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Abstract 

The main topic of the thesis is the hidden Markov chain filtering for diffusions with 

jumps. The finite-dimensional filters are obtained for various statistics including 

the state of the hidden Markov chain. EM (Expectation Maximum) algorithm is 

then applied to the estimation of parameters of the hidden Markov chain. Based 

on some financial phenomena, we propose a model, called regime switching mean­

reverting with jump model, for an asset price or interest rate. We apply the filtering 

methodology to this model and obtain the estimator for the mean reverting level. 

Monte Carlo simulation is performed in estimating the parameters of hidden Markov 

chain. The numerical methods for stochastic differential equations which are used 

in diffusion with jump model are discussed. Some fundamental results on stochastic 

calculus and some basic methods on generating random variables and sample paths 

are provided. 
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Chapter 1 

Introduction 

In 1960, R.E. Kalman published his famous paper describing a recursive solution to 

the discrete data linear filtering problem. Since that time, the filtering problem has 

been the subject of extensive research and application. 

The filtering problem consists of estimating a stochastic process Xt, representing 

an unobserved signal, on the basis of the past and present observations {Ys : 0 ~ s ::; 

t} of a related measurement process Y. The information given by the measurement 

process up to time t is represented by the ll-algebra Yt generated by {Ys : 0 ::; s ::; t}. 

The solution of the filtering problem is the conditional density pXtlYt of the signal X t 

given the observation Yt. Such a solution in general takes its values in an infinite 

dimensional function space in an essential way, as proven in Chaleyat-Maurel and 

Michel [ll]. As a consequence, in general the filtering cannot be implemented by an 

algorithm which updates only a finite number of parameters, this means that there 

can be no finite-memory computer implementation. The important exceptions are 

Kalman filter, Benes [7J filter, Elliott [30J finite state hidden Markov models and 

Kouritzin [48], [49] convolutional approach. 
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We explain the idea of filtering by Kalman filtering. We consider a discrete linear 

example: 

X n+1 = AnXn + Wn n 2: 0, 

Yn = HnXn + Vn n 2: 0, 

where {Wn }, {Vn } are i.i.d. N(O, 1) uncorrelated sequences. We also assume that Xo 

is normally distributed and independent of {Wn }, {Vn }. We want to get the optimal 

estimate (linear, unbiased, minimum variance) Xn using {Yo, Y1,'" ,Yn}. Since Xn is 

determined using all data {Yo, Y1, . .. ,Yn }, the process is not really applicable to real­

time problems for large values of n, since the need for storage of the data grows with 

time. However under the above assumption, we get a recursive algorithm such that 

Xn = !(Xn- 1, ~n)' where ~n represents new information about X, when we obtain 

observation Yn , the new information means the part of Yn that is uncorrelated with 

Yl, 1'2,' .. ,Yn - 1. In Kalman filtering, we obtain this "new information" by Hilbert 

Space Projection. Until n -1, we obtain the optimal estimate of X by using the data 

{Yo, Yi, ., . , Yn-d, at n, and only use the incoming bit of the data information (new 

information) to correct the estimate of X so that no large storage of the data nor 

repetition of calculation is necessary. 

In the sixties, several authors such as Bucy [10], Kushner [52], Wonham [76], 

Duncan [27], Mortensen [61], Zakai [77] generalized the results of Kalman filter from 

linear system theory to non-linear dynamics. This is an essentially more difficult 

problem, being in general infinite-dimensional, but equations describing the evolu­

tion of conditional distributions were obtained. In the seventies and the eighties, 

Fujisaki, Kallianpur and Kunita [39], Kallianpur [45], Di Masi and Runggaldier [57], 
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Pardox [63] and Davis [20] also had theoretical work in this area. 

It is well-known that solving the non-linear filtering equation is difficult. In 1993, 

Elliott [30) utilized a finite state continuous time Markov chain instead of a gen­

eral Markov process state equation in the filtering problem, namely using finite state 

continuous time Markov chain instead of the stochastic differential equation. The 

replacement of the actual Markov signal model with a possibly-infinite-dimensional 

signal had been previously considered by the likes of Kushner [53] and Di Masi and 

Runggaldier [56]. However, the finite-dimensional assumption facilitates simple cal­

culation. 

Recently, there have been many works devoted to applying various particle meth­

ods to construct approximate solutions to the celebrated Duncan-Mortensen-Zakai 

equations. Among them, we would like to mention the improved refining interact­

ing particle filter by Del Moral, Kouritzin and Miclo [60J and the refining branching 

particle filter by Ballantyne, Chan and Kouritzin [3]. Kouritzin, Long and Sun [50] 

consider stochastic particle Markov chain approximation to the Duncan-Mortensen­

Zakai equations for nonlinear filtering problems on regular, bounded domains. These 

works are part of the most recent progress in the theory of filtering. 

Filtering techniques have been applied in areas as diverse as mathematical finance, 

target detection and tracking, communication networks, pollution tracking, weather 

prediction, traffic management, and search and rescue, and many others. Many pa­

pers and textbooks have been written on this subject since its inception in 1960. For 
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the most recent progress and development, we recommend the web site in [28]. 

Filtering problem is a huge field. In the following we will focus on the review of 

the filtering methodology used in the area of finance. These include bond market, 

commodity futures market, energy futures market, stock and option market, credit 

risk, and minimizing hedging strategy. 

In the last ten years, filtering techniques have widely been applied to the esti-

mation of increasingly complex financial models. There are four types of filtering 

techniques used in financial mathematics. 

1. Kalman filtering and Extended Kalman filtering. 

2. Non-linear filtering 

3. Hidden Markov chain filtering 

4. Quasi-maximum-likelihood approach combined with Kalman filtering. 

1.1 Kalman Filtering and Extended Kalman filter-. lng 

The linear filtering problem (Kalman filter) is relative to the following model (limited 

to I-dimensional, as the multi-dimensional version is a direct extension): 

dXt = F(t)Xtdt + C(t)dWt ; F(t), C(t) E JR., 

dY;, = G(t)Xtdt + D(t)dVi; G(t), D(t) E JR.. 

(1.1.1) 

(1.1.2) 

We assume that F(t), G(t), C(t), D(t) are bounded on bounded intervals. We also 

assume that Xo is normally distributed and is independent of {Wt}, {Vi}. Finally we 
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assume that D(t) is bounded away from 0 on bounded intervals. 

Usually, an observed equation (1.1.2) is called the measurement system; this sys­

tem represents the relationship between the observations {yt} and the state variables 

{Xt}. The second, unobserved system of equation (1.1.1) is termed the transition 

system; this system describes the dynamic of the state variables {Xt} as they were 

formulated in the model. Together, the measurement and transition equations rep­

resent what is called the state space form of the model. The Kalman filtering uses 

this state-space formulation to recursively make inference about the unobserved val­

ues of the state variables (transition system) by conditioning on the observed data 

(measurement system). As a final step, these recursive inferences are constructed and 

maximize a log-likelihood function to find the optimal parameter set. 

The application of Kalman filtering methods in the estimation of term structure 

models has been investigated by many authors. Pennacchi [64] was the first to use 

this approach in financial econometrics. Exponential-affine models are considered 

in Chen and Scott [12], Chen and Scott [13], Babbs and Nowman [2], and Duan 

and Simonato [26]. This approach is very useful in situations where the underlying 

state variables are not observable. According to these models, bond price is a func­

tion of the unobserved instantaneous spot interest rate and the model parameters. 

The measurement system represents the relationship between zero-coupon rates and 

instantaneous spot interest rates. The transition system describes that the instanta­

neous spot interest rate follows the exponential-affine term structure model. In this 
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setting, the Kalman filter is applied to obtain inference about the instantaneous inter­

est rate by conditioning on the observed market zero-coupon rates. The parameters 

are estimated by maximizing a log-likelihood function. 

Schwartz [70J applies the Kalman filtering methodology to estimate the spot price 

and the parameter of three models (one, two, three-factor) for commercial commodi­

ties. One of the difficulties in the empirical implementation of commodity price mod­

els is that the spot price for some commodities is hard to obtain. However futures 

contracts are widely traded in several exchanges and their prices are more easily 

observed. The futures contract closet to maturity is used as a proxy for the spot 

price. The measurement equation is obtained by adding uncorrelated disturbances 

with mean zero to take into account bid-ask spreads, errors of the observations in 

the observed futures prices. The unobservable state variables (spot price) satisfy the 

transition equation which is generated by a Markov process. When the disturbances 

and the initial state vector are normally distributed, the Kalman filtering enables the 

likelihood function to be calculated and the spot price to be estimated. 

Manoliu and Tompaidis [55] offer a general multi-factor model designed to account 

for the stochastic behavior of futures prices in energy market. They define energy fu­

tures prices in term of a spot price, not directly observable, driven by several stochastic 

factors. The spot price follows a generalized Ornstein-Uhlenbeck stochastic process. 

This formulation is well suited to the application of Kalman filtering techniques. They 

perform an empirical study of a one and a two-factor model for energy futures for 

natural gas based on the application of Kalman filtering techniques together with 
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maximum likelihood estimation methods. 

The extended Kalman filtering is applied in credit risk by Cumby and Evans [17J, 

and Claessens and Pennacchi [15J. They obtain the estimate of credit quality. The 

two approaches differ only in the update step. They treat credit quality as an un­

observed variable that follows a specified stochastic process. The bond values are 

nonlinear functions of the unobservable variable. They take the average of the bond 

bid and ask prices as the observation data with measurement noise. Thus, a modifica­

tion of the Kalman filter that considers functional nonlinearities, called the extended 

Kalman filter, is needed to obtain (approximate) maximum likelihood estimates of 

the model parameters. The extended Kalman filter uses the same recursive compu­

tational techniques as the Kalman filter, but linearizes the nonlinear function around 

the conditional mean of the state variables using a Taylor series expansion. 

Lund [54] considers a nonlinear relationship between the observed data and the 

unobserved state variables. The main examples involve prices of coupon bond, and 

nonlinear term structure models such as exponential affine models. They utilize the 

extended Kalman filtering to estimate these models. In a Monte Carlo study they 

investigate the finite sample properties of the quasi maximum likelihood estimator 

for two term structure models. Schnatter [38] works on the same models with [54}. 

Their approach is to approximate the true update density by a Gaussian density with 

the same mean and variance as the exact update density. The mean and variance 

of the exact update density are computed by numerical integration. Evidence re­

ported shows that this method is very effective to estimate a discrete-time log-normal 
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stochastic volatility model. 

1.2 Non-linear Filtering 

Volatility is probably the most important parameter in any financial model. Elliott, 

Hoekand and Valencia [33] consider the price process has dynamic St = St-l exp(/-L­

~ol +O"twi) but the volatility follows the logarithmic mean-reverting process log O"t = 

a + blog 0" t-I + Ow;. They use nonlinear filtering techniques to estimate volatility and 

the EM algorithm to calibrate the model parameters. 

Tsoi, Yang and Yeung [74] assumed the risk-free interest rate follows a jump pro­

cess and the stock price process depends on some underlying real variables. One 

example of the underlying is the market interest rate which is unobservable. In their 

paper, Cox-Ingersoll-Ross [16] model is used to model the market interest rate. They 

use counting process filtering technique to estimate the market interest rate from the 

information of the interest rate. Then they use the estimated value of market interest 

rate in their option price calculation. 

Zeng [78] proposed a general micro-movement model that describes the transac­

tional price behavior. The model is formulated as a filtering problem with counting 

process observations. In his paper, the filtering equations are derived. A theorem 

on the convergence of conditional expectation of the model is proven. A consistent 

recursive algorithm is constructed via the Markov chain approximation method. 
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Frey and Runggaldier [37J considered a market with a risky and a non-risky as­

set, and the price of the risky asset follows a stochastic volatility model. The paper 

describes an approach to determine a hedging strategy for an agent who has only 

incomplete price observations. Clearly, any reasonable strategy for this agent has 

to depend in some way on the unobservable latent state process. They obtain the 

risk minimizing hedging strategy under partial information by "projecting" the full 

information strategy onto the subfiltration. The subfiltration describes the available 

partial information that comes from observing the prices at the discrete random times 

where a trade occurs. To actually compute the projections onto the subfiltration, an 

important tool is the conditional distribution of the latent state process, given the 

available price observations. This leads to a filtering problem with counting process 

observations. It is an example of how filtering theory is applied in risk-minimizing 

hedging strategies. Such examples are rare in the literature. 

1.3 Hidden Markov Chain Filtering 

Hidden Markov models are playing a growing role in the discussion of stochastic 

phenomena. Filtering problems related to a finite state Markov chain are discussed 

in Elliott( [30}, [31]). In Elliott (30], they consider the process X t is not observed 

directly, rather there is a (scalar) observation process given by 

(l.3.1) 

here W = {Wt : 0 ::; t} is a standard Brownian motion which is independent of 

Xt· Xt, t 2': 0 be a finite state, continuous time, homogeneous Markov chain with 
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Q-matrix A. Therefore X t has the semimartingale representation: 

X t = Xo + it AXrdr + Mt , (1.3.2) 

where M t is a Frmartingale. They take equation (1.3.1) as measurement system and 

equation (1.3.2) as transition system and obtain the finite dimensional filters. El­

liott [31] is a discrete case of Elliott [30]. Recently, these results are used in financial 

mathematics, we describe the papers relative to this topic below. 

Elliott and Rishel [36] assumed a risky asset whose price at time t is supposed to 

satisfy an equation of the form dSt = St(Ptdt + o-dWt ) , where 0- is constant. Further 

they assumed that the implicit interest rate Pt behaves like a continuous time finite 

state Markov chain. A natural process to take as the observation process is the (nat­

ural) logarithm of the price St, the results of Elliott [30] are applied to determine the 

implicit interest rate of the asset Pt and other parameters which describe its behavior. 

A hidden Markov chain model with mean reverting characteristics is consid­

ered as a model for financial time series, particularly interest rates in Elliott, Fis­

cher and Platen [32]. They consider a two factor mean reverting model, dLt = 

,(l-lt - Lt}dt + ~dWt, where " ~ are constants and the unobserved mean reversion 

level It changes according to a continuous time finite state Markov chain. In this 

setting they apply hidden Markov filtering and derive a finite dimensional filter for 

the unobservable state of Markov chain based on observations of the mean reverting 

diffusion process. A number of auxiliary filters are obtained that enable the parame­

ters of the model to be estimated by EM algorithm. This is the first paper to consider 

a model for the short rate that is mean reverting to a stochastic level determined by 
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a Markov chain. 

Elliott, Hunter and Jamieson [34] uses the filtering techniques in discrete time 

model. They assumed that a price process in discrete time evolves according to the 

dynamics Sn+l = Sn exp(Pn + O"nWn) , where {wn}, n = 0,1,2, ... , is a sequence of 

i.i.d N(O, 1) random variables, and Pn and O"n behave like a finite state Markov chain. 

Filtering and parameter estimation techniques in Elliott [31] are then applied to ob-

tain the recursive estimates of Pn and O"n. Further, all parameters in the model can 

be estimated. Unfortunately this technique can not be used in continuous time to 

estimate the volatility. This is because the probability measures corresponding to 

diffusions with different diffusion coefficients (volatility) maybe come singular with 

each other. However in discrete time, this method will work. 

1.4 Quasi-maximum-likelihood Approach Combined 
with Kalman Filtering 

This method aries from the stochastic volatility (SV) model, the signal satisfies the 

AR (autoregressive), ARMA (autoregressive moving average) or GARCH (general­

ized autoregressive conditional heteroscedastic) model. A key feature of the basic SV 

models in (1.4.1) below is that it can be transformed into a linear model by taking 

the logarithm of the squares of observations. 
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A simple asymptotically stationary SV model is given by 

Yt 
ht 

Et exp( 2)' 

1+ ¢ht - 1 + rJt, 

(1.4.1) 

(1.4.2) 

where Yt is the mean corrected return on holding the asset at time t, ht is log volatility 

at time t, and Et is Li.d. N(O,l) and rJt is i.i.d. N(O,a2
). Et and rJt are uncorrelated. 

From (1.4.2), we have: 

(1.4.3) 

It is obvious that E; is X2-distribution. The mean and variance of log 13:; are known 

to be -1.27 and 7(2/2 = 4.93, respectively in Abramowitz and Stegun [1]. We rewrite 

the equation (1.4.3) into: 

log Y; = -1.27 + ht + ~t, (1.4.4) 

where ~t = logE; + 1.27 and var(~t) = 7(2/2. By treating ~t as if it were i.i.d. N(O, 

7(2/2), Harvey, Ruig and Shephard [43] considered equation (1.4.4) as measurement 

system and equation (1.4.2) as transition system, they employed Kalman filtering to 

estimate the unobservable log volatility, ht, and used the quasi-likelihood function 

to perform parameter estimation. This quasi-likelihood estimator is suboptimal as 

~t is poorly approximated by the normal distribution. (in this context see Ruig and 

Shephard [43], Kim and Shephard [46]). 

Although Black-Scholes model has been widely used to study financial deriva-

tives and the return of assets, many empirical investigations have suggested that the 

marginal distribution of the underlying assets has a higher peak and two heavier tails 
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than those of the normal distribution. Many authors, for example, Harrison and 

Pliska [42], and Harrison and Kreps [41], have extended the theory of asset price fol­

lowing Merton's [59] work, various models have arisen in financial mathematics such 

as stochastic volatility model and mean-reverting with jump model. Many authors 

have utilized the mean-reverting with jump model in interest rate and energy market 

(Das [18], Das [19], Dias [25]' Deng [24] and Kou [47]). However, recent study shows 

that while the mean reverting level changes have an important effect on prices pro­

cess (Hansen and Poulsen [40], Schlogl and Sommer [69]), the mean-reverting with 

jump model cannot explain more complex financial phenomena. We propose a type 

of model called regime-switching with jump model. In order that the model can be 

computationally tractable we choose the Poisson jump in our model, and the mean 

reverting level changes are governed by the continuous time finite state Markov chain. 

Based on this motivation, we first derive the hidden Markov chain filter for general 

diffusion with jumps in Chapter 4 , and then apply the result to the regime-switching 

model with jumps in Chapter 5. 

A more detailed outline of this thesis is as follows: 

In Chapter 2, we give a short presentation of stochastic calculus and its basic 

theory such as the generalized Ito formula, Girsanov's theorem, and Doleans-Dade's 

exponential formula which will be used in the following Chapter. Some basic con­

cepts and notation are also defined as our preliminary settings, although they can be 

found in some classic books. Some examples are provided to illustrate the use of these 

formula and theorems. In the last section, we apply nonlinear filtering to estimate 
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volatility. It is a simple extended version of Elliott, Hoek and Valencia [33]. 

In Chapter 3, we introduce some basic random generator methods which include 

generators of Bernoulli distribution, exponential distribution, Poisson distribution, 

and others. We also present continuous time finite state Markov process simulation. 

All of them will be used in Chapter 5 for simulation study. We write several com­

puter programs for several models including Brownian bridge process, and generalized 

Bessel process modulated by the Markov chain. We also extend the Milstein numer­

ical method for diffusion model to diffusion with jumps model. In addition, some 

numerical results are compared. 

In Chapter 4, we study the hidden Markov chain filtering for diffusion with jump 

model. We obtain recursive filtering for the latent states of the Markov chain, the 

number of jumps from one state to another, and the occupation time of the Markov 

chain in any state. The filtering equations are finite-dimensional and closed forms. 

We extend the EM algorithm to diffusion with jumps, and obtain the estimators of 

the parameters. 

In Chapter 5, we consider a type of mean reverting model with jumps, where 

the mean reverting level changes according to a continuous time finite state Markov 

chain. This type of models can be used for modelling an asset price and an interest 

rate. The filtering techniques developed in Chapter 4 are applied to this model. We 

derive a finite dimensional filtering for the unobservable state of the Markov chain 

based on observations of the mean reverting diffusion with jumps process. Various 
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auxiliary filters are developed that allow us to estimate the parameters of the Markov 

chain. Simulation is done for a concrete example. 
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Chapter 2 

Basic Theory 

In this chapter we will review some fundamental results on martingales and semi-

martingales and present some useful tools in stochastic calculus. These will include 

the generalized It6 formula, Girsanov's theorem and Doleans-Dade's exponential for-

mula. Some basic definitions and notation are also provided as our preliminary setting 

(for more details see Protter [65], Oksendal [62], Elliott [29], and Bremaud [8]). We 

will also give some interesting examples arising in financial derivatives such as diffu-

sion with jump model and stochastic volatility model. 

2.1 Basic Definitions and Notation 

We assume as given a complete probability space (0, F, P). In addition we are given 

a filtration (Ft)o::;t:s;oo' By a filtration we mean a family of o--algebras (Ft)o::;t:s;oo that 

is increasing: Fs C Ft if s ::; t. 

Definition 2.1.1. A filtered complete probability space (0, F, P, (Ft)o:s;t:s;oo) is said 
to satisfy the usual hypotheses if 
(i) Fo contains all the P-null sets of F; 
(ii) Ft = nu>tFu, all t, 0 ::; t < 00; that is, the filtration (Ft)o:s;t:s;oo is right continuous. 
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We always assume that the usual hypotheses hold. 

Definition 2.1.2. A random variable T: D ---t [0,00] is a stopping time if the event 
{T::'; t} EFt, for every t, 0 ::.; t < 00. 

One important consequence of the right continuity of the filtration is the following 

theorem: 

Theorem 2.1.1. The event {T < t} EFt, 0::'; t ::.; 00, if and only ifT is a stopping 
time. 

A stochastic process X on (D, F, P) is a collection of random variables (Xt)o::;t:Soo' 

The process X is said to be adapted if X t EFt (that is, Frmeasurable) for each t. 

Definition 2.1.3. A stochastic process X is said to be cadlag if it a.s. has sample 
paths which are right continuous, with left limits. 

Let (Tn )n2:0 be a strictly increasing sequence of positive random variables. We 

always take To = 0 a.s. Recall that the indicator function l{t2:Tn} is defined as: 

() 
{

I if t 2: Tn (w ) 
l{t>T} W = 

- n 0 if t < Tn (w ). 

Definition 2.1.4. The process N = (Nt)o::;t:Soo defined by 

Nt = L l{t2:Tn} , 

n2:1 

with values in N U {oo} (N = {O, 1,2" .. }) is called the counting process associated 
to the sequence (Tn )n2:1. 
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Set T = sUPn Tn, then the random variable T is the explosion time of N. If T = 00 

a.s., then N is a counting process without explosions. Note that for 0 S s < t < 00 

we have 

Nt - Ns = L l{s<Tn::;t}· 
n::::l 

The increment Nt - Ns counts the number of random times Tn that occur between 

the fixed times sand t. 

Theorem 2.1.2. A counting process N is adapted if and only if the associated random 
variables (Tn)n::::l are stopping times. 

Note that a counting process without explosions has right continuous paths with 

left limits; hence a counting process without explosions is cadlag. 

Definition 2.1.5. An adapted counting process N without explosions is a Poisson 
process if 
(i) for any s, t, 0 S s < t < 00, Nt - Ns is independent of Fs; 
(ii) for any s, t, U, v, 0 S S < t < 00, 0 S U < v < 00, t - S = v - U, then the 
distribution of Nt - Ns is the same as that of Nv - Nu . 

Properties (i) and (ii) are known respectively as increments independent of the 

past, and stationary increments. 

Definition 2.1.6. An adapted process W = (Wt)o::;tsoo taking values in Rn is called 
an n-dimensional Brownian motion if: 
(i) for 0 S s < t < 00, Wt - Ws is independent of Fs (increments are independent of 
the past); 
(ii) for 0 < s < t, Wt - Ws is a Gaussian random variable with mean zero and variance 
matrix (t - s )C, for a given, non random matrix C. 
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The Brownian motion starts at x if P(Bo = x) = 1. The existence of Brown-

ian motion is proved using a path-space construction, together with Kolmogorov's 

extension theorem. 

Definition 2.1.7. A process {Xt, t E T} is said to be a Markov process if for any 
increasing collection t l , t 2 , ... ,tn in T 

The finite-dimensional distribution of a Markov process {Xt, t E T} can be com­

pletely determined by the initial and transitional distributions. 

Definition 2.1.8. An adapted process X = (Xt)o::=;t<oo with Xo = 0 a.s. is a Levy 
process if 
(i) X has increments independent of the past: that is, X t - Xs is independent of FSl 
o ::; S < t < 00; 
(ii) X has stationary increments: that is, X t - Xs has the same distribution as X t- s , 

o < s < t < 00; 
(iii) X t is continuous in probability: that is, limt-+s X t = X s , where the limit is taken 
in probability. 

Definition 2.1.9. A real valued, adapted process X = (Xt)o::=;t<oo is called a martin­
gale with respect to the filtration (Ft)o::=;t<oo if 
(i) X t E LI(dP); that is, E{I X t I} < 00; 
(ii) if s ::; t, then E{Xt I Fs} = X S1 a.s. 

Let W = (Wtkst::=;oo be a one dimensional standard Brownian motion with Wo = o. 

Then M t = W? - t is a martingale. 

Let N be a Poisson process with intensity A. Then nt b, Nt - At and (Nt - At)2 - At 

are martingales. 
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Definition 2.1.10. An adapted process X = {Xt}, t ?:: 0, is a semimartingale if it 
has a decomposition of the form 

X t = Xo + Mt + At, 

with Mo = Ao = 0, M a local martingale with jumps bounded by p, where p > 0, A 
is of integrable variation. 

Definition 2.1.11. A is of integrable variation if E{Jooo I dAs I} < 00. 

The quadratic variation process of a semimartingale, also known as the bracket 

process, is a simple object that nevertheless plays a fundamental role. 

Definition 2.1.12. Let X, Y be semimartingales. The quadratic variation process 
of X, denoted [X, X] = ([X, X]tk,:o, is defined by: 

[X,X] = X2 - 2 J X_dX, 

(recall: X o- = 0); The quadratic covariation of X, Y, also called the bracket 

process of X, Y, is defined by: 

It is clear that the operation (X, Y) -+ [X, Y] is bilinear and symmetric. We therefore 

have a Polarization identity: 

1 
[X, Y] = 2([X + Y,X + Y] - [X,X]- [Y, YJ). 

Definition 2.1.13. For a semimartingale X, the process [X, X]C denotes the path 
by continuous part of [X, X]. 

We can then write: 

[X, X]t = [X, Xl~ + X5 + I.: (6.X s)2, 
0<s9 

and 

[X, Xlt = [X, X]~ + I.: (6.Xs)2, 
0::;s9 

where 6.Xs = Xs - Xs-. Observe that [X, X]8 = O. 
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Definition 2.1.14. A semimartingale X will be called quadratic pure jump if [X, X]C = 

o. 

If X is quadratic pure jump, then [X, Xl t = Xo + 'Eo<s:St(~Xs)2. The Poisson 

process N is an obvious example of a quadratic pure jump semimartingale. From the 

definition, we see that [N, NJt = Nt. If ¢ is a progressively measurable process then 

we compute that 

and 

For example, 

and, since ~Ns=O for all but countably many values of s, 

Equation above shows that the integral of a bounded progressively measurable (in 

particular, adapted) random process with respect to a martingale is not necessarily a 

martingale. The reason is that the integrand and integrator can simultaneously jump 

in a positively correlated way. Integrals with respect to martingales are martingales 

if the integrands are "predictable", such as J~ Ns_dns is martingale. 

Definition 2.1.15. Two probability laws P, Q on (O,.:F) are said to be equivalent 
if P « Q and Q «P. (Recall that P « Q denotes that P is absolutely continuous 
with respect to Q.) We write Q '" P. 
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If Q « P, then there exits a random variable Z in Ll(dP) such that ~~ = Z and 

Ep{ Z} = 1, where Ep denotes expectation with respect to the law P. We let 

be the right continuous version. Then Z is a uniformly integrable ca,dlag martingale 

and hence a semimartingale. Note that if Q is equivalent to P, then ~~ E Ll(dQ) 

d dP _ (dQ)-l an dQ-dP . 

2.2 Fundamental Theory and Some Examples 

Theorem 2.2.1. (Generalized ItO Formula) Let f be a twice continuously differ­
entiable function on R and let X be a real semimartigale. Then f(Xt ) is also a 
semimartingaZe and 

f(Xo) + t /(Xs-)dXs + ~ t f"(Xs-)d[X,X]sC Jo 2 Jo 
+ L {f(Xs) - f(Xs-) - f'(Xs- )L:..Xs}. (2.2.1 ) 

O<s:S;t 

Theorem 2.2.2. (The Multi-dimensional Generalized ItO Formula) Suppose X is a 
process with values in Rn, each of whose components Xi is a semimartingale. Suppose 
F is a real valued twice continuously differentiable function on Rn. Then F(Xt ) is a 
semimartingale and, with equality denoting indistinguishability: 

Example: We consider Merton's Model (Merton [59]): 

N(t) 

dSt = Stl1dt + StO"dWt + St-d(L Yi), 
i=l 
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where f-l E lR, a > 0, Wt is a standard Brownian motion, N(t) is a standard Pois­

son process independent of Wi, and {Yi}~l are random variables independent of 

Letting: 

Using generalized Ito Formula (2.2.1), we have: 

it 1 lit 1 
log St = log So + S _ dSr + "2 ( - S2 )d[S, Sl~ 

OrO r-
1 + L {log Sr -log Sr- - -~Sr}. 

S-
O<r~t r 

(2.2.3) 

Note that: 

from (2.2.3), we have: 

t 1 NW 
log St = log So + 1 {(f-l - "2a2)dr + adWr + d(~ Yi)} 

N(t) 

+ L {log(l + Yi) - Yi}, (2.2.4) 
i=l 

namely, 

1 N(~ 

log St = log So + (f-l- "2a2)t + aWt + L log(l + Yi), (2.2.5) 
i=l 

so 

1 N(t) 

St - So exp((f-l- "2a2)t + aWt + L log(l + Yi)) 
i=l 

So exp((f-l- ~a2)t + aWt)rr{:(:) (1 + Yi). (2.2.6) 
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We give another example: Let Nl and Nt
2 be Poisson processes with rates ,).,1 and 

,\2, respectively. We suppose the exchange rate is now given by the equation: 

Here Wt is a standard Brownian motion, Pt is drift and O"t is volatility. We also assume 

Nl and N; do not have common jump times. We want to calculate dU). 

Using generalized Ito Formula (2.2.1), we have: 

i.e 

( 1 ) 1 2 1 a
2 

1 1 {32 1 2 ( ) 
d -S = --s (Ilt - Cft)dt - -s CftdWt + ---s dNt + ---s dNt · 2.2.7 

t t- t- 1 + a t- 1 - {3 . t-

Equation (2.2.7) is the corrected version of the equation on page 55, line 5 in 

Chesney and Elliott [14]. 

Corollary 2.2.3. If X and Yare semimartingales then the product XY is a semi­
martingale and 

XtYt = lt Xs-dYs + lt Ys-dXs + [X, Yk 

That is, in differential form: 

(2.2.8) 

(2.2.9) 

Theorem 2.2.4. (Doleans-Dade Exponential Formula) Let X t be a semimartingaZe 
with Xo = O. Then there exists a (unique) semimartingale Z that satisfies the equation 
Zt = Zo + J~ Zs-dXs , and Z is given by 

Zt = Zo exp(Xt - ~[X, X]DTIo<s::;t(1 + ilXs) exp( -ilXs ) , 

where the infinite product converges. 
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Example: We consider Merton's Model (Merton [59]) again: 

Letting: 

\Ve find that: 

Hence 

and 

N(t) 

dSt = Stf-tdt + StadWt + St-d(L Yi) 
i=l 

N(t) 

5t - (f-tdt + adWt + d(L Yi)). 
i=l 

N(t) 

dXt - jLdt+adWt+d(LYi))· 
i=l 

N(t) 

X t f-tt + aWt + L Yi, 
i=l 

St 50 exp(Xt - ~ [X, XJc t) TIO<r::;t(1 + !::..Xr ) exp( - !::..Xr ) 

N(t) 

- So exp(f-tt + aWt + L Yi - ~a2t)TIi':~) (1 + Yi) exp( - Yi) 
i=l 

50 exp((f-t - ~a2)t + aWt)TIi':<:) (1 + Yi). (2.2.10) 

Definition 2.2.1. For a semimartingale X, with Xo = 0 the stochastic exponential 
of X, I}vTitten £(X), is the (unique) semimartingale Z that is a solution of: Zt = 

1 + J~ Zs-dXs' 

Corollary 2.2.5. If X and Yare semimartingales with Xo = Yo = O. Then 

£(X)£(Y) = £(X + Y + [X, YJ). 
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Theorem 2.2.6. (Levy-Khintchine formula) Let X be a Levy process with Levy mea­
sure v. Then 

where 

'IjJ(u) = 17

2 

u 2 
- io:u + 1 (1 - eiUX)v(dx) + 1 (1- eiux + iux)v(dx). 

2 {lxI:?:l} {lxl<l} 

Moreover given V,l72, 0:, the corresponding Levy process is unique in distribution. 

Girsanov Transform theorem is fundamental in the general theory of stochastic 

analysis. It is also important in many applications, for examples in finance and fil-

tering. In fact, the law of the new process will be absolutely continuous with respect 

to the law of the original process and we can compute explicitly the Radon-Nikodym 

derivative. 

Theorem 2.2.7. Let Y(t) ERn be an ItO process of the form 

dY(t) = a(t, w)dt + dB(t) t:S T, Yo = O. 

Where T :S 00 is a given constant and B(t) is n-dimensional Brownian motion w.r.t 
P. Put 

i t lit 
M t = exp( - a(s, w)dWt - - a2(s, w)ds); 

o 2 0 
t:S T. 

Assume that a(s, w) satisfies Novikov's condition 

1 rT 

E[exp(2" Jo a
2
(s, w)ds)] < 00, 

where E = Ep is the expectation w.r.t P. Define the measure Q on (0, .F~n)) by 

dQ(w) = MT(W)dP(w). 

Then Y (t) is an n-dimensional Brownian motion w. r. t. the probability law Q, for 
t:S T. 
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Remark: Theorem states that for all Borel sets F l , ... , Fk E Rn and all h, t21 .•. ,tk :S 

T, k = 1,2,'" we have: 

It is to say that Q « P (Q is absolutely continuous w.r.t. P) with Radon-Nikodym 

derivative, 

dQ 
dP =Mr 

Note that Mr(w) > 0 a.s., so we also have that P «Q. Hence the two measures Q 

and P are equivalent. Therefore we get 

P[Y(tl) E F l ,' .. ,Y(tk) E Fk] > 0 

~ Q[Y(td E H,'" 1 Y(tk) E Fk] > 0 

~ Q[B(t1) E Fl,' .. ,B(tk) E Fk] > 0; t l ,"', tk E [0, T]. 

Theorem 2.2.8. Change of Measure (Conditional Bayes Theorem) Suppose (0, F, P) 
is a probability space and Q c F is a sub-a-field. Suppose F is another probability 
measure, absolutely continuous with respect to P and with Radon-Nikodym derivative: 

dF 
dP 10= A. 

If'I/J is any F integrable random variable, then 

if E[AIQ] > 0 otherwise O. 

E['l/JIQ] = E[A'l/JIQ] 
E[AIQ] , 

We shall adopt the following notation and definition: 

If M is some family of processes, then M 10c will denote the family of processes 
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which are locally in M. That is, {Yt} E M 10c if there is an increasing sequence of 

stopping times {Tn} such that limn Tn = 00 a.s. and such that each stopped process 

{ytn} = {YtATn } is in M 

Theorem 2.2.9. Let Nt) t 2: 0, be a standard Poisson process with respect to (P, Ft ) 

and let Ft = O"(Ns, s :S t). Then there is a probability measure Q equivalent to P such 
that Nt has a unique decomposition 

Nt = Zt + fo·t Asds, 

with respect to (Q, Ft ), where Z E f1loc(Q, Ft ), A is a positive predictable process, and 
[Z, Z]t = J; Asds. Furthermore, the likelihood ratio is given by 

In the following example, we give the estimation of stochastic volatility. In the 

Black-Scholes model, the stock volatility is usually constant. Many authors have pro­

posed that the option prices are correlated with stochastic volatility. Scott [71], Hull 

and White [44], and Wiggins [75} generalized the model to allow stochastic volatility, 

and Melino and Turnbull [58J reported that this approach was successful in explaining 

the prices of currency options. 

This example is a direct extension of Elliott, Hoek and Valencia [33]. They as-

sumed that volatility is un correlated with spot return, but it can not explain the 

important skewness effects that arise from such correction in Hull and White [44]. In 

our work, we assume that volatility is corrected with spot return. 

Suppose a price process S evolves in discrete time, t = 0,1,2,' .. , with dynamics: 
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here f.L E lR is the drift, wi is a sequence of i.i.d N(O, 1) random variables, and (Jt 

represents the volatility of the price change between time (t - 1) and t. The price 

sequence So, Sl, ... is observed as are the logarithmic increments 

St 1 2 1 
Yt = log -S = f.L - -(Jt + (JtWt . 

t-l 2 

\Ve suppose that 10g(Jt has dynamics: 10g(Jt = a + blog(Jt-l + Ow;, here again, {wD 

is a sequence of i.i.d N(O, 1) random variables and a, b, 0 E R Writing Xt = 10g(Jt, so 

Yt 

Next, one lets 

p 

a + bXt-l + Ow; 
1 

f.L - _e2xt + eXt wi. 
2 

where p 1= 1 and -1. Using variable transformation, we let: 

We have: EUt = 0, EVt = 0, and E(UtVt) = 0, then the models are: 

Xt = a + bXt-l + OUt 

Yt = f.L - ~e2Xt + (1 - p2) ~ eXtVt + peXtUt. 

Reference Probability Methods: 
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The reference probability methods refer to a procedure where a probability mea-

sure change is introduced to reformulate the original process in a fictitious world so 

that well-known results can be applied. Then, the results are reinterpreted back to 

the real world with the original probability measure. The idea of using reference 

probability method in filtering goes back to classical work of Kalman and Buey. 

Let us assume that under the reference probability P both {Xt}, {Yt} are sequences 

of i.i.d N(O, 1) random variable, write ¢{) for the N(O, 1) density. 

We define the a-fields: 

Thus Qt is the complete filtration generated by the x and Y sequences and Yt is the 

complete filtration generated by the observations y. 

Let 

for k = 1,2, ... where 

Uk a-1(Xk - a - bXk-l) 

1 1 
Vk (1- p2)2e-Xk (Yk - Jl + 2'e2Xk - peXka-1(Xk - a - bXk-l)). 

Set 

¢( e-XQ (1 - p2) ~ (Yo - Jl + ~e2xo)) 
t 

At - IT Ak· 
k=O 
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Define a new probability P, by setting 

We shall work under P. The existence of P follows from Kolmogorov's extension 

theorem (Elliott [30]). 

Lemma 2.2.10. Under P the {Xt}, {yt}, t = 0,1,2"" are sequences of i.i.d N(O, 1) 
random variables. Note Xt and Yt are independent of each other as well. 

Proof: 

P(Yt ::;: lI9t-l) E[I(Yt ::;: l)19t-l] 

-

E[AtI(Yt ::;: l)19t-tl 
E[At I9t-l] 

E[),t1(Yt ::;: 1)19t-l] 
E[)'tI9t-tl 
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B¢(Xt) eXt (l - p2)~¢(Yt) 
E[AtI(Yt :; l)IQt-l] = E{ ¢(Ut) ¢(Vt) I(Yt :; l)IQt-l} 

= E{B¢(a + bXt-l + BUt) E{eXt(l- p2)~¢(/1- ~e2xt + eXt(l - p2)!Vt + peXtut) 
¢( Ut) ¢( Vt) 

xI(Yt :; l)IQt-l, Ut}IQt-l} 

B¢(a + bXt-l + BUt) 100 eXt (1- p2)¢(/1- ~e2Xt + eXt (l - p2)!Vt + peXtUt) 
= E{ x 

¢( Ut) -00 ¢( Vt) 

xI(/1- ~e2Xt + eXt (1- p2)~Vt + peXtut :; l)¢(Vt)dVtIQt-d 

-1°° I ( l)'/"()d E{()¢(a+ bxt-l+()Ut)I"} 
- -00 Yt:; <P Yt Yt X ¢( Ut) ~t-l 

= [100 ¢(Yt)dYt = P(Yt :; l). 

P(Yt :; lIQt-I) = P(Yt :; l). 

The same as P(Xt :; llQt-d = P(Xt :; l). 

Remark: Conversely, \Ve suppose we start with a probability measure P on (n, F) 

such that under P both {Xt}, {Yt} are sequences of i.i.d. N(O, 1) random variable. 

we then wish to construct a probability measure P, such that under P both {Vt}, 

{Ut} are a sequence of H.d. N(O, 1) random variables. To contract P from P, we in­

troduce the inverse 5.t = At l and At = At l
, Ao = 1 and define P by setting ~~ 1~1t= At. 

Lemma 2.2.11. Under P the {Vt}, {Ut}, t = 0,1,2,' .. are sequences of i.i. d N(O, 1) 
random variables. 

Proof: The proof is the similar to that of lemma 2.2.10. also see [35]. 

\Ve shall again use Bayes' theorem, for any Borel measurable function f, 

E[f(x )IY J = E[At/(xt)IYt]. 
t t E(AtlYtl 
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The numerator defines a measure; suppose it has a density q(.) so that 

Then 

(2.2.13) 

We now obtain a recursive update for qt(z). 

This gives the formula for updating the unnormalized conditional density for Xt = 

log (Jt given Yt. 

Putting f(x) = 1, in (2.2.13) we have E[At!Yt] = J~oo qt(z)dz, so the normalized 

conditional density of Xt = log (Jt given Yt is 

Furthermore, taking f(xt) = Xt, we see 

This is the optimal estimate of the logarithm of the volatility given the observations 

of the prices. 
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Chapter 3 

umerical Methods and Monte 
Carlo Simulation 

In this Chapter, we first introduce some simulation methods of, for example, the ex-

ponential random variable, and the normal distribution random variable. Secondly, 

we consider the numerical methods for diffusion with jump model and extend Mil-

stein's result. Some sample paths of typical stochastic processes are also generated 

such as continuous time finite state Markov chain. All of them are the basis for the 

simulation study Chapter 5. 

3.1 Basic Sampling Methods and Generating Sam­
ple Paths 

In this section we shall assume that we have a subroutine RANDOM which provides 

us with U(O, 1) uniformly distributed on [0,1] pseudo-random numbers. We shall 

see how we can then use this subroutine to generate pseudo-random numbers with 

other commonly encountered distributions, in particular those simulated in Chapter 5. 

A two-point random variable X taking values Xl < X2 with probabilities PI and 
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P2 = 1 - PI can be generated easily from a uniformly distribution on [0,1] a U(O, 1) 

random variable U with 

° ~ U ~ PI 

PI < U ~ 1 

This idea extends readily to an M-state random variable X taking values Xl < X2 < 

. .. < X M with nonzero probabilities PI, P2, ... ,PM where I:~l Pi = 1. With So = ° 
and Sj = I:{=l Pi for j = 1,2,··· ,M we set X = Xj+l if Sj < U ~ Sj+l for 

j = 0, 1,2,· .. ,M - 1. 

For a continuous random variable X the corresponding method requires the prob-

ability distribution function Fx to be inverted when this is possible. For a number 

° < U < 1 we define x(U) by U = Fx(x(U)), so x(U) = Fil(U) if Fi l exists, or in 

general 

X(U) = inf{x : Fx(x) 2: U}. (3.1.1) 

This is called the inverse transform method and is best used when (3.1.1) is easy 

to evaluate. For example: Exponential random variable with parameter e > ° and 

distribution Fx(x) given: 

() 
{ 

0, X < 0 
Fx X = 

1 - exp( -ex), x 2: 0 

has an invertible distribution function with 

x(U) = Fil(U) = -log(1- U)/e for 0 < U < 1, 

simplifies to 

X = -log(U)/e, for 0 < U < 1. 
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Figure 3.1: Three state continuous time Markov chain 

Finite State Continuous Time Markov Chain: When we study the generators 

for Bernoulli, Binomial random variables and exponential random variables, we can 

handle finite state continuous time Markov chain. Let X (t) be distributed over a 

finite state space X = {Xl, X2, ..• ,XM} according to an M-dimensional probability 

vector p(t) for each t ~ O. Here we only consider the case when the Markov chain is 

homogenous, namely when the transition matrices P(to; t l ) depend only on the time 

difference tl - to, that is P(to; t1) = P(O; tl - to) for all 0 :S to :S tr, and write P(t) 

for P(O; t). There exists an M x M intensity matrix A = (ai,j) with components 

{ 
1. pi,j (t) . =1= . 

. . Imt->O -t-' 1, J 
al,] = .. 

I" p"'(t)-l . - . 
Imt->O t ' 1, - J 

which, together with the initial probability vector p(O), characterizes completely the 

homogenous time Markov chain. Moreover, the waiting time of a homogenous con-

tinuous time Markov chain, that is the time between transitions from a state Xi to 

any other state, is exponentially distributed with intensity parameter Ai = L,j#iai,j. 
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Figure 3.1 is the realization from a 3 state continuous time Markov chain. X takes 

values +1, 0, and -1 with the initial probability vector p(O) = (~,~, ~), for t 2: 0 has 

intensity matrix 

A = [-~:: ~~ 
0.5 0.3 

0.21 
0.6 j 

-0.8 

When we use C/C++ package to write program we must write the normal distri-

bution random number generator function by ourselves. 

If Z rv N(O, 1) and X = p + O'Z then X rv N(p, 0'2); hence we just need a method 

for generating standard normal variables. we give two popular methods below: 

Box-Muller method: If Z rv N(O, J) in JR.2 then 

(i) R = Zr + Zi is exponentially distributed with mean 2, i.e., 

(ii) Given R, then the point (Zl' Z2) is uniformly distributed on the circle of radius 

VFl centered at the origin. 

Generate two independent Uniform variates Ul, U2 rv U[O, 1]. 

R +- -21og(Ud 

Zl +- vIi cos (V) 

Z2 +- vIi sin(V), 
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Inverse Cumulative Normal Distribution: Draw U rv U[O, 1] and compute: 

where N(z) = - e-v /2dv, 1 jZ 2 
2n -00 

then x is a Gaussian sample. To compute N-1, Beasley and Springer [6] uses a 

rational approximation and take U uniform sample 

with 

v - U - 0.5 

v*v 

v * (a3y3 + a2y2 + alY + ao) 
b3y4 + b2y3 + b1y2 + boy + l' 

ao = 2.50662823884 bo = -8.47351093090 
al = -18.61500062529 b1 = 23.08336743743 

a2 = 41.3911977354 b2 = -21.0622410101826 
a3 = -25.44106049637 b3 = 3.13082909833 

Multivariate Normal Distribution: In many financial applications one has to gen-

erate variates according to a multivariate normal distribution with expected value fJ, 

and covariance matrix L This task may be accomplished by obtaining the Cholesky 

factor for ~, i.e., an upper triangular matrix L such that ~ = LT L. Then we may 

apply the following algorithm: 

(i) Generate n independent standard normal variaes Zll' .. , Zn rv N(O, 1). 

(ii) Return X = fJ, + LT Z, where Z = [Zl,'" ,ZnJT . 

Wiener Processes: The Wiener processes were proposed by Norbert Wiener as a 

mathematical description of Brownian motion, the erratic motion of a grain of pollen 
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Figure 3.2: A linearly interpolated Wiener sample path 

on a water surface due to its being continually bombarded by water molecules. 

We define a standard Wiener process W = {W(t), t ~ O} to be a continuous Gaussian 

process with independent increments such that 

W(O) = 0, with probability 1, E(W(t)) = 0, Var(W(t) - W(s)) = t - s, 

for all 0 ::; s ::; t. According to this definition, W (t) - W (s) is N (0; t - s) Gaussian 

distributed for 0 ::; s < t and the increments W(t2) - W(t1 ) and W(t4 ) - W(t3) are 

independent for all 0 ::; tl < t2 ::; t3 < k 

We generate and plot the linearly interpolated trajectory of a Wiener process on 

[0,1] at the time instants tk = k2-9 for k = 0,1, ... ,29 using independent Gaussian 

increments W(tk+l) - W(tk) rv N(O, 2-9
), see Figure 3.2. 

Random Walks: VYe can approximate a standard Wiener process in distribution 

on any finite time interval by means of a scaled random walk. For example, we can 
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Figure 3.3: Sample paths of the random walk S50(t) and SlOO{t). 

subdivide the unit interval [0,1] into M subintervals 

of equal length ~t = 1/ M and construct a stepwise continuous random walk S M (t) 

by taking independent, equally probable steps of length ±V'LS1 at the end of each 

subinterval. We start with independent two-point random variables {Xi }f=l taking 

values ±1 with equal probability and define 

where we interpolate linearly by 

on tiM) :::; t < tk~i for k = 0,1, ... ,M - 1, where SM(O) = 0. 

Form a linearly interpolated random walk SlOO(t) on [0,1] using the two-point ran­

dom number generator and plot SlOO(t) against t. Repeat this for other sequences 
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Figure 3.4: A path of a Brownian bridge process. 

corresponding to different initial seeds and compare the plotted paths, see Figure 3.3. 

Brownian Bridge Process: A useful modification of Wiener process has sample 

paths that all pass through the same initial point x, not necessarily 0, and a given 

point y at a later time t = T. This process B'l,: is defined sample pathwise for 

o ::; t ::; T by 

B'l,:(t,w) = x + W(t,w) - ;{W(T,w) - y + x} 

and is called a Brownian bridge or a tied-down \Viener process. It is a Gaussian 

process satisfying the constraints B'l,: (0, w) = x and B'l,: (T, w) = y, so can be con­

sidered as a kind of conditional Wiener process. Since it is Gaussian it is determined 

uniquely by its means and covariances, which are 

p,(t) = x - ;(x - y) and C(s, t) = min{s, t} - ~, 

for 0 ::; s, t ::; T, respectively, see Figure 3.4. 
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Figure 3.5: Paths of the Markov chain and Bessel process. 

Bessel processes are an important family of diffusion processes which have appli­

cations in finance and other areas. Let us call a process R = {Rt, 0 ::; t} a generalized 

Bessel process if it satisfies a stochastic differential equation of the type 

for t ~ 0 with given initial value Ro ~ O. Here O!, band c represents externally given 

functions and W = {Wt, 0 ::; t} is a standard Brownian motion on a given probability 

space(O, F, P). From Ito's formula, we know: 

In finance the well-known eIR [16] interest rate model represents an important ex-

ample of a squared Bessel process. As an example we simulate the generalized Bessel 

process modulated by Markov chain. Here we consider 
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the unobserved process 17 = {17t, 0 :::; t} is a finite state, continuous time, homogenous 

real valued Markov chain taking values in the set {171 , 172}, 17 1, 172 E R For t E [0,10] 

with Ro = 1, 7]1 = 0.5 and 172 = -0.5, the intensity matrix of Markov chain a12 = 0.1, 

a21 = 0.1. A simulated realization of the process Rt is shown in Figure 3.5. 

3.2 Quasi-Monte Carlo 

Quasi-Monte Carlo simulation is the traditional Monte Carlo simulation but using 

quasi-random sequences instead of pseudo random numbers. In several cases, the 

quasi-random sequences (also called low-discrepancy sequences) improve the perfor­

mance of Monte Carlo simulations, reduces computational times and / or leads to 

higher accuracy. In the following we simply illustrate the basic ideas behind two 

low-discrepancy sequences: Halton's and Sobol's sequences. 

Generating Halton's low-discrepancy sequences: Halton's low-discrepancy sequences 

are based on a simple recipe: 

Representing an integer number n in a base b, where b is a prime number: 

Reflecting the digits and adding a radix point to obtain a number within the unit 

interval: 

More formally, if we represent an integer number n as 
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Figure 3.6: Halton low-discrepancy sequence with a given base 

the nth number in the Halton's sequence with base b is 

m 

h(n, b) = L dkb-(k+1). 

k=O 

Using the principles on the binary representation of numbers on a computer, it is easy 

to generate the nth number in a Halton's sequence with base b. (see Figure 3.6). 

Generating Sobol's low-discrepancy sequences: Halton's low-discrepancy sequences 

are arguably the simplest, but not necessarily the best, Choosing the best sequence 

in practice is still an open problem, but we would like at least to take a look at a more 

sophisticated alternative, Le., Sobol's sequences. For the sake of clarity, it is better 

to consider the generation of a one-dimensional sequence xn in the [0,1] interval. A 

Sobol's sequence is generated on the basis of a set of "direction numbers" Vl, V2, ... ; 

we will see shortly how direction numbers are selected, but for now just think of them 

as numbers which are less than 1. To get the nth number in the sequence, consider 
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the binary representation of the integer n: 

The result is obtained by computing the bitwise exclusive or of the direction numbers 

Vi for which bi -=1= 0: 

If direction numbers are chosen properly, a low-discrepancy sequence will be gener-

ated(Sobol [72]). A direction number may be thought as a binary fraction: 

or as 

where mi :::; 2i is an odd integer (Brandimarte [9]). 

3.3 Numerical Methods for Stochastic Differential 
Equations 

3.3.1 The Euler Scheme 

The Euler approximation is a basic discrete time method to approximate an It6 

process. Consider an Ito process X = {X (t), to :::; t :::; T} following the scalar 

stochastic differential equation 

(3.3.1) 
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with to < t ::; T and the initial condition Xto = Xo· A discretization to = to < 

tl < ... < tN = T of the time interval [0, T] may be given. Then a continuous time 

stochastic process Y = {Y(t), to ::; t ::; T} with the initial condition 

Yo = X o, 

satisfying the stochastic iterative scheme 

for n = 0, 1, ... ,N -1, where we denote Yn = Y(tn ) is called an Euler approximation 

of X. The scheme is called the Euler scheme. 

With the notations 

and 

We can write the Euler scheme in the form 

for n = 0,1, ... ,N -1. In order to compute the sequence {Yn , n = 0,1,· .. ,N -I} of 

values of the Euler approximation we have to generate the random increments .6. Wn 

for n = 0,1"" ,N - 1 of the Wiener process W = {Wt, t 2: O}. These increments 

are independent Gaussian random variables with E(.6.Wn ) = ° and Var(.6.Wn ) = .6.n 

and can be generated by one of the random generators described previously for inde­

pendent Gaussian pseudo-random numbers, for example the Box-Muller generator. 
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Note that when the diffusion coefficient b is identically zero the stochastic itera-

tive scheme reduces to the well-known deterministic Euler scheme for the ordinary 

differential equation x' = a( t, x). 

3.3.2 The Milstein Scheme 

By adding to the Euler scheme the term 

We obtain the Milstein scheme 

We consider the Black-Scholes model. A non-dividend paying asset, S, following 

geometric Brownian motion is given by the following stochastic differential equation: 

Where J1, and a are known constants. From It6 formula we have: 

We can simulate at fixed dates: 

Euler Scheme: 
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Figure 3.7: Explicit solution "-", Euler Scheme "*", Milstein Scheme "+" 

Milstein Scheme: 

Figure 3.7 compares the simulation result of the explicit solution with Euler 

Scheme and Milstein Scheme. 

3.3.3 The Generalized Discretization Scheme 

In this section we extend the Euler Scheme and Milstein Scheme to diffusion with 

jump model. 

Suppose Xb t 2: 0, is a (real) process defined as the solution of a stochastic differential 

equation. 

(3.3.2) 
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Here Wt, t ~ 0, is a standard Brownian motion and N(t), t ~ 0 is a standard Poisson 

process on a probability space(Sl,.1", P). If Xs is known, X t is given by 

and a first approximation is to write 

Suppose Xr is approximated as in (3.3.4), that this approximation is substituted in 

(3.3.3) and that the terms are expanded as a Taylor series. Then an approximation 

for X t is 

i t of of 
Xs + s {f(s, Xs) + os (s, Xs)(r - s) + oX (s, Xs)[f(s, Xs)(r - s) 

+ g(s, Xs)(Wr - Ws ) + h(s, Xs)(Nr - Ns)]}dr 

i t og og 
+ s {g(s, Xs) + os (s, Xs)(r - s) + oX (s, Xs)[f(s, Xs)(r - s) 

+ g(s, Xs)(Wr - Ws) + h(s, Xs)(Nr - Ns)]}dWr 

i t oh oh 
+ s {h(s, Xs) + os (s, Xs)(r - s) + oX (s, Xs)[J(s, Xs)(r - s) 

+ g(s, Xs)(Wr - Ws) + h(s, Xs)(Nr- - Ns)]}dNr. (3.3.5) 

Note: 

i
t 1 

s (Wr - Ws)dWr = 2((Wt - Ws? - (t - s)) 

it (Nr- - Ns)dNr = ~((Nt - Ns? - (Nt - N s )) 
s 2 

E(Wt - Ws? = t - s 

E(Nt - Ns ) = t - s 

E(Nt - Ns )2 = (t - 8)2 + (t - s), 
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so including only terms up to order(t - s) (in expectation). 

A better second order approximation (a second approximation) for X t is 

We note in equation (3.3.2) when h(t, X t -) = 0, equation (3.3.3) is the same as Euler 

Scheme, equation (3.3.5) is the same as Milstein Scheme. 

We apply the first approximation and second approximation in the following example. 

We consider the Merton's ( [59]) model again: 

from equation(2.2.1O), we know the explicit solution is 

We can simulate at fixed dates: 

or from jump to jump 

1 2 
ST- = ST exp((p,- -a )(7J+1 - 7J') + a(WT'+l - WT')) 

j+l J 2 J } 

and 
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The first approximation: 

StH1 = St;(l + f-l)(ti+l - t i ) + Sti CT (WtH1 - Wt ;} 

N(ti+1) 

+Sti L 0· 
j=N(ti)+l 

The second approximation: 

The simulation results are compared in Figure 3.8, 

3.5 

2.5 .. 

1.5 

* .. 

* 

* 
.... * 

+ 

0.5'-----':----'----'-----'----1----"------' 
o 10 20 30 40 50 60 70 

(0 + 1). 

Figure 3.8: Explicit solution "-", the first approximation "*", the second approxima­
tion "+" 

3.3.4 The EM Algorithm 

The expectation maximization (EM) algorithm was first developed as a method for 

estimation in hidden Markov models (Baum and Eagon [4], Baum, Petrie, Soules and 
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Weiss [5]), and was later extended to a broader class of problems (Sundberg [73], 

Dempster, Laird and Rubin [23]). It is a general method for computing MLEs in 

statistical models in which there exist unobservable random variables. Suppose that 

we can observe some variable Y, but that there exist additional variable, X, that we 

can not observe. This problem is nicely discussed by Dembo and Zeitouni [21J, [22J 

where observations are diffusion case and also are used by Ryden [67], [68] to esti­

mate the parameters of a MMPP (Markov-modulated Poisson process), Elliott et. al 

use these methods in many filtering literature. We briefly review the EM algorithm 

below and will use this method to re-estimate parameters in Chapter 4 and Chapter 5. 

Suppose {Pa, 19 E e} is a family of probability measures on (D, F), all absolutely 

continuous with respect to a fixed probability measure P. The likelihood function 

of the parameter 19 based on Yt is L(19) = E[(dPa/dPa* )IYt]. The MLE is difficult to 

compute directly. In such cases, the EM algorithm is a convenient iterative numerical 

method for computing the MLE. Each iteration of the EM algorithm consists of four 

steps. 

1111 Step 1: Set p = 0, and choose 19~. 

1111 Step 2: (E-step) Set 19* = iJp, and compute Q(', 19*), where 

1111 Step 3: (M-step) Find 

Q(19, 19*) = Ea· [log ::::. I Ytl. 

iJp+l E arg max Q(19, 19*). 
£lEe 

@ Step 4: Replace p by p + 1 and repeat beginning with step 2 until a stoping 

criterion is satisfied. 
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The sequence generated {Bp,p 2: O} gives nondecreasing values of the likelihood 

function. Indeed, it follows from Jensen's inequality, that logL(Bp+l) -logL(Bp) 2: 

Q(Bp+1, iJp ), with equality if and only if iJp+1 = iJp . We call Q(8, B*) a conditional 

log-likelihood. 

53 



Chapter 4 

Hidden Markov Chain Filtering for 
Diffusion-J ump Model 

4.1 Introduction 

The powerful tools of stochastic calculus are finding their way into many branches, 

especially in filtering and finance. They have enabled analysis of more complicated 

models than could be handled earlier, an aspect of this development is the growing 

use of diffusion with jumps processes. Since Merton[59] proposed the general stock 

price model, diffusion with jumps processes such as default able term structure models 

and energy market with spikes have been widely used in financial literature. It is a 

challenge to estimate the parameters of the models and latent variables. Motivated 

by this aim, we propose the hidden Markov filtering for diffusion with jumps process. 

We obtain recursive filters for the latent states of the Markov chain, the number 

of jumps from one state to another, and the occupation time of the Markov chain in 

any state. The filter equations are finite-dimensional and in closed form. Using the 

EM algorithm, we obtain the estimators for parameters and jump intensity rate of 

the model. 
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This Chapter is organized as follows: In Section 4.2, we present the problem for­

mulation. In Section 4.3, the change of probability measure is given. The derivation 

of Girsanov's transformation for diffusion with jump process in detail, it is also an 

excellent example of the generalized Ito formula for semi-martingales. In Section 4.4, 

Hidden Markov chain filters are given. In Section 4.5, we extend the EM algorithm 

for diffusion with jumps process and revise the model parameters and jump inten­

sity rates. Section 4.6 is conclusion. In our work, the main contribution is in two 

ways: we develop the filtering techniques to diffusion with jumps processes and derive 

finite-dimensional filters for various statistics including the Markov chain state, the 

number of jumps between states, and the occupation time in a state. The filters that 

we derived compute all statistics required to implement the E-step of EM algorithm; 

and on the other hand we extend the EM algorithm. 

4.2 Problem Formulation 

All random variables are defined on the probability space (0, F, P). Let X t , t ~ ° 
be a finite state, continuous time, homogeneous Markov chain. Without loss of gen­

erality, X t takes values in the set ~ = {el,e2,'" ,es } of unit (column) vectors, 

ei = (0, ... ,1, ... ,0)' of RS . Suppose the time homogeneous hidden Markov chain X 

has intensity-matrix A, A = (aij), 1 :s:; i,j :s:; S, where the intensity for a jump from 

ei into ej is denoted by aij ~ 0, i =I- j. That is, defining p~ = P(Xt = ei), 1 :s:; i :s:; S, 

the probability distribution Pt = (pi, p;, ... ,pn
1 

satisfies the forward Kolmogorov 

equation dpt/ dt = Apt· Also note that 2.::Z=l aij = 0, for 1 :s:; j :s:; s. We assume that 
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E{Xo} is known. 

The process X t is not observed directly, but rather we suppose there is a (scalar) 

observation process given by 

(4.2.1) 

(the extension to vector process Y is straightforward). W = {Wt : 0 ::; t} is a 

standard Brownian motion on (n, F, P), which is independent of Xt. ~ is a constant. 

N = {Nt : 0 ::; t} is a doubly stochastic Poisson process (Cox process) with intensity 

rate At that may depend on X t on a given probability space (n, F, P). Nt denotes 

the number of events that occurs during the interval [0, t]. Because X t takes values 

in ~, any real function h(Xt ) can be given by a vector h = (hi, ... , hs ) E RS , and 

h(Xt ) = (h, Xt), where (.) denotes the scalar product in RS . Consequently, there are 

vectors 9 = (gIl g2, ... ,gs)' and A = (AI, A2, ... ,AS)', so that g(Xt ) = (g, Xt) and 

A(Xt ) = (A, Xt). The observation process has the form: 

Yt = it (g, Xr)dr + ~Wt + Nt. (4.2.2) 

Defining the increasing families of O"-subalgebras: F t = Ff V Yt, where Ff = 0"{XS1: 

s :::; t} and Yt = O"{Ys : s :::; t}, each contains all P-null subsets in F. For simplicity, 

we make further assumptions on the independence of Poisson process and Markov 

processes. 

Aim: Given Yt, t 2: 0, estimate the statistics of the model and obtain filtered 

estimates of: 

@ The Markov chain state Xt, namely Xt = E{XtIYt}. 
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@ The number of jumps J;j of Markov chain from state ei to ej in the time interval 

[0, tl: 

1:::; i,j :::; S. (4.2.3) 

@ The occupation time O~ of the Markov chain in the state ei in the interval [0, t]: 

1 :::; i :::; S. 

@ Further, we write: 

1 :::; i :::; S. 

First, we give a preliminary result which will be used in next section. 

It is straightforward to show that the semi-martingale representation of X t is 

X t = Xo + it AXrdr + Mt , 

where M t is a (vect~r) Frmartingale under P (Elliott[30]). 

(4.2.4) 

(4.2.5) 

(4.2.6) 

Note J~ AXrdr = J~ AXr-dr because Xr(w) = Xr-(w) a.s. except for a countable 

number of values of r. Similar identifications will be made. 

We give the semi-martingale decomposition of J;j, using: 

where 

J;j = it (Xr-, ei)(ej, AXr- )dr + it (Xr-, ei)(ej, dMr) 

it (Xr -, ei) (ej, AXr - )dr + M;j, 
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Note the integrand (Xr, ei)ej is predictable, so Mi j is a martingale. 

Now (Xr-, ei) (ej, AXr-) = (Xr-, ei)aji, so 

J;j = it (Xr-, ei)ajidr + Mij , 1:::; i, j :::; s. 

We also have the decomposition of G~, 

G~ = it (Xrl ei)dYr 

where 

More succinctly 

where 

- it gi(Xr1 ei)dr + it ~(Xr, ei)dWr + it (Xr, ei)dNr 

G~t + G~t· 

G~t - it gi(Xr1 ei)dr + it ~(Xrl ei)dWr1 

G~t it (Xr, ei)dNr. 

Git it (Xn ei)dy~, 

G~t - it (Xn ei)dy~, 

y~ - it (g, Xr)dr + ~Wt, 
yt - Nt. 

4.3 Change of Probability Measure 

(4.2.8) 

For our purpose, we want to use the so-called measure transformation approach or 

reference-probability method. Assuming that X t and Yt are defined on a probability 
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space {il, F, P}, the aim of the present section is therefore to construct a new proba­

bility measure Poon {il, Ft } that is mutually absolutely continuous with respect to P 

and such that under Po the process X t is a finite state Markov chain with transition 

intensity matrix family A as before and the process Wt = ~-l(Yt - Nt) is a standard 

Brownian motion, and Nt = Yt - J; (g, Xr )dr - ~Wt is a standard Poisson process, X t 

and yt are independent. 

Define the probability measure Po such that the Ft restriction of the Radon­

Nikodym derivative of P with respect to Po is: 

(4.3.1) 

Note that: At = A~ * At, where 

Denoting by E the expectation with respect to the measure Po. If <Pt is an F t adapted 

integrable process, then an abstract version of Bayes theorem states (see Chapter 2) 

that: 

.:i. = E{rI. IY } = E(At<ptIYt) 
<pt <pt t E(At!Yt)' 

E(·) is called the unnormalized conditional measure under Po of <Pt given Yt. 

We have the following result hold: 

Theorem 4.3,1. (1) A~J and At are (Ft , Po) martingales. 
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(2) At is the unique solution to the integral equation: 

(4.3.2) 

(3) Wt = J; ~-1 (g, X r ) dr + W t is an (Ft, Po) - standard Brownian motion, and Nt 
is an (Ftl Po) - standard Poisson pTOcess. 

For notational convenience, define: K t = (At )-l, Kf = (An-I, Kt = (A1)-1. In 

fact, we have: 

Proof. (1) We have: 

The derivation of dKt, namely, d(At)-l is given below. 

We take Xt = At, f(·) = (-)-1, using the generalized Ito formula (2.2.1), this rule 
states: 

Now, 

f(Xt) = f(xo) + lt J'(xr- )dxr + ~ lt J"(xr- )d[x, x]~ 
+ I: {f(xr) - f(xr-) - J'(xr- )~xr}. 

O<r::;t 
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The remaining term in the sum over jump events of (4.3.4) is f'(x r)6.xr, this term 

is (A~_)-l(("\,Xr) -l)6.Nro Hence the sum over jump events in (4.3.4) is 

For other terms in (4.3.4), we have the following: 

f(xo) = 1, 

it f'(xr)dxr = -It(A~_)-l({,,\,Xr) -l)(dNr - dr), 

~ t f" (Xr )d[xC, xC]r = O. 
2 Jo 

Collecting all terms evaluated according to (4.3.4) and rearrangement, we get: 

It is obvious that Kf and Kt are (Ft, P) martingales. It is easy to prove that A~ and 
At are martingales and also independent on (Ft, Po). 

In order to prove (2), we use Corollary 2.2.3, this rule states: 

Now, 

so, 
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However, 

Therefore, 

namely, 

(3) By Bayes' formula: 

where 

Clearly Wt is a Po- martingale if and only if, KfWt is a P- martingale. 
Now 

However, 

[KC
, Wl t = it K;~-l(g,Xr)dr. 
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Therefore, 

Because Wt is a martingale under P, by the characterization of Brownian Motion due 
to Levy, the result follows. By the same argument we have: 

There, 

Because Nt - J; {A, Xr}dr is a martingale under P, by the characterization of stochas­
tic Poisson Process due to S. Watanabe (Bremaud [8]), the result follows. 

(4) We have: 

Yt - Ys - it (g, Xr)dr + ';-(Wt - Ws) + Nt - Ns 

.;--l(Wt - Ws) + (Nt - Ns). 

Where Wt , Nt standard Brownian motion and standard Poisson process under Po, 
use Levy-Khintchine formula, (4) follows. 

o 

It is obvious that we also have the result: Po is a probability measure, Po rv 

under Po the process Yt has independent increments, and Xt, Yt are independent. 

From (3) we have: 

E{eiV(Yt-Yr)IYr} _ E{E{eiv(Yt-Yr)IFr}!Yr} 

_ exp[(eiv _ 1 _ ~2 v2 )(t - r)], 
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which shows that Yt is an independent increment process. Analogously: 

E{ Eeiv(Yt-Yr) IFr }IF:} 

~-2 
exp[(eiv - 1 - TV2)(t - r)], 

which shows that the increment distributions, and therefore all joint distributions of 

Yt, do not depend on {Xt, 0 :s: t :s: T}. 

4.4 Hidden Markov Chain Filters 

With the measure Po introduced in the previous section, it follows the Kallianpur-

Striebel-Bayes formula that the optimal filter can be given the following representa-

tion: 

E(f(Xt))IYt) = E(i[~:~~Yt) (4.4.1) 

For notational convenience, we define a(f(Xt )) = E(At!(Xt)IYt). Then, j(Xt ) can 

be re-expressed as 

j(X
t
) = a(f~Xt)), 

At 

where j(Xt) t::. E(f(Xt ) IYt), At t::. a(l) = E(AtIYt). 

Since under Po the process X t and Yt are independent, the condition in the right 

hand side of (4.4.1) only fixes the trajectory of the process Yt while the expectation 

is an ordinary expectation over the process Xt. It proves convenient to work with 

the unnormalized as it satisfies an equation less complicated than its corresponding 

normalized version. 
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Theorem 4.4.1. The unnormalised filter a(X) is the solution of the following vector 
stochastic equation: 

a(Xt ) - a(Xo) + it Aa(Xr )dr + it Ba(Xr )dWr 

+ it Ga(Xr- )d(Nr - r), ( 4.4.2) 

where, B = ~-ldiag{(g,ei)}' G = diag{()..,ei) -I}. 

Proof. In order to obtain the filtered estimate, we use general form of Ito formula: 

AtXt XoAo + it Xr-dAr· + it Ar-dXr + [A, M]t 

XoAo + it ~-1 Xr-Ar(g, Xr)dWr + it Ar-AXrdr 

+ it Xr-Ar-(()..,Xr) -l)d(Nr - r) + it Ar-dMr + [A, M]t, 

for t ~ 0, conditioning each side of the equation above on Yt, we obtain that: 

a(Xt ) = a(Xo) + it Aa(Xr)dr -it a(Xr)d(Nr - r) 

+ it E(Xr-Ar-()..,Xr)!Yt)d(Nr - r) 

+ it ~-2E(XrAr(g,Xr)IYt)dWr' 

Note that: E~=l (Xn ei) = 1, we have: 

s 
E(XrAr(g,Xr)IYt) = E(XrA(g,Xr) L(Xnei)IYt) 

i=l 

s 
L E( (X;Ar(g, Xr), ei)IYt) 
i=l 

s 
- Lei(g,ei)(a(Xr),ei). 

i=l 

Similarly, we have: 

s 
E(XrAr (.,\, X r) !Yr) = Lei (.\, ei) (a(Xr), ei), 

i=l 
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which implies (4.4.2). 
o 

4.5 Revising the Parameters 

In this section, we will use the EM algorithm to re-estimate the hidden Markov chain 

transition matrix and Poisson process intensity rate >.(Xt ). The E-step can be im­

plemented using filters, our work is a direct extension of the papers mentioned in 

Chapter 3 (Ryden [67], [68], Dembo and Zeitouni [21], [22]). 

Suppose {Pe, e E 8} is a family of probability measures on (0, F), all absolutely 

continuous with respect to a fixed probability measure P. The likelihood function of 

the parameter e based on Yt is L(e) = E[(dPe/dPol)IYt]. 

Our model is determined by the set of parameters: 

Further aji > 0, for i =I=- j, I:J=l aji = 0, so that there is no need to estimate the 

elements aii, i = 1, ... , S, if the others are already estimated. Suppose our model is 

given by such a set of parameters and we wish to determine a new set: 

which maximizes the conditional log-likelihoods. To change all the aji to (iji, to 
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change the gi to gi and Ai to ).;, we use (4.3.3) and define: 

Now with: 

(4.5.1) 

Then we compute the quantity (E-step): 

I ( dPe ) Q(O,O) = E log dPe, 1Ft . ( 4.5.2) 

Using the fact: 

s s 
(g,Xr ) = L9;(Xr ,ei), (A,Xr ) = LAi(Xnei). (4.5.3) 

Further, 

s 
(9,Xr )2 - L9;(Xn e;), 

i=l 

s 
L log Ai (Xr' ei). 
;=1 
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Vile have: 

S t 

.. L log(L~j) 1 ~-l(g - g',Xr)dWr 
t,J=l,~=lJ 

1 tIt I 2 -"2 Jo ~-2(g, Xr)2dr - "2 Jo ~-2(g, X r) dr 

-It (log ('\, X r) - log (>.,', X r) )dNr - it (,\ -,\', X,.)dr 

S rt 

L (J;j(logaij-loga~j)+ Jo (a~i-aji)(X,.,ei)dr) 
i,j=l,i=lj 0 

-it ~-l(g - g',Xr)dW,. - ~ lt ~-2((g,X,.)2 - (g',Xr?)dr 

-it (log ('\, X r) -log (,\', X r) )dNr + lt (,\ -,\', Xr)dr. 

(4.5.4) 

Therefore, taking the conditional expectation on Yt of both sides (4.5.4), we obtain: 

S S_2 

Q(O, 0') = L (J;j logaji - ajiOD + L (~-lgl;it - ~ 2 glOD 
i,j=l,ij=j i=l 

S 

+ L (G~t IOg'\i - '\iOD + R( 0'), (4.5.5) 
i=l 

where the term R( ()') does not involve the parameter 0, so the E-step consists of 

computing J;j, Ot and Ct. 

For the M-step, set the partial derivatives with respect to aji, gi and '\i to zero, 

this yields the estimates Op+! as 

-1 Ai Ai -1 i i 
~ G1t/Ot=~ O"(Glt)/a(Ot), 

G~t/O; = a(G~t)/a(O~). 
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We now derive filters for Jij
, o~, Cit and Cbt which are needed to compute a: j , 

g~,,\ and give cr(J;jXt ) , cr(O~Xt), cr(GitXt) and cr(GbtXt) to satisfy the stochastic 

differential equations. 

If cr(J;j Xt), for example, is determined, then: cr(J;j) = 2.:.7=1 (cr(J;j Xt), ei)' In 

fact, 

s 
cr( J;j) - E(J;j AtlYt) = E(J;j At I:: (Xt, ek) IYt) 

k=l 

s 
I:: (cr( J;j X t ), ek). 
k=l 

Theorem 4.5.1. For 0 ::; t and 1 ::; i, j ::; S, i =I- j 

a( J;j Xt) = it Aa( J;j Xr )dr + it Ba( J;j Xr )dWr 

+ it (a(Xr), ei)ajiejdr + it Gcr(J;j Xr)d(Nr - r). (4.5.6) 

The semi-martingale representation of the Markov chain X is given by (4.2.6) and 

the semi-martingale decomposition of J;j is given by (4.2.7), we have: 

J;j X t = it Xr(Xr-, ei)aijdr + it Xr-dM;j + it AJ;jdr 

+ it J:~dMr + I:: (ej - ei)(Xr-, ei/(Xr, ejl 
o O<rst 

it (Xn ei)aijejdr + it AJ;j Xrdr + it 1r-dMr. 

For some predictable process 1, we can use again the semi-martingale product 

formula to obtain: 
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conditioning each side on Yt under the measure po? we see that: 

a-(J;j Xt) = it Aa-(J;j Xr )dr + it (a-(Xr), ei)aijejdr 

+ it E(J;j XrdArIYt). 

Recalling from (4.3.2) that 

Equations (4.5.6) follows. 

hence the proofs are omitted. 

Theorem 4.5.2. We have for 0 ::; t and 1 ::; i,j ::; S, i I- j, the following filter 
equations 

a-(O~Xt) it (a-(Xr) , ei)eidr + it Aa(O~Xr)dr 

+ it Ba(O~Xr)dWr + it Ga(O~Xr)d(Nr - r). 

a(GitXt) it(g,ei)(a(Xr),ei)eidr+ it Aa(G1rXr)dr 

+ it(Ba(GirXr) + (a(Xr)' ei)ei)dWr 

+ it Ga(GirXr- )d(Nr - r). 

a-(G~tXd - it Aa(G~rXr)dr + it (a(Xr), ei)(\ ei)eidNr 

(4.5.7) 

(4.5.8) 

+ it Ga(G~r-Xr- )d(Nr - r) + it Ba(G2r X r- )d(Nr - r). 

(4.5.9) 
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4.6 Conclusion 

In this Chapter we proposed the hidden Markov chain filtering for diffusion with jump 

process. This work has two main contributions to the filtering literature. Firstly, 

we develop the hidden Markov chain filtering methodologies to diffusion with jump 

model, our work generalized Elliott [30] result, and when the equation (4.2.1) only 

has the jump part, our work is similar to [51]. Secondly, we use the EM Algorithm in 

diffusion with jump model; this work is a direct extension of Dembo and Zeitouni [21], 

[22], Ryden [67], [68]. 
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Chapter 5 

Parameter Estimation for a 
Regime-Switching Mean-Reverting 
with Jump Model 

5 .1 Introduction 

Brownian motion and normal distribution have been widely used to study financial 

derivatives and the return of assets. An extensive asset pricing theory has been devel-

oped from the contribution of Merton [59], Harrison and Pliska [42] and Harrison and 

Kreps [41], many authors follow Merton's (Merton [59]) work on asset price oscilla-

tions. The arrival of normal information over an infinitesimal time interval generates 

only marginal adjustment of the prices, which is modelled by a continuous diffusion 

process; whereas the arrival of abnormal information (very important news) generates 

a stochastic shock (jump), which is modelled as a Poisson process. Das [18], [19], 

Dias [25], Deng [24] and Kou [47] use mean-reverting model with jumps in the interest 

rate and energy market. However, recent analysis suggests that the reverting level 

changes have an important effect on the prices process (Hansen and Poulsen [40], 

Schlogl and Sommer [69]). We choose the computationally tractable model as our 
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basic model and augment it by letting the level to which the process reverts change. 

These changes are governed by a continuous time finite state Markov chain. This 

model is firstly put forward in the financial literature. It is then the first to use dif­

fusion with jump hidden Markov chain filtering in this setting. 

This Chapter proceeds as follows: in Section 2 the model is presented and in 

Section 3 the reference probability method is introduced. This is an important method 

for filtering and parameter estimation. In Section 4, we follow the methodology 

of Chapter 4 to derive a finite dimensional filter for the unobservable state of the 

Markov chain. This is based on observations of the mean reverting diffusion process 

with jumps. Various auxiliary filters will be developed that allow us to estimate 

the parameters of the Markov chain. In Section 5 model calibration is provided, 

EM algorithm is used to estimate the parameters of Markov chain. In Section 6, 

we will use the approximation methods which are discussed in Chapter 3, Section 

3, to implement the filtering equation. Simulation results are in section 7. Finally 

the model is applied to Brent Oil prices. We will compare our model with the mean­

reverting with jump (no regime-switching) model and the regime-switching (no jump) 

model in Section 8. 

5.2 Regime-Switching Mean-Reverting With Jump 
Model 

Mean reverting with jumps process is commonly used in finance. We consider a type 

of model, called regime-switching mean-reverting with jump, where the regime level 

switches according to a continuous time finite state Markov chain. This could be a 

73 



model for an interest rate or an asset price. 

We consider the reference level I = {It; 0 :s; t :s; T} a finite-state continuous time 

Markov chain, where T > 0 is a finite time horizon. Let our model for an asset price 

or an interest rate be described by the stochastic differential equation: 

(5.2.1) 

where W = {Wt : 0 :s; t} is a standard Brownian motion on (0., F, P), which is 

independent of Xt, and each N(l) = {NP) : 0 :s; t}, l = 1,2"" ,n is a Poisson process 

with intensities A~l) and Nt(j) counts the number of jumps of size Cj. Note we may 

assume that Nt(j) and Nt(k) do not charge a common jump time if j =J k, because if 

Nt(j) and Nt(k) have a common jump time, we can consider another Nt(m) with jump 

size Cm = Cj + Ck. All processes are initially defined on (0., F, P). 

In order to model the stochastic reference level I it is convenient to consider an 

N-state continuous time Markov chain X = {Xt : 0 :s; t :s; T} that is identical to I 

after a transformation of the state space. We use the canonical representation of the 

finite state Markov chain introduced in [30]. That is, without loss of generality we 

take the state space for X to be the set :E = {el' e2, ... ,es}, where elements ei are 

column vectors with unity in the ith position and zero elsewhere. 

1 

o 

o 
L 

o 
1 

o 
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Then we can write, 

for an appropriate vector 71 = (711,'" ,71s) E }Rs, where (71, Xt) denotes the inner 

product of the vector X t and 71. The essential feature of this canonical representation 

for the Markov chain X is that the dynamics can be written down in semi-martingale 

form: 

(5.2.2) 

where M t is a (vector) Frmartingale under P and A E RSxS is a time invariant rate 

matrix, whose elements are the infinitesimal intensities of X. To denote an element 

ofthe Matrix A at row i and column j, we write (Aeil ej). Here (-,.) denotes an inner 

product. 

We assume that the intensity is a function of X t on a given probability space 

(n, .1', P). 

S 

>.(l)(t) = >.(I)(Xt ) = (>.(l),Xt ) = Ll{w:Xt (w)=e.}(>.(l),ei) E 1Ft. (5.2.3) 
i=l 

which denotes the number of events that occurs during the interval [O,t]. The obser-

vation process has the form: 

n 

dLt = i( \71, Xt) - Lt)dt + ~dWt + L c1dNi/). 
1=1 

(5.2.4) 

We now introduce some filtrations. For the a-subalgebras we write: Ft = Ftx V Yt, 

where Ff = a{Xs : S ::; t} and Yt = a{ys : s ::; t}, each contains all P-null subsets 

in F. For simplicity, we make further assumptions on the independence of Poisson 

process and Markov processes. 
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We consider the situation where the process L is observed and inferences are to 

be made about the process L and other parameters. 

5.3 Reference Probability 

Define a new probability measure P+ such that the F t restriction of the Radon­

Nikodym derivative of P+ with respect to Pis: 

dP 
At = dP+ 1Ft tv II (,\(1), Xr)~Ml)) exp [ it "(r;-l( (rJ, X r) - Lr )dWr 

1=1 0<r9 0 

Note that: At = A~ * At, where 

At = IT( II (,\(l),Xr)~Ml))exp [t it(l- (,\(l),Xr))dr]. 
1=1 0<r9 1=1 0 

A~, At are (Ft, P+) martingales with dynamics 

Under P+, the process Wt is a standard Brownian motion and fIJ?) is a standard 

Poisson process; however, the Markov chain dynamics remains unchanged and they 
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are independent of each other. The state and observation process dynamics have the 

form: 

p+ 

Under the 'real world' probability P the dynamics have the form: 

P {dLt = ,( (r;, X r ) - Lt)dt + ~dWt + L~l c1dN?) 

dXt = AXtdt + dMt 

Notation: Suppose CPt is an Ft-adapted integrable process and wish to estimate 

E[cptIYt], Using Bayes' rule (Chapter 2, Section 2), 

5.4 Filtering Equation 

In this section we derive filters for various statistics, each concerning the indirectly 

observed Markov process X and each computed using the observation L up to and 

including time t. These will be used in Section 5.5 for the E-step of EM algorithm to 

estimate the transition intensity matrix A and jump intensity rate. These quantities 

are listed below. 

1. Xt, the state of the Markov chain. This process satisfies the dynamics given 

by equation(5.2.2), then: 

a(Xt ) = a(Xo) + it ACT(Xr )dr + it Ba(Xr )dWr 

+ t t diag{(A(l),ei) -l}a(Xr-)d(N$l) - r). 
1=1 Jo 
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Here diag{ (A(l), ei) - I} denotes a diagonal matrix with entries (A(/) , el) - I, "', 

(A (I) , es) - I, A is the transition intensity matrix for the process X, and B = 

2. O~ the amount of time spent by the process X in the state ei up to time t: 

1 ~ i ~ S. 

3. JiJ the number of transitions ei ~ ej of X where i =J. j, up to time t: 

~j = it (Xu -, ei) (dXu, ej) E JR, 

4. r~(l), the level integral for the state ei, 

1 ~ i ::; S. 

riel) = It(x e·)dN(I) E JR t u, ~ u , 1 ~ i ~ S, 1::; l ::; n. 
o 

5. G~, we define below: 

(5.4.2) 

The measure valued quantities OL J;j, r;(l) and G~ are vectors in JRn, and satisfy the 

dynamics: 

a(O~Xt) it Aa(O;Xr)dr + it Ba(O;Xr)dWr 

+ t r diag{(,\(l),ei) -l}a(O;Xr)d(N?) -r) 
1=1 Jo 

+ it (a(Xr), ei)eidr, 

a(G~Xt) ~ it Aa(G~Xr)dr + it ,(1]i - Lr)(a(Xr), ei)eidr 

+ it (Ba( G~Xr) + (a(Xr), ei)ei)dWr 

+ it diag{(,\(l),ei) -l}a(G~Xr)d(N(l) - r). 
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and 

o-(r~(l) X t ) - lt (A(l) , ei)(o-(Xr), ei)dr + lt Ao-(r~(l) Xr)dr 

+ ~ l diag{ (,\ (m) ,ei) - 1 }cr(r;(l) X, )d( N(m) -- r) 

+ It(A(l),ei)(o-(Xr),ei)eid(N$l) -r) + lt Bo-(r~(I)Xr)dWr' 
(5.4.5) 

(5.4.6) 

We give the proof of equation (5.4.1), the derivations of equation (5.4.3), (5.4.4), 

(5.4.5) and (5.4.6) are very similar to (5.4.1), hence the proofs are omitted. Similar 

dynamics have been established in Chapter 4 equations (4.5.6), (4.5.7), (4.5.8), (4.5.9). 

Proof. In order to obtain the filtered estimate, we use generalized Ito formula: 

AtXt - XoAo + lt Xr-dAr + lt Ar-dXr + [A, M]t 

- XoAo + lt Xr-Ar((rJ,Xr) - Lr)dWr 

+ t, l' X,-A,«),(l),X,) -l)d(N,(l) -r) 

+ lt Ar-AXrdr + lt Ar-dMr + [A, M]t, 

for t ~ 0, conditioning each side of the equation above on Yt, we obtain that: 

o-(Xt) = o-(Xo) + lt Ao-(Xr)dr + it E(XrAr((rJ,Xr) - Lr)!Yr)dWr 

+ it E(Xr-Ar-((A(l),Xr) -l)IYr)d(N?) - r) 
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s 
E(XrAr( (77, X,.) - Lr) IYr) = L ei( (77, ei) - Lr) ((]"(Xr), ei). 

i=l 

The same argument, we have: 

s 
E(XrAr-(()..(l),Xr) -l)IYt) = Lei(()..(l),ei) -l)((]"(Xr),ei)' 

i=l 

(5.4.1) follows. 
o 

5.5 Model Calibration 

Most financial models always depend on one or several parameters. The problem of 

calibration is to provide the value of these parameters with two constraints of match-

ing the market price of liquid instruments and of fitting certain statistics. 

The filtering methodology that we describe is based on a change of measure tech-

nique which by its nature does not provide direct estimates of diffusion coefficients. 

Various forms and methods of estimating the volatility or diffusion coefficient can be 

found in the literature; see for example (Rogers and Satchell [66]). We will suppose 

~ and Cl are constants determined by one of these techniques. Using filtering results 

and hidden Markov models we wish to describe how Lt and its stochastic behavior 

can be estimated. We also wish to estimate the transition intensity matrix A and 

the vector ).. (/) of jump intensity rate. Suppose we have observations {L1,'" ,LT } 

available, where T is a fixed positive integer. Often, the likelihood function is difficult 

to compute directly, in many cases, the EM algorithm is used. 
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Suppose the model is first estimated using a set of parameters e' = {a~j' )..:(1); 1 ::; 

i, j ::; N, 1 ::; l ::; n} and we wish to determine a new set () = {aij, )..~l); 1 ::; i, j ::; 

N,1 ::; l < n} which maximizes the log-likelihood function defined below. 

Let J? denote the number of jumps that the process X makes state ei to ej in 

the interval [O,t]. We define: 

dPe 
dPo' 

We have: 

- exp [ -it le-1((rJ,Xr) - (rJ',Xr))dWr 

-% it(r2~-2((rJ,Xr) - Lr)2 -12e-2((rJ',Xr) - Lr)2)dr 

+ i) t(log g,~I:ri)))dN~l) - t()..(l) - )..'(I),Xr)dr)] 
1=1 Jo , r Jo 

S t t 

X II exp [1 log (:~i)dJ:j + (1 (aji - aji)(XTj ei)dr)]. 
i,j=l,i#J 0 J' 0 

log(::;) - -ite-l(rJ-rJ',Xr)dWr 

-% it (r2e- 2
( (rJ, X r) - Lr)2 - 12e-2( (rJ', X r) - Lr )2)dr 

(5.5.1) 

+ t t(log()..(l),Xr ) -log()..'(l),Xr))dN~l) - t()..(l) - )..'(I),Xr)dr 
1=1 Jo Jo 

(5.5.2) 

The parameter estimation can be extended to also estimate the speed of adjust-

ment I' The procedure used to estimate the parameters aij, 1 ::; i, j ::; N, remains 
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unchanged. Including I as a parameter that we wish to estimate implies that equa-

tion (5.5.1) takes a different form. The Radon-Nikodym derivative of the probability 

measure induced by the update parameter value () = {I, aij, All); 1 ::; i, j ::; 5, 1 ::; 

l ::; n} with respect to the probability measure induced by the old parameter values 

(j' = {II, a~j' A~(l); 1 ::; i, j ::; 5,1 ::; l ::; n} is then 

dPo 
dPo' 

exp ( -It 1~-l«(TJ,Xr) - Lr) - 'Y'~-l((TJI,Xr) - Lr))dWr 

-~ ltb2~-2«(TJ,Xr) - Lr)2 -1/2~-2((TJ',Xr) - Lr?)dr 

+ f) t(log(A(l),Xr ) -log(A'(l),Xr)dN~l) - t(A(I) - A'(l),Xr)dr)) 
1=1 Jo Jo 

S t 

+ .. 2: (J;j(logaji -logajJ + 1 (aji - aji)(Xr,ei)dr). 
~,J=1"#J 

(5.5.3) 

Here, we take the conditional expectation on Yt of both sides (5.5.2) and obtain: 

S t 

Q((), (j') = 2: 1~-lTJiE(l (Xr, ei)dWrIYt) 
i=l 0 

S t 

- 2: ~'Y2~-2TJ; E( 1 «(Xr, ei) - 2Lr(Xn ei) )drIYt) 
i=l 0 

n S rt t 

+ ~ ~ (log Arl) E(Jo 10g(Xr , ei)dN~l) IYt) - A~l) E(l (Xn ei)drIYt)) 

S t 

+ .. 2: . (logajiE(J;jIYt) - ajiE(l (Xr,ei)drIYt) + R(()')) , 
',J=1"#J 

(5.5.4) 

where the term R( Bf) does not involve the parameter B, so the E-step consists of 

computing J;j, 6~ and G~. 

For the M-step, set the partial derivatives with respect to aji, TJi and A?) to zero, 
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this yields the estimates () as 

a·· = J1. 

~ (I) 
A· z 

T)i -
l-l~E(J; (Xr, ei}dWr!Yt) + EU; Lr(Xr, ei)dr!Yt) 

E(J;{Xr,ei)dr!Yt) 

(5.5.5) 

(5.5.6) 

(5.5.7) 

One of the basic properties of the transition intensity matrix A is that for each 

i = 1" .. ,M, ~!l aji = 0, so that there is no need to estimate the elements aii, i = 

1" ., ,M, if the others are already estimated. 

5,,6 Implementation of Filter 

The numerical algorithm to solve the stochastic differential equation about diffusion 

with jump process has been discussed in Chapter 3 Section 3. As noted above, the 

unnormalized filtering equations are preferable because they are linear and driven by 

the observation L. 

To obtain an approximation for equation (5.4.1), we discretize the dynamics for the 

process a(Xt) over a regular partition. We consider the interval [O,tJ. Let qt = a(Xt ), 

then equation (5.4.1) is: 

qt = qo + it Aqrdr + it BqrdWr 

+ t t diag{ (A(/) , ei! - 1 }qr-d(NY) - r). 
1=1 Jo 

83 

(5.6.1) 



Then, 

Suppose h = ~, for 0 :::; k < n. 

The first approximation (Chapter 3 Section 3.3)gives: 

(5.6.2) 

The second approximation gives: 

(5.6.3) 

'Vrite T1 = a-(O~Xt), then (5.4.3), 

The first approximation gives: 

(5.6.4) 

The second approximation gives: 
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The first approximation gives: 

(5.6.6) 

The second approximation gives: 

(5.6.7) 

New estimates for the parameter aji is am +1,ji = a (Jij ) / a (aD = (n~+ 1, 1) / (r:n+ l' 1), 

here 1 = (1, 1, . . . , 1). 

5.7 A Simulation Example 

For our simulation example, we consider two Poisson jumps in our model. The filters 

are calculated using a standard numerical method which is discussed in section 6. To 

simulate asset price sample paths, we use the approximation discussed in Chapter 3. 

The model (5.2.4) can be discretized as: 

2 

Lk+1 ::c:: Lk + 'Y( (T}, X k) - Lk)~tk + ~~Wk + L clliN~l). (5.7.1) 
1=1 

Here Wk is a Gaussian process with liW rv N(O, 1), N~l) is Poisson process with 

~N(l) rv P().(l»). In the simulation the process X k is a two state continuous time 
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Markov chain (7], ell = -1 and (7], ell = 1 with initial probability vector p(O) = (~, ~). 

The transition intensity matrix used in our simulations is set at 

A = [-0.8 0.5], 
0.8 -0.5 

the other parameter values are taken to be E = 1.2, r = 8.0, (A(1) , el) = 0.3, 

(A (2), e2) = 1.9, Cl = 0.125, C2 = -0.125. The process L is simulated at the ob­

served time interval [0, 30] using a total of 30,000 discretisation points. 

We give some explanations about simulating asset price sample paths below. 

In Chapter 3, section 1, we have introduced the simulation of the continuous time 

finite state Markov chain, normal random generator and two-point random variable 

generator, therefore (7],Xk) and .6.Wk in the equation (5.7.1) can easily be simulated. 

For .6.N~l) in the equation (5.7.1), we have: 

.6.N~l) = { 1, 
0, 

with probability A (I) .6.tk 

with probability 1 - A (l) .6.tk 

In this setting, we can use two-point random variable to simulate .6.N~I), I = 1,2. (In 

Matlab, we can use Matlab function called randn to obtain normal random generator 

with mean ° and variance 1). 

The main steps in our algorithms are as follows: 

Step 1 For i, j = 1,2, choose the value of aO,ji. For example, aO,ll -5.0, 

aO 21 = 5.0, ao 12 = 5.0, ao 22 = -5.0. , , , 
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Step 2 Using the discrete time forwards equations (5.6.2), (5.6.4), (5.6.6) and 

(5.5.5) to compute new estimated value am,ji' From (5.5.5) and Bayes' formula (The­

orem 2.2.8) we have: 

(5.7.2) 

namely, 

A a(J;j) (a(J: jX t ),l) 
am+l,ji = a(OD = (a(O~Xt), 1) , (5.7.3) 

here 1 = (1,1"" ,1). a(J;jXi ) and a(O~Xt) can be calculated from (5.6.6) and 

(5.6.4). 

Step 3 When lam+1,ji - am,jil ::; 10-4
, or N = 3 X 104 loops the programme stops. 

Table (5.1) shows that the EM algorithm converges to the true value, even from 

far away initial value. Table (5.2) demonstrates when we take different sample paths 

the biases of estimated parameters are very small and insignificant. It should be 

noted that the likelihood function possesses several local maxima, and the estimated 

value of the EM algorithm converges to one of these local maxima. If there are many 

unknown parameters in the model, the optimization method is needed in order to 

obtain the satisfied results. 

Figure 5.1 and Figure 5.2 show the evolution of the estimates of the parameters. 

It is seen that the EM algorithm converges. For short observation time, the ML 

(maximum likelihood) estimate is not very close to the true parameter. However, col­

lecting more data, the ML estimate becomes close to the true value. The simulation 
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is conducted over a long time interval to ensure that each state in the Markov chain 

is visited a sufficiently large number of times. Accurate estimation of the elements of 

the matrix depends on the observation of numerous jumps in the Markov chain. 

In our numerical study, we feel that EM algorithm is very useful estimating the 

parameter of the model. It is convergent, stationary and less dependent on initial 

value especially in two state continuous time Markov chain. 

Initial value True Value Estimation Standard Deviation 
all = -1.5 au = -0.8 all = -0.8061 0.3008 
a22 = -1.5 a22 = -0.5 a22 = -0.5028 0.4029 
au = -5.0 au = -0.8 au = -0.7496 0.2609 
a22 = -5.0 a22 = -0.5 a22 = -0.4829 0.3953 
all = -10.0 au = -0.8 all = -0.8386 0.3522 
a22 = -10.0 a22 = -0.5 a22 = -0.5329 0.4838 
all = -15.0 all = -0.8 all = -1.5737 0.8735 
a22 = -15.0 a22 = -0.5 a22 = -1.2475 1.0169 

Table 5.1: Different initial value 

Sample path number True Value Estimation Standard Deviation 
M=20 all=-0.8 au =-0.9176 0.2614 

a22=-0.5 a22=-0.6402 0.4357 
M=50 an=-0.8 all=-0.7496 0.2609 

a22=-0.5 a22=-0.4829 0.3953 
M=100 all=-0.8 an =-0.8262 0.3156 

a22=-0.5 a22 =-0.5637 0.4313 
M=150 an=-0.8 all =-0. 7946 0.3008 

al1=-0.5 a22=-0.5207 0.4007 
M=200 al1=-0.8 all =-0.8061 0.2224 

all=-0.5 a22=-0.5128 0.3029 

Table 5.2: Different simulation size M 
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Figure 5.1: Evolution of the estimates of the parameter all 
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Figure 5.2: Evolution of the estimates of the parameter a22 
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5. 8 Application 

To support the plausibility of using the process L in financial model as defined in 

equation (5.2.3), with a hidden Markov chain as a model for the reference level, 

we compare the Brent Oil Prices (monthly) with some typical sample paths for the 

process L. We feel that this model is applicable in situations where some natural 

reference level exists for oil prices. 

Figure 5.3 is a plot on Brent oil prices (monthly). The observations are monthly 

observations for the period between the January 1970 and August 2000. At least 

four large jump-ups and three jump-downs for oil prices can be identified in these 

events. (Jumps in 1973/1974 lorn Kipur war and Arabian oil embargo, in 1979/1980 

Iran revolution and Iran-Iraq war, in 1986 Saudi Arabia price war, in 1990 Kuwait 

invasion by Iraq, in 1991 the Iraq defeat, in 1997 Asian crisis, and in 1999 OPEC 

and allies supply shock). Figure 5.4 is the Normal Quantile Plot. Figure 5.3 can be 

compared with Figure 5.5 which is a simulated realization of the process L. We also 

plot the picture if no jumps or Regime-switching occurred in the process L, see Figure 

5.6 and Figure 5.7. 

We can in principle apply the techniques used in Section 5.7 to the Brent oil price 

dataset but it has to be made clear that, from a data series where there are only 

seven jumps and more than three states in the Markov chain between the period it 

is difficult to model calibration, unless they can be reduced to a small number of 

parameters that are relevant for each state of the system. This could be achieved by 

specifying the matrix A and jump sizes in terms of a small number of parameters. 
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The above techniques could be directly applied with modifications. Since the model is 

characterized by an independent finite state Markov chain in combination with a con­

ditionally Gaussian and Poisson jumps observation process. It is straightforward to 

compute financial derivatives and value at risk estimates following standard methods. 

Norm;"al Oil Prices (Monthly) -Brent and Similar O~s .. 
Regime-Switching 

30 i i 
20 

i 
1. fl .. / . ...;' 

l "'---

~ .... J 
1. 

Figure 5.3: Brent Oil Prices monthly 

Normal Quantile Plot 

I-score 

Figure 5.4: Normal Quantile Plot 
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Figure 5.5: Regime-Switching Mean-Reverting with Jump Model 

Figure 5.6: Regime-Switching Mean-Reverting Model 
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Figure 5.7: Mean-Reverting with Jump Model 
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