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. ABSTRACT

A research program Is presented to investigate the behaviour of

rectangular hollow section (RHAS) T-joints in the elasto—plastic range of
1 .

loading. The study includes the determination of both rotational and

punching shear stiffnesses and strengths of the RHS T-joints due to

Sranch moment or punching shear or a combination of both. The deter—
mined joint characterist}cs are thén incorporg:éd into an elasto-plastic
dnalysis of Vierendeel trusses composed of RHS members.

Two different joint types have been analyzed, the doublé ch&rd
T-joint and the single chord type: In both cases, the joint is modelled
by the chord ;oﬁ flange treated as a thin plate loaded on the perimeter
of a rigid 1n£1usioq‘ and restrained by coupled translational and rota-
tiona} springs along its longitudinal edges. These springs simulate the
restraining effect of the side walls and connecting bottom flange.
Transverse edges, some distance from the joint, are taken as simply

supported.

The proposed finite element formulation incorporates rectangular
plate, beam and boundary spring elements. The formulation considerg'
both bending and in-plane actions. Material nonlinearities of the joint
are assumed to be adequately represented by the Von-Mises yiéld criter-
ion and the associated flow rule. While geometric nonlinearities have
been neglected, this assumption 1s reasonable for the range of deforma-

tions deemed important in this study.

11d
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“a parametric analysis has been undertaken for each of the double
chord and single chord joints under either branch moment or punching
shear. Each analysis considers the effect of each of five non-dimen-
sional geometric parameters. Omne of the parameters, considered, is used
to study the stiffening effect of a reinforcing flange plate. Results
of the analysis are presented in the form of non—dimensionalized load-

deformation (M—# and P-§) curves.

»
MY "

A standardization procedure has been used to develop generalized
¥—-¢ and P-d formulae, based on the parametric analyses. In addition,
formulae for the joint stiffness and strength, in terms of its geometry,

are presented for each case. -

When the joints are analyzed under combined loading, the branch
moment and punching shear are applied in different ratios. The results

L]
are presented in the form of interaction equations.

Next, the joint characteristics have been incorporated in an
elasto-plastic 'finite element analysis of Vierendeel trusses. The
effect of the joint flexibility om the truss behaviour 1s investigated.
Also considered is a comparison between trusses possessing single chords
and those possessing double chords.

oty

Another aspect of this investigation is to pfed#gt upper bound

capacities for the double chord joints due to branch moment or punching

shear, The yield line theory has been utilized for this purpose.



The experimental part of the study involves the testing of ten
double chord joints. Results of these tests along with other available /.
experiment.al data aré used Iin examining the validity of the analytical

models that have been developed.
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CHAPTER 1

INTRODUCTION

1.1 General

The use of hollow structural sections (HSS) in Vierendeel
trusses and other framed structures has gained wide acceptability in
recent years. This is attributed mainly to the gxtensive reiearch in
the past fifteen years which has allowed a betteriunderstanding of the
Joint characteristics in HSS construction.

Hollow structural sections have many advlntages over other
conventional sections. Their ge;metrical shape éffectively resists

. |
torsion and out—of—piane forcéﬁé the exbosed surface‘area is much less
than that of other qhapes, thus reducing the cost of protective coat-
ings; their cléan iines and smooth surfaces permit architects to
visually integrate the structure with interior building decor or with

exterior landscapes.

Structures utilizing rectangular hollow sections (RHS) have éhe
added advantage of ease of fabrication. Straight end cuts and simple
fillet welding are normally sufficient for attaching connecting members
together and are performed at low cost. In fact, Vierendeel girders are

particularly attractive both from the point of view of fabrication and

appearance.



The most common type of RHS construction utilizes single chord’
jointsf However, a major disadéantage of this concept is that direct
welding of Fhe brancﬁ's end to the flat flange of the chord produces a’
flexible and weak joint unless the framing sections are of. approximately
equal size. Ahother constraint in ﬁsing single chord HSS is the practi-
cal agpéct of connecting the branch to the chord. When éelded coﬁnec-
tions are used the web member should be 25 to 50 mm narrower in width
than the chord so that fillet welds can be used:. 1If the web and chord
member; aré of the same width, a difficult butt weld would be required
resulting in a higher cost detail. In heavily loaded trusses, some form
of joint reinforcement is often necessary to develop the full strength

of the web members and stiffer joints.

In Canada, the largest size of RHS'produced is 304.8 x 304,.8 x
12.7 mm which 1mposesha major - restriction on the maximum unsupported
spa:; For example, rcof trusses with normal * span tq depth ratios of 8
to 10, . and subjéct to normal loads, cannot be'expectea to Spah more than
36 metres. Howevex, longer spans would give greater interior desién
flexibility within buildings and improve theT competetiveness of HSS.
Séfh appears to -be the potentia} for tﬁe double chord HSS trusses
utilizing T or K joints. This conceﬁt involves ﬁhe uge of two square or
rectangular chord members placed back-to-back and detailing the connec-

tions as for the single chord ;Ehe.

==

There appears to be a number of advantages to using such a joint
configuration. It provides for ease and economy of fabrication and has

the potential for efficﬁrnt joint design. A large portion of the branch



member forces, as will be shown, are t-:ransferred directly to the inner
webs of the double chgrds, whereas the cr;nnecting flange of the chord
member must transfer these forces in the case of /EEE_"sl;mle chord.
Consequently, the double chord will be shown to provr:ide a much stiffer
and stronger joint than a single chord of _;équivalent. properties. In
. addition, the double chord would require less, if any-, lateral Eracing
"due to its inherent Lateral rigidity.
» .

However, before double chord truss systeﬁs can be employed in
general use, research mast bq'-undert.aken on the behaviour of the joints
through which the. member forces must be transferred. The investigation
described in this thesis, therefore, focusses on the connections, rather

than the members.

1,2 Literature Review

A considerable amount of research has been accomplished on
single chord HSS éonn-ections using circular or rectangular HSS. The
follo&;ing presentation will deal only'with co tions having T config-
'uratz.i-.on and in which the chord and branch‘ members are made of rectangu:

lar or square HSS.

Regearch on HSS welded joints began at Sheffield University in
the early 1960s. Mee [3] undertook research on the strength of ?—jointa
under puncl;ing shear and tested 18 specimens with varying branch-to-
chord width ratio. He found that the joint scre‘ng:h(_ and stiffness

increased considerably with higher width ratiocs. He also carried out a



theoretical amalysis of the elastic punching shear characteristics of
the joint by treating the connecting.chord face as a 'laterally loaded
thin plate and analyzing it usiqg the finite difference method. Redwood
[2, 15) was the .first to propose a theoretical model of the joint in
which he assumed the inclusion between the branch and the connecting
chord face to be rigid. The elastic rotational suppbrts along the
longitudinal edges of the loaded plate, provided by the two walls of the
tube, were accounted for through an empirical formula estaylished by
Jubb et al. [11]. Mansour [16] improyed upon Reéwood'h mdel. by
introducing uncoupled elastic springs along the 1ongifuéinal edges of
the plate. His evaluvation of the spring coefficients was Pased'én the
flexibility analysis of a simplified model. Most rec;ntly, El1-Hi fnawy
[22]'prqposed an elasto-plastic fid¥te element model which incorporates

coupled boundary springs. Bowever, she assumed these springs to remain

elastic throughout the analysis.
‘ ‘ .

Patel et al. [5] reported test results for eighteen single chord
T-joints under dire?t punching shear. They concluded that <less than
full-width joints are undesirable for heavily loaded sttems due to the
large displacements associated with %}timate joint capacity thusJ//“\_—.
rendering an 1inefficient struqtufe. Extensive experimental ‘data on T-
joints under branch moments have also been reported by Forol et al.

(1], Mang [AI,OBrady {10] and Kantani et al. [14], It is concluded in .
reference [14] that the élexural failure of che.chord flange governs-the
Joint strength when the ratio of branch width ﬁo width of flat portion 7

of the chord flange is less than 1.0. If this ratio is larger than 1.0, -

failure will be either -due to web crippling of the chord member or

’



flange buckling of the branch member depending on the relative slender—

ness of the tw6 members.

’

Mouty [12] worked out theoretical formulae for the calculation
of the ultimate strength of single chord T-joints due to branch moment
or punching shear. 'Based on experimeqtai results, he proposed a simple

eld line mndel for both cases. Using t;e upper bound limit theorem,
he, obtained a failure mechanism and calculated the ultimate capacity as
a nction of tﬁe dimensions of the chord and the inclusion for a given
yiel& strength< Acceptable correlations with experimental joiﬁt
strengths at gmall deformatiégg were obtained.  Korol, Mitri and Mirza
[23] extended Mouty's work to include plate reinforced T-joints- .They
concluded that the optimum plate size 1s obtained if its width is equal
to chelwidth of the flatlport;pn of the chord flange and its length is
twice the chord width. <No work has been feported on the interachion
between the branch moment and punching shear and the joint behaviour

when both typesof loading are present.

The concept of double chord RHS T-joint was first proposed by

Chidiac and Korol [7], who tested four double chord RHS T-joints as part

of an experimental investigation: They concluded that greétly improved
connection strength and stiffness characteristits could be achieved if

.two chords placed back-to-back were welded together 'along their adjacent

i

" corner edges for a short distance from the centre line of the joint.
The improvement in’performance may be explained by the fact that, as

. opposegfto\the single chord joint, :a large portion of the branch load is

transferred ‘directly through membrane action to the inner webs of the



chord members. No analytical work on this joint type appears to have

been undertaken.

1.3 Objectives and Scope

This study is concerned with investigating the behavioural char-
acteristics of double chord and single chord RHS T-jolnts. Three types
of loading, namely branch moment or punching shear or a combination of
the two, are considered. A theoretical analysis scheme involving
elasto-plastic fiﬁite felement modelling of the t;o joint ctypes 1s
developed and verified. 1In addition to experimental data available in
the literature, a total of ten double chord T-joints were tested. The
strength and stiffness of the joints are compared with experimental and‘

yleld line results in order to examine the validity and accuracy of the

f@ite element models.

-

The following is the organization of the material presentad in
this dissertation. Chapter 2 contains detailed descriptions of analyti-
cal modelling of theljbints and locads. The finite element formulation
of the models is presented in Chapter 3 along with the solution tech-
niqﬁp employed in solving the system of non-linear equations. A des-
cription of the éxperiments on double chord joints and test results are
given in Chapter 4, <Chapters 5 and 6 present pafametric analyses of
double chord and single ch;rd joints reap;ctively, in which five geo-
metric’ non-dimensional parameters are identifed. The effect of each
parameter on the joint behavior ﬁnder moment or punch{ng shear is‘des—

cribed by a set of load-deformation curves. In addition, analyses of



joint behaviour under combined loading are also given. Yield line solu-
tions for moment and punching shear capacities of double chord connec-
tions are presented in Chapter 5.

A standardization scheme of joint characteristics is intrﬂduced
in Chapter 7. Analytical formulae ewmploying this scheme and the para-
metric analysis results of Chapters 5 and 6 are used to describe the
joint stiffness and strength in terms of 1ts geometric and material
properties. Validity of these formulae is tested b; comparison with
experimental and yield line results.

‘
!

The above—ﬁpt:ijned standardized formulae are then Iincorporated

into an elasto-plast finite element model for Vierendeel trusses that
takes into account the flexible RHS T-connections. The model developed
for this purpose 1is outlined rin Chapter 8. Included also are case

studies of a number of single find double chord trusses.

Finally, Chapter 9 provideg a summary of the results from the
present investigation with a presentation of the overall conclusions and

recommendations for future research.



CHAPTER 2

ANALYTICAL MODELLING OF T—-JOINTS

2.1 Introduction

Analytical models for both double chord and single chord RHS T-
joints are presented in this chapter. In both cases, the joint can be
unreinforced or reinforced by a chord flange plate, as shown in Figs.
2,1 and 2.2. In double chord jolnts (Fig. 2.1),. the chord member is
composed of two back-to-back rectangylar tubes which may be welded

together along their adjacent edges for a central distance.

A properly designed joint should belcapable of transferring the
maximum branch forces to the chord without excessive localized deforma-
tions or failure. In order to satisfy this d;sign criterion, and
whether the joints ought or not to be reinforced, it 1s necessary to
understand the behavio*zal characteristics of such joints. For this
reason, the analytical modelling is attempted and presented here.

(

Clearly an "exact™ analysls for determining the stiffness and
strength characteristics of the above-described joints wouid involve a
three-dimensionalr\analyais. It would necessitate a ‘large storage

requirement and a major allocation of computer time. Consequently, such

an approach was not undertaken.



In this study, the joint behaviour is simmlated by a two-dimen-
sional model. The top flanges of the double chord member are treated as
a thin plate supported on sets of coupled translational and rotational
springs along the longitudinal direction. These springs represent the
restraining effect of the remaiﬁder of the chord section on the top
flanges. The branch loads are modelled by line forces acting along the

perimeter of a- rigid {nclusion representing the intersection area of the

top flange and the branch member.

In al} joint analyses, material is assumed linearly elastic up
to yield and plastic beyond the yield point. Furthermore, the deforma-
tions are assumed small and hence, the geometric nonlinearities are
neglected. This latter assumption is believed to be very reasonable as
the models to be presented are not meant to simulate failure mecha-

nisms.

2.2 Model of Double Chord T-~Joints

The geometry of a typical double chord T-joint is defined in
Fig. 2.3. The-chord and branch members are assumed to be fabricated

from two RHS of dimensions ho x bo x t. and one RHS of dimensions h, x

0 1

b1 x tl’ respectively. Geometry bf the stiffening plate, if present, is

defined by its lgngth'hs, width bs’ and thickness ts'
Idealization of the joint in the transverse direction 1is indi-
cated in Fig. 2.4. It involves treating the flat portion of ‘the chord's

top flange as a thin plate supported along the longitudinal edges (A' &
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F' in Fig. 2.4) by coupled springs. These edge springs (two transla-
tional and one rotational along egch edge) simulate the restraining
effect of the remaining section (frame ABCDEF) on the top plate.
Because of the localized nature of the joint behaviour, it is necessary
to eliminate the effect of overall bending of the chord member in the
longitudinal direction. Thus, Iin order to eliminate contributions to
the vertical displacement and rotation of the joint arising from overall
bending, rollers R are introduced at points D as shown in Fig. 2.4, It
should be noted that the'choseu locations of rollers R are symmetric
about the joint centreline due to symmetry of the joint geometry and
loading in the transverse direction. The choice of placing the rollers
underneath the centerline of the inner webs 1s based on the fact that
these webs are very stifflin their planes and, under membrane forces,
will gehave as deep beams without any significant out-of-plane deforma-
tions., It was also observed that additional rollers at points C (Fig.
2.4) have no significant effect on.the joint behaviour. The area of the
top flanges inscribed by the branch member is modelled as a riglid {inclu-
sion having the outer dimensions of the branch cross section. Rigidity
of the inclusion is achieved By taking its thickness as, say, 1000 times.

the flange thickness.

It i3 readily seen that the connection is symmetric about both
vertical, longitudinal and transverse planes when analyzed under punch-
ing shear. It is also symmetric about the longitudinal vertical plane
and anti-symmetric about the transverse ués;ical plane Vhen analyzed
under branch moment. Therefore, only one~quarter of the.joint needs to

be modelled under either type of loading. Evidently, there is only one
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plane of symetry (transverse vertical) when a combined loading 1is con-
sidered, and hence one-half of the joint is analyzed 1in this case.
Under any of the loading conditions discussed above, transverse symmetry
exists and, therefore, only one-half of the-joint cross section is con-

sidered in the model.

The right half of the idealized cross section 13 shown in Fig.
2.5. Both membrane and bending actions are considered in the analysis
of the top flange plate. The edge springs supporting-the top flange
plate correspond to in-plane degree of freedom (DOF) v, and ocut-of-plane
DOF's w and ® as indicated in Fig. 2.5. Superscripts r and £ denote
right and left edges respectively. The spring coefficients peé unit
length are then determined through stiffness analysis of the plane frame
ABCDEF made of the top rounded corners, two webs, and bottom flange.
Centreline of this frame coincides with the centreline of the RHS and
h;s a unit length perpendicular to its plane. Because material non-
linearities are incorporated in the analysis, the tangential stiffness
of the frame {(and thus of the springs) shall be determined by numerical
iﬁtegration. This.is accomplished by dividing the frame into a nunmber
of beam-column elements. It has been idealized by eighteen elemants
with three DOF's at each node. The distribution of elements and their
lgngths are chosen according to expected stress levels in different
parts of the frame.

The frame stiffness matrix (54 x 54) can be obtained in terms of

geometric and material propertles of the hollow sections; the task then

reduces to incorporating the proper boundary conditions for the frame so
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that it will appropriately model the influence of the remaining section

on the top plate. The six by six spring coefficients matrix sought can

then be obtained from the overall frame stiffness matrix (54 x 54) in

the following manner.

(1)

(2)

(3

(4)

Apply the appropriate boundary conditions, as will be explained

later.

Set degrée of freedom (DOF) 1 (Fig. 2.5) equal to unity while
restraining DOF's 2 to 6.

Eliminate DOF's 7 to 54 through matrix condensation and solve

for the holding forces along DOF's 1 to 6. These forces repre-

‘sent the first column in the required matrix of spring coeffici-

ents. ' *
Repeat steps (2) and (3) for DOF's 2 to 6, ome at a time, to

obtain columns 2 to 6 of the matrix.

This procedure will be explained further in Section 2.3.

Boundary conditions for modelling the double chord RHS member

are presented below.

(D
(2)

(3

(4)

Set the displacement at DOF 32 (roller R) equal to zero.
Restrain DOF 31 (horizontal movement at D) if the two chord
members are welded at the bottom.

Restrain DOF 52 (horizontal merment at E) if the two chord

wembers are welded at the top.

Restrain DOF's 31 and 52 1f the two chord members are welded at



- 13 -
both top and bottom.

It is worth noting that different constraint conditions can be
imposed along the connection length as necessitated by the amount and’
type of weldment applied. In order to account for the plate action, the

frame element flexural rigidity, EI per unit length, is then replaced by
L3
Eto

12(1 - vz)

ness, E the modulus of elasticity and v Poisson's ratio.

the plate flexural rigidity D = s Ty being the chord thick-

At this stage, it'is obvious that one would obtain a coupled six
by six edge spring stiffness matrix in contrast tc the simplified models
of uncoupled flexibility coefficients used by Redwood [2] and Korol and
Mansour [6]. 1In all the test cases studied, it was observed that many

of the off-diagonal terms the matrix were either of the same order or

larger than the corresponding agonal terms. Some numerical examples
of the edge spring stiffness matrix are reported in reference [25].
This, of course, confirms the efistence of strong coupling among the
spring stiffnesses.

A schematic representation of the top flange plake and boundary
springs presented above 1s’shown in Fig. 2.6. Only one—quarter of the
connection islmodelled. A”plate length of five times ﬁhe branch height
(= Shl) is uged. This has been found to be the minimum length necessary
to‘make the end conditions of little significance on-the Joint behavi-

our. Therefore, the transverse edges of the plate are assumed simply

supported. Also shown in Pig. 2.6 is a typical boundary spring element
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ABCD. The function of this newly-developed element is to incorporate
the stiffnesses of the edge springs inte the joint's overall stiffness
matrix. Derivation of this element is based on the principle of virtual
work. The displacement fields of the plate elements adjacent to edges
AB and CD are also employed in formulating the boundary spring elements.
This helps maintain the same compatability as employed for the plate
elements. It can be observed that the boundary spring elements bridge
across the plate edges in a wrap—around fashion. Detailed derivations
of the different elements employed in the current investigation are

presented in Chapter 3.

2.3 Degeneration of Double Chord to Single Chord T-Joint Model

Geometry of a single chord T-joint 13 defined in Fig. 2.7. The
chord and branch members are assumed to be fabricated from RHS having
dimensions h0 x bo x to and h1 x bl x tl, respectively., Geometry of the
stiffening plate, if provided, is symmetrically posiéioned on the flange
plate having dimengions hs’ b5 and t,. These connections can be model-

led in exactly the same manner as was described in Sec. 2.2 for double

chord T-joints.

The idealized cross section of a single chord T-joint 1is sahowm
in"Fig. 2.8. Again, it invelves treating the top flange as a thin plate
supported along the longitudinal edges by coupled tranmslational and
rotational springs as shown. The tangentlial spring coefficients at any
load 1level are determined through stiffness analysis of ‘tﬁe U-shaped

frame ABCDEF of unit width. Rollers R are introduced at points C and D
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to eliminate cﬁntributions to the vertical displacement and rotation of
the joint due to overall deflection of the chord. As for the double
chord joint only one—-quarter of the joint needs to be analyzed when
elther mome;£ or punching shear loading 1s considered. The right half
of the idealized cross section is shown in Fig. 2.9. In order to pre-
serve symmetry, zero rotation and horizontal displacements are imposed
at point G, the middle point of the bottom flange. Frame ABCG of Fig.
2.9 1; modelled by 10 beam—~column elements and 11 nodes with 3 DOF's per

node.

It may be observed that a close similarity exists between Ehe
models of double chord and single chord joints. 1In faci, the finite
element formulation of the former can be easily degenerated to allow
analysis of the latter, This haé been done in the present studyAas will
be demonstrated in Chapter 3. It may also be pointed out that the frame
for double chord joints (Fig. 2.5) can also be used to determine the
spring stiffness coefficient matrix of singie chord joints after apply-
ing the appropriate boundary conditionms. The disadvantage of thls
approach is the need to analyze one-half, rather than one-quarter, of
the connection. Following the procedure of Sec. 2.2, the three by
three spring coefficient matrix can be obtained from the overall frame

stiffness matrix (33 x 33) as follows.

(1) Apply the appropriate boundary conditions, as will be explained
- <
later.
(2) Set DOF 1 (Fig. 2.9) equal to unity while restraining DOF's 2

and 3.



_16_
(3 Eliminate DOF's 4 to 33 through matrix condensation and solve
for the holding forces along DOF's 1 to 3. These forces
represent qee first columm in the required matrix of spring

coefficients.

(4) Repeat steps (2) and (3) for DOF's 2 and 3, one at a time, to

obtain columns 2 and 3 of the matrix.

Boundary conditions for modelling the RHS chord member are

presented below.

(1) Set the displacement at DOF 26 (roller R) equal to zero.
(2) Set the horizontal displacement and‘rotation at point G (DOF's

31 and 33) equal to zero.

Again, strong coupling amongst the spring stiffness coefficients was

observed in all test cases, as reported in reference [25].

Clearly, the schematic representation of the double chord model,
as shown in Fig. 2.6, is also valid for the single chord model described
above with modifications. The edge spéings in the latter model act
along edge CD only. Detailled derivation of the boundary spring elements

N
is presented in Chapter 3.

i ¥
2.4 Modelling of Material Properties .

»

In this study, wmaterial used for the joints is structural carbon

steel. The material properties, which are very impo*tant from a jé;nt
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behaviour point of view can be obtained from a-tension or compression
test on a small coupon of the material from which the chord members are
made. Such a test furnishes stress-strain curves. Typical curves for

structural carbon steel may be idealized by a tri-linear ‘curve as showm
I

in Fig. 2.10. In this curve, the stress is proporilonal to satrain with

slope E up to the yield stress UY foilowing which the curve exhibits a

pronounced plastic plateau until a strain EST is attained. Subge-
quently, strain hardening behaviour develops with strain-hardening

E_ .
modulus ST

However, in the interests of a more simplified model, the

stress—strain curve will be simplified to bi-linear behaviour consisting

A 4

of the elastigc line of slope E and the strain-hardening line of slope

ET’ the tangent modulus (Fig. 2.10).

Galambos {17] has suggested the following values for structural

steel:

-12¢, . Bgp = 0.04 E

LN

If the maximum strain 1s taken as € = 30 £,, then
max ¥

= 0,025 E
-7

The following numerical values of the material constants have been

assumed in the analysis.
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= 5,000 MPa, o_ = 345 MPa, and Poisson's ratio,

T

v = 0.30. : \ |

-

Purthermore, the joint mﬁ% is a.ssnmed isotropic; 1its

E = 200,000 MPa, E v

. eléato-plast:ic —stress—strain relations are characterized by the Von-

rl

Mises yleld criterion and its associated flow rule. These assumptions

are usually made for metallic materials [8].
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FINITE ELEMENT FORMULATION OF JOINT MODEL

NONLINEAR SOLUTION TECHNIQUES

3.1 Introduction

o
[

The finite elemeﬁt .me'thod is a convenient and powerfv::l tool for
analysis of problems in éontinuum mechanies with complicated boundary
conditions and loads. Since its development during the late_fifties a:;d
early‘sixties, the method has i)een appiied to a wide variety of problemx;
with excellent success. One of the gre.alu:est' virtues of the method is
: its capability of handlin'g complicated geoinet.r._'ies and varying material
rproperties. While analyses of linear problems are relative_ly st:.raight-
forward, :the m;linear problems are consiciérably nDr,‘e' .difficull:. and
require intelligently thoughtf ‘out numerical algorithms for nm:llinear
analysis which ‘are beyond jt;sl: 'the finite element discretizations of

guch problems.

The basis of the analysis to be presented in Ehis chapter is the
modelling of the top flange plates 'of the chords by  an assemblage of.
rectangular finite elements which incorporate both membrane and plate
bending actions. " The eight degrees of freedom, rectangular plane stress
element and the t:.-'welve. degrees of freedox.n,‘ non—conforming 'rectangular

plate bending element: [8], [19] are employed. The resulting element has

.
~

- 29 - .



- 30 -

. 3
five degrees of freedom (u, v, w, 6_ = g = %%) per node. The

X y' ¥
first two are displacements in the x and y directions due to membrane
action while the other three are displacement in the z direction and

rotations about the x and y axes due to plate bending action, respectiv—

ely.

(v
Boundary spring elements are developéd to incorporate the

restraining effect of the remaiuder of the chord section on the connect-
ing top flanée plate. To maintain compatibility along the 1ongffhdinal
edges of the chord, interpolation functions of ;he plate eleméﬁts adja-
cent to the edges are used in fo}mulating the stiffnesses of the bound-
ary spring elements. - Three different apprbaches for formulation Pf
these elements will be examined. |

‘ -

Dﬁe to the presence of material nonlinearities, the discretized
equations of equilibrium h_a}re been dévéloped in*an inczjemental f}ﬁn
using the principle of virtual worky, For each load increment the
Newton-Raphson iterative method is used to solve for the nodal displace-
ment increments As well as strain and stréga increments at the integra-
tion points of fhboth the top flange aﬁd the rest of the double:or single

’

chord section. -

¥
Wl

3.2 Finite Element Idealization of Top Flégge Plate

-

Analytical models of the top ffﬁnge plate for double and single

chord HSS Téjoints were presented in Sections 2.2 and 2.3, Eespectively.,

£
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Finite element discretization of b.oth models is shown in Fig. 3.1. OQne-
quarter of the tc;p flange plate 1s modelled by a mesh of 8 x 13 rectang-
ular elements of the type describe;d in Sectioﬁ 3.1. The mesh gradually -
becomes coarser farther away from the zone of high stgess gradients

adjacent to the branch inclusion. The plate thickness within the branch

Ainclusion 1s taken as one thousand times the HSS thickness to represent

a, relatively' mich larger stiffnegé"?a\: rigid plate action. Overall
dimensions of the plate have been defined in Secfion 2.2. Other charaec-

teristics of the finite element model are as shown in Fig. 3.1.

The boundary conditions that should be incorporated in the
finite element model vary according to the type of joint and loading.
Boundary conditious corresponding to the branch moment or punching shear
are listed in rzle 3.1 éor a double chord HSS 'i‘-joint. When these

joints are analyzed under combinations of moment and punching “shear,

anti-gymmetry of the joint behaviour in the longitudinal

direction is no longer present. Hence, 4ne—half of the joint must be

-

modellgd when combined loads are considered. The finite element mesh
employed for this analysis consists of 8 x 14 Felements as shoﬁn in Fig.
3.2. Characteristics of the mesh are similar to those of the forx;:er
mesh. Its boundary conditions are given in Tal;le 3.2, Evideﬁt:ly, the

mesh of Fig. 3.2 is about twice as coarse as that of Fig. 3.l.

When a double chord joint is aﬁalyzed under a branch moment, its

behaviour Ys to be characterized by a mment-rotation (M-¢) diagram,

I ; B
where ¢ isirotation of the rigid inclusjon as indicated in Fig. 3.3{(a).

On the other nd, the Joint behaviour\ under punching-shear is detef-
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/ \. ‘ ~

~ !
\\
mined by the load-deflection (P-8) diagram where § is the transverse
displacement of the inclusion-as.indicated in Fig. 3.3(b). Bot ranch
mmnts}d_ﬁﬁnching shears are idealized by line loads acting along the
inclusion perimeter as shown in Fig. 3.3. The equivalent nodal forces

‘ B ,
in the form of a consistent load vector are then calculated from these\s

line loads using the principle of virtual displacement. S
Ay
The eight degrees of freedom (DOF) re;ctaugular plane stress
elements and the twelve DOF, non-couforming, rectangplar plate bending
elements [19] havel been used to model the top flange plate. Thus, thére )
are. twenty generalized parameters which can be determinedlin terms ofL
the nodal DOF. After éolving for the generalized parameters in the

-polynomial approximations in terms of the nodal DOF, and back substitut-

ing into the polynomials, the following equations result,

»
4 . . . N .
F u(E, n) - E N (Es n)ui ) . ' ) (301(8)) .
i=1 P4
4 ) @ . *
v(E, n) = LN (&, n)vi . (3.1(b))
] i=] "4 .
2 T oy
w(g, n) = I N (§, m)§ | . (3.2) "o

i=1 "i i

The coordinates & and n 4¥¥ nondimensional with origin at the lower left

corner of the elemene as shown in Flg. 3.4, Np (£, n) and Nb (£, ")
i . i
are the shape functiorgs,_\fgo/n in-plane and. out—of-plane displacements,

! ;

| 2
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respectively. Ehese are listed in Appendix A. uy and vy are the in-
(=~

b 2re the out-of-plane displacement and rota-

i

tion degrees of freedom. Equationh§3.l and 3.2 can be written in the

plane displacements and §

following matrix form

\ | e

uw(g, M|
vg, mp = [N, m] {8} (3.3)

w(E, n)
. r“'*’ ~—

where the shape functions matrix [N] is giveﬁ by

N " o 0o 0 | N o o 0 o
Pl P2
. " |
0 N o o o0 ..0 N o o0 0
0 O N N N. | © 0, NN N N :
by by by ' by Tbg b
[N] - . - (3-4)\Q
N 0. o o o0 | N 0o 0 0 o0
Py . - l P, .
0 N 6 o0 o 0 N o0 0 0
P3 ] pl; .
o 0N, N, N _& | o 0 N N. N
Epp b7 b P 1o P11 Pr2

T ' | , '_|
{6 1" =<y v, w, 68_ U, v, w, 6_ O ses B_D (:cl.s)
e’ 1 "1 71 XY | 272 72 X, yz.l Y,
The strains at point within the element are. related - to
A
i:) _ .
."’_-.
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2

displacements by the following equation;

rg w -—a 0 -z i f‘h (u\
XX 5! 3x
{e} = <€ L - 0 ; _ 22 v& = [L] £ ? (3.6)
1w A e
a? J
Y ] 3 =2z w] w
ISR [ = 3y | )

" where {s} is the column matrix of strains. Substituting Equation 3.3

into Equation 3.6 yields
{e} = w1 ) {s.} =181 e} (3.7)

where [B] is called the strain matrix. The element stiffness matrix

[k?'] is given as ( )

%] =/ (8)7[D] [B] av o (3.8)
v

- where integration is performed over the element volume. The compliance
matrix (D} is defined 1in Sec.tion 3.4, .Si"nce the formulation is nonlin-
aar, [ke] is evaluated numerically. It can be shown that the 3-point
Gauss quadrature numerical integr'ation. applied in each of the three
directions £, n and 2z, suffi;:es to evaluate 'Eqﬁation 3.8 eicactly in the
elastic range [8],(19]. Hence, using the coordinates of Fig. 3.4,

Equation 3.8 is integrated numerically in the following manner.

!
o
b3

)
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k%] =23.2.°¢ g | g g {WWWIBE, ,ng, z 17T [D]
272" Ty qag ey P HTL R 13k
(20x 20) T3 (X3)
[B&,, ny. 7l | (3.9)
(3x20)

-

and the weighting functions and numerical integration points are as

p

defined below,

T .5 8 5

W" =<5 5 P (3.10¢a))
{6} = 0} T = <€0.5 - VTI) - 0.5 (0.5 + /OIS (3.10(b))
{z}T =< -&/0.15 0 o0.I | ' (3.10(c))

I+t may be noted that the strain matrix [B] at an integration
point (Ei' nj, zk).remains constant throughoutwﬁhe analysis since the

geometric nonlinearities are neglected. @s a result, the,[B] matri¥ is
calculated at each of the 27 integratio;'points onl} once at thevinitial_
formulation of the problem. However; the compliange matrix [D], on the
other hand, is quated for every iteration during the lcad increments
when one or more integration points are subject to Bpress leveis past

the elastic limit. This is explained in Secfion 3.5 when dealing with

nonlinear finite element analysis. - *
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3.3 Finite Element Idealization of Webs and Bottom Flahge -

Boundary Spring Elements

Modelling the restraining effect of the rest of the sectien
(webs and bottom flange) by boundary springs has been presented in
Sections 2.2 and 2.3 for double chord and single chord T-foints,

Tespectively. The finite element idealizations of these models, are

presented in this section.

The finite element idealization of the analytical‘ mdel 1is
explained for .the double chord TFjoiﬁt. The degeneration of the dOuble‘
chord mdgl to a single chord T-joint will be pointed out at appropriate'
' stages. Conﬁider the double chord model indicated in Figs. 2.5 and 2.6.
The stiffness matrix iSI of frame ABCDEF is qi.size QSA x 54). The six
by six matrix of spring coefficients [ks] can be obeained from [S] in

the following manner,

~

{

(1) Apply the appropriate boundary conditions to [S] as described in

Section 2.2.

(2) Express the frame equations of equilibrium in the form
r ~ - : N 5 W
fl S11 312 1
(ex}>> .| (6x6)  (6xa8) | - (6x1) L (3.11)
. )
-f2 S21 S22 2
L] (48x1) (48%6) (48x48) (48x1)
y L i J
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.where forces {fl} and displacements {61} refer to DOF's 1 to 6
while {fz} and {52} refer to DOF's 7 to 54 (Fig. 2.5).
(3) Eliminate DOP's 7 to 54 by keeping the corresponding forces {fz}

at zero. This condensation process leads to

T

- -1
(£,} = sy 0 = 15,1 s,,17 (5,1 {8} (3.12) .

(4) . The holding forces {fl} given by Equation 3.12 represents column
“1". of the required stiffness matrix [ksl when {61} congists of
unit displacement at DOF "i" and zeros for the other five DOF's.

C o *

Hence, this procedure 1s repeated six times to obtain all sixh‘

columns. ' * J

The procedure above 1s also valid in the elasto-plastic range in

»

which [S] represents the tangential stiffness of appropriate gembers of
the frame which are subject to forces beyond the proportional range.

The resulting [ksl matrix can be written in the following form.

[krr] [krzl
(3x3) (3x3) '
[kB] - . (3.13)
(ky ] [kegl
L(Bxs) T (3x3)

’

'This 1s a synmmetric matrix and its positive definiteness can be easily
verified from the boundary conditions imposed on the frame in Pig. 2.5.
Coefficients of the submatrices [krr] or [k££] represent the forces that

-
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would bé required on the right or left parts of Ehe frame if the dis
placements v, w or Gx (1; 2,(9r 3).at right or {4, 5, or 6) at left were
given ;nit displacements, taken one at a time, while maintaining tﬂé
other five displacements at zero. Similarly, the off-diagonal sub—
matrices [krl] and [klr] represent the forces that would be required on
the right part due to a unit displacement imposed on a degree of freedom
on the left part, and vice versa.

-4

The elastic strain energy, UB’ due to displacements of the

«
boundary springs is
r~ T = r
GB krr krl 6B
1 L
ug = 35 dx _ (3.14)
2 e
e | g% . L
6B kzr kzz 6B
" | —

where le is the length AB or CD of the boundary spring element iudicated

by ﬁzef"shadeaa/ma in Fig. 2.6 or Fig. 3.l and i
' /

r r ar>

B = {y w (3.15(3))
2., T 1 3
gl =< v 9,2?'-' (3.15(b))

Due to coupling of the boundé?? springs acréss edges AB‘aud-CD, computa-
tion of the strain endrgy involves displacements along both edges. -The

shaded area ABCD, thus, represents ﬁhe boundary spring element joining

T



-39 -

edge AB to edge CD. Of courée, it will be connected to the rectangular

elements across the band ABCD, used for discretizing the top plate, at

edges AB and CD. The finite element approximations for wr, wr, 9; and

’ Bx’ are 8o chosen such that these preserve the same continuity
of displiycements as used for the rectangular plate: elements. This can
be acconiplished by sim{aly taking the" corresponding finite element dis-
placement fields along edges CD or 3-4 and AB or 1-2 for elements R and
L in Fig. 3.1, respectively. Thus, the shape functions for both v and w

along the right and left edges are identical, i.e. linear and cubic,

respectively. Thus S
vi = E v; + (1 -¢) VZ N | (3.16(a.))
2 £ 2 . .
Vel -8 v +Ev, (3.16(b))
W = £33 - 2 6)] o+ - a2 - 01T + 1 - £33 - 2 )]
Y3 4
7 -
+ {a€ (1 ~ £)2)6F (3.16(c))
YA . i ’
@ o= L= 820 - 2l + (a8 (- 070+ 18 (3 - 2 0w
+ (- ag% (1 - E)]e; ] ‘ L (3.160d)

2

AT
.

, where £ = x/a is the non~dimensional coordinate along the local =x—axis
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of the plate element and, a, is the length AB or CD. Using the expres-
sions of Equatinﬁs 3.16 to define the u and w displacements in Equations

3.15 will ensure continuity of these DOFealong the edges.

However, the lack of continuity of the normal slopes along the
plate edges and its dependence on DOF of the interior nodes causes some

L
complications. For example, Bx along edge 1-2 of element L in Fig. 3.1

is given as:

Cal 1 2 2 £ a 2 ‘2,
o = e -G 20k« 0 - Blo, IRy E - Ene
ﬂ, L)
1 2 L 2 a ,2 | %
+ [— (8703 - 28) - ellw, + [E]8_ + [- T £°(1 - £))6
by | 2 x, ‘ by Y,
1 2 L a .2 3
+ {5 - €0 - )by + -0 - D18y
120 2 a 2, 4 '
+ by (876 - 28) - ghpw, + ([ 5, 8- BTIe (3.16(e))

£ r R L
Note that‘}x does not depend on Bx and ex » An exact mirror image
. 3 4

exists for element R. Because of discontinuity of the slopes normal to
the edges of. nonconforming plate elements already employed, one can

incorporate “further simplifications thus rendering the following three

options. -



(1)

(2)

(3)

- 4] -

Use linear Iinterpolations for approximation of the normal

aldpes, i.e.

8: = 1 - E]Gz + [E]Bz ; m=rort (3.16(£))
1 2 :

——

Linear approximation of ax instead of the cubic in Equation

3.16(e) implies a stiffer boundary spring finite element model.

Use a single element across the top plate width, i.e.

5£ = a + 32 (Fig. 3.1) in Equation 3.16(31;//;;;;\>i1i allow a

cubic variation in Bx and el nate its dependence on DOF of the
internal nodes. This optién is expected to yield a more flex—

Yble mo&el than option (1). ‘ -

Approximate the normal slope Bx within both elements R and L

using full Equation 3.16(e). This, of course, would yield the

most flexible boundary spring model because of 1ts ability to

4

deform mofe readlly than the previous two options.

Obviously, optiocns (1) and (2) yiéld a stiffnegs matrix of size

16 x 16 for the boundary spring element whereas option (3) yields a

24 x 24 patrix.

%

Option (3) 'has been used for formulating the boundary spring

finite elements employed in the amalysis to be reported. After substi-~

tution of Equations 3.16(a) to 3.16(e), Equation 3.15 becomes
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{ogb =1 {857} | (3.17(a))
(3x1)  (3x12) (12xI) L
I
(55} = w3 (627} (3.17(b))

(3x1)  (3x12) (12x1)

(33

where [Nr] and [Nzl contain the appropriate shape functions for v, w and

R af
Bx on the right and left edges, respectively. {ﬁgr} and {GB } are vec-

tors of active nodal DOF for elements R and L, respectively; 1.e.

r r T r
Wt 8T T of > (3.18)
2 Yo 3 ¥y 4 7,

The required stiffness matrix, denoted [k:], for the boundary spring

*

element is derived using Equations 3.14 and 3.17 as

S ECS L 1) R I SRS B B ST

[kzl =-af dE. (3.19)
o |to1 1t [k k| [ [01(w)

(26x24) (24x6) (6x6) - (6x24)

The stiffness matrix [ki] above enables one to incorporate the restrain-
ing effect of the rest of the section (webs and bottom flanges) on the

top flange in the present finite element modelling of double chord RHS
~

T—joints. -

»

Precisely the same "procedure can be used to derive the equiva-
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lent [k‘:] stiffness matrix for a single chord RHS T-joint. The model
for this case involves boundary springs in the dfirections of vr, w and
8; only (Fig. 2.9) and, of course, the proper boundary conditions.

Hence, .1t can be easily shown that the stiffness matrix of the boundary

spring element for the single chord model is given by

1 :
e . T '
[kl =a’f [N [k ] (N] dE. | (3.20)
0 - )
(12x12) (12%3) (3%x3) (3x12)

In both cases, the matrix [k:] is computed using numerical integration.

It should be mentioned that the formulation of [k:] as given

a_l;ove is valid in the elastic as well as the elasto—-plastic range of
. ’

lo;ding. Material nonlinearities at any load level are 1ncorporat.ed in
the fo&mlatiou through using the tangential stiffnesses of the edge
springs in [ks]. Furthermore, the in—-plane anci the outﬁf-plane\actions
qf the top flangwi;—t/e are uncoupled without the boundary springs.
However, incorporation of the coupled edge springs results in the coup-

ling of the two éctions prior to ouset of plasticity.

34 Compliance Relationship for Elasto—Plastic Analysis

_'}'ﬁe joint material (ste‘l) is asgumed isotropic, linear elastic
up o the yield limit, and linear strain-ll'mrdeningr thereafter. The
Von-Mises yield criterion and the associated flow rule have been

> D

e

N
. . J)



g = (02 02 -0 g 3t
: y x xy
9

. ¥
employed here. According to tH!% vield criterion for plane stress prob-

lems, yielding beéins when the, effective stress o exceeds a certain

limit, where [18], [27]

1l
242, (3.21)

p’
Differentiation of both sides)of Equation 3.21 and substitution of the

deviatoric stresses

T vl d " 2y -
| $x = 320, - Uy)’_oy --E(ZOY - Gx)"Txy = Ty J ' (3.22)
;-\ . v

. leads to the following . ® \

/ t ' 1 dcx o 'a—q T
3o 30 3t 4o { 0} {dU}

4G = < —= _Y/ =X > y¢ - We (3.23)
20 20 (e
. ’ - dTt v
(\ xy
y The Praﬁéé{:ffzj? relations state that - .
. N . v
P P . P P 30y ,=P '
{de"} = < de deg dy > - {55t @€ (3.24)

u .

thus defining thy three plastic strain Increments that result when the

AN -P :
\\\_’“aﬁ-?ffective plastic strain increment d€ ~occurs under a known state of

stress. \\1,\ ' S ‘.\}
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Since this strain increment {de} 1s the sum of its elastic
componentakﬂée} and its plastic component {dEP}, one can apply Hooke's

law .to obtain

/

{do} [D”]Etdse}‘ = [D] ({de} - {dsP}) | | (3.25) ,

¥ ;

where ID} is the elastic compliance matrix.

\

1)

\\é relation that yields &' from the total strain increment {de}

is:obCaiPed by substituting Equation 3.24 into Equation 3.25, i.e.

’_": .‘ T -. \__b’.’
- - T
3q ; T e
o {?}T [n] _ et =~ dal ) (5
8+ 3 o) (22 R

-

.. S L
where H 1s the strain hardening modulus, i1.e., the slope of the o - EP

. <
curve, and is given by C '
. .
ag, T
v e lag | dof EEp
H -—:—P_- :ﬁ - E — . (3-27)
de de T T ‘

where En is the tangent moduls;:i]‘)

¢

An }ncrementgifg;;ggs-straiﬁ'relationship, analagous to Hooke's
law but valid beyond the proportional limit, fa obtained by substitution‘

of Equation 3.26 in Equation 3.24 and the result into Equation 3.25.

A

.
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This relationship is given by

| - /o -
{ao} = (o1 - 01 {53} <w>) {ac} = o, }{ae} .28

>

-

where [D ] is the elasto-plastic compliance matrix. For ;iane stress

problems Equation 3.28 becomes [18]

I
- ) . s‘,'f _ _ N ()
do [ - — . syum. de:
x- 1 -.\!2 S . . X
2 .
S.$ S L -
Qo pm| =y - LE) - < de_ (3.29)
y 1.-v S 1 -v¢ s y
" s.s S.S 52
a7y - =2 - 52 [2(iE+ o) = gl
. 7 L o IR/
.. —_ t,}
or . _ .
| o
{do} = [Depj{d;} ]
»
where
. e
4. =2 ' 1 ) R o
S = 3 H g + Sla + szcy + 2s3rxy - _ (3.30(a))
"')
X {3.30(6))
E ' ' . ‘ ‘
5, = 5= (0 + Vo) (3.30(c))
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)

) E}\ 4 L. \ -

In t‘n/e-elastic range, S becomes. Infinite an

above, reduces to the more familiar elastic\cb iance ma

ysis of the T-joints in conjunction with the Newton-Raphson method pre-
sented in the next section.

-

3.5 ' Nonlinear Finite mETént Analysis. ' - T

Nonlinear .analysia i'nvf‘ lves -establishing thq finite -element
equilibrium equations thréu’gh vilrtual work for each load increment.
These are then solved for the 1nc:;ementa1 d:l.sﬁlacements, strains ar;d
stresses. Since the displacement finite element method ig used, the
principle of wvirtual displacemenl: has been employed to ex;\n:'ess equili-
brium. Using the m;alytical models for the double and single chord T~
joints and their finite element forTlations, the discretized equations .

th

of equilibrium after the n load increment can be expressed in the

following form [81.
{28 )} -‘II [Mn}qv W{an} -0 o (33D

The vector {Rn} represents the consistent load vector due to surface

tractions (line loads along the-branch inclusion perimeter). For incre-

S
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mental load analysis, Equation 3.31 takes the following form
[ 1817 {0 }av - {aR } =0 - - (3.32)
v n n . . ]

. Obv'idus.ly Equation 3.31 1s not satisfied exactly after perform—
ing a limitefi hﬁu;ber of iterations a:_.‘ld .there_ are undesired rgsidual
forces present. In order to minimize these residusal forées and prevent
drifting of the solution, the Newtqn—Raphson method 1is employed and

-~

iterations are carried out within each load -increment.. Hence,’ during

‘the nthload increment and the mth iteration, the regidual forces are

=
-

computed in the following manner. _ - X
.} T [ m -
(r} = 5 (81" {o"}av - {r } o . (3.33)

The iterative Newton—Raphson equation can be written as

e

n .(3.‘34)

= {0} + [K(eD)] {éﬂﬁ} - {o} .
where the t:ang'ential stiffness matrix [K;I(E:)] has been computed b.y.
assembling .the individual stiffness matrices of all elements. It is
important to note that an 1individual stiffness matrix 1is computed
© through numerical integration by using twenty-seven integ;ation poinl;s
for the state of stress G_ﬁ. Proper [D:], elastic or elasto~plastic
matrix, is used depending on the stress level and the tangent modulus at

Il
each integration point. It may very well happen that within the same
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element some integration points can be within the elastic range and
others pasf the proportional 1imit. The residual 1load vector in
_ Equation 3.33, which can be controlled by specifying a certain toler-

ance, is added to the next load increment {ARn} at the beginning of m

iterations. This prevents any further drifting of the solution.

3

The incremental displacements are computed as

(a7} = - 1™ () | _ (3.35)

and the facremental total strains and stresses at any point within an

element are given by

m _ m ' . -
{ae_ } = (] {as_ } - (3.36)
o} = of) fec} | (3.37)

where {AGm

ne}’ {Ae:e} ‘_md‘ {Aa:e} are the element nodal displacement:g,

gtraing and stresses at the chosen point ctively.

The strain,mtrix' [B] and the updatéd elastic or elasto-plastic
matrix [D:] are functions of space (i.e., x, ¥y and 2z or §, n and z) and
must be evaluated at the point where the strain ,aﬁd the stress incre-
ments are required to be comput;ad. 7 The updatec': elgmeht: qtiffnesa

matrix [k;(g:)] is evaluated by using Equ?nl::lon 3.9 and [D:], the elastic

i .
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‘-
or elasto-plastic compliance matrix determined for stress level g:.

The Newton-Raphson iterative scheme above is illustrated graphi-
cally in Fig. 3.5 for a single degree of freedom system. However, it is
equalljr applicable to a mlti-degree of freedom system. A brief des-

cription of the steps followed in the finite element computer program is

.as follows. | L

0
Suppose that at a load level {Rn}, the diaplacement vector {Gn}
0
and the stiffness matrix [kT(gn)] of the system are known. Apply the

next load increment {ARn} which brings the load level up to [R n+l}' The

resulting displacement -increment {Aﬁn} is computed in the fo]:]:owﬁxg

manner.

,.(1) After the Newton—Raphson iterative procedure has coﬁverged

{within t:pe spec\ffied tolerance) for the .(rs—l)tl'l load ihcremenl:

after m-iteratiohs, assume that the residual forces are given by

[ym

n-l} according to Equation 3.33. The displaceméht increment .

- th

due to first ilteratiom for - the n  load il}c_rement can be compu-

ted from the following equation: —

L3

lp(o)] {88} = = {¥0 ]+ far } = = {20} + {ar ]

where {‘l’g}’-. {‘!’:_1} and "{ARn‘} is the (rﬂ-l)th load incrgment.
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The displacement vector is updated in the following manner.
1 0 0
(65} = (83} + {as2}
For each plate element, do the following:

(1) Extract the element incremental nodal displacements {Aﬁge}
from {Aﬁg} just computed.
e —

.(1ij At each integration (sampling) point.(Ei, 5, zi):

- calculate the incremental strains via Equation 3.36

[

(aed}, = 1BCE,, ny, 201 {882} (1, 4, k=1, 2, 3;

"— calculate the dincremental stresses via E&uation 3.37,
. 4 ° 4
0, .0 0,- '
{Aan}i = [ply {Aen}i ”,// N
where the elasto-plastic compliance matrix [Dn]i is deter-
i 0 * N
mined for the stress levels (gﬂ) at point { with local

coordinates (£, ,M,, z,);

v

- update the stresses ét'each integration point;

{°i+1}1 = {°:}1 + {Adg}i
'ig) ‘
\‘_4
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C
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-~ check for the compliance matrix.

1, = -
T [bply = MDgely AF oy €0y
(}1, = 0! 3, 13, >0,
n’'l epn 1 i Y

- S
- J
where 9, 1s the effective stregs at point i defined in

Equation 3.21,. -

(1i1) 1If 51 > Oy at ohé or more integration points, update the
~ element  stiffness matrix _[ke] using Equation 3.9.
- (iv) Calculate the residual forces for a single element using

Equatibu 3.33 and numerical integracion.

1 B 1.
{e_ 1 = é 181" {ohav - {r ). .
e o -

-

For each boundary spring element, do the following.
(1) Extract the incremental nodal displacements for the ele-
ments L and R which have common edges AB and CD, respect-

ively, with the longitudinal boundaries (Fig. 3.1(a)). The

twelve relevant DOF are used for each element to express.

{AG;?I} and [5522} in Equations 3.17 i)/f\rﬁ\ncremental
form.

(11) Recall the coupled edge springs stiffness matrix [ks]



(i11)

(iv)\

(48x1) (48%48)  (48%x6)  (6x1)
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described in Section 3.3 in which the stiffness

cients are defined per unit length. Knowing the incre
P

tal displacements {AGBg} and {Aﬁgg} and using the interpol-

ations in Equations 3.16, the displacement and rotation

"Increments can be determined at- the three integration

points (six per integration point, i.e. {AG? n}i) atong the
" ]
edges AB and CD, respectively, but have been taken as con-

stant in the analyses to be presented in this theses.

-

[ ] .
Hence, a constant [ks] matrix is required along edges AB

L
and CD.

Nine integration points are taken for evaluatling the stiff-

o

ness matrices for beam—-column elements .for the U-shaped
-~

frame of Fig. 2.5 to represent stif‘fness of the rest of the

section. The previous [S] maﬁrix {(1.e. [sg]), with fifty-

four DOF's in Equation '-3.11, is of course known. Using

this and ‘knowing the incremental disl—alaceme-n!:g it DOF's one

to six, the incremental displacements are determined for

the rest of DOF's (forty-eight altogether) in the following
manner. ‘ ' - /

-1 ¥
0 1 .0 1 &0 0
{Adz,n}i [S320)5 152101y {A51,n}1

This permits carrying out the incremental elasto-plastic

analysis of the U-shaped frame in Fig. 2.5.

Knowing '{162 'n}i’ step (3) for plate element is
* : "

repeated for the beam-column element of the frame. This
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(v)

* o (vl)
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is much simpler than the procedure followed for the plate

element (i.e. instead of using [Delli or [D1 1 the

epn 1’
elastic modulus E or the tangent modulus ET are used).
Once the incremental quantities have been updated, for the
L

new stress levels, one forms the updated [Sq+1 1

at all {1
integration points. Following the procedure for 45cermin-
ing the [ks] matrix in Section 3.3, the matrices [k;]i aée
obtained for use in fgrmulation of the updated boundary
gpring element matrices. |

Use = the following equation (numerical integratiom of

Equation 3.19) to formulate the wupdated boundary spring

element matrix.

3 L

el e T 1 ~
[ksnl =a z Wi[N]1 kg 1y (N1,
i=1
) (N ] (0] N
. ~ | T th
Note [N]1 = . is evaluated at the {1
(0] [N, 1 i

integration point Ei where Ei~and Wi are the