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Abstract 

Most intriguing and complicated scientific problems are solved with the aid of 

high-speed computers. Advancements in computer technology in conjunction with lower 

cost of computers have tremendously contributed to this effort. In this thesis, adopting 

the same philosophy, we explore the solutions to electromagnetic problems using a 

numerical technique, namely the Finite Difference Time Domain technique. This 

technique requires large computer resources: specifically, fast computing and large 

amount of computer memory. Therefore, our developments of this numerical technique 

focus on reducing both the computational time and computer memory requirements. 

A unique line-of-sight (LoS) approximation to the equivalence principle, which is 

a far more efficient alternative to the standard equivalence principle, is introduced. This 

includes the theory associated with the LoS equivalence, the examination of the error due 

to the approximation, and the verification with simulations and measurements. The 

FDTD method is formulated by discretizing Maxwell's curl equations over a finite 

volume and approximating the derivatives with central difference approximations. The 

error due to this approximation depends directly on the method of implementation such 

as the non-uniform mesh. An experimental investigation of the numerical error due to 

the non-uniform FDTD technique is presented. In the area of active and passive 

microwave devices, a unique method of incorporating the device equations into the 

FDTD algorithm is presented. The measurement and simulation results verify this 

method. In addition to device analysis, new antennas for the use in Personal 

Communication Systems are presented. The finale to the thesis is an electromagnetic 

simulation software package that incorporates all the new techniques developed in the 

course of this work. 
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Chapter 1 

Introduction 

1.1 Overview 

The complexity of electromagnetic problems has forced many researchers and 

engineers to resort to their numerical solutions. With the advancement of modem 

computers, numerical analysis techniques are becoming more efficient and popular. 

Numerical solutions by their very nature are approximate solutions to the real problem, 

thus they have some inherent disadvantages relating to numerical and discretzation 

approximation as well as long computational time. In many cases, the accuracy of the 

solution is linked to the length of computational time. The reduced accuracy in 

numerical solutions is due to the discrete value approximations of continuous functions 

and the finite element representations of the physical structures. The long computational 

time is mainly due to the large amount of computations needed when simulating 

electrically large structure. There are a number of techniques used in computational 

electromagnetism and among them the most popular are: the Method of Moments, the 

Finite Element Method, the Transmission Line Method, approximate analytical solutions, 

and the Finite Difference Time Domain method. Each one of these techniques has its 

advantages and disadvantages. The Finite Difference Time Domain technique is one of 

the most efficient and it is the subject ofthis study. 

In the Finite Difference Time Domain (FDTD) technique, in the spatial domain 

and the time domain, finite differences are used to approximate the derivatives of 

Maxwell's equations. The FDTD technique does not involve any problem specific 

1 



Introduction 2 

functions such as the Green's function in the Method of Moments, nor does it require the 

solution to a system of equations as in the case of the Finite Element Method and the 

Transmission Line Method. 

The FDTD technique, which is more versatile than other methods, seems to be the 

best technique for solving difficult electromagnetic problems. Despite this advantage, the 

FDTD technique has few drawbacks, namely the large memory and CPU time 

requirement. It is a common understanding that any new development of the FDTD 

technique should address these concerns and this thesis exclusively does that. 

The implementation of FDTD technique in the spatial domain can be of different 

mesh forms, they are the uniform, the non-uniform, and the curvilinear. Each one of 

these forms has its benefits and drawbacks. An exhaustive investigation shows that the 

non-uniform FDTD technique is the most efficient algorithm with regards to CPU time 

and memory requirements. The non-uniform FDTD technique allows the use of fewer 

cells in the spatial domain to discretize a given problem. However if not implemented 

properly, it will affect the accuracy of the solution. Nevertheless, a compromise is 

achievable between the degree of non-uniformity and the accuracy of the solution. On 

the other hand, although the uniform mesh provides better accuracy, it results in an 

increased number of cells and longer computational time. Similarly, in the case of the 

curvilinear form, because of better conformity to the physical structure, one can obtain 

good accuracy using the same number of cells as in non-uniform case, however the 

difficulty in the implementation of this technique and the additional memory required for 

the storage of variables overshadow its advantage. This thesis contains techniques that 

improve the accuracy and the efficiency of the non-uniform FDTD method. 

In this thesis, a new equivalence approach to the calculation of radiation pattern of 

antenna is introduced. Using this new equivalence approach, the computational time 

required for antenna pattern calculation can be reduced significantly. 

In some analyses, specifically in the case of antenna analysis, it is important to 

have free space medium surrounding the antenna. In the case of the FDTD technique, the 

requirement of free space results in the use of a large mesh that takes more memory. The 

requirement for the mesh size can be reduced by truncation of the mesh along with the 
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use of absorbing boundaries that emulate free space. There are a number of Absorbing 

BOID1dary Conditions (ABC). Among them, the most accurate one is the Perfectly 

Matched Layer (PML) absorbing boundary, and the simplest one is the first-order 

absorbing boundary. In antenna analysis, the PML absorbing boundary condition is used 

for the cases that require high accuracy and the first order ABC are used for faster 

computation. 

When using the FDTD technique for analysing the performance of antennas, it 

was found that the optimum configuration is the non-uniform mesh for fast computation, 

the PML for accuracy, and the "line-of-sight" equivalence principle for a faster 

calculation of radiation patterns. In some cases, even with a good absorbing boundary 

condition, the truncation of the mesh does not give an accurate representation of the real 

problem. These and other effects are discussed in Chapter 4. In designing antennas, only 

one's imagination sets the limit on the shape and size of antennas, but the analysis 

becomes difficult when unconventional structures are used. In this respect, the FDTD 

technique becomes the most effective method of solving antenna problems and the 

demonstration of this is in Chapter 4. 

The analysis of microwave/millimetre wave integrated circuits usmg 

electromagnetic simulators is becoming popular. This is because of the miniaturization 

of integrated circuits, which puts various devices in close proximity and the resulting 

effect is a strong electromagnetic field interaction between the devices. This effect is 

detrimental to high-speed circuits that need to operate over a wide frequency range. 

Therefore, the inference of this is that the EM simulations of high-speed circuits should 

be in three dimensions and the computation should be with measured circuit parameters 

used in the device model. Commonly used circuit simulators in the industry such as the 

Agilent Momentum and ADS, Ansoft HFSS, IE3D, and H-Spice do not address all the 

pertinent issues and Chapter 6 provides detailed discussion on this. 
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1.2 Scope of the Thesis 

The aim of the thesis is to improve the FDTD technique in its application to 

microwave/millimetre wave integrated circuits. To this effect, it includes the 

implementation of new techniques to decrease the computational time, the FDTD error 

analysis, and the integration of device equations into the FDTD algorithm. All examples 

in the thesis are commonly used devices such as antennas, passive devices, active 

devices, and waveguide structures. In conjunction with the application of the FDTD 

technique, this thesis contains new antennas for the application in Personal 

Communication System and a detailed error analysis of the non-uniform FDTD 

technique. 

1.3 Contribution to Technology 

This thesis contains several contributions towards the advancement of electrical 

engineering and electromagnetic simulations, and they are as follows. 

(1) Introduction of a new equivalence principle to EM theory in antenna analysis. 

(2) Applications of the FDTD technique to passive and active microwave/millimetre 

wave components (devices). 

(3) Error analysis of the non-uniform FDTD technique. 

(4) Development of new antennas for the use in Personal Communication Systems. 

(5) Development of EM simulation tool, which is of commercial standard. 

With the advancements in wireless communications, the demand for new 

antennas is on the rise. With this, there is a need for analysis tools that can accurately 

determine the performance of new antennas. In this thesis, we evaluate the performance 

of a few new antennas using the FDTD technique. The antennas used for the evaluation 

meet the typical requirements for Personal Communications Systems (PCS) and Cellular 

Systems (Cell), namely, they are physically small, they have attractive appearance and 

good gain. Since the frequency bands for PCS and Cell are at the lower end of the 
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microwave spectrum, the size requirement forces one to deviate from the traditional 

antenna design methods and adhere to more elaborate antenna shapes. In view of this, 

with new antenna shapes, the analysis also has to take an approach different from the 

techniques such as the Method of Moments, the Finite Element Method or other similar 

techniques. In this respect, the FDTD technique, which models the entire antenna 

structure along with the free space surrounding the antenna proves to be versatile. 

This thesis contains the introduction of a new equivalence principle namely the 

"Line-Of-Sight Equivalence" for the calculation of radiation patterns of antennas. A 

different approach to calculate radiated fields from antennas when using numerical 

techniques is proposed and verified. The developments in Chapter 3 show that one can 

obtain the radiation pattern of an antenna with only one type of surface current that is in 

the line of sight from the observation point provided that certain conditions are satisfied. 

This procedure can be easily adapted to the calculation of radiation patterns of antennas 

with the Finite Difference Time Domain (FDTD) technique. 

Errors in the FDTD techniques are mainly due to two factors. One is the 

discretisation of the physical structure, and the other is the finite difference 

approximation of the derivatives. Using a finer mesh with longer computational time 

reduces the first type of error. The second type of error, which is due to the finite 

difference approximation, needs separate treatment. In the FDTD algorithm, the use of 

uniform mesh in both time and space results in second-order accuracy. This conclusion 

follows directly from the fact that central finite differences are used. However, with a 

uniform mesh the power of the FDTD method is lost when one tries to analyse devices 

that involve fine details in certain regions and less detail in others. In such problems the 

use of a non-uniform mesh can increase the algorithm efficiency, because a fine mesh can 

be used in the region of detailed structure and a coarse mesh elsewhere. The use of non­

uniform mesh results in less computer memory and faster computational time. However, 

this improvement comes at the expense of accuracy. At first glance, one might conclude 

that the non-uniform scheme has only first order accuracy. However, the presentation in 

Chapter 5 shows that when applied appropriately this scheme has global second order 

accuracy. 
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The implementation of the FDTD technique to microwave/millimetre wave 

integrated circuits is very challenging and it needs a few special considerations. These 

are; the proper integration of time-domain device equations into the FDTD algorithm, the 

use of more than one cell to represent the device in the physical structure, and the 

stability of the device equation used in the FDTD algorithm. Chapter 6 contains 

discussions on these and other issues. 

In this thesis an EM simulation package is developed. The simulation package 

uses a user-friendly Matlab interface and the main engine of this simulation package 

includes all the advancements in the FDTD technique outlined in this thesis. 

1.4 Thesis Outline 

This thesis consists of seven chapters. Chapter I introduces the FDTD technique 

and the challenges encountered in its implementation. Chapter 2 gives the general 

formalism needed for the FDTD simulation such as: the non-uniform FDTD technique, 

the Perfectly Match Layer (PML) absorbing boundary, first order absorbing boundary 

and the excitation sources. In addition, Chapter 2 includes a detailed analysis of the 

Gaussian pulse excitation. Chapter 3 is dedicated to the theoretical development, and the 

experimental verification of the Line-Of-Sight equivalence principle and its application in 

obtaining radiation patterns. 

Chapter 4 concerns the antenna analysis using the FDTD method and special 

considerations given to the modelling aspect of antennas, specifically the incorporated 

feed structure. In addition, Chapter 4 includes new antennas that have application in PCS 

wireless systems. Chapter 5 covers the error analysis of non-uniform orthogonal FDTD 

algorithm with focus on second order error analysis. Chapter 6 includes a detailed 

discussion on the application of the FDTD method to passive and active devices. In 

addition, Chapter 6 contains a unique implementation of device modelling using two 

contact (source) points. Simulation and measurement results are provided. Finally, 

Chapter 7 gives the conclusion to the thesis. Each chapter includes its respective 

reference section. 



Chapter 2 

FDTD Formalism 

2.1 Introduction 

As in every numerical technique, in the FDTD technique, the method of 

implementation plays a major role in its accuracy and effectiveness. Since the FDTD 

technique models physical structures, the mapping of the spatial coordinates to the FDTD 

algorithm is crucial. This mapping begins with the selection of a mesh or cell format that 

best represents the continuous space in discrete form. There are many such representations 

and among them, the most commonly used ones are the uniform, the non-uniform, and the 

curvilinear grids (or mesh). For our analysis, we have chosen the non-uniform mesh. In­

depth discussions of its properties are contained in this and the subsequent chapters. In 

addition to the choice of mesh, as was stated in Chapter 1, the choice of absorbing boundary 

condition (ABC) also has a significant influence on the accuracy of the technique. In our 

analysis, we have used the most accurate one and the most common one, namely the 

perfectly matched layer (PML) absorbing boundary condition and the first order absorbing 

boundary condition, respectively. This chapter contains the formalism needed for the 

implementation ofthe non-uniform FDTD technique, the PML ABC, the first order ABC and 

the calculation of the return loss with specific excitation sources. 

The choice of a non-uniform mesh over the uniform and the curvilinear are due to 

some of its advantages such as fewer cells, shorter computational time, simplicity of 

implementation and structural conformity to many practical problems. However, these 

7 
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advantages come with a slight compromise in the accuracy, and the discussion of this is 

included Chapter 5. 

In the application of absorbing boundary conditions, the PML and the first order ABC 

have their advantages and drawbacks. The first order ABC does not perform very well when 

the absorbing boundaries encounter oblique incident waves and the degree of accuracy 

depends on the obliqueness. However, one main advantage ofthe first order ABC is that it 

utilises the same field components used in the FDTD algorithm, and thus has no additional 

memory requirements. On the other hand, the PML gives accurate results for cases with 

oblique incident waves in applications such as obtaining the radiation pattern of an antenna, 

or in the analysis of waveguide structures that do not have a TEM mode. Unlike the first 

order ABC, the PML requires additional variables for the field components in the absorbing 

boundary regions, as well as additional computations with each time step. This results in an 

increase in the computational time for the PML ABC. 

2.2 Non-uniform FDTD Formalism 

The derivation of the formalism for the non-uniform FDTD algorithm begins with 

Maxwell's equations in isotropic media and they can be of integral [4] or differential form 

[1]. In addition, the non-uniform FDTD formalism is a particular case of the non-orthogonal 

FDTD, [3]-[6]. In the FDTD technique, the convenience of implementation dictates the 

choice between the integral and the differential form, and we choose the differential form. 

The differential form of Maxwell's equations in a homogeneous, source-free region is: 

Bt 
at 

1 -
-VxH 
Ii 

BH 1 -- = -- VxE 
at J-l 

(2.1) 

(2.2) 
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In rectangular coordinates, these two differential equations are as follows. 

aEx _ 1 [aH z aH y] ---- -----
at 8 ~ az (2.3) 

aEy_l[OHx OHz] (2.4) ---- -----
ot 8 OZ ox 

OE<_l[OHy OH<] (2.5) ---- -----
at 8 ax ~ 

BH<_ 1 [OE' OEy] (2.6) ----- -----
at f.1 ay oz 

oHy_ 1 [OEx OEz] (2.7) ----- -- ---
at f.1 az ox 

oH,_ l[BEY BE<] (2.8) ----- -- ---at f.1 ox oy 

These partial differential equations can be approximately put into discrete form with 

non-uniform spacing in the spatial and uniform spacing in the time domain. The non-uniform 

FDTD algorithm follows the reference scheme proposed by Yee [1] in which the electric 

field components are located along the edges ofthe cells, and the magnetic field components 

are located on the faces of the cells. This follows the leapfrog scheme given in [1], and 

Figures 2.1, 2.2 and 2.3 show the locations of the field components. 



FDTD Formalism 10 

In order to define the field components in discrete form, a new notation is adopted, as 

defined in equations (2.9) and (2.10). 

(2.9) 

(2.10) 

where 

In the definitions, the superscripts nand (n+ 1/2) represent field components at time 

nM and (n+ 1I2).6.t respectively. For reasons of stability and simplicity, choice of term At in 

the FDTD algorithm is chosen it to be a constant. The value of this constant is determined by 

the stability condition as given in [1], and it is defined as I1t ::;; Admin / c , where Admin is the 

smallest value of lui, .6.Yj or Azk, and c is the speed of light in free space. With these 

definitions, equation (2.3) in discrete form becomes 

[

11 
n+- n+-

n+J/
i 

'kl = n(t ·k)+.6.t Hz 2(i,j,k)-Hz 2(i,j-1,k) _ 
Ex I',J, '/ Ex ,J, B [Ay(j-1)+.6.y(j)]/2 

III n+- n+-
Hy 2 (t,j,k) - Hy 2 (i,j,k -1) 

[Az(k -1) + Az(k) ]/2 

(2.12) 

Similarly for Ey and Ez the equations (2.4) and (2.5) become 
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[

II 

n+l(i . k) = "(i' k) + f:..t H :+Z(i,j,k) - H :+Z(l~j,k -1) _ 
Ey ,j, Ey ,j, 8 [Az(k-l) + Az(k)] 12 

III n+- n+-
Hz 2(i,j,k) - Hz 2 (i -i,j,k) 

[/:..x(i -1) + /:..x(i) ]/2 

(2.13) 

(2.14) 

The expressions for Hx, Hy and Hz are derived in the same way and they are: 

1 1 [ n n 

H
n+2( . . k)= n-2( .. k)- f:..t E z(i,j+1,k)- Ez(i,j,k)_ 
x l, j, H x 1, j, j.1 f:..y(j) 

n n] E ii,j,k + 1) - E y(i,j,k) 

Az(k) 

(2.15) 

1 1 [ n n 

H
n+Z(i . k)=H n-2(i . k)- M EAi,j,k+l)- EAi,j,k)_ 
y ,j, y ,j, j.1 Az(k) 

n II 1 E Ai + 1, j, k) - E z (i, j, k) 

/:..x(i) 

(2.16) 
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1 1 [ n ( 0 + 10k) n (0 0 k) n+- 11-- 1 - 1 
2 (0 . k) = 2 (0 0 k) _!1t E y ,], E y ,], _ 

Hz l,], Hz 1,], (0) 
J.1 /).xl 

!l n] ExCi,j+l,k) - Ex(i,j,k) 

;j.y(j) 

(2.17) 

The field component points for a large mesh are shown in Figure 2.1, and further 

definitions ofthese tenns are shown in detail in Figures 2.2 and 2.3. 

.--.. ,," : .. ",,,,' : .... : ...... : ...... 

• ::<: ............ ~.::::~.:: .......... -~:<--:~~ ......... -~.::::~ ............ -.. ~/ .. 
l1li : E-field position 
• : H-field position 

Figure 2.1: Typical mesh with field points. 

..' 

.' 
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Figure 2.2: H-field points for a single cell. 

Ey(i,j,k) 

Figure 2.3: E-field points for a single cell. 
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2.3 Absorbing Boundaries 

As in all electromagnetic problems, the boundary conditions are vital in obtaining a 

solution to the problem, and numerical solutions are no exception to this requirement. In 

numerical solutions such as in the FDTD technique, in order to obtain the solution to a given 

problem within a reasonable computational time, the truncation of the space and time 

domains within some boundary is an essential requirement. The truncation in the time 

domain is specific to the excitation source; the discussion on this is in Section 2.4. On the 

other hand, the truncation in space is somewhat complicated, and there are numerous 

implementation techniques available with varying degrees of accuracy and computational 

time. Among the various absorbing boundary conditions (ABC's), the most popular ones are 

the perfectly matched layer (PML) ABC, the first order ABC, and the second order ABC. 

The PML ABC, being a mathematical model for absorbing boundaries, uses values 

for properties such as permittivity and permeability that are not physically realisable, but are 

highly effective in absorbing electromagnetic waves. When used with the FDTD technique, 

it is applied to the outer cells ofthe FDTD mesh. The first order boundary condition is also 

applied to the outer cells of the FDTD mesh and it is applied only to one layer ofthe surface. 

The first order ABC is applied with an assumption of normal incidence to the absorbing 

boundaries. The accuracy of the absorption, the computational time and the complexity of 

implementation determine the selection ofthe type of ABC. In the FDTD technique, we are 

primarily interested in antenna and microwave device analysis. 

In antenna analysis, the FDTD computational domain must be enclosed in an 

absorbing box in order to simulate a free space environment surrounding the antenna. An 

easy first order ABC can be used in evaluating antennas and from this, the return loss ofthe 

antenna (S 11) is obtained with sufficient accuracy. However, in order to obtain the radiation 

pattern, the first order ABC is not helpful, and a more accurate ABC is necessary. The 

radiation pattern is obtained from the physical currents enclosing the antenna, and these are 

sensitive to the ABC when the ABC does not describe "free space" accuracy. A second order 
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ABC is more accurate: it absorbs plane waves impinging at two different angles; it is, 

however more difficult to implement, and computation takes longer than with the first order 

ABC; in summary the perfonnance of the second order ABC does not compensate for its 

drawbacks, In this respect, the use ofPML ABC seems ideal, because of its simplicity and 

flexibility, The PML regions are modelled as lossy media, in contrast with the other regions, 

and the perfonnance ofPML ABC can be improved by adding more layers. More layers lead 

to better absorption, the number oflayers depends on the accuracy one wants to achieve and 

the physical dimensions and shape of the antenna, In our antenna analysis, we used a number 

of cells ranging from five to ten, depending on the antenna. 

2.3.1 Perfectly Matched Layer (PML) Boundary 

We present a fonnulation ofthe Perfectly Matched Layer (PML) that interfaces with 

the non-unifonn FDTD scheme. To implement the PML, we split each field component Ei 

into two sub-components Eij and Eik, The same procedure applies to the magnetic field 

vector. With this the discretizised fonn of Maxwell's curl equation in the PML region 

becomes 

En+l(i 'k)=A (')En(i 'k)+B (,)[H:+
1
(i'i,k)-H:+

1
(i'i-l,k)l 

xy ,j, y j xy ,j, y j [~y(j-l)+~y(j)]/2 J (2.18) 

f 
1 1 1 n+- n+-

n+! n Hy 2(i,j',k -1) - H), 2(i,j',k) 
j'k-Ak i'k+Bk Exz (,), )- z( ) Exz(,j, ) z() [&(k-l)+&(k)]/2 (2.19) 

E n+1 (i ' k) = A (i) En (i ' k) + B (i) [H :+1 (i -1, i, k) - H :+1 (i, i, k) l 
yx ,], x yx ,j, x [ilx(i -1) + iU(i) ]/2 J (2.20) 
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n~ 2 n_ 

[ 

n+..!. I 1 
E zx (i,j,k)=~(k)E~(i,j,k)+Bz(k) Hx (i,j,k)- Hx 2(i,j,k-1) 

[&(k -1) + &(k)] 12 

n+l 2 n+-

r 
n+..!. I 1 

Ezy (i,j,k)=Ay(j)XE~(i,j,k)+By(j) -Hx (i,j-1,k)+H x 2(i,j,k) 
[!1y(j -1) + !1y(j)] 12 

I 

H;z (i,j,k) = Cy(j) H:1 (i,j,k) _ Dy(j)[E;(i,j + l,k) - E;(t,j,k)] 
!1y(j) 

I 

H :\i,j,k) = Cz(k) H:1 (i,j,k) _ Dz (k) [E;(i,j,k) - E;(i,j,k + 1)] 
&(k) 

I 

H ::z(i,j,k) = Cx(i) H ::~(i,j,k) _ DxCi)[E;(i,j,k + 1) - E;(i,j,k)] 
&(k) 

I 

H ::Z(i,j,k) = Cz(k) H :~(i,j,k) _ Dz(k)[E;(i,j,k)- E;U + l,j,k)] 
/),.x(i) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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H
"+2( . . k)=C (.) n-2( .. k)-D (.) -ExCi,j,k) + ExCi,j+1,k) I I [" 11 ] 

zy l,j, y j H zy i,j, y j !J..y(j) (2.29) 

The total field components are given as Ex= Exy + Exz ,Ey= Eyx + Eyz ,Ez= Ezx + Ezy , and Hx= 

H.ry + Hxz ,Hy= Hyx + Hyz, Hz= Hzx + Hzy . With m representing the coordinate indices x, yand 

z, 1m representing the length inside the PML region, the coefficients Am(lm), Bm(lm), Cm(lm), 

and Dm(lm) are given as follows: 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The field components inside the PML region undergo strong attenuation in all 

directions due to the presence of electric and magnetic losses, am , am *, respectively. In the 

PML region, the condition am IE = am * IlL is observed. Thus, the phase velocity of a plane 

wave in the PML region is the same as the velocity in the computational volume truncated by 

the PML region. Here E and IL are the permittivity and permeability of the loss free 

computational volume. This ensures that there is no reflection at the interface of the 

computational and the PML regions. The decay is so rapid that the conventional time 
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integration of the FDTD method is not useful; therefore, in the PML region the time 

integration is exponential [8]. 

In theory, a single absorbing layer would be sufficient. However, in practical 

application of the FDTD technique, the discretization of the PML region requires several 

layers. In antenna analysis, the absorbing square box that consists of matched layers at the 

walls encloses the mesh that defines the antenna. 

2.3.2 First Order Absorbing Boundary 

Applications for which the outside boundary need not accurately represent free space, 

can utilize the first order absorbing boundary condition. In the first order ABC [11], the 

absorption is accurate only for waves that are incident perpendicular to the surface. Unlike 

the PML ABC, the first order ABC directly applies to the field components as shown below. 

For the first yz surface 

n. n-I. eLlt - Ax(1) [n. n-I. ] 
E y(l,j,k) = E y (2, j,k)+ E y(2, j,k) - E y (1, j,k) 

eLlt + Ax(1) 
(2.34) 

11. n-I. eLlt - Ax(l) [". n-l. ] 
EzCl,j,k) = Ez (2,j,k)+ E z (2,j,k)- E7 (l,j,k) 

eLlt + Ax(1) -
(2.35) 

where e is the speed of light in free space and the other variables are as defined earlier. 

For the second yz surface, with the total number of cells in the x-direction being nx, 

n . n-I . eM-Ax(nX)[ 11 • n-J . ] 
Ey(nx,j,k) = Ey (nx-l,j,k)+ Ey(nx-l,j,k)- Ey (nx,j,k) 

eM + Ax(nx) 
(2.36) 

n . II-I • eLlt - Ax( nx) [ n . 11-1 . ] 
Ez(nx,j,k) = Ez (nx-l,j,k)+ Ez(nx-l,j,k)- Ez (nx,j,k) 

eLlt + Ax( nx) 
(2.37) 
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For the other four surfaces, the equations are as follows: 

First xz surface 

n • n-I • el1t - l1y(1) [ n . /1-1. ] 
ExCz,!,k) = Ex (1,2,k)+ ExCl,2,k)- Ex (l,l,k) 

el1t + l1y(1) 
(2.38) 

n . n-I . el1t -l1y(l) [ n . n-l. ] 
Ez(z,tk)=Ez (z,2,k)+ EzCz,2,k)-Ez (z,l,k) 

el1t + l1y(1) 
(2.39) 

Second xz surface, with the total number of cells in the y-direction being ny, 

n. _ n-l. el1t-l1y (ny )[ /l. n-l. ] 
Ez(l,ny,k)- Ez (l,ny-l,k)+ Ez(l,ny-l,k)- Ez (z,ny,k) 

eM + l1y(ny) 
(2.40) 

n . n-I . el1t -l1y(ny) [ n . n-l . ] 
Ex(l,ny,k) = Ex (l,ny-tk)+ ExCl,ny-l,k)- Ex (z,ny,k) 

el1t + l1y(ny) 
(2.41) 

First xy surface 

n . . n-l .. el1t - 11z(1) [ n.. n-l .. ] 
ExCl,j,l)=E x (1,j,2)+ ExCl,j,2)-E x (l,j,!) 

el1t + 11z(1) 
(2.42) 

/I • • n-l .. el1t - 11z(1) [ n . . n-l . . ] 
Ey(Z,j,l) = Ey (l,j,2)+ E y(Z,j,2)- Ey (l,j,l) 

el1t + 11z(1) 
(2.43) 

Second xy surface, with the total number of cells in the z-direction being nz, 

n. . n-l. eM-I1z(nZ)[ n. . n-I.. ] 
Ey(z,j,nz)=E y (l,k,nz-l)+ E y(l,j,nz-l)-E y (l,j,nz) 

el1t + l1z(nz) 
(2.44) 

n.. n-}. . el1t-l1z(nZ)[ n. . /I-I .. ] 
EA1,j,nz) = Ex (l,j,nZ -1) + ExCz, j, nz -1) - Ex (l,j,nz) 

el1t + l1z(nz) 
(2.45) 
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It can be easily seen from the fonnalism of the first order absorbing boundary 

condition that the absorption is valid for electromagnetic waves with wave fronts parallel to 

each surface. If the absorbing boundaries are placed far from the structure by a distance of 

several wavelengths, then the wave front is somewhat spherical in nature and the error due to 

imperfect absorption is minimal. 

2.4 Excitation Source 

In FDTD simulations, applying a known excitation source and observing the response 

in the desired domain gives the time or frequency response of the structures under 

investigation. The excitation source can be applied at any part ofthe structure with different 

fonns of feed structures such as coaxial, microstrip or strip line transmission lines, and the 

source can be of different types such as sinusoidal, Gaussian or step functions. In the cases 

of antennas and integrated circuits, when using a rectangular grid, the feed is typically 

coaxial or microstrip. The excitation source can be either Gaussian pulse or sinusoidal. The 

choice of excitation source depends on the specific application. It was found that the 

Gaussian pulse is the best excitation source for obtaining a wide band frequency response, 

whereas sinusoidal excitation is suitable for certain specific applications such as obtaining 

the radiation pattern of an antenna or for the analysis of waveguide structures. The correct 

choice of excitation and the implementation ofthe source in the structure are both important 

for accurate simulation. The best method of implementing an excitation source is to use a 

square coaxial structure. The TEM mode in a coaxial line is expressed more accurately than 

in microstrip or strip-line structures due to the simpler field distribution in the transverse 

plane. In addition, unifonn cells can be used within the coaxial feed to minimise error, and 

the excitation source is applied in a cross-sectional plane in the coax, thus giving a quasi­

TEM mode in the coax. The field component of the excitation source is assumed unifonn 

from the centre conductor to the outer conductor. Figure 2.4 shows the typical excitation 

source field-points. The field components Ey and Ez in the y and z directions are constant and 
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are equal to the excitation source. They are implemented in the shaded region as shown in 

Figure 2.4. 

::- Ey 

nez4 
Fi-r......,.. 

nez3 

nez2 

nezl .......",...!.. 

ney2 

Cross Sectional View of the Coaxial Feed Line 

Figure 2.4: Excitation source field configuration. 

Among the various types of excitation source, the most useful one is the Gaussian 

pulse (as stated above). In addition to providing a wide frequency response, the Gaussian 

pulse can be used to derive all the essential device parameters needed for device analysis, 

such as return loss, insertion loss, antenna gain or pattern, antenna efficiency, surface current, 

etc. Due to its wide range of applications, the Gaussian pulse has been adopted as the 

primary excitation source for all our analyses using the FDTD technique. Details of its 

implementation are addressed in Section 2.4.1. 

2.4.1 Gaussian Pulse Excitation Source Implementation 

A Gaussian pulse is defined in time domain using parameters such as the pulse width 

(T), time offset (to), amplitude (A) and pulse duration (tdur). These parameters are shown in 
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Figure 2.5. The Gaussian pulse as a function oftime is [12]. 

(2.46) 

The Gaussian pulse in discrete time steps At is 

(2.47) 

The choice of values and the effects of the parameters such as the amplitude (A) and 

time-offset (to) are straightforward. However, the choice and effects ofthe pulse width (1) 

and the truncation (duration) ofthe Gaussian pulse are not straightforward and need detailed 

analysis. 

2.5,_-__ -_-_-__ -_-_-:-----.----------.-----------, 

A Incident Pulse 
2 ............ . 

1.5 ................. . 

: Reflected Pulse 

0.5 

I I 
o . . 1 .... ··1 '---r--:-:-:-:.--:-c .. ~ .. --:-c .. -.. -.. -.. -.. --'-'_. 

~ 2 T 1""'16-
o t 0 

_0.5'--__ -=° __ -1---'-____ -+-__ -'--______ -----' 

o t dur 500 1000 1500 

t coax 

Figure 2.5 A typical excitation waveform. 
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In most practical problems, we are interested in obtaining the frequency response of 

circuits or devices. Thus, we begin the investigation with the frequency domain 

representation of the Gaussian pulse. Using Fourier transform, the frequency domain 

function of equation (2.46) is [12]: 

(2.48) 

It is observed in (2.48) that the frequency response of the Gaussian function has the 

same shape as in the time domain. The peak: ofthe Gaussian pulse is at zero on the frequency 

axis. Ifwe are interested in obtaining a return loss of a circuit or a device, then the spectral 

(frequency) content in the Gaussian pulse should have sufficient power (spectral content) for 

a given value of return loss. If we were to examine the spectral content as a function of 

frequency then we can write the following: 

(2.49) 

Here, D is the return loss that is normalized to DC (i.e. maximum value occurs at DC and 

it is A Tre). Now we could define the frequency limit in tenns of pulse width (T) and return 

loss (D) as 

{" = _1 ,j2.303D 
JH reT 20 

(2.50) 

From equation (2.50), one may infer that for good accuracy over a wide frequency 

range, the pulse width has to be small and there is no limitation for the pulse width. 

However, in practical situations there are lower and upper limits for the pulse width. The 
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length of the simulation time sets the upper limit and the discrete time step sets the lower 

limit of the pulse width. 

In addition to the pulse width limit, there are limits on the minimum duration of the 

pulse. In the FDTD algorithm, ifthe Gaussian pulse is terminated prematurely at tx from the 

initiation of the pulse as shown in Figure 2.6, then the error in the simulation is significant. 

0.9 

0.8 

0.7 

0.5 

0.4 

0.3 

0.2 

0.1 

Gaussian 

• () Pulse gl t 

.~ 

Truncation 
Error 

OOL---tl·-m-e-(-S-e-c)~=O.5------~L---1~,-,~~ty-----;/~/~~1.5 
to , ____ - .10'" 

Figure 2.6: Gaussian pulse and truncated error function. 

The truncation error shown in Figure 2.6 is defined as 

A -(t - to) 

{ 
[ 2] 

g, (t) ~ exp 0 21" (2.51) 

We define ~ in the frequency domain as the ratio ofthe magnitudes ofthe truncation 

error to that of the Gaussian pulse as 

(2.52) 

where G1 (/) and G2 (/) are the Fourier transforms of the functions gl (/) and g2 (/), 
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respectively. We evaluate this function numerically using Fast Fourier Transfonn (FFT). 

The graphical representation of equation (2.52) for an example with different tx with a fixed 

pulse width (T) of lOps is shown in Figure 2.7. The figure contains the return loss error ~ for 

values ofthe pulse truncation from the centre ofthe pulse (t x - to) of lOps, 20 ps, and 30 ps. 

~-40 

" ~ ______________ -----c------,------,-,---~-----,-----"----------~ 

Figure 2.7: Return Loss for premature tennination of pulse. 

It is evident from Figure 2.7 that the truncation error plays a major role in the overall 

simulation. It is extremely difficult to derive a relationship between the three parameters: the 

pulse width, the return loss and the pulse duration. Therefore, for each simulation problem 

one needs to pay attention to all three parameters. For example, if we are interested in a 

practical problem for which the return loss needs to less than -40 dB over a frequency range 

of up to 5GHz, then the minimum pulse duration has to be 

(2.53) 

where dsp is the distance of the Sll sampling point from the beging of the coaxial feed line 
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and &r is the dielectric constant within the coaxial feed. 

The length ofthe coaxial feed for a Gaussian pulse is calculated with the assumption 

of TEM mode in the feed: 

_ C tdur 
Coax length min -----£2 (2.54) 

In the FDTD algorithm, initially the pulse is reflected at the excitation point within 

the coaxial feed, and at time tdur an absorbing boundary is turned on while the source and the 

reflecting plane are turned off. Figure 2.8 shows the side view ofthe coaxial feed. 

Absorbing Boundary 

planes t> tdur Outer Conductor 

Field planes for Reflector t<tdur 

Figure 2.8: The cross sectional view of the coaxial feed. 

2.4.2 Sinusoidal Excitation Source Implementation 

In sinusoidal excitation source, the parameters that define the source do not affect the 

simulation results significantly. However, there is a limit on the high frequency; this is due 

to the maximum cell size. In a sinusoidal source, only two parameters need to be set and 
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they are the amplitude and the frequency. The selection of these parameters is 

straightforward. 

Eexc(n) = Asin(2nfonM) (2.55) 

where fo is the frequency, M is the time step in the FDTD algorithm and A is the amplitude of 

the source. In the simulation algorithm, for sinusoidal excitation, the reflector plane is 

continuously on. 

2.6 Summary 

In this chapter the fonnalism needed for the implementation of non-unifonn FDTD 

applications is developed. The fonnulas given are utilised in computer simulations, which 

demonstrate applications to antennas and integrated circuits. In addition, this chapter 

contains descriptions of the absorbing boundary conditions and excitation source. The 

discussions on the excitation source demonstrate that some parameters are crucial to the 

accuracy of the FDTD simulation; they are the pulse width, the duration, and the coaxial line 

length. The detailed error analysis ofthese parameters was presented in this chapter. 
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Chapter 3 

Radiation Pattern with New Equivalence 

3.1 Introduction 

The equivalence principle has been widely used in the analysis of the radiation 

patterns of antennas. It states that an original problem with radiating sources can be 

transformed into an equivalent problem with equivalent sources on an arbitrary closed 

surface [1]-[3]. The region of interest in radiation/scattering problems extends to the far 

zone. It is impossible to accommodate such a region in the computational space of a finite 

volume numerical technique. With these techniques, the equivalence principle is practically 

the only means of pattern computations. However, it requires large computational time. In 

this thesis, we introduce an approximation to the standard equivalence principle, namely the 

line-of-sight (LoS) equivalence approach to far-field computations. It significantly increases 

the efficiency of the radiation pattern computations when used in numerical techniques such 

as the finite-difference time domain (FDTD) method. 

The LoS approximation to the equivalence principle considers the source 

contributions from surface currents that are on the LoS surface only; as well as the currents 

along the LoS contour. The conditions necessary for the validity ofthe LoS approximation 

are: (i) the radiating equivalent sources are in free space and the field is bounded at infinity, 

and (ii) the observation point is in the far-field region. For every observation point, the 

virtual closed surface consists ofthe LoS surface and the 'shadow' surface (see Figure 3.1). 

29 



Radiation Pattern with New Equivalence 30 

The 'shadow' surface can be transformed into an infinite surface supported by the LoS 

contour. Every straight line, which passes through the observation point and a point on the 

LoS contour, belongs to this infinite surface (see Figure 3.1). In our approach, the integration 

of the equivalent currents on the infinite surface is approximated by a contour integration 

over the edge currents along the LoS contour. 

Observation 

S los ----------------------~:~: 

Figure 3.1. Equivalent surfaces and LoS approximation notations. 

Over the last half a century, significant attention has been paid to the solutions of 

diffraction and scattering problems; for example, see [4]-[7]. Most ofthese references treat 

the problem of reducing the surface integrals to contour integrals and they are focused mainly 

on the application to scattering problems. The fundamental difference between a scattering 

prob lem and an equivalence problem is that in the former the position vectors of the field on 

the surface of the scatterer, ofthe radiating source and of the observer, are known; while in 

the latter, only two of these position vectors are known: the position vectors ofthe surface 

field and ofthe observer. Therefore, the approximate expressions obtained for the scattering 

problem cannot be applied directly to the equivalence problem. In [6], the Modified Edge 

Representation (MER) was proposed and the authors derived a general mathematical 



Radiation Pattern with New Equivalence 31 

expression for the surface-to-contour transfonnation using Stroke's theorem. In [6], using 

field equivalence, an approximate solution is obtained for the surface integral. The 

derivations in [6] are based on the use of two defonned surfaces (reflection and shadow 

boundaries), which are needed to obtain near zone accuracies for the diffracted field. Our 

LoS approximation is developed for far field computations. This allows the shape of the 

extended surface to be transfonned from an infinite conical frustum to an infinite tubular 

frustum. Unlike in [6], we use an approximation to the open-space potential integral solution 

rather than diffraction equations such as the Stratton-Chu representation (see [7]). With this 

approximation, the derivation and implementation of the LoS approach to the radiation 

problem becomes simple and straightforward. In the literature one could find more 

metaphorical and less theoretical arguments to the LoS approach, e.g., [12][13][14]. 

3.2 Theoretical Discussion 

In order to highlight the need for a LoS approximation to the equivalence principle, 

one needs to examine the standard equivalence principle. In the equivalence principle, when 

obtaining the radiation pattern, the surface currents on the surface enclosing the antenna are 

used. They are derived from the tangential surface field components. The standard 

equivalence principle is very useful when used in an isotropic medium for which the free 

space Green's function can be used in obtaining the radiation pattern [1], [2] and [3]. In 

general, the calculation of the radiation pattern from the surface currents requires both 

electric and magnetic currents. However, ifthe equivalent surface is sufficiently smooth, i.e. 

the observation point is in the positive nonnal of the LoS surface, then either one of the 

surface currents can be used. This concept is exploited in the LoS approach. The LoS 

approximation to the equivalence principle reduces the computational time and storage 

memory in the FDTD simulation, thus resulting in an improved efficiency in its application. 

The theoretical proof for the LoS approximation to the equivalence principle and its 
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verification with simulations and measurements are presented below. 

The first section contains the definition of the LoS equivalence approach and its 

necessary conditions. The next section contains a brief review of the commonly used 

equivalence theorem and the expression of the field in terms of the vector potentials. The 

proceeding section contains the introduction and the derivation of the point-of-symmetry 

fields. Section 3.2.5 contains detailed discussion on the calculation ofthe LoS edge currents 

and supporting examples. 

3.2.1 Line of Sight Equivalence Principle 

The LoS equivalence principle approximates the commonly used equivalence 

principle, valid under some special conditions. We give its definition below. 

The source contributions from an enclosed surface to an observation point are 

only from one type of surface currents (electric or magnetic) that are on the 

line-aI-sight surface and the equivalent edge current on the LoS contour. 

The conditions necessary for the validity ofthe LoS principle are: 

1. The radiating sources are in free space and the fields are finite at infinity. 

2. The observation points satisfy the point -of-symmetry condition (sec Section 3.2.4). 

3. The size of the enclosing box dictates the accuracy of the LoS approximation. 

It follows from the definition of the LoS equivalence approach that the surface current 

contributions to the far-field are from two distinct sources; one is the sources on the LoS 

surface and the other is the sources on the LoS contour. The discussion on this is given in 

Sections 3.2.4 and 3.2.5, respectively. 

3.2.2 Standard Equivalence Principle 

The equivalence principle is widely used to simplify the original problem with an 

equivalent one in solving for the radiated field. The derivation of equivalence to a problem 
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begins with the uniqueness theorem; this and its extension to the equivalence principle are 

given in [1],[2],[3]. 

In order to examine the equivalence principle, let us choose a surface that encloses an 

sources in homogeneity as shown in Figure 3.2. Suppose we are interested only in the field 

in space outside the enclosed surface, then an equivalent problem can be constructed as 

shown in Figure 3.3. 

The electric and magnetic surface current densities on this surface are: 

(3.1) 

and 

- S ~ - -M =-nx(E -E ) 012 (3.2) 

where (E1,HI ) and (E2 ,Ii 2) are electric and magnetic fields outside (region 1) and inside 

(region 2) the enclosed surface respectively, and ii is the outward normal vector to the 

surface. 

Ifwe are interested in the field in region 1, then the fields in region 2 could be set to 

zero without disturbing the field in region 1. With this assumption, the electric and magnetic 

surface current densities 

(3.3) 

and 

- S A -, A -s M = - n x E1 S = -n x E (3.4) 

where Jj;s and Ii S are the electric and magnetic field components on the surface in region 1. 

In addition, one important point to note is that in the above derivation, the original problem is 

reduced to an isotropic problem, to which the free-space conditions can be applied. 
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Figure 3.2: Equivalent source in an isotropic medium 
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Figure 3.3: Equivalent source in an isotropic medium 
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3.2.3 Surface Current Densities and Vector Potentials 

A commonly used method for calculating the field from radiating sources on a surface 

is the vector potential approach [1],[2],[11]. Let us assume that sources with current 

densities ]e and i:r, which in the limit as area tends to zero are an infinitesimal point 

sources, are placed at the origin of the coordinate system. For this, the wave equations are 

(3.5) 

(3.6) 

where k is the wave number.The solution for the elemental vector potentials of (3.5) and 

(3.6) is the free space Green's function: 

(3.7) 

and 

(3.8) 

The principle of superposition holds, thus the total vector potentials are 

(3.9) 

v v 

(3.10) 

v v 

If the linear densities of current ]e and fir on the surface are ]Se and USe, then 
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(3.11) 

(3.12) 

and the general expression for the fields in terms of vector potentials is [3] 

- - 1 -
E =-VxF+-.-(VxVxA) (3.13) 

JOJ&o 

- - 1 -
H = V x A + -. - (V x V x F) (3.14) 

JOJJ.1o 

We use a rectangular coordinate system, in which the vector wave equation of each 

vector potential reduces to three decoupled scalar wave equations. The electric and magnetic 

vector potentials in the rectangular coordinate system are 

(3.15) 

(3.16) 

In order to simplify the further development, we use one component for each ofthe 

surface currents, namely J; and M; as elemental current in free space. For these, from 

(3.7) and (3.8) it can be seen that only A; and F; exist. Without loss of generality, the 

following derivations can be extended to the other four components J:e, J;e, M;e and M;e. 
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The curls ofthe electric F; and magnetic A; vector potentials in spherical coordinates are 

V'xA;x=cos(e) oA~ y-sin(e)sin(q5) OA; z 
or or (3.17) 

oFe oF~ 
V' x F; Y = - cos(e) -)-' x + sinCe) cos(q5) -Y- Z or Or 

(3.18) 

The curl of the curl of the magnetic vector potential is 

'V x V' x A;x = [-2(Sin(e)cos(q5»2 oA; + (cos«(}) cos(q5»
2 ~(rOA; J- sin2(e) 0 (rOA; Jlx 

r or r Or Or r Or or 

+[ -2(sin(e)cos(q5»2 oA; + (cos«(}) cos(q5»
2 ~(roA;J_ cos(q5)sin(q5) 0 (roA;Jly 

r Or r or Or r Or Or 

+ [-2 sine e) cos( e) cos(q5) oA; + sine e) cos( e) cos(q5) 0 (roA; Jl z 
r or r or or 

(3.19) 

and the curl of the curl of the electric vector potential is 

'V x 'V x Fe y = [2sin2«(})CoS(q5)Sin(q5) of; _ cos2((})cos(q5)sin(q5) 0 [roF;] 
Y r or r or or 

sin(q5)cos(q5) 0 [ro?:]] A [2(Sin«(})Sin(q5»2 of; + --x+ --r or or r or 

- (Cos(e) sin(q5»
2 

0 [roF;] _ cos 2(q5) ~[roF;]] y 
r or or r or or 

(3.20) 

+ [ _ 2 sine (}) cos( e) cos( q5 ) of; + sine (}) cose (}) cos( q5) ~ [ ro F; ]] z 
r or r or or 
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3.2.4 Field at Point-or-Symmetry 

Since the surface current contribution to the far-field calculation from the shadow 

surface is zero, the shadow surface can be deformed or extended to infinity as shown in 

Figure 3.1. The field components in this extended volume can be set to zero and this region 

is referred to as null-field region. With this, one can guarantee that for regular convex LoS 

surface, for every observation point, there exists a point-of-symmetry in the null-field region. 

This is shown in Figure 3.4. 

contour 

Observation 
point 

Figure 3.4: The illustration of null-field region, point-of-symmetry and observation point. 

The point-of-symmetry is a point that is radially opposite to the observation point 

with the source point at the centre. At this point-of-symmetry, the field of an elemental 

surface source has a unique relation to its counterpart at the observation point. To proceed 

further with the derivation of the fields at the point-of-symmetry, we consider a simple 

problem in which an elemental current is located at the origin of the coordinate system, and 

assume that the entire region is in free space. We denote the field at the observation point as 
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(E]e ,ilt) and the field at the point-of-symmetry as (E~, il~ ). If the location of the 

observation point in a spherical coordinate system defined as 

(3.21) 

then, the point-of-symmetry is at the location given by 

(3.22) 

Using (3.13) and (3.14), the field at the observation point (l'j, ¢I' 81) is 

(3.23) 

(3.24) 

Using equations (3.17)-(3.20), the field in the null-field region at point-of-symmetry 

(r2' ¢2' 82) can be written in terms of the vector potential at the observation point AXl and 

(3.25) 

(3.26) 

Equations (3.23)-(3.26) hold for any other component of the surface currents and 

these equations can be generalised to omit the subscripts x and y. 

Now, if we consider the practical situation in which we are interested in the field in 
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region 1 only, then the field in region 2 E; and fi~ can be set to zero. Thus from the 

equations (3.25) and (3.26) we obtain the relations 

- 1 -
Vx At= -.--(VxVxFie

) (3.27) 
jOJl'o 

- 1 -VxF/ = --.-(VxVxAt) (3.28) 
jOJ&o 

Substituting (3.27) and (3.28) into (3.23) and (3.24), we obtain 

itt = -2Vx i;e (3.29) 

- 2 -Ht =-.--VxVxF/ (3.30) 
jOJ/-lo 

From equations (3.29) and (3.30) it is evident that only one of the surface currents, which 

appear in the equations for the vector potentials, is needed to obtain the field outside the 

closed surface. Thus, the general form of (3.29) and (3.30) is 

it] = - ~; ffVxMseds (3.31) 
LoS 

- 2& Sf -H] =. VxVxMSeds 
41Cj OJ/-lo LoS 

(3.32) 

One easily observes that if the surface is regular and convex, then the point-of­

symmetry always falls in the null-field region. For most simulation problems, the enclosing 
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box is of regular shape such as a rectangular box. In the above derivation, the effects of edge 

currents are neglected. However, they are addressed in the next section. 

3.2.5 The LoS Edge Currents 

In accordance with the equivalence principle, the time harmonic E-field in the far 

zone can be expressed in terms of the electric and magnetic fields is and fjs on the surface 

enclosing the radiating sources [3]: 

(3.33) 

Here, as shown in Figure 3.5, ~P is the distance from the surface field point Q to the 

observation point P, it is the unit normal to the surface, R is the unit vector from the surface 

source to the observation point, p is the free-space wave number, OJ is the frequency, and 17 

is the free space intrinsic impedance. 

, 
, Sext 
I -
: p r 
: rc , 
, S ~-
: Rs :- ---- --- --- --- -----:::-.-- ---- --- -- ------- -- -- -- ---------- --- --* p 

°r-~--_r--------------------_+I 
Rp 

Sext 
/I 
II 

Figure 3.5: LoS approximations and notations 
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The LoS approximation is obtained by transforming the 'shadow' surface into an 

infinite (extended) surface supported by the LoS contour, as shown in Figure 3.1. When the 

observation point is in the far zone, the extended surface becomes a semi-infinite tubular 

frustum whose profile is defined by the LoS contour (see Figure 3.5). In general, the far field 

is calculated from the equivalent electric and magnetic surface current densities on the LoS 

surface Sws and on the extended surface Sext. Our objective is to obtain accurate far-field 

information by integrating the surface current densities over Sws only, and to reduce the 

contribution of the Sext current densities to an integral over the LoS contour Cws . 

We use a local rectangular coordinate system with unit vectors R , n and f as shown 

in Figure 3.5, where f = n x R . Using the relation n· R = 0 and neglecting the far-zone E R 

component, the second term of(3.33) can be written as 

where E~ is the R-component of the electric field on the extended surface. The surface 

integral of (3.34) can be expanded as 

(3.35) 

where the lower limit Rep is the distance from the respective point on the LoS contour Cws 

to the observation point P (see Figure 3.5). Introducing a variable 

(3.36) 

(3.35) can be written as 



Radiation Pattern with New Equivalence 43 

E- JOJry& 4 ~ ~ dl 
MS =--- nJE C 

ext 4n 
(3.37) 

Cws 

where 

(3.38) 

and rR = rRC when the surface source point Q lies on Cws (see Figure 3.5). 

Similarly, with the far-field assumption that the radial field components are 

negligible, the first term of (3.33) becomes 

(3.39) 

where H~ is the surface magnetic field component along R . The electric field in (3.39) is 

now written in terms of a contour and a line integral as 

(3.40) 

where 

(3.41) 

The surface field components H~ and E~ in (3.38) and (3.41) are due to the enclosed 

electric and magnetic sources inside the equivalent surface. ill order to simplify the 

derivations, we consider only an infinitesimal electric dipole whose surface field R­

components are denoted as HI; and E~e . The derivation is similar for a magnetic dipole. ill 

a linear medium, the surface magnetic field R-component of a complex radiator can be 
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represented as a superposition ofthe elemental contributions, H~ = I.H~e . Then, (3.40) can 
e 

be written as 

(3.42) 

a similar expression can be written for EMS of (3.37). 
ext 

Consider the electric current element Idl = I RR + I/i + I, f at a point S inside the 

enclosed surface whose position vector with respect to the surface point Q is 

r = rRR + rnn + rr; f . Its surface field components, H~e and E~e , are obtained as [3] 

Se (1 + jf3r )e-.ifJr 

HR = 3 (rJ, -rJn) 
4JZ'r 

(3.43) 

(3.44) 

where r =1 r I. The orthogonal distance from the source to the surface of the tube is 

(3.45) 

where rR is defined in (3.36) see also Figure 3.2. The integral over H%e in the far zone 

(3.41) becomes 

(3.46) 
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where Rp and Rs are shown in Figure 3.2. Our goal is to find an approximation of (3.46) 

such that J~ is expressed in terms ofthe field at the LoS contour point that corresponds to 

rR = rRC' We change variable as 

(3.47) 

where u1 = rc - rRC ' Here, r = rc and rR == rRC when the surface point Q lies on CLOS (see 

Figure 3.2). Using the relationships 

(3.48) 

J!J is written in terms of u as 

(3.49) 

We integrate by parts the first integral term of (3.49) as 

(3.50) 

which results in 

(3.51) 
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The function J~ has to be expressed in terms of the field component H~e on the contour. 

To achieve that, we multiply (3.51) by the factor 

2uz 
1 + 2 2 

jf3(uz + P ) 
(3.52) 

The second term of (3.52) is in fact equalto 1/ j f3re and it has a negligible effect on JiI for 

re ».It, .It being the wavelength. With this approximation, (3.51) becomes 

(3.53) 

The position ofthe original sources inside the virtual surface determines u/. However, in a 

practical computational problem, the locations of the original sources inside the enclosed 

surface are not known. On the other hand, a computational algorithm provides full 

information about the field at the contour. If H~e is available, then the term 

(3.54) 

can be extracted from its phase for a point on Cws . From (3.43), the phase of H~e is the 

argument of the term (j fJr + 1 )e-i,Br : 

e~ = -fJr+arctan(fJr). (3.55) 

Its derivative with respect to rR is 
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d8~ =-13[1- 1 ](rR) drR 1 + (f3r)2 r . (3.56) 

For large f3r, C'H can be obtained from the approximated phase derivative as 

(3.57) 

In the case of a complex source distribution, a constant CH can be obtained from the phase 

8 H of the total field H~ as is done for the elemental field H~e: 

(3.58) 

Thus, the approximation to J H from (3.41) can be written as 

(3.59) 

The derivation thus far addressed the contribution ofthe electric surface currents (n x fIs) at 

Sext to the far-zone electric field EJS in (3.40). A similar derivation is carried out for the 
en 

contribution of the magnetic surface currents to the far-zone electric field EMs"" in (3.37). 

An elemental contribution to (3.38) is obtained as 

Je =Je +Je +ye E ER En Er (3.60) 
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where 

In (3.60), the most significant component for far-field computations is J ER , which is 

due to the elemental source I R • For elemental currents polarized along n or i , the far-field 

contribution through J H is far more significant than that from J En and/or JET (with a 

factor of approximately fJ ). Under the condition /32 r2 > > 3 , J ER can be expressed in terms 

ofu as 

(3.61) 
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Using integration by parts and the result ofthe integral 

(3.62) 

(3.61) is reduced to 

Je _ e-JfJ(Rp+Rs.fl.) {4. n 2[ -uz + 1C(3+3Pf3-(Pf3)2)e-PfJ]e_JjJlIl __ 4--::-e_-_JjJ--;1I1c--} 
ERa - R J j-JP (2 2)2 4 3 (2 2) 

P Uz + P P Uz + P 

When pf3 » 1 , the term 

1C(3 + 3pf3 - (pf3)2 )e-pjJ 

4p3 

is negligible, and (3.63) reduces to 

Je = 4e-JfJ(Rp+Rs.f?+1I1) {. [ -UZp 2 ] _ 1 } 
ERa R J 13 (2 2 )2 (2 2 ) . 

p Uz + P Uz + P 

(3.63) 

(3.64) 

(3.65) 

Equation (3.65) can be re-written in terms of E~e using the same approach as in the case of 

J
,-.,.e. 

H· 

-JjJ(Rp+RS·R) [( 2 2)] 
Je = e Uz + P eJjJulESe(I u =U) . 

ERa R ·213 2 R R' Z 
p J Uz 

(3.66) 

Here, Ej{(J R'U = uz) is the electric field R-component on the surface due to the elemental 
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current I R . The coefficient C E , analogous to C H , is derived from the derivative ofthe phase 

of the total electric field: 

(3.67) 

In the above derivation, we addressed the contribution of the dominant term due to 

the R -oriented sources. A similar approximation can be applied for In and IT components 

ofthe current element. In a practical problem, however, their contribution is negligible. The 

approximate solution to J E of (3.38) is thus 

,..." C ES e-JjJRcp 
:.lEa = E R---1 

Rep 
(3.68) 

3.2.5.1 The Edge Currents Contribution to the Far-field 

In the LoS approach, three critical approximations are made: (i) the approximation 

transforming (3.51) into (3.53); (ii) the simplification ofthe derivative of the phase term of 

the field at the contour, see (3.57); and (iii) neglecting the term (3.64) in the expression for 

J Ea . The first two require that fJre» 1; the third one assumes that fJp» 1. These 

conditions limit the minimum size of the virtual surface. The accuracy of these 

approximations is investigated below. We show the error due to the approximations in the 

evaluation of the line integrals J'k and J E. J'k shows the contribution ofthe surface field 

component HR to the far-zone field of an elemental source; while J E is associated with the 

contribution of the ER field component. Electric current densities, which are transversal to 

the LoS contribute to the radiated field predominantly through H R; while if the current 
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density is longitudinal to the LoS it contributes to the far field mostly through ER. We, 

therefore, investigate the approximation error of the Jir integral in the case of transversely 

oriented dipole element, and that of the J E integral in the case of longitudinally oriented 

dipole element. 

A. Error due to the approximation of the line integral Jir 

The error due to the approximation of the line integral Jir in (3.49) with Jira III 

(3.53) is calculated numerically using MATLAB®. The exact solution to (3.49) is obtained 

with Fast Fourier Transform (FFT) whose discrete form is 

(3.69) 

where 

N 
F(kt,,,fJ) =t:.u 'Lf(nt:.u)e - j(kc.p)(nAu) . (3.70) 

n=O 

Here, k denotes a discrete point in the fJ -domain. The discretization step in the u-domain is 

t:.U = 10-4 m, and the number of points is N = 218 
• The discrete step in the fJ -domain is 

calculated as t:.fJ = 2Jr I(N t:.u). The function f(nt:.u) is the discretized square-bracket term 

in the integral in (3.49). 

The error function ~ due to the approximation of Jir is defined as: 

(3.71) 
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The coefficient C'H used in the approximation J'Ha contains two constants, p and u/, 

where u/ is dependent on the distance between the source and the LoS contour rRC ' 

Therefore, the error function,; is examined in the following cases: (i) constant p and 

varying rRC ' and (ii) constant r RC and varying p (for the meaning of rRC and p refer to 

Figure 3.5). The current element must be either n -polarized or f -polarized (see Figure 3.5) 

in order to obtain a nonzero HJ/ component at the LOS contour, see (3.43). The results for 

both polarizations are identical. 

The approximation errors are shown in Figure 3.6 and Figure 3.7. It is evident that the 

distance between the source and the LoS contour rRC does not influence strongly the error 

due to the approximation of the J; integral when rRC ;:::; A and p;:::; A . In fact, under these 

conditions, the approximation error 4 is well below 0.5% (see the curves for rRC = ±/Io and 

rRC = ±2/1o in Figure 3.6 and the curves for p = 1.0/10, 2.0/10 in Figure 3.7). In both figures, 

the results for fJ < fJo ~ 21 rad/m show that when the virtual surface size in any direction 

becomes smaller than the wavelength, the approximation accuracy quickly deteriorates. This 

effect is even more pronounced in the approximation of the J: integral. 

B. Error due to the approximation of the line integral J: 
We consider the contribution to J; from an R -polarized elemental current source I R 

denoted as J:R , see (3.60). Such a source generates a significant E%e field component at the 

LOS contour. This is the worst case scenario for the approximation due to the substitution of 

J E with J Ea of (3.68). As in the case of J Ha, the error due to the approximation of J:R 

with J:Ra is examined for: (i) constant p and varying rRC, and Oi) constant rRC and varying 

p. These errors are plotted in Figures 3.8 and 3.9. It becomes obvious from Figure 3.8 that 

not only the distance to the extended surface p must be kept larger than a wavelength but 
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also rRC should not be much larger than P . The latter restriction, however, is not of practical 

concern. It is also important to note that if the condition p > JL is violated, the error due to 

the approximation increases drastically (see Figure 3.9). This is due to the term (3.64) which 

is being neglected in the more general expression for J;Ra given by (3.63). 

In summary, the following guidelines can be suggested for the choice of the LoS 

surface size: 

1. The minimum distance from S LOS to the enclosed sources should be more than a 

wavelength, i.e. Pmin :2: JL . 

2. The orthogonal distance between the enclosed sources and the LoS contour should be 

less than twice the minimum distance between the sources and the virtual surface. At 

the same time, it should be larger than the wavelength, i.e. JL s rRC < 2Pmin' 

If these two conditions are observed, an approximation error of about 2% or less is achieved. 

In the next section, we examine a practical problem with Pmin = 1.25JL . 
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Figure 3.6. Error function of the HR component for In!t with constant P for positive rR. 
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25 30 35 
[3 [rad/s] ([30=20 fad/s) 
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r R=2 .25Ao p= i.50Ao 
rR=3.0OJl.o p=1.50Ao 

Ao at 1GHz 

40 45 50 

Figure 3.7: Error function ofthe ER component for I n1r with constant p for positive JR. 
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Figure 3.8: Error function ofthe ER component for IR with constant p for positive fR. 
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fR=O.75A.o p=1.50Ao 
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Figure 3.9: Error function of the HR component for In!r with constant p for negative rR· 
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rR=-O.75Ao p=1.50',0 
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Figure 3.11: Error function of the ER component for In I T with constant p for negative rR. 
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Figure 3.12: Error function of the HR component for Inlr with constant rR for different p. 
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Figure 3.14: Error function ofthe ER component for In" with constant rR for different p. 
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3.3 Application of the LoS Approach to a Practical Problem 

A general approximate expression for the far field is obtained using (3.33), (3.37) 

and (3.40) : 

E';:j - jOJj1 [ H (11 x jjS) e-j,BR
QP ds + q( R x 11 )Hk e-j,BRop eHdl] 

4JT S Rop RQP 
LOS - C 

(3.72) 

We note that the LoS approach can be further simplified under the condition that the 

LoS surface is smooth and that the observation point falls in the positive side of the unit 

normal for every surface point. Typically, computational algorithms use rectangular boxes as 

virtual surfaces. These satisfy the stipulated LoS conditions. In this case, in (3.72), one can 

resolve either the surface integral over the equivalent electric currents (211 x frs), or the 

surface integral over the equivalent magnetic currents (211XEs ). This improves additionally 

the efficiency ofthe far-field calculations. Notice that in either case both contour integrals in 

(3.72) have to be computed. 

To illustrate the reduction ofthe surface integration by the LoS approach, consider the 

example in Figure 3.15. The source contribution to the field at the observation point PI is 

from the top xz-plane only. The source contribution at P2 is from the top xz-plane and the 

right yz-plane. In this method, up to three surfaces and up to six edges could contribute to 

the calculation of the radiation pattern. 

The contribution from the edge current to the far field radiation results in the 

calculation of the coefficients CE and CH according to (3.58) and (3.67). It is observed in 

(3.58) and (3.67), that the derivative with respect to R can be projected to any desired 

direction (x, y or z) without changing the overall effect. That is, the derivative with respect to 

R can be written as 
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d0(ER ) d0(Ex) d0(Ey) d0(Ez ) 
= == = 

dR dx dy dz 
(3.73) 

In many numerical techniques such as in the FDTD technique, the information ofthe 

field components on the edges that are parallel to the other edges of the rectangular box are 

available. From this the coefficients C E and C H can be easily calculated. 

Figure 3.15: Enclosing surface in the simulation of radiation pattern. 

In some practical applications, surface currents on only one face of the box are 

required, and, in this case, edge current effects are negligible. The two practical examples 

in section 3.3 show the effect of the edge currents. 



Radiation Pattern with New Equivalence 60 

3.3.1 A Numerical Example of the Application of LoS Approximation 

The accuracy of the LoS approach as compared to the standard equivalence principle 

is demonstrated using the simulation of a half-wavelength dipole. In the simulation, the 

dipole is enclosed in a rectangular box of size 2.5Ax2.5Ax3.5A. The box is discretized into 

60x60x120 cells, which gives a maximum cell size of ,1/24. Such a cell size is within the 

standard range in numerical simulations. 

The tangential surface field components are calculated over the LoS surface using 

(3.43) and (3.44), and the far-field surface integral over Sws is computed according to 

(3.72). The far field E-plane radiation pattern for the Eo component is computed and the 

results are shown in Figures 3.17, 3.18 and 3.19. Each figure contains three plots and they 

are for (i) the radiation pattern using the standard equivalence principle, (ii) the radiation 

pattern using the LoS approach, and (iii) the radiation pattern using the LoS approach 

excluding the contour integrals. 
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Figure 3.16: Dipole antenna for the LoS numerical example 
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When principal plane patterns are calculated, the LoS approach uses at most two of the 

six surface faces; whereas for the standard equivalence principle, the currents on all six faces 

are integrated. The physical size ofthe virtual box for the simulation is such that the shortest 

distance from the dipole edge to the surface of the box is 1.251.. For this example, 

Prnin ~ 1.27/L , and the corresponding expected maximum approximation error is below 2%. 

Figure 3.17 shows the normalized radiation pattern plots. The plots in Figure 3.17 

somewhat mask the approximation error. However, when the plots are normalized to a 

common value such as the maximum value of the standard equivalence radiated field, the 

errors are more visible. These are observed better in Figure 3.18, which contains the patterns 

normalized to the maximum of the radiated field according to the standard equivalence. We 

notice that the exclusion of the contour integrals leads to significant error, which can be as 

high as 20%. The maximum error of the LoS approach, which takes into account the 

contribution of the edge currents, is lower than 2%, as expected. This error is within an 

acceptable range for most practical applications. 
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Figure 3.17: Self normalized Eo radiation pattern ofa dipole antenna in linear scale 
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Figure 3.18: Nonnalized to SE, Ee radiation pattern ofa dipole antenna in linear scale 

In the plots of Figure 19, the results are in logarithmic scale. The error below the 

relative gain of -15 dB is attributed to the numerical errors and not to the approximation used 

in the LoS approach. 
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Figure 3.19: Nonnalized to SE, Ee radiation pattern ofa dipole antenna in log scale 
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3.4 Practical Examples with the LoS Approximation Using the FDTD 

Method 

This section demonstrates the effectiveness of the LoS approximation. We consider 

two examples: (i) the dielectric covered dipole antenna and (ii) the rectangular patch 

antenna. In some antenna simulations, the edge current effect in the LoS approximation is 

negligible. One such example is a rectangular patch antenna. The edge current effect can be 

made negligible by placing the top face of the enclosing box very close to the patch. This is 

demonstrated in section 3.4.2. However, in a dipole antenna, the edge currents playa 

significant role in the pattern calculation. This is demonstrated in section 3.4.1. 

3.4.1 The Dielectric-covered Dipole Antenna 

In this example, the Perfectly Matched Layer (PML), which was presented in Chapter 

2, is used as an absorbing boundary condition. This allows the absorbing boundary surface to 

be very close (less than 100 mm) to the antenna. The antenna and the feed structure are 

embedded into a box of size 120 mm by 200 mm by 100 mm. 

We use a non-uniform FDTD technique. The number of cells in the computational 

domain in the x, y, and z directions is 60, 80 and 50, respectively. The feed structure ofthe 

antenna is a square coaxial transmission line of length 100 mm. The inner conductor is of 

height 1.75 mm, and the outer conductor is of height 5.1 mm. The characteristic impedance 

is 50 n. The initial run of the simulation gives the resonant frequency of the antenna, and 

then with this frequency, the simulation is repeated to obtain the radiation pattern of the 

antenna. The excitation source used is a Gaussian pulse of width 30 ps, and the total number 

of iterations is 2000. 
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Figure 3.20: The dielectric covered dipole antenna. 
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Figure 3.21: Return Loss ofthe antenna 
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The simulation and the measurement of the return loss of the antenna are given in 

Figure 3.21. The resonant frequency of the antenna is determined to be 1.86 GHz. By 

carrying out Discrete Fourier Transform (DFT) on the surface currents with the known 

resonance frequency, the time step, and with application of line of sight condition, the 

radiation pattern is obtained. The measurement and simulation results for the radiation 

pattern for the E-plane with co-polarization are shown in Figure 3.22. 
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Figure 3.22: The E-(half) plane co-polarization radiation pattern of dipole antenna. 

From Figure 3.22, one can observe the accuracy of the LoS approximation, which 

shows very good agreement with the measurements and with the standard equivalence. In 

addition, Figure 3.22 shows the effect of omitting the edge currents for a dipole antenna. The 

effectiveness of the LoS approach is in the use fewer surface faces when calculating the 

radiation pattern. In the above calculation in the half E-plane, only two faces of the 



Radiation Pattern with New Equivalence 66 

rectangular box are used. In the case of the standard equivalence, one needs to use all six 

faces ofthe box. The LoS approximation becomes highly effective when used in radiation 

pattern optimisation. 

3.4.2 The Patch Antenna 

The second example is a patch antenna on a finite ground plane. Figures 3.23 shows 

the antenna configuration used in the simulation, the antenna is of size 80 by 30 mm2
. The 

substrate is of relative dielectric constant 2.2 and its height is 1.8 mm. The mesh size used 

for the simulation is 80 x 50 x 80, and the absorbing condition is the first-order absorbing 

boundary. The resonant frequency of this antenna is 3.75 GHz and it is obtained from the 

simulation results as shown in Figure 3.24. 
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Figure 3.23: The planer view of micros trip rectangular patch antenna. 
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In the simulation, the top face of the enclosing box was placed at a distance of less 

than 10 mm from the patch, thus annulling the requirement of the inclusion of edge currents 

on the overall pattern calculation. Figures 3.25 through 3.26 show the simulation results for 

the radiation patterns in the main two planes. 
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Figure 3.24: The Return Loss ofthe patch antenna. 
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Figure 3.25: The H-plan co-polarization radiation pattern of patch antenna. 
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Figure 3.26: The E-plan co-polarization radiation pattern of patch antenna. 

In this example ofthe rectangular patch antenna there was good agreement between 

the radiation patterns obtained through the three different methods. From the simulation 

results, we can conclude that for planar antennas, the edge current has negligible effect on the 

radiation pattern. 

3.5 Summa:ry 

In this chapter, a new approach to the computation of far-field radiation pattern using 

the equivalence principle is presented. The validity of the LoS approach is shown with an 

application to a practical problem of calculating the radiation pattern of a dipole antenna. The 

simulation results show remarkable agreement between the LoS approach and the standard 

equivalence method, the approximation error is within the acceptable levels and it matches 
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the theoretical prediction. The efficiency of the LoS approach as compared to the standard 

equivalence principle in the calculation of radiation patterns is due to the reduced size ofthe 

integration surface, which requires less computational time. Furthermore, it was 

demonstrated that the use of one type of surface current in the LoS is sufficient to obtain 

radiation pattern for antennas, and this further reduces the computational time. 

The efficiency of the LoS approximation is demonstrated through antenna analysis 

with the FDTD method. This technique reduces the computational time and the memory 

requirement in the FDTD simulations. The computational time for the LoS approach is 

approximately one-sixth of that required by the standard equivalence. Thus, the LoS 

approach is an efficient alternative to existing standard algorithms for the computation of far­

field patterns in high-frequency structure simulators. The work presented in this chapter has 

been accepted by the peers in the electromagnetic community as a significant contribution 

and it can be found in the literature [15]. 
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Chapter 4 

Antenna Analysis with the FDTD Method 

4.1 Introduction 

In this chapter, new antennas are introduced and simulations of these antennas are 

carried out with the non-uniform FDTD technique. In addition to the use of non-uniform 

mesh and the PML absorbing boundary condition, the concept of an integrated feed structure 

is introduced to the antenna simulation. The use ofthe PML allows the absorbing boundary 

to be placed closer to the antenna structure thus reducing the grid size and improving the 

accuracy. When applying the Absorbing Boundary Condition (ABC) to antenna simulations, 

the proximity of the boundary needs special consideration. This is because for some 

antennas such as the dipole, the placement ofthe ABC close to the antenna has undesirable 

effects, whereas for a patch antenna the proximity of the ABC has little effect in the 

simulation results. This is because for the dipole antenna, the field intensity in the space 

surrounding the antenna sets the resonance ofthe antenna, and any obstruction ofthese fields 

with an ABC has a significant effect in the simulation results. In contrast, for patch antennas, 

since the fields in the space between the patch and the ground plane form the resonance, the 

effect of the ABC proximity is less. 

In almost every antenna, the feed point and the structure in its proximity have 

significant effect in determining the input impedance of the antenna. Due to this, in our 

71 
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scheme the feed structure (coaxial line) is part ofthe antenna, thus no interpolation schemes 

are necessary between the interfaces fonned by the juxtaposition of different meshes. 

Through numerous simulations and experimental verifications it is found that a square 

coaxial feed at the input of the antenna could be modelled with same level of accuracy in the 

simulation results, as for a circular coaxial feed. The return loss at the antenna input is 

obtained from the time domain field at a point in the coax feed and this was addressed in 

detail in Chapter 2. 

In order to show the effectiveness ofthe FDTD technique, the antennas presented are 

from different categories with different shapes and sizes. The main features ofthe proposed 

antennas are the small size for mobile units and high gain for the base station antennas. With 

these choices of antennas we can address some of the main challenges facing the FDTD 

technique. They include: the detailed structures in small antennas and larger cell size in 

modelling large antennas. The FDTD technique has been widely used in antenna analysis 

[1], [2] and [3]. A similar fonn is adopted in the antenna simulations in this thesis. 

4.2 The Coaxial Transmission Line 

In many antenna analyses the modelling of the feed point has been ignored to a large 

extent. However, the feed point ofthe antenna is an important factor in its analysis. In some 

antenna analyses in the literature, in which the feed point of the antenna was considered, a 

coaxial feed was modelled with unnecessary accuracy and this resulted in larger computer 

memory usage and longer computational time. In our analysis, we have chosen a square 

coaxial line as the feed line and this structure can be easily incorporated into the modelling of 

the antenna. One should avoid the use of microstrip or strip-line feed, because it is not 

possible to excite a single mode (pure TEM) in these feed lines and the extraction of the 

reflected wave from a multimode wave is very difficult. 

Through experimental investigation, it is found that if the ratio of the inner to the 

outer width of the conductor is 2.89 and with dielectric filling of unity, the characteristic 

impedance of the line is 50 Ohm. Since one may use different characteristic impedance other 
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than 50 Ohms, different conditions were examined. Figure 4.1 gives the ratio of inner (a) to 

outer (b) width (or radius) of the coax conductors at the frequency point of 1 GHz and the size 

of coaxial line can be scaled to the desired frequency. In addition, this figure contains plots 

with different dielectric constants. One could see that the impedance is inversely 

proportional to the square root of the dielectric constant z oc 1/ F ' as expected. 
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Figure 4.1: Characteristic impedance of the square coaxial line. 

With three variables a, b and &r' while maintaining the desired characteristic 

impedance, the non-uniform mesh can be made to fit any feed point of the antenna. The 

accuracy and the limitations ofthe square coaxial feed line are discussed in chapter two. 

We have chosen three different categories of antennas and they are mobile unit 

antennas, window antennas and base station antennas. Antennas were put in different 

categories for their different size and shapes; in each category, we selected more than one 

antenna to demonstrate the capability of the FDTD simulations. The simulation results 

presented in this chapter are only for the return loss and the radiation patterns are obtained 

from measurement data. Chapter 3 contains the detailed discussion on the radiation pattern 

simulation. 
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4.3 Mobile Unit Antennas 

In this category 0 f antennas, the size and the shape 0 f the antenna are the important 

features, and in many instances the antennas have to be designed for specific applications. In 

modelling small antennas with unique shapes, the challenge one faces is the detail of the 

structure. Once again, the non-uniform FDTD technique proves to be advantageous. In this 

category, we present three different antennas, namely, the Coupled Patch Antenna, the 

Printed Sleeve Antenna and the Sandwich Antenna. 

4.3.1 Coupled Patch Antennas 

Figure 4.2 shows the coupled patch antenna (CPA). This antenna is different from 

the traditional monopole, i.e., the reflecting plane is not large, and the strip length is much 

less than a quarter wavelength. Both, the size of the reflecting plane and the length of the 

strip set the resonant condition of the antenna. The antenna is for the operating frequency of 

0.9 GHz and it is for the application in PCMCIA, and the shape of the antenna confines to 

the PCMCIA card. The size ofthe reflecting plane is B=1.2 A, A=0.17 A, length ofthe strip 

L=0.15 A, the dielectric constant of the substrate is 4.00, and the thickness ofthe substrate is 

0.06 A. The gain of the antenna is 2.6 dBi and maintains a constant level of performance 

despite the change in the environment. The bandwidth is 12%. The measured radiation 

patterns in two principal planes are shown in Figures 4.4 and 4.5. The comparison between 

the simulation and the measurement results of the return loss is given in Figure 4.3. The size 

ofthe non-uniform FDTD mesh used for this analysis was 90 x 72 x 70. The operation of this 

antenna is somewhat similar to a dipole antenna, where one arm is a plane and the other arm 

is a stub. The wider bandwidth is achievable, because one section of the antenna is large. 

The operating frequency of the antenna is set by the both plane and the stub. The variation of 

the operating frequency as a function of the plane size and stub length is given in [3]. 
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Figure 4.2: Coupled Patch Antenna (CPA). 
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Figure 4.4: Radiation Pattern, H-plane (CPA), solid co-pol, dashed: x-pol. 
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Figure 4.5: Radiation Pattern, E-plane (CPA), solid co-pol, dashed: x-pol. 
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4.3.2 Printed Sleeve Antenna 

We have extended the concept of an ordinary sleeve antenna to a printed structure and 

the antenna is shown in Figure 4.6. In this antenna, the length is similar to a dipole antenna 

but with the matching at the end rather than at the centre. The substrate used has fr =3.0, 

width W=0.08 A, length L=O.4 A and the substrate thickness H=O.Ol A. The antenna was 

designed to work at 0.9 GHz (a specific requirement for the MPT product developed by 

Research In Motion). The gain ofthe antenna is 5.2 dBi with an input impedance bandwidth 

of 25%. The radiation pattern is maximum in the elevation angle of 30 to 70 degrees. The 

comparison between the simulation and the measurements of return loss is given in Figure 

4.7. The size of the non-uniform FDTD mesh used was 55 x 45 x 90. The radiation pattern 

of the antenna in E-plane and H-plane are shown in Figures. 4.8 and 4.9. 
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Figure 4.6: Printed Sleeve Antenna (PSA). 
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Figure 4.8: Radiation Pattern, H-plane (PSA), co-pol. 
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Figure 4.9: Radiation Pattern, E-plane (PSA), co-pol. 

4.3.3 Sandwich Antenna 

Figure 4.lO shows a sandwich antenna. The operation of the antenna is rather 

peculiar. This antenna has three planes; namely, the ground plane, the matching plane, and 

the radiating plane. The radiating plane is not at the same potential as the ground, thus 

implying that the matching circuit is not of a strip line nature. In this design, we have used a 

folded line for matching. The antenna is very small in size, the length and width are L=0.3 A. 

and W=0.04"A. The simulation and measurement for S 11 is given in Figure 4.11. The size of 

the non-uniform FDTD mesh used for this antenna analysis is 55 x 100 x 50. In terms of 

antenna performance, the gain was 2.0 dBi, the input impedance bandwidth is 6%, and the 

polarisation is elliptical. The radiation patterns of this antenna are given in Figures 4.12 and 

4.13. 
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Figure 4.12: Radiation Pattern, H-plane (SA). 
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Figure 4.13: Radiation Pattern, E-plane (SA). 
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4.4 Window Antennas 

Window antennas are designed to be thin low-profile structures. They are single layer 

antennas that can be stuck to a window. In Figure 4.14 a typical window antenna is shown. 

The length of the ground line and the length of the centre line detennine the operating 

frequency ofthe antenna. The width and the length ofthis particular antenna are W=0.20 A 

and L=0.25 Arespectively. The antenna uses a plexiglass substrate with a relative dielectric 

constant of &r = 2.90. Since the coupling ofthe fields is mostly from outside the substrate, 

the value of the substrate does not affect the perfonnance of the antenna very much. The 

gain is 2.6 dBi. The polarisation is elliptical and the input impedance bandwidth is about 

20%. The measurement and simulation results at the input terminal ofthe antenna are given 

in Figure 4.15. The radiation patterns are given in Figures 4.16 and 4.17. The size ofthe non­

unifonn FDTD mesh used for this simulation is 80 x 80 x 50. The design principles for this 

particular window antenna can be extended to numerous different antenna patterns on a 

single layer. 
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Figure 4.14: Window Antenna (W A). 
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Figure 4.16: Radiation Pattern, H-plane (W A). 
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270 

Figure 4.17: Radiation Pattern, E-plane (WA). 

4.5 Base Station Antennas 

The base station antennas are required to have high gain. The size of the base station 

antenna is not a stringent requirement. However, extremely large arrays are not preferred. h1 

our analysis we chose an antenna that is large in size and has a gain of more than 6dBi. The 

biggest challenge in analysing large antennas using the FDTD method is the number of the 

cells and cell size. h1 this respect the non-uniform mesh is the best solution. h1 this category, 

we analysed the following antennas: the folded dipole antenna backed by a reflector plane 

and a simple window antenna. As our goal is to demonstrate the effectiveness of FDTD 

technique, only the simulation of return loss is considered. 

4.5.1 Co-Planer Patch Antenna 

This antenna has a gain of about 6 dBi; the operating frequency is controlled by the 

length ofthe line and the distance ofthe reflector plane. The antenna is narrow band with a 
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bandwidth of less than 5%. The different planes of the antenna are shown in Figure 4.18, 

and more detail on the operation of the antenna can be found in [3]. In the FDTD analysis 

the number of cells used are 81 x 50 x 80. The simulation and measurement result for the 

return loss is given in Figure 4.19. 
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Figure 4.18: Co-Planar Patch Antenna (CPPA). 
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Figure 4.19: Return Loss ofCPPA. 
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4.5.2 Printed Loop Antenna 

This antenna is similar to the antenna given in [4], but this antenna functions without 

a ground plane. Therefore, this antenna (see Figure 4.20) can also be categorised as a 

window antenna. The gain ofthe antenna without the ground (reflector) plane is in the order 

of 6 dBi and has a bandwidth of about 20%. With a non-uniform mesh, the dimension is 70 

x 60 x 30. The polarisation of the antenna is linear with the cross polarisation ofless than 

15dB in the principal planes. The return loss is given in Figure 4.21. 

Feed Point 

Figure 4.20: Printed Loop Antenna (PLA). 
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Figure 4.21: Return Loss ofPLA. 
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4.6 Summary 

In this chapter, we have given simulation and measurement results for some new 

antenna configurations. The simulation and measurement results are in good agreement, thus 

proving the accuracy and the versatility of the FDTD method. Using FDTD techniques one 

could ascertain the sensitive geometrical parameters ofthe antennas. As an example, in the 

case of CPA, the patch size rather than the vertical element determines the resonant 

frequency and this would not be that obvious with an analytical analysis. 
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Chapter 5 

Error Analysis of the Non-Uniform FDTD Method 

5.1 Introduction 

A non-uniform mesh has a number of advantages over a uniform mesh and this was 

evident in the antenna analysis using the FDTD technique considered in Chapter 4. In the 

FDTD technique, the central finite difference approximation is applied to the first order 

derivative. Although this approximation undoubtedly creates errors in the solution, these 

errors may be insignificant depending on the method of implementation. Specifically, by 

expressing the central finite differences by Taylor series, one can show that the error is of 

second order for the case of a uniform mesh. The same does not hold for a non-uniform 

mesh. 

f(xJ 

Figure 5.1: Finite-difference approximation of first-order derivative. 
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Using the Taylor series approximation for the first derivative in tenns of x we can write 

/ (x.) = j(Xi+J/J - j(Xi - 1I2 ) _ (L1xL1I2 - L1x}+\/JJ" (x;) 

I L1xi - J12 + L1xi+li2 2( L1xi - 1I2 + L1xi+1I2 ) 

(5.1) 

where 

In the above expression, the tenns L1xi+1I2 and L1xi-l/2 are the lengths of the 

corresponding cells. If these tenns are equal, which is the case for a unifonn mesh, then the 

second tenn in (5.1) is zero. Therefore, if we approximate the first order derivative as 

f'(x
i

)>=::; !(xi+1I2)- j(xi-l/2) , 

L1xi - 1I2 + L1xi+1/2 

then this approximation has second order accuracy. 

(5.2) 

In the case of a non-unifonn mesh, the lengths of the cells L1xH/2 and L1xi+1I2 are 

unequal. The second order tenn in (5.1) is not zero, thus, equation (5.2) has only first order 

accuracy. 

The implementation of the FDTD technique in EM theory is carried out via Yee's 

method, which uses the leapfrog scheme. In this scheme, the electric field components are 

on the edges ofthe cells, and the magnetic field components are on the centroid ofthe cells' 

surfaces. In any given direction, the latter corresponds to the midpoint of the cell length. 

Therefore, the magnetic field components, which are obtained by finite difference 

approximation of electric field components, have second order accuracy. This does not apply 

to the electric field component. This is because the magnetic field component points are not 

equidistant from the electric field component points, resulting in a non-unifonn scheme. 
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Although locally the non-unifonn orthogonal mesh has only a first -order accuracy, globally 

this scheme can have a second-order accuracy in space, a phenomenon known as 

supraconvergence [5] [6] [7]. In addition to this global second-order convergence, non­

unifonn meshes give rise to a number of consistency and stability phenomena, which have no 

counterpart on unifonn grids. In our research we intend to show this supraconvergence 

phenomenon for Maxwell's equations, and explore some of its aspects in non-unifonn 

meshes. 

5.2 Second Order Error Analysis 

In evaluating any technique, the variable to be tested should be isolated from the 

other variables. It is very difficult to remove the effects of all the other variables from the 

variable under test, and so the best solution is to choose a simple case with minimum effects 

from the untested variables. Furthennore, it is best ifthe problem has an analytical solution, 

so that an accurate comparison is possible. One ofthe simplest problems is a resonant cavity 

box. However, since this high Q structure does not involve any wave propagation, the error 

analysis on it may not mimic a typical problem that involves the FDTD method. A 

waveguide structure is the most suitable for error analysis relevant to our problems. 

The error analysis using the rectangular waveguide is carried out with a number of 

varying conditions such as variations ofthe absorbing boundary conditions, and variations 

in the unifonnity of the mesh. We carry out a numerical investigation of the accuracy ofthe 

non-unifonn FDTD method. The computer simulations show that the use of non-unifonn 

grids with the FDTD method yields numerical field values that have second order accuracy 

with respect to cell dimensions. This accuracy is possible if the boundary condition is 

perfectly or highly absorptive. With imperfect boundary conditions, the accuracy degrades to 

first order. We demonstrate this with a homogeneous Dirichlet boundary condition, the 

perfect dispersive boundary condition for waveguides [2], and the perfectly matched layer 

[3,4]. 
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5.2.1 Error Analysis with Homogeneous Dirichlet Boundary Conditions 

The FDTD method is used to obtain the TMll mode in a rectangular waveguide 

following the procedure given by Navarro et al. [7]. The TMu field distribution is 

analytically known; thus, the difference between the field obtained numerically and that 

obtained analytically gives us an estimation ofthe numerical error when the FDTD method is 

applied with a non-uniform mesh. The electromagnetic field is introduced into the x-y 

transversal section ofthe waveguide by using a time domain pulse, consisting solely of the Ez 

component. The time domain pulse resonates within a two-dimensional slice of the 

waveguide and the first resonant field corresponds to the TMll mode [8]. The field 

corresponding to the TMll mode is extracted from the FDTD time domain field by applying 

the discrete Fourier transform at each node ofthe mesh. The TMI1 mode is compared with 

analytical values to evaluate the errors generated at the nodes of (a) a non-uniform mesh with 

abrupt changes in the cell dimension, and (b) gradually changing non-uniform meshes. In 

every case the dimensions of the mesh in the y-direction are kept constant, in order to keep 

the error due to discretization in the y-direction constant and second order. The cross section 

of the waveguide used in this analysis has dimensions 2.286 cm by 1.16 cm. 

We first show the numerical second-order error generated using a uniform mesh. The 

lines of constant Ez , obtained with a 50 by 40 grid, are shown in Figure 5.2. 

Figure 5.3 shows log/log plots of both the maximum error versus cell size, and the 

average error versus cell size. Using the least squares method for curve fitting a straight line 

the slope of the line is determined, a built-in function in Matlab® was used for the 

calculation. In both cases, the result confirms the theoretical prediction of second order 

accuracy. The maximum error has a slope of 2.359 and the average error has a slope of 

2.344. 
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Figure 5.2: Contour lines of constant Ez field for TMII mode, with waveguide cross section 
2.286 x 1.16 cm2

, and regular mesh of 50 cells in the x direction and 40 cells in y direction. 
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Figure 5.3 Logarithmic plot of error ofTMII mode using uniform mesh against the cell 
dimension. (0) maximum error, LU =LUmax , (*) average error, LU =LUave. 
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Figure 5.4 gives an example ofthe non-unifonn meshes that are used for the analysis 

of the waveguide problem. Unifonn meshes are used on the left and right sides of the 

structure and a coarse mesh is used in the middle. The reason for a symmetrical mesh is to 

avoid the influence of excitation in the final field distribution. The cell ratio between 

contiguous regions is as small as 1.0526 and as large as 20. The maximum error versus 

maximum cell dimension, and average error versus average cell dimension, is plotted in 

Figure 5.5. For the maximum error case, the slope of the line was 2.221, and for the average 

error the slope was 16.079. 

0.004 

o.OO2· .. IB§II. 
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Figure 5.4: The cross section ofthe abrupt non-unifonn mesh. 
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Figure 5.6 shows the effect of gradually changing non-uniform mesh, where 

symmetry is again imposed in order to avoid the influence of excitation. The ratio of change 

between adjacent cells varies from 1.1 to 2.5. Figure 5.7 is a log/log plot of error for a 

gradual non-uniform mesh against cell dimensions. Here the slope for the maximum error is 

1.917, and that for the average error is 2.376. 

1.5 

g 0.5 

~ -o o 
,;is 
o - -0.5 

0 

-1 
II! 

0 
-1.5 

II[ 

i.e -3.6 -3.4 

0 

III 

-3.2 -3 

10glO(.6x) 

o. 
• 0 

o 

o 

0° 
o 

o 
o 

(It) slope=2.376 

(0) slope=1.917 

-2.8 -2.6 -2.4 -2.2 
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5.2.2 Error Analysis with the Perfect Dispersive Boundary Conditions 

The perfect Dispersive Boundary Condition (DBC) is an extension ofthe first order 

boundary condition. In a rectangular waveguide the dominant mode is the TEIO mode, and 

this can be explained as a combination of two plane waves travelling at angle 'Ywith respect 

to the conducting walls. This angle is related to the frequency and the dimensions of the 
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waveguide, and so a first order perfect dispersive boundary condition can be developed to 

absorb the propagating monochromatic wave [2, 5]. The combination of the first order 

perfectly dispersive boundary conditions gives a second order one that exactly absorbs two 

monochromatic waves [2]. This absorbing boundary condition is similar to Litva's boundary 

condition that is used in the FDTD analysis of microstrip structures [6]. The first order 

perfectly dispersive boundary condition in a waveguide is applied to the tangential field 

components and can be written as 

au 
c-ax o (5.1) 

where U is either Ey, or Ez, when it is applied in the x-y plane; a is the width of the 

rectangular waveguide; fis the frequency and c is the speed of light. 

The perfectly dispersive boundary condition (DB C) in the waveguide can be made 

reasonably accurate, because the wave velocity is known for the dimensions of the 

waveguide at given frequency. In other words, since the angles of incidence of the plane 

waves with the boundaries are known [5], one can develop highly accurate boundary 

conditions. The simulation for the waveguide, with a monochromatic source of a TElO field 

and with a perfect DBC located at the end of the waveguide, is discussed. A number of 

different grids are used, namely (1) uniform grids with different cell dimensions and (2) non­

uniform grids along the axis of propagation with (a) two connected uniform regions with a 

change in dimension of ratio 1:9, and (b) a non-uniform mesh in which the size ofthe cell 

increases gradually. In the last case we adopt an exponential increase of the form h i+1 = hi 

times a constant factor, where the ratio hmax : hmin is varied from 1 to 9. In both cases (1) and 

(2), a monochromatic source for a pure TEIO field and a perfectly dispersive boundary 

condition at the end cells were used. The discrete Fourier transform is applied at every 

electric field node point in the waveguide. Since the excitation source has the exact TEIO 
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field distribution, in an error free situation, one would expect the same field profile to 

propagate down the waveguide. However, in a non-ideal situation an error can be calculated 

from the difference between the expected and the simulated field profile. In Figure 5.8 

maximum errors versus spatial increment are plotted for the cases (1), (2a) and (2b). In 

Figure 5.9 is plotted the average error versus average cell dimension. In each case, the least 

squares fit of the logarithm of the error result versus the logarithm of the cell dimension is 

calculated and shown in the insets of Figures 5.8 and 5.9. These results are illuminating and 

give a good insight into the errors that occur when the non-unifonn mesh is used with a 

proper absorbing boundary condition. The results show that in spite of the mesh being non­

unifonn, second order accuracy is achieved. This conclusion remains true for meshes with 

many different types of non-unifonnity. It is interesting to note that an exponentially varying 

grid gives a slope for the average error that is twice the slope of the unifonn grid. 
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5.2.3 Error Analysis with PML Absorbing Boundary Conditions 

In this analysis a combination of exponentially increasing cell size with abrupt 

changes is used. A perfectly matched layer, described in Chapter 2, is used for the absorbing 

boundary, and a monochromatic source in TEIO mode is applied. The discrete Fourier 

transform is used at each nodal point. When implementing the PML boundary condition, the 

number of cells used in the absorbing layer along the x-direction was 40. Theoretically, the 

reflection for this PML is -100 dB, but in practice it turns out to be about -80dB. In Figure 

5.10, the maximum error versus spatial increment is plotted, and average error versus average 

cell dimension. The least square fit to the data in Figure 5.10 for maximum error versus 

maximum cell size gives a slope of2.827, and for average error versus average cell size, the 

slope is 3.942. 



Error Analysis ofthe Non-Uniform FDTD Method 99 

u 0 0 

0 

2 

II 
0 

1.5 .. I< 
0 

.. 0 

~ 
.. 

0 
0 

t " 0 
~ 0.5 II - 0 0 c ... .. 
IlO 0 

.2 0 .. 
" !II 

0 0 
...0.5 " (") slope:::3.942 

0 " (0) sI0pe=;2.827 -1 .. 
-1~.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 

loglO(6x) 

Figure 5.10: Error versus cell size using the PML ABC with abrupt non­
uniform mesh: (0) Maximum error, Ax = Axmax , (*) Average error, Ax = Axave 

5.2.4 Error Analysis with Imperfectly Absorbing Boundary Conditions 

In this case we apply the dispersive boundary condition to the waveguide problem, 

assuming that the two plane waves that propagate in the waveguide impinge on the boundary 

with normal incident (Mur's first order absorbing boundary [7]). This absorbing boundary 

condition is less than perfect, and the application of such an imperfect absorbing boundary 

condition gives a truncation error in the field calculation that is combined with the error due 

to the spatial discretization. The same mesh as in Section 4.2.3 is used for the present 

analysis along with the same TElO source. The maximum error versus maximum cell 

dimension, and the average error versus average cell dimension, are shown in Figure 5.11. 

With such an imperfect absorbing boundary condition, the total error is found to degrade to 

first order accuracy. Based on the results given in Section 5.2.3, we conclude that this 

degradation is exclusively due to the truncation error in the imperfectly absorbing boundary 

conditions. 
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Figure 5.11 Error versus cell size using first order ABC with gradual and 
abrupt non-uniform mesh: (0) Maximum error, Ax = Axmax , (*) Average 
error, Ax = Axave. 

5.3 Summary 

This chapter presents a detailed investigation of the non-uniform meshes in the 

FDTD method. In particular, we observed the errors generated by non-uniform meshes and 

concluded that they are of second-order with respect to the cell size. This numerical analysis 

was based on the assumption that "exact" boundary conditions were used to terminate the far 

end ofthe waveguide. The PML technique was adapted for use with the non-uniform FDTD 

method and it behaves like an "exact" boundary condition. We showed that the accuracy of 

the non-uniform FDTD method degrades to first order ifless than exact boundary conditions 
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are used. We have demonstrated the accuracy of the calculations based on non-unifonn 

meshes using wave propagation in waveguides [9]. 
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Chapter 6 

Microwave Device Analysis with FDTD Method 

6.0 Introduction 

Over the last decade, the analysis of microwave devices using electromagnetic 

simulators has become very popular [1-3]. The existence of numerous commercial 

electromagnetic simulators, such as the Agilent Momentum and ADS, Ansoft HFSS, IE3D, 

and H-Spice, shows that electromagnetic simulation tools are essential for microwave circuit 

design. Not all these simulators integrate the lumped element and device equations with the 

EM field directly. In these simulators, each device is a separate entity in the circuit. The 

individual devices are characterised by their scattering parameters, and then they are 

combined to form the scattering parameters of the entire circuit using the ABeD matrix 

approach. In this method of calculating the scattering parameters of the entire circuit, the 

interactions between individual devices are neglected. In addition, these simulators do not 

accurately represent the physical structure of the device. Thus, the above-mentioned 

commercial simulators are not suitable for analysing high frequency integrated circuits where 

the interactions between the devices and the surrounding physical structures playa vital role. 

Furthermore, in these simulators, there are theoretical limits in the accuracy when applied to 

three-dimensional structures, and these limits are specific to the techniques used in EM 

simulators such as the Method of Moments, and the Finite Element Method. 
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Even though the existing circuit simulators are going through refinements, the 

theoretical limitation and the inadequate level of integration in these simulators give the 

FDTD technique an added advantage. With the increase of CPU speed and the cost 

reduction of modem day computers, the FDTD technique is becoming increasingly attractive. 

This chapter contains the necessary basics for the application of the FDTD method to device 

simulations, and it presents some improvements to the technique. 

The circuit models of most microwave devices include only the basic components 

such as resistors, capacitors, inductors, diodes, voltage dependent sources, and current 

dependent sources. Therefore, we begin our discussion with the integration into the FDTD 

algorithm of some of these simple components. In addition, a unique method for 

implementing the device current is introduced; this handles simulation at higher frequencies 

with improved accuracy. 

6.1 Implementation of Device Current and Voltage 

The implementation of microwave devices in the FDTD algorithm requires accurate 

representation of the physical structure ofthe device. The simple application ofthe device 

equation at a single point in space as given in [1] is not sufficient. In microwave integrated 

circuits, some of the packaged devices will be large compared to the FDTD cell size. 

Therefore, one cannot accurately represent the physical structure of a packaged device with 

only a single cell. By increasing the cell size one could match the physical size of the device. 

However, this results in inaccurate EM analysis. The following example elaborates on this 

statement. 

Consider a typical case where we are interested in the simulation in the range of 10 

GHz on a substrate of relative dielectric constant 4.0. The wavelength in the substrate is 15 

mm. In order to get an accurate simulation, the maximum cell size should be less than one 

tenth ofthe wavelength, which is 1.5 ll1ll1. However, if we were to use a good tolerance (less 

than ± 5%) capacitor of higher values (> 1 /IF) in the circuit, then the size ofthe capacitor is 
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3.2 mm by 2.5 mm by 1.5 mm. Under this condition, we need at least four cells to model the 

capacitor and thus the model proposed in [1] is inadequate. In order to improve the 

simulation accuracy, the volume occupied by the device should reflect the exact material 

characteristics used in the device package. This further emphasises the need for more than 

one cell, and appropriate device equations. A simple model for the device could be a 

conductive cell for the contact points and a dielectric block for the package. Figure 6.1 

shows a typical representation of a device package. 

Side view 
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Figure 6.1: Typical device configuration in FDTD simulation 
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An important aspect in the implementation of device equations in the FDTD 

technique is the stability ofthe algorithm. Stability is easily achievable ifthe modifications 

to the fields in the standard FDTD algorithm are minimal, that is if the device equation 

modifies only one field component. This type of implementation is observed in [1], where 

the device equation is used for modifying only the x component of the E-field at the point in 

space where the device resides. In this implementation, the FDTD algorithm incorporates the 

device equation as an additional source, which does not change the rest of the structure. We 

carry out a similar implementation in our scheme, except that more than one source point is 

used. 

6.2 Formalism of Current and Voltage in the FDTD Method 

The formulation of active and passive devices in the FDTD method was initially 

reported in [4], while an extensive development is given in [1]. In this formulation, the 

modification to the standard FDTD algorithm is the inclusion of the conduction current in 

addition to the displacement current of the magnetic curl equation of Maxwell's equation. 

The conduction current is the device current and it becomes an excitation source in the 

computational domain ofthe electromagnetic field. Therefore, at these excitation points, the 

Maxwell's equations used in the FDTD algorithm need modification to include the device 

current I D' whose mathematical form is 

8E ( -)-
& at = 'lxH -J (6.1) 

where the device current I D will satisfy 

(6.2) 
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In the FDTD algorithm, due to the nature ofthe leapfrog scheme, the locations of the 

electric and magnetic field components are at different points in space and time. Since the 

device current is included in the FDTD algorithm via equation (6.1), in space, the device 

current has to be calculated at either one of the field points; for which the most convenient 

location is that of the electric field. This is because the calculation of the device current is 

carried out with the knowledge of the device voltage at specific instants of time. In the 

FDTD scheme, the current density is obtained at the same time-step as the magnetic field. 

This is expressed clearly in the discretized form of (6.1): 

E n+1 _ [En I1t D H"+±] I1t n+~ - + -v X - -J 2 
& & 

(6.3) 

The derivation is carried out for one component. They can be easily extended to any 

other two components. By fixing the orientation for the device, e.g., ifthe current through 

the device is along the x-direction, the current density is expressed as 

1Dx 
J x = l1y& 

The substitution of (6.4) into (6.3) results in 

11] Hn+z (i,j,k) - Hyn+Z (i,j,k -1) I1t n+~ 
y - I 2 

& && l1y Dx 

(6.4) 

(6.5) 

In all device equations, the current through the device is a function of the voltage 

across the device at the same time instant. However, in the field equation, the definition of 

the current is at time steps n+ 112, and therefore the voltage, which results from the electric 
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field, should be defined or calculated for time steps n+ 112. To complicate matters further, 

the electric field at time step n+ 112 is unknown, and one needs to calculate it from the 

electric field at time steps n and n+ 1. The expression ofthe electric field at n + 112 depends 

on the device current as a function of time, and this requires the solution to the individual 

device equation. 

In the FDTD algorithm at time step n+ 1, the value of electric field at time step nand 

the value of magnetic fields at time step n + 112 are known. The only unknown is the electric 

field at time step n+ 1. By setting X as: 

(6.6) 

equation (6.5) can be rewritten as 

(6.7) 

In implementing equation (6.7) in the FDTD algorithm, the only unknown isE/+1
. If 

I 

the device current 1~:2 is split into two in the time domain as 1;;1 and 1;x' with these 

currents coinciding to the electric field with E~1+J and E; , then (6.7) can be written as: 

E n+1 (i J' k) + !1t 1"+1 = X _ !J.t 1" 
x " [;/).z!J.y Dx [; /).z!J.y Dx 

(6.8) 

In (6.8), E/+ 1 depends on /;;1, which is a function of E;+lonly, and it in tum 

depends on the device equation. In some cases, this may lead to transcendental equations. 
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Figure 6.2 shows, the block diagram for the implementation steps of the FDTD 

algorithm. 

H-field calculation for time step n-1I2; 
form the E-field at time step n-l. 

E-field calculation for time step n; 
form the H-field at time step n-ll2. 

E-field calculation for step n+ 1 using device equation 
and H-field at time step n-l/2. Replace E-field at contact 

points for the calculation of H-field. 

Appl:yoo,sorl)ing~bo'~dmes I 

Perform FFT to obtain current 
distribution with time interval dt. 

Output time domain data 
with the defined time 

Figure 6.2: Block diagram for device equation in the FDTD algorithm. 
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6.2.1 Resistor 

The device equation for the resistor that has to be integrated with the field 

equation is 

1= V 
R 

(6.9) 

In order to incorporate this device equation into FDTD algorithm, the device current 

should be defined at time step (n+ 1). The expression for the current in discrete form is: 

I 

n+~ "" n+2 
I 2 = LU Ex 

Dx R 
(6.10) 

For a resistor, since there is no time dependence in the device equation, the following 

approximation is made. 

(6.11) 

By defining the current at a given time step, we could write the current in the following 

form. 

where the current at a given time step is given by 

~En+1 ~En 

In+l= 2R
x 

, In= 2R
x 

With equations (6.12) and (6.13), for a resistor equation (6.8) can be written as 

X Lit 
- s!1z Liy In 

~L1t 
1+----

2 s!1z Liy R 

The FDTD algorithm will incorporate equation (6.14). 

(6.12) 

(6.13) 

(6.14) 
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6.2.2 Capacitor 

For a capacitor, the device equation is as follows. 

I =C
dV 

C dt ' 
(6.15) 

The current at time step (n+ 112) can be written as: 

n+~ L1x 
I 2 =C-[ E"+l_ En] 

Dx /:t..t x x 
(6.16) 

In addition, the current at a given time step is defined as 

I = C L1x E n+1 I = _ C .L\x En 
n+1 /:t..t x , n /:t..t x 

(6.17) 

Using equations (6.16) and (6.17), for a capacitor equation (6.8) can be written as 

Ex"+l= 

X CL1x n 
+ & /:t..y & Ex 

1+ CL1x 
(6.18) 

& /:t..y & 

6.2.3 Inductor 

The device equation for an inductor is: 

(6.19) 

The current at time step (n+ 112) can be written in the following manner. 
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I 2 = -- _E I1 +1 +"I1E" n+2. lll!1t [ 1 ] 
Dx 2L 2"' L.o x 

and the current at a given time step is defined as 

r - lll!1t "" 11 DX-U L.oEx, 
n+l _ lll!1t n+1 

I Dx - - ----,;jL Ex, 

With equations (6.21) and for an inductor, equation (6.8) becomes: 

,,+1 
Ex 

x _ 1ll(!1t)2 I" n 

2LE !1y Az oE x 

= ------~--------
1- III (!1t) 

2 

4L E!1y Az 

6.2.4 Diode 

For a diode, the device equation is as follows: 

Id ~ T, [exp ( ~d )-1] 
where the current at time step (n+ 112) can be written as 

I 2 = I exp x x_I n+2. [ (qlll: E,,+l + qlll EnJ ] 
Dx 0 2kT 

By defining the current at a given time step as: 

1n+1 = r exp q x - I 
(

Ill E
I1

+
1
J 

Dx Dx 2kT 0 

and 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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1" = I exp q x ( AxE") 
Dx 0 2kT' (6.26) 

the expression for the electric filed at time n+ 1 can be written as 

E,,+I + !1t pHI = X 
x &!1y!1z Dx 

(6.27) 

Using Newton-Raphson, the solution to the above equation is 

!1t Ax E" E~ - X + [10 exp(q X) - 10] 
,,+1 _ 11 & !1y !1z kT 

Ex -Ex- A" A A" n 
1 qUA, d (qUA, Ex) 

+ 2kT ~LlY!1z Ioexp kT 

(6.28) 

In deriving this expression, the initial approximate value for the root was Ex ". 

6.2.1 Voltage/Current Sources 

The device equation for a voltage source Vs with series resistance R is as follows. 

V=IR-~ (6.29) 

In the FDTD notation (6.29) becomes: 

(6.30) 

where Vsn is the voltage source defined at time step n. The voltage source could be a 

dependent source, which can be obtained from the field value at the desired point in space: 
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(6.31) 

A similar expression can be obtained for a current source with shunt conductance G and 

current source I; , as in equation (6.32). 

(6.32) 

The construction of models for active devices such as a bipolar junction transistor and field 

effect transistors, can utilize the equations (6.31) and (6.32). 

6.2.4 Transistor 

A bipolar junction transistor can be modelled with two diodes and two dependent 

current sources. The section above includes the required derivation for the individual 

components. Similar detailed derivations of device equations for transistors are given in [4]. 

Figure 6.3: A simple model for transistor 
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In the above model, four cells represent a transistor. Similar models can be built for 

other active devices. 

6.3 Simulation of Microwave Devices 

Almost every practical problem with integrated circuits involves devices placed in 

two-dimensional space. In this section, we demonstrate a very simple form of such a circuit. 

The Figure 6.4 shows this circuit and in it, we have used coaxial ends to connect the 

microstrip lines, which connect the device under test. 

Device 

A 

Y 

J-x 
A 

Z 

Figure 6.4: A simple structure for device simulation 

The substrate used for the microstrip line has relative dielectric constant of 4.00, the 

substrate height is 1.8 mm, and the other dimensions are given in Figure 6.5. This figure 

shows the plane containing the device and the mesh used in the simulation. The devices for 

the simulation are capacitors of different values, an inductor, and a diode to demonstrate the 

non-linear effect in FDTD simulation. 
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20 30 40 50 
x-axis 

60 70 80 90 

Figure 6.5: The planar view of device and the mesh. 

20 30 40 50 
x-a.xis 

60 70 80 90 

Figure 6.6: The side view of device and the mesh. 
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It is shown in Figures 6.5 and 6.6 that the mesh used is non-uniform. The use of non­

uniform mesh is to observe the effects of non-uniform mesh in the overall simulation. In the 

simulation, we used capacitor values of 100 pF and 2 pF. Figures 6.7 to 6.10 show the 

simulation and measurement results. The simulation is with a board size of 100 mm by 50 

mm by 2 mm, which is enclosed in a volume of size of 100mm by 50mm by 30mm with 

mesh size of 85 by 30 by 20. The pulse width of the excitation source was 20ps and the 

pulse duration was 200ps. The sampling points for Sll and S12 are 10 cens from the 

respective ends of the coaxial line. In the simulation, the device is characterised using one 

cell, and the device equation was constructed using two edges of the cells on the device 

plane. The simulation was carried out with real-valued terms representing the field's 

components, thus any dielectric loss is ignored . 
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Figure 6.8: Insertion loss for the 100 pF capacitor. 
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Figure 6.10: Insertion loss for the 2pF capacitor. 

The simulation and measurements is repeated with a 10nH inductor. The Figures 

6.11 and 6.12 show the results. These results show a greater discrepancy than those with the 

capacitor. This is attributed to the use of a component oflower tolerance. This means that 

the component values specified by the manufacture have larger percentage error. Since these 

component values are used in the device equations, the overall error in the simulation is 

expected to be higher. 

A similar simulation was carried out with a diode. The results are shown in Figure 

6.13. In this simulation, a sinusoidal excitation source of frequency 1 GHz and amplitude 

10V is used. In addition, a simulation was carried out to show the effect ofnon-linearity of 

the diode, in that two sinusoidal sources of frequencies 1 GHz and 4GHz were used and both 

signals were of amplitude 10V. The result of this simulation is shown in Figure 6.14. In the 

plots, the dashed line is the spectral domain representation of the input signals, and the solid 

line is the sampled signal at the output terminal. 
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Figure 6.11: Return loss of 10nH inductor. 

Figure 6.12: Insertion loss of 10nH inductor. 
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Figure 6.13: Time domain response of a diode. 
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Figure 6.14: Spectral domain response ofa diode. 
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An simulations are carried out using the programs developed by the author. The 

main program is written in the language C++, and the interface is written in MATLAB®. 

The Figure 6.15 shows the shell of the interface program, and the Figures 6.16 and 6.17 

show the three-dimensional views of a typical structure. As an example, the current 

distribution in different planes for the case of a 2 pF capacitor on a microstrip 

transmission line are shown in Figures 6.18 through 6.25. Detailed instruction on the use 

ofthe simulation package can be found in the manual [5]. 

Figure 6.15: The interface program shell. 
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x-axis 

Figure 6.16: Three-dimensional view ofthe mesh withyzplane cut. 
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Figure 6.17: Three-dimensional view of the mesh with.xy plane cut. 
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Figure 6.18: Electric current distribution on xy plane for capacitor (2 pF). 
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Figure 6.19: Magnetic current distribution on -B-' plane for capacitor (2 pF). 
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Figure 6.20: Electric current distribution on xz plane for capacitor (2 pF). 
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Figure 6.21: Magnetic current distribution on xz plane for capacitor (2 pF). 
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Figure 6.22: Magnetic current distribution 
onyz plane (#10) for capacitor (2 pF). 

Figure 6.24: Electric current distribution 
onyz plane (#45) for capacitor (2 pF). 
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Figure 6.23: Electric current distribution 
on yz plane (#10) for capacitor (2 pF). 

Figure 6.25: Magnetic current distribution 
onyz plane (#45) for capacitor 
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6.4 Comparison between Single and Dual Source Excitation 

As discussed in Section 6.1, in our scheme of implementing the device equation in 

FDTD simulation, each contact point of the device (see Figure 6.1) contains an excitation 

source. With this new scheme, the stability of the FDTD algorithm is unchanged, and we 

demonstrate this using FDTD simulation with an example that contains a capacitor in a 

microstrip line. The simulation is with a capacitor of value 2 pF and the two cases of 

simulation are single and dual source excitation. The Figure 6.26 shows the top view ofthe 

two simulation cases; one is with non-uniform mesh and two excitation sources and the other 

is uniform mesh with single excitation source. For the dual source point simulation, a non­

uniform mesh with the ratio of size between the adjacent cell of as high as two was used, and 

the same physical dimension ofthe capacitor is maintained for both cases. These simulation 

results are compared to measurement data and are contained in Figures 6.27 and 6.28. 

Device [4cells] 

Device [1 cell] 

Figure 6.26: The planar view oftwo different cases for simulation with 2 pF capacitor. 
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Figure 6.27: Insertion loss for the different cases with 2 pF capacitor. 
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Figure 6.28: Return loss for the different cases with 2 pF capacitor. 

The simulation and measurement of return and insertion loss for these the two 

different conditions are shown in Figure 6.27 and 6.28. In these figures, the corresponding 

curves for different cases are labeled. For the simulation of dual source excitation we chose 

a worst case, the device was modeled with sixteen non-uniform cells. The simulation and 

measurement results are in good agreement even under this worst case, and this proves the 

validity of the new scheme. 
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6.S Summary 

In this chapter, the application ofthe FDTD technique to active and passive devices 

was presented and a few simple circuit simulations were carried out to demonstrate its 

effectiveness. Simulation results presented in this chapter show very close agreement with 

measurement results. The simulation results include examples of passive and active devices, 

and the simulations demonstrate the stability ofthe FDTD algorithm with device equations. 

In addition, this chapter includes the new type of implementation using double-source point 

excitation for devices, which facilitates accurate simulation of larger packaged devices in 

high-speed integrated circuits. In order to contain the scope of this thesis, many other 

possibilities and simulations have been left for future work in this area. 
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Chapter 7 

Conclusion 

In this thesis, we have demonstrated the effectiveness ofthe FDTD techniques when 

applied to microwave device analysis. This is achieved mainly by reducing the computer 

memory requirement and by improving the accuracy of the technique. The reduction in 

computer memory is achieved with techniques including I) the use of non-uniform FDTD 

algorithm, 2) the use line-of-sight equivalence principle and 3) by incorporating the feed 

structure into the computational domain. The accuracy is improved by using appropriate 

mesh scaling and by incorporating device equations into the FDTD algorithm with dual­

source excitation. All analyses were carried out on practical problems and they are supported 

with simulation and measurement results. The measurement results were in good agreement 

with simulation results, thus leading to the conclusion that all stipulated theories are accurate. 

In addition to the device analysis, new antennas were developed for the application in pes. 
As the final product of the thesis work a simulation tool was developed. 

The simulation tool includes all the enhancements to the FDTD technique developed 

in this thesis and it has a user-friendly interface developed on a commercially available 

platform. This simulation tool can be used in the analysis of microwave devices such as 

antennas, passive and active integrated circuits. The current version ofthe simulation tool is 

at the initial stage of the development and will be improved with later releases. 

The "Line-Of-Sight" approach to the equivalence principle introduced in this thesis 

has addressed a major shortfall in FDTD technique; the computational time requirement for 
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radiation pattern calculation, this is reduced to one sixth ofthe standard equivalence. With 

LoS approach one can carryout antenna pattern synthesis, that has eluded the FDTD 

simulation. This principle can also be applied to a variety of problems outside the domain of 

the FDTD technique. 

In this thesis, four new antennas that have applications in telecommunication industry 

were presented. The Coupled Patch Antenna was designed for a product developed at 

Research In Motion. The Printed Sleeve Antenna, the Window Antenna, Sandwich Antennas 

are for general applications in PCS and due to their unique physical characteristic and good 

performance they will become useful in the wireless industry. In the antenna analysis, the use 

of non-uniform FDTD and the incorporation ofthe feed structure, allowed the modelling of 

physical structure with a smaller number of cells, thus improving the efficiency. In addition, 

the use of new equivalence principle and PML absorbing boundary condition made the 

FDTD technique more effective. 

In order to examine the increased error due to non-uniform mesh in the FDTD 

technique a detailed error analysis was carried out in this thesis. It was shown that the non­

uniform FDTD algorithm exhibited global second-order accuracy that is similar to the 

uniform FDTD algorithm. Also, in the error analysis some special considerations needed in 

mesh generation for better accuracy were outlined and supported with simulation. 

In the application of FDTD technique to microwave devices, a new type of 

implementation of using two excitation source points was introduced and the validity ofthis 

technique was tested. All the basic electronic components in microwave device gave very 

stable results when used in the FDTD algorithm. The simulation results of devices used as 

examples in the thesis were in very good agreement with the measurement results thus 

further solidifying the usefulness of the FDTD technique in device analysis. 

In this thesis, a good balance between theoretical and experimental investigation into 

the application of the FDTD technique was presented. With this, the FDTD technique has 

been taken to a higher level in EM simulations. 




