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ABSTRACT

The steady-state growth of cells in binary alloy‘singTe phase
fgiidifiégtion is examined theoretica]iy and experimentally. The failure
of the’margina]-stabi]ity calculations to predict and describe the
grbwth{of stable cells indicates a theoretical gap in this field. The
 Zener-Hillert type model for cellular so]idificafion prépored by Kirkaldy
is discussed. In this theory the physics of cell growth demands that
the 1nterface be a non-equilibrium interface stabilized by Kinetic and
. crystallographic effects. A quantitative model fofrow1ng this Tine is
advanced for the, steady-state growth of two-dimensional cells. The
solution to the free boundary diffusion problem requires, in addition
to the boundary conditions, two éxtra_c&ﬁstraints. A principle of
minium cell root radius, surrogate to the principle of minimum rate of
entropy product1on, is used to provide the additional conditions. Cell
growth in the succinonitrile-salol system was studied exper1menta11y
For' a given set of growth conditions the cells have.a unique steady-
state ‘spacing and length. Perturbation experiments about the steady-

7

state support the validity of the optimization procedure used in the
\s

calculations. Quantitative predictions on steady-state growth are

verified by the gxperiments.
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* CHAPTER 1_
INTRODUCTION
Solidification is a central phase transformation in the-gcience
and engineering of metallurgy. In the manufacture o% metallic articles,.
the starting haterial most'bften is liquid metal which is solidified into
desired shapes to be used as such or after further processing. In most
cases, the engineering properties of the product can be directly

related to the manner inwhich the material solidified. For this

reason understanding of the various aspects of solidification is crucial

to the metallurgist in the quest for producing better products.

The properties of a given material are related to its micro-
structure via well established relations. Tﬁe goal of the physical
metallurgist is to develop and control the processing of mateéia]s to
obtain the desired structure and hence the desired properties. Quite
often the‘structure produced during solidification has a large influence
on how the material should be processed and also on the final structure
and properties. Empirical relations betwgen sol?ﬁification conditions
and the structure are known but thére ﬁas been no major theoretical
advances in this field for nearly two decides.

The microstructure produced during solidifiction is related to
the morphotogy of.the solid-liquid interface during solidification.'

As the solidification conditions are varieﬁ, the morphoiogy of the

interfacé‘changes. In a binary alloy, the factors which affect the

morphology are the alloy content, the rate of solidification and the

1 7
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temperature gradient in which so]idificat{bnroccurs . Empirica]]j it

has been observed that proper control/of EHEEe variables®can produce
either a p]anar interface or a non- planar interface. The non-planar
.interfaces can be further c]assifiéﬂ\into dendritic, cellular or
irfegu1ar interfaces. There is empi;;ca]‘evidenceshowing a continuous
transition between celiular and dendritic interfaces but no such evidence
exists for the transition between planar and cellular interfaces. The
dendritic structures are the most important for engineering applications.
Although many reseéarchers have studied this phenomenon for several
decades there has been no major théore%ica] advances in this field and
there is no toﬁb]ete;understanding of why'dendrites or cells form. Thus
ce]]uTgr and dendritic splidifica@ion pose important theoretical problems,

H

the solution to which will advange our knowledge of solidification
greatily. Q .

Recently Kirkaldy .presented new idegs on celiular solidification,
iqc]uding.a model for the evolution and the steady-state growth of cells.
His ideas have advanced our understanding of the physics of.the cel}
problem. What remains to be done isAthe'dévelopment of a rigorous
quantitative model, not only to test the new. ideas but also to make
qmntitatiﬁehredictioq; on the structures produced during cellular
solidification. This is the ehal]enge taken up in this work. A .
typical cellular interface iF shown in figure 1,

In chapter 2, previous work on this problem is reviewed. Ig

chapter 3, a mathematical model is developed based on the semi-quantitative

mode]'of Kirkaldy. Experimental measurements were carried out on a
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transparent organic model system to facilitate quantitative measurements.
These are described in chapter 4. In chapter 5, a comparison is made
between the theory and the experiments and the model is further amplified

and discussed.



CHAPTER 2
REVIEW OF PREVIOUS WORK

»

2.1 Intreduction

The problem of cellular instability of the-binary solid-liquid
ipterfabe during controlled solidification has been under investigation
for several decades. Like most problems in metailurgy, empirical
observations preceded theoretica} advances in the cell problem. This
problem has been attacked from many different directions using, for
example, perturbation methods, extension of methods used in Ehe related
problem of dendrite groyth and methods based on irreversible thermo~
dynamics. In spite of the fact that this probiem is quite "old", it
wag/éot until recently that an adequate description of the physics of
stable cells was presented. A compliete quantitative descriptioﬁ of
the steady-state cell problem has not yet‘be;n presented. In this

chapter, we shall examine the brevious work done on the cell problem.

2.2 Experimental 0bserv§#ions

The first reporged observation of cellular structure in solidifi-
cation was made by Buergeru) in 1934. He referred yq this structure
as "lineage structure". Pond and Kess]ertz) observed hexagonal arrays
- of cells in impure lead and tin solidified in a temperature gradient;

3) reported the results of a systematic set of

Rutter and Cha]mers(
experiments\?n the instability of the solid-liquid interface in lead-

tin alloys. The main findings of this work are:
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a)-ﬂqggf\certain solification conditions (alloy content,
temperature gradient and |velocity), the so]fd-liquid interface assumes
a regular cellular morphology. ‘ , ]
b) The cell size decreased with increasing velocity and ¢) the
cell size increased with increasing alloy content.
The occurrence of cells was attributed to the presence of a
supercooied region of 1iquid in contact with the solid. This led to
the development of the constitutional supercooling criterion [CS criterion]

which is dealt with.in the following section. According to this criterion,

when the growth velocity exceeds a critical value, the planar interface-

‘becomes unstable and breaks down. This condition was verified by

Tiller et a1.(4), .y
Walton et al.(s) observed that while the planar interface became
unstable at the critical velocity given by the €S criterion, cells were
obtaine& only at veiocities much higher than the critical velocity fér
planar interface break-down. At velocities stightly above the critiéal
velocity, "pox" structure and irreqular breakdown occurred. These
experiments were conducted on the lead-tin system. Similar observations
were made by Herman and Damiaﬂb(s) in zinc and by Bolling et a1.(7) in
germani um. .
Kramey et ai.(a) considered the problem of microsegregation
attending cellular solidification. The cell tip temperature was
measured in a lead-tin alloy. The solute concentration at-the tip, in
the liquid and in the solid, were calculated from thermeasured tip .
temperature and from the phase diagram. It was found that the solute

concentration in the solid at the tip approaches'kcO for small values
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of GL/VCO, and C0=f0r']arge values of the parameter (C0 is the solute
content of the alloy, GL is the thermal gradient in the liquid, v is
the growth velocity and k is the equilibrium ditribution coefficient).
In other words, the effective distribution coefficient at the tip
varied from k to unity as growth.conditions were varied.

Morris and Winegard(g) studied the effects of crystal defects
and orientation on cellular solidification. They observed that the
planar interface became unsfab]e first at grain boundaries and at the
intersection of dislocations with the interfacé. They found a large
inf]uénce_of crystallorgraphic orientation, with respect to the growth
direction, on the morphology of the solid-tiquid interface. The elongated,
hexagonal arrays of cé]]s were obtained only when the cell walls were
parallel to a plane on the [100] zone in lead-antimony alloys. They
also reported that small changes in velocity did not alter the stead}-
state spacing of cells; however, when the velocity was changed by a
large value, the spacing changed, decreasing with} an increase 1ﬁ_ve]ocity.

*Sharp and He]]awel](]o) reported, from their experimental obser-
vations on Al-Cu alloys, that at the cell tips, the curvature is so
small as ;o render negligible cap111ar1ty effect at the t1p at growth
ve10c111és smaller than the dendr]te transition velocity.

| Burden and Hunt 1) measured the tip temperature in Al-Cu
a]ioys. Their results showed that the tip temperature first increased
with velocity and then decreased. The tip concentration; in turn,:
.decreased and then .ificreased with velocity.

(12)

" Jdin and Purdy conducted experiments on the Fe-8wtiNi

alloy. They reported that the tip concentration decreased rapidly



/ ' % 2

with velocity at the low velocity region and remained essentially
independent of velocity at higher velocities. The tip concéntraiion
and tﬁe cell spacing decreased with increasing temperature gradient

at constant velocity. They also observed that at the growth velegjties
encountered, the capillarity effect was ngg]igib]e at the cell/dendrite
tips.

Cou]eé'et aI.(]B) {nvestigated cellular growth -in the Cu-Au
system., They measured the solute profile in the solid behind the inter-
face. Periodic, sharp peaks in solute concentration were observed Jjust
behind the "cusp" at the solid side of the interface. The solute con-
centration profile measured at a large distance behind the interface
showed an absence of these sharp peaks and was approximately sinusoidal.

One of the difficulties in observing cellular solidification
interface fn metallic systehs is due to the fact that metals are opaque
to yisib]e light radiation and so all examinations of the interface
structure had to be done by interrupting the steady-étate growth by
either decanting techniques or quenching the sample. Chadwick(14) has
warned of the artifacts created by'; film of liquid which adheres to
the decanted interface and then freezes. Whether or not quenching
experiments preserve the actuai interface shape is not known.

(15) experimented with a number of transparent

Jackson and Hunt
organic chemicals which can be used as model systems. Bdged on empirical
observations, Jackson and Hunt concluded that those prganic chemicals,
otherwise called plastic crysta]s; which do not facet during solidifi-
cation can be used as model systems to study solidification in metallic

systems. Examples are carbon tetrabromide, and succino nitrile. Since
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that time these and other organic materials have been employed success-
fully. to study various aspects of solidification. Jackson and Hunt(Ts),

(17) and Schaefer and Glicksman(ig) have discussed much of this

Glicksman
type of work.

There are several advantages in using these model systems. They
are transparent gpd $0 thé interéﬁce can be observed directly during
solidification. Also, these materials have very low melting points
and so the experimentation is rather simpler as compared with the
experimentation in metaliic systems. But, one of the drawbacks is that
these materials are not as well characterized thermodynamically as
metals. ) - @,

Cellular structures have been observed in alloys of carbon tetra-

bromide with salol and hexachlorocethane, and in impure succinonitrile.

2.3 Theoretical Work

2.3.1 Perturbation methods

Rutter and Cha]mers(3) advanced the qualitative idea that above

a critical. velocity, a zone of supercooled liquid is to be formed in

front of a growing planar interface. If a pFEfﬁg rence develops on
the interface, it will grow faster than the rest S?‘the interface and
lead to a non-planar morpQology of the interface. This condition,
known as the constitution:$\supercoo]ing criterion, was quantified

by Tiller et a1.(4). It predicts that when the growth velocity,
ot

v > G D k/mC_(1-k) (2.1) .

WA



thglp]anar interface is unstable and non-planar intq{faces are obtained.
Here the symbols have the usual meaning given in the Liit of Symbols.
This ‘criterion is conventionally shown on the phase diagram ag in
figure 2. The cellular structure was considered as a resuit of the
growth of periodic protuberances. At very high velocities, dendritic
solidification t&ok place. The cell spacing was given intuitively as -
D /v. While inequality (1) was found to predict the instability of a
planar interface, experiments showed that cells are cbtained only when
the velocity far exceeds that given by the right hand side of (2.1)(5).-
Mullins and Sekerka(Ig) carried out_rigorous analysis of the
morpho]ogfca] stability of a planar interface. The effeci of capillarity
was included. Steady-state thermal and solute fields were expressed
with reference to a perturbed planar interface and the behaviour of
the pérturbation was analyzed. The perturbation itself was given in
terms of a Fourier series. The rate of'thange of amplitude of the Fourier
components were calculated. The planar interface is stable when ail
Fourier components decay. The principal finding of this study is
that capillarity effect enhances the stability of the planar interface.
The cell spacing)Las given as the wavelenpph of the fastest growing
- fourier component. While this theory predicts the marginal instability
of the planar interface rather accurately, the predictions on the cell

spacings are poorly confirmed by the experiments(13’19).

This is not
surprising because fhe Mullins and Sekerka theory addresses itself
only to the problem of marginal stability of planar interface rather
than steady-state cell growth. The assumptions of steady diffusion

. fields around a small perturbation are not abplicable as these pertur-



" bations grow. The problem becomes unyielding as the perturbations

become large.
It is worthwhile here to note some improvements made to the

perturbation ana]ysis; Tarshis and Ti]]ertzo)

considered the effect of -
interface attachment kinetics on the stability of the planar interface.
They found that slow kinetics has a significant stabilizing effect.
Shewmnn(ZI) investigated the stability of interfaces in solid-solid
transformations. His conclusion was that low interface mobility has a
stabilizing effect on the interface. |

Despite their elegance, the perturbation theories of Mullins

and Sekerka fail when the amplitude of perturbation becomes large.

This is because the theory is linear in which the pertu;Uat1on of -
solute and therpal fields are re]ated linearly to the amplitude of
jnterface perturbation. As Sekerka(zz) points out, where the amplitudes
become large, the linear analysis becomés 1napp11cab1e. For this reason,
calcutdtions of the time evolution of the perturbed interface using the
linear theory do not represent anynoteab]eimprovemﬁnt over the marginal
stability ana1ysis(22’23). ?

. Introduction of non-linearity to the marginal stability analysis
~was done by Wollkind and Segel(®*), and by Langer(2®). This'has Tead
.to more questians than it has answéred. As Langer writes in his paper,
his calculations for stable ce]ls_using non;Jinear analysis showed a
lack of self-consistency as stationary solutions were not obtained.
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2.3.2 Treatment of the cell probiem _ .

As mentioned in the‘introduction to this chabter,‘a complete
picture-of the physics of the cell problem was énly given recently.
However, there are, in the literature, several reports of treatments
of some aspects of ce]lu]af growth.

Boliing and Ti]]er(zs)

attempted an apprdiima?e calcu]atjbﬁ of ‘ \\~
cell spacing as a function of growtﬁ parameters. The';na]ysis of the |
diffusion problem was 1im1téd to a region near the ce]1‘ths. LBca] .
equilibrium was assumed at the tip and Gibbs-Thomson capillarity effect
was included. So]utioné'fo.thennal and solute diffusion equations were
obtained. Invoking the local equilibrium condition and mass balance
_ at the interface, the interface shape was calculated near the tips and
was found to be elliptical. The cell spacing was estimated as the '
Tateral diffusion 1eﬁgth (/Dt) where t is the time taken by the ée]]
. tips to advance, in the forward direction, a distance at whi%h 1atéra1
_solufe field vanishes. Agreement with expefiment was poor. A complete
solution of the cell problem was not given. Their calculations con-
tained a free vafiab]e in the solution. The authors discuss the need
for an optimizing condition in order to obtain a unique solution and
have favoured the use of maximum tip temperature as the dptimizing
principle. |
Kramer et a1.(8) considered the problem of solute segregation
during cellular solidification, using.dimensional arguments. Local
equilibrium was'assumed at the interface whose shape was taken as
_éxperimenta]]y observed shape in decanted samples. The effective

djstribution coefficient at the cell tip was found to approach the
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~ equilibrium distribution coefficient at small values of.GL/vC0 and
unity at large values of GL/VCO, a trend seen in experimenté] observations.

27) proposed a model for predicting equiTi-

Donaghey and Ti]1er(
brium cell spacing and solute distributien. Assuming a simplified
intérface-shape, the solute diffusion equation in the liquid was solved
usinj methodgﬁﬁf fourjer analysis. _In Fhis anaIy;is, the interface
‘shape was a§§umed tO'Ué'rectangu1ar with near-p]ahar groove walls.

" The di??hsibﬁ equation was solved ahead of tﬁe tips and diffusion in

t é groove was represented in terms of a single parameter. .The solution
of the problem demanded an extra criterion and the qé!hoc "maximum-
intrusion cfiterion" was used. Applying this criterion, ég; tip
temperature was maximised with respect to cell spacing. This yie1déd
?%Hations fdr the tip temperature and the cell spacing.

"The model predicts that the cell spacing 1ncreasés with
dgcreasing ve1oé{ty and alloy content and increasing temperature
gradieﬁt:hhThe experimen®] data was so scanty thatrit provided only
two points for comparison with theory. The two pointé were in fair

_———
agreement with theory. - _ .

E Y

The defect of/this model is thét, in the interest of keeping
the solution analytic, diffusion in the grooves wa£ not considered
and the assumed iﬁterface shape was unrealistic. The choige of maximum
tip temperature as the optimizing criterion is without scientific basis.
Buﬂgﬁﬁ‘and Hunt(za) combined Trivedi's(zg) solution for the

isothermal growth of a paraboloidal crystal with the treatment of

Bower et a].(30) of Iyte segregation during growth in a temperature
gradient. Followin et al. and Sharp and Hel]awe]l(3]), zero
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constitutional super cooling was assumed at the'tip. Following the
isothermal growth model, a 7adia1 solute gradient was introdﬁc d to
satisfy mass balance conditions at the tip, A’ re]ationship was obtained
between the tip‘{emperature/concentration and tip curvature. Minimum
tip undeegpaiing was used as the optimizing criterion. The predictions
indicate that the tip temperature first increases and tben decreases
with growth velocity. Correlation with experimentally measured'tip
temperature in Al-Cu a110y5(1]) was good despite the lack of Justifi-
cation for the assumptions used in the model. _ )
-Hi‘lier‘t6 2) criticized the treatment of Burden and Hunt for ﬁ%t
describing the tranSition from planar to cellular to dendritldppode
of growth. He presented a new treatment which was~purely formalistic
and without physica] justification. An assumption was made that a
gradual tran51tion exists between dendritic a;asBianar growth. The .
tip temperature was written as a function of the tip radius of curvature

@ transition. Optimization was done by invoking maximum

E?SL emperature. \\‘\\

Jin and Purdy(aa) advanced a theory for the stead}-state con-

trolled solidification of binary alloys. Local equilibrium was invoked

‘at the interface. A solution of the solute diffusion equation in the

tiquid was obtained for an infinite paraboloidal “dendrite. For arrays

of dendrites, the solution was truncated at a self-gLonsistent boundary

condition behind the tip. Applying mass conservation at the tip, the

tip concentration was obtained as a function of the tip curvature. To
resolve this indeterminacy, Jinland Purdy followed Kirkaldy(34) and

employed the criterion of minimum entropy production. Experiments
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were conducted on an Fe-Ni a]]oy(]z). The\theoretica] predictions were .
in reasonable agreement with theigxperiment. The results showed tH;E
the ti; concentration decreasgd rapidly with velocity in £he Tow
velocity regime and Temained essentially independent of velocity at
higher ve]oc{ties. The tip concentratian and the spacing decreased _
with increasing tempgrature gradient at constant veiocit}. The authors
concluded that the use of zero constitutional supercooling and the
maximum tip temperature criteria yielded resui%gtgﬁzﬁtrong disagreemenfﬂf}r

_with their experimental results. ' \\\\\

\\y As early as 1959, Kirka]dy(34) applied the principle of minjmum
rate of entroﬁy production to the cellular growth problem. Using the

(35)_and de Groot(36), he ‘derived an expresgion for

formulation of Brbwn
the entropy production rate for cellular growth. It was estimated that
diffusion of solute supplies the ddminant source of entropy production.
The system would tend to minimize this entropy production by arranging
the morphology in such a way as to conserve available energy through
solute segregation. It was noted tha£ the segregation, which occurs

; in cellular growth, is a direct manifestation of the system's attempt
to minfmize the entropy production.

Billia and Cape]]a(37)'followed Kirka]dy(34) in their analysis
of cellular growth. Assuming a sinusoidal interface, the position of ;}
which is fixed by a condition that the mean interface temperature is

_ the same as the equilibrium melting temperature of a planar interface,

' - attempt was made to calculate the entropy proahction as a function
’f‘=——4—*—J/—-‘/::/the wavelength of the sinusoidal interfaceT Local equilibrium was
assumed at thelinterface and the capillarity effects was ignored. ‘

-
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Diffusion in the solid was neglected. The composition profile in the
solid far behind the interface was approximated by a cosine function
with an amplitude equal to the maximum concentration difference in the
experimentally determined profile. This was used to ca]cu]ate the
liquid compositioq}af'the 1ntérface gnd the solute profile in the
liquid. The total entrop& production was calculated and a minimum
'was obEpined with respect tg the wavelengh df fhe interface. Comparison
of calculations with the experimental dgté of Jin and Purdy(lz) on
Fe-8%Ni showed reasonable agreement betwéen theorx and gxperimenf-
Severe restrictions'wgre placed on the interface in this model including--
the shape, which did not take into éccount the cell grooves, and the
position of the jnterface wa§ fixed a pri6ri without any justification.
As a result, the solutions that are obtained are suspect.

Billia et a1.(38) have also used the Glansdorff-Prigogine general

evolution criterion(sg)

wpich reduces to the minimum entropy production
theorem.when the Ohséger reciprocity relations are relevant. For the
same model described abovev‘this criterion was applied. The scheme of
calculation was similar to that described above. Again, rsevere
restrictions were placed on the interface shapé and position. Applying|
the criterion of minimum free energy of the growing solid for the same
physical model yielded results which were within a factor of two of‘the
. experimental results(la). H -
In a recent contribution, Kirka]dy(40) showed that the ce11u}af
structure cannot be explained by a theory assuming equilibrium every- -

where at the interface. This fdea, which represents a departure from

conventional, equilibrium propositions for cellular growth, forms the

.—~_\ . v -
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basis on which this thesis s written and is discussed in detail in
the following chapéers. The main features of the contrgbution of
Kirkaldy to the cell problem can be summed up as follows:

a) The cellular state is found in a kinetic phase space
different than the marginally unstable states of the planar inter¥ace,
and therefore is not tractable through continuum methods starting from
the constitutional supercooling criterion. 'In.fact the kinetic state
of stable cells is continuously access1b1e from an intial state w1th
planar interface in which the solid is superheated This virtual
initial condition s shown in figure 3: b) The Capillarity effect is
significant at the cell "cusps", on the solid side of the interface
(figure 4). At all other sections on the  interface, curvature is
small and the capillarity effect is negligible.

c) Local equilibrium must apply at the cell tips and at(iﬁe
"cusp" when modified for the capillarity effect, as these portions of
-the interface are bound by irrational walls. d) The capillarity effect -
;zie;\;\bnsitive addition to the equilibrium concentration at the "cusp".
This effect, together with the large diffusion coefficient in the
liquid and a Tinear temperature gradient and near-linear equilibrium
liquidus line, necessarily puts the cell walls in a non-equilibrium
condition such that the solid adjacent to the_ce]] walls will be
carried into superheat.

e) The cell walls are thus thermodynamica]]y.unstab]e wWith
redPect to meleing and ere only stgﬁlizied by kinetic and crysta]le-
graphic effects. }) The strong, positive capillarity effect at the
“;uSp“ also demands that a trailing solute diffusion profile must develop

in the solid. It is this diffusional flux in the solid resulting from
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the capillarity effect which stabilizes the "cusp" and thus the ce]l;ﬂéﬁr’

interface.
.. —r .
Kirkaldy points to the close relation between Widmanstatten

ferrite in steels and the Tiquid region between the cells. He recognized

the similarity between the two in terms of thermodynamics, kinetics

and crystallography. In fact, from the virtual initial condition shown

in figure 3, one would expect Witffanstitten growth of liquid into solid.
On the basis of the aforementioned model,. an approximate mathe-

matical analysis was carried out for the stable cel] problem. A planar

concentration profile in the Tiquid was assumed (lateral diffusion of

solute neglected). Zero constitutional supercooling was .assumed at

the tip. lAppIication of mass ba]atde at the cusp, yielded a relation

for the radius of curvature at the cusp, r, as
r = r(v,aT)

where v is the velocity and AT is the temperature-difference between
the tip and the cusp. To solve this-indeterminacy, a qualitative
representation of the minimum entropy production theorem was employed.
Minimum entropy production is equivalent to maximum stored avai]éb]e
energy in the solid (minimum dissipation of free energy). This con-
ditioﬁ is obtained when the segregation of solute is maximum in the
solid. This, in turn, corresponds to maximum capillarity effect at
the "cusp" or to a minimum in the radius of curvature of the “cusp".
The optimization was carried out with resbect to v keeping
aT constant. ' Expressions were derived for the length of the cells,

1/2 =,

which varies with v '/“, and for the optimum radius of curvature.
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A quasi-dimensional argument based on Scheil-Chipman segregation calcu-
Tation yielded a relation for the spacing of cells. ,
The salient feature of the quantitative‘hode] is that, it

predicts a region of supersaturation in which regu]ér cells do not
appear. This region lies between the region where the planar interface
is stable and a region where stable cells occur,

A defect of the quantitative theory was to assume a planar
solute concentration profile in the liquid. This is an oversimplifi-
cation as it does not take into account the accumulation of solute in
the cell grooves. An improvemént on the quantitative aspect of the
cell problem must begin with a detailed description qf\the solute
fie]d_in.the Tiquid in confbrmity with the boundary cgﬁaitions.

However, for the first time a complete physical pfcture was
inen of the cell problem. This picture, which stems from an analysis
of experimental observations madg over several decades, marks a \

qualitative advance in our understanding of the cell problem and

forms the basis of this thesis.

2.4 Concluding Remarks

(i} The constitutional supercooling criterion and the more 7
rigorous pertupbation analyses of marginal stability have greatly
{nf1uenced'F€;z:rch in this field. E&Iensjdys ef these methods to
describe stable cell growth have, o;ever,'been unsuccessful., fhere
is an emergihg consensus in the~literature that the marginal stability
of planar/interface and stable cell grdwth.ére tj% distinct problems
anJ\Eherefbre cannot be described by the sa?g medel.

1\_
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(11) It is a foregone conclusion in the literature that solutions
to stable cell growth possess an inherent indeterﬁinacy and therefore
demand the use of an optimizing condition. A variety of such conditions
have been proposed. The most widely used conditions are the haximum
tip temperature condition and the minimum entropy production criterion.
While the former is used purely from the reasoning of competitive
growth, the latter has its foundations in the theory of irreversible
thermodynamics and has a direct physicé1 meaning within the cell problem,

(ii1) Although expé;imenta1 studies have been made for several
decades, there is very little qUantifinge data on cell spacings and
solute segregation. Much of the initial work was aimed at verifying
the CS criterion. The more recent observations were main]y.focussed on
the condition at the cell tips only. Ample data exists, however, to
show that the occurrence of cellular structure is related to Fhe

crystaliographic orientation with respect to the growth direction.



~ CHAPTER 3
THEORY OF CELLULAR SOLIDIFICATION IN A BINARY ALLOY
3.1 Introduction ™~

As wés noted in_the previous chapter, the outstanding problem
in binary cellular so]idifica?ion is to develop a quantitative
theoretical model which describes the phenomenon of stable cell
growth and is capable of predicting important aspects of cell growth
“such as the cell spacing and the solute segregation attending the
process.

In this chapter, a quantitative model 'is developed based on

the description of stable cell growth due to Kirka]dy(40).

3.2 The Physical Model

The problem taken up for solution in this work is thgvsteady-
state growth of cells in a bihéry-a11oy under the influence of a“”“\
constant temperature gradient. The mathematical model is developed.
for the case of two-dimensional cells. The physics of thé three-
dimensional cell problem, with the hexagonal array of cells, is a
trivial extension of the physics of the two-dimensional model and
it is hoped that the mathematical modei for the two-dimensional
problem can be extend;d without undue complexity to the three-
. dimensional problem., "

The model is based‘oﬁ the following assumptions:

.

20
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a) Local equilibrium applies at the leading tip of the cells.

(10-12,40)

As has been observed empirically the radius of curvature at

this tip isllarge 4] cap111arify effects can be neglected. Local
equilibrium is a ;;;;onable assumptiqn at this portion of the interface
as it is curved and irrational, i.e., it .does not lie along a particular
crystallographic plane. One of the properties of such an interface is
that it does not provide a significant kinetic barrier for motion(?])
é;d therefore Tocal equilibrium is applicable. The temperaturg anéb
composition.at this section of the interface are thus related ;hrough
 the phase diagram.

b) Local equilibrium applies at the root or trailing tip,
modified by the capillarity effect. This is a short segment of the
interface with a very émall radius of curvature. The interface is
irrafiona] here also. One of the observations in ourlgxperiments.
which will be described in later chapters, is that the }oot of the
cellular interface isdhighly mobile compared with the other sections
of the interface. Sma]] perturbat1ons around the steady-state, which

{/ﬁ\¥reate rather 1ns1gn1f1cant responses from the rest of the interface,
are sufficient to make the root traverse up or down the temperature
gradient with relative ease. This empirical observation contains more
than a hint that local equilibrium assumption 15 valid at the root.
Local equ1]1br1um here is of course modified by capillarity and the
composition in the liquid at the root is given by adding an extra
term due to capillarity to the liquidus composition given by the phase <

diagram.
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A coro]léry of this assumption is that the equilibrium
partitioniﬁg ratio can be used to give the solid composifion at the
root. In other words, the solidus and the Tiquidus are shifted pro-
portionately as one traverﬁésjglaﬁg the pressure coordinate.

c) The temperaturé'éréd}ent in the solid and in the 1iquid
are the same. This condition is attained in laboratory ekperiments by
keeping the sample in a much larger thermal environment wiﬁh a fixed
temperature gradient, for example, using a masﬁive container of larger
thermal conductivity to hold the sample. Under such a condition, the
evolution of the latent heat of fusion at the so]idlliquid interface
and the difference in the thermal conductivitieshof the solid and the
1iquid have a negligible effect on the thermal field in the sample.
The advantage resulting from this condition is that the heat transfer
problem has been eliminated and the caicuIations are simplified. This
condition has been used by all of the authors whose work was described
in the previous chapter.‘ |

As discussed by Kirkaldy(40)

and in the previous chapter, these
conditions yield a solute profile as shown in figure 4. In relation to
the phase diagram given in figure 5 the 1iquid composition at the root
is given by Xz. which represents the local equilibrium composition in
the Tiquid including the capillarity correction. The composftion in
the 1iquid at the tip is given by the equilibrium value X, at the tip
temperature T,. In this model, we have rejected the use of the "no-
constitutiona]—supercooling-ahead-of—the-celltip" conditionf This

condition has been applied widely in the literature. When this con-

dition is assumed, a severe restriction is placed on the solute profile
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in the liquid. This condition not only fixes the tip concentration,

but also the concentration gradient at the tiﬁ..aﬁg so it is an unjusti-
fied restriction placed on the system. The Tocal equilibrium assumption
at the tip and at the root yield the solid combb§ition at the fnterface
and X,.. |

1S . 25
The region over which capillarity appiies at the root is of

for these points as X

the order of the radius of curvature at the rodt.‘ Empirically this
radius is very small -- at least two orders 6f magnitude smaller than
the length of the cells. Since diffusion in the liquid is fast, it
cannot support an extreme amount of concentration gradient such as.would
be necessary to account for dropping the entire condribution due to
capillarity withjn‘a distance equal to the radius of curvatgre at the
root. In other words, the concentration profile in the-liquid must  _.
fall along a smooth curve from X2 to X.. With hindsight, the concen-

tration profile follows the solid curve along the Tine B-B, and the dashed

curve along A-A. Thqé}\s:ifiifs are of course calculated exactly as a
pagt of the solution. ' . .

Under these conditions it is impossible to maintain local
equilibrium along the cell walls. As indicated in the phase diagram,
at least a pgqt'df the cell walls. are superheated. It is our presumption
that the'ce11\wa115 are stabilized by kinetic effects. The expgrimenta1
obsérvatiénijgf Chalmers and Winegard ané co-workers described in the
previous cHapte(E;;;;}t1early-that ‘the ceils are obtained,at particular
crysta]]ographic\diresyions. We shall return to this non-equilibrium

nature of cell walls in later sections.

»

J —~ 7
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The solute dietribution in the solid behind the inter%ace would
follow along a line from X to X15 Due to the non- equ1]1br1um nature
of the 1nterface along the walls a simple relation between the interface
liquid composition and the interface solid composition does not exist
so the two compositions must be related by a mass balance condition at
the interface. This leads us to another assumption made in this model.
Diffusion in the solid is neglected everywhere except in the vicinify
of the root. Behind the root, capillarity and local equilibrium establish
a steep concentration gradient in the solid. Because of the high
gradient here, the solute flux in the sb]id is:appreciable and must be
included in the local mass balance condition at the root. Also, this
solute flow in the solid is essentid] éa\szabi1ize this section of the ’

interface, wippeut the capillary effeet-at the root, wi;hqigs\ifso;iated
solute flux in tQS solid, the build-up of "superheat" jn the soTid
‘would cause the Tiquid “spike" to penetrate guo the solid to an
infinite distance. It is the solid diffusional flux which dfssipates
the sepersaturetion built up in this region and stabilizes the root
of the interface. ‘
With fhe.model described above, it is now possible to set up

the diffusion(ﬁiob1em and specify the boundary conditions.

L]

! .,
3.3 Statement éf\the Problem

* With heat transfer eliminated from the prob]em,'}he cell
growth is controlled by solute diffusion and interface kinetics. No °
attempt is made here to solve the interface kinetics problem and it

is assumed that kinetic effects stabilize the non-equilibrium cell walls.

[}

A"



Thus the problem is to solve the solute diffusion equat1on in
the 11qu1d subject to the boundary cond1t1onsj which are;

a) local equilibrium at the tip

b} Tocal equilibrium at the root modified by capillarity

c¢) local mass balance at the interface

d) overall solute balance

e) starting liquid composftion far away from the interface ]
The aim is to solve the diffusion equatioﬁ to obtain the solute profile
in the liquid, the solute profile in the solid, the interface position
(temperature), the spacing, the length and the root radius of curvature.
We note from all the previous work that an internal degree of freedom
is to be expected whieh is to be resolved by using an optimization
condition.
ﬁfgcause of the symmetry of the geometry, it is adequate to
soive the diffusion problem in the liquid region between two cells
(Figure 6). |

)

3.4 Mathematical Aga]ysis

.3.4.1 The diffusion equations

In the two dimensional cartesian coordinate system, the

diffusion equation is written as

2 2%,
% - 025+ g | | (3.1)
du 3y

where ¢ is the concentration of diffusing component in moles per unit

vgﬁume, t is the time, u and y are ?1xed cartesian coordinates. Taking
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C to be proportional to mole fraction X, we can write (4.1) in terms

of X as

(3.2}

For constant growth velocity, v, in the u-direction, substitution of

X =u - vtinto (3.2) gives

2 2 .
D(M+BXJ+VQ—X-=O : (3.3)
W ;;?' ax

where now (x,y) is the cartesian coordinate&system with a.frame of
reference moving at a velocity v in the positive u direction.

The solution to equation (3.3) can be obtajned by the method
of separation of variables as given-in abpendix 1.

The intercellular liquid region is very narrow except near-the
tips. This féct together with the large diffusion coeffiéient in the
1iquid provides that the lateral solute profile mustlbe flat in the
narrow liquid "groove" far behind the cell tips. In line with this
and with reference to figure 6, we can write that for x<0, the solute
profile must become one dimensional for Targe negative values of x
for.which the width df the 1iquid‘"groove” is very smal] We can split
the genera] solution into two parts, one applying for positive values
of x and the other for negative values of X, with the condition that
the two equations should givé\iﬂe same concentration value as well as
the same coﬁcentration gradient at x=0. This is done in section 3.4.3.

L

‘The position of x=0, or the distance X3 must also be determined.

»
7
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3.4.2 Boundary Conditions

With reference to figure 6, the fo]Towinj-bouhdary Eonditions
can be written. | ‘ |

a) as x approaches infinity, the liguid composition must

approach Xo’ the alloy solute content.

X(e,y) = %, (3.4)
b) the lateral solute gradient must vanish at y =0 and
Yy = #s. This is derived from the symmetry o% the structure.
A _ | ]
3y =0 fory=20andy = ss (3.5)

r

c} local equilibrium at the tip. This condition yields two ‘

equations. From the phase diagram,

To = Ty + mx, . ' (3.6)

where T, is the temperature at the tip:
X, is the 1iquid composition at the tip
T0 is the melting point of pure so]vent*'
and m is the Tiquidus s1ope

The Tlocal equilibrium mass balance at the tip y1e]és4/’

v(1-k)x, = -p & l B ‘, (3.7)

where k is the equilibrium distributipn coefficient
0 is the alloy diffusion coeffiéient in the liquid.

We not that X y = 0 from equation (3.5).
tip
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d) local equilibrium cogdition at the root. This yields

the

following relation between the root temperature T2’ the root liquid

composition X2 and the radius of curvature at the root.
Tocbo //
Tp = To * mxy + =
- where ¢ is the interfacial energy
H is the latent heat of fusion

and b0 is a numerical parameter 4b0 = 1 for a cylinder,

b0 - 2 for a sphere).

(3.8)

For the two dimensional cells, we can assume that the root geometry

is ¢ylindrical as shown in fiéure 7. Thus b = 1 in equation (3.8).
0

" e) mass conservation at the root is written as

v(l-k)xz = -D
y  where sXg = kax  (figure 5) A
+ cho
AXL = capillary shift in the liquid = RTzr -
‘Ds is the solute diffusion coeffient in the solid and a,

) is a parameter equal to 2 for a cy1inder42.

=y

(3.9)

The second term on the right hand side is the solute diffusion flux

at the root and is written in the form of the well-known Zener-Hi
. : y
flux equation42’40.

f) the experimental constraint is that the %emperature

’

difference between the root}and the tip should be edga1 to the

temperature gradient tiqu he length of the cells.

.

Tl--T2=G£ . - N . ¢

1lert

(3.10)
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Equation\ié.ﬁo) tdgefﬁer with (3.6) and (3.8) yields one boundary-

condition.
g) the overall solute ba]ancg is an additional condition.

This requires that the average compéﬁition of solid behind the

interface be equal to X, at the‘éteady-state.' The Pondition is

formally e;preséed as‘fo1]ows: )

Ignoring diffusion in the solid, conservation 6f mass at

the interface gives _ -

b
* g < .
_ o aX .
e n is the normal vector to the interface
7 . va is ;he normal interface velocity
d’// XL is the liquid composition at the interface
l_“““xg’is the solid composition at the interface
—-'F\ 0
and _%ﬁ-is the concentration gradient at the interface along n.

Since the model assumes that the cellular interface is non-equ}liprium
except at the tip and the root, no.single phenomenological relation
between X, and X can be expressed. « Therefore, coﬁdition (4.11)

may be used only if the interface shape is ”axprioﬁi" known. Other-

nd %ﬁ-canﬂot be evaluated. Thus to make the qnalysis tractable

and folllowing other workers, we cbnstrygﬁ a parametric interface
shaﬁE% From a study of the experimental interfaces it was concluded
that the shape is approximately elliptical near the tip over a large
range of velocities. Accordingly an ellipse of minor axis 2s and semi
major axis ¢ which terminates in a semicircle of radius r was assumed

as the interface shape (figure 7). Mathematically, in reference to
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figure 6, X; and ¥; (interface coordinates) are given as

VA

(xi + (2 - xo) - r)2 + y? = yz;' o<y<r
. A
and - Q
X;: + L -X%X_-r S - Y.z 2
: L - ro ‘ J ¥ { S - l} =lir<yc<s

From figure 8 we can write

~ =V 5in 8
va n

and

3X _ BX i o 4 OX
— + =
an 5X sin o 3y FOSB

at the interface. We can also write

tan § = ax.
i

!

/

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Using equations (3.13) to (3.16) and (3.11), it is possible

to obtain XS from a knowledge of the diffusion solution in the liquid.

Assuming no diffusion in the solid, except near the root, we can

equate the solid composition far behind the interface to the solid

. composition at the interface for the same value of Y. Thus we obtain

X as.a fagagion of y. Behind the root, the solid composition at '

the interface is obtained from the local equilibrium condition as

Xs = kxz; o<yc<r

The overaTl solute balance can now be written with the use of the

symmetry of the structure, as

5
{ Xsdy = sX

0 0

(3.17)

(3.18)

¥
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{
with XS given by (3.17) and (3.11).

3.4.3 The So]ution of Fick's Equaﬁion
The general solution is given in appenjjx 1. For x <0, we |
note that the equation '
' ® ~
X = x5 + Ay + b axp(- yx/D) + Z An exp(i _X) cos in y (3.19

satisfies the condition that as x becomes 1arge<;§gative, the solute

profile becomes one-dimensional and satisfies tt}/condition (3.5).

'For x > 0, the equation -

g,
X=X, ¥ Bo exp(-vx/D) + L B exp(-n x)cos A y : (3.20)

satisfies the boundary condition at x = e fory=0andy =

The two equations shbuld give the same values of X and A

3X/3x at x = 0. In appendix 2, these two profiles are matched at

= 0 and expressions are obtained for the Fourier coefficients in
(3.19) and (3.20). ) %

The varjous coefficients in equation (3.19) and (3.20) are
functions of s, Yoo Ao and b. The problem is to use the boundary
conditions to solve for these four variab]es as well as for xo}
the length of the ce11'a§§‘fﬁ;fradius of curvature at the root.

Thus we have a total of seven unknowns which we must evaluate.

X, and Y, are related by the shape equation (3.13). This reduces the
number of unknowns to six. Equations (3.7), (3.9), (3.10) and ¢
(3.18) provide four equations relating the six yariables. Thus we

are left with two degrees of freedom. To obtain a unique solution,

s
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we must find two further constraints.

3.4.4 Oﬁtimization ' | '

As mentioned in the previous section, the problem has two
internal degrees of freedom. To resoive this free bouﬁhary problem
we look to the thermodynamics of irreversib]e processes to identify

additional constraints to be imposéd on the system.

34,40 33 '

Fol]owing Kirkaldy and Jin and Purdy™ we conjecture

that the principle of minimum rate of entropy production applies to

‘the stability point in cellular solidification. Theorems of Kirka]dy43

and Tykodi44, applicable to the quasi-steady variational pathways

considered here, appear to have the necessary generality.  As con-
cluded in Chapter 2, this principle has a corollory within the cell
problem which has to do with the solute profile obtained in EBe solid.
Minimum entropy production is equivaiEnt to maximum rate of storaggﬁiuﬂ\
of free energy34. The stored free energy in the product, namely |
the solid, should épproach a maximum as the solute éegregation becomes
increasingly singular. Within the present model, the solute is
"pumped" into the solid at the root of the intgrface due to]the
capillarity effect. As the radius of curvature degrgases ; the

root, the capillarity effect increases and the‘inteasity of sotute
"pumped"” *into the solid at the root increases, yielding a more

singular segregation profile and thus‘g higher free energy stand.

Thus, we surmise that the free energy associated with segregation



in the solid is a maximum and the entropy production rate is a
minimum when the radius of curvature at the root is a minimum.
We must admit at this point that the correspondence has not been
rigourously demonstrated.

In any case, optimization is achieved here by minimizing
the radius of curvature at the root. Since wé; ave two degrees of
freedom the optimization must be carried out in twofdimensional
field; firstly a local optimization is found in whichéghe radius is
minimized wifh respect' to the length of the cells at fixed spacing,
secondly, a refined optimum radius®is sought with éespect to the
spacing of the cells. It is this latter optmization which was

_pﬁévious]y explored by Billia and Cépi11a37.

¥

a discussion of this opfimizationrin chapter 5.

We shall return to

A

3.4.52bom§utgr Solution Technique

Due to theé co§?1gxity oA the boundary conditions a completely
analytical solution is .not possible. The equatibns given in appendi§
3 must therefore be so]ged using nﬁmerica] techniques. The following
algorithum was used. .

a) Assume a value for the sgpcing s

b) Assume a value for the length 2

c) Using the four boundary conditions solve for (xo,yo),

A,bandr

0
d) Change the length and repeat (c)

)

e) Repeat (d) until a minimum is found in the radius (ropt
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I3

f) Change s, repeat (b) to (e)

g) Repeat (f) until a minimum Tmin 15 found.

r >
!

3.5 Results

Calculations were carried out with the priméry aim of making
comparisons with the experimental results reported in the present
stuJ}. The calculations were therefore focussed on the succinonitrile-

-

salol system. The material parameters used in the. calculations are

listed in Tabhe 3.

3.5.1 Results of the Optimization

The radius of curvature at the root showed a minimum with
respect to the length for a given spacing. Fighre 9 §hows ras a
funcg;on of ¢ for the specified growth conditions. As the Tength
was decreased below the optimum value, the radius increased rapidly
and fo# every value of s, there was a cut off at the short length 4

side below which the four boundary conditions were not satisfiable.

Figure 10 shows the dependence of Topt 25 the spacing. Again

pt
a minimum was obtained. The stable solution is taken at the minimum

:;;%b value on the ropt - S curve. |
P roin did not vary significantly with Xo in the range of

0.002 < Xo < 0.05 or with G in the range of 50 < G < 100 k/cm.

However, ié depended on the velocity as indicated in figure 11. At
very low veIociﬁies, thg value of Pmin 1ncr¢ased rapidly accompaﬁied
by a decrease in the capillarity effect. Bé]ow a criti;a] velocity,

a sotution could not be obtained as the four boUndarj conditions

w |
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did not yield a éonvergent solution for (xo,yo), r, Ab and b. At
this limit, "min had such a large value as to yield a capillarity
effect of less than 2%. This critical velocity increased with
decreasing X, and G had no noticeable effect on the critical velocity.

Figure 12 shows the dependence of the critical veiocity on XO.

3.5.2 Prediction of Spacing and Length
AThe spacing and length were taken as the values which yielded

the minimum in the radius of curvature. Figures 13, 14 and 15 show

the calculated spacings as functions of velocity for different alloy

compositions and temperature gradients\. Cell spacing was found to
decrease with increase in velocity. As the temperature gradient
increased, th§7§pacing decreased.. The effect of incrasing the alloy
content was to decrease the spacing. ™

Figures 16 and 17 show the lendgth of the cells as a function
of velocity for different alloy contents and temperature gradients.

The cell lengths were found to decrease with increasing velocity,

increasing-tempeggfﬁiig gradient and decreasing allay content.

3.5.3 Solute Profiles

Figure 18 shows the variation of tip concentration in the-
]iquid as a function of velocity. As-velocity increased the tip
concéntration decreased. The decrease was large at Tow velocities

and small in the high velocity regime. The effect of the temperature

[

gradient was to decrease the tip concentration as the gradien;\

L
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~ decreased. Figure 19 shows that the tip temperature infreased with
increasing velocity becoming progressively flat.
Figure ZO“éhows the variation of root cémposition and figure
ZIvthe root temﬁerature as functions of growth vefocity. The root
composition 1ncfeases with increase in velocity and is relatively
independent of temperature.gradient. The root temperature increases
as velocity increases. .
| " Figure 22 shows the ca]cﬁ]atgd composition profi]es in the
liquid. It can be seen that the profile becomes two-dimensional
“at a distance beh}nd the tips approximately equal to the spacing of

Vg
the cells. The same profile when plotted on the phase diagram, in

figure 23, shows that along the cell wall the Tiquid 1s'super cooled
for nearly half the length of a cell behind the tip; the rest of ’
the cell retains super-heat at the s0lid-Tiquid interface.” As the
velocity is increased the extent of supercooling increases. This
suggests that at large velocities when, the supercooling becomes large,

the cell walls must break down behind the tip giving rise to dendritic

side-branches, S
In figure 24 is p]ottéa‘the calculated solute profi]é'in
the solid. As velocity increase§ the peak heigﬁt increases and the
tip composition in the solid decreases.
These rgsu]ts ére discussed fﬁfther in chapter 5, and where

possible, they have been compared with the experimental results.

X



CHAPTER 4 |
“\__~ EXPERIMENTAL STUDY’OF CELLULAR SOLIDIFICATION IN THE".
» SUCCINONITRILE-SALOL SYSTEM

4.1 Introduction

The purpose of the experimental study was to further\our
‘understanding of the origin of cells and their steady-state morphology
and.to establish quantitative relationships between cell spacing and
the various growth parameters such as velocity, alloy contentnand
temperature gradient: The ultimate aim is of course to.verify the
theoretical model for stable cell growth presented in the previous /
chapter.

. \
4.2 Choice of the System '

As mentioned in chapter 2, the dif%icu1ty in experimenting
with metals is that the observations must be made by inte;rupting
the solidification proéess and sectioning the solid%fied metal.
Jackson and Hunt pioneered work on in-situ observation of solidification
interfacés in transparent organic compounds which freeze like metals.

In our work direct‘observation of the cellular interface was
selected over the "post-mortem" method required for metallic systems.

The key reason for this choice was that for.werification of the new

e
physical model presented by Kirka]dy‘and expanded in thisifhésisc

ig was necessary to observe the behaviour of the true solidification

interface at diffe?éﬁt growth conditions. Of particular importance

-
- ) o
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was the response of the interface to perturbations about the steady-
State. It is also possible to make accurate spacing measurements

on the transparent systems. There is ; drawback, however, in that
it is extremely difficult to measure tﬁe concentration profiles in

such samp]es.f

A variety of transpafent systems which mode1-meta1s are
available for study. Table 1 ]iéts some of these. The succino
nitrile (SN)-salol system was chosen, on the basis of the following
considerations:

a) SN and sé]b] are easily purified by conventiomaT techniques
such as partial crystallization and zone fefining.

, 'b) Both materials have very IOQ ngou pfessdres in thg

(;\:émperature range used.fn the experiments. Table 2 confajns vapour
ressure data on salol. In the absence of such é;;a fdr SN,_é T

simple experiment was conducted in which i{g;mp]e of 3N was kept at .
its melting point for two hours in aﬁ\ampu]é'sim11ar td the‘ohe used
in the experiments in‘a N2 atmospheré and the wgight change'was
observed to be less than 0.05%. The low vapour preﬁsure éssures very
little loss of material during me1tin§, handling apd_a]]oy making and
a high accuracy. o o

c) SN is the best characterised organic compound used in

solidification studies. Wulff and Hestrum45

, have provided thermo-
dynamic data including the enthalpy of fusijon, entroﬁy of fusion and
specific heat data. Schaefer et a]46, Jones47 and Jones and Chadwick48

have measured the thermal conductivities of s81id and liquid as well

C_ \-\/
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as the solid-Tiquid interfacial energy. Table 3 1ists all the

relevant data oh SN.

4.3 Matetia] Pkep&ration , ' ' ' _f\'
4.3.1 Purification

Since the investigation concerns the effect of b1nary a]]oy1ng
compon’gj/bn cellular solidification, it is necessary to start w1th~g\//’
pure materials and to add controlled amounts of the alloying component '
SN and Sa1o1 are commercially ava11ab]e at a purity 1eve1 of 98%.

A1l of the melting and hand]1ng of SN was.carr1ed out in a
nitrogen atmosphgre.' Wulff and Nestrumqs.have'reﬁorted‘that'tontamina— :
tion of SN is not measurable in a nitrogen atmosphere. As néceived
SN, supplies by Messers. Eastman Co, was melted and part1a11y frozen.

The remenant 1iquid was filtered. through a coarse glass fr1t using
vacuum. ‘The solid left behind was used as the raw material for
further pur;}iéation by zone;re?ining4g, N .

The vertical zone refiner consisted of & mounting which cquld

travel up or down-a threaded shaft driven by a,cohstant\r,p.m. motor

e
through a worm-and-gear attachment. The speed could“be changed by s

g

changing to a shaft with a different pitch. Two sets of resistance 4;x:g/

heating coils were attached to the mounting. These provided two ’

liquid zones in the sample for each pass of the co1ls anng the ggﬁp]e
SN, partially pur1f1ed by fractional crysta]11zat1on was

melted and poured into a glass tube of 9 m.m. inner diameter and

50 c.m. length. This tube was sealed and placed in the zone refiner,

-
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A schematic arrangement of the set-up is shown in figure 26. The

coils were moved up at a rate of 2 um per second., After 40 passes

of. the 1iquid zone, the sample was removed and halved. The melting

'points of samples from the top half and the bottom half were measured

LY

" The bottom sample showed an increase in the melting point over the

initial sample from 56.4°C to 57.8°C. The top half shoyed a
decrease in the melting point of 1.2°C to 55.2°C. This test showed
that the impurities in the sample were segregating to the top end
and have a distribution coefficient of less than unity. The bottom
half of tpe sample was used as the starting material for further
zone refining. After another 40 passes of the zone through the (\
sample, the saﬁp]e was.halved again ‘and the me]ting'point of the_ \
bottom half was measured. The zone Fefinﬁng process was continued
until the melting point was 58.08°C or more. This corresponds to
a Puffty of >99.999% as deteﬁmined.from the well-known thermodxqémic
relation for the depression of the freezing point of a dilute binary
alloy dekcribed in section 4.4, Typiéa]]y, this required 150
passes. \The method used for measuring the melting point is described
in section 4.4, | ,

~ Salol was purified by repeating the partial. fréezing procedure
several times followed by zone refining. Zone refining was continued

-

until a melting point of 42.8°C was reached.
AN
4.3.2 Alloy Preparation

Alloys were prepared by adding 1iquid salol to a pre-weighed -

§
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l}quid SN sample and mixiné in a nitrogéh atmosphere. The alloy

was quickly frozen and weighed again to determine the composition of
the alloy. The samples were then used in phase diagram determination
and in solidification experiments. To ensure maximum accuracy, the
lag time between alloy preparation and the experiﬁent was minimized.

4,4 Determination of the SN~rich Side.of the Phase Diagram

To test the quantitative aspect of the cellular growth hodel
described earlier, it is necessary té have thermodynamic information
such as the liquidus slope and the aliby partition ratio between the
sé::; dnd the Tiquid. Due to the unavailability of these thermo-¢
~ dynamic data on the present system, it_was.decidea to‘measure the_
phase diagrams experimentally at the SN-rich side.. |

Thermal analysis was used as the technique'for determining
the Tiquidus and solidus temperatures iof prepared alloys. Temperature
changes were noted using a platinum-resistance-thermometer. The
schematic arrangement is shown in figure 27. A constant current of

00 uA was passed through a calibrated thermometer‘suppqied by
Omega Engineering Co. and the voltage across the thermometer was
plotted on a recorder. In the range of temperatures at which the
experiments were carried out, -this amounted to a power input of less
‘than -1.25 WW. From the data provided by the supplier, the error in
temperature measurement due to self-heating of the elements is less
than 0.001 K. The recorder itself was calibrated dsing a standard

100 @ resistance.
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An electrical resistance furnace was used for thermal analysis.
Tpe sample was kept'{n an austenitic stainless steel block in order
to provide uniform témperatﬁre throughout the sample. The furnace
\\‘ coil was wound up\to the top of the furnace to provide a temperature
gradient of less than“g K/cm along the length of the thermometer.
This was done to reigp;ferror in temperature measurement ﬁe to b
conduction of heagla]ong the thermometer sheath.

Thé sample\ was heated to 5 K above the melting point and the

furnace‘was switche;\aff. The natural cooling rates were between
1 and 2°C/miﬁ. The potential difference across the thermometer ﬁaS'
measured to an accuracy of 0.001 mV. This corresponds to an error
‘of £0.03 K in the temperature.
The trace of a typical cooling curve is shown in figure 28.
The absence of a sharp thermal afrest in the cooling curve presented
some difficulty in establishing the freezing point. The procedure
. tollowed is indi fed in figure 28. The two ubper segments of the
\Hxhurve were extra::;sféﬁlgi; their intersection at point 0 was taken

as the equilibrium liquidus temperature. Thg Tower two segments

e

—

were unreliable as a measuré of the solidus location because of
possible segregation in the liquid at later times. ' ;’tr'

To measure the solidus temperature &he sample was reme4ted,
st1rred and frozen quickly by immersing the conta1ner in a mixture of
dry ice and methyl alcohol. This sample was kept in the furnaqe

and heated at a rate of 2°-3°C/min. and the heating curv 5lotted.

‘FoTlowing a‘simi1ar précedure to the one explained above, th
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solidus temperature was determined. The change in slope was more gradual
in the heating curve and so the‘unéertainty ih the solidus temperature
is expected to be greater than that in the liquidus temperatgre.

* The liquidus and solidus temperatures werelmeﬁsured for various
alloy compositions‘and the experimental results are plotted in figure
29. In draﬁing the liquidus T1ine, the experimental points which showed
a large scatter at the low temperature side were discarded and a best
fif was done among the other paints. Some of the points were observed
to 1ie above the liquidus 1ine. This could be due to the error intro-
duced(ﬁn establishing the arrest temperature. Similarly the best fit
was made for the solidus points.

The following thermodynamic check was conducted on the experimental

measurements.- We can represent equilibrium solidification of a binary

alloy into one solid phase by means of the following two equations:

Component 1 in liquid = component 1 in solid

‘Component ?/1n liquid = component 2 in solid

-and write the equilibrium constants for these two reactions52 as

s

k; =& and
a,

-~

2’

(-2 ")

P
a
2

aqd.the a's represent the appropriate activities. For a dilute solution,

\\ application of Raoult's law to component I/LsoTv t) gives

N

"-""--——-“ ’ /



44

(4.1}

where the N's are the mole fractions. Choosing a standard state for
component 2, the solute, such that a, approaches N2 as N2 approaches
zero in each phase, and applying Henry's law to the so1ﬁte, at the

dilute solution 1imit, we get |

5

ky = = . (4.2)

3
,

From equations (4.1) and (4.2), we can write52,‘£pﬁ/N2 << 1,

= | =

= L
n k|. = - N2(1“k2)

Inserting this into van't Hoff's relation,
d an k _ aH

ar ) R_J_%

(where aH is.thg\fgat of fusion and T is the temperature) and integrating

from pure component 1 (N2=0) we get

AH AT

— - (4.3
RTm(1-k2)' ‘ ‘ ,(8.3)

N

£
2
where Tm is the melting point of pure solvent and AT is the depression
of melting point when the molefraction of solute in the liquid is N%.

Using Ng and AT values from thel]iquidﬁs measurements, we obtain from

(4.3), kz = 0.21. .
The dashed solidus line was drawn with a value of distribution

coefficient of 0.21 as calculated above. The measured solidus

temperatures were consistently lower than that given by the theoretical
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L
line. This could be due to an error in the thermodynam1c parameters

used in the calculation.

4.5 Experimental Set-up
There are several reports in the literature of methods for
direct observation of the solidification interface in transparent

systems.- Hunt, Jackson and Brown53

and Jones54 have dgscribed their
experimental arrangements “for this purpose The present exper1menta1

set-up is similar to that used by Hunt et al.

4.5.1 Microscope Stage .

A stage was constructed to conduct solidification experiments
on their samples, under an optica]'micrdscope. The stage consists of
essentfal]} a hot plate and a cold brass plate separated by a distance
which can be varied. The sample in the form of a thin film sandwiched
between_two glass plates, can be located on the stage. A temperature
gradient is established in the glass container and in the sample in
the gap between the hot and cold plates. Adjustment of the temperatures
of the two plates keeps the so1id-11quid interface in the gap. Locating
this gap in the optica4~pé%h of a microscope, the solid-liquid interface
is viewed directly.

Figure 30 shows the microscope stage arrangementf The cold
plate was cooled by passing water through the tube brazed on to it.
By controlling the water temperature, it is possible to closely control
the cold plate temperature. Two cylindrical elements are used to heat

the hot plate; its-temperature is controlled by the power input into



L4

the elements. The gap between the two.plates could be-adjusted by
moving them in a groove in the teflon sidings. The sample is held

on the stage by ; teflon sample holder and in direcf contact with the
hot and cold plates. Sample movement was achieved by connecting the
teflon slide holder to a commercial linear drive mechanisms, which
consists of 5 100 rjp.m. synchronous motor and a 30 stgp paraliel
'shaft'gear box. With this set-up it was possible to obtafn speeds

in the range of 0.08 um/s to 1283 um/s with a ratio of 1.4 to 1 between

a
» \
adjacent rates. The drive mechanism was caliprated using a graduated
, \ , o
slide in the teflon holder. The temperatures of the hot and cold
@ were measured by spot welding thermocouples on to the plates.
cope slides were placed on grooves in thei:dipgs above the
sample and below the hot and cold plates to minimize ¥ir currents

over the sample.

4.5.2 Sample Preparation T

The samples used in solidification experiments w;;gﬁgkipargg\jijjd/’

——

by placing a sﬁa]1 quantity of molten aﬁloy on a cleaned anatdrieq

cover giass s1id of dimensions 22 x 30 x 0.3 mm. This was quickly

covered by an identical glass slide and the'1i§uid-was frozen.

It was then sealed on three sideswith resin. A schematic diagram of

the sample is shown in figure 31. In solidification experimenté the <::\\\
unsealed side of the sample was- always kept in contact ﬁith the co}d

plate and so was sealed with the ;o]id. The sample thickness varied .

- from 40 ym to 100 um. Iﬁ some of the samples, three of 25 um chromel-

alumel thermocouples were placed and these were used to measure the
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temperature profiles in the stage.

4.5.3 Measurement of Temperature Gradient

) When the sample is placed on the stage with oné end in contact
with the hot plate and another in contact with the cold plate, a
temperature gradient is set Up in fﬁe glass slide and in the sample.
Since fhe hot, and cold plates are much wider than the samp'le,a and
since the gap and the thickness of the entire sample 1s‘sma11, the
ﬁ;at flow in the sampie and the glass holder in the gap can be considered
as one-dimiptional, Under these conditions, the ratio of parallel
heat flux through the sample material and the glass slides may be
estimated as kS ts/-kG Eﬁnﬂffpe/is and kG are the thermal coﬁductivities
of the sample a f_the glass, fespective]y, and ts and tG are-the
thicknesses of ftie sample and the giass.

47

For e~sdmple thickness of 75 um and with kG/kS = 3.3"" and

thickness of glass = 2 x 0.3 mm, the parallel heat flow thrpugh the <:\\

sample is less than 4% of the total heat flow through the s{ydes gnd \

the sample. As a result, it cdﬁ be concluded th?t/th heat TTow

through the glass slides controis the’temperatd?é profile in the gap.

With the further assumption of constant thermal conductivity of glass

in the temperature range involved the temperature profile in the gap

. ma Sbé considered linear. In fact, as shown in figure 32, the meausred
dﬁ:;ile is linear in the gap except very near the hot~and cold plates.

lSince the selidification experiments 4re at the steady-state
in which the sample 1s movéd over th‘stage at a fixed velocity, it

is highly desirable to know the effekt of sample movement on the

/"\L e
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temperature profile in thesamp]e/;;:}he\ggp. The following experiment £

was conducted to determine this effect empirically. A sample with

thermocouples was placed on the stagé’ghd kept stationary for a period

of 1 hour. This time is more than adgquate for the sample to come to

a steady-state, as confirmed by a stationgk profile in the gap. The

sample was then moved at a constant ve]ocigf towards thé cold plate
side. The output from the thermocouples was plotted. The same‘experi—
ment was repeated at different velocities. The observations wereﬁ»

L as follows: \\)p //f‘\

“a) Up to a velocity of ]2;\;;>§}\no chqﬁﬁe in tpe tempgrature
gradient was observed. However, the profile wa; tran§ﬁbsed towards |
the cold plate side at velocities in excess of éﬁ\um/s. .

b) The extent of traﬁsposition varied witﬁ!the velocify.

It was not observable below 23-um/s and at 120 um/s, the temperature

profile was transbosed by ~200 um with respect to the profile in a

stapionarj sample. .
h 1 ¢) the temperature profile in the gap returned to stationary »
(::/fgat r approximately 5 seconds frdm the time the sample_movement began.l
| d) No change in the profile waé obse%ved és the solid-liquid g
interfacg pﬁfsed the thermocouples. |
These empirical obséryations lead to the conclusion that théf
present experihenta] set-up is ideally suited for testing the quanti- :
.tafive asbé;ts of the model, as well as'permitting’ﬂﬁreqt obserVatigy\
of the interface.—

-

y
l_/-\‘\_/
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4.6 Experimental Procedure \

49

The sample was placed on the stage with the unsealed end in

contact with the cgld plate. The temperatures of hot and cold plates ( ®

-

were so chosen as to keep the interface in the field of view. Théx\
sample was kept stationary for a period of 1 hqu( to set up a steadyy
temperature Srofile as well as to eliminate any segregation caused by
previous solidification. The sample was then moved at a.constant
velocity towards the cold plate é' e, A1l measurements of spacing
and length were made in the mid -e‘portion of the sampie after the
attainment of stable cells. The same procedure was repeated at other
velocities. (/fgbl |

4.7 Observations

4.7.1 Formation of Stable Cells ' \;“

Initially, when the sample was kept stationary, the interface -
was planar as expec%éd. As the sample was moved and solidification “
initiated the fo]]o&ing qualitative observations were made. .
We first summarize a series of observations at fixed alloy o F/d
content and temperature gradient. At very low ve]édities the planar
interface was stable. At slightly-higher ve]ocitiesi the planar inter-

% &

face became unstablie. Near the margin, however, stable dells were not

an

observed as the interface'shape fluctuated until solidification was ——>

gb~xadii of curvature at both

r T 3 . ) ,
(see Figure 33). The root at

2’ cpld end is hnglXAy stab]el th

decféaéing(ﬁith time.

perturbationilength increasing

[}
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Above a certain velocity, the planar iffferface breaks down
L to a stable cellular interface. Even though the initial breakdowh'
is similar to that at " the sub-cellular velocites, as %hg transient
stage develops, the root of the interface becomes sharper énd a
stationary interface is obtainea at the steady~st€fe. (Figufe 34).
The critical velocity above which stable cells were obtained
increases with decreasing alloy confent and increasing {;mperature_
gradient. Aé very hfgh velocities, the interface breaks down

into/; dendritic interface. (Figure 35).

4.7.2 Effect of Crystallographic Orientation

| ‘The breakdown of an interface described in the above section

refers to changes occurring in a grain which is oriented such'that the

cell (and dendr{te) axis ‘is parallel to the growth directiqp. For

grains which have their dendrite axis oriented sTightly away from the

growth direction, the same qualitativg deécription-is valid. But the

cell to denA%?Egrtransition takes place at a Tower velocity than for

perfectly orﬁegggg,grains. .

When the dendrite axis is oriented farther away from the

growth‘directfon,‘stable cells were not obtained. The shape of these
#  interfaces ai’intermgdiate velocities was interesting in that one side
‘( ' rﬁ\\\oﬁ the "cells" was smooth.wh11e the other side always showed dendritic "

perturbations. (Figure 36). At high ve1oc;;;g§\dendritic‘perturbations

E;“Wecé,séen on both sidé{i
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&
4,7.3 Observations on Stable Cells

Quantitative observations in the present study were restricted

to the stable cell morphology. A1l the measurements were made on ,
.

cells whose axis was aligned along the growth direction. Since no
seed crystals were used to obtain the required orientation it was

necessary to repeat a procgﬁure of me]t1ng the enx‘/é sample followed
ST
by directional freezing in the temperat ‘?gd1ent stagep:ktvl grains

with the desirable orientation were obtained. Then all the observations
are made,oq{fﬁ?s grain. .

Thé interface was photographed.after steady-state was reached.

This was assumed to have occurred when the interface shape and position

— did not change with time. Spacing measurements were made on the photo-,
graphs. Since the field of view of the recording instrument was
restricted, it was not possible to make 1ength‘measurements for all
growth conditions as the cells were too long to be photographed at
Tow velocities aﬁa—EZ;;;rature gradients.

The experimental variables under control were (ijhthé growth

velocity, ({i) the alloy composition and (iii) the temperature gradient, -

The range in which the,growth velocity cou]d be varied was restricted
at the 104;} end by the irregular to regular cell trans1t1on. As
descr1bed in section 4.7. 1, below .certain transition velocity, regular
_cells were not obtaingd. At the higher-velocity end, the cell-dendrite
transition 1imita ,he range of observation. This_range-was found
to be a function of the alloy composition and the temperature gradient.
In the ultra-pure SN, the cef1u1ar structure was not obtained

at all. In this samp]é, there was a direct transition from the Plapar

- ' , N

AN



52

to déndritib mode of growth. These dendrites, referred to as thermal

——

dendrites in the Piterature, are characterized by a very sharp tip

" and their growth is considered to be controlled by heat transfer and/

or interface kiné%ics. Clearly, this is not the focus of attention
in this present work.

In the binary alloys, the cellular range was found to decrease
with increasing alloy content. .Uhile stable cells were obtained at
lower ve]ﬁcities as the alloy cénteﬁt was increased, the ce]I-dendrite'
transition velocity decreased rapidly. In the 0.5% a]]oy.étable cells
were observed from 5.3 um/s to 122 um/s at a gradient of-1SGLC/cm,

while in the 5% alloy, the rangé was limited to 2.2 um/s to 11.7 um/s,

at, the same temperature gradjent.. The effect of temperature gradient

~ STon the cellular range was less dramatic. An increase in temperature

gradient resulted in an increase in the lower limit to the velocity

but it also_increased the cell-dendrite transition velocity. ~For a

-

0.5% q]]oy, the cellular vg]ocity raﬁge was between 5.3 to 122 um/s

at 150°C/cm while at 100°C/cm the range‘was from 3 to 62 um/s.
Experimental observations were made at gradients of 50, 100"

and 150 K/ecm on alloys with composition rahging from 0.5% to 5% salol

(0.19 to 1.95 mol %) in the cellular veloci nge)

-

A

a) Effect of Velocity

. Above a certain velocity, cell spacing decreased with increasing

velocity as show;‘in figures 37, 38 and 39 for different gradients and
"compositions. At very low velocities, there was an 1ncrea$e in
spacing as velocity incredsed in the more dilute alloys. Each data

'point'in the fiqures refers to a particular run. As can be seen, the

~_

£
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)
- reproducibility is very good.
The Tength of the cells decreased with inéreasing velocity.
However, as mentioned earlier, it wés only measureable at a\grédient
of 150 k/cm over the entire range of ve]ocity.‘ Figure 40 shows the
variation of cell length with velocity.
b)ﬂEffect of Alloy Content
At a fixed growth velocity and a fixed temperature gradient,
the spacin§ decreased with increasi;g alloy content in the range of
alloy~tontents investigated. HoweQer, the functional depeﬁdence of'
spacing an alloy content was very weak as can. be seen from figures 57,
38 and 39. ' . e ‘ |
The length of the cells incr 'sed'with increasing alloy content
as shown in f?gﬁre 40. The wavelength 'at which dendrite bre?kdown '
ocecurs js‘1arger at the higher composition.
7 c)'Effe?t of Temperature Gradfent
v Increase in temperature gradient g;be rise to a decrease in
‘ spacing as can be seen from figuees 37, 38 and 39. -While_the length

of the cells was qualitativély observed to be strongly dependént on
the‘gradj » quantitative measurements could only be made a:\ire
T [ . . ) . e
gﬁgdiéﬁéfezzr reasons already discussed. (See figure 40). ;ﬁ
: ' \\ ¢
L | LN

4.7.4 Cell Shapes -

—-—7, [N "
~

P The experimental cell shapes were approximately e11iptica1.
Near the low velocity Timit the cells became more rounded near the
{ tip. Near the high velocity limit, the tip became sharper and the-
3 . ~
L . o i <\ :? i;—i;\\
o . ' o - _
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cell shape approached that of a parabola.

-t

4.8 Perturbation Experiments

r/, Steady-state cells were perturbed to study the
aﬁﬁ;;;;;q;;h;teady—state from a perturbed state. : The
perturbﬁtion involved the introduction of a step change ip.velocity.
The response of the system was to reach a new steadyfstaté with a new
spacing and length. The new spacing and Téngth weré found to bg fhe
same as would have been obtained in a steady-state experiment at-the
new velocity. In other words, the spacing and length of properiy
oriented cells have a unique value for a given velocity, alloy content
. «—and temperature gradient. ' Given sufficient time to attain the steady-
state, the system attains this unique length and spaéing irrespective y
of the initial conditions. ° - -
’ In our experimental set-up the smallest change in veiociﬁy that
could be made was 40% of the original velocity. This change was
\ sufficient to genergte observable changes in/spacing ;nd length of
" the cells. For small.perturbations, the change in length of the cells
. “ocCurred continuously with most, of the change evidenced in the root of
the ceﬁ]s moving up or down the temperature gradient. For large
perturbations, the reduction in length occurred both continuously and
discontinuously by “pinching-off“ of liquid droplets at the root of
the interface. Figure 41 shows the “pinching off®" phenomenon,
For large increase in velocity changes i;‘spag#ngfoccurred by

creation of a new celi. Grain'boundaries were often the source of new



55

cells. At very large perturbations, splitting of the existing cells

occurred leading to a decrease in spacing. Reduction iﬁ‘ve]ocity led

to overgrowth ef cells yielding an increase in spacing. |

*ﬂ? When the specing change is suf%icient]y small that it does

not requfre the creation or elimination of a cell, it is accomplished

by a different mechanism. The cell walls across the crystal develop

small amplttude perturbations, as shown in figure 37, which drift atong

the interfece to effect the change. Figure 42 shows a grain boundary with

an unstable cell wall at the boundary. A similar mechanism was observed

to operate to e]iminate any local non-uniformity in spacing and te obtain
-a un{%g;m spacing within the grain. The number of perturbation on the

side wall -depended on the magnitude of change in spactng, increasing

with increase in spacing change. Figure 43 shows the sequence of events

in eliminating a non-uniformity in spacing créhted by a perturbat1on in

which -the ve10c1ty was 1nereased for a short t1me and brought back to its

-

.or1g1na1 value. 2

TQF major conclusion from the perturbation exper1ments 4J/ihat

the cells Kave mechan1sms for changing the spacing dlscont1nuou51y or

_//' continuously. The spacing. and,lggg;ﬁ?ﬁave unique values determined by
the growth cond1t1ons - a]loy content, velocity and temperature

grad1ent This introduces a high conf1dence Tevel in thgsSpaCJng ‘and

"‘.
o

\\ length measurements as true steady-state va1ues - .
For small perturbations, the root ef the ce11s respond quickly

_ by moving up or down the'tempereture gradient. This indicates a high
/h’> : mobility for this part of the interface. Also, the changes in length

\ which occur during the transient'can be attributed mainly to the motion

L}

/
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of the root with respect to the pest of the 1‘nt&?ce and the length
«-\\tgf the cells are primarily deyermined by the cond1twmk root.
5 ' \/“\\\/
4.9 Summary | A

The obse®vations can be summakized as follows:

" a) For a given set icﬁf gr‘owth/c n 1t1ons, there is arumque | S

value for the spac“ing and the ‘:~‘1g;th o° agented ceHs The syste

- attains these values irrespective of e\ﬂ{i"&a] condition,

~ b)(‘l‘he cell spacing decreases with incr

e in velocity for
given alloy and temperature gradient; It increases as the temp

gradient decreases for a given alloy at a particular ve]od‘it .

the same growth cond1t1ons, spacing decreaseS with 1ncrease in a‘l)’y)
content in the range of compositions stud1? %
c) The length of the cells decrease with 1ncreaswrr%>|g

alloy compos1 and increasing velocity.

perturbation experiments the root of the cells
- respond q ck]y’tO\g\rturbatlons, indicating a high mobility for th1s
ortion of the 1nte‘e

\
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™o CHAPTER 5

DISCUSSION
In this chapter some aspects of cellular solydification brought
forward in the preagné work will be discussed bkt ﬁ respect to the
theoketica] mode] and in the Vight of the experimehtal observations.
A comparison will be made between theoretical predictions and experi-

mental observations on the spacing and the length of cells.

5.1 Comparison of Theory and Experiment /

As mentioned in the previous chapter, a limitation of)the _
system chosen for experﬁmental study is the concentratign profiles
are not measurable. On the other handwjégzt;:beriments were y
'sugted for comparisons on spacing and lehgths as the assumptions used
-in the model, such as a cohstant temperature gradient, were accurately
.\satisfied in the experiment. Figure 44 shows the results of such a
| comparison of spacing in a 0.005% alloy for a temperature gradient of
100°C/cm. It is seen that the functional dependence is closely followed
whil e numerical value of calculated spacings is somewhat higher
than observed. The reason for this discrgpancyﬂprbbab]y 1jes in the
uncertainties in the material parameters and (or) the shape constraint
imposed on the model. Indeed, it is seen that decreasiﬁﬁ*fﬁﬁ solute

ay_
5 cmz/s to 1l x 10 5 cmz/s

diffusion coefficient in the liquid from 2 x 10”
yie1ds.a better closure with‘experiment. Diffusion coefficients have

not in fact been measured in this system.» The value used in the calcu-

- 57
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lation was guestimatgd_ by assuming that the diffusioh coefficient is
inversely proportional to viscosity and comparing the viscosity of

this organic compound with that of metals. In any case, a factor of 2
in a diffusion coefficient is well within the range of uncertainty
normally encountered in published diffusion data. Figures 45-49 show
-similar comparisons of the spacings for different growth conditions.

Comparison of lengths_however showed a better numerical compari-

son.as well as a better functional comparison. This is demonstrated
~in figures 50-51. ‘
' fhe observedﬁspécing showed an anamolous behaviour in the Tow
velocity regime, where the spacing increased‘with increasing velocity.
This behaviour was not observed at an aI]oy'content of 5%. The |
calculated spacinés did not show such a behaviour. Also at the high
velocity limit andhigh alloy coptents, the sbacing—ve]ocity curve
became flatter. This was @]so not predicted by'the theéretica] mode'.
These discrepancies probab]yﬂhave‘their origin in the-facﬁ that the
overall experimental shape acfua]]y changes at these velocity limits

as discussed earlier, while in the calculations no provision is made

for shape changes.

o

5.2 On the‘pptimization
The main observation from the experiments whereby the'steady-
‘_EtatE*ue1Js were'perturbed by a step change in the velocity is that the
\ ﬁﬁmediate response was a change in length via the motion of the robt
| up or down the temperaéure gradient,,accordiqg as to whether tﬁe length
decreased,g? increased. This was followed by slower spacing changes

-
A -
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during which the change in length was nominal. Unfortunately, the

ropt radius in stable cells is 80 small to be observéble. Nevertheless,

the limited observations on the response of the cells to perturbations

shed some light on the nature of the process. The initial /response

of the interface, which is to change the length to a new value at
virtually the old spacing, indicates a local optimization at the roog;ﬂ\
of the interface. The slower process of changing the spacing to a new ‘
steady-state‘value indicates a global optimum. ‘Such a behaviour bears
out the predictions of the theory whereby a local and a global optima
are not only expected but also found in the solution. Indeed, the
solution algorithm follows preciée]y the“bath foilowed by the system

in response to the perturbation. A spacing and a length are input to\“
the caIcu]ation as is the case when we step-change the velocity. A«
Tocal optimum is first found with respect to the Iehgth and then the
spacing is changed and a new optimum is found; etc., Qnti] the final
solution is obtained. This observation provides a source of great®

o

confidence in the theoretical model presented.

5.3 Marginal Instability and Cellular Instability
'l
At this juncture, it is appropriate to discuss the difference

between marginal and ceilular instability. We noted in chapter 2,

that Kirka1dy40 had brought to light the difference between the two
states in terms of their detailed physics. His approximate mathematical
analysis also showed that marginal instability solutions cannot be
obtained from cellular solutions and vice versa,.i.e.. there is no

path in the kinetic phase space connecting the two states. Such a
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behaviour is also predicted by the present model. At very low velocities,
as pofnted out in the previous chapters, a theoretical solution does not |
exist. Furthermore, the experimental observations showed a region of .
velocities between the planar steady—state and the cellular steady-

state in which a steady-state was not observed. Similar observations
though- less definitive, have been made in metallic systems, as reported
in cﬁapter 2. MWith the 1ﬁ¥ormation we now have on this topic, we can

say unequivocally that the equilibrium marginal stability theories are
incapable of predicting the cellular solidification structurés. In

fact, as noted in chapﬁer 2, the calculations of Langer25 based en, the
local equilibrium approach did not produce stationary solutions\ In

the marginal stability analysis due to Mullins and Sekerka the pertur-

bations either grew or they died.

5.4°What is New in this Contribution?

A quantitative_mode] has been developed to describe the cellular
instability impbinary alloys. The theoretical model predicts the
behaviodr of cells to a high degree of accuracy. .
The physics of the prob]em‘ag'origina11y presented by Kirka]dy40 "

as been confirmed by experimental and theoretical analyses. By using

lete so qgign of therdfffusion problem the defects of His approxi-
mate‘ca]culation have been removed. Specifically, the following k
improvements have been made.

a) The defect ;; assuming a one-dimensional éerm of solution
was to provide improper mass balance conditions. With reference to

equation 6 in referefice 40, which is the local mass balance at the root,

! /..—f



subsitution of the ocmezdimensional form:of solution (equgtion (1) 12’
ref. 40), yields a diffusional flux in the solid towards the interface.

Mathematically, the solution is given as

Yy (
X=X+ (xz-xo)e ‘ ~ . . (5.1)

where X is measured from the root.

[ w" |
= - —(xz-xo) . (5.2}

dX

dx

O <<

lroot

“\\“Substi§Ftion of this into equation 6 of ref..40, yields

’ AXS .
xahx\xfl-k)xz = ap —+ v(xz-xo) ) (5.3)
. v .
Rearranging (5.3) < N

s ) v i

In cellular solidification, where solute accumulates i heliqui

. o
"groove", the liquid composition at the root X, Must g greater than
%

» L.
WL Thu5'kx2 > XO. This suggests- from equation (5.4) that the

diffusional flux in the solid ig posiﬂf;é which is to(éay that the flux
is towards thé interface. This is physically possible but éppears
inconsistent with infuition about the problem and our own more rigorous
treatment, fhe origin of the defeé% lies in the approximate form of
sqution Even though the liquid composition profile is one d1mensaona1
in the reg1on from the root to nearly 80% of the length of the ce]]s
the effect of solute build-up at the front of the "groove" is to

increase the non-exponential term to a value larger than Xo. In the

.
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Y : ' )’ ’

preseﬁt solution this factor is A  and is calculated in thgﬁgéhution
tog between 2 X and 6 X depending on the growth conditions (T?ﬁyar
prOV1des for a more realistic mass balance at the root.

b) The crude assumption of zero-constitutioha1 supercooling
at the tip has been eliminate&?r This is given in ref. 40 as equation

3, which is . . ‘ -
_/— .

dx _ G .
=- 2 (5.5)

E;’tip
This led to another defect on the apprqximate analysis. Together with
the Tocal equilibrium assumption at the tip, this necessarily yielded
the cefgjusion'that the entire cell wall waé superheated. This is

evident from the construction in figure 4 of reference 40. In the present

©analysis this condition was relaxed and only local equilibrium at the

tip was imposed. As can be seen from figure 5a it is still possibie

with this condition to get a solution in which the entire cell wall

is superheated. However, as the stable solutions shoy in the calculations
of Chapter 3, the solid or coel section of‘theiceli wall is. superheated
while Tiquid or hot part of it is supercooled. While this does not
drastically change the structure of the problem, the dietribution of
supersaturation ‘is changed. The dendritic branching must now be ‘-3

regarded as the'breakdown of the cell walls when the'supersaturation

which in this case is supercooling near the tip, incﬁses. It a]stw-
\-‘/ . . - ) ‘ . ‘
shows that nature is trying to balance the supersaturation in the so

and in the liquid, which is a kind of conditional free energy minimum.
.~
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5.5 More on the Non-equilibrium Cell Walls - d

The model predicts that the ce]}\ya1ls cannot be in equilibrium
sO it must be assumed that these are stab{iized by kinetic effects.
PEE There is some evidence for this from the experimentalfobservations.
When the velocity is increased, we note that the supé}saturétion a]o?g
the high temperature part of the walls increasés so we expect a break-
down when the supersaturation exceeds a certain value. Infact,
the experimental 0E§ervation-is.that at large velocities the cell walls

form dendritic perturbationé.' This course of events iss/self-evident

for the supercooled section of the interface.

myst now ask whether
kinetic effects can adequately describe the greatdér stability of the //»\h/\

superheated section of the interface? As Kirka]dy40

points out this
particular problem is analogous to the well-known Widmanstatten ferrite.
problem in which a needle-shaped precipitate of a phase wffh a large

diffusion coefficient grows into a supersaturated medium of lower

Y
N

o dif#usion coefficient along a crystallographically well-defined -
direction. In this case, the walls of the "spike" are stabilized by

kinetic and crystallographic effects. Drawing the anat:g;,—we can
55

state that a similar stabilization takes place here. Fdrthermore, Purdy
has shown that it is possible to haQe a stationary ndﬁ-equi]ibrium inter-
face on the basis of purely thermodynam%c considerations. Referring to
the frdwgenergy composition diagram of figure 52, when a 1liquid of
////,// composition XL i;jin contact with a solid of composition XS as indicated
the two phasés are not at equilibrium. From the tangent construction we

can also see that the chemical potential of component 1 is lower in the {;\\\

J
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solid than in the 1iquid while the chemical potential of 2 is lower in
the 1iquid than in the solid. Under these condifions, the interface -.
cannot migrate if its movement is coﬁtrol]ed by indepehdent transfer

of 1 and 2 across the interface;

—~
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CHAPTER 6 ~
CONCLUSIONS

_A quantitative model has been presented for t@p cell problem

which descrives the cellular instability with good accuracy.

Subject to an imposed realistic shape constraint the cellular

‘problem hasstwo degrees of freedom. It is thus necessary to

" apply two optimization conditions to obtain i/zﬁ?que-so1ution.

Expecim%ntal obseyvations indeed indicate the presence of two
optimizations -4 a local one at the root of the interface and

a global optimum.

The cell walls are non-equilibrium interfaces and are stabilized

by kinetic and crystallographic effects. The supersaturation

‘along the walls is roughly evenly distributed between the

liquid and the solid. ‘

Lateral diffusion effects extend to a distance behind the tips
approximately equal to the spacing of the cells.

The spacing and the length decrease with increasing velocity.
Spacing decreases with increasing temperature gradient and

increasing alloy content in the range of investigation. The

length increases-wlgt\;ncreasing'a]Toy content and decreasing |
¢

gradient. The functiopal dependencies are satisfactorily
predicted by the mode].
Marginal stability theories necessarily produce unstab)e

solutions due to neglect of the non-equilibrium-nature of the

65
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interface and material and kinetic properties of the root of

the interface.

The #oqt of the cellular interface with its strong c;pi{gggigi\

effect is a necessary element in the stabilization of the
cellular interface. It defined a stable region of kinetic phase

space which is not accessible to local equiTﬂuﬁum perturbation

relaxations.
[ ~—/ .
@ M
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APPENDIX 1
-3
Substitution of U = X - xo into (3.3) gives
2 2 :
U UJ+ al _ —
NI (A1.1)
{;‘Z 2y ax :

Using the A!khod of separation of variables, we write U = ¢(x) w(y).

Then, o
W d | | |
el ' K )
2 2 '
U d% .
=Y (A1.2)
. ;17 dx2 -~
and
y | oo
' ay dy™
Substituting (A1.2) into (A1.1) and rearranging we obtain
r
lﬁ%q-llﬂi: ldz (A1.3)
 dx D¢ dx v dy .

The LHS of CA].S) is a function of x only and the RHS is a function of
-y dn]y. Therefore, each must be equal to the same constant Az. Thus,

 we reduce tje second order parfia] differential equation (Al1.1) to two

ordinary differential edhations

> _
. d vde. 2, _ .
; tE g X6 =0 (A1.4)
X : - .
and -
2 -
Q_% + Azw =0 (A1.5)
dy ™ ot
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The solution of (Al1.5) is

-

¢ =¢, sin xy + Cz'cﬁéﬁy

The solution of (Al.4) is

4 = cg exp(-nx) + c, exp(px)
where , —
P 1 412- - \
T2 W) . D ™
and ‘ E
N 7———— /' -~
=l v 2,y
“'2{/[0] + 4 +b-}\ /

Applying the boundary condition (3.5), we get

1]
o

%$-= 0; vy N | B | »

d_q6. £
w0 &

i}
1+
[3,]

Substitution of (A1.6) into (A1.10) gives

and

(A1.

(A1.

(A1.

(A1

. ) .
A1l integer values of n are permissible. Thus combining (A1.6) and

(A1.7) and applying the principie of superposition of solutions we
obtain the general solution of equation (3.3) as

X = xo *nEO Bn exp( nx)cosxny +n£0 An exp(unx) co;xny

(Al

10)

11)

.12)
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We note that-n_ = %-qnd g = 0. We also note that a particular

0

_75

solution of {(3.3) is a special case of (A1.12) given by

X=X +b exp(-vx/D) (A1.13)

-
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APPENDIX 2
AT x = 0, (3.19) gives

+ Ao +b +n£1 An cosxny

x(0,y) = x4

Eqn. (3.20) gives at x = Ow

X(o,y) = Xy F B0 + E Bn COSA, Y

n=1
Fror? (3.19),
axX _ v
ﬁ-(o,_y) =-gb +2Arl Ho cos?kny
while from (3.20),
ax S
3 (o,y) = - 5 B0 b Bn“n cosxny

At x = 0, the liquid- domain ranges from y = -¥, to y
(A2.1) and (A2.2), we get

,.f»\0 + b+ An cosA y = B0 + L Bn,coszxny

and ‘equating (A2.3) and (A2.4), we get

v . Vo o ’J/
-gb+tIA ucosiy=-58 -IB n COSA Y .5
Setting A = B, we obtain from {A2.5), .
. o
Bo = AO + b
o »
..Substitution into. (A2.5) yields |
X : 70
s - )

(A2.1)

(A2.2)

[yo. Equafing

(A2.5)

(h2.6) |

(A2.7)

i ae
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)

v _ - A
ﬁ'Ao = -1 An (un+nn)cosxny ) (A2.8)

Expressing %-Ao as a Fourier Cosine series of the same period as the

. A}
series on the RHS, in the domains Yy <Y <Y, we get from (A2.8)

A sinay : T
-2 ¥___ o0 no ,
A =-25 i T (5y) B, N (A2.9)

o

¢
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System

" Carbontetra bromideaq$x§ch1oroethane

Impure CBr4
Succino nitrile-camphor

Succinonitr¥le-saiol

TABLE 1

>
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ST
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-

.Reference #
15
15,16
51

Pn@sent Study
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TABLE 2

Vapour Pressure Data on Salol

42

»

Vapour pr. in mm Hg '

1
10
40 | . A} /
Melting point of salol 42.8°C
o~ 1
)
g . :
et ]
'
. \ LY 76

~

Temperature °C

117.8

oy
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TABLE 3

"Properties of Suceinonitrile

Molecular weight
Density of solid
Density of Tliquid

Solid-liquid surface tension

Equilibrium melting point
Latent heat of fusion

Entropy of fusion

r

'Thermal Eonductivity of solid

Thermal conductivity of liquid

.
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Ref,.
80.092 | 45
1.016 g/cc 45
0.988.g/cc™ . 18
8.9 m)/m5 46
28 md/m 47 -
331.24 K | 50 ﬂ /
4.78x107 J/m° 45 -
{:: 1.45x10° J/mk 45
0.225 J/mks 46

0.223 J/mks T 46 7 \”////// ‘
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Fig. 1:

Cellular solidification interface.
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Actffal Profile

Ligquidus

Fig. 2: Constitutional supercoohng cmterwn « The shaded area indicates
the supercooled region. . :
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Fig. 3: Virtual supersaturated state for a solid liquid interface with
superheated solid. * After Kirkaldy"?.
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Fig. 5: Concentration distributions corresponding to the cellular
steady state superposed on the phase diagram.
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Fig.‘7:
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Details of the interface éhape used. in the ga]culafions:
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Fig. 8:
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Ce]]u]ér interface in a succinonitrile-salol alloy to show the
_relative magnitudes of the spacing and the root dimensions.
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Fig. 33: Photograph of an unstable interface growing at a velgcity
below the critical velocity for the onset of stable cells
and above the CS limit. "
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Fig. 34: A stable cellular interface.
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Dendritic break down at high velocities.
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Fig. 36: Growth of a misoriented crystal.
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Schematic free energy-composition diagram shewing a thermo-
dyrnamic condition for a stationary non-equilibrium interface





