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Abstract
Title of Dissertation. ELECTROMAGNETIC MODAL ANALYSIS OF
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Haiyin Wang, Doctor of Philosophy, 2002
Dissertation directed by :  Professor John Litva
Department of Electrical and Computer Engineering
McMaster University
and
Professor Ke-Li Wu

Department of Electronic Engineering
The Chinese University of Hong Kong

The rapid growth in mobile and satellite communications has intensified the
requirements for good performance, compact structure, high quality and low cost
waveguide filters and diplexers. This dissertation is devoted to the full wave analysis and
modeling of various circular-rectangular (C-R) coaxial waveguide structures which are
commonly used to develop combline filters and diplexers. Specifically, models that can
be cascaded to simulate the system performance of the filters and diplexers are being
sought in the dissertation. The research includes three parts: (1) modal analysis of the
higher-order modes in the C-R waveguide; (2) modal analysis of the TEM mode in the C-
R waveguide; and (3) the scattering characteristics of the right-angle bend and the T

waveguide junctions loaded with a generic post.
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A rigorous analysis, which combines the orthogonal expansion method and the
Galerkin method, is performed to obtain the higher-order eigenmodes in the C-R
waveguide. The Bessel-Fourier series is employed to merge the circular and rectangular
coordinate systems used in the analysis. The cutoff frequencies of the higher-order modes
are determined using the singular value decomposition (SVD) technique.

The modal solution of the TEM mode in the C-R waveguide is obtained by
superposition of the resonant modes in an equivalent rectangular cavity loaded with a
conducting post. The characteristic impedance and attenuation coefficient of the
waveguide are derived from the solution of the TEM mode.

Analytic models of the right-angle bend and T-junctions loaded with posts of
varying heights are derived. A novel technique of the extended eigen mode functions is
developed to deal with the complex boundary conditions in the junction structures. The

general scattering matrices of the right-angle bend and T- junctions are obtained.
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Chapter 1

Introduction

Historical Review

Waveguide combline filters have found many applications in mobile and satellite
communication systems due to their excellent electric performance, small size, high
power handling capability, and low cost. Full-wave electromagnetic field analyses
combined with numerical algorithms can provide an accurate and effective means of
designing novel and compact filters [1][2][3].

Elliptic function combline filters with finite transmission zeros possess many
desirable features such as high frequency selectivity, high stop band rejection and low
pass-band loss [4][5][6]. Since evanescent modes are employed, the combline filter is

more compact than other types of waveguide filters. Filled with high & dielectric

materials, the dimensions of the filter will be further reduced by a factor of \/.s—'; , so that

it can be mounted on the PCB board which is used in a cellular phone [7][8][9][10][11].



In practice, the structure of the insert reentrant coaxial resonator is used to improve the
power handling ability, temperature compensation and spurious performance of the filter
[12]{13][14]. These advantages make combline waveguide filters very attractive
microwave components in today’s highly competitive market place. Therefore, an
accurate model for designing coaxial type filters and diplexers, based on a rigorous
electromagnetic (EM) simulation, would greatly increase the state of art in this area.

Any historical review of the design methods used in combline type filters should
trace its way back to the coupled transmission line model proposed by Matthaei [15]. To
calculate the distributed capacitances in the filter, Cohn’s approximate equations [16]
were used. The extensive discussions about design procedures, formulas, relative
theories, and application examples are available in reference [17]. However, the filter’s
characteristics often deviate from the designated response due to the approximations used
in the design formulas. This problem becomes serious when the method is used for
designing waveguide filters having coupling irises inside the filters. Experimental tuning
is necessary to improve the filter’s performance and to adjust the prototype design.

In 1966, Kurzrok reported his research on a folded combline filter, and
demonstrated that the couplings between nonsuccessive cavities produced transmission

zeros in the stop band of the filter’s transfer function [18][19][20]. His work was mainly

based on experiments and approximate design formulas.
In practice, waveguide filter design consists of two basic steps. First, an
appropriate coupling matrix M needs to be synthesized to meet the required specification.

Secondly, one has to determine the physical dimensions of the filter’s resonators,
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coupling irises and input and output configurations. The recent developments in
electromagnetic modeling have changed the traditional method used for waveguide filter
design and appear to have a bright future in an industry which is having to meet huge
market demands.

The early research in electromagnetic modal analysis of coaxial resonator type
filter structures were started by Liang in his analytical modeling of a cylindrical dielectric
resonator in rectangular waveguides [21][22]. He used two techniques in his model: (1)
The orthogonal expansion method [23] in Cartesian — cylindrical coordinate systems was
extended to analyze a resonator with an inhomogeneous post region; and (2) a general
three-dimensional Bessel-Fourier series was developed to calculate the mutual inner
product integrations on the imaginary boundary between cylindrical and rectangular
regions. Couplings between two identical cavities through a rectangular slot were also
calculated using the modal analysis. Liang’s work paved the way for modeling resonators
and other components in combline filters.

In 1995, Yao derived a full-wave analytical model for an in-line waveguide
combline resonator [24]. This resonator is one of the basic components used to build up
the combline filter. Physically, it is a partial height cylindrical conducting post located in
a straight rectangular waveguide. He extended Liang’s orthogonal expansion method for
solving the problem of conducting boundary conditions, and obtained an expression for
the generalized scattering matrix (GSM) of the evanescent waveguide resonator. By

cascading the scattering matrices of two non-identical adjacent resonators and the



coupling iris, the resonant frequencies and the coupling coefficient can be accurately
determined [25].

Some numerical methods, such as the finite difference method (FDM) [26], the
finite element method (FEM) [27], and the finite difference time domain method (FDTD)
[28][29], can also be used for solving problems in filter design. They work very well
when used to get solutions for component-level problems. When using these methods for
a system-level EM simulation, for example, to simulate a complete waveguide combline
filter, one may face serious problems from computer memories and processor speed.

On the other hand, analytical methods, such as modal analysis, have great
potential for handling large system problems. As long as all the component modules are
defined, one can easily perform the system simulations by simply cascading the
generalized scattering matrices (GSM) for these modules [30]. Analytical methods are
also attractive when people are looking for the physical interpretation behind lengthy
mathematical formulas.

Many waveguide combline filters are built with folded-line configurations
because it is easier to realize nonadjacent couplings. The drawing in fig. 1.1 represents
such a folded combline filter. The filter consists of six waveguide resonators. Each of
them consists of a partial height conducting post located inside a metal housing
compartment. The two coaxial line-like structures are the input and output waveguides of
the filter. The iris apertures on the walls of the metal enclosures provide the paths of
electric or magnetic couplings among the resonators. In a real waveguide combline filter,

the heights and the diameters of the conducting posts, and the sizes and the locations of

4



the irises might be different from each other, depending on the filter’s performance
requirements [21][24][31][32][33]. To obtain a satisfactory performance and to avoid
excessive experimental adjustments, it is highly desired to have a complete

electromagnetic model of the waveguide combline filter.

Figure 1. 1. A folded-line waveguide combline filter

Review of Mode Matching Method

Before discussing how to model the complete filter, let’s have a brief review of
the mode matching method and its applications in waveguide structures. The mode
matching method is one of the most frequently used techniques for solving boundary -
value problems [34][35]. With this method, one can model waveguide structures by

finding the coefficients for the guided modes [36].



Compared to other numerical methods, one of the most significant advantages for
the mode matching method is the substantial reduction in CPU time and memory size
needed for calculations. This comes about because all of the integrations required for
carrying inner products are available in analytical form [37][38].

Looking at figure 1.1, one can realize that the combline filter is made up of five
basic waveguide components, which are shown in figure 1.2. These structures are widely
used, and at first sight, appear to be simple. As a matter of fact, only one of the

components, i.c. the in-line waveguide structure, as shown in figure 1.2 (b), was

successfully modeled in 1995 [24], which is the time this research started.

(a). input/output (b). in-line waveguide (c). right angle bend

I ¢

(d) T-junction (c) cross junction

Fig. 1.2 Five types of the circular-rectangular coaxial waveguide structures



Contributions

1y

2)

3)

The major contributions made in this dissertation are:

A rigorous modal analytical model for determining higher order modes of a
circular-rectangular coaxial waveguide is given in [38] by H. Wang et al. This
model combines the orthogonal expansion method and the Galerkin method. The
resultant eigen matrix equation is solved using Singular Value Decomposition
(SVD). The new method is much more efficient than the existing method which
employs a single coordinate system, and reaches the same accuracy as the older
method.

The first modal analytical model for a transverse electromagnetic wave (TEM) in
a circular-rectangular coaxial waveguide was developed by H. Wang et al [61].
This model is based on a derived analytical expression for the electric field.
Modal analysis of the waveguide junction, comprised of the circular-rectangular
coaxial waveguide, can be carried out using this analytical expression.
Subsequently, the analytic expressions for the characteristic impedance and the
attenuation coefficient for the types of waveguides are obtained from the solution
of the TEM mode.

A new technique for facilitating modal analysis of complex EM boundary value
problems, called the method of the extended eigenmode functions, is proposed

and developed. To show the power of the new technique, the generalized



scattering matrices for the waveguide bend and T- junctions, loaded with a generic

post, are derived by Wu & Wang [63] using the new method.

These contributions lead to the development of key modules for electromagnetic
modal analysis of combline-type filters and diplexers. This modeling is done at the
system level. All the models are verified using either experimental results, or numerical
results published by others. Excellent agreement is obtained in all cases.

The following is how the thesis is organized:

In Chapter 2, the TE and TM modal functions and their cutoff frequencies in
circular-rectangular waveguides are obtained by using the orthogonal expansion
combined with the partial region method. The Galerkin method is employed to calculate
the inner products and to derive a group of linear equations for the amplitude of each
mode function. The eigenmode frequency and corresponding coefficients for the modal
fields are determined by solving the characteristic equation.

In Chapter 3, the TEM mode in a circular-rectangular waveguide is derived by
using the modal functions in a rectangular cavity loaded with a full height circular
conducting post. The resonant mode, whose wavelength is equal to twice the height of
the cavity, would be TEM resonant mode. After the fields for the TEM mode are
obtained, the voltage between inner and outer conductors is determined by carrying out an
integration of the electric field. The analytical expressions for the characteristic
impedance and attenuation coefficient are expressed in terms of the voltage and the

current.



Chapter 4 discusses the scattering characteristics of the right-angle bend and T-
waveguide junctions, which are shown in figure 1.2 (¢) and (d). Rigorous modeling of
the right angle bend and T-junctions is presented. A new method called the extended
eigenmode function technique is introduced to analyze the bend junction and the T-
junction. The generalized scattering matrices are obtained for the bend and T-junctions,
respectively.

In Chapter 5, the research results are summarized.



Chapter 2

The Higher-Order Modal Characteristics of Circular-

Rectangular Coaxial Waveguides

2.1 Introduction

Circular rectangular (C-R) coaxial waveguides have been widely used in various
microwave components and circuits due to their low propagation loss. However, the
community at large has a less than complete understanding of the electromagnetic
characteristics involved. Many practical problems currently encountered could be better
investigated if a complete knowledge of the eigenvalue spectrum of the C-R coaxial
waveguide were known.

An example of a C-R coaxial transition is given by the input/output probe of a
coaxial waveguide combline filter or a diplexer. The TEM mode in a circular coaxial
transmission line couples with the evanescent modes in a rectangular waveguide. Since

all the higher order modes in a rectangular waveguide contribute to the coupling of

10



evanescent modes, the effect of higher order modes in the C-R coaxial waveguide
transition must be taken into account in a full electromagnetic analysis. In addition,
information on higher order modes is also important for predicting the electromagnetic
compatibility (EMC) characteristics of the C-R coaxial line-like structures (usually with
multiple inner conductors) in high speed digital circuits. In particular, the latter is an
interesting problem, where the knowledge obtained from our solutions will be useful for
the development of interconnections in today’s high-speed computers and switches,
which are used in telecommunications.

The early work was carried out by Gruner [39], who used the Galerkin method to
solve for the modes in a rectangular coaxial waveguide. The Galerkin method has also
been successfully applied to the crossed rectangular waveguide problem by Tham [40].
The solutions of these basic waveguide configurations have been widely used in
characterizing various complicated microwave systems. For example, they have been
applied to integrated antenna beamforming networks [41] and waveguide dual mode
filters [42]. Nevertheless, since all these configurations can be described using a
rectangular coordinate system, it is difficult to extend the solutions to the case of C-R
coaxial waveguide, where one must introduce a cylindrical coordinate system. In 1991,
Omar and Schinenmann developed an approach to characterize the EM field in the C-R
waveguide using summation of the eigenfunctions of a rectangular waveguide [43]. The
eigenmode functions in the Cartesian coordinate system are transformed to the cylindrical
coordinate system for integration along the inner circular conductor. To ensure

computational accuracy, many modes (probably 50 or more) have to be used in Omar’s
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method. The previous work is based on a mono-coordinate system, either rectangular or
cylindrical, and thereby improvement may be made by introducing a mixed C-R
coordinate system for the C-R waveguide structure.

In this chapter, a general mathematical expression for the higher order modes in a
C-R coaxial waveguide is given in explicit analytical form. The modal functions obtained
here are in the form of a Fourier series, which can be conveniently used for further
numerical manipulation. The Galerkin method is employed to formulate the problem.
Because the formulation involves both rectangular and circular coordinate systems, the
Bessel-Fourier series is used to merge the two different coordinate systems. In the
proposed formulation, the scalar Helmholtz equations are converted into a generalized
matrix eigenvalue equation. The singular value decomposition (SVD) technique [44] is
then used to determine the eigenvalue spectrum, and subsequently the Fourier coefficients

of the modal functions.

2.2 Basic Formulation

The purpose of the investigation presented in this chapter is to characterize the
higher order modes in the C-R waveguide that is shown in Fig. 2.1. In this geometry, the
inner circular conductor is concentric with the outer rectangular conductor. The
waveguide is infinitely long with perfect conducting walls. There are three kinds of
modes that can be supported by this structure. They are TEM mode, TE modes and TM

modes. TEM mode is the dominant mode in the C-R coaxial waveguide and will be
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investigated in the next chapter. The TE modes and TM modes are the higher-order

modes in the C-R waveguide.

Fig.2.1 A circular-rectangular coaxial waveguide.

Fig. 2.2 shows the cross section of the waveguide, where the inner conductor has a
radius of r,, and the size of the outer conductor is 2ax2b.

To analyze the C-R waveguide, the cross section is divided into two regions, the
rectangular region I and the cylindrical region II as shown in Fig. 2.2. The coordinate
system for each region should have its axis parallel to the boundary of the region such
that the fields in each region can be expressed as summations of eigenmode functions in
the region. We use rectangular coordinates in region I, and cylindrical coordinates in

region II. Both coordinate systems have the same point of origin, which is located at the
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center of the inner conductor. The dashed line represents the imaginary boundary

consisting of a cylindrical surface with radius b, which separates the two regions.

Fig. 2.2 Cross section of the C-R coaxial waveguide

The fields in region I and region II are expressed in terms of eigenmode functions
that satisfy partial boundary conditions for each of the corresponding regions. To
represent the field distributions, we choose trigonometric functions and hyperbolic
functions in region I, Bessel functions and trigonometric functions in region II.

Since the structure of the waveguide is symmetrical with respect to the x and y
axes, only one quadrant needs to be analyzed. Based on various boundary conditions
which are assigned to the x and y axes for TM and TE modes, the eigenvalue problem can

be divided into four distinct groups shown in Table 2.1.
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In Table 2.1, the first/second subscript of the mode corresponds to the boundary

conditions, which have been applied to the y/x axis, respectively.

Table 2.1

Eigenmode Patterns

Mode

X-axis

Y-axis

TModd, odd > TE odd, 0dd
™ odd, even » TE odd, even

™ even, odd » TE even, odd

TM cven, even » TE cven, even

magnetic wall
electric wall
magnetic wall

electric wall

magnetic wall
magnetic wall
electric wall

electric wall

In later sections, the eigenvalue spectrum and the mode functions of each group

are solved separately. By separating the modes into four groups, the mode spectrum

becomes sparse for each group. Therefore, the determination of the eigenvalues of the

problem becomes much easier. The degenerate modes shared by different groups are

derived separately so that no degenerate mode is missed.

2.2.1 Field Expressions and Boundary Conditions of TM Modes

In order to analyze the TM modes, the boundary conditions require the z

component of the electric field strength E, to vanish along the outer and inner conductor

surfaces. We solve the Helmholtz equation for E, using separation of variables in the

rectangular coordinates. Then applying the boundary conditions along the waveguide wall

to the equation, E; in region I of the third quadrant can be expressed as:
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EzI = i Wln Sinh[pln (x s a)]Sin[n”(y * b)] b4

n=1,2,+ 2a 2b
2.1
-a<x<0, -b<y<0, p>b,
with the dispersion relation
nma\’
pl =-4k’a* + (—b—J . (2.2)

Here, y, is the complex coefficient of the eigen field, k. is the cutoff wavenumber of the

waveguide and is given as:

k:=0’eu-k?, (2.3)
where £, is the propagation wavenumber in the z-direction, w is the radian frequency, ¢
and u are the permittivity and permeability, respectively.

Because cylindrical coordinates are used in region II, we express E; in terms of the

Bessel functions, i.e.,

o0

Ele = Z Wll,m [Jm (kcp)Ym (kcro )—‘]m (kcro )Ym (kcp)kbm (¢)’
m=0,1,.. (24)

where yy;,, is the complex coefficient, J.(kp) and Y, (k) are the Bessel functions of the

first and the second kinds of order m, respectively. For a certain eigenmode, all the field

t jk,z

components have a common factor e**. To simplify expressions, E and H are used to

+jk,z

express the electric and magnetic field components without factor e in this chapter.

The ¢ components of the magnetic fields in regions I and II can therefore be

written as
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Hy, =H, cos¢—-H , sing
=—j_€. Z Wln{pln cosh[:pln M} Sin[@] COS¢
a

k: n=1,2,-- 2a 2 2b (2 5)

+Esinh[ Pu (x+a)]cos[m] sing ¢,

2b 2a 2b
-a<x<0, -b<y<0, p>b,
and
H¢Il =- .%{{ Zy/ll,m Ikcl[‘]’m (kcp)Ym (kcro)_‘]m (kcro )Y'm (kcp)kpm(¢)’
m=0,1,.--

c T (2.6)

ry<p<b, 7r$¢$7,

where H,; and H); are the x and y components of the magnetic field in region I, J'u(kp)
and Y',(k. p) are the derivatives of the Bessel functions of the first and the second kinds

with respect to p, and

Q.7

O ()= {cos(m¢)} '

sin(mg)
in which cos(mg) corresponds to TModd, odd and TMeyen, odd¢ modes and sin(mg)
corresponds t0 TModd, even and TMeyen, even modes, determined by using Table 2.1 and the
periodicities of cos(m¢) and sin(m¢). The continuity of E; and Hy implies that
E,=E,, (2.8)
H, =Hy,
at the imaginary boundary p=b.
After substituting the field expressions (2.1), and (2.4)-(2.6) into (2.8), we

multiply both sides with the eigen function ®y(¢) in region II and then integrate from 7 to
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3n/2. The trigonometric functions in each group of the eigenmodes have the same
symmetry as the eigenfields. When eigenfields are extended to the whole region, the
trigonometric functions are extended to the range of 0 to 2z. Therefore, the orthogonality
of the trigonometric functions can be used in region m to 3w/2. Because of the

orthogonality of the trigonometric functions, the following equations are obtained:

u b/ I
z W D = ‘//11,kekm s
n=13,. (2.9)
L tm m tm
Z‘/’ln (ch/m +d i )= '//11,kfk )
n=1,3,-..
where
3
2 .
b, = | sinh[ p, & °°;¢ * “)} sin[””(snzl A l)] D, (#)ds, (2.10)
a

3z

Comn = Z.fg’ﬂ- cosh[p,n (beosg+a) ] sinlim[(Sin s l)] cosg @, (P)dg, (2.11)
7 2a 2a 2

3z

dn = 2]'2’—: sinh[Pz,. g’—f’f'—;fia)-} cos[wﬂ] sing @, ($)dg, (2.12)

el =[J, (kD)Y, (k.r,)—J, (k.r)Y, (kD)A,, (2.13)

[ =l ke BYY, (k1) = T (k1 )Y, (K B)A,, (2.14)
%, k=0,

when @, (@) = cos(kg), A, = (2.15)
%, k0,
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when @, (¢) = sin(k), A, =% (2.16)

In these equations,n=1, 2, -, 2N,and k=m =0, 1, -, 2M where N and M are
the numbers of modes used in regions I and region II, respectively.
After eliminating ;, from (2.9), the above equations can be written in matrix
form
A"y, =0, 2.17)
where yy is the coefficient vector of the eigen fields in the cylindrical region and
A™ =E™ —B"(C" +D" ) 'F" (2.18)
In (2.18), the superscript tm of each matrix means the TM modes and the superscript -1
means the inverse of the matrix. The elements of each matrix are given by the
corresponding lower-case letters defined in equations (2.10)-(2.16). To ensure the
existence of the inverse matrix, the number of the modes used in region I should be the
same as that in region II, i.e. M=N.

From equation (2.9), the field coefficient vector in region I can be determined by
w, =B" E"y,. 2.19)

To have a nontrivial solution of (2.17), the determinant of matrix A" has to be
equal to zero. A group of eigenvalues k.’s that satisfy the characteristic equation det[A™]
= 0 can be obtained. Each eigenvalue corresponds to a cutoff wavenumber for a TM
mode in the C-R waveguide. Consequently, the eigenmodes can be obtained from the

solutions for w7, and
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The boundary conditions for TM modes on the x and y axes include: the
tangential components of a magnetic field should be zero on the magnetic wall and the
tangential components of an electric field should be zero on the electric wall. It means
that OF,/ On needs to be zero along the x and y axes for TModd, 0aa- We choose @y (@) =
cos (k@) in equations (2.9) - (2.16), withm=0, 2, ...andn=1, 3, 5, .... These satisfy the
boundary conditions of the perfect magnetic wall along the x and y axes. For TMeyen, odd
modes, we use the same @, () withm=1,3,5,...,n=1,3,5, ...

Similarly, we can obtain the matrix equations for TMod4, even a0d TMeven, even
modes using (2.9) — (2.16) with @y (§) = sin (kg), wherem =1, 3,5, -, andn=12, 4, 6, -
for TModd, even modes, and m =2, 4, 6, -- and n =2, 4, 6, - for TMeyen, even modes.

The other components of the electric fields, E,, E,, E,, E4 and the magnetic field

components can be derived from E; by using Maxwell’s equations.

2.2.2 Field Expressions and Cutoff Frequencies of TE Modes
For TE modes, the fields H, # 0 and E, = 0. The magnetic field components for

the TE modes in region I and region II are given by

2 (x+a) nz(y+b)
H = C h 0 s
2 n=%:,--- ¥V, COS |:P1n 2a COS b

(2.20)
-a<x<0, -b<Ly<0, p>b

HzII = i '/lll,m [Jm (kcp)Y'm (kcro)— ‘]'m (kcro )Ym (kcp)](bm (¢)’
m=0 2.21)

20



The ¢ components of the electric fields in regions I and II can be written as

LOU < Pn . (x+a) nr(y+b)

2a

- % cosh[ Pn (x2+ a)] Sin[———’m(;b+ b)] sin ¢} , (2:22)
a

-a<x<0, -b<y<0, p>b
and

E¢Il = J% ZWII,m |kc|[J'm (kcp)Y'm (kcro)—'J'm (kcro )Y'm (kcp)](bm (¢)’

=0 (2.23)
ry,<p<b, fr$¢$§§—,
where
_|sin(m¢)
@, (4)= {COS - ¢)}, (2.24)

in which sin(mg) is for TEoq4, oad and TEevevn, odda modes and cos(mg) is for TEqqg, evenand
TEeven, even modes, determined by using Table 2.1 and the periodicities of sin(m¢) and
cos(mg).

Using @, (@) for the inner product with H; = H,; and Ey = Eg;, the following

equations, which are similar to equation (2.9), are obtained

N
te te
zvllnbwkn_WH,kekk’ and

s (2.25)
Z Vin (cgkn ~d g )“_’ '//ll,kfk’km'
n=13,:
After eliminating y;, from these equations, we have the matrix equation
Ay, =0, (2.26)

where
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A“ =E* -B“(C* D" ) F*. 2.27)
The field coefficient vector y; in the rectangular region can be obtained from the matrix
equation |
v, =B E“y,. (2.28)

In the above equations, the superscript te means the TE modes. In equation (2.25) and

the matrix equations, the elements are given by

bE,, = chosh[p,n ® °°S¢+“)]cos[””(sm¢+l)]@m(¢)d¢, (2.29)
: 2a 2

3z

EX .
o = Pw op o, (bcosg+ a)} cos nz(sin ¢ +1)
7 2a 2a 2

]cos(¢>c1>m<¢)d¢, (2.30)

3z
2 .
_inz cosh[p,,, (b co; P+ a)} Sin[nn(su; $+1)
a

T

dte

Dmn

]Sin(¢) @, ($)ds (2.31)

ert:m = [Jm (kcb)Y'm (kcro) - J'm (kcro )Ym (kcb)]Ak s (232)

=k,

[V kDY, (ker,) = T, (Rt )Y (kDA - (2.33)

e
We use O (@) = sin(k@) for TEodq, oaa modes and TEeyen oaa modes. In addition, m= 2, 4, 6,
w,n=1,3,5, - for TEwq, oqa modes, and m=1,3,5, -, n=1, 3, 5, - for TEeven, oda
modes.

Similarly, @i (@) = cos (k¢) is used for TEodq, even modes and TEeyen, even modes with
m=1,3,5+,n=0,2,4, - for TExd evenmodes, and m=0,2,4, ---,n=0, 2, 4, --- for

TEeyen, even modes.
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The values of Ax in equation (2.32) and (2.33) are also given by equations (2.15)

and (2.16).

2.2.3 Bessel-Fourier Series
When we calculate the elements for matrices B, C, D and E, the integrands are the
products of hyperbolic functions and trigonometric functions. Using the relations
sinh(x) =(e* —e7)/2,
cosh(x)=(e* +e™*)/2 (2.34)

and @ (¢) = cos (k¢), equations (2.10) and (2.29) can be rewritten as

3z

2 2 b cos g+a .
b = j{—;— e ( 2a ] sin[—n”(sn; p+ 1)} cos(kg)
g (2.35)
o beos g+a .
— 1_ e ( 2a ) Sin[_n_n-w} cos(k¢)} d¢
2 2
and
32” p bcos p+a .
b, = j.{%e ln( 2a ) cos[———n”(513¢ A 1):] cos(kg)
. (2.36)
P bcos p+a .
%e & )cos[——————n”(su;¢+l)]cos(k¢)}d¢.

The Bessel-Fourier series [22] is then used to calculate the above integrals

analytically. The Bessel-Fourier series is given here for completeness:
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where p,, is given in equation (2.2), and

T®) = o) - @br.)* 2.39)
nw 2
ith 2=l —=| -k’ 2.40
w1 yxn ( 2b) c? ( )
we have T (b) = bk, .

By using the Bessel-Fourier series, the first integration on the right side of

equation (2.35) can be written as

P azi2 Prpcosy)

b =e? e sin[—’g—[— (sin(@) + D]cos(ng)d¢ (2.41)

tan blplnl

JIT@e " p2 <o,

5 anz +bp,, . 2, pn >0,
- S e ([l s kprcosoprap) U P ana =g, anm> 1,1

2
0,
( 1)k/2] [T(b)][anﬂ+bp1n ]k/2 pIn >
z —bp,, anz <b| p,|.

L

The integrations for the different £’s in the summation can be calculated analytically so
that the integration in (2.41) is calculated by the summation of series. To ensure the
accuracy of the summation, the number of the terms for the truncated series must be at
least as large as [22]

K =15+3n. (2.42)
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2.3 Numerical Results and Discussions

In order to verify the modeling approach and demonstrate its application, a C-R
waveguide is investigated in detail. The waveguide has dimensions of a = 2.54 cm and b
=1.27 cm. The cutoff frequencies are obtained by mapping the complete frequency range
of interest for each mode. The SVD technique is used to determine the image points that
satisfy the equation det (A) = 0 [44], where A is either A” or A®. The advantage of the
SVD technique is that it is able to improve the efficiency and reliability in the zero point
searching procedure.

Using the SVD technique, matrix A is expressed as UZVY, where U and V are
unitary matrices of the left and right singular vectors of matrix A, respectively. det(U) =
1 and det(V) = 1. Z is a real diagonal matrix with singular values oji in a descending
order, where i =1, 2, ..., n. If the minimum element o,, of the matrix X is equal to zero,
we have det(A) = 0.

The values of the minimum element o, of matrix X versus eigen wavenumber k.
for TEodd, even modes and TEeyen, even modes are given in figures 2.3 and 2.4, respectively.
In fig. 2.3, the value of . is 0.511249 for H;o mode at the first zero point of oy, The
value of &, at the first zero point of op, is 1.3253987 for Hy mode in fig. 2.4.

Figures 2.5 and 2.6 show the cutoff wavenumbers k. versus the normalized inner
conductor radius 7, / a. It can be seen that the k. of each TE or TM mode in the C-R
waveguide approaches the value of a hollow rectangular waveguide of the same

dimensions as r, approaches a value of zero [65]. Therefore, the hollow rectangular
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Fig. 2.3 The value of o,, vs. cutoff wavenumber k. for TEyqq, even modes
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Fig. 2.4 The value of G, vs. cutoff wavenumber k. for TEyen even Modes
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waveguide may be viewed as a special case in the C-R waveguide modeling. There are a
number of degenerate modes that share the same cutoff frequencies for r, = 0. The
degenerate modes split as the radius of the inner conductor is increased (TEo;, TEzo, and
TEg, TE4 in Fig. 2.6, TM4;, TM»; in Fig. 2.5).

Fig. 2.5 shows another interesting phenomenon of the TM modes in C-R
waveguides: pairs of cutoff wavenumbers converge as one increases the dimension r, of
the inner conductor. This phenomenon indicates the potential for the different TM modes
being combined together, or combined modes being split up into individual ones, simply
by adjusting the r, / a ratio. A possible explanation for this is that the two TM modes
sharing the same second subscript, TM»; and TM;; for instance, are subject to the same x-
axis boundary conditions but different y-axis conditions. Furthermore, one of the modes
has the y-axis as an electric wall while the other has the y-axis as an magnetic wall. Asr,
increases, the boundary along the y-axis becomes shorter and shorter until eventually, the
two modes merge into one mode.

Another interesting observation in Fig. 2.5 is that the cutoff wavenumbers for the
TMo44, 0da modes have a discontinuity when rg tends to zero. Figures 2.7 and 2.8 present
the field distributions for the TM;; mode for the two cases, ro= 0 and r¢ # 0. In Fig. 2.7,
the radius of the inner conductor is zero. This figure gives the field distribution for the
TM; mode in a hollow rectangular waveguide. The maximum value of the field occurs

at the center of the waveguide, where the inner conductor would normally be located. In
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Fig. 2.5 Typical TM mode characteristics of C-R coaxial waveguide

(b/a=0.5).
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Cutoff wavenumbers for TE modes
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Fig. 2.6 Typical TE mode characteristics of C-R coaxial waveguide

(b/a=0.5).
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Fig. 2.8, the radius of inner conductor is very small but not equal to zero. The field at the
surface of the inner conductor is zero. The field distribution has a discontinuous change
as ry changes from zero to nonzero. The discontinuity in the field causes a discontinuous
change in the wave numbers.

Fig. 2.9 and Fig. 2.10 present the contours of the eight typical TM and TE modes
in the C-R waveguide, where r, / a = 0.225. In Fig. 2.9, the z components of the electric
field for the TM modes are plotted. In Fig. 2.10, we plot the contours of the z
components of the magnetic fields for the TE modes.

In order to further verify the validity of this analytical method, we compared the
results of k. with the values calculated using a finite element technique. The waveguide
size is @ =2.54 cm, b =1.27 cm, and r, = 0.635 cm. The average element size in the finite
element method is 0.1016 cm. Table II gives the comparison for each mode in the
waveguide, and, as can be seen, the relative error between the two methods is less than

9.85x10™.
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Table I. Comparisons of the values of k. obtained using the present technique

and the finite element technique

Modes k. (1/cm) ke (1/cm) Relative errors

by present method | by finite element method between the

two methods
TE10 0.51124951 0.51147162 4.34x10™*
TEo 1.0637058 1.06394546 2.25%x10™
TEx 1.3253987 132524321 1.17x10*
TEn 1.3535700 1.3537048 9.95x10”
TEa 1.6493145 1.6493224 4.78x10°
TEso 1.7379933 1.7379533 2.30x107
TEs 2.1282537 2.1285580 1.42x10*
TE4o 2.3222497 2.3226796 1.85x10
TEp 2.5335094 2.5335731 2.51x107
TEo2 2.5892876 2.5892433 1.71x107
T™My, 1.9948099 1.9935818 6.16x10™
T™y, 1.9953650 1.9946881 3.39x10™
TMy, 2.8694867 2.8691664 1.11x10*
TM2, 2.8721777 2.8718947 9.85x10™
T™;, 3.3197261 3.3178141 5.74x10™
TMy; 3.3264943 3.3247878 5.13x10™
TMa; 3.7715987 3.7705847 2.68x10™
TMy, 3.7941012 3.7933216 2.05x10™
TM3 3.9728472 3.9723368 1.28x10™
TMy; 3.9843494 3.9838875 1.15x10*
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Chapter 3

Modal Analysis of the TEM Mode in A Circular-

Rectangular Coaxial Waveguide

3.1 Introduction

The transverse electromagnetic (TEM) mode is found to be the dominant mode in
circular-rectangular coaxial waveguides. This waveguide structure has been widely used
in transitions between circular coaxial waveguides and rectangular waveguides in various
microwave communication systems. Many critical parameters in general microwave
circuit design, such as the characteristic impedance, attenuation coefficient and power
loss, can be derived by carrying out TEM-mode based analysis. Therefore, to completely
understand the electromagnetic characteristics involved, it is of primary importance to

obtain the solution of the TEM mode in the C-R coaxial waveguide.
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Numerical methods can be used to calculate the TEM mode distribution and the
characteristic impedance of the C-R coaxial waveguide. Among the popular numerical
techniques are the finite difference method [45] and the finite element method [46].
Although numerical techniques offer considerable flexibility for dealing with complicated
structures, their dynamic range and accuracy may be limited by discretization and round-
off errors. In addition, numerical methods usually require a considerable amount of
computer memory and CPU time. Analytical solutions, on the other hand, offer the
advantages of accuracy, efficiency and an embedded physical understanding. This is
particularly true when one carries out the analysis of the junction between a C-R
waveguide and a rectangular waveguide. It is found that an analytically derived model
greatly facilitates the electromagnetic simulation of the structure. Therefore, researchers
have put a great deal of effort into obtaining an analytical solution for the problem of
modeling a C-R coaxial waveguide [43][38].

Analytical expressions have been reported by previous authors for deriving the
characteristic impedance of a limited class of C-R coaxial waveguides. For example,
Frankel employed the method of conformal transformation and the method of images
jointly to deduce the characteristic impedance of two-conductor and three-conductor lines
in a rectangular conducting enclosure [47]. The characteristic impedance of a circular-
square coaxial structure was derived in the same paper, although the radius of the inner
conductor is limited to some fraction of the size of its enclosure. Chisholm used a
variational method to develop expressions for the characteristic impedance of a “trough

line” and a “slab line” [48]. A trough line is a circular cylinder within a semi-infinite
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rectangular waveguide. A slab line is a post in an infinite rectangular waveguide.
Modified terms were introduced into the expression so that it could be used for a greater
value of rg, the radius of the inner conductor. Similar methods were used in [49], [50] and
[51] for simulating some special cases of C-R coaxial waveguides. However, in each
case, the mode field distribution was not available in analytical form. Therefore, a more
general method is desired for modeling the TEM mode in a circular-rectangular coaxial
waveguide.

In this chapter, a novel modal analysis is presented to describe the TEM mode in a
C-R waveguide. Instead of formulating the problem by a two-dimensional solution as
was done for higher-order modes in chapter 2, the solution for the TEM mode is obtained
by superposition of the TE and TM modes, defined in a three-dimensional waveguide
cavity loaded with a full-height conducting post. The eigensolution of the cavity
corresponding to the TEM resonant frequency determines the coefficients of the series
expression of the TEM solution. In order to formulate the eigenmatrix equation, the total
electromagnetic field in the waveguide region, as well as in an artificial cylindrical
region, is expanded using the orthogonal eigenmodes of TE and TM type waves in each
region. Continuity of the tangential components of the electric and magnetic fields on the
artificial cylindrical boundary is used to derive the general scattering matrix for a
cylindrical conductor post situated in a rectangular waveguide. We then apply the
boundary conditions at the two shorting planes, which are located at the two ends of the
post-loaded waveguide, to derive the eigenmatrix equation. Since the resonant frequency

for the TEM mode is determined
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Fig.3.1.1 A rectangular waveguide cavity loaded with a full height conducting post

only by the given height of the resonator, the eigen vector for the TEM mode can be
solved without having to search for the eigenvalue.

A number of practical problems are solved based on the formulas that are derived
in this chapter. First, we calculate the characteristic impedance of C-R waveguides with
various aspect ratios. The results are compared with those calculated using the finite
element method (FEM) and other closed form approximations. Excellent agreement is
observed in all of these cases. Then, the attenuation coefficient versus the characteristic
impedance of the C-R coaxial waveguides for a typical coaxial waveguide is investigated.

The results reveal some useful guidelines that can be used for designing coaxial-type
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combline filters, interdigital filters and diplexers, which are widely used in wireless
communications. The method can also be applied to analyzing other structures as shown

in Fig. 3.2.

(a) (b) (c)

o) OO0 O _0O

(d) () (f)

Fig.3.2 The structures for which TEM mode can be analyzed with the proposed method:
(a) circular-square coaxial waveguide, (b) circular-rectangular coaxial waveguide,
(c¢) Slab line waveguide, (d) Trough line waveguide, (e) Multiple cylinders in a

waveguide, (f) Double-ridged waveguide with circular center conductors.
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3.2 Formulation

The characteristics of the TEM mode in a circular rectangular waveguide are
different from those of higher-order modes. The TEM mode is a special case of the TM
modes, where the cutoff frequency of the TEM mode is equal to zero[64]. Therefore, the
scalar Helmholtz equation for the TEM mode reduces to a Laplace’s equation on the

cross section of the waveguide

Vip=0. 3.1

where V; is the Laplacian operator in the two transverse dimensions. ¢ stands for the

transverse electric fields and the transverse magnetic fields. Because the cutoff
wavenumber k. = 0, the solution given in chapter 2 cannot be directly applied to the TEM
mode solution in a circular rectangular waveguide.

In this section, a new resonant approach is used to characterize a rectangular
waveguide resonator loaded with a full height cylindrical post. The standing wave of the
TEMjy10 resonant mode in the resonator can be considered to consist of two TEM waves
traveling in opposite directions along the coaxial waveguide. The field distribution of the
standing wave over the cross section would be the mode function of the corresponding

TEM mode.
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The eigen-mode solution for the C-R waveguide can be derived by considering the

structure shown in Fig. 3.3 (a), in which a rectangular waveguide cavity is loaded with a

(a) The structure of a C-R cavity (b) An infinite rectangular waveguide

loaded with a full height post

Fig. 3.3 Structure of a circular-rectangular coaxial waveguide cavity

full height conducting post. The width of the cavity is 2a, the length of the cavity is
11+l = 2a, the height of the cavity is b and the radius of the post is ro. The discontinuity
in Fig. 3.3 (b) is divided into the following three regions: (1) rectangular region I; (2)
rectangular region II; and (3) cylindrical region III.

The imaginary boundary that separates three regions is a cylindrical surface with

radiusofp=a.

3.2.1. Field Expressions and Boundary Conditions
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First, an infinitely long rectangular waveguide loaded with a conducting post is
considered. The axis of the post coincides with the y-axis of the Cartesian coordinate
system used in the waveguide regions. A cylindrical coordinate system used in the post

x
region is defined by p* = x> +z* and tang = ot For the post region, p<a. For the

waveguide regions, ~a<x<a, 0<y<b and p>a. Forregionl, z <0 and for region
II,z=0.

After the Helmholtz equations in the Cartesian coordinates are solved, the
components of the electromagnetic fields with respect to the z-direction in the rectangular

waveguide region I and II are expressed as

E; A o | Bul iy
{E11}=ZZ [{Bﬂ?}e ™ _{Aug}em les,:s (3.2)

E/ A | e B | rwes
{Ell}= - ZZ [{Bllp}e o +{Allp}erm’ ]elﬁli’ (3‘3)
t p=n,e m i mi mi
H, A | v [ B | e
{H” } 22 [{B”f'}e o {A”?’ & G4
H] AL e [BE) e
{H;I}z P ZZ [{Bllp}e ™ _{Allp}enﬂ ]hn’;n" (35)
t p=ne m i mi mi

where the subscript z indicates the longitudinal field components, the subscript # indicates

the transverse field components with respect to the z direction. A,;’s and B,;’s are the

coefficients of the waveguide modes incident on and reflected from the post region. e?,

44



and AP are components of mode functions for electric and magnetic fields. y, is the

propagation/attenuation constants in the z-direction for each mode, and the subscripts m

and i are the mode indices in the x- and y- directions. The superscripts p=e and p = h

correspond to the TM and TE modes with respect to the z-direction, respectively. Since

the lowest TEM resonant mode in the circular rectangular waveguide cavity is the

TEMjy;p mode, only the modal functions with i =1 need to be considered. Based on the

above perception, the mode functions are given by

, o sin[k,, (x + a)]sin(k,,y), for p=e,
zml 0, fOr p= h,

0, for p=e,

o
JOH o {cos[km(x+a)]cos(ky,y), Jor p=h,

e? _L ﬁ},mlkxm’ forp:e
kyls forp:h

} cos[k,,, (x+a)}sin(k,,y),

P _ 1 _7m1ky1: for p=e
el =—
-k,, for p=h

yml 2
k;

}sin[kxm (x+a)]cos(k,, »),

—-k(fkyl, for p=e

1
o hf  =—
.] /Jo xml {}/””kxm , for p — h

k2

] 1 |k3k,,, for p=e )
pe =1%o %m k. (x+ k¥,
Ja).uo yml k: {},MI kyl , for p= h COS[ xm (x a)] Sln( vl y)

where

2 _ 12 2 2 2
kc —'kxm+kyl "7ml+k0’

} sin[k,,, (x+a)]cos(k, y),

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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In the expressions, j =+~1, @ is the angular frequency, y, is the permeability of the
air, and ko is the wave number in the free space. The wavenumbers along the x and y
directions are

__mﬂ'
xm T 2a’

k

yl

k =%, k2 =@ 4,2, (.13)

The field components in the post region are described in terms of the TE and TM modes
with respect to the y direction, which are the solutions of the Helmholtz equations in a p,

¢, y cylindrical coordinate system. Since the artificial boundaries in region III are

vertical to the p direction, the electromagnetic fields are expressed as the transverse and

the longitudinal components with respect to the p direction by

E" = Y [CoJ, (5 ) + DyX, (nf Pl et + 2 0Cn ', (' p) + DAY, (Pl 1 &,
(3.14)
B} =2 0Ca T (1 p) + DoY, (P 71 €y + 20CJ, (0 P) + DY, (' )] eput »

(3.15)
H" = X (CAT, (1 p) + Du, (i )] ¢ i’ + 2UC T, (i p) + DY, (i ) B

(3.16)

HY' = Y [Cod, (5 o)+ Dy Y, (it o)) s + 2 [C ", (i p) + DY, (' o) 1) Byt

(3.17)
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where C¢, D¢, C! and D! are complex coefficients of the eigenfields. 7y and 7

are cut-off wavenumbers for the TM and TE modes, respectively. The mode functions

are given by
allle _ ~ sin(ng) —cos(ng) nk
et = y{cos(n ¢)}cos(ky1 )+ ¢{ sinnd) } rsin(k,.) (3.18)
A N COS( ¢)
' = ¢{ sin(n ¢)} 7sin(k,») (3.19)
e _ 3 [sin09)
joouhte = ¢{cos(n ¢)} L cos(k,,p) » (3.20)

n o[ cosnd) | [sin(ng)
jouhlth = { i ¢)}sm(ky1y>—¢{c;’:(2f,)} i cos(k,,)» (3.21)

where jand @ are the unit vectors in the y and ¢ directions, and 7} =kg —kJ,,

/4
ky1 =; with g, = 771 orm=rm;.

The boundary conditions to be satisfied are: (1) the tangential components of the
electromagnetic fields with respect to the p direction in both the waveguide regions and

the post region are continuous across the imaginary boundary p =a, and can be written

as

Fadil
t

(3.22)

L JE! +§(El cos¢p—E! sing)|,.,, 7/2<4<31/2,
7=\ PET +J(E! cosp—E! sing)|,.,, —-m/2<¢<n/2,
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i _{9H;+¢(H;cos¢-H,’sin¢)|p=a, 7125937/ 4o

t Ip=a_ J/}H;] +¢?(Hi1 COS¢_H2” Sin¢)l —ﬂ/2s¢<7f/2;

p=a b

(2) the tangential components of the electric field disappear on the surface of the inner

conductor, which is

EM™ _ =0. (3.24)

Since a full height conducting post is considered, the boundary condition on the

inner post conductor is easily satisfied by taking inner products of equation (3.24) with
mode functions 4% and 4™ at p=r,, that is
< EM plte 5= and < EM B 5z, (3.25)
Substituting (3.14) into (3.25) leads to
[T, (170) + DAY, (7)) < 64 gt >=0,

[ChJ' (i) + DAY, (e NI mf 1< &0 By >=0. (3.26)
where the inner product is defined as [22]

b ¥
<é, h>,,= [j @xh),.,-AdS = de!(e¢hy —eh,),,adg

The matrix expression can be derived from the above equations
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C’ C*

Jne (77187'0) Yne (ﬂ]ero) 0 0 De — [W De — {0} (327)
0 0 I (771"”0) Y, (771""0) c’ C’ ’
D’ D’

where Jpe, Yne, J'uh and Y’y are submatrices. The elements in J,e and Y, are the Bessel
functions of the first and second kinds respectively. The elements in J'y, and Yy, are the
derivatives of the Bessel functions of first and second kinds with respect to p respectively.
The orders of matrices J,. and Y, are N x N. , the orders of matrices J'nn and Y'y,y, are
Nh x Ni. Ne is the total number of TM modes used, and Ny, is the total number of TE

modes used. The W matrix for a full height post is given by

[W] — |:Wll WIZ W13 WM ] — [ Jne Yne 0 0 :l (3 28)
W21 W22 w23 W24 0 0 J'nh Y'nh

The W matrix shows the relation between the coefficients of the electromagnetic fields in

post region III and the boundary conditions at the surface of the inner conductor.

3.2.2 General Scattering Matrix and Field Coefficients

The other boundary conditions at p = a are taken into account by taking inner
products of equation (3.22) with A and A", and (3.23) with % and & the left
sides of the equations become

<E" .M >=C4J (nfa) <&l hl > + DL Y (nfa) < &l hle >, (3.29a)

nl*n ml >l

A iy A Il Aflle 1. 11
<e11rﬁe’Ht”] >=CpJ', (ma)|n < exlrﬁe’hrgle >+D, Y, (nfa)|ny 1< e,y By >s(3.29b)

nl >

I 11k h h h Alllh 1, A h h h ~lllh 1. 1Ih
<E" h, >=ChJ', (ma)n'|<éy shy >+DiY, (glalm'|<é,, shy >, (3.29¢)

tnl tnl *"%ml
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~h agild h h ~lllh 7 ITh h h Alllh 7 1Tk
<ép H!" >=C,J,(mla)<é,, by >+DiY, (na)<eé,, sh, >, (3.29d)

nl

and the right sides of the equations are written as

o n ~ A
<JE, +9E, +JE, + $E/ by’ >=[uy, w, - uw][B], (3.302)
~llle ~Arxyl Y1yl Axypll Trpll A
<&, ,yH, +¢H, + yH, + ¢H, >= [uy,, u,, -+ uy] g’ (3.30b)
Al | 2pl | apll | Pl { ik A
<yEy +¢E¢ +yEy +¢E¢ g >=[ug wy, - ugl B’ (3.30c)
Al ~Aqrl Yyl Ayyll Yyl A
<€ »JH, +9H, + H, + ¢H, >={u, u, - u,] Bl (3.30d)

The following matrix equation is derived,

—AIe
Alh
e T Ile
C u, u, - U A
e 11k
D Uy u, - UylA 331
[Q] Ch = e u B]e 2 ( * )
U, Uy 38
h Ih
D u, u, - Ug|B
BIIe
B

where the elements of Q consist of Bessel functions only, and the elements of u; have the

ty,z Alllp 7 Ilip . _
. or <xe’’e ¥ h," > _ withp=e

. A ], EYIEN NI/
form of the inner product <e,,’ +e**h,1" > _ ml > p=a

ml >— tml
orp=h.
Therefore, we have found that the relationship between the coefficients of the

fields in the waveguide region and the post region is given by
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'Ale
Al
c Xn Xp Xlsq A
D* Xn X» Xos A
c B Xy Xy X B |’ (-32)
D’ X0 Xp X4s_ B”
B
B

with [X] = [Q]_][U] . The expressions for the elements of [Q] and [U] matrices are given
in the appendix of this chapter. Substituting (3.32) into (3.27) results in
Ce

(W 1= WX =Wk X, | = 0. 639

Dh
where the elements in the W matrix contain only the Bessel functions of the first and the
second kinds. The elements in the X matrix involve the inner products of the eigenmode
functions in the post region and waveguide regions. X, corresponds to the wave incident
onto the post region, while Xp corresponds to the wave reflected from the post region.
The matrix [X] connects the fields in the waveguide regions and the post region.
To align with the definition of the general scattering matrix, we rearrange

equation (3.33) and obtain the following expression
{B} =[S] {A} =—(IW] [X,; )" [W][X,] {A}, (3.34)
with respect to the reference plane at z = 0. [S] is the general scattering matrix with the

reference plane at the center of the post. {A} and {B} are coefficient vectors of the
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incident and reflected field in rectangular waveguide regions, respectively. Then, by

applying the boundary condition of the two conducting planes at the ends of the cavity,

we obtain the matrix expression given by

(pIsIp]+[1){A}={0} and [D]=R‘ If] (3.35)

where the submatrix Dy is a diagonal transmission matrix with d, = e, [I] is the

identity matrix, and {A’} is the coefficient vector of the incident wave with reference to
planes that have been shifted to the ends of the cavity. The characteristic equation
det([D][S][D]+[I])=0 must be satisfied to ensure existence of the eigensolution of
equation (3.35).

Intuitively, it is known that the resonant mode of the cavity corresponding to the
TEM mode in the transverse direction comes with a wavelength equal to twice the height
of the cavity. In other words, the eigen vector {A'} can be determined from equation
(3.35), using the known eigenvalue (resonant frequency). {A} is given by shifting the

reference plane back to the center of the post,
{A}=[D]{A"} (3.36)

After the coefficient vectors {A}, and then {B} are obtained for the waveguide regions,
using equations (3.36) and (3.34), the coefficient vectors in the post region can be easily
determined using equation (3.32). The field distribution in the cavity therefore can be

obtained.
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3.2.3 Characteristic Impedance of a C-R Waveguide

Once the eigenmode field distributions are found, the characteristic impedance for

a C-R coaxial waveguide can be calculated by

ajEj,” (¢ =n/2)dp

L =—= fo . rOSpOSa, (3.37)
I ‘{H;” (p = po)p,ds

where V is the voltage between the inner and outer conductors, and 7 is the total current

flowing on the inner conductor. To calculate the voltage V, the electric field E o needs to

be integrated from the inner conductor to the outer conductor along any path. A judicious

choice is the path along ¢ = /2, since only the field expression in the post region is
needed. The integration of E,’ is carried out by integrating each term of E.' in
equation (3.15), which gives

ajEj,” ($p=x12)dp

L}

a e (] e e . e R e 7[
= Z J-[CnlJ n (771 p)+Dn1Y n (771 p)]ﬂl eigl (¢ ="i—)dp

‘ 7
+ 2 [ICat (o' p)+ DY, (0 p)le i (9 =2)dlp (3.38)

N, N,
=Y V4DV,
n=0 n=0
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where ¥,/ and ¥, are results of integrating E," for TM and TE modes, respectively.

They are given by

={CalJ,(ma) = J,(mr)]+ DylY, (ny a) =¥, (3 v )1} @, Cr )Sm( 30, (:3%)

bny?
V" =
ni2 A
J (77|a) J (771ro) ZZ[JZk(n]a) J2k(nlr0)] J (771a)+-] (77,7'0)
n=20,2,4,.
C:1‘ (n=1)/2 L
Tl a)=J,(1{r) =2 Y [T pen (1l @) = Ty (7] 7)1+ 1] jJ (n{'r)dr
k=0 7o
L n=1,3,5,. J
. T
D, —sin( —y,)
. b
n/2 W
Y(’?la) Y(771r0) 22[Y2k(771a) Y2k(771r0)] Y(ma)+Y(771ro)
n=0,2,4,.
+ D, (n=1)/2 '
Y,(nla)-Y,(nir,) -2 Z[Yzm(n,a) Vo (rr))+ 1t Yot )dr
L n=13,5,. ° )
(D: h2 yO) >
1
(3.39b)

where yo =249/ 8, A is the wavelength at the working frequency and

sin?%) n=1,3,5,..
©° =" = 2 . (3.39¢)
nmw
COS(T) n=0,2,4,..

The analytic expression for the total current is given by
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e e e t e k2 7
CJ‘H;” (P =po)Podd =[CaJ,' (1 po) + DXy (111 po )]'%27[ cos(; Yo)Po- (3.40)

1

Here, the total current on the inner conductor is a constant with respect to the parameter

p,. Hy' is obtained from equations (3.16), (3.20) and (3.21) by taking the ¢ component

of H. After the voltage and current are obtained, one can easily calculate the

characteristic impedance with equation (3.37).

3.2.4 Power Loss and Attenuation Coefficient

N . P
i ~ “;‘.// f

¢ D K

Fig. 3.4 The integration circle on the inner and outer conductor boundaries

By using the definition of the power loss per unit length of the waveguide due to

the finite conductivity of the metallic conductors, we have

P, _ R jﬁ-ﬁ*dl, (3.41)

C+Cy

55



where R, is the surface resistance of the conductors, C; and C> represent the integration
paths over the inner and outer conductor boundaries shown in Fig. 3.4. H is the

component of the magnetic field parallel to C; and C;. H=H," is on the inner conductor

surface. On the outer conductor surface, H=H is on AB and CD, H =H. on BC, H

= H" onDE and AF, and H = H on EF. Because of the symmetric distribution of the

magnetic field, we can calculate P; using the following equation:

Z=~a

0 a
P =2R[ [(H!-H),  dz+ [(H]-H])
0

_]l

dx+% ‘j‘(H;” .17(“1‘11-)’7=r0 rydg]l. (3.42)
¢

The attenuation coefficient is given by

P
a=Fe _ F. , (3.43)
2P,

[E2 @=D0aod 8" (0= py)pscs

where Py is the power that flows along the conductors, and the integrals of E/" and H, ;”

are calculated using equations (3.38) and (3.40), respectively .

3.3 Numerical Results and Discussion

To verify the accuracy of the solution, the field distribution in a C-R coaxial
waveguide and related parameters are calculated by using our new technique. The
frequency chosen for computation is 9.836 GHz. It is found that when 4 TE and 4 TM

symmetric modes in the rectangular waveguide and 8 TE and 8 TM symmetric modes in
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the cylindrical region are used, the numerically determined frequency is accurate to four

decimal places.
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Fig. 3.5 (a) Field distribution of the TEM mode in a C-R waveguide.
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Fig. 3.5 (b) Field distribution of the TEM mode in a twin line structure.
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The vector fields in a C-R waveguide and in a twin line structure are shown in
Fig.3.5 (a) and (b)), respectively. The field lines appear to converge either into or out of
the region occupied by the post. In the vicinity of the post, the field lines are
approximately aligned along radials, which extend outwards from the center of these
posts. The field lines are perpendicular to the surfaces of inner and outer conductors.

The even- and odd- mode impedances, Z, and Z,, of the multiple inner conductor
structure vs. the ratio of r¢ /a are presented in Fig. 3.8. Perfect electric walls are used at
the two sides of an inner conductor for calculating Z,, and perfect magnetic walls are used
for calculating Z.. Excellent agreement is observed between the calculated results and
those published in [52]. The Z. and Z, of the multiple inner conductor coaxial line are
important parameters in designing the coaxial-line interdigital filters.

It is worth mentioning that in all the examples calculated in this section, the value
of the impedance increases as ry decreases or as /; and /, increase. When /; and /, are
greater than 3a, the value of the impedance tends towards a constant.

Fig. 3.6 shows the characteristic impedance of a C-R coaxial waveguide versus
the ratio r¢/a. The result is compared with that obtained using the commercial finite
element package (Ansoft’s HFSS). Fig. 3.7 gives a comparison of the calculated value
using a proposed formulation for the characteristic impedance of a slab line with the
results reported in [48]. In both cases, excellent agreement is obtained.

The attenuation due to conductor loss versus the characteristic impedance for
different ratios of /i/a is plotted in fig. 3.9, where /; = /. The attenuation reaches its

minimum between the values of 70 ohm and 90 ohm on the impedance scale. In this
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region, the attenuation varies smoothly in a very limited range. When the value of /i/a
increases, the attenuation decreases for the same impedance of the C-R coaxial
waveguides. The attenuation of a circular coaxial waveguide is also plotted in the same
figure. The inner conductor of the circular coaxial waveguide has the same radius as that
of the C-R waveguides. The radius of the outer conductor is chosen such that the value of
the area covered by the outer conductor of the circular coaxial waveguide is the same as
that of the circular- square coaxial waveguide ( /; /a =1). The minimum attenuation is
achieved for an impedance value of around 75 ohm in the case of the circular coaxial
waveguide. It can be seen that it is a good approximation to estimate the conductor loss

of C-R waveguides using the formulation for circular coaxial lines.
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Fig. 3.6 The characteristic impedance of a C-R waveguide vs. ry/a
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3.4 Appendix

3.4.1 Element Expressions of Matrix [Q]

Elements of the matrix Q in equation (3.31) are given by

gy, = J, (7fa) < &M hle > g5 =0, (3.44 a)
g, =Y,(mia) <ém I >, G =0, (3.44 b)
0y =, ()| nf|<éme i >, q; =0, (3.44 ¢)
4 =Y, ()i |<ém >, Gy =0, (3.44 d)
g5 =0, s =", (W)l |<ém’ h' >, (344 ¢)
45 =0, sy =V, ()l |<ém’ h" >, (3.44 f)
dy =0, Gy =J,(nla) <el Al >, (344 g)

Allh }; IIh
1

9y = 09 du = Kg(ﬂ]ha) <€, N >> (344 h)
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3.4.2 Element Expressions of Matrix [U]

uy = [dg | dy[—e"m*’e;m,{S‘n(”¢)} il cos(k;,y)]

5 cos(ng) | n?
:_3_75
2 b 3 ( k2
U, = Id¢ fdy[— e‘r,..zeﬁml {E:;(ZZ} 7732 cos(k,, y):l
z 0 \

2 y s o |)sin(ng) Kkl
Uy = Id¢!dy{—e ™ €ym {COS(”¢)} 77182 cos(kyly):I

sin(ng)

2 b k2
u, = |dg|dy|—e™e" { } 2 cos(k
14 I ¢6" I: yml COS(VI¢) 771 2 yly)

2 b : k2
U = Id¢ Idyl:— e’"e’,, {z:;((zz))} 7732 cos(k,, y)}

B P vz n ) sin(ng) k}
Ue = i[d¢6[ay|:_e €ym {cos(n¢)} " COS(kyly):l

=
3

|
V[ N

¥ oz |SiN(nP)| kS
a d¢6[dy|:—e e””'{cw("@} m COS(kyly)}

|
MR

=
oo
Il
e,V | N
Q
.
Y
o
—

yen | SINEP) | ks
¢ om {cos(n¢)} m’ COS(kyly):I

|
R ]

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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N

o _[dy e {— cos(ng

I

> sm(ky1 ¥)

sin(ng)
~ cos(¢){::;((';f,))} cos(k, )]
I cos(ng)| nk,,
¢6[dye m [h;'ml{ Sln(n¢) } e2 Sln(kyly)
~ (Hly 05(9) ~ Hly sin(¢>){:§;((';2} cos(k, )]
eTee —cos(ng) nky1 .
¢J- ye [_ yml Sln(n¢) e2 Sln( yly)
+h 1cos(¢){ (( Z))}cos(ky1 52
( ¢) nkyl
¢jdyermnz[_ yml{ s(:r(:(sn’;) } 5 sin(k ,,»)
+ (Hly cOS(@) + lsm<¢»{ ll((zz))}cos(ky,y>1

""“'——;“Ig

¢jdye""" —h

. —cos(ng)
i sin(ng)

+h, cos(¢){

nk
} —2sin(k,,)

sin(n¢)
os(ng)

}COS(kyly)]

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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3z

2 b cos(ng)] nk,,
u26 = Id¢ Idyehuz _h)’:ml { } Sl (kyly)
0

z Sln(n¢) .
: (3.58)
sin(ng)
+(hxm1 COS(¢)+ zml1 Sln(¢)) ( ¢) cos(kyly)]
2 S —cos(ng)| nk,,
{dﬂdye { it } sin(k,,»)
2 (3.59)
e, cos(¢){:2;((7$)} cos(k,, )]
2 . cos(ng)| nk,,
= ;[ ¢Idye m [hyml{ sin(nd) } sin(k,,y)
-z (3.60)
~ (K 05(9)  H, (¢)){z;’;((zz))}cos(kﬂy)]
3
2 . os(ng) | .
= [a ¢Idye (€ COS(P) — €Sy SI(P)] sinngy [ SPCn?)
z (3.61)
. |sin(ng)
e {z:)s('; ¢)} - cos(k,, )]
3_7r
2
= I ¢_[dye T ey COS(¢){ (¢¢?)} sin(k,,y)
z (3.62)
\ sin(ng) ”
e””‘{cos(n@} iz 005(Kn7)]
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os(ng)
sin(n¢)

, | sin(ng)
e {cos(n¢)} hzc Sl

d¢ Idye’”" [(ezm cOS(B) + €.y Sln(¢)){ } sin(k,,y)

Nla\'--——u"’lN

(ng)

- I ¢ j dye™[e! cos(¢){

) Bt

(ng)
in(ng)

. | sin(ng)
e {cos(n¢)} 70 skl

= I ¢Idye’""z[(em cos(g) + e, Sln(¢)){ } sin(k,,»)

¢Idye’“"[exm1 c08((?’){ (ZWZ)} sin(k,,)

~|§.___‘~|'§’

ot 7

os(ng)

2
= [ ¢Idye"m“[(eml cos(#) — e5 sm(¢»{ inrd)
2

}sin(kyl y)
. {sm(n¢)
+e;

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
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jdye-’m’[emlc s<¢>{ (( "2)} sink, )

NIN'—o

Y {sm(n¢)

! cos(ng)

} %) Cos(kle’)]

3z

I pe cos(ng)
B é[d¢!dy[e l y’”‘{ sm(n¢)} 7 sin(k, 1}’)j|
2

2 b y (

J d¢(;[dy[e Tmi );:m]{ C(S’lsnzlj;)} sln(kyl_)’)]
2

R R

Id¢6[dy[— e’ hyml{ ccs)lsn:j;)} sln(kyl)’)]
z _— cos(ng)
Id¢6[dy[ e y,,,,{ sin(n ¢)} —sin(k 1y)]
2 b zZ1.€ (

;!.d¢ 6" dyI:_ o’m hyml{ C(s)lsnz’:z)} sm(ky,y)}
7

3x
2 b
’;"d¢6[dyl:_ ermIZh;'ml{ c:}if?f;)} sm(k,, ):}

b ... | cos(ng)
6[ [ h y'"’{—sm(n(b)} n Sm(kyd’):’

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

3.74)

(3.75)
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e

Yol s [eostnd) ] 1
dé ojdy[e hy,,,l{_ sin(n ¢)}-77]Tzsm(ky1y):| (3.76)
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Chapter 4

Modal Analysis of Waveguide Bend and T- Junctions

Loaded with A Partial Height Post

4.1 Introduction

The waveguide right angle bend and T- junctions loaded with a partial height post
are two key modules in waveguide combline filters. They also find applications in many
waveguide devices, such as diplexers [53], multiplexers [54][55], and antenna feed
circuits [56]. Figure 4.1.1 shows a combline filter, which has four right angle bend
junctions in the corners and two T-junctions in the middle. A rigorous modeling of the
two key modules is a crucial step to realizing the full electromagnetic design of the
complete combline filters. Because of the existence of the posts, the field distributions

and the boundary conditions inside the waveguide junctions become much more
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complicated than those inside a hollow bend or a hollow T-junction. In this chapter, a
new method is introduced to characterize the waveguide bend and T-junctions loaded
with a partial height post. This method will be called the technique of the extended
eigenmode functions to distinguish from the traditional eigenmode functions used in the

mode matching method.

Fig. 4.1.1 A combline filter with six resonators (the input /output ports are not shown)

The hollow waveguide bend and T- junctions have been studied intensively using
mode-matching methods [57][58][59][60][62]. In order to derive solutions for the
discontinuity in the hollow waveguide junctions, the junction structures are decomposed
into a number of straight one-port waveguides [57][59]. In this way, the eigenmode
functions in each decomposed waveguide can be obtained directly by solving the

Helmholtz equations in Cartesian coordinates.
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In the case of the junctions with a post, each decomposed waveguide has a post in
the waveguide. The eigenmode functions are obtained by solving the Helmholtz
equations in a Cartesian-Cylindrical coordinate system. Similar to the case of the hollow
waveguide, the basis functions in the waveguide regions are the eigenmode functions in
the straight hollow waveguide. However, the basis functions in the cavity region are
determined by using a group of the TE,, and TMy, modes. For any incident TE or TM
mode in the decomposed straight waveguide, both the TE,, and the TMp,, eigen modes
will be excited to satisfy the boundary conditions on the surfaces of the waveguide walls
and the post. The group of eigenmodes, including the corresponding incident mode, is
used to construct a basis function for the field expression in the cavity region. The
coefficients of the modes can be determined by using an approach introduced in [24]. To
construct a complete set of the basis functions in the cavity region, two sets of extended
eigenmodes in two perpendicular straight waveguides are required. Then, the total fields
of the junctions are determined by summing up all the basis functions.

The method introduced in this chapter combines the classical mode matching
method with the extended eigenmode functions to characterize the bend and T-junctions
loaded with a partial height post. The generalized scattering matrices (GSM) of the bend
junction and the T-junction are derived using the method of the extended eigenmode
functions. In practice, the dimensions of the post have a large effect on the filter’s
performance and frequency responses. Using this method, one can accurately determine

the dimensions of the posts and irises for the desired frequency responses.
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Several concrete structures of the bend and T-junctions are analyzed with our new
method. The simulation results are compared to the solutions obtained by using a
commercial Finite Element Method software package. As will be shown, good
agreement is achieved [63]. This method can also be used to derive the generalized

scattering matrix (GSM) of the cross waveguide junctions with a post.

4.2 Right-Angle Bend Junction Loaded with a Partial Height Post

The resonators in the corners of a combline filter can be modeled as a right angle
bend junction loaded with a partial height post. Then, the bend junction is cascaded with
an iris at the aperture of each arm to form a resonator cavity. The three-dimensional

structure of the bend junction is shown in Fig. 4.2.1.

Fig. 4.2.1 A right angle bend junction loaded with a partial height cylindrical post

As shown in Fig. 4.2.2, the geometry of the bend junction with the post consists

of a cavity region and two waveguide regions. The cylindrical post is located at the
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center of the cavity region. The radius of the post is 1y and the artificial region around the
post has the radius of p = a. It is assumed that two waveguide arms have the same
dimension 2a x b. The origin of the coordinates is located at the center of the post. The
horizontal waveguide is along the z- axis and the vertical waveguide along the x-axis.

The apertures of the arms are in the planes of z = a and x = a, respectively.

_—

VI

Fig. 4.2.2 Top view of a right angle bend junction loaded with a cylindrical post

To derive the generalized scattering matrix of a bend-junction, the extended
eigenmode function method is developed in the following sections. To simplify the
complex boundary problem, the bend-junction is decomposed into two parts. Each part is
a one-port waveguide cavity loaded with a post so that the discontinuities of waveguide
junction and the post can be solved separately. To deal with the discontinuity of the post,
the extended eigenmode functions in the one-port cavity are determined by using the
generalized scattering matrix of the straight waveguide loaded with a partial height post

and then adding a short-plane at the end of the waveguide [24].
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Two decomposed one-port waveguides are shown in Fig. 4.2.3 (a) and Fig. 4.2.3
(b). All the natural boundaries of the junction are parallel with the axes of the
coordinates in the sub-regions. It ensures that every eigenmode function in the sub-
regions satisfies the boundary conditions on the metal surfaces of the waveguides. The
most noticeable feature of this structure is that the artificial cylindrical surface casts into

the boundary of the two ports and is tangential to the waveguide walls.

—
—

T 1y i I I

111 0 ’/ y L
; v z \\ v/ v Z
1 I e il 1

(a) vertical one port waveguide (b)) horizontal one port waveguide

v

Fig. 4.2.3 Regions of analysis for a right angle bend junction loaded with a cylindrical post

4.2.1 Field Expressions in the Horizontal One-Port Waveguide

In the waveguide region V, where —a<x<a, 0<y<b, z 2a, the transverse

fields with respect to the z-direction are expressed in terms of the weighted modal

functions,

E' = Z Z [Byie ™™™ + Aye’™ e+ Z [Ble =" + A e?=" 185, 4.1
m i m i

A = Z Z [B!he "m? — 4V g7m? |1 +Y Z [Blig7m — fAVeg?m? 1he 4.2)
m i m i
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In equation (4.1) and (4.2), 6%, 6% h™ and h% are the transverse mode fields, with

tmi >

the longitudinal mode fields e, and A, given by

€. =sinlk,, (x +a)]sink, y), (4.3)
1 —7zmikxm for p=e .
Pz - . .
74 1 _7zmik i for P =€ .
p= k_fz{ iy y for p=h sin[k,, (x +a)]cos(k ,») , 4.5)
Jopohy, = cos[k,, (x+a)]cos(k,,y), (4.6)
1 |-kik, for p=e
‘ouh” =—1{ O sin[k, (x+a)]cos(k., ), 4.7
JOH, xmi kczz {}/zmkxm for p= A [ xm( )] ( y,y) ( )
. 1 |k3k,, for p=e .
hP = — o k + k.y), 4.8
]Co.uo ymi k:z {}’zmiky,- for p= h COS[ xm (‘x a)] Sln( y;y) ( )
with
4.9)

kr.?z =kx2m +k)2/i =722mi +k(¥’
where y ., is the propagation/attenuation coefficient along the z-direction, ks, k; and ko

are wave-numbers given by

.

- =%Z-, k, =% and k. =’ u,&,. (4.10)

In the cavity region I and II, the total fields are given by

Elz =ZC:$IM +ZC;$;I, (4.11)
J J

I'_‘Ilz - ZC;,'/‘;;” + ZC;'/-};I . (4.12)
J J
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E% =% C'gM +3 Cig" s (4.13)
J J

HE =Y Chgh + 3 cog s (4.14)
J J

where C;.' and C; are the eigenfield coefficients. The extended eigenmode functions é H

and c/7j?i refer to the jth modal functions of the electric fields and the magnetic fields,

respectively, superscripts g=h and g=e refer to the incident TE modes and TM modes,

respectively, superscripts i = I, II refer to the waveguide region I and II. The extended

eigenfunctions are given by

ne

nh ne
Thl leh —Y 2 leh V:pZ\ A€z Z Ihh =7 2 Ihh Y2y ahz Z leh =72 _ pleh Y p¥ysez
8" =D (Ayhe 7™ + Ble Ve, + D (45T + Bl Ney + ) (Ae B, e ey
4 14 p
ol _ N, tee 7 & e The B, NS )
el __ lee <Y zpZ lee Y:pZ\Aez —Yzp2 VETZEN ee ;"Vp? _ ee Y :pZ\Aez
¢j - Z(Ap.je + Bp,je )e'p + Z(Ap,je + Bp.je )erp + Z(Ap,je Bp,je )ezp ’
P r p
hl < Ieh _~7:p2 leh VN1, & Thh =7 2 Ihh Y21 hz & Ihh =7 32 Thh 721 he
7Y — eh "V __ ple @» €z Tt p Vo P
7y =D (4 By " Yy + 3 (4ye By ™Yy + ) (4,0e77 + B My »
r P P
] " ylee 7 y/ 7 & The The P hz & The =¥ 52 The Y52\ Lhe
el _ ee "VpZ _ plee Juiypez Z “Yp? _ Y 2 Z ~Yp »
v =D (4 Bye*Yhy + 3 (4,5 B,e " Wy + ) (4,5e 7 + B, e Yhy >
P p p
T hil < leh -~ leh Y -2 & IIhh 1thh S lleh —7 2 Heh 7 2
— eh ~Yzp2 e, wpiAez ~YzpZ Y pI\2 eh =Y p? _ e pZ\ Aez
¢/’ - Z(Bp,j € + Ap,j € )e'p + Z(Bp,j € + Ap.j € )etp + Z(Bp.j € Ap.j € )eZP i
p P P
Tell 3 ¥/ Hee ¥ & Ilhe Ihe e llee ~7 2 lee Y :p2
ell] _ ee ~Vp? ee VzpiNAez —YzpZ YpZNA ee "V % lee Yzp2\fez
¢j - Z(Bp.je + Ap,je )erp + Z(Bp,je + Ap.je )etp + Z(Bp,je Ap.je )ezp ’
P 14 P
hil N leh -y Heh 7 22\ b 2 Ihh Hhh )y phz & Ithh =¥ Ithh Y 22~ D hz
77 — leh =V T __ e » €z “YpZ _ »Z ~Yzp? z
7" =2 (B,7e A,7€7h; + 3 (B,e A€ Wy + Y (B, e + AT G
14 P r
1! o  pliee -7 llee )7 %\ |, & IThe Ithe Y sp7\ L hz & Ihe =7 % lihe )7 %\ D hz
—ell __ ee =7 p? ee 7 zp ez z “Tp? @»Z Z ~Yzp »
7 =D (Bye A, ;¢ ), + 2 (B, e A, ;€7 )y, + ) (B, je "™ +4,7¢ " Y
P 14 14

(4.15)
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ez Aez Ahz

In the above equations, subscript p corresponds to a pair of subscripts m,i, é;, é., €.,

fzz": , };,ff and I;,Z’ are normal mode functions with respect to the direction of the z-axis in

the rectangular waveguide. They are given in equations (4.3) to (4.10). In equation (4.1)

to (4.15), the superscripts e and A refer to TM and TE modes, respectively. The incident

and reflected mode coefficients 4" and B” have three superscripts, where i is for the

region I or I, p = e or p = h corresponds to the TM or TE type mode functions, and g = e

or g = h refers to the TM or TE type incident mode, respectively.

4.2.2 Coefficients for the Extended Eigen Mode Functions

In an infinite rectangular waveguide loaded with a post, a resonant mode function

Iihh

#™ in region II consists of two parts, an incident TE mode weighted by coefficient 4 y

J

from waveguide region II to the post region III, and corresponding reflected TE (B:,’,'}")

and TM (B‘f,’jf') modes from the post region. In the waveguide region I, the incident

waves to the post region include the TE (4,") and TM (4,) modes, the reflected waves

from the post region are the TE (B”") and TM (B*') modes. The waves in the two

Pt pl

regions are related by the equation

Bl s 4.16
B]I - 2 A]I ’ ( * )

where [S], is the generalized scattering matrix for a regular two port waveguide loaded

with a post[24], and A/, B/, A” and B are M x M matrices given by
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Bllhh Alhh B]hh
{B” }= {Blleh ’ {Al }= Aleh and {Bl }= g [ 4.17)
To ensure the linear independence of the extended eigen modes, the coefficient vector

i/ . .
A", is chosen as a set of linear independent vectors as

17 0] 0]
0 1 :
amdtsl amiolol, . , {ared=l (4.18)
: : 0
0] 0] 1]

The dimension of the vectors is M x 1, where M is the total number of the TM and TE
modes used in the rectangular waveguides. After obtaining [S],, we move one of the
reference planes from the center of the post to z = -a. The corresponding scattering

matrix [S’]z can be obtained by

p, ofs, S,][D, ©
[S]2=[D][S]2[D]=[0 I:":Sz] Snuo 1]' (4.19)

In D, I is the identity matrix, D, is given by
e 71

1
=¥,0
e)’z

[D.]= . : (4.20)

!
—via
en/

M is the total number of modes used in the waveguide region. The submatrices in S’ are

given by
S =D8,;,D,, S',=D,8,I= D,S,,,
Sy, =18,D, =8,,D,, S, =IS,I=8,,. 4.21)
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Then, a short plane is placed at z = a. On the surface of the short plane, every pair of
incident and reflected modes arriving at that plane cancel each other in order to satisfy
the boundary condition. Substituting {B’} = -{A’} and (4.21) into equation (4.16), the
coefficient vectors of the extended eigenmode functions are expressed for a given

incident wave {A”} as

B"}=[5,-8, (8, +D's', A" }=[s},{a"},

fa'}=-p,, s, {a"],

B'}=-D7' (8,8, A+8,) '8, A", (422)
where [S]; is the generalized scattering matrix for a one port waveguide loaded with a

post. The elements of the diagonal matrix D;" are e’ » ,p=1,2,..., M.

4.2.3 Field Expressions in Vertical One Port Waveguide
In the waveguide region VI, the transverse fields with respect to the x-direction

are expressed in terms of mode functions as

ZZ[BVM —7m,x+AVlh ¥ miX el +ZZ[BVIC =¥ smi® +AVIee7m1x] e, (4‘23)

0 =3 > [Byre " — ALt " |hl +ZZ[B o Tt — AVIe Tt e (4.24)

To reuse the scattering matrix of the straight waveguide in order to derive the eigenmode
coefficients, the coordinate system is rotated 90° clockwise. Substituting z = -x and x =
z into equation (4.1) to (4.8), the eigen-mode functions of the vertical waveguide in the

general coordinate system are given by

81



= _ | —sinlk, (z+a)]sin(k,y), for p=e,
- 0, for p=h,

k.., =
e’ =___1_{7xl'::m j" j;: 2=2}sin[k,m (z+a)] cos(kyiy)’

k_, for p=e
e’ ___L{}’imk m j;)r §=h}cos[kzm(z+a)]sin(ky,-y),

yi

0, for p=e,

- hpx' —
JOp N, {cos[k,,,, (z+a)Jcos(k,,y), for p=h,

Joueh?: _L{kgkz,,,, for p=e
0

= coslk,, (z+a)]sin(k ,y),
¢ kczx 7xmikyi’ fO" p=h} ’

2
ja)ﬂohf,:i=“‘12— —kokyi’ Jor p=e
kcx }/xmikzm’ fO"' p=h
with
kc2x =kzzm+k)%i =}/,\%mi_*-k()z’

mrn j
bn=Tgr k=g md K =0us,.

In the cavity region I’ and II’, the electromagnetic fields are given by

E[" =2 D" +3. Dj4)"
J J

B =30l + X Dj)l
j J

E/" =2 04" + 3 D)4}
J J

H" =2 Dy + 3. Djy}"
J J

} sin[k,, (z +a)]cos(k ,y),

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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Replacing z by x in equations (4.15), the extended eigenmodes in the above equations can

be determined.

4.2.4 Generalized Scattering Matrix of a Bend Junction Loaded with a Post

A bend junction is formed by incorporating the two one-port structures, the
vertical one and the horizontal one. The total field in the cavity region of the bend is the
sum of the fields in the cavity region, which are derived for each one-port structure
separately. At the boundary z = g, the total electromagnetic fields in the cavity region are

given as follows

4.37)

z=a

iz | il pll's
Eztotall _{(E’Z-FEXX-I'E}, )z=a: 0<x<a,
t

- (E" +E[*+E}") ~a<x<0.

In the cavity region, the tangential electric fields £.*, E,*,E/*and E]* in region I’
and I’ are equal to zero at z = a. Therefore, the total electric field in the cavity region is
equal to E*|,-,. However, the magnetic fields in region I’ and II’ are not equal to zero at

z = a. Instead, they can be expressed as

, O0<x<a,
x=4 (4.38)
—a<x<0.

(glllz +H:I’x +ﬁ;1')r)

I:"Iztolal I -
t z=a (Htllz +H:'x +H)1}'X)

z=q

A similar relation can be found at the boundary x = a.

- E™|  0<z<a,
Etxlolal I = _‘t”'x Ix:a z2sa (4.39)
E' ..., —asz<l,
ﬁxtotal l — (157'”'«\' + Flz”z +ﬁ)lzlz)x=a ’ 0 <z < a, (4 40)
e @M+ BE A, ,, -a<z<0, '
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The continuity of the electromagnetic fields on the z = a and x = g planes implies that the

tangential components of the fields satisfy the following equations

E/ | =B s (4.41)

2\ =H""|_,, (4.42)
and

El\, = B, (4.43)

A\ =H"" .. (4.44)

By taking inner products of equation (4.41) with 2”" and A%, and equation (4.43) with

I;,'”" and I;,“’, and substituting equations (4.1) into (4.41), and (4.23) into (4.43),

respectively, one can obtain following four linear equations

Vh ~¥.ua Vh 74 Ahz ztotal 1 hz*

(Bl e ™ + Ayl ") < éy, htkl S=<EX by >, (4.45)
] Ve  y.ua rez* __ _ paotal 1 ez*

(Bye ™™ + A e’ Y< ey, hy >=<E" h; >, (4.46)
VIh =y Vih _ywa Ahx T hx* xtotal

(B, e + 4, e )<e,, hy >=< E h,k, >, 4.47)

(BVIe ~¥ 14 AVIe ¥ <9 < hex S=< Extotal h >, (4 48)
u € e ) <ép by >= lkl .

where A" and h® are conjugates of tangential eigenfunctions in region V given by

4.7) (4.8), I:z,'”" and };f"' are conjugates of tangential eigenfunctions in region VI given
by (4.29) (4.30). The left side of equation (4.45 ) can be written as

(B e 7™ + A "™ ) < &% | h,;';‘ >=DI,, (B} e 7% + A} e”*") (4.49)
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where DI, =<él; ,};,',Z' >. Substituting (4.13), (4.15) into (4.45), the right side of
equation (4.45) can be written as
< Bl phet >.Cr<g” N >+).Cy <g YRS
J m
=3 CHY S [Barre ™ + A’ ) < 6 i >} (4.50)
J m i

Ithe -y, . 1Ih . Ah 7 hz*
+ DY DB e + Alter] < 2l Bl ),
J m i

Using orthogonality of the eigenmodes, when m # & or i # [, the inner products are equal

The — (). We have

mij

to zero. Since the incident wave is a TE mode, 4

h __ gkl Thzt _ rpllhh -y.z Uhh ¥z Ahz 1 hzt

Uy, =<¢; ., hy >=[By" e + Ay e’ 1<ey,hy > (4.51)
e __ ell 7h* __ pllhe -,z ahz 1 hz*

U, =< ¢j shy >= Bye <eéw,hy > 4.52)

D/, U}, and U;, are diagonal matrices. In the same way, we can obtain other elements

from equation (4.46), (4.47) and (4.48). The results can be expressed as a matrix

equation.

U u;, o o |ct| [D O 0 0 || B"e7 + A e

Ui Um0 0 jC°|_| 0 DI, 0 0 | B"e7* + A% e (4.53)
0 0 U3 U, |D 10 0 DI, 0 [[Be7 tAMer |

0 0 U, U,|Dr 0 0 0 DI, |B" e + A"
Taking inner products of equation (4.42) with mode functions &/’ and &7, equation

(4.44) with & and ™", we have the matrix equation
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M, M, M; M,|[cC"| [D, 0 0 0 | B"7"—A"
M, M;; My M,|C| |0 D 0 0 | B " -A""| (4.54)
M, M, M, M, |D 0 0 DI, 0 |B™e" -A"e
M, M, M, M,|D 0 0 0 DI|B% 7" -A"e

The generalized scattering matrix can be obtained by combining equation (4.53) and

(4.54). From (4.53), we have

c'l [ur v, o o' [Dl, 0 0 0 | B%e7 +AMere
Cc| |Uy U, 0 0 0 D, 0 0 | B"e” +A"%e

D/ |0 o0 UL UL|| 0 0 Dl 0 [BTe AT @33
D° 0 0 UL U, 0 0 0 DI,[B™e7"+A"e
Substituting (4.55) into (4.54) results in
[M][U]"'[DI]Be ™ + Ae™] = [DI*|[Be™ — Ae”]. (4.56)
The generalized scattering matrix [S] can be derived from (4.56)
[s]=(1l-[GcD(1]+[GD, (4.57)
where
[G] =[p1']"' [M][U]"'[D1], (4.58)

and [I] is the identity matrix.
Note that the reference planes are at the center of the post for A and B
coefficients. For generalized scattering matrix [S] in (4.57), the reference plane is moved

to the apertures of the arms since A multiplies phase shift ¢’ and B multiplies ™.

86



4.2.5 Simulation Results of a Bend Junction Loaded with a Conducting Post

Simulation results for three examples are given in Fig. 4.2.4 to Fig. 4.2.6. The
first example is the S parameters of a hollow waveguide bend with the width of 24=0.75
inches and the height of 5#=0.375 inches. In Fig. 4.2.4(a) and (b), the magnitude and
phase of the S parameters for the dominant mode in the bend calculated using the formula
described in this chapter and using a commercial software which incorporates the Finite
Element Method are superimposed. Excellent agreement can be observed.

In a full height post case, the dimensions of the bend are given as follows: the
width of the waveguide 2a=0.75 inches, the height of the waveguide b= 0.375 inches, the
radius of the post rp=0.1linches, and the height of the post is 0.375 inches. The real part
and imaginary part of the S;; of the dominant mode are plotted in Fig. 4.2.5 (a). Fig. 4.2.5
(b) gives the real and imaginary parts of S;, for the bend loaded with a full height post.

For the partial height post case, a = b = 0.375 inches, o= 0.linches, the height of
the post | ;= 0.3 inches. The real part and imaginary part of S;; are given in Fig. 4.2.6 (a).
Those of Sy, are shown in Fig. 4.2.6 (b). In all plots, solid lines are the results of finite
element method, square points are the results of our new formulas. Excellent agreement

between the results of the modal analysis and the finite element methods is observed.
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Magnitude of S Parameters for Hollow Bend
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Fig. 4.2.4 (a) Magnitude of the S parameters of the dominant mode in a right angle waveguide bend

Phase of S Parameter for Hollow Bend
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Fig. 4.2.4 (b) The phase of the S parameters of the dominant mode in a right angle waveguide bend
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S11 for a Bend with a Full Post
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Fig. 4.2.5 (a) S11 of the dominant mode in a bend junction with a full height post
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Fig. 4.2.5 (b) S12 of the dominant mode in a bend junction with a full height post
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S$11 for a Bend with a Partial Post
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Fig. 4.2.6 (a) S11 of the dominant mode in a bend junction with a partial height post
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Fig. 4.2.6 (b) S12 of the dominant mode in a bend junction with a partial height post
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4.3 Modeling a T Junction Loaded with a Partial Height Post

Fig. 4.3.1 The structure of a T junction loaded with a partial height post

The structure of the T-junction loaded with a partial height conducting post is
shown in Fig. 4.3.1. The modeling of the T-junction can be derived in the same way as
that of the right angle bend. The T-junction is sensitive to different sets of the mode
functions in the vertical waveguide. In the approach used here, special attention is paid
to choosing the correct set of eigenmodes in the vertical straight waveguide, which will
determine the accuracy of the results and the succinctness of the equations.

First, we decompose a T-junction into three parts. By adding perfect electric walls
at each aperture of the right and the upper arms, the left arm and cavity region will form a
one-port cavity as shown in Fig. 4.3.2. The field expressions in a one-port waveguide

were given in the last section. The total field in each arm remains the same as that in the
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one-port waveguide. The fields in the cavity region are the sums of the fields in three
cavity regions of the one-port waveguides. After applying the boundary conditions to
each aperture of the arms, a set of linear equations are obtained. The generalized

scattering matrix is derived from these equations.

4.3.1 Field Expressions in the Left One-Port Waveguide

The expressions of electromagnetic fields in the right horizontal one-port
waveguide are given in section 4.2.1. Section 4.2.3 gives the field expressions in vertical
one port waveguide. The field in region VII of the one port waveguide is expanded in

terms of mode functions as

= Z Z [4,;" e + B/ em" 1¢," +Z Z [AVe g7 4 BVl gVm? J5e2 (4.59)
H" = Z Z [ ™7 — BY o7m e +Z Z [ALee™m® — BVleg?="|h . (4.60)
The total fields in the cavity region I” and II” are given by

B =Y o)+ Y Fio s (4.61)
J J

B =3 Evy + T Ev] (4.62)

B = ; Flgh" + ; Fige (4.63)

A" = ZF" hir +ZF‘ ar, (4.64)

where F; and F; are eigenfield coefficients, the extended eigenmode functions ¢;",

¢/, w¢" and " are the same as those given in equation (4.15). And the eigenmode
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functions are given by multiplying —1 with the right sides of the equations (4.3) — (4.8).

The coefficients 4, and B,:" can be obtained in the same way as that given in

section 4.2.2.

4.3.2 Boundary Conditions and Generalized Scattering Matrix

At the boundaries z = a, z = -a and x = a, the tangential components of the

electromagnetic field are continuous.

oV ol
El |z=a= EI |z=a’
Vi 'nl/8
EI |x=a=Et Ix—a’
a2l inld
Et Iz=-—a= 1Iz=—a’
I/ m
. - _ (H" +H"),,, 0<x<a,
Hl |z=a_Ht |z=a +Ht z=a + I I
(H, +H)),,, —asx<Q(,
/4 I " u"
A=A (H,+H,/+H, +H,),,, 0<z<aq,
Come Tt U\ (HI+H,+H] +H)),,, -a<z<Q,
_ _ _ H"+H"),_ ., 0<x<a
HtV” |z=—a=HlI |z=—a +Htl |z=—a + ( II' J]" )z_ “ :
(H, +H)),.,, —a<x<0.

Substituting the series expressions of electric field and magnetic field
equations, then taking inner products of equation (4.65) with 4** and A%,

k™ and A®, and (4.67) with 4" and 2*", we obtain the matrix equation

(4.65)
(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

into above

(4.66) with
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U, U, 0 0 o o c [ B + AMen ]

Uy U 0 0 0 0 |C| o | BreT +ATe™

0 0 U, U, 0 o /|p"| |." . . IB™e+A™e

o 0 U, U, 0 0 |p| (’) B D} Be 7 4 AVeer |’

0 0 o0 0 U, Ug,|F S BT AR g1

I 0 0 0 0 U, U““Fe_ _BVllee—y,a_'_AVlIeey,a_
(4.71)

where DI matrix is a diagonal matrix, A, B, C, D and F are coefficient vectors. Uj;; and
DJ;; are diagonal submatrices.

Taking inner products of equation (4.68) with &*" and &, equation (4.69) with
~hx

e and 7, and equation (4.70) with &”* and &”", we have the matrix expression

M, M, M, M, M; M16T c’ [ B¢ 7" —AMer ]
M, M, M, M, My, My|C* DI’ 0 B¢ 7 — AVee?
M, M, M, M, M, M,|D _ :“ . . B e 7 ~ A
M, M, M, M, M, M, |D° ' . | Be — AV
h 0 - Dl Vith - Vith
M51 Msz M53 M54 Mss M56 F AB e — AT et
M, M, M, Mg, My, Mg |F°| | B"Ce7: " — AV

4.72)
Combining two matrix equations (4.71) and (4.72), the generalized scattering matrix

obtained is given by

[8]=(1-[ch™(1]+[GD, 4.73)

where

[G]=[p1']"'[M]U]"[D1], (4.74)

95



and [I] is the identity matrix. Like the right angle bend, the reference planes are located
at the apertures of the waveguide arms since the coefficient vectors A and B are

multiplied by an exponential factor.

4.3.3 Simulation Results

The generalized scattering matrices of T-junctions loaded with a partial height
post are calculated in this section. Two examples of simulated results are presented.

In Fig. 4.3.4, the magnitudes and the phases of the S parameters of the T-junction
are plotted. The dimensions of the junction are given as: the half width of the waveguide
a = 0.375 inches, the height of the waveguide b = 0.375 inches, the radius of the post
10=0.05 inches, the height of the post 1 ;=0.1 inches. The solid lines are the results of the
finite element method using a commercial software. The points are the values calculated
using the proposed formulae. The frequency range is 8 GHz to 12 GHz.

The magnitudes and phases of the scattering parameters of the second T-junction
are plotted in Fig. 4.3.5. The dimensions of the junction are: a = 0.14 inches, b = 0.14
inches, ro = 0.025 inches, 1 ,=0.12 inches. The frequency range is 24GHz to 38 GHz.

The method can be applied to derive the generalized scattering matrix for a cross
waveguide junction loaded with a partial height post. The additional step is to add a one-

port waveguide to the T-junction.
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4.4 Appendix

4.4.1 The expressions of elements in matrix [D1], [D1*], [U] and [M] in section 4.2.4
The elements in the matrices [D1] and [D1*] are self inner products of the mode

functions in each arm, defined at the end of this appendix.

DI, =<él ht" >, DI, =<ér" hi >,
p=h, fori=1,3, u=z, fori=1, 2,
. an . 4.75)
p=e, fori=2, 4 u=x, fori=3, 4.
The matrices [D1] and [D1*] are diagonal matrices.
The elements of matrix [U] are given by
(UL), =</ ™" >, (4.76)

{p:h, fork =1, 3, {r:h, fori=1, 3, {u:z, fori=1, 2,
and

p=e, fork=2, 4, r=e, fori=2, 4, u=x, fori=3, 4,

where ¢f’”’s are extended eigenmode functions given in equation (4.15), the inner
products are integrations on the cross sections of the waveguides.

The elements of the matrix [M] are given by

Apz* hil Apz*
(Mil)q,j =< etzz "//j |z=a>‘—1a3 (MiZ)q,j =< etlt;z "//j” |z=a>¢_la9 (477)
Apz* Al A pz* hl' 0
(Mi3)q,j =< etzz "//jl |z=a>g +< et[(;z "/’jl |z=a>—-a’ (4'78)
xy Xy
Apz* I8 A pz* ! 0
(My,),; =<&g »¥; |:ea>0 +<&7 ) |ies>as (4.79)
Yy xy
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p=h, fori=l,
p=e, fori=2.

M,y),; =<ér" )" |, (M,,),; =<é" w5 s>’ (4.80)

=a” ~a? =a” ~-q?

A h, A 0
(MiS)q,j =< elpx "//j” |x a>g +< etpx "//j I (4'81)

x=a —a’

(Mi4)q,j =< étpx "/I

A X
,” lea ‘(;+<e,”Jr ,l//j lyea™oas (4.82)

p=h, fori=3,
p=e, fori=4,

where yft

s are extended eigenmode functions given in (4.15), the upper and lower
limits of the integration are given by superscripts and subscripts outside the sign <,

respectively. The subscripts of y, x, y and z = a, signify the x and y components of y

waves at the reference plane z = a.

4.4.2 The expressions of the matrices [Dl], [DI*], [U] and [M] in section 4.3.2
The elements in the matrices [D1] and [DI1*] are given by
DI, =<&l hi* >, DI, =<&l* hi* >, (4.83)

{p=h, fori=1, 3, 5, {u=z, fori=1, 2, 5, 6,
and

p=e, fori=2, 4,6, u=x, fori=3, 4.

The matrices [DI} and [D1*] are diagonal matrices.

The elements of matrix [U] are given by

ULy -<¢’”” h’" >, (4.84)
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r=h, fori=1, 3,5, p=h, fork=1,3,5, u=z, fori=1, 2,5, 6,

and
r=e, fori=2, 4,6, p=e, fork=2, 4,6, u=x, fori=3, 4,
where the inner products are integrated from -a to a.
The elements of the matrix [M] are given by
A hll A
(Mil)q,_] =<¢€ rzz s j |z=a>ia’ (M12)qj =<e ZZ ’Wje” Iz =a ﬂ a?’ (4'85)
M), =<ér wim |, >t + < i |, >0, (4.86)
x,y X,y
A A z‘ 1' 0
(Mi4 )q,j =< el "//_]e” Iz:a >g +< ets "//]e' lz:a >—a’ (4'87)
x,y Xy
hil" A ell"
(Mis)q,_/ =< etq 9W} Iz =a ‘1 a? (Mi6)q, IZZ 9‘/’/ Iz =a aa’ (488)
p=h, fori=1,
p=e, fori=2,
N h. 4 Apx* ! a
(Mil)q,j =< etpx 9')”]” |x =q7 -a? (Miz)q,j =< ele ’l/,je'” |x=a>—a’ (489)
A h h 0
M), ; =< e,';" ’an lea>0 +< e,';" ,y/{’ o™ s (4.90)
(M), =<&:" w" |.>0 + <&y 12>, 4.91)
Y.z .z
h,
(Mis)q,j =< etq ’l/IJII |x a>0 + <etq ’l//j lx =q Oa’ (492)
Y.z Y,z
(Mi6)q,j =< elq 9W;H Ix a>0 +< etq 9'//7 Ix:a ga’ (493)
iz Y,z
p=h, fori=3,
p=e, fori=4,
(Mﬂ)q,j =< etq "//_[ lz=-a a a? (Mx2)qj =< elsz "/’j |z=—a>a (494)
M,3),,, =< e;;",y/j'” o™ <€ W) >t (4.95)

X,y X,y
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(M )‘l J =<e A:;z"'/,j” |z-—~a>g +< é,zz‘,'/’, | 0 (4.96)

z=-q —a’
X,y X,y

(MiS)q,j =<ePZ ’Wj lz-—a ‘_Iab (Mi6)q,j lq st Iz-—a ga’ (4‘97)

p=h, fori=5,
p=e, fori=6.

In this chapter, the inner products are defined as [22]

a

J‘ I]exfz)-ﬁdy)dx
-a 0

for the horizontal waveguide, and

&)

aj bj(éxiz).ﬁdy)dz

for the vertical waveguide, where 7 is the normal vector perpendicular to the surface of

integration.
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Chapter S

Conclusions

This dissertation is devoted to the analytical development of models that are used
in waveguide designs. The problems investigated include the analyses of the TE, TM,
and TEM modes in a circular-rectangular (CR) waveguide, and the generalized scattering
matrices (GSM) of a waveguide bend and a T-junction loaded with a partial height
circular post.

In chapter 2, a rigorous analysis for the higher order modes in a circular-
rectangular waveguide is introduced. Mathematical expressions of the TE and TM modes
are derived using the Galerkin method based on two different coordinate systems. The
derived formula can be easily used to determine the eigenvalue spectrum of the higher
order modes. The cutoff frequencies and eigenmode fields are solved by means of SVD
technique. The numerical results agree with the results obtained by using the finite

element method (FEM).
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A modal solution for the TEM mode of the circular-rectangular coaxial waveguide
is presented in chapter 3. An analytical expression of the characteristic impedance of the
waveguide is derived. Three typical C-R waveguides are considered as examples to test
this expression, and excellent results are observed. The attenuation coefficient of the
waveguide is also derived to calculate the power loss. An optimal dimension aspect ratio
for the minimum power loss is determined, which is a critical parameter in designs of the
combline type filters and diplexers.

There are two remarkable advantages of using the modal analyses of higher-order
modes and TEM mode. (i) Only a few waveguide modes are needed for doing analyses,
which makes computations much more efficient than using other technologies. (ii) The
module of the C-R waveguide can be easily cascaded with other waveguide modules,
such as a waveguide step junction, so that more complicated transmission line structures
can be analyzed. It is worth pointing out that the solutions of both higher order modes
and the TEM mode in asymmetric C-R waveguides can be obtained by using the addition
theorems of Bessel functions.

In Chapter 4, the processing of the modal analysis for a waveguide right-angle
bend and a T-junction was explored. A new concept called the method of extended
eigenmode functions is introduced to solve the complex boundary problems caused by the
existence of the partial height posts inside the waveguides. The generalized scattering
matrices (GMS) for the bend and T-junctions are obtained. Concrete examples of the
bend and T-junctions with partial height posts are calculated, and the numerical results

are verified by comparing to results obtained using the finite element method. It has been
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demonstrated that the modal analysis techniques have great potential to become a design
tool for waveguide combline filters and diplexers due to the advantages of both accuracy

and calculation efficiency.
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