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Abstract

Most intriguing and complicated scientific problems are solved with the aid of
high-speed computers. Advancements in computer technology in conjunction with lower
cost of computers have tremendously contributed to this effort. In this thesis, adopting
the same philosophy, we explore the solutions to electromagnetic problems using a
numerical technique, namely the Finite Difference Time Domain technique. This
technique requires large computer resources: specifically, fast computing and large
amount of computer memory. Therefore, our developments of this numerical technique
focus on reducing both the computational time and computer memory requirements.

A unique line-of-sight (LoS) approximation to the equivalence principle, which is
a far more efficient alternative to the standard equivalence principle, is introduced. This
includes the theory associated with the LoS equivalence, the examination of the error due
to the approximation, and the verification with simulations and measurements. The
FDTD method is formulated by discretizing Maxwell’s curl equations over a finite
volume and approximating the derivatives with central difference approximations. The
error due to this approximation depends directly on the method of implementation such
as the non-uniform mesh. An experimental investigation of the numerical error due to
the non-uniform FDTD technique is presented. In the area of active and passive
microwave devices, a unique method of incorporating the device equations into the
FDTD algorithm is presented. The measurement and simulation results verify this
method. In addition to device analysis, new antennas for the use in Personal
Communication Systems are presented. The finale to the thesis is an electromagnetic
simulation software package that incorporates all the new techniques developed in the

course of this work.
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Chapter 1

Introduction

1.1 Overview

The complexity of electromagnetic problems has forced many researchers and
engineers to resort to their numerical solutions. With the advancement of modemn
computers, numerical analysis techniques are becoming more efficient and popular.
Numerical solutions by their very nature are approximate solutions to the real problem,
thus they have some inherent disadvantages relating to numerical and discretzation
approximation as well as long computational time. In many cases, the accuracy of the
solution is linked to the length of computational time. The reduced accuracy in
numerical solutions is due to the discrete value approximations of continuous functions
and the finite element representations of the physical structures. The long computational
time is mainly due to the large amount of computations needed when simulating
electrically large structure. There are a number of techniques used in computational
electromagnetism and among them the most popular are: the Method of Moments, the
Finite Element Method, the Transmission Line Method, approximate analytical solutions,
and the Finite Difference Time Domain method. Each one of these techniques has its
advantages and disadvantages. The Finite Difference Time Domain technique is one of
the most efficient and it is the subject of this study.

In the Finite Difference Time Domain (FDTD) technique, in the spatial domain
and the time domain, finite differences are used to approximate the derivatives of

Maxwell's equations. The FDTD technique does not involve any problem specific
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functions such as the Green's function in the Method of Moments, nor does it require the
solution to a system of equations as in the case of the Finite Element Method and the
Transmission Line Method.

The FDTD technique, which is more versatile than other methods, seems to be the
best technique for solving difficult electromagnetic problems. Despite this advantage, the
FDTD technique has few drawbacks, namely the large memory and CPU time
requirement. It is a common understanding that any new development of the FDTD
technique should address these concerns and this thesis exclusively does that.

The implementation of FDTD technique in the spatial domain can be of different
mesh forms, they are the uniform, the non-uniform, and the curvilinear. Each one of
these forms has its benefits and drawbacks. An exhaustive investigation shows that the
non-uniform FDTD technique is the most efficient algorithm with regards to CPU time
and memory requirements. The non-uniform FDTD technique allows the use of fewer
cells in the spatial domain to discretize a given problem. However if not implemented
properly, it will affect the accuracy of the solution. Nevertheless, a compromise is
achievable between the degree of non-uniformity and the accuracy of the solution. On
the other hand, although the uniform mesh provides better accuracy, it results in an
increased number of cells and longer computational time. Similarly, in the case of the
curvilinear form, because of better conformity to the physical structure, one can obtain
good accuracy using the same number of cells as in non-uniform case, however the
difficulty in the implementation of this technique and the additional memory required for
the storage of variables overshadow its advantage. This thesis contains techniques that
improve the accuracy and the efficiency of the non-uniform FDTD method.

In this thesis, a new equivalence approach to the calculation of radiation pattern of
antenna is introduced. Using this new equivalence approach, the computational time
required for antenna pattern calculation can be reduced significantly.

In some analyses, specifically in the case of antenna analysis, it is important to
have free space medium surrounding the antenna. In the case of the FDTD technique, the
requirement of free space results in the use of a large mesh that takes more memory. The

requirement for the mesh size can be reduced by truncation of the mesh along with the
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use of absorbing boundaries that emulate free space. There are a number of Absorbing
Boundary Conditions (ABC). Among them, the most accurate one is the Perfectly
Matched Layer (PML) absorbing boundary, and the simplest one is the first-order
absorbing boundary. In antenna analysis, the PML absorbing boundary condition is used
for the cases that require high accuracy and the first order ABC are used for faster
computation.

When using the FDTD technique for analysing the performance of antennas, it
was found that the optimum configuration is the non-uniform mesh for fast computation,
the PML for accuracy, and the “line-of-sight” equivalence principle for a faster
calculation of radiation patterns. In some cases, even with a good absorbing boundary
condition, the truncation of the mesh does not give an accurate representation of the real
problem. These and other effects are discussed in Chapter 4. In designing antennas, only
one’s imagination sets the limit on the shape and size of antennas, but the analysis
becomes difficult when unconventional structures are used. In this respect, the FDTD
technique becomes the most effective method of solving antenna problems and the
demonstration of this is in Chapter 4.

The analysis of microwave/millimetre wave integrated circuits using
electromagnetic simulators is becoming popular. This is because of the miniaturization
of integrated circuits, which puts various devices in close proximity and the resulting
effect is a strong electromagnetic field interaction between the devices. This effect is
detrimental to high-speed circuits that need to operate over a wide frequency range.
Therefore, the inference of this is that the EM simulations of high-speed circuits should
be in three dimensions and the computation should be with measured circuit parameters
used in the device model. Commonly used circuit simulators in the industry such as the
Agilent Momentum and ADS, Ansoft HFSS, IE3D, and H-Spice do not address all the

pertinent issues and Chapter 6 provides detailed discussion on this.
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1.2 Scope of the Thesis

The aim of the thesis is to improve the FDTD technique in its application to
microwave/millimetre wave integrated circuits. To this effect, it includes the
implementation of new techniques to decrease the computational time, the FDTD error
analysis, and the integration of device equations into the FDTD algorithm. All examples
in the thesis are commonly used devices such as antennas, passive devices, active
devices, and waveguide structures. In conjunction with the application of the FDTD
technique, this thesis contains new antennas for the application in Personal
Communication System and a detailed error analysis of the non-uniform FDTD

technique.

1.3 Contribution to Technology

This thesis contains several contributions towards the advancement of electrical

engineering and electromagnetic simulations, and they are as follows.

(1) Introduction of a new equivalence principle to EM theory in antenna analysis.

(2) Applications of the FDTD technique to passive and active microwave/millimetre
wave components (devices).

(3) Error analysis of the non-uniform FDTD technique.

(4) Development of new antennas for the use in Personal Communication Systems.

(5) Development of EM simulation tool, which is of commercial standard.

With the advancements in wireless communications, the demand for new
antennas is on the rise. With this, there is a need for analysis tools that can accurately
determine the performance of new antennas. In this thesis, we evaluate the performance
of a few new antennas using the FDTD technique. The antennas used for the evaluation
meet the typical requirements for Personal Communications Systems (PCS) and Cellular
Systems (Cell), namely, they are physically small, they have attractive appearance and

good gain. Since the frequency bands for PCS and Cell are at the lower end of the
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microwave spectrum, the size requirement forces one to deviate from the traditional
antenna design methods and adhere to more elaborate antenna shapes. In view of this,
with new antenna shapes, the analysis also has to take an approach different from the
techniques such as the Method of Moments, the Finite Element Method or other similar
techniques. In this respect, the FDTD technique, which models the entire antenna
structure along with the free space surrounding the antenna proves to be versatile.

This thesis contains the introduction of a new equivalence principle namely the
“Line-Of-Sight Equivalence” for the calculation of radiation patterns of antennas. A
different approach to calculate radiated fields from antennas when using numerical
techniques is proposed and verified. The developments in Chapter 3 show that one can
obtain the radiation pattern of an antenna with only one type of surface current that is in
the line of sight from the observation point provided that certain conditions are satisfied.
This procedure can be easily adapted to the calculation of radiation patterns of antennas
with the Finite Difference Time Domain (FDTD) technique.

Errors in the FDTD techniques are mainly due to two factors. One is the
discretisation of the physical structure, and the other is the finite difference
approximation of the derivatives. Using a finer mesh with longer computational time
reduces the first type of error. The second type of error, which is due to the finite
difference approximation, needs separate treatment. In the FDTD algorithm, the use of
uniform mesh in both time and space results in second-order accuracy. This conclusion
follows directly from the fact that central finite differences are used. However, with a
uniform mesh the power of the FDTD method is lost when one tries to analyse devices
that involve fine details in certain regions and less detail in others. In such problems the
use of a non-uniform mesh can increase the algorithm efficiency, because a fine mesh can
be used in the region of detailed structure and a coarse mesh elsewhere. The use of non-
uniform mesh results in less computer memory and faster computational time. However,
this improvement comes at the expense of accuracy. At first glance, one might conclude
that the non-uniform scheme has only first order accuracy. However, the presentation in
Chapter 5 shows that when applied appropriately this scheme has global second order

accuracy.
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The implementation of the FDTD technique to microwave/millimetre wave
integrated circuits is very challenging and it needs a few special considerations. These
are; the proper integration of time-domain device equations into the FDTD algorithm, the
use of more than one cell to represent the device in the physical structure, and the
stability of the device equation used in the FDTD algorithm. Chapter 6 contains
discussions on these and other issues.

In this thesis an EM simulation package is developed. The simulation package
uses a user-friendly Matlab interface and the main engine of this simulation package

includes all the advancements in the FDTD technique outlined in this thesis.

1.4 Thesis Qutline

This thesis consists of seven chapters. Chapter 1 introduces the FDTD technique
and the challenges encountered in its implementation. Chapter 2 gives the general
formalism needed for the FDTD simulation such as: the non-uniform FDTD technique,
the Perfectly Match Layer (PML) absorbing boundary, first order absorbing boundary
and the excitation sources. In addition, Chapter 2 includes a detailed analysis of the
Gaussian pulse excitation. Chapter 3 is dedicated to the theoretical development, and the
experimental verification of the Line-Of-Sight equivalence principle and its application in
obtaining radiation patterns.

Chapter 4 concerns the antenna analysis using the FDTD method and special
considerations given to the modelling aspect of antennas, specifically the incorporated
feed structure. In addition, Chapter 4 includes new antennas that have application in PCS
wireless systems. Chapter 5 covers the error analysis of non-uniform orthogonal FDTD
algorithm with focus on second order error analysis. Chapter 6 includes a detailed
discussion on the application of the FDTD method to passive and active devices. In
addition, Chapter 6 contains a unique implementation of device modelling using two
contact (source) points. Simulation and measurement results are provided. Finally,
Chapter 7 gives the conclusion to the thesis. Fach chapter includes its respective

reference section.



Chapter 2

FDTD Formalism

2.1 Introduction

As in every numerical technique, in the FDTD technique, the method of
implementation plays a major role in its accuracy and effectiveness. Since the FDTD
technique models physical structures, the mapping of the spatial coordinates to the FDTD
algorithm is crucial. This mapping begins with the selection of a mesh or cell format that
best represents the continuous space in discrete form. There are many such representations
and among them, the most commonly used ones are the uniform, the non-uniform, and the
curvilinear grids (or mesh). For our analysis, we have chosen the non-uniform mesh. In-
depth discussions of its properties are contained in this and the subsequent chapters. In
addition to the choice of mesh, as was stated in Chapter 1, the choice of absorbing boundary
condition (ABC) also has a significant influence on the accuracy of the technique. In our
analysis, we have used the most accurate one and the most common one, namely the
perfectly matched layer (PML) absorbing boundary condition and the first order absorbing
boundary condition, respectively. This chapter contains the formalism needed for the
implementation of the non-uniform FDTD technique, the PML ABC, the first order ABC and
the calculation of the return loss with specific excitation sources.

The choice of a non-uniform mesh over the uniform and the curvilinear are due to
some of its advantages such as fewer cells, shorter computational time, simplicity of

implementation and structural conformity to many practical problems. However, these
7
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advantages come with a slight compromise in the accuracy, and the discussion of this is
included Chapter 5.

In the application of absorbing boundary conditions, the PML and the first order ABC
have their advantages and drawbacks. The first order ABC does not perform very well when
the absorbing boundaries encounter oblique incident waves and the degree of accuracy
depends on the obliqueness. However, one main advantage of the first order ABC is that it
utilises the same field compouents used in the FDTD algorithm, and thus has no additional
memory requirements. On the other hand, the PML gives accurate results for cases with
oblique incident waves in applications such as obtaining the radiation pattern of an antenna,
or in the analysis of waveguide structures that do not have a TEM mode. Unlike the first
order ABC, the PML requires additional variables for the field components in the absorbing
boundary regions, as well as additional computations with each time step. This results in an

increase in the computational time for the PML ABC.

2.2 Non-uniform FDTD Formalism

The derivation of the formalism for the non-uniform FDTD algorithm begins with
Maxwell’s equations in isotropic media and they can be of integral {4] or differential form
[1]. In addition, the non-uniform FDTD formalism is a particular case of the non-orthogonal
FDTD, [3]-[6]. In the FDTD technique, the convenience of implementation dictates the
choice between the integral and the differential form, and we choose the differential form.

The differential form of Maxwell's equations in a homogeneous, source-free region is:

d 1 .

— = = VxH 2.1
Pl 2.1)
o _ 1y (2.2)
ot u
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In rectangular coordinates, these two differential equations are as follows.

OE, _1|0H, OH, 23)
o el Oy 0z '
aEy_—_l éﬂ_x_ _éﬁz— (2.4)
ot & Oz ox | '
OF: _1[%Hy OH.| 2.5)
ot &g ox oy | '
0H.__1|0E. OE, 26)
ot ul oy 0z '

__1[2E, _OE,] Q2.7

ot u| oz Ox
asz__l—i@l _?_E_iu (2.8)
ot pl ox oy | '

These partial differential equations can be approximately put into discrete form with
non-uniform spacing in the spatial and uniform spacing in the time domain. The non-uniform
FDTD algorithm follows the reference scheme proposed by Yee [1] in which the electric
field components are located along the edges of the cells, and the magnetic field components
are located on the faces of the cells. This follows the leapfrog scheme given in [1], and

Figures 2.1, 2.2 and 2.3 show the locations of the field components.
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In order to define the field components in discrete form, a new notation is adopted, as

defined in equations (2.9) and (2.10).

E%y L1 k) = Eyy:(x0Y;.210) (2.9)
. Ax. Ay . Az At
26 i = — __2d . =
H, LG k)= H,  (x S VT BT et ) (2.10)

where

A)C(i) = xl- _‘xi__l, Ay(]) = y] '—yj_l, AZ(k) = Zk "Zk_l, At :tn “tn__l. (2.11)

In the definitions, the superscripts # and (n+1/2) represent field components at time
nAt and (n+1/2)At respectively. For reasons of stability and simplicity, choice of term Az in
the FDTD algorithm is chosen it to be a constant. The value of this constant is determined by

the stability condition as given in [1], and it is defined as Ar < Ad / ¢ , where Ady, 1s the

min

smallest value of Ax; Ay; or Az, and c is the speed of light in free space. With these

definitions, equation (2.3) in discrete form becomes

1 1
pob— I
ntl | n,.o. At Hz 2 i, .,k _Hz 2 i, '—1,k
E (i R)=Eal jk)+ = ¢ 1k) ¢j-Lb _
& [Ay(j-D+A()]/2

1 1 (2.12)
H. 2 k) -H, 26 jk~1)
[Az(k-1) + Az(k)]/2

Similarly for E, and E; the equations (2.4) and (2.5) become
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1
n+— n+—
n+l o n .. At Hx‘ Z(Z,J,k)*‘ Hx 2(!,],](-1)
£ )k = 2 )k + - -
Ey GCIR=E, (70 +— [ac(k- D+ As(k)] /2

(2.13)

i 1
He 2, k) ~H. 2(-1,5.k)
[Ax( - 1)+ Ax()] /2

1 1
n+—2— . i Il+5 X .
n+l n.,. . Af H (l»,]:k _H (l—l)]’k)
BTNk = £y A 62K~ Hy -
& [Ax(i —1) + Ax(1)] /2

(2.14)

1 el
H, Gjk)~H, Gj-1k)
(4G =D+ ()] 2

‘The expressions for H,, H, and H, are derived in the same way and they are:

E,Gj+Lb)-E.Gjk)
Ay(j)
EG i k+1)~ E (G, j.k)
Az(k)

n+l n-l At
H. (G jk)=H, 2(i,j,k)—7l— {
(2.15)

1 1 n n
meo o M ELG G+ D)~ ELG 7 E)
H, Gjiky=H, (jk)-— -
7 ? i Az(k)

(2.16)

E i+, k) - E.G. k)
Ax(i)
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The field component points for a large mesh are shown in Figure 2.1, and further

definitions of these terms are shown in detail in Figures 2.2 and 2.3.

v
‘
.
i}
.
‘
.
.
)
'
'
'
1
1
1
'
'
‘
'
v
]
i
.
i
+
'
i
i
'
'
1
'
'
‘T a
1
v
»
.
]
'
¢
i
v
v
'
'
1
*
i
i
2
'
i
1
'
:
'
+
'
1
H
v
‘
‘
s
i
»
i

SR

N
;
:
H
:
H
:
S
H
H
3
A
:
:
H
;
i
H
:
:
;
;
H
:
:
;
H
i
d
:
:
:
H
:
:
=@t
- .
- ¥
:
;
H
:
’_o P
i H
: i
i G
: H
H H
: H
: H
H
: ;
IO SR 1
H
H
:
Lo
.

'
.
.
H
.
H
)
'
.
.
1
.
'
'
'
-
'
'
'
h
'
s
————
'
’
4
;
'
'
s

A
-

0
'
]
.
.
i
)
1
¥
.
i
'
v
v
'
i
v
v
PO PRI
i
'
+
'
¢
H
]
PRSI SRR

........

—————

&-
'
'
1
i
4
———

—V_l.-_..A----
g

‘.._.._.-._._.-..-_:'-‘.-...__..-.___.-.”.
:
i
)
- ———— - B
d
s
’
“
\
s
)
i
,
‘
1
.
'
:
-

._.::,.'_'.

................

A —————

\

'
'
'
'
'
i
i
‘
g
'
.
1
1
'
i
T
v
’

® : E-field position
@ : H-field position

Figure 2.1: Typical mesh with field points.
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2.3 Absorbing Boundaries

As in all electromagnetic problems, the boundary conditions are vital in obtaining a
solution to the problem, and numerical solutions are no exception to this requirement. In
numerical solutions such as in the FDTD technique, in order to obtain the solution to a given
problem within a reasonable computational time, the truncation of the space and time
domains within some boundary is an essential requirement. The truncation in the time
domain is specific to the excitation source; the discussion on this is in Section 2.4. On the
other hand, the truncation in space is somewhat complicated, and there are numerous
implementation techniques available with varying degrees of accuracy and computational
time. Among the various absorbing boundary conditions (ABC's), the most popular ones are
the perfectly matched layer (PML) ABC, the first order ABC, and the second order ABC.

The PML ABC, being a mathematical model for absorbing boundaries, uses values
for properties such as permittivity and permeability that are not physically realisable, but are
highly effective in absorbing electromagnetic waves. When used with the FDTD technique,
it is applied to the outer cells of the FDTD mesh. The first order boundary condition is also
applied to the outer cells of the FDTD mesh and it is applied only to one layer of the surface.
The first order ABC is applied with an assumption of normal incidence to the absorbing
boundaries. The accuracy of the absorption, the computational time and the complexity of
implementation determine the selection of the type of ABC. Inthe FDTD technique, we are
primarily interested in antenna and microwave device analysis.

In antenna amalysis, the FDTD computational domain must be enclosed i an
absorbing box in order to simulate a free space environment surrounding the antenna. An
easy first order ABC can be used in evaluating antennas and from this, the return loss of the
antenna (S11) is obtained with sufficient accuracy. However, in order to obtain the radiation
pattern, the first order ABC is not helpful, and a more accurate ABC is necessary. The
radiation pattern is obtained from the physical currents enclosing the antenna, and these are

sensitive to the ABC when the ABC does not describe "free space” accuracy. A second order
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ABC is more accurate: it absorbs plane waves impinging at two different angles; it is,
however more difficult to implement, and computation takes longer than with the first order
ABC; in summary the performance of the second order ABC does not compensate for its
drawbacks. In this respect, the use of PML ABC seems ideal, because of its simplicity and
flexibility. The PML regions are modelled as lossy media, in contrast with the other regions,
and the performance of PML ABC can be improved by adding more layers. More layers lead
to better absorption, the number of layers depends on the accuracy one wants to achieve and
the physical dimensions and shape of the antenna. In our antenna analysis, we used a number

of cells ranging from five to ten, depending on the antenna.

2.3.1 Perfectly Matched Layer (PML) Boundary

We present a formulation of the Perfectly Matched Layer (PML) that interfaces with
the non-uniform FDTD scheme. To implement the PML, we split each field component E;
into two sub-components E; and Ey. The same procedure applies to the magnetic field

vector. With this the discretizised form of Maxwell's curl equation in the PML region

becomes
atl o, . no, . R H7 i; :k _Hz i; Dl;k
BY0iR= 4D iR B, ()| Sl GRS | ey
net ek ]
_— 0w Hy Gik=0) —H, (k)
B (1R = 4.0 Bl b+ B, () = (2.19)
n+l n+l
" . . . 7z._l’.’k_ 22',',/{
ET k)= A,G) B ji k) + B ()| H2 U LER = He G| ) 5

[Ax(i-1)+ Ax(1)] /2
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E5'G 0= A4.(0) E G j k) + B. () H [(A’Z{kk)g +HAZU§)]’/ s ”: (2.21)
ELG 3= A0 B i)+ B.(F) E [ngkk) S fAZUg]J/ £ Dj 222)
E5'G10)= A, ()X B4 )+ B, (j)[“H [A(y’(f]‘ll) e )]/(; J ")} e23)
H 6B =C,0) (.10 -D, (J)[E G ok Z("’j”‘)J (224)
0.0 = G40 -D. (k)[E AL );Zg;)("’j'k ”)} 2.25)

1 1

"y NP ; ;',',k1~;",',k
H oG k) =Co@) H o (l,J»k)—Dx(l){E ./ J’Az)(k)E (] )} (2.26)

'”'51 n~% : ., .,k . n,. 1, ’
Ho (z;j,k)=cz<k)Hyz'(i,j,k)—Dz(k){E GIR_E)itL) k)} @.27)
Ax(i)
HZ§2<i,j,k)=Cx(z‘)HZf(i,j,k)—Dx(z'){Ey("”’j’k)'ny("'j’k)} .29)
Ax(D)
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1 1 H n
o e B G i+ B G+ Lk
szz(l,J,k)ZCy(J)szz(l,],k)'Dy(J){ (0] Lym( J*LE)

} (2.29)

The total field components are givenas E,=E, + E., , E,=E,, +E,;, ,E~E+E,, ,and H~=
Hy+H, ,H~H,+H,, H~= H,+ H.,. With m representing the coordinate indices x, y and
z, I, representing the length inside the PML region, the coefficients A, ({m), Bm(ln), Conllm),

and D,(I,) are given as follows:

Am(lm)=exp[———-——~—” “:"U’"’A’} (2.30)
&

p{w]l
B, ()=~ ¢

2.31
O':n(lm) ( )
C,(1,)=exp [Zﬂﬁ"f—)ﬂ} (2.32)
M
exp [_Q_(LA] i
D, ()=~ - (233)

O'jn(lm)

The field components inside the PML region undergo strong attenuation in all
directions due to the presence of electric and magnetic losses, 0, , 0,,*, respectively. In the
PML region, the condition g, /¢ = 6,,* /p is observed. Thus, the phase velocity of a plane
wave in the PML region is the same as the velocity in the computational volume truncated by
the PML region. Here € and p are the permittivity and permeability of the loss free
computational volume. This ensures that there is no reflection at the interface of the

computational and the PML regions. The decay is so rapid that the conventional time
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integration of the FDTD method is not useful; therefore, in the PML region the time
integration is exponential [8].

In theory, a single absorbing layer would be sufficient. However, in practical
application of the FDTD technique, the discretization of the PML region requires several
layers. In antenna analysis, the absorbing square box that consists of matched layers at the

walls encloses the mesh that defines the antenna.

2.3.2 First Order Absorbing Boundary

Applications for which the outside boundary need not accurately represent free space,
can utilize the first order absorbing boundary condition. In the first order ABC [11], the
absorption is accurate only for waves that are incident perpendicular to the surface. Unlike
the PML ABC, the first order ABC directly applies to the field components as shown below.

For the first yz surface

| cAL=Ax(D)

WL =E) (@2 k)t
E,LiK)=E, (2. j.k) oA+ Ax()

[Ejeik-E0iR] @39

cAt — Ax(1)

n n-1
A, k)= 2, .k)+
E.LiK)=E. 2 jk) AL ()

[E@ib-El0ip]  @39)

where c is the speed of light in free space and the other variables are as defined earlier.

For the second yz surface, with the total number of cells in the x-direction being nx,

n . n-1 . cAr — AX(}’DC) n . n-1 . 7

(nx, j.ky=FE., (nx-1, j.k +~——»—~—————[ nx-1, k)~ nx, j.k 2.36
Ey(nx, jJB)=E, ( J.k) oA T Ar(mm) E Jk)=E, (nx,j )_ (2.36)

n . n—1 . CAL — A.X(I’ZX) n . n-1 . N

" k) =E (=1, jik +——————{ " -1, k) - B, ik 2.37)
E.(nx, JK)y=E. ( J)cAH-Ax(nx)E( IR -E. (nx k) (2.37)
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For the other four surfaces, the equations are as follows:
First xz surface

cAt - Ay(1)

n n-1
"GLE)=E. (2,k)+
EXGLR)=EL G20+ T

BNk -E (L))

ErGLE)= E;H(i, 2,k) +C_At_:él’gl
et + Ay(1)

ELG2.0)-EGLE)]

Second xz surface, with the total number of cells in the y-direction being ny,

cAt — Ay(ny)

n n-1
v ky=E, Gny-Lk)+
E.Gnk)y=E, (ny ) AT Ay(ny)

[EXGmy =10~ B2 G|

cAt — Ay(ny)

n n-1
G ky=E, (Gny-1k)+
Ex(in,k)=E, (iny )CAHAy(ny)

[ EXGmy-10 - Gk |

First xy surface

cAt — Az(1)

n n~-1
D)= o
EGiD=E, (i2) AT ()

| EXGi2-ET G|

cAt — Az(1)

n n-1
L= Lj,2)+
EG.ID=E) 632+ T

|E5Gi2-E) G

Second xy surface, with the total number of cells in the z-direction being nz,

+ cAt — Az(nz)

n n-1
AL, jonz)= iknz—~1
EALmz)=Ey ( ) cAt + Az(nz)

)G jnz=0)-E) (G, jnz)

n,. . n-1,. CAt“AZ(nZ)
AL jnzy=fg, (G jnz-D)+——--—---=
Exijnz)=Ex (] )cAt+AZ(nZ)

EaG jnz=0)—Ey G, j,nz)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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It can be easily seen from the formalism of the first order absorbing boundary
condition that the absorption is valid for electromagnetic waves with wave fronts parallel to
each surface. If the absorbing boundaries are placed far from the structure by a distance of
several wavelengths, then the wave front is somewhat spherical in nature and the error due to

tmperfect absorption is minimal.

2.4 Excitation Source

In FDTD simulations, applying a known excitation source and observing the response
in the desired domain gives the time or frequency response of the structures under
investigation. The excitation source can be applied at any part of the structure with different
forms of feed structures such as coaxial, microstrip or stripline transmission lines, and the
source can be of different types such as sinusoidal, Gaussian or step functions. In the cases
of antennas and integrated circuits, when using a rectangular grid, the feed is typically
coaxial or microstrip. The excitation source can be either Gaussian pulse or sinusoidal. The
choice of excitation source depends on the specific application. It was found that the
Gaussian pulse is the best excitation source for obtaining a wide band frequency response,
whereas sinusoidal excitation is suitable for certain specific applications such as obtaining
the radiation pattern of an antenna or for the analysis of waveguide structures. The correct
choice of excitation and the implementation of the source in the structure are both important
for accurate simulation. The best method of implementing an excitation source is to use a
square coaxial structure. The TEM mode in a coaxial line is expressed more accurately than
in microstrip or strip-line structures due to the simpler field distribution in the transverse
plane. In addition, uniform cells can be used within the coaxial feed to minimise error, and
the excitation source is applied in a cross-sectional plane in the coax, thus giving a quasi-
TEM mode in the coax. The field component of the excitation source is assumed uniform
from the centre conductor to the outer conductor. Figure 2.4 shows the typical excitation

source field-points. The field components £, and E, in the y and z directions are constant and
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are equal to the excitation source. They are implemented in the shaded region as shown in

Figure 2.4.

B
- Ey
VAE
nez4
Quter Conductor
nez3 Center conductor
nez2 Effective Source Area
nezl
| ] | |
neyl ney2 ney3 ney4

Cross Sectional View of the Coaxial Feed Line

Figure 2.4: Excitation source field configuration.

Among the various types of excitation source, the most useful one is the Gaussian
pulse (as stated above). In addition to providing a wide frequency response, the Gaussian
pulse can be used to derive all the essential device parameters needed for device analysis,
such as return loss, insertion loss, antenna gain or pattern, antenna efficiency, surface current,
etc. Due to its wide range of applications, the Gaussian pulse has been adopted as the
primary excitation source for all our analyses using the FDTD technique. Details of its

implementation are addressed in Section 2.4.1.

2.4.1 Gaussian Pulse Excitation Source Implementation

A Gaussian pulse is defined in time domain using parameters such as the pulse width

(1), time offset (), amplitude (4) and pulse duration (#4,). These parameters are shown in
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Figure 2.5. The Gaussian pulse as a function of time is [12].

g (= Aexz{ (;TO) } (2.46)

The Gaussian pulse in discrete time steps At is

(2.47)

2
Eexc(n)= Aexp {M}

272

The choice of values and the effects of the parameters such as the amplitude (4) and
time-offset () are straightforward. However, the choice and effects of the pulse width (7)

and the truncation (duration) of the Gaussian pulse are not straightforward and need detailed

analysis.
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Figure 2.5 A typical excitation waveform.
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In most practical problems, we are interested in obtaining the frequency response of
circuits or devices. Thus, we begin the investigation with the frequency domain
representation of the Gaussian pulse. Using Fourier transform, the frequency domain

function of equation (2.46) 1s [12]:
2
G(f)= AT exp{ 12%@} exp(~j27 ft,) (2.48)

It is observed in (2.48) that the frequency response of the Gaussian function has the
same shape as in the time domain. The peak of the Gaussian pulse is at zero on the frequency
axis. If we are interested in obtaining a return loss of a circuit or a device, then the spectral
(frequency) content in the Gaussian pulse should have sufficient power (spectral content) for
a given value of return loss. If we were to examine the spectral content as a function of

frequency then we can write the following:
2
D =-20log,, (exp {—_—@%[—T—)—D (2.49)

Here, D is the return loss that is normalized to DC (i.e. maximum value occurs at DC and
it is AT7). Now we could define the frequency limit in terms of pulse width (7) and return
loss (D) as

_ _1_ 2.303D
zT 20

Su (2.50)

From equation (2.50), one may infer that for good accuracy over a wide frequency
range, the pulse width has to be small and there is no limitation for the pulse width.

However, in practical situations there are lower and upper limits for the pulse width. The
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length of the simulation time sets the upper limit and the discrete time step sets the lower
limit of the pulse width.

In addition to the pulse width limit, there are limits on the minimum duration of the
pulse. In the FDTD algorithm, if the Gaussian pulse is terminated prematurely at £, from the

initiation of the pulse as shown in Figure 2.6, then the error in the simulation is significant.

1 -
'
]
0.8k RO A B W
U A B Pulse —
Q.7 o : .
/ 21(%)
/
04 y
0.2 b oo Error =
. \
0 ; J
0 . 0.5 ERN 7 15
time (Sec) tn o < 0

Figure 2.6: Gaussian pulse and truncated error function.

The truncation error shown in Figure 2.6 is defined as

2
Aexp ~ot) t>t,
g (0= 27 (2.51)

0 i<t

X

We define ¢ in the frequency domain as the ratio of the magnitudes of the truncation

error to that of the Gaussian pulse as

|G, ()|
16,0

where G,(f)and G,(f) are the Fourier transforms of the functions g,(f)and g,(f),

¢ = 20-log (2.52)
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respectively. We evaluate this function numerically using Fast Fourier Transform (FFT).
The graphical representation of equation (2.52) for an example with different 7, with a fixed
pulse width (7) of 10 ps is shown in Figure 2.7. The figure contains the return loss error & for

values of the pulse truncation from the centre of the pulse (¢, —¢#,) of 10ps, 20 ps, and 30 ps.

FOh e

a0 ; L : : i i ; :
0 05 1 1.5 2 2.5 3 35 4 45 5
Frequency [GHz}

Figure 2.7: Return Loss for premature termination of pulse.

It is evident from Figure 2.7 that the truncation error plays a major role in the overall
simulation. Itis extremely difficult to derive a relationship between the three parameters: the
pulse width, the return loss and the pulse duration. Therefore, for each simulation problem
one needs to pay attention to all three parameters. For example, if we are interested in a
practical problem for which the return loss needs to less than —40 dB over a frequency range

of up to 5GHz, then the minimum pulse duration has to be

ds”‘[g: (2.53)

c

b 2 3t +

where d, is the distance of the §;; sampling point from the beging of the coaxial feed line
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and &, is the dielectric constant within the coaxial feed.

The length of the coaxial feed for a Gaussian pulse is calculated with the assumption

of TEM mode in the feed:

C taur

min :”\/Z 2

Coax length (2.54)

In the FDTD algorithm, initially the pulse is reflected at the excitation point within

the coaxial feed, and at time 7, an absorbing boundary is turned on while the source and the

reflecting plane are turned off. Figure 2.8 shows the side view of the coaxial feed.

Absorbing Boundary
planes ¢z, Outer Conductor

5582 Source Excitation plane
<t 7T

. Inner Conductor
505
0%

Field planes for Reflector £ <faur

Figure 2.8: The cross sectional view of the coaxial feed.

2.4.2 Sinusoidal Excitation Source Implementation

In sinusoidal excitation source, the parameters that define the source do not affect the
simulation results significantly. However, there is a limit on the high frequency; this is due

to the maximum cell size. In a sinusoidal source, only two parameters need to be set and
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they are the amplitude and the frequency. The selection of these parameters is

straightforward.

E o) = Asin(27 fynAt) (2.55)

where f; is the frequency, At is the time step in the FDTD algorithm and 4 is the amplitude of
the source. In the simulation algorithm, for sinusoidal excitation, the reflector plane is

continuously on.

2.6 Summary

In this chapter the formalism needed for the implementation of non-uniform FDTD
applications is developed. The formulas given are utilised in computer simulations, which
demonstrate applications to antennas and integrated circuits. In addition, this chapter
contains descriptions of the absorbing boundary conditions and excitation source. The
discussions on the excitation source demonstrate that some parameters are crucial to the
accuracy of the FDTD simulation; they are the pulse width, the duration, and the coaxial line

length. The detailed error analysis of these parameters was presented in this chapter.
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Chapter 3

Radiation Pattern with New Equivalence

3.1 Introduction

The equivalence principle has been widely used in the analysis of the radiation
patterns of antennas. It states that an original problem with radiating sources can be
transformed into an equivalent problem with equivalent sources on an arbitrary closed
surface [1]-[3]. The region of interest in radiation/scattering problems extends to the far
zone. It is impossible to accommodate such a region in the computational space of a finite
volume numerical technique. With these techniques, the equivalence principle is practically
the only means of pattern computations. However, it requires large computational time. In
this thesis, we introduce an approximation to the standard equivalence principle, namely the
line-of-sight (LoS) equivalence approach to far-field computations. It significantly increases
the efficiency of the radiation pattern computations when used in numerical techniques such
as the finite-difference time domain (FDTD) method.

The LoS approximation to the equivalence principle considers the source
contributions from surface currents that are on the LoS surface only; as well as the currents
along the LoS contour. The conditions necessary for the validity of the LoS approximation
are: (1) the radiating equivalent sources are in free space and the field is bounded at infinity,
and (ii) the observation point is in the far-field region. For every observation point, the

virtual closed surface consists of the LoS surface and the ‘shadow’ surface (see Figure 3.1).

29
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The ‘shadow’ surface can be transformed into an infinite surface supported by the LoS
contour. Every straight line, which passes through the observation point and a point on the
LoS contour, belongs to this infinite surface (see Figure 3.1). In our approach, the integration
of the equivalent currents on the infinite surface is approximated by a contour integration

over the edge currents along the LoS contour.
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Figure 3.1. Equivalent surfaces and LoS approximation notations.

Over the last half a century, significant attention has been paid to the solutions of
diffraction and scattering problems; for example, see [4]-[7]. Most of these references treat
the problem of reducing the surface integrals to contour integrals and they are focused mainly
on the application to scattering problems. The fundamental difference between a scattering
problem and an equivalence problem is that in the former the position vectors of the field on
the surface of the scatterer, of the radiating source and of the observer, are known; while in
the latter, only two of these position vectors are known: the position vectors of the surface
field and of the observer. Therefore, the approximate expressions obtained for the scattering
problem cannot be applied directly to the equivalence problem. In [6], the Modified Edge

Representation (MER) was proposed and the authors derived a general mathematical
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expression for the surface-to-contour transformation using Stroke’s theorem. In [6], using
field equivalence, an approximate solution is obtained for the surface integral. The
derivations in [6] are based on the use of two deformed surfaces (reflection and shadow
boundaries), which are needed to obtain near zone accuracies for the diffracted field. Our
LoS approximation is developed for far field computations. This allows the shape of the
extended surface to be transformed from an infinite conical frustum to an infinite tubular
frustum. Unlike in [ 6], we use an approximation to the open-space potential integral solution
rather than diffraction equations such as the Stratton-Chu representation (see [7]). With this
approximation, the derivation and implementation of the LoS approach to the radiation
problem becomes simple and straightforward. In the literature one could find more

metaphorical and less theoretical arguments to the LoS approach, e.g., [12][13]{14].

3.2 Theoretical Discussion

In order to highlight the need for a LoS approximation to the equivalence principle,
one needs to examine the standard equivalence principle. In the equivalence principle, when
obtaining the radiation pattern, the surface currents on the surface enclosing the antenna are
used. They are derived from the tangential surface field components. The standard
equivalence principle is very useful when used in an isotropic medium for which the free
space Green’s function can be used in obtaining the radiation pattern [1], [2] and [3]. In
general, the calculation of the radiation pattern from the surface currents requires both
electric and magnetic currents. However, if the equivalent surface is sufficiently smooth, i.e.
the observation point is in the positive normal of the LoS surface, then either one of the
surface currents can be used. This concept is exploited in the LoS approach. The LoS
approximation to the equivalence principle reduces the computational time and storage
memory in the FDTD simulation, thus resulting in an improved efficiency in its application.

The theoretical proof for the LoS approximation to the equivalence principle and its
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verification with simulations and measurements are presented below.

The first section contains the definition of the LoS equivalence approach and its
necessary conditions. The next section contains a brief review of the commonly used
equivalence theorem and the expression of the field in terms of the vector potentials. The
proceeding section contains the introduction and the derivation of the point-of-symmetry
fields. Section 3.2.5 contains detailed discussion on the calculation of the LoS edge currents

and supporting examples.

3.2.1 Line of Sight Equivalence Principle

The LoS equivalence principle approximates the commonly used equivalence
principle, valid under some special conditions. We give its definition below.
The source contributions from an enclosed surface to an observation point are
only from one type of surface currents (electric or magnetic) that are on the
line-of-sight surface and the equivalent edge current on the LoS contour.
The conditions necessary for the validity of the LoS principle are:
1. The radiating sources are in free space and the fields are finite at infinity.
2. The observation points satisfy the point-of-symmetry condition (sec Section 3.2.4).
3. The size of the enclosing box dictates the accuracy of the LoS approximation.
It follows from the definition of the LoS equivalence approach that the surface current
contributions to the far-field are from two distinct sources; one is the sources on the LoS
surface and the other is the sources on the LoS contour. The discussion on this is given in

Sections 3.2.4 and 3.2.5, respectively.

3.2.2 Standard Equivalence Principle

The equivalence principle is widely used to simplify the original problem with an

equivalent one in solving for the radiated field. The derivation of equivalence to a problem
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begins with the uniqueness theorem; this and its extension to the equivalence principle are
given in [1],[2L[3].

In order to examine the equivalence principle, let us choose a surface that encloses all
sources in homogeneity as shown in Figure 3.2. Suppose we are interested only in the field
n space outside the enclosed surface, then an equivalent problem can be constructed as
shown in Figure 3.3.

The electric and magnetic surface current densities on this surface are:

JS=# x(H, -H,) (3.1
and
MP=—ix(E -E)) (3.2)

where (E1 JH ) and (E 2 H , ) are electric and magnetic fields outside (region 1) and inside
(region 2) the enclosed surface respectively, and 7 is the outward normal vector to the
surface.

If we are interested in the field in region 1, then the fields in region 2 could be set to
zero without disturbing the field in region 1. With this assumption, the electric and magnetic

surface current densities

JS=# xﬁl | =h xHS (3.3)

n

and

M5= —f x E’JS =-f x ES 3.4)

where ES and HS are the electric and magnetic field components on the surface in region 1.
In addition, one important point to note is that in the above derivation, the original problem is

reduced to an isotropic problem, to which the free-space conditions can be applied.
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Figure 3.3: Equivalent source in an isotropic medium
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3.2.3 Surface Current Densities and Vector Potentials

A commonly used method for calculating the field from radiating sources on a surface

1s the vector potential approach [1],[2],/11]. Let us assume that sources with current

densities J°and M, which in the limit as area tends to zero are an infinitesimal point

sources, are placed at the origin of the coordinate system. For this, the wave equations are

V24 +IP A% = puJe (3.5)

V2F +k2F° = eM*® (3.6)

where % is the wave number.The solution for the elemental vector potentials of (3.5) and

(3.6) is the free space Green’s function:

- 7e kr
A6=ﬁ4"——e : 3.7)
T v
and
. ek
Fezgfr f—r— . (3.8)

The principle of superposition holds, thus the total vector potentials are

A= _‘-_“J'ﬁe-dv'=—4%ﬂj.§‘—;ﬁje-dv' , (3.9)

- - £ e‘jkr -
F=ﬂjF‘~’~dv':-—— H 7 (3.10)
J 4 o

If the linear densities of current J¢and M€ on the surface are J°¢ and M, then
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- M e?" 7S =S

A=-———H——~—Jg-d§’= ”Ae-d&" , (3.11)
4 r

- £ e'jkr ~ s, =G

F=——ﬁ———M . df = ”Fe-dE , (3.12)
4ir r

and the general expression for the fields in terms of vector potentials is [3]

1

E=-VxF+——(VxVxA) (3.13)
&,

A=VxAd+—(VxVxF) (3.14)
J Bty

We use a rectangular coordinate system, in which the vector wave equation of each
vector potential reduces to three decoupled scalar wave equations. The electric and magnetic

vector potentials in the rectangular coordinate system are

—

A=A+ AP+ A2 (3.15)

F=F3+Fip+Fcs (3.16)
In order to simplify the further development, we use one component for each of the
surface currents, namely J; and M as elemental current in free space. For these, from

(3.7) and (3.8) it can be seen that only 4; and F exist. Without loss of generality, the

following derivations can be extended to the other four components J yse LI, M and M.
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The curls of the electric F; and magnetic A; vector potentials in spherical coordinates are

o AD : A,
V x A X = cos(f) —= P —sin(@) sin(p) — 2 3.17)
or or
) oF, . | oF; |
Vx F;3=-cos(d) = x +sin(d) cos(g) 5 Z (3.18)
r

The curl of the curl of the magnetic vector potential is

VX Vx AR ={—Z(Sin(é') cos(¢))’ 04; , (cos(B)cos(¢))’ & (raAf } sin’©@) & [raA;; Hx
r or 7 orl or r ol o

N —2(sin(@) cos(¢) )* 04° N (cos(8) cos(¢))’ O rod; | cos(g)sin(@) O [ rod; || .
¥ or ¥ or\ or v or\ or Y

+[—2sin(9) cos(8)cos() 045 _ sin(9) cos(@) cos(g) & (r@/l; Hz
v

or r or{ or
(3.19)
and the curl of the curl of the electric vector potential is
Uy pey— | 2sin’@)cos(@)sin(@) OF, cos(8)cos(¢)sin(g) 3 | *OF,
7 r or r or\ or
L sin@)cos(9) 8 7K ||| 2Asin(@)sin(g))® OF,
r or| or r or
(3.20)

_(cos(@)sin(g))* 8 [ rOF) | cos’(g) 8 [ 7OF) ||,
4 or\ or 7 or{ or Y

| _2sin(8)cos(6) cos(g) OF, . sin(@) cos(g)cos(¢) & roF, s
7 or ¥ or\ oOr
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3.2.4 Field at Point-of-Symmetry

Since the surface current contribution to the far-field calculation from the shadow
surface is zero, the shadow surface can be deformed or extended to infinity as shown in
Figure 3.1. The field components in this extended volume can be set to zero and this region
is referred to as null-field region. With this, one can guarantee that for regular convex LoS
surface, for every observation point, there exists a point-of-symmetry in the null-field region.

This is shown in Figure 3.4.

-1 Surface
source

S Nullfield i
region

Observation
point

: :2::::-'.-::.:'. . LoS

liiiiiIiliias contour

Figure 3.4: The illustration of null-field region, point-of-symmetry and observation point.

The point-of-symmetry is a point that is radially opposite to the observation point
with the source point at the centre. At this point-of-symmetry, the field of an elemental
surface source has a unique relation to its counterpart at the observation point. To proceed
further with the derivation of the fields at the point-of-symmetry, we consider a simple
problem in which an elemental current is located at the origin of the coordinate system, and

assume that the entire region is in free space. We denote the ficld at the observation point as



Radiation Pattern with New Equivalence 39

(Ef,Hf) and the field at the point-of-symmetry as (ES,H?). If the location of the
observation point in a spherical coordinate system defined as
K, o, 6 (3.21)

then, the point-of-symmetry is at the location given by

n=rn, o=¢+m, 6,=1-6 (3.22)

Using (3.13) and (3.14), the field at the observation point (%, ¢,,6,) is

Ef =-VxF} +—_i—(vax}1’;) (3.23)
J0&y

H? =V><A7j1+—.—l—(V><Vxﬁ;1) (3.24)
J @K,

Using equations (3.17)-(3.20), the field in the null-field region at point-of-symmetry

%, ¢,,0,) can be written in terms of the vector potential at the observation point 4, and
2,92, 0y p p 1

F,, as
E5 =VxFy, +—¢—1—~(VxVx;1f]) (3.25)
Jog,
HE =—Vx A + _1 (VXVxFf) (3.26)
J O,

Equations (3.23)-(3.26) hold for any other component of the surface currents and
these equations can be generalised to omit the subscripts x and y.

Now, if we consider the practical situation in which we are interested in the field in
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region 1 only, then the field in region 2 E 5 and H 5 can be set to zero. Thus from the

equations (3.25) and (3.26) we obtain the relations

V x A= (VxVxE®) (327

Joth

Vxﬁ;ez

(VXVXAe) (3.28)
Jjog,

Substituting (3.27) and (3.28) into (3.23) and (3.24), we obtain

E® = 2VxFe (3.29)

rre 2 e

= VxVxF, (3.30)
Jo,

From equations (3.29) and (3.30) it is evident that only one of the surface currents, which
appear in the equations for the vector potentials, is needed to obtain the field outside the

closed surface. Thus, the general form of (3.29) and (3.30) is

B =-2t HVxMSEdS (3.31)
4

LoS

—

i = j VxVx MSEds (3.32)
47erﬂo

One easily observes that if the surface is regular and convex, then the point-of-

symmetry always falls in the null-field region. For most simulation problems, the enclosing
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box is of regular shape such as a rectangular box. In the above derivation, the effects of edge

currents are neglected. However, they are addressed in the next section.

3.2.5 The LoS Edge Currents

In accordance with the equivalence principle, the time harmonic E-field in the far
zone can be expressed in terms of the electric and magnetic fields £° and A° on the surface

enclosing the radiating sources [3]:

~JjBRyp

ds  (3.33)

4r Rop

B [[( 1)
S op

ds — 1918 jﬂﬁx(ﬁxﬁs)]e
4 :

Here, as shown in Figure 3.5, Ryp is the distance from the surface field point Q to the

observation point P, 7 is the unit normal to the surface, R is the unit vector from the surface

source to the observation point, g is the free-space wave number, @ is the frequency, and 7

is the free space intrinsic impedance.

Sext

Figure 3.5: LoS approximations and notations
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The LoS approximation is obtained by transforming the ‘shadow’ surface into an
mnfinite (extended) surface supported by the LoS contour, as shown in Figure 3.1. When the
observation point is in the far zone, the extended surface becomes a semi-infinite tubular
frustum whose profile is defined by the LoS contour (see Figure 3.5). In general, the far field
is calculated from the equivalent electric and magnetic surface current densities on the LoS
surface S;os and on the extended surface S... Our objective is to obtain accurate far-field
information by integrating the surface current densities over S;os only, and to reduce the

contribution of the S... current densities to an integral over the LoS contour Cj .
We use a local rectangular coordinate system with unit vectors R , 7 and 7 as shown

in Figure 3.5, where # = ix R . Using the relation #-R=0 and neglecting the far-zone Ej

component, the second term of (3.33) can be written as

- Jﬂ QP : 'jﬁRQP
By = f“’"g ”R ix ¥ ) S dls = - 21 jﬁE;ﬁe ds (3.34)
MBea 4r Rop

ext

where Ej is the R-component of the electric field on the extended surface. The surface

integral of (3.34) can be expanded as

~ . -JBRyp
By, =21 g j ER ——dRop |dl; (3.35)
T QP
Cros | Rep

where the lower limit R¢p is the distance from the respective point on the LoS contour C; g

to the observation point P (see Figure 3.5). Introducing a variable

7w =R-(Rp —Ryp —Rg) = Rp — Ryp — (R Ry) (3.36)

(3.35) can be written as
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By =-190F c§ 77, dig (3.37)
o 47
Cros
where
- ‘JﬁRQP
T E; ————wdrR (3.38)
Rop

Tre
and 7, = r,, when the surface source point Q lies on C; g (see Figure 3.5).

Similarly, with the far-field assumption that the radial field components are

negligible, the first term of (3.33) becomes

/,3 op e“fﬁRQP

Ryp

= J“’/‘ H( H) ds (3.39)

JOU [ 5 -~ rrs
ds = J.J.Ran
4 S ( ) R

where H73 is the surface magnetic field component along R . The electric field in (3.39) is

now written in terms of a contour and a line integral as

Ejs = —{f’-‘i (Rxa) 7, di (3.40)
T
CLOS
where
- "./ﬂRQP
j HS ———-drR (3.41)

The surface field components H% and E} in (3.38) and (3.41) are due to the enclosed

electric and magnetic sources inside the equivalent surface. In order to simplify the

derivations, we consider only an infinitesimal electric dipole whose surface field R-

components are denoted as Hy and E % . The derivation is similar for a magnetic dipole. In

a linear medium, the surface magnetic field R-component of a complex radiator can be
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represented as a superposition of the elemental contributions, H =¥ Hy . Then, (3.40) can
e

be written as

JﬂRoP

dre \dl,. (3.42)

By = J“’“Z(jﬁ ) IH

a similar expression can be written for £ us,,, of (3.37).

Consider the electric current element Idl = I, R+1 7+17 atapoint § inside the
enclosed surface whose position vector with respect to the surface point O is

ﬁ +7,A+r. 7. lts surface field components, Hg® and E§°, are obtained as [3]

(1+]ﬂr) (

Hy = ~r.1,) (3.43)

~Jjpr 2
E¥ = Jne {{(3+3Jﬁr )%——2(1+j,3r)}1}3

4npr’ (3.44)
[( ~-3- 3J,Br+,32 2) }( 1, +7;Ir)}

where 7 =|7 |. The orthogonal distance from the source to the surface of the tube is

p=Arr—r (3.45)
where 7, is defined in (3.36) see also Figure 3.2. The integral over H3° in the far zone
(3.41) becomes
o IBRp+RsR) ~2 (1+jBr)

R, Y 4nP
’c

Ti =1l —1.1,) e TP gy (3.46)
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where R, and fés are shown in Figure 3.2. Our goal is to find an approximation of (3.46)

such that 775, is expressed in terms of the field at the LoS contour point that corresponds to

g = Ipc - We change variable as

u:(r—rR)~ul=(\/r]§+p2 —rR)~u, (3.47)

where u; =7, —rp. Here, r =7, and 1z = rp when the surface point Q lies on Cj 4 (see

Figure 3.2). Using the relationships

_(u+1,4,)2+p2 _(u+u,)2—,02 drg  —r
2u+u) =~ F Qu+w)  du (u+u)

(3.48)

J1; is written in terms of u as

~jB(Rp+Rg-R+u) . Ay + _
74 =~(r L. -1.1,)° IL 206, At }e‘fﬁ"du

AR, (w+w)' +p*) ((w+wu)’ +p*)

(3.49)
We integrate by parts the first integral term of (3.49) as

2jp e Py = = g /P A+ u) e P du
L@y ey

JL(+u)’ + p?) ((u+u)* + p*)
(3.50)
which results in
. e FB(Rp+Rs-Rauy) 2
Tg=~(nl, ~11I,) oy I:(u12+p2)jl (3.51)
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The function J§, has to be expressed in terms of the field component H° on the contour.

To achieve that, we multiply (3.51) by the factor

2u,

R S
JBf +p*)

(3.52)

The second term of (3.52) is in fact equal to 1/ j B#, and it has a negligible effect on 7, for

7o > A, A being the wavelength. With this approximation, (3.51) becomes

e IR {(uf +07)
e =

. e P HY (u=u) (3.53)
Rp J 2ﬂu,2 }

The position of the original sources inside the virtual surface determines u,. However, in a

practical computational problem, the locations of the original sources inside the enclosed
surface are not known. On the other hand, a computational algorithm provides full

information about the field at the contour. If H§ is available, then the term

2 2
Ce, = ﬁli{—t’izl (3.54)
J2pu

can be extracted from its phase for a point on C; g . From (3.43), the phase of Hy is the

argument of the term (jAr +1)e™"":

©®%, = —PBrtarctan(fr). (3.55)

Its derivative with respect to r, is
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de: 1 ,
H ._fg11- R 3.5
dry 'B[ 1+(/3r)2}( r) (320

For large pr, Cj can be obtained from the approximated phase derivative as

d®% (u =) T B wep?
_| G g\H =) ~| - 'R _u — e
{ j( i + ﬁﬂ [ - } Yy c (3.57)

In the case of a complex source distribution, a constant Cy can be obtained from the phase

®y of the total field H3 as is done for the elemental field H¢:

-1
Cy= {—j (—————-—d@"’g =t) | ﬁﬂ (3.58)
R

Thus, the approximation to 7, from (3.41) can be written as

JHa—

(3.59)

The derivation thus far addressed the contribution of the electric surface currents (7 x H>) at
S., to the far-zone electric field 15, 10 (3.40). A similar derivation is carried out for the
contribution of the magnetic surface currents to the far-zone electric field E ws,, 1 (3.37).

An elemental contribution to (3.38) is obtained as

Jp=0pp+T5, +Tg, (3.60)
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where

~jB(Rp+Rg-R) % 2 1+ 787 .
Trr =& I[l(r)(ﬁ) _2(_,._13_‘/))__2 I e~Jﬁ(r—rR)drR;
R, r I

"Re

~jB(Rp+Rg-R) ™%

e ¥ _iB(r—
Jg., =~———}-é———-—— J.;((r)r—fé—rnln e Pl rR)drR;
P fre
_ e'fﬁ(RP"’ks'ie) - - o
P

"re

x(#)

B 3+3jpr— B
= 5 i

In (3.60), the most significant component for far-field computationsis Jz , whichis
due to the elemental source / . For elemental currents polarized along # or 7, the far-field
contribution through 7} is far more significant than that from Jg, and/or J7, (with a

factor of approximately 77 ). Under the condition B°#” >> 3, J g can be expressed in terms

of u as

o IB(RetRs:R) J4jﬂp2+}°[ JBuru)  6wru)’ }e_jﬂu du
B

S@+w) +p’ P [@+u) +p°T

Tl 2 Au+u;) ipuy
+I{(uw,)%pz+[(u+u,)2+p2]2} u} '

~e ~e
JEr & JERa =

0
(3.61)
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Using integration by parts and the result of the integral

+o0 ?
] { ) o L—fﬂudu-_- =) s

S +u)? +p?y 4p°

(3.61) is reduced to

Y e /B Re+RSR) | —u z(3+3p8 —(pp)* e’ Y P
JER(,= 4]ﬂ,02 5 122+ ( . ) e]ﬂl_ > 5
Rp (u; +p%) 4p ( +p%)
(3.63)
When pf > 1, the term
7(3+3p8 - (pp)’ )’
; (3.64)
4p
is negligible, and (3.63) reduces to
e 4e“j,3(RP+Rs'é+ul) . —u ,02 1
Tira = Bl =55 |-——t- (3.65)
Rp (u; +p°%) (w +p%)

Equation (3.65) can be re-written in terms of E5¢ using the same approach as in the case of

g7

s (2T
‘/ERa -

PN (T, u=u,) . 3.66
Rp j2ﬂu,2 ] R( : 2 ( )

Here, E3 (Ig,u = u)) is the electric field R-component on the surface due to the elemental
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current [/ . The coefficient Cy, analogous to Cy , is derived from the derivative of the phase
of the total electric field:

-1
Cp = [*J (——Md%g =) | ﬁﬂ : (3.67)
R

In the above derivation, we addressed the contribution of the dominant term due to
the R -oriented sources. A similar approximation can be applied for 7, and 7, components

of the current element. In a practical problem, however, their contribution is negligible. The

approximate solution to 7, of (3.38) is thus

(3.68)

3.2.5.1 The Edge Currents Contribution to the Far-field

In the LoS approach, three critical approximations are made: (1) the approximation
transforming (3.51) into (3.53); (ii) the simplification of the derivative of the phase term of
the field at the contour, see (3.57); and (iii) neglecting the term (3.64) in the expression for

JE,. The first two require that fr. > 1; the third one assumes that fp>>1. These

conditions limit the minimum size of the virtual surface. The accuracy of these

approximations is investigated below. We show the error due to the approximations in the

evaluation of the line integrals JF and J% . Jf; shows the contribution of the surface field
component Hj to the far-zone field of an elemental source; while 77 is associated with the
contribution of the E£% field component. Electric current densities, which are transversal to

the LoS contribute to the radiated field predominantly through H§; while if the current
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density is longitudinal to the LoS it contributes to the far field mostly through Ej;. We,
therefore, investigate the approximation error of the 7}, integral in the case of transversely

oriented dipole element, and that of the J7 integral in the case of longitudinally oriented

dipole element.

A. Error due to the approximation of the line integral T
The error due to the approximation of the line integral 75 in (3.49) with 75, m

(3.53) is calculated numerically using MATLAB®. The exact solution to (3.49) is obtained

with Fast Fourier Transform (FFT) whose discrete form is

~jB(Rp+Rg-Ruy)

Th®kp)=(rndy = L) F(kap) (3.69)
where
F(kapB) =Aui F(nau)e EaPYnen) (3.70)
n=0

Here, & denotes a discrete point in the /5 -domain. The discretization step in the #-domain is
au=10" m, and the number of points is N =2". The discrete step in the f-domain is
calculated as a8 = 27 /(N au). The function f(nau) isthe discretized square-bracket term
in the integral in (3.49).

The error function ¢ due to the approximation of 77 is defined as:

- ‘jHa (ﬂ)‘jH (IB)I

x100% - (3.71)
174 (B)|
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The coefficient Cj; used in the approximation Jf, contains two constants, p and u,,
where u, is dependent on the distance between the source and the LoS contour r,..
Therefore, the error function ¢ is examined in the following cases: (i) constant p and
varying 7., and (it) constant r,. and varying o (for the meaning of 7, and p refer to
Figure 3.5). The current element must be either 7 -polarized or 7 -polarized (see Figure 3.5)

in order to obtain a nonzero Hy® component at the LOS contour, see (3.43). The results for
both polarizations are identical.
The approximation errors are shown in Figure 3.6 and Figure 3.7. It is evident that the

distance between the source and the LoS contour 7, does not influence strongly the error
due to the approximation of the 7, integral when 7xc = 4 and p = 4. In fact, under these
conditions, the approximation error £ is well below 0.5% (see the curves for rzc = +4, and
rze = 124, in Figure 3.6 and the curves for p =1.04,, 2.04, in Figure 3.7). In both figures,
the results for f < f, ~21 rad/m show that when the virtual surface size in any direction

becomes smaller than the wavelength, the approximation accuracy quickly deteriorates. This

effect is even more pronounced in the approximation of the J; integral.

B. Error due to the approximation of the line integral 7y

We consider the contributionto 77 from an R -polarized elemental current source 7
denoted as J gz, see (3.60). Such a source generates a significant E5° field component at the
LOS contour. This is the worst case scenario for the approximation due to the substitution of
Jr with Jg, of (3.68). As in the case of Jy,, the error due to the approximation of Tz
with Jjp, is examined for: (i) constant p and varying #¢ , and (ii) constant 7z and varying
p . These errors are plotted in Figures 3.8 and 3.9. It becomes obvious from Figure 3.8 that

not only the distance to the extended surface p must be kept larger than a wavelength but
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also rzc should not be much larger than p . The latter restriction, however, is not of practical
concern. It is also important to note that if the condition p > 1 is violated, the error due to
the approximation increases drastically (see Figure 3.9). This is due to the term (3.64) which
is being neglected in the more general expression for Jz, given by (3.63).

In summary, the following guidelines can be suggested for the choice of the LoS

surface size:
1. The minimum distance from §;,g to the enclosed sources should be more than a
wavelength, ie. p. 2 4.
2. The orthogonal distance between the enclosed sources and the LoS contour should be
less than twice the minimum distance between the sources and the virtual surface. At

the same time, it should be larger than the wavelength, i.e. A <z <2p,,. -

If these two conditions are observed, an approximation error of about 2% or less is achieved.

In the next section, we examine a practical problem with p_.. =1.254.

451 4
4} rR=0'757\'o p=1'507\‘o - JRUSEO PO .
1z=1.50%, p=1.50%, :
R0y p—— rr=2.25M, p=1.500, !
3l rR=3.00M,, p=1.502 4
Ao at 1GHz :
a5t = 1
1.5} A
1L 4
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Figure 3.6. Error function of the Hy component for 7, with constant p for positive rg.
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3.3 Application of the LoS Approach to a Practical Problem

A general approximate expression for the far field is obtained using (3.33), (3.37)
and (3.40) :

‘JﬂR,p . ~JPRgp
N_l_ﬁ[ ([ (ax85)¢ Po ds+c§(Rxﬁ)H§eRQP CHdl}
Ry C SR G-72)
J“’"g RxlAx ES )| ds + fAES & dz}
LIO{( <[~ )) Rop S+Cc§n "Ry *

We note that the LoS approach can be further simplified under the condition that the
LoS surface is smooth and that the observation point falls in the positive side of the unit
normal for every surface point. Typically, computational algorithms use rectangular boxes as

virtual surfaces. These satisfy the stipulated LoS conditions. In this case, in (3.72), one can

resolve either the surface integral over the equivalent electric currents (2/ixH®), or the

surface integral over the equivalent magnetic currents (27ix £°). This improves additionally
the efficiency of the far-field calculations. Notice that in either case both contour integrals in
(3.72) have to be computed.

To illustrate the reduction of the surface integration by the LoS approach, consider the
example in Figure 3.15. The source contribution to the field at the observation point P; is
from the top xz-plane only. The source contribution at P, is from the top xz-plane and the
right yz-plane. In this method, up to three surfaces and up to six edges could contribute to
the calculation of the radiation pattern.

The contribution from the edge current to the far field radiation results in the
calculation of the coefficients C, and C, according to (3.58) and (3.67). It is observed in
(3.58) and (3.67), that the derivative with respect to R can be projected to any desired

direction (x, y or z) without changing the overall effect. That is, the derivative with respect to

R can be written as
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dO(Ez) dO(E,) dO(E)) dO(E,)
R dx dy  dz

(3.73)

In many numerical techniques such as in the FDTD technique, the information of the
field components on the edges that are parallel to the other edges of the rectangular box are

available. From this the coefficients Cpand C, can be easily calculated.
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Figure 3.15: Enclosing surface in the simulation of radiation pattern.

In some practical applications, surface currents on only one face of the box are
required, and, in this case, edge current effects are negligible. The two practical examples

in section 3.3 show the effect of the edge currents.
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3.3.1 A Numerical Example of the Application of LoS Approximation

The accuracy of the LoS approach as compared to the standard equivalence principle
is demonstrated using the simulation of a half-wavelength dipole. In the simulation, the
dipole is enclosed in a rectangular box of size 2.54x2.51x3.54. The box is discretized into
60x60x120 cells, which gives a maximum cell size of 4/24. Such a cell size is within the
standard range in numerical simulations.

The tangential surface field components are calculated over the LoS surface using

(3.43) and (3.44), and the far-field surface integral over §,,¢ is computed according to
(3.72). The far field E-plane radiation pattern for the £, component is computed and the

results are shown in Figures 3.17, 3.18 and 3.19. Each figure contains three plots and they
are for (1) the radiation pattern using the standard equivalence principle, (ii) the radiation
pattern using the LoS approach, and (ii1) the radiation pattern using the LoS approach

excluding the contour integrals.

Figure 3.16: Dipole antenna for the LoS numerical example
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When principal plane patterns are calculated, the LoS approach uses at most two of the
six surface faces; whereas for the standard equivalence principle, the currents on all six faces
are integrated. The physical size of the virtual box for the simulation is such that the shortest
distance from the dipole edge to the surface of the box is 1.25A. For this example,

Pmin = 1.272 , and the corresponding expected maximum approximation error is below 2%.

Figure 3.17 shows the normalized radiation pattern plots. The plots in Figure 3.17
somewhat mask the approximation error. However, when the plots are normalized to a
common value such as the maximum value of the standard equivalence radiated field, the
errors are more visible. These are observed better in Figure 3.18, which contains the patterns
normalized to the maximum of the radiated field according to the standard equivalence. We
notice that the exclusion of the contour integrals leads to significant error, which can be as
high as 20%. The maximum error of the LoS approach, which takes into account the
contribution of the edge currents, is lower than 2%, as expected. This error is within an

acceptable range for most practical applications.
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Figure 3.17: Self normalized £y radiation pattern of a dipole antenna in linear scale



Radiation Pattern with New Equivalence 62

ik : 1
0.9+ 4
08 4
07 . -

had
F6H -
g
x
g0.5}- 1
uf
0.4+ 4
0.3} - i
&
47| -8~ Standard Equivalence
04 i| =&~ LoS Equivalence i
- - Lo8 Equivalence without edge currents |7 T &;%%_
: ; : : ; : H o
(}( i i i i i i i L
0 20 40 60 80 100 120 140 160 180
Angle [Degrees]
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In the plots of Figure 19, the results are in logarithmic scale. The error below the

relative gain of —15 dB is attributed to the numerical errors and not to the approximation used

in the LoS approach.
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3.4 Practical Examples with the LoS Approximation Using the FDTD
Method

This section demonstrates the effectiveness of the LoS approximation. We consider
two examples: (i) the dielectric covered dipole antenna and (ii) the rectangular patch
antenna. In some antenna simulations, the edge current effect in the LoS approximation is
negligible. One such example is a rectangular patch antenna. The edge current effect can be
made negligible by placing the top face of the enclosing box very close to the patch. This is
demonstrated in section 3.4.2. However, in a dipole antenna, the edge currents play a

significant role in the pattern calculation. This is demonstrated in section 3.4.1.

3.4.1 The Dielectric-covered Dipole Antenna

In this example, the Perfectly Matched Layer (PML), which was presented in Chapter
2, 1s used as an absorbing boundary condition. This allows the absorbing boundary surface to
be very close (less than 100 mm) to the antenna. The antenna and the feed structure are
embedded into a box of size 120 mm by 200 mm by 100 mm.

We use a non-uniform FDTD technique. The number of cells in the computational
domain in the x, y, and z directions is 60, 80 and 50, respectively. The feed structure of the
antenna is a square coaxial transmission line of length 100 mm. The inner conductor is of
height 1.75 mm, and the outer conductor is of height 5.1 mm. The characteristic impedance
1s 50 . The initial run of the simulation gives the resonant frequency of the antenna, and
then with this frequency, the simulation is repeated to obtain the radiation pattern of the
antenna. The excitation source used is a Gaussian pulse of width 30 ps, and the total number

of iterations is 2000.
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The simulation and the measurement of the return loss of the antenna are given in
Figure 3.21. The resonant frequency of the antenna is determined to be 1.86 GHz. By
carrying out Discrete Fourier Transform (DFT) on the surface currents with the known
resonance frequency, the time step, and with application of line of sight condition, the
radiation pattern is obtained. The measurement and simulation results for the radiation

pattern for the E-plane with co-polarization are shown in Figure 3.22.
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Figure 3.22: The E-(half) plane co-polarization radiation pattern of dipole antenna.

From Figure 3.22, one can observe the accuracy of the LoS approximation, which
shows very good agreement with the measurements and with the standard equivalence. In
addition, Figure 3.22 shows the effect of omitting the edge currents for a dipole antenna. The
effectiveness of the LoS approach is in the use fewer surface faces when calculating the

radiation pattern. In the above calculation in the half E-plane, only two faces of the
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rectangular box are used. In the case of the standard equivalence, one needs to use all six

faces of the box. The LoS approximation becomes highly effective when used in radiation

pattern optimisation.

3.4.2 The Patch Antenna

The second example is a patch antenna on a finite ground plane. Figures 3.23 shows

the antenna is of size 80 by 30 mm®. The

i

the antenna configuration used in the simulation

The mesh size used

8 mm.

substrate is of relative dielectric constant 2.2 and its height is 1

and the absorbing condition is the first-order absorbing

3

for the simulation is 80 x 50 x 80

enna is 3.75 GHz and it is obtained from the

1S ant

boundary. The resonant frequency of th

24.

simulation results as shown in Figure 3
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Figure 3.23: The planer view of microstrip rectangular patch antenna.



Radiation Pattern with New Equivalence 67

In the simulation, the top face of the enclosing box was placed at a distance of less
than 10 mm from the patch, thus annulling the requirement of the inclusion of edge currents
on the overall pattern calculation. Figures 3.25 through 3.26 show the simulation results for

the radiation patterns in the main two planes.
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Figure 3.24: The Return Loss of the patch antenna.
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Figure 3.25: The H-plan co-polarization radiation pattern of patch antenna.
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Figure 3.26: The E-plan co-polarization radiation pattern of patch antenna.

In this example of the rectangular patch antenna there was good agreement between
the radiation patterns obtained through the three different methods. From the simulation
results, we can conclude that for planar antennas, the edge current has negligible effect on the

radiation pattern.

3.5 Summary

In this chapter, a new approach to the computation of far-field radiation pattern using
the equivalence principle is presented. The validity of the L.oS approach is shown with an
application to a practical problem of calculating the radiation pattern of a dipole antenna. The
simulation results show remarkable agreement between the LoS approach and the standard

equivalence method, the approximation error is within the acceptable levels and it matches
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the theoretical prediction. The efficiency of the LoS approach as compared to the standard
equivalence principle in the calculation of radiation patterns is due to the reduced size of the
integration surface, which requires less computational time. Furthermore, it was
demonstrated that the use of one type of surface current in the LoS is sufficient to obtain
radiation pattern for antennas, and this further reduces the computational time.

The efficiency of the LoS approximation is demonstrated through antenna analysis
with the FDTD method. This technique reduces the computational time and the memory
requirement in the FDTD simulations. The computational time for the LoS approach is
approximately one-sixth of that required by the standard equivalence. Thus, the LoS
approach is an efficient alternative to existing standard algorithms for the computation of far-
field patterns in high-frequency structure simulators. The work presented in this chapter has
been accepted by the peers in the electromagnetic community as a significant contribution

and it can be found in the literature [15].
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Chapter 4

Antenna Analysis with the FDTD Method

4.1 Introduction

In this chapter, new antennas are introduced and simulations of these antennas are
carried out with the non-uniform FDTD technique. In addition to the use of non-uniform
mesh and the PML absorbing boundary condition, the concept of an integrated feed structure
is introduced to the antenna simulation. The use of the PML allows the absorbing boundary
to be placed closer to the antenna structure thus reducing the grid size and improving the
accuracy. ’When applying the Absorbing Boundary Condition (ABC) to antenna simulations,
the proximity of the boundary needs special consideration. This is because for some
antennas such as the dipole, the placement of the ABC close to the antenna has undesirable
effects, whereas for a patch antenna the proximity of the ABC has little effect in the
simulation results. This is because for the dipole antenna, the field intensity in the space
surrounding the antenna sets the resonance of the antenna, and any obstruction of these fields
with an ABC has a significant effect in the simulation results. In contrast, for patch antennas,
since the fields in the space between the patch and the ground plane form the resonance, the
effect of the ABC proximity is less.

In almost every antenna, the feed point and the structure in its proximity have

significant effect in determining the input impedance of the antenna. Due to this, in our

71
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scheme the feed structure (coaxial line) is part of the antenna, thus no interpolation schemes
are necessary between the interfaces formed by the juxtaposition of different meshes.
Through numerous simulations and experimental verifications it is found that a square
coaxial feed at the input of the antenna could be modelled with same level of accuracy in the
simulation results, as for a circular coaxial feed. The return loss at the antenna input is
obtained from the time domain field at a point in the coax feed and this was addressed in
detail in Chapter 2.

In order to show the effectiveness of the FDTD technique, the antennas presented are
from different categories with different shapes and sizes. The main features of the proposed
antennas are the small size for mobile units and high gain for the base station antennas. With
these choices of antennas we can address some of the main challenges facing the FDTD
technique. They include: the detailed structures in small antennas and larger cell size in
modelling large antennas. The FDTD technique has been widely used in antenna analysis

[1],[2] and [3]. A similar form is adopted in the antenna simulations in this thesis.
4.2 The Coaxial Transmission Line

In many antenna analyses the modelling of the feed point has been ignored to a large
extent. However, the feed point of the antenna is an important factor in i‘ts analysis. Insome
antenna analyses in the literature, in which the feed point of the antenna was considered, a
coaxial feed was modelled with unnecessary accuracy and this resulted in larger computer
memory usage and longer computational time. In our analysis, we have chosen a square
coaxial line as the feed line and this structure can be easily incorporated into the modelling of
the antenna. One should avoid the use of microstrip or strip-line feed, because it is not
possible to excite a single mode (pure TEM) in these feed lines and the extraction of the
reflected wave from a multimode wave is very difficult.

Through experimental investigation, it is found that if the ratio of the inner to the
outer width of the conductor is 2.89 and with dielectric filling of unity, the characteristic

impedance of the line is 50 Ohm. Since one may use different characteristic impedance other
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than 50 Ohms, different conditions were examined. Figure 4.1 gives the ratio of inner (a) to
outer (b) width (or radius) of the coax conductors at the frequency point of 1 GHz and the size
of coaxial line can be scaled to the desired frequency. In addition, this figure contains plots

with different dielectric constants. One could see that the impedance is inversely

proportional to the square root of the dielectric constant z oc 1/4/¢, , as expected.

100 T T T T T T T T T '

Z [Chms]

Outer to Inner conductor vatio (alb)

Figure 4.1: Characteristic impedance of the square coaxial line.

With three variables g, b and &,, while maintaining the desired characteristic

impedance, the non-uniform mesh can be made to fit any feed point of the antenna. The
accuracy and the limitations of the square coaxial feed line are discussed in chapter two.
We have chosen three different categories of antenﬁas and they are mobile unit
antennas, window antennas and base station antennas. Antennas were put in different
categories for their different size and shapes; in each category, we selected more than one
antenna to demonstrate the capability of the FDTD simulations. The simulation results
presented in this chapter are only for the return loss and the radiation patterns are obtained
from measurement data. Chapter 3 contains the detailed discussion on the radiation pattern

simulation.
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4.3 Mobile Unit Antennas

In this category of antennas, the size and the shape of the antenna are the important
features, and in many instances the antennas have to be designed for specific applications. In
modelling small antennas with unique shapes, the challenge one faces is the detail of the
structure. Once again, the non-uniform FDTD technique proves to be advantageous. In this
category, we present three different antennas, namely, the Coupled Patch Antenna, the

Printed Sleeve Antenna and the Sandwich Antenna.

4.3.1 Coupled Patch Antennas

Figure 4.2 shows the coupled patch antenna (CPA). This antenna is different from
the traditional monopole, i.e., the reflecting plane is not large, and the strip length is much
less than a quarter wavelength. Both, the size of the reflecting plane and the length of the
strip set the resonant condition of the antenna. The antenna is for the operating frequency of
0.9 GHz and it is for the application in PCMCIA, and the shape of the antenna confines to
the PCMCIA card. The size of the reflecting plane is B=1.2 N, 4=0.17 A, length of the strip
L=0.15 N\ the dielectric constant of the substrate is 4.00, and the thickness of the substrate is
0.06 . The gain of the antenna is 2.6 dBi and maintains a constant level of performance
despite the change in the environment. The bandwidth is 12%. The measured radiation
patterns in two principal planes are shown in Figures 4.4 and 4.5. The comparison between
the simulation and the measurement results of the return loss is given in Figure 4.3. The size
of the non-uniform FDTD mesh used for this analysis was 90 x 72 x 70. The operation of this
antenna is somewhat similar to a dipole antenna, where one arm is a plane and the other arm
is a stub. The wider bandwidth is achievable, because one section of the antenna is large.
The operating frequency of the antenna is set by the both plane and the stub. The variation of

the operating frequency as a function of the plane size and stub length is given in [3].
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Figure 4.3: Return Loss of CPA.
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Figure 4.4: Radiation Pattern, H-plane (CPA), solid co-pol, dashed: x-pol.
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4.3.2 Printed Sleeve Antenna

We have extended the concept of an ordinary sleeve antenna to a printed structure and
the antenna is shown in Figure 4.6. In this antenna, the length is similar to a dipole antenna
but with the matching at the end rather than at the centre. The substrate used has ¢, =3.0,
width W=0.08 A length L=0.4 A and the substrate thickness H=0.01 A The antenna was
designed to work at 0.9 GHz (a specific requirement for the MPT product developed by
Research In Motion). The gain of the antenna is 5.2 dBi with an input impedance bandwidth
of 25%. The radiation pattern is maximum in the elevation angle of 30 to 70 degrees. The
comparison between the simulation and the measurements of return loss is given in Figure
4.7. The size of the non-uniform FDTD mesh used was 55 x 45 x 90. The radiation pattern

of the antenna in E-plane and H-plane are shown in Figures. 4.8 and 4.9.
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Figure 4.6: Printed Sleeve Antenna (PSA).
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Figure 4.9: Radiation Pattern, E-plane (PSA), co-pol.

4.3.3 Sandwich Antenna

Figure 4.10 shows a sandwich antenna. The operation of the antenna is rather
peculiar. This antenna has three planes; namely, the ground plane, the matching plane, and
the radiating plane. The radiating plane is not at the same potential as the ground, thus
implying that the matching circuit is not of a stripline nature. In this design, we have used a
folded line for matching. The antenna is very small in size, the length and width are L=0.3 A
and W=0.04 \. The simulation and measurement for S11 is given in Figure 4.11. The size of
the non-uniform FDTD mesh used for this antenna analysis is 55 x 100 x 50. In terms of
antenna performance, the gain was 2.0 dBi, the input impedance bandwidth is 6%, and the

polarisation is elliptical. The radiation patterns of this antenna are given in Figures 4.12 and

4.13.



Feed Point

Antenna Analysis with FDTD Method 80

Radiating Patch
g ™~ telectric

/ substrate

4 <
Ground Plane Matching Network

\ W

Coaxial Feed

T .

Return Loss [dB]

ol
o
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4.4 Window Antennas

Window antennas are designed to be thin low-profile structures. They are single layer
antennas that can be stuck to a window. In Figure 4.14 a typical window antenna is shown.
The length of the ground line and the length of the centre line determine the operating
frequency of the antenna. The width and the length of this particular antenna are #=0.20 A
and =0.25 Arespectively. The antenna uses a plexiglass substrate with a relative dielectric

constant of £, = 2.90. Since the coupling of the fields is mostly from outside the substrate,

the value of the substrate does not affect the performance of the antenna very much. The
gain is 2.6 dBi. The polarisation is elliptical and the input impedance bandwidth is about
20%. The measurement and simulation results at the input terminal of the antenna are given
in Figure 4.15. The radiation patterns are given in Figures 4.16 and 4.17. The size of the non-
uniform FDTD mesh used for this simulation is 80 x 80 x 50. The design principles for this
particular window antenna can be extended to numerous different antenna patterns on a

single layer.
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Figure 4.14: Window Antenna (WA).



Return Loss [dB]

Antenna Analysis with FDTD Method 83

B e BT TP PR B ARt TITREVEPRE I ............
' \ i Dashed: Measure
S ' Solid: .Simulatior'l
_20__ .............. ........ .............. .............. ...... ............ -
235 1 , 15 2 25 T 4
Frequency [GHz]

Figure 4.15: Return Loss of WA.

S0,
120

4'— 15
- AN

XY

210 ¢

240

&3

74

<K

TR

5
N

,

Figure 4.16: Radiation Pattern, H-plane (WA).



Antenna Analysis with FDTD Method 84

20,

N

2

2

7
\:

‘
)

270

Figure 4.17: Radiation Pattern, E-plane (WA).

4.5 Base Station Antennas

The base station antennas are required to have high gain. The size of the base station
antenna is not a stringent requirement. However, extremely large arrays are not preferred. In
our analysis we chose an antenna that is large in size and has a gain of more than 6dBi. The
biggest challenge in analysing large antennas using the FDTD method is the number of the
cells and cell size. In this respect the non-uniform mesh is the best solution. In this category,
we analysed the following antennas: the folded dipole antenna backed by a reflector plane
and a simple window antenna. As our goal is to demonstrate the effectiveness of FDTD

technique, only the simulation of return loss is considered.

4.5.1 Co-Planer Patch Antenna

This antenna has a gain of about 6 dBi; the operating frequency is controlled by the

length of the line and the distance of the reflector plane. The antenna is narrow band with a
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bandwidth of less than 5%. The different planes of the antenna are shown in Figure 4.18,
and more detail on the operation of the antenna can be found in [3]. In the FDTD analysis
the number of cells used are 81 x 50 x 80. The simulation and measurement result for the

return loss is given in Figure 4.19.
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Figure 4.18: Co-Planar Patch Antenna (CPPA).
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Figure 4.19: Return Loss of CPPA.
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4.5.2 Printed Loop Antenna

This antenna is similar to the antenna given in [4], but this antenna functions without
a ground plane. Therefore, this antenna (see Figure 4.20) can also be categorised as a
window antenna. The gain of the antenna without the ground (reflector) plane is in the order
of 6 dBi and has a bandwidth of about 20%. With a non-uniform mesh, the dimension is 70
x 60 x 30. The polarisation of the antenna is linear with the cross polarisation of less than

15dB in the principal planes. The return loss is given in Figure 4.21.
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Figure 4.20: Printed Loop Antenna (PLA).
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4.6 Summary

In this chapter, we have given simulation and measurement results for some new
antenna configurations. The simulation and measurement results are in good agreement, thus
proving the accuracy and the versatility of the FDTD method. Using FDTD techniques one
could ascertain the sensitive geometrical parameters of the antennas. As an example, in the
case of CPA, the patch size rather than the vertical element determines the resonant

frequency and this would not be that obvious with an analytical analysis.
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Chapter 5

Error Analysis of the Non-Uniform FDTD Method

5.1 Introduction

A non-uniform mesh has a number of advantages over a uniform mesh and this was
evident in the antenna analysis using the FDTD technique considered in Chapter 4. In the
FDTD technique, the central finite difference approximation is applied to the first order
derivative. Although this approximation undoubtedly creates errors in the solution, these
errors may be insignificant depending on the method of implementation. Specifically, by
expressing the central finite differences by Taylor series, one can show that the error is of
second order for the case of a uniform mesh. The same does not hold for a non-uniform

mesh.
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Figure 5.1: Finite-difference approximation of first-order derivative.
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Using the Taylor series approximation for the first derivative in terms of x we can write

S i) = ipn) _ (A2, = A )f (%)
AXyyp + DX Z(Axi—l/z + A%, )

f'(xi)':

5.1
[sz'3+1/2fm (Xi1/a) + Ax?-l/zfm(xmm)] N
6(Ax¢'—1/2 + A%, )

where

X =X, X
A _ M i—-1
i-1/2 —
2

In the above expression, the terms Ax,,,,, and Ax, ,,, are the lengths of the

corresponding cells. If these terms are equal, which is the case for a uniform mesh, then the
second term in (5.1) is zero. Therefore, 1f we approximate the first order derivative as

S 2) = F(X,2)
Ax; gy T B0

1

(%)= (5.2)
then this approximation has second order accuracy.

In the case of a non-uniform mesh, the lengths of the cells Ax; ;,,and Ax,,,,,are

unequal. The second order term in (5.1) is not zero, thus, equation (5.2) has only first order
accuracy.

The implementation of the FDTD technique in EM theory is carried out via Yee's
method, which uses the leapfrog scheme. In this scheme, the electric field components are
on the edges of the cells, and the magnetic field components are on the centroid of the cells’
surfaces. In any given direction, the latter corresponds to the midpoint of the cell length.
Therefore, the magnetic field components, which are obtained by finite difference
approximation of electric field components, have second order accuracy. This does not apply
to the electric field component. This is because the magnetic field component points are not

equidistant from the electric field component points, resulting in a non-uniform scheme.
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Although locally the non-uniform orthogonal mesh has only a first-order accuracy, globally
this scheme can have a second-order accuracy in space, a phenomenon known as
supraconvergence [5] [6] [7]. In addition to this global second-order convergence, non-
uniform meshes give rise to a number of consistency and stability phenomena, which have no
counterpart on uniform grids. In our research we intend to show this supraconvergence
phenomenon for Maxwell's equations, and explore some of its aspects in non-uniform

meshes.

5.2 Second Order Error Analysis

In evaluating any technique, the variable to be tested should be isolated from the
other variables. It is very difficult to remove the effects of all the other variables from the
variable under test, and so the best solution is to choose a simple case with minimum effects
from the untested variables. Furthermore, it is best if the problem has an analytical solution,
so that an accurate comparison is possible. One of the simplest problems is a resonant cavity
box. However, since this high Q structure does not involve any wave propagation, the error
analysis on it may not mimic a typical problem that involves the FDTD method. A
waveguide structure is the most suitable for error analysis relevant to our problems.

The error analysis using the rectangular waveguide is carried out with a number of
varying conditions such as variations of the absorbing boundary conditions, and variations
in the uniformity of the mesh. We carry out a numerical investigation of the accuracy of the
non-uniform FDTD method. The computer simulations show that the use of non-uniform
grids with the FDTD method yields numerical field values that have second order accuracy
with respect to cell dimensions. This accuracy is possible if the boundary condition is
perfectly or highly absorptive. With imperfect boundary conditions, the accuracy degrades to
first order. We demonstrate this with a homogeneous Dirichlet boundary condition, the
perfect dispersive boundary condition for waveguides [2], and the perfectly matched layer
[3,4].



Error Analysis of the Non-Uniform FDTD Method 91

5.2.1 Error Analysis with Homogeneous Dirichlet Boundary Conditions

The FDTD method is used to obtain the 7M;; mode in a rectangular waveguide
following the procedure given by Navarro et al. [7]. The TM;; field distribution is
analytically known,; thus, the difference between the field obtained numerically and that
obtained analytically gives us an estimation of the numerical error when the FDTD method is
applied with a non-uniform mesh. The electromagnetic field is introduced into the x-y
transversal section of the waveguide by using a time domain pulse, consisting solely of the E,
component. The time domain pulse resonates within a two-dimensional slice of the
waveguide and the first resonant field corresponds to the TM;; mode [8]. The field
corresponding to the 7M;, mode is extracted from the FDTD time domain field by applying
the discrete Fourier transform at each node of the mesh. The 7M; mode is compared with
analytiéal values to evaluate the errors generated at the nodes of (a) a non-uniform mesh with
abrupt changes in the cell dimension, and (b) gradually changing non-uniform meshes. In
every case the dimensions of the mesh in the y-direction are kept constant, in order to keep
the error due to discretization in the y-direction constant and second order. The cross section
of the waveguide used in this analysis has dimensions 2.286 cm by 1.16 cm.

We first show the numerical second-order error generated using a uniform mesh. The
lines of constant £, obtained with a 50 by 40 