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Abstract

This thesis contributes to the development of novel absorbing boundary
conditions (ABCs) for two finite-difference time-domain (FDTD) methods in
computational electromagnetics: the well-known FDTD method to the solution of
Maxwell’s equations and the wave equation in the time-domain (WETD) method.

The conventional approach to create a perfectly matched layer (PML)
ABC for the FDTD solution to Maxwell’s equations is reviewed, as well as
several other state-of-the-art techniques to define a PML medium.

The novel WETD technique is described for applications in numerical
algorithms both for optical waveguides and structures, and in the microwave and
millimetre-wave structure analysis. The new algorithm requires a reliable and
efficient ABC, which can handle both open problems (i.e., radiation and
scattering) and problems involviﬁg port terminations (such as high-frequency
circuit problems and optical guiding structures).

A new degree of freedom is introduced in the definition of the PML
variable profiles and thus improved algorithms for PML ABCs are formulated and
developed both for the WETD method and for the FDTD solution to Maxwell’s

equations. The proposed modified PML profiles handle equally well both port

il



terminations in guided-wave problems and truncations of the computational
domain of open problems.

The performance of the proposed PML absorber is further improved by
new types of PML termination walls using single-layer ABCs. For that, a lossy
version of Mur’s second order ABC and a lossy version of the second order
dispersive boundary condition (DBC) have been developed and implemented. The
current implementation is formulated and developed on orthogonal non-uniform
grids. It handles inhomogeneous dielectrics intersecting the PML boundaries.
Various numerical simulations have been carried out to validate the theoretical
models at microwave and optical frequencies, as well as in depth detailed
comparison with commonly used PML ABCs is presented.

Suggestions for further research are provided.
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Chapter 1

Introduction

Up to the late 1980s, the modeling of engineering systems involving
electromagnetic wave interactions was dominated by frequency-domain
techniques, mainly based on solving frequency-domain integral equations by the
Method of Moment (MoM); see e.g. Harrington (1968).’MOM includes setting up
and solving dense, complex-valued systems of thousands, even tens of thousands
of linear equations by direct or iterative techniques. Its drawbacks include not
only a huge computational burden, but also the necessity of the integral equations
reformulation including difficult derivations of geometry-specific Green’s
functions; as well as incapability to deal with electrically large objects of complex
geometry.

To resolve the above mentioned difficulties, since the late 1980s the focus
of the computational electromagnetic résearch changed towards the direct solution
of the fundamental Maxwell’s curl equations or the derived from them wave
equation, on spatial grids in either time or frequency domain. The solutions of
those partial differential equations (PDE) have proven to be robust and provide

highly accurate modeling for variety of free-space and guided-wave
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electromagnetic interaction problems. They deal easily with geometrical and
material complexity and inhomogeneities.

Time-domain methods can be classified according to the analytical form in
which the fields are represented. Any field problem can be described either by its
PDE, or by its corresponding time-domain integral equations (TDIE). The first
type of models (the PDE models) can be further classified as finite-difference or
finite-element methods depending on the discretization scheme used. The second
type of models (the TDIE models) leads to the boundary-value integral
formulation that can be also treated by a variety of discretization schemes.

Time domain finite-difference PDE solvers have two versions: based on
the discretization of Maxwell’s equations or based on the discretization of the
wave equation. They both provide the means to model ultrahigh-speed microwave
and photonic circuits and devices, since those have electromagnetic wave
transport and interaction phenomena as a critical operating factor. Simulation
techniques of this type also permit the visualization of the electromagnetic wave
propagation dynamics in those devices which otherwise is difficult, costly and
sometimes impossible to implement.

When open problems are treated by a 3-D space-domain discretization of
PDE solvers, the real infinite space has to be truncated to a reasonably sized
numerical domain. The boundaries of that numerical domain have to simulate the
reflectionless propagation of the field or potential quantities, which is done by the

application of Absorbing Boundary Conditions (ABCs).
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Kane Yee (1966) placed the basis for the time domain PDE solvers by
introducing the finite-difference time-domain (FDTD) approximation of
derivatives on interleaved (dual) spatial Cartesian meshes for the electric and
magnetic field in Maxwell’s equations.

The second alternative for the time domain finite-difference PDE solvers
is the wave equation, either derived for the electric (or the magnetic) field, see e.g.
Krupezevic (1993), or derived for the magnetic (and/or electric) vector potential,
see e.g. Georgieva (1997). FDTD potential formulation has the advantages of
significant memory and CPU-time savings in comparison to the FDTD field
formulation, since all six components of the electric and magnetic field can be
described by three or even two scalar quantities: either by the three components of
one (magnetic or electric) vector potential, or by two collinear scalar wave
functions, which are components of the magnetic and electric vector potential in
one preferred direction. The advantages of using vector potentials (VP) include
the facts that they are less singular in the vicinity of sources and sharp
discontinuities, such as edges and wedges of infinite conductivity; they are also
smoother functions of space than the field components at interfaces between
regions of different permittivities and/or permeabilities. Each component of the
vector potential is decoupled from the other ones. This implies fewer numerical
errors and no late time-step instability.

Despite its attractiveness, the time-domain wave potential (TDWP)

approach (see Georgieva (2001)) has not been implemented until recently,
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because of many unsolved problems, mainly related to the proper application of
boundary conditions at material interfaces, conducting edges and corners, etc. The
right choice of wave-potential preferred direction posed another serious problem.
The first finite-difference application of the time-domain wave potential (TDWP)
method was presented by Georgieva and Rickard (1999), (2000). In Georgieva
(2001), the construction of solutions based on the TDWP approach is rigorously
analyzed for general inhomogeneous media.

The practical application of the above-mentioned new time-domain
methods, based on the use of the wave equation, requires the formulation and
development of reliable and problem-independent ABCs. It has to be an efficient
ABC, which can handle both open problems (i.e. radiation and scattering) and
problems involving port terminations (high-frequency circuit problems).

During the last decade or two, various ABCs have been developed.
However, intensive research is still going on in this area because numerical
reflections, even if small, affect badly the stability of the algorithms, as well as
the frequency-domain results, which appear to be very sensitive to numerical
errors in the transient response.

Jean-Pierre Berenger (1994) introduced the Perfectly Matched Layer
(PML) ABC, which has been proven to be the best ABC capable of suppressing
all sources of computational noise to amplitudes below 10™ of the incident wave
amplitude. The PML ABC introduced by Berenger (1994), (1996) has attracted

immense attention in the last years. It has been used both in the frequency domain
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and in the time domain. In the time domain it has been applied mainly in
conjunction with the FDTD solution to Maxwell’s equations. In the frequency
domain, PMLs have been developed for the Finite-Element Method (FEM) and
for the Finite-Difference Frequency-Domain (FDFD) formulations. PML has been
modified and improved for various applications.

There are only few attempts to apply PML to the wave equation, mainly in
the frequency domain [for example see W.P. Huang et al. (1996), AlSunaidi et al.
(1999), Tang et al. (1998), Cuccinotta et al. (1999), Yassui et al. (1999)]. To the
author’s knowledge there is only one publication on one-direction of PML
absorption for the time-domain 2-D wave equation by D. Zhou e al. (2001).

In this thesis, improved algorithms for PML ABCs for the 3-D time-
domain wave equation (WETD) in lossless and lossy inhomogeneous dielectric
media have been developed and their possible applications to the analysis of
microwave and optical wave passive elements have been investigated. A new
degree of freedom is introduced in the definition of the PML variable profiles and
improved PML ABCs are developed both for the WETD method and for the
FDTD method to the solution of Maxwell’s equations. New types of PML
termination walls are developed. The objective of this research is to develop the
theoretical and numerical aspects of the problem. It opens a wide range of
possibilities for further improvement of numerical implementation and practical

applications. Various numerical simulations have been carried out to validate the
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theoretical models as well as comparisons to other well-known ABCs are
presented.

Chapter 2 outlines the most powerful time domain method in the
computational electrodynamics — Yee’s finite-difference time-domain (FDTD)
method. The fundamental concepts are reviewed and the non-uniform orthogonal
algorithm is presented.

Chapter 3 focuses on the perfectly matched layer (PML) absorbing
boundary condition (ABC) for Yee’s FDTD method to the solution of Maxwell’s
equations. Some of the existing PML ABCs are reviewed which are related to the
development of an improved PML (IPML) ABC, where the IPML variables
profiles are modified by incorporating a new degree of freedom in the existing
algorithms.

Chapter 4 describes the wave equation in the time domain (WETD)
techniques using vector potentials. These new techniques developed by Georgieva
(2001), and by Georgieva and Rickard (1999), (2000) are the first successful
attempts to apply the vector potential theory into finite-difference time-domain
algorithms. First, the time-domain algorithm based on the magnetic vector
potential and the second-order wave equation is presented. Then, the application
of a pair of two collinear wave potentials of a fixed direction is outlined and its
advantages are considered.

Chapter 5 describes the improved PML ABC developed for the 3-

dimensional WETD method. Modified PML variable profiles are proposed whose
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superior performance is validated in the numerical examples in Chapter 6. New
types of PML termination walls that improve the performance of the absorber are
developed.

Chapter 6 deals with the validation of the proposed PML models — for
both the WETD method and the FDTD method to the solution of Maxwell’s
equations. The numerical aspects of their implementation are considered.
Examples of both open (radiation) problems and port terminations in high-
frequency circuit problems are presented. The algorithms are tested for
homogeneous and inhomogeneous media. The modified PML variable profiles
developed for both the WETD and Yee’s FDTD method are shown to offer lower
reflections in a wider frequency band in comparison with the commonly used
profiles. The effect of the termination walls on the overall performance of the
PML absorber is studied and the best options are singled out.

The thesis concludes in Chapter 7 where the results are discussed and
some suggestions for further research are provided.

The author’s original contributions in this thesis are:

1. New degree of freedom is added in the formulation of the PML

variable profiles. Based on it, an Improved Perfectly Matched Layer
(IPML) ABC for the FDTD solution of Maxwell’s equations on
orthogonal non-uniform grids is developed and implemented in a

FORTRAN program.
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2.  An Improved Perfectly Matched Layer ABC for the 3-dimensional
wave equation in the time-domain (WETD) method is formulated
and developed on orthogonal non-uniform grids and is implemented
in a FORTRAN program. New degree of freedom is incorporated in
the formulation of the PML variable profiles.

3. New types of termination walls for the IPML ABC are formulated
and implemented.

4. In depth detailed comparison with commonly used PML ABCs is
presented.

5.  Prescription for suitable values of all IPML parameters is given
based on extensive numerical experiments.

However, in the author’s opinion the most important contribution is the
introduction of the new degree of freedom in the definition of the PML variables
profiles. This represents a problem-independent approach to the improvement and
optimization of the PML performance, in contrast to the attempts to optimize one
PML variable in a problem-specific environment. Finding PML variable profiles
suitable for the wave equation in the time domain was crucial to the development
of an efficient and reliable ABC for the WETD, which was the primary goal of
this research. The PML ABC proposed here is not limited to electromagnetic
problems only. It can be applied to any physical phenomenon modeled by the

general lossy 3-D scalar wave equation, which requires reflection-free boundaries.



Chapter 2

The Finite-Differences Time-Domain Method

2.1 Introduction

The solution of every electromagnetic field problem is based on (the

exact) Maxwell’s equations:

—

VxE=—,u%€£—o"”ﬁ+jfn

Vxﬁ=e%§+aﬁ+.7‘

V-H=0
V-(¢E)=p
where:
E is the electric field intensity [V/m];
H is the magnetic field intensity [A/m];
U is the magnetic permeability at the given point in space [H/m];
€ is the dielectric permittivity [F/m];
o is the electric conductivity [S/m];

o™ is the magnetic conductivity [ohm/m];

9

@2.1)

2.2)

2.3)

2.4)
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J' is the induced electric current density [A/m?];

ji

= is the induced magnetic current density [ V/m?

The equations (2.1) to (2.4) are always endowed with certain boundary
conditions (BCs) depending on the problem.

The solutions to practical problems depend on numerical methods to solve
the above equations since their analytical solution is available for very limited
simple structures only. Starting with the first application to 2-D problems (TE and
TM wave propagation in a waveguide structure) in the fundamental publication of

K. Yee (1966), the FDTD method evolved to the most powerful time-domain

approach in electromagnetics nowadays.

2.2. Outline of Yee’s algorithm on orthogonal non-uniform
meshes

The idea of Kane Yee (1966) is to discretize directly Maxwell’s curl
equations in their differential form, replacing them by a set of finite difference
equations. This initially was done on an orthogonal uniform grid, i.e. the
increments ax, ay, Az in x-, y-, and z-directions, respectively, were constant in

all directions.

As shown on Fig. 2.1, the E and H components are located so that each

E component is surrounded by four circulating H components and vice versa,

thus providing an interlinked array of Faraday’s Law and Ampere’s Law
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contours. Hence, Yee’s algorithm simultaneously simulates the point-wise
differential form and the macroscopic integral form of Maxwell’s equations,
which together with the central difference operations (using the so called leapfrog

scheme) implicitly enforces the two Gauss’ Law relations, too.

__________________ L - L,
[ T R A0 T T S
; > H,
*:::‘fﬂ..‘i’f’..’}_’,‘? _______ P Y S w H,
.’ ,k .., ',k
@, j.k) é(lJ ) . ; Hz
A S TP SO : z
&> é!j) x
(i, 7,k)

®
Fig. 2.1. Yee’s discretization cell showing the orientations and positions of

the E - and H - field components.

The method is known as FDTD, the “Finite-Differences Time-Domain”
method. It can be readily put in terms of an orthogonal non-uniform grid, i.e. the
increments ax(i), ay(Jj), az(k) could change along their corresponding direction,

so that at the time step n, the following discretization holds:
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ek 1= 7"(i, ,k) i
H2 (i, j k) =| =Bl \ga g g X
k)= [m "6, 0) s u1+r k]

{E;‘(i,j,kﬂ)—E;(i,j,k) E"(i,j+1,k)-E (i, _],k)i|

@2.5)

az (k) w(7)

1

nte 1-r"(i, j,k) At
H 2(i,j,k LA FiLIY ) ,k
2 (0)k)= [1+r (z,],k)} g H(0d ,u[1+r @, ],k):l

[E:(Hl,j,k)—E:(i,j,k) E"(i,j,k+1)—E (zjk)}

ax(i) az(k)

(2.6)

0= ER i i

X
1+r"(i, j,k) 1+r”’(i,j,k)]
{E: (1 +10)- B k) Ey(i+110)-E; (i,j,k)]
8y (J) ax(i)

Q.7)

n+l L_M ] —
b ) = [ [

1

(i,j=Lk) H, > (ij.k)- Hy%(z Jk=1)
ayy (7) sz (k)

1
nt—

H. 2(i,j,k)-H.

z

2.8)

N|—‘

n+l l—r(l—']’k) —At—
£ 7k)= L+r(z,1,k)]E(,J,k) 5[1+’”(i’j’k)]x

1

1 s et l
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where (i, j,k) = M; r"(i,j,k)= M .
28(1,_],k) z'u(ls.]ak)
Here, the 3-dimensional (3-D) computational domain is divided into non-

uniform orthogonal mesh with mesh sizes in each direction ax(i), ay(j), az(k),

depending on the position of the mesh point (1<i<n,

‘max

, 1<j<n, ,
1<k<n, ), see Fig. 2.2. The use of non-uniform gird increases the efficiency

of the FDTD method since a fine mesh can be used only where details are present
thus allowing for large savings in memory and computational time.

In order to represent the time and space derivatives properly, the figure
shows how the E - and H - field components are displaced in time and space by

half a step, e.g., in the z-direction E,,H, and H , are half step above E,, E, and

H, . Also, H -field components are spatially offset by half a grid with respect to

E -field components ("after” £ components) and are calculated half a time step

in advance. As a result of the spatial offset of H -field components, their spatial

increments are actually:

w, (i)=Ax(i)+§x(i+l) @.11)
vy (J)= Ay(j)Jr;y(jH) 2.12)
w, (k)=Az(k)+;z(k+l) 2.13)

where ax(i), ay(j), and az(k) are the increments for the E -field components.
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The advantage of such a discretization is obvious: it removes the necessity of the
less accurate forward-in-time finite differentiation and uses only central
difference (leapfrog) schemes.

In order for the above numerical scheme to be stable, it has been rigorously
derived that the step size with respect to time, az, has to meet Courant’s stability

condition, see e.g. Taflove (1995):

st < 2 min 1 : 2.14)
s0) 5] =)
ax(i) ) (av())  \az(k)
or
sl ! 2.15)

e
+ +
Axmin Aymin Azmin

-1
where ¢ = (,/ ,us) is the highest velocity of light in the analyzed structure.

The minimal spatial step can be defined as

Al = min {ax(i),ay(j),az(k)} (2.16)

1sjsm,

1€ksn,
max

and Courant’s stability condition on at usually used in practice is:

1 Al
< —.Zmin
¢ 3

At

In the programs developed in this research, az is defined as:

al .
Af = 2.17
e (2.17)
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az(k+1) azy(k) o H,

AZ(k) ‘ ............ { ............ ‘ .................. { ............... ﬁ ........... .7 ,,,,,,,, i z
ay(J) k) ¥
— >~ > 0 @>r— D x
/ Ax(l") ax(i+1) 1 | 0

N
(> J,k) | g | mpGD ]
corner

Fig. 2.2. Orthogonal non-uniform mesh layout showing the space

increments in  x-, y-, and z-directions for the E- and H- field

components, respectively.

The central finite differences used in Yee’s algorithm have second-order
accuracy and the resulting time-stepping algorithm is nondissipative, i.e. the
numerical wave propagation does not experience any decay resulting from non-
physical numerical- algorithm artefacts. Regardless of its mesh non-uniformity,
Monk and Suli (1994) proved the second order convergence of the non-uniform

orthogonal FDTD. In their proof only Dirichlet homogeneous boundary
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conditions are considered. Navaro et al. (1996) presented a numerical
investigation of the accuracy and showed that the non-uniform orthogonal FDTD
yields numerical values of the fields that have second-order accuracy. In the latter
paper the results obtained from FDTD simulations are compared to the analytical

values for different boundary conditions.



Chapter 3

Improved Absorbing Boundary Conditions

for the FDTD

In this chapter, an improvement of the existing modified perfectly
matched layer (MPML) ABC will be described, which is based on the
introduction of a new degree of freedom in the definition of the PML variable
profiles. The resulting PML will be referred to as the improved PML (IPML). As
an introduction to the subject, the original Berenger’s PML and B. Chen’s MPML
are outlined. Then a detailed derivation procedure for the IPML parameters is
presented, which is based on the method outlined by D.G. Fang (1998). The new
degree of freedom is defined, namely the PML variables are allowed to grow at
different exponent rates. The resulting IPML parameter profiles are enlisted for
the 3-D FDTD method to the solution of Maxwell’s equations. Finally, alternative

methods to define a PML medium are outlined.

17
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3.1 Outline of Berenger’s perfectly matched layer (PML)

One of the disadvantages while using Yee’s FDTD method is the necessity
to make the computational domain very large. The boundaries of the
computational domain have to be far away from the modeled structure in order to
separate the desired solution from the boundary effects which give rise to spurious
solutions - because the FDTD method does not model the evanescent modes
properly: in reality, the structures are open, that is, they exist in an open region
and no energy comes back; while in the FDTD model we are confined in a finite
computational domain.

This challenge has been addressed in many papers. During the last two
decades few types of Absorbing Boundary Conditions (ABCs) have been
proposed, such as Engquist-Majda’s one-way Wave Equation ABC [Engquist and
Majda (1977)], Mur's ABC of first, second, and third order [Mur (1981)], Litva's
second order Dispersive Boundary Condition (DBC) [Z. Bi et al. (1992)}, etc.
These provide effective reflection coefficients of order -35 to -45 dB for most
FDTD simulations.

To attain a dynamic range of 70 dB, comparable to current RCS
measurement technology, a new type of ABC was proposed by Berenger (1994)
with "a perfectly matched layer (PML) for the absorption of electromagnetic
waves".

Berenger’s PML ABC is a non-physical lossy absorbing medium, adjacent

to the outer grid boundary and has its wave impedance independent of the angle
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of incidence and frequency of the outgoing scattered waves. Berenger reported
reflection coefficients as low as 1/3000th of those from the standard second and
third order analytical ABC's such as Mur's.

The underlying idea of PML ABC is to separate each field component in
Yee's algorithm for Maxwell’s curl equations into two quantities, each depending
on one spatial derivative only, thus giving an additional degree of freedom of the

algorithm. This way instead of the six field variables, twelve are defined, in the

following way:
E.=E_ +E, 3.1)
E,=E,+E, (3.2)
E,=E_ +E, (3.3)
H,=H, +H, 34
H,=H, +H, (3.5)
H,=H,+H, (3.6)

By definition, a perfectly matched interface is an interface between two
media, one of which is lossy, such that the interface does not reflect a plane wave
for all frequencies and all angles of incidence. That is achieved by matching the
Phase velocities and the wave impedances on both sides of the interface.

In his first example for a 2-D TE case -E_, Ey, H,, Berenger (1994)
starts with Maxwell’s equations in the most general case, which is a medium with

an electric conductivity ¢ and a magnetic conductivity o™



20 Chapter 3 Improved Absorbing Boundary Conditions for the FDTD

3E _ 3,

& —=+0E 3.7
i Yy 3.7)
oF oH
& —2+0E, =—% 3.8
° ot Y ox 3-8)
oH JE. OE
Lyo"H,=—= y 3.9
Ho— =% o (3.9
As it is well known, if the condition

g_0_ (3.10)

& Mo

is satisfied, this matches the wave impedance of a lossy free-space medium to that
of vacuum so that no reflection occurs when a plane wave propagates normally
across an interface between true vacuum and the lossy free-space medium.

To define the PML medium in the TE case, the magnetic component H,
is broken into two subcomponents, denoted as H, and H,,, depending on the x-

and y-derivatives, respectively. Thus the electromagnetic field has four

components, E, , E,, H,, and H,,, connected through the four equations:

& ai" +0'yEx=?—(—H%£zy—) (3.11)
eo%E;y—+0'xEy =w{—”a:c"fi) (3.12)
Ho ala{t‘" +0';"Hzx=—% (3.13)
Lo agftzy +oyH, =~ a;i" (3.14)
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where the parameters (o,, o), c,, 0';") are homogeneous to electric and
magnetic conductivities. From this simple example, it is immediately clear that if,

for example, o, =07 =0, the PML medium can absorb a plane wave (E,, H,,)
propagating along x, but it would not absorb a wave (E,, H,,) propagating

along y.

Similarly, in the 3-D case, in order to make the absorber a lossy medium,

for each direction a PML electric conductivity o; and a PML magnetic
conductivity (loss) 0", i=x, y, z, are assigned to the outer boundary layer to
absorb the outgoing waves, that meet the requirements:

9.9 =%y, 2 (3.15)
& Mo

Then the equations of Yee's algorithm are separated to obtain the PML

scheme as follows:

0H,, . I(E.+E,,)

Lo at"y +anyy=——ayi (3.16)

dlE, +E

ﬂoa 2 o"H = (Bys +Eyr) (3.17)
0 0z
0H , a(E +E )
Ty oy = \Tw T 1
a0 3z G-18)
0 JE,_+E

Uy—2+0"H = (”‘ ZY) (3.19)
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#o%"‘i+a;"Hzx=__aLE%c‘fL)
Ho a’y+0}"sz=a(E"3;Exz)
5o—aTxy+0yExy=a(H"‘a;sz)
£ E)%Z—HrzExz =_8(Hy3:Hyz)
£ ay’ +0,E,, = a(nya: H,)
Eg—2+0E, = B(Hua:sz)
8098—“—+GXE3_8(HJ3:Hyz)
80—51+oyEzy——a(H"3;sz)

(3.20)
(3.21)
(3.22)
(3.23)
(3.24)
(3.25)
(3.26)

(3.27)

Following the 2-D example in Berenger (1994), for the 3-D case it can be

shown that in PML, each field component, call it ‘¥, decays as

_ o, sim//z

_ xcos¢cosl//+ysin¢cosl//+zsinl//) _ J,cos¢cosy/x _ o, singcosy
e 6‘()CG e 5000

jol t
¥="We ( <¢

where

G= \/wx cos® gcos’ w + w, sin? pcos® p+w, sin®y ;

(@, ) define the angle of incidence of the wave electric field vector;
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1= 1% _J% 119

w=—"5, -2 5% (3.28)
1 JOx _]o.y 1 JO,
Wl Ay @hy

and the ratio Zof the electric field magnitude to the magnetic field

magnitude is

z= [t 1 (3.29)
& G

When the above mentioned requirements for o; and o] are met, namely

o. o" c, O, o, o"
%% % % %_0 (3.30)
& M & My & M

it follows that @, =@, =@, =G =1 for all frequencies; the decay of any field

component ¥ becomes:

B xcos¢cosl//+ysin¢cosl//+zsinw) _ Ocospcosy GySin¢COSWy _ g, siny
e

t
‘P:‘I’oejm( ¢ ac o & o & (33])

and
z= [t (3.32)
&

Thus the first term in (3.31) shows that the wave in PML travels normally
to the electric field with the speed of light in vacuum; next terms show its
magnitude exponential decay along the three Cartesian axes. Equation (3.32)
shows that the wave impedance of PML medium equals that of vacuum

regardless of angle of propagation.
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Berenger proposed the PML conductivity o; to increase gradually with

the depth p;, in the absorber, i=x, y, z, as the wave travels in the PML

medium:

o (p)=o,m[ﬁ] , 0<p<4, (3.33)

where p is the depth in PML; &, is the entire thickness of the PML medium in the

respective direction (see Fig. 3.1), and # is the user defined rate of increase.

. RBppyr Ppmi

Fig.3.1. FDTD computational domain endowed with a PML medium
showing the depth in PML p;,, i=x, y, z and a PEC wall

termination layer.

The reflection factor for an angle of incidence 8 is:

]
e |oP)dp
R(@)=e ™ ° (3.34)

_2cosé
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-and hence for normal incidence:

R (0) — e—ZUmaXJ/(nH)e‘oc (3-35)
This is a user-defined parameter prescribing the level of reflection; for all
practical purposes it is enough to choose R (0)< 1078,

In PML so called "exponential time-advance scheme" can also be used
(see derivation in Section 3.3.4), since the field decays much faster than in the rest
of the computational domain; thus, for example for the split-field components

E, and E, the update equations will be:

o, (i)a
[
oy (i) € ¢ -l
E"(i,j,k)=e % -E.(i,j.k)- X
g ’ 7, (i) (3.36)
Ho2 (i, j k) —Ha 2 (i-1, j,k)+H:y+5 (i, j,k)~ Hor 2 (i=1,j,k)
axy, (i) axy (i)
o, (k)
&
o, (k)ar e © -l
EM (i, jk)=e ® -E) (i,).k)- X
" ” o, (k) (3.37)
”+l n+l n+—1— n+l
ny 2 (i’jak)_ny 2 (i’j=k_1)+sz 2 (i’j’k)_ xz 2 (i,j,k—l)
azy (k) azy (k)

Similar expressions hold for all other field components.
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3.2 Outline of the modified perfectly matched layer (MPML)

Although PML is matched to evanescent modes, too, it is not possible to
increase the attenuation rate of the evanescent modes by adjusting parameters of
the matched layers (since that rate is the same as in free space). For evanescent
modes with low attenuation rate it is necessary to use thick PMLs, and usually not
less than 16 layers are necessary. Alternatively, the PMLs have to be located far
from discontinuities and sources. In either case the computer time and memory
usage increase significantly.

To overcome this drawback, B. Chen et al. (1995) proposed a Modified
Perfectly Matched Layer (MPML). The idea is to add additional degree of
freedom in the algorithm, in order to adjust the parameters of PML. In result the
authors claim that the thickness of PML is reduced at least by half, and that it can
be allocated very close to sources and discontinuities, down to two spatial steps.

To this goal, new coefficients «,, a, o, K., kK,, k, are introduced.

Together with the previously introduced PML conductivities, they meet the

following requirements:

m m m
ﬂzax O-y —O-_Y ,_0; (3 38)
s - 1) - ) .
& My & Iy & My
K, =0 K,=0); K,=a, (3.39)

The new scheme is called a Modified Perfectly Matched Layer (MPML) for the
FDTD solution to Maxwell’s equations.

Using the new parameters, the MPML for the FDTD equations become:
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Lok, —Igti +0)H,, = —ﬂEia;iy) (3.40)
pok, ==+ 07 Hy, a(nya: Ey) (3.41)
HoK: = 2 +orH,, =- 9 (E"ya: Ex) (3.42)
Lok, aty" +O7H, = d (E"‘a: Ey) (3.43)
Lok, aa =+ o"H,, —a<E”‘a: E) (3.44)
poky —E+ OV H,, = a(E"y(,); Ex) (3.45)
&, —>+0E, = a(H”‘a: ) (3.46)
oE,, d(Hy +H,)

&, . +0,E,,=- 5 (3.47)
£y, ayz +0,E, = d (nya: Hy) (3.48)
£y, ayx +0,E, =- J (H"‘a: Hy) (3.49)
£,0, azx +0 E_ = a(Hy’;: Hy’) (3.50)
g, —2+0 E :_a(ny+sz) (3.51)
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In each direction towards the edges of the computational domain, the
MPML variables have the following profiles:

1. The proposed by Berenger (1994) PML conductivity:

> 20

i y

oo [ﬁjn ) (n+1)goc.1n[ﬁo)J[

AN

J (3.52)

where 0< p<§;, i=x,y,z and

2. The proposed by B. Chen et al. (1995) PML loss factor:

() =1+ £y [;5’1] (3.53)

1

Here,

R(0) is the user selected reflection coefficient at normal incidence,
usually in the range R(0)e [10‘2, 10'6];

0; is the thickness of the MPML;

p is the depth in MPML, 0< p<4;;

Emax 18 user defined parameter, controlling the rate of the evanescent

mode attenuation; originally proposed to be in the range &, € [0,10];

n is user defined rate of increase; Berenger proposes n = 1,2,3; Chen uses

n=..
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3.3 Improved perfectly matched layer (IPML)

In this section, an improvement of the existing MPML proposed by B.
Chen et al. (1995) will be described. This improvement consists of including a new
degree of freedom in the definition of the MPML variable profiles; namely, the |
PML variables are allowed to grow at different exponent rates. The resulting PML -
will be referred to as the improved PML (IPML). The conventional method of
derivation of the PML parameters, as outlined by D.G. Fang (1998), will be -

followed.

3.3.1 Derivation of IPML parameters

Following the general approach of Berenger (1994), each of the (six) field
components is represented as a sum of two (artificially created) sub-components,
as defined in equations (3.1) to (3.6). Those sub-components have no specific
physical meaning. They are defined so that each of them depends on only one
spatial derivative. Then, following the approach of B. Chen er al. (1995), the |
Maxwell equations in IPML are split (defined) as in equations (3.40) to (3.51).

The latter equations are obtained through direct separation of each of the
Maxwell equations into two equations, in such a way, that there remains only one
spatial derivative on the right-hand side. Also, by definition, the second subscript
of each field component corresponds to the variable with respect to which the

spatial derivative on the right-hand side remains. The (purely artificial) PML loss
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variables o; and ¢;, 0" and «;, i=x, y, z, are chosen in such a way that the

PML can absorb, to any prescribed extent, any outgoing wave. Their presence
gives the opportunity to create "a reflectionless interface between any medium
and vacuum, for a plane wave striking the interface at any frequency and at any
incidence angle", see details for the 2-D case in the original paper by Berenger
(1994).

The procedure to obtain the IPML parameters in the 3-D case is the same
as that for MPML parameters. It will be presented here, following the method
outlined briefly by D.G. Fang (1998). Combining back the twelve sub-
components into the original six field components, the split equations (3.40) to

(3.51), for time-harmonic fields, can be rearranged in the following way:

oE '
jouH,=— %y 1 9L (3.54)
« 19 oz . _J% ay
° o, Y,
1 OE 1 OE
o H , = z_ x 3.55
R (3.39)
T oy, Lo,
oE
jouH_ = 1_ oF, _ ! - (3.56)
0"z m . m
_Jjo, oy U ox
T o, T,
oH
_joeg,=—t T» 1 OH, (3.57)
_Jjo, oz _Jjo, oy
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_jwe,E, = 1 9H, 1 9H, (3.58)
jo, ox jo, oz
o, ——= Lo, %
e, W,
oH
—jw&E, = 1 . af — — . (3.59)
o 1% W, Oy O
7 we, we,
Using (3.38) and (3.39), the following PML quantities can be defined:
vo=a,~2%x =y 1% (3.60)
e Wity
- "
y,=a,—lr =g - (3.61)
e, Wy
y=a,-Lr =, L2 (3.62)
wE, Wy
Thus, the equations (3.54) to (3.59) become:
— ik ik
jouH, =% g + 0 g (3.63)
7/2 yy
JjauH, =L kg v dhp (3.64)
yx },Z
— ik ik
jouH, =—22p + g (3.65)
Yy Vx
— ik ik
—joeE,=—Lap Do g (3.66)
Vs Yy
. —jk ik
—joeE, = xH + g (3.67)

Vx Yz
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LY vL:y (3.68)
7, %,

_waOEz =

The following two requirements have to be met for reflectionless wave
propagation through an interface between two media:

1.The normal impedance matching and

2.The tangential wave numbers matching.

Consider a TE plane wave propagating in the z-direction. At the interface
between the PML and the internal computational domain:

In the PML,

E E, o
Zp=—r=—2-%0, (3.69)

and by eliminating the field components in (3.63) to (3.68) the following eigen-

equation is obtained:

K2 2 k2
—-’-‘-+—Z-+-L=kg=0)2ﬂo€o (3.70)

In the air,
[0
Zpp = —k@ (3.71)
z0
and the corresponding eigen-equation is:
ki + kg +ki =k (3.72)
The reflection coefficient at the interface is:
Zre—27
= TE ~ 4TE, (3.73)

Zig + Zg,
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Since the wave propagates in the z-direction, by the second requirement,
k, =k, (3.74)

k,=k

y — *y0

(3.75)

Then from (3.69), (3.71) and (3.73), it follows that the reflectionless

transmission Rp; =0 requires:

jo Jjo;
k,=k,y, =kl o,——% |=k,| K, - = 3.76
z zOyz 20( z CI)EOJ 20( z w,uoj ( )

A simple comparison of (3.70) and (3.72), shows that:
%, =7, =1 (3.77)
Similarly, for TM wave propagating in the z-direction towards PML,
exactly the same results can be easily obtained.
Therefore, for a wave propagating in the z-direction, the following set of

IPML parameters are obtained:

o, =0,=K,=k,=1 (3.78)
0,=0,=0,=0,=0 (3.79)
m
%% g (3.80)
& M
W= ly0e"’("Xo"’“"yoy*"""zoz)e @ (3.81)

where W is any field component of amplitude ¥,.

Similarly, for the y-direction wave propagation:
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a,=a,=k,=k,=1 (3.82)
c,=0,=0,=0, =0 (3.83)
a m
% % a,=x, (3.84)
& Ho
k0,
- \Poe—j(kxox+aykyoy+kzoz)e we, ¥ (385)

a,=0,=k,=k,=1 (3.86)
0,=0,=0, =0, =0 (3.87)
%% 4=k, (3.88)
& Mo
‘kxoo.xx
= ‘I’Oe_ ok x+ky y+kzoz)e we, (3.89)

3.3.2 Modified IPML variable profiles

The profiles of PML parameters are of utmost importance for the
performance of the absorber. In resistive media, the rate of attenuation dictated by
their physical properties is usually low and the electromagnetic energy dissipation
is insufficient. As a result, when the wave reaches the outer boundary of the
computational domain, it will be reflected back to into the region of interest,
creating spurious reflections that greatly degrade the simulation results. Assigning

greater values of the PML parameters can attain greater rates of attenuation but
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too large attenuation rate also creates spurious numerical reflections due to the
stepwise increments in the values of the PML parameters. Therefore, the PML
variables’ profiles should be optimized. There have been attempts to optimize the
PML variable profiles, but they are to a great extent problem dependent.

There exists one degree of freedom in choosing the PML parameters that
to the author’s knowledge has never been used until now. Namely, the rate of
change of the PML conductivity o; and the rate of change of the PML loss factor
@; can be different. This represents a problem-independent approach to the
improvement and optimization of the PML performance. The proposed approach
is in contrast with the commonly used approaches: |

A. Optimization of one PML variable profile as done e.g. by Lazzi et al.

(1997b,c), Marengo et al. (1999), Winton et al. (2000), etc.;

B. Optimization in problem-specific environment as done e.g. by Johnson et
al. (2000), Lazzi et al. (1997a), etc.

Thus, the newly proposed IPML conductivity profile g;, i=x,y,z is suggested

to be of different (higher) order that that of the IPML loss factor o;:

0,

[

n+f3
0,(P) = O o [ﬁ) ; Be(0,2] (3.90)

while the PML loss factor proposed by B. Chen et al. (1995) remains as:

0,

4

ai(p)=1+emax[ﬁj (3.91)
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In (3.90) the upper limit for the new parameter /8 is chosen based on the results

of an extensive numerical research. From the formula for the theoretical reflection

coefficient (3.34), it directly follows that:

(n+ B +1)gc ln(i(l()—))
oo = 5 (3.92)

1

Here,

R(0) is the user selected reflection coefficient at normal incidence,
usually in the range R(0)e [10‘2, 10‘6] but in high permittivity dielectrics values

down to 1072 might be used;

J;, i=x,y,z is the thickness of the MPML in the i-direction ;

p is the depth in MPML, 0< p<J;;

£ 1s user defined parameter, controlling the rate of the evanescent
mode attenuation; now proposed to be in the range &, €[0,5];

n is user defined rate, now proposed to be in the range ne [2,6].

Explicitly, the IPML variables are:

At x;, and x., :

n+f
G.(p,)=0 (%] . 0<p, <6, (3.93)

X

o (p)= Gx(px)L_J (3.94)

SRS
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ax(px)zlrx(px)=1+£max(%J ; 0<p, <5, (3.95)
o,=0,=0,=0,=0 (3.96)
a,=K,=0,=K,=1 »(3.97)
At Ymin and Ymax *
p n+f
0,(P,) = Oy [Ey_J ; 0<p, <6, (3.98)
y

o7(p,)=0,(p )(i‘ﬂj (3.99)

y y YTy 80

A,
a,(p,)=K,(p,) =1+, 5 0<p, <9, (3.100)

y
o,=0,=0,=0,=0 (3.101)
o, =K. =a,=k,=1 (3.102)
Atz and z,, ¢
n+f

O'Z(pz)=0'max(%) ; 0<p, <6, (3.103)

m _ Hy
a.z (pz)_o.z(pz)' - (3104)

&
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az(pz)zlrz(pz)=1+£max[%] ;0<p <6, (3.105)
0,=0,=0,=0, =0 (3.106)
o, =K,=0, =K, =1 (3.107)

Where PML overlap, a corresponding combination of the non-zero/non-

unity values of the parameters is used. For example, at the edge where, SaY, Xax >

Ymax are approached, but not z

min > Zmax » ONE USES:

n+f
G(0,)= O ({}) ; 0<p, <6, (3.108)
a;"(px>=ox(px)[ﬂj (3.109)
&
ax(px):xx(px)=1+€max[%‘-J ; 0<p, <5, (3.110)
n+p
- Py
0,(Py) = O 5| 0<p, <9, (3.111)
y
me oY= Ho
o-y (py)—o-y(py)(g J (3112)
o A,
a,(py)=x,(p,)=1+E,, 5 | 0<p,<9, (3.113)
y
o,=0"=0 (3.114)

a,=x, =1 (3.115)
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At the corners, where there is an overlap in all three directions, say, x.,, ,

Ymax @and z.;. , all non-zero/non-unity PML variable values are used:

S,

X

n+f3
Gx(px)=6max(&j ; 0 p, <6,
a;”(px)wx(px)(&J
ax(px)=frx(px)=l+8max[—) ; 0<p, <6,

P n+f
Gy(py)=0max(—51) ;0<p, <9,

a;"(py)=oy(py)[—§QJ

(4]

ay(py)=xy(py)=1+emax(%

y

j ; 0<p, <6,

n+f
a,(pz)=amax[%] : 0<p, <6,

z

a;"(pz):a,(pz)[—‘é"ﬁj

0

S,

z

az(pz)=frz(pz)=1+8max(&J ; 0<p, <9,

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)
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3.3.3 Discretization of the split-field components

There follows the discretization for one of the 12 split-field components,

E,, , in the IPML. Its corresponding equation (3.46) is first written in the form:

oE c d(H, +H
T, S op | ( ») (3.125)
ot g, £, dy

Then (3.125) is discretized using central finite differences, and averaging

E,, with respect to time (since its value is not calculated at time (n+1/2)):

E;';‘(i,j,k)—Ezy(i,j,k)+ o,(j) Ey'i,j,k)+EL (G, j,k)
At £, (J) 2

(3.126)

n+i n+i
_ 1 Hzxz(iaj:k)_Hzxz(i:j_lak)
£0,(J) Ay (J)

1 1
+H:y+7(i,j,k)—-H:y+7(i,j—l,k)
AJ’H(j )

Therefore the update equation for E o 180

- o,(j)at
2&,00,(j) 1 At
EgtG, k)= ——="22E G, . k) + —. x
> CPO= G Gt B G a0
2e0e, () 26y, (j)

n+l nl
H_ 2, jk)-H, *(i,j-1,k)
Ay (J)

+l . . n l ..
L Hy (i, j,k) = H, (i, j~1,k)
AYH(j)

(3.127)
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3.3.4 Exponential time-stepping

The above standard finite-differencing scheme can be used direcﬂy. Its
alternative, the so-called exponential time stepping, will be presented next. The
reason for using the exponential time stepping is in the exponential decay of
waves in the PML medium. For the case of such high-loss media as the PML
medium is, the alternative method proposed by Holland (1994) will be presented
(because of its elegancy; the same results can be obtained by some simple
manipulations of the coefficients in (3.127)). Note that the coefficient before the
field component to be updated is a second order approximation of the
corresponding (exponential) coefficient in the solution of equation (3.125) if it is
regarded as a first order ODE with respect to time.

The first order ODE will have a homogeneous and a particular solution.

The homogeneous solution is considered to be the result of excitations

over previous time steps (excluding the right-hand side curl H contribution of the

present time step):

E ) hom) =

Ce *% (3.128)
The decay for one time step of (3.128) is:

_O'yAt

n+l . &%y
Ehomy =€ 7 Exyhom) (3.129)
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The particular solution is considered to be the result of only the right-hand

side curl H contribution during the present time step and the time ¢' is measured

from the beginning of the time step, so that for 0<¢'<az:

L g o
R CRANC TR e

&, dy -[ ¢

y

Exy(part)(t') =
(3.130)

[ By gy
a(Hu+sz)+Ce feoayd’

1
o, ay

The constant C can be obtained from (3.130) evaluated at the moment #'=0:

g _O_La(Hzﬁsz) c C___I_B(Hzx+sz)
xy( part) |t'=0— _0_ ———a + - = - — a
y y y y
3.131
| A(H +H)[ Az (3.131)
Exy(part)(t')=————zy— l-e
o, dy
By the end of the time step, ¢'=az,
oAt
1 0H,+H,)| 5
E sy party lir=ay= = ;—(—ay“i) e % -1 (3.132)
Yy

Finally, the general solution at the end of the (n+1) St time step is obtained

as a sum of the homogeneous solution (3.129) and the particular solution (3.132),

where the spatial derivative is taken as an average value at the centre of the time

1
ste n+-—1:
p[ 2)
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, a,()at
i y____(j Jat &0, 1
E™ (i jk)=e ©% -ED (i,j k)~
xy xy O.y (])
n+l n+l n+—1~ n+l (3 133)
H,2*(i,j,k)-H,? (i,j—l,k)+sz 2(i,j,k)-H,, 2 (i,j—1k)
&y (J) ayy (J)

For completeness, the discretized exponential time-advance scheme for all
split-field components in the [PML is presented below in the case of 3-D IPML

for the FDTD solution to Maxwell’s equations:

o ST
ms . B Lotr s .. 1-e %
H,2(i,jk)=e 7% “Ho, 2 (i, k) - ——
oy (/) (3.134)
E" (i,j+1,k)—E". (i,j,k)+E;'y(i,j+1,k)—E;'y(i,j,k)
(/) (/)
n o7 (k)at
n+l L. _&% n—l .. l_e Hok,
szz(l’J’k)=e Hos 'szz(l’-]’k)_*— m )
oy (k) (3.135)
E; (i,j,k+1)-E}, (i,j,k)+E;z (5, 7,k +1)~E}, (i, j,k)
az(k) az(k)
1 o7 (k)ar 1 “Uio"(_l,?M
Hy 2 (ijk)=e P H 2 (i, j k)~
” o o (k)

(3.136)

+

{E;’y(i,j,kﬂ)-—E;'y(i,j,k) E" (i,j,k+1)—E;;(i,j,k)}
az(k) az(k)
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op(i)at
pel AU | l—g Hofs
nyz(i,j,k)=e HoXx 'nyz(l',j,k)-k—"n‘z‘—'
a; (i) (3.137)

{E; (i+l,j,k)—E;'x(i,j,k)+E;'y(i+1,j,k)—E;‘y(i,j,k)}

(i) wx (1)

ol (i)at
el ol e ok
H,2(i,j,k)=e " -H,2(i,j.k)-——
oy (i) (3.138)

{E;x (i+1,j,k) = E" (i, j,k) . E(i+1,),k)~EL, (i,j,k)}

ax(i) ax(i)

o (j)a
. o" (_])At __Y_(_KT)_
n+— _-—K‘ HoKy

1
H,2(i,j,k)=e Holy -H:y2(i,j,k)+1_e

oy () (3.139)
[E;'y(i,j+1,k)—E;'y(i,j,k)+E;'z (i,j+1,k)—E;'z(i,j,k)}

ay(7) ay(J)

1 1 1 (3.140)
B3 k) 2 = 1k) B2 (]u0) = H? (1= LK)
ayy (J) &y (J)
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o, (k)at
AU |—g &%
E;;l(i,j,k):e &, .E;Z(i,j,k)-a_(k)_.
nel nt nil ut (3.141)
H, 2(i,j,k)-H,? (i,j,k—1)+Hyz 2(i,j,k)—H , 2 (i, j,k—1)
AZy (k) AZH(k)
2k
1 AU l_e‘“‘—agf,azu
En+ -, ',k - &, ‘En ., .,k +
o (i j.k)=e e (6 J:K) ~0
1 1 . . (3.142)
Hiy 2 (1 jok) = Hyy 2 (g k=1)  HL2 (5, joK) = o2 (i k1)
azy (k) azy (k)
) o (i)ar
e s —O.X(;)At 1 1_e Egy
E (ijk)=e % -E 2(i,j,k) o (i)
. | 1 K (3.143)
Hzx+ (i,j, k)~ HLo 2 (i 1,],k)+sz+2 (i,j,k)—-HZyZ(i-—l,j,k)
AxH(i) AXy (i
1 g (i)ar - e_%;‘%
En+ -, .,k - £, 'En , .,k +
1 1 " " (3.144)
H, 2 (i, jyk)— H o2 (i—l,j,k)+Hyz+2 (i, k)= Ho 2 (i =1, j,)

axy (i) axy (i)
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A oy (J)at
_ay(J)A’ 1 N &,
En+1 i,j,k =e £Q, N l,j,k _ —-e
5! (o) O )
1 i ) | (3.145)
n+— n+— n+— n+-
ny2(i,j,k)—ny2(i,j—l,k)+sz2(i,j,k)—Hx22(i,j—l,k)

vy (/) 8y (/)

3.4 Outline of alternative approaches to define a PML medium

As mentioned previously, at the interface between a PML and the internal
computational domain, the tangential wave numbers have to be continuous and the
normal wave number should be complex in order to ensure decay in the normal
direction. Therefore, a PML can always be regarded as an anisotropic medium.
Numerical anisotropy can be implemented in two ways, see D.G. Fang (1998):

1. Maxwell’s equations can be modified introducing stretched coordinates
(i.e., using a complexification of the spatial coordinates) as proposed by Chew
and Weedon (1994);

2. Anisotropic PML parameters can be directly introduced while keeping
Maxwell’s equations in their original form, as proposed by Sacks et al. (1995).

Recently Knockaert and De Zutter (2000) showed that these two

approaches are mathematically equivalent.
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3.4.1 Outline of the stretched coordinate approach
As in Section 3.3.1, the modified Maxwell’s equations are written in the
unsplit form (3.63) to (3.68). Consider TE, or TM, wave and match as before the
normal wave impedance and the tangential phase velocities at both sides of the
interface between the internal computational domain and the PML. The same
requirements for the PML hold, as shown in Section 3.3.1, namely:
Y=Y, =1

and as a result the equations (3.63) to (3.68) are reduced to the form:

wUH =——I;;Z—Ey +k,E, (3.146)
kz

o, =k E, + 7Ex (3.147)

oUH, =—k E, +k.E, (3.148)

k

—~wgE, =——2H,+k,H, (3.149)

—weE, =-k H, + k—sz (3.150)
YV

—~w&gE, =k, H, +k H, (3.151)

A comparison with the regular Maxwell’s equations shows that equations
(3.146) to (3.151) can be regarded as a result of introducing one new stretched

coordinate, z'=zy, .
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In the same way the complex coordinate stretching can be introduced for
all directions; the rest of the analysis can be done in the same fashion as the one
presented in Section 3.3.1.

Specifically, for the general case of a matched medium in the time
domain, Chew and Weedon (1994) show that the curl operator is actually

modified to the form:

o—

(3.152)

<
)
|
cvlw
|
QJ|QJ
I-
QJIQJ

h

where s, s, s, are the coordinate- stretching variables that stretch the

y’
coordinates x, y, z. They also show that the medium becomes lossy when those

stretching variables are complex:

. 'd .
PO =142, 5 =141% (3.153)
wWE wE wE

s. =1+

X

The attenuation in each direction is controlled naturally through the PML

variables o, o,, O,.

3.4.2 Outline of the anisotropic PML approach

The PML can be introduced also by introducing an anisotropic medium,

see Sacks et al. (1995), defined by:

a 0 0 a 0 0
[u]=mlr]=1|0 b 0| [e]l=¢r]=5|0 b 0 (3.154)
0 0 ¢ 0 0 ¢
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In a medium defined by (3.154), Maxwell’s equations are:
jwﬂoaHx = jkyEz - jszy
.]w:uObHy = jszx - jksz
jouycH, = jk.E, - jk E
e MR (3.155)
jweyaE, =—~jk,H, + jk H,
jw/‘obEy = —jszx + jkaz
joucE, =—jk H, + jk,H,
Since Maxwell’s equations remain unchanged, this type of PML is

sometimes referred to as Maxwellian PML-like medium.

Consider a TE, wave, ie. E,=0, and follow the same derivation

procedure as in Section 3.3.1: The normal wave impedance is:

b (3.156)

Matching (3.156) to the free-space wave impedance (by the first

requirement for a PML) leads to:

k,=k b (3.157)

z 2z

By eliminating the field components in (3.155), the following eigen-

equation is obtained:

2 2 2
b Bk g (3.158)
bc ac ab 0

The tangential wavenumbers are continuous across the interface (by the

second requirement for a PML):

k,=k, ; k, =k (3.159)

X Xo? Y Yo

and the eigen-equations in the free space yields:
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2 2 2 _ g2
| Y e = (3.160)

Then, from (3.157) to (3.160) it follows that

k2 k2
—’i°-+—y—°+k§9=k§ (3.161)
bc ac ®a
and
1
a=b=- (3.162)
C

Thus the PML is defined by the complex number
a=b=a-jB, where a>0, >0 (3.163)
—jk, =—jk, b=—ik, a—k, 8 (3.164)
Here o determines the wavelength in the anisotropic absorber and f determines

the rate of decay of the propagating wave.

3.4.3 Outline of the generalized perfectly matched layer (GPML)

J. Fang and Z. Wu (1995) follow closely the stretched coordinate approach
proposed by Chew and Weedon (1994) in the derivation of their generalized PML

(GPML). They modify of the form in which the stretched variables are defined:

s,.(i)=s0(i)[1—j%gl}; i=x,,z (3.165)

This form is equivalent to the one proposed previously for MPML.

Naturally, PML constructed in the above way, can absorb both propagating and

evanescent waves as long as s,(7) >1. J. Fang and Z. Wu (1995) point out that by

choosing s,(i) >1, the attenuation of evanescent waves is accelerated, which is
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consistent with the results presented earlier by B. Chen et al. (1994) in their

MPML derivation.

J. Fang and Z. Wu (1995) also propose a different PML conductivity
profile:

o,(p,) = sin (%‘j (3.166)

Their loss factor is the same as the one proposed by B. Chen et al. (1995):

soi(pi)=1+sm(%J (3.167)

for i=x,y,z.J. Fang and Z. Wu (1995) generally work only with order n=2.
In (3.167), s, is a user-defined parameter, analogous to the parameter £,,, as

defined in the MPML; ¢ is the thickness of PML; and p; is the depth in PML.
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Chapter 4

The Wave Equation in the Time Domain

4.1 Introduction

It is well known that the electromagnetic (EM) field can be described not
only in terms of the field vectors but also in terms of scalar and vector potentials.
Harrington (1961) stated for time-harmonic fields, “an arbitrary field in a
homogeneous somce-ﬁee region can be expresses as a sum of a TM and a TE

field”. That statement holds also for the general transient case. That is, the EM
field can be represented in terms of the magnetic vector potential A4 or the electric

vector potential F , or both. Moreover, it is easy to show that any field can be
expressed by only two scalar wave functions, which are the magnitudes of the
vector potentials in a specified direction of an arbitrary (constant) unit vector ¢.

The TM (with respect to the distinguished direction) field is described by the
magnetic vector potential (VP), 4 =¢4; and the TE field is the one of the electric
VP F =¢F . Both potentials are solutions to the wave equation in the time domain

(or the Helmholtz® equation in the frequency domain). Both vectors are collinear

and parallel to the fixed direction ¢. Their magnitudes will be referred to as wave

33
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potentials (WPs), for details see Georgieva (2001). The choice of the wave
potentials is not uniquely defined and therefore can be made (and changed) in

such a way that it would fit best the geometry of the structure and its excitation.

4.2 Derivation of the wave equation in the time domain

(WETD)

For the case of structures where there are no magnetic materials involved,

but dielectric materials and conducting surfaces might be present, it is appropriate

to express the fields in terms of the magnetic vector potential A only. There are
two major reasons for such choice:

1. The structure can be excited by J; currents, which would produce the
A; component (i=x, y, z);

2. With conducting patches and surfaces in the structure, the 4; combonent
is expected to produce surface currents when the appropriate boundary conditions

(BCs) for A are introduced. According to these BCs the surface currents in turn

produce the other two components of A.

Maxwell’s curl equations for a general lossy medium are:

e—=VxH*-cE*-J' 4.1)

=-VxE'-0c, H* 4.2)
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The superscript “A” is included to underline the fact that the field vectors

will be expressed in terms of the magnetic vector potential 4 only. In general, the
magnetic field vector can be expressed in terms of the vector magnetic potential

as follows:

At=Lvxi 4.3)
Y7,

From the above definition it directly follows that:
BY=uH*=Vx4 (4.4)
and consequently, it is divergence-free,
V-B=0 (4.5)
Therefore, the field has only electric sources (electric currents J' and electric
charges p,).

The substitution of equation (4.3) into Maxwell’s equations (4.1) and (4.2)leads to:

A
giE—sz(leZ)—aE”—j" (4.6)
ot U
and
vyt -Inyxi (4.7)
ot Y7,

If no magnetic inhomogeneities are present, V(c,,/ 1) =0, then (4.7) can

be written in the form:

(4.8)
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56
and the definitive equation for the electric field vector becomes:
Ao Ini ve 4.9)
o U

Substitute (4.9) into (4.6). Then, if no magnetic and dielectric

inhomogeneities are present, i.e.

V(ijzo; V(—l—]:O; V(f’—}o (4.10)
7 Eu £

the following equations is obtained:

- 4
J A+(g-+&jaA L v244+%%m 4

o e u ot ue EU

B (4.11)
+V[iv-ﬁ+a£+5q>)=f—
UE o € £

By imposing Lorenz’ gauge:

,usaa;?-r,uo(l):—v-ﬁ (4.12)
the equation (4.11) becomes:
27 i Fi
1 y2; 94 [0,0n)0A 00nz T 4.13)
UE ot E M Ot &Eu £

which is the wave equation in the time domain (WETD) for general lossy
homogeneous media.
In the case of general lossy inhomogeneous media, since in reality no d.c.

magnetic losses exist, i.e. ¢,, =0, the equation (4.9) may be reduced to

. 0A
Ef=——-VO 4.14
5 (4.14)
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and it is substituted into (4.6), followed by imposing the Lorenz’ gauge (4.12), so

that the WETD becomes:
24 A Ti
9—?+2%—LV2A‘—V LvaslylL xVxA—(DV(g—):J— (4.15)
ot* &€ ot ue UE e \u E) €

In a similar fashion, the field vectors can be expressed in terms of the
electric vector potential F only:

oEF

£ = =VxHF —cEF
' (4.16)
oH r_ mE
M =-VXE" -0,H -7,
ot
Define
. 1 ~
EF =—ZVXF “4.17)
£
and therefore
DFf =¢E=-VxF = V-D=0 (4.18)

So the EM field due to the electric vector potential F has a divergence-
free D vector and therefore it can have only magnetic type sources (magnetic
currents J ,’n and magnetic charges p,,).

Substitute (4.17) in Maxwell’s equations (4.16) to obtain:

Vx%—f:—VxﬁF CAVNY -
£ (4.19)

7 F
,uaH =Vx(leﬁj—GmﬁF—ffn
ot £
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In the case of no dielectric inhomogeneities, V(o /€)=0 and V(1/¢)=0,

after imposing Lorenz’ gauge
yea—;i +eo,¥=-V-F (4.20)

the WETD in terms of the electric vector potential is obtained for general lossy

homogeneous media:

27 = i
Lv2ﬁ-§_f_ 9 ,%m a_F_O-O-mF=_L"L 4.21)
UE ot E U)ot Eu U
where the magnetic field vector has been expressed as:
~F — g —
H' =—0,F-—F~-V¥ (4.22)
£

In the general case of lossy inhomogeneous media, two separate cases

exist:

A. When the gradient V(o/¢) is zero or it is parallel to F, then the
expression for the magnetic field (4.22) holds. Recalling that in reality no d.c.
magnetic losses exist, i.e. 0, =0, the Lorenz’ gauge is simplified to the form:

¥ _lyr (4.23)
ot UE

Using (4.22), (4.23) and also the expression for the electric field (4.17), the

following WE is obtained:

- .
_E’_F,,.ga_F_LVzﬁ_V(Ljv.ﬁq.lv(}-)xVxﬁ =

4.24
orr & ot e u \& “.24)

B. In points if inhomogeneity, when the gradient V(o /¢) is not zero and

it is not parallel to F , the magnetic field vector cannot be expressed explicitly
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from the first equation in (4.19). In that case, however, the first equation in (4.19)

can be written in the form:

Then a time derivative of that first equation and a curl of the second equation in

(4.19) can be taken:

. . #
LA f—v(ﬂ) _ZyxoF
ot ot ot

223 Ti
anH =VX[1V><(1V><F’H—V><(Q}
ot Y7, £ Y7,

Equating the right-hand sides of the equations in (4.25) and imposing Lorenz’

(4.25)

gauge (4.23), leads to the WE in its most general form:

2~ ~ Fi
Vx -a—f+ﬁa—F—iV2F—v L V.F+-1-V(l)xVxﬁ—J—m
ot € ot ue UE u \€ Y7,

In the case of lossless media, equations (4.13) and (4.21) are simplified to:
-
VA - ugié =-ult 4.27)
ot
and

.
V2F - ﬂs-‘?at—f =—eJ! (4.28)
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4.3 Boundary conditions for the WETD

According to the uniqueness theorem for Maxwell’s equations, the
electromagnetic field in a given region is uniquely defined if all sources are
specified inside the region and if the tangential field components are specified at

the boundary. In order to derive the boundary conditions (BCs) for the

components of the magnetic vector potential A, first the expressions for all field

components in Cartesian coordinates are presented below:

0E, 0%°A, 0,04, 0@

o _—x__m_x 429
ot off u Ot oxot 429
0E, 0’A, o, 0A, %@

Y=

= - - 4.30
ot o> u ot Jyot (4:30)
2 2
OE, __0 f;z_&af‘z_a @ 4.31)
ot ot U ot 0zot
0A,
X =—1—(6A - (4.32)
u\ dy 3
1(0A, 0A,
H, =—|—* 433
Y ( 3z ox (#433)
1(0A, 0A
= —=-—% 4.34
‘ ,u( ox dy *+34)
Since in reality, as mentioned before, o,, =0, Lorenz’ gauge is:
uaaib =-V-A (4.35)
ot

Then equations (4.29) to (4.31) can be further simplified by substitution of

(4.35) in them:

ot ot*

2 2 82A 2
OE, __07A, +_1__(a A +—2 +a AZJ (4.36)

- ox>  Oxdy Ox0z
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OF 02A 24 0%A, 92

L2 +L 0’4, +— +a 4, 4.37)
ot orr  ue| dxdy dy° dyoz
dE, %A, 1[0%4, 04, 3A

z _ _ r A R X 2z 4,38
YRR +,u£[axaz+ oz | 07 (4.38)

Three types of interfaces will be considered here, as they will be

encountered in the simulations presented later.

1. Electric wall.
A typical example is the infinite ground plane of microstrip structure, or
metallic walls of a waveguide. The vanishing tangential components of the

electric field dictate that:

9% _p (4.39)
on
A;=0 (4.40)

Here n denotes the direction that is normal to the electric wall surface and &

denotes the tangential components of A . This is equivalent to setting the value of
the electric scalar potential @ to a constant at the ground plane:

9% _ ——}—V Ay=0
ot UE
2. Magnetic wall.

This boundary condition is used when the structure (including the

excitation) is symmetric with respect to a given plane. It is equivalent to setting
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the tangential components of the magnetic field H equal to zero. Therefore, the

boundary conditions for A, in this case are defined as:

A =0 (4.41)
aﬁ—o 4.42)
of '

3. Dielectric-to dielectric interface.

The dielectric media are considered to have no magnetic properties

(Hy = iy, =1). The continuity of all three components of the H field implies the

following boundary conditions at the interface:

AD = A® (4.43)
0AY 0A%

A0 qo, A _ 04 444

4 S om dan ( )

It is clear that equations (4.44) are enough to define uniquely the tangential A

components. However, the normal component A, cannot be calculated by the

single relation (4.43). Here an additional continuity relation will be used — the

continuity of the scalar potential @ which follows from the continuity of the

tangential E components and the first of equations (4.44):

1) aA(l) aA(l) 2) aA(Z) aA(Z)
1 (aA,, k- T 4‘2}_ 1 (aAn Pl W fzJ (4.45)

Mo\ On 0§, 94 _ﬂofz on 05 95
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Since the tangential components are continuous, ie. AP =A.; i=12, the

second relation for the A, component is thus obtained:

0AY A 0A; OA;
I8 220 (e — —a__ 9 4.46
&2 on “ on a=%a )( 9§ 9 (.40

Equations (4.43) and (4.46) define completely the value of A, at the
interface. Here it can be noted that the presence of dielectric-to-dielectric interface

couples the normal component of A with its tangential components. Naturally,

the components are uncoupled if & =¢,, and in such case every component

simply obeys its wave equation.

4.4 Outline of the time-domain wave-potentials (TDWP)

technique

Georgieva and Rickard (1999), (2000) showed recently the first
applications of a pair of collinear vector potentials (VPs) of fixed direction, such
that the wave equations only for two scalar wave potentials (WPs) were necessary
to solve. The first finite-difference implementation showed that general
inhomogeneous problems could be solved in terms of two scalar quantities. The
theoretical estimate of the CPU-time and memory requirements of the time-
domain wave-potential (TDWP) algorithm in comparison with Yee’s FDTD
algorithm gives a reduction of at least 1/3 in the general case, which is due to the

reduced number of unknowns. These first applications, however, revealed several
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problems. The choice of the direction of the VPs was crucial when dielectric
interfaces were present, especially between regions, whose dielectric constants
would differ significantly or when corners and edges were present. The
formulation of the boundary conditions for the VPs and the conditions for the
direction change of the collinear pair of wave potentials are thoroughly studied by
Georgieva (2001). In the following, only the outline of the derivation of the wave
equations for the time-domain wave potentials (TDWP) technique will be
presented. This will be enough to serve the objective of this research, which is to

develop PML ABC for the wave equation in the time domain (WETD).

First, the magnetic VP A and the electric VP F are introduced in the
classic way, as in (4.3) and (4.17). As mentioned above, H* is the magnetic field
vector of a field associated with electric sources only (V- BA=0). The EF vector
is the electric field associated with magnetic sources only (V-DF =0). Their
counterparts, E4 and H' , are found by substitution in Maxwell’s equations. The
total field is a superposition of (E4,H*) and (EF,H"). Note that this implies

linear media. The next step is to substitute (4.3) and (4.17) in Maxwell’s

equations:
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. . .
—VXQF—+68L=V><Vx14——Vx Vl x A
ot ot Y7,

+V><F1F—aEMVx[g—FJ—(VE)xF—f"
E

- _ _
an—A+,uaH =VxVx£—Vx[(V1)xF}
t £

Y7

and split them into two systems of equations as shown below:

VxHF=—V><2£—VX(E—FJ+VX[(VLJXA}
ot £ )7

. . |
,uaH =VxVx£—amFIF+{V—O-—’"JxA—*,’n

ot £ Y7,

L -
5£=VxVxé—aE"—(V—o——)xF—fi

ot u £
VXEA=—VX%——VX|:(V1) F}—Vx(ﬂf&}

ot £ Y7,

In the above transformations, the following identity has been used:

x x

From the first equation in (4.48), it follows that

HFz—QE—EF—V\h(VleA
o € Y7

and, from the second equation in (4.49), it follows that

B4 =—a—A—5'—'£A—Vq>—(Vl) F
E

Vx(—l—Vxﬁ) = VX[VX(EJ—V(%}G}, @, 1) = (A, u) or (F,&)

(4.47)

(4.48)

(4.49)

(4.50)

4.51)
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Here, ¥ and @ are the magnetic scalar potential and the electric scalar potential,
respectively. Note the cross coupling between the F-field and the A-potential and
the A-field and the F-potential due to the non-zero gradients of the constitutive
parameters of the medium in (4.50) and (4.51). This cross coupling appears also

in the governing equations of the VPs given below. If Lorenz’ gauges to the
potentials Aﬂ = A/ and F, = F /¢ are defined as:

—V-&:e%’m@; —V-F€=ﬂa—\P—+am‘I’ (4.52)

then the general wave equations in time domain (WETD) become:

-
. A 0A -
-V2A, + ue 5 £+ (eo, +,ua)a—t”+ o0,A,

t2
(4.53)
—(Vs)%f-—(Va)(D—Vex a;;s ~VoxF,=J
. .
~V?F, + ue aa Ij‘” +(uo +€o,,) a;;f +00,F,
t
(4.54)

0A S
—(Vﬂ)%—(VO‘m)‘I’+Vyx—étﬁ+VamxAﬂ= :

To complete the analysis, the components of the total field (E,H) will be

expressed in terms of the potentials Aﬂ and F 1 - The construction of solutions in

terms of VPs is based on the superposition of both fields: (EA,ﬁ 4y and

(EF ,HT). Making use of equations (4.3), (4.17), (4.50) and (4.51), the following

field-potential relations are obtained:
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o A, )
E=E°+E =—/Ja——0'mAﬂ—V(D'—VXF€

g (4.55)
A=f*+8" =-e%e_oF, VW +VxA

ot “

Alternatively, equations (4.3), (4.17), the second equation in (4.48) and the

first equation in (4.49) can be used, to derive the equivalent relations:

—

oF. . -
—&y_J
at)

£%+0E:VX(V><A/, -0F,~¢
(4.56)

3 ~ . . 0, -
u%—il+0'mH =Vx(VXF,+0,4, +,ua—t")—J,’,,

Equations (4.55) can be cast in a form similar to that of (4.56):

0E - - A 0A .
e—+0E=VV-A, - ue—*—(uoc +ec, )—~-o00c, A
ot u Mo (u n) ot mH

9D JF,

+—Ve+DVOo — VX—E — oV XF,
ot ot ¢

(4.57)

oH n . 0°F, oF, ~
—+0,H=VV -F,— ue—*—(uoc +¢€c £—oo,F,
/’l at m £ /’l al’z (IL‘ m) at m

0A .
+%—TV,L¢+‘PV0'”, +,uV><—af’—+0'mV><Aﬂ
t t

The following important conclusions follow from equations (4.53) and
(4.54).

1. Collinear VPs, which are normal to dielectric/magnetic/loss interfaces,

are not mutually coupled. The scattering of the VP pair at an interface,

orthogonal to the direction of the VP pair, can be fully described by

two scalar quantities: the magnitudes of the VPs.
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In addition, further analysis shows that the boundary conditions at
conducting edges of a pair of VPs, which are tangential to the
conducting edge, are well posed. Homogeneous Dirichlet condition is
imposed on the magnetic VP, A, =0, regardless of the direction from
which the edge is approached. A homogeneous Neumann condition is

imposed on the electric VP, OF,/dn=0, where 7 is any direction

normal to the edge; for further details see Georgieva (2001).

Therefore, in practical applications, the computational domain is to be

divided into domains of constant direction of the VP pairs in such a
way that mode coupling is avoided, that is, the direction of the VP pair
changes according to the direction of the gradient of the constitutive
parameters of the medium. A seamless transition between orthogonal
VP pairs at the mutual boundaries of neighboring domains can be
carried out using the field-vectors’ longitudinal components, which
depend on a single potential; thus the wave potentials of a VP pair at
the boundary of any domain are calculated independently from each

other.



Chapter 5

Improved Absorbing Boundary Condition for
the Wave Equation in the Time Domain

(WETD)

5.1 Introduction

An improved three-dimensional (3-D) algorithm with PML ABC for the
scalar wave equation in the time-domain (WETD) is presented in this Chapter for
general inhomogeneous lossy or loss-free problems. The proposed PML ABC is
applicable to finite difference schemes treating the time-domain wave equation,
such as the time-domain wave-potential (TDWP) technique and the time-domain
scalar wave equation approaches to the analysis of optical structures. The
modified time-domain wave equation for lossy media is expressed in terms of
stretched coordinate variables. Modified PML conduétivity profiles are developed
and optimized for use with the second order wave equation, which offer lower
reflections in a wider frequency band in comparison with the commonly used (in
FDTD algorithms) profiles. The effect of new types of termination walls on the

overall PML performance is studied and the best choices are singled out.
69
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Berenger’s PML in the time domain has been used mainly in conjunction
with the FDTD algorithm to the solution of Maxwell’s equations, as well as with
the finite element time-domain (FETD) method.

PML ABCs have been also developed for most of the frequency-domain
techniques, such as the finite element method (FEM) as in Tang et al. (1998) and
Stupfel and Mittra (1996), the finite-difference frequency-domain (FDFD)
method as in Marengo et al. (1999), or the frequency-domain beam propagation
method (BPM) as in Huang et al. (1996) and Cuccinotta et al. (1999).

Recent trends in computational electrodynamics include the development
of scalar or vector wave equation techniques for applications in numerical
algorithms, not only for optical waveguides and devices but also in the microwave
and millimetre-wave structure analysis. The time-domain vector-potential
technique, as outlined in Section 4.2, is based on the solution of the vector wave
equation for the magnetic vector potential A. The time-domain wave-potential

(TDWP) approach as outlined in Section 4.4, uses two scalar quantities, the

magnitudes of a pair of collinear vector potentials (A, F )€, in order to analyze an

EM problem in a region of distinguished axis f parallel to the vector potentials.

The propagation of the two potential functions is also governed by the 3-D scalar
wave equation.

In photonics, approaches based on the time domain wave equations are
used to analyze optical waveguide problems. Among those, the most widely used

are the methods based on the time-domain scalar or semi-vectorial finite-
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difference wave equation [see, for example, Huang et al. (1991a), (1991b),
(1993)]; as well as the time-domain beam propagation method (BPM) [see for
example Koshiba ez al. (2000)]. These techniques typically reduce the 3-D
problem to a set of 2-D scalar wave equations, where one of the dimensions is
along the direction of propagation.

These new algorithms require a reliable and efficient ABC, which can
handle both open problems (i.e. radiation and scattering) and problems involving
port terminations (high-frequency circuit problems). It will become clear from the
derivations to follow that the IPML ABC proposed here is not limited to
electromagnetic problems only. It can be applied to any physical phenomenon
modeled by the general lossy 3-D scalar wave equation, which requires reflection-
free boundaries.

Recently, a one-directional PML ABC has been applied to terminate one
of the ports in a dielectric-slab waveguide problem solved in terms of the two-
dimensional (2-D) scalar wave equation in the time domain, see Zhou et al.
(2001). In this thesis, the method proposed by Zhou et al. (2001) is extended to a
general 3-dimensional PML for the 3-D wave equation in the time domain in loss-
free or lossy media. To the authors’ knowledge, this is the first PML ABC
developed and successfully implemented in conjunction with the 3-D wave
equation in the time domain. The derivation of the PML equations is based on the
well-known stretched-coordinate approach proposed by Chew and Weedon

(1994) for the FDTD solution to Maxwell’s equations.
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This Chapter contains three main contributions.

1. The IPML formulas of the 3-D scalar wave equation absorber are
derived and discretized according to the requirements of a finite-difference time
domain scheme.

2. Modified profiles of the IPML variables are defined, so that a superior
performance is obtained (lower reflections in a broader frequency band) in
comparison with commonly used PML profiles when applied to the wave
equation absorber. The proposed modification adds a new degree of freedom in
the algorithm and is a problem-independent approach to the optimization of the
PML performance.

3. New types of lossy termination walls for the IPML medium are derived
and discretized by modifying known lossless single-layer ABCs, according to the

requirements of a finite-difference time domain scheme.

5.2 Derivation of the IPML equations

5.2.1 IPML for the WETD in homogeneous lossy media
Consider the wave equation in the time domain (WETD) governing the

behaviour of the vector potential A, as obtained in Chapter 4. In the case of a

homogeneous lossy medium it is re-written here for convenience:

- .
VZA—/JS%—(J,”6+#0)%?——JO',"A=—,uf (5.1)
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Here o and o, denote the specific electric and magnetic conductivities
of the medium, respectively. Recall that the equation for the electric vector

potential F is the same, except for the source term w1J , which is replaced by

eJ, , with J,, being the magnetic current density. Using the stretched coordinate
approach of Chew and Weedon (1994) outlined in Section 3.4.1, the complex

stretching variables - s,, s,, s, along the three Cartesian coordinates are

y? z

introduced in the Laplacian:

190(10) 10f10] 1019
veoloflo) 1oy 19, 197209 52
*os, ax(sx ax]-*-sy ay{sy ayJ+s az(s az] -2

where sz = + 0y /(jwe), &=x,y,z. The WE in (5.1) is then mapped into the
frequency domain:

fo{—us(ja))zj—(uo%eo; )ja)/zi—ao;,,zi:—,ujz (5.3)

n
Six auxiliary variables are introduced in a fashion similar to that proposed by

Zhou et al. (2001):

= 1 a;{ = 1 a(]w)?l)
wX,=——; joX,=—
S5 s, 0x 1% s, Ox
s 104 .= 1 a(f‘”fl)
JoY,=—=—; joY,=— (54
s, dy s, Oy
= 104 - 10 J""ZI)
JOZ, =——; jwZ,=— (
s 0z 0z

The mapped frequency-domain WE now becomes:
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pe(jw)’ A+(uo +e0,) joh+o0,A= joX, + joly+ joZ,+u]  (55)
which can be mapped back into the time domain as:
- - - . -
A i=9% 0% 07, wuJ (5.6)

u£§—i4—+(80' +uo)—+00,A=
t? " ot " o ot Ot

The auxiliary variables in the time domain are calculated according to the

equations in (5.4), which are also mapped back into the time domain:

v A v 2
0X, ax)zl:aA aax2+ax}? _0°X,

____.+_ —; x——-— e =
S e T B T T
dY, 0, 0A or, 0, 9,
Yo e 'y Yo e > oy ©-7)

0Z, 0,5 O0A 0Z, 0,5 0Z
o,—L+—=2Z =—; 2427, =—-1
o e ' ‘o e P 9ot

Equations (5.6) and (5.7) are the basis of the proposed 3-D wave equation

IPML ABC.

5.2.2 IPML for the WETD in inhomogeneous lossless media

Since by definition for lossless media

H:ivXZx; E=—a—A—Vd), (5.8)
7 ot

from Maxwell’s equations, the WE in inhomogeneous lossless media is obtained

as.
-
_a_?_va;():le ..1__V><A _.l_ji
ot or ¢ Y7, £

where @ is the scalar potential for which Lorenz’ gauge holds:

5.9



Chapter 5 Improved Absorbing Boundary Conditions for the WETD 75

a;q):__l__v.;{ (5.10)
ot ME
Lorenz’ gauge (5.10) ensures the uniqueness of the magnetic vector potential.

Upon substituting it in the WE and also using the vector identity:
VxVxA=V(V-4)-V*4
the WE is reduced to the form:

-
_a_f_v(__l_v.A):le(leAJ—lf‘ (5.11)
ot UE £ Y7, £

Now in the case when no magnetic inhomogeneities are present, Vu =0,

M=, , the WE can be further simplified:

-
_8_124+ 1 V[LV.A]=_1_[V(v-A)—V2A}—lJ”" (5.12)
ot Mol €y & Mool €, €
or,
L
24, L gl L|vA)e—L—vri=-15 (5.13)
o ittty \&, HoolhyE, £

The component wise WE for J'=0 is therefore:

2 2 2 [2 2 2
a‘}‘J—i 1 (V-A)+= a‘iua’iua‘zx (5.14)
or*  u, dx\ g, e, | ox dy 0z
3P4, a1 ot [a%A, %A, 9%A

y £ 91 |(v.A)+ LA AN 5.15
9> u dyl\e, ( ) we | x> oyt 97 619
%4, c*af1 ¢ [a%4, 9%A, 9°A

-2 1 " |(V-Al+ Z 4 z 4 < 5.16
or* w0zl g, ( ) we | ox* oyt 9z } 19
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In the setting of the stretched coordinate approach, the definition and the

discretization equations for the auxiliary variables will remain unchanged since
the Laplacian remains unchanged, that is, in the case of A= A,Z, equations (5.7)
hold. Therefore, the basis of the proposed 3-D wave equation IPML ABC in
lossless inhomogeneous media are equations (5.7) and (5.16). Note that in this

case it is necessary to calculate explicitly the divergence of the vector potential in

the form:

divA =
e ot ot ot

(5.17)

It should be noted that in the important and frequently met case of layered
dielectrics, where all the interfaces of media with different permittivities share the

same normal, say a normal in the z-direction, only the z-component of the vector
potential A= A,z will be enough to describe the problem. In that case the above

set of equations (5.14) to (5.16) for the vector potential will be reduced to the last

equation only, which can be simplified to the following form:

9’4, _ ¢ 82A2+82Az+€i 104, (5.18)
o> ue,| oxt  9y? ' 0z\ g Oz '

since

¢t afl (v-A ¢* %A, o 1)(d4,), c* 9’A
_ — VA)+ 22 — — LA 22
M, 0zZ\ E, MH.E, 07 u,0z\ g, )\ 9z )] M€, 0z
_ctl9f 1o
U, | 0z\ &, 9z

and the divergence of the vector potential is no longer calculated explicitly.
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In this particular case, in the setting of stretched coordinates approach,

from the definitions of the auxiliary variables (5.7), it follows that the equations

for the auxiliary variables X, , X, , ¥

1> Yo, Will remain unchanged, as in the

1z

case of homogeneous medium, but the equations for the auxiliary variables

Z,,, Z,, should be accordingly modified:

1z*

192, 1o, +L(L?ﬁ]
Z

g, Ot €, £Q, a,\ € 0Oz
5 (5.19)
_____az2z z_iz +£L_a Zy,
ot ea, @, &, 070t
or,
i{@jz_&(@};wz
AN ex,\ € ) a & 0z
’ ‘ (5.20)

Zy_ 0., 5D (_Z__]

— e +—L
ot e, a, 0z0t\ &,

5.2.3 IPML for the WETD in lossy inhomogeneous media

In Chapter 4 the general WETD in lossy inhomogeneous media is

obtained as:

_2+____V2A_V(L)v.A+1v[i]xVxA—cbv(3)=J— (5.21)
UE e \u e) €

and clearly the scalar potential has to be explicitly calculated from Lorenz’ gauge:

ue%;?+ uob=-v-A (5.22)
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as well as the divergence of the magnetic vector potential. Since in that case the
Laplacian remains unchanged, the definitions, discretizations and calculations of

the auxiliary variables will remain unchanged, as in the case of homogeneous

media; the divergence of A will be calculated in the form (5.17).

5.3 Discretization
5.3.1 IPML for the WETD in homogeneous lossy media
All the equations are discretized using central finite differences. The

auxiliary variables X, )71 and Z, are positioned half a cell “after” the locations

of A in the direction of the x-, y-, and z-axis, respectively; and X - 172 , Z, are at

the same locations as A (see Fig. 5.1).
Since a non-uniform grid is used, the spatial increments ax, ay, Az are

expressed in terms of the minimal spatial step:

Mpin= min (ax(@),ay(j),az(k)) (5.23)
1<i<n oy
1<j<ny max

1<k<n_ax

Thus the spatial increments can be expressed through the dimensionless

coefficients h,(i), h,(j), h,(k) as:
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Lk
) Yii)
.................. . x" X
SO (5 (i)
X, (i-1jk) (i.j.k)
Y (-1k)
z, (ijk-1)
& XIy’YIx
"}Ax’ XZx’ YZx’ ZZx m XIz’ ZIx
:' Ay Xoy Yoy Zay ® v, 2z,
AZ' XZZ’ YZZ' ZZZ O XIx’ Yly' Z]z

Fig.5.1. A discretization cell showing the spatial locations of the
components of the vector potential and the corresponding auxiliary

variables.
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ax(i)=h, (Dalyyys B ()21, 1Si<n, .,
8y ()= hy(Dalns by (D21 1S jSny g, (5.24)
sz(k) = h,(k)al s h (k)21 1Sk <n

For numerical stability, it can be shown rigorously that the step size with respect
to time, af, has to meet the same Courant’s stability condition as the one for the

leapfrog scheme used in the discretization of Maxwells’ equations, see e.g.

Taflove (1995) or Strikwerda (1989):

1 . 1
At < —min

e G )

In the applications here, it is set to az =al_, /(2c) where c is the highest velocity

of light in the analyzed structure.

Since, in general, A= AZ+A,y+A,zZ, there are three scalar WETD for the

three Cartesian components of A.

Here follows the discretization of the IPML equations (5.6) and (5.7)

using the A, potential. The auxiliary variables have also their corresponding z-

Y

1z

components: X Z,, X,,, Y,,, Z,,. For convenience the following

1z 1z

numerical constants are defined:

O gl
rfz____fA L E=x 9,2 (5.25)
2£a§

The equations for the calculation of the auxiliary variables are obtained

using central finite differences as shown below:
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. . l_r n— ..
X&"*"”(z,f,k){ﬁjxli YD, j,k)
* . (5.26)
+ AMG+1, ,k)- A", .k
20(1+rx)a'xhx(i)|: O )
(n+1/2) 07 1-r iy,
le (l’]’k): P le (l’]’k)
1+r
y (5.27)
1
+ A, j+1,k) =AM, k)
20(1+ry)ayhy(j)[ z z ]
n P 1_r n— .
ZMD G, jk) = (Tj}a‘z YD, j,k)
‘ . (5.28)
* A G, jk+ D)= AP G, k)
2c(1+ rz)azhz(k)[ z ]
1-r 1
X (n+1/2) .’ .,k - x|y (n-1/2) i, ',k + .
22 )k T+r, | % (@ 7:k) (1+ 7)ot b i~ Dol
l:Xl(an/Z)(i’j’k)_ X,;"Jrl/z)(i—l,j,k) (5.29)
—X VDG, G k) + XY -1, j,k)}
1-r 1
VUG, k)= | —2 08P G k) + : .
: 1+7, (1+ ry)ayhy( j—Dal
(18, jJo) - Y26, j-1k) (5.30)
—Yl(zn_l/Z)(i’ j,k)+Y1(zn_U2)(i,j— l,k)]
1-r 1
Z (n+1/2) i’ .’k = £ Z ("-1/2) i, .,k + .
= 610 l+r, ) % 7.0 (1+7,)ah, (k= Dalyy,
[Zlinn/z)(i’ j,k)—Zl(Z"”/z)(i, jk=1) (5.31)

-z G, R+ 20D k=D |

Equation (5.6) is discretized in a similar manner, which leads to the

following finite-difference expression:
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DA™Y, j k)= (1' 0 )D,Ag"'“)(i, )+
t r02 (5.32)
W.EL{M(") —00, AN, j.k)+ ;uz]
where:
L{Az }(n) - [Xz(z"“m(i,j,k)— ng"_l/z)(i,j,k)+Y2(Z"+1/2)(i,j,k) 53

_ngn—1/2)(,-, J.k)+ Zz(z"wz)(i, jk) - Zz(z"_m)(i,j,k):l

is the analog of the finite-difference Laplacian operator applied to A, ;

aly O, O, .
Lh=—"|— +— | is a numerical constant; and
2\ u ¢

DA™YV, j k)= A"V G, j,k) - AV G, j,k) is a first-order finite-
difference operator in time.
It should be pointed out that sources are unlikely to exist in a practical

PML region and, therefore, the term xJ, in (5.32) may be set to zero. Note also

that the material constants o, 0,, €=&¢, and U= tyu, are those of the

analyzed volume terminated with the IPML; in other words, they are not
associated with the anisotropic IPML constants defined in (5.25).

Finally, the update equation for the vector potential is:

i
(n+=)
A, jok) = AP, 1R+ DA, 2 G, k) (5.34)
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5.3.2 IPML for the WETD in inhomogeneous lossless media

In the setting of the stretched-coordinate approach, the discretization
equations for the auxiliary variables will remain unchanged since the Laplacian
remains unchanged; that is, equations (5.26) to (5.31) hold. However, the update

equation for the finite-difference expression for the vector-potential first-order
time derivative D,A™2(, j, k)= A"V(, j,k)— AL (i, j,k) , will be changed, as
follows:

(n+l)

.. (n—l). . Alrznin
DA, *(i,j,k)=D,A, *(,j.k)+

.[lL{AZ}(n)_{_IuJZ]
r-r At

(5.35)

Al c
+=i A GG, k)~ ————N G, ok
3 e (s J.K) G (i, J.k)

Here the divergence of the vector potential has to be calculated explicitly as:
VRO 1) B S -
divA (l,.],k)=_; Xlx 2 (l_lajvk)_Xlx 2 (l—l’]9k)
A

sy -
+Y, 2 G, j-Lk)-Y, * (G, j-Lk) (5.36)

n+dy -3y
+Z,, 23, j,k-1)-2,, * a4, j,k-1)

(n)

ue (i, J, k) are as follows:

and the expressions for N/(l")(i, j.k) and M

MG, jk)=
divA™ (i, j, k) 1 1
h,(k-1) [ 0,30, . K)E, GG juk) 14, jok—1E, (i, ok — 1)]
, dvA™ G, j,k+1)[ 1 _ 1 }
h, (k) (0, Gk +DE G jk+1) 1,3, j ke, j.k)

(5.37)
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1 1 1
N™G, jk)= [ - } X
g #G+1,5.k) G, 5 k) R ()

(n+3)

.. (n-%y ., (n+dy . (n-Yy .,
I:Zu G, j. k)= Zo PG k) + X 2 G, k)~ Xy, 2 (z,],k)}

R I
,Ur(l,_],k) ﬂr(l—l,_],k) hx(l_l)

1 1 1 _l
[Zfi'*?)(i—l, =Z0 -1+ X1, k) - X P -1, j,k)}

_[ 11 } L
1 LR 4,0 k) [y ()

(n+2)

. -2, . () . . (-3, .
[Illz - (h]vk)_lllz : (l"l’k)+zly+2 (l’_lak)_zly ? (lv_]’k)}

_[ 11 ] 1.
:ur(i’j’k) :ur(i’j—l’k) hy(]_l)

[Yl‘;‘*?’(i, J=LE=Yo G, - L)+ 2 PG~ - Zyy PG - Lk)]} (5.38)

The divergence is located at the bottom left corner of the discretization cell in Fig.
5.1. The permittivity is always defined at the same locations as the components of
the vector potential itself.

In the special case of layered dielectrics sharing the same normal, say in
the z-direction, the divergence of the vector potential may not be calculated
explicitly. The update equations (5.26), (5.27), (5.29) and (5.30) will remain

unchanged, but equations (5.28) and (5.31) will have the form:
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Z(n+1/2) k 1-r Z(n 1/2)1 ik
1z (J ) 1+r (] )

Z

1 2

; N . (5.39)
2c(1+1,)a,h, (k) [6,G, j.k+ 1) +€,G, j. k)]
X[ ARG, j.k+1) = AP G, k) |
2,0 j Lz oD iy £,(i, J,k)
10 (1+rz) GO Y ah, (Dl
x[zl(znﬂ/z)(i, j k)~ Zl(zn+1/2)(i’ jk=1) (5.40)

~Z"G, )+ 207G, k=]

The update equation for the finite-difference expression of the vector-potential

first-order time derivative will be reduced to:

(n+3) a2

DA, *(,j.k)= DA (,j,k)+

-[iL{AZ 1+ ,u]z] (5.41)
at

rgr

5.3.3 IPML for the WETD in lossy inhomogeneous media

In the general case of lossy inhomogeneous medium, the auxiliary
variables are calculated as in the case of homogeneous medium, through
equations (5.26) to (5.31). The update equation for the finite-difference

expression for the  vector-potential  first-order  time  derivative,

DAY, j k)= AV, j k)~ AP, j, k), will be changed to the form:
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1 —
DA, (i juk)= G+ .

1
]D,Ai"'f)a,j,kw
hy

ok -[iL{A }(")+,uj}
4ue,(1+n) Lar ° ‘

Al in OV
— =M (i, j,k)
8(1+ He

( rO) (5.42)
o lmintty | 97K 00, 1k) oG, jk=D)

8(1+n) | h(k-1 L&G. k) £ jk=1)
276G pk+D)| oG jk+]) _ oG, j,k)

h, (k) .3, j,k+1) £, jk)
[

- N™G, jk
a(1+1n)e, k) (@ .k

where

L{A,}™ is defined in (5.33);

Oul . .
r,= EY is a numerical constant.
£

The divergence divA is calculated as in equation (5.36); ML’Q(i, j,k) and

N/(,")(i, j,k) as in (5.37) and (5.38), respectively. The scalar potential has the

following update equation:

M (i, j k) =:—r<13("“1)(i, j,k)———l—divA(”)(i, j.k) (5.43)
r

ue(l+r)
It is calculated at points located at the bottom left corner of the discretization cell

in Fig. 5.1, same as the location of the divergence divA . In equation (5.43), the

) OAt
constant r 1S r=—.
2¢
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Here it is again reminded that in equations (5.42) and (5.43) the
constitutive parameters o, 4 and &£ are those of the lossy inhomogeneous

medium, and they are not associated with the IPML variables.

5.4 Exponential time stepping

As already mentioned in Chapter 3, in high-loss media such as the PML,
the above standard time-stepping scheme can be replaced by the exponential time
stepping algorithm, proposed by Holland (1994). Below, that concept is
developed and applied in the setting of the coordinate-stretching approach to the
case of IPML for the WETD.

As before, the update equation for any of the variables is regarded as a

first order ODE with respect to time, for example take the first of the equations

(5.7):
Kyl Tey 4194 (5.44)
ot ea, o, ox

Its homogeneous part is considered to be the result of the right-hand side
contribution over the previous time steps, excluding the contribution of the spatial

derivative of the present time step:

=Ce “* (5.45)

1Z(hom)

Therefore the decay during the last time step is:

X('H%) - e—i:: X(n_%)

1 Z(hom) - 1Z(hom)

(5.46)
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The particular solution is considered to be the result of the right-hand side
contribution of the spatial derivative during the present time step, which for the
auxiliary variables starts half a time step before the time step for the vector
potential. The time ¢' is measured from its beginning, so that for 0<z'<af:

o,dt’' o,dt'

X

dt'+Cle (547)

104, ]
(1)=|—== e

12( pan)
x

From (5.47) the constant C can be evaluated at time ¢'=0. Finally, the general
solution at the end of the present time step will be a sum of the homogeneous and
the particular solution where the spatial derivative is taken as an average value at

the middle of the time step:

%Y

(n —) E 1_ €% n)ys . n)/s »
LA w61 - ARG 0] G48)

_oyat

(n+ ) ea, X

X
fz o ax(i)

Similarly, following the same steps as above, the exponential time-stepping
formula for the second auxiliary variable X, is obtained:

O,al

Oy

X(’H‘ ) £, X(ﬂ —) 8[1"-8 0y ] .
z O'xAx(i—l)At
[Xlg"“/z)(i, jok)—- Xl(zn+1/2)(i ~1,j,k) (5.49)

=X, VG, R+ XY=,
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5.5 Modified IPML variable profiles

The performance of the numerical absorber depends crucially on the

growth profile of the PML variables: the PML conductivity o, and the PML loss
factor o (£ =x,y,z), which takes care of the evanescent mode attenuation. It

also depends on other parameters, like the user-defined reflection coefficient, the
material parameters of the medium, etc. Initially, a variety of profiles already
available in the literature were implemented, such as those given by Berenger
(1994), B. Chen et al. (1995) and J. Fang et al. (1996). However, the PML is now
integrated with the wave equation, which is a second-order PDE. The
conventional PML profiles did not perform well and they had to be modified and

optimized. It is well known that greater rates of attenuation can be attained by

choosing larger increments in the values of the PML parameters 0, and .

Larger attenuation means decreased thickness of the PML absorber, and,
therefore, less computational load. However, a larger attenuation rate gives rise to
spurious numerical reflections. A compromise must be reached between
insufficient and excessive attenuation. It has been observed that the first few
PMLs cause the greatest numerical reflections (due to the stepwise PML
conductivity jumps in the discrete space). That is why the increments in the
conductivity in the first few PMLs have to be small. However, in order to reach
sufficient attenuation, the PML conductivity has to increase significantly towards

the final layer. If a broadband performance is a necessity, the rate of attenuation
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has to be decreased in comparison to the case of the narrow-band requirements.
The number of PMLs is in direct relation with the rate of conductivity increase.
The slower the conductivity rises, the thicker the absorber must be to ensure
broadband performance.

To meet these competing requirements, the best performance, in terms of
low reflections in a broad frequency band, was achieved when a new degree of
freedom was incorporated in the definition of the PML variable profiles. As
mentioned in section 3.3.2, to the author’s knowledge, this has never been
considered before and represents a problem-independent approach to the

improvement and optimization of the PML performance. Namely, the PML

conductivity o, is now proposed to increase by an order £ faster than the order

of the PML loss factor a;:

n+f
‘7:(/0)=Gmax(é%J , BelL3], E=x,y.2 (5.50)
ag(p)=1+€max[5ﬁ] , PE[0,6.), E=x,y.2 (5.51)
£

Here, f is the user-defined new degree of freedom added to the order n
of increase of the PML conductivity o, whose optimal values in all experiments
are shown to be between 1 and 3; 55 is the PML thickness in the &-direction; p

is the depth in PML; R, is the chosen reflection coefficient at normal incidence,



Chapter 5 Improved Absorbing Boundary Conditions for the WETD 91

and £, is a chosen constant, generally between 0 and 5. The theoretical

reflection coefficient at normal incidence is (see Chapter 3):

s
R, =exp(— 2 Ia(,o)d,oj (5.52)

0 rc 0
From (5.52) the PML conductivity parameter o, as a function of the user

defined R, is easily obtained as:

(n+ B+DEeE,c In(R,™)
o =

= , Pell,3 5.53
max 5 Bell,3] (5.53)
In Chapter 6 it will be shown that increasing the power rate of the PML

conductivity o by one ( f =1), while keeping the power rate of ¢, the same,

has the effect of broadening the frequency band in which the reflections are below

—60 dB. An increase in the power rate of o by two (=2 reduces the number

of PMLs by additional 4 or 5 cells while the reflections can be still kept at the
prescribed level, which is usually below —60 dB (corresponding to 0.1 % of the
magnitude of the incident wave).

Note that a simultaneous increase in the power rate n of both O and &,

as it is done in most PML absorbers, does not improve the bandwidth. It has the
effect of increasing the spurious numerical reflections, thereby degrading the
absorber’s performance. An extensive comparison between the proposed IPML

variable profile and the conventional PML profiles is provided in Chapter 6.
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The PML conductivity and PML loss factor participate in the coefficients
r, i=x,y,2, see equations (5.26) to (5.31). In Fig. 5.2 these coefficients with the
proposed IPML conductivity and loss factor profiles are shown for #=1 and
B =2, together with the PML conductivity profiles of Berenger (1994) and
GPML of J. Fang et al. (1995). All other PML parameters are maintained the

same for the three absorbers: the PML thickness is 10 cells, R, = 107, n=2.

PML Coefficients: r

0.25 T | T l 1 | | T
L oAt
1-MPML | | | : | |
0.2F-9--GPMA;~*----- rooo-- reo e ERREe e 1=
~ S '
e
8 oqsbowithe B=4__Lo
T e pm |
N R | 1 t
= gL Withh f=2. S S R A R
g—i ' I ) : o
0.05F----- e e o e EREEE T AP

8.1 02 03 04 05 06 07 08 09 1
Normalized distance in PML

Fig. 5.2. The PML conductivity profiles: 1 — GPML, 2 — Berenger, 3 —

current profile =1, 4 — current profile F=2. In all cases,

Npy =10, Ry=10",n=2.
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From the example in Fig. 5.2 the reason for the better performance of the
proposed IPML can be seen; namely, the proposed coefficients increase more
gradually in the first layers in the absorber, which contributes to less numerical
reflections, while their values become greater at the end of it, which means less

electromagnetic energy reaches the end of the absorber and is reflected back.

5.6 Modified IPML terminations

Another means to improve the PML performance is to replace the perfect
electric conductor (PEC) wall that usually terminates the PML medium, with a
low-cost simple ABC, which will be referred to as a single-layer ABC. In this
work, three types of single-layer absorbers have been investigated to terminate the
perfectly matched layer.

First, the lossy one-way wave equation first-order ABC was implemented.
Rappaport (1996) first reported the improvement of PML absorbers with this
termination.

Second, a lossy version of Mur’s second-order ABC was developed, to be
used as an efficient PML termination [the lossless original version is in Mur
(1981)].

The third PML termination, which is developed and investigated in this
research, is a lossy version of the second-order dispersive boundary condition

(DBC) [Bi et al. (1992)].
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The choice of these termination layers has been dictated by the following
considerations:

1. The simplicity of implementation,

2. The minimal additional computational overhead, and

3. The discretization possible with no additional memory requirements.

Here, a unified approach will be described to the derivation of lossy PML
terminations from existing single-layer ABCs, which were originally designed to
terminate loss-free computational domains. The EM potential wave equation (5.1)
inside the PML region has its EM constitutive parameters such that they must

satisfy the constraint for reflection-free propagation; see e.g. Berenger (1994):

g (5.54)
E

on_1
H T
where 7 is the dielectric (and magnetic) relaxation constant. Having (5.54) in
mind, equation (5.1) can be written in the factored form:

(2 — uev?){A}=0 (5.55)

where L=09/9dt+7'. In (5.55) it is implied that there are no sources present in
the PML region. Equation (5.55) is the basis for all first and second order lossy
ABCs considered here.

In the direction of propagation (and absorption), say the ¢&-direction
(&=x, y, z), the 1-D version of equation (5.55) is:

L'L{A}=0 (5.56)
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where the wave operators L* and L, corresponding to forward and backward

propagation, respectively, are defined as:

L'= L+v§8/a§ (5.57)
L = L-—vga/af (5.58)
Here, v, is the velocity of propagation in the &-direction. Taking only the

operator in (5.57), which describes the forward (one-way) propagating wave, one
obtains the lossy one-way wave equation ABC, proposed first by Rappaport

(1995):

1(0A A) 0A
_('&)7+?J+E'O (5.59)

in which the first order approximation of the velocity of propagation in the £-
direction is used, namely ve=v= 1/ ue .

To derive the lossy version of Mur’s second order ABC, the general

procedure given by Mur (1981) is followed, while substituting the d/0¢
derivative by the lossy operator (8/0t+77") in (5.55). First, the second order
approximation of the propagation velocity v, in £ -direction is expressed through
the propagation velocities in the other two directions v,,, v, and the propagation

velocity in the structure v, as follows:
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1,11 1

v v W

| 2 2 2 2 (5.60)

SRR S PO U2 [ R R B Y | B [ p.

ve Vv vy, Ve v 21\, Ve

From (5.60) v,, v, are expressed as:

-17+L2:2- 1.1 (5.61)
v, v¢ Vv v

The WETD (5.55) is then expanded in the form:
2 2 2 2
i(i+l) 29 Mo =
vilor 7 o0& on* 9t
2 2 2 2
(i+_1_)_ I 9 49 lliz0 = (5.62)
o 7 o&* an® of

K 2 2 2 2 2
Lz[i.g__l,) ._a_z A:O_—_— i2+_1§' (i.i.lj — 'a_z—+a_2 A
RE o 7] 0df v, v \or T on® 0of

where (5.56) is also used. From here, after substituting (5.61) in the right-hand

+—+

1 1
2 2
Yo V¢

U\§N|H

side of (5.62), the following equation is obtained:

2(1 1Yo 1Y (o 9%)|-
[;[;_E](&.t) —[57+WHA—O (5.63)

Next, from the one-way WE (5.59):

1(0A A)_ 04
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After substitution of (5.64) into (5.63) and dividing by 2, the second-order

approximation of the lossy one-way WE is obtained:

1(9 1Y 1(9* 2*) 19(a 1)|-
S ) N DA A=0 5.65
LZ(aﬁrj 2(an2+a;2J+vag’(at rﬂ (5.65)

Thus, this termination is obtained by expanding (5.65) as:

(5.66)

%A 204 A voA 1 - V34 %A
=Sy At | = —
o2 tor ok tox 72 2|0t o2

-1/2

where v=(ue)™"'?, and (n,{) are the transverse with respect to £ coordinates.

Similarly, from the original second order DBC of Bi et al. (1992),

1 8 d 1 a
——t— || —=—+= =0 5.67
its lossy version is obtained as follows:
1({d 1) 9 1 (0 1
—+— —+—|+—[{A}=0 5.68
[vlg e af}[vzf( ) a«:}{ - 09
This last equation is expanded in a similar way as above to give the lossy second
order DBC:
A 20 24 (ve+ve)od 1 - 924
W‘ 7 at (V1§+V2§)a@t 7 ax —;2—A+v1§vzég (569)

where v, and v, are the velocities in the direction of propagation (absorption),

corresponding to two different frequencies in the band of interest.
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Below, the discretized forms of the three single-layer PML terminations

will be shown in the case of £=x for the A, component of the potential, where

{=xy,z

5.6.1 One-way wave equation (WE) termination

From the lossy one-way wave equation (5.59) used to terminate the PML

medium, say in the x-direction, its discretized version is obtained in a similar way

as in Rappaport (1996):
AP i gy L T o 400 4 Tox  Am)(;
S+ j k) =—"—2 A+, )+ 2= AL k) (5.70)
1+r, 1+7r,

where the following constants are used:

_ O VAL 1

rtr—zgax’ ’bszx\/a—x, v:\/zg_

(5.71)

5.6.2 Mur’s second order ABC termination

The lossy version of Mur’s second order ABC from (5.66) is discretized
without averaging with respect to spatial location in the second order spatial
derivatives in the transverse plane, since the numerical experiments show no

significant improvement in the results if averaging is used. No previous time step

values are necessary to store in the proposed version:
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1 1
(nt+=) 1- (n—) | .
DA; 2 (i+1,j,k)=——2"—DAs 2(i+1,jk)
rx ’bx
7. (,,+l) .
+—2x DA 2, jk)
I+ +r,
_ rx’bx+rx2

AP +1, j k) + 20— A, j k)
1+7r +ry, 1+

I+ Hox
At2v2
+ 2
20y% (141, +13,)

[A}")(i+l,j+1,k)—2A£«")(i+1,j,k)+A(;")(i+1’j_1’k)]

X (5.72)

at?v?
2272 (1+r.+ r()x)

(AL G+1jk+1D)= 248G +1, k) + ARG+, k=D |

In equation (5.72) the coefficients r, and r,, are the same as in (5.71). The

potential itself is calculated as:

1
A(n+1)(. L k)= A . () . ,
;+L ], )—A; (i+1,j,k)+D,A, (i+1,j,k) (5.73)

5.6.3 Second order DBC termination

The DBC equation (5.69), written for propagation/absorption in the x-

direction is:

2 2
aA§=_2aAg«_(v1 +v2 )a A{_(v1x+v2x)aA;
2 x X
ot T ot 0x0t T ox (5.74)
L, 0’A
—— V. V.
’Z'2 { 1x¥2x axz

From here, the discretized version of this second order DBC (5.74) is

easily obtained as:
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1 1
(nt+=) - (n—=)
DAy D +1, j k)= ——2= DA, 2 (i +1, k)
I+r +rp,
7 (,,+l) .
+—i DA, jk)
I+r,+r,
2
~ Ll A 11, k) (5.75)
I+r, +1p,

2
levaAt

+‘M_A({n)(i,j,k)+ >
1+r, +rp, (0799 (1+rx+er)

[APG+1, k) 240G, j k) + AP =1, 23]
where for convenience the following coefficients have been defined:

ont (vt vy, )t

px =

2ea,’ ax o,

Finally, the potential is calculated as:

r, =

1
(n+>)
AP, j k)= APG+1, k) + DAL 2 (41, j,k) (5.76)



Chapter 6

Validation and Discussion

The numerical algorithms developed here use only one set of update
equations to handle all computational regions, no matter if they are regular
FDTD/WETD or PML regions. A 3-dimensional non-uniform rectangular grid
pattern is determined, depending on the specific structure to save computational
resources, while maintaining satisfactory (prescribed) accuracy. In particular, the
algorithms can characterize different material regions by simply assigning
different material parameters to the corresponding grid points. The constitutive
parameters are always defined at the respective locations of the field/potential
components. At material interfaces, an average of the constitutive parameters is
used.

The experiments will show that the proposed modified profiles of the
PML variables offer superior performance (lower reflections in a broader
frequency band) in comparison with commonly used PML profiles both for the
case of the FDTD solution to Maxwell’s equations, and for the case of the time-

domain wave equation for the vector potentials. The influence of new types
101
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termination walls of the PML on its overall performance is investigated and the

best options available are singled out.

6.1 Normalization of the split-field components for the

IPML-FDTD

For numerical stability, it is always beneficial if the program variables are
of the same order of magnitude; and preferably dimensionless wherever possible.

Therefore a normalization of the E -field components is performed:

E(original) = A ’S&E(program) (6 1)
0

No normalization is necessary for the H-field components, i.e.:

H =H (6.2)

(original) (program)

Next, the spatial increments ax, ay, az are expressed in terms of the

minimal spatial increment al,,;, :

Mlpin= min  (ax(@),ay()),a2(k)) (6.3)
1SS, g
1SRy max

1<k<n, pax

and the dimensionless quantities (i), h,(j), h (k) as:

ax(i) = h,(i)al h ()21, 1<i<n,__
() =hy (DAl By (NZL 1S j<n, (6.4)
az(k) = h,(k)al h(k)=1, 1Sk<n

min ?

min? Zmax

The time step is chosen in accordance with Courant’s stability condition as
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at=al_ /2c; c= 1/‘//,1080 (6.5)
The procedure to derive an update normalized IPML-FDTD equation will

be shown for one of the split-field components, say E,, . The application of the
normalization (6.1), (6.2) in the defining equation for E,,, results in the

normalized equation:

oE c. . o(H. +H
o, D p L (A +1,) 6.6)
ot &0, a, ay

The discretized version of (6.6) is obtained as follows (see details in Section

3.4.1). The homogeneous solution is:

Flntl) . £0% fx(n)
Exy(hom) =€ Exy(hom) (6‘7)
and the particular solution is
a(ﬁ +4,,) ' -
Cc x zy EpX. EoX
()= fe o™ ar+cle ™™
XY( pant
(part) ; ay
(6.8)
A A oyt
C&y a(Hzx +sz) +Ce £ty
o, ay

where the time ¢' is measured from the beginning of the n th step. Evaluate (6.8)

at t'=0 to obtain C:

and then the particular solution
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Y 6.9

Now (6.9) is evaluated at ¢'=ar to obtain E;';: lm) and the update normalized

equation as a sum of the homogeneous and the particular solutions:

e oy ()t
A T () A cgll—e 7
E.:;—l(i,j,k):e 5oay(])E;y(i,j’k)+ 0[ ]

O.y (.I)Alm_m

(6.10)

t 1 An 1 .. Ah 1 .o
LG, 0= Ay G -1k | By 60—y G =Lk
() hy (J)

where

h,(j)+h,(j+1)
2

hy, ()=
For convenience, define:

_ o, (j)at
Ean(j)

n+f
L e()
(n+ﬁ+1)80c-ln(R(0)j[T] | u

()

: i’ ntf
(n +,B+1)-ln(—§(0—)}[’05—1)]

y
4( %y J 1+¢ (—p-(]—)}n
Bliin J, (6.11)

and rearrange the coefficient before the spatial derivative:
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oy (j)at _oy(at

1o 2% [—g S

c&, c&,

O, (Dol o,(j)2cat
_oy(Hat ;
o %) O'y(])
£, (J)
= : (6.12)
2ay(j>(———"y(’ )A’)

80ay (])

&l 1-

_l_e"ry(j) ].
n() 2e,())

Finally, with the notation (6.11) and (6.12), when a grid point is in IPML, the

normalized update equation (6.10) becomes:

~r,(J)
‘ SANY- I-e”
EMG, k) =e "VE (i, j,k) + ————X (6.13)
¢ B 200, (j)r, (j)

Antd nntl Antlo, YL
A5G, 7,0 - ARG =1k B2, k) - H,, 2 G, j—-1k)
B, () h, ()

Two important conclusions can be drawn here.
1. From equation (6.13) it becomes obvious that the same update equation
can be used both inside and outside of IPML, simply by postulating for grid

points outside of IPML that
=0, =1 i=xy,z (6.14)

1

since the latter reduces (6.13) to the original Yee’s discretization. (Here

L’Hopitalle’s rule is used: lim
r,—0 Y. r,—0 1
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2. It should be noted that in the case when a dielectric material ends in the
IPML medium, the permittivity of the free space should be replaced by the
permittivity of that material; namely, the H-field derivatives are to be divided by
the local relative dielectric constant &, in the update equations for the E-field
components. The derivation follows the same routine as for the case of free space,

with the free-space permittivity €&, replaced by the local dielectric material

permittivity € = &€, . Therefore, the update equation (6.13) becomes:
=g

=X 6.15)
20, ()ry ()€, Qs j )

An .. —r,(pn ;o
EnG, jky=e " VEL G, k) +

A n+l ~ n+l Y n+l . '3 ’H'l .
Hy (k)= Hy 2 G j-Lk)  Hy'G k) - Hy (G j - Lk
hy, (J) hy, (1)

where the local dielectric constant &,(i, j,k) is defined at the same locations as

the E-field component. For the case when the E-field component lies on the
interface of two dielectric materials of different dielectric constants, an average
dielectric constant is to be used.

Equation (6.15) is to be used for the case when the same update equation
is used throughout the whole computational region, both inside and outside of
IPML, and there is a presence of dielectric materials of permittivity different from
that of free-space.

The normalized update equations for the H-field components may be

derived in a similar fashion. For example, to derive the update equation for the
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component H_, one starts with the split-field equation, followed by the

_xy b
normalization (6.1), (6.2):

: of [Pz, + o
oH A & &
"H,, = (6.16)
dy

xy
Uk, —>=+ 0O
Y ot

Then the IPML parameters in (6.16) are substituted using &, =¢, and

m _ Mo .
o, =0, to produce:
20
0H, o, oE, +E
”41+_4;Hw=_JL_L£__BQ (6.17)
&, a, dy

Equation (6.17) is discretized exactly in the same manner as the equation for the

E-field components, leading to the update equation:

hnty 1y () 1-e (6.18
H.,%G,jk)y=e "H, 3, jk) - ———F 18)
¢ i 20, (j)r,(j)
E;0J+Jk)—ﬁgahﬁk)+EQUJ+4J)—Egﬁhﬁk)
h, () h,(j)
Fig. 6.1 shows a comparison of the coefficients a; =¢ "and b, :1;e ~ for
o,

11

different PML variable profiles — the MPML of B. Chen et al (1995), the GPML
of J. Fang et al (1996) and the current profiles for f#=1 and f=2. It can be
immediately seen that the coefficients before the spatial derivative are practically
the same for all PMLs; but a better overall performance can be expected from the

new profiles since the profile of the coefficient a is changing more gradually in
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the first PMLs and reaches greater values towards the end of PML in comparison

to MPML and GPML.

PML Coefficients: a. (*) and b . (0)

i
I
|
)

Amplitude of a@ and b

%1 0z 03 04 05 06 07 08 ) 1
Normalized distance in PML

Fig. 6.1. PML coefficients comparison: 1 - MPML, 2 — GPML, 3 - IPML

with #=1; 4 - IPML with 8 =2. With circles — the coefficients
before the old value to be updated; with stars — the coefficients

before the spatial derivative. In all cases, R,=107*; n=2;

Ny =10.
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6.2. Normalization of the components for the IPML-WETD

For stability purposes, the auxiliary variables are normalized and the

following quantities are actually calculated:

oAl = A%
%=X, Almm§ x2=X2—A e
At Af
LAl L oAl
n=h ; Y=Y, 6.19)
At At
B
Zl:_ZAmm; z2=Z2Armn
Al at

Here, al ;. is the minimal spatial step in the non-uniform grid, as defined in (6.3)

and the time step defined in (6.5) is chosen so that Courant’s stability condition is
satisfied, ¢ is the highest velocity of light in the analyzed structure. Thus the

spatial increments are expressed through the dimensionless coefficients . (i),
h,(j), h (k) asin (6.4). As in Chapter 5, the following quantities are defined:

O Al
£ E=xy,2 (6.20)

Je =
¢ 2ea;
From the discretizations obtained in Chapter 5, after the inclusion of the
normalization (6.19), the update equations for the normalized auxiliary variables
are derived as shown below:

xl(zn+1/2)(i’ ],k) - (E—?_}xéﬂ““z)(i’ _],k) +

X

(147 )ah () (6.21)
<[ AP +1,j.k) - AP G, 1.0
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;—A

1
(U2 G g hl o VD i k)4
Y1z @, j.k)= [1 Jylz (i, j,k) (1+r)a'yhy(j)

[ AP G, j+1k) = APG, j.k) |

1
2", k) = (=12 ;i py 4 _
@, Jj.k) ( jzlz @, Jj.k)+ (7)o

x[A(")(z Jk+1)— AN, ],k)]

1-r 1
(n+1/2) ¢ ',k — X (n—1/2) i, ’k + .
x2z (l,] ) (l_l_rx) ( J ) (l+rx)axhx(i—1)
X[xl(z"+l/2)(l j.k)- xl(n+1/2)(l 1,j,k)

A (A8 S Al (A lj,k)]

1-r
y2(1n+1/2)(l‘, j,k) = (+_y

y

}yz(zn+1/2)(i, J,k)+

[)’1(zn+1/2)(’ ],k) yl("+1/2)(l j—l,k)

-G, )+ 7 =LK |

. 1- .
Zz(Zn+1/2)(l’J’k)=( JZZ(zn 1/2)(1 ],k)+
1+,

[Zl(nn/z)(l k- zl(n+1/2)(l jk=1)

(n 1/2)(1 ],k)+Z1(n 1/2)(1 j,k—l)]

(1+7,)a,h, (-1

1
(1+1)ah (k1)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

Using the normalized variables, the following finite-difference expressions

for the WETD are obtained:
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1. Case of homogeneous lossy medium:

1-r
D A(n+l/2) i, -,k = 0
f i 4 ( ] ) 1+

}DAyW”@Lm+

o (6.27)

— | LAY —go A%, - AYG, k)AL )
4#,8,(14'7‘0) [ { Z} m~—"min Z ( -] ) min lLl Z]

atfo, o). .
where as before, 7, = E(—"‘ +— | is a numerical constant;
u €

L{A, J = xz(z"“/z)(i,j,k)— xz(z"'llz)(i,j,k)+
2P, k)=, G )+ 2, PG G k) - 2,0V k) s the
analog of the finite-difference Laplacian operator applied to A, ; and

DA™Y, j,k)y= A", j,k)- A", j,k) is the first-order finite-

difference operator in time.

2.Case of inhomogeneous lossless medium:

DAYV, jky=D,A"YP, j k) + ——— I {4}
R
+§Mﬂ5 (t,],k)+mN” @, j.k)
where the normalization for the divergence of the vector potential is:
divA original) = ‘l_di";‘( program) (6.29)

al

min
and is located at the bottom left corner of the discretization cell (see Fig. 5.1).
Note that the permittivity is always defined at the same locations as the

components of the vector potential itself.
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The update equation for the normalized divergence is therefore:

1

OV (r+=) . ("_l) ] .
divA"™ (i, j,k)=<x, 2 (i—-Lj,k)—x, 2 (i-1,j,k)

D) sy
+y1y 2 (l’-]—l’k)—yly 2 (19]—17k) (630)

(n+l

1
) (n—)
+zlz 2 (ivj7k_1)—zlz 2 (l,],k—l)}

The last two terms in equation (6.28) are

NL”)(i,j,m:[ 11 }1.><
MG+, j.k) .G, jk) | h (i)

(n+) . . (-2, . (n+l) . . (-2, .
[le : (l,.l,k)_z]: : (l’]ik)+'x1: ? (l9J1k)_x1: 2 (l,]7k)]

RIS
ﬂr(l,],k) ,ur(l_l’.lak) hx(l_l)

[zf;”?)(i ~L k) = PG, k) e (=1, k) - xe P G-, j,k)]

1 1 1
— — X
[y,(i, j+Lk) u,(i,j,k)]hym
(n

(n+2) . . (n=2),. . (n+2y . . - P
{ylf DG, k) =y DG k) 2y * G k) — g (l,J,k):]

{ 11 } L
:ur(ivj’k) ﬂr(i,j—l,k) hy(]_l)

[yff*?’(i,j—l,m— Yo, f- Lk 2y G f— LK) =z ? Gy = l,k)}} (6.31)

MG, j, k)=

. A(n) .. 1
dvd"Gjk+D) 1L 1 g3
h, (k) w1, ok +DEG ok +1) 1, jk)E 3, k)

. divA™ (i, j.k) 1 _ 1
h(k=1) | G, k)E, G, j k) w1,y j k= DE, G, jk—1)



Chapter 6 Validation and Discussion 113

3. Case of lossy inhomogeneous medium:

DA™, k) == D, A"V i, j, k)
I+r
1

+ . . . L{AZ}(n)
4ﬂr(l’ .]9k)€r(l’ J’k)(1+ ’b)

(6.33)

LGk AD] oG k4D oG jk)
h, (k) £, (ir jok +1) €8, j k)

+<i)(”)(i,j,k)[ oG,jk) _ oG, jk=1 ] }

h,(k—-1) &, (0, J,k) &€, j,k=1)
L G ik + ! RO, j,k)
8(1+n) 777 8(l+n)e G gk) ~

where the divergence is normalized as in (6.29) and calculated as in (6.30);

MG, j.k) and NP@, j,k) are calculated as in (6.31) and (6.32), respectively;

. ot < .
the constant ryis 1y = —2i . Here the scalar potential is normalized as
&

1 R
(I)(ariginal) = W ( program) (634)
and explicitly calculated as follows:
OV S VT 1 OV
@ (17]’k)——(1) (lajvk)_—————dIVA (17J7k) (635)
I+r W€, (1+7r)

. . OAl . .
In equation (6.35) the notation r=2— is used for convenience. The scalar
£

potential and the divergence are calculated at points located at the bottom left

corner of the discretization cell, see Fig. 5.1.
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4. Special case of layered dielectrics sharing the same normal
Let the unit normal to the interfaces of inhomogeneity of all dielectric
layers be in the z-direction.
From the equations for the auxiliary variables along the z-direction:
i(.z_J _ _&(@};L 04,
AN ex,\ € ) a,€ Oz

2y __ 0, & _a_(Z_J

- .
ot ea, a, 020t &,

it becomes clear that the following change in the normalization of Z;, is needed:

At E
Z —L

z(original) = Al zlz( program)

min

Thus, the normalized variables are related as:

0z o] 1{104
Sz Tz 1z+_[__z-)

z
ot a, o, \ & 02
2
aZ2z — O-z ) Er a 21z
ot ea, " a, 070t

Finally, for completeness, the discretization formulas for the case of
layered dielectrics with a common normal to their interfaces in the z-direction, are

shown:

V2)/s o+ 1-r, -1/2)/;
X, MYB G, k)= —2x, VP, j k)
X

1

+———————| AP +1, j, k) - A, j K
ax(1+rx)hx(i)[ L0416 R
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1-r,

Y2y, - —1/2) /s

XZZ(n+ )(l’]ak)= 1+rx_x2z(ﬂ )(l,_],k)
x

1 12y (n+1/2) ,
+ X l, sk - X l"'l, ,k
ax(1+rx)hx(i—-l)|: N L ML

5, "G, R+ 3,1, )

1-r, P
ylz(n+1/2)(i, j,k)=_y-ylz(n 1/2)(l,],k)
I+,

y

+ L [
ay(1+ry)hy(j)

AP, j+1LE) = AP G, jik) |

I-r . .
"D g k) =3, P o)

1+ry

+ 1 -
@, (1+ry)hy(1_1)
_ylz("—1/2)(i’ Jk)+ ylz(”_I/Z)(i’ j- l,k)]

I:ylz(n+1/2)(i, j, k) _ ylz(n+1/2)(i, j _ 1, k)

1 1
+
.3, j,k) &.3,j,k+1) N
2

.. 1-r, 12y
le(n+1/2)(l,],k)=——zzlz(n 1/2)(1,],k)+
I+,

| AYG, kD) - A, Gk
e CLR )

. 1- U2y s
Z2z("+1/2)(i’]’k)=1__;—%zzz(n 1/2)(1’]’]()

Z

£, 7,k) (n+1/2) s (n+l/2) /s
L ’ ,k —-ZZ i, 9k_1
az(1+rz)hz(k-1)[z“ a0k =D

-2, )+ 2, k=D

D’A§n+1/2)(l-’ ],k) — __i__iD’A;n—IIZ)(i’ ],k)+ L {AZ }(n)
A

+ 0 4/ur8r(1+’b)

where 7, and L{A, }' are defined above, in the lossy homogeneous case.
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As sources are unlikely to exist in a practical PML region, the term uJ, in (6.27)

may be set to zero. Recall also that the EM material constants o, 0,,, £ =§¢,
and U = Uy, are those of the analyzed volume terminated with the PML; in other
words, they are not associated with the anisotropic PML constants o; and ¢,

i=x,,2.

The formulae above are in a form suitable for straightforward
implementation. The time-stepping algorithm for the wave equation PML is
summarized below:

1. Update the auxiliary variables x, Y2, £=x,y,z, according to

equations (6.21) to (6.23).

2. Update the auxiliary variables Xogs Yap> Zags E=x,y,z, according to

equations (6.24) to (6.26).

3. Update the time-derivatives D A, £=x,y,z, according to equation

(6.27).

4. Update the potential components A,, £=x,y,z, using
APV, k)= APV G, j. k) + DAETY PG, jok) (6.36)

and if it is a homogeneous medium, go to 1; otherwise go to 5.
5. In the inhomogeneous case, update the divergence of the vector potential

using equation (6.30). If it is a lossless medium, go to 1; otherwise go to 6.
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6. In the lossy inhomogeneous case, update the scalar potential using

equation (6.35) and go to 1.

6.3 Excitation and its frequency characteristics

6.3.1 Gaussian pulse excitation

The excitation pulse in the case of open problems is usually chosen to be

a Gaussian pulse in time, propagating in +¢ -direction:
— _ s f - fo 2
g(&.m.6.1)= p(n,¢ )expl-a(t -1, , )] (6.37)
4

where ¢)(77,g) is the distribution in the transverse plane, v, is the velocity of the
pulse in the specific medium and the pulse has its maximum at £=¢& when
t =t,. The main reason for this choice is that the Fourier transform of this pulse

is also a Gaussian function (of frequency):

G( f)zexp[——” ; ] (6.38)

Therefore, the frequency band of the pulse can be regulated through the
parameter ¢. This is important for the case when the time domain response of
the structure of interest is used to calculate certain frequency-domain
characteristics, such as S-parameters or far-field patterns (in scattering problems).

The choice of « is dictated by two constraints:
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1. If frequency data are needed up to a maximum frequency of f ., then
the pulse must have a spectrum wide enough to cover the (0, f,,)
band. That is, we will require that at f,, the spectrum of the Gaussian

pulse is at least 10 % of its maximum value, i.e. G( f,,, )=0.1.

2. The parameter ¢ also has to be a function of the number of time steps,
3, from truncation (/start) point to the maximum of the time-domain
Gaussian pulse, so that the launch of the pulse is smooth enough.

In order to have a truncation level of approximately —140 dB (corresponding to
exp(-16)) at the truncation point, a practical solution is to choose « vary as [see

Kunz and Luebbers (1993)]:

2
o= [%} (6.39)

From the first constraint, we can obtain a relation between f,, and B:

_ 4410

oz FnaxSE

B (6.40)

The time step Af is determined by the minimal spatial step Al ; and Courant’s

. . Al . . .
stability condition (g =—"2=2 \3). The above equation can be written in terms
CA

of the shortest wavelength of interest as:

/3=4q ml;“”’g’ (’1““’“] (6.41)

Al

min
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For proper spatial sampling of the field propagation, the following condition must

be satisfied:

N, =2 >8 (6.42)

Therefore usually al_,, is determined first and then the pulse width B is
calculated. The last equation shows that even for the smallest possible value of

N, =8, in a structure, which does not contain dielectric materials, the pulse

width has to be at least £ =32. Naturally, if the structure contains a dielectric

material of relative permittivity £,, the pulse width has to be increased \[g—,
times since the cell size and the time steps would be reduced by the same factor,
as shown in equation (6.41). One should note that f is not to be increased too
much, because this should correspond to a decrease of Al . Otherwise,
increasing f and leaving Al_; unchanged would narrow the spectrum of the

pulse below the desired upper frequency limit.
An example of the Gaussian pulse and its frequency characteristics are

plotted in Fig.6.2 and Fig.6.3, respectively.
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6.3.2 The BHW modulated sinusoidal wave excitation

The excitation in the case of waveguide problems is usually a sine wave

modulated by Blackman-Harris window (BHW) function, see Harris (1978):

b(En.6.1) = @(n.¢)sinQz ft)w()8 (£~ &)

wt)=a,—a, cos[ 27t j+ a, cos( Azt J— a, cos( ot ] (6.43)
TBHW TBHW TBHW

a, =0.35875; a, =0.48829; a, =0.14128; a,=0.01168

where f, is the central frequency of the excitation, which is located at £=¢
with a distribution in the transverse plane ¢(7,5). Ty, is the duration of the

Blackman-Harris window function by which one controls the excitation
frequency bandwidth.

The window functions are being applied to smoothen the spectral
samples, since the amplitude of the harmonic estimate at a given frequency is
biased by the accumulated broadband noise included in the bandwidth of the
window. The particular window function (BHW function) is chosen for its lowest
side-lobe level (-92 dB).

An example of a sine wave modulated by Blackman-Harris window
(BHW) function and its frequency characteristics are plotted in Fig. 6.4 and 6.5,
respectively.

In summary, in order to have a good resolution during simulations, and
avoid frequency components below the cutoff frequency, one has to take into

account few factors:
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1. The minimal spatial step Al , has to be small enough to represent the

structure in sufficient details.

2. The time step At has to satisfy the Courant stability criterion.

3. The excitation pulse/window should be narrow enough to cover the
frequency band of interest.

4, The pulse should be wide/long enough to contain satisfactory spatial
distribution information within it.

5. If the requirements 3 and 4 cannot be met together, choose a smaller

spatial step and a corresponding smaller time step.

6.3.3 Calculation of the maximum number of time steps

The number of time steps, required to sample the time domain responses
in the sampling planes, should be large enough so that the traveling waves inside
the structure of interest are attenuated to negligible amplitude by the end of the
simulation. Usually, the following formula is used to calculate the minimal

necessary number of time steps in guiding structures:

Al
n 2 |:K —min . dim_, + wm} (6.44)

cAt
where
K 22; dim_, =max ("xmax My SRy )

w,,. is the width of the excitation pulse (expressed in time steps) to the

truncation moment.
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6.4. Examples of IPML for FDTD

To validate the method proposed in Chapter 3, the improved PML ABC
has been applied to both radiation and high-frequency circuit problems solved in
terms of the FDTD method to the solution of Maxwell’s equations. Here, two
examples will be considered: an infinitesimal dipole radiating in open space and a

microstrip line.

6.4.1 Infinitesimal dipole in open space

The problem of the z-directed infinitesimal dipole, which radiates in open
space, is modeled first by Yee’s FDTD method. It has a computational domain of
dimensions (120ax, 1204y, 1204az), where ax =ay = az =2.5mm. The dipole is

excited by the z-component of the electric field, which is a Gaussian pulse in time.
The reflection is calculated using the ratio of the reflected and the incident z-

component of the electric field:

F{EM)

. 6.45
F(E™) .

R =20log,,

where F denotes the Fourier transform of the respective time-dependent field
component. Two types of PML ABCs are investigated to terminate the
computational domain. They have different variable profiles. One of them
implements the Berenger’s PML conductivity profile as in Berenger (1994). The

second absorber is based on the modified PML conductivity profile proposed in
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Reflection, dB

Frequency, GHz

Fig.6.6.  Spectrum of the reflection in the dipole radiation problem using

two different PML conductivity profiles: 1 — Berenger’s PML, 2 —

current profiles f=1, 3 — current profiles f=0.5 (Npyy =10,

R,=107, ¢

ax =0, n=2 in all three cases).

Chapter 3, for two values of the constant #, f=0.5 and B =1. The reflections

are calculated by (6.45) and are shown in Fig. 6.6. In all cases the absorbers are

10 cells thick: their theoretical reflection coefficient at normal incidence is chosen
to be R, =107*; the constant ¢, is set as £,,, =0, and the order of increase of

the PML conductivity profile n defined in Chapter 3 is set to n=2. Fig. 6.6

shows that the current modification of the PML conductivity profile offers
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superior performance in terms of reflection levels in the whole frequency band. In
all cases the observation point is in the dipole’s H-plane, halfway from the

absorber. The reflections are similar for any other observation point.

6.4.2 Microstrip line

The geometry of the microstrip line is shown in Fig. 6.7(a). It is excited by
the z-component of the electric field, which is launched with equal amplitude in
the dielectric under the microstrip line, in a transverse plane, 5 spatial steps after
the front-end IPML. The excitation is a Gaussian pulse in time that has its

spectrum in the frequency band from 0 GHz to 100 GHz. The amplitude of the E,

component is shown after 1000 time steps in Fig. 6.7(b). The size of the
computational domain is (500ax, 56 Ay , 26 Az ), where ax = ay = az=0.1mm. The
3-dimensional computational domain was terminated in all directions (except the
ground plane) by two types of PML ABCs: the MPML as in B. Chen et al (1995),

and the proposed in Chapter 3 improved PML with =1 and S =2. In all cases,
the PML is 10 cells thick, the reflection coefficient is chosen to be R, = 107%, the

constant €

max 1S set to & .. =1, the order of increase of the PML loss factor is set

to n=3. The reflections as defined in (6.45) are plotted in Fig. 6.8(a); and the

. . F { Ereﬂ }
magnitude of the reflections defined as R, = —/_—_—W
Z

are plotted in Fig.

6.8(b). Lower-reflection broadband performance of the IPML profile is observed
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in comparison with the MPML.

()
E //// Z
2 £,=9.6 X
1] el y
= Ground plane
w=0.6 mm
(b)
Microstrip line £, =9.6
w=0.6 mm, h=0.6 mm
N OFf Time step = 1000
R S5y
S 4}
o
3 o
E 1
= 0
z
6 01 80
20
y 55 60
Fig. 6.7. (a) Geometry of the microstrip line; strip width w=0.6 mm,

dielectric &, = 9.6 of height & =0.6 mm.

(b) Time-domain amplitude of the z-component of the electric field

propagating along the microstrip line.
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Fig. 6.8. Reflections spectrum in the microstrip problem using two different
PMLs: 1 -~ MPML of Chen et al. (1995) corresponding to =0, 2

—IPML B=1,3 - IPML B=2 (Npyg =10, R0=10-4, Emax =1,

n=23 in all cases). (a) in dB; (b) dimensionless.
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6.5 Examples of IPML for WETD

To validate the PML ABC for the WETD proposed in Chapter 5, the
algorithm was applied to both radiation and waveguide problems solved in terms
of wave potentials in the time domain. Here, three structures are considered: a
dipole in open space, a hollow rectangular waveguide, and a rectangular
waveguide partially filled with dielectric. Finally, a 3-dimensional optical
structure is considered, the simulation of which requires all three components of
the vector potential; namely, a buried optical waveguide terminated by two-layer
antireflection coating. The results of its simulation by both the FDTD for

Maxwell’s equations and by the WETD are presented.

6.5.1 Infinitesimal dipole in open space

The problem of the z-directed infinitesimal dipole, which radiates in open
space, has two planes of symmetry. Therefore, the computational domain can be
the first octant whose dimensions are (60ax, 60ay, 60az), where
ax = Ay = a7 =2.5mm. Proper BCs account for the symmetry: a horizontal PEC
wall through the centre of the dipole; and two vertical mutually orthogonal PMC
walls through the dipole. The potential A, is excited by the z-directed current of
the dipole, which is a Gaussian pulse in time. The reflection is estimated using the

ratio of reflected and incident wave potential, which in this case is the z-

component of the magnetic vector potential, A= ZA,:
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F{A)
F{A")

Ry =20log,, (6.46)

Here, F denotes the Fourier transform of the respective time-dependent
potential.

Three types of PML ABCs are investigated to terminate the computational
domain of the time-domain wave equation. They have different variable profiles.
The first type implements the MPML conductivity profiles as in B. Chen ef al.
(1995). The performance of two MPML profiles is shown in Fig. 6.9: for the
orders n = 3 and n = 5; the second one being chosen to correspond to the case of
n+ B =3+2=5. The second type PML has the GPML profile as in J. Fang ez al.
(1996). The third absorber is based on the proposed here profile as described in

Chapter 5, when the orders n and [ are set as: n=3, =2. All absorbers are 16
cells thick; their theoretical reflection coefficient at normal incidence is chosen to
be R, =107*; the constant &,,, is set as &, =4 . All of them are terminated with

a PEC wall. The respective reflections are plotted in Fig. 6.9, which shows that
the proposed modification of the PML conductivity profile has superior
performance in terms of both reflection level and frequency bandwidth. It can be
observed that a simple increase of the power rate of the MPML from n =.3 to
n=>5 does not improve the absorption. In fact, it leads to a slight increase of the
reflections. In all cases, the observation point is in the dipole’s H-plane, halfway
between the dipole and the absorber. The results are similar for any other

observation point.
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Fig. 6.10 compares the performance of the proposed PML absorber with
the regular MPML, while varying the value of the power increase parameter £ . It
is evident that the frequency band becomes wider and the reflections lower with
the proposed PML when its power order is increased by f=1 or by =2 in
comparison with the regular MPML profile, which in fact corresponds to the
particular case of #=0 in the proposed PML conductivity profile. From all
experiments carried out so far, the conclusion can be drawn that the value of

P =2 provides optimal PML performance for the WETD.

"70 '@ MPML, n=5
@ MPML, n=3
(3 GPML
90 ‘@ Proposed profile. ‘y

reflection, dB

1 2 3 4 5 6 7 8 9 10
frequency, GHz

Fig. 6.9. Spectrum of the reflection in the dipole radiation problem using

three different PML conductivity profiles: 1 — MPML, n=5; 2 —

MPML, n=3; 3 — GPML; 4 - current profile, n=3, f=2

(Npy =16, Ry =107, £, =3 in all four cases).
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(D MPML, 8=0 |
() proposed profile, B=1

@ proposed profile, =2 |
@ plfoposed profile, #=3

reflection, dB

frequency, GHz

Fig. 6.10. Dependence of the spectrum bandwidth of the reflection in the

dipolé radiation problem on the PML conductivity parameter f: 1
— MPML, n=3 (corresponding to S =0); 2 — current profile, n=3,

B =1; 3 — current profile, n=3, f=2; 4 — current profile, n=3,

B=3 (Npy =20, Ry=107*, £, =4 in all four cases).
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Fig. 6.11 shows the dependence of the frequency bandwidth on the
number of cells in the proposed 3-D PML absorber terminating the dipole
computational region. Here, it is important to point out that the physical thickness
of the absorber, as a percentage of the wavelength, is very important at the lower
frequency end. If the physical thickness of PML & is calculated as a percentage

of the wavelength A, it shows that the reflection level drops below ~60dB exactly
when & becomes greater than %/1. That is why a thickness of the PML medium

should be recommended of at least 65~70% of the longest wavelength of interest.

Fig. 6.12 shows the dependence of the reflection on the thickness of the
PML in the dipole problem at f=7 GHz for =1 andf=2 (R, = 107,
£, =4, n=3). The reflections at other frequencies have similar behaviour as
long as they are in the frequency band for which the PML thickness is larger then
2/3 of the corresponding wavelength. From both Fig. 6.11 and Fig. 6.12 it can be
seen that for open problems at least 12 to 16 PML cells are necessary to ensure a
reflection level below —60 dB. The corresponding number of PMLs in the FDTD
solution of Maxwell’s equations is the same if MPML or GPML are used, i.e.

£, >0; but 5-6 layers less are enough if the original Berenger’s PML is used,
i.e. €, =0.1It should be underlined that the last statement is valid only for open

problems containing no guiding structures, when the relative dielectric constant of

the computational domain terminated by PML is that of free space, £, =1.
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reflection, dB

-100 ; : : ' : ' : ; ;
o 1 2 3 4 5 6 7 8 9 10
frequency, GHz

Fig. 6.11. Dependence of the spectrum bandwidth in the dipole radiation
problem on the number of cells in the proposed PML absorber: 1 —
Npyp. =452 = Npy =65 3 — Npyp =854 — Npyp =105 5 -
Npyp. =125 6 =Npyp =155 7 = Npy =205 8 — Npyy =30

(Ry =107, &,,, =3, n=3, B=2 in all cases).
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Fig. 6.12. Dependence of the reflection on the thickness of the proposed

6.5.2 Hollow rectangular waveguide

(R, =107, £,,, =4, n=3).

PML in the dipole problem at f =7 GHz for f=1 and =2

The rectangular waveguide has a cross-section of 30 mm by 15 mm,

shown in Fig. 6.13. It is excited by a 10 GHz sinusoidal waveform modulated by

Blackman-Harris window (BHW) function. The band-limited excitation has its

spectrum in the frequency band from 7.5 GHz to 12.5 GHz. The size of the
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computational domain is (350ax, 304y, 15az), where ax =ay =az=1mm. The
ports were terminated by the same three types of PML ABCs as described above
and by Mur’s second order ABC. The PML is 8 cells thick, and R, =107,
€. =1, n=2. The reflections as defined in (6.46) are plotted in Fig. 6.14.

Again low-reflection broadband performance of the proposed modified PML
profile is observed.

The dependence of the reflection in the hollow waveguide on the thickness
of the PML at 10 GHz is shown in Fig. 6.15 for R, = 10*, ¢, =1, n=2.Ttcan

be observed that here, as in the case of the FDTD solution to Maxwell’s
equations, problems with guiding structures require much lower PML thickness

when compared to the case of open problems.

sinusoidal
distribution
- ~
” ~
> \

b '/ \\

’ \
’ \ z
/ \ X

Fig. 6.13. Field distribution of the TE;, mode in the hollow rectangular

waveguide, a =30 mm, b=15mm.
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reflection, dB
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Fig. 6.14. Spectrum of the reflection in the waveguide problem with different
PML conductivity profiles compared to Mur’s second order ABC:

1 — Mur’s second order ABC, 2 — GPML, 3 — MPML, 4 — current
profiles (Npyy =8, R, =107, £,,, =1, n=2 in all three PML

cases).
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Fig. 6.15. Dependence of the reflection in the hollow waveguide on the

thickness of the PML at 10 GHz (R, =107, ¢, =1, n=2).

6.5.3 Partially filled with dielectric rectangular waveguide

This rectangular waveguide has a cross-section of 40 mm by 18 mm. It is
half-filled with a dielectric layer parallel to its wide side (the dielectric constant is

£, =2.45). Its geometry is seen in Fig. 6.16. It is excited by a 4.7 GHz sinusoidal

waveform modulated by Blackman-Harris window (BHW) function, shown in

Fig. 6.16. The time-domain sample of the reflections is given in Fig. 6.17 for the
case of twelve-cell thick PML with R,=10", ¢, =1, n=2, f=2. The band-

limited excitation of the waveguide has its spectrum in the frequency band from
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3.9 GHz to 5.5 GHz shown in Fig. 6.5. The transverse profile of the excitation

corresponds to the dominant TM,,, mode, which requires a magnetic vector

potential A with a z-component only, see Harrington (1961). The size of the
computational domain is (500 ax, 204y, 104 z), where ax=ay=az=2 mm.

To compare the performance of various absorbers with the proposed PML
in a typical waveguide port termination problem, the reflection as defined in
(6.46) was computed for five types of ABCs. The first two are single-layer
absorbers: Mur’s second order ABC, and the second-order dispersive boundary
condition (DBC). The other three are PML ABCs and they are the same as those
used in the case of the dipole: GPML, MPML, and the proposed IPML profile.
All three PML absorbers have the following common parameters: the thickness is
10 cells, R,=107*, £, =1, n=2, their PML termination is a one-way lossy
wave equation. The results are plotted in Fig. 6.18. The superior performance of
the PML absorbers over the single-layer ABCs is obvious. Of all PML absorbers,
the proposed modification in the PML profile results in the lowest reflections in
the frequency band of the excitation pulse: the IPML reflections are at least one
order of magnitude lower than the reflections from any other ABC.

The dependence of the reflection level on the number of layers in the
absorber was investigated for both the dipole and the waveguide problem. The
purpose was to come up with a recommendation for the minimum number of

layers in the absorber, which would ensure a reflection level below —60 dB in the
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Fig. 6.16. A time sample of the incident potential in the partially filled
rectangular waveguide, which is exciting the structure in the

frequency band from 3.9 to 5.5 GHz.

frequency band of the ‘excitation. Fig. 6.12 shows this dependence in the 3-D
PML absorber of the dipole radiation example at f =7 GHz when R, =107,
Ex =4, n=3 for f=1 and f=2. Fig. 6.15 shows the dependence of the
reflection on the PML thickness for the hollow waveguide for the central

frequency of 10 GHz, when R, = 107, Epax =1, n=2.
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Fig. 6.17. A (later) time sample of the reflected potential in the partially

filled rectangular waveguide, whose incident potential waveform is

shown in Fig. 6.16. (Npyy =12, Ry =107, £, =1, n=2).

In Fig. 6.19, the dependence of the reflection on the PML thickness in the

partially-filled waveguide port termination is shown at the central excitation
frequency of 4.7 GHz, when ¢, =1, n=2 and for different reflection
coefficients, R, =107, R, = 107, R,=107°. The curves in all examples are very

representative of the reflection dependence on the PML thickness in the whole

frequency band of the respective source.
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Fig. 6.18. Spectrum of the reflection in the waveguide problem with different

ABCs: 1 - Mur’s second order ABC, 2 — the second order DBC, 3

-~ GPML, 4 - MPML, 5 — current profile with #=2 (Nppy, =10,

Ry = 1074, E.., =1, n=2 in all PML cases).
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Generally, one can draw the conclusion that thicker PMLs are needed for
the termination of 3-D computational domains in the case of open problems
modeled by the wave equation than in the case of guiding structures. Compared to
the PML termination of the FDTD solution of Maxwell’s equations, the number
of layers in the IPML-WETD absorber for guiding structures problems are
practically the same. For open problems, 4-5 layers more are necessary than in the
case of guiding structures. To achieve reflections under 0.1 % in a broad
frequency band, at least 12 PML cells are necessary in the case of open problems
(with a PEC layer termination).

In brief, for guiding structures 8 to 10 cells thick PML is completely
enough, but in open problems, at least 12 to 15 cells are necessary.

The thickness of the IPML-WETD developed here is the same for the
same type problem when compared with GPML of J. Fang e al (1996) and
MPML of B. Chen et al (1995). As already mentioned, in the open problem case,
the original Berenger’s PML for the FDTD solution to Maxwell’s equations
requires 5-6 layers less in comparison with all other PMLs. Here, it is important to
note that in any problem where a presence of scattered/evanescent waves is
expected, the performance of any of MPML, GPML or the proposed IPML, is far

better than the original Berenger’s PML.
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Fig. 6.19. Dependence of the reflection on the thickness of the PML in the
partially filled waveguide at f =4.7 GHz (&, =1, n=2) for

different theoretical reflection coefficients.
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6.5.4 Lossy layer terminations and other PML parameters

The influence of the type of termination layer on the PML performance of
the PML ABC has been investigated in the case of waveguide partially filled with
dielectric. The results are shown in Fig. 6.20 where the usual termination by a
PEC wall is compared to three types of lossy layer terminations:

1.The one-way lossy WE,

2.The lossy Mur’s second order ABC, and

3.The lossy second order DBC.

The figure shows that improvement by 5 to 15 dB is easily achievable ifa
single-layer lossy ABC is used instead of a PEC wall. The one-way lossy WE
termination and the lossy second order DBC termination provide the desired
broadband performance. It should be mentioned that the lossy DBC termination
requires optimization of the two velocities vz and v,s, and there is no
prescription for their choice. This is an intrinsic drawback of all DBC absorbers.

Another parameter, whose influence on the performance of the absorber

has been investigated, is ¢&,,,, i.e., the parameter controlling the rate of the
evanescent wave absorption in the PML loss factor «;, i=x,y,z. The
dependence of the frequency band of the reflection on the value of £, is shown
in Fig. 6.21. From the figure it can be seen that increasing the value of £,, leads

to broadening of the frequency band. However, too large values of €., cause

greater numerical dispersion and have to be avoided. The best results are usually
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obtained with values of £_,, in the range of 1 to 3 or at most 4. B. Chen et al.

(1995) propose values up to 10, but that is for the MPML for the FDTD method
when Maxwell’s equations are discretized. The experiments conducted so far
show that the performance of MPML for FDTD solution to Maxwell’s equations
is relatively insensitive to the value of &,,,, which is consistent with the results
of others. However, this is not the case when the performance of PML for WETD
is concerned. In the latter case, the value of &£.,, must always be greater than
zero. The performance of the IPML-WETD absorber dramatically worsens for
&, =0, namely, when the original version of Berenger’s PML conductivity
profile is used with no PML loss factor included.

The theoretical reflection coefficient at normal incidence R,, which is a
user defined parameter, is the last parameter among the PML variables. Both
absorbers (for the FDTD and for the WETD), exhibit moderate sensitivity to its
value. Lower values of R, correspond to wider frequency band. Also it has to
prescribe correctly the desired level of reflections. If a level of 60 dB (0.1 % of

the magnitude of the incident wave) is aimed at, the value of R, should be
prescribed as R, =10". For all practical purposes, it is enough to choose

R, <107 for media of permittivity close to that of the air; the numerical

experiments show that best PML performance in high-permittivity media is
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achieved when the exponent rate of R, is multiplied by \/E,_ . The dependence of

the frequency bandwidth on the reflection coefficient is shown in Fig. 6.22.

@ PEC

-65 | | @ 2nd order DBC 1
B Mur's 2nd order ABC
@ 1-way WE 1

reflection, dB

4 42 44 46 48 5 52 54
frequency, GHz

Fig. 6.20. Influence of the type of termination on the PML ABC performance
for the waveguide example: 1 — PEC; 2 — second order DBC; 3 —

lossy Mur’s second order ABC; 4 — one-way lossy WE.
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Fig. 6.21. Influence of the parameter €, on the performance of PML ABC

in the infinitesimal dipole problem. Ny, =16.
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Fig. 6.22. Influence of the parameter R (the reflection coefficient at normal

incidence) on the performance of PML ABC in the infinitesimal

dipole problem. Np,,, =20.
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6.5.5 Optical waveguide with a two-layer anti-reflection coating
As an example of the application of the PML ABC developed here in
photonics, to a 3-D optical structure, a buried optical waveguide terminated by a
two-layer anti-reflection (AR) coating is considered. In this case (a lossless
inhomogeneous medium), all three components of the magnetic vector potential
must be calculated and each of the corresponding auxiliary variables has all three
components. The geometry of the waveguide and its AR coating is shown in

Fig.6.23. The core and the cladding have refraction coefficients of n,=3.38 and
n. =3.17, respectively. The core has rectangular cross section of dimensions
w=1.6um by h=0.168um. The two AR coating layers have thickness of
d,=0.166um and d, =0.267um . Their corresponding refraction coefficients are

n, =233 and n, =1.45.

d =0.166um  n; =233

d,=0267um  n,=145

w=1.64m ny =338
h=0.1684um
Fig. 6.23 Geometry of a buried optical waveguide terminated by a 2-layer

anti-reflection (AR) coating.
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The waveguide is excited by a sinusoidal wave of wavelength A, =1.55 um,

modulated by the BHW function. The structure is terminated by 20 cells thick
PML, located at 15 spatial steps after the end of the second AR coating layer. In
all other directions the optical waveguide is terminated by a 6 cells thick PML.

Non-uniform grid is used and the minimal spatial step in the structure is

Al .. =0.0421um . The whole computational domain is (163 ax, 124 ay, 964z). In
the transverse plane, the core is modeled as wXxh =32-ayx4-az, surrounded by a
46-steps cladding of ay =az=0.05 um in the +y— and tz—direction, the last 6
being PMLs. The thickness of the first AR coating is d, =3 ax, the thickness of

the second AR coating is d, =5-ax. The structure was simulated by both the

FDTD method to Maxwell’s equations and by the WETD method. The
corresponding spectrum of the reflections from the AR coating is presented in
Fig. 6.24 and Fig. 6.25, and is compared to the reflections when the optical
waveguide is terminated by air and when the optical waveguide is directly
terminated by PML (thus simulating an infinitely long waveguide). A comparison
of the reflections spectrum is presented in Fig. 6.25 when the optical waveguide
with the two-layer AR coating is simulated by the WETD for the magnetic vector
potential and by the FDTD method for Maxwell’s equations. The same results
obtained from the simulations of the optical waveguide with two-layer AR
coating by both methods, show that they are equivalent. The CPU time for the

WETD method is about 30 % shorter.
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Chapter 7

Conclusion

Recent trends in computational electrodynamics include the development of
scalar or vector wave equation techniques. They are applied in numerical
algorithms both for optical waveguides and devices, and in the microwave and
millimetre-wave structure analysis. These new algorithms require a reliable and
efficient ABC, which can handle both open problems (i.e. radiation and
scattering) and problems involving port terminations (high-frequency circuit
problems).

In this thesis, improved PML ABCs for the 3-D scalar wave equation in
the time-domain (WETD) in lossless and lossy inhomogeneous media have been
developed. To the author’s knowledge, this is the first PML ABC developed and
successfully implemented in conjunction with the 3-D wave equation in the time
domain. It is shown that the conventional PML profiles are not efficient when
integrated with the second-order wave equation. A suitable low-reflection
broadband PML variable profile is proposed. Its performance is verified and
carefully studied in radiation and guided wave problems. The PML variables
profiles are modified so that they can grow at different exponent rates. This adds a

new degree of freedom in the algorithm and represents a problem-independent
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approach to the optimization of the PML performance. Thus improved PML
ABC s are developed both for the WETD method and for the FDTD method to the
solution of Maxwell’s equations. The new profile handles equally well both port
terminations and truncations of the computational domain of open problems. The
performance of the proposed PML absorber is further improved by the use of
simple single-layer ABCs to truncate the PML region. For that, the lossy version
of Mur’s second order ABC and the lossy version of the second order dispersive
boundary condition (DBC) have been developed and implemented. The current
implementation handles inhomogeneous dielectrics intersecting the PML
boundary. Various numerical simulations have been carried out to validate the
theoretical models at microwave and optical frequencies, as well as comparisons

to other well-known ABCs are presented.

The author’s original contributions in this thesis are enlisted below.

1. The formulation of the PML variable profiles has been modified by
allowing the PML conductivity and PML loss factor to grow at
different rates. This in effect adds a new degree of freedom in the
algorithm. On that basis, an improved Perfect Matched Layer (IPML)
ABC for the FDTD solution of Maxwell’s equations is developed for
orthogonal non-uniform grids and is implemented in a FORTRAN

program.



Chapter 7 Conclusion 157

2. The Perfect Matched Layer ABC for the 3-Dimensional wave equation
in time-domain (WETD) is formulated and developed on orthogonal
non-uniform grids and is implemented in FORTRAN program. New
degree of freedom is added in the formulation of the PML variable
profiles, so that they are allowed to grow at different rates.

3. New types of termination walls for the PML ABC have been developed
and implemented.

4. In depth detailed comparison with commonly used PML ABCs is
presented.

5. Prescription for suitable values of all PML parameters is given based
on extensive numerical experiments.

In author’s opinion, the most important contribution is the introduction of
the new degree of freedom in the definition of the PML variables profiles This
represents a problem-independent approach to the improvement and optimization
of the PML performance, in contrast to the attempts to optimize one PML variable
in a problem-specific environment. Finding PML variable profiles suitable for the
3-D wave equation in the time domain was crucial to the primary goal of this
research: a development of reliable and efficient ABCs for the WETD. It is
important to note also that the PML ABC developed in this thesis is not limited to
electromagnetic problems only. It can be applied to any physical phenomenon
modeled by the general lossy 3-D scalar wave equation, which requires reflection-

free boundaries.
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From the experience and knowledge gained in the course of this work, the

author is convinced that the following research topics should be addressed for

further development:

1.

More detailed study of the combined influence of all PML parameters
on its performance is necessary. This issue concerns equally the PML
for the FDTD solution to Maxwell’s equations and the PML for the
wave equation in the time domain. There are few attempts in this
direction (only regarding the FDTD method to the solution of
Maxwell’s equations), but they include usually one of the PML
parameters in a problem-specific environment. Rigorous mathematical
formulation of the problem is needed such that all PML parameters are
included in the model, as well as the influence of the material
parameters of the medium, and the intrinsic finite-difference
discretization error of third-order.

Generalization of the IPML-WETD for anisotropic and especially for
dispersive media should be addressed.

All the microwave and optical structures considered in this thesis are
linear. Further work should be realized to apply the IPML ABC for

non-linear media as those are frequently met in photonics applications.
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