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- ABSTRACT

“fq One 1mportaanf1e1d ofm:iiiziﬁpral Dynamics" is
”;:Hé%ﬂigzivs1s Testlng" This fie¥d, concerns the modes

-

of vibration wh}&h constitute the link between efii:ifiiﬁil
."‘ “ -

and analytical methods, like Finite Elements.

Tﬁe present work deals with the use of the experi-
mental data obtained from Modal Analysis Testing;4n build-
ing é*htthqmatical model of the strucfure identifying its
parameters ;;E/pred1ct1ng the effects of possible design
changes opi::;)dynamlcs It also deals with the use of. these
experimental : in predicting the behavious of the structure

according to certain criterion. In this work, in particular,

hachine tool st tures are consideréd.

\a\_g/'

~ TN\ .
: A systematic formulagion of identifying the structural

parameters £rdR the Modal Analysis Testing is presented. It
depénds basically‘on the accessibility of the relevant
coordinates for measurement. - If all these coordinates are
accessible fﬁen_the formulation based on the equation of

motion éf/fhe system and on thg orthogbnality relathpships b
leads tofﬁinear equations. On the other hand if some of the ‘
relevant coordinates are missing, like coordinates on the
bearings inside a headstock, thepn nonlEnear optimization is

used to minimize the errors between experimental and estimated

(iii)
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modal ,parameters. These identificationl?ormulations are
applied here to theoretical ;tructures as well as actual
machine‘tools.‘ ’

As a égecial exercise a procedure is suggested to
be used in predicting the dyﬁamics of a lathe with different
workpieces using the modal data measured on a single work-
piece. Such a proc;dure‘can help eséimate the limit of
stability against machining chaﬁter béforehand«gng consequeﬁ@ly
could be implemented in thq posfﬁtbtessors of Numerically
‘tontroiled Turning Centers. ‘ |

. The thesis deals also with further dévelopment of the

theory of macﬁining chatter. _For the fir;t time digital
simulation in;%he time‘domain of the cgtfing proces’s including
chatter is catrried out using mathematical models of machine
tools estﬁblished th}odgh.ﬁodal AnalysiS %esging. Cutting
tests carried out in this work‘have‘shown that ;he,digital
simulation approach to machining chatter represents the

-

reality very closely. Thus it could be used in formulating
? - : ' .
acceptance test procedures of machine tcols as well as in

designing tHeé eutters, to achieve higher metal removal rates.

-
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CHAPTER 1
INTRODUCT ION

LS

With the advancement in the measuring equipment and
techniques in the la\E two decades "Structural Dynamic
Testing"”, is becoming more and more an essential part of
all integrated activities of the design cycle of mecﬁanical

S tIf'L%CtuI'ES .

One important field of "Structural Dynamic Testing"
is "Modal Analysis Testing". This field concerns the modes
of vibration which are the link between testing and analyti-
cal methods. ,

‘The area”of "Modal Analy;is Testiﬁg” has developed
to a great extent in the last decade basically due to the

Ld

advent of the minicomputer based Fourier Analyzers and the
Emplementatibn of the FFT (Fast Fourier Transform). Several
"Modal Analysis Testing" systems are now commercially avail-
able which provide animated displays of the structure as it
deforms in its natural mobes of vibration. With the animated
displays Modal Analysis Testing has gained great popularity "
in the la?t few years. However its main potential as a power-
ful tool to be used in establishing mathematical models of

the structures under test for further analysis has not yet
been fgily'utilized. The work presented here is an effort

in this direction.

This thesis deals with the use of the experimental

1 -



%

data obtained from Modal Analysis Testing in building a
mathematical model of the structure, identifying its para-
meters and predicting the effects of possible design changes’
on its dynamics. It also deals with the use of thesg_exﬁeri-
mental data in predicting the behavi&ur of the structure
according to a certain cr;t;rion. The main focus here;
although'not necessarily limited to, is on machine tool
structures.

The contents -of this thesis are summarized below.,

In Chapter 2 the basic concepts and notations used
throughout the work are included. The theoré;ical'background
bf Modal Analysis is. presented for vibratory sygtemswith
either proportional or nonproportional\viscous damping. Thg
previaus work in the field of identifying the structure’s
pérameters_from the test data is surveyed. Also included is
a survey of the previous work in the field of machining
instability._

In Chapter 3 an attempt is made to formulate in a
systematic way~different prﬁceddres wﬁereby the unknaﬁn
structural parameters could be identified from the.experimental
modal data. These procedures depend basically on the
accessibility 3f the coordinates for measurement as well as
the amount of available data. Theoretical examples are used
to illustrate the'applications'of these procedures.

Chapter 4 presents practical appliegtions of the

Yl

procedurés formulated in Chapter 3. Mathematical models of



@

'

1

two actual machine tool structures are derived from experi-
mentally established modal parameters.

In Chapter 5 a procedure is developed whereby the

-~

' Modal Analysis Testing is used to obtain the dynamic

characteristics of a substructure by subtracting another known
substructure from.the assembly. It is developed with the

aim that it could be applied\to lathe structures.

~,

In Chapter 6 the use of Modal Analysis Testing in

establishinﬂ simple vibratory models of a milling machine

to be used in-predicting the limits of machining instability
(chatter) is presented. fhe prediction is based on the
digital:simulatibh in the time domain. _Experimental verifica-
tion involving cutting tests of stéel énd aluminium, is

given. 7 - |

Chapter 7 gives the conclusions of this work and

présents some ideas about possi future research.



CHAPTER 2

BACKGROUND AND
LITERATURE SURVEY

, 2.1 Dynamic Behaviour of a Structure-

Understanding the dfnamic béﬁayiour of structures and
structural components is becoming an increasingly important part.
of the design process for any mechanical system. Economic and
gnvironmenté? éonsidérations have advanced,to the state where
over-design and less than optimum performange ‘and reliability
are not readily tolerated. . - ‘

. The understanding of the dynamié behaviour of the struct-

''ure means the response of the structure to varying load conditions
can be predicted, e.g. the response of a machine tool sub¥%ct
to varying cutting forces. These varying load\ conditions may

lead to fatigue failures, problems of noisg/éhd comfort. One
. —
more problem with: the machine tools y§’dynamic instability, namely

the appearance of self-excited vibrations (chatter).

B A
2.2 Structural Dynamics Testing Versus

' Finite Elements Analysis
Al ;

Building a mathematical model for dynamic analysis from
the drawings using the finite elements t;chnique has proven
successful in the case of integrated%structufes. It has the
greaf advantage of allowing the engineer to predict the éynamic

performance at the drawing board Stag9/§b\333¢ potential weaknesses
y
4



can be pinpointed before the actual structure is built. Ho;?'
eﬁef, it has two distinct disadvantages:

a). The formulation of an adequate computer model and com-
putin@,t;me can be significantly expensive and time
consuming.

b) Néi;héf discontinuities such as sc}ewed joints or guide-
ways nor damping can be simulated effectively so far
[1 - 5]. This can lead to significant deviations between

dynamic response of the model and that of the actual

structure.

Because of these disadvantages, structural‘dynaﬁicé testing
tecﬁnique is becoming more and more an essential part of the
development cycle of the pr8duct especially in the fields of;
aerospace, ghip and automotive industries and machine tools.
Its uses can be clasgified as:

a}) checking and refining a finite element model

b) identifying natural frequencies and mode shapes

-c) troubleshooting

-

.d) formulating a mathematical model of the test structure
for the purpose ef further analysis. f“\\
The fourth item in this classification is the main - i
. /

concern in the present work.

2.3 'Modal Analysis
One area of structural dynamics testing is referred to

as "Modal Analysis". Simply stated, modal analysis is the pro-



cess of characterizing thé dynamic properties of an elastic
structure bf identifying its modes of vibration. That is,
each mode has a specific natural frequency and damping factor
which can be identified from'practically any point on the
structure. In addition, it-has a characteristic "mode shape"
which defines the mode spatially over the entire structure.ﬂ
Moreover, éésociated with each mode there is a stiffness, its
value depends on the mode shape itself as well as where it is
being normﬁlized.'

It is important, first to illustrate how the modal

parameters arg;phtained using the mass,/stiffness and damping
M 1)

matrices(GE the structure derived frofi the drawings using, e.g.

. i . .
finite elements, andl how. the transfer \functions at the different
locationsfon the structure are expresse

L_ : : - :
parameters. Secondly, to show that in modal analysis testing,

'in terms of these
starting with measured transfer functions, how the modal para-
metefé.qre extracted.

The modal characteristics or, és‘we will call them heré,
modal parameters provide'a great analytical tool for furthgr
prediction of the dynamic behaviour of the structure under
different lbading conditions or when performing any dfsign

changes.

Before proceeding it is necessary to mention some con-

cepts, notations and coordinate transformations used throughout

the present work.



~2.3.1 Transformations of Coordinates. Basic
Concepts and Notations :

All structures we will be dealing with are assumed to
be linear and have lumped parameters.

In ref. [6] fhe concepts of design, local and modal
parameters were presented in sg;e detail. Hpre they are | /
recd@itula}ed. .

A éomputation starts usually with the design data and
the kormulation of'the mass, stiffness and damping matrices
[mx], [kx] and [cx] in a systemfof 125;1 coordinates x. These
are connected with selected local points of the structure and
their.deflections. The equation of motion of the system in these
local Eﬁordinates, and for the time being assume t?at there is no
‘dampf , is: ) .

(m,) {x} + [k] (x} = (F} o (2.1)
and for natural vibrations it is:

[m,] {x} + k, {x} =0 S (2.2)

L
The relationship between the elements mij and
. _ . ‘
kij; i=1 to n and j=1 to n of [mx] and [kx] respectively, and

the lumped or '"design' parameters of the system my and ki~is:

N . P
(M1 - _ mpl
m12 ,. [ mZ g .
ISP S € | (2.3)
! . Nnxnm . ]
L m_ . .
. L nm, mnx1
\mnnJ

mx]1



8
- where: .
n = is the number of degrees of freedom in the
‘system,
- n(n+l) . -
nn = == is the total number of independent

elements in | ;] taking into account that [mx]

is symmetrji

nm = is the fumber of lumped "design" masses in the
system,
.

\\\ A similar expression to Eq. (2.3) can be written for
the stiffness elements, e.g. for a two degreés of freedom sysiem
in Fig. 2.1a) it is

(m, ) 1 0
M1 ™
Mgy = 00 my (2.8
{ 22 01 )
and, similarly for the stiffness elements kij‘ ’
kil - 1 1 kl
.5k12> = 0 -} k2 (2.5)
] o k22 0 1

\ / R

Solving the eigénvalue problem for Eq.(2.2) leads to
n eigenvalues tnaturai frequen;ies) Qg énd n eigenvectors
(mode- shapes) {¢i} in the coordinates {F}' Both ni and~{¢i}
are real. The mode shapes being'real implies that the displace-
ments of the different pginfs of the structure in a particular

mode, e.g. -{¢.}, occur either in phase or 180° out of phase with
i ! P
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respect to each other. The eigenvectors fill the modal matrix

[P]

[P] = [¢1__¢i., n]nxn = 1..... I..... 1 ‘xr {2.6)

where one row was chosen filled with 1's and the corresponding

local coordinate will be the reference ;oordinate x;. -
The modal matrix transforms the local coordinates {x)

into modal coordinates {q}, local forces {F} into modal forces

{R} and it diagonalizes the mass and stiffness matrices.

(x}, = [PIGa},) (R = [P)T4FY, X77 = [P17(k ] (PI,

n .
T
M' = [P]7[m ] (P] o L (2.7)
;K
And in particular it is Qi = —=
M.
i

The diagonal matrices K' and M’ carry the
superscript r to indicate that they have been obtained using [P]
normalized to X, If a force £ is assumed to act on X, the
*

force vector {R} is obtained as:



10 .
P 1...] (0. (£
(R} = [P]T{F} o Jeeess 1.... 0 - f (2.8)
..... 1 ¢ £ L ¢ )
... 1...) 0 £
\0/ \f/
If £ is harmonic with frequency w ,it is
[Lo? M7 o« KT (a} = (R} (2.9)
“and )
' _ £
44 = T 7T _ (2.10)
K. -u™M: ,
i i
where KE and ME are the elements of the matrices FKZ and’
FMZ associated with the mode i. The response at the reference

coordinate X, is the "direct" Transfer Function (TF).

aj , L (2.11)

and the response at any other local coordinate Xy is the 'cross”

) _ »
TF: .

-
ey
|
[ e =]

i=1
Considering the simple exampié of two degrees of freedom
in Fig. 2.l.a), there will be two mode shapes associated with

two natural frequenciés. Fig. 2.1.b) shows how the two masses

move in the two modes, while Fig. 2.1.c) shows the two mode
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shapes with the displacements drawn in the direction perpendicular
to the actual axis of freedom. The mode shapes were normalized
at X5

p_—

2.3.2 Modal Representation of a Mechanical
Structure with Linear Viscous Damping

In a mechanical structure several damping mechanisms

may be considered: dry friction, viscous and material (struct-
ural, internal). For the special caée of machine tool structurés,
the sources of damping can be classified inte three groups:

- Structural damping of the material itself.

- damping in joints,slidéways; bearings, etc.

- possibly installed active or passive dampers.
Material damping in!$etals is duite low, especially for steel,
and seldom has a significant effect on overall damping character-
istics relative to the damping effect of the last two sources &
which arise at discrete points withiﬁ the structufé (71.
Koenigsberéer'and Tlusty [8]'state: "The use oflviscous damp%ng
for the description of vibration of machines is an idealization.
In the vibrétion of actual machiﬁe tools energy is Hissipated
in several ways which differ in the various p;rts of the
structure. In fixéd,}oints partially dry friction oqcﬁrs; in
guideways.semi—d;;_6?“ﬁiscqus damping oEcurs, in the materéal
of the parts of the st&uctures there are internal energy
losses. The nature of the individual damping soutrces is complex

and not sufficiently understood. ' The distribution of the’

—;I
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damping over the structure depends also on the-'distribution
of stresses and therefore on the modes of vibration as well
as on the design and the manufacturing deviations of the
structure. It would be, therefore, ;ery difficult to introduce
-1n a unified and sufficiently simple manner, into calculations
.damplng that would exactly express reallty” However, since |
in machine tool structures the damplng is relatlvely small and
we will be deallng with linear v1bratory models 9he assumptlon
of viscous damping becomes acceptable [2, 9-11].

, Introducing the viscous damping into thé equation of

motion (2.1), it is written as
[m,] 1x} + [c,] {x}+ [k] (x} = (F} . (2.13)

and for natural vibrations it is

=,

(m Jx} + [c,] {x} + [k J{x} = 0 (2.14)

where the matrix [cx] includes constant real numbers assembled
from the values of the lumped "design" dampers in the systen,

in a similar way to [mx] and [kx]‘ "Here, the damping force is

[}

-

linearly proportional and opposing the velocity.- Two cases

of linear viscous damping are considered:

T ' ) A
2.3.2.1 Proportional Viﬁggus Damping

As we saw in Sectlon 2.3.1 for a system with no damp%jg,
solv1ng the elgenvalue problem of Eq. (2.2) leads to n real””
eigenvalues 92 and n real Q;ggnvectors {¢ } whlch make up the ~

modal matrix [P] This Matrix diagonalizes both the mass and

-
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stiffness matrices [mx] and [kx] respectively. If'the matrix
[P] also diagonalizes the damping matrix [ x]’ then the system
is said to have prOportional damping. Hudrty and Rubenstein [12]
state that the condition under which the damping matrix .be

diagonalized is that [Cx] can be expressed as a linear combination

of the [mx] and [kx] matrices:

(e ] = alm] + 8lk, ] (2.15)

”

where both a« and 8 are real constants. This condition is,
however sufficient but not necessary [2]. A necessary and

sufficient condition was derived by Caughey [13] as: '
e dm 1t [k ] = [k I(m 17T [c ] (2.16)
x' 't x X x'x x :

Therefore, for a vibratory system which s%tisfies Eq. (2,16),
.the mpdql repreéentation is obtained as.follows: f
- solve the eigenfalue problem for Eq. (2:14) neglecting
the damping term ([cx]{i}). This leads to n.réal
undamped n atural frequencies ng and n real mode
shapes {¢i}; i=l to n. Form the modal matrix [P]
and obtain the modal masses, stiffnesses and forces
using Eq.'ﬁ}.7).

. . . F .. [
- Obtain the modal damping matrix Qj similar to Mj

andsz H
[ 5
¢ = 217 e ]rP) . (2.17)
N |
The damping ratio in mode i is defined as

| ct - . 5
g; = = . . The actual eigenvalues of the damped :
2/KIMT " ' ' i
i
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system will be denoted Ai, i=1l to n. They are complex
and obtained from ¢ and o as follows;

\J/, Ai = Qi(ci+3/1-c§) = ui+Jvi; i=1 to''n; where My 1s.the‘
damping coefficient and v: is the damped natural
frequency of mode i.

. K
- Introducing Qir into Eq. (2.9) it is

r—mz MY + ju T o+ Kg {q} = {R} (z-..th/J

th

and the modal displacement at the i""' mode becomes

f
q: = - (2.19)

assuming/ that a sinusoidal force f with frequency w

is actinyg at X
- The direct TF and cross TF's are obtained according to

Eq.'s (2.11) and (2.12), respectively.

2.3.2.2 Non-proprotional Linear Viscous Damping

If the vibratory system does not satisfy Eq. (2.16)
it is said that the system has non-proportional dampingf
Actually, this is the most common situation and represents
the general case of linear viscous damping, Although it has
been known for a long time, its use was limited, partially due
to the complex mode shapes associated with it and due to the
measurement techniques available at.thatrtime. Howevg&et}n
the last 12 years with the advancements of both computational and
experimental f;cilities, it became‘thé.most popular damping
representation among almost all autho?s working in the field

of modal analysis, e.g. [2, 14-17]. TN V\T
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Frazer et al. [18] h;;e developed a method of obtain-
ing the complex eigenvalues and eigenvectors for a system with
non-proportional damping in which the following matrix identity
is added to Eq. (2.135 '

[m ]{x} - [mx]{i} =0

Hence the following matrix equation of order 2n is obtained

%

ley] Imy] {f' . kx][O]{T | (2.20)
[mx] {o] [x 0][mx {x {0}
oT -
[A] {z} + [B] {z} = {Q} (2.21)
where \
fc.] [m] - (k.1 [0]
C
] = | x % , [B] = | % '
[m ] [0] (Lol [m]
yd “ {x} L |F)
/ , {z} = {Q} = (2.22)

{x} _ {0}

kN
To get the eigenvalues and eigenvectors of the system

put {Q} = {0} én&'seek a solution in the form {z} =#{Z} elt,

Eq. (2.21) 7@comes

A[A1{Z} + [B]} (2} = 0 .
(A7, + (A7 [B]) (2} = 0

Eq. (2.24) represents the eigenvalue problem of t
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A, = pu. + j .
i M ) vy
* ; 1=1,n
MOTHE T Yy

and n pairs of conjugate complex eiéenvectors-{w} each with 2n‘
elements. The mode shijpes being complex implies that the
displacements of the dfgf;;ent points of the structure in a
particular mode, e.g. {wj}, would have phase differences between
them which might take any value. These eigenvectors fill the

modal matrix [P] which transforms the local displacements {x}

and velocities {i} into ﬁodallcoordinates {q};

) ( N ¢ N ’, 3 / Y 7 N
* * ql

{x} {wl}‘ {!P_-L} e {‘bn} {‘bn}

. * . T qz
- 4oy e [0 ST SR SR 1P SR

R : * * :':. *}

{x} Ayl [Aelug Aoy (A tepgd :

\ / b \ P \ J/ \ / \ J \ an)

[P : .
) (2.25)

The eigenvectors are orthogonal to [A] and [B] and

hence the modal matrix [P} diagonalizes them;

- Fr _ T £r T -
a, = [P]" [A] [P]_ b [P [B],[P]‘ (2.26)
F oy F r . ) )
- where a and bu are complex and they contain pairs of

conjugate values, and for mode 1 it is: -

. bi“
1 /
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Assuming that a sinusoidal force f is acting at X., the direct
TF was obtained in [2] as
X n '
T 1 1
= I — + — — (2.28)
EREEL T ) a; (ju-ay)
-
and the cross TF at any other coordinate Xy as
% !
X n Py P . )
k ki ki
= g . L S (2.29)
T 400w TGN

Eq.'s-(Z.ZB) and (2.29) were also expressed in [2] in different

forms.

Summarizing:

- For a sysfem with no damping, the modal parameters
are: the eigenvalues 9%, eigenvectors {¢i}‘and the
modal stiffnesses "Kz. Ail of them are real.

- For a'system with proportional viscous damping the
modal parameters are: the eigenvalues Ai’ eigenvectors
{65} and the modal stiffnesses K. Both K; and
{¢;} are real ﬁhile the 1;'s are complex.

-  For a system with non-proportional-damping the modal

‘-pafametefé are: the eigenvalues Ai, eigenvectdfs {¢i}

and the parameters ag. All of them are complex.

2.3.3 Extracting Modal Parameters from Modal
Analysis Testing '

~
In Section 2.3.2 it has been shown how the transfer,

functiofis, direct and crosses, are expressed in terms of the

~
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modal parameters. The direct TF is obtained at that local

coordinate where the fp;ce“is applied, while the cross TF's

are obtained at the other locations. In imodal analysis testing,

we start by measuring these fTansfer fun tions, and by decom-

posing them\Eﬁto the individual modes’, the modal parameters

" are obtained. To dé so, Fig. é.zfqzlustrates the steps to

be followed which are: \ |

i) Excifing the structure and measuring the input force:
Several excitation instruments, e.g. using a shaker
or a hammer, and techniques, e.g. sinhsoidal, swept-
sine, random, impulse,”are now available for exciting
the structure. Their applications depend on the mass
and flexibility of the structure, existence ofsnon-
linearity as welllas the frequency range/to be covered
[8, 19-29]. The force sensing elemeﬂt is usually a
piezoelecéric 1oad cell,

Tii) Simultaneously measuring the vibrations ét the diffierent
points on the structure, usually-ﬁt one point at a
-time. .

111} thditioning the individual signals to reduce aliasing,
leakage and noise problems [2, 25, 30-31]. |

iv) Processing the signals tforcé and vibrétidh) to obtain
the transfer function: By definition, the transfer g\
function is the Fourier Transform of the output divide
by the fgufier Transform of the input.- Mathematically

speaking it is;
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| S -
- O
TF = 5 | (2.30)

or equivalently;

* - . )
5485 .
TF = 21 . _ (2.31)
Si.si ;

*
where; Si is the conjugate of Si
.*_ :
So'si is the cross power spectrum of the input and -////’
output

. .
Si'si is the autopower spectrum of the input.

In the case of structural dynamic téstiné, the output is \
the vibration while the input is the exciting forcef'With the
advent of the Fourier Analyzers and incorporating the FFT fFast
Fourier Transform) this process takes only few seconds.

To reduce the effect of noise and non-linearities several TF
measuf%ments, typically 10 [30], are usually averaged out.

In order to improve the frequency resolution in‘a
certain'frequency range McKinny [32] has incorporated the band
selectaﬁle Fourier analysis into ,the FFT. The TF's are to be
measured at all selected points on the structure.

3 Tﬂe different terminology of TF are: -k\\\\\\\
Displacement/Force. \\
Velocity/Force. __;i,////

Acceleration/Force.

Dynamic compliance

]

Mobilitx

[}

Inertance

There are several ways of presenting TF [33]. 1In the

present work the real and imaginary parts plotted in linear

scales wilI?be, mostly, used. ¢

f
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N

X
V) Curve fitting:

This is the process of extracting the modal data
from the measured transfer functions by approximating them
to the modél_represenfation of the vibratory system, e.g.

Eq. (2.29). A simple intuitive method [8] may prove effective

in the case of lightly damped'uncouple& modes, while a non-linear
least sqdare_ésfimation élgorithms [2, 9, 34] becomes unavoidable
in fhe ca%e'of highly damped strongly coupléﬁ“modes.

An importaﬂt aspect“in curve fitting. the transfer
functions is that, the measurements are done_ over a limited
frequency range, consequently the contributions of the modes
outside that range must be considered. This is accomplished

[2,9] by modifying, e.g. Eq. (2.29) into:

X P ' h ‘
T _ 1 - 1 1 -
T T * eyt e S (23D
~w m i=1l "1 i’/ a.(jw=-2,
by - i i
u - t\\‘\=~- - -~
where; ; ] ‘\
p is the number of modes in the measured frequency range.
. l/ 7
'% . a term representing the misging lower modes.
w“m
r mz m., is called the residual ‘inertia
Sr a term representing the contribution of ‘the missing

higher modes. It is designated residual flexibility.

Both mr and Sr are real.

2.4 Modal Analysis Testing Applications

2.4.1 Visual Inspection of the Weak Points of the Structﬁre

Commercial systems, e.g. a based mini-computer Fourier

i

B T I O R R
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analyzers, are now available which provide an animated display

of the struoture as it moves in its individual modes. By
visuelly inspecting these displays it is possible to indicate

the "weak links'" in the structure [35, 36]. Subsequently, design

changes through t&lal and error may be proposed

R

2.,4.2 Performing Design Changes

There are, fundamentally, two distinct uays to try
and solve the problem of quentitatively predicting design
changes of an existing structure which has been.suoject to -
experimental modal analysis [37].

One way consists of Identifying the structure as a

lumped mass, spring and damping model by determiniug, in
general,.its'uass, stiffness and damping matrices in local
coordinates aseociated with the individual points of the model
end, further, to determine_the indiéidual Springs,_massee‘and
dampers of the model .. o

Another approach con51sts of 1dent1fy1ng the properties

of the structure at-those p01nts only where .a Modification

is 1ntended by means of adding a mass or a stiffness beam or
addlng another whole structural part ) \ |
~ These two approaches w1liobe dlscussed in the two )
jons, 2.5 and 2-6-"T\x- -

-+

=~ Predicting the Structure Response Under
Various Loading Conditions

Once the modal parameters of.the structure have been

—v—-\ ) -
)
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+

found, through modal analysis testing, the decoupled equations

of the system can be written, e.g. for proportional viscous

damping, as: ' !
" . T .
M§ qi(t) + C; qi(t) + K; q(t) = <s> {F(t)1; i=1,n
' (2.33)
where: } N |
qi(t) is the modal\ﬁisplacement of the mode i..
Mi, C; Ki are the\hodal mass, stiffness and damping . -

parameters of the mode i, obtained through modal

N

analysis testing.
<¢i>T is the transpose of the mode shape i.

{F(t)} is the loading vector.

Eq. (2.33) represents a single degree of freedom system
which can be solved to get the modal displacement qi(t) for any
loading condition.. At any time instant t the displacements at
the different points on-the structure can be obtained from:
(x(t)} = [P] (q(t)) DR (2.34)

' -
-y .
i

where; - v -

[P] is the measured modal matrix. ‘ g

To incorporate the initial conditions, e.g. the initial dis-
- r
placements {x(0)}, into Eq. (2.33) we also use éa. (2.34), 1i.e.

tq(0)t = (P11 1x(0)} | = (2.35)

>
In the special case of machine tools, which a - the

smain concern in the present work, the cutting forces fepresent

H
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the varying loading conditions on-the structure. They may
lead to "chatter" problems. This will be discussed in Section

2.7.

2.5 .Identification of Mechanical Structures
from Experimental Data

The objective of the identification{process of a
mechanical structure is to find the constants or coefficients
in fhe equation of motion of the system in local coordinates
from the experiment#1ly measured data. This is a typical

inverse problem in the classification of Bekey [38] of engineer-

-

ing problemé.

gt

Two approaches of_idenE@fication are to be considered: ~=_
“non-modal" where the modal data are not used, and "modal" where

" the modal parameters are directly utilized. Although our
) L

concern here is the applications of modal analysis and consequently

-

~

the modal approach, the non-modal approach will be briefly
_discussed’ for the sake of completeness, »
a

/
2.5.1 Non-modal Approach

Kozin et al. [39-40] have developed a scheme for
identifying the coefficients in the equation of motion in which
the time history of the input forcing function and response
time histofies for displaceménts, velocities, and accelerations
in all the degrees of freedom are requir;d. The approach is

based on a simple application of classical regression analysis.

To illustrate its usé, consider the equation of a single degree



of freedom system.
mx (t) +cx(t) +k x(t) = F(t) (2.36)

Multiply this equation successively by kl(t), i(t)-and

-

‘x(t) we get,

m 'x'z (t) + ¢ ).c(t) 'x' (t) + k x(t) .x- {(t) = F(t) .x. (t)
m x(t) x(t) + ¢ x2(t) + k x(t) x(t) = F(t) x(t)
mox(t) x(t) + ¢ x(t) x(t) + k x2(t) = F(t) x(t)

(2.37)

By integrating the quations in“(2.37) over the time
sampling interval t, we obtain 3 lgnear equétions in the
unknown coefficients m, ¢ and k.

Although this procedure looks strgigh%forward [41], its
application necessitates the use of allidisplacements,
velocities and accelerations, which implies, either to measure
all of them, or measure only, e.g. thg_égcelerations and
determine numerically-the velocities and displacements. The
procedure worked well with error-free computer experiments on a
simulated five mass chain. Howevér, its application with
corrupted data has not been reported.

Distefano et al. [42] haveiidentified the coefficients
in the equation of motion of a sinéle d}gree of freedom,system
with nonlinear damping and stiffﬁess respectiveiy.r The
identification was done by m1n1m121ng the dﬁfference between
the analytlcal acceleratlon t1me response and the measured

acceleration time history.  The application was limited to a
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single-degree of freedom system due to the complexity involved.
Dale and Cohen [43] identified the coefficients in
the partial differential equation of motion for linear “
simple continuous structures (such as rods or beams) by convert-
ing the equalion into a sét of ;fordinary first order differ-
ential equi%ions. They reported good results from computer
experiments with simulated errors, e.g. by{truncating the
actual eigenvalues to the fourth decimal. Nevertheless, the
theory was not applied to actual structures. \
Mains and Noon§; [44] used directly the equation of
motion to identify the mi;;i;es [mx], [Cx] and [kx]' Their
proced is as follows: )

for a‘siggsoidal excitation it is

(L] = w? ] + 3w e J] [yl = ", (2.38)
where [y] is a complex displacement matrix, "Fo is rea then
>l
[y] = [yR] + [YI] e* . (2.

) wherein ;] and (y;] are the real and imaginary parts
respectively. By substituting Eq. (2.39) in (2.38) and after
some manipulation [mx], [cx]rapd [kx} can be obtained fr?Tv//!f

b d

] = (Dgy) = D))/ 3o\

[ed = [IY[] + [¥g,11/ (ug*o)) ©(2.40)

2 2 : 2 2
[kx] = [mz [YRl] - ml [YRZ]]/(wZ-ml)

¢ :

[}
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where [YRI] = [[YRI]Z + [YII]Z]]il FO [le]
_ . (2.41)

Ypil = - [[YRlJZ * byl Fy o lyp)

obtained when‘exciting the structure with frequency Wy, and
simiiarly for [YRZ] and [YIZ] when exciting with W,

The two frequencies wy and wy wWere chosen such that
they are far apart and antlresonances, where as claimed by the

authors the errors in measuring [y] are in the order of 5%.

The method did not work very well neither with ¢ uter experi-

ments with simulated errors, .nor on actua imental data.
The authors have concluded that conditioning the measuring data
is essential beﬁore Etilizing tﬁem in the identification process.

Caravani and fhomson [45]'identifie& the values of
dlscrete dampers in a chain like structure f??m error- free
computer experiments using gradient search. Fhe sen51t1v1ty
of the techniqui?to noisy data has yet to be examined.

T
2.5.2 Modal Aﬁproach

In this approachthe modal parameter% as ﬁeasured are
available; and it is' required to find the mass, stiffne§s and
damping mgtrices‘of the structure in local coordinates. For

‘example for a system with proportional viscous damping, the
available modal parameters are 1, {¢i? and Kz; i=l,p, where

P is the number of modes in the™measured frequency range. Find
[mx], [kx]and {cx]'which are . square of size nxn, where n

is the order of the system. '

) ' | ' i - \
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If ;he numberﬂpf measured modes equals the order of

the system matrices, i.e. p=n, and if the measured modes were

exact, then [mx], [Cx] and [kx] could be obtained directly by

‘back transformation from modal to local coordinates, i.e. .

L3

_ -T K -1
(m 1 = (P17 "M} [P]
: o K )
[ed = (177 ¢} [p17d (2.56)
-T K -
[k, = (p177 k3 [p)°1 ‘

However, this is not the- case;

1)

-

ii)

iii)

usually. the number of measured modes is much less than
the order of the system matrices; .p < n.

not all the local coordinates of the system are access-

"ible, i.e. some of the elements of the mode shape vectors

are missing. '#>
the measur?ﬂ data are inaccurate which is common to

both - identification approaches. These inaccuracies

could be due to [46] errors of various types such as
errors in calibrati®bn, errors due to capacitive

reactance of loads, errors resulting from mismatching

of equipments, errors due to extraneous signals or
errors due to random noise. Some inaccuracies may Ee
attributed fo'the assumption of linearity of the

s}stem which is basically non-linear. Moreover, these

inaccuracies will depend on the stiffness of the mode

itself _and the locations at which the measurements were
’ ’
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taken, .

Therefore, the inverse of the modal matrix [P] either
does not exist in the case it is mnot complefe, or will lead to
extreﬁfly unrealistic results, e.g. negative masses [44].

| Consequently,_the works 1in the field of identifying
the system matrices of the structure from experimental.data
were directed towards circumventing these problems.

Ibanetz [47], Raéey and Hewlett [48], Flannelly et al.
[46], Thoren [49] have concentrated on a low p&d@?\mpdel where
the number of degrees-of-freedom of the system mudt be equal to
. the number of measured modes, i.e. n=p. In this case matrices
[mx], [cx] and [kx] will be of size pxp, whose elements might not
have digect physical meaning, nevertheless they are éapable of
representing the dynamics of the system in the freguency range
covered by the measured p modes, and at these p local coordinates
-at which the measurements were done. The need for deﬁling with
low order models in the works of these authors stems from their
realization of the importance of using the ofthogonality
relationship between the measﬁred eigenvectors and the matrices
[mx], [Cx] and [kx] of the system~as. a mean of conditioﬁing
the measured data. Having infroduced this relatlonshlp, they
obtained good results in'tegfms of reproduc1ng the measured data
for both computer experimernts with §imu1g}ed errors [46] awd
actual structures [47-49). They assumed the vibratory system
to have praporfional damping. ‘

« Befman and Flannelly [50] have introduced the concept

of incomplete model whereby given the mass matrix [mx] of size

¢



29

nxn, and p mode shapes it is possible to formulate a truncated

stiffness matrix 5 follows.

2 :
eyl nxn = io1 E% [me3te;} < ¢i>T [Tx]; pP<n “A (2.37)
where,
Q% is the natyral undamped'frequency of mode i
M§ is the corre ponding modai mass . {
v {¢iI is the meésu¥eé‘eigenvector. d

The matrix [kx]’is of the order n and rank p .and cannot'

be inverted. Its elements, due to the use of the lower modes,

could be several orders of magnltude different from the actual
ones. However, they showed that with computer experiments it

--has the potential of predicting design. changes., Proportional
structural damping was assumed.
‘\\\,Hall t al. [51], Ross [52], Berman and Flanne¥rly [50],

Collinziet 1. [53, 54], inamura and Seta [55] have identified

o the unknow elements in the matrices [mxl, [Cx] and [kx] of

size nxn using 1imitegﬁm€%%l data. -
Hall et al. [51]\assumed the knowledge of [m } for a-

computer simulated, undamped beam having three different cross
sections, and identified [kx]i They used the gradiene search
W minimize the difference between the analyticel and experi-
mertsl mode shapes and frequéncies in_gﬁe least square sense.

The method gave the exact values ofi;;he unkndwn pdrameters*in

[k ] when exact, but not complete, 'éata .were used. However,

the convergence was relatively slower and some of the identified



30

parameters were off by more than 20% when simulated errors were
introduced. - _ . : -

Ross [52] suggests a method in which one calculates
the eigenvectors of kno%ﬂ but unreliable mass and stiffness

~

matrices, and then adds the top eigenvectors of the mass

matrix and/or the lower eigenvectors of the stiffness matrix . -
columnwise to the measured mode shapes to obtain a square modal
matrix, Such a modal matri£ may then be inverted and the form-
ulation of more reliable mass and stiffness matrices follows
directly. This method has never been put to a te;t neither

On computer experiments nor on actual structures.‘

Berman and Flannelly [50] in-a computer experiment on 4 -
beam wit@b§imulated erroré in measuring the eigenvectors, have
idequffed the unknown elements in the mass matrix [mx]ﬂxn’
using.;he orthogonality relationship.  The pseu¢o—ihverse method
[56] was used to find these elements in the least square sense.

Inamura and Sata [55].suggéstedﬂa method of introdu;ing
slope informa;ions, which are/ﬁg;tﬁgasureq, in the mode shape
vectors. The slopés are deduced\f?ﬁm the measured displacements
using shape functionsnin'a way similar to that used in finite
elementsiform;lations. They used these filléd;Tode shape veétors
directly.(without'furthef conditioning) to identify the stiffness
and damping coefficients of a bolted joint between- two béams.

The success was'limited, e.g. the differences between the

second measured natural frequency and the predicted using the

identified coefficients was more than 30%.

5
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~.The method worked well with computer experiments.on chal-
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Collins et al. [53- 54] developed a method 51m11ar to
that of Hall [51] in which the gradlent search is used to.
minimize the difference between the estimated and measured
eigenvalues and eigenvectors. Moreover, in their development

s and

they treated the uncertainties of both the measuremen

-structures. However when it was applied on an actual structure

'l

-

(model of Saturn) the success was limited.

Gravitz [57], McGrew [58] and-Torgoff [59] have developed
different methods by which the meeshred mode apesy are qorrected”
to be orthogonal to a kndéwn mass matrix.

Gravitz [57], first obtains the truncated flexibility

matrix [hx] of order n and rank p as follows.

-

™2 "1 o |
eI = 1p) "ol 7 )T o1yt ey T (2.38)

If the mode shapes are inaccurate, (] will not be symmetrical., -

To make it so, the average of [hx] and itsfrranspose is taken:
‘ AR _
="1/2 [Ih] + [h "] | (2.39)

4

[h ]

x‘mod.

This mod1f1ed flexibility matrlx is used with the known
mass matrix to obtain the modified mode shapes by SOlVlng the
eigenvalue problem. ) L o

McGrew [S8] assumes that the measured higher mode

-contains ‘the actual mode plus liﬁEar‘combination of the lower

modes. Consequently, he derived a correction matrlx based on

the ‘known mass matrix apd ‘the lower modes; whlchewhen multiplied

%

/
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by the measured higher mode yields the actual one. Assuming
the first mode t be rrect, the next modes are corrected
in succession.
‘Targo f [59] thr™ough an iterative procedure corrects

e
the measd}edxm de shapes by minimizing the off-diagonal terms

in the modal fMiass matrix. His method proceeds as follows:
The orthogénality relationship dictates,
(P17 mx] [P] = "M,

Let the mode shapes be normalized such that

= F
LR s fy
where [V] contains the new normalized mode shapes. .

Due. to experimental errors the product [V]T (V] will
yield the matrix [OR] instead of the identity magrix. Th?
measured mode shapes could be thought of as being the product

of the exact mode shapes [Vel multlplled by a corruption

matrix [C]l, then
T |
el” Vel [C] = [CR] )

or it el = (ORI | o

ic1t (v

If only sy@metrical errors exist, then [C]T (C} = [C]2
. 4 . - v
and the orthogonalization process reduces to that of finding

the square root of [.C]2 which can be obtained through iterations.

-

- ' *
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2.6 Modification of Mechanical Structures
from Experimental Data

In the modification approach as mentioned in
Section 2.4.2, the dynamic characteristics of the structure
at those points where other structures will be connected have
to be identified. Moreover, the dynamic characteristics at

othﬁr points on any of the subsystems may also be included if

-
- ‘¥h5§.are of special interest, e.g. points at which the forces

will be acting or where the response is desired.

‘ The modification of a structure could be performed )
by connecting other éfruc;ures to-it, or-reétrainipgdsome of
its coordinates.. Fig. 2.3 repr Yuced fr0m£T70f d;;icts the
different connecting elements between two substructures.

By identifying th? dynamic chagacteristics at some
points on a structure it is meant that, either the transfer ™~
functgons TF's or thevmodal parameters at those points are
to be obtained. These characteristics will be used in the .
synthesis process.

Synthesis of substructures usiné their modal components

to obtain the response of the total system, has been extensively

studied by many. authors, e.g. Hurtz [60, 61], Gladwell [62],"

Craig and Bampton [63], Banfield and Hruda [64] and Tolani

and Rocke [65]. They, mostly, used computer experiments to
prove the effectiveness of the method. Klosterman [9, 66-69]-
extended the synthesis technique to include the experimental

data and applied it on actual structures.
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W

- N
The technique. of synthesizing substructures using

Blocks' appears to be the most practical approach for complex

structures. Whereby the structure is divided into small

coﬁponents, each of which is analyzed separately using either

available digital computer routines or experimental tests

r

depending on the complexity of the component. Then

-

the

response of the structure is predicted by the proper coupling

of these components.

To illustrate the synthesis proceddre e.g. for sub-

structures having no damping let;

N i

be the measured or calculated modal parameters of substructure

i. The matrices

Rk

J i

the modal matrix [P-]i

the number of coordinates on th‘%

is, of the size n.

and

My 3

=

1

are of size P; X Py and

X Py where*ni is

e\substructure i which include

both ;;;FQGnnection points and any other points of interest and

- ¢ - - . *, St
p is e number of avallabls modes.. Similar modal parametéTs

structures in a de

N
1
. 0
m
0 .,
K
M

4

19}

{4}
\

N\

1

2

Py

A

r{q}

{q}

{q}

A
1

2

ther substructures. For all—the

are available fij;;;jr%

upled form we can write;

- (o1 <

’
{F}

N

2;i?’

(2.40)
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-where; N = 3
\_ \‘:
{q}; 1is the modal displacement vector of substructure’
‘ i of length Pi- -
{F}i is the loading vector on substructure ‘i of length
. ni'
f”ﬁ\h\ ‘
I : [p]l A 0 .
T/
. | \_/‘N= [P, (2.41)
- 0 _ '
SN .

. il
N 1s the total number of substructures.

3

- N / N
?
= tah)l -
SN FS P AL (2.42)
{x}N {q}N
A L4 A 'y
where {x}i is the vector of local coordinates of:the
substructure i. .{Ii' - .dJy\

When the substructures are connected, constraint

ions are necessary to relate the local coordinates.
: P

The be written as; g §
N / \ / N . . \ .

{x}l _ {?}1 {c.4}1

.

[D] J§ > = [D]10] § o o- (0] |3 : - 0

(x} {q} - {q}
LN (N N

a | . \ ’ (2.43)
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Eq. (2.43) will relate the modal .displacements of
the substructures to ‘each other, and then they can be
expressed as; ‘
b <6 tap 7 (2.4d)

[y

where {q;} is the vector of independent modal displacements.
Substituting Eq. (2.44) in Eqs. (2.40) and postmultiplying
by [G]T we get, "~
f{F} ~ .
1
o g P : '
Mg tap) + (Klp {ap) = [Glalel® § i ¢ %45)

k{F}&

Eqs. (2.45) ean then be solved to determine the natural
frequencies, mode shapes and the frequency response for the
total structure. |

Another épé&oach of synthesizing substructﬁres using
directly the measured.;ransfer functions was also described
by.Kloste{man [69], Nan Loon [2] ana Vanhonacher [71]. It
"is best illustrated by an examplé. Consider the two sub-
structures b and c ifi Fig. 2.4, when connected at point § to
form the total system as it is required £o determine the
fransfer function H?i at point i.

For substructure b, and taking into account that it )

1

is linear,
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i)
b _ ;b b b b . '
X; = Hii Fi + His'Fs (2.46)
. i,
b _ b b b b ‘ ,
Xg HiS Fi + Hss FS (2.47)
\ : o
where X is the displacement
//’”/His is the measured transfgr function. The first

—

subscript indicates whéreé the displacement is
measured, while the second subscript represents

the location at which the force is applied.

-

-

For substructure c

c _ .C o N I
xS = HS F.. ~ —£2.48)

When, the two substructures -are connected it is:

w»

< _ b b_ .c b _ .a b a
Fs = - Fs, X .= X, Fi = Fi and X; = X3 (2.49)

Substituting Eqs. (2.49) into (2.46), (2.47) and
{2.48), we obtain H?i in terms of the measured TF's of the

substructures b and ¢ when they stand alone as;

b b
i7" il gb e : ~o
: 58 55

Although the mathematical operationé involyed in
Eq.-(2.§0) can be easily performed in a>Fourier Analyzer,
the direct use of the measured TF's may lead to.erroneous
results. A better way as suggested by Van Loon\\Z] is,

first to curve fit these TF's and then use the analytical
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‘l

expréssions into Eq. .(2.50).

W
i

2.7 Chatter in Machining

LA

The specific type of self excited vibrations Wthh
occurs in machining of metals and which is generally called
"chatter" has been the subject of extensive research in the

past thirty years.
. , - .

At an early stage of research into the problem of

L

-

SUR . ! .
.chatter in machining the existence of negative damping genérated

Cin the cutting’ process was cons¥dered a necessary condition,

and the only source for chatter to occur (72, 731. This
attitude prevalled with many authors through the years, and
with some almost until today [74, 75].

H wever it was recognized rather early that the

- most powerful sources of self excitation, those of 'mode

coupling" and of "regeneration“ are not associated with the
thip_forﬁation mechanics but with the structural dynamics of
the machine tool and the feedback between subsequent cuts.
It was shown. that chatter can occur without the participat'on‘of
a negative damping in the cutting process [76-81]. |

Thus, in dealing with chatter problems we might
distinguish, from the practical point of view, three items
as it is-&iagrammatically indicated in Fig. 2.5. They are,
the maphine toolf.the cutting process and the mutuél %rient /;/ﬁ\
tlons’between the resultant cuttlng forces, and. thé dlrectlo;;
of the different modes of the structure. These mutual

™

orientations depend on the geometry of the cut. The mac#j;gl%ﬁ:%

PR
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tool represents a three-dimensional multi-degree-of-freedom
system carrfing the tools at one pqipt and the workpiece at
the opposite point. The vibration z of the machine tool
influences the cutting pﬂecess'an& produces the forces F at
certain directipns which in turn act on the structure and
excite vibrations z, and thus close the loep. Eventually the ‘
stability of this -loop depends on the three items.

The dynamlcs of the cutting procéss is represented ;
quantltatlvely by the dynamic cutting force coeff1cxent
(DCFC) . Sixerg; autho;s have developed different techniques
for ﬁeasuring the diffefent components of this coefficient,
e.gy [82-85]. Tlusty [86] in his critical survey of the
Tesearch activit}es in the area of cutting dynamics, indicated
the significance of the different components of the DCFC
with.respect to the process instability. Moregpver, he
presented the results of the DCFC measufements carried out in
different laboratories around the world using the 'same tools
and méte;ials and identical test rigs. The comparison showed
that the discrepandy was largest for the imaginary part of
the direct inner modulation comaonept, which actually represents.
the damping in the cutting‘process. Consequently, Tlustf
and Heczko [87]-§evised a yig whose damping could be regulated
such that the damping in the cutting process could be cal-
'culated more reliably. The work of these authors showed very

clearly that the damping in the cutting process could be

positive or negative, depending, among other things, on the

L
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cutting speed, tool wear and the frequency of the.rig.

The iﬂ;%ability of the closed loop in Fig. 2.5 _
was first studied by Tlusty et al. [76-78]. They recogni:gz'
the two separate mechanisms, ”reg;:eration" and '"'mode
coupling", and accordingly Fhey derived the limit of stability.
_This limit of stability was defined as the width of cut after
which tﬂe vibrétions, assuming among other thinés that the

system is linear, would grow indefinitely, and it was denoted

—

b, . It was derived as,
Slim .
T 5 | (2.51)
m min _
where;
- T = dynamic cutting force coefficient which is

assumed to be a real positive number.
Gmin = the minimum of the real part of the oriented
Telative transfer function between the tool

and the workpiece. -

Eq. (2.51) gives an important insight into the inter-
action between machine tool structurél dynamicg and the cutt-
ing process dynamics. A further analysis was also'present%d
[8] in which r was considered-to be a complex pgmber and in
which the'geometrical constraints were taken into account..
Witﬁ T being complex, the dampingigenerated in the cutting

comes into effect in determining the instability of the

closed loop. Moreover, by.incorpgzating the géomefrical 4

constraints, the phase angle between the undulations on the
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surface be;sg cut and that machined in the previous pass
is not free to adjust itself but is rather determined by
the length betweén subsequent cuts and the number of waves

in this length: as shown in Flg 2.6. "The" 1ength’between

subsequent cuts in turning is the c1rcumference of the ',

A d

workpiece, while in milling it is the dlstance between two
successive teeth,
In deriving the stability 11m1t [76 81], it was

~4_

assumed that the resultlng cuttlng forces act in a dlrectlon

which remains always constant i;;zﬁg—guttlngg While this
assumption is true in the case of turning, it rep}esents an

oversimplification of reality in the case of milling operations.



’ 3.1 Introduction -

CHAPTER 3
CLASSIFICATION OF IDENTIFICA-

TION SCHEMES USING THE MODAL
ANALYSIS APPROACH

rd

-~

This .chapter deals with the problem of identifying

the parameters of a lumped spring-mass-damper model of a

tructure from measured modal data. The structure is assumed

0 be linear. _The problems arise mainly begcause the measured

- data are inaccurate agd{/;;;;;w¥ﬁgy are also, in a sense, -

'incompiete. Thi/gur§b§5$bf such modeling is to enable u§ to

‘ . /
estimate tHerdéfeCtkpf design cha{;égkfy computing tNe effects

of corresponding changes of the MOdelﬁ

This general task may be subdivided fnto 5 veral groups
, 4 - )
of problems depending, on one hand, on the range -df the intended

design changes and, on the other hand, on the range of measpred

- data available. Prom the first point of view it is} often so

that the intended change consists of adding a knowr system

(known by computation or byjmeasurement: as an gxample
N ¥

. .
consider adding a tuned damper) to the structur at\ii}ptted

R %
' 42

~ -
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b

’

as possible and by analyzjng it to select and test various

design changes. For this purpose a Comp}é@e Identification
. 1s required. The word complete has t¥ be taken conditionally
as is explained further.
From the point of view of the range of measured ddta,
: .
or still bettgr, of input data some of which might have been

mégsuredand some computed, it is important to separate first,

experiments in which we have access and measure at all rele-

vant coordinates. The measured mode shapes are complete

for the given pugpose. These cases lead to a system of linear

€fuations in the unknown stiffnesses; masses and damping

_ coefficient;. It is not decisive whether measurement was
obtained of all mode shapes, i.e. on as many mode shapes as
there are degrees of fréqdom, i:e. as there are independent
coordinates. The other group will be experiments whére some

. ( .
relevant points have not been measured. 7This group will be

called measurements of incomplete mode shapes and they lead -~
' -

L]

to a system of nonlinear equatlons

i
It is obvious that in any case we need at least as

many independent—equations as is the number of unknown para-

meters to be identified. It is preferable, with,respect to

! U
bad L

data. If the number of input data is insufficient it is nly

possible to select from the infinite numbér of results sggh

w



which are closest to some estimate ich establishe§prefer-\§

4
ence. = ~»

In the following, the above menfioned groups of

*

method$ are presented and illustrated on ;;ﬁuléted examples,
In the next chapter they will be applied on ;Etual pachines.
Before proceéding any further let us degine first,
what is to be considered a good identified model of the
structure. IF ié that mode1 which not only repfoduces th
data from which it bas_begn identified, but also helps predict e
the effect of design changes more accurately. Té illustrate
the.importance d?*the;second characteristic of a good model;
consider the very simple example of -a two degrees of/freedom,
Fig. 3.1. Assunke that a measurement has been done at co-
ordinate X, or c rdinate X, in which only the two natural
frequencies—are determined. Moreover, assume th;t-ihé two
masses.m1 and m, are known and it is required to identify the

two springs kl and k2‘ The formulation of the system natural

vibrations
[-a7m] + [k d1s,3 =0 (3.1)

leads to the characteristic equation A

N ———

2 ' .
[-ay Ime ]+ [k 1] =0 & N € 1>
) — R ]
In general, assuming [mx] and-Qg are known, Eq. (3.2)

represents a system of n simyltaneous equations of degree n

. in the-elements kij of [kx}, n being the order of the system.

L2

Y
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In the present cade n=2. Therefore, Eqi;(S.Z) will yiel?
two solutiqps:

/FH\’__) k 1 3.325

= or
2l 0.603

Y

<
Each of these solutions leads to the same natural frequencies.

However, if we change either of the masses m; Or m,, remeasure
the natural frquencies and solve Eq. (3.2) for Q,'s -

by plugging in one of the identified stiffness matrices at a
time, i® will be clear that the solution (kl =1, k2 = 2),

not only reproduced the data but also predicted the design
' change accurately, and consequently it is the correct one. /ﬁ\\\\

This 1mportant feature of a good identified model
suggests that, it would be actually advantageous use both
* the modal data of the structure as measured befo;jE:;g/after
' performihg some,a}tificial_design;change, in the identification
process. Thi% design change might be merely eddigg a mass at
one of the coordinates. For instance in the simple cited
- example of twg degrees_gf freedom system, if we had used

glimultaneously the data from both measurements, we could have

arrived at the following two linear equations,

4 4 . 2 2
(Qzﬁnl) mym, - (nzfnl)[(ml+m2) k2 + m, kl] =0

I
o

2 2 —_ —
(94—93) m rn2 - (Q4fn2)[(m1+m2)_k2 +m, kl]

-
[=3
R . N b3
~
- - 3 -
L] . N
¥
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where: ) -
e ,Qi and n%: are the natural frequencies in the first
measurement. N
ng and Qi: are the natural frequencies in the second
: measurement where the mass m, has been
changed into ﬁz.
Solving Eqs. (3.3) gives directly the unique solution
kl = 1 and k2 = 2. | . N\
3.2 Complete Mode Shapes:Methods Based —

on Linear Equations

Py

In the course of this discussion and from the cited
examples it will become  understandable what is meant by
"complete" mode shapes: such which are measured on all the

"relevant" coordinates (relevant for the identification
proqgis). . 3 3

G\ y N
oy, 3.2.1 Full Length Mode Shapes .
/Z/ 3.2.1.1 Procedure

Full length mode shapes are those measured on all n .

chdsén local coordinates, n being the number of freedoms. The .

o

syst is assumed, for simplicity, tolhave no damping.

The identification procedure is bajed on the equations

. - : .
of motion written separately for each mode i:

MY el ) s ] o) -0 (3.4)
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et

The elements of matriees [mx] and [kx] contain the
local stiffnefses ki and masses m;, some or all of which may
be unknown. Let the number.of such unknown parameters be

d. Egs. (3.4) a;é linear in these unknowns. 1If they are

written using as many as p < n modes they represent

n,. = p'x n . : (3.5)

linear equations. | - '
. ~ So far, fhe measured frequencies and mode shapeg were

'_,' used. Adding the knowledge of the modal stiffnesses Kz and

masses Mi the orthogonality relationships can be written as,

- ' T - _ T ‘
[P]pxnf[mx]nxn - MM PXp . (3.6)

and similarly
' T _ Fr

[P]pxn [kilnxﬁ [P]nxp = K pXp _ (3.7)

Eqch of Eqs. (3.6) and t3.7) Tepresent
- plp+1) .
hy = Lg__ (3.8)

liﬁaar equations in-the unkhowns ki and m, . Either of them
can be added to the n, equétiohs (3.4).

: Any other addltlonal 1nforﬁbt10n about the system
which leads to linear equatlons can be further added 1f it .is
.not equivalent to some of the data used already, e.g. the
total mass of the structure mp ='tm;. This additional

information may represent ng independent equationms.
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Moreover, if another one or more sets of modal Y
parameters obtained when performing some known design changes
are also available, they may represent additional nd linear

independent equations.

Thus we may have ylable -

Dp = Ny *+ 0, +n; +n, (3.93
- '

~ independent linear equations in the unknown parameters.

All these available equations may be assembled as

N
[D] xd ki = {g} o (3.10)
T m. 'n x1 :}' . .
ilg ‘
. | 4
Let us first assume n, > d

This is the preferable case. The experimental input-
is redundant, though inaccurate. The solution of Eq. (3?&),
representing the best fit to all the inputs in the least

square sense, may be obtained by using the pseudo-inverse

of [D]:

k. '

A=t it mt e (3.1
ifd - dxd dan Ny

If initial estimates of the unknowns fme} " are

‘ e d
available, then Eq. (3.10) can be modified as:
b -9

(3.12)

. k. k, Ry
[D] {{m3}.- @m]}} = {g} - [D] (m

A wei
to fepresent th yst confiderice in the ‘corresponding

estimates.

®iagonal matrix Kﬂldxd may be introduced

[
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. “k
k. k _ €
tol I My gmdy <(wgPD = fed - D] tmg)

Y '
) (3,13)
Then the solution~for {mi} is{' K
~ %5y = ) Y{k‘e} o (3.14
mi = 1 g -.[]me ) '..)
where; . ' »
_ F,-1 N :
[X] = "W,"  [[D] W, (3.15)
(vl = 1y - [x1(D] (3.16)
[[D] Fﬁgl]+f is the pseudo-inverse of [[D] ngdl]
= oo T Sttt Y o

In this way the solution obtained will be the closest

ts the estimated one in the least square sense.lf

Mg < d. '
The solution for {m;} is, again, obtained from
Eq. (3.14), however the pseudo-inverse [[D] F@;1]+ is now
0 » /'/2 * N
~ defined as; . ' - . Y
Fo-1.+ _ K. -1 T k-2 T,-1
[[D] "W, ~1. = w,” D] [[D] Wﬁ (D]} | (3.18)

-

In the case that the/ﬁHEIbLmatrii [mx] is reliably
known, it is also possible to use some of the techniques [57],
58], [59]1 to improve the /mode shapes by orthogonalizing

/

ect to [m _]./ Then these improved mode spapes

identify ﬂhe unknown springs from the equations

{
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N
In the special case where the number of complete
measured mode shapes equals the number of degrees of freedom,
i.e. p = n, and only the modal masses are known, a methed is
presented by Tlusty and Ismail in [91] for improving these mode

shapes before using them in the identification process.

3,2.1.2 Examples on Using Full Length Mode Shapes

i) Number of available equations is larger than )
the number of unknowns:

Fig. 3.2 shows a five degrees of freédom undamped

system. The.eigqpvdlue problem of this system was first solved

to yield the eigenvalues Qi-ng, the mode shépes {41-1¢51, and
the modal stiffnesses Ki-Kg. These data are listed in

Table 3.1. Then to simulate e;ﬁerimental‘errors, the individual
élements of the mode shapes were corfupted by adding random
errors to them. No errors were added to the natufal frequencies
because in practice, they_aré usually the most accurately
measured modal parameters.

The identification exercise is as follows:
Given; i) The known]exact mass matrix [mx]st

ii) The mgasured natural frequencies Ql—np; P < n:\\

iii) The measured full length.mode shapes {¢1}-{¢p}; p<n.

Identify the values of the five springs kl-ké’ assuming that
no initial estimates are available.
For.one single mode, the equation of motion is written

as; o - v N
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[[k) - 2f [m 1] o) = 0
or ° -
[kx] {¢i} = Q

i [m.] (¢, | | (3.19)

4

The stiffness matrix [kx] can be written as

i d = 117 f (7] (3.20)

}’LI .

Fk are the unknown

where, the elements on the diagonal of. v

springs klrks.

[T] is a transformation matrix.between the absolute
displacements x's‘andlthe relative displacements*——"“’”‘\<
y's, i.e/ (y} = [T] {x}. T N
‘Subsituting Eq. (3.20} into Eq. (3.19) we get
T F _ L2 ‘
[T] kyy [T Qo5 = ay Ime ] {45} ' (3.21)
i

let [T] {¢;} = {c;}, then;

TR . _ o2 '

The diagona}\mg;rix "k an or {ci} can be

- Yal
™ ¢ o
intercHéngiS by assembling) the diagonal elements of Fkxg

-into the ve téi\ifﬁ} and putting the elements of the vector {c;

on the diagonal o

ix Ftig . Hence Eq. (3.22) becomes,

{

[T 2

T R ) | ’ |

] Cy, (k) = af [m] {¢%} (3.23)
T R
Let [0;] = (1] Ciy

Eq. (3.23) is written for one mode as;
) Y .

and {gi} = Ri [mx] {wi}, subsequently



-

“k\\_;f' tkg} = (01T (0117 017 g T (3.26)

[D;] {k.} = (g} R (3.24)
. 7

. \
Eq. (3.24) represents § simultaneous equidtions in
the unknown springs kl-ks. Therefo?f, in thg\ﬁ;}sent exahgle
one single mode is sufficient to detﬁjﬁine unidﬁely the

five springs. For the available p’modes, we can'write
P g | ay € P. ’

N s
' el :
5 Sy,

" (D] - ‘ {g }

i P npxSs L p’ npx
'S - ,
orT . )

_[D]npxs {ks} ={g}npx1‘ (3.25)

Eq. (3.26) is'actually the same a% Eq.HZS.ll) but

taking into account only the, unknown springs. 2

—_——

"fhe identification pyocess was carried out for the

-

A. Using the mode shapes.&irectly.

following cases:

B. Using additional data obtained by introducing some
desién changes.
C. Using the mode shapes after'orthégonalizing_them

with respect to the known mass matrix.

In every case the exact mode shapes were multiplied

by a corruption matrix [Co] to simulate éxperimental errors.
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;
N The metriiﬁf%/j was generated in the way shown below.
or %

.1 .
Symm. [%.08 Zo.1 ) synn.
1 | @.06 s .o
N 0 1 T.oa Toos Tl fo.p
' - s + + + +
0 C;O‘“\\E, 0 1] [-.02 -.04 -.06 -.08 -0.1]
. : - (3.27 '
~ where f.l meens a generat random number between -0.1 and
+0.1. Cor ondingly the elements of the corrupted mode \\/
shape vectors were obtained_as; . ‘_\\u;///
~ C' : J- b + —
= _ pi,j'= (1+— 1) + Py Gl X T .08 + 1 J+2 x-0.06 +...
| | (3.28)
«  where p1 jr pi J+1 . are Fhe exact values. In this way -the
| elements of the.mode vector j are afifected by both the errors-

assoc1ated with the mode J and those assoc1ated with the rest
of the modes The error contrlbutlon of these modes de es

as they get further from the mode j. - _,: N /

.

The random errors in the‘matrix,[co] were generated,
'the_moﬂe shapes were corrupt dei?d sdbsequenxly the five
. : {/

springé k 4k5 were identifie§. ,This process was carried out

one hundred timés to yield the averages and standard devia-

AN
Flons associated with the five springs.,

The results are preSented in the foilowing:

-
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A. Using the mode shapes directly:

The corrupted mode shapes were used directly in

Eq. (3.26). The identification\pggﬁfss was carried out

using from one to five modes. The averages and -the limits -

corresponding.to 90% confidence are listed in Table 3.2.

_“Teble 3.2 shows that the

v Ll

average values of the

identified springs are very close to the exact ones as one

would expect. The 90% confidence limits get narrower as.the. ‘

number of modes used increases.

It is interesting to notice

the remarkable improvement'in identifying the spring k5 when

the equations associated with the second mode were added to

those of the first mode. The standard deviation dropped from

1.2676, which means that the identified value using only the

*

first mode was totally unreliable, to only 0.1042Z,

B. Using additional data obtained by introducing some

design changes:

The design changes were introduced by changing the

element me of the mass matrix into 2 ms,.S mc and 4 m.. 1In

5

every case the eigenvalue problem was solved to yield the

exact modal parameters. Then the mode shapes were corrupted

in the way described above. g'

s

Therefofe, we have altogether four sets of modal

parameters, one for the original
ones obtaineg'by introducing fhe
All these data were assembled in
tion process of the five springs

one to five modes,

structure and three add%tional
artificial design changes.
Eq. (3.26) and the idqnﬁificaL

F
was carried out using from

-—
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N

In all cases the average values of the identifica-
tion springs were almost identical to the exact ones. Figs.

3.5a)-e) show the standard.deviations of the springs -ks.
It is clearly visible from these figures that, in geﬁztal,
including the additional data agsdaéated with the first
two modifications has redﬁced the standard deviations, (which
- can be considered as measures of the errors in estiméting

kl-kSL quite significantly. This is especially true when

le improvement.

The degree of improvement in estimatiqg%tﬁe.five
springs due to including the additional data decreased from

kg to k4.;. to kl. This is due to the fact that the design
changes were performed at coordinate Xe. The trend of improve-
ment in these estimates was reversed, i.e. from k, to k,...

# 1 . . 2
to k5 when the modifications were perfﬁfﬁgg at coordinate

X instead of xs.

s

é. ﬁsing the mode shépes after orthogonalization:
In this case the same corrupted mode‘shapbs used in”
A) above were first orthogonalized with respect to the mass
:lmatrix [m.] before using them in Eq. (3.26). Thg_Targdff'I56}
orthogonal%}ation ?Igorithm was used. The numbe; of_modes |

to béﬂffthogonalized and subsequently used in identifying

r

the five springs was from two to five modes.

- Examples of the corrupted modes beforeé and after



of identifying the unknown springs.
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the orthogonalization process are presented in Tables 3.3

and 3.4. Table 3.3 cdorresponds to the case of five modes
being orthogonalized, while TaEle 3.4 corresponds to the

case of only two modes being drthogonalized. As we can

see in Table 3.3 the orthogonallzatlon process - returns the
five modes almost 1dent1cal to the exact ones, see Table 3.1.
On the other hand, in the case that the numbgn?pf the

-

available modes is less than the order of the system, the

A

returned mddes, though perfectly orthogonal to the mass

rd

métrix, cguld be significantly different from the exact ones

-as can be seen in Table 3.4. This is becaus? the orthogonaliza- .
' 4

tion process does not correct for the missing modes.

- The Tesults of the idenﬁification process using the.
modified m?des are listed in Table 3.5. Comparing'these_
results with those in T;ble 3.2 obtained when the modes were -
used directly, one can oniy say that, in the case of the five i
modes avallable,the orthogonallzatlon process yilelds better ’ﬂ\‘“\\
estlmates of the_five springs. For a number of modes less
than five, (which is\the order of the system),- the orthogonallza—

-

tion process does not offer a distinct advantage in terms

ii) Number of available equations is less than the
number of unknowns

Fig. 3.4 shods.a three degrees of freedom undamped

-

system. It comtains six springs kl'kﬁ' Assume that the

fqta avafiaa}c/hbout this system are:



e

o

Table 3.3

~
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Orthogonalization of 5 Mode Shape
Vectors with Respect to [mx]

e

/

Modes Before Orthogonalization

1 2 3 4 L 5.
.27989 578263 1.02900 -1.39580 5553124463
63446 :1.5;37Q\ .32739 1.33160 41000
.77738 -.65770 -1.07000 .30766 4.03850
89340 .22133 - .68019 ~1.50980 -3.02520

1.00000 1.00000 . | 1.00000 1.00000 1.00000
C
Modes After Orthogonalization
.28620 -.83906 1.29320 | -1.68260 1.93030
.54293 -1.0947 .36756 | 1.39400. -3,25290
76511 - .59403 -1.19580 .52864 3,52700
92126 .31366 -.71070 -1.82330 -2.6973
11.00000 1.0000gs | 1.00000 1.00000 1.00000
™~ N {

5—/\

Al

S
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e
Table 3.4 Orthogonalization of 2 Modé Shape

Vectors with Respect to [mx]

.

.

Before Orthogonalization -

"After Orthogonalization

1 2 3 4
.27989 -0.78263 . 245975 -.74427
63446 -1.07670 .57949 -1.01490
77738 -.65770 .73127 -.60589
-, 89340 .22133 .87181 . 24559

1.00000 1.00000 1.00000

1.00000
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a) -The exact mass matrix [mx]SxS‘
b) One measured natural frequency and the correspond-

(j;:i:j full length mode shape vector. In the present
example we will use the exact values of these modal
parameters which have been found'by solving the

eigenvalue problém of the system. They are;

natural frequency 0.107 Hz

T

]

mode shape <1.0041, 1.0, 1.0484>

~o .

It is required to identify the six springs using the above
daég. ‘. '

For one mode the equation of motion provides only
three linear equationﬂ%in the unknown six springs. Thergfore,
initial estimates of these springs have to be used. Hence, L
Eqs. (3.14) using the pseudo-inverse'aé defined in Eq. (3.18)
ﬁfe to be™Napplied. “ | '

The weighting matrix Fﬁﬂﬁxﬁ in Eqs. (3.14)-%@3\;aken

as, Fl
K ) 1 0

Wy exe ° Ty
Iy ) The results of the identification process are listed
in Table 3.6 for two sets of initial estimates of the six
springs. As we can see the identified values are very
close to the initial estimates 'in both .cases.

i .‘j

0 " ) - . . . !
3.2.2 - Relevant -Partial Mode Shapes >J-

re

3.2.2.1 Proceduare .

. - . .. ' — 1 .
There are some instances where the unknown parameters
+ f‘\ N _

—— .
T T
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-

Table 3.6 Identified Springs/of the 3 Degrees
- of Freedom System~in Figure 3.4

Sorin | Initial Identified Initial Identified
PTing Estimate Value Estimate Value
A ]
ky 1.25 1.0082 1.1 .9981
k, 2.50 . 2.5866 2.2 : 2.2365
ks 3.7 |  3.8288 3.2 3.2296
K, 2.50 " 2.6011 ‘2.3 2.3414 ™
ke 1.75 1.5518 1.6 1.5214
A
\H\E\‘EQ\\\E_:\\\E;Lg}}/ 1.9733 2.1 2.0119
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DN k
belong to a part'of the structure, such.that it is connected
to the rest of the structure on a small number of points.

' fn these cases it is still péssiblg to apply the procedure

described in Sé;tion 3.2.1 even if only a part of the mode

ihape was measured, the relevant section, i.e. that whi;h
belongs to the‘strongly separated part of the structure. This
section contains the unknown parameters. )

In other words, there afe special cases where the
unknown elements to be identified are located in the mass,
damping, and stiffness métrices [mx], {cx] ana [kx]-in TOWS
which are partly filled with zeros. Therefore, the elements
of the mode shape vectors corresponding to these zero elements
will not be used in the identification pr00£ss;ahd Egqs. (3.4)
are still applicable. Depending on the number of unknowns,
number of available equations and on the availability ;}
initial estimates we can,-simiférly, arrive at the expressions
|
in Eqs. (3.11) or (3.14). ' '

| However, we must reglize, in the present case that,
correcting the available partial ﬁode shapes is not possible,
and theylhave'to be used directly as measured.

©3.2.2.2 Xxample of Relevant Partial Mode -Shapes
)

Consider the system shown in Fig. 3.5 which consists
of a rigid beam mounted on a flexible beam with two springs
kl and kZ‘ The flexible beam itself is mouﬂted on an

immovable ground with the “two springs k; and k,. A4 can
i %3 4

. | M
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be seen, the rigid beam is a strongly separated part from
the rest of the structure. It is cbnnected té it only on
two points. It is required to identify the Springs k1 and k2'
Eqs. (3.4} for this system for—mode i, in the coordinates

Xq Xg; 1s written as

i T o | [x, o 0 0 -k | 0_- (o)
sl 1 17" P1i}
(2x2) 0 k,| 0 0.0 .-k,...0 Pys

0 0 :

-Q + 12 . ¢ > =20

0 R 133} Pg;
me2 Ptk *k, P63

ﬁ . : ksz .

7x7 0 0 7x7

L - 'J _' J-J \ J

1(3.29)
wheke [msij is the mass matrix of the rigid beam
and [m52] is the mass matrix of the flexible
| beam. - . -
[k52] is the stiffness matrix of the flexible
beam including the suppa?fs k3 an& k4.
As can be seen, it is ‘only the first two equations .in Eq. (3.29)
which..contain the two unknown sprlngs k and k2 Also, in
this particular example, none of the elements of the mass
and iffness matrices [msz] and Eksz] are involved in these
two equations. The part of the mode.shapis relevant to the
identification process is that one measured—-anly on coordinates
X1, Xp, Xg and Xg -

Therefore, knowing the mass matrix of the rigid beam
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[msl], the measured eigenvalues Qg's and the measured
relevant parts of the mode shapes <P1i» Pzi» péi’ Pgi”s
i=1,p, is sufficient to identify the unknown springs kl
and kZ'

The eigenvalue problem of the system was first solved
to yield the exact natural frequencies and mode shapes.
The data of the first two modes are listed in Table 3.7. Only

the relevant parts of the mod es are included.

/ '

. e
. 9
Table 3.7 Exact Two Modes of
Tucture in Fig. 3.5
-
-
Mode 1 Mode 2
Frequenc} Hz 38.13500 99;j3900
4
Mode Xq 1.00000 - 1.00000
Shape .
X, .84579 -.64795
X | 56461 - ..38686
éxﬁ .63961 -.50457

~~

Then thesg relevant parts were corrupted with generated
random numbers according to Eq. (3.28) to simﬁiéte experi-
mental errors. These random numbers were generated and
subsequently the idéntification process was carried out
apblying Eq. (3.11) one hundred times. The averages and 90%
confidence limits of the two springs k, and k, were obtained
as, ' | e

~

_— .
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——

First ' . o 3 |- 5

Mode | (964.0 - 75.0123).10 (208737 - 414.6285).10

First . 3 . . 3 i
and (984.1 - 70.7471).107 [(1998.2 - 387.9480).10 ' e
Second e —— L
Mode . h\\\.‘ Ju// i‘

As can be seen these identified values are very close

to the exact ones of kl = 1E6 N/m and k2 = 2E6 N/m. *
. "\\1 1

3.3 Incomplete Mode Shapes, Nonlinear Equations #

3.3;1 Procedure

In some instances significant coordinétes of the model

are not accessible for the measurement of the mode shapes,"
e.g. coordinates on the spindle inside a headstock.ﬁ In these

’ cases the formulation of linear equations as in Sécrion 3.2
\\\(ié not’possible. Instead the following.objective functioﬁxgg

formulated_in which the errors between the estimated and

- measured modal parameters are to be minimized,

AN

mm pm 2-9? P

. Qv m kKT -kt -
U= 5[5 o (L5182, 1 5 (L_dex)%
m=1 j=1 Q oo§=1 ) kL.
jex jex .

> . p - - J ]

£ °'m . .= .

£ LT y.. (p_ll_pl_Jﬂ)Z] (3.30)
ij=1 1 Pijex ~

here; the parameters with the subscript ex  are those

established experimentally.
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@, 8 and y are weighting factors introduced to represent
our confidence in the measured parémeters,
a, B, vy =0 - 1.
Pn is the number of measured modes, Pp <N

where n is the number of degrees of freedom

2 is %he number of accessible_coordinateq; £< m.

Q? is the e%genvalue of mode j.

pij is the element measured on coordinate i in the
mode shape j.

K; is the modal stiffness of the mode j measured at
coordina%exz. . )

mm ‘ is the number of available sets of modal ﬁarameters[

For instance, if one set corresponding to the
original structure and an additional set obtained
when introdqung some design changes are available,

then mm = g.

N Therefore, the identification procedure starts -with
some initial estimates of fhe unknown elements in the mass
and/or the stiffness mairices.‘ Then the eigenvalue problem
is‘solved to give the (estimated)'eigenvalues Q?'S, the mode ”
shapes”¥¢j}'émand the modal stiffness K§ 's. These estimated
modal parameters are plugged into the objecti;e funEfTEﬁfahve
in Eq. (3.36), and the optimization proceeds to obtain those
values of the elements to be identified which give the minimum

( U

Obviously), in-the objective function in Eq. (3.30) the =~

. "
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range of the number of input data is quite large. It accepts
as small . number as a single natural frequency and as large
number as several sets of n natural frequencies, n full
1eﬁgth mode shapes and n modal stiffnesses. In this sense
ft represents a general gxpyession for identifying the unknown
elements in the system mass and/or stiffness matrices. More-
over, any physical constraints on these unknown elements,
e.g., the masses and stiffnesses must be positivéj can be
eaéily included. On the other hand, to\ensure that U is
globally minimﬁm, usually several trials wifh different
initial estimates are needed. In each trial the minimization

\\pxoe€§§;1akes many iterations, where in every iteration the

estimated modal pafameters have to be updated.

~

©3.3.2 Example of Using Incomplete Mode Shapes

The same structure in Fig. 3.2 of five degrees of
freédom will be used here. The exact mode shapes, obtained
by solving the eigenvalue problem, were corrupted according

to Eq. (3.28) to simulate experimental errors. Corrupted
L

modal stiffnesses were generated using these mode -shapes,
which are in error, the exact mass matrix and the exact

eigenvalues. For example Kﬁc was obtained as follows;

2 i

T _ _,c.T c
Kic = <op> [mJls3) of

ic (3.31)

where; {¢§}le is, the ith éorrup;ed mode shape vector}
n? , 1s the corresponding exact eigenvalue. -

1
/"\

.
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[mx] is the exact mass matrix.

This process of generating what will be assumed as
the experimental data was carried out for the. original

structure with the mass element me = 1l kg., as well as

for the structure with m¥ = 2, me = 3 and Mme = 4 kg. These
last "three cases fepresent artificial incorporated design

changes.

el

Now, assume that the coordinates xq and X, are

. . * . ™~ .
inaccessible. Therefore, the mode shapes are incomplete,

they are measured only on the coordinates Xz, X

’
!

4 and xs;
'Moreover, assume that only the first three modes ére available.
The simulated modal parameters are listed in Table 3.8 where
0 designates the original structure, Mi firstwmodification,
M2 second modification, etc. The exact mass matrix [mx]

is available. It is required EE identify the five springs

'kl-k

5
The optimiiat' outine. SEEK from the package

OPTiVAR developed by Siddall {88] at McMaster Univefs}ty was
T.used'to identify these spring® according to the objective
function, Eq. (3.30). In this routine a dinect search\method
is applied. All the weighting factors a, B and y were taken
as one. The identified velues are {isted in Tables 3.9 and
3.10 for two?set§ of initiai estimates. As can be seen for
both sets "the coryéspondiﬁg identified values are practically

identical which implies that a globél minimum has been found.

L]
- {. “
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Table 3.8 Simulated Modal Parameters
(Incomplete Mode Shapes)
\\\- Mode
1 2 3.
. |Eigenvector Xy 74013 -.64290 -1.14456
" X, .96171 31198 - 72552
i x| 3-00000 1.00000 1.00000
< iModal Stiffness (N/m) | 23377 2.50705 7.75264
i ./ o
. EEigenvector x| '6743} -1.16285 -1.89462
o , .88154 -.12170 -1.99813
& ‘?;3: 1.00000 1.00000 | 1.00000
o ;Modal Stiffness (N/m) 20936, 3.94885 25. 36960
?
v TEigenvector Xq .70880 -1.85048 -2.99007
;m | X, 88310 -.48621 -3.67492
. Xg 1.00000 | |1.00090 1.00000
= Modal Stiffness (N/m) |  .211496 6.55573 69. 51890
fE_igenvector 5 L 68525 | -2.44074 -3.76099
Nk x4 86732 -.91621 -4.57628
e 2 | X 1.00000 ° 1400000 1.00000
| | Modal Stiffness (Nym) 105. 22600

o

-

20625

" 10.46770
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~ Tables 3.9 and 3.10 show that includi the second
set (M1l) and then the tb&rd set (M2) of modal\parameters
into Eq. (3.30) has 1mproved the estimates of the five springs.

With the inclusion of the data associated with (M3) the

. . :
imprqvements, or Sometim&s worsening gf these estimates

were not significant. This finding agrees with that observed
in Section 3.2, 1.2, This 1nd1cates that using too many |
additional sets of modal data ‘into the 1dent1f1cat10n process
would not necessarlly lead to befter estimates of the unknown
elements. As a matter of fact, from the ptactical point of
view, performing an artificial design change and then obtaining
an addititnal set of modal data is not an easy task. ' The
lengthy operation of measuring the transfer functiohs can

.

be proh1b1t1v or instance, sometimes the structure under
. . .
investigation 1s only available for a specified length of
time. Moreover, every add1t10na1 modal ‘$et has its own errors
Wlth all thlS in mind, and from the presented examples,

one can conclude that 1nclud1ng a 51ng1e add1t10nal set of

" measured modal parameters into the 1dent1f1cat10n process is

advantageous, espec1ally-when the modal data of the original

structure are limited.

‘O

Yu
v
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CHAPTER 4

APPLICATIONS OF IDENTIFICATION
SCHEMES ON MACHINE TOOL STRUCTURES

4.1 Introduction ‘ h““a___,af””'

In the previous chapter the schémes of identifying

. the structure's mass and stiffness unknown elements using the

modal approach have been classified and applkied on sigu}ﬁteg

exaQP;es. The theoretical structures used were rather implé

and, of eolirse, linear. The geometry, or in other words, the‘
model of the structure was kitown. In all these examples the

identified parameters obtained were very close in value either

+

to the exact ones when-the data available were .large enough or
to. the initial- estimates when the data available were less

tharr the number of . unknowns.

In the present chapter these idgptification procedures

-

will be applied on actual machine tool structures. These
structures, which are actually distrzibuted systpﬁs;.Will bé."

treated as linear lumped mass, spring, damper models. 1In doing-,.

so, one must realize the following:

a) The distributed'system will theoretically have an

L} v-

infinite number of modes compared to a finite number of  the

v

lumped model. Thus it is reasonable to compare only the lower

-

frequency -modes of the model and the actual structure. These

modes to be compared”should lie within the frequency range of

o 7%

. -
-1interest. " - ' ’



b) (%Eﬂthe actual'structére Fhere are alw?ys some non-
linearities, e.g., the play in the gaps, the play between
gears and spline 'shafts, etc. Therefore, the model to be
established will be at best a linear approximﬁtion of a non-
linear system.

c) A systématic way of establishing the pfoper lumped
~model of an ac?ual complicated structure like machine tools
from the test data has not yet been found. It is-believed that
the éxamples to be presented in this chapter ‘will serve as a
forward step towards achieving such a goal.

d _In general, the.elements of the mass matrix of the 1£mped
model of the structure are more accurately predictable than the .
stlffness,elements. They can be calculated-from the drawings
or by weighing some of the components. Hence, in the examples
presented in this chapter the mass matrix will be assumed to
be accurately known and the unknown stiffness elements will be
identified.

e) The assumption that the structure has préportional
viscous.damping will be used throughout this chapte{, and
consequentl§ no éttémpt‘will be made to identify the dampers in
the system. This assumption is justified on the basis that the f
imaginary -parts of the measured mode shaﬁes of all the
st;ucturesﬁconsidered here were at least one order of magnitude = . |

L]

smaller than the real parts. This implies that these mode

P U

shapes were almost purely real which is a characteristic of a

vibratory systém with proportional viscous damping.

1
Pl
et A T e ik o s



All of the above items, neglecting higher modes,
ﬁeglecting nonlinearities, possibly the wrong lchoice of the
proper model, assuming thé mass matrix to be exact and assuming
the damping ﬁé be broportionally viscous, in addition to the *
experimental errors,, contribute to the overall inaccuracy of
the established moddl. The validity of this model will be
tested, as_stated in the beginning of the previous chapter; by
reproducing the test modal data as well as predicting design
changes. o ~ i

The first example presented here will be a case df a
ram-type milling machine where full length mode shapes weré

measured. A complete model will be established.

‘The second example will be a case of establishing a

complete modpl of a vertical milling machine where the measuring -

mode shapes were incomplete.

A third exampZe to be presented in the next chapter will
be a case of partial \identification of the clamping characteris-

tics of the chuck of a lathSJ
4.2 Identifying Unknown Springs of a Milling Machine
Using Full Length Mode Vectors "

K3

The structure under test is the ram-type mllllng machine

shown in the photograph in Fig. 4.1~ Ailong series of cutting
tests have indicated that when chatter qccurred the frequency
- associated with it was around 120 Hz. fﬂe:exciter tests, which
will be presented below in detail,fépave shown that there was

a mode at 122 Hz associated mainly with the ram and the belt
| T

. e e e e
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housing. They also indicated that neither the spindle modes,
around 750 Hz, nor the tool modes around 1400 Hz were detri<
mental to the chatter occurrence for this particular machine:

Moreover, the exciter tests have shown that only "the spingie

.and tool modes were evident in the meamsured relative, transfer .-

function between the toql and the workpiece in the Y direction.
From both the cutting and the exciter tests it was
decided to concentrate on the lower structural modes in the X

direction which are relevant to chatter. Therefore, the model

to be established will represent qgly the behaviour of the -

structure in these modes.

4.2.1 Measured Mode Shapes
The hammer impacf technique was used to ﬁeasure the.
transfer functions étlthe different locations on the structure.
The equipment used were:
a) 5451 A minicomputer based Fourier Analy:zer,
B) Pcb force impact transducer, ‘model 203A with a
Kistler chafge amplifier model 5001.
c) Pcb accelerometer model 308B. .
d) Proximity probe, caﬁacitive type, Wyne Kerr Mcl used

im the measurements of the relative transfer functions.

At each location the obtained transfer function was

. ’ |
the average ?f.Fen measurements.
: A7

i
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Figure 4.2 shows the relative transfér function
between the "tool and the wofkpiece in the X direction. 1In this u’/

(-figure; four modes can be seen in the range 0-625 Hz
frequency. The frequencies of thésé\mﬁﬂes are: 72.9,
1?2a3T\$45.1 ?nd 538 Hz. Apart from these four modes there

'is’ a fifth mode at 22 Hz i? Yhich the whole structure rocks

on the floor. Obviously it tan not be seen in the relative

transfer fuﬁction presented in Fig. 4.2. Fig. 4.3 shows

the deformation of the structure 4n tﬁe;e five modes. These

mode shapes are described as follows:

First mode at' 22 Hz: - (;
The whole machjne vibrates in a rocking mode around

'

the base as a pivot. , '

Second mode at 72.9 Hz:

- The whole head-assemb;y swings around the end of the
fork to which the headstock is’ attached. The motor goes | °
farthest in one direction and the tool in the opposite direction,

whlle the fog&, the ram, the turret and the column counteract

these motions. (f\\ ' —_

Third mode at 122 Hz: =

PRI

The headstock assembly moves almost in parallel in the
longitudinal direction of the table, while the motor moves
against this in the opposite dlrdgz}on/ﬂwhlch causes a sllght

inclination of the head assembly'y

Wbl e i it L s o, 10 4 Tl L



Fourth mode at 345 Hz:
The main featuré here is the headstock exhibiting a
higher mode vibration, here the upper part moves in one

direction while the lower part moves in the opposite direction.
[

Fifth mode at 538 Hz: . \
This mode is composed of the bending of the ram /
'} assaciated with the bending of the head assembly. .
J\ '
/N

4.2.2 Establishing the Model

Studying the mode shape in Fig. 4.3 carefuily, five
main flexibilities in the system could be recognized. All of
these flexibilities'are torsional and are understood as being
relative rotations betweén the two structural members associated

% in the given joint. These flexibilities, see Fig. 4.4, are

i

expliined as follows:
ai is the rotation of the whole ram around axis Al.
The flexibility Ty associafed with ey includes _~

flexibility of the "turret" (top of the column)
Y

‘and the guideways between.the turret and the ram. :
¢ : - i

P is the rotation around axis Az. _The flexibility i
Y, associated with a, consists of that of guide-
‘ways of the ram, of the ram itself and of the

U-shaped fork holding the headstock.

< i

The flexibility ;

-

az is the Totation around axis'AS.
E ]

& associated with aq consists of the twist of

L]
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the belt houéing conneciigg the motor with the gear-
box on top of the headstock. ‘

is the rotation arocund axis A,. The corresponding
flexibilircy y; is confined‘mainly to the fork. -

is the rotation of the whole mgchine'grpcking) around
axis Ac. The corresponding flexibiliiy Yo is confined

to the mounting contact between the baséen, the base

‘and the floor. No:appreciable flexibilities were

observed between the table and the knee and the column

»
in the covered frequency range. Moreover, the additiomal
flexibilities in the spindle and the tool do not

particularly affect the structural modes in the fre-

quency range of interest, 0-625 Hz.

‘Therefore, based on the mode shapes in Fig. 4.3 and

consequently on the interpretation of the different flexibilities

in the system it was reasonable to establish a model with five

degrees of freedom to describe the dynamics of the machine in

the frequmency range of 0-625 Hz. The model wii} ha$%‘five

design coordinates @;-3c. Associated with these coordinates

are the flexibilities Y1-Yg OT, alternatively, the stiffnesses

kl-k

_ which are to be identified.

- - Having decided on a five degrees-of-freedom model it

- - L
was necessary to select five local coordinates on the structure
il

s

whose motions can best represent the\geformations of the machine

in the five modes. These points must be chosen so that the-

) \
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responqé.at other locations could be obtained from the response
of these selected points by interpolation.
The locations X-Xg shown in Fig. 4.4 were found to

satisfy the above.fgquirements. The transformation matrix

0 .
- +

[Ti] between the® local coordinates x and the desigp coordinate
a can be derived from the eometry of the'ﬁﬁagf’gf?’

a) 0 0 0 .05556  -.05556) (%)
ay | -0.1 .1 0, 0 * -.01818 X,
Qas r = |-24286 -.1909 .0909 -.14286 0 ¢ x5 %
a, .14286 0 0 .19841 05556 X,

s L 0 0 0 o -ous18] | xg

\ ~
l.e. ]
ta} = 1] (X} . B (4.1)

d;ﬂ; establisg the mass matrix of the model it was
eas%er té find it direcfly in the local coordinates rather
than the design enes. Nine masses were allocated at thé posi-
tions shown in Fig. 4.4. These positions were chosen to be as
close as: possifie to the actual mass dlstrlbutlon in the
structure
The mass m, corresponds to the sum of the masses of the

front half of the ram and the base of the fork, and my to the

end of the fork and the central part of the headstock. The

mass m, represents the mass of the rgar\balf of the ram. Since

the turret, the column, the knee and the table did not show

C
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any relative movement but acted as one body, these masses are.

&,
represented by one concentrated mass mg. The correspondence

obvious, e.g. m_ corresponds to the motor, me to "the pulleyxg?d

5‘-“

~

e

part of the belt housing, My, to the top of the head assembly,

myy to the gearbox and m. to the quill end.

machine. The mass me.has obtained directly by weighing the motor.

The masses were evaluated from the drawings of the

All the masses are listed in Table 4.1.

. 1
A matrix [Tm]Q*S can be obtained from, the geometry of

: &
the model to be used in transforming the coordinates of the

individual masses into,the main coordinates x

1» XgseresXg.

[Tm] is given in Appendix I .

Table 4.1° Estimated Masses'(kg) o

4
L

of the other masses to ‘the actual parts of the méchine is RO

‘ma. : 36.28
™ my 61.22 ' .
» - .
m. 4,54
’ Ty © 11.34 .
mdl L]
Myo 9.07 .
me 24,94 -
, L
mf .13.61
’ 411. 34
g -
m 18.14 "
m
Summarizing

-)

The model established shown in Fig. 4.4 has five

*

R
4.
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‘ ' e degrees of freedom @ -ag. Associated with these
freedoms are the stiffnesses k. -k..

175 .

- Pfom the geometgr of the machine a transformation '
matrix [T1] is obtained, such that

{a} = [T1] {x}
where the a's ﬁre the design coordinates, and the
x's are the local coordinates where the transfer func-
tions were obtained. :

-.  Nine "lumpéd masses are estimated. from the drawings of
the macﬁihe. They -are interconnected by massless beams
as shown in Fig. 4.4 The single line represents-a
flexible connetfion, while the double line represents
-a tigid one, These nine masses correspond to nine
translative coordinates in the X direction. They can
be transformed into the csordinates XX usiné the
matrix [Tm] formed from the gedmgtry of the machine,

{ ' _ i.e.

<

Imydgeg = [Ta]" “mg (Tm] C (4.2)

are the individual estimated masses.

-k

1

4.2.3 Identifying the springs k s

The results obtained from curve fitting the measured

_ transfer functions aré given in Table 4.2. They include the
; _"/hatural frequencies, modal stiéfnesses, modal damping ratios

. as well as the mode shapes at the coordinates, Xy -Xg. Given these

modal data and the mass matrix [mx], which is assumed to be

L\ | J



85

._ . e «
N
0050" - 0TT0" - £761° - 1009° - 125L° Sx
061"V 126V°- 10S¢” Zs0¢" - 2040 Py
. . o . . ¢
ST - 000V " - ZL0b " - Z06L° b 1Z61°1 X .
Pﬁ ™~ 7
0'1 ' 0T 0°'1 0°1 0°1 X
20v6°1- 1292° - 00S0°T 2621° - 0TIg ™ Ix ‘sodeys opow
0Z0V '€ 0LV6 "V 01T0Z°¢ 08¥6°2 00IE"T - *duep TepOW
TTHLSLT 63€€SZ° 8486L9° 6ALZLT" L429TLY (u/N) 3FT3s TepOW
LTS " 8ES ZTI0°StS 0TI 221 016°ZL €01°22- (zH) -beaay TeRINlEN
S 9poN v 9pol 7 9POW 1 9PoW

'€ SPONW

(uo 10310K) SUTIYDIEBRW
SUTTTITW 2dAL wey oyl Jo ele( [EBPOK Ppoinsesy Z'p 2Iqel




86

i

exact, as well as the transformation matrix [Tl] Betweenﬁ?he
design and local coordinates, it f;'requied to identify the
five torsional springé in the system, kl-ks.
The procedure presented in section 3.2.1 has been
followed to arrive at Eq. (3.26) where the unknowns are the\\

stiffness elements. No initial estimates were used. The

results of the identification process are given below.’

4.2.3.1 Mode Shépes_Used Directly
. The modes| as measured were used directly in Eq. (3.26):
" The identified springs using from one to five modes are listed
in Table 4.3. ‘Then these identified springs, except for those
pbtained using ¢wo modes where k4 came out negative, to solve

for the natur vibrations of the system. The computed modal

data are givien in Tables 4.4 - 4.7.

By comparing the computed data of the five modes with
those measured given in Table 4.2, the following could be:
observed: ’ -

a) ' The use of the first mode in the identification process,

although reproduced almost exactly the experimental input of

mode 1, led to significant errors in reproducing the higher

| these daty vary from one measured mode to another. They depend



87

primarily on the stiffness of the individual modes, as well

as the closeness of the driving point (in the present case

it is coordinate xz) to a node. For instance, the inclusion

of the data of the second mode to.thqig\of the first, has

resulted in obtaining a negatiye véiﬁg\fgr kd" Also, thi
inclusion of the dat%_of the fifth mode.to those qf the first

four, has resulted in worsening the estimate of ks which repreé;//.
ents the main flexibility of the first mode.

N ¢) The computed modal data using the first four modes, ///
Table 4.6, are on the overall in a very good agreement with
those measured, Table 4.2. The errors in reﬁrodﬁcing'the
natural frequencies of the five modes are as follows:

Mode 1 2 .3’ ‘ 4 -+ 15

Error % -4.0‘1, 10.24 1.24 -8.14 -1.03 .
Figs. 4.5-4.9 show the measured and computed transfer function;
at the coordinates Xq-Xg, respectively as synthesized from fhe,
data in Table 4.6 and Tables 4.2. The measured.damping ratios
were used in obtaining the computed trahsﬁgrf&ﬁctions. As

can be séen in- these figures,_us{ng the identified springs from
- the first four modes have reproduced very closely the-measured

]
transfer functions which proves, considering the complexity of

-

. . the structure, the validity of the ésfablished model.

4,2.3,2. Mode Shaé:L Used After Orthogonalization

The measuregd mode shapes were first orthogonalized with
respect to the estimated mass matrix before using them in

Eq: (3.11). The number of modes to be orthogonalized and

1
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[~

subsequently used in identifying thé flve springs was from
2 to 5 modes. )

The results obtained were not satisfactary if'compari—
son with those obtained using the mode shapes directly. This
may be attributed to the following:

a) As was established in Chapter 3, orthogonalizing a
quPer of mode shapes smaller than the order of the sysfem with
}espect to the exact mass matrix does not make these modes
exact. Simply stated, the orthogonalization process does not
correct for the missing modes. 1In the present case, the actual
order of the system is greater than 5 (the number assumed
here). This eventually makes the orthogonalizatiofi process
ineffective.

~

® b) In-addition to the reason in a), the estimated mass
4
. matrix, although very close to the actual mass distribution in
¥ the system, is not necessarily theltrue one. Consequently, the
orthpggpalization of the measured mode shapes with respect tor
this estimated mass matrix may lead to worsening rathetr than
improving these modes. For instance, the orthogonalization of
four modes, in the present case, with respect to [m_] has retﬁrned

the mode shapes as given below.

Orthogonalized Mode Shapes

Mode o 2 3 4
Coordinate x, .842 058 1.100 -1.73
X, 1.0+ 1.0 1.0 1.0
| Es 1.16  2.580  .032  -.063
x, 832 -.061 618 -2.300

;

|

Xe .807 -.771 -.197 115 m
Ty . 1



94

These mode shapes, although perfectly orthogonal to
[mx], have diverted away from the measured ones. When these
modes were used in identifying the springs kl-ks and subseq%gqtly
solving for the natural vibrations of the system, the compu;ed
natural-frequences were as follows:

Mode 1 2 3 4 S
- Nat. freq. (Hz) 21.636 60.171 85.834 260.220 358.140

Aé.can be ééen; these natural frequencies, with the
exception of that of the first mode, a;e}not as accurate (with
respect to reproducing the measured one;Jin Table‘4:2), as
those obtained using the mode shapes directly, (Table 4.6). -

This finding 1s significant as to whether or not to
make‘fhe measuréd'mode shapes orthogonal to %B/gstimated mass
matrix béfore‘uSihg them in idengifying the unknown springs in

the system. From the theoretical example in section 3.2.1.2 and

. the actual complicated structure pr§§ented hére, the following
observation can be made: wunless thé number of availablé modes
is ;qual to the order of the syétem and mainly, the mass matrix
is the correct one, the mode shapes should not be orthogonalized
before using them in the identification process.

: )

4.2.4 Performing Design Changes

So far, the established model of the machine using the
i estimated mass matrix, togethef:with the idenfified springs from
the first four modes (without being orthogonalized) S proven
valid in terms of reproducing the input modal data. Ho ever,

for this model to be accepted as a good‘one it should-also have

24
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the potenﬁial of predicting accurately the effects of design
changes on the dynamics of the systém in the frequency range
of interest, 0-625 Hz. To fulfill this condition the motor was
removed, which simulates a design change, and subsequently the
transfer functions were measured at the coordinate; X15 X35 X,
and xg.  The measured modal data obtained from curve fitting
these transfer_functions are listed in Table 4.8.
»0n the model side, the mass elememt m, which corresponds
to the motor was set to zero, and thén the natural vibrations
of the system was solved. The cbmputed modal data are listed
in Table 4.9. |
Comparing the measured modal data, T;ble 4.8, with tposé
computed, Table 4.9,-£he errors in predicting tﬁe new natural
frequencies_are as follows:

Mode 1 3 3 4 5 _
Error % = -3.83 7.56 10.57 -8.11 -.76 ¢

Figs. 4.10-13 show.the measured and computed transfer functions

(motor off) at the cOordinates X1s Xy, x} and Xc. As can

be seen in these figures, the established model couild predict

'the effect of removing' the motor on the dynamics of the

'system very closely. -
Consequently, the model is to be‘éccepted as .a good

one; Eh |

- it reproduced the experimental model data used in

identifying its unknown.springs, |

- it, also, could predict, with sufficient accuracy, the
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- .
effect of a significant design change on the dynamics

of the machine.

This model can’'then be used in predicting the effects

of other design changes with sufficient reliability.

~

4.3 Identifying Unknown Springs of a M1111n Machine
Using Incomplete Mode Shapes

The structure under test is the verticdl milling machine

shown in the schematic in Fig. 4.14. 'Cutting tests of steel

1020 with end mills have indicatedﬁthgt when chatter occurred
the frequency associated with it was around 550 Hz. The modal
analysis testing, given below in some details, 'has shown that.
such a_frequgncy belogg% basically to the spindle itself
including the flexibili}y of'fhe bearings.

v Moreover, it was demonstrated in the cutting tests that
the medes in‘the X direction, see-Fig. 4.14,‘were more sensi-
tive to chatter. This 'together with the spindie being X-Y
symmetrical, which implies that its propetties can be recognized_
from a measurement in either one of these directions, has 1led |

to concentrating on the modes An the X direction only, -

The situation here is different from the Ram-type

-
-

milling machine presented in.the previous section in the

following:

a) It is the flexibility of the spindle itself with its
bearings rather than the structure (belt housing, ram, turret)
which are causing the tendency to machining instability.

Consequently, the model to be establishe& here has to encompass

H

M

.
L
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the modes associated with the spindle.
- b) Some of the relevant coordinates on the spindle
and the bearings inside the headstock are 1nacce551b1e for

measurement. Therefore; the mode shapes obtalned here are

1ncomp1ete as compared to full length mode shapes in the

previous. example

Recapitulating; the model to be established for the
present machiae will represent its dynamics only in the X
direction in the frequency range 0-2000 Hz which covers the
significant modes of the spindle.. A complete model will be
established based on the measured modal data with the mode

13
shapes ‘heing 1ncomp1ete. A

-~

4.5.1 . Measured Mode Shapes

The same equipment ueed in the previous example were
esed here. Greater emphasis was put on the tool, tool holder °
and the end of the spindle\ At each location the obtained
transfer function was the‘average of ten measurements. )

A mandrel 15.875 mﬁ'in diameter and 76.2 mm in over-
hang was clamped in a collet holder (Weldon type) which fits
the taper #50 of the' spindle. The mandrel was used instead of
a real ena‘milr as eo facilitake.the measuremente. A flat
was ground at the end of the-mandrel to provide a surface
parallel to the surface of the proximity probe. Moreover, .

the mandrel was preloaded with a 200 N weight us¥hg a piano -

wire 0.8 mm in diaméter to eliminate any possible plays. The
‘ . " | .

e
o
.
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piano wire was long enough (0.8 m) not to alter significantly
the stiffness at the end of the mandrel. Fig. 4.15 shows

the‘arrangement for measuring the relative vibration between

_ the tool (mandrel) and the table.

Fig. 4.16 shows the measured relative TF at the end
of the mandrel (only the real part). Five modes can be

AN

recognized-in this figure. They are at 150, 350, 525, 975
and 1330 Hz, '\‘

Another d;ndrel 19l03 mm and 76.2 mm in overhang was
clamped in the h lq§; and the relative TF at the end was
méésured: The five recognized modes are now at 150, 350, 520,
970'mu116&]H?.-The first two modes did not.changé, the third
and fourth changed very litfle while the fifth mode has moved
from 1330 to 1680 ﬁz. This haé cleafly indicated Ehgt_the
fifth mod; is basically associated with tﬂe tool itgélf with
i;s bending as a cantilever as w "lefﬁFhe clamping in the

collet as the main flexibility.
Three other tools in heavier holders differing in
s 2

stiffness and mainly in mass were also used. The frequencies

measured including the two tools above are listed below.

Tool £, (Hz)  f,(Hz) £;(Kz) £, (Hz) fg(Hz) ~—
a 150 350 525 975 1330
b 150 350 520 970 - 1680
c 150 349 - 505 910 1220 ~
d 149.5 349 450 900 1400
e 149.5 349 500 S9%, 1400
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i

It is obvious that the weight and stiffness of the

tool and tool holder affected mainly the higher three modes:
- The fifth mode changed alot; it is the tool mode.
- The third and fourth modes also changed. They are

spindle modes. ?

The first and second modes practically did not
change. Further measurements on the hea&stock and the column
have confirmed that they belong to the machine tool structure.
The measured mode shapes are shown in F1g 4.17 for
“the headstock and in Fig. 4.18 for the spindlg end and tool
(mandrel 151875 mm). Here is a short description of these
modes',

- 150 Hz: . This is based on the torsion of the column
with the headstock'front moving in the opposite direction ‘d&‘
than the back of the column. The whole headstock' and spindle °
and tool move so that there is no twist of thq/ﬁéadstock around
a horizontal axis parallel with the Y axﬂs?//fhe spindle axis
remains vertical all the time.

350 Hz: This a a higher mode to the previous one.
Both the back of thi#folumn and the front of the headstock
move in the same direction while the front of the column moves
in the opposite d;rectlon. Flexlblllty is in the guideways
and slide of the Z.motion. Again, Ehere 1s very little tw1st
of the headstock around the Y axis.

525 Hz: The end of the tool moves the ‘most, the

spindle end moves in the same direction and the headstock

- - -
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‘participates by some twist around the Y-axis while its lower -

end goes in the same direction as the spindle end. ‘

975 Hz: The tool and spindle end move véry much,
the headstock moves a little in the opposite direction.

In botﬁ the 525 and 975 Hz modes deflections are due
to spindle bending, some flexibility in the tool holder as
it is connected to the spindle, in the collet and tool
bending.

1330 Hz: The tool moves a lot to one side while the
spindle end and the tool holder move a little to the other

erside. Flexibility is in the collet and mainly in the tool
itself. |

‘
4.35.2 Establishing the Model

By carefully examining the mode shapes, and interpret-
ing the different flexibilities in the system as mentioned
above, and in order to encémpass the modes from 150 to about
2000 Hz the model shown in Fig. 4.19 has been established.

) . There are two base rigid bodies, one representing the
upper ‘part of the column and the other one the headstock..
Springs k1 and k2 represent the flexibility of the column and
k3 and k4 the flexibility between the cﬁlumn and the headstock.
The cg}umn is constrained so that it can only translate in

the X direction. The headstock translates in X but aiso

rotates so that springs k3 and k4 do not cémpress equally.

The amount of the corresponding twisting flexibility is varied
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by varying the distance L betweenléprings kgfgnd k4.

"~ Modelling the spindle, tool hol ‘r and tool is
rather straightforward. Tﬁey are computed as finite beam
elements; the spindle %? divided into lﬂkelements to accommo-
date the variations in Cross section, the tool holder is
divided into two elements and the tool-is divided into two
elements., “ . . : -

' The spindle is connected to the headstock by the
bearings whose stiffnesses are k5 and k6' There is an angular
flexibility_between the spindle end and th; tool holdér as
well as an angu ér flejibility between the collet and the tool.
These two flexib{lities are represented tﬁe two torsional
stiffnesses k7 aﬂﬁ kS’ Tespectively. )
The ;ocal coordinates shown on Fig. 4.19, X -Xg,
Xy37X,g are translative while Xg-X,, are roxational. The
torsional spring k8 is workiﬂg between Xq and FlO’ ile k7
is working between Xy and X19- m}\“\

Therefore, the model can be looked at as being composed

of two substructure

Substructure 1:

This includes the headstock and the upper part of the

column. It has three degrees of freedom; x There

1’ X2 X3
are four springs in this substrué%ure. However due to con-
straining theé motion of the upper part of the column to be
purely traﬁslative, the two springs k1 and k, represent actually
one single spring. To be compatible with the connection points

on the headstock this spring is split into two and it would be

e e i L
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natural to put k1 = k2' The springs k3 and k, will allow
to vary as well as the distance L to match the behaviour
of the headstock in the measured modes of vibration.

The mass matrix of this substructure is estimated.
from the drawings of the machine. Twelve mass elements are
. allocated along thg headstock and the Upper part of the column’
to account for the mass distribution in the substfuctﬁre.'
Tﬁey are interconnected by massless rigid beams. In Appendix II
i1t is shown how they are transformed into the coogydinates
X1, X5 and x5 in order to obtain the mass matrix of size
3x3. Also given in the Appendix II is a‘Watrix which trans-
forms the springs kl’ kZ’ k3 and k4 into the same coordinates.
k

The;ynknowﬁs in this substructure are k;, k and L,

3 74

Substructure 2:

This includes the ébindle, tool holder an& the tool.
The mass and stiffness matrices of these members are readily
available from the finite elements.computations. All angular
coordinates, except those between the end of the spindle
and the tool hblder and between the tool holder and the tool,
were reduced sfatically using the Guyan method [89]. Accord-
ingly, the order-of‘this substructureris 23. The unknowns
in this substructure are the torsional springs k7 and kg.

| Substructure 1 is Eonnected to substructure 2 via the

two translative-springs k5~aﬁd kﬁ which represent the-bearings.
They are unknown. . s
Summarizing: _

The model established here is of total order of 26,
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The mass matrix is obtained partially by computations {spindle,
tool holder and tool) 4&nd partially by estimation (headstock,
upper part of the column). It will be assumed to be exactl

The unknowns in the model are: the translative springs kl,

k3, k4, kS’ k6, the torsional springs k7, kB,,in addition to

the distance L, which add up to a total of 8 unkpowné.

4.3.3 Identifying the Unknown Patameters in the Model

The available measured modal parameters are: § eigen-

values 'Qi - ng, and the corresponding five incomplete

eigenvectors {¢,} - {¢.} measured only on the accessible .
& 1 5

coordinates x; - Xg, and five modal stiffnesses Ki - Kg at the

T

end of the tool, Xy Also available is the mass matrix which
will be assumed to be exact. It is required to identify the
unknowq stiffhess'elements kl’ k3-k8 and the distance.L.

The situation ‘here fits into the class of identifica-

El

tion schemes preSented in section 3.3. Accordingly, the

objective function as per Eq. (3.30) is written for the present

system, and taking the weighing factors as 1's, as:

8 p..-p.:.
oI 1] 11ex)2 (4.3)
=1 pijex .

where; the barameters with the subscript ex are those

established experimentally. ) . -
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n% is the eigenvalue of mode j.

pij is the element measured on coordinate i in the
mode j. ._G;\

K;_ ‘is the modal stiffness of the Wode j measured

at coordinate Xy {4 here refers to the refer-
ence point at which the mode shapes have been

normalized).

The parameters in Eq. (4.3) without the subscript ex
are those obtained from solving the eigenvalue problem of the
system using initial estimates of the_unknown parameters;

In trying to minimize U, two problems arise, namely:

a) how to obtain reasonable initial estimates of thiyéL/
unknown parameters. )

b} and how to match the computed and the experimentally
measured modal paramete;s. Or in other words, which computed
mode to be compared with which measufed mode. )

In the theoretical example in section 3.2.3. "these
two problems did not represent any difficulty:

- the initial estimates of the unknown springs were

! deliberately chosen close to the exact values (which
were known). ‘

~  the modai parameters of the first three modes were

used in the identification process. Consequently it

was obvious as to compare the first computed mode w%th

the first measured, the second computed with the

second measured, etc.

T T e e b &
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For the present complicated structure of the milling
machine whose established model has a large order (26) solv-
ing those problems becomes Wgze involved as illustrated below.

N

4.3.3.1 Obtaining Initiasl Estimates

v
4

a} Initial é%timate of distance L: E
It is reasonable to consider the fwo springs k; and

k4 as being located at the end points'of‘the headétock. Hence,

a 1o§ica1 initial estimate of the distance L would be; L = L,

where & is the length of the hea&stock.

b) Initial estimates of kl, kz and kS:

Based on the measured mode shapes, the model established

for the machine included the springs kl’ k2 and k3 to represent

the main flexibilities in the first two modes at 150 and 350

Hz. 1In these two modes it is expected that the flexibilities

- included .in substructure 2 (spindle-tool holder-tool) would

have little effect. Censequently, in order to obtain initial
estimates‘%f'kl, k; and k, it is justifiéd to assume the-
elements of substructure 2 as well gs the connections betWeeh
them to.be rigid. Moreover, due to the small tqtalimass of
subsffaégure 2‘compa;ed.to that of substructure 1, C(headstock-
column), the connections betﬁeen them will also be assumed to
be rigid.

Having introduced these assumptions, the model reduces
to a three degrees of freedom system. Its local coordinates

are Xy, X, and Xz. These coordinates were accessible for

T e it
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measurement.

Therefore, we have now a case of a vibratory system
of order 3, its mass matrix [mx]3x3 is known, and available
are the modal data: two naturﬁl frequencies 150 ;nd 350 Hz
and the correspénding full length mode shapes at the coord-
inates X1, X, and Xz. Identifying the unknown springs in
such a case has been discusse& in section 3.2.1. An equation

similar to Eq. (3.26) could be arrived at, such that:

kl o fgl\
kgt = (Tt T ) f (4.4)
K4 | g6

. /
where [D]6x6 and {g}6x1 contain the data of the two modes

as well as the mass matrix (see §ection 3.;.1.2). From Eq. (4.4)
the values of kl’ k3 and_k4 could be estimated in the least
square sense,

¢) Initial estimates of ks and k6:

Normally the manufacturer of the rolling bearings :

t

provides estimates of their stiffnesses. However, these
~estimates may vary over a relatively wide range depending on

the base structure and mainly on the preloading. Nevertheiess,

it would be feasible to t the values furnished by the manu-
— _\/ .

‘facturer as initial estimates of the bearing stiffnesses k.

gnd k6.' |
d) Initial estimates of k7 and k8:
k, and'k8 are located in the stiffness matrix of sub-

e
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structure 2 as-illustrated in diagram 4.5 below.

— -
Spindle 0
k, —1+kp ] - ——-— X2
—-— ——— e ] ._.—_—-——.—.-.—-XB
Tl NTTTT T T T Ty
. kg kg ——+ ——=- xp
o +—— |- ——x
Tool Holder 1.
. ‘ Tool
0,

Examining this diagram it is immediately %ealized
that the situation hererfits into that class of indentifica-
tion schemes’ presented inosectie&ﬂS.S.Z. Only a relevant
part of the mode shape vector is needed to identify the
unknown springs, using linear equations assembled from the
equations of motion of the system. In the present case the "
relevant parts are: ' ‘
i) the elements at x&z, xg and xll.).They'are needed
to identify the spring k.. o |
ii) = the eleménts at X10» Xg and Xg. They are needediu
to ident;fy the spring k8.
The elements of the mode,éhapes correéﬁgﬁding to the

.displacement'coordinates Xe and Xg were readily available from

modal énalysis testing. On the other hand, those elements

£

"‘
-
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-
{ -7

corresponding to the angular coordinates x., - x were not

9 1
measured. They could be estimated from the diSplacements
measured on the Fool, tool holder and at the end of the
spindle. These estimates are, however, unreliable due to the
short lengths of the tool holder and especially of the spindle
end.

The data of the fifth mode-at 1330 Hz, where the
relative rotatiomy between the tool and the tool hplder was
g while the data
of the fourth mode at 975 Hz, were used to identify the spring
k

largest, were used to identify the spring k
< 3

7 These identified values will be used as initial estimates. -

4.3.3.2 Mode Matching

Apart from the crucial step of finding initial esti-
mates of the unknown parameters, the problemiaf mode matching
is of great significance.

In a measured transfer function over a certain fre-
quency range we might encounter a situation where very stiff
modes in this range do not show. Accordingly, the immediate
impfession would be that these modes do not Exist. Consequently,
the minimization of U‘in Eq. (4.3) by compariﬂg the computed
and measured modal /data in an ascending order of modes will
lead to erroneous resﬁlts.

' N

Jhe problem of modal matching becomes more severe as
the order of the mode increases. |

Fortunately,.in the ?resent case, the mode matching

. o
problem was not critical for the following reasons:
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a) ‘ Only a few l'ow ranked modes were considered.

b) Very good inifial estimates of the unknown parameters
could bg obtained. .

c¢) Additional information about the system were_available

(data obtained when changed tools and tool holders).

/

Therefore;~\the problem of mode matching could be
addressed here intuigively. The eigenvalue problem of the h

f
system was solved using the initial estimates and the different

tool-tool holder arrangements (the estimate of k8 was changed
in every case). It became obvious that the measured and

computed modes could be matched as follows:

A .Computed Measured
. ; ‘“‘I““

2 2

3 3

5 4

6 S

r—

The computations have shown that there was a very

stiff mode in the range 600-800 Hz.

ad

4.3.3.3 1Identified Values

The modal data corresponding to the tool 15.875 mm
diameter and 76.2 mm long were used in Eq. (4.3). The initial

estimates were: L/% = 1, k; = .1875E6 (N/m), k, = 0.1660E6

(N/m), k, = .1690E6 (N/m), kg = .1500E6 (N/m), k. = .2150E6 (N/m),

L7

le.

-
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k7 = .3000E6 (N.m/rad), k8 = .7850E5 (N.m/rad).

The optimization rdu@ine SEEK from the package
OPTIVAR [88] was used to minimize U. The eigenvalue problem
was solved in every iteration with the updated estimates.
After 41 1terat10ns a global minimum was found The final

" values of th& parameters to be identified were: "L/t = 1.500,

=
I

1'- -1745E9; (N/m), ky = .1496E9 (N/m), k, = .15109 (N/m),
g = -2510E9 (N/m), k¢ = .3936E6 (N/m), k, = .2280E6 (N.m/rad),.
8 0.1000E6 (N.m/rad)

= =
i 1}

Q)
With these iéentified values the first six computed

natural frequencies were obtained as; 153.44, 349.53, 533.92,

717.21, 934.36 and'1334.70 Hz. Comparing thse values with

the corresponding measured natural fregfiencies, the errors

are: ,_/
‘Mode ,1 2,2 3,3 5,4 2 : ’
Error % 2.23  -.13 1.70 -4.17. .35 ‘

Fig. 4.20 shows the computed TF at the gBd of the tool
which is in a very good agreement with that measured in Fig.
4.16. |

The computed mode shapes are shown in Fig. 4.21,

The 1owest modes at 153 and 350 Hz whlch match almost exactly
the measured data are not shown here. The graphs of all
modes are drawn in the same scale of flexibility. Here we
can see the "inside™ of the headstock, the deformation in the

bearings and that.of the spindle itself. The triangles a, b
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indicate the locations of the bearings and the points ¢, d
indicate the location of the spindle end and of the tool
holder end, respectively.~Point e is the tool end. The
dashed line represents th;\Xeadstock.' At each mode its
corresponding modal stiffne K in N/m is given.

It is obvious, that the three important modes are

characterized each:mainly by:

534 - deflections in bearings
934 - bending of the spindle
1334 - bending of the tool
Y \

The modes at 534, 934 and 1334 are in a very good agreement
with those measured’at 525, 975 and 1330 Hz, respectively.

Therefore, the model e‘ ablished could reproduce the

'input experimental modal data from which its parameters have

been identified. This proves its validity.

-

4.3.4 Performing Design Changes

In the model the computed data of the 15.875 x 76.2 mm,
tool were replaced by, that of the 19.05 x.76.2 mm tool. Also

the identified torsiogal spring kg = 0.1E6 (N.m/rad) was

replaced by an.€stimate k8 = 0.15E6 (N.m/rad) to account for
the‘diffgre ce in diameter. All other parameters remaingd the
same. Subsequently, thz eigeﬁvalue problem of the system was
solved to yield the natural £requéncies: 153.44, 349.52, |

528.21, 707.07, 927.63 and 1713.41 Hz. These values again

-
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are in a very good agreement with those measured with this
a tool, ' ’ p .

In conclusion, the model establisheé is a good one:
it reproduced the input experimental modal data as well as
predicted -the effects of design changes raccurately. The
model has shown clearly that it is the bearings Wthh are
respon51b1e for the high flexibility of the mode at 525 Hz
where chatter occurs. Accordingly, replacing the current
bearings with bigger size ones with higher'stiffness should
alleviate the problem of machining inétabil};y. Although the
tool mode is much more flexible than the spindle mode at 525 Hz,
yet it does not represent any.problem in milling steel for

-

‘reasons to be explained in Chapter 6.

.



CHAPTER 5
. ™

DYNAMICS OF A WORKPIECE
CLAMPED ON A LATHE{//

5.1 Introduction

In this chapter a procedurg is presented whereby the
experimental modal dati are used to predict the dynamics of
a lathe with various workpieces. The procedure includes both
the identificgtion and the modification‘appggaches as outlined

in Chapter 2.°

“In the case of a lathe the dynamics of thé machine is
practically constant and the 1arégst variable in every appliéa-
tion is the wgfkpiece which, méinly through its inertfal pro-
perties, affects the resulting stability against chatter.
Therefore, it would be a gréat advantage to establish once, -
experimentally, the dynamics of the machine and subsequenﬁly,
tﬁrough computation, to predict the limit of stability for any
workpiece. .

The treatment here is limited to one plane only. In |,

reality it has to be applied to two mutually perpendicular

planes. Also, only cylihdrical workpieces are considered.

However, they represent the majority of workpieces.
: o

The examples given here were measured on a typical con-

' LQéntional lathe with .4 m swing over bed and 1 m‘Betwqgn fiters.

T

115
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5.2 Typical Mode Shapes

On a lathe two distinct cases must be considered:.
a) a long workpiece clamped in the chuck and tailstock.
c) a short workpiece clamped in the overhang in the

chuck only,.

First, the case a): In Fig. 5.1 three mode shapes
are illustrated as measured on a rather rigid workpiece with /’///
127 mm diameter and 616 mm length. The highest mode Wlth
frequency 107. Hz is drawn in an axonometrlc view for a better
impression of the machine. The lower two modes are dragp in
the top view only. This will also be the case for all the
following mode shape illustrations. It can be seen that with
this bulky and rigid workpiece the 29 Hz mode is a rocking
mode of the whole machine as a rigid body on the "springs" of
the connee;ions to the floor. The 49 Hz mode is 51m11ar1y one
of\ﬁhe machlne essentlally as a rigid body with a little twist
of the bed and the ends of the machine moving against each
.other. In both these low modes fheré is very little jrelative
motion bet&een the tool and the Qorkpiece.

Such a relative motion occurs in the 107 Hz mode whefe
the mass of the workpiece moves to\one side on the sprlng’//
of .the spindle and the chuck at one end and of the t&ffggock
and quill and center (much more compllant) at the other end.
The bed and saddle, carriage and toolpost move to the other

side.

. In Fig. 5.2 seven mode shapes are shown for a more

?
'
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—
flexible workpiece with 61 mm diameter and 603 mm length. The
first three modes at 31, 56 and iSO Hz are analogous to those
in Fig. 5.1. 1In the 205 Hz mode the ends of the headstock and
of the tailstock move against the workpiece. In the following
higher modes at 270, 650 and 740 Hz the headstock and spindle
and‘chuck - the workpiece - the center ané quill and tailstock
undergo higher qnd‘higher shapes with more and more deforma-
tion of the workbiecg and with an increasing néﬁBbr of nodal
points. . | ' b .
In fig.'S.S thg Transfer Function at a point on
the workpiece at its tailstock end is given which shows the
relative importance of thefmodes shown in.Fig. 5.2. The plots
giﬁe the real (top) and imaginary (bottom) parts of the |
Transfer Functions in acceierafion scale which .is us®d to
maké also the higﬁer modes viéibie. In reaiity, for flexibility
(dlsplacemént scaIe), both curves should be divided by wz.
Thus, e.g., the 716 peak would be 24 times smaller than shown
" if the 150 peak was left at the here given size. The Transfer
Fanction 1nd1cates thaE modes of 150 Hz and 270 Hz are most
s;gnlflcant while those of 560 and 740 Hz could almost be
neglected . h # ]
. "For the second tase; of the workpiece clamped in over-
" hang ip:the chuck only,typical mode shapes aredshown in
Fig. 5.4. These measurements corresp?nd to a worf;igcg 45 mm g
diameter, 260 mm long. An unusually long workpiece was used r/’#/
deliberately in order to exaggerate the case.. < In the 212 Hz

o

mode the chuck and workpiece move in.t%j same directions and

P
. L | ‘



118

in the 350 Hz mode they move in opposite directions.

4

For the task\of representlng the system with various

5.3 Establlshlng the Model of the Lathe

different workpieces we look at it as consisting of three
parts, see Fig.. 5.5. Part 1 is the lathe, part Z is the
#orkpiece and part 3 are the cennections between the two: the
chqck and the center. The whole system is the sum of these

three parts and we will call it the assembly. The connections,

are considered separately from the lathe because their character~
istics may vary with the workp1ece Espec1ally, both the
_flq51bility and damping of the chuck may vary with the diameter
of the workpiece clamped and, also it may exhibit non-linear
characteristics; :"l . ; .

Reviewingball the mode shapes as shown in Fig. 5.1, 2,
and 4 it may be seen that the chuch acts essentially as.a. -
rotational sprihg and the center as a translative sprihg
between the body of the cénter ind the end of the workpiece,

_ ThlS is 111ustzfted in F1g 5.6 where the outlyQ§ of the model
of the system is shown. - The local coordlnates of the lathe

are denoted x, those of tﬁp workplece are y. At the chuck
there are the translative coorq;ggtes xl ¥ and the rotary

1 €0q dinates X5 ¥ the latter two ditfering bf'the rotatiqnal
¢gement in the chuck. The transiative motion at the othet

end of thé workpiece is denoted ys and that of the center body

is Xz. ‘The stiffness of the rotatipnal spring between X, and

RN
!

. | L
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Y, will'be called k; and the stiffness of the center will be
called kz. We will assume damping factors tl and cz‘associated
witg these springs. We may be ?gﬁerested in the Transfer
Function at coordiéate Y4 O the -workpiece.

The workpiece is a well geometrically defined body of

a uniform material with well defined elastic properties., Its

- dynamic behaviour can ratherlgasily and accurately be deter-

mined by computation. Because dits own damping is usually very

small as compared to the damping of the “lathe structure and
of the connecting elements it will be completely neglected.
Thus, only its elastic and inertial properties need to ﬁé
computed.

Conéidering workpieces whose form ;S cylindrical or
close to-cylindrical and analyzing visually the mode shapes

and frequency ranges as given in Figs. 5.1, 2 and 4 it becomes

-obvious that it is-satisfactory to simplify the workpiece as

a free-free body by considering its three lowest mode shapes
only out of the firsy.four=shown in Fig. 5.7. The frequencies
giveq in this figure correspond t6 the workp;ece which was
used in-the mepsurement§ reproduced in [igr5.2 . It i§ obvious
that the fourth mode did not show in them. The three lowest
modés are the first two rigid body modes and the first beﬁding
mode.' These modes‘may locally be represented at cgiordinatesr
Y1» Y35 Y3 Tﬁe &ynamics of'thé workpiéce may be g?tgined

by cofipitations using finite beam elFments. The nodes must
include the connection coordinates as well as any other
additionél coor?inétes Y4s Yg--- These will have to include

4
-

1]

T e e e et pama g
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those points on which we will want to compute the resulting
Transfer Function of the whole system. Let us consider one
- such point Ya located arbitrarily on the workpiece as shown
in Fig. 5.6. . ' -
. In the case of the workpiece_clamped in the chuck

only it can be simply considered as rigid mass.

The lathe structure and the flexibilitiéds and damping

of the chuck and of the center cannot be computed with sufficient

accuracy. They have to be determined experimentally.

-

5.4 Deterﬁ>h1ng the Properties of the lathe by Subtractlng
the Workpiece from the Assembly

The procedure of preditting the dynamics of'thg‘lathq

.

with any workpiece consists of:

a) first, measuring the modal parameters of the whole
system-with a workpiece. .
b} second, computing the elastic and inertia properties

df this workpiece and subsequently subtraéting it, together
with the connec;ion elemehts of the chuck and tailstock,
from the assembly. In thi;,way the properties of the lathe
alone at the connecting coordinates xi, X, and X3 can be
" determined. ‘ | | ~

c) finally, computing the new workpiece and adding it,
together with the corresponding conﬁecting elements of the
chuck and tailstock which might be different from the ones

above, at the connection coordinates.

Therefore, the Qlarting point is the modal analysis

L
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testing. It is carried out by exciting at a selected point,
S3Y ¥, and measuring vibrations at this point as well as

at all other points of interest. These will have to include
the "end" points of the lathe X1s X5, Xg and the end points
of Ehe workpiece Y1 T X9 Yo, V3o The immediate result of
the measurement is the "direct" transfer function (TF) on

y, and the "cross" TF's between Y4 and all other points. When
these TF's are curve fitted on a number of modes p within

thg measured frequency range, the modal parameters for the
assembly can be extréﬁted. On the example in Fig. 5.2 we
identify 7 modes, i.e. p=7. Assuming non—proportional

* viscous damping to exist, and assuming that ower modes
are taken into account while the residual fléxibilities of the
higher missing modes are negligible, then the modal para-

_meters will be as follows:

eigenvalues: Ay = wy o+ j 2 _
* ) ...3 1= 1,p 5
Ap Ty T3 vy .
modal matrix [P]12 x 2p’ where,
~ \ ¢ Y| . r 3
(o [ 4
- * *
X TR 9 vy 0 '
y . h :
2 g T (5.2)
173 (= \ 2\ / \ 7 { - y
Yq ( : -
*1 < Py % xf Cx x¢f )
. ST N RS 21 R L
}:, AN 2\ / \ 2] q
\." 4 * - d ZP
12x1 | [P]12x2p L “PJ
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where q;'s are the modal coordinates

K
and, a
N2px2p

" The diagonal matrix Fb}J of the assembly

from ay »S and A 's according to Eq (2.27).
2.3.2.2 for more details).

For the workpiece, the mass and stif
[mw] and [kw]4x4’ respectively, are.tomputed

coordinates Y1s ¥Yos V3 and Ya-

of the assembly,

(5.3)

can be obtained

(See section

fness matrices,

in the local

Furthermore, we need the stiffness and damping of

the connections kl’ tl’ kz, C,, as simple di
and dampers pE®ween coordinates X5, yz and x
Assume here that they are already known By

overlapping them with [m ] and [k_] the [A
W 2 w W,

screte springs

3» Y3z, Tespectively.

correspondingly

el and‘[Bw’c]

matrices as per Eq. (2.2) are assembled: i.e.

Ay, cl12x1, and (B, cli2x12,in coordinates

‘ X
_/ Let TPW c]12x2p be that part of the
m@trlx [P] which corresponds to the coordina

[B Then the workpiece and connections

w,c]'

<YI:x2:x3’-'

(5.
measured modal
tes of [A ] and

can be transformed

into the modal coordinates of the assembly as_#£61lows:

\-¢

= (p, 17 [A P ]

w,c][ w,C

C

[aW,C]ZPXZp w,C

and similarly

[ba C] N [PW,C

’

1T 13, IR, )

where [aw,c] and [bw,c] are not diagonal, ho

’ (5.5)

(5.6)

wevgé'they,

»

+

e e 4
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correspond to the coordinates q.

Now by subtracting the workpiece and connections
from the assembly, the matrices [aL] and [bL] of the lathe

alone 1in the modal coordinates of théiassembly q are obtained:
[aL]prZp . ag ) [aw,c] ' (5.7)

[bLIprZp ) HJ ) [bw,c] (5.8)

The lathe structure may,)in the p measured modes of

the asseﬁbly contribute by a number of modes d. This number
is moét likely smaller thap p; i.e. < p: In other words,
the lathe structure alone acts in the measured frequency
raﬂhe as h&fing d <Ap freedoms. Therefore, the matrices
[aL] and [bL] will be sinéularﬂﬁ\ﬂowever, as it is shown in
Appendix III, any submairices of ofder 2d located diagonally
in [aL] and [bL] wiZl contain all the information about the
system. These submédtrices eventually will not be singular.
Consequently, ;he main quéstion would be how to determine
the order d of the structure. To answer this question a
method (which.proved successful on theoretical examples) is

suggested below:

Arrange for solving the natural vibrations as follows;

Alap] {q} + [b] . {q} =0, - (5.9)
: 2px2p 2px2p‘

This leads to p pairs of conjugate eigenvalues. If
the order of [aL] and [bL] is smaller than .2p, say by 4, then

2 conjugate pairs of these eigenvalues will be much “smaller ',

\



124

than the first eigenvalue measured on the assembly (If there
. 4

4
were no errors invelved in the whole process, then these
. 2 pairs would have @ typical value of zeroj. Hence, the
actual order of the lathe structure alone is obtained as
a=2p4 ' ‘ (5.10)
~Having determined d; then two matrices [a'L] and
[b'L] of order 2d can be taken out of [aL] and [bL], Tespect-
ively, say at the upper left corner, as;"
i a'L b'L o
o - (5.11)
af a7
In this way the matiices [a'L] and [b'L] corregbond
to the lathe structure alone, dxpressed in the coordinates
q' which are the first 2d modAl coordinates of the assembly. N
Furthermore, o&f‘of the modal matrix [P]2px2p
measured on the assembly, we take a matrix [PL]6x2d which
relates the local coordinates of the lathe at the cannections~
to q', i.e. ’ ~
s xl\
*2
{ Xg } = [PL] {q'} (5.12)
| « \V o _
1
X2
X
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The métrices [a'L], [b‘L] and [PL] represent the

dynamics of the 'lathe structure alone and they can be used

to assemble other workpieces as explained in the next section,

/”//\\\5”\4573\ Assembling a New Workpiece

el

The new workpiece(és computed and by overlapping the
corresponding connecting elements (assuming they are already

known), then the following matrices as per Eq. (2.22) are

assembled; - - ' RN

r

[Afw’cl and [B'W’C] in coordinates <y1,x2,x3,y2,y4,yl,---?4;

(5.13)

ToQ#ssemble these matrices with [g‘L] and Ib'L] of .
the lathe structure a procedure described by Klosterman [ 69]

can be followed:

H
-»

Establish the matrix [P'] to be used 1n[transform1ng
K

[a’ W, C] and [B'w c] into a system of coordlnates\whlch includes

q' as well as the local coordinates on the wqupﬁéce that are

not involved in the connections. [P] thus is foifmed such that:

S

!

N\
\

A~ . .
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E.
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I
o J{2 ~
o
x
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5 v
1 .
ty _ /W.
2 X2 ) o
g o §
< X = N .
S-S s 3{ ... RS W G (5.13)
_e | 12 Y2
« : .
.5 y" i y'
o 4 4
! ] . . .
o Y2 72
[ 8] .
] ]
us N y4) \Y‘l/
o ]
73]
1] -
$—

-

”
- H

The transformation is then carried out, to obtain the

matriceisziﬂgy], [B", C] in the new system of coordinates;
L4 » [ -
]

[y 1 = 21T Ay e . (5.14)

c

S RNCURRT Iy o (sa8) -

(8" ]

»C

Subsequently, the matrices [A”W,c] and\[B"w’é] are

overlapped on the matrices [g'LI and [b'L], Tespecti

over the coordinates .q' to form the matrices [A’
. : &

of the n®W assembly;

p:
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The matrices [A'] and [B'] can then be used to compute

the dynamics of the new system;

[A{A*] + [B']] {$'}= fg}” ' " (5.17)

N

where, the vector (Y} contains those ldcal coordlnates on the

workpiece not rigidly connected to the lathe, while the force

avector {F} contains the forces acting on {Y}.

5.6 A Theoretical Example

The procedure presented above for disassembling a sub-
structure {(workpiece) frem the assembly and subsequently
determining the characteristics of the remaining substructure
(1afhe), is pemonstrated here_oﬁ a theoretical example.

Fig. 5.8, shows the substructures SL and.SW and . the
eSsembly S . Substeecture S represents a wbrkpiece, while

SL 15 a theoretlcal model which has been so chosen as to

1oose1y approximate the behav1our of a lathe In the assembly

Sy 1s rlgldly connected.to S, at théfzgg}dinatES Xy = ¥p-and

-

xz T Yg-

-

-~

5.6.1 Generating Modal Data of Assembly . ~

Sw'alone is a six degrees of freedom system, its

masses and stiffnesses are:

4

masses my-m¢; 1.25, 10, 20, 150, 300 - (kg)

stiffnesses: k,-k¢; 20,000, 10,000, 35,000, 30,000, .

/e 80,000 (N/mm).

-

¢
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»

These data were used to form the mass and stiffness matrices '
[mL] and [kL] of order 6 1n'the coordinates; Xz, Xz, Xg, Xgs.
Xq5 xé. ' The damping matrix [cL] was generaﬁe¢ assuming pro-

portional viscous damping in the way shown in Appendix IV.

‘The results of §olving the eigenvalue problem of SL alone a

given in Table 5.1. These results are shown,'howevef, as if

\

SL had non-proportional damping to be compatible with the

further presentation.

Sy is a cylindrical workpiece of constant cross section,
its dimensions are 30 mm diameter and 350 mm ;;Péfat}ts mass
and stiffness matrices [mw] and [kw] of order‘ 'werejéomputed
~in the coordinates Y1» Yoo yz; Y5 and y, in the way shéwﬁ in
Appendi% V. SW is.assumed tﬁlhave no damping, i.e. [CW]E
is a null matrix. ~ N - |

' . : : T
4

Subsequently, the matrices‘in;local coordinates of

S; and S, were overlapped on the connecting coordinates x

1= 71,
and X, = Y¢ to fprﬁ'[Az] and [Bz]'of order 18 bffSZ as follows.
- N ‘ - -

- CL - mL . ...-'.-..Xl = yl
(4,1 = oy
Cy me 2 5

b+ v o _x =y
Symm 0 b - 1
| AR S A
Ik i
L -—""0
- — k ‘ ’
[B.] = W \S
Symm > mp - T
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Table 5.1 Computed Modal Data of S,
_ — ﬁ,
NFiode ] \}L (1/sec) 2 (N.sec/mm)
1 |-.150E2°% j WsppE3 © 0%j .582E6 -
2 |-.20582 T 5 .682E3 0% .298E6
3 |-,379E2 T j .126E4 0% j .405E7
A?_,.A.x -.539E2 T j .180B4 0 %3 .295E5 )
5 |-.12982 ¥ j .430E4 05 .12885 ’
6 |-.587E2 ¥ j .293ES 0¥ .206E11-
‘., ’ \
2 J
‘/‘- —
Mode Shapes:
‘ Mode
1 2 3 4 5 6
o ‘ ,
x |10 1.0 1.0 | 1.0 1.0 1.0
X, 1.244%50 | -1.156%j0 9.728%50 -.027%50 | -.000%j0 | 1920.%50
Y v ¥ '\i
" ’ : s . -
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<
The matrices [Az] and [Bz] were used to solve the

eigenvalue problem of SZ' The results obtained were:
- eigenvalues; Ay o= My : j My R i=1,9 ’
- complex conjugate pairs of the paramters a.'s , i = 1,9,
- modal matrix [P ] of size 18 x 18 which contains 9

complex conjugate pairs of eigenvectors.

These computed A;'s and a;'s are listed in Table 5.2.
Hgli? given is that part of [P ] normalized at Xq which
(corresponds only to the displacements Xy and x2 The undamped
natural frequenc1es fn (Hz) of the modes are also.included.
Fig)\ 5.9 shows the nine mode shapes (real parts). .o
The so computed modal paramters of the assembly Will
- now be assumed to be the data obtalned from the modal analysis
testing. Furthermore, it will be assumed that only the,fixst"
7 modes measured only on the coordinates of the workpiece yl - Yg
are available. No simulated errors will be 1ntroduced on

these data.

5.6.2 Subtracting Substructure Sy From Assembly
To Obtain Substructure SL

Starting with the modal parameters of the assembly;.

= 1,7

P
>
H

1

b
* -

iy 1= 1,7

and the modal matrix [P,] of size 10 x 14, which relates the
dlsplacementsand velocities of the local coordinates yl, Y5

Y25 Y3, ¥4 to the modal coordlnates of the assembly Qi i= 1,14,
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e i e e,

Table 5.2 Computed Modal Data of Assembly
| T?T }

Mode fn (Hz) -');i."(l/sec) a; (N.sec/mm)

1 79.454 -.149E% T j .499E3 \-123E * j .559E6

2 108. 274 -.204E2 ¥ j .680E3 o© .269E3 T § ,293E6

3 195,841 -.353E2 ¥ .123E4 .618E5 * j .113E7

4 270.662 -.45882 ¥ j .170E4 -.412E2 ¥ § .277ES

5 358.136 -.327E2 T j .224E4 .293E7 1§ .413E7 -
6 531.663 -.602E2  j .334E4 -.430E4 * § .493ES

7 749.743 -.853E2 ¥ j .471E4 .921E3 T j .241Es

8 | 2164.526 | -.577E2 I j .136ES .160ES ~ j .549E6

9 4711.030 | -.128E3 * j .296FS .314E5 T j .283E7

A '
Mode shapes: '
X X2

1 1.0 . .126E1 e@ . 727E-3

2 [ 1.0 - 117E1 TV .872E-3

3 i.0 .568E1 © j .118E0 Sk
s | 7,!"/10 J996E-1 ¥ § .124Ee1 .
5 1.0 - 15762 ¥ 5 .s27E1

6 . 1.0 -.130E1 - j ,886E-1 —

7 _ 1.0 .521E0 ® j .231E-1 '

8 1.0 -.960E0 * j.828E-2

9 1.0 .991E0 ¥ j .376E-2

e
L A
~.
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In addition to “the known local matrices of S [mwj, Tkw]
and [Cw]* it is"réquired to determine the characteristics of

SL at the con g points X and X,

The /modal parameters a;'s fill on the diagonal the

matrix Fﬁ_“of size 14 x 14.  Moreover, the parameters ai's

Pty . . . T
e ﬁ\ﬁ\and the eigenvalues A;.s are used to form the diagonal matrix

b, -of size 4, 147 suc = - : ‘
,Qs of size'1 1 stxch that bi. Ai a:. - /

x
Without ?epeating, the matrice [Aw] and [Bw] of SW

) were formed, and the steps 5-5 to 5-8 followed as to arrive
- at [?L]hand [bL] of Sizigl4 x 14 whiqh belongs‘to SL a%one.:
'The‘eigenvalpe problem (Eq. (5.9)) was subsequently
solved to yield the eigénvaiues listed in Table 5.3. Obviqusly,_
the eigehvalues of the first mode ;re w&ong and they are much
smaller than the eigenvalues associated with the first mode

measured on the assembly. The rest of the computed eigenvalues

of SL fall within the’measuréd frequency range. The immediate
conclusion would be that the actual prder of SL alone is 6n£y
6, i.e. d = 6. | | - '

'By comparing the comﬁﬁied eigenvalues of S, after sub;r,;r\
traction (modes 2 - 7) in Table 5.3 with those obtained directly
Uﬁ\ééyCIKéiE/ﬁ.l, it becomes clear that they are practically the’
éame. The \wery small differences occur basically due to the
fact that only ? modes were assumed to be known out of 9 of
the as$sembly. , ‘ | -

With the order of SL known (d = 6), two matfrices [a'L]
anq [b'L] of size 12 x 12 may howhbe taken out, say at the

u per'left corner, he matrices [a;] and [b,], respebtively.
P _ r Ll L
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Table 5.3 Computed Eigenvalues of St
After Subtracting SW from SZ'

Mode | L

1 .261E<1 % § .312E-1
2 -.152E2 1 j .501E3

3 -.209E2 * j .680E3

4 -.383E2 ¥ j 127E4

5 "|-.543E2 ¥ j .178E4
6 .|-.127E2 ¥ j .428E4

7 -.577E2 ¥ j .287ES

P b, e Bt bt s b e
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Those matrices 'are in the coordinates q;-4q, of the original
assembly. In addition we take the matrtu\[PL] of size 4 x 12

out of'[Pz] which.relates. the connect{ngﬁé ordinates X1 T Y

;2 = ys, xl = il’ x2 = ySf to the coordinates ql-qlzl

-

The matrices [a'L], [b'L]‘and [PL] represent the dynamics

of SL a{gﬁg’ép the connecting coordinates and consequently can

- be used directly in assembling other substructures-at these

. . . : ' ¢
points as shown in section 5.5. :

"If it is required to transform®’[a'] and [B'] into a

set of coordinates which contains explicitly the local coordinates

-

‘x_1 and x,, a matrix [PLx] of size 12x12 'can be formed such that:

~ -
Xl ' ql N
X, q,
*1 y 4 PL .
< X, { = 4x12 :
il i Tl R AN TGEELEEEEEEEEEERE 9 ¢ (5.18)
q3 ﬁ - . :
ay
ISxS
q : q .
11 11
| 912 | 0 0 \l__ f12)
\ " /
(P, ] i
Subsequently, the transformation into the new set of
coordinates is carried out; ) ' ~\
(Argd = (P 17T far, 10p 17"
Lq Lx L Lx
’ I S -1 (5.19)
[BLq] = [PLX] [b L] [PLX] .
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-
The matrices [ALq] and [BLq] can be used in solving

the eigenvalue problem of S t

L’ ~ .
| - . o /
A 4 B"' X = O . - 5.
[h TApgl + [Bj 11 31 =0 , (5.20)
- Fordthe present theoretical model, the modal parameters

cbtained from solving Eq. (5.20) were practically the same as
those listed in Table 5.1. | _
}Aiq]_an&A[BLq].can be\onezlapped directly on the
conhécting‘pdints with the mé%rices [A'w] and tB'w] bf a.new
substructure ;S‘w (without pérforminﬁ tﬁé‘transformétions

(5.14) and (5.15)). A

5.7 Identifying{the»qunectiﬁg Elements

Goingfback td/the éctual case of a lathé-connections-
workpiépe assembly, it is presented in this section how the
connecting elements kl’ 1o kz and cz,rcan be identified. 5

In sectidn 5.3 £Ee assembly has been modelled as three
separa?b substructures. The connéétionﬁ, Substrﬁcture Sc’

includes discrete springs and dampers but have no masses.

The matrices [AC]'hnd [B.] of S. assembled according to Eq.

(2.22) will have the form in Eq. (5.21).
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[ - I
2 2 ; . kz 0 0 0 k2 | X3
. . [
0 cl‘O -G 0 I 0 kl 0 -kl 0 | X
0 00 0 0 l[ 0 000 o X,
- I - I
0 c, 0 ¢ 0 ; 0 . 0 kl 0 k; 0 | 0 Y,
€ 000 ¢ 2 000 Kyl s
------------------ T-"".,[B]=
0 | 0] <L 0 | 0
- 10x10 10x10
(' “
3 (5.41)

-

In the [Aul_and [Bz] matrices of the assembly the

\

matrices [AL], [BL]’ [AC], [BC], [Aw], and [Bw]’ (L: lathe,

W: wprkpiege), overlap’ on corresponding rows as shown in

Eq.

(5.22).

‘L

>

— e e —— ) e E— — e —




137
.‘_‘I\' i .- . . ~ LY
Let us look dt the row of the assembly whichkéﬁ?res--

ponds to the coordinate Y,- The: lathe matrices do not con-

tribute thére. The row stretches over gglumns corresponding

-

to x4, xz..l,ii.' These columns are specified in Table 5.4,
whére the row is obtained for [A J and [B ] as the sum of

contributions from [A ] and [A ] and from [B ] and [B ] "

respectlvely

Table 5.4 Con}ributions of.Sc and Sw into the Row of

Sz Corresponding to Coordinate Y,

Colums 3 %2 Y1 YpweYs Y4 X3 X V1 Yy Y3y

from [Ac] 0 -¢y. 0 - ¢, O 0 | 0 0 0 0 0 0

from ‘[ﬁw] ‘ My) Map Myz Ty

o
=
o
o
o
o
Lan]
o

[AJ=AMAT 0 ¢y 10 g 0 0 0 0 mmy my omy,
from [B,] 0 <k, 0. k 0 0 0 O 0 0 .0 -0 .
fron [B, ] 0 0 ky ky kyskyy O 0 0 0 0 0

24

(=)

[B,]=[B]+[B] 0 -k

o
=
[}

. -
L)
o
=

1 Ky Kptkpkog k

L
-

Maqs ﬁéz... are-elements of {m ].
The natural v1brat1qn equatlon for one mode of -the

assembly is written as,

[
Tae .,
., -



»

5

}iley(Piyp Pin2d 2 (MyyPyy1*MyaP sy 2 My 3Py 3+ M gPyyg) I*
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R N
N |
J; vy
Ay [A)] ¢ >+ [B,]¢ y =0 (5.23)
Mvy v e
. . \ B 7
Let us use the following notation: . \\‘
{wi} =. ?imn wheres .m = X 0T Yy .
. . n=1,2,3...etc.

e.g., the element of the ith eigenvector corresponding to

coordinate Y, will be denoted p

L

iy2*®
Then the row associated with the Y, coordinate of

Eq. (5.23) will read: o t

-

e

: .« NS
1 (PiypPixh) R ‘Kiiiizpiy2+k2Spiy3+k24piy4=0 -

-

. \
- (5.24)
. _ /} |

o
Equation (5.24) i;\uziiien{in unknowns 15 kl. It contains.
terms obtained from the Feaeurement‘gf the it mode shape on (:

the two end coordinatesf(;lthis connection: x, and y,, and

elements “of the workpiece mass and stiffness matrlces which
have been computed from\Ehwfyorkplece dimensions. Here the
workp;ece is meant which was used in the measured aseeﬁbly.
Eq. (5.24) can be split into its real ant.imagihary

parts. In thielway the necessary two equetions are obtained/"
. ___“z*,_,»?

to determine )k, and c,. ‘ b
1 = 1 . (
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In an analogous -way, by selecting another row of

Eq. (5.23), the one corresponding to coordinate Y3 the

parameters k2 and cz'of the connection at the center can

- 4

be obtained.
By using infqrmation about more than one mode a
redundant system of equations is obtained for'?i, <y and,
-~

similarly for k C,. Such a systgmbwill lead to:

2)

Bttt T ey ' (5.25)

£ I

1

‘ 5.8 An Example d?JExp imepfal Identifici¥sion = .
//fzﬂ—— of the Connecting Elelents = V/f_
~ .

ich is similar to Eq. (3.11) with replacing ms by c..

- An experiment was, conducted to check on this qugstion. If_///
order to emphasize the possible probl rather 1ldqg workp%%fes

were used having large inertia for tle rotational displacement

-

e .
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)
The corresponding eigenvalues were
(.

- ( . :
-86.76 + j 1285 %EM_J,J///

1 >
-191 + j 2188,

=
H

{

The workpiece was considered as a rigid body. " Its mass

matrix is obtaihed as ; .
g 2
( n me yl
[mw] = . A e ,
i _ ms - mL-+J Y,

where m is the total mass of the workpiece L 1s half its
v
overhang length and J 1% the mass moment of inertia around

~

the middle point.

*
Py

Next a wofkpiece 43 mm diameter, 196 mm long was used

-

The elgenvalues of the two corresponding modes were

b .

B
n

L = -80 + j 1642 . (
. { '
A, = -138 + j 2665.

- . ) )
The coordinate Y, s understood here as being the

relatlve rotation between the orkplece and the chuck. It was
.;
estimated from the displacements measured on both

-

The values of the ‘rotational stlffness of the chuck

4 ~

k1 and of the corresponding damping coiff1c1ent c, as

tained .

from the measurement on the two workpieces using Eq. (5.25)

I

are'iisted in-Table 5.5, . : -

If we take the values of kl and ¢4 obtained from all

the measured data of the two workpieces as references, and
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\_35-/” ’
Table 5.5 Identified Spring and Damper of™ Chuck
1 *\ . k
- l
Workpiece Data Used- kl(N.m/i'ad) <1 (N.m.sec/;'ad)
Mode shape at A .1051E6 .9706E1 -
260x43 mn A .6943E5 .3429E1
© Mode shapes at A;,23| 10436 .7931E1
| - . T
Mode shape at A .1271E6 .5568E2 -
196x43 mm s \xfzr .1195E6 .1208E2
Mode-shapes at AI}Z .1256E6 ~4632E2
: \\ - ]
Two work- All mode shapes ) | 11224E6 .4366E2
pieces N |

=3
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compare them to those obtafined using two modes of either

workpiece, the percentage differences would be as follows:

kq ©1

{f;;;iggece 1 "-14.78 -98.93%

Workpiece 2 2.61 6.09%

. . -

¢

b Obviocusly, the damping coefficient as estimated

_here is not reliable. This could be attributed to its very
small value compared tpo the stiffness coefficient which makes

it more sensitive to experimental errors. Also 1t could be

due to 1its 1mproper modelllng as a linear damper On the

other hand, it is seen that the stiffness coefficient k

*)behaves within reasonable limits This makes the suggested
<

modelling of the clamplng StlfanSS of the chuck as a dlscrete

L

linear spring acceptable ' . S /{\f\f'

[V )

A Y-

—————— . .



PN | , CHAPTER 6
USING MODAL DATA IN STUDYING

) - .- CHATTER IN MACHINING ' -
. - . _ ) )
) \‘“\\\ 6.1 Introdiction _
ﬁ_eé%- ') o Many aspects of chatter in machining have been
~ "‘lwvd‘y of the limit of

- investigated, among them the ba

stability, the role of the struct

T

dynamic% of thejpachlne
tool and the .dynamic cutting for€e coeffli&ent £5T._the . part |
of the mechanics of the cutting process. However, most of
the theoretical and experimental knowledge was oriented to‘
continuous cutting as 1tr15 represented by tu;nlng and borlng
operations aﬂd not enough was done yet to properly understand

. chatter in illing with its perioéically interrupted cutting

%

process.

£

. R )
reover,. all-these studies were done in the fre-
i -

quency domain.

: . ~ ,
be' In this chapter, the use of the modal parameters of

the structure in studying the chatter phenomenon in machlnlng
is demo .trated Both the -continuous (turnlpg) and the
interru:jéd (milling) cutting operations will be considered.
T%ﬁis study will help formulate an acceptancetest of machine
tools based on dynamic stebility. -
The’modaljéarameters as obtained by_the exciter test
willfﬁgraged in the simulation of the cutting process to
determine the limits of stagility under-different cutting

) 143 hRE
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[

condifions. The simulation here will be carried out in the

time domain, which represents, to the knowledge of the

author, an originai\work in tﬁe field of chatter'in machining.
The simulation will be applied first, on theoretical

vibratory systéms, then on an actual mathine with experi-

mental verification.

6.2 Basic Principles of Chatter in Machining N

The ‘three basic principles of chatter in machining [ 8 ]
- 1
. are: rTregeneration, mode coupling and the velocity component.

"A'brief description of these principles‘is given below.

6.2.1 Regeneration -

The mechanism of the regénergtive principle-is shown
in Fig. 6.1.. In this case,-a vibratory tool cuts the work-
piece aﬁd a chip is produced whose both sides are undulated.

. The undulation z(n+1) is produced due to the vibrating tool

during the (n+l)th pass arid undulation z(n) has been left on
th

theworkpiece surface during the n~" pass. The instantaneous.
. [

chip thickness is detefmined by the amplitude and phase
relation between z(n+1)aﬁd z(q}. The'ph%ie sﬁgft £ bgtwgen
z(n#i) and zfn) is determ%ned By fhe.frequency of toql '
oscillation f and the rbtational_spégd and the diameter of the
workpiece in the case-furning or fhe rqtational speed ana the
ﬁumber of teéth of the téol in the case of milling. At the

. Ny . 7
onset of chatter, frequency f and angle e adjust themselves

-

A . ¢

L]
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so‘that a maximum energy is delivered to the sysfém\tgifﬂ
may be sufficient to overcome the available damping energy
in the system, causing self-excitation and dynamic instabiliiy
> in the cutting process.

| Themechaniﬁy‘of Tegen ive chatter was applied.to
predict the limit width of the cut blim in éonjunction with
the vibratory system'qf'the machine tool.. This limit widthd \Jf\\

of the cut was derived in [8 ] as,
b1im ii' 21T 06 . , (6ecd)—

where; ' : q)

the dynamic cutting force coefficient 7~

T =
Grin = the minimum real part of the relative transfer

function between the tool and the workpiece aftegy

”x multiplying by the proper directional orientation

factor.

The principle.of mode coupling is illustrated in’

6.2.2 Mode Coupling

Fig. 6.2, For thls pr1nc1p1e to apply, At is necessary that

A

the vibratory system of the machlne tool should have at least

two degree3™of fr&edom in different directions, which .is in
' LY

fact always the case in machine tool structures/ During cutt-

N . Ll L -
ing under vibratory itions, the tool deseribes an ellipse.

Assuming that k1<k2f

\direction as shown irfpflg. 6.2, during the tool motion from A

e
R e
ey



146

Fl

to B the cutting force F acts.against the tool motion, thus
vibration energy is dissipated. During the second half of
the cycle, motion'B to‘, vibration enérgy is imparted to
the system which is greafﬁ% than'the dissipation energy, sinczi
duriné the seand half of the cycle the tool faces a larger
average depth‘of cut. Thus for each cycle an excess energy
is available which may supercede the damping energy and

L
"maintain vibrations in the system.

6.2.3 Velocity Component

This principle is based on the existence of a phase
shift betwégg the change of the chip thickness and the change

of the cutting force as depicted in Fig. 6.3.a where;

A z(n) is the undulation amplitude left behind
’ in the nt‘h pass
z(n+l) “is the vibration amplitude in the (n+1)th
pass o

z(n+1)-z(n)is the chip thickness variation in the
l' N

\\‘ ) ‘ n;l)?¥ pass . | Y

/ | € is fﬁéxphase shift between z(n+l1l) and z(n)

- F(n+l)Y is the cuttiﬁg fo;ce in.the,(n+1)th pass .
¢t is the phase shift/EE%QSen the éuttiné‘force

F(n+1) and the ch}p thickness z(n+l1)-z(n).

: : . / - /
The principle is called the "velocity component

_principle’ by which is meant that the cutting force contains

a variable component in phase with-the velocity of vibration
> _ .
. = J

~ ‘ 6 - —

. \ B ‘
. - ’ [, /

O 3
. - ST T S

[}



'510pe the cutting

147

r(n+11. This.component is denoted Fd(n+1) where d designates
damping. Therefore, if the phase shift angle ¢ is positrye,
i.e: F(n+1) is leading z(n+1)-z(n), the velocity force conm-
ponent Fd(n+l) will be added to the damping force exerted by
the vibratory system ¢ a(n+1) resulting in an increase in the
overall damping in the system.. However, if o is negative,
i.e. F(n+l) is lagging the chip thickness z(n+l)-z(n), the
veloc1ty force component F (n+1) will be subtracted from
c z(n+lﬁ the damping force to reduce the overall damplng in
the system If |-af exceeds the angle ¥ as shown in the
flgure, the vibratory system will behave as if it has negative
damping and the cutting process will be unstable.

The positive damping generaged in the cutting process
[90], which is represented by the forceTcomponent Fq(n+1)
is due to the interference of the flank of the tool with the .
slope of its motion with the'cnt as depicted in Fig. .6.3b.

In position 1 the tool is moving upwards and there is enough

clearance between it and thHe surface it has Just cut. In

" position 2 it mo es into the material and the clearance is

dlmlnlshed The 1 creased thrust ‘force acts against the

veloc1ty of the motdon and generates damping. Up to a certain

orce is not much affected but as soon as
the slope reach s'or exceeds the relief angle vy of the fool
the thrust £ ce increases. The slope of the wave is pro-

portional to the amplitude of vibration and to the ratio of

LN

frequency f and cutting speed v, its maximum value is

’

A

B P
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O ax = 27 A /v . 2 (6.2)

Thus, e.g. for f = 500 Hz, cutting steel with a
high speedufool with v = 30.m/min the wave length is
'w = v/f = 500 (mm/sec)/500 (1/sgc) = 1 mm and the slope will
reach 6° at A = 0. 017 mm, For cutting aluminum with
v = 1200 m/min, the wavelength is 40 mm and the same slope
would be reached at A = 0.66 mm, Cutting steel and considering
f = 1600 Hz, the wavelength is 0. 3 mm and the critical amplltude
is A = 0.005 mm. .,
Thus,” for low cutting saFeds and high frequeneies .
damping is high: If, for simplicit}, we consider the wave-
_1ength a’'good ‘indicator of wave reprOducibility, Table 6.1, T .

"lists the combination of standard cuttlng 5peed54and typlcal
frequencies measured on a milling machine, 200 600 and 1600 Hz.
where the 200 Hz is the heads;ock mode, 600 Hz is the splndle

mode and 1600 Hz is the end m111 mode,

\\‘#’___“h\ _ Table 6.1 - L _

Tool/workpiece Cutting = | Surface Wave Length, mm  ~

Combination Speed - '200 Hz 600 Hz 1600 Hz

a) HSS/steel | 30 m/min . 2.5 . 0.83 0.31

b) Carbide/steel | 150 m/min | . 12.5 =~ 4.2 1.56

c) HSS/aluminum | 600 m/min 50 .17 6.25
. ¥

. .
T ‘ , (

If, as a rule of thumb, we consider a waveléhgmh

w = 0.5 mm the shortest to reproduce then -for the case . a) the

//,//'

-
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end mill mode becomes inactive and the spindle mode is also

strongly damped. On the other hand, in milling aluminum

the end milling mode can easily participate.-. -

6.3 Simulation of Chatter in Machining ST

6.3.1 Machine Tool Vibratory Model

The machine tool structure can be modelled as a

-

vibratory system with mdny masses, located quite generally

-in the three-dimensional space, interconnected with springs

H

OT massless beams. A two-dimensional diégrammatical representa-
tion of one such system is.depicted in Eig. 6.4. The mass ai )
represents the ;601 and th mass. a, represents the workpiece. :

This y;bratory'system 1s assumed to havelseveral modes in

several directions X5, xj...etc. (Several modes can eveﬁ%ually ' .
have one common direction}. In the present work it is assumed

that either all these @irecfions afe different or for>th
modes which- have a common'directioh the system exhibi}s p; -
portional fi;sous damping. - .

inice ‘We- are interested in the relative vibratichs

between the tool &nd the workpiece; which are relivang in the
exciter test we must measure irest relative transfer -
functiohé/;;;hpen these two. ;This means to get the paraﬁetefs
of the mode i in the difection X; we apply a force between'a1
and 4, and measure the relative vibrations between them in

the same direction Xi. Therefore, for mode i we obtain; _.

K.: The relative modal stiffness between a, and a

1 2" :
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Mi: The relative modal mass between %1 and a,.
- i Ci: The relative modal damplng between\ 1 and a,.
| . o ~
These parameters are to be obtained for al} ‘the :
modes i,j,..%p. ~ ey ‘\ | > .
' ‘ N — N’ ,.-—...'_,7 —

i > .

6.3.2 Cutting Forc

‘\%\\\\\ differe@t dirg ill be acting simuftaneously between‘a1
D , cogld/ﬁekgﬁe-to several cutting edges that

~are engaged in c at the same time and/or the cutting ed
- 4

-is divid€d into segments whefe ‘the .cutting force on each of

these segments is treated separately»(in the case of compllcated

RN
geometry of the cutter). Each of these fo;ces, e.g. F.(n),

(%e

ca;Yh\v;boked at as two forces F (n) and F. dCn), where

(nﬂ is in phase w1th the chlp thlckness and FJ (n) is *in

phase with the velocity. 'n is a subscript used for the time

step.e
*E;j Geometry of the Cut

direction Z.(n) normal to thegymachined surface ThlS dlrectlon

Correéponding.to each cutting force Fj(n) there is a

in general changes from one time step to the next. 'The angle

; between Fj(n) and Zj[n)tlscej. “The' angle between the direction

X; of the mode of vibratioﬂ i and Zj(n) is aij(n). These

>

. angles will always be measyred 'in the direction from positive

Zj(n) to positive Fj(n) as shown in Fig. %.4. The differential
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equ;gionN%ﬁ\Eﬁg mode i in the direction Xi at the -timeé syep

A
. !/
n is written as ~ . _

-/ N}c (n) + @\x;(n) + K.x, (n) =
\ g 4ﬂa§f 1-p’ (GJS)

If we decompose the forces Fj(n)”s into their

um-:-!

Fj(ﬁ) cos (8;7a;;(n)

. | P )
components Fjr(n)'s ahd F}d(n)'s, Eq.- {6.3) can be written
- /* ‘.

-
L3

as ‘N

"ag5(m))) + K; x;(n)
(6.4)__\\U/>///

——

~

6.3.4 .Basih Non-linearity

g . . ‘All existing theories and analysis of chatter in

~

machining are based on assumptions of’a linear vibratory system
o . . .o . ) I 2 .
apd, ‘mostly, also of a linéar effect of vibration on the cutting

force. However, it is well known that when chatter starts it —\\,]

does not gfow‘ihdefinitéif but -stabilizes at a finite amplitude *

’ of vipratioh; There is an obvious basiébhbn-iinéarity in_the
| process ﬁhich.is due to the fact that once the vibration is
.lafge-éqdﬁéh the tool jumps out of ehgﬁt‘far a pajyjof its
.o vibrdtory period. Duripg_this'time force is not any more
proportional to chip thickness but it is simply zero.

\ A

This basic non-linearity will be investigated here.
- =S
Its 1nc1us;pn is important espec1ally in milling operatlons

where the cut may start or end wlth zero chip thickness Whl h

i
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R

implies that any small vibrations would lead to the tool A
jumping out of the cut.
. \\-' r‘

- , <
+6.3.5 Simulation Procedure s T

\ﬂQ: simulation is carried out in'gmall time steps .At.
Subsequent‘cuts follow one another. after L steps (after the
time y‘x at). The average chip thickness which corresponds
to,the force Fj(n) is“hj(n) (average chip thickness is the
instantaneous chip thickness to be removed if there are no
undulations on both sides of the chip, i.e. no vibrations
occurred either in the preceding cuts nor in th&ngp£{52i/9uf}\krjp\
The instantaneous chip thickness which corresponds to Fj(n). i
in tﬁeldirectiodizj(n) is usually taken as a result of

waiiness zj(n) and zj(n+1) but'aé'the vibrafion%-grow more
preceding cuts than one may be involved (See: later Fig. 6.9).

Let us take three 'preceding cuts into account. At any instant

n’ we may ask which of the preceding cuts reached the lowest

in the. material and denote such a position ijmin:
. ‘ /h] |
?jmin is the lowesF of zj(g—L)+hj(n),zjﬂﬁ-ZL)+2hj(n)

s

S zj(n-3$)+3hj(n) . (6.5)

and~the instantanedus chip thickness yj(n) is:

-

yj(n) = z‘jmin = ZJ (n) ' (6-6)

and the cutting force is

i Fj(n) = rxbx yj(n) : 6.7)
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where;

~

T: the _dynamic cutting coefficient

b: the width of the éﬁt

- Fj(n)_caq further be written as:

Eﬁr(n)'= rr‘x?b X yj(n)

’ Fjd(n) =ryxbx yj(n) .
where; : - )
T represents the stiffness of the cut which )
produces the cuttlng force F (n) in phase with
the chip thlckness y (n)
Ty repre e?ts the damplng of the cut which produces v

~

-

bft,  SE Fj (n) < 0, then F, L) = Fig(n) =0 (6.9)

L4

_where Eq. (6.9) exp ‘Ases the basic non-linearity in the system;
if the forcg_shouigﬁzz\gggative it would mean that the tool
jumps out of the cut and then the force is actually zero.

The differential equations of the diffefént modes of

.vibrations aré‘giéttén a§cording to Eq. (6.4). The motion |

_zj(n) in the'direétign zj(n) which modulates the chip thickness ///’h

is obtained from the contributions of all modes xi(n) to

xp(n) as;

-
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i +m1d

z;(m) = I x;(n) cos ag; (n), j=1,m (6.10)

1=1

In the simulation, for each mode the 3 eration

_in the time step n is determined and then the dqu/acement‘*g

'

in the next time step (n+l) is obtained by double integration.

Thus, e.g.; for mode i: {

g

k;(n? - [jzl'Fjr(n) cos (8;-a,;(n))-(C; ii(n) +j£1Fjd(n)cos
(85055 (M) - K5 x;(m)1/m; - (6.11)

x;(n) + x;(n) at - b/({B.lz)‘

xi(n) + £i£n+l) At (6.13)

-

xi(n+1)
Similarly, for the other modes -and, then zj(n+2)}
dure is to be continued until

In the following

6.4 Continuous Cutting -(Turning)

The model used for simulation is shown. in Fig. 6.5.
A system with two mutually perpendicular degrees of freedom
X; and XZ is®ised. A tool is attached to the mass -Qf_the

system and it cuts an undulated surface and leaves another
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undulated. Surface behind. There is only one force F acting
on the system which does not change direction from one time

step to the next. Consequently the direction normal to the

machined surface z, and the angles between the directions

of X; and X, and.Z are constant. And assuming that the force

does.not have a component in phaéé with the velocity, Eq. (6.4)

S

My xg (n) cl.ilcn) * Ky x)(n) = F(n) cos (8-a;) (6.14)

Vs
rd

and, similarly, fbr XZ' The subscript j has been dropped here,

- . - - - - ‘ . “
since there is only one force actlng.g’

for, say Xl’ becomes;

The parameteré of'thé simulated system were chosen’
S0 tha? the_Stiffnesses;of both modes are equal, K, =K, =K =
18,000,000 N/m,wbqtfthe,frequencies &iffer,'f1<f2. Va;ioﬁs
values of the ratio R = fl/f2 were used. - Damping ratios of both
ques were taken £ = 52’= 0.05. Cutting stiffness-(DCFC) l
was chosen as, r = 2 x 1093N/m2. p |

With a system of two degrees of freedom oriented like

1im deprends on the ratio

the one in Fig. 6.5 the values of b
R of the two frequencies. The values of blim versus this ratio
as established from Eq. (6.1) and using the above mentioned
parameters of the system are plotted in Fig. 6.6. It is

seen that b is minimum for R = fl/f2 = 0.94 and %hat for

lim
R = 1.0 the valué of blim is 2.5 times larger than that. The
case of R= 0.94 is selected here for simulation.

- . r . -
In Fig. §.7.a). vibration in Z during the first three

cuts (passes) is plotted versus time T = n x At, where

—
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Fd
At = 0.0002 sec. The chip width is chosen b = 1.212 mm which

1s slightly above b The length of one cut corresponds

lim®
to one revolution of the workpiece per 0.1 sec. This means
that the numberfof simulation steps between subsequent cuts
is taken here L = 500. The individual workpiece revolutlons
are correspondlnﬁry indicated as L,~2L, 3L, etc. It.is seen
that at the entry 0f the tool into the first cut natural

decaying viﬁfation of the system is produced which leaves

undulations on the surface and these .begin to reproduce during

-the_fecond and third cuegf\gfc. ~ Between the second and third

cuts a-growth is seen indicating instability. However,

‘already the first cut is not purely natural vibration because

of "mode coupling". This is explained later. In Fig. 6.7b)
simulation of a case is presented with lafger‘chip width

b=2.2xb = 2.222 mm. The vertical scale of the graph

lim
is 70 times larger than that in Fig. 6.7b) to accommodate the

-much faster rate of incregase of vibration amplitude Herg it

is seen that there is practically no decay at the beglnnlng

This is due to a larger self etc1tat10n enérgy arising

from the larger chip wldteip’In the fourth revolution the

vibration z reaches Eq\amplltude of 0.22 mm whlch is 1.5 times -

the average chip thickness-h

The details of the p;stesg“are shown in Figs. 6.8 and

6.9 whlch expand on sections of Fig. 6.7b).

" In Fig. 6.8a) vibrations z are plotted for sections
S1, S2, S3, S4 of Fig. 6.7b). These sections follow each

other exactly always after ‘one revolution and they represent
» . -\
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subsequent undulations on one and the same section of the.
circumference of the workpiece. It 1is seen that in ﬁ?e 4 h‘
cut the tool already jumps out of the cut for a part of the
vibration cycle. The shaded area represents the material
removed- in this cut. The horizontal coordinate in this case
is the angle of-workpiece rotation in degrees. There are
-about 17 waves per circumference'of the workpiece. 1In

Fig. 6. 8b) the cutting force F is shown for the last cut
z(n), of Fig. 6.8b). It is seen that repeatedly, the force'
N becomes zero for a part of the cycle. In Fig} .
z(n) of Fig. 6.8a) is plotted.versus u{n), see Fig. 6.5.

The grapﬂ shows the actual motion of the tip of the tool in
the Z—U_cqordinates. The tool moves on this elliptical %ath

in the direction of the arrow and during the motion from point.
A fo point B it moves outside of the cut. The eutting force F
has the direction as indiéeted at two arbitrary points along
the path. During the motion from point 1 to pdint 2 the force
has a positive component into the direction of the veioci;y

of motion - it drives the tool. During the motion from

poiht 2 to point 1 the force cemponent acts against tHe mption
the force brakes the Totion. Even wiiheut the tool jumping -
out of the cut, with the direction of‘motion‘as shown here the
1-2 motion:is carrled out deeper in the cut than 2-1 and there-
fore dur1ng the 1 2 part the force is greater and the work
supplied is greater than during 2-1 and a surplus of self

excitation energy results. This is the mechanism of "mode

coupling” whigh acts.here in addition. to the "regeneration of

6.8c)} vibration

-

P

;-..-.-&.. P
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waviness! mechanism and in;reases the intensity of self excita-
tion. For a singie degree of freedom system the tool méves on
a straight line and mode coupling is not active. Similarly
for f1=f2 the tool moves on a S-Faight line (both vibrations
have the same phase) and therefore the case of R=1 ha higher

stability in the graph, Fig. 6.6.

Now, with the tool jumping out of the cut the braking ga

action works only from B to 1 and there is still more energy

left for self excitation. !

In Fig. 6.9a) vibration z is sho in seétions over
the same part of workpiece revolutions 99 to 103 after the
" start of the cut. So, this graph actually follows the one in
Fig, 6:8af after another 98 revolutions of’the workpiece.
By this time vibration z has stabilized at an\a plitude of
0.35 mm (2.3 times the average chip thickﬁess). The tool leaves
rvthe cut for a little more than half the vibratory ¢ycle. The
.shaded‘area shows the material cut during each cycle. ,In
Fig. 6.9b) .the tool mp?%on is shown in coordinates Z, U,
'Agaiga dhring motion 1-2 the force drives the tool. Between
A and B the tool does not cut. Thus, there-is no force to
. brake the tool along the path 2-1.
;1 Thé diagrams in Figs. 6.7, 6.8 and 6.9 illustraté vefy
Eégarly the process of self excitation in turning. Due to
the non-linearity of the tool leaving the cut the amplitudé

of the chatter does not grow indefinitely but it stabilizes

- after a sufficiently large number of workpiéce revolutions

" at a finite value. This value is eaSily obtained by simulation

N
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computations as destribed here. This value depends on the

chip width Zgig{g?ow much it is larger than the value blim'
In Fig. 6.10 results of a number of computations are

summarized.- The amplitudes z of fully established self

excited vibrations are plotted versus the éhip-width b for

a system shown in Fig. 6.5 for various values of the ratio R

of the two natural frequencies. There is no vibration below

the values-b as determined by Eq. (6.1). The various values

1lim

b are those found on the z = 0 axis. The lowest b

lim . 1im
correspongg to R = 0.94 and the highest to R = 1.0. The value
of blim would further grow for R > 1 (i.e.'fl>f2). For any -
value of b>b1'im the amplitudeé¥oé, vibrations gTOWS uptil it
exceeds the averaée chip thickness h (the feed per revolution).
In our case h = 9.15 mm. Then the tool starts jumping out of

- the cut and the amplitude of vibfation stabilizes at a vaiug

“which increases with any further iﬁcrease in b.

The vibration with an amplitude larger than ﬂ is
usually considered unacceptaBlea Cofrespondingly, one may

' conclude that the boundary between stable and unstable machin- .

'ing'wiph continuous cuts (turning, boring) is very sharp.

. >4 . . * l
6.5 Interrupted Cuttiﬂg_;_(Miuinﬂ/ ‘

The model used for simulation iS'showﬂ‘in Fig. 6.11. -

, y . : D .

A system. with ‘two mutually,.perpendicular dégtees of freedom
X, and X, is used. ‘Xl.and X, will be denoted here/Xpand Y,)J
respectively. The aré.of'fhe cut goes fqoﬁ 4 to.¢;. Several ¥

) . v B a, -

L -

:
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\
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teeth are engaged in the cut over this arc. At any time

step n there are as many forces acting on the system as the
)

number of teeth cutting, assuming for §Egﬁlicity the teeth

are straight. In the figure there are three forces,Fl(n)-FS(n).

Along with each foree Fj(n) there isfg direction Zj(n) normal
to the machined-guyface. Both;Fj(n) and Zj(n) rotate with the
cutter, The angle between Fj(n) and Zj(n) is g which is '
constant and has the same value for all the forces. The angles
. between the modes and the normals to the surface, e.g., between
X and Zl(n) and ZS(H) are all(n) and “is(ﬁ) respectively as
shown in the figure. Tﬁe ﬂvérage chip thifkness, e.g.,
hl(n) = ft sin ¢{(n); where,ft is the fged/tbo;h and ¢(n) is
the angle position of the first tooth. Similarly, hz(n) = f

(n) + ¢,.); w:jpé 9y is the\angle between tooth 1 and
ere = 0.15 mm. ' '

t
sin

tooth 2. s ed~

The parti®ular geometries of the milling operatiohs
considered here-ére those depicted in Fig. 6.12 which will be
furth ? aﬁalyzed. These are: half-immqrsion (radial depth of\
cut'e?ials half cutter diameter) up—mi{ling, b) half-immersion
down-milling, c) full-immersion milling, i.e., sldtting.

The cases a) and b) represent the first and second half.of"
the case c) respectively. We will consider an end milling
cutter wit@!fogr teeth having straight edges (non héli;al);

T v

€ stiffness

The two modes of vibrations have the s

K NKy = 2 % 107 N/m and damping ratio & g, = 0.05

but different natural frequencies,:fx, fy‘

In the following we will be discussing'five different
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arrangements of the vibratory system:

a) f_=f_ =-660 Hz

X Y . _
b) fx.= 633 Hz < fy = 660 %Z, bf) fx = 6?0 Hz >'fy = 633 Hz
c) fx'= 660.Hz < fy = 960 Hz, -¢c') fx = 960 Hz » fy = 660 Hz

«» The cases a), b), and c) differ by the ratio of
the natural frequencies of the two modes of vibration. In
all thegé three cases the direction of the feed is X as
shown in Fig. 6.12. The cases b') and c¢') are reverse to
* b} and ¢) respectively. They,will be indicated as milling
with th? feed in the Y direction because they act as b) and
c) if fx and fy are iqterc@gnged.

In analyzing chatter in milling it has, so far, always
been dore so that instead of the varlable d1rect10na1 factors
such ones were used which correspond to the mean directional
orlentatlon [8]. This is illustrated for the up-milling.case

"4 in Fig. 6.12a). They would corfespond to a) N 459,
b)
a) u, = 0.64, u_= - 0.3, b) u, = -0.3, Yy = 0-64, £) u, = 0.34,

X Y

u, = 0. This is, of course, an oversimplification of reality.

If the variation of the directional factors is appreciated it

135%, ¢) % = 90° and for g = 70° their values would be:

is realized that during the cut either the X or Y mode takes
over and the frequency of vibration may change.

If excitation were an instantaneous phenomenon then
the limit of stability against chatter would vary during the

~dpotat10n of the cutter as the directional factors and cqn%?qyently

- !

i
]
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the contribution of the modes to the undulation of the machined

erface vary. This variation is.illusfrated in graphs in
,J/qug. 6.13 where /instantaneous" values of b1im as obtained

from Eq. (6.1) are plottéd versus the angle of rotation for

up- and down-milling of the above cases a) and b). The

broién line parts of the graph correspond to chatter with .

the higher of the two frequencies and the full line to the lower

one. However, excitation cannot fary'instantaneoﬁsly, vibrations

decay or increase rather slowly, time is‘needed for transitions.

Especially chatter cannot start with one-frequency and change

instantaneouslyainto another frequency. Obviously in eachf

of the presented cases there is some "average" value of bysime. ‘
It is not certain whether. it corresponds to the values at '
_450 and 135°, respmsetively which are usually used.
o Furthermone, ghe variation-of chip thickness has also
strong implications for tﬂe "'saturation'" of the force a;
expressed by the non-linearity éondition BQ;;EG.Q). At the
beginniné of the cut in a), at the end of the cut in b) and
both at the beginﬂing and ihe end of'the cut in c) the average
thickness fg_zqrg_and, therefore the tooi will jump out of the
cut at even the‘smallest vibration. | '

/‘;;; cutting forces Fj*s are perdodically variable also
in the case of stable cutting, without chatter. This variation
has a basic period equal to the interval betﬁé;;\?he’féeth
which in our case is 1/80 sec. We will not discﬁss the form

[ 3
of the variation of the forces; it will be visible in the

T P

J



-

163

following plots. It is, however, necessary to point out

that in the cases a) and b) the sudden changes at the exit

and entry, respectively, of the cut periodically-excite _,////
decaying natural vibrations in both X and Y. 1In _the case

c)} where two teeth cut simultaneously the sum of thelr forces

is constant and it has a constant d1rect10n (if the cutter

has no run-outy. Therefqre, in this case, the cutting force
ifself does not excite any vibration unless self excitation
occurs. All fﬁese aspects, the-varying directioﬁal oriéntatﬁbn,

3

the varying chip thickness and the forced and transient natural

/;‘yjﬁéif vibrations due .to the’ varlatlon of the cutting forces make the

analysis of mllllng much more complicated than that of turning.

: \
Probably the only way that it ca properly done 1is

“simulation which also permits, w o difficulty, to includé

the basic non-linearity of the topl jumping out of the cut.

~ The transition betwe-- stable and unstable cutting
is "blurred" by the transig¢nt natural vibrations excited per
every tooth pefiod which occur already below the iimit. of
stability. This s illustrated. in Figs. 6.14 and 6.15. 1In
Fig. 6.14 the x anéh;db%brations are plotted (as simulated)
for the first eight tooth periods for the above &) case,

£ '= £, up-milling, for chip width b = 0.6 mm which is

X y
slightly below the limit of stability (as is shown later
- . o
bism = 0.7 mm for this case). The basic periodicity per cutter

tooth is clearly visible as well as the transient vibrations

with t@e natural frequencies of the system. In Fig.\UTTS‘tﬁg/

~
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x and y fibrations of the same case are shown but a 1arge£
chip width b = 1.2 mm is used. This is already beyond the
_limit of stability and vibr%tiéﬁs are increasiﬁg in amplitude
per every tooth period. The vertical scale of this graph is
5 times 1arge£ than that of Fig. 6.14. .
Some insight info the self-excitation process in
milling is provided ih-Figs. 6.16 to 6.20. 1In Fig. 6-16a)
vibration in the Z direction (normal to the cut - radial ) .
to the cdtfer) in four subséaaéht*cuts (subsequent teeth)
number 51 to 54 (after 50 cuts from the beginning) is shown
for the 0% ¢ < 90° up-milling cut of case a) and chip width
b =1.2 mm., This is obviously well established chatter. The
shaded area shows the actual removed material in cut number 54.
Fig. 6.16b) shows fhe corresponding tangential component of
the cutting force. Fig. 6.16c) shows the tool tip trajectory
’i;\tﬁQ‘z, U coordinates. It is interesting to see ;hat, now, .-
unlike in tuwrning, even for fx'= fy, the trajectory is not a,‘[
straight line but evolving ellipses and "mode coupling” is
active, The arrow shoWs :the direction of motion. For two
of the cycles the péints A, B, C and D are indicated. bFrom
the start S to A the tool moves outside of the cqt;—fr&h A to
B it cuts, etc., froﬁ D to E it dées not- cut, etc. in a way '
similar ¢o Fig. 6.16a) the case of down-milling is shown iﬁ -
Fig. 6.17.for'cuts 100 to 103 and in Fig. 6.18 the case of
slotting (b=0.4 mm) for cuts 100 to 103. Again, in both these

cases chatter is fully established, vibration does not vary

from cut to cut (tooth after tooth}.
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In Fig.s 6.19 and 6.20 the case b) of £ = 633 Hz

and fy = 660 Hz and b') of fx = 660 Hz and fy = 633 Hz are

shown respectively, for up-milling and b = 1.2 mm. 1In Fig.

6.19a) the vibration z is shown for cuts 50 to 53 and in

Fig. 6.19b) the trajectory of the tool tip is shown in the

2, U coor&iﬁates. It is seen that chatter is fully developed

and the "mode ;oupling" mechanism is strongly active; the

ellipses are wide and the tool moves in the right direction

for mode-coupling self excitation; notice the direction of the

cutting force F.

In Fig. 6.20 the g§§i;of thé‘reversed~frequencies.
is shown (f_ > ff’ milling in Y). 1In Fig. 6.15a) vibration z
is shown for cuts 50 to 53 and iijig. 6.15b) the corresponding
tool tip trajectory is shdwn. The'direqi%on of the motion is
correct for mode-coupling self*excitatioﬁ:but the ellipses
become very flat in the lattgr part of the.cut and this mode

of self excitation is, therefore, weak. Although there is

sustained chatter which is;fuliy developed its amplitude is

much smaller than in the case of Fig. 6.19.
Computation of the various cases were carried out

for a number of values of chip width b and sufficient cycle

carried out to each established vibrations. The summary of '
the results 1s presented in Fig. 6.21. The three diagrams
cérrespond to slotting (S); down-milling (D) and up-milling
(U) respecti¥ély. |

In éach graph the aY, b), ¢) and b'), c') cases
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of the various frequency combinations: 660/660, 633/660,
660/960 are included with always fx < f? while X means
milling in direction X (cases‘a), b), and c) of the previous
classification) and Y-means milling in the Y direction v
(cases b') andfc') of X with reversed frequencies).

The following observations can be made:

1. In slotting, the transition between stable and unstable

‘machining is rather sharp and for any b » blim the amplitudes

of chatter increase fast. In up-milling and ﬁownjmilling

(half-immersion milling) the boundary between stable and

uQEEiEif‘fﬁtting is wide; with chip width b increasing the

amplitude of established“vibration increases first rather

gradually. It is not eas¥ td clearly define the limit of
- { . . -
1im® It is suggasted to extrapolate the part of

the fhdividual lines to PTP = 0 and take the intgrsect as b

stapility b
lim*
v 2. Iq slotE;ng bliﬁ_;s in the average about.half that in
the half-immersion cuts.” This is due to the fact that twice

as many {eeth cut simdftaneously. However, for fx = f it

Y
is less than half and it is the lowest stability of all cases. ¢ o~
(This is'contrary to turning where the case of R = 0.94°
which corresponds here to 633/660 Hz system which was much

less stable than R = 1.0). This is due to the rotation of the

cutting force. ' ‘ d
3. In slotting the direction of the cut does not matter
r . -
as long as the parameters of the two modes are the same. ! -+

Stability of the case ¢) with frequencies f1 and fz far

2

e e . : R -
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apért is much higher than for R = 1 and R = 0.95. The same
applies to up- and down-milling for the cases b) and b')
with_frequencieé fx and\fy not equal but close; R = 0.95
and. 1.05. - In these cases (b) and b')) the direction of the
feed has a strong effect.

.The final ;écapitulatf n of the simulation results

)
where just the b

for the théoretical vibrafbry‘systems is presented in Fig. 6.22

1im Values are assembled (black bars) and

they/a;é compared with the values b (blank bars) as they

lim
were always calculated in the past under ‘the assdﬁption of
the mean directional orientation. -

Firsts, the same .main conclusions can be repeated as
for Fig. 6.21:

Up- and downlmilling.is‘about the séme and =eed

direction does not matter if fx and f? are'either'equal or far

apart; but they differ and feed direg}ion has an effect if

rent but close. Slotting is about half

as stable-as half-imme n except for fx = fy where it is

still less stable. » ‘
| Secondly, computing™the liﬁ!£ width of cut using the
mean dirgctiona} faq}ors are satisfactory for fx and fy \\
strongly different. As fx and fy get closer they lead to
larger and larger grrors; the qftual stabﬁlity is:smaller;

fo; fx'= fy it is less stable than half of thét calculated

in this approximate way. ' -~
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6.6 Experimental Verification .
v In this section the simulation procedure, applied

;B?ve on theoretical vibratory Systems, will be applied on

an actual millihg machine. The modal parameters, as obtained
from the meagﬁfements of the relative transfer functions bet-
ween the tool ﬁnd the workpiece will be used to predict the
limit of stability tﬂrough the computer simulation. Then

. . . < . . .
cutting tests will be carried out to verify the simulation

results.
) &

*6.6.1 Milling Machine Vibratory ﬁ;del

fhe machine us here is a TOS FA4 milling machine
(5.5 KW).‘ Figs. 6.23 an& 6.24 show the direct relafive trans-
fer functions between the end of a 1076 mm diametqr face
milling cutter and the workpiece in the X and Y directions,

- Tespectively. They were measured using:

AN

- a piezoelectric impact transducer (pcﬁ 218A)
mountéd on a hammer,.

- a proxiﬁity probe,;capaci;ive type (MC1, range

2 0.254 mm, resolution 0,0127 mm for 1-10 KHz'range)

mounted on the workpikce, ‘ .

From these transfer functions,uge.caﬁ identify-two main modes

; (FH 1n the X dlrectlon at 250 and 518 Hz and two me#des in the Y

d1rect10n at 165 and 603 Hz. Th parameters_of these modes

are listed below; :
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Mode Frequency Dampifig Ratio Modal Stiffnéss
1 Hz % N/mm
-
1 250 . 2.7 510648.6
.X .
2 . 518 7.6 142492.0
1 165 6.5 | 1483698.6
Y
2 603 .08, ;;I%§§}6.2
2 o / -

Complete measurement of the mode shapgg of the machine
showed that the first modes (the first in X and the first in ‘
Y) are associated with the headstock and the column.

Fig. 6.25 shows the 250 Hz'mode in the X direction where the
column'bi?ding contributes most. Also, the méasureﬁents
showed that the higher modes (518 Hz in X and 603 in Y) are
#sspc;ated with the spindle. |

As can be seen from Fig. 6.23, the two modes afe far
apart with the first ﬁode being much stiffe;ﬁthan the second
one. The same applies on fig.‘6.24. Since the'objecti%e <\_
here is the aqalysis of chattér rather thaa;redesigning the
machine, only.the paramefers of the spindle'modes (518 Hz
in X and 603 Hz in Y) will bé introduced into the simulation . |
program. Consequently, the vibratory model of the machine | <’

here is reduced to.;hét one in Fig. 6.11 with two mutually

perpendicular degrees of freedom.

6.6.2 Simulation Results _ =

The cutter used here has six straight edges. The

cutting speed is 111.5 m/mih which corresponds_tojé~tooth

- * w

~
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‘frequéncy of 35.5 Hz. The feed per tooth is ft = 0.1 mm.

Four different modes of milling are sgnsidered; a),up-milling
in X, b) down-milling in X,- c) up-milling in'Y, d) down-
milling in Y.‘ In all these cases the cutter is half immersed
(half of the diameter of the cutter is engaged radially in the
cut). The cutting force is taken as‘being proportional and

in phase with the instantaneous chip thicﬁness. The DCFC

‘T is 2 X 109 N/mz. Using these data and the modal parameters

- of the spindle modes mentioned above, the results of the

(

-simulation were obtaipned as follows; "

o

a) ﬁp~milling in. X: Y

By increasing the axial depth of ‘thé cut b, the limit
of stability was found at 8 mm. Fig. 6.26 s the force
components Fx and 1'-‘y and their autopo&ef éctr;?respectively
for b = 5 mm. As we can see in Figs. 6.26a)y ang b) the force
components, although the cut is still stgple, qghtain the
spindle mode frequencies wﬁich are repeatedly excited by the
tooth impacts. The autopower spectra c) and d) show the
tooth frequency and its harmonlcs Fig. 6 27 is si/}lar to
Fig., 6,26 but for b = ¢ mm where the process is already
unstablef The spindle modes are domipating the individual

signals.

b} Down-milling in X

o~

depth of cut b = 23 mm. . Figy. 6.28,9 sﬁ%ﬁ the force components

Fx and FY and>their autopower spectra respectlvely.for :

N

The 1limit of stah;llty here was: found at an axial s

-
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b = 15, 19 mm where the cut is still stable.

[

R

B ]

——

¢) Up-milling in Y:
¥ .
The limit of stability here was found at am axial

depth of cut, b = 18 mm. "Fig. 6.30 shows a stable case at

b = 15 mm while Fig., 6.31 shows an unstable case at b = 1% mm, -

-

d) ‘Down-milling in Y: _
The limit of stability here was Yound at b = 10 mm,
Fig; 6.32 shows a stable case at b = 5 mm while Fig. 6.33

shows the unstable case at b = 10 mm.

,6.6.3 Cutting Tests | | .

6.6.3.1 ExperimentaliSet-Up

P

Fig. 6.34 is a schematic of the experimental set-up.

It consists of; al‘two-compOnents_table dynamometer,"

ural dynamic analyzer (Hewlett_Packa;d 5423 A). . The des-

cription and calibration of the dynamometer is giGen_in

Appendix.VI. The visicorder was used to get the time rec:or‘cl._s_v_"\‘}%§J

of the force compon'ents-Fx and Fy' while the analyzer was use
to get their.'autopower spectra. The tool used was a face
milling cutte{, 101.6 mp diameter, double poaitiVe'(positive
radial rake angle of 5° and positive axial rake angle of-?o),
with 6 carbide inserts; SPU 634-KC850. Cutting coﬁai;ions

s

were mentioned in Section 6.6.2. The workpiece materipl was

-

. »
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1020 hot rolled steel, BHN = 125, in the form of a flat
406.4 mm long, 203.2 mm wide and 50.8 mm thlck It was

clamped to the table dynamometer.

«

6.6.3.2° Cutting Test Procedure

The cutting tests were éarried but for the\four cases
mentioned in Section 6.6.2; half immersion a) up-milling in
"’ X, b) down-milling in X, ¢) up-milling in Y and "d) down-
milling ;2 ¥. The experiment for eaqh case was to keep all
conditions coné%ght but the axial &epth of cut b which was
' to be in reased until® chatter devéloped. One important -
aspect i these tests was to watch for tool wear, should the

inserts ch1p or the wear land on the flank exceed 0.1 mm,

the cuttlng edgei would be replaced by fresh ones. -

6.6.3.3 Identifying Stability Limit

Reaching the stability 1limit, and eventually exceEhing
it, is ‘readily discernible by a characteristic noise,- |
characterlstlc chatter marks on the machined surface, see '
photograph in Fig. 6.35, and by a—cﬁgracterlstlc dlssected
chip fo?m, see photograph in Fig. 6.36. This ChtP form show$.
clearly that the tool does jump ou; of the cut for.sbme time
of its vibratory period. | o e

In order td.improve the safe recognition of chatter

and to‘' correlate the cutting tests to the simulation results,

the récording of the .cutting fotpqttgmpqnenfs and their

e et —————— - B et T A
s
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- autopower spectra was Pecessary. These cutting force
components are direct. indicators aof the relative vibration
between the tool and workpiece relevant to chatter. As soon
as they show the ‘natural frequenc1es of that part of the
:structure respon31b1e for chatter domlnatlng (here it is

the spindle), it is recognized as c@atter. This could be
recognized from both,- their time records and their auto-

power spectra.

6.6.3.4 Cutting Test Results

a) Up-milling in X:

The 1limit axial depth of.the'cut was found at b = 7 mm.

Fig. 6.37 shows the time records of Fx.and Fy and their auto-
power spectra: for a .stable cutting at b =5 mm. Fig. 6.38
is similar to Fig. 6.37 but for b = 7 mm where the cut is
already unstable. These figureé are to be compared with Figs,
‘,6.26'and 6.27. They show a very good agreement between the )
simulation results and the cutting test results,
b) Down-milling in:X:

The axial depth of the cut was increased here up to
15 mm without chatter developing fully. Figs. 6.39 and 6.30
show the force components and. their autopower spectra for
b =6 mm and 15 mm respectively. In both cases the cﬁt was

consideréd as being still stable. The depth of the cut could

not be increased any further due to the finite length of the

-
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insert's edge. ' The

with the simulation

of stability occurs

pc)} Up-milling in Y:

Similar to
cut of 15 mm could

Fig. 6.41 shows the

174 *L

cutting test is again in good agreement
results which showed that the limit

at b = 22 mm,

the previous case, an axial depth of the
be reached without encountering chatter.

time reﬁordg of Fx and Fy at b & 15 mm,

Again, the agreement between the simulation results and the

cutting test results is good.

d) Down-milling in

.

Y:

The limit axial depth of the cut was found am b = 10

mm. Figs. 6.42 and 6.43 show the time records of Fx and

Fy

and their autopower spectra for a stable cutting at b = 5 mm

/b” .
and unstable cutting at b = 10 mm respectively. Comparing

‘these figures with

figures 6.32 and 6.33 respectively,

reveals that‘thglagreemeﬁt between, the simulation results and

the cutting results

is good.

Summarizing, in all the cases handled here both results

*

»

of the simulation and cutting tests are in good agx:jijnt.

6.6.3.5 Stability Limits Using Mean Directional
Orientation Factors

In this section the limit axiaM.depth of the cut b

lim

for the cases a), b), ¢) and d)} will be calculated using the

L

e T R VI
.
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meaéldirectional orientation factors which are:

]

for a) and d) u, 664, uy = -0.3,

= - : = Y |
for b) and ¢} u = -0.3, uy 0.64 A Jé9
- R
The transfer functions, only the real part, in t /f—”<

Figs. 6.23 and 6,24 are, first, multiplied by the correspond-
ing dlrectlonal factor, and then added together, to- get the
orlented transfer ﬁgnctlons, F1g s 6.44 and 6. 45. From;these,

oriented, we get the minimum real parts Gmin's' Applying

Eq. (6.1) and using r = 2 x 10° N/m® werget:

A

i) for cases a) up-milling in X and d) down-Milling ih Y

b

. 4 L
blim = 7.94mm

ii) for case b) down-milling in X .and c) up-milling in Y

b 9.26 mm.

l1im

o~ ‘
Before making a fiyai’gg;;;rison between the results

obtained here, let us consider first the following set of

cutting tests.

.6.6.3.6 Cutting Tests of Aluminum

These tests were designed such that the flexible tool
mode would participate in the chatter process. The tool used
was a HSS (high speed steel) end mill, 25.4 mm diameter, 76.2
mm overhang, 4 teeth. The workpiece material was 7075 Al,
BHN=112. The cutting speed was 112 m/min, feedrate ft = 0.1

mm/tooth.

Pt S
v

e LU
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~ , Figs. 6.46 and 6.47 s irect relatiye transfer

functions between the end of thestool and the workpiece in the

] ‘ .
"X and- Y directions, resp;étixelyﬂ- The parameters associa(ed

with the tool modes are,

Frequency Damping Ratio Modal Stiffness
///:—‘hf‘hfﬂ Hz 5. \ N/mm
X 1587 1.93 11623
»
\\\ Y 1600 2 -/ 10770
. ~
L8 .
The vibratory model of this System can, again, be
b4
considered as having two mutually perpendicular degrees of
freedom in the X and T/;irections respectively. The wave-
length at the ;1600 Hz "and cutting speed 112 mm/min, is 1.17mm
which could be reproduced. . .
As we can see from Figs. Q.4' %bd 6.47 the -two modes
associated with the tool have almdstlthe same parameters
- except for the damping ratios. And since the tool has four
»
teeth the cutting tests here can be compared in the general
trend with the simulation results of the theoretical viﬁratory‘
system with & = f in Section 6.5. -
X - 7y &
The cutting té?z§ conducted gave the results in

Table 6.2.

u‘_,'\

e T T .
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Table 6.2 Al Cutting Tests Results

Direction

i

1/2 imm U| 1/2 imm. D | S| 1/2 imm. U| 1/2 imm. D

b (mm) 10 . 12 4+ - - 14 15

lim

&

Ay

6.7 ~Discussion

a). The theoretical vibratory systems handled in Section 6.5
had, always, the same stiffness and damping rafio in both
directions,‘ The tool had four straight teeth (non-helical)

and the tooth frequency was keﬁt”at 80 Hz. Consequentiy, the
observatioﬂs and conclusion;;éerived‘in Section 6.5 are c&n-
cerned only with such systems. No atteﬁpt was made here

eiiher to study the effect of the number of teeth of the tool
nor the tooth frequency. Gygax has found in his theoretical
study [92] that these parametérs have an effect ow the dynamics
of the Tilling operations. However, their effeét on the
stfbility limit pas yet  to be explored throué% the simulation
p;ocedure described here. Thig could be subject to future
work. |

b) Fig. 6.48 shows a comparison bgtwéen limits of stability
obtained through: simulatiom, cutting tests and using the mean
directional orientation factors when uéing thg face milling

‘ . ’ \
cutter on fjeel. All results are close for up-milling in_X and

4

N e e e L -
"
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Hown-milling in Y. They differ very much between; simulation
and cutting tests on one hand, and using the mean directional
orientation factors (as used to be taken in the past) d@~the

other hand, for down-milling in X and up-milling in Y. This

proves the validity of the mathematical simulation procedure
prégented here over the previous treatment of chatter based
on, Eq. (6.1).

c¢) The cutting tests of 7075 aluminum showeé that the limit
of stability in slotting, in both the X and Y directions,

is about 0.4 of b obtained in half-immersion millings

lim

in the corresponding direction. It was mentioned in Section
»

6.6.3.6 that the vibratory model of the machine, in that
particular case, could be compared with the theoretical one

in Section 6.5 with £x = f&' For that system, the latter, slotting

"

gave .b = 0.4 by, in half-immersions. The

lim
ratio between the limit of stability in slotting and in half-

immersions was also calculated using the mean directional
: b

oFientation factors-énd‘it was found as, b(slotting 2 9.6 b1im
(half imwersions). As we can see hoth ;%g simulationJ%nd
cutting tests resulted in the same ratio which is differgnt by
more than.30% than that obtained using the mean directional

\

factors. This, again, wErifies the simulation procedure.
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- CHAPTER 7

—
L

CONCLUSTONS
- /'_.‘ ’

In this‘chapter the summary, contributions and main

conclusions oX this work are presented. Also some ideas

about ﬁbs%ible future work are suggested.

Summary

1. ' Identification .

* In identifying the unknown structural parameters
. - ) -
of the $ystem from the experimental data obtained from the

Modal Analysis Testing, two situations arise:

a) If all relevant éoofdinates are available then a
systgh of linear equations can be as;embled from: either
the equations of motion alone in the case that Anly parts of
the mode shape vectors are measured' or from the equations of.
motions as well as the orthogonallty relatlonshlps in the cas
fiat full length mode shape vectors are measured.

The unknown parameters are then obtained in the least
square sense using the pseudoinvérse method.

b} If some ‘relevant coordlnates in the mode shape vectors
are m1551ng, like coordinates on the bearlngs and splndle Ty
inside a headstock, then establishing linear equations in the
hnkhdwn parameters is not possiﬁle. Consequentlf, a non-

~linear optimization routine could be used to minimize

179



- 180

~

the errors between the experimental modal data and those®

computed using initial estimates.

2.° Modelling . <

The identification techniques were illustrated on -

two examﬁleSu Mathematical models of two actual milling

machines have been establishéd from the expérimental modal

-

data. As -a special case a model for a lathe is suggested.

3. Disassembling a Substructure

A procedureqwas develoﬁed to obtgin the dynamic
characteristics of a substructure using the experimental
modal data measured on theowhole assembly. This is demon-
strated on the sxample of the lathe mentioned in 2.

4. Chatter in Machining

N

The problem of chatter in machining in this thesis
is treated in an original way, through digital simulation

in"the time domain.

’

-

The main contributions to general knowledge may be

: v
summarized as follows:

1. Identification procedures were formulated in a
™ systematié coherent way and examples were

provided of their applications to theoretical

structures as well as Machine Tool

~ oL -
—_—
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structures which present special.difficulties

L d

beceuse of the rather nonuniform distribution

of masses and flexibilities and because of

the strong influence of nonlinear joints on

The pseudoinverse mefhod, which was first used

in this area by Berman and Flannelly [50] for

identifying unknown masses from the orthogon-

ality relationships, was extended to include

v
also the equations of motion.

It was shown that in orthogonalizing mode

shapes with respect to the known mass matrix

using Targoff [59] algorithm before applying

them to the identification of unknown springs

of the structure can be of advantage only if:

the number of available modes is
order of the system and, mainly,
métrix is exact. This procedure
if the number of available modes
it can lead fo erroneous results

matrix is inaccurate.

equal to the
if the mass
is inéffective
is small and

v

if the mass
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4; It is proposed: If the available exéerimental
modal data are lizmited, e.g. only very few
modes cbuld be 4:asured in the frequency raﬂge
concerﬁed, or‘Ehe number of accessible co-

. ordinates is wvery small, then a suitable change
of the ;tructure should be introduced in the

.experimeqt.so as to obtain additional modal
information. " E.g. a small‘mass can be added
to selected coordinate.

5. In modelling machine tool structures, it is
important to concentrate on those flexible'modes
resp%nsible for chatter. This may be a difficult )

» problem. / | | ® |

The work presented here contributes to

;}ts solution-by providing two examples of modell-

ing typical machine tools. The rational approach

“of interpreting the fiexibilities in the structure

based on the measured mode shapes and consequently
establishing the geometry of the model -as well as
obtainiﬁg initial estimates of the unknown para-
meters; could be followed in modelling similar

~

*machines. e
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In this work a typical model of a lathe
structure is suggested based on the measured

mode shapes. A prbcedure is developed for

" obtaining the dynamic characteristi;iﬂiﬁfthe

lathe structure alone by subtracting™a known
workpiece using the measured modal parameters

of the assembly. The lathe structure character-
istics are obtained in this way rather tpan
measuring them directly. The weak couplihg
between the headsfock and tailstock might make
the data obtained in the latter way unreliable.
fhe procedure is general and can be applied to

other structures.

In this work an original approach to machining
chatter is presented. The digital simulation of
the cutting process inciuding éhatter in the
time domain 'is carried out. The vibratory models
of the ?aqhines used in the simulations are
established from the experimental data obtained
through the Modal Analysis Testing. |
For.the-first time in the field of investi-
gations of chatter the variation in the cutting
force direction as well as the variation in the

chip thickness during milling are considered in

-
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estimating the limit of stability.
Cutting test results carried out in this
préject have confirmed the results obtained

through simulation. = ° .

Significance of the Work .

1. Identification and Modelling

Establishing mathematical models 7of mechanical
structures from the experimental data andstdentifying the
unknowﬁ parameters in these mode&s is an important tool
for assessing a wide range of design changes. This is
especially valuable when the coordinates at thoh the
design changes are intended are inaccessible.

The identification also can enhance the'F%nité
Element aﬁplications by providing the data on jointiiizf
possibiy on damping. & ' ‘?: '

&

2. Dynamics of a Lathe

The procedure developed in this work to predict the
limit of stability against ;hatter for any workpiece béfore-
hand could be implemented in the Postprotessors of Numerﬁcally
?3234011ed Turning Centers, in order to be includeg'inwfﬁe

process of determining cutting conditions. /

r

'



“\Tghg

185

¢

3. Chatter in Machining

The cutting tests carried‘outwin this work have
shown that the digital simuiation approach\to the problen
of chatter in machining represents the reality very closely.
Based on that, new acceptance tests procedures of Machining
and Turning Centers were fbrmulated [93]. Alsé,‘milling
cutters can be designed [94], and the effects of cutting
speédmon chatter can be iqveStigated [95] under more realistic

conditions. Q\\//

Ideas for Futufe Work

Future work should concentrate on developing the
identification and modelling procedures presented in this *

thesis into well packaged and easy to use computer_§oftware.
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APPENDIX I

=
.

L

~TRANSFORMATION MATRIX FOR RAM-TYPE MILLING MACHINE
. The coordinates of the lymped masses in the model
of the Ram-Type machine in Figure )4.4 are related to the

main coordinates Xp» Xy...Xc acCCO ding to:

'xa 0 o0 0 1 o |

x, ~ 0 0 o0 o0 5:“11
x_ 1.5 -.5 0 0 0 x,
x -45 145 0 0 0 X
dl /I T ¢ 37

$ % V= 0 1 0 o0 o X
% t{ 0 0 1 0 0o | |x]
Xg 0 .55 .45 0 0

' 0 0 o0 o 1

*g R

x. ] Lo o o -.83 1.83

N .y .
Toloxs
The matrix [Tm] is used to transform the estimated

-

lumped masses to the main coordinates according to Equa-

tion 4.2,..
N
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APPENDIX II
MASS MATRIX OF MILLING MACﬁINE (SUBSTRUCTURE" 1)
Figuré II.i shows only substructure 1 Ef the
milling machine model in section 4.3. The mass distri-“-
bution of the headstock is represented by seven lumped
masses m,-m, while that of the column by the'masseé
Mg=My,. &, f, g, h, p and q are the ratios between the
distances between the individual mas;es to the length of
the headstogck. The transformation matrix between the
A

local -coordinates yl-yiz to the main coordinates of the

substructure xz, Xs and-x1 can be derived as given in

I1.1.
(v) 0 [raerm @) 0 [x,)

Yy (qte+f+g) | - -(q*e) 0 (X3 II.1

Ys (i) | e ol |x

yo | 1 ) 0 o ‘.

v | . 2 £ 0

Y 0 1 0

$ 77 = 1/(g+0)| - (Eg) 0

ve | o . 1

Yg 0 0 1

Y10 0 0 1

* W
Y11 0 0 1
12 9 0 1

4]
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The matrix [T] can then be used to transform the

individual masses into the main coordinates,

[m 1y, = [T]Tijﬂ ) I1.2

With respect to stiffnesses the transformation

matrix is obtained as:

: | . N
I DT r[(L{l)/2+e+f+g*~p+q_] -[(L-1)/2+e+prq] 0] | x,
'\y al - (h+(L-1) /2] [h+frge(L-1)/2] 0] {x, } 11.3
e,t 1 - 1/(g+f) B 3
\
V12 . 0 - 0 Y
L /
(1]
Then,
- T
(kylges = IT'] Fku ('L _ I1.4
where k; contains kes kys k, and k,.
'The individual Fuﬁmwg_gpre astimated as:
mass-. mp my, m; m, me  mg m, Mg=m, ,

value(kg) 10.8 20.7 18 18 13.5 5.4 3.6 45 =

1 The ratios e, f,...etc. were:
e £ 'g h P q

.2 .14 16 .09 .21 .2 S



APPENDIX III
SUBDIAGONAL MATRIX CONTAINING DYNAMIC
. CH‘.'A,MCTERISTICS OF ASYSTEM

Let [A] be a square nonsingular matrix of order

n,.say n 6, defined in a set of coordinates x

Let [_D]9x6 be a transformation matrix which relates

cogrdinates x to the independent coordinates q

{x} (D] {q} \
t

‘The ‘matrix [D] transforms [A] in
The matrix [Aq] is thus singular being of orde% 9

i;.i =1, 9.

ITI.1
o the q coordinates,
(Adoxg = [D1T[AI(D] I11.2

and rank 6, Let us rewrite III.2 with partitioning the

iﬁQﬂstl of which_}ﬁt} is square

matrix [D] into [DI]’ [Dz]

6x6, then
) D] (1x6) o
T =
, (A, = [Dy(6xe) [A] D, D, D, III.3
. T
) ._ps(ZxGU ] )
i ,J The multiplication leads to

, T T | T ]
: D; A Dy | Dy 4D, | Dy A D,
| al = | sym. | bl A Dz_l D A D, I11.4"
| : ) | (6x6)
f ——
@ _ .l Dy A Dy

The submatrix [D) A D] is
' 198

nonsingular and it

L
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199 ‘ '

represents a simple transformation of [A] intg thé\toordi-
naies q,°Qq- Therefore, the eigenpafaméters of [A] ‘are, |
preserved. ‘ l |

5 As the partitioning of [D] was drbitrary it is
obvious that any d;agonal 6x6 submatrix of [Aq] would

satisfy the same condition .

4



APPENDIX IV
GENERATING THE DAMPING MATRIX FOR A SYSTEM
WITH PROPORTIONAL VISCOUS DAMPING

For substructure SL in 5.6.1 whose mass and stiff-

ness matrices [mL] and [kL] of size 6x6 could be assembled (::‘\
according t0 the geometry in Figure 5.8, the damping matrix
[cL] wés generated as follows:

a) Tﬁe eigenvalue problem of the system waS first

solved, assuming there was no damping.. The modal parameters e

yA

i? {¢1}: Ki» is= 1, 6.

obtained werei

-

-where Qi's are the eigenvalues, {¢i}'s are t

eigenvectors and K%'s are the modal stiffnesses at coordi- ij

=4

ates .
nat xl

b) Modal damping ratios §5,-5¢ = 0.03 were assumed

:and subsequently used in computing the modal damping corffi-

1
cients(C. as: . _ c
- 2. klya. i=1,6 V.1
s A S At T s : *

C) Since it was assumed that SL had gioportiqnal
damping; then the modal matrix [P] assembled from {¢i}‘s
‘obtained in a) could be used to get [c,]1 by hack transforma-
‘tion, i.e. | 7

e)d = 1p177 e,

[py°t v.2
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APPENDIX ¥
DYNAMIC CONDENSATION OF WORKPIECE MASS
AND STIFFNESS MATRICES

In 5.6.1 the workpiece mass and stiffness matrices
[mw] and [kW] of size 5x5 were obtained from the first five
modes of a free-free continuous beam in transverse vibra-
tions.
The displacements at the coordinateskyl, Yaee¥g
— .
in the first five modes, and taking the displacement Yy, as

1, were computed as:

, r =

y) |1 1. 1. 1. 1.
vl 1. -l 1. -1, 1,
- . V.1
$v, b =|1 5 -.099 "e585 -.621
Iyl |1 0 -.607 .0 .712 -
ve) Lo -5 -009 525 o621
\ J
[Pw]SxS

The modal masses M%*M% were computed as; m%,

me/3, .2499977 me, .2500323 mi, .2546481 m%, where mf{ is

the total mass of the beam. The ﬁodal stiffnesses Ki-K%

were obtained from Mi's and the computed eigenvalues

1

2 PR |
ni, such that,“Ki = Qi Mi.

Then [mw] and‘[kw] were obtained front
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T R - - ]
(m,) = [0 My (P17 and [kJ = [P, Tﬁxlﬂ r1t v.s

In this way [mw] and [kw] are dynamically condensed over the

first five modes.

R e Bt e N .1t

.
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APPENPIX VI
TABLE DYNAMOMETER

The table dynamometer used in the cutting tests in
Chapter 6 measures the force components in two mutually
perpendicular directions. It was used throughout the
tests to measu?e the forces Fx and Fy in the X and Y
directions‘resﬁectively. The dynamometer was fixed to
the table of the milling machine while the ﬁorkpieée was
clamped on top if it.

A schematic of the table dynamometer is shown in
Figure VI.1. The ioad-sensitive elements E%%ﬁfiezo-electric
force transducers with built-in charge amﬁlifiers, in the
form of thick washers (Pcb 201A).  There ére two load cells
on each side. The voltages coming out of the two load cells
on one side are summed together: '

Figure VI.Z shows the static calibration of the
dynamometer. It is linear in both X and Y diréctions. The
static calibration gave the same results in béth tension
and compression. The cross sensitivity in both directions
was less than 5% and consequently there was no need for
compensation. |

Figures VI.3, 4 show the frequency characteristics

’

of the dynamometer. They are reasonably flat up to 600 Hz.
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Figure 2.3 Different Connecting Elements Between
Substructures . ’ |
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Figure 6.16 Details of Chatter in Up-Milling
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