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ABSTRACT

°
The first part of this thesis contains a theoretical formulation and solution for
unsteady flows (pulsatile and start-up tlows) of non-Newtonian time-independent fluids
through rigid pipes. The approuch was based on the use of the equation of motion for
axisymmetric unsteady ﬂm:v ofﬂuids in cylindrical coordinates. In the case of pulsating flow,
the unsteady behaviour of the pressure gradient w-as considered t(; be described by a periodic
function of time, of sinusoidal form, added to d stationary pressure gradient, while for start-up
flow the fluid was assumed to start its transient motion from rest due to in‘stantaneous and
_ sudden imposition of a stationary pressure gradient. The constit.ut.ive equation of generalized
Bingham fluids was used since it represents the majority of time-independent {Tuids.

A grid was imposed on the flow field in 'prder to obtain a system‘uf' equations in
finite diﬂ"erence fornlL The use of finite difference techniques prc)\'{ded detailed information
about the ;ime deformation of the pulsating and start-up ;'elocity profiles as well as yvaluable
information about energy consumption and flowrates under different pulsz;ting Mow
conditions. The results are presented in the most general form so that th-ey'are ‘widely
applicable té any case where the assumptions and the boundary conditions are all satislied.
The main conclusion which can Be drawn from the theoretical results ié that.the hydraulic
p-ower required to transport a fluid in pulsating flow is never less than that reqhired_for.the

same flowrate under steady flow conditions for all fluids except those which exhibit yield

stress, Le., Bingham fluids. .

-
.

On the experimental side, an investigation of pulsating flow of solid-liquid
o - .

mixtures is presented. Solid-liquid mixtures are divided into two types, homogeneous

suspensions and pscudohomogeneous/heterogeneous slurries. The terms homogeneous and

pscudohomogeneous are used when solids concentration gradieht along pipe vertical axis is

iii ' &



constant for homogeneous flows and almost constant for pseudohomogeneous flows; while the
term heterogeneous represe;lts the cases where appreciable solids gradient along pipe vertical
axis exists. )

The experiments were carried out for two types of sqlid-lliquid mixtures. The first
was a bentoniteM\giay-water suspension with weight concentration ranges fr;m 2.97‘3’0 to
11.2%, while the second has coal/water slurry with weight concentrations between 5.34%-
53.7%.

The main-aim of the experimental rig was to create a sinusoidal pressure gradient.

The experimental set-up allowed different ranges of different flow parameters to be adopted,

these were: .
1. Pulsing frequency ranging between 0-1.25 Hz.
2. Pulsing amplitude (axial deformation of rubber beilows) of 34.6, 52.1 and 76.2 mm. -

3. *y . Average flow velocity at 1.63, 2.18, and 2,63 m/sec.
\

The effe;:“t‘of\different combinations of these parameters on the ratio of the hydraulie power in

pulsating flow'to that in steady flow for the same throughput was studied.
\ :
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CHAPTER 10/\
INTRODUCTIOf

An understanding of the characteristics of, pulsating flows inglosed conduits is of

considerable interest in many areas of science and engineering. Examiples that may be cited

are the uses of pulsed flow to increase tlife efficiency of heat exchangers; extraction columns |

and interphase mass transfer in chemical reactors, studies oh blood circulation in the“_human
cardiovascular system, and hydraulic and pneumatic-control systems.

One of the major-applications of pﬁlsating flows is in fluid and fluid-solid transport.
It has been recognizﬂe‘d‘ [1-7] that the application of controlled pulsations, that is,.of speoific
amplittide, frequency and symmetry have beneficial effects as far as hydraulic power savings
are concerned. Usually the frequencies considered in these applications are of the order of
1 Hz.

L

The majority of solid-liquid suspensions or slurries exhibit non-Newtonian
behaviour,i.e., the shear stress is not linearly related to the rate of strai‘n. In many cases non-
Ne“.rtonian behaviour is time-independght. In some cases thixotropy and viscoelasticity
cannot be ignored.

Workers; in t.his field have used the terms homogeneous and ﬁsgudohomogeneous
flow and heterogeneous flow to distinguish between different types of slurry behaviour. A
criterion is required to quantify, in some-r.nanner, the point of separatioﬁ between nearly
homogeneous or pseudohomogeneous flow and heterogeneous flow. In a strict sense, a
homogeneous flow is one which does not exhibit a measurable concenpltion gradient of solids

along the vertical pipe axis. However, in a practical sense, a better definition would be that it

refers to a flow in which the inertial effects of the suspended particles are relatively minor.



On the other hand, in heterogeneous flow the relative magnitude of the inertial forces
compared with the viscous and/or the turbulent forces are large and cannot be rieglet;ted.
From the preceeding consideration, it follows that between the pseucio-homogeneous flow
c;ondition and the heterogeneous flow condition there is a region in which both mechanisms
are of approximately equal order. In this intermediate region the system will be extremely
sensitive to slight changes in flow conditions. It is, however, possible to relate flow condition,
i.e., homogéneous, pseudohomogeneous, or heterogencous to the relationship between drag
coefficient and particle Reynolds number. A system whose particles are governed by Stokes
law is conveyed in pseudohomogeneous flow, while a system whose particles are governed by
Newton's law is marke;:lly heterogen‘gous.

Homogeneous non-Newtonian suspensions are classified according to their

response to the application of shear stress, The most common classification is:
,

D power law fluids;
1 ideal Bingham fluids: and
Inn generalized Bingham fluids.

Correlations have been developed to relate the friction factor to Reynolds number in a

N &
conventional form for the first two types of fluids [8,9]. In the present thesis, however, a

g;zneral correlation has been developed to apply for all three types of fluids (refer to Chapter 4
for the mafhematical derivation). |

As far as pulsating flow is concerned, it is believed that in homogeneous non-
Newtonian suspensions; superposition of an oscillating flow component on steady flow may
have beneficial effects (1, 2, 7, 10-12). Some studies [1, 2] have shown experiméntally that the
flowrate can be considerably increased, for the same mean pressure gradient, by applying

pulsations to the flow. Such an increase in the flowrate may be the result of a significant

reduction in the apparent viscosity of the fluid due to the instantaneous high shear stress



occurring in the accelerating phase of each pulse. This reduction in the apparent viscosity
occu::s only if the fluid being pumped is shear thinning, i.e., if the fluid exhibits pseudo-
plastic or Bingham-like behaviour. | ,

A theoretical attack on the pr-'/qblem of pulsating flow using the generalized
Bingham model is presented in éhapter 4. The approach is based nn the assumpt?on that the
velecity gradient is zero where the shear stress is less in magnitude than the vield stress. In
this approach, the pressure gradient is of sinusoid_al form. The results obtained ure presented
in Chapter 6 in general dimensionless form so that they may apply to anyl case as long as the
assumptions and the houndary conditions are justified. ‘ o .

[n the mathematical treatment of the problem, presented in Chapter 4, the case of
start-up flows is also included. The solution of start-up flow is important in an understanding
of the phenoﬁwnon of transient flow which oceurs due to sudden and in':stantaneorus imposition

of a pressure gradient.

-

On the other hand, the steady flow of'heterogeneous slurries is a complex problem.
Theoretical treatments are very limited and have many questionable assumptions. An-
. ‘

experimental approach seems to he much more efficient and moré practical since the

parameters affecting heterogeneous low are numerous and interdependent. Some of these

parametersare:

L. Solid particle size distribution:

2. Solid particle shape;

3. Solid specific gravity:

4. Solid velume or weight coneentration:
3. Average How velocity:

B, Physical properties of the carrier {luid:

Pipe size and geometry.



N4

\ .
One of the main objectives of the present study is to present more detailed

information about the behaviour of heterogeneous slurries under pulsating flow conditions.
The experimental part of the present investigation includeé both homogeneous and
heEerogenepus types Qf’ flows. 'Bent-onite cIay-w'at'er 'suspension is used to typify a
homogeneous non-Newtonian fluid. At high concentrations it behaves as generalized
Bingham fluid. Coal-water slurry is used as a representative for heterogeneous ﬂowr. Pulse
generating equipment was designed and manufactured for this particular investigation. The
design allowed the pulse frequency and ampiitude to be changed easily. One of the effects of
st:perposing a C}Jr&t}olled oscillating ﬁow component onto steady heterogeneous flow is to
enhance inﬁar;:l radial migration of solid particles from the pipe wall. Radial migration of
solid particles has been observed in steady lamin#r heterogeneous flows. It has also been
previously. verified experimentally [13] that the rate of inward radial migration may possibly
be increased by harmonically oscillating the flow. The result is the formation of a particle-
free layer adjacent to the pipe wall which acts as lubricating layer. Since the major part of
hydraulic power in horizontal pipeline trar;sport is consumed in overcoming ﬁ.'iction between
the flowing substance and the pipe wa.ll, the formation of such a particle-free layer could be of
great advantage. The raduction in local shear stress at the pipe wall due to the formation of a
particle-free layer depends on the pulsing frequency, ampli‘tude, and wave shape in

combination with all the other parameters in steady heterogeneous flows. In the present

study four of these parameters were inveétigated, these were:

1. Pulse amplitude;
2. Pulse frequency;
7 ~ Average flow velocity;

4, Solids weight concentration. -

~y



Chapter 5 includes detailed information about the experimental instrumentation
and procedure. Comparison of hydraulic power requirement in pulsating flow to that in

steady flow at the same throughput demonstrates the effect of the flow parameters.
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CHAPTER 2

LITERATURE REVIEW .

21 Introduction ?
Steud_v-s-tate incompressible viscous flow in rigid pipes is a classical S‘mblerﬁ. An
exact solution can be obtained from the Navier-Stokes equz;t'ions (Schlichti.ng'{l-i]). In such a
case, there is only one controlling parameter, i.e., the Reynolds number. Both the velocity
profile and the volumetric flowrate can be easily determined [rom the static pressure gradient
at the pipe wall. The limit of upplicability of the solutivn, or in other words, the trunsition

- .
from laminar to turbulent flow is well known experimentally in terms of the single

parameter, Re_vno.!ds number (Re = 2100}.

For the more general and also more realistic case of arbitrary, time- dependent,
viscous incompressible luid flow in rigid pipes, the situation is verg-f different. It is much
more difficult to relate instantaneous veloecity profiles and the volumetric l'Iow_rate. to
.'insf..antaneous ipressure gradient. [t {s also more difficult to specify the limits of applicability
of the Navier-Stokes equatic'mjs for such u general case, ‘ | ?

n practice, the nllajoffif'y of fluids are found to be non-Newtonian. Unlike
Newtonian fluids, nu‘r;-Né\vtonian fluids respond very differently to the application of a shear
stress in terms of shear rutc.- Moreover, in some cases, the shear stress/ghear rate relation

may be function of time -- as in thixotropic und/or rheopectic fluids. These fluids are excluded

from eonsideration in the present study; but this is not a serious limitation.

[t is perhaps important to state at this point that time-independent non-
Newtonian fluids can.be categorized as "homogeneous" and "heterogeneous”. This

categorization is merely used for convenience and it is not the only one in use. For
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! . é

suspensions, some authors [15] prefer to differentiate bet\.v'gen\ﬂu}di»fith the terms "settling"

and “non-settling”. So-called "settling" suspensions may become nearly homogeneous or so-

called "pseudo-homogeneous” under conditions of hi.gh velocity and high concentration and to

behave as heterogeneous fluids at low velocity~and, low concentration. While it must-be
- r
accepted that a truly homogeneous slurry does not exist, the fact that many suspensions
A "~ .
closely approach homogeneity makes the pseudo- homog?neouslheterogeneous classification

very convenient. e

The following different cases are considered:

1. steady flows of homogeneous non-I\-Iewtonian_ fluids;

2. unsteady (pulsatile or o5cillatory) flows of homo-ggﬁeous non-Newtonian fluids;
3. steady flows of heterdpgeneous slurries; : )

4, unsteady (pulsatiie or osciLl:tory) flows of hgterogeneous slurries.

In the present chapter, a review of preyious studies which have significance are

-

summarized with emphasis on (2) and (4) above. . .

P,

2.2 Steady Flow of Homogeneous Non-Newtonian Fluids

A homogeneous (luid (or suspension) is the one which does not exhibit a -

measurable concentration gradient of solids along the vertical axis of a pipe. In a more

practical sense, it is a slurry in which the inertia of the suspended particles (the telative
velocity between the suspended particles and the carrier fluid) is relatively minor and can be

neglected. . ¢

A typical pressure gradient/velocity response of a homogeneous fluid (suspension)
is giver; in Figure 2.1. In the low velocity range, the flow is laminar and the variation in the
pressure gradient as a function of the velocity is a flat curve. As the velocity increases, a point

4s reached where the flow changes from laminar to turbulent; this point is the viscous *
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transition velocity. In the higher velocity range, the flow is turbulent as indicated
L ‘
o by the steep linear curve. Prior to considering the laminar, transition and

turbulent flow regimes, it is necessary to review the rheological models used in the

literature to characterize the Muids concerned.

. There are a large number of equations that have been developed in the past to

de;ﬁibe the rheological behaviour of time-independent homogeneous non- Newtonian fluids

These may conveniently-be divided into three models {9, 16-21]: ' 9
. i;ower law flow, ‘
. ideal Bin;ham flow,
- . generalized Bingham ﬂow.. , ‘

»

The power law model is the most common for representing pseudoplastics and
dilatant fluids. Its form is generally -
t=Ky" (2.1}

Ideal Bingham fluids are usually represented by the idealized equation,

-

e " =, + 0,y when |t = ¢,

vand \4'9 . o (2.2)
y=0" when [t < ¢
The third model is the most general one. It can be represented by the relationship, -
4 l‘. : n o .
S, + Ky  when|d = ¢
and . \ ' {2.3)
'\' . ) y=0 when |t} < L,
These equations are known as constitutive equations. K and n are the consistency tactor and
the non-Newtonian index respectively. In equation(2.2}, t, is the yield stress of the fluid and
n,, is the fluid plastic viscosity'. Clussitl'l'cation'uftﬂt-lids into th; above is critical for certain

flow conditions. It has been shown [8,22,23 I.Lham the classification into which a fluid fails, and

v
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even the numerical values assigned its rheological properties, is dependent upon the

" experimental conditions under which the measurements are made. For example, under

]

certain narrow ranges of shear rate, a given fluid may clearly appear to behave as an ideal
Bingham flow; at slightly different rates of shear, the power 'law‘ model may closely be
followed, and at higher shear rates, the same material may appear almost Newtonian.

The censequence of the foregoing is that methods have been developed which are
widely applicable to thé simplification of the pressure gradient- {lowrate relationships.
Several a-ttempts at_generalization have‘ been reported in the literature {17,19,24,25]. These
are either limited because of their empirical nature or because they require the assu|;1ption of
equations relating the fluid shear rate to the shear stress which do not always correlate fluid
properties with adequate precision. Another limitation o‘f these methods is their inability to
predict the onset of turbulence accurately.

Other attempts of more significance have been reported [8,9,26,27]. VFor power law
fiuids, Metzner and Reed [8] introduced the concept and term.i’nology of the generalized
Reynolds number in order to eliminate the problem of defining an apparent viscosity for each
particular flow model. Their main objé-ctive was to peneralize the standard friction factor-
Reynolds number ﬁrelah‘ﬂor éll flow regimes so that it was applicable for all Newtonian
and all fluids exhil;itiné power law behaviour.\-ﬂ’ﬁeir appreach was derived from an
expression given by Mooney [28] for wall shear str_éss. Consequently, the rlileological

-properties needed should be related to the wall.s (e.g., using a cdpillary-tube viscometry).
Hanks [29] has examined the generalized Reynolds number concept and has drawn attention
to some definite limitations concerning the widespread use of the gencralized Reynolds

[

number as ,cl_eﬁnéd by Metzner and Reed [8].
~
In the case of flow of ideal Bingham plastics in pipes, exact solutions of the

~B-utr:\l{ingham equation are available due to McMillen [30] and, in‘particular, Hedstrém {9].

’
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Hedstrém assumed ;a functional form by which he proposed two dimensionless groups. Plastic
viscosityg n, and yieid stress t, were involved in both groups. These are known as pl.z:sticig
number and Hedstrém number. One conclusion that was reached for tHe turbulent flow region
was that from an experimental viewpoint, the conventional friction factor versus Reynolds
number curves of purely Newtonian fluids were also applicable to ideal Bingham plastics.

A survey o{"|r the available literature indicates that no correlation has been

developed for the flow of a generalized Bingham plastic. A mathematical derivation of such a

- u
correlation is included in the next chapter.

2.3 TUnsteadv (Pulsatile and Oscillatory) Flow of Newtonian and Non-Newtonian
An understanding of the characteristics of pulsating and oscillating flows in closed

*conduits has been and still is of interest to many workers in the field of fluid dynamics and
hemodynamies. It is‘ of considerable technological interest since unstea&y flow in tubes and

pipelines plays a major role in hydraulic and pneumatic control systems, hydrotransportation

systems, blood

rgcorporeal circulatory systems, and elsewhere.

231 ulsatile Flow of Newtonian Fluids

) A review é‘f the available literature inevitably starts with Womersiey's work [31].
In his analysis of pulsating ﬂow,};{@lied a technique which made possible the expression of
a complex waye shape in ternlm.s‘of a Fourier series. Tl';e Navier-Stok;as equations were sol\;ed
for one-dimensi incompressible 'viscous time-independent pipe flow 'by assuming a
sinusoidal pres‘sure gradient. This approacﬂ allowed the computation of the instantaneous

“flow rate for any'complex pulse on a term-by-term basis, the sum of which was the reStitant

flow wave. Each component (or element) of the summation could be considered as an

-
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[

individual flow problem having its own amplitude, frequency and phase, and being
characterized by its own Reynolds number and Stokes number. The final form was a type of
Bessel's equation where a non-dimensional cinaracteristic pe;rameter a was introduced. aisa .,
function of pipe radius, frequency and fluid kinematic viscosity (‘proportional to square root of

the St‘okes number). The final form for the instantaneous flowrate is:

_nat M, A sind — B cosd : N (2.4)
Q,= n o2 (A, sind — B cosd Jcosnwt+ (A cosp + B_sind_ )sin not]
n

where
A =M coé@), and
B, = Msing
are Fourier coefficients (¢ is the phase angle of pressure gradient pulse). Takulations of M'/a?
and ¢‘_, the phase angle complement between flow and pressure gradient, have been compiled
and presented by Womersley [31] for values of a from O‘Ito 100r Stokes number from 0 to 400.
In addition, he derived asymptotic expressions for M’ and ¢' for values of a greater than 10.

Summing the steady and pulsating flow components results in the total instantaneous flow

ratio
h -
Qs S % (25
Qs n=1 Qs
where -
_ Qs the total flowrate,
Q, is the steady (mean) flow component, N
Q,, is the alternating flow component, and . Y

n is the number of Fourier harmonics.

. . . T t
Uchida [32] found that the fundamental equation of motion for incompressible

viscous time-dependent pipe flow could be linearized by introducing the assumption of axially

parallel flow which maj' be aHowed for in the expression of principal characteristics of-
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L)

pulsating flows. By the property of linearity, elements of the periodic part of the solution

were given in an identical form as that of SexI's solution [33]. A non-dimensional expression

of velocity was obtained in the form:

u ua 1)
—_— — + — .
A A v
u 2
== 2(1 - —E) .
A a
U <= K 8B 8(1— A)
—_= z _ 2cc:smt+ P sin wt
VoS5 Lka) (ka)
. 2 Ka| 8B 8(1—A)
+ _ 2smmt.-f- 2 sin wt
n=1 -Ko (ka) (ka)
where .
_ ber ka berkr+ beika beikr

h A 2 2
. ber“ka + bei‘ka

beika berkr — berka bei kr
ber’ka+ bei*ka -

. o
k= V-
_ v

The above expression corresponds to a pressure gradient of the form:

2a dp 64 > Z K
—-—‘—E.=—-—[l+ Z ﬁcosmt+$‘ —sqsinmt
v2 9 Re -1 K it
’p - n= 0 . n= o
2

where

2aV
Re= — ,

(2.6}

2.7)

i e Bl b e s e =
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3

Ke,/k, and kg /x are ratios of amplitude of peri(;dic variatio.n of pressure gradients to th%;)of .
average one, a is the pipe radius.

Uchida {32] used the above expressions to calculate the instantaneous velocity
distribution, the relationship botwegn mass flow and necessary pressure gradient, and loss of
energy by dissipation caused by the components of perlodic motion and must be overcome by
excess work from the exterior. ¢

On the experimental side, Lindford and Ryan [34] among other workers, using a
reciprocating piston at;rangement, successfully matched Womersleys [31] theory with test
data at zero mean flowrate, i.e., purely sinusoidal oscillating flow, and at limited Stokes
number. Because the Navier-Stokes equations are non-linear, the s‘uperposition of a steady A
flow affects the tirﬁé-dependént solution and therefore Linford and Ryan [34] were not able to
verify experimentally Womers_ley‘s theory [31]. Bettner [35] investiganted sinusoidal
oscillating flow; his objective was to verify experimentally the theories of Uchida [32] and
Chang and Atabek [36].

Muto and Nakane [37] have studied the velocity distribution of oscillating and
pulsating flow through rigid circular tubesl. In their theoretical analysis, they assumed
axisymmetric ahd parallel flow of an incompressib‘]e. fluid. Using this assumption, the
.- Navier-Stokes equations for unsteady, viscous, incompressible flow were simpliﬁe;l. Non-slip
boundary conditions at the wall were introduced and the Laplace transform of the resulting
velocity distribution was obtained. The input velocity was assumed to be the sum of a steady
~ flow component and an oscillating flow component in the form:

. ) =V + uosi'nmt = V{1 + Bi;in wt) a
An equation which describes a velocity distribution was then derived afté‘r taking the inverse'”

-

Laplace transform. The result was as follows:
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' = rJ{a R~ J(a) av
ufr,t) 2 [ o' n o n ( n )”
= =] 2(1~ - - —
U v [ {(1-R9+ 2 Z unJl(ﬂn) exp 2 t

n=1

J (*PAR)- J (*7A) =1 a A’ J@R-J(a) a’w (2.9)
0 ) it n o n o n _n_ .
- | RSN exaf - 5 1)

J1G6%% A) at+ At difa)- Jdyfa)

where Jo 'J:} are Bessel functions of the first kind, i = \/-1, a_ are the successive positive.
roots of J {a) = 0, and R, A and B are defined

u
Q

, A= aVoelv B=
. Y

*

R=

[~

as non-dimensional quantities, respectively. The terms in the first and seco‘n.d brackets on the
right-hand side in equation (2.9) corresponci to the steady and oscillatory flow comlponents for
the solution of pulsating flow, respectively. The first and the sécond terms in each bracket
represent the steady-state and the transient-state solutions, réspgctively, which together
forma tota.l: solution. Muto and Nakane [37] then analyzed the problem exper;mentally in the
region of fully developed laminar flow. T.ransiti_ons of velocity distribution with respect to
time were measured by a flow-visualization method using aluminum powder suspended in the

fluid. Many particle tracks were photographed for differing periods of time. The velocity

distribution was then obtained by measuring the length of pathlines. A comparison between

the theory and their experimental data established the validity of the theory. Figure 22

shows some of the results obtained by Muto and Nakane {37] for different values of the

frequency parameter A and different values of velocity ampiitude B according to the

definitions mentioned above.
. Klimes, Korenar, and Toman (38] presented a brief summary of their theoretical
) A

analysis for the problem of pulsating flow of a viscous incompressible fluid which was based

on assumptions similar to those of Muté and Nakane [37]. The derived analytical expressic{ns

‘provided detailed information about the velocity profiles of pulsating flow. Measurements of
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velocity profiles of oscillatory and pulsating flows by ,Ijgeans of a Laser-Doppler Anemometer
were also given. Their measurements have indicated that very good agreement between
theor): and experiment was achieved onlty at low frequencies.

So far, the majority of studies have only dealt with unsteady laminar flow. There
are fewer reports dealing with unsteady turbulent flow and the transition from laminar to
turbulent flow.,

Binnie [39] observed the trz;nsition process by injecting a dye solution in a liquid
column oscillating harmonically, but no definite conclusions have been drawn because of the

limited range of the frequency parameter. Darling [40] found that the transition Reynolds
number dropped from 2500 in steady flow to 1500 in pulsating flow. Kastner and Shih [411'
measured the transition Reynolds number for the pulsating flow of air between two_parallel
flat plates and they have found a decrecase in the value of the critical Reynolds number from
that of steady tflow. Gilbrech and Combs [42,43] invcstigutec} laminar/turbulent transition in
pulsating flow. [n their arrangement, they used water us the working fluid and determined
the characteristics of turbulent bursts from photocell signal r-ecordings. The experi{l}/@_t_al
data indicated that critical values of the Reynolds number in pulsating flow through smooth
pipes increased to a maximum and then decreased as the amplitude of the pulsat'ions was
increased. The value of the dimensionless velocity amplitude at which the maximum eritical
Reynoids number occurred appeared to decrease with increasing values of the frequency.
This is indicated clearly in Figure 2.3, in which values of critical Reynolds number are plotted
against dimensionless velocity amplitude at different values of the frequency parameter.

v .

Sarpkaya (441 reported th.ul. for the same mean pressure gradient, the critical

Reynolds numbers for pulsating flow are higher than the critical Reynolds numbers for steady

Poiseuille flow. He showed that the eritical Reynolds number depended on both the Stokes
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»

number and on the flow velocity amplitude ratio. Th-e main conclusion of Sarpkaya’s work is
that laminar flow can be maintained at much higher mean flowrates if the flow is
harmonically oscillating than if the flow is steady. This conclusion can be seen in Figure 2.4.

In a recent reseurcﬁ ‘series by Ohmi and Iguchi [45-51], the flow patterns and
friction losses in turbulent-pulsating pipe flow and the transition to turbulence in pulsating
pipe flow were studied in detail. In this gxperimental work, the oscillating component of a
pulsatile flow was generated by means of a blower and a pis’ton-crank mechanism. . The
experimental arrangement allowed the control of pulsation frequency and velocity amplitude.
The velocity meﬁsurements were made by using a - hot wire anemometer probe radially
movable. The pressure drop measurements were made with -I;.i:vo semicondgctortype
transducers placed at two ends of the test section.

The effect of pulsation frequency on the turbulent flow pattern and on the
turbulent frictional losses were studied. The pulsating turbulent pipe flow was meusured at a
time-averaged value of Reynolds .number of about 5.7 x 10* and over wide ranges of both
frequency and velocity amplitude. The momentum balance equation was obtained by
integrating the cross-sectional mean equation of motion for the incompressible fluid in-a pipe

over a certain length which was given in the form:

p—+ = = — ‘ (2.10)
A finite Fourier expansion was applied Lo the experimental waveforms of the pressure
gradient, the cross-sectional rn.eun velocity, and the wall shear stress. [n order to evaluate the
individual terms in-the momentum balance equation, quantitatively, four characteristic
‘éummeters describing the flow pattern in a pulsating flow were introduced. The [low
patterns were classiﬁed_’into three t.ypes: quasi-steady, intermediate, and inertia-dominant

with respect to the dimensionless frequency level, According to Ohmi and [guchi [46], t}e

instantaneous friction factor and the quasi-steady friction factor were ulmost equal in the
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quasi-steady region. As the dimensionless f“requency increased, the instantaneous friction
factor became smaller than the qy&si-stead}r friction factor in the first part and larger in the
rest of the accelr:*rating phase, this was reversed over the decelerating phase. In addition, ;he
time-averaged friction factor, as a function of dimensionless frequency; time-averaged
Reynolds number; and velocity amplitude, was largervthan the steady f'l.o<w friction factor at
the same ’time-averaged mean cross-sectional velocity. The experimental values compared.
favourably with their estimated values.

In the fourth and fifth reports, Ohmi and fgu_chi [48,49] continued their study on
flow patterns and frictional losses as well as the transition to turbulence but for an oscillating
pipe flow. [norder to clarify the flow patterns and the frictional lossés in an t')scillating pipe

flow, velocity and pressure drop were measuréd as before. According to their observations,

they suggested a flow classification into [ive regtons with respect to Reynolds nun\i@ése

are:

)] laminar flow; ’

(Ih small amplitude pertfurbations s dppear in the early stage of accelerating phase at
th:z central portion of the pipe: |

(i small amplitude perturbations exist in the higher velocity phase;

(V) turbulent bursts occur in the de;:elerating phase; and )

(V) | turbulent bursts occur in the accelerating phase as \;ell as in the decelerating
phase. ‘ . S

L4

The limits between the second and third regions were not well defined. Also, the limit

between the fourth and the fifth region was not.clcai' either. On the other hand, the limits

between first two regions und between regions [l and [V were found to be in good agreement
. . . L -
with other workers. Furtherrrﬁe. when Reynolds number based on the amplitude of the

»

cross-sectional mean velocity is larger than the critEca‘l‘Re_vnolds number (indicating the limit

w/
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above which turbulent bursts occur, i.e. when the ﬂow is in region IV or V), turbulence
' ap‘pears‘. most of the. time except at the early stage of the accelerating phase and the last stage
\ of the decelerating phase. At m‘a pliase w‘}‘len turbulence appears, thé\nstantaneous velocxtyr\
distribution was found to follow the 1/7 power law.
The las:t two r:ports of research series by Ohmi and Iguchi [50,51) provide more
ifformation about the transition to tm‘lrbulence in a pulsating pipe flow and also irf some way
in an oscillating pipe flow. In these two reports, a solution for the transient laminar pulsatile
pipe flow was obtained by first considering the.equatlon of motion of an incompressible fluid
in a fully developed laminar unsteady pipe flow. A Laplace transformatlon was performed
with initial cond1t1ons of zero axial velocity and the boundary conditions of zero velocity at tkle
pipe wall and zero radial velogjty grad:ent at tge pipe Centreline. The cross-sectional mean
“velocity was expressed in thfe form:
. _ vity =0 t< 0
} i @11)
V(t) = i:}(A + Bsin wt) Lz 0 : "“‘\
w-hc;re }\ = Oor oscillating pipe flow and A = 1 fora pulsating pipe flow,/This equation was
substituted into the eq‘uation of motion ar-uf the ir.verse tra/rukr{tio:rof the resudfting

[}

expression yielded

. 2
- ) Bﬂ 2
u 2 bl Jd(_aiR) l" -y 9
. == 2(1- R)(A+ Bsinwt) + > = —-ll coswt
\ S a2l (e U, a%? :
i .
- e a, + - 2
——— v
\/ \
2 2
a w aw 2 .
- v 2 —a =
b= '(A P K “2} . (2.12)
+ — sinwt + - e
. ate? a2l -
- a. + 2 a. + — k




wwhe ith zero of the first kind of Bessel function of order 2. The wall shear stress was

given by . ‘ ﬁ

(%) |
t = —pl — B
A H or Je=gp ;

where (#u/dr)__  could be obtained from equation (2.12). The measurements were made over

a range of time:averaged Reynolds number from 0 up to about 2.4 x 10%. Some interesting

observations were reported. These included the observation, that in a pulsating flow which

did not only alter its diréction but also was accompanied by a relaminarization in one cycle,

the Muid began to ulszcelerate under the laminar state from rest at the same time over the

\whole cross-section of tRe pipe and suddenly bursts of turbulence occurred. Such a series of

events were observed in every cycle. This phenomenon was significant in purely oscillating

pipe flow with zero mean component as well as in pulsating flow in which reversal and
*

X

relaminarization of flow were taking place in one cycle. Accordingly, in such cases, the

velocity distribution in the ph-:;;;g where turbulence did not appear could be well represented

by the solution for trans;

int pulsatile laminar pipe flow, i.e. equation (2.12), while in the

phase where turbulence néqurred, it was well represented by the'1/7 power law. There was

also a case observed in which the axial velocity vanished at nearly the sume time aver a'x
- ‘ r3

e

whole pipe cross-section. This case was also noticed in the theoretical solution for Bingham

fluids given in the present work. This point will be discussed later in Chapter 6. Figures 2.5

Sy,

to 2.7 are examples of the resuits obtained by .Ohmi and Iguchi [61]. Oscillating flows

~gecompanied by the occurrence of turbulence bursts in the 'dgEelemting phase on the velocity

.

: ¢ . . . . . . .
wave forms-ure shown at three different dimensionless (requencies. The velocity waveforms,
o - . ‘

the cross-sectional mean velneity and the velocity profiles in each example are shown in (ad,

th) and (¢), respectively,lof cach figure.

, . ‘ ’
Hino, Suwamoto and Takasu [52], in their e drimtental investi ations, apreed i
aw (52| lrL_H/xpé a‘ g greed in

gepcrul, with the observations of Chmi and [guchi concerning thgtrunsition to turbulence in

1>
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an oscillatory pipe flow. Three types of turbulent flow have been detected d.uring their
investigations, these were: weakly turbulent flow, conditionally turbulent flow, and fully |
turbulent flow. Determination of the flow regime was dependent on frequency of oscillations
and veloci:ty amplitude. The critical velocity amplitude of the first transition was found to
decrease as the frequency increased. In the conditionally turbulent flow, turbulence was
ob;erved to be geperated suddenly over the decelerating phase while dramatic change in the
velocity profiles was taking place. In the accelerating phase, the flow was recovered to
laminar flow.
1 -

2.3.2 Pulsatile Flow of Non-Newtonian Fluids -

The available literature on pulsatile flow of non-Newtonian fluids is very limited.
In some papers [1,10,13], attention has been drawn to possible power saving for pipeline
pumping By superimposing an oscillatory component on the steady pressure gradient with a
carefully adjusted amplituded and frequenfy. .

Barnes et al. [1] presented a theoretical analysis of the problem of pulsating flow of
a non-Newtonian fluid. Rheological data obtained exper.i:neﬁtally from steady'pipe f'lo:r were
used directly in the calculations. Increases in the flowrate were predicted on the addition of
an oscillating flow component to the steady pressure gradient, above that of purely steady
flow at the same mean value of pressure gradient. In the same Papér, experimental data were
presented on the pulsating flow of non-Newtonian aqueous polyacrylamide solutions through

a rigid tube at low frequency.(0.14 Hz) and at low amplitude of oscillatory pressure éradient to

a stéady pressure‘gradient (0.2). Experimental data compared favourably with theoretical

predictions. Increases in the flowrate of about 20% for a 1.5% solution and about 8% for a 1%
ﬁ

solution were observed. These results«are indicated in Figure 2.8, However, it may be noted

at this point that this does not necessariiy imply that the power requirements are lowered.

]
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Edwards, Nellist and Wilkinson [10-12] presented a theoretical approach to the

pulsating flow of non-Newtonian fluids represented by the power law model, equation (2,1),
[n their methed, they put the equation of motion of unsteady pipe flow in finite difference
f'or‘m. In this formulation, they substituted for the viscous term by equation (2.1), and for the
pressure gradient by: (a) a step function of pressure gra-dient; (b) oscillating pressure gradient
of zero mean; and (¢) an (;scillating pressure gradient component added to a steady pressure
o
gradient. Thus, they have obtained solutions for three different cases. The transient velocity
profiles for these three cases were obtained for laminar pipe flows of power law non-
Newtonian fluids. Flowrates and power requirements were also predicted for pulsating pipe

flow of power law fluids. It was found for pseudoplastic fluids that the flowrate could be

1]
increased by the addition of an oscillatory pressure gradient to a steady pressure gradient,

S
while the converse was true for dilatant fluids. Also, it was found for all power law fluids that

the power requirements for the fluid to flow under a pulsating pressure gradient was always
equal to or higher than that required for the fluid to flow under a steady pressure gradient at
the same flowrate.

In later reports [53,54] studies were undertaken by Bousquet et al. on unsteady
laminar pipe flows of power law non-Newtonian fluids. In their studies they have used
aqueous solutions of high polymers which exhibited pseudoplastic rheological behaviout;. The
chosen parameters in their studies were of two types: (a) rheological characteristics of a fluid,
i.e; consistency factor K and non-Newtonian power index n, (b) parametery relative tc: the
sinusoidal variations of the pressure gradient. The velocity profiles wzgdetermined at
regular intervals during the period of a cycle f:or each group of values of the parameters.
Velocity proﬁles- were obtained both theoreticuliy und- experimental]yv. The first experimental

method was based on the use of the laser anemometry. This method is flexible and precise but

it can only be employed when the fluid being considered is transparent or translucent. The

~
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second method used was a photographic method which enabled fluid particles to be observed
by photographing hydrogen bubbles at definite instants within the period of a cycle. One of
the main conclusions was that the velocities at different poin:s of the same cross-section of a
pipe and at different instants were very sensitive to al';y varialtions of _the cc;nsistency factor K,
while they did not appear to be affected very much by the variations of the non-Newtonian
index n. However, n and K are interdependent. Also, it was observed that variations of the
frequency have ahqualitatively similar inﬂ;ence_ due te increases in the consistency of the
fluid. Some of the results obtained by Bellet and Bousqu;zt. [53,54] are shown in Figures 2.9
and 2.10. |

Other investigations concerned with viscoelastic materials have been reported [55-
57). In these studies, purely oscillating flows in rigid pipes were analyzed and obser.vﬁtions
were reported, the chief of which was that the maximum velocity amplitude did not
necessarily occur at the pipe centreline as in the steady flow case. Also, as the frequengy\—/'
increased, the point of the maximum velocity amplitude \:vas found to move away from the
pipe centre toward the pipe walls. These observations are similar to those of purely

- ¥
Newtonian fluids. A more comprehensive study by Walters and Townsend [2] for viscoelastic
fluids has shown that pulsations could increase or decfease the mean flowrate; such a change
depended on the type of fluid as well as the flow c.onditions. At a particular frequency and
¥

-
pressure gradient a resonance effect could take place and cause a significant increase in the

flowrate. Figure 2.11 shows some ohthese results.

2.4 Steady Flow of Heterogeneous Slurries
- ‘ \

.

A heterogeneous slurry is the one which exhibits an appreciable gradient of solids

concentration across the vertical diameter of a pipe. When dealing with a slurry, one must

e e mem . e s
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recognize that, unlike homogeneous slurries, the orientation of the pipe a;is is important due
to the influence of gravity force on the solid particlcs..

A typical pressure gradient-‘velocity response for a horizontal pipe flow of a
heterogeneous slurry is shown in Figure 2.12. There are certain differences from the typical
homeogeneous response given in Figura 2,14 At higher velocities,‘i.c..p.oint A., the pfes.sure
gradient-velocity response tends asymptotically toward a position parallel to the carrier fluid,
which means_that as the velocity increases, the solids concentration gradient across the
vertical pipe diameter becomes less pronounced and the system tends toward homogenei‘ty.
On the other hand, as the velocity is decreased, i.e. bt-._:low point_A, the gradient.of solids
concehtration becomes mo;'e and more pronm‘mced until, at a point generally at point B, a
layer of sliding or stationary sqlid particles is reached.” For syst;ems containing uniformly
sized -solid particles, p(_)int. B coincid.es..with the minimum in the pressure gradient-velocity

curve, If the velocity is further reduced beyond point B, a bed of solids begins to build up in

the pipe and consequently, the flow area is reduced which causes further increases in [riction

'
-

losses. In fact, this region of flow is unstable and the exact location of the .Ap—V curve may be

time-dependent. Point B is known as the limit deppsil.-ve[ocity; at this pbint,_ the tendency of

the particle to settle under gravitational forces just’exceeds the turbulence forces helping to

maintain the particle suspension.

-
[

In practice, opei—aﬁng‘velocities lower than the depositevelocity are impractical. In

. . 7
addition to the obvious, risk of pipeline blockage, there is also a possibility of the pipeline

-

acting as. a classifier, i.e. larger pathicles being deposited at the bottom of the pipe with
'\ .

smaller particles remdining in suspension. For a slurry pipeline, the intent is always to
. . . . § . aee . .
trahsport solids in suspension. Thus, a knowledge of deposit velocities is very important for

heterogeneous slurry pipelines. gSince this aspect is not specifically relevant to the present
— '
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study, a detailed review will not be included in the thesis but ihe' reader may refer to (58-65] .
for more details. X : , ' - |
The (Ith‘&r aspect which seems' ;o lqe'of cdnsider\able interest in the present study is
the radial migratioh of solid particles in pipc.; flow. Fo.r some time, it had been thought that
when a mixture of solid pal"t.icle's and a {luid are caused to flow .through .a- pipe, the particles
would tend to accumulate in a region near the axis of the pi_pe. Youn’g [66) observed that in
some cases, in addition to the axial accﬁmulation, the particles téndéd t¢ congregate at a
position néar the wall of the pipe under certain c:ircuih;stances. Segré and Silberberg [67)
reported that neutrally buoyant particlég would migrate away from .bOth_ the axis and the wall
at low Reynolas numbers (aﬁproximate}y up to 760), and would aécuml:xlate at a position mid-
way between the axis and the wall of !‘.l'\ébipe. ._{\l_t.hough particl_e migration has béenl observed
with spheres, r(-)ds, discs, eilipsoids and particles of éther shapes [68], most of the ava.ﬂable.

+
research on migration has been concernéd only with spherical particles.

Young [66], Oliver [69], Jeffrey [70], and several others have observed that when

" the solid particles moved downstream [aster than the ﬂuid,‘ they tended to migrate towards

the pipe wall. On the other hand, when particles move downstream slower than the fluid,
they tend to migrate towards the pipe axis. Oliver [69] also found that neutrally buoyant

particles, which were eccentrically buoyant so that they could not rotate, tended to reach an

L5

equilibrium position much closer to the tube axis. Theodor {71] found that no measurable

difference in the lift force could be detected when the particles were constrained from rotation.

- -,

These two observations are contradictory to each other, but it must be understood that the

.

experimental conditions in the two cases were significantly different. Oliver's data have

shown that the equilibrium positions attained by neutrally buoyant spherical particles were

" dependent on the ratio-between particle and pipe diameters. Smaller particles were found.
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closer to the pipe wall when particle rotation was not inhibited, while they were found closer
to..'the pipé axis when they were constrained.

| Other studies [72,73) have also dealt with radial migration of solid particles in pipe
flows, and data have been presented indicating that, when a solid particle tends to lead the
fluid, it migrates toward the pipe wall; and when it tends to lag the f'luid/'rt/mf'g;r;tes toward
the pipé centreline. When a particle is neutrally buoyant, it reaches an equilibrium position
between pipe wall and axis. ‘These results agree with the previously mentioned observations

of Young [66], Oliver [69}, and Jeffrey [70].

The radial migration of solid particles is basically related to three causes:

./

(a) interaction between particles,
(b) entrance effect, and .
{c} lift force acting on the particles. , /

Experimer;ts (69,70,74,75] have shown t.at single particles also experienced radial
migration ;.vhich means that particle interaction cannot be the reason or at least the solé
reason for migration.. Furthermore, the work conducted by Segré and Silberberg [67] shawed
;'adial migration of solid partit;les far downstream of the entrance region. Hence, entrance
effect is not the main cause. This leaves only the lift force as the major cause of radial
migration -- this was first proposed bysYoung [66]. Saffman [76] has studied the motion of a
sph;ere relative to an unbo d shear ﬁow and he oi)tained an expression relating the 1ift

~ force to the relative velocity between the sold particle and the fluid.

2.5 Pulsatile Flow of Heterogeneous Slurries

%

.The main idea of pulsatile pipe flow of heterogeneous slurries is to make

advantageous use of the phenomenon of radial migration of $olid particles. It has obviously

. ] )
been noted in Section 2.4 that when a suspension of solid particles flows in steady flow



-

through a pipe, an appreciable migration of particles away from the wall toward the pip:a axis
occurs. In pulsating flow, similar effects were observed and the rates of radial migration were
beliebed to be increased. Shizgal and Goldsmith [13] conducted some experiments on viscous

" e
suspensions containing between 5% to 20%.by volume of polystyrene spheres in water, and a

~ particle to tube diameter ratio of .035. After five minutes of oscillations af certain frequency,

they have found that a partigle-free layer ranging from .25 to .5 mm was developed. When the -
'( .

steady flow was recommenced with the 20% contentration, a flow situation was established in'

which a central core of slurry moved aé aplugona lub.ricatin‘g l.a.yer of solid-free liquid. This

is shown in Figure 2.13. This flow situation may possibly _res;élt_iri'redug:ticn in hydrauli'c

po_wer.consunllption. In that p;per {13], the velocity of the plug was expressed in the form
u=u +u gl +o) - (2.13)

where u was the steady flow velocity component of the plug, u_ was the oscillating component

- of the'velocity, and @ was the angular frequency. The hydraulic power consumption per unit

length was evaluated as the sum of a steady flow component and an oscillating component by
averaging over one cycle the product of the velocity of the plug and the shear force acting on
the plug. The following expression was obtained with-the assumpption that the thickness of

the lubricating layer & is small with respect to the pipe radius,
2na 1
204 5 1

5 s 2
The first term of the above expression is thé steady flow component, while the second term is

J = uz) . (2.14)

p

n -

the oscillating compohent which produces no net flow but it may increase the lubricating
layer thickness 8. Si}oe-ehe power is inversely proportional to §, there may be situations at
which an input of oscillatory power can increase 8 sufficiently enough to cause a net reduction
in the total power per unit length at a given flowrate. '
Other pagers are avai!able {3-51 ghowing the possibility for large hydraulic energy

savings in slurry pipelines by superimposing a low frequency periodic pulse on a steady flow. .

-—-—\ - ,
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\—W third report of the above three, Round has presented experimental studies using

Iaborzhx{y-scale pipelines invelving flow systems using periodic total interruptign of the flow

andAn air pulsating device. The experiments ivere carried out Wsing sand-water slurries with

concentrations up to 209 by velume. It has been concluded through these experiments that

the ratio of power requirements in pulsing flow to that in steady flow for a given flowrate was
function of frequency and !.he solids concentration in the .liquid. Points of nlgximum amount
%energ?r saviﬁg‘lwere found at certain frequencies and at certain concentrations for the two
types of experimental arrangements 1.;scd. Figure 2.14 sho oints of maximum energy
saving. Although the work presented"b_v Round [5] hds indicated clearly quantitative
reductions in the [\'riction losses due ‘to pulsating pipe flow, the study did not involve the effect
ofampiit#:)\foscilluliuns, and also the ranges of the parameters were limited.

Other experimental data ave also available [6] for sand-water slurries in pul:ialing
pipe flow: these ulso-indicat;?igniﬁcunt reductions of power compared to steady flow. The

highest reductions in hydraulicpower were observed at low frequencies and low amplitudes

and at certain concentrations depending on the mean particle size. .

J/ | L
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CHAPTER 3
‘ SCOPE OF [NVES’I‘IGATION
The literature féview presented in Chapter 2 has indicated that flowrates of time-
irndependt;.ntlhomogeneous fluids can be increased by superimposing an oscillating flow
comopnent on the .st.eady flow.” But no studies have yet indicated whether hydraul.ic power

-

can be reduced accordingly. ' R - : Coe

Furthermore, pulsating flow of blood ‘ is a problem of fundamental interest in
hemodynan'lics. Studies in this field are nume'r(.)us, but tfley are frequently verv fragmentary.
Almost none of the available studies has treated blopd as a non- Newtonian .f'luid despite ‘th(,;
_ fact that blood has a small yield stress [31,32,53,77-85].

[n Chapter 2, it was also mentioned that. in heterngeneous pipe flows. migration of
solid particlefs?in the radial direction was observed and differén't reasons advanced to explain
it. This p.henomenc)n was thought to be advantageous in pulsating flows. The few papers

available have indicated reductions in h;rdraulic power requirements due to pulsating tlows,

but t}:ese are ltmited in their ranges and no definite conclusion may be drawn.

These facts have prompted the present research, \vhich".:;for convenience, may be
divided into two parts:

1) The first part is a theoretical treatment of the proble;ll of time-dependent flows in
pipes. The upproach here is based on the use of the constitutive equation of u
general non-Newtonian matecial. [n this part, two types of time-dependent pipe
flows are solved, these are (a) pulsating flow, and th) start-up flow.

The solutions given in this theoretical part are in a very general form, so

that they are widely applicable. Solutions at different frequencies and at different

amplitudes in dimensionless forms are given und can easily be obtained by using

1
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suspension was used as an example for homogeneous flow, while coal-water slurry was use

for heterogeneous flow. A pulsing device was constructed for this particulag investigation and

&

% ..

the computer program listed in Appen&fix D. Predictions of the flowrates, pdwer

-

requirements, and phase angles are also included in dimensionless forms. Other
important conclusions, such as the effects of changes in pipe diameter, flow velocity
)

and fTuid properties, can be drawn from the general results,

In the second part, the possibility of reducing the hydraulic power requirements is

examined. [t is understood, however, that .t.he mechanisms of pulsating flow in

homogeneous and in heterogeneous flows are not alike. In homogeneous non-

Newtonian fluids, changes in the rheological properties are expected due to the

.ti.me-dependent changes%n the pressure gradient and, consequently, in the

‘flowrate. This may result in increases or decreases in the power requirements. On

-

the other-hand, the main idea in the case of pulsed heterogeneous fluids is to

-enhance the radial migration of solid particles from the pipe walltowards the pipe

centre, so that a particle-free layer is formed. This particle-free layer works as a

lubricating layer of fluid and may result in considerable reduction in friction

pressure losses.
Two typé!o! f slurries were examined experimentally. Bentonite clay-water

attached to an existing pipeline. Details of the experimental model and procedure are

contained in Chapter 5. Wide ranges of solid concentration in water, average flow velocity,

pulsating frequency, and pulsating amplitude were covered in the experiments. The results

are arranged in a condensed form and presented with a detailed discussion in Chapter 7.




CHAPTER 4 =
ATHEORETICAL TREATMENT OF UNSTEADY LAMINAR FLOWS

o IN PIPES USING A GENERALIZED BINGHAM MODEL

4.1 [ntrodu;tion ) . )
Two aspects of unsteady, laminar motion of non-Newtonian fluids in pipes are

concerned in this chapter. Thes;:' are:

g) Pulsatile flow in which a periodic pressure gradient having a non-zero mean is
applied to the fluid and there is a net flow of fluid through the pipe.

b) Startup flow in a pipe following sudden imposition of an axial pressﬁre gradient to

the fuid which starts its transient motion frofn rest.

The second of the above, that is start-up ﬂow; is of considerahle industri[l

impoftance, particularly for large diameter pipelines and in the analysis of the performance

-

) : ¢ s
of hydr:{.llic systems. On the other hand, the first point is of interest to researchers in

-
[ ]

hydrotransport, control systé‘ms, hemodynamics, mining industries, and elsewhere.
A survey of the avavilab.l.e literature has indicated that much of the work done was
with p_ulsatile flow and has been done by investigators .intcrested in physiology. For -
simplicity, blood was treated in all of the knO\yn studies as a Newtonian fluid. Analytical
solutions were obtainable due to the simple linear relationship between shear stress and
shear rate {Newton's law of viscosi;_\.'l.
tfomogeneous time-independent n:)n-Ne\vtonian Muids may conveniently be
divided into three types. These are:
a) - power law tluids,

b) ideal Bingham fluids,

T e e Lo e
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¢) generalized Bingham fluids.

The last one of these thrde is a model which has good gentral applicability. .

The flow curvd’of a general Binghaﬁ: material, as shown in Figure 4.1, starts at

some point on the shear sfress axis corresponding to the yield stress and is not a straight line.

rep}esented\by the relationship given by e.quation‘(2.3).
. -

This flow curve cam

Unlike Newtonian fluids, analytical solution of uﬁsteady flow using the

generalized Bingham model is difficult if not impossible. The alternative is the use of
numerical techniques, in this case a finite difference technique. But, in order to solve the
problem of a fluid undergoing time-dependent flow, it is necessary first to solve the steady
flow problem oflsuch a fluid.

Thus the main thrust in the present Chapter is, first, to de.velop a general form of

the relationship (etween the flowrate and the pressure gradient as well as to determine the

velocity distribution for a steady pipe flow in a laminar region. Such a correlation will be

a"[’Jplicable to all commonly met time-independent homogeneous fluids. Secondly, a
y ' 1

mathematical treatment and a method of solution of the pulsatile flow and start-up flow

" probiems are to be presented in a general form in terms of generalized flow parameters such
.as Reynolds number, plasticity number, dimensionless time, dimensionless frequency,

dimensionless amplitude, and fTnally the non-Newtonian index. The mathematical model of

the pulsatile flow will provide valuable information about the instantaneous velocity profiles,

flowrate, power requirements all i;l convenient dimensionless forms.

Ve

4.2 Derivation of Steadv Flow Correlation

In equation (2.3), when the shear stress exceeds the value of yield stress, i.e. |u‘4 =

-

L, - -

— "1
t, = ¢, + Ky

ot
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) .
where toﬁ( and n are tl}é rhgologiéll properties of the fluid. In the above equation, the shear

\_\rip:} can be expressed in the form:

L
T—tn _
Y= [ = filt) (4.2)
K. S
- Foragiven pipe of a length L and diameter d, the shear stress At ; pipe wall is given by:
apd”
T = — (4.3)
v 4L
_QV{lere AP is the'axial pressure drop over length L. The volumetric flowrate is given by: ‘
| 8 a2 . -
Q= 2n J u rdr (4.4)
o .

where u_is the fluid axial velocity at radius r. The. ratio between the shear stress t. and the

shear stress at the pipe wall T, isthe same as the radius ratio [16], i.e.

- 2 . (4.5) |
X d 7 -
S T w : .
Substituting for r = {d/2)7 /v, into equation (4.4), and integrating g}ield‘s‘.
| 8Q 1 [° | o
—%= TJ ¥ nff(tr)d LA (4.6)
nd T 0 : ( * .
) . w . !
This is a well-known expression for the pipe volumetric flowrate.In this expression f{t ) is a
) L ‘\\_/ l ‘
function 6he rheglogical characteristics of the fluid. A)
Proceeding’with @ as it has been defined in equation (4.2% equation (4.6) becomes
~- ' . . " : »
L ) jull .
ot Tt ‘ ‘
SR N e
| o and® 8l N -
This equation can be integrated and the result can be arranged in the form: \
. 3
T 2 T - T L L
o (45 0 4] 4] b -
RN 6 [ R YO Y O
ik T ( w u) w W # +
nd® K T+ n _ 1+ 2n 1+ 3n

L.

Equation (4.8) hoNls for general time-independent non-Newtonian materials with the absence

of thixotropy and rheopexy. Substitution of n =1 and K = Ny where 1, is the plastic
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(4.9)

-

While for Newtonian fluids n=1, K= p and t, = 0, 'equat.ion (4.8) becomes the Hagen-

Poiseui.lle' equatien c
- 4 . '
. nd"AP (4.10)

T 128Lp

)

B _\/ [t can be seen.from equation (4.8) that the variables involved are the'yielfi stress v,

pressure drop AP, fluid properties p, K and n, pipe geometry d and L, and the average velocity

V. A dimensional analysis of these variables yields:
— AP g™ ( t,d" )
—= % 1 B
' ' LKV" Kv® ~
It may be noticed in the above form that; the dimensionless quantity on the right hand side of

(4.71}

equation (4.11), t_d"/K V" is verysimilar to the plasticity number given by Hedsrom (9],
o , \

[ 4
(Etﬁnion (4.8) can be manipulated into a more practical form according to equation
-~ . .

{4.11), t}xts_ )
' 4" okl 2 “dn Lkl e
T APd 4" APd
/ ) +4C, / )+ 1
Kusn-lYn LK'Bn—lvﬂ LK'B!’I—an

K'gh-lyn

/

1

[ ( v, d" apg™t! nﬂ(" APd™! 4.12)"
o K'B“"’V"I-LK‘B"‘IV") _ m)‘”'
where - -

n’

Q= TTorieom ”

and,
rJ



46

: I+ 3n\p
K'=K ),
4n

k] ,
Equation (4.12) is a function of three different dimensionless quantities,

n 1
r,d _apd™!t o
[ S !
Krsn—lvn . LKJSD—I vn
and n. This equation holds for any positive value of n. Figure 4.3 shows a logarithmic plot for
the solution of equation (4.12) f'or_ 0 < ns= 2. [t was found that a computer plot could not

differentiate between valuesof n = 0.5,1.0, 1.5 and 2.0. In fact the curve shown in Figure 4.3

" was drawn for the above four values of n. Hence, equation (4.11) may be rewritten as:

>

APg™! ( t,d" ) @13
" LKI n—l Vn - Kpsn— 1 vn

The lmp;)rtance of this equation is that it represents a universal relahonshlp between the
frictional pressurg drop along a defined length of a pipe and the flowrate through the pipe for
all fluids represented by equations (2.1) (2.2) and(2.3), Equation {4.13) glso assumes
rheologlcal properties which are constant over a very wide range of shear stress, given by

—_
equation (4 1). In other words, experimental data given by rotational viscometry can be used

without reservation as long as the absence of thixotropy and rheopexy is justified.

In order to verify and confirm the validity of the above relation in equation (4.13),
data from the experirﬁcntal work of Davidson [86] have been used here. These experiméntal
data were obtained for bentonite clay suspensions at different ::onceﬁtrations by using a
capillary tube technique. Figure 4.4 ,shows good agreeme;mt between the available

experimental data and equation (4.13) over quite a wide range of rheological properties.

The friction factor in pipe flow is usually defined as
APd
LpV%2 - .

Reynolds number in a generalized form'was introduced for the first time by Metzner and Reed

. f=

[B]and ;~'ilI be used here in the form

=
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<
4

V?— ngn p

Re'=s ————

Ka 8!‘]— 1
Therefore equation (4.13) can be rewritten in the form
~ .
virgrp o dh | (4.14)

f= q) K: 8!‘)— 1 ' Kr 8!1—1 vn

Here, the dimensionless quantity

- : |
+ t.d . . |
o !

K.- 8['1— 1 vﬂ. ‘: . ' !

. may be called a generalized plasticity number.

In the corresponding case of an ideal Bingham plastic, the dimenéioﬁless group -

L:nown as Hedstrom number {9] is defined as: )
% v d?p ;ﬁp SN o (4:15)
R L
ie. ) '
™~ . ‘ H, = Re-PE"

. Therefore, applying the same type of relationship for the present case, a generalized form of

Hedstrémnumber can be obtained as:

2n ¢,2-2n )
. L RSV -"(4.16) -
. _ He':Re'-P8=-—1— _ . |
‘ (K’ 87"
It may be noted that whenn = 1, P€’ — P{ and He' — He. It may be imLortant to explain at =

]

this point that another form of Hedstrém'n‘umber can be obtained which does not include the

velocity inthe group, and consequently another group for the plasticity number will also be

4




. .
obtained. But the disadvantage in this ¢ase is that equatjon (4.13) i3 no longer valid, i.e., the

solution is not unique and there is a solution for each particular value of n. .o ¥

Using the above definitions of generalized Hedstrém number and ge

plasticity number, equation (4.14) may be written in the for

(4.17)

_ f= ¢’ (Re', P¢")

and? | [/_\_/"_\

/

(49)/ /T
1 I

[t has been shown in Figure 4.2 that y of equation (4.11) can be represented by a single curve.

According to equations (4.17) and (4.18) both ¢’ and ¢" are represented by a family of curves, \

f=¢"(Re', He")

and

This. is the final form of the universal correlation. It correlates the frictional pressure
gradient with the flowrate in pipelines for steady laminar flow of all commonly met time-

indepéndent non-Newtonian fluids defined above and, of course, Newtonian fluids,

[

“

T 4.3  Yelocity Distribution in Steady Laminar Flow
he equation of mo)l} '. steady fully developed laminar pipe flow {s
: Z = (4.20)
2 ¢ . .
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equation {4.1) for general npnMn. Hence,
r .

AP

r 4r ' :
_———= +K(’ ;
il :
vt ‘

- - . o o -
- Two dimensionless quantities may be introduced at th!

o m——

' 7
’,\'j . U= urN and R = 2r/d

apd_ @V (_ d_(_J_)“ —~ (4.22)
L 4 o g \U dR '
| ‘ AN
or alternately, ™
apd da" o xd +( g)" P (4.23)
L 4 gev ~ Kev" dR '

This is a dimensionless form of the equation of motion. Making use of the Ariction factor,

- genéralizqd Reynolds number, and the generalized plasticity number as’ th y_have be;?\-

defined above, and after rearranging the terms and integrating, equajion £4.23) can be-..

obtained in its [inal form

(4.24)

l+3n(f-R
U=
1+ n

-

-

Ac?:ordingbe ;hé constitutive equation, eq@ation (2.3), the flow of this type of

materials \s hypothetictlly divided into two regions. The [irst region is at the centre of the
. N . "
. '-.- . ’ . . / // » v

-
'«rf
.

—

A
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o v

pipe where the fluid flows as a non-deformed rigid core, i.e., the velocity gradient in t_}‘}ifgc‘ﬁal

direction is zero. The velocities at all points of the cross-section of the core are equal. and
L

given by equutio{(4.25). The radius of the core, r , is simply given by ; 9\
f_ % _ 8pe . (4.26)
™o - a1 [-Re '

In the second region, ou¥Nde the core, LWCSS exceeds the value of yield stress, and

the:velotity at any radius, wherg r; = § = d/2, can be obtained in dimensionless form

discontinuity of the fluid at the edge of the i e,i.e. at r, This assumption cannot of course be
true but for low loading rates it is justiﬁaae/.d
- %

4.4 Mathematical Formulation for Unsteadv Laminar Flow - w

441 Governing Equations:

Unsteuc{lly‘amin)z;r flows of fluids in loné pipes‘where entrance or exit effects are
negligible, may be described by the equation of motion of axially symmetric time-dependent
parallel flow in cylindrical coordinates [14]

M. 9P
pat_. dx

In this equation, u_and t_are functions of time as well 4s the radial position. aP/ax is a

499

function of time only and serves as the source of momentum for the flow.

The constitutive equation for laminar flow of generalized Bingham materials is

given here in the form, see [16_,87I.

T du | -1
L=1 + K(— -—)’ —
F 0 Jar dar

(4.28a)

for|c |= t
r 4]
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N ———
R _r o - (4.28b)
. Pl 0 for|r[< T .

Th{s\equation is the same as (4.1}, but the modulus is introduced here to avoid mathematical
complexity which arises due to the -ve sign whenn = 1.

Fer pulsatingflow the pressure gradient consists of a stationary component with a

"superposed oscillatory compenent of a certain amplitude and frequency. A sinusoidal form for

the oscillatory component is assumed, thus:

.

P /dP dP ' |
L (—) + (—) sinwt . (4.29)
ox dx s dx o . ,

where (dP/dx), is the stationary component, (dP/dx), is the maximum amplitude of the
oscillatory component, and w is the angular frequency. In the case of start-up flow problem .
the fluid is assumed to start its transient motion from rest due to instantaneous and sudden

-

imposition of a statienary pressure gradient, i.e.

aP ' '
- — =40 for t< 0 {4.30a})
ax ' ]
- P dP )
. . — e— = — !‘or t= 0 ’ (430b)
ax - dx

where dP/dx is the pressure gradiént requeﬁo maintain a fully developed laminhar steady

flow,

y
r -
.

4.4.2 Determination of Flow Patterns:

The above equations can be combined together to form two sets oi: equations, one is
applicable to the case of pulsating flow, while the other éet of equations is for the start-up flow
problem. Thus, “

a) for pulsating flow:

du, (dP) (dP’ ) % l K 9,
p—={—] + —) sinwt— —+ | — —
at dx / dx .
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aur n-1 a2ur du | n-1 aur
— + K— | — {1+ ~1)si ( —)
. (azur )} d (4313)
sign| — for~=>r=r
o 2 ° '
' 4
u, (dP) (dP) _ dr, [ K( )
p—=l—"]+|—})shewt- —+ 3§ —{ —
at dx /, dx /| d d ar /.9
: 2
. Ju n;l . .
— } forr > r= 0 (4.31b)
or | 9] °
2 -
) for start-up flow
aur dp ‘l'.o K aur a‘ur n-1
P = ———t+ — —| — +
¢ dx r . r arloar
.
- N du_| du | n-1 du_
CK— | — [1+(—ls' (—)
- at | oor o= lsen o
. 7 Yo\ d _ (4.32a)
sign| —— for=>r=r
ar2 2 °
LY
du dp 4t 4K du | n-1
p '-S = =— -—o -+ — ( ) _l' fﬂrr - ra 0 . (4-32b)
g dx d dVar/_db el L4 o
2 2

where d is the pipe diameter. It can be scen that there are two equatxons in each case w:th
each of these equations being applied to a limited region in the pipe. This is a natural

consequence of the constitutive relation (4.28) which has been noted before (section 4.3). .

—
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. o 7
It is convenient at this point to introduce a dimensionless radius R and velocity U

as well as a dimensionfess pressure amplitude
(50).(5)
e=| — |/ —
dx /, Vdx /
Therefore, equations (4.31) and{4.3€) become .

a) for puisating flow:

aU (dP - ‘
pYV—=1—} A+ esinat)s — =4+ —
at dx / - d R d

2K ( AY )" FU | U
d \d/ 2l R
for 1> R= R (4.33a)
EJU dP' 41: 2V n
"pV—= (—) (1'+ esinwt)= — + l ﬁ(—-)
_ ot dx /- d - d d \
\, ’ . l N | 7‘ ]
f aU ay| ! .- .
(—') — } for R >R=0 . (4.33b)
oR R=1 dR| g=1 0 ) .
b) for start-up flow: , - ;
doou_dp 2% 2 (W)L ) ) T
PP a " ax dRTd\Gd/aRrRIR
+2K(2V)“3_2%| au| -1 e ”,-(aU) _ (BZU)]
[, e + — 4 — JPU—
4 | d R 3R n‘ s1gn R SIgN aRzr
for 1> R2R_ (4.34a)
) n-1
(4.34b)

forR0> RE:.O

U dP "i+ ﬂ(.zv‘)“(au) ‘au
R=1 dR

pV—= =
dt dx d d d aR R=1




~

where R = r /(d/2). Each of the above equations has to be solved separately with suitable
boundary conditions. But, there are two unknowns in each of these equations, these are, the
\;elocity U and the pressure gradient dP/dx. A relation between the axial pressure gradient

to @_u?ﬂe number of

unknowns to one. Such a correlation has already been obtained in seckion 4.2, in terms of the

and the cross-sectional average velocity of steady flow is neces

A~

friction factor f, generalilze‘d Reynolds number Re’, and generalized plasticity number P¢’ or

generalized Hedstrém number He'. Furthermore, a dimensionless time T and dimensi%ﬁO

frequency { can be defined as:

a) for pulsating flow:
. wt !
T= —,
n -
. o . ‘ {1.35)
' w d
c__- —_— .. —_ Rel 1
2n V
b) for start-up flow:
: t-V ’
» e T = b - (4.36]
- dRe’

Hence, equations (4.33) and (4.34)can be rearranged totake the fcllowing general form,

a) for pulsating flow: .
d(1+3n)“ aU Re"f(1+3n')"u+ a2
—_= sin : .
4n / ¥ 2 \ 4n esm et - R
o /143n\"1 , 1, aU | au| Ph =
~ope[——) — a2 D .
T\ w ow R R | R
PU | au| ! au du ' o
4420 | & '1+(n—'l)sign(—)sign.(—2)] e
. aRz ait o - R R
n
‘ forl > R= Ro (4.‘37‘1)




C(1+3n)" U, Re’-f(1+ 3n
-

n
) (1+ esin 2nT)
4n 2 4n ) :

' ~

n-1

— 4P¢ (——1+3n )n+ ’25‘2“(§) ok
R/ | R

R=1

forR > Rz 0

b) for start-up flow:

4n aT 2

\

4n

-1 2 =1
- +42_n1_a_LI. ?_l{ n. +[42_nﬂ a_[_J ’
R R | aR a2 | R
. _ ,
) 7 ‘ [1+(n—1)sign(ﬁ)sign(—2
‘forl> R= Ro
(l-i-3n)n £= Re’-f(l+3n)"_ 4PE (1+3n)"
4n ar - 2 4n 4n
. : N
. -1 :
+25—2n(ﬂ1-)' U |
R /p_,1 R | p=y

-

forR > R= 0
. S T 0 . P i .
The friction [gctor f in these e@s obtainable from equation (4.19) by setting values fof *

1+3n\" U Re"f/1+3n\" mn n
—= ) — 2pP¢ =

I
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(4.37b)

(4.38a)

(4.38b)

the@ meters Re’ and P¢". Again, the difference in the definitions of the dimensionless
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L
time should be noted since they are not the ‘samel f'c.u- both cases. Also, it may be noted here
that R is a function of time and is not an independent parameter,
The boundary conditions which apply to the above sets of equations are:
U=0atT=0for0sR=s1 (4.39)

U=0atR=1atallT :  (4.40)

L

[n the case of solving for a fluid which has a zero yield stress, i.e. P€’ = 0 equations
(4 37b) and (4.38b) will vamsh and equations (4.37a) and (4.38a) must be solved. f'or the range
0s R< 1 subject to the same boundary conditions (4.39) and (4.40). However, in this
particuia;' case, a r‘r'lodiﬁed form of equations (4.37a) and (4.1;8:,1) must be used at R = 0 in
order to a¥Qid the term R i'n.the denominators. This necessary mo.diﬁcation can be achieved-

’

. by using L'Hbpital's rule. Therefore,

a) for pﬁlsating flow:
© [143n\"aU  Re“f[143n)\" _
4 _“') = ) (1+esin2aT) +
4n dT 2 4n
. ~ -
2 -1 v
FU | aul® U FU
e {l+(n—l)sign(—-)sign(——q)] \ (4.41)

aR? | RI - R aR” _.

b} for start-up flow:

n-1

e'-f(1+3n [ 5_2n62U, au

(1+3n)"aU_
4n / T 4n a2 | R

, '[1 1) (aU)_ (azu)]
+ (n— —
\‘. . n sugn' R sign o

i

(4.42)

4.4.3 Determination of Flowrate:
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o ‘ﬂ

In this part, the objective is to derive an expression for the ratio of flowrate due to

. / '
pulsating flow to the flowrate due to steady flow with one condition, that is both flows have

the same mean pressure gradient.

Designating the instantaneous flow rate in pulsating flow by Qp then

d2
Q = u_rdr o 443y
n 0 r .
l In a dimensionless fotm, this equation can be modified to .
B d2 1 ' : .
Q =21V — [ URdR | (444
.- p 4 °
The average flowrate under pulsating flow conditions may then be given as
»
_ . d2 2n 1 _ .
Qg 2n V'—iJ [-URdet .- @49
P 42nl, J, . '

or in a dimensionless form
. ép Lol
' S= =2 J I URdRAT
(:I2 olo
. nV — . ) ~
N 4 -
In this;equation S is the ratio of the flowrate under the pulsating flow conditions to a steady

(4.46)

flowrate of the same mean pressure grndient. The dimensionless velocity U in equation (4.46)
is obtained from.equations (4.37) by using a finite difference technique as will be explained
later. The integrals in this equation are to be performed by using suitable numerical

techniques in parallel with the finite difference solution.

R

4.4.4 Determination of power rquirements:
Similarly, in this part, the aim is to obtain an expression to compare the power
requirements irrpulsating flow to that of steady flow for the same flow rate.

The instantaneous value of the power required per unit length in pulsating flow is.

-

given by : - S




o
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aP
Jp: (- ;‘:) Qp (‘_1-.47)

The pregsure gradient is given by equation (4.29)J.and the instantaneous flowrate is given by

equation (4.43), therefore

dpy\ {¥2° -
J = 2n(-—-)- [ (1+ esinwt)u rdr (4.48)
p dx 4 r

[}

The average power requirements can then be obtained by integrating over one cycle of the
pulsation

P dx / 2n 0

-

- dP B (42
J = _2n( —) 2 [ J (1+ esin mt)i.\l'_rdrdt (4.49)
0 7 .

The average power requirement, per unit length per unit volumetric throughput under

pulsating flow conditions can be obtained from Jplﬁp, where Ip and ap are obtainable from

" equations (4.49} and (4.45). respectively.

In order to achieve proper comparfson this power requirement has-to be compared
with the bower required to maintain the same volumetric throughput Qp under steady flow
conditions. In other words a steady pressure gradient corresponding to Qp has to be obtained.

-This steady pressure gradien't is ciesignated by (dP/dx).. The power requiremenﬁ 'per unit

length is designated J/ and can be expressed as -

P\ =
'J,:(—-) -Q : (4.50)
8 ox /P
The power requirement per unit length per unit volumetric thro{lghput is
is_'z(?ﬂ) : - 451
.Qp ax /g
_In steady laminar flow, according to equation (4.8) g
. - | P . '
L — . {4.52)
J . Q
Therefore, I .
(dPy [dP
(Ei__) /(—) = " : (4.53)
dx /. Ndx /, ' -
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Thus the ratio of power requirement in pulsating flow to that of steady flow at\\t‘_i

A

i
<

- same volumetric flowrate can be given in the dimensionless form

JQ 9 [lf! ‘
E= —P - J J [(1+esincot)-U-R-dR-d'I‘ (4.54)
(dp) Sn+l ole

a .

t

s’ \

In this equation S is obtained from equation (4.46) and U is obtained from equations (;1.37).
As it has bee;m mentioned before that U is calculated by using a finite difference technique
while S is calculated by using the numerical integration technique. Alégihe integfals above
in équqtion (4.54) will be performed iuparallel.by the same nunieric;l techniques used for the

cal;:ulation of S.

i .

4.5 Finite Difference Formulation

Equations (4.37) and (4.38) are non linear second order partial differential .

equatidns. Analytical solution of such systems is virtually impossible. Thus a finite

difference technique is used here. But, due to the modulus existing in the above equations,

only an explicit finite difference scheme is permissable88, 891.

For an explicit numerical scheme a grid is imposed on the flow field as shown in,

*

FiguEe 4.5. The velocity at each grid point is U; j where i indicates the pesition in the radial

~ direction and j indfcates the time level. A forward difference form is used for dU/3T, while 'aj

*

central difference form is used for 3U/aR. Hence,

NU Uig 1~ Ui

F] aT AT
cy B Ui+l;j_ Ui— i . (4.55)
dR 2AR ' i

Fu Uy 7+ Uy - 20

aR2 (ARY?
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similar problems stability can b ined, Mg:ue to the nonlinearity of the present system

stch exgmfnation becomes exceedingly difficult [88), However, a skillful control over\e step
size of both the time and the radius would produce stable numerical soluti@onvergence

toward the exact solution may be achieved.

R

. -
. . 1 i=n—1
"4
AR
\ AT ,'
G L
,\d’ <
- - l=2
R=0 i=1

- /.

1

Figure 4.5 Finite'difference network
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EXPERIMENTAL PROCEDURE
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51 Int¢oduction C. &

: ~ ! ..
The present study was initiated in the-first place to examine the possibility of
- L)

. - ¢ .
“

reducing the hydraulic power requirements in solid-liquid slurry transportation, by

superposing an oscillating flow co’mponeng over the main steady flow component.

-
power umder different flow conditions is the major

Accordingly, measuring the hydrauylj

subject as far as the experimental side is con erned’

Two types of slurry or suspension were experimentally examined, these are:

a) beptonite clay-waterlslurry whichl flows hombgenegusly even at very low velocitiés; '
b)‘ |coal-wa'ter slurry which, under th2 experimental conditions in thel present g
1 investigation, behaved as heterogeneous flow. L)
> The parameters under investigation here may be summari.zed as:
L. Solid particles concentration in the mixture; -
2. Average flow veloci.ty; -
3. . Pulsating ?equepcy, i.e. the rate at which the pulsing equipment travels,
a. Amplitude of pulsations, which is the maximum displacement of the pulsing
’ device. This, in combination with ;the frequency, rgsults in a dimensionless velocity
amplitude as will be show;n lateron. ~_ - - | - 5 \'_‘\ .
;o There are, however, ofher.parameters that may signiﬁcr.intly affect- the sui);iec.l; .o

. ¢
under investigation here. Some of these dAe: solid particle size distribution; the ratio\petween
+

solid particle size and the pipe diameter; the ratio between the solid (;ljﬁity and the density of

5 p
iy . f

-

63 ' .
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the carrier fluid; the form of the pulsating wave; and many more. The present investigation

was restricted to the four parameters mentioned above.

F

5.2 Description of the Installation . ‘ .

The main aim of the experimental model was'to create a sinusoidal axial velocity

component superimposed on a steady axial velocity component. The installation used

&

consisted of: a pipeline, a steady [low system, pulsing equipment, and measuring instruments

cﬁted with a pre-programmed microcomputer. A schematic diagram of the flow loop is

shown in Figure 5.1. ,

.

5.2.1 The Pipeliné - ‘ t

s @rerall length of the laboratory scaled plpelme was 35 m with an ID of 5.08 em.

The length of the test section over whlcl}ihe measurements were taken was 4. me test

- section was placed on the ret,u;p side of the pipeline and it was preceded by an adequate

- h}
length of pipeline to insure elimination of entrance effects. Also, the test section was built in

one piece with no joints to avoid any disturbances to the flow which might affect the

< measurements. Two pressure taps were placed at the two ends of the test section to allow

*

_ commercial steel and it wa} joined together with necessary fittings,

" measurement of the pressure drop over the given length. A 61 Cm QVF glass pipe, of same

a~ ID, was fitted at the end.of the test section to anisualization of the fl

, w and checking if
there was air trapped in the system. | \ \
. N .
. The pipes used(in building the pipeline, including the test sectiog/ were schedule 40

ows, and valves of gate
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522 Steady Flow System

The different steady flows wer;: obtained by a pump which was connected on the
return circuit. The pump was a progressive cavity Moyno type CDR with 3L8 frame. The
pump had a maximum capacity of about 0.45 cubic meter per minute at 900 r(.p.m. The static
head at the l.'naximum pump capacity was about 103 kPa. .The pump was driven by a 15 kW
AC inductiqn motor of 1160 r.p.m., Brook type DP and frame K286T, provided with a 32 em
diameter Lovejoy spring- loa\ded pulley and ribbed V-belt arrangement. -The pump speed '
could be changed by using three different pulleys l?eyed onto the pump driving shaft, one for

———

~each speed. .These changes were possible by moving the motor on its base toward or away
from the pump which could then accommodate the changes in the lengths of the belts. By this

; arrangement, three different pump speeds could be achieved résulting in three different
flowrates. The pump delivery line was 5.08 c;n ID and was connected to the pipe line by a
flexible rubbe:r pipe of same 1D and 1.22 m long. This helped to reduce transmission of
vibration to the pipeline and provided flexib’lity when changes were needed.

A circulating tank was connected to the suction side of the pump by an
approximately 5 m long éection of th'f—a pipéline. The tank had dn approxjfiate maximum
capacity of 150 liters and was provided with a scale on its 51de taking into cons1deratlon the
total vo]ume‘ of fluid in the whole system for convenience. The bottom part of the tank was
conically shaped to prevent accumu/latlon of solid particles and was connected to the syction

p -

pipe by an ordina.ry steel reducer. / \\—

2.3. rﬁmuirn\ent
- . u
/ ""\\__‘T'h‘e \E‘}‘f""’( equipmer(twas designed and manufactured sé that it transformed the
' 4

Utational movement o ariable speed motor 4?.0 a‘sinusoidal translation movement. The

.
4

g basic idea yas to converE thi\s translational motion 8 fully controlled deformations of a

' - )
\ *
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collapsible bellows-type tube” Thus, a rubber bellows of 12.7 cm nominal diameter and of
approximately 46 cm relaxed length was placed firmly between a moving piston and a fixed \
flange attached to the pipeline via a reducer and a Y-lateral. A simple <;am mechanism,
shown schematically in Figure 5.2, was designed to drive the moving pigton between three
special steel guid: rods. Full control over the a@litude of the sinusoidal translation
movement of the piston was achieved by moving a pin in a slot, i.e. alteration of the centrfler of
rotation of the connecting rod. On the other han;l, the frequency was controlled by changing
the speed of the driving DC motor which drove the cam via a reduction gear sjste;n‘ Three
compression springs were placed parallel to the bellows tube, and coaxial with the guide rods,
to provide continuous upward force for full contact betweeﬁ the cam and the cam follower.
The sinusoidal vertical‘reciprocating motion of the piston caused the bellow:t\({,. .
collapse and relax identically. Thus, as the piston was forced downward, the fluid that had
previously filled the chamber inside the bellows was injected into the pipelir:e causing a time-

dependent increase m the flowrate. In the reverse stroke, the piston wes pushe'd‘upwards and

a negative pressure was generated inside the expanding chamber causing the puid, of an

equal atmount to that previously injecte e, to fill into it back from the pipeline

and result in a time-dependent decrease in the flowrate.

-

tube to the base in order to prevent undesirable lateral bending to occur occasionally, \\;hich
';COl.lld result in c_gnsiderable changes in the wave shape aé well as changes in the amplitude of |
the pulses. - . . | , - '

| Detailed drawings for the construction of the pixlser mechanisnt are given in

-

Appendix A.

v ¥

- . ~ . N
An acrylic smooth ]Llipe 13¢m [D'x 30 em loMoaxially with the bellows = "\

-
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- ~ ’

52.4 Measuring [r;strumentation and the Microcomputer

Measurements of the pressure drop over a defined pipe length and of the flowrate of
the flowing fluid are essential for cﬁlculating the hydraulic power requirements. A
differential pressure transducer was used to measure the pressure drop dcross the test sect.ioq.

The transducer used was a Celesco Variable Reluc_t:énce type, mode*P7D. The pressure

transdm:&?vas corl_nected to a signal converter - Celesco model CD-25A.

ign‘aLconverter

had facility to convey the pressure signal to the microcomputer as well as displayifig-it_as a

percentage reading of certain maximum value which could be changed to increase the degree

of sensitivity,
«  The fluid or the slurry flowrate was measured by a lowmeter which was contained

on.the delivery line of the pump. The flowmeter was a Brooks electromagneti® type model‘

7100/7200. The output of thé flowmgter was taken {.0 a signal converter, Brooks model 7300.

)

The signal converter was also connected to the microcomputer and ‘it displayed the flowrate

reading as a percentage of a mai;imug_‘n__ﬂgapacity of 180 USGPM which corresponds to 0.6184

\

m¥/min,
The frequency of pulsations was determined by measuring the averége time of a
single cycle. An electronic phntodeﬁ\ms attached to the cam:' while & thin metal

blade was fixed to the pulser frambe so that it passed through the photocell beam only when it
. &

was at its lowest position. .The photocell reached its lowest position once each cycle;

conseduently, the blade cut the light beam and caused a signal once each cycle. These signals
. \ : ‘

were conveyed to the microcomputer to-calculate the average timidT a single cycle, i.e. the

+ -

frequen_cy. ,

The microcbmpu‘b&—itse‘l was built, i)rogrammed and installed }o/r/spe"cifio
) v

v /calculations. The mathematical hases on which the microcomputer was programmed are

J/

explained in detail in a following section, 5.6.

E

. ' "
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53 Bentonite Clav-Water Suspension (L

The clay-water suspension was produced by accurately weighing out the required
- - 1

amount of hentonite pows®r und accurately measuring the regdired-amount of tap water to

achieve the desired concentration. The bentonite powder was pre: enough water
in a separate Larnk-to disperse it into highly concentrated mi.xture which was then carefully’
poured into the circulating tank to be mixe& with the flowing water while stirring vigorously
by keeping the pump running at moderate speed. This prevented the clay powd;ar from
flocculating and also prevented possible piugging of the s_vsiem. ' ]

The bentonite éowder ;sed was very fine. Up to 94% of the clay particles were finer
than 5 microns, while 96% were finer than 45 microns. The uverage p'arlticle size was

estimated about 2.25 microns. The specific gravity and the pH value were 2.7 and 8.5-10,

respectively.

/ Four different clay-water suspensign concentrutions were examined in this
- y . . o

investigation. Samples.were taken from each concentration for accurate determination of

density and also for testing the rheologj’mal behaviour of the suspension at such concentration.

The density of the suspension .was meastped by taking three random sumples
directly from the pressure taps, which were provided with switching valves to release the air

trappéd in the system. The samgles were taken.in a :neasu?ing cylinder of 100 ¢c and were
- 4 .
then weighed to, an accurgey of £ 0.01 v It was found that the density of each sample

£,

remained essentially the same, irrespective ol the fJowrate.

Other samples were taken for rheological tests. The rheoldgical analysis was
- ’

' .
obtained by using u Haake viscometer. The rheogrums given by the viscometry tests are

shown in i"’igurc, 5.3, and the other bhysic'al- properties are given in Table 5.1.

-
- .

A

\
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rdross \,

Physical properties of<bento_ni_te elay-water suspensig‘ns at difTerent

lcsight concentrations

Cu% p(Kg/m3) w(Pa) | K(Pasw n
2.97 1018.5 00 | o.00193 1.0
o
4.47 1033.8 1.14 0.00256 0.9890 .
7.63 1053.3 4.83 . 0.01140 0.9362
11.20 1061.5 33.81 0.03963 1 0.9432
" )
. §
 *3
F 4 __-—-\

i
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5.4 Coal-Water Slurry

The coal was used asgived from the supplier, It was a bituminous coal from
Butler County, Pennsylvania. Three samples were taken from different packages and were
carefully weighed and screened using standard s¢reen sieves. The size was found to range

from 45 to 880 mi'q%ns, with a mean of 260 microns. The size distribution is presented in

" Table 5.2 and Figure 5.4. A sample was microphotographed. Figure 5.5 is such a

microphotograph of the coal used. The particles were very angular and plate-like in form and

had the distinct appearance of crushed rock.

The ';peciﬁc gravii‘.y and the pH valugfor the coal as received, were 1.28 and 2.7-2.9,
respectively. Chemical analysis of the coal is given in Table 5.3. -

The slurry was prepared by following the same procedures'mentiqned above, as in_.
clay-water suspension. Samples of 100 cc from each concentration were taken directly from
the pipe‘ which delivered into the circulating tank. The samples were then accuratgjy'

weighed and the density was obtained for each concentration. These values are given in

-

Table 5:4.

5.5 Calibration of Measuring Instruments ; ‘ B *
Tw&terms always appear in calculatin&hy&r@ulic-energy or power consumption,
These are: the pressure drop over a known length, and the volumetric flowrate. It has already

been noted in section 5.2.4 that a differential pressure tranéducqr and an electromagnetic:
' » .

flowmeter were used for measuring such quantities.. The signals from these measurements -

-

had to beconveyed to the microcomputer for processing at _1_11g‘ﬁ rates.yTherefore, accurate
' ' . o
calibrations of the differential pressure transducer and the flowmeter werefecessary. -

3
“k

-~ ' ~

~
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Photomicrograph of a coal sample.

Figure 5.5

b



Coal particle size distribLLtion

Table 5.2

Weight%

>850

Mesh Size um
".325 <45 12.60
-200, +325 75-45 10.11
-100, +200 150-75 17.61
-80, +100 . 180-150 7.84
-65, +80 212-180 6.42
-48, +65 - 300-212 12.38
-35, +48 425-300 13.12
- -28, +35 600-425 11.56
-24, +28 710-600 432,
.20, +24 850-710 2.74
| 420 1.30

4
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’\)‘N Coal chemical analysis '

.Mois.ture
- Ash

- ‘ . Volatile ‘

Table 5.3

Fixed Carbon _

Sulphur

J'

Table 5.4

2% . . L
10% N ‘ |
34% | )

54%

2he o

Density of coal-\#a'ter slurry at differgnt solids weight cd_migntrations ‘ v
G, % 534 | 89 | 1425 | 1959 | 2493|3027 | 375 | 4a6i-] 537 T
p(Kg/m®) | 1010.9[1019.0 | 1031.3 | 1036.1 | 1057.0 1070.3 | 1088.9 | 1101.7 { 1127.6 Cohe
._“ ' [ . ' -
:
-~ Y .
..‘ . .
»
) B .
i » SRR A
¢ " ' ) ’
L _ A -
. Y S A T
ok * ' ) .
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- U . ' -
5.5.1 Calibration of Pressure Transducer '

The pressure transdﬁcer was first adjusted so that zero voltage was indicated at
zero pressure difference. A pressure head of 34.5 kPa was then applied using a dead-weight
apparatus and Fhe signal c;)n\:ferter was adjuSted 50 that the corresponding outpt.1t voltage was
10 v £ 5 mV and the display reading was 100%.

A mercl;ry U-tube manometer was conngcted to the.transducer and to the oil-filled
dead-weight apparatus via a T-connection. The U-tube manometer was used here because the
dead-weight apparatus did not 'hav;e the. facility to indicate values of pressure less than
334:5 kPa. Asthe pressurt; was decreased from 34.5 kPa by reasonable increments, 10% on the
diéplayr,tl_le height of rﬁerct-lry'in the ma;mm'eter as well as the corresponding voltage were
recorded. Figure 5.6 shows the voltmeter readi;gs plotted against the manometer and_ the
display readings. The relationship is a 'straight line passing through the origin indicating a

linear response of thetransducer with respect to the applied pressure. :

5.5.2 Calibration of the Flowmeter
In this case, the flowmeter was turned on and allowed to warm up for about 1 h.

-

The flowrate was measured in two ways: first, by collecting a certain amount of the fluid in a
mea.suringa tank and recording the corresponding time; and secondly, by multiplying the_
percentage t:e_ading from the dislﬁlay by a conversion factor of 0.6814 m®/min. The output of
the signal converter was connected to the voltmeter yields recor.ding of the éorresmhti-ing
voltage. Figure 5.7 shows the voltmeter readings plotted against the flowmeter and the

manually measured flowrate. Again here, the relationship is a straight line passing through

the origin which indicates a linear response of the flowmeter.
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56 Programming the Microcomputer

The microcomputer, in fact, had'a very important role to play in this investigation.
Values of the pressure drop across the test section and the flowrate had to be ‘recorded and

stored for calculations at high sampling rates.

The microcomputer was programmed so that first, it calculated the average
* frequency over 20 cycles. The hydraulic energy consumed in the test section under pulsating
flows in one cycle was given by .

1A
A ap »
_ g = J LPON , _ (5.1)
P o . L < - o '
- . . s - .
. where, J, i'sqthe hydraulic power per unit length finder :pulsating flow_conditions, A is the

*

frequency as number of cycles'per unit'time. This integration was carried outfumerically by
using Simpson's rule. 150 samples per cycle were conveyed to the microcomputer for the
values of the ‘pressure differential and same for the*flowrate. This number of samples was

tested and found to be adequate for obtaining accurate results. The calculations were then

carried out, and a value of Jp was obtained and stored by the computer. This process was

1 -

repeated over 35 cyclgs. The 35 values of Jp' were then averaged mathematically and the
result was ;Jne average value for Jp c.bfresponding to a certain frequency, certain arﬁplitude, ‘
certain averag@ flow velocity and certain slurry concentration. 35 -i:yclies was also found to be
reasonable for obtaining accurate value of‘Jp. In the case of steady flow, i.e. J, a total number
of samples of 300 at a rate of 30 samples per second was found to be satisfactory.

T

A list of the program in Fortran'[V is giveﬁ in Appendix E.

-

5.7 Experimental Procedures *

As mentioned before, two types of solid-liquid mixtures were examined in

this investigation at different concentraticns, frequencies, amplitides and flowrates. The
s
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.

experiments were designed in such a way that only one parameter was changed at a time

while keeping all the others fixed.

/
The experimental procedures adopted in the present investigation may be

-

summarized as follows:

L.

, The system was filled with a predetermined quantity of tap water which could give
the desired slurry concentration.
The flowmeter and the signal converters of both the flowmeter and the pressure

transducer were turned on about one hour before running the experiments for

L

warming up.

The pump was set at the required speed and turned on.
.The prepared slurry was added gradually and carefully into the circulating tank.
The amount of 'wat.er which have been used in preparing the slurry was originally
taken from the predgtgrmined qﬁantity of water.

The system was left running for enough time to attain thermal stability.

The pulsing device was set at th'e desired amplitude and frequenq{ and was turned
on. Signals frc;om the pressu;‘e transducer were monitored on the écreen of an
| oscilloscope. When the steaﬂy state of pulsating flow wés reached, the
microcomputer received a signal to start running its program to evaluate J}’ as it
has been explairied in section 5.6. ‘

The pulsing frequency was then changed to its next value. The range of the
freque;lcy was from zero up to about 1.25 Haz.

Another amplitH&st then obtained by n;oving"a pin in a slot. Three amplitudes .
were investigated, these were 34.6, 52.1 and 76.2 mm. The amplitudes here are

given as measurable axial deflection 8f the bellows tube.
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\
9. Steps 6 to 8 were repeated after changing the pump speed. Three average
flowrates, i.e. three average velocities were included in the present study. They
were 1.63,2.18 and 2.63 m/s.
10. Steps from 4 to 9 were then repeated for another slurry concentration.

All the above steps from 1 to 10 were followed for the two solid liquid mixtures, the

clay-water suspension and the coal-water slurry.

\



CHAPTER 6
RESULTS OF FINITE DIFFERENCE SOLUTION AND DI_SCL'SS[ON
Typ‘ical computed results for pulsating flows and start-up flows are presented in
this chapter. The results are shown in terms of dimensionless velocity profiles for hoth cases,

while they are shown as predictior'fs of flowrate, power requirement, and phase angle only for

pulsating flows. Analysis and discussion of the results are also included in this chapter.

(o]

6.1 Pulsating Flow
N \-\
6.1.1 Velocity Profiles

Computed velocity profiles in pulsating flow are presented in Figures 6.1 to 6.4 for

ditferent fluids and at different ﬁowl pufumeters. These results were obtained after the decuy
of the initial transient, i.e. after tﬂe motion had equilibrated to its steady cyeling behaviour,
The number of cveles required to achieve this steady cycling behaviour depended on the
frequency parameter and type of fluid. For example, fewer cycles are required for a Bingham
fluid compared to .\"ewtonial;ﬂuid, while a higher number i5 needed as n becomes-less ti;an
unity. This is explained by referring to the results of start-up flow. On the other hand, a
higher number of cycles are required to achieve the steady cycling mode at higher values (;[‘
the frequency parameter, whilst much less are required at lower frequencies.

’ Comparison of the velocities at equivalent times during two consecutive cycles
“shows almost complete:decay of the initial transient, Typical results illu.strating the decay of

this transient are presented in Table 6.1 where valyes of the velocity are given for equivaient

times during the first six cycles, 4

34
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Figure 6.1 Theoretical predictions of velocity profiles for pulsating flows of

(a) Newtonian,

(b} power lawn = 0.7,

(c) ideal Bingham 14/t = 0.32.
Resultsat{ = 5.0ande = 1.

[y



86

) - n
4]
0 0 Q 0,77
108 101 0
o o L
100\ 0 N
. 0 L 7y ]
9 : i
R ’ v
0 0 ] 0 Iy
10 - 10 10 :
W,
0 1] 0 r
10 0 0
Y Q .0 sma
10| 10 0
0 0 0 Sl
10 10} 0
: 0 0 e
00 B 2 3 0 1 2 3 3 5 0 1 2 3 & 5
u U U

Figure6.lcont. (d)

generalized Bingham n = 0.7 and t,/ty, = 0.32,

(e) ideal Bingham ty/t,; = 0.44,
49 generalized Bingham n = 0.7 and t/ty, = 0.44.

Resultsatl = 5.0ande = 1.
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: ™N
. Table 6.1

Velocity profiles during the first 6 cycles for a generalized Bingham material

withn=0.7;t /t, = 0.32,andat = 10,e = 1.0

05 |.7572 | 1.3668 | 1.8228 | 2.1423 | 2.3500 | 2.4712|2.5296 | 2.5490 | 2.5490]2.5490
1.5 | .8080 | 1.4660 | 1.9644 }2.3184 | 2.5518 | 2.6901(2.7579 | 2.7803 { 2.7803]2.7083
2.5 |.8145 | 1.4788 | 1.9828 | 2.3412 | 2.5780 2:’7186 2.7876 | 2.8104 _2.8104 2.8i04 |
3.5 |.8155 | 1.4807 | 1.9854 |2.3445 | 2.5818 2.722.7 2,7919 | 2.8147 | 2.8147]2.8147
45 |.8156 | 1.4809 | 1.9858 |2.3449 | 2.5823 |2.7233|2.7925 | 2.8154 | 28154 2.8154‘

5.5 |.8156 | 1.4810 | 1.9858 |2.3450 | 2.5824 {2.2733}2.7926 | 2.8155 | 2.8155 2.8155




88

The velociiy profiles in Figures 6.1 to 6.4 are shown at equal intervals of /4 of the
pressure-wave and across one-half of the pipe cross-section. Figure 6.1 shows computed
values of the instantaneeus v.elocirt); profiles for Newtonian, power law, ideal Bingham, and
generalized Bingham fluids at a frequency parameter (=5 and at preésure amplitude
£ = 1.0, In this ﬁgure, the effect of the fluid properties is illustrated. The effect of vield stress
can be seeh in {a), (¢) and (e), or in (b), (d) and (). Increases in the ratio of yield stress to wall
shear stress is accompanied by increases in the velocity amplitude, and consequently
increases in the rate at which the velocity profile deforms. A comparison between a
Newtonian fluid (a) and Bmghﬁm fluids (¢) and (e) sh(;ws higher rates of velocity proﬁle
deformation for Bmgham fluxds over that of Newtonian fluids in the accelerating phase. ThlS
difference is more pronounced over the decelerating phase.. Over the last portion of the
decelerating phase, the Binghufn fluid has a velocity profile with shape differing very little
from zero. This situation may be a result of the rcluti.vely high plastic \"iscus_ity ot the fluid -
the pressure in this phase is not adequate to overcome the yie[d-lstress. [t was pointed out
previously, in section 2.3, that this phenomenon was observed by Ohmi and [guéhi [50,51]
during their investigation for pulsating laminar pipe flow. '

In the same Figure‘ﬁ.l, a comparison between (¢) and (d), or between (e} and (D)
illustrates the effl'ect. of n being less than unity, i.e. the luid is much more shear thinning. For
n < 1 and in the region where R > R ; the shear stress is higher near the wall and the vulﬁ;zs .
of the velocity are higher than those correspondling to n = 1. This means that a significant
change in the form of the velocity' profile is expected, due to the change of n. Furthermore, a
significant increase of the instantaneous flowrate is.expected as n becomes less tﬁun unity.

The effect, of frequency parameter ¢ is illustrated iﬁ Figures 6.2 and 6.3, where the

results are given for an ideal Bingham fluid and a generalized Bingham fluid, respectively.

e frequency parameter ¢ = 4, 7 and 10 for ta), (b) and (c), respectively in both cases.

,
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Examination of the results in these two figures demonstrates that Tor a fixed pressure
- ' amplitudg (¢ = 1.0), changing the frequency parameter significantly affects the velocity
amplitude 8¢ well as the minimum value of R,. As the frequency increases, the velocity
amphtude decreases until { > 30, thereafter the change is insignificant. The converse is also
true as Figures 6.2 and 6.3 indicate; at low frequencies, the velocity amphtude is much higher
and the 3ige of the central core, i.e. R, approaches values smaller than those at higher
frequencies| This can be explained by the_ fact that the mass of the fluid is accelerating and
R 4 decelerating due to the oscillating pressure gradient which is acting as the,sourcé of.'.
mome‘ntum in this case, andtherefors{,‘the fluid takes time to achieve its maximum and itsc

minimum velocities while at high frequencies that time becomes smaller and smaller.
g & ' b

Figure 6.4 sht;ws.the effect of variations in the pressure amplitude ¢ at a value of
the frequency parameter of 7.0 for a generalized Binéilam fluid. '.I‘he values of ¢ range from .5
o 1020, Itis clear that. variations in ¢ have direct effect on the velocity amplltude the
minimum value of R and the shape of the velocﬂyAp&ﬁle itself. No significan* flow reversal

N

. . e is achieved, &éven for £ = 2 0. Flow reversal may be achieved at very low values of . Such

_ ‘ ' values are not included in the results presented here because. it is believed that -these are

" impractical. Additionally, the nq_merical. calcutdtions become exceedingly difficul.t. for

< lv.IO.o The minima of the velocity profile is not affected as much'as the maximg is affected

by t;me, vgriétionpfe. For example, the value of U atR = 0, wt i- 7rn’4/and ate = 0.5 is nearly

1.1, whilé.the equivalent value at ¢ = 2.0 is about -0.01. On the other hand, these values at

€ wt = n are about 2.5 and 5.2, respectively. Also, the situation in ?hlch the velocity almost-
approaches zero at all pointsat the same time is more pronounced as the value of ¢ increases.

Examination of all the above results for Bingham fluids demonstrates the variation

of R, over a complete cycle. In some cases, R, approaches | as a maximum, This, however, .

may not be true in practice since fluids of this type have a finite relaxation time: in %Eher

.

3.
‘.
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wor(fs, when such a fluid is stresse& deforms accordingly and after the.stress is removed, it
takes some time to reform back. This fact is not taken into consideration in the constitutive

equation (4.1); and therefore, the fluid shows jjnmediate respon!e to variations in stress.
I

6.1.2 -quowrates .

Computed values of the ratio S of the flowrate in pulsating flow to that in steady
flow of the same mean pressure gradient are presented a$ functions of the frequenc'y
parameter ¢ in Figure 6.5. The results are givén for Newtonian, power law, ideal Bingham

and geners;lized Bingham fluids at a constant value of pressure amplitude ¢ = 1.0.

In Figure 6.5, each curve represents each type of the aforementioned fluids (with

" n=07and To/tw = .44). In the case of a Newtonian fluid, the curve is a horizontal straight

il

line at a value of S = 1.0, which indicates that no change in the flowrate is expected due to
pulsﬁting flow at any value of the frequency parameter. Unlike the case of Newtonian fluid,
the curves of non-Newtonian fluids approach S = 1 asymptotically in two regions. One is

.

where {—» 0 in ;vhich the flow is.steady or nearly steady, and eventually S approaches unity
and the other at values of { ran‘ging between 10 and 20 or higher, depending’on the tjpe and -
rheological properties of the ﬂ‘uid. It is clear from the definition of S that at { = 0, S must
equal unity. Unfortunately, at very low values o[‘l {, a numerical selution is practically
impossible to obtain. Assumption of quasi—s.teady flow may be introduced by' neglecting the
inertia term in the equation of motion (4/37) beca;lse it is very small in comparison with the
viscous term. Thls yields a value of S which is indepeﬁdent of ¢ and nearly equal; unity
regardless of the t.ypé of fluid. There is, however, a smail gap between the t:'t-linimum valueof {
at which a numerical solution can be obtained and the point at which quasi-steady flow canbe

assumed, Sucha point is not very well defined and it may vary from one fluid to another, but

this is not a serious deficiency for two reasons: first, this range of frequency is far from a
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~

practical range ancI éeco-ndly, quasi-steady flow assumption-does not yield va;lues of S very
"much different from the ste;ady flow,ie. S=1.. _ .

The other limiting region that can be seen in Figure 6.5 occurs at large values of {.
For suc};‘values, it has been demonstrated previous]y that the velocity profile fluctuates by
only a very small amount abéut the steady flow velocity profile. Consequently, it can l;e
concluded that at large values of {, the pulsating flowrate QP approaches the §§g‘dyrﬂowrate
Q, orin othe;- words, S approaches.unity.

Betwe_en the above two limiting i'egions, non-Nelwtonian fluids behave very
differently from Newtonian fluids. The solution in this transition region may bé obtained by
" the use of finite difference analysis.

It is c-lear that increases ip the flowrate are possible for power law fluids (where

'n < 1.0) as well as ideal and generalized Bingham' fluids (also where n < 1.0). There is a

LN
value of { at which a peak in 8 occurs for each type of {luid. As { increases, the values of S start

-

" to drop gradually until it approach unity, as described above.

-

. A comparison between these theoretical findings with the data of Barnes et al. [1],
given in Figure 2.8, and the data of ngters and Townsend [2], given in Figure 2.11, shows
that they all basically agree about the existence of a peak in S.

The major reason for these increases in flowrate for fluids of n < 1 is that these
fluids are shear thinning materials and significant increases in the velocity, particularly in

.-

the region near the wall, occur due to'the high shear stress which is generated during the
accelerating phase of-each pu-l;,e -- causing the apparent viscosity to reduce accordingly. The
other reasons which applies to Bingham materials is the reduction in the size of the central

core. This may be seeri¢clearly in the velocity profiles given in Figures 6.1 to 6.4.
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6.1.3 Hydraulic Power Reqqirements

The ratio of the po"\-.;e:" requirel.'nent per unit length for pulsating flow to that for
steady flow at the same flowrate is presented. in Figure 6.6 as a function of the frequency
parameter ¢ for different fluids. Results are shown for Néwtonian, power law, ideal Bingham
_ and generaiized Bingham fluids for an amplitude of ¢ = 1.0.

The same asymptotic behaviour is also _observed fo‘r the ratio E, at very low values
and at high values o'f C. A;it has been explained previously, as {~» 0, the flow is steady or
nearly steady and'according to the definition of E, its value must equal unity., On the other
hand, at large values of {, the instantaneous pulsating velocity profiles oscillate with very
- small ami)litude about the steady flow velocity profile, i.e. Qp — Elp — Q. Thus, the hydraulic

power requirement in pulsating flow becomes

. _ mlﬁl&n
J =

dP
fndl — : {6.1)
t
2= 2m Qs( ™ )s(l+ esin wt)d

o

ie.

=dJ_ . (6.2)

- dP
Jp= Q, (a)s = d
The result given by this equation in addition to the fact that 'ﬁp # Q i3 that as { bécomes*
large, E approaches unity. f

Computed values of E within the range 1.0 = { =20 are given for different types of
fluids. In this range, the solution given l-'or Newtonian fluids is compared with a known
solution (Uchida [32]). Such a comparison indicates that the discrepancy between the
computed j'.ralue:-; and t.he analytical values [32] is less than 1%. All fluids, except the
Bingham type show values of E higher than unity. This_indicates that hydraulic pumping
power for the transport of power law and Ne\vtoﬁian fluids is minimum in steady flow.

However, this is not the cdse for a generalized Bingham fluid. It may be seen in Figure 6.6

that the curve for such a flui{withn = 0.7, and ¢ /v, = 0.44) indicates values of E less than
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unity. A minimum value of E £ 0.93 is observed in the range of { = 2-5 for n = 0.7 and

zoltw = 0.44.

6.14 Phase Angles .
Results from the finite difference calculations of the velocity profiles yield complete
information about the phase angle between the pressure-wave and the velocity-wave. The
phase angle reaches its maximum value‘ undér. certain flow conditions, after the flow has
completely achieved steady state pulsating behaviotir. Also, the pl';ase angle is always
maximum at the pipe centerline, i.e. R = 0. Values of ph#se ang[e-cp for different fluids ar9/
presented in Figure 6.7 as functions of the frequency parameter {at R = 0. It can be seen that
_ the type of fluid has no significant effect on the variation ¢ withl respect to . Asymptotic

approach to ¢ = 90° is observed athigh frequency, while eventually ¢ — 0 when { — 0. Fluids

of the power law and ideal Bingham type show values of ¢ higher than those for Newtonian

-

fluids. Only generalizeci Bingham fluids exhibit values of ¢ lower than those of Newtonian

fluid.

6.2 Start-Up Flow

Fiéures 6.8 to 6.10 show the cor.nputed values of the instantaneous velocity profiles
for different fluids. In Figure 6.8, the velocity-proﬁles of a Newtonian and two power law
fluids (n = .7 and 1.4) are given. The velocity profiles for an ideal Bihgham and a generalized
Bingham withn = 0.7 and l'.of‘l:w = 0.32 are presented in Figure 6.9, while in Figure 6.10, they
are presented for tolltw = 0.44. [n these diagrams, a dimensionless velocity U is plotted as a

function of the radial position R for various values of dimensionless time T, For Newtonian

and power law fluids (n = 0.7 and 1.4}, the results are in excellent agreement with results of

C
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Figuret.8 Theoretical predictions of velocity profiles for start-up flow
for a Newtonian (middle) and two-power law fluids n = 0.7
(bottom) and 1.4 (top).
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Szymgnski [90], who solved the Newtonian start-up flow problem analytically, and with
results obtained numerically for the power law start-up flow by Edwards et al. [11].

It may be noticed in Figures 6.8 to 6.10 that the rate of approach‘of the velocity to
the equilibrium value, in terms of the dimensionless time, depends on the radial position, the
non-Newtonian index and the value of yield stress. In Figure 6.11, the rate of approach of the
velocity to the equilibrium value is presented at the centre of the pipe for different v;llues of
the non-Newtonian index and the yield stress. It can be seen that such rates can be incréased
sign.iﬁcantly by an increase in the yield stress of the fluid. On the other hand, fluids
-exhibiting n less than unity show a slower approach rate to equilibrium. It also appears ‘ti'mt |
the effect of n on the rate of approach decreases when thelfluids havg a yield stress.

According to the constitutive equation (4.1), the flow is hypothetically separated
into .two regions at R=R_. .In deriving equations (4.38a) dnd (4.38b), it is assumed that
velocity, stress and pressure gradient are continﬁous across R = R . ';.I‘his assumption,

however, is not satisfied since
v at
r
or e=r

Jc « -
(5)
dr /__
O 0—
-

This is a natural consequence of the assumption of a r_i_g_igi body behaviour for the region

0 <R <R Foraccelerating and de.t.:ellerating flows, elasticity of the core, i.e. 0 <R <R, has

to be cons'idered. .Although relative displacements in this region are vér_;,r small, depending o

the loading rate, corresponding relative velocities inside .this region ﬁxay exist. Howevelr,

irftroduction of the elastic behaviour of the core will cause both the problems of pulsating flow .

and start-up flow to become exceed-in-gly and unnecessarily complex. Some error may
! -

therefore arise, but it is insignificant and can be accepted for low to yxoderate "Ioadmg rates,

i.e. those investigated in the present research. 7

r
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Figure6.11

Velocity development as a function of dimensionless time T
on the pipe centerline for start-up flows of Newtonian
and non-Newtonian fluids.
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4 CHAPTER7

- - EXPEI{MENTAL RESULTS AND DISCHSSION

bl

_ In this chapter the results of pulsating flow measurements are presented in terms
\
of hydraulic power requirement. The measurements were obtained for twp types of solid-
liquid buspension or slurry.

i ben‘Sonite-clay-wgter;asahomogeneous suspension

\

(ii) coal-water;asa ﬁeterogeneous slurry. ¢
¢ - -~
The results are presented as a ratio between the hydraulic power requirement of

pulsating flow to that of steady flow zfxt the same throughput and at different pulsing
> N .
frequency, pulsing amplituf,«average flow velocity, and solids concentration.

. . -
~

_ \\
7.1 Bentonite Clay-Water Suspension: 7

Values of the ratio of pulsating to steady hydraulic power Jle5 can be obtained
e :
from the measurements of steady and pulsating flows. Such measurem:yre tabulated and

-

presented in Appendix B, Fig'u'r.es 7.2 to 7.9 contain the vgdues obiained’for the ratio Jp/’Jﬁ as

functions of different flow parameters. in all cases the value of Jles equals unity when the
: a
flow is steady, i.e. pulsing frequencx A = 0. The effect of each of the adopted parameters on

J p!J s is discqssed below.

7.1.1 Pulsing Frequency and Pulsing Anplitude: -t
+ Typical pressure-wave forms traced by an X-Y recorder are shown in Figure 7.1.
For different values of pulsing frequency A and at pulsing ®mplitude A = 52.1 mm. In this

Figure it is clear that the pressure-waves are of sinusoidal-like form and the pressure

amplitude is changing with alterat@bth pulsing frequency and pulsing amplitude..

“u-._ N &

105
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Figure7.1 Qutput signals from+the pressure transducer at different \
pulsing frequencies (A = 52.1 mm)
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. From a mathematical viewpoint, the compressed volume of the bellows must equal the

amount of fluid injected into the pipeline, ie.

II ko I 7 n
-DZA= [ [(u sin wt) — d2] dt (7.1)
4 0 4

Q0

. The term on the right hand side of this equation is the volume of fluid due to the oscillating

component in the accelerating part of one pulse. Integration of such equation yields

2 .
4 =A(E) © (7.2)
o d/ 2
m . * -
But, e . .
©
A= —
2n
therefore,
. D12
u = IIA('—) A (7.3)
[4) - d . o
In a dimensionless form
(3)
nAl =
u, d . e (7.4)
—_= -
Vv -V
»

"This is an expression for dimensionless \:elocity ampiitude. In this eqc};;‘:;ssion it can be seen
that the velocity amplitude is..function of the frequency A as well as of A. In other words any
alteratipn in.?\ is m fact an altération in two flow parameters at the same time; ndmely,

,pulsing [requency and pressure or velocity amplitude. It shoﬁld be emphasized here that the
phenbmenon is very much depen:lent on xperimental equipment Qeing used. Because of

the pulse generating mechanism used in this investigation, the effect of pulsing frequergy
cannot be separated from the effect of pressure amplitude. However, there is no question lhat&7 .
the response of the hydraulic power to changes in frequency and in pressure or velocit};

amplitude remains the same~ irrespectihve of the equipment. -
. Examination o‘f:Fiéures 7.2,7.4,7.6,and 7.8 demonstrates the effect of A on Jp”sép

different flow conditibns._, Each curve in the ﬁws shows a minimum in the ratio -Jl,'f'J:i

x LN
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occurring at differegt'va;}_xfs of \. Tt can be seen that the minima o[‘Jp/J% occur at lower values
of A as A increases, and at higher valu-es of Nas C , increases.

Figures 7.;[» and 7.6, where C = 4.47% and 7.63% respectively, show in the region
of A =0-0.3 Hz a slight decrease in values of'Jle5 as A increases for the same value ol ), 'Th_is
means tha.t in such a range of ), the decreusd in JP/JS is not only due to incrcas;in_Ll{ frequency
but also due to increase in the velocity amplitude. Asthe value of \ exceeds the point at which
minima in Jp/-]S occur, the effect of A on "Iprs is reversed and ‘beclomes more and more
pronounced. An inérease in the pulsing amplitude A, at a fixed value of X where \ > (.3,
results in a cons.iderable inerease in -Jp/Js. On the other hand, for a certain value of A,

ingreasing \ is accompanied by an increase in -JPI-JR. It may be concluded therefore that the

¢ -
point however is not Lloo seriouf us it might appear because from u practical point of view, it is

ﬁnl'kcly that a pulser can beldesigned in which pulsing amplitude and frequency are non-

&
The above discussion applies also to Figure 7.8 except that the minimum in prJ5 is

different in u';agnibude und in position with respect to \. In this figure, C, = 11.2%, the value
of A at which a minimum in -JP/JS occurs is A = 0.4 f{z. The dimensionless velocity ampli'tude
at this point, where A = 34.6 mm and V = 1.63 m/sec., is 0.17.' The theoretical value opr/-I_,i
at such amplitude and frequency is about 0.967 while the experimental value is about 0.95.
This difference may be.due to the fuct that such a fluid has a finite relaxation time:- this is not
allowed for in the theoretical solution, | Although the comparison between theorvetical
calculations and the experimental measurements given here is difficult due to the limitations
discussed in section 7.3, it is clear that overall agreement in the general behaviour is achieved
and there is no contradiction between the theoretical prediction and experimental

nhservations.
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V=218 m/s
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Figure?.2
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A (Hz)

Hydraulie power ratio of pulsating to steady flow vs. pulsin
frequency. Experimentarresults for bentonite clay-water s
suspension (Cy, = 2.97%).

@A =346mm, @A =521 mm,AA = 76.2mm.
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V=218 m/s

10}

V =1.63"m/s

-
-
-

A (Az)

Figure 7.4 Hydraulic power ratio of pulsating to steady flow vs. pulsing
frequéncy. Experimental results for bentonite clay-water
suspension (C\= 4.47%).
@A =346mm, ®A =521 mm,AA = 76.2 mm.
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1.14‘_',', T T — T

V =263 m/s

V=218 m/s

10

V=163 m/s

N0 2 4 6 .8 10
A (Hz)
Figure 7.6 Hydraulic power ratio of pulsating to steady flow vs. pulsing.

frequency. Experimental results for bentonite clay-water
~~"suspension (C,, = 7.63%).4
@A = 346 mm, ®A = 52.1 mm,AA = 76.2mm.
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V =163 m/s

10

A(Hz)

- Figure 7.8 Hydraulic power ratio of pulsating to steady flow vs. pulsing
frequency. Experimental results for bentonite clay-water
suspension (Cy, = 11.2%). -

@A =34 6mm,PA =521 mmAA = T762mm.
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B
Figures 7.3, 7.5, 7.7, and 7.9 show the hydraulic power ratio JPIJ5 versus the
dimensionless velocity amplitude, deﬁrlled in equation (7.4), at different values of C,,. It can
be seen that all the data points given at different values of A'and V lie on one curve. Each
curve represents JPIJs as-; a function of the velocity amplitude (or indirectly a funetion of the
pressure amplitude) at gertain solids céncentration. This proves that equation (;?.4) is valid.
Also it shows that the \;elocity or the preésuyé amplitude is the major factor that shoulti be
considered and not the pulsing amplitude A. Thig conclusion perees with the theoretical
analysis in CAhapter 4 and also with the works of garnes et al. {1] and Walters and Townsend
[2], but it is limited to suspensions which behave homogeneously or pseudoho}nogeneously.
l:I'he situation is very different in the case of a coal-water slurry - as will be e'xplained in

section 7.2, . >

7.1.2 Effect of Solids Concentration:

Figure 5.3 shows typical viscometeric flow curves obtained for bentonite clay-water

suspensions at the concentrations used in the pulsating flow investigation. At low

concentration (C_ = 2.97%) the fluid behaved as Newtonian, it started to become
increasingly non-Newtonian as C, increased. At C, = 17.63%and 11.2% the s:uspension wis
uﬁdoubtedly a general Bingham. |

In Figures 7.2 and 7.3 themininmalue of J /J is unity and it occurs at A = 0.
This is the exact behaviour ofa.Ne'wtonian fluid under pulsating flow conditions. As weights
of the solids concentration increase in Figures 7& 7.9, the minimum value c.JprlJS becomes
less than unity and.shifts from the position of A = 0 toward higher values of . The values of
Jles below unity result from a decrease in the apparent vihscosity .Of the sus;;ension in the

region near the pipe wall. This region is dominated by high viscous forces - particularly in the



-

I8

accerlerating phase of each pulse. Consequerltly, this may result in a decrease in.the frictional
pressure drop for the same Mowrate Be[ow that for steady flow.

in Chapter 4 it has heeq explained that a central core or a plug.flot situation
always occurs in the c'ase of flowing Bingham-like materials, [t follﬁws, therefore, that the
highest shear rate is concentrated in the annulur layer between the plug ;lnd the pipe wall,
Consequently a structure breakdown may occur in this layer depending upon the magnitude

of the shear rate. This results in a considerable decrease in the apparent viscosity. Because

this type of suspension has a finite relaxation time, there is no structure build-up-expected to |

occur, this is particularly so at high f'requenciés. At low values of ), and depending on the

solids concentration, the drop in hydraulic energy consumption due.to the decrease in the

apparent viscosity is more than the energy required to maintain the oscillating flow

component. At higher frequencies, i.e. when \ exceeds its critical value at which Jp.f-Js 8

minimum, the structure is already broken down and the decrease in the fluid appurent

viscosity becomes insignificant. Therefore, no further decrease in the hydraulic power can be

“"achieved, while the energy required for the oscillating flow becomes higher and higher,

[t is conceivable from the foregoing that as the solids concentration increases {in
the limit), the effect of the oscillating flow ';omponen'c becomes more and more pronounced,
and therefore the minima in Jé,!Js'ar_e éicpeéted to reduce and the critical values of \ and the

velocity amplitude are expected to increase. . .

A ' | .
7 .

-

7.1.3 Effect of Average Flow Velocity:

u

The majority of the present results are in the tufbulent flow region. [n some cases,

1

where the ypparent viscos{ty ishigh due to high solids concentration and where the average

flow velocity is low, the flow is laminwransienulaminur. Table 7.1 shows values of the

_ time-u\'eraged Rdlynolc-is number RjScorresponding to each value of V and euch value of C_,

~

J



Table 7.1

Values of Reynolds number and plasticity number at different flow velocities and
. . L
solids weight concentrations
_ Cu% 2.97 4.47 *63 11.20
V(m/s) ~ AL
.G"‘ ‘

R, 43,697 34,457 - 10,7%8 2,996

1.63 > - : - -

“P¢ 0.0 147 18.5. 36.0

% ' 58,442 46,083 14,617 4.}175;

2.18

' P 0.0 - 110 14.1 27.3

R, 70,505 55,596 17,847 4,969
2.63
P 0.0 942\‘ 11.8 22.9
»
I4
7 ~ . ".1
[
~
1 [ 4 /\/ —
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The effect of variable average flow velocity on the ratio JPIJS can be seen in Figures 7.2, 7.4,
7.6 and 7.8. In the first two [“/{gures,‘Cw = 2.97% and 4.47%, the flow is turbulent. At the
. lowest average flow velocity, t;le value of the velocity amplitude is the 'high-’e‘st for fixed values
of X and A. Thus, the energy required to maintuirl the 0scillaﬁting {low component t:

'accordingly the highest. While at the highest flow velocity, the velocity amplitude is the

lowest, for the same values of \\gnd A, and therefore the energy required for the oscillating _

flow component is the ‘lowest? is m_aylexp‘lain the réeason why as the average flow velocity
increases, E.he curves - at each value of A - fend t'o shift downward indicating values of Jp:’-l5
lower than those at the lowest value of V. .

Transition from laminar to turbulent flow in steady flow of Bingham tluids occurs
at critical. valaes of Reynolds number higher thax‘l that of Newtonian and power law fuids
T9,911. Such values are a function of fluid yield stress, i.e. plasticity number, Higher critical
Reynolds numbérs usually correspond to higher plasticity n,umb'ers. _.\floreover, it has\been
shown, in Figu__res 2.3 and 2.4 by Gilbrech and Combs [42,43] and by Sarpkafa [44],.
respectively,ﬂthah transition from laminar to turbulent may possibly be.delayed to m:;;ch

N ) .

higher values of Reynolds number if the flow is oscillated hdrmonically. Accordingly there. is
- ] -

a strong possibility that the flow is laminar or nearly lamina:;, at the high solids
concentration inveétigated here. | ’ o
P

Figures 7.6 and 7.8 show the- results of pulsating flo_\i}s at high solid‘s
" concentrations. In the first parts.of the curves, where = 0-0.4 Hz, as the veloeity increases.,
values ot‘Jp/Jh_ increase accordingly for the same value of \ and A. This ‘must he due to the
decrea:;e of \:elocity,amp‘fitude which is already .vt_mall in this r:.aé\.gge ofd. As ) ‘then increusgs.-
the situation is, rcversed, highel: flow velocities indicate lmve\t: vu_lue.;; of -'Iplola_. Again this

must be a result of lower magnitude of the velocity amplitude which is relatively high at such

values of \. - .

v

<
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It is possible to support the above explanétio

eferring to Figures 7.7 and 7.9,
In these figures it is clear that the velocity amplitude hasi enjtical value at which a minimum
in Jp/Js occurs. The point at which the effect of the flow velocity on Jp/JS is reversed, as

discussed above, is in good agreement with the point of critical velocity amplitude.

L
7.2 Coal-Water Slurry

- *
The results of pulsating flow experiments of coal-water slurry are presentew

Figures 7.10 to 7.18. The ratio JpJ’Js is presented as a function of the pulsing frequency A, at
different values of A, V and C_. Tables of all the data- points are ificluded in Appendix C. )

Similar to the case of bentonite clay-water suymshyn, all the curves start from A =0, at

Jles =1 ‘ | ~

Although'he general appearance of the ratio .JDIJs ggainst the pulsing frequency,
at different average flow velecities and different pylsing amplitudes, is very similar to the
case of clay-water suspensions, the physical phenomena in the two cases are fundamentally
different. The clay-water susgension is in fact a pseudoﬁmﬁogeneous suspension exhibiting.'r
generalized Bingham charact ri;tics. While in the case of coal-water siurry, the flow is

_ : )
heterogeneous and the distribudon of the coal particles across the pipe cross-section is not

uniform. In heterogeneous suepknsions there are two possible advantages of applying an
oscillating flow component superimposed on the steady flow. This can yield a particle-free
region at the pipe wall which acts as a lubricating layer and, in the Timit, ;;_roduces plug flow

of the suspension - particularly at high solids concentration {6,13,67,68]. The first advanta:ge

due to this phénomenon is‘the_ reduction in pipe wear especially when solid particles are very

qngular-and irregular in shape, while the second and most important is the possible reduction
L

in the hydraulic power required to maintain flow.

\"—'-'
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In steady flows, when particle Reynolds number is high (R.ep > 10%), appreciable

inward radial migration of solid particles from the pipe wall and outward radial migration

{rom the pii)e axis occurs [67,69,92]. This radial migration in steady flow of suspensions has

been observed also with rods, discs, ellipsoids, and particles of other shapes [68,92]. It is
it

L

believed that inward radial migration is due to a "spin lift" forc.e resulting from particle
rotation [72,74,75,93] and a "shear 1ift" force resulti;lg‘ from translation slip or relative
veloeity between the solid particle and the liquid [76,93]. On the other hand there is no clear
explanation why rf._l;dial migra;tion may occur outwards.

_lt has been indicated in Section 2.5 that the rate of radial migration\c;f solid
particles in suspénsions can be increased by qscillating the flow. Shizgal et al. [13] have
reported that the rates .of inward radial migrazion can be increased by increasing the

oscillation frequency and amplitude as well as the mean particle size relative to the pipe

diameter. Additionally they reported that the radial distance of the equilibrium position from

11, t.e. the thickness of the particle-free layer, varies with frequency and

amplituge. Other conclusions reported included, the rate of radial migration increased with
’ ; “

/ifcreased solids concentration (in the range 5-20%) and with increased particle Reynolds

number to values higher than 104,

By analogy to the foregoing discussion, the effec e different parameteré on
pulsating flow behaviour is illustrated below. ~ -
7.2.1 Effect of Pulsing Frequency: s

The results given in Figures 7.10 to 7.18 are for solids weight concentration ranges

from 5.34% to 53.7%. The average flow velocities are 1.63 m/sec, 2.18 m/sec, and 2.63 m/sec,

while the pulsing amplitudes are 34.6 m%nd 76.2 mm. Each single curve in these

{ ' : .
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Figures represents the variation of J p/ I correspending to variations in the pulsing frequency
A at different combination of the three parameters abovementioned. ‘

At very low solids concentration (Figure 7.10), the curves are similar to those
Newtonian fluids. The hydraulic power in pulsating llow at all values of Ais higher than that
in steady flow, irrespective of the amplitude and flow velocity. As the concentr;dtion
increases, a minimum in Jp/’Js occurs <1. at a certain value of A. Examination of all the
curves in Figures 7.11 to\7.16 demonstrates that thelvalue of A at which the minimum JleS
occurs is somewhere between 0.25Hz and 0.4 Hz. Variations in pulsing amplitude and
average flow velocity seem to have very weak influence on fhe critical value of A,

Hydraulic power in pulsatile flow, within certain range of }, is less than that for
steady flow at the same throughput. One of the possible mechanistic explanations for this

may be an inward radial migration o ticles and the fom:hation of a particle-iree layer
- .

>

adjacent to the pipe wall which acts as a lubricatt. Another methanism such as turbulence

modification may also be o‘[ importance (see Sectlon 8.2), A;; far as the efl;ect of pulsing
frequency on the po:ver ratio is concerned, it follow$ from the preceeding discussion that in
the range of A = 0-0.45'Hz increasing the pulsing/frequency increases the inward (and
upward) radial particle migration from the wall and copsequentl.y increases the thickness of
fhe particle-free layer at the wall. The inward radial migration, as discussed before, is
believed to result from two lift forces. Due to the shape of the velocity profile, the viscous force
is not uniform on the particle surface. This causes the particle to rotate and, therefore, a spin
lift. force perpendicular to the main flow direction is generated causing the particie to travel
inwards away from the wall, Asthe bulsin_g frequency increases, the radial velocity gradient
-
increases accdrdingly and causes the particl‘e to rotate at higher angular velocity which is

proportional to the spin lift. The other force is the sheur lift which results from the difference

between the axial velocity of the liquid and the actual velocity of the particle. As the veloeity

.
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V=263 m/s

V=218 m/s

Figure 7,10

4 6 .8 10
A (Hz)

Hydraulic power ratio of pulsating to steady flow vs. pulsing
frequency. Experimental results for coal-water slurry

(Cu = 5.34%). L
OA =346mm, ®A =521 mm,AA =T76.2mm.
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V= 263 m/s

'V=218 m/s

Figure 7.11

A (Hz) /

Hydraulic power ratio of pulsating to steady flow vs. pulsing
frequency. Experimental results for coal-water slurry
(Cy = 8.9%). '

@A =346mm, A =521 mmAA =762 mm.
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V=263 mss

Figure7.12

- A (Hz),

Hydraulic power ratio of pulsating to steady flow vs. pulsing -

frequency. Experimental results for coal-water slurry

(Cw = 14.25%).

\ .
@A = 34.6 mm, ¥A =521 mm,AA = 76.2 mm.

o
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“V=263 m/s [

~ A (Hz) | o
Figure7.13 Hydraulic power ratio ol'pulsatin-g to slteadly flow vs. pulsing

: frequency. Experimental results forcoal-waterslurry
- ‘ . (Cy = 19.59%). _ '
"o : @A = 34, mm,’A‘= 52.1 mm,AA =76.2.mm.
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V=218 m/s

V =2.63 m/s

V=163 m/s

Figure7 14

A (Hz)

Hydrauhc power ratio ofpulsatmg to steady flow vs. pulsmg
frequency. EXperimental results for coal-water slurry o
{Cy = 24.93%).

@A = 346 mm, ®A = 52.1 mm, AA=762mm.
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A (H2)

Figure 7.15 Hydrauljc power ratio of pulsating to steady flow vs. pulsing
frequenty. Experimental results for coal-water slurry
_ (Cy = 30.27%). :
y @A = 34.6mm, A =52.1 mm,AA =\76.2 mim.
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0 .2 4 6 .8 10
')\(Hz)'

Figure 7.16 Hydraulic power ratio of pulsating to steady flow vs. pulsing

frequency. Experimental results for coal-water slurry -
(Cy = 37.5%). | !
v @A = 346 mm, A = 52.1 mm,A A= 76.2 mm.
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“1.9l

V=218 m/s

A (Hz)u

Figure7.17 Hydraulic po ratio of pulsating to steady flow vs. pulsing
. frequency. ExpeNgaental results for coal-water slurry
(Cw = 44,64%).

@A =346mm, YA =RImmAA =762mm.
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- Figure7.18
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.Hydraulic power ratio of pulsating-to steady flow vs. pulsing
-frequency. Experimental results for coal-water slurry

(Cw =53.1%). » - . . -

O®A = 34.6 mm, @A = 52.1 mm,AA = 76.2 mm,
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increases over the accelerat{ng ;:hasé of each pulse, the difference between the liguitvelocity
and the particle velocity inereases and the par.tic!c gair::momentum hecausefit is dragged by
the aquid. This causes the particle to move to a'new rudj% pos.itii_\cin it which the momentum
lev8t“is higher. In the given range of \, it appears from the .experimcntai r;:‘sﬁlts that the
abovd situatjon is not reversible o;'er_ the cliecelerating phase. This ugreés ‘with the

observiions of Shizgal et al. [13]. L~ P e
| Further increluse in A beyond its critical value results in an undesirable increase in
the power ratio JP/-JS. This may be explained by'one or by a combination of two reasons. The
first is that as A incr_eases more and more, the rate of inward radial migration becomes Ie\s.s
7 thah béfore bec‘aus'e_the tr.'-msiér.lt time, avuilabie for the particie to travel under t?e/;‘l\'ectini‘
lift forces, is less than the actual required time. The other rﬁn is that even if the rate of the

inward radial migration remains unchanged, the energy reqmredﬂ)r maintaining the

: - _ .
oscillatory flow component inecreases with increasing frequency. Therefore, there must be a
N 3 ‘

situation at which this extra energigxceeds the value of energy saved by the growth of the

particle-free layer adjacent to the p'ipe u'[l_.

s
. g "
*

7.2.2  Effect of Pulsing Amplitude: m/
. , = Urflike the case of bentonite clay-water suspension, plottingthe measured values of

the hydraulic power ratio Jp?’-]S as a function of the velocity amplitude (nAlD/d]* V) does not

_i:ombine all the data points on one curve. On the other hand, pulsing frequency A, which
' i

represents the volume of fluid injected into the test section, i.e. the instantancous change in
the flowrate and the flow velocity, has direet effect on the magnitude of'-Jp.’-Jq. [t is clear from
\jFigures 7.10 to 7.18 that an increase in A, shifts all the curves upward to a higher level of

pr‘Js. Thlq perhaps, can he ex;ﬁluined by referring to equation {2.14). In this equation the

hydraulic powgr”is proportional to square the oscillating velocity compenent, while it iy
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proportional to the inverse of the particle-free laye§ thickness. This means that the value of A
- b : .
has a greater cffect on the hydraulic power than the particle-free layer thickness has. It

appears, however, from the experimental results and from equation (2.14) that there is a

situation in which the particle-free layer thickness reaches its optimum value. This occurs at

A =346mm.

JIn Figure 7.13, it can be seen that the effect of A on the ratio JPIJ‘E is much more" .

Mced in the middle range of A. This is because in this range the amount of energy saved

’

by pulsating flow has reached its maximum:value, i.e, JP has reaéhed its minimum possible
value and, therefore, any change in A has greater effect on J p/Js. In a higher range of A, J o is

already far beyond its minimum value and, consequently, variation in A has much less effect

on JPIJS.

-
’\

7.2.3 Effect of Average Flow Velocity:

As far as hydraulic energy is concerned, the rpaximum béneficial effect of pulsating.
flow in heterogeneous solid-liquid slurry‘cgn be achieved as long as the stead-y flow of such a
slurry is in its comp‘lete or partial saltation regimg, Figure 2.12. According tt; Durand
[59,94,95[, the lowest average flow velocity investigated here (1.63 m/sec) is less thﬁq the
critical deposit velocity of coal pﬁrticle of the given mean size of 260 microns. Considering the |
f;ct. that there are coal particles o!: sizes up to 800 microns and more, this may bring the
middle velocity investigated here (2.18 m/sec) into the critical region where partial saltation
occurs. While fhe highes-t velocify lis just above ti';e critical region where the effect of
pulsating flow on the hydraulic power requirement is significantly less. However, it musgt be
understood that solids concentration has a great influence on the critical velocity, and
therefore, it is very difficult to determine definitely whether saltation or partiﬁl saltation

__,
occurs or not.,
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In Figures 7.10 to 7.18, where A > 0.6 i’lz, at a éiven pulsing frequency and
amplitude, an increase in the average flow velocity regulis in a slight decrease in the ratio
Jles. This can be explained by the fact that in such frequency range Jp is already higher than
its minimum vaiue, and in some cases hiéher than J_ In steady {low, the hydraulic power is
proportional to the velocity cubed, which means that an increase in the average flow velocity
results in much greater increase in J. On the other hand, increasing the flow velocity

reduces the beneficial effect of pulsating flow, i.e. Jp increases, but not as much as Jg

- increases. Therefore, the ratio of Jp/Js appears to be decreasing as V increases, but only where

A >0.6Hz. . N o

Over the first part of the curves, the influence of the average flow velocity on the
hydraulic power ratio is opposite to the above. In the range of A = 0- 0.5 Hz the beneficial

effect of pulsating flow reaches its maximum, since Jp is riear its minimum value. Therefore,

“any change in Jp relative to its smatll value is highly pronounced. As the flow velocity

» .
incragses, more coal particles are suspended in the liquid due to the increasing turbulence,

while the pulsating flow has less significance. This means that the energy required to

>

maintain pulsating flow is relatively higher as V increases.

7.2.4 Effect of Solids Concentration:

Solids concentration is a critical and important parameter simply because it has a
grefit effect on the physical properties of the siurry such as density and‘viscosity.
Additionall_‘}, theé¥shear rate-shear stress' response is fundamentélly dependent on the solids
concentration.

The effect ofsplids concentration on the ratio Jp'/J5 is illustrated in Figure 7.19. In

this Figw%iues‘ of Jp/.ls are plotted versus C, for certain values of \, A and V. More

precisely, thedurve given in'the figure represents the ratio qus as a functiorr of C  at the
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optimum pulsing frequency and amplitude, and at the lowest flow velocity investigated here.
[t i5 obvious that there is an optimum value for C,, at which the maximum beneficial effect of
pulsating flow occurs, or in other words, at which'mini‘mum -JPJ'J5 is ughieved. This minimum
is found to be at about C, = 20% and its magnitude is about pr'-ls = (.82.

In the range of C = 0-20%, as C increases the ratios d /M, drop toward ‘the'ir
minima. This agrees with the observations of Shizgal et al. [13]. [t has been found that aé C.
increases from 5% to 20%, the rate of inward radial particle migration increases significantly,

particularly where C_ > 10%. Also, the thickness of the particle-free layer adjacent to the

[ .

pipe wall increases with the increasing rate of inward radial ;nigrat.ion. ) As it has been
discussed before, the formation of a particle-t’reg layer, whic.h acts as a lubricant, is one
possible meci;anism for the observed reductions in the hydraulic power in pulsating flow.

It [‘oj'lows from the preceeding thut there 15 a limit at which the particle-free la__\'er
has reached its maximum thickness and a plug flow of the suspension is established.

‘F'urther increase of solids particle concentration beyond its optimum value may
result in a dramatic change in the shape of the actual velocity profile. Due to the plug Mow
_situation, the radial velocit_\‘; gradient may differ very little from zero and therefore more
uniform viscous forces over the particl‘c surface result in less rotatioln which cause significant
reduction in the spin li'l;t, it may e\;en vanish. Also, the shear lift will be reduced because of
the major change in the relative velocity between the solid particles and the liquid. The
~reduction in-the total lift will naturally result in a great change in the inward radial
migration. This series of events is confirmed by the dramatic increase in -Ip/’Ji in the range of
C, = 20% - 35%. For solids concentration hit:;her thun 35¢%, -pr-I‘; continues to increase us C,

increases, but at a much slower rate.

S



7.3 Limitations )

- The theoretical results pl:esented in Chapter 6 are quitg general. Unfortunately, a
fully detailed comparison between these results and the experimentai results obtained for the
bentonite clay-water suspension is not possible due to some limitations:

1. In the mathematical solution presented in Chapter 4 and from the results

[ 3 :
presented and discussed in Chapter 6, it has been proven that the flowrate can be

—

increased by superimposing an oscillating flow component over the steady flow.for

non-Newtonian fluids at the samepressure gradient. According to the assumption -

* .

of constant mean pressure gradient, the solution is actually forced to a situation in
which due'.t.o the iligh shear stress generated over the accelerating phase during
each pulse, increase in the velocity is achieved. This fact agrees well with Barnes
et al. [1] and with Walters and-Townsend t2]. There is, however, another situation
which is possible, but may not be neces§gry. This is, as the fluid is dominated by.
the high viscous forces near the pipe wall in the accelerating phase, the fluid
apparént viscosity decreases and the frictional pressure drop accordingly decreas‘;es.
while the velocity or the flowrate remain uncha;lged. The values of the hydraulic |
power resulting from both situations are not necessarily equal. |

2. Bentonite clay-;v.atélr suspension is in fact a thixotropici material it has a finite
relaxation time, while the theoretical solution presented in CHapters 4 al}d 6 are
for non—th'ikdtlfb'pic non-N evfrtonian fluids where the relaxation time is zero.

3. Typical viscometric flow curves éivén in Figure 5.3 show that at high conccn&cat’ion
of bentonite clay in water, the su’spension behaves asa general Bingham fluid. The

actual flow curve shéws a slight deviation from the constitutive equation-(4.1)

which assumes inelastic behaviour where [t < t, It appears from Figure 5.3 that

S | :



- 7 ‘ 139

there is a very small value of shear rate corresponds to the point of breakdown, i.e.
’ Y
the point of [t] = ¢
4. It has been shown in Section 7.1 that the velocity arr::l’ihd& A[D/}E MV) is
function of the pulsing amplitude. Any change in A will result in a corresponding
- . .
change in the velocity amplitude,and consequently in the pressure amplitude,

On the other hand, in the theoretical treatment to the problem of pudéatiﬁg ow, it

has been assumed that the pulsing frequency and the pulsing amplitude gre non-

interdependent parameters. This limitation arises from the physicpl design of the

) .

pulse generating equipment,

r
!
-

A

PR

- & « (nA[D/AM]? MV)™. - /j
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-+-  CONCLUSIONS AND RECOMMENDATIONS
8.1 Conclusions

The study that.has been presented allows one to bring out a certain number of

important results on thie unsteady state flow of non-Newtonian fluids. Dishi uishing

between two types of solid-liquid suspensions in terms of homogeneous flow and
hetérogeneous flow, it was possible to characterize the influenceof pulsating flow parameters

on each type separately. .

Experime cried out with two markedly different types of slurries or

suspensions, and e pfin ipally based on%easuring the instantaneous flowrate and the

instantaneous pressure drop over a defined length. The use of a computer was qbviously'

g, L
- -

needed for caleulating the hydraulic polwer requirements under different flow conditions.

On the other hénd, in order to_expand the range of the present investigation, a
mathematical formylation was dgveloped for homogeneaus non-\IQ\\.rto'nian fluids using
generalized Bing.ham model. ,An‘explioit/ﬁnit_e gliﬂ'erence- scheme was used to tre'art. CSZ
eqﬁations governing the flow. ‘ . ‘ - ~

Atteﬁtion wés mainly 'Focussed on the e\:-olutionlof the preaicted vélncity profiles
when the fluid underwent a périodic axial pre%sure grz;die_nt or,a suddenly imposed constant

pressure gradient. Attention was also focussed on thé ratio of pulsating flow'energy to steady

flow energy as a function of frequency, amplitude, average flow velocity and solids weight

concér&ration.

71 The following general conclEsions can be drawn:
r ] -

1. The numerical solution allowed a sysématic study of the influence of different

paramet%nd in particular, the rheological ones. The expelri'ments by themselves
é ) .

R
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flowrate. The hydraulic power requirement in pulsating flow of Bing)fm tfluids

‘however, depends on the yield stress of the fluid and on the value of n.,

141
A
' ]
cannot achieve these results beca\u\ée one parameter cannot be varied withlout
affecting another. ) ' L

Typical velocity proftles are presented for different pulsating flows for values of

"

n = 0.7 and 1.0, und values of r.u/r.w = 0.32 and 0.44. The inﬂucnce ot all the major .

variables is demonstrated. Significant flow reversal could not be achieved for the
investigated values of frequency parameter and pressure amplitudes but it may be
achieved however, at low frequencies and higher ump’litudes—.) !

In the theoretical part, for values of frequency parameter ¢ less than about 20,

pulsations are seen to increase t™®flowrate of Bingham fluids. The maximum

. -

increase in the flowrate occurs in the region 2 < ( = 4. The existence of a peak in
the llowrate agrees with other exPerimanul investigations.
It has been demonstrated theoretically that the hydraulic power requirement in

4 1 4

pulsating flow of power law fluids is never less thun that of steady flow u%}he/sume

¢ * s

may possibly be lower than that for #feady flow at the same flowrates” This,

Typical velocity profiles predicted for start-up flow are presemfed for the same

- . Lo . . .
. values of nand t /t mentioned in ho. 2, [t has been seen that the transient time of

Bingham materials is muchgless than that of Newtonian or power law t1hy

On experimental side, pulsating flow uppears to be advantageous in the
' .

_transport of solid-liquid mixtures. This advantageous situation results in the

reductipn of hydraulic power. This reduction is accentuated when the tluid

-

deviates considerably from New€onian behaviour.

4 .
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1. * There are at least two kinds of phenomena in pulsating flow of solid-liquid
- mixtures, . T | -
These are:
I) ~ the formation of a low %iscosity layer near the pipe walls in*homogeneous non-
' Newtonian ﬂuid.for p0\.ver law and Bingham fluids;
II) the formation of a particie-free .layer édjacent to the pipe wall - this occurs in

heterogeneous slurries due to inward radial migration of solid particles from the

wall.
8. Reductions in hydraulic energy are possible only with certain combinations of

pulsing frequency, pulsing amplitude, average flow velocity, and most importantly
solids. concentratioq. The optimum*frequency inﬁmost cases was found to be of the
«  orderof0.3 Hz, while the lowest amplitude investiggted here indicated that it is the
best. . - |

It should be er.ﬁphasized, how;aver, that these results are very much
dependent on the pulse generating mechanism and the flow phenomena may vary
m.:f.:ording to the; applied puléations. There,is no question however that the effect of
!‘low parameters on the power ratio JPIJ . remain; the same irrespgctive of what

piece of equipiment being us;:d. ‘ N
9. It has been ex}:erimentally observed thaf. the ratio of hydrauiic power Jles is

strongly dependent.' on the solids concentration. " In the case of clay-water

suspensions increasing solids concentration enhances the non-Newtonian nature of

the fluid and increases the vield stress significantly. The consequence is a lower
value of‘Jles. On the other hand, in the case of coal-water slun-'ry the flow is
heterogeneous and increasing the solids concentration may make the effect of

inward particle migration, due to low pulsations, more and more pronounced until

o

-3
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8.2

“of Bingham fluids.

143

eventualll_v a point is reached (C, = 20%) where increasing the concentration
causes an opposite effect on the power ratio. This may resull from fundamental
changes in the lift forces which are responsible for inward radial migration.

Although ‘the amount of ‘possible savings-in hydraulic: energy in the case of

‘Bingham materials by pulsation is not significant from the practical

-

hydrotransport point ofview‘. the theoretieal analysis presented here is very useful

in the field of hemodynamies and to many industrial areas in particular heat/mass

ttfansf.er. 1{‘/ .. ‘ ]

[n view of the potential industriul applications of pulsating flow to cq.al slurry
pipelines, it woul'd appear that hydraulic energ}" requirements ‘can be lowered by at
least 20%. Although' additiona] capital equipment will be required to produce
puls.ating flow, tl'lis‘should be minimal since the values of frequency and amplitude

-

{teTow. There is no doubt from the study that further work is justified so that

the effect of gulsations on overall casts can be assessed.

Sugges!’.ions for F ﬁrther Studies

As suggestions for further studies, the following are presented.

Y
Laser Doppler anbmometel_"s prov‘ide a method for measuring local velocities
without insertion of a disturbance-producing probe into the flow field. Detailed
velocity measurements in pulsating flows of Binghar.n materials, using such
techniques, would be.ver_v useful as a comparison with the theoretical pr%dictions

- - .
presented in Chapter 6 and others which can be obtained hy extending these

predictions. Additionally such a study can provide detailed information about the

flow stability-and occurrence of turbulence as well as relaminarization of the flow

n
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3 - -

The present theoretical investigation is quite general and comprehensive, but yet it

was limited to one kind of wave shape which was a uniform, symmetric, periodic
g Tt e . \

sinusoidal form. An extension of‘t—hi’é’ should be done to include other kinds of
pressure waves to investigate other possibilities of energy saving by pulsation.
In the px:esent experimental’ investigation, only four parameters were studied,

[ i ' ' ) R
these we,gulsing fr u\e‘ncy, amplitude, average f{low velocity, and solids
-~ .
concentration. | However, the existing experimental rig with some modification

facilitates further experiments which may include the effects of wave shape, mean

particle size and size distribution, different carrier fluids, solids density, particle

) shape and pipe geometry. ) : %
.

The behaviour of individual solid particles under different pulsating flow
conditions is still unknown. Further experimental study of radial migration of

solid particles and other phenomena such as mixing effect or destratification of the

flow due to turbulence changes is necessary for understanding and exploring the

advantages of pulsating flows of heterogeneous slurries.

Before any industrial application to coal slurry transport by pulsation, an overall .
P .

—

evaluation from economical viewpoint is necessary. This wiit requ%re Eﬁﬁ-ﬁdeiatioﬂ

of item 3 above. I . LR

»
L

The present theoretical and experimental models ¢ besmodiﬁed to include the
-

‘ ~ \ _ i
problem of hedt.transfef which has potential applications in many areas of
] ) 1 / -
industry. :
T
N



-

1. The theoretical formulg&ion presented in Chapter 4 was based on the constitutive
equation of generalized Bingham fluid which does not atlow viscoelasticity int
\ .

account. Hence, further theoretical work on pulsating flows of viscoelastic

materials is recommended. . . "

N$
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APPENDIX A

DETAILS OF PULSING EQUIPMENT
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PULSATING FLOW DATA OF

. " BENTONITE CLAY-WATER SUSPENSION
" Table (B1): - Ty =297%, Mean Temp. = 26°C
V=163ms, : Js = 7.695 Watt

Jp (Watt) G | ‘nADAR MV

J : ' 158 T



Table (B2):

159

[ .

|

Cy = 2.9‘?\%\,-// . Mean Temp. = 26°C

V =.2.18 m/s, Js = 16.321 Watt .

nA[D/d) WV
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Table(BS):. Cy =2.97%, pan Temp. = 26°C

l{\ V=263ms, . s = 25.273 Watt

Jp (Watt) nA(DAR MV




. - . ‘ 161

Table (B4): .. Cw=4.47%, ' Mean Temp. = 27°C
V = 1.63 mss, o de=12.013 Watt

n. A[D/]2 MV

~.64437
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. €
Table (B5): Cw=447%, \/__/ Mean Temp. = 28°C 1
V=218ms, © Jy=19.156 Watt .,

Jp (Watt) mA[DM? WV
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-

. Table (B6): - Cy = 4.47%, Mean Temp. = 30°C

V = 2.63 mss, Jg = 26.275 Watt

nA(D/d)? vV

v
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Table (B7): Cw = 7.63%, " * Mean Temp. = 27°C

V = 1.63 mvs, ‘ J = 12.226 Watt

J, (Watt) nA[DA]2 MV

L d
—~



——r
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Table (B8): Cw = 7.63%, MeanTemp. = 29°C

- V=218m/s, . Js = 20.083 Watt

mA[D/A]? VvV

19.75‘;_2 ) . 06765

19.681 . 14242

19.541 : 18511

"19.561 _ : . .22750

w14z /[ . \ 27486

21.027 37490
A\ -

19.641 52. 09104

| 19.541 15767
- 19.785 . : .18395

20.123 29986
20.585 " 33740
21.248 . 39887

22152 . .46503
19.701, : 2 - | 13

- 19.380° . 17433
19.8%2 s 25531
éo’.s;aé 34591
' “.40699
47219
53190
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Table (B9): Cw = 1.63%, Mean Temp. = 32°C

7. . V=263m/s, Jg = 30.555 Watt

* Jp (Watt) ' " rA(DAR WV
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L( Table (B10): Cu = 11.2%, Mean Temp. = 27°C
\ V = 1.63 ms, = 12426 Wate
A(Hz) LWa | o 5, A (mm) nA[D/AZ IV
241 /12.028 968 34.6 10045
375 11.904 958 15630
651 11.917 959 27133
832 11.929 960 34677
e~ 984 x 12.215 983 ~ 41012
1,144 12.339 993 47681
240 11.867 955 52.1 15062
408 1.830 ° 952 25606 *
. 547 11.842 953 | 34329
687 12.240\ 985 "\, 43116
- ' 832 12.699 ° 1.072” \ 52216
. . - 1
979 13.022 1.048 61442
240 11.904 958 76.2 22030
— - 398 11.966 963 36533
y 545 \12.252 986 | 50026
721 12.525 1.008 ” 66181
494 12.909 -~ 1.038 45344,
’ (649 13.408 079 59572




Table (B11): Co = 11.2%, . Mean T}m = 29°C

V=218m/s, Jg = 21.196 Watt

Jp (Watt) j n AID/IZ MV




Table (B12):

i

S
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—

\

Mean Temp. = 30°C

b Jg = 33.730 Watt

Jp (Watt) - n.A[D/M]Z WV
255 32.145 953 76.2 14507
388 | 32.617 967 22073
s42 " [ 32752 T 971 30834
209 33.561 995 < 40334
826 33.865 1.004 . 46990
955 _—~]  34.506 . 1.023 : 54329
253 32.549 965 52.1 09841
399 32.38) 960 .15520
544 32111 952 21160
700 32.448 962 27228

870 32.718 970 . 33840 _
1.018 32.988 978 ~39597
1.135 33.764 1.001 _ 44148

- 246 33.000 978 34.6 06355 |

393 32.546, 965 10152
561 32.377 960 14491
706 32.415 961 18237
- .885 32.145 953 22861

1041 33.123 982 i . 26891
1183 32.954 977 30559

- 3 N~
» f\)— .



Table (C1):

s
: APPENDIX C
o
ULSATING FLOW DATA OF
COAL-WAT{ZR SLURRY

Cw = 5.342%,

V=1.63ms,

J, (Watt)

~—

" Mean Temp. = 26°C

Js = 7.882 Watt

170
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., " 1
’ : 171
, )
Table (C2): Cy = 5.342% . . Mean Temp. = 26°C -

V=218mis, Js = 16.347 Watt




Table (C3): Cw = 5.342%,

V=263ms,

Jp (Watt)

.

-

'\Mean Temp. = 29°C

Jg = 25.880 Watt

-

172



]

Table (C4): ~

Cy, = 8.903%,

V =163ms,

Jp (Watt)

“Mean Temp. = 28°C

Js = 8.020 Watt

173



Table (C5): Cw =8.903%" Mean Temp. = 30°C

V =218 mis, Jg = 16.807 Watt

Jp (Watt)

- 16.664
16.429
16.925

- 18.132
18.845
20.731

16.045 °
16.428

16.839

17:275
18161 |
20.500
16.521

" 16.740
17.227

I 18.252
£19.530
122,488

S
b 4



Table (C6): Cw = 8.903%, Mean Temp. = 31°C

V=26ms, Js = 26.783 Watt

Jp (Watt)




Table (CT): Cw = 14.245%,

V=163ms,

Y

Jp(Watt) ~

&

' s
Mean Temp. = 27°C

Jg = 8.479 Watt

s

176
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p ) . ' A .
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#Table¢G8):-.  C, = 14.245%,

b A= 218 s,

-—

Jp (Watt)

*Mean Temp. = 27°C

Js = 17.133 Watt -

17T



Table (C9): .

Cw = 14.245% ,

i, (Watt)

V = 2.63mfs,

" Mean Temp. = 36°C

Js = 26.B63 Watt

178
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Table (C10): Cw = 19.587%, . Mean Temp. = 26°C

V=163ms, . Jg = 9.437 Watt

dp (Watt)




LR

Table (C11):

™

Cw = 19.587% ,

V =218m/s,

Jp (Watt)

17.366

-

180

Mean Temp. = Z?QCQ

Js = 1B.278 Watt

17.320

17.228

18.644 1.020 A .
20.128 1.101 )
22 341 1.222 .
22.906 1.253
17.145 938 34.6

' 15.948 873 ' ] .
15.531 B850 g
16.147 883
16.703 914 N
17.539 .960 B .
18.883 1.033
21.785 1.192
17.913 980 76.2 |
17.821 975
18.350 1:004 AI
18.735 | 1.025 |
20.250 *“1.108 I

22.208

1.215

23.150
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[ 4 ,
Table (C12): Cw = 19587%, Mean Temp. = 35°C

V=263mss, J = 27.716 Watt

Jp (Watt)

L



Table (C13):

Cw = 24.93%,

V=163mfs,

Jp (Watt)

182

Mean Temp. = 36°C

Js = 9.536 Watt
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.
Table (C14); Cw = 24.93%, - MeanTemp. = 39°C
T~
V=218ms, J, = 18.253 Watt

Jp (Watt)
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Table (C15): C. = 24.93%, Mean Temp. = 34°C

V =263mss, ) Jdg = 27.809 Watt
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Table (C16)° Cw =30.271%, _ Mean Temp. = 31°C

V = 1.63 mvs, Js = 9.655 Watt




: : : . oo
Table (C17): Cw =30271%, ban Temp. = 32°C
< _V=2I B, "Js = 19.061 Watt

~h ) . . ‘
A{Hz) Jp (Watt) dplds A(mm) .

17.973

17.910
18.508
©19.298
20.534

22.906
23.355
18.543
18.089
18.140
18147

19369

20.917

23.466
18.708
18.604

19.042

19.652

20.624
21.882
22.969

NS
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! .
C\ Table (C18):  Cy = 30.271%, Mean Temp. = 32°C
V=263dms, I, = 29.452 Watt

Jp (Watt)

.
-,
v v
-
,
L]
.
L
-
oh -
. ’
.
=
- v Y
R @
.‘ N -
€
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Table (C19): Cy = 37.5%

~,
V=163m/s,

dp (Watt)

3
A

188

/

«
Mean Temp. = 37°C

Js = 9.712 Watt

10.124

11.072

12.479

R 4
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Table (C20):

Cyw = 37.5%,

V =2.18m/s,

Jp (Watty

Mean Temp. = 36°C

Js = 19.361 Watt

139



Table (C21):
Al

A(Hz)

- Cw = 37.5%,

V =263m/s,

Jp (Watt)

30.052

Mean Temp. = 406°C

Js = 29.903 Watt

A (mm)
<

30.023

29.906

30.205

30.651

30.850

33.043

189 29.155 975 52.1
334 29.006 970
491 29,245 978
659 30.053 1.005
861 31189 1.043
1.090 33.013 1.104
182 29.514 987 76.2
301 29.694 993
466 30.262 1.012
659 *30.740 1.028
32.325 1.081 |

33.402

i90

N\
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g "
Cwzn
Table {C22): Cyw =.44.64%, Mean Temp, = 38°C
"V =163ms, Js = 9.766 Watt




192

Table (C23): ; Cw = 44.64% , Mean Temp. = 40°C

V=218m/s, | Jg = 19.367 Watt

Jp (Watt)




Ly

Table (C24):

Cyw = 53.7%,

V= 1.63m/s,

Jp {(Watt)

193

i
Mean Temp. = 41°C -

Js = 10.005 Watt

- cf
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Table (C25): - Cy = 53.7%, Mean Temp. = 43°C

V=2I18m/s, Jg = 20.237 Watt

Jp (Watt)

20.326
20.204
20.317

20.157
20.845

22.362
23.824,
20.158
20.117

20.831

21.155 . . ‘ | :
22 475 : ' - \\
23.188 . : ’

23.966

20.253

20.318

20.763
21.330

22.362
23.536 . 16 .




caonn

0o

Oaaaann oocaonoaaonaoooaadaaccoacnonnnacacac

DIMENSION U(21),V(11,21)

APPENDIX D

COMPUTER rawGHAM FOR FINITE DIFFERENCE CALCULATIONS

DIMENSION HPIC 1) ,HP2( 1), HP3C1) ,HXC 1) ,HYC 1), WX(21) , WY(21)

.ITG(IO).RG(II.2I),NN(ll).U0t2l).UFi21)

**x**xt*x*mxa*m*z**x**xxa*zmx*x*******m*****x**xx**z*xx*****k

*®
®
x
E
®
®
®
k3
x
®
*
T
x
~F
®
®
*®
x*
*
*

*x
ES
x
*®
E'S
*
*
ES
x®
*®
x
*

U.......ANMAY FOR DIMENSIONLESS VELOCITY
V.......ARRAY FOR VELOCITY FROFILES TO BE PLOTTED |
- - R .

ITG. ....ARNAY FOR STATIONS 6& THE TIME AXIS AT.
WHICH VELOCITY PROFILES REQUIRED TO BE
PLOTTED

RG.......ARRAY FOR NODAL POINTS ON THE RADIAL AXIS

Mi.......ARRAY FOR NUMBER OF NODAL POINTS ON THE
RADIAL AXI1S AT EACH TINMNFE STATION -

UO.......ANRAY FOR VALUES OF DIMEKSIONLESS VELOGCITY
AT TIME ZERO

UF.;.....AHRAY FOR VELOCITY PROFILE FOR FULLY
DEVELOPED FLOW ' )

HP1,[P2, ARHAYS FOR TYPIRG INFORMATION ABOUT EACH
HP3......GHAPH

HX,IFY. . . . ARRAYS FOR TYPING INFORMATION ON THE AXIS

WX.......WORKING ARRAY FOR STORING VALUS OF VELOCITY
FOIl ONE PROFILE AT A TIME

WY.......WORKING ARRAY FOR STORING RADIAL POSITIONS
OF NODAL POINTS FOR ONE PROFILE AT A TIME

****k**ﬁ***************K**************3********************

DATA HIX/1HU/ ,HY/ 1R/, NIIX,NAY-1, 1/

E
*
x

AR R R KRR K oK R R

]
NAME X-AXIS U,AND Y-AXIS R *
x

LSRR S SEE LSS FEF A S22+ T ET e e

PI=4*ATANC1.@)

195

*
x
*
E 3

E
E
*
*
*
E S
E 3
x*
*
*
E 3
*
*
*
x

e
x
*_

<
*
w®

*
*
*
x
x
*
*

009001
0090002
009003
002004
0199003
099000
0099907
@00008
009009
009010
090011
092012

099013"

000014
000015
000016
0020Q17
000018
009019
009020
009021

000022
000023
0090024
2092023
000026
00227
000028
000029

000030
000031

000032
092033
000032
000033
009036
000037
000038
000039
000040
000041

000042
009043
000044
009043
000046
090047
000048
000049

999030 .

090031
200032
009003533
0090034

kb cin i
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L4 196

READ( 5, %) ¥, PL, EN, ANP , FREQ 000033

READ(C 3, %) DELT, DELR, NTHAX, IV, IR, THAX, NR, NG, NCONT i 10090356
READ(I,)CITG(1),1=1,1&) ’ ono0aT
- ) . 009058
AR R R R N K R R K R R IR K K R R KRR R R R R R K KRR A Q00939
* . ' E S 809060
* INPUT DATA * 209061
k3 ZEOE=IEI==E = 009062
* * 909063
* BN.......REYNQOLDS NUIBER * e9v064
Ko . ' L Q0000605
* PL.......PLASTICITY NUMBER *® 979066
*® LS .. 0090067
* EN.......NON~-NEWTONIAN INDIX N * 9IV008
® - - * 999069
* AMP......DIMENSIONLESS PRESSURE AMNLITUDE * 200070
* * 090071
* FREQ. .. ..DITIENSIONLESS FREQUENCY * 200072
*® *® 900073
*x DPELT.....STEP SIZE ON THE TIME Ax1S L] 200074
® . R 0090073
* DPELR.....STEP SIZE ON THE RADIUS AXIS * . Q00076
x PR * 009077
x NTMAX. . . .NUMBER. OF STEPS ON THE TIME AXIS T JE SOLVED * e0owoTo
*® . - *® 000079
*® IW,.......CONTROL VARIADLE FOR TYPING (WITH RESPECT TO ES 099080
x TIME AX1S) ES 000081
® R * 009082
*® IR.......CONTROL. VARIABLE. FOR TYFPING (WITH RESPECT TO ® 909083
E3 NMADIAL AXIS) x 009084
* * ‘00083
® THMAX. ... .MAXIMUNM VALUE OF. DIMENSIONLESS TIIME x* = 9002086
* ' * 900087
* NR.......NUMBER OF NODAL POINTS ON THE DPADIAL AXIS * 2092088
E * 000009
. * NG.......NUMBER.OF VELOCITY PROFILES TO BE PLOTTED * 2009090
" : . * 009091
® NCONT....A CONTIOL VARIABLE EQUALS , 1 FOR PULSATING * 0090092
E 3 FLOW , EQUALS 0 FOR START-UP FLOW x* 099093
® . ® 900094
AT NIRRT KK K R K K R KRR RO R R O T R K KRR R K R R R Q00093
000096

DO 109 1=],.KRG : 000097
MMC(1)=RR ) 200098
DO 190 J=1, MR ‘ 000099
10 RG(I,J)=—FLOAT(NG~1+1)+FLOAT(J-1)*DELR - J 000100
: ’ 900101

AR AT AR SRS R K K AR SR S K R K KR KRR R R 000102
* _ * * 000103
x CALL SUBROUTINE. NEWTON TO CALCULATE THE * 006104
* FRICTION COEFFICIENT * 000103
* * ' 000106
IR AR T R R SRR TR MK O R 0 0 SN O KR R R 000107
009108

CALL MEWTON(RN,PL,EN,.F) ’ . 000109
0901190

R S AR R SRR T S R K SRR R O N R SR K R R SRR R 900111
N . - * 000112
* CALCULATE THE RATIO BETWEEN PLUG FLOW RADIUS = 0090113
* AND PIPE RADIUS IN FULLY DEVELOPED FLOW * 000114
L o * Q00115
42305305 7 00 3 305 K01 G SIS R RS 300 0 9 KK 6 UG S9SN S O R KKK 000116
000117

RATIO=B*PL/IHH*F)_ . 990118
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2909

300

400

197

»
) .

VN=({ 1+3®EN) ~( 4xEN) ) *xEN : 000119
A=DELT/(FTREQ®%VHN) 002120
C=2RPLRVN 000121
000122

FARTCR RN R R K KK R R 0 1 3 R G K SR O S 20 3 0 O 203 3 SR K O 0 0 S S S S S Q00123
*® * oaN 129
* CALL SUBROUTINE STARTI 'TC CALCULATE THE VELOCITY PROFILE =% ogglzs
* AND TO INITIATE THE FINITE DIFFERENCE SOLUTION!' FOR START * -909126
* “UP TLOVW.OR,CALL SUBROUTINME PULSG1 TO CALCULATE TiE * 000127
* VELOCITY PROFILE AND TO INITIATE THE FINITE DIFFERENGE * 000128
* SOLUTION FON PULSATING FLOW. * - Q00 129
x . *® Q0N 130
A R R R R R 3 T I S R K R R S K TR R S R O K 0 R N KK 000131
000132

IF(NCONT.EQ.0) CALL STARTI(RN,PL,EN,F,[fR, IR, DELR, U9, UF) 200133
IF(NCONT.EQ. 1)CALL PULSG1(IWN,PL,EN,F,NR, IR, DELR, AMF, FREQ, U@, UF) oNo 134
DO 200 1=1,NR 0D9133
Vi1, I)=UF(I) ' 000136
L=1 009137
J=0 090138
MC=0 f . 009139
[Q=0 000 140
SUNQ2=0.0 . 000141
SUNRe=0.0 00e142
SUNnr2=9.0 , 009143
SUrNP4=0.0 009 1449
HFACTR=0O - 009143
J=J+1 : 0V 146
MC=TIC+ 1 ] . Q00147
T=JrDELT . Vo148
IF(T.GT.THAX) GO TO 200 . . ’ 2992149
IF{NCONT.EQ.0) D=0, FI=FxAN*VN T 009150
IF(NCONT.EQ. 1)B=0, SFF*RN*VN*(l+AMP*SIN(°*PI¥T)) . 002131
. 092132
m**m:*s****m********x*xx******x****x****m*****qx*#**x**zm*zg* 2090153
- X% - 909154

* CALL-START2 TO CALCULATE THE INSTANTANEOUS VELOCITIES * @0015335
* AT NODAL POINTS FOR START-UF FLOW.OR,CALL PULSGZ TO * 002136
* CALCULATE TUHE INSTANTANEOUS VELOCITIES AT NODAL POINTS '= 0900137
* FOR PULSATING FLOW. . * 000138
* * 2092139
TR K N T R AR T 3 S R T S0 O R O N TSR S R R R K X SR K 020160
. 099161
IF(NCONT. EQ.0)CALL START2(A,B.C,EN,NR,DELR, Vo, U) V0162
IF{NCONT.EQ. 1)CALL PULSGZ(A,B,C,EN,NR,DELR, Ve, Q0% 16D
DO 400 1=1,NR 009164
UuoCI»=uC ) ’ 900163
IF(NCONT.EQ.9YG0 TO: 300 09901606
" ) 099167

AR R AT IR R K R R AR AR R I K SRR S A SR 2K 230 K RSO S 3 K R K R o 009168
£ x 2999169
* CALL AINTGR TO CALCULATE THE INSTANTANEQUS FLOWRATE USIKG * N 17e
* NUMERICAL INTEGRATION. 3 *x 090171
® . * 000172
TN AN 2 S O K AR K WA AR A AN IR 00173
' Q00174

CALL AINTGR(U,NR,DELR, @) 090173
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10=IQ+1 o0D176
IF(IQ.LT-NTTMAX) GO TO 530 UL g d
. QFIN=(SUMRZ62Z, +SUNQ+%4 . +Q) *DELT/3. 0 0021708
"PFIN=(SUMP2*2. +SUMP+%4 ., +QF( I+AMP*SINC2%P1%T) ) ) XDELT/3.0 ' 09717y
POWENR=I'F IN/QF IN:%(EN+1) - . 009180
syMez=e-2., 0001061
SUMQ4=0.0 . 000162
SUMPZ25Q:( 1+AMP=S IN(ZXPIXT) ) /2% : N Q09 183
SUMP4=0.0 009 184
1Q2=0 0091835
NFACTI=9 009186
LTOP=1 : 010187
GO0 TO 500 0901608
30 LTOF=0 009189
IF(NFACTR.EQ.9}GO TO 333 - . 099190
SUNe2=SUNZ+Q " 009191
SUMPZ=SUMNP2+Q%( 1+AMP .S INC2XP[XT)) - 2939192
NFACTI=Q . ' 009193
GO TG 309 009194
333 CONTINUE — 009193
SUNAE=SUTIR4+Q " . s 000196
SUMP4=SUTIP4+@x( 1+AMPXS IN(2%P I*xT) ) : 000197
NFACTR= 1 - : 079198
300 IGCNEK= ITG(L) ) ' 209199
(¢ ICHEK. EQ.J) GO TO 600 0 0090200
GO TO 800 ‘ T e09201,
600 L=L+1 ¢ . . ongz2o02
Bo 7¢0 1=1,NR 000293
700 V(L,D)=UCl 000204
800 IF(MC.RE.IW)GO TO 300 000203
. MO=0 009206
WRITE(G, 1XT,(UCL), I=1,KR. IR : 00207
1 FORMAT(3X, "T=",F7.4,3X,11(F3.4,2X)) . 000200
IF(MCONT*LTOP.EQ. 1) WRITE( 6, 2) QF IN, POVERR 090209
2 FORMIAT(/~/,20X, "Q=",F12.8,3X, "P=",F12.8,-7) ‘ 000210
GO TO 300 . 009211
' . 009212
EEE IR R PSR B e B R SS T R 2 R R g R T e e Py e e e00213
* . * 090214
* CALL SUBROUTINE GRAFPHS TO PLOT ALL VELOCITY PROFILES AT * - 9YR213
* THE SFECIFIED TIMES ‘ * eId216
x : * Q09217
:nx:x**xex*:s*x********xx*x***:x***xx**x******z*****m****t******* 009218
029219
900 CALL GRAPAS(-1!.,0.,-1.,6.,16.3,5.,RG,V,MM,NG, 11,7, HX, NHX, - eno2z0
+UY,. NIy, 4P 1, KAP!, HP2, NHPZ, HP3 , RHP3, WX, W) A o022
STOP . 000222
END . 099223
. . .
Ao

- w3




a0

SUBROUTINE STARTI(RN,PL,EN,F,NR, IR,DELR, U, UF)

=======ﬂ====-BH"=======:====~=:I=========BBB=

DIMENSION UC21) ,RIC11) ,UF(21) .

WRITE(G, 1)IW,PL,EN
1 FORHAT(//,4OX,'**********SOLUTION FOR START-UF FLOWAKEEEEERRE"
+-r, 10X, "RN{,",F8. 1,7, IOX.“PL='.FB.1 7y 10X, "N="  F4.2)

RATIO=8*PL/(F*RN)
DO 200 I=1,NR ’
: R=1.~(1I-1)yxDELR ‘ . -
IF(R.LT.RAT10) R=RATIO .
200 UFCI)=( 1+3xEN) 2 (FxAN-64) x IIEK)*((l—nATlO)**pl+l/Eﬂ)—(RFRATIO)

+ax{ 1+1-ENY)~( 1+EMN>
DO 300 I=1,NHR,INR
300 NN(IY=1.—-C¢I-1)*DELR"
WRITE(G,2)(RRCI) , I=1,8R, IR )
2 FOHNAT(////.]OX.”VELOCITY PROFILE OF FULLY DEVELOPED FLOW®, /),
+13X, 11(3X, "R="*,F3.1},-7)
WRITE(G,3)(UF(1},I=1, (R, IR
3 FORHAT(I?X.II(FB.4.2X)N
DO <00 I=1,NR
400 U(I)=0.90
T=0.0
WRITE(G,4}T,(UC1),I=1,NR, IIV .
<+ FORHAT(////.IOK “NUMERICAL SOLUTION OF THE PROBLEM STARTIHG
+"AT TIME ZERO",-/,3X,"T2",F7.5,0X,11{(F8.4,21D)
RETURN
END

189

099224
Q00223
Q09226
000227
000220
000229
900230
000231
009232
000233
000234
000233
900236
2000237
0992386
000239
0090240
099241
008242
009243
000249
000243
000246
0909247
002248
009249
000230
000231

“



. ‘ \\_.)\ - R . 200

SUBIOUTINRE PULSG1(RN,TL,EN,R,NR, IR, DELR, AMP,FREQ, U, UF) 000232

C RN TS S =SSR SCCSSSESEZE=ZXIEES===Z=S===3T- ============:===_= 200233
c ‘ 099234
DIMENSION UC21),AC11),UF(21) . ) ' Q9233
WRITE(G, 1) RN, 'L, EN, AMP, FREQ ’ Q09256

I FORMAT( -7, 40X, “mrrrraxrreSOLUTION FOR PULSING FLOWRRREREEEER", /7, 099257
+10¥, "AN=",F8B.1,/,10X, "FL=",FB8.1,-,10X, "N=",F4.2,7, 10X, "AMP.= ", Q0230
+F5.2,7, IOK.“FHE UENCY=“ ra.2y Q00239
RATI10=0:FPL-( FRN) - 992260

Do 200 1={,NR ‘ - 00026 ]
R=1.~-CI—-1)*DELR - . 099262
l}(“ LT.RATIO) H=RATIO 009263

UFC 1) = 1+3rEN) ¥ (FXRN-64) =k ( 1/EN}*( ( 1— ﬂATlO)**(l+l/EN) (R-RATIO) %% 009264

. FCI+IZ7ENY Y 7C 1+ENY 999267
200 UCI1)=0.0 : ’ e092606
B0 300 I=1,NR,IR a 099207

300 MU TIyY=1.—-CI~-1)=DELA., . ‘ 099268
WRITE(G,2) (RR( 1), I=1,NR, 1R) * 800269

2 FOWAT(-r-s, 10X, "VELOCITY PROFILE OF PULSING FLOW AT TIME ZERO", . e9027¢"
A, 1ax.11(5x.'n- +F3. 1,77 : 09271
T=0.0 000272
WRITE(G6,3)T, (ULI),I=1,NR, IR ’ . eqo273

3 FORMAT(3X, "T=",F7.3,3X,11(FB8.4,2X)) . . 090LETe
RETURN . e2e27T

ERD ‘ 2900276
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B
SUBROUTINE START2(A;B,C,EN,NR, DELR, U0, ) . 000277
BRSNS EIERE S-S SIS EIRESESSCSESES==Sc=—sooma 000278
i 009279
DIMENSION UOC21),U(21) 009289
U(1)=0.0 099201
D=(U0( 1>-Ua(2))DELR . 099282
IF(C.EQ.9.90)RATI0OR0. 0O ) 000283
IF(G.NE.0.0.AND.D.EQ.0.0)RATIO=1.0 " 200284
IF(C*D.NE.0.0J“ATIO?C/(C—&**(quNJ*D*(ABS(D))**(EN—I)) 0002837
PO 300 1=2,KR § . 200286
R=1.-(1-1)*DELR 000207
IF(R.GT.NATIO? GO TO 200 090288
IF(RATIO.NE.0.®) GO TO 100 . 000289
D=(UO(I~1)-UO( 1)) /DELR ' 0090290
=Z2rDPsDELN ’ ‘ egu291
IF(D.EQ. 0. M UC1)=UOC I} +A%D 099292
IF(D.EQ.0.9)G0 TO 300 4 090293
U(!)=U0(l)+nxtD+4**(2—EN)*E*((ABS(D))**(EN-I))*(l+(EN—l)* 999294
+(D/7ADS(D ) ¥CABS(E) /E) ) 2. ) \ 200293
GO TO 300 . ! epe296
1900 W I)=UO( I +AR(B-2%C-RATIO) . . 090297 .
GO TO 300 099298
200 D=(UOCI-1)~UOC(I+1})/(DELR%2.) . 000299
EC(UOCI-1)+UCC1+1) =2,%U8( 1) )/, DELTF*2) 009300
IF(C.EQ,0.0) =G/ » ’ 000301
IF(C.NE.0Q.0)H=£7RATIO s 0na302
IF(D.EQ.0.9. AND. RATIO0.EQ. 0.0) U( 1) =UO( 1) +A%D . 090303
IF(D.EQ.0.0.AN +RATIO.NE, 0.9 UC 1) =UOC 1) +A%(B—H) . 299304
" IF(D.NE.0O.9. .E.EQ.0.0)U(I)=U0([)+A3(B—H+(%.**(2.-EH)* 999303
© *DECCADRS(D) yRE(EN-1)) /R) ) ‘ 009306
IF(D.NE.®.9.AFD.E.NE.0.0)U( I) =U0C I) +Ax({ B~H+ 200307
TG RE(2 ~EN SEX(CABS(D) ) xx(EN-1) )= 1+(EX~ 1) (D~ S(D)? 900300
+ECADS(E) 7B Y 3 +( 4. %% (2, —~EN) %D%({ ( ABS(D) » %% (EN—~1) ) ~ ) oL 090309
300 CONTINUE ' . 990310
RETURN ‘ , “4+.0903 [
ERD ' 099312
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SUDROUTINE PUL802(A;B.gZEN.NR.DELR.UO.U) 9
I ER=SFEDIRRASAISSIREZDSER CESCSoEEZ==S=EmEomEER

DIMENSION UO(21),UC21)

DW= (UO( 1X—-Vo(2) ) DELR

IF(C.EQ.0.90)RATIO=QM®

IF(DW.GE.0.9.AND.C.NE.©®.9)RATIO=.93
IF(DW.LT.0.0)RATIO=Cr{C+d.*xx( 2. ~EN>*(—DW) x( ABSC(DW) ) *x*k(EN—-1.2)
U(1)=9.0

DO 300 I=2,NMNR

R=1.-C(1-1)Y*DELR T
IF(R.GTVRATIOYGO TO 200 .
IF(IATIO.NE.0.0) GO TO 100
D=(UO( I~1)-U0(C ) ) DELIl
E=2xD-DLELIL .
IF(D.EQ.Q0.0XUC1)=UO( I)+AXB
IF(D.EQ.0.0)G0O TO 3090

UCI) =UO0C 17 +AR( D+4%x( Z-=EN) #*EXx{ ( ABS(D) ) *X( EN—-1).)®( 1+(EN-1)*® : i

4

,~trnx¢33(o))x(ABS(E)/si)xz.) .
GO 300 ) .

1090 IF(NMATIO-R,LT.DELR)GO TO 130

V1Y =UCTI-1)
GO TO 300

130 D=(U0(I-1)-U0( 1)) DELR

3200

E=(UOC I-1)+UQC1+1)—-2.%U0( 1))/ ( DELR*%x2)

IF(D.EQ.9.0YUCI}=U0( 1) +Ax(B-2*C-RATIO) ¢
AFCDLRE. Q. 02U 1) 2U0C 1) +AR(DB-C/RATI0+ (4. x%x (2, ~EN) ®*Ex( ABS(D) *%
+(ER=1.))x( 1. +(EN-1.)*(D-ABS(D) ) *(ABSC(E}/E)) Y +( 4.k (2, -EN)*
+Ie(ABS(D)**(EN=1.))-RATI1O))

GO TO 300

Ds(UOCI-12=-U0C1I+1))  (2.xNELR)Y -
E=(UOCI-12+U0C 1+1)~2,.:xU0( 1)) 7~( DELR*x2)
IF(C.EQ.0.021I=C/R A
IF(C.NE.9.0)U=CrR

IT(D.EQ.0.0. AND.RATIO.EQ.0.0)UC 1) =U0C I[)+axDB
IF(D.EQ.0.9.AND.RATIO.NE.0.0)U( 1) =U0< 1) +aAx( B-C-/RATIO)
IF(D.NE.Q0.90 . ARD.E.EQ.0.0)UC 1) =UQ( 1) +AX( B~H+( 4. xx( 2-EN) xD*( ( ABS(D

CAY)ER(EN=-1))y/10))

IF(D.NME.O.0.AND.E.RE. 0.0 U 1) 2UQ( 1) +AX{ B~H+( 4, ®*x({ 2—-EN)
THRERCCADBS(D) ) #x(EN=1) )% ( 1. +fEN-12%(D-ABS(D) ) *(ABS(E) /E)) )+
+( 4.6 2-EN)D=( ( ABS(D) ) *»CEN-1}) ) R))

399 CONTINUE

RETURI ~
END
et

202

000313
000314
009313
000316
000317
000318
000319
090320
099321
000322
0090320
000324
oVo32T
000326
009327
000326
000329
009330
000331
000332
0003I3
000334
000335
000336
900337 p
000338
000339
000340
009341
000342
000343
oN034+4
000343
090346
000347
000348
009349
000330
09935 1
000352
000353
000334
000333
000336

Ao

o~ -



SUBROUTINE NEWTON ¢(RX,PL,EN,.F)
C ================B======E==="—‘== -
c v ,
IF(PL.NE.©.0)GO TO 3 ' . -
F=04-RN . .
GO TO 20 . -
- J CONTINUE . . .
- . - Al=1+EN :
32=1+2*gg
A3=1+3%
C1=2xENXEN-( A1 *A2) .
C2z22xEN/AZ -
C35(4%xEN/A3) xxER
PLNN=RI=PL*3 . o
FINZ2=PLAR
100 CONTINUE . -
FRU2=FIUI2*x1.01
S=PLRN/FONZ -
D1=(C1xSRS+C2%S+ 1) xxEN
B2=( 1-8)yxE BN+ 1)
RANP=FIUI2ZxB1%D2-G%$ ?
ERNONR= ADS( RINP-IN> ~RIY
IF(ENRCON. GT.0.02)GO' TO 1Q@

€ F=FRNZ/NNP+:x2
20 . TNCTURN
END
. . , .
. »
- . ‘ ‘&I
\/ -
Y
- 'Y ‘;' 4 k )
- ¢ -
=
- Y
"‘-..._,\ » »

203

099337
000338
VP339
000369
QDOGGTJ
000362
099363
000364
0090363
999366
009367
900368
000369
290370
990371
000372
000373
990374
000373
9023706
000377
099378
009379
090380
000301.

000382

LS
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1900

200

SUBROUTINE AIRTGR(U,NR,D. e}

NNR=Nl—-1

DIMENSION U(21),1K21) §

e 109 I=1,HNR
RCI)=1.0-C1-1)xD

SUI+=0.0
3UIL2=0.0

Do 200 1=2,NKR,2
SUME=SUME+UCIERC D) |
SUM2=SUIZ2+U( 1+ 1)*xR( I+1)

CONTINUE

Q=D SUMN*4  +SUM2%2.) 3.0

RETUNN
END

r

I

A

204

onNn3a3
00920384+
ov0385
009386
009387
0093808
€00389
09923990
¢09391
009392
000393
Q00394
099393
Q09396
ovv397T
000390
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SUDROUTINE GRAPHSCXRIIN, XMAX, YMIN, YMAX, XFRAM, YFMI'I Xu, YU, rrt, NG, "

m===== _-__-_===================::==================

DIMENSION X(1),Y(1) ,XMRICZS) ,YMIMC2) ,HXC(1) ,HYC 1) ,XU(NC, 1}, YU(RC, 1),
AMIIC 1) JWH(1Y ,WYC 1)

DIMENSION HP1I( ) ,IOP2(1),0P3C1)

R R R R SR R R R R SR SR AR R R A AR AR R R R TR R TR R R IR R O K R R R AR R

" x
* SET UP TIHEPLOTTING AREA FOR ALL THE DATA POINTS x
® *®

TS S S S0 MR TR P S S R YT TR S DU R N K 0 S 0 R M SR A2 T O S S R S R R

NP=NC

H 1) =F3IIN

I 2) =iy

YMIC 1) = YTIIN.

YHMH(2) = YTIAX

DATA HrL, Y, XL, YL/....-!. v9.,8.7.

?T?T?T*TT*K**YT****T%***********r#************

b

® FPOSITION THE GRAPH IN THE SPECIFIED AREA *
* *
Tf?****?#**#*?***T*mxr**r***?#f********F***T**
KL= XFRAT+ XM /
YL= YFRAM+ YH

XH=XL~FLOAT(RIIX) . 1 _ \
ZZ=YL-FLOAT( KHY) . 1

CALL PLOT(9.03,0.03,-3)

TR NTR A RO R R KK R AR KRR

" *

ir LABEL TIIE Y-AXIS ® .
® *® : ) -
RN R R RO R R R R KX Ry

_CALL LETTER( NiIY,.1,99.,.8,ZZ,HY)

ST S T TR N AR ST S R A G I S S R R SRR R 0K R S N R TR R R R

* *
* COMPUTE SCALING FACTOR FOR ALL THE DATA POINTS =
* E

R(2, XML, VIO, KL, YL, XM, YID f\*

R AR AR AT A R KRR KKK -

" © X

* PLOT THE BOUNDANY,OF THE FRAME *

* Vo *

ORI R R K K KRR R R R RO KR .

GALL PLOT( XTI, YI1, 3)

CALL PLOT(XL,YM,2) 3
CALL PLOT(XL.¥L,1 :
CALL PLOT( XM, YL

CALL PLOTUXTI, Y

205

‘000389

000400
299401
000402
000403
009404
@00403
0004206
000407
o09400
090409
000410
099411
000¢12
000413
009414
000417
009416
000417
0990418
009419
0090420
000421
009422
0u9423
0002
000427
000426
000427
000420
090429
000430
007431
000432
020433
000434
00433
000436
Q00437
000438
0090439
00944

000441
000442
000443
000494
000443
000446
000447
000448
000449
000450
00243 1
000432
000453
Q00434
000457
000436
090437
290450
9004359

~

[,
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4

T R S R L R R R e o S N S R X N S R R U N R S R
®
*# IFIND TIE DISTANCE'BETHEEN TWO TIC MARKS
w

HHHAH

60 SRR O IR 35 2R R IR G R O SR R 1T 0 0 % O 4 S O O R SR

ES=(XL-XIN »FLOAT(RX)
YS=(YL=YID /FLOAT(NY)

TR R A R R R O T O R R R R R R R R R R

o *

w SET UP THE NMANGE FORL ALL X 8 Y TIC MANKS *x-
d *

Ed

m#m*m***%*mm*m*mxm*mx*x*m*mxx***mm**xx:**x#m

NY1=KY+1

Ni{1=NX+1

Kil=xr1

Y= Y11 ]

AR MR A R N R S TR R R O R AR AR R
* . %
* PLOT ALL X-TIC MARKS AND LADEL THEM ACCORDING *
R TO THE SPECIFIED SCALE *
® ' *

T R A R N A T I T R R T T R YR XS M NS A Y R R R

- *a
po T M=1.nY1
CALL PLOT(XII, YH, 3)
CALL PLOT(Xl+.CT,YH.2)
CALL INCITOC X1, Yi, XP, YP)
ENCODEC 190, 2,YI) YT
CALL LETTERC10f.1,0.,.9,YH-.05. YD)
Y= YA+ YS :
YH=YL
FORMATC IPE1©.3)

LER R L R SRS S S L BRSPS T R R e T
E S

PLOT ALL Y-TIC IMARKS AND LABEL THEM ACCORDING *
TO0 TEE SPECIFIED SCALE *
" *
R R R LS s S B 2 B S S 2 BT S 2 S DL PR PR

DO 3 I1=1,NXI . 4
CALL PLOT(XH,YL-.07,3)

CALL PLOT(XM,YL,2)

K= XH+ XS

KN=XL -
DO 4 I=1,NY1 -
CALL PLOT(XL,YH.3)

CALL ,PLOT( XL~.07,Yl, 2)

YIi= YH-YS .
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009460
009461
0904062
0094063
€00464
000460
002466
000467
000458
009469
QuUd4TO
09aT 1
L3 35 iy o gt ]
009473
09474
Q09475
099476
009477
009478
009479
009480
002481
099482
099483
000484
0090485
0004800
000487
009480
000489

T 000490

009491
0002492
000493
000494
000493
200496
099497
0090420
009499
002300
Q00301
0090302
000503
000304
900303
000306
009307
009308 |
009309
909310
0003511

Q00512

0090313



naonaan

aananann

XIi=HM

AR IR S AT 0 K R R KK R R KR

*® *
* LABEL THE X-aAXIS: =
*® x
LS X EEE e TP T T .

CALL LETTER(NIX,.1,0.,XX,.2.7,D0D

Do 3 I=1,NX1

CALL ILOTL X, YMi+.07,3)

CALL PLOTCXI, YII,2)

CALL IICHTO( X1, YI, XW, YWD

ERCODE( 10, 2,XD) XW.

CALL LETTER(10,.1,990.,XH+.05,2,.9,X)
A= XTI-XS

D0 6 I=1,NP

PEL=TIIC 1D ..
o 7 J=1,MZ

W(J)=XUCI, )

WY(JY=YUCL,J)

*3}********?:*********K*****"#*********************
* .

* PLOT ALL DATA POINTS BY JOINING SHMOOTH LINES =
* THROUGH ALL DATA POINITS *
* ' » *
; -*3f=?ﬁ*-‘.'<*m***********3****-‘8*******ﬂ?*****ﬁm*********
CALL NEWPEN(2)

CALL PLTMPL( WX, WY, IMZ)

COITINUE

NHPMNAX=NIHP 1

1F (NHPMAX.LT.NHP1) NHAPMAX=RIOP! .

IF (NHPHMAX.LT.NHP2) NHPMAX=NHPZ ’ N

IF (NHPMAX,LT.NHP3) NHPMAX=NHP3
HHP=XL-FLOAT( NHPMAX) *0. 12

CALL NEWPEN(2)

- CALL LETTER (NHP1,0.1,0.,XHAP,YL-0.4.HP1)
. CALL LETTER (NHIP2,9.1,0.,XH?, YL-0.6, HP2)

CaALL LETTER (NNIP3J,0.1,€.,XIP, YL-0.8, HP3)
KERD=M1L+3. - .

CALL PLOT(XEND,@.,—~3}

RETURN

END

090314
0003153
000316
999317
000318
020319
000320
000321
e09322
09923523
000324
000323
999326
000327
000328
000329
20935330
000331
090332
990333
9990334
909533
9090336
002337
099338
9090339
009340
099341
099342
009343
009344
099343
0090346
090347
090348
000349
09350
2009331
009332
007333
099504
099333
000336
000337¢

+
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2100
21im
21E

C
e
C
£
c
1
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WRITE (L, 1102)

€2 £ 2 £y €3

r?

mI MC?DCDM”"”D DROGRAM S0R DETERMINATION OF
‘ THE RYDRAULIC PRLER -

L
PROGRAM D"'GH

DIMENSION IARRYY (Z), IARRYY(Z). IARRYZ (2)
COMMON IPPUL (1S, IPDIT(LSQ), IFLOW (1S
WRITE (1, 2102}

READ (1, &110) ICOMN
IF(IC0MM. EQ. 27 45547 ) B0 T0
IF(ICOMM. EQ. 2165747 )60 T0
IF(ICOMM. EQ. 2T 4652 Y50 TO
IF(ICOMM. EQ. 2755747 )50 70
WRITE (1, 2120) : o
5O TD =Zo@@

FORMAT (Y ENTER COMMAND YPulee Flow or TE=h) - 1)
FORMAT (RZ) =

FORMAT (%% COMMAND, SRROR #¥ TYDT 1IDPZY1 o 1ITSV1Y

)

I

[~ y]
[
=

P T

C A B e KA KR e B B e B e W I BT P e AT A e e PPN

TEST PROGRAM

READ (1. 1118) ISAX .

IF{ISANM.EC. Q)60 TC 122

O i8¢ I=1, IGAM . -

ITIME:IG

INUM=

oAl ?"'DM(T“QDYY( o IARRYI DY OITINE, INUMS
V= (FLOAT (IRRAYY (1) )+ 12 ) /TLE.
2=(FLOAT{IARRYZ (1)) *i@. )y /T1E.
WRITE(L,1122)Y,Z .

CONTINUE : ' -

GO TO ig@la

CALL PERD1(IPER}
PERIOD=FLOAT (IPER}) /1022,
CRALL PRERD2(IPOW) '
WRITE{:,113@)B=ZRICD )

POWER=FLOAT (IPOW) /1222,

WRITEZ(1,1140)P0DWER

GC TO 1azw o :

FORMAT ( INTER # 0OF SAMDLEE (1-2@). ZZNTZIR 2 70 RER
FORMAT(IS) : '
FORMAT (Y ¥= 3, FIG. 2. I=

1 [l Bl ".‘)

PR S [ .
CFORMAT Y CYCLE TIMD = . 712,30
Fgﬂmch’ DOWER STROYE TIMT =

208
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E4
6=
&6
&7
£8
E3
7@
71

fud]
[ %

73
74
75
76
77
78
79
a3

L]
-

az
84
as
8¢
a7
28
B3
29
=kl
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93
34
95
9&
97
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29
129
121
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122
124
125
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]

3*********#*4******%++¥E%%ﬁ******%**“*******+é****&*%**é*x+k***

* PROGRAM PLFLCY *
* B Y R e
* B2
¥ O AMPL ..., AMPLITUDE *
* NSYC...... NUMEER OF CYCLEE : *
* ICONT..... COMTROL VARIABLE.EQUALS 2 IF PULSING FLOW, *
* E0UALS 1 IS STZADY FLOW - *
* FACTL..... CONVERGICON FRCTOR FOR THE UNITS - *
*  NTSAMP....KMUMBER OF TOTAL SAMBPLES IN ONE CYCLE ¥
¥ ITMAX....,MAXIMUM TIME ALLDOWED BETWEEN TWO SAMPLES *
¥ ITMIN..... MINIMUM TIME ALLOWED BETWEEN TWD SAMPLES *
* FREG...... FREQUENLCY *:
*  IWTIMZ....TIME BETWEENM TND SAMPLES %
® IPDIF..... PREGSBURE DIFFERENTIAL SIGNAL *
*  IFLOW..... FLOWMETER SIGNQL *
¥ PIPPWR....HYDRAULIC BOWER IN THE TIZIST SECTION *
3 K"

*%**%ﬁ*z;***********%*****%***%#***%**********k******#**%**¥*%*

WRITE (1, 129)
READ (1, 1R1)AMP
WRITS (L, 229)
READ (1, 2@1)NSYC
WRITE {1, 822)
READ (1, 8Q1 ICONT ,
WRITE (1, 20@) ' . -
READ(1,2R1)FACT}
WRITE (1, 20@)
PEAD {1, 321)NTEAMD

AREA=Q, @ M\
NODD=NTSAMP—Z

NEVEN=NTSAMD-

IF(ICONT.NE.Q)GC TC &66

ITHMAX=Z2020

ITMIN=1 '

SYCT=0. 2

DO 11 K=:,3

R S e T T E S R R R R R A R RV R R S S R R DS v g
* CALL ASSEMELY ROUTINE PERDY TO CALCULRTE THE TIME OF ONE DULSE_}4f
e ST E RS S S S A R AR R e R R TR S R e R T Y L Y S N SR

CALL PERDI(ITIME)
SYCT=SYCT+FLOAT (ITIME) /1200 1
SYCT=SYCT/3. . '

FREQ=1/5YCT
WRITE (1, 403} FREO, OMP 7 ’
TWTINME=1QRA2/ (NT5ANMP*FRED) ‘q\\J

IF(IWTIME. LE. ITMAX. OR. IWTIME.GE. ITMIMIGO TQ S
WRITE (1, 522)

60 TO =

CONTINUE
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DO 12 _=1,MGYC
SUM=R. 2

-

‘*********¥****************%******#*%*%*********%**%4**¥*¥¥¥**4%4“*

* JALL ASBEMBLY RCUTIME START! T7C C=T T=Z TIME AT ZZRO.=0R T-S #
% BIGINNING OF A NI CVYCLE ﬂ
AR R SRR b SRR A L B 2 L R T R R RV RV VRV YV PV PV

EALL ETART1

HREREEHEEERERERELAERE R R REFE L LR TR LR R R R RS E R R LR R L RR RS LNg
* CALL ASSEMBLY ROUTINE PFLOW TO RIAD SIGMALS SROM THE DRAEESUSE +
* TRANSDUCER AND THE FLOW METER . *
M R R Sl e R R S R R SR AR LY LR R Y R O A SR VTSRV VT

CALL PFLOW(IPDIF, IFLOW, IWTIME, NTSAMD)

DO 6 M=Z.NEVEN,Z -2

SUM=S8LM+4% (TLCOT(IPDIF (X)) ¥F_0AT (IT_0W () ) #5207 1)
“ DD 7 ¥=3,NODD, 2.

SUM=SUM+Z% (FLOAT (IPDIF (X)) xFLOAT (IFLOW (X)) #FACT 1)

SUM=SUM+ (FLOAT(IPDIF {1) Y *FLDAT(IFL 0L (1)) *ERCT )

SUM=SUM+ (FLOAT(IPDIF{NTSAMP) ) *FLOAT (IFL I (M TSAMD) ) x7ACT 1 )

AREA=AREA+FLCAT { IWTIME) G /3202

CONT INUS

PIPPWR=AREA/ (SYCT*NSYD)

WRITE (1, 6O2) PIROWR

CALL PEALCW(IPDIF, IFLCW, IWTIME, NTEAMT)
bo 7 V=&, NEVEN, 2

SUM=SUMEL* (FLOAT (IPDIS (X)) ¥FLOAT (IFLOW (M) ) *ERCT )

DO BAS =3, NODD, 2

SUM=8UM+2% (FLOAT (IPDIF (X)) *FLOAT ( IFLOW(K) ) #FACT <)
SUM=SUM+ (FLOAT (IPDIC (1) ) ¥FL0AT (ITLOW (1)) #CACT 1)

SUM=SUM+ (FLOAT { IPDIF (NTSAMP)Y ) #FLOAT (IFLOW (NTSANYD) } #5ACT *)
AREA=AREA+EL_OAT (IWTIME) #SUM/ 2
PIPPWR=AREA/ { IWTIME*NTSAMPENSYC)

WRITE (1, 729) PIDPLR

GO TO 1

FORMAT(/,? SNTER AMPLITUDE = 1)

FORMAT (F&. 2) '

FORMAT ¢/, EMTIZR NMUMDER 0F COVCLES 2C0UIRCDy= ) ~
CORMAT (13) : \\/)
FORMAT(/,' SNTER MUMEER OF SOMPLES PR GVO T = 1)

FORMAT ( T4) !

FORMAT (/, 3X,'FREQ = ?,F6,3, 3%, 78MP = v F&, )

FORMAT (/! sxxsxsxsxs RESET FRIQUENCY **xxrxraxs!)
FORMAT(/,’ HYDRAULIC POWER IM TEST SECTION = 9, 5:1S.3)
FORMAT (/,' ENTZR CONVERSION FACTOR = 1)

FORMAT (1F1@.5) "

FORMAT (/.7 IF PULSING FLOY TEST GNTER @ , I8 STEADY FLOWI,

fh]

]

"1 Y TEST EMTER 1 777 )

FORMAT (I2) R

FORMAT (/.Y WYDRRULIT PDWER IM TEST SECTION = ', F15.3)
SToR '

=D



APPENDIX F

ERROR ANALYSIS OF EXPERIMENTAL DATA

Basic Measurements:
AP x £ 5m.v/1.0v = £ 0.05%

Q =%01/300= % 03%

-
i

+ 5ms/1.0s = £ 0.5%

A =% 1mm/346mm = *+ 3%

Cw=1%10%
d =1 05%
D =% 1.0%

Derived Groups:

V =+ 1.3%
K
nAj —
LI + 7.8%
v -_ .
Jp =t 6.3%
Jy =+ 1.8%
JpHds = * 8.25% . ’
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