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¢ ABSTRACT 3
The postnatal devglobment of short-term potentiatioﬁ (STP) and
long-term potentiation (LT?) were examined in the neocortex and dentate
gyrus of the rat. It was.fo&hd that STP and LTP develop during narrowly
defirfed time periods in both systems. This functional sy;aptic

development did not appear tcé®correspond well with known structurf

Fa d
development in either system (e.g. synaptogenesis or dendritic spine \\h)

——

formation). -
4 *

Stimulatjon of callosal fibers produ;ed a biphasic, positive-
negative, t;anscallosal response (TCR)nrecorded near the surface of the.
anterior neacortex in all a;:s'tested. The TCR showed a decrease in
threshold, latency-and halfwiath, and an increase in peak aéplitude with
age. STP and LTP of the TCR could not be‘reliablf detected until after —
PN16 and PN18, respective{y. The magnitude of STP and LTP was initfﬁfiy
small but approached adult levels rapidlyrafter their initial
appearance, : - )

Stiqula:ion of perforant path fibers produced a pésitive
excitatory post-s}naptic potential (EPSP} with a super-imposed negative
population spike recorded in the dentate hilus. 1The EPSP showe{ a
decrease in threshold, latency and halfwidth, and an increase in peak
amplitude with age. STP and LTP (of the EPSP anélﬁr population spike)
could not be reliably detected until the second postnatal week, with

STP appearing prior to LTP. Again, STP and LTP approached adult levels

rapidly after their initial appearance. These results could not be

(111) 4
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explained by differential effects of anesthesia on immature animals, nor

by higher STP/LTP thresholds in immature animals.
The maturation of evoked response morphology (e.g. threshold

and latency) did not correspond clesely with STP/LTP development in

either the hippocampal or neocortical system. Also, the correspondence
-

between STP/LTP development and stbuctural developments such as

+

synaptogenasis, spiné formation, or myelinogehesis (ag reported in the
literature) was not particularly strong in either-gystem.

These reSults_suggesf that the postnatal development of STP and
LTP, and thus the mechagiSm of potentiation effects in ﬁature animals,

. . ' - - 'ﬁ
may not dependhso much on the maturation of specific structures (e.g.

dendritic spinagf as on the maturation of neurochemical processes (e.g. .

Il

‘receptor or protease development). Possible PAP-mechanisms were

discussed. :

.
R
*
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CHAPTER I. INTRODUCTION
oY
It is commonly believed that functional changes at the synapse
undeglie memory formation {e.g., Kandel & Spencer, 1968; Hebb, 1949).
Many specific hypotheses have been proposed that account for learning
and memory phenomena by iﬁcreases or decreases‘in synaptic efficacy
(Fillenz, 1972; Gardner-Medwin, 1969; Gilbert, 1975; Goddard, 1980;
Griffith, 1966; Hebb, 1949; Rosenzweig, Mollgaard, Diamond & Bénnett,
1972; Schuz, 1978; Willshaw,.Buneman & Longuet-Higgins, 1969). Any

model of the synaptic changes underlying learning and memory processes

must account for rapidly occurring, yet long-lasting, changes in
s}naétic function following physiologically plausible events.

One model that satisfies these criteéia is post-activation
potentiation (PAP). PAP is an increase in synaptic efficacy following
brief periods of repeated, patterned §ynapti; activation. PAP has been
reported to occur at synapses in the peripﬁeral‘nervous system (PNS)
(Hughes, 1958; Magleby g Zengel, 1976a; Magleby & Zengel, 1976b;
Zucker, 1974) as well as the central nervous system (CNS) (Bighop, Burke

i’ & Hayhow, 1959; Eccles & McIntyre, 1?53; Lomo, 1971; Bliss & Lomo, 1973,
Douglas & Goddard,_1975; Alger &:Tayler, 1976£'Andersen, Sundberg, Sveen
& Wigstrom, 1977; Gerren & ‘Weinberger, 1983; Komatsu, Toyama, Maeda &
Sakaguchi, 198l; Lee, 1982; McNaughton, Douglas & Goddard, 1?78;
Misgeld, Sarvey & zlee, 1979; Racine & Milgram, 1983;lRacine, Milgram &
Hafgper, 1583; Teylér, Alger, Bergman & Livingston; 1977; wWilson &

-~ [
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Racine, 1981; Wilson & Racine, 1983). Ar some central synapses, PAP can
be induced by brief periods of high frequency stimulation (8 pulses at

400 Hz) and can last for days or weeks (Bliss & Gardner—Medwin, 1973;

‘Barues, 1979; Douglﬁs & Goddard, 1975; Racine, et al., 1983}, Although

™
PAP has been well described in several forebrain pathways, the mechanism

through which synaptic activation leads to an increase in synaptic
éfficacy in the CNS, is not yer known (Bliss, 1979; Swanson, Teyler ;
Thompson, 1982).

The present thesis describes the postnatal development of éAP
in the CNS of the rat. A correlation‘of PAP development with specific’
neural structural or neurochemical developments may provide soﬁe insight
into the mechanisms of PAP in theXmature animal,- During the ontogeny of
any given ﬁeural system, however, many events occur simultaneously.
éingliﬁg out one correlate of PAP development in a single system, may be

nly suggestive at best, and-misleading at worst. One way to.streng:hen
~ : ) -

this developmental approach would be to examine two neural systems that

develop at different times or rates. Thus, if a certain developmental

Ed

correlate of PAP in one system is indeed important to PAP ontogeny, that
correlation should exist in both systems examined. This was the
approach used here.

The two systemé chosen for this study were the perforant path

put to the dentate gyrus and the intrinsic callosal pathway in the

neocortex. Tﬁése systems were chqsen for several reasons. Most
research done on PAP in ;hé m;Fu;e CNS, in vivo, has been done in the
dentate gyrus (Bliss & Lomo;7I973;:Bliss &'Gardngr—Medwin, 1973; Douglas

& Goddard, 1975; Mcﬂaughton,,et‘al.,wl978; Douglas, 1977; Barnes, 1979;



, -
Robinson & Racine, 1982; Bliss, Goddard & Riives, 1983% Wilson, 1981;

Wilson, Levy &.Steward, 1981). The dentate gyrus is a part of the
hipbocampal formarion, which has been stréngly linked to memory
rp;ocesses (Douglas, 1967; 0'Keefe & Conway, 1980; 0'Keefe & Nadel,-1978;
.01:.';:1,' Becker & Handelmann, 1980; Scoville & Milner, 1957). In
addition, the hippocampus has a unique cytoarchitecture (to be discussed
below) that lends itself well to electrophysiological analysis. The
nescortex, while not as electfophysiologically "simple" as the
hippocampal formation, has long been considered impgrtant in memory
(e.g.; Pavliov, 1927; Sechenov, 1863), and has been shown to be capable
of severalhf;fms of structural and functional plasticity (Lippold, 1970y
Hubel &‘Wiesell 1962; Hubel & Wiesel, 1970; Ro;hbiat & Schwartz, 1979;
Valverde, 1967; Yinon & Auerbach, 1973; Clare, Landau & Bishop, 196i).
Although a detailed study of neocortical PAP ﬁas not. yet been done,
there is evidence that neocortical synapses can demonstrate PAP {(Clare,
et al., 1961, Komatsu, et al., 198]; Lee, 1?82; Raciﬁe, Tuff & Zaide,
1975). ' . \ ] |
Both the neocortex and hippocampus in\:ﬁé§(3t underg; major
postnatal maturational cha;ges in anatomy (Aghajénian & Bloom, 19§7;
Altman & bgs, 1965; Cotman, Taylor & Lynch, 1973; Crain, Cotman, Taylor
& Lynch, 1973; Duffy & Teyler, 1978; Johnson & Armstrong-James, 1970;
Loy, Lyﬁch & Cotman, 1977; Schlessinger, Cowan & Gottlieb, 1975;
Schwartzkroin, Kunkel & Mathers, 1982; Seggie & Berry,‘1972; Wise,
Fleshman & Jones, 1979; Wise &“Jgnes, 1978) neurochemistry, (Baﬁdry,
Afs?, Oliver &‘Lynch,719$1;’00yle & Enna, 1976; Coyle & Yamamura, 1976;‘

Matthews, Nadler, Lynch & Cotman, 1974; Sanderson & Murphy, 19823

-

8
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Nadler, Matthéws, Cotman & Lynch, 1974) and physioldgy (Armstrong—Ja;es
& Williams, 1963; Deza & Eidelberg, 1967; Grafsgein, 1963; Purpura,
Prelevic &.Santini, 1968; Purpura, Shofer & Scarff, 1965; Shofer &
Purpura, 1972; Schwartzkroin, 1982; Schwartzkroin & Altschuler, 1977;
Seggie & Berry, 1972}. These structurés are still very immature at
Abirth ip the rat-which allows monftoring‘of maturational events
postn;tally.

Finally, in many‘aspects, hippocampal maturation precedes
neocortical maturation. The fact that they mature at different times
will allow some separation of meaningful, from coincidental, : -

developmental correlates of PAP, as discussed above. The details of the

postnatal development of these structures, will be given below.

-
>

I. A.  PPST-ACTIVATION POTENTiATION

Post-activation potentiation is an increase in synaptic efficacy’
following repetitive synaptic activationm, aﬁq has beeﬁ described in
several mature forebrain pathways (Alger & Teyler, 1976; Bliss & e
Gardner-Medwin, 1973; Bliss & Lomo,'1973; Douglas & Goddard, 1975; Lee,
1982; Racine & Milgram,l§83; Racine, et al., 1983; Wilson .& Racine,
1981). In many fqrebrain pathways,‘PAP can be describéd by at ‘least
three qajor components; facilitation, lasting less thanm 1 second
(Creager, Dunwiddie & Lynch, 1980; Lomo, 1971b; Récine‘& Milgram, 1983),
short-term potentiation (STP), lasting several minutes (McRaughton,
1980; Rgci;e & Milgram, 1985), and iong-term potentiation (LTP)}, lasting
up to hours, days or weeks (Bligs\& Lomo, 1973; Qoqglas & Goddard, 1975;

Racine, et al., 1983).
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Short—term post—activation potentiation: The transient forms of

PAP, facilitation and STP, have been described in greatest detail in the
peripheral nervous system, in particular at the neuromuscular junction
{n.m.j.) (for a review see Hughes, 1958). The study of PAP at the
n.mﬂj. alloweé e actiﬁity of a single synapse to be examined and
manipufﬁted. Althodgh the ionic mechanisms of short-term PAP have not
been examined in the CNS as thoroughly as at the n.m.j., PAP bhenomena
are similar at both sites and similar mechanisms are.thought to be
involved,

The shortest duration PAP phenomenon is facilitatiom, an
increase in test response amplitude following a single conditioning
pulse.. The amplitude of the test response can be increased 100-200%
above cbndigioning response amplitude at the n.m.j. (Mallart & Martin,
1967; Mallart & Martin, 1968; Zucker, 1974) and in the forebrgin
(Creager, ét al., 1980; Lomo, 1971b; Racine & Milgram, 1983; White,
Nadler & Cotman; 1979). The'decay of facilitation at the n.m.j. can be
described as the sum of two components, with time constants.of 35 msec
and 126 msec (Mallart & Martin, 1967). 1In pdthways examined in the rat

forebrain, facilitation decays exponentially, with a time constant of
.80”90 msec (Creager, et al., 1980; Racine & Milgram, 1983). At the
n.m.j., the mechanism o} facilitation appears to be presfnaptic. The
conditioning impulse causes a transient increase in pre-sfnaptic ca™t
cbncentration, which in turn causes an increased number of transmitter

quanta to be released in response to subsequent test pulses (Del Castilo

& Katz, 1954; Mallart & Martin, 1967; Zucker, 1974),



STP {(also known as post-tezanic potentiation, PTP) involves an
increase in test response amplitude following high frequency synaptic
activation. At the n.m.j., an increase in the frequency of spoataneous

-
miniature end-plate potentials (mepp's) is also seen following the

[y

application of conditionming trains (Lev-Tov & Rahamimoff, 1980; Liley,

< -
1956; Weinreich, 1971). The magnitude and duration of STP at the n.m.j.
is dependent on the frequency and duration of the conditioﬁiﬁg t?ain
(Lev-Tov & Rahamimoff, 1980; Liley, ,1956; Magleby & Zengel, 1975;
Magleby & Zengel, 1976a; Zengel & Magleby, 1982; Rosenthal, 1969;
Weinreich, 1971). Train ingensity also affects potentiation, at least
in forebrain pathways (MqNaughton, 1980; McNaughton, 1982).

STP can be divided into two distinct components at the n.m.j.
(Magleby & Zengel, 19765), with an addifional, third component at many
forebrain synapses (Racine & Milgram, 1983). These components decay
exponent%glly and can be identified by their time constants of decay.
Augmentation, in which resﬁonse_émplitude can be increased as much as 8
times baseline, decays at the n.m.j. with a time constant of 7 seconds
(Magleby & Zengél, 1976a). A similar component has been described in
the forebrain (McNaughton, 198ﬁ; Racine & Milgram, 1983). The magnitude
of augmentation is dependent on the strength of the conditioning train,
althbugh its durgtioﬁ is constant (Magleby & iengel, 1976a).

. Potentiation, the second component of STP, has a time constant

ranging from 20 seconds to several minutes, dépendiﬁg on the strength of
the conditioning train (Lev-Tov & Rahamimoff, 1980; Liley, 1956; Magleby
& Zengel, 1976a). Again, a similar component has been identified in the

rat forebrain (McNaughton, 1980; Racine & Milgram, 1983). The magnitude



w

of potentiation is dependent on the strength of the conditioning train

.and on the synapse involved, but ranges up to several times baseline

(Magleby & Zengel, 1976a, McNaughton, 1980; Racine & Milgram, 1983).

) A third component of STP has recenﬁly been identified in the rat
limbic forebfain, and labeled potentiation 2 (Racine & Milgram, 1983).
Potentiation 2 is often seen in the absence of both augmentation and
potentiation (1), and decays exponentially with a time constant of

around 6.5 minutes (Racine & Milgram,. 1983).

""The differences in the time course and magnitude of

“augmentation, potentiation and potentilation 2, suggests different

-

underlying mechanisms. Augmentation and potentiation have been shown to

++ . . - .
be Ca  dependent, and involve an increase in transmitter output at the

n.m.j. (Del Castilo & Katz, 1954; Lev-Tov & Rahamimoff, 1980;

-

Rosenthal, 1969; Weinreich, 1971). 1It is hypothesized that high

-frequency stimulation of the n.m.j. results in an increase in pre-
- ++ -. - . - +
synaptic Ca -concentration, resulting in a subsequent increase in

spontaneous and evoked transmitter release (M v & Zengel, 1975;

-
—

Magfeby'& Zengel, 1976a). Although this propdsed mechanism for STP is

. . “ ‘ 'y . .
very 31m11ag to that stated above for facilitation (Mallart & Martin,

1967), facilitation and STP interact multiplicativelyra: the n.m:j.
'y : '

under conditions of low quantal output {(Magleby, 1973b). Furthermore,

the magnitude and duration of STP are greater than would be predicted

from a simple linear summation of facilitation following each pulse in a

‘conditioning train (Magleby; 1973a). Thesé results suggest that STP and
facilitation probably rely on somewhat different underlying mechanisms

(Landau, Smolinsky & tass, 1973).

& ’ A,



Long-term post-activation potentiation: LTP was initially

I

discovered in the hippocampal fofmatibn (8liss & Gardner=Medwin, 1973;
Bliss & Lomo, 19733, and has since been studied in greatest detail in
that structure (Alger & Teyler, 1976; Andersen, et al., 1977; Bliss,
1979; Bliss, 1982; Teyler, et al., 1977; Yamamoto & Chujo, 1978).
Subgequent mapping studiés indicate that several other forebrain
pathways can also support LTP (Racine, et al., 1983, also see Eccles &
McIntyre, 1953; Gerren & Weinberéer, 1983; Brown & McAfee, 1983, for
non-forebrain pathways that may support LTP). LTP can last several Hays
or weeks (Barmes, 1979; Bliss & Gardner-Medwin, 1973; Douglés &
Goddard, 1975; Ra;ine; et al., ;983). The ‘magnitude of LTP appears
dependent on the pathway éxagined,bwith the greatesﬁ'magnitude found in
pathways leading intoi out of, or intrinmsic to, the hippocampal -
formation (Racine, egfall, 1983). The decay of LTP appears best
described by the sum of two exponentials, with time constants of 1.5
hours and 5 days (Racine, et al., 1983).

Most evidence currently favors a post:synaptic mechanism for LTP
(Andersen, Sundberg, Sveen, Swann & Wigstrom, 198G; Baudry, Oliver,
Créager, Wieraszko & Lynch, 1980; Bliss, et al., 1983; Deadwyler,
Dunwfﬁhie & Lynch, 1978; Desmond & Levy, 1983; Douglas, éoddard &
Riives, 1982; Dunwiddie & Lynch, 1978; Dunwiddie, Madison &Lynch, 1978;
?ifkova, Anderson, Young & Van Harrfveld, 1982; Krug, Brodemann &‘Ott,
1982; Lee, Schottler, Oliver & Lynch, 1980; Levf & Steward, 1979; Lynch,
Dunwiddie & Gribkoff,31977; Lynch, Gribkoff & Deadwyler, 1976; Lynch,

4

Halpain & Baudry, 1982; MdNaughton; 1982; McNaughton, et al., 1978;

Misgeld, Sarvey & Klee, 1979; Van Harreveld & Fifkova, 1975; Wigstrom &



et

Gustafsson, 1983; Wigstrom, McNaughton & Barnes, 1982; Wilson, 1981;
Wilson, et al., 1981), although there is some evidence for pre-synap;:E\\\
action as well (Baimbridge & Miller, 1981; Bliss & Dolphin, 1982;
Dolphin, Errington & Bliss, 1982; Skrede & Maithe—Screnssen, 1981;
Turner, Baimbridge & Miller, 1982).

The evidence for a posgﬁsynaptic mechanism of LTP includes the
following: 1) the induction of LTP requires transmitter activation of
the post-synaptic cell (Dunwiddie, et al., 1978; Krug, et al., 1982).
Blockade of post-synaptic transmitter receptors during the conditioning
train blocks LTP; i.e., response amplitude returns to pre—trainr
amplitude when the blocker is removed. 2) The inductiom of LTP requires

s

coactivation of a.minimal number of afferents (Levy & Steward, 1979;

McNaughton, . et al., 1978; Wilson, et al., 1979),-suggesting a threshold

post-synaptic response must be produced to induce LTP. 3) LTP is e

o

) spgt}fic to the activated afferents in area CAl and the dentate gyrus of

the hippocampal formation (Andersen, et al,, 1980; McNaughton & Barnes,
1977), but may be associated with heterosynaptic depression in area CAl
(Lynch, et al., 1977) and heterosynaptic potentiation in area CA3

(Misgeld, et al., 1979; Yamamoto & Chujo, 1978; Yamamqto, Matsumoto &

Takagi, 1980). These heterosynaptic effects-clearly sug

a post-
synapﬁic change associated with LTP, since there is no eYiden e of pre-
synaptic connecfioné in the.hippocampus. 4) Heterosynaptic interactionms
occur at several sites when the inputs are conéurrent. Again this
suggests a post-synaptic locus of cﬁntroi for LTP (Bliss, et al., 1983;
Douglas, et al., 1982; Robinson & Racine, 1982). For example,
activation of a strong inhibitory input to dentate granule cells prior

-

J
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to conditioning of the excitatory input to the same Eells prevented, or

reduced, the amount of LTP observed at the excitatory synapses (Douglas,
et al., 1982). Furthermore, simultaneous activation of two independent

exc;t%tory pathways converging onto a single postsynaptic population can
produce greater LTP than i%entical activation of either pathwayi@lone

(McNaughton, et al., 1978). 5) Post-synaptic dendritic spines change in

shape following LTP-producing iyation of afferents impinging on the

o - ~ .
(Desmond & Levy, 1983; Lee, eg:al.: 1980; Van Harreveld & Fifkova,
1975). A change in dendritic spine morphoiogy could decrease spine
resistanc;,'increasing-the synaﬂtic current flow into the dendriéic
shaft (Bliss & Lomo, 1923). 6) Putative post-synaptic transmitter
receptors are increased in number following LTP~producing activation of
hippocampal pathways (Baudry, et al., 1980; Lynch, et al., 1982). 7)
Intracellular injection of EGTA, a C;++ chelator, into post-éynaptic
cells blocks LTP in those cells, while leaving STP and facilation
unaffected (Lynch, Kelso, Barrionuevo, Larson & Schottler, submitted),

The major evidence for a prg-synaptic mechanism of LTP is an

increase in resting and evoked transmitter release following high
lfrequency activation (Dolphin, ‘et al., 1982; Skrede & Malthe-Sorenssen,
1981). This inc;gé:ed transmitter output may be supported by an

. . . ++ . . :
increased synaptlc uptake and retention of Ca following high frequency

activation of those synapses (Baimbridge & Miller, 1981).

K
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I. B. FUNCTIONAL ANAT:OMY AN'D DEVELOPMENT OF THE NEOCORTEX

The mature rat neocortex is organized intoosix laminae oriented
tangentially to the cortical surfa;e. These laminae are differentiated
by the type and density of cells_present, and are identified by numbers
I to Vi, from the cortical surface to the underlying yhite matﬁer,
respecfively. The cytoarchitecture of the mature neﬁcortex is extremely
complex and varies across cortical areas. As the experiments detailed
in the following chapters involve the trans-cailosal response, the
following review will deal primarily with the anatomy :kd*development of
the corpus callosuﬁ.l For re#iews of the anatomy of the neocortex.in
general, see Colommier (1981), Jgﬁfﬁ\(l981a), and Szentagothai (1969).

Although the neocortex is éomposed df many &iverse cell types
(Szentagothai, 1969), pyramidal and stellate neu?ons are the primary
projection neurons (Colounnier, 1981; Schwartz & Coleman, 198]) and
receive most of the afferent Eerminatiéns (Colonnier, 1981; ﬁ\\
Szenthagothai,. 1969). The mature pyramidal cell consists of a cone
shaped soma, a large, upward-projecting, spiny apical dendrite, short

x
basal dendrites, and a downward-projecting myelinated axon. Large or
glant pyramidal cells tend to be located in the deeper layers, Layers V
and VI (Szentagothai, 1969). Smaller pyramidal cells are located in
Layers II and III. Cortical pyramidgl cells receive symmetrical
synapses primarily on dendritic spinés and asymmetric contacts on the
soma and dendritic shaft (Colonmier, 1968). Symmetric synapses are
*

thought to be excitatory and asyﬁmetric synapses, inhibitory (for a
review, see Colonuier, 1981)._ Cortical pyfamidal output appears to be

éxcitatory (Emson & Hunt, 1981; Wolff & Chronwall, 1982).
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Stellate neurons are of varied morphology. The majority of
stellates contain gamma-amino butyric acid (GABA) and form inhibitory
synapses-within the cortex (Emson & Hunt, 1981; Wolff & Chromwall,

1982). Spiny stellates are thought to be excitatory interneurons

(Colonnier, 1981), and may receive direct extrinsic afferent input "~

(White, 1981).

- N : .
The corpus callgsum projects from, and terminates within, ¥

discrete vertical strips up to 1 mm in width (Goldman & ﬁauta; 1977;
Gould & Kaas, 1981; Heimer, Ebner & Nauta, 1967; Jacobsen, 1970; Jomnes,
1981a). Between these‘strips, in areas of sparse callosal terminationms,
are areas of dense thalamic input (Vogt,.Rosene § Peters, 1981; Wise &

Jones, 1973). Callosal and thalamic inputs are further separated

intralaminarly, with thalamic terminations primariiy in Layers I and IV
(Herkenham, 1980; Wise & Jones, 19?8), and callosal terminations in
Layers. I-I1I and VI (Jaco;sen, 1970; Vogt, et al., 198l; Wise & Jones,
1978). Regional differences in the density of callosal terminations
also exiét, with, for e#ample, the primary visual corgex having no&ably
sparse callosal connections (Jacobsén, 1970; Cusick & Lund, 1982).
‘Callosal projeCtiéﬁ neurons are pyramidal cells located
primarily though not excluéively, in Layers III and V (Ivy & Killac%gy,
198&). These neurons project to the homologous site in the
countralateral hemisphere kJones, 198la). A single callosal fiber may
branch within the cortex and terminate in several Layers (Hartenstein &

Innocenti, 1981). Callosal fibers terminate on both pyraq@&al and non-

pyramidal dendrites (Globus & Scheibel, 1967; Vogt & Gorman, 1982),

L g

*»
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Although the neurotransmitter of é;;losal axons has not been
identified, some~evidence suggests it may be the amino acid giutamate.
Pyramidal cells o% Layers III and ¥V, which arerthe callosal projectiop
neurons (;;y & Xillackey, 1981), appear to use glutamate as their
transmitter (Emson &‘Hunt, 1981).

An éleqtrical pulse, applied to the corpus callosum,.produces a
biphasic, positive-negative potential, recorded at thé.surface of the
opposite hemisphere (Chang, 1953; Clare, et al., 1961; Curtis, 1940a,b;
Grafstein, 1959; Latimer & Kennedy, 1961; Seggie & Berry, i972). This
surface positive-negative ;raﬁ53531£95a1 response (TCR) reverses in
potential as the recording electrodé is lowered through EHe’coEtex

(Clare, et al., 1961). The TCR coificides with an EPSP-IPSP sequence

recorded in Layer V neurons, often pr

ed by an antidromic spike (Vogt

& . L P ’ .
& Gorman, 1982). Single unit activity is coacentrated on the falling

positivity-rising negativity phase of the TCR {(Latimer & Kennedy, 1961).

Development: The rat neocortex is ome of the final structures to
s .
complete development postnatally. The newborn rat cortex, in contrast

.

to the mature cortex, is charactgrized by just two promghent layers; the
cortical plate, a cell-dense, superficial layer, and the sub-plate, a
less cell-dense 1ayef (ivy & Killackey, 1981). At birth, cells in the
cortical plate appear¥bipoiar, withufew, if any basal degdrites, and a
single, uﬁbranchihg'ap{cal dendrite extending toward tﬁé cortical .

surface. - Cells of the subplate have already attained the basic,

although immature, pyramidal morphology (Ivy & Killackey, 1981). By.

%

‘poétnatal day 4 (Pﬂﬁ), the cortical plate - sub-plate distinction begins

to breakdown, with the bipolar cells of the cortical plate developing

-
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into Layer II and III pyramidal cells. For the first several weeks, the
morphological development of neuroms in deeper layers precedes that of

more superficial neurons (Berry, 1981). '*<

Synaptogenesis begins around the date of birtﬁ\(Johnson &

Armstrong-James, 1970), with symmetric synapses forming on pyramidal

dendgites by PN3 and asymmetric Synapses by PN9 (Miller & Peters, 1981).

-

Synaptogenesis continues, with a large increase during the third and

.

fourth postnatal weeks, until adult levels are reached near PN35
{Aghajanian & Bloom, 1967). \

The majority of afferent terminations in the mature neocortex

¢

are on dendritic spines (Colonnier, 1981). Depdritic spines first

-

nd of the second postnatal week and show exteansive

appear téward the
increases in number {Wise, et al., 1979) and morphological complexity

(Miller & Pe:'e;-y. 1981

changes in post*synaptiL structure, the number of vesicles in pre-

-

over the following week. In addition to these

synaptic terminals increases following initial synaptic formation

(Johnson & Armstraong-James, 1970; Jones, 1982). ° s

£

Callosal fibers begin invading tde contralateral neocortex on
PN4-PNS (Jones, 1981b) and reach their sites of termination near the end
of the firs; postnatal week (Jones, 1981b, Wise & Jones, 1978).
Myelination of these fibers begins a£0unleN1§“(Caley-& Butler, 1974;
Seggie & Berry, 1972). *

Thé immature TCR has been studied in both the cat (Grafstein,
1963; Shofer & Purpura, 1972) and rat (Poon, 1965; Seggie. & Berry,

1972). The TCR demonstrates a decrease in latency, and increase in

amplitude with age (Grafstein; 1963; Po?n, 1965; Seggie & Berry, 1972).
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fibers make en passage contacts on the apical dendrites of hippocampal

15

Results from intracellular studies of immature neocortical neurons are
contradictory (Romatsu, 1983; Purpura, et al., 1965), however the most
recent studies suggest a late development of inhibition (Komatsu, 1983).
These recent intracellular fesults are in agreement with histological
studies showing late development of asymmetric synapses (Miller &

-

Peters, 1981).

I. C. FUNCTIONAL ANATOMY AND DEVELOPMENT OF THE DENTATE G’_fRUS

The dentate gyrus 1s a component of the hippocampai formation,
.and runs parallel to, and just below the hippocampal gyrus. The
dentate's primary cell type is the granule cell, as oppoéed to the
pyramidal cells of the hippocampal gyrus.

The mature dentate gyrus consists of a horse~shoe shaped band of
closely packed granule cell bodies. This horse-~shoe straddles the
pyramidal cells of hippocampal regionyéAA, and thus can be divided into
a suprapyramidal and infrapyramidal blade. The granule cells are
oriented such that the apical dendritic tree extends away from the
center of the formation. This dendritic region is called the molecular
layer and is the primary region of afferent termination in the dentate,

The granule cell axons project in the opposite direction from the

dendrites, through the dentate hilus, or CA4. These axons, called mossy

fibers, constitute the dentate's sole efferent projection. The mossy
-y

€
1 .

'CA3 pyramidal cells (Andersen, Blackstad & Lomo, 1966). A
The major afferents to.the dentate gyrus come from the
entorhinal cortex, septum and the contralateral hipp&éampus; Fibers

-
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from catecholaminergic brain stem nuclei also terminate in the dentate

(Loy, Koziell, Lindsey & Moore, 1980, Winson, 1980).

The ipsilateral ‘entorhinal cortex projects to the dentate via

the perforant path. The perforant path .is composed of small diameter
myelinated axoms (Nafstad, 1967) from diverse cell types in Layers II
and III Bf the enfg;hinal cortex {(Schwartz & Coleman,.1981). The
perforant path is divided into medial and lateral components‘depending
on the locatiom of the entorhinal projection cells (Hjorth-Simonsen,
1972; McNaughton, 1980; McNaughton & Barnes, 1977). Lateral perforant
path fidbers make{en passage contacts on dendritic spines in the outer

~one-third of the molecular layer (Hjorth—Sim€;sen, 1972; Hjorth—-Simonsen

& Jeune, 1972). Medial perforant path fibers make en passage contacts.

"on the molecular layer mgdial one-third (Hjorth:Simonsen, 1972; Hjorth-l
Simonseg & Jeune, -1972). Terminations on the inner one—third are
prédominantly formed b& septal and’commigsural fibers (Go;tlieb &.Cowan,
19&3; Hjorth-Simonsen & Laurberg, 1977; Mosko, Lynch & Cotman, 1973).

| In addition to granule cells, histologiéal (Cowan, Stanfield &
Amaral, 1981; Gottlieb & Cowan, 1973) and electrophysiologicall
(Andersen, Holmqvist & Voorhoeve, 1966; Dudek, Deadwyler, Cstman & T
Lynch, 1976; Lomo, IQTia,b) evidence suggests the presence of inhibitory
basket cells. These basket cells are generally located in, or below,
the granule cell body layer and form inhibitory conmections on the
granule cells somata (Andersen, et al, 1966; Cowan, et al., 1981). The
" basket cellgrreCEive input from mossy fiber collaterals to‘fgrm a .
recurrent inhibitory circuit. In addition, basket cells may send
dendrites into the molecular layer to receive input directly from

-

'perforaqt path
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fibers, thus forming a feed-forward inhibitory system (Cowan, et al.,

-
-

1981).

Current evidenc® indicates that the amino acids glutamate or
asparéate may be the neurocransmitfers of the perforant path (Baudry &
Lyunch, 1981; Di Lauro, Schmid & Meek, 1981% aggrm-Hathisen, 1977;
Yamamoto & Sawada, 1982)., GABA is the most likely transmitter gf,the
inhibitory basket cells (Adamec, McNaughton, Racine & Livingston, 1981;
Storm-Matﬁisen & Fonum, 1971). Cholinergic (Mosko, et al, 1973) and
catecholaminergic (Loy, et al., 1980; Srebro, Azmitia & ﬁinson, 1982;
Winson, 1980) fibers are also present in the dentate.

Because of the relatively simple and homogeneous
cytoarchitecture of the dentate, intracellular events are mirrored by
large, extracellular population responses'(Andersén, et ai., 1966; Lomo,
1971a). Stimulation of perforaﬁ; path fibers produces a depolarizétion
of granule cells, recorded intracellularly (Aﬁdersen, ét al.; 1966;
Deadwyier, ﬁﬁdek, Cotman & Lynch, 1975; Dudek, et_al., 1976; Lomo,
1971a). These intracellular depolarizations, ev;ked nearly
simultaneously by the en passage terminations ofithé paﬁhway, hre
recorded as ; Targe, negative, sznchronous population EPSP in the
molecular layer. The ‘dendrites are a positive sink for deﬁolarizing
currentlflow. The granule cell layef and dentate hilus are a source f;r
this current, and thus the populatioﬁ EPSP 1is recorded. as a positive
potential in-the hilus. At high stimuiation intensities, a population

"spike" is superimposed on the EPSP. .This population spike corresponds

to synchronous granule cell discharge (Andersen, et'al., 1966; Lomo,
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19712) and is recorded as a neéative potential in the hilus and a

positive potential in the moleculat layer.

Déveloggent: As stated in the Introdfgiiop, the rat dentate
éyrus undergoes major maturational changes poétnatally. hEighty percent
of adult granule cells are formed’ podtnatally (Altman & Das, 1965; .
Schlessinger, et al.,-l9z§). Granule cell nEurogeneézixgggins aro?nd
day 14 post-éonception and continues for several montHs, possiﬁly into
adulthood (Altman & Das, 1965; Bayer, 1982; Bayer, Yackel & Puri, l%?g;
Schlessinger, et al., 19753. Neurogenesis. peaks at PN5-PNS8 ‘ .
(Schlessinger, et al., 1975; although Altman & Das (%965) suggest this
peak may occur as much as a week later, at PN15). Neurogenesis in the
suprapyramidal blade precedes that in the infrapyramidal blade, and the
more caudally locaged neurons develop earlier than those located moré
rostrally (Schlessinger, et al., 1975). : -

Synapse formation begins by PN4 on those célls present (Crain,
et al., 1973). 1Initial synaptic contacts are made on granule cell
dendritic shafts and somas (Cotmaq, et al., 1973), with axodendritic
synapses appearing prior to axosomatic (Schwartz, Pappas & Purpura,
1968; Schwartzkroin, et al., 1982). Synaptic density reaches adult
levels by PN25 (Crainm, et al., 1973).

The majority of synapses on mature granulg cel;s are on
dendritic spines (Nafstad, 1967), which first appear near the end of the
first postnatal week (Cotman, et al., 1973). Spine density increases in
a bimodal fashion, with peaks:at PN14 and the adult stage (Duffy &
Teyler, 1978a,b). S?ipg\porphology increases in comélexity as the

. N W hd
animal matures past PN25 (Cotman, et al., 1973).
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Perforant path fibers are prese%t in the outer half of the
molecular layer by PN4 (Loy, et al., 1977). Myelination of these fibers
begins during the second or third postnatal week (Cotman, et al., 1973).
Other inputs to the hippoﬁampal formation, such as the cholinergic
septohippocampal pathway, also arrive before, or shortly after birth
(Crutcher, 1982; Matthews, et al., 1974; Nadler, et al., 1974).

" The small size of granule cell somata makes intracellular.
recordiné difficult: even in thg mature dengate, thus very little is
kanown about the electrophysiological properties of immature granule
cells. However, perforant path stimulation is capable of producing
population EPSP's in the dentate by PN7 (Duffy & Teyler, 1978a, b).
Furthermore, the mossy fibers are capable of discharging CA3 pyramidal

cells by PN7-PN15 (Bliss, Chung & Stirling, 1974),



k‘."‘

CHAPTER II. PAP IN!THE MATURE NEOCORTEX.

Although PAP has been described in great detail in the
hippocampal formation, iﬁ has not beep examined to any major extent in
the neocortex (Clare,_et al., 1961; Racine, et al., 1975). Therefore,
as a first étep toward an analysis of postnatal development of
neocorticai PAP, the characteristics of PAP in the ﬁature neocortex were
determined. Specifically, the objective of the pfesent experiment was
1) to determine the magnitude, duration and requirements for induction

of facilitation, STP and LTP of the mature TCR, and 2) to compare PAP of

the mature TCR with that reported for other forebrain pathways.

EXPERIMENT 1. THE EFFECT OF SINGLE CONDITIONING PULSES

¥ The most transient form of PAP is facilitation and ‘is generally

produced by single conditioning pulses. Experiment I was done to
determiné the characteristics of facilitation in tﬁe neocortex,
METHODS

Adult male hooded raEs, born in our colony or obtained from Blue
Spr;ce Farms (Altamount, N.Y.),_were used in these experiments. Animals
were anesthetized with intra-peritoneal injections of sodium
pentobarbital }65mg/kg) and mounted in a stereotaxic apparatus. Body
temperature was maintained at 34%2° ¢ with a’heaf lamp.

The skull was exposed and holes drilled in homologous sites over

both hemispheres of the neocortex corresponding to either Krieg's Area 8

(anterior) or Krieg's Area 2 (posterior) (Rrieg, 1946). The recording

_ | . . .
elecéEEﬁE was elther a Bakelite-coated, tungsten microelectrode (1-

20
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2 Mohm) or a telen-coated,'stainless-steel monopolar electrode (0.28 mm
kY ] .

diameter) and was placed in one hemisphere, 0.0-0.3 mm below the

cortical surface. Ground and reference electrodes were attached to the

opened scalp. Respoases were amplified with a Grass P-15 pre-amplifier
- -
and a Grass EEG amplifier. Cutoff frequencies were set at 1 Hz and 3

kHz. All responses were stored and analyzed oh an LSI~1l computer.
Stimulation was presented via a ;ipolar,.teflon-coated, stainless-steel
electrode (0.28 mm diameter). The stimulating electrode was placed
directly into thé callosal fibers in the opposite hemisphere.
Stimulation éonsisted of biphasic square-wave pulses with 0.1 msec
duration each half-cycle, delivered through constant current isolation
units from a Grass S-88 stimulator. Placement of the electrode into the
.

fibers was initially verified electrophysiologically. The evoked
‘résponse at the recording site showed a noticable increase in amplitude
-and some decrease in latency as the stimulating electrode moved from the
.cell layers into tﬁe callosum. In addition, in some animals electrode
placemenﬁs were ve;ified histologically. '

The effects of a single conditioning pulse on the amplitude of
subsequent .test pﬁlses (Paired-Pulse) was examined for both the anterior
TCR (aTCR) and the posterior TCR (pICR). Pulse pairs were delivered
‘once every 10 to 15 seconds with inter-pulse intervals (IP1's) ranging
from 20 . 5000 méecs. Five pairs were delivered at each interval.
Conditioning and test stimuli were of equal intensitf. Sti?ulus
intensity was set at 50-75% of maxiﬁum on a stimulus/response EI{O)

curve. This I/0 curve was determined by varying stimulus intensity from

10 uA-1200 uA and recording response amplitude. The 50-75% range- was
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chosen to avoid any ceiling effects on facilitationm (Racine & Milgram,
1983). Response amplifude was measured by calculating the slope
(mV/msec) of the félling positivity-rising negativity. This measure
correlated well with peak to peak amplitude (Pearson r > 0.95). Percent
paired-pulse facilitaéibﬂ/depression was calcuiated as test'fe5ponse
amplitude divided by conditioning response amplitude, Time.constants'of
decay for facilitation were determined From a least-squares linear
regression of the log of post-conditioning ;ésponse amplitude.

RESULTS

BASELINE RESPONSE CHARACTERISTICS. Single pulses applied to tHe corpus
callosum produced a biphasic, pqiftive-negétive, or monophasic,
negative, trans-callosal potential (TCR) reéorded at the surface of the
épﬁosite hemisphere of the anterior and posterior neocortex (Figure 1).
The biphasic potential_(as described by Chang, 1953; Clare, et al.,
1961; Curtis, 1940a,b; Grafstein, 1959) was seen most often in the
anterior neocortex. The amplitude of the aTCR (maximal aTCR -amplitude,
‘averaged across animals, = 2096 uA) waskfignificantly larger than the
pTCR (maximal pTCR amplitude, ave;aged across animals, = 418 wA) ‘(¢ =
4.31, df = 13, p < 0.01). '

’?AIRED-PULSE EFFECTS. Single conditioning puises resulted in a .
significant increase in the amplitude of responses to subsequent test
pulses at shott IPI's; in pentobarbital anesthetized mature animals
(Figure 2). The magnitude of facilitatiom peaked for both the aTCR and
PTCR between 20 - 100 msec IPI. The magnitude of peak facilitation,

however, differed markedly between the two responses. Whereas paired-

pulse facilitation of the aTCR peaked at a mean of 114Z, pTCR
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Figure 1. Representative examples of anterior (A) and posterior (B)
transcallosal responses; before and after PAP. Stimulus

intensity was set at - approximately twice threshold level.
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Figure 2.
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Test response amplitude of the aTCR and PICR following single
test pulées, expressed as a percentage of baseline response
amplitude and inter-pulse interval (IPI). Evoked responses
are representative baseline (solid) and test (dashed)
responses at the peak of facilitation. Responses amplitude
was measured as the slope between the cursors above each

response, ) P

4
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facilitation reached a mean peak of 2282. This was a statistically

significant difference (Mann-Whitney U, P € 0.01). Facilitation decayed

approximately expoueﬁtially for both the aTCR and pICR; witthime
constants of 33 msec and 306 msec, respectiﬁeiy.

In some cases, maximal facilitation appeared to be masked by an
initial depression at very short IPI's, suggesting a possible inhibitory
component to the paired-pulse effects (Andersen, et al., 1966; h

- Szentagothai, 1969) or a transient=&ép1etiou of transmitter substanﬁe

(McNaughton, 1981).

EXPERIMENT II. THE EFFECT OF HIGH FREQUENCY STIMULATION
Th€ tanger-lasting forms of PAP, STP and LTP, are produced by

application of conditioning trains of pulses. Experiment II examined

STP and LTP of the aTCR and pTCR.
e METHODS

The effects of high frequency stimulation on the TCR were

determined in anesthetized adult animals. Animals were prepared. as

above. Test pulse inten§ity was approximately 50-757 of maximum.

s

Single test pulses were applied at 0.1 Hz for 10 to 20 minutes to

determine baseline variability. Following baseline, a single train
{

(400 Hz, 100 msec) was delivered, followed by an additional 20 minutes

o

of test pulses. A total of 2-6 trains with subsequent test pulses, were

applied consegutively in this manner. The majority of PTCR animals were

run prior to allR animals. From the PICR data, it was determined tfpt
.post-train respons® amplitude generally reached a stable baseline within

10 minutes (see Figur®s 4). Therefore subsequent testing, including most

o

RS IR R
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~
of égEPaTCR animals, utilized a 10 minute 1nter—tralu interval. Varying

lnter-traln;?nterval between 10 aud 20 minutes in several pilot animals
had no effect on STP or LTP magnltude or decay rates._
Trainm intensity was varied from 100-1200 ud, depending on the

area stimulated. Results from pilot animals syggested that posterior

placemepts were more susceptible to stimulation-induced after-discharges

(AD's) than anterior placements, thus lower train intensities were used

with posterior placements. Post-train response amplitude was expressed

as a percentage of baseline amphitude. The magnitude of STP %ag;defineq_
’ *

as the maximal percent change, 10-60 seconds post-train. The magnitude

of LTP was defined as the percent increase above baseline at least 10

\i?{;::;:\BQEE;train. All determinations of STP and LTP magnitude were

done fpllowigg the f{:st train of a series. Time cbpstaﬁ?g of degay for
STP were determined from a§1east-§quares linear regression of che-log of
post-train response amplitude. , |

L : RESULTS

L High. frequency stimulation of callosal fibers produced a mafkea '

long-lasting increase in the subsequent amplitude of both the aTCR and

:ﬁ N

PTCR. STP was rarely seen in the absence of LTP (discussed below).

Even though lower-train intensities were used with the pTCR than the
L]

aTCR, to avoid AD's, the magnitude of STP and LTP of the pICR was
signifiééntly larger than that of the aTCR (Mann-Whitney U, p < 0.01 for
both STé and LTP). (See Figures-Q\and 4). “Ehe mean peak magnitude of
STP of the aTégﬁwas 134 £ 27% (range 110~ 1781), and of the pasfg 305 +
932 (ra;ge 200-486%). Mean LTP magnitude was 107 * 63 (range 100-115%)

and 166 * 43 (range 108-2502) for the aTCR and pTCR, respectively.

\
\
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A. Representative aICR preceding (solid) and following
(dashed) high frequency stimulation.. Calibration is 500uv,

negative up, and 2 msec. B. aTCR amplitude preceding and

. following higﬁ frequency stimulation of the corpus callosum,

expressed as a percentage of baseline amplitude. High

frequency conditioning trains were applied at the arrows.
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Figure 4. A. Representative pTCR preceding (solid) and following
(dashed) -high frequency s€imulation. Calibration is 25Quv,

- . J//?' : _ negative up, and 2msec. B. pTCR amplitude preceding and

AY

. following high frequency stimulation of the corpus callosum,

expres;ed as a percentage of baseline amplitude. High

. frequency stimulati®n trains were applied at the arrows.

Py
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The decay of PAP in both placements could be described .
exponentially: PAP decay of the pTCﬁ could generally be described by
two exponential components, with time constanﬁs.of 72~105 sec and 397-
936 sec. In some cases, the shﬁrt lasting component was not present.
PAP decay of the aTCRﬁ;as well described by a single exponential, with a
time constant of 330-587 sec. -

DISCUSSION

. The results of the present experiment demonstrate that PAP can
be induced in the mature neocortex, and that the characteristics of
neocortical PAP are similar to those reported for other forebrain
pathways (Bliss & Lomo, 1973; McNaughton, 1980; Racine & Milgram, 1983;
Racine, et al., 1983). Both tge aTCR and pTCR demonstrate facilitatign,
STP and LTP.éIhe-ti;e constants of decay of facilitation and STP
correspond well with those reported at the‘n.m.j. (Magleby & Zengel,
1976a) -and limbic forebrain pathways (Lomo, 1971; McNaugh n; 1980;
McNaughton, 1982; Racine & Milgram, 1983), Furthermore, these results
suggest that the magnitude of ﬁeocortical evoked potentials and PAP véry ‘
across funct?qnal regions wiéhin the neocortex. The anterior placements
ﬁsed here ;re in,aﬂ_area éithlrelatively dense callosal te%minations,
while the posté;ior placements are in relatively light termination zones
(Jacobson, 1970). Vogt &lGormaﬁ (1982) report a similar relationship
between termination densit§ and intracellular EPSP amplitude in the
an?erior an; posterior cingulate/cortex, in vitro. Stimulation of the
corpus callosum proéuces small EPSP's in the posterior cingulate cortex

where callosal ter?inations are sparse compared to the dnterior

cingulate where terminations are more dense and EPSP's are larger.

AV
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Although this would account for the difference in respounse amplitudes,
an explanation of the inverse relationship between response amplitude
and PAP magnitude seen with the aTCR and pTCR requires further
investigétion.

One possible explanétion for greater PAP of the pTCR is that
stimulation of the corpus callosum in this region also involves
stimilation of the dorsal hkppocampél cdﬁmissufe. The commiésural input
to the hippocampus has been reported to demonstrate PAP (Buzsaki, 1980).
Perhaps then, the potentiation of hippocampal potentials increases the
amplitude of surface-recorded cortical potentials recorded above the
hippocampus, through volume conduction. This gxplanaéion is unlikely
for the follo;ing_reasons: 1) the pTCR is recorded as a sﬁrface-negative
potential, suggesting the current sink, and thus the activated synaﬁées
are near the tip ;f the reéording electrode, i.e. in the neocortex
(Hubbard, Llinas & Quastel, 1969; Rall & Shepard, 1968). 2) Depth
profile analfsis of the pTCRvshows'the PICR reverses in polarity
approximately 1-1.5 mm below the coréical supface (personél

observation). This again suggests that th surface-negative potential

is due’eo a current sink, and activated synapses, in the neocdrtex, and

is not a current source for potentials generated in the hippocampus.

A4
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CHAPTER III. POSTNATAL DEVELOPMENT OF PAP IN THE NEOCORTEX

The experiments in Chapter II demonstrated that mathre

neocortical synapses are capable of supporting short-term and long-

term potentiation. However, many anatomical and physiological aspects

of the mature neocortex do not develop until several weeks postnatally
, o .

"in the rat (see Intro.). The experiments in this chapter were designed

to describe the development of PAP in the neocortex. In additioﬁ,

correlation of PAP development to known structural and neurochemical

developments in the neocortex is discussed. ¢

/,

The postnatal development of PAP in the neocortex was examined

! .
using the aTCR. Although the mature pTCR demonstrated a greater

magnitude of potentiation than the aTCR, the aTCR was chosen for two

major reasons, 1) the haturé*ETCR)Qad a lower thresheld and larger

émplitude than the pTCR, and 2) the aTCR did not appear to be as

susceptible to AD's as the pTCR.

&

EXPERIMENT I. THE EFFECT OF SINGLE CONDITIONING PULSES

< The following experiment was designed to describe the postnatal

-+
r

development of phired-pulse facilitation/depression of the aTCR.

METHODS

Male hooded rats were tested once, between PN7 and adult

X , . NN S
(§Q§}80). Datg of birth was PNO. Animals were anesthetized with intra-

peritoneallinjﬁftidhs of sodium pentobarbital. Due to the increased
' *
sensitivity to barbiturates in young animals (Bianchine & Ferguson,

1967; Mirkin, 1970), pentobarbital dosage was varied to provide similar

levels of anesthesia in all age groups. Dosage was 20 mg/kg for animals

31
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less than 20-30 g, and 65 mg/kg for animalg over 20-30 g. These dosages
provided surgical levels of anesthesia for 1-2 hours.

bue to the small size and delicate nature of the neonate skull,
a special stereotaxic adaptor was used for some animals less than 2
weéks old. This adaptor consis;ed of a swall tray filled with clay or
dental acrylic molded to the shape of the neonate's body. The clay or-
acrylic was molded so that the dérsal skull surface was maintained in a
horizontal position. ' The tray was suspende? between the ear bars and
clamped into the incisor bar on the stereotaxic frame. The electrodes
‘were placed using standard stereotaxic electrode carriers. The
electrodes and placeﬁents were the same as those described previocusly
for adults. Hediai-lateral placement of the stimulation and recording
electrodes was hel& constant across age groups, as this dimension
changes only élightly after the first postnatal week (Valenstein, Case &
Valensteiq, 1969). 1In some cases electrodeVplacementslwere verified .
histologically. Body temperature was maintained at 34%2C with a heat
lamp during testing. -

Paired—phlse.facilitation/depreséion of the immaturé’TCR was
examined as describéd for mature animals in Experiment I. However, due
to the long latency and.;;;ation of immaturé‘responses, paired-pulse
effects could not bé‘accurately described for iPI's of less than 40 msec
in some age gfqup;T Data were analysed as described above.

| RESULTS

BASELIﬁE RESPONSE CHARACTERISTICS. Singlé pulses applied to the corpus
callosum produced a bip\asic, positive-negative aTCR in ail age groups.
The response underwent a dec;gﬁse in threshold, latency and halfwidth,

v



33

and an increase in amplitude with age. Mean values of these measures

for each age group are given in Table I.

- -

PAIRED-PULSE EFFECTS. The effect of a single conditioning pulse on
subsequent test responses in the immature neocortex is displayed in
Figure 5. Results from the mature aTCR are reproduced for comparisoun.
Single cénditioniﬁg pulses produced a large (up to 50Z) and long~1asting
(500-3000 msec) depression in immature animals as compared to the brief
facilitation seen in adults. The magnitude and duration ‘of thig
depression varied in an age dependent manner, being most profound in

younger animals (e.g. 500 msec IPI, Kruskal-Wallace, x2=125.9, df=3, p <
0.001).

EXPERIMENT II. THE EFFECT 0!? HIGH FREQUENCY STIMOLATION

The results of Experiment I suggest that t@e ef?ects of single
conditioning pulses varies with age. The present experiment was an
examination of the &evelopment of STP and LTP of the aTCR.

METHODS '

Test pulses producing 50-80% maximal responses were applied to
the corpus callosum at 0.1 Hz for 10 minutes preceding and followiné!;
single, high intemsity traiﬁ (1200luA, 400 Hz, 100 msec). All the
results presented here are from animals undergoing this standard
procedure, In addition, some animals received ;ne oﬁgﬁ;re trains of
faried frequency (10-400 Hz) and duration (50 msee - 10 seconds).
Results from these additiénal anim§ls didynot appear t; differ from

those of animals receiving the standard train, and thus are not included



TABLE I. .

Quantitative development of the surface-recorded aTCR in

anesthet#Fed rats.

ri
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Figure 5.

35
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The effect of single conditioning pulses on aTCR amplitude

-

. 8cross ages, expressed as a percentage of baseline amplitude

and inter-pulse interval. Note that only adult animals -

showed any net facilitation.
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"here. Data were analysed as previously described for the mature

- animals.

RESULTS . -

The incidence of STP/LTP increased with age, as shown in Figure”
, : " .

. 6. STP could not be consistently produced until after PN16. Prior to

this age, most animals showed no post-train effect at all. In.Ehose'
instanees where a Post*traie potentiation was apparent, it was generally
of small magnitude and decayed very rapidly (see Figure 7), seéﬁesting a
possible gﬁcilita;iou or augmentation effect father than petentiatioq
(as defined by Magleby & Zengel; 1976 and McNauéhtoa, 1982).

LTP appeared several days after.STP, Hetweeﬁ PN18 and PN21.

Once detected, the magnitude q£ both STP. and LTP approached adult levels

rapidly. Representative, averaged potentiation runs for several age . .
y. Representativ ged p

groups‘are shown in Figure 7, along with examples of TCR's from each age

group. STP decdy time constants calculated (where possible) for
immature anigaE

s were within the range for adult animals. The

‘dev@[ pment of STP aFQ/LT? in the neocortex is suTmarlzed in Table II

Drscussmn | Yot
3

The results of the present experlments suggest that ?h?xip the :
rat antérior neocortex develops over a shért period durlng the first few
natal weeks. STP develops several days prior to LTP. Once present
the m, gnltude of both STP and LTP rapldly approach adult levels.
ulse facx}1tat1on,‘however, did not appear u?ﬁi} after PN35.
lS is surprlslng in light of the slmllar1ty between the mechanlsms of
iec111tat10n and STP. It is pess1b1e that facilitation le present in
xmmatuee enimalsggﬁht masked by a greater'susceptibility to transmitter

"N\§“‘. §>



Figuie‘ﬁ.; Percent of animals per age group demonstrating STP (solid

.linei;énd LTP (dashed line) of the aTCR, following high

frequency stimulation.
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Figure 7. Amplitude of aTGR expressed as a percent of baseline
amplitude, preceding and following identical high ffeqhency-

)

trains .in several age groups. On the riéht/are
representative responses for each age groﬁb. Calibration is

'500uV and S‘ﬁsé;N
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neocortex, by age group.

_./

-+ TABLE II. Percent demonstrating, and magnitude of, STP and LTP in the



TABLE II

" Percent demoustrating, and magnitude of, STP and LTP in each age group,

[

in the neocortex. STP and LIP magnitudes are expressed as percent of
baseline, 10 seconds and 10 minutes post-train, respectively (mediah *
inter-quartile range). Weight (g) is mean * §.D.

I4

Age © N _ Weight Z Demon, Magnitude % Demon. Magnitude
(days) {g) STP STP LTP LTP
7 11 16.3 9 100 0 100
£2.2 0.0 : 0.0
< _
14 21 30.7 19 100 o - 100,
! 6.1 0.0 0.0
16 14 32.5 22 100 0 100
3.6 0.0 S 0.0
18 11 40.2 55 123 9 100 - -
5.4 6.0 . 0.0
21 12 44,2 88 125 50 102
5.3 10.5 5.0
28, 9 78.3 100 - 115 . 105
. 5.7 C. 5.0 ) .. 1.5
35 5 111.8 100 120 100 110
25.2 3.0 . - 1.0
Adult 5  332.8 100 130 ' 100 - 106
88.2 1.0 . ... 2.5

-
F
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depletion or greater recurrent ar feed-forward .iphibition in neonates. N=o.

r

(- . S
This problem will be examined in greater detail in subsequent
experiments.

No- strong correspiidence was noted betweer neocortical STP/LTP

development, reported hereq and known strugtural developments, such as

.
synaptogenesis (Aghajanian & Bloom, 1967), myelinogenesis (Seggie &
Berry, 1972) and dendrigic spine formation—(Wise, et al., 1979).
Furthermore, during the period of rapig PAP deﬁelopment,/TCR morphology
'Eoes not undergo any co;responding sud&éu changes (é.g.lthreshold or
amplitude) that might be expected during a concomitant rapid structural
development. These results suggest, therefore, that neo;ortical PAP

- . . +4
development may be-dependent on neurochemical maturation (e.g. Ca ,)

binding or protein phosphorylation) rather than on specific structural

.

developments..
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CHAPTER 1V. POSTNATAL DEVELOPMENT OF PAP IN THE DENTATE GYRUS

Mo - . .
Although dentate granule cell neurogenesis continues well into

the postnatal period in the rat (Altman & Das, 1965; Schlessinger, et

al., 1975), development of cellular structure and counections in the
dentate precedes that in the neocortex (sed Intro.). Using the same

‘procedures as in the previous chapter, the present experiments were an
. _ . .
r

attempt to describe the postnatal development of PAP in the dentate

gyrus. The difference in the.rate of structural and neurochemical

»

<%ﬁevelopment betweag the two systems should produceia difference in_the

age of PAP development.
P

PAP of ;ﬂe perforanttpath-granule cell‘synapse has’ been well
i . - . . -

described in mature animals (Bliss & Lomo, 19%3; Douglas & Goddard,
1975). Nevertheless, in order to facilitate comparison, adult animals

were ‘included in the'p&gsent study.

EXPERIMENT I. THE EFFECT 0% Q?NGLE CONDITIONING PULSES.
Single Epnditioning pulses in the mature dentate p:oduce a brief
depression followed by a pronounced facilitation (Andersen, et al.,
1966; Lomo, 1971b; Récine & Milgram, 1983). The prﬁfgnt experiment was ‘ (Jf.

an examination of paired-pulse effects im the immatu{gfgpﬁtate gyrus,

; , /,.MEIHOi)S. ‘
‘ Y N

‘Male hooded rats, aged.PN7-adult were anesthetized w;Lh/;:P.

. injections of pentobarbital, and placed in the stereotaxic as described

-

above. Stimulation and recording electrodes were lowered into the

" perforant path and dentate hilus, respectively. The coordinates used

41 -
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.

for these structures in each age group we:é verfied histeologically and
are listed in Table III. The electrodes were lowered to produce a
maximal positive populétion EPSP and a superimposed; negative population
spike. In some cases, data from younger animals (PN7-PN10) included
dentate moleculér layer recordings. .Attempts to position the recording
electrode in the Lilus of these very-young animals were not always
successful. Although the compounents of responses recordéa in the
molecular layer are reversed in polarity, as discussed in the

Introduction, they demonstrate all the characteristics of hilus

potentials (e.g. PAP: Wilson, 1981; Wilson, et al., 1981; personal

observation). The same criteria were used for determining u&e va1§E§fy

of responses in all cases: 1) low threshold, 2) threshold for putative
. . . , /

EPSP lower than that for population spike, and 3).response latency

appropriate for age (based on pilot animals). Results obtained with

molecular layer recording appeared to correlate well with.dentaté.hilaf

t

recording.

-

Although EPSP's without population spikes could be{ evoked at low

stimulus.intensities, they were generally small and highly
. . : e B .
Paired-ﬁulse effects using low intensity stimuli in pilot animals were

equally variable, By far the most profound pafred—puISe effects were

. G

seen in the population spike when using higher intensity stimulation.
Therefore, paired-pulse facilitation/depression was examined }n\gFtail

- here using conditioning pulses supra-threshold for populétion spike, 75-

100Z gf maximum. Paired-pulse depression is ofgen taken as a measure of
- . 3

recurrent inhibition (Adamec) McNaughton, Racine & Livingston, ‘1981,
. ¢ . o~

Andersen, et al., 1966). Pulse pairs (20-5000 msec IPI) were applied to
o E \_/ .

'
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I
. TABLE III. Stereotaxic coordinatgs used for perforant path and dentate
hilus placements in each group.



Stereotaxic coordinates us
placements in each age gro

1

Bregma.

/

TABLE IIX

ed for perforant path and dentate hilus
up, lateral to midline and posterior to

+

Age Incisor Perforant Path Dentate Hilus
{(days) lat POSt “-=y lat post
7 ~2.0 3.5 4.5 1.5 2.0
10 -2.0 4.0 5.4 -1.5 2.0°
14 0.0 - 4.1 5.4 1.5 2.0
21 } 4.3 5.4 1..8 2.0
28 0.0 4.5 5.5 2.5 3.0
35 0.0 4.5 7.0 2.5 3.0
‘Adulll: -3.0 4.8 8.0 2.5 3.4




™

-

~

gy

. facilitation (Adamec, McNaughton, Ra:Z;;‘E‘BinQgstog, 1981; Andersen, H
. . - \\ ip
oL . . N . . . A ‘\ . __

-

&he perforant path, o;e pair/10 seconds, and responses recorded iﬁ the
hilus as stated above. Five responses were recorded and averaged at
each IPI.

EPSP amplitude wa§ measured as the slope (mV/msec) of the
lnitial rising phase of the EPSP, prior (@ spike onset. -The pOpulatlonL

spxke was measured between a line JOlnlng spike omset and offset, and

spike peak.

_ ——\ .RESULTS . ' ‘“\/,

~

BASELINE RESPONSE CHARACTERISTICS. Stimulation of the perfzzi&; path L -

.

produced a positive EPSP recorded in the dentate hilus in all age

groups. At higher stlmulus 1ntensxt1es, a negative populatlon spike was

e

'superlmposed on the EPSP. Both components demonstrated decreases in-

threshold and latency,,and,an increase in amplitude with age (see Table

PAIRED-PULSE EFFECTS. The results of the paired-pulse tests are

- n " .

sumarized in Figures 8 and 9. Figure 8 displays the amplitude (slope)
the tgst EPSP as a perceﬁt of the c$nditioning EPSP. 1Imn all age

groups, the test EPSP was depréssed or -.up to 1l second. The magnitude

of this depression varied with age, with younger animals showing
significantly greater depression (e.g. 500 msec IPI, gﬁBkal-Wallace,

x2=15.88 df=3 p <.0.005). These results are 31m11ar to those found

.for the TCR (see Chapter I11).

-

Paired-pulse effects on the population spike are diﬁplayed in

Figure 9. 1In adults, the effects of a singlé conditioning pulse can be
g " .

>

roughly described by two components: recurrent inhibitisa and

-
.
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Quantifative development of the perforant path-dentate

hilus response in anesthetized rats,
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Quantitative

.

- TABLE-IV

anesthetized rats (mean * §.D.).

o~ —

o : N : ,
development of the perforant path-dentate hilus response in

. ) { : ' _
) - S
Postnatal  Body EPSP EPSP Population =~ Maximélgn\
Age Weight Latency . Threshold Spike Population
(days) (grams) (msec) (ua) {ua).” Spike to _
10001A stimulation
7 17.3%2.2  11.4%3.8. 175190 388+223
14() 31.845.2  5.5£2.3%  121%64 296142 %
f//‘- : '
2180 45.1%9,1  3.5%1.3 )64123' 218%14]
28~ ?5}71:-3:17.3 2.9%0.7 ° ~ 63%40 220%126
35 119,9%15.1  2.3%0.4 56fi33 254%174 636917711
Adult .357%74.5 z.bto}g 65124 _200@7 © 4924#5526

&
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The effect of single conditioning pulses on population EPSP
amplitude across ages, expressed as a percentage of baseline
amplitude and inter-pulse interval. N S
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Figure 9. The effect of single conditioning pulses on population' spike

'amplitude across ages, expressed as a percentage of baseline

amplitude and inter-pulse interval. ™~
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et al., 1966; Lomo, 1971). At short IPI's, recurrent inhibition masks

_any facilitation and the test spike is depressed. As the recurrent

:1nh1bltlon decays facilitation becomes apparent, which then decays

- "1tse1f by 300-500 msec, back to baseline or to a slight, long-lasting,

' K ﬂmedzated depre351ou (Nicoll & Alger, 1981).~

The;duratioe and magnieude of depreesion was greater in immature
\aeimals than in adults, and coﬁpletelﬁ masked eny facilita;ion tb%EJan
'eeve been ﬁ;esent. "This depre%sien decreased with age, although PN14
and PN21 were revexsed .in order. The depression was significantly
enhanced in youeg animals at IPI's up to 500 msec: (500 msee IPI,

’ 2
Kruskal-Wallace, x =100.9, df=4, p < 0.001),

EXPERIMENT 'II. THE EFFECT OF HIGH FREQUENCY ' STIMULATION .

o STP and LTP develop during narrowly defined time.periods in the
neocortex (Ch I11). Experiment II was done to describe the :
postnatal development of -STP and LTP in the dentate’gyrus;-

-

'HETHODS

-~

In order to determlne theﬁ}ffect of hlgh frequency stimulation

on both components of the dentatgl?esponse, test pulse inte 31ty was set

{ T $ q_pulses

ing 5 ﬁinutee\\\

o - ¥

\Qflbaseliﬁe recording, a single high.intensity train wgs applied to the

-
suprathreshold for populatlon spike, 50- 801 of max imum,

were applied at 0.1 Hz throughout the experiment. Follc

perforant path and tésc‘pulses continued for 10 minutes. All measures

.

of STP and ‘LTP magnxtude were taken following this: fxrst train,

However, in most animals, two additional trains were applied later to
determine reliabilify'of the post-train effects and the effect of

JK

.
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altered train parameters. The standard traln was the same as that used

for the immature aTCR, 1200 uA at. 400 Hz for 100 msec. Subsequent
=N
trains varied from 60—400 Hz for,20-800 msec. Both EPSP slope. and
. * . 7 - — - »
population spike area were recorded and expressed as a percent of

baseline.

P

RESULTS = E . Y
Higﬁ frequency stimulation of.the.perforant pach\&n adult
animals produced a pronounced and long-}asting §otentia¢€on of the EPSP
and population spike, as.reported elséwhere (Bliss & Lomo, 1973; Douglas
&'Godd#rd 1975). ' EPSP amplltude precedlng and follcw1ng hlgh frequency

- SN
stimulation is shown in Flgure 10. PAP magnltude was greater for the

population spike than for the population EPSP, as has béen reported

elsewhere (Racine & Milgram, 1983; Racine, et aI.,/£g§3). The mean

magnitude of STP and LTP of the EPSP</vere 149%12% and 111%7%,

respectively. These values are quite similar to'thdse'foundrfor the-
mature aTCR. ' Popuiatidﬁispike STP éﬁﬁ LTP magnitudes we?e 271%58%2 and
172:4bz\8e3pecFive-;y. ' @

| As in the neocortex, the incidence‘bf STP and LTP increased with
age; as ho&n in Figures 11 and 12.. Figﬁre 11 shows the ﬁercent_of
aniﬁals in each age gréup demonstrating STP and LTP éf the EPSP. Théu

lncreased incidence of STP- of the EPSP in animals at PN10, may be due to

( -.*;-4"' ¢

the relatively high number of anlmals in this age group with molecular‘
layer recording placements.' In many animals of several age groupq,
molecular layer placements seemed somewhat more sensitive to

- )
fluctuations in EPSP amplitude than hilar placements, Furthermore, as

. ‘ . -
was the .case in the 'neocortex, STP in several PN7-PN10 animals consisted
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&

Figﬁreglo.;A. Representative dentate fesponsé preceding (solid) and
following (dashed)'high:frEQueﬁcy stimulation. Calibration
is 2mV and 2 msec. B. ?opulation éa;P amplitude precéﬁing'

- and following high frequency stimuiétion of the perforant
pafh expressed as a pe?centage of baseline amplitude.’ Hiéh

frequency conditiouning trains were applied at the arrows.
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Figure 11. Percent of animals per- age group demonstrating STP (solid

line) and LTP (dashed line) of the dentate population EPSP, .

' following high frequency stimflation. ’
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Figure 12. Percent of animals per age group demonstrating STP {solid

.

line) and LTP (dashed line) of the dentate population spike,

fbllowing high frequency stimulation.
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of only one or two potentiated responses post~train, suggestive of

facilitation or augmentation rather than potentiation. Figure 12 shows
»
the percentage of animals per age group demonstrating STP and LTP of the

. N . 0 -
population spike. With both 'response measures, EPSP and spike, STP

appeared several days prior to LTP.

Figure 13 displays population spike amplitude, before and after
identical high frequency trains, .in several age groups. Representative
evoked responses are also displayed. Once présent, STP and "LTP

magnitudes rapidly approached adult levels, between PN14 and PN21.

The decay of STP in.the mature dentate gould be ‘best described

¢

for up to 30 minutes post-train to determine the duration of LTP. In

all cases, responses potentiated at 10 minutes post-train remained

enhanced for the duration of testing. The development of STP and LTP in *

the dentate gyrus is summarized in Table V. ‘

DISCUSSION R ~ L e

The results of Experiment’ II suggest that PAP in the dentate \‘ S

gyrus develops during the secondipostnatal week. The period of dentate
: ”
- LS :
PAP development precedes that in the meocortex by several days. As in

the neocortex, STP could be detected 3-4 days prior—to LTP, anE’;;ge' ' )
present,, the magnitudés o “and LTP rapldly approached adult levels,

Dentgpe PAB_develoPment did not correspoég‘well to known

structural developmentsasuch as synaptogenesms (Craln, et a1., 197%0 or

dendritic spkpe format1on.(Duffy & Teyler 1978) As in the neocortex,

;
§
i

r

i

3
H

e
L R i e



‘ % . . 1
54~
_/ 3
i i T
L] - -
, ) \
.-
- © *

v

g igure 13. AmpliEude'af‘the:dentate population spike expressed as a
" perceqt of baseline amplitude,'preceding and following
, identical hlgh frequency trains in several age groups. Om -
o . . ) .- . o
@ ’ lthe rlght are representatlve responses for each age group.
Calibration is lmV and 5 msec. - - g _- o K
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TASLE V. ‘Percent‘ demonstrating, and magnitudu_e of; STP and LTP of the

EAPrY

population spike and 'EPSP in the dentate gyrus, in
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each age‘
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TAELE V f‘

= \ .=
Percent demenstrating, and magnitude of, STP and LTP of the EPSP and
Population spike in the dentate gyrus

magnitudes are éxpressed as percent of baseline, 10 seconds and 10;
minutes post-train, respectively (median * inter-quartile range).
Weight (g) is mean * 5.D. C-

» 10 each age group. STP and LTP

Age N Weight Measure Demon. Hagﬁitude 4 Demdﬁ."Hagnitude
(days) (g) ’ STP STP LTP _ ~ LTP
7 11 ° 17.3 . Epsp S 18 . 100 . 5\ . 100
*2.3 0.0 : 0.0
Spike 18 100 0 100
\ | 0.0 . 0.0
10 1 23.4 spéﬁs\ 100 120 0 - . 100
/ 3.9 15.0 o 0.0
Spike 86 118 20 100
' ‘ 10.0 - 0.
o | s 0.0
14 : 1.8  Epsp 44 100 11 100
= 5.2 5.0 . 0.0
N Spike 83 175 . 42 100
66.5 , 10.0
21 10 45.1  EesP 100 125 © 70 110
9.1 ' . © 1.5 .55
Spike 90, 208 80 . 175
. _ ‘ ' 45.0
28 16 71.3 ° .EPSP 100 8o 111
. 17.3 o 7.5
’ "Spike 100 9% 125
N © 19,5
‘ . N >
35' ‘14 119.9  gpsp 100 150 92 115
I _,}5.1 o _ . 12.0 5.0
Spike Yoo 319 . 100 185
_ 39.0 . 47.0
. - - ! P . - . ’
-Adulp 12 3575 EPSP - ]g0. 148 92 110
» N RS . 35 5.0
v : - 4pSpike 100 270 100 170
on _ T 35.0 _ 27.0
- S 5 I .
1 N ¥ M 1 - i
: . Fw I -
v(—- ) Fa
r ) e >
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-» .. - . . . . -
therefore, neurochemical maturation may be the eritical factor

" underlying PAP development in the:dentéte-gyrus,

[+
v
Facilitation in the immature dentate was completely masked by a

‘lonéplasting‘depgsggion following the conditioning pulse. This

long-lasting depression may be due to the increased barbiturate

sensitivity of the younger animals. The next experiments examine the

T

postnatal development of PAP in non-barbituTate anesthetized animals.

* . 3
depression decreased in magnitude and duration with increased age. Tg}fg’
‘ o

a ¥

[
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CHAPTER V. DEVELOPMENT OF- PAP IN THE DENTATE GYRUS OF\ URETHANE

ANESTHETIZED RATS.

+ The sens1t1v1ty of the CNS to barblturates ‘has been shown to

vary inversely w1th age (Blanchlne & Ferguson, 1967; Jondorf, Maikel & ,
ﬁ
+ . 4

Brodle IQSQHhEalser, Forbes & Kunig, 1869; King & Beckér 1963; Mirkin,

- 19705 Staudacherova, Mares & Trojanm, 1979). 1In order to ensure that the
development of PAP, as described in the previous experiments, is not due
] - - \.!": L]

to the differential sensitivity of young rats to the pentobarbital

anesthetic used, the present experiment was an examination of PAP
3 ra . '

developmeﬁt in the dentate gyrus of urethane-snesthetized rats.
Urethane vas chosen as the glternate anesthetic for the present

study- because of distinct differences between the aggipns of

baihxfﬁrates and urethane, rates have several pre- and post-

R synaptic actioms. Barbiturftes-dpcrease excitatory transmitter output

(Richards, 1972; Weakly, j1d itErease pre- (Eccles, Schmidt &

Wlllls‘ . 1963) and post synaptic inhibition (Nicoll, Eccles, OShimﬁu}
-
Ruﬁia, 1975, scholfield, ‘198072 Tﬁ“ pogkhtlat1on of post—synaptlg
B inhibAtion appears ﬁé:;;/medlatgd via the’ GABA-ergic system (H1gash1 &

- 4 Nishi, 1982 ¥ e 22: L he gh ;;;\Bfﬁdled as extenalve y as -

itura %?, appeh:s‘to bquk.the action of excitatory

-as‘only‘minor effects on inhibition (Scholfield, 1980) and on thé GABAS
- . o o
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. < :
. —~ METHODS

The methods used here were identical to those described in the “
previous chapter for single condifioning pgld& and high frequency
stimulation. All animals, regardless of age or‘ﬁeight were giveu_ihg
same dosége of, urethane I.P., 2 g/kg. ) o ¥
o “RESULTS

Responses evoked- in the dentate hilus to perforant path
. :

stimulation appeared identical to those seen im barbiturate-anesthetized.

— L '

animals. Response thresholds and maximal gesponse amplitudes did not
significantly differ between urethane-anesthetized rats and_their

appropriately aged, pentobarbarbital anesthetized controls from Chapter
. -4

»
e

IV. These animals did, however, appear more susceptible to AD's during

) . electrode implantation. Data from animals with unusually prolonged AD's

\ .. |

kf' were eliminated from the present regults, - ot

e N -
! ) ' . ' . bl ' .

P * ‘The effect of siugie conditioning pulses oﬁ/;:%squgnt test

' "~ spikes, across age, is shown in ?igure 14. 1In contrast to the prolonged

! . depression seen in immature, barbiturgte-anesthetized rats, all age
... . . ' , -

L groups demonstrated a pronounced facilitation of the population spike. g
| B ) : .

.H The peak magnitude of facilitation did not differ with aggfﬂFarging from

170-185Z. This f5§$§itatibn decazif/Py 300-500 msec. In

-

ali ages,

facilitation was preceded by an initial dépression,-preaumably mediated
» E -

recurrent iuhibition (Andersen, et al., 1966). The magnitude of this -~

¢




Figure l4. effect of single conditioning pulses on population spike

amplitude across ages, expressed as a percentage of baseline
. : .
_amplitude ang inter-pulse interval, in urethane anesthetized

animals. The inset shows the test spike amplitude at 20 msec

IPI, as a function of age. Note the increased depression in

younger animals at this IPI. .

B e
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T

anesthetized animals did not differ from that reported in Chapter IV.
Figure 15 displays théﬁperceht of animals in each age group
demonstrating LTP of tJL population spike under urethane and

pentoBarbital aneschesia. Within age group comparisons of the magnitude

of STP and{LTP, showed no significant differences between barbiturate

and urethine treated groups (Mann-Whitney U, p > 0.10). Ty
. Ju
DISCUSSION = -3 _ 2

The present results demonstrate that the postnatal maturatig‘.ff
STP and LTP 1n the dentate gyTus, descrlbed in Experlment I1I, is not am
artifact of the greater sen31t1v1ty of young animals to barblturate c}

anesthesia. On?the other hand, pelred—pulif.effects were completely

different in the pggsﬁhce of barbiturate versus noun~barbitirate - '//

&,
<ghort-las 1ng depressxo llowed by facilitation. The peak magnitude

r
of facilit tlon was € same acToss age groups. »

younger anlmals. is suggests elther, 1) a small, age-dependeqt-effect

-

of urethane on inhib\ ion, 2) increased susceptibility in young animals

to transmitter depletion, or 3) gredter reeerreet Enhibition in younger
animals. The first possibility cannot be entlrely dlsmlssed There dld:_

not however, appear to be any lncreased behaV1ora1 §Ensxt1v1ty to

urethane Lg\ggggg anlmais €.g., the same dose level produced éurgieel v

anesthesia-fn all age groups. Furthermore as stated’ above, urethane is

N

: d
:}eported to have only minor effects on imhibition (Evans & Smlth 19&@;

Scholfleld 1980)., The second poss;b111ty@ increased trangmié:er -

4
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:Figure 15. Percent of urethane (dashed line) and pentobarbital (solid

61

line) anesthetlzed animals, per age §F°u9’ demonstratlng LTP

., of the populatlon spike following h1gh frequency stlmulatxgg;,/“

Wl
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e

depletion, is uanlikely because the magnitude of facilitation was

essentially identical across all ages! If less transmitter were-

available for release, less facilitation might be expected (Zucker,

1974). This leaves the third poséibility,'greatef inhibition in young
adimals. This increased inhibition ﬁay be either GABAHﬁgdiatedEB?\E::,»
mediated (Sato, Austin & Yai, 1967). 1If true, ;hésevresults'aie in »

apparent contradiction to in vitro résﬁlts'suggesting~late development

_ of inhibition in the hippocampal formation (Harris & Teyler, 1983b;

Schwartzkroig, 1982; Sch}artzkroin, et al., 1982).
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. CHAPTER VI. DEVELOPMENT OF PAP IN THE DENTATE GYRUS OF UNANESTHETIZED
RATS

The results of the previous experinéh;s, in anesthetized rats,

demonstrate that STP and LTP develop &uring-egone to two week postnatel_

- -

period. The present experiment was doné to extend this. finding to

unanesthetized, rats. Recording from awake anim§k§\yith.chronic,

indwelling electrodes eliminates problems associated with acute
preparations such as fluctuating anesthesia level, depressed respiration
: ’ -~ : ,5 . - ) . .

and body temperature, ané, as seen in'Chapters IV and V, differeantrial

. -

sensitivity to anesthetics. In additiom, the use of chronically

prepared animals allows multlple testing of ﬁhdivggual rats over several-
days. It was therefore h0ped that the postnatal maturation of PAP- lQ\

the dentate gyrus could be traced in 51ngle animalg, prov1d1ng a more

detailedjdescriptlon of PAP development than‘pould be obtained from
. 4. o '

group comparisons. o+ .r
. s E .

METHODS . ‘ - )

* » L
- Only animals aged PN10 to adult were used here. Animals wereg\

a

anesthetized w1th either SOdlﬁm\E::j::arbltal (65 mg/kg, adults) or

'sodium methohexltal (18 mg/kg', PN 35)?b‘Electrodes were implanted in

the antete hilus and_perforant.path as described above and cemented in

' place with dental acrylicn(Nuweld). Ground leads were attached in one

/ »

of two ways. In more mature animals (PNZB-adult) t ground lead was

L
‘attached to a screw mounted above the posterior. neocgr;ex/cerebellum.

In younger animals (PNIOfPNZl) a bare wir was-threaded-thrOugh two

63
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A S
holes drilled "above the posterior neocortex such that the wire passed ’

between the dura and the skull. .
Animals anesthetized with pentobarbital were allowed' at least
one week of recovery before data collection. Neonatal chronics
anesthetized with methohexital were allowed at least 4-24 hours of
recovery. Heth9hexita1 is a fast-acting barbiturate, providing s%fgical
levels Qf anesthesia for 10-25 minutes in neonates with the dosage used
here. These animals appear behaviorally normal within 1-3 hours after
.injection. See Appendix I for a justification of this procedure.
Animals not tested on the same day as surgery were returned to their

litters. i ‘

PAP tests were done as described previously. An attempt was *

/,N\Tade to follow the development of PAP in single animals between PN1O and

PN14. Unfortunately! due to technical difficulties, responses could not’

-~ -

be maintained in these young animalsg fo§ more than a few hours, thus

daily testing was unsuccessful, * ~

-

RESULTS
L

., Responses in awake animals between PN10O and PN21 were very

difficult to maintain and were generally quitelvariable. In additien,
response amplitude in young animals appeared more influenced by

- %
behavioral state than in adult animals (Leung, 1980; Winson & Abzug,
1978). Due to the difficulty and variability ;f the preparation, thé
results presented here will be somewhat ﬁore qualitative than in ther i
previous experiments. N

The effect of single conditioning pulses on subsequent test

population spike amplitude, across ages, is shown in Figure 16.

o

r-
»
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.,

Figure 16. The effect of single conditioning pulses on population spike
amplitude across ages, expressed as a percentage of baseline

amplitude and inter-pulse interval, in unanesthetized

animals.
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Alﬁgz;gh more variable, paired-pulse effects in awake animals, PN21-
ﬁlt, were similar to those found in urethane-anesthetized animals.

FolYowing an initial depression at short IPI's, test responses were
- -
facilitated for' 200-300 msec. While PNl4 animals, as a group, did not

dé&onstrate facilitation, 3 of 7 individuals did demonstrate clear
facilitation'of the pépulation spike, peaking at up to 1807 of baseline.
| The postnafal development of STP and LTé in uqﬁgesthetized
animals was simi}ar_to that reported in anesthetized a2qimals. STP andr
LTP were not reliably observed ug;il around PNl4. Figlire 17 shows the
development of LTP in the unanesthetized dentate. This Figure includes
LTP measures of"both the population EPSP and spike, since popuiat;on
spikes wele. not always observed in PNIO-PN14 animals. Alth;ugh the
percentage of chronic PN28 animals demonstrating LTP (4/7) was low
compared to pentobarbital trégted PN28 animals, the general trend of a
sud@en onset 'of .LTP aro&?d PN14 is apparent. 1In several animals of

different”ages, response amplitude was monitored for up to 30 minutes
post-train. éesponses that were still potentiated at 10 minutes post-
train (the operational definition of LTP used here) remained enhanc#d
for the dﬁration of testing.
' DISCUSSION

The results of the present experiment demonstrate that the
postnatal development of PAP in the dentate gyrus can be obsérved in
unanesthetized, awake gnimalg and its development is, therefore, not an

artifact of the anesthetized immature CNS. LTP could first be detected

on PNl&.
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Figure 17. Percent of unanesthetized (dashed line) and pentbbarbital
anesthetized (solid line) animals, per age group,

demonstrating LTP of the population spike following high

frequency stimulation.
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Paired-pulse tests demonstrated that facilitation could be
produced in all age groups. Although these data were quite variable,
they correspond well with those found with urethane anesthetized

animals, i.e., younger animals demonstrated greater depression.



CHAPTER VII. GENERAL DISCUSSION
The preseQE_iyLies of experiments hﬁ:f demonstrated that post-
activation potentiation of symaptic efficacy develops during a narrowly

aefined time period in the rat dentate gyrus and neocortex. Similar
findings have been reported in the in vitro rat hippocampél CAl (Baudry,
et al., 1981; Harris §lTeyler, 1982) and dentﬁte (Duffy & Teyler, -~
1978b). Furthermore, the age at which PAP can first be detected is

< -
dependent on the structure involved. STP and LTP develop near the end
of the second postnatal week in the deﬂtate éyrus'énd dufing the third
postnatal week im the neocortex. Although the dentate gyrus also
matures structurally prior to the neocortex, no strong correspondence
was found between known development of specific neural structures, such
as synaptogenesis or spine formation, and STP/LTP development in either
system.

Electrophysiological re§gaggh on immature animals presents
several unique problems. For example, the increased sensitivity of
immature raté to barbit;rate aﬁesthetic had a major influence on the
fesults of paired-pulse tests (see Chapters IV and V). Tﬁis confound
- was eliminated by replicating single ;ulse and high frequency
conditioning stimulation tests in Qrethane-anestheﬁized and awake ;
animals. Testing‘of awake animals further eliminated, or reduced, such
problems as decreased body temperature and anoxia during
anesthetization. It was possible, of course, that immature synapses
were capable of supporting STP/LTP, but that STP and LTP thresholds were

simply higher in immature sygtems. . For. example, immature axons are

69
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known to have very long refractory periods (Crepel, 1974), and may be
incapable of following brief, high frequency conditioning trains.
Therefore, thesp brief trains may be ineffective in sufficiently
activating the synapse to produce STP/LTP. The extreme variations in
conditioning train parameters used in Chapters III and IV (from 10-400

Hz/ for 50 msec-10 seconds), however, make this explanation unlikely, and

indicates that immature synapses are indeed incapablé of supporting STP
and LTP. (However, it should bewﬂjged that Duffy and Teyler [1978]
-reported STP [Lut not LTP] .0f the E?SP in the in‘vitro;rat dentate at
PN7 followipg four 15 Hz, 10 second. trains, applied to the perforant
path.)

Anether eéplanatipn for the late development of STP is an
increased susceptibility to transmitter depletion in young animals,
There are fewer pre-synaptic vesicles in immature than in mature neurons
(Johnson & Armstrong-James, 1970; Schwartzkroin & RKunkel, 1982), and
thus presumably, less transmitter available for release. The mechanism
fo; potentiation may thus be functional at immature synapses, but may be
counteracted by a train-induced depletion. Ohmori aéa colleaqugs
(Obmofi, 1982; Obtmori, Rayport & Kandel, 1981) addressed this
possibility in their.study of the development of fTP (STP) in Aplysia,
They decreased pre~synaptic transmitter output by hyperpolarizing thé*
pPre-synaptic neuron, and found that immature synapses were still
incapable of demonstrating PTP.

The lack of cqrrespondence between PAP development and neural

structural developments suggests neurochemical maturation may be the

critical factor, STP, as stated in the Introduction, is dependent on



y

£t

71

++ . .
accumulation of Ca  in the pre-synaptic nerve terminal during the

i - \ ,
conditioning train (Magleby & Zengel, 1975: Magleby & Zengel, 1976a).

cat* appears capable of entering the ﬁif:syqaptic tejéinal in all age

groups tested in the present studies since post~synaptic potentials were

A

recorded in all age groups. However, the increase in transmitter

release.follcwing conditioning may not depend directly on the increased

++ . : . s ) .
Ca concentration, but rather indirectly on some, as yet undef13ed,

Ca' -activated factor such as protein phosphorylation (Casfellucci,
Kandei, Schwartz{ Wilsoﬁ, Nairn & Greengard, 1980; Zengel & Haéleby,
1982), or a ca*’ binding protein (e.g., calgodulin; Tur;er, Baimbridge &
Miller, 1982). The postnatal development of STP, then, may depead on
the development of this factor after initial syn&ptic contact has been
made (Ohmori, 1982; Ohmori, et al., 1981),"

The lack of correspondence between LTP and structural

development, especially dendritic spine formation, is surprising in

light of several studies suggesting changes in spine morphology as a

mechanism of LTP (Desmond & iEVy, 1983; Lee, et al., 1980; Van Harreveld

Al

& Fifkova, 1975). However, correspondence between LTP and strucgtural

development was determined here by visual inspection of graphs depicting

the development of specific neural structures, e.g. the number of

spines/dendrite at [several péstnatal ages. It was'hoped that comparison

of these graphs wit TP development graph (e.g. Figu:eiﬁl) would

result in a "close match", e.g., the ag€ at first appearance and
&
attainment of adult levels of dendritic spines would correspond closely

to the age at first appearance and attaimment of adult levels of LTP.

The functional relationships, however, may be non-linear, in which case
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a close match of develépmental curves wbuld‘not be seen. Nevertheless,
a better fit between phenomena and substrate could provide insight into
underlying mechanisms.

Another hypothesized mechanism of LTP is a.Ca -activated
incrgase in post-syuapticrglutamate binding sites (Baudry & Lynch,
1980a). .Evidence in favor of this hypothesis is: 1) Glutamate receptor
number in purified synaptic membrane is increased by low levels (10-50
uM) of Ca' (Baudry, Kramer & Lynch, 1983; Baudry & inch, 1979; Lynch,
et al., 1982), 2) Intense, LTP-producing, synaptic agtivation produces
an increase in gigsgﬁﬁte receptor number (Baudry, et dﬂ.;-1980; Lynch,
et al.,, 198é). 3) The induction of LTP requires the presence.of
extraceliular Ca++ (Dunwiddie & Lynch, 1979; Dunwidaie, ét al,, 1978).
4) LTP can be selectively blocked in singlé neurons by intracellular
injections of EGTA,.a.Ca++ chélator, into those neurons—=fLynch, et al.,
submitted). Finally, of most importance to the present discussion, 5)
the postnatal development of LTP in the hippocampal CAl region closely

parallels the ontogeny of calcium's stimulant effect on glutamate

receptors in that region (Baudry, et al., 198la).

If,Ca+**stimu1ation of glutamate receptors is the mechanism of
LTP, then the development of Ca++-stimulation should correspond to LIP
. develépment in both tﬁe hippocampal formation and the neocortex.
Althougﬂ development.of Ca++ effects on glutamate receptors has not been
examined in the ngq&:rtex, deVeiopment.of the receptor sites themselves

might be considered an appropfiate approximation, Figure 18 displays

the postnatarﬁdeyeIOpment of Na-independent glutamate binding (Baudry,
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““ Lo w

- Figure 18, Postnatal development of LTP and Na-independent glutamate

T

binding sites in the neocortex and dentate gyrus. Glutamate
binding expre;éed as a percent of adult level.. Neqcortical
glutamate binding adapted from Sanderson & Murphy (1982).
Hippocampal glutamaté binding (wﬁole hippocampus) adapted
from Baudry, et al. (198la). Neocortical and dentate LTP

adapted from Figures 6 and 12, respectivelf. £
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et al., 198la; Sanderson &'Hurphy, 1982) and LTP (Chapters III and iv)

in the rat neocortex and dentate g¥rus. Neocortical glutamate binding
’

‘development lags E}ppocampal binding by several days as does LTP

./
development. This close correspondence of glutamate binding and LTP in -

both the hippocampal formation and the neocortex suggests a possible
S

role for glutamate receptors in LTP, and might be taken as support for

the Baudry-Lynch (1980) LTP mechanism hypothesis. An exdmination of the
postnatal development of ca'’ effects on glutamate binding in the

neocortex is .suggested. ®

As Tepofted here and elsewhere (Baqﬂry, et al., 1981a; Duffy &
Teyler, 1978; Hirris & Teyler, 1982), PAP develops relatively late in
the postnatal hippocampal formation and neocortex. Neonatal rats,
- ' £

however, appear to be capable of learning simple tasks prior to PAP

development in these systems (Caldwell & Werboff, 1962; Campbell &

‘Coulter, 1976; Johaneon & Hall, 1982; Misanin, Nagy, Keiser & Bowen,

1971; Ray & Nagy, 1979 Thoman, Wetzel & Levine, 1968). The majority of
these neonatal learnlng studies involve simple, reflexive tasks, e.g.
escape behaviors, and may therefore be dependent on earlier developing,
sub-cortlcal systgms.

) It is ’interesting to note, however, that at least one study

réported that long-term memory (24 hours) developed several days after

short-term memory, around PN9' (Misanin, et al., 1971). This is similar

to the relationship}:eported here for the e:::?;@ment of STP and LTP‘

and near the timé of\first detection of LTP in the dentate (Chapter 1v)

and CAl (Baudry, et al., 198la; Harris & Teyler, 1982). Furthermore,

rats as young as PNl can learn taste aversions following pairing of

- [l



ingestion of a movel flavor and subsequent toxicosis, as long/as there
. N . . 5 } /

1s no delay between ingesfion and illness {Gemberling & mjan, 1982).
Mature rats are capable of forming taste aversions with delays of

several hours between ingestion and illness. Long-delay learming

» Tequlires maintainence of the stimulus trace (novel fla{?r) until the

»

consequence of that stimulus occurs (illmess). The ability to form
long~delay taste aversions develops between PN12 and PN1S5 in rats
9(Gregg, Kitrell, Domjan & Amsel, 1978), which, again, is near the time
of LTP development in the hippocampus and neocortex. A close;
examination of synaptic functiénal development and correlation witho.
behavioral development may prove fruitful in determining the neural

substrates of memory processes. K t)
- f
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APPENDIX I: THE TIME COURSE OF ELECTROPHYSIOLOGICAL AND BEHAVIORAL
- EFEECTS OF SODIUM METHOHEXITAL (BRIETAL)

Sodium Méthohexital (Breital) is a highly lipid-soluable, fast-
acting harbiturat; (Sharpless, 1970). As shown in this thesis and
elsewhere (Nicoll,bet al.c 1975; Scholfield, 1978) barbiturates }ncre!se
the maggitude and duration of GABA-mediated inhibitory post-synaptic
potentialsp The present study used this fact, along with behavioral
observatlon, to determine the txme course of sodlum methohexital effects’

. oy
on the CNS. ‘A description of the duration of methohexital CNS'a;tion
was important in determining the appropriate recovery time for neonates
iﬁplanted with chroaic fﬁdwelling eiectrodés while under methohexital
anesthesia. To allow for any maintainance doses requ%;ed during normal
surgery, a single dosage} approximately twice normal, was given here.
| METHODS
_ Animals, aged PN14-PN28, were implanted with chroﬁig,
indwelling, stimulating a d recording electrodes in the perforant path
and dentate gyrus, respectively, as. described élswhere.in this thesis,
;

and allowed to recover.

Paired—pulses, were applied once every 20 sec for ome hour. The
b .

‘condltfonlng pulse was suprathreshold for population spike and inter

@ .
pulse interval was 100 msec. Five to ten minutes after the start of the

paired-pulse series, a single intra-peritoneal

v

methohexital (18-50mg/kgY was given and paired

the population spi

-

~
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conditioning spike, was used as a measure of paired-pulse

>, . .
facilitation/depression.

Behavioral activity was classified in ome of four categories: 1)
mobile, 2) immobile awakes 3) 4;3% of posture if pushed by experimenter

or staggers if mobile, 4) loss of righting reflex. Behavioral analysis

o

was done blind with regard to electrophysiological
data.

E ' RESULTS

- Methohexital produced a pronounced increase in the duration of - .
. .
inhibition:/gs evidenced by a masking of paired-pulse facilitation of
. .
the population spike by paired-pulse depression, in all age groups.
\

The onset of depression was rapid in all animals but it's duration

varied with ége"(Figure 1). ,
In all cases, the béhavioraL effects of anesthesia appeared

sooner than, and outlasted any apparent electrophysiological effects.

The onset of behavioral amesthesia occurred within ! minufe post-—
injection. Within 2 minutes post-injection, the test population spike

became depressed. This paired¥pulsﬁ?depressiop lasted from 10 minutes

2

to approximately 2 hours, depending on age. Behavioral anesthesia

-

generally lasted 10-20 minutes longer than any noticable

. ~

‘eleﬁtrophysiological"depression. With the electro-physiolggica; and

-

behavioral measures used here, all anidals were completely recovered by

90-180 minutes post-injection.

P i
Following injection, although the test response showed only

-depression, the conditioning response occassionaly demonstrated a

~ -».

biphasic shift in amplitude. Immediately post—injijﬁipnj’fsbulatioﬂ

.

Y



Figure 1.
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v

The electrophysiological and behavioral effects of

gsodium methohexital -on a single PN28 rat.

A.

The behavioral state of the rat before and ‘after
injection of 49 mg/kg methohexital I.P. Numbers
refer to behavioral Eondition as outlined in the
text.A

Amplitude of the population spike response to the U

conditioning (thick line) and test {thin line) pulses

before and after methohexital injection. . "j>

Amplitude of//;e EPSP response to the condztlonlng

(thlck 11ne) and test (thin line) pulses before and

+

after methohexital 1nJect10n. i
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spike and epsp amplitude increased, Tﬁis increase in amplitude was
geﬁerally brief (2-5 minutes) and was followed by a'gradual depression,
which lasted approximately as loug as the depression of the test pulse,
This biphasic change in conditioning pulse amplitude aﬁpeared to be
dose-dependent, being more pronouncea wi;h higher doses. A detailed
analysis was not done.
DISCUSSION

The duration of behavioral and eigccrophygiological effects of
sodium methohg;ipal varied‘inversely with age. Behavioral anesthesia
had a faster onset and longer duratiom than the electrqghysiolbgical
effects measured here. 1In all cases, however, animals were completely
recovered (according to the criteria above) within 3 hours. These
'resul:s-suggest therefore, that a 4-24 hour recovery time follow1ng
methohexital anesthe31a in neohates should be sufficient to avoid

confounding anesthetic effects.
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APPENDIX II. CALCIUM-INDUCED LONG-TERM POTENTIATION IN THE ADULT
AND IMMATURE HIPPOCAMPUS, IN.VITRO.
. R
Long-term potentiation following brief exposure to high

extracellular calcium levels has been reported in the hippocampal CAl

region of mature rats (Turmer, et al., 1982). Calcium-induced LTP is

- .presumed to have a similar (or the same) mechanism as LTP induced by

high frequency stimulation (Turner, et al., 1982). The present
experiment was an attempt to determine if caleium-induced LTP could be r L
demonstrated in the immature hippocampal CAl region, prior to the age at

which LTP can be produced by high frequency stimulation. Production of

e

LTP with ﬁigh calcium should avoid such problems as long refractbry

peEE;;;:\énd thus inability to follow high frequency stimulation, in

immature ﬁEﬁrUpac .
«

To allow a direct comparison of mature and immature

preparations, hippocampal slices from adult and immature rats were.

i

placed in the same chamber, and all manipulations were identical and
. 4 " ES

simultaneous for both slices. Immature rats were aged PN9-PN10, the age

at which stimulation-induced LTP first begins to appear in the CAl
(Baudry, et al., 1981; Harris & Teyler, 1982).
| _ METHODS '
Hippocampallslices from adult énd-PNQ—PNIO Tats were‘prepared
and maiﬂﬁéinéd in a péffusion chamber as descri%gd by Schwartzkroin
(1981). Slices were perfused with a medium containiﬁg 124 mM NaCl, 3 mM
RCl, 2 mM MgSO4,” 26 mM NaHCO3, 2 m¥ CaCl, and 10 =M Dextrose. The
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medium was oxXygenated with 957 02 and 5% CO2. The AmM CaCl was
intoduced via a three-way valve, as described by Turner, et al. (1982).

Monopolar tungsten stimulation electrodes were positione& in the
stratum tadiatum of both slices. Stimulation consisted of monophasic
square-wéve pulses (0.1 msec duration). Extracellular poﬁulation
Tesponses were recorded in the stratum pyramidale of the cal through
glass micrg!tfgttes fiiled with 4M NaCl (5 Mohm resistance). Responses
were amplified with a Grass P-15 pre-amplifier with cut—off frequencies
set at 0.1 Hz and 50 kHz. Data were analysed as described elsewhere in
this thesis.

Stimulation of tHe stratum radiatum produced a positive EPSP and
superimposed negative ;opulation spike, recorded in the stratum
pyramidale. Test pulse intensity was set to produce a sub-maximal
population spike. Test pulses were ,applied once every 15 seconds
throughout testing. Following 10-50 minutes of baéeline'recording, 4mM
CaCl was introduced for 10 minutes. Testing was continued for 30
minutes after normal CaCl was returnéd: At éhe end,_of the 30 minutes
post-C3++ testing, a single 100 Hz, 1 sec train was applied, and
re:;onse amplitude monitored for an additional 10-30 minutes.

RESULTS
Six slice pairs wefé’tested. Only one‘adult slice demonstrated
FCa++—induced potentiation, and this was short-term odly. The poﬁulation
spike recorded in this slice attained a p;ak potentiation of 200Z which
decayed to baseline within 20 minutes after normal Ca++.was returned to

the medium. All other ‘adult slices,.and zll immature slices

. o, . .
demonstrated a long-lasting Ca -induced depression of the population
L]
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" spike. Four of five adult slices demonstrated STP/LTP of the population

spike féllcwing high frequency stimulation. One of five immature slices
demonstrated LTP, and four of five demonstrated STP, folldwing high
frequency stimuiation. .
DISCUSSION

The results reported here are in marked contr;sé to those
reported by Turner, et al. (1982), who reported 14 of 17 mature slices.
demonstrating ca’ -induced LTP of the population spike lasting at least
3 hours. Since no_Cg++-induced LTP was demonstrated in either age
group, no comparisons can be made.. The Sfrequency of LTP in mature and
immaturé slices féllowing high frequency stimulation corresponds well

with previous réports of the development of LTP in the CAl (Baudry, et

al., 1981; Harris & Teyler,.1982).





