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Abstract 

This thesis investigates the building and application of principal 

components analysis (PCA) and projection to latent structures (PLS) models when 

some objects in the data set have missing measurements. Score calculation is 

treated first, followed by model application to prediction and monitoring. Model 

building is explored in the final part of the thesis. 

The first problem treated in this work is that of estimating scores from an 

existing PCA or PLS model when new observation vectors are incomplete. 

Several methods for estimating scores from data with missing measurements are 

presented and analysed, including a novel method involving data replacement by 

the conditional mean. Expressions are developed for the error in the scores 

calculated by each method and the factors that lead to error are drawn from these 

expressions. The error analysis is illustrated using simulated data sets designed to 

highlight problem situations. A larger industrial data set and a simulated process 

data set are also used to compare the approaches. In general, all the methods 

perform reasonably well with moderate amounts of missing data (up to 20% of 

the measurements). However, in extreme cases where critical combinations of 

measurements are missing, the novel method is generally superior to the other 

approaches. 
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Uncertainty intervals arising from nussmg measurements are then 

developed for the squared prediction error (SPE), Hotelling T2, PLS predictions 

and their contributions. These uncertainty intervals provide performance measures 

and diagnostics when measurements are missing in process monitoring and 

prediction. The uncertainty intervals derived agree well with the values calculated 

from the complete objects and give valuable information about the true level of 

knowledge about the process. The uncertainty in the contributions is used to 

correctly diagnose which missing measurement in a set gives the greatest 

reduction in uncertainty when it is recovered. 

Insight gained in the analysis of score estimation and model application is 

applied to model building with the nonlinear iterative partial least squares 

(NlPALS), maximum likelihood principal components analysis (MLPCA), 

expectation maximisation (EM) and iterative replacement algorithms. Challenges 

unique to model building and factors that lead to error in individual steps of each 

model building algorithm are examined. Recommendations are made to improve 

the quality of the models obtained, and a procedure is proposed to screen data for 

objects and variables with missing measurements that would have an adverse 

effect on a model built using missing measurements. 
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Chapter 1: Introduction and Background Theory 

1.1 Introduction 

This thesis investigates the use of Principal Components Analysis (PCA) 

and Projection to Latent Structures (PLS) models when some of the 

measurements in the data set are missing. A novel missing measurement score 

calculation algorithm is proposed and the factors affecting the performance of 

both the novel and existing algorithms are identified and illustrated by designed 

and industrial process data sets. Performance measures for the application of PC A 

and PLS models are derived and illustrated on the industrial data set. These 

measures distinguish between situations where model perfonnance with missing 

measurements will continue to be acceptable and situations where it will become 

unacceptable. In the latter case the measurements must be recovered or the 

application shut down. Diagnostics are developed to aid in determining which 

missing measurements are causing the greatest uncertainty in the application and 

will yield the greatest reduction in uncertainty by their recovery. 

There are many reasons why measurements may be missing from a data 

set. Missing measurements can occur when sensors fail or are taken off-line for 

routine maintenance. In other situations, measurements are removed from a data 

set because gross measurement errors occur, manual samples are simply not 
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collected at the required time or sensors have different sampling periods. The 

measurements may be missed at random times, as for missed manual samples and 

sensor failures, or on a very regular basis, as for sensors with different sampling 

periods. 

PCA and PLS have been widely used to develop models from data sets 

composed of observations on large numbers of highly correlated variables. Once a 

model has been built, it can be applied to future process data in inferential control 

schemes to predict process responses (Kresta et aI., 1994 and Medjell and 

Skogestad, 1991), or in multivariate statistical process control schemes to monitor 

and diagnose future process operating performance (Kresta et ai., 1991; Nomikos 

and MacGregor, 1994; Nomikos and MacGregor, 1995; Skagerberg et ai., 1992; 

Wise et aI., 1991; Wise and Ricker, 1991). In many of these situations, 

particularly those involving industrial processes, missing measurements are a 

common occurrence. To insist on using only complete data sets when building or 

applying PCA or PLS models would entail throwing away large amounts of the 

data. In an online application the sampling period would have to be the greatest 

common multiple of the measurement sampling periods and the application would 

have to shut down whenever any measurement was unavailable. This would 

reduce the benefits of the application or increase the capital and maintenance 

costs to meet a desired level of availability. Therefore, it is important that efficient 

methods for handling missing data be available, both for using such multivariate 
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models on future data and for analysing and building multivariate models from 

past data. 

The balance of this chapter will introduce the nomenclature, literature and 

theory used in the thesis. Basic vector and matrix notation is introduced, followed 

by PCA and PLS model structures and properties. Model building, score 

calculation and application of models to prediction and monitoring with complete 

data are then presented. The following section presents these topics when objects 

have missing measurements. The fmal section introduces the theory necessary to 

calculate the cumulative distribution of quadratic forms of random variables. 

Chapter 2 analyses the algorithms that are used for handling missing 

measurements when the underlying PCA or PLS model is assumed to be fixed 

and known. This is the situation when a PCA or PLS model has been built from a 

large amount of plant data and it is to be applied using new observations that have 

missing measurements. A novel algorithm for score calculation with missing 

measurements is developed and its properties analysed and compared with those 

of existing algorithms. The sources of error for each algorithm are laid out and 

illustrated using designed data sets. This gives specific quantities calculated from 

information available from model building to determine score calculation 

performance with each missing measurement algorithm. Recommendations are 

made on pruning variables and on the number of components to use in a model 

for good performance with missing measurements. An analysis of two process 

data sets from the literature, one simulated and the other industrial, is presented to 
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show application to realistic situations. While all methods perform well in most 

cases, it is shown that the novel method is best in certain critical situations 

identified by the analysis. 

In chapter 3, we develop performance measures for PCA and PLS model 

applications which reveal the level of uncertainty caused by missing 

measurements and give diagnostics to assist in determining which of the missing 

measurements would give the maximum benefit if it were recovered. These 

measures distinguish between situations where model performance with missing 

measurements will continue to be acceptable and situations where it will become 

unacceptable. In the latter case, the measurements must be recovered or the 

application shut down. Current practice is to use the scores calculated using the 

missing measurement algorithms in the same manner as scores from complete 

objects. The performance measures are uncertainty intervals on the predictions, 

sum squared prediction error (SPE), Hotelling T2 and scores. The prediction 

uncertainty interval combines the variance from parameter estimation together 

with the uncertainty arising from the missing measurements with the missing 

measurement uncertainty dominating in the example. All other uncertainty 

intervals developed are due to missing measurement uncertainty alone. 

Uncertainty intervals for the contributions to these quantities are developed to aid 

in determining which missing measurements play the largest role in the 

uncertainty interval. 
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Model building with lllissmg measurements and model building for 

applications that need to be robust to missing measurements are considered in 

chapter 4. Factors that affect the NIPALS, EM, MLPCA and Iterative 

Replacement model building algorithms are developed and improvements to the 

MLPCA algorithm proposed. A guide for pruning variables during model 

building is given which considers the resulting model's robustness to missing 

measurements and a procedure proposed to apply the analysis of chapters 2 and 3 

to improve model building with missing measurements. Also, the issues unique to 

model building are reviewed and how they apply to the analysis in the rest of this 

chapter discussed. 

1.2 Nomenclature 

This section will define the basic vector and matrix notation used in this 

thesis and the notation used to indicate missing and present measurements. Some 

notation concerning PCA and PLS will be briefly introduced as it relates to 

missing measurements but the notation and properties of PCA and PLS are 

defmed in section 1.3. 

Lower case bold variables, both Roman and Greek, are column vectors 

and upper bold case ones are matrices. Where an upper case Roman character is 

used, the lower case of that letter is used to represent the columns of that matrix 

with a subscript indicating the column index. So X = [Xl' X2 , . . • X K] where 

Xk is the kth column of X. An individual element of a matrix is indicated by the 
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same character as the matrix but in lower case with two subscripts; the first 

subscript for the row number and the second for the column number. As an 

example, Xik is the element of matrix X in the i th row and kth column. A subscript 

of two characters separated by a colon indicates which columns of a matrix or 

rows of a column vector are taken. The matrix P I:A contains columns 1 to A of the 

matrix P and 't A+I:K contains the elements from rows A+ 1 to K of the column 

vector 't. 

In some instances, a vector or matrix will change at each iteration of an 

algorithm. The index for the iteration of the algorithm will then be indicated in 

round brackets after the variable so that x(a) will be the vector x at the ath iteration 

of the algorithm. 

A multivariate vector of measurements is denoted 

ZT = [ZI' Z2' ••• Z K] with K being the number of variables. A data matrix X 

is then a collection of N row vectors z; (objects) or K column vectors Xk 

(variables). 

The letter i is used exclusively as an index for the objects and k exclusively for 

variables. 
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It will be shown in section 1.3 that score matrices have a row for each 

object and a column for each component. The matrix of scores is expressed as 

T= 

where the 1:7 are row vectors corresponding to the values of the scores for the i th 

observation and the tj are column vectors corresponding to the scores for the jth 

component. The letter j is used exclusively as an index for the components. 

Loading matrices, such as P or W, have a row for each variable and a 

column for each component as will be shown in section 1.3. The matrix is a 

collection of column vectors Pj-

A shorthand notation for vanous matrices and vectors with elements 

corresponding to either missing or present measurements removed is needed. A 

single superscript asterisk indicates a vector or matrix with elements 

corresponding to missing measurements removed. It will be shown in section 1.3 

that these elements are rows for vectors of measurements such as z or loading 

matrices such as P or W so if variables 2 and 5 are missing then z * is obtained 

from z by removing the 2nd and 5th rows and p* is obtained from P in the same 

manner. A single superscript pound (#) indicates a vector or matrix with elements 

corresponding to measured variables removed. The missing data can be taken to 
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be the first elements of the data vector without loss of generality, so the vector z 

can be partitioned as 

where l denotes the missing measurements and z* the present measurements. 

Correspondingly, the P matrix can be partitioned as pT = [p#T, p*T]. 

The estimated covariance matrix S is a special case since both its rows and 

columns are related to specific measurements. It thus has two superscripts, the 

first for the rows and the second for the columns. Thus if the missing 

measurements are placed first in the matrix: 

_ [S## S#*] 
S - S*IJ S** 

The expression Lp i ,p j is used to denote the angle between the two 

vectors in degrees. 

1.3 peA and PLS Model Structure and Properties 

PCA and PLS are used to develop models from data sets composed of 

observations on large numbers of highly correlated variables. The structures of the 

two models and their properties will be shown together to highlight the 

similarities and differences. Theory and applications can be found in Wold et al. 

(1987) and Jackson (1991) for PCA and Wold et al. (1983) and Martens and Naes 

(1989) for PLS. 
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peA is applied to a single data matrix X and PLS is applied to an input 

data matrix X and an output data matrix Y. The model structure for the matrix X 

for both methods is: 

X=TpT +E 

and the model structure for the output matrix Y for PLS is: 

Y=TQT +F 

T is an N by A matrix of scores and P is a K by A matrix of loadings as 

stated in section 1.2. The number of dimensions of any peA or PLS model in this 

work is A. PLS has a second K by A matrix of loadings W that is required to 

calculate the scores as shown in section 1.3.2. The scores are new variables that 

are defmed by the loading matrices. They are defmed to be independent and at 

each step the loading vector Pj for peA is chosen to give maximum reduction in 

the variance of X. For PLS the component is chosen to give the maximal 

reduction in the covariance XTy. One motivation for using peA and PLS is that 

usually A can be chosen to be much less than K and still represent the variation in 

the data well, giving fewer variables to treat. Proper choice of A will also remove 

rank deficiency or ill-conditioning in X. Another reason to use these models is to 

study the relationships between the variables by examination of the loading 

matrices. 

The properties of the peA and PLS matrices relevant to the work in this 

thesis will be listed here; additional properties can be found in Jackson (1991) for 

peA and Hoskuldsson (1988) for PLS. For both peA and PLS, 
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t~t j = 0 m=tj 

ForPCA, 

P~Pj =0 m=tj 

P~Pn = 1 m=n 

andforPLS 

W~Wj=O m=tj 

w~wj=l m=j 

W~Pj =0 m<j 

1.3.1 Model Building 

There are a number of algorithms for calculating peA and PLS models 

when no measurements are missing. A peA model can be calculated using a 

power method algorithm or by doing an SVD of the X matrix. Standard notation 

for an SVD is 

X=usvT 

and in the nomenclature of peA P = V1:A and T is the fIrst A columns of the 

product ofU and S. 

A PLS model can be calculated by the nonlinear iterative partial least 

squares (NIPALS) algorithm (a power method) or by one of the kernel methods 

published in Dayal and MacGregor (1997) or Rannar et al. (1994a) or de Jong and 

Ter Braak (1994). The NIPALS algorithm will be covered in section 1.5.1.2. 

1.3.2 Score Calculation 

Once a model has been calculated, scores 'C
T = ['t1 , 't 2' ••• 't A] for new 

objects z can be calculated using the following formula for peA 
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For PLS the W matrix is used in calculating the score instead ofP 

And for both methods 

z{l)= z 

z(j + 1)= z(j)- 't jP j 

The calculation of all score values can also be done in one step, as 

where R = P for peA and R = W(pTW t for PLS. This form for calculating the 

scores allows the contribution to the scores to be defined directly. Each score has 

the form 

The contribution of variable k to score j is the term in the calculation of the score 

that involves that variable which can be seen from the equation above to be: 

Equation 1-1 

1.4 Applications of PC A and PLS 

1.4.1 Predictions 

PLS is used to provide predictions for the variables in the Y matrix. The 

prediction equation with a new vector of measurements z is 
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y=Q't Equation 1-2 

In this work we will consider the case where Q is a row vector. This is the case 

where there is only one variable being predicted or where the variable interactions 

in a multivariable model are ignored. In terms of the original variables the 

prediction for one variable is 

y = Q't = QRT Z = ~T Z Equation 1-3 

with ~=RQT. 

There are several papers dealing with PLS prediction error varIance 

(phatak et aI., 1993; Hoy et aI., 1998; Faber, 2000). The following defInition is 

useful in several of the expressions: 

Phatak et al. linearized the PLS estimator by truncating a Taylor series 

expansion for the estimator after a single term to develop an expression for the 

variance of the predictions. The expression assumes that the matrices are mean 

centred and is 

J = ~sTVmRm ® (I p - HmS )]+ [VmRm ® ST ~ P - HmS)n 
((MT t' ® 1 p)u~ + Hm XT 

where m is the number of dimensions in the model, ® denotes the Kronecker 

product and we can set V m = W without loss of generality. The other vectors and 

matrices are 



s=xTy 

S=XTX 
Rm = [V~svmjl 
Hm =VmRV~ 

U m = [X1XSj ... I{xs ym-l) ] 

and the matrix M satisfies 

13 

[XT YI(XTX)xT YI .. . 1(XTxr-1)XT y ] = VmM 

The expression in Hoy et al. (1998) with the correction due to De Vries 

and Ter Braak (1995) is 

Equation 1-4 

where Vy is the mean squared prediction error of y, A is the number of 

components in the model, leal is the number of objects in the data set used to build 

the model, V x is the mean squared measurement error and V x,ca\ is the mean 

squared measurement error of the modelling data set. Equation 1-4 is composed 

of four terms when Vy is multiplied into the second set of brackets: 

1- A+1 
leal 

Equation 1-5 

hVy = 'tT[TTTjl 'tVy = 'tT var{Q}t 
Equation 1-6 

~V 
Vx,eal y 

Equation 1-7 

~v 
1 y Equation 1-8 

cal 

Equation 1-5 is a correction factor due to De Vries and Ter Braak (1995), 

Equation 1-6 is the variance assuming the scores are without error, Equation 1-7 
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is the variance assuming the loadings are without error and Equation 1-8 is the 

variance due to error in the mean estimate. 

The expression in Faber (2000) results from an error-in-variables approach 

and is 

var{Y - y} = h[var(e}+ var(~y}+ 111l\\2 var(L1X)]+ var(e} 

+ 1111112 var(L1X) 

Equation 1-9 

where e is the unmodelled part of y, Il is the vector of PLS regression coefficients 

and ~y and L1X are measurement errors in the output and input respectively. The 

expression above has been simplified by assuming that the errors in the model 

building and prediction data are the same. 

The differences in these expressions for the prediction variance are due to 

the different assumptions made about measurement and other errors in the 

underlying structure of the data and model. PLS was originally based on an 

algorithm, rather than an assumed data structure and objective function, so it is 

not clear which of these expressions best represents the variance of the PLS 

predictions. 

1.4.2 Monitoring 

peA and PLS are used in statistical process monitoring due to their ability 

to handle large sets of correlated variables with singular or nearly singular 

covariance matrices. These methods extract information about how the variables 

change relative to one another and reduce the noise level due to averaging (Kourti 



15 

and MacGregor, 1995). This increases the effectiveness of monitoring as well as 

reducing the number of plots to monitor. 

The peA or PLS model defines new (latent) variables that are used for 

monitoring. The variation in these new variables and the residual variation in the 

original variables must be monitored. This is done by monitoring the SPE and 

Hotelling T2 as described in the following sections. 

1.4.2.1 Monitoring Model Residual Variation 

The squared prediction error (SPE) for X gives a measure of the distance 

of the new observation from the space defmed by the model. It is defined as 

SPE = [z-P-cf[z- P-c] 
= [z-pRzf[z-PRz] 
= ZT [I - PR f [I - PR ]z Equation 1-10 

Approximate expressions for the control limits for the SPE have been laid out in 

Jackson and Mudholkar (1979) and Nomikos and MacGregor (1995). Since the 

SPE is the sum of the squared input matrix residuals, the contributions of the 

variables to the SPE are the residuals themselves. 

1.4.2.2 Monitoring Variation in the Scores 

The Hotelling T2 is a statistic that can be plotted to determine when there 

has been a shift in the mean of the scores. It is calculated as 

Equation 1-11 
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and the control limit is provided in Kourti and MacGregor (1995). The 

contributions to the Hotelling T2 are the scores. Kourti and MacGregor (1996) 

define the Hotelling T2 as 

K A 1:. 
Hotelling T2 = LL ~rkjzk 

k=1 }=I E\1:} J 
Equation 1-12 

so the contribution of variable k to the Hotelling T2 is the inner summation over j 

for a fixed k. 

If only two scores are to be monitored then the score-score plot can be 

used (Kresta et at, 1991). 

1.5 peA and PLS with Miss ing Measurements 

1.5.1 Model Building 

1.5.1.1 Complete Object Metho d 

The complete object method consists of removing all objects that have 

missing measurements and using the remaining objects to build the model. The 

assumption is made that the complete objects provide a representative sample of 

the process data. The performance of this method will be poor when this is not 

true. When there is an abundance of data, the performance of that method is 

acceptable and its computational complexity is low. This method sets a minimum 

performance standard for the other methods. 
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1.5.1.2 NIP ALS 

The standard procedure for handling missing data in PCA during model 

building is based on H. Wold's NIPALS algorithm (Wold, 1966 and Geladi and 

Kowalski, 1986). In PCA model building, one iteration of the NIP ALS algorithm 

consists of a linear regression of the columns of X on a score vector t to obtain a 

loading vector p, followed by a linear regression of the rows of X on the loading 

vector to obtain a new estimate of t. Convergence is reached when the mean 

square change in the scores falls below a threshold. When data in any column or 

row of X are missing, the iterative regressions are performed using the data that is 

present and the missing points are ignored (Wold et al., 1983 and Martens and 

Naes, 1989). This approach was first used by H. Wold in the analysis of horse 

racing results from the American Jockey Club around 1964 (Wold, 1995). This 

procedure can be interpreted in different ways. It is equivalent to setting the 

residuals for all missing elements in the least squares objective function to zero in 

each iteration. It can also be interpreted as replacing the missing values by their 

minimum distance projections onto the current estimate of the loading or score 

vector at each iteration. 

As long as the number of variables present in any row or column is greater 

than or equal to the number of scores to be calculated then the NIP ALS algorithm 

can obtain a solution. However, in practice one should have many more 

observations than the scores or loadings being estimated to obtain reliable results. 

A rule of thumb is to have 5 times as many observations in any row or column as 
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the number of dimensions (A) being calculated (Wold, 1995). The NIPALS 

algorithm is usually recommended only when the missing data pattern is random 

rather than structured (Wold, 1995). An example of a structured missing data 

pattern is one resulting from sensors with different sampling periods. In these 

cases, the measurements are missing in blocks. 

With I representing the indices of missing measurements in the 

summations, one iteration of the NIP ALS algorithm for the jth component in peA 

is then: 

Equation 1-13 

Equation 1-14 

M 1M Uij = LYikqkj Lq~ 
k=l k=l 
k*1 k*1 

Once the vectors in the above iteration converge, the data is deflated for peA by 

Equation 1-15 



and for PLS 

X =X-tjP~ 

Y=Y-tjq~ 
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Equation 1-16 

The assumption in this algorithm at each component is that the missing 

measurement is represented by the appropriate loading vector and score product 

without taking into account any latent dimensions not yet calculated. 

1.5.1.3 Iterative Replacement 

This algorithm relies on the estimates from a peA or PLS model to fill in 

the missing elements. It is outlined in Rannar et al. (1994b) where it is referred to 

as 'the EM algorithm'. 

For PLS, the algorithm consists of: 

1. replacing missing data by an initial value 

2. optionally mean centring and scaling the matrices 

3. calculating the PLS model from the resulting data matrices 

4. obtaining new values for the missing variables 

5. if convergence has not been reached, returning to step 2 

The initial value suggested in Rannar et al. (1994b) is the mean of the row and 

column means. The new values of the missing measurements in step 4 are 

obtained from the entries in 
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Equation 1-17 

corresponding to the missing measurements and the convergence criterion used 

was 

Equation 1-18 

While not stated, it is reasonable to assume that the actual criterion was summed 

over all of the model dimensions and that the power 2 is interpreted as a sum of 

the squared elements of the vector. The cut-off value of the criterion that was used 

by Rannar et al. was 10-3
. 

From the outline of this algorithm, an extension to PCA is clear. The PCA 

model is substituted for the PLS model and there is no output Y block to update. 

The essential step in this algorithm is the calculation of the replacements 

for the missing measurements. Once the data matrix is fixed, the model obtained 

is not dependent on the method used to calculate it. Any of the kernel algorithms, 

NIP ALS or other SVD or eigenvalue decomposition methods can be used. 

1.5.1.4 The MLPCA Algorithm with Missing Measurements 

The maximum likelihood principal components analysis (MLPCA) 

algorithm (Wentzell et aI., 1997; Wentzell and Lohnes, 1999) produces a model 

that minimises the sum of squared fitting errors for the data, as does PCA, but 

incorporating information about the measurement errors. A PCA model is 

produced only when the errors are independent and have equal variance and this 
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was used in Andrews and Wentzell (1997) to produce a model that was similar to 

peA from data with missing measurements. There are several versions of the 

algorithm given in Wentzell et al. (1997), the algorithm used in Andrews and 

Wentzell (1997) is one where the error varies by row and column, there are no 

error covariance terms and there are no intercept terms. The algorithm used in 

Andrews and Wentzell (1997) is the one that is covered here. The obj ective 

function is 

N K 

82 = IJZi _iJI:;I[Zi -iJ= 2JXk -xkT'P;I[Xk -ik] 
Equation 1-19 

i=1 k=1 

where I:i is the error covariance matrix for object Zj and 'Ilk is the error covariance 

matrix for variable Xk. Both of these matrices are diagonal in this case because the 

errors are assumed uncorrelated. The estimates of the measurements ii and i k 

come from 

Equation 1-20 

Equation 1-21 

and the matrices iJ and V come from a singular value decomposition of X: 

Equation 1-22 

AT 
ZN 

The algorithm starts with an initial value of iJ and V from an SVD of X. 

One iteration of the algorithm consists of two parts, the first of which is projection 

on the rows Zj using Equation 1-20, calculation of the objective function Equation 
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1-19 using the rows and an update of iJ and V by an SVD of the projected row 

data Zi' The second part of the iteration is projection on the columns Xk using 

Equation 1-21, calculation of the objective function Equation 1-19 using the 

columns and an update of iJ and V by an SVD of the projected column data xk • 

Convergence is obtained when the difference between the values of the objective 

function calculated in the two parts is less than a tolerance. A graphical 

representation of the algorithm is contained in Wentzell et a1. (1997). 

The MLPCA model with missing measurements in Andrews and Wentzell 

(1997) was calculated by setting the error variances to one for present 

measurements and 1010 for missing measurements. This weighting will yield a 

PCA model if there are no missing measurements. Andrews and Wentzell did not 

specify what values were used for the algorithm for the missing measurements but 

it will be shown in section 4.3.3 that these values do not have a strong effect on 

the results. 

1.5.2 Score Calculation with Missing Measurements 

The objective is to obtain estimates of the A elements of the vector of 

scores 't using a new, incomplete multivariate observation z *. 

1.5.2.1 Single Component Proje cHon Algorithm 

Once a PCA model has been built, and the loading vectors (Pi'S) are fixed, 

a non-iterative approach analogous to NIP ALS can be used to handle missing data 
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in new multivariate observations. The score calculation step of the NIP ALS 

missing data model building algorithm is simply applied to each dimension 

sequentially. This is called the single component projection method (SCP) 

throughout the remainder of the thesis. 

Consider the case where a PCA model has been built and a new 

multivariate observation vector zT(I}= ~#T(l}, z*T(l)] becomes available. Here 

z*(l} represents the variables for which observations are present. To calculate the 

jth element of the vector score, 'tj, corresponding to this observation, the single 

component projection algorithm minimises 

which yields 

Equation 1-23 

as the least squares estimate of 'tj based on the observed variables. The portion of 

z· (j) explained by this component is then subtracted to yield the deflated object 

Equation 1-24 

and the next component ( i j+! ) is then calculated. 

Substituting w; for p; in Equation 1-23 gives the PLS score calculation 

formula. Deflation in the PLS score calculation is the same as Equation 1-24; the 
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loading vector p; for deflation in PLS is not the same as the one used to calculate 

the scores but is calculated in Equation 1-16. 

1.5.2.2 Handling Missing Data in peA by Projection to the Model Plane 

The objective function to be minimised for projection to a plane is 

1 r .. .. rr .. .. ] 
J = "2 LZ - P1:A 't1:A lZ - P1:A 't1:A 

where Pl:A is the matrix of the first A loading vectors corresponding to 't1:A which 

are the scores being calculated. The optimal value for the score vector (-t1:A) is 

obtained by taking the derivative with respect to 'tJ:A and setting it equal to zero. 

Equation 1-25 

This projection method for obtaining all score estimates simultaneously by 

regressing z* onto the plane defmed by p* has been advocated by Wold et a1. 

(1983) and by Martens and Naes (1989). The regression based algorithm given by 

Wise and Ricker (1991) can also be shown to be equivalent to Equation 1-25. 

However, the latter algorithm is more difficult to implement and does not lend 

itself readily to the analysis performed in this thesis. 
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1.5.3 Prediction and Monitori ng with Missing Measurements 

1.5.3.1 Prediction 

Section 1.5.2 gave methods for calculating scores with missing 

measurements. Once the scores are calculated the predictions are calculated using 

Equation 1-2. 

1.5.3.2 Monitoring 

Once values for the scores have been calculated using one of the methods 

in section 1.5.2, the Hotelling T2 can be calculated by Equation 1-11. In Equation 

1-10, values for all measurements are needed in addition to the scores before the 

SPE can be calculated. The approach that is used in this thesis is to take the score 

that is calculated by the appropriate score calculation method in section 1.5.2 and 

the loading vector provided by the PCA or PLS model and use that to calculate a 

value 

z# = P#'t 

This value is then used for the missing measurements. Thus the residuals for the 

missing measurements will be zero if every latent variable in the model is used in 

monitoring. This is the approach taken in the MACSTAT software package 

(1995). The calculated SPE will be lower than the true SPE unless the missing 

measurements have zero residuals in the model. 
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1.6 EM Algorithm 

The Expectation-Maximization (EM) algorithm (Little and Rubin, 1987) 

can be used to calculate a maximwn likelihood estimate of a mean vector (11) and 

covariance matrix (S) from incomplete data. Some of the properties of EM are 

that it increases the value of the likelihood function at each iteration and it has the 

maximum likelihood values of the statistics as a stationary point (Little and 

Rubin, 1987). At each iteration, the algorithm can be interpreted as replacing the 

missing variable values by the expected values from the conditional normal 

distribution given the present data and the current estimate of the means and 

covariance, that is 

z# = E(z#lz* ,1l,S) 

In model building, the estimate of z# is then combined with Z * and the current 

estimate of the mean vector and covariance matrix and used to calculate an 

updated mean vector and covariance matrix. This is repeated until the estimates 

converge. 

1.6.1 EM and peA and PLS Models 

Since both PCA and PLS are based on the decomposition of covariance 

matrices (Hoskuldsson, 1988), EM can be combined with any covariance matrix 

based PCA or PLS algorithm to produce a maximwn likelihood estimate of the 

model from incomplete data. With an input-output model, EM makes no 

distinction between input and output variables. In the equations below all 
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variables are considered to be placed in a single matrix X whose mean vector and 

variance matrix are to be calculated. After these quantities are calculated, the 

estimates can be partitioned to obtain the desired input and output grouping. 

The expectation step in the case of estimating a mean vector Jl and a 

covariance matrix S (Little and Rubin, 1987) with iteration index n is 

Equation 1-26 

Equation 1-27 

where 

Equation 1-28 

Equation 1-29 

The means and variances above are the estimates at the current iteration. Note that 

the expected value of the cross-products of the variables is not just the product of 

the estimates when both the elements are missing. A correction is calculated 

based on the current estimate of the covariance matrix to account for the sum of 

squares that can not be estimated from the measured variables. 

The maximization (M) step updates the mean and covariance estimates for 

the next iteration 



28 

,uk{n+l)= tXik{n)/N Equation 1-30 

E(t[X,,, (n)- P" (n)l~", (n)-Pk, (n)l+ck,k,,(n)J 
s klk2 (n + 1) = ----''----------------'-

N 

Assuming a non-singular normal distribution for the data, the expectation 

in Equation 1-28 in matrix vector form is 

Equation 1-31 

The covariance term in Equation 1-29 in matrix vector form is 

Equation 1-32 

These basic results can be found in Johnson and Wichern (1988). 

1.7 Quadratic Forms 

In this thesis it will be necessary to calculate the cumulative probability 

distribution of a quadratic form 

Equation 1-33 

Equation 1-10 and Equation 1-11 have this structure so the Hotelling T2 and SPE 

are examples of quadratic forms. In both cases the mean vector of the random 

variables Jl is zero which is referred to as the central case. The standard results for 

the critical values of the forms referenced in sections 1.4.2.1 and 1.4.2.2 are for 
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the central case and can not be used where the mean of the variables (Jl) is not 

zero. 

Approximations to the cumulative distribution of the non-central quadratic 

form can be found in the literature (Jensen and Solomon, 1972; Kotz et at, 1967) 

when both A and ~ are positive definite. The parameters for the approximations 

are calculated after Equation 1-33 is put into the standard form 

x~ N(O,I) 

According to Imhof (1961), a similar form can be obtained when 1: is singular but 

A is not. A reduction to the form above when both A and ~ are singular is given 

in appendix 1. 

The approximation that will be used in this work is that of Jensen and 

Solomon (1972). They apply a transformation to the quadratic value that yields an 

approximately standardised Gaussian variable 

9'[[ ~r -1- 9Al~' -1]] 
z = ----==--------:-I---=-

[2e 2h; f 
K 

en = ICZ[1 + nai] 
k=1 
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with approximate mean 1 + 82ho[ho -1] and variance 282hg . 
82 82 

1 1 



Chapter 2: Analysis of Score Errors from Missing Measurements 

2.1 Introduction 

Once a peA or PLS model has been built it will often be applied to new 

objects which are not a part of the model building data set. Applications where 

this is done include prediction of process responses for inferential control and 

process monitoring. These new objects may have missing measurements due to 

faulty instruments, maintenance or missed manual samples. The model can only 

be applied to these incomplete objects if a value for the score vector 1: can be 

calculated from the incomplete object which is close to the value that would be 

produced if all measurements were present. There are several algorithms in use 

for calculating scores when the model is fIxed and known and some 

measurements in a new object z are missing but the factors affecting their 

performance have not been developed. 

A novel missing measurement score calculation algorithm is proposed in 

this chapter and the factors affecting the performance of both the novel and 

existing algorithms are identifIed and illustrated by designed and industrial 

process data sets. The novel score calculation algorithm is developed from the 

EM algorithm. Recommendations for pruning variables and the number of 

dimensions in a model that lead to models that are more robust to missing 

31 
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measurements are made. The designed data sets show the effect of individual 

factors on score calculation with missing measurements. The analysis of score 

calculation with missing measurements for two process data sets from the 

literature, one simulated and the other industrial, shows how the specific factors 

can be evaluated in practice to determine performance for a given algorithm. 

Much of this work was published in Nelson et al. (1996). 

Expressions are developed for the score estimation error arising from the 

missing data with the SCP algorithm. This analysis reveals how errors enter and 

propagate in the SCP method, thereby providing justification for using 

simultaneous projection methods and supplying insight into the sources of error 

that arise during model building with sequential methods. Two approaches which 

are not limited to considering a single direction at a time are then treated in a 

similar manner: (i) projection to the model plane and Oi) data replacement using 

the conditional mean. 

The mean squared score estimation errors are calculated for each of the 

methods when applied to simulation examples carefully constructed to accentuate 

the effects ofthe types of errors identified in the analysis. Finally, the methods are 

applied to a data set from a simulated distillation column and an industrial data set 

to illustrate how the methods work in practice. The examples reveal the 

application of the score error expressions and potential pitfalls in variable pruning 

during model building. 
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2.2 Handling Missing Data by Single Component Projection 

An important point that distinguishes the single component projection 

approach from other methods of handling missing data is that it treats the missing 

data separately in the calculation of each latent dimension. It does not consider the 

impact on future dimensions, nor does it consider the effect that errors made in 

earlier dimensions will have on the calculation of the current dimension. It is the 

purpose of this section to carry out an error analysis of the single component 

projection approach which is outlined in section 1.5.2.1, and to illustrate the 

consequences of these errors using simple simulation examples specifically 

constructed to highlight problem situations. 

2.2.1 Error Analysis for PCA 

The estimate of the error in the score calculated using Equation 1-23 can 

be analysed by assuming a structure for the independent data vector z. Since a 

model has already been built which decomposes the covariance matrix, it can be 

used to give this structure. The measured portion of the new data vector z can be 

expressed as 

z 1 =P't+e *( ) * * Equation 2-1 

where 't is the true value for the scores and the 1 in brackets denotes the original 

data. The number in brackets after z is incremented after each dimension as 

Equation 1-24 is applied. The residual term e* contains measurement errors. 

The structure in Equation 2-1 is that of a peA model but the actual 

dimensionality of the data vector z may not be the same as the model that has 
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been calculated. Therefore the matrix P in Equation 2-1 has K columns and 't has 

K rows to give the most general representation possible. The first A columns of P 

are equal to the model loading vectors. This allows the true dimensionality of the 

data to differ from that of any model of it but requires that some of the elements 'tj 

be fixed at zero if the actual dimensionality of the data is less than K. 

The error in the first score is 't'l - -tl where -tl is given by Equation 1-23. 

The expression for z*(l) given in Equation 2-1 can be substituted into the error 

expression for the first score to obtain 

[ *T *}1 *Tf., *] 
= 't'1 - LPI PtJ P1 lP 't+e 

[ *T .. }1 *T [ ... ., L r 0T .. }1 *T 0 

= 't'l -lPl Pd PI LPI' P2' . '" PK P;- LPI Pd PI e 
K '" r *T .. }1 *T * [ 0T .. }1 *T ., 

=-L.JLPI Pd PI Pj't'j - PI Pd PI e 
j=2 

after deflation, 

and therefore 

m=j+1 

Equation 2-2 
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for j = 2, 3, .. " A. When there are no mlssmg measurements, 

*r' r . d *r * r . P j Pm = P jPm = O,j * m an P j P j = P jP j = 1, and so EquatIon 2-2 reduces to 

Equation 2-3 

This shows that the score estimation error with no missing measurements is only 

affected by the measurement errors. However, in the presence of missing data 

Equation 2-2 shows that two additional terms appear in the error expression for 

the jth score estimate. The fust term in Equation 2-2 represents the error in i j 

arising from incorrectly attributing some of the variance in z * that arises from 

later principal component scores 'l: m (m > j) to the current score 'I: j' This term will 

tend to be large whenever the subsequent scores explain a significant amount of 

the variation in z· and when the missing elements make p; and p: (m > j) no 

longer orthogonal (p;r p: * 0). The last term in Equation 2-2 represents the 

propagation of the errors made in estimating the earlier scores (m < j) into the 

error of the present score estimate i j • Again this term will be important when the 

missing elements make p; and p: (m < j) no longer orthogonal. Note that 

whenever the missing measurements have large loadings in the current loading 

vector p j , the squared length of the p; vector (p;r p ;) will be small, and its 

inverse will be large, thereby increasing the size of all the error terms in Equation 

2-2. 
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A general expression for the error in the SCP algorithm can be also be 

defmed recursively in matrix-vector form to give the error in terms of the original 

* data vector Z . 

* ( ") * (~ 1)" * Z J = Z V - - 't j_IP j-I 

where 

*(. ) [*T • }IL*T *(. )L* = Z J -1 - LP j_IP j-d !.p j_I Z 1 -1 P j-I 

* ( : ) L *T * }I * L *T * ( . )] 
=Z V -1 -!'pj-IPj-d Pj_l!'pj_I Z J-l 

{ L *T • }I * *T \ * ( . ) 
= \1 -!.p j_IP j-d P j-lP j_IP J-l 

= L\(j)z*(I) 

(.) rrJ
-
1 { (*T * )-1 * *T) L\ ] == \1 - \P j-mP j-m P j-mP J-m 

m=1 

Equation 2-4 

Equation 2-5 

Substituting this definition into the score error equation for PCA, we obtain 

Equation 2-6 

2.2.2 Simulation Studies 

Example data sets, each with 300 objects and 3 variables, were 

specifically created to illustrate the effect on the score estimation error of each of 

the terms in Equation 2-2. Only three variables were used to enable geometric 

interpretations of the results, but this means that 33% of the data will be missing 

when one measurement is deleted. In addition, the data sets are designed to 

deliberately accentuate the errors that arise in problem situations. Therefore, the 

results obtained from these simulated data sets will show extreme situations. 

Results that are more typical are shown in the industrial example treated in 
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section 2.5.2. 

The simulated data were generated as follows. Three sets of sample scores 

were drawn from normal distributions with zero means and different variances. 

Several data sets were generated from each set of scores using specified loading 

vectors that are described below. The first variable was assumed to be missing in 

each of the 300 simulated multivariate observations in each data set and the first 

and second scores were estimated using the single component projection missing 

data algorithm. The differences between these estimated scores and the known 

true scores were calculated and the mean square of these errors displayed in Table 

2-1 in the column labelled 'SCP Algorithm'. Mean squared errors for the other 

methods introduced and analysed later in this chapter are also listed in this table, 

and will be referenced later. The significance of the labels on the rows of Table 

2-1 is discussed below. 

Influential variables have large weights in the loading vector. When they 

are removed from the data vector the magnitude of p:r p: decreases from a value 

of 1 with no missing measurements to a minimum of O. Geometrically, if p: is 

collinear with the plane of the missing measurements then there is no information 

about that component in the measured variables and if p: is orthogonal to the 

plane of the missing measurements then there is full information in the observed 

variables. As p: becomes more collinear with the plane of mlssmg 

measurements, the term p T p ~ decreases and its mverse mcreases, thereby 
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Figure 2-1: Score Estimation Error Increases as the Loading Vector Nears the 
Missing Variable Axis 

increasing the size of each term in the score estimation error Equation 2-2. This 

effect is illustrated graphically in Figure 2-1 where the error in the score, both 

relative and absolute, increases when the loading vector becomes more collinear 

with the missing variable axis (Zl). The data sets in Table 2-1 with 

p? p; = 0.0196 have a first loading vector that depends heavily on the missing 

variable (Zl). The first loading vector of data sets with p;r p; = 0.6667 is not as 

collinear with the missing variable axis but rather depends equally on all 

variables. Comparing the score estimate mean square errors in Table 2-1 shows 

that, with the rest of the characteristics the same, data sets with p;T p; = 0.0196 

have much larger errors than data sets with p;r p; = 0.6667 for the first 

component scores. 



Loading Vector Number of SCP Projection Projection Conditional 
Characteristics High Algorithm to Model to Model Mean 

Variance Plane with Plane with Replacement 
Dimensions OLS PCR 

p;Tp; = 0.6667 1 0.0040 0.0072 0.0072 0.0035 

Lp; ,p; = 50.8· 2 0.2548 0.0142 0.0142 0.0137 
3 0.2868 0.6072 0.3079 0.2055 

*T * PI P1 = 0.6667 1 0.0049 0.4815 0.0918 0.0048 

L * * T 2 0.3785 0.9483 0.2924 0.2226 
Pl,P2 = 

3 0.3194 40.68 0.2337 0.2291 

p?p; = 0.0196, 1 0.3343 0.4025 0.4025 0.2230 

Lp;,p; = 50.8° 2 15.64 0.7926 0.7926 0.4516 
3 25.66 34.00 0.8404 0.8188 

p?p; = 0.0196, 1 0.4912 16.53 0.7857 0.2879 
L * * T 2 37.49 32.55 0.9568 0.9395 PPP2= 

3 31.90 1397 0.8275 0.8246 
--- ---------- ~-----.-.-- .. ~ 

Table 2-1: Mean Square Error of the First PCA Score Estimate for Example Data Sets 

I 

UJ 
\0 
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Figure 2-2: Score Estimation Error Increases as the Second Score Becomes Larger 
Relative to the First 

If loading vectors become collinear because of missing measurements then 

the first of the loading vectors which is used to calculate a score will be used to 

explain some of the variance in z* in the direction of the other. The expression 

p 7p: 'tm in the first term of Equation 2-2 is due to this effect and will be zero 

when there is no missing data. With missing data, it will increase in importance 

when 'tm is large compared to 'tj (data sets with two or more large scores) and 

when p; is nearly collinear with p: (data sets with Lp; ,p; = T). The expression 

indicates how much of the variance in z· associated with 'tm will be mistakenly 

attributed to 'tj when p: is not orthogonal to p;. This is illustrated geometrically 

in Figure 2-2 where two objects with the same first score and different second 
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scores are regressed onto a loading vector. The larger the second score ill 

comparison to the first, the larger the error will become. 

One way that the data sets used to calculate the results in Table 2-1 can be 

classified is by the relative magnitude of the variance of their scores. There are 

three different classes of relative score variance. In the data sets with one large 

score dimension, the variance of the first score is almost two orders of magnitude 

greater than the others with values of 0.9, 0.01, and 0.005. The data sets with 2 

large scores have the first two score variances close together and the third much 

smaller (0.9, 0.7, and 0.01). All 3 score variances are of similar magnitude (0.9, 

0.7, and 0.5) in the data sets with all scores large. Comparing consecutive entries 

in Table 2-1 with constant p;r p; and Lp; ,p;, the error tends to increase with the 

increase in size of the variances of the later scores compared to that of the first 

score as expected from the error expression in Equation 2-2. 

The first and second missing variable loading vectors are almost collinear 

for half of the data sets, those where the angle between p; and p; is 7.00
, and 

relatively distinct in the other half where the angle is 50.go. With no missing data, 

the angle is 90° and the vectors are orthogonal. Compare data sets with a different 

angle between p; and p; but identical scores and p? p; to see that, with 

everything else constant, the score calculation error increases as p; becomes 

more collinear with p; . 



Loading Vector Number of SCP Projection Projection Conditional 
Characteristics High Algorithm to Model to Model Mean 

Variance Plane with Plane with Replacement 
Dimensions OLS PCR 

*T * 6 PI PI = 0.66 7 1 0.0049 0.0096 0.0096 0.0047 

Lp; ,p; = 50.8° 2 0.1280 0.0189 0.0189 0.0183 
3 0.4032 0.8096 0.4105 0.2740 

p?p; = 0.6667 1 0.0098 0.9582 0.1827 0.0096 

L' * T 2 0.7386 1.887 0.5820 0.4430 
Pl,P2 = 

3 0.6427 80.96 0.4651 0.4559 

*T * PI P1 = 0.0196, I 0.0027 0.0033 0.0033 0.0018 

Lp; ,p; = 50.8· 2 0.1237 0.0064 0.0064 0.0037 
3 0.2668 0.2753 0.0068 0.0066 

p?p; = 0.0196, 1 0.0097 0.3238 0.0155 0.0057 

L * * T 2 0.7385 0.6416 0.0189 0.0185 Pl,P2 = 
3 0.6281 27.52 0.0163 0.0163 

~------------ ------

Table 2-2: Mean Square Error of the Second PCA Score Estimate for Example Data Sets 

.,J::. 
tv 
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The last term in Equation 2-2 shows how errors made in previous score 

calculations, 'em -im with m < j, affect the error in the score estimate (i j) 

currently being calculated. This term will be large in cases where there are large 

errors in the early scores, and when the missing data loading vector P: is nearly 

collinear with the previous loading vector P: (data sets with LP;,p; = T). This 

effect is shown for the single component projection algorithm in Table 2-2 where 

the mean squared error in the second score vector estimate is seen to be largest for 

these cases. 

These pathological examples are used only to illustrate the effects of 

various terms on the error in score estimates obtained from single component 

projection when there are missing measurements. Since there are only 3 variables, 

the effects will be exaggerated compared to real situations where a smaller 

percentage of the variables may be missing and such high collinearities may not 

be present. 

2.2.3 Error Analysis for PLS 

The structure of the deflated data vector at the jth stage of the single 

component projection algorithm for PLS is 

j-i 

z*(j)= P*-c+e* +d* - LimP: Equation 2-7 

m=i 

since PLS deflates using the P vectors. Once again P has K columns and -c has K 

rows to allow the dimensionality of the data to be different than the model and 
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some of the elements of 1: will be fixed at zero if the dimensionality of the data is 

less than K. If there is no score estimation error and the underlying dimensionality 

of the data is A then -tm = 'tm and the first and last terms cancel after all A scores 

have been used in deflation. In this case, the residual data vector is composed of 

the sum of a vector of random error variables e * and a deterministic remainder d*. 

The d* term arises because PLS does not necessarily use all the non-random 

information in the independent data block that is of greater magnitude than the 

noise, as does peA. Substituting this expression for z*(j) into the expression for 

-t j for PLS gives 

[ *T *}1 *T [r • 
= 1: j - LW j W j J W j LPI' 

.. .. 1_ • * 
P2' ... , PKjt+e +d 

[ *T *}I *T * [ *T *}I *Td* -lw j wjJ Wj e - Wj W j ] Wj 

j-I 

-IJw;T w; r W;T P:[1:m - -tm] 
m=1 

Equation 2-8 

When there are no missing measurements, the score estimation error 

reduces to 

Equation 2-9 
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Unlike peA in Equation 2-3, the PLS score estimation error with no missing data 

has an error propagation term. This means that score estimation errors originating 

in measurement noise are transmitted to later scores. Errors propagate because the 

loading vector w ~ is not required to be orthogonal to p: when m is less than j 

although deviations from orthogonality are penalised (Burnham et al., 1996). 

It is instructive to look at the various contributions to the score estimation 

error in Equation 2-8. The term w7w>s analogous to the p7p~ term for the 

PCA single component projection algorithm. All error terms are magnified by the 

inverse of this term, which is large when the loading vector is nearly collinear 

. with the missing variable subspace. The last term in Equation 2-8 is analogous to 

the last term in Equation 2-2 for the PCA analysis. It represents the propagation of 

errors made in estimating earlier scores into the error in the present score 

estimate. In PLS, it is present to a slight degree even when there is no missing 

data (see Equation 2-9), but becomes much larger whenever the missing 

measurements are such that w~ becomes more collinear with some of the p: (m 

< j) making w T p: large. The second term in Equation 2-8 is analogous to the 

first term in Equation 2-2 and shows how much of later scores 'tm (m > j) are 

erroneously captured by this score 't j • This term is zero with no missing data, but 

becomes large when the missing measurements are such that w ~ and some of the 

p: (m > j) become more collinear, and when subsequent latent directions account 
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for a large amount of the variance in z *. The first term in Equation 2-8 will 

normally be small but will be non-zero whenever w ~T P ~ is not equal to w ~T W ~ • 

Variables in z, which have little correlation with the Y variables, will make it 

larger. This situation will also tend to increase the deterministic residual 

contribution term w*J d* . 

The matrix-vector form of the error equation analogous to Equation 2-6 is 

Equation 2-10 

2.3 Handling Missing Data in peA by Projection to the Model Plane 

One of the main sources of error in using the single component projection 

algorithm for treating new data vectors with missing measurements arises from 

some of the variance in z* being assigned to the wrong score. This problem is 

most acute when consecutive scores are of similar magnitude and the associated 

p * loading vectors are close to collinear. One way to alleviate this difficulty for 

peA is to calculate all A of the scores at once by projecting onto the hyperplane 

formed by the p ~ vectors j = 1, 2, ... , A. This is equivalent to saying that all of 

the loading vectors will be fitted to the data at once. When there are no missing 

measurements, this will result in scores identical to those calculated using the 
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single component projection method since the loading vectors are orthogonal. It is 

this loss of orthogonality that causes many of the problems associated with 

missing measurements. 

Using the structure for a new object £(1) given by Equation 2-1, we can 

calculate the score estimation error arising from Equation 1-25 as 

Equation 2-11 

Here P A+1:K and 1:A+I:K represent the latent variable space that has been neglected 

in the peA model. If the model dimension A has been correctly chosen then all 

1:A+l:K are zero. 

The terms in this error expression can be compared with those for the 

standard single component projection algorithm in Equation 2-2. The first two 

terms are directly analogous, but note that the third term in the single component 

projection error expression (Equation 2-2) which shows the propagation of errors 

from preceding scores into the current estimate is absent in Equation 2-11. The 

absence of this term is a direct result of the fact that all scores are being estimated 

simultaneously in the projection algorithm. 

The first term in Equation 2-11 represents the errors ansmg from 

incorrectly attributing some of the variance in z * to the scores that are being 
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estimated. This variance is in the direction of higher dimensional latent variables 

that have been ignored. Both terms in Equation 2-11 can become large when 

P;~Pl~A becomes ill-conditioned. This situation can arise whenever a combination 

of missing measurements makes some of the columns of P;:A nearly collinear. 

When this occurs, a biased regression method such as principle components 

regression (peR) or ridge regression can be used to calculate the scores. Equation 

1-25 is replaced by the estimator for the chosen regression method and Equation 

2-11 is based on this new estimator. 

2.3.1 Simulation Examples 

This projection algorithm, using only two latent vectors in the model 

(A=2), was applied to the illustrative examples described in section 2.2.2. The 

mean square of the first two score estimate errors from projection to the model 

plane with ordinary least squares (OLS) are presented in Table 2-1 and Table 2-2. 

The most obvious source of error with the projection algorithm with OLS 

arises in all the cases with three large scores. In these cases, there are three large 

latent vectors and only two were used in the model. As a result, the first term in 

Equation 2-11 is large. Variance in z * arising from the third latent variable is 

being wrongly attributed to the first two dimensions. This emphasises the point 

that all significant latent variable dimensions must be included when this 

projection algorithm is being used to handle missing data. This is true even in a 

process monitoring application which will only use the first few dimensions. The 
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single component projection algorithm is not affected by poor choice of number 

of dimensions in the model since it proceeds sequentially. 

Ill-conditioning of the Pl:~Pl:A matrix is the other major factor influencing 

the score estimation error terms for projection with OLS. In the examples, this 

clearly shows up in cases with pt p; = 0.0196 and Lp; ,p; = T where the 

missing first variable greatly affects the magnitude of the first column of Pl~A , and 

where the first two columns of P;A are nearly linearly dependent. 

The results were re-calculated using PCR rather than ordinary least 

squares and the results placed in Table 2-1 and Table 2-2. The singular directions 

that were used in PCR were chosen based on validation of the resulting model. 

The sample data was divided into two groups and scores were calculated for each 

group separately with the other group in each case functioning as the validation 

data. The vectors chosen were the same in each case. In practice, data from the 

model building stage would be used as the validation set. The mean squared score 

estimation errors are much improved from the OLS results. 

Once again, it should be remembered that the illustrative examples are 

designed to show extremes. Application to actual data will likely produce much 

smaller errors, particularly when higher dimensional data sets with some 

redundancy are used. 
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2.4 Missing Data Replacement using Conditional Mean Replacement 

In this chapter, we are assuming that we have already built a peA or PLS 

model and are only interested in handling missing data in future multivariate 

observations. Therefore, when calculating scores, good estimates of the variable 

means and the covariance matrix are available from the modelling step. We 

assume that the addition of the information in one new object will not change 

these estimates appreciably and we therefore use only the expectation step of the 

EM algorithm to calculate replacement values for the missing measurements. To 

assist in developing an expression for the replacement values for the missing 

measurements, the missing measurements are grouped in the first elements of the 

data vector, that is 

The estimate of the covariance matrix, S, is 

where e = TT% -1 is a K by K diagonal matrix with the diagonal containing 

the estimated variances of the latent variables. 
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2.4.1PCA 

Substituting 

into the expression for S gives 

Using this expression for S, the conditional expectation of the missing 

measurements (Johnson and Wichern, 1988) is given by 

z# = S#*[S** r zoO 

= p#f)p*T [p*f)p*T jl z" 
Equation 2-12 

The estimated missing measurements can then be used in the score calculation 

along with the observed data as if no measurements were missing. For PCA this 

gIves 

~ [Z#(j)]T 
't j = z*(j) Pj 

= ZiT (j)P~ + Z"T (j)p; 

= [s#*[s**rz*(j)f p~+Z*T(j)P; 
= z *T (j)[s** rs*#p~ + Z*T (j)P ~ 

Equation 2-13 

The score calculation for PCA can also be re-written in terms of the 

loading vectors and score variances: 



" T Z ["#] 1':1:A = P1:A Z" 

= pT [ p#9P*T (P*9P*T [I z· ] 
1:A [P'9p*T][p.9P*T[I Z• 

= Pl~[ ~}P'T [P·8p'T r z 
= ptAP9p*T (P*9p*T [I Z .. 
= [I, 0 ]8p*T [p*9P*r r z· 
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Equation 2-14 

where 1 is an A by A identity matrix and 0 is an A by (K-A) matrix of zeros. The 

error in these scores is 

1':l:A -1:1:A =1':l:A -[I, O]sP*T[P*9P*T[lZ* 

= 1':1:A - [I, 0 ]sp*T [P*9p*T t' [po 1': + e· ] 
Equation 2-15 

Applying this score calculation formula to the illustrative examples 

described in section 2.2.2 gives the results shown in Table 2-1 for the first score 

and Table 2-2 for the second score. The mean square of the score estimation 

errors for conditional mean replacement is lower than that for any of the other 

methods considered in this paper in all of the test cases studied. 

A potential problem with using this conditional expectation replacement 

approach is that one needs to obtain the inverse of the (K-KM) by (K-KM) matrix 

X*TX· (or equivalently p*9P*T) where KM is the number of missing 

measurements. This matrix may be very ill-conditioned with highly correlated 

data. In this situation, the projection to the model plane approach of Equation 
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1-25 has the advantage of only needing the inverse to a much smaller A by A 

matrix. 

The score calculation by conditional mean replacement can be related to 

the least squares estimate of the scores based on the training data set, assuming 

the same variables to be missing in each row of X. Denote the new X matrix with 

l missing from each row as X*. Let 3j be the PCA or PLS vector that is used to 

calculate the jth score from the complete or full X matrix (Pj for PCA and the jth 

column of W(p TWfl for PLS). The sum of squares objective function for the 

deviation of the vector of tj values based on the model using the full data set 

( t j :::: X3 j ) from its estimate based on the incomplete matrix X* is given by 

J = [t j - X*~ j Y [t j - X*~ j ] 

and the least squares estimate is given by 

ji j = [X*TX' tl X*T t j 

= [X*TX* r X'TX3 j 

:::: [X*TX* rX*T[x# X* ~ j 

= [X*TX· r [X*TX# X*TX· ~ j 

= [So. tl [S*# S·" ~ j 

- r.S** }1 S*# # * 
-~ J 3 j +3 j 

Thus, the least squares estimate of the parameter vector that should be used to 

calculate a score with missing data gives the same result as replacing the missing 

data with its conditional expectation, assuming a normal distribution and 
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calculating the score using the complete data method (Equation 2-13). This is an 

important analogy because, as mentioned above, it is possible that S** will be ill­

conditioned or its inverse will not exist. This problem will be particularly acute 

when large numbers of variables are missing. A number of traditional regression 

solutions, such as ridge regression, principal components regression and PLS, 

could then be used to provide improved estimates of [S** [1 and ~ j in these 

situations. 

To check whether ill-conditioning had any affect on the results in Table 

2-1 and Table 2-2, both PCR and PLS regression were applied to calculate a 

model between X* and T. The number of components in these models was 

validated as in projection to the model plane. The best results in both cases were 

obtained when the methods used all latent variable dimensions, thereby reducing 

to the OLS solution. We can conclude that ill-conditioning was not a problem in 

this case. 

2.4.2 PLS 

For the PLS score calculation analysis, the vectors that are chosen as the 

basis for X are the columns of W. This basis is not unique but was chosen for the 

convenient form that it gives to the score vector estimation equation. The matrix 

Q contains the variance of scores calculated in the PCA fashion with W as the 

loading matrix. They differ from PLS scores in that W rather than P is used to 

deflate the data vector, but Q is still diagonal. Thus 
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and 

z# =s#*[s··rz· 

= W#gW*T [W·gW*TJI z* 

and the PLS score estimates are 

'IA = [WiAP' A r WiA[::] 

=[W~P. }lw:[w#gW*T[w*gW*Tr z'"] 
LA uj LA '" 

Z 

= WT P lWT [w#gW*T[w*gW*Tj1z*] 
[ l:A I:A j l:A [W*gW*T Iw*gw*T jl Z * 

r T }l T [WII] *T r '" *T}I,. 
= lW1:AP1:A J W1:A woO gW LW gW J z 

= [WT P }lWT WgW*T[W*gW*T}l .. 
l:A l:Aj l:A J Z 

= [Wl~APl:A r [I, 0 }2W*T [W*gW*T r z * 

Equation 2-16 

where I is an A by A identity matrix and 0 is an A by (K-A) matrix of zeros. The 

error in the calculated PLS scores is 

't1:A - -e1:A = 't\:A - [WtAPI:A r [I, 0 PW*T [W'"gW*T jl z" 

= 't\:A - [WrAPl:A r~, 0 PW*T [W*gW*T r 
[po 't + e" + d* ] 

Equation 2-17 

The error can arise from: any violations of the assumptions of least 

squares regression, the noise term, ill-conditioning in S*·, or lack of information 

in the measured variables about the unmeasured variables. The matrix S#* shows 

the covariance between the present and missing measurements. Any zero row in 
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S#* shows a complete lack of information about a missing variable; thus the 

variation in that variable is unique to it or to the group of missing measurements. 

This method has information about the magnitude of the expected squared scores 

through its use of the covariance matrix of the data and the conditional 

expectation. This gives it an advantage over the single component projection 

method and the projection to the model plane. 

2.5 Examples 

2.5.1 Distillation Column 

In the first example, a PLS model which was published in !<resta et al. 

(1994) is analysed. The data set comes from a distillation column simulation with 

a methanol-acetone-water (MA W) feed, 13 trays and a reboiler and reflux 

condenser. The reflux drum temperature is numbered I, the tray temperatures are 

numbered 2 through 14 and the reboiler temperature is number 15. A steady state 

empirical PLS model related these temperatures to the outlet compositions. The 

purpose of the model was to provide a prediction of the outputs for an inferential 

control scheme using only simple measurements. 

!<resta et al. emphasised that the PLS model should not be converted to 

polynomial regression coefficients but rather should be left in standard PLS form. 

This allows the missing data handling feature of PLS to be used if a measurement 

is missing. To illustrate this, the reboiler temperature was assumed to be missing. 
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This variable had a large polynomial regression coefficient for the prediction of 

the bottoms composition which would lead one to believe that losing this 

measurement would seriously affect the performance of the model. Losing this 

variable did not adversely affect prediction with the PLS model form using the 

missing data handling feature but did affect the regression coefficient form when 

the missing variable was replaced by its mean value. This work will analyse the 

PLS model to show why it was robust to losing the reboiler temperature 

measurement. 

An error in the prediction of the output must be caused by an error in the 

scores. If the errors in the scores are small compared to their magnitude then the 

prediction error will be minor. The terms in Equation 2-8 show the terms which 

must be small in order to have an insignificant error in the score estimate and in 

this case the first three score estimation errors are 

'tl -il =0.0390'tl + [-0.4826}t2 +0.3114't3 +0.0538't4 

+ [-0.1193}t5 _[w;rW;rW( e* _[w;Tw;rw;r d* Equation 2-18 

't2 - i2 = 0.0884't2 + [-0.5992}t3 + [- 0.1036}t4 + 0.2296't5 

+[-0.3695]['tl-iJ-[w;rw;j
l
wie* -[wiw;rw;rd* Equation 2-19 

't3 -i3 = 0.033O't3 + 0.0419't4 + [- 0.0930}t5 + 0.4316['tl - ill 
+ [- 0.1476]['t2 -iJ- [w;rw;rw;r e* - [w;rw;jlw;r d* Equation 2-20 

The magnitudes of the successive scores being close together can lead to 

problems and we see in Table 2-3 that the expected squared value of the second 
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score is different from the first by a factor of only 2.9. This will be serious if 

w;r p; divided by w;r w;, the coefficient on 't2 in the error for 't}, is large 

compared to the ratio of the first and second expected squared scores. It can be 

seen from Equation 2-21 that the error is not very large. To quantify the 

magnitude of the effect, the expectation of the square of this term can be taken. 

The contribution of this term to the overall sum squared error relative to the 

expected square of the score is 

..........lIo..~~...--L--!::..L.L ~ [_ 0.4826f E¥,,} 
E't2 

1 

= [-0.4826f[0.3502] 

=0.0816 

since the expectation of all terms involving different scores or scores and 

residuals are zero. The second and third expected squared scores are close in 

magnitude as well and w ;r p; divided by w ;r w ; is large, indicating an 

appreciable error in -t2 • The contribution of this term to the sum squared score 

error is approximately 

= 0.1115 
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This is approximate since it ignores the cross-correlation with ~ J which can either 

reduce or increase the effect of 't3 on ~2. The full effect is 

= [-0.5992 + [-0.3695P.3114f 0.1088 
0.3502 

= 0.1585 

The fust order approximation is useful in order to identify potential problems; it 

will be used in place of the full effect here. 

The contribution to the squared error from the deterministic residual 

independent of the other terms so that there are no cross-terms involving this 

quantity in the overall error. The error term W~T e* is assumed to be zero since no 

information about it is known. 

Propagation of error will not be a problem for the two dominant scores 

because the first score has, by definition, no error propagation and the small first 

score error will not have a large impact on the second score. The approximate 

effect of error propagation on the second score estimation error is 

W*~ PI. E 't J 
- :1 = 0.0366 . From Equation 2-20 it can be seen that the third 

[ 

*T *]2 A f 
w2 w 2 E't2 

and subsequent scores have little effect on the ~3 error but the error from the first 
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score estimate propagates through strongly ( w:r p~ 't1 -:1 = 0.1606). The 
[

Or *]2 E " j 
W3 W3 E't3 

effect of the second score error is much smaller: w;r p: 't2 -:2 = 0.0162. [ 
*r.]2 E " j 

W3 W3 E't3 

The fourth and fifth scores also are affected almost entirely by error propagation. 

The approximate magnitudes of the error propagation terms in the sum squared 

errors for the fourth score estimate are W*~ Pl. 't1 - :1 = 0.032 and 
[ 

*r *]2 E " j 
w 4 w 4 E't4 

[ 

*T *]2 E{r ,,]2 
W P \J.'t - 't • 
~ : 2 2 2 = 0.0859. These scores can have apprecIable errors 

w 4 w 4 E't4 

relative to their magnitude even with small error propagation terms because they 

have a small magnitude relative to the first two scores. 

The fourth row of Table 2-3 lists the expected squared errors for each of 

the scores. This error is not the true error since the true scores are unknown. Since 

there is no information about the measurement errors, the difference between the 

score calculated with the complete data ('ij ) and the score calculated with the 

incomplete data (:t i) is used as the error. This squared error is therefore not an 

absolute error but a relative error and indicates an increase in the variability of the 

score. Examining the ratio of the expected squared error to the squared score in 

the fourth row of Table 2-3, it can be seen that, as expected from Kresta et al. 

(1994) and this analysis, the expected errors are small compared to the 
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magnitudes of the scores for the large, important scores. There are large relative 

errors in two ofthe three small scores as indicated by this analysis. 

The squared score errors when score calculation with conditional mean 

replacement is used are listed in the last row of Table 2-3. They are lower for all 

scores than the standard method and are negligible, with the largest percentage 

error being approximately 3%. There must be sufficient information in the data 

without the reboiler temperature to calculate the scores and this method is more 

efficient at using it than the standard method. The condition number of the matrix 

to be inverted in this case is 8414. This shows a dangerous degree of ill­

conditioning. 

Information about the robustness of the PLS model to the loss of the 

reboiler temperature can also be obtained from plots of the loadings. PLS groups 

variables with similar information about the plotted components together or 

reflected in the origin. Important variables have large weights and thus are far 

from the origin. Thus variables near a common line through the origin and far 

from the origin are important and contain similar information for the components 

plotted. The plot of the first versus the second component loadings in Figure 2-3 

shows that while the reboiler temperature (variable 15) is very important, variable 

14 has much the same information and variables 9 and 10 are as important for 

component 1. Variable 14 is physically the closest measurement to the reboiler 

temperature and can be seen to contain much the same information. This is why it 

has a similar loading in the first two components of the PLS model. Variable 10 is 
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Figure 2-3: PLS Loading Plot for MAW Distillation Column 

the feed tray temperature so it too affects the bottoms composition strongly and 

variable 9 is close to it and thus similar. Since important variables have large 

weights and are thus far from the origin, the term w ~T W ~ discussed above can be 

understood to decrease, and thus increase errors, when the amount of information 

about the output variance that vector represents decreases. If a variable with 

similar information to an important, but missing, variable is present then errors 

will be minimal. 



Term Component Component Component Component Component 
1 2 3 4 5 

mean(~j2 ) 1 0.3502 0.1088 0.0229 0.0027 

mean(:rJ2) 
*T * 

Wj Wj 0.7592 0.5434 0.8267 0.9857 0.9646 

1(' *T • .T .) meanw j d d Wj 2.8656e-6 5.4344e-6 2.0631e-6 1.7022e-7 4.2084e-7 

mean~~j - i j f ) 0.0938 0.2316 0.2774 0.0252 2.5714 

mean(:rf) 
SCP 

mean~~j -ij f) 6.255e-4 2.596e-3 3.21ge-3 1. 176e-4 3.l93e-2 

mean(~f) 
CMR 

Table 2-3: Score Error Terms for the PLS Model of the MAW Distillation Column with 
Bottoms Temperature Missing 

I 

0"1 w 
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2.5.2 The Kamyr Pulp Digeste r 

This example uses historical data from a full scale, industrial process. The 

process is a continuous Kamyr pulp digester from which process measurements or 

process measurement averages were gathered hourly for a period of eight months. 

A PLS modelling study with this data was reported in Dayal et aL (1994) and 

Dayal (1992). The Kappa number, a variable which signifies the amount of lignin 

remaining in the pulp, was related to 21 process measurements and the Kappa 

number from the previous time period. 

Missing measurements are common for this process, especially since two 

of the input measurements, upper cook zone active alkali (UCZAA) and past 

Kappa number, are laboratory measurements and are not measured every 12th 

sample due to shift changes at the plant. Unfortunately, these variables are very 

important to the prediction of the current Kappa number. In fact, two of the three 

essential variables kept in the model when the number of variables was reduced 

were these laboratory measurements (Dayal, 1992). 

A 5 component (A=5) PLS model was calculated using the complete 

objects. Cross-validation was used to determine the number of components. This 

model is slightly different from the model in Dayal et al. (1994) because the 

model reported here is calculated using only the 1919 complete objects. 

When the number of latent variables is small, a simple qualitative method 

of assessing the impact of missing measurements in certain variables or sets of 

variables is to inspect the loading plots for various combinations of latent 
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Figure 2-4: Plot of First Two PLS W Loading Vectors for Kamyr Digester 

variables. This can also be used to determine which missing measurements will 

have the most impact on score calculation. Examining loading vector plots is less 

computationally demanding than brute force enumeration of possible missing 

measurement sets but may fail to indicate important combinations due to 

examining only 2 dimensional slices of the A dimensional plane. Other methods 

for determining high impact sets of missing measurements will be discussed in 

chapter 4. 

Figure 2-4 shows the joint loading plot (WI versus W2) for the flrst two 

latent variables. From this plot it is obvious that one of the dimensions in this two 

dimensional plane is strongly dependent upon variables 1 and 8 (past Kappa 
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number and UCZAA). A rotation of the axes indicated by the darker lines in 

Figure 2-4 has been added to illustrate how one of the dimensions is dominated by 

these two variables. Therefore, if a new multivariate observation has both 

variables 1 and 8 missing, most of the information defining one direction of the 

plane is lost. This can cause large errors in the estimates of 1:1 and 1:2 , 

2.5.2.1 A Study of the Effect of Combinations of Missing Measurements 

Data sets were prepared with 2 or 4 variables missing (9% or 18% of the 

total number of variables) to illustrate the behaviour of the missing data 

algorithms on this industrial data. Two hundred unique data sets were generated 

for each number of missing variables. Each data set was formed by removing the 

columns in X corresponding to the missing variables. The scores and predicted 

Kappa number were then estimated for all objects using single component 

projection and conditional mean replacement and the mean squared difference 

between the estimates from incomplete data ( i j' j = 1, 2, ... , 5 and the predicted 

Kappa number y) and those calculated with the complete data set 

('i'j' j = 1, 2, ... , 5 and y) were tabulated. Histograms of the fractional mean 

1919 

squared score difference ){919 L (~j - iij r /'i': for the first three scores 
i=1 

( j = 1, 2, ... , 3 ) and the fractional squared Kappa number differences 

1919 

){919 L (Yi - Yi Y /Yi2 are shown in Figure 2-5 and Figure 2-6. The fractional mean 
i=1 
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Figure 2-5: Histograms of Mean Squared Errors with 2 Variables Missing. Filled 
Bars are for Single Component Projection, Unfilled Bars for Conditional Mean 
Replacement 

squared score difference was used to normalise the abscissa since the scores have 

different magnitudes (see Table 2-4). 

All of the score histograms show that the fractional mean squared score 

differences for the majority of the combinations of missing measurements are 

small (less than 0.15 or 15%). Each algorithm has a small number of cases which 

have a higher mean squared difference. Comparing the two approaches, it can be 

seen that the single component projection method gives a higher percentage of 

large error cases, and a few cases of extreme error. In each plot in Figure 2-5, the 

most extreme estimation error arises when the combination of UCZAA and past 
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Figure 2-6: Histograms of Mean Squared Errors with 4 Variables Missing. Filled 
Bars are for Single Component Projection, Unfilled Bars for Conditional Mean 
Replacement 

Kappa number IS IDlssmg. This result was expected in light of the earlier 

discussion of the latent vector loading plot in Figure 2-4. This combination of 

missing variable measurements also produced the largest mean squared estimation 

differences in Figure 2-6 where 200 distinct sets of 4 measurements were missing. 

All of the extreme error cases for both the single component projection method 

and the conditional mean replacement method involved combinations which 

included the UCZAA and past Kappa number pair. 



Term Component Component Component Component Component 
1 2 3 4 5 

mean(';[; ) 1 0.6100 0.9222 0.2909 0.2054 

mean(';[/) 
*T * 

Wj Wj 0.4626 0.7600 0.9356 0.9653 0.9594 

!~ or • .r ',) mean Wj d d Wj 0.0561 0.0263 0.0311 0.0171 0.0041 

mean[';[j - i j r ) 0.5768 0.9894 0.0742 0.0931 0.1022 

mean(';[;) 
SCP 

mean[';[j - i j r ) 0.1323 0.2914 0.0301 0.0592 0.0419 

mean(';[}) 
CMR 

Table 2-4: Score Estimation Error Terms for the 22 Variable PLS Model of the Kamyr 
Pulp Digester with UCZAA and Past Kappa Number Missing 

0\ 
1.0 
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Another interesting feature of Figure 2-5 and Figure 2-6 is the absence of 

large mean squared score differences for the third score. This implies that the 

error propagation term in Equation 2-8 for 1:3 must be small for all the missing 

data sets which cause a large first or second score estimation error. 

2.5.2.2 Analysis of the Score Estimation Error for the Extreme Case 

In this section, we examine the terms in the score estimation error 

equation for the single component projection method for the case where UCZAA 

and past Kappa number are missing. Substituting the values for this case into 

Equation 2-8, we get the following equations for the first three score estimation 

errors when the single component projection algorithm is used: 

'tt -it = -0.3744'tl + 0.7449't2 + 0.0255't3 + 0.1204't4 + 0.248 

_[W~TW:tIW:TC* _[W;TW; rw;T d* 

't2 -i2 = -0.0134't2 + 0.0391't3 + 0.0798't4 -0.0883'ts 

Equation 2-21 

+ 0.9558[t
l 

- i l]- [W;T w;tlw;T e* - [W;T w;tlw;T d* Equation 2-22 

't3 - i3 = 0.0227't3 + 0.0522't4 + 0.0134'ts - 0.0135['t1 - il] 

+0.3168['t2 -iJ-[w;w;t1w;c* _[W;Tw;tlw;d* Equation 2-23 

A large first score estimation difference (Equation 2-21) is expected since 

Table 2-4 shows that the first and second scores are both large and the value of 

w:T w; is small. The inverse of the latter term is contained in each of the terms of 

Equation 2-21. The contribution of the deterministic residual mean(w~T d*d*T w;) 
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to the squared error is small and the measurement error contribution is unknown. 

The error in the fIrst component affects all those that follow. It affects the error in 

1:2 very heavily as we can see in Equation 2-22 where the coefficient on the fIrst 

score estimation error is large at 0.9558. Since the rest of the coefficients in 

Equation 2-22 are sman, the relative estimation difference shown for 1:2 in Table 

2-4 is due almost entirely to propagation of the error in i 1 • The small to moderate 

coefficients in Equation 2-23, particularly those on the propagation terms, reveal 

why the third mean squared score difference is low. 

The mean squared differences from the single component projection 

algorithm for the PLS model with both UCZAA and past Kappa number missing 

are listed in Table 2-4. These differences are obtained from the actual score 

estimates, not from Equation 2-8. The listed errors are large in the fIrst two 

components, as expected from the earlier qualitative loading plot analysis and 

from the analysis of Equation 2-21 and Equation 2-22 in combination with the 

relative score magnitudes. 

The mean squared score estimation errors obtained from missing data 

replacement by the conditional mean are also listed in Table 2-4. Although they 

are substantially less than those of the single component projection method, they 

still may be unacceptable in some applications. The condition number of the 

matrix to be inverted is 206.8, which indicates a sensitivity to noise and numerical 

error. Applying PCR and PLS to combat the ill-conditioning led to no 

improvement, which indicates that conditioning is not a problem in this case. 
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Term Component 1 Component 2 Component 3 

mean{'i} ) 1 0.5754 0.3808 

mean('~/) 
*T • 

Wj Wj 0.9219 0.3554 0.7227 

1(1 *T • .T .) meanw j d d Wj 
0.7632e-32 0.1635e-32 0.3704e-32 

meanQ'ij - i j r ) 0.0476 1.1024 0.5545 

mean('i}) 
SCP 

meanQ'ij - i j r ) 0.0459 0.5961 0.4516 

mean('iJ) 
CMR 

Table 2-5: Score Error Terms for the 3 Variable PLS Model of the Kamyr 
Pulp Digester with Chip Mass Flowrate Missing 

2.5.2.3 Pruned PLS Models 

Dayal et al. (1994) exploited the information in the loading plots to reduce 

the number of input variables used in the model without reducing its modelling 

power. This is desirable because reducing the number of variables reduces both 

the capital cost and the maintenance cost for sensors. Redundant measurements 

can, however, be desirable from the point of view of model prediction with 

missing variables. An analysis of the effects of the pruning on the expected score 

errors with missing variables follows. 

The input variable set was reduced to 3 variables in Dayal (1992). The 

three variables were past Kappa number, UCZAA and chip mass feed rate 

(variables 1, 8 and 16). A 3 component model was calculated with these three 
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inputs and analysed when the chip mass feed rate measurement is missing with 

the results placed in Table 2-5 and Equation 2-24 to Equation 2-26. 

'tl -it =0.034't1 + [-0.2529}t2 +0.15971:3 

- [w? w; j1w;r e* - [w;r w; f1wt d* 

't3 - i3 = 01:3 + 0.2854[1:1 • i l ]+ [- 0.5259 ]['t2 . i 2] 

_[w;rw;j1w;T e* _[w;Tw;rw; d* 

Equation 
2-24 

Equation 
2-25 

Equation 
2-26 

The first score error should be small since the first coefficient in Equation 

2-24 is small and the first score is twice as large as the second and the coefficients 

on the second and third scores are small. However, the second score error should 

be large since the second score is one and a half times the third and the coefficient 

multiplying the third score in Equation 2-25 is large. The approximate 

contribution to the sum squared error of the second score estimate by the third is 

very large at [-1.l896 f E«q = 0 .9365. The third score error is expected to be 
E 1:2 

large because the term multiplying the second score error in Equation 2-26 is 

large meaning that the error from the second score will propagate through. The 

approximate amount of sum squared error that is due to propagation from the 

deterministic residuals mean(w~r d*d*T w~) is approximately the square of the 
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machine precision since the number of components is equal to the number of 

variables. Nothing is known about the measurement error term to estimate its size. 

We can see from the second to last row in the table that the second and then the 

third expected squared score errors are large compared to the full data calculated 

scores 'tj • 

The last row of the table shows that score calculation using conditional 

mean replacement also produces unacceptably large errors. The condition number 

of the matrix to be inverted for this example is 2.2 showing that ill-conditioning is 

not a factor. The pruning of variables has left this model very vulnerable to a 

failure in the chip mass feed rate sensor. The key indication of this is that w;r w ; 

is very small, indicating that much of the information about the second 

component is missing. 

In Dayal et al. (1994), a five variable subset of the input set was also used 

in a PLS model. The variables used are drawn from the two directions in Figure 

2-4; past Kappa number and UCZAA (variables 1 and 8) from the one direction 

and blow flow, white liquor flow rate and chip mass flow rate (variables 4, 9 and 

16) from the other. A three component PLS model was calculated. The effect of 

losing the chip mass flow rate measurement is now quite different, as can be seen 

in Equation 2-27 to Equation 2-29 and Table 2-6. 

'tl - ~I = 0.0512't1 + [- 0.1466}c2 + [- 0.0409}r3 

- [w~r w~ jl w:r e* - [w;r w; jl W( d* Equation 
2-27 



75 

Term Component 1 Component 2 Component 3 

Ei1fl 1 0.7020 0.2262 

E(11
2

) 

*T * 
Wj Wj 0.9355 0.6699 0.8782 

!~ *T • .T " ) meanw j d d Wj 
0.0128 0.0654 0.0241 

meanQ:tj - ~ j r) 0.0255 0.1051 0.2290 

mean{:tJ) 
SCP 

meanQ:tj - i j r ) 0.0128 0.0682 0.1388 

mean{:tJ) 
CMR 

Table 2-6: Score Error Terms for the 5 Variable PLS Model of the Kamyr Pulp 
Digester with Chip Mass Flowrate Missing 

't2 -i2 = [-0.0296}r2 +0.1292't3 +0.1107['t1 -~J 

_[w;Tw;j1w;Te* _[W;Tw;j1w;T d* 

't3 - i3 = [- 0.0788}r3 + [- 0.1759 ]['tl - iJ+ 0.3273['t2 - i 2] 

_[W;Tw;j1w;T e* -[wi w;jl W;T d* 

Equation 
2-28 

Equation 
2-29 

We can see that an improvement in the score prediction error can be 

expected over the 3 variable model. The first two score magnitudes are closer 

together but w:r w: is larger in all cases and the coefficients multiplying the 

scores are all small. This is what is anticipated since problems in w ~T w: are 

associated with the loss of large weights and the weighting is spread out over 

more variables when redundant variables are present. The W;T p: terms are 

smaller because more information is retained with the redundant variables and 



76 

[

Or 0] 
with full information the terms reported will be zero. The term 1- p ~r W ~ is 

Wj Wj 

larger in some of the cases but overall this term remains negligible. The 

contribution from the deterministic residuals mean {w:r d*d*T w:) is small and the 

contribution from measurement error is unknown. We can see from the expected 

squared errors, where the full data calculated score 'ij is used in place of the 

unknown true score, that an improvement has indeed been made in the robustness 

of the model to chip mass feed rate sensor failure. The last row of the table shows 

that the results for score calculation with conditional mean replacement have also 

improved. The condition number of the matrix to be inverted in this score 

calculation has only increased marginally, to 5.6, with the addition of the two 

variables so ill-conditioning is not a problem. 

2.6 Conclusions 

A novel mlssmg measurement score calculation algorithm called 

conditional mean replacement is proposed in this chapter, and the factors affecting 

the performance of both the novel and existing algorithms are identified and 

illustrated by designed and industrial process data sets. Conditional mean 

replacement of the missing measurements is found to be superior to the existing 

methods. Several approaches for estimating the scores in the presence of missing 

data are analysed: a single component projection method, a method of 
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simultaneous projection to the model plane, and conditional mean replacement of 

the missing measurements. Expressions are developed for the score errors arising 

from each of the methods, and an analysis of the major sources of error 

performed. Simulated data sets, designed specifically to accentuate various 

sources of error, are used to illustrate the nature of these errors. Two data sets, one 

a simulated process and the other industrial, are also analysed in order to show 

more typical results, as well as illustrating situations where errors become large. 

An expression for the score estimation error from the single component 

projection missing data algorithm shows that the error increases with: (i) 

collinearity of the loading vectors, after loadings for the missing measurements 

are removed, and Oi) similarity in the magnitudes of the scores. An increase in the 

noise variance in the measurements will also increase the error. Large errors in a 

PLS score calculation using the single component projection method are shown to 

arise when the w and p loading vectors are significantly different. This is caused 

by the presence of variables in the independent data block which do not explain a 

significant amount of the dependent data. Errors are shown to propagate from 

estimated scores to subsequently calculated ones through deflation. The analysis 

is demonstrated on industrial process data and a simulated process taken from the 

literature. 

Improvement over single component projection peA score calculation is 

possible by fitting all loading vectors at once in a procedure called Projection to 

the Model Plane. The score estimation error equation developed for this method 
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showed the sources of the error to be: (i) under-estimating the dimensionality of 

the data, (ii) noise and (iii) ill-conditioning in the least squares projection. A 

biased regression algorithm is recommended for the projection and was shown to 

combat ill-conditioning. 

Another, generally better method to calculate scores when there are 

missing measurements, which can be applied to both PCA and PLS, is to replace a 

missing variable by its conditional mean given the variables that are observed and 

then to use standard score estimation routines. This is termed Conditional Mean 

Replacement, and it had the lowest mean squared score estimation error in all 

examples evaluated here. This method has information about the expected 

squared magnitude of the scores, therefore the error is due only to lack of 

information, numerical ill-conditioning, noise, or violations of the assumptions 

made in the least squares regression between the measured and unmeasured 

variables. Identical score estimates are obtained if it is assumed either that all of 

the variables follow a multivariate normal distribution and the unmeasured 

variables are replaced by their conditional means (maximum likelihood 

estimates), or that the assumptions of least squares regression for a linear model 

between the measured variables and the scores hold. A biased regression method 

can be used in place of least squares to combat any ill-conditioning in the latter 

approach; this was not necessary in any ofthe examples in this chapter. 

An example given in the literature as an illustration of PLS robustness to 

missing measurements was analysed. It was shown that the factors that cause 
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score calculation error with missing measurements identified in this chapter were 

small for the MA W column PLS model. This agrees with the conclusions in the 

literature. 

The analysis of the industrial data set in this chapter agrees with the 

guideline that most of the missing data algorithms perform quite well with up to 

20% of the measurements missing. However, the theoretical score error analysis 

shows that certain critical combinations of missing measurements can give rise to 

large errors. This is illustrated by the pathological simulated data sets and the 

industrial example. In these situations, the conditional mean replacement method 

is shown to be superior to the single component projection method and the 

simultaneous projection to the plane method. Pruning of variables during model 

building was shown to have potential to reduce the ability of the model to be used 

with missing measurements. Leaving in some redundant variables was shown to 

increase robustness while leaving potential for a reduction in the number of 

variables. 



Chapter 3: Performance Measures for PCA and PLS Applications 

3.1 Introduction 

When all variables are measured, statistics for the prediction error 

variance and critical values for alarming have been developed to show how 

reliable the models are in use. These have been reviewed in chapter 1. The 

practice has been to continue using these statistics when measurements are 

missing even though the performance of the model will have degraded. System 

designers and operators need to know when performance will have been reduced 

by the presence of missing measurements to the point that the application has to 

be placed offline. Any increase in uncertainty in the results needs to be 

communicated to the operator so that they can have the appropriate level of 

confidence in the results that are presented. The purpose of this chapter is to 

develop expressions for the uncertainty introduced by the missing measurements 

and to develop diagnostics to aid in the determination of which missing 

measurements contribute the most to the uncertainty. 

This chapter will characterise the uncertainty due to mlssmg 

measurements in the prediction, SPE, Hotelling T2 and score values in peA and 

PLS applications so that conclusions can be made about the performance of the 

application with missing measurements. The performance measures developed 

80 
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Figure 3-1: Score-score plot with SPC control chart limits and uncertainty regions 
for the scores due to missing measurements 

distinguish between situations where model perfonnance with missing 

measurements will continue to be acceptable and situations where it will become 

unacceptable. In the latter case, the measurements must be recovered or the 

application shut down. It will show how the uncertainty arising from missing 

measurements for these statistics gives additional infonnation about the state of 

the process and our knowledge of it. A graphical example of this is given in 

Figure 3-1 where uncertainty regions are shown for two points on the score-score 

plot. The point marked A is closer to the control chart limit than point B but its 

uncertainty region caused by missing measurements is smaller and the probability 

that the actual value exceeds the control limit is much lower. 

A PLS model from an industrial data set will be used to show how the 

missing measurement uncertainty intervals for the calculated statistics compare to 
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the values obtained when all of the measurements are present. Several missing 

measurement score calculation methods (CMR, SCP, mean replacement) will be 

used to calculate statistic values that will be plotted against the uncertainty 

intervals to show how they compare. This will allow the different methods' 

performance on industrial data to be compared. 

The probability density for the missing measurements is mapped in this 

work into the score, Rotelling T2, SPE and prediction spaces and uncertainty 

intervals and regions are generated. This is not dependent on the missing data 

algorithm, only the measured values and the data distribution. This is illustrated 

visually in Figure 3-2 where the top of the left hand column shows a plot of 

objects drawn at random from a 3 dimensional distribution with the scores and 

Rotelling T2 values from these objects plotted underneath. The right hand column 

shows the effect of fixing one of the variables (z) before drawing the objects. The 

conditional distribution for x and y given z (shown in Figure 3-2 (d)) is 

propagated into the score and Rotelling T2 spaces as shown in Figure 3-2 (e) and 

(f). This shows the joint distribution of tl and t2 and the distribution of Rotelling 

T2 for a fixed or observed value of z if x and yare missing at a given time. Note 

that the region occupied by the points in plot (e) forms an ellipse like the 

uncertainty regions in Figure 3-1. Rather than representing an object with missing 

measurements by selecting one point in each of the plots on the right hand side of 

Figure 3-2, this work will provide the uncertainty regions in the score, prediction, 

Rotelling T2 and SPE spaces arising from the missing measurements. 
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Objects Drawn from those with a Fixed z 
Value 

(a) Plot of Objects Randomly Drawn (d) Plot of Objects Randomly Drawn 
from the Distribution from those with a Fixed Z Value 
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Figure 3-2: Plots showing mapping of objects with and without restrictions on one of 
the variables. 



84 

As referenced in sections 1.3 and lA, prediction confidence limits and 

critical values in the literature have been generated from an assumption that the 

data is normally distributed and this assumption is used here as well. The 

conditional distribution of the missing measurements given the measured ones can 

be derived from this assumption and is used to associate a probability with each 

possible value of the missing measurements. A normal distribution conditional on 

fixed z was used to generate the objects for the plots on the right hand side of 

Figure 3-2. As shown in section 2.4.1, Equation 2-12 is valid when all data are 

normally distributed or the residuals of regressing the present measurements on 

the missing measurements are normally distributed. Alternatively, a historical 

data set could be used to provide a conditional distribution but this would require 

a very large amount of data since a representative number of objects would have 

to exist for each possible sample ofthe present measurements. 

3.2 Distribution for Scores 

The scores and the variable contributions to the scores are used in 

analysing both prediction and monitoring applications. This section of the thesis 

will develop the properties of the distributions that will be used in later sections. 

The distributions will be used to connect uncertainty in the prediction, Hotelling 

T2 or SPE with individual missing measurements. This will aid in determining 

which missing measurements have a critical influence on the uncertainty in the 

results. If the uncertainty regions due to missing measurements are too large (for 
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example point B on Figure 3-1) and measurements for the most critical variables 

can not be recovered, monitoring or prediction may have to be discontinued until 

these critical measurements become available. 

3.2.1 Uncertainty Region for Scores 

The scores are computed as a linear combination of the measurements and 

are thus normally distributed under our assumed data distribution. The conditional 

distribution of the computed scores given the present measurements is then also 

normally distributed with mean and variance developed below: 

E(-clz· ,S)= E{R*T z· + R#T z#lz* ,S) 

=R*TZ* +R#TE(z#lz*,s) 
= R*T z· + R#TSH"[S'" 1 z* 

= [R*T + R#TS#*[S"* 1 ]z* 

Equation 3-1 

var(-clz·, s)= E([-C - E(tlz·, S )][-c - E(-clz· ,s )J Iz * , S ) Equation 3-2 

= E([R*T z* + R#T z# - [R*T + RHTS#*[S** 1 ]z*] 

[R*T z* + R#T z# - [R*T + R#TS#·[S .... 1 ]z· Ylz* ,s ) 

= E([R#T z# - R#TS#*[S·· 1 z· ][R#T z# - R#TS#*[S" 1 z· Y Iz· ,s ) 

= E( R#T [z# -s#*[s** 1 Z .. Iz# - s#*[s** 1 z * Y R#lz" ,s ) 

= R#T E(~# -s#·[s** 1 z· ][z# -s#*[s** 1 z· Ylz· ,s )R# 

= R#T var(z#lz" ,s)R# 

=R#T[S## -S#*[S·*1 S*# ~# 
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where [S'" [ is the pseudo-inverse of S .... 

The uncertainty in the scores arising from the missing measurements :l 

can be examined one score at a time by looking at the diagonal elements of 

Equation 3-2 or in pairs by plotting an uncertainty ellipse based on Equation 3-1 

and Equation 3-2 on a score-score plot. Since the number of scores is usually 

small, examining them in pairs on the score-score plot is not an onerous task. 

3.2.2 Uncertainty in Variable Contributions to the Scores with Missing 

Measurements 

A contribution to a score is the term in the calculation that involves an 

individual measurement. We will examine the contribution of the kth variable to 

the jth score. When Zk is present, the contribution is a fixed value as shown in 

Equation 1-1. The contribution of a missing measurement (Zk missing) can not be 

calculated but we can calculate the expected value and the variance around that 

value conditional on the measured variables and the data distribution as shown 

below. 

EkjZklz* ,S)== rIgE(zklz*,S) 
==rlgs;[S**[ z* 

Equation 3-3 

Equation 3-4 

The distribution of a contribution for an individual missing measurement 

gives an indication of how uncertainty from that unmeasured variable contributes 
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to the overall uncertainty in the score. This is not the total effect of the individual 

measurement on the uncertainty; the effect of regaining a missing measurement 

would also include reducing the conditional variance in missing measurements to 

which it is correlated. The distribution of the contribution for an individual 

missing measurement is an indication of the minimum effect of the measurement 

on the statistic and can be used to eliminate measurements that have little effect 

and to do a preliminary ranking of those that have a large effect. 

3.3 Prediction 

3.3.1 Diagnostic 

The diagnostic that we will develop is the conditional varIance of the 

prediction. There are two factors that contribute to the uncertainty in the 

prediction: the prediction error, which exists even when all measurements are 

present, and the uncertainty arising solely from the missing measurements. 

In order to approximate the conditional variance of the prediction, we expand 

the prediction ofy around the estimate of the PLS loading matrix Q (Qo) and the 

conditional mean score 1:0 = E(1:jz • ,S ). This approach separates the effects of the 

variance due to estimation of Q and the variance due to the scores. 

If Q and 1: are normally distributed then y is normally distributed and 

E(y) = Q 0 1:0 which is the prediction obtained from the CMR scores. 
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y- E(y)~ Qo'to + [Q-Qo}to + QJ't- 'tJ-Qo 'to 
= [Q-Qo}to +QJ't-'tJ 

E(fy - E(y)][y- E(y )flz*,s) 
= EQ[Q-Qo}to +Qo['t-'tJ] 

[[Q-Qo}to +QJ't-'tJflz*,s) 

= E~Q-Qo}to 't~[Q -Qoflz*,s) 

+ E(Qo[1:-1:o}t~[Q -QoTlz* ,s) 

+ E~Q-Qo}tJ't-'toT Q~lz* ,s) 

+ E(QJ't-1:J[1:-1:oJ Q~lz*,S) 
= E[Q-Qo}t,,'t~[Q-Qoflz*,s) 

+ E(QJ1:-1:o}t~[Q -Qoflz*,s) 

+E[Q-Qo}tJ1:-1:oJ Q~lz*,S) 
+QoE~'t -1:o]['t-1:oflz* ,s ~~ 

Equation 3-5 

Each of the terms in the last line of Equation 3-5 will now be treated. 

Since we are looking at a single output, Q is a row vector and Q't is a scalar so 

the first term can be re-arranged to: 

E~Q-QJ'to 1:~[Q-Qoflz* ,S) 

= E~Q-QJ1:or['t~[Q-Qor fiz* ,s) 

= E('t~[Q-Qor[Q-Qo}tolz·,s) 
= 't~EQQ-QoT[Q-QJlz*,s~o 

since a scalar is equal to its transpose. 

Likewise for the second and third term: 

Equation 3-6 
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E~Q-QJcJt-'Cof Q~lz*,s) Equation 3-8 

= 't~E~Q -Qof['t -'toflz* ,s ~~ 
These two terms are transformations of the covariance matrix between Q 

and the scores. This covariance is zero as long as the data used to calculate Q and 

the scores are independent. This will be the case except when operating on the 

data used to calculate the regression model. Substituting Equation 3-6, Equation 

3-7 and Equation 3-8 into Equation 3-5 assuming Q and the scores are 

independent: 

E~y- E{y)]fY - E{y)flz* ,s)~ 'C~E~Q-QoY[Q-QJ~o 
+QoE~'t-'CJ['t-'CoYlz· ,S ~~ 

Equation 3-9 

The first term in the variance expression arises from the estimation of Q in the 

modelling stage and the second term from the estimation of P and W in the 

modelling stage and uncertainty due to missing measurements in the new 

observations. 

As shown in section 1.4.1, there are many expressions for the prediction 

error for PLS. In the balance of this chapter we will assume the uncertainty in the 

prediction is due to measurement error in y from the modelling stage and the 

uncertainty due to missing measurements in z. Measurement error in the 

independent variables in X is not treated but this is not a restriction imposed by 

the development of Equation 3-9. The variance of the Q matrix in the first term of 

Equation 3-9 under this assumption is shown in Equation 1-6. The variance of the 

scores with missing measurements was developed in Equation 3-2. Thus 
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E~y-E(y)IY - E(Y)flz·,s)~ 't~[TTTr 'tp.2 Equation 3-10 

+ QoR#T[S## -S#·S"+S*#]R#Q~ 

The fIrst term of Equation 3-10 depends on the value of the present 

measurements z * and the second on which measurements are missing. The 

prediction error variance and the contribution of missing measurement uncertainty 

relative to estimation error in that variance will therefore change from object to 

object. 

In order to attribute the vanance ill a prediction y to individual 

measurements Zk, the contributions to the prediction must be examined. The mean 

and variance of these contributions for the missing measurements are developed 

in a similar manner to the contributions to the scores in Equation 3-3 and 

Equation 3-4. 

E(conlribution( z, to y)) ~ E( ~ q, jr "Z k Iz · ,S J 
= E(Zklz·,S )fqjjrkj 

j=j 

vru:(contribulion(z, 10 y))~ v~~q'jrkjz'lz ,S J 

~var(z'lz,s{~q'Jr" r 

Equation 3-11 

Equation 3-12 
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3.3.2 Example: Kamyr Digester 

The process and overall data set for this example are the same as used in 

section 2.5.2. The first 200 objects of the data set were used to build a PLS model 

of the process and 100 objects from the rest of the data set were selected as a test 

set. The test data set was distinct from the modelling data set in order to meet the 

conditions for using Equation 3-9. 

The measurements that are selected to be missing are in variables 1, 7, 8 

and 17. These measurements were chosen to illustrate both typical behaviour and 

potential problems. The score error with measurements of variables 1 and 8 

missing together was analysed in section 2.5.2.2 for the SCP and CMR score 

calculation algorithms and was shown to cause particular difficulty for the SCP 

algorithm. 

The pattern of missing measurements in the test set objects has been 

graphically represented in Figure 3-3 with each missing measurement in an object 

represented by a point on the graph. An operator shift change in the plant caused 

measurements I and 8 to be missing every 12 hours, one hour apart in the original 

data set and this is reproduced in the complete objects used in this example. In 

addition in this example, measurement 8 is missing in objects 1 through 25, 

measurement 7 in objects 55 to 85 and measurement 17 in objects 20 to 40 

representing sensor breakdowns or maintenance. 
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Figure 3-3: Plot with Dots Indicating Measurements Designated Missing in the 
Kamyr Digester Data Set. 

3 

2 
2 to 

1 \fi ~ * ~ 
0 ~ ~o U) ::I( ~ ]:::0 c 

~ \%0' 
0 

~ 0 ~l'~ ~:f i "0 
~ 

2~~ %: 0.. -1 ~ 
-2 0 

-3 
0 20 40 60 80 100 

Object 

Figure 3-4: Prediction plot with Various Measurements Missing. Bars are 95% 
uncertainty interval, '0' is the prediction with all the measurements, 'x' is the 
CMR prediction. 
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The full data predictions, predictions from CMR and an uncertainty 

interval based on Equation 3-9 are plotted in Figure 3-4. Only those objects with 

missing measurements are plotted as they are the only ones of interest. Comparing 

the full data predictions to the intervals will allow us to detennine how well the 

assumptions and approximations made in developing the interval apply to this 

industrial data set. 

Before the comparison between full data predictions and the uncertainty 

intervals is done we should eliminate the objects which have an SPE which is 

greater than the critical value since that indicates that the data is not following the 

same distribution as the training data. In practice, the SPE would be checked 

before the prediction is calculated. We will see in Figure 3-8 in section 3.4.3.1 

that the SPE is outside its control limit at object 17 and around objects 60 and 80 

and just below the limit at object 10 at a 99% confidence level. Therefore, any 

inferences such as our uncertainty intervals made using the modelling data 

distribution and these objects are suspect. Comparing only the objects with SPE's 

below the control limit, there is a good match between the uncertainty interval, 

centred on the CMR prediction, and the full data prediction. The full data 

predictions and uncertainty intervals do not match well for the objects with SPE's 

above the control limit. 
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Figure 3-5: Stacked Bar Plot of Prediction Error Variance due to Parameter 
Variance and Approximate Combined Parameter Variance and Missing 
Measurement Uncertainty. Filled Bars are parameter variance and unfilled bars 
combined variance. 

The difference between the uncertainty intervals from parameter variance 

only (filled bars) and the combined effect of missing data and parameter variance 

(unfilled bars) is shown in Figure 3-5, The parameter only variance is calculated 

using Equation 1-6 and once again the results for objects that have high SPE 

values in Figure 3-8 should be viewed with suspicion. Note that the parameter 

only variance is in general a small fraction of the combined variance so that the 

current practice of using this variance when there are missing measurements can 
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be very misleading. The relative contribution of missing measurement uncertainty 

and variance due to parameter estimation varies from object to object as expected. 

The predictions from using alternative missing data replacement 

approaches, namely SCP and mean replacement, to calculate the scores are 

plotted in Figure 3-6 and Figure 3-7 respectively. The uncertainty intervals from 

Equation 3-9 are also plotted with the centre of the interval being the CMR 

estimate. The SCP and mean replacement predictions can be outside the 

calculated uncertainty intervals since the assumptions used in calculating the 

interval are not the same as those used to calculate the SCP and mean replacement 

scores. SCP is outside the interval more often than mean replacement. As shown 

in 2.5.2.1, certain missing measurement combinations can lead to calculated 

scores that are inconsistent with those calculated from complete data. On the 

whole, the predictions from both the SCP and mean replacement methods on 

those objects before number 60 are comparable to each other and to the CMR 

method. 
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Figure 3-6: Prediction plot with Various Measurements Missing. Bars are 95% 
uncertainty interval, '0' is the prediction with all the measurements, 'x' is the SCP 
prediction. 
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Figure 3-7: Prediction plot with various measurements missing. Bars are 95% 
uncertainty interval, '0' is the prediction with all the measurements, 'x' is the 
mean replacement prediction. 
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3.4 Monitoring 

3.4.1 Residuals 

3.4.1.1 Uncertainty Region for the SPE 

The uncertainty interval for the SPE due to missing measurements is the 

diagnostic that will be developed in this section. This will show the location of 

possible SPE values and the amount of uncertainty in the values arising from 

missing measurements. The uncertainty interval due to missing measurements for 

the SPE developed here is useful because it indicates the range of possible values 

of the SPE arising just from the missing measurements. 

The process is assumed to be 'in control' in the development of the 

uncertainty interval. This is necessary because the distribution of the training data 

is used to calculate the uncertainty due to missing measurements. If the new 

objects are not drawn from this distribution then the uncertainty interval is 

invalid. 

Care must be taken when using the uncertainty interval due to missing 

measurements to make conclusions about the validity of alarms. If the uncertainty 

interval due to missing measurements is clearly outside the alarm limit, an alarm 

is confirmed. An uncertainty interval due to missing measurements inside the 

alarm limit increases confidence but does not guarantee that an alarm condition 
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does not exist since the missing measurements may be the ones that would cause 

the SPE to be over the critical value. 

To conduct this analysis, we must put the SPE with missing measurements 

in the standard quadratic form in Equation 1-33. Without considering missing 

measurements we have: 

SP E = [z - P't f [z - P't ] 

= [z-pRzf[z-PRz] 
= [~-PR]zf[[I-PR]z] 
= zT[I-PRf[I-PR]z 

So the general quadratic form xA T X has x=z, which is a sample from a 

distribution, and the weighting matrix A = [I - PRY [I - PR]. When we do not 

have values for all of the measurements, the missing measurements do not have 

fixed values. We will characterise the missing measurements by their conditional 

distribution given the present measurements and the distribution from the training 

* data. Since we are fixing the present measurements z, the variables 

corresponding to z* in x will be fixed (zero variance) and the variables 

corresponding to z# will be normally distributed. Thus 

x - N([ S"~>J. [SH -S:SH'S~ :]J Equation 3-13 

A = [I -PRY[I -PRJ Equation 3-14 

The variance matrix for x is not full rank and the weighting matrix A will 

be rank deficient for peA and may be rank deficient for PLS. As mentioned in 

section 1.7, the approximations for the cumulative distribution of this statistic 
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must be transformed to the full rank equivalent as part of the transformation to the 

standard form Equation 1-33 which is shown in appendix 1. The approximation to 

the cumulative distribution of the quadratic form in Jensen and Solomon (1972) is 

used to calculate critical values for the SPE in this work. 

3.4.1.2 Uncertainty Interval for Contributions to the SPE 

The contributions to the SPE are the individual residuals. The uncertainty 

intervals for the residuals due to missing measurements can be examined to 

determine which missing measurements are causing the greatest uncertainty and 

hence will give the most benefit if the missing values are acquired. These 

residuals are normally distributed with mean and variance given by: 

E~eSid(z)lz· ,S)= E(z- p-tlz* ,S) 
= EQI - PR ]zlz * ,s ) 

= [1-pR]E(zlz*,S) 

var~esid(z ~z· ,s )= E([I - PR lz -E(zlz * ,S )]~ - E(zlz * ,s )T 

[I - PR Ylz* ,s ) 
= [I - PR ]E([z - E(zlz * ,S )][z - E{zlz * ,S )T 

Iz * ,S )[1 - PR r 
= [I - PR ]var{zlz * ,S )[1 - PR r 

Equation 3-15 

Equation 3-16 

There are two factors that complicate using the uncertainty in the 

contributions to the SPE to choose the best missing measurement to recover; they 

are correlation between missing measurements and uncertainty in the residuals of 

the present measurements. 
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If the missing measurements are correlated then recovering one 

measurement may reduce the uncertainty in the residual of another missing 

measurement. Take the case where two temperature measurements (A and B) in 

close physical proximity are missing as well as a flow measurement which does 

not enter strongly into the same loading vectors as the two temperatures. The two 

temperatures are correlated with each other but not with the flow measurement. 

The flow measurement has the largest uncertainty interval on its contribution to 

the SPE followed by temperature A and then temperature B. Temperature A may 

be the best measurement to recover to reduce the uncertainty in the SPE due to 

missing measurements since having a measurement for it will reduce the 

uncertainty in the contribution of temperature B as well as reducing the 

uncertainty in its own contribution. 

Measurements in z * which have values can have uncertainty associated 

with their residuals. This occurs because the residual is a function of the scores 

and the scores can have uncertainty arising from the missing measurements 

associated with them. If the uncertainty in the residuals for present measurements 

is small compared to those for missing measurements then we can directly infer 

which missing measurements are contributing most to the uncertainty in the SPE. 

If the uncertainty in the residuals for the present measurements is large and 

comparable to that for the missing measurements, the uncertainty in the scores 

cannot be neglected. 
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3.4.2 Scores 

3.4.2.1 Uncertainty Interval for the HoteUing T2 

The uncertainty interval for the Hotelling T2 with missing measurements is 

developed in a similar way to the SPE in section 3.4.1.1. We can see from 

Equation 1-11 that the Hotelling T2 is a quadratic form xA T x with x='t and 

A == [TTT r. With the present variables fixed and the missing measurements 

unknown, the distribution of the random variable is the conditional distribution of 

the score given the present measurements developed in section 3.2.1. 

Again in approximating the cumulative distribution, one must beware a 

rank deficient distribution for the random variable ('t) but in this case the 

weighting matrix A is guaranteed to be full rank. The approximation to the 

cumulative distribution of the quadratic form in Jensen and Solomon (1972) is 

again used to calculate critical values. 

As with the SPE, an interval entirely outside the alarm limit provides 

confidence that an alarm is present but an interval inside the alarm limit does not 

assure that an alarm condition is not present. The process must also be assumed to 

be 'in control' for the uncertainty interval due to missing measurements to be 

valid. 

If there are only two latent variables in the model, the Hotelling T2 may be 

replaced by the score-score plot and the uncertainty region for the scores can be 
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shown directly on this plot based on the conditional distribution of the scores 

developed in section 3.2.1. 

3.4.2.2 Uncertainty Intervals for the Contributions to the Hotelling T2 

The total effect of a given score on the Hotelling T2 is summed up by the 

score's individual missing measurement uncertainty interval. This occurs because 

A is diagonal due to the modelling data set scores being independently 

distributed. The uncertainty in the scores due to missing measurements is 

determined as detailed in section 3.2.1 and individual scores are identified for 

further investigation by examination of their contributions to the uncertainty in 

the Hotelling T2. The uncertainty in the contributions to the identified scores due 

to missing measurements developed in section 3.2.2 will lead to the identification 

of the missing measurements that cause the most uncertainty. Ranking the missing 

measurements that cause uncertainty further depends on the correlation between 

the missing measurements and the relative magnitudes of the scores in which the 

missing measurements cause uncertainty which determines the weighting of the 

score in the Hotelling T2. 

3.4.3 Example: Kamyr Digest er 

In this section the uncertainty intervals for the SPE and Hotelling T2 

developed in the previous sections will be applied to an industrial data set and 

plotted along with the values calculated using all of the measurements (full data 

values). This will show that the assumptions that were made to develop the 
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intervals are realistic in application. The data set, model and pattern of missing 

data used in this section are the same as in section 3.3.2. The missing data pattern 

is depicted graphically in Figure 3-3. 

Contributions to the uncertainty intervals will be calculated and used to 

illustrate how to determine which missing measurements will yield the largest 

reduction in uncertainty when they are recovered. The actual uncertainty intervals 

after the variables are recovered are calculated to verify that the correct results 

were obtained. 

Finally, plots are made of the SPE and Rotelling T2 calculated using 

scores from SCP and mean replacement along with the uncertainty intervals due 

to missing measurements. This allows the work that has been done here to be 

compared with current practice. The additional information the uncertainty 

intervals due to missing measurements contribute and the accuracy of the 

intervals compared to the point values calculated using the currently applied 

methods are shown. 

3.4.3.1 SPE Monitoring 

The full data SPE and the uncertainty intervals arising from the missing 

measurements are plotted in Figure 3-8. All objects are plotted since the trend in 

the SPE is also of interest in determining whether an alarm condition exists. 

Objects with no missing measurements have only a full data SPE value plotted. 
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Figure 3-8: SPE Plot with Various Missing Measurements. The bars on some 
objects are 95% uncertainty intervals for the SPE arising from missing 
measurements and the '0' is the full data value of the SPE. The solid horizontal 
line is the 99% control limit. 

The size of the uncertainty interval does not change in a regular way with 

the magnitude of the SPE so the information provided by the interval is important. 

For objects 1 to 40 the agreement between the interval and the full data SPE is 

very good, even for object 17 which is well above the critical value. Between 

objects 55 and 80, there are many instances where the full data SPE is outside the 

interval but the SPE is above the critical value for much of this period. This is 

most likely due to a sustained disturbance that changed the data distribution and 

invalidated the assumptions on which the interval is based. The interval does not 

indicate an alarm condition at objects 55, 79 or 80 but does show the alarms at 

objects 60-66, 68, 81-83 and 86. 
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Figure 3-9: SPE Contribution Plot for object 26 with uncertainty intervals due to 
missing measurements. Missing Measurements are 1 and 17. 

Object 26 in Figure 3-8 has an uncertainty interval that straddles the 

critical value so we would like to clarify whether an alarm condition exists. This 

requires a diagnosis of which of the missing measurements are responsible for the 

uncertainty and obtaining values for them. Figure 3-9 shows that the uncertainty 

in the contributions for the measured variables are negligible compared to the 

uncertainty in the unmeasured variables. Thus we do not have to take into account 

the uncertainty propagating through the score calculation to the residuals of the 

present measurements and need only look at uncertainty arising directly from the 

missing measurements. The covariance between the unmeasured variables does 

not have to be taken into account with only two missing variables so it can be 

concluded that variable 17 is causing more of the uncertainty in the SPE than 

variable 1. This is shown to be true in Table 3-1 where the length of the SPE 
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Figure 3-10: SPE Plot with Various Missing Measurements. The bars on some 
objects are 95% uncertainty intervals for the SPE arising from missing 
measurements, the 'x' is the SCP value and the '0' is the full data value of the 
SPE. The solid horizontal line is the 99% control limit. 

Variables Recovered Interval Lower Interval Upper Length of 
Missing Measurement Limit Limit Interval 
1 and 17 - 33.86 40.49 6.63 

1 17 35.04 37.70 2.66 
17 1 33.83 39.62 5.79 

Table 3-1: 95% Uncertainty intervals for the SPE arlsmg from ffilssmg 
measurements for Object 26. 

uncertainty interval with variable 1 missing and 17 recovered is smaller than the 

interval with variable 17 missing and 1 recovered. 

In Figure 3-10, the SCP calculated values of the SPE are plotted along 

with the intervals and full data SPE's from Figure 3-8. Note that SCP value does 

not necessarily fall within the missing measurement uncertainty interval since it 

does not use the assumption about the data distribution that is used to calculate the 

interval. The SCP value tends to underestimate the SPE and fall in the lower part 
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Figure 3-11: SPE Plot with Various Missing Measurements. The bars on some 
objects are 95% uncertainty intervals for the SPE arising from missing 
measurements, the 'x' is the mean replacement value and the '0' is the full data 
value of the SPE. The solid horizontal line is the 99% control limit. 

of the uncertainty interval. This could be due to the zero residuals assigned to the 

missing measurements, the scores incorrectly using variance that should go to the 

residuals or variance going to the wrong score. 

Figure 3-11 has the full data SPE and uncertainty intervals of Figure 3-8 

with the mean replacement values of the SPE plotted. These SPE values do not 

necessarily fall within the missing measurement uncertainty interval for the SPE 

for the same reason as the SCP values. The mean replacement value also tends to 

underestimate the SPE and falls in the lower part of the uncertainty interval. 



108 

12~------~-------.--------r-------~------~ 

o t t ;;0 
o 0 

o 20 40 60 80 100 
Object Number 

Figure 3-12: Rotelling T2 Plot with Various Measurements Missing. The bars on 
some objects are 95% uncertainty intervals arising from missing measurements. 
The symbol '0' is the full data value and 'x' is the CMR value. The solid 
horizontal line is the 99% control limit. 

3.4.3.2 Score Monitoring 

In this section, objects have been included in the plots that have SPE 

values that are greater than the critical value. In a monitoring application, analysis 

would normally stop with the SPE since the PCA or PLS model's validity is 

questionable once the variance matrix has shifted significantly. These objects 

have been included to test the robustness of the intervals and missing data score 

calculation methods to the distribution of the data. 

The Rotelling T2 value from the CMR scores, the uncertainty interval 

limits due to missing measurements calculated for the Rotelling T2 and the full 

data Rotelling T2 value are plotted in Figure 3-12. In the objects before 50, the 

intervals are small enough and the SPE values in Figure 3-8 low enough that there 
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is no doubt that the process is in control according to the Rotelling T2 statistic. 

When the full data values are examined this is confirmed. Note that like the SPE, 

there are many instances where the full data value lies outside the uncertainty 

interval for objects 55-80 but it was seen in Figure 3-8 that the process is 

disturbed in this time period so the assumptions on which the model and 

uncertainty regions are based are likely to be invalid. The objects with a large 

distance between the interval and the full data value (61, 79, 80 and 83) in 

particular have SPE's above the critical value. 

Object 74, with measurements I and 7 missing, has a CMR Hotelling T2 

value slightly above the critical value but an uncertainty interval that straddles the 

critical value. We would like to know which of the missing measurements are 

most responsible for the uncertainty. The SPE for this object is below the critical 

value so it is valid to examine the Rotelling T2 value. The CMR score value and a 

95% uncertainty region derived from the variance matrix in Equation 3-2 are 

plotted in Figure 3-13 along with the 99% control limit for the scores. The 

uncertainty region for the scores is not aligned with either axis so the uncertainty 

is present in both scores and we must examine the contributions to both. Both of 

the score contribution plots in Figure 3-14 and Figure 3-15 clearly show that 

variable 1 is mainly responsible for the uncertainty in the scores and this is 

confirmed by Table 3-2. 

The Hotelling T2 values calculated from scores calculated by SCP and 

mean replacement are plotted in Figure 3-16 and Figure 3-17. The Hotelling T2 
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Figure 3-13: Score-Score plot for object 74 with uncertainty region arising from 
missing measurements for the unknown score. The missing measurements are 1 
and 7. 

values from SCP and mean replacement do not consistently over- or 

underestimate the full data values of the statistic. The values tend to fall within 

the uncertainty interval so the objects for which the methods perform poorly are 

also the ones where the assumption of a normal distribution following the model 

data set statistics is not a good one. On the whole, the conclusions about the CMR 

and uncertainty interval robustness apply to the SPE values calculated from SCP 

and mean replacement scores. There are two objects, 25 and 74, for which the 

SCP method produces values that are outside the uncertainty interval but this 

behaviour is consistent with that seen in section 2.5.2.1 where some objects or 

missing data combinations can have large errors depending on the alignment of 

the object and model vectors. 
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Figure 3-14: First Score Contribution plot for object 74 with 95% Uncertainty 
Intervals due to Missing Measurements. Missing Measurements are 1 and 7. 
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Figure 3-15: Second Score Contribution Plot for object 74 with 95% Uncertainty 
Intervals due to Missing Measurements. Missing Measurements are 1 and 7. 
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Figure 3-16: Hotelling T2 Plot with Various Measurements Missing. The bars on 
some objects are 95% uncertainty intervals arising from the missing 
measurements. The symbol '0' is the nominal value and 'x' is the SCP value. The 
solid horizontal line is the 99% control limit. 
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Figure 3-17: Hotelling T2 Plot with Various Measurements Missing. The bars on 
some objects are 95% uncertainty intervals arising from the missing 
measurements. The symbol '0' is the nominal value and 'x' is the mean 
replacement value. The solid horizontal line is the 99% control limit. 
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Figure 3-18: Hotelling T2 Plot with Variables 1 and 8 Missing. The bars on the 
objects are 95% uncertainty intervals arising from the missing measurements. The 
symbol '0' is the nominal value and 'x' is the CMR value. The horizontal lines 
are critical values of the Hotelling T2 statistic; the 99% value is the top line and 
the 95% value is the lower line. 

Variables Recovered Interval Interval Upper Length of 
Missing Measurement Lower Limit Limit Interval 

1,7 - 8.36 11.64 3.28 
1 7 9.87 12.79 2.92 
7 1 8.98 10.63 1.65 

Table 3-2: Object 74 Hotelling T2 95% uncertainty intervals caused by missing 
measurements showing the effect of recovering measurements. 

The Hotelling T2 has been plotted in Figure 3-18 when measurements 1 

and 8 are missing. This particular combination of missing variables was 

previously identified as causing poor performance (section 2.5.2). The large 

uncertainty intervals on the Hotelling T2 value due to missing measurements 

greatly reduce the utility and confidence in the test; especially if the 95% control 

limit level is used. The monitoring application would be ignored or turned off. 
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The length of the uncertainty intervals on the calculated T2 values vary greatly 

over time. A simple off-line calculation of uncertainty would be of much less 

utility than the individual limits on the objects as plotted in the figure. 

If variable 4 is missing in addition to 1 and 8 we see missed alarms in the 

SPE and false alarms in the Hotelling T2 in another section of the kamyr digester 

data set shown in Figure 3-19 when the scores are calculated by SCPo The missed 

SPE alarms are in objects 45 to 47 and 94 to 95 and the false Hotelling T2 alarms 

in objects 48, 49, 99 and 100. The false Hotelling T2 alarm at object 95 occurs 

when the SPE is above the critical limit and so is not included. The uncertainty 

intervals for the false SPE alarms in objects 45, 94 and 95 straddle the critical 

value and so indicate the possibility of an alarm condition. For objects 46 and 47 

the uncertainty interval stops just short of the critical value and shows that a 

missed alarm is also possible for the uncertainty interval. The Hotelling T2 

uncertainty intervals for the objects with false alarms show that there is 

substantial uncertainty in the Hotelling T2 for those objects and would indicate to 

an operator that expending effort investigating those alarms would not be 

productive. 
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Figure 3-19: SPE and Hotelling T2 plots for another section of the Kamyr 
Digester data set illustrating missed and false alarms due to missing 
measurements. The missing measurements are 1,4 and 8. The bars on the objects 
are 95% uncertainty intervals arising from the missing measurements. The symbol 
'0' is the nominal value and 'x' is the SCP value. The horizontal lines are the 99% 
control limits of the statistics. 
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3.5 Conclusions 

The impact that the uncertainty arising from the missing measurements 

will have on the scores, predictions, SPE, Hotelling T2 and contributions to these 

quantities in peA and PLS applications is quantified in this chapter so appropriate 

action can be taken. The performance measures developed distinguish between 

situations where model performance with missing measurements will continue to 

be acceptable and situations where it will become unacceptable. In the latter case, 

the measurements must be recovered or the application shut down. Uncertainty 

intervals arising from missing measurements have been derived for the scores, 

predictions, SPE, Hotelling T2 and contributions to these quantities. 

A PLS application to an industrial data set has been used to show that 

these uncertainty intervals can be used as performance measures and diagnostics 

in monitoring and prediction when there are missing measurements. A specific 

combination of missing measurements was shown to cause uncertainty intervals 

in the Hotelling T2 large enough to justify that the monitoring application be shut 

down. Another combination of missing measurements caused false Hotelling T2 

and missed SPE alarms with the single component projection method for some 

objects. These objects had uncertainty intervals that cast doubt on or indicated 

against the erroneous results. 

The approximate prediction variance matrix considering a single output 

derived in this chapter has two terms: one involving the variance of the scores 
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conditional on the present measurements and the other the variance of the Q 

loading vector. The scores must be independent of Q for the approximation to 

hold. The development does not restrict the conditional distribution of the scores 

or PLS loading vector Q variance chosen. For this work the conditional variance 

of the scores was considered only to arise from missing measurements and the Q 

variance from measurement errors in the dependent variable y. The combined 

estimation and missing measurement prediction variance was shown to be much 

greater than the estimation variance alone for the kamyr digester industrial data. 

This shows that the current practice of ignoring the uncertainty introduced by the 

missing measurements can be unacceptable. The uncertainty regions produced for 

the kamyr digester data matched the full data predictions well when the SPE was 

less than the critical value, showing that the assumptions made in producing the 

uncertainty interval are reasonable in practice. 

The uncertainty intervals for the SPE, Hotelling T2 and the contributions 

to these statistics that have been derived here bring more information about the 

state of the process and our knowledge of that state. This increases the confidence 

in the application of peA and PLS models when measurements are missing. The 

process must be 'in control' for the uncertainty intervals to be valid. Quantifying 

the uncertainty allows alarms to be acted on with confidence if the uncertainty 

interval is clearly above the critical value of the statistic. It also reveals when the 

uncertainty in the statistic is so large that alarm conditions can not be detected. An 

uncertainty interval entirely below the critical value indicates that either an alarm 
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condition is not present or that the missing measurements are key to detecting that 

alarm. The uncertainty intervals on the contributions give an indication of which 

measurements must be recovered to reduce the uncertainty in the test statistic so 

decisions can be made which balance the cost of recovering a measurement with 

the benefit to the application. The effect of correlation between missing 

measurements is not considered when determining the effect of individual missing 

measurements on the magnitude of the uncertainty interval. This may result in a 

sub-optimal choice being made for which variables to recover. 

The application of the derived uncertainty intervals to an industrial data 

set showed that the assumptions on the data distribution and the way that the 

uncertainty intervals were defined were reasonable in practice. The uncertainty 

intervals were consistent with the values calculated from all of the measurements 

(full data) when the SPE showed that the process was in control. The uncertainty 

intervals were clearly above the critical value of the SPE or Hotelling T2 for many 

of the objects for which the full data statistic indicated an alarm but there were 

also objects where this was not so. These cases occurred in time ranges where the 

full data SPE indicated the process was disturbed so it is likely the uncertainty 

intervals were invalidated by a shift in the data distribution. Another possibility is 

that the assumption of a normal distribution for the data was not a good one in 

that region. The uncertainty intervals on the contributions to the SPE and 

Hotelling T2 were examined for objects where the interval was close to or 
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straddled the control limit. The analysis correctly determined which 

measurement's recovery would reduce the uncertainty the most. 

The three score calculation methods that were used for the example all 

performed well on the part of the data set where the process was not disturbed. 

SCP and mean replacement can produce values that are outside the uncertainty 

intervals because they do not use the same assumptions as those used in deriving 

the intervals. In the second half of the process, there were objects for which all 

methods performed poorly which could be due to the measurements that were 

missing or the process disturbance or both. CMR and SCP were not more 

sensitive to the data distribution than mean replacement. The SCP and mean 

replacement methods did tend to under-estimate the SPE, which, it was shown, 

would cause missed alarms, and the SCP method had some isolated cases where 

the errors were high, which it was shown would cause false alarms. 



Chapter 4: Missing Measurements and Model Building 

4.1 Introduction 

Two issues will be explored in this chapter: model building with missing 

measurements and model building for applications that need to be robust to 

missing measurements. Being able to exploit objects with missing measurements 

in model building can lead to more accurate and robust models with a given data 

set or a reduced effort and cost to get a model of a prescribed quality (Ro et al., 

2001 and Andrews and Wentzell, 1997). The minimum requirements to enable the 

use of objects with missing measurements are algorithms that make efficient use 

of all available objects and measures of model accuracy that consider the effects 

of the missing measurements. Diagnostics that indicate which sets of missing 

measurements and individual objects are problematic are also required in order 

for missing data modelling to enter widespread use. In chapter 2, it was shown to 

be advantageous to consider robustness to missing measurements in applications 

when building a modeL Removing 'unnecessary' measurements can lead to a 

model that performs well in model building but poorly in applications when 

missing measurements are encountered. 

Factors that affect the NIPALS, EM, MLPCA and iterative replacement 

model building algorithms are developed, and improvements to the MLPCA 

120 
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algorithm proposed, in this chapter. A guide for pruning variables during model 

building is given which considers the resulting model's robustness to missing 

measurements, and a procedure proposed to apply the analysis of chapters 2 and 3 

to improve model building with missing measurements. Also, the issues unique to 

model building are reviewed and the way in which they apply to the analysis in 

the rest of this chapter discussed. 

Analysis of missing measurement model building methods is much more 

challenging than analysis of score calculation algorithms (chapter 2) and model 

applications (chapter 3) because we cannot assume that the distribution ofthe data 

is known. This chapter will ftrst enumerate the issues unique to model building 

and discuss how they apply to the analysis in this chapter. Each model building 

algorithm described in chapter 1 will then be discussed in light of the analysis in 

the rest of the thesis. Building models that are robust to missing measurements in 

application will then be treated with the view that the model building data set is 

complete. The ftnal section in this chapter will propose how the results in chapter 

2 and chapter 3 can be applied directly to the analysis of building models with 

missing measurements. 

4.2 Issues Unique to Model Building with Missing Measurements 

In the previous chapters of this thesis it is assumed that a peA or PLS 

model has already been built. The information used in building this model is then 

available to analyse the performance of the models in applications with missing 
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measurements. It is also possible that the covariance matrix of the variables has 

been estimated. When a model has not been built, this information is not 

available; all of the information about the distribution of the data comes from the 

data matrices themselves and is thus of questionable quality. The issues which are 

raised in model building that are not applicable to score calculation and model 

application are how representative the data set is of the population, possible bias 

in the calculated model due to the mechanism that causes missing measurements, 

the lack of centring and scaling weights for the pre-processing of the data and the 

analysis of iterative algorithms. 

As stated in chapter 1, peA and PLS decompose the covariance matrix or 

matrices of the variables. Even with complete data there are issues with how wen 

the data set represents the population and with missing measurements these issues 

become much more important. The possibility of much more serious model bias 

exists because any bias that is present in the information content of the present 

measurements will be reinforced when that information is used to calculate 

replacement values for the missing measurements. An additional concern is the 

location of the missing data in the data matrix. For any possible subset of 

variables, there must be sufficient objects with measurements present to 

adequately represent the relationships between those variables. These issues will 

not be addressed further in this chapter. 

The mechanism by which measurements become missing can bias the 

model. This is true even if only complete objects are used in model calculation. If 
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this mechanism does not have to be accounted for in the model building algorithm 

then it is said to be ignorable (Little and Rubin, 1987). An ignorable missing 

measurement mechanism is desirable because the model building algorithm will 

be simpler and the parameters of the missing measurement mechanism do not 

need to be known. Measurements are said to be missing completely at random 

(MCAR) when there is no relationship between the values of the variables and 

their probability of being missing. Examples of measurements that are missing 

completely at random are those due to randomly missed manual samples and 

regularly scheduled sensor maintenance that does not affect the operation of the 

process. This strict condition is sufficient but not necessary to have an ignorable 

missing measurement mechanism (Little and Rubin, 1987; Schafer, 1997). A 

necessary and sufficient condition for an ignorable missing measurement 

mechanism is that the parameters of the function that determines the probability 

that a measurement is missing must be measured and included in the data set. This 

is known as missing at random (MAR) and is much less strict. Samples that are 

not taken when certain process measurements are outside safe limits and 

maintenance procedures with associated process operating procedures can be 

examples of MAR mechanisms if certain variables are included in the data set. 

These variables are the ones checked against safe limits for the samples only 

taken under safe conditions and all quantities set by the operating procedure for 

the maintenance procedure. All of the model building methods discussed in this 

thesis require an ignorable missing measurement mechanism. 
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Centring and scaling the data before building a PCA or PLS model are not 

required but are commonly practiced. Centring on the variable means and scaling 

each variable to unit variance are the norm. This requires that the means of the 

variables and the diagonal of the covariance matrix be available. Since PCA and 

PLS are mean and scale dependent, the determination of the centring and scaling 

parameters must either be performed as a pre-processing step or included as a part 

of the missing measurement model building algorithm. 

The algorithms for model building outlined in chapter I are iterative with 

the operations specified repeated until some measure of change falls below a 

threshold. In chapter 2, the algorithms for score calculation with missing 

measurements were analysed to determine the source and magnitude of score 

calculation errors. Individual steps of the model building algorithms are similar to 

the score calculation algorithms but while analysis of each step can be useful 

(Andrews and Wentzell, 1997), serious problems can be missed because the 

difficulty may lie in how the errors influence the algorithm over several iterations. 

This is a major limitation in this chapter on the information that can be deduced 

about the quality of a model from data with missing measurements. 

4.3 Extending Analysis of Score Calculation and Model Application with 

Missing Measurements to Model Building 

In chapter I, the missing measurement score calculation methods were 

introduced and related to model building algorithms. In chapter 2, the score 
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calculation methods were analysed and the sources and magnitudes of the score 

calculation error determined on the assumption that the model has already been 

built. In this section of the thesis, it will be shown how the results of the score 

calculation analysis apply to the related model building algorithms. In addition, 

the issue of centring and scaling will be discussed for each algorithm. 

4.3.1 NIPALS Algorithm 

One of the steps in the NIP ALS algorithm laid out in Equation 1-13 is the 

calculation of the scores with what is referred to in this thesis as SCPo The 

NIP ALS calculation of the loading vector pj for PCA and PLS is similar to SCP 

with the columns of X replacing the rows and the scores tj replacing the loading 

vectors Pj- This allows the score calculation error analysis to be extended to the 

calculation of the loading vectors. 

For this analysis, we need to define t~, u~, x:, e:, f; and y: to be 

column vectors from PCA or PLS matrices with the objects removed which have 

variable k missing. This is analogous to the loading vectors P ~ that have the 

variables which have missing measurements removed. For the data vector 

K j-! 

structure, we have x:U)= LPkmt: +e: -LPkJ:. Once again as in section 
m=! m=! 

2.2.1, the structure for the data is not restricted to the same dimension as the 

model (A latent vectors) but has K dimensions with some of these dimensions 
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possibly having scores with zero variance. The equation for the PCA or PLS 

loading matrix P calculation error analogous to Equation 2-2 is 

Pig - Pkj = Pkj - [t~T t~ tl t7 x:(j) 

=p.-[tTt;NltPkmt:+e;-~Pkmt:] 
K 

= Pkj _[(Tt~tlt7LPkmt: -[t7t~rt7 e: 
m=l 

m=l 

-[t7t~tlft7[Pkmt: - Pkmt:] 
m=l 

Equation 4-1 

With no missing measurements, the error will only depend on the measurement 

error since t~ tm = 0 j:j; m. Thus the important quantities for the calculation of 

the loading matrix P for either PCA or PLS are the magnitude of the scores for the 

objects with missing measurements t ~T t ~, how the objects with missing 

measurements make ( and t: collinear, the magnitude ofpkm (the importance of 

this measurement to this component), measurement error and propagation of 

previous component error. As objects corresponding to large scores are removed, 

t 7 t ~ gets smaller and its inverse larger which makes all of the error terms larger. 

The error term involving previous components can be seen to be affected both by 

loading and score estimation error. 

A similar analysis for the PLS loading matrix W error yields 
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Wkj -Wkj = Wkj - [uTu~ j 1u7 x;(}) 

=w. -[nTu;J'uT[tPlmt: +0; - ~p.",t:] 
K 

= W kj - [U~r u:.jlu7LPkmt : - [u:r u:ru:r e; 
m=1 

Equation 4-2 

which does not give an equation that can be seen to directly yield loading vector 

error depending only on measurement error with no missing measurements. The 

first two terms must cancel with no missing measurements so further work should 

yield such an equation. 

K j-I 

The structure for column k of Y is y:(})= Lqkmt: +f; - Lqkmt: . The 
m=1 m=1 

error in the output loading matrix Q is then 
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m=! 

Equation 4-3 

The result is identical to the P matrix result with the P matrix elements replaced 

by Q matrix elements. The dependence is therefore the same with the exception 

that it is a Y matrix variable loading that determines the importance of the 

variable to the component. 

Finally, the analysis of the error in the elements of the output score matrix 

U requires a structure for a row of the Y matrix 'If i' This structure is 



129 

m=l 

Equation 4-4 

The error in the Y matrix scores U is similar in form to the error for the X matrix 

scores T, but the Y matrix loading vectors q are not required to be orthogonal so 

it is not clear how the error will be zero with no missing measurements. Future 

work to yield this understanding will reveal the factors that affect the error. 

Finally, the NIPALS algorithm requires that any centring or scaling 

weights be calculated before the modelling is done. These must be calculated 

from the available data by an independent method such as using only the 

complete objects. 

4.3.2 EM Algorithm 

The expectation step of the EM algorithm computes values for the missing 

measurements which are used in CMR score calculation. It was shown in section 

2.4 that the expectation when calculated by Equation 1-31 could be vulnerable to 

ill-conditioning. The conditioning of present variable covariance matrices is 
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handled by latent variable regression methods in chapter 2 but another approach is 

given in Schafer (1997) where a uniform prior is used to reduce the influence of 

the ill-conditioning. The speed of convergence of EM is related to the number of 

missing measurements (Schafer, 1997) and can be quite slow. A number of 

acceleration methods have been devised (Schafer, 1997). 

4.3.3 Analysis of MLPCA for Missing Measurement Model Calculation 

~ 

As mentioned in chapter 1, in standard PCA notation P = V so from 

Equation 1-20 the MLPCA calculation for the scores is 

Equation 4-5 

The inverse of a diagonal matrix is also diagonal with the diagonal elements of 

one matrix the inverse of the other. lfthe inverse of the large error variance on the 

missing measurements is taken to be approximately zero and the variables are re-

arranged so the missing measurements occur at the beginning of the object we 

have l:~l '" [: ~J where I is the identity matrix with dimension equal to the 

number of present measurements. Using the superscript notation for missing and 

present measurements, this approximation to ~;l in Equation 4-5 produces 

i; ",[[~:n: a~:]n~:r[: a:i] 
'" [[pOT p" 1[;. Jr [pOT p"T l[ ::J 

Equation 4-6 
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which is the formula for score calculation by projection to the model plane in 

Nelson et aI. (1996) and chapter 2. 

Similarly for row k of the P matrix (denoted 1tk) from Equation 1-21, 

Equation 4-7 

If the inverse of the large error variance on the missing measurements is taken to 

be approximately zero and the objects are re-arranged so the missing 

measurements occur at the beginning of the vector Xk we have '1';1 ~ [: ~] 

where I is the identity matrix with dimension equal to the number of objects with 

variable k present. Using the superscript notation for missing and present 

measurements, this approximation to W;1 in Equation 4-5 produces 

nk~s-{[~:n: a~:]n~:n: ~}k 
Equation 4-8 

~ S-I[U*TiJ* rU*T x: 
which is directly analogous to the result in Equation 4-6 except for the scaling 

provided by S. 

It was shown in chapter 2 that when using projection to the model plane it 

was important to include all model dimensions associated with significant scores 

and that ill-conditioning of the projection matrices could increase error. It can 

now be seen that this will also apply to MLPCA with missing measurements since 

it uses effectively identical projections to calculate its model. Andrews and 

Wentzell (1997) examine an approximation to the error covariance matrix for the 
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scores which assumes the loading vectors are fixed. It was suggested that this be 

used to detect outliers and construct confidence intervals. Recognising that the 

approximate score error covariance developed is a term from Equation 4-6, we 

have cov{ 't) ~ [p*Tp* jl. Examining error contours from this matrix will give 

similar information to that which would be obtained by looking at the condition 

number. 

The model that is calculated using MLPCA is only optimal in a maximum 

likelihood sense for the set of measurement errors and missing measurement 

replacement values that are chosen. It was shown in chapter 2 that using the 

conditional mean for missing measurements can give superior results to projection 

to the model plane in score calculation. CMR uses the information about the 

missing measurements in the present measurements to improve the score estimate. 

The variance of the missing measurements conditional on the present 

measurements and the data distribution that was used in chapter 3 could be 

applied here to provide a measurement error variance that is related to the actual 

degree of uncertainty. EM could be used to provide both the conditional mean 

values and the covariance matrix used for this purpose. In addition, EM would 

provide mean and variance values for centring and scaling of the variables that are 

lacking in the Andrews and Wentzell (1997) paper. EM alone could be used to 

produce the PCA model as stated in section 1.6.1, but the MLPCA algorithm 

includes the uncertainty due to missing measurements more explicitly and might 

prove to be more robust. 
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4.3.4 Iterative Replacement 

The Iterative Replacement algorithm is related to projection to the model 

plane in that the missing measurements are replaced at each iteration with the 

estimates from the current model. Iteration continues until the difference between 

the replacement values and the new values from the model drop below a 

threshold. The missing measurements will have approximately zero residuals in 

the model when the model has converged in the same way that the residuals of the 

missing measurements are set to zero in score calculation with projection to a 

model plane. It is therefore important to include all model dimensions associated 

with significant scores. Centring and scaling are a part of the algorithm. 

Rannar et al. (1994b) refer to this method as EM because the algorithm 

alternates between calculating new values of the missing measurements and 

updating the covariance matrices but it more closely resembles Buck's method as 

outlined in Little and Rubin (1987). Buck's method uses linear regression on the 

present variables to calculate replacements for the missing variables. The 

variances and covariances of variables with missing measurements tend to be 

underestimated by Buck's method because it does not account for the variance 

between pairs of variables where both are missing which cannot be predicted from 

the present variables. Iterative replacement is similar in that it does not correct the 

updated covariance matrix for variance in the missing measurements that can not 

be predicted from the measured variables. This may make the iterative 

replacement algorithm more stable when this correction term is large, but will 
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cause the variances and covariances of variables with missing measurements to be 

biased towards zero. 

EM uses only one data matrix where iterative replacement separates the 

data into a dependent and independent data matrix. EM can use covariance 

between any variables to calculate conditional means and variances whereas 

iterative replacement can only use covariance from the dependent variables. 

4.4 Building Models that are Robust to Missing Measurements 

When peA or PLS models are being built from highly correlated process 

data, and are to be used for predicting responses or for monitoring the process in 

the future, there is often an incentive to reduce the number of variables. This is 

termed pruning the model. This can often be accomplished at the model building 

stage with little loss in the predictive power of the model. There can be a saving 

in sensor or analytical measurement costs by reducing the number of variables 

used and there is a lower probability of having missing data in any new object 

with fewer variables. However, with less redundancy in the variables, the model 

can also be much more sensitive to missing data when it does occur. The error 

analysis in chapter 2 and 3 can be used to provide some useful guidelines for 

variable selection and for testing the resulting pruned model for robustness in the 

presence of missing data. 

The steps to be followed are: 

I. Prune the variables; an iterative procedure may be necessary. 
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A. Discard: 

1. variables that are strongly correlated to others. 

2. variables which do not enter the model strongly. 

B. Do not discard: 

1. all of a group of variables that defme a latent direction and 

could go missing simultaneously. 

2. a measurement or group of measurements that can make 

different latent vectors nearly collinear with one another 

when using the NIP ALS algorithm, that is, make w; or p; 

nearly collinear with p: (j :t: m). This is especially 

important among the dominant latent variables that explain 

a large amount of the variance in the data. 

II. Determine the allowable levels of score, prediction, Hotelling T2 or SPE 

uncertainty based on the end application of the model. 

III. Determine which combinations of variables are to be tested as missing 

simultaneously in the score calculation procedure. Sources of these 

combinations can be: 

A. the groupings determined by the pruning method. 

B. variables with a large (greater than 0.5 or so) weighting in the p 

loading vector for peA or w loading vector for PLS. 
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C. variables simultaneously missing due to scheduled shift changes or 

maintenance. 

D. all possible individual, paired or other sets of measurements. 

N. Use the training set data used to build the model and the diagnostics from 

chapter 3 to evaluate the performance of the desired application. 

V. If a set of variables that produces an unacceptably large error is found: 

A. try to reduce the set to the smallest number of variables that will 

produce an unacceptable level of performance to limit the number 

of variables that will be considered essential for good performance. 

Use uncertainty intervals in contributions to determine which 

variables are causing the problem. 

B. seek an alternate or alternates for the variables in the reduced set 

from the grouping determined by the pruning method or 

mechanistic knowledge. The alternate or alternates should be 

correlated to the missing variable or variables and enter the loading 

vectors in the same way. 

C. re-calculate the model and go back to step III. 

4.5 Applying Results from this Thesis to Model Building with Missing 

Measurements 

This section will propose how the results in chapter 2 and chapter 3 can be 

applied directly to building models with missing measurements. Each missing 
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measurement model building method has been associated with a score calculation 

method which will be used to provide information about missing measurement 

combinations that will cause problems and give an indication of the quality of 

model that can be expected. In addition, the results of chapter 3 can be applied. 

1. The major hurdle to this analysis is the assumption that a model has been 

calculated and, for chapter 3, that a covariance matrix can also be 

supplied. Two alternatives exist to fulfil this need. A model can be 

calculated with the complete objects only or analysis can be applied to a 

missing measurement model as a post-model building application, as in 

Andrews and Wentzell (1997). In either case more latent vectors should be 

calculated than are necessary for modelling in order to establish score 

magnitudes and latent vectors. A covariance matrix can also be obtained 

from complete objects or when EM or iterative replacement are used. 

ll. One goal of the analysis is to identify which of the missing measurement 

combinations present in the data are problematic. 

A. Once a model has been obtained, the complete objects can be used 

with the model and the relevant score calculation method to 

evaluate each missing measurement combination by comparing the 

complete data scores to the scores calculated by the missing 

measurement algorithm. 
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B. The issues raised in section 4.3 should also be addressed, such as 

the relative magnitudes of the scores and the degree of collinearity 

of the loading and score vectors under missing measurements. 

C. Objects which have missing measurement combinations identified 

by the above analysis as causing large score calculation errors 

should be removed from the data set. Deleting these objects will 

require the model to be re-calculated if a model from data with 

missing measurements was used for the analysis. The analysis in 

steps A and B is then repeated with the remaining objects with 

missing measurements until no objects are eliminated. This is not 

necessary with a complete data model since the model does not 

change with the deletion of objects with missing measurements. 

ill. The analysis of chapter 3 can then be used with the remaining objects with 

missing measurements to test individual objects for those with large score 

uncertainty. The objects with large score uncertainty should be deleted 

which will require the model to be re-calculated if a model from data with 

missing measurements was used. The score error analysis of step II and III 

should then be repeated with the new model. 

IV. Finally, there is an additional step if the above analysis was done with a 

complete data model. The objects with missing measurements would not 

be included in the data set if it was not thought that they would influence 

the model. Since the model including the remaining objects with missing 
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measurements should be different from the complete object model then the 

results of the above analysis may change. The analysis should therefore be 

repeated with the model from all remaining objects as a fmal check. 

4.6 Conclusions and Future Work 

Factors that affect the NIP ALS, EM, MLPCA and iterative replacement 

model building algorithms have been developed and improvements to the 

MLPCA algorithm proposed in this chapter. A guide for pruning variables during 

model building has been given which considers the resulting model's robustness 

to missing measurements, and a procedure proposed to apply the analysis of 

chapters 2 and 3 to improve model building with missing measurements. Also, the 

issues unique to model building have been reviewed and the way in which they 

apply to the analysis in the rest of this chapter discussed. 

The challenges in analysing model building with missing measurements 

that are not present in analysing score calculation and model application with 

missing measurements have been reviewed in this chapter. The lack of a prior 

model or distribution information to provide a basis for analysis and the need to 

provide centring and scaling factors are addressed in later sections of the chapter. 

How well the data set represents the true variation of the variables and the 

iterative nature of the model building algorithms are not addressed. The 

importance of the mechanism by which the measurements become missing needs 

to be considered for any of the model building methods discussed. 
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The NIP ALS algorithm, EM, MLPCA and iterative replacement were each 

examined to bring out how they are affected by the issues identified in chapter 2 

and 3 and how centring and scaling of the variables is accomplished. 

In the NIP ALS algorithm, centring and scaling must be provided 

separately. The following factors have been shown to cause errors in calculation 

of P and Q in individual iterations of the algorithm's steps: (i) large sum of 

squared scores in the objects that are missing, (U) the degree to which missing 

measurements make score vectors collinear and (iii) the magnitude of the loading 

on the missing measurement. The factors that affect T were identified in chapter 

2. The analysis of the W and U elements requires further insight to extract the 

relevant factors. This analysis does not account for interactions between the steps 

and iterations of the algorithm. 

The EM algorithm does provide mean and variance estimates for centring 

and scaling of the data. TIl-conditioning of the present variable sub-matrices of the 

variance matrix was identified as a factor causing error. 

The individual projection steps in the MLPCA algorithm were shown to be 

related to projection to the model plane score calculation. This indicates that it is 

important to include all model dimensions associated with significant scores and 

that ill-conditioning of the projection matrices can cause error. MLPCA does not 

have a methodology for providing mean and variance estimates for centring and 

scaling and it was proposed that these could be provided by EM. The means and 

variances would also provide better estimates of the missing measurement values 
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and error variances than were used in Andrews and Wentzell (1997). The 

improved missing measurement replacement values in CMR were shown to 

reduce score error over projection to the model plane. The investigation of 

combining EM and MLPCA, and the advantage of this new method over just 

using EM, should be the subject of future work. 

Iterative Replacement is also related to projection to the model plane so 

that all model dimensions associated with significant scores should be included. 

Unlike MLPCA, centring and scaling is a part of the iterative replacement 

algorithm. The differences between the iterative replacement model building 

algorithm and a model building algorithm using EM as outlined in section 1.6.1 

were examined. These differences include EM using conditional variance to 

prevent bias of variances from missing measurements and the usage by EM of 

information in the Y matrix of PLS on a basis equal to the X matrix. 

When reducing the number of variables in a PCA or PLS model it is 

possible to reduce the robustness of the model to missing measurements in 

applications. This was demonstrated in chapter 2 with the kamyr digester example 

and applies even when the model building data set is complete. A procedure has 

been proposed to use the analysis of chapter 2 and 3 to determine the impact of 

pruning on model robustness to missing measurements and guide the selection of 

the variables to be pruned to maximise robustness to missing measurements in the 

resulting model. Additional work is required to determine the utility of this 

approach when the data set for model building is incomplete. 
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Finally, a procedure for applying the analysis of chapter 2 and chapter 3 to 

model building with missing measurements has been proposed. This procedure 

has been designed to provide an indication of which variables and objects with 

missing measurements can have a major negative impact on the calculated model. 

The procedure does not account for the effects of multiple iterations in an 

algorithm and interactions between individual algorithm steps. Application to 

modelling of both complete data sets with measurements deliberately removed 

and incomplete data sets is required to determine the utility of this approach. 



Chapter 5: Conclusions and Future Work 

In applications of Principal Components Analysis (PCA) and Projection to 

Latent Structures (PLS) it is very important to be able to handle observations with 

some of the measurements missing. The measurements can be missing in a data 

set for building a model or a new object to which a pre-existing model is applied 

in an application. A novel missing measurement score calculation algorithm is 

proposed in chapter 2 of this thesis, and the factors affecting the performance of 

both the novel and existing algorithms are identified and illustrated by designed 

and industrial process data sets. Performance measures for the application of PCA 

and PLS models are derived in chapter 3 and illustrated on an industrial data set. 

These measures distinguish between situations where model performance with 

missing measurements will continue to be acceptable and situations where it will 

become unacceptable. In the latter case, the measurements must be recovered or 

the application shut down. Diagnostics are developed to aid in determining which 

missing measurements are causing the greatest uncertainty in the application and 

will yield the greatest reduction in uncertainty by their recovery. Factors that 

affect the NIP ALS, EM, MLPCA and iterative replacement model building 

algorithms are developed, and improvements to the MLPCA algorithm proposed 

in chapter 4. A guide for pruning variables during model building is given which 

considers the resulting model's robustness to missing measurements and a 
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procedure proposed to apply the analysis of chapters 2 and 3 to improve model 

building with missing measurements. 

Chapter 2 analyses the algorithms that are used for handling missing 

measurements when the underlying PCA or PLS model is assumed to be fixed 

and known. This is the situation when a PCA or PLS model has been built from a 

large amount of plant data and it is to be applied using new observations that have 

missing measurements. A novel algorithm for score calculation with missing 

measurements is developed called conditional mean replacement and its 

properties analysed and compared with those of existing algorithms. The sources 

of error for each algorithm are laid out and illustrated using designed data sets. 

This gives specific quantities calculated from information available from model 

building to determine score calculation performance with each missing 

measurement algorithm. Recommendations on pruning variables and on the 

number of components to use in a model for good performance with missing 

measurements are made. An analysis of two process data sets from the literature, 

one simulated and the other industrial, is presented to show application to realistic 

situations. While all methods perform well in most cases, it is shown that the 

novel method is best in certain critical situations identified by the analysis. 

An expression for the score estimation error from the single component 

projection missing data algorithm shows that the error increases with: (i) 

collinearity of the loading vectors, after loadings for the missing measurements 

are removed, and (ii) similarity in the magnitudes of the scores. An increase in the 
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noise variance in the measurements will also increase the error. Large errors in a 

PLS score calculation using the single component projection method are shown to 

arise when the w and p loading vectors are significantly different. This is caused 

by the presence of variables in the independent data block which do not explain a 

significant amount of the dependent data. Errors are shown to propagate from 

estimated scores to subsequently calculated ones through deflation. The analysis 

is demonstrated on industrial process data and a simulated process taken from the 

literature. 

Improvement over single component projection PCA score calculation is 

possible by fitting all loading vectors at once in a procedure called Projection to 

the Model Plane. The score estimation error equation developed for this method 

showed the sources of the error to be: (i) under-estimating the dimensionality of 

the data, (ii) noise and (iii) ill-conditioning in the least squares projection. A 

biased regression algorithm is recommended for the projection and was shown to 

combat ill-conditioning. 

Another, generally better, method to calculate scores when there are 

missing measurements, which can be applied to both PCA and PLS, is to replace a 

missing variable by its conditional mean given the variables that are observed and 

then to use standard score estimation routines. This is termed Conditional Mean 

Replacement, and it had the lowest mean squared score estimation error in all 

examples evaluated here. This method has information about the expected 

squared magnitude of the scores, therefore the error is due only to lack of 
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information, numerical ill-conditioning, noise, or violations of the assumptions 

made in the least squares regression between the measured and unmeasured 

variables. Identical score estimates are obtained if it is assumed either that all of 

the variables follow a multivariate normal distribution and the unmeasured 

variables are replaced by their conditional means (maximum likelihood 

estimates), or that the assumptions of least squares regression for a linear model 

between the measured variables and the scores hold. A biased regression method 

can be used in place of least squares to combat any ill-conditioning in the latter 

approach; this was not necessary in any ofthe examples in this chapter. 

An example given in the literature as an illustration of PLS robustness to 

missing measurements was analysed. It was shown that the factors that cause 

score calculation error with missing measurements identified in this chapter were 

small which agrees with the conclusions in the literature. 

The analysis of the industrial data set in this chapter agrees with the 

guideline that most of the missing data algorithms perform quite well with up to 

20% of the measurements missing. However, the theoretical score error analysis 

shows that certain critical combinations of missing measurements can give rise to 

large errors. This is illustrated by the pathological simulated data sets and the 

industrial example. In these situations, the conditional mean replacement method 

is shown to be superior to the single component projection method and the 

simultaneous projection to the plane method. Pruning of variables during model 

building was shown to have potential to reduce the ability of the model to be used 
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with missing measurements. Leaving in some redundant variables was shown to 

increase robustness while leaving potential for a reduction in the number of 

variables. 

In applications of PCA and PLS models when there are missing 

measurements the quality of the conclusions made based on the outputs of the 

model are in doubt. The impact that the uncertainty arising from the missing 

measurements will have on the predictions, SPE, Rotelling T2 and contributions 

to these quantities is quantified in chapter 3 so appropriate action can be taken. 

This action may be to use the results as presented, to attempt to recover key 

measurements or to shut the application down. Current practice is to use the 

scores calculated using the missing measurement algorithms in the same manner 

as scores from complete objects. Uncertainty intervals arising from missing 

measurements have been derived for the predictions, SPE, Rotelling T2 and 

contributions to these quantities. The prediction uncertainty interval combines the 

variance from parameter estimation together with the uncertainty arising from the 

missing measurements, with the missing measurement uncertainty dominating in 

the example. All other uncertainty intervals developed are due to missing 

measurement uncertainty alone. Uncertainty intervals for the contributions to 

these quantities are developed to aid in determining which missing measurements 

play the largest role in the uncertainty interval. 

A PLS application to an industrial data set has been used to show that 

these uncertainty intervals can be used as performance measures and diagnostics 
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in monitoring and prediction when there are missing measurements. A specific 

combination of missing measurements was shown to cause uncertainty intervals 

in the Rotelling T2 large enough to justify that the monitoring application be shut 

down. Another combination of missing measurements caused false Rotelling T2 

and missed SPE alarms with the single component projection method for some 

objects. These objects had uncertainty intervals that cast doubt on or indicated 

against the erroneous results. 

The approximate prediction variance matrix considering a single output 

derived in this chapter has two terms: one involving the variance of the scores 

conditional on the present measurements and the other the variance of the Q 

loading vector. The development does not restrict the conditional distribution of 

the scores or PLS loading vector Q variance chosen but the scores must be 

independent of Q for the approximation to hold. For this work the conditional 

variance of the scores was considered only to arise from missing measurements 

and the Q variance from measurement errors in the dependent variable y. The 

combined estimation and missing measurement prediction variance was shown to 

be much greater than the estimation variance alone for the kamyr digester 

industrial data. This shows that the current practice of ignoring the uncertainty 

introduced by the missing measurements can be unacceptable. The uncertainty 

regions produced for the kamyr digester data matched the full data predictions 

well when the SPE was less than the critical value, showing that the assumptions 

made in producing the uncertainty interval are reasonable in practice. 
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The uncertainty intervals for the SPE, Hotelling T2 and the contributions 

to these statistics that have been derived here bring more information about the 

state of the process and our knowledge of that state. This increases the confidence 

in the application of peA and PLS models when measurements are missing. The 

process must be 'in control' for the uncertainty intervals to be valid. Quantifying 

the uncertainty allows alarms to be acted on with confidence if the uncertainty 

interval is clearly above the critical value of the statistic. It also reveals when the 

uncertainty in the statistic is so large that alarm conditions can not be detected. An 

uncertainty interval entirely below the critical value indicates that either an alarm 

condition is not present or that the missing measurements are key to detecting that 

alarm. The uncertainty intervals on the contributions give an indication of which 

measurements must be recovered to reduce the uncertainty in the test statistic so 

decisions can be made which balance the cost of recovering a measurement with 

the benefit to the application. The effect of correlation between missing 

measurements was not considered in developing the uncertainty intervals on the 

contributions which may result in a sub-optimal choice being made for which 

variables to recover. 

The application of the derived uncertainty intervals to an industrial data 

set showed that the assumptions on the data distribution and the way that the 

uncertainty intervals were defined were reasonable in practice. The uncertainty 

intervals were consistent with the values calculated from all of the measurements 

(full data) when the SPE showed that the process was in control. The uncertainty 
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intervals were clearly above the critical value of the SPE or Hotelling T2 for many 

of the objects for which the full data statistic indicated an alarm but there were 

also objects where this was not so. These cases occurred in time ranges where the 

full data SPE indicated the process was disturbed so it is likely the uncertainty 

intervals were invalidated by a shift in the data distribution. The uncertainty 

intervals on the contributions to the SPE and Hotelling T2 were examined for 

objects where the interval was close to or straddled the control limit. The analysis 

correctly determined which measurement's recovery would reduce the uncertainty 

the most. 

The three score calculation methods that were used for the example, SCP, 

CMR and mean replacement, all performed well on the part of the data set where 

the process was not disturbed. In the second half ofthe process, there were objects 

for which they all performed poorly which could be due to the measurements that 

were missing, or the process disturbance, or both. CMR and SCP were not more 

sensitive to the data distribution than mean replacement. The SCP and mean 

replacement methods did tend to under-estimate the SPE, which it was shown 

would cause missed alarms, and the SCP method had some isolated cases where 

the errors were high, which it was shown would cause false alarms. 

Factors that affect the NIP ALS, EM, MLPCA and iterative replacement 

model building algorithms have been developed, and improvements to the 

MLPCA algorithm proposed in chapter 4. A guide for pruning variables during 

model building has been given which considers the resulting model's robustness 
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to missing measurements and a procedure proposed to apply the analysis of 

chapters 2 and 3 to improve model building with missing measurements. Also, the 

issues unique to model building have been reviewed and the way in which they 

apply to the analysis in the rest of this chapter discussed. 

The challenges in analysing model building with missing measurements 

that are not present in analysing score calculation and model application with 

missing measurements include the lack of a prior model or distribution 

information to provide a basis for analysis, the need to provide centring and 

scaling factors, how well the data set represents the true variation of the variables, 

the iterative nature of the model building algorithms and the importance of the 

mechanism by which the measurements become missing. The first two challenges 

are addressed in this chapter; the next two are not. The importance of the 

mechanism by which the measurements become missing needs to be considered 

for any of the model building methods discussed. 

The NIP ALS algorithm, EM, MLPCA and iterative replacement were each 

examined to bring out how they are affected by the issues identified in chapters 2 

and 3 and how centring and scaling of the variables is accomplished. 

In the NIP ALS algorithm, centring and scaling must be provided 

separately and the following factors have been shown to cause errors in individual 

iterations of the algorithm's steps to calculate the P and Q matrices: (i) large sum 

of squared scores in the objects that are missing, (ii) the degree to which missing 

measurements make score vectors collinear and (iii) the magnitude of the loading 
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on the missing measurement. These factors are in addition to the factors for 

calculating Tusing SCP developed in chapter 2 and also do not account for 

interactions between the steps and iterations of the algorithm. The analysis of the 

W and U elements requires further insight to extract the relevant factors. 

EM does provide mean and variance estimates for centring and scaling but 

ill-conditioning of the present variable sub-matrices of the variance matrix can 

cause problems with ill-conditioning and convergence speed can be a problem. 

The individual projection steps in the MLPCA algorithm were shown to be 

related to projection to the model plane score calculation. This indicates that it is 

important to include all model dimensions associated with significant scores and 

that ill-conditioning of the projection matrices can cause error. MLPCA does not 

have a methodology for providing mean and variance estimates for centring and 

scaling and it was proposed that these could be provided by EM. The means and 

variances would also provide better estimates of the missing measurement values 

and variances than were used in Andrews and Wentzell (1997) which was shown 

to reduce score error in CMR over projection to the model plane. The 

investigation of this new method and the advantage of combining EM and 

MLPCA over just using EM should be the subject of future work. 

Iterative Replacement is also related to projection to the model plane so 

that all model dimensions associated with significant scores should be included. 

Unlike MLPCA, centring and scaling is a part of the iterative replacement 

algorithm. The differences between the iterative replacement model building 
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algorithm and a model building algorithm using EM as outlined in section 1.6.1 

were examined. These differences include EM using conditional variance to 

prevent bias of variances from missing measurements and the usage by EM of 

information in the Y matrix ofPLS on a basis equal to the X matrix. 

When reducing the number of variables in a peA or PLS model it is 

possible to reduce the robustness of the model to missing measurements in 

applications. This was demonstrated in chapter 2 with the kamyr digester example 

and applies even when the model building data set is complete. A procedure has 

been proposed to use the analysis of chapter 2 and 3 to determine the impact of 

pruning on model robustness to missing measurements and guide the selection of 

the variables to be pruned to maximise robustness to missing measurements in the 

resulting model. Additional work is required to determine the utility of this 

approach when the data set for model building is incomplete. 

Finally, a procedure for applying the analysis of chapter 2 and chapter 3 to 

model building with missing measurements has been proposed. This procedure 

has been designed to provide an indication of which variables and objects with 

missing measurements can have a major negative impact on the calculated model. 

The procedure does not account for the effects of multiple iterations in an 

algorithm and interactions between individual algorithm steps. Application to 

modelling of both complete data sets with measurements deliberately removed 

and incomplete data sets is required to determine the utility of this approach. 
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Appendix 1: Transformation of the General Quadratic Form to Standard 
Form 

The general quadratic form xT Ax is used in the thesis where x - N(o,1:) 

and A is symmetric but both A and 1: may be rank deficient. It is desired to have 

K 

the quadratic in the standard form Q = L ck {xk + ak Y with all ck>O and 
k=l 

x - N(O,I). This is equivalent to a general form with A diagonal and positive 

defmite and 1: equal to the identity matrix. This appendix will show how to 

transform a general quadratic into this form in two steps. The first step is 

necessary only if A is not full rank and involves fmding an equivalent, lower 

dimensional quadratic with a full-rank A matrix. The second step obtains a 

quadratic in standard form from a general quadratic with a full-rank A matrix. 

Step 1 

Since A is symmetric, there is a U with UTU = UUT = I such that 

A = USUT with S being diagonal with the eigenvalues of A in descending order 

on the diagonal. If A is not full rank then S = [S~ 1 
:] with SII having dimension 

equal to the number of non-zero eigenvalues of A and thus being full rank. The 

matrix U can be partitioned U = [U I' U 2] with U 1 having the same number of 

columns as Sl1. Substituting this into the general form of the quadratic 
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~XT[U" u,l[S~l :][U" u,f x 

= XTU\SIlU; x 

=yTHy 

an equivalent lower dimensional quadratic with y = ui x , mean{y) = U \ ~ , 

var{y) = U \:EU I and H = SIl is obtained. 

Step 2 

First the covariance matrix must be diagonalized in a similar manner to the 

weighting matrix, A, above so :E = USUT with UTU = UUT = I and S being 

diagonal with the eigenvalues of:E in descending order on the diagonal. Now 

create D with d" ~ s~' so that D' ~ S. Partition D with D ~ [~I :] so Du has 

dimension equal to the number of non-zero eigenvalues of D and is thus full rank. 

x=x-~+~ 

~[U1DlI' u,l[ ~ ]+[UID". u,e~n~ 
~[U,D", U,{[ ~HD~~i}] 
~ [U,D", U2{[ ~ ]+~] 
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with 1;{D~~i}. Now set B = [UjDII , u,f A[U1DII , U,)=[::: ::] with 

BIJ = Di\u\AU;D ll , substitute into the quadratic and complete the square. 

x
T AX=[[ ~ ]+1; r [U1DII , u,f A[U1DII , U,)[[ ~] +~] 

= [[ ~ ] + ~ r B[[ ~ ] + ~ ] 

=[[~H~:JH::: ::I[~H~:]] 
= [[y +;\ f , ;~ J[Bll B12 ][Y + ;1] 

B21 B22 ;2 

= [y +;IJB ll [Y+;t]+ 2[y +;lfBI2;2 + ;rB22;2 

= [Y+;lfBll [Y+;I]+ 2[y +;lfBllB;11B12;2 +;~B22;2 

+ ;rB;2 (B;; r BllB;;B12;2 - ;~B;2B;:BllB;:BI2;2 + ;~B22;2 
= [y + ;\ + B;;B12;2 f BII [y + ;1 + B;;B12;2] 

- ;;B;2B;;BI2;2 + ;;B22;2 

= [Y+;1 +B;;BI2;2f HGHT[Y+;I +B;;BI2;2] 

- ;;B;2B;;B12;2 + ;~B22;2 

= [HT Y + HT;I + HTB;;B\2;2f G[HT Y + HT;1 + HTB;iB12;2] 

- ;;B;2B;;B12;2 + ;~B22;2 

= [z + c f G[z + c]- ;~B;2B;:B12;2 + ;~B22;2 
with Bll diagonalized as Bll = HGHT and z = HT Y . The term [z + c f G[z + c] is 

a quadratic in standard form since G is diagonal, mean{z) = HT mean{y ) = 0 and 

var{z) = HT var{Y)H = HTH = I. The second and third terms are constants. 



Appendix 2: Glossary 

Term Section of defmition or Defmition (if an acronym) 

first use 

CMR 2.4 conditional mean 

replacement 

contribution 1.4.2 

EM 1.6 expectation maximisation 

Hotelling T2 1.4.2.2 

loading 1.3 

MAW 2.5.1 methanol- acetone-water 

MLPCA 1.5.1.4 maximum likelihood 

principal components 

analysis 

NIPALS 1.5.1.2 nonlinear iterative partial 

least squares 

OLS 2.3.1 ordinary least squares 

quadratic form 1.7 

PCA 1.3 principal components 

analysis 

PCR 2.3.1 principal components 

regression 

PLS 1.3 projection to latent 
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Term Section of defmition or Defmition (if an acronym) 

first use 

structures (also known as 

partial least squares) 

score 1.3 

SCP 1.5.2.1 single component 

projection 

SPE 1.4.2.1 squared prediction error 

UCZAA 2.5.2 upper cook zone active 

alkali 




