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ABSTRACT 

A research program is presented to investigate the behaviour of 

rectangular hollow section (RHS) T-joints in the elasto-plastic range of 
• 

loading. The study includes the determination of both rotational and 

punching shear stiffnesses and strengths of the RHS, T-joints due to 

branch IIIOment or punching shear or a combination of both. The deter-

mined joint characteristics are then incorpor~ted into an elasto-plastic 

analysis of Vierendeel trusses composed of RHS members. 

Two different joint types have been analyzed, the double chord 

T-joint,and ~he single chord type. In both cases, the jOi9f is modelled 

by the chord top flange treated as a thin plate loaded on the perimeter 

of a rigid inclusion" and restrained by coupled translational and rota-

tional springs along its longitudinal edges. These springs simulate the 

restraining effect of the side walls and connecting bottom flange. 

--/ 

(I. t 
Transverse edges, some distance from the joint, are taken as simply 

supported. 

The proposed finite element formulation incorporates rectangular 

plate, beam and boundary spring elements. The formulation condder'llJ. 

both bending and in-plane actions. Material nonlinearities of the joint 

are assumed to be adequately represented by the Von-Mises yield criter-

ion and the associated flow rule. While geometric nonlinearities have 

been neglected, this assumption is reasonable for the range of deforma-

tions deemed important in this study. 
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• A parametric analysis has been undertaken for each of the double 

chord and single chord joints under either branch mment or punching 

shear. Each analysis considers the effect of each of five non-dimen-

nonal geometric parameters. One of the parameters, considered, is used 

to study the stiffening effect of a reinforcing flange plate. Results 

of the analysis are presented in the f~rm of non-dimensionalized load-

deformation (H-" and P-cS) curves. 

A standardization procedure has been used to develop generalized 

Ii .... and p-O formulae, based on. the parametric analyses. In addition, 

formulae fo.r· the joint stiffness and strength, in terms of its geometry, 

are presented for each case. 

When the joints a:e analyzed under combined loading, the branch 

IIIOment and punching shear are applied in different ratios. The results 

• 
are presented in the form of interaction equations. 

Next" the joint characteristics have been incorporated in an 

e1asto-p1astic 'finite element analysis of Vierendeel trusses. The 

effect of the joint flexibility on the truss behaviour is investigated. 

Also considered is a comparison between trusses possessing sin~le chords 

and those possessing double chords • 

.r-. 

Another aspect of this investigation is to predict upper bound 

capacities for the double chord joints due to branch moment or punching 

shear. The yield line theory has been utilized for this purpose. 
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The experimental part of the study involves the testing of ten 

double chord joints. Results of these tests along vith other available J. 

expe~imental data are used in examining the validity of the analytical 

models that have been developed. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

The use of hollo~ structural sections (aSS) in Vierendeel 

trusses and other framed structures has gained wide acceptability. in 

recent years. This is attributed mainly to the extensive research in 

the past fifteen years which has allowed a better understanding of the 

joint characteristics in ass construction. 

\ 
Hollow structural 

I 
sections have many advantages over other 

I, 

Their geometrical shape effectively resists conventional sections. 
\ , , 

torsion and out-of-plane forces( the exposed sUrfacel area is much less 

~} than that of other s~pes, thus reducing the cost OJ protective coat

ings; their clean lines and smooth surfaces permit architects to 

visually integrate the structure with interior building decor or with 

exterior lands,capes. 

Structures utilizing rectangular hollow sections (RRS) have the 

added advantage of ease of fabrication. Straight end cuts and simple_ 

fillet welding are normally sufficient for attaching connecting members 

together and are performed at low cost. In fact, Vierendeel girders are 

particularly attractive both from the point of view of fabrication and 

appearance. 

- 1 -

• 
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The IIIlst cOlIl!lX)n type of RHS construction utilizes single chord' 

, 
joints. However, a ma.jor disadvantage of this concept is that direct 

welding of ,the branch's end to the flat flange of the chord produces a' 

flexible and weak joint unless the framing sections are of, approximately 

equal size. Ahother constraint in using single chord HSS is the practi-

cal a~pect of connecting tile branch to the chord. When welded connec-

tions are used the web member should be 25· to 50 mm narrower in width 

than the chord so that fillet welds can be useei'". If the wel;> and chord-, ........ , 
members are of the same width, a difficult butt weld would be required 

resulting in a higher cost detail. In heavily loaded trusses, some form 

of joint, reinforcement is often. necessary to develop the full strength 

of· the web members and stiffer joints. 

In Canada, the' largest size of RHS produced is 304.8 x 304.8 x 

12.7 nm which imposes" a major' restriction on the maximum unsupported 
~ 

span.. For example, roof trusses with normal'span to depth ratios of 8 

to 10,· and subject to normal loads, csnnot be expected to span IIIlre than. .' 
30 metres • Howevell;, longer sp~ns would give greater interior design 

flexibility within buildings and improve the competetiveness of HSS. 

Such appesrs to' be the potential for the double chdrd HSS trusses -.. 
utilizing Tor K joints. This concept involves the use of two square or 

rectangular chord members placed back-to-back and detailing the connec

tions as for the single chord c~e. 

The~e appears to be a number of advantages to using such a joint 

configuration. It provides for ease and economy of fabrication and has 

the potentiaL for efficirnt joint design. A large portion of the bran'ch 
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member forces, as will be shown, are transferred directly to the inner 

webs of the double c~rds, whereas the connecting flange of the chord 

member must transfer these forces in the case of the -s'ingle chord. 
( 

Consequently, the double chord will be shown to provide a much stiffer 

~ and stronger jOint than a single chord of equivalent. properties. In 

addition, the double chorjl would require less, if any, lsteral bracing 
• 

, due to its inherent Lateral rigidity. 

II 

However, before double chord truss systems can be employed in 

general use, research must bE;.. undertaken on the behaviour of the joints 

through which the. member forces must be transferred. The investigation 

described in this thesis, therefore, focusses on the connections, ra~her 

than the members. 

1.2 Literature Review 

A considerable amount of research has been accomplished .on 

single chord' HSS ~onnections using circular ngular HSS. The 

follOwing presentation will deal only with co T config-

uration and in which the chord and branch members are made of rectangu-

lar or square HSS. 

Research on HSS welded joints began at Sheffield University in 

the early 1960s. Mee [3] undertook research on the strength of T-joints 

under punching shear and tested 18 specimens with varying branch-to-

chord width ratio. He found that the joint strength and stiffness .' 
increased considerably with higher width ratios. He also carried out a 
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.' 

theoretical analysis of the elastic punching shear characteristics of 

the joint by treating the co,nnecting, chord face as a 'laterally loaded 

thin plate and analyzing it using the finite difference method. ~dwood 

[2, 15] was the, first to propose a theoretical IIIldel of the jOint in 

Which he assumed the inclusion between the branch and the connecting 

chord face to be rigid. The elastic rotational supports along the 

longitudinal edges of the loaded plate, provided by the two walls of the 

tube, were accounted for through' an empirical formula established by , 
Jubb et al • [11] • Mansour [16] improved upon Redwood' s mdel. by 

introducing uncoupled elastic springs along the iongitudinaledges of 

the plate. His evaluation of the spring coefficients was based 'on the -flexibility analysis of a simplified IIIldel. Most recently, El-Hifnawy 

[22] 'p~posed an elasto-plastic fidlP!:e element UDdel which incorporates 

coupled boundary springs. However, she assumed these springs to remain 

elastic throughout the analysis. 

Patel et al. [5] reported test results for eighteen single chord 

T-join~s under direct punchinl!i shear. They concluded that ,less than 

full-width joints are undesirable for heavily loaded systems due to the 

I 

large displacements asspciated with ultimate joint capacity thus/,--, 

rendering an inefficient structufe. Extensive experimental ·data on T

joints under branch UDments have also been reported by Korol et Ill. 

rl], Hang [4], Brady [10] and Kantani et al. [14]. It is conclud~d in 

reference [14] that the flexural failure of the chord flange governs-the 

joint strength when the ratio of branch width to width of flat portion j 

of the chord flange. is less than 1.0. If this ratio is larger than 1.0, . 

failure will be either due to web crippling of the chord member or 

" ... 
; 

, 
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flange buckling, of the branch member depending on the relative slender-

ness of the t:"" members. 

Mouty [12] worked out theoretical formulae for the calculation 

of the ultimate strength of single chord T-joints due to branch ""'ment 

or punching shear. 'Based on experimental results, he proposed a simple 

• 

~
ld line model for both cases. Using the upper bound limit theorem, 

h obtained a failure mechanism and calculated the ultimate capacity as 

a nction of the dimensi~ns of the chord and the inclusion for a given 

Yiel~ Acceptable correlations with experimental joint 
-... 

strengths at small deformati\t\!I_ were obtained. Korol, Mitri and Mirza 

[23] extended M:>uty' s ""rk to include plate reinforced T-joints·.They 

concluded that the optimum plate" size is obtained if its width is. equal 

to the width of the flatportif'n of the chord flange and its length is 

twice the chord width. eNo ""rk has been reported on the interaction 

between the branch "",ment and punching shear and the joint behaviour 

loading are present. 

The concept of double chord RHS T-joint -was first proposed by 

Chidiac and Korol [7]. who tested four double chord RHS T-joints as part 

of an experimental investigation; They concluded that greatly improved 

connection strength .and stiffness characteristi'cs could be achieved if 

,two chords placed back-to~back were welded together 'along their adjacent 

corner edges for a short distance from the centre line of the joint • 
• 

The i~provement in' performance may be expl.a.ined by the fact that, as 

opposej-,·to\the s:l,ngle chord joint, -a large portion of the branch load is 

/ , 

transrerred \~irectlY 

1- ) 
through membrane action to the inner webs of the 

• 

, 
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chord members. No analytical work on this j oint type appears to have 

been undertaken. 

1.3 Objectives and Scope 

This study is concerned with investigating_ the behavioural char-

acteristics of double chord and s~ngle chord RHS T-joints. Three types 

of loading~ namely branch moment or punching shear or a combination of 

the two, are considered. A theoretical analysis scheme involving 

elasto-plastic finite element modelling of the two joint types is 

developed and verified. In addition to experimental data available in 

the literature, a total of ten double chord T-joints were tested. The 

strength and stiffness of the joints are compared with experimental and 

yield line results in order to examine the validity and accuracy of the 

f~ite element models. 
~ 

The followi-ng is the organization of the material presented in 

this dissertation. Chapter 2 contains detailed descriptions of analyti-

cal modelling of the joints and loads. The finite element formulation 

of the models is'presented in Chapter 3 along with the solution tech-

niqu~ employed in solving the system of non-linear equations. A des-

cription of the experiments on double chord joints and test results are 

gi,ven in Chapter 4. Chapters 5 and 6 present parametric analyses of 

double chord and single chord joints respectively, in which five gec-

metric' non-dimensional parameters are identifed. 

parameter on the joint behavior under moment or punching shear is des-

cribed by. a set of load-deformation curves. In addition, analyses of-

• 
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joint behaviour under combined loading are also given. Yield line solu-

tions for mment and punching shear capacities of do-uble chord connec-

tions are presented in Chapter S. 

A standardization scheme of joint characteristics is introduced 

in Chapter 7. Analytical formulae employing this scheme and the para-

Metric analysis results of Chapters 5 and 6 are used tc> describe the 

f 

joint stiffness and strength in terms of its ~ometric and material 

properties. Validity of these formulae is tested by comparison with 

experimental and yield line results. 

r , 

into 

The above~ti~ned standardized formulae are then incorporated 

an elasto-Plas~Uinite element mdel for Vierendeel trusses that 

takes into account the flexible RHS T-connections. The model developed 

for this purpose is outlined in Chapter 8. Included also are case 

studies of a number of single knd double chord trusses. 

Finally. Chapter 9 provides a summary of the results from the 

present investigation with a presentation of the overall conclusions and 

recommendations for future research. 

• 



CHAPTER 2 

ANALYTICAL MODEL.1.ING OF T-JOINTS 

2.1 Introduction 

Analytical'models for both double chord and single chord RHS T-

joints are presented in this chapter. In both cases, the joint can be 

unreinforced or reinforced by a chord f;I.ange plate, as shown in Figs. 

2.1 and 2.2. In double chord joints (Fig. 2.1) ,_ the chord member is 

composed of two back-to-back rectan!Nlar tubes which may be welded 

together along their adjacent edg~s for a central distance. 

A properly designed joint should be capable of transferring the 

maximum branch forces to the chord without excessive localized deforma-

tions or failure. In order to satisfy this design criterion, and 

whether the joints ought or not to be reinforced, it is necessary to 

For this understand the behaviour-al characteristics of such joints. 

reason, the analytical modelling is attempted and presented here. 

( 
Clearly an "exact" analysis for determining the stiffness and 

strength characteristics of the above-described joints would involve a 
r 

three-dimensional analysis. It would necessitate a large storage 

requirement and a major allocation of computer time. Consequently, such 

an approach was not undertaken. 

- 8 -
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In this study, the joint behsviour is simulated by a two-dimen-

sional model. The top flanges of the double chord member are treated as 

a thin plate supported on sets of coupled translational and rotational 

springs along the longitudinal direction. These springs represent the 

restrainhlg effect of the remainder of the chord section on the top 

flanges. The branch loads are modelled by line forces acting along the 

perimeter of a- rigid inclusion representing the intersection area of the 

top flange and the branch member. 

In al joint analyses, material is ,,:,sumed linearly elastic up 

to yield and plastic beyond the yield point. Furthermore, the deforma-

tions are assumed small and hence, the geometric nonlinearities are 

neglected. This latter assumption is believed to be very reasonable as 

the models to be presented are not meant to simulate failure mecha-

nisms • 

2.2 Ibdel of Double Chord T-Joints 

The geometry of a typical double chord T-joint is defined in 

Fig. 2.3. The 'chord and branch members are. assumed to be fabricated 

from two RHS of dimensions hO x b
O 

x to and one RHS of dimension~ hI x 

b
l 

x t
l

, respectively. Geometry of the stiffening plate, if present, is 

defined by its lengthh , width b , and thickness t • . s s s 

Idealization of the joint in the transverse direction is indi-

cated in Fig. 2.4. It involves treating the flat portion of -the chord's 

top flange as a thin plate supported along the longitudinal edges (A' & 



- 10 -
> 

F' in Fig. 2.4) by coupled springs. These edge springs (two transla

tional and one rotational along each edge) simulate the restraining 

effect of the remaining section (frame ABCDEF) on the top plate. 

Because of the localized nature of the joint behaviour, it is necessary 

to eliminate the effect of overall bending of the chord member in the 

longitudinal direction. Thus, in order to eliminate contributions to 

the vertical displacement and rotation of the joint arising from overall 

bending, rollers R are introduced at points D as shown in Fig. 2.4. It 

should be noted that the chosen locations of rollers R are symmetric 

about the joint centreline due to symmetry of the joint geometry and 

loading in the transverse direction. The choice of placing the rollers 

underneath the centerline of the inner webs is based on the fact that 

these webs are very stiff in their planes and, under membrane forces, 

will behave as deep beams without any significant out-of-plane deforma

tions. It was also observed that additional rollers at points C (Fig. 

2.4) have no significant effect on the joint behaviour. The area of the 

top flanges inscribed by the branch member is modelled as a rigid inclu

sion having the outer dimensions of the branch cross section. Rigidity 

of the inclusion is achieved by taking its thickness as, say, 1000 times

the flange thickness. 

It is readily seen that the connection is symmetric about both 

vertical, longitudinal and transverse planes when analyzed under punch-

ing shear. It is also symmetric about the longitudinal vertical plane 

and anti-symmetric about the transverse ,J.;tical plane when analyzed 

under branch moment. Therefore, only one-quarter of the jOint needs to 

be modelled under either type of loading. Evidently, there is only one 
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plane of symmetry (transverse vertical) when a combined loading is con-

sidered, and hence one-half of the joint is analyzed in this case. 

Under any of the loading conditions discussed above, transverse symmetry 

exists and, therefore, only one-half of the -joint cross section is con-

sidered in the model. 

The right half of the i'dealized cross section is shown in Fig. 

2.5. Both membrane and bending actions are considered in the analysis 

of the top flange plate. The edge springs supporting the top flange 

plate correspond to in-plane degree of freedom (DOF) v, and out-of-plane 

DOF's w and 9 as indicated in Fig. 2.5. Superscripts r and .I. denote 

right and left edges respectively. The spring coefficients per unit 

length are then determined through stiffness analysis of the plane frame 

ABCDEF made of the top rounded corners, two webs, and bottom flange. 

Centreline of this frame coincides with the centreline of the RES and 

has a uni t length perpendicular to its plane. Because material non-

linearities are incorporated in the analysis, the tangential stiffness 

of the frame (and thus of the springs) shall be determined by numerical 

. 
integration. This is accomplished by dividing the frame into a number 

of beam-column elements. It has been idealized by eighteen elements 

with three DOF's at each node. The distribution of elements and their 

lengths are chosen according to expected stress levels in different 

parts of the frame. 

The frame stiffness matrix (54 x 54) can be obtained in terms of 

geometric and material properties of the hollow sections; the task then 

. 
reduces to incorporating the proper boundary conditions for the frame so 

, 
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that it will appropriately model the influence of the remaining section 

on the top plate. The six by six spring coefficients matrix sought can 

then be obtained from the overall frame stiffness matrix (54 x 54) in 

the following manner. 

(1) Apply the appropriate boundary conditions, as will be explained 

later. 

(2) Set degree of freedom (DOF) 1 (Fig. 2.5) equal to unity while 

restraining DOF's 2 to 6. 

(3) Eliminate DOF's 7 to 54 through matrix condensation and solve 

for the holding forces along DOF's 1 to 6. These forces repre

sent the first column in the required matrix of spring coeffici-

ents. 

(4) Repeat steps (2) and (3) for DOF's 2 to 6, one at a time, to 

obtain columns 2 to 6 of the matrix. 

This procedure will be explained further in Section 3.3. 

Boundary conditions for modelling the double chord RRS member 

are presented below. 

(1) Set the displacement at DOF 32 (roller R) equal to zero. 

(2) Restrain DOF 31 (horizontal movement at D) if the two chord 

members are welded st the bottom. 

, (3) Restrain DOF 52 (horizontal movement at E) if the two chord 

~mbers are welded at the top. 

(4) Restrain DOF' s 31 and 52 if the two chord members are welded at 
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both top and bottom. 

It is worth noting that different constraint conditions can be 

imposed along the connection length as necessitated by the amount and· 

type of weldment applied. In order to account for the plate action, the 

frame element flexural rigidity, EI per unit length, is then replaced by 

'Et3 
o the plate flexural rigidity 0 - 2 ,to being the chord thick-

12(1 - v ) 

ness, E the modulus of elasticity and v Poisson's ratio. 

At this stage, it is obvious that one would obtain a coupled six 

by six edge spring stiffness matrix in contrast to the simplified models 

of uncoupled flexibility coefficients used by Redwood [2J and Korol and 

Mansour [6]. In all the test cases studied, it was observed that many 

of the off-diagonal terms the matrix were either of the same order or 

larger than the corresponding terms. Some numerical examples 

of the edge spring stiffness in reference [25]. 

This. of course, confirms the e istence of strong coupling among the 

spring stiffnesses • 

• 

A schematic representation of the top flange plate and boundary 

springs presented above is shown ~n Fig. 2.6. Only one-quarter of the 

connection iSlmodelled. A plate length of five times the branch height 

(- 5h
1

) is used. This has been found to be the minimum length necessary 

to make the end conditions of little Significance on· the joint behavi-

our. Therefore, the transverse edges of the plate are assumed simply 

supported. Also shown in Fig. 2.6 is a typical boundary spring element 

/ 
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ABCD. The function of this newly-developed element is to incorporate 

the stiffnesses of the edge springs 'into the joint' s overall stiffness 

matrix. Derivation of this element is based on the principle of virtual 

work. The displacement fields of the plate elements adjacent to edges 

AB and CD are also employed in formulating the boundary spring elements. 

This helps maintain the same compatability as employed for the plate 

elements; It can be observed that the boundary spring elements bridge 

across the plate edges in a wrap-around fashion. Detailed derivations 

of the different elements employed in the current investigation are 

presented in Chapter 3. 

2.3 Degeneration of Double Chord to Single Chord T-Joint Model 

Ceometry of a single chord T-joint is defined in Fig. 2.7. The 

chord and branch members are assumed to be fabricated from RHS having 

dimensions hO x b
O 

x to and hi x b
1 

x t
1

, respectively. Ceometry of the 

stiffening plate, if provided, is symmetrically positioned on the flange 

plate having dimensions h ,b and t. These connections can be IIDdel-
s s s 

led in exactly the same manner as was described in Sec. 2.2 for double 

chord T-joints. 

The idealized cross section of a single chord T-joint is shown 

in"Fig. 2.8. Again, it involves treating the top flange as a thin plate 

suppo rted along the longi tudinal edges by coupled translational and 

rotational springs as shown. The tangential spring coefficients at any 

load level are determined through stiffness analysis of ,the U-shaped 

frame ABCDEF of unit width. Rollers R are introduced at points C and D 
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to eliminate contributions to the vertical displacement and rotation of 

the joint due to overall deflection of the chord. As for the double 

chord joint only one-quarter of the joint needs to be analyzed when 

either moment or punching shear loading is considered. The right half 

of the idealized cross section is shown in Fig. 2.9. In order to pre-

serve symmetry, zero rotation and horizontal displacements are imposed 

at point G, the middle point of the bottom flange. Frame ABCG of Fig. 

2.9 is modelled by 10 beam-column elements and 11 nodes with 3 DOF's per 

node. 

It may be observed that a close similarity exists between ~the 

models of double chord and single chord joints. In fact, the finite 

element formulation of the former can be easily degenerated to allow 

analysis of the latter. This has been done in the present study as will 

be demonstrated in Chapter °3. It may also be pointed out that the frame 

for double chord joints (Fig. 2.5) can also be used to determine the 

spring stiffness coefficient matrix of single chord joints after apply-

ing the appropriate boundary conditions. The disadvantage of this 

approach is the need to analyze one-half, rather than one-quarter, of 

the connection. Following the procedure of Sec. 2.2, the three by 

three spring coefficient matrix can be obtained from the overall frame 

stiffness matrix (33 x 33) as follows. 

(I) Apply the appropriate boundary conditions, 8S will. be explained 
" .; 

later. 

(2) Set DOF 1 (Fig. 2.9) equal to unity while restraining DOF's 2 

and 3. 
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(3) Eliminate ooF's 4 to 33 through matrix condensation and solve 

for the holding forces along DOF's 1 to 3. These forces 

represent "-he first column in the required matrix of spring 
~ 

coefficients. 

(4) Repest steps (2) and (3) for ooF's 2 and 3, one at a time, to 

obtain columns 2 and 3 of the matrix. 

Boundary conditions for modelling the RHS chord member are 

presented below. 

(1) Set the displacement at DOF 26 (roller R) equal to zero. 

(2) Set the horizontal displacement and rotation at point G (ooF's 

31 and 33) equal to zero. 

Again, strong coupling amongst the spring stiffness coefficients was 

observed in all test'cases, as reported in reference [25J. 

Clearly. the schematic representation of the double chord model, 

as shown in Fig. 2.6, is also valid for the single chord model described 
... 

above with modif.ications. The edge springs in the latter model act 

along edge CD only. Detailed derivation of the boundary spring elements 
=-- -is presented in Chapter 3. 

\' • 
2.4 Jobdelling of Matedal Properties 

>, 

• 
In this study, material used for the joints is s~ctural carbon 

steel. The material prop:rties. 'fhich' are very impo\tant from a jo:j.nt 

/ 
/ 

/ 
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behaviour point of view can be obtained from a· tension or compression 

test on a small coupon of the material from which the ,chord members are 

made. Such a test furnishes stress-strain curves. Typical curves for 

structural carbon steel may be idealized by a tri-linear 'curve as shown , . 
in Fig. 2.10. In this curve, the stress is proportional to strain with 

slope E up to the yield stress ay following which the curve exhibits a 

pronounced plastic plateau until a strain EST is attained. Subse

quently, strain hardening behsviour develops with strain-hardening 

However, in the interests of a mre simplified mdel, the 

stress-strsin curve will be simplified to bi-linear behaviour consisting 

of the elastif line of slope E and the strain-hardening line of slope 

E
T

, the tangent mdulus (Fig. 2.10). 

GalambOs (17) has· suggested the follOwing values for structural 

steel: 

/ 

.,. .~ 

If the maximum strain is taken as £max - 30 £y' then 

- 0.025 E 

The following numericsl values of the material glnstants have been 

assumed in the anal sis. 

: 

• 

I 
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E - 200,000 MFa, ET - 5,000 MFa, cry - 345 MFa, and Poisson's ratio, 

v - 0.30. .~ 

Furthermore, the joint ~ is a!sumed isotropic; its 

elasto-plastic -stress-strsin relations are characterized by the Von-
• 

Mises' yield criterion and its associated flow rule. These assu'!'ptions 

are usually made for metallic materials [8]. 

, 
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FINITE 

Introduction 

CHAPTER 3 

~ 
./ 

FORMULATI~N OF JOINT ~; 
NONLINEAR SOLUTION TECHNIQUES 

.. 
The finite element method is a convenient and powerful tool for 

analysis of problems in continuum mechanics with complicated boundary 

conditions and loads. Since its development during the late-fifties and 

early'sixties, the method has been appiied to ~ wide variety of problems 

with excellent success. One of the greatest virtues of the method is , 

its capability of handling complicated geometries and varying material 

properties. While analyses of linear prOblems are relatively straight-

/' 
forward, the nonlinear problems are considerably DlH"e difficult, and 

require intelligently thought' out numerical algorithms for nonlinear 

analysis which 'are beyond just the finite element discretizations of 

such pro blems • 

The basis of the analysis to be presented in this chapter is the .. 
mo,delling of the top flange plates of the chords by' an assemblage of 

recta!lgular finite elements .. which incorporate both membrane and 'plate 

bending actions. The eight degrees of freedom, rectangular plane stres,s 

element and the twelve degrees of freedom, non-conforming rectangular 

plate bending element [8), [19) are employed. The res,;,lting element has 

- 29 -

\ 
• 
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five degrees of freedom Cu, v, w, ex - ;;, e y - - ;~) per node. The 

first two are displacements in the x and y directions due to membrane 

action while the other three are displacement in the z direction and 

rotations about the x and y axes due to plate bending action, respectiv-

ely. 

....... 
Boundary spring elements are develo~ to incorporate the 

restrainin~ effect of the remainder of the chord section on the connect

ing top flange plate. To maintain crompatibility along the 'longi'tudinal 

edges of the chord, interpolation functions' of the plate elements adja-

cent to the edges are used in formulating the stiffnesses of the bound-

ary spring elements. ,Three different approaches for formulation of 

these elements will be examined. 

.7 

Due to the presence' of material nonlinearities, the discretized 

equations of equilibrium have 
, ) 

been developed in"'an incremental fJim 
, /' 

using the principle of virtual work, For each load increment the 

Newton-Raphson iterative method is used to solve for the nodal displace-
-, 

ment increments as strain and stress increments at ·tlft! integr,a-

tion points of the top flange and the rest of the double'or single 

chord section. 

J" 3.2 Finite Element Idealization of Top Flange Plate 

• Analytical models of the top flange plate for double and single 

chord HSS T-joints were presented in Sections 2.2 ~nd 2.3, respectively • • 
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Finite element discretization of both models is shown in Fig. 3.1. One-

quarter of the top flange plate is modelled by a mesh of 8 x 13 rectang-

ular elements of the type described in Section 3~1. The mesh gradually 

becomes coarser farther away from the zone of high st,..ess gradients 

adjacent to the branch inclusion. The plate thickness within the branch 

.inclusion is taken as .one thousand times the HSS thickness to represent 

-/_ .... , 
a. relatively much larger stiffness fox: rigid plate action. Overall , 

dimensions of the plate have been defined in Secf-'ion 2.2. Other charac-

teristics of the finite element modeUre as shown in Fig. 3.1. 

The boundary conditions that should be incorporated in the 

finite element model vary according to the type of joint and loading. 

Boundary condit~s corresponding to the .branch moment or punching shear 

are listed in T",ble 3.1 for a double chord HSS T-joint. When these 

joints are zed under combinations of moment and punching "shear, 

of the joint behaviour in the longitudinal 

direction is no longer present. Hence ~ne-half of the joint must be 'C \~ . 
modelled when combined loads are considered. The finite element mesn 

employed for this analysis consists of 8 x 14 elements as shown in!ig. 

3.2. Characteristics of the mesh. are similar to fhose of the former 

mesh. Its boundary conditions are given in Table 3.2. Eviderttly, the 

mesh of Fig. 3.2 is about twice as coarse as that of Fig. }.1. 

When a double chord joint is analyzed under a branch moment, its 

behaviour s to be characterized by a moment-rotation (M-~) diagram, 
I 

of the rigid inclusfon as 

the joint behaViour\ under 

where ~ is rotation indicated in Fig. 3.3(a). 

On the other nd, punching-shear is deter-

) 



• 

• 
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mined by the load-deflection (P-o) diagram where <I is the transverse 

displacement of the inclusiou-as.indicated in Fi~. 3.3(b). ~ranch 
moments ~unching shears are idealized by line loads actin~ along the 

inclusion perimeter as shown in Fig. 3.3. The equivalent nodal forces 

in the form of a consistent load vector a~e then calculat~'d from these\ 

.line loads using the principle of virtual. displacement • 

... 
The eight degrees of freedom (DOF) re'ctangular plane stress 

elements and the twelve DOF. non-conforming, rectangular plate bending 

elements (19) have been used to model the top flange plate. Thus, t~re 

are twenty generalized parameters which can be determined in terms ofL 
t 

the nodal DOF. After solving for the generalized parameters in the 
~ 

. polynomial apprOximations in terms of the nodal DOF, and back s",bstitut-

ing into the polynomials; the following equations result • 

• 
4 

, u(l;. Tl) - 1: N (I;, Tl)u
i 

D.l(a)) 
i-I Pi / 

"" • c-J. 4? veE; , Tl) - N (f;, I1)V i (3.1(b)) 

I i-I Pi 

12 
~. 

~ 
w(I;, Tl) - 1: N (E;, Tl)~ r J 

(3.2) - . 
i-I bi bi 

The coordinates.1; and Tl it€ nondimensional with origin at the lower left 

corner of the elemen~ as shown in Fig. 3.4. N (I;, Tl) and Nb (I;, 11) 
Pi· i 

are the sha,pe functions ... ..fo;:. in-plane and. out-of-p.lane displacements. 
/ .J 

\ 
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'" ,/ 
respectively. These are listed in Appendix A. ui and vi are the in-

plane displacements and 0b are the out-of-plane 
i 

tion degrees of freedom. Equation~3.l and 3.2 

following matrix form 
'> 

{

U(f;,· n)} 
v(f;, n) 

w(f;, n) 
- {o I e 

r 
where the shape functions matrix [NI· is given by 

~ 
N ''0 0 0 0 I N 0 0 
Pl P2 

• I 
0& N 0 0 0 0 N. 0 

Pl P2 

0 0 Nb Nb Ni,' 0 0, Nb 
1 r 3 

[NI -
N O· 0 0 0 N 0 0 
P3 P4 

• I 

4 

0 N 0 0 0 0 N o· 
P3 P4 

displacement and rota-

can be written in the 

(3.3) 

0 0 

O· 0 

Nb 
5 

Nb 
6 

0 0 

(3.4~ 

0 0 
• 

0:) _. 0 N b N b N b'. 0 0 N N . N 
7 8 9 blO bq bl2 

• 
• and the disp~cement vector to .J is as follows: 

.~ 

••• 

= 

~.5) 

The strains within the element are. related· to 

--. 

/ 

J 

. r 



~ 

.. 

- 34 -

displacements by the following equation; 

a 
0 

a
2 

e: ax - z -2 u 
xx ax 

Ie:} - 0 
a a

2 
[L] (3.6) e: - ry - z 

a'y2 - v 
yy 

a a 
a

2 
y ~z axav II II 

xy ry ax x y 

Ilhere {£ } is the column matd)t of strains • Substituting Equation 3.3 

'into Equation 3.6 yields 

Ie:} - [L] [N] {O}-[B] 
e 

{a } 
e 

(3.7) 

Ilhere [B] is called the strain matrix. The element stiffness matrix 

[k
e

] is given as 

[ke ] _ f [B]T[D] [B] dV 
V 

, 

( 
I 
I 

(3.8) 

Ilhere integration is perfo~d over the element volume. The compliance 

matrix [DJ is defined in Section 3.4 •. Since the formulation is nonlin

ear, [ke ) is evaluated numerically. It can be sholln that the 3-point 

Gauss quadrature numerical integration, applied in each of the three 

directions ~, ~ and z, suffices to evaluate Equation 3.8 exactly in the 

elastic range [8],[19]. Rence, using the coordinates of Fig, •. 3.4, 

Equation 3.8 is integrated numerically in the following manner. 

";1. 

'.' 
',' 

.' 
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iWiWjWk[!l(~i' nj' 

, (2{)c 3) 

(3.9) 

and the weighting functions and nlDDerical integration points are as 

defined below. 

[ WiT _ < 2 8 2> 
9 "9 9 

T iT ---Iq - in - «0.5 - {0.15) 

JT -I Z - < -tr' 0.15 o 

(3.10(a» 

0.5 (0.5 + {0.15» (J.l0(b» 

(3.10(c» 

It may be noted that the strain matrh: [B) at an integration 

'\ ' 

point (~i' n j , zk)' remains co~stant throughout the analysis since the 

geometric nonlinearities are neglected., ~ a result, the ,[B) matrix is 

calculated at each of tne 27 integration points only once at the initial 

formulation of the problem. However; the compliance matrix [n), on the 

other hand, is updated for every iteration during the load increments 

when one or mo,e integration points are ,subject to stress levels past 
, ,.. 

the elastic limit. This is explained 1n Section 3.5 when ~ealing with 

nonlinear finite element analysis. \ 
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3.3 Finite Element Idealization of Webs and Bottom Flange -

Boundary Spring Elements 

Modelling the restraining effect of the rest of the section 

(webs and bottom flange) by boundary springs has been presented in 

Sections 2.2 and 2.3 for double chord and single chord T-joints, 

respectively. The finite element idealizations of these models, are 

presented in this section. 

The finite element idealization of the analytical model is 

explained for ~he double chord T-joint. The degeneration of the double 

chord model to a single chord T-joint· will be pointed out at appropriate 

st~ges. Consider the double chord model indicated in Figs. 2.5 and 2.6. 

The stiffness matrix [S) of frame ABCDEF is ~ size (54 x 54). The six 

by six matrix of spring coefficients [k ) can be obtained from [S) in 
s 

the following manner. 

( 

(1) Apply the appropriate boundary conditions to [S) as described in 

Section 2.2. 

(2) Express the frame equations of equilibrium in the form 

-
, 

S12 

(6 x 48) 

S22 

(48x48) 

(3.11) 
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where forces {fll and displacements {oll refer to DOF's 1 to 6 

while {fzl and {oZI refer to DOF's 7 to 54 (Fig. Z.5). 

(3) Eliminate DOF's 7 to 54 by keeping the corresponding forces {fZI 

at zero. This condensation process lesds to 

(4) The holding forces {fll given by Equation 3.12 represents column 

"i". of the required stiffness matrix [ksl when {oll consists of 

unit displacement at DOF "i" and zeros for th_e other five DOF's • .. ., 
Hence, this procedure is repeated six times to obtain all six 

columns. • 

. .. 
The procedure above is also valid in the elasto-plastic range in 

• 
which [SI represents the tangential stiffness of appropriate ~mbers of 

the frame which are subject to forces beyond the proportional range. 

The resulting [k I matrix can be written in the following form. 
s 

[k I rr [krL I 

(3x3) (3x3) 
[k I -s 

[kLrl [kU I 

(3x3) (3x3) 

(3.13) 

This is a synmmetric matrix and its positive definiteness can be easily 

verified from t~e boundary conditions imposed on the frame in Fig. Z.S. 

Coefficients of the submatrices [krrl or [kLLI represent the forces that 

• 

I 

~ 
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diS( would be required on the right or left parts of the frame if the , 
placements v, war e (1, 2, or 3) at right or (4, 5, or 6) at left 

x , were~ 
given unil: displacements, taken one at a time, while maintaining tlte 

other five displacements at zero. Similarly, the off-diagonal sub-

matrices [krt1 and [k
tr1 represent the forces that would be required on 

the right part due to a unit displacement imposed on a degree of freedom 

on the left part, and vice versa'. 

The elastic strain energy, UB, due to displacements of the .. 
boundary springs is 

or 
B 

1 f U
B • 2 

t 
e 01 

B 
~ 

T 
k 
rr 

·k 
1r 

where 1 is the length AB or CD of the 
e 

by }lte'Shadea;;;;a 
l). ( 

in Fig. 2.6 or Fig. 

( 
~J T 

{o r} <v
r r ar ) .. w 

~:I' -
x 

<v
1 1 a "7:-w B x 

o/r: 
B 

dx (3.14) 

boundary spring element indicated 

3.1 and 

(3.15(a» 

(3.15(b» 

., 

---Due to coupling of the boundary springs across edges ABand CD, computa-

tion of the strain energy involves displacements along both edges. 'The 
• 

shaded area ABeD, thus, represents the boundary spring element joining 

-' 

, 
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... 

edge AB to edge CD. Of course, it will be connected to the rectangular 

elements across the band ABCD, used for discretizing the top plate, at 

edges AB and CD. 
r r r 

The finite element approximations for v , w , e and _ x 
1. 

are so chosen such that these preserve the same continuity 

of as used for the 'rectangular plate~ elements. This can 

be accomplished by simply taking the', corresponding finite element dis-

placement fields along edges CD or 3-4 and AB or 1-2 for elements R and 

L in Fig. 3.1, respectively. Thus, the shape functions for both v and w 
~ 

along the right and left edges are identical, i.e. linear and cubic. 

respectively. Thus 

(3 .16(a» 

(3.16(b» 

2 r 
[-a~(l-~)le +[1 

Y3 

2 r 
- ~ (3 - 2 ~) lw 4 

(3.16(c» 

1. 2 1. 
w - [1 - ~ (3 - 2 ~)lwl + [a~ (1 -

(3.16(d) ) 

", -. 

, where ~ - x/a is the non-dimensional coordinate along the local x-axis 

, 
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of the plate element and, a, is the length AB or CD. Using the .expres

sions of Equations 3.16 to define ,the u and w displacements in Equations r 3.15 will ensure continuity of these DOF# along the edges. 

However, the lack of continuity of the normal slopes along the 

plate edges and its dependence on DOF of the interior nodes causes some 

complications. For example, at along edge 1-2 of element L in Fig. 3.1 
x 

is given as: 

at _ 

x 
[_1 {~_ ~2(3 
bt 

- 2 0 Ilw~ + [1 _ ~ lat of-
. xli 

[~ ~ 
bt 

(1 _ ~2)lat . 
Yl 

+ 1~3 bt 

~ 

t [qat - 2~) - ~llw2 + + x
2 

I ta 
- 2~) - ~ lW4 + [- - ~ (1 bt 

a 2 
[- - ~ (1 

>l>t 

2 t 
- ~.) 1 a • 

Y4 

- ~) 1 at 
Y2 

(3.16(e» 

and An exact mirror image 

exists for element R. Because hf discontinuity of the slopes normal to 

the edges of. nonconforming plate elements already employed, one can 

incorporate 'further simplificstions thus rendering the following three 

optio1\s. 

\ 
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(1) Use linear interpolations for approximation of the normal 

( 2) 

slc5"pes, i.e. 

(3.16(f)) 

Linear approximation of e instead of the cubic in Equation 
x 

3.16(e) implies a stiffer boundary spring finite element model. 

U~e a single element across the top plate width, i.e. 

bi. - a 1 + li2 (Fig. ,3.1) in Equation 3.16(e~ allow a 

cubic variation in e and el~e its dependence on DOF of the 

internal nodes. Th:s 'oPti~~ is expected to yield a more flex-' 

\ble model than option (1). 

(3) Approximate the normal slope e within both elements R and L 
x 

using full Eqwttion "3.16(e). This, of course, would yield the 

most flexible boundary spring model because of its ab'il1ty to 

deform more readily than the previous two options. 

Obviously, options (1) and (2) yield a stiffness matrix of size 
, 

16 x 16 for the boundary spring element whereas option (3) yields a 

24 x 24 matrix. 

Option (3) 'has been used for formulating the boundary spring 
" 

finite elements employed in the analysis to be reported. After substi-

tution of Equations 3.16(a) to 3.16(e), E~ation 3.15 becomes 
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{or) 
B - [N ] r 

{ oer) 
B 

(3.17(a» 

(3x 1) Ox 12) (l2x 1) 

{oil 
B - [Ni ] { oei) 

B 
(3.17(b» 

(3x 1) (3x 12) (l2x 1) 

where [N
r

] and [Ni ] contain the appropriate shape functions for v, wand 

-fer) lei) 6 x on the right and left edges, respectively. 0B and 0B are vec-

tors of active nodal DOF for elements Rand L, respectively; i.e. 

(3.18) 

e 
The required stiffness matrix, denoted [k ], for the boundary spring 

's 

element is derived using Equations 3.14 and 3.17 as 

-
1 [N ]T [a] k kri [N-] [a] 

r rr r 
[ke ] _ a f d/;. (3.19) 

s 
[N ] T a [ a] kir kU [OJ [Ni ] i 

(24x 24) (24x6) (6x6) (6 X24) 

The stiffness matrix [k
e

] above enables one to incorporate the restrain
s 

ing effect of the rest of the section (webs and bottom flanges) on the 

top flange in the present finite element IOOdell1ng of double chord RHS 

." 
T-joints. 

'. 
Precisely the same' procedure can be used to derive the equiva-
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e 
lent [k I stiffness matrix for a single chord RHS T-joint. The model 

s 
, r r 

for this case involve,s boundary springs in the dkections of v , w and 

r e only (Fig. 2.9) and, of course, the proper boundary conditions. 
x 

Hence, ,it can be easily shown that the stiffness matrix of the boundary 

spring element for the single chord model is given by 
• , 

1 

[k
e 

I s - a'J [N IT 
r [krrl [Nrl d~ • 

0 

(l2x 12) (12x 3) (3x 3) (3x 12) 

e In both cases, the matrix [k I is computed using numerical 
s 

(3.20) 

e 
It should be mentioned that the formulation of [k I as given " s 

above is valid in the elastic as well as the elasto-plastic range of , 
loading. Material nonlinearities at any load level are incorporated in 

the fo,,;:mulation through using the tangential stiffnesses of the edge 

springs in [k I. Furthermore, the in-plane and the out-of-plane'actions 
s 

of the top flang~ are uncoupled without the boundary springs. 

• However, incorporation of the coupled edge springs results ip the coup-

" 

ling of the two actions prior ,to onset of plasticity. 

3,4 Compliance Relationship for Etasto-Plastic Analysis 

" 

.~e joint material (ste,l) is assumed isotropic, linear elastic 

up {:o the yield limit, and linear strain-hardening thereafter. 'The 

Von-Mises yield criterion and the 

, ') 
J 

associated flow rule have 
~ 

been 
V 
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,.. 
employed here. According to tnfs yield criterion for plane stress prob-

lems" yielding begins when th~ effective stress a exceeds a certain 

limit, where [181. [271 

1 . -(.~.~ - .~'";' ~. 
Differentiation of both 

deviatoric stresses 

/" 
t/ 1 ' 

a - -(20' 
"X 3 x 

(3.21) 

", 
of Equation 3.21 and substitution of the 

" 
T - T XY, xy 

1 , (3.22) 

'. leads to the following \ 

r • 

dO' 
x 

dO' y -

The pra~s relations 

(dEP} - < dE P 'dE P 
dY P > - (aO'} 

x y xy ra 

U 

(dO'} (3.23) 

state that 

'--"'" 

d€'P (3.24) 

... 
thus defining th, three plastic strain increments that result when the 

~~ -P 
\' effective plastic strain increment dE ~occurs under a known state of 

\.--stress. ~ -' -. 

j' 
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Since th;l.s strain increment (d&} is the SUIII of its elastic 

r eL . (LP}, 1 ke' component J and its plastic component '" one can app y Boo s 

law -to obt n 
( 

I ""rlOj I ('" 'f - '0] ([ '" I - 1""11 (3.25] • 

,j} 
/ 

where (D) is the elastic compliance matrix. 
( 
~-

'~ relation that yields £P from the total strain increment (d&} 

i is obtaiFed by substituting Equation 3.24 into Equation 3.25, i.e. 

-P d& 

, 
; 

- T 
(~ (D) 

- ----';.;-'-::T:-----

a' + (~ (D) (~ 

, . 

, . -
( d& } - <w> ('d&} 

where a is the strain hardening modulus, i.e., 

curve, and is given by 
(' 

-T 
(~ , cJD ~ I dat _ 

a ---- '. 
£P diP 

where ~ is the tangent 
, 

I (3.26) 

-

the slope of - -P the a - & 

....... 

(3.27) 

An ,incrementa~s-strain relationship, anal~gous to HOoke's 

law but valid beyond the proportional limit, is obti1ned by substitution . , 
of Equation 3.26 in Equation 3.24 and the result into Equation 3.25. 

i, 

, , 
, , 

( 



1 

• 

\ 

, 

i 

" 

- 46 -

This relationship is given by 

(3.28) 

.~ 

where [D I is the elasto-plastic compliance matrix. ep . . For ~ane stress 

problems~EqUati:n 3.28 becomes [181 I 

E 
s2 

[ 
1 da 2 - -I symm. dE' x· 1 -. v S x 

SlS2 
2 

da [ 
VE 

[ 
E S2 

(3.29) - .. 2 --I . 2 -I dE y 
1· - v S 1 - v S Y 

SlS3 S2S3 'E 
S2 

3 dT --f [--I [2(1 + v) --I 4Y S S S 'XY 

~) 
, 

~ or. 

S\ . 
{da} - [D J{dE} 

ep . 

• 
where 

s -~ 

I I ~ 
S Slax' ~ S2ay + 2S3Txy (3.30(a» 

., 
t I 

b.30(b» (a + va ) 
x y 

-
E I I 

S2 - 2 (a + va ) (3'. 30( c» 
(l - v .) y x 

~ 

• 

\ 
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• 
.30(d». V 

' -~ 

In tC·elastic range, S becolI\es. infinite an~D .. as .. . ep . 

above,. redl'C,es to, the more familia~ elastic \co~nce ~:.~ 
Furthermor~, for plastic yielding (E

T 
- O),'the matri~ of Equatio 

renders no, numerical problems and has been used for elas 

! 

ysis of the T-joints in conjunction·with 'the Newton-Raphson method pre-

sentedin the next se!'tion. 

3.5 Nonlinear Finite El~nt Analysis, 

\ 

, 
No'nlinear analysis :;:)lves establishing the 

equilibrium equations through virtual >IOrk for each 

finite element 

load increment. 

These are then solved for the incremental displacements, strains and 

stresses. Since the displacement finite element method 1,.s used, the 

principle of virtual dispiacement has been employed to express equili

brium. Using the aqalytical models for' the double and single chord T-
-', . 

joints and their finite element fO~lations, the di~eretized equations 

of equilibrium after the nth load increment can be expressed in the 

following form (8~. 

(3.31) 

The vector {R } represents the consistent load vector due to surface 
n 

tractions (line loads along the-branch inclusion perimeter). For incre-

./ 

'~ 

• " 

, , 

" .. 

" 
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mental load .analysis, E3uation 3.31 takes the following form 

f [BIT {~a }dV - {~R } - 0 
V " n n 

(3.32) 

Obviously 'Equation 3.31 is' not satisfied exactly after perform-

ing a limited number of iterations and there. are undesired residual 

forces present. In order to minimize these residual forces and prevent 

drifting of the solution, the Newton-Raphson method is employed. and 

iterations are carried out within each load -increment., Hence,' during 

th th 
the n load increment and the m iteration, the residual forces are 

computed in the foll~wing manner. 

(3.33) 

The iterative Newton-Raphson equation can be written as 

(3.34) 

. m 
where the tangential stiffness matrix [K.r(~) I has been computed by 

assembling the individual stiffness matrices of all elements. It is 

imP,Orta~t to note that an individual stiffness matrix is computed 

through numerical integration by using twenty-seven integration points 

for the state of stress ~. Proper [D:I, elasti'c or elasto-plastic' 

matrix, is used depending on the stress level and the tangent modulus at 
\ 

each integr'!tion point. It may very well happen that within the same 
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element some integration points can be within the elastic range and 

others past the proportional limit. The residual' load vector in 

Equation 3.33. which can be controlled by specifying a certidn toler-

ance. is added to the next load increment (loR I at t,he beginning of m 
, n 

iterations. This prevents any further drifting of, the solution. 

) 

The incremental ~cements are computed as 

(3.35) 

• 
" 

and the incremental total strains and stresses at any point within an 

ele~nt are given by 

(3.36) 

(3.37) 

h { 'om I {,£m I {, m I h I w er~ "ne' "ne and "a ne are t.l1f..::ment IIO'dal displacements, 

strains and stresses at the chosen point~ctivelY. 

The strain matrix [BJ and the updated elastic or elasto-plastic 

matrix [D:J are functions of space (i.e., x, yand z or 1;, n and. 'i) and 

must be evaluated at the point where the ,strain ,and the stress incre-

ments are required to be computed. The updated element stiffness 

matrix [~(~) J is evaluated by using Eq:ation 3.9 and [D:J, the' elastic 

• 
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m 
or elasto-plastic compliance matrix determined for stress level a • 

41 

The Newton-Raphson iterative scheme above is illustrated graph i-

cally in Fig. 3.5 for a single degree of freedom system •. However, it is 

equally applicable to a multi-degree of freedom system. A brief des-

cription of the steps followed in the finite element computer program is - ( 
.as follows. V 

Suppose that at a load level {R }, the displacement vector {cO} 
. n n 

° and the stiffness matrix [kT(~)l of the system are known. ~ply the 

next load increment {~Rn} which brings the load level up to {Rn+1}' The 
.. ~ 

resulting displacement increment {~c } is computed in the foilow!ng n . 

manner. 

. , 
. . (1) After the Newton-Raphson iterative procedure has converged 

'- . th 
(within t~e specified tolerance) for the (n-1) load increment 

after m.iterations, assume that the residual forces are given by 

{'I':_1} acco.rding to Equation 3.33. The displacement increment 

, th 
due to first iteration for· the n load in~rement can be compu-

.ted from the following equation: 

where 
th 

is the (n+1) load increment. 

\ \ 
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The displacement vector is updated in the following manner. 

For each plate element, do the following: 

(i) Ext'ract' the element incremental nodal 

from {66 D} just computed. 

displacements {66 D } 
ne 

• ~ 

n --(ii) At-each integration (sampling) point (~i' ni , zi): 

- ~alculate the incremental strains via Equation 3.36 
• 

-' calculate the incremental stresses via Equation 3.37, 

" 

where the elasto-plastic compliance 

mined for the stress levels (aD) 
-<1 

at paint i with local 

- update the stresses at each integration point; 

, -
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- check for the compliance ~trix. 

J 
where a

i 
is the effective stress at point i defined in 

Equation 3.21.. 

If a i > a y at olle or more integration points. update the 

element stiffness matrix Ike] using Equation 3.9: 

Calculate tru! residual forces for a single element using 

Equation 3.33 and numerical' integration. 

- f 
V 

e 

., 

(4). For e.ach boundary spring element. do the following. . 

c 

(i) Extract the incremental nodal displacements for the ele-

ments L and R whicl) have COlIIIIDn edges AB and CD. respect-

ively. with the longitudinal boundaries (Fig. 3.1(a». The 

twelve relevant DOF are used for each element to express 

{6oi~1 and {6o~~1 in Equations 3.17 ~ncremental 

form. 

(11) R'ecall the coupled edge springs stiffnes.s matrix Ik ] 
s 

_ •• 1.1' , 



.\ 

\ 

.. 

- 53 -

described in Section 3.3 in which the stiffness oeffi-

cients are defined per unit length. Knowing the incre 
-~---

{ . .!.O} {rO} tal displacements AO Bn and AO Bn and ~sing the interpol-

ations in Equations 3.16, the displacement and rotation 

'increments can be determined at· the three integration 
. O' 

points (six per integration point, ~.e. {A0 1 ,n}i) along the 

edges AB and CD, respectively, but have been taken as con-

stant in the analyses to be presented in this theses. 
~ . 
Hence, a constant [k 1 matrix is required along edges AB 

s 

and CD. 

(lii) Nine integration points are taken for evaluating the stiff-

ness matrices for beam-column elements for the o-shaped 

frame of Fig. 2.5 to represent stiffness of the rest of the 

section. The previous [51 matrix (1.e. [S~]), with fifty-

four DOF's in Equation 3.11, is of course known. Using 

this and kno~ng the incrementS! displacements ~t DOF's one 

to six, the incremental displacements 
, 

determined for are 

'. 

the rest of DOF~s (forty-eight altogether) in the fOIIOwi~g~ 
manner. 

{AO O } 
o ,I 0 {M O } -- [S22n1i [S21n 1i . 2,n i l,n i 

(48X l) (48x48) (48X 6) (6x 1) 

This permits carrying out the incremental elasto-plastic 

analysis of the U-shaped frame in Fig. 2.5. 

(ivh Knowing 
. 

repeated 

{'t>o~;n}i' step (3). forr1ate element is 

for the beam-column .element of the frame. This 

... 
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is much simpler than the procedure followed for the plate 

element (i.e. instead of using [Detli or [D;pnli' the 

elastic modulus E or the tangent modulus ~ are used). 

(v) Once the incremental quantities have been updated, for the 

1 new stress levels, one forms the updated [Sn+lli at all i 

integration points. Following the procedure for determin-

1 
ing the [ksl matri~ in Section 3.3, the matrices [ksl i are 

obtained for use in f9rmulation of the updated boundary 

spring element matrices • 

. (vi) Use' the follow1n~ equation (numerical integration of 

Equation 3.19) to formulate the updated boundary spring 

(vii) 

element matrix. 

[k
e1 1 sn 

Note [NI -i 
i 

th is evaluated at the i 

integration point ~i where ~('and Wi are the same as 

defined in Equations 3.10. 

Calculate the boundary spring element residual forces 

• ) 
• 

where {f~,n+l}i are the internal forces (at the present 
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load level) that correspond to the U-frame nodal displace-

ments in Equation 3.18. 

(5) Assemble the global tangential stiffness matrix [kr(~)l and the 

(6) 

global residual force vector {,1} using both, the plate and the 
n 

boundary spring elements. 

Solve the following equation to'lietermine the next incremental 

displacement vector. 

(7) Repeat steps (2) to (6) until the' incremental solution for 

displacements is within '\he specified 'percentage tolerance Y 

which is calculated in .. the following manner. 

y - 100 x 

m m-1 
Det [K.r(~) I - Det [K.r(~ ) I 

Det [K.r(~-1) I 

(8) .f! . the percentage. tolerance is "within~e' prescribed value', ., 
apP,ly the next load increment and repeat steps (1) to (7). 

, 

The iterative procedure outlined above is commenced by formulat-

ing the system elastic stiffness ma~t~~~d applying an arbitrary magni-

tude'of the loads. The system is then solved for 'displacements, s~ins 

and stresses. The yield limit is determined by scaling the applied 

... 

, 



... - 56 -

loads such that ° at the most stressed point in the model (top flange 

and fr~me) exceeds the yield limit 0y. The same scsling factor ~s 

applied to the, calculated displacements, strains and stresses. Addi-

tional loads are'then applied in increments ss a pe,centage of the yield 
". 

load until stiffBess of the joint reduces significantly in comparison 

with its initial value where stiffness is defined as the slope of either 

the P~ diagram or the H~ diagram. 

The Newton-Raphson procedure outlined in this section requires a 

complete reanalysis of the system for every iteration. However, it 

allows application of the loads in relatively large increments. Fur-

thermore, the method converges in about two to three iterations for each 

load increment. For equal load. increments, the nlllllber of iterations 

required for convergence starts increasing rather· quickly as the P~ or 

H~ curve becomes flatter or the stiffness changes rapidly. This is 

usually a~ to decrease the load increments in this range to help 

redu~lIIIIber of iterations as would be expected in .any nonlinear - ' problem. 

3.6 Test Example 

A square plate, simply, supporte~ on all four sides, under uni-

form pressure is analyz~d to verify the elasto-~astic modelling. 

quarter of the ten inch s.quare plate (thicknesJ -. 0.4 in.) has 

One. 

been 

modelled by nine square elements as indicated in Fig. 3.6(b). The plate 

is uniformly loaded well into the inelastic range. 
• 

elasticity E·is 10
4 

ksi, tangent modulus ET - 103 ksi, 

, -.,. 

• 

The modulus of ~ 

Poisson's ratio v\ 
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, -

- 0.5 and the yield stress cry is 30 ksi. The data abqve conforms with 

that used by St/lnton and Schmit [13) so that the results from the 

present analysis could be compared. Fig. 3.6(a) indicates very good 

agreement for the uniform pressure versus the central deflection 

response. It sould be pointed out that the use of bicubic 

displacement functions render a rectangular, conforming plate 

element; bicubic splines provided the curvature continuity. Overall, 

the element used in [13) is stiffer than that used in the pres6i--:t=----<<: 

analySi~rOgreSSiOn of yield zones at various pressure levels appears 

in Fig. lJ 7 and seems very reasonable. 

• 

• 

.. 
• 
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TABLE 3.1 Boundary Conditions for Finite Element ,JPdel of Fig. 3.1. 

------./ 

Boundary Conditions 

<>Nodes No. Bending . Punching Shear 

1 to 9 - ·w - e - 0 w - e - 0 x x 
• 

lrrclus:f:on Nodes u-v·"e. 0 u -\,v 
_ e 

- e - 0 

d-
x Y 

118, 120, 122, 124, 126 u e - 0 u - v - e - e - 0 x x. Y 

119, 121, 123, 125 u - w - e -~ u - e _ e 
- 0 x x y -

" 

TABLE 3.2 Boundary Conditions for Finite Element Model of Fig. 3.2. , 
'I / 

Boundary Conditions 

• , 

Nodes No • Bending Punching Shear 

(.', 

1 to 9J27· to 13~ w - e - 0 w - e 
'- 0 x x 

lnclus Nodes u - v - e .... - 0 ft"',- U 
_ e 

'- e - 0 ·x ~y 

"-65, 67, 69, 71 u - 0 0 u - 0 

-

'. 

, .' 

.~ 

..... 
\. 

.~ 
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No. of DOF's = 63.0 \' 
No. of Unknown.= 510J 
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~ 

a. Finite Element ~esh .. 
• 

r r ., 

v . 73 

" 
r(!;) 

l Y lilt 
~ 2· .~ 

b. Typical Rectangular Plate Element 
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FIG. 3.1 FINITE ELEMENT ~DEALIZATION OF ONE-QUARTER OF RHS T:JOINTS 
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CHAPTER 4 

EXPERIMENTAL WORK ON DOUBLE CHORD T-JOINTS 

4.1 Introduction ) 

The purpose of the experimental program was primarily to assess 

"' the adequacy of the theoretical IIDdel of the double chord' RHS T-j01nts~ 

under bending or punching shesr loading and then, to formulate the load . -
transfer mechanism for this type of joint in Vierendeel truases • 

• • 
Four bending and six punching shear tests ... re undertaken in 
~ 

this study. The effect of inter-chord welding was investigated under 

punching shear40nly, since a similar study was conducted by Chidiac and 

Korol (7) on DIOment connections. 
, 

4 •. 2 Specimen Details 

Details of t":e bending specimens, M-l to ~Ke given in Table 

,4.1. Each specimen ~ns1ste4 of a 1220 ... JoB~-"l~RH& lJranch,' fil

let welde<!. to a 2130 ... long double RHS _chord. Coufigurationa of the 

joints were chosen to Ylnclude' a practical range of each of width ratio, 

'"I-"p1-to':'chord b
1

/2bO' the.:~anch aspect raUo, b1/hr and the branch 

thickness rstihblltO' Thes! paTe,~s have also been 

the tbeo~etical~ramezric ana~y~is Of~~jOint behaviour. 

specimens, the inter",c~ld length was 305 ... at bo~h 
'~. 

top and bot-

~ )' 
~ 

• 
\ \ 0 - 65 -;a.. .. .. ,7 ~ -.,-

.~ ) • -

, ' 
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tom. 

Details- of the punching shear.., specimens, A-I to A-6, are pre-
4 

sented in Table 4.2. Eal' specimen 'consisted of a 381 ,II1II long single 

" chord branch, fillet welded to a 762 II1II long double RHS chord. Spec1-

\ " mens with similar geometries (A-l and A-2, 0.t:.A-3 and A-4) were identi-

cal to each other except for the length of weldments connecting the 

chOrd members at both t~d bottom. The length of weld for specimens 

/-1 and A-3 was 76 II1II ooJwas 305 1IIIl for the others. The branch member 

was filled with concrete to guard against its premature local buckling. -, 
The .computed branch yield loads as given in Table 4.2 are based on the 

equivalent steel area of the concrete-filled section and a nominal 350 

MFa yield strength. The assumed modular. ratio was taken as 15. 

,. 
4.3 Material Properties 

The steel used for the RSS specimen w~s ~SA grade 40.21-M, Class 

---

H, cold formed. Upon completion of the tests, rupons from each chord 

member were subjected to standard tensile test' in·accordance with AS~ 
specifications. The yield stresses obtained are listed in Tables 4.1 

• 
and 4.2. • 

4.4 Setu for Moment ts • . . 

The fdUr ~nt t were ylucted wi~h ~iI!IJ:lltus shown in 

Fig. 4.1. ,The chord wss supported at' both ends on wide flange' beams 
.. 

bolted tq the laboratory floor as shown in Fig. 4.2. 
c -. ' 

The end t~nding to 

>---.. ,. ) 
I \ 
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...--.., I 

\ ) ) 
~/ 

uplift was held down by. a channel section and two 63.5 1IID diameter , 

bolts. To prevent displacement in the longitudinal direction, an end 

plate was welded to the flange beam. In addition, sideways lIDvement was 

prevented by angle cleats welded to the flange be4ms. 

\ 

The load was applied' to the branch member by a hydraulic jack 

used in conjunction with a 225 KN capacity ioad: cell. Also, there was 

provision for horizontal adjustment to the loading system to ensure that 
, I 

the load was applied centralli to the branch member i? all cases. To 

account for rotation at the load contact point on the branch IIII!1Ilber, a 
, . 

, ( 

38 _ diame~r was inserted ~n the recesses of plates welded to the 

member's webs. The bar rested in a recessed plate positioned against 

the bearing surface 'of the ··'ioad cell. 

To deteniine the displaiements of the top flanges of the chord 

member, four dial gauges wereo"positioned at prescribed locations. Four 
.' 

additional gauges were lIDunted to record displacements of the bottom 

flanges. These 

at' the joint. 

lDOunted at tile 

were employed to as~ rotation, of the chord member 

Branch tip displacement was ~red by a dial gauge 

level of the applied load, "Je an additional gauge was 

---. placed at the base to record the chord member displacement parallel to ., 

loading; Arrangedent of the gauges ia shown in Fig. 4.2. 

4.5 
4> 

Setup for Punching Shear Testf 

~ ~ 

I The six~n~hing: shear· specimens were tested in a 250 
, 

city RIEHLE Standar~sting Machine. ' A phOtograph' of 

• 

.. 
r 

, 

Co. 

( 

• 

j 
) 
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• 

apparatus is shown in Fig. 4.3. Th, chord member was supported on 

rollers at both ends as illustrated in Fig. 4.4. 

The direct punching load was applied through a stiff plate 

placed on top of the branch member. The load was increased in equal 

increments of about 5% of the predicted maxllDUlD load. Readings we re 

taken at smaller increments once yielding was observed. , 

~ur dial gauges, arranged as shown in Fig. 4.4, recorded dis-

placements of the top flanges of the chord member. One additional gauge 

measured displacement of the ,bottom flange near the joint's centroid. A 

sixth gauge recorded the displacement of the machine's top plate in the 
" . 

direction of loading. o • 

4.6 Results of Moment Tests 

, . 

for ~e bending tests in this ~tudy. 

-, PIC. lateral deflection as a f~nct~n of the moment for tWe 

pres~nted in ~ig. 4.5. The. moment, M, has been ca~-. four sp'ecimens are 

culated ,as the lateral' l.oad multiplied by the moment arm of 1118 mm • 
. '\' . . 

The lateral defle~on is' given by' the difference in readings of dials 

10 and 9 (see Fig. 4.2). From the pi~ it is evident that all speci-

' •. /' 'l ~ • 

.' . 
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mens exhibited some non-linear behaviour at an early stage of loading. 
: 

There was no well-defined yield point, which as will be seen is charac-

teristic of the spread of yield'zones. 

All four specimens failed by inner web tearing. As is evident , 
f~om Table 4·i-l......!!te specimens with stocky branch members and relatively 

~" 
"-

large width ratios, Ml-2 and K-4, reach(d ultimate moments that were 

considerably less t~ 

/ 
350 IIPa yield strrs. 

, I!IUch better, attll1n1ng 
;' 

the DOminal fully plas tic moment, It , based on a 
p 

The other two specimens, M-1 and M-3,' performed 

110% and 104% of their DOminal It values, t'espec-
p , 

tively. The higher relative capacities of these latter specimens may be 
. "-

explained by 'the fact that branch member thicknen" were less than 

those of the chorda. Inner chord web tearing 1s essentially governed by 

the 7rd ,thickness and the geometry of the 'rounded' corners. Conse

quently, an increase in branch thickness would not "be expected to 

improve joint strength appreciably. It is DOted that the chord yield 

strengths of specimens M-1 and M-3 were also considerably higher than 

the DOminal' ·350 IIPa value. 

/ 

The results suggest that it is unlikely that the full plalJtic 

moment of the branch can be developed if t/to ;. 1.0. 
" 

Also of si~ifi
i - , 

canceis the width ratio. In the tests, a b
l
l2b

O 
'ratio 'greater, than 0.5 

resulted in 'less than' a de~capaCity. These two paramet~: influ

nce the, strength and stif~ness of unreinforced,joints. Stress coat was 

plied to the' 'losded chord surface of specimen M-2. to determine the 

, , '\ train distribution in the, j0l:with load. ',Because of the nature of 

its rittle prope'rties, th~' DO 1 and tangential directions of the 



• 

• 
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developing crads tend to coincide with the minimum principal stress 

\ 
directions at a given poi~ From visual observations it was evident 

that local yielding of the top chord surface adjacent to the branch's 

tension face spread from the inner web junction to an extensive domain 

around the periphery of the branch. Further loading of the specimen 

resulted in failure by tearing of the parent metal of the chord's inner 

web on the tension side of the branch member. Once te~ring was io1ti-

ated, cracks began to propagate in the chord member's top flanges along 

their intersection with the branch member. This can be seen in Fig. 4.6 ~ 

for specimen H-l. Similar observations w~e made for ~he ~her speci

mens. It is interesting to note that the s~distribution pattern, . 

indicated by cracks in the stress coat, is similar to the theoretically 

predicted pattern' (see Fig. 5,.6). 

4.7 Results of Punching Shear Tests 

r // . 

as a function of the punching load, P, Plots of deflection, 6, 

for individual specimens are given ~ Fig. 4.7. It can .be see~,that t~. 

curves are. approXimately bi-l1~ear in character with the elastic 

~ portion extending to about 2/3 of the ~1mum load. However" there is~ 

no well-defined yield point on the~curves. The i~ strength of'the 
I 

joint is provided mainly by the. inner webs of the chord which act as a 
~ I 

short column under the punching load. Once the membrane stresses in the 
,; 

inner webs reach the *,d point, the joi~t's stiffness and "I!trength 

deteriorate rapidly until f,ailure occurs. It may be mentioned here that 

a yield line solution (Section 5.6) indicates that)the inner webs con-

tribute about 80% of the. joint's capacity, which is consistent with 

• 
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" 

exp~rimental observations. 

The provision of adequate inter-chord welds has a beneficial 
• 

effect on the jO.int behaviour, 'as observed from Fig •• 4.7 and Table 4.4. ~ 
Specimens with similar geometries (A-l and A-2 .or A-3 and A-4) possessed 

significantly higher stiffness ,and strength for the longer inter-chord . , , \ ' 

Table 4.4 ,indicates also that specimens A-l and' A-2 attained 83% welds. 

and 97% of, the bi-anch 'yield (lOad. The other four specimens reached 

ultimate punching, loads that were .considerably less than the branch 

yield load. Based on this limited number of teats, it is noted that 

joints having t/to ~ 1.0 and b/2b
O 

~ 0,67 did not develop the full 

yield load of the branch. 

\ 
'\ 

After a siQu1ficant SDpunt of yielding two modes of failure were 

observed for the six specimens. iIoth A-l and A-3 exhibited diatortion 

and separat7n of the chord memberlf'on both. sid,es of the inter-chord 

welds. In/contrast. the other apecimena, with longer inter-chord welda, 

, failed by punching shear of the chord top flanges 1!ith little distortion 

,~' or ~aE10n.- ~e "dishing" effect was clea.rly observed along ..Jlhe 
I ' 

periphery of the branch member accompanied with visible in-plane plastic 

I • 
deformations in the inner webs, as is clea~rom Fig. 4.8(a) and (b) 

for specimen A-S • Note the deflected sqape of the seam line of the" 
. " • 

inner webs in Fig., 4.8(b).' 

, -" 

From thfsexperimental investigation , joints, 

recommended-that the c~rd members should be welded t ther for a . 
< 

c~nt~al length ,not less than the branch depth',h
l

, to guard ~ai~st 

... / 
• 

J 
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premature failure due to excessive distortion and separation. 
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TABLE 4.1 DETAILS OF MOMENT TEST SPECIMENS co --.' 

, 
Specimen Chord Member Branch Member ' J 

No. 2RHS (hOxbOXtO) RHS(ht:!(t 1) b1/2bO bI /hl ~~ (am) 
, 

H-1 152.4xI52.4x9.53 152.4x152.4x6.35 0.50 1.0 16.0 
I 

" .1-2 152.4x152.4x6,35 254.0x254.0~9.53 ' 0.83 1.0 40.0 . • 
M-3 152.4XI52.4x9.53, 203 .2x 15,2 .4x6. 35 0.50 0.75. . 16.0 -
H-4 • 15'2.4x 152 .4x9 .53 203.2x203.2x9.53 ,0.67 1.0 21.3 v 

(a) Computed value based on nominal 350 MFa yield strength. 
Note: Weld length between chords - 305 am for all specimens. '" 

• : ... 
,r ~ ... 

• , 
, -' 

, . ~ • 
'7 \ 

~ ~ 

~'. 
, 

" 

f 
.:::--

Chord Yield 
t:j ItO Strength 

(MPa) 
. 

!\-67 ;1 1.50 3 2 

0.67 393 

1.00 '393 
. 

") 

) 

, . , 
' . 

.L1 

L , 
, 

. Branch ,Pla~t~c 
_Moment a 

Mp(kN-m) 

69.0 

290.0 ~ 
103.6 

181.0 

(' 

1. 

l~ 
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, 
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TABLE 4.2 DETAILS OF PUNCHING SHEAR TEST SPECIMENS 

, 
Specimen Chord Member Branch Member Chord Yield Branch Weld Length 
No. RHS (hrbo"tO) RHS(hlxblxtl) b 1/2bO b I /Ii I bl/tO t litO Strength Yield Load(a) Between 

(mm (mm) (MPa) pm) Choras (nun) 

A-I 152.4x l52.4x 9.53 152.4x 152.4x6.35 0.50 1.0 16.0 0.67 423 1719 76 

A-2 152.4x 152.4x 9.53 152.4x l52.4x6.35 0.50 1.0 16.0 0.67 393 1719 305 
'-J 

'" A-3 152.4x 152.4x 6.35 203.2x 152.4x 6.35 0.50 0.75 24.0 1.00 302 2108 76 

A-4 152.4x 152.4x 6.35 203.2x 152.4x 6.35 0.50 0.75 24.0 1.00 302 2108 305 

A-5 152.4x 152.4x 6.35 254.0>< 254.0>< 6.35 0.83 1.0 40.0 1.00 406 3525 305 

A-6 152.4x 152.4x6.35 203.2X 203.2x 6.35 0.67 1.0 32.0 1.00 380 2562 305 

(a) Computed value based on n~nal 350 MPa yield gtrength of composite section • 
• 

/ 
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TABLE 4.3 RESIJLTS OF MOMENT TESTS 

Specimen Ul timate fument Ultimate fument as :: of 
No. R (KlI--1n) Branch Plastic fument Failure !-Dde 

u 

M-l 76.0 110 .. Inner chord web 
tearing 

. 
M-2 107.3 37(a) Inner chord web 

tearing 

1i-3 107.5 104 Inner chord web 
tearing • 

M-4 125.8 70(a) . Inner chord web 
tearing 

(a) 
Stocky branch members used (see Table 4.1). 
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TABLE 4.4 RESULTS OF PUNCHING SHEAR TESTS 

• 
Specimen Ultimate Punching Ultimate Punching wad as 
No. Load P (KN) .. of Branch Yield wad Failure l'tJde ~ 

u 
. 

A-I 1412 82 Chord separation and 

"" ...... - - distortion 
- ~ • 

A-2 1637 95 Punch1ng shear 

A-3 858 41 Chord separation and 
distortion 

. I., 
A-4 1255 60 Punching shear 

A-5 , 1528 43 Punching shear 

A-6 146'5 57 Punching shear 

f' 
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.CHAPTER 5 

ANALYSIS OF DOUBLE CHORD RES T-JOINTS 

5.1 Introduction· 

Analysis of Vierendeel trusses' and other framed structures, 

which utilize double chord RES T-joints; requir.es prior knowledge of the 

joint behaviour. these joints are general~y not 'rigid and, therefore, 

their 'stiffness and streJ;1gths have a profound effect on the overall 

behaviour of a structure •. The stiffness of such joints is defined by 

certain nonlinear relationships between the applied load (branch ~oment 

or punching shear) and the relative displacement or rotation of the 

conne.cting chord at a joint. 

Finite element analyses of double chord T-joints under different 

\' loading conditions are to be presented .in this chapter. Initially, the 

joints were analyzed under branch moment or punching shear using the 

finite element grid for one-quarter of the. joint shown in Fig. 3.1. It 
...... , 

consisted of 104 rectangular plate elements and 13 boundary spring ele-, , 
ments. The grid is finer in the region of high stress gradients adja-

cent to the branch inclusion and becomes coarser away from this regHm. 

In order to gain some insight into. the j oint characteristics 

under branch moment or punching shear, a number of cases have been anal-

yzed. The joint geometry has been varied to study the influence of the 

- 86 -
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joint ~onfiguration on its performan~e. Five nondimensional parameters 

have been ~hosen to expre~ ~onfigurations of different joints. These· 

are defined as follows (see Fig. 2.3). 

Width ratio; r
1 - b/2bO 

Bran~h aspe~t ratio; r
2 - b·/h , 1 1 

Chord aspe~t ratio; r3 - bO/hO 

Bran~h width-to-~hord thickness ratio; r
4 - b/tO 

Stiffening plate parameter; rs - 1 + to/tO. 

In order to redu~e the number of parameters, the length and 

width of the stiffening plate, it~resent,~ll be taken as .dependent 

variables. Hen~e, the plate width b is assumed equal to (2b
O 

-4t
O

) and 

~ length hs is assumed as tWi~eBthe bran~h height hI. Su~h a value 

for h is approximately equal to the length of the yielded region at 
s 

maximum load as determined from analyses of unstiffened ~onne~tions (see 

Figs. 5.6 and 5.12). 

The two re~tangular hollow se~tions forming the ~hord member are 

~onsidered to have been welded at top and bottom along the middle 305 

mm. of the joint. This weld length had been used in the tests on double 

~hord T-joints reported in referen~e [7]. 

'. 

" 

In addition to analyses of double ~hord T-joints subje~t to 

either only the bran~h moment or pu~hing shear, the joint behaviour was 

also investigated under various ~ombinations of bran~h moments and 

punching shears. The finite element grid of Fig. 3.2, for one-half of 

( -. I' 
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the joint, has been'used and the results are presented in, the form of an 
\ 

interaction envelope. 

, ' 
" 

Analysis of double chord connections was carried out by first 

determining the yield load from an elastic analysis. Additional loads 

were then applied in equal increments of tw,:,nty~percent of the yield 

load for determining the nonlinear response. The yield load is defined 

as the load level at which the most highly stressed sampling point just 

reaches the yield stress. This load iitcrement size was determined 

through various analyses and found to be the most suitable and efficient 

for the Newton-Raphson iterative procedure outlined ,in Chapter 3. ~ 
\ ' 

The results from the fillite element analyses presented in this 

chapter are subsequently used in Chapter 7 to develop empirical formulae 

to aid- in design of double chord T-joints. These formulae will then be' 

incorporated in an elasto-plastic analysi,s of Vierendeel trusses which 

employ such connections' (Chapter 8). Yield line solutions for the 

double chord T-joint capacity, under branch moment or punching shear, 

are also presented. Results from the finite element analyses will be 

compared with those obtained experimentally and by those predicted from 

t~ proposed yield line solutions. 

S.2 Behaviour Under Branch Moment 

A parametric study was carried out by analyzing fourteen double 

chord T-joints under branch moments. These are designated DB-l to DB-14 

where "DB" is the abbreviation for "Double-Bendin~". Dimensions of the 

" 

• 
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double chords and branch members of all fourteen joints as ",ell as 

numerical values of the associated parameters are given in Table 5.1. 

Fourteen joints are categorized into five groups and each' group is used 

to study the influence of a single parameter on the joint behaviour. 

The groups are indicated by underlined values of the corresponding para-

meter. An attempt "'as made to vary only,one parameter in each group 

(",ith the exception of the group for r
l

) "'hile the other parameters are 

held constant. In the group for r
l

, both parameters r
l 

and r
4 

vary and 

thus some provision must be made to determine the influence of'r
l 

alone 

as '-'ill be explained in Chapter 7. The chosen values of each parameter 

cover the practical range of its variation, Each joint has been loaded 

",ell into the plastic range. Convergence of the incremental solution to 

within the prescribed tolerance usually occurred after one or t"'o itera-

tions during the first t",enty moment increments. Beyond this, up to 

five iterations ,.;ere required due to more rapid yielding of the joint. 

A prescribed tolerance of the determinant condition of one percent "'as 

used as the convergence criterion. Loading "'as terminated when the 

joint rotation reached fifty times the yield rotation. It is assumed 

that geometric nonlineari ties would thence become significant and hence 

'the adopted theory of small deformations would not be valid. Further-

• 
more, the tangential stiffness of the joint reduces to about three per-

cent of the elastic stiffness. 

Normalized moment-rotation curves for the double chord T-joints 

from finite element analyses were plotted in five groups. each represen-

ting variation of a sinl1;le parameter, as sho'-'O in Fil1;s. 5.1 t,o 5.5. 

Flexural rigidity D of the combined chord top flange and the stiffeninl1; 

I, 
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plate, if present, has been used to 'oonnalize alments. 

It can be observed from the figures that with the exception of 

chord aspect ratio r
3

, all other geometric parameters have a significant 

effect on the joint stiffness and strength. The M/D-4> curves of Fig. 

5.3 show that the depth of the chord member has very little influence on 

the behaviour. The computed values of yield moments HY' yield rotations 

4>y and moments M at ¢ - S04>y are given 
u 

in Table 5.2. The joint flexur-

al stiffness J is the slope of the M-4> curve at any load level. Values 

of the elastic stiffness J
EL 

and the tangential stiffness J
T 

at the 

limiting rotation are also given in Table 5.2. One can 0 bse rYe from 

Figs. 5.1 to 5.5 and Table 5.2 that the double chord T-joints'start to 

yield at an early stage of loading. However, they a1'e able to sustain 

moments about six times the yield I1Xlment values before developing an 

extensive loss of stiffness. 

Progression of the plastic regions in the top flanges and inner 

webs of the chord member is illustrated in Fig. 5.6 for one-quarter of 

joint OB-6. The progression is indicated by successive contour lines 

which represent boundaries of the yielded zone at a given moment ratio 

The area encompassed by two consecutive contours is the zone which 

has yielded due to the additional branch moment given by the difference 

in moment ratios represented by the two contours. Because of membrane 

action present in the' top flange and a single integration point taken 

for the boundary element formulation,' calculated stresses at adjacent 

points on the flange and web are different and explains the disconti-
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nuity of contour lines along the intersection between the two plates. 

A better continuity would be obtained if three integration points (same 

as for the top flange plate bending elements) had also been used for the 

boundary spring elements. 

The loading on joint DB-6 was continued well beyond M until a 
u 

very large number of interations was required for convergence. Some 

important observations regarding the yield pattern of the double chord 

T-joint can be made in Fig. 5.6. Yielding initates simultaneously in 

the top flanges and the inner webs at the points adjacent to the branch 

inclusion and above the inner webs. Subsequent yielding takes an ellip-

tical pattern about these points in both the flanges and inner webs. 

The joint stiffness becomes very small as soon as yielding spreads to 

the outer webs of the chord member. 

5.3 Behaviour Under Punching Shear 

The behaviour of double chord T-joints under punching shear was 

investigated through analyses of fourteen joints. These are designated 

DA-l to DA-14 where "DA" is the abbreviation for "Double-Axial". Geom-

etry of each DA joint is identical to that of the DB joint with the same 

number. Dimensions of the chord and branch members for each joint as 

well as numerical values of the five geometric parameters r 1 to rs are 

presented in Table 5.1. The parametric study was carried out in the 

same manner as for the branch moment case 1n the previous section. 

Each joint was loaded incrementally well into the plastic range. 

,I 
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Convergence of the incremental solution to within the prescribed toler-

ance of one percent usually occurred in a couple of iterations for the 

first fifteen load increments of twenty percent of the yield load. 

Additional load increments required up to five iterations due to oore 

rapid plastification of the joint. 

.,. 
I 

Preliminary runs indicated that the joint can be considered to 

have reached its capacity when the deflection has reached fifty times 

the yield deflection. Beyond this level of deformation, geometric non-

linearities are presumed to introduce signficant errors. Furthermore, 

tangential stiffness of the joint at that load level reduces to about 

three percent of the elastic stiffness and convergence is slowed down 

considerably. The normalized load-deflection curves for the joints 

analyzed were plotted in five groups, each representing the variation of 

a simple parameter as shown in Figs. 5.7 to 5.11. The ratio D/ba was 

used to .normalize loads whereas deflections are normalized by the total 

thickness (t - ta + t
s

) of the top flange and the stiffening plate, if 

present. 

It can be observed in Figs. 5.7 to 5.11 that all of the parame-
., 

ters considered, with the exception of r
3

, have a significant influence 

on the joint stiffness and strenp;th under punching shear. The load-

deflection curves in Fip;. 5.9 confirm that the chord aspect ratio r3 has 

very 11 ttle influence on the joint behaviour. 
( 

Lar\ler depths of the 

chord members decre1se the joint 

contributi!>n due ti the vertical 

strenp;th slightly as the stiffness 

faces decreases. This, in turn, 

reduces the end restraints of the load-receiving face of the chord 

/" 
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member. However, this influence is rather small and can be neglected. 

Table 5.3 summarizes the analytical results for punching shear Py and 

deflection 0y at yielding and the ultimate punching shear Pu at a 

deflection equal to fifty times Oy. The joint axial stiffness C is the 

slope of the P-o curve at any load level. The elastic stiffness C
EL 

and 

the tangential stiffness CT at 0 - 50 is yare also tabulated. One can 

conclude from these results that the joints start to yield at an early 

stage of loading and sustain loads of about five times the yield load 

"before an extensive loss of stiffness occurs. 

Development of the plastic zones for this case is illustrated in 

Fig. 5.12 for one-quarter of joint DA-6. The progression of Yielding~' 

identified by boundaries of the yielded zone at a given load le:el~ 
P/P y ' The area enclosed by two consecutive contours is the zone wh~ch 

has yielded "due to the additional punching shear. Once again,the 

calculated stresses at adjacent points on the flange and web are differ-

ent for the same reasons as have been mentioned for the branch moment 

case presented in the previous section. 

"Joint DA-6 was loaded beyond P until convergence of the incre
u 

mental solution became very slow. Some important observations, with 

regard to the yield pattern of the joint, can be summarized. In Fig. 

5.12, yielding initiates simultaneously in the top flanges and inner 

webs at the points adjacent to the branch inclusion and above the inner 

webs. Subsequent yielding of the flanges takes an elliptical pattern 

about these points. Boundaries of the yielded region in the inner webs 

are approximately parallel to the inclusion under the branch member. 

I 

I , 
i 
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The joint stiffness becomes. very small as soon as yielding spreads to 

the outer webs of the chord member. 

5.4 Behaviour Under Combined Loading 

branch 

In a Vierendeel truss, joints 

moments~nd punching shears. 

are normally subjected to both 

The task here is to study the 

behaviour of double chord RHS T-joints under different combinations of 

these two types of loadings. However, it is assumed that the proportion 

of the two types, acting on a single joint, remains constant throughout 
, 

the loading history. Nine cases, designated DAB-I to DAB-9, have been 

analyzed. Different load combinations, ranging from pure moment on DAB-

1 to pure shear on DAB-9, were used by varying the stress ratio Na/Nb' 

where Na and Nb are as defined in Fig. 3.3. Table 5.4 indicates the 

load combinations for each case. The joint geometry in all cases was 

based on that of joint DB-6 (or DA-6) Le., 2RRS)52.4 x 152.4 x 6.35 

mm chord members and an RHS 254.0 x 152.4 mm janch inclusion. The 

finite element mesh of Fig. 3.2 for one-half of the joint has been 

employed throughout the analysis. 

Loading was terminated when rotations ~ (or deflection 6 in case 

of DAB-9) reached fifty times the yield value. The normalized moment-

rotation curves are shown in Fig. 5.13. The ultimate moment M for case 
u 

DAB-1 (pure moment) was used to normalize branch moments. Obviously, 

the presence of punching shears reduces the moment capacity and vice-

versa for the joint. Results from the analyses are summarized in Table 

5.5. Here the results for DAB-1 and DAB-9 are not the same as those for 
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DB-6 and DA-6, respectively. This is because of the coarser finite 

element mesh that has been employed in the present analysis. It should 

be pointed out here that symmetry exists only abeut the longitudinal 

vertical plane which necessitates analysis. of half the problem instead 

of a quarter. The predicted ultimate moments and punching shears under 

combined loading aTe designated M and P , respectively. The ratios 
m . m 

If /M and P /p are also listed in Table 5.5 for all cases. 
mum u 

• 

The relationship between the ul timate moment and the ultimate 

punching shear carried by a joint can be described by an interaction 

envelope as shown in Fig. 5.14. This interaction relationship is 

approximated by the following equations. 

P 
5/3 

M 
5/3. 

P 
(~) + (2'.) - 1.0 2'.( 0.80 (5.1) 

P M P 
u u u 

P M P 
~+ m 

1.0 
m > 0.80. (5.2) 0.40 Ii - P P 

u u u 

Analytical expressions for M and P will be presented in Chap-
u u 

ter 7. Knowing M and P for a given double chord joint geometry, Equa-
u u 

tions 5.1 and 5.2 can be used to predict the joint capacity in the 

presence of beth branch moment and punching shear. 

5.5 Yield Line Solution for Branch Moment Capacity 

An upper beund solution for the moment capacity of double chord 
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T-j oints is presented here. This solution is based on the yield line 

theory and assumes. the joint material to be rigid-plastic with· no 

strain-hardening • 

The assumed failure mechanism is schematized in Fig. 5.15. 

Tensile or compresive forces in the inner webs are assumed to cause the 

webs to yield in their planes by stretching or indenting. Applying the 

principle of virtual work to the mechanism indicated in Fig. 5.15 and 

* denoting the predicted joint capacity by Mu' the external work WE is 

given by 

* * w W - M • cp - M .-. 
E u u v 

The internal work due to the top flanges WIf is given by 

2 
t ·0 
o Y 

- --4-
.8w 4 ... a + 2s.Wj Ix (v + x·tan.,,) + X" tan" v 

and that due to the inner webs W1w by 

(5.3) 

(5:4) 

(5.5) 

Derivation of Equations 5.4 and 5.5 is given in Appendix B. Now. 

equating the external work and the internal work yields 

\ 



* 2 M - t ·v·a 
u 0 Y 

(v + x·tan a) + a + a
2 

). (5.6) 
x·tan a v 

Applying the condition for minimum virtual work, i.e. 

* dM 
u 

da 
• 0, leads to 

a·t o 
tan a - ( ------~--

2x(x + to) 
(5.7) 

Upon substitution of Equation 5.7 into Equation 5.6 and replacin,,; u, v 

and x by the respective joint dimensions, the following expression for 

* M is obtained; 
u 

M* - t -h -0 
u .. 0 I Y 

h 
I_I (l 

2 

where a - 2bO - to. 

2t 
+_0_) 

a-b 
I 

a· t 
+ ____ 0 + 

2hI 

2t 
{ 2a· to (l + _0_) ) • 

a-b
i 

(5.8) 

The joint· capacity, as given by Equation 5.8, can be split into 

. * two parts:" contribution from the flan,,;es Muf anc\. contribution from the 

* inner webs M where 
uw 

(5.9) 



* M - t ·h ·0 uw a 1 Y 

h 

If + I 

* * * 
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a·t (a-b ) 

2(a-~1 +2t~) }. 
(5.10) 

The values of M M and M for joints DB-l to DB-II have been calcu-uf' uw u -

lated and presented in Table 5.6. It may be noted that the inner webs 

contribute about seventy percent of the total strength of the joints. 

The moment capacities, as predicted by the yield line solution presented 

here, have been compared with the finite element results of Section 5.2. 

It can be observed from Table 5.6 that the yield line results are always 

higher on the average by about twenty percent with a standard deviation 

of about ten percent. Despite the fact that the two approaches are 

based on different theories, correlation between their results is appar-

ent in the test cases. 

5.6 Yield Line Solution for Punching Shear Capacity 

( 

The failure mechanism due to punching shear is sketched in Fig. 

5.16. It is assumed that failure of the inner webs is caused by in-

plane yielding without bulging. 

Applying the principle of virtual work on the basis of the mech-

anism indicated in Fig. 5.16, and denoting the predicted ultimate load 

* by Pu ' then the external virtual work WE is given by 

* W - P ·0 
E u 

(5.11) 
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The interal work contributed by the top flanges WIf is given by 

W -If 
85 4a'o ! - (v + x- t an a) + -,.":'::'''':'''-1 
x x-'tan a 

(5.12) 

while that contributed by the inner webs WIw is -, 

(5.13) 

The derivation of Equations 5.12 and 5.13 is presented in Appendix B. 

Now, equat'i<tg the external and internal work yields 

+ 2tO·a y! 2v ~ x- tan a) . (5.14) 

Applying the condition for minimum virtual work, i.e. 0, to Equa-

tion 5.14 produces the same expression as in Equation 5.7. Upon substi-

tution of Equation 5.7 into Equation 5.14 and replacing u, v, x by the 

* respective joint dimensions, the following express~on for P is 
u, 

obtained; \ 

t 
+_0_) 

a-b 
1 

.. - ". .. 

+ , (5.15) 
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, 
where a - 2bO - to. 

~ 

The joint capacity, as given by Equation 5.15, can be split into 

* two p.arts: contribution of the flanges P
uf 

and contribution of the 

* inner webs P where 
uw 

* P -uf 

" 

p* - 2t ·0 {h + I 
uw 0 Y 1 

* * * 

(5.16) 

(5.17) 

The values of P
uf

' P
uw 

and P
u 

for joints DA-l to DA-ll have been calcu-

lated and preso:nted in Table 5.7. It may be noted that the inner webs' 

again contribute about eighty percent of the total strength of the 

joints. The load capacities, as predicted by the yield line solution 

_., presented here, have been compared with the finite element results of 

Section 5.3. It can be observed from Table 5.7 that the yield line 

results are about six percent higher on.,average, with a standard devi-

ation of about eight percent. The correlation between results from tWD 

approaches is once again apparent in the test cases. The improved 

results obtained for the punching shear case, using the yield line 

theory, can be attributed to a more appropriate mechanism used for this 

case compared to that of branch moment. 
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" 
TABLE 5.1 PROPERTIES OF ANALYZED DOUBLE CHORD T-JOINTS 

\. 

Joint Chord (2RHS) Branch (RIIS) 

• 
No. <; 

(hOXbOXtO) (h 1 xb 1) t 
s 

(mm) (mm) . (mm) 

DB-l 152.4xI52.4x6.53 254.0x254.0 -

DB-2 152.4xI52.4 x6.35 203.2x203.2 -

DB-3 152.4xI52.4x6.35 177.8xl77.8 -

DB-4 152.4xI52.4x6.35 152.4xI52.4 -

DB-5 152.4xI52.4x6.35 203.2xI52.4. -
DB-6 152.4x I52.4 x6.35 254.0xI52.4 -
DB-7 203.2xI52.4x6.35 203.2x203.2 -
DB-:8 254.0xI52.4 x6.35 203.2x203.2 . -

." 

DB-9 152.4xI52.4x4.67 203.2x203.2 , -
DB-1O 152.4x I52.4 x7.94 203.2x203.2 -
DB-tl 15Z.4x I52.4 x9.53 203:2x203.2 -

DB-12 152.4x I52.4 x6.35 177 .8x l77.8 6.35 

DB-\3 152.4xI52.~X6.35 177.8xl77.8 9.53 

DB-14 152.4xI52.4 x6.35 177 .8x l77.8 12.07 

• o = 
Et 3 

12(l-v 2) ; 
t - to + ts' E - 200,000 HPa, v - 0.30 

• D 
t s 

rl-~1/2bO r
2
-b

l
/h l r 3-bO/hO I r 4-b l /t0 r -1+- (KN-m) 

5 to 

I, 

I . --.a 
, 

0.833 1.00 1.00 40.00 1.00 4.688 

0.667 1.00 1.00 32.00 1.00 4.688 

0.583 1.00 1.00 28.00 1.00 . 4.688 . 

0.500 1.00 .1.00 24.00 1.00 4.688 

0.500 ,0.75 1.00 24.00 1.00 4.688 

0.500 0.60 1.00 24.00 1.00 4.688 

0.667 1.00 0.75 32.00 1.00 4.688 

0.667 1.00 0.60 32.00 1.00 4.688 

0.667 .l.OO 1.00 42.67 1.00 1. 978 

0.667 1.00 . 1.00 25.60 1.00 9.157 

0.661--j 1.00 1.00 21.33 1.00 15.827 --
0.583 1.00 1.00 28.00 2.00 37.516 -- -, .. 
0.583 1.00 1.00 28.00 2.50 73.274 

p I 
0.583 Ii 1. 00 1.00 28.00 3.00 126.620 

----~ ~ - ---- ------ - --- -- - - ----

~ 

o 
~ 

", .... 
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TABLE 5.2 ANALYTICAL RESULTS FOR OOUBLE cHORD T-JOINTS UNDER BRANCH 

MOMENT 

Joint Yield Values Values at 4>-50cjly 

J xl03 JTxl02 
M J T 

No. My cjly M 
u 

• EL u My J EL -4 (KN-m) dO (rad.) (KN-",/rad) (KN-m) (KN-m/rad. ) 

OB-l 17.61 6.269 2.809 103.14 0.922 5.86 0.033 .. 
OB-2 11.90 7.836 1.519 67.76 0.467 5~69 0.031 

OB-3 9.61 8.958 1.073 58.08 0.356 6.04 0.033 

OB-4 6.04-' :---, 9.105 0.633 34.96 0.203 5.79 0.032 

OB-5 10.21 6.952 1.469 65.54 0.455 6.42 0.031 

OB-6 14.76 5.475 2.696 85.32 0.917 5.78 0.034 

OB-7 11.74 9.805 1.197 70.08 0.386 5.97 0.032 

OB-8 11.65 ' 11.658 0.993 71.00 0.295 6.09 0.030 

OB-9 8.48 7.527 1.127 52.11 0.4'01 6.15 0.036 

OB-l0 15.65 8.137 1.923 84.22 0.537 5.38 0.028 

OB-ll 19.94 8.430 2.365 108.40 0.814 5.44 0.034 

OB-12 13.63 8.962 1.521 82.65 0.574 6.06 0.038 
\ 

6.0& OB-13 16.12 8.961 1.800 97.75 0.690 0.038 

08-14 18.49 8.775 2.107 113.75 0.735 6.15 0.035 
-

I'KN-m - 8.851 Kip~in • 

• 

r 
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TABLE 5.3 ANALYTICAL RESULTS FOR DOUBLE CHORD T-JOINTS UNDER PUNCHING 

SHEAR 

Joint Yield Val ues 
, 

Values at: ~-50~ 
Y 

a xI0-2 . 3 
C XI02 P CT No. P u 

Py Y 
CEL

xI0 u T Py ~L 
(KN) (mm) (KN/mm) (KN) (KN/mm) 

DA-l 304.6 7.06 4.31 1401 1.14 4.60 0.027 

DA-2 249.3 7.29 3.42 1I52 0.94 4.62 . 0.028 

DA-3 224.3 7.48 3.00 1091 1.13 4.86 0.027 

DA-4 174.6 7.54 2.32 838 0.63 
.. 

4.80 0.027 

DA-5 226.8 6.77 3.35 1I27 1.24 4.97 0.037 

DA-6 271.5 6.48 4.19 1246 1.42 4.59 0.034 

DA-7 248.5 8.89 2.80 1I65 0.74 4.69 0.026 

DA-8 248.4 10.28 2.42 1I78 0.63 4.74 0.026 

DA-9 182.5 6.88 2.65 909 0.69 4.98 0.026 

DA-I0 318.4 7.44 4.28 1326 0.95 4.16 0.022 

DA-1I 395.5 8.14 4.86 1756 1.34 4.44 0.028 

DA-12 248.8 7.26 3.43 . 1304 1.16 5.24 0.034 

DA-13 261.6 7.17 3.65 1412 1.32 5.40 0.036 

DA-14 273.6 7.09 3.86 1509 1.38 5.51 0.036 

I KN - 0.2248 Kips 

1 KN/mm - 5.710 K/in. 



- 104 -

TABLE 5.4 LOAD COMBINATIONS FOR DOUBLE CHORD T-JOINTS 

Case Chord .(2RHS) Branch (RHS) 

No. (hOXbOXtO) (h {b 1) N/Nb Loading Remarks 

( 1IIIIl) (mm) 

DAB-l 152.4x152.4x6.35 254.0x152.4 0.00 Pure moment 

DAB-2 .. .. 0.25 

DAB-3 .. H 0.50 

~ 
DAB-4 .. .. O.SO 

~ 
DAB-5 .. .. 1.00 

~ 
DAB-6 .. .. 1.25 

~ 
DAB-7 .. .. 2.00 

c::] 
, 

DAB-S .. .. 4.00 , .. c:] l 
DAB-9 .. .. 

~ 

D 
Pure Punch-

ing Shear 

. 
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TABLE 5.5 ANALYTICAL RESULTS FOR DOUBLE CHORD T-JOINTS rER COMBINED 

LOADING 

Case Yield Values Values at ¢-50<l>y 

or 6-500y 

11 P 
No. My 4>y Py 11 P m m -m m M P 

-4 u u 
(KN-m) xl0 (rad.) (KN) (KN-m) (KN) 

DAB-l 20.70 6.546 0.00 108.39 0.0 1.000 0.000 

DAB-2 16.83 5.454 58.86 97.24 411.5 0.897 0.323 

DAB-3 14.18 4.841 99.17 82.81 700.9 0.764 0.550 

DAB-4 11.92 4.136 133.45 67.32 911.7 0.621 0.716 

DAB-5 10.78 3.591 150.81 58.16 984.5 0.537 0.773 

DAB-6 9.63 3.295 168.35 ,49.37 1044.7 0.456 0.820 

DAB-7 7.29 2.590 203.90 32.7.2 1107.7 0.302 0.869 

DAB-8 4.42 1.560 247.46 17 .07 1173.3 0.157 0.921 

DAB-9 0.00 0.000 314.63 0.00 1274.0 0.000 1.000 



- 106 -

TABLE 5.6 COMPARISON OF FINITE ELEMENT RESULTS WITH nELD LINE SOLUTION 

FOR JOINT CAPACITIES UNDER BRANCH HOMENT 

Joint Yield Line Solution F.E. Analysis 

* 
* * * 

H 
No • Huf H H H 

u -uw u u If 
u 

( KN""1II) ( KN""1II) (I<N""1II) (KN""1II) 

DB-1 46.7 87.0 133.7 103.1 1.30 

DB-2 24.8 58.8 83.6 67.8 1.23 
. 

DB-3 19.8 46.6 66.4 58.1 1.14 

DB-4 16.1 35.8 51.9 41.4 1.25 

DB-5 21.7 59.2 80.9 77.5 1.04 

DB-6 27.9 88.3 116.2 100.9 1.15 

DB-7 24.8 58.8 83.6 70.1 1.19 

DB-8 24.8 58.8 83.6 71.0 1.18 

DB-9 14.9 41.0 57.9 .' ". . . " ~~:. .,' 52.1 1.11 

DB-IO 36.9 75.2 112. i . ~. ,. 84.2 1.33 

DB-ll 51.5 91.9 143.4 108.4 1.32 
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TABLE 5.7 COMPARISON OF FINITE ~NT RESULTS WITH YIELD LINE SOLUTION 

FOR JOINT CAPACITIES UNDER PUNCHING SHEAR 

Joint Yield Line Solution F.E. Analysis 

* 
* * * 

P 
No. P

uf 
P P P u 

uw u u P 
- u 

(KN) (KN) (KN) (KN) 

DA-1 351 1249 1600 1401 1.14 

DA-2 223 1031 1254 1152 1.09 

DA-3 199 920 1119 1091 1.03 

DA-4 183 808 991 937 1.06 

DA-5 193 1034 1227 1260 0.97 

DA-6 203 1259 1462 1393 1.05 

DA-7 223 1031 1254 1165 1.08 

DA-8 223 1031 1254 1178 1.06 

DA-9 135 762 897 909 0.99 

DA-10 332 1304 1636 1326 1.23 

DA-11 462 1581 2043 1756 1.16 
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CHAPTER 6 

ANALYSIS OF SINGLE CHORD RHS T-JOINTS 

6.1 Introduction 

Single chord RHS T-joints are generally flexible and hence their 

stiffness and strength can have a significant effect on the overall 

behaviour of structures that employ this type of connection. This joint 

type can be assumed to behave rigidly when the branch and chord members 

are of the same width, according to reference [&1. However, an equal 

width joint requires a diffi~t butt weld to join the two members and 

means a higher cost of fabrication. Therefore, the web member should be 

25 to 50 DIn. narrower in width than th/!l chord so that fillet welds can 

be used. A properly designed connection should be capable of transfer-

ring the branch forces to the chord without failure or unacceptable 

deformaFions. In heavily loaded Vierendeel trusses, some form of joint 

reinforcement is often necesssry to' develop the full-~'Capacity of 

the branch members. 

In single chord RHS T-joints, various failure modes occur 

depending on the physical properties and the geometries of chord and 

branch members. These include flexural failu,re' of chord flange plates, 
~, 

web crippling in chord members, local buckling of branch members and 
• 

fracture in welds prior to developing full plastic !Il)ment in branch 

members. Kanatani et al. '[141 concluded from an extensive experi?al 
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study on RHS T-joints s bject to DXlments. that flexural failure of the 

chord flange plate governs he joint ~t-rength when the ratio of branch 

width to width of flat portion f the chord flange is less than unity • 

It is . this. type of joint. therthat will be studied, using finite ele-

ment analysis under differen loading conditions. Analytical DXldelling 

of the joint and its material properties were presented earlier (Chapter 

2). 

Analyses of the single chord RHS joints were undertaken for 

branch moment or punching shear using the finite element mesh shown in 

Fig. 3.1. It will be noted that the mesh is finer in the regions of 

high stress gradients adjacent to the branch inclusion and becomes 

coarser away from this region. The purpose of this part of the research 
[) 

work was to provide useful information about the behaviour of this con-

nection and to conduct a parametric study to formulate suitable design 

equations. 

In the parametric study. the geometry of the connection was 

varied in order to study influence of the joint configuration on its 

performance. Five nondimensional parameters were selected to express 

variation in the joint geometry. They are defined for single chord 

joints as follows: 

.. 
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, 

Width ratio; 'r
1 - b 1fbO 

Branch aspect ratio; r
2 - b1 fhl 

r3 - bOfhO 

r 4 - b/tO 

, 
Chord aspect rat~; 

Branch widt~hord thickness ratio; .. 
rS - 1 + tsltO• 

.. ' 
Stiffening plate parameter; 

As before, the length and width of the stiffening plate are" 

considered as dependent variables' and nence, the plate length h is • s 

taken as twice the branch height hi and its width b
s 

equal to ihe length 

of the flat portion of the top flange, i.e. b
O
'- 4t

O
• 

In addition to the analyses mentioned above, the single chord 

joint behaviour was also investigated under combined loading. The 

finite element grid of Fig. 3.2 was used in this analysis and the 

results are presented in the form of an interaction envelope. 

To obtain a predicted response, the loading was applied similar 

to tl1at for the' double chord joints, i.e. beyond the yield limit incre-

ments of twenty percent of the yield load were utilized. 

The results from the finite element analyses ,presented in this 

chapter will be employed in Chapter 7 to develop empirical formulae to 

aid in the design of single chord T-joints. These formulae will then be 

incorporated in an elasto-plastic analysis of Vierendeel trusses which 

employ such connections (Chapter 8). 
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6.2 Behaviour Under Branch Moment 

A parametric study was conducted by analyzing fifteen joints 

under branch moment. These are designated SB-1 to SB-1S. Dimensions of 

the chord and branch members of the joints as well as numerical values 

of the parame,ters are prese~d in Table 
("'~ 

6.1. These joints were 

arranged in' five groups, each of which was used to study' the influence 

of a single parameter on the joint behaviour. The cases considered for 
of 

a single paramet~r variation were grouped and indicated by underlining 

the numerical values of the corresponding parameter. Only one parameter 

was 'varied in each group (with the exception of the r group) while 
1 ' 

holding the other parameters constant. In the r
1 

group, both r
1 

and 1;4 

varied and thus some provision'had to be made to determine the influence • 

of r
1 

alone as will be explained later/in Chapter 7. ~e selected~~ 

values of each parame~er cover the practical range of its variation • 
./ 

.' 
~ 

It may be mentioned here that for all of the -joints analyzed, 

the ratio of branch w14th to width of flat portion of the chord flange 

was less than 1.0. Hence, flexural failure of the' chord fladge, as pre-

dicted by the present approach, was expected to be the govetaing failure 

// mode, as has been concluded experimentally [14]. 

-j, 
Each joint was loaded incrementally, well into the plastic range. 

, 
The resulting incremental equations of equilibrium were solved itera, 
tively until the prescribed t?lerance of the determinant condition of0 

one percent had been reached. Any remllining residual forces wer~ added Y 
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,to the next increment of the branch IOOment to prevent drifting of the 

response. Preliminary investigation had indicated that it is reasonable 

to consider that the joint has reached its, limiting, capacity when the 

joint ro'tation exceeds thirty five times the yield rotation. It is 

assumed that the geometric nonlinearities play a significant role after 

this level of deformation and hence the adopted theory of s~all deforma-

tions would no longer be appropriate. 

Normalized moment-rotation curves for the, analyzed joints ~ere 

plotted in five groups. each representing variation of a single para-

meter, as shown in Figs. 6.1 to 6.5. Flexural rigidities D of the com-

bined chord flange and the stiffening plate, if present, were used to 

~ize moments and are also given in Table 6.1. The predicted values 

/f the yield moments My, yield rotations 4>y,.snd moments Mu at 4> - 354>y' 

~ are given in Tab~e 6.2. The joint flexural stiffness J is the slope of 

the tangent to the 

stiffness J
EL 

and 

M'-J4> curve at any load level. Values of the elastic 

/ 
~~ tangential stiffness J

T 
at l~miting rotations are 

also given in Table 6.2. 

It can be observed from Figs. 6.1 to 6.5 and Table 6.2 that, 

/ 

... . 
with the exception of chord aspect ratio r

3
, the other parameters have a 

significant effect on the joint stiffness and strength. The curves in 

Fig. 6.3 indicated the same behaviour as has been reported for the 

" ~ 
double chord RHS T-joints in Section 5.2. The influence of r3 is, 

however, small and can be neglected when standard RHS are analyzed. One 

can also conclude 

yield at an early 

fror the 

sta~e of 

analytical results, that the joints start to 

loading and sustain IOOments about six times 
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,/', , 
, , 

MY before attaining an extensive loss of stiffness. The tan~entia1 

stiffness at-ultimate 1IXlment reduces to a~~ive percent of the ini

tial elastic stiffness. 

Progression of the plastic zones in the top flange and webs of , 
the chord member is illustrated in Fig. 6.6 tor one-quarter of joint SB-

4. The same reasons, as explained for the double chord RHS T-joints in 

the previous chapter, also apply here for discontinuitio:;s of t~n

tours at the interface between the top f1an~e and the webs of t~rd -member. It can be observed from Fig. 6.6 that yielLding initiates in the 

top flange at the four corners of the branch'inc1usio~hereas yielding 

of the webs does not start until the branch 1IXlment is about four times 

~ the yield value. Depth of the yielded zone ,in the webs at maximum 1IXlm-

ent iii about one-third of the web depth. This depth of' the yielded zone 

increases with higher width ratios b/b
O 

due to the higher loads 'carried 

directly 

/ 
j 

by the webs. \ 

Behaviour Under Puri~hing Shear • 

...-----

"- TIle same fifteen joints listrei Table 6:1 hAve' ~so bee~al-
21' , , - ~ ____ ~ 

yzed under punching shear. The cas s analyzed are- ~ated here as 

SA-l to SA-IS. The parametric ,study was carried out in the same manner 

as for the branch moment loading cases. Each joint was loaded incremen
(....., 

tally well into the plastic range. Tolerance of the determinant condi-

tion was again prescribed as one perc~nt. 1.1;..J.lltng was terminated when 

the transverse 
~ 

dtJIection of the inclusion reached thirty five times the 

yield value. 

\ .. f 
( 

L. 

-
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Normalized load-deflection curves for these joints are' plotted 

'> 

in five' groups, each representing the variation of a single geometric 

,parameter, as s\:,,,n in Figs. 6.7 t:o 6.11. The rat:io D/b
o 

"as used to 

normalize loads "herease deflect:ions "ere normalized by t:he t:otal thick- -

ness t: - (to + t:
s

) of the top flange and st:iffe~ plat:e. if present: • 

The predict:ed values of yield load Py ' yield 
... 4 

deflectiqn 0y and the ~i-

mate load P
u 

at: 0 - 35 0y are presented in Table 6.3. Also given in '" 

Table 6.3 

stiffness 

are the el~ axial stiffness 

C
T 

at: limiting deflections. The 

<1:L and the .. 
joint axial 

tangential axial 

stiffness is' the 

slope of the tangent to the p-6 curve. It may be concluded from the 

, , results presented in Figs. 6.7 to 6.11 and Table 6.3 that all the geo-

• metric parameters have a pronounced effect on the joint ~haviour except 

r
3

• The results in Table 6.3 sho" that the depth of the chord members 

has a smal~' influence on 'the load capacity ,of the single chord RHS T-

joint. Patel et al. [5] arrived at the same conclusion experimentally 

(see results for spe'cimens B-5, LB-5, hd L-5 in reference [5]). Hence t 

the cho'rd .... spect ratio 'r,3 can be assumed to have negligible effect on 

the joint behaviour under punching she~r. It can also be concluded from 

the results of Table 6.3 that the j~int load capacity is about six times 

the yield limit load. 
~ . 

Furthenoore, the tangential stiffness at the 
~ 

ultimate load "as reduced' to about five percent of the elastic stiff-
, 

ness. ThiS indicates a large reserve of strength and stiffness in the 

joint at the yield load le'veL;Hence, it is extremely ·conservative to 

limit the joint capacity to the yield load. Fig. 6.12 sho"s the pattern 

I 
of propagation of the plastic, zone in a typicai joint under punching V ... 
,shear., ~rOgreSSiOn of plastic regions in th~ "eb and' load-carrying 

, . " 

/ 

~ 

• 
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flange- is shown for one-quarter of joint SA-4. Yielding of the flan~e, 

once again, is initiated at the points jdjacent to the four corners of 

the branch inclusion. Yielding of the webs does not occur until, the 

load on the joint is about three times the yield load. 

6.4 Behaviour Under Combined Loading 

Joint SB-3 in Table 6.1 was analyzed for different combinations 

of branch moment and punching shear. The finite element mesh of Fig. 

3.2 for one-half of the joint was employed in this analysis. Nine 

cases, designated SAB-1 to SAB-9 were considered. Different load 

combinations, ranging from pure branch moment for SAB-1 to pure punching 

shear for SAB-9, were prescribed by varying the ratio N IN , where N 
a b a 

and Nb are as defined in Fig. 3.3. See Table 6.4 for the loading in 

each case. 

\ 

The analytical moment-rotation curves - for the nine cases are 

shown in Fig. 6.13 in a normalized form. The moments were normalized 

with respect .to the ultimate moment M of case SAB-1 so that the maximum 
u 

M/Mu ",:,uld. be equal ,to unity. The moment-rotation curve for .10int SAB-9 

(pure punching shear) coincides with the abscissa (rotation axis) due to 
"--. 

absence of the branch moment. Loading was terminated when rotation ~ 

(or deflection 5 in case SAB-9) reached forty times the yield value ~Y'_ 
," 

This choice of limiting displacement was of no _ major consequence since 

the purpose here was to study the comparative strength under combined 

loading. 

", 
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Results of the analyses are summarized in Table 6.5 •. The pre-
',-

dicted maxilDUlll momenJ:s ,and punching shears under combined loading are 

designated M and P , respectively. The discrepancies in the results 
m m 

for SAB-1 and SAB-9 when compared to SB-3 and SA-3 results given in 

Tables 6.2 ~nd 6.3, respectively, are again attributed to the different 

finite element /mesh' used and, also to different limits on displace-

ments. 

It can be observed from Fig. 6.13 and Table 6.5 that the 

presence of punching shear reduces the joint's branch moment capacity 

and vice-versa. Interaction between the two types of loadings can be 

described by an interaction envelope as shown in Fig. ~.14. The ratios 

M 1M and P Ip for the cases analyzed ~re given in Table 6.5. The 
mum u 

maximum loads for each case are represented in Fig. 6.14 by a point. 

The interaction relationship can be expressed by the foliowing equa-

tions. 

and 

P 1.5 

(2!.) 
P 

u 

P 

M 

+ (M~) 
u 

M 
2!.+ m 

0.54 M P 
u u 

1.5 

- 1.0 

-1.0 

P 
m 

P 
u 

~p 

m 
P 

u 

, 0.70 (6.1) 

• 

> 0.70 (6.2) 

, 

Analytical formulae for M and P will be developed in Chapter 7. 
u u 

Knowing M and P for a given joint geometry, Equations 6.1 and 6.2 can 
u u 
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be used to predict the joint capacity under combined branch moment and 

punching shear. 

\ " ,"--

{ 

I 



TABLE 6.1 PROPERTIES OF ANALYZED SINGLE CHORD T-JOINTS 

Joint Chord (RHS) Branch (R1IS) 

No. 

, 

SB-I 

SB-2 

SB-3 

SB-4 

SB-S 

SB-6 

SB-7 

SB-8 

SB-9 

SB-IO 

la-ll 
SB-12 

SB-13 

SB-14 

SB-15 

• 
D -

(hOXboxtO) (hlxb l ) 

(rom) (rom) 

254.0x254.0xI2.70 203. 2x203.l . 
254.0x254.0x 9.53 203.2x203.2 

254.0x254.0x 9.53 177.8xl77.8 

254.0x254.0x 9.S3 IS2.4xIS2.4 

2S4.0x2S4.0x 9.S3 101.6xlOl.6 

2S4.0x254.0x 9.53 203.2xIS2.4 

2S4.0x2S4.0x 9.S3 2S4.0xIS2.4 

2S4.0x2S4.0x 7.94 203.2x203.2 -. 
2S4.0x2S4.0x 6.3S 203.2x203.2 

2S4.0X2S4.0 x 6.3S IS2.4 x IS2.4 

2S4.0x2S4.0x 6.35 IS2.4xIS2.4 

2S4.0x2S4.0x 6.3S 152.4xIS2.4 

2S4.0x2S4.0x 6.3S IS2.4xIS2.4 

304.8x2S4.0x 9.S3 IS2.4xIS2.4 

381.0x2S4.0x 9.S3 IS2.4xIS2.4 

Et 3 

12( I-V 2); 
t'= to'+ ts' E = 200,000 HPa, 

~ 

t s 

(rom) 

-
-
-
-
-
-
'-

-

-
-

6.3S 

9.S3 

12.07 

-

, -

v - 0.30 

rl=bl/bO 

0.80 

0.80 

0.70 

0.60 

0.40 

0.60 

0.60 

0.80 

0.80 

0.60 
. 
0.60 

0.60 

0.60 

0.60 

0.60 

., 

r 2-b I/h I r3-b0/hO r 4=b l /t0 

1.00 1.000 16.00 

1.00 
. 

1.000 21.33 --
1.00 1.000 18.67 

1.00 1.000 16.00 

1.00 1.000 10.67 

0.7S 1.000 16.00 

O.pO 1.000 16.00 

1.00 , 1.000 2S.60 

1.00 1-.000 32.00 

1.00 1.000 24.00 

1";00 1.000 24.00 

1.00 1.000 24.00 

1.00 1.000 24.00 

1.00 0.833 16.00 

1.00 9..667 16.00 
\ 

I 

I 

• 

ts 
r "1+-

5 to 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

.2. S 

3.0 

1.0 

1.0 

• D 

(KN-m) 

37.516 

15.827 

15.827 

IS.827 

15.827 [ 

15.827 I~ ~ w 

'" IS.827 [, 

9. IS 7 

4.688 

4;688 

37.516 

73.274 

126.620 

IS.827 

15.827 

--------, 
J 
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TABLE 6.2 ANALYTICAL, RE5ULT5 FOR SINGLE CHORD 

HOMENT 

Joint Yield Values Value's at ~-35~y 
N 

J x103 ' J x102 No. My ~Y H EL u T 

(KN-m) -3 ,x10 (rad.) (KN-m/rad) (KN-m) (KN-m/rad.) 

5B-l 15.56 0.828 18.79 107.31 11.42 

SB-2 8.87 0.914 9.71 55.60 5.44 - .. 
5B-3 5.31 1.468 3.62 33.01 1.98 

5B-4 4.17 2.305 1.81 t5
•

4O 1.12 

5B-5 3.,12 2.971 1.05 0.15 ' 0.45 
I 

5B-6 4.93 1.788 2.76 29.08 1.27 
" 

5B-7 5.40 1.347 4.01 32.24 2.28 
./ 

5B-8 6.25 1.023 6.11 38.64 3.54 

5B~9 4.13 1.216 3.40 ' 24.95 1.83 

5B-1O 2.27 3.286 0.69 13.08 0.34 

5B-1.1 5.44 2.157 2.52 31.55 1.33 

5B-12 8.09 1.982 4.08 45.64 2.25 

~B-13 11.07 1.848 5.99 61.06 3.47 

5B-14 ..J!..35 2.484 1.75 25.60 0.99 

~B-15 4.50 2.711 1 ~6 7 25.72 0.98 

1 KN-m - 8.851 Kip-in. 

-- ,.., .... 

M JT u 

~ J EL 
. 

6.90 0.061 

6.26 0.056 

6.21 0.055 

6.09 0.062 

6.46 0.056 

5.89 0.046 

.s.97 0.057 

6.18 0.058 

6.04 0.054 

5.77 0.049 

5.80 0.053 

5.64 &.055 

5.52 0.058 

5.89 ; 0.057 

5.68 0.059 
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TABLE 6.3 ANALYTICAL RESULTS FOR SINGLE CHORD T-JOINTS UNDER PUNCHING 

SHEAR 

,r 
Joint Yield Values Values O-50oy . 

C xI03 C xI02 
P C

T No. Py 0 P u 
Y EL u T Py CEL 

(KN) (mm) (KN/mm) (KN) (KN/mm) . 
SA-l 143.7 0.033 4.35 1026 2.57 7.14 0.059 

SA-2 115.1 0.064 1.80 755 1.01 6.56 0.056 

SA-3 89.5 0.094 0.95 554 O~ 6.19 0.053 

SA-4 66.0 0.157 0.42 395 0.25 5.98 0.060 , 
SA-5 44.4 0.215 0.35 261 0.19 5.88 0.055 

SA-6 75.4 0.150 -0.50 431 0.27 5.72 0.053 -

SA-7 81.2 0.134 0.61 476 0.34 5.86 0.055 

SA-8 81.8 0.071 1.15 523 0.67 6.39 0.058 

SA-9 54.6 0.084 0.65 350 0.34 6.41 0.053 

SA-lO 37.9 0.213 0.18 211 0.09 5.57 0.049 

SA-ll 85.1 0.166 0.51 461 0.27 5.42 0.053 

SA-12 115.0 0.149 0.77 631 0.42 '5.49 0.054 

SA-13 146.6 0.138 1.06 838 0.60 5.72 0.057 
-SA-14 65.3 0.176 0.37 -385 0.21 5.90 0.056 

SA-IS 64.7 0.188 0.34 383 0.20 5.92 0.058 

1 KN - 0.2248 Kips 

1 KN/mm - 5.710 K/in. 
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TABLE 6.4 LOAD COMBINATIONS FOR SINGLE CHORO-T-JOINTS 

Case Chord (RRS) Branch (RRS) 
No. (hOxbOXtO) (h{b 1 ) N/Nb 

Loading Remarks 
(mm) (mm) 

DAB-l 254.0x254.0x9.35 177 .Bxl77.B 0.00 

""" 
Pure Brand 

Moment 

SAB-2 -- .. 0.25 ~~ 
SAB-3 -- -- . 0.50 

~ t' 

SAB-4 -- -, O.BO 

~ ~ 
SAB-5 .. .. 1.00 

~ 
SAB-6 -- .. 1.25 

~ 
SAB-7 .. .. 2.00 

c::J 
SAB-B .. .. 4.00 

L ] 
SAB-9 .. .. 

~ I Pure Punch-

I inp; Shear 
, 

• 
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TABLE 6.5 ANALYTICAL RESULTS FOR SINGLE CHORD T-JOINTS UNDER COPMBINED 

LOADING 

Case Yield Values Values at <l>-40<l>y 

or 5-405y -
M 

.~ No. My <l>y Py M P m 
m m M 

-3 u 
(KN-m) xl0 (rad.) (KN) (KN-m) (KN) . 

---
SAB-l 5.85 0::35 0.00 39.1 0.0 1.000 0.000 

SAB-2 4.82 1.349 20.33 34.45 145.3 0.882 0.292 

SAB-3 4.10 1.147 34.56 29.46 . 248.6 0.754 0.500 
-

SAB-4 3.47 0.973 46.85 23.73 320.3 0.60B 0~644 

SAB-5 3.15 0.8B4 53.15 20.92 353.0 0.536 0.709 

SAB-6 2.82 0.793 59.55 17.92 378.0 0.459 0.759 

SAB-7 2.15 0.606 72.65 12.38 417.7 0.317 0.839 

SAB-B 1.32 0.374 BB.93 6.6B 450.6 0.171 \0.905 

SAB-9 0.00 0.000 104.52 0.00 49B.1 • .0.000 1.000 
- . 

~ 
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CHAPTER 7 

STANDARDIZATION OF JOINT CHARACTERISTICS 

7.1 Introduction 

The primary objective of this chapter is to develop analytical 

expressions describing the' behaviour of the RHS T-joints in terms of 

their geometrical characteristics. Four sets of g~ner31ized4expressions 

are developed; one for each of the two joint types (single or double 

chord) under either applied branch moment or pu~ching shear. A curve-

fitting technique is employed to derive non-dimensional load-deformation 
, 

equations based on the parametric studies presented in Chapters 5 and 6. 

In addition, expressions for the joint stiffness and strength are 

obtained. Accuracy of the standardization formulae is tested against 

finite element results. 

Furthermore, the joint behaviours, as predicted by the present • 

analyses, are compared with experimental results and yield line solu
-/r-

tions. The joint' s stiffness and strength propertieSl to be determined 

in the following sections, will be incorporated into the analysis of 

single or double 'chord RHS Vierendeel trusses in Chapter 8. 

7.2 Standardized Load-Defo\mation Curves 

l 

The standardization procedure involves the 

- 153 -

representation of ~he 

~ \: . 
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, 
I 

load-deformation curves for all joints of a given type by a single, func-

tion • The approach followed is somewhat similar to that reported in 

reference [20]. ConsiderinSl[ joints under DDment, this functioll is of 

the normalized form, 

r---/ 
where ~, M and D are as defined earlier, Ci's are constants, and R is a 

dimensionless standardization factor dependent on the geometric par~me-

ters. The factor R is assumed to have the.form 

R - • r 
2 

••• r 
m 

a +b r 
m m m (7.2) 

where rj ~. the numerical value of the j~ parameter; a
j 

an~ b
j 

are 

d:j,mensionless constants which indicate the effect of the j.!!!. parameter 

on the DDment-rotation relationship, while m is the total number of 

parameters. A linear exponent has ~en found to be the simplest func

tion suitable for the probl'l!m at hand. 

• 

Since ~ is an .. odd function of MID, only terms involving odd 

• 
powers of i appear in Equation 7.1. For this study, only three,non-zero 

termS are included. Hence, Equation 7.1 takes the form 

• 
(7.3) 
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The factors a
j 

and b
j 

in Equa(Ion 7.2 can be evaluated by using a family 

.of experimentally or ana~CallY determined moment-rotation cu~ for 

joints for which °al.l of the parameters are fixed except for one, as 

'" 

.' 

'-

shown in Fig. 7.1. Suppose that a pair of curves, say 1 and 2, is 

selected. M M 
The relationship between normalized moments (D)1 and_(O)2 for 

a fixed rotation ~ is fouIJil from Equation 7.3 "to be 

~ 
(. 

RH n RH n 
3-,;na., 5. (0) 1 • (0) 2' n· 1, (7.4) . 

Note that' <:1' C2 and C3 are constant for all curves and only the n .' 1 

case need be considered for further manipulations. Substituting Equa-

tion 7.2 into Equation 7.4 and noting that only rj varies, the followi~g 

yields 

( 
(7.5) 

where rj 1 and r j2 are 

a~ respe~ti vely. 

the numerical values of parameter rj for joints 1 

I ' 

Eq~ation 7.5 can be rewritten in the form' 

(7.6) 

which is a. linear equation with two constants aj and bj • The derivation 

of Equation 7.6 is based on the assumption that· only one parameter rj 

It was noted, however, in the parametric analyses presented in 

1. 

I 
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J ' 
Chapters 5 and 6 that the variation of parameter r

1 
caused parameter r 4 

to vary. As ,such, consider the case in which two parameters, one of 

which is dependent on the other, vary simultaneously. Suppose these two' 

parameters are denoted by rj and r i , respectively, whe~e rj is dependent 
, ~ 

on ri but not the reverse. Then Equation 7.6 is first used to calculate 

a i and bi • In order (;;-dete~ine, the a j and bj values, Equation 7.4 

gives 

(7.5a) 

( • 

can be rewritten in 

4here< the value of p is known and is given by 

)~ • 
(Pi+bi r i2 ) 

'\.. 
/ 

(ai+birU ) 
p - r i2 rU 

" ... ' .. 
• Therefore, the dependence of rj or r

i 
only leads to a constant 

v 
term (due to r i ) when determining the constants aj and bj • Equation 7.6 

or,7.6a is used to calc~ate,~~and bj values corresponding to se,vv, ral 

different ~tions for each com~ination tf analytical cu;ves, SU~8 1 

and 2, 'I and 3, 2 and.3: etc. The le~ squares curve fitting technique 
• I 

~ 

~ then used to estimate the a j and b j values to be used in,Equation' 

7.2 • 
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The next J,te p ,is to calculate the 

and C3 in Equat'ion 7.3 for ellch analytical 

values Df constants C
1

, C
2 

-"-
curve again using the least 

square curve fitting technique. Finally the mean value of each constant 

is used in Equation 7.3 thus obtaining the standardized moment-rotation 

relationship for the particular joint type. Equation 7.3 may then be 
g 

used to generate the 1l':lI~ent-rotation curve ~r any joint configuration 

once the standardization factor R has been calculated from Equation 

7.2. ' 

The joint's tangential flexural stiffness J
T 

is defined as the 

slope of the'M - ~ curve. Hence from Equation 7.3, 

(7.7) 

The elastic stiffness ./J
EL 

is obtained frooi.~Equation 7.7 when M-- 0, 

i.e. 7 

" 

(7.8) 

... . -i . • 

tically; the jO.in~-:.fum~te capacity Mu will be taken as that 

which the tangential' stiffness beCQllll!S very sp1Sl.1 in 

the initial e'last:l:rt1ffneB~ .:~ 

~"-J...--E<~~ms 7.7 and 7.8 give 

\ 
"7' .. 

For a non-zero a (-

• '< 

,,-' 

.. 

, , . 
. ", .,./-
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) 
- 0 (7.9) 

which ~ to the fol19wing 

C3 and B are positive 

positive solution since C
1

, C2, 

3C+ 19C 2 + 20(1-11) 
D - 2 2 B 

Mu - R l 10 C
3 

I (7.10) 

~ 

The joint capacity can be determined from Equation 7.10 for a given 

ratio for B. It should be noted that the solution for M in Equation 
u 

7.10 is based on a comparison of JT with JEL~d not by taking J T - O • 

. In a similar manner, the standaidized~~d-deflection 

joints under punching shear is eXpTessed as 

6 It -
RbP 

+ C (_0_)3 
2 D 

\ 

curve for 

(7.11) 

.' ~ 

in which R is given by an expression siMilar to that for R.I The quanti-

ties D/bO and t are used as'normalizing factors for the.punchidg shear P .. 
·and deflection 6, .respectively. Follo~ng the 'same procedure as out-

lined abdite for~relati.onshiP' 

given by .. ~ 
the 

jOin/0;t/ axial 
stiffness 

.' 

... ." .r L .. .... 
.~ 

... .. .. ~> .)-

• 
• 

" .. 

• 

'. 

• 

\ , . 

) 

'. 
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and the elastic stiffness.C
E 

by 
. L 

(7.13) 

Consequently. the punching shear capaclty P is given by the followin~ 
u 

expression 

(7.14) 

where Results of the parametric analYSeS~ 
I 

presented in 

Chapter 5 for doubl,. chord joints and in _Chapter 6 for single chord 
.~ .. 

joints. In each analysis. five· non-<iimensional geometric parameters. 

denoted r
1 

to r • were considered. 
5 .r-

These were conceived to fully repre-· . . 

sent the joint· configuration. It was found that all the parameters. 

except the chonY aspect ratio r
3

• have a significant effect on joint 

behaviour. 
~ 

The farementioned standardization techniqujlhas been applied to _ 

both sj,ngleo and doub~~ chord ,!UlS:.T-joints under ei~er IOOment or p~nc;' ~. 
ing shear. The formul~ thus obt;ained for each joint type and loadi~~ 

~ 

are given in the following sections. ) 

'- /. , 
~ 

L 

( 
., 
\' 

.- , 

J 
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7.3 Gen~lized Formulae for Double Chord Joints Under Branch 

Moment -- • 

~ The standardization procedure described in the preceeding sec-

tion has been applied to the analytical curves ,of Figs. 5.1 to 5.5. The 

resulting generalized moment-rotation curve 'is given by the f,ollowing 
t 

equation 

(7.15) 

where the standardization~factor R is 

(-1.34+2.56r
1

) 
R - r 1 

(-1.58-0.0031r
4

) 
r 4 

x (7.16) 

'e 

Figs •. 7.2 

f the standardization procedure is\ illustrated in 
'~ 1\ 

ch show the normalized moment-rotation curves 

generated by :L..r1"'-l':>15 and the corresponding analytically obtained 
• 

. curves gs. 5.1, 5.2,.5.4 and ,5.5. 'With few excep-
'-----" . , 

tions, the generalized fd'rmula was found to produce accu~ate moment-

~otation curves for analyzed connections. 

, . 

, 
'-.' 

'. 

: 

• , ' 

'/ 

, 

" ., 

, , 
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it is necessary to first define the corresponding relative t ial 

stiffness as given by the B ratio, Based on analytical results (see 

, '" 
last column of Table 5.2) and available e~rimental data, the B ratio 

was taken as 0.015. Substituting this B ratio and C
1 

to C
3 

values from 
• 

Eq~tion 7~15 into Equation 7.10, the following expression for the joint 

moment capacity M i~ abt'ained. 
u 

M 
u 

D 
- 0.039 p:. • (7.1n 

The standardization factor .R' appears in Equation 7.17 and should be 

calculated by virtue of Equation 7.16 for the given joint configuration. 
~ 

~ In many instances, one or more parameters~n Equatio become equal 

( 

to unity and, the computational effort in calc~ti~ R 

example, both r
2

and r5 are equal to unity for an UIrIstiffen ..,. 
a square branch member. 

For 

joint with 

( 
To test the validity of Equation 7.17, theoretical moment, cap a-

cities of a number of joints were computed for ,which experimental 

capacities are known. Details and results of the four moment specimens, 

tested as part oi this research program, have been reported in Chapter' 

4. Al~ four specimens had their t""? chor,d members welded together at 

top and bottom edges along the central 305 mm. to simmulate the theor

etical model used to derive the theoretical moment-rotation cutves. A 

comparison between the theoretical capacities, M , adjusted to the 
u 

actual chord yield strength, and the experimental values, H , is presen
u , 

• 

• 
l 
J 
i 

u i .j 

..1 
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ted in Table 7.1. The theoretical capacities obtained from Equation 

7.17 are based on a 350 MFa chord yield strength. These val ues have 

been multiplied by the ratio between the actual and nominal yield 

strengths of the chord, assuming a linear variati~n in the vicinity of 

the nominal yield. Reasonable agreement was found between theoretical 

and experimental capacities as noted from Table 7.1. 
"{, 

Chidiac and Korol [7] reported test results of four T-joints 

using the same test apparatus shown in Fig. ~.2. Details and results of 

the tests are presedled in Table 7.2. Specimens with similar geometries 
• 

(T-1 and T-2 or T-3 'and T-4) were identical except for chord member 

connecting welds both top and bottom. 

The experimentsl moment' capacities, Mu ' of the four specimens 

are compar~d with sdjusted thoeretical values Mu in Table 7.3. It 

should be noted that specimens T-3 d T- ~il8d due to branch flange' 

buckling [7]. As such, ,resu ts of these two specimens !\hould be exclu-

ded when the 

• 
capaci ty ;~of 

validity of' Equation' 7.17 is examined; 
l> 

joint T-1 ~ns~rabty higher than 

The theoretical 

the .experimental 
, ' 

value due to an absence of chord welds' in the tested joint. 

lowing 

Considering te results of jOin~s 1· to M-4 and T-2, the fol-

expr~sBio~~lating the theoreti rength to the experimental, 
-V 

str.ength 

~ f 

" 
M - 0.98 M ± 0-.. 09 M 

u u u 
(7.18) 

\ 

• 
:J . " 
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where the last term represents the standard deviation value. Examina~ 

I ' 
tion of th~ theory ha, been based on very limited experimental data and , . 
is not co~clusive. However, the correlation indicated by EqUatio~.1S 

tit·· . 
is satisfa~ory for design purposes. Graphical representation of Equ - -

tion 7.17 and experimental capacities is given in Fig. 7~6 by a logar-

ithmic plot. 

-~ A yield line solution for the joint str~ngth has been outlined 

in 
) 

section 5.5. * Comparison of the yield line strength, M , with the 
u 

theoretical strength, M , is presented in Table 7.4 for the analyzed 
u 

joints DB-1 to DB-ll. The two solutions correlate according to the 

following expression 

* * M - 0.S2 M ± O.OS M u u u (7.19) 

The yield line solution consistently predicts higher capacities .but.the. 

discrepancy between the t\ro ·solutions is relatively !fmall as indicated 

by the standard deviation in Equation 7.19. 

tion given by Equation 5.S can be used to 

Hence, ~",<:ield line s·olu

predict the ~l"' ~.:", 
after applying an 4Ppropriate scaling factor. ~ . 

Further examination of the standardization equations presented 

~i be gi~en in Chapter S • 

. ' 

., 
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7.4 Generalized Formulae for Double' Chord Joints Under Punching 

Shear 

The curve fitting: procedure described in Section 7.2 was applied 

again to the analytical load-deflection curves of Figs. 5.7 to ·S.ll" and 

the following generalized: equation was obtained 

. .) 

5/t - 0.123 
RboP 2 
(--) + 0.982 x 10 

D 

where the standardization factor R is given as 

, 

R -
! 

(-0.14+2.38r
1

) 
r

1 

~~.SO-O.OS3'5) 

(7.20) 

\ 

(-1.3S-0.0031r
4

) 
r 4 ( 

(7.21) 

~uracy of the ~andardiZatiOn procedure s illustrated in 

L 

Figs. 7.7 to 7.10, which identifies' the normalized load-def;l.<!1rntM~ ___ ___ 

curves generated by Equation 7.20 and the con:!,sponding 

obtained curves of Figs. 5.7, 5.8; 5.10 and 5.11: 

~ . 
with few exceptions, . correlation between generated 

.f 
is excellent. 

. ) 
d 

aytically 

------. 
) .' ., 

'·1 
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a ' The joint punching shear capacity is calculated using Equation 
\--..J 

7.14 by substituting for C1, C
2 

~nd C
3 

as given in Equation 7.20 and a 

small value for the ~ ratio. The following expression for the punching 

shear capacity P is obtained. 
u 

P 
u 

D 
- 0.150-

b R 
o 

(7.22) 

The standardization factor R appears in Equation 7.22 and should be 

calculated from Equation 7.21 for the given joint configuration. 

The theoretical joint capacities predicted by Equation 7.22 will 
;' -.I • 

now be. compared wit\' the experimental values for t,he punching shear 
,---~ 

tests reported in chapter 4. Details and results of the six test speci-

mens are presented in Table 4.2. Sinc~ the analysis is based on a 305' 

mm inter-chord weld length, the results for specimens A-2, A-4, A-5 and 

A-6 only shall be considered in the comparison • 

The capacities for the tested six joinU are list;ed in Table 

• 
7.5. It is seen that the experimental ult~te loads of joints A-I and 

, .. 
A-3 are considerably lower than the.predicted val~eB •. The yheoretical 

capacities P for ~he other four specimens fall about evenly above and 
u 

below the exp:riment;<lcrPacities Pu • The following relationship 

between P a'ld P can be obtained from results of the latter four speci-u u 

menS 

... 

/ 
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'" 

- -
P - 1.02 P ± 0.14 P u u u 

(7.23) 

where the last term represents the standard deviation value. The above 

comparison has been based on a small number of tests conducted as part 

of this research program. Hence, ,more experimental data is necessary to -
test the validity of Equation 7.22 more tboroughly. Graphical represen

tation of Equation 7.~ and experimental load,limit values are given in 

Fift. 7~11 by a logarithmic plot. 

A yield line solution for the joint strength WSlj developed in 

* Section 5.6. Comparison of the yield line strength P with the theoret-
u ' 

ical strength P is presented in(Ta~7.6.' Based on the results for 
u 

the analyzed joints DA-l to DA-ll, the two solutions are found to cor-

relate according to the following expression 

P 
u 

* - 0.91 P 
u 

* ± 0.04 P 
u 

(7.24) 

The yield line solution consistently pr!'dicts higher capacities but ~he 

discrepancy between the two solutions is s~l as indicated by the stan-

dard deviation in Equation .7.24. As such, Equation 5.15 can be ,used to 

predict the joint capacity provided that an appropriat~ scaling factor 

is applied. . ,C" .. 
all practical situations, the joint will ,be subjected 

to both punching shear and momen't. ,The behaviour of double chord joints 

under combi~ loading has be~n discussed i~Section 5.4. The interac-

I 

• 

• 
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tion Equations 5.1 or 5.2 may be employed to calculate. the reduced 

\ 

punchin~bear cap~city P due to the presence of applied moment M , and 
m m 

v1ce-versa. 

7.5 Generalized Formulae for Single Chord Joints Under Branch 

Moment 

Results of the param;etric analysis of single chord T-joints 

under moment were presented in Section 6.2. It was concluded that all 

geometric parameters co~ in the ~lYSiS, with the exception of 

the chord aspect ratio r
3

, have a significant effect on a jOint's bebav-

lour. 
. I 

In order to generalize the joint characteristics, the standardiz-

at ion procedure of Section 7.2 was applied to the analytical moment-

rotation curves of Figs. 6.1 to 6.5 • The generalized moment-rotation 

curve was found to be given by the.;ollowing equation 

( ~//' 
~ _ 0.251 x 10-2(~) + 0.465 x 10-3(RM)3 + 0.442 

D D 
, 

\.. 1 • 

x 10-4 (~)s 
~ 

(7.is) 

• 1 
~ 

while the ,standardization facto~s in the form 

R -

(0.9s-D.086rZ) 
r

Z 
.-' . 

(-O.4s-0.0022r
4

) 
r 4 

x 
(l.s6-0.094r

s
) 

rs ) s (7.Z6) 

". 

)' 

.[: 

, 

I 
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A comparison between the moment-ro~ation curves generated by 

Equations 7.25 and 7.26 and the corresponding analy'tical curves' is 

illustrated in.Figs. 7.12 to 7.15 for the joints ~3zed in Section 
, 

6.2. It can be concluded that Equation 7.25 is capable of generating' 

the moment-rotation curves of analyzed joints with a good degree o'f 

, accuracy. , 
\ 

AII(' expression "for the joint moment capacity is obtained from 

Equation 7.10 by' substituting a small value for, the II ratio (- 0.004) 

and the values of C1 ,to C
3 

frolll Equation 7.25. The following eXpression 

for M is obtained: 
u .. 

\ 
(7.27) 

It may be mentioned that the R factor as given in Equation 7.27 can ') 

one pr calculated for ~ven, joint configuration very simply., Usually. 

more of the r parameters will be eq~ to unity which reduces computa~ 

For example. an unreinforced connection with a square branch will 

both r
2 

and r5 equal to 'unity. 

• 
The theoretical ~int capacity as predicted by Equation 7.27 

will now be compared with some of the available experiDiental data. 

-Korol et al. [1) have reported the res ts of a number of tests on une

'----.? 
qual width connections of square holl ' sections.' Detaiis' of the six 

unreinforced joint tests are given in Also given are the R 

factors b calculated by Equation 7.26 he flexural rigidities Dof 

/ 

-=--
of 

... ., 
;f' ) .--:' • ~ -'- r 

'\ 
':'-

-, 

,\ 
·1 

i 

1 
i 

,.; 
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the chord flanges. The experimental and theoretical joint capacities 

are compared in Table 7'.8. The last column of the table gives the ratio 

M 
o~ predicted to experimental moment capacity <_u) for each joint, where 

\ M u 
-J 

the theoretical value is calculated at the actual chord yield strength. 

It may be observed t~t the theoretical momenr capacities agree closeiy 

with experimental values. As for the connections reinforced by a chord 

member top flange stiffener and reported in reference [1), direct 

comparison could not be made. The reason is that the stiffening plates 

in the tests had consider,ably different h/h
1 

and b/b
1 

ratios compared 

with those used in the parametric analysis defined in Section 6.1 • 

Table 7.9 gives the details o~ 16 ·spec!mens with square or rec-

- tangular branches tested by Kanatani et al. [14]. Table 7.10 shows the-

comparii'0n between 
I 

experimental a~~etical capacities,' with the 

latter adjusted to tile -actual yield strength of the chord members. It 

can be noted that, with few exceptions, reasonable 'agreement exists. 

Details of four j~ tested by Redwood (2) are given in Table 

• 
7.11. The tbeoretical and test ,results for these joints are compared in 

Table 7.12. " , 

For all of the 26 /'tests 'compared above, the predicted joint 

capacity Mu is linked to the experimental cap~tty Mu as follows 

/ 

M - 1.00 M ± 0.16 if 
u u u 

(7.28) 

, , 

" 

~( 
\} . 



.~ .. 
Although the mean Value~ the predicted and ,experimental capac~iE>S 

are identica~ considera~e scatter exists,'ns indicat;d by the l~t 
term of Equation 7.28. The discrepancy ma~e a~ributed to th~ inabil-, 

, q.--...- • tv of the IlIldel to accurately simula~ actual boundary condiHons 

of the test setups. Fur¥ermore, /lxith residual st~esses and large 

deformations have not been considered' in the theoretical,.llIldel of the 

joint. ii:-1S'-.known .that the joint undergoes 

prior to reaching its load limit •. 
r 

considerab~-e de~t:ons 

I. 

However, the degree of accuracy 
, ." 

itrtlicated by Equation . .. is 
It 

considered adeq~ate for de~ign purposes after 'applying an a\IPropriate 
• 

factor of safety to the predicted capacities given by Equation 7.27. 
~ 

" \.9" \).'. 

Equation 7.27 and experimental results for the, ~~ci~~s can 

be represented graphically on a logarithmic plot as shown in Fig. ') .16. 

It may be observed that experimental capacities ~ about evenly dis-

tributed on both sidea qf the theoretical line. -~ 
From the foregoing discussion, it may be concluded' that the 

generalized expressions for the joint characteristics provide a val1.d 

basis for as'sessment and design of these joints. Further examination ql; 

the theoretical results will be presented in Chapt~r 8 • 

• 

, , , 
~:~: I 

-

l ' 

C • 
~ 

• 

I 

I 
.\ c.....: 

• It' 
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7.6 Generalized Formulae for Single Chord Joints Under Punchinll; 

Shear 

A parametric analysis of single chord joints under punching 

shear was described in Section 6.3. Results of that analysis indicated 

that all geometric parame~ ,considered, except the chord aspect ratio 

r
3

, have a significant inf~nce on. behaviour. The standardization. 

procedure described in Section 7.2 was employed to develop analytical 

expressions for the joint characteristics. By applying this procedure 

to the analytical curves of Figs. 6.7 to 6.11, the following relation-

ship between punching shear and deflection is obtained 

olt - 0.678 x 10-
2 

Rb P 
(_0_) 

D 
+ 0.211 x 10-3 

'. 
+ 0.135'x 

where the .standardization factor R is defined by 

R -
(O.067-6.62r 1) 

r
1 

x 
(lo58-0.l3r 5) 

r5 

(-0.50+0.0008r4) 
r 4 

(7.29) 

(7.30) 

Equations 7.29 and 7.30 can be used to generate the load-deflec-

tion curve. for a single chord joint of given configuration •. The genera-

• 

•• 

, 
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ted curves are in reasonably close agreement with the fitted curves as 

dellDnstrated in Figs. 7.17 to 7.20, where generated and computed curves 

for the fifteen joints, analyzed in Section 6.3, are compared. 

Substituting the C values given in Equation 7.29 and a small 

value for the B ratio into Equation 7.14, the following expression is 

obtained for the joint capacity. 

P - 16.0 
u 

(7.31) 

") 

In order to gain confidence in the theoretical expressions given by 

Equations 7.29 to 7.31, the predicted joint capacity will be compared , 

with experimental data. Details of thirteen jOints reported in three 

separate experimental investigations are listed in Table 7.13. Also 

given are the R factors as calculated by Equation 7.30 and the flexural 

rigidities D of the chord flan~e. Experimental and theoretical joint 

capacities. are given in Table 7.14. Comparison between the predicted 

capacities, adjusted to the actual chord yield strength, and experimen-

tal values are shown in the last column. For al'1 joints, correlation 

between predicted values P and experimental values P is given by the u . u 

following relationship. 

P - 0.98 P ± 0.12 P 
u u u 

(7.32) 

The somewhat high discrepancy indicated by the last term of Equation 
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7.32 may be attributed to the same reasons given for the moment connec-

tions in the preceeding section. This degree of accuracy is, however, 

considered, adequate for design purposes • 

.!' ;,.-

Equation 7.31 can be reliresented by a straight line on an R vs. 

be Pu 
--D-- logarithmic plot as shown in Fig. 7.21. Experimental results are 

plotted as well on the same figure for comparison. 

The preceding examination of the theoretical expressions devel-

oped herein suggests that they provide a valid basis for assessment and 

design of single chord RHS T-joints for which failure ,is governed by 

the strength of the 

/' 
this is the failure 

chord's top flange. According to reference [14 J , 

mode for all joints with width of branch members 

less than or equal to the flat width of the chord's mated flange, except 

for premature weld failure. 

In almost all practical situations, the jOint will be subjected 

to both punching shear and moment. The behaviour of single chord' joints 

'under combined loading has been' discussed in section 6.4. The interac-

tion Equations 6.1 or 6.2 may be employed to calculate the reduced pun'j' 

ching shear capacity P due to the presence of applied moment M , and 
m m 

vice-versa. 

.' 
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TABLE 7.1 COMPARISON BETWEEN EXPERL'ffiNTAr. AND mEORETICAL :-IOMENT CJJ!A

CITIES FOR DOUBLE- CHORD JOINTS 

Specoimen R x ro-2 
D 1'1 

-(b) 
~~u 1'1 

u u < 
~ No. (a) (KN-m) (KN-m) (KN-m) 

--
1'1-1 1.137 15.827 67.9 76.0 .0.89 

J 

1'1-2 0.1612 4.688 97.9 107.3 0.91 

1'1-3 0.5808 15.827 119.4 107.5 1.11 
-

1'1-4 0.5593 15.827 124.0 125.8 0.99 

(a) See Table 4.1 

(b) 4.3 

• 

! 

./ 

I 



TABLE 7.2 IlETAILS AND RESULTS OF DOUBLE CHORD JOINTS TESTED BY CIlIOIAC- [7) 

Chord Yield 

Specimen Chord Member Branch Ifember b l /2bo b 1 /h 1 b1lt o Strength 

No. 2 RIlS (nun ) R1IS (mm ) (MPs) 

, 

• 
T-I 152.4xI52.4x6.35 254.0xI52.4x7.13 0.500 0.600 24 370 

T-2 152.4xI52.4 x6.35 254.0xI52.4x7.13 0.500 0.600 24 347 

T-3 152.~xI52.4x6.35 177.8xI27.0x4.78 0.417 0.714 20 & 377 

T-4 152.4xI52.4x6.35 177.8xI27.0x4.78 0.417 00114 20 352 
-

(a) Joints T-) and T-4 failed due to branch flange buckling. 

-j .. _, 

,.,,-,. 

.... 

Ult imate 

fument 

H (KN-m) u 

87.0 

102.0 
50.8(a) 

56.7(a) 

Weld LenRth 

Between Chorda 

(mm ) 

-

305 

-
305 

, 
( 

~ 

'" V> 
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TABLE 7.3 COMPARISON BEThTEN EXPERHiENTAL [7J ."-"lD THEORETICAL MOME:'"!" 

CAPACITIES FOR DOUBLE CHORD T-JOINTS 

Specilll!n R x 10-2 
D M M 

M 
u 

u u -
No. (KN-m) (I(.'<-m) (KN-m) 

Ii 
u 

T-l 0.1786 4.688 108.2 87.0 1.24 

T-2 0.1786 4.688 101.5 -102.0 1.00 

T-3 0.4277 4.688 46.0 50.8 0.91 

T-4 0.4277 4.688 43.0 56.7 0.76 

, 

• 
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TABLE 7.4 COMPARISON BE'lVEEN YIELO LINE AND THEORETICAL RESULTS FOR 

DOUBLE CHORD T-JOISTS UNDER· BRANCH MOMENT 

oint R x 10-2 

No. (a) 

• 
OB-1 0.1612 

OB-2 0.2558 

OB-3 0.3565 

OB-4. 0.5428 

OB-5 .. 0.2773 

OB-6 0.1786 . 
OB-7 0.2558 

OB-8 0.2558 

OB-9 0.1394 

OB-10 0.3969 

OB-11 0.5593 

OB-12 2.002 

OB-13 3.288 

OB-14 4.764 

(a) See Table 5.1 

(b) See Table 5.6 

Ii /0 
u -

24.19 

15.25 

10.94 

7.18 

14.06 

21.84 

15.25 

15.25 

27.98 

9.83 

6.97 

1.95 

1.19 

0.82 

*(h) * 
Ii 

u 
M Ii /0 

* u u 
Ii 

u 
( KN-",) 

133.7 28.52 0.85 

83.6 17.83 0.86 

66.4 14.16 0.77 

51.9 11.07 0.65 

80.9 17.26 0.81 

116.2 24.79 0.88 

83.6 17.83 0.86 

83.6 17.83 0.86 

57.9 29.27 0.96 

112.1 12.24 0.80 

143.4 9.09 0.77 

- - -
- - -
- - -

-
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TABLE 7.5 COMPARISON BETWEEN EXPERI~N'TAL A.'lD THEORETICAL PUNCHING 

1 SHEAR CA.PACIT):ES 

-; • 

":t R x 10-2 

No. (a) 
.-

) 
A-I I~ 0.9969 
A-2 0.9969 

A-3 0.3845 

A-4 0.3845 

A-5 0.3109 

A-6 0.3664 

(a) See Table 4.2 

(b) 4.4 

• 

FOR DOUBLE 

D 

(KN-m) 

15.827 

1-5.827 

- 4.688 

4.688 

4.688 

4.688 

/ 

CHORD JOINTS 

P 
- (b) J> P u 

u u --
(Iul) (KN) P 

u 

1944 1412 1.38 

1806 1637 1.10 

1065 858 1.24 

1065 1255 0.85 

. 1771 i528 1.16 

1407 1465 0.96 

, 
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TABLE 7.6 COtfl'ARISON BETWEEN YIELD LINE AND THEORETICAL RESULTS FOR 

DOUBLE CHORD T-JOI~S UNDER PUNCHING SHEAR 

Joint R x 10-2 

No. Ca) 

DA-1 0.3155 

DA-2 0.3707 

DA-3 0.4290 

DA-4 0.5263 

DA-5 0.3874 

DA-6 0.3364 

DA-7 0.~707 
·DA-8 0.3707 

DA-9 0.2168 . 
DA-lO 0.5447 

DA-11 0.7348 

DA-.12 2.255 

DA-13 37558 

DA-14 5.615 

Ca) See Table 5.1 

Cb) See Table 5.7 

,. 

Pubo 
D 

44.37 

37.77 

32.63 

26.60 

36.14 

41.62 

37. '/7 

37.77 

64.58 

25.70 

19.05 

6.21 

3.73 

2.49 

* 
*Cb) Pubo " u P 

D .-u 
P 
u 

CKN) 

1600 52.01 0.85 

1254 40.77 . 0.93 

1119 36.38 ' 0.'10 

991 32.22 0.83 

1227 39.89 0 .• 91 

1462 47.53 0.88 

1254 4~.77 0.93 

1254 40.77 0.93 

897 69.11 0.93 

1636 27.23 0.94 

2043 19.67 0.97 

- - -
- , - -
- - -

. 

• 

• 

J 
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TABLE 7.7 DETAILS OF MOMEN~ CONNECTIONS TESTED BY KOROL ET AL. [IJ' 

, 

Chord Branch 

Specimen RHS (ho~boxto) RHS (hlxbIXtl) r l r 2 
No. (mm ) (mm ) 

I 152.4xI52.4x4.76 127.0xI27.0x6.35 0.833 1.0 

2(P} 152.4xI52.4x4.76 127.0xI27.0x6.35 0.833 1.0 

3 254.0x254.0x9.53 152.4x I52.4x4.76 0.600 
,., 

1.0 

4(P) 254.0x254.0x9.53 152.4x I52.4x4.76 0.600 1.0 

5 152.4xI52.4x6.35 127 .Ox 127 .Ox6. 3'5 0.,833 1.0 

6(P) '152.4xI52.4 x6.35 127.0xI27.0x6.35 0.833 1.0 

Notes: I. (P) - prepared butt weld (other specimens fillet welded) 

2. Failure mode in,all tests was chord flange yielding. 

'--.... 

/' 

. 

r 4 R 

26.67 ' 0.5835 

26.67 0.51135 

16.00 2.455 

16.00 2.455 

20.00 0.7058 

20.00 0.7058 

". 

D 

(KN-m) 

1.978 

1.978 

15.827 

J5.827 

4.6118 

/,.688 

, , 

~ 

00 
o 

.. 
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TABLE 7.8 CO~PARISON BETWEEN EXPERIMENTAL (KOROL ET AL.) AND THEORETICAL RESULTS 

J;:xperimental Theoretical 

Specimen Chord Yield Strength Ultimate ~Ioment Ultimate Moment , 
No. 0y(HPa) H (KN-m) H /D H (KN...",) H /D H!H 

u u /I u u u 

1 396.4 28.7 14.51 26.9 13 .60 0.94 ~ 

00 
~ 

2(P) 390.2 25.2 12.74 26.5 
. 

13.38 1.05 . 
3 405.5 50.5 3.19 52.3 3.30 1.04 

4(P) 410.9 55.4 3.50 53.0 3.35 0.96 , 
5 369.6 45.4 9.68 49.1 10.51 1.08 

6(P) 363.4 47.3 10,09 48.3 10.30 1.02 

---

'-
, 

r'" 

--' .. 
• 

·_~_i • .,: \.;,.. '~-";'4 ,,~ 
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TABLE 7.9 DETAILS OF HOlffiNT CONNECTIONS TESTED BY KANATANr ET AL. [14) 

Specimen Chord Branch 
No. lOIS (hoxboXto) RHS (hlxbIXtl) r l r 2 

" (rom) (rom) 

"" 

SI 100x100x2.3 0.500 , 
~ S2 lOOx lOOx 6.0 0:500 

S3 200X200x6.0 125x125x3.2 0.625 1.0 
S4 125x125x6.0 0.625 ... 
S5 - 150x 150x4.5 0.750 , 

S9 lOO x100x6.0 0.500 
Sl1 200x200x9.0 125x125x6.0 0.625 1.0 
SI3 175x175x6.0 0.675 

SIS 200x200x12.0 IOOx100x6.0 . 0.500 1.0 

S21 150x150x6.0 IOOx100x6.0 0.667 1.0 

. 
"' R3 203x152x6.4 0.760 0.749 

R4 200x200x6.0 ) 254x152x6.4 0.760 0.598 
350x150x6.0 0.750 0.429 R5 

/' 
R7 203x152x6.4 0.76 . 0.749 
R8 200x200x9.0 254x152x6.4 0.76 0.598 
R9 350x 150x6.0 0.75 0.429 

, 

r 4 

16.67 
16.67 
20.83 
20.8] , 
25.00 

1.1.11 
13.89 
19.44 

fl.33 

16.67 

25.33 
25.33 

• 25.00 

16.69 , 
16.89 
16.67 

". ".., 

R 

----

J 3.'016 
3.016 
"1.915 

1. 915 
0.9736 

3.909 
2.438 
I. 145 

5.984 

1.659 

0.7089 
0.5764 
0.4496 

. 

b.9169 
0.7468 
Q.5729 

D 

(KN-m). 

].956 

,13.352 

I 

31. 648 I 

I 

3.956 

3.956 

13.352 
I 

'j 

Note: Failure mode of all joints, except S13, R7, R8 and R9, was chord flange yielding. Failure mode of , 
joints S13, R7, R8 and R9 was weld fracture. 

~ 

0:0 
N 
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TABLE 7.10 COMPARISON BETWEEN EXPERIMENTAL (KANATANI ET AL.) AND THEORETICAL RESULTS', 

Experimental Theoretical 

Specimen Chord Yield Strength Ultimate Moment Htimate l!oment 

,ay(MP~) M (KN-m) M /n M (KN-m) M /D No. . 
U 1I 1I U 

2.a 1 
, 

SI 11.1 10: 1 2.54 
'\ 

S2 14.1 3.56 10.1 ' 2.54 
S3 , 383 17 .8 4.50 15.8 4.00 
S4 21.2 5.36 15.8 4.00 
S5 34.4 8.70 '31.1 7.87 

r-

I' S9 30.4 2.28 23.2 1.74 
Sl1 340 39.3 2.94 37.2 2.79 
S13 66.7 5.00 79.3 5.94 

, 
SIS 378 31.8 1.00 40.0 1.26 
S21 392 19.8 5.01 16.7 , 4.22 

R3 41.4 Il47 42.7 10.81 
R4 383 .,).J 49.9 12 61 52.6 13.29 -" 

R5 70.3 rf7 .77 67.4 17.04 

" 

R7 85.2 6;38 99.0 7.42 . 
RB " 340 125.4 9.39 , 121.6 9.11 
R9 163.2 12.22 158.5 11.87 

-_.-

4, 

• 
~""",,~,,~ .. ""'un'_, 

II 
1I -

H 
u 

0.91 
0.72 
0.89 
0.75 
0.90 

0.76 
0.95 
1.19 

1.26 
0.84 

1.03 

1.05 
0.96 

1.16 
0.97 
0.97 

, 

'j 

• 

~ 

CD 
W 
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TABLE 7.11 DETAILS OF MOMENT CONNECTIONS TESTED BY REDI-/oon [21 

Specimen Chord Branch 

-

~ 

R11S (hoXboXtoY 
- 0:""" " No. r

1 
(mm) (..,,) 

---
1 88.9x 88.9 x 4.94 0.7r 

~ 

2 69.9x 69.9 x 4.18 0.5 0 
" 

3 127.0x I27.0x4.76 63.5x63.5 x4.18 0.500 

4 
') 

47.6x47.6x4.18 0.37;; 
- -- _._-

-(j 

r 2 r 4 

1.0 18.67 

1.0 14.67 

1.0 13.33 

1.0 10.00 
- - - -

I 
-< 

R 

1.501 

3.000 

3.540 

4.510 
I- _ 

n 

(KN-m) 

1.97& 

I 

-

~ 

00 ..,. 

-, 
r 



" 

" ". 

f.. 
• 

TABLE 7.12 COMPARISON BETWEEN EXPERIMENTAL (REDWOOD) AND THEORETICAL RESULTS , ' 

Experimental 

Specimen Chord Yield Strength Ultimate Moment 

No. 0y(HPa) M (KN"1II) 
u 

. 
1 6.83 . 
2 248.2 2.89 

3 2.40 

4 • 1.49 . 

\0 ~ 

/~ 

) 
,.~,_:".c..;....... ~._ •.• :~ 

~ 

M /0 
u 

3.45 

1.46 

1.21 

0.75 

Theoretical 

Ultimate llament 

H (KN"1II) . u 
H /0 

u 
, 

6.54 3.31 

3.27 1.65 

2.77 1.40 

2.18 1.10 

M 
u 

H 
u 

0.96 

1.13 

1.15 

1.46 

..... 
ex> 

'" 

__ .___ ."..t., .. 



TABLE 7.13 DETAILS OF TESTED PUNCHING SHEAR SINGLE CHORD CONNECTIONS 
. 

Specimen Chord Branch 

Reference No. RHS (hoXboxto) RHS (h I xb I xt I ) 

(mm) (rom) 

1----

B-3 50.8xI52.4x4.7.6 101.6x 50.8x6.35 

B-4 50.8x I52.4x4.76 101.6x 76.2x6.35 

Patel et a1. 8-5 50.8xI52.4x4.76 101.6xI01.6x6.35 

[ 5) L-4 152.4xI52.4x4.76 76.2xI01.6x6.35 

L-5 152.4xI52.4x4.76 !It 101.6xI01.6x6.35 

1 88.9x88.9x4.94 

Redwood (2) 2 127.0xI27.0x4.76 69.9x69.9x4.18 

3 47 .6x47 .6x4.18 

I 50.8x50.8 

Hee (3) 2 88.9x88.9x3.81 3.8Ix38.1 .. 
3 25.4x25.4 

- - - - - -

;;f 

r l 
r 2 

r 4 

. 

0.333 0.50 10.67 

0.500 0.75 16.00 

0.667 1.00 21. 33 

0.667 1.33 21.33 

0.667 1.00 21. 33 

0.700 1.00 18.67 

0.550 1.00 14.67 

0.375 1.00 10.00 
• ) . 

0.571 1.00 13.33 

0.429 1.00 10.00 

0.286 1.00 6.67 

R 
d 

2.095 

2.197 

I. 329 

I. 244 

I. 329 

1.233 

2.283 

3.443 

2.255 

3.367 

3.848 

l 

0 

(KtI-m) 

1.97B . 

l.nB 

I .011 

~ 

CD 

'" 
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TABLE 7.14 COHPARISON BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS FOR SINGLE CHORD JOINTS UNDER PUNCHING 

SHEAR l 

EXl'erimen~al Theoretical 

Specimen Chord Yield Strength UI timate Load Ultimate Load 

P b P b P 
Reference No. 0y(HPa) P (KN) P (KN) 

u 0 u 
u 0 -

u D u D P 
u 

B-3 57.0 4.93 70.3 5.42 1. 23 

-t. B-4 72.2 5.56 67.0 .s. 16 0.93 
Patel et al. B-5 248.2 118.2 9.11 110.8 8.54 0.94 

[ 5) L-4 . 98,4 7.58 118.4 9.12 1.20 
L-5 109.5 8.44 110.8 . 8.54 1.01 

1 151.0 
~ 

9.70 143.3 9.20 0.95 
Redwood [2) 2 248.2 87.8 5.64 77 .4 4.97 0.88 

3 53.7 3.45 51.3 3.30 0.96 

1 69.7 6.12 63.7 . 5.59 0.91' 
Hee [3) 2 275.8 . 51.3 4.50 42.7 3.74 0.83 

3 
, 

38.7 3.40 37.3 3.28 0.96 
- . 

, 
< 

• 

.".~~,: 

~ 

00 
-.j 
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CURVE 

~_-CURVE 2 

__ r;,;j 3~_- CU RVE 3 

ROTATION 

FIG. 7.1 FftMILY t1fD-~ CURVES FOR CONNECTIONS "11TH DIFFERENT 

rj VALUES 
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CHAPTERS • 

ANALYSIS OF RHS VIERENDEEL TRUSSES 

S.l Introduction 

Members in a Vierendeel truss are subj ect to predominately 

bending action. This type of 'structure, then, is susceptible to rela-

tively high 'bending stresses since axial forces playa less significant 

role in distributing the forces. 

Joints in a Vierendeel truss, such as shown in Fig. S.l (a) must 

possess enough rotational stiffness to render a stable load-carrying 

structure. Futhermore, when a truss consists of rectangular ;.bollow 

section (RRS) members, the joints are usually flexible. In such cases, 

• the joints may have a sfgnificant effect on the truss behaviour even if 

\ 
they are able to develop the moment cspacity of the connected members. 

In this chapter, a number of Vierendeel trusses with· different 

joint configurations are analyzed. Uncoupled, nonlinear rotational and 

translational springs a e introduced at the branch-to-chord connections .. 
to simulate the joint lexibilities, as shown in Fig. S.l (b). The 

• 
standardized equation , 'presented in Chapter 7 for double and single 

chord joints, are used to define the stiffness and strength· characteris-

tics of the model sprin s. 

- 209 -
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An analysis that employs the finite element method and incorpor

ates material nonlinearities in both members and joints is introduced. 

The Newton-Raphson method, as presented in Chapter 3, is employed again 

to solve' the nonlinear problem incrementally. The computer program 

written for the present study has the capability of static analysis of 

any plane frame which can be modelled by one-dimensional straight ele

ments and whose material obeys the Von-Mises yield criterion with "'1 

associative flow rule for strain-hardening as presented in Sect'ion 3.5. 

Different aspects of the finite elment formulation are presented in the 

following sections. 

8.2 Finite Element llidelling of Rectangular Hollow Section (RHS) 

Members • 

Numerical integration is' used to evaluate the element matrices 

in the finite element formulation of the nonlinear problem at hand. 

Each lUis member is divided into a number of beam elements of different 

lengths according to the expected stress gradients. A typical beam 

element is shown in Fig. 8.2 (a). Nodal degrees of freedom are axial 

displacement u, transverse displacement w and rotation 9. Hence, both 

axial and bending actions are considered in the formulation. 

The tangential stiffflfsS matrix (~) is written in the standard 

form as 
'. .. 

\ 

, 

/ 
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~-

[K.r]-JV[B]T [E] [B] dV (8.1) 

(6)<6) (6)<1) (Ix 1) (Ix 6) 

where E is the modulus of elastidrty E or the tangential modulus ET and .. 
[B] is the strain matrix relating the longitudinal .strain to nodal -, 

displacements, i.e., 

[e:] - [B] [6 ] 
e 

(8.2) 

Ix 1 (Ix 6) (6)< 1) 

[B] - < 
1 6z 2z (2-31; ), 1 

- i'"' -"2 (1-20, t r' 1. 

6z 2z 
(8.3) • - 1. 2 

(I- 2F;)':r (I-31;). > 

• 
~ , 

[6 e} T - < u l .wI Ell 
i u

2 
w

2 El2 >. (8.4) 

In order to simplify integration of Equation 8.1 numerically, the double 

__ or single chord RHS is transformed into an equivalent I-section. The 

equivalent I-section dimensions are related to the original double and· 

single RHS chords as follows (see Fig. 8.2(b» 

For double RHS: b - bO' 

/ 
This renders a simpler geometric input for the computer program. Inte-

gration in the z-direction is carried out using three point Gauss , 
/ 
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quadrature within each of the flanges and web of the equivalent section, 

as illustrated in Fig. 8.2 (b) because of the abrupt .changes in the· 

cro~n shap~. Three point integration scheme is also employed to 

int gra ong the 'element length in the x-direction. Hence, a total 
,,' .. 

of 27 integration points are used to evaluate. the element stiffness ,. 
matrix. Equation 8.1 can then be inte~ted numerically by the 

following equation; 

\ 
• I 

1-1" 
--!!.here 

[~J-- t~(h-t).tl 

(6x 6) 

+ 1. i'b.t 
3 
E 

2 
i-I 

+ .!. t·b·t 
3 
E 

2 
i-I 

\ 

3 3 
E E W w [f(~ , 

i-lj_lij i 

3 
~~ )] E WiWj[f(~i' 

j-l 

3 , , 
E WiWj[f(~i' Zj )] 

j-l 

- 0.5 - f u.TI', 0:5, 0.5 + f u.TI' 
/' 

/ 

---. 

- -2(h-t) f u.TI', 0.0~2(h-t) f u.TI' 

"" 1 f-- I 
zi -h-t(Z + 0.15), h-t!2, h-t(Z - f 0.15) 

, , 
-h+t(t+ f 0.15), 

I f 0.15) zi - -:h+t/2, -h+t(- -2 

'lIl 

(8.5) 

• 

• 

-./" 
J 

\ 

; 
" 

i 
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(B.6) 

E (ij) is equal to E or IT depending on the stress level at the i~egra- .' 

tion point (~i' Zj). Equat~n B~5 permits calculating the element 

stiffness matrix to within 1% error. 

B.3 Finite Element of Vierendeel Truss Joints 

r 

To account ~ 
~ flexibility) of' joints in the analysis of 

Vierendeel trusses the branch member is assumed to be connected to the 

cb6;~ member throUgh sprin~s as shown schemati~lly in Fig. B.1. Rota-
I, ' 

tional stiffness of the joint is modelled by a rotational spring S , 
, . ' r 

whereas the axial stiffness is incorporated through a translational 

spring St. A typical joint spring element is shown in Fig. 8.3 (a). 

" 
Under an applied brancn moment H, tbs ~ring Sr undergoes a, 

~'--", 

ro~ation $ and its tangential stiffness J T will be(given~y the slope of 

the H-q> c,!rve, as illustrated in Fig. 8.3(b). Sim1lar~y, the spring St 

-undergoes a deflection 6 under an applied fO~d its tangential 

stiffness CT will be given b~ dle slope of e....s curve, as shown in 

Fig. B.3 (c) .~andardized equations for J T aInd CT were deve~ped-:~. 

Chapter 7 for th single and double chord RHS -joints and are imple-

'"" ' 

mented in the pr sent analysis. The i crement I equations of ~-

""" ~ 
UO",= ., <h. ""'''' ,,-"' ,= be ~,,,i _I, n th ),e~. i~g :-strix 

form: .Y_ 
J-.. " , 

-
• 

~'. 
, 

" 

i l 

1 
1 

'I. 



\ 

'-

\. 

- 214 -

• 
toP

1 
C

T 
O. -CT 

0 tow
1 

toM
1 

0 'J
T 0 -J toe 1 • T (8.7) 

toPz -C 
T 

0 CT 0 towz 
toM 0 -J T 0 JT toe z 

or in a simpler form as 

(8.8 ) 

• 

where {toRS} and {too:} are vectors of incremental nodal forces and dis

placements, respectively and [~I is the tangential stiffness matrix of 

the spring element. Equation 8.7, implies that the rotational and trans-

lational springs are uncoupled. Numerical results to follow do indicate 

validity of this assumption. 
• 

8.4 'Solution Pro'cedure 

I 
It may be observed that the finite element formulation presented 

in Chapter' 3 for analysis of RHS joints and that of the Vierendeel trus-

ses her:e are analogous in many respects. While the former employs two-

dimensional rectangular plate elements and boundary spring elemen~s, the 

latter employs one-dimensional beam elements and joint spring elements. 

In addition, both analys~s incorporate material nonlinearities through 

the same yield and strain-hardening criteria. The Newton-Raphson solu-

tion scheme will be used again to solve the present nonlinear 

, -

-
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incrementally. Steps of the solution technique have been presented in 

Section 3.5. The same solution procedure can easily be adopted for the 

analysis of Vierendeel trusses employing o'tie dimensional elements. 

To start the analysis of a Vierendeel truss, an arbitrary load 

is applied and the elastic system is solved for displacements, strains 

and stresses. These internal actions are then scaled so that the most 

• 
highly stressed point in the structure (a member or a joint spring) just 

yields. The corresponding load is then the yield load. Additional 

loads are applied in increments pr~portional to the yield load. For 

each load increment, the incremental equations of equilibrium are solved 

iteratively and the global stiffness matrix is updated after each iter-

ation. Equilibrium is considered to be satisfied when the difference 

between the de'terminants of two consecutive stiffness matrices is within 

one percent, the specified tolerance. The unbalanced loads are added to 

the next 'load increment and the solution process is repeated. A stiff-

ness or deflection criterion can be specified to~efine failure and thus 

cause termination of the analysis. In the following sections, numerical 

examples, illustrating some applications of the analysis procedure 

above, are presented. 

g.5 Vierendeel Trusses with RHS Members 

It is valuable from a practical point of view to gain some 

insight into the influence of the RHS joint configuration' on the overall .. 
behaviour of a framed structure. A comprehensive investigation of the 

problem is, "however, beyond the scope of the present work. Hence, only 

• 
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a few cases of Vierendeel trusses with a fixed geometry have been anal-

yzed. 

The geometry of the trusses analyzed is shown in Fig. 8.4 (a). 

Each truss is simply supported at both ends and consists of six 2.5 m x 

3 m bays. A total load, W, acting on the upper deck is represented by 

the equivalent joint loads as. shown. Each truss member is modelled by 
<" 

six beam elements of decreasing lengths toward the joints at both ends, 

as shown in Fig. 8.4 (b). 

Two double chord trusses, denoted OCTI and OCT2, and two single 

chord' trusses, dl!Ooted SCTI and SCT2, are considered. Each truss is 

analyzed for two conditions namely, rigid joints (RJ) and flexible 

,joints (FJ). Member sizes of chords and branches are listed in Table 

8.1 for all trusses. Member sizes are chosen such that the plastic 

moment capacities of chords and branches of DCTI and OCT2 are approxi-

mately equal to those 'of SCTI and SCT2, respectively. Thus, the behav-

iour of cases OCTI-RJ and DCT2-RJ sltould be comparatively similar to 

width 

of cases {CTl-RJ and. SCT2-RJ, respectively. Furthermore, the 

ratIos r l for the joints of trusses DCTl and DCT2 are equal or 

approximately equal to those of trusses SCTl and SCT2 to allow for com-

those 

parison between flexibly-connected double and single chord trusses. 
I 

Material of the trusses is assumed to be structural ~teel with 

the same properties as given in Section 2.4. When analyzing the 

rigidly-connected trusses, all load increments, applied after initial 

yielding, were chosen as five percent of the yield load. Yielding of 

• 
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these trusses progresses rapidly and hence the loads tmlst be applied in 

small increments to obtain enough points for the load-deflection curves. 

On the other hand, size of the load increments applied to the flexibly-

connected trusses has been taken a~ twenty percent of the yield load. 

8.5.1 Response of Rigidly-Connected Trusses 

The joints of these trus,ses are assumed to behave rigidly, i.e., 

the framing angle between the branch and chord members does ~ change 

as load is applied to the truss. 1t.nce. the joints will have no effect 

on the truss behaviour. 

The applied load W versus the central deflection <5 are plotted~, 

in Figs. 8.5 and 8.6 for the two'double chord and two single chord trus-

ses. respectively. The deflection <5 is taken as that' of the' central 

joint on the bottom chord of the truss (joint A in Fig. 8.4). Loading 
• 

on each truss is terminated when its current stiffnes reduces fto about 

ten percent of the elastic stiffness value. The convergence of the 

incremental solution becomes relatively slow as stiffness falls below 

this limiting value. 

The loa& and deflections at both the yield and limiting levels 

are listed in Table 8.2. Also presented are the elastic stiffness SEL 

and the ratio ~/Wy of ultimate to yield loads. It can be seen that th~ 

results for trusses DCT1-RJ and SCT1-RJ and for trusses DCT2-RJ and 

SCT2-RJ are only slightly different. This is expected --because of the 

I_ 
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choice of member sizes as explained before. It may also be observed 

a 
that the maximum load, based on the failure criterion, is only about 

twice the yield load. 

I 
\ 

'" 
Resul ts of the present analysis in the elastic range have been 

• 
found to agree exactly with the results obtained by using an independ-

ently developed frame analysis program [24J. In addi tion, the truss 

capacities as predicted here are also compared with the upper bound 

capacities predicted by plastic analysis of the\~russes. Although each 

of the two \pproaches is based on a different theory, the relative 

comparison is, nevertheless, useful. The plastic analysis is presented 

- ~ *r in Appendix C. _'P!le predicted ~per bound capac1t~ea. W ,of the four 
S "\ U 

. I 
trusses are shown by horizontal lines in Figs. 8. 5 a~c;\' 8.6. They are 

\ 

somewhat higher than the finite element capacities for the weaker trus-. 

ses but lower for the stronger trusse~ Nevertheless, the difference' 

between the two ~lutions is less than 20% in all cases. 

8.5.2 Res onse of Flexib -Connected Trusses 

• 

Flexibilities of the joints are incorgDrated in the analysis via 

Equation 8.7. The load versus central deflection curves are presented 

,-
in Figs. 8.7 and 8.8 for the double and single chord trusses, respectiv-

ely. Since all joints in each truss have the same configuration, they 

have equ~ initial rotational stiffness, J
EL

• As the load is applied 

gradually, rotational stiffnesses of the joints at top and bottom of the 

end branches (joints B in Fig. 8.4 (a» deteriorate most rapidly but 
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• 
are followed closely by joints at ends of the second branches (points 

C). Each truss is assumed to have reached -its capacity when the rota-

tional stiffness of joints B reduces to two percent of the elastic 

value; i.e., when J /J - 0.02. 
T EL 

On the other hand, the axial stiffness 

of all joints, except joints B, remain elastic throughout the loading 

history whereas that of joints B _ reduces to about sixty percent of the 

elastic stiffness. The effect of axial stiffness of joints will be 

discussed in Subsection 8.5.4. 

*f 
The truss capacities, W , as obtained from plastic analysis of 

u 

flexibly-connected trusses, are also shown in Figs. 8.7 and 8.8 by hori-

zontal lines. The plastic (mechanism) solutioo is given in Appendix C. 

With the exception of truss SCT1-FJ, agreement between the two solutions 

is reasonable. 

Results of the analyses are summarized in Table 8.3. Listed are 

/ 

the loads Wand central deflections 6 at the yield le~l and at the 

limiting condition J
T 

- 0.02 JELWhere J
T 

is for joints B in Fig. 8.4 

(a) as 'explained above. It can be concluded from ~/Wy ratios given in 

Table 8.3 that the trusses possess considerable reserve strength beyond 

initial yielding. I 

Another important conclusion can be drawn from comparing the 

behaviour of double and single chord trusses. It was observed in the 

previous section th~t, when the joints are treated as rigid, the respec-

t i ve double and single thOrd trusses (OCT1 and SCT1, or OCT2 aod SCT2) 
.{ 



- 220 -

have similar stiffness and strength characteristics. When the inherent 

joint flexibili ties are taken into account, however, the double chord 

trusses show superior qualities. The load capacities, .f, of tru~ses 
u 

DCT1-FJ and DCT2-FJ are about two and half'times the capacities of trus-

ses SCT1-FJ and SCT2-FJ, respectively. Approximately the same ratio 

applied al-.;o to the elastic stiffness of the trusses. The superior 

behaviour of double chord trusses is attributed to the fact that double 

chord joints are much stiffer than single chord joints. This is appar-

ent from comparing the elastic rotational stiffness SEL of the two types 

of joints, as shown in Table 8.3. 

8.5.3 Effect of Joint Flexibility on Truss Load Capacity 

J 
\ 

When designing a Vierendeel truss, it is desirabl'e to make the • 

joints strong enough to transfer the maximum member forces without fail-

ure or excessive deformations. This can be achieved if the joint capac-

ity is at least equal to the plastic moment capacity of the weaker of 
". 

the connected members. It is assumed here that the truss will not fail 

prematurely due to an overall Jr localized buckling. 

Moment capacities M of joints of each truss are listed in Table" 
u " 

8.4. The M values are: calculated via Equations 7.17 and 7.26 for 
u 

double chord and single chord joints, respectively. Also given are the 

ratios of M and the smaller plastic moment 
u 

branch members. For all cases, the joint 

M or M of the chord and 
pc pb 

capacity is (deliberately) 

less than the smaller of the member plastic nnment capacities. Hence, 

I 
) 
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the capacity of each truss is· governed by the strength of its joints 

rather than members. This is apparent from wf/wr ratios given in Table u u ,. 

8.4. It can be observed that some correlation exists betveen wf/w1 
u u 

ratios and the governing M 1M or M 1M b' Although the joint config-
u pc u p 

urations (as defined by the joint parameters in Table 8.1) in trusses 

DCT1 and SCT1 or DCT2 and SCT2 are closely similar, the moment capaci-

ties of the double chord joints are cOnsiderably higher. This of course 

is due to direct transfer of a large portion of the branch forces 

through the middle vebs of the double chords as has been seen in section 

5.5. 

From the foregoing discussion, it is clear that a Vierendeel 

truss .nIl have the same load capac! ty as a rigidly-connected truss if 

each of its joints is designed to develop the full capacity of the con

nec!ed members. A stiffening, plate , velded to the mated flange of the 

chord member, is probabl' the most efficient and economical strengthen-

ing device of the joints. The minimum thickness t of stiffening plates 
s 

-red to develop full capacities of rigidly connected trusses are 

from a. stiffness point of, viev, 
(> 

Table 8.4. However, the 

response would still be more flexible for a Vierendeel truss .nth 

flexible joints than the'one .nth rigidly connected joints. 

- . 
8.5.4 Effect of Joint Axial St!rfness 

The rotational and axial stiffnesses of RHS joints have been 

assumed to be uncoupled, as implied by Equation 8.7. 'Nov the validity 

of this assumptioQ is tested. It vas noted in Subsection 8.5.2 that the 
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axial (punching shear) stiffness of all joints, with the exception of 

the end joints (joints B in Fig. 8.4 (a»~_remain elastic throughout the 

loading history; whereas those of joints B reduce to about sixty percent 

of the elastic value. This is because joints in a Vierendeel Truss are 

• 
subject to predominately bending action with less significant axial 

forces. 

In order to assess the effect of axial stiffness of the joints 

,on behaviour of a Vierendeel truss, the four trusses were re-analyzed 

assuming the joints to have an infinite axial stiffness. This' is 

accomplished by giving C
T 

in Equation 8.7 a very large value, say 

8 
10 KN/mm. 

1 

The resulting load-deflection curves for the double and 

single chord trusses were compared with the previously obtained curves 

in Figs. 8.9 and 8.10. The diffecence between each associated pair of 

curves is virtually imperceptible and can be neglected. This observa-

tion can be explained through interaction envelopes of the joints. 

These envelopes are given 'in Figs. 5.14 and. 6.14 for the double and 

single chord joints, respectively. As the moment and punching shear on 

• 
the joint increase gradually, the loading path follows a line starting 

from the origin and intersects the envelope at a point with a small 

P Ip value. Hence, the axial stiffness remains within or close to· the 
m u 

el'astic limit and the displacement due to punching shear is negligible. 

Therefore, a very large axial stiffness will not introduce any signifi-

cant errors as seen from Figs. 8.9 and 8.10. 

\ 
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TABLE B.I DETAILS OF VIERENOEEL TRUSSES 

~. 
< Chord Members Branch Members Chord , 

Case No. (hoXboXt 0) (htblxt I) PlastIc J.Iomant 

(""') (nun) M (KN-mr 
pc 

/\ 
DCTI-RJ 

& 2RHS 152.4XI52.4X9.53 RHS 152.4xI52.4X 6.35 192.5 
-

DCTI-FJ 

DCT2-RJ ~ 
-

& 2RHS 152.4xI52.4x9.53 RHS 254.OX254.OX 6.35 192.5 

DCT2-FJ 
, 

SCTI-RJ 
, ,.. 

& / RHS 254.OX254.0X6.35 RHS 127.OXI27.OX 9.53 197.3 

SCTlfFJ/ -
, 

J 

SCT2-RJ 
, 

,& RHS 254.OX254.0X6.35 RHS 203.2X203.2Xl0.3 197.3 

SCT2-FJ 

--

I 

I 

~ 

BrDnch 

PlastIc J.Iomant 'I . 
M (KN-m) 

pb 

68.0 0.5oo( 
J 

~ 

197.3 0.833 . 
• 

64.5. 0.500 

, 
191.1 ·0.800 

I 

JoInt Parameters 

'2 '4 

1.0 16.00 

~ 
, 

1.0 26.67 

1.0 20.00 

, 
• 

1.0 32.00 

~ 

( , 
5 

, 

1.0 

1.0 

1.0 

. 
I 

1.0 I 

I 

N 
N 
W 

" 
" 
) 
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TABLE 8.2 RESULTS OF RIGIDLY-CONNECTED VIERENDEEL TRUSSES 

Case Yield Values !values at S'1'-0.10 SEL 

No. W 0y SEL-Wy/Oy Wr 0 W r/w 
y u u u .y 

(KN) (mm) (KN/mm) (KN) (mm) 
-

.,... 
-<' 

DCTl-RJ 182 71.0 2.57 419 397 2.30 

DCT2'-RJ 438 64.2 
of 

6.83 775 255 1.77 

f? . 

SCT1-RJ 202 80.2 2.52 / 449 381 
'--,. 

2.(22 
, , 

SCT2-RJ 459 63.5 7.23 778 2.60 1.69 

• ) 

• / 
.-. 

'. 
• 

• 

.,..., 



f ~ 
~ 

TABLE 8.3 RESULTS OF FLEXIBLY-CONNECTED VIERENDEEL TRUSSES 

Yield Values Values at JTaO.02 J EL 
~ , 

/6 -
~ °Y . SEL-Wyl0y 0 Case Wy J

E4
10 . u u '1.), 

No. (KN) (mm) (KN/mm) (KN- /rad) (KN) (mm) 
• J 

• 
DCT1-FJ 29.3: 13.2 2.22 . 22.6 223 238 

"', -'\ 

---J 561 
. 

DCT2-FJ 74.3 12.7 5.85 .. 69.6 290 

SCT1-FJ 8.9 10.0 0.89 0.671 80.6 125 

SCT2-FJ 21.3 11.2 1.90 3.01 196 230 

:.Ii'-

.., 

L-
"-

Wf 
u 

Wy 

7.61 . 

7.55 

9.06 

9.20 

'-.. 

N 
N 

'" 

~. 

, 
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TABLE B.4 EFFECT OF JOINT FLEXIBILITY ON TRUSS LOAD CAPACITIES 

M M 
Wf/Wr Truss No. Capacity, f\, 

u u Minimum 
M or -

Mpb u u pc 
t (mm)(a) (KN-m) \ s 

DCT1 54.3 O.BOO 0.532 6.5 

DCT2 167.6 o .B71 o.n{., 3.5 -"\ 
SCT1 11.B 0. lB3 L O.lBO 11.0 

SCT2 52.9 - 0.277 0.252 7.5 

(a) 
Minimum thickness of stiffening plate required to develop the full 

trusa capacity, w:. ~ 

• 

< 

/ 
j 

~ .. ~ 

-

'. 

• 

• 
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(b) IDEALIZED JQINT 
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ROTATIONAL, 

SPRING 

FIG. ~ JOINT IDEA~IZATION IN RHS VIERENDEEL TRUSSES . 

I 
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(b) EQUIVALENT SECTION 

U2 
Xle 

j 
.... -' . 

EQUIVALENT 
SECTION 

FIG. 8.2 MENBER IDEALIZATION IN RHS VIERENDEEL TRUSSES 
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(a) JOINT SPRING ELEMENT 

cp 
(bl M-~ CURVE FOR 

. ROTATION SPRING Sr 

P 

c· T 

8 

(e) P-8 CURVE FOR 
TRANSLATIONAL SPRING 

Sf 

FIG. 8.3 C~tTERISTICS OF SPRING ELEMENTS 
~ 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

~ry and Conclusions _ 

The main objective of this investigation w~s to,develop an anal. 

ytical rodel for double chord' RHS T-Joints in steel that would be compu
;. 

tationally efficient Blld yet capable of. si.lDUlating the behaviour as 

accurately as possible. By giving priate consideration to the-

rodelling scheme, it was possible this rodel to include single .. 
chord RHS T-joints as well. 

.~ 

The rodels' involve idealization of a joint!8--d!~cting flange 

of the chord member as a thin plate restrained along the longitudinal , 
edges by coupled 

effect of these 

translational and rotational springs. _ fhe restraining 

edge (or boundary) springs is' equiValent to that 

provided by the webs .and botto,J flange. The models also incorporate 

material nonlinearities of the joint material that is presumed to .. be 

horogeneous and isotropic. Lts constitutive relations can' be adequately 

described by the Von-Mises yield criteri~~~e asso.eiated strain-

hardening rula---.(.B-J. Furthermore, deformations are assumed small and 
I ... 

hence geometric nonlinearities are neglected. This latter assumption is 

generally satisfactory p'ractical range. of deformations fO~ 
metallic ~tructures. 

• 
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Three types of finite elements are used for the finite element 

approximation of the joint models. The four node-rectangular elements, 

with both membrane and bending degrees of freedom,. are employed in 

defining the mesh for the top flange plate. A beam-column element is / 
..,. 

used to define the U-frame comprised 0 the webs and bottom flange,.of 

the RHS • .. The bound~ sp.ring element is developed r-i'ncorporate the 

\ 
boundary springs in the finite 

The joint models developed wer then used to carry out para-, , 
metric analyses of both double and ·single chord RHS T-j oints, subjected , 
to brancQ moment, punching shear or a combination of both •• Under the 

~ 

firs.!: two types of loading, five nondimensional geometric l1arameters 

were considered. These parameters are"thought to fully describe differ
/; 

ent joi~t configurations inlcuding those with,flange plate stiffeners. 

Under combined loading, the parametric analyses considered different 

ratios of appliel:l branch moment and punching shear. Results. of each 

parametric 13tudy were presented as the load~displacement (M...p or P-O) /\ 

! curves in a nondimensional form aQd in terms of interaction curves. 
I 
; 

, 

The experimental part of this investigation involved the testing 

of ten double chord RHS T-joints, four of which were under branch moment 

.-
and the other six under punching shear. The results of these tests, in 

addition to the four moment tests reported in reference [7 J, were used 

to examine results of the a~y~ical model for double chord joints. 
e 

procedure was developed to express the results 



• 

/ 

/ 

( 

" - 239 -

.. 
of the parametric analyses in equation form. This allows ~pressing the 

behaviour of a given joint type and loading in terms of a nondimensional 

standardization factor. This factor encompasses the influence of all 

shape parameters that were found to have a significant effect on the 

joint behaviour. The predicted joint capacities, based on the standard-

ization procedure, were compared with documented test results as well as 

re'sults of the tests performed as part of the present study. The pre-

dicted values are in'very good agreement with the experimental, results 

'/ 
for both double and single chord connectio~ under either~h moment 

or punching shear. The standard deviation in all cases was wi~~n six-

teen percent of the e~ntal values. 

f 

has 

~ t ' (' 
,It may be emphasiz that the model for the., double chord joint 

the capab:llty. of inco porating different interchord connection con-

ditions. The standardized functions for the joint are based on the , 
analysis of joints possessing interchord welds at both top and bottom. 

The length of these welds wss taken as 305 mm (12 inches), cen'tt;ally 

located about the joint centerline. Experimental 'as well as analytical 

results show that the joints possessing the interchord welding have 

greater strengt.h and stiffness than those no,t so, treated., Hence, it is 

recommended that the individual chords' should be welded together near 

the joint to form a composite section. 

"l, 
Another aspect of this investigation was to employ the yield 

, 
line method in developing upper bound solutions for the.,b~nch moment or 

punching shear capaci~y of double chord RlIS T-joints. The upper bound 
, 

capacities have been found to be consistently higher than those obtained -; 
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from the finite element solution as well as the generated equations. 

Dis;:repancies are, however, small as "!as observed in Chapters 5 and 7. 
I 

Hen'2""Fit can be concluded that the~eld line solutions reported in 

Chapters 5 and 6 may be used to predict the capac! ties of double chord \ . 
RHS T-joints after applying an appropriate reduction factor. 

! 

The • standardized joint stiffness and st'rength formulae were 

incorporated into an elasto-plastic finite element analysis of Vieren-

deel trusses composed of single and double chord RHS members. The main 

purpose of this analysis was to study the of joint flexibilities 

on the overall response of such trusses. Fu this lOOdel Was 

also employed to carry out a comparison of sti fness and strength chara-

cteristics for Vierendeel trusses consisting f double. chord RHS members 
• • 

and equivalent sin~ ~hord ,RBS members. 

/ 

\ 

A number of ~rtant conclusions can be drawn from the analysis 

~' "' 
of Vierendeel trusses in' which the joint behaviour is defined by, the 

• 
standardized M-4> and p-o functions men'tioned above. It was found that 

the· truss 
. ---ll. 

behaviour' is gtlverned by the rotational rigiditY of its 

joints. 'the axial (punching sllear) rigidity of the joints, on the other 

hand, does 'not affect the truss behaviour in any significant manner. 

This phenomenon· is easily explained by the load transfer mechanism in a 
.--, 

where' the mem~rs are subJected to predominately bend-

ing type of structure is susceptible' to very high end 

axial ~o~ces play an insignificant role in distri-

buting In order to develop. the full anticipated capacity of 

/-

the truss, its joints IJIUstJJe...sapable 

/ 
of transferring 

, 

,. 
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/"'J! moments in the conne members without excessive deformation. The 

addI,uon 05.. a chord f ge stiffening plate is an effi~ient way to con-

I 
siderably enhanc~ the trength of the joints, and consequently of the 

truss: 

J 
The proposed formulae, describing the behaviour of double chord 

RHS T-joints.,.--are listed in Table 9.1 for easy reference. The table 

includes the sta~ized lead-deformation (M~ or P-<l) function; the 

~ -
~ standardiz tion' constant, R or R, the tangential stiffness, J T or CT , 

'stiffness, J EL or CEL , ',and ,the joint capacity, Mu or Pu ' 

under branch moments or punching 

O 
_>. 

, * 
,,' 'the upper bound capacities, M or 

, u 

shears, respectively. Also given are 

P: as obtai~~ from a yield line solu-

tion. The interaction equations, 
, . ----:\ 

P , under combined loading; are also m ./ 

defining reduced capacities, M and 
m 

listed. The corresponding formulae 

for single chord joints are presented in Table ,9.2. Formulae, for the 

upper bound capacities' are however excluded and can be found in other 
, 

references such as [5] and [12]. 

The double chord T:"type connection, exhibits superior qualities 

1:0 the equivalent single chord connection. A greater joint stiffness 

and· higher moment cspacity can be expected from the double chord connec-

tion. This is mainly due to the presence of the inner webs of the chord 

member whicbf directly transfer a large portion of.l!lthe branch loads 

through membrane action. The yield line solution indicates that about 

seventy five percent of the double' chord s~rength is provided by the. 

inner Cebs. In the case of single chord connections, the hranch loads 

i 
.! 

\ 
;l 
l , 

.. 

, 

i 
" , 
.~ , 
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are transferred mainly by flexural action of chord's top flan~e plate. 

However, as the width ratio of the joint approaches unity, an increasin~ 

portion of the load is resisted directly by the chord's outer webs. 

9.2 Suggestions for Future Research 

In order to further our knowledge about the behaviour of RRS I-

connections t additional experimental and analytical research is 

. required. The following areas are suggested for future research: 

(1) additional • tests on 'double chord RRS I-joints under branch 

moment or puncl)ing shear, 

~ 

(2) tests. on single and double chord RHS I-joints under combined 

loading, 

(3) tests on RHS Vierendeel trusses, 

(4) incorporation of large deformati?ns in the joint models in order -to predict failure modes, 

(5) extension of the joint models to analyze the behaviour of single 

and double chord RRS joints of the Nand K-types. 

As more experimental data become availabj.e, validity of the 

·theoretical models, such as the ones developed here, can be' examined 

further or improved to. reflect the actual behavioural characteristics of 

.the structures considered. 
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TABLE 9.1 SUMMARY OF FORMULAE FOR DOUBLE CHORD RHS T-JOINTS 

Formulae 

. -1 RM 3 RM 3 6 RM 5 
~-0.617x 10 (iY)+O.39OX 10 (0) +O.176x 10 (0) 

(-1~34+Z.56rl) (1.54+1.06r
Z

) (-1.58-0.0031t4) 
R-r 1 r Z r 4 

x (Z.75-0.13r
5

) 

Branch 

r 
5 Z 4 

JT-(D/R)/l 0.617x 10-l+O. 117x 104(~) +O.8&< 106(~) J 

Moments J
EL

-16.Z'D/R 

, 

M -0.039 D/R 
u 

- - 3 - 5 ,RbP RbP, RbI' 
"/t-0.lZ3(-%-)+O.982x lOZ(-%-) +O.516x 10

4
(-%-) 

_ (-0. 14+Z.38r 1) (0.lZ+1.Z6r
Z

) (-1.35-0.0031r
4

) 
R-r

1 
r

Z 
r

4 
x (Z.50-0.053r 5)' 

r 5· 

, 

- Z -' 4 . 
- 3 RbOP ~(~Op 

Punching 

Shear 

---
Combined 
Moment 

and 

Punching. 
Shear 

CT-(D/RbO)!t0.lZ3+O.Z9Sxl0 (-D-)+O.Z~ ~) J 

~EL -8.13 D/Rb
O

' /"'" 

Pu -0.150 D/RbO 

P 5/3 M 5/3 

(~) + (~) - 1.0, 
P ~ M 

u u 
P M 

m m ~ 

(p) + 0.40 M - 1.0, 
u u 

P 
pm ~ 0.80 

, u 
P 
'm Va> 0.80 

• 

Equation 

Number 

7.15 

7.16 

7.7 

7.8 

7.17 

5.8 

7 .20 ~ . 

7.21 

7.1Z 

7.13 

7.ZZ 

5.15 

5.1 

5.Z 
r 

., 

1 , , 
1 

j 
1 

1 

f ., 
\ 

i 
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TABLE 9.2 SUMMARY OF FORMULAE FOR SINGLE CHORD RHS T-JOINTS 

Loading 

Type 

Branch 
Moment 

Formulae 

<I>-O.2S1x 10-2(~)+O.465x 10 -3(~)3 +0.442>< 10 -\~)S 

(0.27-7. 77r 1) _ (9· .. .9.5+0·86r2) (-0.45-0.0022r 4) 
R-r 1 . r~ r 4 

x (1.S6-0.94r5)~ 
rS 

2 4 
JT-(O/R)/l 0.2S1x 10-2+O.14x 104(~) +O.221x 10-3(~) j 

. M -7.0 O/R 
u 

/ 
/~' 
-"""',-' / 

. . ib P ib P 3, ib ~ 
6/t-0.6·7f?;< 10-2(-%-)+O.21lx 1O-\-%-) ·+O.135x 1O-6(-%-) 

. _ (0.067-6.62r
1

) (l7.1-1.05r
2

) (.-0.So-O.000r
4

) 
R-r 1 r 2 r 4 

x (1.S8-0.13r
S

) 

rS 

- 2 - 4 
. RbP RbP 

Punching CT-(O/RbO)1[ 0.678>< 10-
2

+0.633>< 10~3(-%-)' +O.67sX'l0-6(-%-) 

Shear C
EL

-147.S O/ab
O 

P -16.0 O/Rb
O

'-
u . 

Combined 
Moment 

and 

Punching 
Shear 

P l..o-M 1.S 
(pm) + tMm) _ 1.0, 

u u 
P M 
m m 

(p-) + 0.54 M - 1.0, 
u u 

P 
m p' 0.70 
u 

p. 

pm > 0.70 
u 

Equation 

7. 4 

7 S 

7.16 

7.7 

7.8 

7.26 

7.28 

7.29 

7.12 

7.30 

7.22 

6.1 

6.2 
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APPENDIX A· 

SHAPE FUNCTIONS FOR THE REctANGULAR PLATE ELEMENT 

Np1 • (l-l;)(l-n) 

Np2 • f;(l-n) 

Np3 • f;n 

Np4 • (l-l;)n 
~ 2 . 2 

Nb1 • 1-1;n-(3-2f;)f; (1-n)-(1-f;)(3-2n)n , 

Nb2 • (l-l;)n(l-n)2b 

Nb3 
2 

• -1;(1-1;) (1-n)a 

~4 
2 

• (3-2f;)f; (1-n)+f;n(1-n)(1-2n) 

NbS 
2 

- f;n(l-n) b 

2 
Nb6 • (1-1;)f; (1-n)a 

Nb7 - (3-2f;)f;2n-f;n(1-n)(1-2n) 

NbS • -I;(1-n)n2a 

~ (l-l;)f;2na 

(1-1;)(3-2n)n2+f;(1-f;)(1-2f;)n 

t· 

" :J , 

f , ., 
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APPENDIX B 

DERIVATION OF WORK EQUATIONS FOR YIELD LINE SOLUTION OF 

DOUBLE CHORD RHS T-JOINTS 

B.1 Internal Work Due to Branch Moment 

.. 
Assume that~he branch member is given a virtual rotation $ that 

causes 'formation of a plastic fail~re mechanism shown in Fig. 5.15(a). 

The yield, line pattern for the top flange plate of double chord member 

is shown in Fig. 5.15(c). At failure the top flange is divided into 

seven rigid planes, connected together and to the outer welis by yield 

lines.' Angle a defines the extent of the yielded zone. In o'rder for 

the failure mechanism to take place, the inner webs are assumed to yield 

in their planes by stretching or indenting without bulging, as shown in 

Fig. ;;.15(b). 
.. 

The interal work required to form a yield line in the, flange 

plate is given by the plastic moment capacity, multiplied by the yield 

line length and. the rotation angle along a perpendicular to the yield 

line. To simplify ca~~s, the yield lines and their rotations are 

resolved in the longitudinal and transverse direction,S of 'the jofnt. 

Thus the contribution to internal work, WIf of the top' flange, is (see 

Fig. 5.15(c» given by: 

j WIf - Mpl4(x • tan a + 2v + x· tan'a ~ 2 + 4a • G 1 + 2a • $) • 
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Z 
Noting that Mp - to • 0y/4, 9 1 m w/x • tan a, 9 Z - w/x and ~ - w/v, 

then 

Z 
t ·0 

o Y 
'4 

{ 8w 4w·a Za ·wl I - (v + x • tan a) + + -- • v x· tan a v 

The internal work, W due to inner webs, is given by the yield line Iw' 

force per unit length (Zto·Oy) multiplied with the deformation area (see 

~ig. 5.15(b», and results in the following equation 

~.Z Internal Work Due to Punching Shear 

The branch member is given a virtual punching shear displacement 

o which will cause a plastic failure mechanism such as shown in Fig. 

5 .16(a). Failure will occur due to "dishing" action in the top flange 

and in-plane in~entation of the inner web~ 

Following the same'procedure outlined in the preceding section, .. 

the internal· work WIf , due to the top flange is calculated as 

Substituting for Mp - to·oy/4, 91 - o/x tan a and 92 - o/x, then 

~ -
{BO (v + x • tan a) + 4a·o l., 
x x·tan a 

r /' 

1 
.,: 
~ 

I 
" 

j 
I 

1 
J 
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Also. the internal work W
Iw 

done due to the imlter webs is given by the 

following expression 

• 

• ) 
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APPENDIX C 

PLASTIC ANALYSIS OF VIERENDEEL TRUSSES ! 

The plastic analysis (upper bound) solution for the 6-bay tru$s 

of Fig ....... a.4 (a) is presented in this appendix. The truss is externally 

determinate but there are 18 internal redundants, 3 per bay. Therefore, 

there must be 16 elementary mechanisms. Ten of these are joint mecha

'~isms. Of the. remaining six mechanj,sms, three ere shown in Fig •• C.l as. 

mechanisms (a) or (b), (c) agd (d). Mechanisms (e) to (i) are possible 

combined mechanisms • 

./ 

M 
pc 

. The plastic moments of the chord and branch membe~e de±ned 

and M
pb

' respectively. First, consider the ca~e where the ss 

capacity is n6,t governed by the. joints, Le., the joint capacity Mu is 

greater than both M and pc 

when enough plas~ hinges 

In this case,' a failure mechanism occurs 

~ 
in the members rather than the joints. 

Applying the principle of virtual work to each mechanism (see 

reference. (21) for details), the following .equations for the truss .... 

are obtained (se~ Fig. C.l). , .. 

. . 

• 
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Mechanism (a): 

*r 
W 
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~ (1+2+3+4+5)' 9L - 24 M • 9 
pc 

Hence 

r' 
Mechanism 

*r 
W 

*r 9.6 M 
W - pc 

u L 

(b): 

~ (.1+2+3+4+5) • ex. - (12 Mpc + 12 M
pb

)" • 9 
, 

Hence w*r _ 4.8 (M + M
pb

) 
u L pc 

Mechanism (~): 

W 
*r 
~ (1+2+3+4-1) . 9L - 24 M • 9 

pc 

*r 16 M 
Hence pc w - -/~ 

U L 

\ 

1-

• 

(C.l) 

(C~ 

(C.3) 

• 



, 
Mechanism (d): 

*r 
W 
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~ (1+2+3-2-1) • SL - 24 M • S 
6 pc 

*r 48 Mpc 
or W - --::--~ 

U L 

Mechanism (e) 

*r 
W 
~ (1+2+3+4+5) • SL - (24 Mpc + SMPb)S 

or w*r _ 3.2 (3M + 3M ) 
u L pc pb 

Mechanism (f): 

*r 
W " ~ (1+2+3+4+5) • SL - (20 Mpc + 12 Mpb )9 

or w*r ~ 1.6 (5 M + 3 M
pb

) 
u L pc 

• 

• 

• 

(C.4) 

(C.5) 

(C'.6) 

/ 
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MeChan~},g) : 

Ii 
*r 

, 
~.I(l+2+ 

6 
4+2) • 9L - (16 M + 8 M b)9 

pc P 

4 . 
- L (2 M + M b) pc p 

Mechatttm. (h): 

*r Ii . 

<--/ 

.~ . 
~ 

( 

• 

+- (l+2+~4+2) • 9L - (8 Mpc + 16 Mpb )9 

Mechanism (1): 

*r 
Ii 

( 

~ (1+2+3+2+1)· 9L - (6 Mpc + 18 Mpb)9 

J 

(C.7) 

" 

(C.9) 

·*r 
. The least value of Ii as evaluated from Equations C.l to C.9 is the 

u 

correct upper bound capacity. The predicted capacities o£ the four • 
rigidly-connected trusses analyzed before are given in Table C.l. Also h 
g~ven is the governing mechanism in each case • 
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When the joint capacity Mu is less 

tic hinges will form at the joints rather 

than ;1 -h M . 
~pc 

than ~n the 

and Mpb ' plas
~

members. - The 
- . - *f 
capacity'W of the flexibly-connected trusses is thus obtained by 

u 

replacing -M 
pc and M b by M in esch expression of Equations C.l to C.9. 

p _ u 

fOrming at It is found tha,t me~hanisms~ (a) or (b), .with Plas/. hinges 

the joints, rl!9vern. The truss capacity in this case is given by ( : - :" '-

9.6 M wirf .• __ ...:u:!. 
u L 

The upPJ!r bound capacities of the four 

pr:dicted by E~ _C.10 are also given 

)-0 

fi1 
-. 

(C.10) 

flexibly-connected trusses as 

in Table C. 1. 

" 

• 

.... 

\\ 

, 
• 

) 

J ~-v , 
~ 

\ ~ 

-.. 
~ 

t 

\. c:::" '-, 

"\ ~ 

- , 
'-; 

• 

-



Table C.l Upper Bound' Capacities of Vierendeel Trusses 

" , 

Case Truss Capacity Governing Case Truss Capacity Governing 
* *f 

No. W r (KN) Mechanism . No. W (KN) Mechanism 
u u 

g DCTl-R;Y \ 500 '\ 
DCTl-FJ 208 (a) or (b) 

DCT2-RJ . 739 (a) DCT2-FJ 643 (a) or (b) 
. 

SCTl-RJ 503 (b) SCTl-FJ 45.3 (a) or (b) 
.~ 
ft 

. 

SCTl-RJ 746 (b) SCT2-FJ 203 (a) or (b) 

.' 

,\ 

7 

( I ' .•• 

" 
'-~ .. 

• 

~ ... ".. 

• 

, 

1 .; ;: ~ 
, .. 

:-1~ 
~ 

" 
, 

I 

\ 
\ ~ 

i .. ' "---I "'. • " . ~ ,-;), 
o' -,' i .. 

I l,,' 
, ,. .. .. .. . . ' ~ . 

r 

• 
, 

" ~ 
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MECHANISM (e) - 0. - r 
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