æ,

0F

ENZYMIC REACTIONS

AT *

PROCHIRAL CENTRES

By

James Clare Richards, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

æ

McMaster University

🔿 November 1983

•

THE STEREOCHEMISTRY OF ENEYMIC REACTIONS

8

. بر

DOCTOR OF PHILOSOPHY (1983) (Chemistry)

1 1 15

McMASTER UNIVERSITY

۷

Hamilton, Ontario

TITLE: The Stereochemistry of Enzymic Reactions at Prochiral Centres AUTHOR: James Clare Richards, B.Sc. (McMaster University) SUPERVISOR: Professor I.D. Spenser NUMBER OF PAGES: xvii; 214.

ii

ABSTRACT

The steric course of decarboxylation of <u>L</u>-ornithine to yield putrescine, catalysed by <u>L</u>-ornithine decarboxylase (E.C. 4.1.1,17) of *E. coli*, and of <u>L</u>-arginine to yield agmatine, catalysed by <u>L</u>-arginine decarboxylase (E.C. 4.1.1.19) of *E. coli*, is investigated by deuterium labelling. Replacement of the carboxyl group by a solvent derived proton occurs with retention of configuration in each case.

In conflict with an earlier report, incubation of cadaverine in deuterium oxide in the presence of \underline{L} -lysine decarboxylase (E.C. 4.1.1.18) of *B. cadaveris* did not lead to entry of deuterium into the α -position of cadaverine. Likewise, \underline{L} -ornithine decarboxylase did not catalyse exchange of the α -hydrogen of putrescine, nor did \underline{L} -arginine decarboxylase catalyse such an exchange in agmatine.

The stereochemistry of hydrogen abstraction in the conversion of cadaverine into Δ' -piperidine, of putrescine into Δ' -pyrroline, and of agmatine into 4-guanidinobutanal, catalysed by hog kidney diamine oxidase (E.C. 1.4.3.6) is investigated. The *Si*-hydrogen from C-1 of the substrate is removed while the *Re*-hydrogen from C-1 of the substrate is maintained at the sp² carbon atom of each of the products.

The diamine oxidase catalysed oxidative deamination of cadaverine takes place without detectable isotope effect, while an intramolecular primary hydrogen-deuterium isotope effect $(k_{H_{Si}}/k_{D_{Si}} \approx 4)$ is observed in the diamine oxidase catalysed oxidation of putrescine.

iii

DEDICATED TO

7

the memory of my father-in-law,

.

Ron Cowley

iv

(N) 256

ACKNOWLEDGMENTS

It is a pleasure to take this opportunity to express my sincere gratitude to my supervisor, Dr. I.D. Spenser, whose inspiring influence awakened my interest in the fascinating field of bio-organic chemistry. Dr. Spenser has provided guidance and constant enthusiasm since the inception of this work. I am especially indebted to him for the encouragement he has given during the last few years. Without his support, this thesis would not have materialized.

I am grateful to my friends and colleagues at McMaster University for many helpful discussions and for their part in making my stay as a graduate student a pleasurable experience. I wish to thank the members of my supervisory committee, Drs. R.A. Bell and D.R. McCalla, for their interest in this work.

I thank Professor M.H. O'Leary, Department of Chemistry, University of Wisconsin, for supplying a reference sample of (-)-methyl \underline{R} -4-, phthalimido(4-2H)butyrate.

The award of a Postgraduate Scholarship from the National Research Council of Canada is gratefully acknowledged.

I am particularly indebted to Dr. Gunnar Grue-Sørensen for hisinvaluable help with the proof-reading at each stage in the preparation of this manuscript; his helpful advice and suggestions have been of utmost importance. I also gratefully acknowledge Gunnar's assistance in the preparation of the Schemes. Thanks are also due to Mrs. Margaret Beveridge for her fast and \mathcal{B} efficient typing.

I want to express my deep appreciation to my wife, Lynne, who patiently endured the many nights and weekends that were devoted to writing this thesis and who gave help and encouragement when it was most needed. Lynne's help in typing much of the first draft of this manuscript, as well as her assistance in the preparation of the Schemes and Figures, is greatly appreciated.

Finally, a special word of thanks to my parents for their con-

vi.

TABLE OF CONTENTS

Ì

			· •	Page	(
	Chapter	1	INTRODUCTION	1	
		1.1	Historical Development of the Concept of Prochirality	4	/
	•	1.2	Specification of Stereoheterotopic Groups and Faces	14	
	.•	1.3	Determination of Configuration of Prochiral Methylene Groups, Rendered Chiral Due to Isotopic Substitution	15	
		1.4	Stereochemistry of Enzymic Decarboxylation 💄	29	
		1.5	Stereochemistry of Enzymic Oxidative Deamin- ation	47	
		1.6	Objectives of the Present Investigation	52	
	Chapter	2	CHIRAL (1-2H)AMINES BY ENZYMIC DECARBOXYLA- TION OF THE BASIC AMINO ACIDS	55	
		2,1	Introduction	55	
•		2.2 2.2.1	Methods and Results Preparation of the enantiomers of (1- ² H)- cadaverine, (1- ² H)putrescine and (1- ² H)- agmatine	57 59	
		2.2.2	Synthesis of (2- ² H)amino acids	65	
		2.3	Discussion	69	
		2.3.1	Determination of the relative configura- tions of the enantiomers of (1- ² H)- putrescine and (1- ² H)agmatine	69	
		2.3.2	Investigation of enzyme mediated exchange of the α -hydrogens of cadaverine, putrescine and agmatine	77	
	Chapter	3	THE STEREOSPECIFICITY OF HOG KIDNEY DIAMINE OXIDASE	83	
		3.1	Introduction	83	
		3.2	Methods and Results	84	

TABLE OF CONTENTS (Cont'd)

	3.3	Discussion	95 05
	3.3.1	of enzymic oxidative deamination	95
	3.3.2	Isolation of enzymic reaction products	190
	3.3.3	The stereochemistry of the dehydrogena- tion of cadaverine catalysed by hog kidney diamine oxidase	104
	3.3.4	Configurational assignment of the enanti- omeric samples of (1- ² H)putrescine	
	3.3.5	Configurational assignment of the enanti-	. 117
	3.3.6	Occurrence of an intramolecular isotope effect in the enzymic oxidation of (1- ² H)- putrescine	120
	3.3.6.1 •	Determination of the composition of the enzymic oxidation products obtained from samples of the (1,1- ² H ₂)diamines	136
Chapter	4	THE STEREOCHEMISTRY OF THE ENZYMIC DECARBOXY-LATION OF <u>L</u> -ARGININE AND <u>L</u> -ORNITHINE	139
*	4.1	Introduction	139 [.]
	4.2	Methods and Results	140
	4.3	Discussion	142
Chapter	5	SUMMARY AND CONCLUSIONS	154
	5.1	Summary	154
	5.2	Conclusions	157
	5.3	Future Investigations	158
Chapter	6	EXPERIMENTAL	163
•	6.1 6.1.1 6.1.1.1	Preparation of (2- ² H)Amino Acids <u>DL</u> -(2- ² H)Lysine Diethyl 2-acetamido-2-(4-phthalimido-	163 163 163
	6.1.1.2 6.1.2 6.1.2.1	<u>DL</u> -(2- ² H)Lysine (96) monohydrochloride <u>DL</u> -(2- ² H)Ornithine Diethyl 2-acetamido-2-(3-phthalimido-	164 165 165
	6.1.2.2	propyl)malonate (120) <u>DL</u> -(2- ² H)Ornithine (121) monohydro- chloride	~ 165

TABLE OF CONTENTS (Cont'd)

-8

4

ſ

Ь

6.1.3	L-(2- ² H)Arginine	166
6.1.3.1	$= \alpha - N - Acetyl - L - arginine (112) dihydrate$	166
6.1.3.2	α -N-Acetyl-DL-(2-2H)arginine (115)	166
	dihydrate	
6.1.3.3	L-(2- ² H)Arginine (105) monohydro-	168
	∞ chloride and α -N-acetyl-D-(2-2H)-	• •
•	arginine (116) dihydrate	•
6 2	Preparation of $(1-2H)$ Amines by Enzymic	170
012	Decarboxylation	· · · ·
621	Cadaverine	170
6211	Decarboxylation of lysine, catalysed	170
0.2.111	by 1-lysine decarboxylase (E.C.	
•. •	4 1.1.18) from B cadaveris	
6 2 1 1 1	$R_{-}(-)-(1-2H)$ Cadaverine (77) dibvdro-	170
0.5	chloride by decarboxylation of the	
	I-component of unlabelled DI-lysine	•
,	in deuterium oxide solution (Experi-	
•	ment 1)	
6.2.1.1.2	S-(+)-(1-2H)Cadaverine (97) dihvdro-	172
	chloride by decarboxylation of the	
,	L-component of $BL-(2-^{2}H)$ lysine (Ex-	
t in the second se	periment 2)	
6.2.1.1.3	(1,1-2H ₂)Cadaverine (119) dihydro-	172
	chloride by decarboxylation of the	
	L-component of DL-(2-2H)Tysine in	
	deuterium oxide solution (Experiment	-
6.2.1.2	Incubation of cadaverine with L-lysine	173
4	decarboxylase in deuterium oxide solu-	
	tion	
6.2.2	Putrescine	174
6.2.2.1	Decarboxylation of ornithine, catalysed	174
	by <u>L</u> -ornithine decarboxylase (E.C.	
	4.1.1.17) from E. coli	
6.2.2.1.1	(-)-(1- ² H)Putrescine (100) dihydro-	174
	chloride by decarboxylation of the	
-	L-component of unlabelled <u>DL</u> -ornithine	
•	in deuterium oxide solution (Experi-	
•	ment 4)	
6.2.2.1.2	(+)-(1-2H)Putrescine (1Q2) dihydro-	175
	chloride by decarboxylation of the	-
	<u>L</u> -component of <u>DL</u> -(2- ² H)ornithine	
	(Experiment 5)	

<u>Page</u>

•• ix

٠.

TABLE	0F	CONTENTS	(Cont'd)
-------	----	----------	----------

1

6.2.2.1.3	(1,1- ${}^{2}H_{2}$)Putrescine (120) dihydro- chloride by decarboxylation of the <u>L</u> -component of <u>DL</u> -(2- ${}^{2}H$)ornithine in deuterium oxide solution (Exper- iment 6)	177
6.2.2.2	Incubation of putrescine with ornithine decarboxylase in deuterium oxide solu-	177
623	Agmatino	170
6.0.0.1		170
0.2.3.1	becarboxylation of arginine, catalysed by L-arginine decarboxylase (E.C. 4.1.119) from E. coli	178
6.2.3.1.1	(-)-(1-2H) Aquatine sulfate by decar-	178
	boxylation of <u>L</u> -arginine in deuterium oxide solution (Experiments 7, 9, 11)	
6.2.3.1.2	(+)-(1- ² H)Agmatine (106) sulfate by	179
	decarboxylation of $1 - (2 - 2H)$ arginine	
•	(Experiments 8, 10, 12)	
6.2.3.2	Incubation of agmatine with L-arginine	180
0121012	decarboxylase in deuterium ovide solu-	
	tion	
	CIUN	
6.3	Conversion of Agmatine into Putrescine .	180
6.3.1	Hvdrolvsis of agmatine to putrescine	180
6.3.2	Hydrolysis of $(1-2H)$ agmatine to $(1-2H)$ -	181
	nutrescine	
6321	Conversion of $(-)-(1-2H)$ agomating (104)	181
0101211	sulfate into $(-) - (1-24)$ putroscine (104)	
	dibuduachlanida (Europiment O)	
6 2 2 2 2	ainyarochioride (Experiment 9)	
	Conversion of (1) $(1, 2)$ $(1, -1)$	101
0.3.2.2	Conversion of $(+) - (1-2H)$ agmatine (106)	181
0.3.2.2	Conversion of $(+)-(1-2H)$ agmatine (106) sulfate into $(+)-(1-2H)$ putrescine (102)	181
0.3.2.2	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10)	181
6.4	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to w-Aminoaldebydes	18 <u>1</u> 182
6.4 6.4	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivativos of	181 182 182
6.4 6.4.1.	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of	181 182 182
6.4 6.4.1.	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes	181 182 182
6.4 6.4.1. 6.4.1.1	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal	181 182 182 182
6.4 6.4.1. 6.4.1.1 6.4.1.1	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125)	181 182 182 182 182
6.4 6.4.1. 6.4.1.1 6.4.1.1.1 6.4.1.1.1	Conversion of (+)-(1- ² H)agmatine (106) sulfate into (+)-(1- ² H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1- ² H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2- ² H)quinoline	181 182 182 182 182 182 183
6.4 6.4.1. 6.4.1.1 6.4.1.1.1 6.4.1.1.1	Conversion of (+)-(1- ² H)agmatine (106) sulfate into (+)-(1- ² H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1- ² H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2- ² H)quinoline dihydrochloride	181 182 182 182 182 183
6.4 6.4.1. 6.4.1.1 6.4.1.1.1 6.4.1.1.1 6.4.1.1.2 6.4.1.2	Conversion of (+)-(1- ² H)agmatine (106) sulfate into (+)-(1- ² H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1- ² H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2- ² H)quinoline dihydrochloride 4-Aminobutanal	181 182 182 182 182 183 183
6.4 6.4.1. 6.4.1.1 6.4.1.1.1 6.4.1.1.1 6.4.1.1.2 6.4.1.2	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2-2H)quinoline dihydrochloride 4-Aminobutanal 2,3-Trimethylene-1,2-dihydroquina-	181 182 182 182 182 183 185 185
6.4 6.4.1. 6.4.1.1 6.4.1.1 6.4.1.1.1 6.4.1.1.2 6.4.1.2.1	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2-2H)quinoline dihydrochloride 4-Aminobutanal 2,3-Trimethylene-1,2-dihydroquina- zolinium (134) picrate	181 182 182 182 182 183 185 185
6.4 6.4.1. 6.4.1.1 6.4.1.1 6.4.1.1.1 6.4.1.1.2 6.4.1.2 6.4.1.2.1 6.4.1.2.2	Conversion of (+)-(1-2H)agmatine (106) sulfate into (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10) Oxidation of (1-2H)Amines to ω-Aminoaldehydes Chemical synthesis of solid derivatives of the ω-aminoaldehydes 5-Aminopentanal 3-(3'-Aminopropyl)quinoline (125) 3-(3'-Aminopropyl)-(2-2H)quinoline dihydrochloride 4-Aminobutanal 2,3-Trimethylene-1,2-dihydroquina- zolinium (134) picrate 2,3-Trimethylene-(2-2H)-1,2-dihydro-	181 182 182 182 182 183 185 185 185

Page

. **X**

•

TABLE OF CONTENTS (Cont'd)

, 1 V			Page
-	6.4.2 6.4.2.1 6.4.2.1.1	Enzymic synthesis of ω-aminoaldehydes 5-Aminopentanl Incubation of cadaverine (121) with	186 186 186
		1.4.3.6) and isolation of the pro- duct as 3-(3'-aminopropyl)quinoline (125) dihydrochloride	
	6.4.2.1.2	Enzymic conversion of (2H)cadaver- ine into (2H)-3-(3'-aminopropyl)- quinoline	188
	6.4.2.2	4-Aminobutan1	189
	6.4.2.2.1	Incubation of putrescine (131) with hog kidney diamine oxidase and iso- lation of the product as 2,3-tri- methylene-1,2-dihydroquinazolinium (134) picrate	189
	6.4.2.2.2 •	Enzymic conversion of (2H)putrescine into (2H)-2,3-trimethylene-1,2- dihydroquinazolinium picrate	190 -
	6.4.2.2.3 *	Incubation of agmatine (137) with hog kidney diamine oxidase and isolation of the product, 4-guanidinobutanal (138), as its dinitrophenylhydrazone (DNP) derivative	190
	6.4.2.2.4	Incubation of (1-2H)agmatine with diamine oxidase	192
	6.4.2.2.4.1	Conversion of (-)-(1-2H)agmatine sul- fate into 4-guanidino(4-2H)butanal- DNP (Experiment 7)	192
•	6.4.2.2.4.2	Conversion of (+)-(1-2H)agmatine sul- fate into 4-guanidinobutanal-DNP (Experiment 8)	192
	6.5	Conversion of Agmatine into Phthalimidobutyric Acid	193
•	6.5.1 6.5.1.1 6.5.1.2 6.5.2	Preparation of 4-phthalimidobutyric acid 4-Phthalimidobutylguanidine (148) sulfate 4-Phthalimidobutyric acid (149) Conversion of (1-2H)agmatine into 4-phthali-	193 193 193 194
	6.5.2.1	<pre>(-)-4-Phthalimido(4-2H)butyric acid (150) from (-)-(1-2H)agmatine (104) sulfate (Experiment 11)</pre>	194
	6.5.2.2	(+)-4-Phthalimido(4-2H)butyric acid (151) from (+)-(1-2H)agmatine (106) sulfate (Experiment 12)	196

\$

1

Xi .

TABLE OF CONTENTS (Cont'd)

•		Page
6.6 6.6.1 6.6.2 6.6.2.1 6.6.2.2 6.6.2.3 6.6.3	Instrumental Methods Measurement of optical activity Nuclear magnetic resonance spectroscopy ¹ H-NMR ² H-NMR ¹³ C-NMR Mass spectrometry	197 197 197 197 197 198 198
	•	

REFERENCES

199

ŧ

xii

LIST OF SCHEMES

		Page
Scheme 1	Enzymic formation of isotopically labelled α-ketoglutaric acid.	7
Scheme 2	Enzymic synthesis and chemical correlation of the enantiomers of (1- ² H)ethanol.	12
Scheme 3	Chemical synthesis of (+)-(1- ² H)ethanol (12).	18
Scheme 4	Stereochemical correlation of $(-)-(1-^{2}H)$ ethanol $(\frac{8}{2})$ with S-(2-^{2}H)glycolic acid $(\frac{2}{2}I)$.	20
Scheme 5	Stereochemical correlation of (+)-(2- ² H)glycine (26) with <u>R</u> -(2- ² H)glycolic acid (27) and of [2- ³ H]glycine (28) with <u>R</u> -[2- ³ H]glycolic acid (29).	, 22
Scheme 6	Stereospecificities of <u>D</u> -amino acid oxidase and serine transhydroxymeth \overline{y} lase.	25
Scheme 7	Chemical synthesis of \underline{S} -(-)-(2- ² H)glycine (37).	28
Scheme 8	Synthesis of the enantiomers of (1-2H)tyramine.	34
Scheme 9	Stereochemical correlation of the enantiomers of [1- ³ H]cadaverine with the corresponding enantiomers of [2- ³ H]glycine.	36
Scheme 10	Stereochemical correlation of 4-amino(4- ² H)- butyric acid (46) with <u>S</u> -(2- ² H)glycine (37).	38
Scheme 11	Chemical synthesis of <u>S</u> -(+)-4-amino(4- ² H)butyric acid (48).	40
Scheme 12	Stereochemistry of (1-2H)- and [1-3H]histamine derived by enzymic decarboxylation in isotopically labelled water.	43
Scheme 13	Stereochemical correlation of \underline{L} -(6- ² H)lysine (76) with \underline{R} -4-amino(4- ² H)butyric actd (46) and \underline{R} -(1- ² H)-cadaverine (77).	46

xiii

LIST OF SCHEMES (Cont'd)

			Page
	Scheme 14	Synthesis of enantiomeric [1- ³ H]amines employing alcohol dehydrogenase for the chiral introduc- tion of label.	51
	Scheme 15	Synthesis of <u>DL</u> -(2- ² H)ornithine (101) and <u>DL</u> - (2- ² H)lysine (96).	. 66
	Scheme 16	Synthesis of \underline{L} -(2- ² H)arginine (105).	67
	Scheme 17	Derivation of enantiomeric samples of $(1-2H)$ -putrescine and $(1-2H)$ agmatine.	73
	Scheme 18	Products of the incubation of cadaverine (121) with diamine oxidase.	88
	Scheme 19	Products of the incubation of putrescine (131) with diamine oxidase.	89
	Scheme 20	Product of the incubation of agmatine (137) with diamine oxidase.	, 93
	Scheme 21	Distribution of label within the products of in- cubation of enantiomeric samples of (1-2H)putres- cine and of (1-2H)cadaverine with diamine oxidase.	98
	Scheme 22	Products of the incubation of \underline{S} -(1-2H)- and \underline{R} -(1-2H)cadaverine with diamine Oxidase.	105
١	Scheme 23	Products of the incubation of the $(+)$ - and $(-)$ - enantiomers of $(1-^{2}H)$ putrescine dihydrochloride with diamine oxidase.	114
	Scheme 24	Products of the incubation of the $(+)$ - and $(-)$ - enantiomers of $(1-2H)$ agmatine sulfate with diamine oxidase.	121
	Scheme 25	Products derived from the diamine oxidase catalysed oxidation of $(1,1-^{2}H_{2})$ cadaverine (119) (A) and $(1,1-^{2}H_{2})$ putrescine (120) (B).	123
	Scheme 26	Tantomerization of the 2,3-trimethylene-1,2- dihydroquinazolinium ion (134).	125

Ş

LIST OF SCHEMES (Contid)

(

ς

	\wedge	Page
Scheme 14	Synthesis of enantiomeric [1- ³ H]amines employing alcohol dehydrogenase for the chiral introduc- tion of label.	51
Scheme 15	Synthesis of <u>DL</u> -(2- ² H)ornithine (101) and <u>DL</u> - (2- ² H)lysine (96).	66
Scheme 16	Synthesis of \underline{L} -(2- ² H)arginine (105).	67
Scheme 17	Derivation of enantiomeric samples of $(1-2H)$ - putrescine and $(1-2H)$ agmatine.	73
Scheme 18	Products of the incubation of cadaverine (121) with diamine oxidase.	88
Scheme 19	Products of the incubation of putrescine (131) with diamine oxidase.	89 ,
Scheme 20	Product of the incubation of agmatine (137) with diamine oxidase.	93
Scheme 21	Distribution of label within the products of in- cubation of enantiomeric samples of (1- ² H)putres- cine and of (1- ² H)cadaverine with diamine oxidase.	98
Scheme 22	Products of the incubation of \underline{S} -(1- ² H)- and \underline{R} -(1- ² H)cadaverine with diamine oxidase.	105
Scheme 23	Products of the incubation of the $(+)$ - and $(-)$ - enantiomers of $(1-^{2}H)$ putrescine dihydrochloride with diamine oxidase.	114
Scheme 24	Products of the incubation of the.(+)- and (-)- enantiomers of (1- ² H)agmatine sulfate with diamine oxidase.	- 121
Scheme 25	Products derived from the diamine oxidase catalysed oxidation of $(1,1-^{2}H_{2})$ cadaverine (119) (A) and $(1,1-^{2}H_{2})$ putrescine (120) (B).	123
Scheme 26	Tautomerization of the 2,3-trimethylene-1,2- dihydroquinazolinium ion (134).	125

Xiv

Í

LIST OF TABLES

١

. .

en * .

ŧ

۶

		Page
Table 1	Chiral $(1-^{2}H)$ - or $[1-^{3}H]$ amines derived from L-tyrosine, L-lysine and L-glutamic acid by enzymic decarboxylation.	33
Table 2	Reported stereospecificity of hydrogen abstrac- tion in the oxidation of $(1-^{2}H)$ - or $[1-^{3}H]$ amines, catalysed by amine oxidases.	49
Table 3	Conditions for incubation of amino acids with α -decarboxylases to yield chiral (1- ² H)amines.	58
Table 4	Conversion of (1- ² H)agmatine into (1- ² H)- putrescine.	64
Table 5	Reported hydrogen/deuterium (or tritium) ex- change at the α -methylene group of biogenic amines, catalysed by the appropriate amino acid decarboxylase.	78
Table 6	Incubation of labelled substrates with diamine . oxidase.	86
Table 7	Products of the incubation of cadaverine (121) with diamine oxidase.	90
Table 8	Products of the incubation of putrescine (131) with diamine oxidase.	- 91
Table 9	Products of the incubation of agmatine (137) with diamine oxidase.	· 94 ·
Table 10	¹ H NMR data for 3-(3'-aminopropyl)quinoline (125) and its dihydrochloride salt.	108
Table 11	Analysis of the ¹ H NMR spectra of the ² H-labelled samples of 3-(3'-aminopropyl)quinoline and 2,3- trimethylene-1,2-dihydroquinazolinium picrate obtained in Experiments 1-6.	- 127
Table 12	Intramolecular isotope effect in the oxidation of $(1_{5}^{2}H)$ - and $(1,1-^{2}H_{2})$ cadaverine and putres-cine, catalysed by diamine oxidase.	129

xvi

LIST OF' FIGURES

		Page
Figure 1	Optical rotatory dispersion (ORD) curves of \underline{S} -(+)- and \underline{R} -(-)-(1- ² H)cadaverine dihydrochloride.	60
Figure 2	ORD curves of (+)- and (-)-(1- ² H)putrescine di- hydrochloride.	61
Figure 3	ORD curves of (+)- and (-)- $(1-^{2}H)$ agmatine sulfate.	63
Figure 4	¹ H NMR spectrum of 3-(3'-aminopropyl)quinoline (125) (in ² H ₂ O).	İ06
Figure 5	Proton decoupled ² H NMR spectra of deuterium labelled sam p les of 3-(3'-aminopropyl)quinoline (125) dihydrochloride.	109
Figure 6	Proton decoupled ² H NMR spectra of deuterium labelled samples of 2,3-trimethylene-1,2-dihydro- quinazolinium (1 <u>3</u> 4) picrate.	113
Figure 7	¹ H NMR spectrum of 2,3-trimethylene-1,2-dihydro- quinazolinium (1 <u>3</u> 4) picrate.	116
Figure 8	Downfield region of the ¹ H NMR spectra of samples of 4-guanidinobutanal dinitrophenylhydrazone (139), derived from deuterium labelled samples of agmatine by enzymic oxidative deamination.	119
Figure 9	ORD curves of (+)- and (-)-4-phthalimido(4- ² H)- butyric acid.	143
Figure 10	ORD curves of (-)-methyl 4-phthalimido(4- ² H)- butyrate (63).	144
		•

CHAPTER 1

INTRODUCTION

Enzymes, the biological catalysts, effect chemical transformations within living organisms.¹⁻³ Constructed from the much smaller units, amino acids, each enzyme constitutes a chiral matrix, a catalyst of superb perfection,^{4,5} whereby one molecule is processed into another in such a way that each step is under precise steric control.^{2,6,7} One manifestation of this control is the enormous rate enhancements characteristic of so many enzyme-catalysed reactions.^{8,9} Stereospecificity is another manifestation of such control.

The stereospecificity exhibited by enzymes in the reactions that they catalyse can take several forms. The ability of enzymes to make chiral distinctions between two enantiomeric forms of a substrate molecule has been recognised since the time of Pasteur.¹⁰ However, it was not apparent until the middle of this century that enzymes are also capable of prochiral distinctions.¹¹ This very subtle aspect of enzyme reaction stereospecificity, chiral recognition of the stereoheterotopic groups or atoms at prochiral centres, is only revealed through investigations which employ the technique of isotopic labelling. Investigations of this type have revealed, as enunciated by Sir John W. Cornforth¹², that

-1-

"...enzymic reactions occur by stereospecific mechanisms regardless of whether this specificity determines the structure of the product."

Enzymes that catalyse the decarboxylation of \underline{L} - α -amino acids are found in microorganisms, in mammalian tissues and in plants.¹³ These enzymes show a high degree of substrate specificity for individual amino acids. The reaction that is catalysed involves the conversion of a chiral centre within the \underline{L} - α -amino acid, R-CH(NH₂)CO₂H, into a prochiral (centre within the corresponding amine, R-CH₂NH₂. The stereochemistry of the replacement of a carboxyl group by a proton in the course of this reaction has been determined in several instances, by a variety of methods. The results of these investigations, discussed in Section 1.4, have revealed an apparent stereochemical consistency among the amino acid decarboxylase⁴ which is referred to later in Chapter 4.

The amine oxidases which also form a widely distributed group of enzymes catalyse the oxidation of primary amines to aldehydes.¹⁵⁻¹⁷ These enzymes are of low substrate specificity, each acting upon a wide range of substrates. Enzymic oxidative deamination involves the abstraction of a proton from the prochiral centre adjacent to an amino group within the primary amine, $R-CH_2NH_2$, to generate an sp² centre within the corresponding aldehyde, RCHO. The stereochemistry of hydrogen abstraction, in the course of the reaction mediated by several amine oxidases and with a wide variety of substrates, has been determined. The methods that have been employed and the results obtained are summarised in Section 1.5.

This thesis reports an investigation of the stereochemistry of both these reaction types. The stereochemistry of decarboxylation of the basic amino acids, $\underline{\!$ -ornithine and $\underline{\!$ -arginine, catalysed by the respective bacterial α -decarboxylases is investigated using deuterium labelling. Chapter 2 describes how the products of these two enzymic reactions, putrescine (1,4-diaminobutane) and agmatine (1-amino-4guanidinobutane), respectively, chirally deuteriated at C-1, were prepared and how their relative configurations were established.

Determination of the stereochemistry of the reaction mediated by hog kidney diamine oxidase is described in Chapter 3. This was established by ²H NMR analysis of the products obtained when enantiomeric samples of (1-2H)cadaverine of known configuration served as substrate. Evidence in support of the assumption that the absolute stereochemistry of the reaction catalysed by hog kidney diamine oxidase is the same, whatever the substrate, is presented. ²H NMR was then employed to determine the labelling pattern of the products obtained by oxidative deamination of the chiral samples of (1-2H) putrescine and of (1-2H)agmatine to establish their absolute configuration, based on this assumption (Chapter 3). However, a kinetic isotope effect was observed in the diamine oxidase catalysed reaction with putrescine as substrate, but none with cadaverine as substrate. It was therefore necessary to confirm the configurational assignments by an independent method. Chapter 4 describes how the absolute stereochemistry of the enantiomeric samples of (1-2H) putrescine and (1-2H) agmatine was confirmed by chemical correlation with a standard of known configuration, thereby establishing

the steric course of decarboxylation. Chapter 5 presents a summary of these results.

1.1 <u>HISTORICAL DEVELOPMENT OF THE CONCEPT OF PROCHIRALITY</u>

Stereochemical selectivity was first observed in living organisms by Louis Pasteur in 1858. 18,19 Much to his astonishment and pleasure he was able to demonstrate that, when the grey mold Penicillium glaucum was grown in the presence of racemic tartaric acid, only the dextrorotatory species was fermented; the levorotatory species remained intact. At that time, Pasteur recognised that the optical activity associated with many organic substances was a reflection of molecular dissymmetry.^{18,20} Even so, the relationship between such molecules, in terms of their three dimensional structure, as well as the relation to the observed stereoselectivity in a biochemical transformation could not be grasped until the theory of the tetrahedral structure of carbon was proposed by van't Hoff and Le Bel in 1874.²¹ After this structural theory had become well established, Emil Fischer in his pioneering work 🤳 on sugar stereochemistry provided clear evidence that it is the exact three dimensional structure of a molecule which determines whether or not an enzyme will act upon it.²² It was observed that certain yeast preparations effected the hydrolysis of methyl α -D-glucopyranoside as well as maltose, but not of methyl β -<u>D</u>-glucopyranoside. By means of an illustration, Fischer suggested that enzyme and substrate (in this case a glucoside) must fit each other like "lock and key" if catalytic activity is to occur.²²

At that time, the chemical nature of enzymes was unknown. Indeed, the term "enzyme", coined by Kuhne²³ in 1878, literally translates "in yeast". However, it was not until the development of improved enzyme isolation and purification techniques in the 1920s that the chemical constitution of enzymes became apparent; and it was concluded that enzymes consisted of protein.²⁴ The first convincing evidence was reported by Sumner²⁵ in 1926. A crystalline sample of the enzyme urease was obtained from extracts of jack bean and the catalytic activity of the protein was demonstrated. Shortly thereafter, crystalline pepsin, trypsin and chymotrypsin were isolated, firmly establishing the protein nature of enzymes.²⁶ As a result of this discovery, it was also recognised that such protein molecules were responsible for the stereochemical specificity so often observed in biological systems.²⁷

A consistent feature, revealed in all enzyme-catalysed reactions, is the specificity.²⁸ The early work of Pasteur, Fischer and others uncovered only a single aspect of this specificity. It is now known that enzymes are capable of distinguishing among structural and stereochemical features of their substrates, that each enzyme mediates a specific type of reaction, and that they are capable of chiral and prochiral distinctions in the course of that reaction. Such specificity undoubtedly arises from the exact chiral environment provided by the enzyme which allows the appropriate orientation of the reacting species, throughout the whole process of catalysis.⁴⁻⁷

The ability of enzymes to make prochiral distinctions was first observed shortly after the discovery of the stable and radioactive isotopes of carbon.²⁹ Indeed, the results of isotopic tracer experiments

were quite unexpected and, on the basis of such experiments, it became necessary, in 1941, to question the role of citric acid in the biochemical process which is now known as the "Tricarboxylic Acid Cycle". Preparations of minced pigeon liver were exposed to $^{11}CO_2$ or $^{13}CO_2$ in the presence of unlabelled pyruvic acid (1), and labelled oxaloacetic acid (2) and q-ketoglutaric acid (3) were isolated. Degradation of the labelled sample of α -ketoglutarate indicated that only the α -carboxyl group contained isotopic carbon^{30,31} (Scheme 1). At that time, there was considerable evidence that citric acid (4) was an intermediate in the biochemical transformation of oxaloacetate into α -ketoglutarate. 32-34However, the results from the experiments with isotopically labelled carbon dioxide were taken as sufficient evidence that citric acid, a "symmetrical molecule", could not possibly be an intermediate. It was reasoned that if it were an intermediate, both carboxyl groups of α -ketoglutarate should be equally labelled since the two carboxymethylene groups of citric acid are "chemically identical" (when unlabelled).

The fallacy in the interpretation of these experiments was pointed out by Ogston in 1948.^{11°} Ogston argued that "...it is possible that an asymmetric enzyme which attacks a symmetrical compound can distinguish between its identical groups," and illustrated how this might occur by suggesting a "three-point combination" between the symmetrical substrate and an enzyme surface. Ogston made reference to aminomalonic acid which, as in the case of citrate, had been excluded as an intermediate in a biochemical pathway, the conversion of \underline{L} -serine into glycine, based on similar, erroneous interpretations of isotopic tracer experiments.³⁵

Scheme 1.

1. Enzymic formation of isotopically labelled α -ketoglutaric acid.

Ogston's hypothesis was soon tested and confirmed, at least in principle, by Potter and Heidelberger³⁶ and Lorber *et al.*³⁷ who clearly demonstrated that citric acid must be a precursor of α -ketoglutarate. Enzymatically formed carbon-14 labelled citrate (4), derived from ¹⁴CO₂ or [4-¹⁴C]oxaloacetate (2), was first isolated from the liver preparations and purified. The sample of citrate was then reincubated with a fresh preparation to yield α -ketoglutarate labelled exclusively in the carboxyl carbon atom adjacent to the keto group, as revealed by oxidative degradation to succinic acid (5) and radioactive carbon dioxide (Scheme 1).

Even though citric acid was reinstated as an intermediate in the "Tricarboxylic Acid Cycle", the idea that a symmetrical molecule could behave in an unsymmetrical fashion created much confusion at that time. The difficulties that were experienced with this concept have recently been reflected upon by Barbara Vennesland³⁸:

> "In a mood of desperation, I sat down with Ogston's paper and took some stick and ball models to assist my thinking. Ogston's paper didn't help, though I read it several times attentively. I thought he was implying a substrate might stay stuck to the enzyme, and that did not help one bit. While I was staring bleakly at the models, they suddenly told me the answer, but not in words, just in a picture. What happened in that moment of sudden insight seemed to be that I was suddenly graced with the ability to see the asymmetric carbon atom as van't Hoff had originally seen it. The feeling I experienced was a curious combination of exhilarating, sweet relief (because there was no contradiction between the two sets of experiments) and total

dismay: 'Oh you idiot, why haven't you realised that before.' There were quite a few of us who had experiences similar to mine after the appearance of Ogston's paper."

The concept of "three-point combination" referred to by $Ogston^{11}$ was merely meant as an illustration to demonstrate how an enzyme "might" differentiate between two identical groups within a molecule³⁹ and is not a necessary requirement for the occurrence of uch distinctions. Whether or not a distinction between two identical groups within a molecule is possible depends on the symmetry of that molecule. By considering the structural requirements necessary for the occurrence of such distinctions, it was first recognised by Hirschman⁴⁰⁻⁴² that a distinction between identical groups within a molecule is only possible if the groups cannot be interchanged by rotation about an axis of rotation (C_n). Hirschman suggested that the differentiation of chemically identical groups within a molecule, which lacks rotational symmetry, may be effected through the formation of diastereomeric transition states.

In 1966, Hanson introduced the concept of prochirality. ⁴³ He proposed that a molecule possessing a tetrahedral centre of the type, R_1R_2CAA , in which the two substituents, A, are constitutionally identical (*e.g.* as in citric acid), should be defined as "prochiral" since such a centre can mentally be converted into a chiral centre if one of the pair of identical substituents is considered to be different from the other. A system of specification of such a pair of identical substituents was developed and is now in common usage (see Section 1.2).

The structural relationships between groups and their molecular environments (topic relationships), 44-49 as well as in isolation (morphic relationships),^{49,50} have now been examined in considerable detail. Two identical (homomorphic) groups which occupy identical superimposable environments (*i.e.* interchangeable by a C_n operation) are termed homotopic, those in nonsuperimposable environments are heterotopic. Groups which bear a heterotopic relationship may either be constitutionally heterotopic or stereoheterotopic. If two stereoheterotopic groups are interchangeable by a rotation-reflection operation $(S_n, where S_1 = \sigma)$; they are termed enantiotopic; if the groups cannot be interchanged by any symmetry operation, they are diastereotopic. Enantiotopic groups are only distinguishable under chiral conditions^{40,41} by interaction with a chiral reagent or within a chiral environment. Diastereotopic groups are, in principle, distinguishable by any reagent⁴² (either achiral or chiral), or by physical observation under achiral or chiral conditions. It is important to emphasise, however, that, although a pair of homomorphic groups within a molecule may, in principle, be distinguishable in a chemical reaction under a certain set of conditions as determined by examination of the symmetry of that molecule, the magnitude of the difference, or even whether such a difference will be substantial enough to be observable, cannot, in general, be determined a priori.44

It should be clear from the above discussion that the two carboxymethylene groups of citric acid bear an enantiotopic relationship. It is also pot too surprising that an enzyme, which functions as a chiral catalyst and a chiral reagent, as well as providing a chiral environment, is capable of effecting a distinction between these groups. This was shown

by the experiments, referred to earlier, involving the use of radioactive carbon dioxide³⁶ and labelled oxaloacetate (2).³⁷ These experiments not only revealed the occurrence of such a stereospecific distinction, but also indicated that a specimen of citric acid (4), rendered chiral due to isotopic substitution, was produced from $[4-1^{4}C]$ oxaloacetate (2). Thus in the course of enzymic synthesis of citrate, addition of acetyl coenzyme A (§) occurs stereospecifically at only one of the two stereoheterotopic faces of the carbonyl carbon (C-2) of oxaloacetate (*cf.* Scheme 1). The stereochemistry of these reactions has since been fully elucidated and is the subject of several reviews.^{10,51}

Shortly after the discovery of prochirality, Westheimer, Vennesland and their colleagues provided clear evidence that enzymes were also capable of making stereospecific distinctions between the enantiotopic hydrogen atoms at prochiral methylene groups.⁵¹ This was achieved by deuterium labelling (Scheme 2).⁵² A sample of (1-2H)ethanol (§) was obtained by enzymic reduction of (1-2H)acetaldehyde (7), catalysed by yeast alcohol dehydrogenase (E.C. 1.1.1.1) in the presence of coenzyme NADH (nicotinamide adenine dinucleotide) (9). When the deuteriated sample of ethanol (§) was reincubated with the enzyme, in the presence of the oxidized form of the coenzyme, NAD⁺ (10), (1-2H)acetaldehyde (7) was obtained without any detectable loss of deuterium.

In another experiment it was shown that the dehydrogenase catalysed the reversible formation of a sample of $(1-^{2}H)$ ethanol (12) from unlabelled acetaldehyde (11) and the reduced form of the deuteriated coenzyme, NAD²H (13).⁵³ When the tosylate (14) of this sample of $(1-^{2}H)$ ethanol (12) was displaced with hydroxide ion in an SN2 process (*i.e.*

Scheme 2. Enzymic synthesis and chemical correlation , of the enantiomers of $(1-^{2}H)$ ethanol.

(

involving complete inversion of configuration at C-1), the resulting sample of $(1-^{2}H)$ ethanol (8) gave $(1-^{2}H)$ acetaldehyde (7) on incubation with alcohol dehydrogenase and unlabelled NAD⁺ (10) (Scheme 2). The conclusion was inescapable: enzymic oxidation of ethanol to acetaldehyde is accompanied by stereospecific removal of one of the enantiotopic hydrogens from C-1. Conversely, yeast alcohol dehydrogenase is capable of distinguishing between the two stereoheterotopic faces of the carbonyl carbon of acetaldehyde. Thus the two samples of $(1-^{2}H)$ ethanol ((8) and (12)) were enantiomeric, and it was subsequently shown⁵⁴ that the sample (8), obtained by enzymic reduction of $(1-^{2}H)$ acetaldehyde is optically active ($[\alpha]_{589} - 0.28^{\circ}$). However, it was not until ten years later that the absolute configuration of a sample of the <u>R</u>-(+)-enantiomer (12) was established by unambiguous chemical synthesis.⁵⁵

Since these early investigations, the stereochemistry of enzymic reactions has been investigated with increasing intensity. The results of many of these investigations are discussed in detail in several excellent books⁵⁶⁻⁵⁸ and review articles.^{10,12,14,38,49,51,59-66} Stereospecificity, as complete as the methods of examination can reveal, has been observed in most enzyme-catalysed reactions. Indeed, an apparent lack of stereospecificity in the course of the formation of product from substrate provides valuable mechanistic information and points to the involvement of a non-enzyme directed step or a tortiosymmetric intermediate.⁶⁴⁻⁶⁶

1.2 SPECIFICATION OF STEREOHETEROTOPIC GROUPS AND FACES

A system for specifying the stereoheterotopic groups or atoms at prochiral centres, based on the Cahn, Ingold and Prelog system of stereochemical nomenclature for chiral centres,⁶⁷ was introduced in 1966 by Hanson.⁴³ If one of the two homomorphic substituents (A) at a prochiral centre (R_1R_2CAA) is arbitrarily assigned a higher priority⁶⁷ than the other, the "imaginary" chiral centre ($R_1R_2CA^1A^2$, where A¹ is assigned a higher priority than A²), so generated, will either have the <u>R</u>- or <u>S</u>configuration, depending upon the relative priorities of the two heteromorphic substituents (R_1 and R_2). The stereoheterotopic group or atom, assigned a higher priority (A¹), is designated *pro*-<u>R</u> (or A<u>1</u>) or *pro*-<u>S</u> (or A<u>1</u>), respectively. Conversely, the group or atom assigned a lower priority (A²) is specified as *pro*-<u>S</u> (or A<u>2</u>) or *pro*-<u>R</u> (or A<u>2</u>), respectively.

The stereoheterotopic faces of a trigonal centre $(R_1R_2R_3C)$ are assigned similarly. The three heterotopic substituents are ordered according to the priority rules;⁶⁷ and, depending upon their relative priorities, the corresponding faces, above and below the plane defined by $R_1R_2R_3C$, are specified by the descriptors re (or Re) and si (or si).^{43,49}

More recently, an alternative system of specification was proposed by Prelog and Helmchen.⁶⁸ In this system the prochiral tetrahedral centre (R_1R_2CAA) is considered to consist of two chiral simplexes, divided by a plane of symmetry (see, for example, Fig. 1-19 in ref. 59). The two half-spaces defined by the plane of symmetry are labelled *Re* or Si. Depending upon the relative priorities of the substituents, R_1 , R_2

and A,⁶⁷ allows the two stereoheterotopic substituents to be designated as A_{Re} or A_{Si} , respectively. Homomorphic groups or atoms designated as A_{Re} and A_{Si} in the Prelog-Helmchen system⁶⁸ correspond to those specified as $A_{\underline{R}}$ and $A_{\underline{S}}$, respectively, in the Hanson system,⁴⁹ only when the stereoheterotopic groups or atoms are of either lowest or highest priority.

The merits of these two approaches have been discussed. $^{48,49,68,69.}$ Although the Hanson system, 43 since refined by Hirschman and Hanson, 45,47,49 has been more widely employed, 69 the Prelog-Helmchen descriptors 68 have enjoyed recent use, 58 particularly for the designation of the steroheterotopic hydrogens at prochiral methylene groups (*e.g.* ref. 70). The Prelog-Helmchen system is used throughout this thesis.

1.3 DETERMINATION OF CONFIGURATION OF PROCHIRAL METHYLENE GROUPS, RENDERED CHIRAL DUE TO ISOTOPIC SUBSTITUTION

Many biochemical processes lead to the formation or destruction of a prochiral methylene group.^{59,71,58} These enzyme-catalysed transformations involve stereospecific hydrogen transfer, either to or from a carbon atom within achiral or chiral molecules. To probe the stereochemistry of such processes requires the use of deuterium or tritium labelling. This is achieved by employing appropriately labelled substrates, which in the course of the enzymic neaction afford a prochiral methylene group, rendered chiral by isotopic substitution within the product. Alternatively, the methylene group, chirally labelled with deuterium or tritium, within the substrate is employed for the stereochemical

investigation of reactions involving hydrogen abstraction. The stereochemistry of these neactions is then determined by configurational assignment of the chirally labelled methylene group within the product' or substrate, respectively.

The absolute configuration of isotopically engendered chiral methylene groups can be determined in several ways. These include chemical synthesis involving reactions of established or determinable stereo-chemistry and correlation with standards of known configuration.^{59,72}

• When the chirality of the methylene group is due to deuterium substitution, virtually complete deuterium enrichment can be attained. The absolute configuration of the chiral deuteriated centre can be determined by comparison with standards of known chirality by means of physicochemical methods⁷³ such as optical rotatory dispersion (ORD)⁷⁴ and nuclear magnetic resonance (NMR)⁷³⁻⁷⁷ spectroscopy. Assignment of configuration can also be effected by enzymic methods,⁷² which involve enzymes of known stereospecificity.

By contrast, when the chirality of the methylene group is due to tritium substitution, only a very small fraction of the molecules which comprise the labelled material will carry tritium. Since there is a risk of radiochemical hazard, this isotope is only employed at tracer levels.⁷⁸ Configurational analysis is achieved, in this case, by employing enzymic reactions of known stereochemistry.^{59,72}

It was referred to earlier that yeast alcohol dehydrogenase mediates reversible, stereospecific hydrogen transfer from C-1 of ethanol to C-4 of NAD⁺ (see Scheme 2). Loewus *et al.*⁵² had employed deuterium to probe the steric course of this reaction and obtained

enantiomeric samples of $(1-^{2}H)$ ethanol. Although the absolute configuration of the chiral samples of $(1-^{2}H)$ ethanol was not known at that time, this was later established when a specimen of known configuration was obtained by unambiguous chemical synthesis.⁵⁵ The chirality of the samples of $(1-^{2}H)$ ethanol, those of enzymic origin and that obtained by chemical synthesis, was linked by comparison of their optical activity.^{54,55}

A sample of \underline{R} -(+)-(1-²H)ethanol (12) was prepared by Lemieux and Howard⁵⁵ as outlined in Scheme 3. The key step in this synthesis involved stereoselective reduction of the aldehyde (16) with lithium aluminium deuteride to yield, as the major product, the <u>R</u>-(5-²H)xylofuranoside derivative (17). The chirality of the deuteriated methylene group was determined by ¹H NMR spectroscopy, following the conversion of the deuteriated alcohols, (17) and (18), into the corresponding β -D-(5-²H)xylopyranose tetraacetates, (19) and (20), respectively. The ¹H NMR signals due to the equatorial (Re-) and axial (Si-) hydrogens at C-5 of β -D-xylopyranose tetraacetate (unlabelled (19), conformation shown in Scheme 3) had earlier been assigned to a pair of doublets at 4.13 $(J_{4a,5e}$ 4.2 Hz) and 3.54 $(J_{4a,5a}$ 8.2 Hz) ppm, respectively.⁷⁹ When the deuteriated product ((19) + (20)) was examined,⁵⁵ the deuterium enrichment at the 5-Re-position (65%) was greater than that at the 5-Siposition (35%) indicating that the product was comprised of a 30% enantiomeric excess of the \underline{R} -(5-²H)-species (19). This result also indicated that reduction of (16) had occurred preferentially from the Reface of the aldehyde. The mixture of $(5-^{2}H)xylopyranose$ tetraacetates was then subjected to degradation, involving reactions which did not affect the chiral integrity of the deuteriated methylene group, to

Scheme 3. Chemical synthesis of $(+) - (1 - {}^{2}H)$ ethanol (12).
afford a dextrorotatory specimen ($[\alpha]_{589}$ + 0.66°) of predominantly <u>R</u>-(1-²H)ethanol (12) (Scheme 3).

The assignment of the <u>R</u>-configuration to dextrorotatory $(1-^{2}H)$ ethanol (12) provided clear evidence that the levorotatory specimen (8) obtained by enzymic reduction of $(1-^{2}H)$ acetaldehyde (7) has the <u>S</u>-configuration and that alcohol dehydrogenase promotes stereospecific transfer of hydrogen from C-4 of NADH (9) to the *Re*-face of the aldehydic carbon of acetaldehyde to furnish the *Re*-hydrogen of ethanol. (Scheme 2).

The configuration of levorotatory $(1-^{2}H)$ ethanol (§) was subsequently confirmed by Weber and Arigoni⁸⁰ by correlation with S-(-)-(2-²H)glycolic acid (21) as shown in Scheme 4. It had previously been shown that muscle lactic acid dehydrogenase (E.C. 1.1.1.27) which normally catalysed the reduction of pyruvic acid (22) to L-lactic acid (23) in the presence of NADH, acts upon (2-²H)glycolic acid (24) to afford the levorotatory enantiomer of (2-²H)glycolic acid (21) ^{81,82} ([α]₂₅₀ - 27°).⁸³ The absolute configuration of (-)-(2-²H)glycolate (21) was unequivocally established by neutron diffraction techniques⁸² and, thus serves as a primary configurational standard.^{59,72}

Reduction of \underline{S} -(-)-(1-²H)glycolic acid (21) gave \underline{S} -(1-²H)ethanol (8) (Scheme 4). This specimen of \underline{S} -(1-²H)ethanol (8) on treatment with yeast alcohol dehydrogenase in the presence of NAD⁺ gave (1-²H)acetaldehyde (7), establishing its identity with the levorotatory specimen which had previously been obtained by the reverse process⁵⁴ (cf. Scheme 2).

In the present context, chiral $(1-^{2}H)$ amines, in which one or the other of the two enantiotopic hydrogens at the prochiral methylene group adjacent to nitrogen is replaced by deuterium, are obtained by enzymic decarboxylation of the corresponding \underline{L} - α -amino acids (Chapter 2). As will be seen in Chapters 3 and 4, the configurational analysis of the enantiomeric $(1-^{2}H)$ amines ultimately rests on stereochemical correlation with $[2-^{3}H]$ - or $(2-^{2}H)$ glycine of known absolute configuration.

63

Chiral samples of $(2-^{2}H)$ - and $[2-^{3}H]glycine$ have been prepared by enzymic reactions and by chemical synthesis. The chirality, as well as the configurational purity, of stereospecifically labelled glycines was determined by several methods. One of these methods involved the direct correlation of the configuration of a specimen of $(2-^{2}H)glycine$ with that of the primary configurational standard, <u>R</u>- $(2-^{2}H)glycolic$ acid (27) (Scheme 5).⁸⁴⁻⁸⁶

Besmer and Arigoni^{84,85} obtained an enantiomeric sample of $(2-^{2}H)$ glycine (26) by incubation of unlabelled glycine (25) with <u>L</u>alanine aminotransferase (E.C. 2.6.1.2) in deuterium oxide. This pre-, paration took advantage of the observation that <u>L</u>-alanine aminotransferase, which normally catalyses the transfer of the amino group from <u>L</u>-alanine to α -ketoglutaric acid, mediates stereospecific exchange of hydrogen from C-2 of glycine with the medium.^{86,87} The sample of (2-²H)glycine (26) was optically active and showed a plane positive ORD curve ([α]₂₃₈ + 36.7°).⁸⁵ On treatment with nitrous acid (+)-(2-²H)glycine (26) gave (+)-(2-²H)glycolic acid (27) which was determined to be the <u>R</u>-enantiomer by comparison of its ORD curve with that of an authentic specimen. Based on the well grounded assumption that the nitrous acid

deamination reaction occurs with retention of configuration, 86,88,89 the dextrorotatory sample of $(2-^{2}H)$ glycine (26) was assigned the <u>R</u>configuration

The assignment of the <u>R</u>-configuration to $(+)-(2-^{2}H)$ glycine served to establish that <u>L</u>-alanine aminotransferase promotes stereospecific labilisation of the *Re*-hydrogen of glycine. The steric environment of the *Re*-hydrogen of glycine (25) corresponds to that of the α hydrogen of <u>L</u>-alanine (31), which is lost in the course of the normal enzymic reaction (*cf.* ref. 87).

A method for the stereochemical analysis of $[2-^{3}H]g]ycines$ was based on this correlation, and involved enzymic assay with glycolic acid oxidase (E.C. 1.1.1/26).^{85,86}

A specimen of $\underline{\mathbb{R}}$ -[2-³H]glycine (28) was obtained by the action of $\underline{\mathbb{L}}$ -alanine aminotransferase on unlabelled glycine (25) in tritiated water, which was then converted, as before, by treatment with nitrous acid, into $\underline{\mathbb{R}}$ -[2-³H]glycolic acid (29) (Scheme 5).⁸⁶ Previous work by Rose and his colleagues^{81,82} had demonstrated that the glycolic acid oxidase catalysed oxidation of glycolic acid to glyoxylic acid (30) takes place with stereospecific removal of the *Re*-hydrogen. When the specimen of tritiated glycolate (29) was treated with this effizyme, complete loss of label occurred in the course of the oxidation, to yield unlabelled glyoxylic acid (30). The result served to confirm the configurational assignment of the $\underline{\mathbb{R}}$ -[2-³H]glycolic acid (29) as well as that of the $\underline{\mathbb{R}}$ -[2-³H]glycine (28).

The configurational assignment of samples of tritiated glycine has been determined by direct enzymic assay with <u>D</u>-amino acid oxidase (E.C. 1.4.3.3).^{87,90,91} <u>D</u>-Amino acid oxidase catalyses the oxidative deamination of a wide range of <u>D</u>-amino acids (but not <u>L</u>-amino acids),⁹² as well as of glycine,⁹³ to the corresponding 2-oxoacids. This enzymic reaction was first employed by Akhtar and Jordan⁹⁰ to assign absolute configuration to enantiomeric samples of $[2-^{3}H]glycine$ which were obtained by an exchange reaction, catalysed by serine transhydroxymethylase (E.C. 2.1.2.1) (Scheme 6).

The serine transhydroxymethylase catalysed reaction involves the reversible transformation of glycine (25) and formaldehyde into \underline{L} serine (32).⁹⁴ In the absence of formaldehyde, the enzyme catalyses exchange with the medium of one of the hydrogens from C-2 of glycine.⁹⁵ Employing the latter conditions, Akhtar and Jordan^{90,91} prepared samples of the two enantiomers of $[2-{}^{3}H]g]ycine$. One of the enantiomers (33) was obtained from glycine (25) by incubation in tritiated water; the other (28) was obtained from racemic [2-³H]glycine by incubation in unlabelled water. The two enantiomers of [2-3H]glycine were then treated with \underline{D} -amino acid oxidase. Stereospecific loss of tritium occurred in the course of the oxidation of the enantiomer (33) to yield unlabelled glyoxylic acid (30), whereas oxidation of the enantiomer (28) led to complete retention of tritium in the product, $[1-^{3}H]g]yoxylic acid (34)$. The steric course of the oxidation of glycine (25) to glyoxylic acid (30). mediated by <u>D</u>-amino acid oxidase had not been determined. Akhtar and Jordan⁹⁰ assumed, on the basis of a comparison of the relative steric environments of the two enantiotopic hydrogens of glycine (25) with that

Ŵ

of the α -hydrogen of <u>D</u>-alanine (35), that the reaction would involve stereospecific removal of the *Si*-hydrogen. Based on this assumption the two enantiomers of $[2-^{3}H]glycine$, (33) and 428), were assigned the <u>S</u>and the <u>R</u>-configuration, respectively (Scheme 6).

The stereospecificity of $\underline{\underline{D}}$ -amino acid oxidase is verified by experiments carried out by Wellner⁸⁷ and Besmer and Arigoni.⁸⁶

Wellner⁸⁷ prepared a sample of $[2-^{3}H]g$ lycine (33) by the action of serine transhydroxymethylase on <u>L</u>-serine (32) in tritiated water. Employing <u>D</u>-amino acid oxidase, the chirality of this sample was found to be the same as that of $[2-{}^{3}H]g]ycine (3,3)$, obtained similarly from unlabelled glycine (25), via exchange: oxidation of both samples gave unlabelled glyoxylic acid (30). In an independent investigation, the sample of [2-3H]glycine (33) derived from <u>L</u>-serine (32) was correlated with \underline{S} -[2-³H]glycolic acid (36).⁸⁶ Nitrous acid deamination of the $[2-^{3}H]$ glycine (33) gave a sample of $[2-^{3}H]$ glycolate (36) which, on treatment with glycolic acid oxidase, afforded $[2-^{3}H]$ glyoxylic acid (3,4). Since oxidation of glycolic acid, catalysed by glycolic acid oxidase, involves stereospecific removal of the \hat{Re}^{\pm} hydrogen, 81, 82 and reaction with nitrous acid takes place with retention of configuration, it follows that the sample of $[2-{}^{3}H]$ glycine (33) has the S-configuration. These stereochemical correlations (summarised in Scheme 6) not only provide firm evidence that oxidation of glycine, catalysed by D-amino acid oxidase, is accompanied by stereospecific loss of the si-hydrogen, but also demonstrate that serine transhydroxymethylase mediates the stereospecific release of the Si-hydrogen from C-2 of glycine.

More recently an entirely chemical synthesis of <u>R</u>- and <u>S</u>-(2-²H)glycine of very high configurational purity was reported by Armarego et al.⁹⁶ The synthetic sequence employed for the preparation of \underline{S} -(-)- $(2^{-2}H)$ glycine (3,7) is shown in Scheme 7. S-O-Benzylserine (3,8) was converted into the $\underline{\underline{S}}$ -bromide (3.9) by treatment with nitrous acid in the presence of hydrobromic acid. Reductive debromination of the bromide (39) with lithium triethyl borodeuteride led to, the stereospecific introduction of deuterium to give \underline{S} -(-)-3-benzyloxy(2-2H)propionic acid (40). The stereochemistry of both these reactions was confirmed in separate experiments. Most interesting is the reductive debromination step which occurred with retention of configuration. This was established by chemical correlation of the (-)-3-benzyloxy $(2-^{2}H)$ propionic acid (40) with \underline{S} -(+)-(2-²H)propionic acid of known configuration.^{97,98} The acid (40) was then converted into the amide (41) and, following a Hoffmann rearrangement which occurred with retention of configuration, \underline{S} -(+)-2benzyloxy(1-²H)ethylamine (42) was obtained. The \underline{S} -(1-²H)amine (42) gave, by reactions not involving the chiral deuteriated centre, \underline{S} -(-)- $(2-^{2}H)$ glycine (37) ([α]₂₃₈ - 35.0°).⁹⁶

The enantiomeric purity of the sample of \underline{S} -(2-²H)glycine (37) was established by ¹H NMR spectroscopy. The method involved prior conversion of glycine into the methyl camphanoylamide derivative (45), in which the enantiotopic hydrogens at C-2 of glycine are rendered diastereotopic. In the presence of the shift reagent, Eu(dpm)₃, the ¹H NMR signal (in C²HCl₃) due to the *Re*-hydrogen occurred-at higher field than that due to the *Si*-hydrogen.

Scheme 7. Chemical synthesis of $\underline{S} - (-) - (2 - {}^{2}H)$ glycine (37).

This method was first employed by Gerlach and Zagalak⁷⁵ to distinguish between the enantiotopic hydrogens at C-J of an achiral primary. alcohol by ¹H NMR spectroscopy. In this investigation the ¹H NMR spectra (in CCl₄) of the camphanate esters of several chiral primary $(1-^{2}H)$ alcohols of known configuration were examined in the presence of Eu(dpm)3. A consistent feature among all the camphanate esters examined was the observation that the chemical shift corresponding to the Re-hydrogen occurs at higher field than that corresponding to the Si-hydrogen. Such consistency is also observed for the methylene hydrogens adjacent to nitrogen in the camphanoylamide derivative of methyl 4-aminobutyrate, 99 as well as in the dicamphanoylamide derivative of cadaverine.¹⁰⁰ As suge gested by Gerlach and Zagalak, 75 the consistent occurrence of the Rehydrogen at higher field probably arises because the derivatives adopt similar conformations in the complex with $Eu(dpm)_3$. A recent report, however, indicates that, in the absence of a shift reagent, the chemical shift of the 3-Si-hydrogen of 3-camphanoylamidopropionic acid occurs at higher field than the 3-Re-hydrogen.¹⁰¹

1.4

STEREOCHEMISTRY OF ENZYMIC DECARBOXYLATION

The <u>L</u>-amino acid decarboxylases are a widely occurring group of enzymes which catalyse the decarboxylation of <u>L</u>- α -amino acids into the corresponding primary amines.¹³ These enzymes exhibit a very high degree of substrate specificity for the individual amino acids.

In the early 1940s, Gale and his co-workers¹⁰² demonstrated the occurrence of six inducible α -decarboxylases in cell-free extracts of *Escherichia coli* and showed that the reactions catalysed by several of

these enzymes are pyridoxal phosphate dependent. Distinct bacterial enzymes from E. coli, as well as from other bacteria, which mediate the specific decarboxylation of tyrosine, lysine, glutamic acid, histidine, arginine and ornithine were characterised.¹⁰² Later investigations revealed other specific amino acid decarboxylases in several species of bacteria.¹³ Included among the substrates for which these α -decarboxylases are specific were \underline{L} -s-adenosylmethionine^{103,104} and meso-2,6-diaminopimelic acid.¹⁰⁵ The enzyme specific for the latter substrate acts only at the α -carbon of diaminopimelate possessing <u>D</u>-(*i.e.* <u>R</u>-) chirality.¹⁰⁶ In addition to the inducible bacterial \underline{L} -ornithine and \underline{L} arginine decarboxylases,¹³ distinct, constitutive (biosynthetic) enzymes^{107,108} which catalyse the same reactions have also been isolated and characterised. The inducible and constitutive enzymes are similar, in that they both require pyridoxal phosphate for catalytic activity; but they differ in other catalytic properties, such as the optimum pH of reaction. 109,110

Decarboxylase activity is also detected in plants and mammalian tissue. ^{13,111,112} Although few plant enzymes have been isolated, several mammalian \underline{L} - α -amino acid decarboxylases, specific for glutamic acid, ¹¹³ ornithine ^{114,115} and *s*-adenosylmethionine ¹¹⁵ have been obtained in essentially pure form. An aromatic \underline{L} -amino acid decarboxylase which catalyses the decarboxylation of \underline{L} -tyrosine, \underline{L} -tryptophan and \underline{L} -phenylalanine as well as other aromatic amino acids has been isolated from mammalian tissue; ¹¹⁶ the enzyme from hog kidney has been purified to homogeneity. ¹¹⁷

¥

It was first demonstrated ¹¹⁸ almost thirty years ago that the reaction catalysed by three of these enzymes (L-tyrosine decarboxylase : (E.C. 4.1.1.25) from *Streptococcus faecalis*; <u>L</u>-lysine decarboxylase (E.C. 4.1.1.18) from *Bacillus cadaveris*; <u>L</u>-glutamate decarboxylase from Clostridium-welchii and from E. coli) takes a stereochemically defined course. Mandeles, Koppelman and Hanke¹¹⁸ showed that the reaction mediated by these bacterial α -decarboxylases in deuterium oxide leads to the introduction of a single solvent deuterium atom at the prochiral centre adjacent to nitrogen in the respective primary amine products. When one of the deuteriated amines λ 4-amino(4-²H)butyric acid (46), the product obtained by decarboxylation of 47 acid in $^{2}H_{2}O$, was reincubated with <u>L</u>-glutamate decarboxylase in $^{1}H_{2}O$, complete loss of deuterium was observed in the reisolated amine. In another experiment a sample of 4-amino(4-²H)butyric acid (48) was obtained from \underline{L} -(2-²H)glutamic acid (49) by enzymic decarboxylation in ${}^{1}H_{2}O$: the integrity of the deuterium label in this sample was maintained, even after prolonged incubation with the decarboxylase. It was concluded from these experiments that "...the monodeuterioamine which is formed by these actions [enzymic decarboxylation of either the <u>L</u>-amino acid in ${}^{2}H_{2}O$ or the <u>L</u>-(2- ${}^{2}H$)amino acid in ${}^{1}\text{H}_{2}\text{O}$] is one of a pair of enantiomorphs."

Later, the actual stereochemical course of these reactions was determined. The conversions of <u>L</u>-tyrosine into tyramine, ¹¹⁹ of <u>L</u>-lysine into cadaverine, ¹²⁰ and of <u>L</u>-glutamic acid into 4-aminobutyric acid, ¹²¹ each catalysed by the appropriate enzyme, all take place with net retention of configuration, as shown by means of isotopic labelling with deuterium or tritium. Thus, decarboxylation of <u>L</u>-tyrosine (50) in ²H₂0

yields $\underline{\mathbb{R}}$ -(1-²H)tyramine (51), ^{119,122} and of $\underline{\mathbb{L}}$ -glutamic acid (47) in ²H₂O yields $\underline{\mathbb{R}}$ -4-amino(4-²H)butyric acid (46). ¹²¹ Similarly, decarboxylation of $\underline{\mathbb{L}}$ -[2-³H]lysine (52) in water generates $\underline{\mathbb{S}}$ -[1-³H]cadaverine (53), whereas $\underline{\mathbb{L}}$ -lysine (54) in tritiated water yields $\underline{\mathbb{R}}$ -[1-³H]cadaverine (55)¹²⁰ (Table 1). The chirality of the products was determined by kinetic, ¹¹⁹ enzymic¹²⁰ or chemical¹²¹ correlation with compounds of known stereochemistry.

The absolute configuration of the samples of $(1-^{2}H)$ tyramine obtained by enzymic decarboxylation was determined by comparison of the relative rates of enzymic oxidation, mediated by rat liver mitochondrial monoamine oxidase (E.C. 1.4.3.4), with synthetic standards of known configuration. ^{119,122}

Belleau and Burba¹¹⁹ prepared <u>R</u>- and <u>S</u>-(1-²H)tyramine by the synthetic sequence outlined in Scheme 8. The key step in this reaction scheme was the stereoselective Meerwein-Pondorff type reduction of *p*methoxyphenylacetaldehyde (58) with (2-²H)isobornyloxymagnesium bromide (59) to afford <u>S</u>-(-)-2-*p*-methoxyphenyl(1-²H)ethanol (60) ([α]₅₈₉ - 1.44°). This method of reduction had previously been employed by Streitwieser and his colleagues for the preparation of chiral specimens of (1-²H)benzyl alcohol¹²³ and (1-²H)butanol.¹²⁴ Consideration of the two possible product determining transition states for reduction had allowed assignment of configuration of these products, based on the assumption that the transition state of least steric crowding would be preferred.¹²⁵

The \underline{S} -(1-²H)alcohol (60) was employed to obtain both enantiomers of (1-²H)tyramine. Treatment of the toluene sulfonate ester of (60) with sodium azide, under conditions where complete inversion of

lr

Scheme 8. Synthesis of the enantiomers of $(1-^{2}H)$ tyramine.

configuration had been demonstrated in other similar reactions, ¹²⁶ afforded the <u>R</u>-(1-²H)azide (61) which, following reduction and demethylation, gave <u>R</u>-(1-²H)tyramine (51). Conversion of the <u>S</u>-(1-²H)alcohol (60) into the bromide (62) of opposite configuration, by treatment with phosphorus tribromide under S_N² conditions, ^{127,128} followed by the azide displacement reaction, gave <u>S</u>-(1-²H)tyramine (57).

When the two synthetic samples of $(1-^{2}H)$ tyramine were subjected to enzymic oxidation, catalysed by the rat liver monoamine oxidase, the rate of oxidation of $\underline{S}-(1-^{2}H)$ tyramine (57) was approximately twice that of $\underline{R}-(1-^{2}H)$ tyramine (52).¹¹⁹

The mechanism of the reaction involving nucleophilic displacement of the tosyl group by azide ion, employed by Belleau and Burba¹¹⁹ for the preparation of (61) (Scheme 8), has recently been investigated.¹²⁹ Apart from direct S_N^2 displacement, aryl participation was found¹²⁹ to make a significant contribution (~30%) to the outcome of the reaction.⁴ Although this finding does not affect the overall configurational assignments of the synthetic samples of (1-²H)tyramine prepared by Belleau and Burba,¹¹⁹ it does indicate that they were of low configurational and isotopic purity.

The stereochemistry of the reaction catalysed by <u>L</u>-lysine decarboxylase was determined by radiochemical tracer methods. As outlined in Scheme 9, Leistner and Spenser¹²⁰ determined the chirality of the two enantiomers of $[1-^{3}H]$ cadaverine, that (53) obtained by decarboxylation of <u>L</u>-[2- ^{3}H]lysine (52), and that (55) obtained by decarboxylation of <u>L</u>-lysine (54) in the presence of tritiated water, by stereochemical correlation with the corresponding enantiomers of [2- ^{3}H]glycine. This was

achieved by chromic acid oxidation, under conditions which did not lead to significant exchange of label with the medium. By taking advantage of the known opposed stereospecificities of $\underline{D}\text{-}amino$ acid oxidase and $\underline{\mathsf{L}}$ -alanine aminotransferase, referred to earlier (Section 1.3), the resulting specimens of $[2-^{3}H]$ glycine were unambiguously assigned the <u>S</u>and \underline{R} -configuration, respectively. Thus, when each of the two specimens of $[2-^{3}H]g]ycine$ was treated, together with $[2-^{14}C]g]ycine$ as internal standard, with <u>D</u>-amino acid oxidase, the ${}^{3}H/{}^{14}C$ ratio was maintained in the oxidation product (34) derived from the \underline{R} -[2-³H, 2-¹⁴C]glycine (28), whereas almost all the tritium, relative to carbon-14, was absent in the product (30) derived from the $S-[2-^{3}H, 2-^{14}C]g]ycine (33). Conversely,$ incubation of the two intermolecularly doubly labelled samples with L-alanine amino transferase, in the absence of an amino group acceptor, resulted in almost complete loss of tritium relative to carbon-14 from the <u>R</u>-[2-³H, 2-¹⁴C]glycine (28), but not from <u>S</u>-[2-³H, 2-¹⁴C]glycine (33).

The absolute configuration of 4-amino(4-²H)butyric acid (46) was determined by correlation with that of the <u>R</u>-enantiomer of $(2-^{2}H)glycine$. The stereochemical correlation employed by Yamada and O'Leary¹²¹ is outlined in Scheme 10. Levorotatory 4-amino(4-²H)butyric acid (46) obtained from <u>L</u>-glutamic acid (47) by enzymic decarboxylation in deuterium oxide was converted into (-)-methyl-4-phthalimido(4-²H)butyrate (63). The specific optical rotation of this sample ($[\alpha]_{3+0} - 6.23^{\circ}$) was compared directly with that of an authentic sample of (+)-methyl <u>S</u>-4-phthalimido(4-²H)butyrate (64) ($[\alpha]_{3+0} + 6.23^{\circ}$) which had been synthesise

Scheme 10.

Q

Ø

Stereochemical correlation of 4-amino $(4-^{2}H)$ butyric acid (46) with S=(2-²H)glycine (37).

of the two samples were of equal magnitude but of opposite sign, it followed that the two samples were enantiomeric, that the sample (63) and therefore also (-)-4-amino(4- 2 H)butyric acid (46) possessed the <u>R</u>-configuration.

The <u>S</u>-enantiomer of $(2^{-2}H)$ glycine was prepared by stereospecific exchange of the *Si*-hydrogen of glycine, mediated by serine transhydroxymethylase, in deuterium oxide (*cf*. Scheme 6). The phthalimido derivative (44) was then converted by means of a double Wolff rearrangement, *via* (+)-methyl <u>S</u>-3-phthalimido(3-²H)propionate (65), into the (+)-methyl <u>S</u>-4-phthalimido(4-²H)butyrate (64). The Wolff rearrangement is expected to occur with retention of configuration, ¹³⁰ even at a migrating primary carbon, ¹³¹ which allowed assignment of configuration to the butyrate (64) based on the known configuration of <u>S</u>-(2-²H)glycine.^{85-87,90,91}

Methyl <u>S</u>-4-phthalimido(4-²H)butyrate (64) has recently been synthesised by an independent method (Scheme 11). Santaniello and coworkers⁹⁹ prepared <u>S</u>-(+)-2-phthalimido(2-²H)ethanol (43) in seven steps from <u>L</u>-0-benzylserine (38) following the procedure which had been employed by Armarego *et al.*⁹⁶ for the synthesis of <u>S</u>-(2-²H)glycine (37) (Scheme 7). By reactions not involving the chiral deuteriated centre, chain extention was effected by addition of diethyl malonate to the bromide (66) and, following hydrolysis, <u>S</u>-(-)-4-amino(4-²H)butyric acid (48) was obtained. This was then converted into methyl <u>S</u>-4-phthalimido-(4-²H)butyrate (64) which showed a specific optical rotation at the sodium-D line which was identical with that of the sample obtained by Yamada and O'Leary.¹²¹ The configurational purity of <u>S</u>-4-amino(4-²H)-

camphanoylamide derivative (68) in the presence of $Eu(dpm)_3$, which showed the absence of the signal corresponding to the *Si*-hydrogen at the methylene group adjacent to nitrogen. Employing this method of configurational analysis, Santaniello *et al.*⁹⁹ confirmed that decarboxylation of <u>L</u>-glutamic acid, catalysed by <u>L</u>-glutamate decarboxylase of *E. coli*, to afford 4-aminobutyric acid takes place with net retention of configuration. Further confirmation that this reaction occurs with Γ net retention of configuration was very recently obtained by a radiochemical tracer method.¹³² The reaction catalysed by <u>L</u>-glutamate decarboxylase from a mammalian source (rat brain) has also been shown to take a similar steric course.¹³³

Net retention of configuration in the decarboxylation of \underline{L} tyrosine¹²⁹ and of \underline{L} -lysine,^{134,135,100} catalysed by bacterial enzymes, was later confirmed by independent methods and was found also in the reactions catalysed by enzymes in plant systems.¹²⁹

The stereochemistry of the reactions catalysed by several other \underline{L} -amino acid α -decarboxylases has been investigated quite recently. Net retention was demonstrated also in the decarboxylation of \underline{L} -histidine^{136,137} and of \underline{L} -S-adenosylmethionine,¹³⁸ catalysed by bacterial enzymes, \underline{L} -histidine decarboxylase (E.C. 4.1.1.22) from Lactobacillus 30a and from Clostridium welchii, and S-adenosylmethionine decarboxylase from E. coli, respectively.

The stereochemistry of the decarboxylation of <u>L</u>-bistidine (69) catalysed by the bacterial enzyme from *Lactobacillus* 30a was first investigated by Chang and Snell¹³⁹ in 1968. By carrying out the reaction in deuterium oxide, a levorotatory specimen of $(1-^{2}H)$ histamine (70) was

obtained, which, by comparison of the sign of the optical rotation with that of other, similar deuteriated compounds (*i.e.* (-)-(1-²H)butylamine), was tentatively assigned the <u>R</u>-configuration. Later, the stereochemical course of this reaction was firmly established by radiochemical tracer techniques (Scheme 12), ¹³⁶ and by correlation of (-)-(1-²H)histamine (70) with <u>R</u>-(1-²H)tyramine (51). ¹³⁷

Battersby and his co-workers¹³⁶ employed tritium as the chiral marker to obtain <u>R</u>-[1-³H, 2'-¹⁴C]histamine (7]) from <u>L</u>-[2'-¹⁴C]histidine (72) by enzymic decarboxylation in tritiated water. Similarly, <u>S</u>-[1-³H, 2'-¹⁴C]histamine was obtained from <u>L</u>-[2-³H, 2'-¹⁴C]histidine in unlabelled water. The absolute configuration of the [1-³H]histamines was determined by a further enzymic reaction.

Other experiments had shown that the diamine oxidase (E.C. 1.4.3.6) from pea seedlings mediates stereospecific removal of the *si*hydrogen from the methylene group adjacent to nitrogen in the course of the oxidation of several primary amines to the corresponding aldehydes (Section 1.5). When the diamine oxidase was employed for stereochemical analysis, together with horse liver alcohol dehydrogenase (E.C. 1.1.1.1), reduction of the oxidation product gave the corresponding primary alcohol.-Thus, the ³H/¹⁴C ratio was largely maintained within the product (73), when the specimen of $[1-^{3}H, 2'-^{14}C]$ histamine (71), obtained from <u>L</u>- $[2'-^{14}C]$ histidine (72) by decarboxylation in tritiated water, was subjected to stereochemical analysis.

To confirm that the diamine oxidase promotes stereospecific removal of the Si-hydrogen when histamine serves as substrate, a synthetic sample of <u>R</u>-[1-³H, 2'-¹⁴C]histamine (71) was prepared from [1-³H, 2'-¹⁴C]-

42

٩)

histaminol (7,3), the aforementioned product of stereochemical analysis. This sample of $[1-^{3}H]$ histaminol (7,3) had been derived from the imidazole- $[1-^{3}H]$ acetaldehyde (7,4) by stereospecific reduction mediated by alcohol dehydrogenase. Since horse liver alcohol dehydrogenase was known to catalyse stereospecific transfer of hydrogen from NADH to the *Re*-face of the aldehyde carbon of a wide variety of substrates⁵⁶ (*of.* Scheme 2), the alcohol (7,3) was assigned the <u>S</u>-configuration.

The ${}^{3}H/{}^{14}C$ ratio was also largely retained when the synthetic specimen of <u>R</u>-{1- ${}^{3}H$, 2'- ${}^{14}C$]histamine was subjected to the stereochemical assay conditions which established its identity with that of the specimen obtained by enzymic decarboxylation.

The method of stereochemical analysis developed by Battersby and co-workers was applied to establish a similar steric course in the reaction, catalysed by mammalian <u>L</u>-histidine decarboxylase (from fetal rats), ¹⁴⁰ and, also to reinvestigate the stereochemistry of decarboxylation of <u>L</u>-tyrosine, ¹²⁹. of <u>L</u>-glutamic acid, ¹³² and of <u>L</u>-lysine, ¹³⁵ catalysed by the specific bacterial α -decarboxylases. Similarly, decarboxylation of <u>L</u>-tyrosine catalysed by mammalian aromatic <u>L</u>-amino acid decarboxylase (E.C. 4.1.1.28) (from hog kidney) was shown, by this method, to occur with net retention of configuration. ¹³⁶ Net retention in the decarboxylation of <u>L</u>-tryptophan, catalysed by the mammalian aromatic <u>L</u>-amino acid decarboxylase was also recently demonstrated by an analogous method involving monoamine oxidase (E.C. 1.4.3.4).¹⁴¹

Recently, the decarboxylation of $meso-\alpha, \varepsilon$ -diaminopimelic acid (75) to <u>L</u>-lysine (54), catalysed by $meso-\alpha, \varepsilon$ -diaminopimelate

decarboxylase (E.C. 4.1.1.20) of *Bacillus sphaericus* has been shown to occur with net inversion of configuration.¹⁴² This enzyme catalyses the final step in the biosynthesis of <u>L</u>-lysine in bacteria¹³ and differs from other amino acid α -decarboxylases in that decarboxylation occurs at the chiral centre of the substrate which has the <u>D</u>-(*i.e.* <u>R</u>-)configuration.¹⁰⁶ The chirality of the deuteriated centre of <u>L</u>-(6-²H)lysine (76) obtained from *meso*- α, ε -diaminopimelic acid (75) by enzymic decarboxylation in deuterium oxide, was determined¹⁴² by stereochemical correlation with <u>R</u>-4-amino(4-²H)butyric acid (46),¹²¹ and with <u>R</u>-(1-²H)cadaverine (77)^{120,134} (Scheme 13).

The \underline{L} -lysine- α -oxidase catalysed oxidation of \underline{L} -(6-²H)lysine (76) gave, under the reaction conditions employed, ¹⁴³ 5-amino(5-²H)valeric acid (78) which was converted into the (-)-*N*-phthaloyl methyl ester (79) ([α]₅₈₉ - 0.92°). The sign of the specific optical rotation of this sample was found to be the same as that of an authentic specimen of (-)-methyl <u>R</u>-5-phthalimido(5-²H)valerate ([α]₅₈₉ - 0.95°) which had been derived from <u>R</u>-4-amino(4-²H)butyric acid (46) *via* a Wolff rearrangement. It followed that the sample of <u>L</u>-(6-²H)lysine possessed the <u>R</u>-configuration at C-6. The inference was confirmed by conversion of the <u>L</u>-(6-²H)lysine (76) into <u>R</u>-(1-²H)cadaverine (77). Configurational assignment of the deuteriocadaverine was effected with pea seedling diamine oxidase. ¹³⁴

ా 45

STEREOCHEMISTRY OF ENZYMIC OXIDATIVE DEAMINATION OF PRIMARY AMINES

Monoamine oxidase (E.C. 1.4.3.4 monoamine:oxygen oxidoreductase (deaminating)) and diamine oxidase (E.C. 1.4.3.6 diamine:oxygen oxidoreductase (deaminating)) catalyse the oxidation of primary amines to aldehydes.^{15-17,144,145} The enzymes occur in mammalian tissues, in microorganisms and in plants. They are of low substrate specificity, each acting upon a wide range of primary amines.

The classification of the two groups of amine oxidases was proposed by Zeller¹⁴⁶ in 1940, according to their substrate specificities. It was later found, however, that certain monoamine oxidases catalysed the oxidation of some long chain aliphatic diamines which were not acted upon by diamine oxidase.¹⁷ Similarly, other investigations indicated that oxidation of several monoamines was efficiently catalysed by diamine oxidase.¹⁵ The results of these investigations led to the proposal of a new system of classification based on inhibition studies,¹⁴⁷⁻¹⁴⁹ and more recently, since the co-factor requirements of the two groups of enzymes have been partially established, they are often referred to as the copper-containing amine oxidases (diamine oxidases).¹⁵⁰

The absolute stereochemistry of the abstraction of a hydrogen atom from the prochiral methylene group adjacent to nitrogen has been determined in several instances, by a variety of methods. A precondition for all these methods was the availability of substrates which were chirally labelled with deuterium or tritium at the methylene group, and whose absolute stereochemistry had been determined by correlation with

1..5

compounds of known ghirality. The results of these investigations are

5

Rat liver mitochondrial monoamine oxidase, acting upon tyramine, was shown, by a kinetic method, to catalyse removal of the Re-hydrogen. The rate of oxidation of \underline{S} -(1-2H)tyramine (57) was found to be 2.3 times faster than that of \underline{R} -(1-2H)tyramine, (51) indicating a kinetic isotope effect $k_{H_{Re}}/k_{D_{Re}}$ of 2.3. ¹¹⁹, ¹²² The emantiomeric samples of (1-2H)tyramine had been obtained by enzymic decarboxylation of \underline{L} -(2-2H)tyrosime (56), and of \underline{L} -tyrosine (50) in ²H₂O. The observed isotope effect in the course of enzymic oxidation not only served to establish the stereochemistry of hydrogen-abstraction, but led to the determination of the absolute configuration of the two (1-²H)tyramines: a kinetic isotope effect of similar magnitude was observed in the oxidation of \underline{S} -(1-²H)-, and of \underline{R} -(1-²H)tyramine, of established configuration, obtained by chemical synthesis (Scheme 8).

Abstraction of the *Re*-hydrogen in the course of the reaction catalysed by mitochondrial monoamine oxidase has recently been verified by radioactive tracer methods, employing <u>S</u>- and <u>R</u>-[1-³H]tyramine¹²⁹ as well as <u>S</u>- and <u>R</u>-[1-³H]heptylamine.¹⁵¹

Plasma amine oxidase, on the other hand, appears to catalyse the reaction of opposite chirality: radioactivity was retained in the product (*p*-hydroxybenzaldehyde) obtained in the oxidation of *p*-hydroxy-<u>R</u>-[1-³H]benzylamine (84), catalysed by bovine plasma amine oxidase.¹⁵² Similarly, the ³H/¹⁴C ratio was maintained in the product when <u>R</u>-[1-³H, 1-¹⁴C]benzylamine (85) served as substrate of this enzyme, whereas most of the tritium relative to carbon-14 was lost from <u>S</u>-[1-³H,1-¹⁴C]-

C.

Table 2. Reported stereospecificity of hydrogen abstraction in the oxidation of $(1^{-2}H)$ - or $(1^{-3}H)$ -amines, catalysed by amine oxidases.

L

benzylamine (86).¹⁵³ Thus, the *SE*-hydrogen had been removed in each case. Oxidation of dopamine catalysed by bovine plasma amine oxidase, however, appears to be non-stereospecific.¹⁵⁴ The ³H/¹⁴C ratio was largely maintained (80-92%) in the products when <u>R-[1-³H,1-¹⁴C]-</u>, <u>S-[1-³H,1-¹⁴C]-</u>, as well as <u>RS-(*i.e.* racemic)-[1-³H,1-¹⁴C]dopamine served as substrates.</u>

The stereochemistry of the reaction catalysed by diamine oxidase from pea seedlings has also been determined. With <u>R</u>- and <u>S</u>-[1-³H]benzylamine as substrates, it was shown¹⁵⁵ that the *Si*-hydrogen is abstracted in the course of enzymic oxidation. More recently it was established that the *Si*-hydrogen is abstracted in the course of the oxidation, catalysed by pea seedling diamine oxidase, of <u>R</u>-[1-³H]- and <u>S</u>-[1-³H]-3-0-methyldopamine, ¹⁵⁶ <u>R</u>-(1-²H)- and <u>S</u>-[1-³H]cadaverine, ¹³⁴ <u>R</u>-[1-³H]- and <u>S</u>-[1-³H]tyramine, ¹²⁹ <u>R</u>-[1-³H]- and <u>S</u>-[1-³H]histamine¹³⁶ and <u>S</u>-1-amino[1-³H]heptane¹³² (Table 2).

Many of these investigations were undertaken by Battersby and his co-workers at Cambridge (of. Table 2). The two enantiomers of $[1-^{3}H]$ benzylamine, 155 $[1-^{3}H]-^{3}-o-$ methyldopamine, 156 and $[1-^{3}H]$ tyramine, 129 as well as <u>S</u>-1-amino[1- ^{3}H]heptane 132 were prepared by analogous synthetic sequences employing feactions of known stereochemistry. This sequence is outlined in Scheme 14.

The key step leading to chiral primary amines of very high configurational purity¹⁵⁷ involved stereospecific reduction, catalysed by horse liver or yeast alcohol dehydrogenase, of either the unlabelled aldehyde (in the presence of $[4-^{3}H]-NADH$) or the $[1-^{3}H]aldehyde$ (in the

presence of unlabelled NADH) (*cf.* Scheme 2). A coupled redox system was employed in which ethanol served as the hydride donor, while $[1-^{3}H]$ cyclohexanol¹⁵⁷ or $[1-^{3}H]$ cyclopentanol¹⁵⁶ served to deliver tritium. The two chiral $[1-^{3}H]$ alcohols, so obtained, were then converted into suitable derivatives and treated with azide ion under S_N2 condi-. tions, which gave, following reduction, the $[1-^{3}H]$ amines of opposite chirality.

<u>R</u>-[1-³H]Histamine (7,1) was prepared similarly.¹³⁶ Both enantiomers of [1-³H]histamine were also derived by enzymic decarboxylation . (Section 1.4).

It follows from other work of the Cambridge group that oxidation of chiral specimens of $[4-^{3}H]$ butan-1-ol, ¹³² and of $[5-^{3}H]$ pentan-1-ol¹³⁵ also occur with loss of hydrogen from the *si*-position (at C-4 and C-5, respectively). The tritiated amines had been obtained from the corresponding enantiomeric samples of 4-amino[4-³H]butyric acid and $[1-^{3}H]$ cadaverine, respectively, which in turn had been derived by enzymic decarboxylation of <u>L</u>-glutamic acid, and of <u>L</u>-lysine. Decarboxylation of both_these <u>L</u>-amino acids has been shown, by independent methods, to occur with retentjon of configuration (Section 1.4).

1.6

OBJECTIVES OF THE PRESENT INVESTIGATION

When the present investigation was initiated, the stereochemistry of the enzymic decarboxylation of ornithine and of arginine was unknown. Decarboxylation of ornithine yields the diamine, putrescine. This diamine is an important intermediate in the bigsynthesis of the polyamines, spermidine and spermine, 112,158,159 and of a large number of plant

alkaloids, e.g. the pyrrolidine, pyrrolizidine and tropane alkaloids. $^{160-162}$ <u>L</u>-Arginine is a protein amino acid and is closely related to <u>L</u>-ornithine, both chemically and metabolically. Arginine is a key intermediate in the formation of naturally occurring guanidines. 163 Agmatine is the decarboxylation product of arginine. In microorganisms 158 and also in higher plants 112,164 agmatine is an intermediate in the formation of putrescine. In mammalian systems putrescine is formed directly from ornithine by decarboxylation. 111,158

Cadaverine is another biologically important diamine and is derived from lysine by decarboxylation. Decarboxylation of <u>L</u>-lysine forms a key step in the biosynthesis of many plant alkaloids. $^{160-162}$

Putrescine and cadaverine are the normal physiological substrates of diamine oxidase.^{15,17} In plant systems the oxidation products of these substrates are intermediates in the biosynthesis of the pyrrolidine and piperidine alkaloids.^{160-162,165} In bacteria and mammalian systems, diamine oxidase is involved in the catabolism of these diamines.^{158,19}

When the present investigation was undertaken, the stereochemistry of the reaction catalysed by the diamine oxidase from pea seedlings had been determined with benzylamine as substrate.¹⁵⁵ The stereochemistry of the reactions catalysed by diamine oxidase with its normal substrates, cadaverine and putrescine, as well as histamine and agmatine, had not been investigated. The diamine oxidase from hog kidney was commercially available. Although the reaction catalysed by this enzyme was claimed to be stereospecific,¹⁶⁶ the absolute stereochemistry of hydrogen abstraction was unknown.

The objective of the present investigation was to determine the absolute stereochemistry of the hog kidney diamine oxidase catalysed reactions with its physiological substrates. This investigation required enantiomeric samples of cadaverine, putrescine and agmatine, chirally deuteriated or tritiated at C-1 (cf. Section 1.5). Enzymic decarboxylation provided the means of obtaining such chirally labelled amines (cf. Section 1.4). Using deuterium as the chiral marker, ²H NMR spectroscopy was employed to investigate the stereospecificity of hydrogen abstraction in the reaction catalysed by hog kidney diamine oxidase (Chapter 3). Since the stereochemistry of the enzymic decarboxylation of <u>L</u>-lysine to cadaverine had previously been determined, 120 enantiomeric samples of $(1-^{2}H)$ cadaverine, of known chirality, were readily obtainable. The steric course of decarboxylation of L-ornithine to putrescine, catalysed by L-ornithine decarboxylase, and of L-arginine to agmatine, catalysed by L-arginine decarboxylase, had not been investigated. These enzymic reactions provided enantiomeric samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine, but of unknown absolute configuration (Chapter 2). Determination of the steric course of the reactions leading to the formation of the chiral samples of (1-2H) putrescine and (1-2H) agmatine was a further objective of the present work. The results of these investigations are presented in the subsequent chapters of this thesis.
CHAPTER 2'

CHIRAL (1-2H)AMINES BY ENZYMIC DECARBOXYLATION OF THE BASIC AMINO ACIDS

INTRODUCTION

2.1

The stereochemistry of the replacement of the carboxyl group of an α -amino acid by a solvent proton, in the course of the reaction catalysed by an <u>L</u>-amino acid α -decarboxylase, can be determined if the prochiral centre that is generated is rendered chiral by isotopic substitution. If the decarboxylation of the amino acid is carried out in the presence of isotopically labelled water (³HOH or ²H₂O), one of the enantiomers of the amine will be generated. The other enantiomer arises when a 2-labelled sample ([2-³H]- or (2-²H)-) of the <u>L</u>- α -amino acid undergoes decarboxylation in aqueous solution.

Assignment of the absolute-configuration of the two enantiomers will then establish the absolute stereochemistry of decarboxylation. The methods that have been employed by others to determine the absolute configuration of the isotopically engendered chiral centre within the 1-labelled samples ($[1-^{3}H]$ - or $(1-^{2}H)$ -) of the enantiomeric amines were referred to in Chapter 1 (Section 1.4).

When tritium was employed as tracer, stereochemical analysis was effected by means of enzymes of known stereospecificity, by very sensitive radioisotope counting techniques.^{120,129,132-136,138,140,141,168} Since only very few molecules comprising the product of enzymic

-55

decarboxylation were labelled with tritium (*i.e.* were $[1-^{3}H]$ amines), and were therefore also chiral, physicochemical methods, such as ORD, NMR (however, see ref. 169) and mass spectrometry, which are of lower sensitivity, were inapplicable for configurational assignment.

When deuterium was employed as the marker, ^{99,100,118,119,121,134, 137,139,142} the enartiomeric samples of the (1-²H)amines were readily obtained at a high level of deuterium enrichment and were not only chiral but also optically active (subject to the sensitivity of the detection instruments). The chirality of the (1-²H)amines was determined by physicochemical techniques, by the classical method of measuring optical activity followed by assignment of configuration by comparison of this activity with standards of known configuration, ^{121,137,139,142} as well as by NMR methods. ^{99,100} Alternatively, configurational assignment was achieved by means of enzymes of known stereospecificity, by taking advantage of an observed kinetic isotope effect, ^{119,122} and by employing mass spectrometry for the detection of label. ^{134,142}.

In the present investigation, deuterium is employed as the chiral marker to determine the stereochemistry of the enzymic decarboxylations of ornithine and arginine, catalysed by the appropriate bacterial α -decarboxylase. The absolute configuration of the resulting chiral samples of (1-²H)putrescine and (1-²H)agmatine is determined by an enzymic assay employing hog kidney diamine oxidase and ²H NMR spectroscopy (Chapter 3), as well as by adaptation of the classical approach to configurational assignment, measurement of optical activity and comparison with standards of known stereochemistry (Chapter 4).

In this chapter, the preparation of optically active, enantiomeric samples of $(1-^{2}H)$ putrescine and of $(1-^{2}H)$ agmatine, and the determination of their relative configurations is described. Chiral samples of $(1-^{2}H)$ cadaverine of known configuration ¹²⁰ are also prepared and the observed sign of rotation of these samples is compared with that of the corresponding samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine.

METHODS AND RESULTS

2.2

Enantiomeric chirally deuteriated samples of putrescine, of agmatine and of cadaverine were obtained by decarboxylation of \underline{L} -ornithine, catalysed by the inducible form of \underline{L} -ornithine decarboxylase (E.C. 4.1.1.17, \underline{L} -ornithine carboxylyase) of \underline{E} . coli, 170 , 171 of \underline{L} -arginine, catalysed by the inducible form of \underline{L} -arginine decarboxylase (E.C. 4.1.1.19, \underline{L} -arginine carboxylyase) of E. coli, 170 , $^{172-174}$ and of \underline{L} lysine, catalysed by \underline{L} -lysine decarboxylase (E.C. 4.1.1.18, \underline{L} -lysine carboxylyase) of B. cadaveris, 175 , 176 respectively. Incubation of unlabelled amino acid with the appropriate \underline{L} -amino acid decarboxylase in 2 H₂O afforded one enantiomer of the corresponding (1-²H)amine. Similarly, incubation of the (2-²H)amino acid in 1 H₂O afforded the other enantiomer. The details of these experiments are presented in Table 3.

The incubation conditions adopted for the preparation of the $(1-^{2}H)$ amines were similar to those previously employed by others for the estimation of amino acid decarboxylase activity.¹⁷⁴ High substrate concentrations, together with long incubation times (1-2 days), which were required for preparative scale reactions, led to the formation of the products in good yield. The three bacterial α -decarboxylases.

J.	Substra	r Fe		Епгуте	·		Hethod	-	fncubation time	s Product	
	(² H content (atom %)	a conc.	· .	{ conc. (ט הL-י)		² H content (atom 1)	. рн(² н)	(4)	9	² H content (atom X)
/	<u></u> -lystne (95)	•	35	L-lysine Edecarboxylase	2.1	, ² H ₂ 0	×98	6.0	48	<u>R</u> -(-)-(1- ² H)cadaverine (77) dihydrochloride	295 ⁴ ² H1
	<u>01</u> -(2- ² H)]ysine (96)	са. 95 ² H ₁	35	'L-lysine E decarboxylase	2.6	1 _{H2} 0	•	6.0	40	S-(+)-(1- ² H)cadaverine (97) dihydrochloride	295 ^a 2H ₁
	L-omithine (98) DL-ornithine (99)	••	20 40	<u>L</u> -ornithine - decarboxylase	d ,17	² H ₂ 0	· 98	5.0	6	(-)-(1- ² H)putrescine (100) dihydrochloride	98.7 ± 0.3 ² H ₁ 99.7 ± 0.3 ² H ₁
	<u>01</u> -(2 ⁻² H)omithine (101)	oa. 98 ² H ₁ ca. 92 ² H ₁	04	L-ornithine decarboxylase	0.17	0 ² Ht	•	5.0	20	<pre>(+)-(1-²H)putrescine (102) dihydrochloride</pre>	97.2 ± 0.3 ² H ₁ 93.1 ± 0.9 ² H ₁
E	<u>L</u> -argintne (103)	•	50	<u>L</u> -arginine <u> </u>	1.6	2H ₂ 0	- 196 <	5.2	30-40	<pre>(+)-(1-²H)agmatine.(104) sulfate</pre>	298 ⁴ ² H ₁
2	<u> </u>	са. 85 ² H ₁	- 20	L-arginine Edecarboxylase	1,6	0 ² Ht	٠	5.2	40	<pre>(+)-(1-²H)agmatine (106) sulfate</pre>	ca. 85 ^a ² H ₁
_	L-(2 ⁻² H)arginine (105)	са. 92 ² H ₁	20	<u>L</u> -arginine <u> </u>	1.6	1H ₂ 0	•	5.2	40	<pre>(+)-(1-²H)agmatine (106) sulfate</pre>	са. 92 ^a ² H ₁

1

1

4

đ

J

9 konodeuteriation $(^{2}H_{1})$ only determined by m.s. of the H.H.-dibenzoyl derivatives. euterium content determined by C.I.m.s.

,

58

\$

employed in this investigation were commercially available (Sigma Chemical Co.) as partially purified, water soluble powders and were used without further purification.

40

2.2.1 <u>Preparation of the enantiomers of $(1-^{2}H)$ cadaverine,</u> (1-²H)putrescine and (1-²H)agmatine

Enantiomeric samples of (1-2H) cadaverine of known absolute configuration¹²⁰ were obtained by decarboxylation of <u>L</u>-lysine, catalysed by <u>L</u>-lysine decarboxylase. <u>R</u>-(-)-(1-2H) Cadaverine (77) dihydrochloride was obtained by decarboxylation of the <u>L</u>-component of <u>DL</u>²lysine (95) in ²H₂O. <u>S</u>-(+)-(1-²H) Cadaverine (97) dihydrochloride was obtained by decarboxylation of the <u>L</u>-component of <u>DL</u>-(2-²H) lysine (96) in ¹H₂O. The two samples of (1-²H) cadaverine showed specific optical rotations of equal magnitude but of opposite sign. The ORD curves of the two samples are shown in Figure 1.

Decarboxylation of either <u>L</u>-ornithine or the <u>L</u>-component of <u>DL</u>ornithine in deuterium oxide, and of <u>DL</u>- $(2-^{2}H)$ ornithine in water, catalysed by <u>L</u>-ornithine decarboxylase, afforded the enantiomers of $(1-^{2}H)$ putrescine. Ornithine (98) in $^{2}H_{2}O$ gave $(-)-(1-^{2}H)$ putrescine (100) dihydrochloride, $(2-^{2}H)$ ornithine (101) in $^{1}H_{2}O$ gave $(+)-(1-^{2}H)$ putrescine (102) dihydrochloride. The ORD curves of the two samples are shown in Figure 2.

The enantiomers of (1-2H) agmatine were obtained similarly from <u>L</u>-arginine, catalysed by <u>L</u>-arginine decarboxylase. <u>L</u>-arginine (103) in $^{2}H_{2}O$ gave (-)-(1-2H) agmatine (104) sulfate, <u>L</u>-(2-2H) arginine (105)

Figure 1. Optical rotatory dispersion (ORD) curves of \underline{S} -(+)- and \underline{R} -(-)-(1-²H)cadaverine dihydrochloride.

ORD curves of (+)- and (-)-(1-²H)putrescine dihydrochloride. The samples of the (+)-enantiomer (102) were prepared by decarboxylation of the <u>L</u>-component of <u>DL</u>-(2-²H)ornithine (101) (value plotted on the left, for each wavelength) and by hydrolysis of (+)-(1-²H)agmatine (106) sulfate (value on the right). The samples of the (-)-enantiomer (100) were prepared by decarboxylation in ²H₂O of <u>L</u>-ornithine (98) (value on the left) and of the <u>L</u>-component of <u>DL</u>-ornithine (99) (value in the centre), and by hydrolysis of (-)-(1-²H)agmatine (104) sulfate (value on the right).

in ${}^{1}\text{H}_{2}\text{O}$ gave (+)-(1- ${}^{2}\text{H}$)agmatine (106) sulfate. The ORD curves of the enantiomeric (1- ${}^{2}\text{H}$)agmatine samples are shown in Figure 3.

Alkaline hydrolysis with sodium hydroxide in ethanol led to quantitative conversion of agmatine into putrescine. $(-)-(1-^{2}H)$ Agmatine (1Q4) sulfate afforded $(-)-(1-^{2}H)$ putrescine (1Q0) dihydrochloride (Expt. 9), $(+)-(1-^{2}H)$ agmatine (1Q6) sulfate afforded $(+)-(1-^{2}H)$ putrescine (1Q2) dihydrochloride (Expt. 10) (Table 4). Within experimental error, the ORD curves of the $(1-^{2}H)$ putrescine samples, so obtained, were coincident with those of the samples obtained by enzymic decarboxylation (Figure 2).

The deuterium enrichment of the samples of the chiral $(1-^{2}H)$ amines was determined either by ¹H NMR or by mass spectrometry (Table 3). It was found that each of the amines was monodeuteriated.

A previous report¹¹⁸ had indicated that <u>L</u>-lysine decarboxylase mediates exchange of the α -protons of endaverine with the medium. Incubation of cadaverine, in deuterium oxide solution with <u>L</u>-lysine decarboxylase, of putrescine with <u>L</u>-ornithine decarboxylase and of agmatine with <u>L</u>-arginine decarboxylase, under the conditions which yielded the deuteriated samples of the bases from the amino acids (Section 6.2), did not lead to exchange of deuterium into the unlabelled amines. No decrease in the signal area due to the α -protons was detectable by ¹H NMR spectroscopy. The mass spectrum of the sample of cadaverine, reisolated as the *N*,*N*'-dibenzoyl derivative, was identical with that of unlabelled material (Section 6.2.1.2).

Figure 3. ORD curves of (+)- and (-)-(1-2H)agmatine)sulfate.

64 Weight (mg) 22 4 2H content^D
(atom %) 99.4 ± 0.4 ²H₁ $91.7 \pm 0.8 \ ^{2}\text{H}_{1}$ Product (²)-('l-²H)putrescine (100) dihydrochloride (+)-(1-²H)putrescine (102) dihydrochloride Conversion of (1-²H) agmatine into (1-²H) putrescine. ²H content^a Weight. (atom %) (mg) 65 40 298 ²H₁ (+)-(1-)H)agmatine (106) ca. 92²H₁ Suffate Reactant (-)-(1-2H)agmatine (104) sulfata Determined by C.I. m. Ł Determined by ¹H NMR. Table 4. d

Synthesis of (2-2H)amino acids

2.2.2

The basic amino acids, specifically deuteriated at the carbon adjacent to the carboxyl group (*i.e.* C-2), which were required for this investigation were prepared by the reaction sequences outlined in Schemes 15 and 16.

<u>DL</u>- $(2^{-2}H)$ Ornithine (101) and <u>DL</u>- $(2^{-2}H)$ lysine (96) were prepared in an analogous fashion by adaptation of a conventional synthetic route. ¹⁷⁷ Reaction of *N*-(3-bromopropyl)phthalimide (107) and of *N*-(4-bromobutyl)phthalimide (108) with sodium diethyl acetamidomalonate (109) in ethanol afforded 2-acetamido-2-(4-phthalimidopropyl)malonate (110) and the corresponding butylmalonate (111), respectively. Acid catalysed hydrolysis of the aminomalonates (110) and (111) with concomitant decarboxylation in deuterium oxide (> 98 atom % ²H) led to ther introduction of deuterium into C-2 of the respective products, <u>DL</u>- $(2^{-2}H)$ ornithine (101) monohydrochloride and <u>DL</u>- $(2^{-2}H)$ lysine (96) monohydrochloride. Samples of the two deuteriated diamino acids prepared in this way were \ge 92 atom % deuteriated at C-2, as determined by ¹H MMR spectroscopy (Table 3). The ²H NMR spectra of the products further indicated that the label was confined solely to the C-2 positiop.

The racemic samples of $(2-^{2}H)$ ornithine and $(2-^{2}H)$ lysine were subsequently used for the preparation of the corresponding samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ cadaverine, respectively (Section 2.2.1) without prior resolution into the <u>L</u>- and <u>D</u>-enantiomersion

<u>L</u>-(2-²H)Arginine (105) was prepared from α -N-acetyl-L-arginine (112) by exchange, via the related oxazolone (113), followed by

resolution of the racemate (115) employing acylase I (E.C. 3.5.1.4) (af. ref. 178). Treatment of α -N-acetyl-L-arginine (112) with acetic anhydride in deuterioacetic acid (ca. 98 atom % $O-^{2}H$), followed by ring opening of the oxazolone (114), afforded racemic $\alpha - N$ -acetyl-(2-2H)arginine The ¹H NMR spectrum (²H₂O) of the deuteriated α -N-acetylarginine (115)not) only indicated deuteriation at C-2 (δ 4.20), but also revealed that the protons of the methyl group of the N-acetyl moiety (δ 2.05) had also exchanged with the medium. The introduction of deuterium into these two positions involves acid catalysed interconversion of the three tautomeric forms of the oxazolone, as depicted in Scheme 16: hydrogen-deuterium exchange at C-2 arises from interconversion of the oxazolone (113) and the oxazoline (117), whereas exchange of the methyl protons arises from interconversion of the oxazolone (113) and the enamine (118). Similar exchange of the N-acetyl methyl protons of oxazolones derived from other amino acids has been observed.

L = (2-2H)Arginine was readily obtained from the racemic deuteriated a-N-acetyl derivative.^{179,180} Stereospecific hydrolysis of the L-enantiomer of deuteriated a-N-acetyl-<u>DL</u>-arginine (115), catalysed by hog kidney acylase I, afforded configurationally pure samples of <u>L</u>-(+)-(2-2H)arginine (105) monohydrochloride and (-)-q-N-acetyl-<u>D</u>-(2-²H)arginine (116). <u>L</u>-(2-²H)Arginine showed a plane positive ORD curve which was coincident with that of an authentic unlabelled specimen (Section 6.1.3.3). The samples of deuterioarginine were labelled exclusively at C-2 (by ²H NMR) to an extent of 85 and 92 atom % ²H (by ¹H NMR).

2.3 <u>DISCUSSION</u>

The stereochemistry of the reactions catalysed by <u>L</u>-ornithine decarboxylase and by <u>L</u>-arginine decarboxylase had not been investigated when the present work was undertaken. Since enzymic decarboxylation of several other <u>L</u>-amino acids was known to take place stereospecifically (Section 1.4), it was expected that the analogous enzyme-catalysed reactions of ornithine and of arginine would also occur stereospecifically. When deuterium labelling was employed to probe the stereochemistry of these two reactions, chiral samples of (1-2H)-putrescine and of (1-2H)agmatine were obtained.

2.3.1

Determination of the relative configurations of the enantiomers of (1-2H)putrescine and (1-2H)agmatine

Decarboxylation of \underline{L} -ornithine (98) in deuterium oxide, catalysed by \underline{L} -ornithine decarboxylase of *E. coli*, afforded one of the enantiomers of (1-²H)putrescine (100). The dihydrochloride of this enantiomer was optically active and showed a plane negative ORD curve. Similarly, the levorotatory enantiomer of (1-²H)putrescine (100) dihydrochloride was obtained by incubation of <u>DL</u>-ornithine (99) with the decarboxylase in deuterium oxide. The ORD curve of this specimen was identical with that of the specimen obtained directly from <u>L</u>-ornithine (Figure 2).

The other enantiomer of (1-2H) putrescine (102) was obtained by enzymic decarboxylation of the <u>L</u>-component of <u>DL</u>-(2-2H) ornithine (101) in unlabeled water. The ORD surve of this enantiomer was plane positive (Figure 2). The unreacted <u>D</u>-component of the (2-2H) substrate was reisolated from the enzymic reaction mixture. The sample of \underline{D} -(2-²H)ornithine monohydrochloride, so obtained, exhibited a plane negative ORD curve which was the mirror image of that of an authentic sample of \underline{L} -(+)-ornithine monohydrochloride (Section 6.2.2.1.2). Thus the \underline{D} -(*i.e.* \underline{R} -)-enantiomer of ornithine does not serve as substrate of the enzyme.

70

It follows that <u>L</u>-ornithine decarboxylase mediates stereospecific decarboxylation of <u>L</u>-(*i.e.* <u>S</u>-)-ornithine: reaction of <u>L</u>-ornithine in ${}^{2}\text{H}_{2}0$ yields the (-)-enantiomer of (1- ${}^{2}\text{H}$)putrescine; reaction of <u>L</u>-(2- ${}^{2}\text{H}$)ornithine in ${}^{1}\text{H}_{2}0$, the (+)-enantiomer.

 \underline{L} -Arginine decarboxylase promotes the stereospecific decarboxylation of \underline{L} -arginine. The two enantiomers of $(1-^{2}H)$ agmatine were obtained by the action of \underline{L} -arginine decarboxylase of *E. coli* on \underline{L} -arginine in deuterium oxide, and on \underline{L} - $(2-^{2}H)$ arginine, respectively. The sample of agmatine sulfate derived from \underline{L} -arginine (103) in $^{2}H_{2}O$ was the (-)-enantiomer (104), that derived from \underline{L} - $(2-^{2}H)$ arginine (105) in $^{1}H_{2}O$ was the (+)-enantiomer (106). The ORD curves of the two enantiomers of $(1-^{2}H)$ agmatine (Figure 3) showed a mirror image relationship indicating that they were of opposite configuration and also of similar configurational purity.

It was a simple matter to establish the relative configuration of the chiral samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine. The unlabelled amines bear only a single structural variation: agmatine possesses a 4-guanidino substituent whereas putrescine is the corresponding diamine. To convert agmatine into putrescine, methods to effect hydrolytic cleavage of the guanidino group of agmatine were investigated.

•

Alkaline hydrolysis with barium hydroxide ^{181,182} or with aqueous <u>sodium</u> hydroxide, ¹⁸³ conditions which had previously been employed to convert <u>L</u>-arginine into <u>L</u>-ornithine^{181,182} and <u>DL</u>-ornithine, ¹⁸³ respectively, led to incomplete conversion of agmatine into putrescine. When hydrolysis with sodium hydroxide in aqueous ethanol was attempted, quantitative conversion of agmatine to putrescine was achieved (Section 6.3.1). Hydrolysis of (-)-(T-²H)agmatine (104) sulfate with ethanolic sodium hydroxide cleaved the guanidino group, while the chiral integrity at C-1 was maintained, to yield (-)-(1-²H)putrescine (100) dihydrochloride (Expt. 9). Similarly, (+)-(1-²H)agmatine (106) sulfate gave (+)-(1-²H)putreścine (102) dihydrochloride (Expt. 10) (Table 4). The ORD curves of the two enantiomeric samples of (1-²H)putrescine were identical with those of the corresponding enantiomeric samples derived from <u>L</u>-ornithine and <u>L</u>-(2-²H)ornithine by enzymic decarboxylation (Figure 2).

It follows that the levorotatory samples of $(1-^{2}H)$ putrescine dihydrochloride and of $(1-^{2}H)$ agmatine sulfate have the same configuration at C-1. Since these two samples were derived from <u>L</u>-ornithine, and from <u>L</u>-arginine, respectively, by decarboxylation in $^{2}H_{2}O$, it follows further that the steric course of the decarboxylation of <u>L</u>-ornithine, catalysed by <u>L</u>-ornithine decarboxylase, is identical with that of the decarboxylation of <u>L</u>-arginine, catalysed by <u>L</u>-arginine decarboxylase.

Congruently, the dextrorotatory samples of (1-2H) putrescine dihydrochloride and of (1-2H) agmatine sulfate correspond in configurationat C-1. Each was derived from the corresponding <u>L</u>-(2-2H) amino acid. Thus, the decarboxylations catalysed by <u>L</u>-ornithine decarboxylase and

by \underline{L} -arginine decarboxylase take the same stereochemical course. Either both reactions proceed with net retention of configuration or they both proceed with net inversion.

If decarboxylation of the <u>L</u>-aminp acids were to occur with net retention of configuration, the (-)-(1-2H) amines would possess the <u>R</u>configuration at C-1, while the (+)-(1-2H) amines would possess the <u>S</u>configuration. If, on the other hand, decarboxylation were to occur with net inversion of configuration, the (-)-(1-2H) amines would possess the <u>S</u>-configuration at C-1, while the (+)-(1-2H) amines would possess the <u>R</u>-configuration (Scheme 17).

The analogous decarboxylation of \underline{L} -lysine to yield cadaverine, catalysed by \underline{L} -lysine decarboxylase, has been shown to take place with net retention of configuration. By employing tritium as the chiral marker, Leistner and Spenser¹²⁰ demonstrated that the enantiomeric samples of [1-³H]cadaverine, obtained by enzymic decarboxylation of \underline{L} lysine (54) in tritiated water, and of \underline{L} -[2-³H]lýsine (52) in unlabelled water, were \underline{R} -[1-³H]cadaverine (55) and \underline{S} -[1-³H]cadaverine (53), respectively, by correlation with [2-³H]glycine of known configuration (Section 1.4, Scheme 9). When deuterium is employed as the chiral marker, enantiomeric samples of (1-²H)cadaverine, of known configuration, can be obtained similarly. Thus \underline{R} -(1-²H)cadaverine (77) was prepared from the \underline{L} -component¹⁷⁵ of \underline{DL} -lysine (95) by decarboxylation in ²H₂O, and \underline{S} -(1-²H)cadaverine (97) was prepared from the \underline{L} -component of \underline{DL} -(2-²H)lysine (96) by decarboxylation in ³H₂O. The two enantiomeric samples of (1-²H)cadaverine were optically active. Comparison of the magnitude of

their respective rotations leads to the inference that they were of comparable configurational purity (Figure 1).

Each of the chiral samples of $(1-^{2}H)$ putrescine, $(1-^{2}H)$ agmatine and $(1-^{2}H)$ cadaverine possesses optical activity. This optical activity therefore provides a method of distinguishing between the two enantiomeric forms of the respective $(1-^{2}H)$ amines, according to the sign of their rotation or rotatory dispersion. The sample of $(1-^{2}H)$ cadaverine dihydrochloride derived from <u>L</u>-lysine (by decarboxylation in $^{2}H_{2}O$) is levorotatory, that derived from <u>L</u>- $(2-^{2}H)$ lysine is dextrorotatory. Since the stereochemistry of the reaction, from which the two enantiomeric samples of $(1-^{2}H)$ cadaverine were obtained, is known, the sign of rotation provides the means of recognizing the configuration of a given enantiomer. Thus, the levorotatory $(1-^{2}H)$ cadaverine dihydrochloride has the <u>R</u>-configuration, and the dextrorotatory $(1-^{2}H)$ cadaverine dihydrochloride has the S-configuration.

Since the ORD curves of the two enantiomers of $(1-^{2}H)$ putrescine (Figure 2), and of $(1-^{2}H)$ agmatine (Figure 3) each bear a mirror image relationship, the samples are of opposite chirality.¹⁸⁴ The stereochemistry of the reactions by which these enantiomeric $(1-^{2}H)$ amines were prepared has not been established. Therefore, the sign of rotation only provides a means of identifying the enantiomer (*e.g.* the levorotatory enantiomer) obtained by a given set of reaction conditions (*i.e.* decarboxylation of the <u>L</u>-amino acid in $^{2}H_{2}$ O). The absolute configuration of the chiral deuteriated centre within the $(1-^{2}H)$ amines cannot be inferred from the sign of rotation.

Several theories have been advanced which do permit assignment of absolute configuration, but are based on calculation of rotatory dispersion curves from an assumed molecular geometry.¹⁸⁵ Empirical relationships such as the octant rule^{186,187} have allowed definitive conclusions to be reached regarding the conformation or absolute configuration of molecules from their ORD or circular dichroism (CD) spectra. Such studies have recently focussed on molecules which owe their chirality solely to isotopic substitution.¹⁸⁸ However, unambiguous assignment of configuration is only possible for conformationally rigid molecular systems.

A direct correlation between the observed sign of rotation and the absolute configuration of acyclic molecules has been based on differences of the polarizabilities of the four substituents at the chiral centre.¹⁸⁹ Application of such a method was successful in correctly predicting the absolute configuration of (-)-(1-2H)ethanol.¹⁹⁰ However, configurational assignments made by this method are not unequivocal and must be confirmed by independent methods. Assignment of configuration has also been made by comparison of the optical activity associated with closely related compounds. Determination of configuration by such comparisons is not always reliable. Enzymigally prepared (-)-(1-2H)ethanol (8)⁵⁴ (Scheme 2) was first assigned the <u>R</u>-configuration on the basis of a comparison of the sign of rotation with that of <u>R</u>-(-)-(1-2H)butanol, of known configuration. ⁵⁴,192. This assignment was later proven to be incorrect: levorotatory (1-2H)ethanol has the <u>S</u>-configuration ^{55,80} (Section 1.3).

It is interesting to note in this context that each of the salts of the samples of (1-2H) putrescine, (1-2H) agmatine and (1-2H) cadaverine derived by enzymic decarboxylation of the corresponding <u>L</u>-amino acids in deuterium oxide, show plane negative ORD curves. The levorotatory samples of (1-2H) putrescine dihydrochloride and (1-2H) agmatine sulfate were shown to be of the same configuration. The levorotatory sample of (1-2H) cadaverine dihydrochloride is known to have the <u>R</u>-configuration. Since putrescine and cadaverine are structurally similar, differing only by a methylene group, it would be tempting to assume that the (1-2H)diamines of the same sign of rotation are also of the same configuration. Congruently, the salts of the three deuteriated amines derived by enzymic decarboxylation of the corresponding <u>L</u>-(2-2H) amino acids are dextrorotatory, suggesting a similar comparison.

To base the configurational assignments of the samples of (1-2H)putrescine solely on this analogy, however, would clearly be unsound. It has been observed that the S-enantiomers of. (1-2H)ethanol⁵⁴ and (1-2H)propanol¹⁹¹ show rotations of opposite sign, whereas the S-enantiomers of (1-2H)propanol¹⁹¹ and (1-2H)butanol¹²⁴ show rotations of the same sign: The structural difference between both of these pairs of molecules also consists of a single methylene group. Similarly, *n*-butylamine, cadaverine and 4-aminobutyric acid are structurally similar in the vicinity of the methylene group adjacent to nitrogen. However, $\underline{S}-(1-2H)$ butylamine is levorotatory, ¹²⁶ whereas $\underline{S}-(1-2H)$ cadaverine dihydrochloride is dextrorotatory. On the other hand, the <u>R</u>-enantiomers of (1-2H)cadaverine dihydrochloride and 4-amino(4-2H)butyric acid¹²¹ are both

levorotatory. It would appear from these examples that no obvious correlation exists between the observed sign of rotation and the absolute configuration of the chiral deuteriated centres. The chirality of the centres in these compounds must be established separately.

2.3.2 <u>Ir</u>

Investigation of enzyme mediated exchange of the α -hydrogens of cadaverine, putrescine and agmatine,

Several bacterial L-amino acid a-decarboxylases have been reported to catalyse stereospecific exchange of one of the hydrogen atoms *** of the methylene group adjacent to nitrogen of the amine which forms the normal decarboxylation product (Table 5). The occurrence of such an exchange reaction was first observed by Mandeles, Koppelman and Hanke.¹¹⁸ A sample of 4-amino(4- 2 H)butyric acid (46) had been prepared by the action of <u>L</u>-glutamate decarboxylase on <u>L</u>-glutamic acid (47) in $^{2}H_{2}O$. When the sample of (46) was reincubated with the decarboxylase in ${}^{1}H_{2}O$, the reisolated amine showed the complete absence of deuterium. In another experiment, the enantiomeric sample of 4-amino $(4-^{2}H)$ butyric acid (48), which had been prepared by enzymic decarboxylation of \underline{L} -(2-²H)glutamic acid (49), was similarly incubated with the decarboxylase. "In this experiment, deuterium was maintained in the reisolated amine (48). The results of the two-incubation experiments not only indicated the occurrence of exchange with the medium of one of the enantiotopic hydrogens at C-4 of 4-aminobutyric acid, but also provided the first evidence that enzymic decarboxylation takes place stereospecifically¹¹⁸ (Section 1.4). L-Glutamate decarboxylase was later shown to catalyse decarboxylation of <u>L</u>-glutamic acid to (4-aminobutyric acid with retention of

77

Table 5. Reported hydrogen/deuterium (or tritium) exchange at the a-methylene group of biogenic amines, catalysed by the appropriate amino acid decarboxylase.

• · · ·			
Enzyme (source)	Substrate Amine	Repc Exchange	orted No exchange
Lysine decarboxylase (B. cadaveris)	Cadaverine	118	
Glutamate decarboxylase (E. coli)	4-Aminobutyrate	118	193
Tyrosine decarboxylase (<i>S. faecalis</i>)	Tyramine	· 129	
Histidine decarboxylase (<i>Lactobacillus</i> 30a) (<i>C. welchii</i>)	Histamine	136 136	139
S-Adenosylmethionine decarboxylase (E. coli)	<i>S</i> -Adenosy]- <i>S</i> -methy]- 3-thiopropylamine	-	138 .

Ċ

0

configuration,¹²¹ but the hydrogen deuterium exchange reaction could not be confirmed.¹⁹³ Prolonged incubation of a highly purified preparation of <u>L</u>-glutamate decarboxylase with 4-aminobutyric acid in deuterium oxide did not lead to the incorporation of ²H at C-4.¹⁹³ On the basis of this result, it was suggested¹⁹³ that the enzyme preparation that had previously been employed by Mandeles *et al.*¹¹⁸ was probably contaminated with 4-aminobutyrate aminotransferase. A bacterial ω -aminotransferase has recently been shown¹⁹⁴ to mediate stereospecific removal of the 4-*Re*-hydrogen of 4-aminobutyric acid.

Stereospecific enzyme-mediated exchange with the medium of the Re-hydrogen from the α -carbon of tyramine¹²⁹ and of histamine¹³⁶ has recently been demonstrated by Battersby and his co-workers. Incubation of [1-14C]tyramine and of [2'-14C]histamine, in tritiated water, with bacterial L-tyrosine decarboxylase and L-histidine decarboxylase, respectively, led to the incorporation of ³H into the l-Re-position of the reisolated amines.^{129.136} The chirality of the reisolated doubly labelled samples of <u>R</u>-[1-³H]tyramine and <u>R</u>-[1-³H]histamine was determined by enzymic analysis with rat liver monoamine oxidase¹²⁹ and pea seedling diamine oxidase, 136 respectively (*cf*. Section 1.5, Table 2). The conversions of <u>L</u>-tyrosine into tyramine 119,129 and of <u>L</u>-histidine into histamine, ^{136,137} each catalysed by the respective bacterial enzyme, have both been shown to take place with net retention of configuration (Section 1.4). Since it is the Re-hydrogen at C-1 of tyramine and of histamine which occupies the same steric environment as that of the carboxyl group within the corresponding \underline{L} -(*i.e.* \underline{S} -)amino acids, and it is this hydrogen which was stereospecifically labilised on incubation

of the two amines with the respective decarboxylases, it was inferred that the exchange reaction occurs at the active site of the decarboxylases by a reversal of the final step of the decarboxylation process.*

The incubation experiments with bacterial <u>L</u>-histidine decarboxylase from *Lactobacillus* 30a and from *C. welchii* in tritiated water resulted in very low incorporations of tritium into the α -position of histamine which was taken as an indication that the rate of the hydrogentritium exchange reaction was very slow.¹³⁶ An earlier attempt to demonstrate the analogous exchange reaction in deuterium oxide, in the presence of the enzyme from *Lactobacillus*, had not led to detectable incorporation of the label into histamine.¹³⁹

Isotopic tracer methods have been employed to investigate whether *S*-adenosylmethionine decarboxylase mediates a similar exchange reaction.¹³⁸ When <u>R</u>-*S*-adenosyl-*S*-methyl-3-thio[1-³H]propylamine, obtained by enzymic decarboxylation of *S*-adenosylmethionine in ³HOH, was reincubated with the decarboxylase in ¹H₂O⁴, no exchange of tritium from the 1-*Re*-position of the amine with the medium was detectable.

Mandeles *et al.*¹¹⁸ had also reported that the action of <u>L</u>-lysine detarboxylase (from *B. cadaveris*) on cadaverine in ${}^{2}\text{H}_{2}$ O leads to incorporation of deuterium into the amine. In the other cases, in which the occurrence of an enzyme-catalysed exchange process has been demonstrated, the hydrogen which is labilised is the same as that which is introduced

 The mechanism of action of the <u>L</u>-amino acid decarboxylases is discussed in Section 4.3.

£

during enzymic decarboxylation (*i.e.* the Re-hydrogen).^{129,136} The sample of <u>R</u>-(1-²H)cadaverine, required for the present investigation, was prepared by decarboxylation of \underline{L} -lysine, catalysed by the decarboxylase from B. cadaveris, in deuterium oxide. Even though this reaction leads, in the first instance, to \underline{R} -(1-2H)cadaverine, prolonged incubation might have led to significant further conversion to a dideuteriated species, chirally labelled at both α -methylene groups (*i.e.* <u>RR</u>-(1,5-² H_2)cadaverine), if enzyme mediated stereospecific hydrogendeuterium exchange had taken place. The sample of \underline{R} -(1-²H)cadaverine (77) that was obtained (Table 3), however, was monodeuteriated and not dideuteriated. But, in view of the conflicting reports concerning the occurrence of hydrogen exchange in the presence of $\underline{\mathsf{L}}$ -glutamate decarboxylase, experiments were carried out to obtain independent evidence concerning the possibility of exchange of the α -hydrogens of cadaverine. Experiments were also conducted to investigate the possibility of exchange of the α -hydrogens of putrescine and agmatine in the presence of the decarboxylases specific for \underline{L} -ornithine and \underline{L} -arginine, respectively.

Prolonged incubation, in deuterium oxide solution (99.8 atom % ²H), of cadaverine with <u>L</u>-lysine decarboxylase, of putrescine with <u>L</u>ornithine decarboxylase, and of agmatine with <u>L</u>-arginine decarboxylase, followed by reisolation of the bases, yielded samples whose ¹H NMR spectra were indistinguishable from those of the starting materials. The mass spectrum of the reisolated *N*,*N*'-dibenzoyl derivative of cadaverine was identical with that of unlabelled material. No deuterium was detectable in the ²H NMR spectrum of the reisolated sample of agmatine sulfate. Thus, exchange of protium by deuterium was not detectable under the conditions used to prepare the $\underline{\mathbb{R}}_{r}(1-2H)$ cadaverine (77), as well as the (-)-enantiomers of (1-2H)putrescine (100) and (1-2H)agmatine (104). Within the limits of detection, the chiral samples of (1-2H)cadaverine and (1-2H)putrescine were indeed monodeuteriated (Table 3). The ¹H NMR spectra of these samples showed a triplet due to H-1,4 of putrescine and H-1,5 of cadaverine, respectively, at δ 3.06, whose integration corresponded to *ca.* 3 protons, relative to the 4-proton multiplet centered at δ 1.77, due to H-2,3 of putrescine and the 6-proton multiplet at δ 1.3-1.9, due to H-2,3,4 of cadaverine, respectively. The mass spectra of the samples (cadaverine as the dibenzoyl derivative, putrescine by C.I. m.s.) showed monodeuteriation only.

These results also indicate that the commercial preparations of the α -decarboxylases, employed in the present investigation, did not contain other enzyme activity (*e.g.* aminotransferases) which might have led to labilisation of the α -protons of the amines.

CHAPTER 3

THE STEREOSPECIFICITY OF HOG KIDNEY DIAMINE OXIDASE

INTRODUCTION

3.1

The oxidation of a primary amine to an aldehyde is catalysed by the amine oxidases. The stereochemistry of the hydrogen abstraction process, in the conversion of the prochiral methylene group adjacent to nitrogen within the primary amine, $R-CH_2NH_2$, into the sp² centre within the aldehyde, R-CHO, can be determined if chiral samples, of known absolute chirality, of the 1-labelled ((1-3H)- or (1-2H)-) amine is employed as substrate. One of the enantiomers of the 1-labelled amine will lead to product which, by stereospecific loss of protium, retains the label at the sp² centre. The other enantiomer will lead to product which, by stereospecific loss of the label, retains protium at the sp² centre. Measurement of the conservation of release of label within the products derived from the two enantiomeric samples permits determination of the absolute stereochemistry of the process.

The stereochemistry of the reactions catalysed by the amine oxidases from rat liver mitochondria (monoamine oxidase), 119,122,129,151 pea seedlings (diamine oxidase) 129,132,134,136,155,156 and bovine plasma, 152,153 has been determined in several instances, with a wide variety of substrates. The results of these investigations were referred to in Section 1.4 (*cf.* Table 2). It has been reported that the reaction

-83-

catalysed by the diamine oxidase from hog kidney also takes place with stereospecific release of one of the enantiotopic hydrogens from C-l of histamine,¹⁶⁶ although the absolute stereochemistry of this process was not determined. The stereospecificity exhibited by hog kidney diamine oxidase, in the reactions which it catalyses, was unknown.

The preparation of enantiomeric samples of $(1-^{2}H)$ cadaverine, $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine was described in Chapter 2. Hog kidney diamine oxidase catalyses the oxidative deamination of each of these amines to yield the corresponding aldehyde. In this chapter, the reactions of the deuteriated samples of the three amines are investigated. The absolute stereochemistry of the hydrogen abstraction process in the reaction catalysed by hog kidney diamine oxidase is determined by employing the enantiomers of $(1-^{2}H)$ cadaverine, of known chirality, as substrates. Assignment of absolute configuration to the enantiomeric samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine is then made on the assumption that the stereochemical course of the reaction with cadaverine as substrates.

3.2 METHODS AND RESULTS

The enantiomeric samples of $(1-^{2}H)$ cadaverine, $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine were prepared by enzymic decarboxylation of the corresponding <u>L</u>-amino acids. The method of preparation is discussed in Chapter 2.

<u>R</u>-(-)-(1-²H)Cadaverine (77) dihydrochloride (Expt. 1), (-)-(1-²H)putrescine (100) dihydrochloride (Expt. 4) and (-)-(1-²H)agmatine (104) sulfate (Expt. 7) were derived from <u>L</u>-lysine, <u>L</u>-ornithine and <u>L</u>-arginine,

respectively, by decarboxylation in deuterium oxide. \underline{S} -(+)-(1-²H)-Cadaverine (97) dihydrochloride (Expt. 2), (+)-(1-²H)putrescine (102) dihydrochloride (Expt. 5) and (+)-(1-²H)agmatine (106) sulfate (Expt. 8) were derived from \underline{L} -(2-²H)lysine, \underline{L} -(2-²H)ornithine and \underline{L} -(2-²H)arginine, respectively, by decarboxylation in unlabelled water (Table 3, Section 2.2).

Samples of $(1,1-{}^{2}H_{2})$ cadaverine (119) dihydrochloride (Expt. 3) and of $(1,1-{}^{2}H_{2})$ putrescine (120) dihydrochloride (Expt. 6) (each > 90% perdeuteriated at one of the terminal carbon atoms) were prepared similarly, by enzymic decarboxylation of the <u>L</u>-component of <u>DL</u>- $(2-{}^{2}H)$ lysine (96) (Section 6.2.1.1.3) and of the <u>L</u>-component of <u>DL</u>- $(2-{}^{2}H)$ ornithine (101) (Section 6.2.2.1.3) in deuterium oxide.

In separate experiments each of the three deuteriated samples of cadaverine (Expts. 1-3), the three deuteriated samples of putrescine (Expts. 4-6) and the two deuteriated samples of agmatine (Expts. 7 and 8) were incubated with hog kidney diamine oxidase (E.C. 1.4.3.6 diamine: oxygen oxidoreductase (deaminating)). The details of these experiments are presented in Table 6.

The incubation in Experiments 1-6 was carried out in the presence $^{195,196}_{\sigma}$ of *o*-aminobenzaldehyde which serves to trap 196,197 the oxidation products which, themselves, are difficult to isolate, 198,199 since they tend to trimerise at physiological pH. 198,200,201

The product of the enzymic oxidation of cadaverine (121), 5-aminopentanal (122), in equilibrium with Δ^1 -piperideine (123), is trapped by *o*-aminobenzaldehyde (124) to yield, as the major product, 3-(3'-aminopropyl)quinoline (125) which is isolated as the dipicrate or the

					-		
Expt. No.		Substrate	"		Diamine oxidase	⊘-aminobenz aldeħyde	Incubation time
		<pre>2H content (atom %)</pre>	Weight (mg)	Conc. (<i>mM</i>)	Conc. (mg mL ⁻¹)	Conc. (nM)	(4)
~	R-(-)-(1- ² H)cadaverine dihydrochloride	295 (² H ₁)	40	7.6	7.3	8.4	40
8	S-(+)-(1- ² H)cadaverine dihydrochloride	295 (² H ₁)	40	7.4	2.5	8.8	39
3 (a)	(1,1- ² H ₂)cadaverine dihydrochloride	ca. 93 (² H ₂)	40	7.6	7.4	9.1	39
(q)	(1,1- ² H ₂)cadaverine dihydrochloride	<i>ca</i> . 93 (² H ₂)	30	6.9	10.1	9.8	Q
4 (a)	(-)-(1- ² H)putrescine dihydrochloride	'99.7 (² H ₁)	30	9.3	10.4	8.4	9
(q)	(-)-(1- ² H)putrescine dihydrochloride	98.7 (² H ₁)	22	13.4	9.6	10.0	Q
2	<pre>(+)-(1-2H)putrescine dihydrochloride</pre>	97.2 (² H ₁)	ເເ	9.6	9.6	8.9	9
9	(1.1- ² H ₂)putrescine dihydrochloride	91 (² H ₂); 9 (² H ₁)	39 •	12.1	10.8	9.8	, 9
7	<pre>(-)-(1-²H)agmatine sulfate</pre>	298 (² H ₁)	33	12.1	6.7	,	25
ω	<pre>(+)-(1-²H)agmatine sulfate</pre>	<i>ca</i> . 85 (² H ₁)	óر 41.	12.0	. 6.6	•	26
						•	

Table 6. Incubation of labelled substrates with diamine oxidase.

.

ú

 $\frac{1}{\ell}$

) °

86

.

dihydrochloride. ¹⁹⁸ A second product, 2,3-tetramethylene-1,2-dihydroquinazolinium ion (126), isolated as the picrate, ^{197,198} is formed in lower yield (Scheme 18). The oxidation product of putrescine (131), 4-aminobutanal (132), in equilibrium with Δ '-pyrroline (133), is trapped as 2,3-trimethylene-1,2-dihydroquinazolinium ion (134), isolated as the picrate, ^{197,199,202} while 3-(2'-aminoethyl)quinoline (135) is formed as a minor product (Scheme 19).

The samples of 3-(3'-aminopropyl)quinoline dihydrochloride, obtained from the incubation, with diamine oxidase, of the three deuteriated cadaverines (Expts. 1-3) (Table 7) and the samples of 2,3-trimethylene-1,2-dihydroquinazolinium picrate, obtained similarly from the three deuteriated putrescines (Expts. 4-6) (Table 8) each contained deuterium. The location of the deuterium in these samples was determined by ²H NMR spectroscopy.

Assignment of the NMR signals was facilitated by the chemical synthesis of $(2-^{2}H)-3-(3'-aminopropyl)$ quinoline dihydrochloride (δ 8.8) and of $(2-^{2}H)-2$, 3-trimethylene-1, 2-dihydroquinazolinium picrate (δ 5.3), by oxidation of <u>DL</u>- $(2-^{2}H)$ lysine (*cf.* ref. 203) and <u>DL</u>- $(2-^{2}H)$ ornithine (*cf.* ref. 199), respectively, with *N*-bromosuccinimide, to yield $(1-^{2}H)-5$ -aminopentanal and $(1-^{2}H)-4$ -aminobutanal, respectively, which were trapped, as before, as their *o*-aminobenzaldehyde adducts (Sections 6.4.1.1.2 and 6.4.1.2.2).

The samples of 3-(3'-aminopropyl)quinoline (125) dihydrochloride obtained from the incubation with diamine oxidase of <u>R</u>-(1-²H)cadaverine (Expt. 1) and (1,1-²H₂)cadaverine (Expt. 3a), each showed two signals in

1

とう

Products of the incubation of cadaverine (1^2_0) with diamine oxidase. Table 7.

23

Retention of deuterium (χ) (determined by ¹H NMR) 3-(3'-aminopropy])quinoline dihydrochloride 103 ± 19 75 ± 11 +1 74 ± 50 Product (125) (ppm; rel. area
if applicable) 2.9, 8.8[(1.0 ± 0.2)/1] 2.9, 8.8 [(2.2 ± 0.4)/1] ²H NMR signals 2 9 . t Yield (mg) 2 <mark>ى</mark> <u>R</u>-(-)-(1-²H)cadaverine (77) <u>=</u> dihydrochloride <u>S</u>-(+)-(1-²H)cadaverine (97) dihydrochloride 3 (a) (1.1-²H₂)cadaverine (1<u>1</u>9) dihydrochloride (b) (1,1-²H₂)cadaverine (1,9) dihydrochloride Substrate Expt. Ś
Table 8. Products of the incubation of putrescine (131) with diamine oxidase.

· Product (134)		2,3-trimethylene-1,2-dihydroquinazolinium picrate
Substrate	arge	
Expt. No.		

£	NMR)		
of زمرا		_	
Retention	determined by	100 ± 9	
*H NMR signals	if applicable)	4.1, 5.2 [(1.2 ± 0.1)/1]	4.1, 5.2 [(1.0 ± 0.3)/1]
7 F (7 7	(mg)	15	
		(-)-(1- ² H)putrescine (100) dihydrochloride	(-)-(1- ² H)putrescine (100) dihvdrochloride
		4 (a) •	(q)

4.1 ·	
10	
(+)-(1- ² H)putrescine (102) dihydrochloride	

ې مد,

J

82 ± 4

90 ± 8

4.1, 5.2[(7.0 ± 0.5)/1] 12 (1,1-²H₂)putrescine (120) dihydrochloride

ഗ

91

Ş

ł

their ²H NMR spectra (δ 8.8 and δ 2.9). The sample of (125) obtained from <u>S</u>-(1-²H)cadaverine showed only a single signal (δ 2.9) in its ²H NMR spectrum. It follows that oxidative deamination of cadaverine (121) to 5-aminopentanal (122), catalysed by diamine oxidase, is accompanied by removal of the *si*-hydrogen.

The samples of 2,3-trimethylene-1,2-dihydroquinazolinium (134) picrate obtained from the incubation of $(-)_{\star}(1-^{2}H)$ putrescine (Expt. 4) and $(1,1-^{2}H_{2})$ putrescine (Expt. 6) each showed two signals in their ²H NMR spectra (δ 5.2 and δ 4:1) whereas only one ²H NMR signal (δ 4.1) was observed in the spectrum of the sample of (134) obtained from $(+)-(1-^{2}H)$ putrescine (Expt. 5).

Correspondingly, in the oxidation of agmatine (137) to 4-guanidinobutanal (138)¹⁹⁶ which was isolated as the phosphate salt of its 2,4dinitrophenylhydrazone (139) (Scheme 20), deuterium is preserved in the oxidation product of (-)-(1-²H)agmatine sulfate (Expt. 7) but is lost in the formation of the product from (+)-(1-²H)agmatine sulfate (Expt. 8) (Table 9).

If hog kidney diamine oxidase mediates stereospecific removal of the *si*-hydrogen⁺from C-1 of putrescine (131) and agmatine (137), as it does with cadaverine (121), it follows that deuterium occupies the 1-*Re*-position of the levorotatory samples of $(1-^{2}H)$ putrescine and of $(1-^{2}H)$ agmatine.

While the enzymic reaction with the three substrates thus takes a qualitatively similar stereochemical course, a quantitative difference in

Table 9. Products of the incubation of agmatine (137) with diamine oxidase.

•,

	Substrate (-)-(1- ² H)agmatine (104) sulfate	4-gual Yield (mg) 25	Product nidinobutanal-2',4'- phosph 2H NMR signals (ppm) 7.6	<pre>(139) dinitrophenylhydrazon nate</pre>
α	(+)-(1- ² H)agmatine (106) sulfate	32	1	1+ 0 0

st an

the reactions of cadaverine on the one hand and of putrescine on the other is revealed by the ²H NMR spectra of the products of these reactions: whereas the deuterium enrichment at the two deuteriated positions in the product from $(1,1-^{2}H_{2})$ cadaverine gives rise to relative areas 2:1 for the signals at δ 2.9 and 8.8 with a deuterium retention of 75% (Expt. 3a, Table 7), the corresponding product from $(1,1-^{2}H_{2})$ putrescine showed a deuterium enrichment at the two deuteriated positions which gives rise to relative areas 7:1 for the signals at δ 4.1 and 5.2 with a deuterium retention of almost 90% (Expt. 6, Table 8). This observation indicated the occurrence of a primary intramolecular hydrogendeuterium isotope effect in the course of the oxidation of $(1,1-^{2}H_{2})$ -putrescine, but not $(1,1-^{2}H_{2})$ cadaverine.

3.3 DISCUSSION

3.3.1 ²H NMR as a probe of the stereochemistry of enzymic oxidative deamination

Hog kidney diamine oxidase catalyses the oxidative deamination of a wide range of primary amines, including diamines, agmatine and arylalkyl amines, to the corresponding aldehydes. $^{167,204-207}$ The aliphatic diamines, cadaverine (121) and putrescine (131) are amongst substrates of the enzyme which have the lowest Michaelis constant $(K_M)^{205}$ and the highest oxidation rate (V_{max}) . 206,207 Agmatine (137) is also readily attacked and is oxidised at a rate which is *approx*. half that of the aliphatic diamines. 206

The stereochemistry of the removal of an α -hydrogen atom in this reaction may be determined using as substrates chiral amines of known

chirality, in which one or the other of the two enantiotopic hydrogen atoms on the carbon adjacent to the reacting primary amino group is replaced by deuterium or tritium. Enantiomeric, chirally labelled samples of $(1-^{2}H)$ cadaverine, $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine were available (Chapter 2). Thus, with deuterium as the label, the deuterium content of the products of the enzyme-catalysed process serves as a diagnostic indicator of the steric course of the reaction. Since starting materials with deuterium enrichment approaching 100 atom % at the desired position can be used, the deuterium content as well as its location within the products can be determined by ¹H or ²H NMR spectroscopy.

When chirally labelled $(1-^{2}H)$ amines, which bear a single reactive amino group (e.g. $(1-^{2}H)$ agmatine), serve as substrates, one enantiomer, by stereospecific loss of deuterium, yields a product which is devoid of label, whereas the other enantiomer, by stereospecific loss of protium, yields a product which retains label. If the chirality of the $(1-^{2}H)$ substrate is known, determination of the presence or absence of deuterium in the product is sufficient to establish, unequivocally, the chirality of the process which leads to the products. Alternatively, if the chirality of the process is known, but that of the $(1-^{2}H)$ substrate is not, determination of the presence or absence of deuterium in the product provides a definitive answer to the question of the chirality of the $(1-^{2}H)$ substrate.

By contrast, when the aliphatic diamines, rendered chiral by deuterium substitution at only one of the two equivalent methylene groups adjacent to nitrogen (*i.e.* (1-2H))cadaverine or (1-2H)putrescine), serve as substrates, the reaction will not lead to deuterium-free product with one

enantiomer, and to deuteriated product with the other. Due to the C_{2v} symmetry of these amines (when unlabelled), both enantiomers yield products containing deuterium.

Oxidation of a sample of $(1-^{2}H)$ cadaverine or $(1-^{2}H)$ putrescine may occur either with removal of the amino group adjacent to the labelled methylene group or of that adjacent to the unlabelled methylene group. When oxidation takes place at the unlabelled end of the molecules, the products are $(5-^{2}H)-5$ -aminopentanal and $(4-^{2}H)-4$ -aminobutanal from either of the two enantiomers of $(1-^{2}H)$ cadaverine and $(1-^{2}H)$ putrescine, respectively, by loss of protium. When oxidation occurs at the labelled end of the substrates, one of the enantiomers will yield unlabelled 5aminopentanal and 4-aminobutanal, respectively, by stereospecific loss of deuterium, whereas the other enantiomer will yield (1-2H)-5-aminopentanal and (1-2H)-4-aminobutanal, respectively, by stereospecific loss of protium. Concurrent oxidation at the labelled and the unlabelled ends will yield a mixture of products. One enantiomer of (1-2H) substrate will yield a mixture of a monodeuteriated and an unlabelled species, the other enantiomer a mixture of two different monodeuteriated species (Scheme 21). Thus the presence or absence of deuterium within the product will not be a diagnostic criterion for the stereochemical course of the reaction, or for the stereochemistry of the (1-2H) substrate. Quantitative determination of deuterium within the product will be necessary in order to obtain the required information. A further problem arises if the reaction is accompanied by a substantial isotope effect (cf. ref. 135 and 168). Measurement of the extent of retention of label within the product would, in this case, not yield information concerning the

97

ন

H,N1 (CH₂ n=2, S- or R-(1-²H)putrescine **n=3.** S- or R-(1-2H) cadaverine Chiral loss of Chiral loss of Chiral loss of protium from protium from deuterium from **C-1** C-4 or C-5 C-1 (CH₂) H₂N $(1-^{2}H)-132$ n=2, $(4-^{2}H)-132$ N=2, n=2, 4-aminobutanal 132 (1-²H)-122 n=3, (5-²H)-122 n=3, n=3, 5-aminopentanol 122

Product mixture from one enantiomer

n=2, $132 + (4-^{2}H)-132$ n=3, $122 + (5-^{2}H)-122$

Product mixture from other enantiomer

⅍₀ (CH,)_ H,N

n=2, $(4-^{2}H)-132$, + $(1-^{2}H)-132$ **n=3**, $(5-^{2}H)-122$ + $(1-^{2}H)-122$

Scheme 21. Distribution of label within the products of incubation of enantiomeric samples of $(1-^{2}H)$ putrescine and of $(1-^{2}H)$ cadaverine with diamine oxidase.

stereochemistry of hydrogen removal in the oxidation of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ cadaverine. To solve the question of the stereochemical course of the reaction determination of the distribution of deuterium within the products becomes mandatory.

The distribution of deuterium within the products can be determined very accurately by ²H NMR spectroscopy. ^{169,208,209} Since deuterium exhibits a significant electric quadrupole moment, its relaxation behaviour is dominated by a quadrupole exchange mechanism. ^{208,210} This results in shorter relaxation times compared to those of other nuclei commonly employed in NMR investigations (e.g. ¹H, ¹³C, ¹⁵N). ²¹¹ As a consequence of the short ²H-relaxation times, ²¹¹ combined with the absence of a nuclear Overhauser enhancement (when spectra are obtained with proton decoupling), ²⁰⁸ the relative extent of enrichment within partially deuteriated molecules can be determined accurately by integration. ^{169,208} Quantitative determination of deuterium enrichment at a specific site may be determined by reference to a suitable internal standard or, alternatively, this information can, in some cases, be obtained from the corresponding ¹H NMR spectrum.

Assignment of the ²H NMR signals arising from deuteriation at specific sites within a labelled molecule is often facilitated by comparison with the corresponding ¹H NMR signals (observed in the ¹H NMR spectrum of the unlabelled molecule), since, apart from a small isotope effect, the chemical shift values of ²H-resonances are the same as those of the analogous ¹H-resonances.²⁰⁸ Unambiguous assignment of either the ¹H- or ²H-resonances, corresponding to protium or deuterium, respectively, at a position within the molecule, can be achieved if a labelled

standard, in which the position of interest is specifically labelled with deuterium, is available by chemical synthesis.

²H NMR suffers from two major limitations: spectral crowding and poor resolution.¹⁶⁹ These limitations are the result of the quadrupole moment and the low magnetogyric ratio associated with ²H nuclei.²⁰⁸ Since the magnetogyric ratio of deuterium is significantly less than that of protium, the chemical shift dispersion of ²H-resonances is only a fraction (*i.e.* 15%) of that of the corresponding ¹H-resonances.²⁰⁸ Extensive line broadening of ²H-resonances, due to the dominance of deuterium quadrupole relaxation,^{169,208} often accompanies this effect which results in poorly resolved ²H NMR signals. These limitations can be overcome by obtaining spectra at higher magnetic field or in the presence of lanthanide shift reagents. In the present investigation, the problem of poor resolution was avoided by employing suitable derivatives of the products of enzymic reaction (labelled samples of 5-aminopentanal and 4-aminobutanal (Scheme 21)), in which the chemical shifts of the ²H NMR signals, corresponding to the two deuteriated centres, were well separated.

3.3.2 <u>Isolation of enzymic reaction products</u>

Enzymic oxidative deamination of the aliphatic diamines, cadaverihe (121) and putrescine (131), yields the corresponding ω -aminoaldehydes, 5-aminopentanal (122) and 4-aminobutanal (132), which are in equilibrium with their cyclic imines, Δ' -piperideine (123) and Δ' -pyrroline (133), respectively^{195,197,212} (Schemes 18 and 19).

The action of diamine oxidase on cadaverine has been shown^{195,197} to lead to reaction products which accumulate as a mixture of at least

three isomeric trimers (Scheme 18). The chemistry of Δ '-piperideine has been extensively investigated by Schöpf and his co-workers. ^{198,213-215} Reversible trimerization of Δ '-piperideine (123) gives rise to α - and β -tripiperideine ((127) and (128), respectively²¹⁶) which differ only in the relative configuration of the three chiral methine carbon atoms. A second, structural isomer, *iso*-tripiperideine (130) appears to arise *via* tetrahydroanabasine (129). *iso*-Tripiperideine (130) possesses four chiral centres and may comprise a mixture of as many as 16 stereoisomers (8 enantiomeric pairs). The constitution, configuration and conformation of the three trimers has recently been investigated by ¹³C NMR spectroscopy.²¹⁶

 Δ '-Pyrroline also undergoes polymerization under the enzymic reaction conditions^{195,200,201} (Scheme 19). This imine has been reported to be difficult to isolate since it is susceptible to air oxidation at pH values of greater than 7.¹⁹⁹ At pH values of less than 7, Δ '-pyrroline (133) exists in equilibrium with the symmetrical trimer (136) (*i.e.* C₃ symmetry),^{201,217} analogous to α -tripiperideine (127).

Due to the complexity of the enzymic reaction mixtures derived from cadaverine (Scheme 18) and putrescine (Scheme 19), it was therefore necessary to isolate each of the oxidation products, 5-aminopentanal and 4-aminobutanal, respectively, as a suitable derivative. There were two requirements for such a derivative: (i) when samples of the (1-2H)diamines serve as substrates of diamine oxidase, the distinctiveness of the two potentially deuteriated positions within the reaction products, the corresponding ω -aminoaldehyde or its cyclic imine, must be retained

 \mathbb{N}

within the derivatised products (*cf.* Section 3.3.1, Scheme 21); (ii) the ²H NMR signals due to deuterium substitution at the two corresponding positions within the derivatised products should be well separated. Also desirable was a derivative which would be produced *in situ* by reaction with a reagent, which could be added to the enzyme incubation mixture without affecting the activity of diamine oxidase.

7

2

1

The reactions of Δ' -piperideine (123) and Δ' -pyrroline (133) with o-aminobenzaldehyde (124) to yield the corresponding quinoline ((125) and (135), respectively) and dihydroquinazolinium ((126) and (134), respectively) derivatives had previously been investigated. ^{198,199,202} o-Aminobenzaldehyde had also been employed to, trap the reaction products obtained by enzymic oxidation of cadaverine and putrescine. ^{195,197} This reagent has also been used for the spectrophotometric determination of diamine oxidase activity: ^{218,219} with putrescine (131) as the substrate, Δ' -pyrroline (133) is trapped *in situ* as the 2,3-trimethylene-1,2-dihydroquinazolinium ion (134). *o*-Aminobenzaldehyde does not significantly inhibit diamine oxidase activity. ²¹⁸ This was the reagent employed in the present investigation for the isolation of the enzymic reaction products.

Under the conditions adopted for incubation of the diamines with diamine oxidase (Table 6), 5-aminopentanal (122) ($\Rightarrow \Delta'$ -piperideine (123)) was trapped with o-aminobenzaldehyde (124) to afford 3-(3'-aminopropyl)quinoline (125) as the major product (Scheme 18), whereas 4-aminobutanal (132) ($\Rightarrow \Delta'$ -pyrroline (133)) afforded the dihydroquinazolinium adduct (134) as the major product (Scheme 19). The integrity of the two potentially deuteriated positions within each of these products (*i.e.* C-2 and

C-3' in both (125) and (134)) was maintained when samples of (1-2H)cadaverine and (1-2H)putrescine served as substrates: the ²H NMR signals corresponding to deuterium substitution at the two positions were fully resolved (Sections 3.3.3 and 3.3.4).

Enzymic oxidative deamination of agmatine (137) affords 4-guanidinobutanal (138)¹⁹⁶ (Scheme 20). Incubation of agmatine with hog kidney diamine oxidase led to quantitative oxidation of the amine (Section 6.4.2.2.3). The ¹H NMR spectrum ($^{2}H_{2}O$) of the oxidation product showed three poorly resolved signals which, by integration, corresponded to the protons at C-1 (δ 5.2), C-4 (δ 3.2) and C-2,3 (δ 1.7). The absence of a signal in the region characteristic of aldehydic protons (> 9 ppm),²²⁰ and the occurrence of a signal at 5.2 ppm, suggests that the product exists in aqueous solution as the hydrated aldehyde (140) or, possibly, as a cyclic hydrated imine, e.g. (141). Corroboration of this inference was obtained from the ¹³C NMR spectrum of the product: no signal was present in the aldehyde carbon region (ca. 200 ppm), 221 while the signal attributed to C-1 occurres at 83.8 ppm. The product of enzymic oxidation of agmatine (137) was subsequently isolated as the 2,4-dinitrophenylhydrazone derivative (139) (Scheme 20) which was identified from its ${}^{1}\text{H}$ and ¹³C(NMR spectra. The products resulting from the incubation of the samples of (1-2H) agmatine with diamine oxidase were similarly isolated, as their dinitrophenylhydrazone derivatives (Section 3.3.5).

3.3.3 The stereochemistry of the dehydrogenation of cadaverine, catalysed by hog kidney diamine oxidase

0

Incubation of \underline{S} -(1-²H)- and \underline{R} -(1-²H) cadaverine with hog kidney diamine oxidase afforded deuteriated samples of 5-aminopentanal (122) which were trapped with *o*-aminobenzaldehyde to yield deuteriated samples of 3-(3'-aminopropyl)quinoline (125) (Scheme 22). The two samples were isolated as their dihydrochloride salts and ²H NMR spectroscopy was employed to determine the location of deuterium within the two derivatives (Table 7). In order to assign the ²H NMR signals of the deuteriated quinoline derivatives, the ¹H NMR spectra of samples of the unlabelled derivative and of derivatives of known isotope distribution were examined.

A specimen of 3-(3'-aminopropyl)quinoline (125) was obtained from cadaverine (121), by enzymic dehydrogenation, and was found to be identical with an authentic specimen prepared 198 from α -tripiperideine (127) (Section 6.4.1.1.1, cf. Scheme 18). The ¹H NMR spectrum of the free base (125) in ${}^{2}\text{H}_{2}$ O (Figure 4) showed two low field doublets at δ 8.63 (J 1.8 Hz) and δ 8.27 (J = 1.8 Hz), each corresponding to one proton. These signals were readily assigned to the protons at C-2 and C-4 of the quinoline/ring system. The /five line pattern centered at & 2.93 (relative area 4) arising from two overlapping triplets ($J \approx 7.5 \text{ Hz}$) was assigned to the protons at C-1' and C-3' of the 3-aminopropyl side chain. The chemical shifts corresponding to each of these protons (H-2, H-4, H-1', H-3') were sensitive to changes in p^2 H. When the ¹H NMR spectrum of the dihydrochloride salt was recorded in ${}^{2}\text{H}_{2}\text{O}$, the difference in chemical shift between the two doublets arising from H-2 and H-4 was only 0.07 ppm; the signals due to H-1' and H-3' were indistinguishable and

diamine oxidase.

\$-

¹H NMR spectrum of 3-(3'-aminopropyl)quinoline (125) (in ${}^{2}\text{H}_{2}\text{O}$).

106

ġ

gave the appearance of a triplet centred at δ 3.05. At p²H *ca*. 5, however, the spectrum of the dihydrochloride was similar to that of the free base (in ²H₂O) (Table 10). The signals due to H-2 and H-4 were separated by 0.32 ppm, whereas the protons at C-1' and C-3' gave rise to a five line pattern. Unambiguous assignment of the signals arising from H-2 and H-3' was made using compounds of known isotope distribution.

A sample of 3-(3'-aminopropyl)-(2-²H)quinoline (125D) was prepared by *N*-bromosuccinimide oxidation of (2-²H)lysine, followed by condensation of the product, (1-²H)-5-aminopentanal with ρ -aminobenzaldehyde '(Section 6.4.1.1.2). The ¹H NMR spectrum (²H₂O, p²H ~ 5) of the dihydrochloride of (2-²H)-(125) showed virtually complete absence of the signal at δ 8.68 which was present in the spectrum of the unlabelled specimen. This established that the signal at lowest field (*i.e.* δ 8.68) in \checkmark the spectrum of the quinoline (125) corresponds to H-2.

A sample of 3-(3'-aminopropyl)quinoline dihydrochloride (125C) intermolecularly doubly labelled with deuterium at C-2 and C-3' was obtained by incubation of $(1,1-^{2}H_{2})$ cadaverine with diamine oxidase in the presence of o-aminobenzaldehyde (Expt. 3a). The ¹H NMR spectrum ($^{2}H_{2}O$, $p^{2}H \sim 5$) of this sample (125C) showed the two signals at δ 8.32 (H-4) and δ 8.68 (H-2) in a ratio of 2:1. The intensity of the downfield portion (δ 2.95, t) of the five line pattern centred at δ 2.90 was *approx*. half that of the upfield portion (δ 2.85, t), indicating that the triplet at δ 2.95 corresponded to the protons at C-3' (*cf*. Table 10).

The ²H NMR spectra of these samples of 3-(3'-aminopropyl)quinoline dihydrochloride ((125C) and (125D)), as well as those of the two samples ((125A) and (125B)) derived from \underline{S} -(1-²H)- and \underline{R} -(1-²H)cadaverine are shown in Figure 5.

107

Table 10. ¹H NMR data for 3-(3'-aminopropy])quinoline (1 $\frac{2}{5}$) and its dihydrochloride salt.

				чни Уч Уч		
3-(3'-aminopropyl)- quinoline (solvent)				s (ppm) ^a	~	•
	<u>H-2</u>	<u>H-4</u>	<u>Aromatic-H</u>	·	<u>H-2'</u>	H-3'
Free base (² H ₂ 0)	8.63 d J _{2.4} 1.8 Hz	8.27 ^b d J _{2,4} - 1.8 Hz	7.46-8.00	, 2.83° t J _{1' 2} ' 7.5 Hz	. 1.93 quin ປີ໋າ 2' ≈ J ₂ ! 3!	3.04 ⁶ t J ₂ : a' 7.5 Hz
Dihydrochloride (² H ₂ 0)	8.89 d J _{2.4} 1.8 Hz	, 8.82 ^b d J _{2.4} - 1.8 Hz	7.61-8.15	з.05 ^д т	2.02 2.02 quin J 7.4 Hz	3.05 <i>d</i> 3.05 <i>d</i> -
Dihydrochloride (² H ₂ 0, p ² H 5)	8.68 ^e	8.32 ^f s	7.42-8.02	2.85 ⁰ t J ₁ ',2' 7.2 Hz	1.94 quin Jı',2' ≃ J2',3'	2.95 [°] t J _{2',3'} 7.2 Hz
<pre>a Relative to DSS. b Poorly resolved.</pre>		d Appar e Width	ent triplet. . at half heig	ht, w ½ = 6 Hz.		

108

w ½ = 4 Hz.

4---

Two overlapping triplets.

U

• 3

Figure 5. Proton decoupled ²H NMR spectra of deuterium labelled samples of 3-(3'-aminopropyl)quinoline (125) dihydrochloride: A (125A), derived from S-(1-²H)cadaverine (by enzymic oxidative deamination) (5 mM, 56628 transients); B (125B), derived similarly from R-(1-²H)cadaverine (5 mM, 57000 transients); C (125C), derived similarly from (1,1-²H₂)cadaverine (13 mM, 3475 transients); D (125D), obtained from <u>DL</u>-(2-²H)lysine by chemical oxidation (8 mM, 4808 transients).

The ²H NMR spectrum of the sample of $3-(3'-aminopropy1)-(2-^2H)$ quinoline (125D) showed a single peak at δ 8.8 (Figure 5, spectrum D) (apart from the signal at δ 4.5 due to the natural abundance of deuterium in water). The ²H NMR spectrum of the quinoline derivative (125C) derived from (1,1-²H₂)cadaverine (Expt. 3a) showed two signals at δ 2.9 and δ 8.8, of relative areas-2.1, due to deuterium at C-3' and C-2, respectively (Figure 5, spectrum C).

The quinoline derivative of the sample of 5-aminopentanal derived from \underline{S} -(1-²H)cadaverine contained deuterium only at C-3' of the side chain (δ 2.9, Figure 5, spectrum A), that derived from \underline{R} -(1-²H)cadaverine contained deuterium at C-3' of the side chain as well as at C-2 of the quinoline ring (δ 2.9 and 8.8, Figure 5, spectrum B). Thus, the 5-aminopentanal, derived from \underline{S} -(1-²H)cadaverine, was a mixture of (5-²H)-5-aminopentanal and nondeuteriated 5-aminopentanal, whereas the product from \underline{R} -(1-²H)cadaverine was a mixture of (5-²H)-5-aminopentanal and (1-²H)-5aminopentanal. Deuterium had been stereospecifically lost from \underline{S} -(1-²H)cadaverine, protium from \underline{R} -(1-²H)cadaverine (Scheme 22).

It follows that diamine oxidase from hog kidney mediates the stereospecific removal of the *Si*-hydrogen from C-1 of cadaverine, and that the product of oxidative deamination, 5-aminopentanal, in equilibrium with Δ '-piperideine, retains the *Re*-hydrogen at the sp² carbon.

This stereospecificity corresponds to that of the analogous reactions, catalysed by the copper-amine oxidases (E.C. 1.4.3.6)¹⁵⁰ from pea seedlings and bovine plasma (Table 2, Section 1.5). The hog kidney enzyme is also a copper-amine oxidase.²²²⁻²²⁴ The FAD-containing enzyme, rat liver mitochondrial monoamine oxidase (E.C. 1.4.3.4),¹⁵⁰ by contrast,

catalyses the reaction of opposite chirality: oxidative deamination of tyramine 119,122,129 and heptylamine 151 takes place with loss of the *Re*-hydrogen from the carbon adjacent to the amino group.

 j_j^{ij}

The diamine oxidase from pea seedlings has been shown to catalyse stereospecific removal of the 1-*Si*-hydrogen in the course of the oxidation of every substrate so far investigated (Table 2). The stereochemical consistency with such a wide range of substrates would appear to justify the assumption that, in the reaction catalysed by this enzyme, oxidation of every substrate is accompanied by loss of the *Si*-hydrogen. Indeed, configurational assignments of the absolute stereochemistry of chiral samples of 4-amino[4-³H]butan-1-o1, ¹³² of 5-amino[5-³H]pentan-1-o1, ¹³⁵ of 3-methylthio[1-³H]propylamine¹³⁸ and, very recently, of [1-³H]-putrescine, ¹⁶⁸ have been made on the basis of this assumption.

Similarly, the assumption that mitochondrial rat liver monoamine oxidase catalyses removal of the *Re*-hydrogen not only from tyramine¹¹⁹, 122,129 and heptylamine¹⁵¹ but also from other substrates, has served as the basis of configurational assignment of chiral samples of [α -³H]tryptamine.¹⁴¹ The validity of such an assumption would therefore appear to be well accepted. Based on this assumption, that hog kidney diamine oxidase not only mediates stereospecific removal of the *Si*-hydrogen from C-1 of cadaverine, but also of putrescine and of agmatine, configurational assignments of the chiral samples of (1-²H)putrescine and of (1-²H)agmatine can be made.

3.3.4 <u>Configurational assignment of the enantiomeric samples</u> of (1-2H)putrescine

Incubation of the enantiomeric samples of $(1-^{2}H)$ putrescine, obtained by enzymic decarboxylation of <u>L</u>-ornithine, with diamine oxidase produced deuteriated samples of Δ' -pyrroline (133) which were trapped with *o*-aminobenzaldehyde (124) to yield deuteriated samples of 2,3trimethylene-1,2-dihydroquinazolinium (134) picrate. The location of deuterium in the samples of the dihydroquinazolinium derivative was determined by ²H NMR spectroscopy (Table 8, Figure 6).

The oxidation of putrescine catalysed by diamine oxidase is expected to occur with stereospecific loss of the 1-*si*-hydrogen (Section 3.3.3). Thus, oxidation of the <u>S</u>-enantiomer of (1-²H)putrescine by stereospecific loss of the *si*-deuterium leads to a sample of Δ' -pyrroline (133) enriched in deuterium exclusively at C-5, together with nondeuteriated (133). The dihydroquinazolinium derivative (134) obtained from this (5-²H)- Δ' -pyrroline will be deuteriated exclusively at C-3' of the trimethylene ring. Oxidation of the <u>R</u>-enantiomer of (1-²H)putrescine by stereospecific retention of the *Re*-deuterium but loss of the *si*-hydrogen from C-1, leads to a sample of Δ' -pyrroline, intermolecularly doubly labelled at C-2 and C-5. This, in turn, yields an intermolecularly labelled dihydroquinazolinium adduct, deuteriated at C-3', as well as at C-2 of the dihydroquinazolinium ring system (Scheme 23).

Assignment of the NMR signals due to ¹H and ²H at these positions was facilitated by chemical synthesis of $(2-^{2}H)-(134)$. This was achieved by oxidative decarboxylation of $(2-^{2}H)$ ornithine (101) with *N*-bromosuccinimide to afford $(2-^{2}H)-\Delta'$ -pyrroline which was then trapped, as before, with *o*-aminobenzaldehyde.

Ģ

. 1

· . •

Figure 6.

Proton decoupled ²H NMR spectra of deuterium labelled samples of 2,3-trimethylene-1,2-dihydroquinazolinium (134) picrate: A (134A), derived from (+)-(1-²H)putrescine dihydrochloride (by enzymic oxidative deamination) (13 mM, 15140 transients); B (134B), derived similarly from (-)-(1-²H)putrescine dihydrochloride (13 mM, 10000 transients); C (134C), derived similarly from (1,1-²H₂)putrescine dihydrochloride (26 mM, 4824 transients); D (134D), obtained from <u>DL</u>-(2-²H)ornithine by chemical oxidation (20 mM, 5000 transients).

putrescine dihydrochloride with diamine oxidase.

The ¹H NMR spectra of unlabelled samples of 2,3-trimethylene-1,2-dihydroquinazolinium picrate derived from putrescine, by enzymic oxidation, and from ornithine, by oxidative decarboxylation with *N*bromosuccinimide, were identical (Figure 7). The signals assigned to the protons at C-3' and C-2 appeared at δ 4.12 (t, $J_{2',3'}$ 6.8 Hz) and δ 5.20 (t, $J_{2,1'}$ 6.0 Hz), respectively. The downfield signal (δ 5.20) was absent in the ¹H NMR spectrum of the sample of 2,3-trimethylene-(2-²H)-1,2-dihydroquinazolinium (134D) picrate. The ²H NMR spectrum of (2-²H)-(134) showed a single peak at δ 5.1 (Figure 6, spectrum D) (apart from a signal at δ 2.8 due to the natural abundance of ²H in dimethylsulfoxide).

The assignment of these NMR signals was further verified by examination of the ²H NMR spectrum of a sample of $(2,3',3'-^{2}H_{3})-(134)$ (*i.e.* (134C)) which was obtained by enzymic dehydrogenation of $(1,1-^{2}H_{2})$ putrescine (Expt. 6, Table 8). The ²H NMR spectrum of this sample showed two signals at δ 4.1 and δ 5.2 (relative areas*, 7:1) corresponding to deuteriation at C-3' and C-2, respectively (Figure 6, spectrum C).

The ²H NMR spectra of the dihydroquinazolinium derivatives obtained from the two enantiomeric samples of $(1-^{2}H)$ putrescine are shown in Figure 6 (spectra A and B). The dihydroquinazolinium derivative (134A) derived from (+)-(1-²H) putrescine (102) dihydrochloride (Expt. 5) contained deuterium only at C-3' of the trimethylene ring (δ 4.1, Figure 6,

The relative areas of these signals are discussed in Section 3.3.6.

spectrum A) while that (134B) derived from (-)-(1-²H)putrescine (100) dihydrochloride (Expt. 4) contained deuterium at C-3', as well as at C-2' of the dihydroquinazolinium ring system (δ 4.1 and δ 5.2, Figure 6, spectrum B). Thus, the deuteriated Δ '-pyrroline derived from the sample of (+)-(1-²H)putrescine was a mixture of (5-²H)- Δ '-pyrroline and nondeuteriated (134), while the product derived from the sample of (-)-(1-²H)putrescine was a mixture of (5-²H)- Δ '-pyrroline and (2-²H)- Δ '-pyrroline. Deuterium had been stereospecifically lost from the (+)-enantiomer, and protium from the (-)-enantiomer.

117

If hog kidney diamine oxidase mediates stereospecific removal of the *Si*-hydrogen when putrescine is the substrate, as it does when cadaverine is the substrate, it follows that deuterium occupies the *Si*-position of $(+)-(1-^{2}H)$ putrescine, while protium occupies the *Si*-position of $(-)-(1-^{2}H)$ putrescine. $(+)-(1-^{2}H)$ Putrescine is the <u>S</u>-enantiomer, $(-)-(1-^{2}H)$ putrescine, the <u>R</u>-enantiomer (Scheme 23). Thus, it was <u>S</u>- $(1-^{2}H)$ putrescine which was derived from <u>L</u>- $(2-^{2}H)$ ornithine, by enzymic decarboxylation in $^{1}H_{2}O$, and it was <u>R</u>- $(1-^{2}H)$ putrescine which was derived from unlabelled <u>L</u>-ornithine, by enzymic decarboxylation in $^{2}H_{2}O$. Replacement of the carboxyl group of <u>L</u>-ornithine by a solvent proton in the course of decarboxylation, catalysed by <u>L</u>-ornithine decarboxylase of *E*. *coli* occurs with retention of configuration (*cf*. Scheme 17, Section 2.3.1).

3.3.5 <u>Configurational assignment of the enantiomeric samples</u> of (1-2H)agmatine

Incubation of (-)-(1-²H)agmatine (104) sulfate with hog kidney diamine oxidase (Expt. 7) yielded a sample of 4-guanidinobutanal (138)

(isolated as the phosphate salt of the 2',4'-dinitrophenylhydrazone (139)) which contained deuterium at the aldehyde carbon atom as revealed by examination of its ²H NMR spectrum. The product (139) derived from the enantiomeric (+)-(1-²H)agmatine (106) sulfate (Expt. 8) was free of deuterium: no signal due to deuterium in the product was detectable by ²H NMR (Table 9).

118

ċ,

The ¹H NMR spectra of the two dinitrophenylhydrazones confirm the inference that deuterium is maintained in one of the products but not in the other (Figure 3). The downfield region of the spectrum of the aldehyde dinitrophenylhydrazone from (+)-(1-²H)agmatine sulfate (Figure 8, spectrum A) shows a proton triplet, centred at δ 7.74 (J_{1,2} 5.1 Hz), due to the proton at the imino sp²-carbon, C-1. In this spectrum, the central line of the triplet, δ 7.74, coincides with the downfield line of a doublet, δ 7.68 (J_{5',6'} 9.8 Hz), due to H-6' of the aromatic nucleus. This triplet is missing entirely in the spectrum of the sample derived from (-)-(1-²H)agmatine (Figure 8, spectrum B). Thus, this sample is completely deuteriated at C-1.

Complete repention of deuterium in the product derived from one enantiomer of (1-2H) agmatine (104), and complete loss of deuterium in the product derived from the other enantiomer of (1-2H) agmatine (106), provides clear evidence that, in the course of the conversion of agmatine to 4-guanidinobutanal, hog kidney diamine oxidase mediates stereospecific release of one of the two enantiotopic hydrogens from the carbon adjacent to the reacting amino group. The degree of stereospecificity is as complete as the methods of detection can reveal. Thus, on the assumption that the reaction occurs with stereospecific removal of the *Si*-hydrogen

119

`Figure 8. Downfield region of the ¹H NMR spectra of samples of 4-guanidinobutanal dinitrophenylhydrazone (139), derived from deuterium labelled samples of agmatine by enzymic oxidative deamination. A (139A), derived from (+)-(1- 2 H)agmatine sulfate. B (139B), derived from (-)-(1- 2 H)agmatine sulfate. The signals assigned . to the protons/at C-3', C-5' and C-6' of the aromatic nucleus of the 2',4'-dinitrophenylhydrazone appear at δ 9.03 (d, $J_{3',5'}$ 2.7 Hz, H-3'), 8.23 (d of d, J_{3',5'} 2.7 Hz, J_{5',6'} 9.8 Hz, H-5') and 7.68 (d, $J_{5',6'}$ 9.8 Hz, H-6'), respectively. The triplet due to the presencé of protium at C-1 (Spectrum A) is centred at δ 7.74 (J_{1,2} 5.1 Hz).

(Section 3.3.3), it follows that (-)-(1-4H) agmatine (104) sulfate is the <u>R</u>-enantiomer and that (+)-(1-2H) agmatine (106) sulfate is the <u>S</u>-enantiomer (Scheme 24).

The sample of $(-)-(1-^{2}H)$ agmatine was obtained from <u>L</u>-arginine by decarboxylation in $^{2}H_{2}O$. The sample of $(+)-(1-^{2}H)$ agmatine was obtained from <u>L</u>- $(2-^{2}H)$ arginine in $^{1}H_{2}O$. Since deuterium occupies the *Re*-position in the levorotatory sample and the *Si*-position in the dextrorotatory sample, it follows that enzymic decarboxylation of <u>L</u>-arginine we yield agmatine, catalysed by <u>L</u>-arginine decarboxylase of *E. coli*, occurs with net retention of configuration (*cf.* Scheme 17, Section 2.3.1).

3.3.6 <u>Occurrence of an intramolecular isotope effect in the</u> enzymic oxidation of (1-2H)putrescine

The results discussed in previous sections of this chapter provide unequivocal evidence that the reaction catalysed by hog kidney diamine oxidase, with cadaverine, putrescine and agmatine as substrates, occurs with a very high degree of stereospecificity. Indeed, the ²H NMR spectra of the products obtained by the action of hog kidney diamine oxidase on the chiral samples of $(1-^{2}H)$ cadaverine (Figure 5, spectra A and B) and of $(1-^{2}H)$ putrescine (Figure 6, spectra A and B) show that the stereochemical course of the reaction is highly exacting with both substrates. Even so, comparison of the ²H NMR spectra of the corresponding products obtained from $(1,1-^{2}H_{2})$ cadaverine (Figure 5, spectrum C) and from $(1,1-^{2}H_{2})$ putrescine (Figure 6, spectrum C) reveals that the extent of reaction at the deuterium labelled site, relative to that at the unlabelled site may be significantly different with the two substrates.

The product (125C) from $(1,1-^{2}H_{2})$ cadaverine showed deuterium enrichment at C-3' (δ 2.9) which was approximately twice that at C-2 (δ 8.8) (Expt. 3a, Table 7; Figure 5, spectrum 0), whereas the product (134C) from $(1,1-^{2}H_{2})$ putrescine, which bears deuterium at the corresponding positions, showed deuterium enrichment at C-3' (δ 4.1) which was seven times greater than that at C-2 (δ 5.2) (Expt. 6, Table 8; Figure 6, spectrum C).

Since enzymic oxidative deamination of the $(1,1-^{2}H_{2})$ diamines can take place at one of two sites within a given molecule, either at the labelled site (C-1), with release of deuterium, or at the unlabelled site (C-4 or C-5, respectively), with release of protium, two isotopically distinct species are formed (Scheme 25). The relative contribution of each of these two species to the product, which is trapped *in situ* with *o*-aminobenzaldehyde, can be determined from the ²H NMR spectrum of the quinoline or the quinazolinium derivative which is isolated.

1

The ²H NMR spectrum of the sample of 3-(3'-aminopropyl)quinoline (125) dihydrochloride derived from (1,1-²H₂)cadaverine (119) (Expt. 3a, Table 7; Figure 5, spectrum C) indicates the presence of a mixture of the dideuteriated species, $(3',3'-^{2}H_{2})-(125)$ (δ 2.9, relative area 2.2 (± 0.4)) and the monodeuteriated species, $(2-^{2}H)-(125)$ (δ 8.8, relative area 1) in the ratio 1:1. It follows that the enzyme mediates release of hydrogen from C-5 and deuterium from C-1 of $(1,1-^{2}H_{2})$ cadaverine (119) to an equal extent (Scheme 25, A).

By contrast, the ²H NMR spectrum of the sample of 2,3-trimethylene-1,2-dihydroquinazolinium (134) picrate derived from $(1,1-^{2}H_{2})$ putrescine (120) (Expt. 6, Table 8; Figure 6, spectrum C) indicates preferential formation of the dideuteriated species, $(3',3'-^{2}H_{2})-(134)$ (6 4.1, relative

ł

B

LOSS OF D FROM C-1 $(2-^{2}H)-133$ $(2-^{2}H)-134$ (2-^{2}H)-134$

Scheme 25. Products derived from the diamine oxidase catalysed oxidation of $(1,1-{}^{2}H_{2})$ cadaverine (119) (A), and $(1,1-{}^{2}H_{2})$ putrescine (120) (B).

area 7.0 (± 0.5)) over the monodeuteriated species, $(2-^{2}H)-(134)$ (δ 5.2, relative area 1), by a factor of *ca*. 3.5.

Two obvious possibilities must be considered for the predominance -of the dideuteriated product, $(3^{\prime}, 3^{\prime}-{}^{2}H_{2})-(134)$, over the monodeuteriated product, $(2-{}^{2}H)-(134)$, in the product mixture.

The first possibility is that, as in the case of $(1,1-2H_2)$ cadaverine, enzymic oxidation of $(1,1-2H_2)$ putrescine leads to a 1:1 mixture of mono- and dideuteriated products, but that deuterium is subsequently lost from C-2 of the monodeuteriated product, (2-2H)-(134), by solvent mediated exchange, *e.g. via* tautomerization (Scheme 26). This would lead to unlabelled (134) from the monodeuteriated species, (2-2H)-(134), but would not affect deuterium enrichment in the dideuteriated species, $(3',3'-2I_2)-(134)$. The net effect of such a process would thus be to change the ratio of dideuteriated to monodeuteriated (134) within the product from 1:1 to the observed high value.

The second possibility for the preponderance of the dideuteriated species in the reaction product is that the enzymic reaction is accompanied by a large primary intramolecular protium-deuterium isotope effect, protium being released more readily (from C-4) than deuterium is released (from C-1) in the course of oxidation of $(1,1-2H_2)$ putrescine (120) (Scheme 25, B).

Solvent mediated exchange as the cause of the high ratio of dideuteriated to monodeuteriated species within the product may be excluded on the basis of the ¹H NMR spectrum of the reaction product (134C). The relative areas of the signals assigned to the protons at C-2 (δ 5.20) and C-3' (δ 4.12) correspond to 0.76 and 0.50 H atoms, respectively. This

Scheme 26. Tautomerization of the 2,3-trimethylene-1,2dihydroquinazolinium ion (134). indicates that the product consists of 24% $(2-^{2}H)-(1^{3}_{2}4)$ and 74% $(3^{\prime},3^{\prime}-^{2}H_{2})-(1^{3}_{2}4)$ (Table 11, Expt. 6). Since these two species account for approximately 98% of the product, and since non-deuteriated (1^{3}_{2}4) contributes less than 1%, loss of deuterium by tautomerization of the dihydroquinazolinium ion cannot be significant under the conditions of the experiment.

This inference is for the supported by the results of Experiments 4a and 4b. The sample of dihydroquinazolinium salt (134B), derived from (-)-(1-2H)putrescine (100) dihydrochloride, consisted of approximately equal amounts of (3'-2H)-(134) and (2-2H)-(134), as determined from the ²H NMR spectrum (Table 8, Expts. 4a and 4b). The ¹H NMR spectrum of (134B) (Table 11, Expt: 4a) reveals that 100% of the deuterium of the putrescine is retained in the components of the product. Thus, deuterium at C-2 of (2-2H)-(134), derived from (-)-(1-2H)putrescine dihydrochloride, is maintained without loss in the course of the enzymic reaction. It can be concluded that the integrity of deuterium at C-2 is also maintained in the (2-2H)-(134), which is derived, under similar conditions (Table 6, Expts. 6 and 4), from $(1,1-2H_2)$ putrescine.

Since exchange is excluded as the cause of the high ratio of dideuteriated to monodeuteriated species in the product of the diamine oxidase catalysed oxidation of $(1,1-2H_2)$ putrescine, it can be concluded that the observed high ratio is the result of isotope discrimination between the two symmetry-equivalent, *i.e.* homotopic, but isotopically distinct sites of the substrate, in the course of the enzymic oxidation of $(1,1-2H_2)$ putrescine (Scheme 25, B). The mole ratio of the two components of the product, $(3',3'-P_2^2)-(134)/(2-2H)-(134)$, derived from

126

L.
Analysis' of the ¹H MiR spectra of the ²H-labelled samples of 3-(3'-aminopropyl)quinoline and 2,3-trimethylene-1,2-dihydroquinazollnium picrate obtained in Experiments 1-6. Table 11.

Expt. No.	Product	Relative area ^d of signals due to u.c.	Relative contribution	on to the product o (1)	if each of the follo ,	wing species ²
	3-(3'-aminopropyl)- quinoline		Charles and the second se	L L L		
^ر ه ا	(1258) (1258)	0.51 ± 0.04 1.51 ± 0.18 ⁴ 1.00 ± 0.05 1.53 ± 0.18 ⁴	(3,1,1,2,1,2,1,2), (1,2,5)	(3'-2H)- (125) 49(+ 18) 47(- 18)	(2-2H)- (125) 49(+ 4)	(125) 2(± 18)
3(a) ^b 3(b) ^c	(125C) (125C)	$0.49 \pm 0.05 1.10 \pm 0.17^{3}$ $0.50 \pm 0.04 1.07 \pm 0.20^{3}$	41(± 18) 43(± 20)	8(± 20) 8(± 20) 7(± 22)	51(: 5) 50(± 4)	رها ۱۱۶۶ 6
	6 , 1		IX IX	T T T T T T	a7 IX	Z.
	2,3-trimethylene- 1,2-dihydroquina- zolinium picrate					
9			(13.,3'- ² H ₂)- (134)	(32H)- (134)	(bÊl) -(H ₂ -Z)	(†21)
4(a)	{ I } 34B]	0.50 ± 0.03 1.50 ± 0.08		50(± 8)	50(± 3)	(f ₹)0
ň	(12ªAA)	1.00 ± 0.03 1.20 ± 0.04		80(1,4)		20(± 4)
وو	(134C)	0.76 ± 0.04 0.50 ± 0.03	74(± 5)	للرغ 9)	24(± 4)	ч -

Area of the signals assigned to the protons at C-2 (H-2) and C-3' (H-3') in the products obtained from each experiment are measured relative to the area of the signal assigned to the proton at C-4' (H-4'). a

The products were isolated as the 3-(3'-aminopropyl)quinoline dihydrochlorides. The signals (in ²H₂O, p²H 5) assigned to H-2 and H-3' appeared at 8.68 (s) and 2.95 (t, J_{2',2}' 7.2 Hz) ppm, respectively. The signal due to H-4 occurrgd at 8.32 (s) ppm.

The products were isolated as the 3-(3'-aminopropyi)quinoline dipicrates. The signals (in CMSO-2H₆) assigned to H-2 and H-3' appeared at 9.30 (d. J₂'+ 1.2 Hz) and 3.16 (t. J₂'_{3'} 7,2 Hz) ppm, respectively. The signal due to H-4 occurred at 9.04 (s (br)) ppm.

Since the signals assigned to the protons at C-3' (H-3') and C-1' (H-1') appeared as two overlapping triplets, only the combined relative area of the signal of these signals could be measured. The relative area of the signal due to H-3' was determined by subtraction of the contribution due to H-l' (taken as 2.0 hydrogen atoms).

The signals assigned to H-2 and H-3' appeared at 5.20 (t, J_{2,1} 6.0 Hz) and 4.12 (t, J_{2',3'} 6.8 Hz) ppm, respectively. The signal due to H-4 occurred at 8.97 (s) ppm.

Determined from the relative area of the ¹H MMR signals due to H-2 and H-3'.

The contribution of the unlabelled species (125) was taken to be zero.

 $^{
m k}$ The contribution of the unlabelled species (134) found to be < 1%, was taken to be zero.

 $(1,1-^{2}H_{2})$ putrescine (120) $(91\% ^{2}H_{2})$ * indicates an intramolecular isotope effect, $k_{H}/k_{D} \approx 4$ (Table 12, Expt. 6). By contrast, oxidation of $(1,1-^{2}H_{2})$ cadaverine (119) (*ca*. 93% $^{2}H_{2}$)* leads to a product containing $(3',3'-^{2}H_{2})$ -(125) and $(2-^{2}H)-(125)$ in a ratio 1:1, indicating a negligible intramolecular isotope effect (Table 12, Expt. 3a).

128

Thus, whereas a primary intramolecular isotope effect is observed in the diamine oxidase catalysed reaction with $(1,1-^{2}H_{2})$ putrescine as substrate, but not with $(1,1-^{2}H_{2})$ cadaverine as substrate, it is evident that the rate-limiting step in the hydrogen abstraction process with each of the two substrates is not the same. This finding weakens the assumption that the stereochemistry of hydrogen abstraction in the oxidation of putrescine is the same as that in the oxidation of cadaverine (Section 3.3.3) since not only the rate-limiting step, but also the mechanism, might be different with each of the two substrates.

The reaction catalysed by plasma amine oxidase has recently been shown¹⁵⁴ to have a different stereochemical outcome with homologous substrates, which differ by only one methylene group. With *p*-hydroxybenzylamine¹⁵² and benzylamine¹⁵³ as substrates, bovine plasma amine oxidase mediates stereospecific removal of the *si*-hydrogen from the carbon adjacent to nitrogen. With enantiomeric samples of [1-³H]dopamine ((86) and (87), Table 2) as substrates, the enzyme-mediated hydrogen

* The contribution of the mono- and dideuteriated components to the products derived solely from the $(1,1-^{2}H_{2})$ -species of the substrates is discussed in Section 3.3.6.1.

Table	12.

Intramolecular isotope effect in the oxidation of $(1-^{2}H)$ - and $(1,1-^{2}H_{2})$ cadaverine and putrescine, catalysed by diamine oxidase.

Expt. No.	Substrate	² H content (atom %)	Intramolecular isotope effect
]	$\frac{R}{=}$ (1- ² H)cadaverine	<i>aa</i> 95	$1.0 \pm 0.2^{a}_{b,c}$ $1.0 \pm 0.4^{b,c}$
2	<u>S</u> -(1- ² H)cadaverine	ca. 95	$1.0 \pm 0.5^{b,c}$
3a -	(1,1- ² H ₂)cadaverine	ca. 93	$1.1 \pm 0.2^{a,d}$ 0.9 ± 0.2 ^{b,d}
3b	(1,1- ² H ₂)cadaverine	<i>ca.</i> 93	$1.0 \pm 0.2^{b,d}$
4a	$\underline{\underline{R}}$ -(1- ² H)putrescine	99.7	$1.2 \pm 0.1^{a}_{b,c}$ $1.0 \pm 0.2^{b,c}$
,4b	<u>R</u> -(1- ² H)putrescin <u>e</u>	98.7	1.0 ± 0.3^{a}
5	<u>S</u> -(l- ² H)putrescine	97.2	$4.7 \pm 1.1^{b,c}$
6	$(1,1-^{2}H_{2})$ putrescine	91	$4.2 \pm 0.3^{a,e}$ $3.9 \pm 0.3^{a,e}$

Determined from the relative areas of the 2 H NMR signals corresponding to deuterium enrichment at C-2 and C-3' (from Tables 7 and 8).

^b Determined from the relative area of the 1 H NMR signals corresponding to H-2 and H-3' (from Table 11).

- c Corrected for the presence of unlabelled species in the (1-²H)-substrate.
- ^d Corrected for 5% <u>R</u>-(1-²H)- and 2% <u>S</u>-(1-²H)-species present in the sample of $(1, 1-^{2}H_{2})$ cadaverine (Section 3.3.6.1).
- ^e Corrected for 7.9% <u>R</u>-(1²H)-, 1.0% <u>S</u>-(1-²H)- and 0.1% unlabelled species present in the sample of $(1,1-^{2}H_{2})$ putrescine (Section 3.3.6.1).

abstraction process appears to be non-stereospecific and a substantial hydrogen-tritium isotope effect is expressed.¹⁵⁴ To explain these results, it was suggested¹⁵⁴ that the dehydrogenation reaction, with dopamine as substrate, occurs by two competing mechanisms.

Hog kidney diamine oxidase exhibits absolute stereospecificity in Vits reactions with agmatine, putrescine and cadaverine as substrates. In Chapter 2 of this thesis, lit was demonstrated that the descrorotatory samples of (1-2H) a gratine and (1-2H) putrescine are of the same configuration. Similarly, the evorotatory samples of these (1-2H)amines are of the same equifiguration (Section 2.3.1). Since hog kidney diamine oxidase catalyses stereospecific removal of deuterium from the dextrorotatory enantiomers and of protium from the levorotatory enantiomers, it follows that the reaction stereospecificity exhibited by this enzyme is the same with both agmatine and putrescine as substrates. It would seem very unlikely that hog kidney diamine oxidase catalyses the reaction of opposite chirality with cadaverine as substrate? Even so, to put to rest key doubt, the configurational assignments of the enantiomeric samples of (1-²H)agmatine were confirmed by an independent method (discussed in Chapter 4). This provided conclusive evidence that deuterium occupies the 1-Si-position in the dextrorotatory sample and the 1-Re-position in the levorotatory sample. Thus, hog kidney diamine oxidase catalyses stereospecific removal of the *si*-hydrogen from C-1 of all three substrates even though oxidation of $(1,1-2H_2)$ putrescine, but not of $(1,1-2H_2)$ cadaverine, is subject to a primary intramolecular hydrogen-deuterium isotope effect.

Л

Correspondingly, a primary intramolecular isotope effect is observed in the oxidation of \underline{S} -(1-²H)putrescine, but none in the oxidation of \underline{S} -(1-²H)cadaverine.

The ¹H NMR spectrum of the product (134A) of the oxidation of \underline{S} -(1-²H)putrescine indicates the presence of two components, (3'-²H)-(134) and unlabelled (134), in the approximate ratio 4:1 (Table 11, Expt. 5). Thus, the *si*-proton at C-4 of \underline{S} -(1-²H)putrescine is abstracted in preference to the *si*-deuteron at C-1. On the other hand, the composition of the product (125A) from \underline{S} -(1-²H)cadaverine (Table 11, Expt. 2) indicates the absence of an isotope effect (Table 12, Expt. 2).

Intramolecular isotope effects are not observed in the reactions of the <u>R</u>-enantiomers of $(1^{-2}H)$ putrescine and $(1^{-2}H)$ cadaverine. The ²H and ¹H NMR spectra of the products, (134B) and (125B), obtained from the enzymic oxidation of <u>R</u>- $(1^{-2}H)$ putrescine (Expts. 4a and 4b) and of <u>R</u>- $(1^{-2}H)$ cadaverine (Expt. 1), respectively, indicate equal molar amounts of the two monodeuteriated components in each of the products (Tables 7, 8 and 11). α -Secondary hydrogen-deuterium isotope effects, $k_{\text{H}'}/k_{\text{D}'}$, in the range 1.1-1.3 have been observed in other enzyme-catalysed hydrogen abstraction processes.²²⁵⁻²²⁷ Although the reactions of the <u>R</u>- $(1^{-2}H)$ diamines take place without detectable intramolecular isotope effect, the occurrence of small α -secondary effects cannot be ruled out due to the sensitivity of the methods used to determine the ratio of the two components in the reaction products (Table 12).

Thus, an intramolecular isotope effect $(k_{H_{Si}}/k_{D_{Si}} \approx 4)$ is only observed in the reactions catalysed by hog kidney diamine oxidase when $\underline{S} - (1-^{2}H) - and (1, 1-^{2}H_{2})$ putrescine serve as substrates (Table 12). An intramolecular isotope effect of similar magnitude $(k_H/k_D = 3.91-4.75)$ in the hog kidney diamine oxidase catalysed oxidation of $(1,1-^2H_2)$ putrescine was recently reported by Callery *et al.*²²⁸ In this investigation, the contribution of the monodeuteriated species, $(2-^2H)-\Delta'$ -pyrroline, and of the dideuteriated species, $(5,5-^2H_2)-\Delta'$ -pyrroline, to the oxidation product was determined by analysis of the *N*-trifluoroacetyl-2-cyanopyrrolidine derivative by mass spectrometry.

The magnitude of hydrogen-dexterium isotope effects observed in enzymic reactions are known to be sensitive to variation in experimental conditions.^{226,229,230} Since cadaverine (Expts. 1, 2 and 3a) and putrescine (Expts. 4, 5 and 6) had been incubated with diamine oxidase under slightly different conditions (Table 6), the reaction with $(1,1-^2H_2)$ cadaverine was repeated (Table 6, Expt. 3b) employing conditions similar to those used in the oxidation of $(1,1-^2H_2)$ putrescine (Table 6, Expt. 6). The product, 5 aminopentanal (122), was trapped with *o*-aminobenzaldehyde, and the picrate salts of the quinoline derivative (125), as well as the dihydroquinazolinium ion (126) were isolated (Scheme 18). In agreement with the earlier results these products again contained mono- and dideuteriated species in the ratio 1:1, confirming the absence of an intramolecular isotope effect (Tables 11 and 12, Expt. 3b).

Thus, an intramolecular isotope effect is not observed with cadaverine as the substrate of hog kidney diamine oxidase. Similarly, oxidation of cadaverine, catalysed by pea seedling diamine oxidase also takes place without significant primary isotope effect, as shown by the result of the oxidative deamination of \underline{S} -[1-³H]cadaverine (53) in the presence of [1-¹⁴C]cadaverine.¹³⁴ The resulting Δ^{r} -piperideine (143), which was

trapped as pelletierine (144), retained 55 (\pm ?)* % ³H, relative to ¹⁴C, indicating little, if any, preference for removal of the *Si*-protium from C-5 over that of the *Si*-tritium from C-1 of cadaverine (Scheme 27).

The oxidation of $S-[1-^3H]$ cadaverine, together with $[1-^{14}C]$ cadaverine, catalysed by pea seedling diamine oxidase, was recently reinvestigated.¹³⁵ The reaction was carried out in the presence of a second enzyme, yeast alcohol dehydrogenase, together with ethanol as a hydride Under these conditions the oxidation product of cadaverine, donor. 5-aminopentanal, is reduced in situ to yield 5-aminopentan-1-ol. Furthered diamine oxidase mediated reaction of this compound yields pentan-1,5-diol (via 5-hydroxypentanal). 5-Aminopentan-1-ol as well as pentan-1,5-diol were isolated. When <u>S-[1-³H]</u>cadaverine (53) served as the substrate, the pentan-1,5-diol (146) was essentially free of tritium, relative to ¹⁴C. The 5-aminopentan-1-ol (94), on the other hand, retained almost all the tritium (95 \pm 5%) relative to ¹⁴C. This was interpreted ¹³⁵ to indicate a large isotope effect in the oxidation of the <u>S</u>-[1-³H]cadaverine (53). In view of the result reported by Gerdes and Leistner, ¹³⁴ it is more likely that the retention of tritium, relative to 14 C, in the sample of S-5 $amino[5-^{3}H,1,5-^{1.4}C_{2}]$ pentan-1-o1 (94) was the result of a substantial intermolecular tsotope effect in its further oxidation to [1-14C]pentan-1,5-diol (146), rather than the consequence of an intraffolecular isotope effect in its generation from $S-[1-^{3}H, 1-^{14}C]$ cadaverine -(5,3) (Scheme 27).

The confidence limits of the counting data were not given; the result¹³⁴ was taken to indicate a loss of 50% of the tritium, relative to ¹⁴C, *i.e.* a reaction not accompanied by an isotope effect.

Scheme 27. Reported products of isolation from the incubation of $\underline{S} = [1-3^{3}H]$ cadaverine (53) with pea seedling diamine oxidase.

Intramolecular isotope effects in enzyme catalysed hydrogen abstraction in substrates with C22, symmetry have been investigated in a number of instances 2^{21-233} and values for k_H/k_D as high as 11 have been observed. A kinet 🗰 model for the interpretation of intramolecular isotope effects between two N-methyl groups in substrates with C $_{s}$ symmetry has recently been advanced. 234 This model is adaptable to the C_{2v} case. If hydrogen abstraction were irreversible, the intramolecular isotope effect is a function of the relative rate of this hydrogen abstraction compared to the rate of the exchange, at the active site of the enzyme, of the two symmetry equivalent but isotopically distinct regions of the substrate. Thus, if the labelled and unlabelled homotopic regions of the substrate rapidly equilibrate at the active site, a large intramolecular isotope effect results, as was observed in the diamine oxidase catalysed oxidation of <u>S</u>-(1-²H)putrescine. If equilibration of labelled and unlabelled regions is slow, relative to C-H (or C- 2 H) bond cleavage, *i.e.* when there is little rotational mobility once substrate is bound at the active / site, the intramolecular isotope effect is small. This is the case when cadaverine serves as the substrate of diamine oxidase. Since the variation in intramolecular isotope effects appears to arise from changes in the relative contribution of the individual rate constants to the overall kinetic scheme, rather than from intrinsic differences in the ratelimiting step, 226,230,234 mechanistic inferences cannot be based on the observed differences in the behaviour of putrescine and cadaverine as substrates of hog kidney diamine oxidase.

It is noteworthy in this context that the values of intermolecular isotope effects in reactions catalysed by hog kidney diamine oxidase

0

ذ_ و

ଟ

are smaller than those of the intramolecular isotope effects. Thus, in the oxidation of putrescine, $k_{\rm H}/k_{\rm D}$ (intermolecular)²²⁸ was found to be *ca.* 1.3 (compared to $k_{\rm H}/k_{\rm D}$ (intramolecular) = 4). With *p*-dimethylaminomethylbenzylamine and the corresponding $(\alpha, \alpha^{-2}H_2)$ -derivative as substrates, the hydrogen-deuterium isotope effect was found to be sensitive to variation in pH and temperature.²³⁵ Values for $k_{\rm H}/k_{\rm D}$ ranged from 4.8 to 1.8 for pH values from pH 6 to pH 8, at 20°C. The isotope effect on the kinetic parameters $V_{\rm max}/k_{\rm H}$ varied from 2.1 at pH 7.0 and 40°C to 5.2 at pH 6 and 20°C. The isotope effect on $V_{\rm max}$ was less sensitive to changes in pH and temperature, varying from 1.6 to 2.8. Similar values for intermolecular isotope effects have been observed in the reactions catalysed by monoamine oxidase from rat liver^{119,122,236} ($k_{\rm H}/k_{\rm D}$ = 2.3), and from rabbit liver²³⁷ ($k_{\rm H}/k_{\rm D}$ = 2), as well as by hog plasma monoamine oxidase²³⁸ ($k_{\rm H}/k_{\rm D}$ = 2.8).

3.3.6.1 Determination of the composition of the enzymic oxidation products obtained from samples of the (1,1-2H₂)diamines

The samples of $(1,1-^{2}H_{2})$ putrescine and $(1,1-^{2}H_{2})$ cadaverine were prepared by enzymic decarboxylation of the corresponding $(2-^{2}H)$ amino acids in deuterium oxide. Since the $(2-^{2}H)$ amino acids were not fully deuteriated at C-2 and enzymic decarboxylation in $^{2}H_{2}O$ led to incomplete deuterium incorporation into the α -position of the amines, the samples of the $(1,1-^{2}H_{2})$ diamines also contained monodeuteriated species.

The sample of $(1,1-^{2}H_{2})$ putrescine (Expt. 6) was found to be composed of 91.0 ± 1.0% dideuteriated amine and of 9.0 ± 1.0% monodeuteriated amines, *i.e.* <u>R</u>- and <u>S</u>-(1-²H) putrescine, by mass spectrometry (Section

6.2.2.1.3). Since this sample was prepared from a specimen of <u>DL</u>ornithine which was *ca*. 92% monodeuteriated at C-2 (by ¹H NMR), enzymic decarboxylation of the <u>L</u>-component of the specimen of <u>DL</u>-(2-²H)ornithine in ²H₂O must have led to incorporation of *ca*. 98.9 atom % ²H from the medium into the l-*Re*-position* of putrescine. It follows that the sample consisted of 91% (1,1-²H₂)-, 7.9% <u>R</u>-(1-²H)-, 1.0% <u>S</u>-(1-²H)- and 0.1% nondeuteriated putrescine.

Oxidative deamination of the sample of $(1,1-^{2}H_{2})$ putrescine, catalysed by hog kidney/diamine oxidase, led to a product (134C) which consisted of a mixture of mono- and dideuteriated species (Table F1, Expt. 6). Given the above composition of the sample of putrescine, the contribution of the two species, $(3',3'-^{2}H_{2})-(134)$ and $(2-^{2}H)-(134)$, derived solely from $(1,1-^{2}H_{2})$ putrescine (120), to the product can be determined from either the ^{2}H or ^{1}H NMR spectra: $73.3 \pm 6.8\%$ $(3',3'-^{2}H_{2})-(134)$ and $17.7 \pm 1.0\%$ $(2-^{2}H)-(134)$, determined from the relative areas of the ^{2}H NMR signals corresponding to ^{2}H enrichment at C-3' and C-2 of (134C) (Table 7, Expt. 6); and, $72.4 \pm 7.2\%$ $(3',3'-^{2}H_{2})-(134)$ and $18.6 \pm 0.5\%$ $(2-^{2}H)-(134)$, determined from the relative areas of the protons at C-3' and C-2 of (134C) (Table 11, Expt. 6). These values for the contribution of the two species to the product were used for the calculation of the values of the intramolecular isotope effect reported in Table 12.

Since the enzymic decarboxylation of <u>L</u>-ornithine to putrescine takes place with net retention of configuration (Sections 3.3.4 and 4.3), the solvent derived deuteron occupies the 1-Re-position.

The deuterium content of the samples of $(1, 1-2H_2)$ cadaverine (Expts. 3a and 3b) was not accurately known (ca. 95% dideuteriated at one of the methylene groups by ¹H NMR). The sample of $(1, 1-2H_2)$ cadaverine was obtained from the L-component of DL-(2-2H)lysine (ca. 95 atom % 2H at C-2 as determined by ¹H NMR) by enzymic decarboxylation in ²H₂O (> 98 atom % 2H) (Section 6.2.1.1.3). The contribution of the chiral monodeuteriated species to the sample can be calculated if the efficiency of deuterium incorporation into the product of decarboxylation is estimated. If it is assumed that decarboxylation of the specimen of L-(2-2H) lysine leads to incorporation of 98 atom % ²H* from the medium into the 1-Re-position ¹²⁰ of the diamine, the sample will be composed of 93% $(1,1-2H_2)$ -, 5% $\underline{\mathbb{R}}$ -(1-2H), and $2\% \leq -(1-2H)$ cadaverine. Taking this to be the composition of the samples of $(1, 1-2H_2)$ cadaverine employed in experiments 3a and 3b, the relative contribution of the dideuteriated, $(3',3'-^{2}H_{2})-(125)$, and the monodeuteriated, $(2-^{2}H)-(125)$, species to the product (125C) derived exclusively from the $(1-1, -2H_2)$ -species (119) was determined (Table 12).

* The enzymic decarboxylation of <u>L</u>-ornithine and <u>L</u>-arginine under similar conditions in ${}^{2}\text{H}_{2}\text{O}$ was found to lead to incorporation of > 98 atom % ${}^{2}\text{H}$ into the products (Table 3, Expts. 4, 7, 9 and 11).

CHAPTER 4

THE STEREOCHEMISTRY OF THE ENZYMIC DECARBOXYLATION OF \underline{L} -ARGININE AND \underline{L} -ORNITHINE

INTRODUCTION

4.1

The determination of absolute configuration by the enzymic method was based on the assumption that the stereochemistry of the reaction, catalysed by hog kidney diamine oxidase, with putrescine and agmatine as substrates was the same as that with cadaverine as substrate. The stereochemistry of this reaction had been determined with enantiomeric samples of $(1-^{2}H)$ cadaverine, of known configuration, as substrate. However, the occurrence of a primary kinetic isotope effect in the reaction, catalysed by hog kidney diamine oxidase, when $(1,1-^{2}H_{2})$ putrescine served as substrate, indicated

-139-

that the rate-limiting step of the hydrogen abstraction process with putrescine as substrate was not the same as that with cadaverine as substrate. Since there was the possibility that the mechanism of the hydrogen abstraction process was also different with the two substrates, it would have been unsound to base the assignments of absolute chirality solely on the use of this assumption.

The optical activity exhibited by the chiral samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine provided an independent method for configurational assignment. This method is described in this chapter and involves chemical correlation of the chiral samples of $(1-^{2}H)$ agmatine with 4-phthalimido $(4-^{2}H)$ butyric acid of known stereochemistry.

METHODS AND RESULTS

4.2

The preparation of the enantiomeric samples of $(1-^{2}H)$ agmatine and of $(1-^{2}H)$ putrescine is described in Chapter 2 of this thesis.

 $(-)-(1-^{2}H)$ Agmatine (104) sulfate and $(+)-(1-^{2}H)$ agmatine (106) sulfate were obtained, respectively, by decarboxylation of <u>L</u>-arginine (103) in $^{2}H_{2}O$ and of <u>L</u>- $(2-^{2}H)$ arginine (105) in $^{1}H_{2}O$, catalysed by <u>L</u>-arginine decarboxylase of *E. coli* (Table 3, Section 2.2). The two enantiomers of $(1-^{2}H)$ agmatine were converted in two steps into the corresponding enantiomers of 4-phthalimido(4- ^{2}H)butyric acid. Treatment of agmatine (137) with *N*-carbethoxyphthalimide (147)²³⁹ gave 4-phthalimidobutylguanidine (148) which, on oxidation with potassium permanganate, afforded 4-phthal-imidobutyric acid (149) (Scheme 28).

4-phthalimidobutyric acid

Scheme 28. Synthesis of 4-phthalimidobutyric acid (149) from agmatine (137).

141

The sample of $(-)-(1-^{2}H)$ agmatine (104) sulfate gave (-)-4-phthalimido $(4-^{2}H)$ butyric acid (150) (Expt. 11). The sample of $(+)-(1-^{2}H)$ agmatine (106) sulfate gave (+)-4-phthalimido $(4-^{2}H)$ butyric acid (151) (Expt. 12). The ORD curves of the enantiomeric 4-phthalimido $(4-^{2}H)$ butyric acids are shown in Figure 9.

A sample of the (-)-4-phthalimido(4-²H)butyric acid (150) was converted into (-)-methyl 4-phthalimido(4-²H)butyrate (63) by treatment with diazomethane.

An authentic specimen of (-)-methyl <u>R</u>-4-phthalimido(4-²H)butyrate was obtained from M.H. O'Leary, University of Wisconsin. This sample had[°] been prepared by methylation of (-)-4-phthalimido(4-²H)butyric acid which had been)obtained by decarboxylation in ²H₂O of <u>L</u>-glutamic acid, catalysed by <u>L</u>-glutamate decarboxylase from *E. coli*, and had been shown¹²¹ to have <u>R</u>-chirality by direct correlation with an authentic specimen, prepared from chiral (2-²H)glycine by a series of reactions which did not affect the stereochemistry at the chiral centre (Scheme 10).

The sample of (-)-methyl 4-phthalimido(4-²H)butyrate (63) derived from (-)-(1-²H)agmatine sulfate (104) and the sample of (-)-methyl <u>R</u>-4phthalimido(4-²H)butyrate supplied by M.H. O'Leary showed similar plane negative ORD curves (Figure 10).

4.3 <u>DISCUSSION</u>

In Chapter 2 of this thesis, evidence was presented which demonstrates that the optically active samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine of the same sign of rotation correspond in configuration at C-1

۱

Figure 9. ORD curves of (+)- and (-)-4-phthalimido $(4-^{2}H)$ butyric acid.

S:

143

÷.

144

Figure 10.

R

ORD curves of (-)-methyl 4-phthalimido(4-²H)butyrate (63). Curve A: Sample supplied by M.H. O'Leary. Curve B: Sample obtained from (-)-(1-²H)agmatine (104) sulfate.

(Expts. 9 and 10, Table 4). Thus, stereochemical correlation of either $(1-^{2}H)$ agmatine or $(1-^{2}H)$ putrescine with a suitable configurational standard would allow assignment of absolute configuration to both of the $(1-^{2}H)$ amines.

(1-2H)Agmatine rather than (1-2H)putrescine was chosen for chemical correlation with a known standard in order to avoid possible complications due to the C_{2v} symmetry of putrescine.

(1-2H)Agmatine was converted into the 1-N-phthaloyl derivative. The primary amino group was thus afforded protection from oxidative The guanidino group was then removed by oxidation with potassium attack. permanganate, yielding 4-phthalimido (4-2H) butyric acid whose stereochemical integrity had been maintained. By this reaction sequence (-)-(1-2H)agmatine (104) sulfate afforded (-)-4-phthalimido(4-2H)butyric acid (150), and $(+)-(1-^{2}H)$ agmatine (106) sulfate afforded (+)-4-phthalimido $(4-^{2}H)$ butyric acid (151). The two enantiomers of 4-phthalimido($4-^{2}H$)butyric acid showed 'ORD curves of equal magnitude but of opposite sign (Figure 9). The levorotatory enantiomer of 4-phthalimido(4-2H) butyric acid (150) $([\alpha]_{589} - 1.69^{\circ})$ has been shown to have the <u>R</u>-configuration at C-4.¹²¹ Thus, $\underline{\mathbf{R}}$ -(-)-4-phthalimido(4-²H)butyric acid (150) ([α]₅₈₉ - 1.11°, methanol) was obtained from (-)-(1-2H) agmatine (104) sulfate. Since con version of the sample of $(-)-(1-^{2}H)$ agmatine (104) sulfate into (-)-4phthalimido($4-^{2}H$)butyric acid (150) involved a reaction sequence which did not affect the chirality of the deuteriated centre, it follows that the levorotatory sample of (1-2H) agmatine (1Q4) has the <u>R</u>-configuration at C-1 (Scheme 29).

146

\$

C:

Scheme 29. Conversion of (-)-(1-²H)agmatine (104) sulfate into (-)-methyl 4-phthalimido(4-²H)butyric acid (63).

Correspondingly, \underline{S} -(+)-4-phthalimido(4-²H)butyric acid (151) ([α]₅₈₉ + 1.13°, methanol) was obtained from (+)-(1-²H)agmatine (106) sulfate. This indicates that the dextrorotatory sample of (1-²H)agmatine `(106) has the <u>S</u>-configuration at C-1.

Confirmation of these stereochemical assignments was obtained by direct comparison of the ORD curve of the methyl ester of the sample of 4-phthalimido(4- 2 H)butyric acid, prepared from the sample of (-)-(1- 2 H)- agmatine sulfate, with that of an authentic specimen.

A sample of (-)-4-phthalimido(4-²H)butyric acid (150) was converted into the corresponding methyl ester, (-)-methyl 4-phthalimido-(4-²H)butyrate (63) (isotopic enrichment (m.s.) 98.2 \pm 0.3 atom % ²H₁). This derivative was compared directly with an authentic specimen of (-)-methyl 4-phthalimido-<u>R</u>-(4-²H)butyrate (isotopic enrichment 92.5 \pm 0.4 atom % ²H₁, 4.7 \pm 0.4% ²H₂), which had been prepared in the laboratory of M.H. O'Leary, University of Wisconsin. ¹²¹ The absolute configuration of this sample ultimately rests on chemical correlation with that of <u>R</u>-(2-²H)glycine (26)¹²¹ (Section 1.4, Scheme 10).

The two samples of (-)-methyl 4-phthalimido(4-²H)butyrate (63), that from (-)-(T-²H)agmatine (104) sulfate and that supplied by O'Leary, both showed plane negative ORD curves (Figure 10). Since (-)-methyl 4-phthalimido(4-²H)butyrate has the <u>R</u>-configuration, the (-)-(1-²H)agmatine sulfate from which it was obtained, by a reaction sequence which did not affect the chiral centre, also has the <u>R</u>-configuration (Scheme 29, no change in ligand priorities around the chiral centre).

Since this <u>R</u>-(-)-(1-²H)agmatine (104) sulfate had been obtained from <u>L</u>-arginine (103) by decarboxylation in ²H₂O, catalysed by the

inducible \underline{L} -arginine decarboxylase (E.C. 4.1. 19) from *E. coli* the reaction catalysed by this enzyme proceeds with net retention of configuration.

Since $\underline{\mathbb{R}}$ -(-)-(1-²H)agmatine (104) sulfate yielded (-)-(1-²H)putrescine (100) dihydrochloride in a reaction which does not affect the chiral centre, this compound is $\underline{\mathbb{R}}$ -(-)-(1-²H)putrescine dihydrochloride.

Since the <u>R</u>-(-)-(1-²H)putrescine (100).dihydrochloride had been obtained from <u>L</u>-ornithine (98) by decarboxylation in ²H₂O, catalysed by the inducible <u>L</u>-ornithine decarboxylase (E.C. 4.1.1.17) from *E. coli*, the reaction catalysed by this enzyme proceeds with net retention of configuration.

These configurational relationships are summarised in Scheme 30. The stereochemical course of the reactions catalysed by these enzymes has very recently been determined by independent methods. 100,168In agreement with the results presented in this thesis, the conversions of <u>L</u>-ornithine to putrescine and of <u>L</u>-arginine to agmatine were reported by Orr and Gould, 100 and by Robins 168 to occur with net retention of configuration.

Using deuterium to probe the stereochemistry of these reactions, Orr and Gould¹⁰⁰ employed the NMR method of Gerlach and Zagalak⁷⁵ (Section 1.3) to assign absolute configuration to the enantiomeric samples of (1-2H)putrescine, which had been obtained from <u>L</u>-ornithine, by enzymic decarboxylation, and from (1-2H)agmatine, by hydrolysis. This method involved ¹H NMR analysis of the biscamphanoylamide derivatives in the presence of the shift reagent, Eu(fod)₃. Determination of the chirality

of the two enantiomers of $(1-{}^{2}H)$ putrescine was based on the assumption that the ${}^{1}H$ NMR signal corresponding to the α -Si-hydrogens of putrescine (*i.e.* H_{Si} at C-1 and C-4) occurs at lower field than that corresponding to the α -Re-hydrogens. In the ${}^{1}H$ NMR spectrum of the biscamphanoylamide derivative of cadaverine, the signal arising from the α -Si-hydrogens was found to occur at lower field. 100

Robins¹⁶⁸ employed radioactive tracer methods to investigate the stereochemistry of these reactions. The enantiomeric samples of $[1-^{3}H]$ putrescine derived from <u>L</u>-ornithine or <u>L</u>-arginine, *via* $[1-^{3}H]$ agmatine, were subjected to stereochemical analysis with pea seedling diamine oxidase in the presence of yeast alcohol dehydrogenase. This method was similar to that employed by Battersby *et al.*¹³⁵ for the configurational assignment of samples of $[1-^{3}H]$ cadaverine (*of.* Scheme 27). It was assumed that pea seedling diamine oxidase mediates stereospecific removal of the *Si*-hydrogen from C-1 of putrescine.

The decarboxylation of \underline{L} -ornithine to putrescine in intact plants (*Nicotiana tabacum*) has also been shown to take place with net retention of configuration.^{240,241}

The bacterial <u>L</u>-ornithine and <u>L</u>-arginine decarboxylases, 171,173 as well as many other amino acid α -decarboxylases, 13 require pyridóxal 5'-phosphate for catalytic activity. The mechanism for the mode of action of the pyridoxal 5'-phosphate dependent α -decarboxylases, proposed independently by Westheimer²⁴² and Metzler *et al.*, 243 involves initial formation of an enzyme-bound Schiff's base (156) between the prosthetic group (154)¹³ and the amino-acid substrate (155) (Scheme 31). According to the stereoelectronic theory advanced by Dunathan, 244,245 the enzyme

5'-phosphate dependent amino acid decarboxylases.

. .

imposes conformational constraints upon the amino acid-pyridoxal phosphate complex (156) which lead to the carboxyl group being aligned orthagenally to the plane of the extended conjugated system (e.g. conformation shown for (156) in Scheme 31). These conformational restraints allow maximum orbital overlap between the breaking σ -bond and the π -system during the decarboxylation step.²⁴⁵ Decarboxylation of (156) produces the intermediate imine (157), which then undergoes protonation at the α -carbon to yield, *via* the Schiff's base (158), the amine product (159).

Protonation of the intermediate imine (157) can, in principle, occur from either side of the planar conjugated system. Since the pyridoxal phosphate dependent α -decarboxylase catalysed decarboxylations of $\underline{\downarrow}$ -ornithine,*,100,168 $\underline{\vdash}$ -arginine,*,100,168 $\underline{\vdash}$ -lysine, ^{120,134,135} $\underline{\vdash}$ tyrosine, ^{119,129} $\underline{\vdash}$ -glutamic acid, ^{99,121,132,133} $\underline{\vdash}$ -tryptophan¹⁴¹ and $\underline{\vdash}$ histidine¹⁴⁰ have all been shown to take place with net retention of configuration (Section 1.4), it would appear that protonation occurs only from the side of the planar imine (157) which corresponds to that -from which the carboxyl group is liberated (Scheme 31). Such stereochemical consistency is also observed in the reactions catalysed by other pyridoxal phosphate dependent enzymes (*e.g.* aminotransferases)^{14,245,246} and it has been suggested ^{14,246} that all bond-making and bond-breaking processes in pyridoxal phosphate dependent enzyme-catalysed reactions occur on the same face of the substrate-coenzyme complex. Decarboxylation

Results of the present investigation.

of *meso-* α , ε -diaminopimelic acid, catalysed by the pyridoxal phosphate dependent enzyme, diaminopimelic acid decarboxylase, however, takes place with net inversion of configuration¹⁴² (Section 1.4).

The bacterial amino acid α -decarboxylases specific for <u>L</u>-histidine^{247,248} and <u>S</u>-adenosyl-<u>L</u>-methionine²⁴⁹ are not pyridoxal phosphate dependent but require enzyme bound pyruvate for catalytic activity. A mechanism for the mode of action of the pyruvate containing decarboxylases, analogous to that of the pyridoxal phosphate containing decarboxylases, has been proposed.^{248,250} The decarboxylation of <u>L</u>-histidine ^{136,137} and of <u>S</u>-adenosyl-<u>L</u>-methionine,¹³⁸ catalysed by the appropriate pyruvate dependent decarboxylase, both occur with net retention of configuration.

CHAPTER 5

SUMMARY AND CONCLUSIONS

SUMMARY

5.1

Optically active enantiomeric samples of $(1-^{2}H)$ putrescine, $(1-^{2}H)$ agmatine and $(1-^{2}H)$ cadaverine were prepared by enzymic decarboxylation. The dextrorotatory specimens of $(1-^{2}H)$ putrescine (102), of $(1-^{2}H)$ agmatine (106) and of \underline{S} - $(1-^{2}H)$ cadaverine (97) were obtained, respectively, by enzymic decarboxylation of \underline{L} - $(2-^{2}H)$ ornithine, catalysed by \underline{L} -ornithine decarboxylase of *E. coli*, of \underline{L} - $(2-^{2}H)$ arginine, catalysed by \underline{L} -arginine decarboxylase of *E. coli*, and of \underline{L} - $(2-^{2}H)$ lysine, catalysed by \underline{L} -lysine decarboxylase of *B. cadaveris*. The levorotatory specimens of $(1-^{2}H)$ putrescine (100), of $(1-^{2}H)$ agmatine (104) and of \underline{R} - $(1-^{2}H)$ cadaverine (77) were obtained similarly, by decarboxylation of the corresponding unlabelled \underline{L} -amino acids, catalysed by the appropriate α -decarboxylase in deuterium oxide.

The chiral samples of $(1-^{2}H)$ putrescine and of $(1-^{2}H)$ agmatine of the same sign of rotatory dispersion also corresponded in configuration at C-1. This was established by chemical conversion of the enantiomers of $(1-^{2}H)$ agmatine into the corresponding enantiomers of $(1-^{2}H)$ putrescine, which provided clear evidence that the decarboxylations of <u>L</u>-ornithine, catalysed by <u>L</u>-ornithine decarboxylase, and of <u>L</u>-arginine, catalysed by <u>L</u>-arginine decarboxylase, take the same stereochemical courses (Chapter 2).

-154-

The absolute stereochemistry of the hydrogen abstraction process in the reaction catalysed by hog kidney diamine oxidase was determined using as substrates the chiral samples of known chirality of $(1-^{2}H)$ cadaverine. The labelling patterns within the resulting deuteriated products were determined by ²H NMR spectroscopy. Since enzymic oxidation was found to involve stereospecific loss of deuterium from C-1 of \underline{S}_{-} $(1-^{2}H)$ cadaverine (97), and stereospecific loss of protium from C-1 of \underline{R} -(1-2H)cadavertie (77), it followed that hog kidney diamine oxidase mediates stereospecific removal of the Si-hydrogen from C-1 of cadaverine. Similar ²H NMR methods were then employed to determine the labelling patterns within the products obtained, on incubation with hog kidney diamine. oxidase, from the enantiomeric samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine. The results of these experiments indicated that enzymic oxidation of the (+)-(1-2H) amines is accompanied by stereospecific removal of deuterium from C-1, whereas = nzymic oxidation of the (-)-(1-²H) amines is accompanied by stereospecific removal of protium from C-1. On the assumption that the absolute stereochemistry of the reaction catalysed by hog kidney diamine oxidase is the same with cadaverine, putrescine and agmatine as substrates, it was concluded that the dextrorotatory enantiomers of $(1-^{2}H)$ putrescine dihydrochloride and of $(1-^{2}H)$ agmatine sulfate possess the <u>S</u>-configuration, while the levorotatory enantiomers of the two $(1-^{2}H)$ amines possess the <u>R</u>-configuration (Chapter 3).

ſ

A primary intramolecular hydrogen-deuterium kinetic isotope effect $(k_{\rm H}/k_{\rm D} \approx 4)$ was observed in the diamine oxidase catalysed reaction of $(1,1-^{2}H_{2})$ putrescine (120), while oxidation of $(1,1-^{2}H_{2})$ cadaverine (119)

occurred without detectable intramolecular isotope effect. This observation made it necessary to question the basis of the assumption that the stereochemistry of the hydrogen abstraction process, catalysed by hog kidney diamine oxidase, was the same with both cadaverine and putrescine as substrates. The configurational assignments of the enantiomeric samples of (1-2H) putrescine and (1-2H) agmatine, made on this assumption, were confirmed by an independent method. This was achieved by stereochemical correlation of the enantiomers of $(1-^{2}H)$ agmatine with the corresponding enantiomers of 4-phthalimido(4-²H)butyric acid of known absolute chirality (Chapter 4). The chemical conversion of $(-)-(1-^{2}H)$ agmatine (104) sulfate into <u>R</u>-(-)-4-phthalimido(4-²H)butyric acid (150) by reactions which did not affect the chiral centre, led to the conclusion that the levorotatory (1-2H) amine has <u>R</u>-chirality. Direct comparison of the ORD curve of (-)-methy 4-phthalimido(4-2H)butyrate (63), derived from (-)-(1-2H) agmatine (104) sulfate, with that of an authentic specimen of (-)methyl <u>R</u>-4-phthalimido($4-^{2}$ H)butyrate provided further evidence for this assignment. It followed that the levorotatory sample of (1-2H) putrescine also has <u>R</u>-chirality, since hydrolytic cleavage of the guanidino group of $(-)-(1-^{2}H)$ agmatine (104) sulfate afforded $(-)-(1-^{2}H)$ putrescine (100) dihydrochloride. These stereochemical relationships firmly established that the decarboxylations of L-ornithine and L-arginine, catalysed by the respective bacterial decarboxylases, take place with net retention of configuration.

CONCLUSIONS

The objectives of this investigation were to determine the stereochemistry of the reactions catalysed by \underline{L} -ornithine decarboxylase, \underline{L} -arginine decarboxylase, and diamine oxidase. These objectives were accomplished.

Decarboxylation of \underline{L} -ornithine to putrescine, catalysed by the inducible \underline{L} -ornithine decarboxylase of *E. coli*, and of \underline{L} -arginine to agmatine, catalysed by the inducible \underline{L} -arginine decarboxylase of *E. coli*, takes place with net retention of configuration.

Oxidative deamination of cadaverine, of putrescine, and of agmatine, catalysed by hog kidney diamine oxidase, occurs with stereospecific removal of the *si*-hydrogen from C-l of each of the three substrates in the course of the conversion of the primary amino group to an aldehyde group.

The degree of stereospecificity of each of these enzyme-catalysed reactions is as complete as the methods of detection can reveal.

Oxidative deamination of \underline{S} -(1-²H)putrescine, catalysed by hog kidney diamine oxidase, exhibits a primary intramolecular hydrogendeuterium kinetic isotope effect. No isotope effect is detectable in the course of the analogous oxidation of \underline{S} -(1-²H)cadaverine. This observation is interpreted in terms of the relative rate of hydrogen (or deuterium) abstraction compared to the rate of exchange, at the active site of the enzyme, of the two symmetry equivalent but isotopically distinct methylene groups of the substrates. Although this difference is observed in the diamine oxidase catalysed reactions of the two substrates, the

5.2

stereospecificity of the hydrogen abstraction with the two substrates is identical.

5.3

FUTURE INVESTIGATIONS

The methods employed in the present investigation are applicable to the solution of stereochemical problems associated with other enzymic reactions, and, more generally, to clarify stereochemical aspects of biosynthetic processes.

This work provides a method for the preparation of enantiomeric samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine of known chirality. If tritium is employed as the chiral marker, similar methods can be employed for the preparation of the corresponding $[1-^{3}H]$ amines of known configuration. The chirally labelled samples of putrescine and agmatine can therefore serve as configurational standards for stereochemical correlation with other molecules, rendered chiral due to isotopic substitution, but of unknown absolute configuration.

Oxidative deamination of N-methylputrescine to N-methyl-4-aminobutanal forms a key step in the biosynthesis of the pyrrolidine ring of nicotine.¹⁶⁰ The oxidation of N-methylputrescine in intact tobacco plants (N. tabacum) has recently been shown to occur with stereospecific removal of the *si*-hydrogen from the carbon adjacent to the primary amino group.²⁴¹ A partially purified preparation of N-methylputrescine oxidase, the enzyme which is thought to catalyse this reaction, has been isolated from tobacco roots.²⁵¹ It would be of interest to examine the stereochemistry of the reactions mediated by this enzyme. If N-methylputrescine oxidase is the enzyme responsible for the conversion of *N*-methylputrescine into *N*-methyl-4-aminobutanal during nicotine biosynthesis, stereospecific removal of the *Si*-hydrogen would be expected.²⁴¹ *N*-Methylputrescine oxidase also catalyses the oxidation of putrescine and cadaverine at appreciable rates.²⁵¹

A putrescine oxidase (E.C. 1.4.3.4) which catalyses the oxidation of putrescine to 4-aminobutanal has been isolated and purified from *Micrococcus rubens*.²⁵²⁻²⁵⁴ This enzyme is an FAD-containing amine oxidase and several of its molecular properties are similar to those of mitochondrial monoamine oxidase.¹⁵⁰ The monoamine oxidase from rat liver mitochondria mediates stereospecific removal of the *Re*-hydrogen from C-l of tyramine^{119,122,129} and 1-aminoheptane¹⁵¹ in the course of the oxidation to the corresponding aldehyde. The stereochemistry of the reactions catalysed by other FAD-containing amine oxidases has not been investigated, whereas the copper-containing amine oxidases from pea⁻ seedling, bovine plasma (Table 2) and hog kidney (present investigation) catalyse the removal of the *si*-hydrogen from C-l of their substrates. The ²H NMR methods employed in the present investigation can provide an answer to the question of the stereospecificity of the oxidative deamination ef putrescine, catalysed by putrescine oxidase.

In addition to the inducible ("biodegradative") bacterial enzymes \bullet employed in the present investigation, distinct constitutive ("biosynthetic") <u>L</u>-ornithine and <u>L</u>-arginine decarboxylases have also been isolated and purified from *E. coli*.^{109,110} Like their inducible counterparts, these constitutive enzymes require pyridoxal phosphate for catalytic

activity. ^{109,110} The constitutive enzymes are involved in the biosynthesis of putrescine in bacteria. ^{107,108} Putrescine is a precursor of the polyamines, spermidine (150) and spermine. ¹⁵⁸ The N-propylamine moiety of spermidine (160), is derived from S-adenosylmethionine (161), following decarboxylation, catalysed by S-adenosylmethionine decarboxylase. ^{103,104} (Scheme 32). Decarboxylation of S-adenosylmethionine (161), catalysed by the enzyme from E. coli, has been shown ¹³⁸ to occur with net retention of configuration. The stereochemistry of the decarboxylations catalýsed by the constitutive <u>L</u>-arginine and <u>L</u>-ornithine decarboxylases has not been determined.

Highly purified preparations of mammalian ornithine decarboxylase from rat liver^{114,255,256} and from rat prostate¹¹⁵ have also been reported. The mammalian enzyme is also involved in the biosynthesis of spermidine (160), ¹⁵⁸ Although the formation of putrescine (131) from arginine (193) via agmatine (137) has not been observed in mammalian tissue, ^{111,158,159} these reactions appear to be a major pathway leading to the formation of putrescine in higher plants. ^{112,158} <u>L</u>-Arginine decarboxylase has been isolated from barley²⁵⁷ and Lathyrus sativus²⁵⁸ seedlings. The steric course of the reactions catalysed by these enzymes has not been investigated.

Amine oxidases are involved in the degradative metabolism of polyamines.^{112,158} Oxidation of one or the other of the two primary amino groups, as well as the secondary amino group of the 4-aminobutyl moiety of spermidine (160) has been observed with different enzymes (Scheme 32). Boyine plasma amine oxidase (spermine oxidase)²⁵⁹ acts at

by the action of amine oxidases.

the primary amine of the 3-aminopropyl group of spermidine (160) to yield N-(4-aminobuty1)-3-aminopropanal (163),²⁶⁰ whereas pea seedling diamine oxidase acts at the primary amine of the 4-aminobutyl group of spermidine (160) to yield N-(3-aminopropyl)-4-aminobutanal (164)^{196,261} which cyclizes to afford $N-(3-aminopropyl)-\Delta'-pyrrolinium ion (165)$ (cf. ref. 262). Spermidine oxidase from Serratia marcescens, 263,264 polyamine oxidase from oat seedlings,²⁶⁵ as well as putrescine oxidase from M. rubens,²⁵³ catalyse oxidation of the secondary amino group of the 4-aminobutyl moiety of spermiding (160) to yield Δ' -pyrroline (133) and 1,3-diaminopropane (166). The methods employed in the present investigation (Chapter 3) would provide the means of determining the stereochemistry of abstraction of a hydrogen atom from C-4 of spermidine in the reaction catalysed by the latter three enzymes. Enantiomeric samples of (4-2H)spermidine could be prepared from the corresponding enantiomeric (1-2H) putrescines or (1-2H) agmatines by enzymic (cf. ref. 266)\or chemical methods.

The stereochemistry of the oxidative deamination of spermidine (160) to N-(4-aminobutyl)-3-aminopropanal (163) would also merit investigation. Oxidation of p-hydroxybenzylamine¹⁵² and benzylamine,¹⁵³ catalysed by bovine plasma amine oxidase, occurs with stereospecific removal of the *si*-hydrogen, whereas the analogous oxidation of dopamine¹⁵⁴ is apparently nonstereospecific. Spermidine is the substrate most readily oxidised by this enzyme.²⁶⁰
CHAPTER 6

EXPERIMENTAL

PREPARATION OF (2-2H)AMING ACIDS

6.1.1 <u>DL</u>-(2-²H)Lysine

6.1.1.1

6.1

<u>Diethyl 2-acetamido-2-(4-phthalimidobutyl)malonate (11)</u>

Diethyl acetamidomalonate (109) (Aldrich Chemical Co.) (2.17 g) was dissolved in hot dry ethanol* (10 ml) in a two-necked round bottom flask, fitted with a reflux condenser, calcium sulfate drying tube, and a pressure equalizing dropping funnel. A solution of sodium ethoxide (250 mg of sodium in 14 ml ethanol) was added and the resulting solution was heated at reflux while \mathbb{W} -(4-bromobuty1)phthalimide (108) (Aldrich Chemical Co.) (2.83 g) in hot ethanol (14 ml) was added dropwise over 10 min. The reaction mixture was refluxed 20 h, and was then cooled to 0°C. Water (35 ml) was added to precipitate the product (2.77 g) which was used without further purification in the preparation of (2-2H)lysine (see Section 6.1.1.2). Concentration of the filtrate inguard to onehalf the original volume yielded additional product (1.0 g). Yield 90% from diethyl acetamidomaldnate; m.p. 110-111°C (from 95% ethanol), ¹H NMR (C²HCl₃), 6 1.0-1.3 (2H, unresolved), 1.23 (6H, t, J 7.2 Hz), 1.67 (2H, quin., J 7.2 Hz), 2.04 (3H, s), 2.34 (2H, m), 3.60 (2H, t, J 7.5 Hz),

Absolute ethanol purified by the Lund-Bjerrum method was used throughout.²⁶⁷

-163-

4.27 (4H, q, J 7.2 Hz), 6.74 (1H, s), 7.80 (4H, m); m.s., m/e 418 (M, 2%), 345 (100), 303 (89), 299 (80), 229 (97), 160 (42), 148 (23), 130 (44). Anal. Calcd. for $C_{21}H_{26}N_2O_7 \cdot \frac{1}{2}C_2H_5OH$: C, 59.85; H, 6.62; N, 6.35. Found: C, 59.65; H, 6.25; N, 6.41%.

6.1.1.2 <u>DL</u>-(2-²H)Lysine (96) monohydrochloride (*cf.* ref. 177)

Diethyl 2-acetamido-2-(4-phthalimidobutyl)malonate (111) (2.77 g) was suspended in a solution of deuterium oxide containing deuterium chloride (38%, w/w in $^{2}H_{2}O$, 25 ml) (Merck, Sharp and Dohme, 99.7 atom % ²H) in a flask fitted with a reflux condenser and calcium sulfate drying tube. The mixture was heated at reflux for 18 h, cooled to 0°C, and diluted with water (10 ml). Phthalic acid, which precipitated, was filtered off and washed with water (2 x 1 ml). The combined filtrate and , washings were concentrated to dryness/in vacuo, and the residue was repeatedly dissolved in water and evaporated to dryness to remove exchangeable deuterium. The residue, crude lysine dihydrochloride, was dissolved in hot 95% ethanol (8 ml), the solution was cooled to room temperature and filtered, and pyridine (ca. 600 mg) was added. <u>DL</u>-(2-²H)lysine monohydrochloride which precipitated was recrystallized from aqueous ethanol. Yield 1.05 g; m.p. 259-260°C (decomp.) (lit. (nondeuteriated) m.p. 259-262°C¹⁷⁷; 260-261°C²⁶⁸; 263-264°C²⁶⁹); ¹H NMR (²H₂0), δ 1.2-2.1 (6H, m, H-3,4,5), 3.05 (2H, t, J 7.2 Hz, H-6), 3.77 (< 0.05 H, H-2); the ²H NMR spectrum (H₂O, 22 mM, 8600 transients) showed one signal at 3.5 ppm relative to that due to natural abundance ²H in water (4.5-ppm).

6.1.2

DL-(2-²H)Ornithine

6.1.2.1

Diethyl 2-acetamido-2-(3-phthalimidopropyl)malonate (110)

Diethyl acetamidomalonate (2.16 g) was reacted with N-(3-bromopropyl)phthalimide (107) (Aldrich) (2.69 g) under the same conditions that were used for the preparation of (111) (Section 6.1.1.1) to give the substitution product (110). Yield 2.85 g, 71%; m.p. 116-116.5°C (from 95% ethanol) (lit. m.p. 115-116°C²⁷⁰; 111-112°C²⁷¹); ¹H NMR (C²HCl₃), δ 1.20 (6H, t, J 7.2 Hz), 1:53 (2H, m), 2.00 (3H, s), 2.40 (2H, m), 3.67 (2H, t, J 7.2 Hz), 4.23 (4H, q, J 7.2 Hz), 6.80 (1H, s), 7.77 (4H, m).

6.1.2.2 <u>DL</u>-(2-2H)Ornithine (1Q1) monohydrochloride (*cf.* ref. 177)

Hydrolysis of diethyl 2-acetamido-2-(3-phthalimidopropyl) malonate (110) (784 mg) in deuterium chloride solution (38% w/w im 2 H₂O, 10 ml) and conversion of the product to its monohydrochloride as described for the preparation of (2- 2 H)lysine (Section 6.1.1.2) afforded DL-(2- 2 H)ornithine monohydrochloride (398 mg): m.p. 235-237°C (decomp.) (lit. nondeuteriated) m.p. 232°C (decomp.)¹⁸³; 222-224°C (decomp.)²⁷¹; 215-216°C (decomp.)¹⁷⁷). The ¹H NMR spectrum (2 H₂O) was similar to that Of authentic unlabelled material and indicated that this sample was *ca*. 98% deuterium labelled at C-2: 8 1.90 (4H, m, H-3,4), 3.05 (2H, t, J 6.8 Hz, H-5), 3.80 (*ca*. 0{02 H, H-2}). The ²H NMR spectrum (H₂O, 107 *mM*, 200 transients) showed one signal at 3.5 ppm (relative to ¹H²HO at 4.5 ppm). In another experiment, hydrólysis of (110) (900 mg) gave a sample of <u>DL</u>-(2-²H)ornithine monohydrochloride (330 mg) which was $c\alpha$. 92% ²Hlabelled in the 2-position as determined by ¹H NMR

6.1.3 <u>L</u>-(2-²H)Arginine

6.1.3.1

7.

 α -N-Acetýl-L-arginine (112) dihydrate

<u>L</u>-Arginine monohydrochloride (4.24 g) was acetylated with acetic anhydride in aqueous sodium bicarbonate by a published procedure, ¹⁸⁰ yielding α -acetyl-<u>L</u>-arginine dihydrate (4.10 g, 81%): m.p. 267-268°C (from water) (lit.²⁷² m.p. 266°C); ¹H NMR (²H₂Q), δ 1.73 (4H, m, H-3,4), 2.05 (3H, s, COCH₃), 3.23 (2H, t, J 6.8 Hz, H-5), 4.20 (1H, d of d, J₁ ca. 7.8 Hz, J₂ ca. 4.8 Hz, H-2); ORD, [α]₂₈₉ - 10.1 ± 0.3°, [α]₂₉₆ -12.3 ± 0.3°, [α]₃₀₂ - 14.1 ± 0.3°, [α]₃₁₂ - 15.8 ± 0.3°, [α]₃₃₄ - 16.6 ± 0.3°, [α]₃₆₅ - 16.0 ± 0.3°, [α]₄₀₅ - 13.6 ± 0.3°, [α]₄₃₆ - 11.9 ± 0.3°, : [α]₅₄₆ - 7.6 ± 0.2°, [α]₅₇₇ - 6.7 ± 0.1°, [α]₅₈₉ - 6.3 ± 0.2° (c 2% in 1 M HC1, 25°C), (lit.¹⁸⁰ [α]₅₈₉ - 7.0° (c 2% in 1 M HC1)).

6.1.3.2 α-N-Acety1-<u>DL</u>-(2-²H)arginine (115) dihydrate (cf. ref. 273)

 α -N-Acetyl-L-arginine dihydrate (3.9 g) was dissolved in deuterium oxide (5 ml) and the solvent was evaporated *in vacuo*. This process was repeated three times to effect replacement of the exchangeable protons by deuterium. The residue was then recrystallized from deuterium oxide (3 ml) and deuterium oxide of crystallization was removed by drying over phosphorous pentoxide at 75°C for 24 h. The product, α -N-acetylarginine, in which all exchangeable protons had been replaced by ²H,

166

Ċ,

m.p. 253-255°C (lit. (nondeuteriated)²⁷³ m.p. 250°C), so obtained, was dissolved in deuterioacetic acid (25 ml) which had been prepared in the following way (*of.* ref. 274).

A mixture of freshly distilled acetic anhydride (Fisher) (b.p. $137-138^{\circ}$ C, 40 ml) and deuterium oxide (Merck, Sharp and Dohme, 99.7 atom % ²H) (8 g) was stirred at room temperature under a stream of dry nitrogen until the solution was homogeneous (*ca.* 3 h). Distillation under anhydrous conditions gave deuterioacet/c acid, CH₃CO₂²H, b.p. 112-114°C. The ¹H NMR spectrum of a sample of the product indicated that it was > 98% deuterium labelled and contained a trace of acetic anhydride (*ca.* 1%).

Acetic anhydride (b.p. 137-138°C, 1.7 ml) was added to the solution of α -N-acetylarginine in deuterioacetic acid, and the mixture was heated at reflux under dry nitrogen. After 2 h deuterium oxide (0.4 ml) was added and heating at reflux was continued for 30 min. The solution was cooled to room temperature, acetic acid removed *in vacuo* and the residue, a yellow oil, was dissolved in water (5 ml). The solution was evaporated, the residue redissolved in water and the solution again evaporated. The oil was then redissolved in water (5 ml), the pH of the solution was adjusted to pH 8 with concentrated ammonium hydroxide, acetone (1 ml) was added and the mixture cooled to 0°C. The crystals which formed were filtered off, washed with cold water and dried *in vacuo* over phosphorus pentoxide. The sample of α -N-acetyl-DL-(2-2H)-arginine (115) dihydrate (3.4 g) so obtained (optically inactive, m.p. 268-270°C (from water)), was 85-90% deuterium labelled at $(2 - 2 + 1)^2$.

6.1.3.3 $\underbrace{\underline{L}}_{-}(2-{}^{2}\mathrm{H}) \text{ Arginine (105) monohydrochloride and } \alpha-N-acety1-\underline{\underline{D}}_{-}$ $\underbrace{(2-{}^{2}\mathrm{H}) \text{ arginine (116) dihydrate (cf. ref. 179,180)}}_{-}$

The pH of a solution of α -N-acety1-<u>DL</u>-(2-²H)arginine dihydrate (3.2 g) in water (140 ml) was adjusted to pH 6.8 with hydrochloric acid (10% w/v).. Hog kidney acylase I (Sigma, 6300 U/mg*, 8.6 mg) in water (20 ml) was added. The resulting solution was incubated at 36°C in a constant temperature water bath for 23 h. The pH of the enzymic reaction mixture was then adjusted to pH 4.8 with glacial acetic acid, Norite was added, and the mixture filtered through Celite. The clear filtrate was concentrated *in vacuo* (7 ml), and after cooling in a refrigerator for several days, α -N-acety1-<u>D</u>-(2-²H)arginine dihydrate, which crystallized, was filtered off and washed with water. Yield 1.4 g, 89%; m.p. 268-269°C (from water); ORD, $[\alpha]_{289}$ + 14.0 ± 0.3°, $[\alpha]_{296}$ + 16.9 ± 0.4°, $[\alpha]_{302}$ + 18.0 ± 0.4°, $[\alpha]_{312}$ + 19.4 ± 0.4°, $[\alpha]_{334}$ + 19.6 ± 0.4°, $[\alpha]_{365}$ + 17.9 ± 0.4°, $[\alpha]_{405}$ + 15.3 ± 0.3°, $[\alpha]_{436}$ + 13.2 ± 0.3°, $[\alpha]_{546}$ + 8.3 ± 0.2°, $[\alpha]_{577}$ + 7.2 ± 0.2°, $[\alpha]_{589}$ + 6.8 ± 0:2° (*c* 2.06% in 1 *M* HC1, 25°C).

The combined filtrate and washings containing $\underline{L} - (2^{-2}H)$ arginine (10 ml) were diluted with water (25 ml), sodium hydroxide solution (5% w/v) was added to pH 11, and the solution was cooled in an ice bath. Benzaldehyde (1.3 ml) was added and the mixture stirred at 0°C for 2 h. The benzylidine derivative which separated was filtered off and was washed with ethanol and ether. Yield 1.54 g, 93%; m.p. 198-199°C (decomp.) (lit. (nondeuteriated)²⁷⁶ m.p. 206°-207°C (decomp.)).

1 U will hydrolyse l μmole of N-acetyl-L-methionine/h. Hydrolysis of α-N-acetyl-L-arginine is *ca*. 60 times slower.²⁷⁶

· #

The solution of the benzylidine derivative (1.53.g) in aqueous hydrochloric acid (2M, 12 ml) was heated (95°C) 20 min with stirring. After cooling to room temperature, the mixture \sqrt{as} extracted with ether $(2 \times 5 \text{ ml})$ and the ether layers were discarded. The aqueous phase, containing the dihydroch oride of $L_{-}(2-^{2}H)$ argining, was evaporated in vacuo. The residue was dissolved in hot 95% ethanol (5[/] ml), the solution cooled to room temperature, and filtered. $\underline{L} - (2-2H)$ arginine monohydrochloride was precipitated from the filtrate by addition of pyridine (1.2 m), and was recrystallized from aqueous ethanol: Yield 191 g, 91% from the benzylidine derivative; m.p. 222-223°C (lit. (nondeuteriated)²⁷⁵ m.p. 220°C) ¹H NMR (²H₂O), δ 1.74 (4H, m, H-3,4), 3.17 (2H, t, J 6.8 Hz, H-5), 3.72 (ca. 0.15H, H-2, *i.e.*, ca. 85% of ²H); ORD, $[\alpha]_{296}$ + 94.5 ± 1.9°, $[\alpha]_{302}$ + 87. $\lambda \pm 1.9^{\circ}$, $[\alpha]_{312}$ + 75.6 $\pm 1.5^{\circ}$, $[\alpha]_{334}$ + 58.6 $\pm 1.2^{\circ}$, $[\alpha]_{365}$ + 43.3 $\pm 0.9^{\circ}$, $[\alpha]_{405} + 31.4 \pm 0.6^{\circ}$, $[\alpha]_{436} + 25.3 \pm 0.5^{\circ}$, $[\alpha]_{546} + 14.1 \pm 0.3^{\circ}$, $[\alpha]_{577} + 12.4 \pm 0.3^{\circ}, [\alpha]_{589} + 11.7 \pm 0.2^{\circ}$ (*c* 2.06% in water, 25°C). An authentic sample of unlabelled L-arginine monohydrochloride showed a plane positive ORD spectrum: $[\alpha]_{296}$ + 94.0 ± 1.9°, $[\alpha]_{302}$ + 87.2 ± 1.7°, $[\alpha]_{312}$ + 75.4 ± 1.5°, $[\alpha]_{334}$ + 58.6 ± 1.2°, $[\alpha]_{365}$ + 43.3 ± 0.9°, $[\alpha]_{405}$ + $31.5 \pm 0.6^{\circ}, [\alpha]_{436} + 25.4 \pm 0.5^{\circ}, [\alpha]_{546} + 14.0 \pm 0.3^{\circ}, [\alpha]_{577} + 12.4$ $\pm 0.3^{\circ}_{--}$ [a]₅₈₉ + 11.7 ± 0.2° (c 2.07% in water, 25°C) (1it. [a]₅₈₉ + 11.30° (c 5.0% in water, 25°C) 273 , [α]₅₈₉ + 12.2, + 12.3 (c 5.0% in water, ່.25°C)275ງ

A sample of \underline{L} -(2-²H)arginine monohydrochloride (67 mg) which was > 92% ²H-labelled (by ¹H NMR) was obtained from α -N-acetyl-<u>L</u>-arginine under a similar set of reaction conditions (see above) except that the ²H for ¹H exchange reaction was optimized by following the course of the reaction in perdeuterio-acetic acid-acetic anhydride solution by ¹H NMR.

PREPARATION OF (1-2H)AMINES BY ENZYMIC DECARBOXYLATION

6.2.1 Cadaverine

6.2.1.1

6.2

Decarboxylation of lysine, catalysed by <u>L</u>-lysine decarboxylase (E.C. 4.1.1.18) from *B. cadaveris*

The enzyme eaction was carried out either in ${}^{1}\text{H}_{2}0$ for ${}^{2}\text{H}_{2}0$ solutions, buffered with potassium phosphate. The phosphate- ${}^{2}\text{H}_{2}0$ buffer solution was prepared in the following way. A mixture of dipotassium hydrogen phosphate (120 mg, Fisher) and potassium dihydrogen phosphate (600 mg, Analar) was repeatedly dissolved in deuterium oxide (3 x 5 ml) and evaporated to dryness to effect removal of exchangeable protons. The residue was then dissolved in 25 ml deuterium oxide (99.8 atom % ${}^{2}\text{H}$, Stohler Isotopes) yielding a buffer solution, *ca.* 0.2 *M*, p²H 6.

6.2.1.1.1. <u>R</u>-(-)-(1-²H)Cadaverine (77) dihydrochloride by decarboxylation of the <u>L</u>-component of unTabelled <u>DL</u>-lysin[®] in deuterium <u>oxide solution (Experiment 1)</u>

<u>DL</u>-Lysine monohydrochloride (Sigma) (152 mg) was twice dissolved in deuterium oxide (3 ml) and the solution evaporated to dryness. After being dried *in vacuo* overnight, the residue was dissolved in phosphate- $^{2}H_{2}O$ buffer solution (0.2 *M*, p²H 6, 24 ml) (see Section 6.2.1.1) and transferred into a flask containing <u>L</u>-lysine decarboxylase (Sigma, "Type

.170

VI", 2.6 U/mg*) (24 mg). The flask, fitted with a calcium sulfate drying tube, was warmed at 36°C in a shaking constant temperature bath. After 48 h, this enzymic reaction mixture was acidified with 4 M hydrochloric acid, heated on a steam bath for 30 min and cooled to room temperature. The precipitated enzyme was removed by centrifugation, followed by filtration of the supernatant solutions through Celite. The filtrate was then lyophilysed, the residue dissolved in 10% (w/v) sodium hydroxide (3 ml), and the alkaline solution saturated with sodium chloride. (^{2}H) Cadaverine was extracted into 1-butanol (4 x 5 ml). The extract was acidified by addition of a solution of hydrogen chloride in butanol and the solution was then concentrated in vacuo (5 ml). R-(1-²H)-Cadaverine dihydrochloride which precipitated was crystallized from 95% ethanol. Yield 61 mg; ¹H NMR (²H₂O) & 1.3-1.9 (64. f, H-2,3,4), 3.06 (*ca*. 3H, t, J 7.2 Hz, H-1,5); ORD, $[\alpha]_{365} = 0.35 \pm 0.02^{\circ}$, $[\alpha]_{407} = 0.35 \pm 0.02^{\circ}$ $0.23 \pm 0.03^{\circ}$, $[\alpha]_{546} - 0.14 \pm 0.01^{\circ}$, $[\alpha]_{579} - 0.10 \pm 0.02^{\circ}$ (c 4.92% in 0.1 M HCl, 26°C, uncorrected for incomplete deuteriation).

A sample of the dihydrochloride was converted into N, N'-dibenzoyl-<u>R</u>-(1-²H)cadaverine: m.p. 132-133°C (from aqueous ethanol) (lit. (nondeuteriated) m.p. 129-131°C²⁷⁷, 135°C²⁷⁸) **(**m.s., m/e 312 (M+], 1.7%), 311 (M, 7.7), 310 (M-1, 1.0), 206 (9.0), 189 (19.4), 188 (3.4), 105 (100), 77 (75).

An authentic sample of unlabelled N,N'-dibenzoylcadaverine, m.p. 132-133°C, showed m.s., m/e 311 (M+1, 0.3%), 310 (M, 1.6), 205 (2.5), 189 (3.6),188 (10.3), 105 (100), 77 (75).

1 U will release 1.0 μ mole carbon dioxide from L-lysine per minute at pH 6.0 at 37°C.

 \underline{S} -(+)-(1-²H)Cadaverine (97) dihydrochloride by decarboxyla-6.2.1.1.2 tion of the <u>L</u>-component of <u>DL</u>-($2-^{2}H$)lysine (Experiment 2)

<u>DL</u>- $(2-^{2}H)$ Lysine monohydrochloride (> 95% $2-^{2}H$, 123 mg) and <u>L</u>lysine decarboxylase (2.6 U/mg) (16 mg) were dissolved—in phosphate buffer (0.2 M, pH 6, 20 ml). After incubation at 36°C for 40 h, the enzymic reaction mixture was worked up as described above (Section 6.2.1.1.1) to give <u>S</u>- $(1-^{2}H)$ cadaverine dihydrochloride (47 mg); ORD, $[\alpha]_{407} + 0.25 \pm$ 0.03° , $[\alpha]_{546} + 0.15 \pm 0.03^{\circ}$, $[\alpha]_{579} + 0.10 \pm 0.03^{\circ}$, (c 3.17% in 0.1 M HCl, uncorrected for incomplete deuteriation). The ¹H NMR spectrum $(^{2}H_{2}O)$ was similar to that of <u>R</u>- $(1-^{2}H)$ cadaverine dihydrochloride. N,N'-Dibenzoyl-<u>S</u>- $(1-^{2}H)$ cadaverine: m.p. 132-133°C; m.s., m/e 312 (M+1, 1.6%), "311 (M, 6.8), 310 (M-1, 3.6), 206 (7.9), 189 (20.9), 188 (11.9), 105 (100), 77 (75).

6.2.1.1.3 $\frac{(1,1-^{2}H_{2})\text{Cadaverine (119) dihydrochloride by decarboxylation}}{\text{of the L-component of DL-(2-^{2}H)lysine in deuterium oxide}}$

Decarboxylation of the <u>L</u>-component of <u>DL-(2-2H)</u>lysine monohydrochloride (> 95% 2-2H; 110 mg), catalysed by <u>L</u>-lysine decarboxylase (18 mg) in phosphate-2H₂O buffer solution (0.2 *M*, p²H 6, 20 ml) was carried out as described in Section 6.2.1.1.1, yielding $(1,1-^{2}H_{2})$ cadaverine dihydrochloride (50 mg). ¹H NMR (²H₂O), δ 1.66 (6H, m, H-2,3,4), 3.05 (*ca*. 2.1 H, t, J 7.2 Hz, H-1,5). W.N'-Dibenzöy1-(1,1-²H₂)cadaverine: m.p. 133-134°C; m.s., m/e 313 (M+1, 0.9%), 312 (M, 4.6), 311 (M-1, 2.3), 310 (M-2, 0.5), 207 (2.3), 206 (0.9), 190 (8.9), 189 (6.9), 105 (100), 77 (75).

6.2.1.2 Incubatjon of cadaverine with \underline{L} -lysine decarboxylase in deuterium oxide solution

Cadaverine dihydrochloride was prepared by passing a stream of dry hydrogen chloride through a solution of cadaverine free base (Aldrich) in ethanol at room temperature. The dihydrochloride precipitated on cooling; m.p. 255-257° (lit.²⁷⁸ m.p. 255°C).

A solution of cadaverine dihydrochloride (23 mg) and \underline{L} -lysine decarboxylase (Sigma, "Type II") (9 mg) in phosphate- $^{2}H_{2}$ 0 buffer solution (0.2 M, $p^{2}H$ 6, 10 ml) was incubated at 36°C under anhydrous conditions (*i.e.* exclusion of ${}^{1}H_{2}O$). After 28 h the solution was acidified with concentrated hydrochloric acid, heated on a steam bath for 1 h, and the precipitated enzyme removed by centrifugation. The supernatant solution was lyophylised and exchangeable deuterium was removed by repeated solution of the π esidue in water (3 x 5 ml) followed by evaporation to dryness. The residue was then dissolved in water (2 ml). Part of the aqueous solution (1 ml) containing cadaverine was converted into the dibenzoyl derivative. Yield 23 mg; m.p. 129-131. C (from aqueous ethanol); ¹H[•]NMR (C²HCl₃), δ 1.3-1.8 (6H, m, H-2,3,4), 3.48 (4H, q, J ca. 6Hz, H-1,5), 6.44 (2H, s (br), 2 NH), 7.3-7.5 (6H, m, ArH), 7.7-7.9 (4H, m, ArH); m.s., m/e 311 (M+1, 0.3%), 310 (M, 1.6), 309 (M-1, 0.1), - 205 (2.5), 188 (10.2), 105 (100), 77 (75). The ¹H NMR spectrum and the mass spectrum were identical with those of unlabelled material.

6.2.2	Putrescine
6.2.2.1	Decarboxylation of ornithine, catalysed by L-ornithine
· · · ·	decarboxylase (E.C. 4.1.1.17) from Ercoli
6.2.2.1.1	(-)-(1- ² H)Putrescine (100) dihydrochloride by decarboxylation
	of the L-component of unlabelled DL-ownithine in deuterium

oxide solution (Experiment 4)

Anhydrous sodium carbonate (Analar) (111 mg) was added to a stirred solution of perdeuterioacetic acid (Merck, Sharp and Bohme 99.7, atom % ²H) in deuterium oxide (Stohler Isotopes, 99.8 atom % ²H) (0.2 *M*, 15 ml) under an atmosphere of dry nitrogen. After stirring for 1 h, <u>DL</u>ornithine monohydrochloride (Aldrich) (98 mg), which had been stripped of exchangeable protons by repeated solution in ²H₂O (3 x 5 ml) and evaporation to dryness, and <u>L</u>-ownithine decarboxylase (Sigma, 0.06 U/mg*) (45 mg) were dissolved in the buffered solution (ca. p²H 5). The enzymic reaction mixture, in a flask fitted with a calcium sulfate drying tube, was agitated at 36°C for 40 h, and worked up as described for the decarboxylation of lysine (Section 6.2.1:1), to give (-). (1-²H)putrescine dihydrochloride (46 mg) which was recrystallized from 95% ethanol: ¹H NMR (²H₂O), δ 1:77 (4H, m, H-2,3), 3.06 (ca. 3H, m, H-1,4); C.I. m.s., m/e 90 (M+H, 5%), 74 (5), 73 (M-NH₃, 100), 72 (2), (C.I. m.s. of authentic unlabelled material, m/e 89 (M+H, 5%), 73 (5), 72 (M-NH₃, 100), 71 (2));

* 1 U will release 1.0 μ mole carbon dioxide from \underline{L} -ornithine per minute at pH 5.0 at 37°C.

99.7 \pm 0.03% ²H₁ determined by C.I. m.s. The sample showed a plane negative ORD curve: $[\alpha]_{313} - 1.11 \pm 0.10^{\circ}$, $[\alpha]_{334} - 0.83 \pm 0.06^{\circ}$, $[\alpha]_{365}$ - 0.65 \pm 0.06°, $[\alpha]_{405} - 0.56 \pm 0.06^{\circ}$, $[\alpha]_{436} - 0.35 \pm 0.04^{\circ}$, $[\alpha]_{546} - 0.24 \pm 0.06^{\circ}$, $[\alpha]_{532} - 0.21 \pm 0.08^{\circ}$, $(c \ 3.39\% \text{ in } 0.1 \text{ M HCl}$, 26°C, uncorrected for incomplete deuteriation).

Another sample of $(-)-(1-^{2}H)$ putrescine dihydrochloride obtained as above from <u>L</u>-ornithine monohydrochloride (rather than from <u>DL</u>-) was 98.7 ± 1.2% mono-²H labelled at C-1, determined by C.I. m.s., and gave ORD, $[\alpha]_{302} - 1.12 \pm 0.11^{\circ}$, $[\alpha]_{313} - 1.03 \pm 0.08^{\circ}$, $[\alpha]_{334} - 0.78 \pm 0.09^{\circ}$, $[\alpha]_{365} - 0.66 \pm 0.05^{\circ}$, $[\alpha]_{405} - 0.50 \pm 0.04^{\circ}$, $[\alpha]_{436} - 0.43 \pm 0.04^{\circ}$, $[\alpha]_{546} - 0.24 \pm 0.05^{\circ}$, $[\alpha]_{577} - 0.20 \pm 0.06^{\circ}$, (*c* 2.26% in 0.1 *M* HC1, 26°C, uncorrected for incomplete deuteriation).

6.2.2.1.2 (+)- $(1e^{2}H)$ Putrescine (102) dihydrochloride by decarboxylation of the L-component of DL- $(2-^{2}H)$ ornithine (Experiment 5)

A solution of <u>DL</u>-(2-²H)ornithine monohydrochloride (*ca.* 98% ²H) (100 mg) and <u>L</u>-ornithine decarboxylase (40 mg) in acetate buffer 0.2 *M*, pH 5.0, 15 ml) was incubated at 36°C for 20 h. After workup, (+)-(1-²H)putrescine dihydrochloride was obtained and recrystallized from 95% ethanol (yield 45 mg). The ¹H NMR spectrum (²H₂O) was identical with that of (-)-(1-²H)putrescine and the sample showed a plane positive QRD curve. C.I. m.s., m/e 90 (M+H, 3%), 74 (5), 73 (M-NH₃, 100), 72 (5); 97.2 ± 0.3% ²H₁ determined by C.I. m.s.

Another sample of $(+)-(1-^{2}H)$ putrescine dihydrochloride obtained by enzymic decarboxylation of <u>DL</u>-(2-^{2}H) ornithine (*ca*. 92% ²H) was 93.1 ± 0.9% mono-²H labelled at C-1 (determined by C.I. m.s.); ORD, $[\alpha]_{302} + 1.21 \pm 0.09^{\circ}, \ [\alpha]_{313} + 0.98 \pm 0.06^{\circ}, \ [\alpha]_{334} + 0.81 \pm 0.06^{\circ}, \ [\alpha]_{365} + 0.64 \pm 0.04^{\circ}, \ [\alpha]_{405} \mp 0.51 \pm 0.04^{\circ}, \ [\alpha]_{436} + 0.30 \pm 0.03^{\circ}, \ [\alpha]_{546} + 0.23 \pm 0.03^{\circ}, \ [\alpha]_{577} + 0.20 \pm 0.04^{\circ}, \ (c \ 2.86\% \ in \ 0.1 \ M \ HCl, \ 26^{\circ}C, \ uncorrected).$

Unreacted \underline{D} -(2-²H)ornithine was reisolated from the incubation mixture. The alkaline solution, remaining after extraction of the (1-²H)putrescine into butanol, was neutralised with *conc*. hydrochloric acid, and was then applied to a column (25 x 1 cm) of Dowex 50-X8 (H⁺ form). The column was washed with water (25 ml), hydrochloric acid (2 M, 25 ml) and water (25 ml). \underline{D} -(2-²H)Ornithine was eluted with ammonia (1 M, 25 ml), and was isolated as the monohydrochloride, as described earlier (*cf.* Section 6.1.1.2).

The ¹H and ²H NMR spectra of the sample of <u>D</u>-(2-²H)ornithine monohydrochloride (*ca.* 92% ²H) were identical with those of the <u>DL</u>-(2-²H)ornithine from which it was derived. ORD, $[\alpha]_{265} - 157.8 \pm 7.9^{\circ}$, $[\alpha]_{280} - 114.8 \pm 5.7^{\circ}$, $[\alpha]_{289} - 98.0 \pm 4.9^{\circ}$, $[\alpha]_{296} - 87.3 \pm 4.4^{\circ}$, $[\alpha]_{302} - 80.7 \pm 4.0^{\circ}$, $[\alpha]_{313} - 69.2 \pm 3.5^{\circ}$, $[\alpha]_{334} - 52.8 \pm 2.6^{\circ}$, $[\alpha]_{365} - 39.3 \pm 2.0^{\circ}$, $[\alpha]_{405} - 29.0 \pm 1.5^{\circ}$, $[\alpha]_{436} - 23.4 \pm 1.2^{\circ}$, $[\alpha]_{546} - 14.4 \pm 0.8^{\circ}$, $[\alpha]_{577} - 12.9 \pm 0.7^{\circ}$, $[\alpha]_{589} - 12.1 \pm 0.8^{\circ}$, $(c \ 0.63\%$ in water, 25°C).

An authentic sample of unlabelled \underline{L} -ornithine monohydrochloride gave the following ORD: $[\alpha]_{265} + 166.3 \pm 3.3^{\circ}, [\alpha]_{280} + 124.9 \pm 2.5^{\circ},$ $[\alpha]_{289} + 107.6 \pm 2.2^{\circ}, [\alpha]_{296} + 96.1 \pm 1.9^{\circ}, [\alpha]_{302} + 88.9 \pm 1.8^{\circ},$ $[\alpha]_{313} + 78.1 \pm 1.6^{\circ}, [\alpha]_{334} + 61.7 \pm 1.2^{\circ}, [\alpha]_{365} + 45.1 \pm 0.9^{\circ},$ $[\alpha]_{405} + 32.3 \pm 0.7^{\circ}, [\alpha]_{436} + 26.1 \pm 0.5^{\circ}, [\alpha]_{546} + 13.6 \pm 0.4^{\circ},$

 $[\alpha]_{577} + 11.5 \pm 0.3^{\circ}, [\alpha]_{589} + 11.8 \pm 0.5^{\circ}, (c \ 0.49\% \text{ in water, } 25^{\circ}\text{C})$ (lit.²⁸⁵ [α]₅₈₉ + 11.0° (c 5.5% in water, 2(3°C)).

6.2.2.1.3 (1,1-²H)Putrescine (120) dihydrochloride by decarboxylation of the L-component of DL-(2-²H)ornithine in deuterium oxide solution (Experiment 6)

Decarboxylation of the <u>L</u>-component of <u>DL</u>- $(2-^{2}H)$ ornithine monohydrochloride (*ca.* 92% ²H) (117 mg), catalysed by <u>L</u>-ornithine decarboxylase (40 mg) in perdeuterioacetate-²H₂O buffer solution (0.2 *M*, *ca*. p²H 5, 20 ml) to give $(1,1-^{2}H_{2})$ putrescine dihydrochloride (52 mg) was carried out as described in Section 6.2.2.1.1; ¹H NMR (²H₂O), δ 1.78 (4H, m, H-2,3), 3.08 (*ca.* 2H, m, H-1,4); C.I. m.s., m/e 91 (M+H, 5%), 75 (5), 74 (M-NH₃, 100), 73 (10), 72 (5); *ca.* 91 ± 1% ²H₂, 9 ± 1% ²H₁ determined by C.I. m.s.

6.2.2.2 Incubation of putrescine with ornithine decarboxylase in deuterium oxide solution

A solution of putrescine dihydrochioride (25 mg) and <u>L</u>-ornithine decarboxylase (9 mg) in perdeuterioacetate- ${}^{2}H_{2}O$ buffer (0.2 *M*, *ca*. p²H 5, 3 ml) was incubated at 36°C under a nitrogen atmosphere. After 42 h ${}^{2}B_{1}$ a ¹H NMR spectrum of the reaction mixture indicated no apparent change in the signals_due to putrescine: δ 1.77 (4H, m), 3.05 (*ca*. 4H, t (br)).

. 177

N

6.2.3 <u>Agmatine</u>
6.2.3.1 <u>Decarboxylation of arginine catalysed by L-arginine</u> <u>decarboxylase (E.C. 4.1.1.19) from E. coli</u>
6.2.3.1.1 (-)-(1-²H)Agmatine (104) sulfate by decarboxylation of <u>L</u>-arginine in deuterium oxide solution (Experiments 7, 9 and 11)

L-Arginine monohydrochloride (Eastman) (90 mg) was twice dissolved in deuterium oxide (3 ml) and evaporated to dryness to effect replacement of exchangeable protons with deuterium. The amino acid was then dissolved in perdeuterioacetate- 2 H₂O buffer (*ca*. p²H 5.2, 20 ml) to yield a 0.02 M solution. The buffer had been prepared from perdeuterioacetic acid (0.2 M in ${}^{2}H_{2}O$) and anhydrous sodium carbonate (8.36 mg/ml) (see Section 6.2.2.1.1). L-Arginine decarboxylase (Sigma; 2.9 U/mg (11 mg), Experiment 7; 0.7 U/mg (43 mg), Experiments 9 and 11)* was added ' and the resulting solution incubated at 36°C in a flask equipped with a calcium sulfate drying tube. After 30-40 h the incubation mixture was acidified (ca. pH 2) with concentrated hydrochloric acid, treated with Norite, heated on a steam bath for 30 min, and filtered through Celite. The filtrate) was evaporated, the residue dried in vacuo over sodium hydroxide and then dissolved in 5% (w/v) sodium hydroxide solution (1-2 The alkaline solution was saturated with sodium chloride and exm1). tracted with 1-butanol (4 x 3 ml). Evaporation of the butanol gave an oil which was redissolved in aqueous sulfuric acid (0.1 M, ca. 1 ml).

* 1 U will release 1.0 µmole carbon dioxide from <u>L</u>-arginine per minute at pH 5.2 at 37°C. 178

ひ

After addition of methanol and cooling at 0°C overnight the crystalline sulfate of $(-)-(1-^{2}H)$ agmatine separated and was recrystallized from water:methanol. Yield 72 mg; m.p. 238-240°C (lit. (nondeuteriated)²⁷⁹ m.p. 236-239°C); ¹H NMR (²H₂O), δ 1.66 (4H, m, H-2,3), 2.95 (*ca.* 1H, t (br), J *ca.* 6.8 Hz, H-1), 3.18 (2H, m, H-4); ORD, [α]₃₀₂ - 1.37 ± 0.08°, [α]₃₁₃ - 1.17 ± 0.07°, [α]₃₃₄ - 1.01 ± 0.06°, [α]₃₆₅ - 0.76 ± 0.04°, [α]₄₀₅ - 0.57 ± 0.03°, [α]₄₃₆ - 0.50 ± 0.03°, [α]₅₄₆ - 0.19 ± 0.02°, [α]₅₇₉ - 0.16 ± 0.03° (*c*.6.52% in water, 25°C, uncorrected for incom-° plete deuteriation); ²H NMR (H₂O, 180 mM, 100 transients) showed one signal at 2.9 ppm apart from that due to natural abundance ²H in water 4.5 ppm).

6.2.3.1.2 (+)-(1-²H)Agmatine (106) sulfate by decarboxylation of <u>L</u>-(2-²H)arginine (Experiments 8, 10 and 12)

A solution of $\underline{1}$ -(2-²H)arginine monohydrochloride (*ca.* 85% ²H, Experiments 8 and 12; *ca.* 92% ²H, Experiment 10) (0.02 *M*) and $\underline{1}$ arginine decarboxylase (2.9 U/mg (19 mg), Experiment 8; 0.7 U/mg (75 mg), ⁶ Experiments 10 and 12) in acetate buffer (0.2 *M*, pH 5.2, 35 ml) was incubated at 36°C for 40 h. The reaction mixture was worked up, as described in Section 6.2.3.1.1 to give (+)-(1-²H)agmatine sulfate (100 mg). The m.p. and NMR spectra (¹H and ²H) were similar to those obtained for (-)-(1-²H)agmatine sulfate. The sample showed a plane positive ORD curve; $(\frac{1}{4}a)_{297}$ + 1.42 ± 0.11°, $[\alpha]_{302}$ + 1.21 ± 0.08°, $[\alpha]_{313}$ + 1.07 ± 0.07°, $[\alpha]_{334}$ + 0.84 ± 0.06°, $[\alpha]_{365}$ + 0.70 ± 0.04°, $[\alpha]_{405}$ + 0.53 ± 0.03°, $[\alpha]_{436}$ + 0.42 ± 0.03°, $[\alpha]_{546}$ + 0.27 ± 0.03°, $[\alpha]_{577}$ + 0.23 ± 0.04° (*c* 4.18% in water, 25°C, uncorrected for incomplete deuteriation).

.179

6.2.3.2 Incubation of agmatine with L-arginine decarboxylase in deuterium oxide solution

A solution containing agmatine sulfate (Aldrich) (47 mg) and L-arginine decarboxylase (Sigma, 2.9 U/mg) (8 mg) in perdeuterioacetate-²H₂O buffer (0.2 M, ca. p²H 5.2, 14 ml) was incubated at 36°C under a stream of dry nitrogen. After 92 h, paper chromatography (Whatman 3 MM, developed with 1-butanol:acetic acid:pyridine:water (4:1:1:2) showed only agmatine, R_f 0.36, as indicated by spraying separate chromatograms with ninhydrin (0.3% w/v; in 1-butanol:acetic acid, 97.3, v/v) and Sakaguchi reagent.²⁸⁰ Agmatine sulfate was then reiSolated from the enzymic reaction mixture as previously described. The ¹H NMR spectrum (²H₂O) of the reisolated sample was identical with that of authentic unlabelled material; only one signal was observed in its ²H NMR spectrum (H₂O, 83 mM, 5000 transients), due to natural abundance ²H in water.

6.3 <u>CONVERSION OF AGMATINE INTO PUTRESCINE</u>

6.3.1 <u>Hydrolysis of agmatine to putrescine</u>

A solution of agmatine sulfate (55 mg) in ethanol:water (70:30, v/v, 3 ml) containing sodium hydroxide (10% w/v) was heated at reflux under a nitrogen atmosphere. When the reaction was complete (ca. 20 h) as revealed by paper chromatography (Whatman 3 MM, 1-butanol:acetic acid: pyridine:water, 4:1:1:2; visualized with ninhydin (0.3% w/v, in 1-butanol: acetic acid, 97:3, v/v); agmatine, Rf 0.36; putrescine, Rf 0.27), the reaction mixture was cooled to room temperature and acidified to pH 4

with 10% (w/v) hydrochloric acid. After evaporation of the solvent the residue was dissolved in sodium hydroxide solution (10% w/v, 3 ml), the solution saturated with sodium chloride and extracted with l-butanol (3×3 ml). The butanol extract was acidified with HCl-butanol and concentrated *in vacuo* (4 ml). Putrescine dihydrochloride which separated was collected and recrystallized from aqueous ethanol. Yield 33 mg, 87%. The ¹H NMR was identical with that of authentic material.

6.3.2 Hydrolysis of (1-²H)agmatine to (1-²H)putrescine

6.3.2.1

2.1 <u>Conversion of (-)-(1-²H)agmatine (104) sulfate into</u> (-)-(1-²H)putrescine (100) dihydrochloride (Experiment 9)

Hydrolysis of (-)-(1-²H)agmatine sulfate (65 mg), as described for unlabelled material (Section 6.3.1), gave (-)-(1-²H)putrescine dihydrochloride (41 mg) which was twice recrystallized from aqueous ethanol: C.I. m.s., m/e 90 (M+H, 3%), 74 (5), 73 (M-NH₃, 100), 72 (2); 99.4 \pm 0.4% ²H, determined by C.I. m.s.; ORD, [α]₃₀₂ - 1.07 \pm 0.09°, [α]₃₁₃ - 0.98 \pm 0.08°, [α]₃₃₄ - 0.84 \pm 0.08°, [α]₃₆₅ - 0.67 \pm 0.05°, [α]₄₀₅ - 0.52 \pm 0.05°, [α]₄₃₆ - 0.43 \pm 0.06°, [α]₅₄₆ - 0.21 \pm 0.06° (*c* 1.84% in 0.1 *M* HCl, 26°C, uncorrected for incomplete deuteriation).

6.3.2.2 <u>Conversion of (+)-(1-2H)agmatine (106) sulfate into</u> (+)-(1-2H)putrescine (102) dihydrochloride (Experiment 10)

Hydrolysis of (+)- $(1-^{2}H)$ agmatine sulfate (40 mg) gave (+)- $(1-^{2}H)$ putrescine dihydrochloride (22 mg) which was twice recrystallized from water: C.I. m.s., m/e 90 (M+H, 5%), 74 (5), 73 (M-NH₃, 100), 72 (10);

0

1rt

91.7 \pm 0.8% ²H, determined by C.I. m.s.; ORD, $[\alpha]_{313} + 0.85 \pm 0.09^{\circ}$, $[\alpha]_{334} + 0.75 \pm 0.09^{\circ}$, $[\alpha]_{365} + 0.56 \pm 0.06^{\circ}$, $[\alpha]_{405} + 0.44 \pm 0.05^{\circ}$, $[\alpha]_{436} + 0.41 \pm 0.06^{\circ}$, $[\alpha]_{546} + 0.24 \pm 0.06^{\circ}$, (c l.61% in 0.1 M HCl, 26°C, uncorrected for incomplete deuteriation).

Paper chromatography (see Sections 6.2.3.2 and 6.3.1) of the samples of $(-)-(1-^{2}H)-$ and $(+)-(1-^{2}H)$ putrescine dihydrochloride obtained from Experiments 9 and 10 showed single ninhydrin positive and Saka-guchi²⁸⁰ negative spots at R_f 0.27. The ¹H NMR spectra (²H₂0) of both samples were identical with those of $(1-^{2}H)$ putrescine dihydrochloride obtained from ornithine.

6.4 OXIDATION OF (1-2H)AMINES TO ω -AMINOALDEHYDES

6.4.1 <u>Chemical synthesis of solid derivatives of the</u> w-aminoaldehydes

6.4.1.1 5-Aminopentanal

6.4.1.1.1 <u>3-(3'-Aminopropyl)quinoline (125) (cf. ref. 198)</u>

 α -Tripiperideine (127) (404 mg) was dissolved in hot citrate buffer (0.1 *M*, pH 4.7, 10 ml) and added to a hot solution of *o*-aminobenzaldehyde (Fluka A.G.) (610 mg) in the same buffer (190 ml). The mixture was heated on a steam bath for 6 h, cooled to 0°C and filtered. The filtrate was basified with aqueous sodium hydroxide (5%, w/v), saturated with sodium chloride and extracted with chloroform (4 x 100 ml). The combined chloroform extracts were dried over anhydrous magnesium sulfate, filtered and evaporated. 3-(3'-Aminopropyl)quinoline was obtained as a yellow oil (686 mg). ¹H NMR (C²HCl₃), δ 1.57 (2H, s (br), NH₂), 1.82

L

(2H, quin, J 7.2 Hz, H-2'), 2.73 (2H, t, J 7.2 Hz, H-1'), 2.80 (2H, t, J 7.2 Hz, H-3'), 7.40-8.13 (5H, m, ArH), 8.77 (1H, d, J 2.1 Hz, H-2); ¹³C NMR (C²HCl₃, 2.69 mM, 6000 transients), δ 30.5 (C-2'), 34.7 (C-1'), 41.5 (C-3'), 126.7 (C-5), 127.4 (C-6), 128.3 (C-10), 128.7 (C-7 or C-8), 129.3 (C-7 or C-8), 134.2 (C-4), 134.8 (C-3), 147.0 (C-9), 152.1 (C-2).

A solution of the quinoline derivative (125) (113 mg) in ethanol (3 ml) was acidified with ethanolic hydrogen chloride. The dihydrochloride precipitated on addition of a small amount of ether, and was recrystallized from ethanol-ether. Yield 110 mg; m.p. 228-230°C (lit. ¹⁹⁸ m.p. 225-230°C); ¹H NMR (perdeuterioacetate-²H₂O buffer (0.2 *M*, *ca.* p²H 5)), δ 1.94 (2H, quin., J 7.2 Hz, H-2'), 2.85 (*ca.* 2H, t, J 7.2 Hz, H-1'), 2.95 (*ca.* 2H, t, J 7.2 Hz, H-3'), 7.42-8.02 (4H, m, ArH), 8.32 (1H, s, H-4), 8.68 (1H, s (br), H-2).

A sample of the dipicrate of 3-(3'-aminopropyl)quinoline was prepared from the dihydrochloride. M.p. 209-212°C (from water) (lit. m.p. 208-210°, 195 216-217° 198); ¹H NMR (DMSO-2 H_6 : ²H₂O, 10:1), δ 2.12 (2H, quin., J 7.2 Hz, H-2'), 3.16 (4H, two overlapping t, J 7.2 Hz, H-1', H-3'), 7.86-8.30 (4H, m, ArH), 8.66 (4H, s, picrate-H), 9.04 (1H, d, J 1.2 Hz, H-4), 9.30 (1H, d, J 1.2 Hz, H-2).

6.4.1.1.2 <u>3-(3'-Aminopropy1)-(2-²H)quinoline dihydrochloride</u> (cf. ref. 203)

N-Bromosuccinimide (131 mg) was added to a small flask containing an aqueous solution of \underline{DL} -(2-²H)lysine monohydrochloride (*ca*. 95% ²H, 66 mg) in water (7 ml). The flask was immersed in a water bath at 40°C and rotated by means of a rotary evaporator under reduced pressure. When the solution had become colourless (45 min), the reaction mixture was basified with aqueous sodium hydroxide (5%, w/v), and was extracted with chloroform (4 x 5 ml). The chloroform extracts were dried over anhydrous magnesium sulfate, filtered and the filtrate evaporated to give a pale yellow oil. The oil, containing $(2^{-2}H)-\Delta^{1}$ -piperideine, the cyclized form of $(1-^{2}H)-5$ -aminopentanal, was dissolved in hot citrate buffer (0.1 M, pH 4.7, 1 ml) and reacted with o-aminobenzaldehyde (44 mg in 19 ml of the same buffer) as described for the preparation of unlabelled material (Section 6.4.1.1.1). 3-(3'-Aminopropy1)-(2-²H)quinoline was obtained as its dihydrochloride and recrystallized from ethanolether. Yield 40 mg, 41%; m.p. 228-230°C. The tH NMR spectrum (perdeuterioacetate- ${}^{2}H_{2}O$ (0.2 M, ca. p²H 5)) was identical with that of unlabelled material except that the signal at 8.68 ppm corresponded to ca. 0.05 hydrogen atoms. The ²H NMR spectrum ($H_2\dot{O}$, 8 mM, 4808 transients) showed one signal at 8.8 ppm as well as that due to natural abundance ²H in water (4.5 ppm).

In a second experiment $(2-2H)^{-}\Delta^{1}$ -piperideine, which had been obtained from <u>DL</u>- $(2-^{2}H)$ lysine monohydrochloride (> 95% ²H, 23 mg) by oxidative decarboxylation with *N*-bromosuccinimide (46 mg), was trapped as the dipicrate of the 3-(3'-aminopropyl)quinoline derivative. Yield 26 mg (33%); m.p. 212-215°C. ¹H NMR (DMSO-²H₆:²H₂O, 10:1), 6 2.12 (2H, quin., J 7.2 Hz, H-2'), 3.16 (4H, two overlapping t, J 7.2 Hz, H-1', H-3'), 7.86-8.30 (4H, m, ArH), 8.67 (4H, s, picrate-H), 8.95 (1H, s, H-4). The signal present at 9.30 ppm in the spectrum of the unlabelled material was absent, indicating that this sample was > 98% deuteriated at C-2. The ²H NMR spectrum (DMSO, 25 mM, 866 transients) showed one signal, at 9.2 ppm, in addition to that due to natural abundance ²H in DMSO (2.6 ppm).

6.4.1.2 <u>4-Aminobutanal</u>

I

6.4.1.2.1 2,3-Trimethylene-1,2-dihydroquinazolinium (134) picrate

Oxidation of \underline{DL} -ornithine monohydrochloride (333 mg) with Nbromosuccinimide (350 mg) in aqueous solution (20 ml) to give Δ^1 -pyrroline (133), the cyclized form of 4-aminobutanal (132), was carried out by a published procedure, ¹⁹⁹ the pH of the solution containing Δ^1 pyrroline (20 ml, pH 3.5) was adjusted to pH 4.5 with aqueous sodium hydroxide (5%, w/v). o-Aminobenzaldehyde (253 mg) in citrate buffer (0.1 M, pH 4.7, 40 ml) was added. The colour of the resulting solution changed from yellow to bright orange during stirring at room temperature. After 20 h the reaction mixture was filtered, and a solution of picric acid in methanol (10%, w/v, 5 ml) was added to the filtrate. The dihydroquinazolinium picrate (134), which precipitated at 0°C, was recrystallized from methanol-water. Yield 400 mg, 50%; m.p. 160-162°C (lit. m.p. 170-171°C, 202 169-170°C, 199 166-168°C 197); ¹H NMR (DMSQ-²H₆), δ 2.03-2.70 (4H, m, H-1',2'), 4.12 (2H, t, J 6.8 Hz, H-3'), 5.20 (1H, t, J 6.0 Hz, H-2), 6.85 (2H, m, ArH), 7.53 (2H, m, ArH), 8.07 (1H, s, NH), 8.57 (2H, s, picrate-H), 8.97 (1H, s, H-4); ¹³C NMR (DMSO-²H₆, 125 mM, 85,000 transients), δ 22.5 (C-1' or C-2'), 30.2 (C-1' or C-2'), 52.9 (C-3'), 71.0 (C-2), 114.5, 115.4, 119.5, 125.2, 132.8, 139.2, 142.0, 148.0, (C-5 to C-10 and picrate carbon atoms), 159.2 (C-4).

6.4.1.2.2 <u>2,3-Trimethylene-(2-²H)-1,2-dihydroquinazolinium picrate</u> The (2-²H)dihydroquinazolinium picrate (72 mg) was obtained from DL-(2-²H)ornithine monohydrochloride (*ca*. 98% ²H, 57 mg) as described for the preparation of unlabelled material (Section 6.4.1.2.1). M.p.
154-155°C (from methanol-water); ¹H NMR (DMSO-²H₆), δ 2.17 (*ca*. 2H, t, J 6.8 Hz, H-1'), 2.03-2.70 (*ca*. 2H, m (unresolved), H-2'), 4.12 (2H, t, J 6.8 Hz, H-3'), 6.87 (2H, m, ArH), 7.55 (2H, m, ArH), 8.07 (1H, s, NH), 8.58 (2H, s, picrate-H), 9.00 (1H, s, H-4). The signal at 5.20 ppm, present in the spectrum of the unlabelled compound, was absent, indicating that the sample was > 98% deuterium labelled at C-2. The ²H NMR (DMSO, 20 *mM*, 5000 transients) showed one signal at δ 5.2 ppm as well as that due to natural abundance ²H in DMSO (2.6 ppm).

6.4.2 Enzymic synthesis of ω-aminoaldehydes

6.4.2.1 5-Aminopentanal

6.4.2.1.1 Incubation of cadaverine (121) with hog kidney diamine <u>oxidase (E.C. 1.4.3.6) and isolation of the product as</u> <u>3-(3'-aminopropyl)quinoline (125) dihydrochloride</u>

(i) <u>40 h Incubation</u>. A solution of cadaverine dihydrochloride (40 mg), *o*-aminobenzaldehyde (32 mg), diamine oxidase (Sigma, Grade II, 0.12 U/mg)* (200 mg), and beef liver catalase (E.C. 1.11.1.6) (Sigma, 137 U/mg)[†] (500 µg) in phosphate buffer (0.1 *M*, pH 7.2, 30 ml) was incubated at 36°C for 40 h. The mixture was then acidified (pH 4.5) with

* 1 U will oxidise 1.0 µmole putrescine per hour at pH 7.2 at 37°C.

[†] 1 U will decompose 1.0 µmole hydrogen peroxide per minute at pH 7.0 at 25°C. 186

Sm

r

4 M hydrochloric acid, heated on a steam bath for 30 min and centrifuged. *o*-Aminobenzaldehyde (20 mg) was added, and the supernatant solution was refluxed for 6 h, cooled to room temperature and filtered through Celite. The pH of the filtrate was adjusted to 11-12 with 5% (w/v) sodium hydroxide, and the solution was extracted with diethyl ether (4 x 20 ml). The combined ether extracts were dried over anhydrous sodium sulfate, filtered and the solvent was evaporated to dryness. The residue was purified by preparative thin layer chromatography (silica gel plates, 0.5 mm, 20 x 20 cm; developed with 1-butanol:acetic acid: water (5:1:1)). The band corresponding to that of 3-(3'-aminopropy1)quinoline, Rf 0.3, was eluted with ethanol. After removal of the solvent in vacuo, the residue was suspended in sodium hydroxide solution (2%, w/v, 1 ml) and the product extracted into ether (4 x 2 ml). The quinoline dihydrochloride was obtained by acidification with ethanolic hydrogen chloride, evaporation to dryness, and crystallization of the residue from ethanol-ether. Yield 5 mg; m.p. 229-231°C. The ¹H NMR spectrum (perdeuterioacetate- ${}^{2}H_{2}O$ (0.2 M, p²H 5)) was identical with that of 3-(3'-aminopropyl)quinoline dihydrochloride prepared from α -tripiperideine (see Section 6.4.1.1.1).

(ii) <u>6 h Incubation</u>. Cadaverine dihydrochloride (38 mg) was incubated with diamine oxidase (200 mg) in the presence of *o*-aminobenzaldehyde (26 mg) in phosphate buffer (0.1 *M*, pH 7.2, 20 ml) for 6 h. When picric acid in methanol was added, the products precipitated. The solid was extracted with boiling methanol (1 ml).

The yellow residue was recrystallized from water to give 3-(3'aminopropyl)quinoline dipicrate (8 mg), m.p. 216-218°C. The ¹H NMR

spectrum (DMSO- ${}^{2}H_{6}$) was identical with that of an authentic sample of the quinoline dipicrate prepared from α -tripiperideine (see Section 6.4.1.1).

When water (0.2 ml) was added to the methanol extract the second product, 2,3-tetramethylene-1,2-dihydroquinazolinium (126) picrate (2 mg) precipitated. M.p. 165-167°C (from methanol-water) (lit. ¹⁹⁸ m.p. 166-172°C); ¹H NMR (DMSO-²H₆), δ 2.09 (6H, m, H-1',2'3'), 4.02 (*ca.* 2H, t (br), J *ca.* 10 Hz, H-4'), 5.75 (1H, d of d (br), J₁ *ca.* 9 Hz, J₂ *ca.* 3 Hz, H-2), 6.80 (2H, m, ArH), 7.45 (2H, m, ArH), 7.73 (*ca.* 1H, s (br), NH), 8.63 (2H, s, picrate-H), 8.80 (1H, s, H-1).

6.4.2.1.2 Enzymic conversion of (²H)cadaverine into (²H)-3-(3'-aminopropyl)quinoline

Samples (40 mg) of $\underline{\mathbb{R}}$ -(1-²H)-, $\underline{\mathbb{S}}$ -(1-²H)- and (1,1-²H₂)cadaverine dihydrochloride (Experiments 1, 2 and 3a, respectively), obtained from the appropriate incubation with $\underline{\mathbb{L}}$ -lysine decarboxylase, were incubated in separate experiments with diamine oxidase, as described in Section 6.4.2.1.1 (i). The samples of 3-(3'-aminopropyl)quinoline dihydrochloride obtained (2-7 mg) in each of the three experiments were identical, except for the presence of deuterium at C-2 and/or C-3', with authentic unlabelled material, as revealed by ¹H and ²H NMR spectroscopy.

Another sample of $(1,1-^{2}H_{2})$ cadaverine (30 mg) dihydrochloride (Experiment 3b) was incubated with diamine oxidase, as described in Section 6.4.2.1.1 (ii).

The major product, 3-(3'-aminopropyl)quinoline dipicrate (7 mg), m.p. 205-208°C gave a ¹H NMR spectrum (DMSO-²H₆) which indicated the

absence of ¹H from C-2 (δ 9.30, 0.5 H) and from C-3' (δ 3.16, 3H, two H at C-1', one H at C-3').

The minor product, 2,3-tetramethylene-1,2-dihydroquinazolinium picrate (*ca*. 1 mg) showed a ¹H NMR spectrum (DMSO-²H₆:²H₂O, 10:1) similar to that of unlabelled material, except that the signal at 5.75 ppm (H-2) corresponded to *ca*. 0.5 H. The signal due to H-4' (*ca*. 4.0 ppm) was unresolved, due to the presence of a large overlapping signal of ²HOH.

6.4.2.2 <u>4-Aminobutanal</u>

6.4.2.2.1 Incubation of putrescine (131) with hog kidney diamine oxidase and isolation of the product as 2,3-trimethylene-1,2-dihydroquinazolinium (134) picrate

A solution containing putrescine dihydrochloride (Sigma) (40 mg), *o*-aminobenzaldehyde (24 mg), diamine oxidase (Sigma, Grade II) (200 mg) and catalase (Sigma) (50 ug) in phosphate buffer (0.1 *M*, pH 7.2, 20 ml) was incubated in a constant temperature water bath at 36°C for 6 h. The pH of the reaction mixture was then adjusted to pH 4-4.5 with concentrated hydrochloric acid, and the solution concentrated (*ca.* 15 ml) by heating on a steam bath under a stream of nitrogen. The precipitated protein was removed by centrifugation and filtration of the supernatant solution through Celite. A saturated solution of picric acid in methanol (0.15 ml) was added, with swirling, to the clear yellow solution and the product, which precipitated when the mixture was cooled at 0°C overnight, was collected and recrystallized from methanol-water. Yield 14 mg. The m.p. (159-160°C) and ¹H NMR spectrum (DMSO-²H₆) were identical with those of the dihydroquinazolinium picrate prepared from ornithine (see Section 6.4.1.2.1).

6.4.2.2.2 <u>Enzymic conversion of (²H)putrescine into (²H)-2,3-</u> trimethylene-1,2-dihydroquinazolinium picrate

Samples (30 mg) of $(-)-(1-^{2}H)-$, $(+)-(1-^{2}H)-$ and $(1,1-^{2}H_{2})$ putrescine dihydrochloride (Experiments 4, 5 and 6, respectively) were incubated with diamine oxidase in the presence of *o*-aminobenzaldehyde to give samples of the dihydroquinazolinium picrate (9-15 mg) (see Section 6.4.2.2.1), which were labelled with deuterium at C-2 and/or C-3', as determined by ²H and ¹H NMR spectroscopy.

6.4.2.2.3 Incubation of agmatine (137) with hog kidney diamine oxidase and isolation of the product, 4-guanidinobutanal (138), as its dinitrophenylhydrazone (DNP) derivative

A potassium phosphate buffer solution (0.05 M, pH 7.2, 40 ml) containing agmatine sulfate (111 mg, 0.012 M), diamine oxidase (Sigma, Grade II) (243 mg), and beef liver catalase (Sigma) (*ca.* 150 µg) was incubated at 36°C in a constant temperature water bath. The course of the reaction was followed by thin layer chromatography (silica gel; 1-butanol:acetic acid:water (5:1:1)) which showed the formation of a single oxidation product (Sakaguchi²⁸⁰ positive) at R_f 0.35 (agmatine, R_f 0.06).

When oxidation was complete (ca. 23 h), the enzymic reaction mixture was acidified (pH 4) with 10% (w/v) hydrochloric acid, heated on a steam bath for 30 min, cooled to room temperature, and its pH adjusted to pH 6 with sodium hydroxide solution (2%, w/v). Ethanol (8 ml)

was added and the precipitated protein was removed by filtration through Celite. The filtrate was evaporated to dryness *in vacuo* and the residue was dissolved in deuterium oxide (*ca.* 1 ml). ¹H NMR (²H₂O), δ 1.7 (4H, s (br), H-2,3), 3.2 (2H, m (br), H-4), 5.2 (1H, s (br), H-1); ¹³C NMR (²H₂O, 60,000 transients), δ 22.8 (C-3), 35.4 (C-2), 48.2 (C-4), 83.8 (C-1), 156.5 (-NH(C=NH)NH₂).

After removal of the deuterium oxide *in vacuo*, the residue was redissolved in water (5 ml) and evaporated to dryness. It was then extracted with ethanol (3 x 2 ml). The combined ethanol extracts were evaporated to dryness and a solution of dinitrophenylhydrazine in ethanolic phosphoric acid (0.1 *M*, 5 ml) was added. The solution was heated at reflux for 30 min and after cooling at 0°C overnight the yelloworange DNP-phosphate derivative precipitated (82 mg). ¹H NMR ($^{2}H_{2}O$), δ 1.88 (2H, quin., J 6.8 Hz, H-3), 2.46 (2H, d of t, J₁ 6.8 Hz, J₂ 5.1 Hz, H-2), 3.26 (2H, t, J 6.8 Hz, H-4), 7.68 (1H, d, J 9.8 Hz, ArH), 7.74 (1H, t, J 5.1 Hz, H-1), 8.23 (1H, d of d, J₁ 9.8 Hz, J₂ 2.7 Hz, ArH), 9.03 (1H, d, J 2.7 Hz, ArH); ¹³C NMR (DMSO-²H₆, 35 mg/ml, 30,000 transients), δ 25.3 (C-3), 29.4 (C-2), 116.5, 123.3, 129.0, 130.1, 136.9, 144.9 (aromatic carbon atoms), 154.3 (C-1), 157.2 (-NH(C=NH)NH₂). The ¹³C signal arising from C-4 was presumably buried under the DMSO-²H₆ septet centered at 39.6 ppm.

 \sim Part of the DNP-phosphate (15 mg) was dissolved in hot ethanolic hydrogen chloride, and after cooling to 0°C, the hydrochloride salt precipitated as yellow-orange needles which were recrystallized from ethanol. Yield 5 mg; m.p. 95-96°C. The ¹H NMR (²H₂O) of the DNP-hydrochloride was identical with that of the phosphate.

191

6.4.2.2.4 Incubation of (1-2H)agmatine with diamine oxidase

Incubation of $(-)-(1-^{2}H)$ - and $(+)-(1-^{2}H)$ agmatine sulfate with diamine oxidase, in separate experiments, and isolation of the products of oxidative deamination_as the DNP-phosphate derivatives was carried out as described in Section 6.4.2.2.3.

6.4.2.2.4.1 Conversion of $(-)-(1-^{2}H)$ agmatine sulfate into 4guanidino $(1-^{2}H)$ but an al-DNP (Experiment 7)

The DNP-phosphate (25 mg) obtained from $(-)-(1-^{2}H)$ agmatine sulfate (33 mg) showed a ¹H NMR spectrum (²H₂O) similar to that of unlabelled material except for the absence of the triplet at 7.74 ppm $\langle (H-1) \rangle$ and the presence of a triplet (J 6.8 Hz) centred at 2.46 ppm (H-2), instead of a double triplet. The ²H NMR spectrum (H₂O, 4.8 mg/ml, 3484 transients) of this sample showed one signal at 7.6 ppm (br) as well as the signal due to natural abundance deuterium in water at 4.5 ppm.

6.4.2.2.4.2 <u>Conversion of (+)-(1-²H)agmatine sulfate into 4-</u> <u>guanidinobutanal-DNP (Experiment 8)</u>

The ¹H NMR spectrum (²H₂O) of the DNP-phosphate (32 mg/ obtained from (+)-(1-²H)agmatine sulfate (41 mg) was identical with that of unlabelled material and no signals were observed in its ²H NMR spectrum (H₂O, 7.4 mg/ml, 14,612 transients) other than the one due to natural abundance deuterium in water.

6.5 <u>CONVERSION OF AGMATINE INTO PHTHALIMIDOBUTYRIC ACID</u>

6.5.1 Preparation of 4-phthalimidobutyric acid

مب مب

6.5.1.1 <u>4-Phthalimidobutylguanidine</u> (148) sulfate

To a stirred solution containing agmatine sulfate (228 mg) and sodium bicarbonate (168 mg) in water (3 ml) was added *N*-carbethoxyphthalimide (Aldrich) (232 mg) in small portions over 15 min at room temperature. After stirring for 1 h, the reaction mixture was cooled to 0°C and the product, which precipitated, was recrystallized from methanol. Yield 225 mg; m.p. 213-214°C; ¹H NMR (C²H₃CO₂²H), δ 1.70 (4H, m (br), H-2,3), 3.30 (2H, t (br), H-1), 3.84 (2H, t (br), H-4), 7.85 (4H, m, ArH). Anal. Calcd. for (Cf₁₃H₁₇N₄O₂)₂·SO₄·2H₂O: C, 47.69; H, 5.85; N, 17.12; SO[±], 14.67. Found: C, 47.65; H, 5.98; N, 17.09; SO[±], 14.49%.

6.5.1.2 <u>4-Phthalimidobutyric acid (149)</u>

A solution of potassium permanganate (0.4 M) in 0.5 M sulfuric acid was added in small portions (*ca*. 0.1 ml) to a stirred suspension of 4-phthalimidobutylguanidine (27 mg) in 0.5 M sulfuric acid (1 ml) at room temperature. Additions of the oxidant were made until the colour of permanganate in the reaction mixture was no longer discharged (*ca*. 0.5 ml over 1 h). Stirring was continued for 1 h and the reaction mixture was then decolourized with sodium bisulfite. After cooling at 0°C, the product, which precipitated, was extracted into chloroform (3 x 2 ml). The combined extracts were dried over anhydrous sodium sulfate and filtered. Evaporation gave 4-phthalimidobutyric acid (13 mg) as a white solid which was recrystallized three times from water; m.p. 115-116°C lit.²⁸¹ m. 115-117°C); ¹H NMR (C²HCl₃), δ 2.01 (2H, quin., J 6.8 Hz, H-3), 2.32 (2H, t, J 6.8 Hz, H-2), 3.76 (2H, t, J 6.8 Hz, H-4), 7.75 (4H, m, ArH), 10.2 (1H, s (br), CO₂H); m.s., m/e 233 (M, 4%); 215 (M-H₂O, 19), 187 (15), 174 (70), 173 (42), 160 (100), 104 (19), 76 (24). The m.p. and spectral properties were the same as those of an authentic sample prepared from γ -aminobutyric acid and *N*-carbethoxyphthalimide.¹²¹

6.5.2 <u>Conversion of (1-²H)agmatine into 4-phthalimido-</u> (4-²H)butyric acid

6.5.2.1 (-)-4-Phthalimido(4-²H)butyric acid (150) from (-)-(1-²H)agmating (104) sulfate (Experiment 11)

N-Carbethoxyphthalimide (82 mg) was added to a stirred solution of (-)-(1-²H)agmatine sulfate (70 mg) in 0.5 *M* sodium bicarbonate (1.5 ml). The resulting mixture was stirred at room temperature for 20 min and then cooled to 0°C. After standing at 0°C for 30 min, the product was collected by filtration, washed with cold water (1 ml), cold ethanol (1 ml) and chloroform (1 ml), and dried *in vacuo* over sodium hydroxide. 4-phthalimido(4-²H)butylguanidine (152) (66 mg), so obtained, was recrystallized from methanol:acetic acid (20:1); m.p. 210-212°C. The ¹H NMR spectrum (C²H₃CO₂²H) of the deuteriated sample was similar to that of unlabelled material (see Section 6.5.1.1) except that the signal at 3.84 ppm (H-4) corresponded to *ca*. 1.05 hydrogen atoms only.

Permanganate oxidation of a sample of the (^{2}H) guanidine derivative (49 mg) in aqueous sulfuric acid (0.5 *M*), as described for unlabelled material (Section 6.5.1.2), gave (-)-4-phthalimido(4-²H)butyric acid (150) (23 mg) which was recrystallized three times from water; m.p. 112-114°C; ¹H NMR (C²HCl₃), δ 2.05 (2H, q, J 6.8 Hz), 2.39

194

ð

(2H, t, J 6.8 Hz), 3.75 (*ca.* 1H, t, J 6.8 Hz), 7.80 (4H, m), 10.2 (1H, s (br)); ²H NMR (CHCl₃, 30 mM, 2172 transients) showed a single signal at 3.74 ppm apart from that due to natural abundance ²H in CHCl₃ (7.27 ppm); m.s., m/e 234 (M, 3%), 216 (M-H₂O, 7), 215 (M-H²HO, 9), 188 (8), 187 (6), 175 (41), 174 (30), 173 (17), 161 (100), 160 (5), 104 (16), 76 (22); 97.2 \pm 0.2% ²H₁, determined by m.s.; ORD, [α]₃₆₅ - 5.39 \pm 0.14°, [α]₄₀₅ - 3.79 \pm 0.22°, [α]₄₃₆ - 3.07 \pm 0.18°, [α]₅₄₆ - 1.64 \pm 0.13°, [α]₅₇₇ - 1.37 \pm 0.14°, [α]₅₈₉ - 1.08 \pm 0.22° (*c* 0.91% in methanol, 25°C, uncorrected for incomplete deuteriation) (1it.¹²¹ [α]₅₈₉ - 1.69°).

Ś

A sample of (-)-4-phthalimido(4-2H)butyric acid (150) was dissolved in ether (1 ml), an excess of diazomethane in ether (1 ml)²⁸² was added and the mixture was allowed to stand overnight. The product, (-)-methyl 4-phthalimido(4-2H)butyrate (63) was recrystallized from methanol. M.p. 87-88°C (lit. (nondeuteriated)²⁸¹ m.p. 89-90°C); m.s., m/e 248 (M, 9%), 217 (M-OCH₃, 18), 216 (8), 189 (10), 188 (10), 175 (100), 174 (20), 161 (95), 130 (15), 104 (17), 77 (15), 76 (12); 98.2 \pm 0.3% ²H₁, determined by m.s.; ORD, [α]₃₆₅ - 5.97 \pm 0.60°, [α]₄₀₅ - 4.84 \pm 0.40°, [α]₄₃₆ - 4.06 \pm 0.30°, [α]₅₄₆ - 2.02 \pm 0.30°, [α]₅₇₇ - 2.21 \pm 0.30° (*e* 0.34% in methanol, 25°C, uncorrected for incomplete deuteriation). An unlabelled sample of methyl 4-phthalimidobutyrate was prepared analogously. M.p. 87-88°C (from methanol); m.s., m/e 247 (M, 13%), 216 (M-OCH₃, 19), 215 (17), 188 (9), 187 (11), 174 (100), 173 (23), 160 (79), 130 (11), 104 (14), 77 (12), 76 (6).

An authentic sample of (-)-methyl 4-phthalimido(4- 2 H)butyrate (63) was supplied by Dr.-M.H. O'Leary, University of Wisconsin. This sample had been prepared by methylation of (-)-4-phthalimido(4- 2 H)-

butyric acid which had been obtained by decarboxylation in ${}^{2}\text{H}_{2}0$ of $\underline{}_{-}$ glutamic acid, catalysed by $\underline{}_{-}$ glutamate decarboxylase. 121 . M.p. 88-89°C (from methanol); m.s., m/e 248 (M, 13%), 217 (M-OCH₃, 21), 216 (10), 189 (10), 188 (8), 175 (100), 174 (15), 161 (80), 130 (15), 104 (15), 77 (10), 76 (12); 92.5 \pm 0.4\% {}^{2}\text{H}_{1}, 4.7 \pm 0.4% ${}^{2}\text{H}_{2}$, determined by m.s.; ORD, [α]₃₆₅ - 4.45 \pm 0.30°, [α]₄₀₅ - 3.35 \pm 0.20°, [α]₄₃₆ - 2.76 \pm 0.20°, [α]₅₄₆ - 1.48 \pm 0.30°, [α]₅₇₇ - 1.43 \pm 0.30° (c 0.39% in methanol, 25°C, uncorrected for incomplete deuteriation).

6.5.2.2 (+)-4-Phthalimido(4-2H)butyric acid (151) from (+)-(1-2H)agmatine (106) sulfate (Experiment 12)

A sample of 4-phthalimido(4-²H)butylguanidine (153) (80 mg) obtained by the method described in Section 6.5.1 from (+)-(1-²H)àgmatine sulfate (72 mg) showed m.p. 213-214°C (from methanol:acetic acid (20:1)) and a ¹H NMR spectrum in which the 'signal at 3.84 ppm corresponded to ca. 1.15 hydrogen atoms. Oxidation of part of this sample (60 mg), as described in Section 6.5.1.2, gave (+)-4-phthalimido(4-²H)butyric acid (151) (28 mg), m.p. 112-114°C (recrystallized 3 times from water). The ¹H (C²HCl₃) and ²H (CHCl₃, 30 mM, 1584 transients) NMR spectra of this material were similar to those obtained for the (-)-(4-²H)phthalimide. M.s., m/e 234 (M, 3%), 216 (M-H₂O, 8), 215 (M-H²HO, 10), 188 (9), 187 (7), 175 (44), 174 (39), 173 (19), 161 (100), 160 (16), 104 (17), 76 (25); 84.7 ± 0.3% ²H₁ determined by m.s.; ORD, $[a]_{365} + 4.77 \pm 0.27^{\circ}$, $[a]_{405} +$ 3.26 ± 0.29°, $[a]_{436} + 2.62 \pm 0.17^{\circ}$, $[a]_{546} + 1.32 \pm 0.11^{\circ}$, $[a]_{577} +$ 1.20 ± 0.13°, $[a]_{589} + 0.96 \pm 0.22^{\circ}$ (*c* 0.97% in methanol, 25°C, uncorrected for incomplete deuteriation).

6.6 INSTRUMENTAL METHODS

6.6.1 <u>Measurement</u> of optical activity

Optical rotation was measured by means of a Perkin Elmer 241 MC polarimeter equipped with a mercury emission lamp, using a 1 dm polarimeter tube. At least 10 readings were taken at each mercury emission line. Mean values and 95% confidence limits are reported.

6.6.2 <u>Nuclear magnetic resonance spectroscopy</u>

6.6.2.1 ¹H-NMR

¹H-NMR spectra were recorded at ambient temperature on a Varian EM 390 spectrometer or a Bruker WH90 pulsed Fourier transform spectrometer, each operating at 90 MHz, or a Bruker WP80 pulsed Fourier transform spectrometer at 80 MHz. Chemical shifts are reported as ppm downfield (δ) from DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate) for samples in ²H₂O solution, from internal TMS (tetramethylsilane) for samples in DMSO-²H₆ or ²HCCl₃ solutions, or from external TMS for samples in C²H₃CO₂²H solution.

6.6.2.2 ²H-NMR

²H-NMR spectra were recorded on a Bruker WH90 pulsed Fourier transform spectrometer operating at 13.82 MHz at ambient temperature, with broad band proton noise decoupling. Spectra were obtained of samples in aqueous, dimethylsulfoxide or chloroform solution in 10 mm (o.d.) sample tubes, using ²H₂O as external lock. The signal due to natural

198

abundance ²H in ²HOH, ²H-DMSO or ²HCCl₃ served as internal standard. Chemical shifts are downfield from perdeuteriotetramethylsilane.

6.6.2.3 ¹³C-NMR

 13 C-NMR spectra were recorded on a Bruker WP80 spectrometer operating at 20 MHz in the pulsed Fourier transform mode with complete proton decoupling. Spectra were obtained on samples in 2 H₂O, 2 HCCl₃ or DMSO- 2 H₆, in 10 mm (o.d.) sample tubes. Chemical shifts are reported as ppm downfield from external TMS.

6.6.3 <u>Mass Spectrometry</u>

Mass spectra were determined on a Micromass 7070F double focussing mass spectrometer, operating with electron impact (EI) or chemical ionization (CI), by direct injection of the samples. Methane at 5 x 10^{-5} mm torr was the reagent gas for CI. The isotopic content in deuterium enriched samples was calculated as described by Biemann.²⁸³ Determinations were made from at least 10 m.s. traces of either the parent ion region or, with samples of (1-²H)putrescine dihydrochloride,²⁸⁴ the M-NH₃ region. Mean values and 95% confidence limits are reported.

 \sim
REFERENCES

ł

*

1	M. Dixon and E.C. Webb, Enzymes, 2nd ed. Longmans, Green and Co. London. 1964.
2	R.E. Dickerson and I. Geis, The Structure and Action of Proteins. Harper and Row, New York. 1969.
3	W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York. 1969.
4	M.F. Perutz, Eur. J. Biochem. <u>8</u> , 455 (1969).
, 5	J.R. Knowles and W.J. Albery, Acc. Chem. Res. <u>10</u> , 105 (1977).
6	D.E. Koshland, Jr. and K.E. Neet, Ann. Rev. Biochem. <u>37</u> , 359 (1968).
.7	T.C. Bruice, Enzymes, <u>2</u> , 217 (1970).
,.8 [•]	K.J. Laidler and P.S. Bunting, The Chemical Kinetics of Enzyme Action, 2nd ed. Claridon Press, London. 1973. p. 23.
9	W.P. Jencks, Adv. Enzymol. <u>43</u> , 219 (1975).
10	G. Popjak, Enzymes, <u>2</u> , 115 (1970).
11	A.G. Ogston, Nature, <u>162</u> , 963 (1948).
12、	J.W. Cornforth, Tetrahedron, <u>30</u> , 1515 (1974).
13	E.A. Boeker and E.E. Snell, Enzymes, <u>6</u> , 217 (1972).
14	J.C. Vederas and H.G. Floss, Acc. Chem. Res. <u>13</u> , 455 (1980).
15	R. Kapeller-Alder, Amine Oxidases and Methods for Their Study. Wiley-Intersciende, New York. 1970.
16	H. Blaschko and E.A. Zeller, Enzymes, <u>8</u> , 377 (1963).
17	E.A. Zeller, Enzymes, <u>8</u> , 313 (1963).
18	see R. Robinson, Tetrahedron, <u>30</u> , 1477 (1977).
19	L. Pasteur, Compt. Rend., <u>46</u> , 615 (1858).

20	L. Pasteur, Ann. Chem. Phys. (3) <u>24</u> , 443 (1858).
21	see J.R. Partington, A History of Chemistry. MacMillan, London. 1964.
22	E. Fischer, Ber. Dtsch. Chem. Ges. <u>32</u> , 2985 (1894).
23	W. Kühne, Unters. a.d. physiol. Inst. der Univ. Heidelberg, <u>1</u> , 291 (1978); <i>вве</i> Ref. 1, p.2.
24	<i>see</i> A History of Biochemistry, <i>In</i> Comprehensive Biochemistry, Vol. 30. M. Florkin and E.H. Stotz, <i>Eds</i> . Elsevier, New York. 1972.
25	J.B. Sumner, J. Biol. Chem. <u>69</u> , 435 (1926).
26	<pre>see J.H. Northrop, M. Kunitz and R.M. Herriott, Crystalline Enzymes, 2nd ed. Columbia University Press, New York. 1948.</pre>
27	F.G. Hopkins, Proc. Roy. Soc. B, <u>112</u> , 159 (1932).
28	J.B. Jones, <i>In</i> Techniques of Chemistry Vol. 10, Pt. 1. J.B. Jones, D. Perlman and J. Sih, <i>Eds</i> . John Wiley and Sons, New York. 1976.
29	S. Rubin, W.Z. Hassid and M.D. Kamen, J. Am. Chem. Soc. <u>61</u> , 661 (1939).
30	H.G. Wood , C.M. Werkman, A. Hemingway and A.O. Nier, J. Biol. Chem. <u>139</u> , 483 (1941).
31	E.A. Evans, Jr. and L. Slotin, J. Biol. Chem. <u>141</u> , 439 (1941).
32	H.A. Krebs and W.A. Johnson; Biochem. J. <u>31</u> , 645 (1937).
~3 3 .	H.A. Krebs and L.Y. Eggleston, Biochem. J. <u>34</u> , 1383 (1940).
34	H.A. Krebs, Nature, <u>147</u> , 560 (1941).
35	D. Shemin, J. Biol. Chem. <u>162</u> , 297 (1946).
36	V.R. Potter and C. Heidelberger, Nature, <u>164</u> , 180 (1949).
37	V. Lorber, M.F. Utter, H. Rudney and M. Cook, J. Biol. Chem. <u>185</u> , 689 (1950).
38	B. Vennesland, Top. Current Chem. <u>48</u> , 39 (1974).

.

<u>æ</u>

۲ (

,

5

×.

٠

200

Ś

39	A.G. Ogston, Nature <u>181</u> , 1462 (1958).
40	H. Hirschman, <i>In</i> Essays in Biochemistry, S. Graff, <i>Ed</i> . John Wiley and Sons, New York. 1956. pp. 156-180.
41	H. Hirschman, J. Biol. Chem. <u>235</u> , 2762 (1960).
42	H. Hirschman, <i>In</i> Comprehensive Biochemistry, Vol. 12. M. Florkin and E.M. Stotz, <i>Eds</i> . Elsevier, Amsterdam. 1964. p. 236.
43	K.R. Hanson, J. Am. Chem. Soc. <u>88</u> , 2731 (1966).
44	K. Mislow and M. Raban, Topics in Stereochem. <u>1</u> , 1 (1967).
45	H. Hirschman and K.R. Hanson, J. Org. Chem. <u>36</u> , 3293 (1971).
. 46	H. Hirschman and K.R. Hanson, Eur. J. Biochem. 22, 301 (1971).
47	H. Hirschman and K.R. Hanson, J. Org. Chem. <u>37</u> , 2784 (1972).
48	H. Hirschman and K.R. Hanson, Tetrahedron <u>30</u> , 3649 (1974).
49	K.R. Hanson, Ann. Rev. Biochem. <u>45</u> , 307 (1976).
50	K. Mislow, Bull.⇔Soc. Chim. Belg. <u>86</u> , 585 (1977).
51	H.R. Levy, P.B. Talaly and B. Vennesland, Progr. Stereochem. <u>3</u> , 299 (1962).
52	F.A. Loewus, F.H. Westheimer and B. Vennesland, J. Am. Chem. Soc. 25, 5018 (1953).
53	F.H. Westheimer, H.F. Fischer, E.E. Conn and B. Vennesland, J. Am. Chem. Soc. <u>23</u> , 2403 (1951).
54	H.R. Levy, F.A. Loewus and B. Vennesland, J. Am. Chem. Soc. <u>79</u> , 2949 (1957).
55	R.U. Lemieux and J. Howard, Can. J. Chem. <u>41</u> , 308 (1963).
56	R. Bentley, Molecular Asymmetry in Biology, Vol. 2. Academic Press, New York. 1970.
57	W.L. Alworth, Stereochemistry and Its Application in Biochemistry Wiley Interscience, New York. 1972.
58	J. Rétey and J.A. Robinson, Stereospecificity in Organic Chem- istry and Enzymology. Verlag Chemie, Weinheim, 1982

ŧ

59	D. Arigoni and E.L. Eliel, Top. Stereochem. <u>4</u> , 127 (1969).
60	S. Englard and K.R. Hanson, Methods Enzymol. <u>13</u> , 567 (1969).
61	A.R. Battersby and J. Staunton, Tetrahedron, <u>30</u> , 1707 (1974).
62	I.A. Rose, Crit. Rev. Biochem. <u>1</u> , 33 (1972).
63	T.W. Goodwin, Essays in Biochem. <u>9</u> , 103 (1973).
64	K.R. Hanson and I.A. Rose, Acc. Chem. Res. <u>8</u> , 1 (1975).
65	I.A. Rose and K.R. Hanson, <i>In</i> Techniques of Chemistry, Vol. 10, Pt. 2. J.B. Jones, C.J. Sih and D. Perlman, <i>Eds</i> . John Wiley and Sons, New York. 1976. p. 507.
66	H.G. Floss and MD. Tsai, Adv. Enzymol. <u>50</u> , 243 (1979).
, 67 ,	R.S. Cahn, C.K. Ingold and V. Prelog, Experientia, <u>12</u> , 81 (1956); Angew. Chem., Int. Ed. <u>5</u> , 385 (1966).
68	V. Prelog and G. Helmchen, Helv. Chim. Acta. <u>55</u> , 2581 (1972).
69	J.B. Jones, <i>In</i> Techniques of Chemistry, Vol. 10, Pt. 1. J.B. Jones, D. Perlman and J. Sih, <i>Eds</i> . John Wiley and Sons, New York. 1976. p. 479.
70 [.]	A.R. Battersby, D.G. Buckley, J. Staunton and P.J. Williams, J. Chem. Soc., Perkin. Trans. I, 2550 (1979).
71	A.R. Battersby, Acc. Chem. Res. <u>5</u> , 148 (1972).
72	R. Bentley, <i>In</i> Techniques of Chemistry, Vol. 10, Pt. 1. J.B. Jones, C.J. Sih and D. Perlman, <i>Eds</i> . John Wiley and Sons, New York. 1976. p. 403.
73	J.A. Mills and W. Klyne, Prog. Stereochem. <u>4</u> , 97 (1969).
74	L. Verbit, Prog. Phys. Org. Chem. <u>7</u> , 51 (1970).
75	H, Gerlach and B. Zagalak, J. Chem. Soc., Chem. Commun. 274 (1973).
76	R.R. Fraser, M.A. Petit and M. Miskow, J. Am. Chem. Soc. <u>94</u> , 3253 (1972).
77	G.R. Sullivan, Top. Stereochem. <u>10</u> , 287 (1978).

۲¢

j

)
78	E.A. Evans, Tritium and its Compounds, 2nd ed. Butterworth, London. 1974.
79	R.U. Lemieux, R.K. Kullnig, H.J. Bernstein and W.G. Schneider, J. Am. Chem. Soc. <u>80</u> , 6098 (1958).
80	H. Weber, cited in Ref. 59, p. 159.
81	I.A. Rose, J. Am. Chem. Soc. <u>80</u> , 5835 (1958).
82	C.K. Johnson, E.J. Crabe, M.R. Taylor and I.A. Rose, J. Am. Chem. Soc. <u>87</u> , 1802 (1965).
83	J.W. Cornforth and D. Ryback, <i>cited in</i> Ref. 59, p. 155.
84 _,	P. Besmer and D. Arigoni, Chimia <u>22</u> , 494 (1968).
85 ~	P. Besmer, Diss. No. 4435, E.T.H. Zürich, 1970.
86	<i>see</i> Ref. 59, p. 233.
87	D. Wellner, Biochemistry, <u>9</u> , 2307 (1970).
88	A.I. Krasna, J. Biol. Chem. <u>233</u> , 1010 (1958).
89 .	J.P. Greenstein and M. Winitz, Chemistry of the Amino Acids, Vol. 1. Wiley, New York. 1961; pp. 160-167.
90	M. Akhtar and P.M. Jordan, Tetrahedron Letters, 875 (1969).
91	P.M. Jordan and M. Akhtar, Biochem. J. <u>116</u> , 277 (1970).
92	Burton, Methods Enzymol. <u>2</u> , 199 (1955).
93	A.H. Weims and L. Hellerman, J. Biol. Chem. <u>237</u> , PC76 (1962).
94	J.C. Rabinowitz, Enzymes (2nd ed.), <u>2</u> , 185 (1960).
95	L. Schirch and W. Jenkins, J. Biol. Chem. <u>239</u> , 3801 (1964).
96	W.L.F. Armarego, B.A. Milloy and W. Pendergast, J. Chem. Soc., Perkin Trans. I, 2229 (1976).
97	B. Zagalak, P.A. Frey, G.L. Karabatsos and R.H. Abeles, J. Biol. Chem. <u>241</u> , 3028 (1966).
98 、	J. Rétey, A. Umani-Ronchi and D. Arigoni, Experientia, <u>22</u> , 72 (1966).

Ņ

99	E. Santaniello, M.G. Kienle and M. Manzacchi, J. Chem, Soc., Perkin Trans. I, 1677 (1979).
100	G.R. Orr and S.J. Gould, Tetrahedron Letters <u>23</u> , 3139 (1982).
101	D. Gani and D.W. Young, J. Chem. Soc., Chem. Commun. 576 (1983).
102	E.F. Gale, Adv. Enzymol. <u>6</u> , 1 (1946).
103	H. Tabor, S.M. Rosenthal and C.W. Tabor, J. Am. Chem. Soc. <u>79</u> , 2978 (1957).
104	H. Tabor, S.M. Rosenthal and C.W. Tabor, J. Biol. Chem. <u>233</u> , 907 (1958).
105	D.L. Dewey, D.S. House and E. Work, Biochem. J. <u>58</u> , 523 (1954).
106	Y. Asada, K. Tanizawa, Y. Kawabata, H. Misono, K. Soda, Agric. Biol. Chem. <u>45</u> , 1513 (1981).
107	D.R. Morris and A.B. Pardee, Biochem. Biophys. Res. Commun. <u>20</u> , 697 (1965).
108	D.R. Morris and A.B. Pardee, J. Biol. Chem. <u>241</u> , 3127 (1966).
109	W.H. Wu and D.R. Morris, J. Biol. Chem. <u>248</u> , 1687, 1696 (1973).
110	D.A. Applebaum, J.C. Dunlap and D.R. Morris, Biochemistry, <u>16</u> , 1580 (1977).
ווז	D.R. Morris and R.H. Fillingame, Ann. Rev. Biochem. <u>43</u> , 303 (1974).
112	T.A. Smith, Phytochemistry, <u>14</u> , 865 (1975).
113	J.Y. Wu, T. Matsuda and E. Roberts, J. Biol. Chem. <u>248</u> , 3029 (1973).
114	M. Ono, H. Inoue, F. Suzuki and Y. Takeda, Biochim. Biophys. Acta. <u>284</u> , 285 (1972).
115	J. Jänne and H.G. Williams-Ashman, Biochem. Biophys. Res. Commun. <u>42</u> , 222 (1971).
116	J.G. Christenson, W. Dairman and S. Undenfriend, Arch. Biochem. Biophys. <u>141</u> , 356 (1970).

J

204

ŧ

£

3

117	W. Lovenberg, Methods Enzymol. 17B, 652 (1971).
118	S. Mandeles, R. Koppelman and M.E. Hanke, J. Biol. Chem. <u>209</u> , 327 (1954).
119	B. Belleau and J. Burba, J. Am. Chem. Soc. <u>82</u> , 5751 (1960).
120	E. Leistner and I.D. Spenser. J. Chem. Soc., Chem. Commun. 378 (1975).
121	H. Yamada and M.H. O'Leary, Biochemistry, <u>17</u> , 669 (1978).
122	B. Belleau, M. Fang, J. Burba and J. Moran, J. Am. Chem. Soc. <u>82</u> , 5752 (1960).
123	A. Streitwieser, Jr. and J.R. Wolfe, Jr., J. Am. Chem. Soc. <u>79</u> , 903 (1957).
124	A. Streitweiser, Jr., W.D. Schaeffer and J.R. Wolfe, Jr., Tetrahedron, <u>6</u> , 338 (1959).
125	M.S. Kharasch and O. Reinmuth, Grignard Reactions of Nonmetalic Substances. Prentice-Hall, New York. 1954. p. 160.
126	A. Streitwieser, Jr. and W.D. Schaeffer, J. Am. Chem. Soc. <u>78,</u> 5597 (1956).
127	A. Streitwieser, Jr., J. Am. Chem. Soc. <u>75</u> , 5014 (1953).
128 .	P.S. Skell, R.G. Allen and G.K. Helmkamp, J. Am. Chem. Soc. <u>82</u> , 410 (1960).
129	A.R. Battersby, E.J.T. Chrystal and J. Staunton, J. Chem. Soc., Perkin Trans. I, 31 (1980).
130-	P.A. Smith, Molecular Rearrangements, Part 1. D. DeMayo, <i>Ed.</i> Wiley-Interscience, New York. 1967. p. 528.
131	<i>cf</i> . Ref. 101.
132	A.R. Battersby, J. Staunton and J. Tippett, J. Chem. Soc., Perkin Trans. I, 455 (1982).
133	M. Bouclier, M.J. Jung and B. Lippert, Eur. J. Biochem. <u>98</u> , 363 (1979).
134	H.J. Gerdes and E. Leistner, Phytochemistry, <u>18</u> , 771, (1979).

t

135	A.R. Battersby, R. Murphy and J. Staunton, J. Chem. Soc., . Perkin Trans. I, 449 (1982).
136	A.R. Battersby, M. Nicoletti, J. Staunton and R. Vleggaar, J. Chem. Soc., Perkin Trans. I, 43 (1980).
137	E. Santaniello, A. Manzocchi, and P.A. Biondi, J. Chem. Soc., Perkin Trans. I, 307 (1981).
138	R.R. Allen and J.P. Klinman, J. Biol. Chem. <u>256</u> , 3233 (1981).
139	G.W. Chang and E.E. Snell, Biochemistry, 7, 2005 (1968).
140	A.R. Battersby, J. Joyeau and J. Staunton, FEBS Letters, <u>107</u> , 231 (1979).
141	D.R. Houck and H.G. Floss, J. Natl. Products 44, 759 (1981).
142	Y. Asada, K. Tanizawa, S. Sawada, T. Suzuki, H. Misono and K. Soda, Biochemistry, <u>20</u> , 6881 (1981).
143	H. Kasakabe, K. Kodama, A. Kuninaka, H. Yoshino, M. Misono and K. Soda, J. Biol. Chem. <u>255</u> , 976 (1980).
144	E.A. Zeller, Helv. Chim. Acta <u>21</u> , 880 (1938).
1.45	H. Blaschko, Pharmacol. Rev. <u>4</u> , 415 (1952).
146	E.A. Zeller, R. Stern and M. Wenk, Hely Chim. Acta 23, 3 (1940).
147	H. Blaschko, P.J. Friedman, R. Howes and N. Nilsson, J. Physiol. 145, 384 (1959).
148	E.A. Zeller, L.A. Blanksma, W.P. Burkard, W.L. Pacha and J.C. Lazanas, Ann. N.Y. Acad. Sci. <u>80(</u> 3), 583 (1959).
149	E.A. Zeller, Pharmacol. Rev. <u>11</u> , 387 (1959).
150	K.T. Yasunobu, H. Ishizaki and N. Minamiura, Mol. Cell Biochem. <u>13</u> , 3 (1976).
151	A.R. Battersby, D.G. Buckley, J. Staunton and P.J. Williams, J. Chem. Soc., Perkin Trans. I, 2550 (1979).
1 52	R.H. Suva and R.H. Abeles, Biochemistry, <u>17</u> , 3638 (1978).
153	A.R. Battersby, J. Staunton, J.P. Klinman and M.C. Summers, FEBS Letters 99, 297 (1979).

١

ŧ

ł

ر 206

- 1	
1	
1	

(

154	M.C: Summers, R. Markovic and J.P. Klinman, Biochemistry <u>18</u> , 1669 (1979).
155	A.R. Battersby, J. Staunton and M.C. Summers, J. Chem. Soc:, Chem. Commun. 548 (1974); J. Chem. Soc., Perkin Trans. I, 1052 (1976).
156	A.R. Battersby, J. Staunton, M.C. Summers and R. Southgate, J. Chem. Soc., Perkins Trans. I, 45 (1979).
.157	A.R. Battersby, J. Staunton and H.R. Wiltshire, J. Chem. Soc., Perkin Trans. I, 1156 (1975).
158 -	H. Tabor and C.W. Tabor, Adv. Enzymol. <u>36</u> , 203 (1972).
159	C.W. Tabor and H. Tabor, Ann. Rev. Biochem. <u>45</u> , 285 (1976).
160	E. Leete, <i>In</i> Secondary Plant Products. E.A. Bell and B.V. , Charlwood, <i>Eds</i> . Springer-Verlag, New York. 1980. p. 65.
161 , ~	G.A. Cordell, Introduction to Alkaloids: A Biogenetic Approach. John Wiley and Sons, New York. 1981.
162	K.G.B. Torssell, Natural Product Chemistry. John Wiley and Sons, Chichester. 1983. p. 264
163	Ref. 162, p. 242.
164	T.A. Smith, <i>In</i> Secondary Plant Products. E.A. Bell and B.V. Charlwood, <i>Eds</i> . Springer-Verlag, New York. 1980. p. 433.
165 ,	I.D. Spenser, <i>In</i> Comprehensive Biochemistry. M. Florkin and E.H. Stotz, <i>Eds</i> . Vol. 20. Elsevier, New York. 1968. P. 231.
166	T. Hesselbo, quoted in Ref. 167.
167	C.M. Hill and W.G. Bardsley, Biochem. Pharmacol. 24, 253 (1975).
168	D.J. Robins, Phytochemistry, <u>22</u> , 1133 (1983).
169	M.J. Garson and J. Staunton, J. Chem. Soc., Chem. Soc. Rev. <u>8</u> , 539 (1979).
170	E.F. Gale, Biochem. J. <u>34</u> , 392 (1940).

2

207

<

171	D. Applebaum, D.L. Sabo, E.H. Fischer and D.R. Morris, Biochem- istry, <u>14</u> , 3675 (1975).
172	E.S. Taylor and E.F. Gale, Biochem. J. <u>39</u> , 52 (1945).
173	S.L. Blethen, E.A. Boeker and E.E. Snell, J. Biol. Chem. <u>243</u> , 1671 (1968).
174	E.A. Boeker and E.E. Snell, Methods Enzymol. <u>17B</u> . 657 (1971).
175	E.F. Gale and H.M.R. Epps, Biochem. J. <u>38</u> , 232 (1944).
176	K. Soda and M. Moriguchi, Biochem. Biophys. Res. Commun. <u>34</u> , 34 (1969).
<u>1</u> 77	M. Fields, D.W. Walz and S. Rothchild, J. Am. Chem. Soc. <u>73</u> , 1000 (1951).
178	D.E. Brundish, D.F. Elliott and R. Wade, J. Labelled Cpds. <u>7</u> , 473 (1974).
179	S.M. Birnbaum and J.P. Greenstein, Arch. Biochem. Biophys. <u>39</u> , 108 (1952).
180	S.M. B ^j rnbaum, M. Winitz and J.P. Greenstein, Arch. Biochem. Biophys. <u>60</u> , 496 (1956).
181	W.R. Boon and W. Robson, Biochem. J. <u>29</u> , 2684 (1935).
182	D.E. Rivard, Biochem. Prep. <u>3</u> , 97 (1953).
183	P.B. Hamilton and R.A. Anderson, Biochem. Prep. <u>3</u> , 96 (1953).
184	<i>see</i> E.L. Eliel, Stereochemistry of Carbon Compounds. McGraw- Hill, New York. 1962.
185	A.E. Hansen and T.D. Bouman, Adv. Chem. Phys. <u>44</u> , 545 (1980).
186	C. Djerassi, Optical Rotatory Dispersion. McGraw-Hill, New York (1960).
187	L. Velluz, M. Legrand and M. Grosjea, Optical Circular Dichroism. Verlag-Chemie, Weinheim and Academic Press, New York (1965).
188	G. Barth and C. Djerassi, Tetrahedron <u>37</u> , 4123 (1981).
189	J.H. Brewster, Top. Stereochem. <u>2</u> , 1 (1967).

-

190	J.H. Brewster, Tetrahedron Letters, 23 (1959).
191	A. Streitwieser, Jr., L. Verbit and S. Andreades, J. Org. Chem. <u>30</u> , 2078 (1965).
192	see Ref. 10. p. 149.
193	H. Yamada and M.H. O'Leary, J. Am. Chem. Soc. <u>99</u> , 1660 (1977).
194 .	G. Burnett, C. Walsh, K. Yohana, S. Toyama and K. Soda, J. Chem. Soc., Chem. Commun. 826 (1979).
195	P.J.G. Mann and W.R. Smithies, Biochem. J. <u>61</u> , 98 (1955).
196	K. Hasse and K. Schührer, Biochem. Z. 336, <u>20</u> (1962).
197	K. Hasse and H. Maisack, Biochem. Z. <u>327</u> , 296 (1955).
198	C. Schöpf, A. Komzak, F. Braun, E. Jacobi, ML. Bormuth, M. Bullnheimer and I. Hagel, Justus Liebig's Ann. Chem. 559, 1 (1948).
199	W.B. Jakoby and J. Fredericks, J. Biol. Chem. <u>234</u> , 2145 (1959).
200	C. Schöpf, Angew, Chem. A, <u>59</u> , 174 (1947).
201	P.S. Callery, M.S.B. Nayer, L.A. Geelhaar, M. Stogniew and E.M. Jakubowski, Biomed. Mass Spectrometry, <u>7</u> , 525 (1980).
202	C. Schöpf and F. Oechler, Justus Liebig's Ann. Chem. <u>523</u> , 1 (1936).
203	R.N. Gupta and I.D. Spenser, Can. J. Chem. <u>47</u> , 445 (1969).
204	E.A. Zeller, J.R. Fouts, J.A. Carbon, J.C. Lazanas and W. Voegtli, Helv. Chim. Acta <u>39</u> , 1632 (1956).
205	J.R. Fouts, L.A. Blanksma, J.A. Carbon and E.A. Zeller, J. Biol. Chem. <u>225</u> , 1025 (1957).
206	W.G. Bardsley, C.M. Hill and R.W. Lobley, Biochem. J. <u>117</u> , 169 (1970).
207	W.G. Bardsley, J.S. Ashford and C.M. Hill, Biochem. J. <u>122</u> , 557 (1971).
208	H.M. Mantsch, H. Saito and I.C.P. Smith, Prog. NMR Spectro- scopy <u>11</u> , 211 (1977).

zħ

<

209	P. Diehl, <i>In</i> Nuclear Magnetic Resonance Spectroscopy of Nuclei Other than Protons. T. Axenrod and G.A. Webb, <i>Eds</i> . Wiley Interscience, New York. 1974. p. 257.
210	A. Abragam, The Principlés of Nuclear Magnetism. Clarendon Press, Oxford. 1961.
211	H.M. Mantsch, H. Saitô and I.C.P. Smith, J. Am. Chem. Soc. <u>96</u> , 256 (1974).
212	H. Tabor, J. Biol. Chem. <u>188</u> , 125 (1951).
213	C. Schöpf, H. Arm and H. Krimm, Chem. Ber. <u>84</u> , 690 (1951).
214	C. Schöpf, H. Arm and F. Braun, Chem. Ber. <u>85</u> , 937 (1952).
215	C. Schöpf, F. Braun and K. Otte, Chem. Ber. <u>86</u> , 918 (1953).
216	H. Kessler, H. Möhrle and G. Zimmermann, J. Org. Chem. <u>42</u> , 66 (1977).
217	Y. Nomura, K. Ogawa, Y. Takeuchi and S. Tomada, Chem. Letters, 693 (1977).
218	B. Holmstedt and R. Tham, Acta Physiol. Scand. 45, 152 (1959).
219	R. Holmstedt, L. Larsson and R. Tham, Biochim. Biophys. Acta (48, 182 (1961).
220 /°	R.J. Abraham and P. Loftus, Proton and Carbon-13 NMR Spectro- scopy: An Integrated Approach. Heyder and Sons, London. 1978. p. 17.
221	J.B. Stothers, Carbon-13 NMR Spectroscopy. Academic Press, New York. 1972. p. 282.
222	B. Mondovi, M.T. Costa, A. Finazzi-Agro and G. Rotilio, Arch. Biochem. Biophys. <u>119</u> , 373 (1967).
223	B. Mondovi, G. Rotilio, M.T. Costa, A. Finazzi-Agro, E. Chiancone R.E. Hansen and H. Beinert, J. Biol. Chem. <u>242</u> , 1160 (1967).
224	M.D. Kluetz and P.G. Schmidt, Biochem. Biophys. Res. Commun. <u>76</u> , 40 (1977).
225	J.H. Richards, Enzymes <u>2</u> , 321 (1970).

226	J.P. Klinman, Adv. Enzymol. <u>46</u> , 415 (1978).
227	J.F. Kirsch, <i>In</i> Isotope Effects on Enzyme-Catalyzed Reactions. W.W. Chleland, M.H. O'Leary and D.B. Northrop, <i>Eds</i> . University Park Press, Baltimore. 1977. p. 100.
228	P.S. Callery, M.S.B. Nayar, E.M. Jakubowski and M. Stogniew, Experientia, <u>38</u> , 431 (1982).
229	. D.B. Northrop, Biochemistry, <u>14</u> , 2644 (1975).
230	D.B. Northrop, Ann. Rev. Biochem. <u>50</u> , 103 (1981).
231	A.B. Forster, M. Jarman, J.D. Stevens, P. Thomas and J.W. Westwood, ChemBiol. Interactions <u>9</u> , 327 (1974).
232	L.M. Hjelmeland, L. Aronow and J.R. Trudell, Biochem. Biophys. Res. Commun. <u>76</u> , 541 (1977).
233	J.T. Groves, G.A. McClusky, R.E. White and M.J. Coon, Biochem. Biophys. Res. Commun. <u>81</u> , 154 (1978).
234	G.T. Miwa, W.A. Garland, B.J. Hodshon, A.Y.H. Lu and D.B. Northrop, J. Biol. Chem. <u>255</u> , 6049 (1980).
235	W.G. Bardsley, M.J.C. Crabbe and J.S. Shindler, Biochem. J. <u>131</u> , 459 (1973).
236	B. Belleau and J. Moran, Ann. N.Y. Acad. Sci. <u>107</u> , 822 (1963).
237	R.L. Foreman, F.P. Siegel and R.G. Mrtek, J. Pharm. Sci. <u>58</u> , 189 (1969).
238	B. Olsson, J. Olsson and G. Pettersson, Eur. J. Biochem. <u>64</u> , 327 (1976).
239	G.M.L. Nefkins, Nature <u>185</u> , 309 (1960).
240	L.J.J. Mestichelli, R.N. Gupta and I.D. Spenser, J. Biol. Chem. 254, 640 (1979).
241	I.D. Wigle, L.J.J. Mestichelli and I.D. Spenser, J. Chem. Soc., Chem. Commun. 662 (1982).
242	F.H. Westheimer, cited in Ref. 118.
243	D.E. Metzler, M. Ikawa and E.E. Snell, J. Am. Chem. Soc. <u>76</u> , 648 (1954).

:

		*
	244	H.C. Dunathan, Proc. Natl. Acad. Sci. U.S.A. <u>55</u> , 713 (1966).
	245	H.C. Dunathan, Adv. Enzymol. <u>35</u> , 79 (1971).
	246	H.C. Dunathan and J.G. Voet, Proc. Natl. Acad. Sci. U.S.A. <u>71</u> , 3888 (1974).
	247	W.D. Riley and E.E. Snell, Biochemistry, <u>7</u> , 3520 (1968).
	248	P.A. Recsei and E.E. Snell, Biochemistry, <u>9</u> , 1492 (1970).
ļ	249	R.B. Wickner, C.W. Tabor and H. Tabor, J. Biol. Chem. <u>245</u> , 2132 (1970).
	250	see E.E. Snell, Trends Biochem. Sci. <u>2</u> , 131 (1977).
	251	S. Mizusaki, Y. Tanabe, M. Noguchi and E. Tamaki, Phytochemis- try <u>11</u> , 2757 (1972).
1	252	H. Yamada, A. Tanaka, K. Ogata, Agric. Biol. Chem. <u>29</u> , 260 (1965).
)	253	C. Ádachi, H. Yamada, K. Ogata, Agric. Biol. Chem. <u>30</u> , 1202 (1966).
	254	W.F. Swain and R.J. Desa, Biochim. Biophys. Acta <u>429</u> , 331 (1976).
	255 ,	S.J. Friedman, K.V. Halpern and E.S. Canellakis, Biochim. Bio- phys. Acta <u>261</u> , 181 (1972).
	256	J.S. Heller, E.S. Canellakis, D.L. Bussolotti and J.K. Coward, Biochim. Biophys. Acta <u>403</u> , 197 (1975).
	257	T.A. Smith, Phytochemistry, <u>3</u> , 23 (1964).
	258	S. Ramakrishna and P.R. Adiga, Eur. J. Biochem. <u>59</u> , 377 (1975).
	259	H. Yamada and K.T. Yasunobu, J. Biol. Chem. 237, 1511 (1962).
	260	C:W. Tabor, H. Tabor and <u>U. B</u> achrach, J. Biol. Chem. <u>239</u> , 2194 (1964).
	261	T.A. Smith, Phytochemistry, <u>13</u> , 1075 (1974).
	262	M. Okada, S. Kawashima and K. Imahori, J. Biochem. <u>86</u> , 97 (1979).
	263	U. Bachrach, J. Biol. Chem. <u>237</u> , 3443 (1962).

264	U. Bachrach and I.S. Oser, J. Biol. Chem. <u>238</u> , 2098 (1963).
265	T.A. Smith, Phytochemistry, <u>15</u> , 633 (1976).
266	B.T. Golding and I.K. Nassereddin, J. Am. Chem. Soc. <u>104</u> , 5815 (1982)
267	A.E. Vogel, A Text-Book of Practical Organic Chemistry, 3rd ed. Longmans, Green and Co., London. 1956. p. 167.
268	S. Rothchild and M. Fields, J. Org. Chem. 16, 1080 (1951).
269	J.C. Eck and C.S. Marvel, Org. Synth. Coll. Vol. 2, 374 (1943).
270	CY. Yuan, CT. Lin and JH. Liu, Hua Hsueh Hsueh Pao, <u>25</u> , 183 (1959); Chem, Abstr. <u>54</u> , 4405C (1960).
271	V.I. Maimind, O.M. Enisherlova, K.M. Ermolaev, R.D. Vdovina, G.A. Galegov and M.M. Shemiakin, Zh. Obshch. Khim. <u>28</u> , 2223 (1958); J. Gen. Chem. U.S.S.R. (Engl. Transl.) <u>28</u> , 2260 (1958).
272	P.J. Fodor, V.E. Price and J.P. Greenstein, J. Biol. Chem. <u>178</u> , 503 (1949).
273	A.A. Plentl and W.T. Kelly, Anal. Biochem. 17, 397 (1966).
274	A.F. Thomas, Deuterium Labelling in Organic Chemistry. Apple- ton-Century-Crofts, New York. 1971. p. 11.
275	E. Brand and M. Sandberg, Org. Synth. Coll. Vol. 2, 49 (1943).
276	J.B. Jones and J.F. Beck, <i>In</i> Techniques of Chemistry, Vol. 10, Pt. 1. J.B. Jones, C.J. Sih and D. Perlman, <i>Eds.</i> John Wiley and Sons, New York. 1976. p. 206.
277	A. Ellinger, Ber. Dtsch. Chem. Ges. <u>32</u> , 3542 (1899)
278	J.V. Braun, Ber Dtsch. Chem. Ges. <u>37</u> , 3583 (1904).
279	T.A. Smith and F.J. Richards, Biochem. J. <u>84</u> , 262 (1962).
280	I. Smith and H.G. Horsefall, <i>In</i> Chromatographic and Electro- phoretic Techniques, Vol. 1, 3rd ed. I. Smith, <i>Ed.</i> William Heinemann, London, 1969, n. 290

<u>م</u> ,

- 281 S. Gabriel and J. Colman, Chem. Ber. <u>41</u>, 513 (1908).
- 282 Ref. 267, p. 971.
- 283 K. Biemann, Mass Spectrometry: Organic Chemical Applications. McGraw-Hill, New York. 1962. p. 204.
- .284 F. Mayerl and M. Hesse, Helv. Chim. Acta <u>59</u>, 127 (1976).
- 285 A. Hunter, Biochem. J. <u>33</u>, 27 (1939).

²H NMR as a Probe of the Stereochemistry of Enzyme Reactions at Prochiral Centers. Deamination of Cadaverine, Catalyzed by Diamine Oxidase

Sir:

Diamine oxidase (E.C. 1.4.3.6, diamine:oxygen oxidoreductase (deaminating)) catalyzes the oxidative deamination of a wide range of primary amines, including diamines, histamine, and arylalkylamines.^{1,3} The aliphatic diamines, cadaverine and putrescine, are the substrates which are most readily oxidized. Thus, cadaverine (2), by loss of one of the two equivalent amino groups, yields 5-aminopentanal (3), which is in equilibrium with its cyclized form, Δ^1 -piperideine (4),⁴⁻⁶ It is to be expected that the reaction takes place in a sterically controlled manner. The oxidation of histamine, catalyzed by hog kidney diamine oxidase,7 and that of benzylamine, modiated by diamine oxidase from pea seedlings,8 takes place with stereospecific release of one of the two enantiotopic hydrogen atoms from the carbon adjacent to nitrogen. In the latter case, the stereochemistry of the reaction was determined by means of tritium labeling and determination of 3H/14C ratios. The chirality of the analogous oxidation of tyramine, catalyzed by monoamine oxidase (E.C. 1.4.3.4) of rat liver, was determined by a kinetic method, using deuterium labeled substrates.9

The stereochemistry of the oxidative deamination of cadaverine has not been established. We have employed ²H NMR spectrometry to demonstrate that, in the course of this reaction, catalyzed by diamine oxidase of hog kidney (E.C. 1.4.3.6), it is the *pro-S* hydrogen which is removed stereospecifically from the carbon atom adjacent to the reacting amino group.

The enantiomers of $[1-^2H]$ cadaverine, required for the study, were prepared by decarboxylation of L-lysine (1), catalyzed by L-lysine decarboxylase (E.C. 4.1.1.18, L-lysine carboxylyase) from *Bacillus cadaveris*, a reaction which is known¹⁰ to proceed with retention of configuration. (+)-(S)-[1-²H]Cadaverine dihydrochloride (**2A**) (>95% deuterated at the *pro-S* position of one of the terminal carbon atoms)¹¹ was obtained from the L-component of DL-[2-²H]lysine.¹² (-)-(*R*)-[1-²H]Cadaverine dihydrochloride (**2B**) (>95% deuterated at the *pro-R* position of one of the terminal carbon atoms)¹¹ was obtained by decarboxylation of L-lysine in deuterium oxide (99.7 atom %, Merck Sharp and Dohme). A third deuterated cadaverine, [1,1-²H₂]cadaverine (**2C**) (>95% perdeuterated at one of the terminal C atoms),¹¹ was prepared by decarboxylation of DL-[2-²H]lysine in deuterium, oxide.

In separate experiments, each of the three deuterated samples of cadaverine (40 mg) was incubated (37 °C, 40 h) with hog kidney diamine oxidase (Sigma Grade II, 200 mg), Scheme I

Figure 1. Proton decoupled ²H NMR spectra of deuterium labeled samples of 3-(3'-aminopropyl)quinoline dihydrochloride (6tt A (6A), derived from (S)-[1-2H]cadaverine (2A) (via enzymic oxidative deamination) (5 mM, 56 628 transients); B (6B), derived from (R)-[1-2H]cadaverine (2B) (5 mM, 57 000 transients); C (6C), derived from [1,1-2H2]cadaverine (2C) (13 mM, 3475 transients); D (6D), obtained from D4-[2-2H]lysine by chemical oxidation18 (8 mM, 4808 transients).

together with beef liver catalase14 (E.C. 1.11.1.6, H2O2:H2O2 oxidoreductase) (Sigma, 0.5 mg) and o-aminobenzaldehyde (5, 32 mg). The latter traps the product of the enzymic reaction, 5-aminopentanal (3), to yield 3-(3'-aminopropyl)quinoline (6).15

The location of deuterium in the samples of 6 obtained from the three deuterated cadaverines 2A, 2B, and 2C was determined by ²H NMR spectroscopy.¹⁶

Oxidation of a chirally deuterated [1-211]cadaverine with stereospecific loss of deuterium leads to a sample of 5-aminopentanal (3), enriched in deuterium exclusively at C-5, together with nondeuterated (3). The quinoline derivative (6) obtained from this 5-[5-2H]aminopentanal will be deuterated exclusively at C-3' of the side chain (Scheme I, A). Oxidation of a chirally deuterated [1-2H]eadaverine, with stereospecific retention of deuterium but loss of protium from C-1, leads to a sample of 5-aminopentanal, intermolecularly doubly labeled at C-1 and C-5. This, in turn, yields an intermolecularly labeled quinoline derivative, deuterated at C-3' of the side chain and at C-2 of the nucleus (Scheme I, B).

Assignment of NMR signals due to ¹H and ²H at these two positions was made using compounds of known isotope dis-tribution: The ¹H NMR¹⁷ signals assigned to the protons at 2403

C-3' and C-2 of undeuterated 6 appeared at δ 2.95 (k, J = 7.2)Hz) and 8.68 (s, br) ppm, respectively. The downfield signal (5.8.68 ppm) was absent in the ⁴H NMR spectrum of a sample of 3-[2-2H](3'-aminopropyl)quinoline (6D).18

The ²H NMR¹⁶ spectrum of **6D** showed a single peak at δ 8.8 ppm (Figure 1D) (apart from the signal at 5 4.5 ppm, due to the natural abundance of deuterium in water (¹H²HO) present in all spectra in Figure 1). The ²H NMR spectrum of [2,3',3'-2H3]-6 (6C), derived from [1,1,-2H2]cadaverine (2C) showed two signals at 5 2.9 and 8.8 ppm, of relative intensity 211; due to deuterium at C-3' and C-2 (Figure 1C).

The spectra given by the quinoline derivatives obtained from the two enantiomeric [1-2H]cadaverines are shown in Figures 1A and 1B. The quinoline derived from (S)-[1-2H]cadaverine (2A) showed a single ²H NMR signal at δ 2.9 ppm (Figure 1A), indicating that only C-3' was labeled with deuterium. The quinoline from (R)-[1-³H]eadaverine (2B), on the other hand, showed two signals at δ 2.9 and 8.8 ppm, in the ratio 1:1 (Figure (B), due to the presence of deuterium at C-2 as well as at C-3'.

It follows that diamine oxidase (E.C. 1.4.3.6) from hog kidney mediates the stereospecific removal of the pro-S hydrogen from C-1 of cadaverine, and that the product of oxidative deamination, 5-aminopentanal (3), in equilibrium with Δ^1 -piperideine (4) stretains the pro-R hydrogen at the sp² carbon.

This stereospecificity corresponds to that of the oxidative deamination of benzylamine to benzaldehyde, catalyzed by the diamine oxidase (E.C. 1.4.3.6) of pea seedlings, which also involves loss of the pro-S hydrogen.8 The analogous oxidation of tyramine, catalyzed by monoamine oxidase (E.C. 1.4.3.4) from rat liver, on the other hand, takes place with loss of the pro-R-hydrogen atom from the carbon adjacent to the amino group."

Acknowledgment. This work was supported by the National Research Council of Canada.

References and Notes

- (1) E. A. Zeller, Enzymes, 2nd ed., 8, 313 (1963).
- (3)
- J. M. Hill and P. J. G. Mann, *Biochem. J.*, **91**, 171 (1964) W. G. Bardsley, C. M. Hill, and R. W. Lobley, *Biochem. J.*, 117, 169 (1970)
- (4) H. Tabor, J. Biol. Chem., 188, 125 (1951)
- (5) K. Hasse and H. Maisack, Biochem. Z., 327, 296 (1955).

- P. J. G. Mann and W. R. Smithies, *Biochem. J.*, 51, 256 (1955).
 C. M. Hill and W. G. Bardsley, *Biochem. Pharmacol.*, 24, 253 (1975).
 A. R. Battersby, J. Staunton and M. C. Summers, *J. Chem. Soc., Chem.* Commun., 548 (1974); J Chem Soc., Perkin Trans. 1, 1052 (1976).
- (9) B. Belleau, M. Fang, J. Burba, and J. Moran, J. Am. Chem. Soc., 82, 5752 (1960).
- (10) E. Leistner and I. D. Spenser, J. Chem. Soc., Chem. Commun., 378 (1975)
- (11) Vsotopic abundance of the samples of [J-2H]- and [1,1-2H2]cadaverine was determined by ¹H NMR. Optical rotation of the samples of (R) and (5)-[1-24] cadaverine dihydrochloride was measured using a Perkin-Elmer 241 MC polarimeter (1-dm tubes, 26 °C): ($R_{\rm P}$ -[1-24] cadaverine dihydrothere below the transformation of transformation
- (12) DL-[2-H]Lysine (>98% deuterated at C-2, as determined by 'H NMR) was prepared (cf. ref. 13) by reaction of A4(4-bromobutyl)phthalimide with sodium diethyl acetamidomalonate in ethanol, followed by hydrolysis of the substitution product, diethyl 2-acetamido-2-(4-phthalimidobutyl)malonate, in douterium chloride (38% w/w in D2O) and isolated as its monohydrochlorida
- (13) M. Fields, D. E. Walz, and S. Aothchild, J. Am. Chem. Soc., 73, 1000 (1951).
- (14) Catalase mediates the disproportionation to oxygen and water of the hy-
- drogen peroxide formed during the enzymic oxidation of the amine (15) C. Schopf, A. Komzak, F. Braun, and E. Jacobi, Justus Liebids Ann. Chem., 559, 1 (1948).
- (16) "H NMR spectra were recorded on a Bruker WH90 pulsed Fourier transform spectrometer operating at 13.82 MHz at amblent temperature, with broad band proton noise decoupling. All spectra were obtained from aqueous solutions (1mL) in 10-mm-o.d. sample tubes using ²H-O as external lock:
- repetition time, 1.024 s; pulse time, 15 µs. The natural abundance deuterium signal of ¹H²HO served as internal standard. Chemical shifts are referenced to perdeuteriotetramethylsilane.

Journal of the American Chemical Society // 100/23 // Notember 8, 197

(17) ¹H NMR spectra at 90 MHz were of solutions of 6, and 6D dihvdrochlorides in 0.2 M perdeuterioacetate buffer in deuterium oxide (pD ~5.2)
(18) 3-[2-²H](3'-Aminopropyliquinoline (6D) dihvdrochloride was obtained in two steps from bz-[2-²H]lysine. Oxidation with N-bromosuccinimide gave Δ¹-[2-²H]piperideine, ¹⁹ in equilibrium with 5-[1-²H]aminopentanal, which was condensed with o-aminobenzaldehyde. ¹³
(19) R. N. Gupta and I. D. Spenser, *Can. J. Chem.*, 47, 445 (1969).

7

James C. Richards, Ian D. Spenser*

Department of Chemistry, McMaster University Hamilton, Ontario, Canada LSS 4M1 Received July 25, 1978

The stereochemistry of the enzymic decarboxylation of L-arginine and of L-ornithine

JAMES C. RICHARDS AND IAN D. SPENSER²

Department of Chemistry, McMaster University, Hamilton, Out., Canada 188-4MI

Received May 25, 1982

JAMES C. RICHARDS and TAN D. SPENSER. Can. J. Chem. 60, 2810 (1982)

The decarboxylation of 1-ornithing to yield putrescine, catalyzed by the 1-ornithine decarboxylase (EC 4.1.1.17) of E. coli, and the decarboxylation of *J*-arginine to yield agmatine, catalyzed by the L arginine decarboxylase (EC 4-1.1.19) of *L. coli*, take place with retention of configuration.

JAMES C. RICHARDS et IAN D. SPENSER, Can. J. Chem. 60, 2810 (1982).

La decarboxylation de la t-ormthine qui est catalysee par la decarboxylase de la t-ormthine (EC.4.1.1.17) de E. coli et qui conduit a la putrescine et la decarboxylation de la 1-arginine, catalysee par la decarboxylase de la 1-arginine (EC.4.1.1.19) de E. coli et qui conduit à la agmatine, se font avec retention de configuration.

[Fraduit par le journal]

Introduction

Enzymes that catalyze the decarboxylation of 1-2-amino acids are found in microorganisms, in mammalian tissues, and in plants. These enzymes show high substrate specificity for individual amino acids. The reaction that is catalyzed involves the conversion of a chiral centre within the 1-2-amino acid, R-CH(NH₂)CO₂H, into a prochiral centre within the corresponding amine R-CH2-NH2. It was demonstrated (1) almost 30 years ago that the reaction mediated by three of these enzymes (EC 4.1.1.25 L-tyrosine decarboxylase, from Streptococcus faecalis; EC 4.1.1.18 L4ysine decarboxylase, from Bacillus cadaveris; EC 4.1.1.15 L-glutamate decarboxylase, from Clostridium welchii and from Escherichia coli) takes a stereochemically defined course, but it was not established at that time whether reaction takes place with net retention or with net inversion of configuration. Later, the actual stereochemical course of these reactions was determined.

The conversions of L-tyrosine into tyramine (2), of L-lysine into cadaverine (3), and of L-glutamate into γ -aminobutyric acid (4), each catalyzed by the appropriate enzyme, all take place with net retention of configuration, as shown by means of isotopic labelling with deuterium or tritium. Thus, decarboxylation of L-(i.e., S-)-tyrosine in ²H₂O yields R-(1-2H)tyramine (2), and of t-glutamate in ²H₂O yields *R*-4-amino(4-²H)butyric acid (4). Similarly, decarboxylation of L-[2-3H]lysine in water generates S-[1-3H]cadaverine, whereas L-lysine in tritiated water yields R-[1-3H]cadaverine (3). The chirality of the products was determined by kinetic

0008-4042/82/222810-11501.00/0

ຸດ)1982 National Research Council of Canada/Conseil national de recherches du Canada

2810

(2), enzymic (3), or chemical (4) correlation with compounds of known stereochemistry. Net retention in the decarboxylation of L-tyro-

sine (5), of t-lysine (6, 7), and of t-glutamate (8-10), catalyzed by bacterial enzymes, was later confirmed by independent methods and was found also in reactions catalyzed by enzymes from mainmalian sources (5, 8) and by plant systems (5, 6). Net retention has been demonstrated also in the decarboxylation of histidine, catalyzed by bacterial enzymes (EC 4.1.1.22 histidine decarboxylase. from Lactobacillus and from Clostridium welchii) (11, 12), and of tryptophan, catalyzed by a mammalian enzyme (EC 4.1.1.28 aromatic L-amino acid decarboxylase, from hog kidney) (13).

Very recently a p-amino acid decarboxylase (EC 4.1.1.20 meso-a.e-diaminopimelate decarboxylase, from Bacillus sphaericus) has been shown to catalyze an analogous decarboxylation with inversion of configuration (14).

We now add two more 1.-\alpha-amino acid decarboxyases of bacterial origin to the list of the enzymes that catalyze the decarboxylation of their substrates with net retention of configuration. The two enzymes are L-ornithine decarboxylase (EC 4.1.1.17) which catalyzes the decarboxylation of L-ornithine into putrescine, and L-arginine decarboxylase (EC 4.1.1.19), which mediates the conversion of L-arginine into agmatine (Scheme 4).

Methods and results

 L_{2-2H})Ornithine (4) and L_{2-2H})arginine (9) were prepared by the reaction sequences shown in Schemes I and 2.

Decarboxylation of the L-component of DL-ornithine in deuterium oxide, and of the L-component of DL-(2-2H)ornithine in water, 'catalyzed by Lornithine decarboxylase (L-ornithine carboxylyase, EC 4.1.1.17) (ex Excherichia coli, Sigma-

A preliminary account of part of this work was presented at the 62nd Canadian Chemical Conference of the Chemical itotitute of Canada, Vancouver, B.C., June 1979.

⁶Author to whom correspondence may be addressed.

SCHEME 1. Synthesis of (\pm) - $(2^{-2}H)$ ormithine.

Chemical Co.) gave the enantiomers of $(1-{}^{2}H)$ putrescine. 1-Ornithine (14) in deuterium oxide gave $(-)-(1-{}^{2}H)$ putrescine dihydrochloride (15), 1- $(2-{}^{2}H)$ ornithine in water gave $(+)-(1-{}^{2}H)$ putrescine dihydrochloride. The ORD curves of the two samples are shown in Fig. 1.

The enantiomers of $(1-{}^{2}H)$ agmatine were obtained similarly from t-arginine, catalyzed by targinine decarboxylase (t-argininine) carboxylyase, EC 4.1.1.19) (ex *E. coli*, Sigma Chemical Co.), t-Arginine (16) in deuterium **o**xide gave $(-)-(1-{}^{2}H)$ agmatine sulfate (10), t- $(2-{}^{2}H)$ arginine in water gave $(+)-(1-{}^{2}H)$ agmatine sulfate. The ORD curves of the enantiomeric $(1-{}^{2}H)$ agmatine samples are shown in Fig. 2.

Alkaline hydrolysis with sodium hydroxide in ethanol led to quantitative conversion of agmatine into putrescine. (-)- $(1-^{2}H)$ Agmatine sulfate (10) yielded (-)- $(1-^{2}H)$ putrescine dihydrochloride (15), (+)- $(1-^{2}H)$ agmatine sulfate yielded (+)- $(1-^{2}H)$ putrescine dihydrochloride. Within experimental error, the ORD curves of the $(1-^{2}H)$ putrescine samples, so obtained, were coincident with those of the samples obtained by decarboxylation (Fig. 1). The samples of $(1-^{2}H)$ agmatine were converted in 2 steps (Scheme 3) into 4-phthalimidobutyric acid which was converted into the corresponding methyl ester.

The sample of $(+)-(1-^{2}H)$ agmatine sulfate (10) gave (-)-4-phthalimido $(4-^{2}H)$ butyric acid (12) which, in turn, gave (-)-methyl 4-phthalimido- $(4-^{2}H)$ butyrate (13). Conversely, $(+)-(1-^{2}H)$ agmatine sulfate gave (+)-4-phthalimido $(4-^{2}H)$ butyric acid. The ORD curves of the enantiomeric 4phthalimido $(4-^{2}H)$ butyric acids are shown in Fig. 3.

SCHEME 2. Synthesis of L-(2-²H)arginine.

CAN J CHEM. VOL 60, 1982

2812

FIG. 1. Optical rotary dispersion (ORD) curves of (+)- and (-)-(1-⁴H)putrescine dihydrochloride. The samples were prepared by decarboxylation of ornithine (value plotted on the left, for each wave length) and by hydrolysis of agmatine (value on the right).

An authentic specimen of (-)-methyl R-4phthalimido $(4-^2H)$ butyrate was obtained from M. H. O'Leary, University of Wisconsin. This sample had been prepared by methylation of (-)-4-phthalimido $(4-^2H)$ butyric acid which had been obtained by decarboxylation in 2H_2O of L-glutamic acid, catalyzed by L-glutamate decarboxylase (L-glutamate carboxylyase, EC 4.1.1.15, ex E. coli), and had been shown to have R-chirality by direct correlation with an authentic specimen, prepared from chiral $(2-^2H)$ glycine by a series of reactions which did not affect the stereochemistry at the chiral centre (4).

The sample of (-)-methyl 4-phthalimido $(4-^{2}H)$ butyrate (13) derived from $(-)-(1-^{2}H)$ agmatine sulfate (10) and the sample of (-)-methyl *R*-4-phthalimido $(4-^{2}H)$ butyrate supplied by M. H. O'Leary showed similar, but not coincident, plane negative ORD curves (Fig. 4), and identical mass spectra (Fig. 5).

Discussion

The stereochemistry of the replacement of the carboxyl group of an α -amino acid by a solvent

 $H_{2}N = H_{3}N = H$

FIG. 2. ORD curves of (+)- and (-)-(1-2H)agmatine sulfate.

proton, in the course of the reaction catalyzed by an L- α -amino acid decarboxylase (1, 15), can be determined if the prochiral centre that is generated in the course of the decarboxylation is rendered chiral by isotopic substitution. If the decarboxylation of the amino acid is carried out in the presence of isotopically labelled water (³HOH or ²H₂O), one of the enantiomers of the amine will be generated. The other enantiomer arises when a 2-labelled sample ([2-³H]- or (2-²H)-) of the L- α -amino acid undergoes decarboxylation in aqueous solution (3, 5-7, 13, 16, 17).

When tritium is employed as the tracer (3, 5-8, 10, 11, 13, 16) a very small fraction only of the molecules that comprise the labelled starting material ([2-3H]amino acid or ³HOH) will carry ³H. It follows that only very few of the molecules comprising the product will be labelled, i.e., will be chiral and, in principle, optically active. The optical activity of the resulting product will thus be immeasurably small. Stereochemical analysis of the product is possible by means of enzymes of known stereospecificity.

When deuterium is employed as the marker (4, 9.

His $CH_2 - CH_2 - CH_2 - NH_2$ R + (-) + (1 + H) Agmatine sulfate10 H = D $CH_2 - CH_2 - CH_2 - NH - C$ NH_2 H = D $CH_2 - CH_2 - CH_2 - NH - C$ NH_2 $SO_4 - NH_2$ SO_4 - NH_2$

2813

NH.

PENSER

 $CH_2 - CH_2 - CO_2CH_1$ $CH_2 - CH_2 - CO_2CH_1$

Ftg. 3. ORD curves of (+)- and (-)-4-phthalimido(4-2H)butyric acid.

12, 14, 17) starting material can, in principle, be fully deuterated $({}^{2}H_{2}O)$, or fully deuterated at the appropriate position ($(2-{}^{2}H)$ amino acid). The product will then consist entirely of molecules that are correspondingly deuterated, and is therefore not only chiral but its optical activity will, in all likelihood, be measurable (subject to the sensitivity of the detection instruments). The chirality of the product can then be determined by the classical method of measuring optical activity followed by assignment of configuration by comparison of this activity with that of standards of known configuration (4, 12, 14). Alternatively, nmr methods can be applied (9, 17) in the configurational assignment.

We have determined the stereochemistry of the enzymic decarboxylations of ornithine and arginine by deuterium labelling, followed by adaptation of the classical approach to configurational assignment, measurement of optical activity, and comparison with standards of known stereochemistry.

Samples of the two enantiomeric $(1-{}^{2}H)$ putrescines were isolated as dihydrochlorides. They were obtained, respectively, by the action of L-ornithine decarboxylase (from *E. coli*) on L-ornithine (14) in the presence of ${}^{2}H_{2}O$ (ca. 98 at.% ${}^{2}H$), and on the L-component of DL-(2- ${}^{2}H$)ornithine. The DL-(2- ${}^{2}H$)

SCHEME 3. Conversion of $(1^{-2}H)$ agmatine into methyl 4-phthalimido $(4^{-2}H)$ butyrate.

²H)ornithine (4) was prepared by adaptation of a conventional synthetic route (18) (Scheme 1). The ORD curves of the enantiomeric $(1-^{2}H)$ putrescines are shown in Fig. 1. The sample derived from L-(2-²H)ornithine was (+)-(1-²H)putrescine dihydrochloride, that derived from 1-ornithine (14) in ²H₂O (Scheme 4) was (-)-(1-²H)putrescine dihydrochloride (15).

Similarly, samples of the two enantiomeric (1-²H)agmatines, isolated as sulfates, were obtained by action of L-arginine decarboxylase (from *E. coli*) on L-arginine in the presence of ²H₂O, and on L-(2-²H)arginine, respectively. The L-(2-²H)arginine (9) was prepared from α -*N*-acetyl-L-arginine

FIG. 4. ORD curves of (-)-methyl 4-phthalimido(4-²H)butyrate (13). Curve A: Sample supplied by M. H. O'Leary. Curve B: Sample obtained from (-)-(1-²H)agmatine sulfate (10) (Scheme 3).

(5) by exchange (via the oxazolone (6)) and stereospecific hydrolysis employing acylase I (19) (Scheme 2). The sample of agmatine sulfate derived from L-(2-²H)arginine was (+)-(1-²H)agmatine sulfate, that derived from L-arginine (16) in ²H₂O (Scheme 4) was (-)-(1-²H)agmatine sulfate (10).

It was a simple matter to establish the relative configuration of the samples of $(1-^{2}H)$ putrescine and $(1-^{2}H)$ agmatine. Hydrolysis of $(-)-(1-^{2}H)$ agmatine sulfate (10) with ethanolic sodium hydroxide (10% w/v),³ which maintained the chiral integrity at C-1 but cleaved the guanidino group, gave $(-)-(1-^{2}H)$ putrescine dihydrochloride (15) (Scheme 4). Similarly, $(+)-(1-^{2}H)$ agmatine sulfate gave $(+)-(1-^{2}H)$ putrescine dihydrochloride.

It follows that the levorotary samples of $(1-^2H)$ putrescine dihydrochloride and of $(1-^2H)$ agmatine sulfate have the same configuration at C-1. Since these two samples were derived from L-ornithine, and from L-arginine, respectively, by decarboxylation in 2H_2O , it follows further that the steric course of the decarboxylation of L-ornithine, catalyzed by L-ornithine decarboxylase, is identical with that of the decarboxylation of L-arginine, catalyzed by L-arginine decarboxylase. Congruently, the dextrorotary samples of $(1-^2H)$ putrescine dihydrochloride and of $(1-^2H)$ agmatine sulfate correspond in configuration at C-1. Each was derived from the corresponding L- $(2-^2H)$ amino acid. Thus, the decarboxylations catalyzed by L-ornithine decarboxylase and by L-arginine decarboxylase take the same stereochemical course. Either both reactions proceed with net retention of configuration or they both proceed with net inversion.

This question was settled by a chemical conversion of (-)- $(1-^{2}H)$ agmatine into a product of known chirality by a reaction sequence which did not affect the chiral centre at C-1 (Scheme 3).

 $(1-^{2}H)$ Agmatine rather than $(1-^{2}H)$ putrescine was chosen for chemical correlation with a known standard in order to avoid possible complications due to the C_{2r} symmetry of putrescine $(1-^{2}H)$ Agmatine was converted in the 1-N-

(1-²H)Agmatine was converted in the 1-Nphthaloyl derivative (11). The primary ammo group was thus afforded protection from oxidative attack. The guanidino group was then removed by oxidation with potassium permanganate, yielding 4phthalimido(4-²H)butyric acid (12) whose stereochemical integrity had been maintained. By this reaction sequence (-)-(1-²H)agmatine sulphate (10) yielded (-)-4-phthalimido(4-²H)butyric acid (12), and (+)-(1-²H)agmatine sulfate gave (+)-4phthalimido(4-²H)butyric acid.

A sample of (-)-4-phthalimido $(4^{-2}H)$ butyric acid (12) was converted into the corresponding methyl ester, (-)-methyl 4-phthalimido $(4^{-2}H)$ butyrate (13) (isotopic enrichment (ms) 98.2 \pm 0.3 at.% $^{2}H_{1}$). This derivative was compared directly with an authentic specimen of (-)-methyl 4-phthalimido-R- $(4^{-2}H)$ butyrate (isotopic enrichment 92.5 \pm 0.4 at.% $^{2}H_{1}$, 4.7 \pm 0.4% $^{2}H_{2}$), which had been prepared in the laboratory of M. H. O'Leary, University of Wisconsin (4). The absolute configuration of this sample ultimately rests on chemical correlation with that of R- $(2^{-2}H)$ glycine (17) (4)

The two samples of (-)-methyl 4-phthalimido-(4-²H)butyrate (13), that from (-)- $(1-^{2}H)$ agmatine sulfate (10) and that supplied by O'Leary, both showed plane negative ORD curves (Fig. 4). They gave identical mass spectra (Fig. 5).

Since (-)-methyl 4-phthalimido $(4-{}^{2}H)$ butyrate has the *R*-configuration, the $(-)-(1-{}^{2}H)$ agmatine sulfate from which it was obtained, by a reaction sequence which did not affect the chiral centre, also has the *R*-configuration (see Scheme 3, no change in ligand priorities around the chiral centre).

Since this $R-(-)-(1-^2H)$ agmatine sulfate had been obtained from L-arginine by decarboxylation in 2H_2O , catalyzed by L-arginine decarboxylase

Q

³Hydrolysis with barium hydroxide solution (20, 21) or with aqueous sodium hydroxide (22), conditions which have been employed to convert L-arginine into L-ornithine (20, 21) and DL-ornithine (22), respectively, did not lead to quantitative conversion of chiral deuterio-agmatine into chiral deuterioputrescine.

.

 \mathbf{X}_{i} , \mathbf{y}_{i} , \mathbf{x}_{i}

ž

,

CAN J CHEM VOL 60, 1982

Scheme 4. Stereochemical interrelationship of L-ornithine, L-arginine, and their conversion and degradation products

(EC 4.1.1.19, from E, coli) (Scheme 4), the reaction catalyzed by this enzyme proceeds with net retention of configuration.

Since R-(-)-(1-²H)agmatine sulfate yielded (-)-(1-²H)putrescine dihydrochloride in a reaction which does not affect the chiral centre, this compound is R-(-)-(1-²H)putrescine dihydrochloride.

Since the R-(-)-(1-²H)putrescine dihydrochloride had been obtained from L-ornithine by decarboxylation in ²H₂O, catalyzed by L-ornithine decarboxylase (EC 4.1.1.17, from *E. coli*), the reaction catalyzed by this enzyme proceeds with net retention of configuration.

These configurational relationships are summarized in Scheme 4.

Experimental

A. (2-¹HAmino acids

1. DL-(2-2H)Ornithine (18)

Diethyl 2-acetamido-2-(3-phthalimidopropyl)malonate (3) (23)

Diethyl acetamidomalonate (2) (Aldrich Chemical Co.) (2.16 g) was dissolved in hot dry ethanol⁴ in a two-necked round bottom flask, fitted with a reflux condenser, calcium sulfate drying tube, and a pressure equalizing dropping funnel. A solution of sodium ethoxide (250 mg of sodium in 14 mL ethanol) was added and the resulting solution was heated at reflux while N-(3-bromopropyl)phthalimide (1) (Aldrich Chemical Co.) (2.69 g) in hot ethanol (14 mL) was added dropwise over 10 min. The reaction mixture was refluxed 20h, and was then cooled to 0° C. Water (35 mL) was added to give the substitution product₀ Yield 2.88 g, 71%; mp 116–116.5°C (from 95% ethanol) (lit. (20) mp 115–116°C; (25) 111–112°C); ¹H nmr (²HCCl₃), δ : 1.20 (6H,⁴, J 7,2 Hz), 1.53 (2H, m), 2.00 (3H, s), 2.40 (2H, m), 3.67 (2H, t₃ J 7,2 Hz), 4.23 (4H, q, J 7,2 Hz), 6.80 (1H, s), 7.77 (4H, m).

DL-(2-2H)Ornithine monohydrochloride (4)

Diethyl 2-acetamido-2-(3-phthalimidopropyl)malonate (3) (784 mg) was suspended in a solution of deutenum oxide containing deuterium chloride (38%, w/w in ²H₂O, 10 mL) (Merck, Sharp, and Dohme, 99.7 at.% ²H) in a small flask fitted with a reflux condenser and calcium sulfate drying tube. The mixture was heated at reflux for 18 h, cooled to 0°C, and diluted with water (10 mL). Phthalic acid, which precipitated, was filtered off and washed with water $(2 \times 1 \text{ mL})$. The combined filtrate and washings were concentrated to dryness in vacuo. and the residue was repeatedly dissolved in water and evaporated to dryness to remove exchangeable deuterium. The residue, crude ornithine dihydrochloride, was dissolved in hot 95% ethanol (8 mL), the solution was cooled to room temperature, filtered, and pyridine (ca. 600 mg) was added. DL-(2-2H)-Ornithine monohydrochloride (398 mg) which precipitated was recrystallized from aqueous ethanol, mp 235-237°C (dec.) (lit. (nondeuteriated) (22) mp 232°C (dec.); (25) 222-224°C (dec.);

2816

 $\sum_{i=1}^{n}$

^{*}Absolute ethanol purified by the Lund-Bjerrum method (24) was used throughout.

(10^{-21}) (6 C (dec.)). The 'H nmi spectrum (H.O) was similar ip that of authentic unlabelled material and indicated that this sample was car 98% deuterium labelled at C-2, 3^{-1} 90 (4H, m, H-3, 4), 3 05 (2H, t. *J* 6 8 Hz, H-5), 3 80 (car 0.02 H, H-2). The 'H nmi spectrum (H.O, 107 *m* M, 200 transients) showed one signal at 3^{-7} opm (relative to (H'HO at 4.7 ppm)

In another experiment, hydrólysis of 3 (900 mg) gave a sample of (p) (2.4H)ornithine monohydrochloride (4) (330 mg) which was ca. 92% 4H-labelled in the 2-position as determined by 4H nmt.

2.1 Co-Hitremme

2-N-Acetyl-1-sugnme dihydrate (5)

1: Atennie monohydrochloride (4,24g) was acetylated with icetic anhydride in aqueous sodium bicathonate by a published stocedure (26), yielding γ -acetyl-t-argmine dihydrate (4-10g, 9170), mp 267–268 C (from water) (lit. (27) (01) mp 256 C); ⁴H mir (1H, (1)), $\alpha = 1.73$ (4H, m, H-3, 4), 2.05 (3H, N, COCH, 1, 3, 23) 2H, t. J fr 8 Hz, H-50, 4 20 (1H, d of d, J) ≈ 7.8 Hz, $J \approx 4.8$ Hz, 4-20, ORD, $\|z\|_{exc} = 10.1 \pm 0.3$, $\|z\|_{exc} = 16.8$ ± 0.3 , $\|z\|_{exc}$ (4.1 ± 0.3 , $\|z\|_{exc} = 10.1 \pm 0.3$, $\|z\|_{exc} = 16.6$ ± 0.3 , $\|z\|_{exc}$ (50) ± 0.3 , $\|z\|_{exc} = 13.6 \pm 0.3$, $\|z\|_{exc} = 11.9 \pm 0.3$, $\|z\|_{exc}$ (56) ± 0.2 , $\|z\|_{exc} = 0.7 \pm 0.1$, $\|z\|_{exc} = 6.3 \pm 0.2$, $\|z\|_{exc}$ (7.6 ± 0.2 , $\|z\|_{exc} = 0.7 \pm 0.1$, $\|z\|_{exc} = 6.3 \pm 0.2$ (27) m 1 N 4Cl, 25 C) (dit. (25) $\|z\|_{exc} = 7.0$, 0.27 in 1 N HCD)

2 Noticetyl-D1 (2)²Historiume dihydrate (7) (cf. 1et. 28)

 \propto N-Vectyl-tranginine dihydrate (3.9.6) was dissolved in cuterium oxide (5 mL) and the solvent was evaporated *in araa*. This process was repeated three times to effect replaceient of the exchanceable protons by deuterium. The residue as then recrystallized from deuterium oxide (3 mL) and euterium oxide of crystallization was removed by drying over hosphorus pentoxide at 75 C for 24h. The product so obtained, acety largning, in which all exchangeable protons had been rplaced by 4H, mp 253–255°C (10, fundeuteriated) (28) mp 50°C), was dissolved in deuterioacetic acid (25 mL) which had zen prepared in the following way (cf. ref. 29).

A mixture of freshly distilled acetic anhydride (Fisher) (bp 37-138 C, 40 mL) and deuterium oxide (Merck, Sharp and ohme, 99.7 at 7^{-2} H) (8g) was sturred at room temperature ider a stream of dry nitrogen until the solution was homogenesis (ca. 3h). Distillation under anhydrous conditions gave interioacetic acid. CH₃CO₂/H, bp 112-114°C. The ³H nmr sectrum of a sample of the product indicated that it was \geq 98% interim labelled and contained a trace of acetic anhydride (ca. 5).

Acetic anhydride (bp 137-138°C, 1.7 mL) was added to the dution of x-N-acetylarginine in deuterioacetic acid, and the ixture was heated at reflux under dry mirogen. After 2h internim oxide (0.4 mL) was added and heating at reflux was intinued for 30 min. The solution was cooled to room mperature, acetic acid removed in cacuo, and the residue, a llow oil, was dissolved in water (5 mL). The solution was aporated, the residue redissolved in water, and the solution ain evaporated. The oil was then redissolved in water (5 mL), : pH of the solution was adjusted to pH 8 with concentrated imonium hydroxide, acetone (1 mL) was added, and the sture cooled to 0 C. The crystals which formed were filtered , washed with cold water, and dried in tarno over phosorus pentoxide. The sample of α -N-acetyl-ru- $(2)^2$ H)arginine dihydrate (3.4g) so obtained (optically inactive, mp 268-FC (from water)), was 85-90% deuterium labelled at C-2 ('H ir). Deuterium was also present in the acetyl group.

-(2-²H)Arginine (9) monohydrochlaride and x-acetyl-0-(2-²H)arginine (8) dihydrate (cf. refs. 19, 26)

The pH of a solution of α -N-acetyl-Di (2-²H)arginine dihyte (3,2g) in water (140 mL) was adjusted to pH 6.8 with frochloric acid (10% w/v). Hog kidney acylase I (Sigma, 6300 U/me, 2.8.6 me) in water (20 mf.) was added. The resultine solution was incubated at 36 °C in a constant temperature water bath for 23h. The pH of the enzymic reaction mixture was then adjusted to pH 4.8 with glacial accuracid. Northe was added, and the mixture filtered through Celite. The clear filtrate was concentrated *m* (*acu*) ° mL), and after cooling in a refrigerator for several days. π :V-acetCl-0-(2)²Harginne (8) divedrate, which crystallized, was filtered off and washed with water Yield 1.4.g. 8977; mp. 268–269 °C (from water); ORD, $[\pi]_{196}$ +14.0 ± 0.3. $[\pi]_{196}$ +16.9 ± 0.4. $[\pi]_{106}$ +17.9 ± 0.4. $[\pi]_{167}$ +19.4 ± 0.4. $[\pi]_{166}$ +19.6 ± 0.4. $[\pi]_{166}$ +8.3 ± 0.2. $[\pi]_{166}$ +7.2 ± 0.3. $[\pi]_{166}$ +18.2 ± 0.3. $[\pi]_{166}$ +7.2 ± 0.2. $[\pi]_{166}$ +7.0 ft. (25°C) (it), (26) (nondeuteriated) $\{\pi]_{166}$ +7.0° (c. 2°7 in 1.8. HCD).

The combined filtrate and washings containing t-(2-FH)arginine (9) (10 mL) were diluted with water (25 mL), sodium hydroxide solution (5% w/s) was added to pH 11, and the solution was cooled in an ice bath. Benzaldehyde (1.3 mL) was added and the mixture stirred at 0°C for 2h. The benzylidine derivative which separated was filtered off and was washed with ethanol and ether. Yield, 1,54g, 93% (mp 198–1997 C (dec.) (ht. (31) mp 206–207°C (dec.)).

The solution of the benzylidine derivative (1.53g) in aqueous hydrochloric acid (2 N, 12 mL) was heated (95°C) 20 min with sturing. After cooline to room temperature, the mixture was extracted with ether (2 > 5 mL) and the ether layers were discarded. The aqueous phase, containing the dihydrochloride of 1-(2-'H)arginine, was evaporated in vacuo. The residue was dissolved in hot 95% ethanol (5 mE), the solution cooled to room temperature, and filtered, t-(2-2H)Arginine monohydrochloride was precipitated from the filtrate by addition of pyridine (1.2 mL), and was recrystallized from aqueous ethanol. Yield 1.1g. 9177 from the benzylidine derivative; mp 222-223°C (lit. (nondeuteriated) (31) mp 220°C); ¹H nmr (²H₂O), *i*s: 1.74 (4H, m, H-3, 4), 3, 17 (2H, 1, J 6, 8 Hz, H-5), 3, 72 (ca. 0, 15 H, H-2, i.e., ca. 85/7 of ²H); ORD, $[x]_{296}$ +94.5 ± 1.9°, $[x]_{102}$ +87.7 ± 1.9°, $[x]_{112}$ $\begin{array}{l} +75.6 \pm 1.5^{\circ}, \left[z\right]_{114} + 58.6 \pm 1.2^{\circ}, \left[z\right]_{164} + 43.3 \pm 0.9^{\circ}, \left[z\right]_{246} \\ +31.4 \pm 0.6^{\circ}, \left[z\right]_{246} + 25.3 \pm 0.5^{\circ}, \left[z\right]_{146} + 14.1 \pm 0.3^{\circ}, \left[z\right]_{146} \end{array}$ $\pm 12.4 \pm 0.3^{\circ}$, $|\alpha|_{0.00} \pm 11.7 \pm 0.2^{\circ}$ (c, 2.067 in water, 25°C). An authentic sample of unlabelled t-arginine monohydrochloride showed a plane positive ORD spectrum: $[x]_{246}$ +94.0 \pm 1.9% $[\alpha]_{002} + 87.2 \pm 1.7^{\circ}, [\alpha]_{012} + 75.4 \pm 1.5^{\circ}, [\alpha]_{014} + 58.6 \pm 1.2^{\circ},$ $[\alpha]_{ins} \pm 43.3 \pm 0.9^{\circ}, [\alpha]_{ans} \pm 31.5 \pm 0.6^{\circ}, [\alpha]_{ain} \pm 25.4 \pm 0.5^{\circ},$ $[\pi]_{cun} = [4.0 \pm 0.3], [\pi]_{cun} = 12.4 \pm 0.3^{\circ}, [\pi]_{cun} = 11.7 \pm 0.2^{\circ}$ (c) 2.07"? in water, 25"C) (lit. (28) [x]eng +11.30" (c, 5.0"? in water, 25° C), (31) $|x|_{CBV} + 12.2^{\circ}$, $+ 12.3^{\circ}$ (c, 5.0% in water, 25°C)).

A sample of $1 - (2^{-2}H)$ arginine monohydrochloride (67 mg) which was $\ge 92^{r_2}$ ²H-labelled (by 'H nmr) was obtained from ∞ -N-acetyl-1-arginine under a similar set of reaction conditions (see above) except that the ²H for 'H exchange reaction was optimized by following the course of the reaction in perdeuterioacetic acid – acetic anhydride solution by 'H nmr.

B. Decarboxylation of (2-2H)amino acids to (1-2H)amines 1. Ornithine

Decarboxylation of ornithine, catalysed by v-ornithine decarboxylase (E.C. 4.1.1.17) from E. coli

Anhydrous sodium carbonate (Analar) (111 mg) was added to a stirred solution of perdeuterioacetic acid (Merck, Sharp, and Dohme, 99.7 at.⁴⁷ ²H) in deuterium oxide (Stohler Isotopes, 99.8 at.⁴⁷ ²H) (0.2 W, 15 mL) under an atmosphere of dry

⁵1 U will hydrolyse 1 μ mol of *N*-acetyl-1-methionine/h at pH 7.0 at 25°C. Hydrolysis of α -*N*-acetyl-1-arginine is ca. 60 times slower (30).

nitrogen. After stirring for Th, 61-ornithine monohydrochloride (Aldrich) (98 mg), which had been stripped of exchangeable protons by repeated solution in 41.0 and evaporation to dryness (3 times), and 1-ornithine decarboxylase (Siema, 0.06 U/mg)⁶ (45 mg) were dissolved in the buffered solution (ca. p²H 5). The enzymic reaction mixture, in a flask fitted with a calcium sultate drving tube, was agitated at 36 C for 40 h. Jare enzymic reaction mixture was then acidited with 4 V hyprochloric acid. heated on a steam bath for 30 min, and choled to room stemperature. The precipitated enzyme was removed by centrifugation, followed by filtration of the supernation solution through l'efter. The tiltrate was tyophilyzed, the sesure dissolved in 1077 sodium hydroxide (3 mL), and the alkaline solution saturated with sodium chloride. The product was extracted into 1-butanol (4×5 mL), the butanol extract was aciditied by addition of a solution of hydrogen chloride in butanol, and the solution was then concentrated in vacuo (5 mL), (+)-(1-7H)Putrescine dihydrochloride (46 mg) was reervstallized from 95% ethanol; ¹H nmr (²H₂O), 5; 1.77 (4H, m, H-2.3), 3.06 (ca. 3H, m, H-1.4); C1 ms 90 (M + H, 5(4), 74 (5), 73 (M = NH₃, 100), 72 (2), (CI ms of authentic unlabelled material, 89 (M = H, 5%), 73 (5), 72 (M = NH, 100), 71 (20), 99.7 ± 0.3% ⁴H₄ determined by CI ms. The sample showed a plane negative ORD curve. Another sample of (-)-(1-H)putrescine dihydrochloride obtained as above from i -ornithine monohydrochloride (rather than from D(-) was 98.7 \pm 1/27 mono-²H labelled, at C-1, determined by CI ms, and gave ORD. [x]₁₀₂ → 1.42±0.11. $[x]_{111} = 1.03 \pm 0.08^{\circ}, [x]_{114} = 0.78 \pm 0.09^{\circ}, [x]_{146} = 0.66 \pm 0.05^{\circ}.$ $\{x\}_{405} = 0.50 \pm 0.04^{\circ}, \{x\}_{435} = 0.43 \pm 0.04^{\circ}, \{x\}_{546} = 0.24 \pm 0.05^{\circ},$ $[\alpha]_{\rm GV} = 0.20 \pm 0.06^{\circ}$ (c 2.26% in 0.1 N HCl, 26°C, uncorrected for incomplete deuteration).

(ii)(+)-(1-2H)Putrescine dihydrochloride by decarboxylation of the y-component of (y+2-2H)ornulnine

A solution of D1-(2-H)ornithine monohydrochloride (~ 98% (H) (100 mg) and 1-ornithine decarboxylase (40 mg) in acetate buffer (0.2 M, pH-5.0, 15 mL) was incubated at 36°C for 20h. After work-up, (+)-(1-²H)puttescine dihydrochloride was obtained and recrystallized from 95% ethanol (yield 45 mg). The ¹H inmr spectrum (²H₂O) was identical with that of (-)-(1-²H)puttescine and the sample showed a plane positive ORD curve: C1 ms, 90(M + H, 3%), 74 (5), 73 (M = NH₃, 100), 72 (5); 97.2 \pm 0.3% ² H₄ determined by C1 ms.

Another sample of (+)-(1-²H)putrescine dihydrochloride obtained by enzymic decarboxylation of D1-(2-²H)ornithine (ca. 92°7 ²H) was 93,1 ± 0.99° (mono-²H labelled at C-1 (determined by C1 ms): ORD, $|\alpha|_{102}$ +1.21 ± 0.09°, $|\alpha|_{114}$ +0.98 ± 0.06°, $|\alpha|_{114}$ +0.81 ± 0.06°, $|\alpha|_{144}$ +0.64 ± 0.04°, $|\alpha|_{2000}$ ± 0.04°, $|\alpha|_{140}$ +0.30 ± 0.03°, $|\alpha|_{144}$ +0.23 ± 0.03°, $|\alpha|_{147}$ +0.20± 0.04° (c 2.86°7 in 0.1 N HCl, 26°C, uncorrected for incomplete deuteration).

Unreacted $D(2^{-2}H)$ ornithine was reisolated from the incubation mixture. The alkaline solution remaining after extraction of the (1-2H)putrescine into butanol was neutralized with concentrated hydrochloric acid, and was then applied to a column (25 × 1 cm) of Dowex 50-X8 (H⁺ form). The column was washed with water (25 mL), hydrochloric acid (2 N, 25 mL), and water (25 mL), $D(2^{-2}H)$ ornithine was cluted with ammonia (1 M, 25 mL), and was isolated as the monohydrochloride, as described earlier.

The 'H and ²H nmr spectra of the sample of D-(2-²H) ornithine monohydrochloride (ca. 92% ²H) were identical with those of the D1-(2-²H) ornithine from which it was derived. ORD, $[\alpha]_{265}$ -157.8 ± 7.9°, $[\alpha]_{160}$ -114.8 ± 5.7°, $[\alpha]_{265}$ -98.0 ± 4.9°, $[\alpha]_{126}$ -87.3 ± 4.4°, $[\alpha]_{102}$ -80.7 ± 4.0°, $[\alpha]_{113}$ -69.2 ± 3.5°, $[\alpha]_{344}$

 $\begin{array}{l} -52.8 \pm 2.6^{\circ}, \ \left[\chi \right]_{\rm tas} = 39.3 \pm 2.0^{\circ}, \ \left[\chi \right]_{\rm tas} = 29.0 \pm 1.5^{\circ}, \ \left[\chi \right]_{\rm tas} \\ = 23.4 \pm 1.2^{\circ}, \ \left[\chi \right]_{\rm tas} = 14.4 \pm 0.8^{\circ}, \ \left[\chi \right]_{\rm tas} = -12.9 \pm 0.7^{\circ}, \ \left[\chi \right]_{\rm tas} \\ = 12.1 \pm 0.8^{\circ}, \ \left(\psi \right).63^{\circ}, \ in water, \ 25.C \right) \end{array}$

An authentic sample of unlabelled 1-ornithme (10) monobydrochloride gave the following ORD: $[\pi]_{105} = 166.3 \pm 3.3$, $[\pi]_{105} = 124.9 \pm 2.5$, $[\pi]_{205} + 107.6 \pm 2.2^{\circ}$, $[\pi]_{205} + 96.1 \pm 1.9^{\circ}$, $[\pi]_{215} = -88.9 = 1.8^{\circ}$, $[\pi]_{115} + 78.1 \pm 1.6^{\circ}$, $[\pi]_{105} + 96.1 \pm 1.9^{\circ}$, $[\pi]_{115} = -48.1 \pm 0.9^{\circ}$, $[\pi]_{115} = -32.3 \pm 0.7^{\circ}$, $[\pi]_{115} \pm 26.1 \pm 0.5^{\circ}$, $[\pi]_{115} = -45.1 \pm 0.4^{\circ}$, $[\pi]_{115} = +11.5 \pm 0.3^{\circ}$, $[\pi]_{145} \pm 11.8 \pm 0.5^{\circ}$, $(\pi, 0.49^{\circ})$ mwater, 25 C) (ht, (32) [π]₁₀₅ + 11.0° (c, 5.5) 7 in water, 23 C)

2. Arginine

Decarboxylation of arginine catalysed by v-arginine decarboxylase (E.C. 4.1.1.19) from E. coli

(i) $(-) \cdot (1 \cdot {}^{2}H)$ A given time subtate (10) by decarboxylation of

v-arginine (16) in deuterium oxide solution

t-Argining monohydrochloride (Eastman) (90 mg) was twice dissolved in deuterium oxide and evaporated to dryness to effect replacement of exchangeable protons with deuterium. The amino acid was then dissolved in perdeuterioacetate--H O buffer (ca. p-H 5.2, 20 mL) to yield a 0.02 M solution. The buffer had been prepared from perdeuterioacetic acid (0.2 M in ${}^{4}\mathrm{H_{2}O}$) and anhydrous sodium carbonate (8.36 mg/mL) (see under Decarboxylation of ornithine). (-Arginine decarboxylate (Sigma: 0.7 U/mg)* (43 mg) was added and the resulting solution incubated at 36°C in a flask-equipped with a calcium sulfate drving tube. After 305-30h the incubation mixture was acidited (ca. pH 2) with concentrated hydrochloric acid, treated with Norite, heated on a steam bath for 30 min, and filtered through Celite. The filtrate was evaporated, the residue dried in racial over sodium hydroxide and then dissolved in 5% sodium hydroxide solution (1+2 mL). The alkaline solution was saturated with sodium chloride and extracted with 1-butanol (4 + 3 mL). Evaporation of the butanol gave an oil which was redissolved in aqueous sulfurie acid (0.1 M, ca. 1 mL). After addition of methanol and cooling at 0 C overnight the crystalline sulfate of (-)-(1-2H)agmatine separated and was recrystallized from water-methanol. Yield22 mg; mp 238-240°C (lit, (nondeuteriated) (33) mp 236-239°C); ¹H nmr (²H₂O, relative to ¹H²HO at 4.63 ppm), 6: 1.66(4H, m, H-2.3), 2.95(ca. III, t(br), J ~ 6.8 Hz, H-11, 3.18 (2H, m, H-4); ORD, $[\alpha]_{102} = 1.37 \pm 0.08^{\circ}, [\alpha]_{111}$ $-1.17 \pm 0.07^{\circ}$, $[\alpha]_{116} - 1.01 \pm 0.06^{\circ}$, $[\alpha]_{166} - 0.76 \pm 0.04^{\circ}$, $[\alpha]_{406}$ $-0.57 \pm 0.03^{\circ}, [\alpha]_{4.16} - 0.50 \pm 0.03^{\circ}, [\alpha]_{4.46} - 0.19 \pm 0.02^{\circ}, [\alpha]_{4.46}$ -0.16 ± 0.03° (c, 6.52°? in water, 25°C, uncorrected for incomplete deuteration); ²H nmr (H₂O, 180 m M, 100 transients) showed one signal at 3.0 ppm apart from that due to natural abundance ²H in water (4.7 ppm).

 (ii) (+)-(1-²H)Agmatine sulfate by decarboxylation of x.-(2-²H)arginine

A solution of t-(2-²H)arginine monohydrochloride (ca. 92⁶7 (H) (0.02 M) and t-arginine decarboxylase (0.7 U/mg)² (75 mg) in acetate buffer (0.2 M, pH 5.2, 35 mL) was incubated at 36 C for 40 h. The reaction mixture was worked up, as described under (i), to give (+)-(1-²H)agmatine sulfate (100 mg). The mp and nmr spectra ('H and 'H) were similar to those obtained for (+)-(1-²H)agmatine sulfate. The sample showed a plane positive ORD curve; $[\alpha]_{207} + 1.42 \pm 0.11^{\circ}, [\alpha]_{102} + 1.21 \pm 0.08^{\circ}, [\alpha]_{113} + 1.07 \pm 0.07^{\circ}, [\alpha]_{114} + 0.84 \pm 0.00^{\circ}, [\alpha]_{116} + 0.70 \pm 0.04^{\circ}, [\alpha]_{143} + 0.53 \pm 0.03^{\circ}, [\alpha]_{143} + 0.42 \pm 0.03^{\circ}, [\alpha]_{166} + 0.27 \pm 0.03^{\circ}, [\alpha]_{143} + 0.23 \pm 0.04^{\circ}$ (c. 4.18% in water, 25°C, uncorrected for incomplete deuteration).

C. Conversion of agmatine into putrescine

1. Hydrolysis of agmatine to putrescine

A solution of agmatine sulfate (55 mg) in ethanol-water

²1 U will release 1.0 μ mol carbon dioxide from t -arginine per min at pH 5.2 at 37°C.

2818

۰¢,

 ^{*1} U will release 1.0 µmol carbon dioxide from L-ornithine per min at pH 5.0 at 37°C.

RICHARDS AND SPENSER

(70:30, v/v, 3 mL) containing sodium hydroxide (10%, w/v) was heated at reflux under a nitrocen atmosphere. When the reaction was complete (ca. 20h) as revealed by paper chromatography (Whatman 3 MM, 1-butanol - acetic acid - pyridine - water 4.1.1(2) visualized with ninhydrin (0.37) wiv, in 4-butanol = acetic acid, 97(3, v/v), aematine, R, 0.36, putrescine, R, 0.27), the reaction mixture was coaled to room temperature and acidified to pH 4 with 1077 hydrochloric acid. After evaporation of the solvent the residue was dissolved in sodium hydroxide solution (1072 w/v, 3 mL), the solution saturated with sodium chloride and extracted with 1-butanot (3+3 mL). The butanof extract was acidified with HCI-butanol and concentrated in racuo (~4 mL). Putrescine dihydrochloride which separated was collected and recrystallized from aqueous ethanol. Yield, 33 mg, 87%. The 4H nmr spectrum was identical with that of authentic material.

(i) Conversion of (-)-(1-2H)agmatine sulfate (40) into - (+(1-2H)puttescine dihydrochloride (15)

.

Hydrolysis of (-)-(1-/H)agmatine sulfate (65 mg), as described for unlabelled material, gave (-)-(1-2H)putrescine dihydrochloride (41 mg) which was twice recrystallized from aqueous ethanol: CI ms, 90 (M + H, 37), 74 (5), 73 (M - NH₃, 1000, 72 (2): 99.4 ± 0.477 'H, determined by CI ms; ORD, 1x1ug $-1.07 \pm 0.09^{\circ}, [x]_{11} = 0.98 \pm 0.08^{\circ}, [x]_{114} = 0.84 \pm 0.08^{\circ}, [x]_{108}$ $-0.67 \pm 0.05^{\circ}, [\alpha]_{405} - 0.52 \pm 0.05^{\circ}, [\alpha]_{416} - 0.43 \pm 0.06^{\circ}, [\alpha]_{546}$ $-0.21 \pm 0.06^{\circ}$ 4c, 1.84% in 0.1 N HCL 26°C, uncorrected for incomplete deuteration).

(ii) Conversion of (+)+1+2H)agmatine sulfate into v+v-el-²Hiputrescine dihydrochloride

Hydrolysis of (+)-(1-²H)agmatine sulfate (40 mg) gave (+)-/ (1-2H)putrescine dihydrochloride (22 mg) which was twice recrystallized from water: CI ms, 90 (M + H, 5%), 74 (5), 73 (M - NH₄, 100) 72 (10); 91.7 \pm 0.87 ³H, determined by CI ms: ORD, $[\alpha]_{111} \pm 0.85 \pm 0.09^{\circ}, [\alpha]_{144} \pm 0.75 \pm 0.09^{\circ}, [\alpha]_{165} \pm 0.56 \pm$ $0.06^{\circ}, [\alpha]_{40x} + 0.44 \pm 0.05^{\circ}, [\alpha]_{a1x} + 0.41 \pm 0.06^{\circ}, [\alpha]_{can} + 0.24 \pm$ 0.08° (c. 1.617? in 0.1 N HCl. 26°C, uncorrected for incomplete deuteration),

Paper chromatography (see above) of the samples of (\sim) - and (+)-(1-2H)putrescine dihydrochloride obtained from Experiments (i) and (ii), above, showed single minhydrin positive and Sakaguchi (34) negative spots at R_i 0.27.4The ¹H nmr spectra ('H,O) of both samples were identical with those of (1-'H)putrescine dihydrochloride obtained from ornithine.

D. Conversion of agmatine into phthalimidobutyric acid

1. 4-Phthalimidobutylguanidine sulfate (cf. 11)

To a stirred solution containing agmatine ulfate (228 mg, 1 mmol) and sodium bicarbonate (168 mg, 2 mmol) in water (3 mL) was added N-carbethoxyphthalimide (Aldrich) (232 mg, 1 mmol) in small portions over 15 min at room temperature. After stirring for 1h, the reaction mixture was cooled to 0°C and the product, which precipitated, was recrystallized from methanol. Yield 225 mg; mp 213-214°C; ¹H nmr (C²H₃CO₂²H), δ: 1.70 (4H, m (br), H-2,3), 3.30 (2H, t (br), H-1), 3.84 (2H, t (br), H-4), 7.85 (4H, m, ArH), Anal. caled. for (C₁₁H₁-N₄O₂)₂SO₄2H₂O: C 47.69, H 5.85, N 17.12, SO₄ 14.67; found: C 47.65, H 5.98, N 17.09, SO₄ 14,49%

2. 4-Phthalimidobutyric acid (cf. 12)

A solution of potassium permanganate (0.4 M) in 1 N sulfuric acid was added in small portions (ca. 0.1 mL) to a stirred suspension of 4-phthalimidobutylguanidine (27 mg) in LN sulfurie acid (1 mL) at room temperature. Additions of the oxidant were made until the colour of permanganate in the reaction mixture was no longer discharged (ca. 0.5 mL over 1 h). Stirring was continued for 1 h and the reaction mixture was then decolourized with sodium bisulfite. After cooling at 0°C, the

ç

product, which precipitated, was extracted into chloroform (3 mL). The combined extracts were dried over anhydroiis sodium sulfate and filtered. Evaporation gave 4-phthalimidobutyric acid (13 mg) as a white solid which was recrystallized three times from water; mp 115-116 C (lit, (35) mp 115-118 C), Hinmr (FHCCL), o. 2-01 (2H, gum., 2-6.8 Hz, H-3), 2.32 (2H, t, J 6.8 Hz, H-2), 3 76 (2H, 1, J 6.8 Hz, H-4), 7.75 (4H, m, ArH), 10.2 (1H, s (br), CO₂H); ms, mie: 233 (M, 477), 215 (M - H₂O₂ 19), 187 (15), 174 (70), 173 (42), 160 (100), 104 (19), 76 (24). The inp and spectral properties were the same as those of an authentic sample prepared from y-aminobutyric acid and Ncarbethoxyphthalimide (4).

3. Concersion of c1-4Hagmatine into 4-phthalimido(4-4H)butyric and

(i) N-Carbethoxyphthalimide (82 mg) was added to a stirred solution of (-)-(1-(H)agmatine sulfate (10) (70 mg) in 0.5 M sodium bicarbonate (1.5 mL). The resulting mixture was stirred at room temperature for 20 min and then cooled to 0°C. After standing at 0°C for 30 min, the product was collected by hltration, washed with cold water (1 mL), cold ethanol (1 mL), and chloroform (1 mL), and dried in vacuo over sodium hydroxide, 4-Phthalimido(4-²H)butylguanidine (11) (66 mg), so obtained, was recrystallized from methanol - acetic acid (20:1); mp 210-212°C. The 'H nmr spectrum (C2H₃CO₂2H) of the deuteriated sample was similar to that of unlabelled material (see above) except that the signal at 3.84 ppm (H-4) corresponded to ca. 1.05 hydrogen atoms only.

Permanganate oxidation of a sample of the (H)guanidine derivative (49 mg) in aqueous sulfuric acid (1 N), as described for unlabelled material, gave (-)-4-phthalimido(4-7H)butyrie, acid (12) (23 mg) which was recrystallized three times from water: mp 112-114°C; 1H nmr (CIHCl), 5: 2.05 (2H, q, J 6.8 Hz), 2.39 (2H, t. J 6.8 Hz), 3.75 (ca. 1H, t. J 6.8 Hz), 7.80 (4H, m), 10.2 (1H, s (br)); ²H nmr (CHCl₁, 30 mM, 2172 transients) showed a single signal at 3.74 ppm apart from that due to natural abundance ²H in CHCl₄ (7.27 ppm); ms. mie: 234 (M. 377), 216 (M = H.O. 7), 215 (M = H²HO, 9), 188 (8), 187 (6), 175 (41), 174 (30), 173 (17), 161 (100), 160 (5), 104 (16), 76 (22); 97.2 \pm 0.2% $^{2}H_{t}$, determined by ms; ORD, $[\alpha]_{164} = 5.39 \pm 0.14^{\circ}$, $[\alpha]_{404} = 3.79$ $\pm 0.22^\circ, [\alpha]_{416} = 3.07 \pm 0.18^\circ, [\alpha]_{446} = 1.64 \pm 0.13^\circ, [\alpha]_{416} = 1.37$ $\pm 0.14^\circ, [\alpha]_{486} = 1.08 \pm 0.22^\circ$ (c, 0.91% in methanol, 25°C, uncorrected for incomplete deuteration) (ht. (4) $[x]_{cup} = 1.69^{\circ}$).

A sample of (-)-4-phthalimido(4-2H)butyric acid (12) (5 mg) was dissolved in ether (1 ml), a solution of diazomethane in ether (1 mL) (36) was added, and the mixture was allowed to stand overnight. The product, (--)-methyl 4-phthalimido(4-7H)butyrate (13) was recrystallized from methanol, mp 87-88°C (lit. (nondeutenated) (35) mp 89-90°C); ms, m/e: 248 (M, 9%), 217 (M = OCH., 18), 216 (8), 189 (10), 188 (10), 175 (100), 174 (20), 161 (95), 130 (15), 104 (17), 77 (15), 76 (12); 98.2 \pm 0.3% $^2{\rm H}_{1*}$ determined by ms; ORD, $[\alpha]_{165} = 5.97 \pm 0.60^{\circ}$, $[\alpha]_{405} = 4.84 \pm$ $0.40^{\circ}, [\alpha]_{416} = 4.06 \pm 0.30^{\circ}, [\alpha]_{446} = 2.21 \pm 0.30^{\circ}, [\alpha]_{477} = 2.02 \pm$ 0.30° (c, 0.34% in methanol, 25°C, uncorrected for incomplete deuteration)

An unlabelled sample of methyl 4-phthalimidobutyrate was prepared analogously; mp 87-88°C (from methanol); ms, m/e; 247 (M, 1309), 216 (M - OCH₃, 19), 215 (17), 188 (9), 187 (11), 174 (100), 173 (23), 160 (79), 130 (11), 104 (14), 77 (12), 76 (6),

An authentic sample of (-)-methyl 4-phthalimido(4-2H)hutyrate (13) was supplied by Dr. M. H. O'Leary, University of Wisconsin. This sample had been prepared (4) by methylation of (-)-4-phthalimido(4-2H)butyric acid which had been obtained by decarboxylation in ²H₂O of µ-glutamic acid, catalyzed by t-glutamic decarboxylase; mp 88-89°C (from methanol); ms, mle: 248 (M, 13%), 217 (M - OCH₁, 21), 216 (10), 189 (10), 188 (8), 175 (100), 174 (15), 161 (80), 130 (15), 104 (15), 77 (10), 76 (12): 92.5 ± 0.4% ²H₁, 4.7 ± 0.4% ²H₂, determined by ms; ORD,

CAN J CHEM VOL 60, 1982.

 $[x]_{105} = 4.45 \pm 0.30^{\circ}, [y]_{105} = 0.35 \pm 0.20^{\circ}, [x]_{115} = 2.76 \pm 0.20^{\circ}, [y]_{145} = 1.48 \pm 0.30^{\circ}, [y]_{145} = 1.43 \pm 0.30^{\circ}, 0.39^{\circ}$ in methanol. 25°C, uncorrected for incomplete deuteration).

(ii) A sample of 4-phthalamdo(4-Hibutylguanidae (80 me) obtained by the method described above from (+)(1-H)-agmatine sulfate (72 mg) showed mp 213–214 C (from methano) – acetic acid (20,1)) and a 'H (jmr spectrum in which the signal at 3.84 ppm corresponded to ca. 1.15 hydrogen atoms, Oxidation of part of this sample (60 mg), as described above, gave (+)-4-phthalimido(4-2H)butyric acid (28 mg), mp 112–114 C (3 times from water). The 'H (2HCT) and 2'H (CHCT) and 2'H (CHCT), 30 mM, 1584 transients) nmr spectra of this material were similar to those obtained for the ($-\frac{5}{2}$ (4-2H)phthalimide; ms, *mlc*: 234 (M, 377), 216 (M = H;0, 8), 215 (M = H²HO), 100 (10), 108 (9), 187 (7), 175 (44), 174 (39), 173 (19), 161 (100), 160 (101), 104 (17), 76 (25); 84 + 3.26 \pm 0.29^{\circ}, [2]_{4.56} \pm 2.62 \pm 0.17^{\circ}, [2]_{5.66} + 1.32 \pm 0.11^{\circ}, [2]_{5.66} + 1.20 \pm 0.17^{\circ}, [2]_{5.66} + 0.96 \pm 0.22^{\circ}(7, 0.97)^{\circ} in methanol, 25 C, uncorrected for incomplete deuteration).

E. Instrumental methods

Measurement of optical activity

Optical rotation was measured by means of a Perkin-Elmer 241 MC polarimeter equipped with a mercury emission lamp, using a Edm polarimeter tube. At least 10 readings were taken at each mercury emission line. Mean values and 95% confidence limits are reported.

 H_{II} (*H now spectra* at 90 MHz were recorded on a Varian EM-390 spectrometer at ambient temperature. Chemical shifts are reported as ppin downfield from DSS or TMS as internal standards, respectively, for samples in ²H₂O or ²HCCl₄ solution.

The ²H nmr spectra were recorded on a Bruker WH 90 pulsed Fourier transform spectrometer operating at 13.82 MHz at ambient temperature, with broad band proton noise decoupling. Spectra were obtained of samples in aqueous or chlorotorm solution in 10 mm (od) sample tubes, using ²H₂O as external lock. The signal due to natural abundance ²H in ²HOH or ²H₂CC₁ served as internal standard. Chemical shifts are downtield from perdeuteriotetramethylsilane.

Mass spectra were determined on a Micromass 7070F double focussing mass spectrometer, operating with electron impact (EI) or chemical ionization (CI), by direct injection of the samples. Methane at 5×10^{-5} mm Forr was the reagent gas for CI. The isotopic content in deuterium enriched samples was calculated as described by Biemann (37).

Acknowledgements

This investigation was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

We are indebted to Professor Marion H. O'Leary, Department of Chemistry, University of Wisconsin, Madison, WI, for supplying a reference sample of (-)-methyl *R*-4-phthalimido(4-²H)butyrate.

One of us (1.D.S.) thanks the Institut für Organische Chemie der Universität Karlsruhe for a visiting professorship, Professor J. Rétey for the hospitality of his laboratory, and the Deutscher Akademischer Austauschdienst for a stipend.

- S. MANDELES, R. KOPPELMAN, and M. E. HANKE, J. Biol. Chem. 209, 327 (1954).
- 2. B. BELLIAU and J. BURBA, J. Am. Chem. Suc. 82, 5751 (1960).

- E. LEISTNER and L. D. SPENSER, J. Chem. Soc. Chem. Commun. 378 (1975).
- H. YANINDA and M. H. O'LIARY, Biochemistry, 17, 669 (1978)
- A. R. BALLERSBY, E.J. T. CHRYSLAL, and J. STAUNTON, J. Chem. Soc. Perkin Trans. 1, 31 (1980).
- H. J. GERDES and L. LEISTNER, Phytochemistry, 18, 771 (1970).
- A. R. BALLERSBY, R. MURPHY, and J. STAUNTON, J. Chem. Soc. Perkin Trans. 1, 449 (1982).
- M. BOUCLIER, M. J. JUNG, and B. LIPPERT, Eur. J. Biochem. 98, 363 (1979).
- E. SANTANIELLO, M. G. KHENLL, A. MANZOCCHI, and E. BOSISIO, J. Chem. Soc. Perkin Trans. I, 1677 (1979).
- A. R. BATTERSBY, J. STAUNTON, and J. TIPPETT, J. Chem. Soc. Perkin Trans. 1, 455 (1982).
- A. R. BATTERSBY, M. NICOLETTI, J. STAUNION, and R. VILGGAAR, J. Chem. Soc. Perkin Trans. 1, 43 (1980).
- E. SANTANIETTO, A. MANZOCCHI, and P. A. BIONDE J. Chem. Soc. Perkin Trans. I. 307 (1981).
- D. R. HOUCK and H. G. FLOSS, J. Nat. Prod. 44, 760 (1981).
- 14. Y. ASADA, K. TANIZAWA, S. SAWADA, I. SUZUKI, H. MISONO, and K. SODA, Biochemistry, 20, 6881 (1981).
- MISOND, and K. SODA. Biochemashy, 20, mar. Res. 13, 455
 [5] J. C. VEDERSS and H. G. FLOSS, Acc. Chem. Res. 13, 455
 [6] COMPARIAN COMPARIANCE AND COMPAR
- E. LEISINER and I. D. SPENSER, J. Am. Chem. Soc. 95, 4715 (1973).
- [7] J. C. RICHARDS and I. D. SPENSER, J. Am. Chem. Soc. 100, 7402 (1978).
- M. FILLDS, D. E. WALZ, and S. ROTHCHILD, J. Am. Chem. Soc. 73, 1000 (1951).
- S. M. BIRNBAUM and J. P. GREENSTEIN, Arch. Biochem. Biophys. 39, 108 (1952).
- 20. W. R. Boos and W. Ronson, Biochem, J. 29, 2684 (1935).
- 21. D. E. RIVARD, Biochem, Prep. 3, 97 (1953).
- 22. P. B. HAMILTON and R. A. ANDERSON, Biochem. Prep. 3, 96 (1953).
- C.-Y. YUAN, C.-T. LIN, and J.-H. LIU, Hua Hsüch Hsüch Pao, 25, 183 (1959); Chem. Abstr. 54, 4405c (1960).
- A. I. VOGEL, A text-book of practical organic chemistry. 3rd ed. Longmans, Green & Co., London, 1956, p. 167.
- V. I. MAIMIND, O. M. ENISHERLOVA, K. M. ERMOLAUN, R. G. VDOVINA, G. A. GALLGOV, and M. M. SHEMIAKIN, Zh. Obshch. Khim. 28, 2223 (1958); J. Gen. Chem. U.S.S.R. (Engl. Transl.) 28, 2260 (1958).
- S. M. BIRNBAUM, M. WINITZ, and J. P. GREENSTEIN-Arch. Biochem. Biophys. 60, 496 (1956).
- P. J. FODOR, V. E. PRICE, and J. P. GREENSTEIN, J. Biol. Chem. 178, 503 (1949).
- A. A. PLENTL and W. T. KELLY. Anal. Biochem. 17, 397 (1966).
- A. F. THOMAS. Deuterium labelling in organic chemistry. Appleton-Century-Crofts, New York, 1971, p. 11.
- J. B. JONES and J. F. BECK. In Techniques of chemistry. Vol. 10, pt. 1, Edited by J. B. Jones, C. J. Sih, and D. Perlman, John Wiley, New York, 1976, p. 206.
- 31. E. BRAND and M. SANDBERG, Org. Synth, Coll. Vol. 2, 49 (1943).
- 32. A. HUNTER, Biochem, J. 33, 27 (1939).
- 33. T. A. SMITH and F. J. RICHARDS. Biochem. J. 84, 292 (1962).
- 34. I. SMITH and H. G. HORSEFALL, In Chromatographic and electrophoretic techniques, Vol. 1, 3rd ed. Edited by 1, Smith, William Heinemann, London, 1969, p. 290.
- 35. S. GABRIEL and J. COLMAN. Chem. Ber. 41, 513 (1908).
- A. I. VOGEL: A text-book of practical organic chemistry. 3rd ed. Longmans, Green & Co. London, 1956, p. 971.
- K. BIEMANN. Mass spectrometry: organic chemical applications. McGraw Hill, New York, 1962, p. 204.

€.-

J.C. Richards and I.D. Spenser, ²<u>H NMR Spectroscopy as a</u> <u>Probe of the Stereochemistry of Enzymic Reactions at</u> <u>Prochiral Centres: Diamine Oxidase</u>, Tetrahedron (Symposium in Print, A.I. Scott, <u>Ed</u>.), Vol. 39, In Press.