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ABSTRACT

The steady-state growth of cells in binary alloy single phase

i?iid}fiJltion is examined theoreticaliy and experimentally. The failure

of the ma rgi nal-s tabil ity cal cul ati.ons to predi ct an.;! descri be the

growth of stable cells indicates a theoretical gap in this field. The

. Zener-Hfllert type model for cellular solidification proPied by Kirkaldy

'is discussed. In this theory the physics of cell growth demands that

the interface be a non-equilibrium interface stabilized by Kinetic and

crystallographic effects. A quantitative model ~fjowing this line is

advanced for th~ steady-state growth of two-dimensional cells. The

solution to the free boundary diffusion problem requires, in addition

to the boundary conditions, two extra, constraints. A principle of

minl~m cell root radius, surrogate to the principle of minimum rate of

entropy production, is used to provide the additional conditions. Cell

gro~th in the succinonitrile-salol system was studied exper.imentally.

FoJ a' given s~t of growth conditions the cells hav~. a unique steady

state. spacing and length. Perturbation experiments about the steady-
..f:;.t

state support the validity of the optimization procedu~e used in the
~ . ~ r .

calculations. Quantitative predictions on steady:state growth are

verified by the experiments.
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