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Abstract 

On-line Multivariate Image Analysis (MIA) and Multivariate Image Regression 

(MIR) methods are developed for purposes of on-line monitoring and feedback control of 

industrial processes that are equipped with vision systems. The thesis progresses via 

three main investigative studies through applications of the proposed methods in the steel 

manufacturing and forest products industries. These studies are concerned with (i) vision 

based automatic grading of softwood lumber; (ii) empirical modeling of pulp and paper 

characteristics using multi-spectral imaging sensors; and (iii) texture based classification 

of steel surface samples with image texture analysis. 

The first industrial application study addresses the problem of automatic quality 

grading (classification) of sawn softwood lumber based on visually identifying the 

severity and distribution of common defects. An extended MIA approach for on-line 

monitoring of true color (RGB) image representations of lumber boards is proposed, 

which provides both qualitative and quantitative measures of lumber defects. The 

proposed approach involves developing a robust MIA model on typical defects 

commonly found in lumber. These defects are then monitored using the MIA model on 

lumber boards being imaged by an on-line RGB imaging sensor. The Near-Infrared 

(NIR) wavelength region (900 nm - 1700 nm) of the electromagnetic spectrum is also 

investigated for lumber defect analysis using MIA of multi-spectral NIR images. 

Advantages and shortcomings of using NIR imaging spectroscopy versus RGB cameras 

for lumber grading are highlighted. 

The second industrial application involves empirical model based prediction of 

the properties of fmished dry pulp sheets and the classification of paper samples having 

different compositions. In the pulp study a novel MIR technique extracts relevant feature 

information from multi-spectral images of the samples acquired through NIR imaging 
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spectroscopy, and uses Partial Least Squares (PLS) regression to relate the extracted NIR 

feature space to the corresponding (non-image) quality data measured via laboratory 

analysis. The proposed MIR scheme is successfully used to monitor pulp quality 

variations in an at-line mode on an industrial pulp process during several grade changes. 

In the paper classification problem the feature space, extracted from NIR spectroscopic 

images, is further interrogated using Principal Component Analysis (PCA) to classify the 

finished samples based on their chemical ingredient information. 

The third industrial application addresses the problem of classifying steel sheet 

samples based on their overall surface roughness characteristics. A novel MIA based 

image texture analysis technique has been proposed, which extracts textural features from 

grayscale, color, or multi-spectral images in the latent variable space of PCA. The 

proposed method enables interactive texture analysis of individual images using visual 

MIA tools. Furthermore, a MIA model can be developed to monitor textural features 

from various images for the purpose of image classification. The scheme is illustrated on 

a set of steel surface images with varying degrees of roughness characteristics. Image 

classification achieved by the proposed technique is compared with that obtained by other 

classical multivariate statistical methods and conventional texture analysis approaches. 
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Chapter 1 

Introduction 
Maintaining product quality to meet varying customer demands is of the utmost 

importance for the manufacturing industry. A lot of research is being conducted to 

develop novel process monitoring schemes for quality control. On-line sensors provide 

the foundation for all such schemes. Sometimes even the simplest on-line sensors (e.g. 

thermocouples) are quite expensive to install. New inexpensive on-line sensor 

technology is of great demand in such industries. With the recent advents in imaging 

technology over the past decade it is becoming clear that digital cameras may possess the 

ability to meet these demands in a very economical way. Digital cameras have great 

potential as on-line imaging sensors in many industries with spatially distributed systems 

that traditionally require visual information processing for quality inspection of solid or 

heterogeneous products on moving process lines. The major difficulty lies in the efficient 

extraction of relevant information from the digital images in real-time and relating them 

to product quality and process performance. 

This thesis focuses on developing methods that incorporate digital imaging 

sensors and digital imagery into monitoring and feedback control of such industrial 

processes. In particular, the thesis develops multivariate statistics based [e.g. Principal 

Component Analysis (PCA)] image analysis methods that allow extraction of relevant 

data from digital imagery in various industrial applications. 

Image data carries large amounts of information in the form of light intensities at 

various pixel locations. Traditionally, digital image analysis techniques have focused on 

visually enhancing feature information via manipulation of pixel intensities in the spatial 

domain of the image. The enhanced image is then either thrseholded to count feature 

1 



2 

pixels, or put through some simple statistical analyses to gather a quantitative description 

of feature information. Unlike traditional image analysis techniques the multivariate 

statistics based image analysis methods developed in this thesis extract product quality 

relevant information from digital images without necessarily working in the spatial 

domain of the image. 

The extracted image feature information is typically most correlated with product 

quality characteristics, its local and overall properties, its spatial variations in surface 

texture, etc. This new image feature space proves to be useful in many industrial process 

monitoring and control situations. It can be used to infer product quality in an on-line 

monitoring scheme; to classify products into various quality grades; or to potentially 

perform feedback control as part of an inferential control scheme using visual imaging 

sensors. 

In the past multivariate statistics based image analysis methods have successfully 

been used for feature extraction in various off-line applications ranging from remote 

sensing to microscopy [Geladi et. aI., 1996]. Through these initial applications the image 

analysis methods have come to be commonly known as Multivariate Image Analysis 

(MIA) and Multivariate Image Regression (MIR). 

The main objectives ofthe thesis are to explore the potentials of applying MIA and 

MIR techniques in on-line industrial process monitoring and control schemes for 

purposes of fault detection, soft-sensor modeling of product properties, and product 

classification for quality assurance. For successful on-line application several extensions 

and modifications to (previously off-line) MIA and MIR techniques have been developed 

throughout the thesis. In conjunction with these objectives this thesis progresses through 

a number of investigative and preliminary studies of the applications of the proposed 

methodologies in the steel manufacturing and forest products industries (specifically 

softwood lumber, pulp and paper manufacturing). Presented below is a brief description 

of each application along with a discussion of its objectives and contributions of the 

study. 



1.1 Multivariate Image Analysis for Softwood 

Lumber Grading 

3 

A typical sawmill produces lumber boards with varying degrees of quality, 

depending upon the severity and distribution of defects. Correct grading of softwood 

lumber based on overall quality is of paramount importance in the forest products 

industry because there is a substantial pricing differential between lumber grades. 

Traditionally, the task of lumber grading has been entrusted with skilled human graders 

who are responsible for making several grading (classification) judgments every minute. 

Although lumber graders are trained individuals with set grading rules, they are 

sometimes inconsistent in their grading judgments due to various factors ranging from 

fatigue to wood variations. Consequently efforts have been made in the past decade to 

replace man with imaging sensors and image analysis algorithms for automatic lumber 

grading. 

Various grayscale and color imaging sensors have been used to meet this goal. In 

the majority of lumber grading applications the images have been analyzed using 

traditional image processing techniques to extract lumber features for classification. 

However, it has been difficult to develop one robust classification method due to the 

inherent variation in lumber (even within the same species). Lately, researchers 

[Hagman, 1997] have recognized that lumber grading is a multivariate problem. They 

have proposed MIA and MIR techniques for extracting features from off-line 

multispectral images oflumber in the ultraviolet (UV) and visible (VIS) wavelengths. 

The primary objectives of this work are to extend MIA techniques for on-line 

monitoring of specific defects in RGB color images of lumber boards, and to explore the 

potential of the NIR wavelength spectrwn for lumber feature extraction. The proposed 

on-line monitoring approach consists of developing a robust MIA model, which 

incorporates inherent lumber variations. The model is used on-line to detect and isolate 

defective pixels from a set of lumber boards passing under a RGB digital camera. 
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The main contribution of this work is a novel application of MIA to developing an 

on-line industrial lumber-grading scheme. The work provides a successful feasibility 

study for on-line monitoring of several common lumber defects. Another contribution of 

this work is an exploratory study of the NIR spectrum for extracting subtle lumber 

features. The study contributes by highlighting the advantages and shortcomings of using 

NIR imaging spectroscopy versus RGB cameras for automatic lumber grading. This is 

the first time that the 900nm - 1700 nm NIR wavelength range has been investigated for 

lumber imaging. 

1.2 Multivariate Image Analysis and Regression 

Modeling of Pulp and Paper Characteristics 

The forest products industry produces pulp and paper in varying grades to be used 

as raw materials in the manufacture of many specialty end products like rayon, 

pharmaceuticals, photographic film etc. Customers demand adherence to strict 

specifications on each grade. To gain customer satisfaction the forest products industry 

routinely performs extensive quality control tests to monitor product quality. Some of 

these tests require complicated wet chemistry laboratory procedures, which are quite 

time-consuming and taxing on the testers. Furthermore, most of these tests are naturally 

destructive, thus requiring multiple samples for a complete quality analysis. There is a 

need to develop rapid testing procedures, which would ideally be able to provide multiple 

product quality tests from a single sample in a non-destructive manner. 

Recently the forest products industry has discovered the potential of Near-Infrared 

(NIR) spectroscopy as a means to achieve these goals. During the last decade several 

applications of characterizing pulp and paper using NIR spectroscopy have emerged in 

the literature. These studies use single point NIR probes to gather spectral readings ofthe 

sample, which are then analyzed using multivariate statistical methods like Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) regression. A shortcoming 
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of using NIR probes on solid pulp and paper samples is their inability to provide 

multiple-point readings across the samples to determine spatial variation in their chemical 

characteristics. This issue has been addressed with the recent advent of NIR imaging 

spectroscopes, which acquire simultaneous readings across a solid sample as a multi­

spectral digital image. 

This work introduces a novel MIR technique, which extracts relevant feature 

information from multi-spectral NIR images of fmished pulp and paper samples. The 

extracted NIR feature space is then used in one of the following two manners. It is either 

decomposed using PCA to characterize paper samples based on their chemical 

ingredients, or it is used to develop empirical models of pulp properties through PLS 

regression modeling between NIR image feature vectors of a pulp sample and its 

laboratory analyzed quality data. The methodology is illustrated on a set of industrial 

pulp samples, which were imaged at the pulp mill immediately after production, and prior 

to laboratory quality testing in an 'at-line' fashion. 

The contribution of this work is mainly in providing a framework for a novel MIR 

modeling technique, which can be used to relate feature information from process images 

(obtained by on-line imaging sensors) with corresponding quality information from 

regular (non-image) data obtained from other sources. This work also introduces NIR 

imaging spectroscopy for the first time in the pulp- and paper-manufacturing sector of the 

forest products industry. Some work from this chapter has been presented at the Control 

Systems 2002 conference [Bharati et. al., 2002]. 

1.8 Texture Based Classification of Steel Surface 

Images 

In the steel manufacturing industry product quality is often monitored by 

performing random checks on steel rolls, through various tests on cutout sections, prior to 

shipping. An indicator of overall steel quality is its surface roughness properties. As the 
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quality of the rolled steel declines its surface becomes rougher. An automatic steel 

texture analysis scheme is desirable, which could be used to classify the product based on 

surface roughness. 

Extracting texture/roughness information from grayscale, color, or multi-spectral 

images for off-line quality control or on-line feedback control is a difficult problem. 

Various statistical, structural, and spectral texture analysis approaches have been 

proposed in the literature over the past three decades. This work introduces a novel MIA 

based image texture analysis technique, which extracts image texture features into the 

latent variables of peA. The new feature space is used to classify steel sample images 

based on surface texture information. The classification achieved by the proposed texture 

analysis scheme is compared with that achieved through other classical multivariate 

statistical methods and conventional texture analysis methods. 

The contribution of this work is threefold. First, it presents a novel multivariate 

statistical image texture analysis technique that is flexible enough to be used on 

grayscale, color, or multi-spectral digital images. Second, it presents an overview and 

comparison of several conventional and multivariate statistical methods, along with their 

relative effectiveness for steel classification using surface roughness indicators. Third, in 

the course of this work, insight has been provided into the fundamental issue of the role 

spatial information plays when extracting image texture information using other 

multivariate statistical classification methods like PLS-Discriminant Analysis (PLS-DA). 

This point proves to be the main shortcoming of such multivariate statistical methods 

compared to conventional texture analysis techniques that work in the spatial domain of 

the image. 

1.4 Thesis Outline 

Including the current introduction, this thesis consists of 6 chapters. Some 

background of common imaging sensors and literature reviews of both traditional and 

multivariate statistics based image analysis techniques have been covered in chapter 2. 
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Chapters 3-5, which cover the three main industrial application studies, form the core of 

the thesis. Applications of the developed image analysis methods in the forest products 

industry are covered in chapter 3 (softwood lumber grading) and chapter 4 (pulp and 

paper modeling). Chapter 5 presents applications of various image texture analysis 

methods to classify steel surface images. Finally, chapter 6 summarizes the results 

obtained in the thesis, draws some conclusions and highlights some areas for future work. 



Chapter 2 

Imaging Sensors and Analysis of 

Image Data 
This chapter provides background information and technical details on two digital 

imaging sensors (RGB color camera and NIR multi-spectral camera) that are used in the 

forest products industrial applications described in the thesis. A brief introduction to 

Multivariate Image Analysis (MIA) and Multivariate Image Regression (MIR) techniques 

is also provided in this chapter. These techniques form the backbone of the methods 

developed in the subsequent chapters of the thesis. 

2.1 Industrial Vision Based Sensors 

There are many types and variations of vision sensors used in a vast array of 

applications ranging from microscopy to outer space exploration. Most of such 

applications come in varying degrees of complexity and sophistication, ranging from a 

simple monitoring of the presence (or absence) of a product on a moving web, to 

something as complex as diagnosing whether a brain tumor is cancerous or benign. As 

far as the manufacturing industry is concerned imaging sensors form the heart of many 

vision based monitoring systems. 

Perhaps the most commonly used industrial vision sensor is the monochrome 

(grayscale) camera, which acquires visible light intensities from black to white in various 

shades of gray. Monochrome cameras are useful in such industrial applications not 

requiring color information to perform the required tasks. Examples include acquiring 

8 
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shape information of fmished parts on a production line, verifying correct position of 

labels on containers and reading their barcodes etc. If color information is critical for 

proper monitoring one can use a color-imaging sensor like a Red Green Blue (RGB) 3-

channel camera. One such digital RGB camera has been used to monitor defects for 

automatic lumber grading in the following chapter of this thesis. Further details of the 

camera have been provided in section 2.1.1. Both monochrome and RGB cameras have 

been vastly researched and developed over the past three decades. They are 

commercially available in various configurations, sizes, and resolutions to meet the 

demands of most industrial applications. 

The above-mentioned monochrome and color cameras acquire images based on 

light intensities in the human visible wavelength spectrum of 400 nm to 700 nm. Over 

the past decade several imaging sensors have also been developed that are sensitive to 

light beyond the visible spectral wavelength range. These 'spectral' cameras can acquire 

images in light wavelengths on either side of the human visible spectrum. Ultraviolet 

(UV) cameras are sensitive to light in the wavelength range of 100 nm to 400 nm. Such 

cameras have been used in various space exploration and environmental applications. On 

the other side of the visible spectrum several Near-Infrared (NIR) and thermal Infrared 

(IR) imaging cameras have also been realized, which are sensitive to light in the 900 nm -

2500 nm and 2500 nm - 14000 nm wavelength ranges, respectively. Thermal IR cameras 

fmd use in several heat sensing applications like night vision, "hot spot" detection in 

electrical equipment etc. NIR cameras have been used in many industrial applications 

including semiconductor wafer inspection, forensics, on-line inspection and sorting of 

food products for contaminants etc. Chapter 4 of this thesis employs the use of a 

modified NIR camera in the pulp and paper manufacturing industry. Further details of 

the NIR camera have been provided in section 2.1.2. 

A new dimension has recently been added to vision based sensors with the 

incorporation of light scattering spectrographs attached to cameras. These instruments 

are called imaging spectroscopes, which simultaneously acquire an image of a scene at 

multiple wavelengths. Imaging spectroscopes have been developed for both the visible 
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and NlR spectra. Section 2.1.2.3 discusses further details of the NlR Imagmg 

spectroscope used in this thesis. 

One can generally categorize most industrial vision sensors into two groups based 

on their ability to resolve light intensity. First, those cameras where each pixel produces 

one averaged light intensity reading over a certain band of wavelengths (e.g. 

monochrome, UV, NlR, IR cameras). Second, those cameras where each pixel records 

multiple light intensities at different wavelength bands (e.g. RGB cameras, and imaging 

spectroscopes). 

Besides the cameras described above there are several imaging sensors that have 

also been specially developed for the fields of medical diagnosis and microscopy. 

Typical medical imaging sensors include Ultrasound, Magnetic Resonance Imagers 

(MRI), Computed Tomography (CT) scanners, X-Ray imagers, etc. Further details on 

such imaging sensors can be acquired from various sources [Mackay, 1984; Grainger et. 

aI.,2001]. 

The following sections give a detailed description of the two types of imaging 

sensors used to acquire the digital images in chapters 3 and 4 ofthis thesis. 

2.1.1 True Color RGB Cameras 

A digital camera is a device that converts an optical image of an object into its 

electronic rendition using arrays of photon-sensitive charge-coupled devices (CCD). 

Humans prefer to see images of objects in color rather than grayscale because they use a 

combination of spectral content (color) and reflected light intensity from the object to 

form and interpret its image. The color vision of the human eye is explained by the tri­

stimulus theory, which proclaims that any color can be simulated by mixing three basic 

colors in different proportions. The most commonly used combination of three basic 

colors is red, green, and blue (RGB). Typical electronic devices like the television, 

computer monitors, and digital RGB cameras approximate color by combining three 
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intensity gray-value images (channels) that are given the respective values of red, green, 

and blue [Geladi et. aI., 1996]. 

The CCD sensor is the heart of all digital cameras. It captures light photons and 

converts them into electrical charges proportional to the amount of illumination received. 

RGB digital cameras contain silicon CCD sensors which are sensitive to light photons in 

the human visible wavelength spectrum. RGB cameras use two basic methods to capture 

color using CCD arrays. One method uses a single CCD array upon which a grid of color 

fIlters is placed in a mosaic pattern so that only one of red, green or blue light reaches any 

given pixel. The most common color fIlter pattern used in single CCD array RGB 

cameras is the Bayer pattern [Bayer, 1976]. Using a combination of pixel quadrants to 

produce color at each pixel the resulting image is formed. The second method of 

capturing color in RGB cameras is through use of three separate CCD arrays, one for 

each of red, green, and blue light. An optical prism assembly is used to separate an 

image into 3 color components (RGB), with each spectral component image being 

captured with a different CCD array. Such RGB cameras are commonly called 3-CCD 

cameras. Image resolution is tripled in a 3-CCD camera due to three times as many 

pixels as compared with a single CCD array RGB camera. 

RGB digital camera technology has evolved very rapidly in the past decade to 

produce both high-resolution and high-speed cameras at reasonable prices. CCD arrays 

with resolutions of over 3 million pixels are common in many RGB digital cameras 

available in the market today. These cameras either use mechanical or electronic shutters 

that operate as fast as 10 Ils, which is fast enough to provide blur-free images of many 

high-speed events. 

There are mainly two types of CCD array configurations commonly used in 

digital cameras. The fITst type is a CCD area array camera, which uses a rectangular grid 

of pixels to capture a 2-dimensional image of an object. Such cameras are well suited for 

imaging applications where the objects are smaller than the field of view of the camera. 

With the quick acquisition speeds attained by today's RGB cameras one can adequately 

capture color images of moving objects using an area array CCD sensor. The second 
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type of CCD array configuration is the line scan camera, which uses a CCD array lined­

up as a single row of pixels. Line scan cameras capture I-dimensional images per scan. 

If one is interested in imaging a long continuous moving object such as sheets of pulp, 

lumber boards, textile etc. line scan cameras can rapidly capture multiple line images 

aligned perpendicular to the direction of motion to produce a 2-dimensional image. 

The lumber board color image data analyzed in chapter 3 of this thesis has been 

acquired at Centre de Recherche Industrielle du Quebec (CRIQ), Quebec using an 

industrial high-speed line scan RGB digital camera. The camera, which is manufactured 

by TVI Vision Oy (Finland), acquires successive line images of moving lumber at a scan 

rate of 1525 Hz. It acquires a RGB line image using a 3-CCD linear array architecture 

behind a prismatic beam splitter to acquire separate red, green, and blue scans. Further 

technical details and specifications of the camera can be obtained through following the 

links to the "Pricolor series" industrial line scan RGB cameras on the website of TVI 

Vision at http://www.tvi.fi (as of April 29, 2002). At CRIQ the camera has been 

integrated with other signal processing hardware and data processing software to form an 

on-line lumber board vision system. Figure 2.1 illustrates a superficial description of the 

vision system used at CRIQ to acquire the lumber images. 

line scan 
Camera 

Personal Computer with 
Image Analysis Software 
- Record and Display 
Results 

Digital Signal Processing 
(DSP) Hardware - Pre­
process image data 

Figure 2.1 Schematic of a lumber vision system used to image moving lumber boards 
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2.1.2 Near-Infrared (NIR) Cameras 

The Near-Infrared (NIR) spectrum has been defmed as the region of light having 

wavelengths between 700 nm and 2500 run, which is beyond the human visible light 

spectrum (400 nm to 700 nm). NIR digital cameras are different than the above 

discussed monochrome and color cameras as they have CCD sensors that respond to light 

(energy) in the NIR wavelength region. Some features of the NIR spectrum have been 

briefly discussed in section 2.1.2.1. 

Some of the first NIR cameras used exotic sensors that required external cooling 

in order to remove noise from the images and prevent the CCD element from damaging, 

as it was very sensitive to temperature fluctuations. Lately, un-cooled room temperature 

NIR cameras have been realized with the inception of Indium Gallium Arsenide 

(InGaAs) CCD detectors. InGaAs detectors are highly sensitive to light in the NIR 

wavelengths from 900 run to 1700 run, which is well beyond the range of silicon CCD 

detectors used in RGB cameras. Besides the visible spectrum, silicon CCD detectors are 

also sensitive to light in the low NIR wavelength region of 700 run to 1100 nm. In 

standard color RGB digital cameras light beyond the visible spectrum is blocked from the 

CCD detectors as it interferes with the quality of the visible image. Some specialized 

VIS-NIR cameras have been produced using silicon CCD detectors that are sensitive to 

both the visible and low NIR wavelength spectra. However, InGaAs CCD detectors are 

exclusively used in cameras designed to capture light in the wavelength region of the NIR 

spectrum. 

Like RGB cameras one can obtain NIR digital cameras with CCD detectors 

arranged in configurations like area array or line scan. Furthermore, one can also obtain 

NIR cameras attached with an array of multiple probes that provide simultaneous local 

NIR readings at specific points across a sample. As expected, images acquired by NIR 

cameras are grayscale in nature since pixel intensities usually represent the total amount 

ofNIR reflectance (or absorbance) of light being projected on the imaged object. 

Some work presented in chapter 3 and all of chapter 4 of this thesis employs a 

modified InGaAs CCD area array NIR digital camera to acquire multispectral images of 
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lumber, pulp and paper samples. Further details of this camera and its modification into 

an imaging spectrograph are provided in sections 2.1.2.2 and 2.1.2.3, respectively. 

2.1.2.1 The NIR Spectrum 

The NIR spectrum (700 nm to 2500 nm) is characterized by overtones and 

combinations of molecular vibrations, which occur in the mid-Infrared wavelength region 

(2500 nm to 50,000 nm) of the electromagnetic spectrum. Vibrations in molecular bonds 

occur when absorbing radiation, which results in a transition of one vibrational energy 

level. This is observed through sharp absorbance peaks at selected mid-IR wavelengths 

for certain organic compounds. According to quantum mechanical selection rules 

transitions of more than one energy level are not allowed if the vibrations are harmonic. 

However, molecules exhibit anharmonic vibrations at higher vibrational states [Antti, 

1999], which lead to the allowance of energy transitions of more than one energy level. 

Such transitions are called overtones, which provide the basis for the NIR spectrum. If 

two or three separate anharmonic vibrations absorb one part each of the incident radiation 

this type of absorption gives rise to combination bands in the NIR spectrum [Svensson, 

1999]. 

There are a number of bands of overtones and combinations for many functional 

groups in the NIR spectrum of an organic compound. These bands overlap to give rise to 

a smooth spectrum with broad peaks, which makes the NIR spectrum of the organic 

compound more difficult to interpret as compared to its mid-IR spectrum. However, NIR 

spectroscopy does have many advantages. First, there is hardly any need for sample 

preparation thus allowing the technique to be applicable to a sample in any physical or 

chemical state. Second, NIR measurements are gathered very rapidly in a non-invasive 

manner, thus allowing the sample to be re-used after being measured, or sent on for 

further analysis [Antti, 1999]. 

Due to the smooth and overlapping nature of the absorbance peaks in the NIR 

spectrum, collecting NIR absorption or reflectance readings of multiple samples produces 

very similar looking spectral signatures. Chemical differences between such samples are 
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described by subtle differences in these signatures. With the advent of digital technology 

NIR spectral readings are generally digitized into many hundreds of narrow wavelength 

bands. Since the NIR spectrum is smooth these wavelength bands are highly correlated 

with each other. Multivariate statistics based chemometric techniques like PCA and PLS 

have excelled in efficiently extracting subtle differences in NIR spectra of multiple 

samples, and using this information to empirically model many sample properties. The 

field of multivariate calibration [Martens et. al.; 1989] develops the theory and 

application of such chemometric techniques in spectral data. There have been many 

successful industrial applications of chemometrics with NIR spectroscopy, some of 

which include food products [Hildrum et. at, 1992], forest products [Antti, 1999], 

plastics [van den Broek et. al., 1996], chemicals [Beebe et. at, 1998]; pharmaceuticals 

and biomaterials [Stark et. al., 1986]. 
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Figure 2.2 Near-Infrared absorptions chart indicating major analytical bands and their 
peak positions, courtesy FOSS NIRSystems 

Important bands in the NIR spectrum arise from overtones and combinations of 

molecular vibrations of many functional groups in organic compounds. Common 

functional groups exhibiting NIR absorbance are: O-H, C-H, N-H, and S-H because X-H 

bonds are the most anhormonic in nature [Svensson, 1999]. Figure 2.2 illustrates a NIR 
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absorptions chart (courtesy FOSS NIRSystems), which indicates the major analytical 

bands and their relative peak positions in the NIR spectrum. Furthermore, it also 

illustrates the NIR absorption ranges of the above-mentioned functional groups. Further 

details and theory of the NIR spectrum can be gained from [Whetsel, 1968; Stark et. aI., 

1986; McClure, 1994]. 

As mentioned before the instrument used to acquire NIR reflectance 

measurements in this thesis is an InGaAs CCD area array camera, which is sensitive in 

the wavelength range of 900 run to 1700 nm (highlighted in figure 2.2). This range is 

primarily dominated by parts of the third overtone region (700 run to 1150 nm), the full 

second overtone region (l050 run to 1650 nm), and parts of the first overtone region 

(1450 run to 2000 nm). As seen from figure 2.2 the main functional groups that absorb 

radiation in the wavelength range of the NIR camera are: C-H, O-H, and N-H. Finally it 

should be noted here that the O-H functional group exhibits its first overtone band near 

the 1400 nm to 1500 nm wavelength region, which is captured by the NIR camera. It has 

been established in the literature that NIR spectroscopy is a very good indicator of water 

(moisture) due to its sensitivity to the O-H functional group [Whetsel, 1968]. However, 

moisture fluctuations between samples can also produce unwanted variations in their NIR 

spectra, which need to be addressed. This issue is further discussed in section 4.4.4.1 of 

the thesis. 

2.1.2.2 Details ofNIR Camera Used in Thesis 

The NIR digital camera used to acquire images of lumber (chapter 3), pulp and 

paper (chapter 4) is a room temperature InGaAs CCD area array camera equipped with a 

CCD temperature stabilizer at 18°C. Most of the general information about the NIR 

camera has been discussed in section 2.1.2. What follows are some technical details of 

the camera and its modification into an imaging spectrometer. 

In its native form the NIR camera (as purchased from the supplier) captures an 

average NIR reflectance image, with every pixel element of the InGaAs focal plane array 
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producing a single reflectance intensity averaged over the 900 run to 1700 run 

wavelength range. The focal plane array has 128 x 128 pixels, with each physical pixel 

being 60 J.lm x 60 J.lm. Although the optical sensitivity of the CCD detector is wider, its 

quantum efficiency is greater than 75% only in the 1000 run to 1600 run wavelength 

range. The camera has a frame rate of 60 Hz and produces non-interlaced progressive 

scan readouts of the image. 

The NIR camera has been purchased from Sensors Unlimited Inc., (USA). The 

model number is SUI28-1.7RTD. For further details regarding this camera please 

consult http://www.sensorsinc.com (as of April 29, 2002) and follow the links to their 

'NlR Imaging Cameras' section. 

Upon comparing the scan rates of the RGB line scan camera described in section 

2.1.1 with that of the above-mentioned NIR camera (i.e. RGB ~ 1525 Hz; NIR ~ 60 

Hz) it can be inferred that the response times of the silicon CCD detectors present in the 

RGB camera are much smaller than those of the NIR camera's InGaAs CCD detectors. 

Due to this bottleneck NIR cameras cannot reach the speeds achieved by some of the 

high-speed RGB cameras. Currently RGB cameras are much better suited for on-line 

monitoring of high-speed industrial processes with small time constants (e.g. on-line 

lumber grading at a process moving at 300 ft.lmin.). However, NIR camera technology is 

evolving very rapidly and the response time lag between the CCD detectors in NIR and 

RGB cameras is getting smaller. The methods developed in this thesis are ideal for both 

ROB as well as NIR cameras used for on-line monitoring of industrial processes. As a 

result, the framework has already been provided for on-line process monitoring using 

NlR imaging sensors once the technology becomes advanced enough to handle the speed 

requirements of some typical high-speed industrial processes like pulp and paper 

manufacturing. In the context of this thesis the NIR camera has been used for mainly off­

line imaging of moving objects at much slower speeds (up to -20 ft.lmin.) as compared 

to the ROB camera used to image moving lumber boards. 

The above-mentioned NIR digital camera has not been used in its original form in 

this thesis. It has been modified into a multi-spectral imaging spectrometer, which is 
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capable of acquiring NIR reflectance images of a moving object in multiple wavelength 

bands. The following sub-section discusses the modifications made to the area array 

camera. 

2.1.2.8 Modification ofNIR Camera into Imaging Spectrometer 

A direct-sight imaging spectroscope [Hyvarinen et. aI., 1998] has been attached 

between the front optics lens and the camera back to modify the NIR digital camera into 

an imaging spectrometer. The spectroscope consists of an entrance slit, focusing lenses, 

and a Prism-Grating-Prism (PGP) element encased in a hollow tube. Light enters the 

spectroscope in a horizontal line through the entrance slit and gets vertically dispersed 

into its continuous spectral distribution as it goes through the lenses and PGP element. 

This results in an array of wavelength-specific horizontal lines of light that are captured 

by the CCD area array detectors in the camera back as a 2-dimensional intensity image. 

The horizontal axis (i.e. columns) ofthe captured image represents the spatial dimension, 

whereas the spectral dimension is represented by the vertical axis (i.e. rows). Figure 2.3 

illustrates the basic operating principle of the direct-sight imaging spectroscope [Herrala 

et. aI., 1996]. 

Enhance slit Lense s and PG P com pone nt IvIa trix dete ctor 

Figure 2.3 Schematic of direct-sight imaging spectroscope used to convert an area 
array camera into an imaging spectrometer, courtesy Spectral Imaging Ltd. 
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The imaging spectroscope used in this thesis has been purchased from Spectral 

Imaging Ltd. Its model number is 'ImSpector NIT. The spectroscope has been 

specifically designed to vertically disperse a horizontal line of light into its NIR spectrum 

spanning the 900 nm to 1700 nm wavelength range. The spectrally dispersed lines are 

imaged using the InGaAs CCD area array of the NIR camera described in section 2.1.2.2. 

Further technical details and specifications of the imaging spectroscope can be obtained 

from http://www.specim.fi (as of April 29, 2002). 

As mentioned before the pixel resolution of the CCD array in the NIR camera is 

128 x 128 pixels. Thus, the spectrally dispersed image captured by the InGaAs CCD 

array has dimensions of 128 rows and 128 columns. As a result, the continuous NIR 

reflectance spectrum (900 nm to 1700 nm) of 128 spatial pixels is vertically digitized into 

128 discrete wavelength bands increasing from bottom to top. Each band of the digitized 

spectrum (represented by a row of the 2-dimensional image) has a spectral resolution of 

approximately 6.25nm. 

With its design the imaging spectroscope converts the NIR camera with a CCD 

area array into a line scan NIR spectral imaging system. For each imaged line of a 

moving object the system records a spatial-spectral (i.e. x vs. A.) intensity image. Figure 

2.4 illustrates a spatial-spectral intensity image of a line scanned from a moving pulp 

sample recorded by the NIR imaging spectroscope. For visual enhancement the intensity 

image has been color-coded using the coloring scheme described in the color bar towards 

the right of the image. 

Line scan cameras inherently capture I-dimensional images of objects in the 

spatial domain. As shown in section 2.1.1 the second spatial dimension is captured upon 

recording multiple lines across a moving object at constant velocity in a perpendicular 

direction to the scan. Similarly the line scan NIR imaging spectrometer captures the 2nd 

spatial dimension (y) of an object upon moving it in front of the imaging system. Upon 

capturing multiple line scans the corresponding x-A. images recorded by the imaging 

spectrometer per line scan are joined into a 3-dimensional multi-spectral image dataset; 

the 3rd dimension of which represents the other spatial dimension (y). Figure 2.5 
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Figure 2.4 Digitized NlR reflectance spectra of a line scan of pulp recorded by the 
imaging spectrometer as a 128 pixels x 128 pixels spatial-spectral intensity image 
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illustrates the working principle of the imaging spectrometer to capture the x-y spatial 

dimensions of a sample on a moving web. 

The resulting 3-dimensional dataset is a multi-spectral NlR reflectance image 

with 2 spatial dimensions and 1 spectral dimension (x x y x A.). Due to the size of the 

CCD area array in the NlR camera the maximum pixel resolution in the x and A. 

dimensions is 128 pixels each. However, the number oflines scanned across the moving 

object can control the pixel resolution of the y dimension. Furthermore, the physical 

length of the scanned section of an object can be controlled through the number of lines 

scanned, whereas the distance between the object and the imaging spectrometer can 

control the width ofthe scanned section. 

All images captured by the line scan spectral imaging system in this thesis have 

been acquired using a scanner assembly to move the object. The speed of the scanner 

bed is controlled in 20 increments through a desktop computer. The imaging 
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Figure 2.5 Capturing spatial dimensions of a moving sample on a process web using 
the line scan spectral imaging system, courtesy Spectral Imaging Ltd. 

spectrometer is also connected to the computer through a frame grabber board. A 

halogen lighting source attached with fiber-optic cables arranged in a horizontal line has 

been used to illuminate the object at a 45° angle with respect to the scanner bed. 

Typically image acquisition requires a well-illuminated object with even lighting from at 

least two sources at opposite 45° angles to remove any shadows cast by the object. 

However, in this thesis the objects being imaged are flat in nature (lumber, pulp and 

paper), thus only a single source of lighting was deemed adequate. Figure 2.6 illustrates 

the imaging spectroscope and scanner assembly used to acquire the multi-spectral NIR 

reflectance images in this thesis. 

The manufacturing industry produces many products on a moving line or a web. 

On-line monitoring of such industrial processes is performed in real-time. The above­

mentioned imaging spectroscope is an ideal candidate for simultaneous on-line visual 

monitoring in the spatial and spectral dimensions in such industrial processes producing 

spatially distributed solid and heterogeneous products. This is due to the nature in which 

the imaging spectrometer acquires the multi-spectral image. Imaging spectrometers that 

build multi-spectral images of an object by capturing individual 2-dimensional spatial 

images one wavelength at a time, and changing wavelengths through a moving grating 

system are not ideal for on-line process monitoring. This is because they require a 
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stationary object as the grating scans through the wavelength spectrum to acquire the 3rd 

(/...) dimension of the multi-spectral image. 

Figure 2.6 Imaging spectroscope and scanner assembly being used to acquire a multi­
spectral NIR reflectance image of a pulp sample 

Finally, before ending the discussion on visual sensors used to acquire the color 

and multi-spectral NIR images in this thesis it is worth mentioning that any image 

analysis technique is only as good as the quality of the acquired image. If the signal-to­

noise ratio is too low, or the image quality has been compromised in any way, its analysis 

will produce sub-optimal results. Camera anomalies like bad pixels in a CCD array 

produce abnormal pixel responses to light in certain regions of the captured image. In a 

line scan camera an anomaly would produce a pixel-to-pixel intensity variation across the 

scanned image, which results in streaks in the final image along the direction of motion 

of the object. Such pixel anomalies were evident in the NIR camera (# bad pixels were 

less than 2% of total pixels on CCD array), which resulted in vertical streaks in the x-y 
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dimension of the 3-dimensional multi-spectral NIR reflectance image. Section 4.7 

illustrates this through an example of trying to capture spatial homogeneity in a pulp 

property via 2-dimensional sub-windowing of the x-y plane of a pulp NIR multi-spectral 

image. Lighting variations across the line of light also cause contrast variations across 

the imaged line, which result in contrast difference (e.g. shadowy trends) across the x-y 

plane of the resulting image. These shadowy trends are also evident to a lesser degree in 

the multi-spectral NIR images acquired by the imaging spectrometer and scanner 

assembly described above. Section 4.3.1 illustrates the shadows in the x-y plane of the 

multi-spectral NIR image of a paper sample, which are caused by mild light intensity 

variations across the halogen line lighting used to illuminate the samples on the scanner 

bed under the imaging spectrometer. 

Figure 2.6 illustrates the NIR imaging spectrometer and scanner assembly with a 

Fostec "Lightline" http://www.us.schott.comlfostec (as of May 4, 2002) attached to a 

150W halogen light source via fiber-optic cables to illuminate a line across the sample 

being imaged. The "Lightline" is mounted on an aluminum holder, which allows manual 

light angle adjustment to provide adequate illumination across the sample in order for the 

NIR multi-spectral camera to record a high contrast image. 

As far as light calibration of the NIR imaging spectrometer is concerned, there is 

an inherent correction for light aging when the spectrometer is calibrated at the start of an 

imaging run. Spectrometer calibration is performed with a two-step process. First, a 

dark image is recorded with the lens cap in place to block light from entering the 

spectrometer. Second, a white image is recorded, which is captured by imaging a white 

reference object [DV sri, 2000]. The sample NIR reflectance R captured by the multi­

spectral camera is separated from the system response by taking, pixel by pixel, the ratio 

of each sample image to the white image using the following equation [Hyvarinen et. aI., 

1998]: 

sample (0 0) - dark(o 0) 
R - ~ ~ 

(i,j) - • 
white (i,j) - dark (i,j) 

(2.1) 
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where, "sample(ij( is the sample image recorded by the imaging spectrometer, "dar~ij)" 

is the dark image acquired by the NIR camera, and "white(ij( is the image of a white 

reference target recorded by the imaging spectrometer. For absolute reflectance an 

OP.DI.MA 15110 white diffuse plastic from Gigahertz-Optik (Germany) 

http://www.gigahertz-optik.de/pdf7m op di ma.PDF (as of May 5, 2002) with a known 

NIR spectral reflectance was used as the white reference target. Equation 2.1 inherently 

compensates for both lighting spatial non-uniformity across the scene line, and light 

source color temperature drift with aging. 

Besides equation 2.1 several signal correction methods have been proposed in the 

literature to compensate for scattering effects of lighting in spectroscopy. These methods 

are algorithm based, using post-correction ofmulti-spectraI data to filter out the effects of 

such unwanted variations. Multiplicative Signal Correction (MSC) is one such popular 

technique for correcting light scattering variations [Martens et. aI., 1989; Hagman, 1996; 

Eriksson et. aI., 1999]. 

2.2 Traditional Image Analysis Techniques 

Prior to discussing the use of multivariate statistics in the area of digital image 

analysis it is appropriate to re-visit some of the traditional digital image analysis 

literature. In general terms traditional image analysis refers to the extraction of numerical 

or graphical information of objects from digital images. By defmition traditional image 

analysis techniques form one of several classes of the overall Image Processing field. 

Image processing consists of several fundamental classes of operations that act to 

improve, correct, analyze, or in some way alter an image [Baxes, 1994]. Depending upon 

the final objectives one or more operations may be employed to extract information from 

an Image. Typically, most image processing operations can be classified into two 

fundamental classes: (1) Image Enhancement and Restoration; and (2) Image Analysis. 

Image enhancement and restoration operations are generally used to improve the 

quality or reduce the presence of noise in an image. These operations may be used as a 
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pre-process to improve the image for subsequent image analysis operations. The main 

objective of image enhancement is to process the image to make it more visually 

appealing to the observer, whereas image restoration aims to correct the image from 

known degradations into its mathematically correct form. Common image processing 

operations used to enhance the visual quality of the image are contrast adjustment (e.g. 

input/output cropping and gamma correction), and various image histogram manipulation 

techniques (e.g. histogram equalization). Filtering in the spatial and/or frequency 

domains of an image tries to both enhance and restore image information. Spatial filters 

(e.g. smoothing, low-pass, high-pass, 1st and 2nd derivative edge detection filters) 

accentuate or remove spatial frequency of intensity variations in a pixel neighborhood of 

an image through various convolution operations [Bharati, 1997]. Frequency domain 

filters apply a frequency mask to remove specific (or a band of) spatial pixel intensity 

frequency components from an image. However, this mask is applied on the frequency­

transformed image obtained via application of a transform (e.g. 2-dimensional Fast 

Fourier Transform) to convert an image from the spatial domain into a frequency 

magnitude image describing the combination of fundamental spatial frequency 

components. Image filtering techniques are well suited to restore images through 

removing both spatial and frequency limited noise. 

Image analysis operations are used to produce an automated description of an 

image by quantifying its elements (features) through various mathematical descriptors of 

shape, size, color, texture etc. These techniques are largely used in machine vision 

applications that require quantitative measurement and classification of a few features in 

the image. The initial step in almost all image analysis processes is segmentation of the 

various parts (i.e. objects, regions, or features) of the image to separate them from 

background pixels. This process is generally performed by thresholding the pixel 

brightness values and/or using morphological operations to re-segment the objects into 

sub-groups [Ekstrom, 1984]. When segmentation is complete image analysis operations 

measure the segmented objects through various geometric, color, or texture descriptors. 

Geometric descriptors measure shape, size, area and distance of objects to provide a 
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quantitative analysis of the image. Classification can then be performed based on this 

information. 

The common idea behind most image processing operations is to manipUlate the 

spatial pixel intensity variations in an image based on certain pre-defmed criteria. These 

techniques work to alter the brightness of every pixel in the image to make it more 

visually pleasing, and/or enable the extraction of quantitative measures of feature pixels 

based on spatial descriptors like size, shape, area, texture etc. 

The field of digital image processing has been well researched for the past four 

decades. As a result, there are many excellent references available in the literatures that 

fully describe its operations in great detail. The reader can consult the following 

references to obtain an in depth understanding of traditional image processing operations 

[Baxes, 1994; Ekstrom, 1984; Gonzalez et. aI., 1992; Pratt, 1978; Russ, 1999; Serra, 

1982]. As opposed to traditional image analysis techniques this research focuses on the 

application and development of multivariate statistics based image analysis methods to 

extract feature information. 

2.3 Multivariate Statistical Image Analysis 

Techniques 

It has been shown that image analysis techniques comprise of extracting feature 

information from images that is contained in a few interesting pixels, and trying to 

separate these feature pixels from other (background) pixels. The objective of traditional 

image analysis techniques is to try and extract this information working in the spatial 

coordinates of the image. 

Multivariate statistical image analysis techniques on the other hand also try to 

extract feature information from images. However, the principles used here are quite 

different. These techniques are ideally suited for extracting variable relevant information 

from multivariate images. A "multivariate image" is here defmed as any digital image 
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consisting of multiple spatially consistent (congruent) channels, where each channel 

could represent a unique color, wavelength, time, or a different imaging technique 

[Geladi et. al., 1996]. Their analysis is accomplished by extracting (and grouping) pixels 

belonging to features of interest and separating them from background pixels using the 

differences between their signatures in the variable dimension (e.g. capturing differences 

in NIR reflectance spectra of feature pixels from those of background pixels in a multi­

spectral NIR reflectance image). 

This section intends to provide an overview of Multivariate Image Analysis 

(MIA) and Multivariate Image Regression (MIR) techniques, which use multivariate 

statistical methods like multi-way PCA and PLS to both extract and empirically model 

features of interest from multivariate image data. The chapter then concludes with a 

discussion of some fundamental differences between the objectives of multivariate 

statistical image analysis techniques and traditional image processing methods. 

2.3.1 Methodology and Review of Multivariate Image 

Analysis 

Multivariate Image Analysis (MIA) techniques, fIrst introduced by Esbensen et. 

al. [1989], consist of extracting feature information from multivariate images using the 

latent variable spaces of multivariate statistical methods like PCA, PLS, and Principal 

Component Regression (PCR). 

As mentioned before a multivariate unage consists of a stack of congruent 

images, where each image in the stack represents a unique variable. A multivariate 

image can be represented as a 3-dimensional dataset, where 2 dimensions (x x y) 

represent pixels in the image plane and the 3rd dimension (z) represents the variable 

index. Figure 2.7 illustrates an example of a 512 x 512 pixel multivariate image with 4 

variables, where each variable represents a different wavelength of the electromagnetic 

spectrum [Bharati et. al., 1998]. The data in this multi-spectral image can be viewed 

either as a 3-dimensional matrix of pixel intensities, or a 2-dimensional matrix of (4 x 1 
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pixel) vectors at each spatial location in the (x, y) image plane where the vectors represent 

the wavelength spectrum of every pixel. 

/512 

512 

1 
4 

512 

512 

Figure 2.7 Different data representations of a 512 x 512 x 4 pixel multivariate image 

The variables of a multivariate image are highly correlated with each other as they 

represent congruent images capturing the same pictorial information. Furthermore, 

multivariate images usually contain enormous amounts of data, making their analysis 

computationally intensive. To efficiently analyze such an enormous and highly 

correlated dataset MIA techniques use latent variable based multi-way peA and multi­

way PLS methods [Geladi et. aI., 1989; Esbensen et. al., 1989; Grahn et. aI., 1989]. 

These methods compress the highly correlated data by projecting it onto a reduced 

dimensional latent variable subspace through a few linear combinations of the variables 

in the multivariate data. 

Multi-way peA of a 3-dimensional (nx x ny x nz ) digital image array X consists of 

decomposing it into a series of A « nz) principal components consisting of (nx x ny) score 

matrices Ta and (nz x 1) loading vectors Pa plus a residual array E, i.e.: 

A 

X=LTa®Pa+ E (2.2) 
a=1 
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where ® denotes the Kronecker product. The principal components are ordered in the 

sense that the first component explains the greatest amount of variance in X, the second 

component explains the next greatest variance, and so forth. The number of components 

(A) necessary to extract most of the meaningful information can be determined by various 

procedures [Wold, 1978; Jackson, 1991]. 

This method of multi-way peA is equivalent to unfolding the 3-dimensional 

matrix X into an extended 2-dimensional matrix X, as illustrated in Figure 2.8, and then 

performing ordinary peA on it: 

A 

X __ unfi....:..o_ld~ X -" t T E ) - L..J aPa + 
nx x ny x nz (nx·ny ) X nz a=1 

(2.3) 

where ta is a (nx·ny) x 1 score vector, and Pa is a (nz xl) loading vector. The score 

vectors ta (a = 1, ... , A) are orthogonal, and the loading vectors Pa (a = 1, ... , A) are 

orthonormal. By unfolding the 3-dimensional multivariate image matrix X into a 

corresponding 2-dimensional matrix X the multi-way peA method treats each pixel as a 

separate object independent of its neighbors. This breaks the spatial dependence of 

neighboring pixels in the (nx x ny) image plane of the multivariate image. Figure 2.8 

illustrates this unfolding procedure ofa 512 x 512 x 4 pixel multivariate image X. The 

objects (rows) in the unfolded matrix X then correspond to the pixel locations in the nx x 

ny image plane of the multivariate image, whereas its columns represent unfolded 

variable images into long vectors. 
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Figure 2.8 Multi-way PCA decomposition ofa 512 x 512 x 4 pixel multivariate image 
into a linear combination of reduced dimensional latent variable subspace 

The row dimension of the unfolded matrix X is usually very large (equal to 

262,144 rows upon unfolding a 512 x 512 pixel image), whereas its column dimension is 

very small (4 columns representing the 4 variable images). Performing PCA on a matrix 

with such a high number of rows using the NIP ALS algorithm [Geladi et. aI., 1986] or 

Singular Value Decomposition (SVD) [Golub et. aI., 1983] would lead to excessive 

computational times. Therefore, with essentially all multivariate image data having long 

and thin unfolded matrices, a kernel algorithm [Geladi et. aI., 1989] is used. In this 

algorithm the kernel matrix (XTX) is fIrst formed, and then an SVD is performed on this 

very low dimensional (nz x nz) matrix to obtain the loading vectors Pa (a = 1, ... , A). The 
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corresponding score vectors ta are then computed via equation 2.4. The only time 

consuming step in this algorithm is the (one time) construction of the kernel matrix 

(XTX). Further details about multi-way PCA decomposition of the above-mentioned 

multivariate image can be gathered from Bharati [1997]. 

In each dimension (a = 1, ... , A) MPCA extracts a principal component variable 

(score) ta which is defined as a linear combination of the variables in X. Each element in 

ta corresponds to a weighted average pixel over the 4 variables. The corresponding 

loading vector Pa gives the particular linear combination. 

~=X~ ~~ 

If X were a multi-spectral image each principal component score would extract a 

particular spectral feature (i.e. a unique linear combination of the pixel intensities over 

the spectrum of nz wavelengths). The reorganized score matrix Ta is a representation of 

the image in tenns of that spectral feature. 

Upon completion of PC A on X, the (nx·ny) x 1 score vectors ta (a = 1, ... , A) can 

then be reorganized back into (nx x ny) score matrices Ta (a = 1, ... , A) giving a 

representation of the original X array as expressed in equation 2.2 and illustrated in figure 

2.8. In this way one can see that the scores themselves represent images in the original 

(nx x ny) scene space; TJ being the image with the largest variance, followed by T2 with 

the second largest variance, and so forth. MIA allows the user to visually determine if 

adequate infonnation has been extracted by the reduced dimensional latent variables from 

the multivariate image. Furthermore, the residuals E can also be reorganized into their 3-

dimensional matrix representation and visually analyzed as a multivariate image to 

determine the remaining structure in each variable image after extracting the latent 

variables. A reconstructed multivariate image, which eliminates much of the 

unstructured noise from the original image, can be obtained by using only the dominant A 

principal components: 

(2.5) 
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where the residual component E has been omitted. However, such Multi-Way PCA 

(MPCA) methods are not very useful for image enhancement, as they are not specifically 

designed to sharpen edges or enhance other specific features in the image. Some of the 

traditional image processing operations discussed in section 2.2 provide more powerful 

approaches to image enhancement or restoration. The strength of the MPCA based MIA 

technique is in its ability to extract and isolate feature pixels from background pixels in 

highly correlated image data. 

MIA extracts feature pixels through the inherent duality between its score images 

T a and score plots. Since MPCA scores ta are orthogonal to each other it gives well­

reasoned meaning to plot them against one another as scatter plots. MIA score plots give 

a compressed representation of the intensity information at each pixel location in terms of 

the score values (It, 12, ••. ) of the dominant principal components. These score values 

summarize the dominant variable features of the image at each pixel location. If, at 

different pixel locations in an image the same combination of variable intensities were 

present, their score value combination (II, (2) would be almost identical. Regardless of 

the spatial locations of the various occurrences of this feature in the image space, MPCA 

would represent it by the same combination of score values (II, (2). Therefore, by plotting 

the score values of the dominant principal components (I), (2) for each object (i.e. each 

pixel location) in a scatter plot, the score combinations for all pixel locations in the scene 

space having the same characteristics in their variable intensities would plot on top of one 

another or at least in the same neighborhood. This results in score point clusters 

representing features having similar characteristics of variable combinations. Score plots 

are actually 2-dimensional histograms where each dimension represents a principal 

component, and the histogram bins represent the frequency of feature pixels having 

similar combinations of principal component values. 

MIA Example: RGB Color Image of Lumber 

The above MPCA decomposition of multivariate images and subsequent analysis 

of the results are best presented by way of an example. The multivariate image used in 
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this example is a RGB (3 channel) color image of the face of a 1" x 4" x 24" piece of 

lumber. Figure 2.9 illustrates the lumber sample multivariate image of size 746 x 343 x 3 

pixels. Besides sound wood with annular rings the image also depicts three types of 

defects typically found in lumber samples, like knots (sawn tree branches), splits (cracks 

in wood), and pitch (resinous material) pockets. 

Figure 2.9 A 3 channel multivariate image representation of a 746 x 343 pixel RGB 
color image of a sawn lumber sample depicting typical lumber defects like knots, 

splits, and pitch pockets 

The data contained in the three variables of the lumber multivariate image is both 

enormous in size (746 x 343 x 3 = 767,634 pixels) and the observations are highly 

correlated with each other. Table 2.1 presents a matrix of correlation coefficients 

between the 3 color channels ofthe lumber multivariate image. 
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Table 2.1 Correlation matrix of color channels in the RGB multivariate image of lumber 

Red Green Blue 

Red 1 0.963 0.833 
Green 1 0.905 
Blue 1 

MPCA has been used to decompose the 3 channel lumber image into a linear 

combination of two score and loading vectors, where the third principal component 

automatically represents the left over information attributed to noise. The feature 

information extracted by the frrst two principal components (PC), and that left over in the 

third PC can be visually determined by observing the re-fo lded score matrices T I to T 3 as 

individual grayscale images or a false color-composite RGB image as illustrated in figure 

2.10. It can be observed from the TI grayscale image that the frrst principal component 

t" 

T} Image , ". • 
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• . ' 
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Figure 2.10 Grayscale and false color-composite image representations ofMPCA 
scores T 1 to T 3 upon decomposing the multivariate image of sawn lumber 

extracts mainly contrast information between sound wood (bright pixels) and darker 

lumber defects like knots and splits. The T 2 grayscale image reveals a contrast difference 

between the pitch pockets (dark pixels) and all other features in the lumber sample. 
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Although the T 3 grayscale image contains some structure, it can be concluded that the 

signal-to-noise ratio beyond the first two principal components is small. As a result, only 

A = 2 principal components are used in the subsequent analyses in this example. 

The cumulative percent sum of squares in the multivariate image as explained by 

the first two principal components is 99.995% (99.959% and 0.036%, respectively). The 

loading vectors for these two dimensions are {Red-Green-Blue}: p? = [0.722 0.588 

0.365], P2 T = [-0.523 0.117 0.845]. From these loading values it can be seen that the first 

PC represents something similar to an average of the three colors, whereas the second PC 

mainly represents a contrast between Red and Blue colors. 

A scatter plot ofthe first two score vectors (tt vs. t2) is illustrated as a color-coded 

2-dimensional histogram in figure 2.11, where tt values increase from left to right and t2 

values increase from top to bottom. Every point in this score plot represents a unique 

pixel in the (nx x ny) image plane of the ROB multivariate image. Color-coding was done 

because this plot contains 255,878 score combinations, one for each of the 746 x 343 

pixel locations in the original image. Similar feature pixels in the original image yield 

almost identical (It, (2) score combinations, which results in many overlapping points in 

this scatter plot. The number of overlapping pixels represented by a single point in a 

Figure 2.11 Color-coded tt vs. t2 scatter plot ofthe lumber sample multivariate image 
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score plot is called the pixel density. Following Bharati [1997] a 2-dimensional 

histogram of 256 x 256 bins is constructed, where each bin is assigned a color depending 

upon the number of pixels falling in that bin. The color-coding scheme uses cold colors 

(e.g. black) to represent bins with a low number of overlapping pixels and hot colors (e.g. 

white) to represent bins having the highest pixel density. The color-coding progresses 

from black to white in various shades of red, orange, and yellow. Further details of the 

histogram construction and its color-coding scheme can be found in Bharati [1997]. 

It is relatively easy to detect outlier pixels, which are remote from the main pixel 

clusters in the score space scatter plot (figure 2.11) of the lumber image. It is also easy to 

detect the high-density pixel cluster towards the bottom right of the score plot and the 

various pixel density gradients that exist both within and between this and the other two 

minor clusters towards the top and bottom left of the score plot. As mentioned earlier, 

pixels having similar spectral features in the multivariate image will have comparable 

combinations of score values and result in point clusters in the score plot. This fact can 

be put to use in segmentation of feature pixels from the multivariate image through 

delineating pixel classes in the score plots. In effect, one can delineate a tentative data 

class corresponding to pixels having similar feature vectors in the RGB color space. 

Pixel class delineation may be carried out in many ways. One approach is to 

select an area in the score space and highlight the corresponding pixels belonging to this 

area in the image space. The selected area in the score space is in fact a local model, 

which is chosen to delineate a tentative class of pixel data from the rest. The procedure 

of selecting an area in the score space is called 'masking' in the MIA literature [Bharati 

et. aI., 1998]. Various sizes and shapes of masks can be selected via simple graphical 

operations on the score plots upon displaying their color-coded 2-dimensional histograms 

as false-color images on a computer monitor. 

This procedure of masking point clusters and outlier pixels in the score space and 

highlighting the chosen pixels in the image space forms the backbone of the MIA feature 

extraction strategy. To successfully delineate a class of pixels it becomes imperative to 

study both the score and image spaces simultaneously. The ability to toggle between the 
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image space and score space is quite fast and easy since both spaces can be displayed as 

images on a computer monitor. 

It is relatively simple to interrogate the score space by masking several clusters 

and projecting the masked pixels back to the image space. The main point cluster 

towards the bottom right of the score space scatter plot represents majority of the pixels 

in the lumber image. As a result, this cluster must belong to a dominating feature in the 

image. Sound wood pixels cover majority ofthe area in the lumber sample, thus it can be 

inferred that the main score cluster belongs to sound wood feature. The purpose of this 

example is to illustrate the power of MIA in extracting subtle features like typical lumber 

defects (e.g. knots, splits, pitch pockets). Sound wood pixels are considered as 

background since they do not contain these features. Upon masking the other two score 

point clusters towards the top and bottom left of the score plot one can realize the true 

power of MIA techniques. 

Figure 2.12(a) re-plots the t\ - t2 score plot offigure 2.11, but with blue and green 

polygon masks covering the two minor point clusters towards the bottom left and top, 

respectively. The pixel classes which have been masked in this score plot are highlighted 

in figure 2.12(b) where each pixel with a t \ - t2 score combination lying under the 

respective masks has been re-plotted as an overlaid blue or green pixel on the false color­

composite RGB image of the 3 latent variables T \ to T 3. From this figure it is evident 

that the class of pixels highlighted by the blue mask in the score space belongs to knots 

and splits, whereas the pitch pockets class is highlighted as the green mask. Since all the 

highlighted pixels have similar spectral combinations in the RGB space, they map into 

the two regions masked by the polygons in the score space. 

By repeated use of the masking/highlighting procedure with different polygon 

masks a signature of every feature existing in the image space (regardless of its subtlety 

or spatial location) can be isolated in the score space. Due to the ability to switch easily 

between score and image spaces, MIA can also be employed as a reverse mode image 

analysis tool. Specific pixels belonging to known features of interest in the image space 

can be highlighted in the score space to determine the region which represents their 



Figure 2.12 (a) tl - t2 score plot oflumber image with polygon masks of the upper 
(green) and lower left (blue) point clusters. (b) False color-composite score image 

with overlay of highlighted pixels from the two classes outlined in (a). 
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corresponding score combinations. The area surrounding the highlighted score points can 

then be masked using a reasonably sized polygon. As a result, subtle features that are 

subjectively difficult to identify in the image space may easily be identified using the 

reverse mode application of MIA. Geladi et ai. [1996] list several other modes of MIA 

that employ the use of the image space - score space relationship. 

One of the first uses of multivariate statistical methods (particularly peA) in the 

field of digital image analysis dates back 30 years, mainly in the field of remote sensing 

using multi-spectral satellite images of the earth surface [Ready et. aI., 1973]. Most of 

the literature during that time was concerned with using peA in remotely sensed multi-
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spectral images for noise reduction and data compression [Wheeler et. aI., 1976; Kaneko, 

1978; Byrne et. aI., 1980; Singh et. aI., 1985]. These publications lead to the idea that 

once the principal component score images (TI, T2, ••• ) were obtained from the multi­

spectral images, they could be further analyzed using traditional image analysis 

techniques and a priori knowledge to visually enhance features like minerals for 

classification. The first "ground-breaking" application that made use of the latent 

variables as raw data to analyze multivariate images (i.e. MIA) came from the 

chemometrics community [Esbensen et. at, 1989]. This article presented the idea of 

using not only the reconstructed PC images, but also the raw score vectors (scatter plotted 

against each other) to assist in analyzing the multivariate image. It was shown that the 

power of the PCA approach lay in its ability to extract and isolate specific image features 

in a common region of the score space, and then, once the feature was detected, to reveal 

the locations where it occurred in the scene space. In their original form the main ideas 

of MIA were appropriate for off-line analysis of fixed images. Bharati et. al. [1998] 

extended MIA methods for real-time monitoring of time-varying processes through an 

example of feature monitoring in a sequence of multi-spectral images of a satellite as it 

passed over a certain geographical region of the earth's surface. Such moving processes 

are common in the manufacturing industry, where digital cameras capture a sequence of 

digital images (or movies) to visually monitor product quality. 

2.3.2 Methodology and Review of Multivariate Image 

Regression 

Multivariate regression includes calibrating empirical models between two blocks 

of (typically multivariate) data. Besides the variables in the X-block, which is called the 

independent or predictor dataset, in multivariate regression there is also a dependent Y -

block of response variable(s). The goal of the calibration is to develop a regression 

model relating X and Y, so that in future Y can be calculated or predicted from X. When 

such regression model building is applied to multivariate image data, it is called 
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Multivariate Image Regression (MIR) [Geladi et. aI., 1996]. Different regression 

techniques are used in MIR to ftrst model the relationship between the two sets of image 

data. This model is then used for predicting future response variables from subsequent 

predictor images. 

The idea ofMIR was ftrst formally introduced by Geladi et. aI. [1991], who tried 

to develop a Principal Component Regression (PCR) model [Nres et. aI., 1988] between a 

multivariate satellite image X and a congruent univariate image Y. Besides PCR models 

the MIR literature has also used other types of multivariate regression modeling 

techniques to relate X and Y image data. It is not the purpose of this thesis to discuss the 

theory and development of various MIR models used in the literature. This section 

discusses the common goals and ideas between few of the previously published MIR 

modeling techniques, and provides a literature review of various MIR applications. 

Geladi et. al. [1996] deftne a regression model relating two images with matching 

pixel positions using the form: 

(2.6) 

where G I is a predictor image, G2 is the response image and f is an empirical relation 

between the images. Typically, MIR models between images are developed using some 

sufficient set of pixels that adequately represent the scene or features that need to be 

related between G I and G2• As a result, for the model building stage both the predictor 

(G 1) and response (G2) images are required. Although the regression coefficients in the 

developed MIR model could be interpreted, the main goal of MIR is image prediction. 

Almost always, a developed regression model needs to be tested by predicting a response 

image (G 2) using a test predictor image (G I test) and comparing the predicted response 

with the true (known a priori) response image (G2 true). 

Three basic procedures of developing a regression model between predictor and 

response images of a training set have been typically used in the MIR literature. These 

are Multiple Linear Regression (MLR) [Geladi et. al., 1996], Principal Component 

Regression (PCR) [Geladi et. aI., 1991], and Partial Least Squares (PLS) Regression 

[Lindgren et. al., 1994; Hagman, 1996; Lied et. al., 2000]. Further details on the 
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methodology of PLS regression modeling may be gathered from the following sources 

[Geladi et. aI., 1986; Hoskuldsson, 1988; Burnham et. aI., 1996]. It should be noted here 

that a kernel-based PLS algorithm [Lindgren et. aI., 1993] is exclusively used in MIR 

based on PLS regression models. This algorithm helps avoid the computational overload 

that might otherwise arise in handling the enormous data size of typical multivariate 

images. The [mal prediction equation to be used to calculate the response image (G 2) is 

common between the three procedures. However, the theory associated with developing 

the regression coefficients between G) and G2 images of the training set is quite different. 

To gain further details on the theoretical derivations of the three image regression models 

the reader may consult the above references. Figure 2.13 summarizes the common idea 

behind the model development stage of these three types ofMIR models. 
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Figure 2.13 Multivariate Image Regression model relating two sets of images 

As seen from figure 2.13 the basic requirement for the three MIR modeling 

procedures is that both the predictor and response datasets have to be (univariate or 

multivariate) images. Depending upon the specific application one might or might not 

have perfect congruence between the two sets of images [Geladi et. aI., 1996]. However, 

the common objectives of all three MIR modeling procedures are to create some kind of 

pixel-to-pixel empirical map between the predictor and response images during the 

training stage of the models. 
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Once trained MIR models have been used for predicting multivariate image 

features in many applications like predicting ground truth data from multi-spectral 

satellite images in remote sensing [Shibayama et. aI., 1991]; isolating wood features in 

multivariate images of lumber [Hagman, 1996]; modeling and classifying types of 

pigments in a multi-spectral microscopic image of a painted chinaware [Geladi et. aI., 

1994]. Grahn et. ai. [1995] and Geladi et. al. [1996] give good literature reviews of 

various other applications ofMIR techniques. 

Grahn et. ai. [1989b] showed one of the fIrst applications of using a MIR model 

as a feature pixel classifIer in multivariate images. They used a special case of MIR 

modeling to discriminate known tissue types in Magnetic Resonance Images (MRI), 

where the response variable Y was a binary image. Pixels belonging to the tissues of 

interest were coded as 1 (white), and the remaining image was coded as 0 (black). The 

trained model was then used on a new test MRI image, which produced predictions as a 

grayscale image with higher pixel intensities (near 1) for the modeled tissues. Hagman 

[1996] used a similar classification approach with PLS regression models to discriminate 

lumber features from multi-spectral images of sawn wood. An MIR application in the 

food industry [Lied, 2000] tried to discriminate different types of vegetables using PLS 

models trained with binary response images. 

Training a PLS regression model for MIR with a binary image as a 'dummy' 

response variable provides the model with a priori knowledge of the class belongings of 

the pixels in the features of interest. This MIR approach is a modifIed version of the PLS 

Discriminant Analysis (PLS-DA) method [Sjostrom et. aI., 1986], which finds a model 

that separates classes of observations (pixels) on the basis of their X-variables. Providing 

a priori class belongings to PLS-DA rotates the projections of the multivariate image 

pixels in the latent variable scatter plots such that the focus is on class separation 

("discrimination") [Eriksson et. aI., 1999]. There are some inherent conditions that must 

be satisfied when using PLS-DA for feature pixel classification in MIR. Section 3.5 

discusses some of these issues in detail with the help of a conceptual feature modeling 

and classification example in a lumber image. 
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As mentioned before the MIR methods developed in the literature to this point 

rely on regressing two images with each other and using the developed model to predict 

pixel intensities in subsequent images. In contrast to those MIR methods chapter 4 ofthe 

thesis develops a novel MIR approach using PLS regression models [Geladi et. aI., 1986] 

to relate multivariate images of pulp with laboratory measured (non-image) pulp quality 

data. The developed model is successfully used to infer pulp quality from process 

multivariate images. 

2.3.3 Comparing Traditional and Multivariate Statistics 

based Image Analysis Techniques 

Digital image analysis techniques (both traditional and multivariate statistics 

based) aim to extract a few interesting feature pixels from largely uninteresting 

background features in digital images. However, as highlighted in this chapter, there are 

some fundamental differences between their methodologies and applications. What 

follows is a brief comparison of the strengths of the two categories of digital image 

analysis methods. 

Traditional Image analysis techniques are designed to extract quantitative 

measures of objects (features) working on every pixel in the 2-dimensional image space. 

These techniques are assisted by several image enhancement and restoration operations, 

which manipulate the intensities of individual or groups of pixels to help the image look 

visually pleasing to the observer and remove any unwanted noise. The objective is to try 

and make the feature pixels discernible from background pixels in order to extract the 

required information. These techniques achieve their objectives while working in the 

spatial dimensions of the digital image. 

On the other hand, multivariate statistics based image analysis techniques like 

MIA and MIR focus on extracting feature pixels from uninteresting background pixels 

while working in the projected latent variable spaces of the multivariate image. The 

pixels in the multivariate image are projected onto reduced dimensional latent variable 
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scatter plots based on their signatures in the variable dimension (e.g. NIR reflectance 

spectra of pixels in a multi-spectral NIR image). Feature pixels having similar spectral 

signatures group into a common region of the plots, whereas pixels with different spectra 

would be projected away from this group. Using these projections MIA and MIR 

techniques create optimal local models within the latent variable subspace to separate 

feature pixels from background pixels. 

The strengths of multivariate statistics based image analysis techniques do not lie 

in trying to make the 'image noise free, or make it look visually pleasing. Traditional 

image analysis techniques are far superior at achieving these goals. However, 

multivariate statistics based methods are excellent at discerning feature information that 

is sensitive in the variable dimension of the multivariate image. In a 3-dimensional pixel 

matrix (nx x ny x nz) these techniques essentially extract information that is orthogonal to 

the (nx x ny) image plane. Once the feature is extracted in the latent variable subspace, it 

can be mapped back to the image plane to reveal the spatial locations of the pixels. 

Upon unfolding the multivariate image MIA and MIR techniques loose all spatial 

information of the pixels in the image plane. Rather, they concentrate on explaining the 

spectral information in the pixels. The loss of spatial information mayor may not prove 

to be disadvantageous depending upon the final objectives of the application. Chapters 3 

and 4 illustrate examples where the loss of spatial information poses no disadvantage to 

multivariate statistics based image analysis techniques, as the objectives there are to 

extract spectral information from images. However, chapter 5 illustrates an application in 

which the loss of spatial information proves to be disadvantageous when using these 

techniques to extract image texture information. 



Chapter 3 

Multivariate Image Analysis for 

Softwood Lumber Grading 

3.1 Introduction 

Wood has historically been one of the most popular building materials due to its 

various desirable properties, adaptability in a wide variety of uses, and its relatively low 

cost. In Canada the forest products industry generates a large portion of its revenue from 

softwood lumber trading to various construction and furniture industries worldwide. 

Some of the commonly found softwood species in Canada are fIr, spruce, and pine. The 

production chain of softwood starts as logs in the forests, which are sawn into lumber 

boards of specific dimensions by sawmills. Prior to shipping every piece of sawn lumber 

is examined and classified into one of several wood quality grades. 

Hagman [1996] defines the quality ofa lumber board as a function of the highest 

grade, which is then reduced by the occurrence of quality molding features (defects). The 

degradation in quality is amplifIed by the frequency, size, and location of such 

undesirable features. According to the Canadian Lumber Grading Manual [1998] typical 

defects found in softwood lumber may be divided into three broad groups, being: 

• Natural Defects - which are caused by nature and develop within the living tree 

(e.g. various types of knots, pitch pockets, decay, wane, bark pockets etc.); 

• Manufacturing Defects - those caused by equipment during the sawing and 

handling of lumber (e.g. raised grain, torn grain, fIber pull, machine burn etc.); 
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• Seasoning Defects - those caused when sawn lumber dries (e.g. splits, warped 

boards etc.). 

The work presented in this chapter addresses selected softwood lumber defects 

from two of the above three groups. They are knots, splits, wane, pitch pockets, and bark 

pockets. A "knot" as it appears on a piece of lumber is a portion of a branch cut through 

by the saw. Knots are by far the most common defects found in sawn lumber. They come 

in various sizes, shapes, and quality. "Pitch" is defined as an accumulation of resinous 

material in the lumber. "Pitch pockets" and "Bark Pockets" are well-defined openings 

between the annular growth rings of the tree containing liquid or granulated pitch or 

pieces of bark, respectively. A "wane" is defined as bark or lack of wood at the edges of 

a sawn piece of lumber. "Splits" are cracks that occur in the lengthwise direction of sawn 

lumber due to rapid evaporation of moisture from the wood surface. A complete list of 

definitions and descriptions of most defects in Canadian softwood lumber can be 

gathered from the NLGA Standard Grading Rules for Canadian Lumber [1991]. 

To obtain a distinct wood quality the lumber board has to be introduced to a rule 

based system, which accounts for the number, size and position of its defects. However, 

due to the inherent variability in defects as well as sound wood structure itself (both 

between and within species) it is difficult to automate such a system. As a result, lumber 

classification based on assigned quality grade has traditionally been a result of human 

judgment after careful visual inspection of each piece. 

The human lumber grader is entrusted with the classification of lumber that is of 

great value to the forest products industry and so is expected to be accurate and consistent 

in placing pieces in their proper grade. Lumber graders are highly trained individuals 

with many years of grading experience to make split second decisions about the quality 

of every lumber piece at production speeds of up to 30 boards per minute [Astrand, 

1996]. However, human errors and inconsistencies in grading lumber are also common 

due to variability in their judgment, especially when it comes to lumber samples that are 

at the borderline of two grades. For example, two graders, or even the same grader might 

grade a questionable lumber sample differently at different times of the day or days of the 



47 

week. Furthermore, many factors like fatigue or mental state play a big role in human 

judgment, which sometimes results in misjudgment in assigning lumber grade. 

Erroneously downgraded lumber results in a significant loss to the forest products 

industry due to the substantial price difference between grades. At the same time 

upgrading low quality lumber results in long-term profit loss due to dissatisfied 

customers. 

Facing stringent customer demands and tough competition in an unforgiving 

economy the forest products industry is aggressively exploring new and innovative 

approaches of automatic lumber grading. The main objective for such approaches is the 

correct and consistent classification of lumber boards based on assigned grade resulting 

from a quantitative analysis oflumber quality (i.e. defects). Several vision-based systems 

equipped with different types of imaging sensors, data processing hardware and various 

image processing algorithms have previously been proposed in the literature to address 

this need. 

Astrand [1996] provides an excellent literature review of many proposed 

strategies and algorithms for automatic lumber grading via detection and classification of 

lumber defects. Some of the early work proposed methods using grayscale images of 

lumber boards where the image was subdivided into a number of rectangular sub-images 

and the classification was carried out on each sub-image independently to determine if it 

belonged to clear wood or a defect [Conners et. aI., 1983; Sobey et. aI., 1989]. Defect 

segmentation based on thresholding the grayscale image has also been proposed due to 

the fact that most lumber defects are darker than the surrounding clear wood 

[Klinkhachom et. aI., 1991; Lee et. aI., 1991; Kim et. aI., 1994]. 

Color based classification of lumber defects has also been well researched in the 

literature. Conners et. ai. [1985] established the requirements of a color-based wood 

inspection system in which they made some tests comparing grayscale and RGB based 

sub-image classification utilizing first order statistics and a Bayesian classifier. Several 

color vision-based systems for wood inspection using RGB cameras have since been 

proposed [polizleitner et. aI., 1990; Silven et. aI., 1994; Kauppinen et. aI., 1995]. The 
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common idea here being the use of shape or morphological features in conjunction with 

color information to improve lumber defect classification. 

Over the last decade several researchers have recognized the potential of using 

color spectral information in RGB images to help detect and classify lumber defects 

[Maristany et. aI., 1991; Adel et. aI., 1993; Brunner et. aI., 1992 & 1993]. These 

researchers proposed various mathematical transformations of the RGB color space to 

enhance color differences between clear wood and lumber defects. Brunner et. ai. [1992] 

concluded that a two dimensional color space (within the 3-dimensional space of RGB) 

was sufficient for separating knots and pitch from clear wood. This conclusion has also 

been confirmed in the previous chapter (section 2.3.1) where MIA is performed on an 

RGB lumber image. It can be seen that the 2-dimensional score space of MIA could 

easily separate knots and splits from pitch pockets and clear wood in the 3-dimensional 

RGB image (figure 2.12). 

Brunner et. al. [1993] later concluded that an extended-dimension color space 

based on a higher spectral resolution than the standard RGB could enhance the 

performance of a wood inspection system. Vaarala et. ai. [1995] used an imaging 

spectrometer (similar to the one described in section 2.1.2.3) to acquire 57 channel multi­

spectral lumber images in the human visible wavelengths (VIS) of the electromagnetic 

spectrum. A few representative pixels were selected from the multi-spectral images, and 

their corresponding VIS spectra were analyzed using PCR to classify the pixels based on 

their spectral signatures. 

Hagman [1992] illustrated the first application of MIA techniques for off-line 

feature detection and classification in sawn lumber boards by successfully classifying 

blue stain and knots in the sore plots of a multi-spectral lumber image captured with 

multiple monochromatic filters within the VIS and NIR wavelength spectrum. In his 

PhD thesis Hagman [1996] investigated off-line MIA and MIR based techniques for 

lumber feature extraction and modeling of multi-spectral images acquired through an 

imaging spectrometer in the VIS spectrum. He also investigated imaging lumber with 

microwave, X-ray and CT -scanners. 
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This chapter proposes an extension of MIA techniques for on-line monitoring of 

specific lumber defects in RGB color images of softwood lumber boards. The technique 

provides both qualitative and quantitative results that can be used for automatically 

assigning quality grades to lumber boards at production speeds based on pre-chosen 

defective features. The proposed strategy is illustrated through an example of grading 38 

lumber boards from three species (Balsam fIr, White spruce, and Jack pine) based on pre­

selected defects like knots, splits, wane, pitch and bark pockets. 

The chapter also presents the fIrst study on the use ofNIR imaging spectrometers 

for the analysis and classification oflumber. Certain indistinguishable lumber features in 

the RGB color space are shown to be successfully differentiated using MIA ofNIR multi­

spectral lumber images. This is illustrated through an example of isolating sub-features 

of two types of knots in NIR multi-spectral images. 

Finally, the chapter discusses a few conditions that must be met in order to use 

PLS-DA based MIR techniques to classify feature pixels in multivariate images. The 

conditions are illustrated through a conceptual example of MIR modeling of lumber 

features with a PLS-DA algorithm. 

The chapter is structured as follows. Some imaging details of softwood lumber 

boards are first presented, along with a representative illustration of the lumber dataset. 

Off-line MIA of softwood lumber is then described with an emphasis on feature 

extraction from multi-spectral NIR images. This is followed by the extension of MIA 

techniques to the on-line monitoring of lumber defects using RGB images. A discussion 

ofMIR techniques using PLS-DA models is then presented, followed by conclusions and 

contributions of the work. 

3.2 Softwood Lumber Imaging 

It is obvious that the results of whatever image analysis techniques are applied to 

grade lumber depend on the quality of the images received from the imaging sensors. In 

order to capture all possible lumber defects one would require mUltiple imaging sensors, 
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which are either sensitive to different regIons of the electromagnetic spectrum or 

construct images based on non-visual information. Grayscale and RGB color cameras 

are among the most commonly used imaging sensors in vision-based softwood lumber 

grading systems [Kauppinen et. al., 1995]. Besides these cameras lumber images have 

also been acquired from microwave sensors, which construct an image based on 

attenuation and phasing of microwaves through lumber [Hagman, 1996]. Several 

applications of medical imaging sensors to capture lumber images have also been 

reported. Examples include, X-Ray imaging sensors, Computed Tomography (CT) 

scanners [Hagman, 1996], and Magnetic Resonance Imagers (MRI) [Chang et. al., 1989]. 

As mentioned in the previous section imaging spectrometers in the VIS 

wavelength spectrum have recently been used as a part of a vision-based lumber 

classification scheme [Hagman, 1996; Astrand, 1996]. Besides the VIS wavelength 

spectrum imaging spectroscopes have also been realized in the very near-infrared (680-

1100 nm) and intermediate (450 - 900 nm) wavelengths [Vaarala et. al., 1995]. Hagman 

[1996] illustrates a short test of the intermediate imaging spectrometer for lumber 

imaging. This thesis illustrates the first published application of lumber image 

acquisition using an imaging spectrometer working in the NIR wavelength range (900 -

1700 nm). 

The main focus of this chapter will however revolve around information 

extraction from RGB images of lumber for purposes of on-line classification. A brief 

exploratory analysis of lumber using NIR multispectral imaging is included to determine 

its potential contributions, and compare its advantages and shortcomings with RGB 

imaging for lumber defect analysis. 

3.2.1 Color (RGB) Imaging 

Technical details of the specific RGB line-scan camera used to image moving 

lumber boards have been provided in chapter 2 (section 2.1.1). This section presents 
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some experimental details pertaining to the lumber imaging that was performed using the 

RGB line-scan camera at CRIQ. 

A schematic of the vision-based system used to image moving lumber boards has 

previously been illustrated in figure 2.1. The Digital Signal Processing (DSP) unit was 

programmed with edge-detection and alignment algorithms to pre-process the continuous 

line-scans acquired from the RGB camera into a lumber image prior to analysis in the 

personal computer. The pre-processing was mainly done to account for the leading and 

trailing ends of the lumber board, as well as correct for lateral movement of the boards on 

the conveyor belt as they passed under the camera. All RGB lumber images used in this 

thesis are the final corrected versions recorded by the personal computer. 

An important part of the vision-based system is the proper and consistent 

illumination of the lumber samples. Wood surfaces can look drastically different 

depending upon the direction and angle of the illumination [Astrand, 1996]. Spectrally 

stable illumination is needed when using multi-spectral cameras like RGB or imaging 

spectrometers. The lumber boards imaged using the color vision system at CRIQ were 

illuminated with multiple fluorescent lights in a semi-circle spanning all angles between 

45° and 135° with respect to the lumber board surface. In the subsequent analyses of all 

RGB lumber images it has been assumed that the lumber boards were adequately 

illuminated to provide maximum contrast (i.e. signal-to-noise ratio) between clear wood 

and lumber defects. 

Light calibration is another important issue in the long-term use of on-line vision­

based systems. This is due to the aging and deterioration of the lamp, which results in 

improper illumination of the sample over time. Lumber itself has many color variations, 

which would get enhanced if the lighting intensity were to change over time. For long­

term on-line color vision-based systems there is a defmite need to maintain light intensity 

and color to ensure the adequacy of the empirical models developed in automatic lumber 

grading systems. Light calibration is not applied in this thesis, since the system used to 

image lumber boards performed the imaging within 30 minutes, which is too short a 

time-span to have any illumination differences due to light aging. 
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Figure 3.2 illustrates RGB color images of 4 pre-selected lumber samples, which 

contain examples of typical lumber defects to be detected and classified using the 

methods proposed in this chapter. 

3.2.2 Near-Infrared (NIR) Multispectral Imaging 

Chapter 2 (section 2.1.2) provides a detailed description of the NIR line-scan 

imaging spectrometer, which has been assembled using a NIR digital camera and an 

imaging spectroscope. Some further experimental details on using the spectrometer for 

imaging lumber boards are discussed below. 

Using the line-scan NIR imaging spectrometer a reflectance image of a lumber 

board was captured with 300 lines as the sample moved on the scanner bed at a speed of 

(~ 1 0 ft.lmin.). In its uncorrected form the resulting multi-spectral image dimensions 

were 300(x) x 128(y) x 128("-) pixels. However, due to presence of a few bad pixels in 

the NIR camera the raw image was pre-processed to spatially smooth the reflectance 

values at questionable pixel locations and remove two right columns (127 and 128) in the 

x-y plane of the multi-spectral image. The signal-to-noise ratio of the NIR reflectance 

was not consistent in the full spectral range (900 nm - 1700 nm) of the imaging 

spectrometer. There was considerable noise at the two extremes of the spectrum. As a 

result the full NIR spectrum spanned by 128 wavelength images was cut to 79 images 

spanning a reduce NIR spectrum (1144 nm - 1670 nm). After pre-processing the fmal 

image dimensions were 300 x 126 x 79 pixels. Figure 3.1(a) illustrates a multi-spectral 

NIR reflectance image of the lumber sample at three wavelengths (1204 nm, 1405 nm, 

and 1609 nm). Besides clear wood the lumber sample contains two typical defect 

features (a decayed bark-ringed loose knot and splits). The three wavelength images 

show unique lumber defect feature information captured by different regions of the NIR 

spectrum. Finally, for purposes of comparison a RGB color image of the same sample 

has also been illustrated in figure 3 .1 (b). 



(a) (b) 

Figure 3.1 (a) Three wavelength images (1204 run, 1405 run, 1609 run) :from a NIR 
multi-spectral image of a lumber sample containing two defects (splits & knot). (b) 

RGB color image of the same lumber sample 
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It can be seen from the RGB color and the three NIR wavelength images in figure 

3.1 that the information extracted by the two sensors is different. RGB captures color­

based contrast in the lumber, whereas chemical information reflected by the lumber 

features is captured by the NIR imaging sensor. The RGB camera can differentiate the 

knot (darker contrast) :from surrounding clear wood (lighter contrast) due to a difference 

in their colors. It should be noted that 'color' is defmed as reflected light in the human 

visible wavelength spectrum (400 - 700 run). The NIR imaging spectrometer on the 

other hand cannot differentiate the wood in some parts of knot :from the surrounding clear 

wood because they contain similar chemical information. The main difference between 

these features is their color contrast. Since NIR is insensitive to color (i.e. it captures 

light reflectance beyond the human visible wavelength spectrum) it cannot 'see' any 

difference between parts of the knot and clear wood. It can be noted that the NIR 

spectrometer easily distinguishes the bark ring surrounding the loose knot from the wood 

within the knot core and clear wood. This information could be critical if one were 

interested in detecting bark-ringed (loose) knots for lumber quality assessment. Section 
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3.3 .2.1 illustrates an example where this information has been used to differentiate 

between loose and firm knots. 

3.2.3 Description of Lumber Data 

The samples used for this study have been selected from the shelves of a lumber 

retailer. It is assumed that the samples had been screened before reaching their 

destination. As a result, the collected lumber sample quality is relatively good. The 

samples do not contain the full spectrum of typical defects encountered by lumber 

graders in the sawmill. However, the purpose of this study was to explore the feasibility 

of applying MIA methods for on-line lumber grading. Keeping this in mind, for the sake 

of simplicity the number and types of lumber defects in the dataset used for the study 

Figure 3.2 RGB color images of 4 pre-selected lumber board samples containing 
various types of knots, splits, wanes, pitch & bark pockets 

were intentionally kept low. Typical defects found in the lumber dataset ranged from 

various types of knots, splits, wane, bark pockets, and pitch pockets. These are some of 

the most common defects (>85%) encountered by human graders in a typical sawmill. 

Each lumber sample has physical dimensions of 1" (Thickness) x 4" (Width) x 

24" (Length), with only one of the 24" x 4" faces being imaged by the RGB and NIR 
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cameras. As mentioned before the lumber dataset consists of 38 such lumber samples 

from three different softwood species (Balsam fir, White spruce, and Jack pine). The 

methods used in this study are applicable to all three lumber species. As a result, 

information about the lumber species has been omitted. Figure 3.2 illustrates four a priori 

selected lumber board samples from the dataset, which have been imaged with the ROB 

line-scan camera as 712(x) x 345(y) x 3(A.) pixel multivariate images. These lumber 

samples cover various examples of all the above-mentioned defects in different sizes, 

shapes, and color contrast. 

3.3 Off-Line Multivariate Image Analysis of 

Softwood Lumber 

Multi-spectral images of softwood lumber in the VIS spectrum have previously 

been analyzed for typical defects using MIA and MIR based techniques [Hagman, 1997]. 

Section 2.3.1 of this thesis presents an MIA example on an ROB color image ofa lumber 

board to extract some typical lumber defects. 

The main objective of this section is to provide a comprehensive study oflumber 

imaging in the NIR wavelength spectrum, and to explore its ability to help extract typical 

lumber defects using MIA of multi-spectral NIR lumber images. Furthermore, the study 

aims to compare the advantages and shortcomings of NIR imaging spectroscopy over 

ROB color imaging for off-line lumber quality assessment. 

3.S.1 MIA of True Color RGB Lumber Images 

The example of MIA on a ROB lumber image presented in section 2.3.1 of this 

thesis illustrates extraction of lumber defect features like splits, knots, and pitch pockets 

from clear wood. This is achieved by masking point clusters in the latent variable score 

space of the first two Principal Components (tJ - t2) and highlighting the masked pixels 
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in the image space using a false-color composite image of the three scores. The duality 

between the score and image spaces allows the manual delineation of such lumber defects 

from clear wood. 

From the results obtained in the example study some general conclusions can be 

drawn about lumber feature information captured by RGB imaging sensors. Upon 

observing the signs and magnitudes of the elements in the PI loading vector [Red = 

0.722; Green = 0.588; Blue = 0.365] and investigating corresponding scores as T 1 image 

(figures 2.10) it is clear that the first PC explains something close to the average of the 

three colors in the RGB image. Thus clear wood pixels, which are brighter than pixels 

belonging to the lumber defects exhibit higher tl values in the tl - t2 score plot (figure 

2.11). On the other hand, darker lumber features like splits and knots exhibit lower tl 

values. These two lumber defects are delineated from other features via a common mask 

in the low tl region of the tl - t2 score plot (figure 2.12a). From the proximity and 

tightness of the score cluster representing pixels belonging to knots and splits it can be 

seen that RGB is not sensitive enough to be able to further differentiate between these 

two types of defects. Besides being insensitive to differences between lumber defects 

like knots and splits this section will illustrate that RGB imaging is also insensitive to 

differences among other dark contrast lumber defects like wane and bark pockets. 

The elements of the second loading vector P2 [Red = -0.523; Green = 0.117; Blue 

= 0.845] indicate that the second PC produces a contrast between red and blue colors. 

Ohta et. al. [1980] also confirm this trend in the first two Principal Components of a PCA 

decomposition of RGB images. In the corresponding score image T 2 of the second PC 

(figure 2.10) it can be seen that contrast differences between pitch pockets (dark pixels) 

and remaining lumber features (bright pixels) have been captured. Pitch pockets have 

been delineated with a mask covering the low t2 score point cluster in the tl - t2 score 

plot (figure 2. 12a). 

Using MIA on RGB lumber images for detection of defects one can easily 

segment dark contrast features like knots (along with splits, wane and bark), and unique 

color features like pitch pockets from clear wood. Thus, if one were interested in simply 
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detecting these lumber features without considering any further segmentation of the 

defects into: (i) types of knots, or (ii) differentiating between dark contrast defects like 

knots and splits, then MIA on RGB images can provide sufficient information. However, 

if further segmentation detail is required, then simple classification of defects based on 

color (contrast) is not enough. One might need to detect the chemical structure of the 

various defects and segment them into different classes based on this information. MIA 

on NIR multi-spectral images of lumber could provide this further detail. 

3.3.2 MIA of Multi-spectral NIR Lumber Images 

A study of lumber classification using NIR imaging spectroscopy is presented 

here with the aim of exploring critical feature information that might be captured by the 

NIR wavelengths of the electromagnetic spectrum. MIA is used as the analysis tool for 

extracting such information. 

Analysis of lumber feature information captured by the NIR wavelength spectrum 

is best illustrated through an example of extracting lumber defect pixels from a multi­

spectral NIR image of a lumber board. Details of the lumber sample used in this study 

have been described in section 3.2.2. Figure 3.1 illustrates three NIR wavelength images 

and a RGB color image of the sample. The two lumber defect features that have been 

highlighted in figure 3.1 are a decayed bark-ringed loose knot and vertical splits. 

MPCA was performed on the 300 x 126 x 79 pixel multi-spectral NIR lumber 

image after unfolding it into a 2-dimensional (37,800 x 79) array. A detailed description 

of MIA has been described in chapter 2 (section 2.3.1) with an example study on a 3-

variable RGB lumber image. As a result, MIA algorithm details have not been included 

here. In contrast to RGB image data, multi-spectral NIR images contain a much larger 

variable dimension. In this example the lumber image has 79 variables (wavelengths). 

The 79-variable multivariate image was decomposed into a linear combination of 

5 Principal Component scores and loadings, which cumulatively explained 99.996% of 

the total sum of squares in the image. This is a ~96% data reduction, indicating most 
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meaningful lumber feature information can be condensed into ~4% of the original image 

data. The true power of MIA techniques can be realized in this example, as these 

techniques can efficiently extract meaningful feature information from this new low­

dimensional feature space. 

No pre-scaling of image data is generally performed in MIA [Geladi et. aI., 1989]. 

The first PC typically explains average pixel contrast, which is >99% of the sum of 

squares in the multivariate image. As a result, in MIA the explained sum of squares does 

not provide a true indication of the adequacy of the MPCA model. A much more 

powerful description of model adequacy can be obtained upon visually observing the PC 

scores and model errors (residuals) as pixel brightness values of intensity images. Figure 

3.3 illustrates the 5 MPCA score images and the remaining SSE (sum of squared errors) 

as pixel intensities of a grayscale image. 

Figure 3.3 Five PC score images and SSE image ofMPCA decomposition on a multi­
spectral NIR lumber image 

Upon observing the (mostly dark) pixel data of the SSE image in figure 3.3 it can 

be said that after extracting 5 Principal Components there is very little structural feature 

information remaining in the multivariate image. Only a few pixels from the splits and 

knot core can be seen in the SSE image, which indicates that these two lumber features 

are more complex than the remaining features. 
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Figure 3.4 Coefficient plot of five PC loading vectors ofMPCA decomposition on a 
multi-spectral NIR lumber image 

Lumber feature information extracted by each PC of the model can be visually 

observed in the corresponding score images of figure 3.3. As mentioned before PC 

scores are weighted-averages of the variables in the multivariate image. The individual 

weights assigned to each variable are summarized in the corresponding PC loadings. In 

this case each score image is a unique weighted-average of 79 wavelength images in the 

NIR spectrum. Figure 3.4 illustrates a line plot of the 5 PC loading vectors used to 

decompose the multi-spectral NIR lumber image. 

It can be seen from figure 3.4 that different parts ofthe NIR wavelength spectrum 

have been highlighted by the coefficients of the 5 PC loading vectors. This NIR spectral 

information is reflected in the lumber features of the corresponding PC score images. 

Table 3.1 summarizes the lumber feature information in the PC score images from figure 

3.3. 
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Table 3.1 Feature information in MPCA model of multi-spectral NIR lumber image 

PC 
Observation (Loading Vector- Observation (Score Image - Figure 3.3) 

Figure 3.4) 

1 
All wavelengths approximately equally • Average contrast infonnation of all pixels in the 
weighted image 

• Highlights annular rings of clear wood 

2 
Contrast between low (l140 - 1300 nm) • Cannot differentiate splits from clear wood 
and high (1430 - 1670 nm) wavelengths • Cannot differentiate bark-ring of knot from 

annular rings in clear wood 

3 
Contrast between mid (1350 - 1450 nm) • Highlights splits (bright pixels) 
and ends (low & high) ofNIR spectrum • Cannot differentiate between knot and clear wood 

Weighs specific wavelength bands (see • Highlights contrast between SpringwOod (bright 
4 pixels) and summerwood (dark pixels) 

figure 3.4) 
• Highlights edges of splits (dark pixels) 
• Highlights bark ring and some knot wood (dark 

Weighs specific wavelength bands (see 
pixels) 

5 figure 3.4) • Cannot differentiate between splits and clear wood 
• Cannot differentiate between decayed knot wood 

and clear wood 

Besides observing individual PC scores as intensity images one can also construct 

false color-composites of two or three PC score images to visually pool the information 

captured by the MPCA scores. Figure 3.5 illustrates false color-composite images of 

various combinations of four PC score images (TI, T2, T3, and Ts). The 4th PC has been 

intentionally excluded since it does not contribute (as much as the other 3 PCs) in 

highlighting the lumber defect features. 

The ability of MIA to delineate lumber defects from clear wood has been 

previously illustrated (section 2.3.1) using manually created masks in the score space 

scatter plots and highlighting the corresponding pixels in the false color-composite score 

image space. The same strategy has been applied here in order to delineate the bark 

ringed loose knot and splits from clear wood. Since 5 PCs have been extracted in this 

example, one can create up to 10 unique combinations of PC pair scatter plots. However, 

the 4th PC has been excluded from further analyses. Thus a maximum of 6 unique PC 

pair combinations can be scatter plotted with each other. Point clusters can be 

interrogated in these scatter plots using the maskinglhighlighting strategy of MIA. 

Switching between the image and score spaces allows one to delineate the lumber defects 
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Figure 3.5 False color-composite images from various combinations ofTI, T2, T3, 

and T 5 score images 

from clear wood. Figure 3.6 illustrates the masking/highlighting strategy of MIA in 3 

(out of a possible 6) PC pair scatter plots to delineate the loose knot and splits from clear 

wood. For graphical clarity binary images have also been included, which indicate the 

spatial locations of classified features as black pixels. 

It can be seen from figure 3.6(a) that the tl - t2 score space can successfully 

delineate parts of the loose knot and the upper split from clear wood. However, it cannot 

differentiate between the two lumber defects. This is because these two features are 

completely confounded with each other in the first two PCs resulting in similar (II, (2) 

combinations. The tl - t3 scatter plot in figure 3.6(b) is more successful in differentiating 

parts of the loose knot (blue mask) from the splits (magenta mask). The 3rd PC (t3) 

direction is the main contributor for this separation. Observing the corresponding binary 

images of the classification achieved by the masks in the tl - t3 scatter plot it can be 

concluded that some misclassification is present between the two lumber defects. The 

best separation between the two lumber defects is achieved upon masking the 

corresponding point clusters in the t3 - t5 scatter plot illustrated in figure 3.6(c). The 

binary images ofthe classified lumber defects produces the least number of misclassified 
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Figure 3.6 Delineating lumber defects via maskinglhighlighting strategy of MIA. (a) 
tJ - t2 PC score space. (b) tJ - t3 PC score space. (c) t3 - ts PC score space 

feature pixels. Observing the T3 and Ts score images in figure 3.3 it is clear that these 

two PCs carry the most discriminating information, which differentiates the two lumber 

defects from clear wood. 
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Some general conclusions can be drawn from the results of the MIA application 

illustrated in this section. NIR imaging spectroscopy seems to be a promising technology 

that can be used for off-line quality analysis of softwood lumber boards. Rather than 

color, NIR multi-spectral images produce contrast between lumber features based on their 

chemical information. This is the main reason why it is possible to differentiate between 

lumber features like knots and splits using MIA. These lumber defects could not be 

differentiated (section 2.3.1) through RGB lumber image analysis. 

An important observation that can be made from the above example is that a knot 

is not considered to be a single feature when imaged using a NIR imaging spectrometer. 

It is imaged as a very complex feature that is made up of a mixture of several "sub­

features" within itself. This is because a knot is a sawn branch of the tree, which may 

contain a wide variety of woods in different quantities and textures. Furthermore, 

depending upon the age of the knot, these woods might be in different stages of decay. 

Every such sub-feature of a knot emits a unique chemical signature that is captured in a 

different wavelength range of the NIR spectrum. Thus it can be concluded that the NIR 

imaging spectrometer is capable of resolving the detail of a knot at a much finer level as 

compared to a RGB camera. Hagman [1996] made similar observations about knot 

complexity using a visible wavelength multi-spectral image of a test knot. 

The following section discusses various techniques that could be used to dissect 

sub-features of a spectrally complex feature (e.g. lumber knots) in the PC space of its 

multi-spectral image. One such technique is illustrated through an example of extracting 

a knot sub-feature to differentiate between two types of knots in a multi-spectral NIR 

lumber image. 

3.3.2.1 Multi-Dimensional Masking in MIA Score Plots to Isolate 

Knot Features 

As mentioned before analysis of knots in multi-spectral NIR lumber images is not 

a trivial problem. This is mainly due the complex chemical structure present in a typical 
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knot, which results from the union of various lumber components. Each component of a 

knot might have a unique spectral signature in the NIR wavelengths of the 

electromagnetic spectrum. Imaging lumber using a NIR imaging spectrometer produces 

great contrast in those pixels representing the various components (sub-features) of a 

knot. 

From the example presented in the previous section it can be seen that MPCA 

decomposition of a multi-spectral NIR knot image requires more than 2 PCs to 

adequately capture all the unique spectral information present in its various sub-features. 

However, the masking/highlighting strategy of MIA discussed so far can only delineate 

image features using 2-dimensional masks in the scatter plots of PC score pairs. To 

adequately delineate all the sub-features of a knot one needs to develop a multi­

dimensional mask in the MIA score space of its multi-spectral image. 

It should be noted that developing multi-dimensional masks for dissecting knots is 

strictly a theoretical study. Ifone were interested in extracting a knot (as a whole entity) 

from clear wood, MIA of RGB lumber images can easily delineate this feature in 2 PCs. 

The main objective of this theoretical study is to develop an analysis tool, which can be 

used to model spectrally complex features that might arise in various industrial 

applications being monitored by multi-spectral imaging sensors. 

Many approaches can be tried to develop a multi-dimensional mask, which 

extracts complex knot sub-features captured by more than two PCs on a common basis. 

The strategy explained below takes a practical approach to pool the desired knot sub­

feature pixels from various masks in multiple PC pair score plots ofMPCA performed on 

its multi-spectral image. 

The proposed approach is best illustrated through a conceptual example study. 

Figure 3.7 illustrates a RGB color image and a false color-composite of the fIrst three PC 

score images of MPCA on a multi-spectral NIR image depicting six knots from different 

lumber boards. The top three knots in the composite image are loose knots, whereas the 

bottom three knots are fum. As illustrated in figure 3.7 one distinguishing feature that 

differentiates loose knots from other types of knots is the presence of bark rings and gaps 
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around the circumference of the knot interface with clear wood. If one could isolate this 

sub-feature in a lumber image it would then be possible to differentiate loose knots from 

other lumber features. The darker bark rings around the loose knots can be visually 

identified in the RGB image (figure 3.7). Thus, traditional image analysis techniques on 

the RGB image could be used to segment the loose knots. However, if using MIA ofthe 

RGB Composite 

Color Image 

Bark ring at 
boundary of knot 

& wood 

FIRM KNOTS: 
No Bark ring at 

boundary of knot 
& wood 

NIRImage 

Figure 3.7 RGB color image and a false color-composite PC score image from MPCA 
of a multi-spectral NIR image of six knots (3 loose knots & 3 flfm knots) 

RGB image part of the problem is the overlap of bark ring feature pixel scores with other 

knots features in the MIA score space. The proposed multi-dimensional masking strategy 

is used in the MIA score space of the multi-spectral NIR image to differentiate between 

loose and firm knots by isolating bark rings and gaps at the knot-wood interface of the 

three loose knots. 

The 245 x 126x 79 pixel multi-spectral NIR image was decomposed into a linear 

combination of 7 significant PCs using MPCA. The individual knot feature information 
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captured by the 7 PCs can be observed in the corresponding PC score images. Figure 3.8 

illustrates the 7 PC score images along with an intensity image of the remaining SSE 

after removing 7 PCs from the multi-spectral image. It can be seen from the SSE image 

that most of the knot structure has been removed from the multi-spectral image by the 7 

PCs of the MPCA model. 

Figure 3.8 PC score images and SSE image ofa 7-dimensional MPCA model of the 
multi-spectral NIR knots image 

Using different combinations of the 7 PCs, up to 21 unique PC pair score scatter 

plots can be created. As seen from the PC score images in figure 3.8 the MPCA model 
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explains different knot structures in each of the 7 significant PCs. Thus it can be inferred 

that all 21 PC pair scatter plots should be used to extract knot sub-features like bark rings 

and gaps around the loose knots. Pixels belonging to these sub-features could be 

delineated from other features using manually created masks in each of the 21 PC pair 

score plots, and highlighting the corresponding masked pixels in the false co lor­

composite score images of the PC pairs. The duality between MIA score and image 

spaces greatly assists in determining adequate sizes and shapes of the 21 masks in order 

to capture all pixels belonging to the knot sub-features. 

As mentioned before knots contain various sub-features; some of which might be 

confounded with each other in certain PCs of the MPCA model. When these PCs are 

scatter plotted against each other it becomes impossible to remove the confounding 

effects of some features. This is because pixels from multiple features would be part of 

the same point cluster. No mask, regardless of its size or shape, can fully delineate the 

confounded feature pixels in such two-dimensional scatter plots, which would lead to 

misclassified pixels. Mask sizes and shapes could be manually chosen depending upon 

the acceptable misclassifications of non-feature pixels as features, or vice versa. The two 

extreme scenarios of creating mask sizes/shapes are described below. 

The conservative approach produces smaller feature masks, as its objective is to 

not have misclassifications of non-feature pixels as features. This approach disregards 

any misclassifications of feature pixels as non-features. This is analogous to setting the 

type II error to zero. On the other hand, the aggressive approach sets the type I error to 

zero. This approach produces larger masks. Its objective is to include all feature pixels 

regardless ofmisclassified non-feature pixels as features. Ideally an optimization routine 

could be set-up to produce an optimal mask size and shape, which minimizes pixel 

misclassifications of both types (Le. minimize both type I and type II errors). However, 

setting-up such an optimizer is not a trivial task, as it would have to incorporate the 

inherent non-linearities of manually created masks in the MIA score plots. MIA models 

of features are extremely non-linear due to the irregularly shaped score space masks for 

adequately capturing their corresponding pixels in the multivariate image. Set-up and 
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Figure 3.9 Modeling loose knot sub-features in multiple score plots via multi­
dimensional masking 
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implementation of the above-mentioned mask size and shape optimization routine is 

beyond the scope of this thesis. Instead, the aggressive approach has been used in the 21 

PC pair score plots of the knots image example to mask feature pixels belonging to bark 

rings and gaps around loose knots. Sizes and shapes of the 21 masks were manually 

chosen to include all pixels belonging to the loose knot sub-features, regardless of any 

misclassified pixels from other lumber features. 

Figure 3.9 illustrates the masking/highlighting procedure to delineate the bark 

rings and gaps around the loose knots in 6 out of the 21 PC pair scatter plots. The 

masked pixels have been highlighted (as blue) and overlaid on the corresponding false 
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color-composite score images of the 6 PC pairs. Binary images of the masked pixels have 

also been illustrated to determine the classification achieved. 

It can be seen from the highlighted pixels in figure 3.9 that there is 

misclassification of various other lumber and knot features along with the correctly 

classified features of interest (i.e. bark rings and gaps surrounding the top three loose 

knots). Such confounding is present in all 21 PC pair scatter plots. This is expected 

since we have set the type I error to zero, thus ensuring that the resulting 21-dimensional 

mask captures all pixels belonging to the features of interest. It can be seen from the 7 

PC score images in figure 3.8 that each PC captures unique spectral information of the 

various sub-features in the six knots. Furthermore, it can also be seen that different 

lumber features are confounded with various sub-features in the knots through the 7 PCs. 

If it can be assumed that in each of the 7 PCs different lumber features are confounded 

with the bark ring and gaps of the loose knots, then an intersection operation capturing 

common pixels in all 21 masks would result in a perfect delineation of these sub-features. 

However, if this assumption is violated the intersection operation would misclassify some 

feature pixels as non-features. 

(a) 
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Figure 3.10 (a) Spatial locations of common pixels in 21 masks. (b) Spatial locations 
of common pixels in 18 out of 21 masks. (c) Overlay of common pixels from (b) on 

false color-composite score image offrrst three PCs 
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Figure 3.10(a) illustrates the spatial locations of the common pixels in all 21 

masks in the MIA score space of the multi-spectral NIR knots image. It can be seen that 

the 21-dimensional mask captures some pixels from the bark rings and gaps of the three 

loose knots. However, due to the violation of the assumed confounding of features in the 

7 pes there is also some misclassification of feature pixels as non-features. Upon 

relaxing the tolerance of the intersection operation to capture common pixels in 18 out of 

the 21 masks it can be seen that the bark rings and gaps around the loose knots have been 

adequately captured. The binary image illustrating the spatial locations of the resulting 

feature pixels using the relaxed intersection operation is illustrated in figure 3.1O(b). 

Finally, figure 3.1O(c) overlays the highlighted knot sub-feature pixels on the false color­

composite image of the first 3 pes. It can be seen from this image that some pixels 

belonging to cracks in the frrm knots in the bottom half of the image have also been 

classified as feature pixels. This classification is valid due to the fact that gaps 

surrounding the loose knots are in fact cracks, which have been modeled as feature pixels 

by the multi-dimensional mask. 

The results obtained from the example study presented in this section illustrate 

that with MIA and a multi-dimensional masking strategy it is possible to resolve 

spectrally complex features from high-dimensional multi-spectral images. 

3.3.3 Comparing MIA on RGB and NIR Lumber Images 

Before concluding the section on off-line MIA of softwood lumber, a brief 

comparison of the extracted feature information from RGB and NIR multi-spectral 

lumber images is presented below. 

Most wavelengths of the NIR imaging spectrometer could not distinguish between 

some lumber components within knots and surrounding clear wood as these features had 

common chemical information between them. On the other hand, the RGB camera could 

easily distinguish knots from clear wood. MIA of RGB lumber images could extract 

knots and splits from clear wood using only 2 pes, whereas MIA of multi-spectral NIR 
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lumber images revealed complex structures within knots which took up to 5 or 7 PCs to 

fully explain. Using MIA ofRGB lumber images is adequate if one is simply interested 

in being able to separate out a knot as a whole entity from clear wood (without any 

distinction of the type of knot). As far as normal lumber grading is concerned this level 

of detail might be adequate. In that case RGB imaging has an advantage over multi­

spectral NIR imaging. Another advantage of RGB imaging is a smaller amount of data 

handling (3-variables) as compared to multi-spectral NIR imaging (up to 128 variables). 

However, if one were really interested in scanning wood and looking at 

diagnosing different types of knots and analyzing those sub-features within knots that 

make them different from each other (e.g. bark rings and gaps around the circumference 

of loose knots, or presence of certain types woods in decayed knots), then the resolution 

achieved by NIR multi-spectral imaging would allow such an analysis. Conversely, the 

level of detail extracted by RGB cameras is not enough to perform such an analysis. 

Furthermore, NIR multi-spectral imaging also has the advantage of being able to 

distinguish between lumber defects like knots and splits due to differences in their 

chemical signatures. This of course, could not be achieved in MIA of RGB lumber 

images due to similar color (contrast) between these defects. Thus, if a detailed off-line 

MIA of softwood lumber defects is the main goal then NIR multi-spectral imaging proves 

to be much more advantageous than RGB imaging. 

3.4 Monitoring Defects Through MIA for On­

line Softwood Lumber Grading 

As mentioned before several vision-based softwood lumber grading schemes have 

previously been proposed in the literature. Most of these approaches aim to isolate 

lumber defects from clear wood using various segmentation routines based on pixel 

intensity, color contrast, or shape measures in grayscale or color images of lumber 
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boards. Off-line analysis of lumber defects based on their spectral signatures in the RGB 

color and NIR spectrum has been illustrated in the previous section. 

This section, the main thrust of the chapter, proposes a novel lumber grading 

approach using an on-line extension of MIA modeling techniques on RGB color images 

of lumber boards. Common lumber defects are modeled in the score spaces of MIA, and 

the developed model is then used to detect these defects from various lumber boards in 

real-time. The proposed monitoring scheme is directly applicable to the lumber grading 

industry for detecting lumber defects based on their color spectral information. The 

scheme is developed for on-line situations where the vision-based system could be used 

to assist human graders. 

Although the MIA model has been developed using lumber samples from two 

lumber species (Balsam Fir, and White Spruce), it is robust enough to correctly capture 

the modeled lumber defects from all three species used in the study (i.e. also from Jack 

Pine). A priori knowledge of the lumber species is typically available to lumber graders 

in sawmills. As a result, individual MIA models for specific lumber species could also 

be developed, and a switch to the appropriate model could be easily made when the 

lumber species are changed at the sawmill. 

3.4.1 Monitoring Lumber Defects in True Color RGB Images 

Feature pixel monitoring from a sequence of time-varying multivariate images 

was proposed by Bharati et. al. [1998] using an on-line extension of MIA techniques. 

The main concepts of the approach are used to monitor lumber defects from RGB color 

images of 38 lumber samples. 

The primary ideas of the proposed approach are as follows. A multi-way PCA 

model is built off-line on a training or calibration image, which contains all typical 

features that one might be interested in detecting using the on-line monitoring scheme. 

This training image may be a single image, which contains all such features of interest, or 

it may be a composite image put together from sections selected out of many different 
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images. From the off-line MIA of the training image, masks are developed in the score 

space, which correspond to those features that one desires to monitor. Upon applying the 

training image MPCA model to the new test images (Xtest unfolded to Xtest), values of the 

scores are computed for the dominant principal components ta(test) (equation 2.4) using the 

corresponding MPCA loading vectors of the training image Pa(tr). The point clusters in 

the score space scatter plot can then be updated using the calculated PC scores of the new 

image. By monitoring the changing score point cluster intensities (pixel densities) under 

each mask area in the score plot one can then track the appearance and disappearance of 

the modeled features in the new images. Upper tolerance limits can be set on the pixel 

densities in each mask area. These limits might be chosen simply on a subjective basis, 

or, as in Statistical Process Control (SPC) charts, on the underlying statistical distribution 

of pixel densities when the process is subject only to common cause variation. Upon 

discovering violation of the tolerance limits for any feature being monitored, one can 

investigate further by switching to the image space to reveal the spatial pixel locations of 

the modeled feature. 

To build a good training model it is extremely important to select a training image 

that contains representative samples of all the features that need to be monitored in the 

new images. In the case of lumber grading the features of interest to be monitored from 

various lumber board samples are typical defects like knots, splits, wanes, pitch pockets, 

and bark pockets. A good representative training image must contain ample pixels from 

all of these features of interest. Furthermore, in order to make the MIA model robust, the 

training image should also contain typical lumber variations like color contrast and 

texture differences between samples. Figure 3.11 illustrates the training image used for 

the lumber-grading study. It is a 712 x 345 x 3 ROB image created from a composite of 

various defects in different sections of 6 lumber sample images. Besides containing all 

lumber defects to be monitored, the composite image also captures typical color contrast 

and texture variations through the lumber sample data used in the study. 

MPCA decomposition of the 3-variable ROB training image was performed using 

the strategy illustrated in section 2.3.1. Two significant PCs were extracted, which 
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Figure 3.11 Composite lumber image used to train MIA model for on-line lumber 
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cumulatively explained 99.988% of the total sum of squares in the training image. The 

corresponding loading vectors for the dominant PCs were: Pl(tr)T = [0.723 0.583 0.370]; 

P2(tr)T = [-0.573 0.207 0.793]. The off-line MIA training model was calibrated through 

customized local area masking of point clusters in the score plot ofthe two dominant PCs 

(t1(tr) vs. t2(tr»), and highlighting the masked pixels in the corresponding false color­

composite of the three PC score images T l(tr) to T 3(tr). The sizes and shapes of these 

masks were determined by using the previously discussed (section 2.3.1) iterative 

procedure of feature extraction from multivariate images. Figure 3.12(a) illustrates the 

t1(tr) - t2(tr) score plot of the training image with blue and green polygon masks covering 

point clusters of pixels from various lumber defects. The spatial locations of the masked 
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pixels have been highlighted (with appropriate colors) in the false color-composite PC 

score image illustrated in figure 3.12(b). 

Pixels Representing 
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Figure 3.12 (a) t 1(tr) - t2(tr) score plot of the lumber training image with blue and green 
polygon masks capturing lumber defect pixels. (b) False color-composite of PC scores 

of the lumber training image with highlighted lumber defect pixels modeled in (a) 

Using the two customized local area masks in figure 3.12(a), along with the two 

MPCA loading vectors Pl(tr) and P2(tr) the calibration of the off-line MIA training model 

was complete. The training model could then be used to monitor the modeled lumber 

defects from RGB images of the 38 softwood lumber samples used in this study. Each of 

the (712 x 345 x 3 pixel) RGB images of the 38 lumber samples Xtest was decomposed 

into its score space with the help of the MIA training model. The lumber sample image 

was rearranged into a 245,640 x 3 element two-way array Xtest and multiplied with the 

training image loading vectors Pl(tr) and P2(tr) to produce the corresponding score vectors 

t1(test) and t2(test). These new score vectors were then scatter plotted against each other as 
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score plots and folded back into score images. As a result ofthe decomposition, 38 t 1(test) 

- t2(test) score plots can be plotted. Figure 3.13 illustrates t1(test) - t2(test) score plots of 6 (out 

of38) test images. 

Figure 3.13 tJ(test) - t2(test) score plots ofRGB images from 6 lumber sample images out 
of lumber dataset 

Upon observing the 6 scatter plots one can see that there is considerable shifting 

of the bright score point cluster at the bottom right of each plot. From the previously 

shown MIA example on the RGB lumber image (section 2.3.1) we know a priori that 

score points in this cluster correspond to clear wood pixels. As mentioned before there is 

considerable color and contrast variations in softwood lumber not only between different 

species but also within the same tree. Since the dataset used in this study spans 3 

different softwood lumber species such variations in clear wood are expected. The 

composite training image (figure 3.11) was constructed with these variations in mind. As 

far as MIA for lumber grading is concerned pixels belonging to clear wood are 

background features, which are of no interest (or consequence) to the analysis. Minor 
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color contrast variations in clear wood do not matter to MIA as long as the color contrasts 

of the lumber feature pixels (i.e. defects) are consistent. However, if the variations are 

severe this could lead to faulty results as score points from background features would 

overlap into the masks of the lumber defects, thus causing false alarms. 

Although this issue did not severely affect the results in the current lumber 

grading study, it is worth addressing this problem due to its universal nature. Such 

problems could potentially occur in other applications of MIA for on-line monitoring 

where uninteresting variability in background pixels may interfere with feature pixel 

delineation in the score space scatter plots. Appendix A discusses the various approaches 

one could use to align the PC score plots of test images with that of the training image. 

As mentioned before (section 2.3.1) PC score plots are color-coded 

representations of 2-dimensional histograms of the score vectors. The score plot 

alignment strategy used in this lumber-grading study is to match the means of the 38 

lumber image 2-D histograms with that of the training image. Performing the histogram 

mean matching in the PC score plots of the lumber images results in a change in their 

average color contrasts to match that of the training image. Since the score point cluster 

belonging to clear wood represents the majority of the pixels in each lumber image it is 

evident that a shift of the PC scatter plots would mostly affect the pixel contrast of clear 

wood features. As a result, aligning the PC score plots of the test lumber images results 

in standardizing the average color contrasts of the different types of lumber samples used 

in the dataset. Results of the achieved alignment of the PC score plots in the lumber 

dataset have been further explained and illustrated in Appendix A. 

Using the MIA training model masks on the aligned PC score plots of the 38 

lumber images it was possible to objectively monitor the pixels belonging to typical 

lumber defects like knots, splits, wane, pitch and bark pockets. The proposed monitoring 

scheme uses the power of MIA to break the spatial dependence of the modeled pixels 

from lumber sample images and transforms them into specific regions of the updating 

score plots based on their color spectra Pixel densities of the score point clusters under 
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Figure 3.14 Control chart of total number of pixels belonging to modeled lumber 
defects in 38 lumber sample images. An arbitrary tolerance limit has been set to 

determine model rejection 

the two masks were monitored by enumerating the exact number of pixels falling in the 

regions of the masks for each of the 38 lumber samples. 

As far as automatic lumber grading is concerned a simple control chart could be 

used to record and illustrate the total number of pixels belonging to the masked feature 

pixels from typical lumber defects in each lumber sample. Based on process 

understanding and previous experience tolerance limits could be set in the control chart to 

accept or reject a sample for a particular grade. Figure 3.14 illustrates a control chart 

with the total number of pixels captured by both masks in the PC score plots of the 38 

lumber samples in the dataset. Control charts with a count of lumber defects captured by 

each individual mask can also be plotted to determine whether the lumber defects were 

pitch pockets or the darker contrast defects (knots, splits, wanes, bark pockets). In this 

case a common control chart measuring all modeled defects has been used since the 
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grading decision is not concerned with the types of defects. The height of each bar in the 

chart represents a total count of pixels from all modeled lumber defects in a lumber 

sample image. As an example, a tolerance limit has been set at 4912 pixels (2% of total 

pixels in each lumber image) to reject a lumber sample based on an unacceptable amount 

of defects. 

Using the above-mentioned monitoring scheme the need to look at each lumber 

sample for grading is minimized to only the model rejects. All monitoring can be 

performed by counting the total pixels in the masked regions of the updating PC score 

plots as each lumber sample passes under the ROB line scan camera. If one is interested 

in determining the exact spatial locations of the modeled defect pixels, the masked PC 

score points can be highlighted in the corresponding PC score images. Using these 

highlighted lumber images one can then determine the types and spatial distributions of 

the various lumber defects on the sample. Furthermore, the adequacy of the MIA model 

can also be intermittently checked using such highlighted images to visually determine 

misclassification of the modeled defects. Figure 3.15 illustrates the PC score plots and 

corresponding false color-composite PC score images of 4 lumber samples from the 

dataset used in this study. 

It can be seen from the control chart and highlighted PC score images of the 

lumber samples that the proposed MIA monitoring scheme can efficiently capture typical 

defects from RGB color images of lumber boards. Such a monitoring scheme can be 

used in a sawmill for pre-grading lumber samples upstream of human graders in order to 

screen the obvious rejects, which could be further analyzed to determine the amount of 

downgrading required. The monitoring scheme provides the grader with a simple 

interface, where the need to look at images is greatly reduced. All monitoring is 

performed in the updating score plots and the corresponding control chart. Prior to visual 

grading of the model rejects, the highlighted defect pixels in the corresponding lumber 

image could further assists the graders in their eventual grading decision. 



Figure 3.15 Highlighting lumber defects in tt - t2 score plots and false color­
composite PC score images of 4 lumber samples 
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3.4.2 Monitoring Lumber Defects in NIR Multi-spectral 

Images 
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Typical sawmills produce lumber boards at very high speeds, which puts a 

demanding requirement on the lumber graders for fast decisions in assessing the quality 

of every piece. The same demand would be placed on a vision-based lumber scanning 

system, which would be used to grade every piece of lumber at production speeds. As 

mentioned in chapter 2 (section 2.1) several industrial vision-based systems have been 

realized with high-speed imaging sensors that can handle the speed requirements of a 

typical sawmill. The RGB line-scan camera used to image the lumber boards in this 

thesis is a perfect example of such an imaging sensor. Unfortunately, the technology 

behind NIR imaging spectroscopy is still in its infant stages. Most oftoday's NIR digital 

cameras do not possess the ability to match the image acquisition speeds of high-speed 

RGB and grayscale cameras. This shortcoming makes lumber defect monitoring 

infeasible using current NIR imaging technology. 

The existent image acquisition speed gap between current NIR imaging sensors 

and RGB and grayscale cameras may be eliminated in the future with the advent of newer 

and faster NIR imaging technology. Upon fulfillment of the speed requirements NIR 

imaging spectroscopy could be a very effective way of lumber grading. The framework 

and methodology of the monitoring scheme would be exactly the same as that illustrated 

with RGB color lumber images in section 3.4.1. Similar monitoring and control charts 

could be used for various lumber feature pixels based on their chemical information. It 

has already been illustrated in section 3.3.2 that multi-spectral NIR images are capable of 

resolving lumber features at a much fmer resolution as compared to RGB images (e.g. 

details on knots, differentiating between different types of knots, resolving differences 

between knots and splits etc.). Thus, one could ideally monitor lumber features at a much 

fmer resolution using NIR imaging spectroscopy in the sawmill. The only difference in 

such a monitoring scheme would be in the spectral dimension of the multivariate images 

(e.g. the NIR imaging spectrometer used in this thesis can capture images in up to128 

wavelengths, as opposed to 3 color channels captured by RGB cameras). 



3.5 Modeling Lumber Defects Through 

Multivariate Image Regression 
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This section is intended to be a discussion of some issues that are concerned with 

feature modeling through MIR techniques. As previously stated (section 2.3.2) the basic 

idea ofMIR is to build an empirical model between two sets of (typically multivariate) 

image data. The image regression modeling technique of concern in this section is the 

application of a pixel-wise classification approach using Discriminant PLS (PLS-DA) 

modeling to isolate features (pixels) of interest from background information in a 

multivariate image. 

Traditionally PLS-DA models have been used as one of the many techniques to 

classify multivariate data in the pattern recognition literature [Wold et. aI., 1984; 

Sjostrom et. al., 1986; Eriksson et. al., 1999]. In MIR these models are used for pixel­

wise classification of features from a new multivariate image into pre-defined classes. 

The general concept of using PLS-DA to classify multivariate image data has been 

discussed in section 2.3.1, and is illustrated in figure 3.16. A 'dummy' response variable 

Y binary image is used to provide a priori knowledge of the class belonging of every 

feature pixel in the multivariate image X. The PLS-DA model is trained to develop an 

empirical relation between the two images, such that it can later be used to calculate 

predictions of Y from new X multivariate images. Based on the provided class­

memberships in the training stage the PLS-DA model tries to maximally separate the 

intensities of member and non-member pixels in a new multivariate image !new. The 

adequacy of the PLS-DA model can be visually determined upon observing the predicted 

response variable Y as a grayscale image, where typically brighter pixels (intensity near 

1) represent modeled features. 

Hagman [1996] illustrated one of the fIrst applications of a PLS-DA based MIR 

modeling approach in the field of softwood lumber grading. The proposed approach, 
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Figure 3.16 PLS-DA based MIR between a multivariate image X and a binary c1ass­
membership image Y. The class-membership in Y is given for each pixel as 1 

(member) or 0 (non-member) 

termed Multivariate Image Projections to Latent Structures (MIPLS), was used to 

individually model typical lumber features like knots, pitch, clear wood, compression 

wood, different types of rot etc. The basic methodology of the proposed MIPLS 

approach is as follows. First, MPCA decomposition of a multivariate lumber image X is 

carried out to produce PC score plots and images, which are interrogated via MIA 

masking/highlighting to delineate the lumber feature of interest. The highlighted feature 

pixels are thresholded to give a binary dummy image (Y). Second, a PLS-DA model 

(using the kernel-PLS algorithm [Lindgren et. aI., 1993]) is built to relate the feature 

pixels in X with Y. The model is built using a representative training dataset, which is 

extracted via sub-sampling pixels from various regions of X and corresponding pixel 

locations in Y. Finally, the PLS-DA model coefficients are used on the entire lumber 

sample image to create a predicted response Y, which is scaled to a grayscale image 

representation for visualization, and thresholded to segment the modeled feature pixels. 

An error image (E = Y - Y Threshold) is calculated to (visually and objectively) determine 

the feature information not modeled. 

Separate MIPLS models were built by Hagman [1996] to classify each individual 

lumber feature on images of single lumber boards and composite images of multiple 

pieces. Once trained the classification models performed reasonably well to predict 
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spatial locations of several lumber features (e.g. knots, clear wood etc.) without much 

misclassification. However, there were certain lumber features (e.g. compression wood) 

that did not classify satisfactorily in many of the MIPLS models. 

It has been well documented in the literature [Geladi et. aI., 1986; Hoskuldsson, 

1988; Martens et. al., 1989; Burnham et. al., 1996; Eriksson, 1999] that PLS methods 

decompose multivariate data into a reduced dimensional subspace based on a different 

objective than peA. PLS aims to explain the variation in both the X and Y multivariate 

data blocks, and at the same time improve the relation between the two. This results in 

PLS components of the X-block being projected in a different plane as compared to 

projections of its peA components. The amount of rotation, tilting, or shifting of the 

PLS components (as compared to peA) is dependent on the information in the Y data 

block. Similar trends have also recently been reported by Lied et. ai. [2000] in an 

application ofPLS methods in MIR. Upon providing class-membership information of 

each pixel as binary Y images PLS-DA models ofa multivariate image X project its pes 

in a plane, which maximally separates the pixels into one of two classes. This in tum 

results in a new pe score plot to find the direction of greatest discrimination between the 

score cluster of the feature pixels from background scores. However, one must meet 

some basic requirements in order to achieve good classification using PLS-DA models. 

A fundamental condition that must be satisfied when using PLS-DA models for 

classification is that the classes must be "tight" and occupy a small and separate volume 

in the space defmed by the variables of X. Several researchers [Sjostrom et. aI., 1986; 

Eriksson et. aI., 1999] have pointed out this requirement of PLS-DA models in pattern 

recognition. The same condition must be satisfied in order to classify feature pixels using 

PLS-DA models in MIR. This indicates that the selection ofthe feature pixel class in the 

binary Y image should be such that the resulting score points of the feature are tightly 

clustered and separated in the PLS score plots. In doing so, one ensures that the selected 

class is "homogeneous" within itself. One cannot select pixels from parts of a 

homogeneous class and try to discriminate them from rest of the pixels in a multivariate 

image. Another issue concerned with MIR of feature pixels using PLS-DA model based 
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classification is that even if the classes are "tightly" clustered and well separated in the 

PLS score plots a PLS-DA model with a single Y binary image (i.e. a PLS1-DA model) 

might not be adequate. In such cases better classification would be achieved using a 

PLS-DA model with multiple Y binary images (i.e. a PLS2-DA model). Each Y image in 

such a model would highlight pixel locations of a unique feature to be classified. 

The MIPLS models developed by Hagman [1996] provided good classification of 

those lumber features where the above conditions were satisfied. However, those lumber 

features exhibiting loose score clusters due to a lack of homogeneity and similarity with 

other features did not classify well. It was noticed that the MIPLS models misclassified 

compression wood with knots and clear wood. It was later illustrated that compression 

wood is an integral part of both features [Hagman, 1997]. Thus it was not possible to 

separately model compression wood pixels present only in knots or in clear wood since it 

resulted in an inhomogeneous class defmition in the Y binary image used to train the 

MIPLS model. 

Similar misclassification issues have also been reported in other literature where 

separate PLS1-DA models were used to individually classify three different types of 

vegetables (maize, peas, and carrots) in a multivariate image [Lied, 2000]. Two of the 

three models produced good classification results due to tight clustering and separation of 

the modeled feature pixels in the PLS score plots. However, the third PLS1-DA model 

resulted in misclassifications due to inseparable score clusters of the three vegetables in 

its PLS score plot. 

Appendix B presents an example study, which illustrates the importance of 

meeting the above-mentioned requirements when using PLS-DA models in MIR. 

Separate PLSI-DA models are used to classify two types of features from RGB images of 

lumber boards. Furthermore, a conceptual example is shown where a PLS1-DA model 

would be inadequate even if the feature classes are tightly clustered in the PLS score plot. 

Classification achieved using a PLS2-DA model is better in such situations. The 

examples show that good feature classification is achieved only when the above­

mentioned conditions have been satisfied. 
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The discussion of PLS-DA models in this section has been concerned with their 

use as classifiers of individual pixels in an image. In section 5.4.3 of this thesis another 

application of PLS-DA has been shown where such models have been used to classify 

whole images of steel based on certain pre-define criteria. 

3.6 Conclusions and Contributions 

This chapter has developed an extension of (previously off-line) MIA techniques 

to monitor time changing images from on-line cameras, and illustrated their application 

in a real industrial process-monitoring situation for lumber defect detection in the 

softwood lumber industry. The technique provides both qualitative and quantitative 

results that can be used for automatically assigning quality grades to lumber boards at 

production speeds. 

The proposed technique captures more than 85% of the common defects that a 

typical human lumber grader encounters in the sawmill. It can potentially be used on-line 

to pre-screen lumber from various species based on defects that are dependent on color 

and contrast (e.g. knots, splits, wane, bark, pitch etc.) through vision-based systems using 

high speed RGB imaging sensors. A lesser burden would thus be placed on the human 

graders who could then concentrate on detecting more difficult defects in the pre­

screened lumber boards. In ensuring a robust on-line MIA model that can adequately 

capture lumber defects from multiple lumber species exhibiting high variability in their 

background feature colors and contrasts, a score space alignment strategy has been 

proposed. The proposed strategy is one of many possible alignment techniques, which 

can be further refmed based the requirements ofthe application under study. 

The chapter also presents an exploratory study of analyzing complex lumber 

features like knots using NIR imaging spectroscopy with off-line MIA techniques. The 

study illustrates the power ofNIR imaging spectroscopy to resolve such complex lumber 

features into a combination of sub-features at a finer level based on differences in their 

chemical structures. A multi-dimensional MIA masking strategy has been developed to 
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fully capture such complex features, which are typically explained by multiple PCs 

spanning a higher number of components than the standard two dimensional masks used 

in typical PC pair score scatter plots. A working example has been presented to isolate 

bark rings of a loose knot upon pooling the information from 2-dimensional score masks 

in mUltiple PC pairs. 

Advantages and shortcomings of NIR multi-spectral imaging as compared to 

RGB imaging have been discussed for purposes of lumber grading. Previously, no 

studies had been conducted on lumber in the wavelength spectrum of the NIR digital 

camera used in this chapter. The study highlights those lumber defects that can and 

cannot be detected with RGB and NIR imaging sensors. Such information could be of 

great value to the softwood lumber industry when deciding to purchase imaging scanners 

for automatic lumber grading in the sawmill. A framework has been laid out for 

monitoring lumber defects based on chemical information if one used the proposed on­

line MIA scheme with NIR imaging spectrometers. 

Finally, the chapter highlights some basic requirements that must be satisfied in 

order to adequately isolate features of interest from background features in multivariate 

images when using PLS-DA models in MIR. Although these conditions have been 

widely recognized in the pattern recognition literature no study has so far been conducted 

to highlight the impact of these issues with pixel-wise classification of features in 

multivariate images using PLS-DA models in a Multivariate Image Regression scheme. 



Chapter 4 

Multivariate Image Analysis and 

Regression Modeling of Pulp and 

Paper Characteristics 
Multivariate Image Regression techniques have been previously discussed m 

chapters 2 and 3, where both the predictor and response variables were images. This 

chapter introduces a novel MIR modeling technique that is ideal for industrial process 

monitoring situations, where feature information from multivariate process images of a 

product can be modeled with its non-image quality data. Such models can then be used 

on-line with new process images to infer product quality. 

The work is entirely concerned with image based modeling of fmished product 

samples, and using the developed models to predict certain properties that are deemed to 

be critical indicators of product quality. This chapter is intended to be a feasibility study 

of the proposed methods in the pulp and paper manufacturing sectors of the forest 

products industry. 

4.1 Introduction 

Pulp and paper are forest products made from wood fibers, which go through a 

series of chemical and mechanical treatments in order to reach their fmal state. The 

forest products industry largely manufactures pulp and paper as intermediate products, 
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are supplied to other manufacturing industries for further refinement into various end use 

products. Some typical end use products that require pulp and paper as raw materials are 

various types of plastics, rayon, pharmaceuticals, food additives, fmished papers ranging 

from newsprint to high quality colonial bond paper upon which this thesis has been 

printed. To serve such a broad range of applications a typical mill usually produces pulp 

and paper in a variety of grades, with each grade having its own end use properties. 

Adhering to the unique specifications laid-out by the end use product 

manufacturers is of the utmost importance to the forest products industry. As a result, 

pulp and paper manufacturers perform various tests at every stage of the process to 

ensure exact specifications are met. Furthermore, to gain customer satisfaction a large 

number of complicated quality control tests are also performed on the finished products 

to ensure that the expected pulp and paper quality is being maintained for every 

manufactured grade. 

The majority of the quality control tests on finished pulp and paper are preformed 

in analytical laboratories, where complicated wet-chemistry procedures are employed to 

determine the product's chemical properties. Some of these tests are time-consuming and 

require constant attention from technicians. Such stringent demands some times induce 

undesirable experimental errors, which reflect on the perceived quality of the finished 

product. Most wet-chemistry tests are naturally destructive to the solid pulp and paper 

samples since they require dissolving the sample into alkaline or acidic solutions prior to 

analysis. As a result, multiple samples are required to obtain a complete chemical 

property analysis of the finished pulp and paper products. 

To overcome the above-mentioned issues with wet-chemistry analytical 

procedures the forest products industry is aggressively exploring new technologies for 

quality control of finished pulp and paper samples. Ideally such technology should 

enable rapid testing of the samples, and simultaneously provide mUltiple chemical 

properties from a single sample in a non-destructive manner. 

After observing the success of Near-Infrared (NIR) spectroscopy used with 

chemometric methods like peA and PLS to characterize samples in the pharmaceutical, 
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food and chemical industries many pulp and paper manufacturing companies are starting 

to invest a large amount of money in this technology for quality analysis of their 

products. What makes NIR spectroscopy attractive is its ability to characterize solid, 

semi-solid, liquid and vapor samples without the need for any special sample preparation 

[Wold et. aI., 1998]. This technology provides both flexibility and speed to help achieve 

the goals of rapidly analyzing finished pulp and paper samples in a non-destructive 

manner. Over the past decade these techniques have become quite popular in the pulp 

and paper manufacturing sectors of the forest products industry. 

Several applications of NIR spectroscopy in the pulp and paper industry have 

recently emerged in the literature. Birkett et. aI. [1988] and Antti et. al. [2000] illustrated 

the ability of NIR spectroscopy, along with chemometric methods, to predict kappa 

number in pulp. Several other applications that attempt to predict pulp yield and 

cellulose content using these techniques have also been published [Shultz et. aI., 1990; 

Wright et. al., 1990; Woitkovich et. aI., 1994]. East yet. aI. [1990] illustrated the power 

of NIR spectroscopy to measure hardwood content in a bleached hardwood-softwood 

pulp blend, and measured lignin content of unbleached pulp. The ability to characterize 

pulp and paper properties using NIR spectroscopy with chemometrics methods has been 

illustrated through several application examples, some of which are provided in the 

following references [Wallbacks et. al., 1991 and 1995; Antti et. al., 1996; Champagne et. 

aI., 2001]. 

The work presented in this chapter contributes to the field of NIR spectroscopic 

analysis of pulp and paper through an investigative study of using NIR imaging 

spectroscopy with MIA techniques to extract chemical information from multi-spectral 

images of finished pulp and paper samples. It is frrst illustrated through a paper 

classification example that such information can be used to characterize pulp and paper 

upon imaging the finished samples using a NIR imaging spectrometer. 

A novel PLS based MIR technique is then developed, which regresses the 

extracted feature information from multi-spectral NIR images of finished pulp samples 

with their chemical property variables. The pulp property data has been obtained via 
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measurements in the quality control laboratory of a pulp mill usmg wet-chemistry 

analytical techniques. Development of the MIR models forms the main contribution of 

this chapter. These models are then used with new process NIR multi-spectral pulp 

images to monitor pulp quality without the need for tedious wet-chemistry analysis. 

These models are also used to investigate spatial variations of pulp properties across the 

imaged section of the sample through a proposed sub-windowing technique. 

The chapter is organized as follows. First, a description of NIR spectroscopy in 

pulp and paper industries is provided, which focuses on comparing traditional (single 

point probe-based) and recently emerging (image-based) NIR spectrometers for pulp and 

paper analysis. Second, a brief paper classification study illustrates the potentials ofNIR 

multi-spectral imaging and MIA to extract relevant feature information from fmished 

paper samples. The same strategy has then been used to extract feature information from 

multi-spectral NIR images of finished pulp samples. The extracted information MIR 

models are then used for predicting and monitoring pulp quality from an industrial 

process through various grades. Finally, a framework is presented for investigating pulp 

heterogeneity through inferring the spatial distribution of its properties across the imaged 

section of a pulp sample. 

4.2 Near-Infrared Spectroscopy in Pulp and 

Paper Industry 

The basic principle of a NIR spectrometer is to shine incident light on a sample 

and measure the reflected (or transmitted) light at different NIR wavelengths. 

Traditionally, NIR spectrometers have consisted of a fiber-optic probe detector made 

from special crystals like Indium-Gallium-Arsenide (InGaAs), Germanium (Ge), Indium­

Arsenide (InAs) etc. [Buchanan et. aI., 2000]. This detector is highly sensitive and 

provides precise NIR measurements after averaging many scans over a local region of the 

sample being tested. The measurement is performed at a particular point on a solid (or 
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semi-solid) sample, or in an encased chamber (e.g. test tube) for a liquid (or gaseous) 

sample. Traditional (probe-based) NIR spectroscopy has been applied in many industries 

for over four decades. This technology has been well researched and documented in the 

literature [Whetse~ 1968; Stark et. at, 1986; Burns et. at, 1992]. Some of today's 

advanced and sophisticated (probe-based) spectrometers (e.g. FOSS NIRSystems 

<http://www.foss-nirsystems.com> as of May 19, 2002) can acquire light reflectance 

readings in the full NIR wavelength spectrum (700 nm to 2500 nm) with very little 

reduction in quantum efficiency (i.e. signal-to-noise ratio) throughout the spectral range. 

NIR spectrometers have to be properly calibrated against samples of known 

chemical composition, since spectra from these instruments are essentially non-specific 

with broad overlapping peaks of different constituents. As mentioned before 

chemometric methods like peA and PLS have been widely used to extract relevant 

chemical information from highly correlated digitized spectra of today's NIR 

spectrometers connected to high-speed computers [Martens et. al., 1989; Hildrum et. at, 

1992; Beebe et. at, 1998]. All previously mentioned NIR spectroscopy applications in 

the pulp and paper industry (section 4.1) have used traditional probe-based instruments. 

One of the shortcomings of probe-based NIR spectrometers is their inability to 

provide simultaneous multiple point readings across solid samples. Such information 

could be vital to determine the homogeneity of the sample based on the spatial 

distribution of its chemical information across a certain area. If required, one can 

perform some pre-processing to bring the solid sample in liquid or gaseous form prior to 

performing NIR measurement to produce an overall spectral reading. However, if this 

were not possible the NIR probe would have to be manually placed at multiple locations 

across the solid sample to gather such spatial homogeneity information. 

Lately, this issue has been addressed with the introduction of NIR imaging 

spectrometers. These instruments work on the same principle as their traditional 

counterparts except for their detector, which in this case is a NIR digital camera. The 

basic functionality of NIR imaging spectroscopy has been previously described in 

chapters 2 and 3 (sections 2.1.2.3 & 3.2.2) of this thesis. NIR imaging spectrometers 
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acquire multi-spectral digital images of solid (or heterogeneous) samples, thus producing 

a 2-dimensional grid of digitized NIR reflectance spectra at multiple spatial locations 

across the scanned sections of the samples. This is equivalent to multiple NIR probe­

detectors spread across the surface of a solid sample. This technology also enables 

acquiring measurements without destruction of the sample, thus allowing further analysis 

of the sample after imaging. 

Because this technology is still developing, the spectral range covered by most 

NIR imaging spectrometers is limited as compared to that of traditional probe-based 

instruments. As a result, if one were to consider each pixel of the acquired multi-spectral 

NIR image as a single point sensor its NIR reflectance reading would be less sensitive in 

resolution than that obtained through a probe-based instrument at the same point of the 

sample. However, the tradeoff for instantly having simultaneous multiple point 

measurements in a non-invasive manner makes NIR imaging spectroscopy a viable 

alternative to traditional probe-based instruments. 

The probe-based detectors produce a NIR reading upon taking multiple scans at a 

particular spatial point and averaging them. On the other hand, the imaging spectrometer 

used in this thesis functions as a line-scan multi-spectral camera, which instantly captures 

the digitized NIR reflectance spectrum of each spatial point along a line perpendicular to 

the moving sample. The resulting 3-dimensional multi-spectral NIR image is obtained 

upon joining multiple scanned lines. As a result, the NIR spectra at any spatial location 

across the imaged section are not averaged. 

It has been previously pointed out (section 3.4.2) that today's NIR cameras do not 

possess the acquisition speeds required for on-line imaging of fast moving samples like 

pulp and paper sheets on a process web in an industrial scale machine. However, one 

could conceptually use NIR multi-spectral cameras on-line to sub-image the pulp or 

paper sheets upon acquiring intermittent lines across the moving web. Similarly it can be 

argued that traditional probe-based NIR spectrometers could also conceptually be used 

for on-line monitoring of pulp and paper processes. A NIR probe can be fixed at a 

specific location across the process web, thus producing a reading along a line in the web 
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direction as the pulp or paper sheet moves. Since probe-based spectrometers normally 

acquire multiple scans and average them to produce a reading, the resulting NIR 

spectrum would be an average of many scans over the linear section of the pulp or paper 

sheet along the web direction. 

Using an on-line NIR probe detector for monitoring pulp and paper processes 

might be adequate if the cross directional product variations are not critical. However, 

NIR imaging spectrometers would provide a much clearer picture if such variations are 

important as the process moves. 

All pulp and paper samples used in this chapter have been measured with the NIR 

imaging spectrometer and scanner bed assembly described in section 2.1.2 of this thesis. 

The imaging was performed in off-line experiments conducted in a laboratory setting. 

The sample images were not averaged, thus no modifications were made to the raw NIR 

spectra of the pixels in the acquired multi-spectral images. 

4.3 Classification of Characterized Paper Using 

NIR Imaging Spectroscopy 

This section presents a paper classification study using multi-spectral NIR images 

of specially designed paper samples, which contain controlled chemical additives. Since 

the paper samples are white in color, analyzing RGB color images of the samples would 

not provide any useful information. The main objectives of this study are to investigate 

the ability of NIR imaging spectroscopy to extract the pre-defined composition 

information from paper samples, and use it to classify the samples based on differences in 

their chemical make-up. This study is intended to be a pre-cursor to the pulp-modeling 

application of NIR imaging spectroscopy, which is addressed in section 4.4 of this 

chapter. 

A set of specially created paper samples was obtained from ASTM (The 

American Society for Testing Materials) in summer, 2000 by the Department of 
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Chemical Engineering at McMaster University. These samples were originally created 

for ASTM's research program to study the aging of printing and writing papers [Arnold, 

2001]. The composition (ingredients) of each sample was varied in a designed 

experiment fashion. Table 4.1 shows the manipulated ingredient variables. It can be 

seen that 9 different combinations of 6 ingredients have been used to create the paper 

dataset in this study. Each combination was used to produce several reams of 8.5" x 11" 

paper sheets, with thickness comparable to ordinary photocopy paper. 

Table 4.1 Paper composition manipulation chart of 6 ingredient variables 

Paper Sample Composition 
.:.:.~.:.:.:.::::::::::::::p.~#i:t~::::::::::::::::::::::: ::::::::::i>i.;i~:!~::::::::::::::::::::~~"(:::::::::itH:~::::::::.~;;;i1i.::::::~::::::::~::: • 
• :::~::::::::::::::::::::Nu~:1.:::::::::::::::::::::::::::::::::Ni;~2::::::::::::::::::::.:::';iH::::::::.::::::CiI*ti1i:.t,::::::::::citif)bJiiiei,:::::::·:·sti .. ::.::::::Cii:~::· 

1 100% Bleached Softwood Kraft . None 5 Alum None 21fT Rosin 8 
2 
5 

10 

11 

12 

13 

14 

15 

100% Bleached Softwood Kraft 

100% COTTON 

20% BleaChed Softwood Kraft 

50% Bleached Softwood Kraft 

50% Bleached Softwood Kraft 

SO% BleaChed Softwood Kraft 

SO% BleaChed Softwood Kraft 

50% BleaChed Softwood Kraft 

None 8.1 

None 5 

80% Hardwood BCTMP 8.1 

50% BleaChed Hardwood Kraft 8.1 

SO% BleaChed Hardwood Kraft 8.1 

50% Hardwood BCTMP 8.1 

SO% Hardwood BCTMP 5 

SO% BleaChed Hardwood Kraft 8.1 

Sodium carbonate 5% None 7 
Alum None 2#fT Rosin 19 

Sodium carbonate 5% None S 
Sodium carbonate Nona None 6 
Sodium carbonate 5% None 14 
Sodium carbonate 5% None 8 

Alum None 2#fT Rosin 11 
Sodium carbonate 5% 4#fr AKD 2 
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This study uses NIR imaging spectroscopy with chemometric methods to classify 

paper samples based on their unique ingredient combinations. The 9 unique 

combinations of paper samples were imaged using the NIR imaging spectrometer and 

scanned bed assembly (figure 2.6). Each sample was labeled according to the number 

assigned in table 4.1. Since the thickness of a single paper sheet was not enough to trap 

all incident light it was decided to use a stack of sheets from the same sample while 

imaging. Enough sheets were used to ensure no light penetrated through the stack. The 

thickness of each stack was kept constant. Three repeats of each paper sample were 

imaged with different stacks randomly chosen from the reams. The complete dataset 

consisted of 27 multi-spectral NIR images. Each stack was imaged with the scanner bed 

moving at a speed of 10 mm/s. Details of the reSUlting multi-spectral NIR image are as 

follows: 
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• The NIR spectrum used for the study was 933 run to 1663 run, which was 

discretized into 110 individual wavelength images. 

• The approximate paper surface area imaged was 155 mm (L) x 110 mm (W), 

which was represented by 500 pixels (L) x 126 pixels (W). This resulted in 

dimensions of 500 x 126 x 110 pixels for each of the 27 multi-spectral NIR 

images. 

x 

x 

(a) 933nm (b) 1105nm (c) 1311nm (d) 1459nm (e) 1657nm 

Figure 4.1 Multi-spectral NIR reflectance image of paper sample 1 acquired at 5 
wavelengths 

Figure 4.1 illustrates an example of a multi-spectral NIR reflectance image of 

paper sample 1 (table 4.1) at 5 out of the 110 NIR wavelengths. The darker pixels 
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represent high NIR absorbance (low reflectance) regions in the paper sample. The NIR 

spectra of 5 selected pixels (highlighted as x on figure 4. 1 (a» are illustrated in figure 4.2. 

Figure 4.2 NIR reflectance spectra of 5 selected pixels from paper sample 1 (spatial 
locations of pixels marked as x in Figure 4. 1 (a». Vertical red lines represent the 

wavelengths at which the images in Figure 4.1 are sampled 

It can be seen from figure 4.2 that reflectance is generally high in the lower end of 

the NIR spectrum with a lowering trend that starts around 1400 nm (signifying a higher 

NIR absorbance region). As mentioned in section 2.1.2 (and illustrated in figure 2.2) the 

1400 - 1650 nm region generally covers the 1 st overtone of the C-H combinations, and 0-

H, N-H functional groups. The 1400 - 1500 nm wavelength range is particularly 

sensitive to moisture (H20). As a result, it can be inferred that the "dip" in the NIR 

spectra of the 5 pixels around this range is largely due to moisture (in atmosphere and 

paper), C-H, O-H and N-H bonds. Similarly, it can also be inferred that the small "dip" 

in the NIR reflectance spectra around 1200 nm is due to the absorbance of the C-H 

functional group in its 2nd overtone region (figure 2.2). 

In order to meet the objectives of the study an appropriate methodology was 

developed to extract relevant feature information from the multi-spectral NIR images. A 

new feature space was chosen in a way such that it was representative of the paper 

samples, and at the same time enhanced differences between the samples based on their 

chemical make-up. MIA was used to extract such a feature space from the 27 sample 

Images. 
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4.3.1 MIA of Multi-spectral NIR Paper Images 

MIA techniques using MPCA decomposition have been previously discussed in 

chapter 2 (section 2.3.1). Using the same methodology all 27 multi-spectral NIR images 

( 

Camera 
_ 4nomaly 

1/ I, 
I 
I 

(c) 

Figure 4.3 MIA score space of multi-spectral NIR image ofpaper sample 1. (a) T\ 
image; (b) T2 image; and (c) t}-t2 scatter plot 

of paper were decomposed into linear combinations of scores and loading vectors. Using 

the score (T 1 and T 2) and sum of squared error (SSE) images as indicators to visually 

determine the amount of structural information explained by the principal components it 

was determined that 2 PCs captured most of the feature information from the NIR 

images. As a result, MPCA was used to decompose each sample image into a linear 
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combination of 2 score and loading vectors. Figure 4.3 illustrates the resulting 2 PC 

score space images and scatter plot upon decomposing the NIR multi-spectral image of 

paper sample 1. Since there was very little remaining structural information in the multi­

spectral NIR image after extracting 2 PCs, the SSE image consisted of only dark pixels 

and thus has not been shown here. 

As mentioned before (section 2.3.1) MPCA scores are weighted averages of the 

variables in a multivariate image. Thus the two MPCA score images (figures 4.3(a) and 

4.3(b)) are weighted averages of the 110 individual wavelength images in the multi­

spectral NIR image of paper sample 1. The loading vector PI defines the individual 

weights related to each wavelength used in producing T t, whereas loading vector P2 

contains weights forming T2• Figure 4.4 illustrates the MIA loading space dermed by the 

2 PCs of the NIR multi-spectral image of paper sample 1. The loading vectors PI and P2 

are illustrated as NIR spectra with individual weights on the 110 wavelengths. 

0.1I51'---~-~-~~-~-~---""--' 

I 
011 1 

I 
0.105 

0.1 

0.Q95 

Q.. 0.09 

0.085 

0.08 

0.075 \ r 
0.07 \/ 

0.065~~---'---' 
900 1000 1100 1200 1300 1400 1500 1600 1700 

Waveength jim) 

Q2 

0.15 r/;f\ 
QI 

'it 
0.05 

o [' 

-O.I'--~-~-~~-~-~~----' 

900 1000 11 00 1200 1300 1400 1500 1600 1700 
Wa",lengtb (pm) 

(a) (b) 
Figure 4.4 MIA loading space of multi-spectral NIR image of paper sample 1. (a) PI 

loading vector coefficients; and (b) P2 loading vector coefficients 

Upon comparing the individual NIR spectra of the 5 selected pixels from paper 

sample 1 (figure 4.2) with the NIR spectrum of PI (figure 4.4(a)) it can be seen that the 1 st 

PC loading coefficients follow the same trends. From the theory of MIA [Geladi et. aI., 

1996] it can be shown that PI represents a normalized mean spectrum of all pixel spectra 
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throughout the un-scaled multivariate image. As a result, PI represents an average NIR 

spectrum across the spatial pixels in the multi-spectral NIR paper image. 

It could be argued that in obtaining such an average NIR spectrum over the pixels 

of the paper image, the resulting PC loading is in some remote way similar to the 

averaging of the scans performed by a probe-based NIR spectrometer. The difference 

being that an imaging spectrometer performs the averaging over multiple single scan 

spectra from a section of the sample, whereas a probe detector would average spectra 

over multiple scans at the same point on the sample. 

Since no mean-centering of the image is usually performed in MIA the 1 st PC 

explains mean variability throughout the data. Thus, T I (being a weighted average 

image) represents an average NIR reflectance image over the 110 wavelength images 

(based on the mean NIR spectrum). Those pixels having dark intensities in the T I image 

(figure 4.3(a» represent spatial locations with lower NIR reflectance (higher absorbance) 

through the 110 wavelengths, and vice versa. 

It can be observed from figure 4.3(b) that the 2nd PC mainly captures lighting and 

camera anomalies. The T 2 score image illustrates the lighting anomalies along the right 

of the sample (darker pixels), as well as a camera anomaly as a vertical dark streak 

towards the right of the center of the image. It can be seen from the pixels in the T 2 

image (figure 4.3b) and the non-smooth nature of the spectrum defining the coefficients 

of P2 loading vector (figure 4.4(b» that the signal-to-noise ratio (SNR) has dropped 

considerably after extracting the 1 st PC. Furthermore, the sum of squares of the multi­

spectral NIR image of the paper sample explained by the 1 st PC is 99.988%, whereas that 

explained by the 2nd PC is only 0.010%. Thus it can be concluded that only the 1st 

significant PC extracted from the 110 wavelength multi-spectral image contains valuable 

feature information. 



4.3.2 Transforming Multi-spectral NIR Paper Images to 

Feature Space 
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The transformation of raw image data into a new feature space is the most critical 

step in the success or failure of the proposed classification technique. Prior knowledge 

should be used as much as possible in extracting relevant information from image data 

that is most indicative of (and correlated with) the feature information sought. The 

objective in the paper classification study was to capture overall paper characteristics that 

were 'global' in nature (i.e. independent of surface variations). The paper samples for 

this study were produced as part of a designed experiment under controlled conditions 

with unique pre-determined recipes for each sample. As a result, spatial information 

(present in the score space of MIA) carried little value in predicting these overall paper 

characteristics (Le. ingredients). 

It was decided to use the MIA loading space as feature vectors for classification 

of the paper samples. This is because the MPCA loading vectors represented overall 

chemical information through average NIR spectra of all pixels across the imaged section 

of the paper. Since the 2nd PC contained little structural information this study 

exclusively relied on the 1 st PC loading vector PI as the feature vector of each paper 

sample. It was assumed that the PI loading vector captured the NIR characteristics of the 

paper at a set combination of the 6 ingredient variables. If any differences existed in the 

paper characteristics they would be reflected in their feature vectors. 

Individual MPCA decompositions were performed on all 27 multi-spectral NIR 

images, and the corresponding PI loading vectors were extracted. These feature vectors 

were organized as rows of a new feature matrix Xfeature. Figure 4.5 illustrates the feature 

extraction step. Xfeature has dimension of 27 (rows) x 110 (columns). For graphical 

clarity and better interpretability 9 (out of 27) unique feature vectors of Xfeature (only one 

repeat per sample number) have been illustrated in figure 4.6 with corresponding sample 

numbers identified in the legend. As expected the feature vectors of the paper samples 

were very similar, with slight differences in their average NIR spectra. 
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4.3.3 PCA of Feature Space for Paper Classification 

After mean-centering the variables (PI loading values at different wavelengths) in 

Xreature PCA was used to decompose the PI loading coefficients at the 110 wavelengths 

into a linear combination of 2 significant PC scores and loading vectors. The variation in 

Xreature explained by the 2 PCs was 98.6% (cumulative). It should be noted that the 

scores and loadings resulting from this PCA ofXreature are different than those obtained in 

the initial MPCA decomposition of the multi-spectral NIR paper images to obtain Xreature. 

Classification of the 27 feature vectors was performed in the 2 PC score scatter plot t I • -

t2·, where each feature vector was represented as a single point. Figure 4.7 illustrates the 

t I• - t2 * scatter plot of PC A on Xreature. The score points representing the 9 paper samples 

have been uniquely color-coded for easier interpretation. The 3 repeats for each of the 9 

paper samples have been identified with letter-number combinations (e.g. 01A, OlB, and 

OlC representing repeats from sample 1). 
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Figu re 4.7 t 1* - t2 * score space scatter plot of PCA on Xreature to classify feature 
vectors of27 paper samples 

It can be seen from figure 4.7 that the 9 types of paper sample groups representing 

unique ingredient compositions have been well separated into their respective point 

clusters. Some observations made upon comparing the classification achieved in figure 

4.7 with the paper composition information in table 4.1 are summarized below. 
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Paper sample 5 is separated from all the other papers by its large t2 value. 

Therefore, it seems as if its composition is unlike that of any of the other types of paper. 

Looking at the paper compositions (table 4.1) this is confirmed as sample 5 is the only 

sample that is composed of 100% Cotton. 

Paper samples 10 and 13 seem to be very similar to each other. From table 4.1 it 

can be seen that both samples are composed of the same types of pulp (i.e. Bleached 

Softwood Kraft Pu1p and Hardwood BCTMP Pulp), the only difference being the ratio of 

Softwood to Hardwood pu1p (20% Softwood Pu1p in Sample 10; 50% Softwood Pu1p in 

Sample 13). Therefore, it can be inferred that the shift in the score scatter points from 

sample 10 to 13 is due to an increase in Hardwood BCTMP Pulp composition. 

Paper samples 12 and 15 also seem to be very similar to each other. It can be 

confirmed from table 4.1 that these two samples have the same pulp types in an equal 

ratio (50% Bleached Softwood Kraft and 50% Bleached Hardwood Kraft). The only 

difference in the composition of sample 12 and 15 is 4#1T AKD internal sizing (present 

in sample 15). Thus, the effect of internal sizing can be identified in the score point shift 

from sample 12 to 15. 

All the samples can be seen to follow the orientation defined by lines A, B, and C 

in figure 4.7. Except for sample 5 all samples are oriented along one of lines A or B. 

The direction from line A to B (i.e. along line C) explains increasing paper brightness as 

samples along line A contain Hardwood BCTMP pulp, whereas paper samples along line 

B contain Bleached Hardwood Kraft pu1p. 

Line C defines the division between samples based on Calcium Carbonate 

(CaC03) and Bleached Softwood Kraft pulp. Most samples (except sample 2) to the left 

of line C contain no CaC03, whereas samples to the right of line C contain 5% CaC03. 

The two groups of samples highlighted in figure 4.7 (green and blue circles) contain 

samples with (blue) and without (green) CaC03. The arrows indicate direction of two 

paper samples (1 and 2) being separated from their respective groups. This separation is 

because the two samples (1 and 2) contain 100% Bleached Softwood Kraft pulp (i.e. no 
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Hardwood pulp). Therefore, it can be said that the direction defmed by lines A and B 

also explains Bleached Softwood Kraft pulp. 

From the results obtained in the paper classification study it can be concluded that 

NIR imaging spectroscopy can extract relevant chemical and pulp ingredient information 

from fmished paper samples. The crucial step is the extraction of appropriate feature 

information from multi-spectral NIR images. A similar feature extraction strategy (using 

the 1 st PC loadings of MPCA) has been employed in the following section, where the 

extracted feature vectors are used to model chemical information in multi-spectral NIR 

images of fmished pulp samples obtained from a pulp mill. However, the pulp data is 

more complicated as compared to the well-characterized paper samples used in the above 

study. This is because there are very little differences in the composition of the pulp 

samples (even though they are from different grades) since they are collected from an 

industrial pulping process running under routine conditions. 

4.4 Modeling Pulp Properties Through 

Multivariate Image Regression 

This section presents the main contributions of the chapter through development 

of a Multivariate Image Regression technique to model selected pulp properties from 

multi-spectral NIR images of finished chemical pulp samples. Methodology developed 

in the previous section is used here to extract relevant features from multi-spectral NIR 

pulp images. The extracted feature space is then regressed with pulp quality data 

(obtained from laboratory analysis) to build empirical models that predict certain pulp 

end properties from future process multi-spectral NIR images of dry pulp sheets. 

Pulp data used in this study has been obtained from the Temiscaming (Quebec) 

dissolving SUlphite pulp mill of Tembec Inc. The company produces over 20 different 

grades of specialty cellulose chemical pulp for use in the manufacture of many end 

products like rayon, cellophane, pharmaceuticals, plastics, food additives etc. The 
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pulping process contains several chemical and mechanical treatments of different types of 

wood chips in order to extract and clean the pulp fibers, which are further bleached and 

treated through a variety of other chemicals (prior to drying) depending on the pulp grade 

desired. Every pulp grade has its unique target end properties, which are dependent on 

the specifications provided by the end product manufacturers who use the dissolving pulp 

as a raw material in their processes. 

Adhering to the specifications on the end properties of every pulp grade is of the 

utmost importance to the pulp mill in order to maintain customer satisfaction. Therefore 

to monitor pulp quality a large number of quality control tests are conducted on the 

finished pulp samples prior to shipping the product. Most of these tests are carried out in 

the pulp mill's analytical laboratory where the finished pulp sample is subject to various 

physical and chemical analyses to determine its overall characteristics and end properties. 

Some of the pulp testing procedures in the analytical laboratory involve complicated and 

time consuming wet chemistry techniques, which are manpower intensive. Furthermore, 

due to the destructive nature of some tests multiple samples are required for a complete 

pulp property analysis. It is desirable to develop a rapid pulp quality testing technique, 

which would ideally be able to provide multiple pulp properties from a single sample in a 

non-destructive manner, and at a low cost. 

In this section NIR spectroscopy is successfully used with chemometric 

techniques to predict pulp end properties from single point spectral readings of finished 

pulp samples. The work presented in this study includes an image based NIR 

spectroscopic modeling technique to predict multiple pulp end properties from a single 

multi-spectral NIR image of a finished pulp sheet. 

4.4.1 Selected Pulp Properties for MIR Modeling 

Since the proposed MIR modeling technique is intended to be a feasibility study, 

only 4 end properties offmished pulp have been selected for prediction. Each of the four 

properties is separately measured in the pulp mill's quality control laboratory using preset 
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analytical wet chemistry techniques. Work instruction sheets provide detailed procedures 

that must be followed in order to measure the respective properties. The four pulp 

properties chosen for this study are: SIO, SI8, DCM Resin, and Intrinsic Viscosity. Each 

property is briefly described below. 

SIO and SI8 measure the alkaline solubility of fmished pulp. These two 

properties are indicators of degraded cellulose and hemi-cellulose (low molecular weight 

carbohydrates) remaining in the pulp sample after pUlping and bleaching of the wood 

chips. The analytical laboratory testing procedure to measure S 1 0 and S 18 requires 

dissolving the dry pulp into alkaline solutions and performing various measurements on 

the solutions to determine the amount of degraded cellulose and hemi-cellulose. 

Obtaining the final SIO and SI8 measurements for each pulp sample requires 

approximately 1.5 hours of experimental procedures. Although no formal study has been 

performed, the pulp mill reported an approximate 20' (95% CI) experimental error of ±O.6 

measurement units on laboratory measurements of the S 1 0 pulp property, and ±0.3 units 

on measurements ofthe SI8 pulp property. 

DCM Resin is a measure of the amount of remaining resinous materials m 

fmished pulp, which are extractable with organic solvents like Dichloromethane. The 

analytical laboratory testing procedure for measuring DCM Resin involves dissolving the 

solid pulp sample into the organic solvent and extracting the solution via siphoning at 

regular intervals. Obtaining the final DCM Resin measurement for each pulp sample 

requires approximately 4 hours of experimental procedures. The experimental error for 

DCM Resin has not been thoroughly evaluated by the pulp mill. However the reported 

value is based on the CPPA (Canadian Pulp and Paper Association) standard, which gives 

a coefficient of variation of6.3%. 

Intrinsic Viscosity measures the average molecular chain length of the polymers 

making up the pulp fibers. The solid pulp sample is tom and dissolved in various 

reagents prior to measurement of intrinsic viscosity. Typically the experimental 

procedure to obtain a measurement requires approximately 20 minutes. The reported 20' 
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experimental errors for the intrinsic viscosity test are approximately ±0.2 measurement 

units. 

It is evident from the analytical laboratory procedures of the four pulp properties 

that the measurements are made upon destroying and/or dissolving the solid pulp samples 

into solutions. As a result, all four properties are global in nature with a single value 

representing the entire pulp sample. Therefore the feature extraction strategy employed 

in the paper classification study (section 4.3) can also be used here to extract relevant 

average chemical information from multi-spectral NIR images of dry pulp sheets. 

The experimental errors associated with S 1 0, S 18, and Intrinsic Viscosity are 

absolute, whereas those related with DCM Resin are relative. In section 4.4.4 performing 

a logarithmic transformation prior to developing the MIR model stabilizes the 

experimental errors for DCM Resin. 

4.4.2 Description of Pulp Dataset and Imaging Procedure 

The MIR pulp modeling study was carried out in two stages. The first stage 

consisted of an off-line study, which involved imaging some finished pulp samples and 

developing the MIR models at McMaster University. The pulp samples, along with 

corresponding laboratory measurements of the four properties, were shipped from the 

pulp mill to McMaster over a period of several months. The second stage of the study 

involved an at-line imaging experiment, which consisted of taking the NIR imaging 

spectrometer to the pulp mill to image the pulp samples in the mill's analytical laboratory 

prior to wet chemistry analysis to measure pulp properties. 

For the off-line MIR modeling study pulp samples from different grades were 

shipped to McMaster from the pulp mill over a period of 6 months. Prior to shipping 

each sample was divided into two halves with one half being shipped whereas the other 

half sent to the pulp mill's analytical laboratory for measurement of the four end 

properties. The corresponding laboratory analyzed pulp property measurements were 

later shipped to McMaster as the results became available. Each pulp sample was imaged 
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at the university as it was received over the 6 month time period. Finally, individual MIR 

models were developed between the multi-spectral NIR pulp images and the received 

laboratory analysis values. To improve the model predictions a variable transformation 

(using In(DCM Resin) values) and a spectral filtering technique (Orthogonal Signal 

Correction) were used on the data. Although the MIR models produced reasonable pulp 

property predictions it was sensed that the results could be further improved upon 

removing certain sources of variation that were inherently present in the off-line study. 

Since the pulp samples were produced over a relatively long time period there 

were some inherent variations induced by differences in aging of the samples before they 

were imaged at the university. Furthermore, various technicians performed the 

laboratory testing of the pulp samples over 6 months, which added human variability to 

the results. Although the pulp samples were shipped in sealed Ziploc plastic bags there 

were possible moisture variations due to the time lag between production and imaging of 

some samples. Such unwanted moisture variations affect the NIR imaging spectrometer 

readings, which add variability in the MIR model predictions of the pulp properties. Due 

to the destructive nature of the wet chemistry laboratory procedures the pulp samples 

were divided into two halves. As a result, the imaged part of the pulp sample did not 

correspond to the laboratory tested half This source of variability could be removed if 

the imaging were performed prior to the laboratory analysis on the same section of the 

pulp sample. 

In light of the above-mentioned variability in the off-line MIR models it was 

decided that the results of the off-line study were not as representative of the true pulp 

properties as the at-line results. Therefore, these former results have thus been omitted 

from the thesis, and only the results from the at-line stage of the pulp modeling study are 

presented. 

To remove the sources of variability inherent in the off-line stage of the study an 

at-line imaging run was performed in the analytical laboratory of the pulp mill. Another 

reason for the at-line study was to validate the methodology and the MIR models 

(developed beforehand at McMaster using off-line data) in an actual industrial setting 
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where imaging would ideally be performed (at fIrst) in the analytical laboratory prior to 

testing of the pulp properties. Eventually, the aim ofthe project is to install a high-speed 

NIR imaging spectrometer on-line as the pulp is being manufactured, and use the multi­

spectral NIR pulp images with the developed models to monitor pulp quality. Thus, the 

at-line study provides the logical link between the off-line and on-line projects. 

The procedure followed during the at-line experiment is described below. The 

NIR imaging spectrometer and scanner assembly (fIgure 2.2) was setup in the analytical 

laboratory of the pulp mill in order to image freshly manufactured pulp samples over a 

period of 3 days of regular production. Imaging was performed immediately after 

production of every roll thus ensuring that the pulp samples were fresh and the moisture 

content was constant through all the samples that were imaged. The scanned section of 

each pulp sample was marked using a frame. Analytical laboratory testing of the four 

pulp properties was carried out using pulp from within the marked boundaries of the 

scanned section. Thus variability induced by imaging and analyzing different parts of the 

pulp sample was avoided. Once imaged the pulp samples were then analyzed for the four 

pulp properties by the same laboratory technicians, thus ensuring minimal human 

variability in the analysis. 

A total of 60 pulp samples were imaged over the 3 days of production during the 

at-line experimental run. The samples belonged to one of two main pulp grades: (1) 

Rayon Grade, (2) Pharmaceutical Grade. Additionally, the rayon grade was further 

divided into two sub-grades having different pulp end property specifIcations. The grade 

change between the two main grades was also captured during the at-line experimental 

run. Due to confIdentiality agreements between Tembec Inc. and McMaster University 

the true grade names have not been presented in the thesis. Furthermore, the pulp 

property values have also been scaled to a relative index although the trends of the 

properties have been conserved in the presented results (section 4.4.4). 
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Figure 4.8 Single wavelength (1351 run) image of pulp sample 16 from at-line 
experiment. (a) Raw image with plastic frame in place, (b) Cropped image after 

removing frame 
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The at-line imaging experiment was performed with each pulp sample placed on 

the scanner bed encased between an aluminum plate at the bottom side and a plastic 

frame on top. This ensured that the pulp sample lay flat under the imaging spectrometer. 

Furthermore, imaging the sample with the plastic frame defmed the boundaries of the 

imaged section on the pulp sample, which was marked and forwarded to the laboratory 

technicians for property measurement. Figure 4.8(a) illustrates a 500 pixels (L) x 126 

pixels (W) single wavelength image of a pulp sample with the plastic frame in place. 
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Each of the 60 multi-spectral NIR pulp images from the at-line study was manually 

cropped to remove the plastic frame prior to further analysis. Figure 4.8(b) illustrates the 

same pulp image after cropping the plastic frame. 

Each pulp sample was imaged under the NIR imaging spectrometer with the 

scanner bed moving at a speed of 10 mm1s. Upon cropping the plastic frame from each 

pulp sample image a surface area of 140 mm (L) x 93 mm (W) was captured as 448 

pixels (L) x 102 pixels (W) NIR reflectance images in 108 unique wavelengths spanning 

the 933 - 1650 run range. For purposes of feature extraction using MIA the dimensions 

of each of the 60 multivariate images were 448 pixels (L) x 102 pixels (W) x 108 pixels 

(A). 

4.4.3 MIA of Multi-Spectral NIR Pulp Images 

Extracting relevant feature information from multi-spectral NIR pulp images is a 

crucial step of the overall MIR modeling scheme. The extracted features should be 

representative of overall pulp sample characteristics as well as good predictors of 

chemical information affecting the pulp end properties. It was shown in the paper 

classification study (section 4.3.2) that MIA extracts the feature information from the 

multi-spectral NIR images into score and loading spaces. 

MIA scores can be used if one is interested in investigating the spatial variations 

of feature pixels throughout the imaged area of the pulp sample. However, the main aim 

of this study is to infer overall quality data from NIR multi-spectral pulp images. As 

mentioned before the pulp properties have been determined through destructive wet 

chemistry laboratory testing of the samples. Hence spatial variations ofNIR reflectance 

spectra are not as important here as compared to an overall indicator of pulp features 

throughout the imaged area of the pulp sample. 

MIA loadings are indicators of pixel NIR spectral variations throughout the 

scanned area of the pulp sample. Thus, the loading vectors provide overall chemical 

feature information (related to absorbance signatures of various functional groups) in the 
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imaged pulp sample. This is of course based on the assumptions that: (1) a weighted 

average NIR reflectance spectrum over the scanned area of the sample is an adequate 

feature vector representing overall chemical information, and (2) the chemical 

information captured by the feature vector is indicative of the overall pulp quality. 

Similar to the paper classification problem (section 4.3.2) this study also uses the first 

MIA loading vector PI of each multi-spectral pulp image as its feature vector. 

Upon performing MPCA on the multi-spectral pulp images the PI loading vectors 

can be plotted against their respective variables (wavelengths). Figure 4.9 illustrates the 

PI feature vector coefficients of the 60 multi-spectral NIR pulp images used in this study. 
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Figure 4.9 Feature (PI loading) vectors of multi-spectral NIR pulp images from at-line 
experiment 

This new feature vector set represents a feature space Xfeature, which can be further 

interrogated for chemical information indicative of overall pulp quality. 

Comparing trends of the PI loading feature vectors in the paper classification 

study (figure 4.6) and the pulp modeling study (figure 4.9) it can be said that the mean 

NIR reflectance information from the pulp and paper samples is similar. This is expected 
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since pulp and paper both contain treated wood fibers. Since the general trends of the PI 

loading feature vectors for both the pulp and paper studies are similar it can be inferred 

that the raw NIR pixel spectra in the pulp images are also similar to those in the paper 

samples (figure 4.2). Thus observations made in section 4.3 regarding the absorbance 

signatures of various functional groups and moisture for the paper sample pixel spectra 

are also valid for pixel spectra of the pulp samples. 

4.4.4 PLS Regression Modeling of Pulp Properties Using 

Feature Space of Process NIR Pulp Images 

As opposed to classification of the extracted feature vectors from multi-spectral 

NIR pulp images the main objective of this study is to use the feature space to infer pulp 

properties. This is achieved via building multivariate statistical regression models 

between the feature space and corresponding analytical laboratory measurements of pulp 

properties. The multivariate regression model used to develop the empirical relation in 

this study is Partial Least Squares (PLS). This regression model was chosen mainly 

because of its ability to perform well with large amounts of highly correlated data that is 

usually present in NIR spectra. PLS modeling has successfully been used for 

multivariate calibration of pulp quality using NIR spectra as X (predictor), and using the 

chemical constituents (e.g. cellulose, hemi-cellulose, lignin) as Y (response) variables 

[Wallbacks et. al., 1991; Antti et. aI., 1996; Wold et. al., 1998]. Once trained, the PLS 

models can predict pulp chemical constituents from NIR spectra of new samples. 

Besides the above references there are some other excellent sources that provide details 

ofPLS regression modeling with NIR spectra [Martens et. aI., 1989; Beebe et. al., 1998; 

Eriksson et. al.. 1999]. The interested reader is encouraged to consult these references for 

further details about PLS regression modeling as used in multivariate calibration. As far 

as this thesis is concerned it is assumed that the reader has some basic background 

knowledge of PLS. Figure 4.10 illustrates the proposed MIR scheme for this study, 

which is used to relate multi-spectral NIR images with pulp property data. 
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In figure 4.10 the feature space Xfeature is individually regressed with four 

(laboratory measured) pulp property variables using separate PLS models (Y = S 1 0, S 18, 

DCM Resin, Intrinsic Viscosity). Feature vectors from Xfeature were divided into two 
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Figure 4.10 Schematic of proposed MIR strategy for predicting laboratory tested pulp 
properties (Y) from multi-spectral NIR pulp images (!) 

equal parts (30 samples each) for: (1) Training the PLS models to fit the Y data 

(observations 1,3, ... ,49 ofXfeature); and (2) Using the developed models on a validation 

dataset (observations 2, 4, ... , 50 of Xfeature) for predicting the pulp properties and 

calculating prediction errors. Alternate samples were divided into training and validation 

sets mainly due to the analytical laboratory measurements conducted on the pulp data. 

Since the analytical laboratory procedure for measuring Intrinsic Viscosity required 20 

minutes this was the only pulp property that was measured for all 60 samples from the at­

line study. The other three pulp properties (S 1 0, S 18, DCM Resin) were measured for 

only half of the dataset (i.e. every alternate sample was measured) since their analysis 

times were considerably longer which required more tedious wet chemistry procedures. 

Due to manpower shortages the pulp mill did not perform laboratory testing of the 

remaining pulp samples. As a result, the dataset was divided in such a way that the PLS 

model training set consisted of pulp samples that had been measured for all four 

properties. Due to the non-availability of three property measurements in the validation 
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set PLS model prediction errors are not available for S 1 0, S 18, and DCM Resin. 

Nevertheless, the MIR modeling results have been presented with a comparison between 

Root Mean Squared Errors of Fit (RMSEE) and the reported experimental errors for S10, 

S 18, and DCM Resin pulp properties. 

Prior to application ofPLS regression models the NIR spectral data in Xfeaturc was 

scaled (mean-centered) with respect to the 108 wavelengths (columns). Each of the four 

pulp property variables in Y was auto-scaled to unit variance. Furthermore, it was 

noticed that the variance of the laboratory measured DCM Resin pulp property was 

proportional to the magnitude of the DCM Resin values. As a result DCM Resin values 

were transformed by taking the natural logarithm [In(DCM Resin)]. Beebe et. al. [1998] 

and Eriksson et. al. [1999] provide several insights to different types of variable scaling 

and transformations that can be performed in order to remove non-linearity and improve 

PLS model fit and predictions. Upon transforming the DCM Resin pulp property into 

In(DCM Resin) the corresponding relative experimental errors (coefficient of variation = 

±6.3%) were also stabilized to absolute errors (20' experimental error = ±0.13 

measurement units). 

The NIR image feature space Xfeature and pulp property data Y were exported to 

SIMCA-P 9.0 [Umetrics, 2001] for PLS analysis. Four separate PLSI models were set­

up to predict each pulp property separately (i.e. Y was a column vector representing one 

property at a time). PLS 1 models were built on the training set and the regression 

coefficients were used to predict the corresponding pulp properties for the validation set. 

Table 4.3 compares the results obtained via the four PLSI models using the raw Xfeature 

data with those obtained via spectrally filtering the Xfeature variables using Orthogonal 

Signal Correction (OSC). It can be seen that all four PLSI models on un-filtered data 

performed very poorly compared to those on spectrally filtered data in terms of model fit 

(RMSEE) and predictions (RMSEP). Furthermore, the Q2 cumulative values of the four 

models are quite low, which indicates that the PLS 1 models cannot explain much 

variation in the pulp properties Y. Finally, it can be seen that (except for In(DCM Resin)) 

all four PLS 1 models required a high number of latent variables to capture the variability 
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in the data, which leads to over-fitting (indicated by R2 cumulative = I). Generally, if PLS 

regression models require such high number of latent variables to explain the variation in 

Y this indicates that there is a lot of variation in X that is umelated with Y, which is 

overwhelming the model. It was also noticed that the 95% CI of most PLS 1 regression 

coefficients for all four models included 0, which is another indication of the poor 

performance of the PLS 1 models. Section 4.4.4.2 provides defmitions of the above­

mentioned model diagnostics. 

A possible reason for the poor performance of the four PLS 1 models is unwanted 

variation in the at-line experiment, which is not related to the variation of the pulp 

properties. As discussed in section 4.4.2 NIR spectroscopy is highly sensitive to moisture 

in the atmosphere and in the pulp sample. Thus, any moisture variations over the 

duration of the at-line experiment would reflect on the feature vectors of the pulp 

samples. Imaging is also sensitive to spatial characteristics of the pulp sample (e.g. 

surface smoothness), which induces variation in feature vectors of those pulp samples 

with different surface characteristics. Finally, any lighting variations over the duration of 

the at-line experiment would also reflect on the pulp image feature vectors. These 

sources of variation are not desirable as they are totally umelated with the pulp property 

variations from sample to sample. As a result, one needs to remove such unwanted 

variation from the feature vectors in order to conserve only that variation which is most 

correlated with that of the pulp properties. 

In order to remove unwanted variations from the pulp image feature vectors 

various signal correction (spectral filtering) techniques could be used. Some common 

approaches to filter spectral data that have been proposed in the literature include 

Multiplicative Signal Correction (MSC) [Geladi et. al., 1985], Standard Normal Variate 

(SNV) Correction [Barnes et. aI., 1989], Savitsky-Golay smoothing [Savitsky et. aI., 

1964], Orthogonal Signal Correction (OSe) [Wold et. aI., 1998], and Orthogonal 

Projections to Latent Structures (O-PLS) [Trygg et. aI., 2001]. The basic idea in all of 

the above signal correction techniques is to filter the spectral data in order to enhance the 

predictive power of the regression model. The filtering technique used in this study for 
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signal correction of the pulp image feature vectors to improve the PLS model predictions 

of pulp properties is the OSC algorithm proposed by Wold et. al. [1998]. This algorithm 

is pre-programmed in SIMCA-P 9.0 [Umetrics, 2001]. 

4.4.4.1 Orthogonal Signal Correction to Filter NIR Pulp Image 

Feature Space 

Wold et. ai. [1998] proposed a spectral filtering technique called Orthogonal 

Signal Correction (OSC) to remove from the X data systematic variation that is umelated 

to Y. It is well known that PLS regression models are constructed to maximize the 

covariance between X and Y [Hoskuldsson, 1988; Burnham et. aI., 1996]. OSC uses Y to 

construct a filter of X such that its components minimize the covariance between X and 

Y. In doing so OSC components are calculated such that they are orthogonal to Y. The 

OSC components contain unwanted systematic variations in X, which are not related with 

the variations in Y. Upon subtracting the OSC components from X a filtered predictor 

matrix is obtained, which contains the variations of interest that are related to the 

variations in Y. Further details about spectral signal correction through OSC have been 

provided in many references, some of which are [Wold et. aI., 1998; Antti, 1999; 

Eriksson et. al., 1999; Svensson et. al., 2002]. 

In the pulp modeling study OSC was used to remove the previously mentioned 

sources of unwanted variation from Xreature in order to enhance the hidden chemical 

information in the feature vectors, which is related to pulp property measurements. A 

maximum of two OSC components were removed from Xreature due to the dangers of 

removing too much systematic variation upon removing more OSC components. It can 

be proven [Svensson et. aI., 2002] that it is possible to continually improve correlation 

between X and Y if one keeps on removing OSC components from X. However this is 

due to the remaining noise in X being most correlated with Y upon removing all 

structural variation. Wold et. al. [1998] suggest removing a maximum of two OSC 

components from X containing NIR reflectance spectra. The amount of information 
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removed by individual OSC components can be determined by observing the remaining 

% sum of squares (%SS) in X. Table 4.2 illustrates the variation removed from Xreature 

by two OSC components with respect to the four pulp property variables (Y). 

Table 4.2 OSC filtering to remove unwanted variations from Xreature 

#OSCPC % Sum of Squares (SS) Remaining in Xreature after OSC filtering 
Y= S10 Y=SI8 Y = In(DCM Resin) Y = Intrinsic Viscosity 

1 27.07 22.67 24.29 28.11 
2 19.33 14.13 17.00 17.71 

Total %SS Removed 80.67 85.87 83.00 82.29 
by OSC (2 PCs) 

It can be seen from table 4.2 that two OSC components remove an average of 

approximately 82% of the original variation in Xreature. The removed variation is 

mathematically orthogonal to the variation of the pulp properties. The remaining 18% 

average variation in Xreature is most related with the pulp properties. A better appreciation 

of the amount of information removed by OSC can be obtained upon observing the raw 

and filtered feature vectors of the pulp NIR images. Figure 4.11(a) illustrates feature 

vectors of two pulp samples from the at-line study. Figure 4.11(b) illustrates the signal 

corrected feature vectors after filtering with 2 OSC components using Y = Intrinsic 

Viscosity. The same feature vectors have been corrected using 2 OSC components with 

Y = S10 in figure 4.11(c). 
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Upon comparing the magnitudes of the coefficients in the two feature vectors 

before and after filtering it can be concluded that OSC removes the majority of the 

variation in Xreature. Furthermore, it can also be observed that OSC removes the trends in 
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the feature vector coefficients with respect to the NIR wavelength spectrum. Subtle 

differences between the feature vectors are enhanced in certain wavelengths indicating 

higher information content in specific regions of the NIR spectrum. Such information is 

most related to pulp property variations in the dataset. The OSC filtered feature space 

with respect to four different pulp properties was then individually PLS regressed with 

respective laboratory measured pulp properties to develop the empirical models. 

4.4.4.2 PLS Model Results 

A separate PLS 1 model was developed after each OSC component between 

individual pulp properties and the signal corrected feature space. Model diagnostics like 

R2 cumulative, Q2 cumulative, RMSEE, and RMSEP were used to determine the adequacy of the 

models with respect to prediction of the four pulp properties. R2a is defined as the % of 

variance of the training data in Xfeature explained by the fitted PLS model with a latent 

variables. Model predictive ability can be determined by Q2 a, which is defined as the % 

of variance of prediction errors obtained by cross-validating [Wold, 1978] the fitted PLS 

model with a latent variables; Q2 a = 1 - PRESSaISSr(a _ 1). PRESSa is the total prediction 

error sum of squares obtained by cross-validating the model with a latent variables, 

whereas SSr(a _ 1) is the residual sum of squares of the model with a-I latent variables. 

As R2 cumulative and Q2 cumulative reach values close to one, a very good fit and predictive 

ability of the model are achieved. RMSEE is defined as the root mean squared error of 

estimation (fit) of the predicted variables for the fitted data using the PLS model; RMSEE 

= ~L(y_y)2 IN. Here, yand y are the predicted and observed values of the response 

variable, respectively. N is the number of fitted data points. RMSEP is calculated in the 

same manner as RMSEE, except it is defmed as the root mean squared error of prediction 

for the data not used in the model building stage (i.e. on the validation dataset). Further 

details of the above model diagnostics are provided in the SIMCA-P 9.0 user's guide 

[Umetrics, 2001]. 
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Table 4.3 shows the PLS results for the four pulp properties (SIO, SIS, In(DCM 

Resin), and Intrinsic Viscosity) each modeled with three separate PLS models (PLS 1, 

1 OSC+PLS 1, 20SC+PLS 1). The overall "best" model, highlighted for each pulp 

property, has been determined by comparing the RMSEE (and RMSEP values where 

available) with experimental errors from laboratory measurements. The model with the 

closest values to the experimental errors was chosen. If the RMSEE (and RMSEP) are 

similar to the experimental errors it can be said that the regression models can fit (and 

predict) the pulp property at least as good as that obtained from laboratory testing. It can 

be observed from table 4.3 that signal correction of the feature space using OSC has 

improved the PLS model performance in terms of fitting (and predicting) the pulp 

properties. 

Table 4.3 PLS Model Results for 4 Pulp Property Variables 
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Model predictions Y are generally compared with observed Y values as Y vs. Y 

scatter plots to assess the quality of prediction. Figure 4.12 illustrates an Intrinsic 

Viscosity Y vs. Y plot for the validation data set. Here the 20SC+PLS 1 (with 3 PC) 
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Figure 4.12 Observed versus Predicted (Y vs. Y) plot ofIntrinsic Viscosity pulp 
property for the validation dataset 

regression model was chosen for predicting Intrinsic Viscosity. Such plots give a good 

representation of the variability (spread) of the model predictions. An ideal PLS model 

should predict Intrinsic Viscosity around the y = y line (figure 4.12). 

Comparing RMSEE and RMSEP with experimental errors also give good overall 

measures of model fit and predictability. However, such analyses do not provide good 

insight into the ability of the models to follow data trends. Since the at-line study 

consisted of data collected in a time sequence, it is also important for a good model to 

capture any time dependent trends in the pulp properties both within and between grades. 

Such insight is gathered by overlaying experimental results and model predictions on 
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time series plots. The "best" PLS model predictions for each pulp property should be the 

one that follows the expected trends in the property from grade to grade, and is ideally 

within the experimental errors of the laboratory measurements. If the PLS model can 

predict pulp properties within the error bars for most ofthe samples in the validation set, 

then one can conclude that the model statistically performs just as good as the laboratory 

measurements of the true pulp properties. 
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Figure 4.13 Time series plots oflntrinsic Viscosity pulp property laboratory measured 
data and 20SC+PLSl(3PC) regression model. (a) Model fitted to training dataset; (b) 

Model predictions of validation dataset 

Figures 4.13(a) and 4.13(b) illustrate the time series plots of the training and 

validation datasets of the Intrinsic Viscosity pulp property, respectively. One can see 
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Figure 4.14 Time series plot ofSl0 pulp property laboratory measured data and 
20SC+PLS1(IPC) regression model 

from these plots that the "best" PLS regression model (table 4.3) chosen for Intrinsic 

Viscosity (20SC+PLSI with 3 PC) closely follows the trends of the laboratory measured 

data from Grade lA to Grade IB to Grade 2 for both the training and validation sets. The 

error bar around the "target value" (dash-dot line) gives an idea of the 2 standard 

deviations of experimental errors while measuring Intrinsic Viscosity in the laboratory. 

The model fit and predictions seem generally within the limits defmed by the laboratory 

measurement error bar. Figure 4.13(b) indicates that the OSC+PLS model predictions 

not only follow the general trends oflntrinsic Viscosity between grades, but the model is 

also able to detect any process upsets within a grade (e.g. temporary decrease in Intrinsic 

Viscosity around sample 28 in Grade lA). 

Figure 4.14 illustrates a time series plot of the 810 pulp property. PL8 model 

predictions for the validation set have been overlaid with the training set laboratory 

measurements as part of a common time series plot. This is due to the unavailability of 

the validation set laboratory measurements for the S 1 0 pulp property. It can be seen in 

figure 4.14 that the "best" PLS model chosen in table 4.3 (20SC+PLSI with 1 PC) 
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performs reasonably well in following the S10 pulp property trends from Grade lA to 

Grade IB to Grade2. Furthermore, this model can also detect the sudden increase in the 

SlO value for Grade lA around samples 27 and 28. Thus the model performs well both 

within and between the grades studied. The experimental error bar (±0.6) has also been 

illustrated here to visually assess the model's ability to predict the validation set pulp 

property values (even though the laboratory measured values are unavailable). Similar 

time series plots are illustrated in Figures 4.15 and 4.16, which represent PLS regression 
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Figure 4.15 Time series plot of S 18 pulp property laboratory measured data and 
20SC+PLSl(2PC) regression model 

model results for S18 and In(DCM Resin) pulp properties, respectively. The chosen PLS 

regression model for S18 (20SC+PLSI with 2 PC) also seems to perform reasonably 

well in following the pulp property trends from Grade lA to Grade IB to Grade 2. 

It can be seen from figure 4.16 that the PLS model predictions for In(DCM Resin) 

are not as good as the other three pulp properties. This could be attributed to the noisy 

laboratory measurements ofthe DCM Resin pulp property for Grade IB and Grade 2. As 

illustrated in figure 4.16 the laboratory measurements (solid diamonds) for these grades 

exhibit a bouncing pattern between -15 and -18 for pulp samples 37 to 60. This may 
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Figure 4.16 Time series plot ofln(DCM Resin) pulp property laboratory measured 
data and 20SC+PLS 1 (2PC) regression model 

contribute to a bad training set for the PLS models, which is reflected in the poor 

predictions of In(DCM Resin) for the validation set. 

In conclusion it can be seen that the proposed MIR scheme can adequately model 

3 out of the 4 pulp properties examined in the at-line imaging experimental stage of the 

preliminary feasibility study. The results also meet the objective of illustrating the 

potential ofNIR imaging spectroscopy and chemometric methods to model finished pulp 

end properties, which are currently being measured using lengthy (and tedious) wet 

chemistry techniques in the mill's analytical laboratory. The next logical step of the 

study would be a detailed analysis including more at-line imaging runs with a larger 

dataset spanning the full range of pulp grades produced by the mill. Eventually the final 

aim would be implementing the NIR imaging spectrometer as an integral part of an on­

line monitoring scheme for pulp end properties. The tedious laboratory analyses could 

then be performed by exception (i.e. when a poor prediction is provided by the model), 

and to keep updating the MIR models after a certain time period. 
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4.5 Extracting Local Pulp Characteristics Using 

Global Regression Models 

The main objective of the MIR pulp property modeling study presented in the 

previous section was to relate multi-spectral NIR images of fmished pulp samples with 

their average (global) properties. In doing so the MIR calibration models lost all spatial 

information of the pulp samples since they used the MPCA loading vectors as the feature 

space to create the relationship. The work presented in this section tries to extract spatial 

information of a pulp sample through application of the global MIR model on sub­

sections of its multi-spectral NIR image. Doing so would enable prediction of local pulp 

properties in addition to the previously obtained global property measures. 

The reasoning for interrogating local property variations in the pulp sample is to 

be able to detect any significant spatial trends in the pulp property across its imaged 

section (e.g. consistently lower predictions of Intrinsic Viscosity on the left half of the 

image might indicate distributional problems in the process). The proposed strategy thus 

allows one to interrogate the pulp sample for its heterogeneity with respect to the 

property being modeled. Measuring pulp heterogeneity with respect to its end properties 

takes advantage of the 2-dimensional NIR spectra across the pulp sample, which is 

provided by the imaging spectrometer. 

Upon segmenting the multi-spectral NIR image into various sub-sections and 

applying the global MIR model to predict local pulp properties for each sub-section one 

can gather a spatial distribution of predicted pulp properties throughout a pulp sample. 

Such a distribution can be plotted as I-dimensional or 2-dimensional property prediction 

histograms. The I-dimensional histogram gives an idea of the mean and variance of a 

pulp property as it is distributed through a particular sample image. The mean property 

prediction gives an overall measure (similar to the global MIR model predictions of the 

previous section), whereas the variance provides a measure of pulp heterogeneity with 

respect to the property being predicted. 
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In a typical monitoring scheme one could track both means and variances of 1-

dimensional property prediction histograms for various pulp samples. If a sample with 

high variance is encountered it can then be visually interrogated through a color-coded 2-

dimensional histogram of the predicted pulp property across the sub-sections of the pulp 

image. 

The ideas of the proposed scheme are illustrated through an example of 

calculating the Intrinsic Viscosity distribution across pulp sample 16 from the at-line 

imaging experiment. As seen from figure 4.13(b) the chosen pulp sample belongs to the 

validation dataset. The laboratory measured Intrinsic Viscosity value (along with 20 

experimental errors) for the pulp sample was 25.03±0.22, whereas MIR prediction using 

the OSC+PLS regression model was 25.14. The 448 pixel (L) x 102 pixel (W) x 108 

pixel (A) multi-spectral NIR image of the entire pulp sample was segmented into 48 sub­

sections, each with dimensions 56 pixels (L) x 17 pixels (W) x 108 pixels (A). Using the 

overall OSC+PLS MIR model coefficients with every sub-section image 48 individual 

Intrinsic Viscosity predictions were obtained across the scanned surface of the pulp 

sample. Figure 4.17 illustrates a I-dimensional histogram of the 48 Intrinsic Viscosity 

predictions with a mean value of 24.90. The mean of the 48 predictions is a good 

indicator of the overall pulp Intrinsic Viscosity as it is within the 20 experimental error of 

the laboratory-measured value (25.03±0.22). 

Although the mean Intrinsic Viscosity prediction across the 48 sub-sections is 

good the variance of the distribution is quite high at 41.21, with predictions ranging 

between 12.24 and 35.57. This can also be confirmed from figure 4.17 as the 1-

dimensional histogram is in fact divided into 3 sub-distributions. Since the global MIR 

model has been applied on small image sub-sections one would expect the variance of 

predictions to be high as the individual predicted Intrinsic Viscosity of each sub-section 

would be influenced by local effects. 

A better understanding of how the Intrinsic Viscosity predictions are distributed 

across the pulp image can be obtained through a 2-dimensional histogram of the 48 sub­

sections. Figure 4.18 illustrates a color-coded 2-dimensional histogram of Intrinsic 
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Figu re 4.17 A I-dimensional histogram of 48 Intrinsic Viscosity predictions across 
sub-sections of pulp sample 16 from at-line imaging experiment 

Viscosity predictions across the 48 sub-sections of the pulp sample image. For 

comparison the segmented score image T 1 (upon performing MPCA decomposition of 

the multi-spectral NIR pulp image) has also been illustrated. It can be seen from the 

streaky patterns of the predicted pulp property in figure 4.18(b) that local effects are 

greatly influencing the overall variance of predicted Intrinsic Viscosity. 

Upon closely observing the spatial trends of Intrinsic Viscosity predictions in 

figure 4.18(b) it appears that the vertical patterns are a result of influences by lighting and 

camera anomalies. A clearer visual representation of such anomalies is highlighted in 

figure 4.3(b) for the paper characterization study. 
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(b) 

14 

Figure 4.18 Intrinsic Viscosity distribution across 48 sub-sections of multi-spectral 
NlR pulp image of sample 16 from at-line experiment. (a) Segmented T 1 score image 

ofMPCA; (b) Color-coded 2-dimensional distribution of pulp property predictions 

Since the NlR imaging spectrometer scans the pulp sample as a line-scan camera, 

if one were to segment the scanned line into sub-sections any lighting variations and 

camera anomalies across the imaged line would be enhanced in local areas. In order to 

average the effects of these anomalies the segmentation of the multi-spectral NlR image 

should preserve the full width of the scanned line. As a result, a new image segmentation 

scheme was used to divide the pulp image into 8 vertically aligned sub-sections that 

covered the full width of the original pulp sample image. The dimension of each sub­

section was 56 pixels (L) x 102 pixels (W) x 108 pixels (A.). This segmentation preserved 

a constant effect of the lighting and camera anomalies over the 8 sub-sections. The new 

segmentation technique would also be more appropriate if one wanted to use the overall 
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MIR (OSC+PLS) model as part of an on-line Intrinsic Viscosity monitoring scheme. The 

overall model could be applied on sub-sections of the pulp web defmed by a set number 

of scanned lines imaged by the spectrometer as the pulp passes under it. 

Figure 4.19 Intrinsic Viscosity distribution across 8 sub-sections of multi-spectral 
NIR pulp image of sample 16 from at-line experiment. (a) Segmented T I score image 

ofMPCA; (b) Color-coded distribution of pulp property predictions 

Figure 4.19 illustrates the distribution of Intrinsic Viscosity predictions across 8 

sub-sections of the pulp sample image upon using them with the overall OSC+PLS 

regression model coefficients. The corresponding segmented T I score image has also 

been illustrated. The mean Intrinsic Viscosity prediction over the 8 sub-sections was 

25.14, which was within the 20- experimental errors of the overall laboratory measured 

values (2S.03±O.22). The true improvement of segmenting the image using the new 
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scheme was in the variance of the predicted properties across the 8 sub-sections, which 

was considerably lower at 0.849 (compared to a variance of 41.21 in the previous 

segmentation scheme). 

The physical dimensions of the pulp sample area scanned by the imaging 

spectrometer were 140 mm (L) x 93 mm (W). Compared to the approximate 4.25 m 

width of the web upon which finished pulp is produced in the mill the imaging 

spectrometer covers <1 % of its true horizontal dimension. As a result, it would be 

reasonable to assume very little variability in the spatial distribution ofpredicted Intrinsic 

Viscosity across the sub-sections of the multi-spectral NIR pulp image. This is also 

evident from the small variance of the predicted property distribution through the 8 sub­

sections of the pulp sample image. In spite of the small variations the study develops a 

framework to interrogate sub-sections of finished pulp in order to investigate their 

predicted end properties. In future these concepts can be directly up-scaled if one had a 

camera focused to capture the full width of the industrial pulp roll. Although the spatial 

resolution of such an image might be reduced, this could be a worthwhile compensation 

if the heterogeneity measure were of more importance for the application. 

It can be seen in figure 4.19(b) that predicted Intrinsic Viscosity of the bottom 

two sub-sections is higher than the predictions of the top 6 sub-sections, and in figure 

4. 1 8(b) that the predictions of the left and right vertical edges are higher than the middle 

sections. This trend is attributable to reflectance from the edges of the plastic frame, 

which was placed on top of the pulp samples while performing the at-line imaging 

experiment. Figure 4.8(a) illustrates the position of the plastic frame while imaging was 

performed. As mentioned in section 4.4.2 all pulp sample images were manually cropped 

at the edges of the frame to remove it from the image. Plastic contains several organic 

compounds thus it exhibits a unique NIR reflectance signature. This reflectance appears 

to have interfered with that of the pulp sample at the left, right and bottom edges of the 

image. However, this interference was not strong enough to interfere with the overall 

pulp property predictions, which were averaged across the width of the image. As a 

result, the Intrinsic Viscosity predictions in the top 6 sub-sections in figure 4.19(b) were 
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close to the mean value. The interference from the bottom edge was much stronger as it 

was along the direction of the line-scan, which reflected brighter upon shining the line 

light on it at an angle of 45° (figure 2.6). These interferences cause the NIR spectrum of 

the pixels near the bottom edge of image to be altered, which results in higher Intrinsic 

Viscosity predictions as the bottom edge is approached. 

Though the segmentation schemes presented above highlighted several anomalies 

with respect to the equipment and experimental set-up the pulp end property predictions 

obtained via the overall MIR modeling scheme (in section 4.4) are still valid. This is due 

to the averaging achieved by the feature vectors (PI loadings of MPCA) over all pixels 

(good and bad) in the scanned image. The overall regression models calculated in the 

previous section would give consistent results as long as the experimental conditions 

remain constant in terms of equipment and set-up. However, the segmentation scheme 

has revealed several potential areas for improvement, which should be implemented in 

future experiments (e.g. fixing lighting anomalies, and using a frame that does not have a 

reflectance signature in the NIR spectrum). 

The proposed image segmentation technique in the above study highlights several 

problems in the at-line experiment ranging from lighting effects to experimental set-up. 

Despite these problems the concept of the proposed scheme is promising as it can be used 

to detect spatial trends or variations in the pulp property across the imaged section. Such 

trends give vital heterogeneity information of the pulp sample, which cannot be obtained 

by averaged property measures in the laboratory or single point probe-based spectrometer 

readings. The technique illustrates potential advantages of using image-based 

spectrometers to simultaneously extract spatial and spectral feature information from 

multi-spectral images. 

4.6 Conclusions and Contributions 

A framework for a novel Multivariate Image Regression modeling technique has 

been developed in this work. The proposed technique can be used to relate feature 
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information from multivariate images of fmished products with corresponding quality 

(non-image) data obtained from other sources. Once trained, the MIR model can then 

potentially be used to infer quality data from product images in on-line industrial 

processes equipped with multivariate imaging sensors. The proposed technique has been 

illustrated through a feasibility study on a pulp manufacturing industrial application with 

promising results. 

The chapter also introduces Near-Infrared imaging spectroscopy to the pulp and 

paper sectors of the forest products industry. Two main applications have been presented 

to illustrate the power of this technique in extracting relevant feature information from 

pulp and paper samples. A Multivariate Image Analysis based strategy has been 

proposed to extract overall features from multi-spectral images of pulp and paper scanned 

by a NIR imaging spectrometer. 

The fIrst application involves paper classifIcation usmg NIR imaging 

spectroscopy to extract relevant chemical and ingredient information from well­

characterized paper samples. The extracted feature vectors are classifIed using standard 

chemometric methods (PCA) in order to gain further insight of the extracted information. 

This study illustrates that the extracted feature space from multi-spectral NIR images 

contains vital information, which can be further used. 

Besides classifIcation the potentials of using the feature space for predicting 

quality data has been illustrated in the second application, which is a feasibility study in 

the pulp manufacturing industry. MIR models are developed using Orthogonal Signal 

Corrected feature vectors and PLS regression techniques to predict pulp end properties 

from multi-spectral NIR images of fmished pulp samples. The pulp end property data 

has been acquired through lengthy wet chemistry analyses in the quality control 

laboratory of the pulp mill. Preliminary results of the proposed scheme show promise in 

successfully predicting and monitoring three out of the four pre-selected end properties 

through multiple pulp grades in an industrial mill. The eventual aim of the study is to 

incorporate the proposed MIR modeling technique with NIR imaging spectroscopy in an 

on-line pulp quality monitoring scheme. 
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Finally, the chapter develops concepts for studying the spatial variability of 

quality variables across the imaged surface of a product through application of the 

proposed MIR models on sub-sections of the product image. The technique is presented 

with an example study to extract variations in spatial characteristics of pulp, which are 

related to its overall end properties. The technique may be used to monitor pulp 

heterogeneity with respect to its end properties in future applications of the proposed 

MIRscheme. 



Chapter 5 

Texture Based Classification of 

Steel Surface Images 
This chapter proposes a novel MIA based textural feature extraction technique. 

Performance of the proposed technique is compared with other texture analysis methods 

on a set of steel sample images for the purpose of image classification based on surface 

roughness characteristics. 

As opposed to color and multi-spectral images used in the previous chapters of 

the thesis, methods presented here exclusively use grayscale image data for texture 

analysis. 

5.1 Introduction 

Although image texture is not very well defined in the literature, one can 

intuitively describe several image properties such as smoothness, coarseness, depth, 

regularity etc. with texture [Gonzalez et. aI., 2000]. Many researchers have described 

texture using various definitions. Russ [1999] loosely defined image texture as a 

descriptor of local brightness variation from pixel to pixel in a small neighborhood 

through an image. If the image can be represented as a two-dimensional surface upon 

which each pixel is a square column, then the pixel intensity could be described by the 

elevation of each column in a three-dimensional histogram. As the adjacent pixel 

brightness variation increases, the surface of the three-dimensional histogram becomes 
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less smooth. Texture can thus give a quantitative measure of the degree of surface 

roughness in an image. 

In traditional image processing literature there are primarily three different 

approaches used to describe the texture of a region in an image. The three approaches are 

statistical, structural, and transform-based texture analysis methods. Statistical texture 

analysis techniques primarily describe texture of regions in an image through moments of 

its grayscale histogram. According to the number of pixels defming the local region (i.e. 

feature) first, second, or higher order statistics of the grayscale histogram can be used to 

extract textural features from images [Tomita et. al., 1990]. On the other hand, structural 

texture analysis techniques decompose a pattern in an image into texture elements (e.g. 

description of interlocked bricks in an image using regularly spaced parallel lines). In 

structural analysis the properties and placement rules of the texture elements defme the 

image texture. Finally, transform-based texture analysis techniques convert the image 

into a new form using the space-frequency properties of the pixel intensity variations. 

The success of these latter techniques lies in the type of transform used to extract textural 

characteristics from the image. An example of one such transform is the 2-dimensional 

Fast Fourier Transform (2-D FFT) power spectrum, where spatial frequency information 

becomes easily accessible. Surveys on many of these texture analysis methods can be 

found in the literature [Zucker, 1976; Haralick, 1979; Matsuyama et. al., 1980]. 

Texture analysis has been an area of intensive research over the past 30 years. A 

comprehensive literature review of all proposed textural feature extraction techniques is 

beyond the scope of this thesis. However, a brief review of some popularly used texture 

analysis methods in the literature is provided below. Probably the most frequently cited 

method for texture analysis is based on extracting various textural features from a gray 

level co-occurrence matrix (GLCM) introduced by Haralick et. al. [1973]. He suggested 

14 such features describing various textural aspects of the image. The GLCM method of 

texture analysis is further described in section 5.3 with respect to feature extraction and 

classification of steel surface grayscale images. 
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While the GLCM is a result of second order statistics on the grayscale image 

histogram, the run length matrix (RLM) encompasses higher order statistics of the gray 

level histogram. The RLM texture analysis approach characterizes coarse textures as 

having many pixels in a constant gray level run and fme textures as having few pixels in 

such a run [Galloway, 1975]. The texture spectrum (TS) matrix is a result of 

decomposing the texture image into a distribution of texture units, which are sets of 

coded comparison elements that are based on the pixel intensity variations within a 

neighborhood [He et. al., 1991]. Features extracted from TS have been combined with 

the GLCM to propose a cross-directional texture matrix (CDTM) for purposes of image 

classification [AI-Janobi, 2001]. Besides traditional statistical texture analysis, 

multivariate statistical methods have also been proposed for textural feature extraction. 

Singular Value Decomposition (SVD) spectrum is a summary vector of image texture 

represented by its singular values. The SVD spectrum has been used as a textural feature 

vector for image classification [Asbjari, 1982; Kvaal et. al., 1996]. 

Several model-based statistical texture analysis techniques have been proposed in 

the literature. These techniques generate an empirical model of each pixel in the image 

based on a weighted average of the pixel intensities in its neighborhood. The estimated 

parameters of the image models are used as textural feature descriptors. Coarse textures 

exhibit similar parameters, whereas the parameters for fine textures show a wide 

variation. Examples of such model-based texture descriptors are autoregressive (AR) 

models [Sarkar et. aI., 1997], Markov random fields (MRF) [Cross et. aI., 1983], and 

fractal models [Keller et. aI., 1989]. 

Structural texture analysis techniques use the basic theory of image morphology 

[Serra, 1982] to match the spatial regularity of shapes called structural elements to define 

texture. Pure structural models of texture presume that image texture is a quasi-periodic 

arrangement of structural elements, whose description and placement rules can be used to 

describe texture [Roesnfeld et. al., 1970]. Several structural texture analysis approaches 

have been proposed in the literature, ranging from various shapes of structuring elements 
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[Carlucci, 1972] to concelvrng real textures as distorted versions of ideal textures 

[Zucker, 1976]. 

Haralick [1982] described the autocorrelation function and the power spectrum of 

an image as measures of its spatial frequency characteristics. Yaglom [1962] proved that 

the relation between the power spectrum and autocorrelation function is through the 

Fourier transform. The 2-D FFT magnitude image is a visual representation of the power 

spectrum, which can be used to determine the spatial frequency of pixel intensities in an 

image. Fine textures are rich in high spatial frequencies, while coarse textures are rich in 

low spatial frequencies. Indhal et. al. [1998] illustrated the use of spectra from 2-D FFT 

magnitude images and the autocorrelation function for textural feature extraction from 

microscopic images. Image classification using MPCA on 2-D FFT magnitude images as 

feature extractors from various images has been proposed by Geladi [1992]. This 

approach is also used in section 5.4.1 to classify steel surface images based on texture 

differences. 

Besides 2-D FFT the Gabor and Wavelet transforms are two of the more recently 

used transform-based texture analysis techniques. Both of these techniques have been 

preferred in image texture analysis due to their time-frequency decomposition ability. 

Features derived from a set of Gabor filters have been widely used in texture analysis for 

image segmentation [Bovik et. at, 1990]. Wavelet transform method of feature 

extraction has been used to characterize texture and to treat the problems of texture 

segmentation and classification [Chang et. at, 1993; Loum et. at, 1995; Unser, 1995]. A 

novel application of an Angle Measure Technique (AMT), originally developed by 

Andrle [1994], has been reported to extract textural feature vectors from unfolded image 

pixel values of several texture images for purpose of characterization and prediction of 

externally measured reference texture using multivariate statistical techniques like PCA 

and PLS [Kvaal et. al., 1998; Huang et. al., 2000]. 

Work presented in this chapter contributes to the field of textural feature 

extraction for image classification via introducing a novel MIA based image texture 

analysis technique. As seen in the previous chapters of the thesis MIA decomposes 
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feature pixels into PC score scatter plots based on correlations in the variables of a 

multivariate image. The spatial location of pixels is completely ignored when performing 

the decomposition. Since image texture is a spatial property spatial correlations need to 

be conserved in order to capture adequate textural features. The proposed technique 

incorporates spatial information in the MIA framework, thus enabling MIA tools to be 

used for capturing textural features from images. These features can then be used for 

texture based image classification. 

The proposed MIA technique is applied for textural feature extraction and 

classification of a dataset comprising of 35 steel surface images with varying degrees of 

surface roughness. Results are then compared with the classification achieved by other 

textural feature extraction methods (i.e. features from GLCM) and multivariate statistics 

based image classification methods on the same dataset. 

The chapter progresses as follows. First, a brief description of the steel image 

dataset is provided, and the image classification objectives based on surface texture 

characteristics are presented. Second, classification of the steel dataset is performed in 

the feature space extracted via pre-selected textural features from GLCMs of the steel 

surface images. Third, PCA based unsupervised classification of the steel surface images 

is presented, which uses textural features extracted by 2-D FFT magnitude images of the 

dataset. Fourth, application of a supervised image classification scheme is illustrated 

through PLS-DA of the raw steel surface images. Fifth, methodology of the novel MIA 

based texture analysis scheme is presented, and it is then used to classify the steel surface 

images. Finally, some conclusions are drawn upon comparing classification results 

achieved by the proposed MIA technique with those obtained by the multivariate 

statistics based and GLCM based techniques. 
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5.2 Description of Steel Surface Image Data and 

Classification Objectives 

The steel manufacturing industry maintains product quality using various process 

monitoring and feedback control techniques. Human intervention is still required to 

determine if product quality is maintained over long periods of time. Prior to shipping, 

steel quality is often monitored by performing random quality control checks on fmished 

steel rolls. This is usually accomplished by cutting sections of a particular roll and 

performing various tests on the sections to determine if the characteristics of the product 

meet consumer specifications. 

One of the indicators of overall product quality is smoothness of the steel surface. 

As the steel quality declines, it affects the surface properties of the product. This results 

in a coarser surface. The amount and distribution of surface pits on steel are good 

indicators whether or not steel surface quality has been compromised. Deteriorated steel 

quality is reflected in the number and severity of pits that form on its surface. Good 

quality steel surfaces have very few pits that are quite shallow and are randomly 

distributed. These surface pits become deeper and more pronounced as steel quality 

becomes poorer. The point when pits start to join and result in deep craters throughout 

the steel indicates a coarser surface, which results in bad product. Skilled operators 

visually determine the degree of steel surface pitting. These operators grade the steel 

based on various criteria that they have set for themselves from previous experiences. 

Unfortunately, these criteria are quite vague and operator dependent. 

To eliminate the uncertainly caused by qualitative human grading, a vision based 

automated steel surface texture analysis system is desirable. Such a system should 

ideally be able to provide a more quantitative analysis of the steel surface roughness. 

Furthermore, based on these results the system should also be able to automatically 

classify steel samples into different roughness grades. 

In order to develop such an automated system the steel manufacturing company 

carried out an off-line feasibility study using digital images of steel slabs with different 
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surface roughness properties. Several steel slabs with varying degrees of surface pits 

were cut from fmished steel rolls and digitally imaged in the laboratory. However, in 

order to highlight the surface pits, prior to imaging, each slab was pre-treated by pouring 

black ink upon the surface. After the ink had filled into the pits, the steel slabs were 

lightly cleaned with a cloth. This resulted in the steel surface pits being represented by 

black spots. The stained steel slabs were then digitally imaged as grayscale images. 

Figure 5.1(a) illustrates an example grayscale image of a steel slab that has good 

surface qualities due to the nature and distribution of surface pits. An example of a bad 

steel surface quality grayscale image is shown in Figure 5.1(c), which contains various 

'snake' like patterns representing deep pits that have joined to form craters. Figure 5.1(b) 

illustrates an example of a medium quality steel surface, which contains more 

pronounced pits as compared to the good quality sample. However, it does not contain 

the serpentine patterns exhibited by the bad quality steel. It can be noted in all 3 types of 

steel surface images that due to the manual cleaning of excessive ink with a cloth several 

ink smudge marks are also evident on the steel surfaces. Similar smudge marks are 

prevalent throughout the dataset used in this study. 

(a) (b) (c) 

Figure 5.1 Examples of three types of steel surface grayscale images. (a) Good 
surface quality; (b) Medium surface quality; and (c) Bad surface quality 

A total of 35 control steel slabs of varying surface smoothness were imaged after 

they underwent the ink pre-treatment process. These samples were also pre-analyzed by 

a trained operator for grading the steel (based on surface roughness) and each sample was 

labeled as good, medium, or bad surface quality (classes). Images of these control steel 
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samples have been used for all textural feature extraction and classification methods 

throughout this chapter. The fmal objective is to determine classification efficiency of 

the presented techniques using the pre-labeled classes as a benchmark for comparison. It 

should be noted that the pre-labeled classes do contain error as a single person 

subjectively performed the classification. As pointed out later in this chapter there is 

some inconsistency between the good and medium surface quality classes. Some of the 

pre-labeled medium surface quality sample images are visually very close to those from 

the good surface quality class. Therefore, all steel image classification methods 

described in this chapter should be judged in context with this inconsistency in the 

original pre-labeling. 

Table 5.1 Pre-labeled classes of the complete steel surface grayscale image dataset 

Good Suljace Medium Sur/ace BadSuljace 
Image Label Image Label Image Label 

Original 
Sample 

Image Original 
Sample 

Image Original 
Sample 

Image 
(Figure Mean (Figure Mean (Figure Mean 
C.l(a)) ID C. 1 (b)) ID C.l(c)) ID 

001 aj G01 0.5846 031 aj MOl 0.6105 091 aj B01 0.4681 
003 bj G02 0.5405 032 bj M02 0.5792 091 bj B02 0.4708 
004 aj G03 0.5864 036 bj M03 0.5324 092 aj B03 0.4849 
004 bj G04 0.5773 039 aj M04 0.5191 092 bj B04 0.4749 
007 aj G05 0.5170 041 aj M05 0.5382 093 aj B05 0.4882 
007 bj G06 0.4894 047 bj M06 0.6127 093 bj B06 0.4896 
008 aj G07 0.4824 049 aj M07 0.6220 094 aj B07 0.4424 
008 bj G08 0.4789 052 aj M08 0.6290 099 aj B08 0.5031 
015 aj G09 0.5721 057 aj M09 0.6165 099 bj B09 0.5130 
017 aj GlO 0.5988 061 aj MI0 0.6251 100 aj BlO 0.4832 

- - - 063 aj Mll 0.6199 100 bj Bll 0.4876 
- - - 065 bj M12 0.5468 108 aj B12 0.5192 
- - - 073 bj M13 0.5557 - - -

Overall "Good 
0.5427 

Overall "Medium 
0.5852 

Overall "Bad 
0.4854 Class" Mean Class" Mean Class" Mean 

Std. Dev. Of 
0.0472 

Std. Dev. Of 
0.0410 

Std. Dev. Of 
0.0207 Sample Means Sample Means Sample Means 

Appendix C contains the complete steel surface image dataset from the three pre­

labeled surface quality classes. Each image is 8-bit grayscale (256 shades) with pixel 

dimensions of 479 x 508 (rows x columns). All images have been pre-processed to 
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enhance their contrast via intensity stretching [Thompson et. aI., 1995] their grayscale 

histograms to occupy the full intensity range (i.e. 256 shades of gray between black and 

white). Table 5.1 shows the division of 35 sample images into their respective pre­

labeled classes. Individual image labels and some basic 1 st order image statistics (sample 

means and standard deviations of class means) have also been provided, which would be 

used for interpreting the classification results achieved by various techniques presented in 

this chapter. 

5.3 Image Texture Analysis and Classification 

Using Co-occurrence Matrix Features 

Texture features calculated using first order statistics of the grayscale histogram 

of an image are susceptible to the limitation that they provide no information regarding 

the relative position of the pixels. Haralick et. al. [1973] proposed second order statistics 

based on the gray level co-occurrence matrix (GLCM), which is a 2-dimensional 

histogram, to overcome these limitations. 

0 0 0 I 
Gray Levels 

--------T------r------ -------, 
I 0 1 2 .. 

I l~ 0 I 0 2 0 1 

2 2 ~ I 0 1 I 2 1 1 

1 I 0 2 2, 0 2 0 

(a) (b) (c) 

Figure 5.2 (a) Displacement vector with 8 = 1, and 8 = 315°; (b) A 4 x 4 pixel 
intensity image array with 3 gray levels; (c) GLCM of image in (b) using displacement 

vector in (a). 

The GLCM of an image is an estimate ofthe second order joint probability P&(i,j), 

of the intensity values of two pixels (i and j) a distance 8 apart along a given direction 8 
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(i.e. the probability that i and j have the same intensity). This joint probability takes the 

form of a square array Po, with row and column dimensions equal to the number of 

discrete gray levels (intensities) in the image being examined. Figure 5.2 illustrates an 

example of a 4 x 4 pixel intensity image with 3 discrete gray levels (0,1,2), and the 

corresponding GLCM with () = 1, and 8 = 3150 [i.e. a displacement vector (Xlag, Ylag) = 

(1,1)]. The GLCM illustrated in figure 5.2(c) contains the number of times a given pixel 

pair, separated by the displacement vector, has a unique gray level combination. For 

example, the element in the 2nd row and 1 st column (i.e. the number 2) in the GLCM 

corresponds to the number of times the displacement vector encounters a pixel with gray 

levell, when starting at a pixel with gray level O. If an intensity image were entirely flat 

(i.e. contained no texture) the resulting GLCM would be completely diagonal. As the 

image texture increases (i.e. as the texture becomes coarser) the off-diagonal values in the 

GLCM become significant. 

Pixel intensity resolution of the steel surface grayscale images used in this chapter 

is 8-bit, which would result in GLCMs with dimensions of256 rows x 256 columns for a 

given displacement vector. Finding GLCMs for all () and 8 would require a prohibitive 

amount of computation. Haralick et. al. [1973] suggested using GLCMs calculated from 

four displacement vectors with () = 1, or 2 pixels, and 8 = 0°,45°,90°, and 315°. Another 

reduction in computation speeds can be achieved by quantizing the image into a fewer 

gray levels. 

In the steel surface texture analysis study GLCMs were calculated for all 35 

grayscale images without re-quantizing the gray level resolution. Due to the 

computational overload 1 or 2 GLCMs are commonly calculated on a texture image with 

a set combination of () and 8. Changing 8 controls the direction of the examined textural 

features in an image. Since texture in the steel images is independent of rotation, there 

would be little effect of changing 8 on their analysis. Changing () can control the scale 

of the examined textural features in an image. In the steel classification study only one 

GLCM was calculated for each grayscale image using a single displacement vector with 

() = 1, and 8 = 315° [(Xlag, YJag) = (1,1)]. The scale of the displacement vector was 
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intentionally chosen to be 1 for sake of consistency with the MIA based texture analysis 

method (described in section 5.4.3), which concentrates on examining steel surface 

texture displaced by one pixel. Each of the 35 resulting GLCMs for the steel surface 

dataset could be visually represented as a 256 x 256 element 2-dimenional color-coded 

histogram with the same coloring scheme previously used to describe the PC score scatter 

plots of MIA (section 2.3.1). Such a representation could be used for a qualitative 

analysis through visually determining the probability distribution of gray levels separated 

by the displacement vector. Figure 5.3 illustrates the resulting GLCMs of the previously 

illustrated (figure 5.1) example steel surface grayscale images from each of the three 

surface quality classes. 

(a) (b) (c) 
Figure 5.3 Visually representing GLCMs of example steel surface images using color­
coded 2-dimensional histograms. (a) Good surface quality (figure 5.1(a)); (b) Medium 

surface quality (figure 5 .1 (b)); ( c) Bad surface quality (figure 5.1 ( c)). 

It can be seen from the three GLCMs in figure 5.3 that the majority of the co­

occurrence between two pixels separated by the given displacement vector occurs for 

similar grayscales (represented by brighter pixels along the main diagonal ofPs). As the 

difference between gray levels of the two pixels gets larger the probability distribution 

declines. According to Haralick [1982] coarse textures are generally represented by a 

slowly decaying probability distribution with distance, whereas a more rapid decline in 

the distribution represents fine textures. This trend can also be confirmed upon 

comparing the distribution patterns of the GLCM of good quality steel surface (having 
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fme texture) in figure 5.3(a) with that of bad quality steel surface (having coarse texture) 

in figure 5.3(c). 

Haralick et. al. [1973] proposed a quantitative analysis of the GLCM through 14 

textural descriptors calculated from P /). Among the 14 statistics the following two have 

been used to extract textural features from all 35 GLCMs of the steel surface grayscale 

image dataset. 

n-! n n 

Contrast = L k2 L L Po (i, j) (5.l) 
k=O i=! j=! 

li-ji=k 

n n 

L L i· jPo (i, j) - PxPy 
Correlation = _i=_!..::.j_=! _____ _ 

(5.2) 

where; 

n n 

Px = l>LPo(i,j) (5.3) 
i=! j=! 

n n 

Py = LjLPo(i,j) (5.4) 
j=! i=1 

n n 

ax = L(i-Px)2 LPo (i,j) (5.5) 
i=1 j=! 

n n 

a y = L(j_py )2 LPo(i,j) (5.6) 
j=! i=1 

Contrast is a measure of the amount of local variations present in the image, 

whereas correlation is a measure of linearity in the image. A large correlation value in 

the direction e implies considerable linear structure in that direction [Tomita et. aI., 

1990]. The two statistics were used as a feature space to classify the steel samples based 

on image texture captured by the GLCM. Figure 5.4 illustrates the achieved 

classification upon scatter plotting the contrast and correlation statistics for the 35 steel 

surface images. The samples have been pre-labeled according to the surface quality 

classes defmed in table 5.1. It can be seen that most of the samples have correctly 
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clustered into their three pre-defmed classes. However, it can also be seen that there is 

some misclassification between the good and bad classes. The medium and good classes 

are also misclassified to a great extent. 
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Figure 5.4 Steel surface image classification in textural feature space of GLCM 

Upon observing the manually highlighted groupings in figure 5.4 (done for visual 

purposes only) it can be said that due to misclassifications between good and bad classes 

the classification achieved by the GLCM approach is poor. This limited conclusion is of 

course based on the contrast and correlation texture descriptors with the given 

displacement vector and angle. Misclassification between the good and medium classes 

is expected due to the progressive nature of surface pitting as steel quality is 

compromised. Upon taking a closer look at some of the medium surface quality images 

(e.g. MOl = 03l_aj, M02 = 032_bj, M03 = 036_bj, M05 = 04l_aj) in figure C.l(b) 

(Appendix C) and comparing them with images from good surface quality (figure C.l(a» 

it can be seen that they are almost similar. Furthermore, the manually highlighted group 

of medium surface quality samples M06 to M12 (047_bj to 065_bj in figure C.l(b» is in 

fact a result of higher contrast, which has been adequately captured by the contrast 

texture descriptor in figure 5.4. 
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Finally, it should be noted that texture-based classification using descriptors ofthe 

GLCM is one of many image-processing techniques that could be used to achieve the 

classification goals of the steel surface dataset described previously. The GLCM 

approach was used here mainly due to its popularity in the image processing and pattern 

recognition communities. The classification results obtained via this technique are used 

as a benchmark to compare subsequent texture-based classification methods presented in 

the remainder of this chapter. 

5.4 Multivariate Statistical Approaches to Image 

Texture Analysis and Classification 

As seen in the previous section texture-based feature extraction from images 

using traditional image analysis techniques focuses on spatial information extracted from 

the neighborhood of each pixel. Such information could be used to either segment 

different textures within an image or globally characterize the image based on overall 

texture. Methods presented below focus on the latter problem of image characterization 

based on overall textural properties. 

This section presents the main thrust of the chapter through various applications 

of multivariate statistical methods (PCA and PLS) for purpose of texture-based image 

classification. The actual classification is performed in appropriate feature spaces 

derived from textural features of the images. These features are either extracted using 2-

D FFT power spectra, or through provision of a priori knowledge of the class belongings 

of each image (based on texture properties) to train multivariate statistical models for 

discriminating the images. A novel multivariate approach for image texture analysis is 

also presented in this section, which is based on theoretical concepts of MIA methods. 

Classification efficiencies of the presented techniques are determined by 

characterization ofthe steel surface images into their pre-labeled surface quality classes. 
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5.4.1 Unsupervised Classification Using MPCA on 2-D FFT 

Magnitude Images 

Transform-based texture analysis methods concentrate on extracting frequency 

related texture information from images. As opposed to extracting pixel intensity 

variations in the spatial domain the 2-dimensional Fast Fourier Transform (2-D FFT) 

explains spectral content of such variations through transformation of the spatial image 

into a frequency spectrum of many sine waves of different frequencies, amplitudes and 

directions. Each frequency component has a magnitude and phase value. The 2-D FFT 

may be thought of as a 2-dimensional representation of the image power spectrum. 

Theoretical and mathematical details regarding the 2-D FFT can be gathered from various 

image-processing texts [pratt, 1978; Gonzalez et. al., 1992]. 

Upon transforming an image using 2D-FFT the magnitude part of the resuhing 

frequency array can itself be viewed as an intensity image of the same dimension, which 

shows frequency components of pixel intensity variations in the original image. The 

magnitude of each frequency component is indicated by the pixel brightness at the 

frequency location in the magnitude image. Higher magnitudes, which are generally near 

the low frequency regions, are represented by brighter pixels. All frequencies begin at 

the center of the image (i.e. at 0 or "DC") and progress outward (both horizontally and 

vertically) until the Nyquist frequency (1/2 the sampling rate of the image). As a result, 

magnitude images of the 2-D FFT are generally logarithm transformed thus preventing 

the higher magnitude frequencies from overwhelming other information in the image. 

Furthermore, the negative frequencies (i.e. the left half) in the magnitude image are 

symmetric mirrors of the positive (right half) frequencies, thus they convey redundant 

information. Hence, only the right halves of the resulting logarithm transformed 

magnitude images may be used to convey all of the spectral information. 

Since the 2-D FFT allows one to visually determine the spatial frequency content 

of an image, any repetitive patterns would be captured as high intensity pixels at 

appropriate frequency locations in the corresponding magnitude image. As a result, 2-D 

FFT has been used to filter images in order to remove frequency-limited noise (or other 
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repetitive patterns) [Baxes, 1994; Bharati, 1997]. Various researchers have also proposed 

the use of FFT spectra as texture feature descriptors [Tomita et. ai., 1990], which could 

be used for characterizing images based on overall texture [Geladi, 1992], or multivariate 

prediction of externally measured textural data [Indhal et. aI., 1998]. 

An approach suggested by Geladi [1992] is used in this section to classify the 

steel surface images based on their surface texture characteristics. In the proposed 

strategy, called "ASUNIM" (analysis of a set of univariate images), Geladi suggested 

unsupervised classification of a set of grayscale images of various types of wood chips 

through a multivariate feature space. The loading vectors of a constructed multivariate 

image defmed the feature space. As mentioned previously (section 2.3.1) a multivariate 

image consists of several congruent variable images. In order to transform the 

incongruent grayscale images into a common base Geladi suggested converting them into 

their respective 2-D FFT magnitude images and stacking them as variables of a 

multivariate image. In doing so the resulting multivariate image conserves textural 

frequency information in its variables. Upon decomposing the multivariate image (using 

MPCA) into a linear combination of scores and loading vectors, the resulting latent 

variable space may be used for texture-based classification of the grayscale images. 

Classification can be performed in the scatter plots of the MPCA loading vectors. 

It has been shown in section 4.3 that the MPCA loading space can provide 

valuable feature information regarding multivariate images. In MIA the loading vector 

coefficients are weighted averages of pixel intensities across an image [Geladi et. al., 

1996]. Thus it can be assumed that the MPCA loading plot can be used as an appropriate 

descriptor of image texture extracted by the 2-D FFT spectra. Figure 5.5 illustrates a 

schematic of the approach used to convert the 35 steel surface grayscale image dataset 

into variable images of a multivariate image. 
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Figure 5.5 Schematic of various preprocessing steps used to construct a 35 variable 
multivariate image from the dataset of steel surface grayscale images 

As seen in figure 5.5 the 35 2-D FFT magnitude images of the steel surface 

dataset were cropped and stacked into a (35 variable) multivariate image of size 479 x 

254 x 35 pixels. However, prior to stacking each 2-D FFT magnitude image was passed 

through a "Gaussian" fiher (9 x 9 pixel convolution kerne~ with (j = 0.5) [Baxes, 1994]. 

This filter serves as a low-pass smoothing function, which is mainly used to remove 

traces of high-frequency noise from the texture images. Such smoothing improves the 
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signal-to-noise ratio, which results in a better feature space for classification. Further 

details on the Gaussian filter and other similar windowing functions may be found in 

Jenkins et. al. [1969]. Figure 5.6 illustrates examples of 2-D FFT magnitude images of 

the three steel surface images previously shown in figure 5.1. The 2-D FFT magnitude 

images have been appropriately filtered and cropped (i.e. only the right halves are 

shown). 

(a) (b) (c) 

Figure 5.6 Corresponding 2-D FFT magnitude images (after necessary pre­
processing) of three example steel surface images illustrated in figure 5.1. (a) Good 

surface quality; (b) Medium surface quality, and (c) Bad surface quality 

As mentioned before, fme textures generally exhibit higher frequencies whereas 

coarse textures exhibit lower frequencies. Similar trends can be observed in figure 5.6(c) 

where the 2-D FFT image of bad steel surface (coarse texture) exhibits brighter pixel 

intensities towards the lower frequency regions (towards left-centre of image) as 

compared to the good and medium surface images (figures 5.6(a) and (b), respectively). 

Upon decomposing the constructed multivariate image X it was noticed that 

99.78% of the total variation in X was cumulatively explained in the fIrst 3 PCs (PCl = 
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99.76%; PC2 = 0.014%; PC3 = 0.011 %). As expected, the fIrst PC explained most of the 

variation in X (since no data pre-scaling was performed prior to MPCA decomposition). 

From results of the MIA example illustrated in chapter 2 (section 2.3.1) it can be inferred 

that PCl would explain average contrast information in the variable images of X, 

whereas contrast differences between the variables would be emphasized by subsequent 

PCs. Keeping this in mind, the loading space of PC2 and PC3 was used to discriminate 

the 35 variable images of X. Upon scatter plotting the P2 loading coefficients of the 35 

variable images against those of the P3 loadings each image is represented as a single 

point. The resulting point clusters in the P2 - P3 scatter plot may then be used to test the 

achieved classification of the steel surface images according their pre-labeled surface 

quality. Figure 5.7 illustrates the unsupervised classification of the steel surface images 

in the P2 - P3 scatter plot of MPCA on X. Clustering of the variable images is based on 

texture information extracted by 2-D FFT in the spectral domain. Images exhibiting 

similar spectral patterns of steel surface roughness are grouped together to form a class. 

The sample points have been pre-labeled according to the surface quality classification 

shown in table 5.1. 

According to the manually highlighted classes in figure 5.7 (done for visual 

purposes) it can be seen that the achieved classification using the above strategy is quite 

good. PC2 tries to mainly discriminate samples of bad steel surface quality (higher P2 

values) from others. On the other hand, PC3 tries to discriminate between steel samples 

of good (higher P3 values) and medium (lower P3 values) surface qualities. Upon 

comparing the above results with those obtained using GLCM textural features (figure 

5.4) it can be seen that the 2-D FFT based texture extraction gives a much better 

classification of the steel surface dataset. As opposed to the classification obtained using 

GLCM features there is no misclassification between the good and bad surface steel 

samples in figure 5.7. Furthermore, the misclassification between good and medium 

quality steel samples has also reduced. Only 1 good surface quality pre-labeled sample 

(G09 = 015_aj) is misclassified with the point cluster representing medium surface 

quality samples. Whereas 2 pre-labeled medium surface quality samples (M09 = 057_aj, 
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Figure 5.7 Steel surface image classification in multivariate feature space of 2-D FFT 

and MI0 = 061_aj) have been misclassified with the good surface class. Medium quality 

sample M12 (065_bj) is between good and medium classes, whereas sample M13 

(073_bj) is near the bad quality class. It should be noted that the misclassified samples in 

figures 5.4 and 5.7 are not common. Different feature extraction steps used in the two 

techniques can explain this discrepancy. The GLCM feature extraction approach 

exclusively depends on spatial co-occurrence of pixel intensities, whereas the 2-D FFT 

approach solely uses frequencies of pixel intensity variations to extract features. As a 

result, different information is captured in either approach, which highlights different 

steel surface texture characteristics in the dataset. 

As opposed to extracting spatial or spectral textural features to perform 

classification, the following section presents a supervised image classification approach, 

which relies on a priori knowledge of the class belongings of the images in order to 

discriminate them. 
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5.4.2 Supervised Classification of Steel Surface Images Using 

PLS-DA Regression Modeling 

In the previous section a single MPCA model was used on a set of 2-D FFT 

magnitude images representing steel samples from one of three possible classes. 

However, prior knowledge of their class belonging was not used when classification was 

performed. The MPCA model was just used to approximate the data in X as closely as 

possible. This section presents a supervised classification approach using a Partial Least 

Squares Discriminant Analysis (PLS-DA) multivariate regression model to discriminate 

the steel surface grayscale images based on their pre-assigned class belongings. 

Basic principles of multivariate regression modeling have been previously 

discussed in chapter 2 of this thesis (section 2.3.2). Furthermore, chapter 3 (section 3.5) 

discusses the PLS-DA regression modeling approach with respect to pixel-wise 

classification of a multivariate image. As opposed to pixel-wise classification the 

approach presented here uses PLS-D A regression modeling to classify entire images into 

various pre-defined classes. 

The PLS-DA scheme presented in this section is used in its conventional pattern 

recognition sense to classify the steel surface images as data points in the PLS 

discriminant plots [Sjostrom et. al., 1986]. A multivariate characterization data matrix X 

is constructed, which contains unfolded pixel data from a set of steel surface images as 

observations (row vectors). Since the class belonging of each image is known a priori 

this information is provided through a Y matrix of dummy (0,1) variables in order to train 

the PLS-DA regression model. The model is built between X and Y for a training set of 

images comprising of representative samples from each class. Once trained, the PLS-DA 

model parameters can be used on a validation set of new images in order to predict their 

class belongings. 

A training set of 25 steel surface images representing the three surface qualities 

was chosen to develop the PLS-DA regression model. Class memberships of the 25 

samples were provided as three dummy variables of the Y array (with dimensions: 25 

rows x 3 columns). The developed model was then tested on a validation set of the 



158 

remaining 10 steel sample images. Division of the steel surface image dataset into the 

training and validation sets is illustrated in table 5.2. 

Table 5.2 Division of steel surface image data into training and validation sets 

Good Sutj'ace Medium Sutj'ace BadSurjace 
Training Set Test Set Training Set Test Set Training Set Test Set 
Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID 
001 (001 aj) 004 (004 hj) MOl (031 aJ) M03 (036 hJ) BOl (091 aj) B02 (091 hj) 
002 (003 hj) 006 (007 hj) M02 (032 hJ) M06 (047 hj) B03 (091 hj) B04 (092 hj) 
003 (004 aj) 008 (008 hj) M04 (039 aJ) MlO (061 aJ) B05 (093 aj) BlO (100 aj) 
005 (007 aj) - M05 (041 aj) Mll (063 aJ) B06 (093 hj) -
007 (008 aj) - M07 (049 aJ) - B07 (094 aj) -
009 (015 aj) - M08 (052 aj) - B09 (099 hj) -
010 (017 aj) - M09(057 aj) - Bll (100 hj) -

- - M12 (065 hj) - B12 (108 aj) -
- - M13 (073 bj) - - -

Figure 5.8 illustrates a schematic of the PLS-DA model building stage of the 

proposed approach. Pixels from 25 steel surface grayscale images of the training set 

(originally each image had dimensions: 479 x 508 pixels) were unfolded into 

observations of the predictor array X (with dimension: 25 rows x 243,332 columns). As 

seen in figure 5.8 the resulting X data array is wide and short, with the number of 

variables (columns) far exceeding the observations (rows). Variables of X represent 

unique pixel locations through the steel surface images. A kernel-based PLS algorithm 

proposed by Rannar et. ai. [1994] (to handle such wide data arrays) was used to develop 

the PLS-DA regression model between X and Y. The purpose of this study is to use the 

PLS algorithm in order to achieve the classification goals. Hence, this section 

concentrates on the obtained results without presenting any PLS algorithm details. A 

basic understanding of PLS regression modeling is presumed in order to interpret the 

following discussion. Besides the above reference further details of PLS regression 

modeling may be found in [Geladi et. aI., 1986; Hoskuldsson, 1988; Geladi, 1988; 

Eriksson et. al., 1999]. 
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Figure 5.8 Schematic of training a PLS-DA model to discriminate steel surface 
Images 

After mean-centering the data (both X and Y) a PLS regression model of the form 

X=TpT +E 

Y =TCT +F 

(5.7a) 

(5.7b) 

was develop with 3 PCs, which cumulatively explained 97.83% of the variation in Y 

(PC1 = 45.34%; PC2 = 44.39%; PC3 = 8.10%). In equation (5.7) T is a (25 rows x 3 

columns) matrix of score vectors (as columns); P & C are loading matrices, and E & F 

are residual matrices for the X and Y spaces, respectively. The latent variables (th t2, t3) 

of the resulting PLS-DA model try to provide a multivariate description of the 

observations in X, which simultaneously accounts for their class memberships provided 

in Y. As a result, the projections of the data in the corresponding latent variable score 

plots of the PLS-DA model are rotated in order to maximally separate (discriminate) the 

observations based on class memberships. It is left up to the PLS-DA loading 

coefficients (Ph P2, P3) to determine appropriate weights for each pixel location 

(variables of X) in order to satisfy the class belongings provided in the dummy Y matrix. 
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Figure 5.9 illustrates a scatter plot of the fIrst two PC score vectors (t\ - t2) of the 

trained PLS-DA model using the steel surface training set data from table 5.2. The third 

PC has been excluded from analyses, as it did not contribute to the discrimination of the 

data (pC3 only explained 8.10% of the variation in Y). In figure 5.9 each steel surface 

image has been pre-labeled according to the a priori class memberships dermed in table 

5.1. Solid points represent the training set samples from three surface quality classes. 

According to the manually highlighted point clusters in figure 5.9 (done for visual 

purposes) it can be seen that the discrimination of the training set steel sample images is 

very good in the 2 PC score vectors ofthe PLS-DA regression model. 
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A regression model developed from a training set is of little use if it cannot 

adequately predict unknown Y -values from a validation set of new X observations. 

Hence, the developed PLS-DA model was used on 10 steel surface images from the 

validation set (table 5.2). The results obtained from the model validation can be analyzed 

in two possible ways. First, one could analyze the PC scores (tl, 12) of a candidate image 

as a score point in the (t \ - t2) score plot, and compare its location with respect to the 

score clusters of the three training set steel surface classes. Second, upon comparing the 
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Y predictions of candidate images to the expected dummy response of the three variables 

(i.e. to see if they are approaching 0 or 1 to determine class belonging). The Y 
predictions can be obtained from the PLS-DA regression model using the following 

equation. 

A T 
Ynew= TnewC (5.8) 

Validation results obtained from the PLS-DA model for the steel surface image 

dataset have been overlaid as hollow score points in the (t\ - h) score plot of figure 5.9. 

The Y predictions of the validation samples are shown in table 5.3. It can be seen from 

these results that the PLS-DA model fails to adequately classify new steel surface images 

based on surface quality characteristics. Although the PLS-DA classification in the 

training stage produced tight and well separated score clusters (figure 5.9), none of the 10 

validation set samples fell into their respective pre-labeled classes. All score points of 

the validation set samples were near one (or both) of the zero axes of the (t\ - h) score 

vectors, which indicated that the PLS-DA model did not have enough information to 

properly discriminate them into their respective classes. Similar trends can also be 

observed in the Y predictions of the validation set samples (table 5.3). None of the Y's 

are close to their expected value of 1 for the appropriate class and zero for the other class. 

The steel surface grayscale image dataset used in this chapter has also been used 

for PLS-DA based classification with a 2-dimensional extension of the wavelet transform 

(WT) PLS algorithm proposed by Trygg et. al. [1998]. This work has been included as 

an example study in the SIMCA-P 9.0 user's guide [Umetrics, 2001]. A single 

thresholding was applied to the wavelet transformed steel surface images prior to 

unfolding the thresholded wavelet coefficients into a short and wide predictor array XWT, 

which is a reduced version of the multivariate characterization data matrix X used in this 

study. The achieved reduction was in the number of variables (columns) of X. In 

performing such a reduction the idea was to concentrate the discriminant information by 

removing noisy variables (columns) prior to application ofPLS-DA for classification of 

the steel surface images. The PLS-DA regression model was developed using XWT and a 

dummy Y array in a similar manner as described above. 



Table 5.3 Y predictions of the validation set steel surface images using PLS-DA 
regression model 

EXPECTED Y OBSERVED Y 
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Although a different training and validation set was used, results obtained via the 

WT technique were comparable to figure 5.9. Again the wavelet based PLS-DA model 

performed quite well in discriminating the three classes in the training stage, however the 

classification of the validation samples was poor. 

The reason for the poor performance of the PLS-DA classification approaches 

presented in this section is due to the loss of spatial information upon unfolding the 

grayscale steel surface images into row vectors of X. In the training stage a priori class 

memberships were provided, which guided the PLS-DA decomposition to generate a 

model that was specific to the 25 steel surface images of the training set. However, as 

shown in figure 5.9 and table 5.3, that model was not robust enough to classify new 

Images. Texture is a function of spatial variations in neighboring pixel intensities 

throughout an image. Upon unfolding the pixel arrays from the steel surface images one 

removes this information. The PLS-DA model is independent of permutations of the 

columns of the X matrix, i.e. it is independent of the location of the pixels relative to one 

another. As the main objective ofthe study was to classify steel images based on surface 

texture, the loss of spatial information is a huge disadvantage of the traditional 

multivariate statistical classification methods. 
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Spatial information is also lost upon unfolding 3-dimensional pixel intensity data 

from multivariate images into long 2-dimensional data arrays for MPCA based MIA 

(section 2.3.3). However, as far as MIA is concerned the loss of spatial information is 

not disadvantageous as these methods try to extract spectral (i.e. variable specific) 

information in order to group similar pixels in the score space. Furthermore, image data 

in MIA is multivariate with multiple congruent variable images forming the dataset. On 

the other hand, when using PLS-DA to classify texture images from different steel 

samples there is no congruency between any two images. Thus, a variable (column) of X 

only contains pixel intensities of multiple images at a particular spatial location. For all 

intensive purposes it does not matter to the regression model if the variables were 

permuted with each other (e.g. exchanging columns 1 and 125 in X). Similar models 

would result (in terms of data fit and predictive ability) for many permutations. 

Finally, the supervised classification approach presented in this section illustrates 

the limitations of multivariate statistics based image analysis techniques for extracting 

spatially dependent texture information. This is due to the complete ignorance of spatial 

pixel intensity variations when decomposing unfolded image data. 

The lost spatial information could be regained to a certain extent if each 

individual texture image were complimented with its spatially shifted counterpart as a 

new variable of a multivariate image. The resulting dataset may then be analyzed using 

MPCA and MIA. In that case the model would be forced to explain local variations of 

pixel intensities over a pre-defined neighborhood (depending upon number of pixel 

shifts). This approach of texture analysis using MIA is discussed in the next section. 

5.4.3 Classification Using MIA of Spatially Shifted and 

Stacked Steel Surface Images 

Multivariate Image Analysis methods (as described in section 2.3.1) are extremely 

efficient at extracting feature information based on pixel spectra from multivariate 

images. However, these techniques completely loose spatial information upon 
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decomposing the multivariate image data into PC score space scatter plots. On the other 

hand, traditional texture analysis methods (as shown in section 5.3) exclusively work in 

the spatial coordinates of an image to extract feature information from pixel intensity 

variations in a specific pixel neighborhood. As shown in the previous section (5.4.2) 

these local variations are extremely important descriptors of image texture. As a result, 

one needs to incorporate the spatial information within the multivariate statistical 

framework in order to perform texture analysis using MIA. 

A novel image texture analysis technique is presented in this section. It uses the 

advantageous features of MPCA based MIA methods in order to extract necessary 

roughness information from images. The proposed scheme is used for interpretive 

texture analysis of individual steel sample grayscale images as well as for surface 

roughness based classification of the steel surface image dataset. 

Upon observing the steel surface images in figure 5.1 it can be seen that the main 

distinguishing feature between the surface pits and the background pixels is a sharp 

change in pixel intensities at the edge of each pit. In order to create a meaningful feature­

space for maximum distinction between the three steel surface qualities it becomes 

important to enhance the spatial distribution of pit edge pixel intensities in each sample 

Image. 
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(a) (b) 

Figure 5.10 (a) A multivariate image created via spatial shifting in 4 adjacent 
directions and stacking the shifted images. (b) Eight possible directions in which an 

image could be shifted 

One possible technique of capturing this spatial distribution is through spatially 

shifting the steel surface grayscale image in adjacent directions, and then stacking the 

shifted images on top of each other to form a three-way pixel array. The resulting three­

dimensional image data is a multivariate image where the third (i.e. variable) dimension 

is the spatial shifting index. Each image in such a stack would illustrate the same feature 

information. However, sharp pixel intensity changes in a local pixel neighborhood would 

be further enhanced in such a representation. This is because adjacent pixel intensity 

variations get supplemented to every pixel in the two-dimensional image plane of the 

three-way array. Schematically, this information can be viewed as a vector in the 

variable (i.e. shifting index) dimension of the multivariate image. Figure 5.1O(a) 

illustrates such a multivariate image that is created by spatially shifting an image in four 

adjacent directions, and stacking the shifted images on top of each other. Each variable 

vector (figure 2.7) in such a multivariate image representation contains pixel information 
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from a chosen neighborhood of pixels depending upon the amount and direction of 

shifting applied to the image. 

As far as the steel surface images are concerned the optimal amount and direction 

of spatial shifting is dependent on the shapes and sizes of the major surface pits. 

Generally, enough shifting should be performed such that the edges of major pits are 

adequately captured. The resulting multivariate image can then be analyzed using MIA 

techniques (as described in section 2.3.1). 

5.4.8.1 Interpretive Texture Analysis of Steel Images Using MIA 

Interpretive texture analysis using MIA is now illustrated on two steel surface 

sample images. The chosen images were previously shown in figure 5.1(a) and (c) 

representing good and bad steel surfaces, respectively. The trained MIA model 

developed through texture analysis of these two steel sample images is then used to 

analyze (and classify) the complete steel surface image dataset. 

Both training steel surface images were spatially shifted in 8 adjacent directions 

by 1 pixel, and the shifted images were stacked above the original images to form two 

multivariate images, each having 9 variables. Figure 5.10(b) illustrates the 8 directions in 

which each image was shifted. Such a shifting/stacking strategy ensures a shift by 2 

locations in the 4 primary axes (vertical, horizontal, and 2 diagonals). This results in 

allowing for the capture of both 1st and 2nd derivatives of the pixel intensity variations in 

the steel image. It should be noted that upon increasing the number of pixel shifts the 

variable dimension of the resulting multivariate image also increases drastically (8 extra 

variable images per increase in pixel shift in all adjacent directions). This also affects the 

computational effort required to process the multivariate image. 

After shifting and stacking the steel surface image the three-way array was 

cropped at the edges to discard all the non-overlapping sections. This resulted in the 

multivariate images having smaller image plane dimensions than those of the original 

sample images (original dimensions of each image were 479 x 508 pixels). Resulting 
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dimensions of the shifted and stacked multivariate images were 477 x 506 x 9 pixels. 

MIA was performed on both the good and bad surface quality multivariate image arrays 

(&ood and Xbad) using MPCA decomposition. The cumulative percent sum of squares 

explained by the fIrst 3 PCs in the good and bad surface training sample images were 

99.36% and 99.20%, respectively. Only the fIrst 3 PCs have been used in subsequent 

analyses, with rest of the PCs (4 to 9) being attributed to explaining noise in the 

multivariate image. Table 5.4 shows the corresponding weights of the fIrst 3 loading 

vectors (Ph P2, P3) with respect to the nine variable images of the bad ~bad) surface 

quality multivariate image. The variable images have been labeled according to the 

respective spatial directions in which the original image was shifted. MPCA 

decomposition of the good (&000) surface quality multivariate image resulted in very 

similar loading vector coefficients. As a result, they have not been shown. 

Table 5.4 MPCA loading coefficients for MIA of bad steel surface training image ~bad) 

t~~',{,~{'i: ,if Original Left Right Up Down Right & Left & Right & Left & 
'?¥'",';ii Up Up Down Down 

~IT 0.3399 0.3349 0.3348 0.3344 0.3348 0.3301 0.3300 0.3305 0.3304 

pl -0.0002 -0.0001 0.0000 -0.4493 0.4489 -0.3839 -0.3887 0.3889 0.3832 

P3
T -0.0034 -0.4506 0.4538 -0.0047 -0.0015 -0.3842 0.3844 -0.3811 0.3879 

Since no mean centering of the image data was performed prior to MPCA 

decomposition, the fIrst PC explained mainly the average pixel intensity in the image. 

This is evident by the positive loading vector coefficients of all 9 variable images of PI T 

in table 5.4. The corresponding T I score images of the fIrst PC are illustrated in fIgure 

5.11. Upon comparing T I for the good and bad images with their original version in 

figures 5.1(a) and (c) it can be seen that the score images are blurred versions of the 

originals. This is due to the fact that PC 1 extracts only the pixel contrast information 

from the multivariate image via averaging over a 3 x 3 pixel neighborhood around each 

pixel of the steel surface image. This neighborhood has been provided through the 8 

adjacent shifts ofthe steel image. 
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(a) (b) 

Figure 5.11 (a) Tl image of good quality steel surface training image; (b) Tl image of 
bad quality steel surface training image 

Upon extracting the mean pixel intensity variations from the multivariate image, 

the second and third PCs of MIA extract the remaining feature information. Figure 

5.12(a) and (b) illustrates the second PC score images T2 of the good and bad steel 

surface training images, respectively. A close observation of both T2 images reveals that 

the 2nd PC predominantly extracts horizontal and diagonal edge information in all four 

directions (i.e. 45°, l35°, 225°, and 315°) with respect to the center of the image. 

(a) (b) 

Figure 5.12 (a) T2 image of good quality steel surface training image; (b) T2 image of 
bad quality steel surface training image 

The 3rd PC score images T 3 ofthe good and bad steel surface training samples are 

illustrated in figure 5.l3. It can be seen that the main features extracted by PC3 are the 

vertical and the diagonal surface pit edge information in all four directions throughout 

both training images. 
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(a) (b) 

Figure 5.13 (a) T3 image of good quality steel surface training image; (b) T3 image of 
bad quality steel surface training image 

A similar conclusion can also be drawn upon observing the P2 and P3 loading 

vector coefficients in table 5.4. It can be seen that the 2nd PC extracts mainly horizontal 

edge information due to higher coefficient magnitudes for spatial shifts in the vertical and 

diagonal directions. As a result, the pixel intensity slope information is highlighted 

through the columns of the T 2 image, thus enhancing horizontal edges of the surface pits. 

Similarly, the coefficient magnitudes for horizontal and diagonal shifts are higher in the 

3rd PC, resulting in better estimation of pixel intensity slopes through the rows ofthe T3 

image. As a result, the 3rd PC extracts mainly vertical edges of the surface pits. It is also 

worth noting in table 5.4 that the sum of the loading coefficients for both P2 and P3 are 

approximately zero, which agrees with the convolution kernel of a 1 st -derivative edge 

detection filter in the traditional image processing literature [Baxes, 1994; Pratt, 1978]. 

Upon closely observing all three PC score images and corresponding loading 

vector coefficients of the steel surface training images one can gather that for this 

example MIA serves as a different type of image filter in each PC dimension. PC1 serves 

as a smoothing filter, whereas PC2 and PC3 server as 1 st -derivative horizontal and 

vertical edge detection filters, respectively. 

It can be seen from this example that MIA on spatially shifted and stacked images 

automatically allows one to develop optimal filters as loading vectors based on pixel 

intensity variance over a pre-defmed neighborhood. In general these filters could be 

much more complex than the simple smoothing and 1 st-derivative edge detection filters 
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obtained above. Depending upon the number of pixel shifts and the chosen spatial 

direction(s) of shifting (e.g. a shift by every 5th pixel in four adjacent directions) the 

MPCA loading vectors could defme more complex filters, which one could have never 

decided ahead of time. 

(a) (b) 

Figure 5.14 (a) Score space ofPC12 for good steel surface training image; (b) Score 
space ofPC12 for bad steel surface training image 

(a) (b) 

Figure 5.15 (a) Score space ofPC23 for good steel surface training image; (b) Score 
space ofPC23 for bad steel surface training image 

Besides observing the MIA PCs as intensity images (image space), one could also 

use scatter plots of score vectors against each other and observe the pixels as point 

clusters (score space) in a color-coded 2-dimensional histogram. Figure 5.14 illustrates 

the PC12 (tl - h) score plot of the good and bad steel surface training images. It can be 

seen from both score plots in figure 5.14 that majority of the scores form one big point 

cluster in the middle of the plot. This pattern is due to the fact that the multivariate image 

was formed using the same image shifted and stacked on top of each other. As a result, it 

would be expected that majority of the information in the central point cluster represents 
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average pixel contrast through the images. Similar cluster patterns can also be noticed in 

the PC23 (t2 - t3) score plots ofthe two steel surface training images in figure 5.15. 

Further insight of the MIA score space can be gathered upon interrogating score 

point clusters using the previously described masking strategy to delineate feature pixels 

upon highlighting the masked score points in the corresponding score images. A close 

inspection of the PC1 score images in figure 5.11 reveals that pixels belonging to steel 

surface pit cores are represented by dark shades (i.e. low pixel intensities). Table 5.1 

shows image means of the steel surface dataset. Upon comparing the class mean of the 

bad surface quality images with those of the other two classes it can be confirmed that as 

the steel surface is compromised, the average pixel intensity reduces across the steel 

surface image. As a result, one can infer that the corresponding tl values of these pixels 

would be low. This intuition can be confirmed upon masking the low tl values 

(regardless oft2) in the corresponding tt - t2 score space. Figure 5.16(a) illustrates such a 

mask (shown as a green rectangle) that interrogates low t 1 values without giving any 

preference to t2 in the PC12 score plot of the bad steel surface training image. Such a 

mask is analogous to thresholding the Tl image, or a I-dimensional tl histogram. The 

corresponding masked pixels have been highlighted (as green) and overlaid on the T lhad 

image illustrated in figure 5.16(b). Similar masking/highlighting can also be performed 

on the good surface training image. 

Inspecting figures 5.12(b) and 5.13(b), it can be inferred that both low as well as 

high pixel intensity values of T 2 and T 3 represent those pixels belonging to steel surface 

pit edges in all eight adjacent directions (horizontal and diagonal in T 2, vertical and 

diagonal in T 3). As a result, the corresponding mask that highlights pit edges in the 

training image data ignores the central point cluster in the t2 - t3 score plot. Figure 

5.17(a) illustrates such a mask (shown in green around the central cluster) which 

highlights the extreme (t2, t3) score combinations in the t2 -t3 score plot of the bad surface 

training sample. The corresponding pixels covered by this mask have been highlighted 

(as green) and overlaid on the Tlhad image as illustrated in figure 5.17(b). Similar results 
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can also be obtained to highlight surface pit edges in the good steel surface training 

Image. 

(a) (b) 

Figure 5.16 (a) Manually applied mask on PC12 score space of bad steel surface 
training image; (b) Corresponding feature pixels under PC12 mask highlighted (in 

green) and overlaid on T 1 bad score image 

(a) (b) 

Figure 5.17 (a) Manually applied mask on PC23 score space of bad steel surface 
training image; (b) Corresponding feature pixels under PC23 mask highlighted (in 

green) and overlaid on T 1bad score image 

5.4.3.2 Classification of Steel Images Using MIA Training Model 

Information gathered from the score and image spaces of the training images 

reveals the ability of MIA techniques to extract relevant texture information from the 

steel surface images. Once trained, the MIA training model (score space masks and 

loading vectors) can then be used to extract similar texture properties from each steel 

surface grayscale image in the dataset. This can be accomplished through the MIA 

feature-monitoring scheme previously explained in chapter 3 (section 3.4.1). Monitoring 
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charts (similar to figure 3.14) could be plotted upon counting the number of pixels falling 

under the training model score space masks for each steel surface image. Such a chart 

provides an objective measure of image texture through a count of pixels belonging to pit 

cores and edges in each steel surface image. Figure 5.18 illustrates a bar chart 

representing a total pixel count of pit cores and edges in the 35 steel sample images based 

on the MIA model developed using the bad steel surface training image. 
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Figure 5.18 Monitoring chart of total pixels from pit cores and edges in 35 steel 
surface images. Arbitrary tolerance limits have been set to determine class boundaries 

From the trends in the bar chart (figure 5.18) it can be seen that good surface 

quality steel exhibits lower number of pixels falling under the 2 masks, while the number 

of such pixels increases as the steel surface quality declines. Based on previous industrial 

experience (or a more rigorous study with a large dataset) appropriate tolerance limits 

could be set in such a chart to defme class boundaries for each of the three steel surface 

qualities. Class acceptance (or rejection) of a candidate image would then be based on 

the number of feature pixels between the preset tolerance limits. Since the steel surface 

dataset used in this study consisted of only 35 samples the tolerance limits in figure 5.18 

have been set arbitrarily. 
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An alternate approach for classifying the steel surface images is to plot the 

respective feature pixel counts against each other for every image. Such a scatter plot 

produces an appropriate feature space for image classification, in which each steel 

surface image is represented by a combination of pixel counts of its pit cores and pit 

edges, respectively. Steel surfaces depicting similar overall texture characteristics should 

have ( on average) similar feature pixel counts of pit cores and edges. Figure 5.19 

illustrates a scatter plot of pixel counts under the PC 12 score space mask (pit cores) 

against counts of pixels under the PC23 score space mask (pit edges). The MIA model 

developed on the bad steel surface training image was used to mask the score spaces of 

the 35 steel surface images. 
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Figure 5.19 Steel sample image classification based on surface pits and edges detected 
by MIA texture analysis strategy 

As seen from figure 5.19 each steel sample image is represented by a single point, 

which illustrates the surface pit characteristics as a combination of two texture features (# 

pit core pixels, and # pit edge pixels). The abscissa (x-axis) separates samples 

representing bad steel surface quality (high pixel counts under tt - t2 score plot mask) 

from other samples. This trend is expected since the bad surface quality samples contain 

mainly deeper pit cores, which occupy a larger surface area as they are joined together in 



175 

'snake' like patterns. As a result, it can be said that the x-axis represents image contrast 

information. On the other hand, the ordinate (y-axis) can be said to represent derivative 

(edge) information. As seen from figure 5.19 this direction mainly separates samples 

from good surface quality (low # pixels under t2 - t3 mask) and those belonging to 

medium surface quality (high # pixels under h - t3 mask). Medium surface quality steel 

contains more pronounced pits than good surface quality samples. However, these pits 

are not as deep as those found in bad quality steel. Furthermore, medium quality steel 

does not exhibit the wavy 'snake' like patterns seen in bad surface quality samples. As a 

result, it is expected that the surface area of pit edges would be higher for medium quality 

samples as compared to samples from good and bad surface quality. 

From the manually highlighted clusters in figure 5.19 (done for visual purposes) it 

can be seen that adequate classification is achieved between the good and bad surface 

quality samples. However, some medium surface quality samples (MOl - M05 = 031_aj 

- 041_aj; M13 = 073_bj) have been misclassified with good quality steel. As explained 

earlier (section 5.3) the misclassified medium surface quality sample images in figure 

C.1(b) (Appendix C) cannot be visually differentiated from the good surface quality 

samples (figure C.1(a)), and probably were improperly classified by the inspector in the 

first place. Similar misclassification trends were also observed in the previously 

described (section 5.3) GLCM texture feature based image classification approach. 

However, the GLCM approach also misclassified good and bad surface quality samples. 

As far as the steel surface image dataset is concerned it could be concluded that 

the proposed MIA based image classification approach produces similar texture analysis 

results as compared to the 2-D FFT approach, and better results than the GLCM 

approach. However, being inherently multivariate in nature the MIA texture analysis 

technique has the added advantage that it can be applied not only to grayscale images, but 

it can also be used to extract texture from true color (RGB) and other multi-spectral 

images. The next section discusses some common observations from the results of all 

texture-based classification approached discussed in this chapter. 
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Finally, one could also use a MIA score plot matching strategy to classify 

candidate images from the steel surface dataset. The classification is based on a 

similarity measure with score plots of training set sample images. Bharati et. al. [2000] 

used this strategy to propose an automatic classification scheme for the steel surface 

image dataset. Steel sample images were pre-processed using the shifting/stacking 

approach followed by MPCA decomposition. The resulting t} - t2 and t2 - t3 score plots 

for each candidate image were compared with similar plots obtained from a training set 

of steel sample images. Classification was performed based on the training sample with 

which the candidate image showed most similarity. The classification was illustrated 

with an example study of two classes (good and bad steel surface quality) using a training 

set of 2 images (1 from each class), and 4 candidate images (2 from each class). The 

achieved classification accuracy was 100% for the illustrated example. This 

classification approach has been omitted from the results in this thesis. Interested readers 

may consult the above reference for further details. 

5.5 Discussion of Steel Image Classification 

Results 

Each sample Image from the steel surface dataset (used for texture-based 

classification in this chapter) was pre-assigned by a trained industrial person into one of 

three separate surface quality classes. As a result, one can objectively determine relative 

efficiencies of the image classification approaches that have been presented in this 

chapter. 

Four different texture-based image classification schemes were presented; (1) 

Supervised classification using PLS-DA regression models on raw unfolded texture 

images, (2) Classification in feature-space ofGLCM texture features, (3) Textural feature 

extraction and classification using MIA score space masks, and (4) MPCA based 

classification of texture features extracted by 2-D FFT magnitude images. This section 
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discusses relative effectiveness of the four schemes with respect to the achieved image 

classification results. 

The supervised image classification approach using PLS-DA regression modeling 

will be discussed separately from the other three approaches used in this chapter. This is 

because the philosophy of the PLS-DA classification approach is to treat the texture 

image discrimination purely as a data classification problem. The model developed in 

this approach disregards the spatial integrity of the images since each texture image was 

unfolded into a row vector prior to modeling. Furthermore, the different images in the 

dataset are not contiguous, in that pixels in each column of X do not really have anything 

in common. Therefore, column variables are different for each row (unfolded image). 

An inherent assumption of peA is that columns and rows of the data matrix have some 

meaningful interpretation. As this was a pure data analysis problem, PLS-DA model 

parameters would not change if the image pixels were permuted, or randomly picked 

form an image to form the row vector. The fitted data based on provided class 

membership information produced excellent discrimination between the training set 

images. However, the model performed very poorly when no class membership 

information was provided in the validation stage (figure 5.9). All validation samples 

were misclassified, thus indicating the importance of maintaining spatial integrity of the 

texture images. The classification approach revealed shortcomings of multivariate 

statistical methods when analyzing image texture. This is due to the strong spatial 

dependence of texture, which is completely ignored by this approach. 

The other three image classification approaches presented in this chapter consider 

the spatial dependence of texture (directly or indirectly) in the feature extraction stage. 

However, the way in which steel surface textural features are extracted by the three 

approaches makes them different. The GLCM and the shifting/stacking MIA based 

approaches directly incorporate pixel intensity variations around each pixel of the steel 

image, whereas the feature extraction approach using a 2-D FFT magnitude image relies 

on the frequency distribution of the pixel intensity variations throughout the steel surface 

image. The 2-D FFT and shifting/stacking MIA based feature extraction techniques 
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provide the required spatial information to multivariate statistical methods in order to 

perform texture-based image classification. 

The GLCM approach directly incorporated adjacent pixel intensity information in 

the two texture descriptors of the co-occurrence matrix. The two texture descriptors 

(contrast and correlation) of the GLCM were used as feature-space for classification. 

This approach produced several misclassifications between image samples from all three 

pre-labeled steel surface quality classes (figure 5.4). Perhaps the easiest indicator of the 

inadequacy of the GLCM based approach is misclassification between good and bad steel 

surface quality samples. Four good quality samples (G05-G08 = 007_ aj-008 _ bj) were 

misclassified with three bad quality samples (B08 = 099_aj, B09 = 099_bj, B12 = 

108_ aj). From a visual inspection of the good and bad steel surface quality samples 

(figure C.1(a) and (c)) in Appendix C it can be concluded that there should not be any 

overlap in discriminating samples from these two classes. 

On the other hand, classification achieved using the MIA texture analysis 

technique (figure 5.19) produced better results as compared with the GLCM approach. 

As mentioned before spatial pixel intensity variations are also considered in the extracted 

feature-space of the MIA based approach. Upon comparing the feature-spaces of the 

MIA and GLCM based approaches (figures 5.4 and 5.19) it can be seen that similar 

sample patterns emerge. However, the MIA based approach can better discriminate 

between all good and bad surface quality samples. In fact, only six medium surface 

quality samples (M01-M05 = 031_aj-041_aj, M13 = 073_bj) were not classified 

according to their pre-labeled classes. Five out of the six misclassified medium surface 

quality samples using this approach (M02-M05, and M13) are also misclassified using 

the GLCM based approach. Furthermore, as previously explained (sections 5.3 and 

5.4.3.1) four of the six misclassified medium surface quality samples (MOI-M03 and 

M05) cannot be visually discerned from any of the steel samples pre-labeled as good 

surface quality and may have been initially misclassified by the assessor. Thus, only two 

medium surface quality samples (M04 and M13) were truly misclassified by the MIA 

texture analysis based approach. 
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Steel surface image classification achieved in the multivariate feature-space of 2-

D FFT magnitude images also produced better results as compared to the GLCM 

approach. Classification between the good and bad steel surface quality samples reveals 

well-separated clusters (figure 5.7). However, there is again some misclassification 

between good and medium surface quality samples. One pre-labeled good surface 

quality sample (G09 = 015 _ aj) is misclassified with the medium surface quality class. 

However, four pre-labeled medium surface quality samples do not cluster in their pre­

labeled class. Three of these samples (M09 = 057_aj, MIO = 061_aj, and M12 = 065_bj) 

are classified with good surface quality stee~ whereas one sample (M13 = 073_ bj) 

classifies with bad surface quality steel. The misclassified medium surface samples using 

the 2-D FFT approach are not common with those misclassified using the MIA and 

GLCM based approaches. This is due to the fact that the feature extraction stage in this 

approach relies on frequency distributions ofthe spatial pixel intensity variations through 

the steel surface images. As a result, this classification approach indirectly incorporates 

spatial information in the feature-space. 

5.6 Conclusions and Contributions 

This chapter looks at the problem of image classification based on overall texture 

characteristics. To this end a novel multivariate statistical image texture analysis 

technique has been proposed, which is based on the concepts of Multivariate Image 

Analysis methods. The proposed technique can interactively extract image texture 

information, which can then be used for texture-based image classification. Due to the 

inherent multivariate nature of MIA the proposed scheme can potentially be used to 

extract textural features from grayscale, true color (ROB), or multi-spectral image data. 

Performance of the proposed scheme has been tested on a set of steel surface grayscale 

images, which have been individually pre-labeled into one of three different quality 

classes based on surface texture characteristics. 
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The achieved steel image classification results using the proposed scheme have 

also been compared with those obtained from three other texture-based image 

classification approaches on the same dataset. The three approaches are: (1) 

Classification using textural feature descriptors of Gray Level Co-occurrence Matrices 

(GLCM) of the steel images, (2) Classification in MPCA loading space of 2-D FFT 

magnitude images of steel images, and (3) Classification using the scores of a PLS-DA 

model. Fundamental ideas behind these three classification approaches have been 

previously published in the literature.' Besides providing a platform to compare the 

performance of the proposed texture analysis scheme, these approaches also give insight 

of various fundamental issues with respect to textural feature extraction from images. 

An overview and contrast between multivariate statistical and traditional image 

texture analysis schemes has also been presented in this chapter. Some fundamental 

differences between these two types of image analysis approaches have been highlighted. 

Traditional image texture analysis methods (e.g. approach (1) from above) work in the 

spatial coordinates of the image in order to extract textural features for classification. 

Due to the strong spatial dependence of texture, such methods generally produce 

reasonable classification results. A major shortcoming of straightforward multivariate 

statistical techniques used for image texture analysis has been illustrated using approach 

(3) from above. It has been shown through failure of the PLS-DA steel image 

classification approach that (without any pre-processing) multivariate statistical methods 

do not perform well in image texture analysis. This is because they don't retain the 

spatial integrity of pixel intensities when decomposing the image data. Approach (2) also 

uses multivariate statistical methods (MPCA) to classify the steel image dataset. 

However, spatial pixel intensity variations are retained through pre-processing each 

image using a 2-dimensional Fast Fourier Transform during the feature extraction stage 

of the approach. The 2-D FFT magnitude images carry frequency distributions of pixel 

intensity variations, which indirectly capture textural features. Classification using 

multivariate statistical methods of such pre-processed texture images (that capture spatial 

information) shows good results. 
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Spatial pixel intensity information has also been captured in the proposed MIA 

based texture analysis method by pre-processing each image through a spatial shifting 

and stacking approach. Principal components of pre-processed steel images provide 

smoothing and edge enhancements, which are interrogated using standard MIA tools. 

Training models can be developed on representative texture images for monitoring 

similar information in new images, and using this information in an image classification 

framework. As a result, the proposed approach incorporates ideas from both traditional 

as well as multivariate statistical image analysis methods. Besides providing interactive 

texture analysis of each individual image, the proposed approach incorporates the 

advantageous aspects of MIA feature monitoring and classification schemes. 

Finally, it is evident from the work presented in this chapter that each of the four 

texture-based image classification methods has its own advantages and shortcomings, and 

can be more (or less) appropriate in a certain situation. An overall comparison of the 

proposed MIA texture-based image classification approach with the other three 

approaches presented in this chapter reveals that it provides better steel image 

classification accuracy than approaches (1) and (3) from above. Upon comparing its 

classification accuracy with that of approach (2) it could be argued that both methods 

perform equally well (based on overall number of misclassified samples). However, the 

ability of the proposed MIA based approach to provide a more detailed texture analysis of 

individual images makes it an attractive alternative. 



Chapter 6 

Summary and Conclusions 
The general objective of this thesis was to develop novel multivariate statistical 

methods that analyze data from digital imaging sensors for monitoring and feedback 

control of industrial processes equipped with vision systems. In order to achieve this 

objective several on-line extensions and modifications to Multivariate Image Analysis 

(MIA) and Multivariate Image Regression (MIR) techniques were proposed throughout 

this thesis. Industrial applications of the proposed methods were illustrated through 

preliminary studies in the following three areas: (i) automatic grading of sawn softwood 

lumber; (ii) predicting pulp end properties through near-infrared (NIR) imaging 

spectroscopy of finished dry product; and (iii) classification of steel based on surface 

texture characteristics. In the following sections the work done in each area is 

summarized, along with an outline of its main contributions, some general conclusions, 

and a highlight of possible topics to be carried forward as future work. 

6.1 Multivariate Image Analysis for Softwood 

Lumber Grading 

The industrial application (addressed in chapter 3) is that of quality grading sawn 

softwood lumber based on visual inspection of common defects. An on-line MIA feature 

monitoring technique was proposed. The technique was used to monitor specific defects 

in RGB color images of lumber boards. The main contribution of this work is in 

proposing a novel on-line MIA technique, which can be used as part of an overall 

182 
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industrial process monitoring and feedback control scheme. Chapter 3 also provides an 

exploratory study of chemically complex lumber defects using off-line MIA techniques 

to analyze multi-spectral lumber images acquired in the NIR wavelength spectrum. A 

comparison is made of the lumber defect information that can (or cannot) be extracted 

through NIR multi-spectral imaging sensors versus RGB cameras. 

The proposed on-line lumber defect monitoring approach was based on 

deve-Ioping a robust (off-line) MIA model on a training lumber sample image consisting 

oftypical defects and inherent lumber variations. Once trained, the MIA model was used 

to monitor the modeled lumber defects from lumber boards passing under a high-speed 

line-scan RGB camera. The approach was illustrated on a set of sawn softwood lumber 

boards from three different species. Typical lumber defects like knots, splits, wane, pitch 

and bark pockets were extracted using the proposed scheme. Monitoring of the pixels 

belonging to these defects was performed in the score space of MIA. The monitoring 

charts involved plotting pixel counts of the various lumber defects for each board as it 

passed under the imaging scanner. Decision rules (tolerance limits) were used to assign 

quality grades to the lumber boards. The proposed scheme illustrates a successful 

application of MIA techniques for industrial process monitoring that could potentially be 

used on-line at production speeds. 

Certain complex lumber defects have been further investigated usmg their 

chemical signatures in the NIR wavelength spectrum. Previously no studies had been 

conducted on lumber in the wavelength range of the NIR imaging spectrometer used in 

this work. It was shown that multi-spectral NIR reflectance images dissect complex 

lumber features into various sub-features, which can then be isolated using off-line MIA 

techniques. The work presented in this chapter used MIA of multi-spectral NIR lumber 

images to isolate knot sub-features in order to differentiate between two types of knots. 

A multi-dimensional score space masking and image space highlighting strategy of MIA 

was developed to accomplish this work. Useful insight was gained upon comparing 

advantages and shortcomings of using NIR imaging spectroscopy as opposed to RGB 
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imaging for the purpose of lumber grading. Such information is very valuable to the 

softwood lumber industry for purchase decisions of imaging scanners. 

The main objective of this chapter was to prove the feasibility of an on-line MIA 

scheme for process monitoring in the softwood lumber industry. This work is one of the 

ftrst attempts to extend the methodology of MIA to treating on-line time varying images. 

The feasibility study involving classification of lumber defects successfully demonstrated 

the potential of the approach. The secondary objective of assessing the potential ofNIR 

imaging spectroscopy for extracting fmer features on lumber defects was also successful. 

However, several promising areas for future research arose in these investigations. 

One important area for further study would involve developing mathematically 

sound MIA score space masking strategies to isolate feature pixels in multivariate 

images. Currently, masking score clusters in the MIA score space is performed using 

manually created masks based on a trial and error technique. The proposed multi­

dimensional MIA score space masking strategy in this chapter is one of several possible 

ways to isolate sub-features of a complex feature from multiple principal component 

pairs of a multivariate image. A better approach might be to apply cluster analysis 

methods from the pattern recognition literature to create masks for delineating pixels 

belonging to features of interest from background pixels in multivariate images. Other 

techniques can also be developed to dissect complex features, based on optimizing the 

multi-dimensional mask boundaries in order to minimize misclassified feature pixels. 

A practical problem for further studying involves handling model robustness and 

equipment calibration issues upon actual on-line implementation of the proposed MIA 

feature-monitoring scheme in a sawmill. It is well known that there is generally a big 

difference between the environmental conditions prevailing in a laboratory and a true 

industrial process. The harsh industrial environment of a typical sawmill would require 

sturdy vision equipment as well as robust MIA models for proper on-line lumber defect 

monitoring. Issues like equipment aging could be handled upon regularly updating MIA 

models, or implementing some image pre-processing scheme to scale the data prior to 

modeling. 
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6.2 Multivariate Image Analysis and Regression 

Modeling of Pulp and Paper Characteristics 

Predicting characteristics and end properties of a finished product through an 

image based empirical model has been addressed in chapter 4. The work introduces NIR 

imaging spectroscopy to the pulp and paper sectors of the forest products industry. A 

novel MIR modeling technique has been proposed, which uses multi-spectral NIR 

reflectance images of finished pulp and paper samples to extract paper ingredient 

characteristics and predict critical pulp quality indicator variables. The work presented in 

this chapter contributes to the field by laying the framework for MIR modeling schemes 

that can be used to relate feature information from process multivariate images (obtained 

via on-line sensors) with corresponding quality information from (non-image) data 

obtained from other sources. 

The proposed modeling approach is based on extracting a relevant feature space 

from multi-spectral NIR images of fmished pulp and paper samples. Extraction of such a 

feature space was illustrated through a paper characterization study, which used a MIA 

based strategy to extract relevant chemical and ingredient information from multi-spectral 

NIR images of well-characterized paper samples. It was illustrated through peA based 

classification of the paper sample feature vectors that NIR imaging spectroscopy can 

capture vital chemical information from finished pulp and paper. This information could 

then be used to empirically predict pulp and paper properties. 

A novel MIR scheme was developed to relate the feature space extracted from 

multi-spectral NIR images of fmished pulp samples with their end properties. The idea 

consisted of developing a PLS regression model between spectrally filtered feature 

vectors of multi-spectral NIR pulp images and corresponding pulp quality data measured 

through wet chemistry procedures. The proposed scheme was illustrated through a 

feasibility study on a set of freshly manufactured pulp samples ranging in different 
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quality grades based on their desired end properties. Pulp imaging and chemical analysis 

were performed in 'at-line' fashion in the quality control laboratory of a pulp mill. 

Preliminary results of the proposed scheme showed good regression model performance 

when predicting three out of four pre-selected pulp quality variables from multi-spectral 

NIR pulp images. Furthermore, the regression models could successfully monitor end 

property variations through multiple pulp grades with prediction errors being generally 

comparable to laboratory measurement errors. 

The MIR models were further used to investigate spatial variations of pulp end 

properties across the imaged section of a pulp sample. A sub-windowing technique was 

proposed to predict pulp quality variables in local regions of the sample. The key result 

of this approach is that it provides a measure of pulp heterogeneity with respect to its end 

properties. 

The proposed MIR modeling scheme was illustrated through a limited feasibility 

study in order to prove its ability to empirically model pulp properties through imaging 

spectroscopy of fmished pulp samples. The eventual goal of the project is to continually 

predict pulp properties from a NIR imaging spectrometer installed on-line. However, 

prior to achievement of this goal some issues still need to be further investigated. In 

particular, the following topics provide a basis for future research. 

Prior to on-line implementation further at-line studies still need to be conducted 

with a thorough investigation of a larger pulp sample dataset, which includes a wider 

selection of pulp grades and quality variables. 

Spectral filtering of the pulp sample feature vectors was applied through 

Orthogonal Signal Correction in order to remove unwanted variations (e.g. pulp surface 

effects, temperature, humidity and light variations etc.) that were not correlated with pulp 

quality variations. Several spectral filtering techniques have been proposed in the 

literature for improving model predictions in presence of such unwanted variations. A 

thorough study of the effects of spectral filtering techniques on model predictions in the 

presence of unwanted external variations (induced by experimental and environmental 
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conditions) would provide a better understanding of model robustness (in both off-line 

and on-line situations). 

The nature of the feature extraction step in the proposed MIR scheme enables one 

to augment external information variables with pulp image feature vectors in order to 

improve model predictions. A thorough study could be conducted to determine the 

effects of augmenting the pulp image feature space with external variables that are known 

to be critical indicators of pulp end properties. 

6.3 Texture Based Classification of Steel Surface 

Images 

The problem of image classification based on overall surface texture 

characteristics has been addressed in chapter 5 of this thesis. The work contributes to the 

field by proposing a novel MIA based image texture analysis method. The method 

enables interactive extraction of textural features for image classification and monitoring 

image texture content. Performance of the proposed approach was tested on a set of pre­

labeled steel surface grayscale images with varying degrees of surface roughness 

characteristics. Image classification achieved by the proposed approach was compared 

with several conventional and multivariate statistics based texture analysis methods. The 

contribution of this work is threefold: it provides (i) a new image texture analysis scheme 

using MIA techniques, (ii) an overview and contrast of several image texture analysis 

approaches, and (iii) insight of why some multivariate statistics based classification 

methods perform poorly when segmentation is based on image texture. 

Main concepts and steel surface image classification achieved by the proposed 

MIA based texture analysis approach were compared with those from three other 

schemes: (1) classification using textural features of gray level co-occurrence matrix 

(GLCM) of each steel image; (2) unsupervised classification in MPCA loading space of 

2-dimensional Fast Fourier Transformed (2-D FFT) magnitude image of each steel 
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image; and (3) PLS-DA regression model based supervised classification of unfolded raw 

steel images as predictor matrix observations (rows). 

Analyzing the poor classification results achieved by approach (3) provided 

insight of the shortcomings of texture-based classification using multivariate statistical 

methods. The work provided a better understanding of the importance of conserving 

spatial pixel information when extracting textural features from images. Such 

information is completely ignored by multivariate statistical methods, which only 

concentrate on spectral information in multivariate images. Results obtained by 

approaches (1) and (2) were better than (3) as these approaches incorporated spatial pixel 

intensity variations when extracting appropriate textural feature spaces for classification. 

Insight gained from approaches (1) to (3) was used to develop the proposed MIA 

based texture analysis method. Spatial pixel intensity information was incorporated via 

pre-processing each image through a spatial shifting and stacking approach. The 

resulting multivariate image, with variable dimension as shifting index, was analyzed 

using standard MIA tools in order to extract textural features. The approach was applied 

on the steel image dataset through training a MIA model on a representative image. Pixel 

counts of textural features were used to classify the images into their respective pre­

labeled surface quality classes. Upon comparing the achieved classification results of the 

proposed approach with those of approaches (1) to (3) it was shown that the MIA based 

method outperformed these approaches. This is mainly due to the fact that the MIA 

approach incorporates advantageous features of both conventional and multivariate 

statistical image analysis methods. 

The MIA texture analysis approach presented in this chapter highlighted the 

possibility of developing a framework to incorporate spatial pixel intensity correlations 

within current MIA schemes to extract textural information from images. Due to the 

inherent multivariate nature of MIA such a framework would not only be limited to 

texture analysis of grayscale images. Color (i.e. multi-spectral) image texture analysis is 

a rapidly growing field with much research currently underway. It has recently been 

recognized that multi-resolution analysis (MRA) possesses the ability to incorporate 
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spatial pixel intensity correlations within a multivariate image setup. Future research in 

developing a unified framework with the aid ofMRA and MIA could provide a powerful 

tool for texture analysis of grayscale, color, and multivariate images. 
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Appendix A 

Alignment of Score Plots in a MIA 

Monitoring Scheme 
The basic assumption made when monitoring feature pixels using MIA score 

space masks developed from score plots of a training image is that the score plots of the 

corresponding test images would also be aligned with that of the training image. If this 

assumption were violated, a straightforward application of these masks in the test image 

score plots would produce erroneous results by misclassifying feature pixels. In this 

case, the misaligned score plots need to be properly aligned prior to application in the 

monitoring scheme. As discussed in section 2.3.1 a scatter plot of Principal Component 

(PC) scores is illustrated as a color-coded 2-dimensional histogram, where the frequency 

of points in each bin is represented as a brightness value. The histogram is recorded as a 

false-color image, with a pixel color/intensity representing the brightness value of each 

bin. Since score plots can be represented in these two ways, there are mainly two types 

oftechniques that can be used to align the misaligned score plot of a new image with that 

ofa training image. 

Image-based alignment techniques can be used to align the false color-coded 

image representations of any two score plots. This type of alignment considers the 

training image score plot to be a template image with which one would like to align the 

score plot of another image. Several image-warping methods have been proposed in the 

literature that can be used to calculate the required transformation in order to align the 

two images [Tang et. al., 1993; Arad, 1995; Glasbey et. al., 1995]. Matching a new 
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image with a template can involve specifying that certain points be brought into 

alignment, by the coincidence of object edges, or by local measures of correlation 

between the two images. Glasbey et. al. [1998] present a review of various linear and 

non-linear image-warping techniques that can be used to rotate, enlarge or shrink the 

point clusters in the score plot of a new image in order to match it with the cluster pattern 

ofthe training image score plot. However, the complexity of a warping technique versus 

time constraints for an on-line application warrants a need for good balance. With 

respect to the on-line lumber defect monitoring study of section 3.4.1 certain types of 

image-warping techniques would introduce a risk of warping the score point cluster 

patterns of a lumber sample image without any pitch pockets (i.e. having no cluster at top 

of its tJ - t2 score plot) into a template score plot that has a pitch pockets point cluster. 

This would make the problem worse than ifno correction were made. 

For the on-line lumber defect monitoring study the main problem was the shifting 

of the point cluster patterns in the new test images due to color contrast variations of clear 

wood between samples. Since no shape warping was required in this application, some 

of the simple approaches of aligning the score plots based on their 2-dimensional 

histogram measures might be good enough. 

Histogram-based alignment techniques try to match some characteristics of the 2-

dimensional histogram representations of two score plots. One possible approach might 

include matching statistical measures like mean, median, mode etc. of the two score plot 

histograms. This type of matching would result in a simple shifting of the point clusters 

in the score plot of an image to be aligned with that of another. 

The lumber defect monitoring study in section 3.4.1 used mean matching of the 2-

D histograms to align the score plots of all 38 lumber sample images with that of the 

training lumber image. This resulted in a shift of the score point clusters of the test 

images to align their means with the mean score point of the training image score plot. 

Alternatively, one could use the medians of the two histograms to align the score plots if 

one wanted to avoid influence of any outlying score points in the manipulation. 

However, in the case of lumber images mean matching produced sufficient results. The 
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new shifted value of each score point in a test lumber image was calculated using the 

following equation: 

(A.I) 

where, (fl test new, f2test new) is the new location of the score point upon shifting the test 

image score plot; (f1 tr ,f2 tr) and (f1 test'f2 test) are the original locations of the mean score 

points in the score plots of the training image and the test image, respectively. Figure A.I 

illustrates the effect of the histogram mean matching alignment strategy on the score plot 

of a test lumber image. The original score plot of a test lumber sample image is shown 

with its adjusted version and a difference image between them to visually determine the 

amount of shifting achieved. In the difference image black pixels represent areas where 

the score plot was originally located, whereas white pixels illustrate the new position of 

the adjusted score plot. 

_ No Change 

c:::J Position After Alignment 
_ Position Betore Alignment 

Figure A.I (a) Unadjusted tl - t2 score plot of a test lumber sample image. (b) 
Adjusted version of score plot in (a) using histogram mean matching alignment with 

training image. (c) Difference image between the two score plots 



Appendix B 

Comlllents on the use of PLS-DA 

Models in MIR 
PLS-DA models have been used for pixel wise classification of interesting 

features from multivariate images. When using such models in MIR certain basic 

requirements must be met in order to get good classification. It is important to exercise 

caution when setting-up the class-membership of the feature pixels in the dummy binary 

image Y used to train the PLS-DA model. In order to achieve good classification using 

PLS-DA models features must be homogeneous, tightly clustered and separable from 

background in the variable space of the multivariate image. Section 3.5 discusses these 

conditions in further detail. 

The importance of satisfying the above-mentioned fundamental requirements is 

illustrated with the following example study from the field of lumber grading. This is 

followed by a conceptual example, which illustrates a situation where a PLS2-DA model 

(i.e. with multiple Y dummy binary images) is needed to achieve good classification even 

if the above conditions are met. 

The first example study includes PLSI-DA modeling (i.e. with a single Y dummy 

binary image) and classification of pixels from selected lumber defects in RGB images of 

two lumber boards. Figure B.l illustrates two RGB lumber sample images CXI and ~II)' 

which have been segmented using masks in their corresponding (tl - t2) PC score plots to 

isolate the spatial locations of pixels from two selected lumber features as binary (YI and 
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Y II) images. As indicated in figure B.1 the two lumber features of interest to be modeled 

are pitch pockets in lumber sample I, and rotten wood in sample II. 

XI 

c 
I 

XII 

Figure B.t Segmenting lumber features from RGB images using MIA 
masking/highlighting procedure to create dummy binary Y images. For graphical 
clarity pixel intensities in Y images have been inverted. PLS-DA models can be 

trained between X and (un-inverted) Y 

Two separate PLS-DA models were trained to regress the respective RGB lumber 

images XI and XII with the corresponding dummy binary images YI and YII, respectively. 
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Both models used 2 significant PLS components to decompose the data in ~ and ~I. 

The model regression coefficients were re-used on their respective RGB lumber images 

to obtain model predictions VI and VI., which were scaled into grayscale pixel intensities 

and visualized as prediction images. Brighter intensities in both prediction images 

(figure B.2) indicate higher probability of pixels belonging to a feature of interest. Both 

prediction images were manually thresholded to maximally isolate the feature pixels from 

background. Error images EI and Ell were then created for both models upon subtracting 

the original Y and thresholded V images. The error image indicates correctly classified 

pixels in gray, background pixels misclassified as features are indicated in black, whereas 

feature pixels misclassified as background are indicated in white colors. Figure B.2 

illustrates the model predictions and classification errors of the two PLS-DA models. 

It can be seen from the prediction images in figure B.2 that the PLS-DA model 

trained to classify pitch pockets in sample I performs much better than the classification 

achieved by the model used to isolate rot in sample II. As illustrated in the error image 

En the PLS-DA model for sample II shows significant misclassifications between feature 

pixels from rot and knots. This disparity in the classifications achieved by the two 

models stems from the class-memberships defined in the respective dummy binary 

images YI and YII, which were used to train the respective models. 

As seen in the (tJ - t2) PC score plot of sample I (figure B.l) scores from pixels 

belonging to pitch pockets are tightly clustered and relatively well separated from the 

background pixel scores. As a result, the pitch pockets class defmed in the corresponding 

binary image YI is a homogeneous class. Thus it can be seen that the class-membership 

assignment in sample I meets the basic requirements for using a PLS-DA model to 

classify the pitch pockets feature from background pixels. On the other hand, the class 

definition of rot in the binary image Y II is inhomogeneous. This is due to the fact that the 

score points defining rot pixels have been manually segmented from a bigger cluster 

(representing both rot and clear wood) via:MIA masking in the (tJ - t2) PC score plot of 

sample II (figure B.l). Furthermore, it can also be seen from this plot that the PC score 

points representing rot are loosely clustered and inseparable from the bigger score cluster. 
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As a result, the class defmitions assigned in YII do not satisfy the conditions for using 

PLS-DA to classify rot from background features in sample II. 

YT Thresh 

YnImage Yn Thresh En=Yn- Yn 

Figure B.2 Model predictions (grayscale and binary) images and classification error 
images ofthe two PLS-DA models 

The respective discriminant planes of the two PLS-DA models are illustrated in 

figure B.3. Each plane has been superimposed on the (tJ - t2) PLS score plot to indicate 

the boundary of the two classes defmed by the class-memberships in the binary images YI 

and YII during the training stage of the PLS-DA model. Since both models are based on 
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2 significant PLS components the discriminant plane is in fact a line in the 2-dimensional 

(t1 - t2) PLS score plots of both lumber samples. As mentioned in section 3.5 the PLS 

score plots are rotated versions of the PC score plots since PLS-DA tried to rotate the PC 

scores in order to maximally separate the two classes defmed in YI and YII• Direction of 

the discriminant line is defmed by the PLS inner relation between X and Y blocks 

[Hoskuldsson, 1988], whereas its actual location is manually set by the chosen threshold 

value to discriminate feature pixels in the predicted YI and YII images of the PLS-DA 

models. Further details on calculating the PLS discriminant plane may be obtained from 

[Wold et. al., 1984; Sjostrom et. al., 1986]. 

t} 

Figure B.3 Class boundaries defmed by PLS-DA models to isolate pitch pockets and 
rot in the (t1 - t2) PLS score plots of respective lumber sample images 

Upon observing the class boundaries of the two PLS-DA models in figure B.3 it 

becomes clear why the disparity exists between their achieved classifications. The PLS­

DA model can easily isolate pitch pockets in sample I by placing the discriminant line 

between its score cluster and the background scores. However, the discrimiant line 

separating score points of rot from the bigger score cluster of clear wood cannot segment 

the feature pixels from knots. The obtained results from the above example study 

indicate the importance of choosing the classes when defining the PLS-DA models. The 
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classes should be tight and well separated from others, thus ensuring that they are 

homogeneous. 

The following conceptual example illustrates a situation where one might not 

achieve adequate feature pixel classification using a PLSI-DA model even though the 

above-mentioned conditions have been met. In such cases one might need a PLS2-DA 

model to segment the feature pixels from background features in a MIR scheme. 

The example study aims to segment pixels from one of three distinctly different 

features in an image. All three features satisfy the conditions of tightly clustered and 

homogeneous classes in the (tJ - t2) PLS score plot. However, it will be shown that 

depending upon the separation (and placement) of the three feature pixel score clusters 

one might (or might not) be able to achieve the desired classification using a PLSI-DA 

model. Figure BA illustrates two different arrangements of the three feature pixel score 

clusters in the (tJ - t2) PLS score plot. The objective in both arrangements is to segment 

feature pixels belonging to "class 3" from the other two classes. Segmentation would be 

illustrated by the placement of the PLS-DA model discriminant line (i.e. class-boundary) 

between "class 3" and the other two classes. As shown before the location of the 

discriminant line is dependent on the pre-defined class memberships of each pixel in the 

Y image(s) and thresholds of the corresponding (Y) image(s). 

Figure BA(a) illustrates a situation where a PLSI-DA model has been used to 

segment feature pixels from "class 3" upon defming a single Y dummy binary image with 

class belongings of corresponding member pixels as 1 (white), and non-member pixels as 

o (black). In this case the non-member class ignores differences between pixels 

belonging to classes 1 and 2, which are themselves tightly clustered and well separated 

from each other in the (tJ - t2) PLS score plot. The PLSI-DA model simply concentrates 

on segmentation between this lumped "non-member class" and feature pixels from "class 

3". As seen in figure BA(a), due to the arrangement of the score clusters in the (tJ - t2) 

PLS score plot it is possible to fmd an adequate PLSI-DA discriminant line to achieve 

the desired classification. However, if the arrangement of the three score clusters in the 

(tJ - t2) PLS score plot resembles that of figure BA(b), then it would be impossible to 
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fmd a PLSI-DA discriminant line to isolate feature pixels belonging to "class 3" without 

misclassifications with pixels from the other two features. Figure B.4(b) illustrates two 

possible PLSI-DA model discriminant lines (dashed blue), which cannot achieve the 

desired classification. 

(a) 

~ Class3 
~ (White) 

----- t .. _--,------
Background 
(Black) 

tl 

Class 1 
(White) 

(b) 

Figure B.4 Segmenting feature pixels in (tJ - t2) PLS score plots based on class­
boundaries defmed by PLS-DA models. (a) Discrimination using PLSI-DA model is 

adequate; (b) PLS2-DA model is required to achieve desired discrimination 

In such cases it would be better to defme a PLS2-DA model with three different Y 

dummy binary images, where each Y highlights differences between a unique feature 

pixel class (as member) and the other two classes (as non-member). In this case the 

PLS2-DA model does not ignore inherent differences between any of the three feature 

pixel classes. The resulting PLS2-DA model would produce three different discriminant 

lines in the (tJ - t2) PLS score plot, where each line aims to isolate a respective feature 

pixel class from the other two classes. Class-boundaries defmed by all three discriminant 

lines would be considered together by the PLS2-DA model when performing 

classification. As seen in figure B.4(b) the achieved classification of feature pixels 

belonging to "class 3" is much better using the discriminant lines defmed by the PLS2-

DA model (solid red lines) as compared with either of the two possible PLSI-DA 

discriminant lines. 



Appendix C 

Steel Surface Image Dataset 
The steel surface grayscale image dataset used in chapter 5 for purpose of testing 

various texture-based image classification techniques consists of 35 sample images. The 

complete dataset has been divided into three different pre-labeled surface quality classes 

based on visual grading by steel manufacturing industry personnel. Figure C.I illustrates 

the full dataset, which consists of 10 samples pre-labeled as good surface quality [figure 

C.1(a)], 13 samples pre-labeled as medium surface quality [figure C.l(b)], and 12 

samples pre-labeled as bad surface quality [figure C.l(c)]. Each image has dimensions 

479 x 508 pixels (rows x columns), with 8-bit grayscale resolution. 
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Figure C.l(a) Complete dataset of good steel surface quality images. 1 st row (L to R): 
001_aj, 003_bj, 004_aj, 004_bj. 2nd row (L to R): 007 _aj, 007 _bj, 008_aj, 008_bj. 3rd 

row(LtoR): 015_aj,017_aj 
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Figure C.l(b) Complete dataset of medium steel surface quality images. 1st row (L to 
B): 031_aj, 032_bj, 036_bj, 039 _aj. 2nd row (L to R): 041_aj, 047_bj, 049 _aj,052_bj. 

3rd row (L to R): 057_aj, 061_aj, 063_aj, 065_bj. 4th row: 073_bj 
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Figure C.l(c) Complete dataset of bad steel surface quality images. 1st row (L to R): 
091_aj, 091_bj, 092_aj, 092_bj. 2nd row (L to R): 093_aj, 093_bj, 094_aj, 099_aj. 3rd 

row (L to R): 099_bj, lOO_aj, lOO_bj, 108_aj 




