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ABSTRACT

h very rapidly convergent solution (in the form
of a ligelihood ratic test) for the problem of detecting
a discréte—time stochasctic process in additive white
Gaussiaﬁ nolse 1is derived.

}This likelihood ratio test is then applied to

the problem of moving-target (aircraft) detection by

}airpor? surveillance radar systems. Using real radar

&ata,,;he receiver operating characteristics are obtained
for tw% different adaptive implementations of this likeii—
hood gatio tesf,.ahd also for the three versions of the
ﬁoviné Targef betection algorithms presently in use 1in -
modern radar systems.

| The befter'of the two adaptive fmplementatiqns
emplovs Kalman-péediction error tapped delav-line filters

and ‘attains a minimum of 3 dB average performance improve-

ment relative to the Moving Target Detection algorithms.

e
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_ CHAPTER 1
INTRODUCTION
; / ) E
1.1 A Statement df the‘Research Prbblem

The purpose of this reéearch'is to solve the
,generic probiem of the detection of a discréfe—time, not
necessarily Gaussian, stochastic préceés imbgﬂdé§ in
addicive wﬁi;e:Gaussian nolise (AWGN). Tbis specifie¢ :_
problem -is chosen since it may be used as a basic building

block in the construction of the detection problems -

) : o ¢
inherent in many discrete-time communications systems,

pulsed radar and sonar systems. - _ ' - 3

This detection problem is formulated in terms of .

statfstical.hypothééis testing where

Hypgthesis Hl:’ received data = the stochastic _ (;11;)
Qignal procéss plus white
: Gaussian noise
Hypoghesis Ho:‘ received data = white Ggussian (1.1b)

noise (WGN)
A solution to this problemrﬁust decide, on the b;sis of
thé recelived data, whichiof_the‘two hypotheses 1s correct,
It is not.sufficient mefeiy to'obtaiﬁ'; solution
to this proglem. Tﬁe performahce.;f the &erived détection.

algorithm must be evaluated and compared td.ekisting.high

1
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performance detection algorithms. These performance com-
parisons are made by appiying the detection algorithm to
a specific detection problem for. which exieting detection

4
algorithms are available.

» The detection problem which was ehoeen for perfor-~

-

mance evaluatlone is the detectlonlor alrcraft by airport
survelllance radar (ASR) systems - This problem was
selected for sevetral reasons. First' it utilizes the
previously mentioned buildlng block- concept Secqgﬁ: high

performance detection elgorithms'(currently in use on

" some  ASR systems) were made available for the performence_
comparisons. Third: the statistics of the received data
are highly dvnamic, which tests the rooustness of'the

. adaptlve implementation of the deerEd detectlon algorithm.

L] Q_ )
Fourth: cthe’ StatlSt1CS of the received data process can
‘not be essumed to be GauSSLan Fifth: real data is-

;used for tgg performance analyses, resulting in strong

“and meaningful conclusions.

1.2 . The Contributions of the Thesis

,rhé tneeie may beAconceptually divrden‘into three
parte.- In the-first _pare, con51st1ng of Chapter 2, .the
_:1nnovatlone representatlon (IR) is dlscussed 50 as to
..provide the reader with an- 1ntroductlon to‘this powerful

A\

‘toql. ’ '



—

In Chapter 3, a formal solution to the problem of
detecting a stochastic signal process in AWGN is presented.
This Ianovations Based Detectionm Algorithm (IBDA) is then

applied to a number of specific Gaussian detection problems

as a demonstration of its usefulness in solving detection

problems.

In the third paret, consistiﬁg of Chapt;r 4 and
Chépter 5, the IBDA is applied to the,non—Caussian probiem
oéltargeg (aircraf;) degectid% byJASR sygtems.'JTwo fuily
adaptive implementat;oﬂs'aré diécussed.and realiged via
sdftware. 'Performange compa:iéons:are made wiih t%ree T
versions of‘the Moving'Targét Detéction (MTD) algorithms 
that gre'currently in use.

In ChapterJZ, a gutﬁrial,putliné of_the‘xR.and its
apﬁlication.to estigaﬁi;n theory and to deteptioh‘ﬁheory_
is:preseﬁted. The section on estimaﬁionltheory-includes

a discussion of the whitening approach to estimation’

theofy.first used by Bode and Shagnon*[5], and also an
K. - ' ' |

-introduction to the Kalman approach to estimation théory

pioneered by Kalﬁan [35] and by Kalman.ana‘Bucy [36].

As pointed out by K;ilath [2}], phis whitening concept ié
now recognized qo.ée an ap'licati0n'of the IR. The Kalman
approach to estimation theory_iSnihcluded siﬁce,-ég;dempﬁ-

strated by Kailath [27], the IR is a‘poherfﬁl tool



B

in expanding -the domain of application ‘of Kalman filter-

ing.

The inﬁova%ions approach to detectiom theory is
outlined in section 2.3. This is an import%nt discussion
since the theofétical Eonqributiong of" this thesis resi;e
upon tﬂis use of the IR which Qas pioneere@ by Xailath
(32, 33]. 1In this papef IjZ] Kail;th gfeatly extended
the domain of application of détecfioﬁ theory.A'SpéEifi-
cally the solution to the continudus—tiﬁe analggue of
‘the-détection problem (eqﬁ. 1.1) is derived and sﬁ@ﬁn_fb K

have an estimator-correlator structure. The gimblicity

-
‘

and breadth of application of this'fﬁgﬁlf'ié in striki&glh:
contrast with the methois, such asfthéjKarhunen;Loe§e
'expansions.-used.by cla;sical défectién»éﬁegry (Helstr;m;
[22], Van Trees [64], Whalen ,[66]) to sol&gltheir dete;;idn:
problems posessigg-non-6§ussiaﬁ statis;ics.'

To place this thesis in persﬁgccivé with\kailath%§,f 
rgsults, it should be notéd tﬁéttmu;h of thé-matﬁema£icél
formalism introduced by Kéilath'[32] iS'dépéndegt_upoﬁ:
.the continuous-time prOperties of the deteqtibn-préblém
1 which is éxamined in his paper [32]. Henc;, his'agalysis
is not directly tranéferablé'ﬁq the discrete—time_deteb—
tion problems with which ﬁhié ;eéeéfch is concerned.

.

However, there is no doubt that this thesis' use of the
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'IR as a tool for solving detgdtion problems is due to
Kailath's pioneering work.

The basic mathematical results are presented In
Chapter 3. Specifically, in section 3;13 the logarichm
of the likelihood ratio (LLR) is derived‘ﬁor the detec-

tion problem:

z(n)+w(n), n=0,..., N-1 ~  (1.2a)

Hypothesis H x(n)

1
Hyﬁothesis H&f x(n)

win), - 0=0,..., N-1 (1.2b)

where {x(g)} is the received data, {z(n)i is a .stochastic
process (which need hq£'b§ ééussian),'and'{w(n)} is
the:usual;WGN process (Métford et al [44]).
: The LLR is derived lnderuthe'condifiﬁnthat:béth
the stochaétic sfgnal,prﬁéesé‘{;(n)} and the WGN proﬁess .
{w(n)} are stf?ct-ééngé.Stationé#y-' Discussions of'thf
definition qf’spriﬁg—Sense‘st;tioﬁary may be found in;
Dooﬁ-[9] and P;pdhiié [50]. From further anai?sis df
‘the form of the LLR-Qﬁen applied to some specific deﬁec—
tion problems -(i.e. the détection'oﬁ,a determiﬂistiéﬁ
signal in AWGN) it is obvious that this‘reqdirgmént'dér
‘strict-éenselstationarity is only a sufficient condit%oh. 
Tﬁis LLR may be written in the, by now, ciéé%ic
‘estimator-?coffelator form as first discuss;d by iniath

(

lestimate.of the stochastic 'signal brahess.' Since this

[32]31 Essentially the LLR is formed, by calculating a best

. ’
- . . .
. - -
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estimate is calculated by assuming that the signal pro-

cess has been received, (i.e. Hypothesis H. 1s correct)

1.
it-may be more properly referred to as a pseudc-estimate,
a term inttoduced by Kailath [27]. This estimate is then

correlated with the received data, in much the. same

manner as the known signal is correlated with the

received data in the correlation receiver (Vah Trees[ﬁs]f.

Thus, any implementatlon of thlS LLR as ay@lled-
_to a given detection problem will have an estimator,

whose ‘structure will be dictated by some etatistdcal,

ﬁodei of the stochastic signal process. If the statistics.

«0of the signal process are not known or are dynamic,. then -

the'eStime}ion necessarily must be adaptive; reeulting
in an adaptive-detection algorithm.

The LLR for the detection problem (eqnt 1.2) is

referred to in the thesis as the Innovations Based Detec-

tion Algorithm (IBDA) The word falgorithm" is employed

ednce-the solution to this detection problee may be uti—
lized'eo eseto Solve a wide variety of releted detection
brooteme; |

A.detectiOn‘problem of particular interest in
thlS thesis.is the detectlon cf a stochastlc signal pro-

cess in . addltlve, non-Gaussian-colouted'noise. This

'_detection'probleﬁ 1s formulated as:



. \./')'

Hypothesis H x(n)es(n)+c(n)+w(hj, n=0,...,N—i (1.3a)

9t
Hypotheeis Hl; x(n)= c{n)+w(n), n=0,..;,N-1 S (l.3b) .
where {x(n)} is the received'data, {s{n)} is the stochastic
. signal process, {c(n)} is some non-Gaussian coloufed
stochastic process and {w(n)} 1is the usuel.WGN processe
This is thefgeneral hypothesie testing formulation
of the radar target detection problem in Ehe pfeSeﬁee of -
the often non Gaussien eiutter.from_the_surrqunding;fadar'
environment and the ccrruptiveleffects 55 tﬁe receivef
front-end, (Van Trees[GS]ggl %§<pfoven in section 3f2;
under certain veey loose reskricfiens, the detection
problem (eqn. l.3i‘ma§ be ekeanded threugh“xhe.introduction
of a dummy hypoﬁhesis iﬁto-the two coueled detection pro- .

blems. .

Hypothesis Hz: x(p)es(n)+c(n)+w(n), n=0,u..,N—{{ (l.4a)

Hyeothesis HO; x(n)= . 7‘ win), n=b,fi.,N-l (}g&b)L
and . o _f -

H§potheeislﬁi: x(piec@n}¥w(n),.d%04u;,,N;l o '.(i:ﬁg):
.‘Hypothesi's H: x(':z)'é_' . ";(h) , n=0,.,.;N-1 , (l.5_b_')-'

Each of these Ewo - detection prbblems (eqn 1.4) and (eqn
.l 5) is §01ved through appllcation ‘of . the- IBDA -The LLKu
for the original detection problem (eqn 1+.3) is eh€'
'difference between the LLRs for the two coupled detectioe:

problems (eqn 1. 4) and (eqn 1.5). . Qd )/ ‘.uf" '.- .

—



This solution may be compared to the formalism
developed by Schwartz et al [12, 54, 55]. Schwartz
examined the discrete-time detection problem where the
conditional probability density function (pdf) of the data
process given the signal process has a rather general
exponential form. Hence, the detectign problem considered
by Schwartz can be described as the detecgion of a
stochastic signal jyfi™additive noise where the noise sta-
tistics are from a family containing the Gaussian, gamma,
beta, binomial and Poisson distributions [127].

The focus of this research of échwartz et al is
at lgast partly to ascertain the formal connection between
the discrete-time detection broblem (eqn. 1.2) gnd ics
continuous-time analogue as séudied by Kailath [32]. As
a result, the LLR as formulated by Schwartz.is not geared
for ease of computer implementation. .

. In section 3:3, the IBDA is applied to a nuﬁbe;

-

- of specific Gauséiaﬁ detection problems. Thésé'include
the classic problems of a) the detection of.; kpqwn sigﬁal
in AWGN (Helstrom [22], Van_Trees[6A], WhaLén_[@S]j,and
.b) theldéﬁection of 4 Gaussian process in AWGN (Scholtz

et al [53], quat and Friedlander [51]). .

The other two specific Gaussian detection ﬁ;pblems

which afe solved through an application of‘fhe IBDA  j“

Coww

3



~ ties of the radar data is coptained in section 4,1. In

——
~

include c¢) the dgtection of a deterministic signal in
coloured Gaussian noise (deLong and Hofstetter (8], Kaf
[38]) and d) the detection of a'G:Bssian signal process
in coloured éaussian noilise (Therrien {§3D. The signifi-

cance of the detection problem (c) is that it is the

basis of the detection model used in the design of the

MTD algorithms {(Taylor [62]) that set tﬁe pﬁrformance
standards against which the IBDA 1is tested.

For a}}/éf thgsé specific Gaussiad detection
problems to which the IBDA is applied, the resulting

LLRs have the same structure as the LLRs derived using

"other methods. This 1s of particular interest with °

referenqe to the MTD design model since it is demonstrated

that the IBDA, when applied to the MTD detection moMel,

generates the basic MTD algorithm.
[N

Two different fully adaptive implementations of- -

the IBDA (Metford and Haykin [45])) as applied to the

radar target detection"problem are discussed in Cﬁaﬁter

4. A brief description of ASR systems followed by a .
- e B

discussion of the usually non-Gaussian statistical proper-

section 4.2 the LLR for this detection problem is derived
using the IBDA as generalized to handle complex baseband

signals. This LLR is then reformulated into a recursive

»
13

s
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mode for.efficient adaptive'impiementati&q.
The actual details of the.adaptive implementation
e of tﬁe LLR test are discussed.in.section 4.3. Within this
/4:::2: section is included the consideration of the strdﬁtu?e of
_the predicfion_sections of the processes, and the '‘calcu~

lations of the a priori prediction,erggf powers and the

Lo
. adaptive threshold. <Considerable experimentation was
" required in order to establish a stable ahd robust imple-
mentation. One noteworthy feature is the use of the mediadn
étatistic (Ataman et al [3]) in the calculation of the
] - B - . i
adaptive threshold. . 5. \ .

The two iﬁpiementations differ only in the algo-

rithm used”in the prediction calculation. The first

? 'implementation'yses the least squaresadagiijﬁfgi}diction
- ‘ .

error lattice filter ahe-tbﬁﬁorf(Friedlander (137,

Schichor [58])). The other uses the Kalman prediction

>

error tapped delay-line filter (Zhang and Haykin [69]).
H ‘- The MTD.algoritfhms (Karp and Anderson [37],
Muehe [47], Muehe et a} [48], Taylor [(61], [62]) are
' - discussed.in section 4.4. The M%Q algorithms are all
‘ { f . ; )
S designed for high performance in both weather and ground
’

- clutter dominated radar environments.
» T .
Systems performance evaluations and comparisons
¢ ' . .
are made in Chapter 5. Real data was recorded from a
r ':r- ~



Y

. : - 1l

.

lamodern coherent ASR installatiqn and used for performance
<+ .

evaluations. AlH performance evaluations are made in terms

FA) as a funct}on of

both the target”signal power to fhp clutter plus receiver

S . of the probability, of false alarm (?
<\ .
noise power ratio- (SCNR) and the target doppler, for a

fixed probability of detection'(PD); These receiver

Joperating chﬁigbteristics_are obtained for all of the

- . . . o
detection #lgorithms for both ground clutter and weather
~L - T f .
clutter dominated radar environments,

\U" X

®™hese results -are summarized in Fig. 5.17 and

-

Fig. 5.18 in the form of relative.performance curvés for

VPFA ='10—4 and PD = 0.8. The results prove that when

'properly implemenfbdkfthe I#DA can provide superiof

- performance, albe!'-at the cost of increased c@putational

, - T
comple'x% and memo})\ requirements.

~\

el



CHAPTER 2

THE INNOVATIONS REPRESENTATION

R The Innovations Representation -(IR) Of'a-StQChaétic

process {y(t)} is a representation of ;hat procees as the
eutput of a eaesal and causally invertib’]‘filter_. driven
by a white noise‘pfecess fv(e)}. . The requiremeht that
the fllter be causally ianvertible ensures that the white
noise process (the iﬁnovations p;ocessr{v(t)}) is—probabi-.
listically eqqibaiedt to the Qriginel'proeess-fy(ej}l‘ Tﬁes,
" the innovations procees can be usee'instead of_ehe‘original
process for statistical problems of deteetien.and estima-
tion. The. use of the IR';n Ehis feehion'gfeael§ simplifies
the formulation and the structure of detaction and estima-
tioq'algotithms, as.the iﬁnovations erocees is uncorrelaﬁed
and, for e,large nuﬁber of applications, Geussiee.

This probabilistic equivalence between ;he whlte
process {v(t)} and the origlnal process {y(t)} 1s the~
reason for calling the white process-{y(t)} the innova—
tions process. Innovation denotes "newneesf éed this
quality is represented by the whiteness of the'pfocess
{v(t)} where any reeundant_info;matioh in ,the form of

correlation of the process (y(t)} has been femoeed. Hence
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only new info;ﬁation is retained in ghe innovatians
p;ocaés {v(t)}. The term "innovations process",hag'been
attributed t6 Wiener and Masani (Kailéth.[27]).

| Details of the IR are discusséd in.seCtipn Z.i}l
Appi@cation of ﬁhe IR ‘to eqtimatioh theof&_and to detec-
.tién tHeory is maﬁg in sectién 2.2 and section:2.3 respec—
tively. | | |

Tﬁé contents of this.tutorial dhépter lean -

:heavily'ﬁpon the stimulating:seriés of.paﬁgrs on thg
IR .and 1its.applications by Kaifath‘et al [1;14315;24,25)

ey

26,27,28,29,30,31.32,33,34]

2.1 Mathematics of the Innovations Prbcess"

Given a stochastic process {y(t), teT}, the inno-
o o '

‘'vations process {v(t), teT} is defined (Kailath [25] as:
_ ‘ : ) - - o _ o .
v(t) = y(r) -'y(g), rteT . - (2.1)

The un e.o mum 5; ction, in a minimum mean square

error (MMSE) se s@iﬁis defined as the conditional expec-

tation (Doob [9]):

1

) . : A . R
y(t) = E[y(t)ly(thf,tﬂ < t]l, tel (2.2)

From the definition of conditional expectation {(Doob Tﬁqu

it follows that the prediction érfor.(y(t)—iét))'is ortho-

gonal to (uncorrelated with3y every finite variance function.

-



¥ ¥

14

;f the set of data {y(tf)._£'<t}.(F;o$t and Kailath {14]).
if the pro;esg {y(ts} ié'Gaussiéﬁ; then the q?timal

‘MMSE prediction §kt) is-arlipéar.function of the.sét of

data {y(t'); t'<t} (Doob [9])»Héﬁ;e, the ipﬁdvatioﬁs prdcesg

is alse¢ Gaussian., . - | |
The stochéstié'précess.{y(tl}:{s.ﬁpw dﬁfined.in a

form ﬁhich.is‘pfléﬁtereét to £oth detEct}ﬁﬁiand estimat{oﬁ'

theory'wﬁeré:
y() = z()+w(t), ‘teT - (2.3)

1

In.general;.{;ktj, teT} i; ; white Gaussizn process,. and
the-étochastic process {z(?), paTj_ié'stéfistidaily iﬁdepen—
deﬁt of the wh&te_ééussiéﬁ process éw(t)}-(Kailath [221).
If t 4s continuoug, the<resultiné.inﬁovétions proéess is
Gaussian with the same variance as that ofﬁtﬁeguhi;é
Géussian.process {w(t)}‘(Kaiiath {321); 7Thisfimportan£
(and rﬁﬁérkable) property is fundamental to manf of fhé
applité;ions of the IR to continuous—;ime detecﬁiOn and
estimation problem.' However, it should be néted that for
_discrgte—tiﬁe processes,‘the.iﬁnovations process is oni?é
asymptofically Gaussian with a different vafianc; than
that of the ‘original Gaussian procegs-{ﬁft)} (Metford ;t
a1 [441).

S

2.2 The Innovations Approach to Estimation Theory

A statement of g generic estimation problem is as
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follows. Consider the observation process .{y(t)} of a

. signal process {z(t)} in additive white noise {w(t)}-such

that:

y(6) = 2()4w(e), T, S T, 2.

Usually it is assumed that the 51gnal process {z(t)} is -
statistically independent of the noise procass {w(t)} '~
“(Kailath [27]); Ie wlll also be assumed, for simpliciey,

tha; allipfocesses ete stationary. An essential requlre-.‘
"_ﬁene is‘ehat the'covarience Ry(f) - E{y(t)y(t+r)] ?5

positive definite, o . o o~
The quantity xft)-which.is to be estimatedlis

"assumed to be related in a'deterministie and linear manner

to the signal process fz(t)}. Hence, the linear estimation

P pfoblem is the determination of the random variable x(t)\
‘defined in terms of a linear oeeratiqn on the known obser- -
vations {y(t)}, where:

. : ) T ‘ .
. . £ - ) ; -
x(t) ;- dth(t=1}y(z), T,.ft T ‘ (2.5)
T .

il

1
suehlthet Eﬁg)mean square of the estimation error (x(t)-%(t)):

is a minimum.

LTWO other common criterla for defining optimality (Van Trees[ﬁh]) are.
the absolute value of the error, which results in the median estimate,
and a uniform cost fuanction, which results in the maximum a posteriori -
estimate. Sherman [55] shows that for the Gaussian problem, all three
criterla result in identical estimates.
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From section 2.1, this,optiﬁal MMSE estimate implies that

1

E[(x(e)-%(e))y(e] = 0, T Soe, €' ST (2.6)
By substituting gqn.-2.5 into eqn. 2.6 it is easily shown
‘that the optimal estimate is' the solution .of the integral’

. . T . - '

equation:

T

. r _ _ ’ -
' : - ; _ < <
ny(t) / dth(e r)Ry(T), STy e T (2.7)
T
i
where the cross covariance ny(t) = E[x(T)y(t—T)]: This

© - equation 1s readily solved for tHe particular-estimation

problem where Ti = -o and Tf = 4w,

A much more intefesqing problem arises when the
final observation time Tf corresponds to the time at which

the estimate is desired., Hence Tf-= t and eqn. 2.7 becomes:

w

o | AR ‘ < < : '
R}:y(t) : é_drh(?)ay('t T), 0 > t (2.8)

1

- This equation is commonly referred to as the Wieﬁer-Hopf
équation (Van Trees [64]).
If we now set x(t) = z(t+a) where o is a counstant,

then for «a < 0, @ = 0, @ > 0 the resulting estimation .

‘problems are referred to as smoothing, filtering., and pre-

diction, respectively. ' .

!

'Wiener [6J]'soived eqn. 2.8 for the filtering

- probléms through his meﬁhUd of -spectral factorisation

y .
¢ . . .
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under:the copdiﬁiéﬁ-that the power spectr;mSy(f)is
a,ratibﬁal function. Bodé and'éhannon [5] used whitgning'
filters to dbééin a'more transparent solution than Wigner}s.
This gethpd was:léter realized to be.tﬁe continuous-time
veréion of Ehé.drignuu Woid;Kolﬁogorov'estimatiqn techniqﬁe
(Kailath [27}). These wﬁi;gniﬁg filter approachés are

now referred to as the innovations approach .to estimation

théoéy (Kailath [27])-.°
. To‘£11u§tra;e.the'cénceptual simpliéi%y of tﬁe'IR
'approath to estimaéi&n thééry, aésume_thé; ; réaliséble
énd,éevers&ﬁle whitening linear filter.{hl(t)l_has pgen
'~faﬁnd: As aisppsséd in séctibh 2;1, fhe-estimﬁtéd quantity
dan;be\wfitten iﬁ terms of the uncorrelated bu;put—{v(tj}
(the innovatioés procé95)-offthéuﬁﬁiteniﬁg filtep. Hence
the optiméi‘é;tima;¥oﬁffilter fhz(t)} in terﬁs of thé_'
innovations pfoéess‘{v(t)], isrtﬁé solution of the now

.

“trivial integral equation, where, writing RXU(t)?E[xtﬂv(bﬁ)];

‘ then,-from egn. 2.8: . ' ‘ ' ’»-
- R () ;.é dth (1)R (e-1) o ; (2.9)

S dth (1)6(t-1)
0 2 ‘

n

’ﬁz(t)
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Thus the impulse‘resbdnse-of the eetimetioq filter‘hz(t)

(in terms. 'of the innovation process) is writtens

hz(t)f = .R (‘c)l

XV o
0 S ,
But va(t) = I drh (T)R (F—T)- L _ ‘ (2.10)

: where {h (T)} is the 1mpulse response of ;he whltening

fllter Thus the entire optimum estlmatlon fllter is just
a cascade of the whltenlng fllter {h (e)} and the fllter
{h,(t)} specified by eqn. z,lo.' .

‘ | As, pointed out by Keimen [357, the above mechods
for specifylng the Wiener fllter are subJect to a few

I;mitetions. TheSE'include-the often Qifficﬁlt tasks of

'§{222E§iziqg the estimation filter's impulSe tésponse from

the observed data and the various generallzations of the

.solutions of the Wiener problem.

Kalman'IBS] sidestepped these probleﬁs by modelling

the random signel process {y(t)} as being genefated by

_pessing white noise through-e (possibly time varying)

luhbed linear dynamic system. Complete knowledge of this .
system is assdmed.

This approach emphasises the concept of states_

"and state transitions. For example, in ‘an aerospace

application, the states of the system might be the

position and velocity of a safellite. -The state transi- .

B |
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" tions cgﬁ'EQSiLy be fealized throﬁgh an appiicgtioﬁ of
"kinéﬁgtics.' The obsér%ed data from which estimates of the
satellitgfsAposition‘and,velociny muét be infe:réd'fﬁbm'
is the telemetry data..

‘.The ﬁrobiém-is néw wri;ten‘(Kalman [35}};

x(EF1) = e+l O x() +ule) (2.11)

'z(t).' =_§(‘t_)ﬁ(t) o o 7 (2.12)
‘where g(t) is a Gaﬁssiéh'ranaéﬁJprocéss of ﬂ-vectors:ﬁith
 £erQ'mean; 5(;5715 the stdte ﬁ—GEth#, i(t) 1s a state
observatioﬁ—b-vectbr; i(;+f;;)‘is the ;tate transiﬁion_
nﬁn maéfix'éndfﬁ(ﬁ)'is.the.@eésdrement.pxn matrix.

o ‘ZGiQen'tHe obgeiyed vélges'ﬁf'i(fo),..f,rz(f),the
vp;p 1éh'is tsrfind‘gﬁ estimété_§k£1Jg5 ok i{;l? whiéh'is,
'optimalfiﬁ a HﬁSE's§nse.1 “ |
) ‘-Kélman [35] difeétly'éolv&d,tﬁé pre&iction and_
filte;ﬁng-prbblems,ﬁithin-thiéjfrémeﬁork.using_the oréﬁo—_..
ganal p}oﬁereies'pfrthé inn&vafimm pfbéess. Tﬁe dyn;mics
of the étate tranéitioné'(eqd. é.llj‘;esﬁlt in a §e£ of

recursive relétioﬁs-fo; solviné;the.estimation pfgbleﬁ.

‘ - Kalman aﬁd,Budy [Bﬁ] consi&gr%d the coqtinpoh;;'
timexversidq 6f thé‘ﬁriginal Kal;;h:fdrﬁulgtidn,' Howgvéf;l
éhe i;no§ations apprbéch @as‘npt_eﬁpiicifly uséd.' instea@{
"the orﬁhogonal,prOPerties of Ehe MﬁSE estimates were

empioyed.&o formulate the_approprfaté Wieneeropf.equa—
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tion. fhe structure of the state equations wefé-pséd to-
transform the solution cf the Wiener—Hopf eqﬁéti&n into
"the solution of a n6n¥linear differential equﬁtion.

Kailath [27] refined the innovations approach.and‘
successfully applled it dlrectly te the Kalman~ Bucy pro—.”
blem to obtain not only the prediction and filtered
‘esgipat;s [27], but also the smoothed estimates [28]. Thé
soLdtions are obtained in exactly the?éame mannef as, hsea.
for tﬁefdiééreté-time problem.

The innovations approach was used by. Kallath [l 14
15 24,25,26,27,28,29,30,31,32,33,34] tq‘examine many general-
1sations of the estimation problem (eqn. 2.&), includlng
coloured background nolse and non-linear estimates. In
all cases, t{éuresulting equations give a grght deal of
phjéical significance éhd undersgagding to the pertinent.

" problem.’

2.3 ’ The. Innovations Approach tb"Détéctidn‘Théory_-

_ Statiétiéalldecisibn'theofy is'apprdached froﬁ-‘
the v1ewpoint of statlstlcal hypothESlS testing (Helstrom
[22], Van Trees [64] Whalen [66]); Spec;fical}y,:a
choice must be madg betﬁeén Lﬁo'h&ﬁothésas':hfouéﬁ'thé
use of some decisioh-méking ceriterion. As.a'ﬁondfete

example, the problem of the detection of a signal process
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-in’ additive noise would be formulated as:

u

Hyﬁothesis H,: x{(t)

. z(e)+w(t),. 05eST  (2.13a)

u

Hypothesis HO: x(t)
where {x(t)} is the'received'déta procéss, [z(t)}'is.fhe

signal process, and.{w(t)} is the additive noise. .

- : ‘ ) .~ . . ’ . .
This decision-making problem is solved using Bayes .

Bayes rule

rule (Papoulis [SO])Q Under Hypothesis Hl’

takes the form:

T

where P{Hl] is the' a 'priori probébility of HyﬁqtheSig-Hi,
?[Hl[{x(t)}] is the a posﬁeriori brobability 0§~Hypothesis

legiven that_;he data {x(t)} has been received, éndiJ

P[?x(t)}]Hl]ris the likelihood of receiving’the da;a‘fx(ll}'

given that Hypothesis H isfmrue.

\

1
Dividing eqn. 2.14 by a similar expression for
” . v ‘, ._“ e
-Hypo:hgsis H0 yields an equation of fundamental importance
to detéctibn*tﬁéory, ﬁamelyf
AL ICIEORI D J3: S S S EACI SN 5 I .

D = — . — {2.15)

COP[HL[{x(e)}] . PLH_]° P[{x(t)}] H, ] - -

4
, -§
. The seéoﬁd Ee#m‘qn'the_kﬁs‘gf eqn"'ZQlS is called the
Mllikelihood:téti@:and will be denoted:.
a0 PHxCE)}E,] o |
' H15H; = P , ) T (2.16)
' P[{K(t)}[HO] ' '

-

\

w(t), 03IeST . (2.13b),

PLH | (x(E)}IPTx(e)}] = PLH JR[{xCO)F[By]  (2.14)

(P
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From Doob [9] it is obvious that the likelihood ratio may

-also be written in -terms of conditional n-fold joint proba-

bility dlstributﬂnm wheres defining the n-vector x = (x(t ),

Cae, x(t )) and given an arbitrary n- vector a = (fl""an)'

H S = . — = S (2.17)
T R(x ZoalE) - - '

1T

-Also,'if,the conditional n- fold Joint probability density

functions are well behaved (Feller [11]), then:

~

'pl(ilH]_.),

o A (2.18)
.oopx{E)

'in”theory[.at least; the decision as to'which of
_the tuo hypotheses‘is:true is made'on the-basis of whether
or not the ratio of the a posteriori probabilities is
greater or less than some preset threshold The threshold

is set acCording to. the desired dec1sion making criterion
, j’ -~

such as ﬂayes, Neyman Pearson or Minimax (Van Trees [(64])

HoweVer the calculation of the ratio of the -a posteriori
probabilities requires knowledge of the a priori probabi—
litles which may or may not be available Interesting
discussions of the problem of- the a priori probabilities
'35§ be found in. Lehmann [42] and Woodward [68]

IrreSpective of the .a priori probabilltles the

5‘maJor computational burden for. decision—making re51des in
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the caltulation of the LR. "As a‘result, detection problems
. ‘ .

are formulated in terms of a LR test (Van Trees [64]). In
adoition, because of the preponderance of Gaussian detec-
tion problems, usually the natural logarithm of the like-

lihood ratie (LLR) 1is implemented. “ ‘

‘A classic problem is the detection of a known signal
{s(t)} in AWGN ; 3Ihe additive noise is stated as being an
uncorrelated Gaussian .process since this is a good model

of the corruptive effects of the thermal noise generated

at the front end.of many receiver structures (Whalen [66]).

For thisAdetection~nroblem‘the LLR is essentially a corre-

1ation of- the known signal {s(t)} 'with the received data
jprocess {x(t)} as shown by: )
_ , T \ T 2
~ 1nA gl [ des(e)x(e) - [ de(s(t)) (2.19)
‘ 1’7o 0 o o

er—-

o
where N-/Z'is tne value of the two-sided power spectral
:den51t§-lﬁaykin [20]) of the WGN {w(t)}. This LLR is
usually termed a matched filter or a correlation receiver
(Van Trees [6&]).

“This detection problem has frequently been.genera—
lised to the detection of a known signal in coloured
Gaussian noise (Whalen [66]) and to the detection of a

Gaussian process in Gaussian noise (Helstrom [22])

The innovations approach to detectiog theory
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(Kailath [32], [33]) led to a significant breakthrough in

prodlems involving the detection of non-Gaussian processes
. e T : .
N ' e

in AWGN. &

v ~ \ \
To apply the Ynnovations method td the detection

prgalem (éqn. 2.13) it ismassumed that the signal Erocess
{z(t)} isv;‘(not necessérily Gaussian) finite energy
stochastic pfrocess (Kailath [24]). ‘It'is also assumed
that the AWGN process {w(t)} is statistically independent

of the signal process {z(t)}. If the assumption is made .

that the received process {x(t) = z(g)+w(t)} (i.e. that

‘ - .
is true}), then the optimal MMSE estimaté_“‘gn—quf//f

"

Hypothesis Hl

2(t) = Elz(c) [x(e"),e'<e] = . (2.20)°
is fdrmed: The resulting innovations process {v(t)} where

v(E) = se)-z(t) -+ (2.21)
is G%gssian with the same varidncg as the noise process
{w(;)}, if tlis-continuoug (Kaiia;h [3%]). As a result,

‘the above detect#on problem (eqn. 2.13) may be replaced

by the probabilistically identical detection problem: .

Hypothesis B : x(t) = z(o)+w(e) =
= z(t)+v(c) . (2.22%a)
H&pothesis-HO: xf(t) =‘w(ﬁ) - L . S
| = v(&) - (2.22b)
This detection probiem‘(EQn. 2.22) is the detection of a }

‘ . R N - _. ‘ ‘ -. . E . {?‘*p’)‘ .
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: T ~ .
conditionally-known process {z(t)} in AWGN. The result-

img LLR (Kailath [32]):

: .
1nA = bodez(oyx (o) Hacze)? (2.23)
H. ,H . 2
1" 0o . . A ;
4 g - ‘
bears a startling resemblance to the LLR (eqn. 2.19) for
. Y

the detec;ionjof a known signal in AWGN. 'The structure
of this LLR has the form of an estimator—correlatof. It
should be notéﬁjthat'ihe first integral on the RHS of

eqn. 2.23 is an Ito igtegral (Kailath [32]) which obeys

s

\different rules than thos for ordinary integrals.

The importance of thl-»&&ffﬁafor correlator struc-

ture is thatf it gives a physical fee%gng for these non- !

\

Gaussian detectiog problems. This leads te the suggestion "
that even if the neefled optimal MMSE predicaion {z(t)} is

not available, or,Ehown, a good reglisable approximation

~

might wé}l'suffice.




CHAPTER 3

THE INNOVATIONS BASED DETECTION ALGORITHM
. R e T

A major contribution of this thesis is the deri-

vation and implementation of the LL?-for-tHe detectibn

'

of a discrete—&imélsﬁoéhastié_procéss'imbedded in AWéN..

This déteét;oh problem is formpiatgd as an hypotheéis

testing.éroblémf | |
Specifically, given a'rebeived_real data pfopess

{x(n), 0=0,..., N—l];'then the discrete—time detection

"x(n) = z(n)fw(n); n%O,.ﬂ%4\§%l~<' (3.1la)

problem: ) _ L - —~
<ngochésis Hi:
"Hypathesis Hd: x{¢n) =" win), n=0;.”, N-L (3.1b)

is defined, where {z(n),'n=d,.f.,N—l} is assumed‘toaﬁe

étatistically independent of the AWGN process. {w(n), n=0,
,/—7‘ 7 b . ot 1y . .
...,N=-1}. 1In addition, both of these two stochastic proy

. cesses are assumed to be strict-sense stationary (Doob )

[9]).

| In sect;oﬁ 3.1, a_tr%nsformétioﬁjgf‘tﬁg disareteﬁ
time innovations préceés'is Hefined and shohn, under
appropriaté'conditions; ;o safisff a generalised central
limit tﬂeorem.l This traqéformgd proéess is irntroduced
intb the discrete-timgldetéction ppéblem‘(EQn. 5.1).by'

26
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Py
means of a dummy hypothgsis..‘The LLR'i§ then.formqlafed,
assuming that this‘tra?sformed i névations_prq;eés is
Gaussian (Metford etlal [44]). This LLR is referred to
within tWe.remaindé;'bf the thesis as the‘Lnnoﬁétions
Based Detection Algarithm (IBDA).
In_sectipnij.é the IBDA is applied to tHeWp:oBlém

-of detecting a stochastic signal in non-Gaussian coloured

noise. The results of éeﬁtion_3.l and section 3.2 are -

 then applied;.in seopioﬁ 3.3, to some specific detection

problems. These include: a) tHe detection of a determi-

: N . : _ . ;
nistic signal in AWGN, b) the detection of a_co@ourgév’[
Gagssian'prbcéss in AWGN, c¢) the dﬁtec;ion of a determi-

~ndstic signal in coloured Gaussian noise, and'ud):thé

detection of a coloured Gaussian process in coloured

Gaussian noise.-‘Thgsé'speéific appliéatioas‘are_presented

so as to demonstrate the usefulness of the IBDA as a tool

~— .
for soiving'many-detection problems.
A summary of this chapter is presented in section’
3.4, ' L ,

~ . . e

3l The Derivatieon of the Innovations Based Detection

Algoritﬁm

3.1/1 ~The Reformulation of the Discreté—Time Detecrtion

Problem

: . . . A, .
Defining the sigma-field of events'$n=c{x(k),k§n},

N
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the innovations process will be denoted henceforth a&r
{i(n|Hl), n=0,...,N-1} where:

%(nIHL) = x(n)—E[x‘n)|$n_l,Hl]
= ('z(n)-i(n|gl))+w(ﬁ) . . (3.2) ‘
.ﬁhére the prediction ﬁkn[ﬁl) = E[k(n?f?}_l;ﬁl] is optimaiin

a—MMQESénsehgiven the past daté'{x(k); k = n}'aqﬁ assuming

that Hypothesis H 1s correct.

1
Defining the process {y(n), n=0,...,N-1} by

-

U o =

y(n) =.A(n) x(k),. n=0,.ff,N—l_ (3.3
‘ k=0, . . o
“where {A(n), n=0,...,N-1} is é'seciof arbitrary finite
feal constants, then the abové detectibh;ppbblem (eqn. 3.1)

may be transformed into thé equivalent detection problem:

'y
-

o ¢

f

' . _ n o .o o
Hypothesis H,': y(n)= 1 CE (z(k)+w(k)), n=0,...,N~1 (3.4a)
. . ' . l N 'A(n) k=0 .. - . .
’ : . T 1 ‘n - . . -
Hypothesis H ': y(n)= ‘L wi(n), © n=0,...N-1 (3.4b) -
o o A{n) k=0 - . o _

L

Consdder now the'process {p(n), n=0;.;.;N—l}, where

a2

o (n) =

3

and ds?tn) is‘thé_variance.of-thelgum of;the‘first n terms
of the innovatiofs process {i(k|Hl), k=0,...,N-1} given

that Hypothesis Hl 1s correct. If in eqn-. 3,3 the set
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- {a(n)} is defined such- that:

¢ (n), .u=0,...,N-1
8 B . . .

A(n) =
. N ““\) - . .. ° e
then , - Lo o —
1 R 1 oo
@t L ot fRi
1 n
= , I x(k)- x(le )
gs(n)'k=0
1 n [ o . o
( °s(“? k=0 L
where o’ (n) = E(( o (k1)) e, ] o B3

k=0

_ 8 E[(z(k) x(kln ) ]+n0
k=0

1]

2
| and owz_é E[(w(k))z] i.e. uwz is‘the variance of the AWGN‘
.prﬁcéss. Hence, the process {o(n) =0, ,N-1} is com—.J_f
posed of variance-normalised. partial.sums of the dlscrege—
time innovationsfprocess {x(k}H )l_ =0, N N-;};'

| The detection problem of eqn. 3i4 méy now be .
wriﬁﬁeﬁ agr - | |

Hypothesis H ': y(n) ( ' Z x(k[H ))+p(n), n= 0,..;,N—i . (3.8a) |

U( )k
n - - R S . o
Hypothesis H r y(n) ( o Lwin)), . n=0,...N-1 (3.8h)
S( k=0 -‘ ' . - o - o
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'3.1) may be written as:

5'{D(n)} -Second under,Hypothe51s H

30
'-D'enot_in‘g‘by'-ﬁo the dummy hypothesis y(n)_= p(n), n=0,
J.osN-1 . and,theﬂ-using.the chain rule of LR's (Halmos:

flgl),'thefLR_fbr'thg original détectién problem (egqn,.

o

A, . 0 = AL, v = AL .= A= ' .
Hl,H0 o Hl ,%o Hl ,HO H H _ N ) (3.9)'
where: A ' 5 is .the LR for the detection problem
1 o

) L o . | B
Hypothesis Hl': y(ﬁ)=(%—(n{ Z'x(lel))+o(n),. n=0;...,N-1 '(3.10a)
- . T 'S k=0 . ; : -

‘Hypothesis B o:y@ep@), - . n=0,...,N-1  (3.10b)

and'Aﬁ ﬁ + 1s. the LR for the détéﬁtion-piob}em:

.0 o}
Hyﬁptﬁésis ﬁ;:.y(nj=p(n); A . n=0;;}l;N;l (Blllgl'
Hypothesis H_ ' :y(n)= (——L X w(k)),- . ) _’n='0,..>.,‘,N‘j.-l.“ (j.l_ib}‘ '

On )k o

Thére‘are two'ieasonu for this reformulatlon of the.

]

orlglnal detection problem (Eqn 3;1y.  Firs;, under.Hypq-

thesis_Hl‘wCeqn;”Bqua)' y(n) is now eipressed asfthe sum"' B

o of a known function of the (known) pxzt data and the process_A

Ein' 3. lOb), the pro—-

,cess y(n) ‘is - expressed in terms of the process {p(n})} com-

posed of varlance normallsed partial sums of _the innova-
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tions process {i(n[Hl)h Since the innovations process .

{i(n]Hl)}_is by definition uncorrelated and aiready

posesses.e Gaussian-component (eqn. 3?2), it might be
expected that the process {o(n)f satisfies:soﬁe‘form_of

a central limit theorem.

3.1.2 - A Proof of‘the Asymptotic Normality of the.

Verianceéﬂorﬁalised Partiei'snﬁs of'the'Discrete-_

Time Inmovations Process

In this section .a proof is presented of the astp-

totic normality of the process {D(n)} compoaed of variance- :

normaliued partial sums of ‘the discrete time innovations‘

'proceSS‘Lv(n)} In addition, it is proven that the rate'

, L4
of convergence is l//n for large n.

-Theoremll . - . ’ T \\‘

- . '. o N . . ._. N ot
: 5enotrng the zero-mean, unit-variance -Gaussian

probabilicy distributionr': . o
) X . ® N - .
. P o 1 2
o) =g S odu exe(s g )

S(2m) o,
;-ﬁén-.i_ip; Plo(n) < x] = '¢(>x')
. n-o.e ) ’

ented by'thel

. ) . ) s ! . t - J
discreteftime ingovations process.{x(n|HiO, n=0,...} are

L
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. L N -
uncorrelated, they are not identically distributed, nor

afe tney statisficall& independent. -Thie'dependence con-
flicts with one of the necensary condltlons for the classicalr
central llmit theorem (Loeve [43]) Since this dependency
“Eak this proof relles upon- a generallsation OE the

~classical central limit theorem to the case of weakly
dependent random-processes.‘

Consider the n+l fold. joint probabilitv distribu-
tion P[x(o|H YSa ,...,x(n!Hl)fan]: We non introdnce‘a‘;

related probability distriburion:

e LR N TR

k=o

B =1}

Fromldbbot and Blum [2], 1f for every €>0, a positive inte-
'fger n, exists dependlng oniy on e,-and if for evefy choice

of non—negatlve.integers (i ,.‘.,i )3 with no-fio "'<in“

N

an n+l fold JOlnt probability distribution R exlsts which

may depend on €, no and n, then if

JP[aD<£(16[Hli§EG,..;,a <x(i 1, )<b]— HPh,<xU.|H) <b H
e . . : ] : -

k -
) - .k\. B i: <eR[aO§x(o)$bQ,;r.iénix(njibn]" - : -‘_
and if . L e - |
@' lim oo =00
‘ then lim Plo(n)<x] = $(x)

L+

'
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Condition (1) 1is satisfied if the random ynriables
- . : o ’ » . :
{x(n|Hl)} are asymptotdcally statistically independent.

'Although.tnislcondition may not rigorously hold in all
cases, in nnn; physical systems. we are justified in making
.tnis nSSump$ion. Condition _(2) is easily satisfied'
'sinoe under Q, the’ random variables {x(n|H )} are statis— .

tically independent Using‘the classical central limit‘

theorem (Loeve'[43]), since_from'Eqn. 3.7 1inlcsz(n).+ @3
D . . : . v lf o .
Then 1im Q[p (n) 5 x] = $(x) . QED. .

‘n-m .
We now considér ﬁhe rane ofconvergencé of the
probability dlstribution of p(n) to the normal distribu~
‘tion ¢(x) B

‘Since the input data process {x(n)} 1is aésumed to
"

be stationary then the 1nnovations pr0cess {x(n[H )} is

asymptotically statgonary -Choose-some positive integer.
m to be suffic1ently large, such that the process'{i(n|Hl),

n>m} is statiomary. Then considerAﬁhé pracess {p'(n), t>m},
where:
. VAR
' p'(n) = E x(k|H ) N
J . '(n-m) k=mn

and o'z(n—m) = {n-m) (o 2+o 2), where ;mq = E[(zﬂd—ﬁ(kﬂi))z
O e w ‘ e . 1

k>m



o

then sup|Plp'(n)sx]-¢(x)]

N4
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Lémﬁa 1

C

sup P[p'(n) < x]-8(x)s &
I ' Yn-m

where C& is a real and finite constant,

-

) { ’
Proof of Lemma 1

FromiStatulevicius'[60],‘if.for any feal~and

finite ;onstanti/él, C2, CB? C4 whgre
) n _ ) '
, . < .
1) | o ox(k[H)]| 2 c) .
k=m - s .

v 2 my > - - A g ‘ :> L
2)‘ g (n m)fgg(n m)" for some )2 5

n-m

3) lim'G3c 'z(n—m) +
: s L0

n-+
4) {ﬁ(h|ﬂlln2ml is asymptbticaLLy.independenﬂ'
: C
e 4
x . - VYo '"(n-m)

] . . . S ._ . *
Although condition (I) is in cbnfliét;w&th‘duf assumption
Eyét the corndbtive noise process {(w(n)} is G%usgian, it
is obviously satisfied in an a posteriori sense in any

physical system of interest. - Conditions (2) and (3) are _

>

"tfivially upfdld (Eqn. 3.7), while, conditioq'(&) has ‘ .
alrea een ‘assumed (see proof of Theorem 1). QED’ " "
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Lemma 2 '
For every e>0, lim P[[p(n)-p'ﬁn)l >el’= 0 .
. . ,' -+ ] ’ .
Proof of Lemma 2
- {
Since (Papoulis [50])
g - l ’ - i - 2 3
_ Ello(n)-p ' (n)|7] L
P{|p(n)~p'(n) >} < 5 e
. . E S L :
<

then

i(k|ﬁi)--;,(1;' 2 ;;"(klﬂr')lzl' o
_ a (nmm) yon 1 |

o

CECetr-pt () |21 (ks
E(Jo(n)-p'(n) | ]=EI I
S - log(n) k=0

m-1_ g ' (n-m)~o.(n) SR 2
El|—s— T x(k|H )+ —2 S 'E—?‘(kml)' ]
| Uan)k=0' 1 -:os(n)'oé(ném)_'.k=m :

H

o @) ;'(o;(ﬁ—ﬁ)-cs(n))zi,‘
o 2 () ,~ _gg?on:_

.2 ‘
o 0g (@-1) 2 2, . 1
But lim ———— =0 and 1lim (us<(n—m)jos (n)) =0

n-re oszﬁn) _ nae

© Hence . lim £ |p (n)-o' (a) 21 = 0, QED -

-+

_iTheofém'Zf-
. 1lim suﬁ[Pta(d)fx]*¢(x)[5.

n-ore |
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Proof'of Theorem 2

Froﬁ Lemma l the probability distribution func-

.tion of P (n) converges at a rate l//_ to the Gaussian

distribution._ From'Lemma 2, p(n)_converges in probability
'(n) : Therefore, the probability distribution- func—
tion of p(n) for - large n converges at a rate of l//‘ to
the GauSSLan distribution function . QED.
| In.summary it should be pointed out that the results

of this section apply rigorously only to the probability

v

distribution function of the stochastic process {Dtn)}.

Houever following Feller‘[ll], under the very mild con-

‘straint that the characteristic function/of ¢ (a)} be inte-

' grable, then it can be ‘shown that these results apply also

to. the probability density function of p(n). This condi-

tion is satisfied in almostrall physical systems of inber—

est,

Irrespective of the above comment though since

'_lp(n) is expected to be Gaussian for all practical purposes

for a. small number of samples,‘the detection problem (Eqn.

-3, 10) may be considered _to- be the detection of a condi-

T

. tidnally known signal in Gaussian noise, while the detec-

i

tion problem (Eqn. 3.11). may be considered to be the detec-

tion of one of two possible Gaussian processes.
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3.1.3 The Calculation of the Likelihecod Ratio

The probability density function (pdf) for the

random vector X consisting of ‘the n random variables

~

(x(e),..., x(N-1)) may be written as;

1
R, (N-1) |

p(x)= N/2

-1 .
exP[ (x-_g_)R (N-1)(x-£)"]1 (3.12)
(2m) 1/2 | X £

\

where E(i) is the mean of the i-th random variable x(1)

and R_(N-1) is the NxN correlation matrix whére its 1,j-th
: X O L . P
element:

R (N-151,1) = E[x(D)x(i)], 1,3=0,...,N-1

-Similarly, the conditional pdf of x(n) given (x(o0),..

k(n-l)) is written:
(n -:L)|”-2 -

p(x(n)|x(n—l),...;k(l)) - L | { l({jﬂ)(R-l(n)

.-5;1(n—1))<5:5)T1 (3.13)

where it is to be understood that the matrix E;ltn-l) has

"been augmented by an extra column and an extra row of zero

'to make it dimensionally compatible with the matrix R l(@
Consider the proceas {y(k) = £(k) +p(k), k=03..;,

N-1} ﬁhere {p(k), k=0,...,N-1} are correlated Gaussian
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. -~
- random variables with correlation matrix'RD(N—l), and .

“{e(k), k=0,. N 1} is a conditionally -known process,
that is, &(k) = £ (y(o),...,y(k l)) where fk is some
function of (k-1) wvariables. Through the repeated

application of Bayes rule the following identity is gene-

rated,

p(1)=p(&(N)Iy(N—l),--g.y(O)),---Jp(?(DIy(O)nﬂy(Oi) (3-14)@.‘

which, through the use_of the explicit form of the Gaussian

conditional pdf (Eqn. 3.13), is rewritten as:

r Q :
o JERCEN S .
- Vor IR o8- 1) |
. _ N
n WS (' NI
3.4 ( ~§) R (2)—R (l))(zzg) ] x
‘.f;r.lR (2)|”2 * |
S 1 Y \T BN
, exp[~ S(y-8)R " (1) (y-8)"1]
CETCURC > R -
h
‘ 1 : DTS DA I
= exp[-.5(y-8)R "(N-1)(y-£)"1] (3.15)
(2m) N/ZIR w-p M2 2SR e

.

Now consider the detection'pfeblem.(Eqn;13.10)
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©

arefBaussian, theg

e
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J—— . Ky
and define: - - . '
A
1 S - !
. £(n) = x(k|H,), =n=0,...,N-1
LI

Assuming that the random ‘variables {p(n), n=0,..,.,N-1}

(3.16)

Ply[H)
j o’ ¥ _‘\vsz* .
~' 1 exp (- (DR T 0-1) (-9 "]
\7 (zn)w'rg(—nﬁl)lllz

1 ' 1 o-1, T

‘ exp(- 5y R "(N-D)y ']

, omV 2 (g aen |2 % z

. >
“ s
I - expl- SO -0 5y Ty ()
lwhgre Rpgﬂ-l;kliil/ﬁ Elp(k)o(k')]
R -2 | o7
GS (k)/ - kK < k‘_' ) N
cs(k)op(k'): .,//’
e -
.752(16)
) ., k > k' ‘

Lo e

-\‘f ) v‘/\-) [ .

TN : , -
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Now, demoting the correlation matTix of the Gaussian process

n C . ' A

{c%_(p) jlfo.w'(!z), n=0,...,N-1} as C(N-1) where the k,lg,_th
element
oo ok . o B
C(N-1;k,k") = E[( I W(Q))( z w(gt))],

min{k+l, kf+l)¢w"

, k,k'=0,...,N-1
O (k) o (k") . : :
s . 8 .

and again aésuminé that ‘the random variables {p(n), a=0,...
N-1} are Gépssian, the LR for ﬁhe second detection problem

- . . _\.

(Eqn. 3.11) is easily written as:

p(_zIH )

éﬁ;'ﬂo' ) (XJH

1 1 -1, . . T
' exp(- 5y R "(N-1)y']
2V 2(g (n—l)|l/2 g_l—p "B

L expl- +y £ w-1) ]
2 N/ZIC(N 1)[1/2 *P 21 >4
|C(N 1)|l/2

T 1 "-1 T].
T —_— exp[ c (N -1) R~ (N-1) (3.18)
]:P:D(Nwl)]l/z 2P rL Y- 2_}7__0 Y
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*

Thus, substituting Eqn. 3.17 and Eqn. 3.18 into Eqn. 3.9,
Eqn. 3.9 is rewritten as:
1

. L | l
.AH ’HO B AHl"HOAHQ’Ho'

.y /2 L L
_ le-1)] 5 exl- %{ZTEDBbl(H‘l)(ZTE)T+‘%‘X,Q'l(N‘l)X?]
IR (N-1) | - - ‘ ' '
B f ‘ .
.- | (319
.o S o A
. Hoﬁever;l;t is possible to show’ JI(Appendix 1) '
' thaﬁ:. | .
. - ’ N-1 o - : - .
y C-l(N-l)z?.= Lor 2P ©(3.20)
= g2 KEEEE . *
. w k=0 - . . R
" with
- ON-1 Uwz :
lcin-1)| = 1 L (3.21)
k=0 g_"(k) '
\_ and that

: ~2
4 , r N-lLx (k|nl) o
S (-8R TN (3-8 = I 5 (3.22)
B k=0 0" (k|H))

with ’ 2 iy

o N-10%(k|H)) :
IR (8-1)} =" 1 — ' ' (3.23)
P k=05 _“(k) :
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where the expectation-of the k-th prediction error power

(assuming'that_Hypothesis H1 is correct) oz(k1ﬂl) is

introduced such that;

A2 2 | 2 '
o (ki) & o “tky-o_(k-1) = E[ (x(k)-%(k[H,)) [, ] (3.24)
1! 5 177 1
Thus, upon'substituting these relations (Eqn.-3;205'3.21;'
3.22, 3.23) into Egn. 3.19, theaLR fﬁr'the oriéihai
detection problem (Eqn. 3.1) is written as:
_ 2 - .
N~-1 . o, 1/2 p N-1: i, (k) xz(kjﬂl) -
Ay g =0T ) exp[Z L'(F—~ - — )1 7 (3.25)
1’0 k=00 (kIH ) k=0 o " - ‘o"(k[H)
" Hence, taking the logarithm of both sides, the LLR: .
(N1 (klH, ) o
In A, H'Ez[l(z 92(\ - (3.26)°
.o (k[H ) : ' . .

1’ k=0 o} (k[H ) o
. - 1 W

This LLR may be rewritten in terms of an estimator-corre-

lator strucﬁufg.

».The LLR of Eqn.~3£26 wilI:Bgireférréd tqids‘tha
‘Innovatiﬁns Baséd-Detectidn—Aygdr;thm;(iBDA)
parameters for the calculatibnaoﬁ‘tﬁe'LLR”include the set

of the expectations of the prediction error powers

f’

. J
q
v .

. "The needed °
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{02KK1H1),.k=Q;.;;:ﬁ—ll,:thefﬁariancefof the'AWGﬁ &hz sndj
tne.prediction'error-powers.L,So'as:to‘emphasize:the'fact
that theﬂset'of“enpectations foz(Q|H l,'E=l,r.. N} are,
used as normalising constants in the calculation of tne

LLR ;'the set {o (le R d N l} will be referred £o

as the a priori prediction error powers

3.2 ' The Application of the Innovations ‘Based Detection'

-

Agorithm to the Detection of a Stochastic Signal

) Process in Additive Non Gaussian Noise

.

As discussed in Chapter i, this detection proﬁlem.‘

1

'lis formulated as
Hypothesis H,: x(n) = s(a)re(m)tw(n),  n=0,...,N-1 (3.278)"
- Hypothesis,Hi: x(n) = c(n)+w(n),‘~ n=0,...,Nél” .- (3.278)

’

_ where {x(n)} is the received dsta, {s(n)} is the signal
,process, {e{n)} is some other stochastic process, and
{w(n)} is the usual WGN process The inclusxon of the

vWGN component is not particularly restrictive since in

-many detection

é, the corruptive effects of the

i

modelled asg additive WGN (Van Trees

In order for the. application of the. IBDA to this

sensor may be ad

détection problem (Eqn. 3. 27) to be Valid it will be o
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-assumed that all of the stochastic processes are station-
ary. Later, through an examination of the form of the

| . ,

LLRs resulting from the application of the IBDA ‘to some.
‘ 3 o S

specific detection problems, it will become apparent that

w
’

this is a sufficient but not a necessary conditton. A .

An important feature_ef this detection problem -

. . - _

"is that the signal proeeee'{s(n)} and the noise process
{c{(n)} may not be etatisticeily independent. JThie ei:u—'".
ation camn arise in both spnar and radar det'ection problemi’gr/
where the target response’ {s(n)} end the clutter process
{e(n)} which resulni*i;om reflectlons fiem the sirrounding

-

environment are both generated by the same transmitted

pulse of energy. However, the assumption will be made

that the AWGN pfocess {w(n)} is stetistical%ffingependent"

of both tne;signal,proeess {s{n)} and the noise process

fe(m)}. o

) N
»

Since the received data {x(n)} must be a:finite
‘energy‘process in any physical system of interest; then
it is obvious that the background noise process {c(n)}

“and the process {s(n) + . c(&{} m§§£ alQ-,be flnite energy

Since Epese processes are ffnite energy, then, despite
N
the abQ_§ mentioned statistical dependency, from Kadota
. TN '
and Shepp (23], the chf{n rule\bf LR" s may be applied to.

W g
the above detection problem (Eqn. _3.27) through-the use

o« -

&)



Hypothee;s.ﬂé: i(ﬁ)

= . Cw{n), n=0,..7,N-1
A

= to)w(a), | w=0,... N1 -

‘A -. . : .‘.~ '. .. . -

= w(n), . p=0,...],N~1

The LR for the 'original detection problem (Eqn. 3.27) is

written as:

: - )
\ > .. . AHZ !Ho ".‘ -
' N Z,H = n (3.30)
1 !-- .
where AHZ’H -aed AH1’H ‘are, the'LRs for the detection

'pFoblem (Eqn 3“28) and (Eqn 3 29) respectively ,But

the two detection problems (Eqn 3 28) and . (Eqn 3. 29)

‘1
‘ may each be solVed through application of xhe IBDA

_Hence from” [Eqn 3325). L »".‘; 'f*: .\ﬂ o "‘5
| SV U S
o N-1 = oi - 1/2 4 Nl (k) CxkfH
\ _ - . (n —'-2-—'—'—"—-) . exp '2*[ B _ B 7 1
LN k=0 ot (k|E,) k=0 o % . o“(k|H,)
: . . =27 W 2 A
Ay gy = — . 3 — . (3.31).
27 Nl et 12 N2y KR
k&eﬂf ——)  exp E{ X > ' ' '
k=0 o“(k|H,) =~ - k=0 . ¢ a” (k| H,)




"will be smaller than the normalised fédic?

'-‘\\ o . -l‘ ‘ ) | N . 4‘6

-

-

N-1 a ozgk[Hl) ;2(k|Hl) Ez(k]ﬁz)
2 lnfLH H L [1n — + = -3 =] (3.32)
2771 k—o o (k{H,) ¢ (k|5) - o (k |H,)

1

.
~

‘

wheng{x(kﬂH ), k=0,2..,N¥i‘,aﬁ§ {02(k|Hi), E=O,u..,N—1 .

- are the predlction errors and the a priori prediction

-

errof.ppwers,respectiyely,asspming Hygpthesisvﬁi, 1=1,2.

W : It is apbarent that if, say H%fpt$eglélﬂl is

r

correct then the prediction ;(kIHl) will be*optima{ inf?_

L — . : o
MMSE sense while the prediction x(k[Hz) will not .be optimal.

Hence the normalised prediction error ;2(k|Hl)ﬁ02(k|Hl) KF
: . \

<2 .2 S Con i g
X (Hﬂz)/c (R|H2)- This situation ”111_33—5 versed if

. . '
Hypothesidvh is correct. This difference iy the relactive:
< - //‘&— \
§lzes the normallsed prediction error powers is Lhe

— /s

* 2

gggié‘mechanlgm by which the LLR operates.

-

e . . % L
3.3 © Some Specific Applications of the Innovations

-~

Based Detection Algorithm

—_—

.In this section; several different specific detec-

tlon problems are solved’ through appllcaC1on of the IBDA

Comparison is made with the sodutiens to these problems

s

as found in the literature. In Yection 3.3.1 and section.

° ‘ ‘ ;

~

3.3.2 the IBDA is applied to the detection of a determin-

istic sf@nal in - AWGN and thevdetettion of a cdloured

- ~
‘ -

s é I

\
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A\ - e Ny A .
Gaussian process in AWGN; respectively. Solutions‘gre.
cbtained through application of (Eqn. 3 .26). In section

3.3.3 and section 3 ‘3. 4 the IBDA is applied to the detdc-
tion of a deterministic signal in additive coloured
GausA;an noise and the detection of‘a coloured Gaussiao
process in coloured Gaussian ooise,'fesoectiveiy.#fSolu,

-

. N
tions are obtained through application of (Eqmu. 3.32). -

2 3.3.1 The Detection of a Deterministic Signal in

Additive White Gaussian Noise

ponsidervthe-detectiongproblem:
- - - ..’

s(n)+wtn), a=0,...,N=-1"

Hypoth251s B x(n)

1

1

Hypothesis HO: x{(n) w(n), n=0,...,N-1

wherev'stn) is a determinfstic SLgnal process and wi{n)
is_a WGN process Qf variance g, - -
‘\VP \
Since the signal prooess {s(n)} is deterministic

whereas the WGH process {w(n)} is completely unpredict-
‘able, then the optimum prediction Q(k[Hl) = s(k), k=0,...

N-1. Hence, the a priori prediction error power (Eqn.

~ ! . B

¥

oz(k|Hl).

"E'[_(x(k)_-:z\(.R]Hl))2|H1.i .

EL(s(k)+w(k)=5(k)) 2] |

T

¥
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Thus, from (Eqn. 3.26):

‘ 2 .2
SNl o, Py X &lED
| 1’ o _k#O. 0" (k|H,) o, ¢”(k H,)
N-1 2. - : Lo . '
1 %t ) (x5 ())> . ‘
B I 2 2 .
=0 g .o a
W w w
S, -?\ ’
o 200 ) s
I S S
k=0 o'~ . g'%
o Tw W - : : |
. L . : >

The resulting LLR test'is'written,-wheﬂ A is. some

threshold, as: : . ‘ ' ot
H
. 1 .
InA >7 A
H,,H .2
271 i .
o
oT .
H
1 Vst L 2x(oso st
5 Z > + 2 .< A -
k=0 g g - ’
. W T w H
. o
Hence
N-1 H N-1l -
: 1 5 5
Lox(k)s(k) > 20 " A+ I s°()
k=0 ; w k=0 .
” ° |



llinear functlon.of.the pas

e

This is the matched filte;_(cofrelator) which. is optimal ' -

fof detecting‘a.décerminisfic'signéi in'AWGN'(Whaleﬁ,[66])_

J‘It ‘is noted thac the matched filter is usually deriv;§

-~

'within the fsfmework of the maxlmisatnxloftgg"output signal

to_noise ratfio (Whalen [66]). ' ' | a _‘%tqif'
- . . - ’ - ’ . ’ V ..\
]
3.3.2  The Detection of a Coloured Gaussian Sigﬁall - A

Process in_Additive White Gaussian Noise
~2 ‘

iThis_deﬁection‘p 9blsm is formulated as:

Hypothesis Hld x(n}.= z(n)+w(n),,n=Ol..., -1 . (3.33a) >
.Hypothésis.ﬁ :,x(n).é | w(n), n=0;..;;Néi ‘; (3.33b)

-~ where {z(n)} is a coloured Gaussxan StDChaStlc process 'kg;;J

' It is a weil known property of Gaussian prncesses

.that the - optimal (in ‘the MMSE sense) predlction 1s a

Jdata.(Doob [9]) Henqe:

et T L (330

where the set of forward linear prediction“coefficients.

Ha ;(2), =1, ,k{'k?O, N l} is. such chatvthe mean ° - qﬁw\“—

!
square error E{(x(k)- x(k]H )) |2 l]_is'a_minimum.

‘ The adJective "forward"';s used'to desqfibebﬁhé .
above fet of linear prediction‘coéfficients {ék(25} so as
to dis inguish them from the set of'b;ckwérd:linéétlpredif_

‘- y ‘ . '. X . . L N i .
. ’
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ks

Alriod'coeffiCients {bk(ﬁ)h 2=l,r..,k§ok=0,...,N} where
) the optimal backwerd predict}on (io‘a MMSE sense) is a
linear function‘of the futoge data [Haykin (19)].
) - o
The soldtion for-the forward linear prediction
coeffloienCS {a (2)} is usually writtenaln terms of the
B set of normal equations, whlch may be expressed in matrix
- form (Box and Jenwxps [6]) as
R (k)a, - = g (k|Hl-) o (3.35)
{iu S -?- where 5;(k) is the kk+;)x(k+f) autocorrelation matrix of
the data process {x(n) = z(n)+w(n), n=0, ..k}, a, is the
(k+l) vector of  the k-th order forward linear predlctlon
error coefflcie ts, i.e. ;Ek = (if -a (l) .,=a (k)) , and
- o (RIH ) .1s the (k+l) vectox containlng the k-th a priori.
forward predicti —eTTor power o
o . = (@7 ([r),0,...,0)]
— .
'%b‘ : -From qun 3 19) the LLR for'the detection problem
th 'e\? : (‘Eqn. 3. 33) may be writteq‘as | . ;
: 2 . T2 .
~ . ln-AH' H ‘='%-Ngl[ln( 20 ' 5+;xé§k):j Kz(kfﬁl?]_ - (3.37).
/"“*" . 1 o’ ° k=Q.' o (kIH ) “’wg o '('lel). .
) where che‘k;td predio:iod.error g(kJHl)'%-éEiii'.‘Den?t;ng'
) : . ) i'_‘rl‘ c  ,7¥; 1.A
~ ‘LS..—-\ : ¢ T , : e
. - x /o :
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= . ~ : z . .
\\\\;. thek*th dété.ﬁec$qr xT=(x(o) ..,x(k))T,.then the time

’reversed k- th data vector x =(K(k)‘ ..,x(o)jT. As dis-
\’

cussed,

bove, the. set of forward linear predictlon error
Ellt%r coeff1cients {ak k=0,...,N=-1} fgd the forward
prediction error.powers {02(k|Hl)} are obtained through
_ ' a,solutipn of the'set of normal equations (Eqn. 3.35).

—_— S If the statistlcs of the Gaussian signal process

{z(n)} and of the AWGN process {w(n)} are exactly known,

;ﬂ\\ V then the soluuion of the forward linear prediction para-
LH . m@cers(ék},rfoz(k|ﬁl)} is triyial. However, if these
~ . statistics are not known, then the calculation of the

forﬁgr@ (anaythe.ﬁackw;rd) lineaf prnediction coefficients
is pefformed in.an adaptive manner (Friedlander [13]).

‘It should be noted that the linear prediction
(Eqﬁ; 3 34) whlch is used in the LLR (Eqn. 3.37) explicitly
demaqu-phe usg pf tpe adaptively updated linear predic-
tion coeffiéients J'This Eolléwé from the def#nition éf
thé IR where all pﬁst data must be taken intq\ij}ouné in
the calculatxon of the prediction error process (the inno-

-
vations process) .

! This'form of the LLR (Eqn. 3.37) agrees with the
form of the LLR s as derived. by both Scholtz et al [53]

and by Porat and Friedlander‘[Sl]
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' ) - . .

3.3.3 The Detection of a Deterministic Signal in e :
Additive Coldured Gaussian Noise ;
Considet the detection problem:

Hypothes{s HZ: x(n) = S(n)+c(n)+w(q); n=0,...,N-1 (3.383) S /

N
Hypothesis H

1P ox c{n)+w{n), n=0,...,N=1 (3.38b)

where the sign@k“pfgzgés {s(n)} is a known detérministic

signal, {c{(n)} is a coloured Gaussian process, apd-{w(n)}%

is the usual WGN process. ‘ : . : -

From (Eqn. 3.32) the LLR for this detection proble‘

{Eqn. 3.38) has the form:

1 N-1 02(k|Hl) (x(k)-i(kJHl))z, Cx(k;jiiéigzizj’
In A =% L [In( >+ ]

\} .
iyt k=0 'cz(klﬁz) -cz(klﬁl) : az(k]Hz)

R T . ‘ . . Lo
where‘x(k[ﬂi) is the optimal (in the MMSE sense) predict;gg \

-
of x(k) assumiug.ﬂypothesis Hi;.i=i;2'is_doire€k. Simi- .\
L R - » 5 . . T M-
larly, 02(k|Hi)'= E[(x(k)-x(k|Hi))2|Hi] is.the k-th predic- A\ (
_ . ' ) _ -
tion error power ‘under Hypothesis Hi' i=1,2. . '
Sincg, under Hypothesip s {x‘“)}iiéi_EﬁBfSla“ ]
. ' u&/ N~ ‘/fm
process, then:
. "‘\Q ' N ) @‘w
S(k]Hl) = 0, \1N— 3 ﬂ.\
. 2 :
where the set of fd Plinear prediction'ckeffidients

¥ . __': A . .
{ak(i)} areferhe soluftion to the set of normal equations

-~
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%(mz‘(kml) \).( S G

However, it should be noted that the process

A ) . '~
{x(k)—s(k)[Hz} has exactly the same Gaussian statistics

. & ) \.—/
asAddés-the process {x(k)[Hl}; H%Eij;’?//
Y . ' ’ ;

' \ . .

_ . o
R(k|H)-s(k) = .1 a (£)<xck> s(k) Ck=0,. .. ,N-1 . (3.41)
felfig)=e o = L 2 (D xC Oreeolol _

) ' 7 and ipfis trivial to demonstrate that;

B N ot = oPky,

(3#42)

L4

Thus using matrix notation, the LL? (Eqn. 3.39) is

-

" rewritten ras:

lohy =% & ———— (0% 1) (" 00 (' (W)= () ] (3.43)
271 7 k=0 o (k|H)) X .

wheré the k-th 'signal vector is denbted:by'sT(k) = (s(o0),
..,s(M)T, and the time reversed signal vector is denoted
. . by s'T(k) = (s(k),...,s(o)) .
'If'the,statis;ics of the Gaussian process are nOty,

known a priori,'fhen the linear prediction coefficients

and powefs are ‘¢alculated in an adaptive manner (Friedlander
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(131).

This LLR (Egqn. 3.43) may be compared with the
result obtained by Kay [38]. In this paper, concerned
with the detection of a determinlstic signal in AWGN of
unknown variance, the result may be wFitten in terms of
the notation used in this thesis as follows:

N-1 N-1

(KAY) N[l 5 (a (%" (k) —ln £ (a (k) (x" (k)-s' (k))) ] (3.44)

HH, k=0 k=0

lnA

e

Apart for the normalising quantity 02(k|H )} in
(Eqn. 3. 43) and the use of che logarithm in (Eqn. 3.44)
the LLRs are the same,. Therefore, the performance of
these twe LLR tests will be identical.

Consider next the detection problem (Eqn. 3.38)
where the statistics of the Gaussian process {c(n)+w(n)}
are exaé:tly known. Alt{ough this makes not the slightest

difference in the formulation of the LLR (Eqmn. 3.43), it

is a2 detection problem whose solution is well-known

(delLong and Hofstetter [8], Taylor [62]) and is written

as:

EMTD)

HZ’Hl

1nA (R (N-1) s (8-1)) Tx(N-1) (3.45)

The superscript (MTD). is employed in EEqn. 3.45) to empha-

sise. that this is the basis of the test statistic used in
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the MID algorithms. This Lg;)méy be derived in a number
of ways (Brooks and Reed [7]) including the méximisation
of the output signal to noise ratio (de Long and Hofstetter
[61). It is pertiment to this thesis to démoﬁstrate that
this LLR (Equn. 3.45) 1is identical to the LLR (Eqn. 3.43)
which resulfs from'an application of the IBQ@ to the same
detection problem }Eqn. 3.381. ~

The Cholesky decomp&sition (Friedlanderl[l3]), as

applied to the autocorrelation matrix EX(N|H1) is written

as:

T (3.46)

where U 1s an upper diagonal matrix defined by various‘“\&

sets of backward linear prediction-error coefficients:
B t

— ’ -

1 _b(l) . . . _bN—l(N_l):
: 0 1 C .o =by  (N-2)
E . =
0 0 ... 1

~
and D is a diagonal matrix defined by the inverses of the

backward prediction-error powers, given that hypothesis

»

H, is correct: T

1
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1 1 ! o
2

D = diag( s T3 » e sy 5
ob(0|Hl) ob(l|Hl) o (N=-1]H,)

T

The backward linear prediction error coefficients {Ek =

Lol .
(—bk(k),...,l), k=0,./{,N-l§§£nd the backward prediction

'efror powers {gi(k]Hl); k=0,...,N-1} are the solution

to the set of normal equations:

' 2
R (k)b = gi(k), k=0,...,N-1

S

2 T -
where g (k) = (0,...,0, oo (k)T. N

)

The above Cholesky decomposition may now be

SN

rewritten: _ ’)
_ . - — —
L =by (1) ... =by  (N-1) / 1 0.0
i N
-1 [ 1 o
R "(N-1) = 0 1 -b,, . (N-2)| x; 0 0 ...0, +
E N1 2 (o]u,) |
Ol |
o 0 0 0 o 0
- - -
0 0 0 r 0 0 0
i
. &
1 ; g
+ 3 -b, (1) 1 0| 4.+ — 1 ‘ o %m . g 0
Cop (L[H)) o (N-1[H,)
0 \o 0 by (N-D) —bN_lgN-z)...L/

—
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Hence,
L 5 _ i}
1 0...0 0 -b,(1)...0[| O 0...0
- 1 '
B-D= 0 0.0 + 52 0 1 0f{-b;(1) 1...0| +
a -
c(olH) o, (1H))
0 0 0 0 0 0 0 0 0f
— - L P Ry S, -l
»
) . .
0 0...-b,_,(N-1) : 0 0 0g o
. P ; _
+_.2_l__o 0 by, (N-2) 0 o 0o ... 0
Ub(N—l]Hl)
. 3 ] .
| .. 'Q“\\:
_o 0 1 | _—bN_l(N—-l) by (8-2) 1_
o ) N
.
Thus, upon further expansion, then:
| 1 1h o] Fo ] [, 1 czl+
E;I(N—l)= 3 L . - -+ 2 = ! : -
o, (0[H,) 0 Ob(lIHl’) 1
& .
1 0 0
' 3
A
by D] [eb (i) -bN_l(ﬂ-l)...E\ (3.47)
l ~ ——— .
o —— .- _
o, (-1 H)) | =Py (2) ,
| -
1
L 1
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Now, using matrix notation, (Eqn. 3.47) is rewritten as:

-1 1 T 1 T 1 T
R (N-1)= ———bb 4+ ———— b b+,..+ ————b_ b
—=x oo 2 =1-1 2 —N-1-N-1
- ob(0|al) UP(1|H1) crb(N-l[Hl)
N-1 o
1 T
= [ ———b,b (3.48)
S22 Sk
k=0 of (k|H)
Hence, from\ (Eqn. 3.45): \\-//////d
(MTD) _ , - < Ta .
ln}sz,Hl = (R, “(W-I¥s(N-1))"R(N-1)
'\—.’/'/
= -D @ T -Ds-1) 7
N-1
T 1 -
= x (N-1)}( E .b, b, )s
= o2 k=
k=0 ob(.k|Hl) .
'N . S | \ -
- 1 T T _ '
= I = x (b b sk (3.49)
k=0 cg(lel)

Pl

Since for stationary processes, the forward and backward

prediction parameters are related by Ek = 5&, then
vty _ VP xTarat s (3.50)
lnAH y = T Z(ka y ~ —k=k - :
2*%1 k=0 7 Iy
o
. i

>
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Returning

where:

1
lnA'Hz,H = 2

1

then

1

or

2 1In +
Y,

8

where, as

39

now to the IBDA derived LLR (Eqn. 3.43)

N-1

I @ (ox’ (10) @70 (&' (-5 (0))
=0 g (khﬁ) '

N-1

.
)
k=0 o” (k|H,)

I a o' (0a (s (1)

k=0 02(k|H1)

N
Nl T
L ﬁﬁ;(k)g' (Ka " (k)s' (k)
N-1

1 T T
L 5 x'""(ka(k)a (k)s'(k)
=0 o (ku)) ‘,ﬂ,/Ji '

p —2— xTa' wa'Twsw

k=0 GZ(E[HI)

.

before, the prime devotes time reversal.

ZT

I 12 (s’ () 22T (x’ (0aT(k)s ' (k) ]

(3.51)
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r

Since the second term on the LHS of (Eqn. 3.51) is a
constant, the quanfity on the RHS of (Eqn. 3.51) isL

v
th? test statistic for the LLR test resulting from an -
applicétion of the IBDA to the detection problem (Eqn.
3.38). This test statistic is the same as.;hat on the
RHS of (Eqn. 3.49) which is the test statistic for the -~

¢
original MTD algorithm (Eqn. 3.45). This clearly shows

that the MID algorithm is a special case of the IBDA.

3.3.4 The Detection of a Coloured Gaussian Signal
ht

ccess in Additive Coloured Gaussian Noise

This detection problem is formulated as:

Hypothesis sz x{n) = zz(n)+zl(n)+w(n), n=0,...,N-1 (3.52a)

Hypothesis H :'x(n)

1 zl(n)+w(n), n=0,...,N-1 (5.52b)”

\
where both the processes {zl(n)} and {z¥(n)} are coloured
Gaussian processes.
Since the observation process under either the
™ two hypotheses is Gaussian, then linear prediction is
opt}mal and the LLR for this detection probLEF is, from

(Eqn. 3.32):

N-1 o (k[n)) < (k[H)) < (1)

=1
.07 7 1 lae + - = ] (3.53)
=0 g (lez) c.(k]Hl) 0 (k]Hz)
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where i(k|Hi) = ET(k]Hi)E(k), i=1,2. The sets of predic-
tion error coefficients {E(klﬁi)v k=0,...,N-1; i=1,2}

;
and the a priori predictionglrror powers {02(k|Hi), k=0,

.N-1; i=1,2} are the solufions to the sets of normal

equation:
2 .
gx(klﬂi)g(k|ﬂi) =g (k|§i), k=0,...,N-1, i=1,2
. L
v .
The dependence of the LLR on the number of data

gamples N is expli;;tly illustrated by writing:

1nA = lnA (N)
HZ’Hl Hg’Hl

where lnA is the LHS of [Egn. 3.53). o
Hz,Hl ,_ .

This LLR<may be trivially rewritten so that it may be

utilised as a sequential detection algorithm by noting

that from (Egn. 3.53)y

Uz(N-l|Hl) :E?'(N-ljul) iZ(N-1|u2)

1nA (N)=1nA (N-1)}+1n( +
Hy.H, }E’Hl" 0_2(N-1|H2) cz(N—l|Hl) oz(N—l[Hz)

2

This is exactly the sequential detection algorithm pro-

posed by Thervien [63].

AN ,//
( s

b
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™, 3.4 - Summary
| In.this chapter, a very rapidly convergentlsolu-
1 tion to the problem of detecting a stationary discret;-time
stochastic process is AWGN is derived (Egn. 3.?6). Tiis
solution, which is refefred to as the Innovations-Baseld
Detection Algorithm (IBPA) is then applied, in‘section
{ 3.2, to tﬁe detection of a stochastic process in non-
Gaussian noise. ,
In order to illustrate the usefulnefs of the
IBDA,as a detection problem solving tool, in section
3.3 the IBDA is applied to several specific Gaﬁssian
detection prob}éms.

It should be noted that two of these specific
problems involved the detection of deterministic signal
"processes. Hence, the above requirement of stationarity

of the receivgd data process is violated, since deter-
ministic signals when éons%dered in-the context of
stochastic processes are nonstationary. Yet, as demon-
strated in section 3.3.1 and section 3.3.3 the IBDA
yields the correct test statistlc as confirmed by compar-
ison with the results obtained through different methods )
such as the maximisation of the output signal to noise

ratio (Whalen [66], deLong and Hofstetter [B]). BHence,

it can be concluded that this requirement of strict

1
This rate of convergence is rapid in the context of
asymptotic normality.

T

Lo
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v

sense stationarity is only a sufficient condition, and is

~
not a necessary condition.

s o
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CHAPTER 4

THE RADAR TARGET DETECTION PROBLEM

——

N

In Chapter 3, the LLR (Eqn. 3.21) for the detec- ‘
tion of a discrete-time stochastic procéss.in AWGN 1s

e
derived. This specific prdblem is chosen since it may be
usgd as a basic building block in developing detection
algorithms for man& radar, communication and sonar systems.

In this chapter, the IBDA is applied to ;‘much
more difficul£ detection ‘problem, the detection of targets
by airport surveillance radar (Asﬁ) systems (Metford and
Haykin f:;]). As discussed in section 4.1, the target,
which is characterised in a statist{fcal manner must be
detected against a background of both Gaussian and non-
Gaussian stochastic processes. In addition, all of these
pr?cesses may be extremely dynamic. Hence, qhé simple _—
analytic comparisons d? the form empj%?%é in sectioéxggﬂﬂlﬁ-
are nof as easily made since any deEection scheme deéigngd

for an ASR system will be a solution 30 some particular

model of the radar target detection géoblem. Duk to the

A
/"\__'

theoretical ability of the IBDA to be applied to the detec-
tion of a;stochasﬁic signal in non-Gaussian noise (section
3.2), a much more robust model of the radar detection pro-

—— By
Ny i 64
\“'-.
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blem can be employed than is possible with the ,classical
/n\detection problem solviqg techniques. A
| To facilitate performaqce comparisons, high perfor—
mance detectlon algorithms for the radar target detectigﬁ
problem were made available tofthe author of is thesis,
These algorithms, the MTD-1 (Drury [10]), the MTD-2 kzﬁrp
and Anderson [37]) and tﬁginTD-3\(Taflor [62]) have‘g}l.
been successfully implemented- on modern ASR Systems and
iepresent the application of classical detection theory
’
to the radar target ection problem. N
Performance evalugtions and comparisons are made
using real radar data reco?ded on a gig;tal tape recorder
from a2 modern ASR system and, later transferred into a
signal processing computer. The use of real radar data,
as opposed to simulated radar data, strengtheans the conclu-.
~ sions and recommendations of this thesis, ) i
In section 4.1 a general descriptipn of ASR systems
is presented, along with a discussion of the statistical
properties of the radar hypothesis testing problem. The
IBDA is appliedrto this radar target detection problem in
section 4.2. Theldetails of the implementation of the IBDA
are discussed in section 4.3. The MTD algorithms, which
provide the performqncé stapdé;ds against which the IBDA is

to b® tested, are outli&ﬁ’ in section 4.4, A summary of
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tgﬁs chapter is given in section 4.5.
Performance evaluations and comparisons are made

‘in Chapter 5.

Y

4.1 Air;:::\EEWVeillance Radar Systems

One of the tost important applications of radar

air traffic contrpl network. These
L-band (lGHz)nregion the radio frequency spectrum.
The radar is grdund-bas , with the slowly rotating
éntenga emitting pniform pulses of energy. Both the
transmitter anﬁ the receiv;r are connected via a duplexer
to the common antenna, Moéern ASR systems are fully
coherént_and digitaiﬂy process.the received video inphase
%nd quadrafur; phahnels for each range-azimuth cell

(Skolnik [59]).

The present policy of the Federal Aviation Adminis-

tration is to completely automate the air traffic control

network (Muehe et al. [48]). Although most ASR systems

givé good performance when manually operated by skilled
airtraffic controllers, the automatic systems perform

poorly due to an excessive number of missed detections

.o
.

and false alarums. , coe
This unsatisfactory performance is due to’t‘ne

¢ S

‘\
~



- 67

corruption of the target echos by clutter. Clutter, in

this context, 1s an aggregate term for the echos from

everything but the target such as ground and weather

Teturns. Also, implicit in any discussion of the radar

target detection problem is the receiver noise which

corrupts the incoming reflections from the radar's

environment. This corruption is iﬁvaiiably modelled as
additive white Gaussian noise (Van Trees [65]).
| 4
The radar target detection problem is formalised

in terms of the hypothesis testing problem::

Hypothésis H x{n) = s(n)+q(n)+w(n), n=g-N+1,...L (4.1a)

2"
Hypothesis &11: x(n) c(n)+w(n), n=L-N+1,,..8 (4.13)

-

where {x(n)} is the complex baseband signal from the n-th
range azimuth cell, {s(n)} 1s the target process, {c(n)}

is the usually non-Gaussian cluttey process and {w(n)}

-

is the WGN process.

'The data process {x{(n), n=g - N+1,...,¢2} is‘

acquired by sampling the N consecutive radar returns

from a specific range ring as iﬁsgigﬂar scans across the

-

£-th| azimuth cell. Hence N-is the pumber of pulses ilfﬁj\\\

minatiﬂé tﬁe'range-azimuth cell of interest, and is

directly related to the antenna beBm width and the scan-

ning speed of the -antenna.

r

ol
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.
The WGN process is assqud to be statistically

s
—

independent of both the target process and the clutter
process, (Van Trees {65]). H;wever, the target process
and the clutter process may not be mutually statisticaliy
independent since Soth are composed of echos generated |
by the same pulse of tranémitted energy. The received
signal process {x(n), n=2-N+1,..., 2} may be assumed to
be stationary since it consists of the echos from a single
r;nge—azimuth cell from a single antenna scan (Van Trees
1651).

Clutter 1s usually classified into one of three
groups. These are ground clutter, weather clutter and

sea clutter (Barton [4]). Sea clutter is not normally

observed by ASR systems and will not be included in the

- Eollowing discussiong.

' Due to the macroscopic complexity of tﬂe natural
phenomena which generate ground clutter and weather clutter,
statistical modelling of a gi&en clutter process {c{n)}

—i/,parametrlsed in terms of the first order pdf (i.e. the
i pdf o ; the random variable c(n)) and the second order
_‘M_-gseafigtics (i.e. the autocorrelation function or equiva-
lently, the power spectrua (Haykin {{20]) of the stochastic

process {c(n)}. . s

Weather clutter is generated by the superposition
) )

' :‘ o
. - ~
= .
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of the reflections from the many identical point scatterers
{raindrops, etc.) within the illuminated weather pafgern.
As such, due to the central limit theorem (Loeve [43]),

it might be expected that the random variable c(n) is L
Gaussian diséfibdted. This has been confirmed experi--

mentally (Ba;ton [471).

It has been observed that the power spectrum of weather clutter
can be approximated by a smoothly varyidng function of
frequency. (Haykin ef alfl. [21]). The centroid of the power
spectrum is situated at the overall net doppler frequenéy of
the weather pattern. The width of the power spectrum 1is
directly relatéd to the internal turbulence of the weather
pattern (%arton [4]). Hence weather clutter may be character-

ized as a correlated Gaussian process with a smoothly varying

-

power spectrum.
Due to the widely wvarying nature of the reflectors

which generate ground clutter; the amplitude statistics

~
~

- N ¢
"(i.e. the pdf of the randbm variablec(n)) for ground

clutter processes are not as easlly characterised as
are the amplitude statﬁftics of weather clutter. Accord-

ing to Sekine et al [56], ﬂor ground clutter, the complex

envelope r(n) = (Re2[c0ﬂ]'/ t:(n)]ll2 is experimentally

observed to be Weibull distrfbuted. The Weibull distri-

-

bution:
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1

\\.
a -1 . :
Plrsa) = 207 exp-(5)?, r, a, b >0 7
4
is parametrised by the constant a. The other constant, b

may be regarded as a scaling factor.

Seiine et al. [56) demonstrated that for an L
band radar, this shape parameter a varies from 1.507 to
2.0 for- the clutfer from culti&at%d farm land. However,
for clutter generatéﬁ by low rofling wooded hills and
grassland, a = 0.626. The critical value is for a = 2,
where the Weibull distribution possesses the functional
form of the Rayleigh distribution (Sekine et al. (561). -
The Rayleigh distribution is of particular interest s?nce . ,//
if the inphase and quadraturé components of a complex
randog varjiable are ‘independent and identically distri-

4

buted Gaussian random variables, then the resultant complex
env‘ﬁope is Rayleigh distributed (Papoulis {50]). As a «/////ﬁ
re§ult, ;t is seen that unless the shape pa;EBLter a = -
2.0 then the clutt;r is non-Gaussian. Hen#e, it is

\(cﬁgﬁluded that grounﬁ clutter is best characterised as ' - f\
non-Gaussian.

Since the natural phenqmena which generate ground

clutter-are usuélly staéionary, the centrold of the power
sgectrum is centred at zero'éqppler. The shape of thi;

function is dominated,ty;;%i;%iﬁnabemn pattern which impgrts

(

. W s



a modulation on the reflectivity of a specific ground

clutter

cell (Barton [4]). Since antenna patterns are

adequately modelled (for analytic purposes) as having a

-

Gaussian shape, then the power spectrum for ground clutter

will alsoc posess this same functional form.

Hence, ity is assumed that the ground clutter pPro-

t

cess 1s non-Gaussian, with a Gaussilan shaped power sﬁéctrum.

the target process {s(n)} may be characterised in a statis-

1

As mentioned in the introduction to this chapter,

tical manner. An arbitrfry target islﬁésentially a point

reflector with a random aqﬁlitude and doppler response

{(Van Trees [65LL. Heﬂzé, due to the modulation imposed

upon the target response by the Gaussian shhped antenna

pattern, the power spectrum of the target process may also

dopplef

T
;38

4.2

be modelléd‘ashh Gﬁnssfan shaped fuﬁ%tion, centred at the
- ‘3 f

frequency of the target.

The Application of the Innovations Based Detection

-

Algorithm to the Radar Target Detection Problem

- . v
AsT8érived in section 3.1, the IBDA is the LLR

detection problem:

h_
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Hypothesis Hl: x{n) = z(n)+w(n), n=0,...N~-1 ,(4.2a)
Hypothesis HO: x(n) = w(n), n=0,...N-1 (A.ZE)

where all of the pertinenf processes are real valued. The

-

LLR has\the‘form: s
-2 ~2
N-1 g 2 X (RIH )
nty =5 I O X — 1, (4% 3)
170 k=0 a (RIEl) g, g (k[Hl) '
.

QN;“
From Woodward [68J’I; is easily seen that the LLR

(Eqn. 4.3) for the above real detection problem (Eqn. 4.2)

may easily be generalised such that the LLR for the com-

plex detection problem: >
Hypothesis Hl: x(n) = z(n)+w(n), n=0,...,N-1 {(4.4a)
Hypothesis Ho: x(n) = ' w(n), n=0,...,N~1 ) (4.4b)
9 M~ '
where all of the pertinent processes are complex
has the form: .
s 2 - 2
- 2
L e By, e 2 [FEIED LT
in Ay g =3/E [1n( > )+ T —— ., (4.5)
271 k=0 oC(k[H) o o (k|H) Py

where\the‘%ﬁriance cwz of the WGN process {w(n)} is

defined: ! A

cwz 4 E[|w(n)|2], n

1]

0,...1N—l

ﬁgnd the k-th apriori prediction error power 02(k|Hl) is



)
‘{ - . 7 3
defined as: :

2 A - 2
o (k[H,) = E[|x(k(H,)|"|H4,], k=0,...,N-1 (4.6)
1 1 1 . g _
~ ' 5 .

The radar target detection problem (Eqn. 4.1) may

now be solved in terms of the-solution (Equ. 4.%) to the

hY .
complex d;tectioﬂ\ﬁﬂoblem'(Eqn. 4.4) 1ipn exactly thelsaﬁe
manner as is used in section 3.2. Specifically, since
the data process under either of the twe hypotheses 1is a
finite energy process (Abbot aéé Blum [211 then‘through g

the use of the chain rule of LR's, the LLR for the radar

target detection prgblem (Eqm. 4.1) is‘yriCtenf

In A L te 0% (k|8 fi\)li(klu ) R PTAT |2
JH = g ° 1 1 2
2’71 (1n (- j+ -
k= LN+1 2 2 2
- o (k|H,)) o7 (k|H,) 0" (k|H,)
‘

] L.

where the index £ has been explicitly introduced to empha-
sise that this is the LLR for the 2-th azimuth cell andfwhere

the k=th a priori prediction error power aﬁsﬁming Hypo-

theifs Hi:

J

A . " |
cz(kIHi) = E[Ix(k|Hi)|2]Hi] . C(4.8)

and i(kIHi) is the k-th prediction error assuming Hypo-
thesis Hi' i=1,2. Thus knowledge of the statistical

properties of x(k) under either of the two hypotheses,

\ , : e ’
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1 and Hypothesis HZ;'is requféed in order to
construct tﬁe two dggded sets of predictioﬂ errors and
a priori prediction error power;{\\

This LLR (Eqn. Afﬁ) may, in the context of radar
sigrnal precessing, be reéérred to as a block processing

algorithm in that the block of data {x(e-N+1),..., ()}

cAn.be considered to have been obtained by viewing the

i

incoming data stream {..., x(-1), x(0), x(1),...} from
the range ring of interest through a-window of lgngth N.

But det®ction decisions must be made not only on" the E—Rh

range-azimuth cell represenﬁed by the data set {x(i-N+fﬁ§'

...,x(2))} but also upon all of the remaining range-azimuth

cells. These include the preceding (along lines of con-

£ .
stant range) range-azlimuth cell répresented by theidata

- set {x{2-N),..., x(2-1)} and the following range-azimuth

cell, represented by the data set {x(2-N+2),...,x(g+1)}.

Thus each detection Wfoblem is highly correlated ‘with

the precedjng and the following detection problems. N
This high degree of data set congruence ma& be
X .
taken advantage of by modifying the definition.of the

prediction errors. The k~-th prediction error under
Hypothesis Hi is calculated upon the basis, of the past
k data samples. The needed modification is to calculate

the prediction errors upon the basis pf the preceding
o i ol

f

L
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P

| | \ | . N
\ N |

-

M data samples, lwhere M is fixed and to be determined

. : t
empirically.” If M is.sufficiently large, then the result-
ing prediction error processes will not be signific;ntly
statlstically different then if all pést data were used
as a basis.

Thef%}R for the L-th range-azimuth cell is now

written as:

2 ~ 2 ~ 2
L b o” (k|H;) Ix(k[Hl)l |x(k[ﬂ2)|
In Ay o ( =7 L [11:1(.2 )+ 0 — - —] (4.9)
2’71 k=gl 0T (k|H) - o (lel). 0" (k[B,)
where the k-th predictiqn error, ;(ktﬂi), assuming
Hypothesis H,;, is calculated upon the basis of the past M
data samples {x(kﬂl),...,x(k-M)}.
It is easily seen that: S
i oz(zlﬂl) |i(z|H1)[2 |i2(z[H2)|2 ,
lnAH H-(ﬂ,)=§'[1n(2 + 4 — - —) ] +
271 ’ g (g|H2) olaln) o (zlni)
, + In (2-1)
\ ", 8,
- 2 - 2
, R |[ka-nE)|® [xa-N]H))|
- E{ln( 2 + — - ' (4.10)
(Z—NIHZ) " (2~N i)‘ o (E—N]HZ)

This structure ig efficieﬁtly implemented by loading the
' -

: ‘ -
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f-th incremental term:
7 N - . . .
i 0"(£|H1) Ix-(£|Hl)|2 : lxz(f_luz)lz ,
Fin(— + e -3 ] (4.11)
.c g (E|H2) o (P.|Hl) c (£]H2)

™

into a shift.fegister of léngth N and summing the contents.

This LLR {(Egqn. 4..10) is now compared with a thres-
ho A(E)‘which is preset for the desfred probability of
false alarm. étatisticians refer to £his method ;ﬁ thres-
hold setting as the Neyman-Pearson criterion (Van Trees
[64]). 1Inm radar,'thif id referreq‘to as a consiant'false
alarm rate (CFAR) threshold (Vaﬁ‘Trees [64]).

TH@%LLR test for this 2-th rangé azimuth cell 1is

written-as; ‘

1n A (2) A(R) | (4.12)

HZI 1

A block diagram of this LLR test is shown in’;kgpre 4.1.

4.3 '<’TwoAaquiveImpleméntations of the Innovationms

Based Detection Algbrithm

*

‘The general structure of the LLR test as obtained
from the application of the IBDA to ASR systems is derived
in the previous section.~~—Consideration is now given to

the calculation of the prediction erreors, the a priori

g
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prediction error powers and the CFAR threshold.

As mentioned in settion 4.2, knowledge of&’the
statistical properties of the received data under either
of the two hypotheses (Egn. 4.1a, Eqn. 4.1b) 1is required
in order to construct the two needed sets of prediction
errors and the a priori prediction error powers. The
experimentally obser;ed statistical properties of ground
clutter and weather clutter as discussed in section 4.1
are now utilised in the design of the two different
impiementations of the.LLR (Eqn. 4.10). ot

These two implementations are referred to as the
IBDA (LSL) and the IBDA (KALMAN) and differ only in the
method by which the prediction errors are calculated
The two algorithms gsed in the prediction error calcu- -
lations a;e.developed in section 4.3.1. The methods
used in, the calculation of the a priori prediction error “’ﬁ\

powers and the CFAR threshold are discussed in section -

N

W

4,3.2 and section 4.3.3 reépectively.' -

4.3.1 The Adaptive Implementation;of the Prediction

Error Structure
L]
) "Although linear prediction is only optimal for :

Gaussian processes (Doob [9]), there is usually little

choice. ©Non-linear predidtioh in general is not as

e N
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highly developed, and requires an extensive knowledge of

the statistical properties of the data. However, linear

prediction depends solely upon the second order statistics

. * ‘-‘.._,_

of the data. 1In addition, adaptive linea?’prediction
-algorithms (Gibson [16), Shichor [SBJ, Zhang andfﬁykhy[69h

Friedlander [13]) are simple and efficient. This adapti- -

vity is pertinent to the above ssguéntial method of calcu-

- w . )

lating the LLR ?Eqn. 4.10) where the prediction errors

are calculated on the bas%s of the past M data samples,

The fiR (Eqn. 4.10)_requires two‘parallel PL
tion error filters (Figure 4.1).‘ Oné of the prédiction
‘error filters Ais dggigned to be optimal for ﬂ;p;thes
Hz‘(targeﬁ plds cluttef plus noise), while the other
prediction error filter i® degigned to be optimal for
Hypothesis Hl (clutter plus noise). This is.intuitiveik
satisfying. Since the power spectra for these twg” hypo-
theses are not exactly known a ?riori; in e%q;y range-
gzimuth cell of interest, simple ro?ust mod%}s of thes
power spectrum must be constructed and ;séd in cq:junc—
tion with adaptive linear prediction error filters
designed on the basis of the models.

The first model ;;es the observ;tion that the

width of the power.spectra of ground and weather clutter

processes is greater than the width of the power spectrum-.
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fof target possesses (Gibson [16], Kesler [41]). Equiva-
lently, it wmay be said that the decorrelation time under
ﬁypothes?s Hl isrlarger than that for Hypothesis HZ'
This difference in decorrelation times may be
accounted for in a transparent fashion in the prediction
error lattice filter structure (Figure 4.2). The algo-
rithm for this gdaptive structure is‘implemenﬁed with a-
damping.constant u which contro}s the relaxation rate of
the lattice algorithm (Gibson {16]). Thus the predic;ion

error lattice filter for Hypothesis H, is designed with a

1

larger damping factor than that used in the lattice
. /, _

filter for Hypothesis Ez.

Many\different implementations of the adaﬁtive
L] : .
linear prediction error lattice filter have been discusseg
in the Iiteratufe (Friedlander [13]). These adapti#é
algorithms are classed as éither‘algradient search algo-
ri;hm or the éxact least squafeé Cechnique;' As pointed
out by Friedlander [13], Ehg gradient-techniques are
inferior in‘performgﬁce as'éompared with the true least
éqgares algorithm. -As a result, the least squéres lattice
(ﬁSL) form (Schichor [58] 1is empioyed in this implemen-
:iation of the IBDA. _The necessary recursive equations

are presented in Appendix 2.

The order M of the LSL {(the number of lattice

-
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(.
x(k) —
- 200 .
] Fig. 4.2 The LSL prediction error filter
‘\/ . ' . : . -
. r—*-\\‘l
| UNI'T
*0) v

prediction
ITOT output

-

Fig. 4.3 A tapped delay-Tine filter
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-

stages governed by the number of past data samples used

-

. . - .
in the calculation}, and the ‘precise values of the two

damping constants (UH" U ) are determined empiricallj
1 2 : '
and then fixed. This implementation is referred to as
— . <

the IBDA (LSL) (Figure 4.4).

<

The second podel is based upon.the £p;10wing
observatipm. In én air traffic control environment the
antenna pattern is typically Gaussian shaped. Hence, the
antenna scanning ﬁodulafioh has the effect of making' the:
power spectra of the pertinant random processes assume %

form which may be closely approximated by a_Gaussian

{

function of frequency. The random processes include the

ground clutter and weather clutter and target echoes.
. o

[]
_From Haykin et al. [19] a random pProcess posSess-

-

- ~ LI
ing .a Gaussian shaped power spectrum may be adequately

modelled as a low order autoregressive process (Box and

Jenkinsi[ﬁ]). An autoregressive process '0f order M

(AR(M)) 1is h-s%ochastigeﬁrocess {?(n)} such that

7 Mo : ¢
y(n) = L aky(n—k}+w(n) - (4.13)
. . =

k=1

vhere the "shock” process {w(n)l is a white

-

2 -
noise process with variance cw2 = E[]w(n)l l]. The set .
A . . ,

2
* of AR coefficients {ak, k=},...,H} and the varilance o,

-

—
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, .
of the white noise process are related through the set

of normal équations similar to those used ian linear

prediction theory (Eqn. 3.35).

o _‘: .
The power spectrum Sy(f) for an AR (M) process -
R
is written as: -~
2
""U w : -
Sy(f) = M > - (4.14)
1+ ¢ akexp[—ijfk]
k=1 * '

As demonstrated in Figure 4.5 the AR

coefficients for an AR(3) can be adjusted so as to yield

*

an acceptable fit of the power spectrum S (f) to a Gaussian.
: b

function.  Hence, since under Hypothesis H (nb target

1

present) and assuming a relatively small backgrouna-white
nolse power (i.e. a clutter dominated environment) a first
or a second order linear predictionm will be nearly opti-

‘mal. : .
atl., .

Under Hypothesis_Hz (target present), and again
-y

assuming a relatively small background white noise power,

LI

the received data is complicatéd'by the préSEnce of the

. -

radar return due to the target. Sinte the target process
possesses a Gaussian spectrum, the total received data
+ ’ /
) : —
process may be approximated as the sum of two first or

second order,&R processes. From Box and Jenkins [6],

the sum of two AR processes is an autoregieséive moving
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average ( ARMA) process. Since.an ARMA process may, in
general, be approximated as a higher order AR process
(Box and Jenkins [6]), it is concluded that under Hypo-
thesig HZ’ the received data may be modelled as a hiéhet
(with respect to the data unde? Hypothesis Hl) or@er AR
process. Hence a fourth or a fifth ordér linear ﬁredic-
tion will be-acceptableifor Hypothesiiiﬁ

2

For the implementation of this secong,model the
Kalman tapped delay—line prediction error filter (Figure
4.3) 1is utilised., TIun ghis applicatign of Kalman Eheory_
(Kaiman [35]) a randowm walk state model is used.t; repre-
sent nonstationarity (Zhang and Haykin [69]). As dictated
by the above model, the prediction error structure is
implemented.with a first-order tapped delay-line Kalman
filter, and the prediction error structure for Hypothesis

_‘Hz'is implemented with a fifth order.tapped delay-line

ﬁalman filter. v

%he recursive equations for the Kalman prediction

cerror filter are presented in Appendix 3. This implemen-

,tation will be referred to as the IBDA (KALMAN) (Figure
A - , T

L.6). . R - . € v

4.3.2 The Estimation of the a priori. Prediction °

Error Powers

. As the radar environmetht is spatially correlated,
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[

information concerning any particular range-azihuth cell!
ii‘containedrin sur;ounding cells. This additional'._
info;matioh is used to‘éstiqate-the a priori prediction
eIror pPOWETS oz(lfﬁl), 02(£|H2) (Eqn. 4.10) and the CFAR
threshold A(ﬁ)'(Eqn. 4.12). Specificaily, the a priori
prediction error powers are estimated aizgé lines of
constant range, while the CFAR thrésholds aré estimated .
along lines of constant azimuth. .

The'escimatgs of the a pfioff prediction error
powers are calculated using a prediction“error power map.
Eiery resolution cell of interest within tﬁe radqr environ-
ment 1is repreaented'by a2 unique map element. Each map
element contains two entries which are the time-averaged
{on ;'scan—to—scan basis) 9utputs |i(1lHl)|2 and |i(£|H2)[2
of the two prediction errorlfilters. The a priﬁri predic-
?ion eTTOT powers 02(£[H1) and c?(n[Hé) used in the calcu-
lation of the ipi:emental update term (Eqn. 4.11) are
estimated b&vaveraging the map elemént contentstgzr the . °
26 cgglls on eithér\s?de (in éz}muth) of the ¢-th map
element. -

Thlis time-averaging is performed by recursively

updating, on a scan-to-scan basis the contents of the map
- . [

elements. The;update f&heﬁe is to add 7/8 of the present
' . . Lol I * .

contents ofthe-n—tﬁ map €lement to 1/8 of the outputs
1Arange—azimuth cell fs_an area defined by the antenna
beamwidth and the range resolution.
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- b . - N -
[x(EIHl)]' and |x(£{H2)|2 generated by the prediction

error filters for the t-th Tesolution cell.

The mﬁp is initialised by loaaing it with the outputs from
the prediction error filters during the first scan.’

The updaping scheme described above for thé implemen-~
tation of the IBﬁ& differs from that used for the MTD algori-
thms in that the lafter do not average in ;zimuth (Drury

. {10], Karpand Anderson {37]).

A.3:§: The Estimation of the CFAR Threshold

‘ The estimaterqf the CFAR threshold is obtained
from the.LLRs generated for the 13 resolution cells on
either side (in range) of the cell of interest.

In order to obtain a stable estimate of phe
correct threshold for the background clutter, the two
immediately a&jacen; resolution cells are exempted from
.fhe calculation. This is to eliminate tﬁe problem of
range-cell splitting where a target is present in two
adjacent range cells. A calculation perf@rmed inpluding
the adjacent cell would unnecesgarily raise the threshold
value, resulting in decreased detecfion performance.

. VoA simﬁlistic met%?d of‘eBgenating the adaptive
threshold is to employ‘the mean o‘f the .]..LR"S,.%-!:’these range
cglls. This approach will reduce deggction éen’ormaﬁcé!

—
due to the possibility of spikes of ground clutter and/or
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other targets existing in these range-cells, with a subse-

e

quent Increase in the estimate of the threshold.

This problem is avoided to a certain extent by

searching for the largest values of the LLRs from these

’
range azimuth cells:-and excluding them from the calculation
'6f the mean value. Bowever, the use of this method of
estimating. the adaptive threshold did not yield satisfactory '

performance when implemented with the IBOA.

The CFAR threshold for'the IBDA implementatibﬁ;
is calculated'using the median estimate of the LLRs from
the range;céllé .(Ataman ef al. [3]). The median esti-
mate of a sampie set is the middle sample‘of the order-
ranked set. ;Ag such, the median estimate is extremely
insensitive (as compayed to the méan‘estimate).to what
may-be termed outlieré.. Outliers, in this context, éould‘
be the spikes of grﬁuﬁd clutter and other target echos.

. The CFAR threshold A(£) (Eqn. 4.12) 1s obtained
by scaliing the medién estimate of the LLRs from the
surrounding range éells by some fi#ed'constank. The
. scaling constant is fixéd so0 as to yield.the desired

probébility of false-alarm. : .
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4.4 THe Moving Target Detecéion Algorithms

In most of the earliest atteﬁpts to. . solve the .
Eadar target detection problem, moving target indicétors
(MTI's) were used (Skolnik [60]). These took thé'fofm
of two—puise or three—pulse.cancellefs which are essen-
tially lineaf filrers with a npfch“ap'zero frequenc} S0
as to eliminate ground clutter.f Hoﬁeﬁer; phey_ar;-not
able te discriminate against moving weather clutter;

The first'géneratioﬁ'omeovimg ta}get detectors
(MTﬁ's), the MTD-l:(Drury (10]), is é'first'approach to
. é'éo;uﬁion of ‘this difficﬁlty.‘ It op;rétéé‘by‘passing
blocks.afhld'consecutive~return§ (c#lréd a coherént.process—:
iné interval (CPﬁ)) from each‘rangé fiﬁg tﬁrough a khree—
pulse cancellor followed by an 8—po£n£jfas§ gourier Trans-
form (Ff%) (Figure 4.7): A zero velocity filter (ZVF)
is also ‘used to increase tﬁé probébility of detecting
ta:gets possessing only a small‘radiai.velociny domppnent
by forminé an average of the raw vide;fdéta in‘tﬁé CPI.

}  ~ CFAR performance 1is maintained through the use of

¥ | >
two different methods. The output f:om_the bank of non-
zZzero Joppler filters are each separatelk\;?résholded.

These thresholds aré obtained by avef&gin the outputs

from the appropriate filters in CPI's up to 1/2 mile in-

range fn either side of the CPI of interest. As men-

*
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Fig. 4/ The MTD systems
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tioned in section 4.3.3, the largest values in these sets -
ot coutputs from the FFT's are exciuded from the calcu-
lations. This method-establishes'a stable estimate of
any weather c}utter-which maf exist in this CPI. The
output from the ZVF is“compared with a threshold obtained
from a ground clutter map. The ground clutter map contains
a stable estimate of the ground cluttet in each CPI in
every raunge ring of interest. This estimate 1s obtained
by recursively filteringAthe outputs of the ZVF for each
of'the CPIs on a scan to scan basis.. This long time
constant is possible/EEcause of the slow temporal variaT

A

tion nf thepground clutter. T Q C
The MTD~2  (Karp and Anderson-[37]). (Figure 4.%)
design philosophy results from a recognition of the
limitations of jﬂrﬁFFw algorithm when used as a doppler
processor. The FFT may be considered to be a bank of

matched filters, matched to sinusoidal ‘'signals. Hence;v

the FFT will'’ produce acceptable detection perf::;;;:z
?

‘only if the backgrou/g.noise corrupting the assumed

23
sinu501dal target rgturns is white and Gaussian. However,

-

ground clatter and weather clutter are highly‘correlated
;?QQessPs, and ground clutter is often highly nonQGaussian. "
'As a result, the non-zero doppler filters for the

MTD-2 are designed using the method of deLong and Hofstetter

»
. 3
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[8]. This design approach calculates' the optimal linear

s \
filter for the detection of a specified diterministic

signal in additive correlated Gauyssian ndise.

For a CPI of length (N-1) samples, the tap

weights h(N-1) for.-a specific non-zero doppler filter

areLthe solution to the matrix equation. (delong and

Hofstetter [8]):

B-1) = [R 7V (N-1) s (n-1)17 45y

-y
+

vhere 3;(N—i)-is the (N-1)x(N-1) covérianqe matrix
of the assumed Gaussian.clutter process plus the WGN

procegs,laqd 5(N-1) is the specific target reéponse to
/

which the ﬁpn—zero doppler filter is to be matched.

Hénte, the output y of ‘this filter may be written as:

y = ET (N-I)E(N—l')

A

- [E;I(N—lj_s_(ﬂfl)]Tz(N—l)' ) (4.16)

The ;eal version of this generalised matched filter
(Egqn. 4.16) is disﬁusFeq inlsection 3.3.3 whete its
eéﬁivalen e to the LLR, generated by an applicatioﬁ of
the IBDA Eg\she detection of a‘detgrm;nistic sigﬁal

in colﬁured Gaussian noise, is estabiiéaed.

The covariance matrix Bx is generated by assuming

L]
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that the ground clutter power spectrum is Gaussian in
shape, centered at zero doppler, with a width determined -
by ‘the rate of rotation of the antenna. The weathéry
clutter power spectrum is modellea as being uniform
across the dbppler band except for a recgangular notch
centred at the dopplgr frequency of interest. This

»

specific weather clutter model is chosen so as to reduce

‘the filtered sidelobes which enhances the filters' weather

rejection capability, resulting in improved target detec-

tion performance.

The receivedftarget signal i; modelled as a sinu-
soid of.thérchosen doppler freqﬁéncy moéulatqd by the
Gaussianrshaped antenn; pattern. ‘

In Qefms of the implementation of the MTD-2,
(Karp and Anderson [37]),Iit'was determined that the
filters' tap weights word size need only be 3 or. 4 bits
if thé.doppler filters are preceded Hy a;two—pulsg
cancellor. in addition, greater resolution could be

achieved if the CPI 1is reduded from the 10 samples (as

inlthe MTD-l);fo B samples. As a result, .each of the

‘filters in the seven non-zero dopplgn'filter bank 1is

described by sev 4 - ~complex coefficients.

4

The ZVF for thie MTD-2 is aiqo implemented as a

linear FIR filter (Ka p.apd Anderson [37]). The ZVF 1is

"
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designed so as to maximise the gain in that portion of
the doppler spectrum centred about zero_dopgler. Addi—
tional constraints are placed on the filter coefficients
in order to reduce the sidelobes. The ZVF is described
using eight 4-bit tap weﬁghts. ) |

CFAR processing is acéomplished in much the samé
manner as is used in the MTD-1.

The 2TD—3,is the'third generation in the evolu=-
tion of the MTD algorithm (Taylor [62]). It was recog-
nised that by increasing the filters' t;p welghts to 10-
b{t-accuracy, the filter §idelobes are redﬁced'as compared
to’the MTD-2, In addition, the two—pzlse cancellor is
no longer necessary. Hence the MTD-3 consists of a bank

.

of eight filpegs, each of which is‘despfiﬁed by eight 10-
bit complex tap weights (Figure 4.7). ~

The filrers empldyed By the MTD-3 are again 'calcu-
lated using the method of delong and Hofstetter [8].

CFAR processing 1s performed in a similar way
as is used Iin ‘both the MTD-1 and the MTD-2.

The precise details of.thewimplemenbation of the
MID-1 and the MTD-2 were made available to the author
for this research by M.I.T, Lincoln Laboratory.. Details
for the implemencatidn of the MTD-3 were had; available

by Westinghouse.

‘The MTD~1 and‘the MTD-2 have both been succéss-
-

../'__/__
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fully tested and implemented By Lincoln Laboratory (Drury
[10], Karp and Anderson [37]). The MTD-3 is part of a
design proposed by Westinghouse for a national air traffic

control system.

4.5 Summary

In this chapter the IBDA is applied to the radar
target detection problem., Two different models of this -

+

defgctibn EEPblem are diséussed,in section 4.3. The
first model utilises thg'experiﬁentally ogserved differ-
ence Y the widths of the power spectra'ofAthe received
data under tﬂe two hypotheses, Siace thé.powe; spedtra
under either of these two hypotheses aré‘Gaussian shaped,
and hence, may be modelled in terms of AR ﬁroéesses, tagﬁg'
linear prediction may be utilised. The LSL a;gorithm ;l
based Qﬁ}the exact method of least squares ;s employed
in the calculation of the prediction errors. uThis‘implé—
mentation of the IBDA is referred to as the IBDA (LSL).

The second iﬁflementation 1s referred to as the
'IBDA (KALMAN). Again, assuming no target present then
the data process may be modelled as an AR'process:‘ Howevér,
if a barggg is present, then the data procesé m;y now be

modelled as an ARMA process, which, in ‘turn, may be

modelled as a higher order AR process then is used when

i



assuming no target-is present. This implementation

employs Kalman prediction error filters.:

&

Neither of these two implementations expliditly

-

assumes thét the clutter process is Gaussian. However,
. .

the prediction errors in both implementations are generated
A .

through the use of linear prediction algorithms. Since
linear prediction is optimal only for Gaussian processes,
these two implementations will suffer some dégradation

in performance if the clutter is non-Gaussian.

The MTD algorithms are discussed in section 4.4.

Basjcally, these algorithms are designed to maximise the

-

target signal power to the clutter plus noise'power ratio,

under the assumption that the combination? of the clutter and

-4 -

nolse is modelled as a correlated Gaussian process.

¥

The IBDA (LSL) and the IBDA (KALMAN) mdy be com-
pared with fhe MTD algorithms’by first.noting that, asl
is shown in section 3.3.3 the LLR‘resultiﬂg‘from an apﬁli- -
cationléf,the IBDA'to the detecﬁion.of'a'detérmini;tic:,
signal in Gaussian noiqe is equivalent to the reai vergions
of the MTD detection statistics. Although these cpﬁphr—

isons are made in the real domain, fhey may be Easily
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extended to the complex domain.

éecond, the IBDA is implemented using adaptive
prediccion error ‘filters whereas the MTD algorithms are
implemented using fixeé FIR filters. Third, :the IBDA
imblementétiqns output a decision for every range-
azimuth cell of interest, while the‘MTD algorithms make
déciSioﬁs'based upon the procéésing‘of'contiguOUS blocks
of data, the.coherent processing intervals. .

. Hence“it caﬁ'bé concluded that ghe MTﬁ algorithms
are limiting forms of the IBDA implementations. It should
‘therefore be exﬁected.to }eélise a better detection perform-
Aance.a using 't‘he' IBDA than would be possible with the MTD

apgfoach. This is indeed coﬁfirmed in- the next chapter

by using real radar daca.
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" CHAPTER 5

SYSTEMS PERFORMANCE EVALUATIONS AND COMPARISONS

.

In Chapter 3, -the likelihood ratio for the detec-
tion of # discrete-time stochastic.ﬁrocess in additive
WGN 1is derived. In Chapter & éhe application and,iﬁple—
mentation of the IBDA to radar target déngction is des-
cribed. The MTD algorithms are discussed in séction‘&.é;

| -In thisrchapter; tﬁe gﬁrfSrmance of these défec—‘
tion.;lggrithms is anqused in terms:of their receiver
operating chactacteristics (ROC) (Metford and Ha&kin fAS];'
For this applicatioﬁ,-the ROCs (Van Trees [63])-ére
described in terms of ‘the probability of false alarm

(P A) as a function of the target signal power to clutter

F
plus\receiver noise power ratio for a given probability
of'détection (PD). Differgnt ROC curves will resuit for“
different target qupiers.
| All of the detection algoritﬁms are.;pplied to

the same sets of radar data. The pérformance comparisons
are thué intefnally consistent ylelding strong and useful
conclusions énd recommendations.

In section 5.1, the data acquisition system is

described. The methods by which the data is analysed so

100



s . " 101
as toobtain the ROC'curvgs and to obtain the‘parameters
necessarf for implementation of the_IBDA-are discussed
in §ect;6n.5.2. The ROC cur;es are analysed and perfofm-
ance comparisons are:made in section 5.3. The conclusions
are stated in section 5.4. Suggestions for future research

are made in section 5.5.

5.1 The Data Acquisition Systém

The radar data for the sfsﬁems performance analysis
are required to satisfy severéy criteria. Since all. of
the detection algorithms operate on the complex -baseband
signal (Whalen PGé])K a_fu%ly coherent rada; system is
needed to allow the recording of both the inphase' (I) and
_thé quadrature (Q) Aata channels? As the fBDA req;ires
unifprmly'sampled data (for easé of impleménﬁafiou)‘a
fixed-transmitter{bulée regétitioﬁ frequency (PRF) is
~mandatory. Folidwing the recommendations of  Gibson.[16]ana
Iéylor [62]),-the sampled video channel must be digit%sed
using a minimum of 10 bits. In additioﬁ,'since‘weather
clutter;dominated radar data is needed, a linearly pola;
}ized transmitﬁed‘signal 1s desirable [46].;

Thbsé requirements are“all met by the Westinghouse
TﬁACS radar system installed at the Cangdian Forces Base

.

CFB Trenton. Ihe‘significant operating characteristics
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of the TRACLS are summarised in Table 5.1. Although

the TRACS is a fully operational radar system, the air

traffic controllers and the technical support group
P
cooperated fully in the reconfiguration of the TRACS to

our regquirements.

Referring to‘Figure 5.1; the two channel% of
. . 1)
10-bit data, along with the zero range mark, the antenna

azimuth change pulse and the antenna azimuth reférence

pulse coﬁpi}se 23 parallel digitél channels‘oﬁerating

at a per channel bit rate’of 1.3 MHz. This data stream

was' recorded on the CRL's digital recorder. ' The digital

recordey consists of an AMPEX HBR-3000 digital processing
. .

bay in conjunction with an AMPEX AR-1700 Wideband Airbormne/

MobilerTape Trénsport Unft., ' \

.

Recor&ings wére initiated when a significant
H;I b;eakthrough occurred on the TRACS plan positién
indicator (PPI). 'Two 25 minute tapes were recorded
during a mediup rate snowfall. A third tapelwas'recorded
for comparativé purposes after the snowfall had'ce;séd.
Photographs of the TRACS PPTI taken during these record-
ings are shown in Figure 5.2.

Several data seﬁs of varying amounts of ground

and/or weather clutter are needed for processing by the

detection algori{hms for performance evaluation. To
N (
’ .

T4
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Table 5.1 The TRACS Operating Characteristics

Iy
Transmitter frequency = 1.23 GHz
Pulse repetition rate = 657.2 Hz

Pulse width = 0.5 x 100 sec )
Antenna revolution fate = 12.5 rev/min (nominal)
Antenna ?eam width =-1.35° (nominal) ;r

Sample rate = .1.35 Miz

Sample word size = 10 bits, both inphase and quadrature.chanﬂels



104
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Fig. 5.1 A flowchart of the data acquisition and storage system

*
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conform with the specifications for\implementation of
these algorithms, each of the data sets consists of at

. least 12 consecutive scans of a 2 nautical mile wide
swath of radar reﬁurns. Thisrlérge amouﬁt of data
(approximately 3.1 mega-bytes) necessitates a complex
interface between éhe recorder and the HP-1000 computer.
The high recorded data bit rat® 1s not a significant fac-
tor since the wrecorder may be slowed dowﬁfwhen it is in
the reproduce @ de;

A specific data set is acquired by setting the
registers within the ﬁrogrgmmable interface‘so as.to
select the swath of interest. The data'is then pased
through Ehe programmable interface'intb the General Pro-
grammable Input/Output Processor (GPIOP). By using the-
Array Processor (AP) as a rather exp:nsive buffer memory,
the GPIOP writes the data iqto the AP memory q@!;ﬁe'HP
asynchronously reads data oﬁtlof AP meﬁory onto disc.
This process ié continued until at least 12 scans‘of
radar data have been acquilired by the HPj This'd#tgais
then stored on computér magtape for ease of futdré“%gfé?-o
ence.

'rTwo déta'sets were acquired in this maqner from
A

the first tape. The first data set is positioned in

rangé from 12.75 to 14.75 nmi. so as to contain the weather

.

)

-
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clutter cells evident in &Qe photographs of the PPI dis-
play (Figure 5.2). A plot of the amplitude envelope
\/IZ+Q2 of the first scan of tﬁis data set is shown in

| L2
Figure 5.3. This data set is char@cterised has being

weather clutter dominated radar data. The.second data .

set is poéitioned in range from 1.25 to 3.25 !mi. and )
. L . .
- g

is characterised as being ground, clutter dominated radar

data. A plot of the amplifhde envelope of the first scan

—
of this data set is shown in Figure 5.4. \ — N
" 7
. . i ‘ o <
5.2 The Systems Performance Eyalu}tion Methodology
-  \— >

Initialisation of the ground clutéer maps for ﬁhe
MTD algorithms and the prediction‘errdr power maps.fér the:
,IBDA ‘algorithms ac.hiev’edwrocessing of the first
'8 scans of a~gdven data set.

The last four scans are processed for PFA calcu-

latiQEi;\ Since the MTD-1- operates on CPIL's of length 10
samples,Ythe MTD-2 and the MTD-3 operate on CPI's of
‘length 8 samples, while the IBDA processes sample by

sample, blocks of 80 consecutive sweeps were accessed at

, ¢

a time. Since each scan contains 3296 sampleé per range

ring, 16 samples are left over. .These remaining sweeps
J . | .

are ignored by the MTD algorithms. However, as the IBDA

requires continuity "of data, these Eemaining samples are

£

" -

_2(




fff

iii‘l

mi

) L____._..

:




109

‘
360

-'\l—ﬁ
H

2D I
ﬁ)‘ it

F: ﬁ 5l

[ ——— A
. **
U — e |
\-——-u o
P
—
——
W e | e ey
(degrees)

{881

4

e
I Ihﬂﬂ Wi .

Fig. 5.4 The amplitude envelope of the first scan of the ground clutter dominated radar data

SZ°¢ (S9TTW TeoTINEU) S2°1



110

processed by the IBDA but do not contribute té performance
éalculations;

The processing of these four scans results in
10496 decisions by the MTD-I algorithm and 13120 decisions
by the remaining algorithms. Hence, the minimum achiev-
able PFA is approximately 10-4. Although ASR systems

Fa
ing-time constraints do not pgfmit thig.

usually operate at a P of_lO_5 or less, éomputer process- '

The ninth scan is processed for'PD'calculations!
Since it is necessary to examine the performance of the
algorithms for all SCNR;s and target dopplers, artificial

target responses. were constructed. The target response

is of the form:

g(nT) = exp[:(n-nDXaT/Zﬂz]exp[2vj}(n-no)T]

where the agtenna rotation rate u=13234 rads/sec, the
interpulsge period T=0.00152 sec, thervariance of thé
modelled Gaussian- shaped two-way voltage pattern 02=()0000741
and the doppler frequency f is in Hertz.

| Usin® the above-mentioned blocks of 80 Eonsecutive
sweeps, the target response is added to the radar data by
scaling the target response to the amount of clutter power
so as fp_obtain the desired SENR.

. !
As iji}ussed'in section 4.3.1, various parameters

4
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which are needed for the IBDA implementatioﬁs must be
determined empirically. The parameters required for
the IBDA (LSL) are the filters order M and the rtwo damp%
ing constants (uH » My

1 2
. - R
required for the IBDA (KALMAN) implementation are the

) {see Appendix 1). The pargmité:s

filter orders (MH , MH ), the vériance r of the innova-
1 2 i '

tions process and theAvariancéiq of the rahdoﬁ walk state
model used in the Kalmgn algo;ithm {(see Appendix 2).
Ideally the‘;ptimum set‘of parameters for each of
the two implementations w&uld be determiﬁed through compar-
isons of the Robqfiﬂr'all possible sets of parameté;s.
However, due to computer processing-time conscrainté,
this is impossible. Insﬁead, performance tfends are
_observed by taking a specific section of radar data aund
looking for the largest relative difference in the LLRS'
as a specific target is or is not placed into the data.
In preliminary studies it was observed that if
for a specific set of ﬁarameters, good detection perfor-
mance 1s obtained in weather clutter.dominated radar data,
then, in general, good detection performance will also
be achieved in ground clutter-dominated radar data.
Heqce, the parameter search was performed using weather

clutter dominated radar data.

Some plots of the LLRs generated by the IBDA (LSL)

®
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Fig. 5.5 A sample set of the LLRs generated by jﬁe IBDA(LSL),
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are presented in Figure 5.5. LLRs generated by the IBDA
(KALMAN) are presented in Figure 5.6.

5.3 The Systems'Performance Comparisons

The performances of the five detection algorithm, the
_Mrb—1, the MTD-2, the MTD-3, the IBDA (LSL) and the IBDA
(KALﬁAN) ire examined in this section.

_The five sets of ROC curves resulting from the processing
of-weathe; clﬁtter dominated radar data ?re presented in Fiéure
5.7, 5.8, 5.9, 5.10, 5.11. The ROC curves from tﬁe processing of
g;bund c¢lutter dominated radar data are presented in Figure
5.'12, 5.13, 5.14, 5.15, 5.16.

The problem preseatgd by the lack of an SCNR célibraﬁion
is resolved by Fﬁoosing the MTﬁ—l algorithm as =a reférencé.
Within this frame of reference, berformance comparisons of the
othéf detect?on algo;ithms are made. Internal consistentcy
is thereby maintained. The MTD-1 aléorithm is chosen as the
reference since the MTD-2 and the MTD-3 algorithms are referred
to as being improvements upon the MTD-1 (Taylo:,[62]), and
also since the two IBDA algﬁrithmé are to Be compared with the
MTD algorithms. |

The performapce_cdmpar@sons for Veythe: clutter dominateé
radar data are presented in Figure 5.17. The performance
cdmparisoﬁs in ground clutter dominated radar data are presented

in Figure 5.18.

The overall improvement of the performance of the
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MTD-2 with respect to the M?ﬁ 1 and of the MTD-3 with
respect to the MTD-2 'is in agreement with the results
and predict ns made by Karp and Anderson [37] and %Lﬂ#
Taylor [62]. This is a confirmaction of the vallidity of
the methodology used to obtain the sets of ROC curves.
The IBDA (LSL) is.imprmented using fif;h order;

lattice prediction error filters with (uH Yy = (1.0,

.U
1 By

'0.5). Good performance ralative to the MTD algorithms

is achieved for ground clutter dominated radar data” (Fig-
ure 5.18). However very poor performance is demonstrated
for weather clutter eominated radar data (Figure 5.17).
Although many other sete of parameters were utilised in .
an attempt tolimpreve this performance, the res;lts were
negative. A possible reason for this "erratic behavidur'

of the IBDA (LSL) implementationm is that the adaptive

prediction error lattice filter may not be.as capable of

‘tracking the spatial variations of the weather clutter

process {(which is known to be highly nonstatibnary)‘as

well as is necessary.

The performance 0of the LSL <implementation of/ the

. .
prediction error lattice filter was also examitEd/ y

allowing the\{iifer orders for the two lattice filters
to be different and By making the two damping constants

equal to each other. This is the implementation suggested
. L,

N
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by the model of the radar target detection problém uti-
lised by the IBDA (KALMAN). The performance of this

implementation did notvimprove with reépect to that of

the IBDA (LSL). . _ .
The IBDA (KALMAN) is implemented with (MH . MH )
} 1 2
"= (1, 5) and r = q = 0.1. For weathe; clutter dominated

radar data (Figure 5.17), the IBDA (KALMAN) is always at
least as good as the MTD algorithﬁ, and has approximately .
a 4 dB average improvement., For grouﬁd clutter dominated
radar data the IBDA (KALMAN).has an average improvement
of 3 dB with_resﬁect to the MTD algorithms. It should be H
pointed out ' that there is a noticeable degradation in
performanée af 50 Hz similar to tpe degradation in perform-
ance of the MTD-3 of 100 Hz (}igﬁre 5.18).

The performq&ce of the IBDA (KALMAN) with respect
to that of the IBDA‘££SL) in weather cluttFr_dominfted

radar data confirms the poor adaptivity of the LSL algo-

a .

rithms with respect to the adaptivity of the Kalman algo-

rithm in the presence of weather clutter.

5.4 Conclusions
‘An examinatidhn of the performance of the IBDA is .

made within the context

f the deteétion;qf aircra{f by

irport surveillance radar systems. 1In this\application
. 5 o

A
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of the IBDA, the LLﬁ is essentialiy the difference between
tﬁe outputs of two whitening or linear-prediction error
filters. The first of these filters is ‘designed so as
to whiten the data under the hypothesis that the dafa is
composed of a target response, the clutter and the usual
WGN component. The second filter is designed to whiten
the data under the alternate hyﬁothesis that the data is
composed only of clutter and the WGN .

As a result, the performance of thfs-appligation
of the IBDA depends not only upon the rbbustﬁess of the
nece;sarily aaapcive whitening filters but also upon a
proper identification of those. spectral properties of
the input data, under the two hypotheses, which are perti-
nent to the .design of the whitening filters.

Thé performances of two differeht implementa?k?ns
‘of the IBDA ar;‘;xaﬁined. The IBDA'(LSL) uses the LLL
form of the exact ﬁethad of leasé—squares, ;;d is aesiE%ed
to utilise the experimentally observed spectral peak width
difference in the data_under.the two hypotheses. A satis-
factory improvement in performancerreia;ive to tbe MTD-3
algorithm is observed for ground clumter domi%;:ed*réd;r
data}, Howevef; there is a significant-degfadation in

performance for weather clutter dominated radar data.

This suggests tha;-a simple utilisation of the peak width

-
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is not a sufficiently robust characterisation of tﬁe.spec—
‘tral p;opertiés of radar Qata; B )

The second implementation, the IBDA (KALMAN) is
designed by ﬁaking the stronger statemént that all of the
peaks in the powér spectrum have Gaussian shapes. Adap-
tive prédiction error filter structures (based‘on the
Kalman filter,.assuming a randoﬁ Qalk state modél)laée
utilised. This-implementation leads to a 4 dB average
improvement for weather clutter dominated :adaf'daCa and
a 5 dB average improvemgﬁt for ground clutter déminated
radar data as compared to the MTDTB algorithm;

In conclusion, it is observed that when properly
implemente&, thé_IBDA is_sapablg,éf.at leagt a 3 dB ave;age
imﬁrovement in perfor?énce relative to the MTD aigorithms
which are éreséntly in-use in air traffic control radar -

(
sys;ems.

This observation is in agreement with the rea;i-
'sation that the MTD algorithms may be regarded as limiting
forms of the IBDA as applied to the radar target detection

problem.

i
5.5 Recommendations®™€or Future Research

This thesis has established the improvement in

detection piijormance of the IBDfgy relative to existing



N .
B | |

’ -

131

svstems. No examinationm of the rgsolution properties of
this detection alg;fithm has been made. This is an
importaﬁt.factbr in the determination-of‘the overall compe- :/(7
-titiveness of the IBDA as a viéble radar system signal .
processing algorithm. |
A second importah; figure of merit is the perform-
anée.improvement versus cost increése tradecoff. A full-
_jpéle implementation of this,system_ﬁoﬁld‘require an array
processor capable of performing oﬂ the order of 200 com-
plex additions and 200 complex multiplipafions per array
elemegé every pulse repétition interval. "This must be
compared to tﬁf Mj‘D—é which performs approximately 100
complex additions and 64 cémplex multiplications every 8
puise repetition intervals. Henge, the proceséor for the
IBDA {(KALMAN) mustg ope;ate'approximately'GA;timeé f;ster
than the processor in the MTID-3.
. To place this needed iﬁcrgase in procéssfng powver
“in perspéctive, i% sﬁould be noted fhaﬁ a,radar syétem
. implemented with the IBDA {KALMAN) and having the same
N
performance as a radar system {mplemented with the MTD- 3

needs only one-half'the front end power requirements as

that-re$¥ired by the MTD-1 radar system.
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APPENDIX 1

SIMPLIFICATION OF SOME MATHEMATICAL

TERMS IN THE IBDA

1

Consider the correlation matrix C(N-1) where the

(k,k")-th matrix element:

. -
o 2.
-1 1 = . ‘." _—_W - ] ''= 7-
C(;z 1ik,k') = min(k+l,k H)C’s(k)c’s(k')' k,k 0,...,N8-1 (Al.
_ ) .
For N-1 = 1 .
g ? . ' g 2
—_— _ W
2}
Us_(o) US(O)US(J—)
c(l) = _
: 2 2
| O‘w ) _ : Zow
4 )
g, .
Thus }Q(l)| = 7 ’
g (°)°s (L

! 20 2 ' g 2

; W . W

| | 052.(1) “ o ()0 (D)
and € (1), = L i
: L len | 5 I g 2 |
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_' I QS(O)Us(l) ' 052(0) ‘
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. o
- w

This calculation may be repeated for other values of

and it is concluded that

|C(N-1) |

]
=T |

-
20 (o) -0 (0)o (1)
. s 5 s
| —17
. L .
g 2
W
| -0 (0)o (1) ¢ 2(1)
. 8 5 s .
Since |
ﬁ l T _:IL yo—]
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. v,
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' 1
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k g (k) p=o
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N-1 )
and y E(N—l)XT = —AE £ xz(k)
. Gw k=o

Consider now the correlation matrix gp(N-l) where

Al

the (k,k')-th matrix element -

Gsz(k)
RN I
R (N-13k,k') = { 1 ko= k!
S PR o
ooy (k')
Log(k)cﬁ(k'y“' >k
“ For N-1 =1 , _
: . O -(0)1
. - 1 5
@ .GS(l)
R (1) =
--p . ) \
. g_{o)
S - 1. -
(20 N
o 2 (1)-c_%(o)
Thus |[R (1)]| = 5 S
P g_" (1)
S
. ) ¢ (o) )
9 . g (1)
_.]_ O.S (l) s
and-R5 (L= 5 2 T ,
g, (L)-o (g) i o (o) . "
' o (1) -
L. ' -
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) .2 n .
— E (ofH) X éllHl) )

. T 4
: \w/)a 2(o), os (1)—052?0)

- ‘ ‘jAgain, this calculation may be repeated for other values

of N-1 and it is concluded-ghag

' 2 2 ‘
\ -1 (0 *(-0 *(-1))
_ e k14 ol Y
. : S . '
s

N-1 iz(klal)

e DR e T 4 T
P , k=0 o, (k)-—crs (k=1)
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~
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APPENDIX 2

THE ADAPTIVE LEAST SQUARES LATTICE ) .

PREDICTION ERROR FILTER =

The following lattice algorifhm is a generalisa-
tion of the lattice structure as derived by Schichor [58])
to inc%ud:\&gii/pomplex daté andlexponentia} weighting of
the Qatal This exponential weighting allows the past data
to be forgotten, thereby enabling the tracking of time
variations im the data's stat%stical ﬁropefties.
 .Tﬁé fBllowing symbols:are defined where (Figure

4.2):

Ee M(n) is the ' M-th order forward prediction error power
? .

at time n

P (n) is the M-th ord;;f;;kaard prediction error power

T, M

at time n
KM(n) is the M-th order unnormalised reflection coeffi-
cient at time n ‘ . .
eM(n) is the M-th order forward prediction error at time n
rM(n) is the‘ﬁ—th order backward prediction error at time n.

o

EM(n) is the M-th order forward pseudo prediction error at

137
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time n ’

pM(n) is the M-th order backward pseudo predictiom error

. e
at time n ,,/ . B _
"4 1is the damping cosntant

Then, with the following initial parameters:

1

() = e ) = e () =x (n) = x(a)

K, (1 = 0

. . . )
,Pr,o(e)é Pe,o(l) = |X(0)L
0 = o

the ordeting of the recursive equations for updating the

lattice - parameters when a2 new data sample x(n) is input

rs

to the lattice is as fqllows:

.(') Ky l(n 1) (
e, (n) = (n)- 57 Py_q (R-1)
M 1 Pr,M-l(n 2) "M-1

' | K* (n-l{

M-1 -

p,(n) = (n-1)- € (n)

P 1 . Pe’M_l(n—l) M-1
KM_i(n) Ky l(n 1)+eM (n)r* (n 1y

(n) = ubP

P M-1 o -1 (B D)rey  (m)ek ) (n)
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1l

. _ « 1y
“Pr,M—l(n-2)+rM—l(n l)oM_l(n 1)

K (n)
M-1 (n)

2
(o) KM-l(n)
e,M-1" ‘Pr,M-l(n_l)
2
. KM_I(n~l)
Prm-1(Pm%) (n-1)
e e,M-1



APPENDIX 3

THE KALMAN PREDICTION ERROR

TAPPED DELAY-TIME FILTER

.- The following adaptive linear ﬁrediction'errcr

aléorithm results from the use of Kalman prediction
theory where the assumption is made tﬁgé the optimum
- tap-weight vector is rand?mly varying about a mean wvalue
(Zhang and Haykin [69])1

The following symbols are defined where,if‘given
an M-th order tapped delay-line prediction error filigr

~

then:
x(n) is th; received complex data sample at time n
x(n-1) is the M length veCth of the past M data sampleé
g(n)rfs the M leﬁgth Kalman gain.vecgor'
h(n|n-1) is the optimal (MMSE) M length vector of the
tap weights of time n given the past- data -

P(n) is the MxM predicted prediction error covariance

matrix

he MxM filtered prediction error covariance

matrix

gl is the MxM covariance matrix of the white noise tap

weight process

- w &

-“’

i
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r is the variance of the prediction error process.

Given h(é), P(o), r; § these quantities are '

D) s

recursively updated as follows:
; : r"_/\
Y K(n) = P()x" (a-1) [x(a-1)E(2)x" (a-1)+r] ™" \_{/(\/
'_g-_tn+1 ) (x(n)-x(n-1)h(nfn-1)] | \

-

=, . P
I'(n) = P(n)-K{n)x(n-1}P(n)

P(n+l) = [(n)+ql

r-’—-—'/ \
N . ‘-.'\ |

. ) = 8]
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