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ABSTRACT 

This dissertation details a fundamental study of bubble growth dynamics for both 

spherical vapour bubbles in a uniform temperature field and hemispherical bubbles on a 

heated plane surface in a non-uniform temperature field in microgravity. The governing 

equations were solved numerically in order that accurate predictions of bubble growth could 

be generated for a wide range of system conditions for two fluids, water and RI13. 

One dimensional spherically symmetric bubble growth in an initially uniformly 

superheated liquid was investigated by first developing grid and time step independent 

solutions on a computational grid with uniform spacing between adjacent nodes. These 

solutions were utilized as benchmark solutions for subsequent bubble growth models. A 

clustered grid arrangement was then implemented to reduce the computational time with 

insignificant loss of accuracy. The numerical predictions of the uniform and clustered grid 

arrangements predict the available analytic theories and experimental data with sufficient 

accuracy. 

The mechanisms which govern the growth of a spherical vapour bubble in an 

unbounded liquid were exposed by investigating the complex interaction between the heat 

transfer and the fluid flow surrounding a bubble as it grows from inception, through the 

various growth stages, to diffusion controlled growth. The influence of system pressure and 

liquid superheat were also investigated. 
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Utilizing similar physical arguments, the model developed for spherically symmetric 

growth was extended to simulate hemispherical growth at a heated plane surface in 

microgravity. The theory was able to accommodate both spatial and temporal variations in 

the temperature and velocity fields in the liquid surrounding the bubble as it grows. Utilizing 

the present theory, the complicated thermal and hydrodynamic interactions between the 

vapour, liquid and solid have been manifested for a single isolated bubble growing on a 

heated plane surface from inception. 

IV 



ACKNOWLEDGEMENTS 

I wish to express my gratitude to those who contributed to this work. I am 

particularly indebted to my supervisor Dr. R. L. Judd for his guidance, instruction, and 

encouragement during this project. He has been a constant source of motivation and a true 

friend. 

I would like to express my appreciation to Jim Cotton and Marwan Hassan for their 

valuable advice, technical support and camaraderie. 

Special acknowledgement is extended to the department technicians and secretarial 

staff. Their willingness to help and positive attitude will always be remembered. 

I would like to thank my family for their encouragement and curiosity throughout 

this work. Thank you Mom, Dad, Grandma, Buck, Luke, P-Lou, Nicole, Madison, 

MacKenzie, Avril, Brendan, Keith, Krista, Caius, and Nadine. 

Finally, I sincerely thank my beautiful and beloved wife Rachael. She has been the 

most wonderful friend and I feel truly blessed. 

v 



TABLE OF CONTENTS 

ABSTRACT........................................................................................................ 111 

ACKNOWLEDGMENTS................................................................................. v 
LIST OF FIGURES........................................................................................... IX 

LIST OF TABLES............................................................................................. XVI 

NOMENCLATURE........................................................................................... XV11 

Chapter 1 
Chapter 2 

2.0 
2.1 

Introduction ................................................................................. . 
Homogeneous Bubble Growth: 
Literature Survey and Numerical Simulations ............................ . 
Introduction ................................................................................. . 
Theoretical Development. ........................................................... . 
2.1.1. Early Analytical Work. .................................................... . 
2.1.2. Computational Work. ...................................................... . 

2.2. Present One-Dimensional Theory .................................................... . 
2.2.1 Equation Generation ........................................................... . 
2.2.2. Solution Procedure ............................................................ . 
2.2.3 Initial Disturbance .............................................................. . 

1 

9 
9 
10 
11 
20 
22 
22 
24 
25 

2.3 Numerical Procedure.......................................................................... 25 

Chapter 3 

3.1 
3.2 
3.3 

2.3.1 Grid Independent Solutions on a Uniform Grid.................. 26 
2.3.1.1 Solution of the Energy Equation.......................... 26 
2.3.1.2 Infinite Grid Solutions.......................................... 28 
2.3.1.3 Far Field Effect... ...... ... ............. ..... ......... ..... ......... 31 
2.3 .1.4 Time Step Independence............... ...... ..... ..... ....... 31 
2.3.1.5 Initial Disturbance Effect.................................... 32 
2.3.1.6 Comparison with Analytical Works..................... 33 
2.3.1.7 Comparison with Experimental Data................... 34 

2.3.2 Clustered Grid Solutions..................................................... 37 
2.3.2.1 Solution of Energy Equation................................ 37 
2.3.2.2 Converged Solutions on a Clustered Grid........... 39 

2.4 Spherical Bubble Growth Data... .... ... ..... .......... .... ..... ..... ........ 40 
Homogeneous Bubble Growth: 
Bubble Growth Dynamics... ..... ............ ............. ........... ................ 65 
Initial State....... ..... ....... ......... ........... .... ..... .......... ......................... 65 
Heat Transfer and Bubble Expansion............ ..... .... .................. .... 67 
Bubble Dynamics..... ..... .... ... ...... .......... ............. ... ........... ........ ..... 70 
3.3.1 Surface Tension Controlled Growth.................................... 72 
3.3.2 Transition Domain .............................................................. . 75 

vi 



3.3 .2.1 Intermediate Region .......................................... .. 
3.3.2.2 Inertial Region .................................................... . 

3.3.3 Heat Transfer Controlled Growth ................. : .................... . 
3.4 Effect of Superheat and System Pressure on Bubble Growth Dynamics 

Chapter 4 

4.1 
4.2 
4.3 
4.4 
4.5 

4.6 

Chapter 5 
5.1 
5.2 
5.3 

3.4.1. Surface Tension Domain .................................................. . 
3.4.1.1 Effect ofIncreasing Superheat on Surface 

Tension Domain .................................................. . 
3.4.1.2 Effect ofIncreasing Pressure on Surface 

Tension Domain ................................................. . 
3.4.2 Transition Domain ............................................................. . 

3.4.2.1 Heat Transfer Limited Transition Domain ........ .. 
3.4.2.2 Inertia Limited Transition Domain .................... .. 
3.4.2.3 Effect of Increasing Superheat on the Transition 

Domain ............................................................... . 
3.4.2.4 Effect of Decreasing System Pressure on the 

T 't' R . ransl Ion eglon ............................................... . 
3.4.3 The Effect of Pressure and Superheat on Heat Transfer 

Controlled Growth ............................................................. . 
Hemispherical Bubble Growth on a Heated Surface in 
Microgravity ............................................................................... . 
Introduction ................................................................................ . 
Formulation of the Problem ....................................................... . 
Computational Technique for the Energy Equation .................. .. 
Solution Procedure ..................................................................... . 
Code Verification ....................................................................... . 
4.5.1. Spherical Bubble Growth ................................................ .. 
4.5.2.Hemispherical Bubble Growth ......................................... .. 
Bubble Dynamics ....................................................................... . 
4.6.1. The Waiting Time ............................................................ .. 
4.6.2. Surface Tension Domain .................................................. . 
4.6.3 Transition Domain ............................................................. . 
4.6.4 Heat Transfer Domain ....................................................... . 
Conclusions and Recommendation for Future Work ................ .. 
Conclusions ................................................................................ . 
Recommendations for Future Work .......................................... .. 
Contribution to Knowledge ....................................................... .. 

75 
77 
79 
81 
81 

81 

84 
85 
86 
87 

89 

91 

93 

121 
121 
123 
128 
130 
131 
131 
131 
133 
134 
135 
136 
138 
152 
152 
157 
159 

APPENDIX A Derivation ofthe Extended Rayleigh Equation........ ....... 162 

APPENDIXB Tabulated Bubble Growth Data.. ........ ................ ............. 165 

APPENDIXC Thermal Boundary Layer Thickness.......... ...... ............... 168 

Vll 



APPENDIXD 

APPENDIXE 

APPENDIXF 

APPENDIXG 

FORTRAN 90 Code for Homogeneous Growth with a 
Uniform Grid Arrangement............................................. 170 

FORTRAN 90 Code for Homogeneous Growth with a 
Clustered Grid Arrangement........................................... 184 

FORTRAN 90 Code for Heterogeneous Growth on a 
Heated Surface..... ...... ...................................................... 202 

Publication of Robinson, A. 1. and Judd, R. L. in the 
International Journal of Heat and Mass Transfer, vol. 
44, 2001.. ...... ..... ..... .... ......... .......... ... ....... ............. ........ ... 240 

REFERENCES.................................................................................................. 253 

Vlll 



Number 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

Figure 2.9 

Figure 2.10 

LIST OF FIGURES 

Growth of spherical bubble in an infinite liquid........ ............. .......... 43 

Physical and computational domains for the uniform grid solution 
technique........... ... ................ ........................... ........................ .... ...... 43 

Case A; Water P=1.0 atm, ~Tsup=3.l °C. Converging solution for 
grid points increasing from 5000 (top curves) to 40000 (bottom 
curves). a) Radius vs. time. b) Subtracted curves R;-R4oooo............... 44 

Case A; Water P=l.O atm, ~Tsup=3.1 °C. a) Radius vs. time 
showing converged solution (M=40000) and the extrapolated 
benchmark solution. b) The exponent of ~r in equation (2.41 )......... 44 

Case B; Water P=0.372 atm, ~ Tsup =6.3 °C. Converging solution for 
grid points increasing from 5000 (top curves) to 40000 (bottom 
curves). a) Radius vs. time. b) Subtracted curves R;-R4oooo ............... 45 

Case B; Water P=0.372 atm, ~Tsup=6.3°C. a) Radius vs. time 
showing converged solution (M=40000) and the extrapolated 
benchmark solution. b) The exponent of ~r in equation (2.41 ) ......... 45 

Case C; Water P=0.362 atm, ~Tsup=17.0°C. Converging solution 
for grid points increasing from 5000 (top curves) to 40000 (bottom 
curves). a) Radius vs. time. b) Subtracted curves R;-R4oooo .............. 46 

Case C; Water P=0.362 atm, ~Tsup=17.0°C. a) Radius vs. time 
showing converged solution (M=40000) and the extrapolated 
benchmark solution. b) The exponent of ~r in equation (2.41) ......... 46 

Case D; Rl13 P=0.0361 atm, ~Tsup=48.l °C. Converging solution 
for grid points increasing from 5000 (top curves) to 40000 (bottom 
curves). a) Radius vs. time. b) Subtracted curves R;-R4oooo ............... 47 

Case D; RI13 P=0.0361 atm, Tsup=48.1°e. a) Radius vs. time 
showing converged solution (M=40000) and the extrapolated 
benchmark solution. b) The exponent of ~r in equation (2.41) ......... 47 

IX 



Figure 2.11 Converged growth curves (M=40000) for Case A, B, C and D 
showing that halving the magnitude ofthe far field boundary from 
R,nr=5 cm to R,nr=2.5 cm has no significant effect on the converged 
solution..................................... ... ... ....................................... ......... 48 

Figure 2.12 Case A; Water P=l.O atm, ~Tsup=3.l 0c. Converging solution by 
refining the time step. a) Radius vs. time: From top to bottom, the 
curves correspond with B=300, 500, 1000, 1500 b) The percent 
difference between the computed curve and that obtained for 
B=1500............................................................................................ 49 

Figure 2.13 Case B; Water P=0.372 atm, ~ Tsup =6.3 0c. Converging solution by 
refining the time step. a) Radius vs. time: From top to bottom, the 
curves correspond with B= 1 00, 500, 1000, 1500 b) The percent 
difference between the computed curve and that obtained for 
B=1500........................................................................................... 49 

Figure 2.14 Case C; Water P=0.362 atm, ~Tsup=17.0°C. Converging solution 
by refining the time step. a) Radius vs. time: From top to bottom, 
the curves correspond with B=100, 500, 1000, 1500 b) The 
percent difference between the computed curve and that obtained 
forB=1500....................................................................................... 50 

Figure 2.15 CaseD; Water P=0.0361 atm, ~Tsup=48.1 °c. Converging solution 
by refining the time step. a) Radius vs. time: From top to bottom, 
the curves correspond with B=100, 500, 1000, 1500 b) The 
percent difference between the computed curve and that obtained 
for B= 1500.... ...... ..... ...... .... ........... ........ .............. ..... ..... ... .............. 50 

Figure 2.16 Case A: Effect of initial disturbance on growth curve.................. 51 

Figure 2.17 Case B: Effect of initial disturbance on growth curve.................. 51 

Figure 2.18 Case C: Effect of initial disturbance on growth curve.................. 51 

Figure 2.19 Case D: Effect of initial disturbance on growth curve.................. 51 

Figure 2.20 Comparison of the present work with the analytic works of. 
Rayleigh [1917], Plesset and Zwick [1954] and Mikic et al 
[1970].............................................................................................. 52 

Figure 2.21 Comparison of the present work with the analytic works of 
Rayleigh [1917], Plesset and Zwick [1954] and Mikic et al 
[1970].............................................................................................. 53 

x 



Figure 2.22 Comparison of converged solution with experiments of Board and 
Duffy [1971] for water at P=l.O atm and ~Tsup=3.1 0c. The three 
computed curves depict the shift associated with an experimental 
errorinsuperheatof±O.2 °C.......................................................... 54 

Figure 2.23 Comparison of converged solution with experiments of Board and 
Duffy [1971] for water at P=O.372 atm and ~Tsup=6.3 °C. The 
three computed curves depict the shift associated with an 
experimental error in superheat of ±O.4 °C...................................... 55 

Figure 2.24 Comparison of converged solution with experiments of Board and 
Duffy [1971] for water at P=O.362 atm and ~Tsup=17.0 °C. The 
three computed curves depict the shift associated with an 
experimentalerrorinsuperheatof±O.4 °C...................................... 56 

Figure 2.25 Comparison of converged solution with experiments of Bohrer et 
al [1973] forRI13 atP=O.0361 atmand~Tsup=48.1 0c. The three 
computed curves depict the shift associated with an experimental 
error in superheat of ±O.96 °C....................................................... 57 

Figure 2.26 Physical and computational domain for the clustered grid 
solution........................................................................................... 58 

Figure 2.27 Relative difference between the converged solution obtained 
using the clustered grid arrangement with M=800 mesh points 
and the converged solution with uniform grid spacing and 
M=40000 mesh points...................................................................... 59 

Figure 2.28 Comparison of the converged solutions obtained on a clustered 
grid and the benchmark solutions..................................................... 59 

Figure 2.29 Comparison of present numerical calculations with measurements 
ofDergarabedian [1953] for water at atmospheric pressure at low 
superheats......................... .................. ..... ......................................... 60 

Figure 2.30 Comparison of present numerical calculations with measurements 
of Board and Duffy [1971] for water over a range of superheats.... 61 

Figure 2.31 Comparison of present numerical calculations with measurements 
of Lien [1969] for water over a range of system pressures.............. 62 

Figure 2.32 Comparison of present numerical calculations with measurements 
of Abdelmessih [1969] for water at atmospheric pressure over a 
range of superheats.......................................................................... 63 

Xl 



Figure 2.33 Comparison of present numerical calculations with measurements 
of Bohrer [1973] for RI13 at atmospheric pressure over a range 
of superheats.............. ...... ........ .... .................... ... ........ ................. ..... 64 

Figure 3.1 Thermal equilibrium of the vapour nucleus prior to initial 
disturbance..................................................................................... 97 

Figure 3.2 Schematic of the temperature distribution in the liquid and vapour 
during bubble growth....................................................... ................. 97 

Figure 3.3 Temporal variation of bubble radius and vapour temperature.......... 98 

Figure 3.4 Decomposition ofthe energy balance equation, Eq. (3.8) a) entire 
growth interval studied b) early surface tension controlled growth. 99 

Figure 3.5 a) Decomposition of the equation of motion showing the 
individual growth domains. b) constituent terms of the 
hydrodynamic pressure given by equation (3.14).... ......................... 100 

Figure 3.6 Interface velocity and acceleration curve variations......................... 101 

Figure 3.7 Driving temperature difference and thermal boundary layer 
thickness histories............. .............. ........ ..... .......... ....................... .... 101 

Figure 3.8 Driving temperature difference and thermal boundary layer 
thickness curves for early stage of growth............. .......... ........... ...... 102 

Figure 3.9 Pressure differential curves with and without the hydrodynamic 
pressure term................................................................................. 102 

Figure 3.10 Liquid temperature profiles at various times during bubble 
growth........................................................................................... 103 

Figure 3.11 Vapour temperature and bubble radius curves for varying levels 
ofsuperheat....................................................................................... 104 

Figure 3.12 Pressure difference versus radius for stationary bubble................... 104 

Figure 3.13 Temperature difference curves for surface tension domain and 
early transition domain.......... ............... ...... ......... ..................... ....... 104 

Figure 3.14 Delay time versus initial pressure difference for varying superheat 105 

Figure 3.15 Interface acceleration curves for various system superheats.. ...... 106 

XlI 



Figure 3.16 Vapour temperature and bubble radius curves for varying levels 
of system pressure....... .... ...... .......... ...... .......... ............... ............... 107 

Figure 3.17 Delay time versus initial pressure difference for varying system 
pressure............................................. ............................................... 107 

Figure 3.18 Interface acceleration curves for various system pressures............ lOS 

Figure 3.19 Temporal variation of the interface velocity for the transition 
domain (Ja=9.0, P ",,=l.Oatm, ~Tsup=3.0 °C) .................................. 109 

Figure 3.20 Temporal variation of vapour over-pressure, hydrodynamic 
pressure and surface tension stresses for P "" = 1.0 atm, J a=9. 0......... 109 

Figure 3.21 Vapour over-pressure versus bubble radius for P",,=l.O atm, 
Ja=9.0 ............................................................................................ 110 

Figure 3.22 Temporal variation of vapour over-pressure, hydrodynamic 
pressure and surface tension stresses for P"" =0.01 atm, Ja=3166.S. 110 

Figure 3.23 Vapour over-pressure versus bubble radius for P",,=O.OI atm, 
Ja=3166.8........................................................................................ 111 

Figure 3.24 Temporal variation of the interface velocity for the transition 
domain(Ja=3166.8,P",,=0.01 atm,L1Tsup=15.0 °C) ........................ 111 

Figure 3.25 Temporal variation of the interface velocity during the transition 
domain for varying superheat at constant pressure......................... 112 

Figure 3.26 Temporal variation of the thermal layer thickness for varying 
superheat.............. ....... .............................................. ....................... 113 

Figure 3.27 Temporal variation of driving temperature difference during 
transition domain for varying superheat and constant pressure...... 113 

Figure 3.28 Decomposition of the extended Rayleigh equation for varying 
superheat and constant pressure......... ............................................. 114 

Figure 3.29 Variation ofthe time interval over which liquid inertia influences 
bubble growth for varying Jakob number.. .... ... ........................ .... 115 

Figure 3.30 Decomposition of the extended Rayleigh equation for varying 
pressure and constant superheat.................................................... 116 

xiii 



Figure 3.31 Temporal variation ofthe interface velocity for varying pressure 
at constant superheat....................................................................... 117 

Figure 3.32 Temporal variation ofthe driving temperature difference during 
the transition domain for varying pressure at constant superheat... 117 

Figure 3.33 Radius and interface velocity curves for Ja::::: 10.............................. 118 

Figure 3.34 Normalized temperature difference curves for Ja::::: 10.................... 118 

Figure 3.35 Radius and interface velocity curves for Ja:::::90.............................. 119 

Figure 3.36 Normalized temperature difference curves for Ja:::::90.................... 119 

Figure 3.37 Growth ofthe thermal boundary layer for Ja::::: 10 and Ja:::::90.......... 120 

Figure 4.1 (a) Spherical vapour bubble growth in an unbounded liquid with 
a uniform temperature field at t=O and a spherically symmetric 
temperature profile for t>0. (b) Hemispherical vapour bubble 
growth at a heated flat surface with a non-uniform temperature 
field at t=O and a spherically non-symmetric temperature profile 
fort>O........................................................................................... 142 

Figure 4.2 Hemispherical bubble growing on a plane heated surface............. 143 

Figure 4.3 Grid parameters............................................................................... 143 

Figure 4.4 Computational grid............. ............................................................. 143 

Figure 4.5 Comparison of prediction of two-dimensional simulations with 
benchmark solutions for spherically symmetric growth with 
uniform superheat. Case A: water, 1.0 atm, 3.1 °c. Case B: 
water, 0.372 atm, 6.3 °c. Case C: water, 0.362 atm, 17.0 °c. 
Case D: RI13, 0.0361 atm, 48.1 °C............................................. 144 

Figure 4.6 Comparison of computed results with experiments for 
hemispherical bubble growth ofRI13 on a heated plane surface 
in microgravity: Space data, gjg=10·4 (a) qll=7 W/cm2

, P 00=149.9 
kPa, Tsat=59.8°C, Too=48.3°C, t*=0.91, Tw"=85.8°C, (b) q"=6.5 
W/cm2, Poo=117.3 kPa, Tsat=52°C, Too=48.8°C, (=0.74s, 
Tw"=86.3°C, (c) q"=6.95 W/cm2

, P 00=106.8 kPa, Tsat=49.l °c, 
Too=48.35°C, t"=0.75s, Tw*=84.1 °C.............................................. 145 

XIV 



Figure 4.7 Comparison of computed results with experiments for 
hemispherical bubble growth ofRl13 on a heated plane surface 
inmicrogravity: Drop tower data, (a) q"=7.87 W/cm2

, P ~=142.34 
kPa, Tsat=58.19°C, T~=47.06°C, t*=1.55 s, Tw*=110 °C, (a) 
q/'=6.33 W/cm2

, P~=103.32 kPa, Tsat=48.14 °C, T~=47.33°C, 
1*=1.55 s, Tw*=100 °C................................................................... 146 

Figure 4.8 Bubble radius, R(t) and temperature, Tv, histories for 
hemispherical bubble growing atop a heated surface and 
spherical growth in a uniformly superheated liquid with 
!1Tsup=31.2 °C.............................................................................. 147 

Figure 4.9 Decomposition ofthe energy equation, equation (4.4)................. 147 

Figure 4.10 (a) Decomposition of the equation of motion, equation (4.1) (b) 
Constituent terms ofthe hydrodynamic pressure term........ ............ 148 

Figure 4.11 Interfacial liquid temperature gradient histories at the top of the 
hemispherical bubble (along z-axis), and the base of the 
hemispherical bubble (along r-axis ).......................... ............ .......... 149 

Figure 4.12 Computed liquid temperature distribution at (a) the top of the 
hemispherical bubble (along z-axis), and (b) the base of the 
hemispherical bubble (along r-axis) at various times..................... 150 

Figure 4.13 Isotherms surrounding the growing bubble at the end of the 
transition domain, t=O.OI ms. Isotherms are separated in 5 °C 
increments................... ... ... ....................... ....................................... 151 

Figure 4.14 Isotherms surrounding the growing bubble at the end of the 
transition domain, t=1.0 ms. Isotherms are separated in 5 °C 
increments...................................... ..... ...................... ............ .......... 151 

Figure 4.15 Isotherms surrounding the growing bubble at the end of the 
transition domain, t=100 ms. Isotherms are separated in 5 °C 
increments................... .................................... ................................ 151 

Figure 5.1 Photographs of bubble growth........................................................ 160 

Figure 5.2 Bubble interface measurements and best fit spherical segment...... 160 

Figure 5.3 Growth curves for the radius and centre of curvature..................... ' 160 

Figure C1 Extrapolated thermal layer........................................... ....... ........ 168 

xv 



Number 

Table 2.1 

Table 2.2 

Table 2.3 

Table Cl 

Table C2 

Table C3 

Table C4 

LIST OF TABLES 

Test Cases for Grid Independent Study........................................ 29 

Experimental Test Cases.............................................................. 35 

Selected Experiments for Comparison with Homogeneous 
Bubble Growth...... ........ ............. ................. ......... ........ ............ .... 40 

Case A: Water, P=1.0 atm, ~Tsup=3.1 °C...................................... 165 

Case B: Water, P=0.372 atm, ~Tsup=6.3°C.................................. 166 

Case C: Water, P=0.362 atm, ~Tsup=17.0°C................................ 166 

Case D: RI13, P=0.0361 atm, ~Tsup=48.1 °C............................... 167 

XVI 



NOMENCLATURE 

SYMBOL DESCRIPTION UNITS 

A area m2 

B parameter to alter coarseness of time step 

Cp specific heat J/kgK 

b area change coefficient 

D· J 
radial grid line m 

d distance from vapour-liquid interface m 

g earth gravity rn/s2 

g", gravity in which experiments were performed rn/s2 

h enthalpy J/kg 

hfg latent heat of evaporation J/kg 

J Jacobian m2 

Ja Jakob Number 

k thermal conductivity W/mK 

K number of time step iterations 

Lc characteristic length m 

M grid parameter 

mil mass flux kg/m2s 

n exponent for infinite grid approximation 

N grid parameter 

P pressure Pa 

XVll 



SYMBOL DESCRIPTION UNITS 

Q energy required for bubble growth J 

qll heat flux W/m2 

r radial direction m 

rb radial coordinate location of bubble interface m 

r'l radial metric m 

re azimuthal metric m 

R bubble radius m 

~ initial bubble radius m 

SR grid clustering coefficient 

t time s 

1* time to nucleation s 

tc characteristic time s 

tdelay delay time s 

T temperature °C 

u radial velocity (spherical coordinates) mls 

U radial velocity (cylindrical coordinates) mls 

Uc contravarient velocity m2/s 

y axial velocity mls 

yc contravarient velocity m2/s 

z axial direction m 

Zb axial coordinate location of bubble interface m 

xviii 



Symbol DESCRIPTION UNITS 

zlJ radial metric m 

z£ azimuthal metric m 

Greek 

a thermal diffusivity m2/s 

8 thermal boundary layer thickness m 

y angle measured from z-axis rad 

11 transformed computational coordinate m 

v kinematic viscosity m2/s 

p density kg/m3 

cr surface tension N/m 

't transformed computational time s 

e transformed computational coordinate m 

Subscripts 

HT heat transfer 

I inertia 

liquid 

sat saturation condition 

v vapour 

w wall 

ID one-dimensional 

00 far field 

XIX 



CHAPTER 1: INTRODUCTION 

The increased rate of heat transfer during nucleate boiling is detennined by the 

vapour bubbles which grow and depart from the heated surface. Energy is introduced into 

the liquid by conduction from the heated solid surface and is stored within a thin thennal 

boundary layer adjacent to the surface. During surface boiling, this energy is ultimately used 

to vaporize the liquid and cause bubbles to fonn and grow. Furthennore, fluid motions 

induced by bubble growth disrupt the thennal boundary layer, thus enhancing the local rate 

of heat transfer. Consequently, insight into the mechanisms which are responsible for 

transporting energy away from a heated surface can be gained by understanding the nature 

of bubble growth. 

The progression towards an accurate prediction of the heat transfer during nucleate 

pool boiling is hampered by the seemingly insunnountable task of developing a physical 

model and solution technique which takes into account all of the factors which contribute 

significantly to bubble growth and departure. As a result, the state of the art has been 

advanced primarily through experimentation. On the other hand, over the past century, 

theoretical developments have progressed markedly and have provided considerable insight 

into nucleate boiling by exploring the fundamental nature of bubble growth. 

Initial theoretical work focussed on the ideal case of spherically symmetric bubble 

expansion in a unifonnly superheated infinite pool ofliquid. With these simplifications, the 
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rate of bubble growth is detennined by the surface tension, the liquid inertia and the 

difference in pressure between the vapour within the bubble and the ambient liquid. Analytic 

expressions which fully describe the growth of a bubble were unattainable because of the 

complicated thennal and hydrodynamic interaction of the vapour and liquid at the bubble 

wall. This was further complicated by coupling between the liquid momentum and energy 

equations through the non-linear convection tenn. To reduce the complexity ofthe problem, 

Rayleigh [1917], Fritz and Ende [1936], Plesset and Zwick [1954] and Forster and Zuber 

[1954] considered two limiting regions of bubble growth separately. Lord Rayleigh [1917] 

first solved the one-dimensional problem by considering the case in which growth or 

collapse is governed by momentum interaction between the bubble and ambient fluid. This 

later became known as the inertia controlled stage of bubble growth. Almost four decades 

later, Plesset and Zwick [1954] and Forster and Zuber [1954] independently detennined that 

the later stage of bubble growth is controlled by the rate at which energy is transferred 

through the liquid to the vapour-liquid interface. This was tenned the diffusion or heat 

transfer controlled growth stage. By assuming that a thin thennal boundary layer existed 

in the liquid surrounding the bubble, an approximate solution to the energy equation was 

obtained. The first order solutions were shown to agree very well with the experimental 

results provided by Dergarabedian [1953] for water with low superheats at atmospheric 

pressure. For the limiting case of moderate to high superheat, Scriven [1959] obtained an 

expression which was very similar to that of Pies set and Zwick [1954] without having to 

make the assumption of a thin thennal boundary layer. For low superheats, the theory took 

a much different fonn. 

The results of these investigations suggested that the early stage of bubble growth 
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is limited primarily by momentum interactions between the liquid and the expanding bubble. 

As the bubble grows, the influence of thermal diffusion becomes progressively more 

important until it is the mechanism which regulates the rate of bubble expansion. For 

intermediate times, bubble growth should be characterised by a smooth transition between 

these two limiting stages. 

Analytical treatment of spherically symmetric bubble growth in a superheated liquid 

which incorporates the effects of both liquid inertia and thermal diffusion are limited to 

simple interpolation formulas and are not valid for the early surface tension dominated 

growth stage. Perhaps the most well known is the formula suggested by Mikic, Rohsenow 

and Griffith [1970]. By assuming that the bubble growth rate was bounded by the analytic 

solutions of Rayleigh [1917] for small values oftime and that of Pies set and Zwick [1954] 

as time approached infinity, a general interpolation formula was derived which could predict 

bubble growth during the stage in which both liquid inertia and thermal diffusion playa role. 

This theory was found to be in good agreement with the experimental data of Lien [1969] 

for water over a wide range of system pressures. However, since this formulation is not an 

exact solution to the equations governing bubble growth, its accuracy is not assured for times 

during which both inertia and diffusion are important. Furthermore, the use of the Clausius­

Clapeyron relation to relate the variation of vapour pressure with vapour temperature reduces 

the accuracy of the predictions for moderate to high superheats ( Carey [1992] ). These 

shortcomings were first addressed by Theofanous and Patel [1976] and later by Prosperetti 

and Plesset [1978]. 

More accurate and complete descriptions of spherically symmetric bubble growth 

have been provided by Theophanous et at [1969], Judd [1969], Board and Duffy [1971], 
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DaIle Donne and Ferranti [1975], Lee [1993] and Lee and Merte [1996] by utilising 

numerical techniques to approximate the equations governing heat and fluid flow. In the first 

three works, approximate solutions to the energy equation were used, whereas in the latter 

two works, a more rigorous numerical solution of the entire energy equation, including the 

non-linear convective term, was obtained. The numerical predictions of bubble expansion 

provided new insight into the spherically symmetric phase growth problem since they 

included the influences of surface tension, liquid inertia and thermal diffusion. In this way, 

a more thorough description of the process of bubble growth was put forth. In particular, the 

recent work of Lee [1993] began to expose the underlying mechanisms which govern growth 

by considering how thermal and hydrodynamic interactions influence growth as the bubble 

progresses through the various growth stages. This was done for both uniform and non­

uniform spherically symmetric temperature fields over a range of system conditions, 

including different fluids. 

The mechanisms associated with vapour bubble growth at a plane heated surface are 

not understood nearly as well as unbounded growth in an infinite pool. Experimental 

investigations are inhibited by the fact that it is exceedingly difficult to control the 

temperature and flow field in the vicinity of growing bubbles due to natural convection 

and / or liquid motions induced by other bubbles. Due to the rapidly varying temperature and 

flow fields, large scatter is observed in the available bubble growth data during nucleate pool 

boiling. In the development of theoretical models, this makes comparison between 

experiment and theory very difficult because of the uncertainty involved in matching the 

initial and boundary conditions. Further complications arise because ofthe presence of the 

heated surface. With respect to theoretical modelling, the heated surface introduces spatial 
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and temporal variations in the solid phase, two-dimensional effects on the liquid velocity and 

temperature fields as well as the possible formation, growth and subsequent evaporation of 

a liquid micro layer at the base of the growing bubble. The enormity of the problem is such 

that there are a limited number of theoretical investigations which attempt to predict bubble 

growth on a heated surface. Analytical formulations include the works of Griffith [1958], 

Bankoffand Mikesell [1958], Zuber [1961], Han and Griffith [1965], Cole and Shulman 

[1966], van Stralen [1966], Mikic and Rohsenow [1969], Mikic, Rohsenow and Griffith 

[1970], and Kang et al [1993]. The more recent numerical investigations have been 

performed by Lee and Nydahl [1989], Gou and EI-Genk [1996], Mei etal [1994], Buyevich 

and Webb on [1996], Welch [1998] and Son et al [1999]. The above investigations show 

considerable insight and ingenuity and have led to a better understanding of isolated bubble 

growth dynamics, as well as the mechanisms which are responsible for the increased rate of 

heat transfer during nucleate pool boiling. Even still, the complexity ofthe problem demands 

that the models incorporate idealizations which mayor may not be physically realistic. This, 

coupled with the challenge of comparing predictions with the available experimental growth 

data, has led to uncertainty concerning fundamental issues such as, the prediction of the 

waiting time between successive bubbles, the mechanisms responsible for transporting heat 

away from the heated surface, the proportional contribution of the evaporating micro layer 

to bubble expansion and its influence on the thermal field in the solid, the shape of evolving 

bubbles, the effect ofthe thermal characteristics ofthe solid, the importance of viscosity, the 

contribution of surface tension, the forces which govern the radial and translational motion 

of growing bubbles, and the mechanisms responsible for bubble departure. 

Recent data has been reported by Lee [1993], Merte et al [1995] and Lee and Merte 
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[1996] in which the shortcomings associated with conventional surface boiling experiments 

are partially overcome by heating a stagnant pool of liquid to the onset of boiling in 

micro gravity . The absence of any significant natural convection, combined with the fact that 

during the early stages of growth, the thermal and flow fields are not influenced by previous 

or neighbouring bubbles, provide well defined initial and boundary conditions. Because of 

this, the bubble growth measurements of this investigation are more reliable for validating 

theoretical predictions as compared with past investigations. Furthermore, for some of the 

measurements the bubble remained nearly hemispherical for a significant portion of the 

growth period. The nature of the experimental investigation, coupled with the fixed bubble 

shape, reduces the complexity of the problem enough that theoretical modelling of bubble 

growth is simplified considerably, for the circumstances ofthe experiment. 

In this dissertation, the fundamental nature of bubble growth is investigated for 

spherically symmetric growth in an unbounded liquid, and the early stage of hemispherical 

growth near a heated solid surface in microgravity. The purpose ofthis study is to confirm 

and clarify existing ideas concerning bubble dynamics and to advance the current 

understanding of boiling by developing theoretical models based on as few physical 

assumptions as possible. The resulting system of equations are solved using conventional 

numerical techniques. 

Chapter 2 describes the development of two numerical schemes which simulate 

spherically symmetric bubble growth in a uniformly superheated liquid. Infinite grid 

solutions of bubble growth over a range of boiling conditions were approximated by solving 

the governing equations on a progressively finer computational grid with uniform spacing 

between adjacent grid nodes. The infinite grid approximations show satisfactory agreement 
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with analytical fonnulations and experimental data and are deemed sufficiently accurate to 

be utilized as benchmark solutions for the development of more complex numerical 

schemes. Since spatial variations in temperature and velocity are confined to a region very 

near the vapour-liquid interface, a grid clustering technique was employed which 

considerably reduced the computational time of the simulations with minimal loss of 

accuracy. Grid independence was assured by refining the computational grid until sufficient 

convergence with the benchmark solutions was obtained. The more efficient code facilitated 

rigorous testing of the predictive capabilities of the numerical simulations. Excellent 

agreement between the predicted growth curves and those detennined experimentally was 

observed for a wide range of system conditions. 

The nature of vapour bubble growth in unbounded, unifonnly superheated water was 

explored in Chapter 3. Since many of the underlying mechanisms are the same, studying this 

type of growth is fundamental to the understanding of bubble growth on a heated surface. 

First, the growth of a single isolated bubble from inception to thennal diffusion controlled 

growth was examined in detail. As the bubble grew through the various growth stages, the 

relative contributions of surface tension, liquid inertia and thennal diffusion were 

investigated. Next, the influence of varying system pressure and liquid superheat on bubble 

growth dynamics was examined with focus on how the system condition affected the surface 

tension, inertia, and diffusion controlled growth stages. 

Chapter 4 describes the development of a two-dimensional theoretical model which 

is capable of predicting both spherically symmetric vapour bubble growth in an infinite pool 

ofliquid and hemispherical vapour bubble growth at a heated plane surface in microgravity. 

Since many of the complexities associated with earth gravity boiling are absent in 
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microgravity, the development of the physical model was based on realistic physical 

arguments and the resulting equations were solved with conventional numerical techniques. 

The accuracy of the predictions was affirmed by showing agreement with the benchmark 

solutions for spherically symmetric growth in a uniformly superheated liquid as well as 

agreement with the recent experimental measurements for hemispherical growth near a 

heated surface in microgravity. Finally, by considering a significant portion of the growth 

period of a single isolated bubble beginning from inception, the proportional contributions 

of the various mechanisms which govern growth were investigated utilising the analytical 

techniques developed for spherically symmetric bubble growth. In this way, the effects of 

the two-dimensional temperature distribution in the liquid near the heater surface have been 

discerned. 



CHAPTER 2: HOMOGENEOUS BUBBLE GROWTH 

LITERATURE SURVEY AND NUMERICAL SIMULATIONS 

2.0 Introduction 

In this chapter, the theoretical model which has been developed to predict spherically 

symmetric vapour bubble growth in an unbounded liquid with uniform initial superheat will 

be detailed. A brief review of past theoretical models will be given followed by a description 

of the present model and the associated solution procedure. Grid size and time-step 

independent solutions for four separate one-dimensional test cases will be offered as 

'benchmark solutions' for the development of subsequent bubble growth models. To avoid 

numerical complexity when approximating the spatial derivatives, the benchmark solutions 

were obtained on a grid with uniform spacing between neighbouring grid nodes. The 

correctness of the theory as well as the validity of the computational procedure is 

demonstrated by comparing the simulated bubble growth curves with the analytic solutions 

and experimental data. 

In order to decrease the computation time, a grid clustering technique was employed 

which clusters grid points near the vapour-liquid interface where gradients in velocity and 

temperature are high. The reduction in the number of grid points and subsequent 

computation time is appreciable with no significant loss in accuracy of the numerical 

prediction. 

9 



10 

With the more efficient numerical solution, simulations of homogeneous bubble 

growth in an unbounded, uniformly superheated liquid were obtained and compared with 

available experimental data over a wide range of system pressures and initial superheats for 

both water and RI13. 

2.1 Theoretical Development 

The case of spherically symmetric bubble expansion in a uniformly superheated 

infinite pool ofliquid is illustrated in Fig. 2.1. Assumption of potential flow and integration 

of the one-dimensional momentum equation in the liquid provides an expression which 

describes the growth of the vapour bubble, 

(2.1) 

Equation (2.1) is known as the extended or modified Rayleigh equation. It relates the 

pressure difference which drives growth to the inertial forces exerted by the liquid on the 

bubble and surface tension forces at the interface. The classical derivation of this 

relationship is given in Appendix A. The influence and relevance of each term in the above 

expression will be thoroughly discussed in subsequent chapters. 

As a result ofthe pressure-temperature dependance ofthe vapour, at least one more 

equation is required to fully describe the bubble growth problem. This is complicated further 

by the fact that the internal energy of the growing bubble is constantly changing. By 

considering an energy balance at the vapour-liquid interface, the energy, Q, required to 
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evaporate the liquid at the interface and hence expand the bubble is supplied by diffusion 

across the thermal boundary layer which exists in the liquid surrounding the bubble. The rate 

of change in the energy content of the vapour bubble is such that, 

dQ = Jk( aT) dA 
dt A / ar r=R(t) 

s 

(2.2) 

Due to the coupling of the momentum and energy equations through the non-linear 

convection term, the primary obstacle in obtaining a solution of the two coupled ordinary 

differential equations is that of predicting the interfacial temperature gradient, (aTlar)r=R(t)' 

as well as the interfacial temperature. 

2.1.1. Early Analytical Work 

The early theoretical works of Rayleigh [1917], Plesset and Zwick [1954], Forster 

and Zuber [1954] and Scriven [1959] among others, yielded analytic solutions for the bubble 

growth rate by considering the two limiting regions; the inertia and diffusion controlled 

growth regions. 

Inertia controlled growth is restricted to the initial stages of rapid growth during 

which the rate at which the bubble expands is primarily limited by its ability to accelerate 

or 'push back' the surrounding liquid. During this stage, the rate of heat transfer to the 

interface is assumed sufficiently high such that growth is not constrained by the resultant 

vapour generation into the bubble. Ifthis were true, and the rate at which the bubble expands 

were regulated by its ability to force the liquid out radially, then bubble growth could be 
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predicted by the solution to equation (2.1) alone. 

During this stage of growth, the vapour pressure is nearly constant and assumed to 

be near its maximum value of value of PyzPsat(TJ. This solution is referred to as the 

Rayleigh solution. For bubbles large enough that the surface tension term is negligible, 

equation (2.1) can be solved for the interface velocity such that, 

(2.3) 

Substitution of the linearized form of the Clapeyron equation to relate the vapour 

temperature to the saturation pressure, the Rayleigh solution for inertial controlled growth 

is obtained (Plesset and Zwick [1954], Mikic et al [1970] ), 

(2.4) 

It is evident from equation (2.4) that inertial controlled growth is characterized by a linear 

relationship between radius and time. At the time of its development, the applicability of 

equation (2.4) was difficult to ascertain because the time interval over which bubble growth 

is inertia controlled becomes significant only for very low system pressures for which no 

experimental data existed. 

Plesset and Zwick [1954], Forster and Zuber [1954] and Scriven [1959] among 

others, extended bubble growth predictions beyond the inertial controlled growth region by 

taking into account the fact that as the bubble grows, the latent heat requirement of 

evaporation depletes the energy stored within the superheated layer which has formed at the 
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surface of the bubble ( Plesset and Zwick [1954] ). As the bubble grows, its equilibrium 

vapour temperature decreases from Too to its minimum value of Tsa.(P ,J As the interfacial 

temperature and corresponding pressure drop, bubble growth becomes limited by the 

relatively slower diffusion of heat to the vapour-liquid interface, causing the growth rate to 

continually decrease. 

Plesset and Zwick [1954] obtained an analytic solution which predicts the 

instantaneous bubble radius for thermal diffusion controlled growth by supplying an 

approximate expression for the temperature of the liquid at the interface by assuming the 

thickness of the thermal boundary layer surrounding the bubble is much smaller than the 

radius ofthe bubble. The 'thin thermal boundary layer' assumption resulted in an expression 

for the liquid temperature at the moving interface of the form, 

(2.5) 

As pointed out by Riznic et al. [1999], the term in the square brackets accounts for the effect 

of the changing interfacial area on the temperature at the interface. Assuming thermal 

equilibrium between the liquid at the interface and the vapour, equations (2.1) and (2.5) were 

combined with a linear equation relating vapour pressure and temperature to give a" leading 

order approximation for the interfacial temperature gradient, 

(2.6) 
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where ~ T=T ~ -Tsat' By comparing this result with the solution for the temperature gradient 

at a stationary plane interface of a semi-infinite solid, namely, 

(2.7) 

it becomes apparent that the coefficient of the order unity in equation (2.6) is attributed to 

the effects of increasing interfacial area ( Riznic et al [1999] ). Equation (2.6), combined 

with a simplified expression for the energy balance at the interface, relates the rate of heat 

transfer to the bubble to the vapour mass balance, 

pjz dR =k ( aT) 
'fg dt I ar r=R(t) 

(2.8) 

to give an approximate expression for thermal diffusion controlled bubble growth, 

( ) 

y. 

R(t) ~ 2f3Ja ~ (2.9) 

Here, Ja=P1C1(T",- Tsat)/Pvhfg is the dimensionless superheat known as the Jakob number. 

Equation (2.9) predicts that the radius will increase asymptotically with time if growth is 

diffusion controlled and is valid only for times large enough that the growth velocity is 

much smaller than the inertia controlled velocity ( Prosperetti and Plesset [1978] ). The 

theory was shown to agree very well with the experimental data ofDergarabedian [1953] for 

bubble growth in water at atmospheric pressure and superheats not exceeding 5.1 °C. 

A similar analysis was performed by Forster and Zuber [1954]. In their work, the 
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interface temperature was approximated by integrating Green's function over the domain of 

the 'thin thermal boundary layer' and the vapour pressure and temperature were related 

through the Clausius-Clapeyron relation to give the asymptotic expression, 

(2.10) 

This expression differs from equation (2.9) only by the numerical constant, rc12, which is 

again slightly larger than unity and is attributed to the increasing interfacial area (Riznic et 

al [1999]). 

Scriven [1959] considered thermal diffusion controlled growth without the 

assumption of a thin thermal boundary layer. By obtaining exact solutions of the equation 

of energy flow including radial convection, the asymptotic relation of the form, 

R(t) ~ 2~(at)Y. (2.11) 

was obtained. Here the constant ~ depends on the system pressure (physical properties) and 

the degree of superheat. In the limiting case of moderate to high superheats, or large Jakob 

numbers, equation (2.11) simplifies to, 

( 1) (t) y. R(t) ~ 2{3 1 +y Ja : . (2.12) 

where, 
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y = pi pv I:1T 
( 

c -c ) 
hfg 

(2.13) 

For commonly used fluids and system conditions of practical interest y«1 and equation 

(2.12) is in fact identical to the Plesset and Zwick solution given by equation (2.9). This 

implies that for large enough Jakob number, the thin thermal boundary layer assumption is 

valid. For low superheats, or small Jakob numbers, Scriven [1959] obtained the expression, 

(2.14) 

which for y«1 simplifies to, 

R(t) ~ (2 Ja at)Y> (2.15) 

It is noticed that this expression has the same asymptotic dependence on time but a different 

dependence on the Jakob number as identified in equations (2.9), (2.10) and (2.12). As 

pointed out by Scriven [1959], this difference can cause considerable discrepancy between 

the growth constant predicted by equation (2.15) and those predicted by equations (2.9), 

(2.10) and (2.12). This implies that for small Jakob numbers, the thin thermal boundary layer 

assumption may no longer be valid. For thermal diffusion controlled growth, equations 

(2.12) and (2.15) suggest the following dependence on the dimensionless superheat, or Jakob 

number; 



R - Ja (large Ja) 
R -Ja'h. (small Ja) 

17 

(2.16) 

This dependence on the Jakob number was in fact confirmed by Riznic et al. [1999] 

who showed that the difference is attributed to the effect of curvature ofthe interface on the 

temperature gradient. The energy integral method was utilized to obtain an estimate of the 

temperature gradient at the interface of a growing sphere which was combined with the 

energy balance at the interface, equation (2.8), to give the following expression for the 

growth rate: 

dR [b 1 1 di == aJa (3at)'h. + R(t) (2.17) 

In the above expression, the first term in the brackets accounts for the interfacial area 

change and the second term is attributed to the effect ofthe curvature ofthe interface. Upon 

integration of equation (2.17), two limiting solutions were obtained. It was determined that 

for large Jakob numbers, corresponding with Ja>2, the radius varies as, 

( ) 

'h. 

R(t) :::; 2/3 Ja ~t (2.18) 

This is in excellent agreement with the thin thermal boundary layer theories of Plesset and 

Zwick [1954] and the limiting case of Scriven [1959] for large Ja. Thus, for large enough 

Jakob numbers, the affect of interface curvature is negligible and the thin thermal boundary 

layer assumption is valid. For small Jakob numbers, corresponding with Ja<2, Riznic et al 
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[1999] found that the radius varies as 

R(t) "" (2 Ja at)'h (2.19) 

Although not noted explicitly by the authors, this expression is identical to the limiting case 

for small Jakob numbers obtained by Scriven [1959] (equation (2.15)). Consequently, for 

small Jakob number, the thin thermal boundary layer assumption is not valid and curvature 

of the interface plays an important role. The theory ofRiznic et al [1999] showed reasonable 

agreement with the bubble collapse measurements ofFlorschuetz and Chao [1965] for water 

bubbles in the Jakob number range 15.1:da~39.3, as well as with the bubble growth 

measurements of Thomcraft [1995] for forced convection boiling of FC-87 in the range 

0.73da~8.56. 

The discussion above postulates that the early stage of bubble growth is inertia 

controlled and the later stage is diffusion controlled. A complete description of the bubble 

growth process should be represented by a smooth transition between the two regimes. 

Mikic, Rohsenow and Griffith [1970] obtained an expression for the variation of bubble 

radius with time which spans both regions by interpolating between the limiting solutions 

for large and small times, equations (2.4) and (2.9) respectively. The expression is often 

referred to as the MRG solution and is given in the form, 

(2.20) 

where the scaled variables are given by, 
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(2.21) 

Because the exact conditions on both ends were built in during the derivation of 

equation (2.20), the expression approaches equation (2.4) at small times and is asymptotic 

to equation (2.9) as time approaches infinity. This theory was found to be in good agreement 

with the experimental data of Lien [1969] for water over a wide range of system pressures, 

including low pressure data with a significant inertia controlled region. 

The use ofthe Plesset and Zwick [1954] solution in the interpolation formulation of 

Mikic et al. [1970] restricts the validity of the MRG solution to moderate to high Jakob 

numbers in which the thin thermal boundary layer assumption is valid. This was illustrated 

by Prosperetti and Plesset [1978] who showed excellent comparison between the predictions 

of those theories in which a thin thermal boundary layer is assumed and the more accurate 

numerical solution provided by Dalle Donne and Ferranti [1975] for superheated sodium and 

Jakob numbers in the range 2.979:da::;;565.7. For the case in which Ja=0.7331, poor 

agreement was obtained because the assumption of the thin thermal layer is not valid. 

Prosperetti and Plesset [1978] extended the range of applicability of the MRG type 

interpolation formula by introducing scaling variables which describe growth over the entire 

range of superheats. By assuming a linear variation of vapour pressure with temperature, 

they obtained the expression, 
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(2.22) 

where the scaled variables are expressed as, 

(23) 

This fonnulation over predicted growth at high superheats but not enough to be of 

importance for the range of boiling conditions of practical interest ( Prosperetti and Plesset 

[1978] ). 

2.1.2. Computational Work 

Numerical computations of vapour bubble growth in an infinite, unifonnly 

superheated liquid have been perfonned by Theophanous et al [1969], Judd [1969], Board 

and Duffy [1971], Dalle Donne and Farranti [1975], Lee [1993] and Lee and Merte [1996]. 

In the earlier three works, the approach was to assume the shape of the temperature profile 

within the thennal boundary layer which exists around the growing bubble so that the 

temperature gradient at the vapour-liquid interface could be deduced. Perhaps the simplest 

numerical approach was proposed by Board and Duffy [1971] in which a linear temperature 

drop was assumed to exist across a thennallayer of variable thickness 8=«1t/3)a\t)\t, such 
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that, 

(
aT) Tv(t) - Too 

ar r=R(t) b(t) 
(2.24) 

The assumed temperature profile was consistent with the leading term approximation of the 

PIes set and Zwick [1971] analysis for long times ( equation (2.6) ). Agreement with 

experimental data for water was found to be quite good for superheats up to 20.3 °e. It was 

further shown that the numerical computations of Board and Duffy [1971], Theophanous et 

at [1969], Judd [1969] and the analytic method of Mikic et at [1970] were all in close 

agreement for bubbles in moderate to highly superheated sodium. This leant support to the 

notion that bubble growth is relatively insensitive to the assumed temperature profile shape 

( Board and Duffy [1971] ). 

Dalle Donne and Farranti [1975], Lee [1993] and Lee and Merte [1996] increased 

the flexibility of the analysis by numerically solving the one dimensional heat conduction 

equation in a moving medium, 

(2.25) 

In doing so, the temperature gradient in the liquid at the vapour-liquid interface was obtained 

from the computed temperature field. The work of Lee [1993] and Lee and Merte [1996] 

showed excellent agreement with the low pressure data of Bohrer [1973] for refrigerant 

RI13, as well as the experimental data of Dergerabedian [1953] and Lien [1969] for water 

with system pressures within the range of 1.26 kPa-1 0 1.33 kPa, and initial liquid superheats 
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ranging between O.8°C - 15.74 °C. The predictions of Lee and Merte [1996] compared very 

well with the numerical work of Dalle Donne and Farranti [1975] for superheated sodium 

which confirmed the accuracy of each investigation. 

2.2. Present One-Dimensional Theory 

2.2.1 Equation Generation 

Assuming that the liquid is inviscid and that the flow is irrotational, the equation of 

motion for the spherical bubble of radius, R, is approximated by the extended Rayleigh 

equation, 

(2.1,2.26, A.I0) 

The initial bubble radius is determined by assuming that the vapour is initially saturated with 

Tv =T .. and that it exists in unstable equilibrium with the quiescent surroundings. The initial 

radius is predicted by the Young-Laplace equation, 

2cr R =----
C Psat{TJ - Poo 

(2.27) 

Considering an energy balance at the vapour-liquid interface, the energy required to 

evaporate the liquid is supplied by thermal diffusion through the liquid. For a spherical 

bubble this gives, 
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p h dR +h R dpv =-l-fk (aT) dA 
v Jg dt Jg 3 dt 4nR 2 A I an R 

s 

(2.28) 

where Q= pyhri4/3 nR3
) has been substituted into equation (2.2) and differentiated. The 

temperature gradient at the vapour-liquid interface is obtained by numerically solving the 

one-dimensional energy equation in spherical coordinates for the moving liquid, 

with initial and boundary conditions given by, 

T(r,O) = Too 

T(R,t) = Tv 
T(Roo,t) = Too 

(2.29) 

(2.30) 

The initial condition states that the entire temperature field in the liquid is constant. The first 

boundary condition is obtained by assuming that no temperature discontinuity exists across 

the vapour-liquid interface so that the temperature of the liquid at the interface is identical 

to the temperature ofthe vapour. The far field boundary condition is assumed to be constant 

and equal to the initial temperature. The radial velocity is determined as a function of the 

instantaneous bubble radius and interface velocity by assuming that the flow field can be 

determined by the solution for potential flow around the expanding sphere in an unbounded 

liquid. The local velocity is thus, 
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u(R,t)=- -dR( R)2 
dt r 

(2.31) 

Finally, it is postulated that the vapour is saturated and remains in thermodynamic 

equilibrium throughout the growth period so that the pressure and density can be specified 

as functions of the saturated vapour temperature; 

(2.32) 

As in other works, such as Lee [1993], coefficients in these relationships, which represent 

the property variations with temperature, are obtained from best-fit correlations with 

available property data. 

2.2.2. Solution Procedure 

Specifying the vapour density and pressure as functions of the vapour temperature 

effectively reduces the problem to that of determining the instantaneous values ofR, dRidt 

and Tv. In order to do so, the following variables are defined, 

Yl =T v 

Y2 =R 
'(2.33) 

dR 
Y3 

dt 

Equations (2.26) and (2.28) can now be rearranged such that a system ofthree simultaneous 

ordinary differential equations results, 
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(2.34) 

Here, the function fl is determined by differentiating equation (2.32) for the density variation 

with vapour temperature, dpjdt=( dpjdT v)( dT jdt), and rearranging equation (2.28) to isolate 

dT jdt. The function f2 is simply equal to the bubble interface velocity dRldt, and the 

function f3 is determined by rearranging equation (2.26) to isolate d2R1de. For a given time 

step t:.t, the solution of the above system of equations requires that the values YI' Y2 and Y3 

be known at the beginning of the time interval. A fourth-order Runge Kutta scheme is then 

implemented to determine the updated values. 

2.2.3 Initial Disturbance 

In order to initiate bubble growth, the equilibrium radius Rc was perturbed by 

allowing it to increase by a very small amount over an infinitesimally small time interval. 

This is equivalent to a disturbance in temperature or pressure ( Board and Duffy [1971] ). 

A comprehensive discussion of the initial disturbance can be found in Lee [1993] andLee 

and Merte [1996] which will be presented briefly later in this chapter. For this study, the 

initial time step was selected to be 1O-9s with a corresponding radius increase of 0.0005% 

of the initial radius. As will be discussed, the magnitude of the initial disturbance does not 

significantly influence the overall accuracy the computed growth curve. 
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2.3 Numerical Procedure 

In this section, the methodology for obtaining the grid independent benchmark 

solutions for spherical bubble growth in an initially uniformly superheated, unbounded liquid 

will be detailed for four separate initial liquid states. For the benchmark solutions, the energy 

equation was solved on a progressively finer mesh with uniform spacing between adjacent 

nodes. However, steep gradients in temperature occur only in the immediate vicinity ofthe 

growing bubble. Because a grid independent solution on a uniform mesh is computationally 

expensive, a grid clustering technique was also employed which drastically reduced the 

number of grid points and the computation time without compromising the accuracy of the 

numerical predictions. 

2.3.1 Grid Independent Solutions on a Uniform Grid 

2.3.1.1 Solution of the Energy Equation 

A grid independent solution requires that for a given set of initial and boundary 

conditions, the resulting bubble growth curve be insensitive to the number of grid points 

utilized in obtaining the solution of the energy equation. It was decided to keep the 

numerical approximation of the energy equation as simple as possible in order to avoid as 

many numerical complexities and pit-falls as possible. Hence, the numerical solution ofthe 

energy equation at each time step was initially performed on a grid with uniform grid 

spacing given by, 

R-R;nrj 
/:;r=--""-

M-l 
(2.35) 
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where M is the number of grid points. The computational grid in the physical domain is 

illustrated in Fig. 2.2. 

To accommodate the moving boundary resulting from the expanding vapour-liquid 

interface, a front-fixing method proposed by Crank: [1984] was utilized. Here, the energy 

equation was transformed onto a coordinate system with uniform grid spacing which fixes 

the interface at the origin. The transformation is given by, 

where, 

r=r(T\,r) 
(=r 

(2.36) 

(2.37) 

The computational domain is illustrated in Fig. 2.2. Utilizing subscript notation to denote 

partial differentiation with respect to the subscript variable, the relevant derivatives in the 

physictil and computational domain are related through the following; 

Tr =O-l(T1]) 

T =o-2(T ) 
" 1]1] 

Tt=TT -o-lRlI-T\)T'l 

In this way, the energy equation becomes, 

T +aT +bT =0 
t 1] 1]1] 

'(2.38) 

(2.39) 
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where, 

(2.40) 

Here it should be noted that equation (2.31) has been substituted for the radial velocity in the 

liquid. 

Equation (2.39) was discretized using second order central difference representations 

ofthe spatial derivatives and a fully implicit first order representation ofthe time derivatives. 

At a given time step, the temperature field was determined by solving the resulting system 

of algebraic expressions with the Tri-Diagonal Matrix Algorithm (TDMA). The code was 

developed in FORTRAN 90 and is given in Appendix D. 

2.3.1.2 Infinite Grid Solutions 

Grid independent solutions for the four separate test cases given in Table 2.1 have 

been obtained. The test cases have been chosen to adequately represent a range of growth 

curves which have been encountered experimentally. The system conditions listed in the 

table result in growth curves which are characterized by slow diffusion controlled growth, 

as in Case A, to rapid predominantly inertial controlled growth, as in Case D. The 

intermediate Cases Band C are predominantly diffusion controlled but display some 

dependence on the inertia of the surrounding liquid. The fourth test case, for low system 

pressure highly superheated RI13, was also chosen for its different fluid properties. 

A grid independent solution is the converged solution which is obtained when the 
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number of grid points, M, in the computational domain is systematically increased. Ideally 

an infinite number of grid points should be utilized which in numerical work is obviously 

not realizable. 

I Table 2.1: Test Cases for Grid Inde~endent Stud~ I 
Case Fluid System Pressure Initial Superheat Characteristic 

P~ I1Tsup Growth 

A Water 1.0 atm 3.1 °C Diffusion 

B Water 0.372 atm 6.3°C Intermediate 

C Water 0.362 atm 17.0°C Intermediate 

D RI13 0.0361 atm 48.21 °C Inertial 

Fig. 2.3a shows the computed growth curves for Test Case A for increasing values 

of M. In this and the following cases, the far field boundary is held fixed at ~nr=5 em and 

it will later be shown that this more than sufficient to approximate a semi-infinite boundary 

for the range of growth considered in this work. It is evident from the graph that the growth 

curves converge as M is increased from 5000 to 40000 grid points. This is better illustrated 

in Fig. 2.3b in which each curve is subtracted from the curve determined using M=40000. 

This graph shows that the difference between the two curves diminishes to nearly zero as M 

is increased. 

With this set of curves, an infinite grid solution has been approximated by assuming 

that the difference between the instantaneous magnitude ofthe computed radius, ReM), and 

that which would result on an infinite mesh, R(M~), is proportional to the mesh spacing 

raised to an arbitrary power. This gives the expression, 
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(2.41) 

Here, C is a proportionality constant and the exponent n represents the order of error of the 

solution which should coincide with the leading truncation error term which results from 

neglecting higher order terms in the Taylor Series expansions when approximating the 

spatial derivatives. For a given time t, three simultaneous equations are generated for the 

three unknowns R(M .. ) , C and n by applying equation (2.25) to three separate curves 

generated using different values ofM. In this way, the infinite grid solution is extrapolated 

from the three computed curves. 

Figure 2.4a shows the comparison ofthe grid independent solution determined using 

the method outlined above with the computed growth curve for M=40000, which shall be 

considered the converged solution. The curves for M\ =20000, M2 = 30000 and M3 = 40000 

were utilized to extrapolate the grid independent radius values. Figure 4b shows that the 

order of error ofthe solution is approximately (t:.r)2.2 which coincides very well with leading 

truncation error term of (t:.ri which results from utilizing a central difference scheme in 

approximating the spatial derivatives. 

The identical procedure to that outlined above was applied to Case B, C and D in 

Table 2.1. The results are shown in Figs. 2.5 through 2.10. Each case shows trends similar 

to those observed in Case A. First, the growth curves converge as the number of mesh points 

is increased from 5000 to 40000. Second, M=40000 appears to be sufficient to be defined 

as the converged solution for each test case seeing that there is no appreciable difference 

between the curves obtained with M=30000 mesh points and M=40000 mesh points. Finally, 

the order of error of the numerical approach as predicted by the exponent, n, in 
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equation (2.41) is close to the expected value of n=2 for the central difference approximation 

of the spatial derivatives in the discretized energy equation. For future reference, the 

benchmark radius versus time data is tabulated in Appendix B together with the data for the 

converged solutions. 

2.3.1.3 Far Field Effect 

The far field boundary is approximated as a semi-infinite medium by setting the 

position of the far field ,R;nf' far enough away from the growing bubble that gradients in 

temperature and velocity are not appreciable compared with those near the bubble interface. 

Because the choice R;nf affects the grid spacing as determined by equation (2.35), it is 

desirable to set this distance constant for the entire range of growth curves which will be 

encountered during this study so that grid independence is assured without having to repeat 

the procedure outlined in the previous section for each new far field placement. For this 

work, the far field has been set at R;nr=5 cm for all cases studied. This distance has been 

deemed sufficient to cover the wide range of conditions that will be encountered. In order 

to test this choice, the far field position was halved to R;nr=2.5 cm and converged solutions 

were obtained for each case listed in Table 2.1. It is evident from the comparison of the 

converged solutions with the benchmark solutions in Fig. 2.11 that halving the distance of 

the far field boundary has no significant influence on the accuracy ofthe computed solution 

for each test case. 

2.3.1.4 Time Step Independence 

As will be detailed in the subsequent chapters, the nature of bubble growth is such 
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that the growth rate varies significantly during its lifetime. Initially, when the bubble is near 

its equilibrium radius given by equation (2.27), the growth rate is slow. This is followed by 

an extremely rapid increase in the growth rate as the bubble enters and passes through the 

inertial growth stage, only to be followed by a continually decreasing growth rate during the 

asymptotic diffusion controlled growth stage. Consequently, the time step, ~t, selected when 

approximating the time derivative in equation (2.39) must be small enough to resolve the 

rapid transition to the inertial stage and not lead to numerical instabilities, while at the same 

time not being so small that it will result in unnecessary time consuming computations 

during the much slower asymptotic phase of growth. 

In order to accommodate the need for the small time steps during the 'early' growth 

stage and the much coarser requirements during the 'later' growth stage, a simple 

exponential function has been chosen. The time step is given by, 

(2.42) 

where K is the total number of time steps which have been performed since t=O, to is the 

magnitude of the first time step and B is a parameter which allows for the variation of the 

growth of ~t with time such that a smaller value of B coincides with a coarser distribution 

of the time step. 

For the present work, time step independence is assured by selecting a fixed value 

ofto=1.0x10-9 and systematically increasing B until adequate convergence is obtained for 

each test case in Table 2.1. Figs. 2.12 through 2.15 show the converging growth curves for 

Case A, B, C and D respectively. For each case, adequate convergence is obtained for 
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B=1500 with less than 1% difference between it and the curve obtained with B=1000. 

2.3.1.5 Initial Disturbance Effect 

The sensitivity of the three converged solutions to the magnitude of the initial 

disturbance is illustrated in Figs. 2.16 through 2.19. It is clear from the graphs that the delay 

time, which is the time interval between the disturbance and the time at which the bubble 

undergoes significant growth, varies depending on the magnitude of the disturbance. For 

each case, as the magnitude of the time and radius disturbance increase, the delay time 

decreases. However, for the four cases shown the differences are small enough to be oflittle 

practical interest as the curves converge quickly. For this study, the initial time step was 

selected to be 1O-9s with a corresponding radius increase of 0.0005% of the equilibrium 

radius, Re' A comprehensive discussion on the effect of varying the disturbance parameters 

imposed to initiate bubble growth can be found in Lee [1993]. 

2.3.1.6 Comparison with Analytical Works 

The analytic solutions of Rayleigh [1917], Plesset and Zwick [1954], and Mikic et 

al. [1970] are shown in Fig. 2.20. The Rayleigh solution corresponds with inertia controlled 

growth such that the non-dimensional radius and time are related by R+=t . The Plesset and 

Zwick relation is valid for diffusion controlled growth and is predicted by the expression 

R+=( t)1/2_ As illustrated, the Mikic et al. solution (MRG solution), given by equation (2.20), 

is asymptotic to the Rayleigh solution on the lower end and to the Plesset and Zwick solution 

on the upper end. In this way, it is expected that the MRG solution will predict the transition 

region between inertia and diffusion controlled growth stages. The inertia, intermediate and 
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diffusion controlled growth regions, as detennined by Lee [1993], are also depicted in 

Fig.2.20. Clearly, there is very good agreement with the present work and the analytic 

solutions. Case D falls within the intennediate region slightly above the inertial region. Here 

the Plesset and Zwick relation grossly overestimates the predicted curves whereas the 

Rayleigh and MRG solutions appear to be in close agreement. This is shown more clearly 

in Fig. 2.21 where the computational and analytic solutions are shown on a Cartesian plot. 

It is evident that very good agreement exists between the present work and the MRG 

solution for Case D with a difference of 2% at t=10 ms. The discrepancy between the 

computed curve and the Rayleigh solution is accounted for by the fact that the influence of 

thennal diffusion is not negligible. For diffusion controlled growth, Figs. 2.20 and 2.21 show 

that the numerical predictions for Case A are in excellent agreement with both the Plesset 

and Zwick and MRG solutions, whereas the Rayleigh solution is largely in error. A 

discrepancy between the numerical and analytic solutions exists in the intennediate region 

where a 10% difference is observed between the numerical and MRG solution for Case C 

at t= 1 0 ms. The corresponding difference with the Plesset and Zwick solution is 3%. These 

discrepancies are oflittle significance considering the fact that the MRG solution is not an 

exact analytic solution of the coupled momentum and energy equations in this region and 

that the numerical predictions lie within the two analytic curves. Case B shows good 

agreement with both the MRG and Plesset and Zwick solutions. Overall, the agreement with 

the present work and the analytic solutions is certainly acceptable. 

2.3.1.7 Comparison with Experimental Data 

Table 2.2 gives the experimental data which is available for comparison with the four 
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converged grid independent solutions. The experiments ofDergarabedian [1953], Board and 

Duffy [1971] and Bohrer [1969] were chosen because of the wide range of experimental test 

conditions offered as well as the experimental techniques which were utilized. In each study, 

special care was taken to ensure that boiling took place in a uniformly superheated liquid far 

enough away from the walls ofthe vessel. In the study of Dergarabedian [1953], the water 

was heated slowly and uniformly by radiant heaters. In the other three experiments, slow 

depressurization was utilized to yield the initial metastable state ofthe liquid. This technique 

is desirable over rapid depressurization because it minimizes thermal gradients prior to 

bubble nucleation. 

Table 2.2: Exp_erimental Test Cases 

Case Fluid Reference Measured Error in Error Error in 
Superheat, Superheat In Radius 

!:1Tsup Time 

A Water Dergarabedian 3.1 DC ±o.rc ±1.0 3% 
[1953] ms 

B Water Board and 6.3 DC ± O.4°C ±0.2 5% 
Duffy [1971] ms 

C Water Board and 17.0 DC ± 0.4 DC ±0.2 5% 
Duffy [1971] ms 

D RI13 Bohrer [1969] 48.21 DC ±0.96 DC ±0.1 7.5% 
ms 

Also listed in Table 2.2 are the experimental uncertainties in the measured values.· For the 

Dergarabedian [1953] experiments (Case A) the accuracy ofthe temperature measurements 

was estimated at (±0.2 DC). For the Board and Duffy [1971] experiments (Case B and C), 

the contribution ofthe temperature measurement and the estimated spatial variations within 

the liquid (±0.2 DC) as well as the uncertainty in the measured pressure (±0.003 atm) 
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combine to give the overall uncertainty of ±OA °C. For Case D, Borher [1969] simply states 

the uncertainty at 2% of the measured superheat value. The error in time is due to the 

uncertainty in the time origin due to the framing rate of the camera. This is a result of the 

finite time delay between the frame in which the first visible bubble appears and the frame 

showing no bubble. In effect, this allows the time axis to be shifted for any bubble history 

to obtain the best fit. The uncertainty in radius primarily results from shape distortions ofthe 

growing bubbles. In Dergarabedian [1953] the bubble diameters were measured three times 

and the average value was taken. In both Board and Duffy [1971] and Bohrer [1969], the 

bubble radii were measured in two orthogonal directions and the arithmetic average was 

utilized. 

Figs. 2.22, 2.23 ,2.24 and 2.25 show the comparison of the present converged 

solutions for Case A, B, C and D respectively with the experimental data. In each graph, 

there are three computed curves. The middle curve is computed using the measured 

superheat whereas the upper and lower curve are computed using the upper and lower 

superheat uncertainty limits respectively. The vertical error bars on the experimental data 

represent the error in the measured radius and the horizontal error bars characterize the 

uncertainty in time. 

Figs.2.22 and 2.23 show that the present numerical simulations are within the 

uncertainty ofthe experimental data for Case A and B. For Case C, Fig. 2.24 shows that the 

numerical simulation over predicts the experimental data at larger times. However, the curve 

representing the lower superheat is within 4% of the upper limit on the radius data so that 

agreement between the experimental data and the numerical simulation is again very good. 

Finally, Fig. 2.25 shows that the numerical simulation is well within the uncertainty limits 
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for Case D. 

In the above discussion, grid and time step independent solutions have been obtained 

for four different test conditions on a mesh with uniform grid spacing. Infinite mesh 

solutions have been approximated and will be used as the benchmark solutions for the 

remainder of this work. Finally, the efficacy of the present solution technique has been 

confirmed by showing very good agreement with analytic and experimental data over a 

sufficiently wide range of boiling conditions. 

2.3.2 Clustered Grid Solutions 

2.3.2.1 Solution of Energy Equation 

As previously mentioned, numerical approximations of the energy equation on a 

uniform grid are computationally expensive because of the large number of grid points 

which are required to obtain a solution which is sufficiently close to the infinite grid 

benchmark solutions. However, it is possible to take advantage of the fact that steep 

gradients in temperature and velocity are confined to a narrow region adjacent to the vapour­

liquid interface. This being the case, clustering grid points in the region where the gradients 

are high and allowing coarser grid spacing where gradients are expected to be much smaller 

will reduce the required number of grid points which translates into a reduction in the total 

computation time. 

The energy equation was solved numerically on a grid which was constructed using 

a variant of the grid generation technique proposed by Chen et al [1995]. The grid variables 

in the physical domain are depicted in Fig. 2.26. Grid clustering near the vapour-liquid 

interface as well the moving boundary were facilitated by defining the grid in the physical 
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domain by the expression, 

(2.43) 

where the term SR determines the percentage of grid points near the interface and has been 

chosen as 0.65 throughout this work. 

In order that conventional finite difference techniques could be utilized, the energy 

equation was transformed into a stationary grid with uniform grid spacing. The 

computational domain is illustrated in Fig. 2.26. The coordinate transformation is given by, 

such that, 

r=r(ll;t) 
t =-r 

By defining the contravarient velocity as, 

the transformed energy equation becomes, 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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where J is the Jacobian and the coefficients a and b are related to the metric and its 

derivative through the following, 

J=r2 Tj 

_ U C arTjrTjTj 2arll a--+-----
J J2 Jr 

2 

b = _ arTj 

J2 

(2.48) 

As with the uniform mesh solution, equation (2.47) was discretized using second order 

central difference representations of the spatial derivatives and a fully implicit first order 

representation of the time derivatives. At a given time step, the temperature field was 

determined by solving the resulting system of algebraic expressions with the Tri-Diagonal 

Matrix Algorithm (TDMA). The code was developed in FORTRAN 90 and is given in 

Appendix E. 

2.3.2.2 Converged Solutions on a Clustered Grid 

As the number of mesh points increases, the growth curves for the clustered grid 

arrangement should approach the converged solution on a uniform grid. For the clustered 

grid case, the number of grid points was systematically increased from 150 to 800 and the 

computed growth curves were compared with the converged solution on a uniform mesh. 

Figure 2.27 shows the percent relative difference between the clustered (M=800) and 

uniform mesh (M=40000) solutions for each Case A, B, C and D in Table 2.1. The 

maximum difference is less than 1.5 % for the range of growth curves considered. In this 
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way, M=800 is deemed sufficient to define the converged solution for the clustered grid 

arrangement. This is a fifty times reduction in the number of grid points as compared with 

the uniform grid solution without significant loss of accuracy. Fig. 2.28 shows excellent 

agreement between the converged solution on a clustered grid and the benchmark solutions. 

2.4 Spherical Bubble Growth Data 

With the more efficient clustered grid solution, it is now reasonable to compare the 

predictions ofthe computational technique with a wider variety of experimental data. There 

is a limited amount of data available in the literature. Even still, the experimental conditions 

cover a more than adequate range of boiling conditions for testing the computed predictions. 

Table 2.3 lists the range of system conditions for the water experiments of Dergerabedian 

[1953], Board and Duffy [1971], Abdelmessih [1969] and Lien [1969], as well as the Freon-

113 experiments of Bohrer et al [1973]. Also listed is the available experimental error 

associated with each data set. 

T bl 23 Sid E a e . e ecte xpenments or ompanson WIt omogeneous u e row . . :6 C ·hH B bbl G th 

Fluid Experiment p. (atm) AT.u. (OC) AT. At AR 

water Dergarabedian [1953] 1 1.4-+5.3 ±0.2 CC) ±1.0 ms ±1O% 

water Board & Duffy [1971] .318-.395 4.3-+20.3 ±0.4 CC) ±0.2 ms ±5% 

water Lien [1969] .012-.382 9.0-+ 15.74 ±N/A ±0.5 ms N/A 

water Abdelmessih [1969] 1 6.83-+38.8 ±N/A ±O.08 ms N/A 

RI13 Bohrer [1973] .036-.083 11.34-+48.21 ±2% ±0.1 ms ±7.5 mm 

The atmospheric pressure, low superheat data ofDergerabedian is shown in Fig. 2.29 

(a), (b), (c) and (d) together with the numerical predictions ofthe present work. The curves 
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are typical of slow asymptotic growth and the comparison is within experimental uncertainty 

except for the ~Tsup=4.5 °C and ~Tsup=5.3 °C cases where the prediction is outside of the 

uncertainty limits by at most 14%. The magnitude of this over prediction is consistent with 

other theories including the numerical work of Board and Duffy [1971] and Lee [1993] as 

well as the analytical prediction of Pies set and Zwick [1954] and has been attributed to air 

content in the water ( Lee [1993] ). Overall, the comparison with the low superheat, slow 

asymptotic growth curves is acceptable. 

The experimental data of Board and Duffy [1971] presents a more rigorous test of 

the solution technique by providing measurements over a wider range of superheats for an 

almost constant system pressure. As would be expected, the measured values in Fig. 2.30 

show a continual increase in the growth rate with increasing liquid superheat. Fig. 2.30 also 

shows very good agreement between the predictions of the present work with the 

experimental data for superheats in the range 4.3 ° C - 20.3 ° C. Only at the largest superheats 

are the predictions outside ofthe experimental uncertainty ofthe experimental curves. The 

largest discrepancy is within 5% of the upper experimental uncertainty limit which is 

acceptable. 

The experiments of Lien [1969] cover a wide range of system pressures (0.0 124atm-

0.382atm) over a less notable range of superheats (9.0 °C - 15.7 DC). The experimental and 

predicted curves are shown in Fig. 2.31. For the lowest pressure, the relationship is nearly 

linear, indicating that the growth is primarily inertial controlled. As the pressure increases 

the growth rates decrease as the growth becomes more influenced by thermal diffusion. 

Agreement with the predicted relationship is very good for each growth curve. 

Fig. 2.32 shows the comparison of the present work with the experimental data of 
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Abdelmessih [1969] obtained with atmospheric pressure water for superheats in the range 

6.83 °C - 38.77 0c. For a superheat of 6.83 °C the agreement is quite good. For the higher 

superheats the agreement gets progressively worse with over 50% difference between 

prediction and experiment for the highest superheat case. A possible explanation for the 

large discrepancy with the data of Abdelmessih [1969] is that the experimental procedure 

utilized rapid depressurization to invoke homogeneous bubble nucleation and subsequent 

growth (Theofanous et al [1969]). This is in contrast with the experimental procedures of 

the other four investigators in which either slow transient heating or slow depressurization 

techniques were employed so that the system pressures and effective superheats were 

essentially constant both temporally and spatially over the period of bubble growth. As 

noted by Theofanous et al [1969], long term bubble growth can be sensitive to the initial 

pressure transient in the liquid. This effect will become more pronounced at higher initial 

system pressures, which may account for the increased deviation between the Abdelmessih 

[1969] results and the computations with increasing initial superheat. Considering the 

agreement between theory and experiment for the other experiments mentioned, it is 

suggested that the high superheat data of Abdelmessih is not reliable for comparison with 

the predictive capabilities of homogeneous bubble growth theories for uniformly superheated 

liquids. 

Finally, Fig. 2.33 shows that the present theory is not fluid specific, in as much as it 

shows excellent agreement with the experimental data of Bohrer [1973] for refrigerant R113. 
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Figure 2.9: Case D; RIB P=0.0361 atm, ~ Tsup =48.1 °C. Converging solution for grid points 
increasing from 5000 (top curves) to 40000 (bottom curves). a) Radius vs. time. b) 
Subtracted curves R;-R4oooo. 
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CHAPTER 3: HOMOGENEOUS BUBBLE GROWTH 

BUBBLE GROWTH DYNAMICS 

3.0 Introduction 

In this chapter, spherical bubble growth in an initially uniformly superheated, 

unbounded liquid will be detailed. Because many of the fundamental mechanisms are the 

same, study of homogeneous bubble growth will offer insight into the mechanisms which 

are important in determining the growth characteristics of bubble growth near a heated 

surface. 

Bubble growth dynamics will be discussed with focus on three separate but related 

topics. First, the characteristics of one bubble will be investigated in detail as it grows from 

a vapour nucleus through all the various growth stages until it is fully heat transfer limited. 

Utilizing the concepts developed for this single isolated bubble, the role that superheat plays 

during bubble growth will be considered by obtaining bubble data for a wide range of initial 

liquid superheats while keeping the ambient pressure constant. In a similar manner, the 

effect of varying the ambient pressure will be analysed by obtaining bubble growth data for 

a wide range of pressure while keeping the superheat constant. 

3.1 Initial State 

Bubble growth in a uniformly superheated unbounded liquid at constant pressure is 

65 
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initiated by a phenomena called homogeneous nucleation. As described by Carey [1992], 

localized density fluctuations, often referred to as heterophase fluctuations, occur in the 

thermodynamically stable liquid. For a superheated liquid, a localized density fluctuation can 

become large enough to create a small region in which the density is reduced to almost that 

of the saturation vapour density. In this way, small vapour bubble 'embryos' are formed 

within the bulk liquid. Initially, the vapour embryo is in equilibrium with the surrounding 

liquid. The equilibrium state requires that both the temperature and chemical potentials of 

each phase be equal. Assuming a spherical vapour embryo, the initial state also requires that 

mechanical equilibrium be satisfied. This condition is provided by the well known Y oung-

Laplace relation, which predicts an initial bubble radius given by, 

(3.1) 

where P ve is the equilibrium vapour pressure and ~ is the critical vapour embryo radius. 

Utilizing the Second Law of Thermodynamics, Carey [1992] shows that the initial 

equilibrium state is unstable such that bubbles slightly larger than Rc will be subject to 

spontaneous growth. 

The significance of the initial state ofthe vapour nucleus, with respect to theoretical 

modelling, is that it defines the minimum radius Rc' the maximum vapour temperature T v,max' 

and the maximum vapour pressure, P ve' Since the vapour and liquid are in thermal 

equilibrium, Tv max =T ",' Furthermore, for cases of practical interest it is also reasonable to 

assume that the initial equilibrium vapour pressure is approximately equal to the saturation 

pressure corresponding to the liquid temperature Pve= PsalT",). For example, water at 
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atmospheric pressure and 20°C superheat has an equilibrium vapour pressure of 

Pve= 198.4 kPa and a saturation pressure ofPsat(120°C)=198.5 kPa (Carey [1992] ). This 

slight difference becomes smaller at reduced system pressures. 

3.2 Heat Transfer and Bubble Expansion 

The initial thermal state of the vapour and liquid phase for a stationary critically 

sized vapour nucleus is depicted in Fig. 3.1. It is then assumed that the equilibrium condition 

is disturbed in such a way as to initiate bubble expansion opposed to bubble collapse. The 

disturbance can be a small fluctuation in pressure, density, temperature or radius (volume), 

the end effect of each being the same ( Board and Duffy [1971] ). If, for example, the radius 

is increased slightly, equation (3.1) states that the vapour pressure must decrease slightly as 

well. This will correspond with a decrease in the vapour temperature and thus the liquid 

temperature at the vapour-liquid interface. The thermal field for times after the initial 

disturbance is shown schematically in Fig. 3.2. 

As a result of the decreased interfacial liquid temperature, a temperature gradient is 

established in the liquid which by Newton's Law of Cooling is responsible for a positive flux 

of energy, due to thermal diffusion, directed towards the interface, 

qll=_k(BT) 
I Br r=R(t) 

(3.2) 

In the absence of significant compressibility effects, it is the perpetuation ofthe temperature 

gradient, and subsequent heat transfer to the interface, which sustains bubble expansion. 

The interfacial energy balance equation can be developed by considering a control 
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volume with control surfaces immediately adjacent to the vapour-liquid interface. An energy 

balance gives, 

(3.3) 

where my// is the mass flux of vapour into the bubble, m// is the mass flux ofliquid towards 

the bubble interface, hy and hI are the vapour and liquid enthalpies respectively, and qll is the 

heat flux at the interface. The development of this expression, including all simplifying 

assumptions, can be found in Riznic et al. [1999]. Here it suffices to note that kinetic energy 

and viscous effects and the vapour motion and property variations are neglected. Continuity 

at the interface dictates that the mass flux of the vapour and liquid are related by, 

. II . II 0 my +m1 = (3.4) 

This relationship, combined with the assumption of uniform vapour temperature such that 

qou/'=O and that the heat transfer to the interface is by diffusion through the liquid results in 

the interfacial energy balance, 

. Ilh k ( aT) -0 mv yg+ I - -
ar r:R(t) 

(3.5) 

Finally, the integral mass balance for the vapour bubble relates the mass flux into the bubble 

to the rate of change of mass within the volume through the equation, 

dmv - f. II --- m dA 
dt v 

A 

(3.6) 
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Combination of equation (3.5) with equation (3.6) and rearrangement gives, 

h dm = fk ( aT) dA 
'fg dt A I ar r=R(t) 

(3.7) 

This equation explicitly states that the heat transfer by diffusion at the interface is directly 

responsible for the increase in the mass of the bubble. Assuming spherical symmetry and 

constant liquid properties, substitution ofm=pvC4/31tR3) results in the simplified expression 

for bubble expansion, 

(3.8) 

Typically, compressibility effects are negligible such that, 

(3.9) 

Therefore, the bubble expansion rate is proportional to the energy flux into the bubble by 

diffusion through the liquid. Because of this basic dependence, the growth of expanding 

bubbles will be discussed with particular focus on the how the dynamic coupling between 

the heat transfer and the flow dynamics determine the characteristics of growth as the 

bubble passes through the various growth regimes from inception to thermal diffusion 

controlled growth. 
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3.3 Bubble Dynamics 

In the following sections, the growth characteristics of a single isolated spherical 

bubble expanding in a uniformly superheated unbounded liquid will be discussed. The liquid 

chosen is water and the boiling conditions selected are atmospheric pressure with an initial 

superheat of ~Tsup=15°C. Fig. 3.3 shows the temporal variation of the predicted bubble 

radius and vapour temperature. In the figure, three regions of growth have been identified 

which will be discussed in tum. In Fig. 3.4, the energy equation for the vapour bubble, 

equation (3.8), has been decomposed to expose the time varying contributions of its 

constituent terms. From the figure, it is apparent that the term involving the rate of change 

of vapour density, i/3hrgR(dpjdt), is negligible compared with the interface velocity term, 

PvhrsCdRldt). Thus for discussion purposes, the growth rate can be considered proportional 

to the heat flux into the bubble throughout its growth, 

dR - k/ (aT) -( 1 ]" 
dt - Pjzlg ar r=R(t) - Pjzlg q 

(3.10) 

As a result of the above relationship, it can be said that changes in the rate of heat transfer 

into the bubble are integrally connected to changes in bubble expansion. Furthermore, the 

interface acceleration is directly related to the time rate of change of the temperature 

gradient in the liquid at the interface. Assuming constant properties, the first derivative of 

equation (3.9) can be rearranged to give, 

(3.11) 
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In order to better conceptualize how changes in the interfacial temperature gradient affect 

bubble growth characteristics, the following simplification has been applied; 

II z, k ( f).T(t») 
q I oCt) 

(3.12) 

where f).T(t)=T~-Tv(t) is the effective temperature difference and oCt) is the extrapolated 

thickness of the thermal boundary layer surrounding the bubble. The relevant details 

concerning the extrapolation technique for determining oCt) are given in Appendix C. In this 

simplified view of heat transfer, the instantaneous heat flux into the bubble is determined by 

the driving temperature difference f).T(t) and the thermal resistance to heat transfer o(t)/k). 

Each of these terms playa significant role with concern to bubble growth. For example, if 

f).T(t) increases with time while oCt) remains constant, then the bubble interface will 

accelerate (d2Rdt2 >0). On the other hand, if oCt) increases at a rate prescribed by the 

inequality, 

dO>~.!{(f).1) 
dt f).T dt 

(3.13) 

then the interface will decelerate. Consequently, any mechanisms which act in such a way 

as to significantly influence the rate of change of !:l. T(t) or oCt) will have a bearing on the 

motion of the bubble interface. 

In Fig. 3.5, the constituent components ofthe equation governing the motion of the 

interface, equations (2.1), are represented. In the figure, the driving pressure difference, 
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P v - P ~, is resisted by the stress in the interface through the surface tension term, 2olR, and the 

hydrodynamic liquid pressure acting directly on the vapour-liquid interface, Phd' defined as, 

d2R 3 (dR) 2 P =pR-+-p -
hd I dt 2 2 I dt 

(3.14) 

The hydrodynamic pressure can be regarded as the excess pressure at the bubble interface 

that is a direct consequence ofthe bulk motion ofthe liquid. The total pressure in the liquid 

at the interface is related to the hydrostatic and hydrodynamic pressures through, pR=p .. +Phd• 

3.3.1 Surface Tension Controlled Growth 

The surface tension controlled domain exists in the region of time immediately after 

bubble growth is initiated. Generally, the surface tension controlled region is characterized 

by very slow changes in temperature, pressure and radius. These trends are illustrated in Fig. 

3.3 and 3.5 where it is noticed that there is little change in the system variables during this 

region. Fig. 3.6 shows that the corresponding interface velocity and acceleration remain 

comparatively small for the early portion of the surface tension domain. Even still, energy 

is continuously being supplied to the bubble by diffusion through the liquid. This is evident 

from the positive value of cit in Fig. 3Ab and the positive value of the temperature 

differential L\T(t) shown in Fig. 3.7. However, the heat flux into the bubble, and thus the 

growth rate dRJdt, are small enough that the contribution of the hydrodynamic pressure in 

balancing the equation of motion is insignificant so that it essentially reduces to the static 

force balance, P v-P .. ",2cr/R, as shown in Fig. 3.5a. Because P ~ is constant, an increase in the 
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bubble radius must occur in conjunction with a decrease in P y' which of course coincides 

with a proportional decrease in the vapour temperature, T y' This is an important effect 

because, assuming thermal equilibrium, the decreasing vapour temperature represents a 

decreasing interface boundary temperature for the liquid. Because the liquid is essentially 

still, the decreasing interfacial liquid temperature acts to increase the interfacial temperature 

gradient, (BTlBr)r=R(t). Fig. 3.7 shows that the temperature difference driving the heat transfer 

to the interface, ~T(t), is increasing with no significant change in the penetration depth of 

the thermal layer o(t). This indicates that the observed increase in q" is a result of the 

decreasing interfacial temperature and not due to thinning of the thermal layer. Thus it can 

be said that bubble growth in this domain is accelerated due to a positive thermal feedback 

effect in which bubble expansion (increasing R) is related to an increase in the driving 

temperature difference, ~ T(t). This causes an increase in the rate of diffusion to the vapour­

liquid interface through the increase in the magnitude of the local temperature gradient, 

(-~ T(t)/o(t) ),which feeds back by a proportional increase in the bubble growth rate, dR/dt. 

In the earlier stage of the surface tension domain (t<0.002ms), the system is very 

near the initial equilibrium state provided that the initial disturbance is sufficiently small. 

Initially the temperature differential is of the order O(~T)-1O-6 °C which is still small 

enough that the expansion rate, and corresponding interface acceleration, are both small as 

compared with the maximum values shown in Fig. 3.6. Even still, minute changes in the 

bubble radius are sufficient to continually cause the temperature difference, ~ T(t), to 

increase as the surface tension stresses are relaxed causing P y-P ~ to decrease. Fig. 3.8 shows 

the curves for both ~T(t) and o(t) for the early stage of growth on a Cartesian plot. At 

approximately t=0.002 ms, the temperature difference begins to increase significantly. After 
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this point, d(~ T)/dt increases dramatically as a direct consequence ofthe thermal feedback 

effect. In a relatively short time interval (0.002 ms:o;;t:o;;O.0036 ms), the driving temperature 

difference increases from nearly zero to almost 2 °e, which is significant. Fig. 3.6 shows 

that over the same time interval, the interface undergoes a drastic increase in acceleration. 

This is to be expected since for constant D(t), the magnitude of the acceleration IS 

proportional to the time rate of change of ~ T(t) through the expression, 

d 2R 1 d(~T) __ <X __ _ 

dt 2 D dt 
(3.15) 

The peak value of the acceleration occurs at t=0.0036 ms and corresponds with the 

maximum rate of change of ~T(t). As shown in Fig. 3.8, the slope ~T(t) decreases after 

t=0.0036 ms. This is the point in time that the surface tension controlled growth domain is 

considered to end, referred to as the Onset of Significant Growth (OSG), and the bubble 

radius begins to increase considerably away from Rc as shown in Fig. 3.3. Once significant 

growth has begun, new mechanisms come into play which alter the dynamics of bubble 

growth. 

3.3.2 Transition Domain 

The transition domain occurs during the time interval beginning at the end of the 

surface tension controlled growth domain and ending when growth becomes limited by 

thermal diffusion. In this region, Fig. 3.5 shows that the pressure difference decreases from 

near its maximum value of ~P::::PsatCToo)-P 00 to close to zero. Likewise the driving temperature 

difference ~T(t) increases and approaches its maximum value corresponding with 
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~T=~Tsup=15 °C as illustrated in Fig. 3.7. For the case selected, the transition region can 

be sectioned into two distinct subregions; the intermediate region where surface tension and 

inertial forces are both important and the inertial region where the hydrodynamic forces play 

a influential role in limiting bubble growth and surface tension forces do not. 

3.3.2.1 Intermediate Region 

As the bubble interface is accelerating radially outward, there comes a time when the 

effects of the bulk liquid motion outside the bubble are no longer insignificant. The 

intermediate domain is thus distinguished from the surface tension domain by the relative 

contributions of the surface tension term and the hydrodynamic pressure term in balancing 

the equation of motion. Fig. 3.5a shows that the excess pressure at the interface due to flow 

effects, Phd' rises sharply at the beginning of this region and quickly becomes of the same 

order of magnitude as the surface tension term, 2alR. 

At the beginning of the intermediate region, the interface acceleration is near the 

maximum value of d2R1de:::: 3x 106 m/s2
, after which the magnitude ofthe acceleration begins 

to continually diminish and becomes zero at approximately t=0.0068 ms. This trend is shown 

in Fig. 3.6. Accordingly, q" and dRldt increase less rapidly and reach a maximum at 

t=0.0068 ms as shown in Figs. 3.4 and 3.6 respectively. The fact that the interface 

acceleration is decreasing signifies that there are mechanisms at work which tend to depress 

the thermal feedback effect. The most obvious is the fact that the expanding bubble now 

faces the additional resistance associated with forcing the bulk liquid out radially. The 

hydrodynamic pressure term rises sharply to become a significant term in the equation of 

motion and is responsible for a noticeable decrease in the rate at which the pressure 
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difference P v -P ~ is decreasing. The added importance of the fluid resistance is responsible 

for large decrease in the slopes on both the Pv-p~ curves shown in Figs. 3.5 for t>0.004 ms. 

Fig. 3.9 shows the influence ofthe hydrodynamic pressure more clearly. On this graph, the 

actual pressure difference including the hydrodynamic term is plotted together with the 

pressure difference which includes only surface tension. Initially the two curves are 

essentially identical, such that relatively small increases in R(t) result in disproportionately 

large increases in P y -P~. However, at the onset of significant growth, the actual pressure 

difference deviates markedly from the surface tension curve. Therefore, with the inclusion 

of hydrodynamic forces, a much larger increase in radius is required to produce a like change 

in py-p .. as compared with the case where hydrodynamic forces are not included. Because 

changes in vapour pressure are analogous to changes in vapour temperature, the introduction 

of hydrodynamic forces at the bubble interface will have a detrimental effect on the rate at 

which the temperature difference ~T(t) increases, thus depressing the thermal feedback 

effect. This is the mechanism which is responsible for the observed decrease in the slope of 

~T(t) in Figs. 3.7 and 3.8 for t>0.004ms. Furthermore, because 8(t) does not change 

significantly and d(~T )/dt is decreasing, the magnitude of the acceleration must decrease 

as predicted by equation (3.15) and shown in Fig. 3.6 for the time interval 

0.0036 ms~t~ 0.0068 ms. Therefore, it can be said that the additional resistance ofthe fluid 

plays an integral role in depressing the thermal feedback effect which causes the interface 

acceleration to diminish. 

3.3.2.2 Inertial Region 

During the inertial growth stage, the pressure difference, P v - P ~, is primarily balanced 
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by the hydrodynamic pressure at the interface and surface tension forces are unimportant as 

shown in Fig. 3.5a and Fig. 3.9. The region is deemed inertial because the hydrodynamic 

forces playa role in determining the bubble growth characteristics and surface tension forces 

do not. It must be noted that this region is not necessarily 'inertia controlled' in the sense 

that the hydrodynamic forces are the limiting mechanism determining growth and the 

solution follows the Rayleigh solution given by equation 2.4. For realistic levels of 

superheat, truly inertial controlled growth only occurs at very low system pressures as will 

be discussed in Section 3.6.2. 

As stated, the driving pressure difference is balanced by the hydrodynamic pressure 

acting at the bubble interface. The hydrodynamic pressure is comprised of two 'inertial' 

terms given in equation (3.14). These are the acceleration term, PIR( d2R1dt2), and the velocity 

term, 3 /2PI( dRldt)2 which are plotted in Fig. 3.5b. The two terms have differing sign and thus 

tend to have an opposite influence on the total liquid pressure, and thus the force of the 

liquid on the bubble interface. The negative acceleration term accounts for the fact that the 

fluid body surrounding the bubble is decelerating causing outward force on the bubble 

surface. The velocity term is positive because the expanding bubble wall is effectively 

pushing the fluid outwardly. The reaction force of the liquid on the bubble wall is thus 

inwardly directed and must be of opposite sign. For t<O.1 ms, the magnitude ofthe velocity 

term is much larger than the acceleration term. However, for t>0.1 ms, the magnitudes ofthe 

two terms are comparable with the velocity term being slightly larger. In this way the overall 

influence of the hydrodynamic pressure is greatly reduced due to cancellation of the 

individual pressure terms. 

The inertial growth domain is characterized by a decreasing heat flux and 
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decelerating interface as shown in Fig. 3.4 and 3.6 respectively. Inertial effects are regarded 

as being important because they influence the rate at which the vapour pressure and 

temperature drop by offering significant resistance to bubble expansion as compared with 

surface tension forces alone. Fig. 3.9 shows that with the added hydrodynamic pressure 

forces, the bubble must expand to a much larger radius in order for the pressure difference 

to diminish. In this respect, the momentum interactions of the bubble and the surrounding 

fluid have the effect of sustaining a significant pressure differential for a longer period of 

time. A consequence of this is that the rate at which the temperature difference increases, 

d(~ T)/dt ,which tends to increase the rate of heat transfer, is slowed by the increased 

hydrodynamic pressure in the same way as described for the intermediate region discussed 

previously. Fig. 3.7 shows that the rate of change of ~ T( t) continually decreases approaching 

zero as it approaches the system superheat, ~Tsup=15 °C. However, this alone does not 

explain why the heat flux is decreasing in magnitude causing bubble expansion to decelerate 

considerably. The heat flux, q" , is decreasing because the positive influence that increasing 

~T(t) tends to have on the heat flux is not sufficient to compensate for the rate at which 

advection and conduction serve to decrease the temperature gradient at the interface by 

thickening the thermal boundary layer surrounding the bubble. Because there is significant 

fluid motion directed radially outward from the expanding interface, the cooler liquid from 

within the thermal layer penetrates deeper into the bulk of the liquid by advection. This, 

coupled with a net loss of thermal energy by conduction heat transfer out of the liquid and 

into the vapour bubble causes the the maximum temperature within the boundary layer to 

move further out from the bubble interface. Figs. 3.7 and 3.10 show that this portion of the 

transition region is identified by considerable growth ofthe thermal layer. Before this time, 
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the thermal layer thickness remained more or less constant at 0(t)::::3xlO-7 m. During this 

stage, however, the boundary layer has grown by nearly two orders of magnitude, 

o(t=O.2 ms)::::8.0xl0-6 m. The increasing thermal layer thickness is also depicted in Fig. 3.10 

where the liquid temperature profiles are shown for various times during growth. The 

illustration shows that the maximum liquid temperature (:::: 115°C) is moving further away 

from the vapour-liquid interface signifying thermal layer growth. 

In summary, bubble expansion is decelerating considerably ( decreasing qll) because 

the thickness of the thermal boundary layer is increasing much faster than the driving 

temperature difference is increasing. Because the rate at which ~T(t) increases is 

significantly altered by the increased resistance of the fluid at the interface, this subregion 

of the transition domain is termed inertial. As will be discussed in succeeding sections, the 

relative importance of the liquid inertia depends on the superheat and system pressure. 

3.3.3 Heat Transfer Controlled Growth 

Heat transfer controlled growth refers to the interval of bubble growth in which the 

rate of bubble expansion is limited by the rate at which liquid is evaporated into the bubble, 

dictated by the rate of heat transfer through the liquid to the interface. 

The heat transfer controlled growth domain is characterized by a decreasing heat flux 

and decelerating interface as shown in Fig. 3.4 and 3.6 respectively. In this domain, the 

pressure difference Pv-P~ has reduced to nearly zero (Fig. 3.5a and Fig. 3.9). As a result, 

liquid inertia and surface tension have a negligible influence on bubble growth because the 

rate at which P v - P 00 decreases no longer has a significant bearing on the rate at which the 

driving temperature difference ~T(t) increases since it is approximately constant at 15°C 
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according to Fig. 3.7. Consequently, the growth characteristics of this domain are determined 

solely by the thickening of the thermal boundary layer as a result the depletion of energy in 

the layer by conduction and the 'stretching' of the thermal layer by advection. The 

thickening of the thermal boundary layer with constant ~ T( t) is clearly illustrated in Fig. 

3.10 where the liquid temperature profiles show that the interface temperature IS 

approximately constant at Tv=Tsat= 100°C and the maximum liquid temperature IS 

continually moving further out from the vapour-liquid interface. Likewise, Fig. 3.7 shows 

that the extrapolated thermal boundary layer thickness increases steadily with no significant 

change in ~ T(t). Also shown in the figure is the analytic expression for the thermal boundary 

layer thickness determined by Plesset and Zwick [1954] for a thin thermal boundary layer 

assumption, 0(t)=ct/31tUtYI,. The close agreement confirms the accuracy of the present 

solution as well as the applicability of using the extrapolated thermal boundary layer 

thickness, oCt), for discussion purposes. 

The choice for the time at which the heat transfer domain begins is somewhat 

arbitrary but must coincide roughly with d(~T)/dt:::::O. For this study it has been selected as 

the time at which d(~ T)/dt:::::0.5 °C/ms. For the case shown, fully diffusion controlled growth 

begins at approximately t:::::O.4 ms. Here ~ T(t) is within 2% ofthe maximum value prescribed 

by the system superheat ~ T sup' 

3.4 Effect of Superheat and System Pressure on Bubble Growth Dynamics 

In the following sections, the effects of varying the level of superheat on bubble 

growth dynamics will be investigated by generating growth data for water at atmospheric 

pressure for the range of superheats 3°C .,; ~Tsup .,; 30°C. The change in superheat 
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corresponds with a Jakob number range of9.0:o;Ja:o;90. Likewise, the effect of varying the 

system pressure will be detailed by considering growth data for water at a fixed superheat 

of ~Tsup = 15°C and a system pressure range of 0.01 atm:o; P ~ :0; 5 atm. The range of system 

pressure corresponds with a Jakob number range of lO:o;Ja:o;3l67. The system conditions 

selected have been carefully chosen to represent the range of experimental bubble growth 

data available in the literature. 

3.4.1 Surface Tension Domain 

3.4.1.1 Effect of Increasing Superheat on Surface Tension Domain 

Fig. 3.11 shows the growth curves for three levels of superheat, low (~Tsup= 3°C), 

intermediate (~Tsup=15 DC) and high (~Tsup=30 DC). Concerning the surface tension growth 

domain, two trends are immediately apparent. First, the critical radius increases with 

decreasing superheat. Decreasing the system temperature results in a decrease in the initial 

vapour pressure P v = P sat(T 00) causing Rc to decrease as predicted by equation (3.1) for 

constant P~. Fig. 3.12 shows a plot of the pressure difference versus radius for a stationary 

vapour bubble at equilibrium with the surrounding liquid. The relationship is obtained by 

rearranging equation (3.1) such that, 

p _p = 2cr 
v co R (3.16) 

The critical radii for various degrees of superheat are also shown in the figure. Second, 

Fig. 3.11 indicates that the length of the delay time, tdelay' which is the time from the initial 
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disturbance to the onset of significant growth, increases substantially with decreasing 

superheat. As discussed in Section 2.3.1.5, the length of the delay time depends on the 

magnitude ofthe initial disturbance. However, as shown in Figs. 2.16 through 2.19, the order 

of magnitude of the delay time is not sensitive to the initial disturbance. As will be 

discussed, the order of magnitude ofthe delay time is related to the magnitude of the initial 

critical radius. 

Considering the highest superheat case, ilTsup=30 DC, the initial radius is small 

enough that it is located on the very steep downward sloping region of the curve in Fig. 3.12. 

Consequently, comparatively small increases in radius result in a disproportionately large 

increase in the vapour over- pressure, P v -P ",,' A reduction in superheat causes ~ to increase 

and move to a region of the curve which becomes progressively less steep. This means that 

a larger increase in radius is now required to produce a like change in Pv-P"" and thus the 

driving temperature for heat transfer ilT(t). This has an important bearing on the thermal 

feedback effect which is responsible for accelerating growth in this region. Recall that the 

thermal feedback effect denotes that an increase in R(t) produces an increase in the 

temperature difference ilT(t) due to a decrease in the vapour pressure. The response is an 

increase in the growth rate, dRldt, because the elevated temperature difference increases the 

magnitude of the interfacial heat flux q". For smaller initial bubble radii (higher superheat) 

the thermal feedback effect is intensified because a much smaller increase in radius is 

required to escalate il T( t). Consequently, the time that it takes for the temperature difference 

to increase substantially from zero is expected to be less for smaller initial radii. This is the 

mechanism which is likely responsible for the observed decrease in the delay time for 

decreasing system superheat. 
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Fig. 3.13 shows this effect clearly. In this figure, the temperature difference curves, 

~T(t), are shown for the range of superheat 5 °C~~Tsup~30 DC. For ~Tsup=5 DC, changes in 

~ T(t) occur at a considerably slower rate as compared with the other three cases shown. As 

a result, the surface tension domain is prolonged because ofthe decreased thermal feedback. 

Increasing the superheat causes the ~ T(t) curves to become progressively more steep which 

amplifies the thermal feedback and reduces the delay time. 

An order of magnitude approximation of the variation of the delay time with 

changing system superheat can be obtained by assuming that the time it takes for the thermal 

feedback effect to generate a significant driving temperature difference is related to the time 

it takes the system to react to a change in its thermal environment as characterized by the 

thermal time constant, te' With this assumption, the delay time can be scaled as 

tdeJay-te=L/la. The characteristic length scale for the system is defined by a sphere of radius 

~ such that Le _1 13Re' These physical arguments result in an order of magnitude prediction 

of the delay time given by, 

t = Lc =_1_ 20-2 ( )2 
c a 9a P

v 
-P", 

(3.17) 

where Le =1 13Re and equation (3.1) has been substituted for Re' Equation (3.17) is plotted in 

Fig. 3.14 and shows surprisingly good quantitative agreement with the predicted delay times 

of this work and those of Lee [1993]. In this simplified view, the delay time varies as the 

inverse square ofthe initial pressure differential, causing the delay time to diminish rapidly 

with increased superheat since Pv=PsatCToo). 

The end of the surface tension domain occurs at the onset of significant growth 
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which, as discussed earlier, corresponds with the maximum interface acceleration. Fig. 3.15 

shows a plot ofthe interface acceleration for the various levels of superheat. It is evident that 

not only does the peak shift to larger values of time for decreasing superheat, but the 

magnitude of the peak acceleration decreases markedly. The increased magnitude of the 

peak acceleration with increasing superheat is also a direct consequence of the intensified 

thermal feedback, associated with the smaller initial bubble radii, which tends to drive the 

temperature difference !:l T( t) up at a greater rate for higher system superheat levels. For each 

superheat tested, the thermal layer thickness remained more or less constant during the 

respective surface tension controlled growth domain. Consequently, the magnitude of the 

interface acceleration is proportional to d(!:l T)/dt and inversely proportional to the thermal 

layer thickness oCt) as predicted by equation (15). As shown in Fig. 3.13, the maximum rate 

of change of !:IT(t) decreases significantly for the superheat range shown. Between 

!:lTsup=30DC and !:lTsup=5 DC there is a two order of magnitude decrease in d(!:lT)/dtlmax. 

1.56xl04 DC/ms-1.88x102 DC/ms, respectively. This accounts for the two order of 

magnitude decrease in the peak acceleration shown in Fig. 3.15 for the same superheat 

range, d2R1delmax~ 1.8xl07m1s2-1.1x105 mls2
, respectively. 

3.4.1.2 Effect of Increasing Pressure on Surface Tension Domain 

Fig. 3.16 shows the growth curves for a wide range of system pressures for a constant 

superheat of !:l Tsup = 15 DC. In the figure, it is evident that the initial critical radius decreases 

substantially with increasing system pressure as predicted by equation (3.1) given 

Py=PsatCToo). The initial critical radius influences the delay time in the same way as discussed 
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above where smaller critical radii are identified with smaller delay times as a result of 

intensified thermal feedback and an ability to react quickly to changes in its thermal 

environment. Fig. 3.17 shows acceptable agreement between the predictions of 

equation (3.17) and those ofthe numerical simulations for a wide range of system pressures, 

especially considering that the smaller values oftdelay are more sensitive to the magnitude of 

the initial disturbance. 

Figure 3.18 shows that the magnitude ofthe peak acceleration decreases considerably 

with decreasing system pressure. Once again, this can be attributed to the intensified thermal 

feedback for smaller initial radii as discussed previously. 

3.4.2 Transition Domain 

The transition domain is the interval during bubble growth over which the vapour 

over-pressure, py-p .. , drops from near its maximum equilibrium value to nearly zero. 

Likewise, the driving temperature difference for heat transfer, ~T(t), increases to its 

maximum value of ~ T sup' The rate at which the vapour pressure and temperature drop can 

be influenced by the momentum interactions of the liquid with the expanding interface 

through an increase in the hydrodynamic pressure acting at the interface. To better 

understand this, it is prudent to examine the two extreme cases, the case where 

hydrodynamic forces are small enough to have a negligible influence on the rate of 

expansion such that the limiting mechanism of growth is heat transfer and the case where 

hydrodynamic forces can be so large that expansion is limited by liquid inertia effects such 

that heat transfer plays a passive role, the so called inertia controlled growth domain. 
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Between these two extremes, bubble growth is governed by a combination of both liquid 

inertia and heat transfer. 

3.4.2.1 Heat Transfer Limited Transition Domain (Low Superheats) 

For low enough superheats, the inertial stage of growth is never truly reached. Here 

surface tension limited growth passes directly into a heat transfer limited growth phase. 

The temporal variation ofthe interface velocity for J a=9. 0 (P m = 1. 0 atm, ~ Tsup =3.0 0 C) 

is shown in Fig. 3.19. For the low Jakob number case under consideration, the maximum 

velocity, which can be considered the characteristic velocity for the transition phase of 

growth, is approximately Uc=0.42m1s. This velocity is considerably less than the maximum 

velocity which would be characteristic of inertia limited growth as predicted by the Rayleigh 

solution, 

2(P (T )-P ) 
sat 00 00 z3.0mls (3.18) 

3Pl 

The fact that UC,!» Uc indicates that liquid inertia is not the mechanism that is limiting the 

growth rate in this region 

Fig. 3.20 shows the temporal variation of the vapour over-pressure, Pv-Pm,whereas 

Fig. 3.21 shows the over-pressure variation with increasing bubble radius. In these figures 

it is clear that the inertial effects, as made manifest by the hydrodynamic pressure, Phd> are 

so small that they have no significant influence on the rate at which the vapour pressure 
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drops during the transition domain. Here expansion is uninhibited by the surrounding liquid 

and the vapour and liquid remain in a quasi-steady equilibrium state prescribed by the 

mechanical balance of pressure and surface tension, Pv-P~::::20"/R. The rate at which the 

pressure decreases depends on the rate at which the bubble expands through the inverse 

relationship with radius (Fig. 3.21). Since there are no other mechanisms present to promote 

or restrict growth, the rate at which the radius increases is governed solely by the rate at 

which energy is transported by diffusion through the liquid to the interface since dRldtcxqll. 

Referring to Fig. 3.21, near the onset of significant growth, a significant pressure drop occurs 

in conjunction with a comparatively small increase in radius. From an order of magnitude 

analysis, it can be assumed that a pressure drop of the order ~P-20"~ occurs without a 

significant change in the characteristic length Lc- Rj3. The maximum velocity which 

characterizes diffusion limited growth can be predicted by, 

(3.19) 

which is close to the actual maximum value of 0.42 mls (see Fig. 3.20), confirming that the 

mechanism responsible for regulating the growth rate during the transition region is heat 

transfer. 

3.4.2.2 Inertia Limited Transition Domain 

For high enough superheats, the rate of bubble expansion becomes regulated by the 

ability of the interface to 'push back' the surrounding liquid .. Here the surface tension 
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limited growth region passes directly into an inertial limited growth region. 

Fig. 3.22 shows the temporal variation of the vapour over-pressure, P v - P~, and 

Fig. 3.23 shows the over-pressure variation with increasing bubble radius for Ja=3166.8 

(P ~=O.OI atm, Tsup=IS.O DC). In the figures, itis clear that the surface tension forces diminish 

rapidly and the hydrodynamic pressure, Phd' increases to such an extent as to balance the 

driving pressure, P v-P ~'" Phd' In fact, Phd becomes so large that the rate at which the vapour 

pressure drops is dramatically reduced and remains very near the initial value for a 

considerable time span. If inertial forces had not corne into play and the growth rate were 

governed by heat transfer to the interface, then posing the same arguments as discussed 

earlier, the characteristic velocity would be of the order, 

(3.20) 

which is an order of magnitude larger than the actual maximum velocity ofUc=O.98 mls as 

depicted in Fig 3.24. Since Uc,HT» Uc heat transfer is not the mechanism which is limiting 

the growth rate. 

Bubble expansion is inhibited by the surrounding liquid and the quasi-steady 

equilibrium state is now defined by a balance between the vapour pressure and the total 

pressure acting at the interface P v '" P ~ +P hd' The rate at which the vapour pressure decreases 

depends on the rate at which the hydrodynamic pressure drops. In this scenario, increases 

in R(t) are subject to changes in Phd' Fig 3.23 shows that the vapour over-pressure curve is 

deflected away from the 2a/R curve to such an extent that a small decrease in Phd results in 
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a comparatively large rise in the bubble radius. Since the vapour over-pressure remains near 

the initial value of P v - P ~:::: Phd:::: 2a/Re' the characteristic velocity for inertial limited growth 

can be predicted by, 

2(P (T )-P ) 
sat ~ ~:::: 1.0m/s (3.21) 

3Pl 

which is very close to the actual velocity ofUe=O.98 mls. This confirms that the mechanism 

which is responsible for regulating the growth rate during the transition region is the 

momentum interaction between the bubble and the surrounding liquid. 

3.4.2.3 Effect of Increasing Superheat on the Transition Domain 

The level of superheat affects bubble growth during the transition domain in two 

critical ways. First and foremost, higher superheats result in higher growth rates. Second, the 

higher growth rates are responsible for an increase in the overall hydrodynamic pressure at 

the vapour-liquid interface, primarily through the increase in the 3/2P1(dRldt)2 term. If the 

superheat is high enough, the hydrodynamic pressure can increase to such an extent as to 

significantly alter the rate at which the vapour pressure and temperature decrease, thus 

influencing changes in the heat transfer rate to the bubble. 

The growth rate, dRldt, is larger for greater levels of system superheat. The larger 

growth rate with system superheat is illustrated in Fig. 3.25. In this figure the individual 

curves have been shifted to the left by an amount oftime prescribed by the respective delay 

times so that comparisons can be made between bubbles which begin growing at the same 
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time. Since the growth rate is proportional to the heat flux according to equation (3.10), this 

indicates that the ratio of the driving temperature difference and the boundary layer 

thickness, ~T(t)/8(t), is larger for the increased system superheat. Figs. 3.26 shows that the 

thermal boundary layer thickness curves converge very quickly subsequent to the onset of 

significant growth for each level of superheat. In approximately 0.045 ms, each curve 

follows very closely the analytic curve for a thin thermal boundary layer 8(t)=C/31tuty". 

Consequently, this mechanism is not responsible for the observed increase in the interface 

heat flux and subsequent growth rate. Fig. 3.13 shows that at the onset of significant growth, 

the driving temperature difference is greater for higher system superheat. More importantly, 

the rate at which ~ T( t) increases is substantially higher. This trend continues for the duration 

of the transition region, as illustrated in Fig. 3.27, and is responsible for the higher growth 

rates observed for larger superheats. 

The influence that the momentum of the liquid has on the expanding vapour bubble 

tends to increase as the level of superheat is elevated. Fig. 3.28a shows that for the lowest 

superheat case tested, the hydrodynamic pressure term has a negligible effect on the 

decreasing vapour pressure. As discussed in Section 3.4.2.1, heat transfer is the limiting 

mechanism which governs the growth rate during this interval of growth. As the superheat 

level is raised, the hydrodynamic pressure term becomes progressively more significant. 

Figs. 3.28b and 3.28c show this clearly. For the highest superheat case, Fig 3.28c shows that 

the surface tension forces diminish quickly. The rate at which the vapour pressure drops 

becomes slowed considerably by changes in the liquid momentum surrounding the bubble. 

As a result, a substantial pressure differential is sustained over a longer time interval and the 

transition domain is prolonged. It should be noted that this is not truly 'inertia controlled 
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growth' in the traditional sense ofthe tenn where the vapour over-pressure remains near its 

maximum, the growth rate is constant, and the Rayleigh solution applies over a extended 

period oftime. In the same manner as discussed in Section 3.3.2, changes in the heat transfer 

rate are integral in influencing changes in the growth rate. In this way there is a complex 

interaction between the heat transfer and liquid inertia which act together to govern the 

growth characteristics during the transition region. 

The time interval over which liquid inertia influences the bubble growth during the 

transition domain increases from nearly zero as the level of system superheat is increased. 

This is illustrated in Fig. 3.29, where for comparison purposes, it has been assumed that the 

hydrodynamic pressure is 'important' if it comprises at least 20% of the total pressure 

difference, P v - P~, during the transition domain. In the figure, the superheat has been made 

dimensionless and is expressed as the Jakob number. For the superheat range tested, the time 

interval for which liquid inertia effects are important rises at a relatively constant rate with 

the Jakob number and correlates roughly as tinertia:::: 1O-2Ja. 

3.4.2.4 Effect of Decreasing System Pressure on the Transition Region 

Decreasing the system pressure for a constant superheat of ~Tsup=15°C has two 

notable effects on the growth characteristics during the transition domain. First; as the 

system pressure is reduced, the influence of liquid inertia becomes progressively more 

dominant in limiting the growth rate. Secondly, decreasing the system pressure has the effect 

of reducing the characteristic velocity of the transition domain as represented by dRJdtl max. 

Figures 3 .30a through 3 .30d show the temporal variation ofthe vapour over-pressure 
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for a range of system pressures between 5 atm and 0.01 atm. The figures illustrate the fact 

that as the system pressure is reduced, the momentum interactions of the liquid with the 

expanding bubble becomes progressively more influential. The P ~ =5 atm case illustrates the 

extreme case by which the majority of the over-pressure has diminished by the time the 

hydrodynamic pressure has increased enough to be considered important. In this scenario, 

the limiting mechanism for growth is heat transfer in the same manner as discussed in 

Section 3.4.2.1. The P~=O.OI atm case illustrates the opposite extreme, as discussed in 

Section 3.4.1.2, whereby the hydrodynamic forces increase to such an extent as to maintain 

the vapour over-pressure near its maximum value for a considerable length of time. 

As illustrated in Fig. 3.31, the maximum growth rate increases markedly when the 

system pressure is increased. This is a consequence of the interface acceleration being much 

higher for larger pressures (P ~ =5 atm and 1 atm in Fig. 3.18) as a result of the intensified 

thermal feedback for smaller critical radii. However, the time interval over which these high 

growth rates can be sustained is smaller. This is in contrast to the trend observed earlier for 

increasing superheat in which the higher growth rates were sustained over a longer time 

interval. For the P ~ = 5 atm case, there are essentially no inertial forces present to restrict the 

vapour pressure and temperature from dropping. Because of this, the driving temperature 

increases to L\Tsup=15°C very quickly so that the time interval of the transition region is 

comparatively short. This is illustrated in Fig. 3.32. The figure shows that as the system 

pressure is decreased, the increased level of the hydrodynamic pressure resists expansion to 

such an extent that the rate at which the driving temperature difference increases towards 

L\Tsup=15°C is dramatically reduced as shown. This accounts for the comparatively slow 

changes in system variables associated with low pressures. However, lower pressures require 
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less energy and thus a smaller 11 T, to produce an equivalent volume of vapour because of the 

reduced vapour density. For example, at t-tdelay=I.0 ms the growth rate for the P ~ =0.01 atm 

is 0.94 mls and the driving temperature difference is only 0.65 dc. At the same time the 

growth rate for the P 00 =5 atm case is only 0.13 mls and the temperature difference is at its 

maximum value of 15°C. 

The time interval over which liquid inertia influences the bubble growth during the 

transition domain increases as the system pressure is reduced. Fig. 3.29 shows that for the 

pressure range tested the time interval for which liquid inertia effects are important rises at 

a relatively constant rate with the Jakob number and still correlates well with tinertia:::: 1O-2Ja. 

3.4.3 The Effect of Pressure and Superheat on Heat Transfer Controlled Growth 

Up to this point, little mention has been made of the Jakob number, 

Ja = p1Cp/..Too - TsatCP J) 
Pvhfg 

(3.22) 

This is an important parameter in boiling and represents non-dimensional superheat. For the 

surface tension and transition domains, this parameter in not as useful in characterizing 

bubble growth since the driving temperature difference I1T(t) is less than the characteristic 

temperature, I1Tsup, used in determining the Jakob number. Figs. 3.33 and 3.34 show the 

radius, growth rate and normalized temperature difference I1T/I1Tsup for two bubbles with 

very different system conditions (11 Tsup and P~) but nearly identical Jakob numbers (Ja:::: 10). 

Similarly, Figs. 3.35 and 3.36 show the same curves for a Jakob number Ja::::90. The figures 
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illustrate that during the surface tension and transition phases, the growth characteristics for 

nearly equal Jakob numbers are noticeably different. However, as each bubble enters its 

respective heat transfer controlled growth phase, indicated by !1 T /!1 Tsup "" I, the growth curves 

converge with surprising precision indicating that the Jakob number alone is sufficient to 

characterize bubble growth for this domain. 

A more rigorous analysis reveals why this is the case. Fig. 3.37 shows the temporal 

variation of the thickness of the thermal boundary layer, oCt) for each case shown in Figs. 

3.33 and 3.35. The figure indicates that for early growth, the curves are very different but 

converge quickly. Initially, the characteristic length scale which dominates fluid flow and 

heat transfer is dictated by the initial radius of the bubble. This is confirmed by noting that 

the thermal layer thickness increases with initial bubble radius and is represented roughly 

by the characteristic length scale for a sphere Lc - ~/3. However, each bubble expands at a 

rate which is much higher than the rate at which their respective thermal layer grows and a 

new length scale develops which is independent of the bubble radius since o/R« 1 for each 

bubble. This constitutes a thin thermal boundary layer which has been the subject of several 

studies, and has been discussed in Chapter 2. Growth ofthe thin thermal boundary layer in 

a semi-infinite medium is well understood and is predicted by, 

8(t)=~ n;t (3.23) 

The parameter b accounts for the effect of increasing area such that b= 1 for a flat plate, 

whereas b"" 3 for an expanding sphere (Riznic et al [1999]). Since the thermal diffusivity of 

water does not change considerably for water over the range of superheat and pressures 
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tested, the thennallayers grow at nearly the same rate regardless of the boiling conditions 

(Fig. 3.37). 

Diffusion of energy to the bubble interface provides the latent heat of vaporization 

required to sustain bubble growth such that, 

(3.24) 

For the range of temperatures and pressures tested, most all of the liquid and vapour 

properties do not vary considerably except for the vapour density, Pv =Pv siP 00)' which 

decreases considerably with pressure. Since 8(t) is nearly the same for all bubbles in the 

diffusion stage of growth, equation (3.24) shows that smaller superheats can produce 

identical growth rates for lower system pressures because the vapour density is lower. 

Allowing for some small variations in liquid properties, the ratio ofthe superheat and vapour 

density for the boiling conditions of Fig. 3.35 is close to unity; 

(/).T sujPv)l,atm,30°C = 1.04 

(/).T su/Pv)O.satm,WC 
(3.25) 

The same ratio of /). Tsu/Pv appears in the Jakob number and a quick manipulation of equation 

(3.24) gives, 

dR (Ja J 
dt ~ a oCt) 

(3.26) 

which illustrates why the Jakob number alone is sufficient to characterize diffusion 
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controlled growth. 

The effect of system pressure and liquid superheat on thermal diffusion controlled 

growth can be summarized as follows: i) The magnitude and growth rate of the thermal 

boundary layer is not sensitive to changes in pressure or superheat (Fig. 3.37). ii) For 

constant pressure, larger superheats produce higher growth rates, and thus larger bubbles, 

since dRidtoc~Tsup while all other variables in equation (3.24) are essentially the same 

(Fig. 3.11). iii) In order to produce the same growth rate, a lower system pressures requires 

less energy, and thus less superheat, to generate an equivalent volume of vapour because the 

vapour density is lower (Figs. 3.33 and 3.35). 
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Figure 3.13: Temperature difference curves for surface tension domain and early transition 
domain. 

0.2 

0.15 

"""' f/l 

S 
'-' 

~i 0.1 

oJ 
.5 
f-< 
>. 0.05 
ro 
'0 
0 

0 

• Predicted X Lee and M erte 

• 
~ 

- v 

o 20 40 60 80 100 120 140 160 180 200 220 240 

Pressure Difference, Pv-P _ (kPa) 

Figure 3.14: Delay time versus initial pressure difference for varying superheat. 



1.8E+07 

1.6E+07 

--- lAE+07 
M 

'" 8 
'-' 

'Jc5 1.2E+07 

~ 
§ 1.0E+07 

.+=/ 

t 
'0 
8 8.0E+06 
-< 
Q) 

~ 6.0E+06 

.e 
4.0E+06 

2.0E+06 

O.OE+OO 

-2.0E+06 

0.00001 0.0001 

° d
2 
R 7 2 __ tJ'.uP =30 C'-2 =1.8xlO mls 

dt 

/ 

Pressure, p.=1.0 atm 

20°C,6.3xl06mls2 

15°C, 3.0x 10 6m I S2 

/ WC, 1.0 >10' mis' 

A' / SoC, l.1x 10'ml s' 

) J'YW\. / /3°C,1.0xl0
4

mls
2 

0.001 0.01 

Time, t(ms) 

0.1 10 

Figure 3.15: Interface acceleration curves for various system superheats. 

106 



107 

100 
Superheat'&"sup=15 °C _---=-__ --=L--___ ._~ ________ _ 

10 

I 0.1 

P = O.Olatm 
OC) 

;g 

~ 0.01 

O.latm 

1.0atm 

0.001 5.0atm 

0.0001 +------,-----.-------,----.,.-------r----,-----i 

0.00001 0.0001 0.001 0.01 0.1 10 100 

Time, t (ms) 

Figure 3.16: Vapour temperature and bubble radius curves for varying levels of system 
pressure. 

100 

10 
• Predicted X Lee and M erte 

~ 1 
,.§, 
~ 

•. :f. 0.1 

a:f 
.§ 0.01 
Eo-< 

• M=5xl0-6 R. 
~ ______ O M=5xlO·3 

~ 
'd) 0.001 
0 

0.0001 

0.00001 

0 50 100 150 200 250 300 

Pressure Difference, pv-p. (kPa) 

Figure 3.17: Delay time versus initial pressure difference for varying system pressure. 



2.0E+07 

1.8E+07 

1.6E+07 

I.4E+07 

~ 
'-' 

I.2E+07 

'Jcj 
~ 
% 

I.OE+07 

§ 
8.0E+06 .~ 

~ 
Co) 

6.0E+06 Co) 

< 

j 4.0E+06 

..s 
2.0E+06 

O.OE+OO 
) 

-2.0E+06 

0.00001 0.0001 0.001 

d
2
R 7 2 

Pro =5.0atm'-2-=1.9 x lO mls 
dt 

Superheat,&'sup= 15°C 

1.0atm, 3.0 x 10 6 m I S2 

/ 

0.1 atm, 9.5x 10 4 m Is 2 A / 0.01 atm, 2.2x 10 3 m I S2 

/ 

0.01 0.1 10 100 

Time, t(ms) 

Figure 3.18:Interface acceleration curves for various system pressures. 

108 



109 

10 

----
U c, inertia 

'" ---s 
'-' U c,HT 
~ 

~ 0.1 

.~ Transition () 
0 

Domain Q) 0.01 :> 
<U 
() 

<f! 
I-< 0.001 <U 

d ..... 

0.0001 

0.00001 

om 0.1 10 

Time, t (ms) 

Figure 3.19: Temporal variation of the interface velocity for the transition domain (Ja=9,O, 
P~=l.O atm, ~Tsup=3,O °C) 

/{J',up = 3° C 

IS Surface Trans ition Heat 

~ Tension Transfer 

~ 
• ,:l., 

10 d.: 1. Pv - P~ 
<U~ 

5 2. Phd 

~ 20-
5 3.-

is R 
<U 

~ 
'" £ 0 

IE-OS IE-04 0.001 0.01 0.1 10 100 

Time, t (ms) 

Figure 3.20: Temporal variation of vapour over-pressure, hydrodynamic pressure and surface 
tension stresses for P~=1.0 atm, Ja=9.0. 



16 

14 

12 
OSG 

';;j' 10 
~ 

C-
d) 

8 ... 
:; 
til 
til 
d) ... 

6 ~ 

4 

2 

0 

0 

Surface Tension 

_________ J __ 

20' 
P - P = Phd +-

v ~ R 

20' 

R 

·······-r- .... -... -------------.- .-. - -. ·······r 

Transition 

1 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Bubble Radius, R(t) (mm) Heat Trans fer 

Figure 3.21: Vapour over-pressure versus bubble radius for P .. =1.0 atm, Ja=9.0. 

Surface Inertial 
1.8 Tension 

1.6 

'2' 
1.4 

~ 1.2 
I. Py - P~ '-' 

CIl 
CIl 

~ 2. Phd 
Cf.l 0.8 
Gl 20' 
~ 0.6 3.-
en R CIl 
C1) 

0.4 .... 
~ 

0.2 

0 

0.001 0.01 0.1 10 100 

Time, t (ms) 

110 

Figure 3.22: Temporal variation of vapour over-pressure, hydrodynamic pressure and surface 
tension stresses for P .. =O.Ol atm, Ja=3166.8. 



3 

2.5 

OSG 

20-
P - P = Phd +-
'''' R 

20-

R 

~\ Surface Tension 

k ------------- ------------------------------J- ------------

i r 
Inertia 

0.5 

o 
o 2 3 4 5 

Bubble Radius, R(t) (mm) 

Figure 3.23:Vapour over-pressure versus bubble radius for P~=O.OI atm, Ja=3166.8. 

100 

10 ..-.-
'" S 
'-' 

~ 
.~ 0.1 
u 
0 

G) om ;:> 
G) 
u 

,,;;l .... 0.001 G) 

-s ..... 
0.0001 

0.00001 

0.01 0.1 

Time, t (ms) 

Inertia 

Controlled 

U c.HT 

U c, inertia 

10 

III 

Figure 3.24:Temporal variation of the interface velocity for the transition domain (Ja=3166.8, 
P~=O.OI atm, ~Tsup=15.0 DC) 



I1Tsup= 

10 

I 
~ 0.1 

~r 

~ 0.01 

0.001 

0.0001 

Transition 

0.001 0.01 0.1 

Time, t-tdelay (ms) 

Heat 10 

Transfer ,-. 

8 i 
.:a 
~ 

6 .~ 
(,) 
0 

'i) 
;> 

4 

~ 
Q) 

2 oS 

0 

10 

Figure 3.25: Temporal variation of the interface velocity during the transition domain for 
varying superheat at constant pressure. 

112 



I.OE-04 

~ 
2: 
t.O~ I.OE-05 
'" 
~ 
~ 
~ 
~ C,T =3°C 

~ I.OE-06 

J 
I.OE-07 

0.0001 

sup 

sOc 

10°C 
15°C 
20°C 
30°C 

0.001 

.. J 1/3 ffat 

0.01 0.1 10 

Time, t - tdelay (ms) 

Figure 3.26: Temporal variation of the thermal layer thickness for varying superheat. 

c,Tsup = 

30 30°C ... 
,-.. ..-, 
U 

0( Trans itiO: ~ " 
,,-

0 

'-' 25 • 
~ t' Heat Transfer I ...... 
E-<' 

,. 
; 

...... 

Jl 20 20° C 

~ ./ 

/ 
/ 

IJf , 
t:I 15 15° C is .; 

~ '" i .-.... , 
0 10 10° C IJ) 

~ I 
I 

~ I 

5 
, 

5° C 
~ ~ 

3 ° C E-< 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Time, t-tde1ay (ms) 

113 

Figure 3.27: Temporal variation of driving temperature difference during transition domain 
for varying superheat and constant pressure. 



a)l\T.up = 3' C 

15 I Surface Transition 

Tension 
I 
I 

-;- I I 

~ 10 
'1 & 3 I 

I 
I 

'" 
I 

'" I 

g 
t:I.l 
....... 
u 

~ S 

'" u 
~ 

~ 2 

0 

IE-OS lE-04 0.001 0.01 0.1 

Time, t (ms) 

c)O:up = 30'C 

Surface I 

200 I Transition I 

180 Tension I 
I 
I 

-;- 160 I 

~ 140 
I 

'" R 120 

t:I.l 100 ....... 2 

~ 80 

'" 60 e 
p.. 40 

20 

0 

IE-OS lE-04 0.001 0.01 0.1 

Time, terns) 

Heat 

Transfer 

l.Pv - P", 

2. Phd 

2u 
3.-

R 

10 100 

Heat 

Transfer 

l.P - P v .. 

2. Phd 

3. 2u 
R 

10 100 

b)AT = IS'C ,up 

80 L Surface 'T" 
I ransltIon Heat 

Tension: Transfer 
70 

~ 60 I l.P - P v .. 

'" SO 2. Phd ~ ~I ~ 40 2u ....... I 2 3.-
; 30 

I R 

'" £ 20 

10 

0 

IE-OS lE-04 0.001 0.01 0.1 10 100 

Time, t(ms) 

Figure 3.28: Decomposition of the extended Rayleigh equation for 
varying superheat and constant pressure. 

...... 

...... 

.::.. 



o 100 

Ja 
-to .~­

merl,a 100 

o Varying L1T.up for 
constant P _ = 1.0 atm 

200 

X Varying p. for 
constant L1Tsup = 15°C 

X 

300 400 

Jakob Number, Ja 

Figure 3.29: Variation of the time interval over which liquid inertia influences bubble 
growth for varying Jakob number. 

115 



300 ~ Surface 
Tension 

250 
~ 

~ 200 

~ 
~ 150 
...... 
u J 100 

50 

o 
2 

a).v = lS·C .up 

Transition 

IE-OS lE-04 0.001 0.01 0.1 

Time, t(ms) 

12 

c)l1T = IS·C 
Surface .up I 

Heat 

Transfer 

1. p. - P., 

2. Phd 

3. 20" 
R 

10 100 

Tension Transition 

10 
~ 

~ 8 

~ 
~ 6 
...... 
u 
~ 4 
~ 
It 2 

o 

2 

IE-OS lE-04 0.001 0.01 0.1 

Time, t(ms) 

1. p. - P., 

2. PAd 

3. 20" 
R 

10 100 

~ 

80 

70 

~ 60 

~ 50 
~ 
~ 40 
u 
~ 30 
'" £ 20 

10 

o 

b)AT =IS·C .up 
Surface Transition 
Tension 

IE-OS lE-04 0.001 0.01 0.1 

2 

1.8 

~ 1.6 

~ 1.4 

'" B 1.2 

r/.l 1 ...... 
~ 0.8 

~ 
0.6 

0.4 

0.2 

o 
0.001 

Time. tlms 
d)ATsup = 150 C 

Surface 

Tension 

0.01 

3 

2 

0.1 

Time, t(ms) 

Heat 

Transfer 

1. p. - P., 

2. Phd 

3. 20" 
R 

10 

Inertial 

100 

1. p. - P., 

2. Phd 

20" 
3.­

R 

10 100 

Figure 3.30: The extended Rayleigh equation decomposed a) p .. =4.0 atm b) p .. =1.0 atm c) P .. =O.l atm d)P .. =O.Ol atm. --0'\ 



------

7 
IlT sup = 15° C 

6 
...--

! 
.tj 

~ 
5 

~4 ..... 
C) 

~ 
> 3 4) 
C) 

t{3 
£ 
.El 2 

P", = O.Olatm 

0 

0.00001 0.0001 0.001 0.01 0.1 10 100 

Time, t (ms) 

Figure 3.31: Temporal variation of the interface velocity for varying pressure at constant 
superheat. 

IlTsup = 15° C 
,.-.. 

~ 16 
'-' 

r-: 14 
I 

)I' 12 O.latm 
-c-
~ 10 
<I 
4)~ 8 

5 6 
~ ..... 

4 A 
4) 

i 2 

0 

~ 0.0001 0.001 
E-o 

p~ = O.Olatm 

0.01 0.1 10 

Time, t-tdelay (ms) 

Figure 3.32: Temporal variation of the driving temperature difference during the transition 
domain for varying pressure at constant superheat. 

117 



118 

Ja'" 10 
'""' 10 i 

0.1 

4j 

~ 
0.01 .~ 

0 

0.001 ~ 
:> 

0.0001 Q) 
0 

10 ~ 0.00001 

'""' 0.000001 
:s 

I 0.1 

'""' ~ 
~ 0.01 2. 
fIi 
:§ 0.001 

~ 
1. 

0.0001 

0.00001 0.0001 0.001 0.01 0.1 10 

Time, t (ms) 

1. P.=5 atm,ATsup= 15 °C,Ja=10.5 2. p.= latm~sup=3°C,Ja=9.0 

Figure 3.33: Radius and interface velocity curves for Ja~ 10. 

Ja40 

0.1 

0.01 

E-<t 
...... 0.001 

S 
E-< 0.0001 
<l 

0.00001 

0.000001 

0.00001 0.0001 0.001 0.01 0.1 10 

Time, t (ms) 

Figure 3.34: Nonnalized temperature difference curves for Ja~ 10. 



119 

dR ,-.. 
Ja",90 

-~~ 

dt 
10 ! 
0.1 

~ 

~ 
0.01 

.~ 
() 
0 -~ 

0.001 :> 
~ 

0.0001 t 
0.00001 .s 

to 2. 
,-.. 

! I. 

~ 0.1 
;:t 

0.01 

f 
I. 

0.001 2. 

0.0001 

0.00001 0.0001 0.001 0.01 0.1 10 

Time, t{ms) 

1. P.=O.5 atmpsup= 15°C, Ja=86 2. p.=1.0 atm,&,sup= 30°C, Ja=90. 

Figure 3.35: Radius and interface velocity curves for Ja::::90. 

Ja",90 

0.1 

0.01 

E-<a- 0.001 
....... 
E-< 
<l 0.0001 

0.00001 

0.000001 

0.00001 0.0001 0.001 0.01 0.1 10 

Time, t (ms) 

1. P.=O.5 atm%sup= 15°C, Ja=86 2. p.=1.0 atm,&'sup= 30°C, Ja=90. 

Figure 3.36: Normalized temperature difference curves for Ja::::90. 



0.01 

0.001 
----g 
2: 
to 0.0001 

f 
~ 0.00001 

~ 
~ ~ 0.000001 

1 I5 0.0000001 

0.00000001 

1. P", = 5.0atmN'sup = 15°C 

2.P", = 1.0atm,tlfsup = 30°C 

3. P = 0.5atm,tlf = 15°C 
<Xl sup 

4. P = 1.0atm,tlf = 3 °C 
«> sup 

1. Lc=4.0e-8m 

0.00001 0.0001 0.001 0.01 

Time, t (ms) 

4. Lc=3.3e-6 m 

0.1 

Figure 3.37: Growth of the thennal boundary layer for Ja:::: 10 and Ja::::90. 

120 

10 



CHAPTER 4: HEMISPHERICAL BUBBLE GROWTH ON A HEATED 

SURFACE IN MICROGRA VITyl 

4.1 Introduction 

The mechanisms associated with vapour bubble growth at a plane heated surface are 

not understood nearly as well as unbounded growth in an infinite pool. The large number of 

variables which influence heterogeneous bubble growth, combined with the difficult task of 

controlling and subsequently defining the temperature and flow fields in the vicinity of 

growing bubbles during experimental investigations, makes comparison of theoretical 

predictions with experimental measurements uncertain. 

However, recent data has been reported by Lee [1993], Lee and Merte [1996], and 

Merte et al [1995], in which the shortcomings associated with earth gravity surface boiling 

experiments are partially overcome by heating a stagnant pool of liquid to the onset of 

boiling in microgravity. The absence of any significant natural convection, combined with 

the fact that during the early stages of growth, the thermal and flow fields are not influenced 

by previous or neighbouring bubbles, provide well defined initial and boundary conditions. 

Even still, the temperature distribution in the solid and liquid were not measured directly so 

that approximations are required for determining the initial liquid temperature field and the 

lA significant portion of this chapter has been abstracted from Robinson, A. J. and Judd, R.L., 
2001, "Bubble Growth in a Uniform and Spatially Distributed Temperature Field," published 
in the International Journal of Heat and Mass Transfer. The publication has been included in 
appendix G for reference purposes. 
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boundary condition for the solid heater. A further simplification results from the fact that for 

some of the measurements, the bubble remained nearly hemispherical for a significant 

portion ofthe growth period. The fixed bubble shape adds considerable simplification with 

respect to the theoretical modelling and the accompanying solution procedure. In this 

manner, Lee and Merte [1996] and Merte et al [1995] were able to compare the experimental 

hemispherical bubble growth data, obtained with RI13 boiling on a flat solid surface subject 

to transient heating, and the theoretical predictions by means of a combination of two 

one-dimensional spherical models. With respect to the first model, an initial uniform liquid 

temperature, equal to the highest surface temperature that occurs at nucleation, was assumed. 

This represented the upper bound on the bubble growth rate since the highest temperature 

was assumed to exist everywhere throughout the liquid. With respect to the second model, 

a spherically symmetric, non-uniform temperature field around the bubble was assumed. The 

temperature distribution, assumed to be identical to that occurring normal to the heated 

surface at nucleation, was regarded as the 'minimum temperature distribution' and 

represented the lower bound on the bubble growth rate. All ofthe measured growth curves 

fell between bounds defined by the uniform and non-uniform models. 

This chapter describes the development of a two-dimensional theoretical model 

which is capable of predicting both spherically symmetric vapour bubble growth in an 

infinite pool of liquid as depicted in Fig. 4.1 a, and hemispherical vapour bubble growth at 

a heated plane surface depicted in Fig. 4.1 b. The theory is the logical progression of the 

work provided in Lee [1993] and Lee and Merte [1996] in that it can incorporate either a 

one-dimensional radially symmetric or a two-dimensional spatially distributed liquid 

temperature field. It must be carefully noted that the applicability of the present model is 
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limited to the special case in which the energy utilized by the bubble as it grows is supplied 

by the superheated liquid layer which surrounds the bubble cap. Any contribution of an 

evaporating micro layer at the base ofthe bubble to the net mass transfer rate into the bubble, 

or its influence on the thermal field in the solid during heterogeneous bubble growth, is 

wholly disregarded. 

The purpose ofthis investigation is twofold. Ones is to advance a simplified physical 

model and solution procedure for heterogeneous hemispherical bubble growth. A study of 

this simplified type of growth was undertaken because it provides a starting point for more 

complex theoretical development. A second is to elucidate the factors which contribute to 

heterogeneous bubble growth. In order to do that a significant portion of the growth period 

of a single isolated bubble was investigated beginning from inception in order to discern the 

proportional contributions of the various mechanisms which govern growth. 

4.2. Formulation of the Problem 

In the physical modelling of this problem, some of the concepts, idealizations and 

equations are the same as those expressed in chapter 2 and 3. For completeness and 

continuity, they will be repeated here but without rigorous definition and justification. 

Fig. 4.2 shows a sketch of a hemispherical vapour bubble growing at a heated plane 

surface. Although a viscous boundary layer is known to exist in the liquid above the heated 

surface, in most practical situations this layer is very thin compared with the size of the 

bubble so that its overall influence on the bubble as it grows can be neglected. The inviscid 

fluid approximation, coupled with the impermeable wall boundary condition, allows for 

liquid flow symmetry to be assumed about the r-axis. As a result, hemispherical bubble 
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growth can be modelled as a half segment of the spherical case. In doing so, the equation of 

motion for the radius, R, ofthe hemispherical vapour bubble is approximated by the equation 

for a growing sphere given by, 

d2R 3 (dR) 2 2cr P(T)-P =pR-+-p - +-
v v 00 I dt 2 2 I dt R (4.1) 

Equation (4.1) is the extended Rayleigh equation which represents a force-momentum 

balance between the bubble and surrounding liquid. 

During heterogeneous boiling, a bubble nucleates from a vapour nucleus which has 

been trapped within a small pit, scratch or crevice existing in the surface. The radius of the 

mouth of the cavity is believed to be an important factor in determining the time it takes for 

the vapour nucleus to begin significant growth because it partially dictates the initial 

thermodynamic state ofthe bubble. This dimension is extremely difficult to measure and is 

rarely, if ever, given as a part of the measured variable set which corresponds with an 

experimental bubble growth curve. With no knowledge of the cavity size from which the 

bubbles nucleate, it is reasonable to approximate the initial nucleus radius using the method 

described in Chapters 2 and 3. The initial bubble radius is determined by assuming that the 

vapour is initially saturated with Tv =T ~ and that it exists in unstable equilibrium with the 

quiescent surroundings. The stationary hemispherical vapour nucleus with internal pressure 

P sat(T v) is in equilibrium with the ambient liquid and extends from the mouth of a cavity with 

radius predicted by the Young-Laplace equation, 
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(4.2) 

As a result of the dependence of vapour pressure on temperature, another equation 

is required to fully describe this type of bubble growth problem. This expression is obtained 

by considering an energy balance at the vapour-liquid interface. The energy, Q, required to 

expand the bubble is supplied by molecular diffusion across the thin thermal boundary layer 

that exists in the liquid around the bubble. The rate of change of energy contained in the 

vapour bubble is given by, 

dQ = Jk( aT) dA 
dt A I ar r=R(t) 

s 

(4.3) 

where As is the surface area of the bubble and (aTlar)r=R(t) is the temperature gradient normal 

to the interface. For commonly used fluids well below the critical pressure, the interfacial 

energy balance can once again be reduced to, 

h dR h R dpv - 1 Jk ( aT) dA 
Pv jg dt + jg3 dt - 2rrR2 I ar 

A r=R(t) 
s 

(4.4) 

Typically, during nucleate pool boiling, energy is continually supplied to the liquid 

by heat transfer normal to the plane heated surface throughout the entire growth interval of 

the bubble. Furthermore, an initial liquid temperature distribution which is spherically 

symmetric around the bubble is not common for most practical boiling applications. These 

two conditions introduce two-dimensional effects which need to be accounted for in order 
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to adequately describe this type of bubble growth. As a result, the temperature gradient at 

the bubble wall is obtained by numerically solving the two-dimensional energy equation in 

axisymmetric cylindrical coordinates for the moving liquid, 

with initial and boundary conditions given by, 

T(r ,z,0) = To(r,z) 

T( oo,oo,t) = TID(z,f) 

aT ar (O,z,f) = 0 

/I 

aT (r,O,f) = _ qw 
az kr 

(4.5) 

(4.6) 

The initial condition requires the entire temperature field in the liquid to be specified. A zero 

flux boundary condition is assumed at the symmetry boundary (z-axis) and a constant heat 

flux boundary condition is established at the plane heated surface (r-axis). Some discussion 

is warranted concerning the assumption of a constant and uniform heat flux at the solid-

liquid interface. Admittedly, this assumption significantly reduces the complexity of the 

problem by eluding the solution of the energy equation in the solid. However, Guo and EI 

Genk [1996] showed that a constant heat flux can be a reasonable approximation for the case 

in which energy is supplied to the liquid by resistance heating of a thin metallic coating 

deposited on a glass substrate, so long as the layer is thin enough to restrict the lateral flow 

of heat through the metal coating. For the experiments presented in Lee [1993], Lee and 

Merte [1996] and Merte et al [1995] a 400-1400 A transparent gold film was deposited on 
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a polished glass substrate. The thinness ofthe metallic layer precludes any significant lateral 

heat flow so that a constant heat flux boundary condition is an adequate representation ofthe 

surface for comparison with this data. A third boundary condition is obtained by assuming 

that the vapour phase is lumped and that the temperature of the liquid at the interface is 

identical to the temperature of the vapour. Finally, the far field boundary condition is 

approximated from the analytic solution for one-dimensional axial conduction in a semi-

infinite medium. The axial and radial velocities are determined as functions of the 

instantaneous bubble radius and interface velocity by assuming that the flow field can be 

determined by the solution for potential flow around an expanding sphere in an unbounded 

liquid. The velocity components are, 

(4.7) 

Finally, it is postulated that the vapour is saturated and remains so throughout the 

bubble growth interval. In this way, the vapour pressure and density can be specified as 

functions of the saturated vapour temperature, 

. (4.8) 

As in Chapter 2, the property variations with temperature are obtained from a fifth order 

polynomial representation of the available property data. With these simplifications, only 

the rate of change of one state variable, in this case temperature, need be considered given 
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that, 

(4.9) 

4.3. Computational Technique for the Energy Equation 

Utilizing subscript notation to denote partial differentiation with respect to the 

subscript variable, the energy equation in axisymmetric cylindrical coordinates can be 

expressed as, 

T +UT + VT =nlT +r-1T +T) 
t r z A," r z (4.10) 

where U and V are the axial and radial components of the liquid velocity defined in 

equation (4.7). 

The energy equation was solved numerically on a grid which was constructed using 

an algebraic grid generation technique proposed by Chen et at [1995]. The grid variables in 

the physical domain are depicted in Fig. 4.3. Grid clustering near the vapour-liquid interface 

as well the moving boundary were facilitated by defining the grid such that, 

where 

r ij = Djsin(y ij) 
zij = Djcos(y ij) 

.(4.11) 
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(4.12) 

and the term SR which determines the percentage of grid points near the interface and has 

been kept constant at SR =0.65 throughout this work. An example ofthe computational grid 

is depicted in Fig. 4.4. In order that conventional finite difference techniques could be 

utilized, the energy equation was transformed to a stationary grid with uniform grid spacing. 

The transformation is given by, 

such that, 

r =r(e,T},-r) 
Z =z(e,T},-r) 
t=-r 

Tr =J-1(zrle -zeTTj) 

Tz =J-1(reTTj - rTjTe) 

Tt = T't - T ,T't - T tz't 

By defining the contravarient velocities as, 

U C 
= (U - r,)zTj - (V - z,)rTj 

V C 
= (V - z't)re - (U - r't)ze 

the transformed energy equation becomes, 

(4.13) 

(4.14) 

(4.15) 
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T +J-1ucT +J-1vcT =J-2u 1aT -2bT +cT +dT +eT)+fJr)-lU I'7 T -z T'(416) 
t e T\ l'\ ee eT\ T\T\ e T\ \: 1\T\ e T\ T\) • 

where J is the Jacobian and the coefficients a through e are related to the metrics and their 

derivatives through the following, 

J=zT\re -zerT\ 
2 2 

a =zT\ +rT\ 

b = rerT\ + ZeZT\ 
2 2 

C =ZT\ +ZT\ 

d=J-l(rT\~l -ZT\~2) 

e=J-l(Ze~2 -r£~l) 

~l = aZee - 2bzT\e +CZT\T\ 

~2 =aree -2brT\e +crT\T\ 

(4.17) 

, 
Equation (4.16) was discretized using second order central difference representations of the 

spatial derivatives and a fully implicit first order representation of the time derivatives. At 

a given time step, the temperature field was determined using Successive Over-Relaxation 

(SOR) by lines. For each line the resulting system of algebraic expressions was solved 

utilizing the Tri-Diagonal Matrix Algorithm (TDMA). The code was developed in 

FORTRAN 90 and is given in Appendix F. 

4.4. Solution Procedure 

Equation (4.8) and (4.9) together with equations (4.1) and (4.4) form a set of 

simultaneous equations for the four unknowns Tv, P v' Pv' and R which were solved 

numerically using a fourth-order Runge-Kutta method. In order to initiate bubble growth, 

the equilibrium radius Rc was perturbed by allowing it to increase by a very small amount 
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over an infinitesimally small time interval. A comprehensive discussion on the initial 

disturbance can be found in Chapter 2. 

4.5. Code Verification 

4.5.1. Spherical Bubble Growth 

Grid independent benchmark solutions for spherically symmetric bubble growth in 

liquids with an initial uniform superheat have been obtained in Chapter 2 for a range of 

boiling conditions involving two different fluids. Since many ofthe more complex features 

of heterogeneous growth are absent during homogeneous growth, comparison with the 

benchmark solutions provide an excellent test for the present theory and computational 

procedure. To investigate spherically symmetric growth, the initial temperature distribution 

is set to be spatially uniform and symmetry about the r-axis is approximated by setting q" w =0 

to establish a zero temperature gradient. 

Figs. 4.5 shows the comparison of the predictions of the present theory with the 

benchmark solutions. In the figure, the numerical simulations, obtained using the two­

dimensional axisymmetric representation of the energy equation, show agreement with the 

benchmark solutions for homogeneous bubble growth for a range of system pressures and 

initial liquid superheats for two different fluids. 

4.5.2.Hemispherical Bubble Growth 

Heterogeneous bubble growth depends strongly on the amount of energy stored in 

the thermal boundary layer which forms adjacent to the heater surface. The sensible heat 

stored in the liquid is converted to latent heat by evaporation which flows into the bubble 
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as it grows. As a result, any predictive model of bubble growth requires that the temperature 

profile in the liquid be known prior to bubble growth. By heating a quiescent, uniform 

temperature liquid in micro gravity, Lee [1993] was able to show that the solution ofthe one-

dimensional transient heat conduction equation for a constant heat flux boundary condition 

in a semi-infinite solid did a very good job at predicting the measured mean surface 

temperature. Consequently, the initial temperature distribution in the liquid could be 

predicted by the expression, 

/ / r:::;;-;: ( 1 II 1 1 2Qwv ar In z2 Qwz z 
T(z,t *) = T"" + I exp --- - -erfi 

k[ 4a/* k[ V4a/* 
(4.18) 

where t· is the time to the onset of boiling. This expression, together with the assumption of 

a quiescent liquid, specifies the initial conditions required by the present theory. 

Bubble growth predictions for three different test cases are shown in Fig. 4.6. The 

condition of nearly zero gravity was obtained by performing the experiments in space aboard 

the NASA Space Shuttle. For each experiment, the computational predictions of the two 

one-dimensional spherically symmetric models, which represent the upper and lower bounds 

of growth, are given together with the two-dimensional heterogeneous model. As expected, 

the fully two-dimensional model predicts growth curves which are positioned somewhere 

in between the upper and lower bounds as depicted in the figure. More importantly, 

satisfactory agreement is observed between the measured growth curves over a large portion 

of the respective growth intervals. This lends support to the physical modelling of the 

problem as well as the numerical techniques utilized in the computations. It can be noted that 

the agreement between the computed and experimental curves lends support to the 
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assumption that, for these specific test cases, micro layer evaporation did not play a 

significant role in bubble growth process. 

Fig. 4.7 shows the comparison of the present numerical simulations with the 

microgravity pool boiling experiments which were conducted in the drop tower facility at 

the NASA Lewis Research Centre. For approximately 15 ms, the agreement is quite good 

after which time the experimental curves increase at a significantly higher rate than the 

simulated curves. As discussed by Lee [1993], the mechanism responsible for the divergence 

of the two curves is bubble surface roughening. For early growth, the measured bubble 

interface is smooth as assumed for the simulated case. However, due to instabilities, the 

surface of the experimental bubbles became considerably roughened after t= 15 ms. Since 

the surface area of the experimental bubbles is lilrger than that of a smooth interface, the 

overall heat transfer to the bubble is larger and thus the bubble expands at a higher rate. A 

comprehensive discussion of the role of instabilities in pool boiling can be found in Lee 

[1993]. 

4.6. Bubble Dynamics 

In the following section, the growth characteristics of a single isolated hemispherical 

bubble growing at a plane heated surface with negligible effect of an evaporating micro layer 

will be discussed. The boiling conditions are identical to those of Fig. 4.6b. Fig. 4.8 shows 

the time variation of the predicted bubble radius and vapour temperature. In the figure, the 

four distinct regions of growth have been demarcated. For comparison purposes, the 

predicted curves for spherical homogeneous growth in a uniformly heated liquid are also 

shown in the figure. The liquid temperature for the homogeneous case was chosen to be the 
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heater surface temperature corresponding with the end of the waiting time, 

T ~ =Tw(t*)=83.2 dc. In Fig. 4.9 the energy equation for the vapour bubble, equation (4.4), has 

been decomposed to expose the time varying contributions of its constituent terms. Once 

again, the term involving the rate of change of vapour density, i/3hrgR(dpjdt), is negligible 

compared with the interface velocity term, Pv hri dRldt). For discussion purposes, the growth 

rate can be considered proportional to the area averaged heat flux into the bubble throughout 

its growth, 

dR <x_I Jk (aT) dA = II 
dt A s I an R q ave 

As 

(4.19) 

4.6.1. The Waiting Time 

The interval between the time when the heater is turned on and the time when the 

bubble appears to grow is termed the waiting time. During steady nucleate pool boiling, the 

waiting time is the time interval between the departure of the previous bubble and growth 

of the next. The waiting time is of fundamental importance during heterogeneous bubble 

growth because it is the time over which energy is transferred by thermal diffusion into the 

bulk liquid. Due to transient conduction, a thermal layer develops in the liquid adjacent to 

the wall. For long enough times, the liquid temperature rises above the saturation 

temperature of the liquid. Within this superheated layer exists the sensible energy required 

for the latent heat of evaporation. 

One fundamental difference which distinguishes homogeneous growth in a uniformly 

superheated liquid and heterogeneous growth near a heated surface lies in the spatial 

distribution of the liquid temperature. For growth times much less than the waiting time, 
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heterogeneous bubble growth may occur in a liquid environment where the energy stored 

within the thermal layer is more or less fixed. If this is the case, the bubble has a finite 

amount of sensible energy from which to sustain growth, and depending on the heat flux and 

waiting time, it is possible for the bubble to deplete this energy in a relatively short time 

span. This is opposed to homogeneous growth where theoretically there is an infinite amount 

of energy available for bubble expansion. 

4.6.2. Surface Tension Domain 

A detailed discussion of growth dynamics occurring in the surface tension domain 

can be found in Chapter 3. In summary, the vapour bubble is expanding, although very 

slowly because it is still near its initial equilibrium state and the driving temperature 

difference for heat transfer ~T=T,,-Tv' and thus the heat flux into the bubble, is small as 

depicted in Fig. 4.9. However, Fig. 4.10 indicates that the hydrodynamic forces are 

negligible such that the vapour over-pressure is balanced by surface tension forces alone, 

p v-p ~=2a/R. As a result, a minute increase in radius, as a result ofthe positive flow of energy 

into the bubble, causes a slight drop in the vapour pressure with a corresponding drop in the 

vapour temperature. This drop in temperature increases the driving temperature difference 

which increases the rate of heat transfer which in tum raises the growth rate (equation 

(4.19)). In this way the bubble expansion accelerates due to positive thermal feedback 

whereby the growth of the bubble is responsible for escalating its own rate of growth. 

Referring to Fig. 4.8, it is evident that the characteristics of heterogeneous growth 

near a heated surface is the same as that for homogeneous growth in a uniformly 

superheated liquid during the surface tension stage, even though there exists an axial 
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distribution of temperature within the liquid adjacent to the heated surface. In the thermal 

layer adjacent to the heater surface the bulk liquid temperature varies from Tw(t*)=83.2 °C 

at z=O mm to Too=48.8 °C at z::::0.9 mm. However, the bubble only protrudes a distance of 

~=0.000156mm into the liquid. Over this distance the liquid temperature changes by only 

0.03 °C. Hence the bubble is essentially surrounded by a uniformly superheated liquid with 

~Tsup=Tw(t*)-Too=31.2 0c. This is illustrated in Fig. 4.12 where the liquid temperature 

profiles along the z-axis (tip of bubble) andr-axis (base of bubble). For t=O.OOOI ms, the end 

of the surface tension domain, Fig. 4.12a illustrates that the liquid temperature just outside 

ofthe thermal boundary layer is nearly constant and temperature variations in the bulk liquid 

occur far away from the bubble. Fig. 4.12b shows that for t=O.OOOlms, the temperature 

profile near the vapour-liquid interface at the base is the same as at the tip which indicates 

spherical symmetry with respect to the liquid temperature distribution around the bubble. 

Since spatial variations of temperature within the bulk liquid occur far away from the 

interface, they do not contribute to the thermal transients occurring immediately adjacent to 

vapour-liquid interface. The bubble grows as if it were surrounded by a uniformly 

superheated liquid, the superheat being determined by the wall temperature at the end of the 

waiting time. 

4.6.3 Transition Domain 

A comprehensive discussion on growth dynamics during the transition domain can 

be found in Chapter 3. In summary, the transition domain is the interval of bubble growth 

during which the bubble undergoes significant expansion. The vapour pressure and 

temperature drop from near their maximum values of PsiTJ and Too to their minimum 
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values of Poo and TsatCPoo) as depicted in Figs. 4.8 and 4.10 respectively. During the 

intermediate stage, the acceleration and velocity of the bubble interface increase 

dramatically as a consequence of an escalation in the positive thermal feedback. However, 

this effect is in part countered by an increase in the hydrodynamic pressure at the interface 

of the bubble as shown in Fig. 4.10. The increase in the hydrodynamic forces causes a 

noticeable reduction in the rate at which the vapour pressure and temperature drop as 

indicated by the inflection on the Pv-Poo and Tv curves (Figs. 4.8 and 4.10). As the bubble 

enters the inertial stage, the hydrodynamic pressure has risen to such an extent that surface 

tension becomes negligible and the rate at which the vapour pressure and temperature 

decrease is influenced considerably by the hydrodynamic forces at the interface. As 

discussed in Chapter 3, this effect coupled with changes in the thermal boundary layer 

surrounding the bubble are responsible for the continually decreasing growth rate depicted 

in Fig. 4.9. 

Referring to Fig. 4.8, heterogeneous growth near the heated surface still shows the 

same characteristics of growth as homogeneous growth in a uniformly superheated liquid. 

Although the bubble has undergone a three order of magnitude increase in radius, it is still 

fully contained within the superheated layer which was established adjacent to the heated 

surface during the waiting time. 

Fig. 4.13 shows the isotherms surrounding the bubble for t=O.OI ms; which 

corresponds roughly with the middle of the transition domain. In Fig. 4.13a, it is apparent 

that the bubble is beginning to penetrate into the thermal layer as indicated by the deflection 

of the isotherms of the bulk of the liquid above the bubble. Fig. 4.13b demonstrates that 

there is still radial symmetry in the temperature profiles surrounding the bubble, which is 
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consistent with one-dimensional homogeneous growth, and the isotherms are clustered near 

the vapour-liquid interface due to the high evaporative heat flux. Although the effects ofthe 

two-dimensional spatial distribution in the liquid temperature have not yet had a noticeable 

influence on the growth characteristics of the bubble, they are beginning to show. Fig. 4.12 

demonstrates that for 0.00Ims:5:t:5:0.1ms, the developing temperature profiles at the tip of 

the bubble are beginning to change significantly. For t=O.OO 1 ms the liquid temperature 

increases to nearly Tw=83.2 °C and spatial variations within the bulk liquid are still far 

enough away from the vapour-liquid interface that their effects are not yet felt. At this time 

the thermal gradients at the tip and base of the bubble are nearly equal, as shown in Fig. 

4.11, which indicates a uniform distribution of the energy flux around the bubble. For t=O. 01 

ms and t=O.1 ms, the maximum liquid temperature above the bubble is noticeably smaller 

than T w =83.2 ° C which signifies that the sensible energy stored in the liquid is slowly being 

depleted by the growing bubble. From this time onward, the rate of heat diffusion near the 

bubble tip will be less than that near the base since the driving temperature difference is 

smaller. This is illustrated in Fig. 4.11 for t>0.0 1 ms. 

4.6.4 Heat Transfer Domain 

Heat transfer controlled growth refers to the interval of bubble growth in which the 

rate of bubble expansion is limited by the rate at which liquid is evaporated into the-bubble, 

which in tum is dictated by the net rate of heat transfer by diffusion through the liquid. In 

this late stage of bubble growth, the vapour pressure and temperature have decreased to their 

minimum values corresponding with Py=P 00 and Ty=Tsat(P 00) as illustrated in Fig. 4.8 and4.10 

respectively. Because the liquid temperature at the vapour-liquid interface is now constant, 
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the positive thennal feedback does not occur in this domain of growth. As a result, liquid 

inertia and surface tension have a negligible influence on bubble growth. Conversely, the 

'shrinking' and 'stretching' of the thennal layer in the liquid due to conduction and 

advection are responsible for the continuous deceleration of the interface due to the 

diminishing interfacial temperature gradients. Fig. 4.11 shows that the temperature gradients 

in the liquid surrounding the bubble have reduced considerably. Furthennore, the thennal 

gradient at the tip ofthe bubble is substantially less than that ofthe base which indicate that 

two-dimensional spatial effects have now become a factor in detennining the growth rate of 

the bubble. This is confinned by the departure between the predicted bubble radius for the 

heterogeneous and homogeneous cases shown in Fig. 4.8. 

Fig. 4.14 shows the isothenns for t=1.0 ms. Fig. 4.14a shows that the bubble has 

grown to such an extent that it now penetrates deep into the thennal layer which was 

established during the waiting time. Fig 4.15b shows a magnification for the same case. In 

this figure the two-dimensional spatial effects become apparent. In the upper region of the 

bubble (z>0.3 mm) the surrounding liquid is comparatively cool and the isothenns are not 

tightly clustered. Together these indicate that the superheat in this region is nearly depleted. 

In the lower region (z<O.3 mm) the bubble is surrounded by liquid which is still substantially 

superheated considering that the T=65 0 C isothenn corresponds to a superheat of 13 0 C. The 

maximum temperature in the liquid adjacent to the bubble interface increases as heater 

surface is approached. The figure also shows that the local heat flux into the bubble increases 

near the heater surface as the isothenns become more tightly clustered at the vapour-liquid 

interface. Fig. 4.15 shows the isothenns for t= 100 ms. Here the two-dimensional spatial 

effects are even more noticeable since the bubble is now almost completely outside of the 
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thermal layer adjacent to the wall. Here, the majority of the bubble protrudes into the 

comparatively cool bulk liquid, some of it being subcooled. It is only in a small region near 

the triple interface that significant clustering of the isotherms occurs. 

The two-dimensional spatial effects can be characterized by considering the tip and 

base of the bubble as the limiting cases. Fig.4.12a and 4.12b illustrate the 'shrinking' and 

'stretching' of the thermal boundary layer at the tip and base of the bubble which is 

responsible for the reduction in the bubble growth rate during the heat transfer domain. At 

the tip of the bubble, Fig. 4.12a shows that for t>O.1 ms, the maximum temperature is 

considerably less than T w =83.2 0 C and is moving further out from the bubble. Together these 

act to reduce the local heat flux. At the other extreme, the liquid temperature profile at the 

base of the bubble, as depicted in Fig. 4.12b, shows the maximum temperature moving 

further out from the interface indicating an increase in the thermal layer thickness and a 

corresponding reduction in the local heat flux. The decrease in the growth rate is 

compounded by the fact that for t> 1 0, ms the top portion of the bubble penetrates into a 

region of liquid which is subcooled. This point is illustrated in Fig. 4.11 with the negative 

value of the interface temperature gradient for the tip of the bubble. Hence from this time 

onward, the net energy transfer into the bubble is the difference between that which leaves 

by condensation and that which enters by evaporation. 

During the growth of the bubble, energy is continually being transferred into the 

liquid by axial conduction from the heater surface. At any point along the heated surface 

outside of the bubble, there are three heat transfer mechanisms which act together to 

transport the imposed heat flux; radial conduction tangent to the heater surface, axial 

conduction normal to the heater surface, and convection due to the flow of liquid over the 
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surface. Referring to Fig. 4.l2b, the lower temperatures in the immediate vicinity of the 

bubble indicate that the imposed heat flux is being transported away from the surface very 

efficiently. This region is characterized by a relatively high evaporative heat flux into the 

bubble together with the possibility of significant convective heat transfer because it is the 

region of highest liquid velocity. This is shown in Fig 4.l5b where the isotherms are tightly 

packed around the bubble near the triple interface. Moving further away from the interface, 

the influence of evaporation becomes less and the contribution of convective heat transfer 

decreases due to the rapidly diminishing liquid velocity (U(r,O,t)oc I1r). The surface 

temperature increases as the less efficient mode of axial conduction normal to the surface 

becomes the prominent mode of heat transfer. One might expect the surface temperature to 

increase asymptotically to the surface temperature in the undisturbed region at Ro. However, 

liquid motions induced by the growing bubble have deflected the isotherms away from the 

heater surface causing the thermal layer thickness to be thicker in the vicinity ofthe bubble. 

This is depicted in Fig. 4.15b. Consequently, in order that axial conduction can 

accommodate the imposed surface heat flux, the surface temperature must be higher in the 

region of the thicker boundary layer nearer the interface. This is the likely mechanism 

responsible for the observed overshoot in the liquid temperature profile at the heated surface 

depicted in Fig. 4.12b. 
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Figure 4.1:(a) Spherical vapour bubble growth in an unbounded liquid with a uniform 
temperature field at t=O and a spherically symmetric temperature profile for t>O. (b) 
Hemispherical vapour bubble growth at a heated flat surface with a non-uniform temperature 
field at t=o and a spherically non-symmetric temperature profile for t>O. 
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Figure 4.5: Comparison of prediction of two-dimensional simulations with benchmark solutions 
for spherically symmetric growth with uniform superheat. Case A: water, 1.0 atm, 3.1 °c. Case B: 
water, 0.372 atm, 6.3 °c. Case C: water, 0.362 atm, 17.0 °c. Case D: RI13, 0.0361 atm,48.1 °c. 
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Figure 4.8: Bubble radius, R(t) and temperature, Tv, histories for hemispherical bubble growing 
atop a heated surface and spherical growth in a uniformly superheated liquid with 
ilTsup=31.2 °C. 
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CHAPTER 5: SUMMARY AND RECOMMENDATIONS 

FOR FUTURE WORK 

5.1. Conclusions 

In Chapter 2, a theoretical model and numerical procedure has been developed to 

predict spherically symmetric bubble growth in an unbounded liquid with initial uniform 

superheat. It was determined that 40000 grid points were sufficient to obtain a converged 

solution on a grid with uniform spacing between adjacent nodes. The converged solution was 

shown to be independent oftime step, far field boundary placement and initial disturbance. 

Solutions on a uniform grid were also employed to approximate grid independent solutions 

on an infinite grid. The four infinite grid approximations for bubble growth cover a sufficient 

range of initial system conditions and are proposed as benchmark solutions for further 

theoretical development. Excellent agreement is observed between the prediction of the 

present work and the analytical solutions of Mikic et al. [1971] and PIes set and Zwick 

[1954] as well as the measured bubble growth data of Dergarabedian [1953], Board and 

Duffy [1971] and Bohrer [1973]. 

A grid clustering technique was implemented to reduce the total number of grid 

points required to obtain a converged solution. This resulted in a marked decrease in total 

computation time for a given growth curve without appreciable loss in accuracy. With the 

more efficient code, comparisons have been made between the predictions of the present 

work and the experimental data obtained from four independent experimental investigations 
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in which a variety of techniques had been used to initiate homogeneous boiling. The 

experimental data covered a wide range of initial liquid states for two different fluids. Close 

agreement was observed between the present work and those experiments which utilized 

slow transient heating or slow depressurization to obtain the initial metastable liquid state. 

Caution should be exercised when making comparisons with measurements obtained using 

rapid-depressurization techniques. 

The close agreement between the analytic solutions, experimental data and the 

predictions of the present numerical work over such a wide range of boiling conditions 

instills confidence in the physical modelling of the problem as well as the numerical 

procedure which has been utilized to solve the relationship. 

In Chapter 3 the complicated thermal and hydrodynamic interactions between the 

vapour and liquid have been manifested for a single isolated bubble growing in an 

unbounded liquid from inception to fully heat transfer limited growth. It has been shown that 

early bubble growth away from the initial radius is restricted by surface tension forces within 

the bubble wall. However, minuscule increases in radius result in an increase in the local 

interfacial temperature gradient which facilitates growth by increasing the heat flux into the 

bubble. Eventually, bubble growth becomes impeded by the fact that it now must force the 

surrounding liquid out radially. The heat flux increases to such an extent that this becomes 

a limiting factor to growth. Nevertheless, the growth rate must eventually decrease with 

increasing time as the thermal energy stored within the boundary layer which surrounds the 

bubble is consumed by the bubble as well as transported away from the bubble by advection 

into the bulk of the liquid. Eventually the growth rate slows enough that liquid inertia no 

longer plays an important role and the growth rate becomes limited by the rate at which 
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energy can be transported to the interface through the liquid. 

Increasing the liquid superheat for a fixed ambient pressure has a significant effect 

on each individual growth domain. Higher superheats require smaller bubbles to initiate 

growth. The smaller bubbles define a length scale which allows them to react quickly to the 

changing thermal environment in such a way that the surface tension domain is shorter for 

higher superheats. These comparatively small bubbles grow rapidly enough that liquid 

inertia begins to playa role in limiting growth by slowing down the rate at which the vapour 

pressure and temperature decrease. Here the transition domain is prolonged due to liquid 

inertia. For low superheats, the bubbles grow much slower and the effects of the liquid 

inertia may not be felt at all. Here thermal diffusion is the only limiting factor for growth. 

During the thermal diffusion stage of growth, the thickness of the thermal boundary layer 

becomes independent ofthe liquid superheat and bubble size. The growth rate then becomes 

governed primarily by the magnitude of the liquid superheat since property variations are 

small for the range of temperatures tested. The higher superheats generate a higher growth 

rate which produces larger bubbles 

Increasing the ambient liquid pressure at a fixed level of superheat has virtually the 

same effect on the surface tension domain as increasing superheat. Here the smaller bubbles 

grow quickly away from their initial equilibrium radius. In contrast, however, these rapidly 

growing bubbles are not able to sustain a high growth rate because the interface velocity is 

not large enough for liquid inertia to become a limiting factor. However, bubbles growing 

in a lower pressure environment are able to generate substantial hydrodynamic forces which 

regulate the rate at which the vapour pressure and temperature drop. This is accompanied 

by the fact that these bubbles require less energy to sustain growth due to a lower vapour 
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density. Similarly, for the same superheat, lower pressures produce larger bubbles once they 

enter the thermal diffusion stage of growth since the same amount of energy will produce 

a larger volume of vapour due to the reduced vapour density. 

In recent years, theoretical developments in nucleate pool boiling have been focussed 

on isolated bubble growth upon a heated surface. It is hoped that understanding of the 

mechanisms which determine growth of the bubble will offer insight into and perhaps 

predictions of the increased heat transfer coefficient observed in nucleate pool boiling. 

However, advances in the state of the art are inhibited by the apparent stochastic nature of 

boiling due to the rapidly varying thermal and flow fields. As a result ofthe overwhelming 

complexities, sufficient testing ofthe physical modelling and computational procedures has 

not been afforded in the past. 

In Chapter 4, a simple theory and numerical procedure have been developed which 

overcome this shortcoming in two ways. First, the theory is simple enough to facilitate 

comparison with data for homogeneous growth in an unbounded fluid. Second, the theory 

can accommodate the added complexities of a heated surface and time varying spatially 

distributed liquid temperature fields for hemispherical bubble growth in microgravity. Close 

agreement has been observed between the predictions of the present theory and the one­

dimensional benchmark solutions, as well as with experimental data for hemispherical 

bubble growth on a heated surface. This has instilled confidence in the physical modelling 

of the problem as well as the computational procedure which has been utilized. 

The complicated thermal and hydrodynamic interactions between the vapour, liquid 

and solid have been manifested for a single isolated bubble growing on a heated plane 

surface from inception with a negligible contribution of an evaporating microlayer. During 
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the surface tension controlled growth stage, the bubble protrudes only a very small distance 

into the liquid above the solid surface where the liquid temperature is almost uniform. As 

the bubble expands the vapour temperature decreases and a thin, spherically symmetric 

thermal boundary layer forms around the bubble. Axial variations in the liquid temperature 

normal to the solid surface occur far enough away from the bubble that they do not influence 

the thermal transients occurring at the vapour-liquid interface. Consequently, the bubble 

expands as if it were surrounded by a uniform temperature liquid which is heated to the 

temperature of the solid surface. During the transition domain, the bubble growth rate 

increases significantly. As a result, the hydrodynamic forces acting at the bubble wall 

increase to such an extent that they play an important role in determining the growth rate of 

the bubble. As the bubble grows significantly away from its initial critical radius, it begins 

to penetrate into the thermal layer of the bulk liquid. The spatial temperature distribution 

within the bulk liquid causes the thermal field surrounding the bubble to become 

progressively less symmetric around the bubble cap. In this way, a distribution in the heat 

flux into the bubble exists. The minimum heat flux occurs at the tip of the bubble where the 

sensible energy is being depleted, and the maximum heat flux occurs at the base of the 

bubble where there is an abundance of superheated liquid stored in the region close to the 

solid surface. During the diffusion controlled growth stage, the vapour pressure and 

temperature have decreased to near their minimum values. Because ofthis, surface tension 

and liquid inertia no longer play an important role and bubble growth is limited by the net 

rate of heat transfer into the bubble. The growth rate slows at a rate which is notably less 

than that which would be predicted for a uniformly superheated liquid because the bubble 

has consumed the superheat which was stored in the liquid around the bubble during the 
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waiting time. This is compounded by the fact that the bubble tip has penetrated through the 

thermal layer adjacent to the solid surface into a region of liquid which is subcooled. 

5.2. Recommendations for Future Work 

It is well known that the earliest stage of bubble growth is hemispherical. The length 

of the hemispherical growth stage depends on many factors including system pressure, the 

level of superheat near the heated surface, the formation of a micro layer, and the level of 

gravity in which boiling is taking place. Inevitably however, the centre of curvature of the 

bubble begins to rise above the horizontal surface. In this growth stage, the bubble is 

expanding radially as well as translating perpendicular to the surface. The translational 

motion of the bubble is of considerable importance because it is largely responsible for how 

long the bubble remains affixed to the surface. This in tum affects other parameters such as 

departure size, the overall rate of heat transfer and so on. 

In the literature, the translational motion of the bubble is often oversimplified. In Lee 

and Nydahl [1989] and and Son, Dhir and Ramanujapu [1999], a constant contact angle was 

assumed which provided a relation between the centre of curvature and the radius. In Chen, 

Mei and Klausner [1995], an empirical function was developed which dictated when the 

centre of curvature would begin to rise and then how quickly. In these two cases, as well as 

others, closure of the governing equations is obtained at the expense of the physical 

mechanisms which determine translational growth. In the analysis ofBuyevich and Webbon 

[1996], two coupled non-linear ordinary differential equations were developed, one for radial 

expansion and the other for vertical translation. Even still, solutions could only be obtained 

for the idealized cases of hemispherical and spherical growth near the heated surface. 
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It is the opinion of the author that future developments in bubble growth dynamics 

should focus on a simplified theory for isolated growth at a heated surface from inception 

to departure. Since the early stage of growth is known to be nearly hemispherical, the work 

outlined in this dissertation provides a logical starting point for the development of a more 

complete description of heterogeneous bubble growth. Next, the mechanisms which govern 

translational growth must be discerned. The idealized case in which the bubble remains a 

spherical segment throughout its growth time simplifies the geometry ofthe problem enough 

that the present numerical technique may require only minor modifications to incorporate 

the vertical motion of the bubble. The physical model must also incorporate the possibility 

of an evaporation microlayer at the base of the growing bubble. 

The validity of the resulting predictions can be verified by comparison with the 

recent experimental measurements which have been obtained at McMaster University 

(Robinson [2001 D. In this photographic study, bubble growth measurements were obtained 

in which the bubble remains nearly spherical throughout its growth time. Fig. 5.1 shows a 

sample of the results which have been obtained. Bubble interface measurements are given 

in Fig. 5.2 together with a regression best-fit of a spherical segment to the interface 

measurements for both sides of the bubble. In this way, both the bubble radius and height 

of the centre of curvature have been estimated for each frame of the sequence. Fig. 5.3 

shows the temporal variation of both the radius and centre of curvature for the entire growth 

time of the bubble. 

The fixed bubble shape, combined with the specification of both the instantaneous 

radius and centre of curvature of the growing bubble, makes this investigation unique and 

ideal for conducting a preliminary investigation of bubble translation during isolated bubble 
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growth in nucleate pool boiling. 

5.2 Contribution to Knowledge 

The complicated nature of isolated bubble growth during nucleate pool boiling has 

dictated the wide diversity of research which has been performed on the subject over the past 

century. Through careful and creative experimentation and thoughtful theoretical 

exploration, the scope of the problem seems to have been established. With the overall 

picture in view, theoretical investigations can now proceed in a more structured pragmatic 

manner. In this work, the first steps along this course have been taken. By providing 

accurate, properly tested numerical predictions of idealized bubble growth, a foundation has 

been established upon which more complicated numerical schemes may be constructed. 

Furthermore, the direction of theoretical development has been refocused by providing a 

more thorough understanding of the spherically symmetric phase growth problem in order 

to lend clarity to the effects of added complexities. Finally, the simple case of hemispherical 

growth at a heated surface in micro gravity has been analysed. This defines the new starting 

point for theoretical development. By adding one layer of complexity at a time, the logical 

sequence of study will continue to progress towards an accurate and complete description 

of isolated bubble growth. This will in tum lead to reliable predictions of the heat transfer 

rate during nucleate pool boiling. 
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Figure 5.1: Photographs of bubble growth. 
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Figure 5.2: Bubble interface measurements and best fit spherical segment. 
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APPENDIX A 

Derivation of the Extended Rayleigh Equation 

As a result ofthe spherical symmetry, the continuity and momentum equations in 

the liquid surrounding A growing spherical vapour bubble are given by, 

Simplification of equation (AI) gives, 

au 2u 

ar r 

Substitution of equation (A3) into equation (A2) results in the expression, 

au -2~= _.! ap 
at r p ar 

The instantaneous liquid velocity is determined by integration of equation (A3) with 

boundary conditions u(O, t) = Rand u( 00, t) = ° such that, 
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Al 

A2 

A3 

A4 



. R2 
u(r,t) = R-2 r 

Differentiation with respect to time results in, 
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AS 

A6 

Substitution of equations (AS) and (A6) into equation (A4) gives an expression for the 

pressure gradient in the liquid; 

A7 

Equation (A 7) can be integrated between the limits P(R) and Po. to give, 

A8 

where P(R) is the liquid pressure at the interface and Po. is the system pressure. The 

interface jump condition without the normal stress term is, 

~ -peR) = 2; A9 

Substitution for P(R) gives the extended Rayleigh equation, 
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APPENDIXB 

Tabulated Bubble Growth Data 

This appendix contains the tabulated bubble radius versus time predictions for 

homogeneous bubble growth in an uniformly superheated liquid for i) the converged 

solution on a uniform grid with M=40000 grid points ii) the extrapolated infinite grid 

benchmark solution. 

Table Cl: Case A: Water, P=l.O atm, ~Tsup=3.1 °C 

Time R(M=40000) R(infinite) 
(ms) (mm) (mm) 
1.002 0.222 0.218 
2.006 0.326 0.323 
3.013 0.405 0.402 
4.014 0.472 0.469 
5.002 0.529 0.527 
6.028 0.584 0.581 
7.027 0.632 0.630 
8.030 0.677 0.675 
9.054 0.720 0.719 
10.006 0.759 0.757 
11.059 0.799 0.797 
11.980 0.832 0.831 
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Table C2: Case B: Water, P=O.372 atm, ~Tsup=6.3 DC 

Time R(M=40000) R(infinite) 
(ms) (mm) (mm) 
1.002 1.017 1.030 
2.006 1.542 1.555 
3.013 1.938 1.949 
4.014 2.265 2.275 
5.002 2.549 2.558 
6.028 2.814 2.822 
7.027 3.050 3.058 
8.030 3.270 3.278 
9.054 3.481 3.489 
10.006 3.666 3.674 
11.059 3.861 3.868 
11.980 4.024 4.031 

Table C3: Case C: Water, P=O.362 atm, ~Tsup=17.0DC 

Time R(M=40000) R(infinite) 
(ms) (mm) (mm) 
1.002 2.356 2.316 
2.006 3.818 3.784 
3.013 4.955 4.925 
4.014 5.898 5.871 
5.002 6.710 6.685 
6.028 7.466 7.443 
7.027 8.138 8.116 
8.030 8.762 8.741 
9.054 9.359 9.339 
10.006 9.882 9.863 
11.059 10.431 10.413 
11.980 10.890 10.872 
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Table C4: Case D: Rl13, P=O.0361 atm, ~Tsup=48.l °C 

Time R(M=40000) R(infinite) 
(ms) (mm) (mm) 

1.002 2.462 2.317 
2.006 4.473 4.363 
3.013 6.329 6.227 
4.014 8.071 7.973 
5.002 9.718 9.622 
6.028 11.369 11.275 
7.027 12.927 12.835 
8.030 14.448 14.358 
9.054 15.965 15.876 

10.006 17.346 17.258 



APPENDIXC 

Thermal Boundary Layer Thickness 

In this appendix, the calculation for the extrapolated thermal boundary layer 

thickness is outlined. Fig. Cl shows a schematic of the instantaneous temperature 

distribution in the liquid outside of the growing vapour bubble. 

T", 

Temperature 

Figure Cl : Extrapolated thermal layer thickness. 

The heat flux into the bubble is determined by Newton's Law of Cooling which can be 

approximated by, 
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II = -k ( aT) z -k I1T(t) 
q I ar r=R I D(t) 

(CI) 

such that the extrapolated thermal boundary layer thickness can be predicted by the 

expreSSIOn, 

D(t) = I1T(t) 

(::L (C2) 

The interface temperature gradient in the denominator of equation C2 is determined from 

the numerical solution of the energy equation in the liquid. 



170 

APPENDIXD 

FORTRAN 90 Code for Homogeneous Growth with a Uniform Grid Arrangement 

This program solves the one dimensional, radially symmetric bubble growth problem 

in an initially superheated liquid from its thermodynamic critical size through the surface 

tension, inertial and heat transfer controlled stages of growth. Bubble growth away from the 

initial unstable equilibrium state of the vapor nucleus is instigated by a small increase in 

radius dRo over a small time step dto. A fourth order Runge-Kutta scheme is then utilized 

to solve the modified Rayleigh equation together with the Interfacial Energy balance 

equation for the variables Tv, R, dRdt from which Pv and dv can also be determined. The 

vapor phase is assumed to behave as a perfect gas and the saturated pressure and temperature 

are related from the integrated Clausius-Clapeyron equation. It was found that an accurate 

curve-fitted P-T rendered essentially the same result. The temperature gradient at the 

interface is determined from the energy equation including the convective term. The energy 

equation is solved using a finite difference scheme on a uniform grid. Excellent agreement 

with experimental results has been found and the number of grid points which result in a 

'grid independent' solution has been found to be approximately 40000 for water and Rl13 

with an infinity boundary set at 5 cm. 



program onedimension 
implicit none 

INTEGER:: K, J 
INTEGER, PARAMETER:: M=40000, N=2000000 

DOUBLE PRECISION, DIMENSION(N) :: t_, R_, Tmp_, dRdt_,P_ 
DOUBLE PRECISION, DIMENSION(M) :: TEMP, TEMP_old 
!Liquid 
DOUBLE PRECISION :: Tsup 
!Vapor 
DOUBLE PRECISION :: Ro, R, Pv, Tv, dRdt 
!Both 
DOUBLE PRECISION :: hfg 
!Runge Kutta 
DOUBLE PRECISION :: xi, yli, y2i, y3i, Fl, F2, F3, x, yl, y2, y3, x_I, yli_l, y2i_l, y3i_l, & 

kll,k2l,k3l,k4l,k12,k22,k32,k42,k13,k23,k33,k43 
! Miscillaneous 
DOUBLE PRECISION :: t, dt, dist, Rinf, deU, t_o, beta, P, delJ,tend 

!Functions 
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DOUBLE PRECISION:: PRESS, LA TENT, D _ LA TENT, TENSION, 1_ sp _heat, therm _ cond, I_dens, T _sat, 
PRESS2 
LOGICAL :: IDEAL 
!Common 
DOUBLE PRECISION :: Cpl, kl, ai, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi 
COMMONlbubyaramlCpl, kl, ai, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi, IDEAL 

OPEN(UNIT= 1, FILE='c:\output\check l.dat', ST A TUS='old') 

IDEAL=.TRUE. 

t 0=l.OD-9 
beta=1500.0 !this term affects the rapid growth region. ie. for 'long' surface tension 

!growth, the time step may be too course to capture the rapid growth term 
Iso it must be increased 

K=l 
Rinf=O.05DO !m 

!Constants 
G=0.461 504302*(l.OD3) !J/kgK for water ie=Ru!M=3.3l4118.0l5 
pi=3.l4l592653589793lDO 

IDEAL=.FALSE. ! IfIDEAL=.TRUE. the vapour is treated as an ideal gas and the Clausius-Clapeyron 
! equation is used to determine the vapour pressure. 

tend= l8.0D-3 

!LIQUID initial conditions 
Pinf=l.O*101.33DO ! Set the system pressure kPa 



Tsat=T_sat(Pinf) !K this is the experimental value 
Tsup=3.IDO !K 
Tinf=Tsat+Tsup !K 
Cpl=(l.OD3)*tsp_heat(Tinf) !1IkgK 
kl=therm_cond(Tinf) !W/mK 
dl=l_ dens(Pinf) 
al=kl/( dl *Cpl) 
sigma=TENSION(Tsat)*(I.OD-3) !N/m 

hfgo=(l.OD3)*LATENT(Tsat) !J/kgK 
dhfgo=(l.OD3)*D_LATENT(Tsat) !J/kgK 

do J=I,M 
TEMP _old(J)=Tinf 
end do 

!VAPOR initial condition 
Tv=Tinf 
hfg=(l.OD3)*LATENT(Tv) 

IF(IDEAL)THEN 
Pv=PRESS(Tv, hfg) 
ELSE 
Pv=PRESS2(TV) 
ENDIF 

Ro=(2.0*sigma)/« I.OD3)*(Pv-Pinf)) 

UK)=t*I.OD3 
R_(K)=Ro* l.OD3 
Tmp_(K)=Tv 
dRdt_(K)=O.O 
P _(K)=Pinf 
! 
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-------------------------------------------------------------------
!INITIAL DISTURBANCE 
dt=l.OD-9 
dist=5.0D-6 
R=Ro+dist*Ro 

20 K=K+I 
!find kI's 

del t=O.ODO 
xi=t 
yli=Tv 
y2i=R 
y3i=dRdt 

CALL FFI(x, yIi, y2i, y3i, M, deU, Rinf, TEMP_old, TEMP, FI) 
F2=y3i 
call FF3(t, yl i, y2i, y3i, F3) 



kll=Fl 
k12=F2 
k13=F3 

del t=0.5DO*dt 
x=xi+del t 
yl=yli+kll *0.5DO*dt 
y2=y2i+k 12*0.5DO*dt 
y3=y3i+k 13 *0 .5DO*dt 

CALL FF1(x, yl, y2, y3, M, deU, Rinf, TEMP_old, TEMP, Fl) 
F2=y3 
call FF3(t, yl, y2, y3, F3) 

k21=Fl 
k22=F2 
k23=F3 

del t=0.5DO*dt 
x=xi+del t 
yl=yli+k21 *O.5DO*dt 
y2=y2i+k22*0.5DO*dt 
y3=y3 i+k23 *0.5DO*dt 

CALL FFl(x, yl, y2, y3, M, deU, Rinf, TEMP_old, TEMP, Fl) 
F2=y3 
call FF3(t, yl, y2, y3, F3) 

k31=Fl 
k32=f2 
k33=f3 

del t=dt 
x=xi+del t 
yl=yli+k31 *dt 
y2=y2i+k32*dt 
y3=y3i+k33*dt 

!call FFl(x, yl, y2, y3, Fl) 
CALL FFl(x, yl, y2, y3, M, deU, Rinf, TEMP_old, TEMP, Fl) 
F2=y3 
call FF3(t, yl, y2, y3, F3) 

k41=Fl 
k42=f2 
k43=f3 

x l=xi+dt 
yli_l=yli+(dtl6.0)*(kll +2.0*k21 +2.0*k31 +k41) 
y2i_l =y2i+( dtl6.0)*(k 12+ 2.0*k22+2.0*k32+k42) 
y3i_l =y3i+( dtl6.0)*(k13+2.0*k23+2.0*k33+k43) 

173 



del t=dt 
t=x 1 
Tv=yli_l 
R=y2(1 
dRdt=y3i_1 

UK)=t*I.OD3 
Tmp_(K)=Tv 
R_(K)=R * I.OD3 
dRdUK)=dRdt 

if (t<tend) then 

!Momentum equation check 

IF(IDEAL)THEN 
P=PRESS(Tv, hfg) 
ELSE 
P=PRESS2(TV) 
ENDIF 

P_(K)=P 

call temper(M, deU, R, Rinf, dRdt, TEMP_old, aI, Tv, Tinf, TEMP, delJ) 

do J=I,M 
TEMP _old(J)=TEMP(J) 
end do 

dt=t_ o*EXP(REAL(K-2)lbeta) 

GOT020 
end if 

100 do J=I,K,1O 
WRITE (1,25) UJ), R_(J), dRdUJ), Tmp_(J), P _(J) 
25 FORMAT(fl1.7, IX, fl5.l0, IX, fl5.l0, IX, fl2.8,IX, fl2.5) 

end do 

stop 
end program 

SUBROUTINE FF3(t, yl, y2, y3, A3) 
DOUBLE PRECISION:: t, g_R, f4, P, yl, y2, y3, A3, PRESS, hfg, LATENT, PRESS2 
DOUBLE PRECISION :: Cpl, kl, aI, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi 
LOGICAL:: IDEAL 

COMMONlbub ---'paramlCpl, kl, ai, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi, IDEAL 
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hfg=(l.OD3)*LATENT(yl) 

IF(IDEAL)THEN 
P=PRESS(y 1, hfg) 
ELSE 
P=PRESS2(yI) 
ENDIF 

g_R=2.0DO*sigma/(dl*y2**2) 

f4=(I.OD3)*(P-Pinf)/(dl*y2) 

A3=f4-g_R-(3.0D0I2.0DO)*(y3* *2)/y2 

RETURN 
END SUBROUTINE 

SUBROUTINE FFI(x, yI, y2, y3, M, deU, Rinf, Told, T, AI) 

INTEGER:: M 
DOUBLE PRECISION, DIMENSION (M) :: Told, T 
DOUBLE PRECISION:: x, P, hfg_, fl, f2, D, hfg, dTdr, dv 
DOUBLE PRECISION:: AI, yI, y2, y3 
DOUBLE PRECISION:: Rinf, delJ, del_t, g_T 
DOUBLE PRECISION:: LATENT, PRESS, v_sp_heat, PRESS2, v_dens, dvdT 
DOUBLE PRECISION:: Cpl, kl, aI, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi 
LOGICAL :: IDEAL 

COMMONlbub-paramlCpl, kl, aI, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi, IDEAL 

hfg=(l.OD3)*LATENT(yl) 
Cpv=(I.OD3)*v _sp_heat(yl) 

IF(deU>O.ODO)then 
call temper(M, deU, y2, Rinf, y3, Told, aI, yl, Tinf, T, del_r) 
dTdr=(2.0DO*T( 4)-9.0DO*T(3)+ 18.0DO*T(2)-ll.ODO*T(1 »/(6.0DO*del_r) 
ELSE 
del_r=(Rinf-y2)/REAL(M -1) 
dTdr=(2.0DO*Told( 4)-9.0DO*Told(3)+ I8.0DO*Told(2)-II.ODO*Told( I »/(6.0DO*deIJ) 
ENDIF 

IF(IDEAL) THEN 
P=PRESS(yl, hfg) !kPa 

hfg_ =hfg+Cpl*(Tinf-yl) !kJlkg 
dv=(l.OD3)*P/(G*yl) 

D=kl*dTdr 
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f2=hfg_*dv 

f1 =( I.ODO/3.0DO)*«hfg_ *dv/yl )*(hfg/(G*yI )-I.ODO)+dv*Cpv) 

Al =(l.ODO/(y2*f1»*(f3-f2*y3) 

ELSE 
P=PRESS2(Y I) 

dv=v _ dens(y I) 
g_ T=dvdT(y I) 

f3=kl*dTdr 
f2=hfg*dv 
f1=(hfg/3.0)*g_T 

Al =(l.O/(y2*f1 »*(f3-f2*y3) 
ENDIF 

RETURN 
END SUBROUTINE 

subroutine Temper(M, del_t, Rt, Rinf, dRdt, Told, ai, Tv, Tinf, T, delJ) 

DOUBLE PRECISION, DIMENSION (M):: e, cI, c2, T, Told, T_2, AA, BB, CC, DD 
DOUBLE PRECISION, DIMENSION (M) :: a, b, c, d 
DOUBLE PRECISION:: Rt, Rinf, dRdt, del, del_e, delJ, deU 

!properties 
DOUBLE PRECISION:: ai, Tv, Tinf 

del=Rinf-Rt 
deIJ=dellREAL(M-I) 
del_ e= I.ODOIREAL(M-I) 

e(l)=O.O 
doJ=2,M 
e(J)=e(J-I )+del_ e 

end do 

do J=I,M 
c2(J)=-al/( del**2) 
ci (J)=( -2.0DO*al/( del*e(J)+Rt»*(l.ODO/del)+& 

(dRdt*«RtI( del*e(J)+Rt»**2+( e(J)-I.ODO»)*(I.ODO/del) 
end do 

do J=2,M-I 
AA(J)=( I.ODO)-2.0DO*c2(J)*del_ tide 1_ e**2 
BB(J)=cI (J)*del_tl(2.0DO*del_e)+c2(J)*del_tl(del_e**2) 
CC(J)=-cI (J)*del_t/(2.0DO*del_e)+c2(J)*del_t/(del_e**2) 
DD(J)=Told(J) 
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end do 

!Set up equations so that they are in the fonn (Patanker): 
! 
! a(l )T(l )=b(l )T(2)+d(2) 

a(2)T(2)=b(2)T(3 )+c(2)T( 1 )+d(2) 

a(J)T(J)=b(J)T(J+ l)+c(J)T(J-l)+d(J) 

a(M-l )T(M-l )=c(M-l)T(M-2)+d(M-l) 

!********************************************************** 
do J=1,M-2 
a(J)=AA(J+l) 
b(J)=-BB(J+ 1) 
c( J)=-CC( J+ 1 ) 

IF(J=1)then 
d(J)=DD(J+ 1 )-CC(J+ 1 )*Tv 
ELSEIF(J==M-2)then 
d(J)=DD(J+ l)-BB(J+ l)*Tinf 
else 
d(J)=DD(J+ 1) 

endif 

end do 

call TDMA(M-2, a, b, c, d, T_2) 

doJ=l,M 
IF(J=l)then 
T(J)=Tv 

ELSEIF(J=M)then 
T(J)=Tinf 

else 
T(J)=T _ 2(J-l) 

endif 
end do 

return 
END subroutine 

subroutine TDMA(M, a, b, c, d, U) 

INTEGER:: M 
DOUBLE PRECISION, DIMENSION(M) :: a, b, c, d, P, Q, U 
DOUBLE PRECISION :: BET 

if (a(l)==O.O) pause 
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BET=a(l) 
Q( 1 )=d(l )/BET 
P( 1 )=b( 1 )/BET 

do J=2,M 

BET=a(J)-c(J)*P(J-l) 

if (BET==O.O) pause 

P(J)=b(J)/BET 
Q(J)=(d(J)+c(J)*Q(J-l»/BET 

end do 
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U(M)=Q(M) 

do J=M-l,l,-l 
U(J)=P(J)*U(J+ 1 )+Q(J) 
end do 

return 
end subroutine 

!********************Water Properties *** ******************************************* 

FUNCTION PRESS(T, hfg) 
DOUBLE PRECISION :: T, hfg, PRESS 
DOUBLE PRECISION:: CpI, kI, aI, dI, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi 
LOGICAL :: IDEAL 

COMMONlbub-paramlCpI, kI, aI, dI, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi, IDEAL 

PRESS=Pinf*EXP«l.O/G)*(hfgolTsat-hfg/T»*(TlTsat)**(dhfgo/G) 
return 
END 

FUNCTION LATENT(T) 
DOUBLE PRECISION:: a, b, c, d, T, LATENT 
a=4535.5338 
b=-14.40485 
c=O.034749747 
d=-3.35481 06D-5 

LATENT=a+(b*T)+(c*T**2)+(d*T**3) !kJlkg, Tin K 
return 
END 

FUNCTION D_LATENT(T) 
DOUBLE PRECISION ::b, c, d, T, D_LATENT 
b=-14.40485 
c=O.034749747 



d=-3.3548106D-5 
D_LATENT=b+(2.0*c*T)+(3.0*d*T**2) !kJ/kgK, Tin K 

return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION 
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TENSION=235.8DO*« 1.0DO-(T)/(3 74.15DO+ 273.15DO»** 1.256DO)*( 1.0DO-(0.625DO)*( 1.0DO-(T)/(3 7 
4. 15DO+273.15DO») !mN/m 
return 
end 

FUNCTION l_sp_heat(T) 
DOUBLE PRECISION:: T, tsp_heat, a, b, c, d, e 
a=78.582798 
b=-0.14625086 
c=0.00010960625 
d=-17026.454 
e=1472551.8 

1_sp_heat=a+(b*T)+(c*T**2)+(dlT)+(elT**2) !kJ/kgK 
END 

FUNCTION v_sp_heat(T) 
DOUBLE PRECISION:: T, v_sp_heat, a, b, c, d 
a=-0.15521575 
b=2.1455738D-2 
c=-7.84204ID-5 
d=9.8101939D-8 

v _sp_heat=a+(b*T)+(c*T**2)+(d*T**3) !kJ/kgK 
END 

FUNCTION T_sat(P) 
DOUBLE PRECISION:: P, T_sat, a, b, c, d, e, [, g, h 
a=280.14591 
b=14.578656 
c=0.81618388 
d=0.090358794 
e=-0.01233292 
[=0.0036827453 
g=-0.00036521131 
h=1.7727335D-5 

T_sat=a+b*(LOG(P»+c*(LOG(P»**2+d*(LOG(P»**3+e*(LOG(P»**4+f*(LOG(P»**5+g*(LOG(P»* 
*6+h*(LOG(P»**7 
END 

function therm _ cond(T) 
DOUBLE PRECISION:: therm_cond, T 
therm _cond=0.56917061 +0.0018981353*(T-273.15)-8.8322257* 1 0**(-6.0)*(T-273.15)**2.0+ 7.2806061 
*10**(-9.0)*(T-273.15)**3.0 !W/mK 
return 
end 



function l_dens(P) 
DOUBLE PRECISION:: I_dens, P 
1_ dens= 1 008.1433+(-7 .3239274)*P**0,41233836 
return 
end 

FUNCTION PRESS2(T) 
DOUBLE PRECISION:: T, PRESS2, a, b, c 
a=15.38366 
b=-2111.3788 
c=-36815.655 
PRESS2=EXP(a+blT+clT**1.5) 
return 
END 

function v _ dens(T) 
DOUBLE PRECISION:: v_dens, T, a, b, c 
a=94.90762DO 
b=-0.023178676DO 
c=-0.24376403DO 

v _dens=EXP«a+c*T)/(1.0DO+b*T» !kg/m3 
return 
end 

function dvdT(T) 
DOUBLE PRECISION :: dvdT, T, b, c 
a=94.90762DO 
b=-0.023178676DO 
c=-0.24376403DO 

!kg/m3 

dvdT=«c-a*b)/(I.0DO+b*T)**2)*EXP«a+c*T)/(I.0DO+b*T» 
return 
end 
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!************************** R113 Properties********************************************* 

FUNCTION PRESS(T, hfg) 
DOUBLE PRECISION :: T, hfg, PRESS 
DOUBLE PRECISION:: Cpl, kl, ai, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi 
LOGICAL:: IDEAL 
COMMONlbubj>aramlCpl, kl, ai, dl, sigma, G, hfgo, dhfgo, Tinf, Pinf, Tsat, pi, IDEAL 

PRESS=Pinf*EXP( (1.0IG)*(hfgolTsat-hfg/T) )*(T ITsat)**( dhfgo/G) 
return 
END 

FUNCTION D_LATENT(T) 
DOUBLE PRECISION ::b, c, d, T, D_LATENT 
b=-14.40485 
c=0.034749747 
d=-3.3548106D-5 



D_LATENT=b+(2.0*c*T)+(3.0*d*T**2) !kJ/kgK, Tin K 
return 
END 

FUNCTION v_sp_heat(T) 
DOUBLE PRECISION:: T, v_sp_heat, a, b, c, d 
a=-0.15521575 
b=2.1455738D-2 
c=-7.84204lD-5 
d=9.8101939D-8 

v _sp _ heat=a+(b*T)+( c*T**2)+( d*T**3) !kJ/kgK 
END 

FUNCTION PRESS2(T) 
DOUBLE PRECISION :: T, PRESS2, a, b, c, d, e,f 
a=2957.142318DO 
b=-53.1787872DO 
c=0.371694819DO 
d=-O. 0012354751 06DO 
e=I.860059877D-06 
f=-8. 71 0006423D-l 0 
PRESS2=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 
return 
END 

FUNCTION LATENT(T) 
DOUBLE PRECISION:: a, b, c, d, e, f, T, LATENT 
a=2737.4884914661lDO 
b=-39.3003642747073DO 
c=0.239810862940233DO 
d=-0.000727033297258DO 
e= 1.089453393D-06 
f=-6.47894D-I0 
LATENT=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kJ/kg, Tin K 
return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION, a, b, c, d, e 
a=100.66367DO 
b=-0.26354029DO 
c=0.00017492986DO 
d=-8150.6195DO 
e=535170.24DO 
TENSION=a+b*T+c*T**2+d/T+err**2 !mN/m 
return 
end 

FUNCTION Up_heat(T) 
DOUBLE PRECISION :: T, l_sp_heat, a, b, c, d 
a=-2687.2937711853DO 
b=32.1760788219DO 
c=-0.0967652227DO 
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d=0.0001001237DO 
1_sp_heat=(a+(b*T)+(c*T**2)+(d*T**3»11000.0DO !kJ/kgK 

END 

FUNCTION T_sat(P) 
DOUBLE PRECISION:: P, T_sat, a, b, c, d, e 
a=227.62444DO 
b=13.885934DO 
c=0.69937307DO 
d=0.15567729DO 
e=-0.01232013DO 
f=0.002049886DO 

T_sat=a+b*LOG(P)+c*LOG(P)**2+d*LOG(P)**3+e*LOG(P)**4+f*LOG(P)**5 
END 

function therm _ cond(T) 
DOUBLE PRECISION:: therm_cond, T, a, b, c, d, e, f 
a=572.672566562039DO 
b=-7 .220703521 01712DO 
c=0.044478466185909DO 
d=-O.OOO 139306769359DO 
e=2.15863959D-07 
f=-1.32549D-I0 
therm _ cond=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)* 1.0D-3 !W/mK 
return 
end 

function l_dens(Tin) 
DOUBLE PRECISION:: tdens, T, Tin, a, b, c, d, e, f 
T=Tin-273.15DO 
a= 16. 1767736505804DO 
b=-O.021409787008367DO 
c=3.666728067D-06 
d=-1.21 09483 67D-06 
e= 1. 1848044D-08 
f=-3.7748D-ll 
1_dens=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)*100.0DO !kglm3 
return 
end 

function v _ dens(T) 
DOUBLE PRECISION:: v_dens, T, a, b, c, d, e, f 
a=-299.6373102DO 
b=4.974715994DO 
c=-0.03322820 19IDO 
d=O.OOOI134072022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 
v dens=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kg/m3 
return 
end 

function dvdT(T) 
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DOUBLE PRECISION:: dvdT, T, b, c, d, e, f 

b=4.974715994DO 
c=-0.03322820 19100 
d=0.0001134072022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 

dvdT=b+2.0*c*T+3.0*d*T**2+4.0*e*T**3+5.0*f*T**4 
return 
end 
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APPENDIXE 

FORTRAN 90 Code for Homogeneous Growth with a Staggered Grid Arrangement 

This program solves the one dimensional, radially symmetric bubble growth problem 

in initially superheated water from its thermodynamic critical size through the surface 

tension, inertial and heat transfer controlled stages of growth. Bubble growth away from the 

initial unstable equilibrium state of the vapor nucleus is instigated by a small increase in 

radius over a small time step. A fourth order Runge-Kutta scheme is then utilized to solve 

the modified Rayleigh equation together with the Interfacial Energy balance equation for the 

variables Tv, R, dRldt from which Pv and dv can also be determined. The vapor phase is 

assumed to be saturated and the properties are related through curve fits of the tabulated 

property data. The temperature gradient at the interface is determined from the energy 

equation including the convective term. A staggered grid arrangement is utilized to cluster 

the grid points at the interface where the gradients are the highest. A coordinate 

transformation is performed so that the energy equation is solved on a uniform grid in the 

computational domain. Excellent agreement with experimental results as well as with a 

uniform grid, grid independent solution has been found. With a constant Sr=0.65, 800 grid 

points are required to give a grid independent solution. This is a 50 times reduction as 

compared with the uniform grid solution. 

184 



program stagger 
implicit none 

INTEGER:: K, J, NEXT, KK 
INTEGER, PARAMETER:: M=800, N=2000000 
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DOUBLE PRECISION, DIMENSION(N) :: Elhs _,Etm 1_,Etm2 _,Mlhs _,Mtm 1_,Mtm2 _,Mtm3 _,dTdr _,d2Rdt_ 
DOUBLE PRECISION, DIMENSION(N):: t_, R_, Tmp_, DELTA, dRdt_, dTdU,kin_,inert_ 
DOUBLE PRECISION, DIMENSION(M) :: TEMP, TEMP_old, rold, IT, m, mn, Ja,a,d,BB,EE,HH 
DOUBLE PRECISION, DIMENSION(M,3):: T_o, T_6, T_5, T_ 4, T_3, T_2, T_I, T_O, T_I, T_2, T_e 

!Liquid 
DOUBLE PRECISION:: Tsup 
!Vapor 
DOUBLE PRECISION :: Ro, R, Pv, Tv, dRdt 

! Runge Kutta 
DOUBLE PRECISION :: xi, yli, y2i, y3i, FI, F2, F3, x, yI, y2, y3, x_I, yli_I, y2i_I, y3i_I, & 

kII, k2I,k3I,k4I,kI2,k22,k32,k42,kI3,k23,k33, k43 
! Miscillaneous 
DOUBLE PRECISION :: t, dt, dist, deU, t_o, beta, P, & ! dTdr, 

Mlhs, Mtm2, Mtm3, d2Rdt2, Elhs,Etml,Etm2,dTdt,g_T,dTdr,tend 

!Functions 
DOUBLE PRECISION:: dvdt, v_dens, LATENT, PRESS2, TENSION, t sp _heat, therm _ cond, t dens, T _sat, 
hfg, dv 
!Common 
DOUBLE PRECISION :: Sr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMONlbubJ)aramlSr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 

OPEN(UNIT=I, FILE='c:\tony\data files\one_dim.dat', STATUS='old') 
OPEN(UNIT=2, FILE='c:\tony\data files\grad_o.dat', STATUS='old') 
OPEN(UNIT=3, FILE='c:\tony\data files\grad_6.dat', STATUS='old') 
OPEN(UNIT=4, FILE='c:\tony\data files\grad_5.dat', STATUS='old') 
OPEN(UNIT=5, FILE='c:\tony\data files\grad _ 4.dat', ST ATUS='old') 
OPEN(UNIT=6, FILE='c:\tony\data files\grad_3.dat', STATUS='old') 
OPEN(UNIT=7, FILE='c:\tony\data files\grad_2.dat', STATUS='old') 
OPEN(UNIT=8, FILE='c:\tony\data files\grad_l.dat', STATUS='old') 
OPEN(UNIT=9, FILE='c:\tony\data files\grad_O.dat', STATUS='old') 
OPEN(UNIT= 1 0, FILE='c:\tony\data files\grad _I.dat', ST A TUS='old') 
OPEN(UNIT=II, FILE='c:\tony\data files\grad_2.dat', STATUS='old') 
OPEN(UNIT=I2, FILE='c:\tony\data files\grad_e.dat', STATUS='old') 
OPEN(UNIT= 13, FILE='c:\tony\data files\onedim.dat', ST A TUS='old') 
OPEN(UNIT=I4, FILE='c:\tony\data files\property.dat', STATUS='old') 

Sr=O.65DO 
t 0=1.0D-9 
beta=I500.0 !this term affects the rapid growth region. ie. for 'long' surface tension 

!growth, the time step may be too course to capture the rapid growth term 
!so it must be increased 

det e= 1.0DO/(REAL(M -1» 

K=l 



Rinf=O.OSDO !m 

!Constants 
pi=3.141S926S3S897931 DO 

tend= 12.0D-3 

!LIQUID initial conditions 
Pinf=(1.0DODO)*101.33DO !set the system pressure (kPa) 
Tsat=T_sat(Pinf) ! calculate the corresponding saturation temperature (K) 
Tsup=(lS.ODO +O.ODO) ! set the system superheat (K) 
Tinf=Tsat+Tsup !K 
Cpl=( 1.OD3)*I_ sp _ heat(Tinf) !J/kgK 
kl=therm_cond(Tinf) !W/mK 
dl=l_dens(Pinf) 
al=kl/( dl *Cpl) 
sigma=TENSION(Tsat)*(I.OD-3) !N/m 
hfg=( I.OD3)*LA TENT(Tsat) 
dv=v _ dens(Tsat) 

do J=l,M 
TEMP _old(J)=Tinf 
end do 

!V APOR initial condition 
Tv=Tinf 
Pv=PRESS2(TV) 

WRITE(14,2) Tsat,Tsup,Tinf,dv,dl,hfg,Cpl,al,Pinf,Pv 
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2 format (flS.S, Ix,flS.5,lx,flS.S,lx,flS.lO,lx,flS.S,lx,EIS.lO,lx,ElS.lO,lx,ElS.lO, lx,ElS.lO, IX,EIS.IO) 

Ro=(2.0*sigma)/« I.OD3)*(Pv-Pinf) 
call radius(Ro, M, rold) !sets initial radius 

UK)=t* 1.OD3 
R_(K)=Ro* I.OD3 
Tmp_(K)=Tv 
dRdt_(K)=O.O 
! ___________ OUTPUTMATRICES _______________ _ 

!INITIAL DISTURBANCE 
dt=1.0D-9 
dist=S.OD-6 
R=Ro+dist*Ro 

DOJ=l,M 
T_o(J,1)=t*1.0D3 
T_o(J,2)=rold(J)*1.0D3 !mm this is the same as z(1,J) 
T_o(J,3)=TEMP _old(J)-273.1SDO !degrees Celcius 
END DO 
NEXT=l 



20 K=K+l 
!find kl's 

del t=O.ODO 
xi=t 
yli=Tv 
y2i=R 
y3i=dRdt 

CALL FFl(xi, yli, y2i, y3i, M, deU, TEMP_old, rold, TEMP, Fl) 
F2=y3i 
call FF3(xi, yli, y2i, y3i, F3) 

kll=Fl 
k12=F2 
k13=F3 

del t=0.5DO*dt 
x=xi+del t 
yl =yli+kll *0.5DO*dt 
y2=y2i+k12*0.5DO*dt 
y3=y3i+k13*0.5DO*dt 

CALL FFl(x, yl, y2, y3, M, deU, TEMP_old, rold, TEMP, FI) 
F2=y3 
call FF3(x, yl, y2, y3, F3) 

k21=Fl 
k22=F2 
k23=F3 

del t=O.5DO*dt 
x=xi+del t 
yl=yli+k21 *0.5DO*dt 
y2=y2i+k22 *0.5DO*dt 
y3=y3i+k23*0.5DO*dt 

CALL FFl(x, yl, y2, y3, M, deU, TEMP_old, rold, TEMP, Fl) 
F2=y3 
call FF3(x, yl, y2, y3, F3) 

k31=Fl 
k32=f2 
k33=f3 

del t=dt 
x=xi+del t 
yl =yl i+k31 *dt 
y2=y2i+k32*dt 
y3=y3i+k33*dt 
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CALL FFI(x, yl, y2, y3, M, deU, TEMP_old, rold, TEMP, FI) 
F2=y3 
call FF3(x, y I, y2, y3, F3) 

k41=FI 
k42=f2 
k43=f3 

x I=xi+dt 
yl i_I =yli+(dtJ6.0)*(kll +2.0*k21 +2.0*k31 +k41) 
y2i_1 =y2i+( dtJ6.0)*(k 12+2.0*k22+2.0*k32+k42) 
y3i_1 =y3i+( dtJ6.0)*(kI3+2.0*k23+2.0*k33+k43) 

del t=dt 
t=x I 
Tv=yli_1 
R=y2i_1 
dRdt=y3i_1 

UK)=t* 1.0D3 
Tmp_(K)=Tv 
R_(K)=R*1.0D3 
dRdUK)=dRdt 
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!,----------------------------------------------------------------

if (t<tend.and.R<40.00D-3) then 

P=PRESS2(Tv) 

call radius(R, M, IT) 

call metrics(M, IT, m, mn) 
call trans_coef(M, m, mn, Ja, a, d) 
call temp_coef(M, deU, IT, rold, m, Ja, R, dRdt, a, d, Tv, BB, EE, HH) 
call temp_matrix(M, deU, BB, EE, HH, Tv, TEMP_old, TEMP) 
dTdt=(2.0*(TEMP( 4»-9.0*(TEMP(3»+ 18.0*(TEMP(2»-11.0*(TEMP( I »)/(6.0*del_ e*m( I» 
dTdr _(K)=dTdr 
DELTA(K)=(TEMP(M)-TEMP(1 »/dTdr 
! OUTPUTMATIUCES ________________________ __ 

!THESE ARE THE TERMS IN THE EQUATION OF MOTION 
Mlhs=(I.OD3)*(P-Pinf)/(dl*R) 
Mtm2=(3 .OD0I2.0DO)*( dRdt**2)1R 
Mtm3=2.0DO*sigma/( dl*R **2) 

d2Rdt2=Mlhs-Mtm2-Mtm3 
d2RdUK)=d2Rdt2 

Mlhs _(K)=Mlhs*R *dl/I 000.0 
Mtm l_(K)=dl*R *d2Rdt21l 000.0 
Mtm2_(K)=Mtm2*R*dIIl000.0 



Mtm3 _(K)=Mtm3*R *dlll 000.0 

!THESE ARE THE TERMS IN THE INTERFACIAL ENERGY BALANCE EQUATION 
dv=v _ dens(Tv) 
g_ T=dvdT(Tv) 

Elhs=kl*dTdr 
Etm 1 =hfg*dv 
Etm2=(hfg/3.0)*g_ T 

dTdt=(l.O/(R *Etm2»*(Elhs-Etml *dRdt) 

dTdUK)=dTdt 

Elhs _(K)=Elhs 
Etml_(K)=Etm1 *dRdt 
Etm2 _(K)=Etm2*R *dTdt 

!in this section the temperature gradient matricies are filled 
IF(t>=1.OD-9.and.NEXT=1)then 
DOJ=l,M 
T_6(1,1)=t*l.OD3 
T_6(J,2)=rr(J)*l.OD3 !mm this is the same as z(l,J) 
T_6(J,3)=TEMP(J)-273.15DO !degrees Celcius 
END DO 
NEXT=NEXT+ 1 
ELSEIF(t>= 1.OD-8.and.NEXT==2)then 
DOJ=l,M 
T_5(1,1)=t*l.OD3 
T_5(J,2)=rr(J)*l.OD3 !mm this is the same as z(l,J) 
T_5(J,3)=TEMP(J)-273.15DO !degrees Celcius 
END DO 
NEXT=NEXT+ 1 
ELSEIF(t>= 1.OD-7 .and.NEXT=3 )then 
DOJ=l,M 
T_ 4(1,1)=t*l.OD3 
T _ 4(J,2)=rr(J)* l.OD3 !mm this is the same as z(1,J) 
T_ 4(J,3)=TEMP(J)-273.15DO !degrees Celcius 
END DO 
NEXT=NEXT+l 
ELSEIF(t>= 1.OD-6.and.NEXT=4)then 
DOJ=l,M 
T_3(1,1)=t*l.OD3 
T_3(J,2)=rr(J)*l.OD3 !mm this is the same as z(1,J) 
T _3(J,3)=TEMP(J)-273.15DO !degrees Celcius 
END DO 
NEXT=NEXT+ 1 
ELSEIF(t>= 1.OD-5.and.NEXT=5)then 
DOJ=l,M 
T_2(1,1)=t*l.OD3 
T_2(J,2)=rr(J)*l.OD3 !mm this is the same as z(1,J) 
T_2(J,3)=TEMP(J)-273.15DO !degrees Celcius 
END DO 
NEXT=NEXT+l 
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call radius(R, M, rold) 

do J=I,M 
TEMP _ old(J)=TEMP(J) 
end do 

dt=t_ o*EXP(REAL(K-2)lbeta) 

GOT020 
end if 

100 do J= I ,K,SO 

ELSEIF(t>= I.OD-4.and.NEXT==6)then 
DO J=I,M 
T _1(1, I)=t* l.OD3 
T_I(J,2)=rr(J)*l.OD3 !mm this is the same as z(l,J) 
T_I(J,3)=TEMP(J)-273.lSDO !degrees Celcius 
END DO 
NEXT=NEXT+ I 
ELSEIF(t>= I.OD-3.and.NEXT==7)then 
DO J=I,M 
T_O(1,I)=t* I.OD3 
T _ 0(J,2)=rr(J)* l.OD3 !mm this is the same as z(l,J) 
T_0(J,3)=TEMP(J)-273.lSDO !degrees Celcius 
END DO 
NEXT=NEXT+ I 
ELSEIF(t>=S.OD-3.and.NEXT=8)then 
DO J=I,M 
T_I(l,I)=t*l.OD3 
T_I(J,2)=rr(J)*l.OD3 !mm this is the same as z(l,J) 
T_I(J,3)=TEMP(J)-273.ISDO !degrees Celcius 
END DO 
NEXT=NEXT + I 
ELSEIF(t>= I 0.OD-3 .and.NEXT==9)then 
DOJ=I,M 
T _ 2(I,I)=t* I.OD3 
T _ 2(J,2)=rr(J)* l.OD3 !mm this is the same as z(l,J) 
T_2(J,3)=TEMP(J)-273.ISDO !degrees Celcius 
END DO 
NEXT=NEXT + I 
ELSEIF(t>= I S.OD-3.and.NEXT= I O)then 
DOJ=I,M 
T_e(l,I)=t* l.OD3 
T_e(J,2)=rr(J)*l.OD3 !rum this is the same as z(I,J) 
T_e(J,3)=TEMP(J)-273.ISDO !degrees Celcius 
END DO 
NEXT=NEXT+ I 
endif 
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WRITE (l,2S) t_(J), R_(J), dRdt_(J), d2Rdt_(J), Tmp_(J)-273.IS, 
dTdr _(J),Tinf-Tmp _(J),(Tinf-Tmp _(J»/dTdr _(J),dTdUJ) 

2S FORMAT(fll.7, IX, flS.IO, IX, flS.lO, lx, EI2.S, IX, fl2.8,IX, EI2.S,IX, EI2.S,IX, EI2.5,IX, 
EI2.5) 
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end do 

do J=I,K,SO 
WRITE (13,26) UJ),Mlhs_(J), MtmI_(J), Mtm2_(J),Mtml_(J)+Mtm2_(J), Mtm3_(J), Elhs_(J), Etml_(J), 
Etm2_(J) 
26 FORMAT(fll.7, IX, IX,EI2.5, IX,El2.S, Ix,El2.5, Ix,El2.S, Ix,EI2.S, Ix,EI2.S, I x,EI2.S, lx,EI2.5) 
end do 

!*************************************************************************************** 

write (2,*) T_o(1,I) 
do J=I,M 
write (2,30) T_o(J,2), T_o(J,3), T_o(J,4) 
30 format (flS.IO, IX, FIO.5, IX, FIO.S) 
end do 

write (3,*) T_6(1,1) 
do J=I,M 
write (3,3S) T_6(J,2), T_6(J,3), T_6(J,4) 

3S format (flS.IO, IX, FIO.S, IX, FIO.S) 
end do 

write (4,*) T_S(1,I) 
doJ=I,M 
write (4,40) T_S(J,2), T_S(J,3), T_S(J,4) 
40 format (flS.IO, IX, FIO.S, IX, FIO.S) 
end do 

write (S,*) T_4(1,I) 
do J=I,M 
write (S,4S) T _ 4(J,2), T _ 4(J,3), T _ 4(J,4) 
4S format (flS.IO, IX, FIO.S, IX, FIO.S) 
end do 

write (6,*) T_3(1,l) 
do J=I,M 
write (6,SO) T_3(J,2), T_3(J,3), T_3(J,4) 
SO format (flS.IO, IX, FIO.S, IX, FIO.S) 
end do 

write (7,*) T_2(1,1) 
do J=I,M 
write (7,SS) T_2(J,2), T_2(J,3), T_2(J,4) 
55 format (fl5.10, IX, FIO.5, IX, FIO.5) 

end do 

write (8,*) T_I(l,I) 
do J=I,M 
write (8,60) T_I(J,2), T_I(J,3), T_I(J,4) 
60 format (fl5.1O, IX, FIO.5, IX, FIO.5) 

end do 

write (9,*) T_O(l,I) 



stop 
end program 

do J=I,M 
write (9,65) T_O(J,2), T_O(J,3), T_O(J,4) 
65 format (fl5.10, IX, FIO.5, IX, FIO.5) 
end do 

write (10,*) T_I(1,I) 
do J=I,M 
write (10,70) T_I(J,2), T_I(J,3), T_l(J,4) 
70 format (fl5.10, IX, FlO.5, IX, FIO.5) 
end do 

write (11,*) T_2(1,I) 
do J=I,M 
write (11,75) T_2(J,2), T_2(J,3), T_2(J,4) 
75 format (fl5.10, IX, FI0.5, IX, FlO.5) 

end do 

write (12,*) T_e(1,I) 
do J=I,M 
write (12,80) T_e(J,2), T_e(J,3), T_e(J,4) 
80 format (fl5.10, IX, FIO.5, IX, FI0.5) 
end do 

SUBROUTINE FF3(t, yl, y2, y3, A3) 
DOUBLE PRECISION :: t, g_R, f4, P, yl, y2, y3, A3, PRESS2!, ratio 
DOUBLE PRECISION :: Sr,Cpl, kI, aI, dI, sigma, Tinf, Pinf, Tsat, pi, deI_e, Rinf 
COMMONlbubj)aramlSr,CpI; kI, aI, dI, sigma, Tinf, Pinf, Tsat, pi, deI_e, Rinf 
P=PRESS2(YI) 

!this assumes that RlRinf=O 
g_ R =2.0DO*sigmaJ( dI*y2**2) 

f4=(1.0D3)*(P-Pint)/( dI*y2) 

A3=f4-g_ R-(3.0D0I2.0DO)*(y3**2)/y2 

RETURN 
END SUBROUTINE 

SUBROUTINE FFI(x, yl, y2, y3, M, deU, Told, r_old, T, AI) 

INTEGER:: M 
DOUBLE PRECISION, DIMENSION (M):: Told, T, r, r_old, m, mn, Ja, a, d, BB, EE, HH 
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DOUBLE PRECISION :: x, fl, fl, f3, hfg, dTdr, dv 
DOUBLE PRECISION:: AI, yI, y2, y3 
DOUBLE PRECISION :: del t 
DOUBLE PRECISION:: LATENT, v_dens, dvdT, g_T 
DOUBLE PRECISION :: Sr,Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMONlbub-yaramlSr,Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
hfg=(l.OD3)*LATENT(yI) 

IF( deU>O.ODO)then 

call radius(y2, M, r) 
call metrics(M, r, m, mn) 
call trans_coef(M, m, mn, Ja, a, d) 
call temp_coef(M, deU, r, r_old, m, Ja, y2, y3, a, d, yl, BB, EE, HH) 
call temp_matrix(M, deU, BB, EE, HH, yl, Told, T) 

dTdr=(2.0DO*T( 4)-9.0DO*T(3)+ I8.0DO*T(2)-11.ODO*T( 1 »/(6.0DO*del_ e*m( 1» 

ELSE 

call radius(y2, M, r) 
call metrics(M, r, m, mn) 
dTdr=(2.0DO*Told( 4)-9.0DO*Told(3)+ 18.0DO*Told(2)-11.ODO*ToId(1 ))/( 6.0DO*del_ e*m( 1» 

ENDIF 

dv=v _ dens(y 1 ) 
g_ T=dvdT(y 1) 

f3=kl*dTdr 
fl=hfg*dv 
f1 =(hfg/3 .ODO)* g_ T 

Al =( 1.ODO/(y2*f1 ))*(f3-fl*y3) 

RETURN 
END SUBROUTINE 
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!************************************************************************************* 
***** 

subroutine radius(Rt, M, r) 

INTEGER:: M 
DOUBLE PRECISION, DIMENSION(M) :: r, Dj 
DOUBLE PRECISION :: Rt 
DOUBLE PRECISION :: Sr,Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMONlbub-yaramlSr,Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 

do J=I,M 



! Set the radial grid lines in the physical domain 
Dj(J)=Rt+(Rinf-Rt)*(l.O-Sr* ATAN«(l.O-(REAL (J-I)/(M-I»)*T AN( 1.0/Sr))) 

r(J)=Dj(J) 
end do 

return 
end subroutine 
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!************************************************************************************* 
***** 
subroutine metrics(M, r, m, mn) 

INTEGER::M 
DOUBLE PRECISION, DIMENSION(M) :: r, m, mn 
DOUBLE PRECISION :: Sr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMON/bub~aramlSr,Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
do J=2,M-l 

m(J)=(r(J+ 1)-r(J-l»/(2*del_e) 
mn(J)=(r(J+ 1 )-2*r(J)+r(J-l »/( del_ e**2) 

end do 

m( 1 )=(-3 .O*r( 1 )+4.0*r(2)-r(3»/(2.0*del_ e) 
mn( 1 )=(2.0*r( 1 )-5 .0*r(2)+4.0*r(3 )-r( 4 »/( del_ e**2) 

m(M)=(3 .0*r(M)-4.0*r(M-l )+r(M-2»/(2.0*del_ e) 
mn(M)=(2.0*r(M)-5.0*r(M-l )+4.0*r(M -2)-r(M -3) )/( del_ e**2) 

return 
end subroutine 

!************************************************************************************* 
***** 
subroutine trans_coef(M, m, mn, Ja, a, d) 

INTEGER :: M, J 
DOUBLE PRECISION, DIMENSION(M) :: m, mn, Ja, a, d 

do J=I,M 
a(J)=m(J) * *2 
d(J)=-m(J)*mn(J) 
Ja(J)= 1.0/(m(J)**2) 

end do 

return 
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end subroutine 

!************************************************************************************* 
***** 

subroutine temp_coef(M, del_t, r, rold, rn, Ja, Rt, dRdt, a, d, Tv, BB, EE, HH) 
DOUBLE PRECISION, DIMENSION(M):: r, raId, rn, Ja, a, d, BB, EE, HH, cl, c3, Uc 
DOUBLE PRECISION :: deU, Tv, Rt, dRdt 
DOUBLE PRECISION :: Sr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMONlbub---'paramlSr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
do J=I,M 

U c(J)=rn( J)*( (dRdt*(Rtlr(J»* *2)-(r(J)-rold( J) )/del_ t) 
end do 

do J=I,M 
c I (J)=Ja(J)*Uc(J)/al-( (Ja(J)**2)*d(J)+ 2.0* Ja(J)*rn(J)/r( J» 
c3(J)=-(Ja(J)**2)*a(J) 

end do 

do J=I,M 
BB(J)=( c I (J)/(2.0*del_ e )+c3(J)/( del_ e**2» 
EE(J)= I.O/(al *deU)-(2.0*c3(J)/( del_ e**2» 
HH(J)=( -c I (J)/(2.0*del_ e )+c3(J)/( del_ e**2» 
end do 
return 
end subroutine 

subroutine temp_matrix(M, deU, BB, EE, HH, Tv, Told, T) 
INTEGER:: M 
DOUBLE PRECISION, DIMENSION(M):: BB, EE, HH, a, b, c, d, Told, T, T_2 
DOUBLE PRECISION :: deU, Tv 
DOUBLE PRECISION :: Sr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
COMMONlbub---'paramlSr,Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, del_e, Rinf 
T(M)=Tinf 

'Set up equations so that they are in the form (Patanker): 

a(1 )T(I )=b( I )T(2)+d(2) 
a(2)T(2)=b(2)T(3)+c(2)T(I)+d(2) 

a(J)T(J)=b(J)T(J+ 1 )+c(J)T(J-l)+d(J) 

a(M-I )T(M-I )=c(M-I )T(M-2)+d(M-I) 

!********************************************************** 

do J=2,M-I 
a(J)=EE(J) 



if (J==2) then 
b(J)=-BB(J) 
c(J)=O.O 
d(J)=Told(J)/(al*dett)-HH(J)*Tv 

ELSEIF(J==M-l )then 
c(J)=-HH(J) 
b(J)=O.O 
d(J)=Told(J)/(al*del_t)-BB(J)*Tinf 

else 
c(J)=-HH(J) 
b(J)=-BB(J) 
d(J)=Told(J)/(al*deU) 

end if 
end do 

do J=I,M-2 
a( J)=a( 1+ 1 ) 
b(J)=b( 1+ 1 ) 
c(J)=c( 1+ 1 ) 
d(J)=d(1+ 1) 
end do 
call TDMA(M-2, a, b, c, d, T_2) 

do J=I,M 
IF(J=I)then 
T(J)=Tv 

ELSEIF(J==M)then 
T(J)=Tinf 

else 
T(J)=T_2(J-l) 

endif 
end do 

return 
end subroutine 
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!************************************************************************************* 
***** 
subroutine TDMA(M, a, b, c, d, U) 

INTEGER::M 
DOUBLE PRECISION, DIMENSION(M) :: a, b, c, d, P, Q, U 
DOUBLE PRECISION:: BET 

if (a(l)==O.O) pause 

BET=a(1) 
Q( 1 )=d( 1 )/BET 
P( 1 )=b( 1 )/BET 

do J=2,M 



BET=a(J)-c(J)*P(J-I) 

if (BET==O.O) pause 

P(J)=b(J)/BET 
Q(J)=(d(J)+c(J)*Q(J-I»/BET 

end do 

U(M)=Q(M) 

do J=M-I,l,-l 
U(J)=P(J)*U(J+ l)+Q(J) 
end do 

return 
end subroutine 
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!-------------------------------------------------------------------

!************************** Water Properties *** **************************************** 

FUNCTION PRESS2(T) 
DOUBLE PRECISION :: T, PRESS2, a, b, c 
a=15.38366 
b=-21 1 1.3788 
c=-36815.655 
PRESS2=EXP(a+blT+c/T**1.5) 
return 
END 

FUNCTION LATENT(T) 
DOUBLE PRECISION:: a, b, c, d, T, LATENT 
a=4535.5338 
b=-14.40485 
c=0.034749747 
d=-3.3 5481 06D-5 

LATENT=a+(b*T)+(c*T**2)+(d*T**3) !kJlkg, Tin K 
return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION 
TENSION=235.8DO*« 1.0DO-(T)/(3 74. 15DO+273.15DO))** 1.256DO)*( 1.ODO-(0.625DO)*(I.ODO-(T)/(37 
4.15DO+273.15DO))) !mN/m 
return 
end 

FUNCTION l_sp_heat(T) 
DOUBLE PRECISION :: T, l_sp_heat, a, b, c, d, e 
a=78.582798 
b=-0.14625086 
c=O.OOO 1 0960625 
d=-17026.454 



e=1472551.8 
l_sp_heat=a+(b*T)+(c*T**2)+(dlT)+(elT**2) !kJ/kgK 

END 

FUNCTION T_sat(P) 
DOUBLE PRECISION :: P, T_sat, a, b, c, d, e, [, g, h 
a=280.14591 
b=14.578656 
c=O.81618388 
d=O.090358794 
e=-O.O 1233292 
[=0.0036827453 
g=-0.00036521131 
h= 1. 7727335D-5 
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T_sat=a+b*(LOG(P»+c*(LOG(P»**2+d*(LOG(P»**3+e*(LOG(P»**4+f*(LOG(P»**5+g*(LOG(P»* 
*6+h*(LOG(P»**7 
END 

function thenn _ cond(T) 
DOUBLE PRECISION:: thenn_cond, T 
thenn_cond=0.56917061 +0.0018981353*(T-273.15)-8.8322257* 1 0**( -6.0)*(T -273.15)**2.0+7.2806061 
*1O**(-9.0)*(T-273.15)**3.0 !W/mK 
return 
end 

function 1_dens(P) 
DOUBLE PRECISION:: I_dens, P 
1_ dens=1 008.1433+( -7.3239274)*P**0.41233836 
return 
end 

function v _ dens(T) 
DOUBLE PRECISION:: v_dens, T, a, b, c 
a=94.90762DO 
b=-O.023178676DO 
c=-0.24376403DO 

v_dens=EXP«a+c*T)/(1.0DO+b*T» !kglm3 
return 
end 

function dvdT(T) 
DOUBLE PRECISION:: dvdT, T, b, c 
a=94.90762DO 
b=-O.023178676DO 
c=-O.24376403DO 

!kglm3 

dvdT=« c-a*b )/( 1.0DO+b*T)**2)*EXP«a+c*T)/(I.0DO+b*T» 
return 
end 



199 

!************************** R113 Properties********************************************** 

FUNCTION PRESS2(T) 
DOUBLE PRECISION :: T, PRESS2, a, b, c, d, e,f 
a=2957.142318DO 
b=-53.1787872DO 
c=O.371694819DO 
d=-O.OO 123547 5106DO 
e= 1.860059877D-06 
f=-8. 71 0006423D-l 0 
PRESS2=a+b*T +c*T* *2+d*T* *3+e*T**4+f*T** 5 
return 
END 

FUNCTION LA TENTCT) 
DOUBLE PRECISION:: a, b, c, d, e, f, T, LATENT 
a=2737.4884914661lDO 
b=-39.3003642747073DO 
c=O.239810862940233DO 
d=-O.000727033297258DO 
e= 1.089453393D-06 
f=-6.47894D-I0 
LATENT=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kJlkg, Tin K 
return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION, a, b, c, d, e 
a= 1 OO.66367DO 
b=-O.26354029DO 
c=O.OOOI7492986DO 
d=-8150.6195DO 
e=535170.24DO 
TENSION=a+b*T +c*T**2+d!T +eff**2 !mN/m 
return 
end 

FUNCTION l_sp_heat(T) 
DOUBLE PRECISION:: T, l_sp_heat, a, b, c, d 
a=-2687.2937711853DO 
b=32.1760788219DO 
c=-O.0967652227DO 
d=O.OOOI001237DO 

1_sp_heat=(a+(b*T)+(c*T**2)+(d*T**3»11000.0DO !kJ/kgK 
END 

FUNCTION T_sat(P) 
DOUBLE PRECISION :: P, T_sat, a, b, c, d, e 
a=227.62444DO 



b=13.885934DO 
c=0.69937307DO 
d=0.15567729DO 
e=-O.O 12320 13 DO 
f=0.002049886DO 
T_sat=a+b*LOG(P)+c*LOG(P)**2+d*LOG(P)**3+e*LOG(P)**4+f*LOG(P)**5 
END 

function therm _ cond(T) 
DOUBLE PRECISION:: therm_cond, T, a, b, c, d, e, f 
a=572.672566562039DO 
b=-7.22070352101712DO 
c=0.044478466185909DO 
d=-O.OOO 139306769359DO 
e=2.15863959D-07 
f=-1.32549D-I0 
therm_cond=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)*1.0D-3 !W/mK 
return 
end 

function l_dens(Tin) 
DOUBLE PRECISION:: I_dens, T, Tin, a, b, c, d, e, f 
T=Tin-273.15DO 
a= 16. 1767736505804DO 
b=-O.021409787008367DO 
c=3.666728067D-06 
d=-1.210948367D-06 
e=1.l848044D-08 
f=-3.7748D-ll 
l_dens=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)*100.0DO !kg/m3 
return 
end 

function v _ dens(T) 
DOUBLE PRECISION:: v_dens, T, a, b, c, d, e, f 
a=-299.6373102DO 
b=4.974715994DO 
c=-O.03322820 19lDO 
d=O.OOOl134072022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 
v_dens=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kg/m3 
return 
end 

function dvdT(T) 
DOUBLE PRECISION :: dvdT, T, b, c, d, e, f 

b=4.974715994DO 
c=-O.03322820 191 DO 
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d=O.OOOl1340n022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 

dvdT=b+2.0*c*T+3.0*d*T**2+4.0*e*T**3+5.0*f*T**4 
return 
end 
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APPENDIXF 

FORTRAN 90 Code for Heterogeneous Growth on a Heated Surface 

This program solves the two-dimensional, spherical or hemispherical bubble growth 

problem in a radially symmetric or distributed liquid temperature field from its 

thermodynamic critical size through the surface tension, inertial and heat transfer controlled 

stages of growth. Bubble growth away from the initial unstable equilibrium state of the 

vapor nucleus is instigated by a small increase in radius dRo over a small time step dto. A 

fourth order Runge-Kutta scheme is then utilized to solve the modified Rayleigh equation 

together with the Interfacial Energy balance equation for the variables Tv, R, dRdt from 

which Pv and dv can also be determined. The vapor phase is assumed to be in 

thermodynamic equilibrium throughout its growth so that the vapour properties can be 

determined from curve fit functions of the available property data. The temperature gradient 

at the interface is determined from the Energy equation including the non-linear convective 

term. A staggered grid arrangement is utilized to cluster the grid points at the interface where 

the gradients are the highest. A coordinate transformation is performed so that the energy 

equation is solved on a uniform grid in the computational domain. 
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program stagger 
implicit none 

INTEGER:: K, J, I, K_, NEXT,II 
INTEGER, PARAMETER:: M=800, N=60, KK=20000 
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DOUBLE PRECISION, DIMENSION(KK):: t_, R_, Tmp_, dRdt_, ql, q2, q3 
DOUBLEPRECISION,DIMENSION(KK)::Elhs_,Etml_,Etm2_,Mlhs_,Mtml_, Mtm2_,Mtm3_, dTdn_t, 
dTdn b 
DOUBLE PRECISION, DIMENSION(N,M):: TEMP, TEMP_old, r, z, rold, zold, GAM 
DOUBLE PRECISION, DIMENSION(M) :: Dj 
DOUBLE PRECISION, DIMENSION(N):: dT_norm, Tff, Ai, qi 
DOUBLE PRECISION, DIMENSION(M,4):: T_o, T_6, T_5, T_ 4, T_3, T_2, T_I, T_O, T_I, T_2, T_e 

!Liquid 
DOUBLE PRECISION :: Tsup 
!Vapor 
DOUBLE PRECISION :: Ro, Rt, Pv, Tv, dRdt 
!Runge Kutta 
DOUBLE PRECISION:: xi, yli, y2i, y3i, FI, F2, F3, x, yl, y2, y3, x_I, yli_l, y2i_l, y3i_l, & 

kll,k21,k31,k41,kI2,k22,k32,k42,kI3,k23,k33,k43 
! Miscillaneous 
DOUBLE PRECISION:: t, dt, dist, deU, t_o, beta, P 
LOGICAL :: NONUNIF, SPHERE, INITSUP 
DOUBLE PRECISION:: tw, ARG, erfc_x, sum_q, area, qevap, qcond 
DOUBLE PRECISION:: Elhs, Etml, Etm2, dTdt, g_T, dv, hfg 
DOUBLE PRECISION :: Mlhs, Mtm2, Mtm3, d2Rdt2, TIME 
DOUBLE PRECISION :: RAD,FIND 
DOUBLE PRECISION, DIMENSION(M,3) 
XY50,XY55,XY60,XY65,XY70,XY75,XY80,XY55 _,XY60 _,XY65 _,XY70 _,XY75 _,XY80_ 

!Functions 
DOUBLE PRECISION:: PRESS2, TENSION, I_sp_heat, therm_cond, I_dens, T_sat, DELTA, LATENT,& 

v_dens, dvdT 
!Common 
DOUBLE PRECISION :: Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub--paramlCpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

OPEN(UNIT=I, FILE='c:\tony\data files\one_dim.dat', STATUS='old') 
OPEN(UNIT=2, FILE='c:\tony\data files\grad_o.dat', STATUS='old') 
OPEN(UNIT=3, FILE='c:\tony\data files\grad_6.dat', STATUS='old') 
OPEN(UNIT=4, FILE='c:\tony\data files\grad_5.dat', STATUS='old') 
OPEN(UNIT=5, FILE='c:\tony\data files\grad_ 4.dat', STATUS='old') 
OPEN(UNIT=6, FILE='c:\tony\data files\grad_3.dat', STATUS='old') 
OPEN(UNIT=7, FILE='c:\tony\data files\grad_2.dat', STATUS='old') 
OPEN(UNIT=8, FILE='c:\tony\data files\grad_l.dat', STATUS='old') 
OPEN(UNIT=9, FILE='c:\tony\data files\grad_O.dat', STATUS='old') 
OPEN(UNIT= 1 0, FILE='c:\tony\data files\grad _1.dat', STA TUS='old') 
OPEN(UNIT= 11, FILE='c:\tony\data files\grad _ 2.dat', ST A TUS='old') 
OPEN(UNIT= 12, FILE='c:\tony\data files\grad _ e.dat', ST A TUS='old') 
OPEN(UNIT=13, FILE='c:\tony\data files\onedim.dat', STATUS='old') 
OPEN(UNIT= 14, FILE='c:\tony\data files\rout.dat', ST A TUS='old') 
OPEN(UNIT= 15, FILE='c:\tony\data files\zout.dat', ST A TUS='old') 



OPEN(UNIT=16, FILE='c:\tony\data files\Tout.dat', STATUS='old') 
OPEN(UNIT= 17, FILE='c:\tony\data files\T50.dat', ST A TUS='old') 
OPEN(UNIT= 18, FILE='c:\tony\data files\T70.dat', STA TUS='old') 
OPEN(UNIT=19, FILE='c:\tony\data files\T70 _.dat', STATUS='old') 
OPEN(UNIT=20, FILE='c:\tony\data files\T80.dat', STATUS='old') 
OPEN(UNIT=21, FILE='c:\tony\data files\T80 _.dat', ST A TUS='old') 
OPEN(UNIT=22, FILE='c:\tony\data files\T60.dat', STATUS='old') 
OPEN(UNIT=23, FILE='c:\tony\data files\T60_.dat', STATUS='old') 
OPEN(UNIT=24, FILE='c:\tony\data files\T55.dat', STATUS='old') 
OPEN(UNIT=25, FILE='c:\tony\data files\T55 _.dat', STATUS='old') 
OPEN(UNIT=26, FILE='c:\tony\data files\T65.dat', STATUS='old') 
OPEN(UNIT=27, FILE='c:\tony\data files\T65 _.dat', ST ATUS='old') 
OPEN(UNIT=28, FILE='c:\tony\data files\T75.dat', STATUS='old') 
OPEN(UNIT=29, FILE='c:\tony\data files\T75_.dat', STATUS='old') 

!Constants NOT TO beta changed 
NONUNIF=.true. 
SPHERE=.false. 
INITSUP=.true. 
pi=3. 141592653589793 IDO 
K =1 

!SpecifY the type of bubble growth. There three choices; 
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!l)Spherical growth in an initially unifonn temperature field:: NONUNIF=.FALSE. SPHERE=.TRUE. 
!2)Spherical growth in an initially non-unifonn temperature field:: NONUNIF=.TRUE. SPHERE=.TRUE. 
!3)Hemispherical growth in an initially non-unifonn temperature field:: NONUNIF=.TRUE. 
SPHERE=.FALSE. 
NONUNIF=.TRUE. !. ...... SPECIFIED 
SPHERE=.FALSE. !... .... SPECIFIED 

!SpecifY superheat for I-D simulated spherical bubble growth. Two choices; 
! l)specifY the initial superheat and detennine Tinf=Tsup+tsat:: INITSUP=.TRUE. 
!2)let Tinf equal the surface temperature at tw (the waiting time):: INITSUP=.FALSE. 
INITSUP=.F ALSE. 

!PHYSICAL DOMAIN 
Sr=O.65DO !controls the percentage of grid points clustered near the vapour/liquid interface 
Rinf=O.05DO !far field boundary in (m). Increasing this causes grid spacing to become larger so that it should 

!kept as small as possible but larger than the final bubble radius. 

!Because of the initially high growth rate away from the Surface Tension controlled region and the ·relatively 
!slower growth rate in the Heat Transfer controlled region, the time steps are initially small to resolve the 
!high dRdt and becomes larger as dRdt decreases at larger times according to the function 
dt=t_o*EXP«K-2)/beta). 
!Increasing beta decreases the rate at which dt increases. 
t 0=l.OD-8 
beta=1500.0DO 
K=1 

!COMUT ATIONAL DOMAIN 



! in the two-dimensional computational domain the grid spacing is uniform and equal to, 
del_e=DELTA(N) 
del_n=DELTA(M) 

!LIQUID INITIAL CONDITION 
Pinf= 117 .3DO !ambient pressure (kPa) ....... SPECIFIED 
Tsat=T_sat(Pint) !saturation pressure in (K) 
Cpl=(l.OD3)*I_sp_heat(Tsat) !specific heat J/kgK 
kl=therm_cond(Tsat) !thermal conductivity in (W/mK) 
dl=l_dens(Tsat) !density in (kg/m3) 
al=kl/(dl*Cpl) !thermal diffusivity in (m2/s) 
sigma=TENSION(Tsat)*(l.OD-3) !surface tension in (N/m) 

!SYSTEM CONDITIONS 
q=65000DO*O.l75DO !surface heat flux from Lee [1994] in (W/m2) ....... SPECIFIED 
tw=O.5DO !time to nucleation in (s) ....... SPECIFIED 
Tinf=48.8DO+273.15DO !the initial liquid temperature in (K) ....... SPECIFIED 

! l)Spherical growth in an initially uniform temperature field:: NONUNIF=.FALSE. SPHERE=.TRUE. 
if (.NOT.NONUNIF.AND.sPHERE) then 

if (INITSUP) then 
Tsup=3.0 !initial superheat (K) ....... SPECIFIED 
Tinf=Tsup+Tsat !this overrides previous definition of Tinf 

else 
do I=I,N 
TEMP _ old(I, 1 )=Tinf+(2.ODO*q*SQRT(al*tw/pi)/kl) 
end do 
Tinf=TEMP _old(1,I) !now Tinfis equal to the wall temperature at the waiting time 

end if 

! Specify a zero heat flux at the wall to ensure axial symmetry 
q=O.ODO 

!V APOR INITIAL CONDITION. Initially in thermal equilibrium with liquid 
Tv=Tinf 
Pv=PRESS2(Tv) 

!LIQUID INITIAL CONDITION. Sets the uniform liquid temperature field to Tinf 
do I=I,N 
do J=l,M 
TEMP _ old(l,J)=Tinf 

end do 
end do 

205 

!INITIAL BUBBLE RADIUS. Derived from mechanical equilibrium for a thin walled pressure vessel 
(Young-Laplace eqn) 
Ro=(2.O*sigma)/«1.0D3)*(Pv-Pinf)) 
call randz(Ro,N,M,rold,zold,GAM,Dj) !sets initial grid point distribution in the physical domain 

ELSEIF(NONUNIF) THEN 



!V APOR INITIAL CONDITION. Initial temperature equal to the wall temperature at nucleation 
Tv=Tinf+(2.0DO*q*SQRT(al*tw/pi)/ld) 
Pv=PRESS2(Tv) 

!Set the liquid temperature at the interface equal to the vapour temperature 
do I=l,N 
TEMP _ old(I, 1 )=Tv 

end do 
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!INITIAL BUBBLE RADIUS. Derived from mechanical equilibrium for a thin walled presure vessel 
(Young-Laplace eqn) 
Ro=(2.0*sigma)/« I.OD3)*(Pv-Pinf)) 
call randz(Ro,N,M,rold,zold,GAM,Dj) !sets initial grid point distribution in the physical domain 

!************************************************************************************* 
******* 

!2)Spherical growth in an initially non-uniform temperature field:: NONUNIF=. TRUE. SPHERE=.TRUE. 
IF(SPHERE) THEN 
!LIQUID INITIAL CONDITION. Sets the spherically symmetric non-uniform liquid temperature field 

according to 
!that normal to wall at nucleation. 

DO I=I,N 
DOJ=2,M 

ARG=(sqrt(rold(l,J)**2+zold(l,J)**2»/(2.0DO*SQRT(al*tw» 
call errorfnctn(ARG, pi, erfc_x) 

TEMP _ old(l,J)=Tinf+(2.0DO*q*SQRT( al *tw/pi)lkl)*EXP( -(rold(l,J)**2+zold(I,J)**2)/( 4.0DO*al *tw»& 
-( q*(sqrt(rold(l,J)**2+zold(l,J)**2) )lkl)* erfc _ x 

END DO 
END DO 

! Specify a zero heat flux at the wall to ensure axial symmetry 
q=O.ODO 

!************************************************************************************* 
******* 

!3)Hemispherical growth in an initially non-uniform temperature field:: NONUNIF=.TRUE. 
SPHERE=.F ALSE. 

ELSEIF(.NOT.SPHERE)THEN 

DO I=I,N 
DOJ=2,M 

ARG=(zold(l,J»/(2.0DO*SQRT(al*tw» 
call errorfnctn(ARG, pi, erfc_x) 

TEMP _ old(l,J)=Tinf+(2.0DO*q*SQRT( al *tw/pi)lkl)*EXP( -(zold(l,J)* *2)/( 4.0DO*al *tw»& 
-( q*(zold(I,J) )lkl)*erfc _ x 

END DO 
END DO 



END IF 
ENDIF 

!Set Initial Far Field boundary to constant temperature=T(r,z) @t=tw 
do I=l,N 
Tff(l)=TEMP _old(l,M) 
end do 
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__________________________ OUTPUTMATIDCES ________________________ _ 

!INITIAL DISTURBANCE 
dt=1.0D-9 
dist=5.0D-6 
Rt=Ro+dist*Ro 

20 K=K+l 
K =K +1 

TIME=TIME+dt 

DO J=l,M 
T _0(1, l)=t* 1.OD3 
T_o(1,2)=rold(N,J)*1.0D3 !mm this is the same as z(1,1) 
T _ 0(J,3)=TEMP _ 0Id(N,J)-273.l5DO !degrees Celsius 
END DO 
NEXT=l 

UK)=t* 1.OD3 
R _(K)=Ro* 1.0D3 
Tmp_(K)=Tv-273.l5DO 
dRdUK)=O.O 
ql(K)=O.O 
q2(K)=0.0 
q3(K)=0.0 

!Update far field temperature field assuming it follows 1 D steady state conduction 
!This is only needed when transient heating is assumed. 
DO I=l,N 
ARG=(zold(l,M»/(2.0DO*SQRT(al*tw» 
call errorfnctn(ARG, pi, erfc_x) 

Tff(l)=Tinf+(2.0DO*q*SQRT(al*(tw+TIME)/pi)lkl)*EXP(-(zold(I,M)**2)/(4.0DO*al*(tw+TIME»)& 
-( q*(zold(l,M»lkl)*erfc _ x 

END DO 

_______________________ FOURTHORDERRUNGE-KUTTA __________________ __ 

! Set initial values 



del t=O.ODO 
xi=t 
yli=Tv 
y2i=Rt 
y3i=dRdt 

!STEP #1 
CALL FF1(xi, yli, y2i, y3i, M, N, deU, Tff,TEMP _old, rold, zold, TEMP, Fl) 
F2=y3i 
call FF3(t, yli, y2i, y3i, F3) 

kll=Fl 
k12=F2 
k13=F3 

del t=O.5DO*dt 
x=xi+del t 
yl=yli+kll *O.5DO*dt 
y2=y2i+kI2*0.5DO*dt 
y3=y3i+k 13 *O.5DO*dt 

!STEP#2 
CALL FF1(x, yl, y2, y3, M, N, deU, Tff,TEMP _old, rold, zold, TEMP, Fl) 
F2=y3 
call FF3(t, yl, y2, y3, F3) 

k21=Fl 
k22=F2 
k23=F3 

del t=O.5DO*dt 
x=xi+del t 
yl=yli+k21 *O.5DO*dt 
y2=y2i+k22*O.5DO*dt 
y3=y3i+k23*O.5DO*dt 

!STEP#3 
CALL FF1(x, yl, y2, y3, M, N, deU, Tff,TEMP _old, rold, zold, TEMP, Fl) 
F2=y3 
call FF3(t, yl, y2, y3, F3) 

k31=Fl 
k32=f2 
k33=f3 

del t=dt 
x=xi+del t 
yl=yli+k31 *dt 
y2=y2i+k32*dt 
y3=y3i+k33*dt 

!STEP#4 
CALL FF1(x, yl, y2, y3, M, N, deU, Tff,TEMP _old, rold, zold, TEMP, Fl) 
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F2=y3 
call FF3(t, yl, y2, y3, F3) 

k41=Fl 
k42=f2 
k43=f3 

!STEP #4 
!UPDATED VALUES OF t, R, and dRdt AT THE NEXT TIME STEP 
x l=xi+dt 
yli_l =yli+(dtJ6.0DO)*(kll +2.0DO*k21 +2.0DO*k31 +k41) 
y2i_l =y2i+( dtJ6.0DO)*(k12+2.0DO*k22+2.0DO*k32+k42) 
y3i_l =y3i+( dtJ6.0DO)*(k13+2.0DO*k23+2.0DO*k33+k43) 

del t=dt 
t=x I 
Tv=yli_l 
Rt=y2i_1 
dRdt=y3i_l 
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! ________________________ OUTPUTMATruCES ________________________ ___ 

!CHECK TIME CONSTRAINT 
if (t<=101.0D-3) then 

UK)=t* I.OD3 
Tmp _(K)=Tv-273.15DO 
R _(K)=Rt* 1.0D3 
dRdUK)=dRdt 

______________________ ~BUBBLEDYNAMICS ________________________ ___ 

!this is identical to the subroutine to solve energy equation 
hfg=(I.OD3)*LATENT(Tv) 
!CALL FFI(dt, Tv, Rt, dRdt, M, N, dt, Tff,TEMP _old, rold, zold, TEMP, FI) 
call new_Temp(M,N, Rt, Tv, dRdt, dt, TEMP_old, rold, zold, Tff, TEMP, dT_nonn, GAM) 

sum_q=O.ODO 
area=O.ODO 
qevap=O.ODO 
qcond=O.ODO 
do I=2,N 
Ai(I)=2.0DO*pi*(Rt**2)*(COS(GAM(I-l, 1 »-COS(GAM(I, 1 ») 
qi(l)=(O.5DO*kl* Ai(l)*( dT _ nonn(I-l )+dT _ nonn(l») 

IF( qi(I)<O.ODO)then 
qcond=qcond+qi(I) 
ELSEIF( qi(I»O.O)then 
qevap=qevap+qi(l) 
endif 

area=area+ Ai(I) 
sum_ q=sum _ q+qi(I) 

end do 
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________________________ OUTPUTMATruCES ________________________ __ 

area=area 
dv=v _ dens(Tv) 
g_ T=dvdT(Tv) 

q 1 (K)=sum _ ql2.0DO 
q2(K)=qevap/2.0DO 
q3(K)=qcond/2.0DO 

dTdn _t(K)=dT _ norrn( 1) 
dTdn_b(K)=dT_norrn(N) 

!THESE ARE THE TERMS IN THE INTERFACIAL ENERGY BALANCE EQUATION 

Elhs=sum _ q/area 
Etml=hfg*dv 
Etm2=(hfg/3.0)*g_T 

dTdt=(l.O/(Rt*Etm2»)*(Elhs-Etml *dRdt) 
! OUTPUTMATruCES. ________________________ __ 

Elhs_(K)=Elhs 
Etml_(K)=Etml *dRdt 
Etm2_(K)=Etm2*Rt*dTdt 

!THESE ARE THE TERMS IN THE EQUATION OF MOTION 
P=PRESS2(Tv) 
Mlhs=(I.OD3)*(P-Pinf)/(dl*Rt) 
Mtm2=(3 .OD0I2.0DO)*( dRdt**2)lRt 
Mtm3=2.0DO*sigmal( dl*Rt**2) 

d2Rdt2=Mlhs-Mtm2-Mtm3 
______________________ =-OUTPUTMATruCES ________________________ __ 

Mlhs_(K)=Mlhs*Rt 
Mtml_(K)=Rt*d2Rdt2 
Mtm2_(K)=Mtm2*Rt 
Mtm3 _(K)=Mtm3*Rt 

PRINT 22, UK),R_(K), dTdn_t(K), dTdn_b(K), Tff(N), Tv 
22 FORMAT(EI2.5, lx, EI2.5, lx, EI2.5, lx, EI2.5, lx, E12.5, lX,E12.5) 

!RESET THE "OLD" GruD POINT LOCATIONS AND TEMPERATURE FIELD FOR THE NEXT TIME 
STEP 
call randz(Rt,N,M,r,z,GAM,Dj) 

DO I=I,N 



DO J=I,M 
ro Id(I,J)=r(I,J) 
zold(I,J)=z(I,J) 

END DO 
END DO 

do I=I,N 
do J=I,M 
TEMP _ old(I,J)=TEMP(I,J) 

end do 
end do 

211 

! OUTPUTMATIDCES ________________________ ___ 
lin this section the temperature gradient matrices are filled 

IF(t>=1.OD-9.and.NEXT==I)then 
DOJ=l,M 
T_6(1,l)=t*1.0D3 
T_6(J,2)=r(N,J)*1.0D3 !mm this is the same as z(I,J) 
T_6(J,3)=TEMP(l,J)-273.lSDO !degrees Celsius 
T _ 6(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT+l 
ELSEIF(t>= 1.OD-8.and.NEXT==2)then 
DOJ=I,M 
T_S(l,1)=t*1.0D3 
T_S(J,2)=r(N,J)*1.0D3 !mm this is the same as z(l,J) 
T _S(J,3)=TEMP(l,J)-273.1SDO !degrees Celsius 
T_S(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT+ 1 
ELSEIF(t>=1.OD-7.and.NEXT==3)then 
DOJ=l,M 
T_ 4(1,1)=t*1.0D3 
T_ 4(J,2)=r(N,J)*1.0D3 !mm this is the same as z(l,J) 
T _ 4(J,3)=TEMP(1 ,J)-273.1SDO !degrees Celsius 
T_ 4(J,4)=TEMP(N,J)-273.lSDO 
END DO 
NEXT=NEXT+ 1 
ELSEIF( t>= 1.OD-6.and.NEXT=4)then 
DOJ=l,M 
T _ 3(l, 1 )=t* 1.0D3 
T_3(J,2)=r(N,J)*1.0D3 !mm this is the same as z(l,J) 
T_3(J,3)=TEMP(l,J)-273.1SDO !degrees Celsius 
T _3(J,4)=TEMP(N,J)-273.ISDO 
END DO 
NEXT=NEXT+l 
ELSEIF(t>= 1.0D-S.and.NEXT=S)then 
DO J=I,M 
T _2(1,1 )=t* I.OD3 
T_2(J,2)=r(N,J)*1.0D3 !mm this is the same as z(l,J) 
T_2(J,3)=TEMP(l,J)-273.1SDO !degrees Celsius 
T_2(J,4)=TEMP(N,J)-273.1SDO 
END DO 



NEXT=NEXT + 1 
ELSEIF(t>= 1.OD-4.and.NEXT==6)then 
DO J=l,M 
T _l(l, l)=t* l.OD3 
T_l(J,2)=r(N,J)*l.OD3 !mm this is the same as z(l,J) 
T_l(J,3)=TEMP(l,J)-273.lSDO !degrees Celsius 
T_l(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT + 1 
ELSEIF(t>= 1.OD-3 .and.NEXT==7)then 
DOJ=l,M 
T_O(l,1)=t*l.OD3 
T_O(J,2)=r(N,J)*l.OD3 !mm this is the same as z(l,J) 

T_O(J,3)=TEMP(1,J)-273.1SDO !degrees Celsius 
T_O(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT + 1 
ELSEIF(t>= 1.OD-2.and.NEXT=8)then 
DOJ=l,M 
T_l{l,1)=t*l.OD3 
T_l(J,2)=r(N,J)*l.OD3 !mm this is the same as z{l,J) 
T_l(J,3)=TEMP(l,J)-273.lSDO !degrees Celsius 
T_l(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT+ 1 
ELSEIF( t>= 1.OD-l.and.NEXT==9)then 
DOJ=l,M 
T_2{l,1)=t*l.OD3 
T_2(J,2)=r(N,J)*l.OD3 !mm this is the same as z(l,J) 
T_2(J,3)=TEMP(l,J)-273.lSDO !degrees Celsius 
T_2(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT+ 1 
ELSEIF(t>=2.960D-l.and.NEXT=lO)then 
DOJ=l,M 
T_e(1,1)=t*l.OD3 
T_e(J,2)=r(N,J)*l.OD3 !mm this is the same as z(l,J) 
T_e(J,3)=TEMP(l,J)-273.lSDO !degrees Celsius 
T_e(J,4)=TEMP(N,J)-273.1SDO 
END DO 
NEXT=NEXT + 1 
endif 

!determine the next time step and repeat 
dt=t_ o*EXP(REAL(K-2)lbeta) 

GOT020 
end if 
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!************************************************************************************* 
******* 

do J=I,K,50 
WRITE (1,25) UJ), R_(J), ql(J), q2(J), q3(J), dTdn_t(J), dTdn_b(J) 

25 FORMAT(f1I. 7, IX,f15.1 0, Ix,EI2.5,lx,EI2.5, Ix,EI2.5,lx,EI2.5, Ix,E 12.5) 
end do 

do J=I,K,1 
WRITE (13,29) tmp_(J), dRdUJ), Mlhs_(J), Mtml_(J), Mtm2_(J), Mtm3_(J), Elhs_(J), Etml_(J), Etm2_(J) 
29 FORMAT(f11.7,IX,f15.10,EI2.5,lx,EI2.5,lx,EI2.5,lx,EI2.5,lx,EI2.5,lx,EI2.5,lx,EI2.5) 
end do 

write (2,*) T_o(1,I) 
do J=I,M 
write (2,30) T_o(J,2), T_o(J,3), T_o(J,4) 
30 format (f15.1O, IX, FIO.5, IX, FIO.5) 
end do 

write (3,*) T_6(1,I) 
do J=I,M 
write (3,35) T_6(J,2), T_6(J,3), T_6(J,4) 
35 format (f15.1O, IX, FIO.5, IX, FIO.5) 
end do 

write (4,*) T_5(1,I) 
do J=I,M 
write (4,40) T_5(J,2), T_5(J,3), T_5(J,4) 
40 format (f15.l0, IX, FIO.5, IX, FIO.5) 
end do 

write (5,*) T_ 4(1,1) 
do J=I,M 
write (5,45) T_ 4(J,2), T_ 4(J,3), T_ 4(J,4) 
45 format (f15.10, IX, FIO.5, IX, FIO.5) 
end do 

write (6,*) T_3(1,I) 
do J=I,M 
write (6,50) T_3(J,2), T_3(J,3), T_3(J,4) 
50 format (f15.1O, IX, FIO.5, IX, FIO.5) 
end do 

write (7,*) T_2(1,I) 
do J=l,M 
write (7,55) T_2(J,2), T_2(J,3), T_2(J,4) 
55 format (f15.1O, IX, FIO.5, IX, FIO.5) 

end do 

write (8,*) T_l(1,I) 
do J=l,M 
write (8,60) T_l(J,2), T_l(J,3), T_I(J,4) 
60 format (f15.10, IX, FIO.5, IX, FIO.5) 



! Generate Isotherms 
11=1 

end do 

write (9,*) T_O(1,I) 
do J=I,M 
write (9,65) T_O(J,2), T_O(J,3), T_O(J,4) 
65 format (fl5.1O, IX, FIO.5, IX, FIO.5) 
end do 

write (10,*) T_I(1,I) 
do J=I,M 
write (10,70) T_I(J,2), T_l(J,3), T_l(J,4) 
70 format (fl5.10, IX, FIO.5, IX, FlO.5) 
end do 

write (11,*) T_2(1,I) 
do J=I,M 
write (11,75) T_2(J,2), T_2(J,3), T_2(J,4) 
75 format (fl5.1O, IX, FIO.5, IX, FlO.5) 

end do 

write (12,*) T_e(1,I) 
do J=I,M 
write (12,80) T_e(J,2), T_e(J,3), T_e(J,4) 
80 format (fl5.1O, IX, FIO.5, IX, FlO.5) 
end do 

FIND=50.0DO+273.l5DO 
XY50(1,3)=FIND-273.15 
XY50(2,3)=z(l,1)*1000.0DO !(mm) 
XY50(3,3)=t* 1000.ODO !(ms) 

do l=l,N 
J=2 
800 CONTINUE 
IF(TEMP(I,J)<FIND.AND. TEMP(I,J-1 »FIND) then 

Rad=Dj(J-I )+(FIND-TEMP(I,J-I »*(Dj(J)-Dj(J-1 »/(TEMP(I,J)-TEMP(I,J-1» 

XY50(1I, 1 )=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY50(II,2)=RAD*COS(GAM(I,J»* lOOO.ODO !(mm) 
11=11+1 

else 
if (J<M) then 
J=1+1 
!PRINT *, I,J, TEMP(I,J), FIND 

else 
GOTO 801 
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end if 
GOTO 800 
endif 

801 CONTINUE 
end do 

DO 1=1,11 
WRITE(17,802) (XYSO(I,J), J=I ,3) 
802 fonnat (3(lx,fl0.5» 
END DO 

11=1 
FIND=70.0DO+273.1SDO 
XY70(1,3)=FIND-273.IS 
XY70(2,3)=z(I,I)*1000.0DO !(mm) 
XY70(3,3)=t* 1000.ODO !(ms) 

do I=I,N 
J=2 
80S CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J-l )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-I »*(Dj(J)-Dj(J-I »/(TEMP(I,J)-TEMP(I,J-I» 

XY70(1I, 1 )=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY70(1I,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
11=11+1 

else 
if (J<M) then 
J=J+l 

else 
GOTO 806 

end if 
GOT080S 
endif 

806 CONTINUE 
end do 

DO 1=1,11 
WRITE(18,807) (XY70(l,J), J=I,3) 
807 fonnat (3(lx,flO.5» 
END DO 

11=1 
FIND=70.0DO+273.ISDO 
XY70_(1,3)=FIND-273.IS 
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XY70_(2,3)=z(1,1)*1000.ODO !(mm) 
XY70 _(3,3)=t* 1000.0DO !(ms) 

do l=l,N 
J=M 
810 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY70 _(11,1 )=RAD*SIN(GAM(I,J»* 1000.ODO !(mm) 
XY70 _(1I,2)=RAD*COS(GAM(I,J»* 1000.0DO !(mm) 
11=11+1 
else 
if(J>l) then 
J=J-1 

else 
GOTO 811 

end if 
GOTO 810 
endif 

811 CONTINUE 
end do 

DO 1=1,11 
WRITE(19,812) (XY70_(l,J), J=1,3) 
812 fonnat (3(1x,fl0.5» 
END DO 

11=1 
FIND=80.0DO+273.15DO 
XY80(1,3)=FIND-273.15 
XY80(2,3)=z(1,1)*1000.0DO !(mm) 
XY80(3,3)=t* lOOO.ODO !(ms) 

do l=l,N 
J=2 
815 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J-1 )<FIND) then 

Rad=Dj(J-1 )+(FIND-TEMP(I,J-1 »*(Dj(J)-Dj(J-1 »/(TEMP(I,J)-TEMP(I,J-1» 

XY80(II, 1 )=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY80(1I,2)=RAD*COS(GAM(I,J»* 1000.0DO !(mm) 
11=11+ 1 

else 
if (J<M) then 
J=J+l 

else 
GOTO 816 
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end if 
GOTO 81S 
endif 

816 CONTINUE 
end do 

DO I=l,II 
WRITE(20,817) (XY80(I,J), J=1,3) 
817 fonnat (3(1 x,fl 0.5)) 
END DO 

II=l 
FIND=80.0DO+273.1SDO 
XY80_(1,3)=FIND-273.15 
XY80_(2,3)=z(1,1)*lOOO.ODO !(mm) 
XY80_(3,3)=t*1000.0DO !(ms) 

do I=l,N 
J=M 
820 CONTINUE 
IF(TEMP(I,J» FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad= Dj (J -1 )+(FIND-TEMP(I,J -1) )*(Dj( J)-Dj(J -1) )/(TEMP(I,J)-TEMP(I,J -1)) 

XY80_(II,1)=RAD*SIN(GAM(I,J))*1000.0DO !(mm) 
XY80 _(II,2)=RAD*COS(GAM(I,J))* 1 OOO.ODO !(mm) 
II=II+l 

else 
if(J>l) then 
J=J-l 

else 
GOTO 821 

end if 
GOTO 820 
endif 

821 CONTINUE 
end do 

DO I=1,II 
WRITE(21,822) (XY80_(l,J), J=1,3) 
822 fonnat (3(1x,flO.S)) 
END DO 

II=l 
FIND=60.0DO+273.1SDO 
XY60(1,3)=FIND-273.1S 
XY60(2,3)=z(1,1)*lOOO.ODO !(mm) 
XY60(3,3)=t* lOOO.ODO !(ms) 
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do I=I,N 
J=2 
830 CONTINUE 
IF(TEMP(I,J»FIND .AND. TEMP(I,J-l )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY60(1I,1)=RAD*SIN(GAM(I,J»*1000.0DO !(mm) 
XY60(1I,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
11=11+ 1 

else 
if (J<M) then 
J=1+1 

else 
GOTO 831 

end if 
GOTO 830 
endif 

831 CONTINUE 
end do 

DO 1=1,11 
WRITE(22,832) (XY60(I,J), J=I,3) 
832 fonnat (3(lx,flO.5» 
END DO 

11=1 
FIND=60.0DO+273.15DO 
XY60_(l,3)=FIND-273.15 
XY60_(2,3)=z(l,I)*1000.0DO !(mm) 
XY60_(3,3)=t*1000.0DO !(ms) 

do 1=I,N 
J=M 
835 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY60_(II, 1)=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY60 _(1I,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
11=11+1 

else 
if (J> 1) then 
J=J-l 
else 
GOTO 836 

end if 
GOTO 835 
endif 

218 



836 CONTINUE 
end do 

DO I=I,II 
WRITE(23,837) (XY60_(I,J), J=I,3) 
837 fonnat (3( Ix,fl 0.5» 
END DO 

II=I 
FIND=55.0DO+273.15DO 
XY55(l,3)=FIND-273.l5 
XY55(2,3)=z(l,1)*1000.0DO !(mm) 
XY55(3,3)=t* 1000.ODO !(ms) 

do I=I,N 
J=2 
840 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J-I )<FIND) then 

Rad=Dj(J-I )+(FIND-TEMP(I,J-I »*(Dj(J)-Dj(J-I »/(TEMP(I,J)-TEMP(I,J-I» 

XY55(II, 1 )=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY55(II,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
II=II+I 

else 
if (J<M) then 
J=1+1 

else 
GOTO 841 

end if 
GOT0840' 
endif 

841 CONTINUE 
end do 

DO I=I,II 
WRITE(24,842) (XY55(I,J), J=I,3) 
842 fonnat (3(lx,flO.5» 
END DO 

II=I 
FIND=55.0DO+273.15DO 
XY55 _(l,3)=FIND-273.15 
XY55_(2,3)=z(l,I)*1000.ODO !(mm) 
XY55 _(3,3)=t* 1 OOO.ODO !(ms) 

do I=I,N 
J=M 
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845 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad=Dj(J-1 )+(FIND-TEMP(I,J-1 »*(Dj(J)-Dj(J-1 »/(TEMP(I,J)-TEMP(I,J-1» 

XY55_(II,1)=RAD*SIN(GAM(I,J»*1000.0DO !(mm) 
XY55 _(II,2)=RAD*COS(GAM(I,J»* 1000.0DO !(mm) 
11=11+1 

else 
if(J>I) then 
J=J-l 

else 
GOTO 846 
end if 

GOTO 845 
endif 

846 CONTINUE 
end do 

DO 1=1,11 
WRITE(25,847) (XY55_(I,J), J=I,3) 
847 fonnat (3(lx,flO.5» 
END DO 

11=1 
FIND=65.0DO+273.15DO 
XY65(1,3)=FIND-273.15 
XY65(2,3)=z(1,1)*1000.ODO !(mm) 
XY65(3,3)=t* lOOO.ODO !(ms) 

do 1=I,N 
J=2 
850 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J-l )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY65(1I,1)=RAD*SIN(GAM(I,J»*1000.0DO !(mm) 
XY65(II,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
11=11+1 

else 
if (J<M) then 
J=J+l 

else 
GOTO 851 

end if 
GOTO 850 
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endif 

851 CONTINUE 
end do 

DO I=I,II 
WRITE(26,852) (XY65(I,J), J=I,3) 
852 format (3(lx,flO.5» 
END DO 

II=1 
FIND=65.0DO+273.l5DO 
XY65_(1,3)=FIND-273.15 
XY65_(2,3)=z(1,1)*lOOO.ODO !(mm) 
XY65_(3,3)=t*lOOO.ODO !(ms) 

do I=I,N 
J=M 
855 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY65 _(II, 1 )=RAD*SIN(GAM(I,J»* 1 OOO.ODO !(mm) 
XY65 _(II,2)=RAD*COS(GAM(I,J»* 1 OOO.ODO !(mm) 
II=II+l 

else 
if (J> 1) then 
J=J-l 
else 
GOTO 856 

end if 
GOTO 855 
endif 

856 CONTINUE 
end do 

DO I=l,II 
WRITE(27,857) (XY65_(I,J), J=I,3) 
857 format (3(lx,fl0.5» 
END DO 

11=1 
FIND=75.0DO+273.15DO 
XY75(1,3)=FIND-273.15 
XY75(2,3)=z(l,I)*lOOO.ODO !(mm) 
XY75(3,3)=t* lOOO.ODO !(ms) 

do I=I,N 
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J=2 
860 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J-I )<FIND) then 

Rad=Dj(1-1 )+(FIND-TEMP(I,J-I »*(Dj(J)-Dj(J-I »/(TEMP(I,J)-TEMP(I,J-I» 

XY75(II, I )=RAD * SIN(GAM(I,J»* 1000.ODO !(mm) 
XY75(II,2)=RAD*COS(GAM(I,J»* I OOO.ODO !(mm) 
II=II+ I 

else 
if (J<M) then 
J=]+I 

else 
GOTO 861 

end if 
GOTO 860 
endif 

861 CONTINUE 
end do 

DO I=l,II 
WRITE(28,862) (XY75(I,J), J=I,3) 
862 fonnat (3(lx,flO.5» 
END DO 

II=l 
FIND=75.0DO+273.15DO 
XY75 _(1 ,3)=FIND-273.l5 
XY75 _(2,3)=z(1, 1)* IOOO.ODO !(mm) 
XY75_(3,3)=t*1000.0DO !(ms) 

do I=l,N 
J=M 
865 CONTINUE 
IF(TEMP(I,J»FIND.AND. TEMP(I,J+ 1 )<FIND) then 

Rad=Dj(J-l )+(FIND-TEMP(I,J-l »*(Dj(J)-Dj(J-l »/(TEMP(I,J)-TEMP(I,J-l» 

XY75_(II,I)=RAD*SIN(GAM(I,J»*1000.ODO !(mm) 
XY75 _(II,2)=RAD*COS(GAM(I,J»* lOOO.ODO !(mm) 
II=II+l 

else 
if (1) 1) then 
J=J-l 

else 
GOTO 866 

end if 
GOTO 865 
endif 

866 CONTINUE 
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end do 

DO I=I,II 
WRITE(29,877) (XY75_(I,J), J=I,3) 
877 fonnat (3(lx,flO.5» 
END DO 

do I=I,N 
WRITE(l4,1000) «r(l,J)* I OOO.ODO), J= I ,300) 
1000 FORMA T( I OOO( IX,flO.13)) 

WRITE(l5,1001) «z(I,J)*1000.0DO), J=I,300) 
1001 FORMAT(lOOO(lx,flO.13)) 

WRITE(16,1002) «TEMP(I,J)-273.15), J=I,300) 
1002 FORMA T(l OOO( 1 x,flO.13)) 
end do 

stop 
end program 
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!---------------------------------------------------------------------

!In this subroutine, the interfacial energy balance equation is rearranged to solve for the rate of change of 
!vapour temperature Al=dTdt. 
!x=t 
!yl=Tv 
!y2=Rt 
!y3=dRdt 
SUBROUTINE FFI(x, yl, y2, y3, M, N, deU, Tff,Told, rold, zold, T, AI) 
INTEGER :: M, N 
DOUBLE PRECISION, DIMENSION (N,M) :: Told, T, rold, zold, GAM 
DOUBLE PRECISION, DIMENSION(N):: qi, Ai, dT_nonn, Tff 
DOUBLE PRECISION:: area, sum_q 
DOUBLE PRECISION :: x, fl, fl, D, hfg, dv 
DOUBLE PRECISION:: AI, yl, y2, y3, g_T 
DOUBLE PRECISION :: del t 
DOUBLE PRECISION:: LATENT, v_dens, dvdT 
DOUBLE PRECISION :: Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub-paramJCpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

hfg=(1.0D3)*LATENT(yl) 

call new_Temp(M,N, Y2, Yl, Y3, deU, Told, rold, zold, Tff,T, dT_nonn, GAM) 

! Now integrate the interface boundary around the bubble using Trapazoid Rule! The area segment Ai is the 
!surface area of a hemisphere segment derived from rotating a segment of a circle around the z-axis. This is 
then !multiplied by the average temperature gradient (and kl) to get the average heat transfer rate into the area 
segment. 



area=O.O 
do I=2,N 
Ai(l)=2.0DO*pi *(y2**2)*(COS(GAM(I-I, I »-COS(GAM(I, I ») 
qi(l)=(O.5DO*kl* Ai(I)*( dT _ norm(l-I )+dT _ norm(I») 

area=area+Ai{l) !total surface area 
sum_q=sum_q+qi(I) !total heat transfer 

end do 
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!These are the vapour density and the derivative of density with temperature so that ddv/dt=( ddv/dTv)*( dTv/dt) 
dv=v _dens(yl) 
g_ T=dvdT(y I) 

!This is the rearrangement of the interface energy balance to isolate AI=dTdt 
O=sum_q/area 
f2=hfg*dv 
f1 =(hfg/3.0)*g_ T 
Al =( I.O/(y2*f1 »*(O-f2*y3) 
RETURN 
END SUBROUTINE 

subroutine new _ Temp(M,N,Rt, Tv ,dRdt,deU, Told,rold,zold, Tff, T,dT _norm, GAM) 
implicit none 

INTEGER :: I, J 
INTEGER:: N, M 

DOUBLE PRECISION, DIMENSION(N,M) :: GAM, r, rold, z, zold, m, zn, mn, znn, re, ze, ree, zee, ren, & 
zen, Ja, a, b, c, d, e, AA, BB, DD, EE, FF, HH 

DOUBLE PRECISION, DIMENSION(N,M) :: Ur, Uz 
DOUBLE PRECISION, DIMENSION(N,M) :: T, Tn, Told 
DOUBLE PRECISION, DIMENSION(N):: dTde, dTdn, dTdr, dTdz, dT_norm, Tff 
DOUBLE PRECISION, DIMENSION(M):: Dj 
DOUBLE PRECISION :: Rt, dRdt 
DOUBLE PRECISION :: max dif 
DOUBLE PRECISION :: Tv, deU 
DOUBLE PRECISION :: Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub--paramlCpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

call randz(Rt,N,M,r,z,GAM,Dj) 
call metrics(N,M,r,z,m,zn,mn,znn,re,ze,ree,zee,ren,zen) 
call trans _ coef(N ,M,re,ze,ree,zee,m,zn,mn,znn,ren,zen,Ja,a,b,c,d,e) 

!Determine the velocity field in the liquid 
do I=I,N 
do J=I,M 
Ur(l,J)=dRdt*«Rtlsqrt(r(l,J)**2+z(I,J)**2»**2)*SIN(GAM(I,J» 
Uz(I,J)=dRdt*«Rtlsqrt(r(I,J)**2+z(l,J)**2»**2)*COS(GAM(I,J» 

end do 
end do 
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IF( deU>O.ODO)then 
!Here, the liquid temperature field is determined. Given the previous temperature field Told together with the 
!new time step and the updated boundary conditions, the next approximation of the temperature field is 
determined 
!by lines, with J being a line and the sweep being done in the I direction. This temperature field is compared 
!with the previous iteration and continues until the convergence criterion is achieved. 
! 
call Temp_coef(N,M,r,z,m,re,zn,ze,rold,zold,a,b,c,d,e,Ja,del_t,Ur,Uz,Tv,AA,BB,DD,EE,FF,HH) 
1000 call Temp _ matrix(N ,M,deU,AA,BB,DD,EE,FF ,HH,J a,m, Tff, Tv, Told, Tn, T) 

call maxdif(N ,M, Tn, T,max _ dif) 

!Check for convergence of the nth iteration 
IF(max_dif> I.OD-9)then 

do I=I,N 
do J=I,M 

Tn(l,J)=T(I,J) 
end do 
end do 

GOTO 1000 
ENDIF 

ELSE 
do I=l,N 
do J=I,M 
T(I,J)=Told(l,J) 

end do 
end do 

ENDIF 

! Find the temperature gradient at the interface 
do I=l,N 

dTde(l)=O.ODO !because T(I,I)=Tv, then there is no gradient in e along the interface 
dTdn(l)=(2.0DO*T(I,4)-9.0DO*T(I,3)+ 18.0DO*T(I,2)-11.0DO*T(I, I »/(6.0DO*del_ n) 

dTdr(I)=Ja(l, I )*(zn(l, I )*dTde(I)-ze(l, I )*dTdn(l» 
dTdz(l)=Ja(l, 1 )*(re(l, 1 )*dTdn(I)-m(I, l)*dTde(l» 

dT_norm(I)=dTdr(l)*SIN(GAM(I,l»+dTdz(l)*COS(GAM(I,l» 

end do 

return 
end subroutine 

!In this subroutine, the modified Rayleigh equation is rearranged to solve for the interfacial 
!acceleration A3=dy3/dt=d2R1dt2. 
!x=t 
!yl=Tv 
!y2=Rt 



!y3=dRdt 
SUBROUTINE FF3(t, yl, y2, y3, A3) 
DOUBLE PRECISION :: t, g_R, f4, P, yl, y2, y3, A3, PRESS2 
DOUBLE PRECISION :: Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub-paramlCpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

P=PRESS2(Yl) 

g_R=2.0DO*sigmaJ(dl*y2**2) 

f4=( I.OD3)*(P-Pinf)/( dl*y2) 

A3=f4-g_ R-(3.0D012.0DO)*(y3**2)/y2 

RETURN 
END SUBROUTINE 

! This subroutine solves for the grid point locations in the physical domain. Among other 
! parameters which are held constant ie. Rinf, Sr, M, & N it requires both the instantaneous 
! bubble radius Rt and the height zh. 

subroutine randz(Rt,N,M,r,z,GAM,Dj) 
IMPLICIT NONE 

INTEGER :: N, M, I, J 
DOUBLE PRECISION, DIMENSION(N, M) :: r, z, GAM 
DOUBLE PRECISION, DIMENSION(M) :: Dj 
DOUBLE PRECISION :: Rt, zh 
DOUBLE PRECISION:: Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub-paramlCpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

zh=O.O 

doJ=I,M 

! Set the radial grid lines in the physical domain 
Dj(J)=Rt+(Rinf-Rt)*(1.0DO-Sr* ATAN«(l.ODO-(REAL (J-l )/(M-l »)*T AN(I.0DO/Sr») 

!set anglular grid spacing in the physical domain for each radial grid line 
do I=I,N 

GAM(I,J)=(O.5DO*pi+ASIN(zhIDj(J»)*(REAL(I-I)/(N-I» !set angle gamma for I=I,N and J=l,M 

!define (r,z) grid coordinates for the physical domain 
r(I,J)=Dj(J)*SIN(GAM(I,J» 
z(I,J)=Dj(J)*COS(GAM(I,J»+zh 

end do 
end do 
return 
end subroutine 
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!This subroutine calculates the first and second order derivatives of the metrics using a second order 
! finite difference representation of the derivatives 
subroutine metri cs(N ,M,r ,z,m,zn,mn,znn,re,ze,ree,zee,ren,zen) 
implicit none 

INTEGER :: I, J, N, M 
DOUBLE PRECISION, DIMENSION(N,M) :: r, z, m, zn, mn, znn, re, ze, ree, zee, ren, zen 
DOUBLE PRECISION :: Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbub -paramlCpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, det e, del_ n, q 

!Calculate Metrics together with 1st, 2nd derivatives 
do I=I,N 
doJ=I,M 
IF(J=I)then !forward difference 

m(I, 1 )=( -3.0*r(I, 1 )+4.0*r(I,2)-r(I,3»/(2.0*del_ n) 
zn(I, 1 )=(-3 .0*z(I, 1 )+4.0*z(I,2)-z(I,3) )/(2.0*det n) 
mn(l, 1 )=(2.0*r(I, 1 )-5 .0*r(I,2)+4.0*r(I,3)-r(I,4) )/( del_ n**2) 
znn(I, 1 )=(2.0* z(I, 1 )-5.0*z(l,2)+4.0*z(I,3)-z(I,4) )/( del_ n **2) 

ELSEIF(J=M)then !backward difference 
m(I,M)=(3 .0*r(I,M)-4.0*r(I,M-l )+r(I,M-2) )/(2.0*del_ n) 
zn(I,M)=(3 .0*z(I,M)-4.0*z(I,M-l )+z(I,M-2) )/(2.0*del_ n) 
mn(I,M)=(2.0*r(I,M)-5 .0*r(I,M-l )+4.0*r(I,M -2)-r(I,M -3 »/( del_ n * *2) 
znn(I,M)=(2.0*z(I,M)-5.0*z(I,M-l)+4.0*z(I,M-2)-z(I,M-3»/(del_n**2) 

ELSE 
m(I,J)=(r(I,J+ 1 )-r(I,J-l »/(2DO*del_ n) 
zn(I,J)=( z(I,J+ 1 )-z(I,J -1) )/(2DO*del_ n) 
mn(I,J)=(r(I,J+ 1 )-2.0DO*r(I,J)+r(I,J-l) )/( del_ n**2) 
znn(I,J)=(z(I,J+ 1 )-2.0DO*z(l,J)+z(I,J-l »/( del_n**2) 

ENDIF 

IF(I=I)then !forward difference 
re( 1 ,J)=( -3.0*r( 1 ,J)+4.0*r(2,J)-r(3,J) )/(2.0*del_ e) 
ze( 1 ,J)=( -3 .O*z( 1 ,J)+4.0*z(2,J)-z(3,J) )/(2.0*del_ e) 
ree( 1 ,J)=(2.0*r(1 ,J)-5.0*r(2,J)+4.0*r(3,J)-r( 4,J) )/( del_ e* *2) 
zee( 1 ,J)=(2.0*z( 1 ,J)-5 .0*z(2,J)+4.0*z(3,J)-z( 4,J) )/( del_ e**2) 

ELSEIF(I-N)then !backward difference 
re(N,J)=(3.0*r(N,J)-4.0*r(N-l,J)+r(N-2,J»/(2.0*del_e) 
ze(N ,J)=(3.0*z(N ,J)-4.0*z(N-l ,J)+z(N-2,J) )/(2.0*del_ e) 
ree(N,J)=(2.0*r(N,J)-5.0*r(N-l,J)+4.0*r(N-2,J)-r(N-3,J»/(del_e**2) 
zee(N,J)=(2.0*z(N,J)-5.0*z(N-l ,J)+4.0*z(N-2,J)-z(N-3,J»/( del_ e**2) 

ELSE 
re(l,J)=(r(I+ I ,J)-r(I-l ,J»/(2.0DO*del_ e) 
ze(l,J)=(z(l+ 1 ,J)-z(l-I,J»/(2.0DO*del_e) 
ree(l,J)=(r(I+ 1 ,J)-2.0DO*r(I,J)+r(I-l ,J»/( del_ e**2) 
zee(I,J)=(z(I+ 1 ,J)-2.0DO*z(l,J)+z(I-I ,J»/( del_ e**2) 

ENDIF 
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end do 
end do 

!Cross derivatives 
do I=I,N 
do J=I,M 
IF(J=I)then !forward difference 

ren(l, 1 )=( -3.0*re(l, 1 )+4.0*re(l,2)-re(l,3»/(2.0*deI_ n) 
zen(I, 1 )=( -3.0*ze(l, 1 )+4.0*ze(l,2)-ze(l,3»/(2.0*deI_n) 

ELSEIF(J==M)then !backward difference 
ren(l,M)=(3 .O*re(l,M)-4.0*re(l,M-I )+re(l,M-2) )/(2.0*del_ n) 
zen(I,M)=(3 .O*ze(l,M)-4.0*ze(I,M -1 )+ze(l,M -2) )/(2.0*del_ n) 

ELSE 
ren(l,J)=(re(l,J+ 1 )-re(l,J-l »/(2.0*del_ n) 
zen(l,J)=(ze(l,J+ 1 )-ze(l,J-I »/(2.0*del_ n) 

ENDIF 

end do 
end do 

return 
end subroutine metrics 
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!---------------------------------------------------------------------

!This subroutine calculates the coefficients for the transformed equation in the computational domain 
subroutine trans _ coef(N,M,re,ze,ree,zee,m,zn,mn,znn,ren,zen,Ja,a,b,c,d,e) 
implicit none 

INTEGER :: N, M, I, J 
DOUBLEPRECISION,DIMENSION(N,M):: m,zn, mn, znn,re, ze,ree,zee, ren, zen,Ja, a, b, c, d,e, beta_I, 
beta 2 

!Calculate Transformation Coefficients 
!The Jacobian (inverse) 
do I=I,N 
do J=l,M 
Ja(l,J)= 1.ODO/(zn(l,J)*re(l,J)-ze(l,J)*m(I,J» 

end do 
end do 

! a, b, c, d, e 
do I=l,N 
do J=l,M 

IF(I== 1 )then 
a(l,J)=m(l,J)**2+2.0DO*zn(l,J)**2 
b(l,J)=re(I,J)*m(l,J)+ 2. ODO*ze(l,J)* zn(l,J) 
c(I,J)=re(l,J)**2+2.0DO*ze(I,J)**2 

else 
a(l,J)=m(l,J)* *2+zn(l,J)* * 2 
b(l,J)=re(I,J)*m(l,J)+ze(l,J)*zn(l,J) 



c(l,J)=re(l,J)**2+ze(l,J)**2 

endif 

beta _1 (I,J)=zee(I,J)*a(l,J)-2.0DO*zen(l,J)*b(l,J)+znn(l,J)*c(l,J) 
beta _ 2(1,J)=ree(l,J)*a(I,J)-2.0DO*ren(l,J)*b(l,J)+rnn(l,J)*c(l,J) 

d(I,J)=Ja(l,J)*(rn(l,J)*beta _1 (I,J)-zn(I,J)*beta _ 2(1,J» 
e(l,J)=Ja(l,J)*(ze(I,J)*beta _ 2(1,J)-re(l,J)*beta _1 (I,J» 

end do 
end do 

return 
end subroutine trans coef 

!Determine coefficients which put the energy equation in the form 
! 
! [AA T(I+ 1,1+ 1 )+BBT(I+ 1,J)-AAT(I+ I,J-l)] + [DDT(I,1+ 1)+EET(I,J)+FFT(I-l ,J-l)] 
! + [AAT(I-l,1+1)+HHT(I-l,J)+-AAT(I-l,J-1)] = Told(l,J) 
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subroutine Temp _ coef(N ,M,r,z,rn,re,zn,ze,rold,zold,a,b,c,d,e,Ja,del_ t, Ur, Uz, Tv ,AA,BB,DD,EE,FF ,HH) 
implicit none 

INTEGER:: N, M, I, J 
DOUBLE PRECISION, DIMENSION(N,M) :: r, rold, z, zold, rn, re, zn, ze, a, b, c, d, e, Ja, & 

Ur, Uz, AA, BB, DD, EE, FF, HH 
DOUBLE PRECISION, DIMENSION(N,M) :: Uc, Vc, cl, c2, c3, c4, c5 
DOUBLE PRECISION::Tv, deU 
DOUBLE PRECISION :: Cpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbubyaramlCpl, kl, aI, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

!Calculate the discritized equation coefficients 
do I=l,N 
do J=l,M 
Uc(I,J)=«Ur(l,J)-(r(l,J)-rold(I,J»/deU)*zn(l,J)-(Uz(l,J)-(z(l,J)-zold(l,J»/deU)*rn(l,J» 
Vc(l,J)=«Uz(l,J)-(z(l,J)-zold(I,J»/del_t)*re(I,J)-(Ur(l,J)-(r(l,J)-rold(l,J»/del_t)*ze(l,J» 

IF(I=l)then 
c 1 (I,J)=(Ja(I,J)*Uc(l,J)-al *(Ja(l,J)**2)*d(l,J» 
c2(I,J)=(Ja(I,J)*Vc(l,J)-al*(Ja(I,J)**2)*e(I,J» 

else 
c 1 (I,J)=(Ja(I,J)*Uc(I,J)-al "'(Ja(I,J)'" "'2)"'d(I,J)-aJ '" Ja(I,J)"'zn(I,J)/r(I,J» 
c2(1,J)=(Ja(I,J)*Vc(l,J)-al*(Ja(l,J)**2)*e(l,J)+al*Ja(I,J)*ze(l,J)/r(I,J» 

endif 

c3(I,J)=-(al*(Ja(l,J)**2)*a(l,J» 
c4(I,J)=(2.0DO*al*(Ja(I,J)**2)*b(l,J» 
c5(1,J)=-( al *(1 a(l,J)* *2)*c(l,J» 



end do 
end do 

do I=I,N 
do J=I,M 

AA(I,J)=del_t*c4(I,J)/(4.0DO*detn*del_e) 
BB(I,J)=del_t*cl(I,J)/(2.0DO*del_e)+deU*c3{1,J)/(del_e**2) 
DD(I,J)=del_ t*c2{1,J)/(2.0DO*del_ n)+deU*c5{1,J)/( del_n * *2) 
EE{I,J)=I.ODO-(2.0DO*del_t*c3{1,J)/(del_e**2)+2.0DO*del_t*c5{1,J)/(del_n**2» 
FF{I,J)=-del_ t*c2(I,J)/(2.0DO*del_ n)+del_ t*c5(I,J)/( del_ n * *2) 
HH(I,J)=-del_t*c I (I,J)/(2.0DO*del_ e)+del_t*c3{1,J)/( del_ e**2) 

end do 
end do 

return 
end subroutine 

!This subroutine sets up the tri-diagonal matrix of the form: 
! 

[al bl 0 ....................... ] [TI] [dl] 
[c2 a2 b2 0 .................... ] [T2] [d2] 
[ 0 c3 a3 b3 0 ................. ] [T3] [d3] 
[. . . . . . .. ][.] = [d4] 
[. . . . . . .. ] [.] [d5] 
[. . . . . . .. ] [. ] [d6] 
[0 0 0 0 O ......... cK aK bK] [TK] [d7] 

! 
!In the form of Patankar: 

a( I )T( 1 )=b( 1 )T(2)+d(2) 
a(2)T(2)=b(2)T(3)+c(2)T( 1 )+d(2) 

a(J)T(J)=b(J)T(J+ 1 )+c(J)T(J-l )+d(J) 

a(K)T(K)=b(K)T(K + 1 )+c(M)T(K -1 )+d(K) 

!********************************************************** 

subroutine Temp _ matrix(N,M,deU,AA,BB,DD,EE,FF,HH,Ja,m, Tff, Tv, Told, Tn, T) 
implicit none 

INTEGER :: N, M, I, J 
DOUBLE PRECISION, DIMENSION(N,M) :: AA, BB, DD, EE, FF, HH, Ja, m 
DOUBLE PRECISION, DIMENSION(N,M) :: T, Told, Tn 
DOUBLE PRECISION, DIMENSION(M) :: a, b, c, d, U 
DOUBLE PRECISION, DIMENSION(N) :: Tff 
DOUBLE PRECISION :: Tv, deU, Co 
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DOUBLE PRECISION:: Cpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 
COMMONlbubj>aramlCpl, kl, ai, dl, sigma, Tinf, Pinf, Tsat, pi, Sr, Rinf, del_e, del_n, q 

!Main Loop. I represents 'lines' ie. a new "line" of potentials will be obtained for each I. These will 
!be stored in the Ith row ofT(I,J) and the next line is Tn 
! 
!x=using updated temperature from the current sweep 
!u=the line at which temperature values are being solved for 
!o=using the temperature values fro the previous sweep 
! 

x u 0 j+1 

x u 0 j 

x u 0 j-I 

n+ I n+ I n ---iteration number 
i-I i i+1 

Co=-q/kl !This constant is the temperature gradient at the wall 

do I=I,N 

! set the values for the coefficient matrix 
do J=2,M-I 

IF(I=I)then !Symetry 
IF(J==2)then 

a(J)=EE(I,J) 
b(J)=-DD(I,J) 
d(J)=Told(I,J)-FF(I,J)*Tv -(BB(I,J)+ HH(I,J) )*Tn(I+ I ,J) 

ELSEIF(J=M-l)then 
a( J)= EE(I,J) 
c(J)=-FF(I,J) 
d( J)=Told(I,J)-D D(I,J)*Tff(I)-(BB(I,J)+HH(I,J) )*Tn(l + 1 ,J) 

ELSE 
a( J)= EE(I,J) 
c(J)=-FF(I,J) 
b(J)=-DD(I,J) 
d( J)=Told(I,J)-(BB(I,J)+HH(I,J) )*Tn(I + I ,J) 

ENDIF 

ELSEIF(I==N)then ! Solid Surface 
IF(J==2)then 

a(J)=EE(I,J) 
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b(J)=-D D(I,J) 
d( J)=Told(I,J)-FF(I,J)*Tv -(BB(I,J)+ HH(I,J) )*T(I -1 ,J)+(BB(I,J)*2. 0 DO* del_ e* Co/( J a(I ,J)* m(I,J») 

ELSEIF(J==M-l )then 
a( J)= EE(I,J) 
c(J)=-FF(I,J) 
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d( J)=Told(I,J)-D D(I,J)*Tff(I)-(BB(I,J)+ HH(I,J) )*T(I -I ,J)+(BB(I,J)*2. 0 DO* del_ e* Co/( J a(I,J) * m(l,J») 
ELSE 

a( J)= EE(I,J) 
c(J)=-FF(I,J) 
b(J)=-DD(I,J) 
d(J)=Told(l,J)-(BB(I,J)+HH(I,J) )*T(l-I ,J)+(BB(I,J)*2.0DO*del_ e*Co/( J a(l,J)*m(l,J») 

ENDIF 

ELSE !Interior 
IF(J=2)then 

a(J)=EE(I,J) 
b(J)=-DD(I,J) 
d(J)=Told(I,J)-FF(I,J)*Tv-(AA(I,J)*Tn(I+ 1,1+ 1)+BB(I,J)*Tn(I+ 1 ,J»& 

-( -AA(I,J)*T(I-l,1+ 1)+HH(I,J)*T(I-l,J» 

ELSEIF(J=M-l )then 
a( J)= EE(I,J) 
c(J)=-FF(I,J) 
d(J)=Told(I,J)-DD(I,J)*Tff(I) & 

-(BB(I,J)*Tn(I+ 1 ,J)-AA(I,J)*Tn(I+ 1 ,J-l» & 
-(HH(I,J)*T(I-l ,J)+AA(I,J)*T(I-l ,1-1» 

ELSE 
a(J)=EE(I,J) 
c(J)=-FF(I,J) 
b(J)=-DD(I,J) 
d(J)=Told(I,J)-(AA(I,J)*Tn(I+ 1,1+ 1 )+BB(I,J)*Tn(I+ 1 ,J)-AA(I,J)*Tn(I+ 1 ,J-l »& 

-( -AA(I,J)*T(I-l ,1+ 1 )+HH(I,J)*T(I-l ,J)+AA(J,J)*T(I-l ,J-l» 

ENDIF 

ENDIF 

end do 

DO J=I,M-2 
a( J)=a( 1+ 1 ) 
b(J)=b(1+1) 
c(J)=c(1+1) 
d(J)=d(1+1) 

END DO 

call TDMA(M-2, N, I, a, b, c, d, U) 

do J=I,M 
IF(J=I)then 



T(I,J)=Tv 
ELSEIF(J=M)then 
T(I,J)=Tff(I) 

else 
T(I,J)=U(J-I) 

endif 
end do 

end do 

RETURN 
end subroutine 

!This subroutine is Thomas Algorithm or TDMA which inverts a tri-diagonal matrix 
subroutine TDMA(M, N, I, a, b, c, d, U) 
implicit none 

INTEGER :: M, N, I, J 
DOUBLE PRECISION, DIMENSION(M):: a, b, c, d, P, Q, U 
DOUBLE PRECISION :: BET 

if(a(l)=O.O) pause 
BET=a(l) 
Q( 1 )=d( 1 )/BET 
P( 1 )=b(1 )/BET 

doJ=2,M 
BET=a(J)-c(J)*P(J-I) 

if (BET=O.O) pause 
P(J)=b(J)/BET 
Q(J)=(d(J)+c(J)*Q(J-I»/BET 

end do 

U(M)=Q(M) 

do J=M-I,l,-l 
U(J)=P(J)*U(J+ I )+Q(J) 

end do 

return 
end subroutine 
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!This subroutine determines the maximum of the absolute difference between two 2-D arrays 
MAX(abs[X(I,J)-Y(I,J)]) 
subroutine maxdif(N, M, X, Y, max_dif) 
implicit none 

INTEGER :: N, M, I, J 



DOUBLE PRECISION, DIMENSION(N,M):: X, Y, DIFF 
DOUBLE PRECISION:: max dif 

do 1=I,N 
do J=I,M 
DIFF(I,J)=IOO.ODO*ABS(Y(I,J)-X(I,J»/ABS(O.5DO*(X(I,J)+Y(I,J)» 

end do 
end do 

max _ dif=MAXV AL(DIFF) 

return 
end subroutine 
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!This subroutine solves for the complementary error function from its' power series representation. Given the 
!argument x the subroutine returns erfc(x). 
subroutine errorfilctn(x, pi, erfc_x) 
INTEGER, PARAMETER:: INF=IOO 
INTEGER:: I 
DOUBLE PRECISION, DIMENSION(INF) :: DUM 
DOUBLE PRECISION :: x, erCx, erfc_x, pi, fact, ifact 
erf x=O.ODO 
erfc x=O.ODO 
do I=l,inf 

fact=ifact(I -1 ) 
DUM(I)=REAL«-I)**(I-l»*(x**REAL(2*I-l»)I(fact*REAL(2*I-l)) 

end do 

erC x=(2.0DO/SQRT(pi»*SUM(DUM) 
IF(x>4.0DO.or.erC x> I.ODO)then 
erf x=l.ODO 
endif 

return 
end subroutine 

!This function determines the factorial of the integer KK 
FUNCTION ifact(KK) 
integer :: K, KK 
DOUBLE PRECISION :: ifact 
ifact=1.0DO 
IF(KK=O)then 

ifact=l.ODO 
else 
do K=I,KK 
ifact=ifact*REAL(K) 

end do 
endif 



return 
end 

!This function sets the grid spacing by dividing a unit length into X-I segments 

FUNCTION DEL T A(X) 
INTEGER:: X 
DOUBLE PRECISION:: DELTA 
DELTA=I.0DO/(REAL(X-l» 
return 
END 
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! *********************************PROPERTY DATA FORRI13***************************** 

FUNCTION PRESS2(T) 
DOUBLE PRECISION :: T, PRESS2, a, b, c, d, e,f 
a=2957.142318DO 
b=-53.1787872DO 
c=O.371694819DO 
d=-O.OO 12354751 06DO 
e=I.860059877D-06 
f=-8.710006423D-I0 
PRESS2=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 
return 
END 

FUNCTION LATENT(T) 
DOUBLE PRECISION:: a, b, c, d, e, f, T, LATENT 
a=2737.4884914661IDO 
b=-39.3003642747073DO 
c=O.239810862940233DO 
d=-O.000727033297258DO 
e= 1.089453393D-06 
f=-6.47894D-I0 
LATENT=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kJlkg, Tin K 
return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION, a, b, c, d, e 
a= 1 OO.66367DO 
b=-O.26354029DO 
c=O.OOOI7492986DO 
d=-8150.6195DO 
e=535170.24DO 
TENSION=a+b*T+c*T**2+diT+elT**2 !mN/m 
return 
end 



FUNCTION Up_heat(T) 
DOUBLE PRECISION:: T, l_sp_heat, a, b, c, d 
a=-2687.2937711853DO 
b=32.1760788219DO 
c=-O .096765222 7DO 
d=O.OOO I 00 123 7DO 

l_sp_heat=(a+(b*T)+(c*T**2)+(d*T**3))/lOOO.ODO !kJ/kgK 
END 

FUNCTION v_sp_heat(T) 
DOUBLE PRECISION:: T, v_sp_heat, a, b, c, d 
a=O.O 
b=O.O 
c=O.O 
d=O.O 

v_sp_heat=a+(b*T)+(c*T**2)+(d*T**3) !kJ/kgK 
END 

FUNCTION T_sat(P) 
DOUBLE PRECISION:: P, T_sat, a, b, c, d, e 
a=227.62444DO 
b= 13.885934DO 
c=0.69937307DO 
d=0.15567729DO 
e=-0.01232013DO 
f=0.002049886DO 

T_sat=a+b*LOG(P)+c*LOG(P)**2+d*LOG(P)**3+e*LOG(P)**4+f*LOG(P)**5 
END 

function thenn _ cond(T) 
DOUBLE PRECISION:: thenn_cond, T, a, b, c, d, e, f 
a=572.672566562039DO 
b=-7.22070352101712DO 
c=0.044478466185909DO 
d=-O.OOO 139306769359DO 
e=2.15863959D-07 
f=-1.32549D-IO 
thenn_cond=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)*I.OD-3 !W/mK 
return 
end 

function l_dens(Tin) 
DOUBLE PRECISION:: I_dens, T, Tin, a, b, c, d, e, f 
T=Tin-273.l5DO 
a=16.1767736505804DO 
b=-0.021409787008367DO 
c=3.666728067D-06 
d=-1.210948367D-06 
e= 1.1848044D-08 
f=-3.7748D-ll 
1_ dens=(a+b*T+c*T**2+d*T**3+e*T**4+f*T**5)* 100.ODO !kg/m3 
return 
end 
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function v _ dens(T) 
DOUBLE PRECISION :: v_dens, T, a, b, c, d, e, f 
a=-299.6373102DO 
b=4.974715994DO 
c=-O.03322820 19IDO 
d=O.OOOl134072022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 
v dens=a+b*T+c*T**2+d*T**3+e*T**4+f*T**5 !kg/m3 
return 
end 

function dvdT(T) 
DOUBLE PRECISION :: dvdT, T, b, c, d, e, f 

b=4.974715994DO 
c=-O.03322820 19IDO 
d=O.OOOl134072022DO 
e=-2.031981824D-07 
f= 1.585972295D-l 0 

dvdT=b+2.0*c*T+3.0*d*T**2+4.0*e*T**3+5.0*f*T**4 
return 
end 
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! *********************************PROPERTY DATA FOR WATER ************************** 

FUNCTION PRESS2(T) 
DOUBLE PRECISION :: T, PRESS2, a, b, c 
a=15.38366 
b=-2111.3788 
c=-36815.655 
PRESS2=EXP( a+blT +clT** 1.5) 
return 
END 

FUNCTION LATENT(T) 
DOUBLE PRECISION:: a, b, c, d, T, LATENT 
a=4535.5338 
b=-14.40485 
c=O.034749747 
d=-3.3548106D-5 

LATENT=a+(b*T)+(c*T**2)+(d*T**3) !kJlkg, Tin K 
return 
END 

FUNCTION TENSION(T) 
DOUBLE PRECISION :: T, TENSION 
TENSION=235.8DO*«1.0DO-(T)/(374.15DO+273.15DO»** 1.256DO)*(l.ODO-(O.625DO)*(l.ODO-(T)/(37 
4.15DO+273.15DO») !mN/m 
return 
end 



FUNCTION l_sp_heat(T) 
DOUBLE PRECISION:: T, Up_heat, a, b, c, d, e 
a=78.582798 
b=-0.14625086 
c=O.OOO 1 0960625 
d=-17026.454 
e=1472551.8 

1_ sp_ heat=a+(b*T)+( c*T**2)+( d/T)+( e/T**2) !kJ/kgK 
END 

FUNCTION T_sat(P) 
DOUBLE PRECISION:: P, T_sat, a, b, c, d, e, f, g, h 
a=280.l4591 
b=14.578656 
c=0.81618388 
d=0.090358794 
e=-0.01233292 
f=0.0036827453 
g=-0.00036521131 
h= 1. 7727335D-5 
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T_sat=a+b*(LOG(P»+c*(LOG(P»**2+d*(LOG(P»**3+e*(LOG(P»**4+f*(LOG(P»**5+g*(LOG(P»* 
*6+h*(LOG(P»**7 
END 

function therm _ cond(T) 
DOUBLE PRECISION:: therm_cond, T 
therm_cond=0.56917061 +0.0018981353*(T -273.15)-8.8322257* 1 0**(-6.0)*(T-273.15)**2.0+ 7.2806061 
*1O**(-9.0)*(T-273.l5)**3.0 !W/mK 
return 
end 

function t dens(P) 
DOUBLE PRECISION:: I_dens, P 
t dens=1 008.1433+( -7.3239274)*P**0.41233836 
return 
end 

function v _ dens(T) 
DOUBLE PRECISION :: v_dens, T, a, b, c 
a=94.90762DO 
b=-0.023178676DO 
c=-0.24376403DO 

v _dens=EXP«a+c*T)/(1.0DO+b*T» !kg/m3 
return 
end 

function dvdT(T) 
DOUBLE PRECISION:: dvdT, T, b, c 
a=94.90762DO 
b=-0.023178676DO 
c=-0.24376403DO 

!kg/m3 



dvdT=« c-a*b )/( 1.ODO+b*T)**2)*EXP«a+c*T)/( 1.ODO+b*T» 
return 
end 
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Publication of Robinson, A. J. and Judd, R. L. in the 
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Abstract 

A theory has been developed which has been shown to predict experimental bubble growth data for both spherical 
growth in an unbounded liquid and hemispherical growth at a heated plane surface in microgravity. The theory is able 
to accommodate both spatial and temporal variations in the temperature and velocity fields in the liquid surrounding 
the bubble as it grows. Utilising the present theory, the complicated thermal and hydrodynamic interactions between 
the vapour, liquid and solid have been manifested for a single isolated bubble growing on a heated plane surface from 
inception. © 2001 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

The increased rate of heat transfer during nucleate 
boiling is determined by the vapour bubbles which grow 
and depart from the heated surface. Energy is intro­
duced into the liquid by conduction from the heated 
solid surface and is stored within a thin thermal 
boundary layer adjacent to the surface. During surface 
boiling, this energy is ultimately used to vaporise the 
liquid and cause bubbles to form and grow. Further­
more, fluid motions induced by bubble growth disrupt 
the thermal boundary layer, thus enhancing the local 
rate of heat transfer. Consequently, insight into the 
mechanisms which are responsible for transporting en­
ergy away from a heated surface can be gained by un­
derstanding the nature of bubble growth. 

Early theoretical works focussed on the ideal case of 
spherically symmetric bubble expansion in a uniformly 
superheated infinite pool of liquid. With these simplifi­
cations, the rate of bubble growth is determined by the 
surface tension, the liquid inertia and the difference in 
pressure between the vapour within the bubble and the 
ambient liquid. Analytic expressions which fully de-

scribe the growth of a bubble were unattainable because 
of the complicated thermal and hydrodynamic interac­
tion of the vapour and liquid at the bubble wall. This 
was further complicated by coupling between the liquid 
momentum and energy equations through the non-lin­
ear convection term. To reduce the complexity of the 
problem, Rayleigh [I], Plesset and Zwick [2] and For­
ster and Zuber [3] considered two limiting regions of 
bubble growth separately. Lord Rayleigh [I] solved the 
one-dimensional problem by considering the case in 
which growth or collapse is governed by momentum 
interaction between the bubble and ambient fluid. This 
later became known as the inertia controlled stage of 
bubble growth. Almost four decades later, Pies set and 
Zwick [2] and Forster and Zuber [3] independently de­
termined that the later stage of bubble growth is con­
trolled by the rate at which energy is transferred 
through the liquid to the vapour-liquid interface. This 
was termed the diffusion or heat tran.~rer controlled 
growth stage. By approximating a solution to the en­
ergy equation, it was shown that their first-order solu­
tions were in good agreement with the experimental 
results provided by Dergarabedian [4] for water with 
low superheats at atmospheric pressure. Including the 
effects of radial convection in the liquid, Scriven [5] 
obtained an expression for the bubble growth rate 
which is very similar to that of Plesset and Zwick [2] 
and Forster and Zuber [3]. 

0017-9310101/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. 
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Nomenclature 

A area 
D; radial grid line 
d distance from vapour--liquid interface 
g earth gravity 
g", gravity in which experiments were performed 
hrg latent heat of evaporation 
J Jacobian 
k thermal conductivity 
M grid parameter 
N grid parameter 
P pressure 
Q energy required for bubble growth 
q" heat flux 
r radial direction 
rb radial coordinate location of bubble interface 
R bubble radius 
Rc initial bubble radius 
SR grid clustering coefficient 

time 
t' 
T 

time to nucleation 
temperature 

By assuming that the bubble growth rate was 
bounded by the analytic solutions of Rayleigh [I] for 
small values of time and that of Plesset and Zwick [2] as 
time approached infinity, a general relationship was 
derived by Mikic et al. [6] for spherical bubble growth in 
a uniformly superheated liquid which involved both the 
inertia and heat transfer controlled growth stages. This 
theory was found to be in good agreement with the ex­
perimental data of Lien [7] for water over a wide range 
of system pressures. 

Numerical computations of vapour bubble growth in 
an infinite, uniformly superheated liquid have been 
performed by Theofanous et al. [8], Judd [9], Board and 
Duffy [10], Daile Donne and Ferranti [II], and Lee and 
Merte [12]. In the first three works, approximate solu­
tions to the energy equation were used, whereas in the 
latter two works, a more rigorous numerical solution of 
the entire energy equation, including the non-linear 
convective term, was obtained. 

The mechanisms associated with vapour bubble 
growth at a plane heated surface are not understood 
nearly as well as unbounded growth in an infinite pool. 
This is due to the fact that it is exceedingly difficult to 
control the temperature and flow field in the vicinity of 
growing bubbles during experimental investigations due 
to natural convection and liquid motions induced by 
other bubbles. Due to the rapidly varying temperature 
and flow fields, large scatter is observed in the available 
bubble growth data at earth gravity. which makes 

/I radial velocity (spherical coordinates) 
U radial velocity (cylindrical coordinates) 
UC contravarient velocity 
V axial velocity 
V" contravarient velocity 

axial direction 
::h axial coordinate location of bubble interface 

Grl!l!k symhols 
:x thermal diffusivity 

'/ 
\' 

p 
r 

angle measured from z-axis 
transformed computational coordinate 
transformed computational coordinate 
kinematic viscosity 
density 
transformed computational time 

Suhscripts 
I liquid 
R at bubble interface 
v vapour 
w wall 
ID 
00 

one-dimensional 
far field 

comparison with theory very difficult because of the 
uncertainty involved in matching the initial and 
boundary conditions. 

However, recent data have been reported by Lee [13], 
Lee and Merte [14], and Merte et al. [15], in which the 
shortcomings associated with earth gravity surface 
boiling experiments are partially overcome by heating a 
stagnant pool of liquid to the onset of boiling in 
microgravity. The absence of any significant natural 
convection, combined with the fact that, during the early 
stages of growth. the thermal and flow fields are not 
influenced by previous or neighbouring bubbles, provide 
well-defined initial and boundary conditions. Even still, 
the temperature distribution in the solid and liquid were 
not measured directly, so that approximations are re­
quired for determining the initial liquid temperature 
field and the boundary condition for the solid heater. A 
further simplification results from the fact that, for some 
of the measurements, the bubble remaIned nearly 
hemispherical for a significant portion of the growth 
period. The fixed bubble shape adds considerable sim­
plification with respect to theoretical modelling and an 
accompanying solution procedure. In this manner, Lee 
and Merte [14] and Merte et al. [15] were able to com­
pare the experimental hemispherical bubble growth 
data. obtained in R 113 on a flat solid surface subject to 
transient heating, with the theoretical predictions of two 
one-dimensional spherical models. In the first. an initial 
uniform liquid temperature. equal to the highest surface 
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temperature which occurs at nucleation, was assumed. 
This represented the upper bound on the bubble growth 
rate, since the highest temperature was assumed to exist 
everywhere throughout the liquid. The second model 
assumed a spherically symmetric, non-uniform tem­
perature field around the bubble. The temperature dis­
tribution was assumed to be identical to that occurring 
normal to the heated surface at nucleation. This was 
regarded as the 'minimum temperature distribution' and 
represented the lower bound on the bubble growth rate. 
All of the measured growth curves presented in [13-15] 
fell between bounds defined by the uniform and non­
uniform models. 

This paper describes the development of a two­
dimensional theoretical model which is capable of 
predicting both spherically symmetric vapour bubble 
growth in an infinite pool of liquid as depicted in 
Fig. I(a) and hemispherical vapour bubble growth at a 
heated plane surface as depicted in Fig. I (b). The theory 

: ..... Tt-­
~:-------------~d 

t=O 

t=O 

is the logical progression from the work provided in [13-
15] in that it can incorporate either a one-dimensional 
radially symmetric or a two-dimensional spatially dis­
tributed liquid temperature field. It must be carefully 
noted that the applicability of the present model is 
limited to the special case in which the energy utilised by 
the bubble as it grows is supplied by the superheated 
liquid layer which surrounds the bubble cap. Any con­
tribution of an evaporating microlayer at the base of the 
bubble to the net mass transfer rate into the bubble, or 
its influence on the thermal field in the solid during 
heterogeneous bubble growth, is wholly disregarded. 
The purpose of this investigation is twofold. First, to 
advance a simplified physical model and solution pro­
cedure for heterogeneous bubble growth. Because many 
of the fundamental mechanisms are the same, study of 
this simplified type of growth provides a starting point 
for more complex theoretical development. Second, to 
elucidate the factors which contribute to bubble growth. 

t>O 

(a) 

c(J?\==~~.··· =.,. ====T:::t-J=-;d 
t>O 

(b) 

Fig. I. (a) Spherical vapour bubble growth in an unbounded liquid with a uniform temperature field at 1=0 and a spherically 
symmetric temperature profile for I > 0; (b) hemispherical vapour bubble growth at a heated flat surface with a non-uniform tem­
perature field at 1=0 and a spherically non-symmetric temperature profile for I > O. 
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By considering a significant portion of the growth period 
of a single isolated bubble beginning from inception, the 
proportional contributions of the various mechanisms 
which govern growth can be discerned. 

2. Formulation of the problem 

Fig. 2 shows a sketch of the hemispherical vapour 
bubble growing at a heated plane surface. Although a 
viscous boundary layer is known to exist in the liquid 
above the heated surface, in most practical applications 
this layer is very thin compared with the size of the 
bubble so that its overall influence on the bubble as is 
grows can be neglected. This, coupled with the imper­
meable wall boundary condition, allows for liquid flow 
symmetry to be assumed about the r-axis. As a result, 
hemispherical bubble growth can be modelled as a half 
segment of the spherical case. In doing so, the equation 
of motion for the radius, R, of the hemispherical vapour 
bubble is approximated by the equation for a growing 
sphere given by 

(I) 

Eq. (I) is the extended Rayleigh equation which rep­
resents a force-momentum balance between the bubble 
and surrounding liquid. A detailed derivation of this 
relationship can be found in Riznic et al. [16]. The initial 
bubble radius is determined by assuming that the va­
pour is initially saturated, with Tv = TO(., and that it 
exists in unstable equilibrium with the quiescent sur­
roundings. For a stationary vapour bubble with internal 
pressure P""(Tv) at equilibrium with a liquid at pressure 
Px , the Young-Laplace equation gives an initial radius 
of, 

(2) 

z 
Liquid, p. , T. 

Plane Heated Surface r 

Fig. 2. Hemispherical bubble growing on a plane heated sur­
face. 

As a result of the dependence of the vapour pressure on 
temperature, at least one more equation is required to 
fully describe this type of bubble growth problem. This 
expression is obtained by considering an energy balance 
at the vapour-liquid interface. The energy, Q, required 
to expand the bubble is supplied by molecular conduc­
tion across the thin thermal boundary layer that exists in 
the liquid around the bubble. Therefore, the rate of 
change in the energy contained in the vapour bubble is 
such that 

-= k, - dA. dQ j' (aT) 
d/ .Is 0/1 I~ 

(3) 

where As is the surface area of the bubble and (aT /O/1)R 
is the temperature gradient normal to the interface. 
Various researchers [1,3,5,1 0, II] propose different for­
mulations for the term dQldl. However, for commonly 
used fluids well below the critical pressure, the interfacial 
energy balance can be reduced to 

dR Rdpv I j (aT) 
hfg /\ Cit + hfg '3 dI = 2rr:R2 As k, 011 R dA. (4) 

In the above expression, the vapour motion and prop­
erty variations within the bubble are neglected. Riznic 
et al. [16] provide a comprehensive derivation of Eq. (4). 

Typically, during nucleate pool boiling, energy is 
continually supplied to the liquid by heat transfer nor­
mal to the plane heated surface throughout the entire 
growth interval of the bubble. Furthermore, an initial 
liquid temperature distribution which is spherically 
symmetric around the bubble is not common for most 
practical boiling applications. These two conditions in­
troduce two-dimensional effects which need to be ac­
counted for in order to adequately describe this type of 
bubble growth. As a result. the temperature gradient 
at the bubble wall is obtained by numerically solving 
the two-dimensional energy equation in axisymmetric 
cylindrical coordinates for the moving liquid, 

aT aT aT (a~T I aT aT) 
~ + U -a + v ~ = a, ~ + - -a + ~ , 
lit r vZ lll'- r I' vZ 

with initial and boundary conditions given by 

T(r.z.O) = 7(,(r.z), 

T(ro' zo, I) = Tv. 

T(oc.Xo,t) = T,D(Z,t). 

aT 
~(O.z,l) = O. 
ur 

aT ( . 0 ) = q:~ az I"t k, . 

(5) 

(6) 

The initial condition requires the entire temperature field 
in the liquid to be specified. A zero flux boundary 
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condition is assumed at the symmetry boundary (z-axis) 
and a constant heat flux boundary condition is estab­
lished at the plane heated surface (r-axis). Some dis­
cussion is warranted concerning the assumption of a 
constant and uniform heat flux at the solid-liquid 
interface. Admittedly, this assumption significantly 
reduces the complexity of the problem by eluding the 
solution of the energy equation in the solid, However, 
Gau and EI-Genk [17] showed that a constant heat flux 
can be a reasonable approximation for the case in which 
energy is supplied to the liquid by resistance heating of a 
thin metallic coating deposited on a glass substrate, so 
long as the layer is thin enough to restrict the lateral flow 
of heat through the metal coating, For the experiments 
presented in [13-15] a 400 A transparent gold film was 
deposited on a polished glass substrate. The thinness of 
the metallic layer precludes any significant lateral heat 
flow so that a constant heat flux boundary condition is 
an adequate representation of the surface for compari­
son with this data. A third boundary condition is ob­
tained by assuming that the vapour phase is lumped and 
that the temperature of the liquid at the interface is 
identical to the temperature of the vapour. Finally, the 
far-field boundary condition is approximated from the 
analytic solution for one-dimensional axial conduction 
in a semi-infinite medium. The axial and radial velocities 
are determined as functions of the instantaneous bubble 
radius and interface velocity by assuming that the flow 
field can be determined by the solution for potential flow 
around an expanding sphere in an unbounded liquid. 
The velocity components are 

( )

2 
dR R . u=- sm dt (r2 +Z2)1/2 (y), 

dR ( R )1 V = -d II' cOS()'), 
t (r1 +z2)-

(7) 

A brief description of the finite difference solution of the 
energy equation is set out in Appendix A. 

Finally, it is postulated that the vapour is saturated 
and remains so throughout the bubble growth interval. 
In this way, the vapour pressure and density can be 
specified as functions of the saturated vapour tempera­
ture, 

Pv(Tv) = alTv +azT; +a3T~1 +a4~ +a5T~', 

pATv) = CI Tv + clT; + cJT~1 + C4~ + csT;. 
(8) 

As in [12-14], the property variations with temperature 
are obtained from a fifth-order polynomial represen­
tation of the available property data, With these sim­
plifications, only the rate of change of one state 
variable, in this case temperature, need be considered 
given that 

(9) 

3. Solution procedure 

Eqs. (8) and (9) together with Eqs. (I) and (4) form a 
set of simultaneous equations for the four unknowns 
Tv> Pv , Pv and R, which were solved numerically using a 
fourth-order Runge-Kutta method. In order to initiate 
bubble growth, the equilibrium radius Rc was perturbed 
by allowing it to increase by a very small amount over 
an infinitesimally small time interval. This is equivalent 
to a disturbance in temperature or pressure [10]. A 
comprehensive discussion on the initial disturbance can 
be found in [12] and [13]. For this study, the initial time 
step never exceeded 10-7 s, and the radius increase did 
not exceed 0.05'X, of the initial radius. Care was taken to 
ensure that the magnitude of the initial disturbance did 
not significantly affect the computed growth curve. 

4. Comparison with experiment 

4.1. Spherical bubble growth 

A wealth of experimental data exists for spherical 
bubble growth in liquids with an initial uniform super­
heat. This, coupled with the fact that many of the more 
complex features of heterogeneous growth are absent 
during homogeneous growth, provides a good test for 
the present theory and computational procedure. To 
investigate spherically symmetric growth, the initial 
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Fig. 3. Comparison of computed results with experimental data 
for spherical bubble growth in water and refrigerant R 113. 
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temperature distribution is set to be spatially uniform, 
and symmetry about the r-axis is approximated by set­
ting q: = 0 to establish a zero temperature gradient. 

Fig. 3 shows the comparison of the predictions of the 
present theory with experimental data of Lien [7) and 
Bohrer [18). In the figure, the present theory shows 
acceptable agreement with the experimental data for 
homogeneous bubble growth for a range of system 
pressures and initial liquid superheats for two different 
fluids. Similar agreement was observed with the bubble 
growth data provided by Dergarabedian [4] and Board 
and Duffy [10] for superheated water. 

4.2. Hemispherical bubble grolVth 

Heterogeneous bubble growth depends strongly on 
the amount of energy stored in the thermal boundary 
layer which forms adjacent to the heater surface. The 
sensible heat stored in the liquid is converted to latent 
heat by evaporation into the bubble as it grows. As a 
result, any predictive model of bubble growth requires 
that the temperature profile in the liquid be known prior 
to bubble growth. By heating a quiescent, uniform 
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temperature liquid in microgravity, Lee [13] was able to 
show that the solution of the one-dimensional transient 
heat conduction equation for a constant heat flux 
boundary condition in a semi-infinite solid did a very 
good job at predicting the measured mean surface tem­
perature. Consequently, the initial temperature distri­
bution in the liquid could be predicted by the expression 

T(z t') = T + 2q:~ exp (_ 22 ) 
, ')C kl 4alt' 

-~erfc -- . qH z ( Z ) 

kl y'4alt' 
(10) 

where t' is the time to the onset of boiling. This ex­
pression, together with the assumption of a quiescent 
liquid, specifies the initial conditions required by the 
present theory. 

Bubble growth predictions for three different test 
cases are shown in Fig. 4. For each experiment the 
computational predictions of the two one-dimensional 
spherically symmetric models, which represent the upper 
and lower bounds of growth, are given together with the 
two-dimensional heterogeneous model. As expected, the 
fully two-dimensional model predicts growth curves 
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Fig. 4. Comparison of computed results with experiments for hemispherical bubble growth of R 113 on a heated plane surface in 
microgravity, g~/g = 10-4 (a) q" = 7 Wjcm2

, Po< = 149.9 kPa, T,a' = 59. 8°C, T'X = 48.3°C. (' = 0.91 s, T; = 85.8°C; (b) q" = 
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T"" = 48.35°C,,' = 0.75 s, T; = 84. 1°C. 



247 

A.J. Rol>insoll, R.L. Judd / Illternatiollal Joun/al 0/ Heat alld Ma.V,\' Trails/a 44 (2001) 2699-27/0 2705 

which are positioned somewhere inbetween the upper 
and lower bounds as depicted in the figure. More im­
portantly, satisfactory agreement is observed between 
the measured growth curves over a large portion of the 
respective growth intervals. This lends support to the 
physical modelling of the problem as well as the nu­
merical techniques utilised in the computations. It can 
be noted that the agreement between the computed and 
experimental curves lends support to the assumption 
that, for these specific test cases, microlayer evaporation 
did not play a significant role in the bubble growth 
process. 

5. Bubble dynamics 

In the following sections, the growth characteristics 
of a single isolated hemispherical bubble growing at a 
plane heated surface with negligible effect of an evap­
orating micro layer will be discussed, The boiling con­
ditions are identical to those of Fig. 4(b). Fig. 5 shows 
the time variation of the predicted bubble radius and 
vapour temperature. In the figure, four regions of 
growth have been demarcated and will be discussed in 
turn. In Fig. 6 the energy equation for the vapour 
bubble, Eq. (4), has been decomposed to expose the time 
varying contributions of its constituent terms. From the 
figure, it is apparent that the term involving the rate of 
change of vapour density (1/3 )hrgR( dpv I dt), is negligible 
compared with the interface velocity term, hrgp,(dRldt). 
Thus, for discussion purposes, the growth rate can be 
considered proportional to the area averaged heat flux 
into the bubble throughout its growth, 

dR I 1 (aT) /I -d ex A- kl a dA = q"vc' 
t s As n R 

(11 ) 
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Fig. 5. Bubble radius (R) and temperature (T,) histories for 
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four growth domains: surface tension controlled (ST). tran­
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In Fig. 7, the constituent components of the equation 
governing the motion of the interface, Eq. (I). are rep­
resented. In the figure, the pressure difference. P, - P x' 

is balanced by the stress in the interface through the 
surface tension term. 2a I R. and the hydrodynamic 
pressure, l'I,d, defined as 

d2R 3 (OR)" 
l'I'd = PI R dt2 +'2 P1 at (12) 

The hydrodynamic pressure can be regarded as the ex­
cess pressure at the bubble interface that is a direct 
consequence of the bulk motion of the liquid. The total 
pressure in the liquid at the interface is related to the 
hydrostatic and hydrodynamic pressures through 
PR = Px + f'I,d· 

5.1. Swjctce tension controlled g/'OIl'th (ST) 

During the surface tension controlled domain, energy 
is continuously supplied to the bubble by conduction 
through the liquid. This is evident from the positive 
value of q::vc in Fig. 6. However. the average heat flux 
into the bubble, and thus the growth rate dR/dt, are 
small enough that the contribution of the hydrodynamic 

pressure in balancing the equation of motion is insig­
nificant so that it essentially reduces to a static force 
balance, Pv - Px ~ 2a1R, as shown in Fig. 7(a). Because 
Px is constant. an increase in the bubble radius must 
occur in conjunction with a decrease in pv • which of 
course coincides with a proportional decrease in the 
vapour temperature, Tv. This is an important effect be­
cause the decreasing vapour temperature represents a 
decreasing interface boundary temperature for the liquid. 
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As the liquid is essentially still, the decreasing interfacial 
liquid temperature acts to increase the interfacial tem­
perature gradient, (aT jan)R' The magnitude of the 
temperature gradients at the interface can be charac­
terised by considering the tip and base of the bubble as 
the bounding values. These are shown in Fig. 8. It can 
thus be said that bubble growth in this domain is ac­
celerated due to a positive feedback effect in which the 
increase in the radius, R, is related to a decreasing in­
terfacial liquid temperature. This corresponds with an 
increase in q::vc' through the increase in the magnitude of 
the local temperature gradient, which feeds back by a 
proportional increase in the bubble growth rate, dR/dl. 
In the earliest stage of the surface tension domain, this 
feedback effect is not significant. However, in the latter 

stage, it becomes appreciable as indicated by a notice­
able increase in R away from Rc (Fig. 5), a significant 
decrease in both Tv and Pv (Figs. 5 and 7(a), respectively) 
and a sharp rise in q~vc (Fig. 6) 

5.2. Transition domain (T) 

As the bubble interface is accelerating radially out­
ward there comes a point at which the effects of the bulk 
liquid motion outside the bubble are no longer insig­
nificant. The transition domain is thus distinguished 
from the surface tension domain by the relative contri­
butions of the surface tension term and the hydrody­
namic pressure term in balancing the equation of 
motion. Fig. 7(a) shows that the excess pressure at the 
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Fig. 8. Interfacial liquid temperature gradient histories at the top of the hemispherical bubble (along z-axis), and the base of the 
hemispherical bubble (along r-axis). 

interface due to flow effects, Phd, rises sharply at the 
beginning of this region and quickly becomes of the 
same order of magnitude as the surface tension term, 
2a/R. 

At the beginning of the transition domain the effects 
of liquid motions are still small, so that both q::vc and 
dRldt continue to increase rapidly as a result of the 
positive feedback effect discussed earlier. However, as 
evident from Fig. 6, the rate of change of q~vc and dRldt 
are shown to decrease in the latter stage and reach a 
maximum value at approximately 3 x 10-4 ms. Because 
the decreasing vapour temperature tends to have a 
positive influence on the local temperature gradient and 
thus q:vc' this signifies that there are mechanisms at work 
which tend to oppose the increase of q~vc' The most 
obvious is the fact that, as the growing bubble faces the 
additional resistance associated with forcing the bulk 
liquid out radially, the rate at which Pv and Tv decrease 
becomes less rapid. This tends to adversely affect the rate 
at which (oT/on)R and q~vc increase. The significant 
decrease in the slopes are demarcated by the 'inflection' 
on the Tv and Pv - PO<. curves shown in Figs. 5 and 7(a), 
respectively. Secondly, conduction and advection occur 
in the liquid adjacent to the interface. Each of these heat 
transfer mechanisms act in such a way as to diminish the 
temperature gradients in the immediate vicinity of the 
vapour-liquid interface and thus have a detrimental in­
fluence on the rate at which q::vc and dRldt increase. 
Advection describes the mechanism by which thermal 
energy is transported into the bulk of the liquid away 
from the bubble interface due to outward radial flow. 
Conduction, on the other hand, is responsible for the 

transport of energy into the vapour bubble, and to a 
lesser extent into the bulk liquid. This is illustrated in 
Fig. 9, where the temperature profiles along the z- and 
r-axes are shown. 

5.3. Inertial controlled growth (Ie) 

Inertia controlled growth refers to the interval of 
bubble growth in which the rate of bubble expansion is 
considered to be limited by the rate at which the growing 
interface can push back the surrounding liquid [19]. In 
this domain, the average heat flux into the bubble is very 
high, as illustrated in Fig. 6, so that heat transfer to the 
interface is not the limiting mechanism of growth. 

Fig. 7(a) shows that the pressure difference, Pv - P",-, 
is now balanced by the hydrodynamic pressure at the 
interface. The hydrodynamic pressure comprises two 
'inertial' terms as given in Eq. (12). These are the ac­
celeration term, PIR( d2 R/ dt2 ), and the velocity term, 
(3/2)p,{dR/dt)2. These are plotted in Fig. 7(b). The two 
terms are of differing sign and thus tend to have an 
opposite influence on the total liquid pressure, and thus 
the force of the liquid on the bubble interface. The 
negative acceleration term accounts for the fact that the 
fluid body surrounding the bubble is decelerating, 
causing outward force on the bubble surface. The ve­
locity term is positive because the expanding bubble wall 
is effectively pushing the fluid outwardly. The reaction 
force of the liquid on the bubble wall is thus inwardly 
directed and must be of opposite sign. 

This inertial controlled growth domain is character­
ised by a decreasing average heat flux and decelerating 
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Fig. 9. Computed liquid temperature distribution at (a) the top 
of the hemispherical bubble (along z-axis), and (b) the base of 
the hemispherical bubble (along r-axis) at various times. 

interface as shown in Fig. 6. This signifies that the 
positive influence that the decreasing vapour tempera­
ture tends to have on the local temperature gradient is 
not sufficient to compensate for the rate at which ad­
vection and conduction serve to decrease the tempera­
ture gradient at the interface. Figs. 5 and 8 show that the 
decreasing vapour temperature occurs in conjunction 
with decreasing interfacial temperature gradients at the 
tip and base of the bubble. Fig. 9(a) shows this point 
more clearly. Here, the interfacial liquid temperature is 
decreasing. However, due to a net loss of thermal energy 
by conduction out of the liquid and into the vapour 
bubble, coupled with conduction and advection of 
thermal energy away from the bubble and into the bulk 
liquid, the maximum temperature within the boundary 
layer decreases and moves further out from the bubble 
interface. This 'shrinking' and 'stretching' of the thermal 
boundary layer results in an overall decrease in magni­
tude of the interfacial temperature gradient, even with a 
decreasing interfacial liquid temperature. Fig. 9(b) 
shows a similar effect at the base of the bubble except 
that the maximum temperature, which is equal to the 

temperature of the liquid adjacent to the plane heated 
surface, remains approximately constant during this 
domain. 

5.4. Hea/ /ransfer coll/rol/ed groll'/h (HT) 

Heat transfer controlled growth refers to the interval 
of bubble growth in which the rate of bubble expansion 
is considered to be limited by the rate at which liquid is 
evaporated into the bubble, which is dictated by the rate 
of heat transfer by conduction through the liquid [19]. In 
this late stage of bubble growth, the interface velocity 
has slowed enough so that the hydrodynamic pressure, 
Phd, becomes insignificant compared with the surface 
tension term, 20-1 R, in balancing the pressure difference, 
P, - Px . This is shown in Fig. 7(a). As a result, the 
equation of motion is essentially reduced to a balance of 
static forces acting at the vapour-liquid interface, 
P, - P x ~ 20-1 R, in much the same way as it did in the 
surface tension controlled region. However, in contrast 
with the surface tension controlled region, increases in R 
do not produce an appreciable decrease in the vapour 
temperature of the bubble. As shown in Figs. 5 and 9, 
the vapour temperature remains relatively constant and 
approximately equal to its minimum value correspond­
ing with the saturation temperature of the system 
(Tv.min ~ Ts"t(Px ) = 52.0°C). Because the liquid temper­
ature at the interface is now constant, the positive 
feedback effect, responsible for the rapid acceleration of 
the vapour-liquid interface in the surface tension con­
trolled region, does not occur in this domain of growth. 
Conversely, the 'shrinking' and 'stretching' of the ther­
mal layer in the liquid due to conduction and advection 
are responsible for the continuous deceleration of the 
interface due to the diminishing interfacial temperature 
gradients. The decrease in the growth rate is com­
pounded by the fact that for t > 10 ms the top portion of 
the bubble penetrates into a region of liquid which is 
subcooled. This point is illustrated in Figs. 8 and 9(a) by 
the negative value of the interface temperature gradient 
for the tip of the bubble. Hence from this time onward, 
the net energy transfer into the bubble is the difference 
between that which leaves by condensation and that 
which enters by evaporation. 

It is interesting to note that the maximum tempera­
ture in the liquid along the heated surface exceeds that of 
the far field wall temperature. This is illustrated for 
t;;. 1.0 ms in Fig. 9(b). At any point along the heated 
surface there are three heat transfer mechanisms which 
act together to transport the imposed heat flux: radial 
conduction tangent to the heater surface, axial conduc­
tion normal to the heater surface, and convection due to 
the flow of liquid over the surface. The lower tempera­
ture in the immediate vicinity of the bubble indicates 
that the imposed heat flux is being transported away 
from the surface very efficiently. This region is charac-
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terised by a relatively high evaporative heat flux into the 
bubble together with significant convective heat transfer 
because it is the region of highest liquid velocity. Mov­
ing further away from the interface, the influence of 
evaporation becomes less and the contribution of con­
vective heat transfer decreases due to the rapidly 
diminishing liquid velocity (U(r, 0, /) ex 1/1'1). The sur­
face temperature increases as the less efficient mode of 
axial conduction normal to the surface becomes an im­
portant mode of heat transfer. One might expect the 
surface temperature to increase asymptotically to the 
surface temperature in the undisturbed region at Rx. 
However, it is evident from interferometric investiga­
tions on growing bubbles that the thermal boundary 
layer thickness adjacent to the surface can be largest 
near the bubble and decreases at distances further away 
[20]. Consequently, in order that axial conduction can 
accommodate the imposed surface heat flux, the surface 
temperature must be higher in the region of the thicker 
boundary layer nearer the interface. This is consistent 
with the observed overshoot in the liquid temperature 
profile at the heated surface. 

6. Conclusions 

In recent years, theoretical developments in nucleate 
pool boiling have been focussed on isolated bubble 
growth upon a heated surface. It is hoped that an un­
derstanding of the mechanisms which determine the 
growth of bubbles will offer insight into and perhaps 
predictions of the increased heat transfer coefficient 
observed in nucleate pool boiling. However, advances in 
the state of the art are inhibited by the apparent sto­
chastic nature of boiling due to the rapidly varying 
thermal and flow fields. As a result of the overwhelming 
complexities, sufficient testing of the physical modelling 
and computational procedures has not been afforded in 
the past. 

The present theory overcomes this shortcoming in 
two ways. First, the theory is simple enough to facilitate 
comparison with data for homogeneous growth in an 
unbounded fluid. Second, the theory can accommodate 
the added complexities of a heated surface and time 
varying spatially distributed liquid temperature fields for 
hemispherical bubble growth in microgravity. Overall 
agreement between the present theory and experimental 
data is very good, which instills confidence in the 
physical modelling of the problem as well as the com­
putational procedure which has been utilised. 

The complicated thermal and hydrodynamic inter­
actions between vapour, liquid and solid have been 
manifested for a single, isolated bubble growing on a 
heated plane surface from inception with the negligible 
contribution of an evaporating microlayer. It has been 
shown that early bubble growth away from the initial 

radius is restricted by surface tension forces within the 
bubble wall. However, minuscule increases in radius 
result in an increase in the local interfacial temperature 
gradients, which facilitates growth by increasing the 
area-averaged heat flux into the bubble. Eventually, 
bubble growth becomes impeded by the fact that it now 
must force the surrounding liquid out radially. The heat 
flux increases to such an extent that this becomes the 
limiting factor to growth. Nevertheless, the growth rate 
must eventually decrease with increasing time as the 
thermal energy stored within the boundary layer which 
surrounds the bubble is consumed by the bubble as well 
as transported away from the bubble by advection into 
the bulk of the liquid. Eventually the growth rate slows 
enough so that liquid inertia no longer plays an im­
portant role, and the growth rate becomes limited by the 
rate at which energy can be transported to the interface 
through the liquid. 

Appendix A. Computational technique for the energy 
equation 

Utilising subscript notation to denote partial differ­
entiation with respect to the subscript variable, the en­
ergy equation in axisymmetric cylindrical coordinates 
can be expressed as 

(13) 

where U and V are the axial and radial components of 
the liquid velocity defined in Eq. (7). 

The energy equation was solved numerically on a 
grid which was constructed using an algebraic grid 
generation technique proposed by Chen et al. [21]. The 
grid variables in the physical domain are depicted in 
Fig. 10. Grid clustering near the vapour-liquid interface 
as well the moving boundary were facilitated by defining 
the grid such that 
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Fig. 10. Grid parameters. 
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Zij == DjCOS()'ij), (\4) 

where 

;',/ =~(~~\), 
Dj = I +(Rx -1)(I-SRtan-

1 
[(1-~ __ \) tan GJ D· 

(15) 

and the term SR determines the percentage of grid points 
near the interface, In order that conventional finite dif­
ference techniques be utilised, the energy equation was 
transformed to a stationary grid with uniform grid 
spacing, The transformation is given by 

r=r(c:,'1,r), z=z(e,'1,r), t=r (16) 

such that 

T,. = j-I (z,,7; - z"T,I)' 

T:: =j-l(r"T,I- r'IT,J, 

T, = T, - T,.r, - T::z,. 

By defining the contravariant velocities as 

V C 
= (V - r,)z'l - (V -z,)r'I' 

Vc = (V - z, )r" - (V - r, )z", 

the transformed energy equation becomes 

T, + j-I VCT, + j-I VCT,I = j-2rJ.I(aT,:" - 2bT,"1 

+ cT,I'1 + dT, + eT,l) 

(\7) 

(\8) 

+ (jrr I rJ.1 (zl/T, - z'IT,I)' (19) 

where j is the Jacobian and the coefficients a through e 
are related to the metrics and their derivatives through 
the following: 

, , 
a == z~ + r~, 

, , 
c=z~+~, 

d = J I (r,d11 - z'lfi2)' 

e = r I (ZJ12 - r,/11)' 

(J I = azu . - 2hz'I" + CZ'I'I' 

(12 = ar,,, - 2br'I" + cr'I'I' 

(20) 

Eq. (19) was discretised using second-order central dif­
ference representations of the spatial derivatives and a 
fully implicit first order representation of the time de­
rivatives. At a given time step, the temperature field was 
determined using successive over-relaxation (SOR) by 
lines. For each line the resulting system of algebraic 

expressions were solved utilising the efficient tri-diagonal 
matrix algorithm (TDMA). 
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