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ABSTRACT i}

This thesis addresses itself toc the twd principal problems of

¢

compuger—aided—teéting in analog circults, namely, fault analfsis and

postproduction tuning.

v

A unified approaéh to fault location in large analog circuits is
iﬁtroduced.. The approach closely meets the goals of practical criteria

"for fault analysis.: Network decomposition and logical analysis ‘are

-

‘ 3

incbrporaﬁed_ to 1identify faulty subnetworks. Necessary and almost
-sufficient testing conditions for locating fault-free subnetworks are
) derived."Thése conditions are based on invoking XKCL and topological

relations between subnetworks. The application of the approach to

practical linear and nonlinear networks is presented. Furpher fault

f

analysis. is carried ocut to identify faulty elements or reglons inside

ﬁhe faulty subnetwork. Deterministic and approiimgte methods are

‘

introduced for that respect. - The approximate method wutilizes ‘an

_estimation criterion, namely, the least-one objective function to

© predict the most 1ikély faulty elements. The deterministic methods
-t . . 3 i - ‘ . .
verify the existence of faults by examining the consistency of algebraic

equations or by matching the subnet work response using faulty models of .

R

the subnetwork elements. A ﬁumber?of network examples are consider?d'to

illustrate the application of the introduced methods.

[l

The deviationqin the response of a manufactured circuit can -often

v

be compensated by adjusting specified tunablé‘elemenps. A number of-

2 C o _ .

* - : s

it . 4



»

aspects of the postproduction tuning problem are studied. ., In

particular, the relevant fundamental concepts and definitions are given,

‘the tuning algorithms either functional or deterministic are reviewed

and new techniques for choosing tunable parameters and critical response

e {ntroduced, Two new functional tuning techniques are

preseénted. The application of the. new techniques in tuning a microwave
network example 13 illustrated. A comparison and evaluation of four

different tuning techniques. are given by testing them 1in tuﬁing anp

active filter example.”
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INTRODUCTION

production’ of integrated cirfcuits necessitate the use of computers.in
all aspects of the production and maintenance processes, Computer;
aided—design (CAD) techniques that incorporate the multiple objectives

_of cost reduction, yield maximization. tolerance optimization and de51gn

- The increased complexity of analog ¢ircuits and the naaé'

cestering are now well -established and their application to actual

de31gn problems is steadily incre351ng Similarly. the use of camputer—
aided-testing (CAT) techniques is in progress. especially for testing
'digital circuits. C .. o

For analog-circﬁits,aCAT techniques are‘pnimarily associated with

the combined problems of fault location, parameter identification and

Epstproduction‘tuniné. The main ‘objective is tonadjust the manufacturéd

circuit to meet the design specifications. The adjustment -process cooid
be carried out by two distinet approaches. ~In the first approach the
sourcesi pf faults -in .the circuit are identified then _the " faulty

elements and/or modules are replaced by nonfaulty ones.‘-Ihia is usually

suitable for catastrophic faults. when the.‘fahlty element: pnoduoes .

either a short circuit or an open c1rcu1t "In the second approach, the
deviation in the network response is compensated by adjusting'tunable

parameters specified a priori Thls is quite appropriate when "the

<R

malfunction of the circuit is due to modest changes in the parameters of



the circuit, .referred to as soft faults. These soft faults could result
from manufacturing tolerances, aging or parasitic effects.

This. thesis is addressed at the two main problems of computer-:

aided -testing in analog circuits, namely, . fault analysis. and
postproduction tuning. In particular, a unified appreach for ldcating
iaults_;inside large analog circuits is introduced and optimal.

postproduction tuning techniques and procedures are presented;

Y

) Chapter 2 presents a review of existing methods of fault analysisk
in analeog circuits. -The methods are categorized;aCCQrding to the.time

of sinulation and nudber of excitations of the circuit under teStZ' A

comparison between the methods is given and ‘a set ,of criteria which a
practical fault analysis algorithm should achieve is discussed. This
chapter provides an adequate state-of-the-art review of the fault

analysis techniques. s o - )

. In testing'large analog circuits it is iogical to'lccate the

‘faults within smailer parts of the: network (subnetworks) then to iocate

'faults inside the identified faulty subnetworks. Tnis'usnaliy

oermits. a :systematic.. fast. way of identifying faulty elements. ‘In
Chapter 3. the decomposition approach with logical ana1y31s are utilized

to locate faulty subnetworks Necessary and almost sufficient testing

conditions for fault-free subnetworks are derived . The' effect of-

fl

: tolerances on tbe application of testing conditions is discussed ‘and a

-

“probabilistic measure is introduced. The appIication of the-technique"

to practical 11near and ‘nonlinear networks is presented

Locating faults inside faulty subnetuorks is addressed in



Chapters 4 and 5. Chapter U4 deals with the use of the deterministic

techniques such as the fault verif‘ication method , internal—self—testing

method, combinatorial metho_d and matching method. The effect -of
tolerances - on - the application of the fault'verification method {is -
discussed and a linear programming formulaticn is introduced. 'i'he
decomposition approach that is .used for finding faulty subnetnorhe is
utiliied in the internal-self-testing method to locate faulty elements
. and/or "regions inside the faulty subnetwork. The combinatorial approach
is introduced to speed up the ap'plieation ‘of the'-i‘aullt ver"ificat_ion
method.. _The matching method utilizes the: fault models of the faulty

elements in matching th‘e're‘sponse obtained to that predicted"i_usin-g

fault models. The latter technique is more ‘applicable Lo nonlinear
networks, The reSults of. applying the’ techniques to diff‘erent circuit

examples are sented. .

" In ‘Chapter 5, the .P_ n'orm' is utilized for estimating- the most

likely t‘aulty eJ.ements. ‘Two 'formulations are presented .The first

considers the situation when the measurements .are obtained using a,

single test vector. The second utilizes multiple test vectors to obtain

[y

the measu’reménte. In both cases the nunber of measurements ia less than

'. the number - of" ele:nenta of‘ the - f‘aulty subnetuork . 'I‘he results of
applying the techniques to linear subnetworks are presented |

l Chapter 6 deals with some: important aspects that are related to

the postproducting tuning problem. The main aspects that are addresaed

'.are the f‘ormUlation of error I‘unctions from des:.gn specirication.s.‘ tl‘_xe

tuning algorithm either functional-_or -'de_terministic,~‘-the choice of

s
-1

AT
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r

tunable parameters and the choice of the critical samples of the

response. A review of these aspects in tne‘liternture-is given togetner
Qith some original tncnnigueé for selenting tuning elements?and criti;ai
frequencies. ) |

In Chapter 7,t;o new‘functional tuning'algorithms are pneéented.

The techniques for selecting thé tunablé parameters-and the frequencies

to be monitored during the tuning process are applied in- an integrated

optimal tuning prooedure for tuning a microwave 01rcu1t. A compariaon‘

between -functional and deterministic tuning algorithms based upon’

'

testing four tuning teehniques is then outlined.

The main contributions of this thesis are outlined in Chapter 8

? .

together with:scme suggestions for future research work.



FAULT ANALYSIS IR ANALOG CIRCUITS— A REVIEW

g1 INTRODUCTION . - - . T
The problems which fall 1nto the field of fault analysis can, in

general, be c¢lassified into either fault 1ocation or parameter

[

identification.

The first group corresponds to the situation where we want to

locate an element or a number of elements which are faulty. By a fault

~

we mean,-in general, any laﬁée change in the value of an element w.r.t.
its neminal. value which'can cause the. failure of the ngle circuit.
Parameter identification, in the context of electrical circuits,

is 'the progess of finding the actual. ﬁaiues of eircuit components.

‘Dependent on-a particular problem we may be interested in identification

~of selected parameters, assuming all the other parameters are known or

- in the identification of all parameters where only the clchlt topology

.and model description are known. - The .fault iocation and parameter

- identification problems cannot be campletely separated from each othern

+

- Although many specific algorithhs have been propoaed for fault

analysis, they may paturally.be classified ipto three'categories:

~

r

{alr' simulation-before—test
(b) - simulation-after-test with a 31ngle test vector. and
(e) simulation—after—test with multiple test vectors.

o o f

’



2.2 - SIHULATION-BE?‘ORE:TEST APPROACH

The simulat'ion-befo?e—-test ‘approach 1s referred to/as the
d,ictionar'y approach fcr -faullt _locat'ion. It: i's widely -used for Itesting
digital circuits. Alt-h‘ough--it suffehs‘,f‘rom a number of limitations in

" the testing of analog circuits it -1s still the most commonly used

method.

2.2.1. Generai, Description

-

i

The dictionary approach is a technlque in which .the unit under
Ltest (UUT) is’ simulated off-line using certain inpub«* signals for a

number of hypothe31zed Taults. "I'he respenseés are stored as a

dictionary.” The UUT is excited by the specified input signals and the

responses obtained in the field are compared with the simulated results
in an attempt to det.ermme the cause of the malf‘unction of the UUT The
fault ,candldate that produces ‘the closest :nmu].ated responses w.r.t. a

certain measu_re to that. produced in the field is declared the actual

fault. . .
{

It Vshculd'- he"clear'that— the implcmentation of the dictionary
aup'_roach'coh..sislts'of 't,he f'ol]l.ouing two stages. Before conuucting‘the
‘test. the..dj‘.ctionary, j,s-cchat.ructe'd to achieve the required degree of
diagnosabilit‘y " At the time ef actual testing a search process is
conducted usirig the stofed data a_g the measurements to 1locate the fault
or an "amb_j.guity set that contains the possible f‘ault. . >

The.reporteci techniques of implementing the dictionary ‘approach

differ mainly in the following features:

' - , r



7
(a) the kind of input/output measurements, )
4] the fault signature,
(E) ' the procedure for selecting.optimal signatures, )
(d)  the fault location technique itself, and
(e) the degree of‘diagnosability and fault isolation.
“ -

2.2.2 Dictionary Construction

Thg construction of the dictionary is initiated by choosing the

input signals to the circult, the domain of analysis and the responses
. W,

. to be deasured. ‘In Fig. 2.1 the different techniques are sunmarized

_ (Schreiber 1979)..

-

One of ﬁhe'first'pechniques for constructing a fault digtionary,
was given by Seshu-and Waxman (1966). In their proposed technique the -

'linear,' frequency-depehdent circuit is excited at a number of

. frequencies close to the break points of its transfer functib@ and the
output voltage is measured at these frequencies. This is an example of

a steady-state analysis method with sinusoidal input and_voltage

t

- measuremeqts. -

k]

DC testihé of nonlinear circuits (video amplifier; power supply,

¢

ete.) ‘has proved to be very effective for diagnosis of nonlinear

circuits. The circuit 15 excited by a number of de inputs such that the

:different -states (off, on and linear) of the semiconductor devices are

3

exefcised."The burpose i3 to be able to’ observe the fault at any of the
primary outputs (test nodes) of the circuit. Hochwald .and Bastian

(1979) .utilized “the Qoltages of the test nodes to vonstruct their

L
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e

- diectionary. For the video aﬁplifier example that was considered in

their'uork two de inputs were chosen to cover 95% of the assumed faults.

Lin (1982) described the application of the complementary pivot theory

in de fault’ diagnosis of analog circuits. The approach has the

advantage of faster dc analysis,

In the time domain analysis methods, the transient response of
the system i3 monitored. Jhe simplest input which can be applied to a

circuit is a step inultr Since the impulse response of a circuit is the

vderivative of the step response, the response to the step is utlllzed in

determinlng the transfer function of the network under test. The
transfer function, through its coefficients, may be utilized in
constructing the dictionary,

Duhamel and Rautt (1979) described a number of methods that

utilize the time domain analysis inAconstructing the fault diectionary.

Most of the methods are based on determining the impulse response of the

circuit and/or the transfer function coefficients from the measured

- - -

output using special types of 1nputs (e.g., white noise).

The complementary signal method by Schreiber (1979) requires the

. analytical determination of the shape of the test aighals. The

complementary signal co%:ists.of a sequence of piecewise fonstant

impulaes: the first impulge puts the sistem under test in a nontrivisl
state; ‘the subsequent impulses bring back the system response to zero

within a time - lnterval that depends on both’ the number of poles of the

transfer function and the passband of the system under test. The fault

dictlonary is constructed using the changes in _the locations of the
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. , p
poles in the complex s—plane and the changes in the locations of zero

crossings of the response in the time domain.

It is eclear that in ‘constructing the dictionary there is a

compromise between the degree of diagnbsability and the stored—

information. The optimum choice of the measured outputs (number of test-

nodes, number of inputs, etc.) is required-to store the” minimum é@ount’

of test data without affecting -thé des{red_degrge of diagnosability.

For the specified hypothesized.fault cases it is usually required, using.

the stored data, to uniquely identify every faulty case, or at least ﬁb

identify it within very small ambiguous.set. ng'techniques are:worth.

-

mentioning. The first is due éo'Varghese.'Hilliémé and Towill (19;§3.
.where the measurements afe chdsenrgccording to Ehe reduired degree of
diagnosability and using a distance formula proposea'j%o ‘measu}e the
_ q;scriminating,inf;rmation of the fault c%ses considered.’ ;%é second is
due to Hochwald and Bastian (1979). It uses logical manipulations in
choosing the set of measurements to be stored.

Instead of storing the fault sign;tures as a set oflvoltages.
Seshu and Waxman -i1966)' stored codes, which are much easier for
inspeétion: Other types of fault signatures were agapﬁuaed. e.g., the
loci of the changes in the poles and the éer§ crossings, as pré%gsed by
Schreiber (1979), . . - |

2.2.3 Fault Location °

o -

Different techniques are utilized to find the most probable fault

using the stored data and measured response. Most techniques fqlloQ-a



<

fauitftree approach, as shouh ih Fig. 2.2. First the UUT is diagnosed

’

_'to be either sick or healthy.: If the UuT appears faulty the fault is

firat assigned to. a certain ambiguity set Q Then, the fault.

i°

: isolated to a component of thia ambiguity set x, ., if possible.-

1]
L]
Let the. faulf dictionary correSponding to . f faults and m

measurements be represented by the entries h 3' where-i :;1. 2y ee.,. M’

'1and‘j_= 1, 2, ..y £ .Any"unknownofault'is repreaented by the pattera'

vector . .o o T

SR

“where -T denotes the_'trahsposeQ | .Using - the nearest neighbour rule the‘

.distance -_:._ -r-_.‘ -
e omd, =L ‘(h'J -V, ) 3! v i= 1,2, caa e (2.2)

g' is computed for~ the T candidates and Y is associated with the candidate:

. fault. of minimum distance. - ’

- -~

i Follouing a completely probabilistic approach Freeman (1979)

conaidered the tolérance’ effects on the elements together with the

errors in measurements. ' )

L

If all faults are of equal probability the fault type is

- -~
- ‘-\ .
'

¥ ~identified hf finding the minimum over Jj of the quantity - -
m m ' ) % .
Z L (v,,=-h & ~h ) w , {(2.3)
Voo e 1T e T Tae Ptver

-

where wil 13 a weighting factor, which depends on measurement errors and
- : 2! .

»
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the parameter‘tolerances. Freeman showed: 'that (2.3) reduces to (2.2)
“‘under special cireumstances.

If: the .fault _signature 1is stored as .a -code;' theA response is

transformed to thils code then a complete nmatching to one of the stored'

'Acodes is carrled out, If the complete matching is not achieved the. o

" fault- is not identified and the fault dictionary must be augmented to

include this type of fault K - T
Host fault dictionaries -are constructed for catastrophic single
~faulta. As reported by Hochuald and Baatian (1979) TO percent of single .

point field failures can be detected/iaolated Thia percentage can be

failure ‘modes - that are unique to the specific electronic technology uaed

in the system. : o

. . R -

2.3 SIMULATION-AFTER-TEST USING A SINGLE TEST VECTOR
Ihe re5ponae3'of the network to'a single input excitation'aré .

“analyzed to determine the faulty elements of- the network. Consequently.

rather than simulating the network before the teat as in the dictionary

approach moat of the netuork analysea and simulations are performed

after conducting the actual test. The techniques to be folloued depend
:upon the number of available measurements. If the number of independent

“measurements is lesa than the nunber of the network. elementa,.which is

typical two main approaches ‘are follqwed' .

" (a) eatimation methods. where ‘an estimation criterion is used to

identify‘the most probable fault and

further” improved to 80 percent by including additional hard or- soft ﬂ} a
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(&) fauih verificahidn hechniques, where an—mpper bound. is assmmea on
the.humher of simuitaneousifaults._uSually 1ess:th§h the number

.of performed measurements. - - . : o
Ir the -numher of 1ndependeht measurements is eufficient an
iaehtrficatlon of "ail network elements can‘be.carried out-andethe faulﬁy-
.elemehﬁs are the;eby*isolateq..'This sifma;ion'is rare and impractical,

particularly if we are utilizing a single test vector.

2.3.1 .Estimation Methods -
Let the UU{ have g- input terminals, m output’ terminals and P
parameters.” The'input—output model-ef'the UUT i's given by

oy = ho(u, ¢, TR (2. 1)

. m q _’ - R U veetar 4
where y e R™, U e R and ¢ e R"." Using a single input vector u we get
- o 1 : DR o o
a single output vector y o . '
g =htal 9. L sy

\
.

m i3, aeeuned ..to be '_iesa- -t:.hah. P, so‘ a 'cem‘plete ident:‘if‘i‘caﬁion' of all
lnet@drk'parameters‘is not bossible. Different est1mation criteria ahe .
”utilized to estimate the values of the: elements of the UuT.

| -Ransom and Saeks (1973) and Hankley and Herrill (1971) utiliZed'
'the least-squares criterionkig_iyﬂhuting the deviatlons in the parameter. '.

valuea — The ba51c assunption is. that. snall deviations in parameter )

values fare more likely than -large deviations.. '-Té; a. rirst-order ;.'

. _ ' : C e
..approx;mation the ehange.in the outputs'g .from"their,nominal values‘z 0
~is given by
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: : ant T .
Az:z1-x1o-'_- (37;")“33"5_.‘33“_ o (2.6)
where |
s agT T S :
‘E - (3_2“')._|_ . . . o (2-7)

is an m x p matrix ‘of first derivatives evaluated at nominal and

whe-o" e

“defines the change in the .network parameters from their nominal Q

,Among all solutions of the linear system (2.6) the solution

8¢ = Bt 8y, - S ¢- XD
unere ) - o ) R o LT
‘ - BaplesnT L (2.10)
winimizes ' . |
- " ‘.p 2 - - -
. I oae;.. ‘ - . 2.
=1 1 ’ . i

(|
'

‘A linear approximation is utilized in finding Ag Consequently, the
exaet solution of the optimization problem that minimizes (2.11). subject'
_to (2. 5) is not realized exactly. - |
- An iterative procedure could be carried out until HAE v < EPs, _
_\where j refers to the Jth 1teration and EPS is a very small positive'

:number.

-naninal values are much greater for the faulty parameters “than for the

rem ining parameters arnid that’ the ‘chosen solution is the one with the

'smal est number of faulty elements. Herrill (1973) devised the objective

Based on the hypotheees that the difference between actual and
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'function'

S D . ) . - L
o L Alag L+ 8+ a'(ay - B Ag)T (ay - B ag). - (2.12)
. . i=7 ) ) ’ - R - -

The first term penalizes the nonzero element values and “the -

-

-second tenm implies that the result should approximately satisfy (2 6).

The ‘choice of a. is very cruclal and usually a large value of a leused_
§ is included . in (2. 12) to eliminate dlfferentlal problems when A¢i = 0.
Herrlll (1973) considered a sequence of quadratic -approximations to -
(2.12) " This  led to solving sequence of quadratic programmlng
problema whlch converge to the optlmum of the orlginal problem (2. 12) ‘

If the origlnal 11near approxlmatlon (2 6) is not adequate the

'procedure could be repeated until convergence is achieved The reported
results: of thls method were very encouraglng and the hypotheses agree

. Hith the practlcal observatlontf Th;s motivated Bandler ‘Biernackr and‘

Salama: (1981) .and Bandler. Biernacki, Salama and Starzyk (1982) to

consider a 1inear programming formulatlon of the problem.

For llnear resistive networks usxng Just one 31ngle excitation.:‘

,the change in measurements from nominal can be expressed as

'

,“X”if’."'. T an

. ﬂhere s =’[.~3.| S s 1 “are speclally defined error parameters and H
"is a constant matrix obtained from a. sen31t1vity analysis. Relation

{2. 13) is exact The error parameters s are found by solving the llnear‘
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, P : . : o ‘
minimize L ‘Isil . R (2.18) -

subject.;ow(23139; fFot frequéncy—dependént~netwqus'two error’
Parameters are deflned for every 'component sueh that “all - the
optimization variables are real. The details of the approach are °

"discussed in Section 5.2.° -

-

2.3.2 Fault Verification Techniques -
If we assume that the number -of simultaneous faults' f is less®
than'm. the number-of_meaéurements. a search procedure can. be

1mp1emented to ldentify the faulty elements. Recalling.(Z.S)-we may,

wrlte.

y' = n (51. e T T )

'where'AQ represents the vector of the changes in the f faulty elements.

Under ‘the assumpthn that £ < o (2 15) is an overdetermined system of

i

equations. A necessary condition _for AQ to'fepreSent the chénge; in
© the exact faulty parameters is that (2. 15) is consistent.
The results reported in the literature address two' main issues.:

The first is the uniqueness of the diagnosable elements in both linear.

- and nonlinear circu1ts.‘ The second is the’ development of techniques to'

) speed up the search for the faulty set,” ’ .

. )

Visvanathan and Sanglovanni Vincentelli (1981) studied the

'problem of diagnosability of nonlinear clrcuits and systems. Follouing

' their results the f faulty elements E¢1 ¢2 {_.§¢f]T are locally unlque

1 /. .-: -..l ill. R
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3h ah -3 @ - 3 Bh 3h

Rank [3¢1 3¢2 3¢f %¢ 1 > Rank [a¢] a¢2 -..'a¢£

L (2.16)

for all elenents ¢ of’ the network other than the faulty elements The _'

F
computation of 'aAg is obtained by mlhlmizins

’
b

. ] ‘[-l" . * _’.- . .

. Iy ‘-Q(E.Q.Ag)u.' o @aD
"Correct identification of the faulty parameters yieldafa zero value of
(2.17) if the actual values of nonfaulty elenents are nominar

?or linear networks glooal sufficient conditions for the

'uniqueness of the solution with graph theory implications have been
'presented by Starzyk and Bandler (1982) and Huang. Lin and Liu (1982)
' - Sakla, El-Masry and Trick (1980) have provided a necessary

condition for

‘ cating single faults, They ' utilized Tellegen's theorem g

: and the“adjoint nel ~approach in deriving this condition: : Their

‘technique could be extended to handle\multiple fault 1ocation.':
l'Biernacki and Bandler (1980a 1981) con31dered the problem of - multiplex
,Ifault location using a multiport approach They developed a necessary
condition for a’ set of elements F.to. be ‘the exact faulty set " The
' condition is based on the- consistency of alset of linear equations that‘
‘.corresponds to (2 15) in the 11near case. N They also pointed out a ;
‘number of pfoblems with the multiport approach. '7 _ -

Starzyk and Bandler (1981a) dealt in a rigorous way with the .

multiport approach They also introdueed the’ concept of faulty nodes_

;(Starzyk and Bandler . 1981b) and utilized the nodal admittance matrin

. a
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representation of the network for_locating these nodes. They designated
ha node as faulty if a faulty element is incident . with it. The location
of faulty nodes rather than faulty elements 13 much easier and, as they
reported, a graph theoretical concept (k-connection) (3tarzyk 19803,

.could be utilizad to check the- unlqueness of the proposed faulty set,

Huang et al, (1982) 1ndependently produced qu1te similar results. They
stated 3 suff£c1ent and almost necessary condition for a network to ‘be
k-fault testable. This ‘condition could be_utlllced as a measure for

deslgnlng for testabillty.

‘The problem of locahing the exact: faulty elements"ls

v

cémbinatorial in nature. Different techniques have been devised to

*

reduce the computational effort.

Wu et al. (1982) presented an exact algorithm for locating a
single fault and a- heuristio algorithm for the single and multiple fault

cases. The latter algorithm ie based on a heuristlc that the " effect of

two faults will not cancel ‘each other ‘and that there is an upper bound.

on the number of faults. -

Salama, Starzyk and Bandler. (-:1983) very recentl} presented a new

=

method for locating faults in very large analog networks. The details

[S . -

- of this approach are given in'Chapter 3.- It is based on a proper choice -

of the measurement nodes such that a certain decomposition.fof"the

network into subnetworks results. Utilizing KCL and logical analysis

the faulty subnetworks are isclated. Furtherhfault analysis Is'carried
out inside each relatively small subnetwork to isolate faulty_elements-'

or regions as is detailed in.Chapters Y4 and 5.
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‘2.3.3 'Parameter Ioentification Technigues

'lf the number of independent measured quantities using a;single
test vector is»equal to the number of network parameters. full
identification of the network parameters is possible: &s reportednby'
Saeks, Singh and Liu (1972) for linear systems, the resultant fault
diagnosis equations are almost linear and may be solved using a'aingleh
Sparse matrix inversion. If the number of measurements is less than the

network parameters, selected elements could belidentified {Biernacki and

Bandlar 1980b).

The main ‘limitation of parameter identification is. that the'

-

number of required measurements grows linearly with the complexity of

the circuit,

- o

2.4 SIMULA%ION-AFTER-TEST WITH MULTIPLE TEST  VECTORS

One apprecach to reduce the test point requirenents of the._
31muE;tion-after-test algorithm 15 to use multiple test vectors to

‘increase the number of equations. derivable from a given set of test

points. -

'
’

Sen" and Saeks (1979) described the utilization of several
, 'frequencies in diagnosing 1inear systems. A measure of testabrlity and
diagnosability is. derived Based on the value of this‘measure either
'.full identification of all network elements or part of it is possible.
The equations to be solved arq nonlinear and’ the computational effort is
quite exce331ve for the, on-line implementation of the procedure.h

. Viavanathan and.Séngioranni-Vincentelli (j98fj and Saekaret:alr

*



21
"
('1'9{31) utilized the multiple inputs to nonlinear: systéms to formulate

v- . . . 7
the diagnosqbility conditions for dynamic and nondynamic nonlinear

networks..

If all nodes of a linear network are accessible the p'roblan‘of'
identlfying all netuork elements reduces to that of solving a system of'

linear equations. Trick, Mayeda and Sakla (1979) and Sakla (-1979)

described techniques for isolating network elements that require access-

ibility to all network nodes. They utilized Tellegen 3 theorem Hith

multiple test vectors. to identify'network elenients. Trick (1980) _
further confirmed that the same results could ‘be : obtalned by lnvoking

Kirchhoff's Current Law.

r

If the numbers of measurements is still less than tk;e, number of -
network parameters the estimét‘;.ion crit‘.'er'ia p'r.:esented in S‘ection"2.3‘. 1‘
can be a;;plied. Bandler et al. (f982) utilized'-'the“ﬂ nonn h‘lth )
multiple test vectors. Details of. their approach .are presented in “
Section 5.3 of this thesis.

2.5 DISCUSSION AND] COMPARISON

.

Saeks {1981) proposed ‘criteria by which different fault location’
techniques can be judged. He examined the following points.

(a) Computat‘:ional Requirements. . The  on-line and off- line

~

computational requ:.rements of the different techniques are rated.

*The optimum technique should have minimal on-line computational

r

requirements and moderate off:line requirements. -

(b) Test Points, An optimum technique will be based on the

L]



(e)-

(d)

NON

e

22
v

_ utilization' of" 2 limited number of test .points without -

complicating the fault ana1y313 problem computationally.

.Robustness.'_The'optimmn approach should-be-robuSt againat the

'changes in the nonfaulty elements lnSlde their tolerance region
. Models. ‘The. fault analysis technique should be able to utilize
'-both the nominal models and faulty models of the network

“elements.'

bHodule vs. Parameter Testing It has been noted that a module.f'

' ‘oriented CAT algorithm is- preferred over: a parameter oriented

4

' 'algorithm Af it can be formulated without compromising . other

’ factors.‘

- In-Situ Teating - The 1deal CAT. algorithm shodld allow'lfor‘

: 'in—situ testing Such an algorithm should work with an arbitrary‘

"‘,‘input 31gnal rather than .a fixed set of test vectors.‘

(g)

. the networks..

: Parallel Proce331ng The degree .to uhich an: algorithm can be‘”’

'implemented in a parallel procesaing mode becomes a significant-

‘factor in determining its viability with the increase in size of

. In Table 2 1 the goals for an ideal algorithm are. summarized and

lthe degree to which the Various techniques achieve these goals is )

{“indicated - '-\f O ‘.'__1 . o K

He believe that the 31mu1ation-after-test technique employing our

;decomp031tion approach for fault analysis satisfies quite closely the

desired criteria, as we will attempt W0 show (1n the following chapter)

The technlque requires moderate off—line computational requirements andl

’.
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'\\\\\jery reasonable on-line codputatioﬁal requirements. It heeds'dnly~a

—

llmlted number of test points and can handle the effect of tolerances on -(if‘
nonfaulty elements Both nomlnal and faulty models are utillzed The

technique is module oriented and very su1table for ln—situ testlng aﬁg“

parallel processxng _ S . . ~.

. . . . . el ’:_ ="
. . b " . L
-

R L
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VFAULT LOCATION IN ANALOG CIRCUITS_
A DECOMPOSITION APPROAGH - SR SN

3. v INTRDDUCTION N

N

In thls chapter we“preeent a. new simulation-after-test method

! \

_;_for fault locatlon Hlth ‘the alm of keeplng both- the compmtatlons and

rmeasurements to acceptable bounds. A nodal decomp051t10n, Happ (197“)

5 .

“of the network into ﬁmaller uncoupled subnetworks is carried out. - The
hrg

measurement.nodes;must 1nclude the-nodes of decompoSition The voltage
-measurements are employed to iso}ate the faulty subnetworks. Utilizing
'the incldence relations between subnetworks and Kirchhoff's Current’ Law

EKCL) we. .develop' neieff;%: and ‘almost sufficient conditions for a

subnetwork or a’ group of networks to be fault free. \‘E}QQ} analy31s

'of the results of these tests is carried out to identify f‘aultyr

’ < - . . . -

':subnetworks. e ; B - oo ‘ o

In. analog circults the good network elemepts are usually not. at

7:"the1r naminel values. but are randomly distributed Hithln specified
. - f’&/

N tolenance.jntervals, A probablllstic approach is used to check whether

-~m':.;'the}teeting condit;ons‘ﬁan be satisfied undef;tRSfj}?Endoﬁ ‘hanges.
' L L The :ebp;icat}oh of the method to “both linear ’‘and nonlinear

N .t e .

. .netﬁbrks is diséubsed and.iiiustrated using practical examples.

R -
Il - ~ -

! . -

.

BN
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3.2 NETWORK DECOMPOSITION AND LOGICAL ANALYSIS |
3:2;1 General Description’
_‘The-ﬂspology of the\network under test is known. zh the pre-test

stage we perform a nodal decomposition of thg\ﬁefwork; This %esults'in

subnetworks connected by the nodes of decomposition. There should be no

. mutual coupling petweeh: any two- subnetworks and tgge nodes of

decomposltion Qhonld/be.chosen from the set where voltage measurements_

can beiperfonmed. The decomp051tion is eltheﬁ_perfonmed by lnspectlon

-(for networks of relatlvely small 31ze) or a speclal aIgorlthm is used

x

faulty elements. A test that is applled, 5y :

‘\test that 1s applled to check whether a grQUp of k ‘subnetworks S

for that purpose. e. g.. the heuristic algorithm prdposed by Sanglovannl-

Vincentelli et al. (1977) . n : . ' v

~

Fig. 3.1 illustrates the situation,- Subnetﬁorks s. and S, are

'linked at nodes of decomp051{<gn Cij _ _n actual testlng ye. excite the
network usually ﬂlth a current source and perform voltage measurements—
at . G.... . T l L ; oo T

lJ ; . - - . " . - " - ~ -

.

Testing condltlons are applied to identlfx the nonfaulty

subnetworks. - The’ appllcatlon of .a testing condltlon 1s referred to as a

ﬁest.‘ The outcome of a test'is classified simply as .pass ail. The

- {

test passes if and onlyk if aIl subnetworks involved in the- test are

fault=free.’ The test fails if and only if at least ohe of those subnet—

works is faulty A subnetwork 'is fa lty 1f lt contalns o&é or ;ﬂgk\

check whether subnetwork 8

18
is fault- free or . not Ls described as a self—testlng condition (STC) A

1

3 .J
1 2.
caey S are fault-free or not 1is called a mutUETJtestlng condltlonY

J _
\_k o \ _. ‘\-\H

.
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{MTC). In. praetice we 'utlxize the measurements together wlth the

-incidence Q&ietlons between subnetworks to expedlte these -tests,

-
3.2.2 Hierarchical Decomposition
-~ We follow a hierarchical decomposition approach (Gupta et al..

1982) .  This is illustrated in'Fig. 3.2 and is represented by the

;Tso—célled.tfee‘of.decomposition;. Vertices of-tﬁis tree ere assigned :to
_,subnetworkst Vafiods:leﬁels of‘qeeempbeition.can‘be censidered._ The
o prdeedure_eae be coniinu¢d until further diyisien of subnétuoéks through
;he;neashremenﬁlnodes is imﬁosSibie;‘-The eubhetworks‘ée the'final-leve;

ere'called'hioeks.' ' o | | _
We begln by con51dering su1table STC and MTC 31tuat10ns for the'e

'//f\subnetworks at the flrst level of decom9051t10n (We asstme‘thap a STQ -

. .applied. to 57 has confirmed ‘a fault) - If a subnetuork is declared’. .

nonfaulty no further partitlonlng cf it need be carrbed out _Faulp&
subnetworks and those ‘which we' are not eureA eeeue .are. Qecem§oee&‘
further. 1f p0531b1e. | _ | .
3.2.3 Logical,ﬂdalyéis _,‘ L . o o ,i . |
| | The results of dlfferent tests are .analyzed to 1dent1fy the -
faulty and eonfaulty subnetuorks.. Logical functions are utilized for_
.this pprpose.l ‘Every subnetwork has assoc1ated Hlth it a’ logica

variable o, which takes the value 1if the subnetwork is good and O 1f‘

“it is faulty. Every test is assoc1ated wnth a logical test function

" (LTF) which. is equal to the complete product of variables aj if the
. . t . . . L . i B .
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T test is a pass

T 29 no,n...noe. ; . (3.1)

N : "

" where (\ ) . T -

Ty

[
1]

A _ o
) . .. t [‘j1.' :j2'-“'.v ‘]k} TR . o -(3_.2)7

Ji refers to subnetwork Sj , k is the number of subnethorké involved ip
. i : ;
the test, or the complete union of complemented variables o,

Iy -
‘1, B us u..ud (3.3
R EREE P 0" -
if the test is. a fail. . -
- | _ .
.A logical diagnostic funcf?on_(LDF) is given by T

3 A g . £ o - ‘ o ’ D

D,=Cn T,)n(n T, (5. 4)

LT J J
t=1 t t=g+1; '
’ 'qhe}é the firs;_g LTFs.corrpspond,to succégg;::\tests an%/ﬁ issthe total
. - o \ . . ) .

nunber of tests. vIn‘thf LDF, the subnetwotrks which are represented by

Gi'are faulty and those whiéh.are fépre@qgted by o, are nonfaulty. If a

-subnetwork-isinot fepréssﬂﬁed.in—the LDF we assume nothing about (its

.status? more_gests~éreAneceSaary;h We usually construct the LDF in a

- - ) ' '- -~ .‘

sequential manner by combining the results of the currgnt‘ test to
Previous tests.. 'This usually reduces the number of tests needed'sinié)
some of the tests could be redundant. : ' ;;)

-

_3.2.4 Example 3.1: Illustration of Logical Analysis

.In the decdmposed network of Fig. 3.3 let 53 and S5 be faulty

blocks in an otherwise féult-freeunetwork. There {5 no subnetwork for
N ’

¥






N

. Which we can check the STC. We will apply MICs to evaluate T,o, T

32

: 35
T236' TEHG and TH56‘ Only the te?t for T246 is a pass so we have

43

D5 = (03 u 05) n (c2 u 03) n (02 u 03 u 06) n

(6, n gy n gg) 0 (Eu u 35 u 36)
= 0,0 030 gy NG N g

from\ghich it is evident that 33 and 55 are the-énly faulty subnetworks.

3.3 APPLICATION OF TESTING CONDITIONS TO SUBNETWORKS

In thié section we give necessary and almost sufficient
condiﬁions for a subnetwork or group of subnetworks to be fault-free.
The conditions are based on invoking KCL and topological relations.

For analog circuits- the effect of two independent faults is
highly unlikely to cancel at th; measurement ncdes:, We adoﬁt this

redsonable heuristic (Wu et al. 1982). o

a

3:3.1 Description of Subnetworks
— " The input—bﬁtput réiétioﬁ for. a subnetwbrk S;, that is conhnected

to the rest of the netﬁorklbylmi¥1'external nodes, as shown in Fig: 3.4,

with one of the nodes taken as the referencg; is given by

M, MM
Lre st ot g

~

*

where 21‘13 the vector of the subnetwork.parameters and the cardinality-

M M M -

of i l(t). h and v e is m;. We assume that the - subnetwork Sy is

connected, i.e., tgfre exists a path between any two nodes of subnetwork

S1 and the mi+1 external nodes do not decompose the subnetwork further

(3.5)

T
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“o

ile., we cann‘ot partition S into smaller uncoupled subnetworks using /

only the set of m, +‘I ‘external nodes Let .

: : My o= M, UMy My uM . (3.6)

ia ia ié’

.where Hio 13 the set of nodes Hhere both voltages and currents are

known, MlB is the set of- nodes where only voltages are known, M; ¢ is the

5¢t of nodes where only currefts are known , Hid 1s the set of nodes

¥

' where meither currents nor voltages are known, and M, is the set of the _

-

m; nodes. Accordingly, we can rewrite (3.5)_ as

M, M M, M, M, - M. _
P = n Ty o,y Py, y Ty, v o a) L GuTa
- “: ™ 1 X
M. .. M. M, Mo M. M. - -7
1B = By gy, vt B,y e,y Hey, 80 » (3.7b)

¥ -~

" My M "racy My Mg
LA =0 T oy T, v MR,y e,y Lo, > . (3.70)

M, Mo M, M M, M .
ot sty iy, g ey, Py, 8) - (T

If the cardinality of the. set Hid is ggegter than the cén"dinality"

of the set M, ., i.e., m/ > .m . a .n'ocessary, ‘condition for the’
is la. 15 . o

subnetwork S, to be fault-free is that

+

. M "M My | C o Moo .
1%y =ty (t) iB(t) i*(t). v e e, (38

M M M. M, . Tw \

M. ' .
LYy = n MY oy By, v B,y MY, AR IO E W1 -

is™a consistent system of overdetermined equations at any instant of

time, where Qi is the wvector of nominal parameter' values of the

"subnetwork. We refer to this conditlon as the internal—self—testing

?

PR od
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. : I - : ' S o ' . ) )
condition (ISTC). We utilize“this condition in locating faulty regions

inside faulty subnetworks.

When all the voitages of_Hf are'knonn and‘mla is greater than or

?_equal to. one. we can state the following stronger result.

] . -,
[ 2 )

3.3.2”-Lenma 3.1: Self-Testing Condltlon (STC)

A necessary and almost sufficient condition for ‘a connected;'

1

l'subnetuork S with m. +1 external nodes that do not decampose it further

ey

m,_ >landm,. =m. =0 to be fault-free is that o
~ota T by = 6. e
o : . g.. . c
L1%e) - 190y l(t). 82 =0 e . . (39

“

~

- -

The nece381ty of (3. 9) 1s obv1ous. For the sufficiency ﬁarﬁ of

Lenma 3 1 the adjoint network concept (Director and Rohrer' 1969) can bel“

utillzed to prove that. any change in the subnetwork should be observable
M 1 M,
at the mi nodes thus changing i ; if no cnange‘has occurred in i %“
M.

from that computed using the given v 1 and the nominal parameters of the

N

subnetwork,’ this implies that the - subnetwork is fault—free, -It " is

sufficient to check Lemma 3.1 using only one external current to the.

:subnetwork. The proof is given in Appendix A, R

Normally, the volﬁages of the mi1nodes are directly measured.

M
The currents 1 ta are not directly measured since it i3 difficult to

do po practically except when, they represent the inpuﬁ excitation to the
whole network. ° The application of KCL and, topological relations
overcome this difficulty.  The currents are not messured: they are

cuﬁpuped using the nominal parameter values togethenhwiﬁh the measured

1 ) N r



" voltagés, then KCL is invoked.

'Let us'assume we, heve a-set'ef k eubnetworks Si.'i € Jt:-which L

are 1ncident .on common node c as. shown 4n Fig.” 3.5. Each subnetwork is.’

) aSSUmed to be connected and has m +1. externai"nodes 'that do hof;

'decompose the subnetwork further.lﬂzhe input-output relatlon for every

‘subnetwork is 31milar to that gfﬁen in (3 5. The'yoltages‘of the‘ml  _ .

-external nodes are assumed to _be measured - The ourrent:ijcident to the
’common.node e from.subne;work-si'is given'by ‘

M, MM
A RO A )

3 3 3 Lemna 3. 2 Mutual-Testing Condltlon (MTC)\

. -A necessary and almost sufficient condltion for S

.

S v £ Jé. to. be
B fault-free:is ‘that, c -, . e .
L - , . ) N ' . ! ’ . -

' v

1.- . R H H- 0“ .t - o

Dot iy, g =00 v, S Gan

- [ -
- N B ] i EJ ’ ) ’ // - f.
) -' ”~ a ™t ) ‘- / I "'..‘-

i.e., the currents inc:.dent to the ccmmon node ¢ canputed using the

measured voltages and nominal parameter values should satisfy KCL.-

[ . 4

that no. two faults will cancel each other at the measurement nodes.-ij

11) is satisfied this implies that’ the current incident w{’h.tbe

ement node ¢ from subnetwork S& is given by

meas
‘ DN - y . : ‘
- ot ' " : .0 ¢ .
. S (w8, - © L (3.92)

, - A . "_. ..

_but from'Lemma 3.1 this imbkies‘tha; the .subnetwork S; is fault-free and
thus all" subnetworks S, i ¢ J are nonfaulty. N . 4

Hecessity is obvious. . Sufficiency follows from the hduristic ~



37

'
.

*2 9pou 1B JUSPIOUT SRlomiauqns

! -
n. ’ 1
i 6t "84,

.

. .

"
i
D.
L
]
;
. .
e
Ly
L.
.t
.1p
! ()
.
i
,
. ;..
] - v
.
]
4 ,
° 1]
G ﬂ
3 ;o
]
! .
.
v




-

; 38

ﬂWhen the previous test is appli;;\::\ﬁwo subnetworks which are
. ’

incident at a common node ¢ we refer to it as the bi-testing condition

(BTC).
v

3.3.4 Lenmma 3.3: Genbralized-Mutual—Tegh&ng Condition (GMTC)

Let Eiv 1€ J. . denote some external nodes of the subnetwork S, -

7

Each subnetwork Si i3 connected and has mi+1 nodes that do not decompose

it further, Eig; Hi' If the currents incident tq\Ei, ie Jt' form-a gue

\ )
Set, then a necessary and almost sufficient cfii}tion for these

-

subnetworks to be fault-free is that

Mi Hi
z I h (v

i, gh =0 vt (3.13)
ieJt jeEi .

3.3.5 Example 3.2: . Illustration of Lemma 3.3
]

Consider the two subnetworks Sa and Sb’that are incident with- the
subnetwork S,+ which is fhulty, as shown in Fig. 3.6. u}ﬁé BTC fails for
Sa ¥ Sc and S"u S, Byt the output branche's that comnect S, and S

——

Wwith S, form a cut set, S0, according to.the GMTC S, and Sb are fault

free if and éhly 4f the comgu%gu currents usiné’th& meast:gg,extéinal

voltages and nominal design valuesfof S, Ena S, through the cut set
. . n [
considered will sum to zero, i.e.,
' a a_ .a ..b b _
/?-,p i1 + 12 + 13 + iu + 15 =0 .

3.4 TOLERANCE CONSIDERATIONS

5 -The actual values of nonfaulty elémenté can deviate from their

P

// ' "¢ R 2

"
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N .
nominal values within prescribed tolerance bounds. Thus, in practice,

we face the situation that Lemmas 3.1-3.3 are not satisfied to the

- -

required degree of accuracy, Taking the tolerance changes in ghe

subnetwork elements into consideration we may write dondition {3.9) as
) M. M o
. ig ia i o - ’/A : )
177 -n (v (). g + 89)) = g, oo (3.8

where AQiQ [A¢11 By oon A¢ip]T defines the toleréncé‘changes in the p
" elements of the Subnetwork,under consideration. For s=mall tolerance;

 the first-order approximation can be utilized to describe thg‘changes in

¢

the network response. Accordingly, we may write (3.14) aé CoT
) . R
Mo Mo M, . p anie , S
L= "y (v, 8 = B oS L 8. - (3.15).
| Wy e
Let ‘
M, M M M, e . -
ia 4. la ia i 0Ny U
b "T(t) =4 T(t) -k (v "(t), Qi) =B, 8¢, | . (%.16)
D
where
M M M,
. . 3 ia 3h ia 3h ia . ‘
B. = | e — | . (3.17)
T Y3 ‘ 3
- %y %, %p -

At a certain instant td of\}fée équation {3.16) is an underdeterminéd_

system of linear equations in the variables 44, . The'weigﬁted-lééStA“""

squares solution of (3.16) is given by

’
.

t —_ +

M, - .
- g, = BT &L “(to) . | (3.18)

where.

a



-?a:g%‘?—lih{@l%i‘zl T Gaw

'and C 'is a welghtlng natrlx (Hankley and Merrlll 1971 Merrlll 1973)

. -1
For Ag normally dlstrlbuted Hith mean Q and covarlance matrix C ;he

solution given in (3.18) 'is the, condltionall expected “value of the

paramepers'cgi,(ﬂankley et al. 1971)'i.e., . - . v

- ag =B (g0 AL e, . G20

where E cenotes the expectation. Mofeover _the, solution is a mlnlmum in‘

the weighted-least-squares sense. So Agi is the solutlon of

minim;ze Ag C Qc R
subjeat to ’ ) - 7 ' . T
'. T . Mi T, L . o
- . a . . .. L
i 89y = AL (tq) - . (3..22») )

Ublng the probabilistlc interpretatlon of the result namely

(3.20), we can hive a measure of ‘how far (3. 9) is satisfied under the"

.

variations caused by the tolerances. If any bomponent'of the_compcted

vector agy from. (3.18) signif%cantly‘ exceeds its tclerapce' value .we

consider that Ehe test is unsuccessful. Thc consideration of the ﬁaﬁrii_:"'

~

correlation between the elements of the subnetwopks. !

The effect of tolerances on conditions (3.11) and (3.13) 1is

. . H Y

treated in a similar way.- -

’ "(3.21;

Ci in (3. 19) provides the possibility of considering the known
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3.5 FAULT LOCATION IN LINEAR NETWORKS
| For linearrﬂEhﬁerks,‘the-maerix.deseriptién of'the-subneéwbrks
greatly 31mpllf1es the camputatlonal effort needed for checklng the'
testlng condltlons Hlthout loss of generality we‘assume 51nu301dal:
 '-exc1tat1ons are applied. Hhence, We represent‘the voltages and.cqrrengs N
by their phaser varlables; | | A
- 3r$;j, General Dese(ibtieﬁ

Consider'a"eubnetwerk S, which has' m,+1 exﬁerna1 npdeé.‘one of

which is‘tﬁelreferehce node, énd_ni.intefnal'nodes; " The nodal equations

‘afe given by

IV i My
XMiMi Lo e
' : P & P9 3
'Ni I A
Xu I
~N1M1 .“?
- where . f[f
" N B w e(3.20) ‘
- . . | Hi |
T defines the current 3ources associated with the subnetwork V -1s  the
N, .
fvoltage vector of the. external nodes. v i;is the ‘voltage vector of the
M R .

o 1nternal-nodes and I t is the current inpﬁt véctor to 'tﬁe’subnetﬁbfk
‘from outside through mi external nodes. .E;iminating.the‘ni iﬁternal.

- noqee we get
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" " N M,
! "'1 i o . ...'f i i
I l_ — LI -Y .Y I J + LY - Y Y . Y J v , )
~ ~HiNi ~N1Nl ~g ~HiH1 ~M1Ni ,1“1 ﬁNlHl
‘ o o ' ] _ (3.25)
- or more compactly EE RN _
B . s X H. ) - _‘H‘ .. ‘ ) . _
’ - 1 L1 - i o
NET VI S b SV AR (3.26)
1 i,
" where B : . | . )
. - :!;I‘M.' és—ltl ;XM-\N Yﬁ;:lN 'J .'_- ) ’ . ) (3_.27) .. / .
. : i RS S S NiE 1 _ A
- A -1 . -
_'EH = Dy - Loow, n Yyl

i ii i1 010t R

and 1 is a onit matrix-of order m, .
Equatlon (3 26) descrlbes the input- output relatlon of the

subnetuork This relation is the one we.are lnterested in ‘to verLfy

b

_Lemmas 3. 1-3. 3 . ) s Ve '.' .

Since the hlerarchical decompositlon is obtained prior to' éctuél P

[

testing. it is fixed at‘the tlme of testing and the characterlstios of.
the _subnetuorks. namolyq zhi and-gHi gg are computed orf-line usins

nominal values and stored before conductlng the actual testing ' At the

time of testing. the only on-line computation required is the matrix b&

B PR
vector mu1t1plication. na%ely 'XH -l'i. Let E define the set of

' R
faulty subnetworks or the ones which e are uncerfain abbut. The ) '

L
¢

'

procedure in earrying out. the tests c¢can be summarized as. followa. -
1 ) A ‘. " - .l ‘ :,.-.—- ‘ , _I_ | . . ) ' ]\L; ,: :"_..-
- 3.5.2 Procedure for Locating Faulty Subnetworks

Step. 0. j = 04 ' S o o -

'Ej'=,jST}. (51 is the network under tast.)



5y

Step 1 Pdrtition using the-least number of test nodeslevery S; ¢ E., if.

possible, into smaller uncoupled subnetworks to consti
‘Othefwise g0 to 8.
Comment Only decomposed parts of every Si-a'Ej will be cqntaiﬁed in EJ+1‘

-

or S, itself if it is not decomposable.

Step 2 For e\feryASi §.Ej+1. find the. sets M; o -and M, . —

~

.Step- 3 -Check the testing conditions of Lemmas 3.1-3.3. .

Step u‘ Idéntify fauity sdbnetwdrka< using a logical analysis of the

., . tests.

Step 5 .Utilize the nonfaulty subnétworks to_.detg}mine the external
} . : ! - . .

" currents.of the faulty subnetworks. ’ -

j+ 1
Step 7 j = j+l. Go to 1.

Step 6 Update the ‘set E, by removing ‘nonfaulty subnetworks.

Step 8 Pript out the components of the set E =:Ej.

3.5.3 Computational Effort ' : | . ')(
-The number of ﬁodes.where ﬁeasuremgnts'ake per formed - arfd .the -

LY

’ cémputational effort depend on Ehe'size of the biocks and theﬂnumber_of‘

levels of decomposition. . If we assume that we have L levels of
-'/ . . . .

. ' ‘ » .
decomposition. and the resulting hierarchical de;pmpos;tion is binary-and

..symmetric,-.the_ number of “subnetworks {blocks) 'aﬁ the final -legél of

L

. 1 : . _ : '
decomposition will be equal to 2 If £ach block has n nodes and b is

.

the number of 1nterconnect10n nodes b tween any two blocks, then the
-L -

total number of network nodes is approximately given by

R N R R ‘ (3.29),



Assume t all the interconnection' nodes aré measurement nodes. - Then
their nimber Nm ‘can be estimated from

N .<2" -~ b . . (3.30).
m= X Va “

Acciordingly, a measuré 'éf the needed degree of accessibi\lit‘y is

given by <the'rat.io. ‘ : L ’ | A
N - . : ‘ N - ' ) .. . ‘ .
. . _.m, -b . : 31y .
r = NT _<. n....b . o . ‘ ) (3.31)\

F'o,r a s:nalier r. n shoulci be much éreater than b. | "On the other hand, we
'wish to have nAas small as p0331b1e to obtain better diagnosis and
decreased computational_ ef‘fgrt. 'I'her-e is clearly a compromise between .
the degree of accessibility and the éiZerof‘ the block.

If the f‘aulty elements are in one block followlng the

’

hierarchical decompos:.tion strategy and assuning binary partition, we -

i Icheck the testmg conditlons f‘or just two subnetmrks at each level,
The total number of subnetworks to be con31dered is consequently 2L In
a number of steps proportlonal to log (N) we ‘isolate the faulty
sub'network Obviously, we do not need to measure all the voltages of

the test. nodes. Less than bL measuranents are actually required,

.

3.5.4 Exémpie 3.3: Linear Network Exampile )

The qetwork. yer test is composed of two identicai 1'ow-pass

filter section‘s in cascade.” The low-pass f‘ilter section is shown in,
~ o ,

Fig. 3 7 “and 1its nominal elements values‘are given in 'Table 3,1
L tSemneLman et al. 1971). The operational amplifier is modeled by a

. " controlled spurce and output resistance, as shown in Fig. 3.8. The
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TABLE 3.1

NOMINAL ELEMENT VALUES FOR THE LINEAR NETWORK EXAMPLE

—
Resistors (kQ) Capacitors (uF)

R, 0.182/0. 1 <, 0.01/0.02
. Ry 1.57 €15 0.01
Re 2. 64 Cig 0.01
Rg 10.00 Cog 0.01
R, 10,00
Ry . 100.0
Rig 11.1 ‘i’
R, 2. 64
Ryy ; .41
Ris ' 1.0
Ryq 1.0
Ry 4.8
Ry, 2:32
Ry 10.0
: Ry 10.0/6.0
23
325 . 500.0/100.0
Roe 117.1
. By 1.14
Rog 2.32
R 72.4
Rip 10.0 .
Ray 10.0

. .
refers to a faulty element: its faulty value follows the slash.
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4

Fig. 3.8 Equivalént circuit for the-QQ—Ampl

\

A
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nepwofk haé‘52 resistors ana capaqitofs and 16'operatidnal;qmpllfiers.
'15 the first section, nodes 1.3,%,6;el1o.12.4u,15.17 and 19 are taken to
be,theVmeasqreﬁgnt-nodes. . The dorréspondiné nddes'iﬁ thé second'séctibn
:'ére' chosen a$ measurement nodes. We simulated ‘the network with a:
-31anoidal current sou;ce 1 (t) = 0 .01 cos ZOOOt A applled at node 1. ‘A
'-numﬁer of faulty elements were randomly chosen in the first section and'
-they are identified by an asterlsk in Table 3. 1 The ﬁrocedure follows."

[

' Stage 0 E0 = {S }. (S1 is the network under test).

. Stage 1 S 1s-decgmp?sedVas_showﬁ'lnlfig- 3.9 into 52 and 33." .
'E1.= fs2' 53}_ - :}_”' o ;
May = O My ¢19}:r
Myy = 1371 L u3'8=-'{19'}7 LT 4

“From the results ‘of Table 3.2, S, is’ faulty. and 53 is
. ; . ’ . . . .

‘nohfqulty. ' Lo DA . | |  : i
o EpElphe L /
. Stage? s, s decomposed as Show in Fig, 3.9 yito.S, and 8. '
E2'= Lsul S‘S\}.

- Thg T,

e DRI

[19} .' = (10}

Sa 5B

. From _the results of Table 3 3, 'S and S ‘are both faulty -
. ! 3 i“’ “\\

_{s S sbe
_‘Stége 3:'Sq and 55 are deeamposed as. shown 1n Fig 3 g. Su is decomposed

_into gﬁ‘./ 7 and S—-B'- | S¢ 1is decomposed into 59. ar’1d.S1.I

S 13.

E = [ 6! S-T" Sal 9!310| 11 - .' -‘l

3=
68 ~
.‘D. . - "

'M.B.a.= _ 'M A RTI . . | _\/\
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" Voltage Measurements e

' Measured Voltages - . 'If %‘52537Jd;0639 mA

51

3 \ -
L TABLE ‘3.2

v
-

 DIAGNOSIS FOR THE FIRST LEVEL OF. DECOMPOSITION

»

B

" Computed Currents
and Designed Currents : '

Diagnosis

"~ Test

2 ..
. .18
1.67-30%265 v - I3

V,.=0.956+j0.0088°V, - 1 7.05-31.52 &

B 1 |
"

Vig 9.66-31.57 mA

A3

o

V.. = 1.54.1 - 734 - 5
Var = 1532300421 v ﬁ‘f?f137 0 - e

Designed'Currents . : o R

IT = {o;o QA'HA - _.; -1;:;f m"_l-" :‘.- ' ﬁ\\\\\;% :

I - 0 ) . T .- y-f'—_\. L. A' P ’ ‘-\-

=0 L T

logical diagnostié function: Dy = G,n(3, 45 na

Table 3.3.

‘ _ 3 37 % ?IVB; T
‘result: S5 (s declared nqnféuitj.and,I?g-is-knoﬁﬁ in

*



™~
52
- :
TABLE 3.3
. >
DIAGNQSIS FOR THE SECOND L;&L OF DECOMPOSITION
3 v
. ‘\
Voltage Measurements Computed- Currents Diagnosis. Test
and Designed Currents : . : : )
. . 4 -3 5 _ oy, T
Measured Voltages I, = 5.69x107--41,05x107" 4 I, -I,%0 T,
V. known I} = -17.72451.61°A ,
1 10 k . b ] _
s 3 - Ig + IIO"" 0 'I'u-,5 o
"'10 = =439+30.386 V I'IO = -3.91x10 “+3,44x10 " A - o
V., known 0 =067-—08‘IA. i | 3.1 40 T
19 197 : 19 19. 7 7. 5
Designed Currents -O , '; . \ _
11.= 10.0 mA Q/',. -
_ 3
Iig = ~Iyg
SN
logical diagnostic functien D3 = "u_“ (Uu u 05) N o; = gyn 05."
result: no new currents are designable. ' _
. L1
- Y

¥



Stage' L

5= 5 S Sy,
" Subnet@rks S‘l;?,' S

53
-
Mg 3 B} LMy = (3, 6) o . <
Mg = 81 7, Mgg = 11, %/)6 10 \ ) -
Mg = b M;} = {1&’/¥A s
Miog = 81 - H1OB = (123, 15}

Mirg = 1191 4 My, = 10, 12, 135)

* From the fesulté of Table' 3.4, subnetwork S is f‘aulty and

: further tests ‘are needed for all other subnetworks

59 Sipe S |
8’ 510 and S are ‘decomposed into 312 13.

S‘ll-l' 515, 516' 3-17' 518' 519,"520 and 521 as sho\-m in Fig. 3. 9

No further’ decompositlon of Sg and 59 13 pos:nble USlﬂS only '

.the measurement nodes. ‘ L Q _'

'S

218

By ‘55- 12° '13' 5147-515"516"59' 170 S1g S1gr Saor
'MGcz..'—' B Mg = (1,3,6) | |
) I Mg = 13,50
LU Mg = 15:61°
Mg = 81 L Wiggs 3.8
Moo ;"{E.!}I L Mg = U 3}"‘ |
Mi6o = (B . v M. s (6,8, 10} |
'ﬁgg,=1gj';, My g 110,12, 15
Migg = B} M17g =‘{12.1q3
Mrgq = (0] ' ["1M183= {ﬂ#ns}'_ -
Mige = 8}~ v Mygu = 110,173 o o
Maoe = 01 L My (12,170 o
M= 19 o, M ={55.171

211
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-TABLE 3.4

A

Voltage Measurements

-Compuied Currents

Diagnosis Test
- and Designed Currents -
- 6. : 6 .8 , '
Measured Voltages I, = 8.911+30.0143 mA I+I) # I, Teg
known 16 = ~6657.25+j4. 126 mA X
! 3 117,18 4 o T
SR L 6 .- 37 3™3 678
V3 = -0.142-31.33 V I6 = -9.271+30.823 mA o
L e T _ s 6 .7 .8
6 = —25.1+4J2:17T'V Ig = -0.0142-30. 1328 mA CIgHlgele 2 0 _ 1678
. . - N .
'V1O‘ known I6 =" 13, 486-3§1.1625 mA 8 .9 .11 -
S 8 I 0*110*110 =0 T8,9,11
Vip = 0.103430.69 Vv IS < 0. 439- JD 0301 mA ' ri;\
'- - . . . . . . 8.-. N 9 11' .. .
VJS'_.8.93—j1.1f v I3:= 0, 0378 jO 0167 mA 1 12 +I5 40 T3, 10,11
Yo ‘ g - , )
Vg known g = -3r922“*30r339?;m4 19 10 1
, _ 8 - o TetEistlis 00 Toig g
.- Designed Currents = I = 3;9039—J0;3ﬁ35 mi . ' AR
o . . 9 -. v \ “,“ .11 ‘3 _. )
I;=10.0ma I —'-3.8536f{?.§889 mA - Iyg I3 Tiy
‘119 = -119 ~_ -112 -'-o.ooos-jo.q772 ya_
| XYL - 3.u73-j0.u837 mA
L I:g"= 0.0103;j07068§-mA'
11? ~540.09- J2728 18 mA
118 E _o.ou99+jo.0052 mA
° zl;'= ~0.0021+40. 0018 ma
_ i:; =‘0110§3QJQ;Q136 mA - . ]
- 1]3': 695.i2-3593,77 mA -

logical’ diagnostic function D6 z (c u 08) n g

although T8 9 1

in the LDF otherwise the LDF

result.

-is almost 'O it contradicts T

= 2.5

ne new currents are“designable.

L
anr

hence we do not considér it

v




From the results of_Table 3.5 subnetﬁorks 56; 517 and 320 are faulty and

all other subnetworks.are nonfaulty.

Eu = [56, 517. 520}.

No further decomposition is possible for subnetworks 56‘ 517 and 526 .
‘ » .

4

using the measurement nodes. So we have t‘z Eu =z [56, 17. 20} It. is

‘to be noted that in four steps (levels of decomposition) we were able to

*

) identify the faults-to within very small subnetworks. . ‘Also. since 33 is.

fault-free after Stage 1, no;ﬁurther decomposition is carried out and,
accordingly, we do not need to consider measurements at the accessible

nodes inside 5

3°

3.6  TESTING OF NONLINEAR NETWORKS

‘3f6£1 General_Strategy' a ; - e S

In typical nonlinear networks.-the network 1s.dominantly lineare‘
 Hith a few nonlinear elements., The nodes of decomposition are chosen
‘such that the part of the network that contains the nonlinear elementsi
.1s.decomposed into subnetworks. each of them havinglvery few nonlinear‘-
elements or being .completely. linear. i The 'part of the network that‘

contains only linear elements 13 treated exactly as. in the linear case.’

Lyve decompose ﬂhe network into blocka that contaln the nonlinear elements
\

and a number of subnetworks that contain only linear elements.-,'The'

' latter could be decomposed further. ‘ In applying Lemmas 3 1—3 3 for
' T

_nonlinear networks ‘we need a nonlinear network solver. Intuxtively.,by'a

hav1ng very few nonzinear elements in each subnetwork the nonlinear:

-

network solver converges rapidly in just one- or two iterations starting_

T
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* TABLE 3 5

 DIAGNOSIS FOR THE FOURTH LEVEL OF DECOMPOSITION

Voltage Megsurements; Coﬁputed Currents¥ Diagno;is "7 Test-
and Designed Currents Co ‘ . . IR
Measured Voltages 12, . 01u2 50 1328 mA 15,115 41 T,
easure oltage 3 =-0.01 .—j - . -1+ 1 6,15
V., “kniown 112—-o:on35-jo'503u mA
- ) 15 6 .12 14
. : ‘ - 13 13+I3 20
V' known ‘ 5 =0. ou3s+jo 5034 mA .. |
Vg=0.141441.33V . Ig 314, ausa- 3. 1625 m o 1241350
V, 'known e I‘”_00378-j0 0167 mA o 1 :
6 3 =18 6 .13 .16
. 15__15_ Lgtlg+le # 0 Tg 5776
Vg=—0.392+30:339V, I,7=-Ig =0, u391-30 0301 mA : ‘ . AR
} » 16 1 015 16 - -
Vo Knoun Igl=-3. 922u+jo 3392 mA Is‘fIB *Is - o“ Tyn1s. 16
1., known . _ ;ﬁ-o u768 40.0468 mA - . .
) P .8 9 19 ‘
: v1u=_o.0615fjo.u13v-__ 10—3 9039930 3436 mAu _ I
B - ,_' ST N 9 17 120, o L
15 known : C I 0082+j0 0552 mA - I +1 g #0 - T3, 17,20
=1.08-J0. 136v - 117-205.185+11379.726 nA " R
Yar 14 b 18 - : S
S 1 LTy I1u + N
Vg | known T u='° 0225:30 1787'mA | e LT
Designed Currents 18_*3 955ﬁ+jo HQTM mA ‘19' 118 121'= 0 - T Lo -
WI1_10 0 mA L n i]g; T*?jlo 0u93+J0 00"7 mA - 1 e :
_ _ g .20 _21 S ‘
3. - el Tttt 2.0 Tig 00,21
1, -119 - R 1% o)==} 0020+j0 6017 ma .17, V7 Fo 0 rehel
D 1Bk 083-10.0137 ma QESi;‘\‘9+I19 S
'If;_;o 0590+30.0130 mA . - - - e |
’2 ) . . . . ,:: . .
19-—9 66+11. 57 mA - :

) logical diagnostic functlon D11 =‘36 n g n gyp d1i_n'g1n~n
o1g Moyg M Gpg M Gy R A O
result: 5S¢, S 17 and 520 are faulty. - - o T
'* for computed currents of,SGIand‘Sg see Table 3.4. '

" 3 .

T
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from the‘nonfaulty state, ‘Alsor-analyzing several subnetworks:

--simultaneously ~is possible utilizing ‘the - parallel, processing

capabilitles of modern Automatic Testing Equ1pment (ATE)

For . locatxng faulty elements within‘ieﬁlty blocks that contain

nonlinear elements we analyze the faulty block using assuned ‘fault

models of its elements. then we cempare "the different cases using the.

' nearest neighbour rule. This technique s outlined in. Section u, 7‘
3;6;é. Exanple 3.4: iNonlinear Netuork Example

we con51dered the v1deo amplifier circuit (Nav1d and Hillson

* )

Jr. 1979) shown in Fig. 3 10 The nodes of decomposition are chosen as
L)

/odes 1 2 5, T and 10.‘ The circu1t is’ decomposed 1nto eight uneoupled

s

‘ Zﬁpnetworks as. shown in Fig. 3. 11 and in abstract form in Fig. 3 12.

- very subnetwork contains at most one nonlinear element (transistor)

which agrees with our requirements on the decomposition.

~. .
We - considered dc testing of- the circuit 211 capacitors are.

therefore open circuits, To investigate faulty capacitors ac. testing is .f

'needed.- The nominal values of cirouit elements are given in Table 3. 6

». -

: He have considered the well known Ebers-Holl model of the transistor as'

. shown in Fig 3.13. The nominal Qperating conditions for the circuit

'are given in Table 3. 7 All transistors are operating in their active.'

¥

regions.ﬂ _— o

Different faulty 31tuations have been simulated 'Ihe_resUlts.for'

four ‘different cases with the nonfaulty parameters- ' .- assumed "at

nominal.yalues are‘summarizedlin'Taolesl3.8-3.11. In Case 1 TTahlet

~
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TABLE 3.6

NOMINAL VALUES OF THE ELEMENTS
OF ‘THE VIDEQ AMPLIFIER

Element Value
~, B 1.2 k@
R, 3.0 kQ
Ry ' 5.672 kQ
) R, 1.2 k4
Rg 0.33 k8
Rg - 0.33 k@
RTI 1.0 ka
'RB 1.7 kQ
R 3.3 kg
Rig» 0.078 kQ
Ry, 0.5 k@
R'12 1.0 kQ
Ry 1.0 kQ
c, 1.0 \F
C, 3.3 WF
Cq 1.0 WF
Cy 1.0 WF
Vee 28.0v .
v 28.0 V 3
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TgBhE‘BTT'

NOMINAL OPERATING POINT AND PARAMETERS OF THE TﬁANSISTORS

Ed

a, Q, .d3 .
I, B.7THH mA . 9.091 mA _'§.891 A. 3.048 mA
b I -4.791 mA  -9.183 mA_ ~5.951: mA '-3.019 mA
’ VBE 0.764 v 0.798 v 0.7‘,76 v 0.741.\!
Y Vg -11.767 ¥ -14.506 V _;16;208 v -15.315 ¥
@ 0.9 0.99 - 0.99 10.99
o 0.5 0.5 0.5 0.5
- 1E-6 mA'

'IEO 1.E-6 mA 1.E-6 mA . - 1.E-6 mA
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. - 7
, | : TABLE -3. 8

CASE' 1 - Q. FAULTY

" Measurements - (iom’;)ut:ed Currents . Diagnosis "_l'é's_t
, o - b
] v e C2.1340 o -
v1‘-{31;19p2 Vo, Ip = A73Tma N\ IS5 41340 Toy :
. V, =)3.1321 v . - T . .
P -2 . I3 = 9.9952 ma 12 +.12 + 18 w17 =0 Tiser
Vo = 2.4126'V 3 .- A
) - I2 = ~-7.9692 mA 4 5 6 - o
V'S 1.7256 v ‘ . ID + I, +I2 410 =0 T
770 Ig - _1.9949 mA 57 5 Tig*tig =Y . '3456
Vi = 1.7606 V. - : s 5
. y . I7 + ]'.7 =0 \TSB
T  =.2.0104 mA
5 T +'136 =0 Tsg
. © I7.= 1.0049 mA _ 1 ,
t Ig = 0.0101 mA : i
, , /{
217 = -1.050 ma . .
S N . )
I, = 0.5282 mA
: 6 -
; . I. = 0.0053 mA ~ o
= (’"EJ 18, = -0.5335 ua ;\\- .
7o

- 11’= -11.5283 mA
8. .
I 1:0150 mA

0‘ = 0. 5335 mA

9g) M (o5 0 gg) n (g n og) = oy 0 93 M gy’ n

N . po— -

result: 52 1s the only- faultl subnetwork.

diagnostic function D5 = (02 u 03) n (03‘ n og n g N 07) n (03
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TABLE 3.9
\
CASE 2 - Q FAULTY
Meas;tirenlent}:s _.Computed .Currents - Diagnosis Test
V. = 26,1850V I2 = 4. 7437 " 3.0 T
1 7 20 . 1ps '?ﬁ 2 =0 23 -
V, = 11.6790 vV = : - .
2 13 = 13.9057 ma .13 I?,*,11 £0 Toosr
Vs = 10.8809 V . 3 T ’ .
12 = ~4.7437 mA 3 y 5 6 .
V., = 10.8599 y ID+ I +I2+1I240 T
7 Ig = -9.1620 mA 2,2 575 3456
Voo = 10.1296 V - . _5‘!9\8 -
| (u : } I7 I. 40 Tog
' I = 9.0675 i_,,r ' ‘ :
. - -.6 9 . .
R I + I =0 - . T
12 ='5.8736 ma 107 710 69
5 . 2 .7 8 4
IS_- 0.059.3mA IE+IT+ I7+I5_ .
5 : 9 . .
7= -5.9329mk  + 13, 20 Taurgg
'I? = 3.0389 mA
i q -t
_ 12 - 0.0307 mA N’
{
1%, = -3.0696 ma
1] = -23.2685 mA
© « .85 u )
9 - - ‘. -A’.‘) “+ -
— ;10 = 3.0696 mA ] \
t

logical diagnostic function 6 = (c n«us) n (03 u c u a 07) n (c

u?:uuo‘5uc)n(c uu)n(a nc)n(a n g ncr

T

'na3ncunan06 o7ncnog

result: S5 is t;he only faulty &anetwork.

8

n 9y -5/09) _.02

~
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Q = 0. 0000 mA

A\

. 66 ! d
o
TABLE 3.10
CASE 3 - R,, FAULTY
W
. . A'S
Measurements - Computed Currents Diagnosis Test
V., =5.8645 V' - 3.8379 mA 2 ,.13-0¢ T
A R 2 T < 2 2 < 23
V, = <2.6491 V = : - :
2 .- 3 - 3 5 6 7
v <o I.] = 2.8379 mA I1+I1+I1 +I1 £ 0 T3567
5 13 = -2.8379 ma 3 o s e
V. =0 IZ+ I +I2+I° =0 T
7 13 - 0.0000 mA 5 5 5 5 3456
Vi =0 5 s g
u , 17 -+ IT = 0 - T58
I = 0.0000 mA
t 9 i
- I + I =0 T
I? = 0.0600Q mA 107 710 69
I§.= 0.0000 ma )
13 < 0.0000 mA =
\_\-___// 6 '7 {‘
I] = 0.0000 mA ‘// :
. , Ig =-0.0000 mA ) <
S
6 . !
>~ I g% 0.0000 ﬁq
\‘ . /_// *
17 = -283.7879 mA
1 = =283 .
\ -
Ig = 0.0000 mA (T»
19 '

“  logical dia
(03 u as u-

on

n gg-n og.

\
nQStic funct n Do =

5 =

A

(c

s 05 n (o ﬁfEEWW’j}\\

-ﬁdf:resqlt: S, i3 the onlijfgggty subnetﬁork.

no)-

na)n(u /)n(ona)n

1
0'2ﬂ

Unound

\ -

.' >

T
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. , TABLE 3. 11
' CASE & - Q, FAULTY
, Measurements Computed Currents Diagnosis Test -
] 2 : 2 .3 (
V'I = 26.12471 ¥ I2 = 4,7437 mA 12 + I2 Z 0 T23 .
V, = 11.6001 V -
2 I3 = 4.841% oA 1B3.12,.1%.17 40 ... .
v 1 1 1 1 1 3567
5 = 11.6001 V 3
I3 = ~4.8414 mA 4 |
V., = 10.8001 Vv IZ +I_ +I-2 +1° 420 T
7 Ig = 0.000 mA 555 3456
V'IO = 10,8445 V 5 8
u IT + 17 =0 TSB
IS = 9.6667 mA
) 9 :
v I + I =0 T
I? = 6.2895 mA 10 69
5 _ 7 B 9 . \
I5 = 0.0635 mA I +I T+15+I =0 T24789 «
I? = -6.3530 mA
. A"
6 ‘/
- I =3.2533 mA \
Ig = 0.0329 mA |
rd 6
7 ' N
7 - _2u.0497 ma R ol
g ) L J
~.,
I7 = 6.3530 mA ) y J/__.
Q o . .
9
- I = 3.2862 mA ]
1 .
: /\ \J
logical diagnostic function D6 = (02 u 03) n (03 u c u °6 07) n (03
cuuusuc6)n(u5n08)n(06Ula)n(anauno.rnoano>‘c2n
°3nau-°5nf5n°7n08€° " a. . . }/ o
" result: 33 is the only faulty subnetwork. C ' 9 . , - _
S ¢

]
a ‘ /



3+8), we considered Q, faulty, namely its collector-base junction is

shorted. A "shorted junction is-simulated by conneéting a very small
L .

resistance across the Junction. In Case 2 (Tabie 3.9), the bése-emitter

10
is increased to 7.8 kﬂ In Case 4 (Table 3.171), transistor 02 has a

Jjunction 02103 isfghorted. and in Casé 3 (Table 3.10), the resiﬁtor R

shorted base emitter Junction We considered also Case 2 when all

reSLStors are alloued to change within + 10% of their nominal values and

E g .
the transistor gain, B8 = (GH/1—GN). 1s allowed to change within + 10% of -

its nominal ;g}ueﬁ or equivalently % to changg uithin-: 0.1% of its

nominal value. The predicted changes in the‘subnetw:;tf>elements using

equation (3.18) for the different tests is summariged in Table 3.12

(Case-5). It is clear that the di gnosig of the different tests will be

exactly as in the nontolerance casé. (Case 2). The matrix G in (3.19)

has been taken to be
~
2 02 02
= diag (w ¢ T w2¢12: ceay “p¢ip} .

S " )
where p is the number of elements in“the subnetworks considered in the

test that are subjected to tolerance'Zhanges‘and LA is an appropriate

Positive weighting function. (,_ '
In-all the cg!&s considfred we were quite successful in

identifying the faulty subnetworka. In Case 3 further diagnosis ha be

- 3 \
npeded after repairing the faulty element 110 Since, due to abnormal

operating conditions subnetworks Sys Sg a Sg)are short-circuit , and

any fault in them will not show up until R10 is repaired. 50, knowing

thatS, is faul'ty we compute - )&

w
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TABLE 3. 12

€

CASE 5 - Qg FAULTY WITH TOLERANCES ON THE NONFAULTY ELEMENTS

'“JPercentage - Test 1 Test 2~ Test 3 Test 4 Test 5 Test 6

_/' - Deviation T23_ T3567- -T3H56 aTSB -T69 . T2u739'
TR | 0.0 T o0
'“32’“2[\\ 1.983 13.54 0.0 -
18R /R, | 1774 S : 2.1
18R, /Ry | - 26.99* - - c 4,076
18R /R | . 0.088 6.71 9.09
T8RRI o0t 0.0 . 0.136
LaR. /R, | - 46. 47 0.31  70.820
| &Rg/Ry | , | 27. 74" | i.\\2-.&5
&R/ 3 0.878  1.382
VOR, /R 0| st . 8.96
| 8oy (/a1 0.0224 : 0.026
aoys/ oy, 0.0513 0.71% 0.408% ‘ \\fx:=
oy 37 ay 3 0.0 0. 001 0.194% |

| Aoggy/ cagy | (\L | 1.27*  0.072 _\}0.14 |

Nr— B '
' ‘Ig\ Paﬁijr‘“\ Fail Fail Fail Pass Pass

Y

logical diagnosfie fumction D, = T.. a T n T 0 Teg n Tey N
T < 6 23 3567 3456 y 58 69

24789 : o '
‘e 02 n a3 n U!l .n 05 n 05': 07 n aa n ag. . ‘ . . . /
result: S. 1s the ojif faulty subnetwork (see Table 3.9 ).
: 2~
#*

Deviation significantly exceeds tolerance. ‘ T

ot N '

. )

7



™

70
7 _ . ;3 5 6
dp=-I7 =17 -1
and. SR o o 2,
. ] .
V1- Voo :
R10 = = = 7.8 kﬂ .
I .
LN _ . X
which is the actqai_fault value.
: S . N ]
3.7  CONCLUSIONS . e , .

We have described a novel method for fault location in analog .
circuits. The method has the following characteristics:
(a) Due’ to the ‘decomposition of ‘the .whole network intoc ' smaller

“_ uncoupled subnetuorl-cs.- the methqd i.::_qdir'ectly

networks. : \ \

(b) The testing ‘condi-tions are a result of network topology and KCL:
s they do not depend ;:n petwork.'type. Sq the method is applipable
to both linear and nonlinear networks. Also, depending ‘on the
‘{typé of circuits the network could be tested using different

types of excitations.

{e) The measurémenf: nédes are chosen as the nodes of decomposition. Yy
Their number can consequently -be 1limited for practical

ifplementation. '

4

(_d) For linear networks the on-line computationatl requirements are

v

*

minimal €¢matrix by vector multiplications) and the q}f—line
compudlition involves the énalysis of the nominal network only.
For nonlinear networks the on-line computation is reduced by

- performing the computation in a parallel processing mode. 2 -

R -~ - ‘ ‘ ‘
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(e) 'The decomposition of the network into subnetworks allowed us to

deal with the tolerance problem at the subnetwork 1evel thus Qe

have 1ocalized its effects. S ' } :
(f)_ . The‘method is initially modular, where'nominal circuit models are

used—fdrAthe sﬁbhetworks- Subsequently, it is eltment oriented

‘at uhich time faulty elements are 1ocated inside subnetworks.

Typical fault models may be utilized at this stage, as we will

‘ elaborate on. in the next: chapter

A eqmpuier program‘reaiizing this method has been written and

\._

2 _yielding positive results. .

"other practical exampies'(Hqchualq'and Bastian 1979) wvere tested

¥
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FAULT LOCAT;ON INSTDE FAULTY SUBNETWORKS—
DETERMINISTIC METHODS .

4.1 -INTRODUCTION

Abt‘er 1ocating the 'faulty'subnetuork further fault analysis is

carried out to identify the faulty elements in the subnetwork. Two main
appr‘oaches are considered in this thesis. One of them utilizes an

estimation criterion to-predict the most likely faulty elements. This

approach is referred to as the approximate method for fault location and

is, addressed' in the next chapter. The deterministic approach methods

are dealt with in this chapter,

In the fault verification method.a set of subnetwork elements are
designated as canoidates ‘f‘or the faulty set. A set of algebraic
relations that is invariant on the candidate set is constructed. We

[ ] . -

then test the consistency of the corresponding equations.
[}

The effect of tolerances on the nonfaulty elemMsidered

and a linear progr&mming f‘orm.ulation of the fault verificat§ion prohlem
.13 .devised. Since the search for the faulty set is combinatorial in
nature different strategies are suggested to reduce the comput.ational

effort needed he decomposition appreach (Chapter 3) 1s utilized in

‘locating faulty regions inside the faulty subnetworks. This is achieved

R v/y applying the internal—self‘-te ing?dndition that 1is introduced in

$ection 3. ;.1. A combinatorial algorithm. one which does not exploit .

'tobologic'al_ inter_connections within the subfetwork, is oext presented.

. . #
N .

o e
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In many subnetworks only a few elements are fault prone. In the
directory approach, as explained in Chapter 2, these are the only

elements that are considered in constructing the dictionary. A similar

procedure can be followed in the present case by considering faulty

-

models” for the most probable faulty elements, The matching method

utilizes these fault models'together with the input excitation to the
subpetwork td'prcduce the subnetwork response, A matching between the

actual response and simulated response i3 carried out to verify the

existence of certain faults.

b, 2 FAULT VERIFICATION METHOD

-

4.2.1 General Description
Let us assume that the subnetwork S has m+] external nodes, one

_ of which is considered as the reference node, as shown in Fig. 4.1. The
. ' e

m+1-pole subnetwork is considere& a3 a 3subnetwork with m measurement
ports, The voltages -of the externai nodes’ YM are assunedl-to be
measured. The currents ntering the subnetwoék at these nodes are
assuned to be either measufed exciiations or computed using Ehe measured
vo;tages and the nominal parameter values of the adjacent nonfaulty
subnetworks. ’
A change of value of a ccmponent with respé&t to nominal can be
representedePy either 'a current or a voltage source in para}llel or in
E?Z. et us
R f1 qffwhich
are represented by voltage sources !F1 and f ‘ ch are represented

am

series, respectivray. hith the component, as shown in

5

Q\ assume that we have f faulty elements in




faulty

subnetwork
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‘ A - ) .
by current. sourtes, J so that f = f1 + f2‘ If wg treat these

additional sources as external to the subnetwork, as shown in Fig. 4.3,

then the interior of the subnetwork is known, since it consists' of

elements with‘naninal component values. Assuming that the hybr}d matrix

H of the (m+f) - port network exists we obtain the following relation:

— M ~ e B L, B
i By e 5}41-"2 ¥
F | F h
1 - | v, (4. 1)
F F
v e 1°
uh;re
& M M T Mo MM M,T
LR SN LIS A 6 A SO o e
are the measured voltagés and assumed currents,
- R
FT A F Vé VF T F2 A F F - n VF T
Votvy vt vt v e (4.3)
3 1 1 1 -~ )
~ : 3
are the voltages at the fault ports and \\\
F - " F {
14 - F _F F ,T f24  F F For.
E‘ - [IT 12‘--. If1] 1 ] E - [¥f1+1 If2+2 L If-] (a-u)

are the currents associated with the. fault ports,

From (4.1) the currents of the exterggl nodes are given by
’f - VFI . "
£M=1$ml{"+wm B 1|7 Scu.s)
: 1,2 F . F

1@ 'S
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Fa
o
and we may define
. ' VF1 VF1
oM A M . ~ ~ .
BRI - Ay Vs (e By ) =B || (4.6)
~ 1 2 F F :
I 2 I 2

Wwhich we attrihute to the féulty elements. 48l is known.since EM and V

are both assumed lmown and E’HH is computed using nominal parameter
values of the subnetwork. If m > f, i.e., the cardinality of the

measured °voltages and currents is larger than the cardinality of the

faulty set F, then (4.6) is anj'oi.rerdetermined system of equations. A&

W

neceggary condition for F.I and F2 to be candidates for the exact faulty

set 13 that (4.6) 1is a consistent overdetermined system of equatior;s

(Biernacki and Bandler 1981). If EHF is of full .column rank this

condition reduces to o \/
, -
E- 1 ALM =0, (4.7)
where ' -
A - T -1°,T Co
L Em-\;_(?g; Byp) EHF. ‘ : (4.8)

and 1 is an identity matrix of appropriate dimension. For the set F to

be unique the following condition should be satisfled.

'u. 2.2 Uniqueness'of the Faﬁlty Elements

Lemma 4,1

»

The set of faulty elements F 1s-unique if and zﬁ'ily if

Rank [5{1.-1 H‘Fa,ﬁy) > Rank [5",.1 -I:IHFZJ =f ¥ xeAF , (4.9)

S .

where A is the set of all elements of the subnetwork. (Note that
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. Q -
L \o : -
element x is nol\in the set F.) S |
~
‘l;——m——‘

- If (4.9)-1s not trEE’tW’ *

Rank[;im‘..1 EHFE ﬂHx] = Rank [H,MFT HHFZJ‘ . * .

—

——

S0 the column vector is of a nonzero linear combination of [H,2
HMx X SR, " H‘MF1
1, i.e., ! . . -
5141-‘2 _

W " "'-' . r
e = e B TX o~ ;
X S N

b -

and we can replace a colunn of [EHF EHF 1 that correspo’\nds to nonzero
1

Hcomponent value of k with HH . The gsultant matrix will\*s an the sane

e
subspace spanned by [ F EMF 1. Another consistent sol%tiqn of g‘iﬁj

exists, hence the solution is not unique,.

If (4.9) is true, but thera exist ﬁho sets of f elements which

satisfy (4, 6). then the columns corresponding to each set span the §§5e ‘

subspace. This contradicts (4.9). Therefore, if (4.9) is satisfied,

the solution is unique. ¥

4.2.3 Computation of the Coefficients
The adjeint network concept i3 wutilized to compute the required
‘. F AF
. ~* 1
coefficients to construct (4.6). With Vv ° = 0 and I 2 = 0 the equations

adjoint to (4.1) are given by

.



Eanra
AN P B 10
_§F2 - ﬂ;; i
R
~ ~F : ~F

. 2
The currents I and I '~ as well as the voltages v are computed
b -
with a unit voltage source connected to the ith measurement port and

the remaining measurement ports are short—circhited This gives the

elements of the ith column of the matrices EHH' EHF and EMFz'

Repeating this procedure for all measurement portg all the coefficients

of (4.5) Lre directly obtained as

M1 M2 M T - ' L
~ ~ ~ ~MM - .
JFo1 F.2 -~ JF.m ,
1 1 1 T
I I TS A ﬂMF1 . (3,11)
.Fa‘l -F22 .Fan; r |-
-V -V R Hyp
L~ ~ ~ 4 Lol

Having calculated the voltages and curﬁents:in all Ehe adjoint

seny

network elements with different voltage excitations, ¥ ., 1 = 1, 2;

m, we can obtain the matrix EMF‘cofresponding'to‘ény set F of faulty

elements, Thus, the adjoint network analysis does ‘not have to be

repeated ir the set of predlcted faulty elenents is changed

; The- manner in which the matri%’EHF is computed yields insight

I

into faulty situatlons when EMF 13 not of full column rank Result: 4.1

[

follows 1mmediate1y : -
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4.2.4 Result 4.1

If the set of faulty-elements ceontains a subset consisting of

either

(a) a circuit formed by one-port elements, controlled current sources -
or currents that cégtrol faulty voltage or current sou}ces:

{(m). a'cut set‘formed by one—portﬁelements. contrglled voltage soufces

of yoltages that control faulty voltage or current sources
then ﬁhe test matrix EHF contains liﬁearly dependent columns.
X The ,prtoof féllows Starzyk and Baiidler (1987a). Result 4.1 can be.
used in constructing the appropriate combinations of "the faulty elements
"that produce a full column . HHF matrlx for test ﬁurposes. In general
the sets of Result 4,1 define regions that contain the faulty set.
Identlficatlon of the elements within the faulty region is possible
using multitest vectors. as reported in Biernacki é@d Starzyk (1980) and

Starzyk, Biernacki ana'Bandler (1981).

k.3 TOLERANCE CONSIDERATIONS
. The exact consistency of (4.6) can appear only if all nonfaulty.

elements assume exact nominal values. In this section we consider the

effect of deviations in the nonfaulty elements. A linear programming

" formulation for checking the consistency of {4.6), which has been
proposed by Bandler, Biernacki and Salama (1981).'@11% be elaborated on.

Let us assume that H,. of (4.6) is of full column rank. We can



. B2

then find f rows such that the submaprix EFF that is constructed using

these rbws is nonsingular. Without less of generality, we can assume

that the? are the first f rows of gHF' Considering the first f

equations of (4.6) we have

- H _ .
AEF = ﬁFF s , (4, 12)
where - .
, | T MA MM M, T |
- . Alp = [AIy 4T, ... AL) ? (45.13)
and
VF1 : :
s 17 . IR (4.14)
‘ F :
5_2
Solving for the vector S we obtain
S SNV _
sp= s o sz i ED L gs e e, (s
J i3 _ i %137 . » ! )
- 1= i=1. : :
where . . 4 ,-

'Aij : AiJ/A SR - : gu.JSb)

Aij is the cofactor of the. element (i j) of HFF and 4 denotes 1ts-

determinant, For any equation other than the first f equations of (4,6)

we have

[~
[
=
| E DR
n o1y

j=1

'Subsiputing (4.15) into (4.16) we‘qbtéin

HZJ'SJ:f g = ff1'Aff2} ceea m s . (4,16)

,/__-H-h\
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f+2, «ooom . (4.17)

Due to the deviation in the nonfaulty elements from their nominal

values, the values o!“I-{R.J and Eij'will deviate from their nominal and

(4,17) becomes

£z fel, £42, ... m . (4,18)

The tolerance region of the elements.-supposed to be nonfaulty is defined

uhere'4¢£ 6 ¢y - ¢2 ts the change of the ith element value w.r.t. its

nominal, éi is its. associated 'tolerance and IE denotes the set of

indices of the p—f nonfaulty elements.

Now . the coﬁ;istency éf (H.IB) requires the existende of $§H and

2]
6313 satisfying’ (4.19). It should be noted that. although (4.18) gives
“an exact relationship it is A onlinear _function in "the unknown

variables. -Houever for a small tolerance region We can use the first-

order approximation and substantlally reduce the camputational effort--

v

required Hith §sz and 6°ij given by the first—order changes (u 18)

becomes



/
/ Y
. f : BH, f 3L,
A2 T, e 2 o dasy (zoat (3 . s —2d a6 )))
£ i i . 3¢ K. i ij Y k
j=7r : kel K i=1 kel k
. . € . i : £y
s L oofel, fe2, .., @ . .' - {4.20)
After Some‘ﬁanipulatiqhs and heglecting second-order terms we get’
b, = I By A0 BT fel, 42, Lo, m, (44-.21)
kel L .
. [ - .
where N
y £ .l D .
b!. = AIE.“-‘ I H!.‘j {c AIi Aij),'- L= f+1,f+2, cens m_ (4.22a)
BRER Tooi= .
and ! - - - ) .
'y £ Yy £ aH ., - £ 7
a = L HCE AIT 3—21) + I g“ii (I _&I? Eij) .
j=1 g kg1 %k g
. % = f+1, f+2, ..., m .  (4,22p)
In general, (4.21) is a complex system of linear equations.
After separating out the real and imaginary parts we have
. : '
T " ‘ :
Paq T Sy A2 = a1, 82, Loy m, - (4.23a)
T - v e T o
) _ . b12~~ PP ﬁi. L= {y}: f+2, ..., m, -- . (4.23b)
where ‘ ¥ - '
, t \ wee C
, Pag T Re (b))t . (4. 24a)
‘ bgg = Im"(bz) . . (ll..?ljb?_
. T '
Sg1 = Re [ag, a, ... g, 1 (4. 24c)
1 2 p-f i = . v
‘ SO T - : )
Syp = Im [as,.k TR P R (M.?Hd)
2 , p-f s . ..
. .
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fquations (4.23) ‘together - with .(4.1G) determine the consal stency in

‘question. In other words, if a. feasible sciution exists we consider

(4.6) is consistent and, simultaneously, we veri?y .the £ selected

elements as a ‘possible faulty set ., If no feasible Solu;ion exists we .

.can be sure that there exist one or more faulty elements besides those
selected ones as long. .as the first-order approximation is‘justifiable.

- In order® to find a meaningful feasiblefeolution: we propose a
) . .- » . .

.

1i“ear-PrégFEMhing formulation of the form e N )
: mi“i_mizel.f<ﬁé3"',. " . . (u.25a)
subject to.- ' . . : o .
oyq = ;C-L 2, - 1 E fol, £22, "---mm:..; _."(‘_4-2513)
'b£2'= 322 Aé- -. R < =rf+1‘ f+2, ..., m, . (4.25¢)
TR S8 e ielg R (4.250)

-

- where f(Ag) is a suitable li{near function of Ag )

It is to “be ?noted that instead of the linear programmlng

formulation a. ue1ghted-1east—squares—solution sim11ar to that considered_

| 1n-Sect10n 3.4 could be used. In this case f(Ag) is & weighted leastf ,

squares objective function in the parameters 4¢ and constraints (4 25d)

are not considered in the optimization problem. The solution obtained

is. then compared to the tolerance deviations described by. (4.25d). A

solutlon uith any canponent of” the camputed .Y} which s1gn1ficantly

exceeds its tolerance value indicates that equation -(N 6) is

[P,

-inconsistent under the tolgrance’ variations in the nonfauIty elements of

the subnetwork.

=
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t
“ 300 Sogfficients Computation -
The coefficients and sensitivities which appear iq“(4.20). (4.21)

and (4.22) are calculated using the adjeint network approach. Recalling

(4.10) we Have

~F )
: T M
. = ﬂHF E . {4.26)
. ~F '
v 2 4 )
Considering only the first f'columns of H:F. (“.265 becomes
i ‘
~ oo, T oM
= ?-FF !F . . . (4,27
‘F2 : ' :
-V

Iy

AH . . ) . . . i -~
. where !F corresponds to the first f components of EM. I eneral ,

2 - -

o is a'nonsinghLar squarefmétq;xf solving (4.27) for the ith measurement

voltage o we obtain

i : .
PRI TN £ AF
oM 1o 1 - 2
Vo= oA, I - 0 &N . . (4.28)
L =1 W 3=£,+1 1

_ Applying ¢ independent excitations to -the measurement ports of the

*

‘adjoint network we get

..‘
‘e



- - AF Y B - -
L | 1T 72T -
vi [E ] =y ] {r
' 2 F_2 €
vHe 't v 2T z
i ~ ~ ie2
z . . . {(4.29)
N . . . -
- ~F.f FLf
Mf 1°.T 2 . T -
Vi -[E 1 (-v ] J _Aif_
or, more compactly,
. y _ .
ALY | BENCE LY

where the superscripts 1 to f ;tand‘for the f independent‘excitations.
The matrix R is independent of i, Using the LHS of (u.29)‘for different
i al% the Eij.coefficients can be computed . .

The aeﬁsitivi;es of Eij relative té the gonfaulﬁy elements are
evaluated by computing the sensitivifies'of thefélément; of the matrix-R
w.r.t. the nonfaulty elements. These sensitivit;es. as well as the

}sen;itivities_af the HzJ éoeff;cients are directly obtained using the

adjoint network concept.

4.3.2 Calcuiation of Faulty Elemeﬁi Values

The follewing procedure could be folloued to compute the faulty

“elanent values. |

P (5) e Perturb the nonfaulty elements of the subnetwork_under test from
their nuninal values by the fea31ble tolerance vector Ag obtained
from the solutxon of, (4 25). -

“.ib)-‘_ Evaluatg the matrix_ﬁHF\of the perturbed subnetwork.
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= F .
(e Solve equaticon (4.8) far !‘1 and I 2. Note that (4.6) is an

—

overdetermined system 5f equations. A direct way for solving it
. is to choose independent equations from (4.8).
{d} =~ Simulate the peruurbed Subnetwork with the input excitations VH
JFT and 1‘2 and calculate the responses at the fault ports. and
- also the contrcolling currents of voltages if one or more of the f
faulty elements are controlled sources.

{e) From (<), (d) and Fié; 4,2 calduléte the changes in the faulty

parameters,

T EXAMPLES

“he examples conSidered in this section- were treated as networks'

-:-rather than as subnetworks by Bandler Biernacki and Salama (1981) In

' general ,B"Y network can be considered as “a subnetwork as long as the

'appropriate nodes are identified as external nodes.

~
1

We utilized the IMSL Library routine ZX3LP for solv1ng the Iinear
“brogramming problem. The Library is available as. a part of McMaster

University Computer Centre Library. L

'fu;u.itrLadder Subnetwork Example R

e
¥

Consider the ladder subnetwork shown in Fig 4, u with nominal

‘values of elanents’ Gy = 1 and tolerances’ ei = 0.05, -1. 2,“...; 5.
The subnetwork is connected td the rest of the network through nodes Ty

.:2P 3 and the- reference node. The voltages of these nodes and the

‘.currents incident to these nodes are aSSUmed to- be known. -In this
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‘example we have taken the subnetwork elements to be G1 = 1.02, 02 = D.S.
63 = 0.98, G, = 0.98 and G5 = 0.95. It is clear that element 'Ge is

faulty and all other elements are within tolerances.._The veltages of”

the external currents are given by Vi = 0.718 V, V., = 0,183 V and V

2 3 7

0,093 V, The currents‘incidentxto these . nodes from butside of the

| subnetwWwork are g;ven_by 11.= fA. I2—= 0 and 13 :_O. ‘We'heve applied thet‘
verification algorithm with a single fault hypothesis. |

_From Ithe available measuremeuts. two equality constraints are
constructed of -the form of (9.25b).' ‘Using the outimizatiop proelem
(4.25) aud taking f(Ag)rz EI lA¢J N He. Check' the -éingle _féuit
" hypothesis., .The linear progEE; gives a ‘feasible solution for the case. -
wheu G2 is con51dered faulty No feasible solution was found for the
caee ‘wnen any of the other ranaln1ng faulty elements ‘is consxdered

»

- faulty.

Carrying, out 'the'fprogeéure of éectien '4“3.5-'to ‘calculauef the

- faulty element value, we‘find‘thét G, e 0. 532. which is very close to. -
the actual value; The value dlffers hecause the feasible tolerancei

5\

vector found by the 1inear program is not the actual one.
NT?\f-'

ulu.z hctuve Eilter SUbnetwbrk‘Exauple . L 5' .
Cons;der “the act*ve filter shoun in Fig. M 5 with the nominal

" element values G, = G2 =1, C1 €y = 1 and K = 1.. Also, ue assume thatf
the amplifier has an output conductance Goy ; 1;_ hll éiéments are
assumed to-have design tolerances of ISS The subnetuork is assumed to

be connected to the rest of the network through nodes 1 2. 3 and the

- A ’ . Ches
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reference ncde. The voltages of these nodes together with the currents
input to the subnetwork though these nodes are assumed known.

In this example we considered G1 = 0.5, 62 = 1.02, C1 = 0.98, C

= 0.5 and for the amplifier K = 1.02 and Gout = 0.98. The changes in C

2

2

and G1 substahtially violate the design tolerances and they are assumed
to be faulty. '

We have applied the verifieation method to check whether or not
-G1 and G2 are faulty. We have three measurements (complex).‘therefore
we -have four equality constraints (4.25b, 4.25¢). Using the same
approach as in Example 4.4.7 the program gives a feasible solution
corresponding to the combination of G and C2 We have checked the.
remaining 3 combinations for the double fault hypothesis and no feasible

solution was detected. Followirg the procedure for canputing the faulty

elements we found GT = 0.5 and C2 = 0.488 which are:'close to the exact

—
[

talges.

4.5 ‘INTERNAL-SELFJIESTING METHQD A o o
Toe ﬁhin drawback of the technique presented in Section 4.2 {s

guessing the set F which contains’ ‘all faulty elements and has a number

of elements f(m. Utilizing the internal- self—testing condition (ISTC),

fpreSented in Section 3. 3. 1 we can identify fault-free regions and

. regions that contain the faulty elements.

© 451 General_Deseription

"Let us deeqnpose the subnetwork S into subnetworks Syr Sor weny
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Sk' Let_ci denote the'cardinality of the set of S; nodes .incident with

the other subnetworks, namely, ' ' ’ : .'A‘

. 0
c; = card (U N, n N,), ‘ {4.31)

- . . - -

Y]

where Ni and Nj represent, respectively, sets of nodes of subnetwo}‘RS_Si -

{'.

and Sj' Sbmg of the C; nodes could be measurement nodes. - Féf'thgur

subnetwork Si the four types of external - nodes Min'-His' M.  and Hia‘;

. . 1y
defined in Section 3.3.1 may exist and A . R e
- .o ‘ ; . ‘_ ) ': Putan
¢y = Mis unHiY,u Mia . : - FE£32)
The input-output equations for Si are glven:by : / -§§§,. o o
M ' . M, y
T 1 %7 B, H H. n - v @S
r a a B a Y s 4 6}_ r -, :'
M M) -
8 ! ~y B |-
I H H H - v
= ~MM o IMM O MM Iy ~ b T
B @& BB 8y B & __// L -
= . - - ’{u-33)
M : o A M : -
Ty Buw HBuw By By Yy L.
Y @ Y B Yy y3§
M . .
I's H H. . H VHG
— - L H ~ ~ ~ _J L. ~"
EMG o MMy MM S Ny

where t%y’gzg§bfipt i is dropped for the interest of simpler notations

“From (4.33) we have

M M ' M- Mo -
a1 L Hyw By oy ¥ By By || X
A _ ac a B - ay § (4.34)
M M Mol - M|
Y Y B 8 -
e I By o ||y H 3 B X L
ﬂMYHa Mg J L By w, " o
. i B . E . i i



which—‘is qui-te smilar‘ to (4# 6), with V Y and v 8 representing the ’

unknown faulty sources. If‘ m iy > mié ‘(4.311) is an cverdetermined system

- .

of. e’quation’s. A nec'essary condition for Si to be fault free is that

(4. 34)- is cons:.Stent -uhich is the 1nternal self—-testing ccndition of

’.. - [

Section 3 3 1 for Lmear network. .

Simllar' 0. Lanma 4 } a suff‘icie‘nt condition for .the subnetwork

could be obtained
4 5.2 Resuit 4, 2 (,fau].t !‘ree subnetuork) l

If‘ the syatem o‘f equations Ui 34) is consistent ‘and

Hiw .f-‘n M6 .
: Rank e @ (4. 35)
A By Byy

-"-f‘ér all x. where-x is any Jmternal node of‘ subnetwork Si' then there are’

.

v

no ‘fauJ_ty ‘.elements incident wi,th nodes X. H'H x _ ~H x- represent

transfer functions frcm a current source connected to node x to the

- - . -2

. -

nodes ¥ “and M T : : IR

- s - et

- If (u 34) is not a consistent system o!‘ equations then S1 is a

fault‘y subnetwor‘k-. 'I'he I‘ault verificaticn technique can be ,applied to

i
Instead pf (4 3ﬂ)mwe conaider '

locate— these i‘aﬁlts., Let S contain f t‘aults and My > 'miﬁ “+ £,

R . . P



§5

o
M_ - Yy T
a3 Bym  Byw B
a'y a § e H5
: = ) v (4.36)
M, ’
. lar H H H -
~ MM MM IMF
vy Txs o Ty v

where the added terms account for the faults inside the subnetwork. .

Since m +f (4.36) is overdetermined. A necessary condition for F

ia>m

is
to contain the faulty set is that (4.36) is consistent. The set F is

'unique if : ) : . ?
[ 2w By Mo M F 2 L w B Bwr
Rank e @ @ ® | > Rank ¢y h @ (4.37)
Bew B Bur By Baw Buw Hur
Yy v3§ Y Y - Yy ¥3§ Y

for all x, where x is any internal node not incident with the faulty set
F.
All matrices used in (u.33-u.37) are camputed using ncminal

-element values and can be stored before performing the test. ~ The™”

on- line computational effort will be only that of verifying the -

consistency of (4.34) or‘(u.36). which requines elementary operations-on

the matrices conaidered.

By combining the fault verification technique and internal-self— -
testing condition method we reduce the number of different combinations

to be considered since.the detected faulty‘region‘inside the subnetwork

1s usually much smaller than the subnetwor k (contains fewer -elements).

‘The pnocedure for' carrying ’out the internal—selﬁ—teqting—method is

r

sumarized as follows. . - . | oo ' . ,‘ ‘ ',‘
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4.5.3 Procedure for Locating Faulty Regions and/or Identifying
Faulty Elements

The application of ISTC starts by partitioning the‘fauity subnet-

work Si into two smaller subnetworks Sj' Sk such that Si =S, us . as

J k'
shown in Fig. 4.6, For at least one of these subnetworks and preferably
for both of them, mZa > mogs where £ = j;or k, as appropriate.

Utilizing (4,34) we can identify whether Sj cr S are fault-free

or not. We utilize the nonfaulty subnetwork to detenmlne the currents

. and voltages of the common nodes that are incident to it.

We contlnue the binary partitioning process in the identifled
faulty region until we cannot find a partition that satisfies the

cardinality condition, namely mi& > mzé. At this stage we utiiize
N L

(4 36) if p0551b e to identify the faulty elements inside the detectéd"

"aulty reglon.,

’ . - -

ansider the resistive subnetwork shown in Fig. 4.7 with the
nominal values of elements G, = 1, i = 1, 2- »<+» 20. ALl outside nodes.
{1, 2, 3, 6,.7, 10, 11, 12} constitute our measurement .nodes where bq&h .

voltages and currents are known and are given in Table 4.1. Node 12 is

taken as the reference ground node. Nodes 4, 5, 8 and 9 sFfe internal

nodes where no measurements can be ‘performed. Two faults are.assumed in

the Bubnetwork in elements 02 and 018' Ihe process of identifying the

faulty elements is swnnarized in the following steps, where .E defines the

set of faplty reglons}

ra
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Fig. 4'.6-_Dec6n.1'posit:ion of S i_nt.o two éubnetwprké.

P
= . - ' ’

.
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TABLE 4.1

VOI..TAGES\‘A.ND CURRENTS QF MEASUREMENT NODES
’ OF THE MESH SUBNETWORK

R S

Voltage " Current
(Volt) . (amp)

1 - 1.246 o 3-0.-_
2 o 0. 8675 o “- 0.0
3 "0.8222 S 00
6 .. o oo

1. s ;0'.'595'2“ S .'-Ao‘;o
10 o " _55.37140 S 6_:0‘5

11T 0.3896




y _— I T

[

Stage 1

.

S is decomposed as shown in Figs, 4.8 and 4.9 into_'S.[ and :82.

Moo= (7, 11}, M
a

n

g = (30120 Moo= (2], M, = (8} ¢
M, =11, 2, 6, 10}, M, = (3, 12, M
a . ) ; “

26 = (01, M, = (8},

_ ‘ 2y 2% L
Applyiﬁg condition (11.3’4).'51 was found to. 'be. fault free a’nd’ 52 was

4

found to be faulty and the followiﬁg currents and voltages wqfe

®. computed

S 2 o

I = - 13 = 9.227'A,
1 2 -

Ig .= - I3 =0.162 4,
1 L 2‘ _‘

. . ;12 = - I, = <0.389 &,
‘ vé = 0.5736 V.
Stage 2

S, 1s decaﬁp:sed-as shown _in Figs. 4.8 and 4,9 intd Sy and Sy.
M3u

Miq

3
1]

{.3| 8|'12.}| ’ MBB = {1_"10‘]‘| M‘3T,= {G}' H3
:I?.fs}, Myg = 11, 101, Myy-= (817 My = (5],

Applying'(u.au)‘$3 was.found to be faulty and 5, to be nonfaulty and the

8 = '{5}.l

‘following, currents-and voltages were computeq

-

1) = -3 2 0.3185A, - .-
L - o Ig =1 s 00017,
h B SR B -
Lig = ~17p =.-0-2754 A,
V. =

5 0.?071‘V.
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a

'Fig. 4.8 The treé of deéomposition for testing the
- resistive subnetwork. K C



Fig. 4.9 The subnetworks 'resulting dyring :esting:
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Stage 3
. i L
53'15 decomposed ‘as shown in Figs. 4.8 and 4.9 into S and Sg.
B T L WL "W ) N
T Mgy = (50 8 10, 12h Mg = Bh, Mg = (@), Mgy = ().

Applying (4. 34), SS and 56 were found faulty.

Stage 4 *’

. . - : . , . . , 3
36 is decomposed.'into S and Sg as shown in Figs. 4.8 and 4.9.
S5 1s not decomposable according to bur'éonditioh.

M

HTG = [1 Q, ‘12}-' ‘ H?B = {_G}| ] ‘ M_TY = . {G} v M?G = {9}\' -
Mo = (50 B1i Mg = W), Mg = (1, Hggos U 91

Using KCL we compute the following currents.

5. .- 18 - Lo.39u5 4,

T2 Iy =
8_'_' 7._" ’
Ig = - Ig's 0.335 4,

and t?us ﬁSY = {41, HTT ;7{9{_and HBY = {ufg}: .
. Applying (4.34) s8 was found to be nonfaulty and ST‘to be -faulty
ana_the following voltéggs were cdmﬁuted ‘
Yy

Yy

0.8579 Vv,

0.4731‘V. Y

:'.Stage'S

r

For both Sé and S, all external voltages and currents are known.
.Seaéphing'forja single fault in both of them we found'GZ'in 55 to be
faulty and equal 0.5 and G, in S, to be faulty and equal 0.5. Hence,

4
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[

We were able to locate the faults in § steps...

4 i -

4.6 .COHBINATORIAL ALGORITHM
For a subnetwork with P elements 1f f of‘ them are. faulty, the

number of different combinations that is con_‘sidered by the f‘ault
verif‘ication technique will be equal to (p) For large subnetworks (p"
-large) this number s enormous and the required computations will be
prohibitive ‘I‘he combinatorial algorithm (Starzyk and. Bandler 1982)
rutilizes the available.meesurements “to reduce the. number of.
‘combinat'ions ' As the mmberlot‘ measurements increases the nunber of‘

a

combinations con:-ndered Hlll decrease. " ; T

Similar to the internal self—testing technique f‘or fault

f -

'-_locatio'n. the combinatorial 'algorithm searches i‘or a f‘aulty set of w
elements that contains the faulty set F. | |

- It is eVident f‘rom the fault verification technique that 1f‘ wer
have m independent measurements then”the max imum number of f‘aulty"-'
elements we ‘can identify 13 equal to m-1. ‘. The - algorithm begins by
‘ridentifying the set’ R of cardinality w that contains the faulty set F
of cardinality f. <« m-1. The elanents of - this set could be identified
_usmg a technique Similar to that presented in Section b, 3, 2 and
consequently the faulty elements 'are. immedia'tely identified.
' Alternatively, instead oi‘ identif‘ying the t‘aulty elements 1mmediately '
the algorithm could be carried further ta reduce the cardinality of the
.set R until no - further reduction 18" possible (in this case the

r

";cardinality of the set equals f if the' faults are unioue). The
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'algorithm'is:snmmarized in the following steps. - .

4.6.1. Algorithm

5 Step 1

" Comment

Divide arbitrfarily the set of all subnetwork elements on k-

distinet SUbSetS.ni. ceny Qk' each" of them of cardinallty equal

to E((m—1)/f)i‘where E(x) denotes the.largest integerjnunben

smaller than or equal to x..

If p/E((Hh1)/f) is not 1nteger the. last subset will have less

. than. E((m-1)/f) elements. So k > p/E((m-T)/f)

' Step 2

Comments

'Exam1ne all comblnatlons of f subsets out of k- subsets using -

Lhe fault verificatlon technique.

(1) By d1v1d1ng the subnetwork elements lnto k subsets, every‘

T f subsets Hill constitute 2 set of cardinallty less than_
or equal to. m-1 Which can be checked by ‘the fault .
_verificaﬁion technique. \

(iiy Ihe number of ‘combinations con31dered in this step is

r

measurements increases “the number of subsets k decreases-

_and we have fewer.combinations.'

) Construct a setfR that corresponds to the I‘ subsets which

”contain the faulty elements. This set eonspitutes.the'first L

1denti{ied fault‘reglon

R, = U 8,
- ) H _iEI‘.i .

where the set ﬁ of cardinality W= f . E((m—i)/f) ‘and I = {11..

' 12; e f} desxgnates the f subsets.

equal to (f> which is smaller than (p) ‘As the number of "
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Comment Since W< m1oa camplete identification of the w elements is
'_p0531ble using the given m rneasurements and the fault
ferlficatlon technique could be ended at thlS poink..

Step 4~ Dlvxde the set K, arbitrarily on f+1 subsets and then check

Viwhlch cqmblnatlon of f subsets contain all faults. Update the

-

set R " by 1ncluding only those subsets.corresponding to

verified faults. If there is.no guch canblnation stop.

Comment At least E{ w/(f+1)) elements are eliminated from the set R

_ and Lthe cardinality of the -updated set R is equel w oz

W-E(w/(f+1)).
Step 5 If wif stop. Otherwise go to 4.

4, 6.2 Example of Applylng the Canblnatorlal Algorithm -

For the mesh circuit example considered .in the.. prev1ous section

-

we have p=20,m=7and £= 2. The algorithm is realized as follows:

v

J}. : k‘l.——ng— -3%,,§we teke*k =T.
| ECE SR

207 T We checkr(k) ="ﬂgl = 21 different comblnations to find the first

'fault reéion R with W o= 6

-

B 3;' . 'In every step of thls stage (Step 4 of the algorithm) we check 3

T /.‘-.l.
'-combinatlons obtaining successively the” following fault regions. j?

‘ & u.l 3. and Rz . ) - "_."_...j;,-_.. -
- In this example. therefore, “we “have" to cheek not more than 30

combinations 1nstead of . (2 J-_ 190 1f we apply the fault verlfication

| technlque direetly; )
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As we stated in the algorithm we divide the .elements _arbit}aril"y-' -
- . . S - -8
on K 3subsets, This -constitutes the main difference between this

approach and the internal-self-testing apprdéch, where we dividﬂé",'th

elements according to the topol;ag} of the subnétwork.

4.6.3 Computational Aspects -

. .-
- - -

In applying (4.7), Hyp should be of full column rank. Since-the
L AR g -
elements are arbitrarily chosen there is a good "probability that ﬂ,l;l“F

will not b~e of full ecolumn rank. In,this case we cannot

-

" apply w7 -

directly. _ v

A system of equations ‘ - . -

| %z b, - (4.38) ~

- e

Y

where A ism x f matrix (not necessary of Full column rank) and-m>f has

- -

a solution if b belongs to the column space of -A.~ The solqtio-ﬁ will be

unigque if 'rank %A equals f. To check the existance of a solution

(consistency of the system. of equ-ations) We transform the system o?»

e

equatiéns _by elem_entary row operations into the row—echelonllform - *
‘) [ _1‘ X 0. X X x ] 7 [ ]
0 0 1..x x ' o PR
. . . - . . y = . . (4.39) -

-0 . Iy | -
i - SR T i I .

where x indicate a non-zero value. If 92 = Q the system of equations

J

(4.38) 1is consistent. Even if matrix A is of full column rank the
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number of méfﬁematicéi 6peﬁatioﬁs (multiplications and - divisions) in
'checklng (4. 7) "is’ much hlgher ‘than by . transfonmlng the matrlx A to the

row—echelon form (see Starzyk and Bandler 1982) Also, (4.39) provides

T

. "us immedlately wlth a solutidn ¥ to, (u 38) For ill-conditioned systems

PR

.the method oﬂrﬂqpseholder for orthogonal transformations can be used to

-

reduce to zero the-sﬁpdiagonal elements of A.

4.7 -MATCHING-TECHNiqué FOR FAULT. VERIFICATION

.. Practically. xn any subneiwork there are some elements that are

‘7‘__-,- S fault prone. Fault modebs of these elements are usually known' and in

. . 'the directory approach they are used to construct the dictlonary. We

-

.. . exploit thlS to our advantage by comput ing using the measured voltages

~and the fault models

;,:. . wWhere ﬁﬂa i? cd?stnycted using the: jth fault model and k different

<.

_o  faulty cas®s are considered.  Utilizing the nearest neighbour rule

s . o~

o (Varghéhe.et al. 1979), the exact faulty case is assumed to be the one

et " that has the minimum distanceld‘j from the actual measured'gn. where
S E A t T
. . d‘j =11 It . (B.41)

LT - X - i

The on- -1line implementation of the method needs matrix by vector

-

: multiplication to compute EHF since Hﬂg could be’ ccmputed off-line

Jo- : .
using the fault model and Btored for the on-line use. "If the number of

0

. —possible faulty cases, k, 1is 3mall,. e.g., by considering catastrophic

=1, 2, ..., k, C(4.40)
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. . A
faults only, the method could be very attractive for practical

implementation (Salama, Starzyk and Bandler 1983).'

L. 8 CONCLUDING REMARKS

-

In this chapter we presented a,punper of techﬁigues for locatiﬁg
faults inside subnetworks. Except for the matching technique all other
teqhniques éheck the consistene; of certain algebraic relations that are
" invariant on the faulty set. We investigated the effect of tolerances
on the nonfaulty elements ozﬂ;hé consistency of the-algebraic.equétions.
A linear progrémming formulation for checking ;he consistency of the
equations was introduced: ’ | -

The fault verification technique as presented by Biernacki and

Bandler . (1981) considersavery large number of combinations. " The

»

internal-self-testing condition is utilized in cutting down the number .

of combinations. The technique locates faulty regions. It takes

advantage of the topology of the subnetwork to perform the required -

partition, .

Tﬁé combinatorial algorithm searches for the faulty eiements in a
very efficggat. way. The algorithm exploits all meésurements. which
should be lgrger thanfthe number of faults. The reduction of the system
of equations under consideration to the fowﬂechelon form permits
arbitrary choice of parﬁitions as devised in the -algorithm. = The

algorithm i3 not topoiogy oriented and may be useful when the

. implementation of the ISTC technique cannot be continued.

411 the techniques could be applied to nonlinear networks, but



. 110

the matching technique is the most suitable. A-nonlinéar network will
require a nonlinear equation solver. In the'matqhing technique the
number of faulty cases is usuaily low and the utilization of on-line

parallel processing speeds up the required-computations.

-



FAULT LOCATION INSTDE FAULTY SUBNETWORKS—
. APPROXIMATE METHOD

s INTRODUCTION

7 In this chapter Qg htilize an estimation criterion to infer'the
most likely faulty elements inside a faulty subnetwork Practically.
© the. faulty components are very Few. and the relative change in their
;‘valces is 51gnificantly larger than- in .the. nonfaulty 'onesl'(Herrill
RETC I -

'ffhre We use the least one—objective function in estimating the
<faulty elements in any of the detected faulty subnetworks. Ihe nunberh
“of 1ndependent measurements is less than the total--numberﬁ-of‘ the'
:components of'the-subnetwork '-fhe 81'norm identifies the most 1ikely"—
faulty elements according to the aforementioned practical observations .

Two -cases are considered in this chapter ’ The first con31ders

»the 31tuation when the measurements are obtained using a single test'—

hvector (Bandler. Biernacki and Salama 1981)' The second utilizes

multiple test vectors to obtain the measurements (Bandler, Biernacki

v
¥

: Salama and Starzyk 1982)
'15.2 ' FAULT ISOLATION USING THE £ NORM WITH A SINGLE TES VECTOR
' . Let us aasuue that for the subnetwork S (Fig u.1) the voltages

-EM and the currents IH are both known : The chang@ in any subnetwork

' camponent i's represented by either a current so . y 'auvoltage source,

,1ii . o
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3

as-explained: in Section §.2.1.
We consider-all- the subnetwork elements as different .from their
naminal values. Most' of them have changes within their tolerances'and a

few of ‘theml.have changes far from assigned tolerances; Recalling

equation (4.6) wWe have

. . 7 "-- .. Hé H—" . _' l- ‘7 L
L Aty -Emf’_ ‘EHF,__ o _(s.n

Where ' s represents the changes in: the subnetwork elaments and the set F

is of cardinallty equal to the total number of subnetwork elements p.

" The matrices HMM and EMF are computed using the nominal component values

.of ‘the subnetwork. o : -l | _
Every component of. 3 has the form‘.

S Gy 8¢y = SLJ *+ ] S12'

Vg i.a 1, 2.‘.... p,-. - (5.2

‘Wwhere al = O R or'-1 dependlng on the component type, u is the angular.

frequency. A¢l ts the change in component value is the actual

.“i- .
controlling voltage or current for' the oomponent as shown' in Fig. MZE"
( and J is the compler aouare root‘of =-1. The symbo_l.si repreSentaha
"vpltage orta qurrent source, si1ﬂand 512 are itaﬂreal ano,imagiﬁary
parta;reapectivély. Normally, vi is unknown-unleas a‘dlrect heaSurementl:

of its'value has been carried 'out.’

Equation 5.1 13 an underdetermined system of - linear equatlons in "

kS

the parameters_g. Taking advantage of the dependency of 5 on the

.

changes in the parameters A4 we propose to assume that s deflnes the

error parameters, To estimate the 'value of- the components of 38- we
construct the follouing linear optimization problem.for 1inear‘reaiative

'
LUy
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' subnetworks.
P S
Minimize © Z |s;| .. (5.3a)
L~1- C
subjéct to - e
| aI' = H o S (5.3b)
ad TMF -:u. . . ! o -

Eor linear frequency dependent networks the e?rdr parametérs 3

' are, in general. cumplex and formulatlon (5.3) should be modified by g

-redefinlng our error parameters. ‘ —Considec the Epedimensiqnal real'
© vector.
‘g'éf ~T v R . ' . (5.4a). -
where ~ - - .
' A ' AL o S : )
3, = Re [g] and 85 = Im {s]. R . (5.upY .

[ . . 1

Hence, the optimization. problem can.be stated as follows. -
2 - S : R
Hinimize 2 tegl - . . (5.5a)
i = - .

subject to the repl.lineér equality constraints ' ' R

retar™1] - [Reti,)  -In (]

i , _ (5.5b).
Iﬁ[q; It |ImlBypl -~ RelH o

Hyy ]

,

The optlmlzation problems (5. 3) and. (5 5) can. be easily converﬁed to the

regular linear programming form by an appropriate transfcrmation of the

: variables.

The least-one objective function ‘tends to satisfy the equality
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aonstrlaints {5. 1)‘ with £h§ minimum number of .arror paramaters different
. _fr‘cm zero. This is consistent with the assu:uption that ‘a f‘eu element.sj
are faulty inside the subnetuork

' Al,thqugh tha proposed optimi_zatioa 'prob.lem does not ‘accoun.t for
chain faul‘ts,. fault correlation or a knowledge of i;ha most.‘_li'kely areas
“of fauli; , this aan be don'e 'by..using appropriate' weighti-ng f‘actors,.
 based .on experieuce and knowledge of the particular UUT
The result of the optimization problem provides us with e. "i'hél
-‘subnetwork is then simulated using ‘the known input currents to the
‘subnetwork 2‘ and e to ‘find it i =1, 2..-.’..; p. ‘The change in every
: aubnetlwl‘o‘rk component cap 'b.e easily ‘co_uiputed'_ uaing‘ (_5.2)'.' ’ 'C'o.mpa'rin‘g the
charige_ in 'evr_eryicomponlant.v u-ith its 'allpued ﬁolérande i:l'_ie. mo.st- likely
f‘a-ulty c‘cmponents COuld be i-solated. o | , .‘

It should be noted that the change in' the element value‘-ia -

-obtained by the complex division -

'. : si'((_(jm)“i 2 E IR N 2

i~
complex quantity may be obtained.

and since both'si, and. v, . are approximations to the actual values, a
'I‘o overcome this dif‘f‘iculty He may either take A¢i as the

_abSoiute value or the.real value of the quant.ity obtained in (5.6). In

'
e

. .both cases an approximate value of the true 84, 1s obtained. This value .

is then used to identify the faulty elements. -
The formulations ‘(5.3) and (5.5) do not -destroy phe' 1_in'e'ar .
.-relatien in (5.1) - and they do not gréate more unknowna, since the

-/
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' unknown network response'vi is included_in the error parameter (5.2).

But. at the same time. for nonresistive networks, two error parameters
are defined for every component which canhot be e331ly correlated -and
this leads torobtainingacomplex gquantity in (5,6)." These formplationsl

are only valid- for a single excitation at any time since any new'

excitation will add a new set of error parameters. .

5.3 FAULT ISOLATION USING THE £, NORM wITH'HULTIPLe TEST VECTORS

Practically. we would . like to have (5.1) less underdetermined
This is achieved if we” increase the nunber of. measurements by excxting
"the network more than once: u31ng different excitations.'e g a

different frequency or dlfferent 1nput signals to: the netuork - We then

.consider Aoi as the error paraneter.*

Equation (5 1) can be written as

a1 " Hur By vy N LN
wher e S S - . : :
| © Yy g.diag {v1, uaf‘..., up}. o ,l. ) (5.8)
g, 8 diag_ e DS WL '...r.‘_(Jm“p‘}. : (5.9)
‘Ag [A¢1 by v ne A¢ J | _ _ -. (5 10)

. To preserve the linear system (5.1) the subnetuork responses ui.'
i=1,2, ..., p have to be known.” Hence. they are initially aseumed.

Conceptdally. this is a linearization of the nonlinear functions that

- relate I to g. as we discuss in Section 5 3. 2 An'iterative procedure

updates -the values vi'- 1"‘: 1,72, o., p and at’ the same t:.me computes'.

LS

the changes in ‘the component values.
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For k different excitations applied to the féul;y network, we

consider, instead of (5.3) the following optimization problem.

) . P . S
Minimize I 1A¢i/¢QI : - (5.11a)
. 1 . )
Ca¢ T i= ' ,
subject to
TN R 1 1]
Al MY Y
M2 2. 2 2 )
41 Bp | | |
T N Y (5.1
’ . ) K k- k
e R I TR

where the superscripts 1'to k refer to the dlfferent k excitations. The
nermalization w.r.t. ¢i in (5. TIa) 1s needed when the nomlnal values ‘of

the canponents are varied over a wlde range. Forqulation (5.11) can be

modified by adding the inequality constraxnts

A¢i >— éjx_"j'.= 1; 2‘ LA ] P' . ’ (5‘11C) )
where ¢i is the value of the network element after being updated.
Initially, ¢i is equal to the nominal’ design value ¢ " These

L

~constraints prevent nonphysical solutions.

We utilize the measurements’ together with an~updated medel of the.

Mg 2 : ’
- subnetwork to campute AT HHF and ~M' 221, 2,..., K. The_rqsponses

Vo, Loz 1,.'2.

i eeey k, 1 =1, 2, ..., p are functions oﬁ-phe’hodal

voltages. We update only the values of the internal node voltages since
the external node voltages are known from méasurementas.

The number of equations in (5.11) r = tm is less than the nﬁﬁber

¢
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of imknowns p. In every iteration, the linear. program wiil find a
solution that lies in a subspace Spanned'by at most r components of 4d.
All other components are set to zero.

The iterative process- for computing the changes in element values

can be summarized in the following Steps.

5.3.1 Algorithm;)
Step 1 Usiné the nominal " component. vel1§3; construct the matrices
. required by (5.11).‘ | .-
._SteE 2 - Solve the .1inEar optimiéatioh peleeh (5:11) end -update the
A eubnetwork edmeonent values} .
Step 3 If there 1efno a;}reciable change'in;Ehe camponehﬁ-veluee, stop.
Step 4 Recampute the metrices required by '(5.11) Iueiné the-‘uedated
Subnetwork. Return to step 2.’ | | L
1‘&
| 5.3.2 Convergence-Probereles of the:Hethed ' -
Recalling {(3.5), the'.inpet-egtput relatibnl}eﬁ aA sebnetwork_ia'
Eiven by “ ' - . . o o
= Mo, g;. : S f(s 12)
T'The changes A$ frqm naminal values aee not known: Utilizing a firat—

te

order approximation we have. using the Taylor series expansion,’

LT 'Ag“.é'g_ -1 Bay S (5.13)
wﬁere ’ | | |
ah” ahH aEH'- . - . :
ST e N C I TS
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System (5.13) is underdetermined. For k different excitations (5.13).

can be written as

A" B!

a2 52 |

A N D Y ‘ . (5115Y
co a8
. L~ 1

.

Equation (5.15) is equivalent to (5.11b).  Since iS.lS) is s?iil;aﬁ
underdetermined syétem of equations it has many solutiohs Since iny r’
°components of Ag are. allowed to vary fram zero in every solution of;
(5.11}, -we" are 1mp1ement1ng a restricted Newton iteration solv1ng the,
nonlinear equations (5 12) For a startlng p01nt that 15 close enough
to the final solution Newton 3 method is guaranteed to convergeiw
quadratically. The. ' naninal camponent -values -define a ggood starting'
p01nt 31nce just a few elements change eignificantly from nominal

From (5 12) 1t is clear that the technique presented in thisr
section is equally applicable to nonli?ear networks.: This is malnly due,'

to the iterative nature of the procedure used’ in finding the changes in“

-the subnetwork elements

4

5.4 EXAMPLES

“Similar to the examples of Section H~¢/ﬂznﬁﬁexam$res con31dered .

in this section were treated as hetworks rather than as subnetworks by'

Bandler. Biernacki Salama and Starzyk (1982) We consider.them here'as_'

subnetworks with the’ apprqpriate currents and voltages pffeiternal nodes
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rare gssumed known.

5.4.1 Mesh Subnetwork Example

Consider the resistive Isubnéthork shown in Fig. 4.7 with the
nominal values of elements Gi-: T and tolerances e; = *0.05, i=1, 2,
--»y 20, This subnetuork'ﬁas been considered earlier in Section 4.5,3.
All outside nodes are assumed to-be accessible with node 12 taken as the
" reference node. 'Noeea 4, s, 8.and 9. are esShmed internal , where no

measurements can be performed. .

Two faults are assumed in the subnetworka in elements G. and G

2. 18'.
For Case 1, we applied the fault isolation method with a single
excitatien. We solved the optimization problem (5.3) for the efror
parameters é. .Then, the changes in the component valee; ﬁeneveomputed.
For Case 2, we 'ccnaidered two excitations applied "sequentially. We
constructed optimizetioﬁ preblem (5.11) and applied 3 iteratiens af our
iterative procedu}e. See Table 5.1 foe the results. ' .

Both methods have identified the actual faulty elements, but in
Case 2 the estimated changes in the faulty elements approach’ their true
values. Some of the changes in the nonfaulty components have slightly‘
exceeded their allowed tolerances but these changes are small so we can
3till consider them nonfaulty. ' _ -
' Subroutine»2x3LP of the IMSL Library was utilized in s;ﬁving the "+

linear programming problems,
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- ¥

TABLE 5.1

-

RESULTS FOR .THE MESH SUBNETWORK EXAMPLE .-

Percedtage Deviation

Element Neminal Value Actual Value
|  Actual  Case 1 Case 2

G, 1.0 0.98 =2.0 Q9.155 -2.20 °
G, 1.0 0.50 ~50.0 -50.42  -47.86
Gy 1.0 1.04 4.0 0.0 8.60
G, 1.0 0.97 - $-3.0° 0.0 -2.46
Gg 1.0 0.95 . -5.0 0.0 ~2.36 -
G 1.0 $0.99 . 1.0 0.0 -0. 14
G, 1.0 1.02 2.0 0.0 . - -2..49
Gg ‘1fq _ AL 5.0 0.0 0.39
Gg 1.0 1.02 . 2.0 0.0 0.8y
Gio 1.0 0.98 L =2.0 0.0* -1.28
Gy, 1.0 1.04, b0 . 0.0 0.0
Gys 1.0 - 101 1.0 . =3.06 1.55.
G,z 1.0 0,99 -t0. 0.0 S 0.0
Gy 1.0 0.98 -2.0 0.0 o 2.u7
G5 170 . 1,02 2.0 0.0 1.5%
Gyg 1.0 0.96 =0T 2707 ~6.69
Gy - 1.0 1,02 240 0.0 - 1.5
Gig 1.0 0.50 - -50.0° ~40.1 - 4690
Gig. 1.0 0.98 =2.0 -9. 21 -
Gy S0 0.96 -4;0.0 ° -6.81 =614

. o T .

-3.38 -




'121_

5.4, 2 Amplrfler Subnetwork Example
Con31dén\the one stage transzstor ampllfier of Fig 5.1 with its
‘equivalent circuit in Fig. 5.:2. s example was originally considered
by Chen and Saeks (1979) The nominal component values together with
the actual values are listed in Table 5 2. ‘Three faults are assumed 1n,'(
-the subnetwork. namely. c‘1. r and’ gm._ with all' other el.eo'en‘t_.a;within -
their relatine tolerances. We first considered 'optini;otion'iprohiem_
{(5.5). A single current excitation is‘applied-etrnode.1 offengolar
frequency 0.01 red/qec, Voltageq/measurements ‘arei otmdiatéd‘ at _the
‘assumed acceSSible nodes.], 2; ﬁ. 5 and 6. Forhootinizationrproblem‘
'(5.11)' we exclted the network twice at hode 1' Uoing: two different;rl'
.frequencies.. namely, 0.01 rad/sec and 0. 0075 rad/sec, " and noltége:..
- measurements are obtained from the same ac{e351ble nodes. .fherr:sulto 525
of both cases are glyen in Table 5.2, Convergence in Casei2 occurrat::
after 5 iterations. It is: cleai that the results of Case .2 are much
sharper and theY 1dent1fy exactly the faulty elements The solutlons of o
both optimization problems are obtained using the linear programming
" routine 2 Zx3LP . \ ‘ ' '_ R
| 'QLT{-J -‘ ) ‘ _. :..‘?; ; 1. | ?{3
5.5  CONCLUSTgNS T ' ”\
. We have oresented a method for approiimate fault-isolation The '-i-f'l':'l
method utilizes the properties of . the 31 ‘norm in isolating the most .
likely subnetwork components which have exhlblted large changes in their fﬁ"
values, | R ' '

» ' - = , .
SR L % . o
For a single test vector the solutidn 'is obtained by Solving a.

‘o . B . . A 1
' . P - : -
| . . . : - . s - .
’ . .
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TABLE 5.2 ,

) /-**\ . ’
- RESULTS FOR THE AMPLIFIER SUBNETWORK wELE 2\’) .
. ‘ '| )
Pty

: . Pe}cen 'ge 5éviation
Element Naninag.Value Actual Value.
¢ B .‘Actual‘;\h. Case 1 ' Case 2
Ny Vs .
5 7
c 20.0 10.0 -50.0 ~48.68 -50.0
1 — €

Ry 75.0 76.92 | ~ 2.56 0.0 ——~— -3.04
r. 10.0 10.2 - 2.00 0.0 -2.06
re 40,0 66.67 66.66 -12.93 53.63
c. 15.0 4.0 . 6. 66 0.0 - 6.62
cu . 25.0 - 24,0 -4.00 -0.32 . . -4,12
8y 10.0 5.0 -50. 00 0.0% Y 46,21
R, 10.0 9.8 -2.00 -1.36 2.55
c, 20.0 19.0 -5.00 -0.65 -5.59.
R, 20.0 20.6 3.0 1.43 Co-3.a
Ry 30.0 . 29.4 -1.96 4,97 1.37
c, 10.0 - 9.5 - -5.00 0.0 -5.01
R, 10.0 ‘ 10.05 0.5 1,43 -0.50

A faulty element has not been detected.

- .\\' - ,
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linear.programmfgg problem and it ‘'does not destroy the linear relation-
ship‘ between 'ghe de#iations in‘1neaéureménts and the .defined error
parameters. - : . .

For multible test vectors, fhe formulatidn of the'ﬁrpblem
necessitates the:&pplication of an i£erative proéedﬁre for its solutien.
.A linear programming problem is solved in every iteration to prov1de us
‘Hlth the most ltkely changes in the. subnetwork components. Linear
programming is very effigient and, from our experience with the:méthod.
- the iterative procedure conve;ges rapidly.

With multlple test vectors the approximate method provxded
sharper results. This i3 easily seen fran the results of the examples
considered in this chapter

“The ap rox1mate method cou%l‘be used by itself for fault
.isolation} or' we could verify the results obtained by applying 'thé

deterministic mefhod; of Chapter 4, v
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FORMULATION AND TECHNIOUES FOR THE

POSTPRODUCTTON TUNING PROBLEM

6.1 INTRODUCTION

Postproduction tuning is often essential in the manufagturing'of
electrical circuits, Toler‘ances' on the circuit components, parasitic
effects, and uncertainties in the circuit model cause déviat'ions.in the
manufactured circuit performance and violation of thé;_ design
specifications may result. Therefore, postproduction tuning is included
- in the final __s'tage:s of the préduction process _to readjust the netw:ork
per{ormance in an effort to meet the specificationé (Bandler - and
Birernacki 1980& | : * &

In "speci._fyin'g a procedure for the computer-aided tuning of a
circuit we: are faced with a ‘number of prob;‘e:'ns to be sclved. Among
-t.hese-prléblems é}'e the'cpoice of the tunab};e paranietet-'s. the selection
'of samples of the responses (e.g. frequency pointa) and the tuning
algorithn itself. | |
| This chapter deals with some important aspects. that are reléted
to the. aforementioned problems. ’. First.i we -dbéasider the lrelevant
fundsmental definitions and concept‘.s.. We next define error functions

and their deriv‘ation from the design specifications. In practice, one

of two c\Iasaes of methods for tuning is u.suallyt-employed. ‘He"devote

Section 6.4 to the functional tuning approach, ‘Wwhere a number of

-algorithms are reviewed. In Section 6.5 we discuss 'determinis_tic tuning

126 ’ N . ‘ .
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algorithms. We then discuss some of the techniques for the—seiﬁstion of

both the tunable parameters and the tuning frequencies.

-

6.2 FUNDAMENTAL CONCEPTS AND DEFINITIONS
The manufactured cirecuit iskéharacterized by the actual values of

the p design parameters
as . a a 3 a T T
$ = [91 b eee ap] | SIS

and the parasxtlc effects associated with the groduced circuit,which can

be represented by the additxonal variables (Bandler.and Salama 1983)

- A T |
) ) - f‘ 2 ='[¢p+1 ¢p+2 e ¢p+d] - . (6.3

Eor convenience, we assume that nominal or ideal values for the

parasitic variables are zeros. . /////*‘
The parameters ga for zero tuning can‘%f fxpressed as
o ' a :
FAEY +E{E€ , ' (6.3)
L0, - - N\ W
where 4 1is the nominal designparametef\xalues.
. , .
E 4 diag [51, Egr eum Ep}. (6.4)

]

-ﬁl;here e, is the tolerance associated with ¢, and HZ e R . R defines

Pe He

a set of mul?ipliers determined from realistic situations of the
tolerance spread (Bandler, Liu and Tromp 1976a); For‘example.

S I I hep &1 ie Ib, (6.5)

where
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I¢ = {1, 2, , P}. ’ {(6.6)
Simiiarly, we may express‘gd as
2428 15 | (6.7)
where / . ‘
i -A , ‘
i Q = diag {6.[, 62| -y 6d}0

where §. is the expected deviation of %

(6.8)
4 ffom nominal, j € Id' where
A
Ig = 11, 2, ., d}
and Kg E Ru

(6.9)
(Bandler, Liu and Troad 1976b). R may be of the form °

8 : §
RO | 0<u, <1, ie Ly (6. 10)

g - ke T = Mep 2l 4" -

-

The region of uncertainty Had 1s a set.of points defined by

¢i+si Mego -"I-_<_‘u€i__<_1.'for i'erI .
= = ‘ ‘ ’ . ) ’ -1
¢p+j Gj Mg j 0 < Mg <1, for je Id} (6.11)

which is a convex regular:polytope of p+d dimensions with sides of
lengt} L ie I, a
g w§ . Ly

o .
h+.ei “ei' Meyq € {-1, 1}, i ¢ I¢. and

The number of points in R, is 2P*9. Let each of these points be indexed
by i € ig. where
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L4

1% g1, 2, ..., 2Py, (6.13)

v

A subset of the design parameters is often used for tuning. Let

»
the k funable parameters be indexed by I, and be given by

A T .
2 {o, o vee b ] : (6. 143,
2t 11 12 1k .

The remaining nontunable parameters are given by
T

A
gr = [\bl q;i e ¢i 1. “{6.15)
K1 k+e p
The objective of the tuning assigmment problem is to find the
required changes in the tunable parameters,'ﬁamely D such that the
manufacture&\pircuit satisfies the design specifications.

.4

6.3 DESIGN SPECIFICATIONS AND ERROR FU&CTIONS
) In electrical circuit design more than one response function
imight have to meet given specifications. As an éiaﬁple. a circuit can
be designed to meet.desire& épecificationg inAbbth the frequency and the
time domains (HEndler and Rizk 1979). In this case we havemore than
y . " .
one independent variable y, namely, w1. wz; ceay wA. where A 13 the
nunber of these iﬁdependent variables. Accprdingly.-we.have A response
A . T 1, g2 2 Ao, A
functions F (g, ¢ ), F (g, v7), ..., F*($.¢"). - In general, we can have
' el 1. L2, 2 LA, AL ‘
A upper specifications Su(w ), Su(w ) R Su(w ) and A lower
. 1, 1, «2,,2. A, A . '
specifications Sz(w Y, Sl(w ) I Sz(w ). The error functions will be

* of the form

8

J
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eate. v =l h Pl o h - sigin,

3= 1,2, e, (6.16a)
ei(g. wJ) = Hg(wjl (Fj(g. wj) - Sg(wJ)).
j = 1' 2' LB B | A' (6-16b)

where -wi(wj} and Hg(wj) are positive weighting functions and the

subscripts u and & refer to upper and lower specifications,

-respectively.

In a typical thning assigrment problem the independent variable

is the frequency and we are interested in the output-response of the

circuit at a discrete set of frequency points, Without 1loss of
generality, we consider the following error functions @
A . C
eui(g) = ea(g. wi) =W (Ei(g) - Sui)' ie Iu' {6.17a)
i
A . s
eli(g} = 82(3' wi).z LA (Fi(i) - Szi). ie IZ' {6.17b)
where - - -
R ) .
Fig) = Fgg. wi). . (6.17c)
Iu and Il are indék.sets. not necessarily disjeint. Let
e ., Je I o
f%{.uJ 4 ie1, (6.18)
1 - kel e
“ik’ e
. where
I 20,2, ....n), 5 (6. 19a)
u" -l ’ ,.." u ' &f -
4 : L : )
I 201, 2 wtevmpd, - . (6.19b)
201, 2, ..., m), (6. 19¢)
and m = Ay + n,. The m functions ‘

f= [fT f2 RN fm] ’ : (6.20)



characterize the circuit performance, which is monitored during the
tuning process. If we let

4

Me(9) = max  f£.(3), - (6.27)

iEIc

th;ﬁ the sign of Mg indicates whether_the_;pecifications are satisfied
or violated. The objective of a zero tolerance, ;ékal_design is usually
to m%nimize Mo(p) wor.t. go. whereas the po;tgro@#ctggn tuning prbblem
~is to minimize Hf(g) w.r.t. ¢, Tfor a givéé”broducfion outcome uﬁose
actual para?eter values and par;sitic effects may not be known
precigely. - li ' v

Since the changes in the tunable parameters are predlcted to be1

small, the first order approxlmathn is utilized in most tuning
algorithm;wto estimate the changes in the functions £ aga-to provide the

' .The fiﬁéﬁ-order‘éhanéé of the functions f

Sxe . oL (6.22)

where S deffpes the sensitiviﬁy matrix which is éomputed for a suitable
" network ;odei (g:. g:. g;). X is.ﬁhe vectpr'of the-relétive changes in.
the tunable paraﬁétgrs. |
Sensitivity analysis and optimizﬁtion play an imporfanﬁ role in
constructing "appropriate postproduction tuning alggritﬁms. : In the
next two sections Qe consider‘ function317 and deterministié tuning

methods. : : -
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: 3
6.4 FUNCTIONAL TUNING APPROACH

Functional tuning is hhe tréditi;nél way df tuning_eléctrical
circuits. After ﬁanufacturihé and assembling, the circuit perform;nce
speCif;cations' are checked. . 'If tuning 1is nédessaf& é sequenée of
tunable ;aramete}_addeUneﬁts is,garried out_ﬁntil ﬁhe specificatiops
are met. In functional tuning methods the actual network -element values
are génerally assuhed' unknown, for example it may be .diffigult to

measure or identify the actual circuit element values.

-

6.4.1 Traditional Functional Tuning Methods -

Functional tuning is obviqusly‘ suitéble when the 'seqsitivity
. matrix 5 is diagonal, as has been pointed ouf” by Moschytz (1975. 1978).
For every funection fi thgre is a separate:tunable parameter for its
adjustment. The tuning process is nbniterativ;. very fast‘and does not
need a skillful operétor. ‘Norhally, S is not diagonal, But if thé
tunable parameters are chosen appropriately it can be arrénged to be
triangular or diagonally dominant. In thié case the tuning process is
sarried out.in a certain specified sequence go reduce the {terative

-+

ad justment of the tuning elements.

-

The reported success of this method is confined to small and
simple ecircuits, parkicularly when the circuit design is chosen with_

tuning in mind.

6.4.2 Matrix Inversion Hethod

Shockley and Morris (1973) proposed the'evaiuatién of the tuniné
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.amounts by the direct inversion of the sen31t1v1ty matr1x S. In thls

case the number of tunable parameters is equal to the number of

functions fi‘ i.e., m=k. From (6.22) the tunable amounts are given by

x =57 af, (6.23) |
where

ar b of (6.28)
EO represents the nominal values of the functions ziand £a 'theAgftual

values as obtained from response measurements.

The nominal sen31t1vit1es are used in constructlng S The method

is" simple and its on—llne implementation requlres the pre—storage of.

S, e g. as LU factors.

When the changes ih the manufactured élements aré; not small

'enougn to permit the use of the differential Sensitivities th% method
may not converge and is not reliable“(Shock;ey et al. 1973).

B} | -

6.4.3 Least-%quares Méthod

A number of

uthors (Antréich‘et al.v 1975 , Adams et al. 1975

L4

and Miller 1976 suggested the use of the least-squares sol@tion of

(6.22) to find the values of the tunable parameters. The number of

tunable parameter is'assumed less than m. The tunable amounts are

1

given by J=

. . x = st 517 sTar L (6.25)

‘and Af is as defined in (6.24). The sensitivity matrix S is assumed of

full column rank. The method is based on the assunption that functions .

»~



. as the simulated network sensitivities ‘was developed by Bandler. Rizk

. 1s discusse

134"

oy i =1, 2, ..l. m are almost linear in the tunable parameters A

1

prior lnvestlgation of the linearity of ‘the functions fi is usually.

required to guarantee the success of the method.

The method 1s-usually applied iteratively (Adams_et al.  1975)

-and is reported to have fast convergence. The matrix S 1is camputed

uszng the nominal parameter values and stored before the actual
1mp1ementation of the tuning process The method -is very'simple and
suitable for on—line implementation.

Garrlson et al. (197”) pointed out that the solution of (6.25) -

" often requ1res an adjusmment which is infeasible either in magnitude or -

tdirection.~ The least—squares solution should then be - constrained and'

7

gradlentfpearch techniques employed to detenmine the best constrained}

solution

6.4.48 L

and Salama (1981) ” The method i3 based “on formulating ‘the tuning.

v

process as. a 1inear minimax optimization problem.

The netwark sensitivities -are evaluated using g good approximate

model of the circuit ~ .They are’ usually later updated durfng the tuning

‘process using the Broyden (1965) rank One updating formula.

The ‘on- line implementation of the method requires more computing

fac111ties han thoseneeded by theqaforementioned methods. The method

in more detall in Section 7. . f v

v N . (.

4 .




6.4.5 Modelling Technique for Functional Tuning_

T\The actual network response is assumed io be given by

Fa(gi. oo 63) = FO A(gg. gg. 0) + Fd(Ag&:. B e 830 (6.26)

\,

& .
where a refersp to the actual values. 0 to the nomin‘aljnd d to the

deviational effect due to any changes in parameters of the network,

Fd is modeled by a transfer function. The coefficients of the?

T.F. are obtained by utilizing the nominal response and the measured
actual response. The model is later - used for finding the funable

amounts by optimization. The approach is detailed in Section 7.3. \

.

.

h—6.4.6 Quadratic Approximation Technique

Tromp (1982b), proposed a method that depends on successive

quadratic approximation of an objective functlon U(g). which could be ‘a

e

function of f i = 1. 2y eaey M. e quadratic approximation is

obtained by interpolation (Bandler and Abdel-Malek 19783,

iy
Th'-tuning prgblem is formulated as : .

1 winimize Q¥(g,) (6.27a) .

ft- oo

subject to )~ ’ | Y _

Lo, Sy, (6.2Tv)

’ : { - N
where QJ(Q) is the jth,guadratic approximation of U(¢). Problem (6.27)
18 solved by a3 qugial algorithm developed by Tromp (1982a) that is
noniterative, The interpolation region and the tuning parameters are

updated and the procffs is repeated until aonvergeace has' qccurred.

I
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-~

’ 4
The on-line implementation of the method requires the

availability of the quadratic optinization routine and performing encugh
measurements to construct the Eﬁadratic approximations. For k tunable
parameters (k+1)(k+2)/2 settings of the tunable parameters /gﬁq the

.Icoqresgonding response measurements are needed.

6.4.7 Phédistgrtioanechnique

Tne_méthod proposed by Schaumann and Farrell (1981) is a
ncmbinafion of two procedurns. First. the circuit is designed assuming
ideal conditions and using well established design processes, This
circuit serves as an initial condition for the following steps._

Next based on a more accurate model of the circuit that may take

e

firstanrder and second-order parasitic effects into account the

Y

measurable circuit™~p parametgn; (e.g.. gain, quality factor, pdlé—

" frequency) are ainéred to minimize a suitable error criterion (e.g.,
function of fiol=12, L0, m).
F{nally, the circult is functionally tuned under load to the-
parameter uglues that are generated by the predistorticn stage. |

© The* inklusion of pérasitic effects, if known, in the model of the
circuit to be tuned facilitates the prediction of the actual response
and, consequently, the tuning process. The on-line 1mp1ementation of:
the approach requires the clarification ‘'of the functional tuning
lProcedur'e to be used. Schauhann and Farrell considered the possibility

of replacing the functional tuning stage with a deﬁb;pinisﬁic'tuning,

- algorithm. \/M
T ‘ . A
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In general, functional tuning methods are not fast.

-Detenﬂini;tic tuning methods are considefébly faster and much more

efficient. In the next sEetion we examine the deterministié.méthods ofr'

thning.

6.5 DETERMINISTIC TUNING APPROACH _ ~

Deterministic tuning is primarilf proposed to simplify the tuning
assigment probi;m énd eliminate the iterative process needed in the
functional tuning approach.

“The tuning process is usually carried out by measuring all the
parameters of the manufactured network and the possible parasaitic L\\_
effects. Then, a matching procedure 'is carried out, where it is-
required to match .the performance fﬁnctions by varying the tunable

parameter values.

A3 Y !
terministic Methods

Lieder a Kaiser (1976) and Lleder and Malek (1976) considered
deterministic tuning thods for second-order active filters. The

problem can be expressed as finding A¢t such that

a | a a 0,0 s
fi($t+A£t. $rrdg) =t @D 1 =12 ..., k, (6.28)

where k is the number of tunable parameters and the £; are assumed real
functions. '
A closed form solution of the nonlinear system of equatibns

(6.28) can be obtained for simple problems such as those considered by
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Lueder and Malek (1976). The on-line implementation ofifhe method is
T~ . o _ _ :
quite fast and usually results in a successful tuning procedure.

ra

The network model used should quite closely simulate the actual
performance of the manufactured cireuit :and ﬁhis necessitatés the
consideration of all possible parasitic effects. which is impossible,
It is, therefore,  custamary to fhnctionally tune the network after
pgrforming the deterministie tuning procedﬁre to improve the final

&

eircuit perforﬁaﬂge (Friedenson et al. 1975).

’

In general, a closed form solution is hard to obtain and it needs .

. a formidable algébraic manipulation task (Lleder andAKaiser.1976)._ As

Spch, other methods have been devised that utilize network sensitivities

and first-order approximation.

6.5.2 Sequential Tuning Method

As 3 matching problem, the tuning assigmment problem is not well
posed, i.e., a solution may or hay not'exist using the'set of the
tunaplg paraﬁete}s chosen and if it exists it may not be unique, The

problem of uniqueness is usually lYess important than the broblem;of

.
existency,

Lopresti (1977) and Lopresti and Laker (1980) formulated the
problem using discrete optimal ‘control theory. Recalling (6.22) the
deviation ‘of the functions f after tuning from their nominal values is

given by -

3af &a¢ :
- ;r_i (6.29)
JEI * $ :

e >
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where £O and ja are as defined before: The above differential function

can be rewritten as

5j+1~a 5j Sj XJ - 1.“2; ey Koo ' 7i11(6.3081
o xq = 1210 | © o (6.30m)

where §j is a column vector and is given by

of & :
2y = *1 5, pijel . - (6.300)

J

.‘

The partial derivatives are evaluated for the nominal circu1t and XJ is

Al

defined as
A, L r
'XJ = A¢'i /¢: ,lj.E_It.‘ ) (&.30d)
S J J .k
The tuning: problem can be- stated as a\suadratic optimal control .
problem as follows. Minimize ' = ° |

K
T . -
S Kt 8 X *{if1-Y1 X (6.31)

subject to'(6 30)' The second part of the obJective function penalizes
the excessive tuning amounts: and guarantees the uniqueness of the
solution. '

A closed form- - aolution is obtained Qaing‘the Riccati equation'"

(LODFEStl 1977). The process is usually performed aequentially by

o

. measuring the tunable elements after adjustment and recalculating the

remaining tuning amounts accordingly. This will partially compensate
for inaccurate element adjustments and imprecise circuit model. The.

matrix Q plays an important role in this process and an intelligent

P
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choice of its elements usually affects the success of the method.

6.5.3 Large-Change Sensftivity Method

Another quite successfulsdeterministic tuning'algorithm was
proposed by Alajajian (1979) and Alajajian et al. (1980).

The . method is based on the observation that the first-order

apprqoximation which utilizes differential sensitivities is not always

‘reliable. . It utjlizes Tellegen s theorem to derive a- large change

T

sen31t1v1ty expression. relatlng large changes in-the tuning elements to

the des;red changes in the functions £ in the manufactured cireuit. The
reSponse of the_filter is matched to Hithin a multiplicative constdnt c.
Both the multlplicative constant and the thning amounts are obtained
through solving a system of linear equations.

Recalling (6.22) this'system of equations'could be in the form

Sxsef-gt (e

“which can be rearranged. as

c

(5 _501 [x} -2, \ (6.3

- : r

The matrix-[s -fo] should be nonsingular end this willﬁ}estrict the

-number of .tunable parameters for certain independent functions f.

The matrix 3 is constructed such that its elements approximate

the large change sensitivities. Since the initial state of theﬁcircyitw-'

is “known from the direct measurement of the circuit paraneters and the

final desired state is’ almost kmown (approximately it coyld be'

considered_the_nominal state). an apprbximate expression of the

-
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-

incremental sensitivities gould be derived (Alajajian 1979).

. -
—

In general, the method .seems efficient and Simple at the Eane
Eime.‘ Hocevar and Triek (1982), have compared both the sequential

ﬁuning method and the large change sensitivity method. __Both method s

. performed quite well for the considered examples. For the on-line

implementation the sequential method requires less computational

requiredents and usually produces better resuts.

6.6 = SELECTION OF TUNING FREQUENCIES
6.6.1 Heuristic Method
! . ‘
Hocevar and Trick (1982) provided some heuristic guidelines for

frequenc& selection.. The effect of the choice of a particular frequency

point is to greatly reduee the error fi at that frequency. Since the

response gradients for two olosely spaced frequencles will be almost

collinear the frequencies should be reasonably spaced and placed in'

areas where tight control over the response is.deeired. The po}es and

3 . . - ' -
zeFos determine the response. . The tuning frequencies located near the

peles and zeros have strong control over their locationsand

conaequently, will have strong control on the response.
They also showed that the rank of S will not be defeotive for
e

' logical frequency choices.- .
6.6.2 Matrix Inversion Method "_‘ R
Gleissner (1976) utilized the sensitivity matrix S in finding the

appropriate Sampling frequencies. " For lcfrequencies the matrix S 1is an

o
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Lx p matrix. where L is greater than p » and’ uhere pt is the number of

elements that could be tunable. Let the ranic of S be p.' The matrix.
_ s
A T ‘
H 23 S . (6.348)

y . '} .

is utilized in finding the approprlate frequency samples. Since matrix

S 1is of rank P, fcr'the L. sampling frequencies only p are linearly

independent of each other For tuning, sempling points which optimally

comblne high sensit1v1ty and minimum interdependency are selected.

This i3 achieved by a step by step inversicn cf matrix H usiné :
a5 a pivot element always the maximum main‘;iagcnal element of the
residual matrix (matrix results after pivoting) After steps the

(2-p) main diagonal elements of the remaining partial matrix are equal

to zero. Usually, the matrix inversion process is stoppedlwhen the

‘remaining elements on the main diagonal are below a certain value., This

will result in a number of frequencies less than Py say m.

\

A

.

6.6.3 Minimax Approach _ ” ‘ A
- In ‘Section 6.3 we indicated that the network.design problem can

be formulated as a minimax optimization problem as follows,

Minimize z . - . (6.35a)
22 | B
" subject. to ’
fi(g)-i z, ie¢ Ic, _ (6.35b)

where ¢ is the p-vector of design ccmponents. The solution of (6.35)

provides us with theoretically justifiable critical (or active
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- s » :
funetions) fj(¢0)' je Ic' where Ic c E: is the index set of active

*

functions.A The critical functions are those approximately equal to z at

the solution.
Normally, each critical function corresponds to a samble
frequency, consequentiy we determine using (6.35) the frequencies to be

—

monitored \during tunin As such, the information obtained during the

design process that impl nt3s a minimax criterion is utilized diréctly

E 3 .
in specifying the required set of frequencies Ic (Bandler and Salama
B

1983) . ' ) :
~

6.7  TUNABLE ELEMENT. SELECTION
6.7.1 Matrix Inversion Method
Gleissner (1976) proposed a similar procedure to that of choosing

P the tuning frequencies to find the tunable elements, Let S be an m x Py

matrix where m < pt'and rank S5 13 less than or equal to m. It is

required to find k maximum-linear independenﬁ colqmns of §;‘ We |

construct‘tpe matrix

- ;o Bo=sts, - (6.36)

whose rank is less than or equal to m: A step by step inversion of

mat’.r‘ix-_l_‘-l,t using as pivot element the maximum main diagonal element will

. Al

' )

lead to finding the tunable parameters.

Other aspects of tuning elements hgve to be considered, e.g., the

linearity of functions fi w.r.t. the chosen tunable elements.

«
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6.‘7.2 QR Factorization Method (Hocevar and Trick 1982)
Let S be an m x pt sensitivity matrix, where m ¢ pt' It is
required to choose k tunable parameters, where k < pt. The matrix S is
' ¢

factored asa

| S = QR, (6.37a)
R._R
[s.5,1=16q g 3|7 " 721, (6.37b)-
=122 1727 | 4 g
=~ 222
§1‘ -91 ERmXR i ERKXk-'L {6.372)

where Q1is an rorthogonal matrix and 5_‘13 an upper triangular matrix.

The goal is to find a set of strong 1inear1} independent columns
of § and these can be f‘ound_ in §1 ‘f‘or thg proper choice of k. |

Column pivoting. is ,usually.lesed in QR factorization. Then, the

factorization would be for a matrix

l

I

=S B, - (6.38)

where P is a square permutation. matrix. Consequently, the diagonal

"'elements of matrix 5 satisfy

bro 12 Iraaf 2 eee > dr o . (6.39)

The singular values of ST\can be approximated by the diagonal elements

v

T The choice of k element values depends en the value ‘of lrkkl

since there is a strong relation hetween the nunber of relatively large

singular values and the number of strong ind_ependent columns of thi!‘
. ‘ . B
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»

matrix S (Hocevar and Trick 19825T\\

6.7.3 Optimal Tuning Method

Bandler, Liu and Tromp (1976a, 1976b) ‘and Liu (1975) considered
tuning és an ntegral “part of the optimal design problem.' The

centering, tolerancing and tuning problem was formulated as a nonlinear

-w ) )
programming problem. They considered an objective function of the form
.0 ' '
P ¢i- P ti .
L e, =+ z ci -5 * , (6.40)
i=1 i =1 : ¢gi . . ' .

where ti defines the tunable amount associated with the ¢, par ameter, ey

t i .
and'ci are positive constants. The worst-case solution must.satisfy

‘ ) . . . " ) .Au-

Rt(gs)'ﬂ‘ﬁc £0, o _ (6 1)

for all E; ? Rﬁ.' where‘G Qenotes the nyll‘set.« Rt(Eé) is given ?y.

E -
R ) 2t 1 p=0® aEu +Tovochle - (6.020
) Tt~ .?. 2 2 - .:.,,,' =T Ty * ; )
wheﬁe ‘ .
T = diag (t, t_, ‘ B . 42b
z iag {t1 ot tp} o _ ‘ (6 )
and
L I T ' '
= ) : ] 'l
R = lgl -1 < fe Ty (6 .2'0)

for the two-way tuning case. The feasible region is defined by
: ‘ -~

L]

A, o r’
SR AR L (6.43)

For the worst-case problem they considered only worst-Base

vertices (6..12). This is usuélly adequate under the goﬂditipn'that‘ﬂc
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is one-dimensionally convex (Bandler 1972). i’herresults of investi-
gating optimal design centering.. tolerancing and i:uning utilizing
objective function (6.‘140) resulted in a few parameters having nonzero
values of ti and the rest having exactly zero tuning amounts.

At that point the authors did not realize that this could provide

the basis of a general algorithn for identifying tunable elements based

on. the worst- case vertices, namely, the elements which have nonzero

tmable.anounts t’- .~ We have exploited the at‘orementioned observation in
devising a procedure for finding the tunable elements tBandlei- and
Salama 1983). ‘ | — .

A manufactured outcome of the-circuit would. be a point of the
region R,e
eritical boi-nta .of this region. "A'worfst—case point is assumed to oceur
at a vertex of the region R £6.12). _ Reﬁ has a 2p',"d vertices and they
."are iflexed by the set I of (6.13). & Hors;t-case algorithm -fo\r v;ertex
selection is erpployed {(Brayton et al, 1979) . For ‘every -critical
function t‘;(g). i\Q; (obtained f‘ron; 6.35) one or more vertices are
Selected, Let 'I‘ri (= Iv be the index set of mrst—ca\se vertices

. - ) S
corresponding to the function f‘i(g) > Ic-.' and let

.

| . : o ‘
I, =2UI ,1eTI. L T (6.u44)
vy vit e : ‘
S A o ‘
define the index set of critical }ertices. I"r « Iv' o - F

. To compute the tunable parameters", we solve the following
. .

optimizalt.ion problem. -
av ..

g (6.11). Worst—case analysis is carried out to identify the’
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Minimige I ti / (6.‘4'53)
ieIt S

: »
W.r.t. ti' p;, i e It' r e Iv' where

. e I, (6. 45b)
. s ' -
;;3525 b L. rel, (6.45¢c)
such that . -
. ‘
C' R B H ) (6.”5d)
. .
for all r € Iv' where 7
; ' ) ¢i' ig I‘t, ' (6.14_5e)
= oy ]
- ; pi.‘i € It;' : (6..1451‘)
"N and , : i o
g 2 o . .
e " {Q I t‘i(i) _5 g, i ¢ Ic}. (6.1453)'.,.,

Ey’/cavée shown that this problem i3 a least pth optimization

problem with p = 1/\11.) finds the minimum number of tunable parameters k
required to tune all worst-case vertices, At the,-g.‘olution we obtain It

(E It.,where | . <
- ‘ « ‘ ) ..

g1 b A0 teT) (6:46)

rfl

S

and I 1s the index set for the t.unable' pare'lnet;..ér ;:andidat.es. ;

It is readily recognized that the same objective function has
been utilized in coqdfr?ction with the apprd!imate method for f‘ault
analysis to find tl?e minimun number of faulty elements (Sectlions 5 2 and
i 5.3). In sels ng the tunable elemen{:s ‘tge ob:]ective herq\is quite
3 rﬁilar, Wlfy\. to find the minimum- number of tunable parameters to

tune all worst—case vertices,

¥
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6.8 -CJO’NCI..UDING REMARKS - - . -

In “this chapter we presented a number of aspects that are related

. r

to the postproduction tuning assigrment problem.
\ »

=, As ‘was first pointed out by Pinel (1971), network sensitivities

provide /a valuable tool for network ‘tuning. .As we exanined in this

i,

o

chapter they are utilized in- many functional and‘- deterministic tuning _—

algorit/k 0 provide the required tuning anounts. They are also

utilized in selecting the tunable parameters and the tuning f‘requencies.

,/

Hinimax optimization and least pth optimization with P 1.

subject to suitable constraints providE an effective «ﬂﬁique for -

determining both the f‘requencies at’ which tuni@ should be monito \ -and

the tunable parameters._ In- the next chapter the application of t
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NEW FUNCTTONAL TUNING ALGORITHMS AND#A COMPARISON
WITH DETERMINISTIC TUNING METHODS : BN

. [y
7.1 INTRODUCTION

In this chapter, two functianal tuning algoritmhi ar; p;esehgeﬁ.
Both algorithms are based " on measuring the re3ponse of the circuit at. a"
number of critiecal frequenc1es and formulating~§E3 postprqduction tunlng_
problem as.an optimization.problem.
The first algorithm (Bangler. Rizk and Salama “1981), ; 41; -

a

pointed out in $ection T.2, utilizes 1inear progranming iteratively for“

- \

estimating necessary tuning amounts. The’ techniquerexploits the' o

»

/

avail bility of a good approximation model 51mulating the, actual netuork-
AN

under G sideration. " Each step of the itfg?give tuning procedure

W .

requires one skt of response measurements%" A linear approximatlon of-

the minimax optimization problem is solved, proViding,‘the.'mnqunt;.=of‘f"

tuning ;o'be'implemeﬁted. The tunable parameﬁéré are‘adjhstedxgo;the
o . . , - . .

B _. - &* ’ LI . - o
extent possible and the process is repeated unpil"anu,cpt;mum_'is

hY ]
&

cbtained.
L

e second algorithm which we present 1n Section T.3, models the

.

e tuning* problem is next

formulated as a linearl¥ const aineql ax*optimigaﬁidntpr§blem. ‘The; .

149
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convergence is achieved.

- -
- . .

Bd'th algor‘it‘.f.l;n.sf were.' tested for tuning a/g:icrowave network
amplif‘ier and highpass notch actlve filte\ exami:fe/.\ For the latter
example, " the tHO determinlstlc tuning algorith.ms of Sectlons 6.5.2 and
6. 5 3 were also mplemented 'I‘he results of. the four techniques are
then compar.ed ' : i

The technlques 1ntroduced in Sections 6 6 3 and 6.7. 3 for the

L

selection of the critical f‘requency points and the tunable pa&l eters
are utilized with the - tunmg ai\gpritl%m of Section 7, -3 to  tun€ the

microwave network amplifiera

72 A LINEAR APPROXIMATION TECHNIQUE FOR FUNCTIONAL TUNING

CT7.2.1 Mathenatlcal For‘mulation

'but Hlth the tunable elements taken ‘as variabltes.

Similarly to (6 35) the tuning problem  can be formulated as a,

-

minimax problem as follows. o T : EERNG
‘.Hiﬁimiée.z' o ‘ (7.1a)
| Nggr 2 ' - |
sdbjeef,to . : o
‘ - ) i a .- L a. a. * - . | )
CORT v el e Czote T, o (T
S o e.. L S:Agt's_g.u : f 1 - (T.1¢)

r
»

The ininimiza.tion is'cafried ocut by varying Agt The definition of fune-
tions fi and parameters -@t' Qr and Qd is exactly as considered in

Sectlons 6. 2 and 6. 3 % and M represent limits on the tuning amounts.

-

. The tunlng assigrment problem is similar to the cres:.gn problem_

.‘\
J
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In the case of irreversible tuning where, for example, the elements are

only permitted .to increase, the limits are non-negative.
‘Since we restrict the tuning &amounts by (7.1¢), a differentiable
approximation can be. used to estimate the change in the functions and

the'minimax.oppimization problem, namely (7.1), can be approximated as ]

follows .’
Minimize z _ (7.2a)
Xy 2
. subject to | o - )
: , af, o
ama .a x 1 : -
f_i(it@r' 20t a3, x5 8z 1, . (7.2b)
‘ ) - jEIt~ J '
T T gt R .
. A R R o (Te2e)
¥ . ! .
where N ) S
' ' . \
¥ e o
. x; & =3 | (T2
3. s . o i

and z 13 an additional independent variable.

.The-sensitivities’should‘be evaluated at the actual manufactured

values (Qa. gg); In our implementation, we utilize ‘a suitable

approximape network model gx for simulating these,sensitivities since

the actual manufactured values .are usually unknown, and the functions fi

are evaluated by directly measuring the responge. |

"The above mathematical;formulétion is of the form consigered ‘by

Madson et al. (1975) and Hach%el et al. (1980). Their reported suGcess

!

in solving different circuiﬁ design problems motivated us to employ

w

-
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similar concepts in the tuning problem,

7.2.2 Tuning Algorithm

-

Step 1

Comment

Steg 2

~specified value.

.The tuning procedure car be summarized by the follkawing -steps.

Measure the network response. Check whether the deszgn
specificaﬁions are satisfied if they are satlsfied stop.-

This .is carried out by constructing fi' i=1,2..2.,m._aﬁq vy

»

checking that max f,

i £ < EPS, i e Ic, where EPS 1is designer
i N

Construct the linear program defined‘in (7.2). .Use sensiﬁiv—

© ities uhich are derlved from a suitable network model with the

Step -3

Step- 4

design parameters assuned at certaip reasonable values Q X

'ﬁTe.g.;'theif paminal'Values}.. 1The,upperpand-16#e: 1ﬁniﬁsiii, .

Uy, 121,2,...,k, are defined to ensure. the validity of linear

“approximation and the type of tuning (reversiﬁleé or

l irfeversible):

Cﬁeck the autput of the iinear bfogram."Ifltae'abselute<va1ue
of the tunable_aﬁount'of any tanable eiemeat_is less than'pﬁel
minimam amount_of tuning which can be cafrieq oup in paaetiee,
we assume thgﬁ it is iere. If all the absolute values of the
tunable 'amouats .are leas than  their corresponding minimum

ailbwableivaiues stop. | ‘

Adjust'the pafameters to the‘exﬁent_pOSSible by the amounts

’

o _ . L ] . . . - :
obtained from the linear program. If the maximum number of_;

-

measurement iterations specified has not been exceeded return

{
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computed at g : : (
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to Step 1. . . | 1

~The network sensitivities could be updated using the Broyden

(1965) rank one updating formula. -

) i i i i1 T
'Si+1 =Si+(£($ +A$t) -5(2 ) -3 XJTZL}

L=s — — (7.3)

where i refers to the ith iteration of the algorithm Initially, S0 is

. . . ‘ -
The use of the Broyden formula exploits the measurements in

improving the initial network model‘ gx. A better approximation is

. obtained after each iteration.

L]

. 7._2.'3 Tu'ning of a Micrawave i-iatching Amplifier

As an example, we consider a broadband amplifier with a complex‘

:antenna load as shown in Fig. 7.1. The object is to match the antenna

load over the frequency band 150 MHz to 300 HHz -We'considered the
design ‘given by Sanchez-Sinencio (1973) as the naminal design for’

simyfﬁfion purposes. The power gain at a certaf/.frequency is given by

”uhere Rs is the- source resistance, GL is the real part of the admittance

of the load }VL: 'is the absolute ,value of. the voltage across the load :

and :Vs} i3 the absolute value of .the input voltage. which we assuned to

be unity. The response was assumed to be measured at sixteen uniformfy

e ) . ’
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distributed frequencies over the éiven frequency band. At euch

freeueney. an error functlon was defined as the absoclute mjifference

between the measured response and th:—ao dB spec1f1ed power gain value.

The source reSLStance was assuned to be 50 ohms, The transistor

scattering parameter values and the antenna impedances at the szxteen
frequencies were obtalned from Sanchez—Sinencio (1973) )

A nuwber of dlfferent cases are considered here In.all of them,.

‘the tuning process is gtonhed when the response is within + 0. 8 dB ofi

the specificatlon Also. we have assumed that the minimum: tuning amount

\\to be. implemented is + 0 1 percent of the nominal element value for all

- Ltunable elements. Any‘amount.less than that is negleeted.

-Foﬁ'Case I“an&‘Case 2, the four character1stic impedances are

consxdered as the tunabie elements. In Case 1, we have taken ui = —Zi =.
0.1, 1=1,2,...,4. 1In Case 2, we have taken I, = -Z, = 0.05, i=1,2,

i ot

<+, The four transmission-line lengths are considered to be the

= -E,i

The network sensitivitles have been calculated using the network

tunatle elements in Case’3, with G, - 0.1, ;;1.2,.1..d¢ L
model with the camponents assumed at their naminal values. Tables 7.1
and 7. 2 summarize the results for the three cases. . A plot for the

-response before and after tunlng for the three cases is given in Figs.
7.2, 1. 3 -and 7 4, respeetively It should be noted tha the elements
used in Case 3‘are_closer to ncminal than in‘the first'twq cases.'which.

manifests itself by tuning converging in'one,etep.
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s
. TABLE 7.1
. EﬁLmENT VALUES FOR THE MICROWAVE AMPLIFIER EXAMPLE
: . o " Percentage .
Element . Nominal Value __Actual Value = = ° Deviation
Case 142 - Case 3 Case 1&2 , Case 3
e, 2.012 2,25 1.9 11.82 - -5.56
0%y . 8676 ThOT  93.4 S -1h.62 . T7.65
2yl 0.976 0.85 0.982 -12.9 0.60°
Z, - 97.5T . 83.33 93.45 . -14.59 - -4.25
b 0.833 0.72 .. 0.85 -13.56 °  2.04 -
1 125. . SRERPRE! 129.87  -11.11  3.89
2, | 0.927 ' 1.07 0.91.-  15.42  -1.83
2, 132, 113,63 128.2 -, -13.91 . -2.87
£ i3 the normaiized length; The actual length equals 2 An/Eﬂ. where An. : y
13 the wavelength at 230 MHz. e . o . -
"Z1is tbé characteristic impedance in ohms. SV g o I
Al
o
N
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TABLE 7.2 - Y,

) RESULTS OF TUNING .
FOR THE LINEAR APPROXIMATION TECHNIQU

Case 1 - Case 2 Caze 3
Maximum Reiative
TgpabquAmount 0,1 _ 0.05 0.1
(u; = =%
No. of Itgratiohs' ‘ 6 . L 8 - 1
Z, = 112.35Q Z, = 109.892 L, = 2.090
. Tuned Element Z, = 102.040 Z, = 106.382 L, = 0.976 -
Values : LT . ) .
t . — R i = . 1 = .
23 121.219 3 23 j17 6uUQ Y 0.788
Zu = 169.49 9 - Zu'z 147.70Q zu = 1.001




for Cise 1 of Table 7.2.
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7.3 MODELLING TECHNIQUE. FOR FUNCTIONAL TUNING
7.3.1 Problém Formulation
Let Flg,, QE. ¢4+ S) represents the response function. that is
-

monitored during the tuning process. We assume that the actual network

o~

responselis given by ' Voo
: ‘ . X"‘“)' | \ ]
a, a a a 0, 0 0 ‘a a a )

d
F cgt%}l ’Qd. 3) = F (Q't. ﬂrv g' S).:'P F-(Agt. AQ’Y" Qd' 3)' (7.5) !

~

where the- superscript a refers to the actual values, superscript o

d

refers to the nominal values, and F gives the devxational effect due to

the changes in the circuit parameters from nominal and ‘due to the

parasitie effects. namely. Agt, Agr, and gd.

We model the deviationa} effect by a rational transfer function

*
- . -

in the complex frequency s. Let " S s /;
2 a8 .2 3*L1 + + a .
Pl 8 AT .0 g
3 + b

D=13 R bQ )

where the de%ree of/tqisnumerator and that of the denominator; namely N .
N - .-’
and D, are determined a cording to the order of the transfer function o(;

the neminal circcit. together with the :ifferent known parasitic effects
“that affect,the'oerformance of the network. Some of the coefficiente of
i7.6) ane set.to zero,asrappronriate,if Fd(s) is a pure real or a pure
imaginary function.

=3

The coefficients of (7.6) are obtained from (7. 5)' 31nce the

nominal responses are Known and the actual response is measured

directly. Since F (a 3. ) -.F-(si). we may write (7.6) as

N . e

A

At
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L | . fsg_+fbp-13?;1'+'... + b ) (F2 (sy) - F (S )) =
. i -4 -l ?N ‘-‘S?.“':aN_‘] s]_N -1 + e ao. . . - (7.7)

.

Taking I3 aifferent fr'-equen"cies such that 2¢ > N +D + 1, we get an
t
overdetermined system of equations in the Yfefficients Ao k=0,1,...,N,

ethod is Feed BaNolve the

.

‘gnd bj; j=0,1,....D-1.-,The least-squares
.résulting linéaruﬁystem'of equations. It provides an estimaterof the

coefficient$ of"(7.6).

" Tling (6.17) the error functhps are defined by
£
M D - ':é :
- S) eqi(AQt)" (F (Agt) + Fd (s;) -5 Ul*’i - (7.8a) \\\
eli(Agt) s (F (Agt) + Fd (s ) - S ). ie Ig. (7.8n)
. where
: W e i
0, & 0 0 -
Fi(age) F (g, + Agt.'gr. 9 84}, | (7.8c)
‘.' -. R - S ’ o
Correspohdingly, we_let A
; DY ( . .
W Ay AT o
¥ fi. = { uj o u ielI, . (7.9) -
N\-e, ., kel c 3
_ M ' SL I L
| : - . i
where I ', Iz and I are as defined by (6. 19Th
. .
Similarltho the tuning assignment prablan (7q1) the following
tznearly constrained minimax problem is formulated . l
. .Hizimize z L ey . (72195)_ PR
subject to v o ¢ . o q, o
. . . - i \. B S e .
l o ‘r,‘. r4 2, fi [ i%\lcn T | . . (?' 10b) B
b Ce S SN - p S
- - | i \-% ' ”
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o - N
T, < 06782 <, ¢ ek (7.10¢)
128570y S Uy e A

‘A\\ The solution of the optimization problem’ provides us with Agt.' The

network parameters are adjusted by amounts indicated by 8gy - The

process is repeated until the circuit meets its design specifications.

o

7.3.2 Tuning Algoritm , . = &

The tuning algorithm is quite similar to that of Section 7.2.2.

The procedure can be summarized as-follows.

SteE 1

Step 2

Step 3

Measure the network response. Check wﬁether the design

specifiqationS‘are satisified.~ If they are satisfied, stop.

Utilize the pe;formed 'measﬁreﬁents and the nominal network
responses in constructing tﬁ? transfer function (TGP) which
rgpresehts_tpé'deviétional effect, 7

Solve the optimization problem (7.10) for the changes in the

" tunable parameters 4¢,. The upper and lower iti?f (7.10c)

.

X ané.ﬁ are defined to ensure the validity of the approximating

qdeviatibnal model and the type 3£/%uning (reversible or

4}1 R

rd

-



Step 5 Ad just the parameters to the extent possible by the amounts
-obtained from the optimization program. If the maximum number

of iterations has not been exceeded, return to 1.

L

The optimization problem (7.10) 1is solved using a recent

algorithm by Hald and Madsen (1981). The optimization algorithm has two

stages and always starts in Stage 1. In Stage 1, the error functions

fj, J=1,2,...m, are approximated by linear functions using the first-

order derivatives The Stage 2 iteration is introduced in order to
Speed up the final rate of convergence for problems which are singular
at ;he solution. The Stage 2 algorithm 1is a modified quasi-Newton
method, i.e., approximate second-order information i3 utilized.
\\:
7.3.3 Applying the Modelling Technique for Tuning the Microwave
Amplifier

The modelling technique for functional tuning is applied on the

example of 7.2.3. We assumed that the actual power gain is given by

F2(s) = Fos) « F(s), | (7.11a) g
where
a Su + a 82 +‘a l *
Fl(s) = “u 2 Q . (7.11B)
2 .
+ b s + b
0
[ 7}

Cases 1 and 3 of Table 7.1 were considered In Case 1(?:\
tunable

taken u.1 = —Ei = 0.4, 21. 22. 23 and Zu are ednsidered as th

The algorithm converged in 4 {t rations, In Case 3.we'7ave
. .« . .

-

paramete

(\. ‘o by ) ‘ Poa u i

~ - - .
taken u l,/Zii = 0.1 and the four“iengths 21. 22. L. 4nd £, are assumed
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Lo be the tunable parameters -The results are summarized in Table 7.3,

The tuned responses are given in Figs. 7.5,and 7.6, respectively.

= ) . o
7.3.4 Integratgg Tuning Procedure .

The technique; which are detailed in Sections 6.6.3 and 6. 7.3 for
the selection of the critical frequency points and the tunable
arameters are utilized with the modelling tuning algorithm to tune the
mickowave netucrk amplifier with no paraéitics. Thq;;ntegratibn of

these techniques provides an efficient tuning procedure (Bandler and

circuit were reoptimized to a 10 dB power gain over zhe frequency range
) '

150 MHz to 300 MHz. We utilized the optimizatio
Bandler and Zuberek (1982a) for linearly constrained minimax
opt{nization, as described by. Hald and Mad sen (1981).'_Thé MMLC package

N

is‘én adaptation of the MMLA1Q package (Hald 1981),. The characteristic

impedances are assumed to be less than éOO ohms. The response achieved:

is.sup;rior to that obtained earlier (Sanchez-Sinencio 1973). This is
partly ecause we relaxed the bounds nn the design parameters. The new
<T5Jf_ and previous nominal design parameters are given in Table 7. R From the
f:_ ' response obtained, the frequencies 150, 160. 170, 220, 250, 280 and 300

. MHz are.canquates fq?‘the eritical frequencies, The response at 16

uniformly distributed frequencies in the-150-300 MHz band
. Table 7.5. . | R
. o8y )

g : 3

ization problem (6:35). the nominal parameters of thn;::>

packnge MMLC by

v
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TABLE 7.3 -
RESULTS OF TUNING USING THE MCODELLING TECHNIQUE
Case 1 Case 3
Maximum Relative
© Tunable Amount - I - 0.4 0.1
(ug = -24) _
No. of Iterations - iy 1
Z, = 111,42 q '11‘= 2.042
— Tuned Element . Z, = 89.77 q L, = 0.8838
Yalues Co B}
: 23 = 124,97 o 2.3 = 0.7726
Zy = 144.26 2 £y = 0.9u46
, \
/
i -
b ﬁ‘? k 4
~
""--.,4/4: *
o
. & }
& ,
) .t ¢
. R e )
. /_1./

.
o
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- TABLE 7.4

€
NOMINAL ELEMENEBVALUES OF THE MICROWAVE AMPLIFIER

.
Nominal Value:
) Element\ ~Original New
_ \ '
£, J) 2.012 1781
Z,(2) 86.76 68.778
2, . 0.976 . 153k
Z(2) 97.57 200.0
2 0.833 - - 1.140
z 125. 181. 252
2, 0.927. © 1,280 .
2,(2) 132:  , 105.105
.
4

J

0"



2

7
< \.Jr’
170
[
TABLE 7.5
THE OPTIMUM NOMINAL RESPONSE
OF THE MICROWAVE AMPLIFIER
N : Frequengy {MHz) Power Gain (dB) ,
- . 150 10,058 #
160 1 9.926- #
- §
170 : 10.072 @ :
180 10.043
190 10.053
200 10.006 - s
g | 210 10.028
N - -
1 220 ] 9-926 # 1
230 s 10,031
240 . .10.028
250 " 10.072 s
’ 260 10.31
270 T 9.965 <
280 : 9.926 *® '
290 :  9.983

300 \f-ﬁz'ﬂ‘/z\ﬂ/'

- * identifies eritical requencies

e ——




We assume that the design specifications tolergte +1 oB do:;;iion
from a specified value of 10 dB. Horstﬁpasé responses for the candidate
set of critical frequencies are ‘computed with + 5% tolerances on the
design parameters. The first four worst—case responses violate the

design specifications, as 1s shown in Table 7.6, We performed the opti-
]

mization problem (6.45), using the four critical violating responses to
determine the tunable parameters, Tho }esults of this optimiiation pro-—
‘blem areAgiven in Table 7.7. It is clear that Z1 and 1u are the tunable
"panameters. The optimization package MFNC by Bandler and Zuberek(1982b}),
~ which implements the Han-Powell algorithm described by Powell (1977), is
utirized.in solving this problem. Tho,HFNC package is an adaptation of
the VFO2AD (1978) subroutine of the Haruell Subroutine Library.

The functional tuning algorithm of Section 7.3.2 is used to tnne
.tho previoosrfour‘onitical cases (Ease 1 and Case 3 consider ﬁhe Same
portex..so they are idontical). The results of tuning for these oaseo
are givenjin fhble 7.8.~ The\responses before and after tuning are shown

s

in Figs. 7.7, %.8 and 7.9. The solution of (7.10) is obtained by the
i¥8 -

e MMLC. - - ) v

optimization pac

. - : '
7.4 COMPARISON BETHEEH FOUR TUNIHG ALGORITHHS

. Thti?;::’;;w functional tuning metheds and the two determiniatgp

tuning methods of Sections 6.5.2 and 6,5.3 Weré’tested by applying them

. .
to test the highpass notoh circuit shown in Fig. 7.10. This example has

origgpally appeared in Alajajian s thesis (1979) The nominal oircuit

{

component values aﬂﬂ’the ‘actual oirouigayalues are given in Thble 7T.9.
)

-
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TABLE 7.6

WORST CASE RESPONSE FOR +5% TOLERANCES

Frequency (MHz)

Vertex Number

-

Power Gain (dB)

150

160

lT?O
220
250
280
300

123
138
123
153
80

189
2i2

11.318
8.559
11,274
8. 794
10,726
9.302
10.657

_The vertex ﬁumber is given by the formula

7

i

i a

I

(-1, 1}.
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“~_TABLE 7.7

DETERMINATION OF THE RELATIVE
TUNABLE AMOUNTS

: 0
Element ti/¢i
'21 0.0
z, ° 0.0088
2, 0.0
Z, | .0.
. L
3 0.0
' 23 0.0
2y 0.079
Zu . 0.0
////(
.l

TN

g |

Y

9
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_TABLE 7.8 - //f

RESULTS OF TUNING USING THE INTEGRATED TUNING PROCEDURE

. Cases 1 &3 : . Case 2 : Case &

& : ] . .
Vertex’ No. L *j. : 123 o 134 153 . -~

. i -
No. of Iterations R 1( 1 -1
of Functional . : . ., '
Tuning Algoritkm
Tunable Element Z, = 66.660 2, =.70.616Q Z, = 66.66q _
Values ' S : | _
£, = 1.209 £y = 1.331 £y = 1.154
)

T
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TABLE 7.9

ELEMENT VALUES OF THE HIGHPASS NOTCH FILTER CIRCUIT

Nominal Actual - Percentage
Element Value Value - Deviation
R, (ka) 13. 260 13.260 0.0
R, (ka) '93.0 93.0 0.0
RS (k) 214.0 - 1926 ©-10.0
. . . -
Ry (k) 2.0 2.0 0.0
Ry (k) 2.0 1.8 “L10.0
Re (kq) 12,467 - 11.22& -10.0
Ry (k) 10.00 ~9.00 -10.0
¢, GE 0.0 ~0.00973 " -2.07
C, (W)~ 0.0t . 0.00965 -3.35
j' .._10000.0' -',159000.0 ' 0.0
%
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Ri. Rg,"Rg and R, are assumed to be the tunable parameters.

7.4.1 Linear Approgimatiqn Technique (Method 1)

We first tested the functional tuning algorithm .of Section 7.2.2. -
To construct the optimization praglem of {7.2), we defined the functio
;i as the absggute deviation of the output voltage from its nomlnal
value at 20 f‘requenc1es in the interval 410-505 Hz, where the notch

. _ .
lies. The limits given in (7.2¢) are u, = 0.02 and &, = 0., After 12

J J
-iterationg. the tuned responses closely approached the nominal response,
as ghown ih'?ig. T.11.

The sensitivities are. updated after every iteration using the
Broyden formula and the inltlal sen31tivities are cumputed ‘with the
components at the nominal startlng values, A tunable amount less than
0.1 perqent is assumed to be infeasible and no_adjustmbnﬂ is éarr?ed out
for ;he'corresponding;tunable parameter, | 2

The final values of the tunable paramelers are given in Table

ra

7.10.

7.4.2 Modelling Technique (Method 2)
The‘.modelling technique for functional tuning is next tested.

. The fesponse of the network is considered .at the' same 20 frequénciesu

' We assumed that the actual output is given by o

a

Voue(s) = out(s) sV (D, - - (To12a)

where
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voltage gain dB
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‘nominal response . - _
ol e before tuning - ’
~——— after tuning -

| |
o - n L
o o o

H-

1
H
O

-850

‘\

- ‘ . L s
60 300 400 500Y 600 700 800
froqgoncy Hz "

Fig. 7.11 The .results of tuning the highpqss notch filter
examle using the algorithm of Section 7.2,
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TABLE -7.10

RESULTS OF TUNING USING THE FOUR TECHNIQUES

Linear

Sequential Large Chaﬁge

Approximation Modelling Tuning ' Sensitivity

Tuned Technique Technique Technique Technique
Element Method 1 Methed 2 Method 3 Method 4
Ry (k) 208.769 204,53 184, 48T 192,94
Rg (k) 2.194 2.065 2.241 2.2459
Rg (ki) 13.711 12,475 13.747 13.892
R, (ki) 9. 7u1 9. 049 9.993 10.06
Type of
Me thod Functional Functional Deterministic Deterministic
No. of .

Iterations 12 2 1 3

-
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r'd
W e A1 2, EENCRES
out 2
S +b.s+b
o
represents the deviational effect. . | .

Iha fgnctions fi considered for the optim;zatioﬁ probleml(T.TO)
are exactly as those considered for the éptimiza;ion problem (7.5). In
(7.10¢), Zi = 0 and no upper limit is considered.

After two {terations, the algorithm converged, The tuned
response 1is shown in Fig. 7.12 together with untuned and nominal
' reapqnaes. The final values for the four tunable resistors. nanely R3.
RS' R6 and RY' are given in Table 7.10. .’

7.4.3 Sequential Tuning Technique (Method 3)

We next considered the deterai ing algorithm proposed by

Lopresti (1977). The transfer function of the filter considered is

given by - e

b . L

‘ 8232 + 313 + BO o
T = 2 . (7.13)
TR 3 0+ ﬂ15 + ag

where g_ = 0.5: g8, = 0.0, g. = ux106: a, = 500.0 and:q =.16x106.
2 1 0 1 0

to the Hide‘variat;on in the tunable parameters frequency scaling was

Due

necessary. With 3 = 1000 s, tﬁe coefficients beccme B = 0.5, B€i= 0.0,
By = Uy &1 = 0, 5 .and ao = 16.0 A complete matching of the: coefficients

is required. Hé take -F 5 [&1 0 82 B B ] and the error functions are

~defined as the~absolute deviations of the coefficients from their

nominal values.

a
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. . «~ " frequency Hz .
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Fig. 7.12 The results of tuning the highpass notch%filter
' examle using the algorithm of Section 7.3.
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The sensitivities of the coefficients were evaluated using the
actual parameter values. This improved the performance of the algorlthm

(Bandlar and Salana 1981)
The tuned reponse is shown in Fig# 7.13. The 'final values of the

tuned parameters are given in-Table 7.10. -

7. & 4 Large—Change Sensitlvity Technique (Method R) -

-

To construct (6: 33) ‘the output voltage 6f the filter is

considerai at three crltlcal frequencies ‘namely, uso.aa. 636.94 and -
676.75 Bz, - s
Qsing'Tellegeh's theorem, we have

M

O Ry S 1)
v VIV AG -cV_ "= -v , S (Tt
gAYy Tyt e ‘ o 2 (T 18)

ne o=

-~

where i = 1, 2 and 3 corresponds to the three frequencies. V and V are

-the branch voltage of the tunable parameters in the original 01rcuit and

.

'1ts adjoint before tuning, respectively VE+Q?£ 13 the tunabte branch
voltage after tuning whieh can be’ approximated by” the nominal'hkanch
Avoltage. ?out is the specified output voltage.. Solving (7 TH) we get
the required changes in the tunable parameters and the multiplication‘

+

‘factor c¢. - D - . L -
After three 1terations._the tuned response approached the dbminalu

résponse very closely The responses are given in Fig. 7 14 and the.

values of timable parameters-are listed in Table 7 10
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Fig 7.13 The,fesults' of tuning't‘hé highpass notch -filter
' ‘ example using the sequential tuning.technique,

A
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20F -

nominal response
=eee-- bafore tuning

|0,  ——— after tuning

—40F

-50} |

"07"300 400 506 600 700 800
g | ;".“ . ﬁedueﬁcy“Hzil o

" Fig. 7.14 The results.of tuning the highpass notch filter

* ‘example. using the large-cHange ‘sensitivity technique.

-
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7.5  CONCLUDING REMARKS

1In this chapter, we havelpresented tuo postproduction functicnal
tuning techniques._ The techniques optimally use available response
measp/ements and - eliminape completely the experimental trial-and-error
and one~at-a—time approaches.' They are quite general and can be applied
co- any network for both reversible and irreversible tuning.

.The formulation of the postproduction tuning problem as an
'-optimization problem facilitates the inclusion of many physicall

constraints such as the direction of tuning. the tuning amounts. and the

constraints on other functions obtained by. simulation

The linear approximation technique will. perform quite reasonably
as -long as the approximation is valid . Carrying out  the tuning
procedure “in stages and updating the seqfitiVity matrix by the Broyden.
formula will ensure the validity of the linear approximation

The modelling technique usually needs fewer response measurements“
than the linear approximation technique. but requires much more on-line
camputational capabilities - For reasonably snall deviations of . the
netuork elements from nominal the technique converges in one or two
iterations. . | . -

Deterministic tuning methods performed better than the functional
tUning methods. This is expected sinoe the deterministic technique

assumes that more information about the network is known (all. network

components are assumed.known)

e

Large-ohange sensltiv1ties seem ‘more promising than the differ-

ential sensitivities for deterministic tuning methods. " This appears
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very clearly in the results obtained by Alajajian (1979) and our
implementation of his algorithm. . . ?

From our experience with both functional tuning and deterministic

*tuning algerithms, the latter are superior. A comparison based on our

results is given in Table 7.1ﬂ

The integration of a number of concepts and techniques produced
an efficient postproduction tuning procedure. This (s manifested by the
results we have obtained in Seétion 7.3.4, We believe that this

integrated approach utilizes effectively the information that could be

~ obtained at the'desigh stage in specifying an optimal. tuning procedure.
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-COMPARISON OF THE TUNING APPROACHES .+

= TABLE 7.11.

i

Feature B "+ Functional Deterministic .

S Tuning Tuning

Actual Component - , " No_ .. 7 Yes )

Values Identified L -

Parasitics : T Ne - Yes

Measured . . v .

Exact Network . - - No . Yes

Model Needed ’ .

Post-tuning = No - Yes

Adjustment Needed <
‘Slog:

Y- Difficult. .

Tuning Speed

Tuning Assignﬁent

LN

Hardware ) © Moderate .
Requirements

o

Joftware Support Sophisticated

Computational

: _ thod dg¢pendent
Effort o A

-
'

-

Fast s

Simpler -

_ Sophisticated.

Moderate =

Method dependent

Oqe Way Tuning Difficult
Applicability . . General
>
s

i
-
~
S
.
i
™
-
*
- .
o~
Jl’-\. .
PR
b T .t
L
g
-5

Vi -
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CONCLUSTONS.

This th’esis'has‘.considered Ltwo important problems associated with

- " conputer-aided ~testing of‘ large analog circuits, namely, fault analysis
- ‘methods and postpr‘cduction tunmg algorithms and procedures. A review
oi‘ the f‘ault an-aly:;is. methods revealed the need for the development of
:an efficient on-line 1mp1ementable technique for both soft a(xd hard
f‘ault 1ocation.in large- analog networks. 'Hie simulatio’n—aft;-_—test
K :-approach that is dev.eloped io‘.this--the—31s .quite closely meets these
- ""'".'requirements., . . ST

N Accessible test n.odes-, uhere voltage measurements are made, are
of‘ tha who\e network and such that the network is decomposed into’ small
mutually uncoupled subnetuorks. ' Necessary and almost sufficient

_-1 uconditions are derived tooidentify f‘aulty and nonf‘aulty subnetworks.

These testing condit,ions are based on. invoking KCL and topological

.y

| - relations betueen subnetworks., Logical analysis provides an ef‘i‘icient‘

. uay for' processi,ng the results of‘ the applicaticn of diff‘erent testing
cdnditionsq During real testing. a bierarchicaf deco‘mpositiop procedure

_ is strongly recomended to be ’f‘ollowed particularly if‘ the network is

) “dominantlyelinear. . Hierarchical decomposition prov:.des a systematic and

. f‘ast way I‘or testing very large f‘aulty networks._. The effect of

tolerances on the- nonf‘aulty elements is handled oy utilizing the

o ' 1 +

L ST e

Y 'l‘hnited in nunber. They are chosen according to a nodal decomposition’

~
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Welighted-least-squares criterion r solving underdetercined svstems gof
équations. The criterion has a significant probabilistic implication.

After localiggng the faults to the subnetwoék level, the
identification of faulty elements inside the faulty subnetwork is then
carried out by eith;r an. exact fault location technique or an
approximate fault estimation method.

Most of the deterministic:metﬁodﬁ that have been described in
Chapter 4 verify the e;istence of faults by éhecking the copsistency_of
certain overdetermined systems of equations. The effect of tolerances
on the n;nfaulty elements on the consistency of these equationsz is
handled by utilizing a linear programming formulation- of the problem.
Linear programming is used to check the "existence of a feasible solutionh
foé the assumed consistent system of equations. fhe interﬁal-self—
teéting technique and the combinatorial algorithm are Hintroduced to
speed up the location of fault; elements 1n§ide the assuméd faulty
subnetﬁork. The internal-self-testing technique utilizes the subnetwork
topology to perform an internal partition of the subnetwork. Necessary

_and sufficient conditions for a subnetwork region to be fault free are .
derived,- The combinatorial algorithm is usually applied when the ISTC
technique cannot be continued. Ig_permits arbitrary choices of

partitions;

The métching technique ufiiizes’the fault models of the fault

|

prone elements of the subnetwork. Under the condition that the number
of possible. faulty cases is small. and these faulty cases are assumed

known, the method is quite fast and efficient.
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Under the physically realistic assumption that a few subnetwor¥k
elements are faulty, the 21 norm ls used to estimate the most likely
faulty elements, as outlined in Chapter 5. A linear programming

formulation 1is proposed for both the single test and multiple test

techniques. The methed is simple, efficient and readily accounts for
- ,

the tolerances on the nonfaulty elements. The method is applicable ts_‘*\\\\
- bqth linear and nonlinear subnetworks.

Postproduction tuning provides a valuable means of correcting the
faulﬁy network and improving its performance. In Chapter 6 a number of
functional and deterministic tuning _algorithms -are reviewed. The
information gaingd' during the design ﬁrocess provides theofetically
justifiable..new_;echniques for chdésihg the critical samples of the
response and the tunable parameters. Minimax optimizat;on and least pth
optimization with p=1, subject to suitable constraints, are utilized in
?hese tééhniques. as outlined if Chappe}'6. They provide the necessary
ingredients for acgeneral. successful tuning procedure.

Tuu'newrfungtional tuning techniqu%a are presented in (hapﬁer 7.
The techniques o;tiﬁzily uée the-available response measureme@ts.. .A
tuning procegure based upon the techniques introduced in Chaﬁter 6 for..
choosing tuﬁable paraméters and critical frequencies and the modélling
tunihg technique provide an optimal integrated tuning proceddré. ThiS
is illustrated by the results obtained. - ' d

" A c&mpariéoﬁ between determinisﬁic - and lfunctional tuning
r;algofithms based uporr testing four diffefe?t techniques verify thét the

deterministicttechniques are faster and more reliable.

-

-



(a)

(b) -

(cf

'network‘considered will always prodpce appropriate“sati;factoﬁy

The application of the 'ISTC technique to .very .lafge networks
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A number of points'are worth further research and development.

The test nodes, and consequently  the ‘nodes -of decomposition,

should be chosen such that the network is k-fault testable;ni.e..

we can locate exactly the faults in at most k subnetworks without

any ambiguities. A similar\

digital ‘circuits,

application teo, nonlinear {networks coyld produce some uncertain-

r
o

ties due to the.blockin% ﬂﬁgjﬁ‘of some nonlinear elements (e.g.,

transistors) under certain biasing conditions. ‘This.gould be
éiimihated'by the suitable choice of the . esting signals and an.
inveéstigation of the subnetwork elements.

addressed such ‘thap a géﬁéral ﬁrqce@ure igdépé

" results, ” . ‘ . ‘ ‘

needs fufther investigation. It .appears that hferarchiq;l

~decomposition could be the most appropriate procedufe té'conduct

-

the ISTC. Further application of the technique to nonelectrical
networks, but for which aﬁalogs are available,-e.g., in human
body testihg could prove to be very sudqessful in locating faulty

tissues (Wexler 1982), .

roblem has been addressed in testing

-
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(d)  The use ;f the Ei"norm is very apprbpriate forilocating'a few
'Fhulty elements, As 13 well known, an appropriaEely weighted-
iegst—squares criterion could produce the same result. as the 11
ﬁorm. The cholce of these welightz needs further research. The

gignificance of using the %_ norm is im the predicted reduction

2

of the needed computational effect,

(ei-  The use of the funetional 'funing algﬁrithms with more
'.measﬁfements at some of the intérnal network nodes. could increase
the efficiency‘ and 'reliabilit} of the methods. It is quite.
épﬁropriate tb assume the voltages across the.tunable elements to-

Se Rnown. An algorithm taking'this into consideration is worth

further research,

(£) The integrated tuning_procédure that utilizes the propbéed
’ pechniques‘for choosing tunqble_elements and critical frequencies
‘needs to be tested with é nq%ber of flinctional and deterministic
tuning algorithms. The‘resﬁlts ﬁould és;ﬁblish the reliébility

:Jandrefficieﬁcy of ﬁhglprocedurep



APPENDIX A

ON THE PROOF OF LEMMA 3.1

~i
gg. this implies that Si is faulty. For the sufficiency part of the

Necessity is obuious, since if (3.9) is not satisfied for o, =

proof we utilize the adjoint_ network concept . Assuming that the

subnetwork Si has b internal branches, Tellegen's sum can be written as

~

(vp(t) 1p(T) - ip(t) vp(r)) = (t) iJ(T) - ij(t) vj(r)). (A.1)

1 N

(v

MR

Hn g
[

It o

P

where t and t are arbitrary. The summation on the R.H.S. is over the
internal branches and on the L.H.S. i3 over the measurement ports< The
adjoint network has the same topology as the original network and {ts
currents and voltages are identified by the hat symbol (™).

If scme of the Subnetwork element values change from nominal, the
currents and voltages in the subnetwbrk‘change accordingly. The change
in the element value can’ be represented by a current source o; a voltage
source (Bandlér, Biernacki and Salama 1981). Without léss of generality

we assume that the change in element value is represented'by a current

3ource which 1s in parallel with the nominal element. These sources

constitute additional branches in the network. For the nominal netuork.

the values of these current Sources are equal to zero and we may write

{(A.1) as
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_ incremental changes in the f branch” elements,

_ : ] ; 197

m, ~ ’ - * - b - - & -~
1. : - - ‘
(v () 1 (1) =1 (t»v (7)) =~ (v, (t) 1 (7Y = 1,.(t)v ()1
p=1 P P P P j=1 3 ] 3 J
i sf - F : .
) v (t) 1 . (A.2)
. S gii " ; i

where f denotes the number of elements which have changed'from nominall.

. For the bérturbed subnetwork. equation (A.2) becomés

r

[y

m - -~ oo ~ *
s | ey _ .
| npi1.((fp(t)'* BUp(E)) 1p() = (A (8) + Ai () vp(r)l_-

/ - )
b ‘ -~ o i fa *
JE1-[(vj(t) + Angt));ij(r)_— (1508) + 8150£)) v(D))

.t | - R o
. - . e (Al
. 121.((g1ct) +av, (8) 1£(T) Aiz(?? v, (0) & (A.3)

where Aiz(t)-is the current 5bgrce that represepts the variation 111 the
subnetwork element, ‘ N

Subtracting (A.2) from (A.3),

H

m LA ~ b ~ ‘ -~ K
i . .: . LB -
. t ) - Al (t) = t) 1 - Al (t) v (1))
. pE1 (AVP( ) %P(t) \_A ps } 3p(3)) j£1 (?fj( )‘ J(r) 3 vj T
- f '.A
+ I
£=1

The.ihternai'branches of  adjoint network are defined such that, “for

- T o
(v, (0 (0 = 8, (1) v (1) (a4,

.f!' >
oL
RN .
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i.{7) - 4ai.( =0, =125 004, _' -
Avj(t) 13( ) Alj(t) v (1) q 1,2 b 7 (A 5)-

3

and the branches. correSpondlng tc the assumed current sources are open

-circuit, That is
i, ()'=0,  2s:1,2,.0..0 ., T

We may then write (A.4) as

-

(v ¢£) 1 (1) + 81 (t) v (1)) = =
y R P e .

Ht1g
[

£ PO )
E 81, (t) v (1) . - '(A.T)

p 1

o,

We ‘are _intefested in the variation in the measured currents

ai k(L) ke Hi . We apply an impulse voltage source § (1) across its-

ccrresponding port . in the adj01nt network and all other ports are short-.

circu1ted i.e., vp(r) = 0, p:1,2,..:,mi, p ¥ x. The cardiqalities of
the'sets MiY.and Hié_are assumed to be'zero as the voltages of‘all'm

nodes are known and the subnetwork is considered to be voltage excited

_i.e ’ Av (t) .é—1,2.f1..mi. Hence, (A i) becomes
f . A C .
: 5k_(1:) Aik(.t) ,=.£E1_V£k('r] Aig('t) . A‘ k=1r2. conaly . . (A.s)
Taidng T =‘tf-t'and.integnating over the interval O-tf} we get . ¢
B N |
ai (v = L Yy (t=tp) bip(t) dt, k=1,2y.00m . (4.9)

S0 =1

ot

If (3 9) is satisfied, this implies that Af, ((te) =0 ¥ oo Since

' we adopt the assumption that the effect of faults will not cancel’ at ‘the

measur ement ports, every term of the summation on the R.H.S. of (A.Q)

i
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should be equal 0, namely,

tf -

0 ia

.a‘-, ‘ . . N .
For Aiz(t) £ O'VER (1) should_be 0, ¥ 7, which contradicts the”
¢ ‘assumption that the subnetwork is connected and the'decompoiitidn"nodes
m, do not decompose it further. So (A.18) is equal to 0 only if Aig(t)

= 0 and this implies that-the subnetwork is nonfaulty.
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