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ABSTRACT

The first part of this thesis contains a theoretical formulation and solution for

unsteady nows (pulsatile and start-up 110ws' of non-:'iewtonian time-independent nuids

through rigid pipes. The approach was based on the use of the equation of motion for

axisymmetric unsleady f1o~ofnuids in cylindrical coordinates. In the case of pulsating now,

the unsteady behaviour of the pressure gradient was considered to be described by a periodic

, function of time, ofsinus.oidal form, added to a stationary pre~suregradient, while for start-up

f10w the f1uid was assumed to start its transient motion from rest due to instantaneous and
, '

sudden imposition of a stationary pressure gradient. The constitutive equation of generalized

Bingham nuids was used since it represents the majority of time-independent l1uids,

A grid was imposed on the now field in 'order to ohtain a system of equat'ions in. .

linite difference form. The use of finite difference techniques pfl}\'ided dptailed information

about the time deformation of the pulsating and start-up velocity proliles as well a;>y.aluable

information about energy consumption and f10wrates under different pulsating flow

conditions. The results are presented in the most general form so that they are widely

applicable to any case where the 'assumptions and the boundary conditions are all satisfied.

The main conclusion which can be drawn from the theoretical results is thaLthe hydraulic

power required to transport a !luid in pulsatin~ now is never less than that required for the

same nowrate under steady 110'w conditions for -all l1uids except thos,: which exhibit yield

stress. i.e .. Bingham fluids.

On the experimental .-.;idc, ,an in\'cstig~llion of pulsating flow of solid~liquid

mixtures is presented. Solid-liquid mixtures are divided into two types, homogeneous

:-;uspcnsions and psclld~homog:cneous/hctcro'gcneousslurries. The terms homogcneou~and

pscudohomogeneous arc used when sol ids concentration gradicht along pipe vertical axis is
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constant for homogeneous nows and almost constant for pseudohomogeneous nows; while the

term heterogeneous represents the cases where appreciable solids gradient along pipe vertical

axis exists.

The experiments were carried out for two types of solid-liquid mixtures. The first

was a benton~lay-water suspension with weight concentration ranges fr~m 2.9~o to

11.2%, while the .econd has coal/water slurry with weight concentrations between 5.34%-.

53.7%.

The main·aim of the experimental rig was to create a sinusoidal pressure gradient.

The experimental set-up allowed different ranges of different now parameters to be adopted,

these were:

I. Pulsing frequency ranging between 0·1.25 Hz.

2. Pulsing amplitude (axial deformation of rubber bellows) of34.6, 52.1 and 76.2 mm.

3. , Average !low velocity at 1.63.2.18, and 2.63 mlsec.
\

The effe~l1l(differentcombinations of these parameters on the ratio of the hydraulic power in

pulsating now\o that in steady now for the same throughput was s.tu~i.ed.
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