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Abstract

This thesis introduces a newly discovered relationship between calculated
values of the delocalization index and Lewis bond orders, for polar bonds. Using
the methods of the Theory of Atoms in Molecules, properties of individual atoms
- defined as regions of real space - can be calculated from numerical molecular
wavefunctions. In addition to determining the number of electrons in an atom,
and thus the atomic charge, one can also calculate the extent to which the charge
density on a given atom is delocalized to the each of the other atoms in the
molecule. This property is known as the delocalization index.

For a non-polar bond (equal sharing of electrons), the delocalization index
calculated from a Hartree-Fock wavefunction is found to correspond closely with
the bond order predicted by the Lewis model of chemical bonding. The
delocalization index decreases, however, as the bond polarity increases. The
relationship between the decreasing delocalization index and the increasing
atomic charges is quantified in this work. A simple quadratic relationship is
observed between the delocalization index, 6(A,H) and the charge transfer, q(H),
across the A-H bond in a series of hydrides, AH,. The same relationship, & = I-
¢, is shown to be derived from the Hartree-Fock expressions for the
delocalization index and the atomic charges and can be generalized to more than
one pair of electrons. The same derivation applies to two other definitions of
bond order proposed by other workers.

A method for employing these correlations, along with other calculated
properties, to establish the Lewis bond order for a series of related molecules,
with differently polarized bonds, is presented. The method is applied to seven
series of phosphorus containing molecules and three series of nitrogen containing
molecules. The octet rule is found to be more important for the nitrogen systems

than for the phosphorus systems.
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1. Introduction

For over 85 years chemists have been describing the bonding in molecules
using cartoons consisting of atomic symbols, dots and (later) lines, known as Lewis
structures (Lewis, 1916). This system of dots and dashes is the Morse code of
chemistry, conveying large amounts of information in an easily transmitted
message. The dots represent valence electrons, which are normally paired together
as a colon. Some of the electrons may be localized on a single atom. These are
referred to as non-bonding electrons, or lone pairs. In Lewis’s model, connected
atoms share one or more pairs of electrons, so that there are normally eight
electrons (an octet) surrounding each atom. These shared pairs later came to be
represented by lines and eventually became almost synonymous with the lines of
force binding the atoms together. The shared pairs are therefore also known as
bonding pairs.

The number of electron pairs binding two atoms together is called the
bond order. In some cases, more than one Lewis structure is needed to adequately
represent the molecular properties. The structures are then referred to as resonance
structures and they are drawn with a double-headed arrow connecting them. This
resonance arrow indicates that the true properties of the molecule are in some way
an average, or superposition, of the properties indicated by each of the structures

drawn. For example, ozone (Os3) requires two resonance structures, and the two O-



O bonds each have an average bond order of one and a half (3/2).

0=0—0:© :0—0=0

1.1. The problem
This work began with an interest in the degree of multiple bonding — and
therefore the extent of electron delocalization — in the phosphenium cations, PR,
Like the related carbenes, CR,, many of the most easily isolable members of this

class have a planar amino group, NY5, as one or both of the substituent R groups.

T
/P\ oo

R r?x/Y
Y

The observed planarity of the amino groups suggests that the ‘lone pair’ on
nitrogen is being partially donated to the formally electron deficient” phosphorus
atom. This interaction can be described by the following resonance structures, in

which the phosphorus atom has a complete octet — eight valence electrons.

These structures suggest that the P-N bond has partial multiple-bond
character, i.e. a bond order greater than one. That conclusion raises two questions.
1) How much double bond character does the P-N bond have? 2) Is this double

bond character the (main/only) reason for the particularly effective stabilization of

" The phosphorus is electron deficient in the sense that it has less than a full octet of electrons in its valence shell.



amino-phosphenium cations? In order to answer the second of these questions we
must establish whether the extent of multiple bonding in amino-phosphenium
cations is in fact greater than in other phosphenium cations, and whether that is the
only major difference between the cations.

The questions have now become: 1) What is the extent of multiple
bonding in phosphenium cations in general? 2) Is it exceptionally high in amino-
phosphenium cations? 3) Do amino-phosphenium cations exhibit any other major
differences relative to less stabilized phosphenium cations? Again, let us start with
the last of these. We should ask what other factors are likely to contribute to
stabilization of phosphenium cations besides strong multiple bonding character.
There could be kinetic effects involved in making amino-substituted phosphenium
cations relatively easy to isolate. The amino group may protect the electrophillic
phosphorus from nucleophillic attack, making it less labile. However, hydride
transfer energies, AEy, indicate that the amino groups are among the most effective
thermodynamic stabilizers of phosphenium éations (Gudat, 1998; Schoeller and
Tubbesing, 1995) and it is this stabilization we wish to explain.

PH," + HPR, > PH; + PR;" + AEy

Along with double bond character through ‘lone pair donation’ comes a

spreading out of the positive (formal) charge, over the phosphorus and substituent

atoms. In addition, the doubly bonded Lewis structures obey the ‘octet rule’ for all

" This could inchide steric protection and/or electronic effects such as the destabilization of the low-energy,
unoccupied py, - like orbital.



atoms. Chemists tend to associate both of these properties of Lewis structures
(spreading out of formal charge and agreement with the octet rule) with chemical
stability. It is questionable whether either of these factors has any physical
significance, let alone an effect on the energy of the cation. In any case, both can
be seen as secondary effects of the double bond formation and cannot really be
separated from multiple bonding as stabilizing factors in this system.”

Another factor that may contribute to stability is bond polarity. While
polar bonds tend to be more labile than non-polar bonds, the electrostatic attraction
between a positively charged atom and a negatively charged atom gives
thermodynamic stability. This is reflected in the larger bond dissociation energies
of polar bonds relative to otherwise similar non-polar bonds. The electronegativity
difference between P and N is significant and the P-N bonds are thus quite polar. It
has been suggested (Gudat, 1998) that the exceptional cation-stabilizing ability of
the amino substituent is due to the best combination of n-donation (which should
increase from F to NH; but is absent in CH3) and electrostatic attraction. Similar
push-pull effects are thought to stabilize the related carbene molecules (Bourissou
et al., 2000), though in these systems the ideal substituents are thought to be those
that maintain electroneutrality, the stabilization being explained in terms of orbital

interactions.

" Sigma donation (reversal or reduction of bond polarity) may also help spread out the positive charge.

" Gudat uses Natural Population Analysis charges on the atoms P and E to determine the electrostatic attractions.
The N has the largest charge, due to the combined bond polarity of the P-N and two N-H bonds. The
attraction is further enhanced by the shorter P-N bonds relative to P-S and P-Cl bonds, which should have
similar polarities.



The strength of a bond tends to be well correlated with the bond length, for
a given pair of atoms. Even for different sets of bonded atoms, longer bonds tend
to be weaker. We might then expect bond strengthening (and thus molecular
stabilization) to be reflected in bond shortening. Other properties of the bond that
may be relevant are the accumulation and distribution of electron density in the

bonding region. The questions posed above will be explored, and answered, in

Chapter 8.

1.2. The Approach to a Solution

To summarize, the properties to be investigated are bond length, bond
polarity as measured by atomic charges, the distribution of electron density in the
bonding region and the extent of multiple bonding. The Theory of Atoms in
Molecules (Bader, 1990) will give us the tools to calculate and analyse these
properties and the appropriate methods will be described in Chapters 2 and 3.
However, it is very difficult to make meaningful comparisons of bond properties
when the atoms tnvolved are different in each molecule or ion. As the size and
electronegativity of the substituent atoms change, all the other properties change
also. The approach adopted in this thesis is therefore to study a series of ‘typical’
phosphorus-element (P-E) bonds represented by the phosphines: H,PR, HPR; and
PR;. The substituent groups used are the same as those to be studied in the
phosphenium cations: R = H, F, OH, NH,, CHs, Cl, SH, PH, and SiHs.

Since one of the main goals of this thesis is to ascertain the extent of



multiple bonding in the cations, a series of ‘standard double bonds’ is also studied.
The question of what constitutes a ‘double bond’ will be considered in more detail
below, but for now we will assert that the series HP=X involves phosphorus-
element double bonds to O, N, C, S, P and Si, where X = O, NH, CH,, S, PH and
SiH,, respectively. These four series, H,PR, HPR,, PR3 and HPX allow us to
establish how the bond lengths, atomic charges and bonding density vary as the
substituent group changes and as the bond order increases from one to two. We
may then determine how the trends in phosphenium cation bonds compare to these
‘standard’ trends. To ensure that the observed differences in the P-E bonds are
significant, the effects of substitution at P and/or E as well as rotation about the P-E
bond are studied for the phosphines in order to establish how much variation is

present within, for example, the set of ‘standard P-N single bonds.’

1.2.1. Expanding the investigation to other systems

Once the groundwork had been laid, in terms of determining the methods
to be used and establishing standard parameters for P-E bonds, two other series of
phosphorus molecules were added to the study. The extent of multiple bonding in
these systems is also a matter of debate and presents an opportunity to extend the
application of the tools developed in this thesis. The two additional series are H;PX
and HPX,, where X = O, NH, CH,, S, PH and SiH,, as in HPX. Both series have a
pentavalent phosphorus atom and the question of P-E bond order arises from the

question of what Lewis structure to draw. Taking X = O as an example, Lewis’s



‘rule of eight’, i.e. the octet rule, suggests the structure on the left for H3PO, below.
The existence of systems such as PCls shows that phosphorus may have an

‘expanded octet’ and the structure on the right is thus possible.

oo Ho
H=P=07 =——= H—P=0
H ‘ H

There 1s a school of thought that holds that reducing the number of formal
charges” is more important than satisfying the octet rule. Indeed this is a topic
much debated in the chemical education literature with.some articles supporting the
octet rule’ and others supporting the ‘minimization of formal charge’ approach® in
which multiple bonds are made to the central atom if, and only if, there is a positive
charge on the central atom and a negative charge on a neighbouring atom. A
slightly different approach must then be taken for non-polar molecules such as N,
or HyC=CH,. Still others suggest that both structures are important and that both
should be included, with the ‘true structure’ being a (weighted) resonance average,
though the weighting factors are generally unknown.

All approaches to drawing Lewis structures tend to require that the

" The formal charge on an atom is the charge it would have is all bonding electrons were egually shared between
two atoms. In the formal charge minimization procedure, electronegative terminal atoms always receive a
complete octet.

' Typically this position is held on the basis of large negative charges calculated for O atoms, or simply for
simplicity. See for example: L. Suidan, J. K. Badenhoop, E. D. Glendening, F. Weinhold,. “Common
Textbook and Teaching Misrepresentations of Lewis Structures,” J. Chem. Edu., 1995, 72, 583. See also J.
Cioslowski and P.R. Surjan, THEOCHEM, 1992, 87, 9.

¥ Typically this position is held on the basis of large electron densities and strong, short bonds, suggestive of
double bonds. See for example: G. H. Purser, J. Chem. Educ. 2001 78 981; G. H. Purser, “Lewis Structures
Are Models for Predicting Molecular Structure, Not Electronic Structure,” J. Chem. Edu., 1999, 76, 1013; D.
K. Straub, “Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals,” J. Chem. Edlu., 1995, 72, 889.



terminal atoms in any structure be given a complete octet and that second period
elements (Li - Ne) not exceed the octet. This last rule is usually justified by the
lack of experimentally known molecules, such as NCls or OClg, with a coordination
number greater than four on the second period atom. In order to check the validity
of the octet rule for second period elements, in contrast to third period elements, the
series of molecules HiNX was also studied, and compared to H,NR and HNX.

Thus three more series of molecules were added to the study.

1.2.2. Is this a soluble problem?

It remains to be asked, “Exactly what do we mean by a ‘shared pair of
electrons’?” The Lewis model is an inherently local model in which electrons are
assumed to be localized on one or two atoms. A shared pair of electrons is then a
pair that contributes to the valence shell of two atoms. When more resonance
structures are needed for an adequate description, as in benzene, chemists take this
as an indication that the electrons are more delocalized than usual. Certainly
electron sharing relates to the delocalization of electrons between two atoms. A
quantum mechanical description, however, implies that all the electrons are
inherently delocalized. In the molecular orbital model, pairs of electrons ‘occupy’
orbitals that are delocalized over the entire molecule, and in fact over all space. In
any quantum mechanical description that obeys the Pauli Principle, all the electrons
are indistinguishable and thus exchanging with each other and so are delocalized

over the entire molecule. What can the terms localized, delocalized and shared



mean within this context?

This is one example of an oft-cited problem with detailed quantum
mechanical calculations. The complex mathematical descriptions of molecules (or
ions or solids) may be very accurate, but appear to have little relationship to the
simple chemical concepts of atom, charge, lone pair, bond, bond order, efc., in
terms of which most chemists tend to think. Molecular orbital descriptions can be
quite helpful in understanding chemical reactivity and electron properties such as
absorption and ionization energies. In-depth analysis of wavefunctions and their
constituent orbitals can become quite unphysical however, and thus arbitrary and
counterproductive. The Theory of Atoms in Molecules allows us to analyze a
calculated wavefunction in terms of the observable properties it predicts, including
localization and delocalization of electrons, rather than in terms of the orbitals used
to construct the wavefunction.

In the early stages of this work, it was unclear whether a meaningful
answer could be found to the question of how much double bond character was
present in a given molecule. Indeed it was not clear that the question was
meaningful, as bond order was not clearly related to any observable that could be
calculated from the wavefunction or measured experimentally. Rather, bond order
1s a model-dependent concept, rooted most deeply in the Lewis model of chemical
bonding. This thesis therefore seeks specifically to determine the extent of multiple
bonding as measured by the Lewis bond order.

The assignment of a Lewis bond order is not straightforward when a single
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Lewis structure is insufficient to describe the bonding, as seems to be the case for
the phosphenium cations. In that case, the bond order is assumed to be somewhere
between the different bond orders predicted by the various structures. The model is
further complicated by conflicting ideas about which Lewis structures best describe
the bonding in molecules that may, or may not, obey Lewis’s rule of eight, such as
HPX,, HiPX and HsNX. The octet rule has evolved from an empirical observation
to a guiding principle that some chemists take as a universal law of chemical

structures. Thus resonance schemes such as A and B are not uncommon.

F F F
. = - - L
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Chemists who find these ‘octet’ structures unhelpful or misleading use a
different rule of thumb to replace the octet rule on central atoms. This guideline
suggests the judicious placement of double bonds to reduce the number of opposing
formal charges within a molecule or ion. Thus while the octet rule requires

“:C=0: (bond order = 3), the formal charge minimization procedure gives

:C=0: (bond order = 2) for the Lewis structure of carbon monoxide.” It is

“In CO, C is considered a central atom, while electronegative O is terminal.
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therefore unclear, even within the Lewis model, what the bond order is in CO, and
many other molecules. A more detailed discussion of various definitions of bond
order and their relation to specific models of chemical bonding is given in
Appendix 3.2. The method proposed in this thesis will help to resolve the issue of
what Lewis structures best represent the sharing of electrons in polar bonds, without

reference to the octet rule, or to any predetermined limits on the formal charge.

1.2.3. The meaning of bond order
When deciding among these various resonance schemes, or attempting to
determine weighting factors, the most important question one should ask is, “What
does each particular Lewis structure mean?”  In other words, what
physical/chemical properties are we trying to represent and what value does each
structure intend to assign to each property? When Lewis introduced his dot
diagrams to describe chemical bonding each line or pair of dots was meant to
represent a pair of valence electrons. The fact that electrons generally come in pairs
is the source of Lewis’s ‘rule of two.” A pair of dots associated with just one atom
1s mean fo represent a pair of electrons located primarily on that atom (a lone pair),
while a line between two atoms is meant to represent a shared pair of electrons.
This shared (or bonding) pair participates in the valence shell of both atoms and is

thought to constitute, in some way, the bond.
However, the electron pair need not be shared equally when the atoms

have different electronegativities. Thus even the extremely polar LiF could be
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described as having one very unevenly shared pair of electrons. At some (not well
defined) point along the polarity scale, we normally say that the ‘bonding pair’ has
become essentially localized on the more electronegative atom. The definition of
Lewis bond orders becomes even more complicated by the issue of bond polarity;
how equal does the sharing have to be before we call it sharing, and thus count the
pair towards the bond order? There does not seem to be any simple answer to that
question. For multiple bonds, the question of bond polarity is closely connected to

resonance schemes such as that shown above for H3PO, and repeated here.

n* *r
H H

Clearly, this is meant to represent that at least one pair of electrons is
partially shared between P and O and partially localized on O. However, this is no
different from saying that the pair is unequally shared, ie. polar. One might then
conclude that the structures are meant to represent the equal sharing of one electron
pair and the unequal sharing of another, but this is not a reasonable description of
the bonding.” The only reasonable interpretation seems to be that the two polar
bonds have different polarities, but it is questionable whether the chemists who
draw such structures really have this interpretation in mind. Two (equally) polar

bonds would be better represented by the resonance scheme shown below.

" It is questionable whether the two shared pairs can be meaningfully distinguished from each other, but if they
can then they are surely both polar, though not necessarily equally so.
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The polarity need not be explicitly shown in this way and was already
assumed by Lewis. Two (equally) polar bonds can be adequately represented by a
single Lewis structure [H3P=0] if we choose to interpret the Lewis structure in this
way. Similarly, we do not usually write non-bonded resonance structures to
represent the polar O-H bonds in water. Rather we assume that a single structure,

[H-O-H], giving a bond order of one, 1s adequate.

1.3. Delocalization and the Theory of Atoms in Molecules

The Theory of Atoms in Molecules (Bader, 1990) has been developed to
analyse and interpret calculated wavefunctions in terms of physical observables and
simple chemical concepts. The details of this theory will be given in more depth in
Chapter 2. The most important aspect of this theory is that it divides the molecule
into atoms that are defined as open regions of real space, and it does so in a non-
arbitrary manner. These atoms have well defined properties and obey equations of
motion analogous to those obeyed by the total system. This allows the non-
arbitrary calculation of properties such as atomic population and energy. Of these,
atomic charge will be most important to this thesis, as a measure of bond polarity.

The theory also allows the calculation of atomic localization, the number
of electrons that are Jocalized within a given atom and the associated delocalization

index, 8(A,B), which measures the number of electron pairs delocalized between
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atoms A and B. Here, the words localization and delocalization are related to the

concept of electron exchange, as required by the Pauli principle, see below.

1.3.1. The chemistry of the delocalization index

As this work began, the most promising observable for relating calculated
values to bond orders was the delocalization index, 8. Its physical interpretation is
‘the number of electron pairs delocalized (shared) between two regions of space
(atoms).” This property will be defined and discussed in more detail in chapter 3.
For non-polar bonds, the Hartree-Fock value of & corresponds closely to the bond
order predicted from standard Lewis structures (Fradera et al., 1999). There are
two objections, however, to equating & with bond order.

The first is that the delocalization index is non-zero for atoms that are not
directly bonded to each other. Thus electron sharing takes place between every pair
of atoms in a molecule, while bonding - defined as the accumulation of electron
density along a bond path (Bader and Essen, 1984) - occurs only between atoms
that are normally assumed to share electrons in the localized Lewis model
Identifying 6 with bond order would therefore entail assigning non-zero bond
orders to pairs of atoms that are not bonded together.

The second obstacle to identifying 6 with bond order is that, for polar
bonds, & is less than the bond order predicted by Lewis structures. For some
chemists this may not appear to be a problem, since they choose to interpret Lewis

diagrams as non-polar representations, as if the formal charge were meant to reflect



15

the true atomic charge. Given this interpretation of Lewis structures, the atomic

charges in water require at least two of the resonance structures shown below.
.. + P - + 4+ .. 2- +
H—Q—H - {H :Q——H g H—-—Q: H | <> H :Q: H

Those who interpret Lewis structures in this way would not be surprised to
learn that the delocalization index (or bond order) is less than one for polar bonds.
For those whose concept of bond order allows for bond polarity within the Lewis
structure [H-O-H], an indicator that gives a bond order of one for water is desirable,
so that the question of bond order in other molecules can be meaningfully
answered.

When this research began, no such observable property (experimental or
calculated) was known. The first step was therefore to search for ways to
distinguish between single, double and partial bonds based on quantitative or
qualitative differences in the calculable properties of the molecules and their
constituent atoms. Thus a number of properties were studied for a wide range of
molecules involving phosphorus. The definition and interpretation of many of
these properties will be discussed, in the context of the Theory of Atoms in
Molecules, in Chapter 2.

Many discussions of the nature of particular bonds of interest have been
based on empirical classification schemes relating to properties of the electron

density. Since these properties vary with the size, electronegativity and period of
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the atoms involved, it was important to establish parameters for typical phosphorus-
element single bonds and double bonds before attempting to consider systems with
potentially partial multiple bonding. Indeed, such ‘baseline’ values are important
for any study of the properties of atoms in molecules. A secondary purpose of this
thesis is therefore to establish a database of the properties of phosphorus atoms in
molecules, at a common computational level, for use in future studies.

As the data were collected and analyzed, molecules were compared within
each series and the series were compared to each other. Correlations were sought
between the various properties of interest. A simple plot of the dependence of
delocalization index, 3, on bond polarity, as measured by group charges, g, revealed
an empirical quadratic relationship. Such a relationship is easily derived
theoretically from the mathematical expressions for § and ¢ at the Hartree-Fock
level of theory, as will be shown in Chapter 3. This relationship allows the
delocalization to be ‘corrected’ for the bond polarity effects, affording the
hypothetical ‘non-polar’ bond order. This represents the first quantitative measure
of Lewis bond orders for polar bonds that does not involve interpretation of
specially optimized (localized) orbital representations. We therefore look more

closely at the physical interpretation of the delocalization index in the next section.

1.3.2. The physics of the delocalization index
The electronic structure of a molecule can be described in terms of a

molecular wavefunction. One of the most fundamental observable properties that
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can be obtained from the wavefunction is the electron density, the distribution of
charge through space. Another property obtained from the wavefunction is the
Fermi density, or Fermi hole, 427 (r,,r,). This Fermi hole describes how the o-spin
density at one position, ry, is spread out, or delocalized, to other positions, r;.

At the Hartree-Fock level of theory, the only type of electron correlation
accounted for is that due to the Pauli exclusion principle. At this level, there is no
correlation between electrons of the same spin. Thus o-spin electrons and B-spin
electrons may be treated as two independent, but equivalent, sets of electrons.
Within the set of a-spin electrons, the density at position r; excludes density from
the surrounding region, as it spreads out through space, as described by the Fermi
hole. An identical principle holds for the (-spin electrons, while there is no
exclusion of B-spin electrons due to o-spin electrons. Both o and B valence
electrons are attracted to the bonding regions, thus o, pairs may result, as
hypothesized in the Lewis model.

For an electron at a given reference position, the Fermi hole may be very
localized, meaning that the probability of finding another same-spin electron is
nearly zero in nearby regions but is unaffected further from the reference position,
or the Fermi hole may be delocalized, in that there is significant reduction in the
probability far from the reference position. It is in this sense that the words
localization and delocalization shall be used throughout the rest of this thesis; an

electron is localized if its Fermi hole is localized and is delocalized to the extent
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that its Fermi hole is delocalized (Bader and Stephens, 1975). It has been shown
(Bader ef al., 1996a/b) that this definition of delocalization determines a large range
of phenomena generally attributed by chemists to electron delocalization, including
aromatic substituent effects and spin-spin coupling of vicinal hydrogen atoms.
Integration of the Fermi hole (weighted by the electron density), as
prescribed by the Theory of Atoms in Molecules, results in a delocalization index
between two atoms, or groups of atoms. For a non-polar bond the delocalization
index, calculated at the Hartree-Fock level of theory,” corresponds very closely with
the predicted bond order from a Lewis structure, i.e. it equals the predicted number
of equally shared electron pairs. As the bond becomes increasingly polar, the
clectrons become more localized on the more electronegative atom and the
calculated delocalization index decreases. This polarity may be assumed to exist
within the covalent Lewis description, [A-B], or may be made explicit with an ionic
resonance contributor, ['A :B7]. For a polar ‘doubly-bonded’ structure, [A=B], the
delocalization index is less than two and if it is very polar it may be less than one.
Should we then say that there is one slightly polar bond or two very polar double
bonds? The answer is often not clear. If we wish to translate our results into the
language of Lewis structures should we write [A=B < A*" :B:*], [A"-B:"], or
simply [A=B]? Again the answer depends mainly on how we choose to interpret
the Lewis structures. The physical quantities of interest, the charge and extent of

electron delocalisation, are already known from the calculation.

" Fradera et al. (1999) found that correlation significantly lowers 6(A,B) for primarily covalent interactions.
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1.4. Introduction of a New Computational Approach

The author of this thesis chooses to interpret Lewis structures in such a
way that a single Lewis structure suffices for the description of water, giving an O-
H bond order of one. Furthermore, if two shared electron pairs have similar
polarity, as is typically the case, the Lewis bond order is taken to be two, as might
be expected between C and O in an unconjugated ketone, R,C=0, for example.
Such interpretations seem, to the author, to be in closest accord with the
understanding of experimental chemists, who use the language of Lewis structures
to communicate, and help explain, their results.

This thesis introduces a mnewly discovered relationship between
calculated values of the delocalization index and the Lewis bond order, for polar
bonds. The reduction in the delocalization index, 8"(A,B), due to bond polarity is
related in a simple way to the charge transferred to the more electronegative atom,
q(B) = -q(A). The relationship will be derived and demonstrated in Chapter 3. We
will see that in the simple one-orbital two-electron case, the delocalization index

depends on the square of the charge transferred, §(4,B)=1-¢(4)", and that the

maximum delocalization of 1.0 thus occurs for the non-polar case, g(4) = 0. We
will also see that the coefficient of q° can be varied by interactions with other
orbitals. The relationship will be verified empirically using previously published
data. A procedure for using this relationship to determine bond orders in a series

of related molecules will be introduced. This procedure will be applied to the
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series HoPR, HPR;, PR3, HPX, HPX,, HsPX, PR,", H)NR, NR;3, HNX and H;NX.
For the phosphenium cations, the extent of multiple bonding in P(NH,)," will be
compared to that in other members of the series in order to ascertain whether there
is a significant difference and whether this difference is likely to account for the

much greater stability of PONH»)," as measured by hydride transfer energies.

1.5. Outline of the Thesis

In Chapter 2, a brief review of the basic postulates of quantum mechanics
is given, followed by a description of the philosophy and methods of the Theory of
Atoms in Molecules. This includes the definition of an atom as a proper open
system and formulae for calculating local and group contributions to total system
properties. The topological description of chemical structure is also included.
Details of some relevant derivations are given in Appendix 2.

In Chapter 3, some basic descriptions of chemical bonding are discussed.
Calculated local and atomic properties can be used to characterize the bonding
within the context of one or more such frameworks. Interpretations of the
properties at characteristic points, known as bond critical points, are discussed.
Mathematical details of the delocalization index are given and the relationship
between charge transfer and the delocalization inde% is derived. The extraction of
bond orders and formal charges from an extrapolation of the calculated data on a
series of related molecules is introduced. A tutorial on density matrices is given in

Appendix 3, along with a discussion of several previous definitions of bond order
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based on calculated wavefunctions.

In Chapters 4 through 8, the results of geometry optimizations and Atoms
in Molecules analyses of the computed wavefunctions are presented. In chapter 4,
three series of differently substituted phosphines (PH;R, PHR, and PR;) and a
series of amines (NH;R) are studied, along with a few additional substituted amines
and phosphines. These series establish the ‘baseline’ properties of P-E and N-E
single bonds. The effects of electron correlation, substitution and rotation about the
P-E bonds are explored. In chapter 5, the properties of P-E and N-E double bonds
are established by a study of two series of molecules, HP=X and HN=X.

In Chapters 6 and 7, some hypervalent compounds are studied: HsN=X,
H;P=X and HP(=X),. The P-E and N-E bond orders in these systems are
investigated using the method established in the previous chapters. In chapter 8, the
formally hypovalent phosphenium cations, R,P" are studied. As described at the
beginning of this chapter, the bond order in these systems is expected to be between
one and 1.5. The bond order of these systems is investigated and the stabilizing
role of amino substituents is explored.

Chapter 9 makes some final comparisons between the various series and
summarizes the findings of the investigation. The data from each series are plotted
together in a series of Figures, found in Appendix 4. The reader is referred to these
figures to get a simple, visual overview of the major trends discovered in Chapters
4 — 8. Appendix 1 gives a glossary of the specialized terms and symbols used in

this thesis.
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1.6. A Note on Notation
Throughout this thesis I will refer to the second row atoms (C, N, O, F) as
L and to the third row atoms (Si, P, S, Cl) as M, consistent with their valence shells
being the L. and M shells, respectively. Both second and third row atoms will be
represented by E. When referring to a ‘monovalent’ substituent group (-CHs, -SH,
etc.), 1 will use the symbols R, EH,, LH, or MH,. When referring to ‘divalent’
substituent groups (=SiH,, =NH, ezc.), I will use the symbols X, EH,.;, LH,.; or

MH,.;. On occasion, Pn is used to refer to the central pnictogen, be it P or N.

1.7. Computational Methods

L.7.1. Previous related work

Some organophosphorus compounds have been previously studied by the
Atoms in Molecules method (Bachrach, 1989 and Howard et al., 1995, 1996), as
have phosphorus-oxygen ‘double bonds’ (Chestnut, 1998 and Dobado ef al., 1998).
An important result of the paper by Bachrach (1989) relates to basis set and
correlation effects. He finds that polarization (d) functions are necessary for good
reproduction of experimental organophosphorus species geometries. His Hartree-
Fock geometries for phosphines were in good agreement with experiment, but for
multiply bonded systems electron correlation (MP2) was needed to get good
agreement. In the present study a much larger basis set is used, and some correlated
results are included to study the effects on the observed trends.

A study of correlation and basis set effects on the delocalization index was
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included in the paper by Fradera et al. (1999). The basis set 6-311++G(2d,2p) was
found to give no significant change relative to 6-311+G(2d,2p) though there were
small differences compared to smaller basis sets. Correlation (at the CISD level)
was found to have the largest effects on non-polar covalent interactions, which
showed reductions of 27% for N; and up to 16% for main group hydrides (CHj and
SH;). The effects on polar covalent interactions were smaller and ionic interactions
showed small increases in the delocalization indices. The correlation effect on the

P-H delocalization index of PH; was found to be a decrease from 0.839 to 0.774.

1.7.2. Programs and parameters used

All the molecules studied in the present work were geometry-optimized at
the restricted Hartree-Fock level of theory. Many molecules were also optimized at
the MP2 level and a few at the QCISD level to determine the effects of correlation.
All analyzed wavefunctions were calculated at the same level of theory as the
geometry optimization. A revised version of gaussian94 was used (Virial: Keith,
1995), which implements self-consistent virial scaling (SCVS, Lowdin 1959;
Douglas and Murdoch, 1982) to ensure that the wavefunction satisfies the virial
theorem.” The convergence criteria for the geometry optimizations and virial

scaling procedures are given in Table 1-1.

" In a few cases the MP2 wavefunctions could not be converged using the SCVS method, so these were
calculated using the standard (unscaled) gaussian94 package.
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Table 1-1: Convergence criteria for the geometry optimizations and virial scaling procedures’

Parameter Threshold
Maximum Force 2x10°
Root Mean Square Force 1 x10°
Maximum Displacement 6x10°
Root Mean Square Displacement | 4 x 10
(V/T)-2 1x10®

The Atoms in Molecules analysis of the resulting wavefunctions was
performed using the AIMPac suite of programs. Critical points in the electron
density were located and analyzed using Extreme94B or Extreme96. Atomic
properties, including atomic overlap matrices (AOM’s) were integrated using
PAIMY96, which accounts for virial scaling. The (de)localization indices were
calculated at the Hartree-Fock level only, from the atomic overlap matrices using
the Bindx and Bond programs. Critical points in the Laplacian of the density were
analyzed using Bubble and Extreme.

Figures were generated with a variety of programs. The contour plots of
the Laplacian of the density were generated using the Gridv and Contor routines of
AIMPac. Gradient vectors of the density were traced using Gridvec. The isovalue
envelopes of the Laplacian were generated using Nabla2 and displayed using the
Scian visualization package. Graphs of the numerical data were plotted using
Microsoft Excel, and the equations of the best-fit quadratic curves, for the & versus
g graphs, were found using the built-in regression analysis tools. References for all

programs used can be found in the bibliography below.

" Requested convergence on root mean square density matrix = 1.00 x 10 within 64 cycles. Requested
convergence on maximum density matrix = 1.00 x 10,
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2. Atoms in Molecules Theory — a primer

A brief review of quantum mechanical principles is followed by an outline

of the Atoms in Molecules description of open systems and chemical structure.

2.1. Quantum Mechanical Description of Chemical Systems

2.1.1. The state function
The state of a quantum mechanical system is described in terms of the
eigenvalues of a set of commuting operators (observables) acting on an element of
Hilbert space (a state vector). A commuting set must be used, since only these will
have sharp, rather than average, expectation values, so only these observables will

define the state. Typically, the commuting set includes the Hamiltonian operator,

H , which appears in the Schrodinger equation, Equation 2-1.

_fl(;_fl:_;;ﬁ’\{,) b Vall

Equation 2-1

A state vector, |'V>, contains all the information about the probability of
observing each of the eigenvalues of every operator. Chemical systems are
typically described by a wavefunction, W(x,X,t); the projection of the state vector
onto the electron spin coordinates (o;) and the real space coordinates of the
electrons (X; = r;, ¢ ;) and nuclei (X, = Ry) in the system. For a stationary state the

Hamiltonian operator and the observables are independent of time. The

27
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eigenvalues are constants of motion. The eigenvalue of the Hamiltonian operator 1s
energy, E. The wavefunction, ¥, may be factored into a spin and space dependent

wavefunction, \, and a time dependent factor, as in Equation 2-2.

Wix, X, 1) =w(x, X)exp(—iEt/ i)

Hy (x,X) = Ey(x,X) Hy =Ey’
Equation 2-2

The possible eigenvalues of the position operator form a continuous set,
and the wavefunction is not an eigenfunction of the particle positions. The position
operator does not commute with the Hamiltonian, so the positions of the particles
do not have sharp values; rather they are spread out over all space, in accordance
with Heisenberg’s uncertainty principle. The probabilistic interpretation of the
wavefunction is that, when properly normalized, \y(x,X)*\p(x,X)d'c equals the
probability of finding the particles (electrons and nuclei) in the multidimensional
infinitesimal volume, dt. Thus for a system consisting of one electron, w(r)*\y(r)
equals the electron density.

Using the Born-Oppenheimer approximation, the nuclear coordinates can
be separated out, giving W(x,X) » Yu{X)wa(x;X). The nuclear coordinates
become parameters in the electronic Hamiltonian and the electronic wavefunction.
Once the approximate stationary-state electronic wavefunction e(x) has been
obtained for a given nuclear configuration, X, the properties of interest can be
calculated. Like any quantum system consisting of fermions, molecules and other

‘closed’ chemical systems must be described by antisymmetric wavefunctions that
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obey the boundary conditions that . and Ve approach zero at infinity, or at some
other bounding surface.

For many-electron systems only approximate solutions to the Schrédinger
equation can be found.  Numerical methods now allow for very good
approximations, depending on the level of theory used, and on the size and
flexibility of the basis set used for expansion. Approximate solutions generally
take the form of Slater determinants of molecular orbitals (MO’s) or, at higher
levels of theory, linear combinations of determinants. The MO’s themselves are
usually written as linear combinations of basis functions. Typical basis sets consist

of atomic orbital-like functions of varying size (diffuseness) and polarization.”

2.1.2. Operators and observables
Quantum mechanical operators (observables) can be defined, through the
correspondence principle, in terms of their classical analogues. In the potential
energy operator, the positions, r, are simply replaced by the multiplicative position
operator. In the kinetic energy operator, the momentum is replaced by the

momentum operator, p = —ihV .

The set of operators that commute with the Hamiltonian (and are thus the
state-defining properties of the system) will depend on the form of the Hamiltonian.
For most chemical systems a simple, non-relativistic Hamilton is used. In Equation

2-3, the total non-relativistic nuclear plus electronic Hamiltonian is shown,

" This is the linear combination of atomic orbitals to form molecular orbitals (LCAO-MO) method.
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assuming no external forces. A and B refer to nuclei, while i and j refer to electrons.
M, and m refer to nuclear and electron masses, respectively, while Zse and e refer

to their charges. The inter-particle distances are denoted by r, and &, is permittivity.

ﬁ:z—é—i—+ E_+22A2382 +Z ZA22 +Z 82
~2M,

T 2m T3 dner,, Tidmer, T 4nmer;

Equation 2-3

For operators that commute with the Hamiltonian, eigenvalue equations

(21\;! = ay ) are obeyed locally and throughout the entire Hilbert space. For any

non-commuting operator A, only the average (expectation) value <4> can be
obtained for the total system. Any system property, 4, can be written as the integral
of a property density, p(r), in real space, see Equation 2-4. The definition of this

local contribution will be developed below.

(4) = (w]djv) = [arwe A = fdrp, ()
Equation 2-4
2.1.3. Local property densities

The first property density we will consider is the non-uniform N-electron
density, p(r). This can be calculated as a function of real space, r, by considering
the probabilistic interpretation of the wavefunction and the indistinguishability of
the electrons. For a given nuclear configuration, the probability P(dr;) of finding a
particular electron, electron 1, in the volume dr; with either spin, and the remaining
electrons in any configuration is determined by summing or integrating over all the

‘arbitrary’ variables.
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P(dr,) = p(r,)dr, = dr, > _spins jdrz Idr3...fdrN W (x)y(x)= dr, J‘dr’qj'(x)\y(x)
Equation 2-5

In Equation 2-5, x includes both spin and spatial coordinates for the

electrons. The sum is over o and P for the spins of all N electrons, and the

integration is over the spatial coordinates of all electrons but one; all of this 1s

represented by _“d 7.

The probability of finding any one of the N indistinguishable electrons in
the same volume dr is N times this value. To obtain the electron density we simply
drop the infinitesimal volume factor. The nuclear coordinates can be shown as
parameters, and the density depends only on the spatial coordinates, r, of any one of
the N electrons.

p(r; X) = NZ all spins J.ah2 J-a’r3 _[dtN Yy (xX)w(x; X)

=N J-dr’\y' (% X)y(x; X)
Equation 2-6

Integrating the electron density over all space, we get the total number of
electrons, N. The above discussion leads to the realization that the number of

electrons in any particular volume of space E should not be calculated as

N Jdrxy*(x)\y(x), but rather as N(E)=N J.drjdt’w*(x)\y(x). The electron

density is a local one-electron property, dependent on the mean field of the
remaining electrons over all space. Using this kind of integration, we will now
define other property densities. In each case the local contribution to the property

will be N times the one-electron value.
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We can write an expression for the local contribution to a given property
A" similar to that in Equation 2-6. As a first guess we could write for a one-

electron operator:

p,(r;X)=N) allspins jdrz Ia’t3 fdr,v v (X)) Ay(x; X)
=N Id’t'\j}* (x; X) Ay(x; X)
Equation 2-7

The integral of such a local property density over some system gives the

value for the system, as in Equation 2-4. For the one-electron case the property

density reduces to simply \p/}\p. In many cases, however, Equation 2-7 1s not

sufficient.

While all physical observables for a closed system are Hermitian,

<A> = Idw*(ﬁw) = Idr(ﬁw)*w , some (such as kinetic energy) are not Hermitian
locally, or over an arbitrary open system, i.e. J dr J.d'c'{\u* (/Ahp) —(/Alq/)*\y}¢ 0. For
example, consider the Hamiltontan operator averaged over an arbitrary open
. . . h2 2 byl . "
system. Here the kinetic energy is represented by —————Z Vo=K. Letting I dr’
2m i /

indicate “summation over all spins and integration over all the spatial coordinates

except those of electron | and electron j”” we can write:

Efdr jdr’{w‘(ﬁw) ~(Ay) p )= %!drl fdr'; {I/V‘jw - (Viw)*«//}

* A is a sum of one-electron operators, which can be replaced by N times a single one-electron operator.
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h r % sk h ) % *
:5;”7§dSEIdT(W VIW—WIW )n+215};;§d511dr]j.d2'/({// V/l//“[/jvlw ]n
]# =

I dSEde'(y/*Vlthﬂ//)'n

2mi
Eqguation 2-8

The potential energy operator is still Hermitian, and those terms cancel.
The volume integrals are converted to surface integrals by Gauss’s theorem. The

V ., terms vanish for all systems because Vjy = 0 at infinity, the bounding surface

izl
for the coordinates of all electrons but one. Similarly, the final expression of
Equation 2-8 reduces to zero for a closed system, since the wavefunction and its
gradient approach zero at the boundary surface. For integration over an arbitrary
open system bounded by the surface, Sz, the two terms in the final expression of
Equation 2-8 are not equal, and the expectation values arising from each of these
terms may be complex. Thus, we have not determined a meaningful property
density. This leads to a modification of the expression for the local property
density given in Equation 2-7. By taking the average of the expression in Equation
2-7 and its complex conjugate, we can assure that the property is real. Equation 2-9
defines a real property density, which may be integrated over an open system.
p(r) :—"} fdr’{w*(X)?Iw(X) + (ﬁwx))‘”w(x)}
Equation 2-9
2.2. Open systems
The Theory of Atoms in Molecules is a development of the quantum

mechanics of an open system (Srebrenik and Bader, 1975; Bader and Nguyen-
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Dang, 1981; Bader, 1990). Its name reflects the chemical seeds of this theory, but it
applies to any open system, that is, any system that exchanges matter and/or energy
with its surroundings. The Theory of Atoms in Molecules seeks to define, and thus
enable the evaluation of, quantum mechanical properties of open systems. Any
measurement, e.g. of a force exerted, involves a measurement of the exchange of
energy (and/or matter) with the surroundings, i.e. the measuring device. If such a
measurement can be made, then surely we can define the properties being measured
(see for example, Bader ez af., 2000).

Open systems are regions of real space, bounded by surfaces that divide
them from the surroundings, i.e. from other open systems (Bader, 1990, 1994). The
fundamental observation that ‘like pieces of matter have like properties’ leads one
to the conclusion that two open systems with the identical distributions of matter
(electrons and nucle1) will have identical properties, regardless of the matter
distribution in neighbouring systems. The interaction with the surroundings can be
accounted for by a surface contribution to the total properties. For extensive
properties, the sum over many neighbouring but non-overlapping subsystems gives
the property for the larger system, which may still be open.*

It is this additivity of open system properties and the near transferability of
charge distributions in many chemical systems that lead to empirical additivity

schemes for properties such as heats of reaction and polarizability, having specific,

" The internal surface terms must vanish, since the sum of basin terms alone must equal the integral of the
property density over the total system.
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nearly fixed contributions from the functional groups present within larger
molecules.” The transferability of the charge distribution also leads to the
conservation of spectroscopic (Bader er al, 2000) and reactivity properties of

functional groups as they appear in various environments.

2.2.1. Definition of a proper open system
Having ensured that all property densities and their integrals over an open
system are real (Equation 2-9) does not guarantee that they will be physically
meaningful. Again we can consider the case of the kinetic energy. There are two
expressions for the local kinetic energy, both of which have the same integrated
value for the total system. While G appears in Schrédinger’s energy functional, K
appears in the Hamiltonian operator.
(T)=(K)= —2—1——<‘P | p7¥) :—1—@2\11 %) =(G) s-—l—(ﬁw | pP)
m 2m 2m
Equation 2-10

The different definitions give different values for an arbitrary open system,
leading to a poorly defined kinetic energy. One simple approach to resolving this
dilemma would be to choose one definition over the other, or to concoct some
combination of the two. An alternative is to find some definition of an open system
over which the two kinetic energies do have the same average. We will see that

defining a proper open system, rather than imposing an arbitrary definition of the

* See for example: K. B. Wiberg, R. F. W. Bader and C. D. H. Lau (1987) “A Theoretical Analysis of
Hydrocarbon Properties II: Additivity of Group Properties and the Origin of Strain Energy” J. Am. Chem.
Soc. 109, 985; R. F. W. Bader, K. M. Gough, K. E. Laidig and T. A. Keith (1992) “Properties of Atoms in
Molecules: Additivity and Transferability of Group Polarizabilities” Mol. Phys. 75, 1167.
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local kinetic energy density, leads to a very satisfying result. The same open
system that has a well defined energy also has a well defined value for the virial of
the forces acting on the system and obeys a meaningful form of the virial theorem,

as extended to open systems.
Since the potential energy term, V , in the Hamiltonian is a function of the

particle positions, it does not commute with the kinetic energy operator K , which

ivolves derivatives with respect to those positions. Thus neither the potential nor

the kinetic energy operator commutes with the Hamiltonian, A = K +¥ , and the
state function is an eigenfunction of neither. However, for closed systems at
equilibrium (no net forces) there is a relationship between the total energy, E, and
the average (expectation) values <T> = <K> = <G> and <V>. For equilibrium

systems involving Coulombic (1/r) potentials only: (V) = —2<T > =2F. This is the

quantum mechanical expression of the virial theorem. We wish to extend this
theorem to an open quantum mechanical system.
To define a system for which the difference between the two expressions

(<K>z - <G>z) vanishes, we first consider the Laplacian operator:
VAury)= VTl wt (V)= (T gt () 29y vy
Equation 2-11
Extension of the operators to the many electron case, multiplication by

2

and integration over all the coordinates but one, gives a local property density
m

(Bader and Beddall, 1972). Each of the integrals in Equation 2-12, below,
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corresponds to a local property density as follows: L(z) = K(r) - G(r).

—h?
4dm

2 2
;Z Nfdf'{(vzw*)/fW*(Vzw)}—f—medf'V ' Vy
Equation 2-12

L(r)=

der'V?‘ (1//*1//)

Thus, the kinetic energy of an open system =, bounded by a surface S, is well
n 2 B’ :
defined when J.er(r) = m— JdrV p(r) = —— J-dSVp(r)- n(r) =0, where n(r) is
z 4m 2 4m

the unit vector normal to the surface. The surface integral is obtained by using
Gauss’s theorem. A system for which this integral vanishes is a proper open
system, and we will use € in place of Z to denote such systems. We will see this
definition of a proper open system again, but it can be more rigourously derived by

using the calculus of variations (Appendix A2.3).

2.2.2. Variational definition of a proper open system
In classical mechanics there are eguations of motion that describe the
variation of the properties, 4, with time. All of these equations of motion can be
derived from a single principle: the principle of stationary action (Feynman et al.,
1964). In quantum mechanics, a similar set of equations of motion applies to a

closed system.
d{ 4 : o y
A (2

This equation of motion can be derived from the definition of the

Equation 2-13
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expectation value and the time-dependent Schrodinger equation, which tells us that
the Hamiltonian operator is the generator of time-development. See Appendix
A2.1b for details. We will be concerned only with operators that have no explicit
time dependence, so the final term in Equation 2-13 can be dropped. For stationary
states the expectation values are independent of time and we arrive at the
hypervirial theorem, Equation 2-14.
0= (é}(w 4,4l
Equation 2-14

It is desirable to find open systems whose properties obey analogous
equations of motion. Open systems with well-defined properties and behaviour will
be called proper open systems. The theory of Atoms in Molecules extends
Schwinger’s quantum mechanical principle of stationary action (Schwinger, 1951)
to systems with variable spatial and temporal boundaries. By using a variational
method, one arrives at a natural criterion for the surface of a proper open system.
See Appendix A2.4 for the development of this argument for the time-independent

case. The criterion one discovers is that the integral of the flux through the

bounding surface, c.{ dS Vp-n, must be zero. This happens to be identical to the

criterion for a well-defined kinetic energy. We further require that the flux be zero
at every point on the surface, so that the criterion holds for any variation in the

surface, S.

Volrg ) n=0; Vry eS(rg)
Equation 2-15
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This definition of a proper open system also reproduces the partitioning
that has been observed to lead to maximum transferability of group properties in
chemical systems, thus leading to a natural definition of an atom in a molecule

(Bader and Beddall, 1972).

2.2.3. Open system properties and atomic theorems
Each property, 4, has a corresponding property density, p4, defined in
Equation 2-9. The property density is integrated with respect to the final
coordinate, dt, over the proper open region, Q, to obtain the value of the property

for the open region; this is the basin contribution to the atomic value of 4.

4(@)=(4), = [dp,0)

Equation 2-16

For many properties, the equations of motion tell us that the interactions
with the surroundings can be accounted for through a surface integral of a related

function. The general equation of motion is:

1 d{(\{f”ﬁ\p}ﬂ +<(/1 )\1/>Q}

d{4), _1
a2 dr

(3, r]-Hp n g

Equation 2-17

This equation is the open system analogue to Equation 2-13 and can be

derived similarly, see Appendix A2.2¢c. The explicit time dependence of A is again

assumed to be zero and is not shown here, but now we have additional terms
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accounting for the flux" in property A through the bounding surface, S(€2), which
involves the property current density, Ja = N ja. The definition of the one-electron
current density of A is:
/7 e fn A
j )= —||dt"\¥W V4Y¥ |- (V¥ J4¥
10~ 5 Jae vl )- (o)
Equation 2-18

There is also a final term in Equation 2-17 accounting for the time
derivative of the surface, which is required to vary in such a way as to maintain the
condition of zero-flux. Both these additional terms vanish for a closed system. For
a stationary state, the time derivatives of all atomic properties vanish along with the
time derivative of the surface. Therefore Equation 2-17 simplifies to the open-

system hypervirial theorem, Equation 2-19.
NI(iVs - 1
5-{&)([}1, Abn + cc} =2 asa, n+cef

Equation 2-17 and Equation 2-19, can be derived from Schrodinger’s

Equation 2-19

equation and the definition of A(Z) for any arbitrary open system. However, there
is no guarantee that the mathematical expressions will be physically meaningful.
Using a variational approach one can relate the surface terms in these equations to a
variation in Schrodinger’s energy functional for a stationary state, Equation 2-20 (or

variations in the atomic action integral for time-dependent systems, Equation 2-21),

generated by the operator .5(3'/ ifi . See Appendix A2.4 for this derivation.

" The local flux equals the dot product of the current, J, into the surface normal, n.
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5Glw, Q)= —gq‘dS(Q,r)jG(r). n(r)+cc = ——‘;—7;;<(//'[}?, é}w> +cc

0
Equation 2-20

X s, [e,0]= G(0ut,)- Gl )- [ dzqu(g,r)%f_ o (r1)
& gl

1 ¢ 2 14 AoA
Jr—z—_r1 dt(j‘dS(Q,r)(JG(r)-n(r)Jr cc) = —NJ" dt{—z——h-<‘PI[H,G}‘P>Q +cc}
Equation 2-21

The first equality in each expression above holds only if the local zero-flux
condition is imposed as a variational constraint. Only for proper open systems can
the time development of the system’s properties be seen as arising from the
operation of infinitesimal generators. We have seen that some properties are only
well defined for proper open systems. We see here that the equations of motion for
a given operator can be written for any open system, but are only variationally

meaningful for proper open systems.

By inserting an operator of interest into Equation 2-20 or Equation 2-21

~

one can derive an associated atomic theorem. For example, when 4 =t1-p, we

arrive at the atomic virial theorem for a proper open system.

St b vec)=2{R)+ (-r-v7)

%{cj ds()d . -n +cc}= —cj dS(Q){r : 6+£—;Vp(r)} ‘n

Equation 2-22

2
The stress tensor is defined as 6 = ™ {‘P*V(V‘P) + V(V‘P‘ )‘P ~-V¥'VY - V¥V’ }
m

For a stationary state, we substitute these results into Equation 2-20 and rearrange
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the resulting equation.

2K(Q)+7,(Q) = -V (Q)- L(Q)
V,(Q)+V,(Q)= —2K(Q)- L(Q) = 26(Q)+ L(Q)
Equation 2-23

For a proper open system, we recall that the two definitions of kinetic
energy are equal (K = G =T). The Laplacian integrates to zero and we can define
the total atomic virial, V(€2), Equation 2-24. We see that the atomic virial has a
basin contribution, equal to the volume integral of the local virial density; and a
surface term, accounting for the interactions with the surroundings. The sum is
equal to negative two times the kinetic energy, as for the total system.

r(@)=v,(@)+7(Q)=-27(Q)
7,(Q)= N [dr Idr'(//(— r VI?)//

Vs (Q) = 4dS(Q, r)r . B(r) . n(r)

Equation 2-24

2.3. Chemical Structure
Having derived expressions for properties of open systems, and having
discovered which open systems obey meaningful equations of motion, some
general characteristics of open systems can be observed. In chemistry, the smallest
proper open systems that can normally be defined consist of one nucleus,” which is
a local maximum in p(r), and a surrounding region. The surrounding region —
called the attractive basin of the nucleus - is defined as the space mapped out by all

the trajectories of the density gradient (Vp(r)) that terminate at that nucleus. These

* . .. .
In a few systems maxima occur at non-nuclear positions, thus acting as attractors for ‘pseudo-atoms’.
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are non-overlapping regions that one can identify with atoms — as they exist in
molecules. Being proper open systems, these atoms have well defined properties
that obey their respective equations of motion. An alternative definition of an atom
in a molecule, equivalent to the zero-flux condition, is then ‘the union of a nucleus
and its attractive basin.’

Having defined atoms in molecules, we can also identify the other
components of molecular structure: bonds, rings and cages. To do this we should
consider further the topology of the electron density, as described in terms of the
critical points and the gradient vector field, Vp(r). A critical point, r, in the scalar
electron density field has a gradient vector, Vp(r.), equal to zero. The vector field
consists of trajectories, or paths, which originate at low electron density (a critical
point, or infinite distance) and follow the direction of maximum increase until they
reach another critical point (or cusp) of higher density.

It was mentioned above that there is a maximum in the electron density at
each nucleus. We should note here that while the nuclei correspond to maxima in
the electron density, they are not proper critical points. There is a cusp condition
(Kato, 1957) that makes Vp(r,) undefined at these positions. These behave as
critical points in the electron density, and each is the terminus for an infinite
number of gradient trajectories that define the basin. The other common types of
critical points for functions of real space are minima, and two kinds of saddle

points. Critical points are classified by their rank (o, the number of non-zero
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curvatures) and signature (o, the sum of the signs of those curvatures). In this (©,0)
classification system a maximum is a (3,-3) critical point, having three negative
curvatures. We will consider only critical points of rank 3. Lower ranks are a sign
of structural instability.

The first kind of saddle point, a (3,-1) critical point, is the origin of two
trajectories departing in antiparallel directions, and terminating at two different
nuclei. This pair of trajectories is referred to as the bond path linking the two nuclei
A and B. The same saddle point is the terminus for an infinite number of
trajectories, which approach the saddle in a plane orthogonal to the bond path.
These trajectories define the interatomic surface; the surface of zero-flux that
divides the two atoms A and B. The saddle point is known as a bond critical point
(BCP) and its presence, linking two nuclet in an equilibrium geometry, is the
necessary and sufficient condition for those two atoms to be ‘chemically bonded’
(Bader and Essen, 1984). While it is tempting to identify a bond path with a bond,
1t is best to restrict ourselves to the verb and say that two atoms are bonded. This
focuses attention on the forces holding the atoms together, rather than on some
hypothetical physical entity, or region of real space, called ‘a bond’. While atoms
are regions of space, ‘bonds’, along with rings and cages, are merely aspects (or
characteristics) of the topology of the electron density.

The second kind of saddle occurs when a ring of bonded atoms is present.
The ring critical point (RCP), a (3,+1) critical point, is the origin for a set of

trajectories that depart in a single plane and terminate at the nuclei or bond critical
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points defining the ring. This set of trajectories defines a ring surface. The ring
critical point is the terminus for a pair of trajectories that approach in antiparallel
directions, orthogonal to the plane defined by the ring surface. This pair of
trajectories defines the ring axis. When a set of rings encloses a 3-dimensional
space, a cage is formed. Inside this cage is a minimum in the electron density,

known as a cage critical point (CCP) or a (3,+3) critical point.

2.4. Summary

We have seen that the Theory of Atoms in Molecules provides a definition
of the quantum mechanical properties of an open system and the equations of
motion determining those properties. From the criterion for a proper open system,
we derive a definition of atoms within molecules and define topological features
corresponding to all the elements of chemical structure. While the Theory of
Atoms in Molecules is now known to have much wider applicability, this thesis will
focus on chemical applications of this theory. In the next chapter we will see how a
few integrated properties of atoms in molecules (open systems) and several
topological features of the electron density allow us to characterize the chemical

bonding in a molecule.
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3. Characterization of Chemical Bonding

3.1. Basic Methods

Chemists have described the chemical bond in many ways. The bond can
be characterized by its length, its strength, its strain, and its conjugation to other
bonds, in terms of the fragments from which it was formed or in terms of
electronic structure. A review of concepts in chemical bonding (DeKock, 1987)
gives the following list of descriptors which have been applied to bonds (in a
different order): polar, nonpolar, semipolar, bridged, bifurcated, localized,
delocalized, single, double, triple, quadruple, electron-pair, one-electron, two-
center, three-center, protonated, sigma, pi, delta, phi, bent, unusual, dangling,
weak, strong, agostic, dative, coordinate covalent, covalent, ionic, metallic, van
der Waals, and hydrogen. To this list, we might add the concepts of aromaticity,
resonance, back bonding and hyperconjugation, among others. Many of these
descriptions are only meaningful within a given model, some are mutually

exclusive and some appear so from a particular perspective.

3.1.1. Experimentally accessible properties
While one can see energetic evidence of conjugation and other aspects of
electronic configuration in the ultraviolet spectrum of a molecule, the most

experimentally accessible properties of most bonds are the average bond length
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and bond strength. The bond length may be determinéd using a variety of
techniques, including X-ray diffraction, neutron diffraction, electron diffraction
and microwave spectroscopy, each of which involves a different kind of time
averaging (Ebsworth et al., 1987). The bond strength may be described by the
bond dissociation energy, which is only well defined for diatomic species, and/or
by the vibrational stretching frequency, which again is only bond-specific for
diatomic molecules.” Deeper potential wells tend to have higher stretching
frequencies. Shorter bonds are typically stronger by both measures than longer

bonds between the same two atoms. Both of these parameters — strength and

length — are usually correlated with a third: bond order.

3.1.2. The Lewis model

In the early nineteenth century, the working model of how atoms were
held together was essentially an ionic model, with positive and negative atoms
bound by electrostatic forces (Stranges, 1984). Later in the century the ever-
expanding realm of organic chemistry brought this model into question. J. J.
Thompson’s discovery of the electron in 1897 led to a new interest in models of
chemical bonding. Just before the advent of quantum mechanics, G. N. Lewis

gave a description in terms of the equal or unequal sharing of a pair of electrons,

" For polyatomic species, the dissociation energy will include contributions due to the relaxation of the
remaining bonds. We may want to consider both homolytic and heterolytic cleavage.

" In polyatomic species all vibrational frequencies correspond to vibrational modes that are linear combinations
of various stretches, bends, twists, efe. However, many modes are due predominantly to one stretch or bend,
which is why we can use infrared spectroscopy to identify functional groups.
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which explained the structure of molecular systems (Lewis, 1916). This led to the
ideas of covalent bonding for relatively equal sharing of electron pairs and ionic
bonding for very unequal sharing. These ideas are still in use as the most
accessible model of chemical bonding. A shared pair of electrons has come to be
identified with a bond. When more than a single pair is shared between two
atoms in the Lewis model, the bond is said to be a multiple bond. When a single
Lewis structure cannot account for observed properties, an average of resonance
structures is invoked. The Lewis model is a localized model of electron density.
Each pair of electrons is considered to occupy a specific region of space within
the molecule. When more than one Lewis structure is needed, the electrons are
usually said to be delocalized.

As was mentioned above, chemists tend to categorize bonds involving a
non-metal as ‘non-polar covalent’, ‘polar covalent’ or ‘ionic’." As pointed out by
Lewis, these are differences only in degree, not differences in kind (Lewis, 1916).
Any bond in the Lewis sense can be described as the sharing of a pair of
electrons. As the electronegativity difference increases between the two atoms,
the electrons are less equally shared. Polar bonds, which include most bonds in
inorganic systems, have a large covalent component, but electrostatic interactions
can also play a significant role. Very few bonds are entirely non-polar and none

are purely ionic. The ideal extreme of ionic bonding, where the only binding

" Note that the focus shifted from bonding forces to physical entities within the molecule. Many chemistry
students, and indeed chemists, think of a bond as a line connecting two atoms in a Lewis structure.

¥ Metallic bonding will not be discussed in this thesis.
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forces are electrostatic, would be an example of a closed-shell interaction. Other

examples are van der Waals interactions between closed shell molecules or atoms.

3.1.3. Quantum models: valence bond theory, and VSEPR

Pauling (1931a/b/c, 1932a/b 1960) and Slater (1931a/b; 1932) introduced
the ideas of directed valence bond (VB) theory, describing bonds as the overlap of
atomic orbitals. The idea of orbital hybridization was introduced to maximize the
orbital overlap by having the atomic orbitals point along the bond axis. While
Lewis makes little reference to geometry, the choice of hybridization states requires
that the bond angles are known. One can alternatively describe the bonding in
terms of localized electrons, shared and unshared as m the Lewis model, without
appealing to atomic orbitals.

Because of Pauli repulsion, electrons of the same spin, in the valence shell
of a given atom, will tend to keep as far apart as possible. This is the basis of the
Valence Shell Electron Pair Repulsion (VSEPR) model of molecular geometry
(Gillespie and Nyholm, 1957; Gillespie and Hargittai, 1991). Thus in the typical
case of four same-spin electrons, the most stable arrangement is at the corners of a
tetrahedron. When two or more bonds are formed, the a-spin and f-spin tetrahedra
are brought into coincidence and electron pairs are formed, each occupying a
domain in real space (Gillespie and Popelier, 2001; Linnett, 1961, 1964). When
two pairs of electrons are shared between the same two atoms, the two pairs are

pulled closer together due to their attraction for the positively charged nuclei. The
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two distorted tetrahedra share an edge. The more electronegative the atoms, the
more effectively they can overcome the Pauli repulsion and the more stable the
‘double’ (or ‘triple”) bonds will be. If the atoms are not sufficiently electronegative,
Pauli repulsion will dominate, and multiple bonds will not be formed (Malcolm et
al., 2002). For polar covalent systems the second electron pair is likely to be
localized on the more electronegative atom.

In the electron domain model we could describe a double bond as being
made up of two ‘banana bonds’ or ‘bent bonds’, while in the hybridized-orbital
version of the valence bond approach a double bond is described in terms of the
end-to-end (o) overlap of spz—hybrizided atomic orbitals and the side-to-side (m)
overlap of unhybridized p-type atomic orbitals. In either model, the electron pairs
are seen as localized to one or two atoms, as in the Lewis model, and bond order
simply refers to the number of shared pairs (or half the number of shared electrons)
between two atoms. These quantum mechanical models are useful for molecules

that are well described by a single Lewis structure.

3.1.4. Quantum models: molecular orbitals
In the same era that valence bond theory appeared, Mulliken (1928a/b,
1932a/b, 1935) and Hund (1931a/b, 1932, 1940) introduced the ideas of molecular
orbital (MO) theory, which considers the quantum states of the entire molecule.
While valence bond theory gave a good description of ‘localized’ or ‘directed’

bonds, MO theory explained ‘conjugated’ or ‘unsaturated’ systems well (Coulson
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and Longuet-Higgens, 1947 and 1948).

One simple example of an molecular orbital (MO) description is the
Hiickel treatment of conjugated polyenes, in which the 7 system is described as a
linear combination of the carbon p orbitals. When the p.-like functions on many
neighbouring carbon atoms are ‘coupled’ by off-diagonal terms in the Hamiltonian
matrix, the n-system is said to be comjugated, or delocalized, in the sense that a
single Lewis structure is not sufficient to describe the electron sharing.

Ab initio wavefunctions of great accuracy and complexity can now be
determined. These numerical results can be difficult to interpret within the simple
framework of the Lewis model or valence bond concepts. Most computational
methods today start with an MO model of the molecular wavefunction. Each
canonical molecular orbital corresponds to a symmetry representation of the
molecular point group. The many-electron wavefunction is written as an
antisymmetrized product (Slater determinant) of MO’s. In some types of
analysis, the canonical orbitals are transformed into maximally localized orbitals,
more reminiscent of the valence bond description. Approaches for relating the
calculated wavefunction to chemical concepts of atomic charge and bond order

are discussed in the following sections, and in Appendix A3.2.

3.2. A Topological Approach: properties at the bond critical point
The properties of the electron density at the bond critical point (BCP),

including the density, Laplacian, ellipticity, energy densities, and distance to the
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nuclei have all previously been used to characterize the bonding in some way. It is
assumed that the properties at this one point can summarize the interaction between
the two atoms (Bader ef al., 1983). One way to think about this summary is to
consider the electron density of a diatomic system, and take as our zeroth-order
approximation the overlap of two spherical ‘atomic densities’, which decay

approximately as exp(— a:r). Such a model is shown in Figure 3-1.

Figure 3-1. A profile of the simple overlap of two spherical, exponentially decaying atomic
densities.

3.2.1. Density — bond order / bond strength
In a diatomic molecule, AB, the path of maximum density between the
nuclei (the bond path) is along the internuclear axis, by symmetry. The closer the

nuclei approach, the higher the density will be at the lowest point along the bond
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path (i.e. at the bond critical point). For the simple overlap model, where the
distances from the BCP to the nuclei are A-r, and B-ry, the density at the bond

critical point, p(xp), 1s:

plr,)=p,(6,)+ p,(r,) = ae ™ + be™#*™
Equation 3-1

A correction to this model would account for the rearrangement
(relaxation) of the electron density in response to the perturbation. In covalent
interactions, there is an increase in electron density along the bond axis, beyond that
in the overlap model. The covalent sharing of electrons pulls more electron density
into the region between the nuclei, stabilizing the interaction. In interactions
between closed shell molecules (van der Waals forces) or between closed shell ions
(electrostatic forces), electrons repel each other away from the internuclear region.*
So for closed shell interactions the density at the BCP is lower than that expected
for simple overlap at the given internuclear distance. If the bond is polar covalent,
the electrostatic attraction between the atoms or groups will shorten the bond and
thus increase the density at the BCP, making the bond appear even more covalent —
if we have not accounted for the change in bond length.

Empirical equations have been proposed to relate the bond order to the
density at the bond critical point (Bader ef al, 1983). These formulae depend

parametrically on the two atoms involved and generally have an exponential

" Both electrostatic repulsion and Pauli exclusion contribute to this repulsion.
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dependence on p(ry) (Boyd ef al., 1988). Since p(ry,) depends exponentially on
bond length with a small ‘chemical adjustment’, it seems more straightforward to
relate the bond order directly to bond length, as originally proposed by Coulson
(1951). This measure would include both covalent and ionic contributions to the
length (and strength) of the bond. This may be exactly the property one is
interested in considering, and if so one could simply stop at the bond length rather
than going through the trouble of analyzing the density. One could compare the
expected density to the calculated or observed density to discover if there was any
unexpected additional covalent character. (This idea is similar to the density
difference maps often seen for experimental densities.) If one has no access to
integration programs, this parameterized method could be of use, but since it
contains information for only one point and is empirical, it is preferable to have a

more global definition of bond order.

3.2.2. Laplacian — covalence / ionicity

2 2 2
The Laplacian, V2(p =6 Z)+a Z)+ 0 (20,
ox° oy oz

of any scalar field ¢ is an

indication of local concentration or depletion (Morse and Feshbach, 1951). If the
value of the electron density is higher than the aVerage value at neighbouring
points, the Laplacian of the density, Vp(r), will be negative; if the value of p(r) is
lower than the local average, its Laplacian will be positive. The Laplacian is

mvariant to rotation of the frame of reference, and the tensor VVp(r) (the Hessian
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of p) can be diagonalized by choosing an appropriate coordinate system.

At a bond critical point (BCP) the appropriate system is one with the z-
axis along the bond axis. The component of VVp(r) in this direction (the
curvature, %3) will be positive. The other two components of the diagonalized
tensor will correspond to axes that lie in the interatomic surface and both these
curvatures (A; and ;) will be negative. The BCP Laplacian, V2p(ry), can be seen
as an indicator of the competition between accumulating density from the surface
towards the bond path (negative components), indicative of covalence, and
accumulation of density at the nuclei (positive component), associated with closed-
shell interactions. When the Laplacian is negative at the BCP, this indicates that the
accumulation of density in the bonding region dominates.

A map of the Laplacian of a free atom reveals more structure than the
simple exponential decay seen in a density plot. Spherical shells of alternating sign
are observed. Each radial minimum corresponds to a quantum mechanical shell (n
=1, 2,3...). Atdistances far removed from the nucleus the Laplacian is positive,
while at distances associated with the valence region V>p(r) is negative. Moving in
towards the nucleus, we encounter another sphere of positive V°p(r), which can be
associated with the beginning of the core region.

Empirically it is seen that shared (covalent) interactions between atoms in
the second row have negative values of V2p(ry) with magnitudes on the order of

one atomic unit (1 au). Conversely, bonds that are normally considered ionic (or
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closed shell) have positive values of V2p(r), with magnitudes closer to 0.1 au. For
third row atoms these values are somewhat different and the long bonds favour
more positive values of the Laplacian, particularly for polar bonds. We will see

other important information contained in the Laplacian field in Section 3.3.

3.2.3. Distance to the nuclei - polarity

Another indicator of bond polarity is the distance of the BCP to each of the
connected nuclei. This will of course be strongly determined by the characteristic
size of the atoms involved, but for a given atom, as the BCP moves closer to the
nucleus, less electron density is associated with that atom and more with the
neighbouring (bonded) atom. Thus as the BCP shifts away from some ‘neutral’
position, the bond is becoming more polar. The Laplacian will concomitantly
become more positive as the BCP moves closer to the core region of the

electropositive atom, where VZp(r) > 0.

3.2.4. Ellipticity — sigma / pi contributions
In most organic molecules and some inorganic systems, particularly planar
molecules, we can describe multiple bonds as being made up of one o-like and one
(or two) m-like ‘bonds’. We may use any other set of equivalent orbitals, such as
t§vo (or three) bent bonds, in our description. In the case of a double bond in a
planar molecule, the density is observed to be greater in the plane containing the 7-

like bond than in a perpendicular plane containing the bond axis. A single or triple
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bond has more cylindrical symmetry. This accumulation of density in the ‘n-plane’
may be measured using the ellipticity at the BCP. The ellipticity is defined as the
ratio of the two negative curvatures minus one, € = (A; / X2) - 1. When the bond is
cylindrically symmetric, A; = %, and € = 0. When there is significant ‘n-character’
in the plane corresponding to A, the density in that plane is more ‘flat’ and A > A,
so € > 0. Ellipticity is a good indicator of the presence of a single n-like bond or
orbital, but it is important to remember that not all multiple bonds are well

described as the sum of one o bond and one 7 bond.”

3.3. The Laplacian, Lewis and VSEPR

The Lewis model is recognizable in the Laplacian of the electron density,
which is the sum of the three curvatures of the density. The Laplacian is a
measure of how concentrated or depleted the density is, relative to neighbouring
points. As mentioned above, the Laplacian is negative at points where the density
is locally concentrated and positive at points where it is locally depleted (Morse
and Feshbach, 1951). Contour maps and isovalue énvelopes of V’p(r) show
regions of charge concentration (V?p(r) < 0) in the positions where Lewis
structures and VSEPR theory predict localized electron pairs. Bonding charge
concentrations (CCs) are observed between covalently bonded atoms, and non-
bonding CCs are observed where ‘lone pairs’ are predicted. Connected bonding

and non-bonding (lone pair) regions can be seen in a contour plot of the Laplacian

" Consider for example the double bond in cylindrically symmetric molecular oxygen, 0.
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for P4, Figure 3-2.

Figure 3-2: Contour map of V?p(r) in a symmetry
plane of tetrahedral P,. Solid contours indicate
negative values (concentration) and dashed lines
indicate positive values (depletion). The outermost
contour is +0.002 au. Isovalue contours increase
and decrease from the VZp(r) = 0 contour in the
order +2x10", +4x10", +8x10", beginning with n =
-3 and increasing in steps of unity.

The curved line forming the base of a triangle is a
bond path between the two in-plane nuclei. The
two sides of the triangle are intersections of the
plane with ring surfaces. They meet at a bond
critical point. The three lines forming a Y are
intersections of the plane with the interatomic
surfaces. The bond path crosses the interatomic
surface at a bond critical point.

1
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This connection between concentration and localization has recently been
explained (Bader and Heard, 1999), by noting that if the reference electron is

totally localized within some region, the magnitude of the o-Fermi hole

B (x, rz)' will equal the a-electron density p“*(r, ) within that region and be zero

outside. OQOutside this region, the conditional pair probability (see below),

5°(x,,r,)= p*(r,) - Ih" (r,, 1‘21 , will exactly equal the a-electron density and the

Laplacians of the two fields will also be equal. The same will be true of the -
spin electrons. Thus when the electrons are reasonably localized, the Laplacian
shows the regions in which the localization is concentrated.

For a given Lewis structure, VSEPR theory predicts the arrangement of
the shared and unshared electron pairs around each atom. The preferred

arrangement arises from the minimization of Pauli repulsion between same-spin
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electrons (see Section 3.1.3). In the most typical case of four electron pairs, the
same-spin electrons arrange themselves such that their most probable locations
are at the corners of a tetrahedron. When the atom in question is sharing two or
more pairs with other atoms, the tetrahedra are fixed in position. If an atom is
sharing two pairs with the same neighbouring atom, the two pairs are pulled
closer together than the ideal tetrahedral angle, by electrostatic attraction for the
positive cores. The two domains overlap to give a single high-density region
along the bond axis. One region of charge concentration is observed, regardless of
the bond order.

As the bond polarity increases, the electron pairs become more localized
on a single atom. If only one of the (potential bonding) pairs is localized on the
atom of interest, while the other is more equally shared, we expect one charge
concentration along the bond path and one at a near-tetrahedral angle, giving a
pyramidal bonding arrangement. If the geometry around the more electronegative
atom is constrained to be planar, there should be charge concentrations above and
below the plane, and there will also be a bonding concentration associated with
the more equally shared electron pair.

@
LA B Al B A8 SEA—BY

\ .

Such an arrangement of charge concentrations, combined with an
energetic preference for a pyramidal arrangement, is evidence that one or both

bonded atoms are insufficiently electronegative to attract two pairs of electrons
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and bring them into close proximity, against the Pauli repulsion effects. A single
bond is preferred in such cases.

The number, location and properties of the maxima give us some clues to
the appropriate Lewis structure(s) with which to describe a molecule. The
number of non-bonding maxima gives an indication of the number of lone pairs
(and thus the number of bonding pairs, by deduction). However, one must take
care when counting the maxima. For singly bonded terminal atoms, the unshared
electrons are not localized into pairs. Rather the six electrons form a torus of
unshared density (Gillespie and Popelier, 2001). The molecular symmetry may
also place restrictions on the number and location of maxima, so that they do not
correspond to the expected Lewis structures. For example, linear molecules must
have cylindrical symmetry, so lone pairs must appear as a single ‘cap’ or as a
torus. Molecules with Csv symmetry must have one or three - never two -
equivalent maxima for atoms lying on the axis. Therefore, we will never observe
two lone pairs on the oxygen atom, in the Laplacian map of H;PO. In a case such
as this, the two (hypothetical) lone pairs cannot become localized into two
separate, well-defined regions of space.

In regions where the density is quite ‘flat’, a single region of charge
concentration can sometimes exhibit more than one maximum, with a saddle in
between. Bader and Heard (1999) have suggested a method for determining
whether two charge concentrations are associated with the same ‘localized” pair

of electrons, by studying maps of the conditional pair density. A more simplistic
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approach is taken in the current study. If the density and Laplacian at the saddle
are very similar to those at the maxima, we can conclude that the two maxima
represent a single region of charge concentration. If the properties at the saddle
pont are quite different, there may be two pairs of electrons present.

A bonding charge concentration may show a local maximum in the
valence shell of one or both bonded atoms. The number of bonding charge
concentrations gives no indication of the bond order as all the bonding pairs are
localized in the same region. However, an unexpected non-bonding charge
concentration is an indication that the bond order is less than expected. Analysis
of the topology of the Laplacian will be helpful for deducing the appropriate
Lewis description of a molecule when the delocalization index approach,
described below, gives inconclusive results. This will be the case particularly

when one member of a series has an unusual bonding arrangement.

3.4. Atoms in Molecules Approach to Population Analysis
We have seen that in order to partition many-particle properties, such as
potential energy, into atomic contributions we must use a mean field approach.
Dressed operators are obtained by integrating the ‘property’ over all the electronic
coordinates but one and summing over all the electronic spins. This procedure is
denoted by [d. Taking the average of this dressed operator and its complex
conjugate accounts for the local non-Hermicity of some operators. Multiplication

by the number of electrons, N, results in a property density, which is a function of
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real space. To calculate the atomic contribution to a property, the property density

is integrated over the basin of the open system. This operation is denoted by Ldr .

3.4.1. Population and charge
One of the easiest atomic properties to calculate is the electron population,
N(€). This depends only on the electron density, p(r). From this the atomic
charge, q(QQ) = Zq -N(Q), is easily accessible, and a good indication of the polarity
of the bonding is obtained. In later chapters, when various substituents are
compared, the charge on the entire substituent will be calculated to avoid the
complications of increased charge on a substituent atom due to its increased

coordination number.

3.4.2. Localization and the Fermi hole

The population of an atom or group may be determined using only the
one-electron density, while the kinetic energy depends on the first-order density
matrix. See Appendix A3.1 for a description of density matrices. Both population
and energy can be expressed in terms of property densities in real space. In
contrast, the localization of electrons within an atom or group, and the
delocalization of electrons between two groups depend on the pair density, p(r;,r2)
which is proportional to the diagonal elements of the second-order density matrix.
These properties depend on the coordinates of fwo electrons and can be integrated

over two regions of space.
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The relationship between electron pair localization and the Lewis model of
molecular structure has been discussed by Fradera er al. (1999) and was
introduced in Chapter 1. Due to anti-symmetrization, an electron at some
reference position, ry, will exclude density of the same spin from the region
around it. For wavefunctions at correlated levels of theory, electrons of different
spin also exclude each other due to Coulomb correlation. Both of these
correlations are described by the correlation function, /° °'(r1,r2), which is defined

in terms of first- and second-order density matrices by Equation 3-2.

P (1,1,) = L p° (1) (r)1+ £ 7 (1)
Equation 3-2

Thus the correlation function relates the probability of finding an electron
of spin ¢ at position r; and an electron of spin ¢’ at position r, to the probabilities
of those events occurring independently. At the Hartree-Fock level of theory, there
is no Coulomb correlation and so the opposite-spin correlation functions are zero.
We define the conditional same-spin pair density, 6°°, as the probability of finding

an electron at r; given that an electron of the same spin is present at r;.

ao o (r 3 r o a og o g
5% (5, 1) = 220 = (1) 4 7 (1) (1) = P (1) ()
H
Equation 3-3
The Fermi hole, 4°(ry,I,), is a measure of how much density is excluded at
r; due to the presence of a reference electron at r;. The Fermi hole is equal to the

same-spin correlation function multiplied by the spin density, p°(r;), and to the

conditional same-spin pair density minus the spin density, see Equation 3-3. The
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more localized the Fermi hole, the more localized is the reference electron at r;
(Bader and Stephens, 1975). For a closed shell system, the Fermi holes of o and f3
electrons are independent and equal so that o, pairs result. At the Hartree-Fock

level of theory, the Fermi hole reduces to the exchange density divided by the

reference density.

o

ZM 0 )0, ()

ha>2zazwlnz j
(r.1,) = p(r,) /7 (r,1,) = pcey

Equation 3-4

fdrzh”(r,,rz) = 'fdrzp"(rz)f"”(r,,rz) =-]
Equation 3-5

For a given reference position, the Fermi hole integrates to —1 over all
space, corresponding to the exclusion of one electron. If the Fermi hole is integrated
over an atom, the result is the fraction of an electron excluded from the atom by that
reference position or, equivalently, how localized the reference electron s within
the atom. If the result is also integrated over the atom with respect to the reference
position, weighted by the electron density, p(r;), the result is the number of
electrons localized within the atom. The sum of the alpha and beta localizations is

called the atomic localization index, A(Q).

j-drlp"(rl )J.drzh"(rl 1) = Jdrlpa(rl )J.drzpd (rz )fw(rl 1) =F7(,Q)
Q O o Q
Equation 3-6

MO = F(Q,Q) = F* (Q,Q) + FHQ,0)
Equation 3-7

Alternatively, the reference position may be integrated over a different
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atom, and the result is the number of electrons in the reference atom that are
delocalized onto another atom.
Jdrlp"(rl )jdrzh“(rl,rz) = J‘dr,,o”(rl)_fcz’rz,o"(rr2 )% (r,,1,) = F°(Q,Q)
193 Q (o3 Q
Equation 3-8
The delocalization of Q into ' must necessarily equal the delocalization
of ' into Q, and the total delocalization index, 5(,QY'), between the pair of atoms
is the sum of these contributions.

S(Q,Q) = 2F(Q,QY) = 2[FH,Y) + FHQ,Q)]
Equation 3-9

At the closed-shell Hartree-Fock level, the delocalization index can be

calculated as 3(Q,LY) = 42.;S;(C)S(Q"); where §;(€) = Ldr(D ;@ ;(r) is known as

an atomic overlap integral. At this level of theory the delocalization index is equal
to the bond indices proposed by Fulton (1993) and by Angyan, Loos and Mayer
(1994), see Appendix A3.2. For post-Hartree-Fock wavefunctions there will also
be contributions from the opposite spin correlation functions and, due to differences

i the basic definitions, the equality with other indices no longer holds.
3.5. Interpretation of the Delocalization Index

3.5.1. Delocalization and bond orders.
While the delocalization index, 8(€,2"), does count the number of

electrons shared between two atoms, it does not directly measure the number of

contributing Lewis pairs of electrons. An equally shared pair of electrons will
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donate 1.0 to 8(Q2,QY"), but an unequally shared pair will donate less. For example,
the delocalization index in H is 1.0, while that in LiF is about 0.1, though both
bonds can be described by the sharing of one pair of electrons (Fradera et al,
1999). Conversely, a delocalization index near one may reflect one equally shared
pair or more unequally shared pairs. Furthermore, (€2,Q2") has a non-zero value
for atoms that do not share a bond path and are therefore not bonded to each other
according to the topological definition. Fradera et al. (1999) therefore argue that
8(€2,Q2") should not be identified with a bond order.

To get an indication of the number of Lewis electron pairs involved in

bonding, Fradera ef al. undertook an orbital-based analysis. For molecules with
cylindrical or planar symmetry, electrons in orbitals of ¢ or o-like symmetry can
be rigourously separated from electrons in 7 or 7w-like orbitals. Thus the o-like
and n-like delocalization indices can be calculated separately. In the case of

moderately polar covalent molecules with multiple bonding it was seen that the

two contributions are similarly (but not identically) polarized.

3.5.2. Derivation of a new relationship between é’”F(A,B) and qHF (B)
For non-polar molecules at the Hartree-Fock level of theory, 8(2,(Y) is
very close to the bond order determined by Lewis structures. For example, the
delocalization index &(C,C) in H,C=CH, is 1.89, slightly below 2.00 due to
interaction with the H atoms. For polar molecules, the delocalization index

decreases as the charge transfer from Q) to €' (measured by the charge on Q)
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increases. See section 3.5.3 for examples.

Let us look at three simple cases; a polar molecule with one unequally
shared pair of electrons, and a polar molecule with two or three unequally shared
pairs of electrons, occupying molecular orbitals (@) of different symmetry in the
canonical molecular orbital description.

Case 1. Let the core charge on each atom be +1 and the total charge on
the molecule be zero. The core electrons are assumed to be completely localized

and do not contribute to the delocalization, so for the purposes of this treatment we

can write the single-determinantal wavefunction as: y = ‘@151}. Le., assume all

other atomic overlap integrals Sj{4) and Si(B) = 0 or 1 and all other products
Si{A)Sy(B) = 0.

The population on each atom (due to the orbital of interest) is
N(4)= ZLdKDZ(r) =285(4) and N (B)=2 Ldr(DZ(r) =28(B). For neutral
atoms, we would require that each atomic population was one. The charges are
thus g(4) = 1-N(4) = 1-25(4) and q(B) = 1-M(B) = 1-25(B) = -q(A).

Rearranging these expressions to isolate the overlap integrals gives

S(A)-—-——————-l_g(A) and S(B) = I"Z(B) = “g(A) .

Substituting these expressions into the delocalization index gives:

1+q(4)
2

5(4, B) = 4S(A)S(B) = 4(1 - Z(A) ]( ) =1 g4y

Equation 3-10
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We see that, in this simple case, the delocalization does indeed depend on
the square of the charge transferred, and that the maximum delocalization of 1.0
occurs for the non-polar case (g = 0), as expected. We will see below that the
coefficient of ¢’ can be varied by interactions with other orbitals.

Case 2. We now consider the case for a diatomic molecule, XY, with a
second pair of shared electrons in a molecular orbital of different symmétry (e.g.

one o-like and one m-like) and core charges of +2. The determinantal wavefunction
. 1 a a
is then i = "JZ’K‘D‘ (D (1) D% ()7 ().

Again we define the population of each atom due to the two orbitals of interest.

N(Y) = [drp(r) =2 [dri®}(m)+ ©2(1)|=25,(1) + 25 ,(Y)

NGO~ Jarpt) =2 o) 030} 25,060+ 25,0

Since the neutral atoms would each have populations of two, the charges are:

g(¥) = 2-N(Y) = 2- 28i(Y) - 25;(¥) and g(X) = 2-N(X) = 2- 254(X) - 25;(X) = -g(¥).
Assuming the two orbitals are equally polarized, we can define new overlap
terms: $;(Y) = §j(¥) = S(¥) and Si(X) = Sj(X) = S(X). This allows us to rearrange
and substitute as before.

2-q9(X) _2+4()
4 4

S(¥) =3“—Z(Q and S(X) =

The delocalization index for this system can be written as

8(Y,X) = 415, (1)S,, (X) +25,(1)S,(X) + S, (¥)S ,(X)} where
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S,(Y)= [dr®®,(r)=0 and S,(X) = Ldrd)i@/(r):() due to symmetry.”

Finally, we can write,

4 2 2

_ _o[2=9) ) 2+4q() :22—61(}’)2: gy’
5(Y,X)~8S(Y)S(X)—8( ; J( ) 2 .

Equation 3-11

We see again the quadratic dependence on the charge transfer with the expected
maximum value for a non-polar system, but this time with a different coefficient
in front of ¢*. Since the charges are equal and opposite either ¢(X) or g(¥) may be
used in this expression, and in Equation 3-10.

Expressing the total charge transfer as the sum of the two orbital polarities,

2

2
we can rewrite Equation 3-11 as 5(Y,X):2—£—2—§)——:2—§i27—:2(1—p2);

where g = 2p. Similarly, for three orbitals of different symmetry but the same

polarity, p, we can write q = 3p and then, generalizing the previous expression,

3l p)=3-44) =3-4
57, X)=301-p*)=3 3(3) -

3.5.3. Verification of the new relationship.
Case 1 above can be verified by plotting the period 2 hydride, AH,, data

published by Fradera ef al. (1999), see Figure 3-3. The seven molecules (A = Li

" It should be noted that this vanishing only occurs when the nuclei of X and Y coincide with the symmetry
element that distinguishes the symmetry of the two orbitals. For example if one orbital is symmetric and the
other antisymmetric with respect to a symmetry plane S;{X} = 0 only if the nucleus of X lies in the symmetry
plane.
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- F) give a curve whose best-fit equation is 8(A,H) = 0.99 — 0.97¢°(H), with R* =

0.999, in excellent agreement with the equation derived above.

Second row hydrides, AH,
42
= 5(Cl) = -0.7571q? + 0.0197q + 0.8444
§(HF) =-0.9694¢2 + 0.0018q + 0.9942 R? = (0.0968
R? = 0.9088 o
N
e HF
{4
i" O 0O row3
£ e HF
O
F
T 9
-1 0.5 0 0.5 1
q(H)

Figure 3-3: A graph of delocalization index versus charge transfer for the second row hydrides, at
two levels of theory: Hartree-Fock (HF, ) and Configuration Interaction (CI, 4). Each series is
fitted to a quadratic function and the equations are displayed on the graph. Hartee-Fock data for
the third-row hydrides are also shown, as open squares. The data are those published by Fradera
et al. in 1999. Note that there is an error in Table 3 of the paper by Fradera ef al. The 2D,(H,H")
value has also been reported as N(H). The correct value, based on N(N) is q(H) = 0.651.

The Hartree-Fock level data for the third period hydrides are shown on the
same graph. The metals and metalloids (A = Na — Si) fall on or near the curve

described for the second row hydrides. PHj;, SH; and HCI form their own curve
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above the first. This can be most easily explained as additional delocalization of
the ‘lone pair’ electrons from the large moderately electronegative central atom to
the neighbouring hydrogen atoms. Similar lone pair effects will be seen in the
phosphorus and nitrogen systems studied in this thesis.

Figure 3-3 also shows that a quadratic relationship is maintained when
correlation is included, though the curve is lower for the covalent systems. The
two curves (HF and CI) cross when the magnitude of the charge transfer is
approximately 0.8 electrons. The two essentially ionic hydrides, LiH and BeH,
show little change when correlation is included. For CH; and NH; the major
effect is a reduction of the delocalization index. For BH; and H,O the major
effect 1s a decrease in the charge transfer. The expected reduction in 6 due to
correlation is apparently compensated by the concomitant reduction in bond
polarity. For hydrogen fluoride, the reduction in polarity dominates and the
delocalization index actually increases with inclusion of correlation. The most
dramatic reduction in 5(€2,Q") observed in the 1999 study was for N; where
O(N,N') dropped from 3.04 at the Hartree-Fock level to 2.22 at the CISD level.
As pointed out by Fradera et al., the Hartree-Fock wavefunction, which describes
the molecule in terms of electron pairs, moving in the average field of the other
electrons, corresponds more closely to the simple Lewis picture than does a
correlated wavefunction.

In order to determine whether a triple-bond description was in fact
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reasonable for the 14-electron species: CO, CN” and NO', the data reported by
Fradera et al. for these systems and for N, were supplemented by newly calculated
data for P,, PN and PCH, where the CH group is treated as a single atom. All of

these systems have ten valence electrons.

triply-bonded 10-valence-electron systems

§ = -0.20x% + 0.14x + 3.04 NN 313,

R? =0.996 2.9 -

2.5 1
2.3

2.1 1

delocalization index

1.9 +

T T T T

-2.5 -2 -1.5 -1 -0.5 0
Total bond polarity, ' = N,; -5

Figure 3-4: A graph of delocalization index versus charge transfer, ¢, for a set of ten-valence-
electron ‘diatomic’ systems, assuming five valence electrons for each atom, in the ‘non-polar’
case. The data are fitted to a quadratic function and the equation is displayed on the graph. The
data for CO, CN', NO’, and N, are those published by Fradera et al. in 1999. All wavefunctions
were calculated at the HF/6-311++G(2d,2p) level of theory.

It was initially assumed that the bonds are all triple bonds and thus each
atom would have five valence electrons in the non-polar case. The total bond

polarization, q' = 3p, was thus calculated relative to this non-polar reference, as q' =

{N(€2) — N(core) — 5}, rather than simply using atomic charges, which would not be
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a direct measure of charge transfer for the ionic species. The resulting graph 1s
shown in Figure 3-4.

All  the points fall close to a best-fit quadratic function,

8§ =3.04+0.14g ~0.20¢, whose curvature is not in agreement with the equation

derived above, & = 3.00 - 0.33¢°. The maximum is at (0.35, 3.06), close to the
expected (0, 3) and the delocalization of three pairs is attained for the non-polar NN
(0, 3.04) and PP (0, 3.03) molecules. The deviation may be explained by the
additional delocalization of lone pairs and by the fact, established by Fradera et al.,
that the three contributing orbitals are not equally polarized. Given these
complications it is encouraging that a quadratic function with approximately the
expected maximum is attained. More data points would help strengthen the
conclusion that these molecules do indeed involve polar triple bonds.

The results of this analysis highlight the importance of determining the &
vs. q (or p) relationship for an entire of series of molecules, related to a system of
interest, before making conclusions regarding the bond order. We also note that
such a fitting procedure reveals differences that may be present in one or a few

members of a series, but not in others, such as additional lone pair delocalization.

3.5.4. Extracting bond orders and formal charges from the data
For the purposes of this thesis the term bond order will refer to the Lewis
sense of ‘number of shared pairs of electrons,’ whether the sharing is equal or

unequal. A pair of electrons will be considered ‘shared’ when there is significant
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delocalization of electrons between two atoms, as measured by the delocalization
index. The bond order is then assumed to be the same for a series of molecules that
differ mainly in the polarity of the bond of interest, and which can be fit to a simple
quadratic function when plotting 8(A,B) vs. q(B). The bond order will be taken as
the maximum point on the quadratic curve, as this represents the delocalization
index when the pairs are most equally shared. The charge at the maximum will be
identified with the formal charge, as this point best matches the definition of formal
charge as the hypothetical charge on the atom when all the bonding pairs are
equally shared. This has been done for each series studied in this thesis. Each
series can be fitted to a different quadratic curve, with varying quality of fit.

We expect the maximum delocalization index to occur when the electron
pairs are equally shared, i.e. when the bond is non-polar. Thus if the maximum
delocalization index for the H3PX series was two and occurred when g(X) = 0, we
would conclude that the best Lewis structure was H;P=X and that the polar bond
consisted of two unequally shared electron pairs. If on the other hand the maximum
delocalization was one and it occurred when g(X) = -1, we would conclude that the
best Lewis structure for the series was H3P'-X:" and that the P-X bond consisted of
one shared pair of electrons while the second pair was localized almost exclusively
on X.

If the maximum delocalization occurs at some intermediate (¢(X), 8(P,X))
point we should conclude that the bond consists of two differently polarized, shared

pairs of electrons. Returning to our derived relationship for the equally polarized
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pairs, & = 2(1 - p’ ), we could write for unequally polarized pairs § =2 - p] — p3.
If the two polarities, p; + p2 = g, are never both zero, the delocalization index will
never reach a maximum value of two. Furthermore, if the maximum occurs for
g{X) < 0 we must conclude that some of the density remains localized on X, even
as the bond polarity reverses, so that while one shared pair is becoming more
localized on P, and thus reducing the delocalization index, the second pair remains
more localized on X, so that there are never two equally shared pairs of electrons,
regardless of the bond polarity. In this case, the bond order must be less than two,
and should again be identified with the maximum delocalization index.

Having determined a common bond order and formal charge distribution
for a series of molecules, a Lewis structure will be proposed which best reflects
these properties. We then appeal to Lewis’s original intention that the bonds
represented be either polar or non-polar so that the Lewis structure is a sufficient
representation of all members of the series, regardless of polarity. In the case that a
single resonance structure cannot represent the calculated properties, ie. the bond
order and formal charges are non-integer, one or more resonance schemes will be
proposed to describe the observed properties, keeping in mind that what is
important, in the end, are the resonance averages and not the individual weightings

of specific resonance structures. Thus a bond order of 1.5 and formal charge of 0.5
can be equally well represented either as 50% [A=B] + 50% [A"-B:] or as 75%

[A=B] +25% [A%" :B:*], for example.
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This approach will be taken for the series H,PR, HPR,, PR3, HPX, HPX;,
H;PX, PR;", HoNR, NRjs, HNX and H3NX. For the phosphenium cations, the
extent of multiple bonding in P(NH,)," will be compared to that in other members
of the series in order to ascertain whether there is a significant difference and
whether this difference is likely to account for the much greater stability of
P(NH,)," as measured by hydride transfer energies. A (q(NH,), 5(P,NH,)) point
well above the curve representing other members of the series would be evidence of
additional bonding in this system. Such an observation seems possible given the
hydride results, though similar increases could be expected for R = Cl, SH and PH..
Conversely, the data for R = H, CH; and SiHj are expected to fall below the curve

for the other substituents as these have no lone pairs available to donate.
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4. Phosphine Results

Phosphines, PRj, are the classic trivalent environment for phosphorus
atoms. The Lewis description requires only a single structure with three single
bonds and one lone pair at phosphorus. The P-E bonds studied in this chapter will
serve as a ‘singly-bonded’ reference point for comparison with double bonds and

partial multiple bonds studied in the later chapters.

H, E—Ps

It is hoped that these data may also prove useful to other workers in the
field. Some comments are included on the usefulness and reliability of various
density-based bond characterization schemes. Appendix 4 shows graphs for most
of the properties discussed in the following chapters, as a function of substituent
atom. All seven phosphorus series are shown on the same graphs for easy
comparison. For a visual exposition of the important trends in the calculated
properties, the reader is referred to Figures A4-1 through A4-8 in the Appendix.
Figure A4-9 shows the delocalization index versus charge transfer curves for each
series. Each chapter includes complete data tables and some Laplacian maps for

the systems studied.

4.1. Geometry

In order to simplify the analysis, only reasonably high symmetry
79
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conformations were considered.  Specific geometries are illustrated below.
Optimized bond lengths and bond angles about P are given in Table 4-1, along with
experimental values, where known. Table 4-2 gives the corresponding values for
amines. Graphs of the P-E bond lengths are shown in Figure A4-1.

The phosphines show a gradual increase in bond length from
fluorophosphine through methylphosphine and from chlorophosphine to
silylphosphine. The monosubstituted amines, NH,R, on the other hand exhibit a
step-like trend, with all the N-L bonds being 140 + 5 pm long and all the N-M
bonds being about 170 pm long. The trisubstituted amines show slightly greater
variation, with the N-F bond shortening to 132 pm.

In addition to the expected increase in bond lengths in going from second
to third row atoms, the bond angles are much smaller for the phosphines than for
the amines. This observation can be understood in terms of Gillespie’s valence
shell electron pair repulsion (VSEPR) and ligand close packing (LCP) models
(Gillespie and Popelier, 2001). The VSEPR model considers repulsions between
the electron pairs while the LCP model considers repulsions between the ligands.
In both models the lone pair, which is closer to the central atom, takes up as much
space as possible. Since the phosphorus-ligand bonds are longer (and more
polarized towards the ligands) than the nitrogen-ligand bonds, the angles can be
smaller. The lone pairs in the phosphines are effectively more sterically active than

those in the amines.
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N P

Lowad

To determine a baseline of P-E bonding characteristics it 1s important to
know how variable the bonding properties are. The effects of rotation about the P-
E bond and of substitution at P and E are considered. The lowest energy rotamers

studied are discussed in more detail when making comparisons with other systems.

4.1.1. Effect of rotation about P-E bonds.
Different conformational isomers were considered for the monosubstituted
phosphines to determine the effects of rotation about the P-E bond. The variations

in bond lengths and angles, along with the relative energies of these conformers are

shown in Table 4-1A.

H /Pl,l' H /PI‘,‘ /Pr,,‘ HQ' /P,,“
~ H ~ NH NH NH
O 4 EoH Q H ¢ H
HH H H
eclipsed staggered
P—P \P—E/ P—P
4 % D /
cis trans gauche

Figure 4-1: Sketches of the conformational isomers studied for the mono-substituted phosphines.
For PH,CH; and PH,SiH; the eclipsed form is lower in energy than the staggered form. For
PH,OH and PH,SH the anti-eclipsed form is lower in energy than the syn-staggered form.
NH,OH and NH,SH also prefer the anti-eclipsed conformation. The ‘dipnictogine’ molecules,
PH,PH,, PH,NH, and NH;NH, all prefer the gauche conformation, with the cis conformation
being higher in energy than the frans.
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For the phosphines HoP-CHj; and H,P-SiHs, the lowest energy C, rotamer
is the ‘staggered’ conformation. A C; conformation converges to the ‘anti-
eclipsed’ form for H,P-OH and H,P-SH and the lowest energy C rotamer is the
‘anti-eclipsed’ conformation. For H,P-NH, and H,P-PH,, the lowest energy
rotamers have the C, ‘gauche’ conformation, as observed experimentally. The ‘cis’
and ‘frans’ C; rotamers were also studied.

For the doubly substituted phosphines, two C; rotamers of HP(OH), were
studied. The rotamer with the hydroxy hydrogens “up’ towards the phosphorus
lone pair, but not quite eclipsed, was lower in energy by 4.5 kJ/mol than that with
the hydrogen atoms ‘down’, in line with the energy differences in the

monosubstituted phosphines.

H P H PR
4« ¢z Ve -
O H\O /O H X
M H
'up' ‘down’

Figure 4-2: Sketches of the 'H-up' and ‘H-down’ conformers of PH(OH),

The extent of rotation about the P-E bond is measured by the dihedral
angles that the substituent hydrogen atoms make with the assumed location of the
phosphorus lone pair when looking down the P-E bond. The lone pair is assumed
to lie on a plane bisecting the HPH angle in the PH,R as is required by symmetry in
all but the gauche conformations. The same definition of the dihedral angle is used
in the more substituted phosphines — with the HPH angle being replaced by the

HPE or EPE angle - though this definition is quite arbitrary in these cases. For the
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disubstituted phosphines the substituent hydrogen atoms tend to lie closer to the

other substituent than to the hydrogen atom.”

H H
X / Hel H
(2
H EH H EH, H EH,
H H

Figure 4-3: Newman projections of the studied conformations of disubstituted phosphines,
PH(EH,);. The ‘H-up’ conformation is preferred by PH(OH), and PH(SH),. The amino hydrogen
atoms in PH(NH,), lie closer to the other amino group in the optimized geometry. A staggered
conformation is studied for PH(CHs); and PH(SiH;);. The lone pair on the phosphorus atom is
assumed to lie in the plane bisecting the HPE angle. The dihedral angles reported in Table 4-2 are
measured relative to this plane, as indicated in the PH(EH), sketch.

For the monosubstituted phosphines, the P-E bond length varies by about 1
to 2 pm between different conformers. The P-P and P-N bonds are shortest in the
gauche conformations, which give the lowest energies. The anti-eclipsed
conformers have longer P-E bonds than the staggered conformations, as might be
expected due to steric effects. It is interesting that the eclipsed conformer is lowest
in energy for PH,OH and PH,SH despite the longer bonds. The energy differences
upon bond rotation are very small for both these molecules. Similarly, the ‘H-up’
conformer of PH(OH), has longer P-O bonds and lower energy than the ‘H-down’
conformer. We will see that bond length is strongly correlated with other bonding

properties.

" This may be an artefact of the initial-guess geometry in some cases, however, in PH(NH,), the initial guess
started with the H atom further from the NH, group.
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4.1.2. Effects of substitution

The P-E bond lengths can be easily compared in the PH2R, PHR; and PR3
series by a quick glance at Figure A4-1, or by comparing the values in Tables 4-1A,
4-1B and 4-1C. Increasing the degree of substitution at phosphorus has little effect
on the bond lengths when the substituent is a methyl, thio or phosphino group.
Other substituents tend to shorten the P-E bond length, and this can be understood
in terms of electrostatic effects. For silyl-phosphines the slight P-Si bond
shortening is probably due to increased negative charge on phosphorus and thus
increased electrostatic attraction for the positively charged silicon atom, P> - i,
One would therefore expect that silyl substitution at phosphorus would lengthen P -
E* bonds, and this is indeed observed for the P-H bonds.

For increasing fluoro, hydroxy and chloro substitution, the P-E and P-H
bonds shorten as the charge on phosphorus becomes more positive, and thus more
attractive to the negatively charged substituents. The P-F bond shortens from 159.0
pm in PH,F to 154.6 pm in PF;. Fluorination at the substituent atom was also
investigated for methyl- and amino-phosphines. See Table 4-1D. Fluorination at E
increased P-E bond lengths as would be expected for more positive substituent
atoms bonded to positive P atoms. The P-N bond lengthens by 5.5 pm when the N
is perfluorinated. The P-C bond lengthens by 2.2 pm when the C is perfluorinated.

Only a few trisubstituted amines were studied: NR3; R = F, CL. CHj; and

SiHs, see Table 4-2B. Replacing H with CHj; or Cl had a small effect (-1 pm) on

the N-E bond length. Increased fluorination of nitrogen shortened the N-F bond by
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6 pm, due to the change from negative to positive charge on nitrogen when bound
to negatively charged fluorine. Trisilylamine is nearly planar (in agreement with
experiment), when restricted to a C3v symmetry, and the N-Si bond is 2 pm longer
than in silylamine. A planar, Csh geometry was also calculated for N(SiH3)s, which

has a slightly shorter N-Si bond length and is 7.4 kJ/mol lower mn energy.

4.1.3. Low energy conformers compared to experiment.

Some experimental geometrical parameters are included in Tables 4-1 and
4-2, for comparison with the calculated values. The calculated amine bond lengths
are generally too small, with correspondingly large bond angles, Table 4-2. This is
typical for Hartree-Fock geometries, and including correlation at the MP2 level of
theory generally increases bond lengths and decreases bond angles (DeFrees et al.,
1979). The Hartree-Fock optimized P-H bonds are shorter than the experimental
values by up to 1.5 pm. The P-C bonds are in excellent agreement with experiment,
as was found by Bachrach (1989). The calculated P-F bonds in PF; are also short,
but when the substituent group is Cl, PH; or SiHj3, the optimized P-M bonds are too
long by about 2 pm.

Thio- and hydroxyl-phosphines, Y,PEH where E = O or S, undergo
tautomerization to phosphine chalcogenides, Y,HP=E, in solution (Walker, 1972,
p.48; Hamilton and Landis, 1972). Ab initio calculations generally show that the
phosphine tautomer is more stable in the gas phase (Kwiatkowski and Leszczynski,

1992). The hypothetical compound P(OH); can be used as a model for P(OR)s,
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which does exist under normal conditions. Interestingly, N(OR); does not exist, but
instead decomposes to give RON=0 (Cotton and Wilkinson, 1988).

No directly comparable experimental values were found for the P-N, P-O
or P-S bond lengths. However, substituted derivatives were found for amino-,
alkoxy- and thio-phosphines and these are included in Table 4-1C. The optimized
P-N bond lengths are in excellent agreement with the experimental bond length for
P(NMe,);. The optimized NPN angle in P(NH3); is large, despite the expected
difference in steric bulk of the amino group vs. the dimethyl amino group.

Single bonds between S and trivalent P are rare, but two acyclic
thiophosphines have been structurally characterized. The optimized P-S bond
length in P(SH)s is in fair agreement with the electron diffraction value for P(SMe);
(Tuzova et al., 1981) and in slightly better agreement with the experimental solid
state geometry for P(SPh); (Burford er al, 1990). The difference of 2 pm is
consistent with the errors in the other P-M bonds. Again the optimized bond angle
1s larger than the experimental value, despite the expected steric differences. While
most of the P-E bond lengths are greater than the experimental values, the
calculated P-O bond length in P(OH); is 2 pm shorter than the experimental result
for P(OMe); (Zaripov et al., 1974)", similar to the P-F bond length error. All the
calculated bond angles are larger than those found experimentally, except in

P(OH)s, PF; and in NH,SH. The dibedral angles in hydrazine and diphosphine are

* Electron diffraction for P(OMe)3, dibedral = 76.7°.
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well reproduced at the HF level. The dihedral angle is defined in the literature
relative to the ‘cis’ conformation and for hydrazine it is 91° + 2° (Kohata ef al,,
1982), while for diphosphine it is 74.0° + 2.2° (Durig et al., 1974). The
corresponding Hartree-Fock values are 90° and 77°.

At the HF level, N-H and N-E bond lengths are underestimated by 1 to 5
pm, except N-S and N-Si bonds, which are well reproduced. The near-planar
angles in N(SiH3); are also well reproduced. Most other angles are overestimated
by 1 to 5 degrees. As for the phosphines, MP2 is expected to increase the bond

lengths and decrease the bond angles.

4.1.4. Effects of correlation (MP2 results)

Going from the HF to the MP2 level of theory gives the expected changes
in geometry for most bonds and angles (DeFrees er al., 1979). However, for the
bonds between two third row atoms, this worsens the agreement with experiment.
P-L bonds lengthen by 2 to 4 pm, except P-C which only lengthens by 0.3 pm. The
already overestimated P-M bond lengths increase by about 1 pm - with the
exception of the P-Si bond, which shortens by 1 pm, giving better agreement with
experiment. The HPO angle in H,POH is greatly reduced, but most angles decrease
by only a few degrees. Another exception is that the PF; bond angle is increased,
again improving agreement with experiment. The QCISD geometry of PH; is
much closer to experiment than are the HF and MP2 geometries, having angles of

93.5° and bond lengths of 141.2 pm.
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While the optimized geometries are not in perfect agreement with the
experimental values, the agreement is good and it is reasonable to expect that the
calculated trends in other properties will be reliable. Adding correlation at the MP2

level does not reliably improve the agreement.

4.2. Position of the interatomic surface

Figure 4-6 shows plots of the Laplacian of the density, V?p(r) in a plane of
each PH,XH, molecule containing the P-X bond and an X-H bond, except PH,PH,,
which is shown in a plane containing the two P nuclei and the C, axis.
Corresponding amine plots are shown in Figure 4-7. In all but PH,PH,, NH,NH;
and PH,NH, this is a plane of symmetry. These plots are overlaid with the
corresponding bond paths and the intersections of the interatomic surfaces with the
plane. Bond critical points are found between all atoms that we expect to be
bonded. Properties of the P-E and N-E BCPs are given in Tables 4-3 (phosphines)
and 4-4 (amines). There are no ring or cage critical points in the phosphine or

amine molecules studied.

4.2.1. Position of the bond critical point
It can be seen, in Figure 4-6, as we move across the phosphine series from
F to CHj and from ClI to SiH; that the interatomic surface moves away from the
phosphorus atom, and more electron density enters the phosphorus basin. This
trend can be quantified by the distance between the P nucleus and the BCP, given in

Table 4-3. This distance can be identified with the bonding radius of the
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phosphorus atom, r,(P). The bonding radius of P in the P-H bond lies between the
values for the P-C and P-N bonds. We will see that calculated charges correlate
with this trend. Bonding radii of the substituent atoms, r(E), are also given in
Table 4-3. The bonding radii of the phosphorus and substituent atoms are plotted,
along with those for the other phosphorus series, in Figures A4-2 and A4-3.

The P-E bond length increases in the expected order ( H<F<N <O <C<
Cl < S <P < Si) for the expected size of the atoms and the bonding radius of
phosphorus follows the expected trend as charge is transferred to the substituent.
The bonding radii of the substituents follow a different trend, however. From
simple periodic trend arguments, one would expect that the size of the atoms would
decrease across a row (see Figure 4-4A below), and this is indeed observed for the
second row substituents. For the third row however, the trend is reversed with Si

having the smallest bonding radius and Cl the largest. (See Figure 4-4B below.)

A. covalent B. phosphines C. amines
: )
(E) \ 5
H
/ :
FONC CISP & FONC CISP35 FONC CIS P&

Figure 4-4: Sketches of the expected and observed trends in substituent bonding radii. A) The
expected periodic trend in covalent radii, assuming non-polar bonds. B) The observed trend in
r(E) for the monosubstituted phosphines, PHLEH,. C) The observed trend in r(E) for the
monosubstituted amines, NH,EH,. The non-polar bonding cases are indicated with a dashed
vertical line.

It seems that the effect of charge transfer has dominated the effective

nuclear charge in the third row. This is consistent with the small differences
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between q(F) and g(Me) compared to the large differences between g(Cl) and
q(SiH3). The changes in r,(M) are compensated by even larger opposing changes in

1,(P) to give the expected trend in bond length.

4.2.2. Comparison with amines

Switching our attention to the amines, the r,(N) values given in Table 4-4
follow a very similar trend to the r,(P) values, nitrogen radii being just a few tenths
of an atomic unit smaller. The substituent bonding radii in the amines follow a
different pattern than they do in the phosphines. In the amines both the second and
third row atoms show a trend opposite to the expected (neutral atom) radius trend
(see Figure 4-4C). Again this must be due to differences in atomic charge (i.e.
bond polarity) across each row.

Note the ‘elbows’ at the purely non-polar P-P and N-N bonds. Increasing
polarity in either direction effectively shortens rp(E). While charge transfer shifts
the position-of the bond critical point it also has a secondary shortening effect on
both bonding radii — due to increased electrostatic attraction. Thus polar bonds are
shorter than the hypothetical non-polar bonds between the same two atoms.

While in the phosphines the unexpected r(M) trend is overcompensated
by the rp(P) trend, this is not the case for the amines. The increasing bonding radius
of nitrogen matches the decreasing r,(L) values so that the overall trend in N-L
bond lengths is a very slight increase from fluoroamine to methylamine. For the

third row substituents however, the shrinking radius from chlorine to silicon
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dominates the slow increase in 1,(N) so that the bonds actually shorten slightly from
the nearly non-polar N-Cl bond to the very polar N-P and N-Si bonds.
Interestingly, tri-substitution shortens N-Cl and lengthens N-Si so that the expected

ordering of these bond lengths returns.

4.2.3. MP2 correlation effects

For the electronegative substituents, MP2 correlation lengthens the
bonding radius of P by 0.05 to 0.1 atomic units. The increase is only 0.01 au for
PH,PH,, and in PH,SiH; the bonding radius of P decreases by 0.1 au. This is
consistent with a decrease in the degree of polarity with inclusion of correlation.

Again consistent with decreasing polarity, the bonding radius of Si
increases, while those of S, Cl, C and H decrease, in effect shifting the interatomic
surface closer to the electronegative atom. The nitrogen atom has no significant
change, while the O and F atoms increase their bonding radii, so that in PH,F,
PH,OH, PH,NH; and PH,PH,, both atoms contribute to the increasing bond length,

but phosphorus more so than F, O or N.

4.3. Bond Critical Point Properties
Having determined the position of the bond critical point, we now consider

its properties, which are summarized in Tables 4-3 and 4-4, for phosphines and

amines, respectively.
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4.3.1. Density

The P-E bond critical point densities in the phosphines are compared to
o(ry) for the other phosphorus series in Figure A4-4. Typically phosphorus-
hydrogen BCPs have p(r,) values near 0.165-0.170 au, P-L BCPs have p(ry) values
ranging from 0.155 to 0.180 au, and P-M BCPs have p(ry) values ranging from 0.09
to 0.13 au, see Table 4-3. The lower density between third row elements is
consistent with the longer bonds. BCP densities in the amines are much higher than
in the corresponding phosphines, again due to the much shorter bonds, Table 4-4.
The phosphine BCP densities closely mirror the bond lengths. Just as increased
substitution has a significant effect on the polar P-F, P-O and P-Cl bond lengths,
these same bonds show variation in BCP density of up to 15% with increasing
substitution.

The correlation between bond length and density is only strictly observed
when comparing bonds between the same two atoms. Bonds to F have slightly
lower p(ry) values than the bonds to O. A similar trend is seen for the density at P-
Cl vs. P-S bond critical points, but not for N-Cl and N-S BCPs, which have very
similar densities, as do the N-O and N-N BCPs. It has been noted above that the
amines have little variation in bond length, though the individual bonding radii
change éigniﬁcantly, across a row. The increasing bond polarity from thio- to
phosphino- to silyl-amine is accompanied by a large decrease in the BCP density.

Correlation at the MP2 level lowers the bond critical point density, again
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consistent with the lengthening of optimized bond distances. Another factor may
be a shift of the BCP away from the high-density core of P and towards the valence
region of the substituent.

The BCP density varies only slightly with rotation about the P-E bond.
The eclipsed and staggered rotamers of PH,OH, PH,CH3 and PH,PH, vary in the
third decimal place (1 to 2%). This ‘is similar to the variation with degree of
substitution for methyl phosphines, and much less than the substitution effect in the
fluoro- and hydroxyl-phosphines. In most (but not all) cases, the variation within a
set of P-E BCP densities is smaller than the difference between bonds to different

substituents.

4.3.2. Laplacian

The value of the Laplacian at the P-E bond critical point is plotted, as a
function of the substituent atom, in Figure A4-5. The values of V2p(ry) at P-H
BCPs range from -0.086 au to —0.184 au in PH,SiH; and PH,F, respectively. The
values of Vzp(rb) at P-M BCPs range from -0.07 in H,P-SiH; to —0.19 in P(SH)s,
see Table 4-3. The negative values are consistent with covalent bonding, but
typical Laplacian values for second row — second row bonding are several times
larger, as can be seen in the amine data, Table 4-4.

Phosphorus-carbon BCPs have V*p(ry) about —0.2, while P-N, P-O and P-
F BCPs in phosphines have positive Laplacian values ranging from +0.2 in P(NH;);

to +0.9 in PF5;. Such positive Laplacian values are typically assumed to reflect a
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largely ionic bond, particularly when the BCP density is low. By considering the
contour plot of the Laplacian overlaid with the bond path, shown in Figure 4-6, we
see that the interatomic surface and the bond critical point lie just at the edge of the
core region of the electronegative ligand. Thus the Laplacian is positive at this
point even when a significant region of bonding concentration (negative Laplacian)
exists, as in PH,OH and PH,NH,. These bonds are better described as highly polar
than as ionic.

MP2 correlation tends to make VZp(rs) more negative (or less positive),
consistent with a decrease in polarity, as measured by the shift in the BCP away
from the phosphorus (or silicon) core. Exceptions to this are PCl;, PH,PH, and
PH,SH, which become less negative with inclusion of correlation. At the MP2
level, all the BCPs in PH,MH, have a Laplacian value of about —0.11 au, with
PH,SH being slightly lower.

When using the Laplacian at the bond critical point as an indicator of bond
polarity it is very important to consider the row to which each atom belongs. Let us
consider NH;NH,, NH,Cl, and PH,PH,, each of which exhibits no significant
charge transfer. The V’p(ry) values are —-0.51, —0.18 and ~0.16 respectively.
Clearly, when two second-row atoms are involved in a relatively non-polar covalent
bond the Laplacian is much more negative than when one or more heavier atoms
are involved. These differences can be traced to the differences in the valence shell
concentration in the free atoms. There are also considerable differences across the

rows. Therefore the polarity of a bond does not display a monotonic relationship
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with the Laplacian. Consider some weakly polar L-M bonds; in NH,SH, PH,CH3
and P(CHs)s, the V?p(ry) values are -0.38, -0.25 and -0.21 respectively — all are
more negative than in the essentially non-polar NH,Cl. Similarly the N-C BCP
Laplacian in NH,CHj is —0.88, considerably more negative than in non-polar
NH,NHo.

Thus if the property of interest is the bond polarity (charge-transfer across
the interatomic surface), a more reliable measure is the bonding radius of either
atom. Of course, these must be compared to the radii of the valence shell in the free
atoms or to bonding radii in non-polar systems, as each element has a different size.
In a polyatomic system the atomic charges are affected by more than one bond
polarity and are more time consuming to calculate than bond critical point
properties. Thus the simplest single indicator of bond polarity remains the
Laplacian, but this must be interpreted with caution and does not help distinguish

slightly polar from non-polar bonds.

4.3.3. Ellipticity
The ellipticities of P-H bond critical points are about 0.1 to 0.2, and other
phosphine BCPs have ellipticities up to 0.17, see Table 4-3. The variability of this
property is demonstrated by the difference between the ‘gauche’ (¢ = 0.02) and
‘trans’ (¢ = 0.08) conformers of P,H, which have quite similar values of p(r,) and
V’p(rp). As a comparison, the ellipticity of the C-C bond in ethane is 0.0 (as

required by the 3-fold symmetry), while that in ethene is 0.45. Bachrach (1989)
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finds ellipticities of 0.01 to 0.16 for single P-C bonds, 0.26 for phosphabenzene,
and 0.50 to 0.60 for P-C double bonds in phosphaalkenes. The ellipticity of N-E

bonds in the amines, Table 4-4, ranges up to 0.2, but is generally less than 0.1.

4.4. Integrated properties

Atomic and group charges and energies (K= G = -2V = -E) are given in
Table 4-5 for phosphines and in Table 4-6 for amines. The quality of the numerical
integration is indicated by the value of the integrated Laplacian, L, which should
ideally equal zero for a precise integration. The uncertainty in atomic charges is
generally of the same order of magnitude as L. For example, an initial integration
of the P atom in H,POH gave an L value of -0.015 au. Improving the integration to
give L(P) = -0.007 increased the charge on P by 0.009¢, and changed K(P) by less
than 0.001 au. Note that the difference between K(P) and G(P) is still 0.007 au.
Results of some initial integrations are shown in Table 4-5A, in brackets, to
illustrate this. Improving the integrated value of L from 5 x 10™ to 5 x 10
typically gave changes in g(P) of less than 0.01 electrons, and changes in K(P) of
less than 0.005 au — the largest differences being for the gauche conformation of
PoHs. In this particular case the true g(P) values can be estimated, from the more
precise g(H) values {L(H) < 10}, to be between the two integrated values.

Delocalization indices, 6(P,E) and 6(P,R), are shown in Table 4-3. For the
amines, &(N,E) and 8(N,R), are shown in Table 4-4. The typical improvements in

the integrated values of L(P) change the value of the delocalization indices by about
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0.001 atomic units. The delocalization index &(P,0) in PH,OH was lowered by

0.007 for the larger integration improvement mentioned above.

4.4.1. Population and charge transfer

The charges on phosphorus atoms, g(P), and substituent groups, q(R), are
plotted in Figures A4-6 and A4-7, respectively. While the hydrogen atoms in NHj
donate electron density to nitrogen, Table 4-6, hydrogen atoms bonded to
phosphorus accept approximately 0.6 electrons each, Table 4-5, due to the
differences in electronegativity. Looking at the trisubstituted systems, the second
row phosphines P(LH,); have significant charge transfer, with q(P) ranging from
+1.9 (CH;) to +2.5 (F). The charge transfer in the third row phosphines, P(MH,)s,
is much smaller, with g(P) becoming negative in P(SiH3);. The substituent group
charges, g(R), are nearly invariant to the degree of substitution, while the
phosphorus charge, q(P), changes greatly upon replacement of a hydrogen atom
with an electronegative (second row) or electropositive (third row) substituent.
Only chloro- and methyl-phosphines see little change in g(P) with increased
substitution.

The phosphorus charges are about 0.2e smaller than those calculated by
Howard and Platts (1995). It is interesting to note that Howard ef al. (1996) found
that alkyl groups accepted more charge from phosphorus than hydrogen, but that
the effect was less at a larger basis set {6-311G(d,p)}. This led them to conclude

that the effect would vanish at the Hartree-Fock limit, and in fact the present
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calculations show that the trend is reversed with H accepting slightly more electron
density than a methyl group using the 6-311++G(2d,2p) basis set. Including
correlation decreases the degree of charge transfer. The QCISD charge on P in PH;

(1.448) is even smaller than the MP2 charge.

4.4.2. Dipole moment

The atomic dipole of the central atom is discussed only for the
trisubstituted systems, for which the dipole moment must be directed along the C;
axis. The atomic dipole of the phosphorus in PR; is an order of magnitude larger
than the atomic dipole of nitrogen in NR;. In all but the bromo and silyl substituted
systems the negative end of the dipole points towards the lone pair.

These findings can be rationalized by first noting that the phosphine lone
pair is much more diffuse and has its maximum concentration further from the
nucleus than the amine lone pair. Also, the nitrogen atoms have considerable
density in the bonding region. The dipole reverses direction for the trisilylamine,
trisilylphosphine and tribromophosphine because in these cases there are three large
bonding charge concentrations within the basin of the central atom, on the side of
the atom opposite to the lone pair. As the electronegativity of the substituent
increases, the polarization of the phosphorus atom generally increases - away from
the substituent. However, PF; has a less polarized phosphorus atom than P(OH);,
perhaps because this phosphine has the most compact lone pair, see Table 4-9c.

These findings (except for PBr3) are consistent with the observation that in
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diatomic systems atomic dipoles always oppose the charge transfer dipole (Gough
et al., 1996). This can be understood in terms of the valence electrons on a given
atom being repelled by a neighbouring anion, or attracted by a neighbouring cation.
For multivalent atoms, the valence electrons are more localized into bonding and
non-bonding regions. In the case of phosphines and amines, the non-bonding
concentration is more important than the bonding concentrations, except when the
bonding concentrations within the basis are very large, as they are for silyl and

bromo substituents.

4.4.3. Localization and delocalization

Plots of the delocalization index, 8(P,R), are shown in Figure A4-8.
Values for 6(P,E) and 8(P,R) are shown in Table 4-3. Values for 8(N,E) and
&(N,R) are shown in Table 4-4. The localization of the central phosphorus atom,
A(P), in phosphines ranges from 11.66 (93%) to 15.52 (92%). The percent
localization drops to 88% in the nearly neutral central atom of
triphosphinophosphine, P(PH,)s. The delocalization index between directly bonded
phosphorus and hydrogen atoms ranges from 0.79 to 0.96. The very ionic
phosphines with fluoro and silyl substituents have low P-E delocalization indices,
around 0.5 to 0.6, when the hydrogen atoms are not included. The less polar
phosphines (with phosphino and thio substituents) have delocalization
indices, 6(P,E), near one. See Table 4-3.

Including the hydrogen atoms of the substituents lowers the variation



100

between substituents, and increases the delocalization values, 8(P,R) vs. 6(P,E),
overall. There is, of course, no increase for F and Cl, but the &(P,SiH;) value is
0.84 in H,PSiH;, similar to 8(P,H) in PH3 and to 8(P,Cl) in PCls. This summed
index gives a better indication of the total delocalization of the central atom onto
the substituent with less effect from E-H bond polarity. It is this delocalization
index and the corresponding charge transfer q(R) that will be considered in the
quadratic fitting procedure.

Rotation about the P-E bonds leads to small changes in the delocalization.
It was noted at the beginning of this chapter that PH,OH and PH,SH prefer the
eclipsgd conformation even though this has a longer bond (and a lower BCP
density). The delocalization indices, &(P,E) and &(P,R) are greater in this
conformer. The relative energy ordering follows the delocalization index ordering
for the monosubstituted phosphines. The one exception is methyl phosphine which
has the same 8(P,Me) value, within integration errors, for both conformers. For
silicon and the second row substituents, the higher energy conformer has a higher
atom — atom delocalization index, 8(P,E). When the substituent H atoms are
included, all the monosubstituted phosphines have the highest 8(P,R) for the lowest
energy conformer. It seems that extent of delocalization may be an important factor
in determining the relative stability of the conformers, along with steric effects.

While 8(P,LH,) decreases with increasing substitution, 8(P,MH,) increases

with increasing substitution. For a given substituent, the delocalization indices
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8(P,R), generally increase with the population of P. An exception is the
silylphosphines, in which the charge transfer to P lowers the value of &(P,Si)
relative to 8(P,P) while increasing the charge on P. Fluorination of the substituent
increases charge transfer across the P-E bond and thus lowers the delocalization
index, &(P,EY,). See Tables 4-3D and 4-5D. Fluorination of phosphorus also
increases charge transfer to E and decreases &(P,E) but these effects are much
smaller than seen for fluorination of the substituent. The charge on phosphorus is
much higher in PF; than in PH,F. They have very similar values of q(F), while the
delocalization index decreases slightly upon increased fluorination.

The correlation between &(P,R) and q(R), discussed in the next section, is
much stronger than between 8(P,R) and q(P), confirming that the polarity of the P-E
bond is the most important determining factor. Transfer of charge from phosphorus
to other substituents has a much smaller effect, which may account for the small

deviations from a simple parabola, in the graphs of 8(P,R) vs. g(R) below.

4.5. Variation of delocalization with charge transfer: bond order
Plots of the delocalization index vs. the charge on the substituent for the
phosphine and amine series are shown in Figure 4-5. Each series is plotted

separately and a quadratic function is fit to each curve.
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Delocalization index vs. charge on substituent group

8(P,R) or §(N,R)
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Figure 4-5: Plot of delocalization index versus charge transfer for PHs, PH,R, PHR,, PR;, NH;,
NH,R and NR;. The curves correspond to best-fit quadratic equations. Substituent atoms are
labeled near the corresponding data points for the PH,R and NH,R series. The ideal curve, § =1-
%, is also shown, for comparison. The PH; data point lies near the phosphine curves, while the
NH; data point lies near the ideal curve, open circles, PnH;.
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Increasing the degree of substitution shifts the maximum in the curve up
by about 0.03 per substitution and slightly towards positive substituent charges.
The 8(P,R) vs. q(R) curves cross between methyl and thio substituents. The PHj
data point lies slightly below these three curves. All the data points lie well above
the ideal & = 1-q” curve. The best-fit curves have the following equations, where
the subscript represents the degree of substitution:

81 =-0.6781q" - 0.0131q + 1.1084, R* = 0.9799;

5, =-0.7116¢" + 0.0347q + 1.1381, R* = 0.9858;

83 =-0.7663¢" + 0.0744q + 1.1666, R* = 0.9968.

The aminophosphine data point clearly lies above the PH,R curve. The
data for phosphorus and sulfur substituents are seen to be exceptional in many of
the phosphorus series studied (Figure A4-8), reminiscent of the exceptional PHj
and SH; data in the hydride curves, Figure 3-3. Removing the PH,NH,, PH,PH,
and PH,SH data, gives a best-fit curve, 8" = -0.646q” + 0.0004q + 1.087, R* =
0.991, shightly below the curve for the total data set.

The NR;3 data are slightly above the phosphine curves. The NH,R curve is
considerably higher than the phosphine curves. In the NH;R series, the data for R =
PH, and SH are clearly on a different curve than the CHs and SiH3 data. Two
curves are plotted, with the NH,CI and NH,NH, data included in both. For the
electron rich systems (R = NH,, Cl, SH, PH,), the best-fit curve is & = -0.453q” +

0.066q + 1.301, R* = 0.990. For the systems with less available lone pairs (R = F,
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OH, NH,, CHj3, Cl, SiHj3) the best-fit curve is 6 = -0.907q" + 0.052g + 1.300, R* =
0.999. An additional 0.3 is apparently added to the delocalization index due to
‘lone pair’ involvement in the bonding in amines. The phosphines, on the other
hand, only have an additional 0.1 contribution from ‘lone pair’ delocalization.

The overall trends are consistent with varying inequality in the sharing of
one pair of electrons - as expected from the usual Lewis structures drawn for these
molecules. The maxima in the 8(P,R) vs. q(R) curves are slightly greater than one,
indicating that the ‘lone pairs’ are somewhat delocalized. A similar effect occurs in
the amines, where several of the 8(N,R) values are greater than one, as a result of
less polar bonding and more ‘lone pair’ delocalization. It is open for interpretation
whether this extra delocalization should be counted towards the total bond order.
Correlation is expected to lower the values of these indices. However, the
calculated delocalization index at higher levels of theory (such as CI) is more

difficult to interpret in the Lewis context of localized bonding electron pairs.

4.6. Topology of the Laplacian: Bonding and Electron Localization
The position and some properties of the P-E bonding charge
concentrations are given Table 4-7. The corresponding amine data are in Table 4-8.
The position and some properties of the non-bonded charge concentration on
phosphorus are given Table 4-9. The corresponding amine data are in Table 4-10.
As described above, Figure 4-6 shows contour plots of the Laplacian of

the density, V>p(r), in a plane of the phosphines, PH,R. Corresponding amine plots
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are shown in Figure 4-7. These plots are overlaid with the corresponding bond
paths and the intersections of the interatomic surfaces with the plane. The
Laplacian contour maps show two contributions to the variations in V2p(ry): the
movement of the bond critical point relative to phosphorus, and the changing size
and shape of the bonding charge concentration. The bonding region of
concentration (negative Vp, solid lines in the contour maps) is continuous with the
non-bonding (‘lone pair’) region for the third row and methyl substituents, but
shrinks as the electronegativity increases, disappearing for fluorophosphine, which

has an essentially spherical valence charge concentration about fluorine.

4.6.1. Bonding charge concentrations

The topology of the Laplacian may be analyzed in terms of critical points,
as is the topology of the density. A bonding maximum may be found in the valence
shell of one atom or the other, but not necessarily in both. For each of the P-P
bonding regions, a maximum is found 1.47 or 1.48 au from each phosphorus
nucleus, with Vzp = -0.25. The Laplacian at the phosphorus bonding charge
concentration (CC) is more negative in P(NH;); (-0.32) and P(CHs); (-0.34), but
less negative for the remaining phosphines. In PHF, and even more so in PF;, the
P-F bonding charge concentration in the phosphorus valence shell is closer to the
phosphorus nucleus than in the other phosphines, and has a positive Laplacian
value. It may be misleading to say that these concentrations are in the valence shell

of phosphorus, since in fact they lie in the atomic basin of the neighbouring second
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row atom, for R = F, OH, NH, and CH;. Similarly, the P-Si bonding charge
concentration in PH,SiHs, which is nominally in the valence shell of silicon, is
actually in the atomic basin of phosphorus. See Figure 4-6 and the bonding radii in
Table 4-3.

In all the mono-substituted amines except NH,Cl, a bonding charge
concentration is found in the valence shell of nitrogen, and these are all in the
atomic basin of nitrogen. The trends are more clear-cut in this series. The bonding
charge concentration generally moves further from the N nucleus as the substituent
becomes more electronegative. The distance to N ranges from 0.82 to 0.91 au in
the second row amines and from 0.80 to 0.84 au in the third row amines. The
Laplacian of the bonding charge concentration becomes less negative as it moves
further from the N nucleus, and the density decreases. The interatomic surface
moves away from nitrogen much more quickly than the bonding charge
concentration, so that the nitrogen atomic basin encompasses part of the valence

shell of the least electronegative substituents, SH, PH; and SiHa.

4.6.2. Non-bonding charge concentrations
A search of the valence shell of each substituent atom shows that the
number of non-bonding charge concentrations does not always agree with the
expected number of lone pairs in the Lewis model, as explained in Chapter 3. For
example, the terminal F atom in PH,F has only two non-bonding charge

concentrations, both in the plane of symmetry, rather than the expected three.
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Gillespie and Popelier, (2001) have pointed out that for terminal atoms there is no
constraint for the non-bonding electrons to be localized and thus they form a torus
of charge concentration rather than three distinct lone pairs. The properties at the
maxima are similar to those at the intervening saddle points, suggesting a slight
distortion in the torus. The maxima are 0.577 au from F and have V’p =-9.01, p =
1.46. The in- and out-of-plane saddle points are 0.580 au from F and have Vp = -
8.56, p = 1.43. In PHF,, where the topology around F is not constrained by
molecular symmetry, the two non-bonding maxima have very similar properties to
those in PHyF. A pattern of three maxima is seen around Br in PBrs. The oxygen
in PH,OH and the sulfur atom in PH,;SH exhibit the expected two non-bonding
maxima, in and out of the plane of symmetry, due to the localizing effects of the
two bonding Lewis pairs on O and S, respectively.

Looking at the non-bonding maxima on the central atom, the phosphorus
has the expected one charge concentration in each phosphine, Table 4-9. These
maxima are much closer to the nucleus than are the bonding maxima. The more
electronegative substituents draw the maximum closer the P nucleus. The value of
the Laplacian becomes more negative (more concentrated charge) and the ‘lone
pair’ becomes less diffuse (as measured by the radial curvature in V>p, us).

Comparing the non-bonding maxima of the amines (Table 4-10) to those
of the phosphines, we see very different properties. The amine maxima are much

closer to the nucleus, being in the second shell rather than the third. The density
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and Laplacian values are thus bigger by a factor of about five, while the radial
curvatures are bigger by a factor of ten or more. The monosubstituted amines each
show a single non-bonding maximum, as expected from the Lewis structure.

The two trisubstituted third row amines studied, NCl; and N(SiHj)s,
exhibit two non-bonding maxima, lying on the C; axis, on oppesite sides of the
nitrogen atom. This is not particularly surprising in N(SiHj3); which is nearly planar
(the data shown in Table 4-10 are for the Cs, geometry, not the Cs;, geometry). The
planarity arises from a lack of localization of the valence electrons on nitrogen.
The electronegativity difference is very large between N and Si, so that the charge
on SiHj is +0.80, see Table 4-6. The valence electrons on the nearly spherical
nitrogen are only weakly polarized towards the substituents. Thus the non-bonding
electron pair is also non-localized, so that a planar rather than trigonal pyramidal
arrangement is preferred, with two very similar non-bonding maxima.

In NCls, the bond angles are almost perfectly tetrahedral, and a ‘lone pair’
concentration appears in the expected position, with properties comparable to those
the other amines. Yet there is a second concentration of charge lying between the
three chlorine atoms, with similar properties to the maxima in N(SiH;);. The
atomic charges in NH,Cl and NCl; are very small, indicating that these N-CI bonds
are not very polar, and that the chlorine should be sufﬁciently electronegative to
localize the bonding electrons. The maximum lies out of the plane of the three
chlorine atoms, towards the nitrogen atom. It may be that the concentration is

simply an artefact of the four relatively electronegative atoms in NCl; contributing
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density from their valence shells to the same region of space.

The unlocalized non-bonding electron pair on N(SiHs); is instructive for
later chapters, where we will again see examples of poorly localized electron pairs,
when the atoms are insufficiently electronegative to pull the bonding electrons

completely into the bonding region.

4.7. Conclusion

Substituted phosphines have a range of bond polarities, depending on the
substituent. The electronegative elements F, O and N give strongly polar
phosphines, with charge transfer of greater than 0.7 electrons to the substituent
group, XH,. The P-F bond might almost be considered ionic, given the nearly
spherical symmetry about F. However, the delocalization index is still considerably
higher than in the ionic LiF. Methyl, chloro and thio substituents are less polar,
with a charge transfer of less than 0.7 electrons. There is equal sharing of electrons
with phosphino substituents and significant (0.6¢) electron transfer from the silyl
group fo phosphorus. The variation of the delocalization index with charge transfer
is consistent with the unequal sharing of one pair of electrons, plus a small
additional delocalization of the lone pairs both on the central pnictogen atom and on

the substituent atoms, to the neighbouring atoms.
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4.8. Laplacian contours

Figure 4-6: Continued on the next page.
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Figure 4-6 Contour map of Vzp(r) in a plane of PH; and PH,R. a) PH3, b) PH,F, ¢) PH,0H, d)
PH,NH,, e) PH,CH;, f) PH,CI, g) PH,SH, h) PH,PH,, i) PH,SiH;. The displayed plane is the
symmetry plane for all phosphines except PH,PH, and NH,PH,. Solid contours indicate negative
values (concentration) and dashed lines indicate positive values (depletion). The outermost
contour is +0.002 au. Isovalue contours increase and decrease from the V2p(r) = 0 contour in the
order +2x10", +4x10°, +8x10", beginning with nn = -3 and increasing in steps of unity. Fach map
is overlaid with the bond paths and with the intersection of the interatomic surfaces with the
displayed plane.
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Figure 4-7: Continued on the next page.
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Figure 4-7: Contour map of V?p(r) in a plane of NH; and NH,R. a) NH;, b) NH,F, ¢) NH,OH, d)
NH;NH,, e) NH,CH;, f) NH,Cl, gy NH,SH, h) NH,PH,, i) NH,SiH;. The displayed plane is the
symmetry plane for all amines except NH,NH, and NH,PH,. Solid contours indicate negative
values (concentration} and dashed lines indicate positive values (depletion). The outermost
contour is +0.002 au. Isovalue contours increase and decrease from the Vp(r) = 0 contour in the
order +2x 10", £4x10", £8x10", beginning with n = -3 and increasing in steps of unity. Each map
is overlaid with the bond paths and with the intersection of the interatomic surfaces with the
displayed plane.



4.9. Data Tables

114

Table 4-1(a-d). Optimized geometries of phosphines at HF/6-311++G(2d,2p)
and at MP2 (in italics). Experimental values are given where available.

Table 4-1a: Monosubstituted phosphines, PH,EH .

eclz’ psed

PH,CI

"208.53

Phosphine | r(P-E) r{P-H) ZHPH | £LHPE Dihedral | -Energy | AE/
wrtlnpr | /au kJ/mol
PH,F 159.04 140.42 93.8 98.0 441.39091
162.77 140.89 92.02 97.55 441.91838
PH,OH 163.72 140.29 94.17 99.07 0.0 { 417.38418 0
eclipsed 167.51 140.70 92.65 98.12 0.0 1 417.90559
PH,OH 163.09 140.88 93.55 101.17 180.0 | 417.38408 | +0.26
staggered
PH,NH, 170.01 140.94 /.20 | 94.33 103.47,99.55 28,164 | 397.54171 0
gauche 171.88 141.33/0.51 | 93.04 103.29,98.39 30,162 } 398.04008
PH,;NH, 174.10 140.46 106.52 110.50 +22.0 | 397.53328 22.1
trans
PH,NH, 173.83 140.92 93.03 100.27 +118.1 | 397.53042 29.6
Ccis
PH,CH, 185.60 140.47 94.99 98.94 +58.6,180 | 381.53164 0
staggered | 185.88 140.75 93.35 97.42 +58.4,180 | 381.99787
Exp't® | 186.3 141.4 93.4 97.5
Expt® | 1858+3 | 1423+ 7 (96.5 ass’d)
| PH,CH, 186.99 140.34 94 .45 99.41 +119.7, 0. | 381.52842 +8.5

140.03 94.28 97.05 801.43433
209.40 140.52 92.37 96.38 801.92595
PH,SH 214.02 140.07 94.94 98.04 0.0 | 740.04060 0
eclipsed 2714.86 140.48 93.23 97.00 0.0 | 740.60053
PH,SH 213.74 140.10 95.54 99.74 180 | 740.03937 | +3.2
sta(gggred
PH,PH, 22271 140.25 95.71 100.69,96.19 | 54.5,151.5 | 683.81489 0
gauche 223.48 140.57/56 | 93.97 99.47,94.37 | 55.4,150.2 | 684.36404
Exp't® | 221.91+.04 | 141.7/4+2 | 92.0+.8 | 99.1+.1,
Exp't‘| 201844 | 1451+ .5 | 913+14] 952+ 6
PH,PH, 224.27 140.52 94.40 95.41 +47.5 | 683.81358 | +3.4
frans
PH,PH, 226.73 140.28 94.71 97.98 +132.0 | 683.80727 | +20.0
cls
PH,SiH, | 227.79 140.57 95.62 96.23 £59.1,180 | 632.59584 0
staggered | 226.92 140.87 93.47 93.27 £59.0,180 | 633.12489
Exp't® | 2249403 | 143.842.0 | 91+3 91+3
PH,SiH, | 229.24 140.43 95.35 96.32 0, +131.9 | 632.59358 | +5.9
eclipsed

¢ Bond lengths are in picometers and angles are in degrees. Absolute energies are given in

hartrees and relative energies of conformers are given in kJ/mol.
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Table 4-1b: Disubstituted phosphines, PH(EH,),

Phesphine r(P-E) r(P-H) £ EPE £ HPE Dihedral -Energy /au
wrt ‘In pr’
PHF, 156.64 140.42 98.37 96.18 540.31882
BExp't® 1582+ .2 1412+ .6 99.0+ .2 963+ .5
PH(OH),,, | 162.06 139.47 103.40 95.23 23 492.30498
PH(OH),q4, | 161.87 141.28 104.60 97.99 167 | 492.30328
PH(NH;), 169.58 139.70 110.42 96.19 37,176 452.61275
PH(CH;), 185.09 140.52 101.26 98.13 58, 60, 179 420.58297
Exp't ° 1848+ 3 1417 +5 ]99.72+ 3 96.95 + .3
Exp't © 1853 +3 | 1445 2. 992+ 6 (96.5 ass’d)
PHCL 206.83 139.55 102.33 95.43 1260.38876
PH(SHJ) up 213.62 139.54 106.47 94.52 21 | 1137.60038
PH(PH,), 222.19 140.07 109.45 96.69 56,153 | 1025.14810
PH(SiH;), 227.29 140.71 100.59 96.81 58,60, 179 922.71156
o Bond lengths are in picometers and angles are in degrees.
e  Absolute energies are given in hartrees.
Table 4-1¢: PH,; and trisubstituted phosphines, P(EH,)
Phosphine r(P-E) Z EPE Dihedral wrt | -Energy /au
lone pair
PH; 140.43 95.44 342.47746
140.71 93.52 342.76703
Exp't® | 141.15£.05 | 93.36+.08
PF, 154.56 97.29 639.26520
158.25 97.53 640.28613
Exp't® | 156.1 + .1 97.7+.2
P(OH); up 160.49 93.37 34.75 567.23488
Deriv.Exp’t® | (162.0+.2) | (100.5 +.6) |
P(NH;); gch | 170.00 102.13 43.7,172.2 507.68293
Deriv Exp’t’ | (170.0+.5) | (96.5+ 1)
P(CH;); stag | 184.71 100.41 +58.9, 180.0 459.63590
Exp't©| 1843+.3 98.9+ .2
Exp't'| 18465+ 3 | 98.6+03
PCl, 205.78 100.44 1719.34260
207.15 100.26 1720.26144
Exp't®|203.9+14 100.27 + .09
Expt" | 2043+ .3 | 100.1%.3
P(SH);up | 213.91 99.24 36.1 | 1535.15595
Deriv Exp’t' | (211.5+.4) | (94.0 +.6)
P(PHy); gch | 222.20 102.60 62.5,159.6 | 1366.48179
P(SiH3)ystag | 226.88 100.90 +59.3,180.0 | 1212.82894
Exp't! | 2248+ 3 96.45 + .50
PBr; 223.88 101.23

o  Bond lengths are in picometers and angles are in degrees.

*  Absolute energies are given in hartrees.
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Table 4-1d: Fluorinated phosphines.

Phosphine r(P-E) r(P-Y) ZYPY £ YPE Dihedral -Energy
wrt In pr /au

PH,NH; trans | 174.10 140.46 106.52 110.50 +22.0 | 397.53328
PF,NH, trans | 168.03 156.17 99.19 96.84 +63.6 | 595.40075
PH,NF, trans | 179.62 140.08 94.85 93.09 +53.9 | 595.14881
PH,CH; stag 185.60 140.47 94.99 98.94 +58.6, 180 | 381.53164
PF,CHj; stag 181.46 157.24 97.45 98.14 +59.2, 180 | 579.38299
PH,CF; stag 187.81 140.11 95.81 94.81 £59.3, 180 678.19921

Y represents H or F, whichever is bonded to P.
Bond lengths are in picometers and angles are in degrees.
Absolute energies are given in hartrees.

Table 4-1a references

a)
b)
c)
d)
e)

Kojima, Breig and C.C. Lin (1961). Microwave, ‘plausible’ structure, no uncertainties.
Bartell (1960). (electron diffraction) HPC angle assumed to be 96.5°

Durig, Carreira and Odom (1974). Microwave, external HPPH dihedral = 81°.

Beagley e al. (1972). Electron diffraction.

Glidewell, er al. (1972). Electron diffraction, axial symmetry of SiH; group assumed, all
phosphorus angles assumed equal.

Table 4-1b references

a)
b)

)

Kuczkowski (1968). Microwave.
Nelson, R. (1963). Microwave.
Bartell, L.S. (1960). Electron diffraction, HPC angle assumed to be 96.5°.

Table 4-1¢ references

a)
b)
<)
d)
e)
f)
g
h)
i)

k)

Chu, F.Y.; Oka, T. (1974). Microwave, 1, = 142.73£.01 £,, = 93.28 £.02.

Kawashima, Y. and P.A. Cox {1977). Microwave.

Electron diffraction for P(OMe); Zaripov, Naumov and Tuzova (1974). Dihedral = 76.7°.
Electron diffraction for P(NMey); Vilkov and Khaikin (1969).

Bryan and Kuezkowski (1971). Microwave.

Bartell and Brockway (1960). Electron diffraction.

Hedberg and Iwasaki (1962). Electron diffraction.

Kisliuch and Townes (1950). Microwave.

Electron diffraction for P(SMe); Tuzova et al. (1981). Dihedral = +5.6, -5.6, 180°. Compare:
X-ray for (PhS);P Burford, Royan and White (1990). 212.2 +0.1pm, 97.45+ 0.05°, C;.
Beagley, Robiette and Sheldrick (1968). Electron diffraction.
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Table 4-2(a-c): Optimized geometries of amines at HF/6-311++G(2d,2p).
Experimental values are given where available.

Table 4-2a: Monosubstituted amines, NH,EH,

Amine r(N-X) r(N-H) / HNH Z HNE -E (SCF)/au

NH,F 138.05 100.04 106.86 103.0 155.02038

NH,OH ec! | 139.92 99.82 107.06 105.41 131.04002
Exp't®| 1453+ 2 1016+ .8 107.1+ .5 103.25+ .5

NH-OH stag | 139.29 99.87 108.75 108.37 131.03316

NH,NH, 141.26 99.78, 99.51 | 108.63 112.36, 108.45 111.22331
Exp't” | 1449+ 2 1021+ .3 (106.6ass’d) | 112+£2,106+2

NH,CH; 145.32 99.71 107.19 111.07 95.25075
Exp't® | 147.14 100.96 107.13 110.27

NH,Cl 173.20 99.86 107.31 105.19 515.09876
Expt?| 174.80+ .01 ] 101.7+ .5 107 +2 103.68 + .37

NH,SH ec! | 170.59 99.48 110.06 110.97 453.73527
Expt©| 1705+ 3 1008+1.3 [ 111.6+2.1 | 1127+ 9

NH,SH szag | 169.44 9943 111.07 113.12 453.73514

NH,PH, 170.01 99.32,9927 | 111.33 119.50, 114.56 397.54171

NH,SiH, 171.49 99.33 110.56 120.19 346.34365

e Bond lengths are in picometers and angles are in degrees.

a) Tsuneka {(1972). Microwave.

b) Kohata, Fukuyama and Kuchitsu (1982). Electron diffraction and microwave, HNH angle is

assumed, NH bond length is an average.
¢) Takagi and Kojima (1971). Microwave, no uncertainties reported.
d) Cazzoli, Lister and Favero (1972). Microwave.
e) Lovas, Suenram and Stevens (1983). Microwave.

Table 4-2c: NH; and trisubstituted amines, N(EH, ).

Amine r{N-E) Z ENE ~-Energy / au

NH; 99.84 107.89 56.21864
Exp't® | 101.56 107.28

NF; | 132.07 102.85 352.66243
Exp't® | 136.5+ 2 102.37 + .03

N(CH;)3 144.42 111.72 173.32725
Exp't®| 1451+ 3 1109+ .6

NChL 172.55 109.37 1432.84216
Expt?| 1759+ 2 107.1+ .5

N(SiH;), 173.87 119.82 926.59524
Exp't®| 1734+ 2 119.7 + .1

N{SiH;), 173.34 120.0 926.59807

¢  Bond lengths are in picometers and angles are in degrees.

a) Helminger, P., F.C. DeLucia and W. Gordy (1971). Microwave. no uncertainties reported.
b) Otake, M., C. Matsumura and Y. Morino {1968). Microwave.
c) Wollrab, L.LE. and V. W. Laurie (1969). Microwave.
d) Biirgi,, H.B., D. Stedman and L.S. Bartell (1971). Electron diffraction.
€) Beagley, B. and A.R. Conrad (1970). Electron diffraction.
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Table 4-3(a-d): Properties of P-X bond critical points and delocalization indices
in phosphines, MP2 values in italics. All values are given in atomic units.

Table 4-3a: Monosubstituted phosphines.

Phosphine pry) | V@ | ey | rP-ry) | r€r) | PE) | 8(P,R)

PH,F 0.156 +(0.780 0.060 1.21 1.79 0.617 0.617
0.146 +0).530 0.067 1.25 1.83

PH,OH ecl 0.165 +0.552 0.016 1.22 1.88 0.708 0.718

MP2 0.153 +0.341 0.015 1.26 1.91

PH,0H stag 0.166 +0.570 0.012 1.22 1.87 0.686 0.703

PH,NH,; gau 0.166 +0.252 0.010 1.25 1.97 0.755 0.799

MP2 0.138 +0.139 0.009 1.28 1.97

PHLNH, trans | 0.159 +0.140 0.155 1.27 2.02 0.757 0.789

PH,NH, cis 0.159 +0.143 0.163 1.27 2.02 0.725 0.764

PH,CH; stag 0.155 -0.250 0:114 1.39 2.12 0.826 0.927

MP2 0.148 -0.261 0.080 1.49 2.03
PH,CH; ec/ 0.152 -0.267 0.121 1.41 2.13 0.829 0.928
PH,Cl1 0.115 -0.091 0.137 1.46 2.49 0.816 0.816
MP2 0.113 -0.113 0.072 1.58 2.38
PH,SH ecl 0.122 -0.188 0.001 1.68 2.36 0.976 1.018
MP2 0.115 -0.119 0.043 1.80 2.26

PH,SH stag 0.123 -0.190 0.021 1.67 2.37 0.958 1.005

PH,PH, gau 0.117 -0.157 0.019 2.10 2.10 0.947 LI11

MP2 0.107 -0.110 0.016 211 211
PH,PH, frans | 0.114 -0.152 0.083 2.12 2.12 0.943 1.103
PH,PH, cis 0.111 -0.145 0.112 2.14 2.14 0.917 1.069
PH,SiH; stag 0.096 -0.066 0.019 2.80 1.50 0.518 0.845
MP2 0.093 -0.109 0.019 2.71 1.58
PH,SiH; ec/ 0.095 -0.072 0.032 2.82 1.51 0.521 0.838

s  All properties, including distances from nuclei to bond critical points, r(A-r,), are given in
atomic units.

Table 4-3b: Disubstituted phosphines.

Phosphine pry) | Vio(ry) | ery) | r(P-ry) | r(E-n) | SP.E) | 5(P,R)
PHF; 0.167 +0.862 0.087 1.19 1.77 0.583 0.583
PH(OH), up 0.172 +0.597 0.040 1.21 1.86 0.668 0.677
PH(OH), dn 0.171 ~ 1 +0.601 1 0.038 1.21 1.85 0.635 0.653

PH(NH,), 0.168 +0.267 0.032 1.24 1.96 0.705 0.748
PH(CH;), 0.156 -0.230 0.127 1.37 2.13 0.803 0.900
PHCL 0.121 -0.123 0.168 1.46 245 0.825 0.825
PH(SH), 0.124 -0.190 0.039 1.65 234 0.994 1.035
PH(PH,), 0.117 -0.156 0.046 2.11 2.09 0.976 1.144
PH(SiH;), 0.095 -0.058 0.036 2.79 1.51 0.535 0.880

e  All properties, including distances from nuclei to bond critical points, r(A-ry), are given in
atomic units.



Table 4-3¢: PH; and trisubstituted phosphines.
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Phosphine p(ry) Vo (ry) &(ry,) r(P-ry) | rE-ry) | S(P.E) | S(P,R)

PH; 0.165 -0.107 0.116 1.30 1.35 0.843 0.843
0.162 -0.170 0.094 1.34 1.32

PEF; 0.179 +0.930 0.049 1.18 1.74 0.554 0.554
167 +(.639 0.054 122 1.77

P(OH); 0.180 +0,613 0.063 1.20 1.84 0.624 0.635

P(NH3)s 0.170 +0.224 0.065 1.24 1.97 0.657 0.698

P(CH;)s 0.157 -0.214 0.134 1.36 2.13 0.785 0.878

PCl, 0.127 -0.164 0.118 1.47 2.42 0.844 0.844
0122 ~(.136 0.071 1.61 2.30

P(SH), 0.127 -0.190 0.119 1.74 2.30 1.018 1.059

P(PH, ) 0.117 -0.155 0.046 2.12 2.08 1.000 1.172

P(SiH;); 0.094 -0.051 0.022 2.78 1.51 0.546 0.909

PBr; 0.110 -0.114 0.065 1.81 242 1.035 1.035

¢ Distances from nuclet to bond critical points, r(A-ry), are given in atomic units.

Table 4-3d: Fluorinated phosphines

Phosphine prs) | Vp(ry) | e(ry) | r(P-ry) | r(E-ry) | §(P,E) | 3(P,EY,)
PH,NH,; trans | 0.159 +0.140 0.155 1.27 2.02 0.757 0.789
PH,NF; trans | 0.148 +0.118 0.160 1.29 1211 0.631 0.747
PF,NH, trans | 0.134 +0.177 0.178 1.23 1.94 0.672 0.699
PH,CH; stag | 0.155 -0.250 0.114 1.39 2.12 0.827 0.927
PH,CF, stag 0.153 -0.121 0.154 1.34 2.21 0.679 0.846
PF,CHj; stag 0.178 -0.368 0.076 1.36 2.07 0.730 0.816

¢ Distances from nuclei to bond critical points, r{A-ry), are given in atomic units.

Table 4-4(a, ¢): Properties of N-X BCPs and delocalization indices in amines.

Table 4-da: Monosubstituted amines

Amine pry) | Vlp(ry) | e(ry) | r(N-ry) | r(E-ry) | S(N,E) | S(N,R)
NH,F 0.298 -0.380 0.063 1.10 1.51 1.095 1.095
NH,OH ecl 0.318 -0.467 0.041 1.21 1.43 1.219 1.240
NH,NH, 0.318 -0.508 0.0002 1.34 1.34 1.229 1.312
NH,CH; 0.274 -0.875 0.0305 1.65 1.10 0.979 1.185
NH,Cl 0.205 -0.178 0.059 1.58 1.69 1.290 1.290
NH,SH ecl 0.201 -0.381 0.214 1.87 1.35 1.174 1.251
NH,PH, 0.166 +0.252 0.010 1.97 1.25 0.756 1.106
NH,S8iH; 0.137 +0.566 0.125 1.95 1.29 0416 0.749

e Distances from nuclei

to bond critical peints

Table 4-4¢: NH; and trisubstituted amines.

, I{A-1), are given in atomic units.

Amine p(ry) | Vp(ry) | &(ry) | r(N-ry) | r(E-m) | S(NE) | S(N,R)
NH; 0.361 -1.880 0.045 1.38 0.51 0.895 0.895
NF; 0.377 -0.850 0.122 1.08 1.41 1.016 1.016
N(CH;); 0.284 -0.924 0.048 1.63 1.10 0.957 1.151
NCl; 0.209 -0.189 0.060 1.63 1.63 1.191 1.191
N(SiH3); 0.128 +(.492 0.057 1.98 1.31 0.412 0.740

e Distances from nuclei to bond critical points, r{A-r,), are given in atomie units.
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Table 4-5(a-d): Atomic and group properties in phosphines, MP2 values in
italics. All values are given in atomic units.

‘Table 4-5a: Monosubstituted phosphines, PH,EH,.. g(H) refers to the H atoms bonded to P.

Phosphine | q(®) | q(E) | o(EH,) | q(H) K@) L®) |L(E)
PH,F +1.992 | -0.845 | -0.845 | -0.574 339.927 | -64¢3 | 3.8¢3
MP2 +1.779 | -0.782 | -0.782 | -0.500 340.279 | -3.1e-3| 58e5
PH,OHec/ | +1.951 |-1.438 | -0.773 | -0.584 339928 | -7.0e-3 | -89¢e6
+1.942 339.928 | -1.5e2 .
MP2 +1.727 | -1.307 | -0.710 | -0.509 340.297 | -1.6e-3| 2.1e-5
PH,OHsta | +1.977 | -1442 | -0.801 | -0.593 339923 | 29e3 | -65¢3
PH,NH, gau | +1.918 | -1.489 | -0.733 | -0.600, -0.589 | 339.948 | -4.5e-4 | -5.4 €-5
+1.922 339.949 | 2563
MP2 +1.690 | -1.388 | -0.654 | -0.524, -0.514 | 340.317 | -1.6e-3 | -3.5 -4
PH,NH, rrn_| +1.866 | -1.426 | -0.701 | -0.578 339.991 | 6.1e3| 2.0e4
PH,NH, cis_| +1.887 | -1.453 | -0.711 | -0.585 339985 | 79e3 | -3.0e3
PH,CH,sta | +1.661 | -0.422 |-0.503 | -0.582 340.119 | 44ed|-25¢4
+1.667 340.1193 | 53e3
MP2 +1.396 | -0.432 | -0.386 | -0.502 340.506 | 3.8e-3 | -17e4
PH,CH, ecl | +1.646 | -0.409 | -0.475 | -0.582 1'340.125 | 4. 6.0 c-4_
PH,CI +1.759 | -0.638 [ -0.638 | -0.562 340.019 | -1. 3.7e3
MP2 +1.497 | -0.533 | -0.533 | -0.484 340.361 | -3.6¢-3| 2.9¢3
PH,SHec! | +1.534 | -0255 | -0.397 | -0.568 340.145 | 6.le4 | 2.4e4
+1.541 340.145 | 6.0e-3
MP2 +1.278 | -0.219 | -0.300 | -0.489 340.494 | -3.5e-4|-22e4
PH,SHsta | +1.551 | -0.257 | -0.404 | -0.570 340.141 | 53e3 | 8.6¢4
PH,PH,gau | +1.131 [ +1.131 | 0.000 [ -0.570,-0.567 | 340310 | 79c-4 | 7.9¢4
+1.141 | +1.141 340305 | 33e3| 33e3
MP2 +0.979 | +0.979 | 0.000 | -0.488, -0.487 | 340.540 | 2.9¢-3 | 8.8e-5
PH,PH, fran | +1.138 | +1.138 | 0.000 | -0.565 340311 | 59e3| 59¢3
PH,PH,cis | +1.134 | +1.134 | 0.000 | -0.566 340303 | 1.5¢3| 1563
PH,SiH; sta | +0.499 | +2.797 | +0.613 | -0.559 340.543 | 6.0e4| 5.7e3
+0.505 340.544 | 5.0e3
MP2 | +0.427 | +2.566 | +0.516 | -0.472 340.836 | -2.5e-4| 2.0e-5
PH,SiH, ec/ | +0.509 | +2.790 | +0.620 | -0.558 340.536 | S53e3| 5.0¢3

» In some cases two sets of values have been given for (P}, K(P) and L{P), to show the effect
of improving the precision of the integration.

»  The charge transfer, q(EH,), is zero by symmetry in PH,PH.,.

e For gauche PyH,, the q(P) value deduced from q(H) (where L(H) < 10%)is +1.137



Table 4-5b: Disubstituted phosphines, PH(EH,
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)o. q(H) refers to the H atom bonded to P.

Phosphine q(P) g(E) | q(EH,) | q(H) K(®) L (P) L (E)
PHF, +2.266 | -0.839 -0.839 -0.588 339.725 33e-3] 33e-5
PH(OH)up | +2.183 | -1.443 -0.795 -0.596 339.746 -33e-3 | -22e-5
PH(OH),dn | +2.224 | -1.440 -0.802 -0.619 339.741 77e4| 44e4
PH(NH:), +2.114 | -1.491 -0.750 -0.605 339.804 7.5 ¢-3 1.3e-3
PH(CH;), +1.657 | -0.435 -0.526 -0.596 | 340.124 4.9 e-3 1.8e-3
PHCl, +1.803 | -0.617 -0.617 -0.563 339.947 44e3] 3.6e3
PH(SH)up | +1.326 | -0.240 -0.380 -0.563 340.202 3.0e3 | -14e-4
PH(PH,), +0.546 | +1.145 | +0.012 | -0.568 340.523 3.0e3 | -1.0e3
PH(SiH,), -0.694 +2.794 | +0.625 -0.555 340.975 23e-3| -1.2e-4
Table 4-5¢: PH; and trisubstituted phosphines, P{(EH,)s.
Phosphine | q(P) | q(E) | q(EH.) | ) | K®) | L(®) | L(E)
PH, +1.695 | -0.564 -0.564 -2.20 340.100 1.6 e-3 5.7 e-5
+1.458 | -0.485 -0.485 -2.03 340458 1.8 e-3 6.6 e-5
PF; +2.512 | -0.836 -0.836 -2.42 339513 4.5e3 2.5¢e-5
+2.345 | -0.780 -0.780 -2.26 339857 4.4 e-3 6.3 e-5
P(OH) +2.386 | -1.448 -0.794 -2.67 339.556 1.3e-3 1.7 e4
P(NH,); +2.253 -1.473 -0.751 -2.52 339.694 2.1e3 1.2 e-4
P(CH3); +1.662 | -0.445 -0.554 -2.33 340,120 4.4 ¢-3 2.6 e-3
PCly +1.780 | -0.592 -0.592 -1.92 339.890 3.8e3 33e3
+1.423 | -0.473 -0.473 -1.60 340.295 35e3 1.6 e-3
P(SH); +1.013 | -0.205 -0.337 -1.54 340302 -3.0 e-7 1.8 e-4
P(PH,); -0.089  +L.160 { +0.030 -0.63 340.758 -41e4| -1.6e-4
P(SiH3)s -1.887 | +2.805 | +0.629 +1.39 341.404 3.5e3 6.5 ¢-3
PBry +1.095 | -0.365 -0.365 +1.31 340.178 23e4| -4.0e-3
e A negative dipole, u, has the negative end pointing away from the substituents.
Table 4-5d: Fluorinated phosphines
Phosphine q®P) | qE) | q(H) qF) 1qEYy)| K@F) | L{P) | L(E)
PH,NH, trans | +1.866 | -1.426 | -0.578 | -0.701 1339991 16.1e3 | 2.0e4
PH,NF, trans | +1.883 | +0.075 | -0.553 | -0.420 -0.764 | 340.116 | 6.7e-3 | 6.7 €-3
PF,NH, trans | +2.401 | -1.497 -0.846 -0.710 {339.589 | 4.6e-3 | 1.8e-4
PH,CHj; stag | +1.661 | -0.422 | -0.582 -0.503 | 340.119 | 44e4 ] -25e4
PH,CF3stag | +1.756 | +1.585 | -0.550 | -0.744/5 | -0.648 | 340.200 | 4.4e-3 | 4.7¢-3
PF,CHs stag | +2.222 | -0.526 -0.846 -0.530 | 339743 | 43e-3 | -4.5e-5

e Note: q(H) refers to the H atoms bound to P, q(EY,,) refers to EH, or EF, as appropriate.




122

Table 4-6(a, ¢). Atomic and group properties in amines. All values are given in
atomic units.

Table 4-6a: Monosubstituted amines, NH,XH,, q(H) refers to the H atoms bonded to N.

Amine q(N) q(X) q(XH,) | qH) KN) L(N) L (X)
NH,F -0.316 -0.445 -0.445 +0.381 54.416 2.6 e-4 6.5 e-5
NH,OH e | -0478 -0.869 -0.239 | +0.359 54.495 3.1 e4 1.9 ¢4
NH;NH, | -0.683 -0.683 0.000 +(.330, 0.354 | 54.602 2.1 e-4 2.1e4
NH;CH; -1.052 | +0.549 +0.382 +0.335 54.801 2.5e4 3.0e4
NH,Cl -0.795 | +0.004 | +0.004 +0.393 54.618 -4.3 -3 1.2 e-4
NH,SHe |-1.179 |+0.572 | +0.414 +0.383 54.823 -5.7 €-5 6.6 e-4
NH,PH, -1.489 | +1.922 +0.733 +0.377,0.383 | 54.991 -5.4 ¢-5 2.5¢e3
NH>S1H; | -1.563 | +3.015 +0.810 +0.377 54.986 12e-5] -34e4
Table 4-6¢: NH; and trisubstituted amines, NH,XH,.

Amine  [qN) a0  [a(XH) | KN LN L
NH; -1.044 +0.348 | +0.348 <0.17 54.745 7.0 e-5 2.7 e-5
NFy +1.092 | -0.362 -0.362 -0.11 53.523 8.2 e-3 2.0¢-4
N(CH;), -1.109 +0.542 | +0.370 -0.25 54.935 5.2e-3 8.4 ¢e-4
NCl; -0.422 +0.142 | +0.142 -0.31 54.330 5.8e-3 9.9 e-5
N(SiH;); -2.425 +3.003 | +0.808 +0.08 55.336 1.7 e-3 2.5¢e-3

¢ A negative dipole has the negative end pointing away from the substituents.

Table 4-7(a, ¢): Properties of bonding maxima in phosphines.

Table 4-7a: Monosubstituted phosphines

Phosphine | r(P-ry) | r(E-ry) | V’p(ry) | p(ry)
PH,F 1.527 1479 | +0.080 1 0.205
. PH,OH e 1.564 1.532 -0.173 {-0.207

PH,SH ¢

0.123

] 1.572 12476 | -0.201
PH.PH,g 11548 2665 |-0.253 | 0.127
PHLPH, ¢ | 1.547 2701 -0.250 | 0.125

e The bolded element is the atom in whose valence shell the charge concentration is located.
s  The shaded rows correspond to the maxima in the valence shells of substituent atoms.
o  All properties, including distances from nuclei to maxima, r(A-r}), are given in atomic units.




123

Table 4-7¢: Trisubstituted phosphines
Phosphine | r(®-ry) | r(E-ry) | Vo(ry) | p(ry)
PF, 1.503 | 1.420 | +0.253 | 0.240
P(OH), 1,537 11498 }-0.229 1} 0.228
P(NH, ), 1.553 1 1.664 ]-0.320 | 0.192

The shaded rows correspond to the maxima in the valence shells of substituent atoms.
All properties, including distances from nuclei to maxima, r{A-ry), are given in atomic units.

Table 4-8: Properties of bonding maxima in NH3 and monosubstituted amines.

Amine r(N-1p) r(E-ry) | Vip(ry) | p(rs)
NH; 0.830 1.057 -2.204 0.481
NH,F 0.910 1.701 -0.590 0.311
NH,OH e | 0.879 1.766 -1.037 0.359
NH,NH; 0.851 1.820 -1.418 0.405
NH,CH; 0.824 1.923 -1.741 0.445
NH,SHe | 0.840 . 2.386 -1.268 0.394
NH,PH, 0.816 2.407 -1.678 0.449
NH,SiH; 0.801 2.456 -1.891 0478
id e feene s o L

e  The bolded element is the atom in whose valence shell the charge concentration is located.
e The shaded rows correspond to the maxima in the valence shells of substituent atoms.

e  All properties, including distances from nuclei to maxima, 1(A-ry), are given in atomic units.

Table 4-9(a, ¢): Properties of non-bonded maxima on P in phosphines.

Table 4-9a: Monosubstituted phosphines.

Phosphine | r(P-ru) | Vip(ry) | p(rn) | pa(ran)
PH,F 1.420 -0.414 0.146 -11.50
PH,OH 1.426 -0.402 0.143 -11.02
PH,NH, 1.430 -0.385 0.140 -10.61
PH,CH, 1438 -0.359 0.136 -9.98
PH,CI 1.430 -0.376 0.139 -10.62
PH,SH 1.438 -0.350 0.134 -9.93
PH,PH, 1.444 -0.331 0.131 -9.47
PH,SiH, 1.450 -0.310 0.127 -8.97
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Table 4-9¢: PH; and trisubstituted phosphines. MP2 values in italics.

| Phosphine | r(P-rw) | Vp(ryw) | p(ran) | pa(run)
PH, 1.443 -0.340 0.132 -9.58
1.448 -0.292 0.126 -8.94

PF, 1.389 -0.506 0.163 -14.61
1.399 -0.421 0.151 -13.13

P(OH); 1.400 -0.489 0.159 -13.52
P(NH.), | 1410 | -0458 | 0.153 | -12.45
P(CH;); 1.430 -0.387 0.141 -10.59
PCl 1.412 -0.417 0.148 -12.19
1,422 -0.340 0.137 -10.85

P(SH), 1.427 -0.373 0.140 -10.76
P(PH3): 1.446 -0.315 0.129 -9.20
P(SiH;); 1.468 -0.249 0.117 -7.67
PBry 1.419 -0.380 0.141 -11.37

e us(ry) is the radial curvature of the Laplacian.
e  All properties, including distances from nuclei to maxima, r(A-r,), are given in atomic units.

Table 4-10(a, c): Properties of non-bonded maxima on N in amines.

Table 4-10a: Monosubstituted amines.

Amine | r(N-rw) | Vip(ry) | p(rw) | pa(ru)

NH,F 0.722 -3.713 0.640 -217.81
NH,OHe | 0.730 -3.387 0.616 .-199.42
NH,NH, 0.737 -3.087 0.595 -183.90
NH,CH;4 0.744 -2.814 0.572 -171.32
NH,Cl 0.731 -3.238 0.608 -194.25
NH,SHe |0.744 -2.735 0.568 -168.47
NH,PH, 0.757 -2.337 0.535 -147.55
NH,SiH; | 0.766 -2.113 0.514 -136.24

e  t3(ry,) is the radial curvature of the Laplacian.
e All properties, including distances from nuclei to maxima, r(A-r), are given in atomic units.

Table 4-10¢: NH; and trisubstituted amines.

| Amine r(N-rw) | Vip(ray) | prw) | pa(ras)

NH; 0.748 -2.649 0.556 -165.70
NF;3 0.693 -5.378 0.450 -307.38
N(CH;); 0.741 -3.029 0.593 -178.59
NCI; 0.712 -4.100 0.673 -240.49

-0.804 -1.139 0.398 -91.32
N(SiH;); | 0.789 -1.486 0.460 -107.23

-0.799 -1.266 0.441 -96.55

e (1) is the radial curvature of the Laplacian.
o  All properties, including distances from nuclei to maxima, r(N-r,;), are given in atomic units.

e A negative distance indicates that the non-boended maximum is on the same side of the
nitrogen as are the substituents.
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5. Phosphinylidene Results

5.1. History of double bonds to phosphorus

Until about 35 years ago~ double bonds to and between main group atoms
of the third row and higher were thought to be too unstable to exist, due in part to
weak p-p m-like overlap (Gusel’nikov and Nametkin, 1979; Kutcha and Parkin,
1998). This belief, sometimes called the classical double bond rule’, 1s similar to
the one that noble gases could not form compounds, in that an observation (or lack
thereof) was generalized, then rationalized and then became set in stone. Like the
mert gas ‘rule’, it was broken when researchers synthesized examples of the ‘non-
existent’’ molecules. Multiple bonds to phosphorus and silicon are indeed quite
reactive, but as early as 17 years ago, a large number of relatively stable
phosphinylidenes (RP=X, X # O, S), silenes (R,Si=CR;) and disilenes (R,Si=SiR,)
were known (Cowley, 1986) and the number has grown since then. The area of
multiple bonds to heavy main group elements has recently been extensively
reviewed by Power (1999) in terms of experimental results and theoretical models.
He points out that the chemistry and structure of compounds of second row

elements are the exception, rather than the rule.

* Phosphabenzene was discovered in 1966 and this renewed interest in the chemistry of low-
coordinate phosphorus, see Neicke and Gudat, 1991.

" These molecules were included in the oft-cited book by W. E. Dasent (1965) Non Exisitent
Compounds — Compounds of Low Stability, Marcel Dekker: New York.
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With the exception of some phosphoranes, Y3P=X (which can be written
in a singly-bonded zwitterionic form — see chapter 6), compounds exhibiting formal
multiple bonds to phosphorus are usually only isolable when the bond is sterically
protected by large substituents and/or electronically stabilized.  Phosphorus
typically has a coordination number of three or four, and sometimes five or six.
The first stable examples of phosphinylidenes, YP=X and bis(ylene)phosphoranes
YP(=X), (chapter 7) were synthesized in 1973 and 1974 (see chapter 1 of Scherer

and Regitz, 1990).

5.2. Energy and reactivity of double bonds to phosphorus

The ratio of double bond strength to single bond strength is much smaller
for M-M bonds than for L-L bonds, with M-L bonds in between (Schoeller ef al.,
1997). The heavier atoms are less electronegative and are less effective at
stabilizing two electron pairs in close proximity in the bonding region (Malcolm et
al., 2002). The heavier atoms are also less sterically crowded at higher
coordination number. These factors together favour dimerization or
oligomerization over double bond formation for heavy atoms. With very similar
energies for the two highest energy molecular orbitals (Schoeller, 1990),
phosphinylidenes, HP=X, show significant reactivity at both functional groups: the
double bond and the lone pair.

The phosphorus atom in YP=X is coordinatively unsaturated and thus very

reactive. In fact, though P=S and P=O bonds are extremely strong when the
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phosphorus is pentavalent, trivalent YP=0 and YP=S are extremely unstable.” No
trivalent examples have been definitively structurally characterized, though infrared
vibrational frequencies have been measured where Y is a halogen or hydroxyl
group. A few examples of YP=SY; are known where S is substituted with a siloxyl
group (Zurmithlen and Regitz, 1987). The related YP=PYs systems will be
discussed in Chapter 6. Phosphines readily react with chalcogens to form
phosphine oxides and sulfides (Chapter 6). A similar reaction can convert
phosphinylidenes into bis(ylene)phosphoranes (Appel, 1990, p.160) — see Chapter
7. Alternatively, oxidative 1,1-addition to phosphinylidenes leads to phosphoranes
(Niecke, 1990, p.306), such as YsP=NY — see Chapter 6.

Common reactions of phosphinylidenes that involve the double bond are
cycloadditions and addition of dipolar compounds (Regitz and Scherer, 1990).
Iminophosphines also oligomerize and react with Lewis acids and bases.
Phosphaalkenes may undergo elimination to form phosphaalkynes. The non-polar
diphosphenes also add X, or H, and the weak P-P bond may be cleaved when HCI
is added.

While neutral tetracoordinate pentavalent nitrogen is not usually observed
(with the exception of F3NQO), imine derivatives (YN=X) are relatively well known.
Conversely, phosphinylidenes, YP=X, are fairly reactive but phosphoranes, Y3P=X,
are much more stable, especially when the X group is electronegative. Based on

the similarities in the molecular orbital energies, the switch in chemical stability

" Note that single bonds between sulfur and trivalent phosphorus are also very rare.
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from trivalent N to pentavalent P seems to have more to do with maximum
coordination number (and thus the effective reactivity of the lone pair on
phosphorus vs. nitrogen) than with the reactivity of the double bond. Since the
products of the addition reactions to YP=X are more stable than the products from
addition to YN=X, YN=X is readily observed, while YP=Xis not.

The calculated geometric and electronic structures of the unsubstituted
HP=X and HN=X species will serve as a baseline for comparison with other
systems in later chapters. The Lewis structures exhibit double bonds with no
formal charges, while obeying the octet rule. While the P-E bond may be polar,
few chemists would argue that the bond order, in the Lewis sense, is anything other
than two.” This will be verified by the delocalization index data below. In later

chapters, less clear-cut bonding situations will be investigated.

5.3. Geometry

5.3.1. General features — planar species
Optimized bond lengths and bond angles about P are given in Table 5-1,
along with experimental values for some related systems. Table 5-2 gives the
corresponding values for imines. The P-E bond lengths are plotted in Figure A4-1,
and compared to the other phosphorus species studied. Where both cis and frans

isomers are possible, the frans isomer is lower in energy by 2 to 15 kJ/mol. This is

" Some would argue that for more electropositive atoms, such as silicon, the bond order in systems such as
H,Si=SiH, is less than two, due to incomplete localization of the bonding electrons in the bonding region, see
Malcolm ez al., 2002.
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the observed geometry for most experimental systems (Power, 1990), however
previous calculations have predicted that the cis isomer of YP=NY  will be
favoured by electronegative substituents (Schoeller er al., 1990). Electron-

withdrawing groups on P shorten the P=N bond, while on N they lengthen it.

N
P=N P=N
P=N_ =N

trans cis

For the series of planar species, in addition to the expected increase in
bond lengths in going from second to third row atoms, the bond angles around P are
smaller for the phosphinylidenes than the bond angles around N for the imines. The
doubly bonded species have similar angles to the singly bonded species because the
ligand non-bonding radii are similar. There is a trend of increasing HNX angle as
the size of X, as measured by bond 1ength*, increases. The ligands around
phosphorus are less crowded and show the opposite trend; the bond angle generally
decreases as the bond length increases. In both cases, the cis isomers have angles
about 5° larger than the trans isomers. These larger bond angles allow for a shorter
P=N bond length in the less stable cis isomer. The P=P and N=N bonds are longer
in the cis arrangement.

The bond lengths in the phosphinylidenes are generally 20 to 23 pm
shorter than the corresponding phosphine bond lengths. The imine (N=E) bonds are

shorter than the amine (N-E) bonds by a similar amount. The smallest change is for

" The size, as measured by N-E bond lengths, decreases from left to right across a period, in contrast with
calculated bonding radii.
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the P-N bond, which shortens by only 16 pm. In general, the N-M and P-L bonds
shorten less than the N-L and P-M bonds. This suggests that multiple bond

formation is less effective between elements in different rows of the periodic table.

5.3.2. Comparison with experiment and correlation effects

Table 5-1 shows the geometrical parameters calculated at both the Hartree-
Fock and MP2 levels of theory. Experimental values are shown where available.
Including correlation at the MP2 level of theory generally increases bond lengths
and decreases bond angles (DeFrees ef al., 1979). For the systems studied here,
MP2 increases the P=E bond lengths by about 5 pm and increases the P-H bond
lengths by about 1 pm. For phosphines and amines, it was found that HF gave short
bonds compared with experiment, except bonds between two third row elements,
which were too long, and even longer at MP2.

The only reliable experimental phosphinylidene geometry available for
direct comparison is HPCH, The MP2 geometry is significantly closer to the
experimentally determined P-C bond length and HPC bond angle. A microwave
spectrum of HPO has been obtained, but no structure was elucidated (Saito et al.,
1986). The geometry had previously been elucidated from rotational analysis of an
electronic transition (Larzilliere et al., 1980). That study shows that the present
MP2 calculation overestimates the P-O bond length by 2 pm. The structure fit to
the experimental data is somewhat uncertain due to a lack of isotopic substitution

data, but is in reasonable agreement with a structure calculated using the CASPT2
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method (Luna e al., 1995).

Comparison with experimental geometries of substituted (YP=NY,
YP=PY and YP=SiY,) phosphinylidenes shows that the experimental P=N and P=P
bond lengths lie between the HF and MP2 values, while the calculated P=Si bond is
1 pm too short at MP2 and 3 pm too short at the HF level. These comparisons are
only rough indicators as steric, crystal packing and electronic effects may be
important, particularly for the P=Si bond where the Si atom is phosphino-
substituted and slightly pyramidal. When the phosphorus atom is silyl substituted
the silylene group is planar (Power, 1999) and the experimental P=Si bond length
(206.2 pm) is closer to the Hartree-Fock value.

In summary, MP2 increases the Hartree-Fock bond length and thus the
error for P-M single bonds lengths, which are overestimated, and P-N bonds, which
are well reproduced at HF. MP2 overcompensates for the error in P=0, P=N and

=P double bond lengths, which are underestimated at HF, while P=Si is
underestimated even at MP2 and P=C is well reproduced at MP2.

The imines HN=0 and HN=CH; have been structurally characterized by
microwave spectroscopy. Like P=0O and P=C bonds, N=0 and N=C bond lengths
are underestimated by about 4 pm at Hartree-Fock. This is on the order of the
variation between P-E (or N-E) bond lengths as the degree of substitution is
changed, and about half the variation in P-E bond lengths as E is changed, say from
O to N. These differences, in turn, are about half the difference between the single

bond length and double bond length for a given E. Therefore, while there is some
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error in the calculated geometries, and thus in the densities and other calculated
properties, it should not be enough to obscure the trends within a series of

molecules, nor to hide the important differences between one series and another.

5.3.3. Non-planar species

Most phosphaalkenes are planar, with a significant barrier to rotation about
the P-C bond. In fact, £/Z isomers of Mes P=CHPh have been isolated (Y oshifuji
et al., 1983, 1985; Appel et al., 1986). However, a class of related compounds have
much freer rotation about the P-C bond (Arduengo et al., 1997a/b). These may be
described as 1,3-imidazol-2-ylidene complexes of PR (or AsR), with a C-P distance
of about 176 pm. When the R group is large and R’ is electron withdrawing, the
dihedral angle is non-zero. The NMR chemical shift gives evidence of significant

shielding at P, relative to other phosphaalkenes.

R

/ R
N {
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In order to investigate this phenomenon, a planar amino-substituted
phosphalkene was studied, (NH,),C=PH. The bond length was found to agree well
with experiment, being 175.4 pm, about halfway between the HyC=PH double
bond, and the P-C single bond lengths. The HPC angle narrows, suggesting
increased lone pair density at phosphorus.

To investigate the effects of rotation about the P=E bond, Cgtwisted
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geometries of HPCH,, and HPSiH, were investigated. The singlet twisted species
are found to be higher in energy than the planar species by 375 kl/mol for C and by
114 kJ/mole for Si. This confirms a strong 7-like interaction in the planar species.
In both of these species, the bond lengths are just slightly longer than the planar
double bond lengths, so the bond is still being shortened, by either residual n-like
overlap, electrostatic attraction, or both. The twisted geometries have angles about
C and Si summing to 320.7° (less than tetrahedral) and 359.4° (planar), respectively.
This suggests the presence of a lone pair on the carbon atom and a zwitterionic
structure for this hypothetical molecule. Clearly the amino groups are important for
donating electron density to carbon in the imidazol derivative above, otherwise the
phosphorus atom would be deshielded, not shielded.

In the twisted HPSiH;, the near planar-silicon atom could be described as
sp” hybridized, but the (negatively charged) H atom bound to phosphorus is shifted
over to interact with the silicon atom. The P-H bond stretches from the typical 141
pm to 155 pm. The Si-P-H bond angle is only 56°. The H--Si distance is only 176
pm, while the directly bound H atoms are 147 pm from the Si atom. However, no
_ ring critical point is found and no bond path is found between Si and the H bound to
phosphorus. A zwitterionic form with a positive charge on silicon and two lone

pairs on phosphorus would best describe this hypothetical system.

- ., -, o ey
— P—C., ‘P—Siwy . P—S,,
/P C\ S G N = / N/

planar twisted twisted hypervalent
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A potentially ‘hypervalent’” HP=SH, molecule was also optimized.
Experimental examples of this structure have a siloxy group on the sulfur
(Zurmiihlen and Regitz, 1987). The electronegative OSiR3 substituent supports the
‘hypervalent’ bonding arrangement about S, by removing electron density.

The calculated P-S bond length in HPSH, is 5 pm greater than the single
bond length in the phosphines, suggesting that the bond is essentially a single bond.
The PSH angles are 109.5° and the HSH angle is 94.3°. The P-H bond length and
HPS angle are quite similar to those in planar HPSiH,. This suggests that there is
electron transfer towards the PH group. The high valence (4 vs. 2) of sulphur
reduces its effective electronegativity. Since it already has a complete octet, it will
not pull more density from phosphorus. This conclusion will be further supported

by an analysis of the electron density distribution below.

5.4. Bond Paths and Interatomic surfaces
Bond critical points (BCPs) are found between all atoms that we expect to
be bonded. Properties of the BCPs are given in Tables 5-3 (P-L, P-M) and 5-4 (N-
L, N-M). There are no ring or cage critical points in the molecules studied. Figure
5-4 shows plots of the Laplacian of the electron density, V2p(r), in the symmetry
plane of each phosphinylidene. These plots are overlaid with bond path trajectories

and the intersection of the interatomic surface with the plane.

" A simple definition of a hypervalent molecule is one in which a (non-metallic) atom has more than four pairs
of electrons in its valence shell, see Noury et al., 2002.
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5.4.1. Position of the bond critical point

Bonding radii of the phosphorus and substituent atoms are plotted in
Figures A4-2 and A4-3, respectively. The values are reported in Table 5-3.
Corresponding imine data are reported in Table 5-4. As in the phosphines, ry(P)
decreases and the BCP draws closer to phosphorus as the electronegativity of X
increases. The trends in 1y(P) and r,(E) are similar to those in the phosphines, see
Figure 5-2 and Figure 5-3. The probable reasons for these trends were discussed in
Chapter 4.

As in the second row amines, the nitrogen bonding radius increases while
the radius of L decreases (particularly between N and C), so that the N=L bond
length increases steadily from O to C. In the third row imines the N radius
decreases slightly and the M radius increases slightly, again leading to a slow
increase in the N=M bond lengths from S to Si. This behaviour is opposite to the
P=M bonds. Remarkably, in both singly and doubly bonded species, the
phosphorus atom is smaller than the nitrogen atom when bonded to S or C.
Similarly Si is smaller than C when bonded to phosphorus and S is smaller than O
when bonded to nitrogen. Again this can be explained based on the variations in

bond polarity.

5.4.2. Comparison with single bonds
See Figure 5-2 and Figure 5-3 for plots of phosphorus, nitrogen and

substituent bonding radii in comparison with the singly bonded species. Relative to



138

the phosphines, the distance from the phosphorus atom to the BCP decreases by
0.21 au to 0.35 au in the third row species, but only by 0.09 au to 0.17 au in the
second row phosphinylidenes, where the interatomic surface is already within the
core region of phosphorus. This is a decrease of 7% to 12% in each case but HP=S,
where it is a 19% decrease in the bonding radius. The rn(E) values are about 0.2 au
(10%) less than the phosphine values, though n(S) and 1,(S1) shorten by less than
0.1 au (5%), so the P-S and P-Si bond shortening is almost entirely in the P atom.
For P and C the shortening is about equally shared. The bonding radii of N and O in
HPO and HPNH are shortened more than twice as much as P, relative to H,PR. In
summary, the decrease in bond length usually (except in P-S) occurs by greater
shortening of the more electronegative atom, in essence decreasing the polarity of
the bond.

There 1s not such a clear reason for the trend in the imines relative to the
amines. Both bonding radii shorten by about 0.2 au in NHO and NHNH. The

majority of shortening occurs on C and S for NHCH, and NHS, but on N for NHPH

and NHSiH,.

5.4.3. Correlation effects
All the bonding radii in PHX are longer at the MP2 level than at the HF
level, with the exceptions of S in PH=S and P in PH=SiH,, which are shorter. The
bonding radius of C in PH=CH; is changed very little. Thus, in PH=CH,, PH=S

and PH=SiH,, the major effect of correlation is to shift the BCP towards the more
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electronegative atom, decreasing the polarity, while the bond lengthens. When X =

O, NH and PH, MP2 correlation increases both bonding radii by about 0.05 au.

5.5. Properties at the Bond Critical Point

5.5.1. Density, p(ry)

The density at the P-E bond critical point is plotted in Figure A4-4. The
values are reported in Table 5-3. For the phosphinylidenes, P-L BCPs have p(ry)
values ranging from 0.20 to 0.26 au, compared with 0.155 to 0.166 au in the
corresponding phosphines (H,PR), and P-M BCPs have p(ry,) values ranging from
0.12 to 0.17 compared to 0.10 to 0.12 au in the phosphines. The increase in density
over the phosphines is most pronounced for the P-O bond.  For the imines, BCP
densities of N-M bonds are in line with P-L bonds, ranging from 0.18 to 0.27 au.
The N-L bonds have much higher densities, from 0.41 to 0.58 atomic units — an
80% increase for the N-O bond, relative to HNOH. The greater shortening of the
less polar P-M bonds is accompanied by a smaller increase in p(ry), while the N-L
p(rp) values increase the most.

The twisted geometries of HPCH, and HPSiH, again give surprising
results. While the P-E bonds are slightly longer than in the planar systems, the BCP
density in the twisted HP-CH, is actually higher than in the planar system, and in
HP-SiH,, p(ry) is just a little lower than for the planar case. Clearly there is a
strong interaction in these systems, which might be consistent with a double bond,

despite the lack of p-p n-type overlap. While the energy increases greatly upon
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rotation about the P-E bond, the extent of overlap apparently does not change
significantly. Substitution at C, on the other hand, has a significant effect on the P-
C bond. The P-C bond length in HP=C(NH,), is halfway between HP=CH, and
H,P-CH;. The P-C BCP density in the diamino-substituted phosphaalkene 1s only

slightly higher than in methylphosphine.

5.5.2. Laplacian

The trends in the BCP Laplacian values will be discussed as they relate to
the BCP’s position relative to the bonding charge concentration in the valence shell
of cach atom. The trend in P-E V?p, values is plotted in Figure A4-5. The values
are reported in Table 5-3. In the phosphinylidenes, V*p, of the P-L bonds is much
more positive than in the phosphines, and decreases from 1.59 for O to 0.26 for C.
The BCP lies inside the core region of the phosphorus atom, so shortening the
bond, and the bonding radius of P, moves the BCP to a region of even more
positive Laplacian values.

For the third row substituents, the BCP Laplacian varies between -0.02
and -0.23, with the most negative value for the non-polar HP=PH. In HPS, the
BCP lies just 0.15 au inside the valence shell maximum of phosphorus. In HPPH, it
is 0.4 au from each bonding charge concentration. In HPSiH; the BCP lies 0.3 au
inside the valence maximum of Si. The relative positions are similar in PH,MH,
except that the BCP is just 0.1 au outside the valence maximum in PH,SH. It is

interesting that while the P-P BCP Laplacian is slightly more negative and the P-Si
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BCP Laplacian is slightly less negative, the P-S BCP is almost unchanged on going
from a single bond to a double bond.

Since the Laplacian picks up subtle variations in the density, it is important
to have an accurate density distribution before reading too much into the observed
trends (or lack thereof). The MP2 values are generally much more negative than
the HF values, with the exception of HP=PH. At the MP2 level, a different trend
arises for P=M bonds: V’p, becomes more negative as the electronegativity
increases, opposite to the trend for the P=L bonds. All these trends are consistent
with the observed variations in bond polarity, as measured by bonding radii and

atomic charges.

5.5.3. Ellipticity

Th¢ planar symmetries of these species are conducive to larger ellipticities
than those found in the phosphines. Large € values are typically taken as evidence
of significant n-like bonding, with increased density in the n-bonding plane. Such
bonding is certainly anticipated for these structures and the observed curvatures are
oriented in the expected direction. The ellipticity values are reported in Tables 5-3
(HPX) and 5-4 (HNX).

The twisted HPCH, and HPSiH, geometries, and the hypervalent HPSH;
species, have much lower ellipticities than the planar analogues. In HPCH, the
softer curvature (broader density distribution) is in the plane containing the lone

pairs on P and C and the H atom on P. In HPSiH; the softer curvature is in the
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plane containing the H atoms on Si and the ‘lone pair(s)’ on P, leaving a slightly
narrower density in the plane containing the ‘bridging’ H atom. The P-S bond
HPSH, has a very large ellipticity and the softer curvature is in the hypothetical n-
plane despite the apparent lack of a double bond, again associated with two non-
bonding charge concentrations on P.

The observed € values in the planar systems range from 0.12 in HP=0 to
0.76 in HP=SiH,. It is interesting that the highest electron density values are found
in the bonds with the lowest ellipticities and most positive Laplacian values. The €
and V°py, values might be seen as evidence for near ionic character of P=0 bonds,
however, the high BCP density is indicative of a shared interaction. Electrostatic
attraction shortens the very polar bond and reinforces the covalent interaction. This
must be seen as a very polar covalent interaction. At the other extreme, the bond
shortening and increase in py for P=Si bonds vs. P-Si bonds, with high ellipticity,
seems to relate strongly to double bond character that could be described in terms
of p-p n-like overlap.

The influence of lone pairs on the phosphorus atom may also serve to
lower the BCP ellipticity, as these can exteﬂd into the bonding region, in directions
orthogonal to the p-p overlap. As seen in section 5.2, the BCP moves from inside
the valence shell of P in the P-O bond (where there is strong interaction with the
lone pair and low ellipticity) to inside the valence shell of Si in the P-Si bonds

(where the lone pair has little effect and the ellipticity is high).
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5.6. Integrated populations and charges
Atomic and group charges and energies (K= -E) are given in Table 5-5 for
phosphinylidenes and in Table 5-6 for imines. See Chapter 4 for the interpretation
of the integrated Laplacian, L. The trends in the charges on the phosphorus atom

and the substituent group are plotted in Figures A4-6 and A4-7, respectively.

5.6.1. Charges

Hydrogen atoms bonded to phosphorus accept approximately 0.6 electrons
each, in line with the phosphine results. The second row phosphinylidenes,
HP=LH,.,, transfer from less-than-one up to one-and-a-half electrons across the
P=L bond. The charge transfer in HP=S is similar to that mn HP=CH,. Symmetry
requires that there is no charge transfer in HP=PH, except from P to H. One
electron is transferred o pho$phorus in PH=SiH,.

Most of the substituent group charges q(X) in PH=X are from 65 to 85%
larger in magnitude than q(R) in PH,-R, but the charge on S is more than double
that on SH. Whereas in the phosphines one pair of electrons is unequally shared,
here two pairs of electrons are unequally shared, but the polarity per bonding pair
has apparently decreased.

The combined effect of q(H) and q(X) is that q(P) ranges from -0.5 (X =
SiH,) to +2.0 (X = O). The charge on phosphorus in HP=MH,,., is similar to g(P) in
the disubstituted phosphines, HP(MH,),, as might be expected as a result of two

polar P-M bonds and one P-H bond, while q(P) in HP=LH,,, is similar to q(P) in the
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monosubstituted phosphines, H,P-LH,, due to the above mentioned decrease in P-E
bond polarity.

We saw in section 5.2 that MP2 correlation shifts the BCP towards a more
central position, i.e. towards the more electronegative atom. The net effect is that
about 0.3 electrons fewer electrons are transferred across the P=X bond at the MP2
level than at the Hatree-Fock level. This occurs even when both bonding radii are
increased. The change due to correlation in the phosphines is about 0.1 electrons,
SO bcorrelation decreases the difference in charge between the phosphine and the
phosphinylidene, further lowering the charge ratio, q(X)/q(XH).

The twisted structures of HPCH, and HPSiH, transfer 0.3 and 0.2
additional electrons, respectively, to the more electronegative atom, relative to the
planar systems. Amino-substitution of the phosphaalkene donates 0.6 electrons to
the phosphorus atom, and removes a total of 1.6 electrons from the carbon atom as
a result of the polar N-C bonds. Thus, while the transfer of density to P is
presumably due to increased valence of the atom C when the lone pairs on N are

shared, the net effect of amino-substitution is a decreased charge at carbon.

5.7. Localization and Delocalization
The trends in the delocalization index, &(P,X), are plotted in Figure A4-8.
The 6(P,X) values are given in Table 5-3a, with ¢ and 7 contributions enumerated

separately in Table 5-3b. The 8(N,X) values are given in Table 5-4.
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5.7.1. Comparison to phosphines

The percent localization of the P atom in phosphinylidenes ranges from
90% to 92%; slightly less than in the phosphines. The delocalization index between
P and the directly bonded hydrogen atom ranges from 0.77 to 1.1, compared with
0.79 to 0.96 in the phosphines, probably due to the slightly higher population on P.
The delocalization index 8(P,X) (including the substituent H atoms) ranges from
1.26 in HPO to 2.06 in HP=PH. In all cases this is 1.74 (O, S) to 1.86 (NH, PH)
times the 3(P,R) values in the monosubstituted phosphines. If we consider only the
substituent atom, the &(P,E) ratio ranges from 1.78 for 8(P,0) to 2.37 for 8(P,Si).

As in the phosphine case, the non-polar HP=PH system reaches the ideal
value of 2.0 for 8(P,PH) and in fact surpasses it, though this should decrease with
correlation. Unlike the phosphine case, 8(P,S) does not attain this value. Again,
&(P,X) correlates well with q(X), though 8(P,CH) is an apparent outlier, having a

somewhat low delocalization index for the degree of charge transfer.

5.7.2. Relationship to bond order
A plot of 8(P,X) and 8(N,X) versus q(X) is shown in Figure 5-1. The
H>PR and H;NR series are shown for comparison, along with the ideal double bond
curve. The HPX and HNX data have each been divided into two sets.
Set 1 of HPX includes all the planar systems except HPCH,, which lies a
little below the’curve. Set 2 includes both the planar and pyramidal geometries of

HPCH; and HPSiH,. The curve for these four points lies very close to the curve for
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the linear systems. The best-fit equations for these two series are:

S(set 1) = -0.4299¢ - 0.0486q + 2.0507; R? = 0.9955
S(set 2) = -0.4002q” - 0.0197q + 1.9803; R = 0.9980.

Delocalization index vs. charge on substituent group

8(P,X) or §(P,XH)

PO SR STV VR 1.\ U ST ST SR AR
T T T

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00
q(X) or q(XH)
0 - H2PR & H2NR B HPX set1 8 HPX set2 ¢ HNX, set1
<& HNX set2 = jdeal ———jdeal H2PR H2NR
e HPX, st T ~ - HPX, set2 - -HNX,set1 -=-~~~ HNX, set 2

Figure 5-1: Plot of delocalization index versus charge transfer for PH,R, NH;R, HPX and HNX.
The curves correspond to best-fit quadratic equations. The ideal curve, 8 = 2 - 0.5¢7, is also
shown, for comparison. The doubly bonded series are each divided into two sets. HPX set 1
includes X = O, NH (¢is and trans), S, PH (trans), and planar SiH,. HPX set 2 includes X = CH,,
(pyramidal and planar) and SiH,, (pyramidal and planar). HNX set 1 includes X = O, NH (cis
and frans), CH, and SiH,. HNX set 2 includes X = O, NH (cis and #rans), S and PH (cis and
trans). The HoNH data set excludes R = SH, PH,.

We see that these systems have a bond order of two, with a small excess
delocalization, and the curve is shifted towards (electro)negative substituents. As in

the phosphines, this may be associated with ‘lone pair’ delocalization. The second
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HPX set, which includes high-energy C,-twisted geometries, shows that a planar
arrangement is not necessary for electron delocalization, only for energetic
stabilization of the interaction.

Assuming that the delocalization maxima for HPX and the phosphines
should be 2 and 1, respectively, and should occur when q(X) is zero, the fitting
equations can be approximated as & = 2 ~ 0.4q° and & = 1 — 0.7q". Just as the
phosphines can be described as involving polar single P-E bonds supplemented by
delocalization of the lone pairs, the phosphinylidenes can be well described as
having a polar double bond between P and a substituent atom. The involvement of
lone pairs is smaller in these doubly bonded species. While the curvatures of these
graphs are not those expected based on the derivations for the ideal cases, the
relative curvatures for the phosphines and phosphinylidenes are in the expected 1:2
ratio.

Considering that phosphorus and sulphur substituents were left out of
several other fitting procedures in this thesis, the HP=X fit was reconsidered. If
instead of removing CH, we remove PH and S, the curve is still a good fit, giving
8(P,X) = -0.3409¢" + 0.0242q + 1.9302, or about 2 - 0.34q”. The slight drop below
2.0 could be explained by the loss of electron density to the H on phosphorus. The
data points for X = PH and S both lie above this curve, giving additional
delocalization from the readily available lone pairs.

The imine data are consistent with the amine results, as shown in Figure

5-1. Again the nitrogen analogues give a delocalization maximum about 0.2 higher
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than the phosphorus systems. While the HPX curve is shifted slightly towards
negative charge transfer, the nitrogen analogue is shifted towards positively charged
substituents. Because the S and PH substituents (set 2) have similar charges to the
CH, and SiH, substituents (set 1) it is clear that they lie on two separate curves,
with the NH and O ligands fitting equally well on either curve. Since both curves
include the HN=NH and HN=0 data near the maximum, they differ mainly in the
curvature. The best-fit equations for the two sets of imine data are:

S(set 1) =-0.5158q + 0.0412q + 2.2375; R?=0.9984
8(set 2) = -0.4474q + 0.0598q + 2.2350; R®=0.9972.

Clearly, nitrogen systems involve more lone pair delocalization than
phosphorus systems and this is reduced when the substituent atom is a group 4A
element that does not have lone pairs to contribute. From the phosphine and amine
data, it appears that P, S and N are better lone pair sharers than Cl, O and F. The

first imine curve can be approximated as & = 2.2 — O.qu. The approximate equation

of the second set, with additional lone pair contributions, is & = 2.2 — 0.4q”.

5.7.3. Separation into sigma (o) and pi (n) components
It was found in the study by Fradera er al. (1999) that the when the
delocalization index is separated into terms arising from n-like orbitals and o-like
orbitals, the o-type delocalization is typically greater than the n-type delocalization.
The discrepancy increases as the bond polarity increases. For example, in N the o

contribution is 1.042 and each m component is 1.000, while in CO the o
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contribution is 0.646 and each 7 component is 0.464. In the essentially ionic LiF,
the contributions are 0.126 and 0.026, respectively. An exception is the slightly
polar CN’, which has a o-delocalization of 0.734 and a slightly higher n-
delocalization of 0.738.

For most of the relatively polar planar species in this investigation, the o-
delocalization is somewhat greater than the n-delocalization.  The two
contributions, and their ratio, are shown in Table 5-3b. In HPNH the 7 contribution
is only 2% less than the o contribution, but in HPCHj; it i1s 10% greater. In the
remaining systems, including the non-polar HPPH, the n- delocalization is 80(£5)%
of the o-delocalization. In all but HPCH,, the o-delocalization is quite similar to
the total delocalization in the phosphines. In HPCH; the m contribution to the
delocalization is quite similar to the phosphine delocalization. Within the MO
model, the n-density is more localized on the more electronegative atom than is the
shared c-density. If the extra delocalization from o-like lone pairs is accounted for,

by subtracting 0.1 from the o indices, then the 7t/c ratio rises to greater than 90%.

5.8. Laplacian Distributions

Figure 5-4 shows contours of the Laplacian in the symmetry plane and has

been introduced in section 5.4.

Figure 5-5 shows isovalue envelopes for the Laplacian scalar field, V2p(r).

The value plotted is V?p(r) = 0, which is often associated with a so-called reactive



156

surface. The position and some properties of the non-bonded charge concentration
on phosphorus are given in Table 5-7. The corresponding imine data are in Table
5-8. The position and some properties of the P-E bonding charge concentrations
are given in Table 5-9. Table 5-10 gives the properties of the non-bonding charge

concentrations on the substituent atoms in the HPX systems.

5.8.1. Non-planar systems

The non-planar PHCH; has a single non-bonding CC on phosphorus, and a
non-bonding concentration on carbon. This corresponds to a zwitterionic structure
with the negative charge on the CH; group, [HP'-CH,"]. Based on the good fit with
the delocalization vs. charge transfer curve, the ‘lone pair’ on carbon may be
significantly delocalized.

Non-planar PHSiH; and potentially ‘hypervalent’ PHSH; each have two
symmetry equivalent non-bonded CCs on phosphorus, in and out of the plane.
There is no non-bonding concentration on Si and only one on S. The two non-
bonding CC’s on the P atom correspond to two distinct electron pairs, as a single
electron pair would be expected to lie in the symmetry plane, whether the P-E bond

is single or double. These are zwitterionic structures with the negative charge on

the PH group.
PC.  p_gituy P—S,
Y g N Si=y / \/
twisted twisted hypervalent

These high-energy zwitterionic structures arise when the p-p n-like
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interaction is interrupted. In each case, the resulting lone pair 1s found on the more
electronegative group. Clearly C is more electronegative than P, leading to a
tetrahedral arrangement of electron pairs in the valence shell of the carbon atom.
Similarly, P is more electronegative than Si, so it accepts the non-bonding electron
pair, leaving Si with three valence electron pairs, in a planar arrangement.
Considering the position of the lone pairs on P, one could further suggest that there
are three valence electron pairs in the valence shell of the phosphorus atom, and the
fourth electron pair resides almost exclusively on the hydride, interacting from
above the PSiHj; plane, see Figure 5-4j and Table 5-7.

While S is more electronegative than P, the hypervalent {=:SH,} group is
effectively less electronegative. Hypervalency is supported by bonds that are polar,
with the bonding electrons pulled away from the hypervalent atom. Both P and H
tend to donate charge to sulfur. The second ‘bonding’ electron pair is therefore
donated from S to P. While the bond critical point is shifted towards P, relative to
the H,PSH, the net charge transfer across the P-S bond is nearly zero in this system,
i.e. some electron density has been shifted towards phosphorus also. The bond is
longer than in HoPSH and the BCP density is even lower. This system does not
form a double bond, and the extra pair of electrons resides on the tetrahedral,
trivalent phosphorus atom. The effects of hypervalency will be discussed further in

the next two chapters.
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5.8.2. Planar Systems — general features

Looking at the isovalue envelopes, Figure 5-5, one of the first features that
jump out is that in HPO and HPSiH, there are two distinct, unconnected regions: a
PH region and an X region. The oxygen atom is nearly spherical, with a small
bonding appendage. As in all of the phosphinylidenes, this bonding region is
clearly elliptical, being much wider in the expected n-like plane. The SiH, group is
reduced to a silicon core and two hydride valence regions. The bonding region of
this molecule is connected to the valence shell of phosphorus, but seems to ‘cradle’

the silicon core with density in the silicon valence region.

We may also notice that the ‘hydrides’ attached to phosphorus and silicon
look qualitatively different from the hydrogen atoms on N and C. Indeed, no
bonding concentrations can be found in the P and Si valence shells corresponding to
the hydride, while C and N show bonding CC’s for the C-H and N-H bonds. The
hydrogen atoms themselves have only one shell and the maximum is located at the
nucleus regardless of the atomic charge.

Let us choose the non-polar HP=PH, Figure 5-5e, as a reference from
which to discuss the trends through each period. The isosurface of the trans isomer
might be described as S- or Z-shaped. As the human brain is designed to recognize
faces, this 1magery will be used to identify salient features. Turn the ﬁgure upside-
down and look at the ‘back’ view, to see the faces. The lone pair on each

phosphorus atom appears as a chin, above which there is a hint of a dimple. Above



153

this, appears a smiling mouth (a region of electrophilicity) with puffy cheeks behind
(the lone pair on the other P atom) and a bulbous nose in front 1s the hydride.

As the substituent becomes more electronegative, the chin juts upward; the
dimple becomes a hole and the mouth on phosphorus gapes ever wider. The
hydride nose does not appear to change significantly. Having mentioned that the
lone pair ‘chin’ juts more upward as the substituent changes, it should be mentioned
that the actual angle formed by E, P and the non-bonding maximum follows this
trend only if we average the cis and frans values, see Table 5-7.

We may also consider the ‘waist’ of each molecule, which separates the
valence region of the phosphorus atom from the valence region of the substituent
atom. As the substituent becomes more electronegative, the waist becomes
narrower, particularly in the wider, n-like, dimension. This supports the idea that
the ratio of n-type to o-type bonding is decreasing as the bond becomes more polar.
In the exceptional HP=CHy, the valence sphere is distorted, such that there is a
depletion of charge in the m-like plane on the H side of C, and an extra

concentration in the P-C n-bonding region.

5.8.3. Planar systems — bonding charge concentrations
A look at the bonding charge concentrations reveals a single charge
concentration (CC), in the valence shell of the second row atom, for HPO, HPNH
and HPCH,. For the third row substituents there are two bonding CC’s, one in the

valence shell of each atom. There is a more obvious pattern here than in the
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phosphines.

Looking at the bonding CCs in the valence shell of phosphorus, we see
that the maximum moves away from phosphorus as the BCP moves towards P,
from E = Si to P to S. In the imines, the bonding CC on nitrogen is furthest from N
in the non-polar HN=NH and closest to N in HN=PH. There is only minimal
variation in the distance to N among the N=L bonds, and similar consistency among
the N=M bonds. It is interesting that the maximum magnitude of the Laplacian
does not correlate with its distance from N. This emphasizes the bonding nature of
this charge concentration. The non-bonding concentrations do show a strong

correlation between distance to the nucleus and the Laplacian and density values.

5.8.4. Planar systems — non-bonding charge concentrations

The non-bonded charge concentrations on the phosphorus atoms of the
phosphinylidenes are very similar to those of the phosphines, in fact the ‘lone pair’
on a given HP=EH,., is more similar (in terms of distance to the nucleus, density,
Laplacian, etc.) to that of the corresponding H,P-EH, and P(EH,); than to other
phosphinylidenes.

Considering the similarities of the lone pairs in these species to the lone
pairs in phosphines, it is not surprising that they undergo very similar reactions,
including oxidative 1,1-addition and complexation to transition metals. Perhaps the
presence of the double bond adds extra lability, allowing the addition reaction to

begin at the electrophilic ‘chin dimple’ as well as at the nucleophilic lone pair.
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Group 6A, having no substituent to sterically protect this electrophilic region, is so
susceptible that no stable examples of the P"' species (YPO, YPS) are known.

The imine non-bonded charge concentrations on the nitrogen atoms are
about 0.01 au closer to the nucleus than in the amines, so that HN=CH, most
resembles NH,NH, (and so on) in its lone pair properties. Interestingly HNSiH;
follows this trend for r(N-ry) and for ps(rm) — being similar to NH,PH; — but
remains very similar to NH,SiH; in its density and Laplacian values at the non-
bonded charge concentration.

In each of the planar systems, we see one non-bonding charge
concentration on phosphorus and the expected number on the substituent atom (two
minus the number of E-H bonds), confirming the doubly bonded nature of these
species. In HPO and HPS there are two distinct non-bonding maxima in the
valence shell of the terminal E atom. The density and Laplacian at the saddle
points on oxygen are very similar to those properties at the P-O bonding

concentration and much smaller than the values at the non-bonding concentrations.

5.9. Conclusions
Based on the delocalization index versus charge transfer curves, Figure
5-1, we can conclude that the planar species, HPX and HNX, all involve the
(unequal) sharing of two Lewis pairs of elec&ons between P and X, or N and X. In
comparison to the singly bonded phosphines and amines, the bonds are shorter and

the BCP density and ellipticity are higher. Within each series, the delocalization
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index decreases as the charge transfer increases demonstrating the predicted
quadratic relationship. Both gq(X) and 8(P,X) are somewhat less than double the
phosphine values, g(R) and &(P,R). While the P=C bond is apparently the most
stable (commonly isolable) of the P"'=E bonds, the delocalization index is small for
the polarity of this bond, falling below the best-fit parabola for the other species.
This may be due to a lack of lone pair delocalization, as suggested by the unusually
high 87/6° ratio. Among the planar HP=EH,., species studied here the chalcogens
(and particularly S) have the largest increase in charge transfer and the smallest
increase in delocalization index relative to the mono-substituted phosphines, H,P-
EH,.

The delocalization index increases by a smaller factor between the amines
and the imines than for the phosphorus species. The charge transfer increases by a
comparable factor. This is probably due to the additional lone pair delocalization,
which does not get doubled when the bond order doubles, and in fact seems to be

reduced, based on the maximum delocalization observed in each series.
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5.10. Additional figures
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Figure 5-2: Bonding radius of the central pnictogen atom (P or N) in single (H,PR and H,NR)
and double (HPX and HNX) bonds.
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Figure 5-3: Bonding radius of the substituent atom (E) in single (H,PR and H,NR) and double
(HPX and HNX) bonds.
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C
Figure 5-4: Continued on next page.
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Figure 5-4: Contour maps of V2p(r) in the symmetry plane of HPX: a) HPO, b) HPNH trans, ¢)
HPNBH cis, @) HPCH,; planar e) HPCH, twisted, f) HPS, g) HPPH trans, h) HPPH cis, i) HPSiH,
planar j) BPSiH, twisted. Solid contours indicate negative values (concentration) and dashed
lines indicate positive values (depletion). The outermost contour is +0.002 au. Isovalue contours
increase and decrease from the V2p(r) = 0 contour in the order £2x10", +4x 10", +8x10", beginning
with n = -3 and increasing in steps of unity. Each map is overlaid with the bond paths and with
the intersection of the interatomic surfaces with the displayed plane.



160

Figure 5-5: Continued on next page.
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Figure 5-5: Isovalue envelopes of V2p(r) = 0; “front’, ‘side’ and ‘back’ views of planar HPX:
a) HPO, b) HPNH #rans, ¢) HPCH,, d) HPS, e) HPPH #rans, £) HPSiH;,



5.11. Data Tables

Table 5-1: Optimized geometries of phosphinylidenes and related systems,
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HP=EH,, at HF/6-311++G(2d,2p) and at MP2 (in italics).
Related experimental values are given where available.

Phosphinylidene | r(P-E) r{P-H) Z HPE -Energy /au
HP=0 144.80 143.85 104.78 416.18896
150.10 144.81 104.27 416.69383
CASPT2* 149.0 145.2 104.1
Expt® | 148.0+.5 | 145.6+.3 | 103.5+2.5
HP=NH trans 154.40 141.61 100.14 396.33674
159.55 141.99 97.85 396.81758
Deriv. Exp't® | (155.6 +.5) (100.6 + .3)
HP=NH cis 153.80 143.14 105.06 396.33511
158.44 143.78 104.88 396.81522
HP=CH, 164.61 141.03 99.03 380.33111
167.03 141.34 96.89 380.77476
Expt? | 1673+2 | 1420+.6|974+ 4
Exp’t®| 167.1+.1 | 142.5+.21955+.3
HP-CH, twisted ' | 168.43 145.33 111.54 380.18792
HP=8 191.43 141.70 102.67 738.84983
196.06 142.52 101.39 739.38965
HP=PH rrans 200.41 140.83 95.87 682.62921
205.33 141.42 93.18 683.16173
Deriv. Exp’t® | (203.4 £ .2) (102.8 +.1)
HP=PH cis 201.27 140.63 100.45 682.62357
206.41 141.12 98.04 683.15538
HP=8iH, 205.84 140.95 92.29 631.39190
208.07 141.52 88.03 631.90264
Deriv. Exp’t" | (209.4 + .3) (104.2 + 2)
HP-SiH, twisted ' | 206.41 155.48 56.2 631.34843
HP-SH, 218.51 140.86 92.95 739.96259
HP=C(NH,), 175.42 140.78 94.60 490.45163

s Bond lengths in picometers and angles in degrees.

a) Luna, Merchan and Roos (1995). CASPT2 calculations.

b) Rotational analysis of vibrational bands in the 520 nm emission system of phosphorus

oxyhydride. Larzilliere, Damany and My (1980).
¢) X-ray for Mes*P=N‘Bu Chernega, et al. (1987).
d) Kroto er al. (1981). Microwave.
e) Brown er al. (1981). Microwave.
f) The sum of the angles about C is 320.68°.
g) X-ray for Mes*P=PMes* Yoshifuji et al. (1981).

h) X-ray for Mes*P=Si(Bu)(PMes*-PPh;) Bender et al. (1993). Slightly pyramidal Si.

Others difficult to crystallize — oils.
i} The sum of the angles about Si is 359.42°,
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Table 5-2: Optimized geometries of imines, HN=EH,_;, at HF/6-311++G(2d,2p).
Related experimental values are given where available.

Imine r(N-E) r(N-H) £ HNE -Energy /au

HN=0 116.78 102.87 109.24 -129.83419
Exp't* | 120.58+.27 | 106.28 £ .25 | 109.09 + .24

HN=NH frans { 120.95 101.08 108.12 -110.03826

HN=NH cis 121.11 101.42 112.84 -110.02786

HN=CH, - 124.70 100.26 111.78 -94.06585
Exp’t® | 127.3+.4 | 1023420 | 110.5£1.5

HN=S 152.85 100.58 111.12 -452.51152

HN=PH trans | 154.40 100.18 11242 -396.33674

HN=PH cis 153.80 99.84 118.87 -396.33511

HN=SiH, 156.77 99.35 125.54 -345.10854

Deriv. Exp't® | (156.8 +.3)

e Bond lengths in picometers and angles in degrees.

a) Hirota, Fizi (1986). Microwave.
b) Pearson, R. and F.J. Lovas (1977). Microwave.

¢) For (+-Bu);Si-N=Si{t-Bu), : Wiberg et al. (1986). The SiNSi angle is 177.8 £ .3.

Table 5-3a: Properties of P-E BCPs in HPEH,,

.1 systems. MP2 values in italics.

Phosphinylidene | p(r,) | Vp(ry) | & (rp) | ¥(P-1y) | r(E-rp) | §(P,E) | 3(P,X) | Ratio to
H,PEH,

HP=0 0.257 | +1.593 | 0.117 | 1.108 | 1.629 | 1.260 | 1.26 | L.75
0.225 | +1.079 | 0.073 | 1.149 | 1.688

HP=NH trans 0.226 | +0.809 | 0.293 | 1.157 | 1.761 | 1.459 | 149 | 1.86
0.203 | +0.455 | 0.215 | 1.203_ | 1.813

HP=NH cis 0.227 | +0.827 | 0.302 | 1.156 | 1.752 | 1434 | 147 | 1.84
| 0.206 | +0.493 | 0.227 | 1.198 | 1.798

HP=CH, 0.198 | +0.264 | 0.485 | 1.220 | 1.891 | 1.581 | 1.68 | 1.82
0.188 | +0.081 | 0.366 | 1.261 | 1.896

HP=S 0.167 | -0.180 | 0310 | 1.366 |2.251 | 1771 [1.77 | 1.74
0.151|-0.196 | 0182 1.567 | 2.138

HP=PH trans 0.153 | -0.235 | 0.503 | 1.894 | 1.894 | 1912 |2.06 | 1.86
0.135 ] -0.153 | 0.335| 1.940 | 1.940

HP=PH cis 0.151 | -0.230 | 0.521 [ 1.902 | 1902 |1.892 |2.04 | 1.84
0.133 | -0.150 | 0.348 | 1.950 | 1.950

HP=SiH, 0.122 [ -0.015 | 0.758 | 2.455 | 1.435 | 1.226 | 155 | 1.84
0.114 | -0.074 | 0.638 | 2.431 | 1.501

HP=C(NH,), 0.158 | +0.245 | 0.633 | 1.267 12.048 | 1.211 | 1.5] 1.63

HP-CH, twisted | 0.208 | -0.283 {0.189 | 1.285 | 1.902 | 1.164 | 1.34 | 145

HP-SiH, twisted | 0.116 | -0.076 | 0.076 | 2.456 | 1.487 ]0.920 | 1.18 | 1.40

HP-SH, 0.090 | +0.013 | 1.770 | 1.528 }2.594 [0.976 | 1.09 | 1.03

e  All properties, including distances from nuclei to BCPs, are in atomic units.
e Delocalization indices for Hartree-Fock results only.

e  The ratios relative to the phosphines are for the indices, §(P,EH,..,) vs. 8(P,EH,)

e  The delocalization index between Si and its H atoms, in twisted HPSiH, is 0.526. The
delocalization between Si and the bridging H is 0.245. For (P,H) the delocalization indices
are 1.006 and 0.131.
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Table 5-3b: Delocalization indices, separated into ¢ and n contributions.

Phosphinylidene | 59 (p xy | 8" (P,X) | Rationto o
HP=0 0.719 0.541 0.75
HP=NH trans 0.752 0.735 0.98
HP=CH; 0.800 0.884 1.10
HP=§ 0.991 0.781 0.79
HP=PH trans 1.128 0.935 0.83
HP=8iH, 0.858 0.696 0.81
HP-CH, twisted | 1.087 0.253 0.23

Table 5-4: Properties of N-E bond critical points in imines, NH=EH,.,.

Imine pry) | Vp(ry) | € (ry) | r(N-ry) | r(E-ry) | S(N,E) | S(N.X) | Ratio to
H,NEH,
HN=0 0.575 | -1.984 087 | 0.970 1.237 2,120 | 2.12 1.71

HN=NH tragns | 0.526 | -1.682 162 | 1.143 1.143 12174 1223 1.76

HN=NH cis 0.521 | -1.643 170 | 1145 1.145 12152 | 2.22 1.69

HN=CH, 0.415 | -0.929 248 | 1.548 | 0.809 1.620 | 1.84 1.55

HN=S 0.266 | +0.284 | .161 | 1.760 1.129 12015 | 2.02 1.61

HN=PH frans | 0.226 | +0.809 1 293 | 1,761 1.157 1459 | 1.66 1.50

HN=PH cis 0.227 | +0.827 | .302 | 1.752 1.156 1434 | 1.64 1.49

HN=SiH, 0.183 | +1.065 | 238 | 1.745 1220 {0879 | 1.19 1.59

e All properties, including distances, are in atomic units.
e  The ratios relative to the amines are for the delocalization indices, 3(N,EH,.;) vs. 3(N,EH,).

Table 5-5a: Atomic and group properties of phosphinylidenes, HP=EH,, ;.
MP?2 values in italics.

Phosphinylidene | q(P) | q(E) |q(X) |K®) |L(®P) |L(E) | Ratioto
H,PEH,

HP=0 +2.030 | -1.434 | -1.434 | 339922 | 2.1e-3 | -19e4 | 1.86
1721 V1210 | -1.210 | 340305 | -l.4e-4 | -6.1e-511.70

HP=NH trans +1.798 | -1.589 | -1.206 | 340.025| 1.7e3 | -4.6e-4 | 1.65
+1.510 | -1.348 | -0.999 | 340407 | 13 e4 | L5e-4 | 1.53

HP=NH cis +1.812 | -1.609 | -1.208 | 340.0191-19e3|-2.8e-3 | 1.65
+1.537 | -1.380 | -1.016 | 340398 | [.2e-3 | 2.9e-4 | 1.55
HP=CH, +1.470 | -0.925 | -0.880 | 340.168 | 1.5e-3 | -1.8e-4 | 1.75
+1.249 1 -0.835 | -0.746 | 340.533 | -2.1e-4 | -8.4e-4 | 1.93
HP=S§ +1.437 | -0.862 | -0.862 | 340.167 | -2.9e¢-4 | -6.1 e-4 | 2.17

+1.004 | -0.515 | -0.515 | 340.593 | -1.2e-3 1 -6.7e4 | 172

HP=PH rtrans +0.572 | +0.572 | 0.000 | 340516 | -1.4e3 | -1.4e3 |-
+0.483 | +0.434 | 0.000 | 340.812 | 3.5¢-4 | 3.5 e-4

HP=PH cis +0.570 | +0.570 | 0.000 | 340513 | -8.8e¢-3 | -88¢-3| -
+0.480 | +0.480 | 0.000 | 340.808 | -1.1 e-3 | -1.1 e-3
HP=SiH, -0.461 | +2.462 | +1.015 | 340.828 | 49e4 | 1.3e-3 | 1.66

-0.294 | +2.099 | +0.746 | 341.051 | -74e4 | 3.1 e-4 | 1.45

e The ratios relative to the phosphines are for the group charges, g(EH,.;) vs. g(EH,).
e  P,H,: P charges recorded as negative of H charges, since these are determined more
accurately. Charge transfer should be 0.000 by symmetry; actual sum of charges is non-zero.
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Table 5-5b: Atomic and group properties of other HP=EH,| species

Phosphinylidene | q(P) a(E) g(X) K®) L (P) L (E) Ratie to
H,PEH,

HP=C(NH,), +0.844 | +0.672 | -0.246 | 340.357 | -24e3 | -83e4 | 0.49

HP-CH, twisted | +1.761 | -1.198 | -1.179 | 340.059 | 7.1e-4 | -13e-3 | 2.34

HP-SiH, twisted | -0.639 | +2.604 | +1.174 | 340.895 | -4.8e-3 ] 7.7¢-5 | 2.08

PH-SH, +0.508 | +0.268 | +0.080 | 340434 | -3.0e-3 | 3.1¢-3 | -0.20

Table 5-6: Atomic and group properties in imines, NH=EH,,.;.

Imine qN) [ qE® JaqX) [KON [L®N) [L(E) [ Ratioto
H.NEH,
HN=0 +1.577 | -0.464 | -0.464 | 54214 | 1.4e-4 | 24e-5 | 1.94

HN=NH frans | -0.341 | -0.341 | 0.000 | 54,511 | 94e-5 | 94e-5 | -

HN=NH cis -0.315 | -0.315 | 0.000 | 54495 | -7.8e-5 | -7.8e-5

HN=CH, -1.290 | +0.973 | +0.944 | 55.064 | 2.9¢-4 | 9.9e-4 | 2.47

HN=§ -1.194 | +0.797 | +0.797 | 54.896 | -5.3e-3 | -1.1e-4 | 1.93

HN=PH trans | -1.589 | +1.798 | +1.206 | 55.019 | -4.6e-4 | 1.7e-3 | 1.65

HN=PH cis -1.609 | +1.812 | +1.208 | 55.035 | -2.8¢-3 | -1.9e-3 | 1.65

HN=SiH, -1.852 | +2.899 | +1.458 | 54.966 | -9.8¢-5 | 1.4e-3 | 1.80

e The ratios relative to the amines are for the group charges, q{EH,.,) vs. g(EH,).

e Trans NH,: N charges recorded as negative of H charges, since these are determined more
accurately.

Table 5-7: Properties of non-bonded charge concentrations on P in
phosphinylidenes, compared to phosphine.

Phosphinylidene | r(P-ru) | Vp(rw) | p(rw) | ps(rw) | E angle | H angle
PH,4 1.443 -0.340 0.132 | -9.58 |

HP=0 1.422 -0.401 0.143 1 -11.25 | 133.6 121.6
HP=NH trans 1.434 -0.360 0.136 | -10.23 | 135.5 1244
HP=NH cis 1.430 -0.368 0.137 | -10.53 | 131.7 123.3
HP=CH, 1.446 -0.315 0.129 | -9.27 | 1343 126.7
HP=S§ 1.433 -0.354 0.135 { -10.25 | 1344 122.9
HP=PH trans 1451 -0.294 0.124 | -8.85 | 138.8 1253
HP=PH cis 1.448 -0.303 10126 1 -9.09 | 1334 126.2
HP=SiH, 1.465 -0.245 10116 | -7.81 | 139.7 128.0
HP-SiH, twist 1472 -0.248 0.118 | 1.43 au in and out of plane

e  Distances from nuclei to maxima in atomic units.
e  Angles between the maximum, the P nucleus and the attached atoms are shown in degrees.



166

Table 5-8: Properties of non-bonded maxima on N in imines, compared to amine.

Imine T(N-Tup) Vzp(rl_lg) P(run) Ha(Fap)
NH; 0.748 -2.65 0.556 -165.7
HN=0 0.717 -4.02 0.653 -235.2
HN=NH? | 0.727 -3.48 0.616 -208.4
HN=NH ¢ | 0.725 -3.58 0.625 -214.1
HN=CH, | 0.738 -2.58 0.580 -185.4
HN=8§ 0.728 -3.34 0.608 -204.1
HN=PH ¢ | 0.743 -2.73 0.559 |-1752
HN=PH ¢ | 0.743 -2.72 0.560 -173.7
HN=SiH, | 0.759 -2.18 0.513 -148.4

e  All properties, including distances from nuclei to maxima, are in atomic units.

Table 5-9: Properties of P-E bonding maxima in phosphinylidenes.

Phosphinylidene | r(P-r,) | v(E-1y) | Vp(ry) | p(ry)
HP=0 2.041 0.698 -3.63 0.809
HP=NH #trans 2.123 0.798 -2.25 0.516
HP=NH cis 2.119 10.798 -2.23 0.515
HP=CH, 2.171 0.940 -1.20 0.314
HpP=8§ 2.240 1.379 -0.378 | 0.201
HP=PH trans 2.257 1.532 -0.293 | 0.156
HP=PH cis 2.270 1.534 -0.290 | 0.154
HP=SiH, 2.146 1.744 -0.209 | 0.126 |

HP-SiH, swist

¢  The bolded element is the atom in whose valence shell the charge concentration is located.
e The shaded rows correspond to the maxima in the valence shells of substituent atoms.

e - All properties, including distances from nuclei to maxima, are in atomic units.

Table 5-10: Properties of non-bonding maxima on
substituent atoms, E, in HPEH, ; systems.

Phosphinylidene | r(E-ry) | Vio(ry) | p(ry) | Z
HP=0 0.651 -5036 0915 O

0.653 -4.980 {09121 0
HP=NH trans 0.743 -2.732 1055941 0
HP=NH cis 0743 1-2720 10560 0
HP=S§ 1302 | -0.549 101914 O

1300 {-0.567 1.0.194! 0
HP=PH trans 1.451 -0.294 10.124| 0
HP=PH cis 1448 1-0303 | 0.126] 0O
HP-CH, twist 09514 ]-0.848 0264 0O
HP-SH; 1.281 -0.762 10.208 1 0

e  All properties, including distances, are in atomic units.
o  Z is the distance from the maximum to the molecular symmetry plane.
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6. Phosphorane Results

6.1. General bonding considerations

We can define the valence of an atom (with a formal charge of zero) as the
number of (Lewis) bonds formed (coordination is the number of atoms bonded) to
that atom. The typical valence for main group elements is the smaller of group
number (#A) and eight minus group number (8-#). We then define hypervalence as
a valence greater than this typical valence (Musher, 1969). Similarly, one could
define hypovalence as a valence less than this same number. An alternative
definition identifies a hypervalent atom as one with more than four pairs of
electrons in its valence shell (Noury ef al., 2002). The phosphorus atom in PCls
would be hypervalent under either of these definitions, forming five bonds with five
pairs of valence electrons.

Phosphoranes, Y;P=X, have a four coordinate phosphorus atom that is
formally pentavalent. This is a higher valence than ‘normal’ trivalent phosphorus,
but such ‘hypervalence’ is not uncommon for atoms of the third and higher rows.
Pentacoordmate phosphorus halides, such as PCls, are well known and
hexacoordinate forms, such as in solid PCly'PCls, also exist. While hypervalent
compounds have previously been explained by occupation of J orbitals, it is now
fairly well established that the inclusion of high energy d-polarized basis functions

are important for a sufficiently flexible basis set but their occupation is quite low
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for non-metal atoms. Therefore, hybridization such as sp’d’ is not an appropriate
description of the bonding in these molecules (Gilheany, 1994).

Molecular orbitals to describe the bonding can be constructed from just the
s and p atomic-orbital-like functions on the central (hypervalent) atom and
appropriate basis functions on the ligands. Participation of four atomic orbitals in
five or six molecular orbitals requires that the MOs have larger contributions from
ligand basis functions, ie. that the bonds are polarized towards the ligands. This
requirement suggests that hypervalent molecules will be most stable when the
ligands are more electronegative than the central atom. In addition, steric crowding
of the ligands disfavours high coordination numbers for small central atoms.

Both steric and electronic effects suggest that hypervalent, high-coordinate
compounds will be less stable for the small electronegative centres (F, O and N)
than for heavier atoms. Tetracoordinate nitrogen is well known, as NR,", but
pentavalent, formally neutral nitrogen is much less common. F3N=0 (note the very
electronegative ligands) is known but, in accordance with the octet rule, is typically
described as zwitterionic: FsN'™-O', and is thus not hypervalent. Musher’s definition
of hypervalent should be limited to formally neutral atoms, so it does not apply to
the zwitterionic description of F3NO. Pentacoordinate nitrogen is not known.

Tetracoordinate, pentavalent phosphorus atoms are much more common,
in the form of phosphine oxides and phosphine sulfides. The electronegativity
difference between P and O is much larger than between N and O, thus suggesting a

more polar bond. The phosphine oxides are often described as a having a polar
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covalent double bond.

i X )
P - WP
HH4 \H H

Recalling the discussion of Lewis structures from the introductory
chapters, we realize that the first structure above is sufficient to describe a polar
double bond. On the other hand, if the delocalization index does not reach two in
the non-polar limit we would have reason to include the second resonance structure.
Conversely, if the delocalization index is greater than one in the non-polar limit for
H3NX, we should include the doubly bonded resonance structure in its description.
The results of this chapter will give us an indication of the importance of the octet
rule, versus formal charge minimization, in the Lewis description of these systems.

Phosphoranes, H;P=X, differ from phosphines, H,P-XH, by a simple 1,2-
shift of a hydrogen atom. The unsubstituted systems are generally unstable with
respect to the phosphines, and thus are not well known. Many examples are known
in which the hydrogen atoms are replaced by other groups, such as aryl groups,
(Ar)sP=CRy, or halides, YsP=NR. A few examples of ‘phospha-Wittig’ reagents,
Y 'P=PY3, are also known, where Y is a small alkyl group and Y" is CF; or a large
aryl group, giving electronic stability or steric protection, respectively. These
decompose at room temperature (Schmidpeter, 1990, §10.3). While the P=C bond
in RsP=CR; is fairly reactive (this is the Wittig reagent), the P=0 bond in R3P=0 is

very stable; in fact its formation seems to be a driving force in many reactions.
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The unsubstituted phosphine chalcogenides have previously been studied
by Atoms in Molecules analysis (Dobado et al., 1998). A large variety of P-
substituted phosphine chalcogenides are known (Walker, 1972;). Trivalent
hydroxy! phosphines undergo rearrangement to give Y,HP=0" and much of the
chemistry of other trivalent phosphorus compounds involves oxidation to the P(V)
state (Walker, 1972, p.48). The chemistry of the phosphine chalcogenides typically

involves the P-H bond (Hamilton and Landis, 1972).

6.2. Energies relative to phosphines and amines

The Hartree-Fock calculated tautomerization energy varies widely. See
Table 6-1. For X = O and S, the phosphines are 9 and 18 kJ/mol lower in energy
than the phosphoranes, H;PO and H3PS, respectively. This small energy difference
is unsurprising given the well-known strength of the P=O and P=S bonds. The
recent observation of the transient species H3PO in a dc glow discharge (Ahmad et
al., 1999) led to the suggestion that it is stable relative to H,POH in the gas phase.
At the MP2 level of theory, H3PO is lower in energy by 0.2 kJ/mol.” On the other
hand, correlation slightly increases the energy separation between H3;PS and
thiophosphine. For the remaining systems, the phosphine is clearly more stable
than the phosphorane. The energy difference for the methyl(ene) systems is over

200 kJ/mol, while the pnictogen systems (X = NH, PH) have energy differences on

' (CF;),POH and (CF;),PSH are exceptions.

" Previous caleulations at the MP4 level have found the phosphine to be more stable (Kwiatkowski and
Leszezynski, 1992).
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the order of 100 kJ/mol.

The H3PSiH, system with a planar arrangement about Si is 300 kJ/mol
higher than the phosphine. A more stable pyramidal H;PSiH; is 160 kJ/mol higher
in energy than silylphosphine, but does not appear to involve a double bond.
Rather this system appears to be a complex between phosphine and the carbene
analogue, SiH;. To help verify this description, the borane complex, H;PBH; was
studied.” To investigate the effect of putting two formally hypervalent atoms
together, the systems H3;P=PH; and H;P=SH; were studied. While HsPSH, formed
a bound molecule, H;PPHj; dissociated into two phosphine molecules.

A pyramidal geometry of NH3SiH; is 166 kJ/mol higher in energy than
HoNSiH; (similar to the phosphorus congeners), but pyramidal NH;CH, is 276
kJ/mol higher than H,NCHj; and planar Hs3NCH; 52 kJ/mol higher in energy than
pyramidal NH3CH,. The preference for pyramidal geometries is evidence of
zwitterionic structures in these systems. Alternatively, they could be described as
coordination complexes. The greater stability of NH;SiH; vs. NH3CH, could then
be explained by the greater stability of the closed shell SiH, relative to CH;. While
H3NS was only 47 kJ/mol higher in energy than HyNSH, the remaining H3NX
species (X = O, NH, PH) are 100 to 200 kJ/mol higher in energy than the amine

tautomers.

" The NH;BH, system was also optimized as an example of an amine complex.
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6.3. Geometry

For Pn = P and N, HyPn=0, H3Pn=S and H;PnBHj; were optimized in the
Csv point group. All the remaining phosphoranes and their nitrogen congeners were
optimized within the C;s point group. Optimized bond lengths and bond angles
about P are given in Table 6-1, along with experimental values for some related
systems. The values for the nitrogen analogues are given in Table 6-2. Where both
trans (E, 1a) and cis (Z, 1b) (staggered and eclipsed) isomers are possible, the trans
isomer is lower in energy by 6 to 8 ki/mol.  As in HP=NH, the trans-Z
arrangement of H3;P=NH has a shorter P-N bond than the cis-£ arrangement.

H H H
H\\P-N/ H\\PZN
s / N

H H H
1a 1b

6.3.1. Pyramidalization of group 4A substituents

For H3PSiH,, the planar Si geometry (as 2a below) was used in the series
trends, though two pyramidal geometries (2¢, 2d below) were found to have much
lower energy. This is an early indication of localization of electron density on the
silicon atom, rather than delocalization to hypervalent phosphorus. Hypervalence
and multiple bonding are supported by electronegative atoms, while silylene is an
electropositive ligand. We saw in the previous chapter that the formally
hypervalent sulfur atom did not form a double bond with the electropositive PH

group in HPSH,. Rather the electrons remained localized on the phosphorus atom.



175

Higher valence atoms apparently have lower electronegativity than the same atom
in a lower valence state.

One way of understanding these observations is that two reasonably
electronegative atoms are required to hold two electron pairs in the bonding region,
against the Pauli repulsion forces (Malcolm et al., 2002). Since the phosphorus
atom in H3PSiH, has a complete octet without the second P-Si bond pair, the
additional electron-electron repulsion in forming it would be too great. The second
electron pair remains localized on silicon, rather than forming a bond that would be
polarized towards P. For the more electronegative substituents, the P-E bonds are
polarized towards the substituent, relieving some of the repulsion by the three P-H
bonding electron pairs.

Based on the silylene results, and in consideration of previous
experimental and computational results, a pyramidal geometry for H;PCH, was
also investigated. The degree of pyramidalization in HsPCH,; is much less than in
H3PSiH,. The sum of bond angles about C is 353°, while about Si it is 272°. The
pyramidal silicon atom (in 2¢ & 2d) suggests four valence electron pairs, while the
nearly planar carbon atom (in 2b) appears to have only three valence electron pairs,

or four pairs with two pairs involved in P-C bonding (as in. 2a).

NN N A 4
P'—‘C\ P—Sit P—Si:
/ AN / H / Al 7
H H H H HH H

2a 2b 2c 2d
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Unlike the HPX systems, there is no obviously preferred arrangement of
the P-H bonds relative to the E-H bonds. If there are five pairs of electrons in the
valence shell of phosphorus, we expect a distorted square-based pyramidal (a), or a

distorted trigonal bipyramidal (b), arrangement of the pairs.

-—P BN ‘\;P\/E‘\
a b

The distorted planar geometry (2b) of H;PCH,, which arises from the
trigonal bipyramid, was found to be slightly lower in energy than the planar
geometry (2a), which arises from the square based pyramid, at both the HF (3.9
kJ/mol) and MP2 (4.7 kJ/mol) levels of theory. This is comparable to the energy
difference between the two geometries of H;P=PH and of H;P=NH, which have a
similar relationship to each other. These results are consistent with experimental
geometries (Mitzel ef al., 1998) and with previous calculations, which have shown
the pyramidal structure to be the minimum energy for simple ylides (Bachrach,
1992). The C-P bond may be up to 30° out of the CH; plane depending on the level
of theory. This suggests different polarities for the two P-C bonding electron pairs.
So-called ‘stabilized’ ylides have a planar arrangement about carbon, but the
substituents are still arranged as in 2b rather than 2a.

The optimized P-C bond length in 2b is 1 pm longer than in 2a, possibly
due to weaker electrostatic attraction of the less charged groups (see atomic
properties below). The unique P-H bond is significantly (3 pm) longer in 2b, while

the other two P-H bonds are shorter. A similar P-X bond lengthening is seen for the



177

trans isomer of HiP=NH relative to the cis isomer, in each case the more stable
geometry has a longer P-X bond (and lower atomic charges). The opposite is seen
for HsP=PH, the frans P-P bond being 1.5 pm shorter (with the same atomic
charges). The pyramidal silicon, in 2¢ (2d), is involved in a P-Si bond 25 (30) pm
longer* than the planar Si in the 2a analogue, and 12 (17) pm longer than in the
phosphine, H,PSiH;,

For the nitrogen analogues, both C and Si prefer a pyramidal geometry.
No planar NH;=SiH, geometry could be converged, and the planar NH;=CH,
geometry is 52 kJ/mol higher in energy than the pyramidal geometry. The
pyramidal Si atom has a sum of bond angles of 274°, very similar to the
phosphorane case. The pyramidalization of C is much more pronounced than for
the phosphoranes, with a sum of bond angles of 312° suggesting a tetrahedral
arrangement of four electron pairs around the C atom, including one ‘non-bonding’
pair. The pyramidal C-N bond is 9 pm longer than the planar C-N bond. This is
consistent with the tendency for second row atoms such as nitrogen to avoid

hypervalent environments, particularly when the ligands are less electronegative

than the central atom.

H H H
H
H\\N—_—C/ H\\N—-é H\\N——é:
/ AN / VH / l\l
H H H  H H  HH
3a 3b 3c

" The difference drops to 20 (24) pm at MP2
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Since the other substituent atoms are only one- or two-coordinate, there is
no opportunity to directly observe (or prevent by symmetry) pyramidalization of the
pnictogens or chalcogens. The electronic density about each atom will be further

discussed below.

6.3.2. MP2 correlation effects and comparison with experiment

Where available, related experimental geometrical parameters are shown
in Table 6-1. MP2 geometries are shown for each H3PX system, and the QCISD
parameters are given for H3PO. Including correlation at the MP2 level of theory
generally increases bond lengths and decreases bond angles (Teppen ef al., 1994).
For the phosphoranes studied here, MP2 increases the P-L bond lengths by 1 to 4
pm but decreases the P-M bond lengths, as seen for the P-Si bond in H,PSiH;. The
P-S bond length is almost unchanged, while the P-P bonds shorten by 2 pm. The
bond between P and planar Si shortens by 1 pm, while the pyramidal Si-P bonds
shorten by 7 pm. It appears that MP2 increases the extent of multiple bonding in
these H;P=MH,.; systems — or it may be a result of less polar bonds and therefore
less electrostatic repulsion between positively charged atoms.

A recent structure determination of H3PO found a P=0 bond length of
147.6 pm and an HPO bond angle of 114° (Ahmad ef al., 1999). The current
calculations show a P=0O bond length of 145.3 pm by HF theory, 148.7 pm by MP2
and 148.1 pm by QCISD. The highest-level r,(PO) results are in reasonable

agreement with the experimental results (+0.5 pm), but the optimized HPO angle
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was found to be 2° to 2.5° larger than the experimental value and the P-H bond
length was found to be 4 pm shorter than the experimental value, at all three levels
of theory.

The experimental structural parameters for Me;P=0 (Wilkins et al., 1975)
are very similar to those of H;P=0, so one would expect that the Me;P=S geometry
is a good model for H3P=S. The optimized P-S bond is 1 pm too long (at HF and
MP2) and the bond angles are very similar to the oxide results in terms of absolute
value and magnitude of error. The Me;P=CH, geometry has also been determined
experimentally and it shows that the optimized bond length in HyPCH, is 1 pm
(HF) or 2 pm (MP2) too long. An X-ray structure for Me;P=PDmp has a P-P bond
length in good agreement with the MP2-optimized value for HsPPH. The trivalent
phosphorus atom in the experimental system is substituted with the very bulky

dimesitylphenyl group.

6.3.3. Comparison with HP=X, HNX and H,NXH
The P-E bond lengths for each series are plotted in Figure A4-1. The P-M
bond lengths in the phosphoranes are 5 to 10 pm longer than the corresponding
phosphinylidene bond lengths. In the planar geometry, the P-Si bond length is only
9 pm longer than for HP=SiH,, but in the more stable pyramidal geometry, 2¢, it is
34 pm longer than the phosphinylidene value and, as mentioned above, 12 pm
longer than the phosphine (H,P-SiH;3) bond length. The P-O and P-C bond lengths

in the phosphoranes are about 1 pm longer than the corresponding phosphinylidene
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bond lengths. The smallest difference is for the P-N bond, which is actually shorter
by 0.4 pm at the HF level and by 3 pm at MP2, compared to HP=NH. The
significant lengthening of P-M bonds is evidence for a decrease in overall bond
strength, relative to HP=MH,;.

The formally pentavalent Y N=X systems have only one experimentally
known representative, F3NO, whose bond lengths and angles are shown in Table 6-
2. The N-O bond in F3NO is shorter than the experimental N-O bond length in
HN=0, suggesting a double bond, shortened by electrostatic effects. The calculated
N-E bond lengths in H3NX are up to 50 pm longer than the trivalent HN=X bonds.
The calculated N-O bond in H3NO is 20 pm longer than in HN=0, and just 3 pm
shorter than in H;N-OH. The remaining N-E bonds are 3 to 25 pm longer than in
the amines, the discrepancy increasing as the electronegativity of E decreases. The
N-C bond with the planar C atom is just 3 pm longer than in HoNCH;. For the
pyramidal C atom it is 12 pm longer. This is consistent with the HPSH, and
pyramidal H3PSiH, data, where the substituent atom is less electronegative than the
(formally hypervalent) central atom. In each of these cases, the bond is longer than
a single bond between the same two atoms. When the substituent atom from group
4A 1s forced to be planar, the bond shortens, reflecting an increase in N-E bond
strength, accompanied by an overall increase in molecular energy.

The HF optimized HPH bond angle is about 101° to 102°, except for the

* Angle between two inequivalent H nuclei.
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pyramidal SiH, and CH, cases where it is 99° to 100°. The MP2 angles are about
1° narrower. HPX angles™ range from 106° to 120° and up to 127° for pyramidal
structures, The P-H bond lengths are shorter and the HPH bond angles larger than
in PH;." The HNX angles range from 105° to 118°. All the r(N-H) and ZHNH

values are very similar to the NH; parameters.

6.4. Position of the Interatomic Surface: Bonding Radii

Properties and positions of the bond critical points (BCPs) are given in
Tables 6-3 (P-L, P-M) and 6-4 (N-L, N-M). Bond paths are found between all
atoms that we expect to be bonded. There are no ring or cage critical points in the
molecules studied. The phosphorus and substituent bonding radii, for each
phosphorus series, are plotted in Figures A4-2 and A4-3, respectively. Figure 6-6
shows contour plots of Vzp(r) in the symmetry plane of each phosphorane. These
plots are overlaid with bond path trajectories and the intersection of the interatomic
surfaces with the plane.

The second row substituents of H;PX have P-E BCPs in or near the core
region of phosphorus, where the Laplacian is positive. In H3PS the BCP lies
between the two valence shells. For H;PPH and H;PSiH; the BCP falls in or near
the core region of the substituent atom. The bonding radii of phosphorus and of the

pyramidal silicon in 2¢ and 2d are 0.3 and 0.2 au longer than those of phosphorus

" Angle between X and the H nucleus lying in the symmetry plane.

" Note that the experimental P-H bond length in H;P=0 is greater than the experimental bond length in PH;.
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and planar silicon in 2a, respectively.

For the P=L bonds (second row atoms), the bond lengths and the positions
of the bond critical points are very similar to the HP=X values. In H;P=0 both the
P and O radii are 0.005 au longer than in HP=0. In H;P=NH the BCP shifts about
0.01 au towards N, compared to HP=NH. In planar H;P=CH,, the P bonding radius
lengthens by 0.032 au and ry(C) shortens by 0.015 au. Overall, we see a shift
towards the second row atom.

The P=M bonds (third row atoms) are much longer than those in HP=X.
The planar Si radius is just 0.005 au longer than in HP=SiH,, so the lengthening is
mainly in phosphorus, where the radius increases by 0.16 au. In pyramidal
H3PSiH,, both radii are about 0.13 au greater than the phosphine (H,PSiH3) radii.
In HsP=S and H;P=PH, the pentavalent P bonding radius is greater than in the
corresponding phosphine, by 0.16 au and 0.39 au respectively. The substituent
radil are each 0.4 au shorter than in HP=X, however. Thus the bond lengthening in
these two systems, relative to HP=X, is accompanied by a strong shift of the bond
critical point towards the substituent group, suggesting charge transfer into the
atomic basin of the pentavalent phosphorus.”

When correlation is included, the P-M BCPs shift towards the pentavalent
phosphorus atom, with overall bond shortening. The P-L BCPs exhibit the
behaviour observed for the HPX series: a shift towards the electronegative ligand

and an increase in the P-L bond length. For both H;P=CH; geometries, correlation

" We will see below that the opposite is true for all but H;PS; the ligands become more negatively charged.
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shortens the C bonding radius and lengthens the P bonding radius. For H;P=NH
and H;P=0 both bonding radii increase, but P more so, shifting the BCP away from
the pentavalent phosphorus at the MP2 level.

In the nitrogen systems, HsNX, the BCP lies in the bonding region
between the two valence shells for X = O, NH and CH;. For E=0, N apd planar
C, the substituent bonding radius is similar to its HN=X value, but the pentavalent
nitrogen bonding radius is about 0.4 au longer than in the trivalent HNX and 0.2 to
0.3 au longer than the amine values. The bonding radius of nitrogen is similar in
planar and pyramidal NH;CH,, while the bonding radius of pyramidal C is much
longer than that of planar C. For planar CH; and the third row ligands, the BCP lies
closer to the valence shell of the ligand than to that of nitrogen. For the third row
substituents, both the nitrogen and substituent radii have increased significantly,

compared to the HNX and H,NR values.
6.5. Properties at the Bond Critical Points

6.5.1. Density, p(ry)
The P-E bond critical point densities are plotted in Figure A4-4. Values

are given in Table 6-3. The N-E BCP densities are given in Table 6-4. The P-L
BCPs have p(ry) values ranging from 0.26 to 0.20 au — very smilar to, but slightly
higher than, the phosphinylidenes. The P-M BCPs have p(ry,) values ranging from
0.16 to 0.09 au. For H3P=S this is slightly smaller than for HP=S, consistent with

the slightly longer bond. For the P=P and planar Si=P bonds, whose lengths lie
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between the single and double bond values, p(ry) is very similar to the phosphine
values. In pyramidal H3PSiH,, the P-Si BCP density is only 0.05 au. This is even
lower than the P-B BCP density in the PH;BH; complex, which has a value of 0.09
au. The difference is attributable to the fact that B is a second row atom and Si a
third row atom.

Relative to HF calculations, MP2 calculations shorten the P-L bonds and
increase the density. The P-S bond is very similar in length at the HF and MP2
levels, however the density is significantly lower at MP2, as the BCP shifts towards
P. For the P-P and P-Si bonds, MP2 shortens the bond and increases the density at
the bond critical point (much more so for the pyramidal structures).

The nitrogen analogues have BCP densities 0.1 to 0.2 atomic units less
than the respective imines. Consistent with the longer bonds, for all but H;NO
(which is shorter), this is even lower than the BCP density in the amine tautomers.
While the two PH3CHy isomers have similar BCP densities, the pyramidal NH3CH;

has a much lower py(N-C) than the planar arrangement about carbon.

6.5.2. Laplacian
In the phosphoranes, V2py, of the P-L bonds is slightly less positive than in
the phosphinylidenes, and decreases from +1.41 for O to —0.10 for C. For the third
row substituents, the Laplacian drops from 0.0 to —0.2, as the electronegativity of M
increases, as seen for the MP2 results in phosphinylidenes. With the exception of

H3P=S, correlation makes the Laplacian values more negative.
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In the HsN=X species, for X = O, NH and pyramidal CH,, the BCP lies
within the bonding charge concentration and the Laplacian is negative, about —0.16.
For the remaining species, the BCP lies closer to the ligand core and the Laplacian
is small and positive, the smallest magnitude being for H;NS, the largest for
HsN=CH, with the planar C atom. This is somewhat surprising, since in HNCH>
the N-C BCP is even closer to the carbon nucleus, yet the Laplacian is large and
negative. There has clearly been a significant rearrangement of the density about

the planar C atom.

6.5.3. Ellipticity

The ‘double’ bond ellipticities of PH;0 and PH3S are zero by symmetry,
and so cannot tell us anything about the extent of n-like bonding. The symmetry
planes of the remaining phosphorane species are conducive to larger ellipticities
than those found in the phosphines, though the approximate three-fold symmetry
about P may lower the ellipticity relative to HP=X. The observed curvatures are all
oriented in the expected direction. This includes the pyramidalized PH;CH, (2b)
and PH;SiH, (2¢) structures, for which the density is enhanced in the plane
containing the imagined n-bonding or lone pair, respectively. This is consistent
with the twisted geometry for HPCH,, which has the softer curvature in the plane
containing the ‘lone pairs’, and a lower ellipticity, than the planar conformer does.

The P-N ellipticities are similar to the cis and trans aminophosphines.

Both the P-C ellipticities are just slightly smaller than in the planar phosphaalkene,
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HPCH,. The planar H;P=SiH, and the two isomers of PH3PH, have exceptionally
large ellipticities. For planar HsPSiH, the ellipticity is 1.42 and drops to 1.26 at the
MP2 level. The H;P=PH ellipticities are considerably reduced at MP2, while the
ellipticities below 0.5 are only slightly lowered with the inclusion of correlation.

As for the phosphinylidenes, the highest electron density values are found
in the bonds with the lowest ellipticities, and vice versa, except for pyramidal
PH;SiH,, which has the lowest density and intermediate ellipticity.

The pyramidal H;NX systems have similar ellipticities to the imines, and
the H;NNH ellipticities are actually higher than the NH=NH values. The H;NPH
and the planar H3NCHj ellipticities are extremely high. Even if the electron density
is being transferred to the substituent, rather than shared, there is still considerable
n-like density near the BCP, in the valence (or core) region of the substituent. The
BCP is particularly close to the carbon nucleus in planar Hs3NCH;. The same

argument may explain the high ellipticities in HsPPH and H;PSiH,."

6.6. Atomic and Group Charges
Atomic and group charges and energies (K= G = -2V = -E) are given in
Tables 6-5 (H;PX) and 6-6 (HsNX). See Chapter 4 for the significance of the
Laplacian, L. The atomic charges on phosphorus, and on the substituent group, are
plotted in Figure A4-6 and A4-7, respectively, for each phosphorus series.

The heavy atoms in H3PSiH,, H;PSH; and in H3NCH, were reintegrated

" We will find below that there are two ‘non-bonding’ maxima on the PH in HyPnPH, on the planar SiH, in
PH;SiH, and on the planar CH, in NH;CH,.
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using the ‘Promega’ algorithm and with more rays followed than the default. This
was done because the L values were greater than 10” and the magnitude of the total
charge on each molecule was greater than 10°. The difficulty in integrating these
atoms was most likely related to the high ellipticity at the BCP, reflecting unusual
topology in these molecules. Atomic charges on P and Si each increased by about
0.1 electron and 8(P,Si) decreased by 0.2 due to the improvement in integration.

The expected increase in q(P) relative to the phosphinylidenes — due to the
additional (electron withdrawing) H atoms — is further increased by additional
charge transfer to X. Only S is less negative than in HP=X. The total increase in
q(P), from HPX to H3PX, is between 0.9 and 1.7 electrons, and reaches 2.2
electrons for the pyramidal silylene species.

One might expect that the substituents, X, would accept less charge
density than in the phosphinylidenes, in order to moderate the atomic charge on
phosphorus, but this is not the case (except when X = S). One interpretation of this
is that the second shared pair of electrons in H3P=X is more localized on X than it is
in HP=X. This might be described, in the Lewis model, by zwitterionic (ylidic)
resonance contributions.

In H3PX, unlike HPX, O and NH take 2.0 times the charge of OH and NH,
in the phosphine tautomers. The planar and pyramidal CH, groups take almost 2.5
times the charge of CHj, while the electropositive (planar) SiH, group gives only
0.5 times the charge of SiHs. Recall that HP=S had a charge transfer that was more

than twice that in HoPSH. The charge transfer to S in H3P=S is 1.65 times that for
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the phosphine, which was typical for the other phosphinylidenes. It is as if the
charges in HP=S and H;P=S have switched roles.

The PH substituent is slightly electronegative relative to HsP (and NHs),
taking on a small negative charge of —0.11 (-0.12 in the cis forms). In staggered
H3PSiH, (and H3NSiH,), pyramidal SiH; has a small charge of —0.04, giving
evidence that the electronic structure is quite different in these molecules than in the
other systems studied. In H;PBH; the charge on BHj is also small and negative,
despite the expected electronegativity difference. The other substituent groups
change their charge in response to the central atom, but a -PH group accepts 0.11
electrons and a pyramidal silylene group, -SiH», accepts 0.4 electrons from a PnH;
group, regardless of electronegativity differences. These molecules may all be
described as donor-acceptor complexes, PH, SiH, and BHj acting as the acceptors,
NH; and PHj; as the donors.

As seen previously, MP2 reduces the magnitude of most charges.
Interestingly, in the pyramidal H;P=SiH, molecules, the electron transfer to the
hydrogen atoms is significantly decreased, but the essential neutrality of the PH;
and SiH; moieties is unchanged. In planar PH;SiH, and both PH;PH molecules,
the population on PH; decreases with inclusion of correlation, even when this
increases the magnitude of charge transfer. It appears that if the PH;PH molecules
can be considered as coordination complexes, then correlation increases the extent
of donation from PHs.

For H3;NO and H;NNH, the charges on X are about 0.2 to 0.4 electrons
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more negative than for HNO and HNNH. For methylene and the third row ligands
however, the charge difference is much bigger: from 1.0 to 1.5 electrons,
suggesting that the degree of electron sharing is significantly reduced in these
species relative to the others. Indeed, while all these X groups have large positive
charges in the imines they have smaller negative charges here.

It 1s interesting to compare the properties of the P-N bonds in H;P=NH vs.
H3sN=PH. Clearly, the second system has a much longer, weaker bond, with the
BCP lying much closer to the nitrogen atom. The total charge transferred across the
P-N bond in H3PNH is 1.46 electrons, but in H;NPH it is only 0.11 electrons. We
may also recall from chapter 5 that in H,S=PH, the PH group accepts 0.08
electrons. In each case the electron transfer is away from the formally hypervalent

atom.

6.7. Delocalization Indices
The delocalization index between P and the directly bonded hydrogen
atom ranges from 0.61 to 0.79 vs. 0.84 in PH; (& 0.79 to 0.96 in other phosphines).
This reflects the variation in atomic charge on phosphorus; the more valence
density is available, the more it will be shared with the neighbouring atoms. The
d(P,X) values are plotted in Figure A4-8, and reported in Table 6-3. The (N, X)

values are reported in Table 6-4.

6.7.1. Comparison to other systems

While the phosphorus substituent (X = PH, R = PH,) has given the largest
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delocalization for each of the series in previous chapters (and will in all subsequent
chapters) the largest (P,X) delocalization index is for sulphur in this series. The
delocalization index, (P, X), ranges from 0.81 in H;P=0 to 1.45 in HsP=S. These
values are 61% (NH), 64% (O, CH,, PH) and 82% (S, SiH;) of the
phosphinylidenes delocalization indices. The value for planar H;P=SiH; is 1.29
(the same as cis H;P=PH). The value for the non-planar H3PSiH, is 0.8, (the same
as HyP=0), and only 45% of the HP=SiH, value.

For the second row substituents, the delocalization index is only 15%
higher than in the phosphines. The delocalization index for pyramidal H;P=SiH, is
even lower than the phosphine value, again indicating that the electronic structure is
significantly different in this species. The significant reduction of §(P, X) in all
phosphoranes, relative to HP=X, is only partly due to greater positive charge on the
phosphorus atom, which was seen to affect the P-H bond delocalization. As the
degree of phosphine substitution increases, from H,PSiH; to P(SiHj3);, 8(P,SiHs)
varies only slightly, while the charge on phosphorus changes by a larger amount
than between HPX and H3;PX. The significant decrease in delocalization index
must therefore be due to real changes in the equality (polarity) and/or extent of

electron pair sharing between the phosphorus atom and the substituent, X.

6.7.2. Relationship to bond order
Again the delocalization index was plotted vs. the charge transfer, q(X), in

Figure 6-1 (HsPX) and Figure 6-2 (H;NX). Most of the “planar’ PH;X points fall
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reasonably close to a quadratic function, the clearest exception being PH;PH. A

good fit is only obtained by removing one other point, either X = S (set 1) or X =

CH, (set 2).
Delocalization index vs. charge on substituent group
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Figure 6-1: Delocalization versus charge curves for H,PH, HPX and H;PX. The H3PX data are
separated into three sets. Set 1: X = O, NH, CH, planar and SiH, planar. Set 2: X = (O, NH, S
Set 3: X = CH, ‘pyramidal’, PH cis and trans, SiH; pyramidal, BH;.

and SiH; planar.

Both fitting schemes are shown in Figure 6-1. Considering that the planar

arrangement of CH, is well established, and is even maintained when not required

by symmetry, it seems most reasonable to remove the X = S point from the fitting

procedure. The 3-fold symmetry about the S atom is enforced by the molecular

symmetry and so little can be inferred about the type of bonding from the topology.
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Since the S atom showed unusual trends in the charge transfer it is likely deviating
from the electronic structure of the planar and very electronegative substituents,
along with PH. The parabola then fits the remaining data very well, including both
isomers of PH;NH and of PH;CH,. The best-fit equation for this curve (set 1) is:
81 =-0.3493¢g" - 0.185q + 1.3809; R* = 1.0 (Qmex = -0.265, Spmax = 1.405)

The PH data point lies a little below the curve and the S data point above.
The best-fit equation for the set-2 data is: 8; = -0.4642q% - 0.3224q + 1.4353; R* =
0.999 (quax = -0.347, 8uax = 1.491). The pyramidal SiH, data point has no
connection to these curves at all. Like the HPSH; data in the previous chapter, and
like the HsPBHj; data, the charge transfer is close to zero and the delocalization
index is much lower than expected.

The H3NX data show a very different trend. The maximum in the 8(N,X)
vs. q(X) curve is near the H3NO data point and corresponds most closely to a
zwitterionic structure for these systems, Figure 6-2. Recognizing this, the data are
shifted over, by plotting (N,X) vs. [q(X)+0.7], so that the maximum lies near the
y-axis, and the curve coincides closely with the amine curve. The maximum
delocalization is 1.3 and occurs when q(X) = -0.68. This maximum is about the
same as that for the amines, but shifted towards negative substituents, as expected
for the ‘octet-rule’ Lewis structure. The excess 0.3 of delocalization now arises
from donation of the lone pairs on the substituent, rather than sharing lone pairs

from both the central atom and the ligand, thus there is about 30% contribution
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from the doubly bonded structure, giving only 70% of the expected formal charge.
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Figure 6-2: Delocalization versus charge transfer curves for HoNR, HNX and H;NX. The H;NX
was initially separated into two sets. Set 1: X = NH, CH, pyramidal, S, PH, and SiH, pyramidal.
Set 2: X = Q, CH; planar. Recognizing the zwitterionic nature of the system, the data are shifted
over by plotting S(N,X) vs. [g(X) + 0.7] for X = O, NH, CH, pyramidal, S, PH, and SiH,
pyramidal. Both cis and trans data are plotted for NH and PH in each set.
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6.8. The Laplacian and Lewis Structures
Figure 6-7 shows isovalue envelopes for the Laplacian, Vzp(r) = 0, from
three perspectives, for H;PX. Properties of the P-E bonding charge concentration
maxima are given in Table 6-7. Properties of the non-bonding maxima (and some

saddles) on the substituent atoms are given in Tables 6-8 and 6-9.

6.8.1. Standard phosphoranes

As expected, there are no non-bonding maxima in the valence shell of C
when in a planar arrangement. The same is true for the slightly pyramidalized CH,
group, consistent with the maintenance of a near-planar arrangement. The Lewis
structures of H3P=0 and HsP=S would have two lone pairs, but three (or one) non-
bonding charge concentrations are required by the molecular symmetry. Saddles in
the valence shell concentration are found between the three observed maxima.
These six critical points have very similar density and Laplacian values, suggesting

a shightly perturbed torus of valence density about the O and S atoms Table 6-8.

trans cis

Figure 6-3: Isovalue envelopes of rrans and cis PH;NH, for V?p =-1.5 a.u. There are no
significant differences in the nitrogen lone pair regions of these two systems.

The number of non-bonding CC maxima is deceiving in PH3NH, also. By

noting the similarity of the one CC on cis PH;NH to the two CCs on frans PH;NH
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we can conclude that there is only one electron pair represented. A saddle point in
the Laplacian is found in the symmetry plane of the frans species, whose properties
are almost identical to those of the maxima. This is in fact one slightly distorted
charge concentration.

In H;PPH however, both isomers have two non-bonding CCs, which are
positioned almost opposite each other on the trivalent P. In addition, the trivalent P
has no bonding CC along the P-P bond axis, which is unusual for a P-P bond, Table
6-7. The lone pairs are a bit further away than usual, probably due to excess density
on the trivalent atom, but closer than typical bonding CCs. The saddles for these
molecules have significantly different properties from the CC maxima. A negative
Laplacian isovalue envelope makes it clear that the two maxima do in fact represent

two Lewis non-bonding pairs.

Figure 6-4: Isovalue envelope of trans H;PPH, for V?p = -0.2 au. Two non-bonding maxima are
seen in the valence shell of the trivalent P atom. The same is found for cis H;PPH.

We thence have further evidence, along with the anomalous delocalization
index, that the bonding in HsPPH is not like that in the more electronegatively
substituted phosphoranes. There is a larger contribution from the singly bonded
structure, putting two lone pairs on the trivalent phosphorus atom. We add to this
the unusually long bonding radius of the pentavalent P, in PH3PH and in pyramidal

PH;SiH;, and we may consider describing this phosphinylidene phosphorane as a
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coordination complex, see below.

Besides the two Si-H bonds, we find two charge concentrations in the
valence shell of planar Si. The CC-Si-CC angle is 132.5°. While the PH group in
H;PPH has its three valence charge concentrations arranged trigonally, with PH3
interacting at a position of low concentration, the SiH, group has four charge
concentrations arranged in a distorted tetrahedron. The distortion is opposite to
what would be expected for an electronegative atom involved in multiple bonding,
where the angle should be less that 109°, so that the two charge concentrations fuse,
giving a single maximum along the bond axis. The Laplacian isovalue envelopes in
Figure 6-7f show that these two ‘non-bonding’ maxima are part of a continuous
region of charge concentration, including the bonding charge concentration in the
valence shell of phosphorus. The interaction looks distinctly n-like. The two Si
maxima could correspond to a single pair of localized electrons; with the bonding
pair localized more on phosphorus. If so, the bonding pair is considerably
broadened in the valence region of phosphorus. This topology seems more

consistent with distortion a of the non-polar model below than with b.
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For all of the phosphoranes discussed mn this section (X = O, S, NH, PH,
CH; and planar SiH,), we could describe the bonding as involving at least partial

delocalization of two pairs of electrons. In a somewhat counterintuitive trend, the
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second pair of electrons becomes more localized on the substituent as the
substituent becomes less electronegative. This is seen in the appearance of two
non-bonding maxima for X = PH, and the preference for a pyramidal arrangement

when X = SiH,, to be discussed further below.

6.8.2. Nitrogen analogues

The arrangement of charge concentrations about the substituent atoms in
the HsNX series is quite different than in the H3PX series. The most significant
difference is for the X = CH, systems. We have seen that in H;PCH,, the
methylene group remains essentially planar, even when not required by symmetry,
and exhibits no non-bonding maxima about C in either geometry. In contrast, the
methylene group in H;NCH, is significantly pyramidalized when not constrained
by symmetry, and non-bonding charge concentrations are observed about C in both
geometries. For the pyramidalized methylene group, in 3b, one non-bonding
charge concentration is observed, similar to H;NSiH, and to pyramidal H;PSiH,,
2¢, discussed below.

For the planar methylene group, in 3a, two symmetry-equivalent non-
bonding maxima are observed, above and below the CH; plane, analogous to the
topology about planar SiH, in H3;PSiH, described above. There are differences,
however. The maxima on Si are tipped towards the P-Si bond, and may be
considered as part of a ‘banana bond’. The non-bonding maxima on C are tipped

slightly away from the N-C bond, making a CC-C-CC angle of 169°. Furthermore,
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there is a N-C bonding maximum, along the bond axis, in the valence shell of the
carbon atom. As discussed in Chapter 3, this is the expected result of forcing a non-

bonding electron pair into a symumetric arrangement.
N—C
& ®

In HyPNH, we saw that the single lone pair on N was easily distorted,
giving one maximum in the cis (1b) arrangement and two maxima in the trans (1a)
arrangement. In H3;PPH, there are two distinct non-bonding charge concentrations
in the trivalent P in each arrangement. Similarly, there are two distinct non-
bonding maxima on the trivalent N in each geometry of Hs;NNH and on the P in
NH;PH. The properties of the saddle point linking the maxima are significantly
different from those at the maxima, indicating the presence of two lone pairs on the
substituent, and so confirming the involvement of only one primarily bonding pair
in each of these H3N-PnH systems, Pn =N or P.

Once again, the symmetries about O and S are uninformative. Once again,
we see a weakly distorted torus of electron density around each chalcogen atom.
Since F3NO is a known compound, it would be interesting to apply the
delocalization versus charge approach to the FsNX series, to see if electronegative
ligands can increase the delocalization between N and the divalent X substituent.
For the H3NX systems, the Laplacian confirms the conclusion from the
delocalization indices: the N-X bonds are single bonds with a possible small

contribution from delocalization of the substituent lone pairs.
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6.8.3. Coordination complexes

It appears from the Laplacian envelopes in Figure 6-7 that the pyramidal
PH;SiH; is a complex between PH; and the closed-shell molecule, SiH,. The PH;
groups looks very similar to the PHz group in PH3BHs. The PH group in PH;PH
looks very similar to that group in HPSH,, having a hole in the valence shell both
above and below the P-H bond. Both molecules have two non-bonding maxima on
the trivalent P atom, as in twisted HP-SiH,. All three systems, we might describe as
complexes of the closed shell molecules, PH;, SH; and SiH,, with PH.

H H

H

In twisted HP-SiH,, Chapter 5, both moieties are electron acceptors and
the hydrogen on phosphorus swings around to interact with silicon. A strong P-Si
bond is formed, similar in length and polarity to the planar case. In twisted HP-
CH,, the carbene moiety is the acceptor, with the second Lewis pair being localized
on carbon. Although the P-C bond is somewhat longer than in the doubly bonded
planar system, the BCP density is actually higher. It is interesting that in both
twisted species, HPCH, and HPSiH,, 1.2 electrons are transferred, but in opposite
directions, and this is the same magnitude as the charge transfer in H;PCH,. In
those cases where both moieties are ‘electron deficient’ there is considerable charge

transfer to the more electronegative atom or group.

" The PH would have one occupied p-n orbital and accept density into the vacant p-7 orbital.
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In HPSH,, the charge transfer is minimal, as it is in H3PBH3, H3PPH and
pyramidal HyPSiH,. In each species with one donor molecule and one acceptor
molecule, the charge transfer is from an electronegative atom to an electropositive
atom, and is therefore minimal. The PH3SH, system appears to be made up of two
donor molecules. The charges show significant transfer of electron density (0.9 ¢)

to the more electronegative SH; group.
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In fact, SH; accepts more charge from PHj than does divalent S, half of
the excess going to the H atoms. The H atoms on S have a greater negative charge
than they do in the thiophosphines, consistent with a hypervalent S atom. The H
atoms on P have a similar charge to those in H,PSH and in H3;PS. Each of the
heavy atoms in H3;PSH; has two maxima in the bonding charge concentrations,

located not along the bond axis, but on each side of the symmetry plane.

iy

Figure 6-5: Isovalue envelopes of the Laplacian for PH;SH; seen from various angles. The values

are V’p = -0.15 au (two left, we see the bonding maxima on P) and V?p -0.34 au (two right, we
see the bonding maxima, and non-bonding maximum, on S).

We might describe this as a ‘banana bond’ between two atoms, each with

five pairs of electrons in their valence shell. The bonded atoms are not sufficiently
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electronegative to bring the two pairs of electrons into coincidence. Note that even
when the Lewis pairs are apparently localized away from the bond axis, the
maximum density (represented by the bond path) falls in the symmetry plane along

a single path.

6.9. Summary

It seems clear that the CH, group shares two pairs of electrons with PH; in
H3PCH,. The CH, group maintains an essentially planar arrangement even when
the dihedral angle is changed. SiH, on the other hand forms a donor-acceptor
complex with almost no charge transfer and a delocalization index of less than one.
Only by restricting the symmetry can SiH, be made planar, and thus the (unequal)
sharing of two electron pairs be enforced. When PHj is replaced by NHs, neither
CH; nor SiH; will form two bonds, even when the planar geometry is enforced by
symmetry. The planar geometry for NH3;CH; does exhibit a slightly higher
delocalization index than the pyramidal, with little change in charge transfer. The
similarity in charge transfer is surprising, given that in the planar case the bond
critical point 1s much closer to the carbon atom. Apparently, the density within the
carbon atomic basin has shifted away from the bond axis, into the n-like region
above and below the plane.

The NH group in PH;NH exhibits a single non-bonding charge
concentration, though this can be distorted to give two maxima. Again two pairs of

electrons are unequally shared with the PH; group. The PH group exhibits two
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distinct non-bonding concentrations and a delocalization index that is lower than
expected for the small charge transfer (though higher than the phosphines). It
appears that the second pair of electrons is much more localized on the trivalent
phosphorus. When PHj is replaced by NH; both NH and PH exhibit two distinct
lone pairs.

The phosphine chalcogenides and amine chalcogenides each have a torus
of non-bonding charge concentration, which is typical for terminal atoms. The tori
are distorted by the three-fold symmetry and thus exhibit three local maxima.
While the Laplacian distribution tells us little about the number of bonding vs. non-
bonding Lewis pairs, the quality of fit on the delocalization vs. charge transfer
curve gives some clues. H3PO falls on the best-fit curve and the other properties
are in line with HiPNH and HsPCH,. It is thus reasonable to assume that two
Lewis pairs are unequally shared between PH3 and O. HsPS falls above the best-fit
curve, giving a greater than expected delocalization index. This behaviour has been
seen for both P and S substituents in the other series and is attributed to additional
delocalization of the lone pairs.

The best-fit delocalization vs. charge transfer curve for H;PX suggests that
the two bonding pairs are differently polarized, so that the maximum delocalization
is less than 1.5 and occurs when 0.3 electrons are transferred to the substituent.
When the total charge transfer is zero, the delocalization drops to 1.4 and so the
Lewis bonds are actually more polarized (towards the central P) in this situation.

The phosphoranes thus exhibit incomplete double bonds for the electronegative
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second row substituents and S, but single bonds for PH;PH and PH3;SiH, (except
when symmetry restricted). This conclusion is further supported by bond lengths
and BCP densities very similar to the HP=X values, for all but X = PH and SiH;,
where the densities are similar to, or less than, the phosphines.

Double bonds, and thus zero formal charges. are preferred by substituents
with large group charges. As the substituent charge becomes less negative, the
delocalization index is reduced relative to the formal double bond value. Because
of the two opposing trends in bond polarity and localization as the substituent
electronegativity changes, it is difficult to relate both the formal charge and bond
order to a single resonance scheme. The maximum delocalization suggests 40% to
50% double bonding, while the charge transfer at the maximum suggests 65% to

75% double bonding (25% to 35% zwitterionic).

Using only the X = O, NH and S data points gives a quadratic with a
maximum delocalization of 1.70, at q = +0.39. The positive substituent charge may
correspond to additional donation of lone pair density. The most that can be said
about this series is that there are two pairs of electrons involved in bonding, with
different polarization trends. The first bonding pair presumably follows the
predicted increase in localization as the substituent electronegativity increases. The

second pair follows the opposite trend due to excessive electron-electron (Pauli)
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repulsion. The overall result of these two opposing trends is a maximum
delocalization index near 1.5, when the substituent electronegativity is between
than of S and PH.

The bonding in the H3NX species is much less effective. Only H3NO has
a shorter bond than its tautomer (H,NOH), though H3;NS has the smallest
tautomerization energy . The charge concentrations about all the remaining
substituents show evidence that the second ‘N=E’ bonding pair of electrons is
actually localized on the substituent. This is confirmed by the negative charges on
the electropositive substituents. Since the BCPs lie closer to the substituent valence
shells, the ellipticities are quite large, even though the m-like density is fairly
localized.

The delocalization vs. charge curve for this series reaches the same
maxifnum delocalization as the amines, 1.3, but with a formal charge of -0.7,
suggestive of a single bond, weakened by steric crowding, but with some donation
and delocalization of the substituent ‘lone pairs’. Thus we find that the octet rule is
more applicable to the second row atom, N, than to its third row congener, P. The
reason behind this difference is probably a combination of size and
electronegativity effects. It would be interesting to study the F;NX series and

determine whether the octet rule is obeyed in that series.

" Again there appears to be something special about sulfur
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6.10. Laplacian Contours and Isovalue Envelopes

C

Figure 6-6: Continued on the next page.
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Figure 6-6: Contour maps of Vp(r) in the symmetry plane of H;PX: a) H;PO, b) HsPNH rrans,
¢) H3PCH,; planar, d) HsPS, e) H;PPH trans, f) H3PSiH, planar g) HsPCH, twisted h&i) H,PSiH,
twisted, j) PH;BH; k) H;PSH, 1) HPSH,. Solid contours indicate negative values (concentration)
and dashed lines indicate positive values (depletion). The outermost contour is +0.002 au.
Isovalue contours increase and decrease from the VZp(r) = 0 contour in the order +£2x10", +4x10",
+8x10", beginning with n = -3 and increasing in steps of unity. Each map is overlaid with the
bond paths and with the intersection of the interatomic surfaces with the displayed plane.
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Figure 6-7: Continued on next page.
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Figure 6-7: Continued on next page.
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Figure 6-7: Continued on next page.
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Figure 6-7: Isovalue envelopes of V2p(r) = 0; ‘front’, ‘side’ and ‘back’ views of H;PX:
a) H;PO, b) H;PNH rrans, ¢) HyPCH, planar, d) HsPS, e) H;PPH trans, f) HiPSiH,; planar, )
H;PCH; pyramidal b) HsPSiH, pyramidal i) PH3BH; j) H3PNH cis k) H;PPH cis.

6.11. Data Tables
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Table 6-1: Optimized geometries of phosphoranes and related systems, PH;EH,,.1,
at the HF and MP2 (in italics) levels, compared to phosphine, PH;.
Related experimental values are given where available.

Phosphorane | r(P-E) r(P-H)' £ HPH? Z HPE! -Energy | AE®/
/au kJ/mol
PH, 140.43 95 44 342.47746
140.71 93.52 342.76703
QCISD 141.23 93.52 342.79392 |
Exp't® 141.15+.05 | 9336+ .08
PH;0 14532 139.46 101.84 116.32 417.38055 | 9.5
MP2 148.72 140.06 101.15 116.88 417.90567 | -0.2
QCISD 148.10 140.33 101.23 116.82 417.76630
Exp't.” | 147.63 144.06 104.29 114.26
Deriv.Exp’t.’ | (147.6 +.2) (104.1£.8) | (1144 .7
PH;NH (1a, | 154.03 138.5 101.9 110.1 397.49679 | 118
frans) 156.51° 138.80 101.4 109.1 397.99992 | 105
PH;NH (1b, | 153.73 139.90 101.1 119.75 397.49441 | 124
cis) 156.07 ° 140.53 100.5 121.5 397.99690 | 113
PH;CH, (2a, | 165.44 138.59 102.3 110.65 381.44925 | 216
planar) 166.03 138.90 101.99 110.31 381.91890 | 207
PH;CH,(2b°, | 166.5 141.66 98.62 126.86 381.45074 | 212
quasiplanar) | 167.39 142.56 97.96 128.67 381.92070 | 202
DerivExp't.? | (165.6 + .2) (101.0+2) | (1224+ 7)
PH,S 195.05 139.21 101.39 116.69 740.03361 | 18
195.00 139.83 100.28 117.58 740.59292 | 20
Deriv.Exp't’ | (194.0 £ .2) (104.5+.3) | (114.1+.2)
PH,PH (1a, | 210.91 138.84 101.68 109.97 683.77287 | 110
trans) 208.94 139.21 100.53 109.96 684.32566 | 101
Deriv.Exp't.” | (208.4 +.2)
PH:PH (1b, | 212.56 138.85 101.59 114.6 683.76971 | 118
cis) 210.33 139.23 100.55 115.55 684.32238 | 109
PH;SiH,(2a | 214.66 138.84 102.49 106.25 632.48048 | 303
planar) 213.52 139.24 102.01 104.81 633.01815 | 280
PH,SiH, (2¢) | 239.83 139.54 100.35 123.25 632.53512 | 159
staggered 233.10 139.97 99.11 125.08 633.06804 | 149
pyramidal’
PH,SiH, (2d) | 244.56 139.33 99.84 116.61 632.53250 | 166
eclipsed 237.27 139.69 98.47 1i7.50 633.06467 | 158
pyramidal’

e Bond lengths are in picometers and angles are in degrees.

1. Refers to the P-H bond in the plane of symmetry.

2. Refers to the angle between two inequivalent H’s bound to P.

3. €, symmetry with equivalent C-H bonds, sum of angles about C = 353.0° (349.7° at MP2)

4. €, symmetry with equivalent Si-H bonds, sum of angles about Si = 272.1° (staggered),
269.7° (eclipsed).

5. Energy relative to phosphine tautomer; PH,EH, at the lowest energy conformation

6. Displacement not converged for the MP2 optimizations of PH;NH.




Table 6-1 References:
a) Chu, F.Y. and T. Oka (1974). Microwave.
b) Ahmad, 1.K., H. Ozeki and S: Saito (1999). Microwave.

c) Electron diffraction for MesPS, Me;PO: Wilkins et al. (1975).
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d) Electron diffraction for Me;PCH,; : Ebsworth, Fraser and Rankin (1977). Modified
analysis by Mitzel er al. (1998).
e) X-ray for Me;PPDmp Shah, S, Yap and Protasiewicz (2000). Steric interaction with

Dmp (dimesitylphenyl) makes angles unreliable.

Table 6-2: Optimized geometries of H3NEH,., at the HF level, compared to

amine. Experimental values are given where available.
H;NX r(N-E) r(N-H)' | £ HNH? Z HNE' -Energy /au | AE®/
kJ/mol

NH; 99.84 107.89 56.21864

Exp't® |. 101.56 107.28
NH;0 136.68 1060.62 107.41 111.46 131.00001 105
DerivExp't® | (115.8 + 4) (100.8+1.1) | (117.1%.9)
NH,;NH 147.19 100.02 107.10 105.24 111.14883 196
(trans)
NH;NH 148.29 100.26 107.27 114.84 111.14649 202
{cis)
NH;CH, 148.57 100.13 106.30 107.83 95.12569 328
NH;CH, 157.39 100.51 108.22 117.67 95.14551 276
pyramidal’
NH;S 184.17 99.99 108.72 110.21 453.71725 47
NH,PH 19535 100.04 107.51 107.51 397.48881 139
(trans)
NH,PH 197.60 99.94 108.14 109.88 397.48747 142
{cis)
NH,;SiH; 206.14 99,94 108.53 111.86 346.28029 166
pyramidaf

e Bond lengths are in picometers and angles are in degrees.

Rt

Table 6-2 References:
a)} Helminger, DeLucia and Gordy (1971). Microwave, no uncertainties reported.
b) Electron diffraction for F;NQ: Plato, V., W.D. Hartford, and K. Hedberg (1970). Expect an

electronic substituent effect to shorten the N-O bond and thus narrow FNF angle.

Refers to the N-H bond in the plane of symmetry.
Refers to the angle between two inequivalent H’s bound to N,
C, symmetry with equivalent C-H bonds, sum of angles about C = 311.7°.

C; symmetry with equivalent Si-H bonds, sum of angles about Si = 273.8°.
Energy relative to amine tautomer; NH,EH, at the lowest energy conformation.
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Table 6-3. Properties of P-E bond critical points and delocalization indices in
PH,X systems. MP2 values in italics.

Phosphorane | o(ry) Vio(ry) | &lry) r(P-r,) r(E-rp) SPE) | 8(R.X)

PH;0 0.259 +1.41 0 1.112 1.634 0.81 0.81

MP2 0.236 +1.08 0 1.143 1.665

QCISD 0.239 +1.14 0 1.136 1.663

PH3;NH trans | 0.233 +0.60 0.16 1.165 1.750 0.89 0.91
0.215 +0.43 0.16 1.195 1.766

PH3NH cis 0.234 +0.62 0.18 1.163 1.745 0.88 0.90
0.217 +0.45 0.18 1.192 1.760

PH,CH, 0.207 -0.10 0.47 1.251 1.876 1.01 1.07
0.198 -0.15 0.46 1.288 1.851

PH;CH, 0.205 -0.15 0.44 1.264 1.885 1.03 1.10

quasiplanar 0.194 -0.27 0.43 1.306 1.858

PH,S 0.163 -0.20 0 1.843 1.843 1.45 1.45
0.155 -0.15 0 1.798 1.885

PH;3PH frans 0.116 -0.07 1.18 2.497 1.491 1.17 1.33
0.117 -0.09 0.74 2.315 1.636

PH,PH cis 0.113 -0.06 1.15 2.526 1.497 1.14 1.30
0.114 -0.09 0.71 2.346 1.633

PH,SiH, ' 0.092 +0.15 1.42 2.618 1.440 1.00 1.29

planar 0.092 +0.10 1.26 2.570 1.467

PH;81H; 0.059 +0.02 0.36 2.933 1.640 0.50 0.80

staggered 0.066 +0.008 0.20 2.797 1.644

PH;SiH, 0.054 +0.014 0.29 2.985 1.684 0.46 0.75

eclipsed 0.061 +0.01 0.21 2.844 1.678

PH,BH; 0.092 +0.13 0 2.732 1.048 0.33 0.86

PH,SH,' 0.157 -0.05 2.72 1.350 2.288 1.22 1.37

e Distances from nuclei to bond critical points, r(E-ry), are given in atomic units.
1) P and E (Si or S) integrated by Promega in plangr PH;SiH; and in PH;SH,.

Table 6-4: Properties of N-E bond critical points and delocalization indices in

HiNX systems.

H;NX pry) | Vo(ry) | &(m) | r(N-ry) rE-ry) | SNE) | S(NX)
NH;0 0.342 -0.16 0 1.354 1.229 1.32 1.32
NHNH frans 0.253 -0.165 0.24 1.576 1.205 1.16 1.21
NH;NH cis 0.247 -0.14 0.24 1.589 1.213 1.14 1.19
NH,CH, ! 0.208 +0.17 3.30 1,932 0.875 0.94 1.08
NH,CH, 0.171 -0.16 0.23 1.971 1.017 0.82 0.98
pyramidal

NH,S 0.127 +0.05 0 2.069 1.411 1.01 1.01
NH;PH trans 0.086 +0.13 0.94 2.254 1.444 0.70 0.81
NH;PH cis 0.084 +0.12 1.01 2.266 1.458 0.69 0.80
NH;SiH, 0.058 +0.16 0.27 2.386 1.522 0.38 0.60
pyramidal

o Distances from nuclei to bond critical peints, r(E-ry), are given in atomic units.

1) N and C integrated by Promega in planar NH;CH,.
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Table 6-5: Atomic and group properties in PH3X systems, compared to PH.

MP2 values 1n italics.

Phosphorane | q(P) a(E) g(EH,) q(H) K@) L(P) L (E)
PH; +1.695 -0.564 340.100 | 1.6e-3
MP2 +1.46 -0.483 340458 | 1.8¢-3
QCISD +1.45 -0.482 340466 1 1.8e-3
PH,0O +3.37 -1.57 -1.57 -0.598 339347 | 4.9e-3 -23e4
MP2 +3.01 -1.43 -1.43 -0.527 339.769 | 4.2¢-3 -1.1 e-4
QCISD +3.06 -1.45 -1.43 -0.533 339619 | 54e-3 -1.3 e-4
PH;NH trans | +3.26 -1.84 -1.46 -0.599 339403 | 7.6e-3 -1.8e-4
+2.88 -1.66 -1.30 -0.525 339.842 | 6.1 e3 4.7 e-4
PH;3NH cis +3.27 -1.86 -1.47 -0.599 339392 | 7.0e-3 2.3 e4
+2.98 -1.69 -1.31 -0.526 339.827 | 3.5e-3 -2.8 e-4
PH,CH, +3.02 -1.22 -1.24 -0.592 339553 | 7.1e-3 7.4 e-4
+2.63 -1.14 -1.07 -0.517 339.998 | 4.8e-3 2.8 e-4
PH,;CH; +2.97 -1.16 -1.19 -0.591 339580 | 23e3 -2.7 e-4
quasiplanar +2.56 -1.07 -1.01 -0.516 340.031 | 1.4 e-3 -5.3 e-4
PH,S +2.36 -0.66 -0.66 -0.571 339.823 | -2.6e-4 1.5¢4
+2.10 -0.60 -0.60 -0.300 340.175 | 2.8 e-3 1.2e4
PH;PH trans | +1.82 +0.46 -0.11 -0.566 340.059 | 7.2 €3 -5.6 e-4
+1.64 +0.31 -0.16 -(.492 340.383 | 4.9 ¢-3 3.6 e-4
PH;3PH cis +1.82 +0.45 -0.12 -0.565 340.055 | 7.1e-3 I1e3
+1.64 +0.31 -0.16 -0.492 340.379 | 3.6e-3 5.6 e-4
PH,SiH,' +1.37 +1.76 +0.31 -0.563 340.161 | 5.6e-4 -4.1 e3
planar +1.17 +1.60 +0.28 -0.483 340.516 | 5.4 e-3 -1.5e-3
PH,SiH, +1.72 +1.44 -0.04 -0.557 340.126 | 5.8¢e-3 4.8 e-3
staggered +1.49 +1.32 -0.03 -0.481 340.479 } 7.5 e-3 4.5 e-3
PH,;SiH, +1.74 +1.43 -0.07 -0.555 340.123 | 4.8¢e-3 4.7 e-3
eclipsed +1.51 +1.3] -0.06 -0.479 340.470 | 7.6 e-3 4.6 e-3
PH;BH; +1.82 +1.96 -0.12 -0.566 340.154 | 2.7e-3 3.9e-3
PH,SH,' +2.56 -0.46 -0.88 -0.562 339626 | 1.8e4 |49e4
e g(H) refers to the average of the H atoms bonded to P.
1} P and E (Si or S} integrated by Promega in planar PH3SiH, and in PH3SH,.
Table 6-6: Atomic and group properties in H3NX, compared to amine.
H3NX qN) q(E) q(EH,) | q(H) KMN) L(N) L(E)
NH; -1.044 +0.348 54.745 7.0 e-5 2.7 e-5
NH;0 -0.51 -0.69 -0.69 +().398 54.676 -1.6e-3 -4.7 e-5
NH;NH trans | -0.74 -0.72 -0.46 +0.402 54.789 19e-4 -7.9 e-4
NH;NH cis -0.75 -0.73 -0.46 +0.405 54.793 2.0 e-4 3.2e4
NH,CH, ' -1.02 -0.14 -0.20 +0.404 | 54.938 6.1 ¢4 -9.3 e-3
NH;CH,pyr 1 -1.00 +0.01 -0.22 +0.407 54.915 1.0 e-4 -3.0e-3
NH;S -1.07 -0.24 -0.24 +0.438 54.886 -23e3 175¢e4
NH;PH trans | -1.16 +0.49 -0.11 +0.424 1 54.902 -56e4 |-1.0e3
NH;PH cis -1.16 +0.49 -0.12 +(.426 54.899 1.2 e-4 -8.5 e-4
NH;SiH, pyr | -1.19 +1.47 -0.04 +0.413 54.900 -4.5 e-4 1.0 e-3

o q(H) refers to the average of the H atoms bonded to N.

1) N and C integrated by Promega in planar NH,CH..
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Table 6-7: Properties of P-E bonding CC in PH;X systems, at the HF level.

PH;X Vio(r) p(r) r(P) r(E)
PH;0 -0.362 0.340 | 1.467 1.279
PH,0 -2.544 0.722 | 2.025 0.721
PH,NH (1) -1.413 0.440 | 2.075 0.8384
PH,NH (¢) -1.420 0.442 | 2071 0.8384
PH,CH, (p}) | -0.732 0.259 | 2.116 1.011
PH,CH, (qp) | -0.727 0.257 | 2.157 1.002
PH,S -0.211 0.172 | 2.246 1.450
PH,S -0.354 0.168 | 1.475 2.211
PH,PH (1) -0.390 0.156 | 1.466 2.523
PH,PH (c) -0.391 0.155 | 1.466 2.560
PH,SiH, (p)) | -0.371 0.151 | 1.474 2.594
PH,SiH,(s) | -0.399 0.146 | 1.451 3.084
PH:SiH,(¢) | -0.396 0.145 | 1.451 3.170
PH,BH; -0.455 0.161 | 1.444 2.336

e Distances from nuclei to maxima, r(E), are given in atomic units.
o The bolded element represents the atom in whose valence shell the CC is found.
¢ Bonding charge concentrations out of the symmetry plane are listed in Table 6-8.

Table 6-8: Properties of non-bonding charge concentrations and intervening
saddle points, on the substituent atom, E, in HyPX systems at the HF level.

PH;X Vip(r) p(r) Z r(E) #nb CC’s;
expected pairs
PH;0 -3.790 0.830 0.666 3;(2)
saddle -3.745 0.828 0.666
PH;NH () -1.812 0.4818 | £0.396 | 0.770 2;1
saddle -1.803 0.4819 10 0.769
PH;NH (c) -1.832 0.484 0 0.769 1; 1
PH;S -0.416 6.174 1.322 3;,(2)
saddle -0.399 0.172 1.324
PH;PH (1) -0.253 0.118 +1.358 | 1.473 2; 1
saddle -0.169 0.102 0 1.488
PH3PH (c) -0.248 0.117 +]1.356 | 1.474 2; 1
saddle -0.091 0.100 0 1.529
PH;SiH, (p/) -0.068 0.056 +1.621 | 1771 2m-bond CC’s, r(P)=3.72
PH,SiH, (s) -0.132 0.074 0 1.665 I
PH,SiH, (&) -0.133 0.075 0 1.663 1
PH;SH, -0.601 0.196 0 1.293 ;1
PH;SH, -0.404 0.186 +0.793 | 1.356 2 w-bond CC'’s, r(P)= 2.66
PH;SH, -0.238 0.141 +0.707 | 1.527 2 n-bond CC’s, ¥(S)= 2.39

¢ Distances from nuclei to maxima, r(E), are given in atomic units.

e 7 is the distance from the critical point to the molecular symmetry plane, in au.

e  For PH;0 and PH;S each CC makes a dihedral angle of 180° with an H bound to P, the
saddies make dihedral angles of zero degrees with the H atoms, i.e. 180° with the maxima.

o  The total number of non-bonding maxima is shown, along with the number of lone pairs
expected from the doubly bonded Lewis structures.




Table 6-9: Properties of non-bonding CCs on E in H;NX at the HF level.
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NH;X Vip(ry) | p(ry) Z r(E-ry) | #nb CC’s,
expected pairs

NH;0 -5.66 0.949 0.6477 3(2)

saddle -5.61 0.947 0.6479

NH;NH (9) -2.887 0.567 +0.698 | 0.745 2,1

saddle -2.049 0.503 0 0.761

NH;NH (¢} -2.901 0.567 +0.696 0.745 2,1

saddle -2.087 0.506 0 0.760

NHiCH, (p/) | -0.694 0.249 +0929 | 0.933 2,0

NH,CH,(py) | -1.234 0.294 0 1.008 1(0)

NH,S -0.550 0.194 1.303 3(2)

saddie -0.542 0.193 1.304

NH;PH (¥) -0.331 0.132 +1.367 1.451 2,1

saddle 0

NH;PH (¢) -0.328 0.132 +1.370 1.451 2,1

saddie -0.155 0.102 0 1.491

NH;S8iH, -0.149 0.079 0 1.651 1(0)

e Distances from nuclei to maxima, r{E), are given in atomic units.

e 7 is the distance from the critical point to the molecular symmetry plane, in au.

¢ For NH;0 and NH;S each CC makes a dihedral angle of 180° with an H bound to N, the
saddies make dihedral angles of zero degrees with the H atoms, i.e. 180° with the maxima.

o  The total number of non-bonding maxima is shown, along with the number of lone pairs
expected from the Lewis structures.
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7. Bis(ylene)phosphorane Results
While the phosphoranes have three single bonds and a potential double

bond, the bis(ylene)phosphoranes, HPX,, have one single bond and two potential
double bonds to the phosphorus atom. Like the phosphoranes, they are formally
pentavalent but may also be drawn with ylidic (zwitterionic) resonance structures.
Since either one of the two ylene bonds can be drawn as a double bond in a
tetravalent structure, the octet rule leads to an average P-X bond order of 1.5, versus

1.0 for the phosphoranes (H;PX) and 2.0 for the phosphinylidenes (HPX).

H H H H
| D [+ D |+ S S f o4

Bis(ylene)phosphoranes, HP(=X),, are experimentally known only when
the hydrogen atoms are replaced by other groups (see Section E of Regitz and
Scherer, 1990). Bis(methylene)phosphoranes are relatively well known, and
bis(imino)phosphoranes have been isolated and structurally characterized. Mes'PS,
and Mes PSe; are known, but RPO, is highly reactive (Meisel, 1990). Some mixed
bis(ylene)phosphoranes are known, such as Y 'P(X)=CY; and Y P(X)=NY where X
= NY, O, S or Se. These are typically made by oxidative addition to
phosphaalkenes or phosphaimines. The C and N atoms are typically substituted

with electron donating SiMe; groups, while the P may have a variety of sterically
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bulky and/or electron withdrawing substituents, Y.

The same set of six molecules (X = O, NH, CHy, S, PH, SiH,) discussed
here was studied computationally by Schoeller and Busch (1992) to determine their
stability towards electrocyclization. They found that only HPS,, HPO, and
HP(NH), prefer the open structure to the three-member ring. The major purpose
for including this set of molecules in the current study is as a comparison with the
phosphenium cations, Chapter 8. In Chapter 4, we saw systems with two single P-

E bonds and here we see systems with, potentially, two P-E double bonds.

7.1. Geometry

7.1.1. Molecular symmetry

All the bis(ylene)phosphoranes were optimized within the Cyv point
group. Previous calculations have shown all but bis(silylene)phosphorane to be
planar (Schoeller, 1990).  This is in contrast to the phosphorane case, which is
found to be somewhat pyramidal at carbon, in H;PCH,. MCSCF calculations have
found the C,-twisted structure of HP(SiH;), to have biradical character (Schoeller
and Busch, 1992). Optimized bond lengths and bond angles about P for the current
study are given in Table 7-1. Where both exo (1a) and endo (1b) isomers are
possible, the endo isomer is lower in energy by 15 to 30 kJ/mol, in agreement with
an earlier study (Schoeller and Lerch, 1986). This preference is slightly increased

at MP2. The exo/endo isomer (1¢) was not investigated.
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At the Hartree-Fock level of theory, the preference for a Cr-twisted,
pyramidal geometry at silicon is only half as strong, 70 kJ/mol, in the
bis(silylene)phosphorane as in the silylenephosphorane, H3PSiH,.

)
H ,,,?i//PQ?i ~H
H H

In contrast to the phosphorane case, optimal ‘n-type’ overlap in HP(CHaz),
requires a specific orientation of the CH, plane. In the Linnett (banana bond)
model, we can describe the interaction of a square-based pyramid for the
pentavalent P with a tetrahedron of electron pairs on each carbon atom.

The octet rule predicts less ylidic (zwitterionic) character in the bisylenes
than in the phosphoranes, for all substituents. As in the phosphoranes, there is no
opportunity to directly observe pyramidalization of the pnictogens or chalcogens
from geometric parameters, but we will investigate the topology of the Laplacian
below. Twisted structures or pyramidalization at phosphorus would indicate that
the second bonding electron pair had become localized — on the substituent or

central P atom, respectively. The vibrational frequency for inversion at the central

phosphorus was calculated by Schoeller and Busch (1992). They found
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wavenumbers of: HPO, 731 cm™, HP(NH), 611 cm™', HP(CH,), 390 cm™, HPS,
564 cm’', and HP(PH), 331 cm’, indicating that the planar geometry was a

minimum for all these species.

7.1.2. Comparison to related experimental structures

The experimental methylene derivative systems are planar at phosphorus
and at carbon, but are twisted about the P=C bonds, perhaps due to steric
constraints. The earliest bis(methylene)phosphoranes were substituted with -
donors,” such as trimethylsilyl, on the carbon atoms; YP[C(SiMes),],, but with a
range of substituents on the phosphorus atom. The X-ray determined P-C bond
length ranges from 162 pm when Y = CI to 170 pm when Y = CHPh;. The
optimized bond length for the unsubstituted system is 163 pm. The CPC angle
ranges from 137° when Y = CI to 127° when Y = CHPh; (Appel, 1990, p.370).
The optimized bond angle is 135°, again in close agreement with the experimental
data for CIP[C(SiMe;3 ), ]a.

The bis(imino)phosphoranes that have been studied experimentally are
similar to the bismethylenes, in that there are typically electron-donating groups on
nitrogen. The phosphorus substituent, Y, is often an amino group, N(SiMe;),. The
X-ray determined P=N bond length in (SiMe;),N-P(=NSiMes), is 151.5 pm and the

NPN bond angle is 134.3°. The optimized values are 151 pm and 141°. The

" Methylene phosphoranes are stabilized by electron acceptors at C.
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difference in angle is most likely due to steric effects, which also cause a torsion
angle of 32° at the amino nitrogen atom for the experimentally observed endo/endo
structure (Niecke and Gudat, 1990).

Steric stabilization is possible in place of electronic stabilization.
Changing the substituents, to Mes-P(=NSiMe;)(=NMes ), increased the P-N bond
lengths to 153.3 pm (SiMes) and 154.9 pm (Mes ). We can expect that replacing
the electron donating substituents (SiMes) at nitrogen (or carbon) and the electron
donating group (NR7) at phosphorus with hydrogen atoms would also lengthen the
P=N (or P=C) bonds so that, as usual, the HF optimized bond lengths are short.

Dioxophosphoranes are only known as intermediates, so there is no
experimental structural data. The dithioxophosphoranes, on the other hand, are
stable, when the phosphorus substituent is a large aryl group such as supermesityl.’
The X-ray structure of Mes PS; shows that the geometry is planar about P, with an
SPS bond angle of 126° and a P-S bond length of 190 pm (Appel et al., 1983).
This compares well with the optimized bond length of 189 pm, which is shorter
than both the phosphinidene and the phosphorane bonds. Note that in the HyPX
series P-M bonds were found to be too long (compared to MP2 and experimental
values) when optimized at the HF level. In this series, MP2 lengthens all the P-E

bonds by 2 to 5 pm and P-H bonds by about 1 pm.

" The same synthetic approach [Ar-P(TMS), + S,Cly] leads to a four-membered ring dimer, when Ar = Ph.

" The aromatic ring makes an 80° dihedral angle with the PS, plane.
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7.1.3. Comparison to other calculated P-E bonds

The P-E bond lengths are plotted, for all the series studied, in Figure A4-1.
The P-L bond lengths in the bis(ylene)phosphoranes, HPX, are slightly shorter
than the corresponding phosphinylidene (HPX) and phosphorane (H;PX) bond
lengths. The same is true of the P-S bond, but the P-P and P-Si bonds (in the planar
geometries of HPX,) are slightly longer than the phosphinylidene bonds. The
phosphorane bonds are significantly longer. The twisted geometry has a P-Si bond
6 pm longer than the planar geometry, which is a much smaller difference than in
the phosphoranes, H3PHS1H,.

The decreased ability of electropositive elements, P and Si, to form double
bonds to hypervalent phosphorus is much less evident in the HPX, bond lengths
(and deformation energies for silylene) than it was in the phosphoranes. The
variation from the HP=X bond lengths is on the same order of magnitude as that
between the differently substituted fluorophosphines. The same is true of the
second row phosphoranes. Only H;P=PH, H;P=SiH, and twisted HP(SiH;), show
significant bond lengthening relative to HP=X.

The XPX bond angles are consistent with one small and two large ligands
around the phosphorus atom. The short P-H bonds are also consistent with little
steric crowding, and may be further shortened by the large positive charges on P

relative to the phosphinylidenes.
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7.2. Bond Paths and Interatomic surfaces

Bond paths are found between all pairs of atoms that we expect to be
bonded. Properties and positions of the P-E bond critical points (BCPs) are given
in Table 7-2. There are no ring or cage critical points in the molecules studied. The
bonding radii of the central phosphorus atom, and the substituent atom, E, are
plotted versus E in Figures A4-2 and A4-3, respectively. The bonding radii of the
substituents follow the same trends as in the phosphoranes.

The bonding radii of the phosphorus atoms along the P-L bonds are very
similar to those in HP=X and H3P=X. The bonding radii of P along the P-M bonds
follow the same trend as Hi;P=X, but are 0.24 to 0.08 au shorter. Sulfur has a
somewhat longer bonding radius in HPS; than in H3PS, while the other substituents
have slightly shorter bonding radii than in H;PX. When compared to HP=X, the P-
P and P-S BCPs are significantly pushed towards the substituent, for both the
phosphorane and bis(ylene)phosphorane series. For the bis(silylene)phosphorane,
twisting lengthens both radii by about 0.07 au. The bonding radii in twisted
HP(SiH,), are very similar to those in the H;PSiH, system with a planar SiH;
group.

Correlation at the MP2 level lengthens both radii relative to the HF values,
for X = O and NH. When X = CH, and S, only the P bonding radius is significantly
lengthened, so the BCP effectively shifts towards the substituent. In HP(PH),,

correlation shortens the bonding radius of the central (pentavalent) phosphorus and
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lengthens those of the other (trivalent) P atoms. The same trend is seen for both

planar and twisted HP(SiH,),, but to a lesser extent.

7.3. Band Critical Points

7.3.1. Density, p(rs)

The BCP densities for the P-E bonds are plotted, for each series, in Figure
A4-4. The values for the HPX; series are shown in Table 7-2. The P-L BCPs have
p(rp) values ranging from 0.28 to 0.21 au, very similar to the phosphinylidenes and
phosphoranes, but slightly higher, consistent with the slightly shorter bonds. The P-
M BCPs have p(rp) values ranging from 0.18 to 0.10; lying between the
phosphinylidenes and the phosphoranes for the planar P-P and P-Si bonds and
above both for the P-S bonds.

While the P-Si bond length is similar to that in HP=SiH,, the BCP density
is much closer to the silyl phosphine values. The twisted geometry of HP(SiH,),
has a slightly lower BCP density, again similar to planar H;PSiH,. Along with
bond lengthening, MP2 reduces the density at the bond critical points, the smallest

effects being for the twisted HP(SiH,),.

7.3.2. Laplacian
The Laplacian at the P-E bond critical point is plotted in Figure A4-5. As
in the other series, the Laplacian decreases sharply from O to C and increases

slowly from S to Si. For F and O, the values are very similar to the
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phosphinylidenes. For C, P and Si, the values are between the phosphoranes and the
phosphinylidenes (though the overall ordering switches between the second and
third row). As in the phosphoranes and phosphinylidenes, correlation makes the
Laplacian values more negative (except for the most negative value which becomes

more positive) while the overall trend is preserved.

7.3.3. Ellipticity

The observed curvatures are all oriented in the expected direction. The
values range from quite low for the chalcogens (O and S) to quite high for the P-P
and P-Si bonds. The large ellipticity is maintained for the twisted silylene, along
with the reasonably high density. The P-P and P-Si bonds have very large
ellipticities, in all the formally double-bonded Species.* The largest ellipticities (>
0.5) are reduced significantly by MP2 correlation, but planar Si and C remain
highly elliptical. It was seen in H3PX and H3;NX that these high ellipticities are
associated with essentially non-bonding m-like density on the substituent atoms,

when the bond critical point lies within the core region of the substituent.

7.4. Atomic and group charges
Atomic and group charges and energies (K= G = -2V = -E) are given in

Table 7-3. See Chapter 4 for the interpretation of the integrated Laplacian, L. The

"The actual curvatures are quite small compared to P-L values. For HyPCH, the values are about —0.3 and ~0.2,
while in HyPSiH, the values are —0.05 and —0.04.
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atomic charge on P and the group charge on X are plotted in Figures A4-6 and A4-
7, respectively.

The charge transferred to each LH,; group lies between the
phosphinylidene and phosphorane values; closer to HiPNH for X = NH, and very
close to HPCH; for X = CH,. The trend is less obvious for the third row ligands.
The charge on planar SiH, is also between the H;PX and HPX values and is just
above q(SiH3) in the phosphines. The twisted SiH, group* donates less charge to
the PH group, having a positive charge intermediate between the Hi:PSiH, and
phosphine values. The charge on S in HPS; is similar to that in H3PS, and less
negative than that in HPS. The charge on the terminal PH in HP(PH), is positive
while in H3P=PH it is negative. This suggests that the bonding in HP(PH), is more
like that in HPS, and H3PS than like the P-P bonding in H3PPH.

The atomic charge on phosphorus is similar to that in the phosphoranes
(H3PX) for the second row ligands (significantly higher than in HPX and HPR;).
For the third row ligands, g(P) follows a similar trend to the phosphinylidenes
(HPX) and to the disubstituted phosphines.

Correlation (MP2) reduces the magnitude of most charges, an exception
being for X = PH where reduction of q(X) results in an increased positive charge on

the central phosphorus atom. The PH groups become nearly neutral at the MP2

" It is important to keep in mind that a multiconfigurational treatment of this species may change the results
considerably.
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level, reminiscent of the H;PPH and pyramidal H3SiH, results. In another
exception, the slightly decreased charge on twisted SiH, might be expected to
decrease the negative charge on P, but the significantly decreased negative charge

on the directly bonded H actually increases the charge on phosphorus.

7.5. Delocalization Indices and Bond Order

The delocalization indices between phosphorus and the substituent group
are given in Table 7-2, and plotted in Figure A4-8. The delocalization index
between P and the directly bonded hydrogen atom ranges from 0.65 to 1.00.

The delocalization index 8(P, X) ranges from 0.90 (HPO;) to 1.66 (HPS,
and HP(PH),). These values are from 70% (HPO, and HP(NH,),) to 94% (HPS,)
of the phosphinylidene values. They are 33% (in HPO,) to 60% (in HPS,) greater
than the disubstituted phosphine values, indicating a significant degree of multiple
bonding.

Plotting a curve of delocalization, &(P, X) vs. charge transfer, q(X), as we
have done for the previous series, all the points but planar CH; and twisted SiH, fall
on a quadratic curve, Figure 7-1. Again, choosing two separate data sets better fits
the data. For the HiPX series, the H3PO and H;PNH data better matched the
H3PCH; data. For HPX,, the X = O and NH data seem to deviate less from the
curve that includes the X = S and PH data (set 1). The best-fit equation for set 1 is:

8 = -0.4962q" - 0.1986q + 1.7204; R? = 0.9990, which reaches a maximum of 1.74
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when the charge transfer is 0.20 electrons to each of the substituents. Set 2,
including the CH, data, but excluding the S and PH data also gave a good fit with a
maximum delocalization index of 1.49, at a charge transfer of just 0.03 electrons,
18 = -0.2628¢" - 0.0160q + 1.4900; R? = 0.9963}. With the twisted SiH, data in
place of the planar, the maximum drops to 1.44 at q(X) =-0.2 {R? =0.9962}.

Delocalization index vs. charge on substituent group

s o X4
TIENSF

y, = -0.2628q” - 0.016q + 1.4900 y; = -0.4962¢2 - 0.1986q + 1.7204
R*=0.9963 .55 o R* = 0.9990

8(P,X) or §(P.R)

*
*
0.75 -

/ ,,,,,,,, AR Fatl=~4n) e ity
-2.00 -1.50 -1 .‘oo -0:50 v.wc,oo 0.50 1.00 1 .50 2.00
q{X) or q{XH)

B HP=X 0o H2P-XH e H3P=X ¢ H3P=X
& HPX2,set1 & HPX2 set2 A  HP(SiH2)2 HPX2, set 1
------ H2P-R ----- HPX - HPX2, set 2

Figure 7-1: Delocalization versus charge curves for H,PR, HPX and HPX,. The HPX, data are
split into two sets. Set | includes: X = O, NH, S, PH and planar SiH,. Set 2 includes: X = O, NH,
CH, and planar SiH,. The twisted HP(SiH,), data poiat is also shown, without any connection to
a best fit line. The data points for HyPX are also shown, for comparison.
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Many of the H;PX data points lie quite close to the set-2 curve. The set-2
results have an appealing consistency with the predictions of the octet rule, that 1.5
bonds will be formed with each substituent, however we would then expect a
formal charge of —0.5, not zero. The excluded S and PH indices are both 1.66.
These substituents show the same unusual shift of the BCP towards the central P as
in the phosphoranes and give excess delocalization in almost every series studied,
though for the HP=X series it is only an additional 0.05.

The reduction of 8(P, X) in the phosphoranes and bis(ylene)phosphoranes,
relative to HP=X, is at least in part due to the more positive charge on the
phosphorus atom when X = O, NH and CH,. For the third row substituents
however, q(P) is very similar in HPX and HPX,. The charge on P varies more with
the degree of fluorine substitution in the phosphines, with much less effect on
delocalization. There must be some real difference in the bonding to reduce the
third row 8(P, X) values so that the HPX, curve lies halfway between HPX and
H3PX for X =S, PH and SiH,.

Depending on which curve we believe is more representative of the series
as a whole, we could say that the bond order for the planar, polar series is either
1.75, with a substituent formal charge of —0.2, or 1.5 with formal charge of zero.
The curve including the PH and S data can be represented by a resonance scheme

with 70 to 80% double bond character.
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This could be equally well represented by inclusion of the octet rule
structures, thus giving equal weighting to the structure that minimizes formal

charges and the set of structures that obey the octet rule.

H H H
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The curves including the CH, data do not correspond to any simple Lewis
structure representation. A bond order of 1.5 should carry a formal charge of 0.5,
so the decreased delocalization index in HP(CH,), must be due to something other
than bond polarity. The effects at work here may be similar to those in the

phosphoranes.

7.6. Topology of the Laplacian: Charge Concentrations
Figure 7-5 shows isovalue envelopes for the Laplacian scalar field, V>p(r).
The value plotted is V*p(r) = 0. Table 7-4 shows the properties of the P-E bonding
charge concentrations. Table 7-5 shows the properties and locations of the non-
bonding charge concentrations on the substituent atoms.
The second row substituents each have a bonding maximum in their

valence shell, but the phosphorus atom does not display a bonding maximum in
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those systems. For HPS,, both P and S have bonding maxima in their valence
shells. For X = PH and SiH,, only the central P has bonding maxima in its valence
shell. This is consistent with the bond polarity; only for HPS, does the BCP lie
between the two valence regions. Similar observations are made in the H;PX
series. The bonding maximum in twisted HP(SiH,), is closer to the phosphorus
nucleus and has a more negative Laplacian than the planar species. This
observation is also made for twisted versus planar HsPSiH,.

At the Hartree-Fock level, all the planar substituents in HPX, exhibit the
expected number of non-bonding maxima for doubly bonded systems: 2 for O and
S, 1 for NH and PH, none for CH; and SiH,. All charge concentrations are in the
plane of symmetry, as expected. There is a non-bonding maximum in the Si
valence shell for Cr-twisted HP(SiH2),. A lone pair was also seen on pyramidal
SiH; in H3PSiH,, but in twisted HPSiH, the lone pair resided on the more
electronegative P. Since only Si has a preference for a pyramidal arrangement, we
can conclude that the other substituents are involved in double bonds with the
central, pentavalent phosphorus atom.

The positions of the maxima on O are interesting; they seem to be part of a
‘cap’ on the O atom, rather than the torus that is more typical about terminal atoms,
Figure 7-2. In addition, there are two pairs of n-like maxima, one pair for each P-O
bond, 1.68 au from the phosphorus nucleus, 1.62 au above and below the plane,

making an angle of 150° with the P atom. A search out to 1.8 au did not reveal
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similar maxima on P for any of the other substituents.

4 I @ EY @

e ., @ L
C 7:,, ‘J d Q j) e S -~
Figure 7-2: Isovalue envelopes for HPO,, calculated at the HF level, from two different points of
view. The structure of the cap-like non-bonding maxima on each O atom is revealed.
Vp =a)-3.0,b)-3.5, ¢)-4.0, d) 3.5, ¢) 4.0.

The MP2 wavefunction for HPO, shows a similar topology around
phosphorus, but with the n-like maxima 0.1 au closer to the nucleus, and with the
addition of P-O o-bonding charge concentration maxima in the valence shell of
phosphorus. The cap-like arrangement of the lone pairs on O is consistent with
double bonds to P, or transfer of the second bonding electron pair ‘from OtoP,so
that the lone pairs on O lie in the plane, rather than forming a torus of three non-
bonding pairs. Based on electronegativity and valence arguments, the second
possibility seems unlikely. The n-like maxima on P must then be due to the weak
attraction of P for the bonding pairs, so that they don’t coalesce into a single
maximum.

The two lone pairs on S in HPS; are opposite each other (endo and exo,
see Figure 7-3) with a significantly higher magnitude of the Laplacian than is found
at the associated saddles in the valence shell, see Table 7-5. These two maxima
represent well-resolved regions of charge localization on sulfur, rather than a torus

of charge concentration.
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Figure 7-3: Isovalue envelopes for HPS,, calculated at the HF level. The two non-bonding
maxima on each S atom are apparent. V?p =a)-0.25, b)—0.30.

In HP(PH),, MP2 correlation shifts charge back onto the substituent PH
group, making each PH group essentially neutral. It also moves the BCP to a more
neutral position nearer the central P, as it does for H;PPH. Because correlation
lowered the charge on the substituent PH to nearly zero, making it suspiciously like
the H;PPH system, the charge concentrations were checked for the MP2
wavefunctions of HP(PH),. Two maxima are found within the non-bonding
concentrations on the substituent P atom, above and below the plane of symmetry.
The density is very flat between the two maxima and the saddle between them has

almost identical properties.

@

b c g @

Figure 7-4: Isovalue envelopes for HP(PH),, calculated at the HF level, from two different points
of view. The two non-bonding maxima on each trivalent P atom, in the MP2 wavefunction, are
part of the same non-bonding charge concentration and apparently correspond to a single electron
pair. VZp =a)-0.10, b) —0.15, ¢) —0.20.

These maxima can be compared to those on N in H3PNH, and on P in

H;PPH. In H3PPH, there are two distinct maxima separated by a saddle whose
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properties are very different, as is seen above for HPS;. In H;PNH, the two
maxima are connected by a saddle with very similar properties and we concluded
that they represent one distorted electron pair. We make the latter conclusion here.
The MP2 results are simply a small distortion of the single charge concentration
observed at Hartree Fock. Even at the HF level there is a large density above and
below the plane.

Looking at the -0.10 au envelope in Figure 7-4, one is tempted to describe
the substituent as an HP molecule, displaying a torus of electron density, which is
then distorted by the secondary interaction with the central HP group, also
displaying a distorted torus. Besides HPO,, twisted HP(SiH,); and HP(PH),, none
of the remaining HPX, systems showed qualitative differences when correlation

was included.

7.7. Summary
Considering that the experimental systems are twisted, such that the C (or
N) bond plane is rotated relative to the P bond plane, it is not surprising that there is
not complete sharing of two pairs of electrons in the HPX, systems studied. Once
again, the third row ligands exhibit somewhat different bonding than the second
row. Silicon prefers a twisted geometry with a non-bonding charge concentration,
though it can be forced by symmetry to remain planar and seems to be involved in

multiple bonding even when twisted. The arrangement of charge concentrations
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(Lewis electron pairs) on the substituents PH and S cannot be completely controlled
by symmetry. While the delocalization index at Hartree-Fock shows a high
delocalization for X = S and PH, relative to the other bis(ylene)phosphoranes, there
seems to be significant n-character in the lone pair localized on each substituent PH
group at the HF and MP2 levels. This suggests that there may be a contribution
from the polarized P-P bonding electron pairs to the ‘non-bonding’ concentration.

The extent of covalent bonding, as measured by the delocalization index,
is definitely less in the phosphoranes and the bis(ylene)phosphoranes than in the
phosphinylidenes. This can only partly be accounted for by differences in atomic
charges and bond polarity, and must in part be related to the hypervalent nature of
these compounds. The localization of what would otherwise be bonding electrons
is more pronounced in the phosphoranes where even one double bond would
exceed the Lewis octet on the central P atom, whereas in the
bis(ylene)phosphoranes one double bond completes the octet and the second
exceeds it.

There is considerable debate in the chemical education literature about
whether Lewis structures should be drawn to complete the octet or minimize formal
charges. It appears from these results that both are important for phosphorus, and
presumably for other third row main group elements. From the delocalization vs.
charge transfer curves we find that up to one and a half Lewis pairs are shared

between P and X in HsPX and up to 1.75 pairs are shared with each X in HPX,. It
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can be concluded that there are both quantitative and qualitative differences in the
bonding properties of pentavalent phosphorus systems compared to trivalent
phosphorus systems. Furthermore, as the substituent becomes more electropositive
than the central atom, the hypervalent bonding arrangement becomes less
favourable. We saw in the previous chapter that the octet rule is much more
important for nitrogen and that the bond orders in formally pentavalent HiNX were
no greater than in the formally singly-bonded amines. Choosing more
electronegative substituents could potentially alter this. For example, the N-X bond

order may be higher in the F3NX series than in the H;NX series.
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7.8. Laplacian Isovalue Envelopes

a b

Figure 7-5: Continued on next page.
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d e f

Figure 7-5: Isovalue envelopes of the Laplacian, V2p = 0, for HPX,. Five views, where X is a) O,
b) NH, ¢) CH,, d) S, e) PH, f) planar SiH,.
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7.9. Data Tables

Table 7-1: Optimized geometries of bis(ylene)phosphoranes, PH(EH;.1);, at HF;
MP2 values in italics. Related experimental values or ranges are given in

parentheses.
bisylene r(P-E) r(P-H) Z EPE Z HPE -Energy /au
PHO, 142.35 138.17 134.21 112.89 491.12427
146.62 139.26 134.98 112.51 491.87478
PH(NH), 151.23 137.34 140.69 109.66 451.38660
trans 155.18 138.03 143.79 108.10 452.08957
Deriv.Exp’t® | (151.5) (134.3)
PH(NH), 150.90 13945 127.49 116.26 451.37565
Cis 154.63 140.71 124.64 117.68 452.07736
PH{CH,), 162.97 138.09 135.37 112.32 419.31568
165.00 138.63 134.93 112.54 419.94709
Deriv.Exp’t® | (162 — 170) (137 - 127)
PHS, 189.27 138.77 134.06 112.97 1136.41973
192.07 136.59 133.98 113.01 1137.24427
Deriv.Exp’t® | (190) (126) a1
PH(PH), 203.05 138.82 141.14 109.43 1023.93161
trans- 205.98 139.46 141.58 109.21 1024.74304
PH(PH), 203.54 138.82 131.89 114.05 1023.92608
cis 206.41 139.53 130,73 114.63 1024.73686
PH(SiH,), 209.74 138.74 141.07 109.47 921.39288
planar 211.90 139.30 142.08 108.96 92216380
PH(S1iH,); 216.05 138.86 140.53 109.73 921.41968
twisted ' 216.55 137.38 137.38 11131 922.19687

¢ Bond lengths are in picometers and angles are in degrees.

1. C, symmetry with 2 types of Si-H bonds; sum of angles about P = 360.0°, about Si =
329.4°; HPSiH dihedral angles are 171.09° and 49.78°.

a) X-rayfor (SiMesy) ;N-P(=NSiMe;),: Neicke and Gudat (1990).

b)  X-ray data for a range of systems, YP(C(SiMe3)),: Appel (1990). The twist angle varies
from 37 to 50°.

c) X-ray for Mes'PS,: Appel et al. (1983).

{See reference list in Bibliography, above)
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Table 7-2: Properties of P-E bond critical points and delocalization indices in
bis(ylene)phosphoranes; MP2 values in italics.

bisylene p(ry) | Vplry) | e(ry) | ¥(P-r) | r(E-rp) | 8(P,E) | 3(P,X) | Ratio to
HPR,

PHO, 276 1 +1.70 1 .14 1.096 | 1.594 0.90 0.90 1.33
2451 12541 13| 1131 | 1.640

PH(NH), trans 242 +081 ) .36 1.148 | 1.714 1.00 1.02 1.37
2184 +0551 3311185 | 1.751

PH{(NH); cis 2461 +0.82| 38 1.145 | 1.708 1.00 1.02 1.37
2241 +0.541 361 LISO | 1.743

PH(CH,), 212 +0.06 1 .74 1 1.227 | 1.853 117 1.24 1.43
991 +0.061 671 1.268 | 1.831

PHS, 178 -0.31 ) .29} 1.602 | 1975 1.66 1.66 1.60
162 -0.201 201 1.653 | 1977

PH(PH), trans 135 -0.14 | 1.00 } 2.373 | 1.466 1.48 1.66 1.45
126 013 531 2145 | 1.748

PH(PH), cis 134 -0.13 1 .93 12400 | 1.450 1.47 1.66 1.45
126 0131 4912181 | 1721

PH(SiH,), planar | 102§ +0.12 | 1.17 | 2.536 | 1.428 1.04 1.36 1.54
0971 +0.04 1 090 ] 2528 | 1.477

PH(SiH;), twisted | 094 | +0.01} .81 | 2.608 | 1.492 0.96 1.29 1.47
.093 0021 4712573 1529

e  Distances from nuclei to bond critical points, r(E-ry), are given in atomic units.

e  The ratio relative to the phosphines is for the delocalization indiees, 8(P.X) vs. 8(P.R)

Table 7-3: Atomic and group properties in bis(ylene)phosphoranes, compared to
phosphine; MP2 values in italics.

bisylene q(P) q(E) qX) q(H) K(P) L(P) L(E)
PHO, +3.558 | -1.511 -1.511 -0.534 339.24312 1.7e-3 -3.1e-4
+3.080 | -1.324 -1.324 -0.433 339.71664 -1.1e-3 -1.6 e-4
PH(NH), +3.343 | -1.804 -1.388 -0.565 339.36649 36e3 -5.0e-4
frans +2.809 | -1.555 -1.167 -0.479 339.86459 -4.1e-3 1.8 e-4
PH(NH), +3.342 | -1.797 -1.380 -0.578 339.37239 55e3 -1.6¢-4
cis +2.824 | -1.365 -1.174 -0.473 339.87497 2.5 e-3 l.4e4
PH(CH,), | +2.827 |-1.169 -1.121 -0.580 339.68842 4.8¢e-3 6.2¢e4
, +2.321 1 -1.035 -0.911 -0.493 340.18123 4.0e-3 4.0 e-4
PHS, +1.787 | -0.625 -0.625 -0.541 340.05016 -3.6¢-3 -3.5e-5
+1.396 | -0.477 | -0.477 -0.446 340.45637 -3.4e-3 -6.1 e-5
PH(PH), +0.164 | +0.752 | +0.202 | -0.557 340.72099 4.7 e-3 1.5e3
frans +0.341 | +0.481 | +0.033 | -0.469 340.88041 -3.1e-3 -2,3 e-3
PH(PH), +0.116 | +0.767 | +0.216 | -0.546 340.73748 2.7e3 -7.0e-4
cis +0.349 | +0.500 | +0.050 | -0.449 340.89375 -2.6 e-3 6.2 e-4
PH(SiH;), [ -0.81! +2.124 | +0.677 -0.533 340.97815 5.7 3 3.7e-4
planar -0.670 +1.864 | +0.522 | -0.433 341.21142 3.9 e-4 2.7 e-4
PH(SiH,), | -0.422 +1.928 | +0.491 -0.548 340.87240 3.4e3 1.8e3
twisted -0.479 +1.782 | +0.466 | -0.455 341.16640 2.3 e-3 -1.7e-3

e q(H) refers to the H atom bonded to P.
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Table 7-4: Properties of the P-E bonding charge concentration maxima.

bisylene V@) | p(r) | r(P) | v(E)
PHO, +0.032 1 0.045 | 1.684 | 2.774
PHO, -3.187 | 0.785 | 2.022 | 0.703
PH(NH), (1) -1.744 | 0.478 1 2.043 | 0.821
PH(NH), (¢) -1.747 1 0478 | 2.034 | 0.823
PH(CH,), -0.867 | 0.278 | 2.090 | 0.990
PHS, 0288 | 0.192 | 2.160 | 1.417
PHS, -0.340 | 0.178 | 1.480 | 2.097
PH(PH), (1) -0.349 1 0.159 | 1.483 | 2.358
PH(PH), (¢) -0.358 | 0.160 | 1.481 | 2.366
PH(SiH,), (pf) | -0.319 | 0.146 | 1.499 | 2.470
PH(SiH,), (sw)' | -0.325 | 0.142 | 1.481 | 2.735

® Distances from nuclei to bond critical points, r(E), are given in atomic units.
o The bolded element represents the atom in whose valence shell the CC is found.

1) Above and below the symmetry plane by 1.622 au.

Table 7-5: Properties of the non-bonding CC maxima, and infervening saddle
points, on the substituent atom, E.

bisylene Vip(r) | p(r) Z | x(E) | #ofnbCC’s;
# Ip expected

PHO, MP2 404510853 0 [0.661]2;2

endo | -4.347 | 0.873 0 0.656_j

saddle | -3.709 1 0.829 | 0 | 0.663 | (cap)
PHO, HF 443310875 0 0657122

endo | -4.157 10857 0 | 0.662]

saddle | -3.936 1 0.842 | 0 10.662 | (cap)
PH(NH), (#) 2.094[0508] o0 0760 1;1
PH(NH), (¢) 218210516 0 0757111
PHS, 046810181 0 11313022

endo | -0.481 | 0.182 0 1.310

saddle | -0.259 | 0.148 | £1.294 | 1.346 | (torus)
PH(PH), (1) 0221 10112] 0 [1470]1;1
PH(PH), (c) 023001131 0 [1467]1;1
PH(PH), () MP2 | -0.187 | 0.106 | £0.970 | 1.478 | 2,1

saddle | -0.182 10.106 | 0 | 1.478
PH(PH), () MP2 | -0.190 | 0.108 | £0.539 | 1.475 | 2; 1
PH(SiHy), (sw) | -0.097 [ 0.065 | 3.531 | 1.708 | 1

® Distances from nuclei to maxima, r(E), are given in atomic units.

e Z is the distance from the critical point to the molecular symmetry plane, in au.

¢  The total number of non-bonding maxima are shown, along with the mumber of lone pairs
expected from the doubly-bonded Lewis structures.



8. Phosphenium Cation Results

Phosphenium cations, PR,", are experimentally known and characterized,
where the R group is an electronegative potential n-donor; ideally an amino group
with bulky substituents for steric (kinetic) protection (Cowley and Kemp, 1985).
The phosphenium cations are often discussed as carbene analogues, being isolobal
with :CR; and isoelectronic with silylenes, :SiR;. While some carbenes have triplet
ground states, the known phosphenium cations have singlet ground states, as do the
silylenes.”  The electrophilic chemistry is related to the formally vacant
unhybridized p orbital on the phosphorus atom. Donation of the ¢ lone pair on
phosphorus leads to complexation of transition metals.

Some particularly stable phosphenium cations incorporated the ‘electron-
deficient’ phosphorus atom into apparently aromatic 6m-electron ring systems

(Denk et al., 1999).

+

Stabilized phosphenium cations can be made from the chlorophosphine

with a chloride-abstracting agent such as the Lewis acid ALClg. The amino groups

" This is likely related to the types of stabilizing groups used and to the separation of s and p atomic orbitals in P
and Si versus C (inert pair effect).

243
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are planar, even when in a saturated and/or acyclic system. The planarity of the
amino groups is explained by resonance structures in which the lone pairs on
nitrogen are donated to phosphorus, delocalizing the formal positive charge over
the three atoms. In the 6m-electron rings, the formal charge can be further spread
out over all the atoms in the ring. Most other isolated phosphenium cations include
a potential n donor as a substituent on phosphorus, such as a chlorine atom, an
aromatic ring or a metallocene (Cowley and Kemp, 1985).

It has been suggested by Gudat (1998) that the stability of phosphenium
cations depends both on the delocalization of n-like density from the substituent to
the phosphorus atom and on electrostatic attraction arising from the polarity of the
bonds. We have seen in previous chapters that there tends to be a relationship
between these two parameters, with the delocalization of electrons decreasing as the
bond polarity (atomic charge) increases. The amino group seems to have the
optimum combination of n-donating ability, large charges and small bond lengths,
leading to moderate Wiberg bond orders (see Appendix 3) and large electrostatic
attractions (Gudat, 1998).

In this chapter we will examine the electronic structure of phosphenium
c;cltions to determine the extent of n-like bonding as measured by the delocalization
index and the ability of each substituent to moderate the charge on phosphorus by

either o- or n-type donation of electron density. We will use the extrapolation
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method developed in the previous chapters to account for the effect of bond polarity
on 8(P,R) and thus propose a Lewis structure representation, supported by an
analysis of the charge concentrations on the substituents. We will be particularly

interested to explain the extraordinary stabilization of aminophosphenium cations.

8.1. Geometry

8.1.1. Energy of conformers studied
All the phosphenium cations were optimized as singlets within the Cov
point group. No counter-ions were used. Optimized bond lengths and bond angles
about P are given in Table 8-1, along with experimental values for some related
systems. Where both exo (E, 1a, 2a) and endo (Z, 1b, 2b) isomers are possible, the

exo isomer is lower in energy. The mixed exo/endo isomers were not investigated.

/Pt P i
\O O/ (I) P ?
1a 1b

The exo versus endo energy differences are 6, 28, 2 and 1 kJ/mol for the
OH, SH, Me and SiHj; substituents, respectively. It is interesting that only the thio
substituent has a very strong preference for a particular conformer. The bond angle

in both the hydroxyl- and thio- phosphenium cations increase by 10° between the
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exo and endo arrangements.” The changes in the methyl and silyl bond angles are
smaller.

An additional C, geometry was investigated for the dimethylphosphenium
cation, P(CHs),", as this had previously been found to be the lowest energy
structure (Gudat, 1998). It was found to be lower in energy than the C,v geometries
by an additional 2.7 kJ/mol. Due to the small difference in energy and similarity of
geometry, the C,v geometries are considered here for ease of analysis and
comparison with the other systems. The slight twist (22° from exo) would help
minimize the H'H repulsions but probably has little to do with electronic effects.
The displacement would not converge for this geometry optimization despite -
vanishing forces, suggesting that the potential energy surface is very flat in this
region. There is no experimental evidence that the phosphino ligands should be
planar as the amino groups are, and a previous calculation had found a C,
arrangement to be the lowest energy’ (Schoeller and Busch, 1990). Therefore a
cation with pyramidal phosphino groups (C>, 3b) was investigated, along with the

planar diphosphinophosphenium cation (Cv, 3a).

P
P e ""P/P\P\’

3a 3b
The C, pyramidal geometry, 3b, has the substituent ‘lone pairs’ pointing

* A similar 10 degree difference is seen between the conformers of HP(PnH),.

" Schoeller has also found a C; geometry, similar to the C, geometry (Schoeller and Tubbesing, 1995).
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above and below the PPP plane, and is 78 kJ/mol lower in energy than the planar
system. This energy difference is probably related to the inversion barrier for
phosphines. The barrier to inversion, through a planar transition state, is 115
kJ/mol in PH; but only 25 kJ/mol in NH;3 (Emsley and Hall, 1976, p. 41). Therefore
amines invert rapidly while phosphines do not. The pyramidalization energy of the
phosphino substituent suggests that the planar arrangement imparts about 35 — 40
kJ/mol more stability in terms of P-P bonding, but this is overwhelmed by the
destabilization of the substituent. A similar effect is seen in the pyramidalization of

the SiH, substituents in H3PSiH, and HP(SiH,),.

8.1.2. Hpydride transfer reactions
Hydride transfer reactions have been studied previously to determine the
relative stabilizing . effects of phosphenium cation substituents (Gudat, 1998;
Schoeller and Tubbesing, 1995)

PR, + PH; > HPR, + PH," + AEy
Equation 8-1

None of these calculations included F, Cl, SiH; or planar PH, substituents.
The same energy difference was evaluated for the current calculations, though zero
point energies and basis set superposition errors were not accounted for. These
effects should not alter the overall trends. The reaction energy values, AEy, are
given in Table 8-1. It is clear that the amino group is a much more stabilizing

substituent than the others, in agreement with previous experimental and theoretical
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results. The overall stabilizing trend found in the current study is:
NH, >> OH > SH, PH,”, CH; > PH,*™, Cl, SiH; > F > H.

The previous study by Gudat (1998) found OH and SH to have similar
AEy values in PR;" but found SH to be more stabilizing (by 25 kJ/mol) in PHR”,
and OH to be more stabilizing (by 15 kJ/mol) in PONH2)R". When the inversion
barrier is subtracted from the hydride transfer energies of planar P(PHa),", the
effects of P-P bonding alone are found to be similar to those of P-S bonding in exo

P(SH),".

8.1.3. Comparison to experiment

Of the substituents studied here, only amino- and thio-phosphenium
cations have been structurally characterized, see Table 8-1. The X-ray determined
P-N bond length of a diaminophosphenium cation (Cowley ef al., 1978) is in good
agreement with the calculated value, where the only difference is replacement of
the hydrogen atoms with the larger isopropy! groups on nitrogen. Presumably, the
difference in bond angles is due to the differing steric sizes of the nitrogen
substituents. The optimized P-S bond lengths are in good agreement with those
from an X-ray structure of a cyclic derivative (Burford ef al., 1988). While the
optimized bond angle is determined by steric interaction of the ligands and the lone
pair, the experimental bond angle is constrained by being in a five-member ring, so

the disagreement is not surprising.
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8.1.4. Comparison to other calculated structures

The endo and exo bond lengths are quite similar in all cases. A plot of the
P-E bond lengths in the cations, and in each of the other phosphorus series studied,
is shown in Figure A4-1. Comparing the bond lengths in the cations with the single
and double bonds calculated previously, all but the silyl and planar phosphino
systems lie somewhere between single and double bonds. The P-P bond is
approaching a true double bond while the P-H and P-Si bonds seem to be
destabilized single bonds. The P-Si bond in P(SiHs)," is longer than the single
bonds, but it is shorter than the P-Si bond in the pyramidal PH3SiH, geometry.

The P-P bonds in the planar cation (3a) are about the same length as the
double bonds in HP=PH and HP(=PH),. The P-P bonds in the C, (3b) cation have
a similar to the length to those in H3;PPH. Compared to the phosphine HP(PH;),,
the P-P bonds in P(PH,)," are 5% shorter in the pyramidal arrangement and 9%
shorter in the planar arrangement. The P-C bonds are about 3% shorter than in
dimethylphosphine. The remaining P-E bonds are all about 6% shorter than the
corresponding phosphine, but longer than the P=E double bonds.

The EPE bond angles range from 100° to 111° for the planar geometries,
consistent with an AX,E VSEPR geometry. The variation in the angle seems to be
determined mainly by the size of the substituent group, as suggested by the endo vs.
exo geometries.

Since bond lengths are shortened and strengthened by both covalent
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(electron sharing) and ionic (electron transfer) interactions, it is interesting to
consider the extent of bond shortening as it compares to the hydride transfer energy,
which should also have contributions from electron delocalization and bond
polarity, according to Gudat (1998). No correlation is observed. The P-P bond in
the planar cation is the one that shortens the most, relative to the phosphine, but is
among the least stabilizing substituents, due to the high inversion barrier of
phosphines. The pyramidal P(PH,)," has much longer P-P bonds that the planar
cation, but the pyramidal substituent is twice as effective at stabilizing the cation.
The bonds that shorten the least (or lengthen) are those without lone pairs on the
substituent: P-H, P-C and P-S1. Of these, CHj is an intermediate stabilizer, similar
to pyramidal PH,, and the SiHj group is a weak stabilizer, similar to the planar PH;
group. The remaining bonds all shorten by about 6%. The halogens, F and Cl, are
weak stabilizers. The chalcogens, OH and SH, are intermediate stabilizers —
slightly better than methyl. Finally, NH; is a superb stabilizer, having the largest
hydride transfer energy, but unremarkable bond shortening.  Clearly, the

stabilization of phosphenium cations is not reflected in the bond lengths.

8.2. Bond Paths and Interatomic surfaces
Bond paths are found between all pairs of atoms that we expect to be
bonded. Properties and positions of the P-E bond critical points (BCPs) are given

in Table 8-2. There are no ring or cage critical points in the molecules studied.
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Figure 8-8 shows contour plots of V?p(r), in the molecular plane of the
phosphenium cations, overlaid with bond path trajectories and the intersection of
the interatomic surface with the plane.

Plots of the bonding radii of the phosphorus and substituent atoms are
shown in Figures A4-2 and A4-3, respectively. The bonding radius of the central
phosphorus follows the same pattern as the total bond length. The bonding radius
of the central P in planar P(PH,)," is actually shorter than that in HP=PH, though
the bonding radius of the substituent P atom is closer to that of the phosphines,
giving a bond length just above HP=PH. In the C,-twisted cation, 3b, the bond
critical point shifts considerably towards the substituent, relative to the planar
cation, 3a. The central P atom resembles the phosphines and the substituent P atom
resembles the phosphinylidene, HP=PH, in terms of bonding radius.

All the substituent bonding radii are shorter than in the phosphines, except
for SiH; and H, which are nearly identical to the phosphines. The greatest
decreases in bonding radii are for the most electronegative atoms, perhaps because
they have the most density available for transfer to the positively charged
phosphorus. The entire P-Si bond lengthening, relative to the phosphines, appears

in the phosphorus atom’s bonding radius.
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8.3. Properties at the Bond Critical Point

8.3.1. Density, p(ry)

A plot of the density at the P-E bond critical points is shown in Figure A4-
4. Values are given in Table 8-2. The P-L BCPs have p(ry) values ranging from
0.18 to 0.22 au, falling between the single and double bond values, as the bond
lengths do. The P-M BCPs have p(ry) values ranging from 0.08 to 0.15. These
values also mirror the bond length trends. The BCP density of the planar
diphosphinophosphenium P-P bond is between the HP(=PH), and HP=PH values.
For the pyramidal cation the density is similar to that of HP(=PH),. The P-Si bond

density falls below the single bond values.

8.3.2. Laplacian

A plot of the Laplacian of the density at the P-E bond critical point 1s
shown in Figure A4-5. Values are given in Table 8-2. As in the other series, the
Laplacian decreases sharply from F to C and increases slowly from S to Si. The
trend is less clear when Cl is included.

The Laplacian in dimethylphosphenium, P(CHs),", is more negative than
for the methylphosphines, Y,PCH;. The same is true for R = SH, PH, and H. All
the other second row substituents have values between the single bond and double
bond values. The Laplacian at the P-Cl BCP is in the range of the

chlorophosphines. The Laplacian at the P-S BCP has a value near that for HPS,,
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which is more negative than all the other single and double P-S bonds.

8.3.3. Ellipticity

The observed curvatures are all oriented in the expected direction. The
ellipticity is only significantly larger than typical single bond values for R = PH;
(planar), NH,, H (/) and to a lesser degree SH and pyramidal PH,. The planar
pnictogens are in geometries conducive to high ellipticities, while the bonds around
the group 4 substituents are arranged tetrahedrally, leading to high local symmetry
and thus low ellipticity. The preferred geometry for the amino group is planar, so
there is clearly a preference for accumulation of charge above and below the bond
plane in this system. The pyramidal phosphino group seems to achieve the same
goal by a different approach, putting electron density in the form of ‘lone pairs’
either above or below the plane. The chalcogens and halogens have no particular
arrangement of electron density imposed by the geometry. The moderate ellipticity
in P(SH)," indicates that there is probably some n-like bonding in this system as
well. The O, S, N and (planar) P ellipticities are all comparable to those in (MP2)
HPX,, suggesting a significant degree of n-character in the bonding. The P-H bond
critical point is near the valence shell of phosphorus and it has a surprisingly high
ellipticity.

The positions of, and properties at, the bond critical points, along with the

bond length trends, are indicative of a single bond for P(SiHs),', weakened by
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additional electrostatic repulsion, and less polar single bonds for PH," and
P(CHs),', with increased density and charge concentration at the BCP, relative to
the phosphines. They indicate a slightly weakened double bond for planar P(PH),"

and partial multiple bonding for the remaining cations.

8.4. Atomic and Group Charges

Atomic and group charges and energies are given in Table 8-3. See
Chapter 4 for the interpretation of the integrated Laplacian, L. Plots of the atomic
charges on phosphorus, q(P), and on the substituent groups, g(R), are shown in
Figures A4-6 and A4-7, respectively, and compared to the charges in the other
phosphorus series studied. All the substituents studied are reasonably effective at
spreading out the positive charge. In each phosphenium cation, the charge
transferred to the substituent is less than in the phosphines. This is consistent with a
small transfer of charge towards the phosphorus atom when the third substituent
(say a chloride or hydride) is lost, YPR; = Y + PRy,

We see in Table 8-3 the charge of the hydride before it leaves. When a
hydride, H', is removed from PHj3, the remaining atoms experience a total charge
increase of +0.436, but it is not totally localized on the phosphorus atom. Each
remaining H atom becomes less negative by 0.063. For the remaining systems, the
total change in charge may be more or less than in PH,", but in each case more of it

is shared with the substituent.
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For the electronegative second row substituents, the contraction of the P
atom means that the H in HPR; is more negative than it is in PHs. Therefore,
removal of the hydride transfers less charge to the remaining atoms (0.38 to 0.41).
Each F and OH group takes only 0.09 of that, while the less electronegative NH,
and CH; take an additional 0.125 and 0.131, respectively, in positive charge.

For the third row substituents, the total charge transferred from the hydride
is about +0.43 to +0.44. Each Cl takes a little less of that than the P atom, and each
SiH; group takes a little more than P. The planar PH, groups take the majority of
additional charge in P(PH,),", and in P(SH)," the SH groups actually take al/ of the
additional charge, leaving the central P atom slightly less positive than it was in
HP(SH),;. The pyramidal PH, groups each transfer enough additional electron
density to counteract the loss of hydride, the net result being that the each PH; is
0.39¢ more positive than in the phosphine while the central P atom is 0.35¢ less
positive in the cation than in the phosphine/

In the planar systems, the donation may be G- or n-type, or both. In the C,
cation the distinction is technically meaningless. As we have seen for the other
systems, P and S are much more effective than the other substituents at delocalizing
their lone pairs, and in this case, it seems, donating them.

For the chloro and methyl substituents (and R = H), all the phosphines
have similar g(P) values and the phosphenium value is slightly higher than this. For

the C-twisted P(PH,),", the charge on the central P atom is most similar to that in
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HP(=PH),; between that in HP(PH,), and that in P(PH,);. For the remaining third
row ligands, q(P) is similar to the disubstituted phosphines. For the remaining
second row ligands, the atomic charge on phosphorus is quite similar to the
trisubstituted phosphines.

While two third row substituents contribute almost as much additional
electron density to the phosphorus in PR, as a hydride would in forming the
phosphine, the second row substituents are more electronegative and less generous.
The two R groups together donate only as much as one similarly electronegative
substituent would in forming the substituted phosphine. This is probably related to
the polarizability of the ligands, large electropositive atoms being more polarizable

than small electronegative atoms.

8.5. Delocalization Indices

For the Cyv cations, we can separate the molecular orbitals into o-like (a,
and by) orbitals that are symmetric with respect to the molecular plane and =n-like
orbitals (a; and b;) that are antisymmetric with respect to the molecular plane. We
can then separate the atomic overlap matrices (AOMs) into o and © blocks and
calculate the o- and n-delocalization indices separately. Table 8-4 shows the o-like
and m-like contributions to the delocalization index 6(P,R), the total delocalization
index 8(P,R) and &(P,E) for each phosphenium cation. The ratio of 8(P,R) values

for PR, over HPR; is also given.
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8.5.1. Comparison to other systems

The total delocalization index (including the substituent H atoms), 8(P,R),
is plotted in Figure A4-8, as a function of the substituent atom, and is compared to
8(P,R) and 8(P,X) values in the other systems studied. In the phosphenium cations,
8(P,R) ranges from 0.71 (PF,") to 1.63 (planar P(PH,),"). The ratio of §(P,R)
values in PR, and HPR; is shown in Table 8-4. The delocalization to the silyl
group, &(P,SiH3), is 5% less than in HP(SiH3),, while the delocalization to the H
atoms, 8(P,H), is 6% larger in PH," than in PH;. The increase in 8(P,CHa) is 16%.
For the remaining second row substituents (F, OH, NHa), the delocalization index
increases by 22% to 25%. For the planar PH; group, &(P,PH,) increases by 42%
relative to HP(PH,),, and 1s very close to 8(P,PH) in HP(=PH),. For the remaining
third row substituents (Cl, SH, pyramidal PH,), the delocalization increases 29% to
33% over HPR;. These values are similar to the phosphoranes, H;P=EH,., for E =

O, N, C and S, but between HP(=PH); and H3P=PH for the C>-twisted P(PHa);".

8.5.2. Separation into nwand o contributions
There is negligible n-type delocalization in PH,". In other words, the n-
like density is almost completely localized on phosphorus and is core density,
arising from the 2p orbital on phosphorus. In P(CHs)," and P(SiHs),", the n-type
delocalization is 11% and 17 % of the o-type delocalization, respectively. For the

C; systems there is no symmetry plane and no separation is possible. For the planar
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cations the delocalization index decreases with polarity but the 7 to o ratio seems to
depend more on the group number of the substituent, being about 0.3 for R = F and
Cl, 0.4 for R = OH and SH and 0.5 for R = NH; and PH,, with slightly higher ratios
for the third period member of each group.

‘While the 7/c ratio is much lower in the cations than in HPX,, which in
turn is lower than in HPX, we need not take this orbital approach. The additional
transfer, and sharing, of electron density in these molecules, whether through - or
n-type interactions, does lead to a significant increase in the delocalization index

over the phosphines, particularly when bond polarity is accounted for.

8.5.3. Correlation with charge transfer

In order to fit the data to 6(P,R) vs. q(R) curves, the cations must first be
separated into two sets: those having substituents with lone pairs to donate and
those without. The data points for R = H, CH; and SiH; each fall near the
phosphine curve, but fitting a quadratic through those three points gives a curve
which has a maximum very near the P(PH,)," data points. The Cs-twisted P(PH,),"
data pomnt was therefore included in the ‘no lone pairs to donate’ set, while the
planar P(PH,)," data point was included in the ‘lone-pair donor’ set.

After the hydride in PH,", the fluoride substituent is the poorest stabilizer
of phosphenium cations studied. The PF," data point lies within the phosphine

curves and its removal from the cation data set gives some interesting results,



259

shown in Figure 8-1.

Delocalization index vs. charge on substituent group
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Figure 8-1: Plots of the delocalization index versus charge transfer in the phosphenium cations
(o), compared to three other series: HPX, HPX, and H,PR. The best-fit line for HPX does not
include the anomalous X = CH, data point. The PR,’data are separated into two sets. Set 1
includes R = OH, NH,, Cl, § and planar PH,. Set 2 includes R = H, CH,;, SiH, and pyramidal PH,.

The quadratic curve for R = OH, SH, Cl and planar NH, and PH, reaches a
maximum &(P,R) = 1.9. This is very similar to the phosphinylidenes, when HP=PH
and HP=S are removed from the HP=X data set, as suggested for other series in this

thesis. The charge on R corresponding to that delocalization maximum is displaced
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by 1.1 electrons, suggesting a Lewis structure with two full double bonds. A very

electropositive atom would be needed to reach this maximum delocalization.

+

R

N
//
R

The PF," data fit into most of the observed trends in bond polarity and
bond critical point properties. Despite the compelling similarity of the PR," curve
and the HPX curve when R =F is excluded from the fit, one cannot quite convince
oneself that the bonding in PF," is qualitatively different than in PCL," or P(OH), .
The PF," data point was therefore included in the final fitting of the ‘lone-pair
donor’ set. The Lewis structure shown above suggested shifting all the points over
by subtracting one from the group charges, to give the bond polarity relative to the
doubly-bonded structure. This plot of 8(P,R) vs. q(R)’ gives a curve that lies just
slightly above the HPX, curve, as shown in Figure 8-2. In other words, there is at
least as much double bond character in the ‘electron deficient’ phosphenium cations
as in the ‘hypervalent’ bis(ylene)phosphoranes.

For the data set without lone pairs to donate, the curve looks very
different. It is the most sensitive to atomic charge of any series studied in this
thesis. The maximum (1.6) is reached for q(R) = +0.15, between R = pyramidal
PH, and R = SH, which also lies quite close to this curve and very close to the

pyramidal planar phosphino substituent. A transfer of just 0.5 electrons drops the
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delocalization index to 0.5. See Figure 8-1 or Figure 8-2.

Delocalization index vs . charge on substituent group
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Figure 8-2: Plots of the delocalization index versus charge transfer in the phosphenium cations
(o), compared to three other series: HPX, HPX, and H,PR. The best-fit lines for HPX and HPX,
do not include the anamolous X = CH; data points. The PR,’data are separated into two sets. Set
2 includes R = H, CHa, 8iH; and pyramidal PH,. Set I includes R = F, OH, NH,, Cl, S and planar
PH,. Set 1 is offset, so that q(R)’ =q(R)~ 1.0.

Without the inclusion of the pyramidal PH, data, the ‘no lone pairs’ curve,
set 2, actually reaches a maximum above the planar P(PH,)," data point. It is quite

surprising that this curve reaches such a large maximum delocalization, but
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considering that the methyl phosphenium cation does not deviate significantly from
most of the trends (density, bonding radius, charge, delocalization) established by
the rest of the series, it seems that the additional charge transfer and delocalization
need not be accomplished by ‘lone pair’ donation.

The deviation of the & vs. q data for the methyl group can be seen as an
exaggeration of the lower delocalization for C and Si throughout all the series
studied in this thesis. In fact, if the data for set 2 are also shifted over by one charge
unit, the R = CH3 and H data points are found to lie quite close to the HPX, data.
Thus only R = SiHj and pyramidal PH; need to be viewed as particularly special
cases. The rest of the cations may be described as having two nearly full P-E

double bonds.

8.5.4. The amino substituent — a special case?

Having established the degree of delocalization in the phosphenium
cations as a series, it is time to consider whether the amino group is the most
effective stabilizer due to effective electron donation, or due to other effects. It
appears that there is nothing special in the delocalization index or charge transfer in
P(NH,)," compared to other PR, systems.

The differences that are seen in the other properties studied are even more
pronounced for the planar phosphino substituent. These include bond shortening,

relative to the phosphine, and a larger n to o ratio for the delocalization index. It
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seems then that if the factors leading to pyramidalization of the phosphino group
were removed, that could be an even more effective stabilizing force. However,
given the small differences that are seen in this study, Gudat’s proposition (1998)
that electrostatic effects are important seems reasonable. While the charge on the
amino group as a whole is less than on OH or F, the charge on the N atom is
greater, due to the two polar N-H bonds. Both the P-N and P-O bonds are short and
have large charge separation, which could lead to large electrostatic factors. The
moderate ability of SH and PHj; to stabilize cations, must be due to donation and/or
delocalization effects as these have small or even repulsive electrostatic terms. It is

unclear why the halides give such small hydride transfer energies.

8.6. The Laplacian and Electron Localization
Figure 8-9 shows isovalue envelopes for the Laplacian scalar field, V2p(r).
The value plotted is V2p(r) = 0, which is often associated with a ‘reactive surface’.

Additional isosurfaces are shown for specific ions, in the figures below.

8.6.1. Phosphorus atoms and bonding concentrations

Table 8-5 gives properties of the non-bonding charge concentration
maxima on the central P atom. This point lies on the C,-axis for all the
phosphenium cations. The position and maximum concentration vary with the
electronegativity of the substituent. Electronegative substituents contract the

valence shell of phosphorus, pulling the maximum in towards the nucleus, and
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increasing the magnitude of the Laplacian. It is interesting that the non-bonding
CC in PCl," is in a very similar position to those on PMe," and P(NH,),", yet has
lower density and charge concentration. The longest non-bonding radius is for
planar P(PH,),".

Table 8-6 gives properties of the P-E bonding charge concentration
maxima. For the C,-twisted P(PH,)," cation, these lie slightly out of the PPP plane.
The CC of the central P is on the opposite side of the PPP plane to the bonding CC
of the substituent, which is on the same side as the non-bonding maximum on the

substituent. A top view is shown of the V?p = — 0.2 isosurface in Figure 8-3.

Figure 8-3: V*p = 0.20 isosurface for twisted P(PH,),". A dashed line indicates the PPP plane.

8.6.2. Substituent atoms
Table 8-7 gives properties of the non-bonding charge concentration
maxima on the substituent atoms. The methyl group has in- and out-of-plane C-H
bonding CCs. No maxima were found around silicon. Planar PH, and NH, have
only in-plane bonding CCs and no non-bonding maxima. In planar P(NH,)," and
P(PH,),", the bonding charge concentration wraps around the substituent atom

giving significant charge concentration above and below the plane.
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The Cx-twisted cation, P(PH,),", has a single non-bonding maximum on
each substituent P atom, this maximum points in a direction perpendicular to the

PPP plane, see Figure §8-4.

Figure 8-4: V2p = -0.20 isosurfaces for the pyramidal P(PH,)," cation.

Both the S and O substituent atoms appear to have a distorted torus of
charge concentration, but this is formed by the localization of the O-H and S-H
bonds, not the localization of P-O and P-S bonds. The resulting torus is distorted
by the interaction with the P atom, see Figure 8-5. Each P(OH)," species has a

single in-plane non-bonding charge concentration on each oxygen atom.

Vo= -0.20 -0.30 -0.40 -0.47

Figure §-5: Laplacian isosurfaces for exo P(SH), .

The exo isomer of P(SH)," also shows only one non-bonding
concentration on each sulfur atom. The endo isomer however has a symmetry-
equivalent pair of out-of-plane maxima on each S atom. There is a saddle point

between these maxima whose properties are quite similar to those of the maximum.
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This suggests that there is a single region of charge concentration, which has been
slightly distorted. Isovalue envelopes for exo P(SH),", with one non-bonded
maximum per sulfur, are shown in Figure 8-5. Isovalue envelopes for endo
P(SH),", Figure 8-6, show that the two maxima essentially constitute one slightly
distorted region of charge concentration. This single non-bonding concentration is

consistent with two bonding pairs being shared with the phosphorus atom.

Vo= -020 -0.30 -0.40 -0.48

Figure 8-6: Laplacian isosurfaces for endo P(SH),".

In PF,", each F has a nearly spherical reactive surface, with two in-plane
non-bonding maxima. Saddles in the charge concentration lie above and below the
plane and have sigt_liﬁcantly different properties from the maxima, suggesting that
the charge concentration about the terminal F atom is well localized into two pairs,
see Figure 8-7. This is strong evidence for localization of electron pairs due to two
bonding pairs being formed. Each Cl in PCL" also has a near spherical reactive
surface and two in-plane non-bonding maxima in its valence shell, see Figure 8-7.
Slightly negative isosurfaces show a torus of charge concentration, but more
negative Laplacian values show two distinct charge concentrations, again giving
good evidence that the eight electrons in the valence shell of Cl have been localized

into two bonding and two non-bonding pairs.
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Vip= -0.55 -0.80
Figure 8-7: Laplacian isosurfaces for: top left PF,", top right exo P(OH),", bottom PCl,".

8.7. Summary
The phosphenium cations with lone pairs on the substituent exhibit a bond
order greater than 1.75, but less than two. The corresponding formal charge is
approximately plus one on each substituent group. One Lewis structure, with a

small contribution from a second, could describe this situation:

+

R

N
P:
7%

+

R

The planar amino group is the most effective substituent for stabilizing
cations, according to experimental results and hydride transfer energies. The
delocalization and charge transfer are not any more extensive in this cation than in

the other members of the series. None of the other properties of the P-N bonding
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studied show significant deviation from the trends shown by the series as a whole.
The P-F bond is the shortest. The P-O bond has the highest BCP density. The P-C
bond has the most negative BCP Laplacian. The planar P-PH, interaction has the
highest delocalization index, but is destabilized by the barrier to mversion at
phosphorus. Other than planar PH,, the NH, substituent shows the greatest 8"/8°
ratio, but the Cl and SH substituents show the greatest increase in 8(P,R) relative to
the HPR; series. The one extremum exhibited by the amino group is the charge on
nitrogen. Because of the three polar bonds to N, q(E) is most negative for E = N.
Thus it seems that electrostatic factors play an important role in stabilizing
aminophosphenium cations, as suggested by Gudat.

The ability of sulfur and phosphorus to delocalize their lone pairs has been
observed throughout this thesis. In this series they also exhibit a large amount of
charge transfer towards the central phosphorus atom, relative to the phosphines.
The large barrier to inversion for phosphines seems to be responsible for the
preferred pyramidalization of the phosphino group. While the delocalization index
is smaller than in the planar system, the charge donation is greater.

Other systems that show significant charge transfer and delocalization
through the P-E o-bond are PH," and P(CH;),". When compared to the ‘lone pair
donors’ the methyl group shows similar changes in charge transfer and
delocalization indices and just slightly less bond shortening and smaller increases in

the BCP density, relative to the phosphines. The silyl group on the other hand is a
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poor cation stabilizer. It shows bond lengthening and reduction in BCP density
relative to the phosphine. Like the other substituents, SiH;z donates electron density
to the phosphorus atom, relative to the phosphines.

It seems then that all the substituents studied, other than SiH; and possibly
H, have significant ability to share electron density in order to increase the bond
order in phosphenium cations well above that in the phosphines and potentially to a
full double bond. This degree of delocalization is much more than was initially
expected and indeed seems to exceed that in systems such as HP(=X), where full

double bonds seemed more likely.
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8.8. Laplacian Contours and Isovalue Envelopes

Figure 8-8: Continued on next page.
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Above:

Figure 8-8: Contour maps of the V?p(r), in the symmetry plane of the phosphenium cations, PR,":
a) PF,"; b) P(OH),", endo; ¢) P(NH,),", planar; d) P(CHa),", endo; €) P(CH;),", exo; f) PCL,"; g)
P(SH),", endo; h) P(PH,),", planar; i) P(SiH;),", endo; j) P(SiH;),", exo. Solid contours indicate
negative values (concentration) and dashed lines indicate positive values (depletion). The
outermost contour is +0.002 au. Isovalue contours increase and decrease from the VZp(r) = 0
contour in the order £2x10", +4x10", +8x10", beginning with n = -3 and increasing in steps of
unity. Each map is overlaid with the bond paths and with the intersection of the interatomic
surfaces with the displayed plane.

Below:

Figure 8-9: Isovalue envelopes of V>p(r) = 0; ‘front’, ‘top’ and ‘side’ views of PR,
a) PFy"; b) P(OH),’, endo; ¢) P(NH,),", planar; d) P(CH;),", endo;

e) PCLy"; f) P(SH),', endo; g) P(PH,),", planar; h) P(SiH,),", endo.
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Figure 8-9: Caption above, continued on next page.
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Figure 8-9: Caption above.
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8.9. Data Tables

Table 8-1: Optimized geometries and energies of phosphenium cations, P(EH.),",
at HF/6-311++G(2d,2p) and related experimental values.

cation r(P-E) £ EPE -Energy /au | AEy / kJ-mol” | % A r(P-E)'
PH," 140.73 94.00 341.53910 0 +0.21

PE,’ 147.85 101.54 539.40364 60.8 -5.61
P(OH)," exo 151.86 99.63 491.45559 233.5 -6.29
P(OH),"endo | 151.78 109.44 491.45318 | 231.7 623
P(NH,)," 159.20 105.01 451.80751 349.4 -6.12
Deriv.Exp’t’ (161.1+ 4) | (114.8£.2)

P(CH,)," C, 178.74 103.68 419.70279 152.7 -3.43
P(CH,)," exo 179.39 102.99 419.70176 150.0 -3.08

LALLL

) . 1259.48073 . ]
P(SH); exo 101.58 1136.73928 | 202.8 -5.73
P(SH), endo | 201.67 111.22 1136.72845 | 231.7 -5.59
Deriv.Expt® (201.6 £.3) | (97.59.1)

P(PH,)," C,3b | 211.81 105.14 1024.27105 | 160.9 -4.67
P(PH,)," 202.95 107.31 1024.24120 | 82.6 -8.66
P(SiHs), exo | 234.98 100.81 921.80337 | 79.2 +3.38
P(SiHy); endo | 234.67 106.65 921.80299 | 78.2 +3.25

¢  Bond lengths are in picometers and angles are in degrees.
e  The hydride shift energy is given, in kI/mol, for the transfer of a hydride from PH,.
e  The percent change in the P-E bond length is given relative to the phosphine HPR;.

1) The endo P(OH)," energy and bond length are compared to those in HP(OH), with the H atoms
pointing down, away from the lone pair, while the exo energy and bond length are compared to
HP(OH), with the H atoms pointing up towards the lone pair. For the remaining systems only one

phosphine conformer was studied; up for R = SH, staggered (down) for CH; and SiH; and gauche
for NH; and PH,.

a) X-ray structure for (ProN),P*AICI;: Cowley et al. (1978).
b) X-ray structure for (CsH JS,P*AICI : Burford et al. (1988).
See references in the bibliography, above.
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Table 8-2: Properties of P-E bond critical points in phosphenium cations.

cation p(ry) | Vp(ry) | e(ry) | r(P-rp) | r(E-1y)
PH,” (185 1 -0.34 0.215] 1.315 1.345
PF,’ 215 | +1.37 0.033 | 1.136 1.659
P(OH)," exo 218 | +1.04 0.129 | 1.147 1.724
P(OH)," endo 213 | +1.05 0.121 | 1.150 1.710
P(NH,);" 204 | 1056 | 0.248 | 1.134 | 1.824
P(CH.),” exo | .182 | -0.30 | 0.106 | 1.362 | 2.028
P(CHs);" endo 183 | -0.37 0.083 | 1.356 2.027
PCl," 153 1 -0.11 0.037 | 1.348 2.324
P(SH), exo | .152 | -028 | 0209 | 1.554 | 2.252
P(SH)," endo 150 | -0.27 0.203 | 1.562 2.251
P(PH,), C; 133 1 -0.20 0.202 1 2.134 1.871
P(PH,), planar | .143 | -022 | 0.523 | 1.800 | 2.036
P(SiH,)," exo 078 | +0.02 0.003 | 2.925 1,515
P(SiHs), endo 1 .078 | +0.02 0.027 | 2.921 1.516

e Distances from nuclei to bond critical points, rf{A-rp), are given in atomic units.

Table 8-3: Atomic and group properties in phosphenium cations, compared to
phosphines, grouped by substituent atom.

cation q(®) | q®) |qEH) | L®) |LE) |qF) | AqR) | Aq(P)
in Vs, Vs,

HPR, | HPR, | HPR,
PH,’ +1.913 | -0.457 | -0.456 | -3.6¢e-4 | 2.0e-5 | -0.564 | +0.063 | +0.218
PF,” +2.553 | -0.776 | -0.776 | 2.2e-3 | -8.7e-5 | -0.588 | +0.090 | +0.287
P(OH), exo | +2.413 | -1.449 | -0.706 | 1.7e3 | 6.1e-5 | -0.596 | +0.089 | +0.230
endo | +2.446 | -1.460 | -0.722 | 1.8e-3 | -1.0e4 | -0.619 | +0.080 | +0.222
P(NH,)," +2.255 1 -1.602 | -0.625 | 1.9e-3 | -58e-4 | -0.605 | +0.125 | +0.141
P(CH;)," exo | +1.790 | -0.648 | -0.395 | 1.1e-3 | -3.8¢e-4 +0.133
endo | +1.793 | -0.661 |-0395 | 51e4 | 1.5e3 | -0.596 | +0.131 | +0.136

PCLy’ +1.986 | -0.493 | 0493 | 12e3 | 19e3 |-0.563 | +0.124 | +0.183
P(SH)," exo | +1.315|-0.160 | -0.157 | 1.0e-3 | -4.4e-5|-0.563 | +0.223 | -0.011
endo { +1.308 | -0.127 1 -0.155 | 4.7¢e-3 | -1.6e-3 -0.018
P(PH,)," C; | +0.196 | +1.380 | +0.402 | -5.9¢e-5 | -2.2e-4 | -0.568 | +0.390 | -0.351
planar | +0.605 | +1.117 | +0.200 { 3.9e-3 | 2.0e-3 +0.188 | +0.059
P(SiH;), exo | -0.555 | +2.824 | +0.782 | 3.3e-3 | 3.0e-3 +0.139
endo | -0.559 | +2.819 | +0.781 | 3.0e-3 | 1.4e-3 | -0.555 | +0.156 | +0.135

e  g(H) refers to the H atom bonded to P in HPR,.

o  The atomic charges given for comparison with endo P(OH)," are those in HP(OH), with

the hydroxy H atoms pointing down, away from the lone pair, while the exo cation is

compared to HP(OH), with the hydroxy H atoms pointing up towards the lone pair. For
the remaining systems only one phosphine conformer was studied; up for SH, staggered
(down) for CH; and SiHj3, and gauche for NH; and PH,.
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Table 8-4: Sigma-like, pi-like and total delocalization indices in phosphenium
cations.

cation 8 (P,R) | 8" (P,R) | 8(P,E) | 3(P,R) | 8(P,R) ratio | Ratie
to HPR,; oG
PH," 0.895 .0003 0.895 | 0.895 | 1.06 .0004
PF," 0.545 0.169 0.714 10.714 | 1.22 0.31
P(OH)," exo | 0.590 0.236 0.819 | 0826 | 1.22 0.40
P(OH), endo | 0.577 | 0237 | 0.798 | 0.814 | 1.25 041
P(NH,)," 0.626 0.310 0900 | 0937 | 1.25 0.49
P(CH:), C, - - 0.919 | 1.047 | 1.16 -
P(CH,), exo | 0.934 | 0.106 | 0.918 | 1.040 | L.16 0.11
P(CH,), endo 0.926 | 1.057 | 1.17
PCL’ 0.789 0.276 1.065 | 1.065 | 1.29 0.35
P(SH)," exo £.973 0.402 1332 {1376 | 1.33 0.41
P(SH), endo | 0.971 | 0.403 | 1.326 | 1.375 | 1.33 0.42
P(PH,),' C; - - 1.267 11496 | 1.31 -
P(PH,), planar | 1.063 0.566 1.463 11.629 1142 0.53
(SiH3)," exo 0.715 0.124 0436 | 0.839 | 0.95 0.17
(SiHs)," endo 0.748 0.136 0.441 ] 0.844 | 1.00 0.18

e The ratios of delocalization indices, 8(P,R), are given relative to the disubstituted phosphines.

Table 8-5: Properties of non-bonding CC’s on phosphorus, compared to PHa.

cation r(P) Vip(r) p(r) pa(r)

PH, 1.443 -0.340 0.132 -9.58
PH," 1.424 -0.364 0.137 -11.02
PF," 1.407 -0.383 0.140 -12.38
P(OH),” exo 1411 -0.398 0.143 -12.14
P(OH)," endo 1.408 -0.399 0.143 -12.38

P(CH5)," exo 1.419 -0.399 0.143 1.55
P(CHa)," endo 1.418 -0.403 0.144 -11.66
PChL’ 1.417 -0.365 0.137 -11.48
P(SH)," exo 1.430 -0.337 0.132 -10.43
P(SH)," endo 1.425 -0.352 0.135 -10.86
P(PH,)," 1.444 -0.292 0.124 -9.26
P(PH,)," C, 1.437 -0.322 0.130 -9.89
P(SiH.);" exo 1.438 -0.327 0.131 -9.85
P(SiH3), endo 1.438 -0.326 0.131 -9.82

e Distances to the phosphine nucleus are given in atomic units.
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Table 8-6: Properties of P-E bonding charge concentrations.

cation r(P) r(E) Vip(r) p(r)
PE, ' 1.472 -0.042 0.303
P(OH)," exo 1.506 -0.297 0.201
0.696 -3.652 0.808
P(OH)," endo 1.507 -0.255 0.283
0.693 -3.678 0.812
P(NH,), 0.804 -2.019 0.499
P(CH,)," exo 1.489 -0.464 0.183
0.990 -0.808 0.250
P(CHs)," endo 1.489 -0.463 0.183
0.989 -0.816 0.251
PClL," 1.521 -0.243 0.156
1.247 -0.551 0.259
P(SH)," exo 1.521 -0.284 0.152
1.370 -0.410 0.191
P(SH)," endo 1.523 -0.278 0.150
1.372 -0.403 0.193
P(PH,)," 1.530 -0.285 0.150
P(PH,)," C,* 1.509 2514 0322 0.147
2.453 1.552 -0.252 0.136
P(SiH,)," exo 1.485 -0.327 0.142
P(SiH,)," endo 1.484 -0.353 0.142

e The distance from the valence shell maximum to the nucleus is given in atomic units

1) There is a saddle point where the bonding maximum is expected in the valence shell of F.

2) The bonding CC’s are slightly out of the PPP plane in C; P(PH,),"; see text. The central BCC
is -0.19 au out of plane; the other BCC is +0.026 au out. The BCP is -0.04 au out of plane.

Table 8-7: Properties of non-bonding CC’s, and intervening saddle points, on the
substituent atoms, E.

cation CC position | r(E) | Vo) | p(r) | Z
PF," endo 0574 |-9245 1 14671 0
€X0 0.575 1 -9261 [ 1468 | 0
saddle 0.581 | -7.751 | 1.342 | #0.47
P(OH)," exo H | endo 0.647 | -5.160 | 0.934 | O
P(OH)," endo H | exo 0.648 | -5.133 1093510
PCL’ endo 1.182 | -0.865 | 0.274 | O
exo 1.181 ] -0.884 1 0.276 | 0
P(SH), exo H | endo 1.301 | -0.482 | 0.180 | 0
P(SH)," endo H | exo x2 1.301 1 -0.493 | 0.182 | +0.89
- saddle 1.300 1 -0.486 | 0.181 | 0
P(PH,)," C, exo xJ 146 |-0274 [ 0.119 | 1.43

¢ Distances from nuclei to maxima, 1(E), are given in atomic units.
e 7 is the distance from the critical point to the molecular symmetry plane, in au.



9. Summary and Conclusions

This thesis started with a series of questions about the electronic structure
of phosphenium cations. These came down to: 1) What is the extent of multiple
bonding in phosphenium cations in general? 2) Is it exceptionally high in amino-
phosphenium cations? 3) Do amino-phosphenium cations exhibit any other major
differences relative to less stabilized phosphenium cations? .In order to answer
these questions, it was necessary to consider the meaning of electron delocalization
and its description at both the simple Lewis model level and at the level of ab initio
electron structure calculations, in order to make a connection between these two
descriptions. This connection was found to exist in the delocalization index, but
only after it had been corrected for the effects of bond polarity.

A new relationship between the delocalization index and the polarity of the
bonding has been discovered. A quadratic relationship has been derived for the
case of one shared pair of electrons (8 = 1- ¢) and for the case of two equally
polarized shared pairs of electrons (8 = 2- q*/2). This derivation applies equally
well to the bonding indices defined by Bader (Fradera ef al, 1999), by Mayer
(Angyén, Loos and Mayer, 1994) and by Fulton (Fulton and Mixon, 1993), which
are all equivalent at the Hartree-Fock level of theory. A plot of previously

published & and q data for simple hydrides, AH,, has shown that the derived
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expression is obeyed at the Hartree-Fock level of theory and that a quadratic
relationship is maintained when correlation effects are included in the
wavefunction. This is the first measure of bond order that does not depend on
partitioning of the orbitals in some way, either by assigning density to atoms based
on the atom-centred basis functions, or by transforming the molecular orbitals to
correspond with a localized model.

Interactions (exchange and overlap) with other orbitals and additional
delocalization of ‘lone pairs’ onto neighbouring atoms can alter the position and
curvature of the parabolic & versus q curve. Therefore, in order to establish the
bond order for a species of interest, a series of related molecules should be studied
and the data plotted to establish the best-fit line. The maximum of this curve will
correspond to the formal charge (q) and bond order (8) of the idealized ‘non-polar’
representative of the series. When there are no data points available near the
maximum, the results can be quite sensitive to the choice of data points used.

In order to further establish the bonding pattern in a particular species, the
arrangement of bonding and non-bonding charge concentrations may be analysed.
Further evidence regarding the similarity of bonding arrangements in a series of
molecules can be gained by studying the trends in the properties of the bond critical
points, most notably the bonding radii and the density at the BCP. The Laplacian
and the ellipticity are less reliable indicators of regularity, but can give general

information in the cases of extremely polar (e.g. P=0O) or extremely elliptical (e.g.
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P=C) bonds, respectively.

9.1. ‘Trivalent’ systems

The new methodology was tested on some standard systems involving
trivalent phosphorus or trivalent nitrogen. We have seen that for the ‘standard’
single bond and double bond series (H,PR, HPR;, PR3 and HPX, as well as NH;R
and HNX) there is a strong correlation between the square of the transferred charge
and the delocalization index. While the observed curvatures of the & vs. g graphs
are less than expected for both single and double bonds to phosphorus, the ratio
between them is the predicted 2:1 {0.66 : 0.34}. In each ‘standard’ series, the
maximum delocalization is slightly greater than the integer. Both of these effects
can be attributed to the interaction with other electron pairs in the molecule. Most
significantly, the ‘lone pairs’ on the central atom and on the substituents may be
partially delocalized.

By dealing with the charge on the entire substituent (X = EH,.; or R =
EH,), the effects of the E-H bond polarity are minimized and we are dealing
primarily with the effects of the P-E bond polarity. The charge variation on P due
to the other substituents (R or H) is expected to have some effect on the
delocalization index, mainly associated with changes in the additional ‘lone pair’
delocalization, mentioned above. The effect must be very small however because

the (q(SiHs), &(P,SiH;)) data points for H,PSiHs;, HP(SiH3), and P(SiHj); all fall
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very close together, while q(P) varies from +0.5 to —-1.9.

The N-E delocalization indices are greater than the P-E delocalization
indices for the same extent of charge transfer, particularly for the single bonds.
This is attributed to more extensive delocalization of lone pairs between the
nitrogen atoms and the substituents than between phosphorus and the substituents.
The doubly bonded species are seen to have shorter bonds, with higher density at
the bond critical point, and larger charges on the substituent groups, than the singly

bonded species. This is as expected.

9.2. ‘Hypervalent’ systems

The methodology was applied to some formally pentavalent environments
of phosphorus and nitrogen. The results indicated less than a full double bond for
the phosphorus-element bonds and not much more than a single bond for the
nitrogen-element interactions. For the pentavalent phosphorus species, one might
be tempted to attribute the decrease in the maximum delocalization to a decrease in
the population on phosphorus. Based on the phosphine results, however, this does
not seem reasonable.” The decrease in the delocalization index, for a given charge
transfer, as the phosphorus environment changes from HPX to HPX, to H;PX must
be a real change in the number of shared electron pairs, or at least in the polarity of

the second electron pair, relative to the first.

" Furthermore, g(P) in HPX,, is similar to H,PX for the second row substituents and similar to HPX for the third
row substituents, yet 8(P,X) for HPX, lies between HsPX and HPX for both the second and third period
substituents.
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Minimization of formal charge suggests the Lewis structures with double bonds.

i |

H=F  H—P  H—P=X
I I |
X .

Meanwhile the octet rule (Lewis’s rule of eight) suggests one P-E single bond for

the pentavalent phosphorus systems, plus a P-E double bond in HPX;.

: X

. " il . -

AT H—P H—P=X:
X X X: H

This gives a formal charge of +1 on phosphorus in both pentavalent
systems. For HPX, the average formal charge on X from these two equivalent
resonance structures is —0.5 and the average P-X bond order is 1.5. For H3PX the
formal charge on X is —1 and the P-X bond order is 1.0, if the octet rule is obeyed.

Taking the maximum of each curve as the point where the formal charges
(equal sharing assumed) are most closely related to the actual charges, and the
delocalization index most closely reflects the number of (equally) shared pairs, the
approximate bond orders and formal charges from the quadratic fitting are shown in
Table 9-1, below. The results depend on which points are included in the fit.
Typically, E = C data points lie below the graph and E = S points lie above.

Normally P follows the same trends as S, but in H;PPH it is below the curve.
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Series HPX HPX, H;PX

Substituent atoms excluded C
from the fitting procedure.
Formal Charge, qmax(X)

S,P | S, P P

0 -0.20 | -0.21 ] -0.26 | -0.33

Bond Order, 8ma(P,X) ) 1.74 | 1.44| 1.40| 1.48

Table 9-1

Formal charges and bond orders extracted from the best-fit equations of the delocalization versus
charge transfer graphs for HPX, HPX, and H;PX, as a function of the data points included in the
fitting procedure.

The calculated properties are an approximately equal mixture of the
predictions from the octet rule and the formal charge minimization. We see this
trend most clearly for the substituents X = O, NH and planar SiH; where q(X)
becomes more negative over the series HPX, HPX,, HsPX. The variations in q(X)
where X = S, PH and planar CH; are less well understood. The CH, group is
almost as ‘neutral’ in HP(CH,), as in HPCH,. In HPPH, the substituent PH group
donates density to the central P, though in H;PPH the PH group accepts density and
the delocalization index amplifies the effect. Sulfur seems to be particularly
effective at transferring and delocalizing charge onto phosphorus and g(S) is
actually less negative in HPS, and H;PS than in HPS. The delocalization index
follows the expected trend, HPX > HPX, > H3PX for all planar substituents, X.

The nitrogen species have a different story to tell. The standard single and
double bond curves have a delocalization maximum significantly above the
expected integer and about 0.2 above the phosphorus curves. This suggests that

there is more delocalization of the lone pairs in these trivalent nitrogen species than
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in the phosphorus analogues. While the H;PX series has a bond order of
approximately 1.5 (expected formal charge: -0.5), the H;NX series maximum is
equal to the amine maximum of 1.3, and corresponds to a formal charge of
approximately -0.75 on the substituent. The very electronegative oxide substituent
lies reasonably close to the H3PX curve, and if this is removed from the H3NX
fitting the maximum lies near the H3NNH data points, (-0.5, 1.2). Clearly there is
only one fully shared electron pair in this series, with the second electron pair being
no more delocalized than the lone pairs in the amines. In this case the lone-pair
donation is one-way (from E to N only) and thus the charge on the substituents is
smaller than the expected —1.0 for the octet structure.

An explanation for the lack of high-coordinate second-row atoms is that
they are both too small to accommodate more ligands, and too electronegative to
participate in the polar bonding needed when using four atomic orbitals (2s, 2ppp)
to describe more than four bonding molecular orbitals. If the hydrogen atoms were
replaced by fluorine atoms, the F3NX series may be sufficiently polarized to display

multiple N-E bonds. This would be an interesting series to study in the future.

9.3. ‘Hypovalent’ systems
Turning now to the phosphenium cations, PR,’, placing the positive
formal charge on the most electropositive element leads to single bonds for all R

but PH, and SiH;. In P(PH,)," we may be equally justified in putting the positive
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charge on the substituents. The two structures with a double bond also obey the

octet rule for all atoms.

; *.* ;
H—ﬁ+ H—p: Hep2
Ps 3 +2 g I;
| I I
H— l: H— ': —P
H H v

There are no lone pairs on SiHj;, however, and regardless of electronegativity
differences the only ‘reasonable’ Lewis structure for R = H, CH; and SiHj; is the
singly-bonded structure with the positive formal charge on phosphorus.

For the substituents with lone pairs, R = F, Cl, OH, SH, NH; and PH,, the
octet rule indicates that the best resonance structures have one double bond, as
shown at the far left and far right for R = PH,, above. This would lead to a formal
charge of zero on the central phosphorus and an average formal charge of +0.5 on
the substituent, along with an average P-R bond order of 1.5. A complete sharing
of two electron pairs per substituent is also a possibility and would give a bond
order of 2 and a formal charge of +1 on each substituent and ~1 on the central

phosphorus.

=01
+ ..I



286

Surprisingly, removal of the very electronegative F substituent from the
planar set mentioned above gives a quadratic fit with a maximum very close to q(R)
=+1 and 8(R,R) = 2. Unfortunately, no data points are available near the maximum
to verify the extrapolation. Inclusion of F in the fitting gives a curve that is slightly
higher than for HPX; and shifted over by a charge of one electron; gma(R) = +0.86,
Smax(P,R) = 1.80. Once again, the octet is exceeded on the central phosphorus. We

could describe the overall structures as 80% doubly bonded and 20% singly bonded

with the appropriate contributions from the two symmetric structures.

The distribution of wvalence shell charge concentrations around the
substituent atoms is also consistent with two P-E bonding pairs and two non-
bonding, or E-H bonding, electron pairs. Separating the delocalization indices into
o-like and n-like contributions gives a slightly different description. While 8" is
75% to 110% of &° in HPX, 8" ranges from 30% to 50% of 8° in planar PR,". For
R = H, CH; and SiH; the percentages are 0.04%, 11% and 17%, respectively.
These three species do not involve extensive multiple bonding, in the Lewis sense.

For a given substituent atom, [EH, / EH,.;] the o-delocalization is slightly
lower in PR, than in HPX (higher for E = C) but the n-delocalization is

significantly lower. For example, 8" / 8° drops from 0.98 to 0.49 between HP=NH
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and P(NH,),". This seems to suggest that the bond order is closer to 1.5 than to 1.8.
On the other hand, the n-delocalization is known to decrease relative to the o-
delocalization as the total bond polarity increases, and since a non-polar double
bond in PR," would require much more electropositive elements than those studied
here, it is not surprising that the nt-delocalization is lower in this series. Comparing
HPX and PR," systems with similar delocalization indices, such as HPCH, (1.68)
and P(PHa)," (1.63), the 8" / 8° ratio is still much higher for the HP=X series. It
should be noted, however, that P-C and P-N o-delocalization indices seem to be
unusually low. In PCH and PN, which are formally triply bonded, the 8" / &° ratios
are 0.84 / 0.63 and 0.89 / 0.65, respectively.

Returning to our original questions, while there is conflicting evidence
regarding the exact bond order for the phosphenium cations it seems clear that the
bond order is between 1.5 and 2, and may even be higher than in the pentavalent
HPX, series. It is not unusually high in P(NH,),". It seems likely then, that the
thermodynamic stability of aminophosphenium cations arises from electrostatic
attraction between the positively charged phosphorus atom and the negatively
charged nitrogen atom. There may be additional steric and/or electronic effects that
make aminophosphenium cations kinetically more stable as well — and therefore
easier to isolate than other phosphenium cations.

While pentavalent phosphorus systems do exceed the octet rule, they do

not form complete double bonds, and thus the formal charges are not completely
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reduced. The structures seem to be best described as somewhere between the octet
and ‘formal-charge-minimization’ predictions. The hypervalent nitrogen systems
studied appeared to be more controlled by the octet rule. This limitation may be
lifted if more electronegative substituents (e.g. fluorine atoms) are used, and should
be studied further.

It is hoped that the methods developed in this thesis will be used by other
theoreticians and computational chemists when investigating Lewis bond orders.
The regular decrease in the delocalization index (as well as the bond indices
developed by Fulton, 1993, and Angyén er al., 1994) should be accounted for in
any calculation of bond order using these indices. Furthermore, chemical educators
should think carefully about how they present Lewis structures, and chemical
bonding in general, to the next generation of chemists. What is the point of

speaking a common language if there is no common lexicon?
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Al. Appendix 1: Glossary of terms and symbols used in this thesis

Al.1 Words and phrases

Additivity: A property can be expressed as a sum of contributions from its
constituent groups. Additivity may be seen empirically, in which case each
chemically similar group is seen to have an equal contribution, or
computationally, in which case the additivity is rigourous, but the contribution of
each group may vary somewhat (when groups are not perfectly transferable).

Antisymmetric function: a function whose sign changes when some operation is
performed. In the Pauli sense, one that changes sign upon exchanging the labels
of any two electrons.

Atom: 1) a region of real space bounded by surfaces of ‘zero-flux’ (interatomic
surfaces). Equivalently, the union of an attractor (in the scalar electron density

field) and its basin. 2) a nucleus and its associated electrons.

Attractor: a maximum in a scalar field, such as nuclear positions in the electron

density.

Average value: See expectation value.

Basin: the region of real space containing all gradient paths terminating at a given
nucleus.

Basis function: a mathematical function of real space (and/or spin) that is used in
a linear expansion of some other function. Typically, a hydrogen-orbital-like
atom-centred function used in the expansion of a molecular orbital.

Bond: an attractive interaction between two atoms indicated by the presence of a
bond path in the electron density.

Bond Critical Point: the position of minimum density along the bond path. Also,
a (3,-1) saddle point in the density.

Bond order: a) the number of pairs of electrons shared between two atoms in a
Lewis structure, or the weighted average of this over two or more resonance
structures. b) the maximum delocalization index for a delocalization versus
charge plot, for a series of related molecules.

Al-1



Al-2

Bond path: a pair of trajectories of the gradient of the electron density, both
originating at a (3,-1) critical point and terminating at two different nuclear
attractors.

Bonded radius: the distance (reported in bohr) from the nucleus of interest to the
bond critical point of interest.

Chalcogen: an element of group 6A (16).

Charge Concentration: a region of negative Laplacian, typically in the valence
region of an atom.

Commuting operators: operators commute when the order of operation has no
effect on the outcome, i.e. AB=BA

Complex conjugate: For a complex number (a + ib) we replace i = ++—1 with
—i==+/-1 to get the complex conjugate.

Constant of Motion: an observable that commutes with the Hamiltonian, and for
which the state function is an eigenfunction.

Correlation function: {(r,, ;) measures the difference between the correlated and
uncorrelated density distributions of two electrons of given spin and is defined by

P (1,1,) = L p° (1) p” (r)[1+ 127 (v, 1)

Correspondence Principle: a postulate of quantum mechanics: for every classical
observable there corresponds a quantum mechanical operator. Specifically, we
write the classical observable in terms of position and momentum (X, px) and then
replace position with the position operator (X = x-) and replace momentum with
the momentum operator ( p = —ihiV ).

Covalent bond: a bonding interaction characterized by ‘significant’ delocalization
of electrons between the two atoms of interest. Compare ionic bond.

Critical point. a point at which the gradient of some scalar field (such as the
density) is equal to the zero-vector. The nuclear positions may be considered
pseudo-critical points in the density, since these maxima are cusps, with
undefined gradient vectors. Critical points are classified by their rank and their
signature.

Curvature: the second derivative of a function with respect to a spatial (Cartesian)
coordinate.
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Delocalization: An electron is said to be delocalized when its Fermi hole is
delocalized. We can measure atomic delocalization with the delocalization index,
the Fermi hole integrated over two different atoms.

Density: electronic charge density, p(r).

Density matrix: See Appendix A2.

Determinant. an antisymmetrized product of molecular orbitals, representing an
uncorrelated molecular wavefunction.

Dressed density: a one-electron operator in which the mean field of the remaining
electron has been accounted for, so that a local property density may be obtained.

Eigenfunction / Eigenstate: (a state described by) a function f(x) that obeys the
equation Af(x) = a f(x), for the operator of interest, A, where a is a scalar value.

FEigenvalue: the scalar value (a) in the equation above, which corresponds to the
well-defined value of the property A in the state described by f(x).

Exchange Energy: the energy difference between a simple Hartree product of
molecular orbitals and an antisymmetrized product of these MOs.

Expectation value: the average value of some observable for the given state.

Fermi hole: the same-spin correlation function weighted by the density at r. A
measure of the reduction of same-spin density at position r; due to the presence of
an electron at ry.

Fermion: a particle with half-integer spin, such as an electron, which obeys
Fermi-Dirac statistics.

Formal Charge: the hypothetical atomic charge arising from a Lewis structure
when all the bonds are assumed to be non-polar, or a weighted average of this
property over two or more Lewis structures.

Gradient path / gradient trajectory. a path of maximum increase in a scalar

property. Gradient vectors begin (originate) at a critical point (or infinite
distance) and end (terminate) at a critical point in the scalar field of interest.

Gradient vector operator: V = ——a——,—a—-,—@-
Ox Oy 0Oz
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Group number: There are two group number systems for the periodic table in
common use. 1) The A/B system in which main groups run from LA to 8A, while
transition metals run from 3B to 8B, then 2B and 3B. 2) The 18-group system, in
which the main and transition groups are numbered in order from 1 through 18,
and the main groups are 1, 2 and 13 through 18. The A/B system will be used in
this thesis.

Hualogen: an element of group 7A (17).

Hamiltonian operator: an gperator whose expectation value, or eigenvalue, is the
total energy. H = K + V. The kinetic energy operator in the Hamiltonian
corresponds to the local property density, K(r), while the kinetic energy in
Schrodinger’s energy functional corresponds to G(r). The Hamiltonian is also the
generator of time evolution, as expressed in the time-dependent Schrédinger
equation.

Hartree-Fock: a method of approximating the wavefunction as an
antisymmetrized product (a Slater determinant) of molecular orbitals.

Heisenberg’s Uncertainty Principle. The momentum and position of a particle
cannot be simultaneously known (measured) with infinite precision. This
measurement limitation can be extended to other pairs of observables by
considering the commutator of the two operators.

Hilbert Space: The multidimensional space spanned by the eigenvalues of all the
observables. For an approximate, numerical wavefunction we can also discuss
the basis functions in terms of a Hilbert space. When we partition a wavefunction
in Hilbert space we assign the partial properties arising from a given basis
function to the atom about whose nucleus the function is centred. Note that this
does not apply to non-atom-centred basis functions.

Hypervalent: a) the property of an atom in a molecule whose valence is greater
than its principal valence. b) having more than eight electrons in the valence shell
(applies to main group atoms).

Indistinguishable particles: particles in a system whose observable properties
would not change if two of the particles were exchanged.

Interatomic surface: the set of gradient vectors of the electron density terminating
at a bond critical point. The bounding (zero-flux) surface between two proper
open systems.
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Ionic bond: a bonding interaction characterized by electrostatic attraction between
‘significantly’ charged atoms with ‘minimal’ electron delocalization between
them. Compare covalent bond.

Kinetic energy: the energy of a system due to motion of the particles.

Laplacian: the sum of the curvatures. It results from the square of the gradient
vector operator, particularly when it operates on the electron density.

Local property density: a function of real space describing the local contribution
to some total (molecular) property.

Localization: the extent to which the Fermi hole for a reference electron in a given
basin remains within that basin.

Mesityl: 2,4,6-trimethylphenyl (Mes), a substituent used for its steric bulk.
Molecular Orbital: a one-electron wavefunction for an electron in a molecule.

The Hartree-Fock wavefunction can be written as an antisymmetrized product (a
Slater determinant) of these molecular orbitals.

Observable: a measurable property of the system.

Open system: a system that exchanges energy and particles with its surroundings.
See proper open system.

Operator: a mathematical functional that operates on the wavefunction to obtain a
value for the corresponding observable.

Pauli Principle: the requirement that a system of indistinguishable fermions be
antisymmetric with respect to exchanging the labels of any two such particles.

Pnictogen: an atom of group 5A (15).

Post-Hartree-Fock: A computational method (level of theory) that accounts for
Coulomb correlation between electrons, e.g. MP2 or CI.

Polar bond. a covalent bond in which the two atoms have different
electronegativities, and thus different degrees of attraction for the bonding
electrons. At the extreme polar end of the covalent spectrum is the ionic bond.

All covalent bonds are to some extent polar unless the bond critical point
intersects some symmetry element of the molecule such as a mirror plane or an
inversion center (or a C; rotation axis perpendicular to the bond path).
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Principal valence: the ‘normal’ valence of an atom, determined by the number of
unpaired electrons in the Lewis dot symbol for the isolated atom. For main group
elements this is the lesser of the group number (A/B system) or eight minus the

roup number.

Probabilistic Interpretation (of the wavefunction): The probability of finding the
state in the multidimensional volume of state-space, d, is P*(1)dr.

Proper open system: an open_system bounded by a zero-flux surface, whose
physics is thus well defined.

Property density: see local property density

Rank: o, the number of non-zero curvatures at a critical point. This is typically 3
for scalar functions of real space.

Saddle point: a critical point that is a minimum is some direction and a maximum
in some other direction. Within the topology of the electron density, a saddle
point may be either a (3,-1) critical point called a bond critical point or a (3,+1)
critical point called a ring critical point.

Scalar field: a function of real space whose values have only sign and magnitude,
not direction.

Schrédinger equation: time-dependent: Equation 1-1, time independent: Equation
1-2.

Signature: o, the sum of the signs of the curvatures at a critical point.

Slater determinant: an approximate form of the wavefunction, written as an
antisymmetrized product of molecular orbitals.

State function: the projection of the state vector onto the particle coordinates. See
wavefunction.

State vector: a vector in Hilbert space, which describes the probability of
observing each eigenvalue of each observable.

Stationary state: a state whose properties (and particularly the Hamiltonian
operator) are independent of time.

Substituent atom: the atom, E = L, M or H, bonded directly to the central
phosphorus or nitrogen atom in each of the molecules studied.
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Substituent group: the group R = EH, or X = EH,.; bonded directly to the central
phosphorus or nitrogen atom in each of the molecules studied.

Supermesityl. 2,4,6-tri-tert-butylphenyl (Mes') a substituent with even greater
steric bulk than mesityl: 2,4,6-trimethylphenyl (Mes)

Transferability: When the electron density of a group is the same, in different
chemical environments, all the other properties of the group will also be the same.
Perfect transferability of electron density leads to perfect transferability of other
properties. Near transferability of density and other properties is often seen,
leading to empirical additivity schemes.

Valence: the number of bonds formed by an atom in a given molecule, as
determined by the Lewis structure with no formal charges; e.g. 4 for carbon in
methane, 2 for oxygen in water, 5 for phosphorus in H3PO. Valence is less well
defined for molecules with formal charges on one or more of the atoms, but we
may define a ‘formal valence’ as the number of bonds an atom would form if its
formal charge were zero.

Valence electron: an electron in the outer (valence) shell of an atom — either
bonding or non-bonding.

Valence shell charge concentration — for atoms this is a spherical charge
concentration. In molecules it is associated with the reactive surface.

Vector field: a function of real space whose values have magnitude and direction
in real space.

Wavefunction: a function, obtained from the Schrodinger equation, of the particle
space and spin coordinates that is postulated to contain all the measurable
information about a system.

Zero-flux surface: a surface through which no gradient paths cross, defined by a
set of gradient paths originating at a bond critical point (or ring critical point).
The gradient at any point on the surface is parallel with the surface, so that the
surface normal is orthogonal to the gradient at every point on the surface.
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A1.2 ‘Atomic’ symbols
E: Any atom, particularly the heavy atom (L or M) in the substituents X and R.

L: a main group element of the second row (the first heavy row), specifically C,
N, O or F. An atom whose valence shell is the L shell (n = 2).

M: a main group element of the third row (the second heavy row), specifically Si,
P, S or Cl. An atom whose valence shell is the M shell (n = 3).

Me: Methyl, CHj,

Mes: Mesityl, 2,4,6-trimethylphenyl.

Mes": Supermesityl, 2,4,6-tri-tert-butylphenyl

R: a substituent group of the central phosphorus atom that has a formal valence of

I, also represented by EH,. Specific groups in this thesis are CH;, NH», OH, F,
SiH3, PH,, SH and Cl. R may also represent H in the molecules PH; and PH,".

TMS: Trimethylsilyl, Si(CHj3);.

X: a substituent group of the central phosphorus atom that has a formal valence of
2, also represented by EH,.;. Specific groups in this thesis are CH,, NH, O, SiH,,
PH, and S.

Y. An atom or group replacing a hydrogen atom (H) in any of the general
formulae: P(EH.);, HP(EH.);, H,PEH,, HPEH,,, H;PEH,,, HP(EH,.),
P(EH,);".



Al1-9

Al.3 Acronyms

AOQO: atomic orbital

BCP: bond critical point

CC: charge concentration

HF: Hartree-Fock (method)

LCP: Ligand Close Packing (model)

MCSCF: MultiConfiguration Self-Consistent Field method
MO: molecular orbital.

MP2: Maoller-Plesset (perturbation method), 2™ order
MP4: Meller-Plesset (perturbation method), 4™ order
QCISD: Quadratic Configuration Interaction, Singles and Doubles
RHF: Restricted Hartree-Fock (method)

SCF: Self-Consistent Field

VSCC: valence shell charge concentration

VSEPR: Valence Shell Electron Pair Repulsion (theory)
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Al.4 Local and atomic properties, arabic:
G(r): Kinetic energy density, positive definite form.
h°(x1, r2): the Fermi hole at point r; (for a spin ¢ reference electron at point ry).
Jr(r): vector current density for property F.
J(r): vector current density.
_ jr(r): one-electron contribution to the vector current density for property F.
K{(r): kinetic energy density.
L(€Q): the residual Laplacian of an open system due to integration errors.
N: the total number of electrons in a closed system.
N(Q): the electron population of the open system Q.
q(€2): the electric charge on the open system £2; q(QQ) = N(Q2) — Z.

ry: the position of a bond critical point.

1,(£2): the bonded radius of the atom Q with respect to the bond path of interest.

I'w: the position of a non-bonding maximum in the charge concentration, -V*p.

a(€2): the distance of a non-bonding maximum from the nuclear position of atom
Q.

<T>, T(£2): average kinetic energy.

<V >, V(€2): average potential energy, atomic virial.

X: the set of nuclear spatial coordinates describing the nuclear configuration of
the molecule.

x: the set of electronic spin and spatial coordinates.

Z: The atomic number, equal to the nuclear charge (in atomic units) of an atom.
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A1.5 Greek Letters and other symbols:
o a ‘spin-up’ spin function, ms = +1/2
B: a ‘spin-down’ spin function, ms = -1/2
v a spin (molecular orbital)
3(,Q): delocalization index.
e: ellipticity (at the BCP).
¢: a basis function (atomic centred).
®: a (spatial) molecular orbital.
v: a density matrix.
1 a natural (molecular) orbital.

Ai: component of the curvature of the density at a critical point — an eigenvalue of
the Hessian matrix of p.

u: dipole moment vector, or its magnitude.
wi: component of the curvature of the Laplacian of the density.

n: A symmetry representation that is antisymmetric about a symmetry axis, or
more generically, a bond axis.

p(r; X): electron density, with parametric dependence on the nuclear
configuration.

c: a) A symmetry representation that is symmetric about a symmetry axis, or
more generically, a bond axis. b} An electron spin-coordinate. C) Signature of a
critical point.

1: the set of all spin and spatial coordinates.

©’: the set of all spin coordinate and the spatial coordinates of all electrons but
one.
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o: Rank of a critical point.
Q): a proper open system.

: an arbitrary open system.

1

y(x, X): a time-independent wavefunction.
Y(x, X, t): a time-dependent wavefunction.
V2p(r): the Laplacian of the electron density.

0o 0 .
—Q—J , the gradient vector operator.

B (5;’?9;’82



A2. Appendix 2: Derivations
A2.1. Derivations for Closed Systems

A2.1.a.  The Hyperviral Theorem, for a closed system, stationary

State,

(vl Aly) = (ol )~{ulas) =(vidh)~ (vl

{evlib)-{pHiew) -l - =il -

And we have shown that <w‘[ﬁ , }1]1//> =0 for a Hermitian operator.

A2.1.b.  Time dependence of observables

Using the time-dependent Schrodinger equation we can write an

expression for the time dependence of the observables for the total system.

d(4) _ d<lPl‘a|\P> _ f{(a; )AT P A(a;j) +P (aAJ\P}d”r

dt dt A ot

A28

:TI{H‘{’ AY - AR Y+ (¥ (aA]q/dr

=_j{\y AAY — " AR e + [ ( J‘Pdr
X Lol g]w>+<%§_>

A2-1
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A2.2. Derivations for Open Systems

A2.2.a.  Non-Hermitian Operators in subspace integration

»An operator is Hermitian if (/:1* )T =A4. Wedefine a property of the total
system:
(ay=(#}4)¥) - (w(aw))= <()1 J \y>

The Hermitian quality may not persist for an open system. To ensure that the

calculated property is real we add the complex conjugate and divide by two.

” :<\P*(z:1‘¥)>542"<(21‘1’)"11>5= o) e

{1
{1

A2.2.b.  The Hyperviral Theorem, for an open system, stationary

State.

(A, =), o), e
RGN A=Yy
(vl - £elAy), = (i)~ (Avliy), m

The potential energy operator is a simple multiplicative operator (no
deri\‘/atives). Therefore, it commutes with the other operators and those terms

cancel. The following derivation is for a one-electron kinetic energy operator.

For a many electron system, we can simply msert N jdr’ into each integral

below.
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pveliv)-viyay)=2

[(y V(Al//) Vi Al//] =—lhfj‘dS Er)j,(r)-n(r)

frlay)-vyiy]

jA(r)=£1;{V v iy -yl v)

We ensure the expression is real, as described above.

il aly), +cc] - asteria ) nte) s oo

A2.2.¢c. Time-dependence in an open system

We must include the complex conjugate, to ensure that the property is real.
We also include the time-dependence of the surface. For the one electron case we
can write:

d{4)
dr

2
=L -@f—,%mw*ﬁ(a—qi}w a4 P ldr+co+ = cde(Q)(aS)qJ AY + cc
2 ot ot ot 0

Q .

We may substitute the time-dependent Schrédinger equation into the first integral

above.

jg{([z‘;)j\mw*ﬁﬁf}w (‘;’j} }dr

:—__j e Ay - ARl + [, ( )‘{Jdr

For a stationary state, where Aisalsoa time-independent operator, all the terms

vanish.
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1 A 7 N l . ” . "
:%IQ{HW Ay —y AHV/}dr =;_l-fn{Ey/ Ay -y AEt//}a’r:O
For a time-dependent state, let us assume for the moment that the operator

has no explicit time-dependence. Since the Hamiltonian is no longer Hermitian,

we make a substitution into the volume integral.
i LSS * 5
};J‘Q{H‘P AY — W A0 e
i 5 * 7 * ¥y * ¥y * %y
== [l Ay v Aky ¢ v HAY - Afre fir
i SNTLy * ' i * ¥y * 70
=EJ.Q{[-PP av-v HA\{'}dT+;<\P HAY -9 A8
As in the total system above, the terms involving the potential energy operator

cancel.

:.ii_ fﬂ “2?” {vzw*ﬁmf JP*V%\P}dm%(LP*[H,&}P}Q

We have seen the first of these integrals in the open-system hyperviral theorem

above.
o e dv—wviawhie =2 ey [ oliw)-veav]

= %gds(g,r)[\y*v(ﬁw)- V\P*,&\P]- n(r)=indds(@,r)j, (r)-n(r)
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Filling all of this in to the original expression:

aldy, 1 A7)
dt 2 dt

PUARY LAl I aA ¥ df+cc+——c_de (as}\l’ AY +cc
! ot o b

S

:l{.;_ Q%{\y VAV -V A‘P}dr«l-h( [ﬁ,ﬁ}?}ﬂ}wa

+cC

+~1—J‘Q‘{’ 6A ‘{'dr+cc+——<_{dS {asjll’ AY +cc
2 E] 0

- %{éihcde(Q,r)L(r).n(r)+-}%<\y*[ﬁ ,2}P>Q +<%—51>Q + g{ds(sz{‘;f J‘P A‘I’}+cc

dt

i’<_f4:>_a_%{-c_{dsm,rn,,(r)-n(r)ﬁ(w*[MMQ+<%4> +fas S A‘P}m

This is easily generalized to the many-electron case. The mathematical
expressions in the above two sections are true for an arbitrary open system, but
there i1s no guarantee that they are physically meaningful. To ensure a physical

interpretation we must undertake a variational treatment.
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A2.3. The calculus of variations

In variational calculus we want to find a path, y(x), such that the integral J is

extremized, given the known function f{y, y,, x), and known end points (x;,y;) and

(X2, ¥2)-
J= .[]Z f(yayxsxﬂx

We can describe any arbitrary path, y(x, @), in terms of the extremum path, y(x,0),

using some differentiable path, 77(x), and a scaling factor, .

Y @)= y(x,0)+an(x)
1, e0)= 25D, (2 0) a0

& = y(x,a)- y(x,0)= an(x)

We require that all paths have the correct end points: 7(x,)=7(x,)=0

For any path, the integral is: J(a)= f f(y(x,a), V. (x,a),x)dx.

Vie) £z[§£_€y.+i§&}x= f{é’fin(m o nx(x)}l’x

oy 0a 0Oy, Oa oy oy,

Integration by parts yields:

da) mof oy o vda], o of d of
oa “ﬁ[ay”(’c) g, [, xf'[n”(x){éy“z;ayx *

J ()

The integral is extremized, 2
oa

=0 for arbitrary n(x) only if the bracketed

factor in the integrand vanishes.
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F/i_f”__af_}o
dy dxdy,
We apply the boundary conditions y(x;)= y; and y(x;)= y, and solve this
resulting Euler equation. An example of this approach is the Schrédinger
equation.  Schrodinger’s energy functional is extremized, subject to the

normalization constraint.

Gly]= I:{%V v Vi + (I} + A)//"t//}df

The Euler equation is Hy=Ey, where the Lagrangian multiplier, -4, is

identified with the energy, F.

A2.4. The variational definition of a subsystem

Schrodinger’s variational approach can be generalized to an open system.
This procedure leads to an open-system (stationary-state) analogue of the

hypervirial theorem.

561 ,Q]='Tg{%<ﬁ,é>g+cc}

The variation in the energy functional is caused by the operation of an
infinitesimal operator, EGAi , on the wavefunction. The variational derivation of

this expression only holds for proper open systems, i.e. for systems bounded by a

surface of zero-flux. Only for proper open systems is the commutator of the

operator G with the Hamiltonian physically meaningful. The commutator’s
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relationship with the property flux through the surface can then lead to important

atomic theorems describing the mechanics of an open system.

a5l

[f[,@]l//>g + cc) = %(cj.dS(Q,r)jG(r)- n(r)+ cc)

The variational derivation of the hypervirial theorem follows for a
stationary-state many-electron system. We start with Schrédinger’s energy

functional.
Glv]= f{;;—zv,-w” Vi +(V—E)v*w}dr = [f @, Vy)dr

We consider the variation in this function, due to a variation in the wavefunction,

over an arbitrary open system, =. This includes a variation in the surface, again

through the variation in the wavefunction. Recall that I dt'indicates summation

over all spins and integration over all spatial coordinates, except those of electron

1. We will also use the notation jdr,.” to indicate summation over all spins and

integration over all spatial coordinates, except those of electrons 1 and .
h’ ;
Glw.g]= [d7, fdf'{ﬂzviw‘ V- E)”t//} = [d7 [ar'fly.vy)

— R, 0 - ) -
Jg[«//,:]z La’rl J.dT {’é{}'&”J”ZE%%éW} +idS(a,rl)de f(gy,ng)dS‘(:;,rl)+cc

We rid this expression of the terms involving 6V, by integration by

parts, followed by Gauss’s theorem.



A2-9

.La’rl jdr'—QLWiw=§—;—Ldfx Jarvy vy
Ldn [ae'lv, - (Vo) vy -6y}
=-——-Ldz', [aerfas(e Y u n(e)ow }———idqfdr{vzw Sy

The surface integral vanishes for all electrons, i # 1, since the bounding surface 1s

at infinity. For electron 1 the surface term does not vanish.

Ldr, _[dr’ afWWlwzﬁqu fdr'V,w*-éVlw

= e La’rl Idr \A% &// —Viy .5')”}
2
:—é;—n—Cj‘dS(E,l‘l)IdT'Vlw* .n(l'l )é‘y/“% Ldr' J'drr{vfw* 5@//}

We now return to the overall variation in the energy functional.

o o5V 1//} +idS(E,rl )Jdr'f(l//,v z//)dS'(E,rl)+cc

£dz', _[a’r {——5w+z
= Ldfn fdr'{l}—E}y/*&//——Z—z—m—qu jdr'{ny/* -5!//}
-ﬁz—c'{dS(E,rl)!dr’V,yf‘ n(r, )5y -1—c£dS(E,r1 )Idr'f(w,VW)dS(E,r, J+cc

_qu jdr(H E)y §w+<§dSu, _fdr{ e vV, n(r, )5y/+f(w,Vz//)dS‘(u,rl)}+cc

We can drop the subscript on the operators and spatial coordinates. For
the total system, all the surface terms vanish and we recover H w=FEy and
A w =FEy’ . Since this applies throughout the system, we find that the first

integral above vanishes.
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5gw,u cj‘dS(_, jdr{ V' -n(r )51//+f(y/,Vl//)§S(E,r)}+cc

We must now consider the term involving the variation in the surface.
When we include the complex conjugate we have two such terms. Considering
the difference between the two forms of the kinetic energy density, K(r) — G(r) =

L(r), we rewrite this as follows.

2

" 2
fly,Vy)+ce= {,*ﬁw(ﬁ(//) l//}— 2Ew*w+2%2ivf(w*w)=%zivf vv)

Once again, we have applied the time-independent Schrédinger equation.

2
jdr'f(t//,V w)+ce= jdr'%Zin(w*w>

As seen for similar terms above, the volume integral becomes a vanishing surface

integral for all i=1. We define a charge density per electron,
P) i
T
: N5 . K . s R’ :
[@z' fly,Vy)+ee= [dr —2-Vf(w w)=-—-—-Vf farly w)=§—V"p (r)

Jas(@,rS(e,1) [de . V) co = & { JasE W o) (,r)m}

2
=|= cj‘dS(E,r){—h—— j‘dr'V v -n(r)sy +1V2p’(r)&‘(3,r)} +cc
2m 2

We now consider the bounding surface more carefully. We apply some
constraints in order to transform the expression for the variation in the energy

functional into a physically meaningful form. All the variations above arise from
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a variation in the wavefunction, Sy(r)=¢(r)-w(r). The trial function, #(r),
defines a trial density, p, (r)= jd’["¢* (x,r')¢(x,z"), and a region, Q(¢) , bound by

a zero-flux surface.

Vp,(r)n(r)=0 for all r in the surface S(2(¢),r)

We require that as ¢ tends to y, the region Q(¢) is continuously
deformable into the proper open system, Q(y). This requires that, af all stages of

the variation, the Laplacian of the trial density integrates to zero.
_L( P¢( Jdz=0

In order for this to be satisfied for all trial functions, ¢(r)=w(r)+sy(r), we

require the variation of the integral to vanish for the proper system.
5[V pe)dr=0
) LV (r)dz = Lé‘ Vzp'(r)}dwr (j.dS(Q rp, S(Q, r)Vzp’(r) 0

We rearrange to find an expression for the surface integral.

~Jas(.r)p, SV p'(r)= [ dzs, (v p/(v)}= [ de6, {[dev? (yy )
= [ s, {IdrV-[Vy/ Wy vy)= Ldrjdrv vw by +y vy
=dds(@r) [ar{(Vy oy +y 6V ] n(r)
The variation in the surface is effectively replaced by a variation in the
Laplacian, when the conditions above are satisfied. This substitution is valid for
any variation in the surface when the zero-flux condition is obeyed for all points

on the surface.
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Vp'(r)-n{r)=0 for all points on the surface.

Thus if, and only if, the open system, =, corresponds to a proper open system, €3,
bound by a surface of zero-flux, we can replace the surface term in the variation

of the energy functional to get a physically meaningful expression:
56w, Q] {ds (@ r){ [drvy® n(r)oy += dS'(Q r)v2p'(r )}+cc
- f-({ds(g,r)jdr’{(v v by —-[(V vy v w]}-n(r)wc
:——(jds Or Idr{ Vi’ )cw-—-y/ avw} n(r)+cc

= _-;n—gds(a,r)jdr'{(v v By -y n(r)+ ce

We define a single-particle vector current density, for a many-particle

system.
0)=5 = [ay vv-(u )

8,ilr)= 5—3—1 far'ly vy - (o= —;m—l [ar'ly v(op)- (Vv ow}

59‘[ ,Q 4a’S Q r ja'r {1// oV — (Vc// )6;//} +cc

- ——i—‘cjds(gz,r)fsw j(r)-n(r)+cc

Finally, we write the variation in the wavefunction as a result of the action

of an infinitesimal generator.

Sy =26 Sy =-2G
y=—Gy v =Gy
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We recall the definition of a single-particle current density for the observable, G,

now written for a many-particle system.
. h 7 * 2 * 2 1_
jo(0) === [a'ly V(G )-(vy 6w )
2mi
We may now identify the variation in the energy functional with the flux

of the property G, though the bounding surface.
sely. 0=~ Jas(,r) fae'b (ow)- (T B} o
= ~%cjds(§z,r) jdf'{l//*V(;%él/l]-— (Vy (i—;-éwj}.n(rﬁ cc
— 2= Jas(ur) far Y v(Gy )- (Vo u ) n)+cc

= —-—;—gdS(Q,r)jG (r)-n(r)+cc

We are finally in a position to use the hypervirial theorem, derived for an
arbitrary open system, with the assurance that the calculated properties are

physically meaningful for a proper open system.
(—;—;(‘P‘[f{, é]‘l’)ﬂ + cc) = (cde(Q, r)j(r) n(r)+ cc)

By choosing appropriate operators, G, we can derive a series of atomic theorems,

such as the atomic force theorem, G= p and the atomic virial theorem, G=r P-
For the more general case of a time-dependent system, we extremize the

action integral.
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w,[¥]= l]".c[\P,z]dz = t]dt Jer[\P,VLP,‘P,t]

] Y

L, v, ¥ (= Zf(‘P‘I’ \PW)—E—-ZV‘P V-7

J.dtj'dr{ '5?7“\17_%5@} jdtq’ds Y + Idr————é‘{’l’2+cc

For an open, time-dependent system:

WQ[W,Q]:’]L[‘P,Q,t]dt c[,0.0= [ dr [ar'Lly, v, ¥.q]

4

The hypervirial theorem then becomes:

ﬂé‘(le [T=Q]: G(Qstz)" G(Q>t1)
&

- j' ddds(Q,r %t:- por,1)-

=-f dt{————<‘P’[H Gl ) +cc}



A3. Appendix 3: Density Matrices and Population Analysis

A3.1. Density matrices and natural orbitals
Many expressions for atomic populations and bond orders are written in

terms of the density matrix (Szabo and Ostlund, 1989, section 4.4; Springborg,
2000, chapter 14). For a Hartree-Fock wavefunction, [\yo>, which is a single
determinant of spatial molecular orbitals, ®,(r), the electron density of a closed
shell molecule with N electrons can be expressed as:

p(r)= lZniIQi(rXZ = 21§Iq)i(r12

Equation A 3-1

Expanding the MO’s in terms of basis functions, ¢, (r), we arrive at:

N/2

p<r>=zzcb*f(r><pi<r>:zﬁ(gcm(r);cm(r)]
-3 [Feclono-Snaone

My IR

Equation A 3-2
The Hartree-Fock density matrix, P, consists of the components

N/2
P, = 22 C;C,; where the C’s are the coefficients of the basis functions in each

doubly occupied MO. An important related matrix is the overlap matrix, S. The
components of this matrix are S, = jdr;zﬁ ’ (r)p; (r). Written in terms of molecular
orbitals, the overlap matrix is S, = J'dr(D,.(r)(D S (.

A3-1
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For multi-determinantal wavefunctions, we need to determine the
fractional occupation numbers of each MO in order to determine the contribution of
each basis function to the molecular properties. A more general way to write the

reduced (one-electron) density function is
px,)=N jdxz...dx,vw(x,’xzmx,v )\u (xl,xzme ) for any antisymmetric
wavefunction, \u(xl’x , Xy )

Similarly, the first-order reduced density matrix is defined as

7 (x,,x}) Nfdx det//(x X, XN)//*(X;,XZWXN). This can be expanded in

terms of a set of molecular spin orbitals, {,}, as
I8 (Xlaxll)z Z Xi (Xl)deldx;)(:(xl)V(xx:sX’)Zj (X;)ij*(x'l)z Z Zi (x] )[7», ]Zj*(x;)
ivj inj

Equation A 3-3

If the wavefunction is the Hartree-Fock ground state and the molecular

spin orbitals are orthonormal, then this reduces to

"(x,,x Z 2 xS (%)= Zx, D (x

Equation A 34

The diagonal elements of this matrix, y;/”, are the occupation numbers of the spin

orbitals, equalling zero or one.

In general the matrix y, is not diagonal, but can be diagonalized by a

unitary transformation (U) of the spin orbitals {y,} into the set of so-called natural

orbitals (Lowdin, 1955), {qk = ZU 4 ;(,} These natural orbitals lead to the fastest
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convergence of a CI expansion. In this formalism, y,{x,,x ZAmA (x, J7; (x! )

where the coefficients, A, are the diagonal elements of the diagonal matrix
L =U"yU. These coefficients are interpreted as the occupation numbers of the
natural orbitals (Szabo and Ostland, 1989). With the natural orbitals expanded in a
set of atomic functions, the contribution of each atom’s functions to a given
property can be calculated as shown in the next sections, with the SCF occupation
numbers, #;, replaced by A.

We will later need the pair density, p(r;,r,) which is related to the

diagonal elements of the second order density matrix. In analogy with the first
order density matrix, I'W =y, (x.,x))= N_“dxz...del//(x]yxz‘_.xN)//*(x;,xz_“xN),
we can write:

r® = 72 (X| ,X1,X,, X, ) = JdXBdeNW(XI,Xz...XN )V* (X;,XIZ---XN )
Equation A 3-5

The diagonal elements of this matrix give the probability of finding electron 1 at r,
and electron 2 at r,. In order to consider all possible pairs of indistinguishable
electrons we multiply by M(N-1) and divide by two to avoid double counting of
pairs. This gives the pair density, which is required for calculating 2-electron
properties, such as delocalization.

(1’ 2)" ( Idado'zdxs dXNW(Xl,XZ...XN)V*(XI,XZ...XN)
Eguation A 3-6
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A3.2. Population Analysis
A3.2.a. Assigning electrons to atoms

Atomic Charge is a seemingly simple concept upon whose definition it has
been surprisingly difficult to reach a consensus. Chemists can agree that the atomic
charge is the nuclear charge minus the number of electrons associated with that
nucleus (or atom). The problem is in agreeing upon which electrons (i.e. how
many) are associated with each atom. The problem is evident even in the simplest
approximations to atomic charge; the formal charge calculated from a Lewis
structure assumes a non-polar bond while the oxidation number assumes a
completely ionic bond. The “truth’ is usually somewhere in between. The Theory
of Atoms in Molecules proposes one answer to this problem that is grounded in
physics and derived using the calculus of variation. The partitioning of the
electrons in real space was described in Chapter 2. A variety of other approaches
will be described below.

Bond order is also defined differently within each particular model of
electronic structure. As with many chemical concepts, it is most deeply rooted in
the simple ideas of Lewis. When an experimentalist makes a new compound they
draw a Lewis structure to summarize (and perhaps justify) the observed stability or
reactivity and the spectroscopic data; such as X-ray structure, UV-visible, IR and
Raman frequencies and NMR shifts and coupling constants. The (average) number
of shared pairs in the Lewis structure is said to be the bond order, but this is usually

only applied to ‘covalent’ interactions. In ionic interactions the charges are usually
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discussed rather than the bond order. When resonance averaging is invoked, the
bond order and the formal charges are the weighted averages over the various
resonance forms, but the weighting is often uncertain.

Bond order inferred from experimental bond length and strength data is
often interpreted as covalent bond order, with the accompanying assumption that
increased ‘covalent character’ means decreased ‘ionic character’. However, this
shortening and strengthening may be due either to increased sharing of electrons —
more accumulation of electron density between the atoms — or increased charges —
leading to increased electrostatic attraction — or both. The two effects may
reinforce each other. The experimental data can be interpreted within any one of
several models of chemical bonding.

Within the simplest molecular orbital models, bond order is equal to one
half the sum of the occupation numbers of the bonding orbitals minus one half the
sum of the occupation numbers of the antibonding orbitals. This is a useful
definition only so long as the molecular orbitals are easily classified as bonding,
non-bonding or antibonding with respect to the bond of interest. This is
straightforward only in the case of homopolar diatomic molecules. In these cases
the atomic charges are zero.

A3.2.b. Need for Advanced / Ab Initio Methods
The bond orders of polar bonds can be quite difficult to determine within
either of the simple models (Lewis pairs or occupied molecular orbitals) described

above. In the MO model most MOs are spread over the whole molecule and do not
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contribute a full electron pair to any one bond. In addition, for polar bonds it may
not be clear whether the MO is non-bonding or (anti)bonding with respect to the
bond of interest.

Many definitions of bond order have been proposed for both semi-
empirical and ab initio wavefunctions. A number of definitions applying to single
determinant and correlated wavefunctions were reviewed by Sannigrahi in 1992.
Most of these definitions rely on the expression of the molecular orbitals (MO’s) as
linear combinations of atomic-orbital-like basis functions (LCAO). The total
wavefunction is expressed as a Slater determinant of these MO’s (Hartree-Fock,
HF) or as a linear combination of determinants (Configuration Interaction, CI).
Each MO is assigned an occupation number (an integer in HF or a fraction in CI)
and all the properties of the system are written in terms of the basis functions. Each
basis function is centred on a particular nucleus, and in this type of analysis all the
electronic properties associated with a particular basis function are considered to
‘belong’ to the ‘atom’ on which it is centred.

A3.2.c. Hiickel, Coulson and Wiberg
Within simple Hiickel theory for planar hydrocarbons, the atomic p,

orbitals on the sp’-hybridized carbons are assumed to be orthonormal. The 7-like

population on each atom, N4 and the z-like bond order, 5”43, are defined as:

x __ . 2 T _ *
Ny=P,= Znicm by = Py = ZniciAciB
i i

Equation A 3-7
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The occupation numbers, #; are 2 for occupied MOs and 0 for unoccupied
MOs. The populations and bond orders are components of the density matrix, P.
This definition, originally proposed by Coulson (1939), marks the beginning of
bond order definitions related to calculated wavefunctions. It applies only to
orthonormal basis sets, with a single function centred on each atom. For several

basis sets centred on each atom, one can sum the partial bond orders arising from

onA onB

each pair of atomic orbitals (Glendening and Weinhold, 1998), 54" =>' >'P_ .

An alternative definition of bond order was proposed by Wiberg (1968)

that avoids the possibility of a negative bond order, again assuming orthonormal

onA onB

basis sets: bY;) => > P!. Many variations on Coulson’s and Wiberg’s

definitions have been proposed for non-orthogonal basis sets, which incorporate the

orbital overlap matrix, S, in some way. McWeeny (1951) has suggested the

definition B, = (S%PS% j

AB

A3.2.d. Mulliken and Mayer
One approach that accounts for non-orthogonal basis sets is Mulliken
analysis (Mulliken, 1955), which continues to be very popular despite its
arbitrariness and basis set dependence (Springborg, 2000; Ostland and Szabo,

1989). For a single determinant of molecular orbitals, with occupation numbers #;,

expanded in a set of atom-centred functions (®,; = ch¢v ), the gross Mulliken

population on atom A is:
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v, =zni(zzcw v, ] Sy RS, =3 @),
i ped v ped v ned

Equation A 3-8

The sum over x includes only those basis functions centred on atom A,
while the sum over v includes all basis functions. This can be separated into a
population arising purely from orbitals centred on A (u,v € A) and a population
arising from two orbitals on different atoms — a shared population. The overlap

population, often interpreted as a bond order, is the sum over terms arising from

basis functions on two separate atomic centers, A and B;

NAB=2Zn,.(Z}:cw ¢, W] 2% 3PS, -

ued veB ned veB
Equation A 3-9

Mayer (1983, 1985a/b, 1986a/b) has suggested keeping Mulliken’s atomic
populations, but replacing the overlap populations, which relate to electrostatic
factors, with an alternative bond order index relating to the exchange effects from
the bond. For single-determinant wavefunctions, the second order density matrix,
Equation A 3-5, can be written as:

}/2(X;,X],X2, Idx dXNW(X XX N)// (X X, .XN)

:7t(xl :xn)ﬁ( Xy X 2)_71(X25X|)71(X|§X2)
Equation A 3-10

The second term is the exchange component. Integration of this term and

expansion in the atomic orbital basis leads to:
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[|7. @)y, (2)dz,de, = ZV(P“S)W(P"S)W +{p’s),.(p’s),
BAB = 22 Z(PaS)W (Pas)vu +(Pﬂs)yV(PﬂS)V#

ueAd veB
Equation A 3-11

For closed shell systems Mayer’s bond order index reduces to

By = Z Z(Ps)pv (PS)W

ued veB
Equation A 3-12

All the above methods define atomic properties by partitioning the Hilbert
space. They depend on the assignment of particular basis functions to particular
atom centres and are thus intrinsically basis set dependent. Angyan, Loss and
Mayer (1994) later adapted Mayer’s definition to real space partitioning, in place of
Hilbert space partitioning, and that approach will be discussed below.

A3.2.e. Orbital Optimization: Lowdin Population Analysis

Lowdin’s approach (Lowdin, 1950, 1970; Springborg, 2000) is the first to
attempt an optimization of the orbitals to make the assignment of charge to atomic
functions less arbitrary and less basis-set dependent. The population of each natural
orbital is divided into one-atom and two-atom contributions. Symmetric
transformation of the basis set (into the orthonormal set that most closely resembles
the original atomic centred basis set) causes the two-atom contributions to
disappear, leaving only atomic populations. This approach gives atomic charges,

but not bond orders.
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A3.2.f. Natural Population Analysis

In the related method, Natural Population Analysis (NPA), natural atomic
orbitals (NAOs) are transformed into natural hybrid orbitals (NHOs) and then to
natural bond orbitals (NBOs), which can in turn be analyzed as core, bonding or
non-bonding. Note that while Lowdin transforms the basis set, in NPA it is
formally the molecular orbitals that are transformed.

The NAO’s are found by diagonalizing each block of atomic orbitals
(basis functions) to produce ‘molecular’ orbitals centred on each nucleus and
conserving the spherical symmetry of the atomic environment. These orbitals have
non-integer occupancies in the molecular wavefunction. These pre-NAOs are then
orthogonalized to remove interatomic overlap. The orthogonalization step is related
to Lowdin’s symmetrical transformation but is weighted to keep the occupied
orbitals more closely related to the original atomic symmetry orbitals while
allowing the virtual (Rydberg) orbitals to vary more from their original form (Reed
et al., 1985). The population on each atom is then found by integrating the NAQO’s

for the given atom, A, over all space.
N® = <¢i(A)lrl¢i(A)>ﬂ N - ZNi(A) , N = ;NM)
Equation A 3-13
The NBO’s are found (Reed, Weinhold ef al., 1980, 1983, 1985, 1988) by
looping through the various blocks of the density matrix looking for components
above a certain threshold. Within one-atom blocks core orbitals are taken out with

occupancies above 1.999, then lone pairs are removed, with occupancies greater
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than 1.90. Two-centre blocks are then searched for bonding orbitals above some
threshold occupancy. The orbitals found in this way are related to a ‘natural Lewis
structure’ and the integer bond order is inferred from the best Lewis structure, or
from a weighted average of integer values in the case of resonance. The resonance
weighting is determined by natural resonance theory (NRT; Glendening and
Weinhold, 1998).
A3.3. Real Space Population Analysis

The occupancy weighting of the NPA method makes it more stable to
increasing the basis set size than Lowdin populations. Both ‘optimal
orthogonalization’ approaches are less basis-set-dependent than Mulliken-type
analyses (Levine, 2000, page 508). The basis set dependence can be further
reduced by assigning properties to regions of real space rather than assigning
orbitals to ‘atoms’. In order to partition the bond orders in real space, as is done for
atomic properties in the theory of atoms in molecules, we need a definition of bond
order that defines an electron sharing (bonding) index as a function of real space.
This function can then be integrated over the regions of interest.

A3.3.a. Cioslowski’s Localized Orbitals

The population of an atom, defined as a proper open system, can be

written in terms of natural spin orbitals: Na = Y £ S, (4)", we can further write
k
the total number of electrons as N =N, + Ng= > 4> >S5, (A)S, (B). The
k A B

overlap integrals are now (natural) molecular orbital overlaps rather than atomic
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orbital overlaps and range over some open region of space, =, instead of all space.
SU(E)z Ldm,.(r)n‘}(r).

The approach suggested by Cioslowski (1989, Cioslowski and Mixon,
1991) is to minimize the diatomic term, Ngq (A#B), i.e. to maximize the monatomic
term, by unitary (or isopycnic) transformations of the orbitals. This method seems
to be rather arbitrary in its definition, with no appeal to physical interpretation of
the two components in terms of probabilities of any kind. This method still
depends on an optimized orbital transformation to define the net atomic populations
and the bond orders.

A3.3.b. Fulton Bond Index
Fulton (1993; Fulton and Mixon, 1993) has used the first-order density

matrix, expressed in terms of natural orbitals, to define a sharing index between two

atoms or any two regions of space, /(4,B)= N La’xl J;dx;i(x,;x;). He interprets

the related function i(x,;x')dx,dx| as “the probability that a single electron be
Jound in the volumes dx; and dx,’ about the points X; and x;” " Before defining this
sharing index, Fulton imposed the constraint that deji(xl;x{)oc p(x,), ie the
single integral over all space is proportional to the probability of finding a single

electron in the volume dx; about the point x;. This constraint led Fulton to the

definitions:



7 ’ 1 ) ’ ’
i(x,537) = (s )

I(A,B):Nde, de’ii(x,;x;)= La’x1 de{y,%(x,;x;)yl%(x'l;x,)
Equation A 3-14

~ This final expression has the property that Z[ (4,B)=N,, the
B
population of region A, and Z ZI (4,B)= N, the total number of electrons in
A4 B

the system. Expanding out the expressions for the density matrix in terms of the

natural spin orbitals, and performing the integrations gives:
- ’ . r = 7 ,1/2 — % r.

1(4,B) delde,I(x,,x jdx dely (x,;x] "2 (x!;x,)

/i
= de de,(ZAn,(x 771 J (Zi 77] )
= .fdx del(Zl/U (x, ) J(Z/l 277, (x )77;("1)}
:Z@i%;zj%delni (x,) | axin; (x;)
=2 Zﬂi%l_/%sﬁ(A)Sﬁ(B)

P
Equation A 3-15

For a Hartree-Fock wavefunction, all the occupation numbers are one or

oce oce

zero, and the sharing index reduces to I(4,B)= Z Z S (4) S (B). Fulton

further defined the bond index, B(4,B)=1(4,B)+1(B,4)=2I(4,B). Note that
this definition differs from Cioslowski’s by the inclusion of off-diagonal terms, Sy,

and note the different treatment of the occupation numbers. While Cioslowski
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specifies that the regions should be proper open systems, Fulton suggests but does
not require it.
A3.3.c. Mayer Bond Index

Angyén, Loos and Mayer (1994) have extended Mayer’s definition of
bond order, which has a physical basis in the exchange energy, to an Atoms-in-
Molecules partitioning scheme. For this analysis they replace Mulliken charges
with Atoms-in-Molecules charges as determined by the integration of the electron
density over proper open systems. The expression for the bond order now arises
from an integration of the ‘exchange part’ [ 7,(x,; x| )y, (x,;x} )] of the second order
density matrix, Equation A 3-10. Expanding the density matrix in terms of
molecular or natural orbitals one finds:

71(2 1) Z{" a(Sl (Sz +”ﬁﬂ(s ),B (52)} (rl)¢( )

Equation A 3-16

where »nis the occupation number of the spin orbital 7 (X)=¢,. r)o(s).

Inserting this expansion into the integral of the exchange density gives
[ i2bme = S i+t Y o ) e )
32222{” nj +nln; }(¢l¢> (41)

—ZZZZ{n ety (415, (8)

Equation A 3-17

BAB:ZZEJ-: {n n} +nf n; }S

Equation A 3-18
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For a single-determinant wavefunction, all the occupation numbers are one
(or zero), and when the regions of space A and B are chosen to be proper open
systems, the bond order expressions of Fulton and Mayer are identical. For
Hartree-Fock wavefunctions these bond orders also reduce to the same expression
as the delocalization index defined by Bader (Fradera ef al., 1999). Thus the Fulton,
Mayer and Bader indices are all equivalent at that level of theory, although the
philosophy and derivation of the three indices are quite different. For correlated
wavefunctions the expressions are not equivalent. Important similarities in these
approaches are that each defines atoms as regions of real space, rather than
attempting to partition Hilbert space, each attempts some justification in terms of
probabilities and/or exchange effects and each 1is invariant to unitary
transformations of the orbitals.

1t is of particular note that since these bonding indices all reduce to the
same expression at the HF level of theory, the relationship between the
delocalization index and charge transfer, derived in this thesis, also applies to the

Fulton and Mayer indices.
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A4. Appendix 4: Plots of Calculated Data

In this appendix, graphs of calculated properties are presented for the
phosphorus containing molecules. Each property is plotted as a function of the
substituent group, X or XH = R. This allows a simple overview of the major
trends in each series as the size and electronegativity of the substituent varies.
For each property, all seven series are plotted on a single graph for easy
comparisons between series. These graphs, Figures A4-1 through A4-8, are
referred to throughout the results chapters (4 to 8). FEach graph shows the
properties for the lowest energy isomer (conformer) within the imposed
symmetry. For example, only planar arrangements of X = CH, and SiH, are
plotted for HPX, H3;PX and HPX,, even when this is not the most stable form.
Values of the plotted properties for all isomers studied can be found in the tables
accompanying each chapter.

The systems whose properties are plotted are:

H,PXH: H,PF, H,POH (anti-eclipsed), H,PNH, (gauche), H,PCH; (eclipsed),
H,PCl, H,PSH (anti-eclipsed), H.PPH; (gauche), HoPSiH; (eclipsed), PH;.

HP(XH), (all C,): HPF,, HP(OH), (‘up’), HP(NH,);, HP(CHj),, HPCL, HP(SH),
(up’), HP(PH,),, HP(SiHs),, PH;.

P(XH); (all C; or higher): PFs;, P(OH); (‘up’), P(NH,); (gauche), P(CHs)s
(eclipsed), PCls, P(SH); (‘up’), P(PHa); (gauche), P(SiHs)s (eclipsed), PH;.

HPX: HPO, HPNH (trans), HPCH, (planar), HPS, HPPH (zrans), HPSiH,
(planar).

H3;PX: HsPO, HsPNH (#rans), HsPCH; (planar), HsPS, H;PPH (frans), HsPSiH,
(planar).

A4-1
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HPX,: HPO,, HP(NH), (trans), HP(CHy), (planar), HPS,, HP(PH), (trans),
HP(SiH,), (planar).

P(XH),": PF,", P(OH);" (exo0), P(NH)," (planar), P(CH3)," (exo0), PCl,", P(SH),"
(exo0), P(PH,)," (planar), P(SiH3)," (exo).

The properties plotted in each figure are as follows:
Figure A4-1: P-E bond length, in Angstroms, (1A = 100 pm)
Figure A4-2: Phosphorus bonding radius, rp(P) = r(P-BCP), in atomic units.
Figure A4-3: Substituent atom bonding radius, rp(E) = r(E-B‘CP), in atomic units.

Figure A4-4: Density at the P-E bond critical point, py, in atomic units.

Figure A4-5: Laplacian of the density at the P-E bond critical point, Vzpb, in
atomic units.

Figure A4-6: Charge on the phosphorus atom, q(P), in electron units.

Figure A4-7: Charge on the substituent group, -q(X) or -q(R), in electron units.
Figure A4-8: Delocalization index, from the phosphorus atom to the substituent
group, §(P,X) or §(P,R).

Figure A4-9 shows a plot of the delocalization index, §(P,X) or §(P,R), as a
function of the charge transfer, -q(X) or -g(R), for each series. Best-fit quadratic
curves are shown for each series, with some data points excluded from the fit.
Similar plots are shown in each of the results chapters. Here [P(XH),]" includes
XH =F, OH, NH,, Cl and SH, while [PR2]+ includes R = H, CHs, PH;, and SiHs.
The HPX and HPX, curves do not include the X = CH; data. The H;PX curve
includes neither the X = CH; nor the X = PH data points.



r(P-E) / 100 pm

Figure A4-1: Bond length between phosphorus and substituent atom
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Figure A4-2: Bonding radius of phosphorus
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Figure A4-3: Bonding radius of substituent atom
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Figure A4-4: Electron density at the bond critical point
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Figure A4-5: Laplacian of the electron density at the bond critical point
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Figure A4-6: Atomic charge on phosphorus
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-q(X) or -q(XH)

Figure A4-7: Charge transferred to substituent group
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3(P,X) or &(P,XH)

Figure A4-8: Delocalization index between phosphorus and substituent group
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8(P,X)} or §(P,XH)

Figure A4-9: Delocalization index vs. charge on substituent group
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