsive ordinary and partial differential equa­

tions. It was possible to reduce this model to one in which we could apply the results 

for the nonstructured model of self-cycling fermentation. Thus, we determined a 

threshold Sintsize that depends on the uptake function g( s) and biologically relevant 

parameters r, s, si as in the unstructured model, as well as the size of the microor­

ganisms at birth and the physiological efficiency coefficient. 

If the size at birth is small enough, or the physiological efficiency coefficient is large 

enough, then Sintsize will be positive and hence the population will survive in the form 

of an impulsive periodic orbit. This mirrors a result in Cushing [12]. He showed that 

survival in the chemostat depended on the parameters in a similar fashion. However, 

in that case, the survival is in terms of a globally asymptotically stable fixed point 

in the interior, instead of a periodic orbit. On the other hand, we showed that the 

average length and surface area of the microorganisms always equilibrates and that 

the standard deviation approaches a constant value. Thus, as for the chemostat, if 

some cells in the self-cycling fermentation process grow unnaturally large, they still 

form a negligible fraction of the overall population. 

As in the original model of Cushing, the most serious deficiency of this model is the 

description of the reproduction process. However, the analysis of a model that treats 

cell division more realistically and at the same time treats growth and consumption . 
as discussed here would be very difficult. 

To counterpoint this, we considered a model that treated reproduction more real­

istically. This model followed the approach of Metz and Diekmann [22] and adapted 

the chemostat model to an impulsive one. The ratio of the division size between the 

mother and daughter cell was considered to be a random variable. The problem was 

reduced to the same problem as the one considered in Chapter 3. 

We shall now turn to the question of competition in the self-cycling fermentation 

process. 
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Chapter 5 

Competition in the 

Nutrient-Driven SCF Process 

5.1 Introduction 

We now turn to competition in the self-cycling fermentation process, with a fixed 

nutrient level still determining the impulsive effect. That is, the organisms in the tank 

compete with one another by consuming a single nonreproducing limiting nutrient. 

When the nutrient level reaches a certain tolerance, the impulsive effect is triggered . 
and a fraction of the volume of the tank is removed and replaced with fresh growth 

medium. 

There are many interesting issues to resolve. Can more 'than one population 

coexist, and if so, can we predict this outcome in advance? If not, can we determine 

which population excludes the others and is the outcome initial condition dependent? 

We consider the model with r = ~ throughout. In this chapter we use the specific 

uptake function !i(S) = K/~8' i = 1,2 and ignore the death rates to simplify the 

calculations. We generalize model (3.2.1) to multiple species in the obvious way. We 

shall first analyse two-species competition in depth and then look at an example of 

three-species competition. 
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5.2 Two-species competition in the SCF process 

Once again, we use the notation introduced for model (2.2.1) in Chapter 2. The 

model for two-species competition in the self-cycling fermentation process is 

ds 

dt 

dx 

dt 

dy 

dt 

.6.s 

.6. x -

.6.y 

where 

xfl(s) Yh(s) 

Yi Y2 

xfl(s) 

Yh(s) 

s si 
--+-

2 

x 

2 

Y --
2 

2 

/-liS 

J{i + S' 

s =1= s 

s =1= s 

s =1= s 
(5.2.1) 

s s 

s s 

s s, 

i = 1,2, 

/-li is the maximum specific growth rate and J{i is the half saturation constant for 

each species. 

Proposition 5.1. All solutions of system {5.2.1} with initial conditions satisfying 

s(O) > s, x(O) 2:: 0, yeO) 2:: 0, x(O) + yeO) =1= 0, 

cycle indefinitely and approach the plane s + :1 + ;;2 = si asymptotically. 

Proof. First note that solutions with 

s(O) > s, x(O) ~ 0, yeO) ~ 0, x(O) + yeO) =1= 0, 
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reach s(t) = s in finite time. Suppose not. Then x(t) and y(t) increase and s(t) 

decreases. If 

lim s(t) 
t-+oo 

s* > s 

then 

s'(t) < - x(O) h(s* + €) _ y(O) h(s* + €) 
Yi Y2 

for any € > 0 and all sufficiently large t. But then s(t) -+ -00 as t -+ 00, a 

contradiction. 

Hence, if such solutions reach s = s once, they will be transported to the new 

location s = ~ + ~ which satisfies s > s (for si > s), so solutions will reach s = s 

again. Thus such solutions will cycle indefinitely. 

We have the condition (s + ~ + "* )'(t) = 0 within each cycle and so 

Then, since x;t = ~ and y;t = T' we have the recurrence relation 

which ha~ general solution 

Thus 

n-l 
Cl i"" 1 

2n - 1 + s ~ 2i . 
i=l 

lim Cn = si. 
n-+oo 

Hence solutions approach s(t) + W + ~ = si asymptotically. 

o 

Remark. The portion of the plane s(t) + x(t) + y(t) - si in the first octant is 

positively invariant under (5.2.1). 
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Suppose the two uptake functions !t (8) and 12 (8) are not identical. Either 11 (8) 

and 12 (8) do not intersect for any 8 > 0 or there exists a unique 8* > 0 where 

11(8*) = 12(8*). In this case /-l1 oj:. /-l2 and 

* /-l1 K2 - /-l2 Kl 
8 = . 

/-l2 - /-l1 

Suppose the two functions are tangent at 8*. Then 

(Kl +8*)2 
/-lIKl(/-l2 - /-l1)2 

/-lHK2 - K1)2 

/-ll K2 

(K2 + 8*)2 

/-l2 K2 (/-l2 - /-l1)2 

/-l~(K2 - Kt)2 
/-l2 KI, 

which is a contradiction since 8* > 0 by assumption. Hence the two functions actually 

cross at 8*. 

If 11(8) > 12(8) for s < 8 < f + ~, then 

. 
for positive values of x and y. 

dy 

dx 

< 
x 

Suppose we have a positive periodic orbit. Then in xy space, the trajectory starts 
. x+ y+ l' 1 . . 

on the hne --!!::!. + n-l = -8' - -s and travels to the hne fu + Yn = 8' - s whereupon 
Y 1 Y2 2 2 Y1 Y2 ' 

it returns to the first line along the ray y = x. However, since ~ < ~ for all 

8 E (s, !8 i + !s), the trajectory cannot return to the same point on the first line. 

Instead we have Yn+l < Yn and X n+1 > Xn for all n. Thus, the trajectories can only 

head to the periodic orbit on the x axis and hence the extinction of y. 

If 12(8) > !t(8) for s < 8 < f + ~, then, using similar reasoning, trajectories 

approach a periodic orbit on the y axis in xy space and extinction of x results. 

Thus, if one uptake function dominates the other in the range s <-8 < f + ~, 
then the competitor with the dominant uptake function wins the competition. 
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Remark. If the two uptake functions are equal, then 

so solutions are along the lines 

dy 

dx 
Y , 
x 

y = 
y+ 
2:.. x . 
x+ n 

However, if we consider the lines of impulsive effect, joining (xn,Yn) to (x~,Y:), we 

have 

Y - Yn 

. (+ +) - (~ 1l!!.) Th SInce X n , Yn - 2' 2· us 

Y- Yn 

Y-Yn 

Y 

- + Yn Yn ( ) + x - Xn 
Xn - Xn 

Yn/ 2 ( ) 
x

n
/2 x - Xn , 

Yn(X-Xn) 
Xn 
Yn 
-X-Yn 
Xn 
Yn -x, 
Xn 

so solutions when the functions are equal are along the line of impulsive effect. Thus, 

if the two uptake functions are equal, then there are an infinite number of periodic 

orbits, depending on initial conditions. 

Consider the impulsive differential equations (5.2.1). There is a periodic orbit on each 

of the boundaries x = 0 and Y = o. These periodic orbits have initial points 

and 

(s,x,y) 
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and final points 

(s, x, y) 

and 

(s,x,y) = (S,0,Y2(Si_ S)). 

Consider the periodic orbit when y = 0. Denote this periodic orbit by (((t), e(t), 0), 

where 

In particular, 

and we have the relationship 

Si S 
(0 - -+-

2 2 

(1 s 

eo (si s) Y1 2-2 

6 Yi(si-s). 

((t) + e(t) 
Yi 

We have the two dimensional system 

ds 

dt 

S si 
--+-

2 2 

x 

2 
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s =I- s 

s =I- s 
(5.2.3) 

s - s 

s s. 



Using impulsive Floquet theory and (5.2.2), we have 

p - -2~ofl(S) p+ - C' s) -~Ofl 2+ 2" 

Q - 2~ofl(S) Q+ - C' s) ~Ofl 2+ 2" 

ab 1 a¢ 
- - 1 

ax 2 as 

ab a¢ 
- 0 - 0 

as ax 

aa 1 aa 
- - o. 

as 2 ax 

Thus 

-~Ofl (~+ !) (-~ . 1 - 0·0 + 1) + ~Ofl (~+!) (0·0 - 0·1 + 0) 
.D.l = 

-2~ofl(S) + 2~oh(s)(0) 
fl (~+ n 

4h(s) . 

Then, using (5.2.2), we have 

r [':. «((t), (t)) + ~~ «((t), W))] dt 

- iT [-~f~(() + h(O - (si -(- ~1) f~(() + h(O] dt 

- iT [-~f~(O + h(O + h(O] dt 

_ iT [f~(O (' + e + h(()] dt 
o fl(() ~ 

_ r fH() d( + 12~o d~ + iT h(Odt 
Jf+~ fl(O ~o ~ 0 

- In ( [;;(s) S)) + In2 + iT h(Odt. 
fl "2 + 7: 0 
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Now 

using partial fraction decomposition. Therefore 

Denote the non-trivial Floquet multiplier for the periodic orbit on the x-axis by 

J-L2x and the one on the y-axis by J-L2y' We thus have 

J-L2x = 

(5.2.4) 
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By an identical process applied to the orbit (((t), 0, v(t)), we have the two dimen­

sional system 

ds 

dt 

dy 

dt 

tls 

Yh(s) 

s si 
- --+-

2 2 

tly = 
y 

2 

and hence the symmetric result 

s #- s 

s #- s 

(5.2.5) 

8 - s 

8 s, 

(5.2.6) 

The periodic orbit on the x-axis is stable if Jl2:z: < 1 and unstable if Jl2:z: > 1. The 

periodic orbit on the y-axis is stable if Jl2y < 1 and unstable if Jl2y > 1. One suspects 

that it is possible to have a stable positive periodic orbit, and hence coexistence, if 

the multipliers satisfy Jl2:z: > 1 and Jl2y > 1. We shall prove that in this case the . 
system is persistent in both x and y in section 5.4. In light of this, we shall refer to 

this case, when Jl2:z: > 1 and Jl2y > 1, as the central region of coexistence. 

5.3 Numerical simulations 

To analyse the behaviour of competitors, we fixed 8i , sand 12(8) and let JlI and Kl 

vary. Figure 5.1 shows the various states in JlI-KI space. The other constants are 

Yi = Y2 = 1, Jl2 = 1, J{2 = 1, si = 20 and s = 0.1. 

In the upper grey region, 12(8) > 11(8) for s < 8 < ~ + ~, so y wins the com­

petition. In the lower grey region h(s) > 12(8) for s < 8 < ~ + ~, so x wins the 

competition. 
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Figure 5.1: In the dark region in the centre, the nontrivial Floquet multipliers are 
greater than one, suggesting coexistence in this region. In the grey area above the 
central region of coexistence, species y wins the competition. In the grey region below 
the central region of coexistence, species x wins the competition. At the point (1,1), 
the two uptake functions are identical. 
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The two dotted curves correspond to the case when the nontrivial Floquet mul­

tipliers equal one. Numerical simulations seem to indicate that coexistence may be 

possible in the central dark region between the two lines, in the form of a periodic 

orbit with one impulse per period. We prove that the two species coexist in this 

central region in the next section. 

In the grey area immediately above the central region of coexistence, the two up­

take functions cross, but y still wins the competition. In the grey region immediately 

below the central region of coexistence, the uptake functions also cross, but x wins 

the competition. 

The point (1,1) corresponds to the case when the two uptake functions are iden­

tical and both multipliers are equal to one. The two curves do not actually cross at 

this point. They are tangent to one another. This area is magnified in Figure 5.2. 

System 5.2.1 was modelled in MATLAB using constants chosen from the central 

region of coexistence in Figure 5.1. We chose 1-'1 = 2 and K1 = 6.33, with 1-'2 = 1, 

K2 = 1, si = 20 and oS = 0.1. This gave multipliers of 1-'2x = 1.0348 and 1-'2y = 1.0345. 

The initial conditions used were s(O) = 10, x(O) = 2, y(O) = 0.7. Solutions converged 

to a periodic orbit. See Figure 5.3. The first part of Figure 5.3 shows the first 30 

iterations. The second part shows iterations 200 through 230. The third part shows 

iterations. 500 through 530. 

5.4 Persistence 

Consider the following definitions for maps, from Freedman and So [15]. In the 

following, X is a metric space with metric d, and f : X -+ X. Let fn(x) denote the 

nth iterate of x under f. 

Definition 5.1. Let Y be a subspace of X and f satisfy f(Y) C Y and f(X\Y) C 

X\Y. We say that f is persistent (with respect to Y) if for all x E X\Y, 

lim infd(fn(x), Y) > o. 
n-too 
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o 

Figure 5.2: The area around {ll = 1, [(1 = 1 in Figure 5.1 magnified about the 
tangential curves. In the upper clark region, f2(8) > f1(8) for s < 8 < ~ + ~, so y 

wins the competition. In the lower clark region f1(8) > /2(8) for s < 8 < ~ + ~, so x 
wins the competition. Along the two lines in the grey region, the nontrivial Floquet 
multipliers equal one. These two lines are tangent to one another at the point (1,1) 
and hence do not cross. Coexistence is possible in the central region between the 
two lines. In the grey area above the central region of coexistence, the two uptake 
functions cross, but y still wins the competition. In the grey region below the central 
region of coexistence, the uptake functions also cross, but x wins the competition. At 
the point (1,1), the two uptake functions are identical. 
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Figure 5.3: Coexistence of two microorganisms in the SCF process. The data used 
here was taken from the central region of coexistence in Figure 5.1. The graph on 
the left shows two species converging to what appears to be a stable periodic orbit. 
The graphs in the middle and on the right show the dynamics after the system has 
run for a long period of time and appears to have settled at a periodic orbit. Neither 
species is diminishing over time, suggesting coexistence. 
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Definition 5.2. Let x EX. Let Z denote the set of integers and let Z+ denote the 

set of nonnegative integers. A sequence {Xn}nEZ+ of points in X is called a positive 

orbit through x if Xo = x and f(xn) = Xn+1 for all n E Z+. A sequence {X-n}nEZ+ 

of points in X is called a negative orbit through x if Xo = x and f(x-n-d = X-n for 

all n E Z+. A sequence {Xn}nEZ of points in X is called an orbit through x if Xo = x 

and f(xn) = Xn+l for all n E z. 

Definition 5.3. Given a topological space X, a subset E of X is precompact if its 

closure is compact. 

Definition 5.4. A positive orbit {Xn}nEZ+ through x (respectively, a negative orbit 

{X-n}nEZ+ through x) is said to be compact if, when considered as a subset of X, it 

is precompact. 

Definition 5.5. 1. Let {Xn}nEZ+ be a positive orbit. The omega limit set of 

{Xn}nEZ+ is the set w( {Xn}nEZ+) = {y EX: y = liffin-+oo Xin for some sub­

sequence {Xin}nEZ+ of {Xn}nEZ+}. 

2. Let {X-n}nEZ+ be a negative orbit. The alpha limit set of {X-n}nEZ+ is the set 

a( {X-n}nEZ+) = {y EX: y = limn-+oo X-in for some subsequence {X-in}nEZ+ of 

{X-n}nEZ+}. 

Definition 5.6. Let M eX. M is positively invariant (respectively, negatively 

invariant, or invariant) if f(M) C M (respectively, M C f(M), or f(M) = M). 

Definition 5.7. A nonempty, closed, invariant subset M of X is an isolated invari­

ant set if it is the maximal invariant set in some neighbourhood of itself. 

Definition 5.S. Let M C X be an isolated invariant set. 

1. A compact positive orbit {Xn}nEZ+ is in the stable set of M (under f) if 

w( {Xn}nEZ+) C M. We denote the stable set by W+(M). 

2. A compact negative orbit {X-n}nEZ+ is in the unstable set of M (under f) if 

a({X-n}nEZ+) C M. We denote the unstable set by W-(M). 
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3. A compact positive orbit {Xn}nEZ+ is in the weakly stable set of M (under f) 

ifw({xn}nEZ+) n M =1= 0. We denote the weakly stable set by W\t(M). 

4- A compact negative orbit {X-n}nEZ+ is in the weakly unstable set of M (under 

f) ifo:({x-n}nEZ+) n M -# 0. We denote the weakly unstable set by Ww(M). 

The following theorem is the analogue of the Butler-McGehee theorem for maps, 

from Freedman and So [15]. 

Theorem 5.1. Let X be a metric space with metric d. Let f : X -+ X be continuous 

and let M be an isolated invariant set in X. If {Xn}nEZ+ is a compact positive orbit 

and {Xn}nEZ+ E W\t(M)\W+(M), then 

1. there exists a positive orbit {Yn}nEZ+ in w( {Xn}nEZ+) such that Yo fI. M and 

{Yn}nEZ+ E W+(M), and 

2. there exists a negative orbit {Z-n}nEZ+ in w( {Xn}nEZ+) such that Zo fI. M and 

{Z-n}nEZ+ E W-(M). 

The following theorem is from Miller and Michel [23]. 

Theorem 5.2. Let F be continuous, let Fw = ~~ = [~~j] exist and let Fw be con­

tinuous. 1f<fJ(t,T,e) is the solution ofw' = F(t,w) such that <fJ(T,T,e) = e, then <fJ is 

continuous and has continuous first partial derivatives in (t, T, e). 

Lemma 5.1. The function <fJ = <fJ(t, T, e) that solves the associated system of ordinary 

differential equations (5.2.1) with initial condition <fJ( T, T, e) = e is continuous in 

(t,T,e)· 

Proof. We have 

(~) F(t,w) 
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where w = (s, x, y). Then 

[ 
- :1 n (s) - * f~ ( s ) 

xff(s) 

Yf~(s ) 

- il it (s) - i2 h( s) 1 
fl (s) 0 

o h(s) 

Each function fi, i = 1,2 satisfies conditions (3.2.2), so F and Fw are continuous. 

Hence ¢(t, T, 0 is continuous in (t, T, e) by Theorem 5.2. 

o 

Remark. In our case we have it (s) and h( s) explicitly, but Lemma 5.1 holds for 

any monotone uptake functions. 

Theorem 5.3. Consider system (5.2.1) with uptake functions fl(s) and h(s) satis­

fying the conditions in {3.2.2}. Suppose also that the nontrivial Floquet multiplier for 

(5.2.3) is denoted /12x and satisfies /12x > 1 and the nontrivial Floquet multiplier for 

{5.2.5} satisfies /12y > 1. Then solutions of (5.2.1) with initial conditions 

s(O) > s, x(O) > 0, y(O) > 0 

satisfy 

liminfx(t) > 0, liminfy(t) > O. 
t-+oo t-+oo 

Proof. Consider any initial point (s(O), x(O), y(O)) where 

s(O) > s, x(O) > 0, y(O) > O. 

By Proposition 5.1 there exists a first time tl such that solutions of (5.2.1) satisfy 

s(td = s, x(td > 0, y(tl) > O. 

Then if tn denotes the time of the nth impulse point, we have for for tn- 1 < t ~ tn 
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(n > 1), 

s(t) 
si 8 

8 < < -+-
2 2 

o < 
x(tn-d 

< 
2 

x(t) < x(tn) 

y(tn-d 
< y(t) < y(tn) 

2 
o < 

Therefore, it suffices to consider the sequence of impulse points (8, x(tn), y(tn)) and 

to show that 

liminfx(tn) > 0 and liminfy(tn) > O. 
n~oo n~oo 

Define the map f : X -+ X where 

X = {(x,y): x 2: O,y 2: O,x + y =f. O}, 

in the following way: 

where (8,X(tn),y(tn)) and (8,X(tn+1),y(tn+1)) are impulse points for system (5.2.1). 

First we show that f is continuous on X by showing that f is a composition 

9 0 h : X -+ X of two continuous functions, . 
h:X-+X and g: X -+ X. 

Define 

h(x,y) 

and 

g(x,y) = (u(x,y),v(x,y)), 

where u(x,y) = x(l) and v(x,y) = y(l) such that (s(t),x(t),y(t)), 0 :::; t :::; t is the 

solution of the associated ODE of (5.2.1) with initial conditions 

Si 8 
8(0) = "2 + 2' x(O) = x, y(O) = y 
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and s < set) < f + ~ for 0 < t < t and set) = s. 
It is clear that h is continuous. That 9 is continuous follows from continuous 

dependence on initial data for ordinary differential equations (see Lemma 5.1). 

The map f has two equilibrium points, corresponding to the periodic orbits on 

the sx plane and sy plane. Let PI = (YI(si - s), 0) denote the equilibrium on the x 

axis and P2 = (0, }2(si - s)) denote the equilibrium on the y axis. Clearly PI is the 

maximal invariant set in some neighbourhood of itself, so it is an isolated invariant 

set. Similarly P2 is an isolated invariant set. 

Suppose (X(tI), yeti)) is any point that satisfies x(tI) > 0 and yetI) > o. Consider 

the positive orbit {x(tn), y(tnH nEZ+ generated by the map f. Suppose 

lim inf x( tn) = 0 or lim inf y( tn) = O. 
n-+oo n-+oo 

Then either 

a) there is a subsequence such that 

lim x(tnk) = 0 and lim y(tnk) 0, or 
k-+oo k-+oo 

b) there is a subsequence such that 

c) there is a subsequence such that 

Case a) is impossible since by Proposition 5.1 

In case b), again by Proposition 5.1, 
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and hence limk-+oo y(tnk ) = Y;(si - .5). Therefore, 

However, since J.L2y > 1, the stable manifold of P2 is the set 

W+(P2) = {(x, y) : x = 0, y > o}. 

Since x( t nk ) > 0 for all k, 

Hence by Theorem 5.1, there exists a positive orbit {a(tn),b(tn)}nEZ+ in 

w ({x(tn),y(tn)}nEZ+) 

such that (a(tl),b(tt}) ::f. P2 and 

By Proposition 5.1, a~;) + b~;) = si -.5, and 

implies that a(tn) = 0 for all n. Therefore (a(tn),b(tn)) = P2 for all n, contradicting 

(a(tt),b(t~)) ::f. P2 • Thus case (b) is impossible. 

Case (c) can be ruled out in a similar fashion. 

Thus, for any point (x(tt), y(tl)) with x(tt) > 0, y(tl) > 0, we have 

lim inf x( tn) > 0 
n-+oo 

and lim infy(tn) > O. 
n-+oo 

Furthermore if 

Y = {(x, y) : x = 0, y > O} U {(x, y) : y = 0, x > O} 

then !(Y) c Y and !(X\Y) c X\Y. Thus! is persistent with respect to Y. Hence 

solutions of (5.2.1) with initial_conditions 

s(O) >.5, x(O) > 0, y(O) > 0 
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satisfy 

lim inf x(t) > 0, lim inf y(t) > O. 
t-+oo t-+oo 

o 

Remark. Applications of the Butler-McGehee Theorem do not usually eliminate a 

single point from the boundary as we have done. To extend X to the entire first 

quadrant would require defining f at the origin. Since the s axis is a line of equilibria 

for system (5.2.1), we cannot use the definition given. We could define f(O,O) = 
(0,0) for completeness, but due to the nature of the impulsive effect f would not 

be continuous at the origin and we could not apply Theorem 5.1. This explains our 

choice of X. 

5.5 Three-species competition in the SCF process 

The possibility of survival for two competing species in the self-cycling fermentation 

process raises the question of whether more species can coexist on a single nonre­

producing limiting nutrient. Application of the results in the previous sections to 

competition of n species (where n ~ 3) is significantly more difficult, since the impul­

sive Floquet theory only applies to systems that can be reduced to two dimensional . 
!3ystems. 

However, numerical simulations were run to determine whether three species could 

coexist. These simulations built on the ideas for two species competition, using the 

same parameters for coexistence of x and y from the previous section, and then 

varying the parameters of z. 

The model for three-species competition in the self-cycling fermentation process 

IS 
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where 

ds 

dt 

dx 

dt 

dy 

dt 

dz 

dt 

xJI(s) y/2(s) 

Yi 1'2 

XJI(8 ) 

Y/2(8) 

zh(s) 

8 8
i 

--+-
2 2 

x 

2 

y 
--

2 

z 

2 

zh(s) 

Y3 
8 =I s 

8 =I s 

8 =I s 

s =I s 
(5.5.7) 

8 s 

8 

8 - S 

8 s, 

i = 1,2,3, 

Pi is the maximum specific growth rate and Ki is the half saturation constant for 

each species. 

We have the condition (8 + ~ + * + :a)' (t) = 0 within each cycle and so 

We have the recurrence relation 

which has general solution 

n-l 
Cl i~ 1 

Cn - 2n - 1 + 8 L.J 2i . 
i=l 
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Thus 

1· i 1m en = S. 
n~oo 

System (5.5.7) was modelled in MATLAB with Yi = 12 = Y3 = 1, /-ll = 2, 

[{I = 6.33, /-l2 = 1, f{2 = 1, /-l3 = 7, f{3 = 32.5, si = 20 and s = 0.1. The initial 

conditions used were s(O) = 10, x(O) = 7, y(O) = 6, z(O) = 4. Solutions converged 

to a periodic orbit. See Figure 5.4. The first part of Figure 5.4 shows the first 30 

iterations. The second part shows iterations 200 through 230. The third part shows 

iterations 500 through 530. Note that we used parametes from the central region of 

coexistence for It and 12. The parameters for 13 were then varied until three species 

coexistence was found. 

5.6 Discussion 

Coexistence of more than one species is possible in the self-cycling fermentation pro­

cess. Numerical simulations suggest that both two and three species can coexist on 

a single nonreproducing nutrient. 

In the case of two-species competition, Floquet theory allowed us to predict in 

advance when the parameters of the system would be such that two species could . 
coexist. By reducing the problem to one of maps on the impulse points, we could 

use the convergence of the constants and the Butler-McGehee Theorem for maps to 

prove that any solution with initial conditions satisfying 

s(O) > s, x(O) > 0, y(O) > 0 

was persistent. This proves that two competitors can coexist on a single nonrepro­

ducing nutrient in the self-cycling fermentation process. 

It is interesting to note that we could reduce the problem to a lower dimensional 

problem due to the nature of the impulsive effect. In general, for impulsive systems, 

such a lower dimensional set would be possible, but difficult to work with. 
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Figure 5.4: Coexistence of three microorganisms in the SCF process. The data used 
for the x and y parameters is taken from the central region of coexistence in Figure 
5.1. The graph on the left shows three species converging to what appears to be a 
stable periodic orbit. The graphs in the middle and on the right show the dynamics 
after the system has run for a long period of time and appears to have settled at the 
periodic orbit. The species are not diminishing over time, suggesting coexistence. 
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The results can be generalized to any fraction r. We do not include the death rate 

in this chapter, assuming that it is negligible, as in the original hypothesis for the 

oxygen-driven model. We could also show that two species could not coexist in the 

SCF process if the uptake function of one species dominated the other during each 

cycle. 

In the analogous model of the chemostat, where the nutrient is pumped in contin­

uously at a constant rate, aside from a few knife-edge cases involving the equality of 

certain parameters, coexistence of two species competing for a single nonreproducing 

nutrient is not possible (see Smith and Waltman [32]). The results here are analogous 

to competition on three trophic levels in the chemostat, where two predators can sur­

vive on a common prey, but only in an oscillatory manner (see Smith and Waltman 

[32] or Butler, Hsu and Waltman (10)). The impulsive effect makes such oscillatory 

phenomena more likely. 

We have also not ruled out periodic orbits of higher order. However, simulations 

in the region where coexistence is possible have not revealed any periodic orbits of 

order greater than one. 

There was no similar theory for three-species competition to determine in advance 

when all three species would survive, but we could use the results in the two-species 

case to determine parameters for x and y and then vary the parameters for z . . 
The SCF process requires at least one competitor to run, but more than one 

competitor provides a stronger system. If one species suddenly becomes extinct, then 

we have a backup in the form of the second or third species so that the system will 

continue to run. 

On the other hand, we may wish to ensure that only one particular species survives. 

In the case of two-species competition, we can determine in advance which parameters 

will lead to coexistence and which will lead to one species or the other being washed 

out of then system. The process may come with one species intrinsic to the system, 

which would allow introduction of a superior species to ensure that the required 

competitor-wins the competition. 
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One species might be scarce, or expensive, but the SCF process can lead to growth 

of this species. We could introduce small numbers of the desired species along with 

large numbers of a compatible second species. If both species coexist, the system will 

run smoothly and the desirable species will be able to exist in small numbers while the 

second species keeps the system running by consuming relatively larger amounts of 

nutrient. Over time, the system will (presumably) approach a positive periodic orbit, 

with larger numbers of the desired species. Furthermore, since the output of the SCF 

process is half the tank, at each stage we will be collecting relatively high numbers 

of the desired species. This exploits the multi-faceted use of the SCF process, as 

outlined in Chapter l. 

It follows that coexistence of more than one species in the self-cycling fermenta­

tion process is both interesting and useful in practical applications. With advance 

knowledge of the dynamics of the system, we can ensure maximum productivity of 

the self-cycling fermentation process and thus improve cleanup of the environment. 
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Conclusions 

The model describing self-cycling fermentation in Wincure, Rey and Cooper [38] had 

a serious problem, in that the dissolved oxygen could theoretically become negative, 

which is meaningless in a practical experiment. We reformulated the oxygen equation 

to include an oxygen transfer function 9 that satisfied 

i. g: 1R3 ---+ IR is continuously differentiable, 

ii. g(O, x, [02]) = g(s, 0, [02]) = g(s, x, 0) = 0, 

iii. 9 is increasing in s, x and [02], 

iv. g(s, ax, [02]) = ag(s, x, [02]) for any a E 1R, 

v. 9 is bounded . . 
An analysis of the oxygen-driven model for self-cycling fermentation revealed po­

tential problems guaranteeing indefinite cycling and the nonnegativity of dissolved 

oxygen. We could solve these problems by requiring that the initial conditions and 

constants satisfy 

x(O) i 
s(O) + y < s, 

[02](0) [02]*, 

and 
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However, while the last two assumptions are plausible, the first is quite restrictive. 

In order to address the problems in the oxygen-driven model more fully and to 

tailor the process more specifically to problems such as sewage treatment or toxic 

waste cleanup, we reformulated the model. The impulsive effect was triggered by a 

tolerance choice s and we included the death rate d and a generalized monotone up­

take function f ( 8). The natural choice for the tolerance was the maximum allowable 

concentration of pollutant in the output, as set by the Ontario Ministry of the Envi­

ronment. The nutrient-driven model had several advantages over the oxygen-driven 

model, especially for nutrient minimizing problems such as environmental cleanup. 

Comparison with the oxygen-driven model when d = 0 shows that we are guaranteed 

to cycle indefinitely for any initial conditions with 8(0) > sand x(O) > O. 

There is a value 

8int = y 1s 

. (f(d) - 1) d8, 
(l-r)s+rs' 8 

such that if 8int > 0 and s < 8 i then, using the Floquet theory for impulsive differential 

equations, we could prove the existence of a unique periodic orbit with one impulse 

per period having the property of asymptotic phase. 

If 8int > 0 and s ~ >., where>. is the value of 8 such that f(>.) = d (or>. = 00 

if f( 8) < d for all 8) then the nontrivial periodic orbit attracts all solutions with . 
initial conditions satisfying 8(0) > sand x(O) > O. If Sint > 0 and s < >. then the 

nontrivial periodic orbit attracts all solutions with initial conditions satisfying 8(0) ~ 

(1 - r)s + rsi and x(O) > 0, or 8(0) > s but x(O) sufficiently large. The endpoints 

of each cycle in x will approach the endpoint of the periodic orbit monotonically. 

Furthermore, the cycle times will monotonically approach the period of the periodic 

orbit. 

If 8int > 0 and 8(0) < s or 8(0) satisfies Y Js\~)r)B+rsi (1 - jfs)) d8 > Sint and 

x(O) > 0 is sufficiently small, then there are no moments of impulse and x(t) ~ 0, 

8(t) ~ 8*, where s:::; 8* < >.. 

If 8int = 0, then there is no nontrivial periodic solution and liminft~oo x(t) = 0. 

If Sint < 0, then there is no nontrivial periodic orbit and solutions undergo at most a 
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finite number of impulses and eventually s(t) -t s* and x(t) -t 0, where 8 ~ s* < >.. 
Looking at the nutrient-driven model of self-cycling fermentation with cell size as 

a factor, we could refine our value of Sint so that 

I s (d p, ) 
Sintsize = ( ) 2 - -3- ds. 

(l-r)Hrs i f s lb WI lb WI 

where h is the size at birth and p, is the physiological efficiency coefficient. 

The system could be reduced so that the earlier results applied. Thus, if Sintsize > 0, 

then there exists a unique periodic orbit with one impulse per period having the 

property of asymptotic phase. 

Despite the possibility that some cells could grow to unnaturally large sizes, the 

average surface areas and lengths approached constant values, so the percentage of 

unnaturally large microorganisms is negligible in the self-cycling fermentation process. 

We considered the nature of reproduction by cell division as a stochastic process, 

and adapted the existing chemostat model to an impulsive one. We reduced the 

system of partial differential equations with impulsive effect to the same system of 

ordinary differential equations with impulsive effect as in Chapter 3. Consequently, 

the same results applied, leading to a value Sintfission such that there was a unique 

periodic orbit with one impulse per period having the property of asymptotic phase 

if and only if Sintfission > o. 
We then investigated two species competition in the self-cycling fermentation pro­

cess, under some simplifying assumptions. We showed that the constants {en} con­

verged, meaning that solutions with s(O) > 8, x(O) ~ 0, y(O) ~ 0 approached the 

plane defined by S + :1 + t. = si. If the uptake function of one species dominates the 

other in the interval [8, si - 8) then the species with the dominant uptake function 

wins the competition. An application of the impulsive Floquet theory gave conditions 

for the periodic orbits on the boundaries to be unstable, suggesting coexistence when 

the Floquet multipliers /-t2x and /-t2y were greater than one. Letting /-tl and [{I vary 

over all possible positive values, we found a central region where coexistence was pos­

sible. Numerical simulations in this region showed that coexistence was in the form 

of an asymptotically stable positive periodic orbit. 
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We then considered a lower dimensional set, defined by s = s so that we could 

reduce the problem to one of considering the impulse points only. Using the conver­

gence of the constants and the analogue of the Butler-McGehee theorem for maps, 

we were able to prove that solutions with 8(0) > s, x(O) > 0, y(O) > 0 are persistent 

when we are in the region where /-l2x and /-l2y are both greater than one. We were thus 

able to prove that two species could coexist when competing for a single nutrient in 

the self-cycling fermentation process, a result that does not hold in the cases where 

the nutrient washout is continuous, such as the chemostat. 

Numerical simulations demonstrated that coexistence was also possible with three 

competitors. There was no similar theory to predict the appropriate parameters, but 

the two-species case suggested appropriate parameters for two of the species. 

Further work might involve an approach using impulsive delay-differential equa­

tions. There is a natural delay, especially in the oxygen-driven model, that might 

lend itself to such an application. There are also other possible models to consider, 

such as a food web. It is possible that non-monotone uptake functions could be con­

sidered as well. There is some concern in the literature about cell synchronization in 

the SCF process (see Wentworth and Cooper [36], for example). A comparison of cell 

synchrony between the oxygen-driven process and the nutrient-driven process, or for 

coexistine; competitors might be interesting. It would also be nice to find a general 

result for three or more species competing, analagous to the result for two-species 

competition. 

More work is needed in the analysis of cycle times and how they change as the 

parameters of the model change. There is also a control problem in choosing r so 

that we clean up the most amount of nutrient in a given time. Finally, the original 

model might be greatly improved if we could predict in advance which choices of 

initial conditions or input constants would lead to the system halting. 

For applications to problems involving the reduction of nutrient, such as sewage 

treatment, or toxic waste cleanup, the results in this thesis favour the implementation 

of the nutrient-driven self-cycling fermentation process. 
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Appendix A 

Systems With Impulsive Effect 

A.I Introduction 

This appendix describes background material on systems with impulsive effect. The 

material on impulsive semi dynamical systems and stability is developed in Laksh­

mikantham, Bainov and Simeonov [20], while the material on existence, uniqueness, 

continuability of solutions and autonomous impulsive differential equations is devel­

oped in Lakshmikantham, Bainov and Simeonov [20] and Bainov and Simeonov [2], 

[3]. The material in section A.3 is included only for completeness. 

A.2 Impulsive semidynamical systems 

Definition A.1. A triple (X, 7r, lR+) is a semi dynamical system if X is a metric 

space, lR+ the set of all nonnegative reals and 7r : X x lR+ --+ X is a continuous 

function such that 

i) 7r(x, 0) = x for all x E X, and 

ii) 7r(7r(x,t),s) = 7r(x,t+s) for all x E X and t,s E lR+. 
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Notation. (X, 7r, IR+) is sometimes denoted (X,7r). The triple (X, 7r, IR) is said to be 

a dynamical system. 

For all x E X, define 7rx : IR+ -+ X by 7rx (t) = 7r(x, t). 7rx is continuous for all x. 

We call 7r x the trajectory of x. The set 

C+(x) = {7r(x,t):tEIR+} 

is called the positive orbit of x. Note that x E C+(x). We also have 

C+(x,r) = {7r(x,t): 0 ~ t ~ r}. 

For any M ~ X, we define the following sets: for t E IR+, 

G(x, t) = {y EX: 7r(y, t) = x}, 

is the attainable set of x at t E IR+, 

G(x) U G(x, t), 

G(x) n M\{x}, 

and 

We then set M(x) = M+(x) U M-(x). Note that x ff. M(x). 

Definition A.2. An impulsive semidynamical system (X, 7r; M, A) consists of a semi­

dynamical system (X, 7r), a nonempty closed subset M of X and a continuous function 

A : M -+ X such that 

i) No point x E X is a limit point of M(x), and 

ii) {t E IR+: G(x,t) n M i- 0} is a closed subset oflR+. 

Notation. We denote the image of M under the operator A by N = A( M) and, for 

all x E M, A(x) = x+. 
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Lemma A.1. Let (X, 71"; M, A) be an impulsive semidynamical system. Then for any 

x EX, there exists r, s E 1R+ U {oo} such that 0 < r, s :::; 00 and, for 0 < t < sand 

0< t < r, 

a) 7I"(x,t) 1:. M and if M+(x) =f. 0, then 7I"(x,s) E M 

b) G(x, t) n M = 0 and if M-(x) =f. 0, then G(x, r) n M =f. 0. 

Proof. a) If M+(x) = 0 then the lemma is satisfied for all t E 1R+. Suppose 

M+(x) =f:. 0. Then there exists t2 E 1R+ such that 7I"(X,t2) E M. By property (i) of 

Definition A.2, there exists tl E 1R+ such that 71" (x, t) rt M for t :::; t l . M is closed, so 

the nonempty, compact subset [tt, t2] n 7I";l(M) of 1R+ has a least element s. This s 

satisfies (a) since 7I"(x, s) E M. 

b) First, define Gx(t) = G(x, t) for each x. If M-(x) = 0, the lemma is satisfied for 

all t E 1R+. Suppose M- (x) =f:. 0. Then there exists t4 E 1R+ such that G(x, t4)nM =f:. 0. 
By property (i) of Definition A.2, there exists t3 such that G(x, t) n M = 0 for t :::; t3. 

Then [t3' t4] n G;l(M) is nonempty and closed, by property (ii) of Definition A.2 and 

hence has a least element r that satisfies (b). 

o 

Notation. We call s the time without impulse ofx. We define q>: X ~ 1R+\{0} such 

that q>(x) is the time without impulse of x. If {xn } is the set of impulse points, then 

{sn} are the corresponding times without impulse. We can think of a given Sn as 

the time taken from the trajectory starting at Xn until Xn+1 (the next impulse point). 

Naturally, if there is no further impulse point, then Sn+l = 00. 

Definition A.3. Let (X, 71"; M, A) be an impulsive semi dynamical system and x EX. 

The (impulsive) trajectory of x is a function rrx defined on a subset [0, s), S E (0,00] 

as follows: 
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Let x = Xo. If M+(xo) = 0, then ii'x(t) = ?Tx(t) for all t E ~+ If M+(xo) =I- 0, 
then by Lemma A.l, there exists 80 E ~+\{O} such that ?T(XO,80) = Xl E M and 

?T(xo, t) (j:. M for all 0 < t < 80. We define if'x on [0,80] by 

if'x(t) = ?T(Xo, t) o ::; t ::; 80 

We then continue this process, starting at xi (which is not equal to Xl in general). 

That is, if M+(xi) = 0 then we define 7rx(t) = ?T(xi,t - 80) for all t > 80 and 

8 = 00. If M+(xi) =I- 0, then by Lemma A.l there exists 81 E ~+\{O} such that 

?T(xi, 81) = X2 E M and ?T(xi,t) (j:. M for all 0 < t < 81. We define 7rx on (80,80+81] 

by 

80 < t ::; 80 + 81. 

If M+(xt) =I- 0, then by LemmaA.l there exists 82 E R+ \{O} such that ?T(xt, 82) = 

X3 E M and ?T(xt, t) (j:. M for all 0 < t < 82. We define 7rx on (80 + 811 80 + 81 + 82] by 

If M+(x~) = 0 for some n, then the process halts. On the other hand, if M+(x~) =I­

o for all n = 1,2, ... then the process continues indefinitely, with 

n-l n-l n 

?T(x~, t - L 8i), L 8i < t ::; L 8i 
i=O i=O 

for each n ~ 1. 

Thus the process gives rise to either a finite or infinite sequence {xn } of points of 

X such that with each Xn there is associated a positive real number 8 n (or (0) and, 

for 8n < 00, an impulse Xn +1, where ?T(x;t, 8n ) = Xn +l. 

The interval of definition of if'x is [0,8] = [O,2::08i]. 

This completes the definition of the trajectory of if'x. 

Notation. We call {xn } the sequence of impulse points of x. 
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Definition A.4. A trajectory 7r x is periodic of period r and order k if there exists 

m E Z+ and k E Z+ such that k is the smallest integer satisfying x;t;, = X~+k and 

m+k-l 

r LSi. 
t=m 

Remark. A periodic trajectory with no impulse points can be considered to be 

an impulsive trajectory with one moment of impulse, such that the trajectory is 

continuous at the impulse point. Thus a periodic trajectory with no impulse points is 

a first order periodic orbit and the period is the time taken to travel from the impulse 

point back to itself; hence the period in this case corresponds to the definition of 

period in the non-impulsive case. 

Note that the trajectory 7rx is continuous if either M+(x) = 0 or for each n, Xn = x~. 

Otherwise, the trajectory has discontinuities at a finite or infinite number of impulse 

points x n • However, at any such point 7rx is continuous from the left. 

Trajectories of interest for impulsive semi dynamical systems are those with an 

infinite number of discontinuities and an interval of definition of 1R+ We call these 

infinite trajectories. 

Theorem A.1. Let 7rx be an infinite trajectory and denote Sn = <I>(x~). Suppose 

lim x! = y 
n-+oo 

and lim Sn = <I>(y) = s. 
n-+oo 

Then 

i) if s = 00, then 7ry = 7ry , 

ii) if s = 0, y = y+, and 

iii) if 0 < S < 00, 7r y is periodic of period s and order 1. 

Proof. If S = 00, then M+(y) = 0, so clearly 7ry = 7ry , the trajectory without 

impulse. 
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If S = 0, then the time taken from x~ to Xn+l approaches zero in the limit, so y 

is a fixed point of the impulsive effect. 

For 0 < S < 00, we have ?T(x~, Sn) -+ ?T(y, s) = z by continuity. Since each Sn is 

a time without impulse, it follows that z E M. However, ?T(x~, sn) = Xn+l, since Sn 

is the time taken to travel from x~ to the next impulse point. That is, Xn+l -+ z. 

By continuity of A, x~+l -+ z+. Hence z+ = y, so ii"y is periodic and of order 1. By 

assumption, S = <l>(y), so the period is s. 

o 

Example. Consider the autonomous system 

x' = x y' = ay, ·a> 0, 

the sets M = {(x,y) E IR! : y = X~l}' N = {(x,y) E IR! : x + y = I}, and an 

operator A : M -+ N that associates with each point P on M the point P+ on N 

which is on the ray OP. A is a continuous, bijective mapping. 

We shall consider only those trajectories with initial points in the first quadrant. 

Note that this quadrant in invariant. We assume initial points are not on M, by 

convention. 

Trajec;tories with initial points in the region y > l~X do not undergo any impulsive 

effect. Trajectories with initial points on the x-axis also do not undergo impulsive 

effect, since M does not intersect the x-axis. Trajectories with initial points on the 

y-axis undergo impulsive effect once, at (0,1), but motion is continuous, since this is 

a fixed point of the operator A. Both axes are invariant. 

For 0 < a < 1, trajectories with initial points in the region y < l!X undergo 

impulsive effect an infinite number of times. (x~, y;t) -+ (1,0), S = 00 and ii"(1,O) = 
?T(l,O)' This demonstrates (i). 

Let a > 1. Trajectories with initial points in the region y < l!X are subject to 

impulsive effect an infinite number of times and tend towards the point (0,1), which 

is a fixed point of the impulsive effect. This demonstrates (ii). 

120 



When a = 1, all trajectories with initial points in the region y < l!X eventually 

become periodic, with order 1. Motion between Nand M is performed along rays 

y = cx. This case demonstrates (iii). 

A.3 Existence, uniqueness and continuability of 

solutions 

Let n c Rn be an open set. Suppose that for each k E Z the functions Tk : n -+ R 

are continuous in n and satisfy 

for x E n. Let f : R x n -+ Rn, h : n -+ Rn, (to, xo) E R x n and a < {3. 

Consider the impulsive differential system 

with initial condition 

dx 

dt 
f(t,x), 

~x - h(x), t 

x(tci) = Xo· 

By definition, ~x = x+ - x, so h(x) = x + Ak(X). 

Definition A.5. The function c.p: (a,{3) -+ Rn is a solution of (A.3.1) if 

1. (t,c.p(t)) E R x n for t E (a,{3), 

2. c.p( t) is differentiable, with 

~~ (t) = f(t, c.p(t)) 

for t E (a,{3), t =I Tk(c.p(t)), and 
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3. cp(t) is continuous from the left in (a,{3) and ift E (a,{3), t = Tk(cp(t)) and 

t =I- (3, then cp(t+) = cp(t) + h(cp(t)) and, for each j E Z and some 8 > 0, 

s =I- Tj(cp(S)) for t < s < t + 8. 

Definition A.6. A solution of the initial value problem (A.3.1)-(A.3.2) is a function 

cp which is defined in an interval of the form (to,{3), is a solution of (A.3.1) and 

satisfies (A.3.2). 

If to =I- Tk(XO) for k E Z, then the existence and uniqueness conditions of the 

solution of the initial value problem (A.3.1)-(A.3.2) match the standard definitions. 

Thus if f is continuous in a neighbourhood of (to, xo) then there exists a solution of 

the initial value problem and this solu~ion is unique if f is Lipschitz continuous in this 

neighbourhood. If to = Tk(XO) for some k then we need to impose additional conditions 

on f and Tk to guarantee the existence of a solution. The following theorem, from 

Bainov and Simeonov [3], provides such conditions. 

Theorem A.2. Suppose 

1. The function f : IR X n ~ IRn is continuous in t =I- Tk(X), k E Z, 

2. For any (t, x) E IR X n, there exists a locally integrable function 1 such that 

If(s,y)1 < l(s) 

in a small neighbourhood of (t,x), and 

3. For each k E Z the condition tl = Tk(Xt} implies the existence of a 8 > 0 such 

that 

for all 0 < t - tl < 8 and Ix - xli < 8. 

Then for each (to, xo) E IR X n there exists a solution cp : (to, (3) ~ IRn of the initial­

value problem (A.3.1}-(A.3.2). 
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Remark. The solution x(t) of the initial value problem (A.3.1)-(A.3.2) is unique if 

the function f is such that the solution of the initial value problem 

X' = f(t, x), x(to) = Xo 

IS umque. Thus the solution is unique if f is (locally) Lipschitz continuous with 

respect to x in a neighbourhood of (to, xo), for example. 

If the initial value problem (A.3.1)-(A.3.2) has a unique solution, we shall denote 

it by x(t; to, xo). 

The following theorem is from Lakshmikantham, Bainov and Simeonov [20]. 

Theorem A.3. Let n = IRn. Suppose f : n -+ IRn is continuous and h : n -+ IRn 

and Tk : n -+ (0,00) are continuous for all k :;::: 1. Then, for any solution x(t) of 

(A.3.1)-(A.3.2) with a maximal interval of existence [to,b), where to < b < 00, we 

have 

lim Ix(t)1 = 00, 
t-+b-

provided that one of the following three conditions in satisfied: 

1. for any k ~ 1, t1 = Tk(X1) implies the existence of a 0 > 0 such that t =j:. Tk(X) . 
for all 0 < t - t1 < 0 and Ix - xII < 0, 

2. for all k :;::: 1, t1 = Tk(xd implies that t1 =j:. Tj(Xl + h(xd) for all j :;::: 1, 

3. Tk is differentiable for all k :;::: 1 and t1 = Tk(X1) implies t1 = Tj(X1 + h(xd) for 

some j :;::: 1 and 

If the impulses occur at fixed times, then the system is significantly simpler and a 

great deal more can be said about continuation of solutions (see, for example, Bainov 
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and Simeonov [2], [3], Ballanger [4], and Lakshmikantham, Bainov and Simeonov [20)). 

With variable impulse times, different solutions will generally undergo impulsive effect 

at different times, so we cannot ordinarily expect solutions to depend continuously 

on initial data. 

A.4 Definitions of stability 

The discontinuous nature of solutions of systems with impulsive effect means that 

we must adjust our definitions of stability. In particular, stability of a given solution 

xo(t) cannot be determined from the trivial solutions by a change of variables. 

Definition A. 7. Let xo( t) = x( tj to, xo) be a given solution of the initial value prob­

lem (A.3.1}-(A.3.2), existing for t ~ to. Suppose xo(t) hits the surfaces Sk : t = tk(X) 

at the moments tk such that tk < tk+1 and tk --t 00 as k --t 00. Then the solution 

xo(t) of (A.3.1}-(A.3.2) is 

• stable if for each f > 0, 1] > 0 and to E 1R+, there exists ~ = ~(to, f, 1]) > 0 such 

that Iyo - xol < ~ implies Iyo(t) - xo(t)1 < f for t ~ to and It - tkl > 1], where 

Yo(t) = x(tj to, Yo) is any solution of (A.3.1}-(A.3.2) existing for t ~ to; 

• uniformly stable if it is stable and ~ is independent of to; 

• attractive if for each f > 0, 1] > 0 and to E 1R+, there exists ~o = ~o(to) > 0 

and a T = T(to, c, 1]) > 0 such that Iyo - xol < ~o implies Iyo(t) - xo(t)1 < f for 

t ~ to + T and It - tkl > 1]; 

• uniformly attractive if it is attractive and ~o and T are independent of to; 

• asymptotically stable if it is stable and attractive; and 

• uniformly asymptotically stable if it is uniformly stable and uniformly attractive 
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Remarks. The standard definitions are modified so that we can choose initial points 

suitably close together so that trajectories remain arbitrarily close for all time, except 

in any neighbourhood of the impulse points, no matter how small. 

If Tk (X) is independent of x then for every solution the impulse effect occurs at 

the same time, so the notions of stability coincide with the standard definition. 

The system (A.3.1 )-( A.3.2) only possesses the trivial solution if f( t, 0) = 0 and 

h(O) = 0 for all k. 

If there are only a finite number of impulse points, then the usual definitions of 

stability can be applied to the trajectories after the last impulse point. 

If there are an infinite number of impulse points then we do not want the points 

to accumulate at some finite value, such that tk ~ r < 00. This accounts for our 

requiring that tk ~ 00 as k ~ 00. 

A.5 Autonomous systems with impulsive effect 

Autonomous systems with impulsive effect are written in the form 

dx 
- g(x) 

dt 

I(x) 

x ¢ M 

x E M. 

(A.5.3) 

At an instant t = tk when x(t) encounters the set M, it is instantaneously trans­

ferred to the point X(tk) + I(x(tk)) of the set N. 

The set M is sometimes given in the form 4>( x) = O. 

The system (A.5.3) has the property of autonomy, so that x(t; to, xo) = x(t -

to; 0, xo). Note that systems of the form (A.3.1) do not possess this property, even if 

f(t,x) = g(x) and h(x) = I(x). 
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Example. Consider the system 

dx 
=I X tk 

dt 

x 
.6. x --+1 tk 

2 

x(0.5) 2. 

Solutions are given by 

0.5 < t < 1 { 2e'-0.5 
x(t) = 

x+et - k k k < t < k+ 1, 

Thus x(l) = 2eO
•
5

, so 

Hence x(2; 0.5, 2) = e1.5 + e. 

x(2) x(l)+ e 

(eo.s + l)e. 

Conversely, consider the initial condition 

Then x(l) = 2e, so 

x(O) = 2. 

x(1.5) x(1)+eo.5 

(e+1)eo.5 • 

k 

k 

k > 1. 

Thus x(1.5; 0, 2) = e1.5 + eO
.
5

, so x(2; 0.5,2) =I x(1.5; 0, 2). Hence the system does not 

have the property of autonomy. 

Distinct solutions of (A.5.3) have different points of discontinuity, making the anal­

ysis difficult. Most of the work in Lakshmikantham, Bainov and Simeonov [20] and 

Bainov and Simeonov [2], [3] is carried out with non-autonomous impulsive differential 

equations where the moments of impulse are fixed. 
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Appendix B 

Floquet Theory for Impulsive 

Differential Equations 

B.l Introduction 

The Floquet theory for ordinary differential equations has analogues in impulsive dif­

ferential equations. We outline the basic theory for stability of periodic solutions. 

We also provide the proofs of some of the basic theorems. These proofs are straight­

forward, but were not included in the literature, so we have included them here for . 
completeness. 

For two-dimensional systems there is a detailed, but relatively straightforward 

formula for calculation of the second multiplier for a periodic orbit. The theory here 

is developed in Bainov and Simeonov [2], [3]. This allows the theory of Floquet 

multipliers to be applied to two dimensional systems, or systems that can be reduced 

to two dimensional systems, with ease. 
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B.2 Floquet theory 

Consider the linear T-periodic system with fixed moments of impulsive effect 

dx 

dt 

~x 

P(t)x 

subject to the following assumptions: 

t 

(B.2.1) 

HI The matrix P(·) : JR -+ cnxn is piecewise continuous and P(t + T) = P(t) for 

t E JR. 

H2 tk < tk+1 for k E Z, Bk E cn xn and det(I + Bk) =J 0, where I is the n x n 

identity matrix. 

H3 There exists an integer q > 0 such that Bk+q = Bk, tk+q = tk + T for k E Z. 

Definition B.l. Let Xl(t), ... , xn(t) be solutions to (B.2.1) defined on the interval 

(0,00). Let X(t) = {Xl(t), ... ,xn(t)} be a matrix valued function whose columns are 

these solutions. Xl(t), ... , xn(t) are linearly independent if and only if det X(O+) =J O. 

In this case, we say that X(t) is a fundamental matrix of solutions of (B.2.1). 

Lemma B.l. Suppose H1-H3 hold and limk-+oo tk = 00. Let X(t) be a fundamental 

matrix of solutions of (B. 2. 1) in JR+. Then 

1. For any constant matrix M E cn xn , X(t)M is also a solution of (B.2.1). 

2. If Y : JR -+ cn xn is a solution of (B.2.1), there exists a unique matrix M 

such that Y (t) = X (t) M. Furthermore, if Y (t) is also a fundamental matrix of 

solutions, then det M =J O. 

Proof. 1. X(t)M satisfies 

! (X(t)M) 
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~ (X(tk)M) - X(tt)M - X(tk)M 

- [X(tt) - X(t k)] M 

- [~X(tk)l M 

- BkX(tk)M. 

2. Since X(t) is a fundamental matrix, it is invertible for each t. Let M = 
X(O+tly(O+) and let Z(t) = Y(t) - X(t)M. Then Z(O+) = 0 and 

dZ(t) _ dY(t) _ dX(t) M 
dt dt dt 

P(t)Y(t) - P(t)X(t)M 

- P(t)Z(t) 

~Z Y(tk)+ - X(tk)+ M - [Y(tk) - X(tk)M] 

~Y(tk) - ~X(tk)M 

BkY(tk) - BkX(tk)M 

BkZ(tk)' 

so Z(t) = 0 is the unique solution satisfying Z(O+) = O. Hence Y(t) = X(t)M 

If Y is. fundamental, then 

det M - det ; (0+) det Y (0+) 

=1= o. 
o 

Theorem B.1. Suppose conditions H1-H3 hold. Then each fundamental matrix of 

(B.2.1) can be represented in the form 

X(t) = r.p(t)eAt t E IR 

for a non-singular, T-periodic matrix r.p(.) E PCl(IR,((;1xn) and a constant matrix 

A E cnxn . 
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Proof. Let X(t) be a fundamental matrix for (B.2.1) and define Y(t) = X(t + T). 

Then using HI, we have 

for t =1= tk, and using H3, 

dXj(t + T) 
dt 

P(t + T)xj{t + T) 

P(t)Yj(t) 

b..Xj(tk + T) 

b..Xj(tk+q) 

B k+q x j ( t k+q ) 

BkXj(tk + T) 

Bkyj{tk) 

for each j. det Y(O+) = det X(T+) =1= 0, since Xl(t), ... , xn(t) are linearly independent 

in the interval (0,00) and are hence independent in the interval (T, (0). Thus Y(t) is 

also a fundamental matrix. 

By the lemma, there exists a unique matrix M E cn xn such that 

for all t E JR. Set 

X(t + T) = X(t)M 

A 

cp( t) 

1 -
-lnM 
T 
X(t)e- At • 

Hence cp(t) is non-singular and belongs to the class PC1(1R, ((;1-xn). Furthermore, 

cp(t + T) X(t + T)e- AT e-At 

X(t)M e-AT e-At 

X(t)e- At 

cp( t) 
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since M = eAT, by definition of A. Hence r,p is T-periodic. 

o 

To the fundamental matrix X (t) there corresponds a unique matrix M such that 

X(t + T) = M X(t) for all t E ~. The eigenvalues J-l1, .. . , J-ln of M are called Floquet 

multipliers of (B.2.1). The eigenvalues A1, ... ,An of A are called the characteristic 

exponents of (B.2.1). 

Corollary B.1. Let conditions H1-H3 hold. Then J-l E C is a Floquet multiplier of 

(B.2.1) if and only if there exists a non-trivial solution ,( t) such that ,(t + T) = J-l,(t) 

for all t E ~. 

The following theorem is from Bainov and Simeonov [3]. 

Theorem B.2. Suppose conditions H1-H3 hold. Then (B.2.1) is 

1. stable if and only if all multipliers J-lj satisfy IJ-ljl ~ 1; and for those multipliers 

for which IJ-ljl = 1, the corresponding characteristic exponent (which has zero 

real part) is a simple zero of the characteristic polynomial of A, 

2. asy"!,,ptotically stable if and only if all multipliers satisfy 1J-l;1 < 1, and 

3. unstable if IJ-lj 1 > 1 for some j. 

B.3 Orbital stability in ]R2 

Consider the two dimensional autonomous system 

dx dy 
(x,y) P(x,y), Q(x, y) rt M 

dt dt (B.3.2) 

~x a(x,y), ~y b(x, y) (x,y) E M 

where t E ~, and M C ~2 is the set defined by the equation </>(x, y) = O. 
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Let ,(t), t E IR be a solution of (B.3.2), with instants of impulsive effect tk, such 

that 

lim tk = 00 
k-too 

and let L+ = {u E IR2 : u = ,(t), t E IR+}. Denote by J+(to, zo) the maximal interval 

of the form (to,w) in which the solution z(t; to, zo) of (B.3.2) is defined. 

For y E IR2, let d(y, L+) = minueL+ Iy - ul and BfI(,(tt)) be the ball of radius "7 

centred at ,(td. 

Definition B.2. The solution z = ,(t) of (B.3.2) is called 

1. orbitally stable if for all E > 0, "7 > 0 and to E ~+, there exists 8 > 0 such 

that d(zo, L+) < 8 and Zo rf. BfI(,(h)) U BfI('(tt)) implies d(z(t), L+) < E for 

t E J+(to, zo) and Ito-tkl > "7, where z(t) = z(t; to, zo) is any solution of (B.3.2) 

for which z(tci; to, zo) = zoo 

2. orbitally attractive if for all E > 0, "7 > 0 and to E IR+, there exists 8 > 0 and 

T > 0 such that to + T E J+(to, zo) and d(zo, L+) < 8 and Zo rf. BfI(,(tk)) U 

BfI(,(tt)) implies d(z(t),L+) < Efort ~ to+T, t E J+(to,zo) and Ito-tkl > "7, 

where z(t) = z(t; to, zo) is any solution of (B.3.2) for which Z(tcii to, zo) = zoo 

3. orbrtally asymptotically stable if it is orbitally stable and orbitally attractive. 

Definition B.3. The solution z = ,(t) of (B.3.2) has the property of asymptotic 

phase if for all E > 0, "7 > 0 and to E ~+, there exists 8 > 0, e> 0 and T > lei such 

that to + T E J+(to, zo) and Izo -,(to)1 < 8 implies Iz(t + e) -,(t)1 < E for t ~ to + T, 

t E J+(to, zo) and Ito - tkl > 17, where z(t + e) = z(ti to - e, zo) is any solution of 

(B.3.2) for which Z(tcii to, zo) = zoo 

Suppose (B.3.2) has aT-periodic solution 

p(t) = [e(t)], 
"7 ( t) 
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with 

I ~; I + I ~~ I # o. 

Assume further that the periodic solution p( t) has q instants of impulsive effect in 

the interval (0, T). Since we have a periodic orbit, one multiplier is equal to 1. The 

other is calculated according to the formula 

(B.3.3) 

where 

P (8b 84> 8b 84> 84» Q (8a 84> 8a 84> 84» D. _ + aye;; - e;;ay + e;; + + e;;ay - aye;; + ay 
k - p?i. + Q?i. . 

8x 8y 

P, Q, ~:, ~!, ~:, ~!, ~: and ~~ are computed at the point (e(tk),1](tk)) and P+ = 

p(e(tt) , 1](tt)), Q+ = Q(e(tt), 1](tt))· 

We then have the following theorem, from Bainov and Simeonov [3] which is an 

analogue of the Poincare criterion. 

Theorem B.3. The solution pet) of (B.3.2) is orbitally asymptotically stable and has 

the property of asymptotic phase if the multiplier f.L2 calculated by (B.3.3) satisfies the 

condition 1f.L21 < 1. 

The Floquet theory for impulsive dynamical systems in IRn
, n ~ 3 is also developed 

in Bainov and Simeonov [2], [3], but calculation of the multipliers is much more 

difficult. 

In practice, the theory is only useful in low dimensional systems. If we are in IR 2 

or the system can be reduced to a two dimensional system, then we can apply the 

results in this section. 
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Notation index 

Symbol 

SCF 

!::..y 

tk 

8 

x 

[02] 

t 

J.L 

Ks 

[02]min 

y 

g(8, x, [02]) 

k 

[02]* 

r 

c 

Description 

Self Cycling Fermentation 

= y(tt) - y(tk) 

time at which the dissolved oxygen minimum occurs 

for the kth cycle 

limiting substrate concentration 

biomass concentration 

dissolved oxygen concentration 

time 

maximum specific growth rate 

half saturation constant 

dissolved oxygen concentration at dissolved oxygen 

mInImUm 

cell yield 

oxygen transfer function 

liquid-side dissolved oxygen mass transfer coefficient 

dissolved oxygen concentration at saturation 

em ptying/ refilling fraction 

nutrient input concentration at the beginning of each 

cycle 

dissolved oxygen input concentration at the beginning 

of each cycle 

= 8(0) + x(O) in the dimensionless system, without 

impulse 
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5 

8 

8 

12 

12 

12 

12 

12 

12 

12 

12 

12 

13 

13 

13 

13 

13 

15 



Xn the value of the biomass at the end of the nth cycle 16 

xt the value of the biomass at the beginning of the n+ 1st 16 

cycle 

en = Xn + Sn 17 

MAC Maximal Acceptable Concetration 32 

IMAC Interim Maximal Acceptable Concetration 32 

d the death rate 32 

s the nutrient tolerance which signifies the impulsive ef- 33 

fect in the nutrient-driven model 

I(s) the monotone, increasing uptake function 

Sint = - JP-r)a+
rsi (,t) - 1) ds 

>. the value of nutrient such that 1(>') = d 

Ib the size of all individuals at birth 

K the fraction of energy used for growth 

34 

37 

34 

62 

62 

tv the conversion factor relating nutrient to biomass 62 

w the conversion factor relating nutrient to weight of 62 

offspring 

p(t, 1) the density of individuals of size I at time t 63 

aCt) the minimum size range of individuals at time t who 63 

had minimum size range a at time to 

bet) 

A(t) 

L(t) 

pet) 

f3 

P 

H 

the maximum size range of individuals at time t who 

had maximum size range b at time to 

the total surface area of the population at time t 

the total length of the population at time t 

the total number of individuals at time t 
_ 1-" 

w 

- .!i. 
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63 

68 

68 

68 

68 

68 

71 

71 



fi the physiological efficiency coefficient, a positive 72 

eigenvalue of H 

v the eigenvector corresponding to fi 72 

'Y ± ill the remaining eigenvalues of H, with 'Y > 0, 1I < 0 72 

u = y+ iz 73 

A the average surface area 76 

L the average length 76 

X the ratio between the birth size of a daughter and 79 

mother at division 

p(X) a smooth probability density function 79 

n(t,x) the size distribution per unit volume 80 

b(x) the division rate 80 

Xmin the minimum size of the cells 80 

a the minimum size for division 81 

W[</>] the biomass of a population with size distribution 82 

</> 

W(t) = W[n(t, Xj so, nO)] 82 

s* the point at which the uptake functions of compet- 89 

ing species cross 

J.L2x the non-trivial Floquet multiplier on the x-axis 93 . 
J.L2y the non-trivial Floquet multiplier on the y-axis 93 

w({Xn}nEZ+) the omega limit set of a sequence {Xn}nEZ+ 99 

a( {X-n}nEZ+) the alpha limit set of a sequence {X-n}nEZ+ 99 

W+(M) the stable set of M 99 

W-(M) the unstable set of M 99 

W\t(M) the weakly stable set of M 100 

Ww(M) the weakly unstable set of M 100 

Po the equilibrium at the origin 103 

PI the equilibrium on the x-axis 103 
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P2 the equilibrium on the y-axis 103 

(X, 11", R.+) a semidynamical system 115 

11"x the trajectory of x 116 

C+(x) the positive orbit of x 116 

C+(x, r) = {11"(x,t): 0 ~ t ~ r} 116 

G(x, t) the attainable set of x at t 116 

G(x) = UtEIR+G(X, t) 116 

M-(x) = G(x) n M\{x} 116 

M+(x) = C+(x) n M\{x} 116 

M(x) = M+(x) n M-(x) 116 

(X,11"j M,A) an impulsive semidynamical system 116 

~(x) the time without impulse of x 117 

7rx the impulsive trajectory of x 117 

pet) a piecewise continuous T-periodic matrix 128 

Bk a T-periodic matrix of impulsive effect 128 

X(t) a fundamental matrix of solutions 128 

M the unique matrix such that X(t + T) = X(t)M 128 

/1j the Floquet multipliers 131 
,.\. 

J the characteristic exponents 131 

</>(x, y) the surface defining impulsive effect 131 

,yet) a solution with infinite points of impulse 132 

L+ = {z E ]R2 : z = ,et)} 132 

J+(to, zo) the maximal interval in which solutions are defined 132 

(~(t), TlCt)) a T periodic solution of the two dimensional system 132 

/12 the nontrivial Floquet multiplier of the two dimen- 133 

sional periodic orbit 
p (8b~ 8b~ ~) Q (8a~ 8a~ ~) 

f::l.k 
_ + 8y 8x - 8x 8y + 8x + + 8x 8y - 8y 8x + 8y 

133 - P~+Q~ 
8x 8y 
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