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'ABSTRACT

. "
This thesis studies the prime ideals in a ceftain class of

non-commutative polynomial rings known as OFe‘extensions.- For a right

Noetherian Ore e#tension R[x;0] , the prime idealé are Af three types:

one.pre'correépohdséﬁo_the prime ideals of the coefficient ring R,°

' anotﬁer typehcorfesponds to certain semiprime ideals of R, and the.

third typegéa in bijective correspondence with the irreducible polyno-

mials in certaln ordipary polynomial rings.

Tﬁejsecond.part‘of the thesis 5Eﬁd1és the question of the
localizability of prime ideals in Ore extensions of éommutafive
Noetherian rinmgs. It is shswn that théaelrings satisfy Jategaonkar's
gsecond layer cohditiﬁu and that the correSponaing skew Laurent polyno%
mial'rinh ié Krull symmetric. Using theéz progerti%s and the classifi-
ca;ion of priﬁe ideals,;é comglete'déécription of the obstructions to
localizability - the iinks between p:ime‘ideéls <+ is obtained.

~
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. INTRODUCTION

In this thesis, we study the prime ideals of a cercain class of

-

:.non-commutative polynomial rings called ‘Ore extenaions or skew polynomial

~ -

. rings. Our goal is to analyze the structure of prime ideals in, such -

rings and to apply this informatiom to the problem of determining

whether or not a given prime 1deal is localizable. - N

* For an arbirrary ring R with eutomorphism g, the Ore exten~

[

‘éion g = REx;o] ‘consists of polynomials ry + rlx +...% rnx with

ri'é R and n.a 0. ‘Addition is performed termwise and multiplication
is determined by the rule xr = r°x.

Al:hough these rings can be treced back to Hilbert, they were
first stadied for their own sake by'bre in 1933 in the case ohere R 1is
a diviaion ring [44]. Ten years larer, Jacobson determined the two-
sided ideals of such ringe and analyzed the finitely—ge;erated modulee
o;er them, again with R a division ring [21]. For the next‘twenty-five‘?
yeare, there was only sporadic interest in these Ore extensions and,
with_ few exceptions (e. g. (11], [l}]), they appeared primarily as a

" source of counterexamples. T o

In the- past decade, however,irhere has been a flurry of activity

o

as once agein Ore extensions are being atudied in their own right Part

of this interest stems from a connection between Ore extensione and

.

group rings ot polycyclie_groupsi indeed, aeveral”papers have been
devooed ‘to.proving known results for these group rings using Ore exten-

sion ‘techniques ([15], [35], [36]) Therefore, one possible motivation

-
-

r
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_for-studyicg Ore extensions is that any result which holds for Ore

extensions in general holds for polycyclic group rings in particular.

On a simpler level the Hilbert Basis Theorem shows_that an Ore exten-

sion_of a Noetherian ring is again Noetherian; thus we have a large

.class of non-commutativefNoetherian'g}ngs in which to illugtrate the

rich tHeo:y—of chh rings.

| The theory of non-commutative Noetherian rings can reasonably
be said to have begun with Goldie's work on prime Noetherian rings and
what is now usually known as Goldie's Theorem (cf, [14]). Many results

and techniques from the theory of commutative Noetherian rings have

‘been successfully adapted to non-commutative Noetherian rings. The

“notion of localization at a prime'ideal, however, has not had an easy

transition.. Unlike the commutative case, not every prime ideal in a

L l
non-comuta;ive‘Noetherian ring is localizable. This has led researchers
to study the obstructions to localization - the links between prime

ideals - and has shifted attention to families of prime ideals, namely

" those which are linked together ([39] [40]) The work of Jategaonkar

figures prominently in these considerations and his recent survey [26]
contains an extensive account of his module-theoretic treatment of the
localization problem. |

The goal of this'thesis is to determice‘the mechanism by which

prime’ ideals are linked in Noetherian Ore extensiona. To this end, we
.

first give a complete classification of the prime ideali in right

Noetherian Ore extensions. Then, restricting our attention-to Ore ex-
tensions of commutative Noetherian rings, we prove that they'are:"well~
behaved" rings - Krull symmetric with the second layer conditionm.

' “




" Using the available“ressits on‘localization'in,such rings, we are then
able to classify the links and the localizable prime ideals ia such
Ore extensions )

Cbapl:er I eontsins the definitions and bas:l.t‘:' properties of Ore
extensions which we need in our investiga:ions. In particularf we cite ’
a version of the Hilsert Basis Theorem for Ore extensions and then, in
the context of right Noetherian rings, we establish a connection between
prime ideals of R[x o] and so-called a-prime ideals of R. Having
- given these preliminary results, in Chapter II we undertake the task of

actually classifying the prime ideals o£~a right Noetherian Ore exten=-
sion. Eere we are motivated both by what ohe does in commutative poly-
nomial rings [37] and by Jacobson' s work on Orelextensions of divigion
rings [21]. Somewhat more.speeifically, we establish a bijective
" correspondence between cer:aih'prime ideals - the upper primes - of the
Ore extension R[x;0] ane certain irredQeible polyndmiais of a naturally-
occurring polynomial ring over e field:‘\Two other,‘msge eesily,described,
. types .of prime ideal - lower primes and primes conxsining x ~- complete
our classification. 'Most of this workrisraccopptispedzby‘reduciﬁg to’
the gituation where R is.a éirect sum of finirely-manp copies ofi a o
simple Artinia;‘;iﬁg;hyclicslli'permuted bp g. 1In thié resrrictedf
setting,‘we also determine the eeuter and eonsiderﬁsome of the ﬁuitipli—l
1derivé'ideal'theory of- R[x;0] . | |
. We next turﬁ'ro,ths problem of the localizability of a.prime“
ideal in a Noetherian Ore extension. Chapter IIT sets the stage for '

thls by surveying the relevsnt results from the general theory, of local—

ization in non-commutative Noetherian rings Our approach follows o
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. polynomial ring R[x, x

.
- : ]
- L]
~

Jategaonkar [26] but slightly reformulates his results in order .to make

-

LT

more transparent the crucial role played by the links between prime
ideals. 1In fact, there are several notions of “link" available and the
precise relationchip between them 1s nqt known in general; however,

they all coincide in the setting which interests us - Krull symmetric

Noetherian rings - and we show that the theory of localization 15 par-

ticularly satisfying for such rings. The chapter concludes with a few
results which show that the ccESence of normal elements in a ring
greatly reduces the possibilities for.linked primes.

Chapter v applies the foregoing theory to 6re extensions of
commutative Neoetherian rings. We completely detercine the possibilites

for links, between prime ideald for each of .the three claas;ficacions

primes containing x, lower primes, and upper primes. We first show

i

that primes contAining” x are easily handled using the fact that x

\
is a normal element. Lower primes, as it turns out, are all classicalﬂ

Upper primes are harder to deal with but by passing to the skew Laurent
l; c] - a Krull symmetric Noetherian ring - we
are able to develop a methpd which produces all the prime ideals linked

to a given upper prime. More specifically, from the irreducible poly-

" nomial associated with a given upper prime P, we construct a new poly-

P

nomial whose irreducible factors are the polynomials associated with the

prime ideals which are linked to P . The chapter also contains several

examples which illustrate the vafiety of pogssibilities for linked primes.

It concludes with a ﬁroof-chat it is possible to localize at anm infirite_

‘

-link component in an Ore extension.of a commutative'Noetherian algebra

-

" pver an uncountable field.: *

- i
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In Appendix A of the thesis we show that-even for’ non-Noetherian
Ore extensions, certain finiteness conditions are preserved by taking
Ore extensions. Specifically, we show that.Goldie dimension and non-
singularity are each preserved in the abose sense. Using these results,A
we then conclude that the’Ore extengion R[xj;c] is a semiprime fight
Goldie ring if and only if R 1s a arsemiprime right Goldie ring.

+ Appendix B contains/an alternate proof of the fact that every
lower prime ideal of chefgre extension R[x ;o] is clsssicsl (in the 7
special case where R is‘a comsutative sjfine_aigebgs’fGE: a fieid of
characteristic zero). Altﬁosgh we have 3ived‘a shsrter and more éeneral
proof of this fact in Chapter IV, the teEhniédes'usedxiﬁ this section
may be of inte;est.‘ " | o

. ' . . N
] + B 4
. .
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the reader is referred to the. books by Lamb_ek [30] and Renault [49] T

~— T - ,.
T " cEAPTER T o e )
L ) -~ PRELIMINARIES .. - - T [

o Thr;ughout this-thesis,r‘ all r:L‘ngs w:[.ll be associat,:l:ve, but not h .
necessarily commutative, rings with identity elements- ,All modul_es will '
- be unitary right modules unless i.ndica.ted otheryise. Azr ideal _is alwﬁys
assumed .to be a tw;-side;l id-‘eal unless‘”modified by "right" or "1efE"‘ -

- 'I'he same convention e.xtends to conce;ts like Noet‘herian, Artinian, loc-n}.— - 1
- . SRR o
:Lzable, -and’ 'classical - whenever there is a q‘uestion of handedness H N i
the unadorned adjective means the con&ition is assumed to hold g r---'.-' t P ‘ ‘
- P : s B
- on the right and on the left. A -regular eie‘lnent of a ring; is 'a non-zero- .. -
divisor. - = _W.-' e - ,- | \ S *._--.'J' -
_ For eny undefined concepts fre; the. theory of rings and modules, : - -

ol The = s P - LT -
~ -, e s ¥ b - !

Let R be a ring with an auto:nnrnﬁ'ism c . '}'h:? Qx_‘_e: ':_extgs;oh:, : .‘-'x‘h- \ ,‘
(skew Llynmnial rin j_) ‘5§ - R[x o}~ crmsists of el‘ementsv’o%;':t;em f;m: - = .. ;"' -
ro‘.+ rlx +...+ T xp : where ~n 2 9.. ~rand r‘i € R*+for™ 055‘ 1,:57;‘-{ J .a'I'he - o ‘ ;--

K o~ xa

underlying additive structure “of ~5 is + of R[x] S while multiplita-— .

tion in “S is d}mined by the distfibuti?e law and ‘the rule xr‘= g " a2
- . Tem . - L - W =

for all r e R. > . TL T L s AR

. -~ L » .
- £ - =t .. -~
I

- We note that while the normal fornf of_ a -p'blynomial -£6n) e 'S_,,’ has ~ -~

L

% . .

its coefficients written on the left of~ t‘he :Lndeterminate x f(x) may s
equivalently be written as a poly'nomial whose coefficients are on the —
£ ..
- =»- e “ - =~
’ 6 . , -
L] e R -
» = -
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right (since o: is an.entomorphlgm). Explicitly, - - .
- ' > g7t no® : ]
f(x) =, +rx+ .+ x° =1 + Xr +...+xr . This observation
0 X n 0 1 . o
will occasionally be useful and will Be used without further mention.
- —a - L

" g-(right) tdeal) 4if -1° c 1.

~ The automorphism o extends to am automorphism of § (which we
aloo denote by o) via x7 = x .‘ -’ -
~ 1. - . K

Definition”l.1: A (right) ideal I of R d{s g-invariant (or a

- Y
e .

-

. Observe that for a g-ideal I of ‘k c-~induces a ring endomof-

- L

. phism of RAT via r 4T - P+ 1. We denote this endomorphism by o

-

-~

_'as well, and note that ¢ 1is an automorphism of R/I 1f and only™if

"o

1% - I. " rhis latter condition hoids 1in particular 1f R 4s right

—1 -2
g

' Noetherian for if. I is a u-ideal then JI'e 1° cl S+.. 1is an

. .aacending chain of (right) ideals of ' R which must therefore become

U-k '-G—k—l - . ‘ .
“ stationary at I =1 .» Say. Whence l_‘= I.
ol i} Definition 1.2: (1) A o—-ideal I of R is o‘—E e if, given
ideal A and a o-ideal B 'of R such that AB cl, either Acl
) ' - B T -, - N . .
or Bec1l. s, . . -

¥

"
x

\ Qil) A;o;ddeel "1 of R is u-sqnigrime 1f, for any ideal A of ‘R. -

“and integer m such that AAG c1 for all 12m, then A < I.

Ciii) The ring R 1is c-semigrime (respectively g~prime) if 0 is a

- -

. o—aemiprime (respectively o-prime) ideal of R o+

We are interested primarily in right Noetherian rings,* where
these notions have several equivalent formulatioas. The following two
. proposicions are modelled, in part, on Lemma 3.2 of [20] where R ig

-~ L4

- H . . .
.
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assumed to bBé commutative .

rlr

of R.

- -
‘

()

(11)

.

Proposition 1.3: Let "R be right Nvetherian and I a o-ideal

The following are equivalent:
I is c—prihe.

Given ideals A and B of R and an integer m such that
1

ag

AB° cI forall {i2m, either Ac I or Bc I, . T

. . !
Given elements a,b € R and an integer m such that aRbCr cI

for all {1 2m, either ael or beI.

. ]
Given o-ideals A and B of R such that AB c I, either

Acl or BcI, -
- .-

Py -
-

. i ;
Proof: (i) = (11) 'Set C= J B° . Then C is a g-ideal
i>m - o

and ACc I. By (i), either Ac I or Cc I. But since R is right

L3

-

S, -
) ﬁoetheriﬁn, CG&F'C and so C = { 8% 2 B.. Thus elither A< I or.

B-2T.

(i1) =
i 2w

_€ € I.

ieZ

-

. 1
(111) Set A =RaR-and B ~ RbR. Then AB® c I for all

and 8o either Ac I or B c I; that is, either g €I or

e

*

' ~ .
(1i1) = (iv) Suppose A ¢1. Pick aecA, a 4 1. For any b ¢ B,

. i ” i -
b* €B for all 1 and’'so aRb® c AB ¢ I.€or all 1. By (111),
o" A -
belI. Hence BcI. *
. L o
(iv) =

i

(1) If A is an ideal and B a o~ideal of R, then B° = B

.
W n ) . -

-

HE
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i
1

\ i i i

for all i, since R is right Noetherian. S0 A’ B = (aB)° ¢ 1° =1.

i - . . - A
Set C = ,Z A° . Then € 1is a o-1deal and CB € I. It follows that
lez : : ' )

either AcCcliI or BecI. O

]

'
- . >
- -

o Propositign 1.4: Let R be right Noetherian and I a g-ideal

of R. The following are equivalent:

(1) I 1is o-semiprime. . ) s
- i -
J -
(11) ‘Given a ¢ R and an integer m such that aRa’ ¢ I for all

ipa m, them a ¢ I. ' P

ta . 2

2

(111) Given a o~ideal A of R such that A° ¢ I, them Ac I.

rd

» " = ! .
Proof: An easy modification of the proof of‘Proposition 1.3. 0

4

- .
» .

in a right Noetherian ring. The next proposition shows that o-semiprime .

ideals have a nice description in a right Noetﬁerian ring - a description
A . . o - o

o

which makes them both easy to recognize and to construct. -

" 4 ..

«Proposition 1.5: Let R be right Noetheriam and I a o-ideal

of R. I is o-semiprime if and only if it is semiprime and is the
i

3

intersection of (finitely many) prime ideals which are permuted by o.
I 1is g-prime if and only if it is the intersection of the v-orbit of a

prime ideal.

\

Proof: Sufficiency is eagy in each case. The necessity of the
!

L

Proposition 1.3 (ii) shows that every o-prime ideal is o-semiprime



-

conditions is an easy adaptation of ([15] Properéies Af. and“_S*»‘to*_ - -”.

- 4

- . - r . -

o-semiprime ideals. . .o . Lo

o v - ~
.

Thus, in a right Noetherian ring,.c-semfbriﬁe ideals are »

-

charaeterized as the intersection of finitely many'q-orbits while o-prime )

‘n
- . -

ideals are the intersecbion.of a single orbit. . - SRS - r

. P - -

' L ® . -

g uo . i .. 3
- - A .

Yo ' f )

Example 1.6: Let F -be a field and. RT=;F;6 F Define an

v : = . . . ’ ’ oo v .

automeéphism . of R ‘via (a, b)c - (b 5) 'ﬁofh a,b e F. R has two -

+ prime ideals P,"=F e 0 = {(a 0)[3. € F} and Pz

neither of which is a—prime. On the other hand P, N P2e= 0 and
R

P1 = P2 §hows that 0 4is a c~pr1me ideal of R " which 1is ‘not prime.

E% )

=08F= {(O,a)[e e F},

“-

» ~
- -
a . P "

R a N

- - '

In comeCative aXgebra, a polynomial ring over;a‘Noégherian ring

is aéain a Noetherian ring: -Thds is,gsuell§1known as the.Hilbert Basis

Theorem. = -In-our setting, we have the’folleeiné versioqzd .- 1

. . N ¢
- e 1 . , L ¥
7 * - ~ -

- >

< ;.,_Iheofen 1.7: 1If R is right Noetherian, ther tlie Ore extension .

$ = Rlx;0) is right Noetherian._.’ e - -

- Proof:, A suitable adaptation of the usual proof of the Hilbert

r

Basis Theorem works here as well. (cf. 20, PrOposition 2. 3] ' oL
Dasls ) o . .

- .
. . . L - . . ’

' - .
‘e . P e [T

For a discussion of che preservation of more general finiteness
"‘conditions, see Appen&ix A, i o T -, T v

- . . ’
N I B voa
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'§gf ‘Prime and Semiprime Ideals in Ore Extensions. P

The polynomial ring S = R[x] 1s a special case of an Ore

o extension,. corresponding to o = id, , the identity automorphism of R .

_:Qif “P 1s a prime ideal cf S, then its contraction PnR is a prime

»

¢

-

ideal nf R if Q 13 a ‘prime ideal of R, then its extension

QS = Q[x] is a prime ideal of S. WNeither of these implicacions is

; true for Ore extensions in general as the following example shows.

‘ -
W

Example 1.8: Let R” and g be as in Example 1.6 and set

3.

L)

i -"Rlx;q]-u Then § dis a prime ring (i e. D is a prime ideal) but

.
R is nota prime ring. r(cf. 2rqpoeitiog,l.ll).' On the other hand,
P, = F‘G'O..is‘a'ﬁrime ideal of R-‘but Pls is not a prime ideal of

s

. In this section, we describe .the extension and contraction re-
lations which hold in right Noetherianccre extensions. Most of what

follows is due to Gnldie aud Hichler [15). For commutative but not

l

- necessarily Noetherian coefficient rings these results may be found in

Trving [20]~

. , | .
S - R[x ‘5] - If A 1is 4 o-ideal of S, then 'S/(AnR)S ¥ (R/(AnR)) [x;0] .

-
.

’; o Definition 1.10: Let A be an ideal of S Define . - .

‘T (A) = {r € R](rx + lower terms) ¢ A} u. {0}

- ' T . . +
. .

Lemma 1.9: ([15] Lemma 1.1) Let R be right Noetherian and -

i

o



Proposition 1.11: Let S = R[x;0] . Then:

(1) S is semiprime if and only 1f R 1is o-semiprime.

(11) S is prime if and only 1f R 18 o-prime.

4

Proof: (i) Suppose S is semiprime. Let A |be an ideal of
i
R and m an integer such that _AAU =0 forall {2m. If we

define I ={a x +...+ax'|a, €A, n2m}, then I is a right ideal
of S and (SI)2 = 0. Hence SI =0 and so I = 0, Therefore
A=0Q,
Conversely, assume R is o-semiprime and let B ¥®e an ideal
of S - such that B2 = 0. Suppose B # 0 and let b be any non-zero
element of tT(B), an ideal of R. Then bx" +...+ b0 € B and since
2 m 1. m ~. i ' ‘
B® =0, (bx +...+ bo)rx (bx " +...+ co) =0 forall ‘120 and r ¢ R.

biingh - i
Thus bRb° = (0 for all 1z 0 and so (RbR)(RbR)c = (J for all

i 2m. Since R 1is o-semiprime, RbR =0 and so b= 0, a contradic-.
tion. We conclude that B8 = 0 and S 1is semiprime.
(£1) The proof of (ii) is similar to that of (1) and is left to the

reader, O °

The next proposition says that prime ideals of § which contain
X are in one-to-one correspondence with primé ideals of R and s0, in
a sense, are knowm.

)

Propogition 1.12: (i) Let P be a prime ideal of S, x e P.

Then P= (P nrR)+xS and P n R is a prime ideal of R.

(11) If Q 1is a prime ideal of R, then Q + xS 1is a prime ideal of §.

o




13

Proof: Use S/((P nR) +xS) SR/PnR and S/(Q + xS) = R/Q,

respectively. 0

For the most part, we will be concerned with those prime ideals
~of S which do not contain x. For these, the following result gives
the correct extemsion and contraction relations. For an ideal I of R ’

Cp(I) = {r e Rlr +I 1s a regular element of R/I}.

Proposition 1.13: Let R be right Noetherian and S = R[x;o] .

"'n

(1) If A 15 a semiprime ideal of S, none of whose minimal prime

ideals contains x, then =x ¢ CS(A) , A% = A , ANR 1is a
c-gemiprime ideal of R, and (A n R)S 1is a semiprime ideal of

S. If A is prime, then A n R 1s g-prime and (A n R)S is

again prime,

(11) If I 1is a o-semiprime ideal of R , then IS 1s a semiprime of __
! -
S. If I is o-prime, IS 1is prime. '
“.

n
Proof: (1) Let A= N P, where P_,...,
_—_— L] i 1

prime ideals of S over 4. Suppoée f(x) € S and =xf(x) ¢ A. Then

Pn are the minimal

xSE(x) = Sxf(x) ¢ Pi for 1 s1snun. Since x * Pi y E(x) € Pi , for
all 1 and so f£(x) ¢ A. Similarly f(x)x ¢ A implies f(x) € A.
Thus X ¢ CS(A) . Let f£(x) € A. Then fa(x)x = xf(x) ¢ A and 50
fg(x) € A. Thus A% € A and the right Noetherian property gives

A% = A. The argument of Proposition 1.11({1) may be used to show that
ANnR 1s o-semiprime. By Lemma 1.9, S/(A n R)S ¥ (R/(A n K)) [x;0] .

Propesition 1.11(i) then shows that (A n R)S is semiprime.
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The last statement of (i) is proved in the same way. (cf. [15],

Lemmata 1.2, 1.3, 1.7:)

, .
(11): Use the isomorphism §S/IS ¥ (R/1) [x;0] and Proposition 1.11. [

Remark 1.14: 1In ﬁxample 1.8, R 4is o-prime. This is the

prototypical example for this situation.



CHAPTER IT

CLASSIFICATION OF PRIME IDEALS IN ORE EXTENSIONS

. Our éoél in this chapter 1is to analyze the prime ideals of the

]

right Noetherian Ore extension S = R[x;0] . Since the prime ideals of

¢ -

S which cohitain x are in one-to-one correspondence with the prime
idéals of R, which we may adsumé are known, we concern ourselves with
the prime ideals of S which do not contain x . _ By Proposition 1.13,‘
such a prime ideal contracts to a o-prime ideal of R . Thus, to
determine the primg ideals of S, it suffices to determine tﬁe prime
iéeals of § lyinglbver a given U*pri;e ideal I of R. Using Lemma
1.9, there is no loss of generality in assumingr I=0 {(i.e. that R s
g-prime). We must therefore detérmine the prime ideals of $, -not con-
taining x ,;whicﬂ'contract to 0 in R.

For R alﬁivisiqp ring, this was done by Jacobson [21] and for
R a commutative ring, by Irving [20]. Our results will include #lements
of both of these characterizatioms. But it is perhaps most instructive‘
to keep in mind the characterization éf prime ideals in commutative
polynomial rings. A nice account of this can be found in McAdam [37] or
is easily deduced from material in KRaplansky [29].

Let us summarize this result fg; future reference. R 1is
commutative and § = R[x] . In this setting, a prime ideal of S con-
tracts to a prime ideal of R ,'ﬁhieh we may assume 1s 0 (i.e. R 1is
an integral domain). Leé @(R) be the quotient field of R. It is

not difficult to prove the following:

15
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Theorem 2.1: There is a one-to-¢one correspondence between the
non-zero prime ideals of S which contract to 0 in R, and the monic

irreducible polynomials of @(R)[x] . 0O

Our objective, then, is to obtain an analogue of this result for

right Noetherian Ore extensioms.

§1. 1Initial Reductions.

Recall that a multiplicative set ¢ of non-zero elements of a

"ring R "is said to be a right Ora set (or, R, satisfies the right Ore

condition with respect to C) if for alY r ¢« R and ¢ ¢ C, there

exist r' ¢e R and c¢' e  such that rc' = cr'. For C= CR(O) , the
set of regular elements of R, R has a classical right quotient ring
Q(R) 1if and only 1f (¢ 1is a right Ore set. ﬁoreover, Goldie haa'giﬁen
necessary and sufficient conditions for R. to have a classical right
quotient ring wLich is semisimple Artinian (cf. [14]). This fundamental
result, usually known as Goldie's Theorem, implies in particular that a

right Noetherian semiprime ring has a semisimple Artinian classical right.

quotient ring @&(R) .

-

Throughout this section, R denotes a right Necetherian ring
which, for the purposes of analyzing the prime ideals of its Ore exten-
sion S = R[x;0] , we assume to be og-prime. By Proposition 1.5, R 1is
~ then semiprime and so Goldie's Theorem applies to give @Q(R) dis semi-

simple Artinian. .

We can say a bit more. Proposition 1.5 actually shows that the

finitely many minimal primes of R - P = Pl’ PZ""' Pn say - form a
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full orbit under o . Renumbering if necessary, we have éi - Pi+l ﬁnd

n

Since C,(0) = N C_(P,) , the right ideals P ,@{R) are all
R qmp RO i

two~sided and are precisely the prime ideals of @Q(R) (cf. [14]). Now Lo

o extends uniquely to an automorphism of- Q(R) via (rc_l)a - rc(cd)-l,

g
Pn Pl.

. . n n n
reR, ceC(0). Then Q(R) = Q(R/ N pi) = @ Q(R/Pi) = 9 (Q(R)/PiQ(R))
i=1 i=1 im=1

g (QR)/PQ(R))™, where Q(R)/PQ(R) 1is isomorphic to an m x m matrix
ring over a division ring and theée n blocks of @(R) are cyclically
pérmutéd by o. ‘ - e

This, thdn, 1s our setting, In order to facilitate our study of

the prime ideals of S, we first make some observations and reductions.

Lemma 2.2: ([15], Lemma 1.4) If R is a right Noetherian o-
prime ring, thenr S satisfies the right Ore condition with respect to
Cp(0) . O

> .
This says, in other words, that the partial right quotient ring

Sé = J(R)[x;0] exists.

. ' .
Lemma 2.3: ({151, Lemma 1.5) Let R be a right Noetherian o-
prime ring. If I 1is a non-zero o-ideal of R, then I n CR(O) * ¢

(i.e. I contains a regular element of R). O

Definition 2.4: A ring R  with automorphism o 1is called

g-simple if R has no proper o-ideals.

X
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Corollary 2.5: If R 1s a right Noetherian g-prime ting, then

@(R) 1is o-simple Artinian.

Proof: If A is a non-zero o-ideal of gQ(R) , then An R ig
a non-zero o-ideal of R , hence contains a regular element of R.
Thérefore A contains an invertible element of &(R} and so

A=QR). O

Corollary 2.6: Let R be a right Noetherian o-prime ring and

let P be a prime ideal of S such that PU‘- P. Then PnR=20 {if

and only 1f P n CR(O) = ¢, 0

This is true in particular for those prime ideals P of §
w@ich do not contain x. Thus the prime ideals of S which we want to
‘classify "survive" in the partial right quotient ring'.Sc = Q(R)[x;c]ﬁ

if P is a prime ideal of S, x ¢ P, PnaR =20, then PS, 1S a

prime ideal of SC s X * PSC,and PSC n@R) = 0. The next lemma says

that we can formally recover the original prime P from PSC.

* : N
Lemma 2.7: Let R be right Noetherian, o-prime. If P 1is a

-

prime ideal of S such that x 4 P and PnR=0, then PS.nS="P.

c

o Proof: Ciearly Pc PSC'n 5. Conversely if
g(x) = f(x)c_l € PSC NS where f(x) e P and c e O = CR(O) , then
g{x)e = £(x) ¢ P. Now C ¢ CS(P), ([15], Lemma 1.6). Hence

gx) eP. [J
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[

Lermna 2.8: ({15}, Lemma 1.10)\\Let R be right Noetherian;
o-prime. Let P be a non-zero prime ideal of S such that Pn R = § .

If A 1is an ideal of S properly containing P, then A n C,(0) #¢. 0

&

.

Corollary 2.9: Let R be right Noetherian, Then there does

not exist a chain of three distinct prime ideals of S with the sime

'-f
contraction in R.

Proof: Suppose Pl $ P2 + P3 are prime ideals of S with

P1 nR= Pz nR= P3 nR=T7T, say. If x ¢ Pl ’ Fhen‘ Pl'- P2 - P3 -
I + xS by Proposition 1.12(i). If x ¢ P,, then I is o-prime and we

may assume without loss of generality that I = 0 and P1 = 0. Now if -

g

x ¢ Py then PJ = P,; otherwise P, = x5 and again P = Py. So,

3 kB 3
by Corollary 2.6, Py o0 CR(O) = ¢, This contradicts Lemma 2.8, [J

. . '
Definition 2.10: A prime ideal P of S is called an upper .

prime if x ¢ P and P # (P n R)S. In this situation, if Pn R = I,

we say P dig upper to I. P 1is called a lower prime if P = (P n R)S.
In Theorem 2.39, we shall give necessary and sufficient conditions
for the existence of prime ideals of S wupper to a given o-prime ideal

of R. Before proceeding with this analysis, let us summarize the

reductions we have made.

Proposition 2.11: Let ﬁ be a right Noetherian, o-prime ring

and set ( = CR(O) . Then @(R) 1s o-simple Artinian and there is a

e i T
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one—to-one. correspondence between the prime ideals of S, not containming
x, contracting tc 0 in R and the'pfime ideals of SC = J(R) [x;0] ,
not containing x, contracting to 0 in @(R) .

.
LY

Proof: Combine Corollaries 2.5, 2.6, and Lemma 2.7. The corres-

c
Q +Qns for Q prime in S,, 'x4$Q, QnQERY=0.0

' -

pondence is P + PS, for P prime in S, x4 P, PnR=0j3
« .

LY

Thué:hto determine the prime ideals of; S in queaFion,\bq\may
assume without loss of generality that R 1is o-simple Artinian.
’ (.

§2. o¢-Simple Artinian Coefficient Rings.

In practide, the o-simple Artinian rings in this section arise
- as the semisimple Arginién classical right quotient rings @Q(R) of
right Noetherian g-prime rings R . Even without thiﬁomtion we
-

till have the following:

Lemma 2.12: Let R be a g~simple Artipian ring. Then 4:1 is -

gemisimple and o permutes the simple Arfinian factors.

Proof: R is certainly o-prime, hence sehiprime by Proposition
L

. 5
1.5. Let Pl”"’ Pn be the minimal primes of R with. ?i f Pt+1'
Then Pi is maximal "for /T‘Zfi < n since R Jis Artinian, and so
n ; ' ‘
RS @ (R/Pi) with R/Pi simple Artinian for 1 < i $n. The last
i=1 . T

. /
statement is obvious. O

-~
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-

We ngw set out. to prove our analogue of Theorem 2.1.
-

ﬁ:ﬁ Lemma 2.13: ({15), Lemma 1.9) Let R be a o-simple Artinian

Let f(x) = £q ¥ £x 4ot fnxn €S with.f iovertible in R,

and leg g(x) € S. ~There exist q(x), r(x) ¢ S such that

g(x) = £(x)g(x) + r(x) and deg(r(x)) < deg(£(x)) or r(x) = 0. O

»

We will refer to this lenma as the .Division Algorithm. 'Using
it, we see immediately that "'::l-_xe prime ideals of §' which we are consider-

¢ ing are Q:incipal. o | e

Proposition 2.14: Let R be o-simple Artinian and let P be a

non-zero prime ideal of S seuch that P° = P, Then P = p(x)S = Sp(x)

for a ynique monic polynom#al p(x) e@ _
J e TN L kAR L
= |

Proof: Let n be the min:l.mal degree of polynomia.la in P.
Reogll that T (P) , denotes the ideal of R consisting of the 1eading
coefficients of degree n polynomials :Ln P., together with 0. Since
P’ = P, 4-r (P) is a non-zero g-ideal of R, hemce T (P) = R, by the
U-sit_n;p&.lcity of R. We oonclude that there exists a monic polynomial

p(x) of minimal'de‘ﬁreev n in P. By m.inimality, this polyno tal is

'unique and therefore po(x) = p(x) . Let. £(x) ¢ P. The Di¢ision

Algorithm-gives q(X), r(x) ¢ § such that: f(x) = p(¥¥q(x) + r(x) .
Thus 1r(x) ¢ P " with deg(r(x)) < deg(p(x)) , and _so r(x) = 0. There-
fore P = p(x)S .  This also shows that Sp(x) cp x)S . To get the

reverse inclusion, it suffices to show that p(x)x =

‘ "
~ c

(x) and that for



all r e R, there exists r' ¢ R such that p(x)r = r'p(x) . The

: A
former equality is trivially true since pd(x) = p{x) . For the latter,
n
let T ¢ R and set a =r° . Then ap{x) = p(x)b(x) for some

b(x) € S. But a comparison of degrees shows that b(x) = b ¢ R. and

n
the fact that - p(x) 1is monic shows that a = b°"

. n N : ) .
p(x)r = ry p(x) for all r ¢ R. Consequently Sp(x) = p(x)S =P. [

J\

Remark 2.15: The preceding proposi&ion applies in particular
B ; 1 A

Therefore

-

to those prime ldeals~of S which do not contain x . The principal
generator p(x) of P 1is a normal element of S ; one might ask
whether or not it is possible to find a centrai element of S which
also generates P . As the following corollary shows, the answer is
yes. We denote the center of a ring R by+ C(R) .

| ~ -

Corollary 2.16: Let R be o-simple Artinian. If P 1s a non-

zero prime ideal of S such that x ¢ P, then P = p'(x)S for some

’ \\\\\‘jijijjf, centrally~irreducible polynomial p'(x) ¢ P of minimal degree.

Proof: Let p(x) = Pg + PyX +., .4 pn_lxn-l +x" €P as in

4
Proposition 2.14. By Proposition 1.13, x e CS(P) and go'tﬁe minimality

of n guarantees that Po ¥ 0. Since pd(x) = p(x) , pg =Py From

n n
the condition p(x)r = r? p(x} for all r € R, we get PT = £’ Pq for

- . .
all r ¢ R and so pOR = Rpo = RpOR » 2 two-sided non-zero u-ideal of
R. Hence pOR = R and we conclude that Py is invertible in R. Set
p'(x) = palp(x) - We claim that p'(x) is central. C(learly

. n &
P'(x)x = xp'(x) . For all r e R, r’ = porpal . Thus
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P (x)r = p7p(x)r = Pog T P(x) = pyPyTRy P(X) = 1p'(x) .
Clearly p'(x) also has minimal degree n. Suppose
p(x) = f(x)g(x) for some central polynomials f(x) and g(x) . Then
f(x)Sg(x) = f(%)g(x)s = ptx)S = P and hence eithFr f{(x}) e P or
g(x) € P. But since deg(f(x)) + deg(g(x)) = deg(p'(x)) either
£(x) € Rn C(S) or g(x) € RnC(S). Note that R n C(S) = (C(R))®, |
the fixed subring of the center of R ~a gield. Thus either £(x) or

gx) 1s inverkible, and so pPx) s irredﬁcible. a .

We would like to be able to describe more explicitly these
central polynomials which arise. With this in mind, we turn our attention
to the center C(S) of the Ore extension § = Rlx;c] of the o-simple
Artinian ring _R . We will give an internal description of;:C(S) in
terms of R and g, .

R being o-simple Artinian, hence semisimple, its center C(R)
is a direct_sum of finitely many copies of ; field F cyeclically per-
mqted:by . Let K= (C(R))U bé the fixed subring of C{(R) . Then
K 13 a field: indeed it is isomorphic to the fixed subfield of F
un;;r the isohorphism induced by o, an& K 1s diagonally embedded in
C(R) . As we have already noted, it is clear that C{S) n R= K :

Definition,2.17:) C(S) 4is said to be trivial if C(S) = K.

'(In other words, the cemter of the Ore extension S is trivial if it

contains no non-constant polynomials.)
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Theorem 2.18: Let R be a g-simple Artinian ring. The follow-

ing are equivalent for the Ore extemsion § = R[x;o] :
(1) C(S) 1s non-trivial.
(ii) Um i3 an inner automorphism of R for some m 2> 1.
(111) o has finite order on C(R) .
{(iv) C(S) = K[t] fof any non—constanﬁ polynomial

t = t(x) ¢ C(S) of minimal degree.

(An automorphism o of R is called immer if there exists an
invertible element ¢ Qi/ R such that r® = ere-l for all r ¢ R.
In this case we denote o by e The group of all inner automorphisms

of R is denoted by Inn(R) .) ™~

Proof: (iii) = (11i) is a special case of the Skolem-Noether
Theorem ([49], page 110). The converse implication (ii) = (iii) is

trivial.
We shall prove (ii) = (i) e= (iv) = (i1).

(i1) = (1) Suppose o" € Inn(R) for some m > 1. Say

o = LI where ¢ 1s an invertible element of R. For all 1e¢2,

im -1 i -1 = T G
p0 00O - (src E—l)c - Ec r(Ec ) 1 . Thus ‘15 - Gm -g amc i_ 130 i

'mz ' m-]1 m--2

for all 1 ¢ Z. It follows that ¢ = (IEU )(IEU )"'(leg)(le) = 150

‘ ES IS A .
where €y ™ E € «++£ E, We observe that EO =g € ‘e €

m ' - m m-1
Since ¢’ = sea-l = ¢, we see that €. = g¢ e.l a ee? e’ = el
. 0 0 ; 0
o ‘ cm. o

but, using ¢ = £ again, EO = €q - Hence IEO o EO . Now set
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t(x) = Eg X~ we claim that t(x) € C(8) . We have t(x)x =
ealxm2+l = x(eg)_lxm2 = xsalxmz = xt(x) and for any r ¢ R,
2
t(x)r - ealxmzr = ealrcm xmz = ealeorsalxmz - realxmz = rt(x) . This

establishes our claim to show that C(S) Jis non~trivial,

(1) = (iv) Assume C(S) to be non-trivial and let t = t(x)
be any non—constént central polynomial of minimal degree. Clearly
K[t] € C(S) . Let £(x) ¢ C(S). We intend to show that f(x) e K[t]
by induction on deg(f(x)) . |

If deg(f(x)) = 0, then f£(x) ¢ C(S) n R = K c K[t] . Suppose
the result is true for central polynomjals of degree less than n and
assume deg(f(x)) = n. Since t(x) 1s central, its leading ‘coefficient
is invertible in R .and so, by the Division Algorithm, -there exdet
q(x), r(x) ¢ S such that f(x) = t(x)q(xj + r(x) with r(x) =0 ¥ !
deg(r(x)) < deg(ka))f

We claim that q{(x) and r(x) are central polynomials. Since
f(x) and t(x) afe central, f(x)a = af(x) and t(x)a = at(x) for
all a e R. Thus t(x)q(x)a + r(x)# = f(x)a = af(x) - at(x)qg{x) + ar(x)
= t(x)aq(x) + ar(x) , and so t(x)[q(x)a - aq(x)] = ar(x) - r(x)a. If
;r(x) = 0, thed t(x)[q(x)a - aq(x)] = 0 implies ‘q(x)a = agq(x) (since.
‘t(x) is central and S is a prime ring). Otherwise, deg(xr(x)) <
deg(t(x)) . Suppose q(x)a - aq(x) # 0. Then deg(r(x)) 2
deg(ar(x) - r(x)a) = deg{t(x)[q(x)a - aq(x)]} 2 deg(t(x)) > deg(r(x) ,
a contradiction. Therefore q(x)a = aq(x) and r(x)a = ar(x) for all

a E R.
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-

Similarly, £(x)x = xf(x) and t(x)x = xé(x) imply
t(x) [qx)x - xq(x)] = xr(x) - r(x)x. If r(x) =0, then
q(x)x = xq(x) . Otherwise, suppose q(x)x #* xq(x) . Then
deglq(x)x - xq(x)] = deg(q(x) - ¢°(x))x] 2 1 and so deg(xr(x) 4 r(x)x) =
deg[(x(x) - £%(x))x] < deg(r(x);ﬁ+ 1 < deg(t({x)) + 1 = l
deg{t(x) [q(x)x ~ xq(x)]1} = deg(xr(x) - r(x)x) . We again get a contradic-
tion and conclude that q(x)x = xq(x) and r(x)x = xr(x) . Consequently,
q(x) and r(x) are central, which proves the claim.

Now, either r(x) = 0 ¢ K or, by thg minimality of ¢t(x), r(x) ¢
C(S) n R =K. 1In any event, either g(k) = 0 1in which case
£(x) = v(x) € K, or deg(q(x)) < deg(f(x)) in which case q{x) € K[t]
by the inauctiou hypothesis. It follows that £(x) ¢ K[t].

(iv) = (1) This is evident.

(i) *’(ii) Let t(x) = to + Elx +.. .+ tmx? € C(5), where

m21 and tm + 0 t Since t(x)x = xt(x) , tc(x) = t(x) and so

m
t9 = ¢ . For all r ¢ R, t(x)r = rt{x) and so t r? =t for all
m m m m

re R. It follows that t R = Rtm 'is a non-zero, two-sided c-ideal of

R, hence equal to R since R 1s ¢-simple and so £, is invertible

m
in R. Thus rU = t;lrtm for all r € R. In other words

o ¢ Inn(R) ..D ‘ -
Our problem now 13 to find a non-comstant centraliﬁolynomial of
minimal degree. The theorem tells us that if " e Inn(R) then there
exlists & central polynomial.of degree m2 - but this‘ may not be the
minimal aegree of polynomials in C(S) . We must tighten our grasp q¢n

" the innmer automorphism o" and by so doing we shall establish that the
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least m for which o° ¢ Inn(R) {s precisely the minimal degree of

non—constant central polynomials. EY

Proposition 2.19; Let R be o-simple Artinian and suppose that

o e Inn(R) where m 2 1 and no smaller power of ¢ 1s inner. There

exists an invertible element EO of R such that eg - 50 and

Proof: For all r ¢ R, ¢ = ere-l . Hence ecr(eo)-l--
i A

-1 -l m m
(er’ ¢ 1)U a (% )7 % 2% o oere 1 and as a result e lecr = re 150
for all r € R. Set a = s-lec . Then a 4is an invertible eiement of
g Um-l
C(R) and the normof a, N(a) = aa ... a = 1. (Note that the

l

order of o, as an automorphism of C(R) , is m, by Theorem 2.18.)
The following lemma will show that there exists an invertible element
b €°C(R) such that a = b(l:nc’)_1 . Replacing € by be = b, we obtain

m - ‘
(bs)r(ba)_l = bers-lb_l = Ere_l =’ for all re¢ R. Also

(s:b)U = ¢%? a ea'a_lb = eB. Therefore €y ™ €b 1s the required
element.
The lemma we require is a generalization of Hilbert's Theorem 90
(cf. [22], Theorem 4.28). -
o
Lemma 2.20: Let R be a commutative ring with an automorphism
o of order m. If R is g-simple and a 1is an invertible element of
R of fiorm 1, then there exists an invertible element b e h such that

v

a=b%)1,
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Proof: Define a sequence of invertible elements of R as

i
- = = = U U -
fo;lows. a, 1, a, = a, 8,4 "2 ...a for 0<1i<m 2
g
(since \am N(a) = 1 ao) . For all 1 s @4y Toaa . For reR,
m-1 Cri
define ¢(r) = Z a.r . We claim that there exists T ¢ R such that

1=0 1

p(r) £ 0..
Suppose, by way of contradiction, that ¢(r) = 0 for all r € R.

Then {1, c,;.., cm-l} is a set of "linearly dependent" automorphisms

over R. Let

i
£ B
(%) ) by L =0 (0s2sm-1, 0 s i, sm-1 forall j, .
i=0 73 ) 3 '
ij % ik for j * k, bi € R)
]
be a non-trivial dependence relation of minimal length 2. Then bi * 0
- 10 1 ) ]
for 0 s j<2. Since o has order m, o * g and so there exists
| ;o h
8 ¢ R such that s ¥ g . Replacing r by rs in (*), we obtain:
010 010 Uil il - 12 Uil
b, r° .s: +b, 7 87 +...+4b r° 8 = 0 for all r e R.
i ) : p i
0 1 L
Uio
Multiplying (*) by s » we obtain:
cio cio uil oio cig sio
b, r s +b, r s +...+b, r s =0 for all r e R.
i0 i | i
1 [}
Subtracting these last two relations gives:
R T Jroosto he H
b, (s -8 Jr  4...+b, (s -5 Jr = 0 for all r e R.
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N . . gk Uij+k
* On the other hand, if we apply ¢ to (*) we obtain Z bi T =
4 =0 7
for all re¢R, keZ. This is equivalent to:
i
- £ k4
(*%) X b: =0 for all r €eR, keZ. S
j=0 7§ : .

™~

If we Tepeat the above elimination procedure on (**), we arrive at:

ck uil oio Uil ck uiz cio cil
bi (s - g Ir +...+ bi (s -3 )r = (0 forall reR, ke Z.
1 [ :
ck ail oio
Now bi (s -8 ) *0 for some ke 2. (Otherwise, since R is in
1 .
010 Uil
particular a commutative o-prime ring, either bi =0 or s =g -

1
a contradiction.) We have therefore produced a dependence relation of

length less than % . This is a contradiction and so we have proved our

claim,
Sef b= ¢(r) # 0 for the particular r ¢ R just found. Then
m— 1 m~-1 1+l m~l i+1 m-1 i
¥ ([ ")~ § airo = Ja lai_'_lrU -t ) airg -aly,
i=0 1=0 i=0 i=0

Therefore (bR)” = bR # 0 and so bR = R since R is g~gimple. It

g, -1

follows that b i1s invertible in R. Moreover (b°) " = (b'1)° € R

and thus 2 = %) L.
To complete the proof of Propositiomn 2.19, we need only observe

that the center of a og-gimple Artinian ring is again o-simple by Lemma

- &

e
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2.12. As noted, the hypotheses imply that the order of ¢ on C(R) is

m . The lemma now applies and the proof of the proposition is complete. []

We can now extend Theorem 2,18 to give a more precise description

of the center of the Ore extemsion § .

-

Theorem 2.21: Let R be a o-simple Artintan ring, S = R[x;a} ,
and set K = (C'(R))c . If C(8) is non-trivial, then some power of o

is inner and there exists an integer m 2 1 and an invertible element .

d m . .
€ €R such that ¢ =g, ¢ = T and no smaller power of ¢ is

inner. In this case, C(§) = K[s-lxm].

Proof: By Theorem 2.18, C(S) 1is non-trivial if and only if
some power of o 18 inner. Let m 2 1 be the least integer such that

" € Inn(R) . Proposition 2.19 them furnishes the required invertible

. -l m
element €. To prove the last statement, we must show that ¢ 1x is

a central polynomial of minimal degree. It is easily checked that a—lxm

is central. Let f(x) = f07+ flx +.. ¥ fnxn € C(8), fu # 0. As in

the proof of Theorem 2.18 (i) = (1i), we see that fn is an invertible
n
element of R and 1° = fnlrfn for all * ¢ R. By the minimality of

m, this implies that m sn, and hence m 1s also the minimal degree

of non-constant éentral polynomials, witness e—lxm . The result follows

from Theorem 2.18(iv).

-

§3. Further Ideal Theory. .

In this section, we continue our investigation of prime ideals

in Ore extensions of c-simple Artinian rings. We give some additional

L3
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information about the arithmetic of prime ideals and extend soge of the
results of the previous section. Our main result is a structure theorem
for the ideals of‘these Ore extensions. conclude, we return to our
original setting (R a;prime right Noetherian) and éive the analogue of

Theorem 2.1 that was announced in the introduction to this éhapter.

Lemma 2.22: Let R be a o-simple Artinian ring and let

E(x) = fo + £f.x +...+ ;n € S = R[x;0] . Then €£(x)S 1is a two-gided

1

g-ideal of § 1if and only 1f f(x)x = xf(x) and, for all r ¢ R,
n
f(x)r = r° £(x) .

r
Proof: The sufficiency of the conditions is clear. To see that

they are also necessary, suppose tha£ f(x)S is a o-ideal. Themn - .

(£x)S)% = £(x)S and so f?(x) = £{x)g(x) foF some g(x) € §'. Since

both f£(x) and fc(x) are monic of degree =n, it follows that

g{x) = 1 and fg(x) -ﬂf(x? or, equivalently, f(x)x = xf(x) . The

remaining condition is shown to hold exactly ag in the last part of the {

pfoof of Proposition 2.14. Ui ’ \\\‘L‘\ |

We may therefore generalize Propositioﬁ'z.lh ag:

Proposition 2.23: Let R be g-simple Artinian. Then every ;
[~ ’ . L
non-zero o-ideal I of S is principal, generated by the unique monic

polynomial £(x) ¢ I of minimal degree. O

Remark 2.24: - (i) If R 4s actually simple, then the above

'prOpoéition holds for all ideals of §. This is essentially what
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Jacobson showed in the case where R 1is a division ting.

(i1) There 1s a (usually simpler) version of most of the results

1

of this chapter for the skew Laurent polynomial ring R{x, x —; a]

consisting of polynomials of the form f(x) = fmxm +.. .+ fnxn , mneZ,
m<n. Every ideal I of R[x, x_l; 0] 1is a o-ideal since

1

° = ng-l = xIxi € I. Define the length of f(x) # 0 to be

I
£{f(x)) = n - m where fn and fm are non-zero above; then Proposition

1

2.23 holds for all ideals of R[x, x ; o], with "minimal degree"

replaced by "minimal length".

Recall that an ideal I of a ring R is said to be invertible
if there is an overring T of R such that if A = {t ¢ T|[tI ¢ R} and
B={teT[It <R} then AI = IB = R. In this situation, we have

A=B and we write I L = A =3B,

Corollary 2.25: In the situation of Proposition 2.23, every non-

zero o-ideal of S 1is invertible.

Proof: Let I = f(x)S = Sf(x) bé a non-zero og-ideal. We know
th&t S is a prime ring (Proposition 1.11(i)) and it is obvious that
£(x) , a normal element in a prim: ring, is regular. It is well-known
th#t the'prihcipal ideal generated by such an element is invertible.

(cf. [9] page 51.) O

-
2,

Corollary 2.26: In the situation of Proposition 2.23, if I is

ao-ideal of S then N I°=0.
nz0
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Proof: 1If I.x0 then I = f(x)s = Sf(x) , f(x) monic, as in
Proposition 2.23. Then for all n 2 0 , 1% - fn(x)s and -

deg(£"(x)) = n-deg(f(x)) . If 04 g(x) ¢ N I°, then for all n 2 0
n20

there exists hn(x) € 5 such that g(x) = fn(x)hn(x) . Hence

| 4
deg(g(x)) 2 n.deg(f(x)) for all n 2 0. This is impossible and so we

}afclude g(x) =0. 0

Corollary 2.27: Let R be o-simple Artinian and let I and B -

be g-ideals of S with I ¢ B. There exists a g-ideal A of S with

I=ARB.
Q

Proof: Set A = IB—]' .* (Or, directly, write I = f£(x)$S ,

B = b(x)S, and from f(x) = a(x)b{x) for some d(x)-¢ S, deduce that
a(x) 1s monic and satisfies the conditiolxs\_o/f Leﬁma 2.22. Conc}.ude that

A = a(x)S 1s the desired g-ideal.) [

Lemma 2.28: Let R be g~simple Artinian, I a maximal g-ideal

of § (i.e. maximal among c-ideals of S) wic_bi x¢I. Then I is a

A

maximal ideal.

) . } .
Proof: It is easy to see that I is g-prime. For if A and B

are o-ideals of S such that AB c I, then'(A+I)(B+I) € I. Suppose
Ad¢I; then I §A+1I, ao-ideal. Hence A+ I = § and so

BeB+I=8@+1I)cl as required. Now, by Proposition 1.5, there

) ) n i
exists a prime ideal P of S, minimal over I , ‘such that I = 0 p°

i=1

. B
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L

for some integer n 2 1. Since x ¢ I, it follows that x ¢ P. Hence

P =P and I=P is prime, T 7 \\’/,_,
. .Supbose M. is a maximal ideal of S with I c M, Then
ci . | ci
Ic NM , ao-ideal. By the maximality of I, I~ NM . TIf
Vs
iez 1 ieZ {
, i .
x e M, then x ¢ M’ for all 1 €Z and so xe¢ NM" =1, é_gpntra-
’ - ieZ —\\ \
diction. Thelgfora- x * M and M° =M by Proposition 1.11. Hence
1 ' A

I= N4 «M and I is maximal. O -
1eZ o |

Proposition 2.29: Let R be c—simple'Artinian, I a non-zero
o-ideal Bf S. Then I is a prime ideal if and only 4 I is a

maximal ideal.

- Proof: If I is maximal, it is prime. Conversely let I be
a primz'c-ideal of S and assume I § B for some ideal B of §.
Since I° =1 » LnR 1is a g-ideal of R and hemce I AR=0. Lemma -
2.8 ééy now be ﬁpplied to show that B n CR(O) # ¢ . Sipce R 1is .
Artinian, this means B contains an invertible element of 'Rﬁ and so

B=S. Therefore I is maximal.éﬂ

Let us now generalize Corollary 2.16 to arbitrafg.déideals.

- :
Proposition 2.30: Let R be o-simple Artinian. If

non-zero g-ideal of S then I = xmg(x)S for some integer m

g(x)ne c(s) .

-




¥ some 2 1. : R w
4 | 'y/ .
r,). , o .
- z "Proof: The wenter of S 4is trivial in this case (Theorem.2.18). O
We next give some structure theorems for ideals in the Ore exten-
3 :
sion S irq" wq ‘comsider the c-ideals of $
gggg .33: Let R be o-simple Artinian, P and Q distinct
< .
o-invariant prime ideals of S. Then, PQ = QP =PnqQ. -~
- ‘.
LIS Proof: PQ = QP' follows' from the fact that, P and Q are either -

\‘
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Proof: Let I = f(x)S = Sftx) _where f(x) 4is the unique momic
.polynomial of minimal degree in I . Write f{x) = xmf'(x) where
£'(x) ¢ x5. Observe that £'(x) 18 also monic,. f'(x)S = SE'(x) , and

0 1= % tnt 2
then fo * 0 because f'(x) & xS . The proof of Corollary 2.16 may now

- a * kS ' N n
[£'(x)]7 = £%(=x) *since “£™(x) = £(x) . If £'(x) =f + f.x +...4 £ x
sin . ‘

be used mutatis mutandis to sho& that f0 is invertible in R and

g(x) = falf'(x) € C(S) . Hemce I = x'g(x)S. as desired. [J
yo .

Corollary 2.31: Let R be g-simple Artinian, P a non-zero ’

N

c-invariant prime ideal of S. Theu either ‘P = xS or P = p(x)S for

some irreducibl 'polynomial p(x) ¢ C(5) . O

' Coralla 32 Let R be as above and let I be a non-zero

o-1deal Qﬁﬂéé If c % Inn(R) for all i 21, then I =x'S for

- » ro. _ .
centrally generated or equal to xS . But since P and Q are maeximal,

Din 2
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PnQ=CFnQs=Pn QP +Q c QP +PQc?PnQ and hence

Pn‘Q-_PQ+QP=PQ. 0

Theorem 2.34: Let R be c-simple Artinfan. Every non-zero L
| 4 .

g~ideal of § can be written-uniquely (up to order) as a finite product

Proof: Let I be a non-zero o-ideal of S. If I is a .
v

maximal ideal, we are done. O;herwise there is rime ideal Ml 21
;;j\QEbL I and

of pairwise commuting c-inueriant maximal ideals

which is maximal among those ideals M such t

. g .
Mn CR(O) ¢ . Clearly Ml Ml and therefore MI n R_ 0. By

Proposition 2.29, Ml is actually a maximal ideal of S. Using Corollary

-.4 )
2.27, there exists a o-ideal Il of S such that I = IlMl.
inductive use of the above procedure yields an ascending chain

I=1I c1I c... of g-ideals, and maximal ideals M, such that

0~ "1 b
. . .
Ij-l = Ijng for all 3} 21 such that Ij is not maximal. The ascending
‘chain must become etatioﬁary at In—l = In » 8ay, and consequently

I =1 = IM . The invertibility of I_ dimplies M_= S, a contra-
n n-1 nn : n n

diction unless In-l is already e maximal ideal. Setting AMn = In-i'
we have I = MM ...Ml where*the M, "are maximal by comstruction and
S noo-l : i-
pairwise commuting by Lemma 2.33.
The progf of the uniqueness of this decomposition is routine -

b O 8

we will only briefly outline the argument: Suppogse I = ] Mi = I Nj
T i=1 j=1

are two such decompositions. For all 3" (L s j' < s8) there exists

and hence M by -maxi-

jl i j'
mality. Using the commutativity of the products and the invertibility
-

i1t (1 s i' 5 n) such that M < N

~
.



—

37

of g-ideals, we can "cancel"” this common factor to obtain

T M, = I N, .

i1t b gagr '

n=3 and fﬂillsiSn}'{NﬂlSJ sa}. O
- .

Repeating this procedure forces us to conclude that

We now obtain our decomposition theorem for ideals. There are

two vers;76;T" »

~

Theorem 2.35: Let R be o-gimple Artinian. Every non-zero
‘ &

-

ideal I of S can be written uniquely (up to order) in the form

n

I = 4.0 Mi ’ ﬁfere the M1 are pairwise commufiné, o-invariant, maximal
i=1 .

ideals of S and A 1s an ideal of S which is contained in no g-ideal

of S.

Proof: Let I be a non-zero ideal of §. If I° = I » the

? i
preceding theorem gives the desired result. If 17 # I , 8et B = Z °
. . . leZ

the ‘'smallest o-ideal containing I. If B+ S, then B is invertibie,
1B BB =5, and IBL is an idesl of 'S. Now IB™® {s contained
in no proper o-ideal of 'S: for if M 1is a ?—idéa 6f S with

o3 FMSS : then I §MB E B with MB a o-ideal ~ this is a contra-

" diction. Setting A = IB"1 gives I = AB and the preceding theorem
rd ) ) .

n

gives B = | Hi} with the Hi pairwise commuting, o-invariant maximal |,
i=1. ' o -

-ideals.
If B= 3§, then I itself is contained in no proper g-ideal

and the result follows trivially. [
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Our alternate version of this result is patternmed after [7]

Theorem 5.7,

Theorem 2.36: Let R be o~simple Artinian with  n simple

Artinian factors, cyclically permuted by o. Every non-zero og-ideal I

' m
of § can be written uniquely (up to order) in the form I = B II Mi '

. i=1
where the MiQ are pairwise commuting maximal ideals of S, x ¢ M,
for 1 <1 g m', and B 1s an ideal of S buch that x2+°'1s € B¢ xES

for some £ 2 0..

Proof: Let N Nn be the h maximal ideals of R,

12t

arranged so that Nz = Ni+l , Ng = Nl . These are all the prime ideals

of . Let Ml""’ Mm be those maximal ideals in Theorem 2.35 which

o not contaln x; the rest of the M,'s must therefore all equal x§

1
-"let h be their multiplicity. Now, with A as in thé preceding

1

theorem, x ¢ A; otherwise, A would be maximal by Lemma 2.28, and

therefore AY = A, a contradiction. Now any maximal ideal containing

+ A must contain x and hence corresponds to one of the n maximal .
\

t .

ideals Nl,..., Nn of R. Let G= N Pi be the intersection of all

; . © i=l
the maximal ideals containing A. If t = n, then .

‘'n n
AcC= 1 (N, +xS) = (NN, + x5 =%xS, ao-ideal. This contradicts

i i

i=1 1=1

the construction of A. Therefore t <n-1. For some k 2 1,
. o
Ck €cAsC, and thus xb+k e ( IIUPi)k < Ck < A. Therefore xn*l+ks c A
. {=1

and if we set ¢ =k +h, B = szs » we obtain x£+n718 € Bc xzs

as required. [J
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We conclude this chapter by giving the analogue of Th 2.1:
a complete chafactesization of the prime ideals of the Ore exteasion
S = R[x;0] of the right Noetherjan ring R in terms of certain irreduc-

-

ible polynomials. Recall that there is no loss of generality in assuming.-:
R to be o-prime and that the prime ideals-of S we are considering ]
contract to 0 in R. We have already gfoved most of the theorem -
the only miassing ingredient is provided by the;following lemma.

lJLemma 2.37: Let R‘ be a g-simple Artinian ri.ng,r § = R[:f;c] .
Assume tﬁat o = 1€ Ion(R) where ec.= € and no smaller power of o
is ipner. Let p(x) be a céhtrally-irfeducible céntral polynomial
whiéh 1s not an associate of - ¢ Tx* Then p(x)S 4is a prime ideal of
S whicﬂ does not contain x. (Iwo elements p, q  of a commutative
ring are callea associates if there 1s.a; invertible element u of the
ring such that p - qu ., )

- Proof: The center of S i1is C(8) = K[enlxm] where K= [C(Rj]a.
Since pu(x) = p(é) » P = p(x)S = Sp(x) s a o-ideal. Suppose
I =|"xif(:-:)S is a o-ideal containing P (1 20, f(xj € é?g;) . Tﬁen
p(x) = ii£(x)g(x)‘ for some g(x) ¢ §. Since p(x) and f(x) are
. central, so is xig(x) and thus the irreducibility of p(x) implieq
that p(x) 1is an associlate of eitHer f£f(x) or xig(x) . In the firsﬁ
case, uf(x) = p(x) = xig(x)f(x) implies xig(x) = uegK and so 1 =0
a#d‘ B(x) " ueK. Then I = £(x)S = p(x)u-ls = p(x)S =P. In the
second case, ;§xig(x) = p(x) = f(x)xig(x)- implies f(x) = v-¢ K and so

" plx) = vxig(x) € C(8) . It follows that i = lax for some k =2 0 and
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lm

hence P cI= x5 = (¢ :xM¥s. Writing

Ay

Ly € K, we see that Py * 0

=1 m -
p(x) = Py * pl(e x ) +i"+ pn(e x ) , Py
(for otherwise, either p(x) 1is not irreducible or it is an associate

-1 m

of e » contradictions in both cases). Moreover, if 1+ 0, then

x
Py - kavg(x) - pl(e—lxm) ~——eam pn(e-lxm)n € xS which is impossible.
Therefore 1 =0 and I =S. The foregoing shows that P is a

maximal og-ideal.

Suppose x ¢ P.  Then sflxm € P and thus ¢ lx = p(x)r(x)

fof some r(x) € S. Since a_lxm and p(x) are central, we must héve__
r(x) e C(S) also. But now deg(p(x)) s m, foréing equality sincé"p(x)
is a non-éonstant polynomial in é-l*m . Hence r(x) = fo
1s an associate of E-l " . This contradiction proves that x ¢ P. We

€ K and p(x)}

now invoke Lemma 2.28 to get that P 1is a maximal (or, equivalently, a

prime) ideal of S. ) -~

.
It

Theorem 2.38: Let R, be a right Noetherian o-prime ring, @Q(R)

. 1ts o-simple Artinian classical right quotient ring, and § = R[x;ci.

~ The- following are equivalent

(i) There exist non-zero prime ideals of S, not cpntaining x,

contracting to 0 in R ;

(11) e is an igner automorphism on Q(R) for Aome m 2 1.

In these eq?évalent cases, there is an invertible element e
€ € Q(R) and a bijective corregspondence between priﬁa'lde%ls as in (1)
y .
- ' -1 ' ;o
and non-constant irreducible polynomials of K[e :xmﬁ which are not

assoclates of & Tx® . (ere K= [c@®N]°

h ]
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Proof: The equivalence of (1) and (11) is given by.Proposition
2.11, Corollary 2.16, and Theorem 2.18. For SC = @(R)[x;0] , Theorem
2.2]1 shows that C(SC) ='K[s-1xmr. Let P denote the set of non-zero
prime ideals of S, not containing x, ahd contracting to 0 in R;
let I denote the set of non-constant centrally—ir;educible central
-lm
x

polynomials in SC which are not associates of ¢
=

then consider the mapping P

. ' If PepP,
4 p(x) , where PSC = p(x)Sc for p(x)
irreducible in C(Scj‘ (Proposition 2.11, Corollary 2.16.) Clearly p(x)

_lxm’ and so we have a maﬁping $: P+ I.. 1t

is not an associate of ¢
is also evident that ¢ is one-to-one. Define ¢: I + P by

p(x) -~ p(x)SC nS, p(x) eI, using Lenma 2.37 and Proposition 2.11.
It is easy to chegk that y¢ = idP and ¢y = idI"ani so the corresg-
pondence given by ¢ 15 bijective. []

-

In general, we have the fpollowing characterization: ‘ \\

Theorem 2.39: Let R be a right Noetherian ring, I a o-prime

ideal of R, § = R[x;0] . There is a bijective correspondence between
.prime 1deals of S which are upper to I and non-constant irreducible ‘\\b'_‘L
polynomials of K[e_lxm] which are dot asgociates of E-lxm.: (Here |
K= [C(Q(R/I))]a , - m ié‘the order of @ on C(Q(R/I)), and ¢ .is a

suitably;chosen invertible element of Q(R/I) .)

I s
fﬁ;oof: Apply Thporem 2.38 to R = R/I and § = S/IS ® R[x;0] . 0O

Henceéforth, we will use the notation [I,p] for the upper prime .
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ideal of S determined by the o-prime ideal I of R and the poly-
nomial p = p(e-lxm) of K[e-lxm] .
.
Let, us summarize our classificatien of-pfime ideals in right

Noetherian Ore extensions:

P

)
e

Theorem 2.40: Let R be a right Noetherian ring, S = Rix;o] .

‘The prime ideals of S are of three types:
(1) P+ xS, where P is a prime ideal of R,
(11) IS, where I 1is a u-prime ideal of R , and

(111) [I,p] where I 1is a o-prime ideal of R. []



) . CHAPTER III

‘LOCALIZATION IN NOETHERIAN RINGS

-

The techniﬁue of localization at a prime (or semiprime) ideal,
well-known and always possible in the casé of commutative rings, -has been
étudied in some detail for non-commutative Noetherian fings (cf. t25],
[26], [31]; [32], [33]). Bagsed on work of Jategaonkar, Miller developed
the fundamental concept of a link between prime ideals, showing how the
presence of‘iinks is an obstruction to the localizability of a prime ideal.
The related notions of a classical set of prime ideals and a minimal such
set - a clén,- can then be explained in terms of links ([39], [40]).:

| Recently, Jategaonkar [26] has given a fairly extensive survey
of the theory of localization. In this chapter we summarize ‘and reformu-
late parts of this material. After giving the necesgsary deﬁinitions, we
pré;ent Jategaonkar's criteria for localizability and classicélity in a
way which makes the role of links more traﬁ_,arent. In the third section,.
we set the stage for our study of localizat;tn in Ore extensions by
considering the special cases Bf‘;he theor; of localization in that class

o —_— . .
of Noetherian rings to which our Ore extensions will belong ~ Krull
symmetric Noetherian rings. To this’end, we discuss brieély the use of
(Gabriel-Rentschler) Krull‘dimensiq‘:
We aléo.discuss some of the vérious definitions of "liﬁk"'which.

appear in tﬁé literature and shoﬁ'the éo;nections between tﬁem in our
setting. In ths final section, we gp%%ﬁae a few useful results on normal

4

elements ‘and 1inks which we will need in the next chapter.

-

. 43
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§1. Definitions.

&

If S 1is a semiprime ideal of the right Noetherian ring R , we

say that S is right localizable if CR(S) satisfies the right Ore

condition. The S-torsion submodule TS(R) = {r € R|rc = 0 for some
¢ € C(8)} 1is actually a two-sided ideal of ‘R and we '‘may form the

right localization of R  at S, denoted by R whose elements are of

S »

‘the form f(E)-l where r ¢ R, ¢ e C(5), and (7) denotes coset

modulo T (R) . If I 4is a right ideal of R, TR, can be identified

S
with {E(E)_lla eI, ¢ eC(S)} and is a right ideal of RS . If I
is a two-sided ideal of R, TR. is a two-sided ideal of Rg . The
Jacobson radical of R_, 1s 53R, and R_ {is semilocal (i.e. Ré/J(RS)‘

S S S
is semisimple Artinian). '

"

For a right fdeal I of R, the S-closure of I is
YS(I) = {r ¢ Rlrc e I for some c ¢ c(s)}; I is S—closed if

YS(I) = T. There is a bijective"correspondénce between the right ideals

. o n'

of RS and the S-closed right ideals of R. If §= N P
r . . . fm1

'Pl,..., Pn are the minimalfprime ideals over S, then there is a bi-

4 » Whére

jective correspondence between the prime ideals of R “and the prime

S
S - - s ]
ideals of R contained in U Pi . . (In fact, if a prime ideal is con-
o 1=1 - o .
tained in U Pi » It must be contained in some Pj , lL<£j=n.)
: im] :

: Y
An ideal I of R is said to have the right AR-property if for
any right ideal E of R there is a natural number. m such that

EnT"cEl. If S is a right localizable semiprime ideal of R,

- then S 1is said to be right clasgsical if J(RS) has the right AR-property

in Ry . A finite set of mutually incomparable prime ideals (P . Pn}

1°°"
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. n a

is sald to be right classical if N Pi' is a right classical semiprime
. i=] . _ . :

ideal. If R 4is Noetherian, {p,..0, Pn} is called a clan if it is

a minimal claasical ;et (i.e. it is left and right claseical and eo
proper sebset is such.) (cf [39], [40]. ) -

For ‘a uniform right' R-module U over a right Noetherian ring R,
recall that ass(U) 1is defined to be the (unique) maximal member of
the set of annihiletors in R of non—eero submodules of U ~'in other
words P|= ass(U) 1f P = riiV) for all non~-zero Ve EU.. P is
uecessarily a prime ideal. Recall also that over a right Noetherian ring,
every injective right R-module is a direct sum of indecomposable injec-
tives and for any prime ideal P ef _the R-module injective hulil of
R/P satiafies E(R/P) & EP where EP 'is an indecomposable injective
right ereeule with ass(EP) = P'.and n = Gdim(R/P) . (See Appendi; A
" for the definitiou.ef‘Goldie dimension.)

A uniform zodule Uy 1s said ‘to be tame (or P—tgge)<if
E(U) = EP for some prime ideal P of R ; otherwise U 1is said to be
wild. U is P-tame if and only if annU(P) is R/P-torsion free. A

module. M, is tame if all of its non-zero uniform submodules-are tame.

If U is a uniform module with P- asa{U) , the first laxer ofr U is

defined to be aunU(P) H the second layer of U consiste of the isomor-

phism types of uniform submodules of U/annU(P) U 1s said to satisfy

the second 1ayer co&dition 1f its second layer is tame. A prime ideal P

is said to satisfy the right second laver condition 1f EP satisfies

the second layer condition as a right R-module. A set P qﬁ prime
g {
. : \ .
ideals satisfies the second layer condition if every P ¢ P eatisf‘{.es .

the right second layer condition. A ring R setisf%es the righﬁ eehgeg;
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layer condition if all of its prime ideals do. (cf. [26].)
If P and Q are prime ideals of R, we say there is a

bimodule 1ink Q ~ P if there are ideals A and B of R, A B,

such that QB + BP c A, B/A 1is right R/P-torsion free and QR(D) = Q
for all non-zero subbimodules D of B/A. We sometimes specify Q ~ P

.via B/A. As a special case of this, we say there is a second layer

link Q5P 4f Q~P via (Q nP)/A for some ideal A $QaP. A

right link P-~3)Q exists if there ‘exists a non-zero uniform submodule

U of /ann with E(U.) = E_.
- ]
§2. “Localizability Criteria. . '
“ Most of the materiel in this section can be foundg’In . We

will only give proofs of those results whose proofs are pither short or
strategically different from those in {26]. The ring R is always at

least right Noetherian. ' . . vy

-«
Lemma 3.1: If R 1s Noetherian and P and Q are prime ideals

of R, the following are equivalent: ' .

’

(1) Q~P wvia B/A
/

(11) B/A 1is left R/Q-torsion free and rigﬁt R/P-torsion free.

Proof: (i) = (11) Let T = t(B/A), the torsion submodule of

. . : n
of the left R/Q-module B/A. Since R is right Noetherian. T = J t,R
1=l

for some 'tl,..., tn € B/A. Since R = R/Q 1is left Noetheriah,_ Cﬁ(O)

—

-1s a left Ore set and so, by the left common nmultiple property, there

exists ¢ ¢ CE(O) such that Eti #= 0 for 1 s1<n; therefore ¢T =0. .

w"
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But by assumption ER(T) = Q, and s0 c € lﬁ(T) =0, a confradiction
unless T = 0.
(11) = (1) let D be a non-zero subbimodule of B/A. By
hypothesis, QB c A; suppose Q § ZR(D)-. Then LR(D) n'thQ) #+ ¢ and
so cD =0 for some c € C(Q). Therefore D 1s left R/Q-torsiom, a

contradiction. Thus ER(D) =Q. 0

Definition 3.2: Let P be a set of prime ideais of the right

Noetherian rfng R. We say P ia-bimodule link—clqggg (réspectively
) Rl -

second layer link-closed, respectively right link—closed) if P ¢ P and

Q~P (respgctively Q 3 P, respectively P~~3Q) implies QeP.

Proposition 3.3: Let I be a right Ore set in the right ‘@
Noetherian ring R and let P = {P|P is a prime ideal with P n L = g} .
Then P is bimodule link-closed and Q ~ P € P via B/A 1f and only

if QX ~ Pz via BEIAE.

e

Proof: [26], Proposition 5.3. 0 . A
. ‘ LN} rl
Lemma 3.4: ([26], Lemma 6.l)l Let R be right Noetherian, P
and Q prime ideals of R , T an ideal of R wirh QL + IP = 0 ‘and
I right R/P-torsion free. Lgt E = E(R/P)R and set F = annE(I) .
Then (E/F)Q=0, E/F & Bom(,Ip, Ep) as right R-modules, and d € R

acts regularly on- (E/F)R if and only if it acts regularly on RI . 0O

Jategaonkar uses the foregoing lemma to prove his so-calléd Main

Lemma : v
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Lemma 3.5: ([26], Lerma 6.3) Let P ga\(g prime ideal in the |
—_— w -
right Noetherian ring R. Let M. be a P-tame uniford right R-modile

-

.and set N = annM(P) . Assume that (1) M/N 1is a non-zero uniform ~
module with ass(M/N) = rR(M/N) = Q(eay) , and (;.:L) for every submodule
Xc¢c H., either X c N or rR(X) = rR(M) . Then either (a) Q 3 P via
QnP)rM), or (b) r(M) =Q $P. Moreover, if R 1s Noetherian
then (a) and (b) are characterized by M/N being Q-tame or wild,

regspectively. [

s This lenma,' fhe cornerstone of Jategaonkar's approach to localiza-
tion, is more transparent than it seems at £irst glance. Viewed properly,
/\. it becomes a statement about links. '_'I.'o see this, let us first extend
the c'ielfinition of a right link. |
' *

<5 ' A

Definit:ion_ 3.6: Let R be right Noetherian.

P
(1) The right spectrum of R, rt-Spec(R)®, is.the collection of isomor-
p

phiém kypes of indecompesable injfctive tight R~m6dules. F
(igFor E, F ¢ rt-SiJ‘ec(R) » there is a right link E~w3F if Qlere
exists a non-zero uniform submodule U of E{annE(aas(E)) with
. Em e, : | Ve

«

' To see that this definition generalizes our previor..xs definition
of a right link, observe tiha.t: every prin;e' ideal' of R 18 an e‘lement of
rt-Spec (R) via the Gabriel.cor:-aa&r_xdence P o EP which is always a
one-to-one map from ec(R) , the set of prime ideals of R, to
rt-Spec(R) .  (Recall thatlthis correspondence is bijective if and only

"1f R is right fully bounded [6].) When E = Ep and F = E we

Q 3

-

N
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write’* P~~3(Q instead of - EP-~=> EQ .
Lemma §.7: Let R be right. Noetherian, E, F € rt~Spec(R) with

ass(E) = P, ass(F) =Q. Then E~F 1if and.only if there exists a
cyclic uniform right R-module M such that E(M) ¥ E and for
N= apnM(P} we have:

(1) M/N 1is uniform with E(M/N) ¥ F

(11)  4/N)Q'= 0, and . ,
(111) for every submodule X %ither XN or T (X) = (M) .

Proof: Suppose E . We claim first that there exists a

un orm right R-module M such that E(H) = E and for N = ann.M(P) .

/N ia uniform with E(M/N) & F,—By—éﬁl"&ef)inition of a right link,

there exigts a uniform fmbmc;dule U

no-

EIann.E(P) . with E&I) =F. Let

n

M be any uniform module with E(:}I) E and set .N = anﬁﬁ(?) .. Then

—_‘/H/N ettbeds in E/annE(P) and we may identify M/N with its image
, under this embedding to obtain a submodule M' < M , NEM',
"M'/N= (M/N) nU. Then N' = annu;(r) =N and M'/N' :I.élur‘}iform with
}ML/N') = E(U) " F. This establishes the claim. S "
We now proceed to modify M to obtain the rema{.hing asse_g:ionhs..

Without loss of generality, th'e module M -wé have produced is cyclie:
for any meM, 'm&N,wehaveAmRnN-ann (P),r |

mR/(mR n N) = ng + N)/N € M/N and hence . mR/an{mR(P) : :Ls. uniform wiht_h
injective hull of type F. Now Q = ass(M/N) so there _ists. _

N § M'Fg"’z-? with r (1'/N) = Q. Then N'= ann, (P) = N -and so with-

~ out loss of generality rR(M/N) =qQ.

\

N

v
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Next, pick M' ¢ M such that r(M') is maximal with respect to
not containing P . Then M' ¥\0_.for otherwise r(M') = R > P, and
~hence EM') = E(M) ¥ E and asso-i'z P. Set N''= ann.M,(P) = Nn M

N' §M' since N' =M' implies M'P = 0 and therefore r(M')

[V

P.

We have 0 # M'/N' embedded in M/N ;.consequently EMM'/N') = F and
(M'/8")Q = 0. ©Let X be a submodule of M' and suppose X § N'.
"Then XP # 0 and hence P é‘r(X) . But r(X) > r(M'%‘ and so maximality
forces r(X) = r(M'). ' \

This establishes (ii) and (iii) for M which need only be

. - o
- finitely generated at this point. However M' = Z M., where M ,..., M
. {1 T 1 n

n .
n r(Mi) , there

are cyclic submodules of M'. .Since P ¢ r(M') =
' : i=1

i
and hence r(Mi) - r(M} by the makimality,of (M) . With

]

exigsts an M (1 <1s n)' such thét P i r(Mi) . But r(Mi) 2 r(M)

Ni - annHi(B) we are done.

The converse is immediate from () and the definition of a right

link- U * —/—‘_h

Using this characterization, Jategaonkar's Main Lemma takes the

following form:

Proposition 3.8: Let R be right Noetherian, P, Q prime
ideals of R, F ¢ rt-Spec(R) with ass(F) = Q. If P-3F (i.e.

EP-~)F0 then either (a) Q 5 P, or (p) Q'g P. If R 1s Noetheriam,

then (a) and (b)Qre characterized by F = E, and F # E. respectively.

Q Q
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The usefulness of the second layer condition 18 now apparent:

. Lo t
Corollary 3.9: Let R,be a Noetherian ring satidfying the

e

right second layer condition.’ Then Spec(R) , the set of all prime

»

ideals of R, 1s right link-closed.

Proof: Let P be a prime ideal of R, F ¢ rt-Sped(R) , with

P~~3F . By definition, there is a uniform module U ¢ EP/annEP(P)

“\\\\ th E(U) ¥ F. But the right‘second'layeq condition implies that v

ame. Therefore ass(U) = ass(F) = Q , say, 1s a prime ideal and

EU) "

v

B That is, Poeed Q .0

”

We have the following equivalent characterizations of a right

link between prime ideals P and Q:

Theorem 3.10: Let P and (Q be prime ideals of the Noetherian

ring R. Thé following are equivalent:

(1)
(i1)

(ii1)

Q3P and Q P,

P—3Q,

therg'exists a short exact sequence of finitely generated uniform
right R-modules 0 > N+ M+ L + 0 with N a right ideal of R/P,
L a right ideal of R/Q, and N = annH(P).

bl

Proéf: (1) -»(ii)f We are given Q ~ P via "(Q n P)/A where

QP ¢ A, Without loss of.generality A=0. Set I=QnP,

E = E(R/P)R , Fm= annE(I) . Since I is left R/Q-torsion Pree by

NG

e R B T




[

- 52
/

Lemma 3.1, C(Q) acts regularly on RI - Hence ((Q) acts regularly

;
n (E—/F)R » by Lemma 3.4, o ) ,

Let e ¢ annE(I) and suppose €P # 0. Then ePQ c e(QnP)=20

and s0 Q cr(eP) c ass(E) = P. Q # P for otherwise 0 % eP = e(Q nP) =0,

-—

qn(absurdity. Hence Q § P, a contradiction. Therefore & € ann. (P)
. 5.

~and we see that annE(I) = annE(Q npep) = annE(P) . It follows that v
E/F = E/annE(P) is right R/Q-torsion free and thus contains a Q-tame . . .
uniform submodule. Consequently Ped Q. -

. (11) = (1i1) From \P--~)Q and Lemma 3.7 we obtain the short ,
exact sequence O+ N + M + M/N + 0 of finitely generated uniform right
R-modules, with N = annH(P) , M/N)Q =0, EM = E(M) = EP and

EM/N) & Q - Thus N is a upiform, tﬁ;ﬁion free R/P~module and M/N

is a uniform, torsion freé’hlq-module‘ It is well-known that over a prime

Noethéfiau ring, finitely genérateq, uniform, torsion free modules are
isomorphic to right ideals. *

 ({44) = (1) N is uniform, R/P*torsion free and so
E(M) = E(N) & EP . Similarly M/N is uai‘orm with (M/N)Q =0 and .
EMM/N) & EQ . Therefore M/N = M/annM(P) is a Jniform Q-tame module

which embeds into EP/annEP(P) . By definig}p > this \means P-—n)Q but

then Proposition 3.8 shows QfP and hence 3

We now state Jategaonkar's criteria for a semip ime ideal to be
localizable ([26\Jﬁ,rems 4.10, 4.11), | @

Theorem 3.11: Let S be a semiprime ideal of the right Noetherian

ring R and set E = E(R/S)R ollowing are equivalent:
- .

o
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(1) S 1is right localizable,
(i1) anng(S) is S-closed in E,
(111) I{ M is a finitely generated uniform f{ght R-madule contaiﬁing ‘
a non-zero submodule N such that NS = 0, N -is R/S-torsion

free and M/N is S-torsion, then MS = 0. ]

For a semiprime ideal.. S we denote by min(S) the set of mini-

mal prime iéeals-over S'. For a collection P of pri?e—iggizfj“
‘her(P) = {P|P prime, P = P' for some P' e P}. _—Hﬁ;;\ -’

\ \

~

ra

" . ) . u “
"Lemma 3.12: Let S be a right localizable semiprime ideal of

the right Noetherian ring R. ‘Then her(min(S)) is bimoduie link-~

closed. .
&
~

Proof: It follows from remarks in §1 that her(min(S)) =

{p|p prime, P nC(s) = #} . Since C(S) 1is a right Ore set in R,
~ . .. - '
the result is clear from Proposition 3.3. [
> i . i/. ' ,’ .

If R 1s Noetherian and S “is.lotalizable, there 1is a sharper

version of.this. . «
8 .

Theorem 3.13: ~ ([26], Theorem 5.10) Let S be.a localizable

semiprime ideal .in the Noetherian ring R. Then min(S)- is 5255351\. ‘

link-closed. [ ‘
cioge . O

We remark that the one-side& version of Theorem 3.13 'is not true.

»

I

e e
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We now turn to the question of classical localization. 1If a
Pl, Pz,...', Pn are the minimLLprime ideals over the semiprime ideal
S, it 1is not hard to see that the second layer of E(R/S)R is the union
of the aecl‘.md layers of'-th'e ' E(RI‘L)R (1 <1 % n).. We say that a uni-
form module is S-tame if it is P-tame for some P e min(S) .

There 1is t'he following useful characterization of a classical

—

semiprime ideal:

Theorem 3.14:) Let S be a semiprime ‘ideal of the right Noetherian
'ring R and set E = E(R/S)R . The following are equi/vplent:‘

(i) s is right{lis’sj_cal /

(1) E = “Ew.mf.(s“)‘; ' “ <
: 1* .

(i11) the second layer of E is S~tame.

-

Proof: [26] Propositions 8.3, SMnd Theorem 8.5..

v

\ —
< )
Q\In terms' of'lin]é, this result may be reformulated as:

.

_Corollary 3.15: Let S be.a semiprime ideal of the right

Noetherian ring R. 'S is right classical if and only if win(S) 1is

< -
right link-closed (in rt-Spec(R)}). 2

Proof: Suppose § is right-classical and let Pe~w F ,
P ¢ min(S) , F ¢ rt-Spec(R) . By definition, there 15 a uniform right

# . _ ) o
R-~module U in the second layer of EP (hence in the second layers of



i
-

\j layer link-~clo séd,
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E(R/P) and E(R/S)) with E(U) ¥ F. By Theorem 3.14, U, la-S-tame

- E(n) = EQ for some Q € min(S) . Therefore F = EQ and ‘ \
. -

e

P-—-v)Qemin(S) as desired. A § \&_/ /

Conversely, assime that min(S) is right'link.-_qlose.d. Let U be
. 4 . e y .
a uniform right R-module in the second layer of E(R/S) (hence in the
: . r h 4 .
second layer of E(R/P) for some P ¢ min(S)) . This givesta uniform

module U' in the second layer of E, and so, by defdn n, -Pawd) E(U') .9+
. A ' E ” - N
for some Q € min(S) . Hence E(@) = E

By assumption E(U') = E and

| Q
U is Q-tame. By Theorem 3.14 again, S is right classical. J

Q

NI
The criteria‘-for a semiprime ideal to be right clasaical may now

N . .
be proved (cf. [2_6], Theorem 8.6).

S

»

. * L od
e mi{rime ideal of the right Noetherian

ring R . The followingrare e‘qu alent: .
Gee @

Theorem 3.16: Let §

(1) S 1ig right classical, -
(11) | min(S) sat&kﬂies the right second layer condition and is bimodule

ETAREEE

(1ii) 1-nin(S) satisfies the right second layer cond 3¢ 1um, an is second

- 1link-cloged; "' L N

{(iv) min(S) 'satisfies the fight second layer condition and is right .

nk-closed in- ;Spec(R) ‘. . L hee
oo S | 1 -

b

Proof: (1) =» (i11) Let }e min(8) and let Q be a ur{iform 7~
right R-module contained in the second layer of E, hd Then P~3 E(U)
and so E() - EQ for some Q € min(S) by Co;oll'ary 3.15. Im other

l

A
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condition.

1s essential {n R/K and hence jhere is an embedding

.
56

-

wordg, U 1is tmjfnd hence~ min(S) satisfies the right second layer
{ . : .

Lo
H

Now let Q ~ P ¢ min(S) via B/A. Choose a right ideal K of

R maximal with respect to Bn K=A. Then B/A=B/(B nK) & (B + K)/K .

t

R/K > + E(ia/A)R = E; >+ E(R/S)” (since B/A 4s a torsion—free right

‘R/P-module). Since S 1g right classical, Proposition 3.14 yields a

natural number m such that _ (R/K)S_m = Q. Therefore s < X and hence

SBcs"nBcKnB=aA so' that- S™ c %(B/A) = Q. Then S < Q and
. . ‘. {1 . N

.hence P' cQ ‘for some P' e min(S). Now Q ¢ hér(miﬁ?§77L by Lemma -

3.12 80 there 7ﬁsts P" ¢ min(S) with Q _C_:‘ P". It follows that
Q=P' = 1?"‘5 I{J'Tn(s) as desired. ' !

(11) = (i11) 7This is trivial. = - . . )

(iid) --(iv) Assume P ¢ min(S)\aMQ . | Then by Lemma .
3. 7, t.here exists a uniform cyclic P-tame module M and for N.= armM(P)
M/N is uniforn, Q-tame with TM/N) = Q& If 'Q }P = r(N) Fhen N 1
a right R/Q—module and P nC(Q # ¢ implies that N is R/Q-torsiom
(since a unl'g'.‘f’orm module over a prime ring is either torsion or torsion
free). Therefore M (and hence M/N) :Ls-Q-torSign.' But M/N is Q-
tame (i.'.e. Q-i:orsion free) so this is a contradiction. We now apply

SR ,

Propogm:m 38 ‘to see that Q 3 P. By (ii1),~Q e.nin(S) .

(1v) = (1) L,et P'e min(S) » F e rt-Spec( with PewF .

The right second layer coundition implies thaty F = E for some pr

Q
ideal Q. Hence Peurwd @ and (iv) implies that. Q € min(§)7" By

Corollary 3.15, S is rigﬁj:_fclassical. 0

-
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. §3. Krull Dimension Cbnsiderations.

P

S

. preceding section. Most of the results in this section make use of Krull

57

"Any of the notiongfof "link" we have defined produces a directed
graph on Spec(R) with the prime ideals as vertices and links between
them as directed edges. The conneakfd domponent of a prime ideal P in

the underlying undirected graph is called the link component of P and

is denoted by L(P). (If it is not clear from context which type of

link is intended, we shall refer to the bhimodule link component, etc )

-

In general, it is not known whether the differgnﬁﬁhbtions of link produce

the same component. ‘ ~

Corollary 3.17: Let R be a Noetherian ring. The clans in ﬂR

are Precisely the finite link components which satisfy the qecpnd layer

' ;

condition. g P

. 1 . - .
Corollary 3.18: A.prime ideal in a Noetherian ring belongs to

v

at most one clan. [] , )

.

L4

In this section, we cousider only Noethe:ian rings and we examine

certain subclasses of Noetherian rings which will arise in Chapter .IV.

" In particular, we give special cases of some of the mate¥ial £ he

dimension (in the.sense of Gabriel and Rentschlér); for definitions and
basic properties"the reader igfyeferred to [16]. ThEVKrull dimension
af a rigﬁrxﬁ;godule M 1s denoted by kdim(H) 1f it .exists, and is

referred to.as the right Krull dimenaion of M.; left Krull dimengion—of

a left R-module M is denoted by 2dim(M) .

-t



for every ideal A. It is easy to show that R° is weakly K-symmetric
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The ring R 1is said to be Krull symmetric (or K-symmetric) if

2dim(B/A) = kdim(B/A) for all pairs of ideals A § B. R 4is called

weakly Krull symmetric (or weakly K<symmetric) if 2dim(R/A) = kdim(R/A)

P
- if and®only 1f 2dim(R/P) = kdim(R/P) for every prime ideal P . 4n
ideal T of R 1is said to be right weakly prime ideal invariﬁnt .
(rt-w.p.i.i.) 1if kdim(T/PT) < kdim(R/T) whenever P 1is a prime ideal
. o
of R with kdim(R/P) im(R/T) . lR‘fig called right weakly prime
ideal invariant if every fﬁe lof R 1is rt-w.p.i.i.
Lemmg 3.19: Let R be right Noetherian. R is rt-w.p.i.i. if —
— |
and only if every prime ideal of R is rt-w.p.i.i.
o . - .
—_ Proof: The proof of [5] Theorem 2.3 can bé adapted mutatis
mutandis. [ -
N [N

r

Left weak prime-ideal invariance is defined analogously. R 1is

said to be right smooth if, for all finitely generaEed right R-modules
M containing an essential squoduée g; . gdim(R/r(H)) = kdim(R/Tr(N)) .
Left smoothness. is define& analogously. R is said to be 2 right poly-
AR ring ig for every pair of prime ideals Q § P, there exists an ideal
I of R with Q §I =P such that I/Q has the right AR-property in
R/Q . B ' '

These properties are connected in the following:

\J—’
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Proposiﬁion 3.20: Ler R be.a Noetherian {poly-AR ring. '$he

following are equivalént: '
(1) .R is K-symmetric, ,:>
(i1) R 1s weakly K-symmetric and weakl& prime ideal invariant.
>
Proof: (1) = (i1) If R 1is E-gymmetric, it is certainly weakly'
K-symmetric. Indeed let A be an idedl of R, . Then for any ideal

A% kdim(R/A) = supl{kdim(B/A), kdim(R/B)]} = sup{tdin(B/A), Ldin(R/B)} =

Higsgiép » using K-symmetry and a Noetherian induction. For the other

:"71’)- * vasgertion, if/;;?fices to chec£7rt-w.p i.4. Let T be an ideal ¢f R.,
Papﬂmi@ﬂ,ﬁm kdim(R/P) < kdim(R/T) . Then kdim(T/PT) =

\Edim(T/PT) < 24im(R/P) = kdim(R/P) < kdim(R/T) . _

. T D) = (1) [2] Theorem 3.2 implies that R - is smooth. {3] Lemma

cals =

. 2.1 then shows that R is K—symmetric 0

- e
A set P of prime ideals is said to satisfy the incomparabi ity
_\“]\\ condition (INC) if for any two prime ideals P and Q of P, PcQQ
' only if P = Q. _ . .

_F* : ) | _ |  . "

Proposition 3.21: Let R be a Nbetherian ‘poly-AR ;ing. Then

R satisfies the second layer condition and (bimodule) link componenta

satisfy INC.

. L} ‘
Proof: R has the second layer condirion by [26] Proposition 7.13

and Corollary 7.24. The other assertion is [26] Theorem 7.26. ]
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A module is said to be K-homoge_néc.\us (or a~homogeneocus) if

kdim(N) = kdim(M) = o, for every non-zero submodule N of M . A set

‘ 4 .
P of prime ideals of a (right) Noetherian ring R is called, c~homogeneous

-

1f kdim(R/P} = a for(fwery PeP. : - s

.,

- . ;
Proposition 3.22: Les be a Noetherign ring satisfying the

second layef condition. If every seco layer link component of . R 1ig

K-homogeneous then R ﬁw.p.i.i. o /
. . ) . [}
L A . N 'f = T
(P%o%j This is a corollary of [26] Theorem 9.11. [] ™
S Theorem 3.23: Let be a K-symmetric Noetkerian ring with pr?\unb
o4 ‘ .
\
ide.aly P and Q. The following are equivalent:
1) @ 5P .
&
(1i) P~~»Q ' N

0 KR®/Q) = n((Q n BATGE) ~idin(rf?)
(V) 25((Q n )/qp) < @ n PY/Qp) = P
(@) g=pdp

[

‘Proof: First observe that-'Qr'* P via B/A implies kdim(R/Q) =
2dim(R/Q) = 2dim(R/L(B/A}) = 2dimNB/A) = kdim(B/a) = kd'im(R/r(B/A))' =
kdim(R/P)'. Hemce Q $ P and so the equivalence of (i) and (i1) follows

from Theorem 3.10. The ﬁleft-hand' version of this shows (i) o= (v).
7, :

(1) = (111) Let Q3 P via (Q A P)/A. Then P = re((Q n P)/A) and

2 %,
50 kdim(R/P} = kdim({Q n P)/A) < kdim((Q n P)/QP) s kdim(R/P) , the .

\first Inequality because QP S’A dimplies “CJQ n P}/A 1is a factor module

I~
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.

J

of (Q n P)/QP, at;d‘ the second because (Q n P)/QP is a right R/P-

module. Hence equa;l.ity holds throughout. Similarly kdim(R}Q) =

Edim(R/Q) = 2din((Q n P)/QP) = kdim((Q n P/QP) . o
', (111) = (1v) Clesrly P cr((3n P)/QP) = I; suppose 2§ I. Then

In C(P) * P and so kdim(R/I) < kd:lm(R/P) by [16] Proposition 6.1.

Therefore kdim((Q n P)/QP) = kdim(R/I) < kdim(R/P) contradicting-(iii).

A symmeti‘i_c argument proves £((Q n P)/QP) = Q.

(1v) = Ei) Statement (iv) says that Q 1s bimodule-linked to P wvia

(Q n P}/QP in the sense of ;-ftlller [41]. By Lemma 12 of [43], this fm—

plies that Q ~ P wvia Qn P)/A- for some ideal A with QPcAFQneP .‘

In other words QzP. O

" A mpdule MR with Kruil dimension is said to be critical if -~ every

proper factor module ha.s Krull dimens:lpn strictly less t:han kdim(M) . . A‘ '

*Following Brown, we call a critical module MR of type I if

kdi;:n(}l) - kdim(R/rR(H)) - Following Miiller, we call a critical module

M non-singular if a_ss(M)- - rR(M) and M 4is of i:ype I. The fbllowing.
crucilal result is Lénnna,S of [43]. .
Lemma 3:24: Over a K-symmetric Noetherian ring R, ‘eve‘ry type
I critical i:ight_ R-module is non-singular. [J .
| J. -
There 1is.an analogue of the Jordan-HSlder Theorem which Wpplies

to finitely genei'ated modules over a Noetheria‘t_x ring and in which the

critical modules play tt}‘e role of the simple.modules., A Krull compasition
- . ! -
—:‘h’ ies of M (k.c.s.) is an ascending chain 0 = MO $ H1 $--F Hn = M

- T ) !
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i
ch that the Krull factors Mi/Mi 1 are all
J.
critical and\ the sequence {k.dim(Hi/Mi l)]l s 1< an}l is MR@. )
- "\}
The "Jordafi-ES1lder" Theorem then states that any two k.c.s, for M have 1

of submodul

the same length n and the injective hulls of the Kruil actors are '

unique up to order and .isomorphism. erefore the collection

{assCMi/Hi 1)|1 €1 su}l of pr

A ]
‘ideals is independent of our choi‘ﬂ
i J

of k.c.s. We caXl these prime ideals the right Krull prisz—_of M and

' v/ .o
enote the dollection by rt;-KSpec(M) . If M 1is an R-biniodule we . !
j write KSpec () - rt-ﬁSpec (M) u tt-KSpec(M)... (See also [2], [43].)
. .. .

The next two results are dl?l__to Miiller and are taken dir'EH'ctly
A

from [43] which contains a more extemsive discussion of the relationship

between Krull primes and localizabilitjr.

' Lemma 3.25: Let R be a 'Noetherian K-symmetric ring and M an

R-bimodule which 1s a-homogeneous as a right module. Then all right

Krull factors of M are non-singular, rt-KSpec(M) 1is a-homogeneous, L

and rlt—KS_pecCM) - m:l.n(rR(H)) . 0

Lemma 3.26: Let R be a Noetherian K-symmetric ring.

(1) If P and Q are prime ideals of R with Q ~P via B/A and
. _ ,
kdim(B]A) = a, then ;{Q} = o~-ft-KSpec(B/A) and

"

{P} = u--rt-KSpec'fBlA) . '

(ii) if A g B are idea&s of R and P ¢ rt—KSpec(B/A)

exist ideals A' and B! of R with AcA' §B' |

t Q~P wvia B'/A' for some Q € 2.t-KSpec(B/A) a

- —_



.. 63

AN

A

b4

§4. Normal Elements, E.AR-prop,grty, and Links.

-

“For future r lg;gfe,_ug collect in bﬁg section some further
fs :

r

—

;eéults on links whic \e;ploit thebpresence ?f normal elements. Although,
. in some cases, thg‘resﬁlfs as stated are not the best possible, they
TS will suffice for our purposes.
r’// ~p An elemen‘ x of a ring R 1is seid tq be ; normal element if
. W =Rx. If R is a prime ring, the ideal xR gengratéd.%y a normal

element is well-known to be invertible (cf. [9] page 51) and hence has -

e (right) AR-property ([9] Lemma 3.3). However, the latter property

" hold even if R 1is not prime as the following result shows.

Lémma 3.27: ([38]) In a (right) Noetherian ring R, an ideal
enerated by normal elements has the (right) AR-property. [

2\

The next two results will be crucial.

Lemma 3.28: ([26] Proposition f29) .Let R be a righe Noeﬁheriah
ring and I an ideal with the right AR-property. If Q~P and IcP,

- then I cqQ. 0

_ Corollary 3.29: 'Lét x be & normal element of the right
N&ethegian ring R, If Q~P and x ¢ P ,‘tpen xeqQ. 0O

2p
, .

Definition 3.30: For a normal element x of a ring R and a

prime ideal P, P* = {r ¢ R|rx e xP}.

et =
.
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u/“\l/ : An equivalent description is P* = zR(xR/xP) . Observe that
, . " . .
R/r(x) € R/2(x) via r + r(x) +r' + (x>~ where xr = r'x. If
' : S x
//f/q r(x) ¢ P, then imder this isomorphism P/r(x) corresponds to P /2(x)
L] ) ’ o
and it is easy to see that P* 15 a prime ideal in this case.

Proposition 3.31: 1%t R be a Noetherian ring with normal

element x and prime ideal P. The following are eqﬁivalen H

) @ cp, .
o 4 .
\\;/// (11) P* 4s a prime ideal such that PX ~ P via xR/xP .

Proof: (i) = (11) We have already remarked that P* is & prime
‘[ . .

» )
-

. 1deal. Suppdsé Xre ¢ xP for r e R s c¢eC(P). Then rc -per(x)cP
for some p € P. Hence rc ¢ P and so r é P. Therefore xR/xP is
* right P-torsion free. No? let d ¢ C(Px)‘, ; € R with dxr ¢ xP. Let
dx = xd' ‘and d'a ¢ ? fér some a ¢ R, ;Then da'x = dxa = xd'a ¢ xP
and so da' e P*. Hence a' ¢ P* and so xa = a'x = xp for some
pe€P. Thus a-p er(x) cP and soc a e¢ P. It follows ﬁhat .d' e C(P) .
Uéing this', we see that xd'r = dxr ¢ xP and so d'r - p' ¢ r(x) ¢ P for
soﬁe p' €« P. Hence d'r ¢.P ;nd s0 v € P, We conclude that xR/xP
is lequﬁfﬁfgfsion free. By Lemma 3.1, this implies P* ~P via xR/xP.
‘(ii) = (1) Suppose r ¢ R such that uir = 0. Then
xRr = R;r = 0 c xP and hence T ¢ rR(xR/xP) = P, uging Lemma 3.1 and

the defipition of a bimodulé link. O

If x € P, we can characterize those prime ideals which are

second layer linked to P. We will use the following lemma:
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v Lemma 3.32: Let R be a right Noetherian ring, P and Q

' -~
prime ideals of R, I an ideal of R with the right AR-property,

and I cP. Suppose Q 5P via (Qn P)/A. Then either Q/I 3 P/I
- _/\ .
or Q~P wvia I/(AnTI). -

Proof: By Corollary 3.29, I cQ. Set R=R/I. If I < A,

then it 1s obvious that {§ 5P via @nPB)A. If I ¢A, then

AnI§SQnPnI=1I. Moreover I/(AnI) ® (A+X)/Ac (Qn P)/A

as (R/Q, R/f)ibimpdules. By Lemma 3.1, Q = 2(D) and P = r(D) for

every subbimodule D of I/(An1I). Hemce Q~P via I/(AnT). O

Proposition 3.33: Let R bé a Noetherian ring with prime ideals

P and Q and a normal element x ¢ P. TIf QEP via (Q n P)/A

. then either Q/xR 5 P/sR or AnxR=xP and Q=P ~P via xR/xP.

Proof: With I = xR, Lemma 3.32 gives either Q/xR 3 P/xR or
Q~P via xR/(AnxR). Let rer(x). Then xRr = Rxr = 0 < A’ h xR
and hence r e rp(xB/(AnxR)) =P. P*X ig therefore a prime ideal by |
Proposition 3.31.  If r ¢ P~ then rx ¢ xP c A 'n’xR and so0
re ER(xR/(A N xR)) = Q.; hence P* ¢ Q. Sﬁ;poée P* & Q :. since P*
is prime, Q n C'(Px) * @, That is, there exists c- € C(Px) such that

cx € AnxR, Let c'e R with xc' = cx. Then xRc' = Rxc' = Rex &

AnxR and 80 c' e r(xR/(An=xR)) =P. Thus c € P> n C(Px) whiqh;\
is impossible. ’?e conclude that Q = px. .
Clearly xP c A n xR; suppose the inclusion ig strict. 'Then, :

using the isomorphism xR ¥ R/r(x) = R, we have P $ A+ r(x) and so
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-

A+ r(x) containg some ¢ ¢ C(P). Write-c = a + p where a ¢ AF

and i:er(x)gP. Then xc = x(a + p) = xa € An xR and thus

xRc = Rxc < A n xR, Therefore c € P n C(P) and we conclude from this

contradiction that A n xR =xP . [ N - —
For mmv:ie i;xfomation related to normal elements, the A.R:proper’ty,

and localization, the reader is referred to the work of McConnell [38],

Smith [53], Cozzens and Sandomierski [10], Heinicke [17], and Jateg®onkar
[26]. (

-
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CHAPTER IV

LOCALIZATION IN ORE EXTENSIONS OF COMMUTATIVE NOETHERIAN RI&GS
»

i

We now return to our study of Ore extemsiongs and, equipped with {
L]

the concepts of the preceding chapter, we examine the localizability of

prime ideals. In ph;ﬁicular, we seek to understand the mechanism by,

- #which prime ideals are linked to one another and to give an internal

characterization of the link component of a prime ideal. o

Ml

To facilitate matters, we restrict our attention in this chapter
to Ore extensions § = Rlx;0] whose coefficinnt ring ﬁ is commutative
Noetherian. In particular, this guarantees that every o-prime ideal f.
of R 1s a classical nemiprime ideal and that CR(I) is an Ore set in .
both R and S. If o, has finite order n then, sinne it 1f(:ommuta—
.tive, R 1is integral over its fixed aubringl rY and it is easy to
deduce from this that S is then finitely-generated as a module over |
A . |
its cen;er R%[x"] ; in this setting we know that every prime idea} of S 'E

beldngs to a clan (S5 has enough clans) and the clans are precisely the

" sets of prime ideals lying over given.central primeg (cf. [39]). Aitnough_
¢ need not have finite order in general, the existence of upper prime
ideals (Definition 2:10) is equivalent to o. having finite order on some

o-prime factor ring R/I or R; S/IS & (R/I)[x;0] 1is then mod\n-

finite over 1its cemter and hence fully bounded,.a fact which we will
frequently exploit.
Let us get the stage for our investigation of localization in Ore

extensions by nonsidering the situation studied by Jacobson—-f21]: R = K¢

67
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is a field with automorphism ¢ and § = K{x;0] . The only prime ideals
.of § .are ‘0 (1.e. S is a prime ring),‘ p(x)S where p(x) is e
central, centrally-irreducible polynomial and xS. 0 is classical_by
Goldie's Theorem; p(x)S and xS 4dre each genereted by a reguiar
- normal elementgand%_as we have already remarked, snegﬂideals are invert-
ible. 'In a Noetherian ring, invertible prime ideals are classical [8].
Therefore all prime ideals of K[x;o] are classical.
The general situation is by no means so trivial, even for R a
| cgpmutative o-simple Artinian ring (i.e. a direct sum of fields forming
a o-orbit). As we shall see, an Ore extension of a commutative Noetherian
ring may possess classical nrime ideals, primes which belong to clans, and
primes whose link compongnt is infinite.
gif ‘ As in our classification of ptime ideals, we split our attention
to ptime ideals which contain x and those which.do not. In each case,
we determine the second layer link.components (or, equivalently, the
right link components) of a prime ideal. In the process, we establish
; sqme of the Krull dﬁmension theoretic propertiea of SEJACfEE;Iﬂe Ore
/>/e;:;n;ion S and the corresponding skew Laurent polynomial ring ¥
R[x, —1; o] which will be used in our investigation.

%
51." Prime Ideals Containing x.

.o

We begin by determining ‘the second layer link component of a prime
ideal which contains the indeterminﬂte X . Later, we will‘show that this
coincides %EEF the (right or left) link component,

w : '
— .

Theorem 4.1: Let R be a commutative Noetherian ring,
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$ = Rx;0] . If P is a prime ideal of S containing x. then the
. i

second layer link component LZ(P) of P ‘1 (P° [i e Z} . Also

x € Q for every Q ¢ LZ(P) .

Proof: Since % 1is a normal element of S, the last statement

k;)is a consequence of Corollary 3.29 (and its left-hand version). By
]

! Proposition 3.33, 1f 0Q 3 P then either Q/xS ~ P/xS or Q=P. But
since x' ¢ Q n Pu; Q/xS ¥ QnR and P/xS P n"'R; hence the former

_ ot .
case implies Q nR =P n R since R is commutative and moreover

xS = P. On the other hand, since

= {(QnR)+xS=(PnR)+
Q=@ _ &
P’% = xP and x is regular, p? = p¥ ‘It now follows that ;;Q,
. ' , 7 - -\
L,(p) = (p° |1 € 2} . using the symmetricized version of Proposition g

3.33.°0 N -

e

Example 4.2:. We are now in a position to see that if we gener-

* -alize the "Jacobson situation' mentioned in the introduction, we can get

non-locélizable/prime ideals. Specifically, let R be a commutative

' n
o-simple Artinian ring (i.e. R= ] @F

) /_//’k . i=1

o ]
'Fi = Fi+1 , Fn = Fl ). Then Epe only prime ideals of S = R{xjo] are

i’ Fi = F a field,

0 (which is classical by Goldie's Theorem), p(x)S for central,

’ ‘ . -
centrglly-irreducible p(x) (classical, as before), and Qi = Pi + x5
* r

for P, ome of the n prime ideals of R. Since Proeess B ford a’

full o-orbit in R, Theorem 4.1 iuplies that {Q;,..., Q } is,the only .

non-trivial link component - a c¢lan.

For a specific example of this, take R = F ®F and
,j.

Vi -

.’ _‘ - /ﬂ ‘
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-c; (a,b) —+ (b,a) as in Example 1.6. Then for thé prime ideals
P1 =F&0 and P2 =0&®F of R, the only nbn-triviq} clan of S
is {Pl_:-xs, P2 + xS} and xS = (Pl + %x8) n (P2 + x8) 1is therefore a
classical'saniprime ideal of S.
= Theorem 4.1 also shows us ﬁow to construct an infinite link
component - find an automorpfism ¢ and a prime iﬂealva of 5§ such

' ‘ .
that o-orbit of P is infinite. We give an explicit example.

Example 4.3: Let R = K[yl , the commutative polynomial ring
in one indeterminaté over a fie;d: K of characteristic 0. Let o be »
the automorphism of R given by yCr =y -1 and S = R[x;0] . Take
P=<x,y> =yS + xS =R+ x5, a prime ideal of‘ S . Clearly
' LZ(P).-.{<x,-y + n>]n € Z} is‘(couhtably) infinite.

This example arises as follows: S is the giveloping algebra o%
tﬁe‘two-dimensionﬁl noniﬁbelian Lie algebra F = <x,y|[y,x] = x> and P

is its augmentation ideal. (cf. [41, [39]) .

Remark 4.4: We know of @o example in the literature, explicit
or implicit, of the'link-component of a prime ideal P of an Ore
extension where x ¢ P. 1In 53 we will develop the theory of links for

such primes and then give several examples in §4.

§2. Lower Prime Ideals. _,///

We now turn ourattention to the prime ideals of S which do
not contain x. Recallgthat every such prime ideal contracts to a o-

prime ideal of R (Prop&hition 1.13) and lying over every -o-prime ideal

™~
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of R there is at most a two-chain of prime ideals of § (Corollary
2.9). For a prime ideal P with x ¢ P, recall that P is said to
be a lower prime if P = (P n R)S and an upper prime ot;erwise. In
this section, we‘concentrate on the lower primes, proving that they are
all classical. . |

Using Roseblade's.:;:ﬁnique for checking the AR-property in
ngn—commutative ring9/:—EE_E§tepsion of ;he-ide; of the proof of the
. usual Artin-Reéé”Lemma - we show that iower prime ideals have the

AR-property.
<

Lemma 4.5: [51] Let A be a fing and T an ideal of A . Let

A*(T) be the subring of the polfnomial ring Afe] given by
A*(T) = A + Tt + th2 +... .
(1) If A 1is (rigﬁt) Noetherian and. T is centrally generated then
A*(TY 1is (right) Noetherianm. |
(11) If A*(T) is Qeight) Noetherian then T has the (right) AR~
propert?\ a |

Proposition 4.6: Let R be a commtative Noetherian ring and

P a lower prime ideal of S = R[x;0]. Then P has the AR-property.
- ' -

L]

Proof: Set I =P nR. Then; by Lemma 4.5(1), R*(I) 1is

Noetherian. In S[t], we have S*(P) = <S, Pt> = <§, It> = <R, x, It>

<R, It, x» = R¥*(I), x» (where <...> denctes "the ring generated by.

énd o to an automorphism of R*(I) by séﬁting t = t. Then for

* ¢ R*(I) we have xr* = (r*)ux so that S*(P) = R*(I)[x;0] . Hence.

I

~

L.
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/
5*%(P) 1is Noetherian by the Hilbert Basis Theorem (Theorem 1.7) and

therefore P has the AR-property by Lemma 4.5(ii). (J

Wyhe notion of a poly-AR ring was used in 53:3;'equipped with
—— LN :

Proposition 4.6, it is now a simﬁle task to show that thg Ore extension

4
1

S has this property.

Theorem 4.7: The Ore extension § = R[x;0] of a commutative

Noetherian ring R 1is a poly-AR ring. -

\
LY

gzggg:f“wE;must-shdﬁ‘phat*for every pair of primehidbéls P-£Q
of S, there is an ideal I- of § with P 5 I 2 Q such chat I/Q is
. AR in $/Q. We consider three cases. - ‘
Cage ): x € Q" Th;n x ¢ P also and ?}Q is an ideai ofq
S/Q = 8$/({Q n R} + xS) * R/(Q n R), a commutative Noetherian ring.
Hence P/Q has the ARrprOperty. _
Case (1): x¢Q, x e P. Here P/Q= [(P nR) + xS]/Q 2
£Q + xS)YQ xS/ (Q N xS) = xS/xQ vwhich has the AR-property since it is
~ an ideal generated by a normal element (Lemma 3. 27)

Case (11i): x ¢ P. If P 1is a lower prime then it has the

AR-property (Proposition 4.6) and so P/Q 1s.therefore AR as well.

Otherwise let I =P NR and J=Q NR. Then JC I and- IS €.JS § P .

The only remaining case is therefore; I = J (i.e. P 3 Q=xP AR)S) .
Without loss of generality, we may assume I =0 (and therefore R 1is
g-prime). Set ( = CR(D) . Then in SC - Q(R) [x;0] we have the prime

ideal PSC = p(x)SC where p(x) 1is alcentral,'centrally-irredncible

)
PR

N

—
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,. D
polynomial - of SC’ (Corollary 2.16). Since R is commutative, ¢ has

finite order by Theorem 2.18. Moreove:r, R) = ‘RC‘* » the quotient ring

obtained by inverting elements of C* = R ~ {0} ([20], Lemma 5.8).

Hence p(x) = p'(x)c-l for some p'(x) € S and c ¢ C*. Now

c e C(S) = R%[x"], where n is the order of o , and so for any

F

£(x) ¢ 5 we have p'(OE(R) = p'(Xe T 1 cE(x) = plx)ef(x) = E(XIP(x) =

Ccf(x) - c-lp'(x) = f(x)ec - .c-lpl(x) = f(x)ﬁ'(x) . Thus p'(x) 1is

central and consequently p'(x)S 1s a non-zero two-sided ideal of S
which has the AR-property (Lemma 3.27). Since p'(x)S = c-lp(x)é [

PS. nS =P, this concludes the.proof.?

Corollary 4.8: If R is a commmtative Noetherian ring, $ has

the second layer conditiom.

Proof: A Noetherian poly-AR ring has the second layer condition

by [26] Proposition 7.13 amd Corollary 7.24..00

*

Corollary 4.9: If R is a commutative Noetherian ring, S

satisfies INC for (Bimodule) link components. . ' ‘0 ’

~
Proof: The second layer condition guarantees this ([26] Theorem

7.26): 0 T o

~r

T8

Proposition 4.10: Let R be a commutative Noetherian ring,

S = R[x;0] . For any prime ideal P of S , the (bimodule) link com-".

ponent L(P) is K-homogeneous.

YA

e
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P

- Proof: .If x ¢ P aﬁﬁ_ Q~P then B= (P n R) + x5 and
Q'-_ ?’ % (P n ;)" +x5. Therefore kdim(S/Q) = kiim(R/(Q n R)) =
kdim(R/(P n R)U) - kdim(R/{P n-R)) = kdim(S/P) ..
If P 1is a lower prime.then P has the AR-property (Propoaicion
4\6) and so Q ~ P implies P c Q by Lemma 3;28: Corollary 4.9 then
gives P = Q 'and so kdim(S/Q) "kdim(S/P)' cri;ially.

™
If P is an upper prime, say P = [I, p(x)]; and Q ~ P- then

" - s '
‘_\\E 2 IS sgince IS5 has the AR-property. Hence Qn R 21 and Q Q.R

8 a o~-ideal (Theorem 4.1, Proposition 1.13). Now if Q n R # I, then

Qn CR(I) #‘b } (Lexma 2.3). However CR(IJ is an Ore set in S and
P Cx(I) = @ by Corollary 2.6; hence’ Q n Cp(I) = § by Proposition |
men ioned in .

and R _;si

3.3. This is a contradiction and s6c Q n R =1I. Now, as

the introduction to this chapter, since P is upper to
éommutativg. S/IS 1s fully bounded Roetherian. Hence Kru
‘coincides with classical “Krull dimension and we conclude t
kdim€S/Q) = kdim(S/IS) - 1 = kdim(S/P) , since P and Q egPoth

.upper to I. It follows that L(P) 1is K~homogeneous. 0

A

The second paragraph of the abqre proof, combined with Corecllary

'3.17, proves, the following result which we single out as:

L

Theorem 4.11: Let R be a commutative Noetherian ring. Then

every lower prime ideal of S 1is classi'cal. a S

[ M e ‘

" Another consequence of Proposition 4.10 is that second layer ,

links and right links are the same in the Ore extenaion S: R

- r
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Corollary 4.12: Let. R be a commufative Noetherian ring, \P

and Q prime idesls-of S. Then Q3P if and onlﬂif P Q ° if
and only if Q-w—)P . ' ‘

-

Proof: IEf ¢ E'P then Q 3 @ @poaaibl‘;, by Proposition
4.10. Apply Theorem 3.10 and its left—haﬁd vargion.

&, -

From now on, we shall use theae notions ﬂi:'erchaqgably and simply

refer to a "1ink" for any of fhe Yhree equivalent forms in Corollary 4.12.

Corollary 4.13: If R -is a commutative Noetherian ring them §

v

is weakly prime ideal invariant. N

Y -
Proof: Combine Corollafy 4.8, Proposition 4.10, and Proposition

3.22. 0 *

§3. Upper Prime Ideanls.

-

LY

In this section, we conceQAm’?elves with the upper prime ideals

L]

of the Ore extension § = R[x,a] Recall t:lmt: a prime ideal P is an
dpper)znrimeif x¢P and P % (P n R)S. /)n-(iﬂ.scaae I=PnR is

o-prime, o has finite order on R/I and P 1s completely determined ;

Y

by I and a polynomial p(x) which is ceu(G;l and centrally-irreducible
in Q(R/I) [x; a] We writ:e P ='[1, p(x)] .

.

-1
(x) forall f(x) esS, 1:20) andsowemay

Now X = {x |i 2 0} 1s an Ore set of regular eleme.néa
(since f(x)x - x1£°

form the partial quotient r:l.ng 8% of S.  Observe that f:h:ls localiz_ation
- N
. - . : L L .
' ,

¢ .




. * |

Sx coincides with the skew Laurent polynomial ring R(x, x-l; al .

Moreover, since ﬁni,P » PnX=0 and so P '"survives" under the

1 ization. By Proposition 3.3, thg link component® P i1is the same

iIn S asg in Sx and so,rwithout loss of generality, we may take P to
e an ypper prime ideal of RI[x, x-l; gl ﬁhich we now denote by § for
ease ?é notation.

It follows from the preceding section that the skew Laurent
polynomial ri;g 5 1is a polyﬂﬂn\zi?g, has the second layer conditiom,
ﬁas.K—hopogeneoua link components, and is weakly prime ideal invariant.
In addition, we found that all lower prime ideals of § are clagsical.

We can now say more:

Proposition &.14: If R is a commutative Noetherian ring then

S » R[x, x-l; g] 1is weakly K-symmetric.

- r[‘
h-

Proof: Since. R 4s commtative, the map *: B+ S given by
-1 ’ <t
rxi. + x 1 (reR, 1€€2) is an involution. Hence the lattice -

- of right ideals of S 1is isomorphic to.the lattice of left ideals of §

and it follows from this that kdim(S) = 2dim(S) . A
To éhow'that S 1s weakly K-symmetric, it suffices to show that
.

. kdin(S/P) = #d1im(S/P) for every prime ideal P. If -P is a lower
prime ideal, then P = (P 0 R)S and S/B ® (R/(® n B))[x, x 15 o]

l‘ N Y ) a
vhence kdim(S/P) = £dim(S/P) by theé remarks in the first p:;73¥aph.

If P is an ﬁpper prime ideal ‘then . ¢ ®is finite ofer on

-
R/(P nR) and so S/(P n R)S 1is fully boundéd; since (P n R

) . N /‘ . ~y
all -the moreso S/P 1is ly bounded. Hénce kdim(S/P) = zdi?(ﬁiP),
Fﬂé ‘ v R
a well-knévn pro of rings. O Y :
: ~
R n * 1 ] r
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Corollary 4.15: If -R a cqmutative Noetherian ring, then
1

S = R[x, x ; 6] 1s K-symmetric.
Proof: S is a poly-AR ring by Theorem 4.7. It is p.i.1i. by
Corollary 4.13 and weakly K-symmetric by Proposition 4.14, Proposition

3.20 then shows that S 1s K-symmetric. [

We now have at our disposal the results of [43]; .the ones which
we shall usé were statéd in §3.3. With these in hand, we return to the
problem of determining the link component of an upper prime ideal. ’

Let P = [I, p(x)] be an upper prime ideal of § (I=PnR
‘is o-prime, ¢ has fix:;ite order 'm on R/I, and for K= {Q(R/I)]Es
p(x) -- is irreducible in K[x", x °] .) We hz.we alreia"d-y"ahgun that L(P)
is K-homogeneous and that if P-;-n)Q then Q¢ is an hgpet gr;!.me to I
also (Proposition 4.10). Our goal i3 to ‘determine the posaiﬁﬁities for
Q in terms of P and o: we will describe the irreducible polynomial-
g(x) € K[x‘?, x 2] Pwhich uniquely determines Q. * By iteration and
symmetry this will give an internal characterization of L(P) . |
. .. :Je begin by making a few reductions. Since CR(I) is trivially
a c;-mvariantPo;-e set in R (and hence in ‘s ), P--»Q_l in S 1if and

oniy :Lf PSI---)QSI in SI (by Proposition 3.3). So without loss of

Og%@rdlity R is semilocal with semimaximal ﬁ—cyclic J(R) = I (i.e.

m .
- ' - d - e = '
!Z 121141,. Hi _maximal, b{i .Mi+l’ Mm Hl) and P and Q. are

. - - .
maximal ideals of S.  Moreover, it is clear from the definition of a

link that P~~}Q in S if and only if P/IS~Q/I°S in
. L * *




~ '3/1%s = CR/IZ)[x, X

e

__—-——~\;\7
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l; ol (usé Theorem 3.23). Thus there is no loss of

generality in assuming I2 = 0. HNote tha; R 1is now Artinian, by
Hopkins' Theorem, an& so kdim(S) ; 1. Note also that thé field i
remains'unchanged by these reductions.

ﬁaving Eadg thege modifications, we now set out to determine

precisely which prime ideals are linked to a given prime ideal P,

Lemma 4.16: Let R be a commutative Noetherian ring,

S = R[x, x-l; gl, P and Q priﬁe ideals of - 5. Suppose P 1is upper
to tﬁe c-brime ideal T of R and: PawdQ. Then either Q = P or
Q .is a left Krull prime of the bimodule subfactor IS/IP of §S.

Proof: Make the above reductions. By{Theorem 3.23, PapQ if
and only 1f Q 3 P via‘ Qn §$;QP « Since IS Qn?P and IS haé
the AR~property (éropca;:ion 4.6), Lemma 3.32 implies that either
Q/1s8 3 P/IS or Q~P wvia IS/(QP n IS). .

) In the former case, we have a link between ngn-zero prime ideals
of § ',S/iS ¥ (/1) [x, x-l; o] = R[x, i_l; o] which is therefore pre~
served_under 1o -];ization at the Or;! set (= .C’I-{(O) of § (Propositi‘oﬁ
3:3). The partial \quotient ring §a is then in the setting of Example
4.2 where there are o mon-trivial link components. The same is therefore
true of § and we conclude that Q = é in this case.

In the latﬁer case, since we may assume thet P and Q are

maximal ideals of S, the bimodules IS/(QP n IS) and (QP n 15)/1P

v :
are both Artinian and 80 we may splice together  their composition series

to obtain one for 1IS/IP. But then,/éince Fﬂf‘i 2t=-KSpec (ISL(QP n IS))
v : ¢ :
“ , .

y




by Lemma 3.26(i), Q € 2t-KSpec(IS/IP) . 0

—
By Lemma 3.26(1i1), every left Krull prime Q' of IS/IPf/is - §
] : )
bimodule-linked to P (since P 1s the only right Krull prime of . i

IS/IP) . We would like to know whether this is a second layer link
(1.e. P~~9Q'). The next lemma says that this is the case.
Lemmg 4.17: Let R, S and P be as above. If

Q € Lt-KSpec(IS/IP) then P-)Q.

Proof: It suffices to find an element e ¢ E.P ‘such that
eQP = 0 but eP % 0, By adapting the proof of [41] Theorem 15, we see
that there is a chain of (right or left) links from P to Q (i.e.
Q € L(P)) . This means that there. is a non-zero e ¢ EP such that
P = P> Py,eeny B = Q are the Krull primes 7 | eS and we may assume |
that they are :1}1 max:l.mal aud distinct. By constructiom, eQPn;l . PP = 0. . J
We may also take e ¢ a.n.n.EP(IS) . Now it follows from Lemma 2.33. that s

‘ | » .

eP _3Pp-p ++- P5QP = e(QP . ... PP+ IS) = e(Q...P) = 0. Hence there
exists g' € e.Pn_l -+s P, such that e"'P * 0/ otherwvise ePn-l ces PyP =
0 c eQ would imply Py -+~ P;PSQ and P, =Q for some
i= l,..'.;‘-_,:n ~ 1, a contradiction. Since e'QP = OJ, this completes the ..

proof . a -

The last two lemmas effectively characterize thoae prime -ideals ’

»

Q such that PedQ as the left Krull primes of IS/IP . Fg;/tpfaf e,

. let us summarize this as:
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Proposgition 4.18: Let R \be a commutatjra—ugsgperian ring, d’
S = R[x, x_l} ol, P and Q pr ideals of with P upper to -
the o-prime ideal I of R. Then \PwwdQ if and only if either

< “

L4

Q=P or Q.e Lt-KSpec(IS/IP) . O

The foregoing provides us with ah abstract éharacteriza;ion of

the link component of an upper prime id of S. We will now make this

concre?e by describing these prime ideals ¢ licitly.
o

After the initial reductions, we have\a maximal ideal P éf“ﬂ}

-, . .
which 18 upper’to the semimaximal o-cyclic ideal I of R and R Q}B
semilocal Artinian with J(R) = I. Also R/I = (R/I) and o has
finite order m on R/I. We set K = (R/I)”, the fixad Subfield of

. 2 ‘ :
R/I. 1 =1I/1° {1g therefore a finite~dimensional K-vector space with \\\3

basis 81202+, 8 s2Y, Setting t = xP » we have P = [I, p(t)] for

some irreducible polynomial p(t) ¢ K[t, t-ll . . By multiplying by an

' ~

appropriate power of t, we may take .p(t) ¢ K[t] . (Note that every

irreducible p(t) ¢ K[t] gives rise to such a prime-ideal P by Theorem ~
2.40). Since 17 - I, for each i = 1,;.., n we must have N

n : . . ‘
c- \_ - _,"
a; = ] Uig?y vith u;, € KT Set o (uij)»e M (K) ,and le S

j=1
T = a? . Denote by ut(t) ég; minimun-polynomial of Tt in K([t]).
The prime ideals we want to characterize are the left Krul

primes of IS/IR‘ ~ these are precisely the minimal prime.ideal -over
»

|‘ -' !

IS(IS/IP)- and they are all maximal, Indeed, these ideals are 'all uppery ' . K
to .I and are thus'of the form . (I, q(t)] for q(t) irreducible in ;
- ) Y .t i
. d i oo " . ",:
Klt] . Let f(t) = Z'fit ~ be the product of the q(t)'s for the left . . - -

- 1i=0 ) - )




Krull primes in question. .'It “follows that £(t)IS c IP = IS(p(t)S + 1S) =

ISp(t) .

-

Let p(t\ {(t?- g )...(t -a ) where ul,..., a, are the“zeroes

of p(t) in R, Fe algebraic closure of K. Let

ut(t) = (¢t - el)...(t: - er) where €1»+-+» €. are eigenvalues of t in

b

: d -
K. For every j = 1,..., n we obtaim £(t)a :/I £ t:iaj =
i=0

d omi 1 d n ;-
\ ) fiaj - 1-Z-Of ( ) ujkak) X ak izofi Kkt € ISp(t} by assump~
ik

tion. (Here uoF -'(ri)Jk.) Consequently, for a ¢ {al,..., us} ve

l;hve f(u)a - fak Zf
i=0

ijk -0 for ‘j-l,--n, n.

-

Since al,'..., at; ‘are a bagis for I over E, (and K) we have

.o
):f -O'for l<3sn, 1<ksn.  Hence the matrix '
o~ "--/' . 3
Z £ u td = J£ i‘riui .- Z £ (m) . Therefore, by the Cayley-

L

1-0 . i=0 1*0
Hamilton Theorem, T (t) must divide f(t) for all a € {ul,..., as} .

Thus the least comou multiple of the Moy (t:) , f1sissg » must

divide £ (t)/which in turn must divide th'e. prc;du;:t_ of the characteristic

polynomials x_. (t) (since this pr,'oduct is in 2 (IS/IP)-) . Hence the
' i

£ - distinct irreducible factox;&_are the. same in each case and so the prime

'?ideals which are linked to P are therefore completely determined by

the irreducible factors of ¢ (t) . _ 'I'hese' are alsn‘jha same as the

b= N
. 8 o -
irreducible factors of I y (t) . Note that . >~
. TQ,
. . i=l "1™
\ o - S
i -~ . * ‘ : .




A

.fileld]| k and so R= k. P necessa

{
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.
umj(t) = (¢t - Eiaj)(.t - eéaj):..(t - Eraj) . If we set
fij (t) = irrK(.eiaj) » the irreducible polyno:ial for sic:j in K[t]‘,

then the distinct f:l.j (t) are the polynomials wewar_lt.
\ .

We summarize the above discussion in the_ following theorem:

Theorem 4.19: Let R be a commutative Noetherian ring,

S = Rix;o] , . P and Q distinct prime ideals of S with Pz [I, p(t)]
upper l;o the Uéprime"ideal I of R, Then P~$Q if and only if
there exists a zero a, of p(t) in K and an eigenvalue ¢ of cl;
in ¥ such that Q = [I, 1rrK(sa)] . 0

Corollary 4.20: Let R be a commutative affine algebra over

-

an algebraically closed field k, § = R.[x;o] , 1 a maximal o-prime
ideal of R, P and Q distinct maximal ideals of S with

\ ‘ ) .
P={I, t -al. Then P~=3Q if and only if there exists an eigenvalue

€ of CJ“Il in k such that Q= [I, t - ea].

has the form [I, £t - a] if .

it is upper to I. - Theorem &¥I9 then gives the result.

4 '

a

a

Corollary 4.21: In the setting of Theorem 4.19, P has a finite

link compgnent if and only if all éigemvalues of o; are roots‘of‘ unity.

/

whr

hidinduinlil
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Proof: Iterating the procedure of Theorem 4.19 gerves to ) ii
multiply eigenvalues of ot Q € L(P) 1if and only if S
Q= {1, irr { n Ei uj)] where {ei]i)e F} 18 some findite subset ;

i .
of the set of eigenvalues of GI and n, € Z . Clesrly there are only
finitely many possibilities for Q 1if and only if all eigenvalues of
U? , and equivalently of a;-» are roots of unitz.'ﬂ - :

¢
In general, it may be difficult to determine the zeros of the
H 1]

polynomiai p(t) and thefeigenvalues of o? . The s:a;gment‘of,Thgorqn
4.19 is cherefore.unsatisfattory inasmich as it léads oue to believe
that our technique is appareatly deﬁendent on a knowledge of those
quantiﬂies. We éan at least remove this dependence from the statement

of Theorem 4.19.

Theorem 4.22: Let R be a commutative Noetherian ring, ' s i -

f o

Se" R[x;z] , and P = [I, p(t)] upper to the o-prime ideal I of R

(where t = x° for m the order of & on R/I). Set = -/g? € Hn(K) :\\

Then the prime 1deals of S other than P which are linked to P afe
determined by the irreducible factors over K of det(td(p(r-lt)))
where d is the degree 6f plt) .

. y
' " Proof: Let p(t) = (t - ul)(t'iﬁaz)ﬂ..(t - aa) in K[t]. By

'/”‘\“. . \\/* d

Theorem 4.19, the irreducible factors of I . (t) over K determine
. .o i=s] 1

L)

»
b

. the prime ideals of S which are linked to ‘P . However, these are’

precisely the irreducible factors of the product of characteristic - -
i - . - T
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RN ada . ‘-d d
"polynomials T Xrq (¢) = 1 ?et(tE - Tui) = det( T (t Ta,) (t),

i=1 "% i=] i=]1

f
say. (Here E denotes the identity matrix éf“ Mh(i) . ) Now

d d

R - I (tE - Tui) - {d ﬁ)(t—lt - uiD) = rdp(tﬁlt)‘. Therefore :
' 1] 1=1 - | | .
oo o d o =l

j- £(t) = det(t p(t t)) and the result follows. [J
v
J
§4. Examples.
In this section we give several examplés to illustrate the
. ‘ e Y
techniques of the preceding section. . -
Example 4.23: Let - R = kiyl, k a field, «,B ¢ k, and let
¢ be the automorphism of R given by yc =ay. Let S =Rixjo].
Y : ‘ . . —
I =yR is a prime o-ideal 6f R, and P = [I, x - B] = IS + (x - B)S
is a prime ideal of S, upper to I. o has order 1 on R/I &k
. and the only eiéénvalue of 9y is a. {The link component of P is
. * -
L(P) = {[I, x - aislli € Z} which is finite if and only 1f o 4is a
Toot of unity. Indeed, if this 1s so th8 o- has fipite order affd S

qctuﬁlly,has enough clans. »

v

Examgle 4.24: lLet R = kly,z], yo =y : ’;E-"y + 2z, and

take I = YR. Then u?“-hag order 1 on R/I” and o

I is the identity.

Hence all upper primes P = [I, p(x)] of S are cldssical. In fact,
" e . .

—

it can be shown that for any g-prime ideal I of R » 1 1s the only

eigenvalue_zf g Heance all prime ideals of S wﬂish do not contain

-
X are classical. ST ey

] . +

\
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If we mdi;:'y.tt.xis example by taking R = k[y, y-l, z,z 1,
: ya =y, 2% = ¥z, and § = -R[x, x-l; o] then it can be shown that
every prime ideal of 'S 18 classical. Note that in this case S = kG,
the group algebra over k of the. semidirect product G = zzx Z. G
is a nilpotent group of class 2 and group ring techniques. “w:l.ll also
show that every prime ideal of S is classical.

B
ot

-

Example 4.25: Le‘t R = @fy,z] ', o the autow:)i'phism which

interchanges y and z. Since o has order 2,9 S = R[x;0] has
enough clairs. Take. I{- - H(y + z)R, I2 - (y‘- z)R and . -~

13‘- (y -a)R+ (z - a)R. These are all o-invariant prime ideals of

R. Then ¢ has order .2 on .Rlll y K= Q(Yz) -and -oi 1s the
. ) - 1

, identity matrix in Kz(K) ; all uppér primes to 1., are thus classical.

1
0 1

.Theorder‘of ¢ on R/Ia"is 1, K?Q and o .-(
3 \1 0

) € %, (Q)

_ w;!.t:h eigenvalues .1 and -l ; hence the prime ﬁul [I3, x -_'a] is
- linked to [13, x + a] ai;d these form a 1.:'woée1lmnent clan. “Thus_not all
J ‘_ link t’:omponent:a" of upper primes :a're of the same length. In fact; there
‘ can be cla.ﬁs of different cardinalities lyinglove.r the same a-pl;img
ideal. For examp‘le, a hamr 1 lon R/I | K= Q(y)'~and
. ‘UIZ & (=1)-. Let pl(x) = x -y and pz(x) - xz -y, two irreducible
polynomials in K[x] . Then [I 2,/9 ]M[Iz, x + vyl gives a- two-
' eian‘t glan while [IZ' pzl. is classical since _pz(x) - irrK(fy-? -
ez (/7). e |
~

— /.,.-._:
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Example 4.26: The preceding example could have been analyzed
using the fact that S was module-finite over its center. There o

had finite order and hence the eigoﬁvalues:of g, were trivially roots

I

of unity; In this example, ¢ has infinite order but or hao eigen—

values which are roots, of unity

Take R = Q[y,z] ) ycr - -y, 27 = y~-2, and' I = yR + zR.

.. . ! l
~Then o hgs order 1 on R/I, K=Q, and o_ = ( )J\e-ﬁz(K)
. A §
. “ 0 _1
for the K-basis {y,z} of 1/12 . Then, for example, ‘[I, x + 2] 6o
[I, x - 2] gives a two-element clan while {1, x% - 2] 1is classical.

\

[

Example 4.2N: This example shows that there may be both classical

s

upper primes and upper primes with an infinite link component. Indeed,

" we shnll produce a -classical maximal ideal which contains a prime ideal

with an infinite link component

Set R = Q[y, y-l, z}, y9=y, ‘20 . yz, ImzRcM=

{y - l)R +2zR and S = R[k;o].. I is a prime o-ideal and M a maximal
' .o-ideal of R. R/I & Qly) and ‘R/M ®'Q so that o is trivial in.
..eaoh_fadtor riog. Now {z} 1s a basis for the Q(y)-space I/I2 ; then
oI(E) = yz = yz go that o = (y) . ‘Also {;-:-T z} is a basis for
the Q-space M/M ; then c (y - 1) =y - y =1 and Oy (z) - yz = :
(-:-TTE +z=2z s0 that Oy~ is the identity matrix of HZ(Q) Now
let P= [I, x - a] .and Q= [M, x -~ al beuppers to I and M re~- —~
spectively for a € Q. Themn P cQ, Q is clossical sdnce’ 1 1is

the ogly eigenvalue of oy » and L(P) = {1, x - uyilli €z},
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Example 4.28: This sort of behaviour - a classical 'pr.;;l.me ideal

which contains a prime ideal with an infinite component - can alsoc happen
in a group ring. Using the techniques of this chapter, it is not too

difficult: to construct such an example.

Let R = Q[yi, yi |1 $ 1 <4] and take o to be the automor-

o 2
.phism of R giveln‘by yl - Ylyz , yg - ylyz , y3 = y3 . y& = yl, .
1 ‘ |
Let I = (y - 1)R + (Yz ~1R and M= ] (y, - R, o-prime ideals
1-1

- ‘ '

[

of R. Thei o 1s trivial on R/I and we compute (yl'- 1)°
2 2 o : .

(7, =D =37, = 1= Gy = Dy, = 1) + (yl‘- D+ (5 -1 . Hece, .

with respect to the Q(y,,y,)- basia {y 1, y, = 1} of I/I
374 17 2

o,y - D) = Z(yl D+ G, -1 and oG, -0 =G - D+ (yz -1

: 2 1\ ' . '
and "sb o = ( ) with eigemraluea (3 2 ¥5)/2 T Let
e ' . V1 1 : ‘

S = R[x, x—l; c]l. and take p(x) = (y'3 - )x + (74 -'Il) € Q(ya, y4) Ix] .

Then. P = [I, p(x)] has an'infinite link component but P € MS which

1 . ’
is classical by Theorem 4.11. Here S = QG where G = zl}x ey

_ Coa : V4
§5. Localizing at an Infinite Link Component.

-

If R ‘is a Nbet:herian ring satisfying the second layer condition

and P is a p;ime ideal of R belonging to a clan
s .

C = {P - Pl' gr-es B }, then € 1is the link component L(P) of P
- n . - . ’ &
and NP 1 is a classical semiprime idealG,' Corolé\ary 3.17).
. 4wl * B . - : '

-
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In particular, I = N C(Pi) is an Ore set in R. If a prime ideal P
‘ i=1

has an infinite link compone}u: L({P) , it is not known in general whether

I= N WO ig an Ore s‘ét; affirmative results have only been obtained

/JkL (P)

'in'certain gspecial cases (cf. [4], [43]). 1In this section, we shall
. 7 ; :
show that for Ore extensions of commutative Noetherian algebras, it is

frequently possible to localize at an infinite link component.

Let P be a non-empty set of prime ideals in a Noetherian ring
R and set I = NC(P). P #s said to satisfy the right intersection
’ PeP T ; bad

A

condition 1if for é.:iy‘ right ideal A, A n C(P) = @ fo_t"'\very PeP
and only if A n Z ¥ @. .The left intersection condition is analogous.
P 18 said to .b‘éﬂright classical if I is a right Ore set, °

: .
RIfPRI 18’ simple Artinian for every P ¢ P, every right primitive ideal

of Rz is ‘of the form PR‘): for some P e P , and for any .simple. right

Rz-module M, ER (M) 1is the union of its sotle sequence. Again, left
rr A . . R ’
classical is defined analogously\'(cf {26] Chapt:er 8.) .
Our’ interest is ﬁ knowing when a link component is classical.

We w:Lll ugse the follow:lng result

“- Theorem 4.29: ([26] Theqi'em 8.36) let P be a ﬁrime ideal in a

tNoetherian ring R. ~L(P) is slassical if and only if L(P) satiéiiés

the intersedtion condition and the second layer condition. O _

For Ore extension8/of commutative Noetherian rings, we have '
already established the second layer condition (Corollary 4.8). To

obtain the intersection condition, we need the following: .

F

- | AN v
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Lemma 4.30: ([26] 'I'heorem'8.44) Let R be a Noetherian P.I.

-

algebra over an infinite field F. If P is a non-empty set of prime

ideals of R with card(P) < card(F), then P ‘aatisf;ea the intersec-

tion condition. O
f

e

For an Ore extension of a co#ytative Noetheriap’ algebra over an

[
-

)

uncountable field, it is‘now easy to pto{ihq_t, link components are

] -

classical.

] Theor'l& 317 Let R be a conmutative Noet:herian algebra over

an uncountable field F and let S = R[x; c] Then" every 1ink component

>

in S 1is classical. | | ' ) '

. , .' . .-- | [ . . - k)

Proof: Lower prime ideals are“ciasaical by Theorem 4.11. More _ °

generally, any finite link cé&ponent is a clan and hence classical
(Corollary 3.17). 1In any case, a liqk component L(P) of S 1is at: most

countable (Theorems 4 1, 4.19) and so - card(L(P)) < card(F) We need

LY

only show that if A is a right ideal with An C(Q) * ﬁ for all

);Q € L(P), then An I % P where L = n C(Q)'..' There are two qases:
QeL(P) : .

o » ~ . 2l
x€P and P an upper prime 1dea1. ’ .
i’ : i-.. - .

In the first case L(P) = {P” |1 € 2} and x e P’ 'for eil %.

Therefore, for every Q¢ L(P), A n C(Q # ﬂ in § = §/xs & R. Siﬁée :

R is commutative, Lemma 4.30 applies trivially to give A n § « # "and

hence Ani +4. | ' KRR .
> In the second case, if P isfupper td I, say, then so 18- every

Q.e L(P) by Propos;l.tion 4.10. We also know thsl: ¢ nacessar:lly has

. . .
.. -
-

. . L
- » . Lot
B
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finite ordet on R/I and consequently § = S/IS 1s finitely-generated
as a module over its center; § 1is therefore a Noetherian P.I. algebra
over ¥. Forevery Qe L(PF), AnC{@Q #* ¢ and so.we may use Lemma

4.30 to obtain AnE +P and thus AncZ *0.

This establishes the intersection condition and so we may appeal

to Theorem 4.29 to complete the proof. [J - . o -
-
-
.k
f
C : :
-
l:‘ ’

J S
. I
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APPENDIX A

GOLDIE CONDITIONS IN ORE EXTENSIONS

Goldie's Théorem gives, necessary and eufficient coedifione for
a ring ﬁ to have a semisiﬁplelArtinian classical .right quotient ring.
These "Goldie gqnditions" are, in a sense, finiteeese conditions on R
and they are satisfied, for example, if JR is semiprime and right
Noetheridn. Now, the Hilbert.ﬁasie Theorem (1.7} seows that an Ore
exteesion of a right Noetherian_riné R is again r}ght Noefherian. We .
shall show in this section that, even if R is AQt right Noetherian,
the Goldie conditions are preee;vedqu eeking Ore extensions.

!

A ring R has finite right Goldie dimension if it contains no .

’

infinite direct sum of non-zero right ideals, if it is finite, we denote
v -
the right Goldie dimension of R by Gdim(R) ¢ Gdim{(R) = n if and
.
only 1f R contains an essentlal direct sum of n uniform right ideals.

A right ideal of R 1is a right annihilator 4if it is of the form

rR(A) = {r € Rlar =0 for all a ¢ A}, for some non-empty subset A of
R. The right annihilator in R of an element a ¢ R 1is denoth-by

rR(a) , or r(a) 4if no confusion will arise. A ring R 1s called

-

right Goldie if‘it'has finite right Goldie dimension and the aeCEnding

chain condition on right annihiletors. The right singylar ideal Z(R)

of a ring R 1is defined as Z(R).,= {a € R[rR(a) is an essential right

ideal} and 1s a two-sided ideal. Ifj_Z(R) = 0, R is said to be

. right nonsiagular. . Tl
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Clearly, every right Noethé;;&n ;ing is right Goldie; the com- ,
verse is mot true since any.coﬁﬁutgti;e i;tegral domain is trivially
right Goldie. Goldie's Theorem statés that R has a semisimple Aréinian
classical right quotient ring if and only'if;~3--i§ semiprime right
éoldie. AMoreover,,a semiérime ring R 1is righg Goldie if and only if
ﬁ has finite right Goldie dimen;ion and ig.-right nonsingular. What we
shall in fact pro;e is that R[x;0] 1s semiprime fight Goldie if aﬁd
only if R is o-semiprime right Goldie. We accomplish this by proving
that right Goldie dimension and nonsingularity are each preserved by an

Ore extension.

\

These results, or variants of theﬁ, appear to be kmown [54].
Howe@ér, they are noteasilyaccessible in the literature so we have in-

" cluded them here for reference. Although we .canmot claim the results,
f "

our proofs may be,neﬁfl Versions of these results for commutative coef-
ficient rings and monomorphisms ¢ may be found in (20] - this paper

was, in fact, our motivation for trying to find proofs of these theorems

which worked for non-commutative coefficient rings. .
T v
,'-

" pefinition A l: A poiynomial E(x) = fo + flx +, . fnxn €8
e 1 -

. a g
Y * =
(fn * 0) satisfies condition (*) 1if rB(fi ) rR(fn Yy for all 1

such that fi 0.

Lemma A.2: Let f(x) be a non-zero polyﬁomial in S . There

exists r ¢ R such that £(x)r 1is gph-zero and satisfies (*). -
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Proof: Let f(x)}\= £, + f‘k'+...i Enxn , fn # 0., If f(x)
already satisfies (*) wejmay take T = 1. Otherwise, for some._
i,j ¢ {0, 1,..., n} ) apd so there exists T, € R
. s ' ' 43 S . _ .
. such that fi r, = 0 but fj: r, 0. Consequently f{x)rl # 0 and

has fewer non-zero coefficients. If. f(x)rl dﬁes not sgtisfy‘ (*) ;, we

repeat the procedure. Eventually we find -an iﬁteger k21 and

[ -

r:3 is.a non-zero polynmomial

lrz... KL
satisfying (*) . 0O° . v ' L

Drl,..-., Ty ¢.R such t:ha't f(x)r

Lemma A.3: Let f£(x) = fo oot fnxn be a non-zero polynomial

-

satisfying (*) “and let g(x} =p 4...+g x" . Then f{x)g(x) = 0 if
. 0 m .

and only if
» ) Oi o
(**) figj =0 for 0sisn, 0s5jsm.
n+m ci Kk ‘
Proof: £f(x)g(x) = X ( Z figj }x~ so the sufficiency of the

k=0 i+j=k

conditiéﬁf;(**) is obvious. Conversely, suppose f(x)g(x) = 0. We .

will prove the necessity of condition (**) by inductionon j . For

-1
: g
i 0, we note tha; fBgO 0 implies 8 € r(fo) r(fi ) f?r all
U—i Ui
i such that fi ¥ Qlﬂt_Hence fi gy = ¢ and Sﬁ fiﬁoﬂuf 9 for all 1i.

Agssume the condition is true for j < k. The coefficient of xk in

i

£(x)g(x) 1s ] £.g0 = 0. By the induction hypothesis, f£.g° = 0
L i+jak i j i i

. : ) G-i

.for j <k, for all 1 , and so fogk = 0. Thds 8y € r(fo) = r(fi_Jj
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for all i and, as above, we_ have fig: = 0 for all i. The result
. o

follows. J

Theorem A.4: Let I be a uniform right ideal’of R. Then IS

is a uniform right ideal of S.

s . . . . 7)

Proof: 1If not, then there exist non-zero polynomials

f(x), g(x) € S5 such that £(x)S + g(x)S is a direct sum and

f(x)S ® g(x)S ¢ IS. ' By Lemma A.2, we may assume‘thgg £(x) and"g(x);
satisfy (*) . We may also assume that deg(f(x)) < deg(g(x)) and that,

for a fixed f(x) g(x)' has been chosen of'ﬁinima; degree. Let
) i xj o o .
f(x) = E £ i* and g(x) = z g with all f g, € I. Since I .
qmp 1 q=0 3 ] |
. ;o o
is uniform, there exist a, b ¢ R such that £ a - gmb # 0. Set

/f’f o h(x) = £(x) af x?- - g(x)b . Then h(x) # 0 (since £(x)S n g(x)S = 0)
U e des(h0) < desa() . | ‘
| Now if f(x)S + h(x)S is a direct sum then, by Lemma A 2, w;.
can find gome t ¢ R \such that h (x) = h(x)r % 0 and satisfies (*) .
We then have f(x)S + h (x)S is a direct sum, "f(x)_ and El(x)H saﬁigf&
(*) ,. and deg(h (x)) < deg(h(x)) < deg(g(x)) Th¥s contradicts the
minimality of g(x) Hence £(x)s n h(x)S # 0 and there exist -
fé(xl t(x) € 8 such that f(x)s(x) = h(x)t(x) £0. ' o

I3 B

If -g(x)bt(x) =0 ., then bt(x) satisfies condition (**) with ) .
. A i RN ' kX

respect to g(x) : if t(x) = Z xj then for 0sism, 0sjset,
S j=0

‘ i _ m i‘ -
gi(btj)0 =0. Now g{(x)b= } Sib xi » 80 t(x) satisfies (**) with
S ' i=Q ‘ o

.

. -
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respect to g(x)b. Then O *.h(x)t(x) = (f(x)axm-ni— g(x)ble(x) =

_ . n Um . - . i
f(x)axm nt(x) . However,® r(fnac ) = r(gmb ) and from (¥*) |

-1 . g g0 LR .

€ r(ga b) for all i, j.. Thus t, e r(g_ b) =~r(f. a } and
i | . - . j smo n D
n-m -m -n n-m -1 pem s o

so a° t e r'(f0 ) = r‘(f0 )U - r(fCr Y forall 0=<1i sn,
3 n n n : !L.\

t

T -1 m-n . v
0<'jst."It follows that fi atg =0 forall i, j. Conse-
e 'y L
L E G ltmn '- L
quently, f{x)ax t(x) = Z ( Z f a j . J)x =0, a centradiction.
k=0 i+J-k : .

Hence g(x)b:(x) * 6 ) ; N - L .

TR,

-

"We eow see that 0% g(x)bt(x) = f(x)ax" Pe(x) - hix)e(x) =

f(x)ax t(x) - f(x)s(x) = f(x)[ax t(x) - s(x)] e £(x)S n g(i)s . «
contradie;ing our initial assumption that. £(x)S +'g(x)S was a direct
sum. It follows that IS is'a uniform right ideal of §. O =& ’

[ S . Sror . :g -:;‘l‘
It is well-known that if R is a domain, then R . has finite
right Goldie dimension if and~ouly if'*cdim(R) =1 if and only ifUaR is
. N

a right Ore doﬁﬁin It is also well-known that an Ore extension oﬁ a fg;

right Ore domain is again a right Ore domain (cf (11}, [18]). We will

. mow generalize this result to show that Goldie dimension is preserve&'by B e
‘ ¥y ‘\ a
taking“Ore extensions. First a lemma. L . S
o L 7
L I I
Lemma A.5: Let I be a right ideal of R. Then I *is .
e -
essential in R if:and only if IS is essential in § = R[x;0l . It

€,
;o

 Proof: Assume that I is essential in R ahd let

S = 80.4 Slx +...+ Snxn be a non-zero element of S, Sn *# 0. .There
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exists a ¢ R such that QO *ga ¢I. 1If s .a * 0, then
n o , n.n : n-l'n : -
- ' dn-l cn—l _ L om .
there exists 'a ¢ R such'that 0 % 8 .a  a: e I.. Continuing
n-—l _1 n u_l

in this manner, we eve.ntual-ly obtain ao, al,. . .en € R such 'tliat__for

: b T o i " : . -
Q™ aa i, 0 ¥ #(x)a = X's a® xi € IS. Hence IS5 1is essential
n -lf” 0 i e T ) ,
. "'./ . . ) i.o . . . ) .
in S .- The c.onverse is trivial Ei PR Y.

"
-

Theorem A’.6 R hasg. finite Goldie dimenaion if and only if

-.‘S' = R[x;0] has finite Goldie dimenaion In. this case, Gdiﬁ‘(S) = Gdim(R) .

D 4 - - A
e,

ww . Proof: If E= JeE
E - lel g

'S . is also direct ﬁenee if s has finite tight_

is -a'_direct: sum of right ideals of R,

then the sum ES = E E-

LIS .t-. . RN ieI i

p Goldie dimension, 80 must R _ e - TR o R

. S I
X ot

Conversely, suppose Gdim(R) = 0 and choose E = EQE “to be

,. . . PR I . im]
a direct .sum :  cof uniform right ideals -Ey ‘df" R, with E essentia.l in .
R.7 As above, “the su.m ES - E E,S dis.direéct aqd the preceding lemma
Loy - ) Timl i o ;
shows that ES is easential 14 S . Theorem A. 4 givea us tl;at EILS is
-

" a unifom-right ideal of 'S for 1 5*1 S n. 'I'herefore Gdim(S) =n. E]

N LI | " P . ' - P

Looweta: R . * ¥
v

!.': R

‘This parqially sharpens a result of Irving who proved a version

of the above theorem in thes case, where R is & commutative c—cyclic

ring, o a monomorphism (R is Iclic if 0 = Pl N Pt with the

P, distinet prime ideals suth that pY P p’ --aPi “If R is

1 1 i+l '’
right Noetherian, c-cyclic is“equivalent to o-prime by Pr0posit:ion 1. 5 )

>
" -
—n -

A\

et

P
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. : Y
" Corollary A.7: -([20], Theorem 6.2) Let R be a commutative

()

~o-cyclic ring with Ggin(R) = n . Then 'Gdim(s) =n for S = BIx;c] .0

Proposition A.8: Z(S) = Z(R)S .

o L . h n. .
. . Proof: Let f(x) = Z £
i=0

i=0, 1,...5n, _rR(fi) is an eeaential right ideal pf‘ R. .Henne-'m

ix1;E Z(R)S . Then for all

i oo L S m
(F9° ) = (r (£ )) s essential and therefore so 18 I = N (fc Y.
RV 1 _ : ! oG R

Lemma A.Szimplies,thaq IS‘:isxessential in § but,fsinee IS ¢ rs(ﬁ(x)),

T

this shows that 'rs(ffﬁ)) isHESsential in s ‘and<HEnce-if(x) € Z{(S) ,.
To get the reﬁErse'inclusion, letﬂef(x) € Z{S) and write ;

f(x) = g(xj + h(xs where g(x)‘e Z(R)S C Z(8) . and h(x) ¢ (R ~ Z(R))S

gy, N

Then h(x) - £(x) - g(x) e 2(S) . Let h(x) = f0 ot fmx , £ *0,
_ .
so that (f ) is not essential in ‘R. ; Moreover, rR(fm Y 1is not

esgential. and there exists a non-zero right ideal A of R such that

~m. , ‘
)_ﬁ A=0. 1In partiéular,‘for any non-zero a € A,

‘T (f; ) naR = 0, Suppose ré(h(x)) n‘aS + 0, and let s(x) = Z 8 x
f ’ T ) 1-0
with as(x) * 0 and h(x)as(x) = 0. ' Without loss of genefality
o e cm m ' ' % gTm . )
as, # 0, Then f a | s, = 0, as, ¢ rR(fm .}, and hence
U-m. ) . R - : . . .
rR(fm )y aR *# 0, a contradiction. Therefore lrs(h(x)}‘n as = 0,
contradicting the fact that h(x) € Z(S) So‘wenmhsﬁ have ‘ﬁ(x) = 0

- and £{x) = g(x) € Z(R)S D
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fCErollary A.9:- R. is-;ight nonsingular.if and only 1f S is

right nonsingular.

Corollary A.lO: (120], Theorem 6.3)  Let R be a commtative

e

’ c—cfﬁlic ripg. Bhen S = R[x;0] is right nonsingulaf.

Proof: A commutative o-cyclic ring’is clearly semiprime, hence’

-
,m

nonsing&iar ([30};,pagén108). B

' - b
e i N . . 3
.

With#éoldie'g Theorem in qind,'ﬁe can now prove: ]
Lo o L

“

' Theorem A.1l: S :"R[x'a] is a semiprime right Goldie ring if

T

and only if R is a g-semiprime right Goldie ring.

Cu 5,
- !

g

Proof: If S is semiprimeright Goldle, then R 1is o-semiprime

-

?

« ‘(PrOposition 1.11) and S is right.nousingular wiqﬁ finite right Goldie

&

-

'“&imension-{l&]. Hence R is right nonsinguléf”uith finite fighc Goldie

dimension-(Corollary A.9, Theorem-A 6) and it is well-known that thia\

implies that "R 1is’ right Goldie (see, for example, [9] Lemma 1. 14)

.

‘”u

T
r i

prime by Proposition 1. 11 Since R 1is actually semiprihe [34];-it is
I right nonsingular ﬁith finite right Goldie dimensiou. It follows that

S inhenits these properties and hence is right Goldie g

-

¥

-

Conversely if R Ris a-semiprime right Goldie, then S "is semi-

.

::f)i

-5

s s b ki R
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normal modulo a,R +...+ a, R. The definition implies that

' polynormal if I 1s polynormal on generators a

APPENDIX B

LOCALIZATION AND EXTENSION OF THE BASE FIELD

.

We proved in Theorem . 4.11 that in an Ore extension S = Rx;o]
*.

-

}of a commutative Noetherian ring R every lower, prime tdeal IS 1is

-

classipal. In this section, we will give an alternate proof of this

" result in the. special casg where R ia a commutativé affine algebra

over a field k of characteristic zero. The technique_of the proof: + '«
nelies heavily on results of Yammine [55], [56] and ﬁ;y be of independent

R .
interest.

Recall that an ideal 1 of a ring R 1s said td be Eolxgo

et

(or has a normalizing set of generators) if I = alR + azR +...+ a R -

where al is a normal element of R . and for & s 1 < n ’ ai is

1 i1 .
- . -
1= Ral + Ra2 Fo..t Ra also. A semiprime ideal I 1is classicallx

genay @ and for every

1 ' -n |

minimal prime P of I and every i = 1,..., n, rR(ai)-s P dimplies
: . ! v

. _ N o
a CE : .

P 1 s a minimal prime of I. (Here a, = a, +aR+...+a, Re¢

_ A TS | 11
a, _
R/(alR +.. .0k ai-IR) and P~ = {r e R‘rai

[26], {38], and [53] for information on polynormal ideals.

€ EiP} .) Comsult [10], [17],

Let P = IS be a’ lower prime ideal of S, Then I is o-prime

‘ n
in R and, since- 'R 1is Noetherian, I = N P, where Pisee., P axe
the minimal prime'idqqls‘pvér I and P9 =P Pl =p

i i+l ? n 1°

99 - . B .
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gR(I) =R - U Pi is trivially a o-invariant Ore set in R, hence is
i=1 :

an Ore set in S. P is localizable {respectively classical) in § .if

apd onl§ if PSI is localizable (respectively clasgical) in SI'

-Thereforeﬁthe:e is no lose of generality in assyming that I 1is gemi-
ma#imal, c—cyciic, and *é is eemilocal with J(R) = I. Let Ki denote )

« the field R/Pi' so that R/I NK‘L 8...8 K end K, g for all . : :
Notice that K is a field extension of k end k<K is separable\ ; :

since the characteristic is zero. S . N ‘ ;

v Vo

Now I/I2 is a finitely-generated R/I-module and hence a finite~

dimensional K-vector space. Let al,..., & be a K-basis for I/I .-
& . :"Since 1° -‘I“, for l $i<sn we have a = z u, for ;\\\:\F;
. As in §4.3, we set ci (u j) € H (K) “If K 1is algebraically closed, .

then all eigenvalues of g. are in K and:hence G ie'tfiangularizabie.

I . ‘ )
In general this is‘pot-the case sp we pass to .K, the algebraic closure

of K. Let.()'-()eéK.

o ' Lemma B.l: ([49], Proﬁeeition 2.11) Let k¢ K be a separable
field extension and S "a k-algebra, If I is'a semiprime ideal of s

then IekK is a demiprime ideal of 58, “K o - L

T

S | Cdrollary'B 2: Let R be a commutative affine k—algebra where’

cher(kf'i 6 iIf P is a lower prime ideal of S = R[x d] ; then \

(P/Pz)' is a polynormal semiprime ideal of (S/P yr. . ; }}

\“ s to e
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. v . . -
Proof: Let B = IS for a o-prime ideal I of R. P' =P OE K

is a semiprime i@eél of S' by Lemma B.l. Hence (P/Pz)' s P'i?é')z
is a semiprime ideal of S'/(P")2 s (S/Pg)' . By the remarks preceding

Lemma B.1l, 0., 1s triangularizable over K for some R-basis

I!
2 ) 2
Byyeeey B of (MI"}'. But Byseney A also generate (P/P7)' as
an ideal, whence the triangular form of UI: for 8ys+eea says that

they. form a normalizing set of generators for (P/Pz)' ; 1in other words,
(P/P?)' is polynormal. (J |

If (P/Pz)' ié a prime ideal of (S/Pz)' (for example, if the .
‘base field k 1is algebraically closed ([57], Proposition 2), then
(P/Pz)' is classical by-.[10] Theorem 4.5. For the general case, we

need the semiprime version of this result ([26] Theorem 10.10).

. Y

Proposition Bv3: For every lower prime ideal P = IS of §,
PR \ (L]

(B/P%)' 1is a classical semiprime ideal of (S/P%)' .

‘s,

Proof: We may assume without loss of generality that

m .
I2 = P2 =0 and P' = I aiS' is a polynormal semiprime ideal., By

. {=1 .
abuse of notation we have identified a with a, 8 1. We shall show

i 1
that P' 1is classically polynormal. '
S'" =3 @ K=R[x;0] K= RQ@K)[x; 0 81] =R'"[x; 0 8 1] 80

that S' 1s an Ore extension. Since R' is an affine K-algebra, R'
‘ - . —
Tt
naql
| 1=1
are the minimal primes of s' over the ‘semiprime ideal

and S' are Noetherian by the Hilbert Basis Theorem. Let P' =

where Qi,...;-Qé

\’-

a7
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claim that (Qi)a nR' =P'. If P ¢ P! then pa = ap € aPiS - aQi

JLIN

. : ' - 102

P', Set Pi=Q nR' for 1513 t. Then P' 45 a g-prime ideal

i i
of R' for each i by Proposifion 1.13. (Here ﬁe‘use the fact tﬁat .-
t “ _ ' o t
x¢ UQH since, x ¢P'.) Set I'=P'nR'; then I"=(NQ!)nR'=
_i i -— »
i=] f _ i=1
t _ ' -
n (Q' nR'Y) = NP' so that: I' 4s g-semiprime. From Q' n R' = P!,
i - A i . i
i=1 im1 ) . i
i ' ' 1 . 1al 1o 1
it followhs that PiS < Qi . But I s P1 .ogly if I-S !.Pis < Fi
and so0 PiS' - Qi since PiS' 1s a prime ideal (Propgsition 1.13) and
Qi is minimal over P' = (IS)' = I'S', -

To check}Epag P! ‘is_claasical;y polynormal, it suffices to
chéck the case where P' is 3gne:a;ea‘ﬁy a single normal element a -

the proof in the general case is similar. Suppose rs.(a) Qi . . We,

i i
and so p e‘(Qi)a nR'. For the reverse inclusionm, let r e (Q:'L)a n.g'.

n

] 1 ] - . - j - ng |
Then"ra.e aQi h R | say ra ajzoqj aq - Then qj € rR,(a) c
rsj(a)“n R' ¢ Q' nR' = Pi for 1 <3 s,n. Therefore d, e(Qi + PiS)¢1R'.
' t o pt - - ' o
Q n R Pi and so &r = ra = aqg gives JE - dg €T ,(a) c Pi and

”consequently repP;. We cohclude that ?(Qi) AR'= Pi as.claimed.

i,
- . ' ) g ! _
_ Now rs,(a) Qi implies (Qi) Q via a$ /aQi_ by??roposi

tion 3.31. As-in the proof of Propositioﬁuﬁflo, (Qj'_)a NR'= Qi nR'=P!

i

and so either (Qi) = Q) = BJS' e min(P') or. Q] § (Qi)a . But the

i

latter is impossible by Corolyary 4.9. Therefore P' is claasically

polynormal and hence is clasaical by [26] Theorem 10 10. O
N . ‘ "l
"This gives the desired result in S' = S 8 K. To pull it badk
into S, we need the following result which is due to Yammine [56]:

~N B 4 .
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- ) ST mena. B.4: Let x <K bea separable field extensio;ll, ‘ Sr a,
k-algebra and I a semiprime ideal of §. ~1f S ek K is (right) S
Noetherian.and I8, K is localizable in § _f'k X, then I_ is local-
izable fp S - B - |
B B S e ® R __-'1:;"--":: L
e 'H; *“ Proof: We .'En.l&t 'show. that _{AIA is an ideal ‘of -’;.S with -*""r 3
- s lA n“G(I) * 0~ for all Ls‘e S}‘= LA|A is an ide.al of S w:l.th ~ B
, . An C(I) 4= ﬁ} (Hare 8 lA - {t € S|st € A} -) . -
. 'I.‘he iflclusion= 5 ‘is trivial For the inclusion _3', take an
7 “ideal A ots wi:h cean C'(I) - Since c 8 1c biI 8 K) '5'[561 R
” | ‘;A ; E'Le'C'(I 8 K) #'0’ Let § € S. ‘Since I 8 K is localizable,
IR e J"(A“B k) mC(I o K) "+ 0 .and hence (s"1a or EC ek B
7 l i Ir..follbws t:ha::< -[(s ,('_I':‘I')/II 8K ¥ [(s A 8- K + I 6 K)/I 8, K] . is",at:-‘ . k
f“\'_j"*,_ essential (right) ideal of S 8 K/I 8 K= (S/I) 8 K. " This cl'egrly'“ e ”‘ “
S ﬁplies t:hatpﬂ(s A 4+ I)fI is ssential in S/I and hence S ‘, ' N
. _ Ry T4 SR . s AR P
LT s nem + ) by, Goldie's Theorem. 0 I

7 "Co'roil-eiry"-B’:i with R and 'S_ as™above and P ‘a lower -.pritne-,_ d

w . . --) " . - . o,
ideal of S,  P-Tis 'class_ical. o . . LT e
R TR T, = ~ S TR
‘ Frad ."". .- . T R B " e N . - '-- .. R

- w lps T

e Pr’d’of:_",\.‘(‘P/Pz) 9 K is 10c§~l_t/z.able by Proposition B 3 Hence )

.._P/PZ' is,_],qcalizable by Lemma B 4 Using 'I'heorem 2 4 of 110] R this gives

” . that: B/P" is° loca.lizable for all n 2 1. But P* has .the AR-prope.rty
e Cae -
X “
. (Pronosition 4. 6)..nnd so P is IocalizabLe by [53] Moreover, the AR-n o
LA property actually guarangge‘é‘ thatr P is cLassical. [:]‘_. e T T T .
- o A E - . . e
L : M ‘

-1,
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