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ABSTRACT

This study describes the development and application of Lbe Delta-Dyy method for

’

computing puriwave radiative fluxes, planctary albedo, and heating rates in verticully

inhomogenecous atmospheres. Delta-Dy was designedsto minimize computer time

‘requirements, furnish accurate flux estimates, and)permit a wide range of shortwave

.

radiative transfer problems:to be studied. Pl:lase function approximation is variable gnH there -
is no restriction on either the number of'Iayers into which the atmosphere may be divided or
on composition of individual layers.

The Delta-Dy aléorithm is based on the discrete ordinate method for solving the
radiative transfer equa_tion and inclqdes se\{_eral'major_réﬁnements: (i) replacement of Gauss-
Legendre quadrature foz" the sourtv:é'}urrlct—ion with shifted-Legendre quad'rature; (ii)
replacement of quasi-analytical selutions for eigenanalyses with fast, efficient Sub’routines

based on t.l"le QR algorithm; and (iii) inclusion of Wiscombe's §-M method for phase function

truncation. Comparison of results with the doubling method indicate low order
. .

approximations provide two to three significant digit accuracy for a large combination of

atmospheric optical parameters.

A block-tridiagonal algorithm is applied to solve the sparse system of equations
defining monochro-matic fluxes in a multi-layer atmosphere. This approach is found to be
both efficient and accurate and makes Delta-Dy particularly well suited for problems where

fluxes or derived gquantities are desired for the same atmosphere but different boundary

.

conditions.

Absorption of radiation-by water vapour and ozone is based on distribution of

absorption coefficients determined from line parameter data (Chou and Arking, 1981) for

water vapour and low resolution transmittance model LOWTRAN4 (McClatchey et al., 1974)

. for ozone. Comparison of modelled heating rates with line-by-line calculations reveals

PN
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maximum egrors in Delta-Dyy heating rates of — 0.02°C day-l. Comparison of atmospheric

albedo and absorptivity, _computcd from Delta-Dy, with benchma-rk radiuti've transfer
caleulations of Braslau and Dave 11972) demonstrates excellent agreement: maximum
differences urci less than three percent.

Delta-Dyy was applied to compute vertical profiles of downward, upward, and hgt.
shortwave fluxes for a variety of atmospheric conditions over the tropical North.Atlantic
Ocean. Cloud droplet and ?erosol (Saharan dust) size distributions were not mcasu-red on
these occasions so that these parameters had to be prescribed. Comparison of estimated
fluxes with measured fluxes from aircraft traverses revealed root mean square errors of
estimated fluxes of less than 10 Wm-2 for cloudless, dust-free atmosphere; ~ 20 Wm-2 for
cloudless but hazy conditions; and ~ 75-100 Wm-2 for c.ombined cloud-haze conditions.
Measured and estimated cloud absor;'ption were in virtual agreement. The larger root mean
square errors for the cloud cases also reflect the clifﬁcﬁlties of accurately measuring cloud’
thickness and cloud liquid water contents. Comparison with a sirﬁila:: study (Slingo et al.,
1982) using measured cloud dropl;zt distributions suggests that errors in estimating cloud

thickness, liquid water contents, and employing model clouds to determine gloud optical

parameters, amount to approximately 60 Wm-2.
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* ACKNOWLEDGEMENTS

[ would like to dcknowledge the Natural Science and Engineering Research
Council of Canada for supporting this study with grants to Dr. .J.:,\. Davies.

N [ woui.d like to express my gratitu;ie and heartfelt thanks to my supervisor, Dr.
John Davies, for his sup;;ort and guidance throughout this study. 1 would also like to thank
the other members of my supervisory committee: Dr. W. Rouse, Dr.'P. Sutherland, and Dr.
R. Polavarapu {Atmospheric Envirenment Service fCana&a), Downsview, Ont.).

i [ would also liké to acknowledge the foillowing persons for their assistance:
Dr. W.J. Wiscombe, New York University, for kindly supp]ying'his doubling and delta-
Eddingten computer codes; Dr. M.D. Chou Atmc;spheric Sciences Labo‘ratory‘, Goddard Space
Centy, for’ kindly. supplying water vapour profiles for testing of the‘wing scaling
approximatiéni Mr. _Bob Williams, National Climate Centre (Asheville, .NC), for his
assistance in obtaining GATE data; and Mr. Michael Yu, Senior Scientific Programme.r,
MeMaster University, for his assistance in many aspects of computer progran:lming. I would
_ also like to thank the Engineering Word Processing Centre, McMaster University, for their
patience and skill in typing the manuscript.

Finally, I would like to express my sincere gratitude to my friends and colleagues
at McMaster University for their frisandship and support: Bill and Leah, Rick, Rod, Bruce and
Rick. I am especially indebteci to Stephen and Lora Quan, Bong and Lana‘Ng, and William
(Fay-Jai) Li for their hospitality and friendship. Last, but not least, I would like to

acknowledge the support of my parents for providing me with the opportunity to pursue my

education.

(.v}



{
TABLE OF CONTENTS .-

DESCRIPTIVE NOTE
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF ILLUSTRATIONS

LIST OF TABLES

/
CHAPTER ONE INTRODUCTION
A. Objectives and Outline of the Study
CHAPTERTWO SOLUTION OF THE RADIATIVE TRANSFER
EQUATION FOR SOLAR RADIATION IN A
HOMOGENEOUS ATMOSPHERE
Azimuthally-Averaged Radiative Transfer Equation

A

B. Discrete Ordinate Method

C. Spherical Harmonies Method
D

The Delta-M Method

CHAPTERTHREE COMPUTATION OF EIGENVALUES AND EIGENVECTORS
| A.  Survey of Previous Research l
- B. Reduction in Order of the Eigenvalue Problem
| C. Performance of the QR Algorithm
CHAPTER FOUR | RESULTS OF COMPUTATIONS FOR A HOMOGENEQUS®
. ATMOSPHERE
A. Comparison of Discrete Ordinate Meth()fls

B. "~ Comparison of Discrete Ordinates and Spherical
Harmonics

{vi)

iii

vi
ix

xi

14
18

24
29
29
37

40

46

46

53



‘o

CHAPTER FIVE DEVELOPMENTOF THE MULTI-LAYERCOMPONENT n0

A. Basic Relations ‘ A1
B. A Block-Tridiagnnal Solution or Fq. | 78] - G5
‘C. Selected Problems . o 7l
CHAPTER SIX DEVELOPMENT OF THE MULTI-SPECTRAL COMPONENT 18

A.  Wing Scaling Approximation {Chou and Arking, 1981)
for Absorption by Water Vapour s 79

1. - Problem (i) - Heating rates for the 0.94 pm,
- 114 pm, 1.38 um, 1.87 ym bands ) 84

2 Problem (ii) - Spectrally integrated heating "
rates in a mid-latitude winter and tropical -

atmosphere 87
3. Problem (iii) - Heating rates for a"clo'udy mid-
latitude winter atmosphere in the 0.94 pm,

. 1.38 ym bands : . . 89
B. Absorption by Ozone ' " 91
€. Testof the Complete 6-Dy Method e -93

CHAPTER SEVEN APPLICATION OF §-Dy METHOD TO COMPUTE .97
PROFILES OF SHORTWAVE RADIATION IN A TROPICAL
ATMOSPHERE -

A. Data Sources : 98
B. Models of Cloud and Aerosol Optical Properties 98
1. Cloud Optical Parameters | . 98
2.-  Aerosol Optical Properties .‘ © 100
3. Rayleigh Scattering ) 102
C. Computational Procedure : : ’ 104
D. Profile éomparisons ‘ . B 107
1. Profile217 ' 107

{vii)



CHAPTER EIGIHT

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

- APPENDIX E

REFERENCES

9

3.

4.

Profile 254
Profile 244

Profile 223
SUMMARY AND CONCLUSIONS
NOTATION

'SCALING RELATIONSHIPS IN THE DTE\LTA
. FUNCTION APPROXIMATION

SPECTRAL SOLAR CONSTANT

~

BAND LIMITS, INCIDENT RADIATION, WEiGHT ;
FUNCTIONS, AND ABSORPTION COEFFICIENTS FOR
SPECTRAL AND INTEGRATED 3-Dy MODELS ‘

TEMPERATURE AND HUMIDITY DATA FOR THE
TROPICAL ATMOSPHERE U

- (viii)

109

110

113

117

121

126

128

129

132

133



Figure

2.2

2.3
31

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

LISTOFILLUSTRATIONS

Multipte scattering of shortwave radiation in ;&mn&pnrullel layer.
Definition of scattering angle.

Truncated scattering phase function for strato cumulus cleud model
(Wiscaombe, 1977B) at 0.7 pm ag a function of wa).and cos{y,) (b).

.

Distribution of complex eigenvalues in the w-g plane for shifted

" Legendre and Lobatto discrete ordinates.

Absolute error in atmospheric reflectivity fora hommoéeneous atmosphere
witht = 0.1,1.0,10.0,p, = 0.1,0.5,0.9,0, = 0, ® = 0.9,and g ="0.2(a),
0.4{b), 0.75(c), 0.85(d) computed with Legendre (*), shifted Legendre (o),
and Lobatto (x) discrete ordinate methods and M = 2(2) 16.

Absolute error in atrhospheric reflectivity for a homogeneous atmosphere
withp, = 0.1(0.1)1.0,g = 0.85,» = 0.5,0.8,0.9, 1.0,

t = 0.005(0), 0.05(A}, 0.5(*), and 5.0(x) computed by M =2 (a)
and M = 8(b} shifted Legendre discrete ordinates. E ¢
Reflectivity grand norms én (solid lines) and abserptivity grand .
norms G,\ (dashed lines) for shifted Legendre (a) and

Legendre (b) discrete ordinates with M'= 2(2) 16.

!
Absolute error in atmospheric reflectivity for a homogeneous atmosphere
with t = 0.005,0.5,5, 4, = 0.1,0.5,0.9,0;, = 0,g = 0.95,
® = 0.5(a) and 0.999(b) computed by discrete crdinates (x) and
spherical harmonics (o) with M = 2(2) 10.

Absolute error in atmospheric reflectivity for a homogeneous atmusphere
witht =0.1,1,10,4,=0.1,0.5,09, 0 = 0.9,g = 0.4, a, =0,

computed by spherical harmonics (a) and discrete ordinates (b) with

M= 2(2)16.

Absolute error in atmospheric reflecitvity for a homogeneous atmosphere
witht =0.1,1,10,14, = 0.1,0.5,0.9,0;, = 0,g = 0.85,

@ = 0.7 computed by spherical harmonics (M = 2(2) 186) with

5-M method(a), and without 5-M method (o).

Comparison of computing times (CPU seconds) for 216 atmospheric
cases by discrete ordinates (a) and sphericallfarmonics (b) for M = 2(2) 16:

The muiti-layer atmosphere.
k!

(ix)

Page

1
26

42

47

50

51

54

55

56

58

62



6.1

6.2

6.3

71

7.2
7.3

7.4

-

Comparison of shortwave hedting rates computed [rom exponential
sum-fitting of rudiative transmissions technique (Stephens, 1978a)
[---1, line-by-line calculations (Chnu and Arking, 1981) [], and wing
scaling approximation [ | for cloudless mid-latitude wintgr
atmosphere ( McClatchey, et al., 1972), with 1), = 80° and a, = 0.

Comparison of spectrally integrated shortwave heating rates

computed from line-by-line calculations Chou and Arking (1981) [] .

and wing scaling approxigeation [ | for cloudless mid-latitude
winter (A) and tropical (B) atmospheres‘(McC]atchey etal., 1972)
with 8, = 60° anda, =0.

Comparison of shortwave heating rates computed from line-

by-line (Chou and Arking, 1981) [-] and wing scaling approximation -

[ lin a cloudly mid-latitude winter atmosphere (McClatchey.
et al,, 1972) with 8, = 607and a; = 0.07 for the 0.94 um (A)
and 1.38 ym (B) water vapour absorption bands,

Vertical distribution of amkie

Compar:son of modelled (o) with measured (o} shortwave radiative
fluxes for.Profile 217.

Companson of modelled (o) with measured (®) shortwave radiative
fluxes for Profile 244.

Comparison of modelled (0) with measured (®) shortwave radiative

" fluxes for profile 223.

(x)

d dew point temperatures for Profile 223.

36
.88

90

103

108

' 112

.. 114



Table

3.1

3z .

5.1

5.2

5.3

5.4}~

6.2

6.3

6.4

6.5

7.1

72

LIST OF TABLES

Comparison of eigenvalues comouted by root extriction method and
QR algorithm (IMSL subroutine EIGRI)

Comparison of atmospheric reflectivities and absorptivities for

a homoegeneous atmosphere withg = 0.75, w = 0.99999, a5 = D,
t=10.0.25,1,4, 16, g, = 0.1,0.5,0.9 computed from discrete ordinate
method (M = 2, 4, 8, 16) by Liou (1973) [upper values) and present
study [lower values] '

Shortwave radiative fluxes in a ten layer atmosphere with layer
properties: At = 100, w = l,andg = 0.85anda; = O and p, = 0.2

Shortwave radiative fluxes in a ten layer atmosphere with layer properties:
At=10,w=1,andg=0.85anda; = Oand p, = 0.2

Shertwave radiative fluxes in a ten layer atmosphere with layer
properties: At = 0.1,w = 0,andg = 0.85andag=1landp, =1

Shortwave radiative fluxes in an inhomogenecus atmosphere

Spectral range of water vapour absorption bands (Chou and Arking, 1981)
in 8-Dy algorithm

Weighted k-distribution h(k) [Wm-2] for p, = 300 mb,
T, = 240 K and individual absorption bands

Comparison of total shortwave radiation absorbed (Wm-2) for all
water vapour absorption bands in a tropical and mid-latitude

winter atmosphere (McClachey et al., 1972)

Comparison of atmospheric absorptivities due to ozone absorption
computed by Fouquart and Bonnel (1981) and §-Dy algorithm

Comparison of atmospheric reflectivities and absorptives for a
mid-latitude summer atmosphere {McClatchey et al., 1981) computed-by
8-Dy, Braslau and Dave (1972) {B/D], and Slingo and Schrecker (1981) [S/5]

Means and standard deviations of measured downward, upward,
and net shortwave radiative fluxes for Profiles 254, 244, and 223.

Root meansquare errors (W m-2) for computed downward,
upward, and net shortwave radiative fluxes for Profile 254.

b

(xi)

Page

32

34

T2

73

75

17

81

82

89 -

93

95

105

110

[}



CHAPTER ONE

- INTRODUCTION

Radiative t-ransfer is central to a variety of atmospheric science problems which
range from numerical weather prediction (Lacis and Hansen, 197.4) a-nd'global climate medels
(Coakely et al., 1983) to energy transfer in an urban atmosphere (Welch and Zdunkowski,
1976). These problems require calculat.:ions of the effects of atmospheric consituents on
radiative fluxes and heating rafes of the atmosphefe and the rac!iation balance of the.

_underlying surface. Cloud effects are the most im.portant. since amounts and optical properties
vary greatly in time and‘_;p'ace.

Mathematical models ef radiative transfer are derived from solutions of the
radiative transfer equation;vhich relates radiative intensity to the optical (i.e. scattez:ing and
absorbing) properties of the atmosphefe. Analytical solutions have been obtained for simple
homogeneo_us atmosi)here; where the scattering process is isotropic, or nearly isotropic
(Chandras;khar, 1960). Scattering- of sunlight by clouds and aerosols is strongly asymmetric
and, in these circhmstanceg , the transfer equation can only be solved numerically.

Numerical solution of the radiative transfer equation for an atmosphere containiné
arbitrany vertical distributions of cloud, aerosol, and absorbing gases (the vertically
inhomogeneous atmosphere) is complicated and time-consuming for three reasons. First, the
radiative transfer equa\:;n is framed in terms of the atmospher.e's optical properties. Mie
theory, which is used to evaluate optical properties, requires large amounts qf time on even

the fastest computers. Computing times are ustxally quoted in hours (e.g. Braslau and Dave,

1972). '
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Second, clouds and aerosols represent atmospheric inho;xlogcncities. Almoest all
numerical algorithms resolve these inhomogeneities-'hx subdividing the atmosphere into
homogencous layers within which optical parameters ure constant. A method of soiving the |
transfer equation for 1 homogeneous atmosphere is then applied to each layer while the final
step involves solving a very large, but sparse, system of linear equations. There aré two
problems here. ;

Most techniques for solving the transfer equation (for 2 homvogeneous atmosphere)
feduce the transfer equation to a s-ystem of M ordinary, first order, linear differential
equations. M is the order of this system of equations and represents the number of terms used
tgﬁpproximate the sca_tterir}g process. Several hundred terms may be required to adequately

approximate asymmetric scattering, although most authors restrict M to 2 < M = 20, But

even within this range, the (M x M) matrix operations are lengthy} time-coensuming,

susceptible to numerical ill-conditioning problems. Smaller values of M, such as two or four,

reduce computer time requirements but may yield physically meaningless results for certain

combinations of optical parameters and boundary conditions. Lio 3), for example,

obtained negative reflectivities when two and four term épproximations W
radiative transfer calculations fo}; a quasi-conservative scattering atmosphere.
The second difficulty is solving the sparse system of equations. Bergstrom and )
~ Viskanta (1973), Liou (1976), and others, have solved this system by applying direct methods
which operate on the full cpefficient matrix (the order of this system is (nM) where n is the
number of layers inte which the atmosphere has been subdivided). The order of this system
»bécomes large with moderate \'falues of'njand M. Methods which opefate on the full coefficient
matrix are not particularly efficient. 'Subroutine-s specially designed to solve sparse systems

[ 7.
of equations may reduce computer time requirements, although, again, there is no guarantee



that positive fluxes will be obtained for all combinations of optical parameters and boundary
conditions (‘:Wiscombe, 1977a). |

Third, gaseous (line) absorption must be taken into account. This presents two
problems. The major difficulty is that gaseo.ﬁs spectral absorption coefficients are highl;}
variable. It has been common to resolve this line structure by subdividing the wavelength
spectrum into spectral intervals across which the absorption coefficient is effectively
constant. Spectrally integrated fluxes would be evaluated by first computing Mixes fo;‘ each
spectral interval and then summing over spectral intervals. A detailed sub-divisien of the
solar spectrum would require several hundred thousand spectral intervals. Computer time

-requirements for such a line-by-line calculation would be prohibitive.

One methed of circu‘mventing a direct line-by-line calculation employed by several
authors (Liou and Sasamori, 1975; Stephens, 1978a; Slingo and Schrecker, 1981) is the
exﬁonential sum-fitting of radiative transmissions tecl‘.mique. The basis of this technique is
that radiative transmission across an absorbing band may be represented as a sum of
decaying exponentials. Unfortunately, exponential sum-fitting is a cl_assical ill-conditioned
problem of numerical analysis and methods which have been applied experience great
dii'i;lculty or fail altogether when more than two or three terms are sampled from the sum
(Wiscombe and Evans, 1977).

The second problem lies with the transmission data used in the fitting procedure.
The majority of authors employ transmittance data derived from laboratory experiments
using a uniform gas at fixed temperature and pressure (e.g. Howard et al., 1956), or

" broadband measurements of direct-beam solar radiation conduct'ed in the field (e'g.,
McDonald, 1960). Cheu and Arking (1982) observe that, in either case, caleulation of

transmittance and/er transformation to other slant paths is not straightforward. There is just

i



not enough information in such broadband measurements to uniquely determine the
distribution of absorption coefTicient. .

It is- instructive to note the accuracy obtained in the exponential sum-fitting
procedure. Lacis and Hansen (1974)\,‘ for example, clz;im their eight-term fit to the water
vapaur absorption bands in the solar spectrum accurate to 0.0 percent. Slingo and Schrecker
(1981) also claim an accuracy of 0.1 percent while Stephens (1_978) claims an accuracy of
bet‘er than 0.02 percent. Howevér, the effects ofaccurzicy of such fits on cbmputea fluxes and
heating rates is uncertain. Wiscombe and Evans (197'1)' observe that a fit accurate to 0.01
percent may produce serious errors in heating rates.

These problems frustrate attempts to construct algorithms which are
computationally fast and accurate for all combinations of optical parameters an&\boundlary
conditiens. Nearly .all authors introduce approximations to limit.computer time
requirements. Thus, Bergstrom and Viskanta (1973) g;mploy a detailed spectrum (B3 spectral
intervals) but limit the number of atmospheric layers to just two. Lacis and Hansen (1974)
include a larger number of atmospheric layers but employ a crude two-term approximation
for multiple scattering by clouds. The Slingo and Schrecker (1981) and Blanchet and
Leighton (1981) models permit detailed study of radiative transfer in the Earth's troposphere.
But for the upper atmosphere, the radiative transfer equation is replaced by approximations

to extinction of the direct-beam solar radiation only.. Therefore, these medels could not be

used to study, say, the effects of stratospheric aerosols on the Earth’s radiation budget.

A, Objectives and Qutline of the Study

This study describes the development and application of a new numerical
algorithm for computing shortwave radiative fluxes in vertically inhomogeneous

atmospheres. The aim of the algorithm, termed Delta-Dy (8-Dy) is to compute radiative



fluxes and derived quantities, such as planetary albede and atmospheric heating rates, -
accurately, ei:ﬁciently, and y;et. permit a wide range of problems to be studied.

The 8-Dy algorithm consists of three major cofnpoﬁents: (i) a solution to the
radiative transfer equation for a homogeneous atmosphere (homogeneous &-Dy component);
(ii) the extension to the vertically inhomogeneous atmosphere (multi-layer component); and
(iii) extension to include gaseous absorption (multi- spectral component). Each component
has been intensively analyzed, efficiently formulated, and tested for a wide range of model
atmospheres.

The focus of model development for the first com;;onent (Chapters Two to Four) and
second component (Chapter Five) centres on repiacing quasi-a'nalytical solutions for algebraic
operations (such as eigenanalyses) employed by previous authors with fast, numerically
stable subroutines which have recently become available. Computer time requirements are
further reduced by tdking z-idvantage of symmetries and/or special stru.cture of matrices
involved. Chapter Six describes the multi-spectral cc;mponent. The form adopted resembles
the exponential sum-fitting technique in application, but with para;neters delgermined from
line parameter data which have recently become available. Several test problems, including
clear-sky and cloudy conditions, illustrate excel.lent agreement between 5-Dyg with low orders
of approximation and line-by-line c_alculations of Chou and Arking {(1982) and benchmark
radiative transfer calculations of Braslau and Dave (1972')._ The §-Dyy atgorithm also
performs well for difficult problems where previous methods experience difficulties.

Chapter Seven describes the application of the 8-Dy method to actual atmospheric
conditions. Modelled profiles of solar radiation are compared> with profiles measured from

aircraft during GARP (Global Atmospheric Research Programme) Atlunticj"l‘ropicul

Experiment (GATE) in 1974, The profiles inclyde both Rury and cloudy conditions. Cloud

and aerosol physical properties were not measyred on these otgasions so that cloud and



aerosol models had to be assumed. Largest differences (~ 80 W m-2) between modelled and
measu.red fluxes were observed for cloud cases, although these differences also reflect other
problems, such as non-uniform ;:]oud cover and difficulties in accurately determining cloud
thickness and liquid water content. In clo‘ud-freé, but hazy, conditions differences between
measured and modelled fluxes were ~ 20 W m-2, In cloud-free :}nd dust-free conditions, where
atmospheric composition can be determined reasonably well, differences between
measurements and estimates of total downu;ard, upward diffuse, and nket fluxes are small,

usually less than 10 Wm-2,



- CHAPTER TWO

SOLUTION OF THE RADIATIVE TRANSFER EQUATION FOR

SOLAR RADIATION IN A HOMOGENEOQOUS ATMOSPHERE

The heart of the 5-Dy algorithm is the technique to solve the transfer equation for a
ho‘mogeneoﬁs atmosphere. A variet.y of techniqﬁes may be applied (Lenoble, 1977), although
there is little agreement as to which is best suited in tern;s of bot.h accuracy and computing
speed. The development of the homogeneous §-Dy component proceeded by examining two
basic': methods; discrete ordinates (Chandrasekhar, 1960; Liou, 1973, 1980; Stamnes and
Swanson, 1981) and spherical harrr-lonics (Bergstrom and Viskanta, 197‘3; Canosa and
Penafiel, 1974, Dave, 1975; Karpetal., 1980).

Thesg tei:h.niqu:e's were selected for three reasons. First, they can be applied (at
least in principle) to a wi?e range‘of optical parameters. Second, computing time for both

methods is indépendent of the values of optical parameters. And third, both' methods can be

easily extended to the vertically inhomogeneous atmosphere. The starting point for both

-

techniques js the azimuthally-averaged form of the radiative transfer pquation. This is the

appropriate form when only fluxes are required (as in this study).

A. Azimuthally-Averaged Radiative Transfer Equation

This form of the transfer equation is obtained by making the following

assumptions:

(i the utmosphere is homogeneous, i.e., optical puramicters are constant.



(i) the atmosphere is assumed to be plane-parallel where the plane of stratification is
parallel to -the Earth's surface and where intensities are functions of the vertical co-
ordinate only.

(iii} polarization effects may be neglected when computing fluxes.

(iv) éxtinction processes at different wavelengths are independent of time.

- These assumptions (ii) - (v) permit the transfer equation to be expressed as a one-

dimensional, scalar, integro-differential equation:

di(s,Q) @
= —(k+0)H5Q)+-— I p(Q,Q") (s, dQ’ . (1]
ds 4n | g

where I(s,,9) is the radiance (W m-2 sr-1) in the direction of s specified by solid ange Q = (8,¢)
in which 8 is the zenith a:;g]e (p = cos®) and ¢ is the éiimuth angle. The coordinate system -
defining 8 and ¢ is shown in Figure 2.1. I(s,Q’) is the radiance (W m-2 sr1) impinging upon a
volume element (m3). at ds from the direction Q; = (p',d::").

The remaining quantities in eq. (1] are atmospheric opti-cal parameters and ciepend
explicitly on the physical nat-ure of the particles. p(Q,2) is the dimensionless'scattering
phas'e function which gives th‘e fraction of the total radiance scattered into I(s,Q) from Q'. xis
the volume absorption ct;efﬁcient (m-l) and o the volume scattering coefficient {m-1). Two
important quantiti?s are defined in terms of k and 0. The sum (x + o) defines the volumé

extinction coefficient P (m-1), while the ratio o/(x + o) defines the single scattering albedo w

(dimensionless).



Fig > ‘t - Multiple scattering of shortware radiation in a homogeneous plane-parallel
atmosph dre. The subseript o indicates zenith (8,) and azimuth () angles of direct-beam’
solar radlatlon Slightly modified from Lipu (1980).
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Dividing each term in eq. [1] by B, and noting that ds = dz/p, eq. (1] can be
expressed in terms of the vertical coordinate (assumption iii):

dI{z,Q)
*7p dz

2n 1
= 1)+ — [ J p(Q,9) 12,0 O (2]
7 4nlo /-1

The quantity (, dz} identifies the differential optical depth dt. [t is commen to !

express eq. [2] in terms of optical depth. Then,

dI( ,Q) 2n +1 -~
P o )+ — [ [ Pl i ¢ (5,3 )y do 3l
dt 4nlg [ .

S = = Hopd)+ edlyp,d)
The integral term defines the source function J{z,p,d). When the atmosphere is

itluminated from abave by a collimated beam of solar radiation from direction (80,d5), the

source function may be separated intp its diffuse and direct components:

1
Jigp, )= —

2n +1 . —:/;x
I [ C pdi ) (o &M dd + nF e °pludin b ) (4]
#ul )y 1 o o' Yo .

where (nF,) is the incident solar flux denéity (W m-2) norr:lal to the direction of incidence.
Physically, the diffuse component accounts for multiple scattering of photons into I(t,u,9)
from all directions (p',9"), while the direct componént account:; for those photons scattered
from the solar beam into I(t,p,d). With the source function defined by eq. (4], I(t,p,$) in eq. [1;1
refers explicitly to the diffuse intensity. The differential equation for the direct-beam flux
will be considered‘in Section B.

Equation [3] with J{t,u,d given by eq. [41 is.the basic form of the radiative traﬁsfer
e&mtion. The azimuthal average of eq. (3] is obtained by separating the angular dependence
of intensity and phase function, This is accomplished by approximating ;hc phase function

with an M-term series of Legendre polynomials:
2t |
olp, i, ') = N mkl’k(u)mpﬂ)

—

k=0

{51



Figure 2.2 - Definition of scattering angle. From Kastens et al., 1982.
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where m = M/2, Py is the Legendre polynomial of order k and ; is the scattering angle which

defines the angle between (j,$) and (p',9’) (Figure 2.2). The scattering angle may be

expressed as: .
cos g = up’ + (1-p2)72 (1 - p' A2 cos(Pp’ - ¢)
y \:here B’ = cosB’. The wy are phase function moments of p(coswys) with respect to Py
_ 2k+1 ! (61
@, = 2 J . p(cosxps)Pk(cosws) d(oosq;s)

With the phase function expressed by eq. [5], I(x,p,$) can be expanded as a Fourier

cosine series {(Chandrasekhar, 1960):

2m-1
Kowd)= 2 1 (sid)cosin(@'~ )] , @

n=10

Only the azimuthally-independent term, I;, contributes to the flux. The remaining terms
vanish identically upon integrating eq. [Tl over p and b.

The [, term satisfies the equation:

dI (qu)
o _ {8l
B reant -1+ J (Gp)
in which J{x,p) is the azimuthally-averaged source function
+1 2m— 1
m — I L} ’
Jfem= = J_l Bl (G My + S kzo @, PGP, (1)

Sp = [w aF, exp(-t/py}V4n, and By, u’) denotes the azimuthally-é-veraged phase function:

on 2m-1
-, 1 .
Plp) = o~ J 2 oP (cosw o
¢ k=0
2m—1, 2n k
1 {k—n)
= — ' T n Ne ot ’
= kz [ ) P (P (W) + 2 = v o PR(RIP (') coslni¢ cb)ldcpl
=0 n= :
2m- 1’ k 2n
1 L (k—n
= —{ S PP )+ 20 PP ')J cod i’ — pld I
2::[ o e HCH "I:l(k'f'n)’. W FECH 0 M= pllde
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<! | 9]
= > @P (WP )
k=10 ' S ‘
The second step is obtained by substituting the spherical harmonics addition theorem for
Py (cos wg) (Ariken, 1970): L
y .
P, (cosw, )= PRUIPT() cosni@'— ) (10}

n} k
e
while the integral in the third step is a standard integral which equals zero whenn = 0,

.Equation [8] may now be expressed as:

dl (g +1
" :11; = Ky + g[ I(nu) Z (P)P\’AL (11]

+5, > ©P WP (k)
k=0
Equation [11]'with appropriate boundary conditions is the azimuthally-averaged radiative
transfer equation.

Several different phase functions have been used in previous radiative transfer
studies (van de Hulst (1980) has reviewed more than 20 phase fuﬁctions). This study makes
extensive use of the Henyey-Greenstein phase function which is defined as:

pleosyg)y ¢ = (1-82)(1 + g2-2g cosy,) 2

where g is the asymmetry factor:

+1
g= [ , pleosp Judp
The Henyey-Greenstein phase function has been widely applied in radiative
transfer studies and Rfis been shown to simulate asymmetric scattering well (Hansen, 1969).

In addition, phase function moments are easily computed from:

Wy = (2k+1) gk 2|
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B. Discrete Ordinate Method

The discrete ordinate method approximates the source function with an M-term.

Gaussian quadrature formula:

+1 2m-1" ) [13]
J Rpdy= 2 Wil 2 )
-1 a Ko O .

where the integrand is assumed to be a continuous Msfction on [-1,1]. The py are the m
abscissas, or points of division, orf [0,1] with symmetric points on [-1,0] denoted by pi. Gauss-

Legendre quadrature has been commonly applied in previous studies whe‘e yy are the roots of
L

Pi{u) and wy the corresponding weight functions giyen'by':

_ 2

- 2y gt 2
11— p )P, )

where the prime denotes differentiation. Alternative quadrature '_Cozmulae are described in

Wy

Chapter Three.
Repeated application of eq. [13] to eq. {11], by successively letting u (in eq. [11]} =

pelk = +1,+2,.., +m,-1,-2, ...,-m) yields:

4
dI
—El'= Allvp+ S f [14]
dx ' o .
where y
[('I:,}.L+1) ' . Q+1.0 .1
- ‘,‘p
. wnF e °
Kep)= l(tsl-'-+ m) , Sof= T Q+ n;’.o ‘
Itop,) Q.o )
' /
I(c,t.m) . Qum ~ ]
|_ " d \S L. m ;'- -
A isan (M x M) matrix with elements
ww
_{ X a0 _ -1 .
A= ( 2 . QU ajk)“j

8;.k is the Krenecker delta function, and




o

N

’ (# : :\,

- ) . o f
2m-1 .
Q= 2 ©PWPME) . F//

=0 L | /V

o 2m-1

— 1 .
Q= I go @, P ()P ()

“The solution of eq. [14] is straightforward since the A; are constant coefficients.

The complete solution is the sum of a homo_.geneoussolution, Ix(z,1), and a particular solution,

Ip(t,}l) \
The homogeneous solutior is obtained by computing eigenvalues and eigenvectors

of A:

Lp )=R-A-c : [15]

T %

where the k-th element of I(z,p) is given by:

m-1

I;(T.,pk)= z @k exp(A T.)

n eq. [15] R isan (M x M) matrix whose k th column is the eigenvector corresponding to the

k-thg:genva!ue A, Ais a dxagona{ matrix of or_d_er M in wluch. Aj = expihju), and ¢ is a
co!gmn vector with M constants arising from the eigenanalyses and will be evaluated from
boundary con‘d{tiona. Computation of eige;nvalueé and eigenvectors will be considered in
detail in C_§13pter 3.
,) 7 Lengthy analytical exp;rgssions exist for computing Ip(e,p)., A faster proqedure is
implemeﬁted in this st.l';dy. Since A is constant, Ip(t,p} may be as_»slumed tb have the form:
[(t,1) = a-expb/p,) . ' {16]
Diff'f?i'entiating eq. [16] with respect to t and subs-tit.uting tl.'l.is rt;sult. in eq. [14] leads to system
of M linear cquuti:)ns which does not contain exppnentiul terms and where the q; are the only

unknowns. This systems of equations will be dc_nutcd by:

« 9 Ap-a=bh (17]



where
(Aphy=Aij  i=]
(Ap) ;= Aij + Bt J=1]
bj = -Sfj
in whichA,j, So, and fj are defined in eq. [14].

There are three computational advantages to evaluating Iy(t,p) by solving eq. [17].
First, eq. [17] is solved after eigenanalyses have been pérformed. If thescoefficig::t matrix has
been saved from calculations of eigenvalues (as it is by the method described in Chapter
Three), little additional work is required to evaluate Ap Compar:ison of eqs. [14] and [17]
reveals that A, = A + p{,-l-i where T is the identity matrix of ofder M. Therefore, only them
diagonal elements of A, nee;i to be evaluated and these differ from those of A by a scalar.

Second, eq. [17] is numerically well-conditioned system of equations. Therefore,
potential ill-conditioning problems in solving eq. [17] do not arise. Analysis of cond(Ap), the
condition number of A, indicates that cond(Ap) is in the range 1 - 10 for discrete ordinates
and 1 - 1000 for spherical harmoni;:s for ali p, These small condition numbers ensure that eq.
[17] can be solved accurately.

Third, the order of eq. [17] can be reduced. In this étudy, this reduction in order is
accomplished by subdividing A into blocks of order m. Then eq. [17] can be solved as a block-
tridiagonal system (a detailed discussion of this technique is present'ed in Chapter Five).
Solving a system of linear equations of order M requires ~ MSIS operations. (An “arithmetic
operation” is a multiply (or division) plus an addition or subtraction.) The block-tridiagonal
solution reduces the problem of solving eq. [17] to solving two systems of order m, for which
the total number of operations is ~ 2 md73. ‘This reduces the computations by a factor of four.
For M = 2, A, is strictly tridiagonal und eq. (17] cun be solved in six-operations, which is

slightly faster than Cramer’s rule.
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¢ is obtained by specifying M boundary conditions for the diffuse intensity. In the
following discussion, t, and t* denote optical depth at the top and base of the atmosphere,
respectively.
'At the top of the atmosphere, the direct solar beam is the only incident _radiation.
This yields m equations: '
I(tou) =0, k= +1,+2,...,+m [Ié]
At the bgse of the atmosphere, the upward diffuse intensity is propertional to the
total (direct + diffuse) transmitted flux and surface albedo a.. As;suming surface reflection to
be isotropic, these m boundary conditions may be stated as:
Iz, px) = ag/m[Fg(t*) + youFgexpl-t/py)] , k=-1,-2,...,-m [19]
where Fy(t*) and p,nFeexp(-t*/y,) are the downwelling diffuse and direct fluxes at t*,

respectively. Upwelling (F,) and downwelling (Fy) diffuse fluxes for all optical depths 1 are

given by:
2np+1 +m (20)
F (v)= I J I(y,pludpdd = 2n Iy, w.
d 040 'p)p ¢ FZH ‘p?pj j
L 5
F (0= r#r “rppdpdd = 2n _f Unpuw, ‘ (21)
¢ 0 /-1 Pl it

Equations [18] and [19], with Fy defined by eq. [20], constitute a system of M linear.
equations which defines ¢. This system of equations may be 8olved by conventional Gauss;ian
elimination methods.

The extinction of the direct solar beam is described by tﬁe Beer-Bouger- Lambert
law and is given by:

’ S(1) = pg aF, 5[ - o) Bl - dg) exp(-t/py,) [22]

Total downward shortwave flux Fp und net flux F* are then given by:

Fr(t) = Fylv) + S(10)
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F*(v) = Fp{x) - Fy(t)
Bulk atmospheric quantities, reflectively (r), transmissivity (t), and absorptivity (a), are
computed from
~/
r = Fy/p, nF,
t = (1-ag) Fr/p,nF,

a = [F*(t,) - F*(t")/p,n F,

\

C. Spherical Harmonics Mathod

Several variants of the spherical harmonics method have appeared in the literature
’(Bergstrom and Viskanta, 1973; Zdunkowski and Korb, 1974; Canosa and Penafiel, 1975,
Karpetal,, 19‘80). The version described below is similar to Zdunkowski and Korb (1974) and
may be vie-wed as an extension to higher orders o.fapproximation (Zdunkowski and Korb were
concerned exclusively with the M = 4 approximation). However, numerical procedures for
evaluating homogeneous and particular solutions differ, while a simpler procedure for

applying boundary conditions is adopted.

N

The initial step is to approximate [(z,u) (eq. [11]) with an M-term series of Legendre
polynomials: 1\
Zm-1
o= S [P (231
Fo
Substituting eq. [23] into eq. [11] yiclds:
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2m-1
d FZD {0 P ) 2m- 1 o (1 =l
p—t———=- Y WP+ = J Y HHPH)X
dt 5 770 2 ]_, ford I [24]
&
" 2m—1 T oam-1
,Z of P()du'+ S, 2 mJPj(p) Plu)
‘ FO Fo
where the integral has the solution:
2m-1 w. [25]
i
® Y —— P
pord 251 T e
Substituting eq. [25] into eq. [24] and rearranging terms yields:
2m-1
d on ORI gt o, (26]
= Z ijp{ ijz)[ T -1] + SomJPJ(pO)]
FO
Letting:
¥j = Spwj Pipo) [27]
@, : :
ﬁ-=[.—’—1‘ (v (28)
iTl2p I ,
gi=0i+y; ¥
the transfer equation can be expressed more succinctly as:
2m-1 di{t) 2m-1 .
- [29]
m Z Plw) —=—= Z Plulg, .
=0 =0

By successive application of the integral operator

+1 . ’
I [ }p’dp. j=0,1,...,2m-1
-1 .

to eq. [29], the transfer gquution can be transformed into a system of M, linear, first order,

ordinary differential equations:

i
T¥=S-g ol

wher

\%.
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[Q(t)
I ()
Ix)=|

I3m.1(T)

in which Ig(1), [}{v), ..., Ism.1(v), are the moments of the radiative intensity. Tand S are (M x
M) matrices whose elements are moment integrals:

+1 . | )
-1 ij=0,1,.2m-1

+1 n
S .= J P (uu'du (32]
ij 1

These moment integrals may be evaluated analytically. A more efficient approach

is to express the monomials pi in terms of Pj{p) as (Arfken, 1970, p. 557):

T .22n(4n+1X2r'Xr+ n)! .
i (33]
- 12
- ngo (2r+ 2n+ D (r—n)! 2a(M)
. L 27 l4n+ 3X2r+ 1+ nt 1)
l-l2r+ 1 = PZH. l(p) [34]

= (2r+ 20+ 3)! (r— n)!

where r and n are positive integers. Then the T; j and §; j may be evaluated from; -

I +1 2 P (uidu= 22n+ 1(2!‘)‘!([‘4‘ n} 135]
B TR o et 1 (e )
+1 22+ 1 2et 1+ n+ 1) :
J WZHUP (udp= . [36]
-1 I+l 2r+ 2n+ 3N {r— n)!
+1 . +1 [37]
2r _ 2r+ 1 _
. J_l BT Py (e = [_l b Py, (ndp =0 .

Equations [35] - [37] furnish some insight about the form of T and S. For example,

in the i-th row of T, the power of the monomial remains the same; only the order of the
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Legendre polynomial changes. This corresponds to alternately evaluating eq. [35] and the

first integral in eq. {37] or eq. [36] and the second integral in eq. [37]). Therelore, every other

element must be zero forj =i + 1. Forj > i + 1 all elements are zero. These results follow

from the orthogonality property of Legendre polynomials. As an illustration, T has the
.

explicit form (for M = 6)

0 3 0 0 0 0
23 0 4/15 0 0 0
0 25 0 4/35 0 0
25 0 &35 0 16/315 0
0 27 0 /63 0 16/693
2/7 0 421 0 16/231 0
" : .

Thus, T is lower Hessenberg in form and, except for the ze.ro diagonals, resembles the Hilbert
matrix where successive elements in the non-zero diagonals decrease in magnitude.
Inspection of eqs. {311 and [32] indicates that S;; equals Ti.1 ;. Therefore, there is no
need to evaluate S, save for the first row, once T has been determined. The first row c;f Sis
given by:
Six =2 81k

Since T is lower Hessenberg, S is lower triangular in form.

Pre-multiplying eq. {30] by T-1 brings the transfer equation into standard form:

dI -
o AK0+ b [38]
dt .

where A{ = T-18) is obtained by solving the system TA = SB, where T-1 h is evaluated from

T h = Sy with y; defined by eq. [27]). This zIpprouch for obtaining A and h is both much
quicker and more accurate than obtaining T-! explicitly. Computing time is reduced further
by noting that T is the coelficient mutrix for hoth problems. Therefore, once the

decomposition of T has been oblained both A and h may be obtained from backsubstitution.
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It is interesting to note that by substituting the explicit inverse of T into eq. [38]
and using a two term Henyey-Greenstein phase function, eq. [38] reduces to eqs. [6] and [7] of
Shettle and Weinman (1970) which describes Eddington’s approximation. Similarly, with M
= 4, eq. [38] reduces to eq. [6] of Zdunkowski and Korb (1974). Thus, eq. [38] contains several
well known approximations as special cases. -

The solution of eq. [38] for arbitrary M is obtained in exactly the same manner as
for discrete ordinates. The complete solution is the sum of a homogeneous solutiun I () and a
particular solution Lp(t):

I(x) = Ip(x) + Iy(x) (39)

where the k-th element of I(1) is given by:

2m-~ 1
_ [40]
W= Z chk.jemejﬂ + ajexp(— vp,)
. FO
with ¢, R, A, and a defined as for discrete ordinates.

¢ is evaluated by defining upward (M) and downward (M3) moments of the

radiative intensity:

+1
de= l r(T'rl")dep 1j= Orlv'--! m=-1 .[41]
. _
" +l .
ML=J Knppdp  ,j= 0,1, m=1 4zl
4

By substituting eq. [23] into éqs. [41] and [42], M, and My may be expressed as linear

combinations of moment integrals. For example, downward moments may be expressed as:
) 1 2m-1 )
M;: [ E Ik(n)Pk(p)deu . (43]
G k=0 ‘

Identical expressions exist for the upward moments, except that the integration interval is
. /_ N

-

(-1,0].

It is convenient to rewrite oq. [43] in matrix notution as:
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My = I(x)T Mg f44]
where the k-th downward moment Mgk is the product of I(t)T and the k-th column of the (M x
' M) matrix 1‘\\fld. The superscript T denotes the transpose. The (j,k)-th element of &[d is given

by:

1
¥ = k 45
%y, = J o Py 451

withj = 0,1, ..., 2m-1and k = 0, 1, ..., m-1. Similarly, Mo¥ = ()T My, where the (j,k)-th

element of I‘V\Iu is:
(M), = J " P dy [46]
wix™ | _, P 5
Closed-form expressions exist for these integrals (Abramowitz and Stegun, 1972, p. 338}:

nlflz—(r-!-l)r(r_t_ l) [47}

+1
P fdu=
Io “(p)p a r n_r n 3
M+ =— =M=+ =+ =)
2 2 2 2 2

where I'() denotes the gamma function. The second factor in the denominator of eq. [47] can
never be negative sinte n and r are both posi.tive integers. The first term, X éX m1+r/2- n/2);
however, wiil be <0 whenn > r + 2. When X is a negative integer the integral in eq. [47] is
zero since/ the gamma function for negative integer is_ o, For X < 0, but non-integer, the

following elation may be used (Cody, 1969):

E — 11.+ lsi.n(ny) (48]
'X)y= ————,X<0
(TR . sin(ny)T'(1 + x)

Equation {48] is obtained from the reflection formula for the gamma function:
X) r(1-X) -—: nfsin(nX)

and the identi't.y: ' ’

sin(nX) = -1** ! sin(ny)

where x = |X|,Z = [x| ([x]is the largest integer in x), and y = x - Z.

There is no need to compute M, once My has been evaluated. The elements of M,

are related to those of Md. by the following relationship:
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(My);), = (DR (M),
The leadin_g moments have simple physical interpretations. For example, Mg° is
'the mean downward intensity while 2n Mg! is the downwelling diffuse flux.

Boundary conditions are expressed in terms of M, and My At the top of the
atmosphere, direct so]a-r radiation is assumed to be the only incident radiation. This yields m
equations:

Mgi=23j= 0,.1,..., m-1 [49]

At the base of the atmosphere, upward moments are proportional to tota! (direct +

diffuse) transmitted flux and surface albedo:

. QS . [501
M= ; M} (*)+ p nF expl— c*/u )

Equation [50], withj = 0 for example, states that thé mean upwelling diffuse intensity at the
base of the atmosphere equals the product of mean total (direct + diffuse) transmitted
intensity and surface albedo.

Equaticns [49] and [50] constitute a system of M linear equatrions which defines ¢

This system may be solved by conventional Gaussian elimination methods.

D. The Delta-M Method

Scattering of sunlight by aerosols and cloud droplets is strongly asymmetric, a
result of both scattering (in all directions) and diffraction (which is concentrated within a few
degrees of the forward direction). In general, aerosol phase functions may require 100 or more
terms in their Legendre polynomial expunsions while cloud phase functions may require
several thousand '(McKcllur and Box, 1981). This renders radiative trunsfer & ponderous
calculation. Almostull authors restrict phase function upproxim'ution toM = 20.

One method of elfectively reducing M is to upply scaling transformations wherchy

the transfer problem for an asymmetrie scattering atmosphere may be transformed into a less
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asymmetric one or even isotropic one. Scaling transformations have appeared in various
forms: Fritz’ (1954) "large drop solution”; Romanova's (1962) "small angle approximation";
"similarity relations” (van de Hulst and Gressman, 1968); and "truncation-reriormalization
schemes"” (reviewed by Wiscombe, 1977b). Some of these transformations are related; for
example, Joseph et al, {1976) demonstrated that their delta-Eddington approximation
satisfies van de Hulst's similarity relations. McKellar and Box (1981) have demonstrated
other interrelationships.

This study examined one transformation, the Delta-M method (Wiscombe, 1977b)
for phase function truncation. The §-M method was selectea because it does not sensibly
affect computing times, it is easily applied to both discrete ordinates and spherical harmonics,
and possesses several advantages (listed below).

The essence of the §5-M method is the assumption that the diffraction peak in the
phase function can be replaced by a Dirac delta function. Figure 2.3, which illustrates a
truncated stratocumulus cloud phase function at 0.70 pm (Wiscombe, 1977b) plotted as a
funetion of g, and cosy, demonstrates this graphically. "The large scattering for yy = 0

resembles a spike for which 8(1 - cosy,) is a good \Rpproximation" (Wisombe, 1977b).

\
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Figure 2.3 - Truncated scattering phase function for Stratus
cloud (Wiscombe, 1977b) as a function of \ps (A) and cos q;s(B)'.
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In the 8-function 'lapproximation, p{cosy,) is approximated by:
p*(cosyy) = 2f 8(1 - coswyg) + (1 - ) p’(cosy,) ‘ 511
where p’ (cosy,) is the transformed phase function, § is the Dirac delta function, and f{ is the
fractional scattering into the forward peak (eq. [51] is derived in Appendix B).

Although eq. (51) could be substituted into the transfer equation, Potter (1970)
observes that a better approach is to consider the radiation scattered into the forward peak by
the delta function as not having been scattered at all. ' Then, optical depth and single
scattering albedo would be scaled (by the amount-of truncation) and substituted inte the
transfer equation directly. The transfer equation would then be solved as in Sections B and C.
The scaling relationships for optical depth and single scattering albedo are (cf. Appendix B):

w' = w(l-H/(1 - of) [52]
| v =(1-wh [53]
where t' is the scaled optical depth and ' is the scaled ;ingle s;.atte‘ring albedo.

In the §-M method, eq. [51] is written as:

omo1
p(cosxp’)= p'(cosw!)- 218501 - cosqrs)+ 1-10 .kzo (2k+ l)m; Pk(eosqra)

where wy* are the scaled phase function moments. Inghe 8-M method, scaled and unscaled
phase function moments are matched, i.e., o

1 +1
= = I_l p‘(oosq:‘)Pk(coqu .) d(cosq.t!)

2
from which scaled phase function moments may be determined as:
= (@~ D1—0 k=0,1,.2m~1 (341
Wy : (551
=T k=M
The parameter fis somewhat indeterminate. Wiscombe argues for the choice:
f=wm [561

on several grounds. First, [— 0 as M —» ©. Then, in the limit as M — =, p*(cosy,) — plcosy,).

This is a much more ratienal appronch to phuase function truncation compared to earlier

4

53



workers, e.g. Potter (1970), who truncates the pha. fuﬁction/by eye or more recent workers
(e.g. Schmetz et al,, 1981) who arbitrarily truncate the phase function at ten degrees.
The choice given by e-q. [56]1is also advantageous because wy = ffor k = M. This is

most easily seen by taking the difference between the full phase function and the truncated

phase function p*(cosy,). The difference is:

1§ @

»

pleosy )= prlensy)= > (2ket1)(w,— iy )P, (cosy) (571

k=M+1
Eguation {57] illustrates that the full and approximate phase functions are équal for the first

M (as opposed to M - 1) terms of their Legendre pplynomial expansions. In effect 8-M provides
an extra grder of approximation. In addition, leading terms of this series will be considerably
reduced by having wyt subtracted from them (Wiscombe, 1977h).

Equation [57) illstratl:.es a third advantage of the 5-M method. Assuming a Henyey-
Gr.eenstgin phase function, the term in.volving the moments may be written as (gk - gM), Fof'
fixed k fhd M this term approaches zero faster as g— 1. Thus, §-M errors become smatler as
phase function asymmetry increases.

The appﬁcation of thé 5-M method is therefore straightfor\v.s;ard. Optical de‘pt.h,
single scattering albedo, and phase function moments are scaled (eqs. [52] - [54]) and used in
the transfer equati:)n directly. Joseph etﬁal. (1976), Wiscombe (1977), Schaller (1979), and

Stamnes and Swanson (1981) have demonstrated that the §-M metpod can lead to dramatic

impravements in estimation of solar radiative ﬂdk‘éé with smaﬁ’va[’ues of M. The next

Chapter will highlight another advantage of the §-M methed which has not been previously
™

reported in the literature.
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COMPU’I‘ATION OF EIGE’\IVALUES AND EIGENVECTORS

-

Eigenvalues a/thI eigenvectors may be viewed as the numerical underpinnings of

- 'S ) ) .
the dijcrete ordinate and spherical harmonics methods. They define the homogeneous

solution while the final system.of linear equations whigh must be solved is framed in terms of

. . L~
eigenvalues and eigenvectors. In additio‘n, eigenanaly§es must be performed for each layer

and spectral intexval combination.in the vertically inhomogeneous atmosphefe. It is
iy .
uted accurately and efficiently. This chapter examines

how this maybe accomplished.
N

v),
e Nd ,

A. Surve ofPrewousResearch ] e

Whllg differing in detail, most authofs (Samuelsen, 1969; Liou, 1973; Yamamoto
and~T anakaF1973 Bergstrom and Viskanta, 1973; Lenoble, 1977) have followed
Chandrasekhnr,s (1960) prescription for computmg elgenvalues and eigenvectors, Liou's

(1973 198 " analysis of the discrete ordinate method will be exammed te illustrate the
™
proc ure. o

™

Liou begins by evnluatmg the coefﬁclent matrix matnx (A in eq. [14)) and obtains

etgenva]ues by extracting the roots of the characteristic polynomml Eigenvectors are

- .
obtained by first evaluating certain functiong of the eigenvalues, the E,k(hj) functions.
Chuandrasekhar {1960) has shown that these-bunctions obey the following upward recursion:

—-2k+1 =~ ©,

Lo . k. k= 0,1 .. 2m—1 (58]
b5 Akt 1) 5 et B L=t : -
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-Liou observes that this procedure leads to numerical difficulties when one attempts
to evaluate the eigen\;ector corresponding to the smallest eigenval\.;e. _These problems arise
when the atmosphere is quasi-conservative (m' = 1}, therphase function is strongly peaked (g
= 0.75), and the order of phase function approximation is large (M = 10),

- To pinpoint the natuqre of these numerical problems more clearly, it is necessary to
consider the distribution of eigenvalues which are functions of w, g, and the quadrature

formula which defines the abscissas and weights (c.f. eq. [14]). Whenw = 0, A = diag(A

1

Ly
A‘z,z' ey AM.M) where the diagonal elements are the negative reciprocéls of the M abscissas.
The eigenvalues of this diagonal matrix are the diagonal elements themselves. In addition, Aj
< Iyl .

There is no simple relationship betwsen Aj and w for 0 < w < 1, although
observation often reveals that Aj = AjJ. For @ = 1, one pair of eigenvalues will be zero. ’f‘bis
may be observed by setting M = 2in eq. [14], forming the characteristic equation, and S;leing
for A: . - I "’;
A2 (1-—w(l-g)

. 1.1? -

which is zero when w (or g) = 1, and — 0 when © — 1 and/or g — 1. The salient point is that

[59]

eiger_walués become small asw and g — 1 This basic pattern’is maintained for M > ﬁ, where
the propqrtion of small eigenvalues (i.e.,, < |1 D is approximately 6ne-halfand increases as g,
=1, . . . —

Asano (1975) observes that., the Ek(?\j) functions decrease as k increases, Morcover,
this decrease is more rapid the smaller the value of ‘\j' Thus, as M increases and w and g
approach unity, the ;Jpwurd recursion becomes inuccuArute because of catastrophic
cancellation ol terms of nearly équul mugnitude‘but opposite sign.

L.iou attempts to ciréumvcnt these dilTiculties by establishing an iteratlive
procedure based on equations which relate eigenvalues and t.-i;,'un‘w:clurtg‘(vqs, {9 and {10},

-

b
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Liou (1973}, p. 1306). Asano (1975) sidesteps these difficulties by re-writing eq. [58] as a-

downward recursion relation:

- Lk— I(Aj)= Nk E‘k_ k ck+l
]

_ fork=M+ 1, M, ..., 1, where G40 = 0and{,, , is chosen to be a suitably smaller number

€ (Asano chaoses € = 10'1%). The E,k(hj) are then given by the computation of Ek = Cklio, k=0,
1,..,M-1, s0 that ﬁo(Aj) = 1 by definition. Asano reports that this dow_nward recursion yields
superior results for.large Mie.g., M = 35). In addition, it must be considerably faster since
the need for iteratior_l is obviated, (
The qifﬁculty of computing the E,k()\j) functions are ct;mpounded becz::Jse all authors
evaluate eigenvalues by extracting roots of the characteristic equation, These methods are
kffown to be inherently unstable procedures for computing eigenvalues of a real, general
atrix {Wilkinson, 1965, p. 485). The preferred approach is the QR algorithm of Francis
(1961, 1962). ‘Evf'ﬁcie.nt implementations of the QR algorithm may be found in several
mathematical softward li.br:a.ries, (e.g., IMSL, EISPACK). (IMSL - International
‘Mathematical and Statistical Libraries. EISPACK - A set of eigenvalue-matrix subroutines
developed at the Argonne National Library.)

" To i]ll:lstrate the differences-that can arise, Stamnes and Swansen ’(1981) have
comput-ed eigenvalues with_the r.bot extraction method and the\QR algorithm as implemented
in IM§L subroutine EIGRF for a homogenéous atmosphere with g = w = 0.80 and M = 16.
These results are tabulated in Table 3.1 (2 of the 8 entries in Stamnes and Swanson’s
tabulation are iln error; Tuble 3.1 contains the correctedivalues). l !

The superiority of the QR algorithm is apparent [rom Table 3.1. The root

extraction method only correctly obtained the three largest eigenvalues and the real part of
L
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TABLE 3.1 - Comparison of eigenvalues computed by the root extraction method and the QR
algorithm (IMSL subroutine EIGRF) for a homogeneous atmosphere with @ = 0.8 and a
Henyey-Greenstein phase function with asymmetry factor g = 0.8 and an M = 16 shifted-
Legendre discrete ordinate approximation. Slightly modified from Stamnes and Swanson
(1981).

root extraction method (a) QR algorithm (b)
Real part Imaginary part Real part Imaginary part
-1.222(-4) 9.714 +0.3944 0
+1.049 0.817 +0.7561 0
-0.049 0.817 +0.9415 ¢
+1.820 . 0.285 +1.212 o
-1.820 0.258 +1.819 0
+3.323 0 +3.323 k 0
+8.395 0 18,395 0
+47.11 0 £47.11 0
(a) Values for the root extraction method given by Stamnes and Swanson (1981) using
double precision arithmetic (~16 significant digits) to- compute expansion
coefficients.
(b) Values for QR algorithm were calculated on two computers: (i) single precision on

» aCDC Cyber 170/730 model {= 14 significant digits) and {ii) single precision (= 8
significant digits) to. calculate elements of the coefficient matrix in eq. [14} and
double precision for subfoutine EIGRF on a Honeywell Sigma 8 computer. Both
computers yielded identical results when answers were rounded to four significant
digits.
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the fourth largest. ' All eigenvalues computed by the QR algorithm have imaginary parts

equal to zero, while more than half of the eigenvalues computed by root extractiqn have non-
vanishing imaginary parts (Kuscer and Vidav (1969) have shown that discrete ordinate

eigenvalues are all real). ®

To illustrate these effects on radiation ealculations, Table 3.2 compares

reflectivities and absorptivities for a homogeneous atmosphere with w = 0.99999, g=075q,

=0,p,=01,0509,¢ =025 1.0,4.0,16.0and M = 2, 4, 8, 16. Two values-are given for
eac.h (t, 1, M) combination. The-upper values are those obtained by Liou, who_calculates
eigenvalues and ¢igenvectors as described above, while lower values are obtained by
computing eigenvalues and eigenvectors with subroutine EIGRF from IMSL. The exact
results, for comparison, were computed from Wiscombe's (1976) doubling code.

) Since its initial presentation by van de Hulst (1963), the doubling method has
emerged as the standard technique for performing benchmark radiative transfer caleulations
' (Liou, 1980). This study uses Wiscombe’s (1976) doubling code as it has been subjected to
extensive numerical tegting. Wiscombe concludes that the code provides from four to eight

significant digits ih computed results.

To illustrate the merits of both procecﬁxres, and because absorptivity is the

meteorologically important quvantity, Table 3.2 examines reflectivities and absorptivities.

Liou (1973) supplies only reflectivities and trafpsmissivities, however, absorptivities may be

—
calculated from: a = 1-r-(1- at, !

Table 3.2 reveals few differences in reflectivities. Liou’s approach is usually more
accurate for near-grazing incidence while reflectivities computed with the QR algorithm a:e
generally more accurate for near-normal incidence and combinations of large optical depth
and large zenith angles. In both cases, however, differences are conl"nrred to the last one or Lwo

digits,

\
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TABLE 3.2 - Comparison of reflectivities and absorptivities for 2 homogeneous atmosphere
with Henyey-Greenstein phase function with asymmetry factor g = 0.75, © = 0.99999, a, =
0, and selected values of optical depth and solar zenith angles. Order of approximation (M)
given at left. Doubling results (Wiscombe, 1976) labelled D. Upper value for each (M, t, j1,)
combination from Liou (1973); lower values computed by method described in text.

reflectivity absorptivity
Ho Ho
0.1 0.5 .09 0.1 0.5 0.9
M’ . T=0.25
41133 07635  -.01294 00000  .00000  .00000
2 41132 07635  -.01294 00001  .00001  .00000
) .
40839 05743 103221 00000 .00000  -00814
4 00338 05743 02407 00001 .00001  .00000
409 06937 02114 ~.00000  .00000  -.00002
8 40084 06937 02114 00001  .00001  .00000
41768 07165 02246 00007  -00007 00013
16 41769  .07165 02249 © 00002  .00001  .00000
D 41609 07179 02294 00002 .00001  .00000
.
t:l__
* (P4
51962 22559 02389 .00184  .00000  .00000
2 51777 22558 02389 . 00002  .00002  .00001
_ L,
56631  .22498 .09826 .0000 00001  .00001
4 56630  .22498  %.09826  ~ 00003 .00002  .00001
58067 34037 09582 /00001  .00000. -.00006“
8 58965 24036 . .09581 00003 000029~ 00001
58567  .24068 ©  .09654 - -00007  :00019 . .00097
16 58566  .24066 09668 00003 00002 [ ..00001
D 58146 24047 09672 00003 ° .0D00Z  .00002
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reflectivity absorptivity
Ho - Ho
0.1 0.5 0.9 0.1 0.5 0.9

M v=4.0

68564  .49999 . 31612 00000  .00000  .0D00
2 68562 49996 31609 00005 00007  .00008

73722 52120 34962 00000  .80000 00002
4 3719 52116 34960 > 00006  .00008 .oocxo;

73877 52046 34806 -00001 00001  -.000
8 73873 52042 34800 00006  .00008  .00008

73541 51977 34776 -00010  -00030  .00147
16 73534 51963 34823 00006 00009  .00008
D 73251 51927 34819 00006 00009  .00008

t=16

86860  .79100 71340° 00000 .00000  .00000
2 86849 79084  .71320 00017 00026  .00034

88407 78881 71005 ( 00001  .00001 00002
4  °.88397 % 778865  .70986 00017 00029  .6003

88391 78659 70755 ) -.0001 00081  -.00009
8 88386  .78722 70729 00018 00029  .00036

88240 78702  ..70627 -00010  -00031 00148
16 .88222 78663 70710 00018 00029  .00036 )
D 88092  .7864l 70709 00018 00028  .00036

TN

\ 4
//
\—Al/
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Differences between the two methods are more striking for the absorptivities.
Liou's approach yields absorpti.vities that are, in some cases, in error by orders of magnitude,
while nearly half the absorptivities are negative. In other ca-ses, absorptivities are in error by
orders of magnitude and are negative. These errors occur for almost all (p, t) combinations

and with all values of M, although nearly one-half of the negative absorptivities occur with M

= 16.

In contrast, the QR algorithm yields absorptivities that are everywhere positive
and have at least the correct order of magnitudé for all (p_, v, M) combinations. In almost all
cases, the absorptivities match the doubling results to witlhin 2x10°%,

Liou also presents results for a homogeneous 'atmosphere as described above, but
with @ = 0.8. Differences in reflectivities and absorptivities as computed by both methods
are minor. In this highly absorbing atmosphere, the absolute value of the eigenvalues
increase, thereby reducing inaccuracies associated with the upward recursion.

This example illustrates two important points. First, classical methods for
performing eigenanalyses have limiu; utility when applied to asymmetric scattering
problems. They may perform well when absorption is large, although one cannot rely on thet.
There is little reason to suppose such methods will perforrﬁ ény better in a cloudy atmosphere

where, for example, g = 0.87 and w = 1 over much of the solar spectrum (Twomey, 1978).

Second, the QR algorithm performs well for both abserbing and quasi- conservative

scattering atmospheres. Negative reflectivities are obtained for some M = 2 cases, but these

appear to be more a function of the M = 2 approximation in this variant of discrete ordinates.

" More importantly, absorptivities are accurately estimated for all M. Section C examines the

performance of the QR algorithm in greater detail.
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B. Reduction in Orderof the Eigenvalue Problem

Asano (1975) was the first to demonstrate that the order of the eigenvalue problem

in discrete ordinates could be reduced by one-half. This is a consequence of eigenvalues
eccurring as pairs. Siam_nes and Swanson (1981) extended this process one step further by
showing how eigenvectors of the reduced system are related to eigénvectors of the original
sys'tem. This section describes this reduction process and shows how to take full advantage by
proving one further identity. The computational significance is that computing time for
eigenanalysis i;, proportional to M3, Reducing the order by one-half reduces the comi)utations
by a factor of eight.

The initial step is to partition the homogeneous transfer equation as:

—— /
dt
where )
: 1, ,) [ Iopy)

Kx, 1, 5) ‘ /] MEmpg)
I . , b=

1 ' - .
) ] (60}

e, p, ) : e, )

and -

_ ,kﬁ'l,z,,_;,m
- "V =A v _

kT Cik+m.

where the Aj , are defined by eq. [14],

. v C e e
The eigenvilue problem becomes: L '
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+ .
g I E I [61]
£ g

where g‘t denotes the partitioned eigenvector R+j corresponding to )\+j‘ Re-writing eq. [61]

[ ) X

o

-v -U

as:

Ugt + Vg = A\g" [62]

Vgt - Ug =)\g [63]
-and adding eqs. [62] and [63] to get eq. (64], and subtracting eq. [63] from eq. [62] to get eq.
[65] yields: '
U-Nigt -g)=rg" +¢) : [(64]
U + V)g" +g) =A(g" -g) ' [65]
Solving for (g* - g) from eq. [65] and substituting the resulting expresgion in eq. ['64] yields
the reduced eigeﬁvalue problem: | |
(U-VXU + V)g*" +g) = akg" - g) (661
S Equation [66] is n-ow solved to ;Etai'ﬁ\bhsﬂdgenvalues Ajz and m eigenvectors (g*
//+ g )j. The eigenvalues of the originz;i systéin are then the positivé ang negative squafe roots
of A2, ‘ |
To obtziin eigenvectors of the or’igi:lal system from the reduced system, one can
solve for (g* - ) from (;q. (65l: ‘ |
& -g)=3U +'V)(§+».r§ g)=s .
'Defining. ' .
g +g)=r ’ (68] -
The ,
and adding eqs. [67] and [68] yiclds:

jL 2" =r+s (691

from which one cun™s6lve for g+. Substituting this result in eq. [68] then yields g R+j is

then oblained by combining gt and g as:
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Equations [67]-{69] furnish an expression for R+j:

1
=(r+3)

[70]
R =

+5

(s—g )
Substituting -A in eq. [67] leads to a similar expression for R_j:

R =
-]

. .
[ E(r- s_n l [711
(s+g ) )

There is no need to evaludte eq. [T1). This follows from the existence of the
following identities: '
o - ' »
Hr+s)=(+¢gh [72]
Hr-s)=s-g : : B 1
Equations [72] and [73] are readily verified. In eq.[73], for example, the left-hand side is 4(r
+ s} = }2g") = g, where (r + s) = 2g" (eg. [69)). Substitutings = g* - g (eq. [67)) into
" the right-hand side of eq.. (72] then yields g*. Equation [73] can be similarly established.

Thus, the lower half of R_J. équals the upper half of R, while the lower half of Rﬂ. equals the

+j
upper half of R_j. Consequently, R + and R_j can be evaluated simultaneously so that egs.
[67]-[69] n;:ed be evaluated only once. Computing eigenvectors in this manner also ensures
_that Rﬁ have the form specified by eqs. [70] ad [71].

Eigenvalue s-ubroutines. such as EIGRF, do not guarantee eigenvalues will be
returned #5 ordered pairs (with the exce'ption of M = 2), .Thié reduction in order pr&ess
ensures th%r. they will. This permits one to compute ex“ponential terms exp(Ajr) as m

multiplications, m divisions, and m exponentiations, as opposed to M multiplications and M

exponentiations.
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Eigenvalues alsc occur as pairs in spherical harmonics. Presumably, a similar

reduction in order exists for spherical harmonies. However, the writer has been unable to

deduce the form of this reduction.

C. Performance of the QR Algorithm

This section considers the performance of the QR algorithm (as implemen.ted in
subroutine EIGRF of IMSL) for computing eigenvalues and eigenvectors in the discrete
ordinate and spherical harmonics methods. Discrete ‘ordinates leads to several variants’
depending on choice o]'quadrature. At least two other formulae may be applied.

The first is Lobatto quadrature which has been used by Hansen (1969) and
Stephens (1976} in their doubling codes, ostensibly' because this quadrature ingifides both
endpoints of the integration interval. The second is a shifted- Legendre quadrature which is
.obtained by transforming an m-point Gauss- Legendre formula on [-1, 1] to an m-point
forr;lula on [0, 1] with syfnmetric abscissas and weigl?ts on[-1, 0] fcuf M weights and abscissas
in all. The shifted- Legendre quadrature is employed in Wiscombe’s :loub]ing cé»de. Weights
and abscissas for Legendre and shifte::!\-fegendre quadrature are tabulated in Abramowitz - .
and Stegun (1972), with the latter being identified as moment integrals (Abramowitz and
Stegun, 1972, p. 921). An extensive list of weights and abscissas for Lobatto quadrature is
given in Michels {1962). Each discrete ordinate variant will be identified by its quadratgre
formula. ﬁ’

The aim of these eigenvalue calculations was to determine whether any (o, Ag, M)
combination .gives rise to complex results. Complex eigenvalues are problematical because

loss of flux conservation results if only the real part is used. This is evident when negative

fluxes appear (although the converse is not necessarily true),



Each variant of discrete ordinates was ex'am“xeci for M = 2(2)12(:1:)24(8)32 exéept

for Lobatto discrete ordinates where M = 2, 20 and 32, approximations were not examined.

" For each method, values of @ ranged from 0.6, 0.7, 0.8(0.02)0.96(0.01)0.99, 0.999, 0.9999,

0.99999, 0.99999. The asymmetry factor was varied from 0.75(0.25)0.9(0.."01)0.99, 0.999,
0.9999. This yields 324 (v - g) combinations for eacér M and each.method.

The results of these computations are summarized in Figure 3.1. The diagrams
depict the portion(s) of the w-g plane for which complex results were obtained. Blank spaces
indicate ai]l eigenvalues were observed to be real. Results for M = 2 are not shown as ﬁo
complex results.were obtained for any of the methods. - Qf

Complex eigenvalues- were n;ever observed for any M with Lege‘ndre discrete

ordinates or spherical harmonics, regardless of how close g and w were to unity or how large _~

M was. However, the shifted-Legendre and Lobatto discrete tes were observed to

possess complex eigenvalues which depends upon both M and quadiature formula.

Compléx eigenvalues for shifted-Legendre discrete ordjnates are restricted to (w, g)
= 0999 for M = 4.. As M increases, the region ofcoWextends to smaller values of
 and g. Maximum extent of complex eigenvalues occurs for M = 8 or 10. For M = 10,

- continuous regions of complex results becomes smaller inr extent, being shifted to larger
values of w and g, and begin to appear &s isolated occurrences. Although complex eigenvalues
are generally restricted to g = 0.95,‘ ':h\éy Qere observed with almost all values of ‘'single
scattering albedo considered, not just w = 1.

Maximum extent of complex eigenvalues for Lobatto discrete ordinates occurs Wi:h
M = 4. Complex results decrease wf(increusing M and are rcstrigted to lurger~va1ues of w
and g. Complex eigenvalues are restricted to g = 0.94 by M = 10. Unlike shifted-Legendre

diserete ordinutes, complex eigenvalues uppear to oceur as a continuous region of the w-g

plane,

e

-~
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Figure 3.1 - Distribution of complex eigenvalues in the w-g plane
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C 3
Figure 3.1 {continued) ‘ .
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Although complex eigenvalues are restricted to combinations of{w-g) which are not
. likely to be encountered in practical application, they nevertheless limit the applicability‘ of
shifted-Legendre and Lobatto discrete ordinates. The most efficient and effective me'thod of
eliminating complex eigenvalues is application of the §-M method which results in a scaled
(ie., s_maller) w and g. In almost all cases, this scaling is large enough to transform an (w-g)
combination which originally had complex eigenvalues to one which will | have real
eigenvaiues. ’ |
To illustrate this more concretely, the eigenvalue computations described above
were re-done, this time using 8-M method for phase' function truncation. No complex results
were ever obtained for spherical harmonics or Legendre discrete ordinates. Thsi,s was
anficipated, however, since none of the original (w-g) combinations yie[déd complex results. -
No complex results were observed for any (w, g, M) combinz.Ltion in shifted-
Legendre digcrete ordinates. Only in Lobatto discrete ordinates were complex eigenva[ues
still obtained. But the extent of complex results was dramatically reduced. Only inthe M =
6 approximation were complex results obtained and then only for 24 of the 324 combinations.
These results illustrate how the §-M method can lead to an overall improvement in
the numerical conditioning of the eigenvulue problem. This has not been reported in the
liufratgre, but it explains, for example, why Stamnes and Swanson (1981), in comparing
reflectivities for highly asymmetric conditions and various M with and without the §-M
Wtain physically meaningful results for all situations with the §-M method, but not
for the corresponding nen 8-M approximations.
Finu_lly, in addition to.computing both oigenvalues and eigenvecters, subroutine

L
EIGRIE can compute a performance index P which indicates how well eigenvalues and

N A
eigenvectors have been computed. P isdefined as:



l’-_‘,__ max
ispM []All1 . HR}II- 10-M-eps

where eps is the x‘e_gative precision of Tloating point arithmetit used, Rj is the j-th eigenvector
) _ .

B

corresponding tcﬂhej_th eigenvalue .\j, and |]-[|l is the I-norm:

M
— mgx
A= "> 1A

/ k=1

‘5 P may be physic’ally-interpreted as representing the largest of the M eigenpair
A

residuals. The subroutine has done an (excellent)goed] poor) job when (f’ <1,1 =P <100, B
> 100). In nearly 17,000 cases exémined, an instance where £ > 1 has never been
encountered in any of the discrete ordinate methods. B was occasionally greater than unity
(but never greater than ten) for spherical harmonics. Individual values of P were: 0 for all M
= 2 cases, 103t0 107 for M = 4,10%to 10 for 6 = M s 20, and ~ 102 for M > 20. These

results are largely independent of quadrature, w, and g. - -
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CHAPTER FOUR

" RESULTS OF COMPUTATIONS FOR A HOMOGENEOUS ATMQOSPHERE

.
This Chapter completes the examination of the homogeneous atmosphere. Results

have been selected to illustrate error behaviour with respect to erder of approximation, model

‘{spherical harmonics and three discrete ordinate methods described in Chapter Three), and

atfno;.pheric opti‘cal parameters. The focus will be on errors in reflectivities, as these are

fairly representative of all errors. Errors were detrermined by comparison with résults from

Wiscombe's (1976) doubling code. Results have been restricted to t = 10 because arithmetic

overflows frequently arose in 'shifte(.:l-Legendre discrete ofdinatei\when t> 10 and‘M = 186.
. . \L

This is not a general restriction of shifted-Legendre discrete ordinates, as the multi-layer

formulation (Chapter Five) could be used to side-step this problem.

A, - Comparison of Discrete Ordinate Methods

This section compares the three discret.e ordinate methods. Representntive re;ults
are shown in Figure 4.1 (a)-(d) where absolute error in reflectivity is showh for homogeneous
atmosphere with w = 0.9, a; = 0, t = 0.1, 1.0, 10.0, g, = 0.1., 0.5, 0.9 and g = 0.2(a), 0.4(b);
0.75(c), and 0.85(d). The common feature in these diagrams is that errors resemble a damped-
exponefn\t.ial function of M. Wiscombe (1976} demonstratéd this error behaviour with the §-M
method applied to doubling. Figure 4.1, as well as other diagrams in this Chapter, reveal a

) 2
damped exponential error behaviour characterizes discrete ordinates and spherical
harmonies (with and without §-3M) as well,

For cnngl;mt optical depth, :u:u:u:‘-_wj- of shifted-Legendre .discretc ordinates almost

always increases  with inereasing p, Aceuraey of  Lobatlo  discrete ordinates initially
- .

’ S~
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incrgases with increasing p, un‘gi then deteriorates with increasing y,. For g = 0.75, the
F -

-

_poorest performance of this method is for y, = 0.9. Accuracy of Legendre discrete ordinates is
< ' s

|
B

also observed Lo initially increase with increasing p,, but for g > 0.75 remains approximately
7 .
) /

" For constant p, and M =8, accuracy of all three methods appears to deteriorate

constant fer p, = 0.5

with increus}n,g optical depth and g < 0.4.:‘fhe situation is more complicated for g >-0.4. For

M = 8, accuracy improves in general with increasing y, for al}!l op_t.iczil gépths, but the
relationship appears quite complicated. These features are illustrated in /Figure 42forM =
2(a)and M = 8(b). \ N

Forg < 0.5, Lobatté@j[,egendre discrete ordinates yield nearly identical resuits.

Both methods converge slowly for g = 0.2, seldom providing more than two to three d/g_c\i'?al

- digits of accuracy. In contrast, shifted-Legendre discrete ordinates converges rapjdly. The M

= 8 approximation, for example,‘f)rovides ~4 decimawjgits of acclracy. Except for (t =01,
go = 0.1} shifted- Legendre discrete ordinates is often orders of magnitude more accurate
than Lobatto and Legendre discrete ordinates for M = 8. .

All threefiethods perform about the same for g = 0.75. Lobatto discrete ordinates
performs best for near-grazing inéidence, although this greater accuracy is never more than
one ciécimal digit. Leg_éndre and shi;ted-Legendre discrete ordinates are more accurate for
intermediate and‘. near-normal incidence. Leg_end;e discrete ogdinateé appears to perform

better at larger optical depths for almost all M.

The overall performance ‘of each method was assessed by computing reflectivity |

r

+

#hd absorptivity grand norms. These are plotted in Figure 4.3 for Legendre and shifted-
) : £

[

Leéendre discrete ordinates (Lebatto va&ﬁes are not plotted as they are almost identical to the

Legendre values). Reflectivity and absorptivity grand norms are formedk-by taking the-

Euclidean norm of matrices whose elements define r@ﬁecﬁvity norms gg and absorptivity
- c‘ -

¢
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Figure 43- Reflectivity and grand norms &R (solid lines) and absorptivity grand norms érA
(dashed lines) for shifted-Legendre (a) and Legendre discrete ordinates (b) with M = 2(2)16.
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norms é'A.. The r;zflectivity norm is the Euclidean norm of a n‘ whose elements are the
absolute errors in reflectivity for optical depths and values of jz; shown in Figure 4.1, i.e.
gr = llgrlg -
- &a = lgalg
where the subscript E denotes the Euclidean norm and ggi* is the (j, k)-th element of gg and
equals the absolute error in reflectivity for the t and y, in Figure 4.1. The gy andléA may be "
A

If these computations are repeated for Ng, asymmetry factors and Ny single scattdring

-

albedos a new matrix can be formed:

interpreted as the total error over optical depth ang solar zenith angle for a given w, g id M.

"Gr=gr*,j=1,2,.., N, k=12.,N,

¢ Ga=ga™,j=1,2.,N, k=12.,N,

The feﬂegg.ivity grand norm éR and absorptivity grand norm éA are deﬁnt.{é as:

Gg = IGRlg
Ga = [Gallp

The grand norms offer a simple way of summarizing reflectivity and absorptivity '

errors over all atmospheric optical parameters. Errors due to surface albedo are not included
in the above calculations, although they could be. Joseph et al. (1976) have indicated that
such errors are small and are likely to be smaller than those due to w, g', T ;)r Hor

Lines have been drawn throu~gh the points in Figure 4J to facilitate the
intepretatién. Figiure 4.3 demonstrates tﬁat. (‘}R.and éA decrease exponentially for2 = M <
16 for shifted-Legendre discrete ordinates. For Legendre and Lobatto discrete ordinates, the
decrease is exponential for M <" and linear for M-> 4. The Lobatto and Legendre (‘}_.\ is

larger than ég, but this behaviour is reversed for shilted- Legendre discrete ordinates, so that

absorptivities are more accurately estimated. The shifted-Legendre é,\ is less than (:‘-,\ for

:’/\



for M = 186, it is smaller by a factor of 30, { )

The difference between éA for Legendre and Lobatto discrete ordinates and
shifted-Legendre discrete ordinates may be attributed to model performance for small valu:as
of g, g region where shifted-Legendre discrete ordinates performs very we\ﬂ% Thesp

I

isofis su

Therefore, it was a

comp st that shifted-Legendre discrete ordinates performs best overall.

ted in further evaluations and computations with the discrete ordinate

v
method. ‘. - . ‘:)
Foa 3
’ [ 4
B. Comparison of Hiscrete 0\~dinates and-Spherical Harmonics

There are few comparisons between discrete ordinates and spherical harmonics.

The most recent comparison (Lenobl} 1977) suggests that the two methods provide about the
P
same level of accuracy, although the comparisons were<for a very limited range of

atmospheric optfcal pa'rameters. Figure 4.4 compares the two methods for a very asymmetric

phase function (g'= 0.95) with w = 0.5(a) and w = 0.999(hb). The'error{-z resemble those of
section A and reveal only minor differences for all M. The two méthods yield alri_mst. identical
results fort = 0.065. Accuracy generaily improves with increasing y, and decreasing optical
L_depth. Figure 4.5 illustrates the performance of the two methods for g = 0.4. Figure 4.5

illustrates that spherical harmonics errors behave much like Legendre and Lobatto discrete

ordinates for small asymmetry factors, where the methods appear to have converged to
: -
approximately two to three digits of accuracy.

Figure 4.6 compares spherical harmonics and discrete ordinates with and without
A\

their corresponding §-M results. The §-M method improves reflectivities (and absorptivities)
” .

foralmost all combinations of optical depth and solar zenith angle. The improvement appears
/

to be about the same for all optical depth-solar zenith angle combinations in Wnl
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harmonics, but is larger for discrete ordgtes, especially 4t near-normal incidence. The §-M

- method fesults in an important improvement in another respect. Some of the M = 2

.

reflectivities (for both sphericai harmonics and discrete ordinates) are negative for y, = 0.9.
The §-M method yields physically meaningful results for all cases where reflectivities were
iginally negative. Thus, the §-M method gffectively extends the range of applicability of
_smallxva]ues of M to all combinations of optical parameters. |
The final comparison between spherical harmonies and dis;:rete urdi_nates. is
computing time. The problem was the calculation of reflectivities for 4 asymmetry factors, 6
‘single scattering albedos, 3 optical depths} 3 solar zenith angles, and 1 surface albedo for 2 =
M < 16. The computer codes for the two methods were structured in as similar a manner as
possible. .The con;putations were performed on a CDC Cyber 170/730 computer at a time
when there were a minimum number of users. The computing times are illustrated in Figure

4.7. Computing time for spherical harmonics is ~ 4M3, a result in accord with theoretical

predictions. In contrast, computing time for discrete ordinates is approximately linear and

significantly faster than spherical harmonics for all M. For M = 16, spherical harmonics.

required approximately ten times as much co.mput:ing time as discrete ordinates.

Much Ws/diﬂ'erehce can be.gttributed to two factors. First, the order of the
eigenvalue problem can be 'reducéd by one-half in discrete ordinates, while a similar
reduction has not been found for spherical harmonics. Secondly, T-1 mus't be computed to
t_ransform the transfer equgtibn to standard form. Some initial savings in computer time may
be obtained by not computing T explicitly (eq. [40]), but rather obtaining A as the solution of
T A =S - B. However, T must still be decomposed. Unfortunatély, T::scmbles the Hilbert
matrix and, like the Hill;ort mutrix_, bccom:.:s ill-conditioned as M increases.

Two methods of decomposing T were examined: conventional Guaussian LU

iy

decomposition and a QR decomposition based on the Gram-Schmidt orthoponalization
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Figure 4.7 - Comparison of computing times (CPU seconds) for 216 atmospheric cases by
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discrete ordinates (a) and spherical harmonics (b) for M = 2(2)16
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procedure (Lawson and Hanson, 1}’44). Accuracy (gf pélc{l.lated T-1 ;IV&S examined by
computing the Euclidean norm of | - T T-1], which should be, zero if T-1 has been evaluated
exactly. Both decompositions yielded similar norms for M = 2 and 4. The QR decompoéition
yielded consistently lower norms for M = 6. For M = 16, the norm uséng QR decomposition
was five orders of magnitude smaller than that obtained by conventional Gaussian LU
decomposition (10-11 versus 10-6). However, the QR decomposition is costly in terms of
computing time because the process is directly proportional to M3 and, to be effective, requires
double precision. Storage requirements also increase but these are a rather minor
consideration.

All of the above comparisons indicate that shifted-Legendre discrete ordinates are

" superior to other metheds in terms of accuracy and computing time. It was therefore selected

as the basis of the 8-Dy; method.

\/ - .. . )



CHAPTER 5

DEVELOPMENT OF THE MULTI-LAYER COMPONENT

Monochromatic radiative fluxes for a vertically inhomogeneous atmosphere are

computed by the multi-layer compenent. Like other numerical algorithms (Bergstrom and

°

Viskanta, 1973; Liou, 1976; Wiscombe, 1977a), the multi-layer component of the 8-Dy,

method'isrbasgd‘on a subdivision of the atmosphere into n (n = 2) layers within whichwand g
. Y

are constant. The\homogeneous 8-Dy, component is then applied to each layer to obtain

L

homogeneous and particular solutions and an M-dimensional vector ¢'™ containing arbitrary

constants from the eigenanalysis. The superscript denotes the L-th layer. Letting ¢ =

) Ve e} there are (nM) constants in all.

By applying boundary conditions for ‘c.iiﬂ'use intensity at the top and base of the
atmosphere and conservation of energy principle at interior layer boundaries, a SyStEt:n of
linear equations defining ¢ is obtained: |

Ac=b L [78]
S;)lving eq. [78] is the numerical essence of the multi-layer component.
The order of eq..[78] is (nM) which can be large with even moderate values of n and

M(eg.n= lb and M = 4). Moreover, eq. [78] must be solved N times (where N is the number
. ) R

of intervals into which the wavelength spectrum has been subdivided to resolve spectral
‘

gaseous ahsorption coefficients) to compute spectrally integrated radiative fluxes for each

zenith angle - surfuce/dﬁcdo combination, [t is therefore imperative that eq. {78] be solved
—

efTiciently.

Efficienl procedures for solving eq. [78] may be formulated by noting that the

'y

coefficient matrix is a banded, or sparse, matrix. The 8-D, algorithm exploits this structure
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by implementin‘g a block-tridiagonal soiution for eq. [78]. This €haptc:r describes the block-
tridiagonal solution and the advantages it offers.

»
A. Basic Relations . ’

The.multi-layer atmosphere is illustrated in Fig: 51 The atmosphere has been
subdivided‘into n layers each of which is described By its scattering albedo o', asy’mmet"ry
factor g“"’, and optical depth (A1), Total optical depth from the top of the atmasphere to the
k-th level will be d;moted by t¥. The direct solar beam is Rcident from an angle 8, from tl;1e
local zenith while the surface is assumed to reflect radiation isotropically with albedo a. The
homogeneous §-Dy  component is applied to obt;in R, A, and a for each layer.

The system of linear equations which defines ¢ is obtained from boundary
conditions for diffuse intensity. ‘ Assuming the direct beam radiation to be the only radiation
incident leads to m equations,of the form: - ' (

Kepp =0, j=1,2,..,m e (74] '-
Continuity of intensities at each interior level provides m equations of the form:
: »I‘L)(t,pj) =1* ) j=1,2,...m ; (75)
and m equations of the form: ‘
| M) = 14 Dep), j=-1,-2, ., -m - [76)

where - ‘

M ‘ .
Ly — (L) ptl w L _
Mop)= gl ' R exp” 0+ oY expl— v ) o)
Equation [75), for example, states that the downward intensity at the base of the L-th layer

equals the downward intensity at the top of the (L + 1)-st layer.

o



Figure 5.1 - The multi-layer atmosphere,
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The upward diffuse intensity at the base of the atmosphere is assumed to be
isotropic and proportional to the total downward (direct -+ diffuse) flux and surface albedo.

These m equ\.gtions may be expressed as:

('1!s m Y - [77]
’ Ifou)= ;[ 2n kzl 1, w )y W+ w nF e °
j=-i}2,..,-m
where
m
2n > Kot p)p, w, .

k=1

.is the total downward diffuse flux at™the base of the atmosphere. Equations [74] - [77}

constitute a system of (nM) linear equations defiring ¢ . ‘/
) | VAN
A-c=b {783 -

Substituting expressions for I'™(t,u) following Eq. [76] and rearranging terms

reveals the structure of A and b. A three layer atmosphere with M = 2 will be considered as /(

an example. Then,

R, 7 R" 2 - o 1} 0 0
R?uel:r' Euel'!rl R? eﬁr‘ - :, eér‘ 0 0
»
y Gl - 2} 2.1 *
g et g : : -
. ' 2.2 2.2 22 2,2
o 0w md e e
- -
p
0 o AR;’eﬂ" R;_:Og' —R:J 0‘?'. _g fgr: -
. . !
° o 0 0 (B - 20,8k Bh- 2000
j .
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Equatxon [79] reveals that the A jare functions of the eigenvectors and exponential functions
of level optical depths and elgenvalues and clearly illustrates the banded nature of A The
number of non-zero diagonals is (3M - 1). For M = 2, eq. [79] leads to a penta-diagonal sysfem
of equations.

Eqﬁation [78] has been solved by applying elimination methods which operate on
the full coefficient matrix. Such procedures are not efficient even when the order of A is
small. Inverting A, as suggested by Liou (1976), provides some versatility in that solar zenith
angle .appezirs in b so that radiative ﬂu;ces for several values of p, may be obtained by
inverting A and computing A'! b for each value of B, This procedure is costly in -computing
time, however, bccause mut‘rixjnv{rsion requires ~ (nM)® arithmetic operations plus (nM)?
arithmetic operutions for cuch product A'' b, Morcover, if A is numerically 1Il conditioned

{
Al is not llkcly to be very accurate. Guuss-fordun elimination’ (Burgslrom and Viskanta,
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-

1973), while faster than co-mput.ing AL still requires- twice as many arithmetic operations as
Gaussian LU decomposition. In additioh, both procedures must re-solve eq. [78] in its entirety
[if radiative fluxes for a different surface albedo are desired.

A more efficient procedure for solving eq. [78] is to use elimination methods which
take advantage of the spax‘éeness of A. One such scheme is implemented % the multi-l'a.yer 5-
.Eddington code of Wiscombe (1977a) where IMSL subroutine LEQT1B is used to solve for c.
Sulroutine LEQT1B pemsual Gaussiarﬁ:U decomposition but operates on the non-
zero diagonals only. Wiscombe has demonstrated that this approach can lead to large savings
in computer time‘requirements. -It is easy to see why. ’I‘he non-zero dié&gonals centain
approximately one.third of the total nﬁmber_ of elements of A. Also, Gaussian LU
decompositi;m requires ~ (nM)%/3 arithmetic operations. .Therefore, operating only on the
non-zero diagonals requires ~ (nM)%/27 arithmetic operations, a reduction of nearl.y an order
of magnitude. )

'If'he §8-Dy, algorithm also exploi';s the sparseness of the coefficient matrix by
implementing a block-tridiagonal solution for eq. [78]. This method of solving eq. [78] leads to

\
‘ % several computational advantages not possible with algorithms such as LEQT1B.

B. A Block-Tridiagonal Solution of Eq. [78] -

The block-tric_iiagonal solution performs tweo functions: (i) decompose the
coeflicient matrixX®A (eq. [78]), and/or (ii) solve Ac = b. The decomposition of A entails
computation of two matrices, L (lower triangular) and U (upper triangular), such thﬁt:

\ cA=L-U (81)
The block-tridiagonal algorithm achieves this decomposition by first partitioning the

coefficient matrix into blocks (matrices) of order M. A and b may then be represented as

(Isaccson and Keller, 1966):
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— — =~ — —_
(1)
A C O b
(2)
B, 4 G : b
A= | : . , b=
~ -
SO "
- . i (n)
B, A, b

. - N
where the A;, B;, and C, are square matrices of order M and b'" are column vectors each with
. - )
M elements. The vector of unknown coefficients c has already been partiticned in this form,

THe LU decompasition of A has the form (Isaccson and Keller, 1966):

A=L-U o
- - - . —
. O] [F e, 0O
. B,- A, MRt I, r, _J,}
= B, A, - ‘

O B, A, O © ' Tin-1)

i J .
where the i; are identity matrices of order M, and the ﬁi and I are square matrices

of order,;,."
. - N
M. Thedefinition of A, L, and U provides a recursion relation for evaluating A;and T
-~ - ; - .l I-
A=A, =A4".C : (84]
A =A-B T, . k=23,.,n ' (85 .
N,=A1C k=23 .,@1 (861 .

The theoretical justification of eqs. (84] - [86] appears as a theorem of Isaccson and Keller

(1966): If the leading diagonal matrices (the A)) are non-singular the block-tridiagonal
decomposition may be carried out.

.

The solution stage involves two sﬂ’eps. The first step requires solving:
L-y=b (87]
by forward substitution. y is a vector with (nM) clements and has the partitioned form of b

and ¢. Forward substitution provides a recursion formula for the y!
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y(1.) = Al-l h(.l) ) 881
y(L) = AL-I [b(L) . BL. . ’JL-I)] ’ [89)

The second step obtains ¢ by solving

U-e=y : v [90]

- by back-substitution. The recursion formula is: T
¢ = gt [91]
PR ES VRS L= n-l,n2..1 : (921

. . —
In the §-D,; algorithm, decomposition and solution stages described above are re-

arranged .slightly so that eqs. [84] - [86], [88], and [89] constitute the decomposition while egs.
[91] and [92] constitute the solution stagé. In ad&tian,, eqs. [84] - [86), (88] and [89] are

rewritten as:

A T, =¢ o (931
Aﬂ r,=¢ . {94]
A -y"=pl (951
KL (L) = [l B, y(Ln ' [96]

respectively. There are six advantages to letting eqs. [93‘] - [96]-se:;ve as the decomposition.

First, inspection of eqs. [93] 'and [95] (or eqs'. [94] and [96]) revea]s that R is the
coefficient matrix for both systems of equations. Once A has been decomposed l" and y't)
are obtained by back- substitution. Therefore, the A need be decomposed only once, ‘not
twice. This is'a significant saving in computer time because the decomposition stage requires
approximately three-quarters of the compﬁter time to solve a systém of equations.

Second, eqs. [93] - {96] avmd etphcxt computahon of Ak + This is both more
eflicient und more accurate than comput.mg inverses explicitly und;g)rmmg matrix-vector

products in the right hand sides of eqs. [84] [86].and [88]. In purticulur, M multnpl:cahons and

M(M-1) additions are suved for each matrix. vector multiplication appeuring in lhesc
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N

equations and for each layer. Itklfé also more acturate because eqs. [93] - {96} utilize the
decomposition ;f ‘RL direcltly and not the inverse of AL whic‘h is obtained from further
arithmetic operatiops. |

Third, cemputer time requirements are further reduced by noting that thé B, are
lower-halfier . This is important because the B, enter the calculations as matrix-matrix
products (eq. [85]) and matrix-vector produé’:ts (eq. [96]). B):excluding the lower’h\alf of the B,
ir frming matrix products, (M multiplications, M/2 subtractions, and M(M-1) additions) are
saved per layer. '

Fourth, eqs. [91] and [92] reveal that only the y“ and [} are reguired for
evaluation oﬁ::. Therefore, once these quantities have been computed there is no need to store
the A, B, C, R., and b'"! thereby substantially 'reducing storage r‘equiremen_ts. In the multi-

1

spectral component there would be a I, and y”" for each layer-spectral interval, thus
necessitating a three dimensional array for storing the l"i'(and ¥y if computations are to be
performed for more than one solar z:r;ith angle). The 8-DM code avoids three dimensional
arrays, and thus speeding up the calculations, by using IMSL subreutine SCOPY to format I'
as a one dimensional array. In the solution stage SCOPY is used to re-format the single array

n

as a two dimensional array. ’

The tc;t.al number of arithmetic operations in eqs. [93]_- [96] is ~ (5n - 3)M?/6. This
estimate is superior to methods which operat¢ on the full coefficient matrix where the
opera't.ions count is = (nM)%/3. The ratio of the latter to former is 2n®/(5n-3) = n%/2. This
demonstrates the-clear superiority of the block-tridiagonal solution. .

Fifth, the b'™ and y'' contain values of solur zenith angle. Substantial saviﬁg; in
computing time is obtained by treating b as an ('VI xNp) mu_l.rix,—wheré Ny, is the number
of solar zenith angles for which radiulfvcvﬂuxcs are rL;riuircd. This matrix can be evaluated

efficiently during application of the homogeneous 8-Dy component. Then, ch decomposition

- »
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of A need only be performed once. The ¥ (now an (M x Np ) matrix) will contain all the
information required for compating radiative fluxes for the Np s;l‘a{r zenith angles. -

Sixth, only An {and.thus A ) is deﬁenaent on surface albedo, The §-D,, algorithm’
exploits this feature by saving the elements of the original A Surface albedo enters into the

. calculations in a versr simp.nle"manner (cf. eq. Fand following).,. Therei‘ore, in performing
radiative ca]cﬁlations for a new surface‘albedo, oqu eq. [96] must be re-solved and back-
substitution (eqs. [91] and [92)) performed. ’I‘hus', looping over surface albedo reciuires
solution of a system oi' eqﬁations of orde; M only and l?acksubstitution for ¢. All other
radiative transfer algorithms mus? re-scﬂ*e eq. [78]) in its entirety. s structure makes &- ‘
Dy, particularly efficient for.prgt;lems where fluxes are required for many combinations of
zenith angle and surface albedo: _

| Equations [93] - [96] (decompositiorfl stage) and [91] and [92] (solution stage)
constitute the block-tridiagonal algorithm. The multi-layerxomponént includes one other
feature which is tgken from Wiscombe's (1977a} multi-layer Delta-Ed;lington code. This
feature miéht be termed exponential scaling. "

In exponential scaling, each non-zere element of the j-th iolumn of the> coefficient
matrix is,divided by the exponential term in the last non-zero elemer;t. of the ;_i-t.h column.
This.transforms the A, j from functié/n; of level optical depths to fuﬁctiohs of layer opticf!l
depths. Then, eq. (78] may be expressed as: 7 |

7 :) ,J-"

Ac =l (97]

where ¢’ = cexp(Ar) ar&hg_scaled constants. This t.rnnsfqrmation ‘from level to layer optical-
depths is pgrticuln;ly important when a.tmosphcric optical depth is large (e.g. claudy
atmosphere) because large opticnl. depths may easily lead to arithmetic overflows fér the

exponential terms {exp(\jt). Exponential scaling is thus necéssary.
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\F’Q-o‘m?ntial scaling serves another important function, namely, to guard against
numerical ill-conditioning problems associated with solving eq. [78]. These problems arise
because the Ai,j become large. Wiscombe (1977a) notes numerical ill-conditioning problems
become insurmountable when the exponent becomes larger than 14 'in the multi-layer Delta-
Eddington code. This is because matrices with exponential terms become extremely sensitive
(i.e. numerically ill-conditioned) when the exponents ~» © or — 0 (Rice, 1977). In these
circu.mstances, the computed ¢ may bear no resemblence to the true value of ¢ Exponential

scaling reduces the chances of this happening because layer depths are always less than level
o

optical depths. N ~

Exponential terms may stil_l be large after exponential scaling When this occurs in
the 8-D), method, optical depth is truncated so that (At) = 14/Ay 5 x- Although this obviously
underesti-mates very large optical depths, the effect on radiative fluxes is small, as
demonstrated in test problems in Section C.

There are two further advantages to éx.ponential scaling. These are illustrated in
eq. [97]. First, the elements of the lower half of the A, and upper half of the B, are functions of
eigenvectors only. This saves M multiplications for each A; and B, Fluxes are more easifw,
evaluated as well. For example, the downward diffuse flux at the base of the first layer

.

becomes: 5 -

W p . D G, (1, T W
* ‘ _21'1@::l Rl.l+ c’2 Rl'2+u e ]plwI

This saves a further M multiplications for diffuse fluxes at each interior level. Second, since

rd

eq. [97) solves fgg‘th\e‘scaled constants there is no nged to store exponential terms, thereby

+
reducing storage requirements, N

b
|
i
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C. Selected Problems

4

This section considers three problems analyzed by Wiscombe {1977a) with the 5-
Eddington code. These problems were selected to illustrate strengths and limitaﬁons of the §-
D, multi-layer compenent. All comparisons are with §-D,, since §-Eddington uses two terms
for phase function approximation.

The first problerﬁ examines radiative transfer in a conservative atmosphere
(@ =1). The §-Dy, method, like §-Eddington, solves this problem by setting w to a number
slightly less than 1, (1 - 10 eps). The justification for this procedure is. the square root

-~y
dependence of eigenvalues in the two term approximation (eq. [59]).

The at.'mos‘phere is comprised of ten layers each with (A1) = 100, w = 1, and
g = 0.85, whilea, = 0 and p, = 0.2. Results are shown in Table 5.1 for both methods.
Table 5.1 demonstrates the poorest results to be expedted with §-D, if layer optical

depths are very large and w = 1. The effect of truncating opticdl depths is clearly shown by

comparison with §-Eddington results. However, for practical purposes, §-D, estimates are

" reasonably similar to 5-Eddington results. Upwaf}i diffuse flux s almost identical for both

methods. Direct {Thx may be in error by many orders of magnitude but it is still many orders

of magnitude smaller than the incident radiation. Since a, = 0, vertical net flux should be

.

. constant, which it is for both methods.

: -

-+ Table 5.2 shows results for the same problem, except that layer optical depths have
been se/uo’TD)and a, = 1.0. There is no truncation in thislc:;se, because (At) < 14. Thus,
direct flux is the same for both models at all levels. Since there is no absorptiém and a, =1,

upward diffuse flux at the top of the utmosphere should equa! the incident radiation-on the

" atmosphere, which it does. Morcover, total downward and upward fluxes should be equal at

all levels, which they are, while nct.yﬂux should be zero at all levels, which they are for all

practical purposes. P
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Shortwave radiative fluxes in a ten layer ﬁtmusphere with layer properties: {At) = 100, w =

l,andg = 0.85and ag = 0 and p, = 0.2. Incident shortwave radiation is unity.

-

Downward - Total

Level . Direct Upward Net
Flux Diffuse Downward Diffuse Flux
S-Eddington
1 2.000E-1 0.0 2.000E-1 1.989E-1 1.145E-3
2 1.103E-61 1.171E-1 1.171E-1 1.160E-1 1.145E-3
3 6.086-122 1.042E-1 1.042E-1 1.031E-1 1.145E-3
4 3.357-182 9.134E-2 9.134E-2 9.020E-2 1.145E-3
5 10852-242 7.846E-2 7.846E-2 71.731E-2 1.145E-3
6 0.0 6.557E-2 6.557E-2 6.443E-2 1.145E-3
T 0.0 5.269E-2 5.269E-2 5.154E-2" 1.145E-3
8 0.0 3.980E: 3.980E-2 3.866E-2 1.145E-3
9 0.0 2.692E-2 2.692E-2 2.577E-2 1.145E-3
10 0.0 1.403E-2 1.403E-2 1.289E-2 I.145E-3
11 0.0 1.145E-3 1.145E-3 3.638E-12 1.145E-3
8-D,
1 2.000E-1 -4.‘512E-8 2.000E-1 . 1.978E-1 2.165E-3
2 1.624E-22 1.262E-1 1.262E-1 1.241E-1 2.165E-3
K 1.319E-43 1.124E-1 1.124E-1 1.163E-1 2.165E-3
4 1.07T1E-64 9.865E-2 9.865E-2 9.648E.2 2.165E-3
) 8.696E-86 8.487E-2 ‘ 8.487E-2 8.270E-2 2.165E-3
6 +T.062E-107 7.108E-2 7.108E-2 6.892E-2 2.165E-3
7 §.734E-128 - 5.730E-2 5.730E-2 - 5.513E-2 2.165E-3
8 4\656E-149 4.352E-2 4.352E-2 4.135E-2 2.165E-3
9 -169 2.973E-2 2.973E-2 2.575E-2 2,.165E-3
10 -191 1.595E-2 1.695E-2 1.378E-2 . 2.165E-3
11 2.493E5212 2.165E-2 2.165E-2 T.480E-212 2.165E-3
»
ST
— -y
A b/
¢
“ -
! [ -

s
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Shortwave-radiative fluxes in a ten layer atmosphere with layer properties:(At) L 10, 0w =1,
and g = 0.85and ag = 1 and p, = 0.2. Incident shortwave radiation is unity. -

Total

~

LS

Level Direct Downward Upward Net
Flux Diffuse Downward Diffuse Flux
3-Eddington
1 2.600E-1 0.0 2.000E-1 "2.000E-1 1.554E-12
2 1.885E-7 ¢ 1,300E-1 1.300E-1 1.300E-1 1.383E-12
3 1.7756E-13 1.300E-1 1.300E-1 1.300E-1 1.230E-12
4 1.673E-19 1.300E-1 1.300E-1 1.300E-1 1.076E-12
5 1.577E-25 1.300E-1 1.300E-1 1.300E-1 9.219E-13
6 1.486E-31 1.300E-1 "1.300E-1 1.300E-1 7.692E-13
7 1.400E.37 1.300E-1 1.300E-1 1.300E-1 6.146E-13
3 1.319E-43 1.300E-1 1.300E-1 1.300E-1 4.619E-13
9 1.243E-49 1.300E-1 1.300E-1 1,300E-1 3:.073E-13 -
10 1.171E-55 1.300E-1 1.300E-1 1.300E-1 1.537E-13
11 1.103E-61 1.300E-1 1.300E-1 1.300E-1 0.0
3-Dg
! ~ — )
1 2.000E-1 " -1.665E-10 2.000E .000E-1 2.022E-10
2 ],.884E-7 1.400E-1 1.400E-1' .400E-1 1.773E-10
3 1.776E-13 1.400E-1 1.400E-1 1.400E-1 1.649E-10
4 1.673E-19 1.400E-1 1.400 1.400E-1 1.514E-10
5 1.756E-25 1.400E-1 1.400E-1 1.400E-1 «l.266E-10"
6 1.485E.31 1.400E-1 1.400E-1 1.400E-1 1.031E-10
T 1.400E-37 1.400E-1 1.400E-1 1.400E-1 8.472E-11
8 1.319E-43 1.400E-1 1.400E-1 1.400E-1 6.527E-11
9 .. ).243E-49 1.400E-1 1.400E-1 " 1.400E-1 4.305E-11
10 1.171E-55 1.400E-1 1.400E-1 1.400E-1 2.205E-11
o . 1.103E-61 1.400E-1 1.400E-1 1.400E-1 0.0
L -
-
; A
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Because eigenvalues are )mall in the conservative case, one may expect numerical

difficulties when the atmosphere is conservative and layer optical depths are very small. In ‘

these circumstances, z\jr — 0 and the solution becomes undeZned. Numerical tests with SA%
T
reveal this may arise with moderate values of 1. *For the atmosphere in Table 5.1 and At = 1,

some negative net fluxes were obtained, although absolute value of net flux at all levels was
still small (= 10'®). For At = 0.1, some net fluxes were negatlive, but their average value

increased to = 1077,
I - -
This pattern continues until 0.00! = t = 0.01, after which smaller value®efoptical

depth result in meaningless fluxes. While this still permits radiative transfer caleulations for
a fairly large range of optical depths it is still limiting. One method of effectively

circumventing the problem (which is implemented in Chapter Seven) is tb include an aerosol*
s
model, e.g. background aerosol models of Shettle and Fenn (1979), which has some absorption, ‘\

however small, thereby lowering w and increasing At. This procedure would be implemented

in most practical applications in any event.

The second problem involves radiative fluxes in a ten layer atmosphere where each

layer has (At} = 0.1, w = 0,g = 0.85,and a; = 1 and py = 1. Resuits are shown in Table 5.3.

Highly absorbing atmospheres are problematical for S-Eddington, as demonstrated

by negative downward diff‘u&(ﬂj_)ﬁs. Wiscombe notes that negative {luxes tend to arise when "
/ >

3}

[ -
Eddington) reveal negative fluxes also™occur with w > 0, although with ecreasing

the correct fMuxes are c]ose,_t_.g—zaro\ Other test ?bbms ulustrated by Wiscombe {for §- *—’"’L
LN

frequency.
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Shortwave radiative fluxes in a ten layer atmosphere with layer properties: (A1} =0.1,w = 0

.andg = 0.85 and p, = 1 and ay = 1. Incident shortwave radiation is unity.

) d - ,
Level , Diry/ Downward "Total Upward Net
Flux Diffuse Downward Diffuse Flux
5-Eddington
1 1.000 0.0 1-.0 6.055E-2 9.395E-1
2 9.048E-1 -1.521E-3 9.033E-1 7.211E-2 8.312E-1
™\ 3 B.187E-1 -3.088E3 8.156E-1 8.584E-2 7.298E-1
4 7.408E-1 -4, 748E-3 7.361E-1 1.022E-1 6.339E-1
5 6.703E-1" -6.551E-3 6.638E-1 1.215E-1 5.422E-1
6 6.065E-1 -8.551E-3 5.980E-1 1.446E-1 4.534E-1
i i 5.4838E-1 -1.081E-2 5.380E-1 1.720E-1 3.661E-1
8 4966E-1 -1.339E-2 4.832E-1 2.045E-1 2.787E-1
9 4.493E-1 -1.637E-2 4.330E-1 2.432E-1 1.897E-1
10 4.066E-1 -1,985E-2 3.867TE-1 . 2.892E-1 9.748E-2
11 3.679E-1 -2.393E-2 3.440E-1 3.440E.1 1.776E-15
§-Dg -
- 1.000E-1 -1.064E-20 1.000 4.979E-2 9.502E-1
2 9.048E-1 ﬁ.lOQE-’? 9.048E-1 6.081E-2 8.440E-1
3 8.187E-1 ... 3.664E-7 8.187E-1 7.428E-2 7.445E-1
4 7.408E-1 . 4.78BE-7 7.408E-1 9.072E-2 6.501E-1
5 6.703E-1 5.582E-7 6.703E-1 1.108E-1 5.595E-1
6 -6.065E-1 6.126E-7 6.0658;1 1.353E-1 4.712E-1
T 5.488E-1 6.487E-7 5.488E-1 1.653E-1 3.835E-1
8 4.966E-1 6.721E-7 4.966E-1 2.019E-1 2947E-1
g 4.493E-1 6.875E-7 4.493E-1 2.466E-1 2.027E-1
10 4.066E-1 6.987E-7 4.066E-1 3.012E-1 1.054E-1
11 3.67T9E-1 T.092E-7 3.697E-1 3.679E-1 0.0
P—_J ) »
_ ~ :
7 o TN ”
¢ %
AN =
fp '_,
4 E
& 7



16

)

In contrast,-8-D2 handles highly absorbing problems well, even with w = 0.
Positive diffuse fluxes are always obtained, even whef{ﬂiﬂ'use fluxes are eight to ten orders of
magnitude smaller than the incident radjation. It has been extremely difficult to provoke
negative fluxes. They have never been> observed when 104 = 1 < 102 and any value of a,,

The final problem consists of an eleven layer atmosphere with a conservative layer
_(At = 0.1, w = 1, g = 0.85) surmounting ten absorbing layers, each of which has (At) = 1, w
= 0,and g = 0.85. The surface albedo is 1, while solar zenith angle is 0. Results are shown in
Table 5.4 (the 8-Dg results were incorrectly performed using nine absorbing la;rers; to make
results comparable, the éecond last layer has been removed from Wiscombe's results). This is
a difficult problem for S-Eddilngton as both upward and downward diffuse flaxes are negative,
although never at the same level. The effect on net ﬁuxes is small because both diffuse fluxes
are small.

In contrast, §-Dq results are everywhere positive, save for downward diffuse flux at
level 1. But it is Jten orders of magnitude smaller than the incident flux. Upward and
downward diffuse fluxes are small at all levels (because w = 0), and this is correctly evaluated
by &Do.

These problems, and many others,‘ demonstrate 8-Dy can successfully compute

v . .
fluxes for a large tombination of optical ;m_meters and boundary conditions. The only

in & conservative atmosphere. However, all

radiative transfer algorithms share this difficulty. For practical application this difficylty

can be side-stepped by including a slightly absorbing aerosel model, e.g. Carlson and
]

Benjamin (1980). -

-
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Shortwave radiative fluxes in an inhomogeneous atmosphere. A single layer with (At) = 0.1,
o = 1, and g = 085 surmounts ten layerstach with (At) = 1, @ = 0 &nd g = 0.85. Surface
albedo, cosine of zenith angle, and incident shortwave radiation are set to unity.

Level Direct Downward Total Upward Net
Flux- Diffuse Downward Diffuse Flux
8-Eddington ’
1 1.0 . 0o 1.0 2.727E-3 9.973E-1 e
2 9.726E-1 2,299E.-2 9.956E-1 -1.651E-3 9.973E-1
3 3.578E-1 4.068E-3 3.619E-1 -2.920E-4 3.62ZE-1
4 1.316E-1 7.197E-4 1.324E-1 -5.167E-5 1.324E-1
5 4.842E-2 1.273E-4 4.855E-2 -9.141E-6 4.856E-2
6 1.781E-2 2.253E-5 1.784E-2 -1.616E-6 1.784E-2
7 A 6.554E-3 3.985E-6 6.558E-3 -2.790E.-7 6.558E-3
8 2.411E-3 7.022E-7 2.412E-3 -1.026E-8 2.412E-3
9 . 8.869E-4 1.084E-7 8.870E-4 2.192E-7 8.868E-4
10 3.263E-4 -7.052E-8 3.262E-4 .1.288E-6 1249E-4
11 4.415E-5 ; -2.957E-6 4.120E-5 © 4,120E-4 4.337E-19
\ 0,
1 - '1.000 '-2.177E-10 1.000 4.423E-3  9.956E-1
2 9.726E-1 2.295E-2 9.996E-1 1.504E-7 9.956E-1
¥ - 3.578E-1 3.106E-3 3.609E-1 5.286E-8 3.6T0E-1 .
4 1.316E-1 4.205E-4 1.321E-1 I.QZlE-B ~1321E4 /
5 4 843E-2 5.699E-5 4.848E-2 1.725E-9 - 4.848E-2 -
6 1.781E-2 7.739E-6 1.728E-2 8.015E-9 1.728E-2
1 6.554E-3 1.057E-6 6.555E-3 -~ 4.121E-8 6.555E-3
8 2.411E.3 - 1.466E-7 2.411E-3 2.979E-7 2.411E-3
9 8.870E-4 +- 2,116E-8 8.870E-4 ~$99E-6 8.848E-4
10 3.263E-4 3.354E-9 3.262E-4 .625E-5 - 3.101E-4
1 1.200E-4 6.854E-10 1.200E-4 .200E-4 4.337E-19
J

\5'. ’
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CHAPTER SIX

- ) - :
DEVELOPMENT éF‘ THE NiULT[—SPECTR&\L COMPONENT

s

The final stage in the construction of the §-Dy method was incorparation of gasebus

absorption into the multiple scattering formalism of eq. [78]. The method most often
S
employed is the exponential sum-fitting of radiative transmissions technique. This technique

seeks to represent the average radiative transmission across an abosrbing band as a sum of

decaying exponentials:

’ N
T 1 : (98]
T, )= Ay [M exp(— k uldv = Z w]exp(— kj- u) i
Fl
where T represents the average radiative transmission function for spectral interval Av, u s

amount of absorbing gas, ky is the spectral absorption coefficient, and wj is the corresponding
wedght functien. N is the number of terms used to fit the transmission function. Physically,

W, represents the fraction of radiation incident at the top of the atmosphere in spectral

interval Av that is associated with absorption coefficient k; ASir_u.:e j sum to unity, the ~

: . r N
geries in'eq. [91] mdy be interpreted as a probability distribution.
Radiative_transfér in spectral interval Ay then rgduces to N quasi- menochromatic
‘e N . -,
radiative transfer problems in which eq. [78] must be solved for each (wj,k;j) appearing in eq.

—_ o)
[98]. For each j(u-k;) defines the gaseous optical depth for an atmospheric layer containing

-

absorber amount u. Single scattering albedo for gaseous absorption is zero,. while the

-

asymmetry factor is not defined. These optical parameters are then combined with optical
parameters of other absorbing and scattering species in-the layer to obtain a butk optical

“depth tp, bulk single scattering albedo wg, and bulk asymmetry factor gi for the layer. Bulk

. ‘optical parameters are given by (Leighton, 1978): { .
. . N
. c ' LoowmEwtut gt
av . K] ﬁ



79 7

wp = (tp + werte + wyty)g
g8 = (gcactic + GHWHIHVWRIR
" where subscripts denote cloud (C), haze (H), gaseous absorption (G), and Rayleigh scattering’
®).

The difficulties of computing the parameters of the e‘xp,onential sum were
summarized in Chapter One. This study s&ught to avoid these numerical difficulties by
implementing an approximation which i= identical to exponential sum-fitting in application
but where (w;,k;) are computed from recent tabulations of mogcular line parameter data of
McClat.chgy\et,'al. fl_.974).‘.0mne and water vapour were the only gase?”considered as
exponential sum-fitting cannot accomodate spectrally overlaping gases. In the solar
spectrum, however, water vapour and ozone are the dominant absorbing gases and are
apectrally separated. Absorption of shertwave radiation by carbon dioxide and other minor
gases amount to only a few Watts per square metre (Liou and Sasamori, 1975).

. Chou and Arking's (1981) wing scalingl approximation has been adppted for
absorptior{ by water vapour. These authors have demonst;'ated excellent agremeent between
'wiqg scaling and line-by-line calculations, which may be considered the mosl:. accurate thatr
may be performed within the limits of uncertainty of liné parameter'dat'a. Altﬁough wing
scaling was developed primarily for transmittance modelling, the (wjkj) may be easily

determined. Weights and absorﬁﬁo'n\coefficielip for ozone absorption -are derived from low

resolution (20 ¢cm-1) transmittance model (LOWTRAN 4) of McClatchey et al. (1974).
N . ‘7 : !

¢
A. Wing Scaling Approximationfor Water Vapour Absorption

The wing scaling upproximation has two major features. First, it is assumed that
. - oA ..
the dependence of the absorption coefTicient on pfessure and temperature corresponds to that

in the wings of un absorption line. This assumption is based on the obscrvation thyt the
»

ey
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region of th:ktr‘nosphere where both the Doppler éi'fect and molecular collisions are equally
important in the broadening of an absorption line lies between 60 mb and 300 mb. The Voigt
function is commonly used to represent the absorption coefficient when both processes are
equally important. Whén this is the case, the Larentz function may be used to represent.the
absorption coefficient in ti'le wings of the Voigt func.ti(l)n - The explicit form is (Chou apd
Arking, 1981): |

kv(p,T) = Kv{p,To) (p/pe) R(T,T) W - [99]
where k,{(p,T) is the absorption coefficient at frequency v,\p is pressure, T is temperature, Land
the subscript r denotes a reference pressure and temperature. Chou and Arking observe that

the effect’of temperature, as expressed by the funct.ién R(T.T,) will be small and may be
i \

neglected if Ty is Wo be in the middle ranée of atmospheric temperatures. Then, eq. [99]

" may be modified to:

k{p,T) = ky(p.T,) (p/pt . {100)

wheret is a scaling parameter (¢ < t < 1) to account for the non-saturation at the line centre.

The parameters p,, Ty, and t are determined empirigally.
Chou and Arking choose t = 0.8 based on a sensitivity analysis of computed results

to corresponding line-by-line calculations. The reference pressure is chosen to be 300 mb for
% - .
the following reasons. In the stratosphere the wing scaling approximation will uk.derestimate

a'bsorption because abso-rption at the line ceptre will be the dominant process. é—lowever, -

absorber amounts are small so that the effect on total absorpti.on will be small. In the lower
- .

troposphere, absorption is insensitive to choice of p, because of the large water vapour

absorption depths. Ab§orptiqn is neither strong nor weak in the upper troposphere and

absor.ptiun in the wings will be as imporiant as .ut line centre. fp, is ch(fnen to represent this

pdrtion of the ntmosphere, pr = p and k(p,T) = k\,(p.r,’l‘.-)i Chou and Arking choose p_ = 300

-

mb. The reference temperature is chosen to be'240 K for reasons given ubove.
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The molecular line data of McC]atéhey et al. (1973} are then uéed,-to coﬁpute the
absorption coefficient ky (300 mb, 240 K) at 472,000 wavelengths between 0.83 um and 4.0
pm. This wavelength range includes the five major water vapour absorption bands listed in
Table 6.1. The weakly absorbing 0.7 um gnd 0.8 pm bands are not included as line parameter
data for these bands were not tabulafed by McClatchey et al. (1973). The distribution of
_absoi’ption coefficients are tabulated as the h(k) function for each absorption band and the

entire 0.83 - 4.0 pm range in Table 6.2.

-

: ' TABLE6.1
b A
Spectral range of water vapour absorption bands (Chou and Arking, 1981).

[

Abgorption Band . Spectral Range

(um) _ ' (cm-1)
b _
0.94 9600 - 11600
1.14 8200 - 9600
. 138 - 6300 - 8200
" 187 4400 - 6300
2.7 : 2600 - 4400
Total 2600 - 12040

r3
L4

-

-J
2\
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A
TABLE 6.2 S
“~~—_ Weighted k-distribution function h(k) (W m-2) with p, = 300 mb, T; = 240 K for individual

“absorption bands. k (g1 cm?) is the abs)rption coefficient. Slightly modified from Chou and

Arking (1981).
logk 0.94 pm 1.14pym 1.38pum 1.87 pm 2.70 ym Total
-5.0b0: 86.05 40.21 52.46 56.92 0.81 250.32
-4.700 20.53 4.32 12.95 . 7.64 0.77 51,53
-4.400 23.80 596 . 14.40 9.62 1.72 61.98
-4.100 25.15 .~ 598 '14.98 11.68 1.87 69.79
-3.800 19.85 . 7.69 15.33 13.37 2.36 70.23
3.500 16.18 8.30 1562 1493 2,37 67.62
-3.200 16.15 11.55 15.73 19.35 3.18 77.21
-2.900 17.56 18.32, 14.25 17.22 4.80 82,28
-2.600 2471 24.42 14.78 15.00 5.89 93.38
-2.300 30.71 - 26.86 16.23 15.23 7.74 102.87
Y.2000 . 33.46° 25.24 13.66 14.06 8.35 99.02
-1.700 35.57 25.01 14.47 11.97 8.45 98.64
-1.400 | 32.78 24.78 18.38 10.51 9.33 97.98
-1.100 7 28.86 24.78 20.97 1051 979 96.54
-0.800 23.97 22.64 23.40 9.16 9.98 90.20
-0.500 17.23 18.56- " 24.68 10.03 9.45 80.61
-0.200 12.23 13.25 2428 1197 8.23 70.22
. 0.100 8.41 010  “24.46 12.88 | 7.62 62.59
. 0400 . 558 635 * 2112 12.49 7.10 - 521
0.700 3.85 434 - 1828 10.54 7.37 44.39
1.000 2.37 270 ' 1420 8.02 797 35.07
1.300 1.37 166 " 10.10 6.3 7.44 26.71
1.600 0.78 1.10 7.01 4.41 “6.70 20.00
1.900 0.44 0.81 4,55 2.85 5.36 14.01
2.200 0.22 0.53 2.97 2.02 3.83 9.57
2.500 0.02 0.24 1.93 1.33 2.86 6.38
. 2.800 0.00 0.04 1.12 0.91 1.87 3.94
3.100 * (11} 0.0 0.80 064 1.24 - 2.68
3400 - 0.0 0.0 0.34 0.40 . 084 1.57
3.700 «00 ' 0.0 0.18 0.24 134 - 176

. . »
/
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The second feature of the wing scaling approximation is that the water vapour is

scaled according to: : -

. Pb y 4 0.8 c ' . . i
Y= = J (P‘) q(p')dp’ o . hon
g P, B, . i

where g is gravitational acceleration (m s-2}, q is specific humndxty (kg kg-l) ‘and pp and p, are

-~

atmospheric pressures (mb) at the base and top of the atmosphenc Iayer

The h(k) functions listed in T’able 6.2 have been used to constrifct two versions of 5-
DM‘. The first Yersion us.eé the #k‘)/fgnction for each ab;(;rption band te construct a spectral R
‘model in which radiative fluxes are computed for each absorption band. This will be referred
to gs the spectral 8-Dy, model. The seco{d ersion uses the h(k) function for the entire
spectral range (last column of Table 6.2) to construct the mtegrated 8-Dm model The

integrated medel is useful when radiative fluxes are desired for the enhre 0.83 pm - 4.0 pm

_ range, but not for particular bands. The computational signifiqé.nce is that eq. [78] has to be’

solved N-times for each absorption band. Using the spectral model to compute inteéa\ed .

‘fluxes only would require eq. (78] to be solved 5N times. The integrated model arrives at the
same answer by solving eq. [78] only N times. This,. is a large saving in computing time

because solving eq. [78] is the major computatjonal t.ask in the"S-DM a]gorith':'n. ST

The remaining problem is settmg the value of N, N is not unique and can be'made

larger or smaller than the number indicated i in Tab_le 6.2. Chou and Arkmg suggest N = 10,
. 141

Numerical testing with several values of N ranging frogg 3 to 25 for Problem (tii) (described

. L]

_below) indicated N = 9 produced the best results.

S~
Y

A cubic spline algorithm was used to interpolate htk) at the division points and to

\
N

integrate h(k) between cach division f(()_‘int. Dividing each integrated value by the incident

solar radiation for this absorption buna,\as evaluated frem the Labs-Neckel (1968) solar
. . - - - . Y

-

7+
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spectrum (Appendix C), yields the w; The mid- point of each log.k interval was assumed to
represent the k;. i
In application, the k; are used to compute gaseous absorption optical depth. The wj
are used to determine incident sﬁlar flux for each interval, i.e., wjn F, which appears in the
solar source function (eq. [11]). Weight functions and absorption coéfﬁcients are tabulated in
. : . .
Appendi:ﬁ b
| To illustrate the effectivéness Qf the wing scaling approximation, three problems

- analysed by Chou and Arking (1981) are considered.

>

1. Problem (i) -J6pectral Heating Rates for 0.94 um, 1.14 pm, 1.38 um,and 1.87 pm Bands

Specfral heating rates for a cloudless mid-latitude winter atmosphere are

)
computed for the 0.94 ym, 1.14 ym, 1.38 pym, and 1.87 pm absorptions bands with ag = 0 and
0, = 60°. Temperature and humidity data for the mid- latitude winter atmosphere aretaken

from McClachey et al. (1972). Layer heating rates {AT/At) are computed from:

-

where T is temperature (K), t ils time (s), c is the épeciﬁc heat of air at constant pressure (1b04
J K-1 kg1), and F* is the net solar radiative flux for the layer.

For comparison, gpectral heating rates computed by an éxponential sum-fit are also
illustrated. The (w;k;) for these bands were tomputed by Stephens~(1978a) from tabulations
of Liou and Sasamori (1975) who, in turn, based their work on the Iuborz;tory work of Howard
et al. (1956). Stcpﬁens cluin;s an accurucy of fit better than 0.02 pérccnt. All authers who

have performed exponential sum-fits scale ubsorber amount by:

- 12
. (3 ‘('&
Uy = YUy p T
. 4]
LY

where u,, is the unscaled waler vapour: »



Py
I q(p"Xdp’
. Stephens does not indicate the value used for the scaling parameter t. Values used by Slingo
and Schrecke_r (1.‘581)_have beenapplied: t = 0.9, T = 273K, andp_, = 1013 mb.
Chou and Arkir;g (1981} do not specify the pressure interval for which layer
heating r.ates were computed. Their results appeér in grap};ical form only. This study
emplo;eh :;1 98ayer atmosphcre between 20 mb (top of the at;pospberg) and 1,000 mb (base of

-

the atmosphere). ' ) i | /

The line-by-line calculations (Chclu and Arking, 1981), exponential sum- fitting
results (Stephens, 1978), and wing s;aling results are sho'wﬁ in Figure 6.1. The difference
between the exponential sum-ﬁt.ting and \.rv;ng scaling results aré striking. Only in the upper
portions of the atmosphere {20 - 200 mb) do the expgnential sur;l-ﬁtt'ing results closgly follow
the .line-by—line results. In the 1.38 pm band t{:le maximum error is 0.2°C day-! whicf; is
almost as large as the maximum heating rate (0.35°C day-1). This exami)le serves to
illustrate Wiscombe and Evan’s '(1977)'observat;i9;l that accurate (e.g. 0.02 percent)
exponential sum-fits may still produce lﬁrge errors in heating rates. These errors appear
large, but Chou and Arking illustrate similar differences between linte-by-line calculations
and Lacis and Hansén's (i974) exponential sum-fit which is based on Ya:_namoto's absorﬁt-ion
curve. !

In contrast, the wing scaling results follow the line-by-line results closely. Largest
differences are observeci near 200 mb and 500 mb-where it is 0.02°C day-). The wing scaling
approximation underestimates heating rates in the highest and lowest portions of the

atmosphere, where ambient temperatures are greater than the reference temperature of
N L

240 K.

_




Figure 6.1:

Comparison of shortwave heating rates computed from exponential sum-
fitting techniqué(Stephens, 1978a) [---], line-by-line calculations (Ch

and Arking, 1981) [-], and wing scaling approximation {

] for cloudless

mid-latitude winter atmosphere (McClachey, et al., 1972) with 8, = 60° and
as = 0 in the 0.94 pm(A), 1.14 pm(B), 1.38 ym(C), and 1.87 pm{D) water

vapour absorption bands. "
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L 3

2. Problem (1) - Spectrally Integrated Heating Rates in a Mid-latitudeWinter .
and TropicalMtmosphere L ®

The secénd problem compares spectrally integrated (0.83 pm -4.0 ym) heating rates

computed by wing scaling ap_proximation and by line-by-line results for a mid-latitude winter
and tropical afmospht":re. Tempefafure and humditity data were taken from McClatchey et
al. {1972), while a;.='9 should be 'z'ero, and 0, = 60°. Th: comparisons are shown in Eig‘ure
6.2. | "

Figure 6.2 illustrates differences between wing scaling and line-by-line résults are

small and qualitati\.rely similar to these shown in Figure 6.1. Lafgest disaé‘reement occurs for
the troi:)ical afmosp"here in the 500-700 mb re'gion. The wing scaling results are in phase with
the lipe-by-line rESl:lltS but have a larger amplitude.

] _ Some distortion has been introduced in the plotting of the line-by-line resuits. A‘
m(;re probable cause for the disagreement, apart from the error in discretizing the h(k)
functions, may arise from differences in water vapour profile used by Chou and Arking and

-

that used in the present study. Iri‘Problem (iii} (described below) water vapour profiles are
identical and such difTe;ences are not obseb:ived. !

Although differences between wing scaling and line-by-line results exist near
500 mb for both atmosphe;'es, total shortwave radiation absorbed in both atmospheres as
computed by wing ;z;ling agrees favouraBly with that determined by line-by-line
calculations. These comparisons are shown in Table 6.3. The largest difference between wing
scaling (present study) and line-by-line result-s islessthan 2 W m2 approximately an order of

magnitude less than the present uncertainty of the solar constant (Paltridge and Platt, 19???:).

-’

‘J | -
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Comparison of spectrally integrated shortwave heating rates computed

from line-by-line calculations of Chou and Arking (1981) [--] and wing

scaling approximation [——] for cloudless mid- latitude winter (A) and

tropical (B) atmospheres (McClatchey et al., 1972) with 8, = 60° and
- Qs = 0. . . ,
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TABLE 6.3

‘Comparison of total shortwave radiation absorbed (W m-2) for all water vapour, absorption
bands in a tropical and mid-latitude winter model atmosphere.

)

—

i

Atmnsphere . Lme by-line ng scaling . ! Wing-scaling
e {Chou ard Arking, 1981) ' (present study)

Mid-latitude

winter 71.2 coTT 72.7
Tropical 105.6 104.7 104.6 .~
3. Problem (iii) - Heatmg Rates for a Cloudy Mid-Latitude Winter Atmosphere in the
0.94 uym and 1.38'uym bands. \
Q , -

The third problem examines heating rates for a cloudy mid-latitude winter

atmosphere. Temperature a'nd humidi{y data were taken from McClatchey et al. (1972) with
ag = 0.07 and 8, = 60°. The"cloud occupies the 500-600 mb Iayér. Cloud drople‘ts‘ were
a.ssumed to scatter or‘ﬂy (@ = 1). The ;symmetry factor for clo-ud droplets was set to 0.85,
whrich is close to that for non-absorbing spheres derived fromMie theory (~‘[J).87, Hansen and

Travis, 1974) while cloud optical depth was set to 20. The atmosphere was divided inte 20

layers with pressure thickness of 50 mb, except for the 20-100 mb layer which was é‘wided

v

]

into two layers 40 mb thick. ‘ ) ‘
Agreethent between wing scaling and line<by-line results (Chou and- Arking, 1981),

"shown Iin Figure 6.3 is generally excellent, Only in the sub- cloud ;‘cgion are there noticeable
differences. But the maximum differences is lc.-s.;s'l‘.hun 0.02°C day-!, which is considerably less

than the maximum heating rate for either band.



Figure 6.3 -
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Comparison of shortwave heating rates computed from line-by-line (Chou

and Arking, 1981) [] and wing scaling approximation [

] in a cloudy .

mid-latitude winter atmosphere (McClatchey et al., 1972) with 8, = 60°
and ay = 0.07 for the 0.94 pm {A) and 1.38 pm (B) water vapour absorption

+ bands.
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These three cases illustrate that wing scaling provides accurate estimates of

. . . -
shortwave absorption by water vapour for both spectral and integrated probléms and clear
and cloudy conditions,

B. Absorption by Ozone

Absorption of shortwave radiation of ozone is simple’r to treat than water vapour.
First, the amount_of ozone is less variable than water vapour. Second, the temperature
dependence of absorption coefficient is ‘negligible. Therefore, scaling functions are not
required. Third, ozone aBso'rption is a continucus function of wavelength.

Thé parameterization of ozone absorption developed in this study is baged on the
distribution of ozone abst;rlption coefficients tabulated in LOWTRAN 4 '(MCCIatchey et al.,

> -

1974) and the Labs-Neckel (1968) solar spectrum. Values of absorption coefficient were first

“evaluated at A = 0.2(0.01) 0.77 pm. These wavelengths correspond to spectral boundaries of

intervals at which the Labs- Neckel solar constant is tabulated. This division yields 57

spectral intervals with known incident radiation. Spline quadrature was then applied to

. compute the average absorption coefficient for each of the 57 spectral intervals:

1
_kAv = — I kidv . i=1,2,...,57 -
i Av J ay -
7
where k(A} is the spectral ozone absorption coefficient (atm-cm)-! and Av; is the i-th speétral
interval of width 0.01 pm. The final step was the formation of frequency distributions. A note
was made of which spectral intervals fell in which class interval: Thus, the total incident
radiation represented by each class was known. Dividing cach of these cluss totals by the
totatincident radiation yielded the wy. The k| lor each class were obtained by averaging the k)

which were grouped in that class interval,



This procedure was employed to obtain a spec‘tral and an integrated model. The
spectral mod;zl contains four major bands: 0.2 pm - 0.37 ym (Hartlt;y-Huggins band}, 0.37 um
--0.43 m (no gaseous absorption), 0.43 pm - 0.77 pm (Chappius band), and 0.77 im - 0.83 ym
{no gaseous absorp'tion). Numerical testing indicated that the Hartley-Huggins band could be
adequately represented by seven class intervals (i.e. N = 7) while the Chappius band could be
represented by N = 3 terms, The two non-absorbing bands were represented by one term
each. | .‘

The integrated model cpntains the entire spectral range 0.2 pm - 0.8 pm which is
divided into nine lsub~bands. The w; a:t{:,l k; for each sub- bar;d in the spectral and integrated
models are listed in Appendix D,

A test of this parameterization was made by computing atmospheric absorptivity
due to ozone and comparing the results with the work of Fouquart and Bonnel (1980). These
authors utilized LOWTRAN 3B ozone absorption coefficients to derive Padé approximations
(rational functions) for ozone tranmissivity. F‘ouﬁuart. arlld Bonnel’s absorptivities are
accurate to within 10-2 of the LOW;[‘RAN 3B results.

: ’ A spectral 8-Dy model was used since results from Hartley-Huggins and Chappius
bands were required. Radiative fluxes were computed for both bands and summed to obtain
thé net\ﬂux at the top a.nd base oE; :he atmosphere. The difference in net flux between the top
:;nd base of thé atmosphére, divided ‘.b;qthe extraterrestrial shortwave flux for these two
bands, ﬁelded atmospheric absorptivity. Fouquart and Bonnel do not state whether they
included Rayleigh scattering in their calculations. The 8-y calculations included multiple
Rayleigh scattering. .Howcvcr, the effects of_' multiple scattering were minimized by toking
ag = 0 and 0, = 0°. Since molecular scattering was the on!y scattering considered, M was set

to 2.

-
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TABLE 6.4

Comparison of atmospheric absorptivities due to ozone computed by present study and Padé
approximations of Fouquart and Bonnel (1980).

-~

‘\J Ozone Amount (atm-cm) .+ Fouquartand Bonnel Present Study
0.1141 , 0.01651 0.01745
0..2283 o\ . 0.02161 Q 0.02234
e ‘ . 0.4565 . 0.02927 0.03003
~ 0.9130 . " 0.04165 0.04295
1.8260 | 0.05249 0.05436
T

The calculations were performed for absorber amounts ranging from 0.1141 (atm-
cm) .to 1.826 {atm-cm). The comparisons are illustrated in Table 6.4. '_I‘he‘t.wo sets of
absorptivities agree very closely. ADiﬂ‘erence.;; are geﬁerally within one percent of each othez. ,
The 6-Dg absorptivities are sllightly larger for all abso:y amounts, reflecting the effects of
multiple Rayleigh scattering. .

\

C. Test of Comhlete 8-DH Algorithm

The B-DM. method consists of solving eq. [78] for each spectral interval. Spectru‘l
and integrated versions have been developed. The integrated model contains two major
divisions: a visible band (0.2 - 0.83 pm) and five water vapour bands in the ilhfrnred spectrum
(0.86 - 3.87 pm). Spectral limits of the major spectral divisions, incident extra-terrestrial
solar radiation, and (wj,k,} for each sub-band, for both spectral and in't.egruted versions, are

LY

listed in Appendix D.

Each component-of 8-y has been extensively tested. This seetion presents one

final test with the complete 8-y, The test is i comparison of atmospheric absorptivities and

N
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planetary albedo for a mid-latitude sur;imer atmosphere with benchmark radiative transfer
calculations of Braslau and Dave (1.972) (their MODEL B). s
The MODEL B calculations, widely regarded as benchmark caleulations and often

employed as such (e.g. Slingo and Schrecker, 1981), include absorption of shortwave radiation

by water vapour, ozone, carbon dioxide, oxygen, and multiple Rayleigh scattering. The /

atmosphere was dividgd into 161 layers and 83 .spectral intervals. The successive orders of
sc.zitﬁltering method was used to solve th~ radiative transfer equation for“‘ah homogeneous
atmosphere. The authors quo.te computing times of 10 to 20 hours for four zenith angles and
one surface albedc;. .

The integrated B-DM.niodel. was usged for thesé comparisons (since Braslau and
Da\ié'i reflectivities and absorptivities refer to values integrated across the entire solar
spectrum). Temperature and hﬁmidi_ty data for a mid- latitude summer atmosphere were

taken from McClachey et al. (1972). The atmosphere wes-'divided'into 10 layers of equal

pressure thickness while M was set to 2 as Rayleigh scattering is the only scattering

considered. Computing time for four solar zenith. angles and five surface albedoé was 17.6
- seconds on a CDC Cyber 170/730 model. ‘
The comparisons are shown in Table 6.5. Slingo and Schrecker (1981) have also

_performed these calculations although not with the same zenith angles and surface albedos.

Where comparison permits, Slingo and Schrecker's results are shown. These authors
employed several models which differed in the number of spectral bands. Results for their

most detailed spectrz}model {containing 144 sub-bands) are presented.
N ,

~
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TABLE 6.5
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Comparison of atmospheric reflectivities and absorptivities for a ynmid-latitude summer

and Schrecker (1981) [$/8]. a5 is surface albedo; 8, is solar zenith angle.

. model atmosphere computed by the 8-D method, Braslau and Dave$]1972) [B/D), and Slingo

.
Reflectivity .
Qg
B, 0.0 0.05 0.20 0.40 0.8
0 B/D 0.0429 0.0787, 0.1878 0.3369 0.6502
5-D 0.0520 0.0856 0.1887 0.3316 0.6393
S/ 0.0425 :
30 B/D 0.0483 0.0838 0.1917 0.3392 0.6489
8-D 0.0591 0.0923 - 0.1941 0.3353 0.6392
' 80 B/D 0.0744 0.1081 - 0.2105 0.3504 0.6435
§-D 0.0943 0.1255 0:2212 0.3537 0.6385 -
80 B/D 0.1459 0.1745 0.2614 0.3798 0.6264
5-D 0.1952 0.2204 02977 ' 0.4045 0.6330
S5 0.6264
: !
Absorptivity
~ us »'
8, 0.0 0.05 0.20 0.40 '0.80
0 B/D 0.1245 0.1273 0.1360 0.1476 0.1716,
5-D 0.1488 0.1510 0.1576 ¢0-1665 0.1848
S/S 0.1415
30 B/D 0.1301 0.1329 0.1412 0.1524 0.1754
§-D 0.1547 0.1567 0.1627 0.1709 0.1878
R :
60 ‘B/D 0.1535 . 0.1559 0.1629 01724 0.1918
5-D 0.1774 . 01788  0.1831 0.1890 0.2012
80 B/D 0.2115 0.2130 0.2178 0.2243 0.2375
5-D 0.2269 0.2277 . 0.2301 0.2835 0.2405
S/S

0.2096
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The comparison between Braslau and Dave's results and the 8:D2 results are
generally excellent. There may be spectral differences, but unfortunately Braslau and Dave
do not provide spectral values. Agreement between reflectivities increases with increasing

surface albedo and decreases with increasing zenith angles. But only for 8, = 80° and the
* &
smallest albedos do differences amount to ’nl}e than three pgreent (Braslau and Dave note

that their results may be inaccurate at large zenith angles).

&Dg absorptivities are within 2.5 percent of the Braslau - Dave values ‘Differences

between the two sets of results decrease with increasing surface albedp, but do not increase

\ .
with increasing zenith angle. Interestingly, the Braslau-Dave absorptivities are smaller than

8-Dg absorptivities even though Braslau and Dave included absorption by oxygen and carbon

dioxide.

Overall, the 8-Da method has obtained virtually identical results using a coarser

atmospheric and spectral division and computing time orders of magnitude less.
- S N
> .
The comparisons in this Chapter, as well as those in Chapters Four and Five,

demonstrate §-Dy can furnish accurate and efficient computation. of shortwave radiative
fluxes, heating rates, planetary albedo and atmospheric absorptivities in a‘variety of model

atmospheres. The next Chapter describes the application of §-Dy ‘tg_real atmespheric

4

conditions.
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CHAPTER SEVEN

COMPARISON OF MODELLED WITH MEASURED SHORTWAVE RADIATION

¢

- PROFILES IN A TROPICAL ATMOSPHERE
There have been few é.ttempts to compare atmospheric profiles of measured
and modelled shortwave radiation reﬂ@_cfing, in part, the cost and large number of variables

which must be measured. Most applications of radiation data collected from aircraft have

¢

been to more tractable problems such as detei mining bulk atmospheric absorf)t.ion (Robinson,
1958) or cloud albedo and cloud absorptivity (Neiburger, 1949; Griggs, 1968; Paltridge, 1970;
Reynplds etal , 1975; Stepheﬁ%, 1978b).

~.,
OnlySlingo et al. (1982) and Schmetz et al (1981) have combined measured ciéud.f-\-ﬁ

microphysical data and radiative transfer algorithms to compare modelled with measured
total d%wnward and upward shortwave radi'ati\'fe fluxes above and below cloud. These studies
demonstrated the radiative transfer algorithms could follow the trend of measured values
reasonably well below cloud although larger differences (~ 100. W m-2) were obtained for
upward flux above cloud. Differences for both upward and downward fluxes were smaller
(~ 50 W m-2) within and below cloud.

This Chapter c'ompares modelled profiles of shortwave fluxes computed. by §-Dy
with measured profiles i;‘] a trof:ical atmosphere. Atmospheric conditions include cloudless,~
hazy (Saharan dust), an altocumulus cloud lz;yer, and a combined cloud-.haze case. Clouq ar'l.d
aerosol microphysical data were not n;eusurcd on these occasions so that parameterizations

for cloud and aerosol optical propcr&:s had to be applied. However, this problem is shared by

most applied radiative transfer studies. This étu’giy affords the o‘pwﬂ.y of assessing the
)

-

- 97' o f



98

error in applying such, models. Total downward, upward diffuse, and net fluxes were

examined.

A. Data Sources

‘ Meteorological data collected ovér the tropical North Atlantic Ocean‘during the
summe‘!g‘ﬁ 1974 serve as the data base for these comparisons. These data were collected
during GARP Atlantic Tropical Experimant (GATE). .'GATE covered approximétely one-
sixth of the Earth’s tropics with att emphasis‘.of about 500,000 km? located 1,000 km west of
Senegal’ (Pola\}arapu and Austin, 1?::'9). The area was intensi\.re]y_ monitored by speci;.illy
instrumeénted buoys, vessels, a.it'.cfai'{:., satellites, and a netw?.rk of land stations on both sides
of the Atlantic chan.

. Sampling frequency for all meteorological and radiation data was 1 Hz, except 16

m (;olour photoéraﬁhy'which was taken at eight second intervals. Aircraft photography was
used to determine aircraft position reﬁ{ive to cloud- fields and to identify heavy
conceﬁtrations of Saharan haze, which was identified by a distinctly red hue.
' " Specific data i:iclgded: t.irr;e(GlMT), latitude, longitude, pressure, ambient and dew

point temperatures, total downward and upward diffuse fluxes. Net solar flux was computed

as the difference between downward and upward fluxes. -

-~
AY

‘- .
YB. Models of Cloud and Aerosol Optical Properties

1. Cloud optical parameters.
Cloud optical properties were evaluated from the work of Stephens (1978b) and
Diermendjian (1969). Optical depth was the§post difficult to determine, primarily because

cloud depth and liquid water coritent display huge variations even for the same cloud type.

N

7



~solar wavelengths, Qqxi(x) = 2 and eq. [102] may be approximated by:

S
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This study selected Stephens’ (1978b) parameterization of cloud optical depth because it is
easily applied and is framed in terms of liquid water path which is readity evaluated. . ™.

Cloud and aerosol optical depth may be formally expressed as: -

Az To
tA:'\T I n(r)Qen(r)nrzdndz (102)

°°n
where n(r) is the particie size distribution function, r is radius (pm), x is the dimensionless
Mie size param‘eter (= 2nr/d), Qexi(x) is the extinction efficiency factor (dimensionless) which
must be calculated from Mie theory, z is the geometrical thickriess of the layer, and r; and rq
are the lower and upper limits (um) of the size distribution.

Stephens (1978b) observes that for large values of x, such as for cloud droplets at

Az
t‘\‘—'.[ 2n
# 0

r
2
J n(r)rzdr

N

dz [103]

By introducing the effective radius r, (}-xm) (Hansen and Travis, 1974)

r = I n(r)radrll n(ortdr’ . (104]
[} o o
eq. [103] may be approximated as:
3 _ -
4= E Wh‘p

where W, the liquid water path (g m-2), is defined as:

Az
W= J " wdz

14

and w is the liquid water content (g m-3). ‘In this study w was computed from the saturated
. o

adiabatic profile for cloud-base dew point temperature (Wallace and Hobbs, 1977).
Stephens (1978b) modelled eight major cloud types with respect to altitude and
cloud droplet distributions derived from the aircraft studies of Carrier et al. (1968). Mie
R .

scattering calculations were performed to determine optical depths of these eloud models for

two spectral bands: 0.3 pm <A< 0.75 pm (conservative scattering) and 0.75 pm <A< 4.0 pm
. . : e .
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(cloud droplet absorption). These bands correspond closely to the two major gpectral divisions
of integrated 5-Dyy. Optic;l depths were parameterized as (Stephens, 1978b):

(i) visible band: log(z)) = 0.2633 + 1.7095 In [log W] -

{i1) infrared band: log(x;) = 0.3492 + 1.6518 In {log W] '

Single scattering albedos were determined from tabulations of spectral single
scattering albedo for the C1 cumulus cloud model of Diermendjian (1969). These values were
fi*ted by a cubic s:pli_ne from which single scattering albedos at central wavelengths of" each
spectral ba;ld of integrated 5-Dy were evaluated. These values were then weighted by the
incident shortwave radiation for each band to determine average values for visible and

infrared bands. Asymmetry factors were calculated similarly,

2. Aerosol Optical Properties.
Two aerosol models were employed. The [irst model represe;xted Saharan haze
which covered much of the tropical Atlantic Ocean at this time of year. On numerous’
-~
occasions, Saharan dust was observed from near the Earth's suri.'ace to ~ 500 mb, thus

displaying a large vertical extent as well. Carlson and Caverly (1977) have shown Saharan

Aust optical depths at A = 0.5 pm to range from 0.25 to ~ 3.0 for very dusty conditions.

Integrated over the solar spectrum, dust optical depths approach those of clouds. Thus,

-

- Saharan dust is radiatively significant.

In this study, spectral values of real and imaginary index of refraction for Saharan
dust tabulated by Hanel (1976) were used to perform Mie scattering calculations to obtain
single scattering albedo, asymmetry factor, and volume extinction efficiency factors for a
particle concentration of 15,000 em-3, Carlson nndl Benjamin's (1980) model of vertical
particle concentration was used to scale Quyt (“), derived for a particle concentration of 15,000 '

[ ., |

cm-3 to obtain realistic dust optical depths. '
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Carlson and Benjamin (1980) observed that\vertical particfe concentration of -
Saharan dust is approximatelry symmetrical about 700 mb, where maximum part:icfe

concentration was frequently observed. Particle concentrations’were observed to decrease

upwards to ~ 500 mb and downwards to ~ 900 mb. ;hese latter pressﬁre‘l,avé'l’s ;gproximate
the vertical extent of Saharan dust as measured during GATE (Carlson and Benja/ﬁlin, 1980).
Saharan dust posed two problems. The first was identifying the veréical extent of
dust. The secon:i was evaluating total dvst content in the atmospheric column. The vertical
extent was determined from vertical profiles of ambient air and dew; point temperatures,
CarI;on and Caverly (1977) have shown that Saharan air differs from true oceanic air in its
thermal and moisture.i:ropertie.s. It has been demonstrated, for example, that Saharan :iir is
separated from oceanic air by a strong temperature inversion below which a thin layer of
stratus or stratocumulus cloud is usua;lly present. This is.shown in Figure 7.1 for Profile 223,
These authors note that a much weaker inversion caps Saharan air near 500 mb, but this was-
not observed in Profile 254 and only barely observed in Profile 223. The lower limit was easily
identified from ambient and dew point temperatures (Figure 7.1).
Dust concentration C 4 at any level was estimated from Carlson and Benjamin’s
(1980) relation )
k(A = 0.5 xm)/0.0198 = C,/6.708
This e;:pression relates dust volume extinction coefficient k, to the spectrally inéegrated
volume extinction coefTicient (0.0198) for particle number density of 6.708. From this
relation,
| Cy = k(A = 0.5 ym)6.708/0.0198
50 that volume extinlctior; coefficicnts computed from Mie theory could be scaled by C/Q, ..

The second model represented background serosol. This was included for

. _:completeness and for reasons indicated in Chapter Five. Tropospheric and Maritime aerosol
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L]

Figure 7.1 - Vertical distribution of ambient and dew point temperatureé for Profile 223.
Solid line represents ambient temperature; dashed line represents dew point temperature.
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models of Shettle and Fenn (1979) were incorporated. The tropospheric model was applied
from the Earth’s surface to the top of the atmosphere (~ 100 km) while the Maritime model

was applied to the lowest 2 km of atmospher-e. Shettle and Fenn have tabulated spectral

values of volume extinction coefficient, single scattering albedo, and asymmetry factor. Their

I\Qie scattering calculations were performed with a parti.cle‘;oncentration of 5‘,000 cm-3 for the
‘_tropospheric model and 4,000 cm-3 for the Maritime model. Particle concentrations of ~ 300
cm-3 t;ver an ocean surface have been reported by Jung; (1976) for both models.‘ The
extinction coefﬁci:nt was scaled accordingly. | -

Vertical gradient of extinction coefficient w’as accommodated by fitting a spline

oo N
function to the background spring-summer values reported i)y Shettle and Fenn (1975}
Although strictly :ipplicable to 0.5 pm, this vertical scaling was assumed valid for all
wavelengths. The error in this assumptien is likely to be small as both rr-lodels ma\l\:e only a
small contribution to total extinction, especially in the presence of clouds and aerosols,
3. Rayleigh Scattering. >

Rayleigh scatteri:_ag has been included for completeness. S;-J-ectral values of
Rayleigh optical depth were calculated from (Hansen and Trévis, 1974):

| To{A) = 0.008569 A4 (1.0 + 0.0113A-2 + 0.0001314)
where t(A) i§ the spectral Rayleigh scattering optical deptﬁ (A, p;rl) for an atmospheric
column from the Earth'’s surface to the top of the atmosphere. Values of tg for a layer Ap mb
thick were obtained from: _ _ .
TR = 1o Ap/p,

where p, is standard pressure (1013.25 mb). The single scattering albedo for molecular

scattering is one, while the asymmetry factor is zero.

~
-
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C. Computational Procedure ' :
The variables required for radiative transfer £alculations include: solar zenith

angle, surface albedo, layer thickness, and optical properties for each atmospheric

constituent. Solar z;enith angle was computed by standard procedures from location and time
of day. Surface albedo, assumed to be spectrally independent, was set to 0.035 fo]lowiné the
\.vork of Carl-son and Benjamin (1980). This value is close to e;cperimental determinations
obtained when the aireraft w;vas close to the surface. Moreover, all profiles were obtained over
the ocean, for which spectral variations of a4 are small (McClatchey et al., _1974).

Vertical distribution of water vapour was evaluated from the specific humidity
profile, w-hich was constructed from ambient and dew point temperatures recorded by air::’raft.

. v
Sampling interval was 10 mb. Temperature and humidity data for a tropical atmosphere

(McClatchey et al., 1972) (Appendix E) supplemented the aircraft data from the top of the

profile to the top of the atmospliere and from the base of t}}e profile to the Earth's surface.
Ozone density (gm m-3i was Q‘!.J‘tai;ied from the McClatchey et al. (1972) tropical
atmosphere. These values were converted to ﬁnits of (atm-cm) by multiplyiﬁg density values
by (46.6667 x layer depth) (Brz;slau an-c-l Dave, 1972).
Radiatio'n and meteorglogical data were collect.ed by a single aircraft. The top and
base of the profile may be separated b:,r several kgloméires vertically and rﬁany kilometres
spatially. This raises possibilities of horizontal inhomogeneities, which violates the basic

assumptions upon which 8-Dy was developed. Lack of cloud and aerosol microphysical data

precluded a detailed examination of this assumption. However, some insight may be obtained

. by examining the variability of recorded fluxes at flight level. Table.7.1 lists these values for

Profile 254 (light to moderate Suﬁurun dust), Profile 244 (aﬁmms cloud layer), and
Profile 223 (a stratocumulus cloud surmounted by very dusty Saharan air). Means and

standurd deviations for Profile 217 {cloud!less, dust-free atmosphere) are not listed as

-
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Table 7.1

Means and standard deviations of measured downward, upward, and net
shortwave radiative fluxes for Profiles 254, 244, and 223. Units are W m-2,

Level Downward Flux Upward Flux Net Flux
[ ]
(mb) Mean  Standard Mean Standard Mean Standard
Deviation Deviation Deviation
PROFILE 254
(Light Saharan Dust 575mb - 846mb)
240 1158 3 115 6 1043 8
490 1130 5 91 2 1139 4
575 1130 5 92 5 1037 4
622 1071 7 . 84 9 986 3
728 1073 8 69 ~ 7 1004 9

846 989 10 53 17 936 9
930 996 4 41 2 954 2
980 965 11 39 1 . 928 10

PROFILE 244 K

{Cloud 530mb - 660mb)

590 1220 107 313 13 898 " 90
660 587 17 81 2 503 18
720 650" 43 72 1 575 40
770 - 782 38 . 69 1 714 40
820 753 31 57 2 695 31
870 - 807 121 51 2 760 117 .
9200 737 37 .50 4 8¢ ! 3y
970 777 51 45 " 5. 732 {7

PROFILE 223

(Statocumulus Cloud 880 - 890mb; Saharan Dust 575 - 880mb)

586 1092 9 331 29 760 26
660 942 -5 349 28 . 592 24
767 837 13 339 24 497 26
853 826 19 . 343 129 483 111
880 793 40 - 295 27 568 61
890 531 60 62 1 468 59
930 540 - 102 58 11 482 93
985

265 111 .23 3 242 108
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standard deviatioﬁs were less than 1 W m-2 at all levels.

Standa;-d deviations for all fluxes in Profile 254 are small at all levelsand < 10 W
m-2, which is the absolute accu;-acy of radiition meas;:rements in level flight outside of cloud
(Slingo et al., 1981, Schmetz et al., 1982). Standard deviations are larger for cloud profiles
and reflect cloud inhomoéeneities. " This was corroborated by aireraft photography which
revealed breaks in the cloud, gellujﬁrﬁt\?'ucture, and poorly defined cloud base for both Profiles
224 and 223 . These standard deviations are larger than those given by Sli-ngo et al. (1982)
and Schmetz et al. (1981) who s‘tudied a mgre uniform cloud cover.

i .
Therefore, measured profiles were constructed with mean values at each level.

Flight time at each level was approximately three to five minutes. Fifty random samples of

upward and downward fluxes were selec‘ted from each horizontal traverse to compute mean

- fluxes.

=Y

.
. Radiation calculations were performed for the entire atmosphere using the median

time at each flight level to calculate solar zenith angle. Thus, computed fluxes at each level
correspon'd to solar zenith anglie at that level. Flight levels served as layer boundaries. All
radiation calculations were made with integrated 5Dy

. Finally, differences between measured and modelled radiative fluxes were asse'sse.d
by computing root mean square errors for downward flux (D¢ms), upward hux (Urms), net flux

(N.ms). These measures are similarly defined. For example,

- Slf,'[ é[nroiﬂ

where Nj is the number of levels, D; is computed total downward ﬂlﬁt level i, and O; is

12

measured total downward radiation at level i, A final measure, the grand root mean square

Grms represents the error summed over levels and fluxes.

1
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D. Profile Comparisons

Four profiles were examined. . They are: a cloudless, dust-free atmos.phere (Profile
217), moderately dusty Saharan air (Profile 254), an altocumulus clc;:zd layer (Profile 244},
and a stratocsmulus cloud layer surmounted by very dusty Sahélran air (Profile 223). The
profile number indicates the Julian day on which thé flight occurred and therefore serves as a

flight identification number. The profiles are presented in order of increasing complexity of

atmospheric composition.

1. Profile 217

This profile was examined to determine error of computed ﬂu:;e‘é in the absence of
cloud and large amounts of dusl;. This is the one profile where atmospheric composition could
bg reasonably well specified. Comparisons are shown in Figure 7.2.

Comparisons for all)hree ﬂuxe.s is generally excellent. Roo;‘. mean square erro,rs
are less than 10 W m-2 for all fluxes, which is less than the absolute error of the radiation
measurements in level flight outside cloud (Slingo et al., 1982). .

Computed fluxes were found to be insensitive to systerr;atic varia’t.ion of ozone |
conte;lt.. The cal¢ulations were /epeated by increasing and decreasing layer ozone contents by
+1, +5, and +10 percent. Root mean sc{uare errors changed by less than 1-W m-2 from
values given in-Figure 7.2, Acct.xracy was observed to increase slightly by decreasing dzone
contents, however, the McClachey et al. {1972) tropical atmosphere has no provision for
seasonal variations of temperaturé, water vapour, or ozone contents,

More noticeable were increases in error when the water vapour profile was altered.
For example, by replacing the observed water vapour profilg above 540 mb with

PR
climatological values (MeClatchey et al., 1972) error in computed downward flux increased by

20 W m-2 t 540 mb. Error in computed downward fluxes remained the sume at lower levels
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Figure 7.2 - Comparison of modelled (o) with measured (®) shortwave radiative fluxes for
Profile 217. Radiative transfer calculations performed with M = 4, Rayleigh scattering,
absorption by ozone and water vapour, and scattering and absorption by Tropospheric and
Maritime aerosol models ‘of Shettle and Fenn (1979)! Root mean square errors of computed
. profiles given in inset. '
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E 3 .
while upward diffuse flux was insensitive to changes in water vapour profile. Errors in net
L]

flux followed those in downward flux.

Finally, calculations were performed with M = 4 and M = 8. Computed fluxes
showed little variation with M. Thus, M = 2 provided results almost as good as those with M
= 8. Individ:al differences were never larger than 20 W m-2, while largest differences in root
mean square errors never e;cceeded 4WmL Furthermore, no approximation was consistently
more accurate tha-n anot_her. The M = 4 aﬁproximation yielded the smallest D5 and Ny,
but has the largest U,n,g. These results justify the application of 8-Dy and are consistent with

results from Chapter Four.

2. Profile 254

This profile represents light to moderate Saharan dust conditions. Because of the
ambiguity of ‘lig,ht to moderate’, several values dust optical depth at A = 0.5 pym were
examined. Radiation calculations were made with 8- Do. One complication with this profile
was that latitute and longitude daté were lost during radio transmission. Thus, solar zenith
angle could not be evaluated exac‘tl)'(. This variable was approximated by using flight
summary information which indicated that the area being sampled was centred at 15° N and

~

19°W.

Mt mea;l square errors are summarized in Table 7.2 for dust optical depths at A =
0.5 p\m _'of 0.20 (0.05) 0.40. Table 7.2 indicates a dust optical depth of 0.3 represents the best
est_irhate of light to moderate dust conditions on this day. Root mean square errors increase in
going to smallef and larger optical depths for all fluxes, except upward diffuse flux which is
more accuralély estimated with increasing dust amounts, Errors for net flux generally

purallel those of downward flux, because the downward flux is much larger than the upward

diffuse Mux.
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Table 7.2

Root mean square errors (W m-2) for computed downward, upward,
and net shortwave radiative fluxes for Profile 254.

Dust optical depth Diins Ums = Nems Grins
atA = 0.5um -
e
0.20 21 13 27 21
0.25 17 11 - 22 18
0.30 * 17 9 20 16
035 20 B 21 17

0.40 24 6 24 \20\

*  Root mean square errors for downward and net fluxes are approximétely twice as
large as the standard deviations for these fluxes. However, the magnitude of root mean
square errors is approximately the same size as the uncertainty in the magnitude of the so

constant.

3. Profile 244

L)

Profile 244 was taken in a cloudy atmosphere. The cloud was identified as an
albocumt;lus cloud from aircraft photography. Two factors complicated the radiative tra_nsfer
calculations. First, there were no horizontal traverses. Rather, the aircraft followed an
inclined path. In the absence of 'data for horizontal paths, mean measured values were
obtained by averaging fluxes for a ten second period centred at selected levels below cloud.

Second, ambient and dew point temperatures were documented as unreliable from
the time the aircraft entered cloud-base. Cloud height was therefore determined from a

combination of aircraft photography and changes in downward flux at cloud top. The

estimated error in determining cioud top height in this manner is 50 - 100 m.
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Computed downward flux (Figure 7.3) agrees cloéely with measured values at
*

cloud-top. Largest differences occur at cloud-base and the level immediately beneath, while
. &

agreement improves at lower levels. Dypg is = 1.5 times as large as average standard

" deviation downward flux. But it is large primarily because ‘of the large disagreement near

cloud-base. Except for cloud- base and 720 mb levels, computed down ard fluxes are within

t1 standard deviation of mefsured values at all levels. Measured downward flux increases

- as the surface is approached. This is due to breaks in cloud, which §-Dy cannot 12commodate.

In addition, there was some very thin brokeirstsatus clouds near 870 mb which accoun\s for
the larger standard deviation at this level. Thgse are feaiiurés which 8-Dy cannot
accormnmodate. ' o .

Computed upward flux below cloud level is underestim:ted at all levelf_,/f'h‘is may
be due to neglect of Saharan dust. Although described as a relatively dust-free t'iay, aircraft
photograpfxy did indicate presence of some dust. In addition, some of the error may be
attributed to inclined flight path and non- uniform cloud and broken cloud at 870.mb.

It is difficult to compare these results with those of Slingo et al. (1982) and Schmetz
et al. (1981)-8s these authors had cloud droplet data and a more uniform cloud cover.
Computed room mean square errors {from their graphs) indicate root mean square errors ~ 50

-60 Wm-2 smz;ller than those obtained for Profile 244, Comparisons between these two sets of

results is ‘ot straightforward, however, because these authors applied a number of

~approximations whose errors are unknown. For example, Slingo et al. (1982)sperform

radiative transfer calculations for a common time, whereas fluxes correspond to solar zenith -
. b

0 ~“ J . o
angles at each flight level in this study. Perhaps the best that can be stated at this point is

that model clouds yield flux errors that are”approximately twice as large as those obtained

-

with mcasured cloud microphysical data.
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. ~ )
Figure 7.3 - Comparison of modelled (o) with measured (®) shortwave radiative fluxes for

Profile 244. Root mean square errors of computed prafiles given in inset.

represent mean measured +1 standard deviation.
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4. Profile 223
Profile 223 is the most complex profile in ten:ns of atmaospherie compositio‘n. A deep
(575 mb - 880 mb) flow of dusty Saharan air surmounted thin stratocumulus approximately
112 m thick. An intense temperature inversion separated oceél:nic from Saharan air (Figure
7.1). The top of tiuz Saharan air was identified by a very weak temprature inversion at 575
mb. This was corroborated by aircraft photography, which indicated large visibilities.
| Flight summaries described atmospheric conditions as very dusty. A dusAt optical
depth of 0.6 &wice the light to moderate dust conditions for Profile 254) was selected. Cloud
optical depths range from 7 - 8 based on liquid water contents.
Resul&; are shown in Figure 7.4. Despite the complexity of atmospheric

composition, root mean square errors are < 100 W m-2, Downward flux is reasonably well

estimated throughout the haze layer and at cloud-top and base and is within or slightly larger .

" than one stahdard deviation of measured downward flux at all levels. The one exception is
the lowest level. Aircraft photography revealed a very non-uniform cloud and this was

substantiated by large standard deviations of measured downward flux below cloud and

S

measured upward flux above cloud. In these cases the ratio of standard deviations to mean
values rang.es from0.2t00.5." k

Despite the relatively good agreement for downward flux, computed upward diffuse
fluxes are ~ 100 W m-? in error in the dust layer. Flux estimates are within or close to one
standard deviation of measured values from slightly above cloud level to the Earth’s sur’facc_e,
suggesting cloud optical depths are approximately correct. Much larger dust optical del;ths
would be required to bring computed upward diffuse flux into better agreement with
measured values. However, downward fluxes would then be underestimated. Possibly,

corrections to both cloud and dust optical depths are required to resolve thése differences. Or,

underestimates may arise because a Henyey-Greenstein phase function has been used. It is

~

4

Y
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P
Figure 7.4 - Comparison of modelled (o) with measured (®) shortwave radiative fluxes for
Profile 223. Root mean square errors of computed profiles given in inset. Error bars
represent * 1 standard deviation’of measured values. ‘
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known that the Henyey-Greenstein phase function differs from the Mie phase function ‘
primarily in the backward hemisphere and resembles a highly absorbing Mie phase function.
A furt.her. possibility is spatial variations in dust content. Carlson and Caverly (1977) have
shown that dust concentrations vary by up to an order of magnitude in the horizontal. A
further possibility is'that Saharan dust particles are non-sphe‘rical with a large scattering in
the backward direction. It is interesting to note, however, that Slingo et al. (1982) report
differences of ~ 100 W m-2 between modelled upward diffuse flux and-measurad diffuse flux
above clodd while using observed cloud dro-plet distributions.

Net flux is, like the downward flux, reasonabl.jr‘well estimated, except in the dust
layer where it is overestimated. Thisrl/because estimated upward flux is largely
underestimated, while t.}_le downward flux is nearly correct. Thus, net flux is overestimated
by ;approximately the same amount upward’ dif_'fuse fluxes are underestimated. ‘However,
cloud absorptivity, calculated by normalizing the difference between net flux at cloud-top and
cloud-base by the downward flux incident at ploud-top,ﬁag‘rees well with measured cloud
absorptivity:. 0.16 (computed) compared to 0.17 (measured). This comparison alse
demonstrajes that measured cloud absorptivity is not signiﬁ;:;antly larger than estimated
cloud absorptivities as four.md by previous authors (Stephens et al., 1378).

It is difficult to estimate what the profile root mean square errors (Figure 7.4)
would have been if cloud and dust particle distributions had been measured. An estimate was

[

made by comparing the ratio of profile root mean square errors to mean standard deviations
for Profile 223 and the same quantity for the C-130 Profile C of Slingo e‘g al. (1982). Although
thege authors do not provide root mean square errors, these quantities may be determined
{rom their graphical results (Slingo et al., 1982, p. 848).

These ratios were equuted with root mean square error for Profile 223 being the

only unknown. For the downward flux, Dre = 16 W m2 while Uypg = 30 W m-2. Thiy
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represents a reduction of ~ 60 W m-2 for downward and upward profile root mean square
errors. Or, stated slightly differéntly, modelled cloud and aerosol number size distributions_
increase root mean square errors by ~ 60 W m-2 above what might be expected if measured
distributions had been used. .
However, this result must be accepted with caution. First, Slingo et al. (1982)
average their measured radiation profiles. Therefore, values of Dypmg and Upng for individual
_profiles are likely to be larger. ‘This would have the effect of reducing the 60 W m-2. Second,
there are major differences between 5-Dy and the Slingo et al. (1982) radiation model.

v
Differences as}arge as three percent in absorptivity are shown in Table 6.5, for example.

g
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CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

The primary objective of this study was to develop and test a numerical algorithm,
termed 8-Dy, for computing shortwave radiative fluxes in vertically inhomogeneous
atmospheres. Each component of §-Dy has been analyzed to minimize computer tilne
requirgment,s, to provide accurate flux estimates, to determine moc_iel limitations and, whete
possible, implement procedures to (_:ircum'vent limitations. _ /

The homogeneous §-Dy componegtincludes the §-M method (Wiscombe, 1977b) for
phase function truncation and shifted-Legendre discrete ordinates to solve the radiative
transfer equation for a homogeneous layer. The 6-M method provides two major advantages.
First, it reduces the asymmetry of cloud and aerosol scattering. Therefore, fewer terms are
required for phase function approximatifm and the order of matrix operations is reduced.
Second, numerical ill-conditioni;lg problems arise when eigenvz;lues — 0. The §-M method
transforms @ and g to much smaller values (éspccially for low orders of approximation) ltor
which the magnitude of eigenvalues increases. Thus, numerical ill-conditioning problems.are
reduced.
B Of four metﬁods for solving the radiative transfer equation for a hpmogeneous
layer, shifted-Legendre discrete ordinates performs best. All four methods prpvidc-
approximately the same level of accuracy for asymmetric scattering, as suggested by Lenoble
(1977i. Accuracy imprgves only marginally for less asymmetric cases, except shifted-

Legendre discrete ordinates which becomes much more accurate for small values of w and g.

. This is important because the §-M method trunsforms w and g to smaller values. Therelore, to

A
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be effective, the method which solves the tr;nsfer equation‘ must per[orxm well for small
valuesofwand g.

- Accuracy of spherical harmonies 1s similar to the diserete ordinates method but
requires more computer time. This is because it is pr;vssible to reduce the order of the
eigenvalue problemm in discrete ordinates by one-half, but a similar reduction has not been
found for spherical harmonies. Also, considerably more computation is required to bring the
L_ransfer equation into standard form in spherical harmonif:s.

Reductions in computer time requirements and improvements in accuracy are
obtained by reducing the order of matrix operation‘g, where possible, and replacing quasi-
analytical expressions for algebraic operations such as eigenanalyses employed by previous
authors with fast and efficient subroutines. The QR algorithm was found to be superior to
classical met.hods for evaluating eigenvalues and eigenvectors. :

A block-tridiagonal algorithm for solving the sparse system of linear equations (e.q.
[78]) provides both efficiency and accuracy, even for problems where other algorithms
experience difficulty. Positive fluxes are obtained even when diffuse fluxes are many orders
of magnitude smaller than the incident radiation, In addition, the block-tridiagonal selution
requires far fewer computations, in comparison to other algorithms, when radiative fluxes are
required for the same atmosphere but new: boundary (ag and pg) conditions. This makes 8-Dy
part-icularly well-suited for repetitive calculations.

- i

The multi-spectral component of §-Dyy avoids numerical problems associated with
exponential sum-{itting of radiative transmissions technique by implementing a procedure
hased on distribution of gaseous absorption coefficient. Chou and Arking's (1981; wing scaling
approximation (and line-by-line calculations) 1s adopted for absorption by water vapour,

while distribution of ozene absorption coefficients are determined from low resolution

(20 cin-!) transmittance modeél (LOWTRAN 4) of McClatchey et al. (1974). Tests of both

+

/

|
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parameterizations demonstrate excellent agreement with line-by-line calculations (for water
vapour) and Braslau and Dave's (1972) benchmark radiative transfer calculations.
Computational shortcuts are also included when spectrally integrated fluxes only are desired.
Ozone and water vapour are the only gaseous absorbers considered in thé 5-Dy method.
However, the c0mbineQb50rption by these two géses accounts for almost all gaseous
absorption. Moreover, the two non-absorbing bands could be easily modified to include
abrerption by SO, and NO, and similar gases (at visible wavelengths) and water vapour or
oxygen (at near infrared wavelengths) when data on absorption coefficients become available.

Nurﬁerical tests have revealed one limitation of 8-Dyy. This case arises when (At) —»
0 (i.e. A — 0, or =— 0 or both). Thisdifficulty can be circumvented in practical applications by
including backgrc-mnd aerosol models wl;ich are slightly absorbing, thereby decreasing w
slightly and increasing tslightly. For problems examined in this study, this proced-ure incurs
errors of approximately 10-2 W m-2,

. Chapter Seven applied S-DM to compute short»;'ave fluxes (tot&i downward, upward
diffuse and net) in a tropical atmosphere. Since cloud and aeroscl microphysical data were
not measured on these occasions, model approximationsxwere_ used. Laréest differences (80 -
100 W m-2) between measured and modelled flux estimateé were observed for cl;}ud cases.
These differences reflect difficulties in accurately determining cloud thickness and liquid
water content and the n.on-uniform nature of clouds.

In cloud-free but hazy conditidns, root mean square errors ranged between 6 and 27
‘W m2 which {s approximately the uncertainty in the value of the solar constant. For
‘cloudless and dustless conditions, where atmospheric composition can be specified reasonably
well, root mean squgre errors ranged btween 3 and 10 W m-2, which is‘less than the absolute

accurgacy of radiation ins{trumcnts in level flight (Slingo et al., 1982),
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. Comh;dson of results from this study with a similar study by Slingo et al. (1982)
suggests the error of using model clouds to determine optical parameters and inaccurately
specifying cloud thickness and liquid water content amounts to approximately 60 W m-2,
which is more than one half of the profile root mean square error. This clearly demonstrates
the need for better parameterizations of cloud optical parameters and methods of determining
cloud physical Parameters. For model atmospheres, where atmospheric constituents are
prescribed, the Delta-Dy method may be expected to furnish accurate estimate- of radiative

fluxes, albedos and heating rates.



APPENDIX A - NOTATION

Var?iables are dimensionless, except where noted.

UPPER CASE ROMAN

/
t
A coefficient matrix for eigenanalyses and linear systems
’ of equations
Ap - coeflicient matrix for particular selution
Ca ) aerosol concentration
Drms root mean square error of computed profile of
’ downward (direct + diffuse) shortwave flux
Fa downward diffuse shortwave {lux
Fr total downward (direct + diffuse) shortwave flux
Fy upward diffuse shortwave flux
F* net shortwave flux
Gema grand root mean square error
&A absorptivity grand norm ,
ég reflectivity grand norm
I diffuse intensity )
I,(4) . spectral solar constant
Tn(x) homogeneous solution in spherical harmonics method
In(x,p) homogeneous solution in discrete ordinate method
I(c) particular selution in spherical harmonies solution
I(c,p) particular solution\'in,disci'ete ordinate method
J source function in radiative tr{:tljxsfcr equation .

M order of phuse function approximation

cm-3

Wm-2

" Wm-2sr-1

Wm-2

Wm-2sr-1



-

Qexi(x)

S(x)

n.

-’-——\\-—

k th downward moment of radiative intensity
k th upward moment of radiative intensity

number of intervals into which a gaseous absorption
band has been sub-divided

root mean square error of computed profile of net
shortwave flux

Legendre polynomial of order

performance index (IMSL subroutine EIGRF) for
eigenanalyses

Mie extinction efficiency factor

matrix containing eigenvecto

direct-beam flux at optical deptl't
temperature
standard temprature (273.15 K)
referex}ce temprature

average radiative transmission function for
spectral interval Av;

root mean square error of computed profile o
upward diffuse shortwave flux

liquid water path \

LOWER CASE ROMAN
atmospheric absorptivity

matrix of right-hand-side vectors in l’ﬁnear system
of equations Ax = b

vector of constants from ecigenanalyses

specific heat of air at const.mt pressure
(1004 J K-lkg1)

fractional scatlering in the forward peak

usymmetry factor

122

Wm-2

J K-lkg !



n{r)

P
Po

Pr
p(p,dip’,d")
Pl,p,p')
p*{cos )

q

gravitational acceleration
bulk asymmetry factor

absorptivity norm

reflectivity norm

spectral gaseous absorption coefficient

(a) ozone

(b) water vapour
integer constant ( = M/2)

* {a) integer constant (Chapter Two, section C)
(b} number of layers into which atmosphere has

been sub-divided

number-size distribution of aeroseol or cloud

particles

atmospheric pressure

standard atmospheric pressure {(1013.25 mb)
reference presspre

scattering phase fpnction
azimuthally-averaged phase function

scaled (8-M method) phase function

specific humidity

(a) atmospheric reflectivity
(b) particle radius

(a) atmospheric transmissivity
{h) scaling parameter (wing scaling approxtmation) .

(c) time

ozone amount

wilter vapour wimount

scaled water vapour amount in wing scaling

approximatjon
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ms-2

(atm-cm)-1
g lem?2

z

mb
mb

mb

kg kg-1

um

{atm-cm)
gem-2



'B
£d,0.5

t,{A)

‘R

o

e

{(a) cloud liquid water content _

(b) weight functions for Gaussian quadrature,
exponential sum-fitting of transmissions
technique, and wing scaling approximation
matrix of unknowns in linear system Ax = b

Mie size parameter ( = 2nr/A)

layer depth

LOWER CASE GREEK
vector of constants from particular solution
surface albedo /
Dirac delta function
Kronecker delta fnction
zenith angle
zenith angle of solar beam
diagonal matrix containing exp(};t)
wavelength (no subscript)
eigenvalues (subscripted)

(a) p=cos B .
{b) abscissas for Gaussian quadrature
He = cos B,

shortwave radiation incident at the top of the

atmosphere normal to the direction of incidence

optical depth
scaled (8-M method) optical depth
bulk optical depth

Saharan dust optical depthat ¢ = 0.5 pym

spectral Rayleigh optical depth for atmospheric

column (surface to top of atmosphere)

spectral Rayleigh optical depth for a given layer

gm-3

km

radians

-radians

pm

L
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wg

spectral cloud optical depth

azimuth angle

azimuth angle of the solar beam

phase function moments

scattering aﬂ‘gle

single scattering albedo

- scaled (6-M method} phase function moments

scaled (6-M method) single seattering albedo

bulk single scattering albedo

o

-
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) * R Yo APPENDIX B

A

. : . ’ . . )
+ %LING RELATIONSHIPS IN THE DELTA FUNCTION APPROXIMATION

- The §-M method (Wiscombe, f?é?'?b) is a major refinement of the delta function
) . ‘ . - .
3 approximation for phsse function truncation'ix:troduced by Potter (1970). In application, the .

. 5-M metho\ consists of a set of scaling relations for optical depth, singlgAcattering albedo, and

phase function moments. These scaling relations are derived in this appendix.
The Dirac delta functx‘on approximation consists of approximating the phase
v A i L\ )
" function as: X
' plcos yg) = Ab(1-cos yg) + p2.a(cos iy, [B1]
Sl
where § is the Di’rac deld {;;rnction and p'2.4 (cos y,) is the truncated phase function (i.e.
~ ’ ’
without t{e diffractiqn peak). A isthe amount of truncation:
A} . .
‘ +1 _’/ ' *
- ' e Wdf [B2]
X A= [fl}{p(cosqxs)- Py A(costps)}d(oosq:a) _
— . . ¥ ‘
When the phase function is normalized to unity, integration of the phase function
¢ - .
' overazimuth angle yig'lds
" d +1 . . ’
-/ J‘ pleosy )d(cos )= 2 ~ - (B3]
From eqs’¥R2] and [B3) t-he\é;mcafed phase fuhction is normalized to:
+1 T ‘ S
‘ L Py alcosw Jdlcos )= 2- A (B4l
l-l - - 1 +
The subscript (2-A) on p'y.5 (cos yg) emphasizes this normalization.
Potter (1970) notes that while the delta fultction approximation could be
substiﬁ:te‘rd into the transfer cqual.icg& much better approach is to treat the radiation which
: Ao |
has been scattered inta the forward peak by the delta function as not having b:ccn scuttered at
- _ f .
v .
-
N\ ‘S | NN 126 \
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all. Then, only optical depth and single scattering albedo need to be scaled by the amount of
truncation.

The fractional truncatioRis:

K ) 1

+1 . .
I_l {p(cosy ) — p,_ A(cos:ps)} d(mstgs) A , (BS]
5 .

+1 .
[ plcosiy) d(cosy)
1

" Letting o denote the total amount of radiation scattered by plcos wg), and k the amount
absorbed, the amount of radiation sca\tered by p's. s (cos wy,) is given by:
o' =(1-Ho ) [B6]

From the definition of single scattering albedo:

-

g

m_:

- . B
K+ 0 :

the sc;ztled single scattering albedo w' is @’ = o’k +0'). w' can be expressed in terms of w as:
- o' = o(1-H/(1-0h ‘ (B8}

Eq. [B8] is obtained by forming the ratio (w'/w) and substituting (1 — o for o’ in the definition
) ¢

- -

ofw'. .

!
The scaling relation for optical depth is obtained by substituting ¢’ in the definition
for op,'tical depth:
- ‘ . 22 . . ‘
= (x+ aXdz . .=
. .
1
: T d=(l-edt (BS]

where t’ is the scaled optical depth.
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APPENDIX C - SPECTRAL SOLAR CONSTANT

Solar irradiance I5(A) (Wm-2) at mean Earth-Sun distance. A (pm) indicates bandcentre.
Bandwidths: 0.0l pmfor0.2 <A < 1.0um; 0.l pmfor 1.0 S A = 6.0 ym; 1.0 pymfor5.0 = A =
30.0 um; and 10.0 pm for 30.0 < A < 100.0 pm. Slikhtly modified from Labs and Neckel
(1969). '

A T4 A I\ A () A ()
0.200 0.16 0.585 18.27 0.965 7.89 4.45 0.585
0.205 0.16 0.595 17.81 -0.975 7.73 4.55 0.538
0.215 0.38 0.605 17.58 0.985 7.56 4.65 0.494
0225  0.56 0.615 17.22 0.995 7.39 4.75 0.456
0.235 0.55 0.625 16.74 1.05 66.10 4.85 0.421
0.245 0.861 0.635 16.53 1.15 53.99 4.95 0.389 {
0.255 0.88 . 0.645 16.14 1.25 44.73 55 ° 2.580 ~
0.265 1.63 0.655 . 15.20 1.35° 37.43 6.5 1.370
0.275 1.80 0.665 . - 15.55 1.45 31.86 - 1.5 0.775
0.285. 2.78 0.675 15.16 1.55 27.28 8.5 . 0.472
0.295 : 0.685 14.89 1.65 22.79 9.5 0.305
0.305 0.695 14.50 1.75 18.63 10.5 0.205

. 0.315 0.705. 14.16 1.85 '15.29 11.5 0.142
0.325 4 0.715 13.85 1.95 12.69 12.5 0.101
0.335  9.16 0725 = 13.56 2.05 -10.64 13.5 0.0751
0.345 9.10 0735 . . 13.16 2.15 . 8.96 14.5 0.0564
0.355 9.65 0.745  12.84 - 225 7.59 15.5 0.0432
0.365 10.69 0.755 12.65 235- - 6.48 16.5 0.0335
0.375 10.57 0.765 12.36 2.45 5.58 17.5 0.0261
0.385 9.60 0.775 12.07 2.55 483 18.5 0.0212
0.395 11.51 0.785 11.83 2.65 4.19 195 00172
0.405 16.56 0.795 11.61 2.75 - 365 20.5 0.0143
0.415 17.25 0.805 - 11.36 2.85 3200 215 0.0118
0.425 16.83 0815 11.04 295 — 281 22,5 0.00982
0.435 16.95 0.825 10.75 3.05 2.48 23.5 « 0.00828
0.445 19.54- .0.835 . 1051 3.15 2.19 24.5 0.00700

T 045 20.33 0.845 10.06 3.25 1.94 25.5 0.00597
0465 © 20.12 » 0.855 , 98 = 335 1.73 26.5 0.00511
0:475 - 20.14 0.865 9.68 3.45 1.55 27.5 0.00442
0.485 19.12 0.875 9.47 3.55 1.39 28.5 0.00382
0.495 19.80 0.885 9.24 3.65 1.25 29.5 0.00334
0.505 19.25 0.895 9.20 3.75 1.13 35 0.01800
0.515 .18.53 0.905 8.98 3.85 1.02 45 0.00643
0.525 18.80 0.915 8.74 3.95 0927 55 0.00285
0.535 19.39 0.925 8.57 4.05 0.842 65 0.00146
0.545 18.77 0935 - 841 4.15 0.768 .75 , 0.00082

“0.555 18.61 0.945 8.23 4.25 0700 85 0.00050
0.565 18.48 0.955 8.06 4.35 0.640 95 0.00032
0.575 18.53 :

Py



APPENDIX D

BAND LIMITS, INCIDENT RADIATION, WEIGHT FUNCTIONS, AND

ABSORPTION COEFFICIENTS FOR SPECTRAL AND INTEGRATED 8-Dy MODELS

A. SPECTRAL 8-Dy

Incident Radiation

Band Spectral Limits Absorber
© (pm) Wm-2
1 0.2-0.37 73.59 QOzone
2 © 0.37-0.43 82.32 None
3 0.43-0.77 573.53 Ozone
4 0.77-0.862 101.03 None
5 0.862 - 1.04 143.65 Water vapour
6 1.04-1.22 102.6 Water vapour
7 1.22-1.587 127.449 Water vapour
8 1.587-2.273 98.08 - Water vapour
9 2.273-3.846 46.92 Water vapour
Band Interval Weights, w Absorption
o . Dimensionless - Coefficients, k
1 L1 0.27640" 0.002 (atm-cm)-!
2 0.24813 " 0.0467
3 0.20424 0.7772
4 0.076505 7.4744.
5 0.075010 23.885
6 0.045387 72.154
7 0.074331 219972
2 1 1.000000 0.0
Ay
o3 1 0.177449 0.00509968 (atm-cm)!
2 0.634762 0.0445865
3 0.187788 0.1151237
1 1.0 0.0

129
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0.15838\)

1 0.26470 1.92013E-5 glem?
2 0.12356 1.41254E-4
3 0.10847 1.03913E-3
4 0.18920 7.64416E-3
5 0.26470 5.62341E-2
6 0.26470 4.13685E-1
7 0.03139 3.04320E +0
8 0.00814 2.23872E +1
9 0.00128 1.64691E +2
1 0.15084 1.99526E-5 gl cm?
2 0.06563 1.58489E-4
3 0.16219 1.25893E-3
4 0.23036 1.00000E-2
5 0.21569 7.94328E-2
6 0.12221 6.30957E-1"
7 0.04000 5.01187E +0
8 0.01066 3.98107E +1
‘9 0.00242 3.16228E +2
1 £ 0.19804 2.23872E-5 gl em?
2 0.11923 2.23872E-4
3 0.11451 2.23872E-3
4 0.12298- 2.23872E-2
5 - 0.18043 2.23872E-1
6 . 0.165p3 2.23872E +0
7 0.07630 2.23872E +1
X 0.01967 2.23872E + 2
9 0.00381 2.23872E+3
1 0.24605 2.23872E-5 g1cm?
2 0.15210 2.23872E-4
3 0.16579 2.23872E-3
4 0.12389 2,23872E-2
5 0.10534 2.23872E-1
6 0.12315 2.23872E +0
7 0.06101 2.23872E + 1
8 0.01785 2.23872E +2
9 0.00481 2.23872E +3
1 0.02492 2.23872E-5 gl tm2
2 0.05346 2.23872E-4
3 0.12510 2.23872K-3
4 0.18714 2.23872K-2
5 0.20126 2.238726-1
6 2.23872K+0
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7 0.15163 2,23872E+1
8 0.07317 2.23872E+2
9 0.02494 2.23B72E4+3
B. INTEGRATED §-Dy
Band Spectral Limits Incident Radiation Absorber
(pm) W m2
1 0.20-0.83 799.1 Ozone
2 0.83-3.80 550.7 Water vapour
Band Interval ‘ Weights, w Absorption
\ Dimensi_onless Coefficient, k
1 1 0.1889376 0.0 (atm-cm)-!
2 0.1530344 0.0046545
-3 0.4792264 0.0453514
4 0.1350144 0.1151237
5 0.0188087 0.8960393
6 0.0070454 5.371737
7 0.0069078 21.22268
8 0.0041797 67.33543
g 0.0068452 221.0945
2 1 0.2081286 2.23872E-5 gl em?
2 0.1281448 2.23872E-4
. 3 0.1652784 - - 3872E-3
4, 0.1788882 2.2B872E-2
, 5 F 0.1538072  ~ 53872E-1
6 N 0.0991907 2.23872E+0.
7 00475173 2.23872E+1
8 \/0.0150750 22387T2E+2 - )
9 0.0039158 2.23872E +3 i
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\

TEMPERATURE AND.HUMIDITY DATA F-‘OR THE TROPICAL ATMOSPHERE

Height
(lem)

WO -JM U aWwN =~ O

Pressure
{mb)

1.013E + 03
9.040E + 02
8.050E + 02

7150E+02 -

6.330E + 02
5.590E + 02
4.920E + 02
4.320E +02
3.780E+02
3.290E +02
2.860E + 02
2.470E + 02
2.130E+02
1.820E + 02
1.560E + 02
1.320E +02

1.110E+02"°

9.37T0E +01
7.890E 4+ 01
6.660E +01

. 5.650E+01

4.800E +01
4.090E + 01
3.500E +01
3.000E +0b

'2.570E +01
© 1.220E +01

6.000E + 00
3.050E +00
1.590E ¢ 00

-8.540E-01

5.790E-02 _
3.000E-04

{McClatchey et al., 1972)

Temp.
(K)

300.0
294.0
288.0
284.0
277.0
270.0
264.0

257.0 .

250.0r
244.0
237.0
230.0
224.0
217.0
210.0
204.0
197.0
195.0
199.0
203.0
207.0
211.0
215.0
217.0

219.0

221.0
232.0
243.0
254.0
265.0
270.0
219.0
210.0

\6’%

N

Density
(g m-3)

8.758E + 02
. 3{961E+02
-4 199E+ 02

6.501E+02

5.855E + 02

5.258E + 02

4.T08E +02

4.202E +02

3.740E + 02

3.316E + 02

2.929E + 02

2.578E + 02

2.260E + 02

1.972E +02

1.676E +02

1.382E + 02

1.145E +0

9.515E+01
7.938E +01

6.645E + 01

5.618E+01

4.763E +01

4.045E+01 -

1.831E+01
8.600E + 00
4.181E + 00
2.097TE+00
1.101E +Q0
9.2108-0
'5.000E-04

1.167TE+03
1.064E+0
9.683% 2

Water Vapour
(g m3)

1.9E+01
1.3E+01
9.3E+00
4.7E+00
47E+00
1.5E+00
8.5E-01
4.7E-01
2.5E-01

12E-01

5.0E-02
1.7E-02
6.0E-03

‘1.8E-03

1.0E-03
7.6E-04
6.4E-04
5.6E-04
5.0E-04
4.9E-04
4.5E-04
5.1E-04
5.1E-04
5.4E-04
6.0E-04
6.7E-04
3.6E-04
1.1E-04
4.3E-05
1.9E-05
6.35-06
1.4E-.07
1.0E-09

-

Ozone
(g m3)

5.6E-05
5.6E-05
5.4E-05
5.1E-05
4, TE-05
4.5E-05
4.3E-05
41E-05
3.9E-05
3.9E-05
3.9E-05
4.1E-05
4.3E-5

4.5E-05
4.5BE-05
4.7E-05
4.7TE-05
6.9E-05
9.0E-05
1.4E-04
1.9E-04
2.4E-04
2.8E-04

'3.2E-04

3.4E-04
3.4E-04
2.4E-04
9.2E-05
4.1E-05
1.3E-05
4.3E-06
8.6E-08
4.3E-11
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