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ABSTRACT A

In this thesis we deal with the foliowing guesticon:
given a permutation a on a set V , does there exisf a
certain block design on V admitting =z as an autcmorphism?
We are able to give a (complete or partial) answer
to this quegtion for the followinq:-
1) 3- and 4-rotational Steiner tftple svstems,
2).-31regulér Steiner triple systenms,
3) Steiner triplé systems with-an involution
ﬁixing precisely three elements,
- 4) l-rotational triple systems,
5) cyclié extended triple systems,
6) 1-, 2- and 3-rotational extended triple
systemns, |
7} 2-, 3- and 4-regular extended triple systems,
8}y 1- and,Bfrotational directed triple sysfems,
9) l-rotational Mendelsohn triple systens,
10) cyclic extended Mendelsohn triple systems,
11) 1l-rotational extended Mendelsohn triple sfstems.
- We also preignt a recursive doubling construcgion
for cyclic Steiner qdédruple systems, and construct the

latter for several orders,

(iii)
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INTRODUCTION

Nowadays, combinatorics is’ the focus of much atten-
‘tion and it has'becéme one of the fastest growiné_branches
of mathematics, as witnessed by the number of published
papers, textbooks and appiications in applied séiencq@, com-
puter science, economics, engineerinq,‘eté., as well as in
other branches of mathematics, such as algebra, geometry,
statistics, algorithms, coding theory, mathematical logic,
-etc.; yet, nowhere in the literature does there seem to be _
a satisfactory-definitio?'of this science that is both <_:on-l
cise and complete;

-Much combinatorics has arisen from games and puzzles.

Among these ére Eulér‘s problem of the 36 officers [see 6,
PP - 8-9], the Kénigsberg bridge problem [see 6, pp. 230] and
Kirkman's schoolgirls problem [see 6, pp. 213-214]. Combin-
atorics has also its historical roots in mathematical recrea-
tions.. For instance, many of the topics treated in the baok
Mathematical Recreations and Essay;'by Ball belong to combié—
atorics.

Combinatorial prcbhlems occur in every branch of math-
ematics.' Roughly speaking, ccmbinatorics is a study of
arrangements cf elements into sets. It deals with two gener;f‘

types of problems: existence cf arrangements, and their

enumeration or classification. To solve a combinatorial

LY
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problem, often we need to use other.richer structures of )
algébra and analysis. Conversely, often the crux of a érob-

lem of algebra or analysAs reduces to a hard combinatorial

questio

Combinatorial designs.or block designs are colFlections
of subsgts of a f£ifMite set which meet certain reguirements.
They have arisen in the study of algebraic¢ geogmetry, which
was the source of Steiner's original problem [65]. They also
occur in the theory of the design of experiments [see 46].
Finite geometrical system; are special kinds of combinatorial
-designs, as we see from fundamental papefé by Bruck and Ryser
[7] ?ng\Py Chowla and Ryser [12].

This thesis is toncerned with existence of certain
combinatorial designs with presc}ibed antomorphism types.
The following ggoblem‘has gained a lot of attention in the
past few years: given a permutation a of a set V, does
there exist a design on V admitting a as an automorphism?
A large amount of work has been devoted to thi;-question, and.
a great number of papers have resulted. These include paper;
dealing with cyclic designs [1, 13, 15, 16, 19, 21, 22, 36,
32; 39, 42, 43, 53, 54:\56, S7t 58, 61, 66), reverse designs
. [20, 23, 62, 68] , automorphism-free designs [44, 43] , and
.rotational designs [55, 591 . .

Broadly speaking, the methods of construction of

designs are of two types: the direct constructions, in which

a design is constructed directly, possibly and preferabiy

( .‘ >
PN
.
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/a\2—desiqns with block size 3, which have been recently

from an algebraic structure, and the recursive comstructions,

in-whiéh a design is obtained from a cocllection of "smaller"
designs.

On? 6f the most important direct constructions comes
from the application of sthe tﬁeory of diffefénce families;
An appealing feature of this style of proof is that correct-
Tess is‘easily.verified. Let there be a collecticn of blocks

L}
formed from a given set V. In order to show that %hat we

have is a t-design on V , we must prove two things:
- F

- L]

(1) the number of blocks is correct, and

{ii) every t-subset of V 1is'contained in at

least » blocks of the collection. .

~

- In most cases, (i) is easily verified by counting, while {ii)

is straightforward (a;though sometimes tedious). Feor this
reason,';e often refrain from actually verifying (i) and (ii)
in the course\of the proof, as this fo}lows a fairly standard
pattern. |

Aside from original results, this thesis attempts to
provide a survey of the existence of some classes of 2-
designs and of Steiner quadruplé systems with a prescribed
automorphism type. For this purpose, the well-known results

on cyclic s8TS [19, 53, 54, 61, 66] and reverse sTs [23,

62, 68] are included in Chapter,l. /I-ﬂ\g:hapter 2, cyclic
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constructed by Colbourn and Colbourn ([17], are given.

Chapter 5 is a survey of known results that have_appeared

in [5, 8, 16, 1%, 70]. Finally, Chapter 6 includes results
. — .

on rotational 5QS which appeared in [55].

A specific statement of the results which are obtained
in the present work follows. In Chapter 1, we first survey
what is known on cyclfc, reverse, 1l- and 2-rotational STSs,
and pfesent~a self-contafned‘proof of their existence. As
our contribution, we obtain necessary and sﬁfficient condi-
‘tions for the existence of 3-fand 4-rotational §STSs, and
give a new cbnstructipn of/fi;egular STS . In addition, we
construct STS(v)'s with an involutory automorphism fixing
precisely 3 elements for v =3 (mod 6), which are different
from Bose's [3]. 4

In.Chapter i, after surveying what is known on cyclic
triple systems with i » l: we proceed to deal with 1-
rotational triple systems with A > 1 ; we were able. to com-
pletely determine the spectrum of'rotational triple systems
with A ; 1.

In Chapter 3, we constfuct cyclic extended triple

systems (ETS) and obtain necessary and sufficient conditions

~

~

for the existence of 1- and 2-rotational ETS . Further, we \\
show that there exist 3—rota£ional ETS(v;p)'s for some

values v anéd p. Also, we obtain necessary and sufficient ~~
conditions for the‘existence of 2- and 3-regular ETS, and

show that there exist 4-regular ETS(v;p)'s for a certain



v and p. All results of this chapter: are new.
In Chapter 4, we turn to directed triple'sygtems‘
(DTS) ; first of‘ali, we completely determine the spectrﬁm
for k-;oﬁational' DTS . We also obtain a necessafy.aqdléuf—A
ficient condition for the existence of l—rotatibnal
Mendelsochn triplé sysfems (MTS). Further, we completely
~determine cyclic extended Mendelsohn triple systems (ﬁMTS)
and l-rotational EMTS(v;p)'s . Again, all results in this
chapter, except for cyclic DTS and cyclic MTS , are new.
Chapter 5 surveys known results on cyclic S(2,k,v)
designs with. k > 3.. |
Finally, in Chaﬁter 6, we show that if a cyclic
. Sﬁeiner qugdruple system 'SQS(V)' exists( whe?e v=2, 10
(mod 12) , theﬁ there‘exists a cyclic 8QS(2v} . This
abpearé'to be the first‘recursive ;onstruction for ﬁyélic
SQSs . 7
In the Appendiges; we list a S-cyclic SQs(v) for
v =.52, 68, 122, 130, 146, 170, 250, 296, 370, and a non-
s-cyclic SQS(v) for v'= 26, 28, 34, 50, 58, 76, 80, 88,

92, 98, 124 .,_hil'these designs were‘conStructEd by hand.

)

&



CHAPTER 1. STEINER TRIPLE SYSTEMS

Section-l. Intro tion.

.. A t-desigg, denoted S, (t,k,v) , is'a pair (V,B)
where. V. is a v-set and B is a collection of k-subsets
(called blocks) of V such that every t-subset of V is

contained in exactly A blocks of B. The number v 1is.

‘ called the order of Sk(t;k,v) . A Steiner system of order
v is a t-design 5, (t,k,V) with X} = 1. We Qrite | |

‘S(t,k,v) instead of éi(t,k,&)l. Such svstems.were first
defined hy Woolhouse [71] in 1844 who asked: for which

integers t,k,v does an S(t,k,v) exist? 1In 1847, Kirkman

[41] showed that S(2,3,v) designs, known as Steiner triple

'svstems of order v (8STS(v)'s} , exist if and only if v =1
or 3 (mod 6) . Several years later, Steiner [65] asked for

~which values of v do S(t,t+l,v) exist? Despite

Woolhouse's and Kirkman's earlier papers, S(t,k,v) systens

'

are commonly referred to as Steiner systems.

¥

Two designs S1 = (Vl,Bl) and _ S_2 = (VE,B?) are
isomorphic if there exists a bijection a: Vl - V2 such
that b ¢ B, if and only if a(b) ¢-B, (here. &:.B; + B,

is the mapping induced by =« ; in what follows we will not

distinguish between =« and 3 ) . The mapping a 1s called
an isomorphism., If Sl = 82 , then o 1s called an automor-
phism. Thus an automorphism of a design S = (V,B) 1is a

6
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pefmutation acting 6n Q‘ énd aléo oh_ B, and the collection
of ail automorphisms of S constitutes a. group.

Let (V,B) be a desigh'with a as an automorphism
and let Zhrdénoteithe set of ali integers. For a fixéd

block b € B, the set
{«™(b)|n £ 2}

is called the orbit of b under a . Let us call an element

of an orbit a base block. Then the whole set B is com-

pletely determined by a collection of base blocks containing
one représentaiive from each orbit. Thelnﬁmber cf "elements
of an orbit is called the length of the orbit. The lenqtﬁ
of a base block is the length of the orbit containing the
base block.

The following problems have gained interest in the

last decade.

First, given a finite abstract group G , does there
exist a design whose automorphism group is isomorphic to G?
Lindner and Rosa [44] showed that for each v z 15 there is

an STS(v) whose automorphism group is trivial (such systems

are called automorphism-free), and Mendelsohn [48] gave an

affirmative angwer to the above question.
Second, given a permutation @ acting on a'v-set V,
does there exist a design on V admitting 2o as an automor-

phism? We shall denote such a design by § (V)



If o has a single cycle of length v, then S, (V)

is called cyclic and & is a cyclic automorphism. It was

shéwn first by Peltesohn [54] that a ¢yclic STS(v) é&iéts
if.and only if vIl or 3 (mod 6) , except v = 9 [see
also.lS, 53, 61, 66]. “ - -

v If o has exactly one fixed element and k ~cycles

of length (v - 1)/, then Sé(v) is éalled k-rotational.

Phelps and Rééa [59]fob£ained the necessary and sufficient
conditions ﬁof the é#istence of a 1- and 2-rotational STSs .

| ‘If a is an involution with exactly one fixed ele-
ment, then S (v) , that is, (v - 1)/2-rotational, is called
'reverse; a necessary and sufficient condition for'the-exist—f
ence of a reverse 'STS(G)‘-ié v'El; 3, 9 or 19 (mod 24)
[23, 62, 68].

If 2 1is an involution with exactly three fixed
elements, then the existence of an STS Sa(v) has been
conjectured for every v 1 or 3 (mod 6) , except for
v =1 [see 24]. Such systems can be constructed by Bose's
techniques [5] for every v =3 (mod 6)

This chapter considers -STS with a given automorphism
type. 1In Sections 2 and 3, we summarize results on cyclic .
STS and reverse STS, respectively. Section 4 provides
rotational STS that are constructed by Phelps and Rosa
[59]. o©Our prinéipal results are also in Section 4. These

results are reported in [11l]. Section 5 contains regular

STS that can be derived from cyclic’™ STS easilv. But we
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give a new constructign of 3-regular STS . g-sAlso, Section
- ./ . - . ‘ . .
5 contains STS. with an involutory automorphism fixing

exactly 3 elements; we obtain a new construction'of such

systems.



Section 2. Cyclic Steiner Triple Systems.

Y

It is elementary to establish that a necessary con-

'dition for the existence of an STS{v) is that wv =1 or 3

(mod 6). Kirkman [41] and, later, Reiss [60] established

.that this condition is also sufficient. Even though the

existence of STS is séttled, cne is still interested in
.
the investigation of restricted classes of the systems.
Typical restrictions which have been considered are those
wh}ch constrain the automorphism group.

In this sectien, we consider an STS&V)_ whose auto-

morphism group contains a v-cycle, that is, cyclic STS(v) .

In 1893; Netto [52] initiated the systematic investigation

of cyclic STS. In this early paper, he demonstrated the
existence of two infinite families of cyclic STS . The first
is thé case when v = 6n + 1 and prime. The seconrnd is for
the case v = 3p where p 1is a prime of the form 6n + 5.

Four years after the appearance of Netto's parper, Heffter.
[36] simplified Netto's second case. He constructed gyclic
STS in the case where v = 3p and p is a prime of the
form 2n + 1, except for p = 3. Iﬁ the same paper, he

also posed two difference problems:

Heffter's difference problem I. Can one partition

the set ({l,..., 3n} into 3-subsets such that in each

10
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3-subset the sum of two numbers is equal to.the third or the

sum of the three is equal to 6n + 17?

[

Heffter's difference préblem II. Can ohe partition
the set {1,..., 2n, 2n + 2,..., 3n + 1} into 3~subsets
such that in each 3-subset the sum of two numbers is equal
to the third or the sum of the three is equal to 6n + 32

- . : ~—

Heffter observed that a solution to his first dif-
ference problem would give a solution to the existené; of
'cyplic_ STS(v) for wv ilﬂ {(mod 6) . Further, he noted that
a so}ution to his second difference problem (together with
‘the tfiple (2n + 1, 2n +'l, 2n .+ 1)) would give a solution
to the exigtence of cyclic STS{v) for v =3 (mod 6) .

Completé solutions to Heffter's di*fference problems
were not known until Peltesohn's paper appeared in 1939 [54].
In that year, she constructed cyclic STS{v) for all wv=1
or 3 (mod 6) , except for v = 9. It is straightforward
to demonstrate that the unique STS(9) 1is not cyclic. Con-
tinuing interest in these éxistence‘questions has involved
restricted versions of the problems. 1In particular, Skolem

(66, 67] examined an integer partitioning  problem whose

s

solutions ccrresgond to cyclic STS . arious extensions of
Skolem's original work have been investigated by O'Keefe [53]
and Rosa [61]. Herein, we summarize thelwell-known results

on cyclic STS by'integer partitioning fmethods.
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2.1 Definition [61]. An (A,k)-system is a set of

1,..., k} such that b, -a_=r

ordered pairs {(ar,br)lr

for r =1,..., kX and {ar,br} = {1,..., 2K} .

1 1

[ e

r

Let us remark that an (A,k)-system is essentially

the same as what has been called in [63] a Skolem (2,k)-
sequence. If such a system exists then the triples
(r, a,. + k, br + %k}, r=1,..., k, represent a solution -

to Heffter's difference problem'I.

2.2 Lemma [19, 61, 66]. An (A,k)-system exists if

and only if k=0 or 1 (mod 4)

Proof. A simple.counting argument shows that k z 0
or 1 (mod 4) 1is a necessary condition. For sufficiency,

we distinguish two cases:

Case 1. k = 4t .

(4t + r -1, Bt - r +1), r=1,..., 2t
(r, 4t - r - 1), - r=1,..., t - 2
(t +r+1, 3t - ), r=1,..., t - é

(t -~ 1, 3t), (£, £+ 1), (2t, 45 - 1), (2t + 1, 6t)



Case 2. k = 4t + 1.
(4t + r+ 1,8 -r+3), r=1,..., 2t

(r, 4t - r + 1), r=1,..., t

(t +r+ 2, 3t -r + 1), r=1,..., t - 2

(¢t + 1, £t + 2), (2t + 1, 6t + 2), (2t + 2, 4t + 1) .
.In a t-design Sk(t,k,vi r the blocks a;e also
called triples, guadruples or Quintupleg, etc. if k = 3, &

or 5, respectively. -

Throughout this section, we will assume the

elements of our cyclic STS(v) to be V = Z, s Ehe groﬁp of

residue classes of 2 modulo v, and &he corresponding

cyclic éutomorphism to be .a = (0...v - 1) . - -
2.3 The . If vzl or 7 (mod 24) , then there
exists a cyc;lc STS(v) . ",

k

Proof. Let v = + 1 and let {(a_,b.)|r =1,...,k}

be an (A,k)-system f 0 or 1 (mod 4) . Then
{0, r, b, + k}, r=1,..., k, are base triples of a cyclic
STS(v)

2.4 Definition [61}. A (B,k)-system is a set of

ordered pairs {(a_,b.)[r = 1,...7 k} such that b, -a_ =r

k
for r =1,..., ¥ and J {ar,br} = {1,..., 2k - 1, 2k + 1} .



A (B,k)-system is essentially the same as what has

been called in [63] a hooked Skolem (2,k)-sequence.

2.5 Lemma [19,53,61]. A (B,k)-system exists if and

r

only if k=2 or 3 (modq4} . ' —," -

s

Proof. A simple counting argument shows that k 32.

-

-

or 3 (mod 4) 1is a necessary condition. For sufficiency,

we distinguish two cases:

Case 1. k = 4t + 2. " -

(r, 4t - r + 2} , - r=1,..., 2t *
‘ (4t'+ r+ 3, 8t -r + 34), r=1,..., t -

(5t + r +2, 7t - r + 3), r=1,..., t -

(2t+1, 6t+2), (4t+2, 6t+3), (4t+3, B8t+5), (7t¥3, Tt+4)

Case 2. k = 4t - 1.
(4t + r, 8t - r - 2) , r

-
=l'__'_’ Zt—Z\ .
(r, 4t - r - 1} , r 1l,.. t - 2

(t +r+ 1, 3t - r), r=1,..., t - 2

i

r

(-1, 3t), (t, t+l), (2t, 4t-1), {(2t+1, 6t-1), (4t,|8t-1)

2.6 Theorem. If v =13 or 19 (mod 24) , then

. there exists a cyclic STS(v)

Proof. Let v = 6k + 1 and let {(ar,br}lr = 1,..., k}

be a (B,k)-system for k=2 or 3 (mod 4) . Then
{0, r, br + k1, r=1..., k, are base triples of a cyclic

STS (v)



2.7 Definition [61]. A (C,k)-system is a set of

ordered pairs '{(ar,br)lr =1,..., k} sﬁ%ﬁ)that
br -—a.=r for r=1,..., k and
k- -
U la_,b = {1,..., k, kK + 2,..., 2k + 1} .
r'“r
r=1
4 1 .

Let-us remark that a (C,k)-system can be extended to

cyclic STS(v) for the case v 3 (mod 6) . If such a

¥

system exists, then the triples (r, a. + R, br + k),

r=1..., k, are a solution to Heffter's difference problem

2.8 Lemma [19, 61]. A (C,k)-system exists if and

only if k=0 or 3 (mod 1)
Proof. A simple counting argument shows that k =0
or 3 (mod 4} 1is a necessary condition. For sufficiency,

we distinguish two cases:

Case 1. Lk = 4t .

X {r, 4t - r + 1) , r=1,..., £t -1
(¢ +r -1, 3t - 1), r=1,..., t -1
{(4t,+ r + 1, 8t - r + 1) , r =1, , £ -1

(Stg\x‘+l,7t—r+l), r=1,..., t -1

(2¢-1, 2t), (3t, St+l), (3t+l, 7t+l), (6t%l, 8t+l)
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Case 2. k = 4t - 1.

(r, 4t - 1) , L r=1,..., 26 =1
(4t + r + 1, 8t - r) , r=1,..., t -2
(5t + r, 7t - r - 1), r=1,..., t -2 4

(2t, 6t-1), (5t, 7t+l), (4t+l, 6t), (7t-1, 7t) .

2.9 Theorem. If v=3 or 21 (mod 24) , then

—~
there exists a cyclic STS(v) . \

-

Proof. Let. v = 6k + 3 _énq let {{a_,b }[r =1,..., k}
be a (C,k)-systeﬁ for k=0 or 3. (mod 4) . Then
{0, 2x + 1, 4k + 2}, {0, r, br +k}, «r f_l,..., k , are
base triples of a cyclic STS(V);

s

2.10 Definition [61]. A (D,k)—sysfem is a set of

ordered pairs {(ar,br)lr =1,..., K} such'tﬁdt
b_ - a. =r for r =1,..., k and

r _ _
k- ' o R
U b } = {1,..., k, k + 2,..., 2k, 2k + 2} .

'2.11 Lemma (19, 61]. A (D,k)-system exists if and

on;y if k=1 or 2 (mod 4) , except for k = 1.

Proof. A simple counting argument shows that k =1

or 2 (mod 4) 1is a necessary condition. For sufficiency,

-

we have:
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-
k=2: (1,2), (4,6) . 7
k=5 (1,5), (2,7), (3,4), (8,10), (9,12).
k = 4t + 1: )
{(r, 4t - r + 22,, r=1,..., 2t
(5t + r, 7t\— r+ 3), r=1,..., t
(4€ + £ +72, Bt - . +3) , r=1,..., t =2

(2t+1, 6t+2), (6t+l, 8t+4), (7t+3, 7t+4) .

kK = 4t + 2;

(r, 4t™—r + 3), r = 1,...; 2t
(4t +.r +4, 8 -1+ 4), r=1,..., t -1
{5t +\>/; 3, 7t - r + 3}, r=1,..., t - 2
(241, 6t+3), (2t+2, 6t+2), (4t+4, 6t+4), (Tt+3, Tt+4),

{(8t+4, 8t+6) .

2.12 Theorem. If v =9 or 15 {mod 24) , v £ 9,

then there exists a cyclic §TS (v)
n

Proof., Let v = 6k + 3 and let

' {(a .rb

bt T = 1,000, k}( be a (D,k)-system for k=1 or 2

r
(mod 4) , except for k = 1. Then {0, 2k + 1, 4k + 2},

o, r, b, + k}, r=1,..., k, are base triples of a cyclic

¢ STS (V)

-~

Summarizing, we have:
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2.13 Theorem. A cyclic STS(v) exists if and only

vl or 3 (mod 6) , except for v =9 .. ' /Q
' ‘ ) * ‘
/ - -
-«
\ ) '
( -
| ¢
( ‘
T
7 ~
*v-

- Fhe

& M
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Section 3. Reverse Steiner Triple Systems.

In 1972, Rosa {62] introduced the following problem:

for what values of v does there exist an STS(v) with an

-

_involution‘fixing exactly one element as a automorphism,
Athét is, a reverse STS(v) ? In the same paper, he showed
tﬁgt & necessary condition for the existencoﬂof_q-revefse
STS(v) 1is v El,AB, 9 or 19 (mod 24) . Ai;o, he con-

structed a reverse STS(v) fox_every v =1 (mod 24) ,

except.for v = Zé . for évéry- v3 or 9 (mod 24) and
- ) * ] . .

for v =19 . In the same year, Doven [23] produced a

" ‘ * % .

reverse STS(v) for v '= 25 + gave -simpler constructions

for v=3 or 9 (mod 24) and proved that the necessary
gogdition v 19 -(mod 24) is?asymptotically sufficient.
One year later in 1973, Teirlinck [68] showed that the nec-
N

essary conditfons are also sufficient. In this section, we
summariqs thgif/yell—known.results.

Throughout this thesis,,an element (x,i) of
V=2, {i} will be written for brevity as X,

3.1 Lemma [62]. TIf there exists a reverse STS(v) ,

then v=1, 3, 9 or 19 (mod 24)

5

* Recently, Denniston [20] proved that there are exactly
184 non-isomorphic reverse STS(19)'s .

# ** For a _correction, see Zentralblatt £4r Mathematik und

ihre Grenzgebiete, 272, 05013.
- 19
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Proof. Let (V,B) be a reverse STS(v) , with a .
as an agtomorphlsm where V = 2, x ?(v—l)/z U {=»} and
@ = (=)(0,1;), i=20,..., (v=-3)/2. Then B contains

all the triples of the form I, Oi' li} . i=0,..., (v -3)/2,
and does not contain any other triple involving « ; this

- follows from the fact that, by the definition of an STS, -
the pair Oi' li occurs in exactly one triple of B, and

therefore the third element of the triple containing Oi' li
will necessarily be « . The (v - 1)/2 triples containing
» are fixed under the action of a , while the remaining

(v.- 1)(v - 3)/6 triples in B are interchanged in pairs.

The latter triples may be of one of the following forms:

(iy {0,, 0., 0.1}, (1i1) {Oi' Oj' 1.},

(i) {1, 1., L.}, (1v) {in lj’ L.},

-where clearly the number of triples of the forms (i) and (ii)
is the same, and similarly for the triples (iii) and (iv).
Denote the number of triples of the forms (i) and (iii) by

m and n, respectively. Since |B| = v(v - 1)/6, we

have

{3.1.1) | m+ n = %v(ﬁ'— 1) - %(v - 1)1},

1
;{

(v - 1)/2

) pairs of 0's ; each triple
2 .

Further, thefe are (



of the form (i) contains three pairs of 0's, and each

21
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triple of the form (iii) contains cne pair of 0's so that

. (v - 1)/2
(3.1.2) 3m + n = :
' : 2
Solving (3.1.1) and (3.1.2), we obtain

= L - - = Liv - -
m = gelv 1){(v - 3), n = AN 1) (v 3)

\and since vl or 3 (mod 6) we observe that m and n
are integers if and only if v =1, 3, 9 or 19 (mod 24):

3.2 Lemmia [23, 62, 69]. If v=1 (mod 24), then

there exists a reverse' STS(v)

where

a

Proof. Let v = 24t + 1
Elements: V = 2 Yy {eo, -a, b}
Automorphism: o = (=) (Qs..v - 4) (ab)

Base triples: B = B1 U B2

~

By: {{=, a, b}, {=, 0, 12t - 1}, f{a, 0, 12t

.+4t—l}|r=l,..., 4t-l}

2

B_: {{0, r, br

- 3}}

.
T



where '{(ar,br)Lr =1,..., 4t - 1} is a (B, 4t - l)-system.
Then (V,B) is a reverse STS(v) with a'V73}/2 45 an N

involutory automorphism fixing exactly one element.
£

3.3 Lemma [23, 59, 62]. If v=33 or 9 (mod 28), -

then there exists a reverse STS(v) .

Proof. Let vZI3 or 9 (mod 24) .

- Elemgnts:'}v =2, UZ{W}
Automorphism: a = (=) (0...v - 2)
‘Base triples: B = B, U B, ! , i
wheére '
By: {{=, 0, (v - 1)/2}} ‘
B,: {{0, r, b, + k}lr =1,..., k}
where {(ar,br)|r =1l,..., k} 1is an {A,k)-system with

k= (v=-1)/6; since v=I3 or 9 (moed 24, k=0 or 1
(mod 4) and so an (A,k)-system exists. Then (V,B) is a-

Ct(v--l)/2

reverse STS{v) with as an involutory automor-

phism fixing exactly one element.

3.4 Lemma [62]. There is a reverse STS(1l9) .

i



Proof. Elements:. V = Z, x Zg U {=}
Automorphism: o = (m}(Oili) y 1i=20,..., 8

Base triples B:

1. 10

{00’03'06}'I01'04'07 2'05'08}’{0 '0 }'{O 5'06}'{02 03'07}
. o ( ’

{Oorolrlsfr »901021'14}; {01’02'13}'{03'04’18}’{03'05’17}'{04,05'16}
) {
{06107P12}II0 08'11}'{07 08'10}’{00' S'l } {0 7! 6_}1 L05r07114}

10):04,1451, 107,045,153, {05,04,153,10,,0,,1,}, 10,,0,,14}, {o 0g,151,

Then {(V,B) is a reverse STS5(19) .

3.5.Definition. A (w:k)—system is a set of ordered

pairs {{a_,b )[r = 1,..., k} such that b, ~a =1 for

r=1,..., k and

v fa,b } = (2,...%/2, k/2 + 2, k/2 + 4,..., 2k + 2, 2k + 4} .

3.6 Lemma. A (W,k)-system exists if and only if

k=0 (mod 4) .

Proocf. (=) Let {(ar,br)|r =1l,..., k} be a (W,k)-
system. Then, since k/2 1is an integer, Xk is even. On

the other hand,



» T N
(3.6.1) b_ - Ja_=3k(k+ 1),
1 r=1 T r=1 F - 2
. k k -
(3.6.2) T b+ §a_=2(2k + 4)(2k + 5)
r r 2
r=1 _or=1

+

-1+ (k/2 + 1} (k/2 + 3) + (2k + 3) .

Adding both sides of (3.6.1) and (3.6.2) yields
5k + 13k + 450 (mod 4) and hence k=0 or 3 (mod 4) ;

but since k 1is even, we have k0 (mod 4) .

-

(=) (see [68]). k = 4: (2,6), (4,7), (10,12), (8,9) .

k = 4t v ,

(2 +T, 4t + 2 - ¥) , ’ r=20,..., 2t - 2
(4t + 4 + ¢, 8t + 1 ~ r) , r = 0, , b -2

(5t + 2 +r, 7t +1 -1r), r=1,..., £t - 2

(2t+2, 6t+1), (4t+3, 6t+2), (7t+l, 7t+2), (8t+2,{t+4) .

‘ 3.7 Lemma [68]. If v =19 (mod 24), v # 19, then

there exists a reverse STS(v) .

Proof. Let v = 24t + 19, t =z 1,

Elements: V = U {=, a., b., c., di]i =1, 2}

224¢+10 » 350 BysoCy

Automorphism: o =

I
8
[
H
)
]
o
H
o
)
9]
’_J
0
[N
ol
'.._I
ol
o
o
¥
e
o
+
¥

Base triples: B = B, U B, U B, U B
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where

Bl: {{~,0,12t+5}

. { )
Bz' {ko,‘;t-’-l’al}' {0r6t+llb1}f {0)6t+3pcl}f {O’lz‘t&3'dl}}

B3: the collection of all base triples of a reverse STS(9)
based on {=, a . bi’ cy di]1_= 1, 2} with
(w)(alaz)(blbz)(clcz)(dldz) as an inveolutory automor-

phism,

By: {{0, r, b +4t}|r = 1,..., 4t} ~
%

where {(ar,br)lr =1,..., 4t} is a'kw,4t)—system. Then

12t+5
a

(V,B) 1s a reverse STS{v) with as the required

automorphism.

Summarizing, we have

3.8 Theorem. A reverse STS(v) exists if and only

if wv=1, 3, 9 or 19 (mod 24) .

A4



Section 4. Rotational Steiner Triple Systems.

Recall that an STS(V) is k-rotational if it adﬁits
an adtomorphism consisting of exactly one fixed element and
k disjoint cycles of the same length. Phelps and Rosa [59]
showed that there is a l-rotational S7TS(v) if and only if
vi3 or 9 (mod 24) and there is a 2-rotational STS(v)
if and only if v =1, 3, 7, 9, 15 or 19 {mod 24) . Also,
they showed that there are exactly 10 nonjisomorphic 2-
rotational STS(19)'s- and there are exactly 35 non-isomorphic
l-rotational STS(27)'s . |
In this section, we summgrize Phelps' and Rosa's

results {59] and obtain the necessary and sufficient condi-

tions for the existence of 3- and 4-rotational STS .

4.1 Lemma [59]. 1If there exists a l-rotational

STS(v) , then v 33 or 9 {mod 24)
R

“a

Proof. Let V = 2,-1 Y =}, and let
a = (@) (0...v 2) be an automorphism of a l-rotational

STS(v) (V,B) Since {»=, i, j} ¢ B implies
{=, i +(1, 3% 1} ¢ B, it follows that {=, 1, 3} ¢ B if
and only if i - j=(v -'1)/2 {(mod v - 1) ; in other words,

any l-rotational STS(v) contains (v - 1)/2 triples of
the form {», i, 1 + (v - 1)/2} mod v - 1. All 3-subsets

26
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of V not containing the element = are partitioned into
orbits under a all of which are of length ¥ - 1 except
possibly a ;ingle orbit QO of length (v - 1)/3 of triples
{0, (v~ 1)/3, 2(v - 1}/3} . It is easily seen that no 1-
rotational STS(v) contains triples of Qqy: this would
require v 1 (moed 6), and at the same time, there would

be need for further

viv - 1)/6 = (v - 1)/2 - (v - 1}/3 = (v - 1}{(v - 3)/6 triples
in® B which would then necessarily have to be partitioned

)3
into (v - 5}/6 orbits of length + - 1; this is obviously

impossible as (v - 5)/6 is not an integer. Thus the remain-
ing "viv -~ 1}/6 - (v - 1)/2 = (v - 1)(v - 3}/6 triples of
" B fall into (v - 3)}/6 orbits of length v - 1. 1If

{a, b, ¢} 1is a triple in one such orbit then clearly the

-

six differences t{a - b), zt{a - ¢}, (b - ¢) are all dis-

tinct, and if {al, b {az, b cz} are two triples

l' cl} r 2'
from two distinct orbits in B then the corresponding 12
differences are all distinct. Since there are still v - 3

nfh-zero differences "available" it follows that (v - 3}/6

must be an integer, and so we must have
(4.1.1) v=3 (mod 6)

On the other hand, since v 1is odd, the automorplﬁ%m

«V"D/2 1o an involution fixing exactly one element, and

,

so (V,B) 1s a reverse STS(v) . It follows from Section 3

that



(4.1.2) v

1, 3, 9 or 19 (mod 24) .

The congruences (4.1.1) and (4.1.2) together vield v =3 or

9 {(mod 24) .

4.2 Lemma [59]. If v=3 or 9 (med 24) , then

there exists a l-rotatiocnal STS(v) .

vaoof. cf. Lemma 3.3 in Section 3.

Lemmas 4.1 and 4.2 together yield

-

4.3 Theorem. A l-rotational STS(v) . exists if and

only if v 3 or 9 (mod 24) .

4.4 Lemma [59]. 1If a 2-rotational STS(v) exi'sts,

then- v=z1, 3, 7, 9, 15 or 19 (mod 24)

Proof. Let V = Z

2)'U =} and let

(Z(y-1)/2 *
o = (w)(oi...((v - l)/2)i) . 1 ¢ 22 , be an automorphism of
a 2-rotational STS(v) . If (v - 1)/230 (mod 2) then
(v-1)/4 . . . L ,
a 1s an involution fixing exactly one element so
that the STS(v) 1is a reverse STS(v) . But a reverse

STS(v) cannot exist for v =13 or 21 (nod 24) thus we

have v =1, 3, 7, 9, 15 or 19 (mod 24)
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4.5 Lemma. If vz3 or 9 (mod 24), then there‘
exists a 2-rotatiocnal STS(v) .
Proof. For v 3 or 9 (mod 24), there exists a

l-rotational STS(v) and v - 10 (mod 2) .
4.6 Lemma [59]. There is a 2-rotational STS(19) .

Proof. (sée No. 1 in [59]).

Elements: V = 2. x 2

Automorphism: o« = (w)(Oi...Bi) . i« 22

erl}t .

{2017010

Base triples B: 1%,00,01}, {00,30,60}, {Ol,l

l {
.50,01,4 }, 130,4010 }r {60’80'0

} 1 -
1 1 1’ 1’ -

Then (V,B) 1is a 2-rotational STS(19)

4.7 Lemma [59]. If v=7, 15 or 19 (mod 24) ,-

then there exists a 2-rotational STS(v) .

L

Proof. A 2-rotational §TS(19) exists by Lemma 4.6.
Let uz=Zl or 3 {mod &) , u * 9, and let U = Zu and
(U,W) be a cyclic STS(u) with 38 = (0...u - 1} 1its cyclic
automorphism. Put V = (Zu X Z5) U {»} and define a set of

triples B on V as follows:
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where

By: 1= ag, al}la e 2.},
ot {lay, (a-b),, (a+b)1}[a € 2,0 b=1,..., (u-1)/2},
—~ By L{ao, b

0’ co}[{a, b, ¢} ¢ W}.

Then (V,B) 1is an §STS(2u + 1) with

o = (m)(Ol...(u -1}, ie2,, as an automorphism. Set
v.=2u + 1, Then v=3, 7, 15 or 19 (mod 24) , v £ 19,
Let k be a natural number, and let
S(k) = {1,..., 2k -1, 2k + 1l,..., 4k - 1},
{2,..., 2k} if x 1is odd,
T(k) =
{1, 3,..., 2k} if k is even-. .
4.8 Definition [59]). A (F,k)-system is a set of
ordered pairs {(a_,b_)|r ¢ T(k)} such that b, -a =r

for all r ¢« T(k) and {ar,br} = 5{k) .

UreT(k)
4.9 Lemma [59]. A (fhk)—system exists if and only
if« k * 2.

Proof. We have T(2) = {1, 3, 4}, but it is easily

LY
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seen that S(2) = {1, 2, 3, 5, 6, 7} cannot be partitioned

-

into three pairs having differences 1, 3, 4 .

~
I

1l: {1, 3)
k = 3: (113): (8111)1 (5,9), (217)1 (4,10)
k =4: (13,14), (3,6), (11,15), (2,7), (4,10), (5,12), (1,9)

k = 5: (6,8), (16,19), (l4r18); (12r17)r (1r7)r (2,9), (3,11),
(4,13), (5,15) .

Let now Xk 2z & ; distinguish three cases:

Case 1. k = 2t , t = 3.

(r+l, 2k-r) , r=1,...

, k-2
(2k+1+r, 4k-1l-r) , r=1,..., t -2
(5t-1+r, 7t-l-r) , r=1,..., t - 2

(1,2k+1)y +k,3k-2), (k+1,3k), (3k-1,4k-1), (7t-1,7¢) .\
; . 'y

Case 2. k = 4t + 3, t = 1.

(r+1, 2k-r) , r=1,..., k - 2
(2k+2r, 4k-2-2r) , r=1,..., 2t
(2k+1+2r, 4k+1-2r) , r=1,..., t

{2k+2t+1+2r, 3k+2t-2r) , r=.l,..., £t -1 (t = 2)

(%,2k+l),(k,3k*2),(k+l,3k),(3k—l,4k—2),(3k+2t,3k+2t+2)



&

a
2,
?
.Case 3. k = 4t + i, t 2 2.
. ' ﬁr,_Zk-l-r), .

o k-1, 3k-2Nlka 3K); (2k-1, 4k-3)

and (i) for +t = 2

’

(26:30).' (28134) H

r=l,...,k—2

7

(19,29), (20,32), (21,35), (22,24), (23,31},

N _ -
4 (#1) for t = 3 B
. . N\
(2k-1+2r, 4k-3-2r) , r=1,...,t
(2k+2r, 4k-2r) , r=1,...,t
L) (2k+2t#3+2r, 3k+2t-2r) , r = 1,...,t-3 (t>3)

(2k+2t+dr, 3k+2t-3-4r) , 1 = 1.\.

(2k+2t+2+4r, 3k+2t+3-4r) , r = 1,

(/(3k+2, 4k-1), (2k+2t+1, 2k+2t+3)

.

and

/L (3k-3, 3k+1) if t 1is odd (;

(3k-1, 3k+3) if

4.10 Lemma [59]. If wv=1

exists a 2-rotational STS (v)

t

~

is even.

(E9d 24) ,
X

~—
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e LlE=1) /2] (E52)

then there

,L0t-2)/72T1e>3)
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) Proof. Let v = 24t + 1. | o
Elements: V =r(212t x Z5) U {=} | - L.
. Automorphisms o = (w)(0 ...(r2t - l) ) r 1 Z,
Base triples: B = Bl U\B2 U B3 J B4 u B5 1] BS
where ;o P\ (/ -
é, o By:  {{~, Oi,ltst) Yie 22 , : -
By: ({0, (4t),, (aéio}}, = - .
B3: {{00, ro,Jibr-l)i}|r = l,?.., 6t - lf r # 4t} ,

where {(ar,br)lr =1l,..., 6t -~ 1} is an (&, .6t-1)-system

or a (B, 6t-1)-system depending on whether t is odd or -

'gren.
84: {{001 (a4t_l)1r (b4t_l)l}} r r
j(05.1,,2,) if t is odd,
BS: : | ;
> {{0 1,30}} if t 1is even,
_ o e
/T{o /10, }, {01,51,1117w {01,31,71}} 1{ t =
L _‘\\_‘A,,,.'_ .
{{0 (e t2t) ), (dr+2t)l}|r e T(t)} if, t % 2

‘ /

. a . p ‘
where \i139/32)|r e T(t)} is a (F,t)-system. Then (V,B)
is a Z—Spfg;ioqall STS (v) . S ' -



-

. Lemmas 4.4, 4.5, ‘4.6, 4.3'and 4.10 together yield
f v

-

. ~"4.11 Theodem. A 2-rotaticnal STS(v) exists if

and only if wv=1, 3, 7, 9, 15 or 19 (mod 24) .

4.12 Lemma. If a 3-rotational STS(v) exists, then

vl or 19 (mod 24) .

Proof. Let V = (Z(v—l/B x Z45) ¢ {=} and let

a = (m)(oi...((v - 1y/3 - l)i) ' i« 23 , be an automorphism

of a 3-rotational STS(v) . If (v -1)/3=0 (mod 2) then
(v-1)/6 . . . ..

a 1s .an involution fixing exactly one element so

that the STS(v) is a reverse STS(v) .. But a reverse

STS (v) cannot exist for v =7 or 13 {mod 24) thus we

i

Have vil or 19 (mod 24) because of v =1 or 3 {mod 6)
- *
and wv=1 (mcd 3) .

4.13 Definition. An (E,k)-system is a set of ordered

pairs {(ar,br)]r =1,..., k} suchk that b, -a. = r for

-r=1,..., k and

k
u {ar,b b= {l,..., (k+1)/2 - 1, (k+1%/2 + 1,..., 2k + 1} .

r=1 r
4.14 Lemma. An (E,k)-system exists if and only if
k is odd. |

AN



Proof. (=) Since (k + 1)/2 is an integer, X
must be odd. ) ‘ . .-

(f)‘ k=4t + 1

4

(4t + %l? r, 8t +4=1), ra=1,...,2t+1
(£, 4t 4 2-1) , ~ - Tt =1,..., 2t
k. =4t - ]
4t -1+r, 8t -1, r=1,..., 2t
(r; 4t - r)’, . . r=1,..., 26 ~ 1.

4.15 Lemma. If vzl (mod 24) , then there exists

a 3-rotational STS(V);
« ' N
Proof. Let v = 24t + 1, t 2 1. B .
.Elements: V = (2

gt * 230 Y (=}

Automorphism: a = (=) (0,...(8t - 1)i) , ie'2
Base triples: B = Bl U BZ U B3 U B

where

By: (=, 0., (4t) V|1 € 25},

N
L}

B,: {{00, 0}, 02}, {00, (2t)l, (6t)2}},

By: {{00, rye by}, {0, r,, (br)o}lr =1,..., 4t -1}

where {(a_,b }|r = 1,..., 4t - 1} 1is an (E, 4t-1) ~system, -



-

B,: {{0,, Tys (br)z}lr =1,..., 4t - 1}

¢

) - “
where {(ar,br)[r =1,..., 4t - 1} 1is a (C, 4t-l)-system.

Then (V,B) is a 3~rotational STS(v) .

4.16 Definition. A (—B:k)-system is a set of ordered

pairs {(aribr)lr = lf"" k} such that b, -a_=r for
k _

r=1,..., k and U fa_,b_}.= {1, 3,..., 2k + 1} .

_' ) r=1 I r

-

4.17 Lemma. A (-B,k)-system exists if and only if

k

2 or 3 {mod 4)

vy

Proof. If we replace each 1 =1,..., 2k - 1, 2k + 1

in a (B,k)-system b 2k + 2 - i, then we will get a (-B,k)-

system.

4.18 Lemma. If v =19 (mod 24) , then there exists

a 3-rotational STS(v) .

Proof. Let v = 24t + 19, t 2 0.
Elements: V f (28t+6 x 13) U'{m}
Automorphism: o = (m)(oi.l.(at +5),), iez

Base triples: B =B, U B, UB, UB

1 2 3 ° %4 | /

where
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. Blz'{ﬁn, 0,, (4t + 3)i}|i € z3} ’ \

B,: {{003 (4t + 3),, (4t + 3),1, {0,, (8t + 5),, 1,1},

B3:{{001 ror' (br)l}r {02, 1'2 (br)o}lr = l,..-, 4t+2}

-

T or

where {(a_,b )|r =1,..., 4t + 2} is a (D, 4t+2)-svstem,

.«

& N
. ) = )
By: {{01, £y, (br)z.[r 1,..., 4t + 2}

where {(ar,br)[r =1,..., 4t + 2} is a (-B, 4t+2)-system.

Then - (V,B) 1is a 3-rotational STS(v) .

Lemmas 4.12, 4.15 and 4.18 together yield

4.19 Theorem. A 3-rotational STS(v) exists if and}
\arly if ¢ =1 or 19 (mod 24) .
N
4.20 53553.  If a 4-rotational STS(v}) exists, then

vI1l, 9, 13 or 21 (mod 24)

Prbof. We have v =1 or 3 (lnod 6) and v =1l

{(mod 4)

~:4.21 Lemma. If vl or 9 (mod 24) . then there

é&ists a 4-rotational STS(v) .
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Proof. For wvZ1l or 9 (mod 24), there exists a

-

2-rotational STS(v) and so does a 4~-rotational STS(v) .

4.22 Lemma. There is a 4-rotational STS(37) .

Proof. Elements: V (Z9 x 24) U {=}

Automorphism: a = (w)(Oi...Bi) ' ie2z,

Base triples B:

mloof-yz}f {m;01,03}

{0.,3.,6.}, i=2,3
i77i77i

{02r12140}r {02122103}! {02r42r5'l}r {01102183} L

{03,13,937, {03,23,71}, {03,43,81}, {00,01,63},

10g.15,2,}, {04,24,7,}, (0,3,.6,}, {05,4,.8;,3,

1 0''0'"1

{0 112 b, 10

l 1'21'72}' {01’31'62}' {01’41173} r

2

104,0,,13}, {04,1,,35}, {0

057850251, {04,35,75}

or-2’

{00042r03}t {00122r83} .
Ther (V,B) is a 4-rotational STS(37) .

4.23 Lemma. If. wv'=13 (mod-24) , then there exists

Y

a 4-rotational STS(v) .
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-
Proof. A 4-rotational STS(37) exists by Lemma
4.22. Let v = 24t + 13, _t % 1. ///A\\\\\\
Elements: V = (Zg, .4 % Z,) U {=}
. Auﬁs&%rphism: a = (w)(Oi...(Gt + 2)i) r 1€ (N
Base tr;ples: B = B1 J 82 d B3 J B4 J B5 u BS U B.7

"where we distinguish two cases.

Case 1. t=0 or 1 (mod 4) .

Let {(ar,br)lr =1,..., 3t + 1} be an (A, 3t+l)-

gystem.

B, : {{mf OOI (2t+1—b2t+1)2}r {mr Ol.r (-b2t+l)3}} ¢

B,: the_ collection of all base triples of a cyclic

STS(6t + 3) based on {2},

Zeges3 ™

(- By: {{05, (2t+1),, (4t+2)41},

g7 105, ry, (br)l}lr =1,..., 2t, 2t+2,..., 3t+l},

¢

B.: {{0., r {b_),1}, 0,, r (br)2}|r =1,...,3t+1},

5 0" "o’ r'l 1’
. I ! -
- Bg: {045, 0y, (2t+1-by, 404}, {0, 05, 053},
B, {{(b2t+l—2t—l—r)0, 0,, r3}|r = 1,..., 6t + 2}-.
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4 a0

Case 2. t=22 or 3 (mod 4)

Let '{(ar,br)lr =1,..., 3t + 1} be a (B, 3t+l)-

B :.{{‘”, 00, (2t—2_b2t+l) }: {mp Olr ("b2t+1)3}} ’

and B are the same as Case 1,

B 4 5

3+ B

' - {

B,: {{(b2t+l-2t+2-r)o . 0, (2+r)3}]r =1l,..., 6t +2}.

Then §V,B) 'is a 4-rotational STS(v) . .

4.24 Lemma, If v =21 (mod 24) , then there exists

a 4-rotational STS(v) .

Proof. v = 24t + 21, t > 0.

Elements: V = (Zgpyg * 24) U (=}

(m)(Oi---(Gt 40, 1ez

Automorphism: «a

B, B, UB, UB, u BL UB

Base triples: B 1 2 3 4 5 6

where we distinguish three cases.

Case 1. t=0 (mod 4) .

By: ali=, 0o, (6t+2)3}, (=, 0y, (6t+4),}},

L]
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21 H

r =*1,..., 3t+ 2}
where {(ar,br)[r =1,..., 3t+2} is a (B, 3t+2)-§ystem,

B .

37 {{00, (6t+4) 03}} '

l!

B,: {{0,, r (br+t)2}|r =1,..., t}

4 2’

where '{(ar,br)lr 1,..., t} is an (A,t)-system,

B_: {{02, (3t+l)2, 0

5 }r {02' (3t+2)2r (6t+4)3}} ’

0

Bs‘ {{00, (3t+2)2, (6t+3)3}, {qo, (6t+4)2, (6t+4)3},
F] L

{00, rz,'(2r)3}|r = l,...%‘?&, 3t+3,..., 6t+3} .

Case 2. t =1 {mod .4} .

Bi: {{=, 0

o 11
1t (6t+2) 3}, {=», 0., 0,}},

0 L4
By: {{04,x . (b}, 1, {ol,rl,(bryz}, {03,r3i(b§)1}|
r=1,..., 3t + 2}
~ :

where {(ar,br)lr =1,..., 3t t92} 1s an (A, 3t+2)-system,

Al



where

where

Then
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-

S
34, B5 and B6 are the same as Case 1.

-

Case 3. tz2 or

11: -{{‘”: Oof (Gt)3}

3 (mod 4) . T

r {cn,

0

BZ:i{{OO'rO'(br)l}' {Ol,r (b )2} {03.r3.(br)l}|

r=1,..., 3t + 2}

{(ar,br)lr'= 1,...,

33: {{00, (3t+3)lr

03}},

B,: {{02, Los (br+t)2}lr

{(ar,br)[r =1,...,

//?7

BG: {{00,02(6t+3)3}-

{00’

r=1,..., 3t+l,

(V,B) 1is a 4-rotational

Lemmas  4.2Q, 4.21,

t+l)

{OO

4.22,

3t-+.2} is a (C, 3t+2)-system,

=1,..., t} /f

¢} is a (B,t)-system, -

}, {02, (BtTQ)Z, (6t+2)3}}.

11y, (6t+2) 41,

)5 (6t+4} 1, {00,(r+l)2,(2r—l)q}|

3t+4, ..., &6t+2} .

STS (v) .

4.23 and 4.24 together yield

e



43

4.25 Theorem. A 4-rotational STS(v) exists if and
only if v =1, 9,‘_].3 or 21 (mod 24) .
4.26 Corollary. For each order v =1 6r 3 (mod 6) ,
. 7

there exists a k-rotational STS(v) for some k < 4.

4.27 Lemma. If a 5-rotational STS(v) exists, then

vzl, 51, 81 or 91 (mod 120)

Proof. Let V = (Z(v-l)/S x 25) ¥ {=} and let

a = (w)(oi...((v - 1}/5 - 1)) ' ie Z5 + be an automorphism
of a S-rotational STS(v) . If (v - 1)/520 (mod 2) then
a(v_l)/lo is an involution fixing exactly one element so

that the STS(v) 1is a reverse STS(v) . But a reverse
STS (v} cannot exist for v =7, 13, 15 or 21 {mod 21)
thus we have v 1, 51, 81 or 91 (mod 120) since v 1

or 3 {med 6) and v 1 (mod 5)

4.28 Lemma. If v =51 or 81 (mod 120) , then

there exists a 5-rotational STS(v)

Proof. For v =51 or 8l {mod 120) , there exists

a l-rotational STS(v) and so does a S-rotational STS (v)

i

For v =1 or 91 (mod 120), the pxistence problem

for 5-rotational STS(v) remains open.
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4.29 Theorem. A 6-rotational STS(v) exists if and

only if v=1, 7 or 19 ({(mod 24) .

Proof. (=) Let V = (z(v~l)/6 x ZG) U {=} and let

a = (m)(oi...((v -1)/6 - l)i) ' i 5'26 + be an automorphism
of a 6~rotational STS(v) . If (v - 1)/6=0 (mod 2} then
u(v-l)/lz is an involution fixing exactly one element so

L]

that the STS(vi is a reverse STS(v) . But a reverse
STS (v) cannot exist for v =13 (mod 24) thus we have

vz=1, 7 or _}9 {(mod 24)

(=) For wv=1, 7 or 19 (mod 24) , there exists

a 2—rota£iona1 STS(v) and so does a 6-rotational STS(V).



Section 5. Regular Steiner Triple Systems and Steiner Triple

Svstems Wlth an Involution F1x1ng Exactly 3 Elements”
S

5.1 Definition. A design is k-regular if it admits

an automorphism a. consisting of k disjoint cycles of the

‘same length.

! Note that k must be a divisor of the degree of «a .

We may discard the trivial case when k equals the degree{

or since tHié is the case of cyciic designs.
\<<\” In thls section, we consider k-regular STS(v)'s

Slnce v El or, 3 (med 8) , k=3 or v/3. It is easy
to ske that the unigque STS(9) is 3-regular. From Section 1,
we have immediately the following:
LS
X ﬁp&
5.2 Theorem. Let k = 3 or v/3. Then a k-regular’
STS(v) exists if and only if v =3 (mod &) , v o+ 3.

Using integer partitions, we obtain a new construc-—

tion of 3-regﬁlar STS .

5.3 Construgtion. Let v = 6t + 3, t 2 1.
Elemenﬁs: v o= 22t+1 x Z3
Avtomorphism: o = (Oi...(Zt}i) . ie ZB'

We distinguish two cases.



where .

where

where

where

wheré

(V,B)
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Case 1. £330 or 1 (mod 4) .
-
Base triples: B =,Bl U B2
. A
Bl: {{OO, Olp 02}} r
B,: {{Oif ri, (br)i+l}|i € 24, T = 1,,.;} t}
-
'{(ar,br)[r =1,..., t} is aﬁ (A,t)~system.
T
Case 2. t.EZ. or 3 (mod 4) . .
Base triples: B = %1 Y B, U By (”3
3
Blz {{00, (2t)l, 12}} ’ /\
- q ]
BZ,. {{Oor ror (b}r)l.l'p {021 rzl (br)o}lr l:---f t}._,
. .
{(ar,br)lr =.1,..., t} is*a\i?,t)-system, o d

. ‘
»
,'/_/
- ]
4 L

By: {{01, £ (br)z}lr = 1l,..., t}

{(ar,b )|r = 1,..

r

is a 3-regular

., t} is a (—B,t)Fsystem. Tﬁen

[
- ' ! Q

STS(v) .
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_ Now, we consider STS with an involution fixing
exactly 3 elements as an automorphism. The existence of

such systems have been conjectured for every v 1 or 3
-yt

(mod 6) , v =2 3. In the case 53 (med 6) , éﬁgh STS(v)*s

can be construczéd by Bose's techniques [5]. 'In the case

- v'®1 7 (mod 6) , the problem is still open and we have not

succeeded iIn this case yet. However, we give a new construc-

tion fof the case v =3 (mod 6) .

5.4 Construction [5Y. Let G  be-n finite multipli-

cative abelian gfoup of order 2t + 1. = set  V = G X Zg and

.define a collection of 3-subsets B on V‘jé: follows: -

- , . )
(1) '{aO' ay azf for every a§§ G, | | f

(11) {ai, bi’ ci+l} .for every i e 2, and
2

"a,b,c ¢ G such that a + b and ab = c° .

Then (V,B) is a STS(6t + 3) .

L

.v=3 (mod 6) , then

5.5 Theorenm [se% 24].
there exists an STS(V}#.with an involutory automorphism
fixing exactly 3 elcfemts.

Proof. 1In Constructio# 5.4 above, consider the auto-
- . . 3
morphism a of (V,B) defined by‘\nigi) = (a l)i for'eveggﬁ_

@ e G and i e Zg .

' - ——&4!;_\\1\
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A 5.6 Construction. Let v = 6t + 3 .

.Elements: V = (ZZt x 23),U {a, b; cl

- .. Automorphism: a (a) () (€) (0, -, 42t=1) ) , ie 25

. 0o |
BldBZJB

Base triplés} B
where
Bl:- {{ar br c}f' {00' Olr 02}} r

;ab, {0y, £, B, (0, £y, €1},
. .

By: {104, t,

Hr=1,..., £t -1, 1 ¢ Zj}'

H

where {(ar}br)lr l,..., t -1} is an (A, t-1)-system or

a (B, £fl)-system depending on whether ¢t =1, 2‘ (mod 4) or-

t=0, 3 (mod 4) ; distinguish two cases:

Case 1. tz1 or 2 (mod 4) .

By: 104y, (2t-1),c}, {0, (2t-1),,a}, {0,,(2t-1),,b}} .

Case 2. t=0 or 3 (mod 4) .

~

B4: {{00,(2t—2)l,0}, ‘[01,(2t“2)2,a}, {02’(2t—2)0'b}} .
™~ Then (V,B) 1is an' STS(v) with at as an involutory auto-

‘morphism fixing exactly 3 elements.



CHAPTER 2. TRIPLE SYSTEMS WITH X > 1

Section 1. Introduction.

A triple system with v elements and balance factor -

A (TS, (v)) is a 2-design §,(2, 3, v) . A system TS, (V)
with A =1 is an STS(v) . As mentioned in Chapter 1,
Kirkman [41] determined TS, (v) . Bhattacharya [4] used

teéhniques suggested by Bose [5] to completely determine
TS,(v) ;. TS5, {v) ~for every A was determined first by

" Hanani [34].

1.1 Theorem. A TS, (v) exists if and only if

A
(1) 221, 5 (mod 6) and v=1, 3 (med 6) or
(i) 122, 4 (mod 6) and vz0, 1 (mod 3) or
{(iii)y x =3 mod 6) and v=1 (mod 2) or

{iv) X

0) {mod 6} and v 2z 3.

Y
Hanani's proof employs recursive construction

- techniques; direct proofs have been given b§ Nash-Williams

[(51] and Hwang and Lin [38].

In this chapter, we provide cyclic TSA(V)'S with

A > 1 determined by Colbourn and Colbourn [17] (Section 2).

49
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. In Section 3, we obtain the necessary and sufficient condi-

tions foi the:Existence of l-rotational ?Sk(v)- with_évery'

A >”1‘ obtained in [10].



Section 2.

Cyclic Triple Systems.

Throughout this section, we will assume the set of

elements of our cyclic TSA(v)

Eo be

responding cyclic au&emorphism to be a

Finding a cyeclic TSA(V

)

a_suitable collection of base triples.

.can be recast as follows.

»

triples; each base trible (a,

,Coltection of six differences

X

{x, vy, z} be a difference triple obtained in this manner. &

b,

v

Ag

(0...v - 1)

= Zv and the cor-

- Ms—equivalent to finding

ain, this problem

Consider a collection of base

c} 1is represented as the

{a-b, b-a, b-c, w-b,

c—

To represen this set, it suffices to retain only the

diff nce triple for the base trlple, whlch\ls

{min{a-b, b-a}, min{(b-¢, c-b), min(c-a, a-c)} .

It is evident that either x, y

is the sum of the other two.

.none of x, y or =z exceeds

and =z

s

um to v

Let

!

or one

t is further the case that

v/2 .

P

A difference triple is

-taken to be a triple satisfying these properties.

D(v,A) the multiset containing each i £
(.
A times when v is odd. When v 1is even,
in addition the difference v/2 A/2 times. % us
' is not defined for v even and‘ A odd. When v =0
define DO(V,A) = D{v,A} and -Dm(v,A) = Dm_l(v,k)

Following Colbqprn and Colbourn [17] we denote by

Heffter's difference problems (see Chapter 1)

51

or 0 < i < v/2

D{v,A}
{mod 3)

{v/3} .

give a solution

a, a-c} .

\{(V,A) contains

r
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to the existence of cyclic TSA(V)'S with A €1 .
Colbourn and Colbourn [17] generalize Heffter's difference

prablems for arbitrary 1 :

I. If v=1 or 2 (mod 3), can D(v,\) be pazr-

titioned into differenece triples?

II. If v=0 (mod 3), is there an m for which

Dm(v,A) can be partitioned into difference triples?

They showed that the resolution of these two difference

problems would be equivalent to a complete determination of
—

cyclic Tsf(v)'s.

2.1 Lemma [17]. If v=2 (mod 4) and X 22 (mod 4) ,

then there is no Tyclic _TSA(V).

o
Proof. Since v is even, every'difference.triple
uses either zero or, two odd differences. Now D(v,X) con-

/

. tains an odd number of odd differences; in fact, for

v =4m + 2, it contaihs< 2Am + A/2 odd differences - this

is odd since }/2 1is odd. This completes the proof when

A%

© M

l or 2 (mod 3) . in the case v =0 (mod 3) ,

v = 12m + 6 . But then the difference used by the base

Y

triple(s) of length v/3 is 4m + 2 ‘which is even. Hence
the difference triples must use an odd number of odd differ-

ences and this cannot be.
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Y 4 ' 53
Theorem 1.1 and Lemma 2.1 together yield -

N NN
2.2 Lemma. If a cyclic* TSA(V) exists, then

X
l, 5, 7, 11 (mod 12} and wv =1, 3 (mod 6) or

(ii) A =2, 10 (mod 12) and wv=0, 1, 3, 4, 7, 9
(mod 12) or .
(iii) A =23, 9 (mod 12) and v =1 (mod 2) or
S(iv) A=4, 8 (mod 12) and v =0, 1 (mod 3) or
:L,_.‘
(v) X =6 (mod 12) and v =0, 1, 3 (mod 4) or

K ' (vi) X

-~

0 (mod 12) and v = 3.

{

Except for TSl(9) and T52(9) , this necessary

condition is sufficient. From Chapter 1, a.cyclic TSl(v)

exists if and only if v=1 or 3 (mod 6), Vv # 9. Thus
we. may assumelthgt o> 1. A simple argument demonstrates
that there iS'no cyclic TSé(Q) . Further, since the.exis£-
gpce of a cyclic TS, (v) implies the existence of a cyclic-

Tstk(v) for all: £ = 1, we. consider only cyclic Tsk(v)'s

for ' N - ‘Kf?
Lo ‘.’. i . - ‘. 1
N4 o .
o= 2, v0,1, 3, 4, 7 0or 9 (mod 12), v % 9,
A= 3, vl (mod 2},
— A =4,. vI0 or 1 (mod 3),
A= 8, v0, 1 or 3 (mod 4) ,
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_ . A o= 12, v =3,
_ A1 or S5 (mod 6) , XA > 1, and 21 or 3 (mecd 6).

To determine cyclic TSZ(V) » Colbourn and Colbourn

[17] used difference triples. We present a new construction

here employing integer partitions.

2.3 Lemma. If v=0, 1, 3, 4, 7 or 9 {(mod 12) ,

L]
v ¥ 9, then there exists a cyclic TSZ(V).

Proof. We distinguish three cases. .

Case 1. wv=1, 3, 7 or 9% (mod 12) , v ¥ 9,

\\\\ In this case, we have a cyclic TSl(v)

Case 2, v 0 (mod 12)

Let v = 12t. .

Base triples:. {{0,4t,8t}, {0,4t,8£}, {O,r,br}[
r=1,..., 4t - 1}

. where {(ar,br)lr =1,..., 4t - 1} is a (C, 4t-1)=-system.

.

Case 3. v =4 {mod 12)

Let v = 12t + 4 .

Base triples: {{O,r,br}lr =1,..., 4t + 1}

I

where {(ar,br)[r 1,..., 4t + 1} is an {A, 4t+l)-system.
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- 2.4 Theorem. A cyclic Tsz(v) exists if and only

if vzo, 1,3, 4,7 or 9 (mod 12), v + 9.

55

2.5 Lemma [17]; If v=1 (mod 2), then there exists .

a cyclic TS3(V) .

Proof.

Case 1. 2t +1=1 or 2 .(mod 3).
{(r,r,min(2r,2t+1-2r))|r = 1,..., t}

partitions D(2t+1, 3) .

Case 2. 2t + 1=0 (mod 3) .
{(r,r,min(ér,2t+l—2r))lr =1,..., t, £ % (2t+1)/3}

. *
partitions D3(2t+l, 3) .

—~—

. In the case A = 3, Hwang and Lin's determination

of TSB(V)'S“ [38] also gives cyclic TS, (V) 's .

. 2,6 Theorem. A cyclic TS, (v) exists if and only

if v=1 (mod 2} .

2.7 Lemma. If vzoO0, 1, 3, 4,.7 or 9 (med 12) ,

‘then there exists a cyclic TS, (V)

-/
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. " Proof. For v=0, 1, 3, 4, 7 or 9 (mod 12) ,

v # 9, we have a cYélic TSZ(V). ‘ . ' \\\\\
A cyclic TS,(9) has base triples "{0,1,3}, {0,1,2},

. - T

‘{0,2,5}, "{0,2,5}), {0,1,5} and {0,3,6} .

’

! o
* J .
: 2.8 Lemma [17]. If”é:iG (mod 12) , "the
TTT_exists a cyclic TS4(v). '

L)

Propf. Let v =12t + 6, t21. Consider the

following difference triples:

P
{2r+1, 3t-r+l, 3t+r+2) , r=20,..., £t -1
- (2r+2, St-r+2, St+r+4) , r=20,..., t -2
(2r+2, 3t-r-1, 3t+r+l) , -f?é 0,eeer £t =2
n (2r+l, St-r+2, St+r+3)., r=0,..., t -1 .
{2r+2, 3t-r+l, 3t+r+3} , r=0,..., £t -2
(2r+1, S5t-r+3, St+r+4) r=20,..., £ -1 /
(2r+2, 3t-r, 3t;r+2)‘>\\,/ ﬁ\j 0,evey t = 2
h (2r+l, 5t-r+2, 5t+r+3) , Y= 0,..., t -1
(2t, 2t+i, 4t+1) , taken twice )
-
(3t+1, 3t+2, acd) |
(2t+1, 2t+2, 4t+3) , o
(2t, 2t, 4t) ,-
(3t, 4t+3, 5t+3)
‘ These triples pangizifn D,(12t+6, 4) . ' T e
4

|
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A cyclic TS,(6) has base triples "{0,1,2¥ {0,1,3},

“{0,1,3} -a’}d '{0,2‘,4}'. L/\
\\'--.‘

2%9 Lemma [17]. If v =10

eﬁﬁsts a cyclic TS, (v) .

4

Proof. Let v = 12t + 10,

following difference triples:

(2r+1, 3t-r+3, 3t+r+4) ,
(2r¥2, S5t-r+4, 5t+r+6) ,
(2r+1, 3t-r+2, 3t+r+3) ,
(2r+2, 5t-r+3, St+r+5) ,

(2r+27’§z-r, 3t+r+2) ,

\
|

{2r+1, 5t-r+5, 5t+r+6} ,
(2r+2, 3t-r+l, 3t+r+3) ,
(2r+1, 5t-r+3, 5t+r+4) ,
(2t+1, 2t+3, 4t+4) ,
{(2t+1, 2t+2, 4t+3)} ,
(4t+2, 4t+3, 4t+5) ,

(2t+1, 4t+3, 6t+4) ,

{(3t+1, 4t+4, 5t+3}) , +

(2t+2, 3t+2, 5t+4) .

These triples partition D{12t+10,

]

{mod

4} .

12) ,

then there

57

IS

0 .\ Consider the

E -1
£ -1
, £ -1
r £ -1
B -1
, £ -1

t -1

d_
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2.10 Theorem. A cyclic TS,(v) exists if and only
if v=0 or 1 (mod 3} .
. | .
2.11 Lemma. If v=1 or 3 (mod 4}, then there
exists a cyclic TSG(V)-. ' _ : :
Proof. For v=1 or 3 (mod 4), “e have a cyclic
TS, (v) . : .
3 .
—~ Q

Moo

———

2.12 Lemma [17]. If v =0 (mod 4) , then thefe

exists a cyclic TSG(V)'

fq Proof. Let v =_4t, t =20 ; Consider the following
: . SN -

difference triples:

{2r-1,2r,min(4r-1,4t-4r+1)), r l,...,t, taken twice

(r, r, min{2r, 4t-2r)) , r l,..., 2t - 1. =
3 ‘ o -

i

" .
These triples Rértition D{4t,6)

Lh\/ \¥ ’ ) N . -
.

2.13 Theorem. A cyclic TSG(V) exists ifiand only

if v=0,1 or 3. {mod 4) .

2.14 Lemma. If v ¥2 (mod 12) , then there exists

a cyclic _?Elz(v).

. N\
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_exists a cyclic TS
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N | o |
s Proof. For vZ0, 1 or 3 (mod 4), there exists

-~

a cyclic TSG(V) v For v=6 or 10 (mod 12) , we have a

cyclic '’ 'l‘S‘4 (v) . A%
N 2.15 Lemma [17]. If v =2 (mod 12), then there

12V -

v

Proof. Let v = 12t + 2, t 1. Consider the

-~

following difference triples:

—
.

(2r+2, 3t-r, 3t+r+2) , r =20,..., t=-2, taken six times

{2r+1, S5t-r+l, St+rt+2), r = 0,..., t-2, taken six times

(2r+1,8t-r, 3t+r+l)

Lama

(2r+2, 5t-r, 5t+r+2) ,

r =20,..., t=-1, taken twice
=0,..., t-2, taken twice
(2r+1, 3t-r#l, 3t+r+2), r = 0,..., t-1, taken twice
(2f+2, St—rz 5t+r+2) , r =0,..., t-2, taken twice
{(2r+1, 3t-r, 3t+r+l) , r=20,..., t-1
(2r+2, ASt-r, St+r+2) , r=20,..., t=2
(2r+1, 3t-r-1l, 3t+r), r =0,..., t-1

{2r+2, 5t-r-1, St+r+l), r = 0,..., t-2

(2, 2t+1, 4t+1) , taken seven times
(2t.f3t+l, 5t+1} , taken four times
woo (2841, 4t+l, 6t)
( N
(3t+1, 4t, 5t+1) , e

(3t+1, 4t+1, 5t} .
_,t;

These triples partition D({12t+2, 12} .

-
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2.16 Theorem. A cycl}c TS,,({v) exists if and only

12
»
if v 2 3.

b | .

2.17 Lemma. If A=2 or 10 (mod 12), X #.2,
\ .

then there exists a cyclic TS, (9) .

\

Proof. Case 1. A =«k2{ + 2, t

v
'—l
)

We have a cycllg\ TSy, _g(9) and a cyclic T58(9).
. \‘: .
N

Case 2. A= 12¢ + 10 .

<
i
. : .
We have a cyclic T512t+4(9) and a cyclic TSG(B) . \
: A | 4
2.18 Lemma. If wvZ1 or 3 (mod 6) and X =1 or
S (mod 6) , A > 1, then there exists a cyclic TS, (v) * - //r/
s .
/,1.- N
,qj Proof. Case 1. XA = 12t + 5, t =2 1.
A : 1
We_have a cycl\g- T512t+2(v) and a cyclic TS3(V) . |
——— ‘
A cyclic TS (9) has base triples {0,1y2}, {o,1,3}, {o0,1,4},
{0,1,5}, (0,2,4}, {0,2,5}, {0,3,6} and {0,3,6} . (
‘ . A -

4 !

-

Case 2. ) ¥<12t + 7, t=20. ,

We have a cyclic Tslz+4(v) and a cyclic TS, ({v) . !

3

se 3. A =12t + 11, t = 0.

w§ have a ¢yc11q\ T$12t+2(v) and a cyclic ng(v).
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| . A / . /
Case 4. A = %fgff'l‘ £t 2 1. — L .
“\__r ~ We have a.cycllc. TSth_Z(v) and gicyqllc TS3QV).

2.19 Theorem. Let A3l or 5 (mod 6), A+ 1. |
- N . . N ’;*—\_
Thezﬁg cyclic TS, (v) exists if and only if v 31 or 3 >
(méd” 6) . | |

Summarizing we have

N

2.20 Theorem. The neces

condition for the exist-

ence of a‘cyclié TSA(V)

(i) %31, 5% 7, 11 (mo@ 12) and v'3l, 3 (mod 6) or
(i) A =2, 10 (mod 12) and v=zo0, 1, 3, 4, 7, 9
(moa 12) or |
‘- (1ii1) X =3, 9 (mod 12) an(.i. vzl (mod 2) or
| (iv) 224, 8 (mod 12) and v =0, 1 (mod 3) or
(v XA =6 (mod 12) and w=0, 1, 3 (mo? 4) or
o (vi) \20 (mod 12) and v =3, \

is also sufficient with only two exceptions: There are no cyclic

| 4

TSl(9) and T52(9).
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~Section 3. Rotational Triple Systems.

In this secti?h, we demonstrate that the necessary

condition for the ‘existence of TS, (v) 1is also sufficient |

L]

for the existence of l-rotational TSA(V) , except for N
. . 1
A =1; in the latter case, we have v =3 or 9 (mod 24)
e )

from Chapter 1. Since the existence of a l-rotational

TSA(V) also implies the existence of a l-rotational
ngk(v) for all t 2 1, we need onlv to construct 1-

rotational triple systems TSA(V)'S for

A=2, wv=0 or 14 (mod 3) ,
A=3, v=1 {(mod 2),
A =6, v 2 (mod 6) ,

Azl or 5 [(med &), A > 1, and v=1 or 3 {(mod 6).

In what follows, we will always assume the set of elements

of our l-rotational TS, (v} to be V = 21 U {=}, and the
corresponding automorphigp te be a = (»){(0...v = 2} .

3.1 Lemma. If v =0 (mod 6), then there exists a

l-rotational Tsz(v)

n

Proof. Let v 6t , t 2 1.

62
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Case 1. t=1 (mod_272§\\f<\:}\

Base triples: {{mrouzt}rjqajifﬁf

| o
{(ar,br)lr =1l,..., 2t - 1} is an (A, 2t-1)-system.

b
-

&
Case 2. t =0 (mod 2) .

Base triples: {{=,0,4t-2}, {O,r,br}[r =1,..., 2t -1}

~

lag,b)jr =1,..., 2t - 1} is a (B, 2t-1)-system.

3.2 Lemma. If v =4 (mod 6), then there exists a

l-rotational TSZ(V).

where

where

Proof. Let v =6t + 4, t ».0. A
— k. C
c 1. t=0 a.2). .
ase (mo )] // .
Base triples: {{=,0,2t+2}, {0,2t+1,4t+2}, {0,r,b_}|

-

Y|lr =1,..., 2t} is an (A, 2t)-system.

Case 2. t=1 (mod 2) . .

Base triples: {{=,0,4t}, {0,2t+1,4t+2}, {O,r,br}l

r=l;---.r 2t}

a,,b)|r =1,..., 2t} is a (B, 2t)-systen.

-

.

3.3 Lemma. If wv=1 (mod 6) , then there exists a

l-rotational TSz(v).

=

}r = 1,...; 2£ -‘(f S~
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Proof. Let v =6t + 1, ta21. .

o~
~ case 1. t=1 (mod 2) .
—= .
@ e=1: VU
Base triples: ({=,0,3}, {=,0,3}, {0,2,4}, {0,1,2}.
(ii) t =2 1:
Base triples: {{=,0,2t+1}, {0,2t,4t}, {O,r,br}l .
r=1,..., 2t - 1} - ' .
. .
where , {(ar,br)]r = 1l,..., 2t = 1} 1is an (A, 2t-1l)-system.
Case 2. tz0 (mod 2) .
[
{1} t = 2:
R & Base triples: {=,0,6}, {«»,0,6}, {0,4,8},

{0,1,3}, {0,2,7}, {0,3,4}.

(ii) t > 2
. Base triples: [{{=,0,4t-2}, {0,2t,4t}, {O,I,br}|

r=1,..., 2t - 1} {\

where {(ar,br)|r =1,..., 2t - 1} is a (B, 2t-1)-system.

o

3.4 Lemma. If v 3 (mod 6), then there exists &

-

l-rotational TSZ(V)

Proof. Let v = 6t + 3, t =2 0,

Case 1. t =0 (mod 2) .



Sk &

Base triples: {m,O,iTZ'%m,O,l}.

—

(ii) ¢t > 0:
Base triples: {{W,0,2t+l},'{0,r,br}[ —

r=1,..., 2t}

~

, | | - |
where/’T(ar,br)lr =1,..., 2t} is an (A, 2t)-system.

—r

Case 2., t = lg (mod 2) .

(1) t = 1: | C\
. Base triples: ({=,0,4}, {«,0,4}, {0,1,2}, {0,2,5}.

(ii) t > 1:

Base triples: {{»,0,4t}, {O,r,br}lr =1,..., 2t}

where {(ar,b Jr = 1,..., 2t} is a (B, 2t)-system.

r

The l-rotational TSz(v)'s constructed above have

no repeated triples, except for v =3, 7, 9 and 13.

3.5 Theorem. A l-rotational Tsz(v) exists if and

f
only if vzI0 or 1 (modfﬁ).

3.6 Corollary. A l-rotational TS,(v) exists if and

N\,

only if v30 or 1 (mod 3).
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0 or 1 (mod 3), then there

3.7 Corollary. If v

exists a l-rotaticnal TSG(V)

3.8 Lemma. If v =1 (mod 2), then xMts a

l-rotational TSB(V).
<3

Proof. Let v = 2t + 1, t =2 1.

- .
Case 1. t=1 or 2 (mod 4) .

(i) t =1 :

"Base triples: {=,0,1}, {«,0,1}, {=,0,1} .

(i1) t > 1:

BaSé triples: {{m,O,l}, {mrort}f {Ofrrbr}l

T r=1,..., t - 1}

where '{(ar,br)lr =1l,/..., £t -1} is an (A, t-1)-system.

Case 2. t=0 or 3 {mod 4) .

. Base triples: ({{=,0,2}, {=,0,t}, {0,r,b_}|

r=1,..., £t - 1}

where {(a_,b.)|r = 1,..., t - 1} 1is an (B, t-1)-systen.

The {(trivial) l-rotational TS3(3) has, of course,
repeated triples; the l-rotational TSB(V)'S of other orders

constructed above have no repeated triples.

\f
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3.9 Theorem. A l-rotational TS3(V) exists if and

only if v=1 (mod 2) .

\\ exists

3.10 Corollary. If v =1 ({(mod *2) , then there

a q—rotational TSG(V)

N

3.11 Lemma. If wv=2 Gnod 6) , then there exists a

l—rotatibnal TSG(V)

where

where

only if

Proof. Let v = 6t + 2, t 2 1.
Case 1. t£t=2 or 3 (mod 4) .

Base triples: ({=,0,2}, {»,0,2}, (,0,1}, {0,3t,3t+l},
{{O,r,br},‘{O,r,err =1,..., 3t - 1}
{(ar,br)lr = 1,..., 3t - 1} is an (A, 3t-l)-system.
Case 2. t=0 or 1 (mod 4) .

Base triples: (0,0,3}, {=,0,3}, {=,0,1}, {0,3t,3t+1},

{{Orrfbr}r {O,I,br}lr l,..., 3t -~ l}

{(ar,br)|r =1,..., 3t - 1} is a (B, 3t-1)-system.
Corolla&ies 3.7, 3.10 and Lemma- 3.11 together yield

3.12 Theorem. & l-rotational TSG(V) exists if and

vz 3.

-

RN



3.13 Lemma.‘ If vl or 3 (mod 6) an& AZ1l or E

‘5. (mod 6) , - XA > 1, then thefe eiists a l-rotational
. Tsk(v) .

e
/

Proof. Case 1. X = 6t + 1, ﬁ = 1. Then we have -

a l-rotational TS¢p.o (V) and a l-rotational TSB(V);

‘ Case 2. X\ = 6t + 5, t =z 0. Then we have a 1-

rotational T56t+2(v) and a l-rotational TS3(v).

Summarizing, we have

3.14 Theorem. A l-rotaticnal TSA(V) exists if and

only if

\\_—/// ’ A =1 and. vI3or 9 ({(mod 24) or

A=1lor 5 (mod 6), A > 1, and v1or 3 (mod 6) or

A2 or 4 (mod 6) and vzIQ0 or 1 {mod 3) or
A3 (mod 6) and v =1 (mod 2) or -
AZ0 {(mod 6) and v = 3.
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CHAPTER 3. EXTENDED TRIPLE SYSTEMS

Section/l. Introduction.
1

The concept of an*éxtended triple system wasgintro- -
;

duced by Johnson and Mend315925§[40]- An extended triple

system is a pair (V,B) where B 1is a finite set and B

is a collection of 3-subsets of V '(called blocks or triples),
: A . P :

where each triple may have repeated elements, such that every .

pair of elements of V , not necessarily distinct, is con-
. [

1 . I
tained in exactly one triple of B,. e triples of B are

' of three types:

{a,a,a}, {b,b,c}, {x,f,z}

where the element a is called an idemEotent and b a non-

idempotent of the system (V,B) . - : ‘ .
N
We will denote by ETS(v;p) an extended triple
\ .
system on v elements which has 'p idempotents. Obviocusly,
we have 0 < p s v. Johnson and Mendelsohn [40] obtained
~
\\\\necessary conditions for the axistence of ETS({v:;p)'s and
Bennett and Mendelsohn [3] showed that these necessary con-

ditions were also sufficient.

1.1 Theoxem [3]. Let 0 < p s v. Then an ETS(v;p)

1/
69 /

exists if and only if
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(i) if v=0 (mod 3) then p=0 (mod 3) ,

g o
1 or 2 (mod 3) then p=1l (mod 3),

) N ©(ii) if v

(iii) if 'v ©is even then p < v/2,

(iv) 1if p=wv -1 then v = 2.
o
In this chapter, we provide 'ETS(v;p) with prﬁscribed
automorphism types. In Section-2, we determine completely
cﬁclie ETS({v;p)'s . In Section 3, we obtain necessary and
sufficient conditions for the existence oé 1- and 2-rotational
ETS(v;p)'s (/;Further, we obtain necessary conditions for .
fhe existence of 3—rotationai; ETS(v;p) and show that these
conditions are also sufficient, except possibly for v =0
(mod.la) , p = (v + 2)/3 and v =37 or 55 (mod 72),
= (v + 2}/3 or (2v + 1)/3 . 1iIn Section 4, we determine
completely 2- aighﬁﬂkegular ETS{v;p)'s and 4-regular
ETS(v;p)'s , except possibly for v =12 or 20 (mod 24}

and p =-v/2 .

-~




A

Section 2. Cyclic Extended Triple Systems.

Let us assume in this section the set of elements of
our cyclic ETS(v;p) to be Zv "and the corresponaing.cyclic
automorphism to be a = (0...v -'1) . If '{a; b, c} 1is a
“block of a cyclic ETS(v;p) , then {a+l, b+l, c+1} 1is also
a‘bléck of the cyclic ‘ETS(v;p) and hence we have p=20 k’ﬂ/J
6r v .

2.1 Lemma. Necessary conditions for the existence of

a cyclic- ETS(v;p) are

(i) 1if p v then v

l er 3 (med 6}, v 9,

(ii) if p =0 then v

3 (mod 6) .

Proof. (i) It follows from the fact that a system -
obtained by deleting all blocks containing idempotents of a

cyclic ETS(v;p) 1is a cyclic STS (v)

(ii) If p =0 then v=0 (mod 3) by the existence
of an ETS(v;0) . In the case v =0 (mod 6) , the possible
lengths of orbits of a cyclic ETS{v;0) are v or v/3.

Let m, n be the number of a cyclfﬁ ETS(v;0) whose lengths

are ‘v, v/3, respectively. Then we éiave

71
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- ' ' ' | vy //3
(2.1.1) mv + niv/3 = ~ ) + (2v)/3
S 2 2
and hence -
(2:1.2) ° J ‘ ém + 2n = v + 3.

But there are no such integers m, n satisfying (2.1.2)

because the left-hand side of (2.1.2} is even and its right-

. 4,
hand side is odd since v 19 even.

For vzl or 3 ({(mod 6), v ¢+ 9, there exists a
?‘Eiic STS(v) . The next theorem follows immediately:
‘C

2.2 Theorem. A cyclic ETS(v;v} exists if and only
v <
if v=1 or 3 (mod &), v o 9,

-

2.3 Lemma. There exists a cyclic ETS(9;0)

Proof. {0, 0, 2} and {0, 1, 4} form base triples

of a cyclic ETS(9;0) .

Note that if wv =3 fmod 6} , then a cyclic STS(v)

albays contains the base triple {0, v/3, -2v/3} .

2.4 Lemma. If v=3 f(mod 6), v % 9, then there

exists a cyclic ETS(v;0)

-

I



Proof. Let v = 6t + 3, t £ 1.

- Base triples: B = Bl U B2

{0, 0, 2t+1l}}

73

BZ: the collection of all base triples except

b

{0, 2t+1, 4t+2} of.a cyclic STS(6t +,.3) .

Thgn (Vv,B) 1is a cyclic ETS(v;0) .

e

- . o
2.5 Theorem. A cyclic EE

if vE3 (mod §) .

)Y

(v;0)

exists if and only



Section 3. ROtational Extended Triple Systems.

An extended triple system ETS(v;p) is k-rotational

if it admits an automorphism consisting of a single fixed

element and k disjoint cycles of the same length. By an
4

elementary argument, we.obtain easily the following lemma:

3.1. Lemma. If a k- rotatlonal ETS(v;p) exists, then

- = t{(v - L) /k} + 1, t=20,..., k.

3.2 Lemma. Necessary conditions for the existence

ocf a l-rotational ETSﬁv;p) are

v then v

(1) i P 3 or 9 (mod 24) ,

(i1) if b

l
7

1 then vzl or 2 (mod 3),

Proof. (i) Follow from the existence of l-rotational
STS's .
(ii) By the existence of ETS(v;l)'s .
_l, Immediately, we have %zi)follo&angtheorem: )
h ’ : ¥

t

3.3 Theglem. A 1l- rotat:.ona].oETS (wv; y) ex15ts L F
and only if v =3 or 9 (mod 24).

3 |
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Throughout this section, we will assume the set of.
elements of our k-rotational ETS(v;p) to be

vV = (z(y—l)/k x Zk) U {=}, and the corresponding automorphism

to be o = (w)(Oi...((v - 1)/k - ¥7i) , ice Zk . In the
case k =1, we write for brevity Z(v-l) U {»} instead
of V =-(z(v_l) x2;) U {=}.

3.4 Lemma. There is no lfrotati?fﬁl ETS(10;1) .

Proof. 1If there were a l-rotational ETS(10;1) ,

then it must contain base triples of the forms ({», =, =}

r

{/ and {=, 0, 0} . Deleting these base triples would yield a
‘ v
%@%lic STS({9) whijt does not exist.
-
' L]
P 3.5 LeMma. If vi4 (mod 6), v ¢ 10, then there
exists aqé;rotational' ETS (v; 1) \
o '\ }
.Y | ‘ -
Proof. Let v = 6t + 4, t £ 1.
Base triples: B = B U 'Bz : ' D s
where .

B, {e, =, =}, {=, 0, 0}} ’

-BZ: the collection of al ase trlples of a cycllc

: [l ’
. &
v F  STS(6t + 3 based on ZGtﬁB”'
. 9‘““' . Then _ (V,B) 1is a‘iarotati?pal 'ET%(v;f)_ ; . l_
* )
~- X L} r . \wn
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3.6 Definition. A (H,k)-system is a set of ordered

pairs ‘{(ar,br)[r = l"i".k} such that b, - a_ =1 for

k
r=1,..., k and u

{ar'br} = {1,..., k+1, k+3,..., 2k+1} .
r .=

1

3.7 Lemma. A (H,k)-system exists if and only if

k=1l or 2 (mod 4) . »

Proof. (=) Let- {(ar,br)[r = l,;.., } be a (H,k);

system. Then we have

_ Cki(k + 1)
(3.7.1) rél(br a ) = ==t
and
: » ‘
X . : ' .
(3.7.2) [ (b_+a) (2k + 1)2(2k T2 ok o+ 2).
r=1

!
Adding both sides of (3.7.1) and (3.7.2),‘respectivelyiﬁye

get \\”l

Pl “d‘é’
3 2 i
_ 5k + Sk - 2 »
(3.7.3) 2] b = 5 . ;
r=1 —_
. . AN
X 2
Since rglbr is an integer, ©5k“ # S5k - 2:=0 (in?d-z;) and/_/w\\
L, N '
hence we have k1 or 2 jyod 4) .

-

.
. »

y
/
[

/
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(=) Before giving th;\§fneral'construct%gns we pre-

sent the solutions for k=1, 2, 5 and 6.

v k=1: (1,2).
k= 2: (1,2), (3,5) . ~ ’
k = 5: (10,11); (2:4)r (6'9), (lls}f (318) 4
k = 6: (11,12}, (3,5), (10,13), (2,6), (4,9),.(1,7).
k =4t + 1, t =2 2.
. %
(r, 4t+2-r) , . r=1,..., 2t
(4t+3+r, Bt+4-r) , r=1,..., t -1
(5t+2+r, 7t+3-r) , r=1,..., ¢t-1-
N2+, 6e+2), (4t+2, 6t+3), (Tt+d, Te+4) . N
k = 4t + 2, t =z 2.
2 , .
' (r, 4t+4-r) , r=1,..., 2t +1 -
5 (4t+4+r, 8t+5-r) , r=1,..., t - L4
. I
- (5t+3+r, Tt+d-r) , ~  r©=1,..., t -1
S :
. (2t+2, 6t+3),{ (6t+\4, t+5), (7t+4, 7t+S) .
. ) ' N
X
' 3.8 Lemma. If v =13 or 19, (mod 24) , then there ! E
A ‘
exists a l-rotational ETS(v:1) .
Proof. Let v==%6t+1 and t=2 or 3 (mod 4)
S ~ '
- Base triples: B = B, U B
| ,ab ( 1 - 2
\q/'i ; N &_“
' where ' LY ,
J - 4

; 4 ‘ .
|1/Fﬁ“‘h“ o “T - i»V//“' “ | \\\ig\_' _<p



-Bl: ’ {{m'mlm}!'( {mr-Oth]’r l {012tr4t}r ' {0,0,3%\:

B,: '{{o,r,br+t-1}]5..= 1,000, £ =1}

L

.where {(ar,br)|r =1i,..., £t -1} 4is a (H, t-l)-syéteﬁ;

hJ

3.9 pefinitigqn. An (I,k)-system is
H

pairs {(ar,br)]r =1,..., k} such that b

X
r=1,...,k and U {a_,b } = {1,...7% x+1
r=1 r r

(3k+1)/2 + 1, (3k+1l}/2 + 3,..., 2k ﬂp2}.'

Then (V,B} is a l-rotational ETS(V;l)->§5‘

a set of ordered

r _‘ar-i
, k+3,...

r for

(“f

'3.10" Lemma. An (I,k)-system exists if and only i

k is odd.

Proof. (=) It follows that (3k-+ 1)/2 is an

integer. - )
: e
3 [N
— . o . :
T (®) k=4t + 3
(r,‘4t+5—r) R r=1,..., 2t + 2
r =1, ., 2t + 1.
r=1,..., 2t + L=<,
¢ r =1, . 2t~‘\
b«
» %
) . &

NS

;o



- ‘ 7 \ A

79

3.11 Lemma. If v =1 (mod 24), phen there exists
a2 l-rotational ETS(wv;1l) . ‘ -
Proof. Let v =6t + 1 and t=0 (mod 4), ¢t Y o.

Base triples: B = B, U B

1 2 R
where
Bl:.{{mrmrm}r {mf013t}} {sztr4t}r {OIOI(St)/z}} '
B,: {10,r,br+t—l}|F =1,..., t - 1}
s ) ‘ \
where {(ar,b Yjr = 1,..., £ -1} is an (I, t-1l)-system. -
r kel R

When ¢t = 0, wtake B = {{=, =, »}} . Then (V,B}) 1is a
l-rotational ETS(v:;1l) .

o

A \ .
3.12 Definition. A (J,k)-system is a set of ordered
br)lr = 1,..., k} such that b_-a_=r for
K an fU {a P2 L, .00, kK/2, k/2+2,..., kt1,
d\.r =1 .
PR o \_/ '
k+3,..., 2k+2} . . ‘ . :
\ ‘—'-\____ |\\ B
/ Y .
- 3.13 Lemma.{_(i,‘li)/[system exists if and only if k
a
is even. © " , -
L (—"‘
Prodf. (=) It foltéﬁgnggt k/2 is
. . J. l " o _‘v -
S B ‘
1 - N ’ I ™~ &—/j = - . /
- {y '(‘\ ;,/ . - L4
-f\ - . | .
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. »
(=) K =4t + 2. .
->— .
(r, 4t+4-r) , r=1,..., 2t +1,
(4t+d+r, Bt+7-r) , r=1,...7 2+ 1.
' - -
-k = 4t .
(r, 4t+2-r) , . r=1,..., 2t, _ .
A | ~ - £
(4t+2+r, Bt+3-r) , r=1,..., 28, N
‘w . ‘; .
— 3.14 Lemma. If v=7 (mod 24) ; then there ‘exists
a l-rotational ETS(v:1) .
Prbof. Leé_ v=6t+ 1 and t=1 '(mod 4) , t > 1.
Base triples: B = Bl u B2
where *
. ' - S |
Bl: {{m'm’m}' {°'°:013t}f {0r2tl4t}f {0;0:3(t—1)/2+l}} ’
5
By: {{0,r,b +t-1}|x =1l,..., £t -1}
where '{(a b )]r =1l,..., t°- 1} 1is a (J, t-1)-system.
r’'*r ‘ c
%en t =1, take B = By - Then (V,B) is®a l-rowaticnal
ETS (v;1) . ) <
> _ '
O y 3.15 Lemma. If v =2 (mod 6), then there exists a
7 Y T - v * \‘_/
e S, % s '
) -fotagional ETS(v;1) , . »
. / : »
~ ) " v TR
o |
\ i . - . ! -
' / ” > K * ?
n o - ‘é
e - b%% ~
—

S



~

where ®

Bl;.‘{{m" @®, cn}’ {mrr 0, 0}} '
& )

-

-y 1 -

B,: the collecf?on of all base triples of a cyclic
(;r\\ STS(6t + 1) based on Zst+l'
Then (V,B) 1is a l-rotat}onal ET%(V;I).

'

3.16 Lemma. If v =5 (mod &) ; then there exists
@ l-rotational ETS(v:1) .

\_’_?
Proof. Tet v = 6t + § . ~
Base triples: B = B1 J 82
where
—
\C
(U, @} {e,0,3t42 , 0,0,3t+1)} if t=0 or+l (mod 4)";
3N 7
{{MJQ—}/@ {Q10:3t+2}, {0,0;;t} if t‘_—'.2_or 3 (mOd 4) P
/_’r
B

9t {{o,r.,bi,+t}lg_-_=. l,..., t} N

( \ /\ ) |
wheré {Tér,brlll =1,..., ;{p)is an (A,t)-system or a (B, t)-
system depending whether t =0

Y,

' (mod 4) or t=2, 3
/ 1

i
‘ . A

.\ I
- .
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’
~ .
L ’ 82
.""T"": -
. (mod 4) . Then (V,B} 1is a l-rotational ETS{(v;1) .
LY
- . ® )
3.17 Theoram. A l-rotational ETS{v;1l) .exists if
' -
and only if v=1 or 2 (med 3), v % 10. .
- Let us now construct 2-rotational ETS(v:p)'s . .
\From Lemma 3.1, if a 2-rotational ETS(v;p) exists then .
pP=1,. (v+1)/2 or v.
3.18 Lemma. Necessary conditigqns for the ‘existence -
of a 2-rotational ETS(v;p) are ; S
ﬁ] ~t+} if p = v t!’én vz1, 3, 7, 9,.15 or 19
(mod 24) , \
A\
{i1) 1f p = (v + 1)/2 then v:=1 (mod 6), g
(ii1) 1if p =1 then v=1.or 5 qa{mod 6)
4
‘ o Proof. (i) Follow from the existence of, 2-gotational
STS's .
(1i) Let p = (v + 1)/2. Then (v + 1)/2=0 or
1 (mod 3) since the‘éxistence of ETS(v:p}'s implies
o « P20 or 1 .\(mod 3) . If (v + 1)/2=0 (mod 3) then
. ‘r-_l .
vI5 od 6) . Since p=z4d (mod 3) implies v 0 (mod 3) "
vz5 [(mod 6) is ifipossible. So we only have (v + 1)/2:1 (~
(mod 3) and hence v=1 (mod 6) . -_ii T
- | o> ' “
- ‘ \
4 \
®
N
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(1ii}) If p =1 then v=1 or 2 (mod:3) and ,

ce v=1 or 5 (mod 6) since (v - 1}/2 is an integer,
) i.e., v 1is odd. *
v
From the existence of 2-rotational STS(v)'s and
l-rotational ETS(v;1l)'s, respectively, we have easily the
following two theorems.
. 1
‘ i 8 -
3.19 Theorem. A 2-rotational ET®(v:v) exists if
and only if v=1, 3, 7, 9, 15 or 19 (mod 24) .

=

3.20 Theoreﬁ. A 2-rotaticnal ETS(v:1l) 'exists if

and only if vzl or 5 (mod 6) .

3.21 Lemma. There is a 2-rotational ETS(19;10) .-

-

Proof. Base triples: B = B, U B

whére {(ar,br)]r =1, 2, 3, 4} 1is an (A,4)-system. Then

(V,B) 1is a 2-rotational ETS(lQ;lO) . N ' -
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3.22 Lemma. If v=7 (mod 12), v # 19, then

there gxists a 2-rotational ETS(v: (w+l)/2) .

Proof. Let v = 12t + 7, t 1.
- -
Base triples: B = Bl U B2 J 33

where

/ @ o, o 1 @ ~ 1 3 = .
{{w,0,=}, {00,00,00,,{ ,00,01}, {&'01' (2t+1)1}, if t= 00;1 (mod 4) ;

Bl:

oy =), (0,0, 03 4%, 0, ,66+2)} {0, (2e+1)} if £2 201 3 (mod 4) ,

\'.
By: {{0g,rg,(b) M = 1,..., 3&}

\’ . * .
where {(ar,br)lr =1l,..., 3t + 1} 1is an (A, 3t+l)-system
or a (B, 3t+l)-system depending on whether t30, 1 (mod 4),

o

or tz2, 3 {mod fl . : K TN
-~ L ]
B3: the collection of all base triples of a cyclic STS(6t+3)
except the base triple '{Ol,~i2t+l)l, (4t+2) .} Dbased

1
on {1} .

Zot+3
T “tg-\

Then (V,B) is .a 2-rotational ETS(v; (v+1}/2) .

3 23 D finition. A (K,k)-system is a set of ordered

pairs {(a , b , k} such that br -a_ =71 for
)
§ o~
e t ~p- .
. | < . ,

A Y 4
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AN x
r=121..., k and Ui{ar,br} = {1,..., k=1, k+1l,..., 2k+1l}.
= .

3.24 Lemma. "A (Kl',k)-system exists if and only if

k=1 or 2 (mod'4).

'f’roof. (=) Let {(ar,br)[r=l,.L..,k} be\ (K,k)-

system. Then we have

— ok

o - kik + 1)
(3-24.1) X (br - ar) = 5
r=1
and | {\\ X
% 24 \5)- }z( (b. + a ) = (2k + 1) (2k + 2) K
J - . ' r=1 r r B 2 -

2 ' -
Adding both sides of (3.24.1) and (3.24.2), regpecti‘\ﬁely,

-

‘ gi\}es R
/ B
k 2
(3.24.3) 2 br=5k +25k+2
r=1 -
N Y
\\
. 9 ' -]:— . ] 2 l
Since ] b_ is ad integer, 5k° + S5k + 230 (mod 4) and
r=1 ‘\
hefice k%1 or 2 (mod 4) . |, e : )
e KL | , h
_ N )
N N
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1: (2,3,

(=) k =
k=2: (4,5), (1,3) .

-
k=4t +1, t=21.
(r, 4t+1l-r) t ﬁ =
(%+l+r, 3t+2-r) , | r =
(4t+2+r, 8t+4-r) , r =

(2t+1, 4t+%y? (2t+2, 6t+3)

¢
k=4t + 2, t 2 1.

- (r, 4t+2-r) , r =
(4t+3+xr, 8t+6-r) , r =
(5t+3+r, 7t+4-r) , r =

(2t+1, 6t+3), (4t+3, 6t+4)

3.25 Lemma. 1f vIIl3 or

L4 ©

exists a 2-rotational ETS (v;

l,..., 2t,

r (t, t+1) .

..., 2t ,
1,..., t,

l,..., £t -1,

' (7t+4,}}p+5),

25 (mod 48) ,

(v+1)/2) .

Proocf. Let v =12t + 1 and t=1 or 2

B =B, UB

Base triples: 1 5

where

Ve

-t

/// {00,01,(3t—l)1}}r

AN

J B3

~ »
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.
then there

Bl: {{m'm’m}' {mroof (Bt)o}f {mrolr (3t)l}r {00'0_0'00}'



:*\

/ . | é.& ) ‘ .' . | i, &

{{Oo,ro.(b

5

Me=1,..., 38 - 1}, .
7

B r)l

2:
s

q?ere {(ar,br)|r =1,..., 3t - 1} is a (K, 3t-l)-system,

-~ Vo
3! {{Ol,rl,(br+t~l)l}[r = 1,..1, t -~ 1}

" B

where '{(ar,br)|r = l'f"f t - 1} is an (A, t-I)-system.

Then {(V,B) 1is a 2-rotational ETS(w; (v+1)/2}).

- ' v
. 3.26 Definition. “A (G,k)-system is a set of ordered
pairs {a_,b.y r=1,..., k* .such that b_ - a_ =r ‘for
r'r r r

r=1,..., k and ‘t fag.b } = {1,..., k/2, X/2 + 2,...,
: r=1 ‘

-

2k + 1} .

\-‘- L]
- 3.27 Lemma. A {G,kl-system exists if and only-if k
M ’ )

is euEF. : P ® ..

"

Proofk. (=) 3Sipce k/2 1is an integer, Xk s even.

(=) k = 4t . :
(4t+l+r, 8t+2_r) r r =‘ l' .oy 2t !
(I‘, 4t+2‘_'r) r r = l, LI ) zt -
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k = 4t + 2.
(4t+3+r, Bt+6-r) , r=1,..., 2t +1,

l1,..., 2t + 1.

3.28 Definition. An (L,k)-system is a set of ordered

pairs {(ar,br)lr =1,..., k} 'such that b_-a_=r for

ncx

r=1,..., k and {ar,br} = {l,..., k/2 + 1, /2 + 3,...,

r=1

k +2, k+4,..., 2k + 2} .

3.29 Lemma. An {(L,k})-system exists if and only if x

is even.

Proof. (=) Since Xx/2 1is an integer, k 1s even.

(=) k 1is even.

(2+r, k+3-1) , r=1,..., k/2 = 1,
(k+3+r, 2k+3-r) , r=1,..., k/2 -1,
(1,2), (k/2 + 3, 3k/2 + 3) .

-

3.30 Lemma. If v 37 (mod 48) , then there exists

Al

a 2-rotational ETS(v:; (v+1)/2) .

Proof. Let v = 12t + 1 and t =3 (mod 4} .

Base triples: B = Bl U 82 U B3

where
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- . ™ o o ' [ y 1 £
Bl- {{ 1 r }l {.00}00!00}' - roof(at)od rs { fOI-(Bt)l}r
- -Lg-

{00.01.((3t+1)/?)1}, {01»01'(2t+l)1}}f
32: {{od;ro.gbr)l}]r =1,..., 3t - 1}
where {(ar,br)|r =1,..., 3t - 1} is a (G, 3t-1l]-system,

- - ' = - 1
By: {{0),1), (b +t l)l}Ir l,e0., £ = 1},

where ‘{(ar,br)lr =1l,..., t -1} is a (L, t-1)-system.

Then (V,B) is a 2-rotational ETS(v; (v+1)/2) .

3.31 Definition. A (M,K)-system is a set of ordered

pairs {(ar,br)lr =1,..., k} such that br -a_=r for

. k '
r=1,..., k and U {ar,br} = {1,..., (k+l)/2,

r=1
- L)

(k+1)/2 + 2,..., k+1, k+3,..., 2k+2} .

“3.32 Lemma. A (M,k)-system exists if and only if

k > 1 1is odd.

-

Proof. Since (k +.1)/2 1is an integer, k 1is odd. -

Obviously, there is no (M,1)-system.

. &
Conversely, let > 1 be odd and take the folldwing

ordered pairs:



(2+r, k+2-r) , S or = l,...,. (k-1)/2 =1
(k+2+r, 2k+3-r) , r=1,..., {(k-1)/2

(1,2), ((k+1)/2 + 2, (3k+1)/2 + 2) .

3.33 Lemma. If v31 {mod 48)°, then there exists

a 2-rotational ETS(v; (v+l1)/2) .

Proof. Let v =12t + 1 and t=0 (mod 4), ¢t % 0.

Base triples: B = B1 J B2 b_B3

where

Bl: {{m,w,m}, {00,00'00}' {mroot(at)o}r {c’.folr(3t)l};

{00’01'((3t)/2)1}' {Ol'ol’(zt)l}}'

B,: {{Oo,roﬂ(br)l}|r =1l,..., 3t ~ 1}

where‘_{(ar,brjlr =1l,..., 3t - 1} 4is an (E, 3t-l)-system

(see, Lemma 4.14 in Chapter 1),

. . BB: {{Ol'rl;(br+t"l)l}lr = l','c-., t - l!

where {(ar,br)lr = l;..., t -1} 1is a (M, t-1)-system. ¢

Then (V,B) 1is a 2-rotational ETS(v; {v+1)/2) .

We now obtain the following theorem:
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3.34 Theorem. A z—gotational' ETS (v; (v+1)/2)
exists if and qnly if v 1 (mod 6) .

e " -
. In the remainder of this section, we will consttuct

3-rotational extended triple system§. From Lemma 3.1, if a

- ™~

3-rotational . ETS(v:p) exists then p'= 1, (v + 2)/3,
(2v + 1)/3 or v. '
.

3.35 Lemma. ' Necessary conditions for the existence

L

of a 3-rotational ETS{(v;p) are

g
]

(1) if v. then v=1 or 19 (mod 24},

(i1) if p =1 then vl (mod 3),

il

(iii) if p = (v + 2)/3 then vz=1 (mod 9),

. (iv) if p = (2v + 1)/3 then v=1 (mod 18) .

Proof. (i} Follow from the existence of 3-rotational

Steiner triplé syétems.

{(iiy If p =1 then v=1 {mod 3) since

{v - 1})/3 4is an integer.

'(iii) If p'= (v + 2)/3 then (v + 2)/3:1 (mod 3)

since v=1 (mod 3). So we have v =1 (mod 9) .

(ivy If p.= (2v + 1)}/3 then (2v + 1)/3:1 (mod 3)

and hence v =1 (mod 9) . But 1if v =10 (mod 18) then



92

-

v is even; so we must have p < v/2. However,

{(2v + 1)/3 > v/2 . Thus v =10 (mod 18) 1is impossible.

Obviously, the existence of 3-rotaticnal STS's

- implies the following theorem:

3.36 Theorem. A 3-rotational. ETS(v;:;v) exists if

and only if v =1 or 19 (mod 24).

3.37 Lemma. There is a 3-rotational ETS(10;1) .

-~

Proof. Base triéles: B = Bl U 52

where ‘ R .. I h

}ll E-ZB,}

1

-

B,: {{m,e,»}, {=,0 },"-{ol-,o

}.r ‘{mroorol

2,02 1,02}&.

Then (V,B) is a 3-rotational ETS (10:1) .
Lemma 3.37 and the existence of l-rotational

ETS(v;1)'s together yield

3.38 Theorem. A 3-rotationai ETS(v;1l) exists if

and only if v z1 (mod 3)
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3.39 Definition. A (N, 3t-l)-svstem is a set of

ordered pairs {(ar,br)[r = 1,..., 2&-1, 2t+1l,..., 3t-1}
such that br - a =r for r=1,..., 2t-1, 2t+1,:..° 3t-1

’

3t-1

U la_,b_} = {-(£/2),..., =1, 1,..., 3t-1, 3t+1l,..., 4t-1,
=1 r'r .
r*2t

4t+1,..., 5t-1, St+l,..., 6t - t/2 - 1} .

3.40 Lemma. A ]N, 3t-1)-system exists if anddonly
if t:=0 (mod 4) , t > 0.
Proof. (=) Let {(ar,br)[r = 1,..., 2t-1, 2t+l,...,

3t-1: be a (N, 3t-1)-system. Then we have

-

3t-1 2

_ (3t-1) (3%) _ _ 9tc-7¢

(3.40.1) [ (bo-a) = =525 - 2t = =

r=1

r+2t
and

3t-1 :
(3.40.2) T (b +a_) = (6t-t/2-1) (6t-t/2)

r r 2
r=1 .
r+2t
(£/2) (t/2+1), _ 30t2-30¢t..

(3t+4t+5t +

) ) = 3

Adding both sides of (3.40.1) and (3.40.2), respedtiveiy, and

taking into account that Zbr is an integer, we get

3
-
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t(39t - 37) 20 (mod 4) ; so tz0 or 3 . (mod 4) . But
since t/2 1is an integer, t is even and hence ¢t =0

(mod 4} .
(=) Let tz0 (mod 4), ¢ » 0.

t =4 :
\. -
(L6-r, 1l6+r) , r=1, 2, 3, 5.

(“2:9)1 (-1,8), (1'4): (217)1 (BrlO}; (506) -

. t > 4
(4t-r, 4t+r) , r=1,...,t=1,t+1,...,(3t-2)/2,
(- (t+2)/2+r, 5t/2-r) , £ =1,..., t/2,
(l+r, 2t-r) , r=1x..., {(t-2)/2,

((t+4) /[2+r, (3t+2)/2-r) , r = Liveos (£-4)/4,

(t-r, t+l+r) , r

W
H

.. {t-8)/4 where t>8,

(1,£), ((t+2)/2,5t/2), ({t+4) /2, £+1), (5t/4,(5t+4)/4) .

3.41 Lemma. If vl (mod 72), then there exists

a 3-rotational ETS(v; (v+2)/3) .

Proof. Let v = 18t + 1 and t =0 (mod 4)

Base triples: B = B1 U_B2 U B3 U 54 J B5

where
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Bi: {{00,00:(2t)0}};

32: {{‘”""’:‘”}: {olrolrol}u {01'(2t)1'(4t)1}'
105,05, (283511,
B,: {{m;oi,(3t)i}|i € Z,1,

i e'zg, r=1,..., 2t-1, 2¢+1,..%,

3t-1}

where {(ar,br)]r = 1,..., 2t-1, 2t+l,..., 3t-1} 1is a

(N, 3t-1)-system,

BS:'{{OO,Ol,oz}, {(3t)l,t2,00}, {(4t)l,(3t}2,od},

{(St)l.(Zt)z,O N

o

Then (V,B) is a 3-rotational ETS(v: (v+2)/3) . .

3.42 Corollary. If v =1 (mod 72) , then there

L]
a

exists a 3-rotational ETS(v; (2v+l)/3) .

Procf. Replace Bl in Lemma 3.41 bf

L

B, : {{00'00'00}'-{QO’(Zt)O’(4t)

1

0}}..
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3.43 pefinitipon. An (0, 3t-1)-system is a set of
ordered pairs {(ar,br)lr =1,..., 2t-1, 2t+l,..., 3t-1}
such that br -—a. . =r for r =1,..., 2t-1,12t+l,..., 3t-1
' 3t-1 . '
and ¢ fa_,b} = {~(t-1)/2,..., -1, 1,..., 3t-1, 3t+l,...,
r=1 Tt F '

r+2t

4t-1, 4t+l,..., 5t-1, 5t+l,..., 6t - (t+l)/2}.

,3-44 Lemma. An (0, 3t-l)-system exists if and only

" if t=1 (mod 4) .

Proof. (=) Let {(a_,b)|r = 1,..., 2t-1, 2t+l,...,

3t-1} be an (0, 3t-1)-system. Then we have

PY

_;‘and

3t"l ) 2
_ - {3¢-1) (3t) _ _ 9t°-7t .

(3.44.1)_ rgl (bo-a ) = ~=="=122%) - 2t = -

r+2t

3t-1
(3.44.2) I (b_+a_) =‘(6t-(t+l)/2)(6t—(t—l)/2)

r=1 T 2

r+2t

(3t+4t+5¢ + (t‘l’/z';t+l)/2)

_ 30t%-24¢t

2

!
]
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Adding both sides of (3.44.1) and (3.44.2), respectively,
gives t(39t - 31) =0 (mod 4); so t=0 or 1 (mod 4) .
But since (t - 1)/2 is an integer, t is odd and hence

t=1 (med 4) .

(=) Let t=1 (mod 4) .

t=1: (1,2). ¥
t =5:
(20-r, 20+r) , r=1,2,3,4,6,7

(-2,11), (-1,10), (1,8), (2,7), (3,12), (4,5), (6,9).

t > 5;: ,

{dt-r,4t+r) , r = l,...,t~1,t+1,...,(3t-1)¥X2,
(=(t+1)/2+r, (5t=1)/2-x) , r = 1,...,(t-1)/2,

(1+r,2t-r) , r=1,...,(t-3)%2,

((t+3)/2+r, (3t+3)/2-r) , © =1,...,{t-1)/4,
(t-r,t+l+r), r=1,...,{t-9)/4 where t> 9,
(L,t+1), ((t+1)/2,(5t-1)/2), ((t+3)/2,t},

((5¢-1)/4, (5t+3)7/4)

N .

3.45 Corellary. If v =19 (mod 72) , then there

exists a 3-rotational ETS(v: {(v+2}/3)

Proof. Replace t=0 (mod 4) and (N, 3t-1)-system

in Lemma 3.41 by t =1 (mod 4) and (0, 3t-1)-system,

- -

respectively.
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3.46 Corollary. 1If ov =19 (mod 72) , then there

exists a 3-rotational ETS(v; (2v+1)/3) .

. Proof. Replace t 0 {mod 4) and (N, 3t~1l)-system
in Corollary 3.42 by t:z1 (mod 4) and (0, 3t-1)-system, -

respectively.

- .

In the existence problem for 3-rotational ETS(v;p)'s,

the following cases are still open:

(1) If v=10 (mod 18) , does there exist a 3-

rotational ETS(V;'gv+2)/3)?

(ii) Let p = (v + 2)/3 or (2v + 1)}/3 . .Then if
vz37 or 55 (mod 72) , does there exist a J~rotational

ETS(v;p) ?

()



Section 4. Regular Extended Triple Systems.

An extended triple system ETS(v;p) 1is k-regular if
it admits an automorphism consisting of k disjoint cycles
of the same length v/k. In Section 2 of this chapter, we
determingd completely l-regular ETS(v;p)'s, that is, cyclic
ETS(v;p)'s . 1In this section, we obtain necessary and suffi-
.cient conditions for the existence of 2- and 3—iegular
ETS(v:p)'s , and Q-regular ETS(v:p) except possibly for

v=12, 20 (med 24) and p = v/2.
|}

Throughout~this section, we will assume the set of.
R kd

elements of.our k-regular ETS(v;p) to be V = zv/k * 2y

and corresponding regular automorphism to be

)
a = (Oi...(v/k - l)i) ' i’ e Zk . By simple arguments, we

have easily seen the following lemma.

-

4.1 Lemma. If a k-regular ETS{(v;p) exists, then

we have
(i) p=t¢tv/k), t=0,..., k ,¢
(i1) wv/k is odd.
Let us construct 2-regular ETSiv;p)'s . By above

'« Lemma 4.1, if a 2-regular ETS(v;p) exists then p =0, v/2
or v . But since v/2 1is an integer, v is even: so

0 s p = v/2 and hence p =0 or v/2.

( L
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4.2 Lemma. Necessary conditions for the existence

of a 2-regular ETS(v;p) are
(1) if p =0 then v=6 (mod 12),

(ii) if p =v/2 then v=2 or 6 (mod 12).

_ Proof. (i) If p=0 we have v =0 {(mod 3} .
Since v is also even and v/2 is odd, v =6 (mod 12) .
(ii) If 27 v/2 then v/2:z0 or 1 (mod 3) and

2 or .6 (mod 12)

I

hence v =0 or é (mod 6) ; so v

since v/? is odd.

4.3 Lemma. There is a 2-regular ETS(18;0) .

. {r\ﬁ* Proof. Base triples: B = Bl u B2

.

where

Bl: {{001001'01}! {Ollolrzl}f {01'11'41}}'

) BZ: {{OO'rO'(brW =1, 21 3, 4}
where {(a_,b )|r =1, 2, 3, 4} is an (A,4)-system. Then

(V,B) 1is a 2-regular ETS{18;0) .

4.4 Lemma. If v =6 (mod 12) , then there exisgs a

2-;¢gular ETS (v;0) .

Proof. The Ease v = 18 has been treated in Lemma
4.3, Let v = 12t + 6, t & 1.
Base triples: B = Bl u B2 U B3

where N



101

1{04,045,0,3, {0,,0,,(2£+1),}} if =0 or 1 (mod 4) ;
Bl: . _ o o
'{{00,00,(6t+2)1},{01,0_1,(2t+1).1}-} if t__sz.or 3. (mod 4) ,

[+

wheré {(ar,br)]r =1,...7 3t + 1} 1is an (A, 3t+l)-system
or a (B, 3t+l)-system depending on whether t:z0, 1 (mod 4)

or t=2, 3 (mod 4),

By: the collection of all base triples of a cyclic STS(6t + 3) -

except the base triple {01, (2t+1)l, (4t+2)lJ based

on 1y .

Z6t+3

Then (V,B) 1is a 2-regular ETS(v;0) ,

Thus, we have_the following theorem

4.5 Theorem. A 2-reqular ETS(v;0) exists if and

'only if v:EG {mod 12) .

il

4.6 Lemma. If v2 (mod 12) , then there exists a

2-regular ETS(v; v/2} .

LProof. Let wv = 12t +'2.

Base triples: B = Bl u 82 J B3
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where

{{OO'OQ'OO}' {01,01,00}} if t=20 o0or 3 (mod 4) ;

{{00,00,00},’{01,01,(st)o}} if 21 or.2 (mod-{),

Bzi" the collection of all base triples of a cyclic

:‘STS(St + 1) based on 26t+i'x {Ol o

By:  {{0),r) (b ) }r = 1,..., 3t}
where {(ar,br)lr =1,..., 3t} 1is an (A,3t)-system or a
(B,3t)-systeg)depending on whether t:z0, 3 (méd 4) or
tZk or 2 (mod 4) . Then (V,B) is a 2-regular
ETS{v; v/2) .

4.7 Lemma. There is a 2-reqular ETS{18;9) .

i . {
Proof. Bage triples B: {00,00,00}, .00,41.41}.
{ V2
{00,20,80}, {00{40,01}, \01.31,61}, {Ol,llr20}f
{01'21180}1 {01’41’70} -
Then .{V,B}) is a 2—regﬁlar ETS (18;9) .

*

N ,
4.8 Lemma. If v 36 (mod 12) » then there exists

a 2-relular ETS(v: v/2) .



lemma .

where

where
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.Proof. Again, v = 18 is handled as in the previous
Let v =12t + 6, ¢t + 1.

Base triples: B = Bl U B2 U B3

{Fpo,oo,oo}. {0,,0,,04}} if tzo0 or 1 (mod 4) ;

‘B
1 : ; .
{{00'00300}. {01,01,(6t+2)0} if €22 or 3 Emod 4),
B,: the collection of all base triples of a cyclic
STS(6t + 3) based on Zerey * (0}, : -t
By {{ol,rl,(br10}|r =1l,..., 3t + 1)}

{ta,,b)[r = 1,..., 3t + 1} is an (A, 3t+l)-system

or a (B, 3t+l)-system depending on whether t=0, 1 (mod 4)

or t=2, 3 (mod 4) . Then (V,B) is a 2-reqular

ETS (v;

v/2) .

We have the following theorem.

4.9 Theorem. A 2-regular ETS(v; v/2) exists if

and only if" v=2 or 6 . (mod 12)..

Before constructing 3-regular ETS(v;p)'s , note

that if a 3-regular ETS(v;p) exists then p = 0, v/3,

v/3 or v Ey-Lemma 4.1.
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4.10 Lemma. Necessary conditions for the'exiStence

of a2 3-regular ETS(v:p) are

(i) 1if p =0 then v=3 (mod 6),

0

(ii) if p v/3 then v=9 (mod 18) ,

' (iii) if p 2v/3, then v =9 (mod 18) ,

(iv) if p =v then v =3 (mod 6) .
. Proof. (i) If p =0 we have v=0 (mod 3) and

hence v =3 (mod 6) since v/3 is odd.

(i) If p =v/3 we have v/3:=0 (mod 3) ; so

vi9 (mod 18) since v/3 is odd.
(iii) Similar to the case (ii);

(iv) . It follows from the existence of 3-regular

-

STS's .

The next theorem is obtained directly from results

for 3-regular STS's .

" 4.11 Theorem. A 3-regular ETS{(v;v) exist$ if anad

only if v =3 (mod 6) ‘. . o

4.12 Lemma. If v =3 {mod &) , v # 9, then there

exists a 3-regular ETS{v;0)
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Proof. Elements: V' = zv . v s 9.,
Automorphism: a' = (0...v - 1)
-~ - ' = N :
Bése trlplesf B Bl U 82
where
1 Y

Bl:{{o,, 0, V/3}} r
BZ: the collection of all baée triplés of a cyclic
STS{v} except the base triple {0, v/3, 2v/3}
Then (V',B')} 1is a 3-regular ETS(v;0) with (a')3 ‘as a

required automorphism.

A 3-regular ETS(9;0) has base triples

{{Oi, Oi' li}|l € 23}

and

{{00, il’ (Zi)L}Ii € 23}.

Thus, we have the following theorem,

1

4.13 Theorem. A 3Tregdlar ETS({v;0) exists if and

only if v=3 (mod 6) .

u

4.14 Lemma. There is a 3-regular ETS(27;9) .



where

- Then (V,B) -is a 3-regular ETS{27:;9) . . ‘ ' ‘~}

‘Proof. Base triples:. B=B, UB. UB L
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[y
-

1l 2

A

B,: {{Oiloil‘3i}“|i € 23\ {011,

83: {{Oi'li'zi+l

}r {01’21'7l+l}' {01'41’81"'1}'1 523’} .

-

4.15 Lemma. If v.=9 (mod 18) , then there exists

a 3—regular7 ETS(v; v/3) .

where

Proof. The case v = 27 is treated in Lemma -4.14.
Let v.= 18t + 9, t % 1.

Base triples: B = ql.U B2 u B3 U B4

. [ {
By: 1104,0,,0,}, {ol,ol,_(2t+1)l}, 05,0, (2t+1) ,1},
BZ: the collection of all base ﬁriples of a cyclic ‘

STS(Gt + 3) based on x {0},

Z6t+3
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Then
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By: the collection of all base triples of a cyclic

STS(6£-+ 3) except the haée triples

v

| 10, ., (2t+1),;, (4t+2);} "based on x {i},

Z6t+3
ie 23000, S

b

-

B,: {{00, . (2r)2}|r € Zgiig

(V,B) 1is a 3-regular ETS(v; v/3) .

Thus, we have

4.16 Theorem. A 3-regular ETS (v: v/3) exists.if'

and only if v 9 (mod 18) . ' .

where

Then

4.17 Lemma. There is a 3-regular ETS(27;18)

q

Proof. Base triples: B = Bl J 52 U 83

s {{0,, . }
Bz' L{02102f32}r {00131»’62}’ {00f6lf32}fl

o . . : ; !
38 V05l 2i by 000020070 08, f0y, 40,8, )

{(v,B) 1s a 3-regular - ETS (27;18) .
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4.18°

a_3-regular

Proof. Anm ETS(2j;18) exists by Lemma 4.17.

" Let

108

-

Lemma. If v =9 (mod 18) , then there exists

ETS (v; ‘2v/3) .

v =-18t.+ 9, t s 1.
. Base_trlples:' B = Bl U 52 U B3 U 54
where - }
. ' - 1 ;
B,: {{oi,oi,oi;, {0,,0,, (2t+1) ,}[1 e Zi\ {2},

Then (V,B)

{{Oofrl,(2r)2}1r € Zeoqts

-

-
the kollection of all base triples of a cyclic

]

ST$(6t + 3) based on Zgppy U}, i 23\ (2},

the pollection of "all base triples of a cyclic
STS{6t + 3) except the base triple

(0,, (2t+1),, (4t+2),} based on <. {2} .

Z6e+3

is a 3-regular ETS(v;: 2v/3) .

Thus, we have

4.19

and only if

Theorem. A 3-regular ETS(v; 2v/3) exists if

v 9 (mod 18)
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~In the femaihﬁé: of ﬁhis.sgctiqn we construct 4-
regular ETS(Vipifsg - By"Lemm§w4.l, if such a system exists
then p = 0., v/4 or v/2.
- - .

- LT -

4.20 Lemma . Necessary conditions for the-existence

- of;§‘4-reguiaf ETS(v;p) are

<
© (i) if p =10 then v=12 (mod 12} ,
(i1) if p = v/4 then vz4 or 12 (mod 24) ,

(iii)lrif p v/2 then v

12 or 20 (mod 24) .
Proof, . (i) 1If p =0 we have v =0 (mod 3); so

vz12 (mod 24) :since v/4 is an odd’ integer.

{ii) ‘If' p = v/4'.we have v/4 EO‘ or 1 (mod 3) ,
that is, -~ v 0  or .4 (med 12)- and hence v =4 or 128}

(mod 24) since v/4 1is odd.

(iii) "If p = v/2 we have v/230 or 1 (mod 3) ,
that is,. v 0 or 2 (mod 6) and hence v 12 or 20
(mod 24) since v/4 1is an odd integer.

4.21 Lémma. There is a 4~regular ETS(36;0)

Proof. Base triples: B = B, U B

-

. where
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L

Bl: {{03,03:43}p {03123183}1

ABZ:'{{Ob, ryr (2r) 3 € 39},

where {(a_,b )}lr = 1, 2, 3, 4} -is an (A,4)-system. Then

L}

{vV,B) is a 4-regular ETS(36;0) .-

4.22 Lemma. If v =12 (mod 24) , then there exists

a 4-regular ETS({v;0) .

Proof. The case v = 36 is treated in Lemma 4.21.:

Let v = 24t + 12, t #+ 1. -

Base triples: B = B, U B, ¢ B, J B

- .

where

of {105,05, (2t+1) 3}, 10,,0,,0;3|%eZ,f {3}} if £ 20,1 (mod 4);

Blz

{{03,03,(2t+rfj}p{0i,oi,(6t+2)3}liez4\{3}} if £=22,3 (mod 4},

B,: {{oi,ri,(br)Byli € Z,003), r=1,..., 3t + 1}

where {(ar,br)lr_= 1,..., 3t + 1} 1is an (A, 3t+l)-system

or a (B, 3t+l) -system depending on whether t=0, 1 (mod 4)

\



i1l

»

or t=2,3 (mod 4),

} [ .

By: {{045,r,, (28} ,}r ¢ Zeies

B,: the collection of all base triples of a cyclic
STS(6t + 3) except the base triple

13} .

{03, (2t+l)3, (4t+2)3} based on Zerey

Then (V,B) is a 4-regqular ETS(v;0) .

Thus, we have

N 4.23 Theorem. A 4-regular ETS(v;0) exists if and

only i v=12 (med 24) . // -
4.24 Lemma. There Is a 4-reqular ETS(36;9)

Proof. Base triples: B = B, U B, J B

where

0 0 }r {00’20’80}’ {00}40143}1 103113»'20}!

’ 1
{03,23,80}, {03,43,70,, {03,33,63}, {03,03,40},

101101103Jr {02102r03} !

B,: {{Oo,rl,(2r)2}|r‘e 29},



By: Og,r; (bpgli=1, 2, r=1, z,-g{ 43

where {(ar,brjlr =1, 2, 3, 4} 1is an (A,4)-system. Then

(V,B) is a 4-regular °ETS(36;9) .
. _ | ‘
4.25 Lemma. If v =12 (mod 24)': then there exists
~a 4-regular ETSkv; v/4) . | ‘ |
gﬁggﬁ. A g—reguiar ET5(36:9) exists by Lemma 4.24. -
Let v = 24t + 12, t+ 1.
U B

U B/

Base triples: B = B, U B 3 4

1 2

where .’ lk/é
(10 o v g SRR \ f.
. {‘{00‘;00110041 {01,01f03_. " {92,02'03}' {03’03,004}

Bl:<

k{03;03,(6t+2;0}:} if t£322, 3. (mod 4)

if t=0, 1 . (mod 4) 3

{{00;00,90},7{91,01,(6t+2)j}f 10,105/ (6£%2) 41,

t

Bz: the collection of all base triples of a cyclic
STS(6t + 3) based on Zepay * (0},

33: {{OO’EI"zerI‘r_E'Z§t+3}’

3
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Byt 1{0y,ry. (b 3d, {05,715, (by) 5}, {04,r5, (b )5}

r=1,..., 3t + 1}

where ‘{(ar,br)lr =1,..., 3t + 1} 1is an {(a, 3t+l)-éystem'
or a (B, 3t+l)-system depending on whether t =0, 1 (mod 4)
or t=2, 3 (mod 4) .- Then (V,B) is a 4-raegular

ETS (v; v/4)

¥

4.26 Lemma. If v=4 (mod 24) , then there exists. -

a 4-regular ETS(v; v/4) .

. - . . : : -~

Proof. Let v.= 24t + 4; ‘

Base triples: B = B U B_ { By U B,

1 2
where

~

{{001' Ol’ 0

if t£=0,43 (mod 4) ;

-~

' ey q T o=
{{00.00,00}, {03,03,(6t)0,, {oi,oi,(st)31|1 1,

if t=1, 2 (mod 4) ,

B,: the collection of all base triples of a cyclic

STS(6t + 1) based on - = {0} ,

26t+1‘

0 },.{03,03;00}} ioiIOiIOB}]i = 1172} {

v

~

2},
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4

53: {{OO’FI'(zr)Z}]r € z6t+1}’

B4: {\03rr3r(br)o}r {Oirrir(br)3}|i = l, 2,

r=1,..., 3t}

where {(a_,b_ )lr =1,..., 3t} is an (A, 3t)-system or a

(B, 3t)-system depending on whether =0, 3 (mod 4} or

tz1, 2 (mod 4) . Then (V,B) 1is a 4-regular ETS(v; v/4) .

Thus, we have
N

4.27 Theorem. A 4-regular ETS{(v, v/4) exists if

and only if v4 or 12 (mod 24) .

N
We end this section with the statement of an open

problem: 1if v =12 or 20 {(mod 24)

does there exist a
4-regular ETS(v; v/2) ?



has . been Settled in [37]

‘or 1 (mod.3)

_CHAPTER 4. DIRECTED TRIPLE SYSTEMS AND .- -

L xi"grﬁsorm TRIPLE SYSTEMS --

v o - . it *
< ! : I ¢

EY . S e . > - v N

Sectionrii 'Diredﬁed'Triplefsystems.‘ ' ;'. A

L v _'a. '2‘ -. ,'

Dlrected trlple systems were lntroduced by Hung and

‘;Mendelsohn [37] as a” generallzatlon of Stelner trlple syStems.. "

I

Throuéhout Sectxohs l and 2, ~in what follows an ordered pair ;

will always be\an ordered palk A{a,b) where a+b. In-:

. o 5

(s

thls sectlon,.when we wrlte a triple w1tﬁ squa rackets-"

- . S

' as [a,b,c] we ~mean that' it contains the ordered palrs
(a, b),f(a c), (b,c) but not (b a).,(C,a), (c b) : A

.dlrected trlple system of order v (DTS(v))—ls a palr {v, B)

- \

where V/ 15 a v- set and B is-a colLectlon of 3- subsets of

the form [a b, c] of ' .(c lled triples or blocks) such

that each ordered pa;r fklshenct elements of v appears

o

in, preC1sé1y one trlple in, B/ The existence of DTS 's

U

£ .
. - . Tt SR
1.1 Theorem. A 'DTS(v) exists if ‘and onhly if v =0

-

In thrs sectlon, we prov1de Cycllc dlrected triple

systems that have been determined by Colbourn and Colbourn

[18] and construct comgfetely‘k-rotatlonal DTS (v) 's .

115
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L e

1.2 Remark. 1E§ery cyclic DTS(v) has only base

~triples of length v.

o=+ Proof. This follows from the fact that in a DTS

-

any twd c¢yclic shifts of a block are distinct (there exists

k

at least one ordered pair that is contained in one but not

-

——

~1.3 Lemma [18].  If a cyclic DTS{v) exists, then
: At

vIl., 4 or 7 (mod 12} .

*

. . ‘ . ~ " . : ’ -
- Pgoof. 1If eath block [a,b,c?} in a cyclic DTS (v)

is regarded as containing unordered pairs {a;b}, ‘{a,c} and

{b,c} (ﬁgén we obtain a cyclic triple system TS,(v).; so

by

vIo, 1, 3,¢," 7 or 9 (mod 12), .v + 9, since this is

-the spectrum of a cyclic TSz(v) ‘(see, Lemma 2.2 in Chapter
. .

2). Since v{v-- 1)/3 is the total number of blocks, v =1

(mod 3) by Remagk 1.2. Thus we have only v =1, 4 or 7

(mod 127".

-

\g

1.4 Lemma. If v =1 (mod 6), then there exists a

cyclic DTS (v) . ‘ .

'

) -

%7 Proof. We obtain a cyclic DTS(v) from a cyclic

= STS(v) by replacing’each-block fa,b,c} of the STS with

the blocks e{wn,b,c] and [c,b,a].
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1.5 Lemma [18]. If v =4 (mod 12), then there

exists a cyclic DTS(v) .

Proof. Let v = 12t + 4, t 20.

Elements: V = 212t+4'

Autcomorphism: a = (0...12t + 3} ,

1l

Base triples: B {{o, r, br+4t¥l]|r =1l,..., 4t + 1} .

where {(ar,br)|r = l,..;, 4t + 1} is an (A, 4t+l)-system.

Then (V,B) is a cyclic DTS{(v} .

Lemmas 1.3, 1.4 and 1.5 together yiela

1.6 Theorem. A cyclic DTS(v) exists if and only

if wvz1l, 4 or 7 (mod 12) .

We now consider rotational dirécted triple systems.
From now on we assume that the set of elements of our k-

rotational DTS({v) is V = ({ x 2.) U {»} and the

2 (v-1) /k k
corresponding automorphism is o = (w)(Oi...((v—l)/k - l)i),
i« Zk . In the case k = 1, we write for brevity

x Z_.) U {=}

-V = Z(V—l), U {=} instead of Vv = (Z(V—l) |

Analogously to Remark.1.2, we have

1.7 Remark. 1If a k-rotational DTS(v) exists, then

it consists of all base triples of the same length (v - 1)/k.
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1.8 Remark. If a k-rotational DTS{(v) exists then

kv =0 (mod 3)

”
.

Proof. Since the total number of blocks is

v(v - 1)/3 and each base triple has length (v - 1l)/k,

. 1 1 _ kv
‘ _ jv(v-—l)/i(v-l) = 3

must be an integer.

Remark 1.8 yields the feollowing necessary conditions

for the existence of k-rotational DTS's .

1.9 Lemma. The necessary conditions for the exist-

ence of a k-rotational DTS (v) are

(i) if

~
"
o

(mod 3) then v =1 (mod k),

(ii) 1if %X =1 or 2 (mod 3) then Vv =0 (mod 3)

and v =1 {mod k) .

Lemma 1.9 tells us that we need only to construct

k-rotational DTS(v)'s for -

=0 (mod 3) ,

F
I
’.—l
<

"

~
[}
(V]
<
1

=1 (mod 3) .
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1.10 Lemma. If vz=3 or 6 (mod 12) ,'then ther

exists a l—rotationai‘ DTS (v) . . .

Proof. Let v =-3t and ¢t =1 or 2 (mod 4).

U B

Base triples: QB = B, 2
where -

B, : {[0'?fl]}'

52:'{[0,,r; bf+t—l]|r =1l,..., t - 1}‘ r
where {(ar,br)lr =1,..., £t -1} s an‘(A,-t—l)—system.'

Then (V,B) ;is a l-rotational DTS (v)

l.li Lemma. If v =0 or 9 (mod 12} , then there

exists a l-rotational DTS(v)

—~

Proof. Let v =3t and tz0 or 3 {mod 4) .

Base triples: B = B. U B
where'
By: {[0,=,2]},

. L

- By: [0, r, b +t-1]|r = 1,..., t - 1}
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where {(ar,br)[r =1,..., £t -1} is a (B, t-1)-system.

Then (V,B). is a'l-rota;ional DTS(v),

Lemmas 1.9, 1.10 and 1.11 together yield

1.12 Theorem. A l-fotational DTS (v)

only if vz0 (mod 3) .

exists if and

1.13 Corellary. Let k=1 or 2 ({(mod 3). Then a

k-rotational DTS(v): exists if and only if vz 0 (mod 3) -

and v =1 (mod k) .

2

- ) /

1.14 Lemma:~If v =16 (mod 18) , then there exists

a J-rotational DTS {(v) .

Proof. Let v = 18t + 16, t .2 0.

Base triples: B = B, U B, U B

1 2 3
whg;é'm
By: {[0;,=, (3t42).][L e 24},
B,: {[Oi,ri,(brt2t+lii]|i € Ty, T = 1,..., 2t + 1}
where {(ar,br)lr =1,..., 2t + 1}, is an (E; 2t+1) -system.

-

By: {[04/ry.(27),1, [(2r),,r 0 ) r «

Zeras! -
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Then (V,B) is a 3-rotational © DTS (V)
i

1.15 Lemma. If v =4 (mod 18) . then there exists

a ‘3-rotatiomal DTS(v) . ]

Proof. Let v = 18t + 4, t=20.

- Basg'trlples: B = Bl U 32 J B3

2001}

Bl: {[m'OO'Ol]' [OOImJ’Oz]f [Ozrollm]l {01102

B,: the collection of the base triples obtained by
- - replacing each base triple {ai’bi’ci} of a

cyclic STS(6t + 1) based on Zppey * (i} with

the base triples [ai’bi’ci] and [ci’bi’ai]’
i e Z3 ,—

By: {[0g/ry (2r),1, [(2r),,F gre1) (01} -

NLISIEE-

Then (V,B) is a 3-rotational DTS(V)..'
1.16 Lemma. There exists a 3-rotational DTS (28)

| Proof. Base triples: B = Bl u 82 u B3 u B4

where
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B s {[1;,=,0,11i ¢ 25},

By: {034:04,0,1, [31404,0,1, [04,3,,0,], [6,,04,04],

[05:67:001, [35,04:3,1, [3,.04.6,1}, (
B,: {[oi,li,4i], [oi,zi,vi] ie 241, T
B4: {[Oorrll(g-r)zjf [(g-r)z’rl’oo]lr = 1!214'517I8} -

Then (V,B) is a 3-rotational DTS(28) .

1.17 Lemma. If v =10 ({mod 18), then there exists
a 3-rotaticnal DTS(v) .

Proof. For v = 28, see the previous lemma.

‘Let v = 18t + 10, t % 1.

. | Basg triples:' B = Bl ¥ 32 U B3 J B4

where

By {[Oi,W,(2t+1)i]|i € Z5},

;

N

By: {2+l g, 04,0, ], [(2e+1),,0,,0,], [0,, (2t+1),,0,],
[(4t+2)2,01,00], [02,(4t+2)l,00],

[(2t+1)2,00,(2t+1)l],,[(2t+1)1,oo,(4t+2>2]},
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a

B3: the collection of the base triples obtained by

-:eplaciﬁg each base triple {a;,b,.c;} except

" the base triple 0,, (2t+1),,.(4t+2),} ‘of a

cyclic STS(6t + 3) based on {i} with

. .26t+3 X
the base triples [ai,bi,ci] and [ci’bi’ai]'

« 1 5.23,
B,: {[Oo,rl,(6t+3—r)2], [(6t}3—r)27r1,00]|r =1,...,

2t, 2t+2,..., 4t+l, 4t+3,..., 6t+2} .
Then (V,B) 1is a 3-rotational . DTS (v)

1.18 Lemma. If v =1 or 19 (mod 24) , then there

exists a 3-rotational DTS(v) .- —

EEEEE' We obtain a 3-rotational DTS(v) from a
3-rotational STS(v) constructed in Section 4 of Chapter 1
by replacing each triple f{a,b,c} not contaiﬁinq @ of the
STS(v) with the triples [a,b,c] and [e,b,a], {=,a,bl

of the STS(v) with [a,=,b].

1.19 Lemma. If v =7 (med 24) , then there exists

a 3-rotaticnal DTS (v)

Proof. Let v = 24t + 7, t

Iv
O
.

Ease~pr1ples: B = Bl U B2 U B3
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where

Y

.{[01,5,00],. [Osz'(4t+l)l]r [oormrozj} I

r=1,..., 4t}
where '{(ar;br)]r =1,..., 4t} is a (C, 4t)-system,

[oi;({t+1)i.oi+l]ll-= 0, 1} .
Then (V,B) is a 3-rotationél DTS (v) .

1.20 Lemma. There exists a 3-rotational DTS(37) .

Proof. Base triples: B = Bl U B2 U B3 U B4

where

"By {[pi,m,si], [0.,li,8i], [81,1i,0i]|1 = °{ 1}

B2: {£021mr42]l {021.'1-2r112]v [02f22l'82]}
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Byt (10g:24:9, 10 197,24000], (04,345,111,
J[111,30,00], [61,21,22},-[22121,ql], [0,.3,.21.],
't112,3l,ol], (0,,5,:551, [54.5,,0,1, [0,,3,,10.],
[10,.3,,0,]) | e

Byt H0505.450, [04,1;.10,]0 [04,2),8,],
[0g-3,,10,1, [4,,0,,0.1, (1151701, [8,.25.001,
[10,.3,,0,1, [04,4;.1,1, [05,5,,6,], [04,6,.9,],
(04.10,,3,1, [1,.44.0,1, [6,,5,,0,1, [9,,6,,0,],

1
[32,101,00],.
Then (V,B} is a 3-rotational DTS (37} .

1.21 Definition. A (P,k)-system is a set of ordered

~pairs  {{a_,b)|r = 1,..., k} such that b, -a_=1r for

c K

r=1,..., k, {ar,br} = {1,..., (3k+3)/2 - 1,

r=1
(3k+3)/2 + 1,..., 2k + 1}, and when r = (k + 1)/2,
a. = (k + 1}/2 and‘_‘br =k + 1.

1.22 Lemma. A (P,k)-system exists if and oniy if

k=1 {mod 4) and k % 5.
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- . . . . 4

Proof.  (7) ié; '{(ar,br)Lr =1,.:., k} bea
(P,k)-system. Then we héve‘ ‘ .
(1.22 1$ - ~§-(b - ;') = Eih;i_ll4
T oL 0 r °r 2 -
“and : . )
(1.22.3) %I(b' . a (2k+D) (2k+2) _ 3k + 3 .
g eessi eyl E r’ 2 2 ‘

.

'Adding both sides of (1.22.1) and'gl.zz.z),*reSpeqti§e1y;';,..

we get . ) -

' S K L2
(1.22.3)° ~ °~  23p =2k rlk=-1

R

br is '‘an integer,- 5k2-+'4k -1 E\h '(ﬁod 4)

r=1

and hence -k‘Ei {mod 4) .

{(«) Let k = 4t + 1.
. t.20, 2 (mod 4) .
(2t+2-r, 4€+14r) ., r=1,.."., t +1,
(t+l~xr, 2t+1l+r) - r=1,.,., For
L SRR 1 :t“
(r, 4t+2—r) ? . . r = l'---'_ '2";



7t

(57t+ l+r, =+ 2-r) , - r '—f,l-;--;l_-': -%.- - .
. ' . — - * o -
(S5t+2+r, 8t+d4-r) , - . = ‘111-'-_“-.-'_%’:' -
'(%—E+2'+r, 1§—t+‘3-r) ¢ r = l,'---r..-,'zt-: _\‘ N
(6t+3+r, Tt+3-r) , , r=1,..0 %" 1,
13t , . . 15t )
(543, 75=+3) .
_f"J} ; ~

tzl, 3 (mod 4) .

It is easy to.check that there is no (P,5)~system,

t = 3: (24,25),-(9,11), (19,2-2), (23,27, (3,3)-,
(20,26), (7,14), (10,18), (6,15), (2,12),

(5,16), (1,13), (4,17) .

For t > 3, ~we distinguish 4 cases and each case

contains the following ordered pairs

. ’ +
(r, 4t+2-r) , r=1,..., —tzl,
t+l 5t-1 ’ t-1
| (T+:, S + 2-x) ,. r=l,...,T,
(2t+2-r, 4t+l+r) , : r=1,..., t+1,
5¢-1 . . Tt-1 o . 3 £-1
{ 5 + I+r, 5 + 2-r) , r—-l,...,—-?:-—-
(3t+1, 5t+3) ,
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(§t+3+r, 8t+4-r) , r=1,..-, E%£ -1,
(e g4, I3EML 50y pog,..., EL
2 | 2
&

Case 1. =3 (mod 4) .

t = 7: (47,48), (46,49), (51,56), (50,57) .

t=11: (71,72), (73,76),' (74,79), (70,77, (78,87),
{(75,86) .
\n

t 2 15:

(222 4 34, 15§+l-+5-r) , r=1, 2,

(6t+3+r, 7t+l-xr) , L r=1,... £-7

(232-7+3+r, 2—52—§l+s—r) s e £ =1, 2,

25t=7 - 27t+7 +

(—F— + 7+r, 3 1-r) , r=l,...,T—72,
(135“7 +5+r, Tt+3-r) , r=1, 2.

Case 2 tzs (mod 12) .

(13§+l'+ 3+r, l512:4'_]'4»5—r) ’ r=1, 2,

(6t+S+r, 7t+3-r) , ) r=71,..., E%ﬁf
'(%ﬂ+l' 19847, ) ‘ )
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A \.;'-c'.- ) o SO .
P _.{'Gt-f-'B}-'r-J:",r -]-'ig-t?—+ i-r}y , r=1, 2,
+1 r+l o
FgtEes, HEen |
.(19§+7 +4$’3, 2ot3+17 _r)'\,\ r<1,..., t—617_ _
- . 4
. ~Case 3. t=1 (mod 12) .
N S 13t+1 15t+1
L e O
SRR RN .
‘ f - (6t+3+r, T7t+3-r) , r=1,. .Lt—g-]L - 17,
o (Aie+l 4 15E4L L 4y '
) A N L3
6 2
A :(:,Ltg—&+9:¢’r, 411‘6-'+l+3—r)', r=1,..., P—’é—l--— 1,
RN 1 9% 1. .
(l9t l+3' 19t l+4) )
3 3 - ‘
. 13t¥l 13t+d . " £-1
,(—2—+3“ ' > f4+r) ' r =1, e l.
Case 4. t =9 (mod 12) . .
. e
. A3l o 15§ﬁ+§)’ Q
41t+3 15t+1 ‘
(__6—_+?' : 2 +4) ’
) o ) L TT'
: (13§+1,+2' 4116;+3+2) ' -
~ (‘;
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I‘,\I)l
(6t+3+r(:7t+3—r), ‘ ro= 1,0, 520
ERASERNPYNIEY S5 SN S e D €3
6 3 . "y
‘ —
19t 19t o T
(—-—-—3 + 2, -"'—.3 + 3) r - R \
(l%5~+3+r, EEE--4-3—r) . ) r=1,..., £-3

~ T 3

1.23 Lemma. .If v =13 (mod 24) , then there exists

AN

a 3-rotational DTS(v) .
. ‘,‘___// - -
Proof. The cas® v = 37 has been treated in Lemma

L

1.20. Let v = 24t + 13 and t #* 1.

J B

Base~triples: B =B, U B, U B 4

1 2 3

where

Bl: -{[Oolmloljr [.Ozrmroo]: [Olrmpoz]]’ ’

B, {[Oi,(2t+l)i,(6t+3)i]|i € 2,1},
—
/ r = 1l,..., 2t, 2t+2,..., 4t+l}

S

where {(ar,brilr ﬁ\i;;/fﬁ 4t - 1}*™is a (P, 4t+l)-system,

ol

- v

L]
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B,: {[ol,oo,(2t+1)21, (040 tat+2),, (422, ],
[(6t+3)2(4t+2)l¢09}, [00,<2t+1{l,02],
[(4t+2),,04,(68+3) ], [(2e+41),,0,, (6t+3),],

).

{(2t+1)2,(5t+3)1.00]

‘Then (v,B) is a 3-rotational DTS (v) .

Summarizing, we have

1.24 Theorem. A 3-rotational DTS(v) exists if and

only if vz1 (mod 3) .

1.25 Corollary. Let k=0 <{(mod 3)'. Then a k-

rotational DTS(v) exists if‘andrdnly if vl (mod k) .

. TN
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or. (c,a}b)”: A Mendélsohn triple Systém of_qrdefh v

Section 2. Mendelsohn Triple. Systems.

A cyclic- triple is a collection b of three ordered
pairs such that an element occurs as a fiZit coordinate of
an ordered pair‘in' b 'if and only if it edurs as a second

coordinate of an ordered pair in b. ‘We will denote the

cyclic tripTe {(a,b), (b,c), (c,a)} by (a,byc), (b,c,a)

(MTS{v))L—is a éair (V,B) .where V is a v-set and B is

;a'collection-oﬁ cyclic triples of elements of V such that

every ordered pair of distinct gléments‘of V belongs to

exactly one cyclic triple in' B. 1In 1971, Mendelsohn [49]
proved that the spectrum for MTS's is the set of &l1 v =0
or 1 (mod 3) except v = 6. Mendelsohn himself called

. 2 N .
such systems cyclic triple systems. This vernacular, however,

"cah be a bit coﬂfusing since cyclic Steiner triple systems

(see [54]) are also called cyclic triple systems. The term-
inolbgy "Mendelsohn triple system"dis due to Mathon and Résa
[47]. 1t is well taken since it ﬁot only eliminates some
ambiéuity but recogniz as well, the fact that Mendelsohn
was the first to detérmi e the spectrum for such systems.

We remark, as is.well- nown, that an MTS 1is equiva{eﬁt-to
a quasigroup satisfying the identities a2 = a and

a{(ba) = b, However, in what follows, we will use design

vernacular exclusively.
— -~

132
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In this section, we give cyclic Mendelsohn -triple -
systems which have been settled by Colbourn and Colbourn
[14]." We- show that a necessary and sufficient condition for

the existence of a l-rotational MTS (v) is v

i

1, 3 or 4
(mod 6) . . -

By some simple gbsérvations concerning the structure
of a cyclic MTS(v) ,Athe existence of a cyclic MTS(v) for
v (mod 3) is equiqalent to a partitioning of the set
zZ,\ {0} into difference triples f{a, b, ¢} for which

a+b+cz0 (mod v) . When v =0 (mod 3) , a cyclic

MTS(v) 1is equivalent to a partitioning of Z&\{O, v/3, 2v/3}

into diffgrence triples. These simple observations enable
us to prove the following theorem:
»
2.1 Theorem [14]. A ecyclic MTS (v} eg}sts if and

only_if vl or 3 {(mod 6), v ¥ 9.

Proof. (=) A basic necessary condition for the ex-
istence of a cyclic MTS(v) 1is that v 30, 1, 3, 4, 7 or 9
{mod 12) ; and v.* 9, since this is the spectrum of cyéiic
TSz(v)'s » and removing the directions from a cyclic MTS(v)
gives a cyclic TSz(v) . A stronger necessary condition is -
obfained as follows. Consider a set of difference triples
for “a cyclic MTS(v) .. Since v divides the sum of the

: .

differenqes_in each difference triple, it therefore divides

the sum of all of the differences being partitioned by the
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triple. In case v=0 (mod 3), we omit two differences \
iv/3, 2v/3} from the set’ {l,..., v - 1} ; in case v =1

o

(mod 3) , we omit none. .In either event, v divides the
sum of the integgrg 1 through’ v - 1, that is,
v|v(v - 1)/2.. Thus v is odd and hence v=1 or 3.

(mod €) , Vv % 9. >

(=) We obtain a cyclic MTS(v) from a cyqlic STS (v)
by replacing each block .{a, b, ¢} of the STS(v) with the

_cyclié‘t@iples {a, b, ¢} and (a, ¢, b) .

Let us assume the set of elements of our l-rotational
"MTS(v) to be V = Zy_1 U {=} and the corresponding'aﬁtomor-

phism to be a = (=) (0...v - 2)

232 Lemma. If a l-rotational MTS(v) exists, then

vzl, 3 or 4 (mod 6). : : . . .

0 or 1 (mod 3i .

[

m

Proof. First of all we have v
and . v % 6 » Since this is the spectrum of MTS{v) . In‘case.
v0 (mod 6), Vv ¥ 6, the existence of a l-rotationél
MTS(v) is equivalent to a partitioning of the set
{l...., v -2\ [k} for some 1 < k 5 v - 2 into difference
triples {a, b, ¢} for which a + b + cz0 (mod v - 1)

Since v - 1" divides the sum.of the differences in each
difference tgiple, it divides the sum of all df‘the differ-

ences being partitioned by the triple. Thus v - 1 divides
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the sum of the integeis’ 1 through v ~ 2 except exactly
one number, that is, = (v -~ .1)(v -'2)/2 ~kz0 (mod v '~ 1)
for someh l <k € v -2 but there is no sﬁchra k in .

L,e.., v = 2}. -

2.3 Lemma [26]. . There is no l-ré;atidnal MTS (10). .

2.4 Lemma. If v =4 .(mod 6) ' v %« 10, then fhere

exists a l-rotational MTS(v) . .
. N

»

“Proof.. Let v = 6t + 4 , ot 1,

2

Base cycliec triples: B = Bl UB

- where \.

"By {{0, =, 2t+1), (0, 2¢+1, 4t+2)}

’

. *

e the collection of the base cyclicltriples obtained
by replacing each base block {a, b, c} except
LI the base block of the form {0, 2t+l, 4t+2} of

a cyclic STS(6t + 3) based on with the

Zet+3
cyclic triples {a, b, ¢} and (a, .c, b) .

‘Then (V,B) 1is a l-rotational MTS (v)

2.5 Lemma. If v=7 or 13 . (mod 18) , then there"
L) ' ' :

exists a l-rotational MTS(v) .
<
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Proof. Let v =6t + 1 and t31 or 2 (mod 3).

Base cyclic'triplesﬁ B = Bl U 82 U By

where ‘ . - o \,f

B,e {(0, =, t}, (0, 4t, 2t)},.

»

By: {(0, 3r, 2t-3+6r)|r = 1,..., t},

.83:'{(0,'3r, 6r-4t) [r = t+l,..., 2t-1} where t > 1.

-

Then (V,B) is a l-rotational MTS (v} .

2.§/temma. If vzZ1 ({mod 18) , then there exists

l-rotational MTS{v) .

Proof. LetQ v =;6t,+ l and t=0 {(mod 3) .

Base cyclic triples: B-= B, U B, U B

1 2 - 73
LNT
where - ' .
By: {(=, 0, £), (0, 2t, 4t)},
Bz: {{0' 3t+1—r; r)lr = l,--o; t}'

'83: {(o, r, 7t"r)lr =, t+l,._..,'2t°—l} .



Ve . ) ﬂ
Then (V,B)  is a l-rotatiocnal MTS{(V) . 7 e
2.7 Letma. If v =3 or 9 .(mod 24) , then there

exists l-rotational MTS({v) .

Proof. Let v.= 6t + 3 and t=0 or I (mod 4) :
Base cyclic-triples: ‘B = Bl UrBé '

“where

By: {(=, 0, 3t+1) ),

. € ‘ . . .
By: {(0, r, b_+t), (0, b_+t, r)|r ="1,..., tf_

where -{(ar,br)[r = 1,..., t} "is an (A,t)-system. Then

(V;B) is a l-rotational MTS({(v). .

2.8 Lemma. If v=15 or 21 (mod 24) , then there

exists l-rotational MTS(v) .

Proof. Let v =6t + 3 and t=2 or 3 .(mod 4).

Base cyclic triples: B = B, U B, o

- .

where

s, 0, 3t+w],
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By: (0, r, 3t+lar), (0, St+2-ellr = 1,..., t} .

Then (V,B) is a l-rotational MTS(v) ,

Lemmas 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 together
yield: '

2.9 Theorem. A l-rotational MTS(v) exists if and
only if v =1, 3 or 4 (mod 4) and v * 10 .

Note that a l-rotational MTS(v) exists fo£ all
adm{ssible orders v which are the spectrum for the existence
of a MTS(v) , except‘for vi0 (mod 6) and v = 10. If
v0 (mod 6) and v Zé6 (mod 30), then v - 1 ‘is prime.
‘'Thus, for the orders v =0 (mod 6) and lv,zﬁ. (mod.30),
only (v - l)-rotational MTS(v)'s are considereg; clearly
such systems exist as their existence foilows trivially
from the existence of MTS (the fv - 1l)-rotational autonor-
phism is exactly the identity automorphism). in addition, a
-3-rotational MTS(10) has base cyclic triples (=,1,0),
(m,4;3), (@,7,6), (0,1,3), (3,4,6), (0,6,7), (0,4,8), (0,8,4),
(0,3,6) and (0,7,5) with o = ()(0 1 2)(3 4 5)(6 7 8) N
@s an automorphism. Therefore, the only unsettled problem
for‘the existence of rotational MTS ‘?é: 1f v = 30t + 6
and t # 0, does there exist a S-rotation®l or (6t + 1)~ xks

rotational MTS(v) ?



e

Section 3. Extended Mendelsohn Triple Systems.

r

An’'extended Mendelsohn triple sygféﬂ (EMTS) is a
N

\gair (V,B) where V 1is a finite set and B is a collec-

*
4

tion of cyclic triples of elements (not necessarily distinct)

of V such that every ordered pair of elements (not neces-

- sarily distinct) of V is contained in exactly one cyclic

triple in B . Like the triples of extended triple systems,

the cyclic triples of B are of three types:

(a,a,a) , {(b,b,c), (x,v,2)

The element a 1is called an idempotent and b a non-

idempotent of (V,B) . We will denote by EMTS(v;p) an
extended Mendelsohn triple system on Q elements which has
P idempotents. The existence oflextended Mendelsohn triple
systems has been settled by Benn?tt}izj.' Although Bennett

himself called such systems extended cyclic triple systems,

it is natural that we shdﬁﬂéﬁs&})flhose systems extended

Mendelsohn triple systems.

3.1 Theorem [2]. The necessary and sufficient con-
ditions for the existence of an EMTS(v;p) with 0 < p s v
are

(1) 1if v =0 (mod 3) ¢then pP=0 (mod 3) ,

139
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I
(ii) if v=1l or 2 (mod 3) then p=1 (mod 3),

(iii) if v = 6 them _p < 3.

" In this section, we obtain necessary and sufficientﬂ.
conditions for the existence of cyclie EMTS(v;p)‘s » - and
those of 1~rdtationél EMTS(vi;p)'s . Also, we will assume
that VJ=_2V,'is the set of elements of our cyciic EMTS (v:p)

and o = (0...v - 1) is<the corresponding cyclic automor-

phism. 1In the case of l-rotational EMTS (v;p) ,

0

¥,_1 U {=} and o = (»)(0...v - 2), respectively.

+

3.2 Remark. If a cyclic EMTS(v;p) exists, then

Pp=0 or v,

Proof. Obvious,

»

3.3 Lemma. Necessary conditions for the existence

~of a cyclic EMTS(v;p) are

1l

(i) if- p=v then vz1 or 3 (mod §) PV o9,

0 then v

il

(ii) if p 3 (mod 6) .

Proof. (i) Follow from the existenée of a cyclic,

MTS .

(ii) If p =0 we have v z90 . (mod 3) from the

éx;stence of an EMTS(v;0), . In case vz 0 (mdd 6) , the -
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existence of a cyclic EMTS}V;O) is equivalent to a parti-
tioning of‘the’set {1,..., v - 11\ {x,y} for some

1l s x <'y < v - i_ Such‘that X +y =v, into difference
triples {a,b,c} for which a+ b +c=0 (mod v) . Since
v, divides the sum of the differehces in each dif%erence
triple, it divides the sum of all of the differences being
partitioned by the tripig( ’Thus v divides the sum of the
_integérs 1 through v - 1 except exactly two numbers
whose sum is v, that is, v(v - 1)/2 -~ v20 (mod v) .
Equivalently, (v - 1)/2 is an integer wg}ch is impossible

1

for v =0 {mod 6) .

As a consequence of Theorem 2.1, we have.

-

3.4 Theorem. A cyclic EMTS(v:;v) exists if and
.

only if V-El or 3 {(med 6) , v £ 9,

®
L]

3.5 Lemma. If v=3 (mod 6), thep there exists a
cyclic EMTS({v;0) .

Proof. Let v = 6t + 3, t & 1.

Base cyclic triples: B = B

1 2

foanl
where

By: {(0, 0, 2t+1)},
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B,: the collection of the base cyclic triples
+ . obtained by replacing each base block {a,b,cl}
except the base blocR of the form
{0, 2t+1, 4t+2} of a cyclic STS{6t + 3) based
on '26t+3 with the cyclié triplés (a,b,c) and

(a,c,b) .

When t =1, B = {(0,0,2), (0,1,6}, (3,0,8)}.

'Y

Then  (V,B) iS\<VSYCIiC EMTS(V;O) . -

\

. ' Yoo
Lemmas 3\ 3'and 5.5 together yield
L
}

3.6 Theorem. A cyclic EMTS(v;0) exists if and

only if v 3 (mod 6) .

In the rest of this section,!Ee will consider 1-

rotational EMTS's .

3.7 Remark. If a l-rotational EMTS(v:;p) exists,

then p =1 or v.
Proof. Obvious.

3.8 Lemma. Necessary conditions for the existence

af a l-rotational . EMTS(v;p) .are , 4

(1) if p=v then vzl, 3 or 4 (mod 6),

N S .
a



of a l-rotational EMTS (v;Vv)

(ii) if p =1 then v:l or 2 (mod 3) 2‘

=

Proof.

(1) Follow from the fact that the SYstem'h“~'-f

cbtained by deleting all cyclic triples of theAform (a,a,a) .
Pl

is a l-rotational MTS(v) .

-

. (11i) By Theorem 3.1.

S an

3.9 Lemma. There is no l-rotaticnal E@TS(IO;lf.

-

{ R o
Proof. This. is easily seen from the fact that there

'

is no cyclic MTS(9) (see Theorem 2.1).

then there exists a l-rotational EMTS (v;1) .

e

wHere - . L~
- A _ N ——
N \ .

. v

P

3.10 Lemma. If v =2 or 4 (mod 6) , v + 10,

-1 _sar

Proof. Let v2 or 4 (mod 6), v % 10.

Base cyclic triples: B8 = BjYV B,

Bl: {(m’w'm)’ (mfolo)} ’

: r
B,: the gollection of all base cyclic triplesa obtained

~

by replacing each -base block.'{a,b,ci of a
—— Cyclic BTS(v - 1) based on ~Zv_l..with the
cyclic friﬁ;és (a,b;c) and (a,c,b) . ' )

-
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!
.0 : '
L.\\ Then (V,B) is a l-rotational EMTS(v;1) .

3.1 Lemma. If wv=1 or 5 (mod 6) , then there

T _exists %l-rotational EMTS(v:1) .

‘\_.’

—

Proof. "'Fd;' v

n

1 or 5 "(mod '6), let (V,B) be
" a l-rotational ETS (v;1) constructed in Section 3 of Chapter

(’ .
3. Then B should contain blocks of the forms {=,®,=},

v

{«,0,a} and {0,0,b} for some 'a, b ¢ zv\' {0}, a = b.

L] .

Set B’ =-B, U B, where

o - %

A"’—@ E . . .. . o ' . {
\ . Bl- ‘.{(oo"w'm)" (0,1,a+i), (l,l,b'}'l)]i = 0,000, ¥ 1}

-

’

Bz:'{_(x,y,z), (x,z,y)[{x,y,z}-; é\Bi} " D

1 .
ere Bl is the collection of all members of Bl- with the

cyclic order disregarded. Then (V,B') is a-l-rotational

¢ .~ EMTS(v;1) .
Y o - X
L/} - Summarizing, we have:
~ “ .
- 3.12 Theorem. A l-rotatid - EMTS (v;1) xists if

2 and only if v=1 or

;%)

(mod 3 und v + 10.
'ﬁdethe case p = v, the existence of k-rotational

EMTS (v;p) 's ié,_ in epf'ect, equivalent to e existence of

k-rotational MTS(v)'s . Thus, the following theorem
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immediately follows from Theorem 2.9 in this chapter.
-.3.13_ Theorem.t '.A-'l—rotational. EMTS (v;\;)‘ exists 1f 7' -
and o‘niy‘ if -V_':“l, 3 or. 4. (mod 6). and v ¥ 10"; o



CHAPTER 5. STEINER 2-~-DESIGNS
S{2,k,v) WITH k > 3

Section 1. Introduction.

™~

-There is nothing new in this chapter. However, our

aim is to.summarize known results about 2-designs with pre-
scrlbed automorphism types not included in previous chapters
that may give some 1nformat10n to the reaéer for. further
research. |

As mentioned in Chapter 1, a syste@ .5(2,k,v); is a
+2-design which is a Steiner system, a so-called Steiner 2-
desigﬁ. Very little is"kﬁcﬁn about cyclic §(2,k,v) systems
when k > 3; the ex1stence problem for them remains open.
ﬁ necessary condition for the existence of a S(2,4,v):'
system is that v =1 or 4 {mod 12) . Foer 85(2,5,v)

systems, the necessary condition is that v =1 or 5 (mod

20) . Hananl [34] demonstrated that these condltlons are

also sufficient. When cyclic Steiner 2-designs are considered,

these conditions are not sufficient. as for some small orders
cyclic Steiner 2- de51gns are known not to exist [see 16].

For example, there is no cycllc S(2,4,v)_ for v = 16, 25
or 28 . For higher values of v + 1t remains unknown
whether v =1, 4 (mpq-lz) is a sufficient condition for

the existence of ‘cyclic $(2,4,v) " designs. A similar

146
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situation.exists in the case k = 5. ' In this chapter, .we
present a survey of known fesults for- k> .3.

It appears that virﬁually'nothing is knoﬁn‘about
__’E}rotational $(2,k,v} designs if .k > 3. thefonly excep-
tion, as far as we can tell, is the well-known fact that
affine’/planes of order v are l-rotational S(2,v,v2)'s

[cf. 6, pp..196-204].



5.

Section 2. Cyclic Steiner 2-designs 8(2,k,v).

Bose [5] has constructed two infinite families of
cyclic S(2,k,v) systems. The first is for k = 4. 1In

what follows GF(p) denotes the. Galois field of order p .

2.1 Theorem [5]. Let v be prime of the form
12¢ + 1. Let -x be a primitive element of GF(V) . which :
satisfies x4t - 1 = x% for some odd g . Then there

exists a cy{?ic 5(2,4,v) .

S
Proof. he t base blocks are :
o, x2E, XATPELBER2Iy g, L, £ - 1)
The second construction is for k = 5. The construc-

tion is very similar to ‘the first.

.°2.2 Theorem [5]. Let v ke a prime af‘the form
20t + 17 'Let x be a primitive element of GF(v) satisfy-
‘ing x4t + 1 = x? where q i; odd. Then there exisgg a
" eyelic S(z,é,vbﬂ

Proof. Tég t base blocks are

148
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i +2] +21 +2i +2i,.
{{xZL' LAt 21' LOt+2i <12t 21( 16t 21}I

’ l=0,..., t"l}[

The next two constructions are due to Colbourn and

Mathon [19].

2.3 Theorem [19]. Let v = 4p, where p is a

-—

prime of the form 12t + 1. Let x be a primitive element
of GF(p) satisfying x=3 (mod 4)'. Then the 4t + 1
blocks

4i L3143

{0, x%%, x41+6

!

}r i=0,..., 3t - 1

}

i

{0,‘x41fl, x4t+41+l! x8§+41+1 0,..., t - 1

{Or Pr zpl 3P} r

L

are the base bloéks of a cyeclic® S(2,4,v) system.

2.4 Theorem [19]. Let v = 5p, where' p is a prime -
of the form 4t + 1. Let x be a primitive element of

(F(p) satisfying x =4 (mod 5) and such that

S xy (x7

the t + 1 blocks ﬂﬁ :

{x - 1) Xfor-some odd integers a, b. Then

-

"." . A
‘ . . _ ;
x2§+21’ x2t+21+a} .

r

{0, x%1 x21+a,

.
\
A

4
3

{0, p, 2p, 3p, 4p}
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are the base blocks of a cyclic S5(2,5,v) system.

~. . | \‘\\\

The following two general constructions are applic-

able to va#}ous values of block size k.

¥

2.5 Theorem [5, 8, pp. 56]. If v = (g% - 1)/(g ~ 1),

d 22 and g 1is a prime power, then there exists a cyclic

S(2, g+l, v) .

The proof of this theorem constructs projective

geometries which are cyclic designs with these\parameégis.

R . - r
R |
2.6 Theorem {70]. If v =1 (mod k(k - 1)) is a
prime power and v > (k(k - 1))k(k"l) , then there exists a

cyclij S(2,k,v)
Sy

The above constructions rely on primality. We would
prefer a general construction technique which does not depend

on a primality condition.

So fr we have only direct constructions. Hereafter,
we present recursive constructions due to Colbourn [16].

We will assume the set of elements of our cyclic SA(2,k,v)

-

to be 2z, and correspdnding cyclic automorphism to be

[

(0...v - 1)

;2,7 Censtruction [16]. Let v Z0 (mod k) and

'{Bl,.:., Bm} be the set of base blocks for a cyclic

-
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. . . ’ 1 .
SA(Z,k,v) . Let {Bl,..., Br} - be the set of base blocks

for a ;;EIIé ~Si(2,k,m) with h_ relatively prime to

(k - 1)!. Then the set of base blocks for a cyclic

S,{(2,k,mv) is constructed as follows:

(1)

(i1)

For each Bj ='{Q, bl"';‘ b

{0, b

k—l} , take the

m base blqcks

+iv, by+2iv,..., b, + (k-1)iv},

1 2 k

i=0,...,m-l-

Fb?t?ggb Bj = {0, bl,...i bk-l} , take the
»

t ¥

single base block {0, v 17 vb }.

2.8 Construction [16]. Let {Bys-.., B} be the

set of base blocks of length kv for a cyclic 8S(2,k,kv)

L}
Let {Bl,...

B_} be the set of base blocks for'a cyclic

S5(2,k,km}) with m relatively prime to (k - 1)! .. Then

the set of base blocks for a cyclic S(2,k,kmv) is con-

structed as follows:

(1)

{0, b

‘1

For each B, = {0, b "take the

Lreeer Byt

'“ m. base blocks

1+1kv, b2+%}kv,...,‘bk*l-k(k—l)ikv},,

i=0,..., m~ 1.
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(;i) For each Ej = {0, bl,...; bk-l} . ta&e the
- ) . t ’ 1
single base block {0, Vbl""' vb

k-17

From Constructions 2.7 and 2.8, we have

2.9 Theorem. Let m be relatively prime to
(k = 1)!, and quol (ﬁod-k) . Then if a cyclic S, (2,k,v)
and a cyclic SA(Z,k,m) exist then there exists a cyclic

, SA(Z,k,mv) .

2.10 Theorem. Let m be relatively prime to
(k - 1)) . Then if a cyclic S$(2,k,kv) and a cyclic

5(27kekm) exist then there exists a cyelic ~S5(2,k,kmv)

Combining:Theorems 2.1 and 2.9, we have

2.11 Theorem. Let Pyres-r P be primes which are

s
all 1 .{(mod 12) . 1In addition, suppose that for each P

there exists a primitive element . of GF(p,) satisfying
Yi *Ei

‘y4t -1 = yz for some odd g . Then a cyclic S(2,4,.v)
i ‘ . x, « .
exists for all v = pl ...pss for all Xy = 0, i=1,...,

L ]
2.12 Theorem. If v =1 (mod 12) and there exists
- a cyclic S(2,4,v) , then there exists a cyclic S(2,4,49v)

and a cyclic §(2,4,85v)
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Proof. There exists a cyclic S(2,4,49) and a

cyclic 5(2,4,85) [16] and hence Theorem 2.9 can be applied.

Since there exists a cyclic §(2,4,76) [16], we

_ \ ; _
N 1 '
- 2-13 Theorem. If v = 4(3t + 1) and there exiipéffzr_*‘ﬂ,/

have

a cyclic 5(2,4,v) , then there exists a cyclic -
s(2, 4, 76(3t + 1)) for all t 2z 0.
3
A similar situation exists for k = 5. Using

Theorems 2.2 and 2.10, we obtain-
)

2.14 Theorem. Let Dyreeer Py be primiz which are
all 1 (mod 20) -f/I“ addition, for each p; -there exists a
- v l - /_ 4
primitive element Y; of GF(pi) satisfying yit + 1 = y?
R A
for some odd g . Then there exists a cyclic 5(2,5,v) for

' % ' _ ,\\\
*1 S B )
all v = P17 ---Pg for all X, 2 0., i“=”J1..(, s .

2.15 Theorem. If v»il~'(£pd 20) and there exists
—_— . :
a cyclic S§(2,5,v) , then there exists a cyclic §&(2,5,5v)
. S
Proof. 5 and 4! are relatively prime; apply i

Theorem 2.9.

Since there exists a clic S(2,6,31) and a cyclic

s

S(2,6,91) [16], we have )
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2.16 Theoreng\ There existz’iliyciic 5(2,6,v) ;for

154

= 31X . Y \
~all v 31 914 , X, Y 2 0.

S
} N . _
For individﬁgl constructions of cyclic SA(Z;k,v)

for small values of v, see [16, 41]. Althouéh'many'in-

finite families have been obtained it is not known whether,

for a fixe%sz > 3, a cyclic S§(2,k,v) system exisfg\for

each admissible order of v .

L]

o




CHAPTER 6. STEINER QUADRUPLE SYSTEMS

Section 1. Introduction. . - -

A Steiner quadrupfe system of order v{;i$QS(v)) is
a S(3,4,v) design. One,obtains'immediatelf that \rgé or

4 (mod 6) 1is a necessary condition for the existence of an
SQS (v) f-and’zﬁe total number of quadruples is Ny
™~ .

' _%ﬁv{v-)ﬂ(v—Z), the number of quadrubles containing a_given ;

-

e

element is %(v-l)(v—Z) » and the number of quadruples con-

taining a given pair of elements is %(v-z) - In 1847,
O e d

o
Kirkman {417 first investigated the existence of- 5Q5, -

n
-for every

showing that an SQS(v) -exists whenever v =2
n. The existence of SQS was settled by Hanani [33] in
1960, when he proved, with the aid of ‘recursive constructlons,
that the necessary condltlon is also suff1c1ent

As long as we consgder cyclic SQS, we always

assume the set q§%£Iéments of our cyclic SQS(v) to be

vV = Zv » and its corresponding cyclic automorphism to be &

e

It

o (0...v - 1)

The investigation of cyclic sQs initially focused
on small values of v . Barrau {1] found that the unique

SQ5(10) 1is cyclic and,its quadruples are determined by the

-
three base quadruples
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F'y . .' .
.'{Ollr3t4}f'{0rl;2r6}"{0,2,4;7} . h

'Cycliq 505 were inVestigated‘further by Fitting éggﬁ who
constructed cyclic SQS(26)\_ and cyclic SQS(34) . Abch -
later, with dssistance of a dqmputer, Guregov4 and Rosa [27]

« showed that cyclic ~SQS(v) do not exist for v = 8, 14 or

le .-
Before_goiﬁg further, following Lindner and Rosa [45]

‘we partition the admissible orders for SQs (v} into four .

classes:

=
<
"

2 or 10 (mod 24) ,

B. v

4 or 20 ?mod.24),

/ ' -/
C. wv=l4 or -22 (mod 24) , \\‘ - v

,—"..'"““\\

D. v=8 or 18 (mod?24)

Cyclic systems in classes B and D necessarily contain
the unique orbit of lengthr‘% + while those in € and D

contain an odd number of orbits of length %.
— /

- A cyclic 5QS5(20) has been constructeigfirst by

Jain [39]. He has shown that his is the unique\S-cyclic

T 4
sfétem (i.e., each‘orbit is invariant under the mapping
8¢ x + -x (mod ZOf) which has the following 15 base S\

guadruples:
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"{0,1,3,4}, "{0,1,2,11}, -'{,'0,1-,5,1.6}- .
{0,2,6,8}*, "{0,2,4,12}, {0,3,6,12},
. . S 2
{0,3,9,14} , {0,1,6,7} , -{0,1,9,12},
‘{0,1,8,13}, "{0,2,7,9}, "{0,2,5,17}, -
) _ ) .
'{0,3,7,16}, {0,4,8,14},  "{0,5)10,15} . ¢
. ~ Later, Phelps [56], Griggs and Grannell/szj and myself f9]_'
constructed other cyclic SQS(20}'s”. More recéntly, Phelps
- ‘ “ S
K-x [58] has made a complete enumeration of cyclic SQS{20)'s .

- .

| "‘—‘) L . ’
T@h@e are sexactly 29 non-isomorphic such systems including
one which is S-cyclic [39] and there is.a total of 152 -

distinct cyclic 8QS(20)'s.

\
In the class C, the only orders v for which a
cyclic SQS(v) is known to exist are 22 and 38. For
]

v = 22 Phelps [?}] has coﬁstructed 7 non-isomorphic cyclic
systems and Diegér [21] has enﬁmerated all cyciic 85Qs5(22)'s .
. There are exactly 21 non-isomg@rphic such systems and there
is a total of 210 distinct cyclic SQS(22)'s . Fbr the
case Vv = 38, a cyclic SQS(38% has been'cénstructed-b§ ,
Colbourn and Phelps [15]. An e:féample of & cyclic SQs(32)

which is #1 as given in [21] isg\ﬂ

/
{oflll {0:11204} r " {0,1,5,6} [
{0,1,7, 98 '{0,1,8,9} ., {0,1,10,13} ,
i '{0,1,16,20} , {0,245,10% , "{0,2,6,14} ,
.. . N .
{0,2,7,17}, {0,2,8,12} , {0,2,9,16} _l') A
- T -~ !

j‘\;/ o /
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: ©0,2,12,15), * "{0,2,1819}, » "{0,3,8,177 ,

| COH0347,11), “10,3,9,15}, - "{0,4,9,%7} .
. 3 L |

- - . r

éi;}K\\.}. \\Q In the class D, Colbourn and Phelps [15] constructed
‘e N :

a cyciic SQS(49) and very recently Grannell and Griggs [30]
determined a ¢yclic 5QS(32) which guarantees the existenR®e

of a cyclic SQS(Zn) for every n = 5. An example of a

cyclic 5QS(32) as given in [30] is:

(s
{o,8,16,24} , {0,2,16,18} , '{d?S,lﬁ, i},
{0,6,16,22} , {0,1,2,17}, 0,1,3,21} ,
) 10,1,4,6} 2 :{0,1,5,43;ﬂ {0,1,7,26}, ’
{0,1,8,25}, - {0,1,9,10} , " {0,1,11,29} ,
10,1,12,22}, ' {0,1,13,14) . {0,1,15,18} ,
'{0,1,28,30} , '{0,2,6,12} , {0,2,7,9} ,
™
W {0,2,8,10} , {0,2,11,23} , {0,2,13,15} ,
{0,2,14,22} , . {9,3,6,19} , {0,3,7,10},
{0,3,9,12} , 1f{0;3,13,22} , "{0,3,15,20} ,
{0,4,8,22}, {0,4,9,13}, T'{o,4,11,25}.{
{0,4,12,16} , {0,4,15,19} , "(0,5,11,26} ,
N - {0,5,12,25} , {o,5,14,19} , {0,s5,15,22} ,
':'\* o {0,6,14,20} ,- {0,6,15,23} , {0,7,14,23},
‘:. #
L - . {0,3,8,27}, 0,3,11,24}) , - '
.:‘;: : - . —~
" Further cyclic SQS were constructed by Kéhler (42,

% 43] and Colﬁourh,and Colbourn. [13]. Grannell and Griggs [29] "

*
Ay .

L]
N v f
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- :showed:that thefe were exactly. 18 nonisomorphic S-cyclic
'SQé(ZG)'S . . The 6rders v less-than' 100 for which the
» -.'ekisténce}of.a cyclic SQS(v)i is in doﬁbt, aré ‘v = 46, 56,
\;;>*70, 86"énd ‘9§ which are all in'class C except |
v‘= 56' in.c1és5 ’Q . |
1lTﬁe‘first.infinite.families of cyclic SQS were
found by PhgipF.[S?] who exploiéed the Structure of in#ef~ \
- éi&e planes, Jhich are S(é, g+l, q2+1) designs.
6.1 Theorem [57]. 1If theré exists a SQS(g + 1) , -
where q 1is a prime power, then there exists a cyclic
SQS(q2 + 1) containing SQS{(g + 1) as a subsysten.
o ' _
6.2 Theorem [(57]. 1f there exists a cyclic | '-//m\
SQS(q + 1) , where g 1is a prime power, then there exists

a cyclic SQS(qn + 1) for all n > 0.

The smallest new system which results from these theorems

is a cyclic 5Q5(28) . .Also, it 1s worth remarking that the
above theoréms allow for numerou§ non-isomorphic cyclic
SQS(qn + 1)'s ({(the egact number being determined in pért by

the number of distinct SQS(g + 1)'s) .

In this chapfer, Section 2 prov£9es direct construc-
tions of cyclic S5QS which have been giéan by Koéhler [42, 43]
and later Diener [22]. 1In Section 3, we show that if there

exists a cyclic SQS(v) where v =2 or 10 (mod 12) then
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there exists aicyclic ;SQS(ZQ) + which is appeared in'[9].-‘

.In ﬁhe séme‘Seéﬁipn, we include a generalized vgréion [13]

of oﬁr.doubling constrﬁqﬁ}on'abové. By combining methods of

Sectidns‘z and 3, we eonstruct directly a S-cyclic SQS({v)

for v = 52,768, 122, 130, 146, 170, 250, 290" and 370 ,

and a non—é—cyclic sQs(v) for v = 26, 28, 34, 50, 58, 76,

80, 88, 92, 98 and 124, which are listed in the Apperdices.

Finally, in this éection we establish a table of recent re-

sults on the known spectrum for cyclic SQS(v) for v < 400 .

In Section 4, we discuss l-rotational SQS which are studied

by Phelps [55].
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Section 2. Direct Constructions of Cyclic 8QS. .

h Y .

First of all, let us discuss the general existence

-~

problem for cyclic ' 8QS .. Let Pk(zv) be the collection of

all k—sﬁbsets of Z, - We define the difference triple .

(a,b,c) of a triple {,y,z} in PB(ZV) with x <y < z

r -

. as follows:

] -4

azy - x°, b=z -y, c=x - 2 (mod wv)

Two difference triples ar:\&quivalent if one is a cyclic

. \
shift of the other. Under the action of a = (0...v - 1),

two tr%ples of P3(zv) are in the same orbit if and only if
) _
their difference triples are equivalent. -

In a similar manner, for each quadruple {x,vy,z,u}

in P,(2,) , where x <y <z <u, we can define the
?

r

difference quadruple (a,b,c,d) where: '

aZy - %X, bz -y, czu-2, dzx - u (mod v)

A difference quadruple (a,b,c,d) {mod v) determines the
. A ‘ -
four difference triples (mod v) (not necessarily distinct),
namely,
%

‘(a,b,v-a-b), (b,c,v-b-¢), (c¢,d,v-c-d), (d,a,v-d-a)

l6l
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AIt\%s easily seen that two quadruples are in the same orbit

if and only if they have the same difference triples.

Thus, we can characterize the orbits of a cyclic

SQS(v) 1in three ways:

(1) We can choose a gquadruple from each orbit
* ~

(cailed & base guadruple);

(2) With each orbit we can associate a difference
&L

quadruple; //,f’"\

(3) Finally, with each orbit we can gssociate a

set of difference triples.

We will represent a cyclic SQS(v) by base guadruples or
difference quadruples or sets of difference triples, which-

ever will be convenient.

Before moving on, consider a difference quadruple

(a,b,c,d) . -If either

(1) a ="¢ {or b

I
o,
o]
H

1]

o
)
Ko,
o

H
9]

(2} a b and ¢

and d = a) ,

then the difference quadruple is called svmmetric. A cyclic
SQ5 all of whose difference guadruples are symmetric is

called S-cyclic. It is simple to show tha£ each orbit of a
S-cyclic SQS(v) is invariant under the mapping £: x - -X

(mod v) . We require the following definition: given a
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- 8Qs (V,B) , if we choose any point P e V and delete that

point from the set V and from all guadruples which contain
it then the resulting system (Vp, B(p)) , where

b\{p}lb-e B and p ¢ b},

2l

VP = VA {p} and B(p) = {(b'

1

will be a §TS. Such a STS is called a derived STS .

Now, we éan_easily see thgt S-cyclic 8SQS(v)'s are only inl
classes A and B, that is, v =2, 4, 10 or 20 {(mod 24) ;
since a S-cyclic SQS(v) has also an automorphism 8: x - -x
{mod v) + the derived STS(v - 1)'s of the S-~cyclic SQS5(v)
must be reverse STS(v - 1)'s and these only exist for

ﬁ ; 11, 3, 9 or léf‘(mod 24) (see Section 3 of Chapter
1). Reéently, Dienerkt22], Grannell and Griggs [28] proved
that if v 1is an admissible order and if a S—cyclié SRS ({2v)
exists then the S-cyclic SQS(2v) must coﬁtaip a S-cyclic
S5Qs(v) as a suEsystem. This result much restricts the

above necessary condition for S-cyclic SQS . Since there

-

is no S-cyclic SQS(v) in class C, that is, v =14 or 22
(mod 24) , the condition becomes v £2 or 10 (mod ﬁ4) or
vi4 or 20 (mod 48) . There is still further restriction
on the necessary condition. First.it is not too hard to see
the following. [ Y “

2.1 Remark. If _there exists a cyclic SQSs(v) , then

thg number of nen-equivalent difference triples of each

!

7
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difference gquadruple must be either one, two or four.

Suppose that there is a symmetric difference guadruple
containing the différence tripfgv/(a,Za,4a) (mod v) . Then
it is possibly equivalent £o either the difference gquadruple
4a,2a,a,3a) or (a,Z2a,2a,2a) . But both contain three non-

equivalent difference triples. Thus we can conlude that

W .
there is no S-cyclic SQS(v) containing the difference

triple (a,2a,4a) (mod v) , that is, v zZ0 (mod 7).

Summarizing this we have:

2.2 Theorem. A_neéessary condition for.the existence
of a S-cyclic SQS(v) 1is that v =2, 4, 10, 20, 26 or 34

(mod 48) , except for v =98, 154, 196 or 308 (mod 336) .

We are now going to introduce a direct construction
of cyclic SQS. To begin with the direct method employs
S-cyclic SQS since symmetry of difference quadruples makes
it easier tb construct such a system. Also, the method can
be modified to construct non-S-cyclic SQsS . Here, we will
consider all possible orders v =2, 4, 10 or 20 (mod 24)
The idea of direct method is to construct a graph, associated
with a S-cyclic SQS(v) .| It originates from Fitting [25)
and has recently been taken up by Kd8hler [42, 43] and Diener
[22]. The graphical terminology and notation that are used
in this remaining section are those from [35], unless they

are defined or explained here.
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To éonstruct a S-cyclic SQs(v) , let us find a
number of symmetric_difference quédruples med v such that -
‘lany differende triple mod v is containéd in exactly one
such quadrﬁple. Let D4 (Z,) denote the set of all non-
‘equivalent difference trip%es mod v . ’‘Since there are

(g) 3-subsets of zv , we have:

(v = 1} (v - 2) .

(= 1o

- - - v —
2.3 Remark. [D,y(z )| = (3)//v -

By Remark 2.1 and a simple consideration, we have

'the following.

2.4 Remark. If a S-cyclic 8SQS(v) exists, then it
must contain the following difference gquadruples:

L}

v v
(a, a, z-a, 3-al, a=1,..., [EJ'

Thus, to construct a S-cyclic SQS(v) we may delete the

dih{erence_triples, which are produced by the ?ifference

v guadruples (a, a, %-—a, %-a) , from the set D3(Zv); the
resulting set is denoted by DB(ZV)* - Each -
{(a, a, %-—a,-%-a) vields 4 difference triples, except for

a.= %; if a = % it produces only one. So we have:

2.5 Remark. (1) If v=2 or 10 (mod 24) then
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v-2) Ty v=2 | (v-2) (v=7)

(v-1)
. 6 4 6

(2} If vz4 of 20 (mod 24) then
S

{(v-1) (v=2)

JDB(ZV)*l = 6

Zav-4 _ _ (v=4) (v-5)
4 4 E5'_ 6

»
Since we have orbits of the'form‘ (a;a,b,b[ with
2{a + b) =.v, thé problem of. constructing an S-cyclic.
SQS(v) 1is equivalent to the problem of packing o¥bits of

the form (a, b, a, v-(2a+b)) from the difference \triples

in Dy(Z)* . The difference triples contained in such an

orbit are

(a, b, v-(a+b)) ,  (a, .a+b, v-(2atb))

' (b, a, v-fa+b)) , {a+b, a, v—(;a+b)).

R

So, we define a subset E(v) of Da(zv)* as follows; for
each e}ement (a,b,c) ¢ D,(2. )*

r : e
A

(a,b,c) € E(v) o= (b,a,c) ¢ E(v) .

We represent the elements ¢f E(v) 'as {a,b,c} . Thus if
{a,b,c} ¢ E{(v) then either: (a,b,c) ¢ E(v)' or

(b,a,c) ¢ E(v) , but not both; according to conyenience we

~/
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may consider (é,b,c) e E{v) or (b,a,c) ¢ E(v) . There;

fore, 'E(v)‘ can be defined as the set

' '{{a,b,c}]a,ﬁ,c‘e’{l,...,V-B}i{%}, a<b<c, atbtc = v} .

';' | By .the definifiénIOf'_E(v) » JEMWV)] = %IDB(ZV)*I - Thus:
. '2.6 Remark. (1) 1f v=2 or 10 (mod 24) ,
1EW = A& -2@w -7
o e :
(2) If v=4 or 20 (mod 24) , [E(MW)] = (v - 4) (v - 5) .
Now, define a graph H(v) ~as follows: the vertex-
set of H}QT\\is//%(ﬁf . an?ﬁEyL vertices {a,ﬁ,c} and
{a',b',c'} are joined by ah eége in H(v) whenever
a' =a, b'=a+b, c'-= v‘— (2a + b} . It is easy to see
fpat the degrees of H(v) - are < 3 and H(v) has gd |
isolated veftices,nnless v=0 (med 7) . Each edge
({a,b,c}, {a',b',c'}?} of H(v) determines the difference
quadruple (a,b,a,c') (mod v) . Obviously, the following
theorem gives a sufficient condition for the existence Sf a
S~cyclic SQs.
/*w\#//’x—““\g\
' i
2.7 Tﬁeorem.' If- H(v) contains a l-factor, then

there exists a S-cycdic  SQs(v) . a. —

i
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Now, set Ezjv) = {{a,b,c} € E(v)|a,b,c are aven!
and El(v) = E(v)\EZ{v) . For i =1, 2, consider theosub—

graph ﬁi(v) of H(v) whose vertex set is  Ei(v) and whose
: ‘ 3 _
edge set is the set of those edges of H{v) that have both
S . _
- ends in Ei(v) . By the definition of edges of H{v) ,

‘H(v) = Hl(v) U H,(v) is disjoint union (to find a cyclic
8Qs , iﬁ is not-necessarily edge-disjoint union). Moreover,
"the graphs H, (v) and H{v/2) ére isgmorphic. A basic
.céunting a;gumEng provides the number of vertices of Ei(v),

-

i=1 2. -'so, we have:

2.8 Remark. (1) If v=2 or 10 ({(mod 24) then '

¥

. . ' -2 - - . -2 -10
(i) |E1(V) I 7= (v :)LG(V 6) , (..'Ll) IEZ(V} l = (v ‘);B(V: ) .
(2) If 'v4 or 20- (mod 24) then
. . ‘ -2 ;4 L. -4 -14
) (1) [El(v)l - AV iév ) . (ii) |E2(v)| - lv lév )

| It is worth noting that if v =28 or 44 (mod 48)
then lEz(v)[ is cdd. This implies that a S-cyclic SQS({v)
cannot exist for v =28 or 44 (mod 48) . Aléo, note that

Hl(v) has no isolated vertices.

sl

Summarizing, we have:
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2.9 Theorem. Let v =2, 4, 10, 20, 26~ or 34
(mod 48) and v #O0 (mod 7) . - Then a S-cyclic $QS(v)
exists if and only_if both Hl(vf and Hz(v) havé a l-

fagror, respectively.

Recently, Grannell and Griggs [28], and Diener f22]
have constructed a S—cyciic SQS(SZj . We construct a S§-
cyclic SQS(v) for v = 52, 68, 122 and 146.

2 or 10 (mod 24) , then

2.10 Theorem. ‘If v.

Hlfv) contains a l;factor;

Proof. For each i =1,..., ral set
%

“

F, ='{[{2i-1, 2t, v-2i-2t+1}, " {2i-1, 2i-1+2t, v-4i-2t+2}]

It = 1,00, B2 -4y,

. . Then U{Fi|i'= 1,..., E%E} is a l-factor of Hl(v)

We can conclude that:

- 2.11 Corocllary. Let wv=2 or 10 {(mod 24) and

vgzomfjmod 7). Then a S-cyclic S8QS{(v) exists if and only

if Hz(v) contains a l-factor.

Kdhler [43] was able to show that Hz(v) contains

a l-factor for v = 50, 58, 74 andi 82 .



Recall that Hz(v) and H(v/2) are isomorphic. So

we will take H(

discussion. Fifkst, we can easily see that:

U 1is a unit of .Z(v/2)" then the

(v/2) given by {a,b,c} — {pa,ub,uc}

2.12 Remark, T

" mapping @ E(v/2) >

is an automorphism of H(v/2) ; such an automorphism is

called a multiplier automorphism.

-

Thus .5:' permutes the difference triples, whence we obtain

a partition of the difference triples into equivalence

[ e N
classes under the actlon of au'. E{(v/2)/~ denotes the set
w t '
of all equivalence classes. Define a grapﬁ H{v/2)/~ as
. ,ﬁw

follows: the vertex set of H(v/2)/~ is E(v/2)/~ and

two equivalence classes & and B in E(v/2)/~ are joined

by an edge in ‘H%V/Z)/~ if| the

A .
{a,b,c} in a and a diffekence tiple {a',b',c'} in 8
such that a' = a, b' =a+b and ¢' = v - (2a + b)

With this notation, we have the following theorem: -~

g
2.13 Theorem. _Let v =2 or A0 (mod 24) and
VZEO {(mod 7) . Then a S-cyclic SQS{(v) exists if and only

if H{(v/2)/~ contains a l-factor. ‘ ’

Ve

We were abhle to show that H(v/2} contains a 1-

’ o ‘
. Lt A

\ i)
factor fo¢ v = 130, 170, 250, 290 and 370. -

Let us describe another of the sufficient conditions

}

2} instead of H,(v). in the following .

ﬁ%sts a difference triple~

obtained by Kohler [42, 43]. ©Let. p=2Yz1 or 5 (mod 12)

2

——
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-

be a prime. Let F be the Galois field GF(p) , and for

S 1 X - . *
g e« F' = P\ {0, ¥, E(P"'l) » p=2, p-1}, defiine ¢ = {Ul’ Ul'

. %k *} _ _ _l . ' _ - s 1
02, 02, 03, 03 where 01 =g, G, =0 ' 03 = fc/(a + 1) ,
* - . .
o; = -0y - 1, i=1, 2, 3. Thus, for o,§ € F', eithe;
g = § or 3 N3 = P . Define a graph B(p) as follows:

the vertex set of B(p) is the set V = {6]oc ¢ F'}, and

two vertices J, .8 are joined by an edge in B(p) if there

exists o ¢ ¢ and § ¢ § with o =68+ 1 or ¢ =4 - 1.
In”th}s caée, each vertex &§ in B(p) 4 generates %(p -1y
dif érence triples under the action of a given &ultiplier
omorphism of B(p) . If [gJ, 3] wfth g=6+1 (or

=6 - 1) is an edge of \B(p) , then "{{1, g, o*},

{1, &, 6*}; 'is a generatdr of difference gquadruples. Summar-
izing, we have the following sufficient condition:

2.14 Theorem. 1If the graph B(p) contains a 1-

factor, then there exists a S-cyclic SQS(2p) . ///

Kéhler [43] has shown that “B(p) contains a l-factor -

for p =89, 101, 113, 137, 149 and 233 .

' r *
Let p-é b? a prime of the formh.p.): 120t + 53 or
- >

p = 120t + 77 . Then KShler [43] has shown that the graph /.

. ! Y.
B(p) 'has exactly twdhaafzices of degree 2 éﬂ@'all others ¥l
have egreé 3. Bx,én applicaticn of Petersen's Theorg@
.(in‘[64J)' such a.gra@g&zgntains a l—factor}if‘it is bri%g&l' -
less. hgs,.we have: « h wy‘\ v

. _;)7%\ o ~ . ..; o ‘, : : f

\\ix : . . . -



L o . . 172

~

53 or 77 (mod 120) be a

11}

2.15 Theérem.' Let P

prime. "Then if B(p) is bridgeless, then there exists a

S-cyclic SQS{2p)..

Kéhler [42] has shown that the grap;7 B(p) is

bridgeless for p = 53, 173, 197 - and-- 317.

N

The first-few orders for which the existence bOf S-

AN

cyclic SQS(v)'s remains open are v = 100, 116, .148 .

)

[

'\\ » o /e

. i o
. . f. f—-’
. - ;//"d‘;— *
s / .
7 - C
- ‘ ] L) ' ' \-“"’p\

’



Secti 3. Recursive Constructions of Cyclic 8SQS.

n this section, we provide a recursive construction

of cyclic 8SQS and then introduce Colbourn and Colbourn's

[af] geﬁeralization_of our construction.

Reégll'that Z? "is the set of elements of our cyclic
5QS (v) ;ﬁd a = {0...v.- 1) 1is its cyclic automorphism.
For the time being, we assume that v =2 or 10 (ﬁod 12) .
I1f (a,b,c,d) is a difference éuadruple méd v then we
T~cannot have a = b = E = d because of v 2 or 10 (mod 12) .

A

,Thus we have the f&llowing two lemmas:

// . 3.1 Lémma. -If (a,b,c.,d) 1is a difference guadruple

of a cyclic SQS(v) , then ' : : *

&r_///,’ o (3.1.1) (a, * ‘b, c, v+d),

| (3.1.2) (a, - v+b, c, d) , \\J ,

(3.1.3) (a+b, v-b, b+c, d) ,

*

(3.1.4) (a+d, b, d+c, v=d) ,

. . N Y
are difference quadruples of a partlal‘Eycllc SéS(Zv).

« . €
3}2 Lemma. For i = lLP"’ v/2, (1, v-i, i, v-;y('
- : . ] 1%
are différence quadruples-of a partial fgyclic SQS(2v)
-6 » : 7 ’
”
1173 ' - :
. L1 ——

» 4 e
- '/UI ' _/—/

-
Y —_—
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) o
In a SQS, "partial" means that each 3-subset of

elements is contained in at most one quadruple. We will say

that aweset of difference quadruples is consistent if it

~

generates a partial SQSs. Two difference quadrupréqygre

équivalent if they'containlexactly the same set of difference
triples; equivalently, one is a cyclic shift of the other.

The following remarks are worthy of ‘notice.

3.3 Remark. In Lemma 3.1, if a =b =c = d then
the set of difference quadruples mod 2v would not be con~- -
sistent. Also, observe that if (a,b,c,d) = (x,y,x,y} then
Lemma 3.1 should just vield two non-equivalent difference.

quadruples mod 2v .

/f/ﬂ/;%\\ 3.4 Remark. 1In Lemma 3.1, two eguivalent difference
" quadruples mod v (a,b,c,d) and (c,d,a,b), as well as_
b

~ (b,c,d,a) and (d,a,b,c) , must give\exactly the same set

“\

5

- of difference ‘quadruples mod 2(: "\\\
. [y T X .
: ~

\ , : ’ :
% . _ 3.5 Remark. Note that if (a,b,c,d) 1is a difference

3
Q‘ » ! 4 - - . ' .
"qQuadruple mod v then the difference triples contained in

.. (a,b,c,d) are represented in the following two ways:

- . .. (a, b, v;a-b) = -(a, b, c+df,

~— & -"({ (b, ¢, v-b-¢)

c, 4, 2. T

(b, ¢, d+a) ,

Ve, ya+b) '

J % (4, a, v-d-a) (d, a, b+c) . . 4

It
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3.6 Lemma. For any two equivalent difference
. quadruples mod v, the difference quadruples mod 2v  con-
structed via Lemma 3.1 always contaln the same set of

dlfferengg triples.
“ N
f | N
Proof. * Suppose that (a,b,c,d) is a difference
gquadruple mod v . From Remérk\g.4, it suffices o show

- that for two equivalent difference qua&ruples {a,b,c,d) and‘\
- i
(b,c,d,a) , the &ifference gquadruples mod 2v congtructed
J .

via Lemma 3.1 contain the same set of difference triples.

Then Lemma 3.1, when applied to (a,b,c,d) ande (b,c,d,a),

. 4
gives .
, Yy . . . | o [
(1) (a, b, . G v+d) , _ o ;
®
(2) -(a: ‘ v+b, . c, d) ’
, . A B _
- (3) {a+b, - ;:&_/ b+c, d} , : -
4 +d, b, d+ v-d S
(4) -(a c, v ? ; | J//““" " sn
™ " — . y
\\:'and 7
(1) b, €, d, v+a),
(2)' (br +c, dr a)‘ ] '
K.y .“\ . *“\ S -
3} (b+c, v-c, cid, a) ,
- _ 4 . ) Y
!t&g&;j%z;a, T e, a+d, v-a} ,
) % .-
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- R o
respectively. The corresponding difference triplesrffe
\ -
(a, b,  v+c+d) (b, c, v+a+d) .
N ' (b, c, v+a+d) {c, d, v+a+b)
(1) {1)' ’ , *
{c, v+d, a+b) (d, . v+a, b+c)
- (v+d, a, b+c) (v+a, b, c+d)
N
L 4 /\
{a, v+b, c+d) (b, v+C, a+d)
/ (v+b, ¢, a+d) ///P (vtc, d, a+b)
(2) =)'
{c, d, V+a+b) ‘ (4, a, v+b+c)
w
—_ . A{d, a, v+b+c) (a, b, v+c+d)
rd \(/. /
’ A
(a+b, v-b, b+c+d) (b+c, v-c, a+c+d)

L1

c+d, a+b+c)

a, v+b)
b+c, v+d) )
c, v+d) .
a+d, v+b)
(4) : ¥, (4)"'
(d+c, v-d, d+b+d) . (a+d, v-a, a+b+
' (v-d, a+d, b+tc+d) ~(v-a, b+a, -a+c+d) , ///&
(\ . . . : . .
- - -
' . (\Ql\ \I’/ / ™~ v v
v N\ - T _J
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-

feSpectivelyT' Using Remark 3.5, a 1-1 corréspondence between
difference triples (1) ~ (4) and (1)' ~ (4)° is-—easily

established, and hence the proof is complete. . ' »

We now show that the existence of a cyclic SQS(v)
‘ N .
implies the existence of a cyclic SQE(ZV) ,
e N
- T ' -
3.7 Theorem [9]. ' If a cyclic SQS(v) exists, where

v2 or 10 (mod 12) , then there exists a cyclic SQS(2v) .

Proof. Suppose that a given cyclic SQS(v) has m

difference quadruples of type '(a,b,a,b) and n difference
gquadruples of any other types. Then

(3.7.1) . v/ + (?2' vim = ﬁv(v 1)(\! 2) .

»

| Applying Lemma 3.1 to each of \hkjbn differencefhuadruplés,
”it would give 4n’+ 2m  difference quadruples mod 2v each
having length 2v . Thus; these give 2v{4n + 2m) gquadruples.
Add to tﬁﬁgﬁlquadruples from Lemma 3.2 giving us v/2 - 1
difference quadruples Bf’length"v and 1 difference quad-
ruple of length v/2 . From (3.7.1), the total number of

]
i

q&gdnuples is . : ‘ »

P o

2v n-+2m) + v(v/2~1) + v/2 = 2v($§ )(2v -2)

\EQiEfjf/{ge correct number of quadfup}%s of a SQS(2v) . >
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Let (ZZV' q) now \be the newly constructed system.,

Suppose that (a,b,c) is any difference triple mod 2v.

L) ) . .
Then a + b + ¢ = 2v; so at most one of a, b, ¢ 1is greater

than or equal to v . We distinguish two cases:
) -
(/\____ X . 3

Case 1. One of a, b, ¢ /}s greater than or egual

J\tc.a"v' ; sj%;b\j z V. Let us divide it into two subcases:

~

5 ‘Subéase A. ¢Cc =v. Then a + b = v, If a s b
j then a < v/2. Since (a, v-a, v) = {(a,b,c) + obviously,
~ ]
& every difference triple of this form will occur in a differ-

ence quadruple that is produced by Lemma 3.2. Similarly, if
b <a 'then b <« v/2 . So (v-b, b, v} = (a,b,c) will be

~

contained in some difference guadruple constructed'by Lemma

3.2,

Subcase B. ¢ > v, Then a + b < v and hence
(a, b, v-a-b) is a difference triple mod v . Thus, it is
in some diffeP%nce ﬁradruple mod v, that ¥s, either

(B.1)  (a, b, X, ¥)

g(B.Z) {a, . v.-a-b,.-__;x, y) or ,

(B.3) (a, {(./’yr' v—am

- < t /rﬂu) /

. !
. , ‘ .l .
is a difference quadruple mod v for the giV%D cyclic”
-~ - : f\ \_/_
. . \\

sl ) - ; ’ ] )
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SQs(v) , where' x+y=v-a-b in (B.1), x

+

179

Yy = a

in (B.2) and x +y = b, in (B.3) . By Lemma 3.6, we.

~ -
know that we may assume that the difference quadrup&es mod

v are in the above specified order when we apply Lemma 3.1.

Thus,.

(B.1) yields (a, b, x, x+y) by (3.1.1) ,
(B.2) vyields (b, 2v-a-b, x, Yy} by (3.1.2),
.3) vyields (a, X, ¥, 2v-a-b) by’ (3.1.1) .-
In each case, it is-olear that (é\b,c)ﬂ where ¢ = 2v-a-b,
: | LN
4?25 in an ropriate difference guadruple mod 2v .
Case 2. a < v, b<v and ¢ < v. We may assume
that b,c = v/2 . Let b=v - 3, c=v - i "and T=1i+ 5
’ ) ‘
for some i, ;. Since i + j < v, we know that

[}

(L, j,.v-i-j)° is a difference triple mod-v and thus it #

must be contained in some differeance qgggruple of the given

cyclic 8QS(v) . Again, this means we have either:

"

(1) (i,3,x,y) 1is in the cyclic SQS(v)

(3.1.3), we have (i+3®¥%-j, j+x, y) in (Zyyr Q) -

4

Hence, by

Since

a=1i+ 3, b={%-3, this implies (a,b,c) is contained

Ain th%s difference quadruple mod 2v ,

(2) (x,"j, v-i-j,'y) mod v becomes ‘
¥
{(x+3, v=j, v-i, y) mbd 2v by (3.1.3ﬁl Since b

r 4

3 Ty

v-13,
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N

*

| feo[;z

c =v - i_p/_(b,c,a) is in this difference gquadruple mod

2v or S ' ) Y

‘ir:;) (v—i-ﬁ, i, x, y) mod {§ becomes

(v-j, v-i, i+x, y) mod 2v by (3.1.3) and since b = v - 3 .

cC=v -1 we aga;n conclude (b,c,a) is in this difference

Quadruple mod 2v . '/\ |
"N

From Cases 1 and 2, we conclude ﬁhat every difference

triple mod 2v is contained in some difference guadruple mod

2v . Thus, every triple of Z4y is contained in at least

duadrpple of q, from this plus the fact that |g| is
——-Zwifgjfi)(Zv- 2) , we conclude that (gzv, g) is a SQS(ZV)

- obviously is cyclic. This completes the proof.

-

3.8 Example. The difference quadruple (1,2,1.6) ,

(1,1,4) and (2,2,3,3) mod - 10 give a cyclic SQS(10) .

emma 3.2 gives 5 difference guadruples (1,9,1,9) , =
S )

(2,8,2,8) (3,7,3,7) , (4,6,4,6) and (5,5,5,5) (mod 20J , -

Lemma 3.1 applied to (1,2,1.6) , "(1,1,4,4) and
(2,2,3,3) gives: R

e
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A By &
: (1, 2, 1, 16) (1, 1, 4, 14) (2, 2, 3, 13)
(1,12, 1, 6) (1, 11, 4, 4) (2, 12,-3, 3)
G, 8,3, & (2 9 5 4 (4, 8,5, 3)
(7, ‘2‘; 7, 4) (5, ‘1, 8, 6) 5, 2,6, 7)...

A

Again, Lemma 3.1 applied to (2,1.5,9 ., {1,4,4,1)

and (2,3,3,2) gives: \

' Az B, €2
2, 1, 6, 11) (1, 4, 4, 11) f(z, 3, 3, 12)
211, 6, 1) ", 14, 4, 1) (2,713, 3, 2
3, 9,7, 1 (5, 6, 8, 1) 5, 7,6, 2)
; !
R (2, 4,5, 9 (4, 3,5 8. \
By Lemma' 3.6, 'Al and A2 ' B].- and’ B:2 , and

A

Cl and C2 - are interchangeable, so Ai U Bj uc where

k r
i,j,k ¢ {1;2}, together with the difference quadruples con-

structed via Lemma 3.2 give a cyclie SQS(4D) .
Y

Lemma 3.6 and Theorem 3.7 together yield:

3.8 Corollary. If a cyclic SQS{v) has n differ-

ence quadruplqs, where v :2 or 10 {(mod 12) , then there
LY ) ' ~

o
Fah
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exist at least 20 pairwise distinct cyclic SQS(2v)'s .-
Note that cyclic SQS(v)'s in classes B and D,

that is, v 4 or 8 (mod -12) + nhecessarily contain the

unique difference gquadruple of the form (a,a,a,a) . So, by

Remark 3.3, Theorem 3.7 does not guarantee the existence of

1

a cyclic SQS(2v) for v=4 or 8 {mod 12)-. Recently,
however, Colbourn and Colbourn (13] realized that our doubling
construction can be generalized fo; sqQme special orders in

classes B ’Eﬁd D. Let us describe their methods.

Following Colbourn and Colbourn [13], a difference

a,b,c] 1is said to be an'm-triEle if vzo (mod m)
(med v/m) , 'b=0 (mod v/m) and =0 ?ﬁod
ic SQS(v) has a head of order m if and
(méd m} and every difference quadruple con-
m-triples or none at all. On the same lines, an
m—b?headed cyclic SQS(v) 1is a collection of q&fference\~
quadruples for thch each.difference triple which is not an
m-triple is contained_in exag¥ly one of;égé difference guad-
rupﬂﬁé, and no m-triples a;e contained in a difference gquad-
ruple. An SQS(v) "with a head of order m_ will be denoted
SQs5({v, -m) . .it is‘zmmediate'phat the existence of both a
cgilic SQS(ZV, -2m) and a cyclic SQS(2m) necessitate

the existenge of a cYEi}c SQS (2v) . / -
‘,1’ ! 1

If we apply Lemma 3.1 to all differencé duadruples

o& a cyclic SQS(2v, -2Jm) ﬁ‘NQE;e Vvim (mod 2), and add
' bl v L Ny .

)

»
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all difference quadruples of the form (i, 2v-i, i, 2v-i)

except those containihglém—t:iples, then we obtain the
: -
following main result: B
-L . . . ‘.
N ¥
3.9 Theorem™[13]. 1If a cyclic 8QS(2v, -2m) exists,
where viIm (mod 2) + ~then there exists a cyclic

-

SQS{4v, -4m) . ? | N

Let us describe some éppliéations of Theorem 3.9.
¢ r 4
First of all, a eyclic SQS(16, -~8) has difference quadruples
(1,1,9,5) , (1,2,3,10) , (1,3,9,3), (lr4f7fh), (1,6,7,2) ,

(1,7,1,7) , (2,5,6,3) , and (3,5,3,5) . Thus, there exists

——

a cyelic 8Qs(29, —2n-l) for all n 2 4. Grannell and .
Griggs-{30] construct a cyclic SQS(32) . so we havef,

\
3.10 Theorem. For all n = § + <there exists a cyclic

sgs (2™ . .

A cyclic SQS(4m, -4) guarantees the existence of a
cyclic SQS(8m, -8) by\Theorem 3.9, Repeating this n - 2
times, we obtain a cyclic SQS(2nm, -2“) . Thus, by Theorem

3.10, we conclude that:

3.4 Corollary. 1If a cyclic SQS (4m, -4) eiists,

then there exists a cyclic SQS{an) for all n =2 5.

»

Observe thag/{ie cyciic SQS(40) constructed by

Colbourn and Phelp¢ [15] is a cyclic SQs (40, 20) . Thus,

v o /ﬁ) > \\

ur
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for all n = 3. In Section 1, we have éTready seen tha«

by Theorem 3[9, there exists a cyclic SQS(ans, -2

there exis{s a cyclic sSQs(v)' for v = 10 and 20 . These

imply that : . ~
~ . - N )

3.12 Lemma [13]. There exists a cyclic SQS(2nXSL

for all n =2 1. T

. L

This convincing evidence for the utility of Theorem 3.9 is
tempered someghat by the computational difficulty of finding
a cyclic SQS({40, -20) . We require a ‘straightforward {or,
at_Leasé, computationally feaﬁpble) method of finding initial
cases to which Theorem 3.9 can be profltably alelEd One

of such technlques is at hand, end was given by Granne}l and .

Griggs [28]. .
S~ -,

3.13 Lemma [28]. An s§- cycllc SQS(V) ha? a head of‘:s
. . |
order 2m whené&er 2m divides v . : . L

/ . ) . ) -,

In fact, the head is an S-cyclic 'SQS(2m) , but we do not s
need it to be S-cyclic here. From Section 2, we have a §-.
cyclic 8SQs(v) for v = 50, 130, 170, 250, 290 and 370 .
Also, Grannell and Griggs [Ql]wha;e constructed a S-cyclic
S@S(v) for v =130, 170, 250 and 290 . This gives:

3.14 Lemma. For all n 2 1 and m = 5, 13, 17, 25,

29 and 37, there exists a cyclic SQS(2nXSm)

-

N | ‘
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It is clear that, by Lemma 3.1, all cyclic 5QS

constructed in this section are non-S-cyclic.

Below we present the table that summarizes the known

spectrum for cyciic and S-cyclic SQS(v) for v = 400 .
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TABLE
CYCLIC SQSs OF ORDER < 400
Order ﬁpe Existence | S-cyclic Reference
8 D NO - (27]
10 A YES YES (1]
14 o NO - [27]
16 D NO - [27]
20 B YES YES [39], (58]
“22 C - YES NO £21], [57]
26 A YES YES [25], [29], Appendix II
28 B YES " NO [57], Appendix II
32 D YES NO [30]
34 A YES YES (25], Appendix II
38 c YES NO [15]
40 ‘D YES - ~NO J15]
44 B YES NO 2 x 22
46 C ? NO
50 A Yés YES [43], [45], Appendix II
52 B " YES YES [93.022],{29], Appendix I
56 D ? NO
58 A " YES _ YES' [43], Appendix II
62 C ? NO .
64 | D YES NO - [30]
68 | B YES - YES (9], Appendix I
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'(ContiEued)

Order Tfﬁe Existence | S-cyclic Reference
70 C ? NO
74 A YES . YES [43]
76 B YES NO 2 x 38, Appendix II
80 D YES NO 4 [13], Appendix II
82 A YES YES [43]
86 | ¢ ? NO (431,