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ABSTRACT

This stu~y descrihes the development and application of t~e Delta-D\I method for

eomputlOg ~'\t"'dve r'ld.tat"e fluxes. pla""l,~~y albedo. ,lOd heattn" rates tn verttcall,

inhomogencou\ atmospheres Dclta-D\t was designed-to minimize computer time

... ~.. "requirements, turnish accurate nux estimates, and) permit a wide range of shortwave
. '. .----/

radiative transfer problems,to be studied. Phase function approximation is variable and there

is no restriction on either the number of layers into which the atmosphere may be divided or

on composition of individual layers.

The Delta-DM algorithm is based on the discrete ordinate method for solving the

radiative transfer equation and includes severarmajor. refinements: (i) replacement of Gauss-
- .

Legendre quadrature for the source' fu~ction with shifted-Legendre quadrature; (ii)

replacement of quasi-analytical solutions for eigenanalyses with fast, efficient subroutines

based on the QR algorithm; and (iii) inclusion of Wiscombe's o-Y! method for ph'ase function

truncation, Comparison of results with the doubling method indicate low order. '

approximations provide two to three significant digit accuracy for a large combination of

atmospheric optical parameters,

A block-tridiagonal algorithm is applied to solve the sparse sys~em of equations

defining monochromatic fluxes in a multi-layer atmosphere_ This approach is found to be

both efficient and accurate and makes Delta-DM particularly well suited for problems where

fluxes or derived quantities are desired for the Same atmosphere but different boundary

conditions.

Absorption of radiation> by water vapour and ozone is based on distribution of

absorption coefficients determined from line parameter data (Chou and Arking, 19B1) for

water vapour and low resolution transmittance model LOWTRAN4 (McClatchey et aI., 1974)

for ozone. Comparison of modelled heating rates with line-by-line calculations reveals

.,.,.
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maximum Cjrors in Delta-D\{ heatin~ rates of - O.02"C day·i. Companson of atmospheric

albedo and absorptivity, computed from Delta-D\l, with benchmark radiative transfer

~alculati()ns of Braslau and Da .... e [19721 demonstrates excellent .lgrcemcnt: maximum

differences are less tban three percent.

Delta-OM was applied to compu'te vertical profiles of downward, upward, and net

shortwave fluxes for a variety of atmospheric coriCiitions over the tropical lilorth,Atlantic

Ocean, Cloud droplet and ~erosol (Saharan dust) size distributions were not measured on

these occasions so that these parameters had to be prescribed, Comparison of estimated

fluxes with measured fluxes from aircraft traverses revealed root mean square errors of

estimated fluxes of less than 10 Wm-2 for cloudless, dust-free atmosphere; - 20 Wm·2 for

cloudless but hazy conditions; and - 75-100 Wm·2 for combined cloud-haze conditions.

Measured and estimated cloud absorption were in virtual agreement, The larger root mean

square errors for the cloud cases also reflect the difficulties of accurately measuring cloud'
.

thickness and cloud liquid water contents. Comparison ,with a similar study (Slingo et aI.,

1982) using measured cloud droplet distributions suggests that errors in estimating cloud

thickness, liquid water contents, and employing model clouds to determine <;loud optical

parameters, amount to approximately 60 Wm·2,
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CHAPTER ONE

INTRODCCTIO:,-/

Radiative transfer is central to a variety of atmospheric science problems which

range from numerical weather prediction (Lacis and Hansen, 1974) and global climate models

(Coakely et aI., 1983) to energy transfer in an urban atmosphere (Welch and Zdunkowski,

1976). These problems require calculations of the effects of atmospheric consituents on

J radiative fluxes and heating rates of the atmosphe~e and the radiation balance of the

underlying surface. Cloud effects are the most important since amounts and optical properties

vary greatly in time and ~p·ace.

Mathematical models of radiative transfer are derived from solutions of the

radiative transfer equation which relates radiative intensity to the optical (i.e. scattering and

absorbing) properties of the atmosphere. Analytical solutions have been obtained for simple

homogeneous atmosphere~ where the scattering process is isotropic, or nearly isotropic

(Chandrasekhar, 1960). Scattering of sunlight by clouds and aerosols is strongly asymmetric

and:in these circumstance~,the transfer equation can only be solved numerically.

Numerical solution of the radiatIve transfer equation for an atmosphere containing

arbitral'¥ vertical distributions of cloud, aerosol, and absorbing gases (the vertically

inhomogeneous atmosp~re) is complicated and time-consuming ~or three reas~ns. First, the

radiative transfer equat~n is framed in terms of the atmosphere's optical properties. Mie'.
theory, which is used to evaluate optical properties, requires large amounts ~f time on even

the fastest computers. Computing times are us~ally quoted in hours (e.g. Braslau and Dave,

1972).

,
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Second, clouds and aerosols represent atmospheric inhomogeneities. Almost all

numerical algorithms resolve these inhomogeneities I>~ subdividing' the atmosphere into

homogcnCOU:i layers WIthin which optical parameters 'arc. constant. A method of sotvtnE{ thf~

transfer equation for a homogeneous atmosphere is then applied to each layer while the fin~l

step involves solving a very large, but sparse, system of linear equations. There are two

problems here.

~10st techniques for solving the transfer .equation (for a homogeneous atmosphere)

reduce the transfer equation to a system of M ordinary, first order, linear differential

equations. M is the order of this system of equations and represents the number of terms used

to approximate the scattering process. Several hundred terms may be required to adequately
~...- . .

approximate asymmetric scattering, although most authors re~trict M to 2 S M S 2 But

even within this range, the (M x Ml matrix operations arc lengthy time-consuming, nd

susceptible to numerical ill-conditioning problems. Smaller values of ,such as two or four,

reduce computer, time requirements but may yield phy!;.ically meani ess results for certain

combinations of optical parameters and boundary conditions. Lio 3), for example,

obtained negative reflectivities when two and four term approximations wii1!n.-....,UIJ'!

radiative transfer calculations fo~ a quasi-conservative scattering atmosphere.

The second difficulty is solving the sparse system of equations. Bergstrom and

-.

Viskanta (1973), Liou (1976), and others, have solved this system by applying direct methods ,

which operate on the full cllefficient matrix (the order of this system is (nM) where n is the

number of layers into which the atmosphere has been subdivided). The order of this system

becomes large with moderate values otn,and M. Methods which operate on the full coefficient

matrix are not particularly efficient. 'Subroutines specially designed to solve sparse systems
....

of equations may reduce .computer time requirements, although, again, there is no guarantee

-,)
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that positive fluxes will be obtained for all combinatio'ns of optical parameters and boundary

•
c0r:tditions (Wiscompe, 1977a).

Third, gaseous (1i~e) absorption must be taken into account. This presents two

problems. The major difficulty is that gaseous spectral absorption coefficients are highly

variable. It has been common to resolve this line structure by subdividing the wavelength

~pectrum into spectral intervals across which the absofption coefficient is effectively

constant. Spectrally integrated fluxes would be evaluated by first computing n',xes for each

spectral interval and then summing over spectral intervals. A detailed sub-division of the

solar spectrum would require several hundred thousand spectral intervals. Computer time

~ ..
. requirements for such a line-by-line calculation would be prohibitive.

One method of circumventing a direct line-by-line calculation employed by several

authors (Liou and Sasamori, 1975; Stephens, 1978a; Slingo and Schrecker, 1981) is the

exponential sum-fitting or radiative transmissions technique. The basis of this technique is

that radiative transmission across an absorbing band may be represented as a sum of

decaying exponentials. Unfortunately, exponential sum-fitting is a classical ill-conditioned

problem of numerical analysis and methods which have been applied experience great

difficulty or fail altogether when more than two or three terms are sampled from the sum

(Wiscombe and Evans, 1977).

The second problem lies with the transmission data used in the fitting procedure.

The majority of authors employ transmittance data derived from laboratory experiments

using a uniform gas at fixed temperature and pressure (e.g. Howard et aI., 1956), or

broadband measurements of direct-beam solar radiation conducted in the field (e:g.,

McDonald, 1960). Chou and Arking (19821 observe that, in either case, calculation of

transmittance and/or transformation to other slant paths is not straightforward. There is just I


















































































































































































































































































