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Abstract

The main topic of the thesis is the hidden Markov chain filtering for diffusions with
jumps. The finite-dimensional filters are obtained for various statistics including
the state of the hidden Markov chain. EM (Expectation Maximum) algorithm is
then applied to the estimation of parameters of the hidden Markov chain. Based
on some financial phenomena, we propose a model, called regime switching mean-
reverting with jump model, for an asset price or interest rate. We apply the filtering
methodology to this model and obtain the estimator for the mean reverting level.
Monte Carlo simulation is performed in estimating the parameters of hidden Markov
chain. The numerical methods for stochastic differential equations which are used
in diffusion with jump model are discussed. Some fundamental results on stochastic
calculus and some basic methods on generating random variables and sample paths

are provided.
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Chapter 1

Introduction

In 1960, R.E. Kalman published his famous paper describing a recursive solution to
the discrete data linear filtering problem. Since that time, the filtering problem has

been the subject of extensive research and application.

The filtering problem consists of estimating a stochastic process X, representing
an unobserved signal, on the basis of the past and present observations {¥;:0 < s <
t} of a related measurement process Y. The information given by the measurement
process up to time ¢ is represented by the o-algebra Y, generated by {Y; : 0 < s < t}.
The solution of the filtering problem is the conditional density F,,;,, of the signal X,
given the observation Y;. Such a solution in general takes its values in an infinite
dimensional function space in an essential way, as proven in Chaleyat-Maurel and
Michel [11]. As a consequence, in general the filtering cannot be implemented by an
algorithm which updates only & finite number of parameters, this means that there
can be no finite-memory computer implementation. The important exceptions are
Kalman filter, Benes [7] filter, Elliott [30] finite state hidden Markov models and

Kouritzin [48], [49] convolutional approach.



We explain the idea of filtering by Kalman filtering. We consider a discrete linear

example:

Xn+1 = Aan + Wy n =0,

Y, = H. X, +V, n >0,

where {W,}, {V,.} are i.i.d. N(0,1) uncorrelated sequences. We also assume that Xy
is normally distributed and independent of {W,,}, {V,,}. We want to get the optimal
estimate (linear, unbiased, minimum variance) X, using {Yo, Y1, -+ ,Y,}. Since X, is
determined using all data {Y;,Y3, -+ , Y, }, the process is not really applicable to real-
time problems for large values of n, since the need for storage of the data grows with
time. However under the above assumption, we get a recursive algorithm such that
X, = f (Xn¢1,§n), where &, represents new information about X, when we obtain
observation Y, the new information means the part of Y,, that is uncorrelated with
Y1, Y, -, Y, 1. In Kalman filtering, we obtain this “new information” by Hilbert
Space Projection. Until n — 1, we obtain the optimal estimate of X by using the data
{Yo, Y1, -, Y1}, at n, and only use the incoming bit of the data information (new
information) to correct the estimate of X so that no large storage of the data nor

repetition of calculation is necessary.

In the sixties, several authors such as Bucy [10], Kushner [52], Wonham [76],
Duncan [27], Mortensen [61], Zakai [77] generalized the results of Kalman filter from
linear system theory to non-linear dynamics. This is an essentially more difficult
problem, being in general infinite-dimensional, but equations describing the evolu-
tion of conditional distributions were obtained. In the seventies and the eighties,

Fujisaki, Kallianpur and Kunita [39], Kallianpur [45], Di Masi and Runggaldier [57],
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Pardox [63] and Davis [20] also had theoretical work in this area.

It is well-known that solving the non-linear filtering equation is difficult. In 1993,
Elliott [30] utilized a finite state continuous time Markov chain instead of a gen-
eral Markov process state equation in the filtering problem, namely using finite state
continuous time Markov chain instead of the stochastic differential equation. The
replacement of the actual Markov signal model with a possibly-infinite-dimensional
signal had been previously considered by the likes of Kushner [53] and Di Masi and
Runggaldier [56]. However, the finite-dimensional assumption facilitates simple cal-

culation.

Recently, there have been many works devoted to applying various particle meth-
ods to construct approximate solutions to the celebrated Duncan-Mortensen-Zakai
equations. Among them, we would like to mention the improved refining interact-
ing particle filter by Del Moral, Kouritzin and Miclo [60] and the refining branching
particle filter by Ballantyne, Chan and Kouritzin [3]. Kouritzin, Long and Sun [50]
consider stochastic particle Markov chain approximation to the Duncan-Mortensen-
Zakai equations for nonlinear filtering problems on regular, bounded domains. These

works are part of the most recent progress in the theory of filtering.

Filtering techniques have been applied in areas as diverse as mathematical finance,
target detection and tracking, communication networks, pollution tracking, weather
prediction, traffic management, and search and rescue, and many others. Many pa-

pers and textbooks have been written on this subject since its inception in 1960. For



the most recent progress and development, we recommend the web site in [28].

Filtering problem is a huge field. In the following we will focus on the review of
the filtering methodology used in the area of finance. These include bond market,
commodity futures market, energy futures market, stock and option market, credit

risk, and minimizing hedging strategy.

In the last ten years, filtering techniques have widely been applied to the esti-
mation of increasingly complex financial models. There are four types of filtering
techniques used in financial mathematics.

1. Kalman filtering and Extended Kalman filtering.
2. Non-linear filtering
3. Hidden Markov chain filtering

4. Quasi-maximum-likelihood approach combined with Kalman filtering.

1.1 Kalman Filtering and Extended Kalman filter-
ing

The linear filtering problem (Kalman filter) is relative to the following model (limited
to 1-dimensional, as the multi-dimensional version is a direct extension):

dX, = F(t)X,dt + C(t)dW,; F(t),C(t) e R, (1.1.1)

dY; = G(t) X dt + D(t)dVy, G(t), D(t) € R. (1.1.2)

We assume that F(z), G(t), C(t), D(t) are bounded on bounded intervals. We also

assume that X is normally distributed and is independent of {W;}, {V;}. Finally we



assume that D(#) is bounded away from 0 on bounded intervals.

Usually, an observed equation (1.1.2) is called the measurement system; this sys-
tem represents the relationship between the observations {Y;} and the state variables
{X:}. The second , unobserved system of equation (1.1.1) is termed the transition
system; this system describes the dynamic of the state variables {X;} as they were
formulated in the model. Together, the measurement and transition equations rep-
resent what is called the state space form of the model. The Kalman filtering uses
this state-space formulation to recursively make inference about the unobserved val-
ues of the state variables (transition system) by conditioning on the observed data
(measurement system). As a final step, these recursive inferences are constructed and

maximize a log-likelihood function to find the optimal parameter set.

The application of Kalman filtering methods in the estimation of term structure
models has been investigated by many authors. Pennacchi [64] was the first to use
this approach in financial econometrics. Exponential-affine models are considered
in Chen and Scott [12], Chen and Scott {13]|, Babbs and Nowman [2], and Duan
and Simonato [26]. This approach is very useful in situations where the underlying
state variables are not observable. According to these models, bond price is a func-
tion of the unobserved instantaneous spot interest rate and the model parameters.
The measurement system represents the relationship between zero-coupon rates and
instantaneous spot interest rates. The transition system describes that the instanta-

neous spot interest rate follows the exponential-affine term structure model. In this



setting, the Kalman filter is applied to obtain inference about the instantaneous inter-
est rate by conditioning on the observed market zero-coupon rates. The parameters

are estimated by maximizing a log-likelihood function.

Schwartz [70] applies the Kalman filtering methodology to estimate the spot price
and the parameter of three models (one, two, three-factor) for commercial commodi-
ties. One of the difficulties in the empirical implementation of commeodity price mod-
els is that the spot price for some commodities is hard to obtain. However futures
contracts are widely traded in several exchanges and their prices are more easily
observed. The futures contract closet to maturity is used as a proxy for the spot
price. The measurement equation is obtained by adding uncorrelated disturbances
with mean zero to take into account bid-ask spreads, errors of the observations in
the observed futures prices. The unobservable state variables (spot price) satisfy the
transition equation which is generated by a Markov process. When the disturbances
and the initial state vector are normally distributed, the Kalman filtering enables the

likelihood function to be calculated and the spot price to be estimated.

Manoliu and Tompaidis [55] offer a general multi-factor model designed to account
for the stochastic behavior of futures prices in energy market. They define energy fu-
tures prices in term of a spot price, not directly observable, driven by several stochastic
factors. The spot price follows a generalized Ornstein-Uhlenbeck stochastic process.
This formulation is well suited to the application of Kalman filtering techniques. They
perform an empirical study of a one and a two-factor model for energy futures for

natural gas based on the application of Kalman filtering techniques together with



maximum likelihood estimation methods.

The extended Kalman filtering is applied in credit risk by Cumby and Evans [17],
and Claessens and Pennacchi [15]. They obtain the estimate of credit quality. The
two approaches differ only in the update step. They treat credit quality as an un-
observed variable that follows a specified stochastic process. The bond values are
nonlinear functions of the unobservable variable. They take the average of the bond
bid and ask prices as the observation data with measurement noise. Thus, a modifica-
tion of the Kalman filter that considers functional nonlinearities, called the extended
Kalman filter, is needed to obtain (approximate) maximum likelihood estimates of
the model parameters. The extended Kalman filter uses the same recursive compu-
tational techniques as the Kalman filter, but linearizes the nonlinear function around

the conditional mean of the state variables using a Taylor series expansion.

Lund [54] considers a nonlinear relationship between the observed data and the
unobserved state variables. The main examples involve prices of coupon bond, and
nonlinear term structure models such as exponential affine models. They utilize the
extended Kalman filtering to estimate these models. In a Monte Carlo study they
investigate the finite sample properties of the quasi maximum likelihood estimator
for two term structure models. Schnatter [38] works on the same models with [54].
Their approach is to approximate the true update density by a Gaussian density with
the same mean and variance as the exact update density. The mean and variance
of the exact update density are computed by numerical integration. Evidence re-

ported shows that this method is very effective to estimate a discrete-time log-normal



stochastic volatility model.

1.2 Non-linear Filtering

Volatility is probably the most important parameter in any financial model. Elliott,
Hoekand and Valencia [33] consider the price process has dynamic S; = S;_1 exp(p —
—;-Gf +osw}) but the volatility follows the logarithmic mean-reverting process log o, =
a+ blog 0,1 +Bw?. They use nonlinear filtering techniques to estimate volatility and

the EM algorithm to calibrate the model parameters.

Tsoi, Yang and Yeung [74] assumed the risk-free interest rate follows a jump pro-
cess and the stock price process depends on some underlying real variables. One
example of the underlying is the market interest rate which is unobservable. In their
paper, Cox-Ingersoll-Ross [16] model is used to model the market interest rate. They
use counting process filtering technique to estimate the market interest rate from the
information of the interest rate. Then they use the estimated value of market interest

rate in their option price calculation.

Zeng [78] proposed a general micro-movement model that describes the transac-
tional price behavior. The model is formulated as a filtering problem with counting
process observations. In his paper, the filtering equations are derived. A theorem
on the convergence of conditional expectation of the model is proven. A consistent

recursive algorithm is constructed via the Markov chain approximation method.



Frey and Runggaldier [37] considered a market with a risky and a non-risky as-
set, and the price of the risky asset follows a stochastic volatility model. The paper
describes an approach to determine a hedging strategy for an agent who has only
incomplete price observations. Clearly, any reasonable strategy for this agent has
to depend in some way on the unobservable latent state process. They obtain the
risk minimizing hedging strategy under partial information by “projecting” the full
information strategy onto the subfiltration. The subfiltration describes the available
partial information that comes from observing the prices at the discrete random times
where a trade occurs. To actually compute the projections onto the subfiltration, an
important tool is the conditional distribution of the latent state process, given the
available price observations. This leads to a filtering problem with counting process
observations. It is an example of how filtering theory is applied in risk-minimizing

hedging strategies. Such examples are rare in the literature.

1.3 Hidden Markov Chain Filtering

Hidden Markov models are playing a growing role in the discussion of stochastic
phenomena. Filtering problems related to a finite state Markov chain are discussed
in Elliott( [30], [31]). In Elliott [30], they consider the process X, is not observed

directly, rather there is a (scalar) observation process given by

T
Yp = Jif g(Xr)dr + W, (1.3.1)
0

here W = {W; : 0 < t} is a standard Brownian motion which is independent of

X X, t > 0 be a finite state, continuous time, homogeneous Markov chain with



()-matrix A. Therefore X; has the semimartingale representation:
t
Xt == X() + f AXTCZT + Mta (132)
0

where M, is a Fi-martingale. They take equation (1.3.1) as measurement system and
equation (1.3.2) as transition system and obtain the finite dimensional filters. El-
liott [31] is a discrete case of Elliott [30]. Recently, these results are used in financial

mathematics, we describe the papers relative to this topic below.

Elliott and Rishel [36] assumed a risky asset whose price at time ¢ is supposed to
satisfy an equation of the form dS; = S;(p:dt + 0dW;), where o is constant. Further
they assumed that the implicit interest rate p; behaves like a continuous time finite
state Markov chain. A natural process to take as the observation process is the (nat-
ural) logarithm of the price S;, the results of Elliott [30] are applied to determine the

implicit interest rate of the asset p; and other parameters which describe its behavior.

A hidden Markov chain model with mean reverting characteristics is consid-
ered as a model for financial time series, particularly interest rates in Elliott, Fis-
cher and Platen [32]. They consider a two factor mean reverting model, dL; =
y(Ly — L;)dt + £dW;, where vy, € are constants and the unobserved mean reversion
level I, changes according to a continuous time finite state Markov chain. In this
setting they apply hidden Markov filtering and derive a finite dimensional filter for
the unobservable state of Markov chain based on observations of the mean reverting
diffusion process.- A number of auxiliary filters are obtained that enable the parame-
ters of the model to be estimated by EM algorithm. This is the first paper to consider

a model for the short rate that is mean reverting to a stochastic level determined by
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a Markov chain.

Elliott, Hunter and Jamieson [34] uses the filtering techniques in discrete time
model. They assumed that a price process in discrete time evolves according to the
dynamics Syi1 = S, exp(pn + onwy), where {w,}, n = 0,1,2,--- | is a sequence of
iid N(0,1) random variables, and p,, and o, behave like a finite state Markov chain.
Filtering and parameter estimation techniques in Elliott [31] are then applied to ob-
tain the recursive estimates of p, and o,. Further, all parameters in the model can
be estimated. Unfortunately this technique can not be used in continuous time to
estimate the volatility. This is because the probability measures corresponding to
diffusions with different diffusion coefficients (volatility) maybe come singular with

each other. However in discrete time, this method will work.

1.4 Quasi-maximum-likelihood Approach Combined
with Kalman Filtering

This method aries from the stochastic volatility (SV) model, the signal satisfies the
AR (autoregressive), ARMA (autoregressive moving average) or GARCH (general-
ized autoregressive conditional heteroscedastic) model. A key feature of the basic SV
models in (1.4.1) below is that it can be transformed into a linear model by taking

the logarithm of the squares of observations.

11



A simple asymptotically stationary SV model is given by

h .
Yy = &exp(*j), (1.4.1)
he = v+ Qhioy + 1, (1.4.2)

where 7, is the mean corrected return on holding the asset at time ¢, h; is log volatility
at time ¢, and &; is ii.d. N(0,1) and n; is i.i.d. N(0,0%). & and 7, are uncorrelated.

From (1.4.2), we have:
logy? = loge? + . (1.4.3)

It is obvious that &2 is x%-distribution. The mean and variance of loge? are known
to be -1.27 and 7?/2 = 4.93, respectively in Abramowitz and Stegun [1]. We rewrite

the equation (1.4.3) into:

logy? = —127+h + &, (1.4.4)

where & = loge? + 1.27 and var(§,) = n?/2. By treating & as if it were i.i.d. N(0,
72/2), Harvey, Ruig and Shephard [43] considered equation (1.4.4) as measurement
system and equation (1.4.2) as transition system, they employed Kalman filtering to
estimate the unobservable log volatility, h;, and used the quasi-likelihood function
to perform parameter estimation. This quasi-likelihood estimator is suboptimal as
& is poorly approximated by the normal distribution. (in this context see Ruig and

Shephard [43], Kim and Shephard [46]).

Although Black-Scholes model has been widely used to study financial deriva-
tives and the return of assets, many empirical investigations have suggested that the

marginal distribution of the underlying assets has a higher peak and two heavier tails

12



than those of the normal distribution. Many authors, for example, Harrison and
Pliska [42], and Harrison and Kreps [41], have extended the theory of asset price fol-
lowing Merton’s [59] work, various models have arisen in financial mathematics such
as stochastic volatility model and mean-reverting with jump model. Many authors
have utilized the mean-reverting with jump model in interest rate and energy market
(Das [18], Das [19], Dias [25], Deng [24] and Kou [47]). However, recent study shows
that while the mean reverting level changes have an important effect on prices pro-
cess (Hansen and Poulsen [40], Schlogl and Sommer [69]), the mean-reverting with
jump model cannot explain more complex financial phenomena. We propose a type
of model called regime-switching with jump model. In order that the model can be
computationally tractable we choose the Poisson jump in our model, and the mean
reverting level changes are governed by the continuous time finite state Markov chain.
Based on this motivation, we first derive the hidden Markov chain filter for general
diffusion with jumps in Chapter 4 , and then apply the result to the regime-switching

model with jumps in Chapter 5.

A more detailed outline of this thesis is as follows:

In Chapter 2, we give a short presentation of stochastic calculus and its basic
theory such as the generalized 1t6 formula, Girsanov’s theorem, and Doléans-Dade’s
exponential formula which will be used in the following Chapter. Some basic con-
cepts and notation are also defined as our preliminary settings, although they can be
found in some classic books. Some examples are provided to illustrate the use of these

formula and theorems. In the last section, we apply nonlinear filtering to estimate

13



volatility. It is a simple extended version of Elliott, Hoek and Valencia [33].

In Chapter 3, we introduce some basic random generator methods which include
generators of Bernoulli distribution, exponential distribution, Poisson distribution,
and others. We also present continuous time finite state Markov process simulation.
All of them will be used in Chapter 5 for simulation study. We write several com-
puter programs for several models including Brownian bridge process, and generalized
Bessel process modulated by the Markov chain. We also extend the Milstein numer-
ical method for diffusion model to diffusion with jumps model. In addition, some

numerical results are compared.

In Chapter 4, we study the hidden Markov chain filtering for diffusion with jump
model. We obtain recursive filtering for the latent states of the Markov chain, the
number of jumps from one state to another, and the occupation time of the Markov
chain in any state. The filtering equations are finite-dimensional and closed forms.
We extend the EM algorithm to diffusion with jumps, and obtain the estimators of

the parameters.

In Chapter 5, we consider a type of mean reverting model with jumps, where
the mean reverting level changes according to a continuous time finite state Markov
chain. This type of models can be used for modelling an asset price and an interest
rate. The filtering techniques developed in Chapter 4 are applied to this model. We
derive a finite dimensional filtering for the unobservable state of the Markov chain

based on observations of the mean reverting diffusion with jumps process. Various

14



auxiliary filters are developed that allow us to estimate the parameters of the Markov

chain. Simulation is done for a concrete example.
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_hapter

Basic Theory

In this chapter we will review some fundamental results on martingales and semi-
martingales and present some useful tools in stochastic calculus. These will include
the generalized It6 formula, Girsanov’s theorem and Doléans-Dade’s exponential for-
mula. Some basic definitions and notation are also provided as our preliminary setting
(for more details see Protter [65], Oksendal [62], Elliott [29], and Brémaud [8]). We
will also give some interesting examples arising in financial derivatives such as diffu-

sion with jump model and stochastic volatility model.

2.1 Basic Definitions and Notation

We assume as given a complete probability space (2, F, P). In addition we are given
a filtration {F;)o<i<eo- By a filtration we mean a family of o-algebras (F;)o<i<co that

is increasing: JF, C F; if s < t.

Definition 2.1.1. A filtered complete probability space (2, F, P, (Fi)o<t<oo) is said
to satisfy the usual hypotheses if

(i) Fo contains all the P-null sets of F;

(i) Fi = NuseFu, all £, 0 < t < o0; that is, the filtration (F)o<i<oo 1S right continuous.

16



We always assume that the usual hypotheses hold.

Definition 2.1.2. A random variable T €2 — [0, c0] is a stopping time if the event
{T'<t} e Fy, forevery t, 0 <t < oco.
One important consequence of the right continuity of the filtration is the following

theorem:

Theorem 2.1.1. The event {T' < t} € F;, 0 <t < o0, if and only if T is a stopping
time.
A stochastic process X on (§, F, P) is a collection of random variables (X})o<t<co-

The process X is said to be adapted if X; € F; (that is, F;-measurable) for each t.

Definition 2.1.3. A stochastic process X is said to be cddldg if it a.s. has sample
paths which are right continuous, with left limits.

Let (T,)n»o be a strictly increasing sequence of positive random variables. We

always take Ty = 0 a.s. Recall that the indicator function 1i>T,) is defined as:

1 ift > Th(w)

1{t2Tn}(w> = { 0 ft<T (w)

Definition 2.1.4. The process N = (N;)o<i<oo defined by

Nt = Z 1{t2Tn}:

n>1

with values in NU {oc0o} (N = {0,1,2,---}) is called the counting process associated
to the sequence (T, ),>1.

17



Set T' = sup,, T, then the random variable 7" is the explosion time of N. f T' = o0
a.s., then NV is a counting process without explosions. Note that for 0 < s <f < o0
we have

Ny — N, = Z 1{S<Tn§t}-
n>1
The increment N; — N, counts the number of random times 7,, that occur between

the fixed times s and ¢.

Theorem 2.1.2. A counting process N is adapted if and only if the associated random
variables (Ty,)n>1 are stopping times.

Note that a counting process without explosions has right continuous paths with

left limits; hence a counting process without explosions is cddldg.

Definition 2.1.5. An adapted counting process N without explosions is a Poisson
process if

(i) for any s, ¢, 0 < s <t < 00, N; — N, is independent of F;

(ii) for any s, t, u, v, 0 < s <t <00, 0 <u<v < oo, t—5=v~—u, then the
distribution of N; — N, is the same as that of N, — N,,.

Properties (i) and (ii) are known respectively as increments independent of the

past, and stationary increments.

Definition 2.1.6. An adapted process W = (W, )o<i<co taking values in R" is called
an n-dimensional Brownian motion if: :

(i) for 0 < s <t < oo, W; — W, is independent of F, (increments are independent of
the past);

(ii) for 0 < s < t, W;— W, is a Gaussian random variable with mean zero and variance
matrix (¢ — s)C, for a given, non random matrix C.

18



The Brownian motion starts at z if P(By = z) = 1. The existence of Brown-
ian motion is proved using a path-space construction, together with Kolmogorov’s
extension theorem.

Definition 2.1.7. A process {X;, t € T'} is said to be a Markov process if for any
increasing collection 1,9, - ¢, in 7T

P(X;, <z, X, =2, v=1,--- ,n—-1)=P(X | X;,_, = Tn-1)

The finite-dimensional distribution of a Markov process { X, ¢ € T'} can be com-

pletely determined by the initial and transitional distributions.

Definition 2.1.8. An adapted process X = (X¢)o<t<oo With Xg = 0 a.s. is a Lévy
process if

(i) X has increments independent of the past: that is, X, — X, is independent of F,
0<s<t<oo

(ii) X has stationary increments: that is, X; — X, has the same distribution as X; s,
1<s <t < oo

(iii) X; is continuous in probability: that is, lim,. Xy = X, where the limit is taken
in probability.

Definition 2.1.9. A real valued, adapted process X = (X})o<t<co is called a martin-
gale with respect to the filtration (F;)o<tcoo if

(i) X, € L}(dP); that is, E{| X; |} < o0;

(ii) if s <1, then B{X; | Fs} = X,, as.

Let W = (W})o<t<oo De a one dimensional standard Brownian motion with Wy = 0.

Then M; = W2 —t is a martingale.

Let N be a Poisson process with intensity A\. Then n, & N,— At and (N, —Mt)?>— Mt

are martingales.
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Definition 2.1.10. An adapted process X = {X;}, ¢ > 0, is a semimartingale if it
has a decomposition of the form

Xt:X0+Mt+At,

with Mg = Ay = 0, M a local martingale with jumps bounded by 3, where 8 > 0, A
is of integrable variation.

Definition 2.1.11. A is of integrable variation if E{[;° | dA4 |} < o0.

The quadratic variation process of a semimartingale, also known as the bracket

process, is a simple object that nevertheless plays a fundamental role.

Definition 2.1.12. Let X, Y be semimartingales. The quadratic variation process
of X, denoted [X, X| = ([X, X]¢)i>0, is defined by:

(X, X]=X2-2 / X_dX,

(recall: Xo- = 0); The quadratic covariation of X, Y, also called the bracket

process of X, Y, is defined by:
[X,Y] :XY—/X,dY-—/YJlX.

It is clear that the operation (X,Y) — [X, Y] is bilinear and symmetric. We therefore

have a Polarization identity:

X, Y] = %([X LY, X +Y] - [X, X] - [V, Y]).

Definition 2.1.13. For a semimartingale X, the process [X, X]¢ denotes the path
by continuous part of [X, X].

We can then write:

X, X=X, X+ X5+ ) (AX),

O<s<t

and

[XvX]t = [X7X]~(t:+ z (AXS)27

0<s<t

where AX, = X, — X,-. Observe that [X, X]§ = 0.
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Definition 2.1.14. A semimartingale X will be called quadratic pure jump if [X, X]¢ =
0.

If X is quadratic pure jump, then [X, X}, = X, + ZO<S§(AX5)2. The Poisson
process IV is an obvious example of a quadratic pure jump semimartingale. From the
definition, we see that [N, N|; = N,. If ¢ is a progressively measurable process then
we compute that

i
/ Qbst s = Z ¢sa
0 AN, =1,5<t
and
t t
/ R / ¢sds.
0 ANg=1,5<t 0

For example,

Ny(N; + 1)

t
N.dN, = Ne=1+2+---+N, = :
/0 > +24+ N, 5

AN,=1,s<t
and, since AN;=0 for all but countably many values of s,
4 t
/ ANgn,= > AN, - / AN.ds = N;.
0 AN,=1,s<t 0
Equation above shows that the integral of a bounded progressively measurable (in
particular, adapted) random process with respect to a martingale is not necessarily a
martingale. The reason is that the integrand and integrator can simultaneously jump
in a positively correlated way. Integrals with respect to martingales are martingales

if the integrands are “predictable”, such as fot N,_dn, is martingale.

Definition 2.1.15. Two probability laws P, ¢ on (1, F) are said to be equivalent
if P« @ and @ < P. (Recall that P <« @ denotes that P is absolutely continuous
with respect to ¢).) We write Q@ ~ P.
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If Q < P, then there exits a random variable Z in L'(dP) such that %—% = 7 and

Ep{Z} = 1, where Ep denotes expectation with respect to the law P. We let

EP{ l}}}

be the right continuous version. Then Z is a uniformly integrable cadlag martingale
and hence a semimartingale. Note that if ) is equivalent to P, then % e LYdQ)

and 25 = (58)""

2.2 Fundamental Theory and Some Examples

Theorem 2.2.1. (Generalized Ité6 Formula) Let f be a twice continuously differ-
entiable function on R and let X be a real semimartigale. Then f(X;) is also a
semimartingale and

FX) = F(Xo)+ /f )dX, + = /f” X],°
+ > {f(x S)AX) (2.2.1)

O<s<t

Theorem 2.2.2. (The Multi-dimensional Generalized I1té6 Formula) Suppose X is a
process with values in R™, each of whose components X' is a semimartingale. Suppose
F is a real valued twice continuously differentiable function on R™. Then F(X:) is a
semimartingale and, with equality denoting indistinguishability:

e [P 2 o
{ = i _ 2 2e
F\Xt) XO) +Z/ 8:61 dX 21:2;\/{; axiij(Xs )d[X 1X Js)
n a )
+ > {F(X) = F(Xe-)=> 5 F(X-)AX) (2.2.2)
<8<t i=1 ¢

Example: We consider Merton’s Model (Merton [59]):

N(z)
dS, = Syudt + SiodW, + Si-d(D> _Y3),
i=1
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where u € R, o > 0, W; is a standard Brownian motion, N(t) is a standard Pois-

son process independent of W, and {¥;}%, are random variables independent of

(N(t), W)

i

Letting:
f(S¢) = log S¢.

Using generalized Ité Formula (2.2.1), we have:

logs, = 1 S+/t1ds+1/t( ! dlS, Si¢
Og vy = 10800 OST‘ T 20~§;§:)[’]r
1

log S, — log S,- —
+ ) {log 5, ~log S — =

O<r<t

AS,}.
Note that:
Sr = Sr‘(]- + YN(T‘)))

from (2.2.3), we have:

N{r)

t
log§; = logSg—{-/ {(p - ‘1‘0'2)d’1“ + odW, +d(z Yot
0 2

i=1

N(t)
+ ) {log(1+Y;) — ¥},
i=1
namely,
N(®)
L,
log S; = log Sp + (i — ?2—(7 &+ oW, + ZIOg(l +Y;),
i=1
s0
1 N(&)
S = Sopexp({u— 502)15 + oW, + z log(1 +Y;))

i=1

1
= Soexp((u— 507)t + WY D (1 4+ v5).
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We give another example: Let N} and N7? be Poisson processes with rates X' and

A%, respectively. We suppose the exchange rate is now given by the equation:

d u
gsj = ,utdt + thWt -+ Oéd]\ft1 - 6dNt2.

Here W; is a standard Brownian motion, y, is drift and oy is volatility. We also assume

N} and N} do not have common jump times. We want to calculate d(s%)

Using generalized 1t6 Formula (2.2.1), we have:

1 1 1 1 1 1
d(=) = ——=—dS, + —oc2dt — - AN} — BANY)Y,
<St> St T +o;%t{3r Sr- T (AN = BAN:)}
ie
1 1 9 1 a2 ]‘ 1 ﬂg 1 2
Y = — dt — —o,d e e N —_— . (2.2
d( St) St— (/’Lt Ut) St— Ot Wt -+ 1 +a St* d t + 1— ,B St— dNt ( 7)

Equation (2.2.7) is the corrected version of the equation on page 55, line 5 in

Chesney and Elliott [14].

Corollary 2.2.3. If X and Y are semimartingales then the product XY is a semi-
martingale and

t t
XY, = / X,-dY, + / Y,-dX, +[X,Y].. (2.2.8)
0 0

That s, in differential form:

AXY), = Xy-dYy + Y- dX, + d[X, Y], (2.2.9)

Theorem 2.2.4. (Doléans-Dade Ezponential Formula) Let X, be a semimartingale

with Xo = 0. Then there exists a (unigque) semimartingale Z that satisfies the equation
Zy = Ly + fot Z—-dX,, and Z 1is given by

1
Zt == Z(} eXp(Xt - §[X7 X]§>ﬂ0<s§t(1 + AXS) eXp(“‘AXs),

where the infinite product converges.
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Example: We consider Merton’s Model (Merton [59]) again:

N(t)
dS; = Swdt+ SiocdW, + S-d(> V)
i=1

N()
= Sy (udt + cdW, +d(D>_Yi)).

i==]

Letting:
dSt = St——dXt.

We find that:
N(t)
dX, = pdt+odW,+d(> Y:)).

=1
Hence

N()
X, = ut%—aWH—ZK,

i=1

and

1
S = Spexp(X:— —2—[X, XI° ) Hocr<e(1 + AX, ) exp(—AX,)

N
1
= Spexp(ut+ oW, + Z Y; — -iazt)ﬂ,f\i(f)(l +Y;) exp(-Y;)

g==1

1
= Soexp((u = 50%)t + WD (1 + 7)), (2.2.10)

Definition 2.2.1. For a semimartingale X, with Xy = 0 the stochastic exponential

of X, written £(X), is the (unique) semimartingale Z that is a solution of: Z; =
t
1+ [, Z-dX,.

Corollary 2.2.5. If X and Y are semimartingales with Xo = Y; = 0. Then

EX)EY) =EX +Y +[X,Y).
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Theorem 2.2.6. (Lévy-Khintchine formula) Let X be a Lévy process with Lévy mea-
sure v. Then

E{eiuxz} = o) 7

where

2
P(u) = T w2 —dou+ ji/ (1 —e™)u(dz) + / (1 — ™ + juzr)v(dz).
2 {lz|>1} {l={<1}

Moreover given v,0%,, the corresponding Lévy process is unique in distribution.

Girsanov Transform theorem is fundamental in the general theory of stochastic
analysis. It is also important in many applications, for examples in finance and fil-
tering. In fact, the law of the new process will be absolutely continuous with respect
to the law of the original process and we can compute explicitly the Radon-Nikodym

derivative.

Theorem 2.2.7. Let Y (t) € R™ be an It6 process of the form
dY (t) = a(t, w)dt + dB(t) t<T, Y;=0.

Where T < oo 1s a given constant and B(t) is n-dimensional Brownian motion w.r.t
P. Put

t t
M, = exp(—-/ a(s, w)dW; — %f a*(s,w)ds); t<T.
0 0

Assume that a(s,w) satisfies Novikov’s condition
1 /T
E[exp(§/ a?(s,w)ds)] < oo,
0

where E = Fp is the expectation w.r.t P. Define the measure @ on (£, f:(pn)) by
dQ(w) = My(w)dP(w).

Then Y (t) is an n-dimensional Brownien motion w.r.t. the probability law @, for
t<T.
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Remark: Theorem states that for all Borel sets Fy,--- , F, € R*andallt1,£9,- -+, <

T k=1,2,--- we have:
QY (t1) € Fy,--- ,Y(ty) € Fy] = P[B(t1) € Fy, -+, B(tx) € Fl.

It is to say that ) < P (@ is absolutely continuous w.r.t. P) with Radon-Nikodym

derivative,

dQ n
P My on fé ),
Note that Mr(w) > 0 a.s., so we also have that P < (). Hence the two measures @

and P are equivalent. Therefore we get

P[Y(?fl) € Fy, .- ,Y(tk) € Fk] >0
> Q[Y(tl) eFy, .- ,Y(tk) € Fk] >0

> Q[B(tl) € by, ,Blty) € Fk] >0; fy,---,tk € [O,T].

Theorem 2.2.8. Change of Measure (Conditional Bayes Theorem) Suppose (2, F, P)
15 a probability space and G C F is a sub-o-field. Suppose P is another probability
measure, absolutely continuous with respect to P and with Radon-Nikodym derivative:

dP
P lg=A.

If ¢ is any P integrable random variable, then

Bivld] = S

if E[A|G] > O otherwise 0.

We shall adopt the following notation and definition:

If M is some family of processes, then M, will denote the family of processes
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which are locally in M. That is, {V;} € M if there is an increasing sequence of
stopping times {7} such that lim, T,, = oo a.s. and such that each stopped process
(v} = {Yinr,} 8 in M

Theorem 2.2.9. Let N;, t > 0, be a standard Poisson process with respect to (P, F)
and let F; = o(N,, s < t). Then there is a probability measure () equivalent to P such
that N; has a unique decomposition

i

Nt = Zt +/ Asds,
0

with respect to (Q,F;), where Z € pioo(Q, Fi), A is a positive predictable process, and
Z,Z]: = f; Asds. Furthermore, the likelihood ratio is given by

A= E(%[}}) = (o<t As) exp(—j{ (As = 1)).

In the following example, we give the estimation of stochastic volatility. In the
Black-Scholes model, the stock volatility is usually constant. Many authors have pro-
posed that the option prices are correlated with stochastic volatility. Scott [71], Hull
and White [44], and Wiggins [75] generalized the model to allow stochastic volatility,
and Melino and Turnbull [58] reported that this approach was successful in explaining

the prices of currency options.

This example is a direct extension of Elliott, Hoek and Valencia [33]. They as-
sumed that volatility is uncorrelated with spot return, but it can not explain the
important skewness effects that arise from such correction in Hull and White [44]. In

our work, we assume that volatility is corrected with spot return.

Suppose a price process S evolves in discrete time, £ = 0,1, 2, -+, with dynamics:

1
Sf; = St-l EXP(N — 50}2 -+ O'twtl),
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here u € R is the drift, w} is a sequence of i.i.d N(0,1) random variables, and o,

represents the volatility of the price change between time (¢ — 1) and ¢. The price

sequence Sg, 51, - - - is observed as are the logarithmic increments
S, 1 i
== 10 = - - 2 + (2] wl.
Ye 3 S, M 57t Wy

We suppose that log o, has dynamics: logo; = a + blog 01 + fw?, here again, {w?}
is a sequence of i.i.d N(0,1) random variables and a, b, 8 € R. Writing z; = log oy, so

that o, = €*, we see:

T = a-+br_y + 0w’

1
Ve = p— =€ 4Tty

2
Next, one lets
E(w;wy) = p
1 1 2
pwfud) = e {~ s ((wl)’ + () - 2puiud)},
27m(1 — p?)? (1-p%)

where p # 1 and —1. Using variable transformation, we let:

1
wi = (1—p*)2u, + puy,
wt2 = Uz.

We have: Fu; =0, Fy, = 0, and FE{usv;) = 0, then the models are:

xy = a + bxyy + Ouy (2.2.11)

1
Y = Wb — —2‘€2$t + (1 — pg)%ext’Ut -+ pem‘ut. (2212)

Reference Probability Methods:
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The reference probability methods refer to a procedure where a probability mea-
sure change is introduced to reformulate the original process in a fictitious world so
that well-known results can be applied. Then, the results are reinterpreted back to
the real world with the original probability measure. The idea of using reference

probability method in filtering goes back to classical work of Kalman and Bucy.

Let us assume that under the reference probability P both {z;}, {y:} are sequences

of i.i.d N(0,1) random variable, write ¢(-) for the N(0,1) density.

We define the o-fields:
gt = 0'{330,.’171,372, o Es Yo, Y, Y2, o ,yt};
Ye=0{yo, 1,2, - -+ , Y}

Thus G; is the complete filtration generated by the z and y sequences and ) is the

complete filtration generated by the observations .

Let )
s = 0lan) 1= ) o)
Pur) $(ui) ’
for k=1,2,--- where
U — (9_1(.’E}C - — b.I‘k_l)

NE -z L o 2 g1
v = (1—p“)?e ’“(yk—u+§e b — pe™R0T (zp — a — bxk_1)).

Set

e (o) (1 — p%)3
¢le=0 (1 — p?)2(yo — p+ Jeo))

4

o=t
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Define a new probability P, by setting

dpP

?d—}; &gt: At'

We shall work under P. The existence of P follows from Kolmogorov’s extension

theorem (Elliott [30]).

Lemma 2.2.10. Under P the {z.:}, {v:},t = 0,1,2,--- are sequences of i.i.d N(0,1)
random variables. Note z, and y; are independent of each other as well.

Proof:

Py <UGi1) = El(y: <1)|Gi]
ElAI(y: < 1)|Gi1]
E[A|Gi1]
EI(ye < 1)|Gs1]
E[A|Gi-1)

Op(w:) e (1 — p*) 2 ()

Bl = B 50

0p(z:) (1 — p*) 2 ()

ff’(ut) ¢(Ut) lgt——h ut}lgt—l}

Op(a + by + Ouy)
¢(Ut)

e (1= 0)3g(p — 5™ + e (1 — p*) 3 + pe”uy)

¢(Ut)

|Ge1}

= B{E{

:E{

x E{

tgt—lv ut}lgt—l}

(@ + bz + Ouy)
q‘)(ut)
y /"" e (1= p2)i(u— e + ™ (1 = p*)3v, + pe®uy)
—00 B(ve)
a+ bz, q + O0uy)
P(ur)

_ g%

X ¢(v:)dvi|Ge1 }

- J,f " bly)dye x B{2 Goa} =1.
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g(ze) (1~ p°) 79 ()
d(ue) o(vt) Iy < DIGe—1}

(1~ p")ig(u — 3> + (1 — p%)hu, + pe™iu)
¢(vt)

EI(y: < DIGi1) = E{Q

0p(a + br, 1 + uy)
P(us)
x[(yt < D|Ge-1,w }|Ge-1}

= B

E{

= F{

Opla + bxy 1 + Buy) 8 /Do e®t (1 — pHp(u — %82“ +e*(l—-p )%vt + pe®tuy)
¢(ut> —00 ¢<'Ut)

1 1
xI{p — 562“ + e (1 - PP) 2, + pettuy < Dp(ve)dv|Gy-1}

oo g brs_1 + Ou;
:/ I{ye < D(ye)dys x E{ ¢(G+¢?Ut)1+ )

|Gi-1}

:/ P(ye)dy: = Ply: < 1).

P(yt <Gia) = P(yt <.

The same as P(z; < l|Gi_) = Pz, < 1).

Remark: Conversely, We suppose we start with a probability measure P on (£, F)
such that under P both {z:}, {y:} are sequences of i.i.d. N(0,1) random variable.
we then wish to construct a probability measure P, such that under P both {v;},
{u;} are a sequence of i.i.d. N(0,1) random variables. To contract P from P, we in-

troduce the inverse A\; = A\; ' and A; = A7}, Ag = 1 and define P by settlng £ g, =

Lemma 2.2.11. Under P the {v;}, {u:},t = 0,1,2,--- are sequences of i.i.d N{0,1)
random variables.

Proof: The proof is the similar to that of lemma 2.2.10. also see [35].

We shall again use Bayes’ theorem, for any Borel measurable function f,

E [f—\:tfi (z)| V]
B\
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The numerator defines a measure; suppose it has a density g(-) so that
ElAd(z; € d2)| Y] = qi(2)dz
Then

E[Aif(z)| V] = /:m f(2)g(2)dz. (2.2.13)

We now obtain a recursive update for g.(z).

1 o0
(z) = - e 1—-p
") = G A |
x$(0Hz — a— bx))g_1(z)dz.

(&I

1
(ye — p+ 5622 — pe*07 (z — a — bx))

This gives the formula for updating the unnormalized conditional density for z; =

log o, given J.

Putting f(z) = 1, in (2.2.13) we have E[A|)4] = [ q:(2)dz, so the normalized

conditional density of z; = log g, given }) is

(%)
Z) = oS N
Pilz) o a(x)dz
Furthermore, taking f(z:) = z;, we see
22 2qi(2)dz
E =
[xtlyt] f—oo qt<z)dz

This is the optimal estimate of the logarithm of the volatility given the observations

of the prices.
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Chapter

Numerical Methods and Monte
Carlo Simulation

In this Chapter, we first introduce some simulation methods of, for example, the ex-
ponential random variable, and the normal distribution random variable. Secondly,
we consider the numerical methods for diffusion with jump model and extend Mil-
stein’s result. Some sample paths of typical stochastic processes are also generated
such as continuous time finite state Markov chain. All of them are the basis for the

simulation study Chapter 5.

3.1 Basic Sampling Methods and Generating Sam-
ple Paths

In this section we shall assume that we have a subroutine RANDOM which provides
us with U(0,1) uniformly distributed on [0,1] pseudo-random numbers. We shall
see how we can then use this subroutine to generate pseudo-random numbers with

other commonly encountered distributions, in particular those simulated in Chapter 5.

A two-point random variable X taking values z1 < zo with probabilities p; and
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py = 1 — p; can be generated easily from a uniformly distribution on [0,1] a U(0, 1)

random variable U with
, 0<UKL
¥ = z1 > Sh
Ty, pr<U<1

This idea extends readily to an M-state random variable X taking values z; < 23 <
v+ < xp with nonzero probabilities py,pa, -+, py Where Zlel p; = 1. With s¢ = 0
and s; = >_ pifor j = 1,2,-- M we set X = z;,, if s5; < U < s;41 for

§=0,1,2,--- , M —1.

For a continuous random variable X the corresponding method requires the prob-
ability distribution function Fx to be inverted when this is possible. For a number
0 < U < 1 we define z(U) by U = Fx(z(U)), so z(U) = F3'(U) if F3! exists, or in
general

z(U) = inf{z : Fx(z) > U}. (3.1.1)

This is called the inverse transform method and is best used when (3.1.1) is easy
to evaluate. For example: Exponential random variable with parameter ¢ > 0 and

distribution Fx(z) given:

g, z <0
1 —exp(—6z), z>0

Fx(z) = {
has an invertible distribution function with
z(U) = Fx'(U) =~1log(1-U)/8 for 0<U <1,

simplifies to

X =—log(U)/8, for 0<U<1.
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Figure 3.1: Three s