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Abstract 

A survey and analysis of visual measurement of camera and object position in 

visual sub-space (eigenspace) is provided leading to several improvements to existing 

methods, as well as new approaches. Specifically, novel techniques were developed 

to allow robust measurements in the presence of occlusions and other dynamic scene 

changes which is known to be a significant challenge in pose measurement methods for 

important applications such as visual servoing, autonomous robotics in manufacturing 

and tele-robotics including aerospace, medical operations and others. 

Local image information is shown to retain positional information in unoccluded 

regions that can then be used to determine position in the presence of significant 

dynamic occlusion. Local information is also shown to be more prone to ambiguity 

errors due to a lack of salient positional information. A subsectioning and recom­

bination strategy is developed that features the advantages of local eigenspace in­

dependence for robustness to occlusion while maintaining the inherent resistance to 

ambiguity available from global eigenspace analysis. This is achieved by computing 

modified global projections, while excluding information from occluded sections. A 

new method for occlusion detection using an eigenspace reconstruction error measure 

is also developed and evaluated. 

A wide variety of experimental measurements are provided to demonstrate the 

performance of the new methods using an accurate XYZ platform and CCD cameras 

with metallic, machined parts. Experimental measurements are also performed to 
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demonstrate improvements for eigenspace position accuracy through the use of mul­

tiple cameras. Several techniques are employed to combine and fuse multiple images 

from decoupled cameras whereby cameras are used for determining position in differ­

ent directions to to improve accuracy. Subsequently, multiple cameras are applied to 

achieving three dimensional translational position measurements in visual subspace. 
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Chapter 1 

Introduction 

Determining the position of a camera relative to a scene or determining the posi­

tion of an object relative to a fixed camera are problems in computer vision that have 

been difficult to solve. Successfully accomplishing these tasks has many interesting 

applications. For example, in manufacturing, the ability to determine the position of a 

part held by a robot or the position of the end-effector relative to a part can be used to 

increase manufacturing flexibility. Similarly, mobile robot navigation can be achieved 

through knowing the position of a camera relative to its environment. Virtual reality 

applications could be enhanced by determining the orientation of a head mounted 

camera to provide feedback for the appropriate view to transmit. Tele-robotics ap­

plications could also benefit by determining the position of robot mounted cameras 

relative to their environments locally and transmitting this information quickly. 

Eigenspace methods (also known as appearance based methods) have been applied 

successfully to solve positioning problems with a high degree of accuracy. Eigenspace 

methods have the advantage that they automatically derive visual feature vectors used 

to determine position based on training image sets for the given application. These 

feature vectors allow images of objects over a range of motion or images captured 

over a range of camera motion to be represented in much reduced form. The reduced 
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CHAPTER 1. INTRODUCTION 2 

representation for images allows position to be determined via a search of a stored 

set of the reduced image representations over the range of motion. The ability to 

automatically derive these feature vectors contrasts with many current robot vision 

techniques that require significant engineering design to develop heuristic solutions 

for specific applications. 

Eigenspace methods originated as solutions to the problem of face recognition 

and consequently most of the work on eigenspace methods has focused in this area 

(and to a lesser extent to general object recognition). However research into the use 

of eigenspace positioning has been scant beyond some important initial advances. 

Further research in eigenspace positioning is required to facilitate the transfer of 

these techniques to industry. This thesis investigates and improves upon the basic 

eigenspace positioning techniques in several aspects. 

First, as a prelude, the basic performance of eigenspace positioning in terms of 

accuracy is investigated. The effects of varying the available eigenspace design pa­

rameters are demonstrated experimentally. These results are explained in the context 

of how they relate to the amount the image features change position within the image 

over the movement range of the camera and how this position change limits the pos­

sible accuracy. Additionally a technique to improve accuracy by filtering the feature 

vectors in certain situations is described. 

The main focus of the thesis is developing techniques to determine position of a 

camera or object with eigenspace methods when occlusion is present. Occlusion in 

computer vision is generally considered to consist of one or more objects intruding 

into the field of vision of the camera altering the resultant image from what would 

normally be expected. Thus occlusion includes a wide range of possible effects on an 

image. In terms of applications, potential occlusions include people moving in front 

of a mobile robot or a partially obscured industrial part that an end-effector equipped 

with a camera is supposed to maneuver in relation to. 
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Occlusion presents a vexing problem for eigenspace methods. The eigenspace fea­

tures reduce images to a global low dimensional format, but in the process all the 

local image information is lost. Occlusions anywhere in an image alter the low di­

mensional results such that they are incorrect for determining position accurately. 

For eigenspace methods, occlusion includes changes to the background as well. This 

thesis introduces the preservation of local image information in eigenspace position­

ing to isolate occlusions. Rather than storing only the eigenspace information for the 

entire image, information is stored corresponding to individual image sections. A dy­

namic technique termed subsectioning and recombination was developed to combine 

the information from unoccluded sections to achieve performance similar to the basic 

unoccluded eigenspace technique even in the presence of significant occlusion. An 

eigenspace reconstruction measure is demonstrated that is proficient at differentiat­

ing between occluded and unoccluded image sections and used to determine which 

sections to include for sub sectioning and recombination. The technique is shown 

to improve positional accuracy substantially for an occluded metal part positioning 

experiment and approaches the unoccluded performance level. 

The thesis includes an investigation of the use of multiple cameras to improve the 

accuracy achievable using eigenspace methods for positioning. Certain directions of 

camera movement are subject to lower positional accuracy due to lower rates of pixel 

change. Properly arranged multiple cameras can provide additional information for 

these directions. Several techniques to combine information from multiple cameras 

with eigenspace methods are proposed and experimentally evaluated with regard to 

their improved performance. These same multiple camera techniques can be applied 

to higher dimensional position problems which are of obvious use for manufacturing 

tasks such as mating parts properly which are not constrained to 2D translational 

movement. The accuracy of 3D translational positioning for a camera relative to 

a metal part was improved using the multiple camera techniques. Additionally, an 
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approach for reducing the number of training images required with multiple cam­

eras through the exploitation of different rates of pixel change was demonstrated 

successfully. This is an important result because the main implementation difficulty 

for higher dimensional eigenspace positioning is the vast increase in the number of 

training images required for each additional dimension. 

1.1 Organization of the Thesis 

The thesis is organized according to the following summary which lists the main 

contents and contributions of this work: 

Remainder of Chapter One 

• Literature survey of eigenspace methods in computer vision. 

Chapter Two 

• Introduction of general camera/object positioning problems. 

• Discussion of Principal Components Analysis for image compression in cam­

era/object positioning. 

• Derivation of the eigenvector features from the training images. 

• Explanation of the use of eigenspace techniques for camera/object positioning. 

Chapter Three 

• Discussion of the limiting factors for eigenspace positioning accuracy, including 

the amount of pixel change versus camera movement. 

• Introduction and experimental demonstration of eigenvector filtering as a means 

to improve accuracy with lowered amounts of training images. 
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• Experimental analysis of the adjustable parameters for eigenspace positioning 

and their effects on accuracy. 

Chapter Four 

• Discussion and experimental demonstration of the effects of occlusion on posi­

tional accuracy. 

• The concept of local versus global information in regards to eigenspace posi­

tioning and preserving unoccluded information. 

• Introduction of and experiments with separate eigenspaces, a simple method 

for incorporating local information for occlusion positioning robustness. 

• Discussion and experimental demonstration of ambiguity induced error with the 

separate eigenspaces technique. 

• Introduction of the Subsectioning and Recombination technique for incorporat­

ing both global and local information for occlusion robustness and resistance to 

ambiguity. 

• Experimental demonstration of the effectiveness of the Subsectioning and Re­

combination technique in a highly occluded part positioning problem. 

• Experimental demonstration of subsectioning and recombination with severe 

occlusion. 

Chapter Five 

• Introduction and experimental demonstration of eigenspace reconstruction as 

an effective means of detecting occluded sections of an image (a necessary re­

quirement for implementation of Sub sectioning and Recombination). 
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• Use of manifold distance as an alternate measure for determining occluded sec­

tions. 

Chapter Six 

• Explanation of poor accuracy for determining movement along the optical axis 

of a camera for eigenspace positioning as a function of the amount of pixel 

change. 

• Introduction and rationale for the use of multiple offset cameras to improve 

accuracy. 

• Experimental demonstration and comparison of decoupled cameras, fused im­

ages and fused projections techniques for combining multiple camera informa­

tion to successfully increase positional accuracy. 

• Demonstration of multiple cameras techniques as a means for successfully per­

forming 3D translational positioning as opposed to single camera techniques. 

• Introduction and rational for the use of the pseudo-invariance property to over­

come the issue of training image size, the main implementation difficulty in 

higher dimensional positioning problems. 

• Experimental demonstration of using pseudo-invariance to reduce the number 

of training images required by 2/3 for 3D translational positioning while main­

taining similar levels of accuracy. 

Chapter Seven 

• Conclusions. 

• Future Directions. 
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1.2 Literature Survey 

1.2.1 Early Work on Eigenspaces 

Eigenspace techniques in computer vision are a relatively recent area of active 

research with the earliest work little more than a decade old. Compared with other 

computer vision techniques, eigenspace techniques use automatically derived global 

features as compared to previous techniques which use heuristically chosen geometric 

features such as lines and corners. 

Eigenspace methods were first used to deal with the problem of face recognition 

and their major applications in computer vision tend to be in that area. Eigenspace 

techniques for face recognition were a major advance over previous attempts dating 

to the seventies [19] [9] that used individual facial features and perform identification 

based on the distances between them. 

The first work on using eigenspace methods with faces can be traced to the work 

of Sirovich and Kirby [20]. Rather than trying to perform identification tasks, their 

work was concerned with finding low dimensional representations of human faces. 

Since the visual subspace formed by cropped and properly positioned human faces 

was highly compressible, Principal Components Analysis (PCA) was used to form low 

dimensional representations of the faces. Principal Components form the basis for 

eigenspaces, whereby global feature vectors are formed that capture the vast majority 

of the visual information of the subspace. Using a small number of the appropriate 

basis vectors allows most of the information from the image to be captured by pro­

jecting the images in the visual subspace on the basis vectors, producing a small 

vector representing the faces. Faces stored in such a manner could be reconstructed 

by scaling the basis vectors with these projections and adding them together. Note 

that PCA is the statistically optimal basis for compression in terms of mean square 

reconstruction error. 



CHAPTER 1. INTRODUCTION 8 

Soon after, Turk and Pentland [45] achieved a breakthrough in face recognition by 

demonstrating that not only could the low dimensional representations of the faces 

be used for reconstruction, but also for identification. By storing low dimensional 

representations for a set of individuals, identification could be achieved by finding the 

low dimensional projection coefficients for an unknown face image and performing 

a nearest neighbor search with the stored coefficients. This early work illustrated 

that eigenspace techniques were effective for frontal views of faces with constant 

illumination. 

In the same paper, eigenspace techniques were also first applied to face detec­

tion tasks. Deriving an eigenspace from scaled, centered face images will create an 

eigenspace proficient for reconstructing face images accurately, thus the eigenspace 

reconstruction could be used as a measure of how well an image represented a face. 

Reconstructing non-face images with the face specific eigenvectors produces images 

that differ largely from the original. Thus it can be determined if a region contains a 

face by using the face eigenvectors to reconstruct the region and measure the differ­

ence between the original and the reconstruction. 

Moghaddam and Pentland [30] [29] continued to add other advances to the basic 

eigenspace facial recognition approach. Since eigenspace methods work best where 

images to be identified fall within the visual subspace formed with the training im­

ages, images such as faces viewed at an angle resulted in poorer levels of recognition. 

Moghaddam and Pentland [41] improved on this by constructing multiple eigenspaces 

consisting of faces viewed at different angles. 

Moghaddam and Pentland [41] also presented an alternate eigenspace technique 

for face recognition, where the input images were divided into separate sections corre­

sponding to the eyes, nose and mouth regions of the face. Separate eigenspaces were 

formed for these features and recognition was performed separately for each feature, 

with results similar to that of the basic eigenspace technique for the entire face. 
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While face recognition was the most popular use of eigenspace techniques in com­

puter vision, eigenspace methods were soon applied to other applications, among them 

general object recognition. Object recognition differs from the face recognition prob­

lem in that the faces are constrained such that they share similar characteristics and 

are thus compressible. Object recognition on the other hand has no such constraints 

and objects to be recognized can be significantly different in appearance. In addition, 

it is more likely that they will be need to be recognized from a multitude of cam­

era viewing angles. Murase and Nayar [32][33][36] were the first to apply eigenspace 

techniques to the problem of object recognition. Traditional methods of object recog­

nition concentrated on identifying geometric features such as corners and edges and 

then recognizing objects based on their relations, with relatively low rates of success. 

Murase and Nayar performed object recognition by forming a global eigenspace con­

sisting of training images of all the objects to be recognized from various viewpoints 

and then storing the low dimensional projection coefficients produced by projecting 

the training images on this eigenspace. Similarly to the face recognition method, a 

new image of an unknown object was projected on to the eigenspace and the image 

was identified as being that object whose training image was the nearest neighbor in 

the eigenspace. As opposed to the face recognition technique of having only one set of 

projection coefficients per face, Murase and Nayar produced a manifold of projection 

coefficients of each object in the global eigenspace consisting of the projections of the 

images of the object rotated in front of the camera to allow pose recognition as well. 

Murase and Nayar improved the pose recognition of objects once they were recognized 

by constructing separate eigenspaces for each object. These local eigenspaces allow 

better pose recognition since their eigenvector features are tuned specifically to the 

images from one object rotated in front of the camera. They also identified for pose 

recognition that the projection coefficients from the training images of objects rotated 

in front of the camera can be interpolated to provide additional positions to match 
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intermediate to those corresponding to the training images, increasing the possible 

accuracy of the pose recognition. 

Other later research into eigenspaces and object recognition includes that of 

Campbell and Flynn [6] who applied Murase and Nayar's object recognition tech­

niques to range images. Also Borotschnig [5] et al. used basic eigenspace object 

recognition and combined it with an active vision system that chose different camera 

views for ambiguous images. 

1.2.2 Previous Work on Camera and Object Positioning 

Beyond object recognition, another major application of eigenspace techniques 

in computer vision has been to determine either the position of a camera within a 

fixed environment or alternatively, to recognize the position of an object relative to a 

camera. This area of research has seen less investigation then other eigenspace topics 

in computer vision. 

Again, Murase, Nayar and Nene [35] [37] performed the pioneering work in this 

area. Their focus was the use of eigenspaces for visual servoing, specifically for de­

termining the position of a camera mounted on a robot end-effector over a printed 

circuit for the purpose of performing accurate chip insertion. To perform this task, 

a set of training images was acquired with the end-effector positioned over a range 

of motion over the circuit board with the correct insertion point as the center. A 

set of low dimensional projection coefficients was stored and consequently the cur­

rent position of the end-effector could be obtained by performing a nearest neighbor 

search. Subsequently the reported position of the camera could be used to move the 

end-effector to the correct insertion point. 

Beyond visual servoing, such techniques were also applied to visual navigation 

tasks, namely determining the position of a mobile robot within a room or series 

of rooms. A set of training images was obtained for a robot positioned throughout 
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the room and position is determined for new positions using Murase and Nayar's 

technique. Jogan and Leonardis [16] [17] accomplished this task using omnidirectional 

images as the input. This allowed position within a room to be determined despite 

the orientation of the camera. 

Winters et al. [46] implemented a similar eigenspace based method for mobile 

robot navigation, also using omnidirectional images. To deal with changing illumi­

nation, edges images were used with an eigenspace approximation to the Hausdorff 

Fraction [28]. They did not implement any form of occlusion correction, relying on 

the fact that with panoramic images, occlusions were only a small percentage of the 

image, barely effecting the recognition. 

Martinez and Vitria [27] also used appearance based methods for robot naviga­

tion. peA and Fischer Discriminant Analysis (FDA) as well as two mixture models 

produced using Expectation Maximization were used to learn the environment of a 

research facility and allow the robot to navigate between different locations within 

the facility. 

Jagersand [12] uses eigenspace techniques applied to training images of the motion 

of robot arms to synthesize simulated images for the purposes of animation of the 

robot arms. Compressed eigenspace representations of the images are associated with 

the joint states of the robots. Since eigenspace representation can be used for image 

reconstruction, images can by synthesized for arbitrary joint positions of the robot. 

This association of eigenspace representation with the joint states is later used in 

tele-robotics [14][13], whereby the operator's next movement of the robot can be used 

to generate predictive images of the robot without the latency of transmitting the 

actual images over the link. 
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1.2.3 Previous Techniques for Providing Robustness to Oc­

clusion 

The amount of research dealing with eigenspaces and occlusion has not been 

extensive to this point. Eigenspace methods are especially susceptible to errors with 

occlusions since the contents of the entire image are reduced to a low dimensional 

representation. The components of this low dimensional representation are global in 

nature and thus any occlusion anywhere within the image will alter their values from 

that associated with the original image. 

In face recognition, Martinez [25] [26] divides face images into separate sections, 

each with their own eigenspace and then performs recognition separately for each 

facial region. Rather than just calculating a nearest neighbor match for each facial 

region, probabilities are calculated for region and combined. Recognition is based 

upon adding the local probabilities, thus recognition can be successful even in the 

presence of occlusion. 

For the problem of object recognition, specifically for "bin-picking" operations, 

Krumm and Ohba et. al. [21] [39] simultaneously derived a method for identifying 

objects in the presence of occlusion with a modified eigenspace technique. Rather 

than using global eigenspaces to recognize objects, small "eigenwindows" consisting 

of approximately 15 by 15 sections of the image were used. For each object, salient 

features were sought and eigenspaces formed from these features. Objects could 

be recognized by finding the presence of these features from within a new image. 

Occlusions can be handled since not all of the features have to be found to identify 

and find the position of the object. 

Techniques for estimating the eigenspace projection coefficients robustly despite 

occlusion have been proposed by Black and Jepson [4] for the use of eigenspace tech­

niques in tracking applications. Jepson et. al. [15] further advanced this work to use 
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an EM algorithm to adapt the eigenspace for changing appearance. Leonardis and 

Bischoff [22][1][2][23] have proposed a more advanced technique for robust estima­

tion of eigenspace projections despite occlusion using subsets of image points rather 

than the entire image. Using an iterative process governed by the Minimum Descrip­

tion Length (MDL) principle, the final subset of image points consists of unoccluded 

points. With this technique, both object recognition and pose estimation tasks could 

be performed accurately despite occlusion. Jogan and Leonardis [16] also used this 

technique for mobile robot navigation in the presence of occlusion; however position 

error increased with high amounts of occlusion (> 50%) as the proportion of occluded 

image points included in the final subset used to estimate the projection coefficients 

increased. 

Huttenlocher et. al [11] provided an interesting eigenspace technique for ob­

ject recognition for dealing with occlusions by using binary edge maps rather than 

straight intensity images. Instead of the sum-of-squared differences equations of nor­

mal eigenspaces, the Hausdorff distance [28] for comparing binary images was used. 

This allowed objects to be recognized even with partial occlusion. 

1.2.4 Related Eigenspace Research 

Several other areas of eigenspace related research are also noteworthy. One of 

interest is illumination. Eigenspace methods perform poorly when illumination is 

changed from that under which training occurred. Murase and Nayar [37] suggested 

that normalizing the images can help with illumination, but it is generally of limited 

effect. They also suggested the use of multiple sets of training images under varying 

lighting conditions for better performance with varying illumination [34]. However 

technique is limited since true illumination invariance requires that the number of 

training images be large. 
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Ohba et al. [39] provided a technique for eigenspace recognition to deal success­

fully with illumination. In their technique, rather than using raw color intensity 

images, they divided the image into lumina and chrominance components. For illu­

mination invariant recognition, they used only the chrominance component, which is 

resistant to change under varying illumination. It was relatively successful although 

monochromatic objects cause difficulties. 

Bischoff and Leonardis et al. [3] used an approach similar to their previous meth­

ods for dealing with occlusion to provide illumination invariance. A set of gradient 

filter banks was incorporated into the eigenspace basis. This allowed eigenspace co­

efficients invariance to illumination. These coefficients were then robustly recovered 

using a competitive algorithm to select illumination invariant pixels. 

Nene and Nayar [38] have also developed a method that significantly cuts down 

on the search time. Using a novel data structure, they ordered all the stored points 

for the manifold based on their value of the first projection coefficient. Thus a limited 

range of potential matches could be obtained by searching the first set of projection 

coefficients around the first projection coefficient. These matched coefficients were 

linked to their second coefficient values and so on, allowing a significant amount of 

calculation to be avoided. 

1.3 Scientific Summary 

The following is a summary of the scientific contributions of the thesis. These con­

tributions to the enhancement of eigenspace positioning can be grouped into three 

areas: an analysis of the sources of error in eigenspace positioning, the use of local 

information for providing robustness to occlusion, and the use of multiple cameras 

for improving positional accuracy. 
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The first area, an analysis of the sources of error in eigenspace positioning con­

sists of several aspects. A relationship between accuracy and the formation of the 

eigenspace feature vectors from the training images is demonstrated. A smoothing 

technique for these feature vectors is proposed and demonstrated to be effective for 

improving accuracy for situations where the number of training images across the 

movement range of the camera is limited. An upper limit on the accuracy possible 

for eigenspace positioning methods based on the movement of image features within 

the training images across the movement range of the camera is proposed. This idea is 

used to explain the experimental behavior of accuracy with regards to the number of 

training images used to provide the set of low dimensional eigenspace representation. 

In the second area, the use of local image information within the eigenspace 

paradigm is advanced as a solution for providing robustness to occlusion. A naive 

application of this idea is shown to suffer from errors brought about by ambiguity 

between sections of images. Subsectioning and recombination, a method combining 

local robustness to occlusion with resistance to ambiguity error is demonstrated to 

be successful for greatly reducing occlusion error. Eigenspace reconstruction error is 

successfully demonstrated as a method for deciding which section of an image are 

occluded for the above mentioned occlusion robustness techniques. 

In the third area, multiple cameras are shown to be useful for obtaining additional 

positional information in certain directions of camera movement. Several methods 

for combining this information within the eigenspace rubric are proposed; a simple 

combination of images into a set of super-images is judges to be the best. These 

multiple camera techniques are shown to be effective for performing 3D translational 

positioning. An approach for limiting the number of training images for multiple 

cameras is proposed and demonstrated. 



Chapter 2 

General Eigenspace Positioning 

In this chapter, the general idea of camera and object positioning problems are 

defined. This is followed by a discussion of the theoretical basis of eigenspace methods, 

namely Principal Components Analysis (PCA). This leads to the discussion of why 

eigenspace methods can be applied to positioning problems and a general description 

of eigenspace based positioning. These basic techniques are then used as the basis for 

exploration in the remainder of the thesis. 

2.1 General Positioning Problems 

The basic task of camera positioning problems is to define an a priori range of 

motion for the camera within a known environment and to then be able to determine 

the position of the camera within this range of motion via the image obtained by 

the camera. The range of motion of the camera may be translational, rotational or 

a combination of both. A simple example is the use of image based positioning for 

determining the position of a mobile robot within a room. With a camera mounted on 

a mobile robot, the range of camera motion within the room could be described as a 

two dimensional translational range as the camera moves with the robot. Similarly, if 

16 
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the camera is fixed on the robot, the rotational direction of the robot (and hence the 

camera) could be added to the range of motion of the camera and also a parameter 

to be determined along with the translational position of the camera. 

Alternatively, a different but related set of problems may be addressed by fixing 

the camera and moving an object or target within the field of view. This would be 

of obvious use in visual servoing problems; i.e. the determination of the position of 

a part attached to a robot gripper over a predefined range of translational and/or 

rotational movement. 

2.2 Principal Components Analysis for Visual Sub­

space Compression 

For a defined range of camera motion, the images (assuming that the image rows 

are concatenated to form image vectors) provided by a camera in this range will 

determine a visual subspace (also known as an eigenspace). 

A simple but flawed method for solving the camera positioning problem for a 

preset range would be the use of template matching. A large set of images across the 

movement range of the camera could be collected. The position of a camera could 

potentially be determined by comparing the new image with the stored set of images 

via template matching and choosing the position of the image with the closest match. 

This method will give accurate positional information with extreme impracticality. 

The template matching is well known to be computationally inefficient and would need 

to be performed with every image in the set. To have a high level of accuracy the 

set would also have to be large. A solution to this problem while still using the basic 

method would be the judicious use of image compression. 

Indeed, the visual subspace consisting of all the possible images within the defined 
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range of camera motion is highly compressible. Compared to the total possible space 

for an image for a set number of pixels, in general the images from the visual subspace 

will occupy a tiny fraction of the total possible images. 

The images for nearby camera positions will in general be highly correlated, thus 

the images throughout the visual subspace are highly compressible. A question is 

what is the best method for compressing an a priori known visual subspace. Optimal 

compression may be achieved using the Principal Components of the visual subspace. 

2.2.1 Principal Components for High Dimensional Pattern 

Vectors 

Principal Components Analysis [18] (also known as the Karhunen-Loeve Trans­

form [24]) is a statistically based orthogonal expansion primarily used to vastly reduce 

the number of variables required to represent high dimensional pattern vectors (such 

as images). This dimensionality reduction simplifies pattern recognition problems and 

the reduced dimensionality is the critical feature in the use of Principal Components 

Analysis for camera position determination problems. 

We will assume that x = [Xl, X2, ... , xn]T is a pattern vector of size n drawn 

randomly from an underlying but unknown probability distribution (we assume that 

x has a mean equal to zero). If n is large and the data is highly redundant (such 

as is often the case for images), it is possible to represent the pattern vectors drawn 

from the distribution in a reduced form. Ideally, this reduced form should produce 

an accurate reconstruction x' with as few expansion terms as possible. 

PCA produces vectors ei, which form an orthonormal basis. Any orthonormal 

basis comprised of n vectors can be used to completely reconstruct a vector x with a 

dimensionality n: 
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n 

X = x' = I:: Yiei 
i=l 

T Yi = X ei 
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(2.1) 

(2.2) 

From basic linear algebra, the orthonormal basis vector coefficients Yi are the 

inner products of the original vector x and the basis vectors ei. Using n vectors to 

reconstruct x is obviously of no benefit in terms of dimension reduction. However, 

by truncating the number of basis vectors used to represent x' instead of using the 

full n, a dimensionality reduction can be achieved. Unfortunately, for an arbitrary 

orthonormal basis, valuable information will be lost from the missing basis vectors 

and more than likely x' and x will be significantly different. The aim of peA is to 

construct optimal basis vectors such that only a few contain most of the information 

required to reconstruct x. 

Intuitively, high dimensional vectors drawn from some underlying probability dis­

tribution are often highly redundant and thus it is likely that some sort of compres­

sion is possible. If we can acquire a set of training vectors drawn from an underlying 

probability distribution, we can construct the peA vectors to minimize the mean 

square error (MSE) between the original vector drawn from this distribution and the 

truncated reconstruction using only k peA vectors: 

k 

x' = 2:)xT 
ei)ei 

i=l 

(2.3) 

(2.4) 

These optimal representation vectors are calculated by finding the eigenvectors 

with the largest eigenvalues corresponding to the covariance matrix of the pattern 
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vector x. The fact that the eigenvectors of the covariance matrix minimize equation 

2.3 as opposed to any other orthonormal basis, can be found using the methods 

of Lagrange multipliers [7]. If X = [Xl, ... , Xm] corresponds to m samples of the 

underlying probability distribution of X, the an estimate of the covariance matrix C 

can be formed by: 

C=xxT (2.5) 

Thus the PCA vectors ei solve the eigenvector decomposition: 

(2.6) 

Since the covariance matrix is a symmetric matrix, a variety of solutions exist to 

find the eigenvectors for optimal reconstruction error including the power method, 

the symmetric QR algorithm and Jacobi methods [10]. Section 2.3.1 explains an 

approach for using the singular value decomposition for faster computation of the 

covariance matrix eigenvectors, specifically with regards to the camera positioning 

determination problem. 

For the camera positioning problems that are of interest to this thesis, the range 

of motion of the camera will be known and will not change. Thus the statistics of the 

underlying image pattern vector X will remain the same, allowing the derivation of 

specific PCA vectors ei for each application. This will also allow the representation 

of any image X from the movement range of the camera to be represented in low 

dimensional form by the projection coefficients xT ei of the basis vectors, since in 

equation 2.4 the ei vectors are already known. This low dimensional representation 

is critical for eigenspace positioning as will be seen in the next section. As will be 

seen in the following chapters, image vectors consisting of 40000 data points can often 

be represented by twenty eigenvector coefficients for the purposes of camera position 

determination. 
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Two more useful properties of peA beyond the minimization of mean square error 

are important with regards to the use of peA for pose estimation problems. The first 

is that the coefficients x T ei of the different eigenvectors are mutually uncorrelated 

[40]: 

(2.7) 

This is an important property for pattern recognition and ensures features with 

redundant information are not utilized. 

The other important property is that the variances of the projection coefficients 

x T ei are maximized: 

(2.8) 

Generally, a feature with larger variance will be less likely to be corrupted by noise 

when judging between two positions. 

The effectiveness of peA for compression depends on the data underlying the 

pattern vector to be highly correlated. If each element of the pattern vector is in­

dependent of the others, the reconstruction error of x' using the peA vectors will 

relatively large (this is true for any orthonormal basis in this case). This is because 

the number of peA vectors required to accurately represent the pattern vector will 

be the same as the number of elements of the vector and thus using a truncated 

representation will result in a large reconstruction error. Thus peA is best used 

for specialized applications where the pattern vector will be highly correlated. For 

example, the pattern vector underlying images of scaled human faces will be more 

restrictive than images of faces at different scales. Thus the peA reconstruction error 
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on average for the scaled faces will be less than that of the unscaled faces. For the 

camera positioning problems considered in this thesis, the resultant pattern vectors 

are highly correlated thus peA applied to these images will perform well in terms of 

both reconstruction error and consequently accuracy as well. 

Fortunately, there is a measure of how correlated and hence how well suited peA 

is for a given data set in terms of reconstruction error, namely the eigenvalues Ai corre­

sponding to the eigenvectors ei. The relative sizes of the eigenvalues corresponding to 

the peA vectors are actually equivalent to the variance of the projection coefficients 

x T ei of the peA vectors [7]: 

(2.9) 

The fact that the eigenvalues are equivalent to the variance of the projection co­

efficients is important in particular for eigenspace positioning as will be seen in the 

next section, however, in addition, examining these values can add insight into the 

behaviour of peA for a specific instance. Generally speaking, for peA with a set 

number of eigenvectors, a greater information compression will be achieved if the 

covariance matrix has a small number of large eigenvalues (and the rest negligible) 

as opposed to the eigenvalues being more uniform in distribution [7]. For the case 

of image vectors with a few large eigenvalues combined with the rest significantly 

smaller, a smaller reconstruction error will result with a limited number of eigenvec­

tors compared to the case of more uniform eigenvalues. To demonstrate this, if the 

peA reconstruction vector is x', the reconstruction error vector is defined by: 

~ I x=x-x (2.10) 

This value can also be determined by: 
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n 

X = L (XT ei)ei 
i=k+l 
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(2.11) 

where k is the number of eigenvectors used for the reconstruction and n is the 

dimensionality of the vectors. The mean of its norm can be calculated by: 

n 

Ellxl12 
= L E(xT ei? (2.12) 

i=k+l 

which through matrix manipulation can be reformed into: 

n 

Ellxl12 = L ef E[xxT]ei (2.13) 
i=k+l 

where E[xxT] is equivalent to the covariance matrix C: 

n 

Ellxl12 
= L e;Cei (2.14) 

i=k+l 

and subsequently via equation 2.6 and the fact that eT ej = 8i { 

n 

EllxW = L Ai (2.15) 
i=k+1 

Thus if the remaining eigenvalues beyond the kth are small in relation to the first 

few eigenvalues, the average reconstruction error will also be small. Eigenspace posi­

tioning depends on PCA achieving good compression and small average reconstruction 

errors. 

2.3 PCA Applied to Camera Positioning Problems 

The ability to provide low dimensional representations of high dimensional spaces 

via PCA makes it a natural for applying it to camera and object positioning problems. 
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In positioning problems, the range of camera motion forms a visual subspace. 

An image x acquired from within this range of camera motion can be thought of as 

being drawn from a high dimensional probability distribution, if it is assumed that 

all camera positions are equally likely. Since images from nearby camera positions 

are usually highly correlated, the visual subspace corresponding to these images will 

be highly compressible via PCA. 

Thus a high dimensional image I x can be represented via PCA in a low dimensional 

form y = fYI, Y2, ... , YkV (herein referred to as the projection coefficients of the image) 

via: 

(2.16) 

(2.17) 

where E is composed of a small number (typically 10 to 20) of the eigenvectors ei 

with the largest eigenvalues Ai corresponding to the covariance matrix of the visual 

subspace: 

(2.18) 

If we store a set of these projection coefficients Y = [y I' ... , Y ml corresponding to 

a set of m training images X = [Xl, ... ,xml spaced equally throughout the range of 

motion of the camera, we determine a low dimensional manifold corresponding to the 

movement of the camera in the eigenspace. Thus we have associated camera position 

with a low dimensional representation. 

1 Note that it is assumed that the original image vector has had the estimated average vector 
across the eigenspace removed to produce x, thus E[x] = 0 
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Figure 2.1 shows an example of a visualized eigenspace manifold produced with 

the first three eigenvector projection coefficients Yl, Y2, and Y3, for a set of images 

corresponding to a camera moving in a square plane over a metal test object (the 

example in the next chapter). Adjacent points in the manifold correspond to images 

obtained from adjacent camera positions. Thus with PCA we can perform a fast 

comparison operation between images via the projection coefficients as opposed to 

the previously mentioned template matching approach to position determination. 
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Figure 2.1: Example Eigenspace Manifold 

To determine the current position of a new image Xnew corresponding to a camera 

position within the preset range, the stored set of projections Y corresponding to the 

training images can be used. Calculating the projection coefficients corresponding to 
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the new image Y new via eq. 2.8, a nearest neighbor search of the stored projection 

coefficients can be performed: 

Nearest Neighbor nn = argmin IIYnew - Yill, Vi = 1, ... , m (2.19) 

The current position of the camera can then be ascertained as that corresponding 

to the position of the camera where the projection coefficients Y nn were obtained from 

training image Xnn [37]. Thus comparison with the stored projection coefficients cor­

responding to the training images allows a computationally fast method of obtaining 

camera position. 

An important consequence of this technique is that the accuracy obtainable is 

limited by the number of training images, as camera positions intermediate to those 

corresponding to the training images cannot be identified. One way to increase this 

accuracy is to use more training images. An alternate technique, (as first proposed by 

Nayar et. al [37]) is to instead increase the number of camera positions represented 

by Y by deriving interpolated projection coefficients corresponding to positions in­

termediate of the training images. Thus for the example of planar camera position, a 

denser grid of camera positions can be formulated and then the projection coefficients 

derived from those corresponding to the actual training images. The interpolation 

could be linear or alternatively spline based. The interpolation is performed indepen­

dently for each individual projection coefficient Yg. As an example for forming the 

interpolated projection coefficients, consider four images: X a , Xb, Xc, and Xd. These 

images correspond to the camera at the four corners of a square within a two dimen­

sional plane. The interpolated projection coefficient value for the camera position in 

the center of the square (assuming linear interpolation) for the gth eigenvector can 

be calculated by: 
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(2.20) 

The complete Ycenter projection coefficients vector can be formed from equation 

2.20 for each individual eigenvector. For positions other than the center, the Ya' Yb, 

Yc' and Yd vectors need to be weighted appropriately. Spline based procedures would 

require additional surrounding projection coefficients. Higher dimensions of camera 

movement can be similarly interpolated. 

An important issue for accuracy is that the interpolated projection coefficients will 

differ slightly from those corresponding to the actual training images thus accuracy 

cannot be increased indefinitely with more interpolated projection coefficients. We 

will speak more of the limitations of the method in future sections. 

The eigenspace method is interesting compared to previous methods of camera 

and object position determination that depended on the heuristic use of geometric 

features such as corners or edges. An advantage of eigenspace methods is that the 

eigenvector features are generated automatically based on the statistics of the visual 

subspace without requiring any heuristics decisions on the part of the designer for a 

particular application. All that is required for an application is to define the range of 

motion, whether it be the camera moving relative to the object or an object relative to 

the camera, acquire the necessary training images and position can then be accurately 

ascertained. 

2.3.1 Nearest Neighbor Search Time 

One issue with the above mentioned method is the computational requirements of 

the nearest neighbor search phase, which requires Y new to be compared with all the 

projection coefficients in Y. 

Nene and Nayar [38] have proposed a binary search algorithm to considerably 
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speed up the search for the nearest neighbor match by preprocessing the set of pro­

jection coefficients Y. Starting with the first projection coefficient Yl for each y, Y 

is ordered from first to last with respect to this Yl rather than by camera position. 

For a new image, its Yl value can be matched to the closest Yl value in the ordered 

set Y. Only y vectors from within Yare considered if their Yl values are within a 

preset amount € on either side of the new images's Yl value. This procedure can be 

repeated with the other components of y, leaving only a small portion of the total set 

Y to be evaluated for the nearest neighbor search. For an eigenspace based object 

recognition algorithm, search time using the algorithm was reduced to 1/75 of the 

exhaustive search of the total set Y. 

As an alternative to this approach of preprocessing the projection coefficients, 

another technique for limiting the number of comparisons for the nearest neighbor 

search is to perform a coarse search of the projection coefficients corresponding to 

the actual training images. In most cases, the interpolated projection coefficients will 

significantly outnumber those corresponding to the training images (ie. 1,000,000 

to 300 for the example in Chapter 3). This can be followed by a truncated nearest 

neighbor search of the interpolated projection coefficients of Y within a set distance 

of the position of the matched training image projection coefficients y nn' The set 

distance will be dependent on the application, but in many cases can be set to reduce 

the number of interpolated training projection coefficients to be evaluated to less 

than 5% of the total interpolated projection coefficients with no loss of accuracy. 

This method is suggested as an alternative to Nene and Nayar's method because the 

occlusion robust approaches to eigenspace positioning described in Chapter 4 do not 

allow preprocessing of the set of interpolation projection coefficients Y. Potentially 

an approach could be developed that performed interpolation of the training image 

projection coefficients after the nearest neighbor search phase. Thus the amount of 

interpolation could be increased dynamically. 
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2.3.2 Calculation of the Eigenvectors 

As stated earlier, the eigenvectors (corresponding to the largest eigenvalues) of the 

covariance matrix for the visual subspace are the features used to provide low dimen­

sional representations allowing the use of eigenspace methods for object or camera 

positioning. However the calculation of the eigenvectors directly from the covariance 

matrix corresponding to the visual subspace is generally computationally intractable. 

The covariance matrix for the visual subspace can be estimated by acquiring a train­

ing set of images spaced equally throughout the movement range of the camera. As 

stated in section 2.2.1, if Xi represents one of the image vectors from the set we can 

construct a matrix X consisting of these m image vectors collected columnwise: 

X = [Xl, ... ,XmJ (2.21) 

Consequently we can calculate an estimate of the covariance matrix C via: 

(2.22) 

This matrix will have dimensions equal to the length of the image vectors them­

selves. Thus for images of size 320 by 240 pixels, the dimensions for the covariance 

matrix would be 76800 by 76800. Calculating the eigenvectors from such a large 

image is computationally intractable. 

Fortunately, an alternative method exists to estimate the eigenvectors of the co­

variance matrix (outlined by Murakami and Kumar [31]) if the number of images m 

used to estimate the covariance matrix is significantly smaller than the number of 

pixels n in the images. This is based on the well known singular value decomposition: 
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(2.23) 

where the column vectors of U correspond to the normed eigenvectors of AAT 

and the column vectors of V correspond to the normed eigenvectors of AT A. Noting 

that AAT is equivalent to our estimate of the covariance matrix, we term Cimplicit as 

the implicit covariance matrix: 

(2.24) 

which has dimensions the same size as the number of training images m. A well 

known relationship for the SVD is that the column vectors Vi of V are related to the 

column vectors Ui of U via: 

(2.25) 

where the O'i are the singular values of ~ and 0'; corresponds to the eigenvalues 

of AT A. This relation allows the eigenvectors of AA T to be estimated via the eigen­

vectors of AT A. For our purposes this allows calculation of the eigenvectors ei of 

the covariance matrix estimate C via the eigenvectors ei of the much smaller implicit 

covariance matrix Cimplicit: 

(2.26) 

The calculation of the eigenvectors of Cimplicit can be performed via a commercial 

software package such as Matlab without computation time being a significant issue. 

This approach to deriving the eigenvectors has some interesting consequences for 

the accuracy for eigenspace positioning and will be discussed in the next chapter. 

Note that the training images x used to calculate the projection coefficients Y for 

eigenspace positioning do not necessarily have to be the same as those used to derive 
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the eigenvectors. These two steps are in fact independent of one another. Potentially 

one could calculate feature vectors independently of the image statistics such as using 

a Fourier or a Discrete Cosine transform. 

2.4 Chapter Summary 

General positioning camera problems such as those encountered for mobile robots 

and part positioning were described as well as the visual subspaces formed correspond­

ing to the movement range of cameras. The use of Principal Components Analysis 

for representing images from these visual subspaces in reduced form was shown. Ob­

taining the eigenvectors corresponding to the Principal Components via the implicit 

covariance matrix was explained. Subsequently, the basic technique of determining 

camera position over a predefined movement range using eigenspace projections was 

explained: 

• Obtain a set of training images spaced equally throughout the movement range 

of the camera 

• Using the implicit covariance matrix, obtain the eigenvectors corresponding to 

the covariance matrix of the training images 

• Collect a set of projection coefficients over the movement range of the camera 

by projecting the training images on the eigenvectors 

• Interpolate the projection coefficients for camera positions intermediate to the 

training images for additional accuracy 

• For a new image, find its projection coefficients and perform a nearest neighbor 

search with the stored set of interpolated projections 
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• The current camera position is determined as that with the nearest neighbor 

projection coefficients 



Chapter 3 

Eigenspace Positioning and 

Accuracy 

3.1 Accuracy and Eigenspace Positioning 

The accuracy that can be achieved by eigenspace based position determination 

is an important but not oft studied issue. If eigenspace positioning is to be used 

in industrial applications, especially as a tool for high accuracy positioning of robot 

end-effectors, the factors that influence accuracy must be well known. Typically there 

are two areas that affect the accuracy for a given application: 

1. The visual and distance parameters of the visual subspace of the problem. 

2. The controllable parameters available such as the number of training images, 

amount and types of interpolation and the number of eigenvectors. 

This chapter explores the effects on accuracy of these two problems, the limits of 

accuracy achievable and recommendations for improving accuracy via the controllable 

parameters. Also included is a new technique for filtering the eigenvectors to improve 

accuracy in certain instances. 

33 
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3.2 General Discussion of Accuracy 

34 

Positional accuracy relies upon many related factors. One simple way to approach 

accuracy is the observation that accuracy can be said to primarily depend upon how 

close the interpolated projection coefficients are over the movement range of the 

camera to the actual projection coefficients at the interpolated locations. 

As mentioned in section 2.3, using only the projection coefficients corresponding 

to the training images will limit the accuracy because only the positions of the camera 

for the training images can be returned as the new position of the camera. Projection 

coefficients corresponding to positions intermediate to the training images can be gen­

erated by interpolating the projection coefficients for each eigenvector. Accuracy can 

be increased by using more interpolated projection coefficients until a limit is reached 

in part due to the inaccuracy of the interpolation projection coefficients themselves. 

If the interpolated projection coefficients vary significantly from the actual values, 

then at the nearest neighbor matching phase, the projection coefficients of a new image 

will likely not match the interpolated projection coefficients at the actual position. 

Larger variance from the actual projection coefficients will increase the possibility of 

even larger errors. The exact effect on accuracy is difficult to predict, since potentially 

the projection coefficients of any nearby position could be matched. This topic is 

discussed in more depth in Chapter 4, however the important fact to consider here is 

that improving the accuracy of the interpolated projection coefficients is paramount 

for improving positional accuracy. 

In terms of improving accuracy the question is then what can be done to im­

prove the accuracy of the interpolation as well as how visual characteristics of visual 

subspaces affect the accuracy of the interpolation. 

In Chapter 2, we described the projection coefficients as forming a manifold corre­

sponding to a range of camera positions. For explanative purposes we will also refer 
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to the plot of the projection coefficients for each eigenvector versus camera position 

as a projection plot or as a plot of the manifold versus position for each eigenvector. 

Figure 3.5 shows an example of this concept, it is explained in more depth in section 

3.3.1. 

With this concept of the projection coefficients of an eigenvector forming a mani­

fold surface versus camera position it can be said ideally for any application to obtain 

good interpolation, the eigenvectors should produce a smooth projection manifold for 

each eigenvector that with no discontinuities or regions of rapid change that could 

result in regions of camera movement with inaccurate interpolation. 

The controllable parameters available to the designer of a position determination 

application can have important effects on improving the accuracy of the interpolation, 

especially the number of training images used to calculate the projection coefficients 

and the resulting interpolated projection coefficients. Their effects on accuracy will 

be discussed later on in the chapter. 

The visual characteristics of the applications visual subspace can also have impor­

tant effects. Especially important, in terms of the limits of the accuracy achievable 

is the relationships between the amount of image feature change within the images 

versus the range of camera movement. 

Before these ideas are presented, an experimental example of position determina­

tion will be illustrated in the next section to provide a basis of evaluating the ideas 

in this chapter. 

3.3 Experimental Example 

A simple example was chosen for exploring eigenspace positioning accuracy. The 

application was chosen to be determining the two dimensional translation position of 

a camera relative to a metal part and its background. Conceivably such situations 
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could arise for visual servoing applications where the task is to properly position 

an end-effector with a camera mounted on it relative to the part. The camera was 

mounted on an XY table to allow precise positioning; the positional resolution of the 

table was 10 flm in both directions. 

For all experiments in the thesis except where explicitly described, the size of the 

images used was 320 by 240 pixels, acquired using a grayscale 8-bit Matrox Meteor 

II frame grabber card. In all cases the eigenvectors were calculated with Matlab. All 

other processing was performed in C++ on a 600 MHz Pentium III computer. 

For this particular experiment, the range of camera motion was confined to a 4 

cm by 4 cm square. To allow a wide latitude in terms of selecting possible sets of 

training images, 4225 images were acquired of the object over a 65 by 65 grid covering 

the movement range of the camera. Thus the images were 0.625 cm apart in each 

direction. Note that the movement of the camera was perpendicular to its optical 

axis, the significance of which will be addressed in the chapter on multiple cameras. 

Figure 3.1 shows four images from the entire set of images, corresponding to the 

four corners of the movement range. Note that the object was approximately 25 

em from the lens of the camera. Examining the four extreme position images, the 

distance in pixels the image features (such as the hexagonal recess for example) move 

within the images over the camera movement range is 168 pixels in both directions. 

A set of 200 images with the position of the camera at random positions through­

out its prescribed movement range was also acquired. This allows accuracy to be esti­

mated via this testing set because the random positions of the camera were recorded 

for comparison to the position determined by the eigenspace positioning. 

To illustrate the accuracy achievable, a subset of 289 images consisting of images 

spaced 2.5 mm apart in each direction from the entire image set was used to esti­

mate the eigenvectors of the visual subspace with the implicit covariance approach as 

described in the previous chapter. The same set of 289 training images was used to 



CHAPTER 3. EIGENSPACE POSITIONING AND ACCURACY 37 

Figure 3.1: Corner Images of Camera Movement Range 

calculate a set of projection coefficients covering the movement range of the camera. 

This set of projection coefficients was interpolated linearly as described in section 2.3 

to provide 64 positions in each direction between the original 289 positions, a set of 

1041 by 1041 camera positions are then available to match. Such a large amount 

of interpolation is required to ensure the full accuracy capability of the eigenspace 

positioning method is evaluated. For all experiments, interpolation above this level 

resulted in no improvement in accuracy. Unless explicitly mentioned, an exhaustive 

search for the nearest neighbor matching phase was used to thoroughly evaluate the 

accuracy possible. 

Using the random set of 200 images that was also acquired in addition to the 
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training set of images, each had its projection coefficients calculated from the 289 set 

eigenvectors and a nearest neighbor search was performed between those projection 

coefficients and that of the interpolated set. The error for each random image was 

determined as the difference in position between the random image and that of the 

interpolated matched projection coefficients. The error was reported in two parts 

corresponding to the two directions of movement, the vertical error consisting of the 

difference in position for camera movement up and down with regards to the images 

and similarly the horizontal error corresponding to the side to side movement of the 

camera. Thus for reference purposes, camera movement along one axis of the XY table 

will be referred to as vertical movement and horizontal for the other axis. The camera 

is roughly aligned for simplicity such that this vertical camera movement produces 

mostly vertical image flow with a small horizontal component. Note the camera could 

be rotated such that movement along one of the XY axes would produce diagonal 

movement of the image features within the images. 

The mean absolute error in the vertical direction reported for the random set was 

69.6 /-lm and in the horizontal direction it was 191 /-lm. The error as a percentage 

of the distance between training images was 2.78 % for the horizontal direction and 

7.64 % for the vertical direction. To illustrate the distributions of the errors in both 

directions, Figure 3.2(a) shows a histogram of the absolute error for the vertical 

direction. Similarly Figure 3.2(b) shows a histogram of the absolute error for the 

horizontal direction (for the remainder of this chapter, part (a) of an error histogram 

represents the vertical absolute error). 
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Figure 3.2: Histograms of Absolute Position Error, (a) Vertical, (b) Horizontal 

3.3.1 Tools for Analysis of Visual Subspaces for Eigenspace 

Positioning 

Understanding the relationships between visual subs paces and the resultant po­

sitional accuracy achievable can be quite complicated. The following two techniques 

can be used to enhance this understanding, demonstrated with the example visual 

subspace. 

A useful tool for examining the behaviour of eigenspace methods is the visualiza­

tions of the eigenvectors ei used to form the projection coefficients y for the visual 

subspace. In some instances, the performance in terms of accuracy can be partially 

explained with regards to the visualized eigenvectors and the images from the visual 

subspaces. Visualized eigenvectors can be constructed by noting the eigenvectors are 

in row vector format but their values correspond to specific positions in the original 

images. Thus performing the opposite of the concatenation operation performed on 

the training images to form image vectors, the eigenvector values can be assigned to 

an image corresponding to the original image dimensions and quantizing the floating 
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point values equally to values between 0 and 255 to form an 8 bit grayscale image. 

Figure 3.3 shows the visualized eigenvectors of the example visual subspace corre­

sponding to the highest four eigenvalues. Note that these first eigenvectors are for 

the most part low frequency in both directions, as would be expected for reconstruc­

tion optimized basis vectors. Note that using only 289 images results in a pattern 

of grid like formations. To illustrate the contrast between the early eigenvectors, 

Figure 3.4 shows the visualized eigenvectors corresponding to the 13th through 16th 

eigenvectors. In comparison to the first through fourth visualized eigenvectors, these 

visualized eigenvectors are of a higher frequency in nature. These high frequency 

characteristics again follows the patterns one would expect of using reconstruction 

optimization based vectors. 

A similar tool for analyzing visual subspace eigenspace behaviour is plots of the 

individual projection coefficients Yi of each eigenvector ei versus camera position. 

Simply for each eigenvector, the projection coefficient value is plotted versus the 

training image camera positions. Figure 3.5(a) through 3.5(d) shows the plots versus 

the 4 cm by 4 cm camera motion range for the first four eigenvectors using 289 training 

images. The plots are drawn as mesh plots to reinforce the concept of the projection 

coefficients as being part of a manifold. For analysis purposes, we will refer to these 

individual projection plots as forming a manifold of projection coefficient values versus 

position and we are interested in the shape these individual manifolds exhibit for each 

eigenvector. Note that these first few manifolds change relatively little and smoothly 

over the movement range of the camera as would be expected with the corresponding 

low frequency eigenvectors. To illustrate different manifold properties of the later 

eigenvectors, Figure 3.6(a) through 3.6(d) shows the projection plots corresponding 

to the eigenvectors with the thirteenth through sixteenth largest eigenvalues. Note 

that the manifolds of the later eigenvectors are considerably less smooth and high 

frequency. Also note that interpolating accurately for the projection coefficients of 
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Figure 3.3: First Four Eigenvectors 

the later eigenvectors will be more difficult than for the earliest eigenvectors with a 

set number of training images. 

3.4 Image Feature Change and the Limits of Ac­

curacy 

The second half of this chapter discusses the effects of the adjustable training 

parameters on accuracy. More importantly in some ways however is the nature of the 

information presented by the images in the targeted visual subspace itself in terms of 
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Figure 3.4: Thirteenth through Sixteenth Eigenvectors 

the ability to determine position. 

The ability to determine position with eigenspace methods depends on the smooth­

ness of the projection coefficients manifolds versus position and thus the ability to 

correctly interpolate intermediate positions. If for a manifold corresponding to the 

projection coefficients of one eigenvector versus camera position the coefficient val­

ues change rapidly and discontinuously with camera movement, determining position 

with such interpolated projection coefficients will be difficult. However, an important 

idea that underlies these manifolds beyond the eigenspace paradigm is the idea of the 

image feature change over the movement range of the camera. Informally, this refers 

to the change in pixel position of image features such as a corner within the images 
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Figure 3.5: Projection Coefficient Value versus Position, (a) First Eigenvector, (b) 
Second Eigenvector, (c) T.hird Eigenvector, (d) Fourth Eigenvector 

as the camera moves. 

For the remainder of this chapter, this idea will be explored with regards to two 

dimensional translational positioning for simplicity, however it also has important im­

plications to higher dimensional positioning problems which are considered in Chapter 

6. 

Basically the idea of image feature change with regard to positioning is the limit of 

the accuracy achievable for a set amount of image feature change across the movement 

range of the camera. Referencing Figure 3.1 which shows the four images correspond­

ing to corner positions of the camera for the main experiment in this chapter, it is easy 
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Figure 3.6: Projection Coefficient Value versus Position, (a) Thirteenth Eigenvector, 
(b) Fourteenth Eigenvector, (c) Fifteenth Eigenvector, (d) Sixteenth Eigenvector 

to notice the movement of the visual features in the scene to different pixel locations 

within the four images. Looking at the position within the image of the hexagonal 

recess in the upper left image and comparing its position in the lower right image, 

the recess has moved approximately 1/2 the width of the image in both directions. 

In fact, this recess was measured to have moved 168 pixels in each direction across 

the movement range. 

More formally for determining the accuracy possible with eigenspace positioning 

we introduce the measurement of the camera movement per pixel of image feature 

change D. In basic terms, D can be defined for each direction of camera movement 
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as the distance the camera moves between two images divided by the distance in 

pixels coordinates between the same image feature in both images. Or more simply, 

the amount of camera movement that is required to shift the entire image contents 

by one pixel in the specified direction (for simplicity camera perspective effects are 

ignored). For a simple case such as two dimensional translational movement of a 

camera, the change in location of image features over the movement range is easily 

discerned. Figure 3.7 shows an example of the distribution of the training images for 

the example in this chapter. 

dh 
I I 

r---------------~ 

dv __ , _____ ---' 
, 

• • • 

••• 

••• 

• • • 

Figure 3.7: Example of Training Image Distribution 

We define dh as the distance between each training image in the direction of camera 

movement that produces horizontal pixel movement of the image features, similarly 
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dv corresponds to the distance between training images for camera movement that 

produces vertical pixel movement. The location of the same image feature in two of 

the training images is defined as Pi, qi and P2, q2 where Pi and P2 refer to vertical 

pixel coordinates. 

For horizontal camera movement, Dh for any two images is defined as: 

dh· a 
Dh = .,------:-

Iqi - q21 
(3.27) 

where a is the number of dh increments separating the images and Iqi - q21 is 

the horizontal pixel distance between an image feature in both images. Similarly for 

vertical camera movement, Dv is defined by: 

dv • b 
Dv = .,...------:-

IPi - P21 
(3.28) 

where b is the number of vertical increments between the images and IPi - P21 is 

the vertical pixel distance between an image feature in both images. 

The D values give a bound on the maximum accuracy possible in a given direction 

of camera movement. Multiplying D by 2 raised to the power of the grayscale bits 

9 of a pixel in the images defines the smallest camera movement 8M that can be 

theoretically detected (by producing a change in the pixel values of the image) and 

thus an absolute upper bound on accuracy (assuming an infinite number of training 

images for forming the projection coefficients): 

8M = D· 29 (3.29) 

The accuracy achievable for eigenspace positioning will be below that indicated 

in the above equation, since in practice several bits of 9 are lost due to noise and the 

fact a finite number of training images are used. Also images where the difference 

in contrast between image features is small may also effectively lower the 8M value, 
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since the position of image features cannot be accurately detected. For example, if 

for an 8-bit grayscale image all the pixel values of the images were limited to values 

between 0 and 31 would effectively lower 9 to 5 (25 = 32). 

As will be described in section 3.5.3 on the number of images for the projection 

coefficients, the 8M value limits the accuracy since increasing the number of training 

images indefinitely will result in the situation where the projection coefficient values 

between adjacent images no longer change significantly due to the 8M value. Further 

increases, as will be shown lead to almost no improvement in accuracy. Thus to 

further increase accuracy, either the D or 9 values must be increased. 

The direction of camera movement is important for determining accuracy because 

D can vary with direction. For example, a camera moving forward (such that the 

contents of the scene appear to flow toward the observer) may typically have a much 

larger D compared to that corresponding to lateral movement. Consequently, accu­

racy in the forward direction will be poorer (as a large D value denotes a large amount 

of camera movement for each pixel an image feature moves within the image). The 

use of a fish-eye lens or an omnidirectional camera for eigenspace positioning com­

plicates the calculation of 8M values, since image features will change position at a 

different rate depending on their position with the image. 

Note that this explanation relies on the fact that in the experiment in this chapter, 

that camera movement along one of the axes of the XY table produced almost exclu­

sively a change in the horizontal image coordinates for the image features whereas in 

the other axis, instead predominately a change in vertical image coordinates for the 

features resulted. This was deliberately arranged to simplify the explanation of the 

overall concept. More correctly, for an axis of camera movement the distance in both 

image coordinates (p,q), J(PI - P2)2 + (ql - q2)2 should be considered, especially if 

the camera is aligned such that camera movement in each axis produces image feature 

change of similar magnitude in terms of both image coordinates. This idea of image 
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feature change is most important in regards to the number of images used to form 

the projection coefficients later in the chapter, but is also used in Chapter 6. 

3.5 Adjustable Parameters 

The nature of the visual subspace in terms of the relations between the number of 

the pixels that change and camera movement have a substantive effect on the accuracy 

that can be achieved including the absolute limits of accuracy that can be achieved. 

Obviously for visual subspaces where the image change for a given movement range 

is limited, a truly large amount of training images will not overcome this deficiency. 

Nonetheless, for a given range of camera motion, the training parameters can 

have a significant effect on the positional accuracy achieved. Certainly the number of 

training images used to cover the movement range of the camera is important, both 

for deriving the eigenvectors, as well as for forming the set of projection coefficients. 

As well, since these are possibly a limited resource in terms of acquisition difficulty, 

it is important to know how many images will be required for adequate performance. 

The remainder of the chapter analyzes these factors experimentally to provide useful 

information for designing eigenspace positioning applications. 

3.5.1 Number of Images for Calculating Eigenvectors 

The number of training images used for calculating the eigenvectors for a visual 

subspace is a parameter that can cause significant effects on the accuracy achievable 

for eigenspace positioning problems. Intuitively, increasing the number of images used 

to form the eigenspace will increase the accuracy as the implicit covariance matrix 

formed by the training images will be a better estimate of the actual covariance 

matrix. 

The number of images required for high positional accuracy is related to the 



CHAPTER 3. EIGENSPACE POSITIONING AND ACCURACY 49 

amount of image feature change over the movement range of the camera. Obviously 

a larger camera movement range will require a larger number of images to maintain 

the same image density. 

When considering this density and its relation to accuracy it is important to con­

sider the implicit covariance technique for estimating the eigenvectors. The implicit 

covariance matrix eigenvectors €i are combined via the X matrix of the training 

images to find the approximation of the covariance eigenvectors ei: 

(3.30) 

Thus the eigenvectors themselves are linear combinations of the training images. 

The consequences of using the implicit covariance matrix and a limited number of 

images for 2D eigenspace positioning is especially felt when the density of the training 

images is low relative to the amount of image feature change. In situations where 

the difference in location of image features between adjacent training images is more 

than one pixel, the visualized eigenvectors produced by the linear combinations of the 

training images are not smooth. As an experimental example of this effect, Figure 3.8 

shows the first visualized eigenvector el corresponding to 25,81, 289 and 1089 training 

images equally spaced throughout the movement range of the camera. In these images, 

sharp, almost edge like grayscale changes are clearly visible, corresponding to the 

sharp edges contained within the training images. This effect is reduced with an 

increasing number of images. 

The consequences of the sharp edges corresponding to eigenvectors produced by 

too few images is reduced positional accuracy as the resultant projection coefficient 

manifolds produced by these eigenvectors will not be smooth. If the visualized eigen­

vectors have sharp edges and areas of rapid change (such as that produced in the 

example with only 25 images) the interaction between these eigenvectors and the 
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Figure 3.8: First Visualized Eigenvectors with Different Number of Thaining Images 
(Number of Images Shown in Figure) 

high frequency portion of the images produced as the camera moves will produce pro­

jection coefficients that will themselves change rapidly and with reduced smoothness. 

Hence there will be more interpolation errors and consequently poor accuracy. 

To demonstrate the effects on accuracy with the number of training images used for 

deriving the eigenvectors, Table 3.1 shows the absolute mean errors in both directions 

for 25, 81, 289 and 1089 images. Note 289 images were used to form the projection 

coefficients to isolate the effects of varying the number of images for forming the 

eigenvectors. As can be seen, the absolute mean errors decrease significantly with 

an increase in the number of training images. For the largest number of images, the 
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difference between the errors in both directions is also much improved. 

Number of Absolute Mean Error Absolute Mean Error 
Thaining Vertical Horizontal 
Images f-lm f-lm 

25 99.7 263 
81 78.5 203 
289 69.0 191 
1089 42.5 54.0 

Table 3.1: Absolute Mean Errors, Varied Number of Images for Eigenvectors 

A consequence of this performance is that for an application where the number of 

pixels the image features change position over the movement range of the camera is 

large comparatively, achieving a high density of images requires an inordinate number 

of images which could be difficult to acquire. 

Beyond a certain number of training images, the density of images will be such 

that the eigenvectors will not have any discontinuous artifacts and additional images 

will not result in an increased performance in terms of accuracy. Thus for applica­

tions where the image feature change is small because of a limited range of camera 

movement, the number of training images for forming the eigenvectors will be small 

in terms of requirements. This was the case with the experimental example in the 

next chapter, where the image features moved only approximately 15 pixel positions 

in both directions for the entire movement range compared to 160 for this chapter. 

Clearly, for some instances, acquiring such large sets of training images may not 

be practical, either in terms of the time required for their acquisition or if there 

is difficulty in acquiring images with regards to the accuracy achievable during the 

training phase. The next section describes an eigenvector smoothing operation that 

can result in increased accuracy with a limited number of training images. 
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3.5.2 Eigenvector Filtering 

The issue of performance with a limited number of training images is the poor 

results caused by the high frequency elements in the eigenvectors corresponding to 

the linear combination of the training images. As previously described, achieving 

smooth projection manifolds leads to higher accuracy as the interpolated values will 

be more accurate for the nearest neighbor search. 

A solution to the problem of these eigenvectors is to perform a smoothing operation 

on the eigenvectors themselves. Such an operation will produce projection coefficient 

manifolds that are themselves smoother. Consider a region of the training images 

containing a sharp edge. As the camera moves, the position of the edge within the 

images moves. If this edge moves over a nonsmooth section of a visualized eigenvector, 

the projection coefficient produced will change rapidly and possibly discontinuously. 

Smoothing the eigenvectors will reduce the possibility and thus a smoother manifold 

of projection coefficients. The lack of sharp changes in value leads to more accurate 

interpolation and hence more accuracy. If the number of training image projections 

is similarly limited, a smoother manifold surface is easier to describe for interpolation 

purposes with a limited number of points compared to a manifold that changes rapidly 

with a small amount of camera movement which will require denser sampling for 

accurate interpolation. 

A consequence of such a smoothing operation on the eigenvectors is that the al­

tered eigenvectors will no longer satisfy the orthogonality condition of an orthonormal 

basis: 

(3.31) 
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However, this is a requirement for accurate reconstruction of images from the vi­

sual subspace rather than the task of determining position and in any event, the basic 

structure and patterns of the eigenvectors are relatively unchanged by smoothing. 

Potentially one could achieve a similar effect of smoothing the projection coeffi­

cient manifold by instead performing a preprocessing operation on the images and 

smoothing them instead. However the smoothing of the eigenvectors is an operation 

that can be performed off-line whereas smoothing the images would require additional 

run-time computation. 

Several image processing techniques could be used to perform a smoothing opera­

tion on the eigenvectors, although the end results would be similar. For simplicity to 

demonstrate the principle, the operation used to provide smooth eigenvectors was a 

repeated application of averaging the individual eigenvector values (mean filter) over 

the eight neighbor adjacent values (assuming the eigenvectors are viewed as arranged 

in matrices corresponding to the image pixel arrangement (as in the visualized eigen­

vectors), rather than a long concatenated vector). Note that for these operations it is 

assumed that the eigenvectors are not in their row vector format but rather the image 

matrix form corresponding to the training images, the same as for the procedure that 

produces the visualized eigenvectors. Thus assuming e:,8 represents a value of the ith 

eigenvector at pixel location (r,s), the new value after the averaging operation will 

be defined as: 

r+l 8+1 

e? = (1/9) L L (3.32) 
j=r-lk=s-1 

A small window was used so that the amount of smoothing could be controlled by 

repeated applications of the mean filter. This also allows the demonstration of how an 

optimal level of eigenvector smoothness can be achieved where upon further filtering 

will not result in an accuracy improvement. Note that multiple applications of a 
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kernel convolution operation (such as a mean filter) can be equivalently performed 

with a single equivalent kernel operation. 

To demonstrate the utility of performing the smoothing operation on the eigenvec­

tors for improving accuracy, the example eigenspace accuracy for this chapter (Figure 

3.1) was reevaluated using eigenvectors that had been smoothed a number of times. 

The eigenvectors were initially estimated using 289 training images; the same set of 

images was used to derive the interpolated projection coefficients. Table 3.2 shows 

the absolute mean errors (both vertical and horizontal) resulting from the test set us­

ing the filtered eigenvectors, with the number of mean filter operations varying from 

none to 40 times. As can be clearly seen, filtering results in a marked improvement in 

terms of the accuracy average over no smoothing, with the best performance for this 

example occurring with 30 filtering operations. No improvement is seen for filtering 

beyond 30 operations for this particular visual subspace. The amount of smoothing 

operations required to meet the optimal level is likely to depend on the relationship 

between the amount of pixel position change of the image features over the camera 

range and the number of training images over this range. Note that the absolute 

mean results for the 30 times filtering was actually better than using the unfiltered 

eigenvectors produced with 1089 training images (a four times increase in the number 

of training images). To illustrate the improvement in the error distribution, Figure 

3.9( a) and 3.9(b) shows the histograms of the absolute error for the case of no filtering 

together with those representing 30 times filtering in Figure 3.9(c) and 3.9(d). 

Note the improvement in terms of the worse case errors of the test set, which is of 

obvious importance for robotic applications. Figure 3.10 (a-f) shows the first eigen­

vector visualizations for 1, 5, 10, 20, 30 and 40 times filtered respectively. Compared 

to the unfiltered eigenvectors, there are no sharp changes over just a few pixels, but 

rather smooth areas of rapid change. 

Thus in terms of the beneficial uses of smoothing the eigenvectors, the technique is 
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Number of Absolute Mean Error Absolute Mean Error 
Filtering Vertical Horizontal 
Stages J.lm J.lm 

0 69.5 192 
1 63.2 176 
5 53.1 140 
10 44.3 92.1 
20 38.7 58.5 
30 37.4 46.7 
40 38.8 47.6 

Table 3.2: Absolute Mean Errors, Varied Number of Images for Eigenvectors 

useful in instances where the number of training images used to derive the eigenvectors 

is limited. 

Potentially more advanced smoothing filters such as Gaussian filters could be 

used for the same effect. An area that would be worth investigating in the future 

would be to try and determine a relationship for optimal smoothing between the 

Gaussian spread parameter (Y and the change in pixel location of image features 

between adjacent training images. 

Note also for future reference that eigenvector smoothing was not used for the 

experiments in Chapters 4, 5 and 6. This was because for those examples the change 

in pixel location of image features between adjacent training images was considerably 

smaller than the example of this chapter and thus provided no benefit in terms of 

accuracy performance after smoothing was applied. 

3.5.3 Coarse Search with Eigenvector Filtering 

Since the absolute mean error was considerably reduced in the previous experiment 

with the mean filter applied 30 times, the same experiment with 30 times filtering 

was redone using the coarse search technique described in Chapter 2 to reduce the 
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Figure 3.9: Histograms of Absolute Position Error, (a) Vertical, No Filtering, (b) 
Horizontal, No Filtering, (c) Vertical, Filtered, (d) Horizontal, Filtered 

computation required for the nearest neighbor match phase of the projection coeffi­

cients. To reiterate, first a nearest neighbor search was performed on the projection 

coefficients corresponding to the 289 training images. Upon obtaining the nearest 

neighbor position for that set, a second nearest neighbor search was performed on 

a subset of the entire set of interpolated projection coefficients. This subset corre­

sponded to the 131 by 131 interpolated positions surrounding the matched training 

image position (131 by 131 interpolated camera positions corresponds to 64 + 1 in­

terpolated positions in each direction away from the training image position and thus 

incorporates the projection coefficients of adjacent training images). Obtaining the 
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Figure 3.10: Smoothed First Visualized Eigenvectors, (a) Filtered Once, (b) Filtered 
Five Times, (c) Filtered Ten Times, (d) Filtered Twenty Times, (e) Filtered Thirty 
Times, (f) Filtered Forty Times 
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camera position of the second nearest neighbor search resulted in the same results 

as for the use of the entire set of interpolated projection coefficients. This same re­

sult was obtained with only 17450 comparisons of projection coefficients for the two 

nearest neighbors operations (289+131*131) compared to 1083681 (1041*1041) for 

the exhaustive search of the entire interpolated projection coefficients set (only 1.61 

% of the exhaustive search). Thus for situations where the error is limited relative 

to the distance between adjacent training images, the coarse search approach can be 

used to reduce the search time considerably. 

3.5.4 Number of Training Images for Projection Coefficients 

The number of training images used for calculating the initial set of projection 

coefficients for interpolation also has a significant effect on accuracy. Compared to 

the number of images used to derive the eigenvectors, the number of training images 

used for the initial projection coefficients has a larger effect on the positional accuracy 

for both mean error and worst case error. 

Note that while it seems odd to consider the number of training images used for 

forming the eigenvectors and those used for the projection coefficients separately, con­

sidering them separately lends insight into how accuracy functions with eigenspace 

positioning. Further the eigenvectors could potentially be replaced by alternate fea­

ture vectors such as discrete cosine transform basis vectors or generating the eigen­

vectors with a set of random images of the visual subspace rather than an equally 

spaced set. 

Considering again the projection coefficient manifold plots for the experimental 

eigenspace in Figure 3.5 and 3.6, it is intuitive that using only a few training images 

(5 for example) in both directions of camera movement to produce the projection 

coefficients will result in large errors for the interpolated projection coefficients located 

between the actual projection coefficients. This effect will be exacerbated for the later 
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projection coefficient manifolds which exhibit high frequency characteristics and thus 

have a larger potential of interpolation error with a limited number of training images. 

In terms of accuracy, there will be a point in terms of the number of training 

images below which accuracy will markedly decrease. This will be based on the 

number of training images required to capture the general shape of the first few 

projection coefficient manifolds. 

More formally, the idea of the sampling theorem for properly reconstructing an 

analog signal from discrete samples [44] can be invoked. As shown in Figure 3.5, the 

projection coefficient manifold plots for the first four eigenvectors consist of low fre­

quency waveforms across the movement range of the camera. For the first eigenvector, 

the frequency in each direction of camera movement is close to 1 Hz, and gradually 

increases for the next three eigenvectors. According to the sampling theorem, slightly 

more than double the highest frequency present is required to accurately reconstruct 

a signal for any desired time. This frequency is commonly known as the Nyquist 

frequency. Sampling below this frequency results in aliasing error whereby multiple 

frequencies can correspond to the discrete samples; thus interpolation performed on 

a reconstructed signal in this situation will likely be erroneous. 

For the case of eigenspace positioning and the manifold of projection coefficients 

for each eigenvector, rather than time being the measure of distance between sam­

ples, it is camera position distance in each direction. Thus for proper interpolation 

the sampling (in this case the number of training images in each direction) should 

be more than double the underlying frequency of the manifolds, otherwise significant 

projection coefficient errors due to aliasing can occur. For eigenspace position accu­

racy, this will manifest in considerable error when the sampling rate is below twice 

the frequency of the manifolds for the first few eigenvectors, as will be seen experi­

mentally. With the sampling frequency above twice the frequency of the projection 

coefficient manifolds of the first few eigenvectors (3-5), accuracy will be significantly 
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increased. Further increases in sampling as will be shown experimentally, leads to a 

slower increase in the rate of accuracy. This is likely due to the reduction of inter­

polation error via alias for the remaining eigenvectors, whose projection coefficient 

manifolds have higher frequencies and thus require higher sampling to avoid aliasing 

error. Note that the projection coefficient manifolds of the first few eigenvectors are 

not perfect low frequency sinusoids and also likely contain high frequency components, 

thus increased sampling will lead to better interpolation even above the predominant 

low frequency components. 

This increase in accuracy will continue with increasing number of training images 

until the limits imposed by the amount of image feature change over the camera 

movement range are approached as described earlier in the chapter. As will be shown 

experimentally, the error will eventually only negligibly improve with increasing train­

ing images, in line with that predicted by the D and 8M values. 

An obvious drawback for increasing positional accuracy via a large number of 

training images are again the impracticalities of obtaining such a set, either with 

regards to time or positional accuracy. This problem is especially relevant for higher 

dimensional problems beyond simple 2D translational movement. For full six dimen­

sions of movement (translational and rotational) for servoing relative to an object, 

covering a small range of camera motion can require enormous numbers of images. 

Chapter 6 discusses an approach to ameliorate the need for large number of training 

images for 3D translational positioning. 

To illustrate the effects of varying the number of training images used for the 

projection coefficients, the number of training images used was varied from 25 (5 

images by 5 images) to 4225 (65 images by 65 images). The eigenvectors used were 

those derived from 289 images and then filtered 30 times as described in the previous 

section to produce a high level of accuracy. Fifteen of those eigenvectors were used for 

the nearest neighbor search; the training images were interpolated linearly to provide 
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1041 interpolated projections in both directions. Table 3.3 shows the absolute mean 

errors in both the vertical and horizontal directions for the random position image 

set and the errors as a percentage of the distance between training images. Figure 

3.11 shows a semilog plot of the same values. 

Number of Absolute Absolute Absolute Absolute 
Training Mean Error Mean Error Mean Error Mean Error 
Images Vertical Horizontal Vertical Horizontal 

/-lm /-lm Percentage Percentage 
of of 

Training Image Training Image 
Distance Distance 

25 464 486 4.64 4.86 
81 144 110 2.88 2.20 
289 37.4 46.6 1.49 1.86 
1089 24.8 28.1 1.98 2.25 
4225 23.1 22.4 3.70 3.58 

Table 3.3: Absolute Mean Errors, Varied Number of Images for Projections 

These results confirm our earlier conjecture where the mean errors are initially 

quite high with the smallest training set since there are only 5 sampling points in 

each direction and decline rapidly in both directions when the set is quadrupled 

(more accurately, increasing m by a factor of 2 according to a number of images 

defined by 2m+1 by 2m+l). Further quadrupling the set improves the accuracy, 

but at a much slower rate. The last quadrupling barely increases the mean accuracy. 

Thus increasing the number of images from 1089 to 4255 has a muted positive effect. 

This would indicate the limits of accuracy imposed by the camera movement per 

pixel of image feature change are being approached. For this experiment, Dh and 

Dv are both approximately 238 /-lm per pixel, however the absolute mean errors are 

approximately 23 /-lm in each direction. By equation S M = D . g, if 8M is set as 

the mean error in the vertical direction, 9 is approximately 3.32 bits, which is in line 
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Figure 3.11: Absolute Mean Errors versus Number of Images for Projection Coeffi­
cients 
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with our prediction since the SM value is an absolute theoretical upper limit. To 

further increase the accuracy substantially with more images would require altering 

the camera optics to achieve more image feature change with the same movement or 

the use of a larger CCD or a CCD with a larger dynamic range. 

To illustrate the effects of increasing the training images on the distribution of 

the error, Figure 3.12(a) and 3.12(b) shows the histograms of the absolute error for 

the 25 image set and Figure 3.12(c) and 3.12(d) the 1089 image set. For the smallest 

number of images, the distribution of the error is large and spread out. Conversely 

for the 1089 image results, the errors are much reduced, with the worst case errors 

on the order of 100 J.1m. 

To summarize, as the number of training images satisfies the Nyquist criterion for 

the first several eigenvector manifolds, error improves rapidly from below this point. 

Further increases in training images leads to steady increases in accuracy until the 

limits predicted by the camera movement per pixel of image feature change guidelines 

are approached, whereby the increase in accuracy slows considerably. 

3.5.5 N umber of Eigenvectors 

The number of eigenvectors used for the nearest neighbor search certainly has an 

effect on the accuracy achievable by eigenspace positioning. However it is important 

to remember its role in the nearest neighbor search algorithm and consequently in 

eigenspace positioning. Each eigenvector ei produces a manifold of projection coef­

ficients corresponding to the positions of the camera across the movement range. In 

the nearest neighbor search phase, values produced by each eigenvector are compared 

to the stored interpolated values and the closest Euclidean distance is used. Ideally, 

as previously mentioned, the interpolated projection coefficients will be as close as 

possible to the actual values to allow accurate recognition. In theory, position could 



CHAPTER 3. EIGENSPACE POSITIONING AND ACCURACY 

(J) 
Q) 

g> 

80 

.E 60 

(a) 

500 1000 1500 2000 
Error (Micrometers) 

(c) 
200r---~~--~--~---. 

(J) 
Q) 

g> 150 
.E 
'lii 
~ 100 
o 
ffi 

.D 

§ 50 
z 

50 100 150 200 250 
Error (Micrometers) 

(J) 
Q) 

g> 

80 

.E 60 

(b) 

500 1 000 1500 2000 
Error (Micrometers) 

(d) 
200r-~--~--~--~--~ 

(J) 
Q) 

g> 150 
.E 
'lii 
~ 100 
o 
~ 
§ 50 
z 

50 100 150 200 250 
Error (Micrometers) 

64 

Figure 3.12: Histograms of Absolute Position Error, (a) Vertical Error, 25 Training 
Images, (b) Horizontal Error, 25 Training Images, (c) Vertical Error, 1089 Training 
Images, (d) Horizontal Error, 1089 Training Images 

be determined accurately for only a few eigenvectors as long as their individual mani­

folds of projection coefficients were smooth as well as unambiguous (separate camera 

positions do not have the same approximate value of projection coefficients). 

Experimentally, using only a few eigenvectors (three, four or five) generally re­

sults in accuracy substantially lower than using ten or more. However, since the 

eigenvectors themselves are based on optimal reconstruction rather than position de­

termination, adding a few more eigenvectors usually results in gradually increased 
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Figure 3.13: Absolute Mean Errors versus Number of Eigenvectors 

65 

accuracy. This is more than likely due to the fact that some of the eigenvectors be­

yond the first few incorporate reconstruction information that produces a manifold 

that is useful for discriminating position in certain areas of the movement range of 

the camera. 

As an example, Figure 3.13 shows the mean error in both directions for the main 

experiment in this chapter with the number of eigenvectors varied from 2 to 30. 

The eigenvectors produced by filtering those corresponding to the 289 training image 

set 30 times were used for higher accuracy. The same set of 289 images were used 

to produce the projection coefficients and consequently the interpolated projection 

coefficients. 
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For this experiment, with only a few eigenvectors the absolute mean error was 

poor in both directions, but improved quickly with additional eigenvectors. Beyond 

ten eigenvectors, the improvement in each direction was either minor or nonexistent. 

The reason the absolute mean errors improve little beyond the first few eigen­

vectors can be explained in two ways. First, the projection coefficients of the later 

eigenvectors in most cases do not vary in value as compared to that of the first few 

eigenvectors. This is true because the eigenvalues corresponding to the eigenvectors 

define the variance of the individual projection coefficients over the visual subspace 

as mentioned in the previous chapter: 

(3.33) 

Figure 3.14 shows a plot of the eigenvalues corresponding to the visual subspace. 

Thus the projection coefficients of the later eigenvectors with relatively small eigen­

values will not be much of a factor for the Euclidean distance measure compared to 

those of the first eigenvector which will dominate the Euclidean distance measure. 

Conceivably for less compact visual subspaces than this one where the eigenvalues 

are more uniformly distributed, this would not be as large a factor. 

The other reason is the nature of the projection coefficient manifolds produced 

by the later eigenvectors and their relationship to producing accuracy. The later 

eigenvectors are inevitably high frequency versions of the early eigenvectors because of 

the optimization for image reconstruction. Thus the manifolds produced also display 

high frequency characteristics. Figure 3.5 earlier in the chapter showed the manifold 

projection coefficients of the first four eigenvectors and Figure 3.6 which corresponds 

to those of the the 13th through 16th eigenvectors. Obviously the manifold of the 16th 

eigenvector compared to the first is much higher in frequency and more importantly, 

with a limited number of training projection coefficients over the movement range of 
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Figure 3.14: Magnitude of Eigenvalues 

the camera as discussed in the previous section, the interpolations produced could 

be affected by aliasing error as opposed to the interpolated projection coefficients of 

the first eigenvector. As stated many times previously, if the interpolated projection 

coefficient values are inaccurate, positional accuracy will suffer. Potentially this effect 

could be partially ameliorated by using an increased number of actual projection 

coefficients to increase the sampling frequency above the Nyquist criterion for the 

later eigenvectors. 

Thus from these results for this instance ten eigenvectors would be appropriate, 

however adding more does improve performance to a small degree. Considering that 

visual subspaces could exist that are less visually compact, a useful guide would be 

to error on the side of caution and use fifteen to twenty eigenvectors as the minimal 

standard. 
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3.5.6 Spline Interpolation 

Another parameter available for alteration in eigenspace positioning is the type 

of interpolation performed. Considering the idea that accuracy can be improved by 

ensuring that the interpolated values are as close as possible to the actual values, the 

type of interpolation certainly deserves some consideration. 

Linear interpolation is obviously the simplest form of interpolation and has been 

used in the previous experiments in this chapter. Murase and Nayar in their pio­

neering work on eigenspace positioning suggest using cubic spline interpolation as 

more suitable rather than linear interpolation. Thus for a manifold consisting of the 

projection coefficients for one eigenvector for a camera or object moving over a spec­

ified range, the smooth manifold should be better approximated in the intermediate 

positions with spline interpolation than with linear and we would expect positional 

accuracy to improve. 

One consideration for the effect of spline interpolation on positional accuracy is 

the factors considered previously with regards to the number of images used to form 

the projection coefficients. As was seen in that section, the shapes of the manifolds 

formed by the projection coefficients for each eigenvector versus camera position were 

of increasing frequency. Consequently if the number of training image samples in 

each direction was too low with regards to these frequencies interpolation error could 

occur due to aliasing and thus increased positional error resulted. For spline inter­

polation the same problems can occur with erroneous interpolation if the training 

image sampling rate is too low, especially for the later eigenvectors with high un­

derlying frequencies and could limit the benefits of spline interpolation over linear 

interpolation. 

To quantitatively illustrate the effects of varying the type of interpolation, the 

main experiment was performed with altered interpolation. The filtered eigenvectors 

(30 times) from 289 training images were used together with the projection coefficients 
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of the 289 training images. The standard 15 eigenvectors filtered 30 times were used. 

Straight linear interpolation was used via Matlab as well as the standard piecewise 

cubic spline interpolation function provided by Matlab. The absolute mean errors 

for the linear interpolation were 37.4 /-lm in the vertical direction and 46.7 /-lm in 

the horizontal direction. The absolute mean errors for the cubic spline interpolation 

were 33.6 /-lm in the vertical direction and 42.6 /-lm in the horizontal direction. Figure 

3.15 shows the histogram of the absolute errors for both the linear and cubic spline 

interpolation. The absolute mean errors are reduced approximately by 10 % in both 

directions for spline interpolation from the linear results. However examining the 

histograms of the absolute error, the worst case error in the horizontal direction is 

slightly increased for the spline interpolation, but reduced in the vertical direction. 

Thus for this example spline interpolation provides improved performance, but 

compared to the differences that can be achieved with varying the number of training 

images for both forming the eigenvectors and the projection coefficients the difference 

is relatively minor. Nonetheless a good topic for future investigation could include 

a significantly more exhaustive study of the effects of different types of spline inter­

polation for maximizing accuracy performance once the other factors are sufficiently 

addressed. This would be especially valid for situations where a large number of train­

ing images are available to allow the splines to capture the manifold shapes without 

the possibility of aliasing error. 

3.6 Chapter Summary 

This chapter illustrated the main factors that affect eigenspace positioning accu­

racy. The relationship between the amount of image feature change over the move­

ment range of a camera and the resultant accuracy possible was demonstrated. This 
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Figure 3.15: Histograms of Position Error, (a) Vertical, Linear Interpolation, (b) Hor­
izontal, Linear Interpolation, (c) Vertical, Cubic Spline Interpolation, (d) Horizontal, 
Cubic Spline Interpolation 

has particular implications for 3 dimensional eigenspace positioning and is used exten­

sively in Chapter 6 for performing 3 dimensional positioning with multiple cameras. 

In terms of varying the eigenspace parameters, their effect can be substantial, but 

is ultimately limited by the amount of image feature change over the movement range 

of the camera. Increasing the number of images used for the projection coefficients 

is obviously of importance for positional accuracy; initially increasing it rapidly im­

proves performance as the interpolated projection coefficients more closely resemble 

that of the actual manifold via the avoidance of aliasing error until the limits of pixel 



CHAPTER 3. EIGENSPACE POSITIONING AND ACCURACY 71 

change start to become apparent. 

For the number of images used to form the eigenvectors the effect of increasing 

the number of images was similar; initially increasing the number of images led to a 

rapid improvement while eventually a limit was reached. The eigenvector smoothing 

operation was shown to be of use for increasing the accuracy with a limited number of 

training images by removing artifacts from the implicit covariance matrix produced 

eigenvectors. 

The effect on accuracy for the number of eigenvectors used in the nearest neighbor 

search was such that once the projection manifolds were of high frequency compared 

to the density of the sampling of the projections, little improvement was gained. 

Using spline interpolation rather than linear interpolation resulted in a small increase 

in accuracy compared to varying the number of training images. 



Chapter 4 

Occlusion Robust Eigenspace 

Positioning 

4.1 Occlusion and Eigenspace Positioning Meth­

ods in the Presence of Occlusion 

Occlusion presents difficulty for all eigenspace methods in computer vision, includ­

ing their use for positioning applications. Possible occlusion scenarios for positioning 

are easily imagined. For visual servoing applications such as moving a part, a robot 

gripper could be a potential occlusion. For mobile robot navigation, possible occlu­

sions include people moving into the view of a camera or also scene changes over time, 

such as moving a chair or a desk. Thus occlusion situations could be quite common 

and robust techniques are necessary for implementing eigenspace positioning in actual 

applications. 

Thus this chapter is based around occlusion and eigenspace methods. The first 

portion discusses how occlusions affect positional accuracy and what factors affect 

the degree to which occlusion negatively impedes accuracy. This is followed by a 

72 
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discussion of global versus local information as a possible means of solving the occlu­

sion problem for eigenspace positioning. Two methods incorporating the use of local 

information are then described: first separate eigenspaces which treat each image 

image section as a separate eigenspace to isolate occlusions, followed by an improved 

method, subsectioning and recombination that isolates occlusions and avoids ambi­

guity induced errors that can occur with the separate eigenspaces method. Note that 

these techniques have been previously described by Quick and Capson [42] [43] prior 

to the writing of this thesis. 

The next section introduces an experimental example used throughout the next 

two chapters to facilitate the understanding of occlusion and eigenspace methods. 

4.2 Experimental Example 

To demonstrate the effects of occlusion on eigenspace positioning accuracy and 

methods to ameliorate the negative effect of occlusion, a simple example simulating 

an industrial assembly visual servoing problem was chosen. Two metal parts were 

placed close together, with one fixed and the position of the other controlled via an 

XY table. The task was to determine the planar position of the XY table controlled 

part over a small range to simulate proper placement for the task of mating the two 

parts. In this case the camera was fixed over the two parts, thus rather than a camera 

positioning problem (as in the previous chapter) it is instead an object positioning 

problem. The focus of these experiments was to perform accurate final positioning, 

thus the range of the movement of the part was confined to a 4 mm by 4 mm plane. 

Figure 4.1 shows the four images corresponding to the corner positions of the 

movable object. The four images represent the images from the camera at the four 

extreme corner positions. The camera lens was located approximately 20 cm from 

the surface of the objects. Over the 4 mm by 4 mm movement range 289 training 
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images were acquired; thus each image was separated by 0.25 mm in both direc­

tions. These images were used to both derive the eigenspace and to produce a set 

of projection coefficients. These projection coefficients were linearly interpolated to 

provide 24 positions between training images in each direction for a total of 401 by 

401 linearly interpolated projection coefficients (spaced 10 ""m apart). Unless explic­

itly mentioned, 15 eigenvectors were used to produce the projection coefficients for 

the experiments in this section. 

The image feature change resulting from the movement range of the object was 

restricted in these experiments due to the small distance the object movement was 

limited to. In each direction, the image feature change over the movement range 

of the part was limited to 20 pixels in each direction. No eigenvector filtering was 

performed for the experimental results in this chapter as with the small amount of 

image feature change in this example, the eigenvectors were sufficiently smooth with 

289 training images and thus filtering did not improve performance. 

As in the previous chapters, a testing set of 100 random images equally spaced 

throughout the movement range of the part were acquired. Absolute error for each 

image was reported as the difference between the correct position and the returned 

position, separated into two directions. Note that for these experiments, the motion 

of the part that goes from the top of the image towards the bottom will be referred 

to as the vertical error and the error in the other direction will be referred to as the 

horizontal error. Figure 4.2(a) shows the histogram ofthe absolute error in the vertical 

direction for the testing set; Figure 4.2(b) shows the histogram of the absolute error 

in the horizontal direction (for the rest of the chapter, the vertical error will always 

be on the left). The absolute mean error in the vertical direction was 10.2 ""m (4.02 

% of the distance between training images in this direction) and in the horizontal 

direction it was 21.3 ""m (8.52 % of the distance between training images). Note 

that for these particular experiments, an error of zero is possible as the interpolated 
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Figure 4.1: Images from Extremes of Camera Motion Range 

projection coefficients positions coincide with the positions of the random images 

(due to the XY table being limited to steps of 10 jLm), so the actual absolute mean 

error would be somewhat higher. The absolute mean errors and histograms illustrate 

that eigenspace methods can be used to achieve accuracy levels for precision assembly 

tasks without need of elaborate algorithms or complex camera arrangements. 

Figure 4.3 shows the first four visualized eigenvector for the visual subspace. Note 

that for this visual subspace, since the number of pixels that actually changes is quite 

limited, it is relatively easy to see the relations between the eigenvectors and the 

visual characteristics of the moving metal object. Namely the edges of the object 

with the background are the emphasized features. Considering that the eigenvectors 
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Figure 4.2: Histograms of Absolute Position Error, (a) Vertical, (b) Horizontal 

minimize the reconstruction error this is not surprising for these experiments, since 

most of the variance of the pixels within the training images occurs in these border 

areas and thus would be the focus of the reconstruction, as opposed to the large areas 

where the appearance does not vary despite the position of the metal object. This 

experimental example will be used extensively in this chapter to demonstrate the 

effects of occlusion on accuracy and to test methods for finding position accurately 

despite occlusion. 

4.3 Occlusion Effects on Positional Accuracy 

Occlusions and scene changes to the visual subspace that is used for training can 

have negative effects on the accuracy achieved by eigenspace methods for determining 

position. It should be noted that the effects of an occlusion are somewhat unpre­

dictable in terms of the degree to which accuracy is effected, depending on the visual 

subspace and the occlusion. For a particular occlusion several factors can increase 

the impairment of positional accuracy, however the exact quantitative effects can only 
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Figure 4.3: First Four Eigenvectors Visualized 

be discovered through actual testing of images from random images throughout the 

subspace. 

The factors affecting the severity of the negative effect of an occlusion include 

the size of the occlusion (in proportion to the size of the image), the magnitude 

of the difference between the appearance of the occlusion and that of the original 

background as well as in some cases the location of the occlusion within the image. 

When considering occlusions and the effect on accuracy of the aforementioned 

factors, it is important to remember the nature of the basic eigenspace method. The 

basic eigenspace method is global in the sense that the eigenvectors ei used to form 

the projection coefficients y respond to the entire image x. Thus an occlusion located 
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in any local section a of the image can potentially affect the global projection coeffi­

cients formed from the inner product of each eigenvector and the image. Note that 

considered in this way, the basic eigenspace method stores global image information 

in the low dimensional projection coefficients. 

Consider an unoccluded image x and an occluded image Xoccluded from the same 

camera or object position. Each will have projection coefficients y and Yoccluded as­

sociated with them via the eigenvectors of the visual subspace according to equation 

2.17. Due to the occlusion, Y and Yoccluded will inevitably be different and this differ­

ence can manifest itself in positional errors in the nearest neighbor search for position 

(equation 2.19). 

Since how the projection coefficients are altered from the original unoccluded case 

is somewhat random, it is quite likely Yoccluded will be closest to the stored projection 

coefficients corresponding to an incorrect position, rather than the correct one. Larger 

occlusions, as we will show experimentally, will in general lead to larger differences 

between the occluded and unoccluded projection coefficients and thus potentially 

larger errors. 

An important issue to consider for how occlusion effects eigenspace positioning 

methods, is not so much how the mean positional error is effected, but the potential 

for much larger errors. With the changes that can occur to the projection coefficients 

for an occluded image, there is always the possibility that during the nearest neighbor 

search, projection coefficients corresponding to a position far from the actual position 

could be the closest match leading to a catastrophically large error. As shall be seen 

from our experiments, occlusions usually do not alter the absolute mean error to an 

extreme extent, however there is a probability of much larger worst case errors that 

is not present with the unoccluded case. Obviously for applications such as using 

the positioning methods for manufacturing applications, such large errors cannot be 

tolerated. Thus any solution to the occlusion problem should not only reduce the 
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mean error to similar levels of the unoccluded case, but also reduce the possibility of 

these large errors. 

The following sections provide experimental evidence to illustrate the general ef­

fects on accuracy for several different occlusion factors, namely size, degree of differ­

ence from the background and the location of the occlusion within an image as well 

as the fact that the exact effects on positional accuracy are unpredictable. 

4.3.1 Occlusion Size 

For an occluded image, as the proportion the occlusion occupies of the image 

increases, the projection coefficients will diverge increasingly with those of the un­

occluded images. Thus as more and more pixels differ from the original background 

pixels, the difference between the unoccluded projection coefficients and the occluded 

projection coefficients increases. To illustrate this factor experimentally, we embed 

artificial occlusions into the visual subspace corresponding to the moving metallic 

part described earlier in the chapter. For simplicity and for ease of comparison, the 

choice for the artificial occlusion was zero intensity squares located at the center of 

the images (as illustrated in Figure 4.4). 

For testing purposes, the original random test set was embedded with different 

size squares, to produce image sets ranging from squares of size 10 pixels per side to 

squares of 100 pixels per side. Figure 4.5 shows the absolute mean error values for 

each direction of object movement for the various sizes of the squares. 

Interestingly, the error does indeed increase with increasing occlusion size in both 

directions, but not with any clear relationships. Indeed, initially in the vertical direc­

tion there is almost no difference between the unoccluded absolute mean error 10.2 

11m, and the occluded error. This illustrates the concept, that although generally er­

ror increases with increasing occlusion size it can remain dependent on other factors 
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Figure 4.4: Example of Artificial Occlusion (30 Pixel Square) 

such as the location of the occlusion and the appearance of the occlusion to deter­

mine to which extent the mean error is affected. For this particular experiment, the 

differentiation between the absolute mean error in each direction of object movement 

can be attributed to the fact that at the central location of the squares, the smaller 

squares fall only on a vertical edge of the part, thus are much more likely to alter 

error in one direction (horizontally) as opposed to the other. An important idea also 

is that for small occlusions proportionately « 1 %), there is almost no difference in 

terms of position error. Thus proportionally small occlusions can be disregarded as 

an impediment to position accuracy. 

As an example of the possible effects of occlusion on the distribution of the po­

sitional error, Figure 4.6 shows the histogram of the absolute error for the 50 pixel 

square occlusion test set. Note the increased worst case error in the vertical direction 

compared to the unoccluded case in Figure 4.2. 
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Figure 4.5: Occlusion Size Versus Absolute Mean Error 

4.3.2 Appearance of Occlusion versus the Background 

Another major factor in how occlusion affects positional accuracy is the difference 

between the values of the occluded pixels and their original unoccluded values. As the 

difference increases, the difference between the unoccluded and occluded projection 

coefficients should increase as well, leading to a decrease in accuracy. 

To illustrate this concept experimentally, two more test sets were created byem­

bedding squares with maximal intensity (pixel value of 255) as well as embedding 

squares of half intensity (pixel value 127) in the center of the images. For comparison 

purposes, the size of the squares for the two sets was chosen as 50 pixels per side. 

Figure 4.7 shows the error histogram for the maximal intensity occlusion, while 

Figure 4.8 shows the absolute error histogram for the half intensity occlusion. The 
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Figure 4.6: Histogram of Absolute Positional Error, Fifty Pixel Square Occlusion, (a) 
Vertical, (b) Horizontal 

maximal intensity occlusion positional errors are higher, both for the mean as well as 

the worst case errors. 

In terms of pixel value, the half intensity occlusion pixels are closer in value to 

the original pixel values than those of the maximal intensity occlusion, resulting in 

the lower errors. The half intensity pixel values are also closer in value to the original 

pixels than the zero intensity occlusions used for the results in Figure 4.6. Comparing 

Figure 4.6 and Figure 4.8, the half-intensity error is less than the full intensity error. 

Thus when considering the effect for a given occlusion, besides size, the possibilities 

of the effect of differing appearances must also be considered. Conceivably for a given 

size of occlusion, with the right appearance an occlusion could have a large effect. 
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Figure 4.7: Histogram of Absolute Position Error, Maximal Intensity Occlusion (50 
Pixels), (a) Vertical, (b) Horizontal 

4.3.3 Location of Occlusion 

The location of the occlusion can affect the change on the projection coefficients, 

as certain regions of the image can be more sensitive to change due to the charac­

teristics of the visual subspace. For instance, for the visual subspace derived from 

a mobile robot moving throughout a large room with many different features, it is 

likely the eigenvectors will be responsive throughout the entire image. However for 

servoing in a small range relative to a metallic part with few features, the eigenvectors 

will only respond to those areas where the features move as in the example for this 

chapter. Thus if an occlusion occurs in a featureless area, the projection coefficients 

will be minimally effected, whereas if it occurs in the featured area, the projection 

coefficients could be radically changed compared to the same occlusion in the mobile 

robot subspace. 

As an example of such phenomenon, rather than the center, an alternative location 

was chosen to embed an artificial occlusion of zero intensity squares with 50 pixels per 
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Figure 4.8: Histogram of Absolute Position Error, Half Intensity Occlusion (50 Pix­
els), (a) Vertical, (b) Horizontal 

square size as illustrated in Figure 4.9. Note that this location has both horizontal 

and vertical edges of the moving metallic object located within the occlusion, rather 

than just a vertical edge for the original occlusion location. 

Figure 4.10 shows the histogram of the absolute error for the 50 pixel square in 

the new location. Interestingly, the error in the horizontal direction (Figure 4.1O{b)) 

is significantly increased compared to the results for the original centered location of 

the occlusion. 

In general, for applications such as providing navigation data to a mobile robot 

where the visual subspace is such that the visual features are spread relatively evenly 

throughout the image, the location of the occlusion is not a major factor. Conversely, 

for visual servoing tasks over a small range, it is much more likely that the position 

of the occlusion is a factor. 



CHAPTER 4. OCCLUSION ROBUST EIGENSPACE POSITIONING 85 

Figure 4.9: Image with New Location of Occlusion 

4.3.4 Local versus Global Information 

In general, basic eigenspace techniques for positioning are not robust to occlusions 

due to the fact the stored projection coefficients represent global information with 

regards to the images, in the sense that no local information corresponding to specific 

portions of the image is preserved. This is a useful abstraction, in the sense that no 

work needs to be done to look for specific local features to perform pose analysis. 

However, occlusions that will be encountered in applications are generally local in 

nature, in the sense that they will consist of connected regions spaced throughout the 

image. For a metallic part being servoed, a robotic gripper grasping a section of the 

part could be considered a locally confined occlusion. For a mobile robot, a person 

walking in front of the camera is another local occlusion. In both these examples, 

only a portion of the input image is changed from the original unoccluded images 

acquired during the training phase for the eigenspaces, yet due to the global nature 

of the basic eigenspace method, the projection coefficients will be changed, with the 
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Figure 4.10: Histogram of Absolute Position Error, New Location of Occlusion, (a) 
Vertical, (b) Horizontal 

possibility of positional error. 

As a way to make eigenspace positioning systems more robust to occlusions, we 

propose methods of storing additional local information, such that a local occlusion 

confined to one area of an image will not negatively affect the performance of position 

estimation. We propose dividing the input image into separate subsections and storing 

projection coefficient information for each local section, rather than only storing global 

projection coefficients. Figure 4.11 shows an example subdivision of an input image 

for the metallic object visual subspace. These methods depend on the visual subspace 

having enough visual features, such that the local information is redundant enough 

in terms of features to perform position determination accurately. 

Potentially the shape of the image subsections could be considered arbitrary. How­

ever since occlusions are generally unpredictable in terms of size and morphology, the 

shape of the subsections should be chosen such that they are reasonably compact 
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Figure 4.11: Subdivision of Images 

about the centroid. Since the aim is to have as many local sections as possible with­

out occlusions, having long strips as the section shape could result in an elongated 

occlusion in the opposite direction of the subsections occupying a large number of 

subsections. For our work, the shapes of the subsections were chosen to be rectangles 

with the same aspect ratio as the camera. 

By storing local information for each section, occlusions will only affect the pro­

jection coefficient information for those sections in which they occur. The remaining 

sections with their unaltered local information can then be used to determine the 

position of the camera accurately. 

Determining which sections are occluded is not a trivial problem and is discussed 
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in depth in the following chapter. A basic method to detect occlusions in a section is to 

compare the eigenspace reconstruction of the section with that of the original image. 

Images with sufficiently large occlusions will in general have a larger reconstruction 

error, allowing a threshold to be developed for separating occluded and unoccluded 

image sections. 

Assuming an adequate method to differentiate between occluded and unoccluded 

sections, we propose two methods that can be used to utilize local information to 

perform accurate position determination in the presence of occlusions. These are: 

• Separate Eigenspaces 

• Subsectioning and Recombination 

Separate eigenspaces is the simplest method of utilizing local information as a 

redundant technique for finding position, but suffers with problems with ambiguity. 

Subsectioning and recombination is more complex but is more redundant to ambigu­

ity. 

4.3.5 Separate Eigenspaces 

The separate eigenspaces method is the simplest conceptually for handling occlu­

sions using local information, but has some significant drawbacks. In essence, the 

images are divided into sections to preserve local information. Each section is sub­

sequently considered independent of the others. Thus each image section is treated 

as if it was an individual image. Separate eigenspace analysis is then performed for 

each image section j with a separate set of eigenvectors for each: 

Ei = [e{ ... e{] (4.34) 
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Similarly for each section j, a separate set of projection coefficients is stored: 

( 4.35) 

This is the local information for each section. We can then proceed to perform a 

separate nearest neighbor search for each section to find the stored projection coeffi­

cients closest to those of the section j of the new image Y new: 

Nearest Neighbor nnj = argmin IIY~ew - Yill, Vi = 1, ... , m (4.36) 

This allows the determination of an independent camera or object position for 

each section. Occluded sections will have suspect information that should obviously 

be avoided. The occlusion detection techniques described in the next chapter can be 

applied to evaluate whether an individual section is occluded or not. The remaining 

unoccluded sections can then be used to determine the overall position by averaging 

their respective positions. 

This technique depends on the assumption that in most visual subspaces there is 

significant redundancy across the entire image in terms of salient features such that 

the position determined by each individual section is similar in accuracy to that of the 

global image. Whether that is true or not depends on the visual characteristics of the 

subspace and the number of image sections. Experimentally, it has been found that 

often times the accuracy for a subsection can be poor compared to the performance 

for an eigenspace based upon the entire image. 

The main factor involved that decreases performance for individual sections is 

image ambiguity. In general, image ambiguity can occur even when using the basic 

eigenspace method for determining the position of a camera or object with the entire 
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image. Essentially image ambiguity occurs when the appearance of images over a 

range of camera or object motion is similar (beyond the normal correlation similar­

ity that occurs for a visual subspace as the camera or object is moved). For such 

situations, the projection coefficients over this range of camera movement will also 

be similar, ensuring that for the nearest neighbor matching process significant error 

can be introduced since an image taken from within this range could be matched 

with virtually any position within the similar range. Note that for eigenspaces that 

encompass multidimensional movement, ambiguity could be present in terms of de­

termining position for one direction, but not for the others. Ambiguity depends on 

a lack of salient features that change in appearance as the position of the camera is 

moved. For global images, a mobile robot equipped with a camera moving down a 

long hallway with smooth featureless walls would be an example of a subspace that 

had significant ambiguity. In such cases there is little that can be done with that 

information, since the subspace is inherently ambiguous. 

For separate eigenspaces, ambiguity is an even larger problem. Even when the 

entire image contains visual features such that there is no ambiguity across the entire 

images, individual image sections can still be ambiguous. Thus for a mobile robot 

operating within a laboratory, a view of a wall could be unambiguous as the robot 

moves, however one image subsection could contain a section of blank wall over the 

robot movement. Similarly for a camera servoing accurately relative to a metallic 

part, some image sections could be ambiguous where there are no representative 

features. 

Increasing the number of image sections enhances the possibility that ambiguous 

sections will occur, since it is more likely that for smaller image sections, that a fea­

tureless area will occur. Thus for the separate eigenspaces technique, it is important 

that the number of sections be such that ambiguity is not likely to occur for a given 

subspace. In our experiments, smaller sections can result in extremely large errors. 
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It should also be noted that ambiguity is such a problem because it is difficult to 

know when a section will present ambiguous information without rigorous testing of 

the range of motion of the camera. 

Figure 4.12: Occluded Image (a) Four Divisions, (b) Sixteen Divisions 

An argument for using a large number of sections is to maximize the amount of 

unoccluded information from an image to be included in the position determination 

phase. Using more sections will ensure a given occlusion will not remove a large 

portion of the image from consideration. Figure 4.12 shows an image from the metallic 

object visual subspace with an artificial occlusion located at the center overlaid with 
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two different section divisions. Using only four sections unfortunately means that all 

four sections are occluded, ensuring 100 % of the image will not be included, thus 

no accurate positioning can be performed. Conversely, using sixteen sections ensures 

that 75 % of the image sections can be used for occlusion measurement. Thus an 

argument for using more image subsections is that using too few can mean that a 

well placed occlusion could disallow too many sections from being included in the 

position measurement phase. 

4.3.6 Experimental Results 

To illustrate the use of the separate eigenspaces technique and its limitations with 

regard to image ambiguity, several experiments were performed with the metallic 

object visual subspace. The standard setup was used as described in earlier in the 

chapter, with regard to the number of training images and projection coefficients, 

used for each section. 

Figure 4.13: Corner Images of Camera Motion, Upper Left Section 
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For the first experiment, the image was divided into four different sections. For 

the visual subspace corresponding to the upper left quarter, Figure 4.13 shows the 

four images corresponding to the corner positions of the moving part. Note that for 

this particular section that it is clear that there is ambiguity with regard to the part 

moving vertically in the image, as the changes in the images are minor. Conversely, 

moving the object horizontally is clearly unambiguous as the dark background is 

reduced in size. 

This ambiguity in the one direction is borne out by the results for determining 

position using the eigenspace for just this section. The same 100 random image set 

used to evaluate positional accuracy used throughout this chapter was used to form 

a set of images corresponding to the upper left half of the original images. The 

absolute mean error in the vertical direction for the moving part was 275.9 /-tm; in 

the horizontal direction it was only 21.9 p,m. Thus the ambiguousness of the visual 

subspace in the one direction manifests itself into a larger absolute mean error in 

the vertical direction compared to the entire image (10.2 p,m). In the other direction 

where there was no such ambiguity, the absolute mean error was similar to the entire 

image result (21.3 p,m). Thus for the entire image where there was no ambiguity, for 

this section by itself with its own eigenspace there was significant ambiguity. 

Figure 4.14 shows the images corresponding to the corner positions of the metallic 

object for the upper right quarter section. From these images it is clear that unlike 

the previous section, there are visual features present that change sufficiently with 

the object moving that one would expect to have good accuracy in both directions, 

similar to that for the entire image. 

For this section, the accuracy achievable for the random set of images is much 

improved over the previous section. The absolute mean error for the vertical move­

ment of the part was 15.7 p,m. In the other direction it was 8.7 p,m. This compares 

favorably to the mean results achieved with the entire images. 
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Figure 4.14: Corner Images of Camera Motion, Upper Right Section 

Figure 4.15 shows the images corresponding to the corner positions of the metallic 

object for the lower left quarter section. From these corner images it can be seen that 

this section is unambiguous in both directions, as the portion of the metallic part 

in the images is a significant visual feature and varies significantly with movement 

in both directions. For the sections of the random image set corresponding to this 

section, the absolute mean error in the vertical direction for the part was found to be 

23.2 Mm. In the other direction it was found to be 27.6 Mm. 

Figure 4.16 shows the corner images corresponding to the lower right section. 

Although the one edge of the object disappears from view in two of the corner images, 

the other edge of the moving object is continuously in view for the entire movement 

range of the object and is an unambiguous feature in both directions. In the vertical 

direction of the object movement, the absolute mean error for the random set was 

19.3 Mm. In the side to side movement, the mean error was 11.8 Mm. Thus for this 
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Figure 4.15: Corner Images of Camera Motion, Lower Left Section 

section the absolute mean errors were actually better than that of the entire image. 

Thus for this particular visual subspace, three of the sections were such that there 

was no ambiguity to negatively impact on the positional accuracy achievable and thus 

theoretically could be used in the separate eigenspaces technique for finding position 

despite occlusions. However the fact that one of the four sections performs poorly for 

determining accuracy in one direction due to considerable ambiguity over the visual 

subspace means that for the separate eigenspaces method, any use of that section will 

result in impaired accuracy. Thus the ambiguity present locally that is not present 

globally will impact on the separate eigenspaces performance. 

The use of only four sections may not be very effective for occlusions because an 

occlusion located at the center will occlude all four sections. Increasing the number 

of sections when using separate eigenspaces also increases the chance of ambiguity 

induced error. 
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Figure 4.16: Corner Images of Camera Motion, Lower Right Section 

To illustrate this phenomenon, the previous experiments with the metallic object 

visual subspace was performed, except using sixteen sections instead of four. Again 

each section was treated separately with its own eigenspace calculated and separate 

projection coefficients calculated and separate nearest neighbor searches. 

Table 4.1 shows the absolute mean errors in both directions for all sixteen individ­

ual sections. Note they are numbered 1 to 16, with the top left section corresponding 

to 1 and then numbered left to right, top to bottom. 

As can be seen from the various results for each of the sections, there is significant 

variability between the results in both directions of movement. There are a few 

sections where the absolute mean positional errors are similar to that of the entire 

image, namely sections 4 and 7. For the remaining sections however, in either one or 

both of the measured directions there are elevated absolute mean errors. Compared 

to the results for the separate eigenspaces with only four sections, the results have 
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Section Absolute Mean Error Absolute Mean Error 
Vertically Horizontally 

J-lm J-lm 
1 235.7 22.0 
2 819.5 81.5 
3 34.9 36.2 
4 90.6 56.7 
5 461.1 20.2 
6 448.7 160.5 
7 8.1 30.7 
8 8.5 51.6 
9 105.0 30.8 
10 576.3 28.0 
11 776.3 12.6 
12 768.7 33.0 
13 26.6 86.6 
14 14.3 404.2 
15 82.9 107.6 
16 18.2 394.9 

Table 4.1: Absolute Mean Errors by Section 

become significantly worse for the smaller sections. 

Thus for separate eigenspaces, increasing the number of sections to achieve a 

reasonable number for handling occlusions at different locations within the image can 

lead to instances of ambiguity and poor results. 

As a technique for providing robustness to occlusion, separate eigenspaces is ham­

pered by the ambiguity issue. 

4.4 Subsectioning and Recombination 

The subsectioning and recombination technique is a more advanced use of local 

information designed specifically to address the problems with ambiguity that can 

occur with separate eigenspaces. The goal is to combine the benefits of storing local 
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information for robustly handling occlusion together with the original global projec­

tion coefficients which are less likely to be affected by image ambiguity. 

Thus the task is to combine the local information of each image section into a tech­

nique that still retains global information and its inherent resistance to ambiguity. 

The subsectioning and recombination method is similar to the separate eigenspaces 

method in that local information is stored for each image section. Instead of calcu­

lating separate eigenvectors for each image section, however the subsectioning and 

recombination uses the eigenvectors calculated for the entire image using the basic 

eigenspace method to produce the local information. Thus the eigenvectors for each 

image section consist of the portions of the global eigenvectors corresponding to that 

section of the image (assuming there are p sections in total): 

(4.37) 

(4.38) 

Using these eigenvectors, we calculate a set of local projection coefficients for each 

image section j of each image i: 

(4.39) 

Instead of searching each of these sets of projection coefficients separately as in 

separate eigenspaces, the subsectioning and recombination method forms a modified 

global set of projection coefficients from the local sections to perform the nearest 

neighbor search. Similar to the separate eigenspaces method, for a new image, each 

image section is evaluated for occlusions using one of the occlusion detection methods 
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described in the next chapter. Those image sections that are deemed to be unoccluded 

have their set of projection coefficients included in the global set. The global set 

of projection coefficients is formed by adding together the unoccluded local sets of 

projection coefficients for each interpolated camera position. Thus if an image section 

1 is deemed occluded, the modified global projection coefficients for an interpolated 

camera position are formed by: 

( 4.40) 

where p is the number of image sections. Note that if no sections are occluded, 

the modified global projection coefficients are equivalent to those of the basic global 

eigenspace method y. 

By this technique, occluded sections make no contribution to the nearest neighbor 

position determination phase. However because the modified set of global projection 

coefficients still consists of contributions from all areas of the image, we retain the 

global information of the basic eigenspace method and thus we avoid the ambiguity 

errors that can result from the separate eigenspaces method when searching a small 

subsection. 

The basic idea behind the sub sectioning and recombination method is that there 

is significant redundancy between the entire images and the global projection coeffi­

cients corresponding to them. Consider that the task of determining position from 

eigenspaces is significantly different from the task of reconstructing the image with 

minimal error. For sub sectioning and recombination, the conjecture is that for many 

eigenspace positioning problems, removing several sections will still produce a set 

of combined local projection coefficients that allow position to be determined at a 

similar accuracy as that of the entire global projection coefficients. 

As an example of this property, consider again the first four visualized eigenvectors 
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Figure 4.17: First Four Eigenvectors Visualized 

for the metallic object example as shown in Figure 4.17. Since these eigenvectors 

are relatively simple structurally, the relationships between the eigenvectors and the 

projection coefficients can be relatively easily deduced. 

To further illustrate this point, compare the plots of individual projection coeffi­

cient components Yi versus position for the global projection coefficients versus the 

subsectioning and recombination projections yrrodified consisting of the left half of 

the images. Figure 4.18 shows the plots for the first four eigenvectors for the global 

projections, while Figure 4.19 shows the plots for the left half. In comparison, the 

projection coefficients of the entire images individually have a larger range in the 

value of the projection coefficients produced, however the overall shapes are quite 

similar. More importantly, however, it can be seen that for the plots consisting of 
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Figure 4.18: Projection Coefficient Value versus Position (Global),(a) First Eigenvec­
tor, (b) Second Eigenvector, (c) Third Eigenvector, (d) Fourth Eigenvector 

only the left half of the images, that position can be unambiguously derived. As the 

position is altered anywhere within the range of motion, the projection coefficient 

values are unique. 

4.4.1 Number of Sections 

An important consideration for the implementation of subsectioning and recom­

bination for an application is the number of sections to use. As opposed to separate 

eigenspaces, smaller sections have no negative ambiguity effects. A benefit for having 

a large number of sections is the previously mentioned fact that for a given occlusion, 
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Figure 4.19: Projection Coefficient Value versus Position (Combined Local Projection 
Coefficient of Left Half of Images), (a) First Eigenvector, (b) Second Eigenvector, (c) 
Third Eigenvector, (d) Fourth Eigenvector 

a smaller proportion of the image will be removed as occluded. 

A drawback for using a large number of sections is the increased search time asso­

ciated with forming the modified global projection coefficient set dynamically. For the 

basic eigenspace method with m stored projection coefficients to search and k eigen­

vectors, the nearest neighbor search comprises mk subtractions corresponding to the 

difference between the input projection coefficients Y new and each of the stored pro­

jection coefficients stored in Y, plus m comparisons between the Euclidean distance 

of the resultant vector and the smallest Euclidean distance thus far encountered. 
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In comparison, for p sections, the subsectioning and recombination technique for 

the nearest neighbor stage additionally requires for each of the stored projection 

coefficients searched, (p-l)k additions to determine the total stored projection co­

efficient term. Since the extra (p-l)k additions must be performed for each of the 

m projection coefficients, (p-l)mk + mk + m addition/subtraction operations will 

be required in total for subsectioning and recombination compared to just mk + m 

for the basic eigenspace technique. Thus the number of addition/subtraction opera­

tions will increase approximately linearly with increasing p. The subsectioning and 

recombination method precludes the use of the binary search algorithm of Nene and 

Nayar [38] described in Chapter Two to reduce the computation time of the nearest 

neighbor procedure for eigenspace camera positioning. This algorithm requires pre­

processing of the projections coefficients set, which is not available for subsectioning 

and recombination since it is formed dynamically. 

However the coarse search approach described in Chapter 2 and demonstrated in 

Chapter 3 could be used with subsectioning and recombination whereby a nearest 

neighbor search of the training image projection coefficients is performed followed by 

a constrained search of the interpolated projection coefficients based on the matching 

training image position to reduce the computation time required. No preprocessing is 

required of this method save maintaining a separate set corresponding to the training 

image projection coefficients for each section. 

In terms of practicality and the experiments performed in this chapter, sixteen 

sections was chosen as a balance between capturing enough unoccluded information 

and computational speed. Since eigenspace methods are inherently fast computa­

tionally, multiplying this search time by a factor of approximately sixteen would not 

adversely affect the use of the method in practical terms. 
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4.4.2 Ambiguity and Subsectioning and Recombination 

Ambiguity issues certainly need to be considered for subsectioning and recombina­

tion. If ambiguity is a problem for the basic eigenspace technique for the entire image 

and thus the visual subspace is inherently ambiguous, subsectioning and recombina­

tion will not solve the problem and not much can be done with that data to achieve 

accurate positioning. Instead different camera views where the scene contents are not 

ambiguous may be required. More importantly, subsectioning and recombination can 

suffer from ambiguity issues relating to occluded sections that are removed. 

Figure 4.20: Image Sections with Varying Ambiguity, (a) First Section, (b) Eighth 
Section, (c) Fourteenth Section 

Since the eigenvectors are optimized with respect to the entire image using PCA, 

areas of the image with larger amounts of variance contribute more to the formation 

of the PCA eigenvectors. Thus, for an image that overall is not ambiguous, removing 

a large number of sections due to occlusion could introduce ambiguity if the remain­

ing image sections lack salient features. As an example consider the three images in 

Figure 4.20 which consist of three different sections from the metallic object exam­

ple. Clearly in Figure 4.20(a), the edge of the object present allows direction to be 

determined horizontally, but images will be very similar for the object's movement 

vertically. Conversely in Figure 4.20(b) the object has perpendicular edges present 

that will prevent ambiguity in both directions. Figure 4.20( c) shows an edge that 

is perpendicular to that of Figure 4.20(a), allowing accurate position determination 
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in the other direction. Thus for subsectioning and recombination, combining the 

sections from Figure 4.20(a) and 4.20(c) will remove ambiguity in both directions. 

4.5 Subsectioning and Recombination Experiments 

To illustrate experimentally the usefulness of subsectioning and recombination for 

dealing with occlusions, two test sets were acquired of the metallic objects example 

with different occlusions added. Note that these test set positions corresponded to 

the original unoccluded random test set. 

For both experiments, the occlusion detection methods from the next chapter were 

used to decide for each image which sections to be included. For these experiments, 

the occlusions were such that the performance of the occlusion detection algorithm 

was perfect in terms of detecting occluded sections. For this chapter we are more 

interested with the possible performance than with the optimal choice of occluded 

sections. 

For the first test, an occlusion was added that consisted of a metal block added 

beneath the metallic parts. This is shown in Figure 4.21, which shows one of the 

example test images. Note that in the images, the occlusion maintains its position, 

while the test object moves throughout the set. While the occlusion does not take 

up an overly large proportion of the entire image, some of the areas indicated by 

the visualized eigenvectors of the global eigenspace as being highly important for 

determining position (namely the border of the moving part with the background) 

are occluded which should lead to impairment of the positional accuracy possible with 

the global projections. 

Figure 4.22(a) and 4.22(b) show the histograms of the absolute position error for 

the occluded test set in both directions, for the case of using the basic eigenspace 

method with the global projections. In the vertical direction it was 99.4 /-lm and 61.8 
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Figure 4.21: Background Occlusion Image 

J1,m in the horizontal direction (39.8 % of the distance between training images in the 

vertical direction; 24.7 % of the distance between training images in the horizontal 

direction). It is important to note that not only are the absolute mean errors higher 

in both directions, compared to the unoccluded case, but that the variance of the 

error is larger too. Consequently, the worst case errors are higher. This is indicative 

of the unpredictable effects of occlusion when combined with the nearest neighbor 

search. Obviously for robotics and assembly applications the presence of such errors 

could cause difficulty. 

Figure 4.22(c) and 4.22(d) show the histograms of the absolute position error for 

the occluded test set in both directions, this time implementing the subsectioning 
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Figure 4.22: Histogram of Absolute Position Error, Background Occlusion, (a) Verti­
cal without Correction, (b) Horizontal without Correction, (c) Vertical with Subsec­
tioning and Recombination, (d) Horizontal with Subsectioning and Recombination 

and recombination method using the sixteen section division. In the vertical direc­

tion it was 9.5 J-tm and 24.3 J-tm in the horizontal direction (3.80 % of the distance 

between training images in the vertical direction; 9.72 % of the distance between 

training images in the horizontal direction). Note that the absolute mean errors in 

the vertical and horizontal directions, were similar to the unoccluded case using the 

global projection coefficients and a major improvement over the occluded global pro­

jection coefficients results. More importantly, the instances of relatively large errors 

(> 50J-tm) is greatly reduced, both in number as well as the worst case possibility. 
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Thus for robotics and assembly applications, subsectioning and recombination can 

provide improved performance over the basic eigenspace method in the presence of 

occlusion. 

Figure 4.23 shows an example image of the second occlusion experiment. As 

can be seen, the wrench added to the images is a significant occlusion in terms of 

the proportion of the overall image as well as the difference in appearance from the 

original unoccluded images. 

Figure 4.23: Wrench Occlusion Image 

The error results for the wrench occlusion using the basic eigenspace method were 

higher than the first occlusion experiment, with absolute mean positional errors of 

70.9 /-lm in the vertical direction and 150 /-lm in the horizontal direction (28.4 % of 

the distance between training images in the vertical direction and 60.0 % for the 
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horizontal direction) and significantly higher than the unoccluded results (10.2 /-lm 

and 21.3 /-lm respectively). The histograms of the absolute errors in both directions 

are shown in Figure 4.24(a) and Figure 4.24(b). Note the presence of some extremely 

large errors of position, as well as their sizeable number. These large errors occurring 

is typical of such a large occlusion covering of the entire image. 

Figure 4.24(c) and Figure 4.24(d) show the histograms of the absolute error in 

both directions with subsectioning and recombination implemented. The absolute 

mean errors in both directions were 19.7 /-lm and 30.3 /-lm in the vertical and hori­

zontal directions respectively (7.89 % of the distance between training images in the 

vertical direction and 12.2 % for the horizontal direction), which are an improve­

ment over the uncorrected occluded results. Again the largest improvement is in 

the reduction of the worst case errors. Thus subsectioning and recombination can 

result in significant improvements in absolute mean error and the size of the worst 

case errors even with significant occlusions. Even with only half the sections, per­

formance can be close to the unoccluded case, provided that the remaining sections 

contain information that leads to an unambiguous manifold over the visual subspace. 

This contrasts to the methods of robustly estimating the projection coefficients with 

Leonardis and Bischof's method [23] to deal with occlusion that breaks down with 

occlusion occupying 50 % of the image and up. 

4.5.1 Performance with Severe Occlusion 

As shown previously with the real occlusion experiments, sub sectioning and re­

combination can produce accuracy similar to the unoccluded cases even with signifi­

cant proportional occlusion (50 % for the wrench test set). An interesting question is 

the performance for even higher degrees of occlusion, that for which other techniques 

of occlusion correction (such as Leonardis' [23] alternate projection estimation tech­

nique) begin to break down. From our discussion of the theory behind the method, it 
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Figure 4.24: Histogram of Absolute Position Error, Wrench Occlusion, (a) Vertical 
without Correction, (b) Horizontal without Correction, (c) Vertical with Subsection­
ing and Recombination, (d) Horizontal with Subsectioning and Recombination 

would appear that the method can still be successful with high degrees of occlusion 

if the manifold over the movement range produced by the combined local projection 

coefficients is not ambiguous. Although obviously the possibility of ambiguity is de­

pendent on the particular visual subspace, it is important to remember that with 

the subsectioning and recombination method, disparate (in terms of spatial location) 

unoccluded sections increase the possibility of there being no ambiguity as opposed 

to separate eigenspaces. 

To investigate the success of subsectioning and recombination with a high degree 
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of occlusion experimentally, performance with only four sections was chosen as an 

indicator. Rather than using images with an occlusion in the correct number of 

sections, for these experiments, the unoccluded sections were chosen randomly instead 

of using an occlusion detection algorithm. This was done because the aim was not 

the evaluation of the occlusion detection per se (which is covered extensively in the 

next chapter), but merely the performance of sub sectioning and recombination when 

there is only a limited number of sections. 

The experiment was performed four times, each with a different random selection 

of the section to be included as unoccluded. Note that the original unoccluded random 

test set of 100 images was used to provide the unoccluded sections for evaluation. 

For the first experiment, sections 4, 7, 10 and 13 were chosen. Figure 4.25 shows 

the histograms of the absolute errors for the subsectioning and recombination with 

these sections. The absolute mean error in the vertical direction was 25.8 J-Lm; in the 

other direction it was similar at 25.2 J-Lm. This is quite close to the absolute mean 

errors for the entire image with the basic eigenspace method, although for horizontal 

direction the histogram shows instances of higher errors. Thus for this choice of 

sections, the performance was satisfactory considering the few sections used. 

For the second experiment, sections 1, 4, 7 and 10 were chosen. Figure 4.26 

shows the histograms of the absolute errors for the sub sectioning and recombination 

with these sections. The absolute mean error in the vertical direction was 88.5 J-Lm; 

in the other direction it was 20.8 J-Lm. Compared to the global unoccluded image 

performance, in the vertical direction the absolute mean error was higher (88.5 J-Lm 

versus 10.2 J-Lm). 

For the third experiment, sections 6, 7, 9 and 10 were chosen randomly. Figure 4.27 

shows the histograms of the absolute errors for the subsectioning and recombination 

with these sections. The absolute mean error for the random set of images in the 

vertical direction was 20.4 J-Lm. In the horizontal direction it was only 16.7 J-Lm. This 
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Figure 4.25: Histogram of Absolute Position Error, First Severe Occlusion (a) Verti­
cal, (b) Horizontal 

compares favorably to the global unoccluded performance, although for the horizontal 

direction there were instances of higher worst case error. 

For the fourth of the trials with four random sections, sections 2, 5, 8 and 16 were 

chosen. Figure 4.28 shows the histograms of the absolute errors for the subsectioning 

and recombination with these sections. The absolute mean error in the vertical was 

12.4 /-tm and 39.4 /-tm in the horizontal direction of the object's movement. Thus 

from the absolute mean error and the histogram, the vertical error was less than that 

of the global unoccluded results, but for the horizontal direction, the absolute mean 

was larger. 

From these limited examples, it would appear that subsectioning and recombina­

tion can still give reasonable performance with a small number of sections located 

in different parts of the image. Compared to the results of the separate eigenspace 

method with sixteen sections, several sections spaced throughout the image can re­

duce the ambiguity error that is associated with separate eigenspaces. It should be 
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Figure 4.26: Histogram of Absolute Position Error, Second Severe Occlusion (a) 
Vertical, (b) Horizontal 

noted however that with only a few sections (depending on the visual subspace, four 

in this example) that ambiguous situations are still certainly possible and thus poor 

results could occur with the right combinations of occlusion locations. 

It should also be noted that in terms of the number of sections occluded (12), 

that this constitutes proportionately a high degree of occlusion for the entire image. 

Twelve out of sixteen sections considered occluded would for the basic eigenspace 

technique result in significant error, especially considering that for the earlier section 

on the effects of occlusion, the errors associated with occlusions occupying 10 % of the 

image. Thus compared to the results using the basic eigenspace positioning technique 

with the entire image with large occlusions, the subsectioning and recombination 

technique can provide improved results. 

For the unlikely case of only one section being left unoccluded, then the subsec­

tioning and recombination method is likely to give reduced performance, especially 

compared to that of one section using the separate eigenspaces method since that 
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Figure 4.27: Histogram of Absolute Position Error, Third Severe Occlusion (a) Ver­
tical, (b) Horizontal 

method will be in a sense optimized to the case of only one section remaining. To il­

lustrate the wide range of performance possible with only one section, Table 4.2 shows 

the mean errors for all sixteen sections taken independently using subsectioning and 

recombination. 

As can be seen from these results, the performance of sub sectioning and recombi­

nation with only one section out of sixteen for this visual subspace is highly variable 

across the subsections. For almost all sections the error is significantly higher than 

the global unoccluded results. Thus in instances of severe occlusion, it is quite con­

ceivable that subsectioning and recombination will not produce useable positioning 

information. 



CHAPTER 4. OCCLUSION ROBUST EIGENSPACE POSITIONING 115 

(a) (b) 
50 50 

40 en 40 en 
<Il <Il 
Ol Ol ro ro 
E E = 30 = 30 en en 
<Il <Il 
l- I-
15 15 
Q) 20 Q) 20 

.J:l .J:l 
E E 
::J ::J 
Z z 

10 10 

0 0 
0 10 20 30 40 50 60 70 80 90100110 0 1 0 20 30 40 50 60 70 80 901 0011 0 

Error (Micrometers) Error (Micrometers) 

Figure 4.28: Histogram of Absolute Position Error, Fourth Severe Occlusion (a) Ver­
tical, (b) Horizontal 

4.6 Chapter Summary 

In this chapter, occlusions were shown to introduce significant errors to the basic 

eigenspace technique due to the global nature of the projections. Error increased with 

proportional occlusion size and larger differences in appearance from the original back­

ground. The concept of storing local information that is unaffected by occlusions in 

other regions of the image was introduced first by the separate eigenspaces technique 

as a method to determine position accurately despite occlusion. However, separate 

eigenspaces suffered from ambiguity related error. With smaller sections the chance 

of this error increased, and along with it the possibility of catastrophic errors. 

To circumvent the ambiguity the sub sectioning and recombination technique was 

introduced as a means of combining the local information of separate eigenspaces 

to accommodate occlusions with the resistance to ambiguity of the entire image. 

In experimentation, subsectioning and recombination proved to achieve performance 
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Section Absolute Absolute Section Absolute Absolute 
Mean Error Mean Error Mean Error Mean Error 
Vertically Horizontally Vertically Horizontally 

/-lm /-lm /-lm /-lm 
1 309.8 20.2 9 89.4 52.9 
2 212.9 1162.7 10 552.1 427.2 
3 37.0 38.0 11 1004 21.3 
4 92.7 71.6 12 705.2 43.4 
5 568.1 24.0 13 33.6 100.3 
6 216.1 210.5 14 29.6 797.7 
7 17.6 53.1 15 75.1 123.8 
8 19.6 59.7 16 14.8 429.3 

Table 4.2: Absolute Mean Errors by Section Number 

comparable to unoccluded images despite significant occlusion. Even with level of 

occlusion approaching 75 %, the increase in absolute mean error was only minor 

compared to the basic global eigenspace technique. 



Chapter 5 

Occlusion Detection 

5.1 Occlusion Detection for Subsectioning and Re­

combination 

In the previous chapter, it was assumed that occluded sections could be detected 

for subsectioning and recombination. This is not a trivial task and this chapter 

presents two approaches to detect occluded sections. 

Eigenspace reconstruction error is shown to be an effective measure for differen­

tiating between occluded and unoccluded sections. A threshold based on Gaussian 

statistics was derived to balance between rejecting unoccluded sections as occluded 

and vice versa. The measure is demonstrated successfully on the experiment described 

in the previous chapter. 

Manifold distance was also evaluated as a measure to differentiate between oc­

cluded and unoccluded sections. It also proved to be effective at this task. 

117 
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5.2 Eigenspace Reconstruction Metric for Detect-

ing Occlusions 

The eigenspace reconstruction method for detecting occlusions in visual subspaces 

corresponding to object or camera movement is based on the method of Turk and 

Pentland [45] to determine whether an image contains a face. The task was to con­

struct a visual subspace consisting of all human faces (ideally) and evaluate whether 

an image belonged to this visual subspace. Alternatively, we construct visual sub­

spaces corresponding to a prescribed object or camera movement and determine if an 

image belongs to this visual subspace without any changes (occlusions). 

In the earlier description of the eigenspace method, visual subspaces for a range 

of camera or object movement were defined. It is then assumed that input images 

will always be drawn from within the subspace. As previously described in Chapter 

2, the eigenvectors ei of the visual subspace are such that they provide the best mean 

squared reconstruction error for those images in the subspace. For a image vector x, 

the eigenspace reconstruction x' using k eigenvectors is defined by: 

k 

x' = I,)xT ei)ei 
i=l 

(5.41) 

The reconstruction error er for x is then defined as the Euclidean difference be­

tween the reconstruction x' and the original image vector x: 

er =11 x' - x" (5.42) 

Potentially other distance measures such as the Manhattan distance Ix' - xl could 

be used, but in our experiments the Euclidean measure performed adequately. Again, 
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for image vectors within the range of motion of the camera, thus within the subspace, 

the eigenvectors corresponding to the covariance matrix of the visual subspace mini­

mize the mean squared reconstruction error. 

We can use this preciseness of the eigenvectors for occlusion detection. Sig­

nificantly occluded images will no longer fall within the visual subspace, thus the 

reconstruction errors of occluded images will be significantly higher than those of 

unoccluded images. As an example of the differences in image reconstruction be­

tween occluded and unoccluded images, the metallic object visual subspace froIl) the 

previous chapter was used. One of the random testing images was chosen and re­

constructed with 30 eigenvectors. These eigenvectors were derived from 289 training 

images equally spaced throughout the movement range of the object. Figure 5.1(a) 

shows the original image, 5.1(c) the reconstruction. To illustrate the effects of oc­

clusion on reconstruction, a zero intensity square (80 pixels per side) was embedded 

at the center of the image. Figure 5.1(b) shows this artificially occluded image and 

5.1(d) the reconstruction. Note that after producing x' via the reconstruction pro­

cess, the eigenspace average vector was added to x' before converting the image vector 

back to an image for visualization purposes. 

As can be seen from the reconstruction images, the unoccluded image and its 

reconstruction are visually very similar as would be expected for such a compact visual 

subspace. Conversely, the occluded image and its reconstruction differ significantly, 

not only in the immediate area of the occlusion, but also in the other regions of 

the image. Thus the eigenvector projection coefficients altered by occlusion cause 

additional error in the unoccluded area of the image as well, increasing the overall 

reconstruction error. This additive error is useful from the perspective of thresholding 

the reconstruction error for detecting occlusions. 
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Figure 5.1: Original and Reconstructed Images, (a) Original Unoccluded, (b) Oc­
cluded Unoccluded, (c) Original Reconstructed, (d) Occluded Unoccluded 

5.2.1 Reconstruction Error and Thresholding 

To show the ability of the ~r metric as a method of detecting occlusions via a 

threshold, the 100 image random position set of the metallic object visual subspace 

was used. Figure 5.2(a) shows a histogram of the reconstruction errors of this set 

(with no occlusion) using 30 eigenvectors for reconstruction. For comparison, an 

occluded set was constructed consisting of the unoccluded set embedded with an 

artificial occlusion of a zero intensity square (of eighty pixels per side), at the center 

of the images. Figure 5.2(b) shows the histogram of the ~r values of this set with the 

same parameters as the unoccluded set. 
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Figure 5.2: Histogram of Reconstruction Error, (a) Unoccluded, (b) Occluded 

As can be seen from the histograms, the unoccluded image reconstruction errors 

are significantly less than that of the occluded images. The mean of the unoccluded 

errors is approximately 1/5 of the occluded case and more importantly there is no 

overlap between the two distributions, thus a threshold for detecting occlusions can 

be easily set (note that the area occupied by the occlusions was 8.3 % of the entire 

image). 

An important factor to note however for using occlusion detection as a front 

end for the sub sectioning and recombination technique is the relationship between 

overall occlusion size and the error induced in the position measurement for the basic 

eigenspace method. From the previous chapter, for the entire image, a proportionally 

small occlusion «2%) usually does not have much of an effect on the accuracy and 

would have difficulty being detected as part of the entire image. However dividing 

the image into sixteen separate sections will allow the occlusion to be detected more 

easily since it will occupy proportionately a much larger area of an individual section. 

Thus for subsectioning and recombination, the small section size increases the ability 
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to detect occlusions. 

5.3 Factors Affecting Eigenspace Reconstruction 

Occlusion Detection 

The important controllable factors that affect the occlusion detection technique for 

eigenspace reconstruction, are the number of eigenvectors used for the reconstruction 

as well as the number of images used to estimate those eigenvectors. These two factors 

are important for performing the thresholding operation to determine if an occlusion is 

present, since increasing these factors causes a large spread between the reconstruction 

error of an occluded image and the reconstruction error of an unoccluded image. 

5.3.1 Number of Eigenvectors For Reconstruction 

Increasing the number of eigenvectors used for reconstruction for the unoccluded 

images will result in a lowered ~r as the added eigenvectors will more accurately 

capture the information of the visual subspace. Conversely, for occluded images, 

adding eigenvectors will generally not result in increased accuracy as the eigenvector 

coefficients for reconstruction altered by the occlusion will continue to interfere with 

proper reconstruction. 

The vast majority of the information for reconstruction is contained in the first 

few eigenvectors. As an example, Figure 5.3 shows the plot of the eigenvalues for 

the visual subspace corresponding to the moving metallic object of Figure 4.1 in the 

previous chapter. As can be clearly seen, the vast majority of the information is 

captured in the first few vectors. Thus increasing the number of eigenvectors beyond 

the first few should not result in a significant gain in differentiability between occluded 

and unoccluded images. 
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Figure 5.3: Eigenvalue Magnitudes 

To illustrate the effects of varying the number of eigenvectors for occlusion detec­

tion experimentally, the unoccluded test images for the metallic object as well as the 

occluded test images with the zero intensity squares were subjected to eigenspace re­

construction with differing numbers of eigenvectors (for this experiment, the squares 

were only 50 pixels per side). Example images from these test sets are shown in 

Figure 5.4. 

Figure 5.4: Example Images, (a) Unoccluded, (b) Occluded, 50 Pixel Squares 
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Figure 5.5 and 5.6 shows the histogram of ~r for both sets of test images with 

5, 10, 20 and 30 eigenvectors. For the unoccluded histograms, consisting of 5.5(a), 

5.5(b), 5.5(c) and 5.5(d) for 5, 10,20 and 30 eigenvectors respectively it can be seen 

that as the number of eigenvectors is increased, the overall histogram distribution 

shifts in the direction towards zero reconstruction error. Adding additional vectors 

does continue to result in decreasing overall error. Conversely increasing the number 

of eigenvectors for the occluded images (Figure 5.6(a), 5.6(b), 5.6(c) and 5.6(d) for 5, 

10, 20 and 30 eigenvectors respectively) has a smaller effect in comparison. This can 

be explained by the fact that despite adding additional eigenvectors, the projection 

coefficients produced will still be erroneous due to the occlusion. Note that for all 

the results there was significant separation between the histograms with no overlap 

for any of the samples. 

In terms of differentiating between occluded and unoccluded images, it should 

be noted that while increasing the number of eigenvectors results in decreased re­

construction error, this change is small compared to the overall difference between 

the unoccluded histograms and the occluded histograms. Considering that for this 

example, the occlusion only occupied 3.26 % of the overall image area, using a large 

number of eigenvectors (30) for this instance was not necessary. However, if the aim 

is to be able to detect proportionately smaller occlusions, increasing the number of 

eigenvectors will increase the ability to properly discriminate between occluded and 

unoccluded images. 

One other consideration to take into account for the number of eigenvectors to use 

in reconstruction is the amount of computation time required. From equation 5.41 

increasing k increases the computation time for calculating the reconstructed image 

linearly. For the experiments performed later in this chapter for the use of eigenspace 

reconstruction with subsectioning and recombination, with 30 eigenvectors and images 

of 320 by 240 pixels, approximately 4,760,000 floating point operations were required. 
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Figure 5.5: Histograms of Reconstruction Error, Unoccluded, (a) Five Eigenvectors, 
(b) Ten Eigenvectors, (c) Twenty Eigenvectors, (d) Thirty Eigenvectors 

With fifteen eigenvectors only approximately 2,450,000 floating point operations were 

required. 

5.3.2 Number of Images Used For Training 

The other controllable factor related to the accuracy of eigenspace reconstruction 

is the number of images used to estimate the eigenvectors. Increasing the number 

of training images will result in a more accurate estimation of the actual covari­

ance matrix pertaining to the particular visual subspace and reduces the incidence 

of unsmooth eigenvectors as discussed in Chapter 3. Consequently the eigenvectors 
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Figure 5.6: Histograms of Reconstruction Error, Occluded, (a) Five Eigenvectors, (b) 
Ten Eigenvectors, (c) Twenty Eigenvectors, (d) Thirty Eigenvectors 

corresponding to the use of more training images should result in a decreased recon­

struction error comparatively. 

To illustrate this concept experimentally, the random set of unoccluded images 

and the random set embedded with zero intensity squares (50 pixels per side) were 

used again (example images shown in Figure 5.4). Figure 5.7 and 5.8 shows the 

histograms of the reconstruction error for these sets using eigenvectors derived from 

25, 81 and 289 training images. Twenty eigenvectors were used for each histogram to 

produce the er. 
For the unoccluded results with 25, 81 and 289 training images corresponding to 
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Figure 5.7: Histograms of Reconstruction Error with Varied Number of Training 
Images, Unoccluded, (a) 25 Training Images, (b) 81 Training Images, (c) 289 Training 
Images 

Figure 5.7(a), 5.7(b) and 5.7(c), the histogram of the er improves in the sense that as 

the number of training images is increased, the overall distribution shifts towards zero 

reconstruction error. The mean er values were 2700, 2395 and 2182 for 25,81 and 289 

images respectively, indicating that as the number of training images is increased, the 

improvement from adding more images becomes less significant. 

The occluded histograms corresponding to Figure 5.8(a), 5.8(b) and 5.8(c) for 

25, 81 and 289 training images respectively conversely changed little in their overall 

distribution in terms of reconstruction error. Thus increasing the training images 
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Figure 5.8: Histograms of Reconstruction Error with Varied Number of Training 
Images, Occluded, (a) 25 Training Images, (b) 81 Training Images, (c) 289 Training 
Images 

used results in increased ability to discriminate for occlusion detection. 

In terms of the number of training images to use, unlike with the number of eigen­

vectors, increasing the number of training images results in only additional off-line 

computation. Thus since the number of training images will not effect the online 

computation times for performing occlusion detection, for implementation of subsec­

tioning and recombination the largest set of training images available should be used, 

likely that used to calculate the projection coefficients for determining position. Ob­

taining a large number of training images for a given application could potentially be 
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more of a practical difficulty than a computational one. 

5.3.3 Accurate Thresholding for Occlusion Detection 

The criteria of whether an image or an image section should be marked as occluded 

depends on the application occlusion detection is to be used for. We mainly consider 

occlusion detection for the task of determining whether an image section is occluded 

for subsectioning and recombination 

For subsectioning and recombination, the obvious aim is to include those sections 

that contain no occlusions while excluding those that contain any occlusions. Setting 

an adequate threshold seeks to find an adequate balance between the two. 

The question of including unoccluded sections is especially important for subsec­

tioning and recombination. Falsely rejecting a section as occluded when it is not 

will often make little difference for subsectioning and recombination in the situation 

where the vast majority of the sections are unoccluded. Conversely, for the situation 

where the image is highly occluded with only a small number of unoccluded sections, 

not including an unoccluded section could potentially have a pronounced negative 

effect. As seen from the results of the previous chapter with subsectioning and re­

combination, error can reach catastrophic levels with only a few sections in the case 

of image ambiguity across the visual subspace. Since every extra section potentially 

could remove ambiguity, including every unoccluded section is of paramount impor­

tance. Thus the threshold should be set to ensure that in almost every circumstance 

unoccluded sections are included. 

The question of when to reject a section as being occluded for subsectioning and 

recombination should be recast as whether to reject a section because the occlusion 

is large enough and/or is different in appearance enough to have a non-negligible 

effect on positional accuracy. Occlusions of small sizes proportionately «2%) have 
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generally a negligible effect overall on positional accuracy. Thus the balance of de­

tecting occlusions should be set to include all unoccluded sections if occluded sections 

accepted will have almost no effect on accuracy. 

To illustrate the ability of eigenspace reconstruction to detect small occlusions, 

the metallic object example was again used. As previously, the unoccluded random 

set was embedded with zero intensity squares in the center of the images as artificial 

occlusions. The size of the occlusions was chosen specifically to be quite small in 

comparison to the reconstruction error of the unoccluded set to illustrate the limits 

for detecting occlusions unquestionably. Figure 5.9 shows the histogram of the ~r for 

the case of no occlusion, as well as squares of 10 pixels per side, 20 pixels per side 

and 30 pixels per side. The 30 eigenvectors used for the reconstruction were derived 

from 289 training images. 

From these results, it can be seen that thresholding for occlusion detection will 

be difficult to properly differentiate between the unoccluded results from the square 

occlusions with 10 and 20 pixel side lengths. However a threshold can be set to 

separate the 30 pixel occlusion from the unoccluded images. From our results of the 

previous chapter, the 30 pixel square occlusion has only a minor negative effect on the 

accuracy, thus being properly able to detect it is encouraging. The 30 pixel occlusion 

only takes up approximately 1.1 % of the area of the overall image. 

5.3.4 Deriving a Threshold 

In terms of setting the threshold for differentiating between occluded and un­

occluded images there are 'several approaches that are possible. From the previous 

section, for use in subsectioning and recombination the aim is to set a threshold high 

enough to virtually rule out rejecting unoccluded images and otherwise keeping it as 

low as possible. 

Through experimentation with random image sets for different visual subspaces, 
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Figure 5.9: Histograms of Reconstruction Error, (a) Unoccluded, (b) Occluded (10 
Pixel Square), (c) Occluded (20 Pixel Square), (d) Occluded (30 Pixel Square) 

it was observed that the probability distributions for reconstruction error had sim­

ilarities to that of a Gaussian distribution, but certainly were not perfect Gaussian 

distributions. It is likely the distribution has Gaussian characteristics due to the 

additive nature of the eigenvector reconstruction measure across many pixels. As an 

example, Figure 5.10 shows the histograms of the reconstruction error for four image 

sections of the metallic object visual subspace. The images were divided into the 

standard sixteen sections and the four sections chosen corresponded to the top four 
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sections. Each image section had their own eigenvectors derived from the 289 training 

images; the histograms were obtained from a set of 100 random images with 30 eigen­

vectors. As can be seen, the distributions in appearance have Gaussian characteristics 

particularly that of Figure 5.10(b). No outliers are present in any of the distributions 

either. To avoid rejecting unoccluded images falsely, a threshold of three standard 

deviations above the mean was chosen, which as will be shown experimentally, also 

allows occlusions of a reasonable size (5 % of the image) to be correctly detected for 

subsectioning and recombination. 
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Figure 5.10: Histogram of Reconstruction Error, Individual Sections, (a) First Sec­
tion, (b) Second Section, (c) Third Section, (d) Fourth Section 

Depending on the choice on the number of sections, detecting an occlusion of a 
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given size will be less difficult for the individual sections compared to the entire image 

since the occlusion occupies proportionately more of the image. For our standard 

choice of 16 image sections for subsectioning and recombination, being able to detect 

occlusions of 5 % of the original image allows the detection of occlusions in the 

individual sections occupying only 0.3125 % of the original imag~ (assuming there 

is no difference in the ability to detect occlusions proportionally between the entire 

image and an individual section). From our experimentation with occlusion size and 

the effects on accuracy, occlusions large enough to negatively impact accuracy for the 

global image are easily detected in the much smaller sections. 

For proper implementation, each section should have its own eigenspace and hence 

its own set of eigenvectors for reconstruction. These will be more precise for the 

individual section and can be performed off-line. 

5.3.5 Choice of Images for Estimating Thresholds 

It is important to use a random set of images from within the movement range of a 

camera or object to collect the necessary statistics for determining a threshold instead 

of the training image set used to estimate the eigenvectors used for reconstruction. 

Using only the training images will give artificially lower values due to their direct 

use in estimating the eigenvectors. Conversely, random images will occur in positions 

intermediate of the training images and consequently their er values will be higher. 

To illustrate this concept, Figure 5.11(a) shows the er histogram for the original 

289 training images used to form the eigenvectors. Conversely the er histogram of 

the set of 100 images spaced randomly throughout the metallic object's movement 

range, is shown in Figure 5.11 (b). As can be seen, the reconstruction error statistics 

corresponding to the training images used to form the eigenvectors is significantly 

lower than those corresponding to random images. Using the training images for 

calculating a threshold for occlusion detection could result in a threshold that rejects 
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Figure 5.11: Histogram of Reconstruction Error, ( a) Training Set Images, (b) Random 
Set 

randomly distributed images as occluded. 

5.3.6 Experiments with Implementation of Occlusion Detec­

tion for Subsectioning and Recombination 

To illustrate the use of eigenspace reconstruction based occlusion detection for 

subsectioning and recombination we use the set of random images with the wrench 

occlusion with the metallic object subspace. Figure 5.12 shows an example image 

from this set together with the image divided into 16 sections. Note that the position 

of the wrench occlusion was fixed, while the metal object was moved below it, thus 

in all the test images the occlusion occupied approximately the same pixels. With 

sixteen sections, the occlusion was present in the right half of the sections, varying 

from covering a relatively small portion of the section to the entire section. The 

occluded sections in the image are labelled from (i) to (viii) for future reference. 
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Figure 5.12: Wrench Occlusion Image 
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To show the effectiveness of eigenspace reconstruction to detect the occluded sec­

tions for this example, the histograms of the reconstruction error were calculated for 

each of the occluded sections for the random set of occluded images. The individual 

~r values were calculated using the standard 30 eigenvectors with the eigenvectors 

derived for each image section. As a comparison for each section, the histogram for 

each section corresponding to the original unoccluded random set was calculated as 

well. 

Figure 5.13 shows the histograms for both the un occluded (5.13(a)) and occluded 

(5.13(b)) tests set for the section labelled (i). It can be clearly seen that there is 

significant separation between the two histogram distributions, thus for this section 

setting an occlusion detection threshold is not particularly difficult as long as all the 

unoccluded sections are retained. Similarly for the rest of the histograms, shown 

in Figure 5.14 through Figure 5.20 for sections ii through viii respectively, there is 

significant separation between the unoccluded and occluded distributions. Thus for 

these instances the occluded sections should be completely detected by the 3 SD 
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Figure 5.13: Histograms of Reconstruction Error, Section i, (a) Unoccluded, (b) 
Occluded 
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Figure 5.14: Histograms of Reconstruction Error, Section ii, (a) Unoccluded, (b) 
Occluded 

threshold. 

To demonstrate that our threshold works effectively for this example, all the sec­

tions for each image in the wrench occlusion set were classified according to their 

~r' For each section, the standard deviation and the mean were calculated from the 

unoccluded random image set and a threshold set as described earlier at three stan­

dard deviations above the mean. Table 5.1 shows for each unoccluded section of the 

wrench occluded images, the preset threshold, the mean, the standard deviation, and 

the highest and the lowest ~r' Similarly, Table 5.2 shows the results for the occluded 

sections of the images. For this table, the sections were labelled starting with 1 for 
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Figure 5.15: Histograms of Reconstruction Error, Section iii, (a) Unoccluded, (b) 
Occluded 
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Figure 5.16: Histograms of Reconstruction Error, Section iv, (a) Unoccluded, (b) 
Occluded 

the top-left section, proceeding left to right, top to bottom. 

As can be seen from the tables, for the unoccluded sections, none were rejected 

as occluded as all the highest ~r values were below the threshold. Conversely, for 

the occluded sections, all were successfully rejected as occluded because they were all 

over the threshold. Note that they were all significantly (> 2 times above) over the 

thresholds when the means and standard deviations (thus the overall distributions) 

are taken into account. 

Thus for this example we were able to achieve 100 % accuracy in terms of classi­

fying the sections as occluded or not. For this example fortunately, the occlusions in 
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Figure 5.17: Histograms of Reconstruction Error, Section v, (a) Unoccluded, (b) 
Occluded 
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Figure 5.18: Histograms of Reconstruction Error, Section vi, (a) Unoccluded, (b) 
Occluded 

the sections generally made up an appreciable portion of the sections, thus they were 

relatively easier to detect. For sections with slightly less occlusion coverage, there 

would be more of a chance to improperly classify the occlusions. These occlusions as 

a percentage of the entire image would be small. 
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Figure 5.19: Histograms of Reconstruction Error, Section vii, (a) Unoccluded, (b) 
Occluded 
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Figure 5.20: Histograms of Reconstruction Error, Section viii, (a) Unoccluded, (b) 
Occluded 

5.4 Manifold Distance Measure for Occlusion De-

tection 

An alternative measure to eigenspace reconstruction for detecting occlusions in 

visual subspaces is the Manifold Distance (MD) measure. This technique was first 

suggested by Nayar et. al. [37] as a solution for detecting manufacturing errors for 

printed circuit boards. For their experiment, a camera was moved over the circuit 

board in a path to completely cover the board with images. At specified intervals, 
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Section Mean Standard Threshold Highest Lowest 
Deviation ~r ~r 

(Pixels) (Pixels2
) (Pixels) (Pixels) (Pixels) 

1 475 50.4 626 589 364 
2 667 14.5 711 702 629 
5 521 49.8 670 606 409 
6 705 18.6 761 732 653 
9 477 53.3 637 578 369 
10 609 54.0 771 713 487 
13 278 36.8 388 361 184 
14 408 48.3 553 512 300 

Table 5.1: Reconstruction Error Results by Section (Unoccluded) 

the MD was checked, and manifold distances beyond a threshold were taken to be 

occluded. 

In contrast to the eigenspace reconstruction measure, which is effectively indepen­

dent of the basic eigenspace positioning technique, MD requires the standard nearest 

neighbor search to determine location to be performed. Rather than using the po­

sition of the nearest neighbor match for a set of projection coefficients Y, defined 

by: 

Nearest Neighbor nn = argmin IIYnew - Yill, Vi = 1, ... , m (5.43) 

The MD measure depends upon the difference between the nearest neighbor match 

projection coefficients Y nn and the projection coefficients of the new image Y new: 

MD = Ynew - Ynn (5.44) 
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Section Mean Standard Threshold Highest Lowest 
Deviation ~r ~r 

~r (Pixels) (Pixels2) (Pixels) (Pixels) (Pixels) 

3 775 27.44 857 2733 2305 
4 417 32.3 514 2858 2830 
7 422 45.4 558 4426 4131 
8 328 22.8 396 3584 3504 
11 233 34.3 336 3255 3211 
12 207 16.1 255 2712 2693 
15 202 16.5 252 2339 2283 
16 203 15.2 249 2168 2105 

Table 5.2: Reconstruction Error Results by Section (Occluded) 

For unoccluded images, the MD distance return should be relatively small, pro­

vided that the set of interpolated projection coefficients used to determine it generally 

results in low positional error. For occluded images however the MD should be larger 

comparatively. Occlusions will change the values of the projection coefficients corre­

sponding to the occluded image. If the correct position projection coefficients are still 

matched, it is unlikely that the MD difference will stay the same or be smaller with 

the occluded projection coefficients due to the unpredictable effect of occlusions on 

each of the projection coefficients coefficients. Similarly, if another erroneous position 

is matched, it is unlikely that the MD distance returned will be small relatively, it 

will just happen to be the closest. 

As with eigenspace reconstruction, larger occlusions will generally result in larger 

differences in the projection coefficients of the image, producing correspondingly 

larger MD distances. Again, this will allow for subsectioning and recombination 

the ability to find occlusions large enough to cause problems with positional accuracy 

for the entire image. 

An important difference between eigenspace reconstruction and manifold distance 
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to consider is the computation time required for each procedure. As previously men­

tioned, eigenspace reconstruction depends on the size of the image in pixels and the 

number of eigenvectors used for reconstruction. Essentially for each eigenvector used, 

an inner product between the eigenvector and the image is required, followed by a 

scaling of the eigenvector by that inner product and finally an addition of the scaled 

eigenvector to the sums of the other scaled eigenvectors. 

Conversely, for the manifold distance measure, the computation time depends not 

only on the number of pixels in the image and the number of eigenvectors, but also the 

size of the set of stored projection coefficients. The total time is equivalent to that 

required to determine position with the basic eigenspace technique. To determine 

the projection coefficients of the new image for searching, an inner product between 

each eigenvector and the image is required. This is followed by a nearest neighbor 

search with all the stored projection coefficients. As will be shown experimentally, 

increasing the number of projection coefficients by interpolation over the training im­

age projection coefficients gives better occlusion discerning ability. Thus, depending 

on the number of projection coefficients and the computation time resulting from 

the nearest neighbor search, determining the manifold distance measure could be 

computationally demanding compared to using eigenspace reconstruction. Nene and 

Nayar's binary search method [38] could be used to reduce this computation time or 

alternatively the coarse search technique mentioned in Chapter 2. 

For use in subsectioning and recombination compared with an entire image, the 

issue of computation time between manifold distance and eigenspace reconstruction 

is further biased in favour of eigenspace reconstruction. Because for eigenspace re­

construction, the computation time is related only to the number of pixels and eigen­

vectors used; dividing the image into separate sections will result in almost the same 

total computation time as the entire image. The only addition will be more com­

parison operations with the thresholds corresponding to each section. For MD, each 
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section will require an additional search operation compared to only one for the entire 

image which will result in a considerable computation increase for a large number of 

sections. Thus for subsectioning and recombination with a large (ie. 16) number 

of sections, the manifold distance measure could be computationally costly depend­

ing on the particular parameters. For the experiments in this chapter, eigenspace 

reconstruction with 30 eigenvectors required approximately 4,760,000 floating point 

operations. For subsectioning and recombination with sixteen sections and fifteen 

eigenvectors, approximately 95,600,000 floating point operations were required with 

an exhaustive search of the interpolated projection coefficients. Assuming that the 

nearest neighbor search could be reduced to only 5% of the exhaustive search via a 

coarse search of the training image projection coefficients followed by a constrained 

search of the interpolated projection coefficients in the matched training image vicin­

ity, approximately 22,200,000 floating point operations would be required. 

5.4.1 Example of MD Changing with Occlusion 

To illustrate the concept of MD increasing with occluded images and thus the 

suitability as an occlusion detection measure, the metallic object visual subspace was 

used as an example. MD distance data was acquired using the 100 image random 

set, combined with different sized artificial occlusions. The occlusions consisted of 

zero intensity squares embedded in the center of the images. For the projection 

coefficients used to derive the MD results, they consisted of the 289 training image 

projection coefficients spaced equally throughout the part's movement range linearly 

interpolated to provide an additional 24 positions between the original projection 

coefficients in both directions for a total of 160801 projection coefficients. 

Figure 5.21 shows the histograms of the MD for four different image sets. Figure 

5.21(a) corresponds to images with no occlusion, Figure 5.21(b) corresponded to 

images with squares of 40 pixels per side embedded, Figure 5.21(c) corresponded to 
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images with squares of 50 pixels per side embedded and Figure 5.21(d) corresponding 

to squares with 60 pixels per side. 
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Figure 5.21: Histograms of MD, (a) No Occlusion, (b) 40 Pixel Square Occlusion, (c) 
50 Pixel Square Occlusion, (d) 60 Pixel Square Occlusion 

As can be seen from the example histograms, the MD measure on average increases 

with increasing occlusion size. However it should also be noted that for the purposes 

of differentiating between unoccluded and occluded images there is overlap between 

the distributions for the case of the smaller occlusion sets. Only the results from the 

largest occlusion histogram (sixty pixels per side, occupying 4.7% of the overall image 

size) are totally separated from that of the zero occlusion set. 

Compared to the eigenspace reconstruction results from the previous section, the 
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MD measure is poorer in differentiating between images with small occlusions and 

those with no occlusion at all. This hinders the determination of an appropriate 

threshold for detecting occlusions for subsectioning and recombination because a 

threshold set to guarantee the inclusion of all the unoccluded images would accept 

occlusions of a size large enough to be determined to have a negative impact on 

positional accuracy. 

An additional parameter to consider for the effectiveness of MD for differentiating 

between occluded and unoccluded images is the number of projection coefficients used 

to search for the nearest neighbor. For unoccluded images, increasing the number of 

projection coefficients to provide intermediate positions to match should decrease the 

MD as images located nearer to the new intermediate positions than the original 

positions should produce lower values. For occluded images, additional intermediate 

positions could provide an improvement if the occlusion is very small, however size­

able occlusions should push the projection coefficients away from the entire region of 

the correct projection coefficients. As mentioned previously however, a drawback to 

increasing the number of projection coefficients is the implied increase in the search 

time required. 

To illustrate the average lowered manifold distance measure for unoccluded images 

with an increased number of projection coefficients, the previous experiments with 

the metallic object visual subspace were repeated for the random unoccluded images. 

The parameters were kept the same, except that instead of using the interpolated 

set of projection coefficients (numbering 160801 individual projection coefficients), 

only the original set of projection coefficients corresponding to the 289 training image 

were used. Figure 5.22 shows the histogram of the manifold distance for both the 

non-interpolated set of projection coefficients as well as the interpolated projection 

coefficients. 

Comparing the two histogram distributions for both the non-interpolated case 
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Figure 5.22: Histograms of MD, (a) No Interpolation, (b) Interpolated Projection 
Coefficients 

and the interpolated case, it is quite clear from these experimental results that the 

additional intermediate projection coefficients on average reduce the manifold distance 

measure. As well, the worst case instances for the interpolated projection coefficients 

are less than half those of the non-interpolated projection coefficients. Thus for the 

purpose of using manifold distance for detecting occlusions, increasing the number 

of projection coefficients can increase performance in the sense that for unoccluded 

images the measure is significantly reduced, allowing lower thresholds for occlusion to 

be set that still includes almost all unoccluded images. It should also be noted that for 

this experiment that rather than increasing the number of projection coefficients via 

more training images, they were only interpolated projection coefficients, but there 

was still a noticeable improvement. If instead of interpolation, additional training 

images were used instead, we would expect to see an even larger improvement, as 

the training image projection coefficients would have no error (except for noise or 

inaccurate positioning) compared to the interpolation projection coefficients. 

For this experiment in terms of computation time, using the additional projection 
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coefficients necessitates a search of 160801 projection coefficients versus only 289 for 

the training images. 

5.4.2 MD Thresholding 

To determine a threshold for occlusion detections using MD as a measure (specif­

ically for use in the subsection and recombination algorithm) we proceeded with 

the same methodology as for eigenspace reconstruction. Namely that the criteria to 

choose the threshold was based upon almost guaranteeing the inclusion of unoccluded 

images in the classification of unoccluded. 

To consider the typical properties of the histograms of the Manifold Distance 

measure for sub sectioning and recombination, Figure 5.24 shows the histograms for a 

subset of the sections for the metallic object experiment with sixteen sections. Figure 

5.23(a) shows the MD histogram for the top left section, Figure 5.23(b), Figure 5.23(c) 

and Figure 5.23(d) show the MD histograms for the remaining sections corresponding 

to the top row moving left to right. Note that the parameters used to calculate the 

manifold distances were the same as the previous histograms for the entire image, 

save that the input images were smaller. 

Viewing the histograms for the four sections for the MD measure, it appears that 

compared to the eigenspace reconstruction histograms for the same sections that they 

are not as similar to a Gaussian distribution and somewhat unpredictable in terms of 

not being very similar amongst themselves. This difference is expected as manifold 

distance is not the product of many individual sums (as eigenspace reconstruction is 

as the sum of the errors of many pixels) but a one off measurement. Additionally it 

is likely that the MD value will be less for images where the camera or object is close 

to the original training image projection coefficients, as the interpolated projection 

coefficient values often will be slightly different then the actual value. 

Although the histograms shown are less likely to be Gaussian compared to the 
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Figure 5.23: Histograms of MD, Individual Sections (a) First Section, (b) Second 
Section, (c) Third Section, (d) Fourth Section 

eigenspace reconstruction measure, a threshold based on the standard deviation (and 

thus second order statistics) can still be used effectively. For the purpose of occlusion 

detection for subsectioning and recombination using MD, we chose a threshold based 

again on not excluding unoccluded image sections. To achieve this aim we chose 

a threshold for occlusion detection of 3 standard deviations above the mean, based 

upon a set of 100 random images throughout the visual subspace. Note that using 

more random images would increase the accuracy of the statistical parameters used 
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in calculating the threshold. 

To demonstrate the suitability of this threshold, we once again used the occluded 

set of 100 random images corresponding to the wrench occlusion in front of the metal­

lic part from the previous chapter. Note that the sections corresponding to the left 

half of the image were unoccluded with this example and that the right half was 

occluded. The mean, standard deviation and the thresholds were calculated for each 

section from the set of random unoccluded images. Table 5.3 compares these values 

with the highest and lowest MD values for the unoccluded sections of the wrench 

occlusion images. Table 5.4 shows the results for the occluded sections of the wrench 

occlusion images. Note the sections are numbered 1 to 16 based upon starting from 

the top, moving left to right and then top to bottom. 

Table 5.3 reports the mean, standard deviation, the threshold set based on the 

mean and standard deviation, the highest MD value and the lowest MD value for 

each unoccluded section. Similarly Table 5.4 shows the same results for the occluded 

sections of the images. Note the sections are numbered 1 to 16 based upon starting 

top to bottom, moving left to right. 

From the table data, it is easy to see that the occluded sections were easily de­

tectable except for one section (namely 16); the lowest values for the occluded sections 

were well above the set thresholds save the one section. However for several of the un­

occluded sections, the highest value for the random image set exceeded the threshold, 

notably for sections 9, 10 and 13. For two of the sections, increasing the threshold to 

four standard deviations above the mean would include all the images for two of the 

sections; increasing the threshold to five standard deviations above the mean would 

include all the images for all the sections. 

Thus for the wrench occlusion, eigenspace reconstruction proved to be superior in 

terms of including all unoccluded sections. In terms of rejecting occluded sections, 

both methods were similar in that most of the occluded sections would rejected easily 
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except for one section for the MD measure. 

Section Mean Standard Threshold Highest Lowest 
Deviation MD MD 

Error Error 
(Pixels) (Pixels2

) (Pixels) (Pixels) (Pixels) 

1 14974 8775 41299 36274 505 
2 39120 29378 127344 97068 729 
5 14494 7747 37735 30656 516 
6 39341 14600 83141 68002 89143 
9 15482 8087 39743 46957 272 
10 34475 17467 86876 96833 1108 
13 9070 8967 35971 50690 27067 
14 15002 8099 39299 32099 755 

Table 5.3: MD Results by Section (Unoccluded) 

5.5 Eigenspace Reconstruction Versus Manifold Dis-

tance 

From the experimental results, it is clear that both eigenspace reconstruction as 

well as manifold distance can be used effectively as a measure for occlusion detec­

tion. However it would appear that eigenspace reconstruction is a better overall 

approach. In terms of performance and the ability to discriminate between occluded 

and unoccluded image sections, only eigenspace reconstruction was able to differenti­

ate properly between all the sections for the wrench occlusion example. Additionally 

in terms of time, eigenspace reconstruction is superior because the expensive search 

operation is not required. For occlusion detection as a front end for subsectioning and 

recombination, manifold distance is especially costly, with a separate search required 

for each section. Conversely, eigenspace reconstruction computation times are similar 

for an entire image versus separate sections. 
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Section Mean Standard Threshold Highest Lowest 
Deviation MD MD 

Error Error 
(Pixels) (Pixels2

) (Pixels) (Pixels) (Pixels) 

3 15296 7067 36497 2009300 408890 
4 32690 13960 57176 1962100 183800 
7 24199 10428 55483 2456382 168770 
8 19423 3298 29317 1898100 1862500 
11 19869 12335 56931 5365300 4713209 
12 13337 11231 47030 772880 721890 
15 28557 15852 76113 419870 178300 
16 19510 13618 60364 819540 60254 

Table 5.4: MD Results by Section (Occluded) 

Potentially these occlusion detection techniques could also be used for other appli­

cations. For example, for a pan-tilt mounted camera used for surveillance, occlusion 

detection could be used to detect change in individual sections. This could also be 

used to constrain a face detection search to only changed sections. 

5.6 Chapter Summary 

Eigenspace reconstruction error was proposed as a measure for finding occlusions 

for sub sectioning and recombination. The eigenspace reconstruction error was shown 

to be significantly larger for occluded images. For individual sections, smaller oc­

clusions could be detected for subsectioning and recombination. Using a threshold 

of 3 standard deviations above the mean for a random set of images resulted in 100 

% accuracy for the experimental example. MD was also demonstrated to be effec­

tive at detecting occlusions, but slightly more likely to misclassify than eigenspace 

reconstruction. 



Chapter 6 

Multiple Cameras and Higher 

Dimensions 

This chapter focuses on the use of multiple cameras for enhancing accuracy with 

eigenspace positioning. A difficulty with using only single cameras occurs with deter­

mining position involving movement along the optical axis of the camera, due to the 

small amounts of image feature change. Consequently, poor performance along the 

optical axis results. Alternatively aligned multiple cameras can be used to circumvent 

the problem by providing additional information. Several techniques are suggested 

for performing the fusion of image information between multiple cameras and their 

relative effectiveness and superiority over a single camera is demonstrated via a simple 

example. 

The remaining portion of the chapter focuses on higher dimensional eigenspace 

positioning, specifically 3D translational movement. The multiple camera techniques 

are demonstrated to be effective for improving performance in terms of accuracy 

over a single camera. Additionally, a technique for using less training images (the 

main implementation difficulty for higher dimensional eigenspaces) while maintaining 

accuracy is demonstrated. 

152 
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6.1 Discrepancy in Accuracy in Different Direc­

tions 

A visual subspace for a camera moving relative to a scene or a specific object can 

consist of three translational directions as well as three rotational directions. In the 

previous chapter the experiments dealt specifically with two dimensional translational 

movement of a metallic object relative to a fixed camera. Accuracy in both directions 

of movement of the object was similar for both the mean and the histogram distribu­

tion of the errors. However, one notable factor for this visual subspace was that the 

movement of the object was such that no movement occurred along the optical axis 

of the camera. Similarly in the third chapter, there was no camera movement along 

the optical axis. 

Conceivably many potential applications of eigenspace positioning could rely upon 

translational movement along the optical axis of the camera, whether it be a camera 

moving relative to a fixed environment or an object moving relative to a fixed camera. 

As an example, the problem of determining the position of a mobile robot in a room 

via a camera fixed on the robot with orientation similar to the eyes of a human being 

would require determining the position along the optical axis of the camera as the 

robot moves forward. Similarly, determining the position of a robot held part in three 

dimensions in front of a fixed camera will require determining position with movement 

along the optical axis of the camera. Unfortunately, it will often be the case that 

determining position along the optical axis of the camera will result in significantly 

lower accuracy compared to translational movement in directions perpendicular to 

the optical axis. 

The reason behind this phenomenon is the fact that the amount of image feature 

change (in the sense as described in the third chapter) for a camera moving along its 

optical axis will in most instances be significantly less than the image feature change 
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for movements in the other directions. Depending on the focal length of the lens, 

often the width and/or length of the scene area covered by the image will be less 

than that of the distance between the camera lens and the surface of the contents 

of the scene. If a camera is moved ahead towards the contents of the scene by a 

small amount c (maintaining the orientation of the camera), the distance between 

the lens and the scene contents will not be proportionally changed much, resulting in 

an almost identical image. 

If instead the camera is moved perpendicular to the optical axis of the camera by 

the same amount c, the scene contents at the center of the image produce is shifted 

by c, resulting in a potentially large image feature change comparatively. Thus the 

contents of the images change position less with camera movement along the optical 

axis than in the other directions. 

Square 
Edge 

m 

Figure 6.1: Image Feature Change Example 

Optical 
Axis 
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Figure 6.1 shows a sample situation for illustrating the dichotomy between moving 

forward along the optical axis and moving laterally in terms of the amount of image 

feature change. It consists of a camera facing a featureless white wall, save a black 

square in the center of the image The original distance from the camera lens to the 

square is p, and the distance from the lens to the CCD is then q. The edge of the 

square is 1 units from the optical axis and thus appears m units from the center of 

the CCD as shown in the diagram and is defined by the following formulas (assuming 

a pinhole representation of the camera model for simplicity): 

e = arctan(l/p) (6.45) 

m = qtane (6.46) 

Moving the camera either along or perpendicular to the optical axis will result in 

changes to where the edge of the square falls on the CCD (m) and thus the overall 

appearance of the image. Moving the camera forward c units along the optical axis 

changes the distance from the lens to the square to p-c, altering the position of m on 

the CCD because e changes to: 

e = arctan(l/(p - c)) (6.47) 

Similarly moving the camera up by c units perpendicular to the optical axis also 

changes m because e changes again: 

e = arctan((l - c)/p) (6.48) 
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Consider the situation for some plausible numbers: l = 200 mm, P = 5 m, q = 

10 mm, C = 100 mm. Originally the position of the square edge on the CCD m is 

0.4 mm. Moving the camera forward by d along the optical axis, the value of m is 

changed to 0.4082 mm. Moving the camera perpendicular to the optical axis, the 

value of m changes to 0.2 mm (thus a change of position of the edge of the square on 

the CCD of 0.2 mm versus 0.0082 mm). 

Thus moving forward, the change in m and thus the appearance of the square 

in the image will be significantly less than moving perpendicularly. Thus the overall 

amount of image feature change in the image will be significantly less. 

Because images are only two dimensional, with three dimensional camera move­

ment, the relationship between the image feature change and camera movement along 

the optical axis of the camera is not as easily described as with the convenient camera 

alignment of Chapter 3. For the above square on the wall example, as the camera 

moves along the optical axis towards the wall, the location of image features (such 

as the corner of the square) will change in both dimensions of the images. A way to 

approximately quantify this image feature change in the forward direction is to use 

D f' the camera movement in the forward direction per pixel of image feature change 

produced by: 

df" a 
D f = ---r:==~=;===~ 

J(PI - P2)2 + (ql - q2)2 
(6.49) 

where df is the distance between training images in the forward direction and a 

is the number of df increments between the two training images and PI, ql represent 

the coordinates of an image feature in one of the training images and P2, q2 represent 

the coordinates for the other training image (refer back to Figure 3.7). 

Note that unlike for movement perpendicular to the optical axis, this value will 

vary depending on the pixel location of the measured image feature within the training 

images and will be highest in the corners of the image. A corner located at the center 
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of the image will not change in terms of pixel coordinates with movement along the 

optical axis. For consistency, measuring D j in this chapter was performed by selecting 

an image feature in the corner of the training images, thus the average value of D j 

across the image will be higher than the estimated D j value (since greater image 

feature change results in smaller D j ). Thus we only use the D j value as a guideline 

towards eventual performance. It will be shown experimentally that the relatively 

lower amounts of image feature change along the optical axis of camera movement as 

indicated by D j compared to the D value for other directions of camera movement 

coincides with significantly lowered accuracy in camera movement along the optical 

axis compared to the other directions. 

Another factor with regard to accuracy to consider is the effect on the eigenvectors 

used for determining position. Since the eigenvectors for a visual subspace are formed 

with regards to minimizing the mean reconstruction error, it is likely that the first 

few eigenvectors will be more responsible for minimizing the reconstruction error with 

regards to the greater visual change in the horizontal direction. Thus using a limited 

number of eigenvectors could possibly not encompass those responsible for describ­

ing the changes in the visual subspace for forward movement and correspondingly 

responsible for allowing the determination of forward position. 

As a simple visual example, consider the three images shown in Figure 6.2. They 

were obtained by mounting a camera on the XY table within our laboratory, aligned 

such that the optical axis of the camera was perpendicular to the wall. Figure 6.2(a) 

shows the image obtained with the original position of the XY table. Figure 6.2(b) 

shows the image that results from moving the camera laterally 20 cm on the XY 

table. Figure 6.2(c) shows the image that results from instead moving the camera 20 

cm forward. 

Clearly the image features change more with lateral movement, confirming the 

earlier discussion. For this example, the lateral camera movement per pixel of image 
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Figure 6.2: Illustration of Pixel Change, (a) Original Position, (b) Image after Lateral 
Movement, (c) Image after Forward Movement 

feature change Dz will be defined by: 

dz• a 
Dl = .,-------,. 

Iql - q21 
(6.50) 

where dl is the distance between adjacent training images in the direction of lateral 

camera movement, a is the number of increments between two training images and 

ql represents the horizontal pixel coordinate of an image feature in the first training 

image, and q2 for the second training image. Note that this exploits for this example 

image feature change that is almost exclusively in the horizontal pixel coordinate for 

lateral camera movement. 

For this example, Dl equals 2.1 mm per pixel of image feature change, compared 

to an estimated D I value of 13.2 mm per pixel of image feature change (calculated 

with a corner of the keyboard in the lower right regions of the training images). 

Because of this difference we would expect a significant difference in accuracy. To 

illustrate this, 289 equally spaced training images (17 by 17) were acquired with 

the camera moved through a 20 cm by 20 cm square via the XY table. The axis 

of the XY table movement was aligned such that one direction was parallel to the 

optical axis of the camera, and the other perpendicular. Figure 6.3 shows a selection 

of four images from the training set corresponding to the four corner positions of 

the XY table. The scene contents are approximately 4 meters from the lens of the 
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camera, with no objects in the immediate foreground. The 289 images were used to 

form both the eigenvectors E and the set of projection coefficients Y as described 

in Chapter 2. A linearly interpolated set of projection coefficients was produced 

consisting of 801 by 801 positions spaced equally throughout the movement range 

(0.25 mm between each position). To test the accuracy of the positioning, a set of 

100 images was obtained spaced randomly throughout the range of motion of the 

camera. The projection coefficients were produced with fifteen eigenvectors as more 

eigenvectors produced negligible increases in accuracy. As in the previous chapters, 

the error in both directions was determined by comparing the actual known camera 

position of the random image in each direction with that found by the nearest neighbor 

search algorithm. 

Figure 6.4(a) shows the histogram of the absolute error of the random image set 

in the forward direction; Figure 6.4(b) shows the histogram in the lateral direction. 

The absolute mean position error in the forward direction was 6.25 mm (50 % of the 

distance between training images) and 0.40 mm in the lateral direction (3.2 % of the 

distance between training images). As can be seen from these results, accuracy in 

the forward direction was considerably worse than that in the lateral direction, both 

in terms of mean absolute error (more than ten times larger) and the distribution of 

the error. Thus a large differential in the estimates for camera movement per pixel 

of image feature change in the two directions coincides with a large differential in the 

absolute mean errors between the two directions. 

Figure 6.5 shows the first eight visualized eigenvectors corresponding to the visual 

subspace. Notice that comparing the eigenvectors with the visual features of the 

scene, that for these first eight eigenvectors, the focus is clearly on those features 

dealing with lateral movement. 

Thus for applications such as determining the position of a robot relative to a 

room or determining the position of an object relative to the camera, the use of only 
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Figure 6.3: Images Illustrating Range of Camera Motion 

one camera for determining position along the direction of the optical axis of the 

camera can cause difficulties in terms of the elevated error along the optical axis due 

to the difference in image feature change between the directions of camera movement. 

6.2 Increasing Accuracy with Multiple Cameras 

From the previous section it was shown that in certain circumstances, eigenspace 

positioning can have unequal rates of error for different directions of camera movement 

(and correspondingly for object movement as well) based upon the large differentials 

in image feature change. 
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Figure 6.4: Histograms of Absolute Position Error, (a) Forward Direction, (b) Lateral 
Direction 

For potential applications of eigenspace positioning, such as the mating of parts via 

a robotic end-effector, similar accuracy will be required in each direction of movement. 

Since the previous experiments showed that determining position for movement 

parallel to the optical axis of the camera results in poor accuracy, an obvious solution 

would be the use of multiple cameras aligned in different directions, appropriate for 

the range of motion of the given application to compensate for the lack of image 

feature change in the direction of the optical axis. 

For the previous experiment of determining position of the camera relative to the 

room in two translational directions (similar to that of a small scale mobile robot), 

the use of another camera could be used to reduce error. 

To increase accuracy in the movement direction corresponding to the optical axis 

of the first camera, a second camera could be placed such that its optical axis is within 

the plane of the two dimensional camera movement, but perpendicular to that of the 

optical axis of the first camera (as shown in Figure 6.6). Thus for the second camera, 

movement along the optical axis of the first camera will produce a large amount of 
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Figure 6.5: First Eight Visualized Eigenvectors 
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image feature change in comparison to that of the first camera. This should allow 

position in this direction to be identified accurately with the second camera. 

Figure 6.6: Dual Camera Setup 

To illustrate this approach, for the first experiment in this chapter, a second 

camera was also used, aligned 90 degrees from the first, mounted also on the XY 

table. Training and random images were obtained at the same positions as the first 

camera. 

Figure 6.7 shows the four corner images from the second camera that correspond 

to the corners of the translational movement range of the camera. The Dl and D f 

values (calculated with a corner of the small black square in the training images) 

were calculated as 2.56 mm per pixel of image feature change and 15.8 mm per pixel 

of image feature change respectively. Thus as with the first camera, there was a 
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significant difference between the image feature change in the forward (along the 

optical axis) and lateral directions. 

The distance between the contents of the scene and the second camera was ap­

proximately 5 m. An eigenspace was derived in the same manner as the first camera, 

using the 289 training images spread over the 20 cm by 20 cm movement range. Again 

the projection coefficients corresponding to the original training images were linearly 

interpolated to produce a set of 801 by 801 projection coefficients. Figure 6.8(a) shows 

the histogram of the absolute error in the forward direction of the second camera for 

the 100 random images; Figure 6.8(b) shows the histogram of the absolute error for 

the lateral direction. The absolute mean error in the forward direction was 1. 75 mm 

(14 % of the distance between training images); in the lateral direction it was 0.17 

mm (1.36 % of the distance between training images). Compared to the results of 

the first camera, the histograms and the errors were somewhat different as is usually 

the case with eigenspace methods however the same pattern arose with regards to 

the dichotomy between the positional error in the forward and lateral directions as 

would be expected with differing DI and D f values. 

6.2.1 Decollpled Cameras 

The simplest manner for utilizing the additional image information from multiple 

cameras to increase accuracy is to specify one camera responsible for a direction(s) 

to which it is most suited towards for high accuracy. The other cameras would sub­

sequently be responsible for the remaining impaired directions of camera or object 

movement. This technique is termed decoupled cameras, since for each direction, the 

other cameras have no direct input on the position determination along it. This can 

be accomplished via the nearest neighbor search, whereby the closest projection coef­

ficients are returned. The forward and lateral position for these projection coefficients 
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Figure 6.7: Images Illustrating Range of Camera Motion, Second Camera 

are known separately and thus only one of them used. One drawback for this ap­

proach is that for each application, the designer must carefully choose the alignment 

of the cameras and specify which is responsible for which direction. This goes against 

the normal ethos of eigenspace positioning whereby the designer avoids the use of 

heuristics and simply lets the system perform all the learning necessary for position 

determination. 

For the previous experiments with two cameras facing in perpendicular directions, 

it is easy to choose each camera being responsible for one direction, namely the lateral 

direction for each camera. Figure 6.9 shows the histograms of the absolute error with 

the combined lateral movement information for both cameras, with 6.9{a) being the 
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Figure 6.8: Histograms of Absolute Position Error, Second Camera, (a) Forward 
Direction, (b) Lateral Direction 

lateral direction of the first camera and 6.9(b) being the lateral direction of the second 

camera. The absolute mean error for the lateral direction of the first camera was DAD 

mm (3.2 % of the distance between training images); for the lateral direction of the 

second camera it was 0.17 mm (1.36 % of the distance between training images). 

Compared to the results of both cameras separately, the overall accuracy across the 

entire movement range is much improved. 

Thus for many applications, especially involving movement in the same direction 

as the optical axis of the camera, the use of decoupled cameras can improve the 

accuracy achievable by arranging a camera to have a comparatively large amount 

of image feature change in the appropriate direction where for another camera the 

amount of image feature change is less. One advantage of decoupled cameras is 

the fact that the method is easily implemented in parallel, with multiple computers 

controlling one camera each. Since the information from each camera is independent 

of the others, each computer could process each image and then report back via a 

network only the position in the direction(s) that it is responsible for. 



CHAPTER 6. MULTIPLE CAMERAS AND HIGHER DIMENSIONS 167 

(a) (b) 
90 90 

80 80 

'" 70 '" 70 
Q) Q) 
Cl Cl 
«J 60 «J 60 
§ § 

gj 50 gj 50 
l- I-

'040 '040 
Q; 

~ 30 ~ 30 
:::l :::l 

Z 20 z 20 

10 10 I 
0 o --0 2 4 6 8 10 0 2 4 6 8 10 

Error (Millimeters) Error (Millimeters) 

Figure 6.9: Histograms of Absolute Position Error, Decoupled Cameras Lateral Di­
rection, (a) First Camera, (b) Second Camera 

6.2.2 Combined Image Information: Fused Images 

A difficulty mentioned previously with the decoupled cameras approach to using 

multiple cameras is the need to arrange the cameras with regards to the directions 

and then specify which camera is responsible for determining position in a certain 

direction. This adds additional complication compared to the simplicity normally 

afforded by appearance based methods over model based computer vision methods 

based on heuristically chosen geometric features. 

Ideally one would rather methods that could combine the image information to 

provide increased accuracy in different directions using multiple cameras without 

requiring the specification of responsibility of a direction for each camera. This would 

in a sense be a sensor fusion operation between the data from the different cameras. 

A simple method for accomplishing this is to fuse the images Xia and Xib from 

both (or potentially more) cameras (termed a and b) into a single super image Xia+b 

by concatenating the image vectors: 



CHAPTER 6. MULTIPLE CAMERAS AND HIGHER DIMENSIONS 168 

(6.51) 

These concatenated images would then be used to determine position in all di­

rections with a single eigenspace. Although the correlation between the pixels of 

combined images will likely not be as large as for the individual images, the eigen­

vectors that result should be such that position in both directions can be determined 

accurately. 

Figure 6.10: Sample Fused Image 

To experiment with this procedure, the two previous sets of images corresponding 
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to the two cameras mounted on the XY table in the laboratory were fused into a 

single image, for both the training images as well as the random set of images. Figure 

6.10 shows a sample of the fused images. Thus where previously for the single camera 

images, camera movement resulted in different amounts of image feature change with 

different camera directions, here at least a section of the image had a comparatively 

high amount of image feature change for each direction. 

The standard training set size of 289 images was used to both determine the 

eigenvectors as well as the projection coefficients as in previous experiments. The 

projection coefficients were interpolated to provide 801 positions in each direction, as 

in the previous experiments. 
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Figure 6.11: Histograms of Absolute Position Error, Fused Images, (a) Lateral Direc­
tion First Camera, (b) Lateral Direction Second Camera 

The same number of eigenvectors (fifteen) used for the single images was used in 

the nearest neighbor search. Figure 6.11(a) shows the histogram of the absolute error 

corresponding to the lateral direction of the first camera; Figure 6.11 (b) shows the 

histogram of the absolute error corresponding to the lateral direction of the second 
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camera (forward direction of the first). The absolute mean error in the lateral di­

rection of the first camera was 0.31 mm and 0.15 mm in the lateral direction of the 

second camera (2.48 % and 1.20 % of the distance between training images respec­

tively). Compared to previous results using decoupled cameras by themselves, the 

results were similar but slightly superior to the decoupled cameras results. 

To illustrate partially how the data is combined with the fused images, Figures 6.12 

and 6.13 show the first eight of the eigenvectors corresponding to the concatenated 

eigenspace (produced as described in Chapter 3). The visualized eigenvectors have 

several interesting aspects. For the first few eigenvectors, either the top or bottom 

section is dominant with features that appear to respond to lateral movement. In 

each such eigenvector, the opposite section has features that appear to correspond 

to forward movement. Thus for the total eigenvector the two halves reinforce each 

other in terms of the projection coefficient response as the forward movement of one 

section is the lateral movement of the opposite. It should be remembered that the 

eigenvectors are derived based on minimizing the reconstruction error for the entire 

fused images. 

In terms of overall accuracy, the fused images give excellent performance (com­

pared to that of a single camera) considering the fact that no designation of direc­

tion is required as with decoupled cameras. In fact it would appear as opposed to 

decoupled cameras, with the as low or lower absolute mean errors that an added 

robustness is achieved. This could possibly be due to more accurate interpolation as 

the fused images could produce a smoother projection coefficient manifold in both di­

rections of camera movement, thus leading to higher accuracy. Thus it would appear 

that the additional information (via the increased image feature change) provided by 

the second camera is exploited usefully with the fused image approach. Potentially 

such approaches could prove useful for increasing the accuracy of eigenspace based 

face recognition with multiple cameras in situations such as airports where dedicated 
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Figure 6.12: First Through Fourth Visualized Eigenvectors, Fused Images 
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Figure 6.13: Fifth Through Eighth Visualized Eigenvectors, Fused Images 



CHAPTER 6. MULTIPLE CAMERAS AND HIGHER DIMENSIONS 173 

multiple camera setups could be arranged. 

In a sense the fused images approach has similarities to the use of omnidirectional 

cameras for determining the position of mobile robots [8] [17]. For omnidirectional 

cameras, the entire image contains regions that respond differently in terms of image 

feature change to different directions of movement. However for omnidirectional cam­

eras, the images are continuous. Our fused images approach shows that even noncon­

tinuous images from different cameras can improve accuracy with proper alignment. 

Similarly, as will be demonstrated in Section 6.3, multiple cameras can be trained 

on the same object with different alignments to produce fused images with higher 

accuracy. The key is recognizing situations where performance for one camera will 

be impaired in terms of a lower rate of image feature change. 

The fused images approach also lends itself well to integration with subsectioning 

and recombination. Potentially multiple aligned cameras could provide additional 

redundancy against ambiguity for subsectioning and recombination, where one view 

of a part was occluded in one camera, but not in another. 

One negative situation with fused images that can occur is a difference in the image 

statistical characteristics between the two cameras. Since the eigenspace formed is 

based upon the minimization of reconstruction error, if one set of images displays 

less variance across the set in terms of individual pixel values, potentially most of the 

eigenvectors will respond to properly reconstructing the other region of the image. An 

example situation would be one set of images from one camera with varying regions 

of highest and lowest intensity paired with another set that had most of its image 

contents within a small intensity band. In this case the images corresponding to 

the small intensity band would contribute little to position determination through 

the lack of eigenvectors responding to these images. A possible solution would be to 

normalize the images as a preprocessing step. 
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Figure 6.14: Histograms of Absolute Position Error, Fused Projections, (a) Lateral 
Direction First Camera, (b) Lateral Direction Second Camera 

6.2.3 Fused Projection Coefficients 

Other approaches to simply fusing the images are available for combining multi­

ple image information in the eigenspace approach. One intuitive method would be 

to maintain separate eigenspaces Ea and Eb for each camera and fuse the projection 

coefficients from each camera together. Thus for each position i a set of projection co­

efficients Yiab would be produced by combining the projection coefficients for position 

i from camera a (YiJ and camera b (YiJ via: 

(6.52) 

Subsequently, the nearest neighbor search would be performed with this combined 

set of projection coefficients. The benefit of this approach as opposed to just fusing 

the images is that the projection coefficients corresponding to each set of images will 

be optimized for each set of images alone. When the combined projection coefficients 
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are evaluated during the nearest neighbor search, the Euclidean distance will depend 

on both sets of independently derived projection coefficients. As with the fused 

images approach, the fused projection coefficients do not require specifying a camera 

direction as with the decoupled camera approach. 

To illustrate the effectiveness of fusing the projection coefficients as compared 

to the images, the previous positioning experiments with the two cameras were re­

peated, except that the separately derived projection coefficients from the two sets of 

images were concatenated into one set of projection coefficients. Fifteen projection 

coefficients from each eigenspace were used. All the other parameters were kept the 

same. 

Figure 6.14(a) shows the histogram of the absolute positional error corresponding 

to the lateral direction of the first camera and Figure 6.14(b) shows the histogram of 

the absolute error for the lateral direction of movement for the second camera. The 

absolute mean error was 0.35 mm in the lateral direction of the first camera and 0.19 

mm in the lateral direction of the second camera (2.80 % and 1.52 % of the distance 

between training images respectively). Interestingly, in comparison with the fused 

images approach, the fused projection coefficients results were slightly higher (0.31 

mm and 0.15 mm) in each direction. A possible explanation for the difference could 

be due to the nearest neighbor calculation, whereby the projection coefficients for one 

camera that are more accurate in a particular direction are combined with those of 

the other camera which are more likely to be erroneous. The projection coefficients 

from the other camera could be considered to add noise for that direction and thus 

slightly alter the overall Euclidean nearest neighbor value produced. 

Nonetheless, the fused projection coefficients approach performs well in compari­

son to only a single camera in both directions and similar to the decoupled cameras 

approach without the need for aligning the cameras specifically and choosing a direc­

tion for each camera. 
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6.3 Higher Dimensions and Multiple Cameras 

Thus far, the examples presented have been constrained to two dimensional trans­

lational movement. Higher dimensional eigenspace solutions have not been directly 

considered, but it is easy to see their usefulness. In manufacturing, moving an end­

effector into position relative to an object is likely to require movement not con­

strained to 2D translational movement. Higher dimensional eigenspace problems 

have their own unique difficulties. The previous multiple camera techniques with the 

additional information they utilize are well suited for higher dimensional eigenspace 

problems, particularly 3D translational movement relative to an object. 

6.3.1 3D Translational Positioning using Multiple Cameras 

To illustrate the benefits of the use of multiple cameras for 3D translational posi­

tioning relative to an object, two cameras were set up over a metal part. Each camera 

was mounted on an XYZ table which consisted of the XY table from the previous 

experiments with an extra stage. 

The alignment of the cameras for this example was specifically not chosen to be 

90 degrees offset from each other for practical reasons. One camera was positioned 

looking directly down at the object, thus from the previous sections of this chapter 

it should provide high accuracy for the two directions of movement corresponding to 

the plane perpendicular to the optical axis of the camera. 

The other camera was aligned at a position close to the 90 degrees offset from the 

first camera, however it was in fact only offset at 65 degrees from the optical axis of 

the first camera. This alignment is illustrated via a simple diagram in Figure 6.15, 

showing that the the optical axes of both cameras are separated by 65 degrees. This 

positioning was chosen because it would allow the second camera to approach a large 

relatively flat surface and measure vertical position, with a sizeable amount of image 
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feature change, whereas a camera offset 90 degrees from the vertical, even if moved 

to almost touching the surface would capture little of the surface in the image and 

thus not be practical. 

This 65 degree offset from the vertical however is enough such that the image 

feature change for the vertical movement (corresponding to the optical axis of the 

first camera) of the XYZ table is significantly increased, while decreased in the XYZ 

table direction closest to the optical axis of the camera. In the remaining XYZ table 

direction the image feature change is similar between cameras. Thus for the second 

camera, positioning in the vertical direction of the XYZ table (termed the z direction 

herein) should be significantly improved, while poorer in another direction. 

The movement range of the cameras was chosen to be a 2 cm by 2 cm by 2 cm cube 

in the vicinity of the metal object. Images of size 320 by 240 pixels were acquired with 

both cameras over 4913 positions spaced equally throughout the movement range (17 

by 17 by 17 images). Additionally, images were acquired from both cameras at 200 

different random locations over the three dimensions to form a testing set. 

Figure 6.16 shows eight images acquired from the first camera over the move­

ment range consisting of the eight extreme corner positions possible. Figures 6.16(a) 

through 6.16(d) show the corner images with the camera zoomed out along the optical 

axis; Figure 6.16(e) through 6.16(h) show the corner images with the camera zoomed 

in along the optical axis. As can be clearly seen, the difference in terms of image 

feature change is much less over the movement in the direction of the optical axis 

compared to the other two directions. Figure 6.17 shows the eight images acquired 

from the second camera. Figures 6.17(a) through 6.17(d) show the corner images 

with the second camera zoomed out along the optical axis, Figures 6.17(e) through 

6.17(h) show the corner images with the second camera zoomed in along the optical 

axis. Note that for the second camera, the movement shown is not truly along the 

optical axis for the zooming in and out pictures since the second camera was only 
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Figure 6.16: Extreme Images of Camera Motion, First Camera, (a) Zoomed Out 
Upper Left, (b) Zoomed Out Upper Right, (c) Zoomed Out Lower Left, (d) Zoomed 
Out Lower Right, (e) Zoomed In Upper Left, (f) Zoomed In Upper Right, (g) Zoomed 
In Lower Left, (h) Zoomed In Lower Right 
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offset 65 degrees from the optical axis of the first camera. 

For nomenclature purposes, the x-direction error refers to that corresponding to 

the camera movement via the XYZ producing motion with the image contents moving 

left to right for the first camera in Figure 6.16. Similarly the y-direction error refers 

to that corresponding to the camera movement producing motion with the image con­

tents moving up and down. Finally, the z-direction error refers to that corresponding 

to the camera motion along the optical axis, with the images zooming in and out. 

For explanatory purposes, the camera movement per pixel of image feature change 

values Dx, Dy, and Dz were calculated for both cameras for the x, y and z directions 

of movement via: 

D _ dx ' a 
x - V(PI - P2)2 + (ql - q2)2 

(6.53) 

where dx is the distance increment between adjacent training images in the x 

direction, a is the number of increments between the two training images used for 

the calculation and PI, ql and P2, q2 represent the image pixel coordinates of the same 

image feature in the two training images. Note the training images chosen for the 

calculation consisted of those at the corners of the camera movement range cube and 

images features near the corners of the images were used. 

For the first camera, Dx was equal to 0.22 mm per pixel of image feature change, 

Dy was equal to 0.20 mm per pixel of image feature change and Dz (the optical axis 

direction of the camera) was equal to 1.28 mm per pixel of image feature change. 

Thus Dz was considerably higher than Dx and Dy meaning the image feature change 

was lower in this direction. 

For the second camera, Dx was equal to 0.66 mm per pixel of image feature change, 

Dy was equal to 0.13 mm per pixel of image feature change and D z was equal to 0.18 

mm per pixel of image feature change. Thus Dx was highest which makes sense 

since the optical axis of the second camera was closest to this direction of camera 
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movement. Similarly Dy was lower than Dz because the second camera was only 

offset 65 degrees from the optical axis of the first camera not 90 degrees. 

To demonstrate the lower accuracy achievable using only a single camera, the first 

camera was used alone. The eigenspace was formed using a subset of the original 

set of training images consisting of 729 images (9 by 9 by 9 images) spaced equally 

throughout the movement range. The entire set was not used due to the large number 

of images requiring heavy use of virtual memory to derive the eigenvectors. 

The entire set of 4913 training images was used to produce a set of initial projection 

coefficients. This set was interpolated to provide 7 positions between each training 

image position in each direction for additional accuracy. To speed up the search 

time, a coarse search as described in Chapter 2 was used. The original 4913 training 

projection coefficients were searched first. Based on this match, a constrained subset 

of the interpolated projection coefficients was searched. This subset consisted of 25% 

of the surrounding interpolated projection coefficients of the original match in each 

dimension. This reduced the number of interpolated sections to be searched by a 

factor of 64 (1/4*1/4*1/4) with no loss of accuracy. For each test image, the new 

search required approximately 0.6 seconds to perform. 

Additionally, once the nearest neighbor match was found for the interpolated set, 

an additional 26 camera positions surrounding the nearest neighbor position had new 

interpolated projections generated for them. These positions were midway between 

the nearest neighbor position match and the surrounding interpolated positions. Sub­

sequently these projection coefficients plus the original matched projection coefficients 

from the interpolated set had a new nearest neighbor search performed. Since 3D po­

sitioning puts large search demands in terms of the number of points, this allows 

additional possible accuracy to be achieved without hugely increasing the number 

of positions to be searched initially. More importantly for this implementation it 
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Figure 6.17: Extreme Images of Camera Motion, Second Camera, (a) Zoomed Out 
Upper Left, (b) Zoomed Out Upper Right, (c) Zoomed Out Lower Left, (d) Zoomed 
Out Lower Right, (e) Zoomed In Upper Left, (f) Zoomed In Upper Right, (g) Zoomed 
In Lower Left, (h) Zoomed In Lower Right 
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reduced the amount of memory dedicated to the stored interpolated projection co­

efficients. Potentially this procedure could be used recursively on only the training 

images projection coefficients, however without an initial relatively dense search of 

the manifold, this proved to be poor for 3D translational positioning. 

Figure 6.18 shows the histograms of the absolute error for all three directions for 

the first camera, with 6.18(a) corresponding to the x-direction, 6.18(b) corresponding 

to the y-direction and 6.18( c) corresponding to the z-direction. The absolute mean 

error results were 0.128 mm in the x-direction, 0.118 mm in the y-direction and 

2.36 mm in the z-direction (10.2 %, 9.44 %, and 188 % of the distance between 

training images respectively). As expected, both the absolute mean error and the 

error histograms in the two directions perpendicular to the optical axis of the first 

camera were relatively low. With the large amount of image feature change associated 

with the movement in these directions it is clear that the decoupled cameras approach 

could be successfully used for these directions. Conversely the absolute mean error 

and histogram for the z-direction along the optical axis were larger, almost twenty 

times worse than the other directions. From the images illustrating the movement 

range of the camera in Figure 6.16, and the calculated Dx, Dy , Dz values (0.22, 0.20, 

and 1.28 mm per pixel respectively), it is clear that there is much less image feature 

change associated with this direction of movement comparatively. Consequently the 

resultant performance suffers comparatively. These results reinforce the difficulty of 

obtaining 3D translational positioning via only one camera. 

Similarly, the same eigenspace procedure was applied with the second camera 

completely independently, as per the decoupled cameras approach. The same subset 

of images was used to derive the eigenvectors; the entire set of training images was 

used to derive the projection coefficients and interpolated to the same degree. For 

reference purposes, the same direction of camera movement will be used as for the first 

camera, however due to the alignment of the second camera, image feature change 
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Figure 6.18: Histograms of Absolute Position Error, First Camera, (a) x-direction, 
(b) y-direction, (c) z-direction 

was reduced significantly in the x-direction and increased in the z-direction as shown 

by the estimated Dx, Dy and Dz values (0.66, 0.13, 0.18 mm per pixel respectively). 

Figure 6.19(a) shows the histograms of the absolute error for the x-direction of 

camera movement, 6.19(b) the y-direction and 19(c) for the z-direction for the second 

camera. The absolute mean error results were 0.777 mm in the x-direction, 0.0923 

mm in the y-direction and 0.313 mm in the z-direction (62.2 %, 7.34 %, and 25.0 % 

of the distance between training images respectively). 

Thus for the second camera, the mean error and histogram in the x-direction was 

significantly worse than for the first camera, which is not surprising considering that 

in the different alignment Dx was higher comparatively to Dy and Dz and thus the 

image feature change lower. In the y-direction, the mean error and histogram was 

slightly better than for the first camera; likely due to the low value of Dy compared 

to D x and D z. However in the z-direction, both the mean error and the histogram 

of the error were improved for the second camera over the results of the first camera 

again likely due to the fact that Dz for this camera was lower compared to Dx and 

Dy meaning there was higher image feature change. 

Combining the results of the two cameras via the decoupled cameras approach with 
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Figure 6.19: Histograms of Absolute Position Error, Second Camera, (a) x-direction, 
(b) y-direction, (c) z-direction 

x and y from the first camera and z from the second camera provides a significant 

improvement over using only one camera. Thus 3D translational positioning can be 

improved with the use of two cameras via the decoupled cameras approach. 

6.3.2 Image Fusion for 3D Translational Positioning 

Potentially the fused image approach could also be used to try and obtain addi­

tional accuracy by combining the information from both cameras. Again, a benefit for 

using fused images over decoupled cameras is that there is no requirement to choose 

which camera is responsible for which direction of movement. For this experimental 

example, the fused images should show improved performance for the optical axis di­

rection of the first camera due to the additional information from the second camera 

in terms of move image feature change in this direction. 

Thus for the 3D translational experiments, the training image sets from both 

cameras were fused together to produce one set of images consisting of the images 

from the first camera on the bottom and those corresponding to the second camera on 

the top, as in the example image shown in Figure 6.20. Likewise, the random image 

sets from both cameras were combined into one. The standard eigenspace procedure 
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was then performed on these combined images as with the decoupled camera results; 

729 training images were used to derive the combined eigenvectors. The full set of 

4913 combined training images were used to derive the training projection coefficients. 

These were interpolated to provide seven additional positions in each direction. For 

the random images, the same search procedure as with the individual cameras was 

performed. 

Figure 6.20: Example of Fused Image 

Using the same alignment of directions for error as the first camera, Figure 6.21(a) 

shows the histogram of the absolute error in the x-direction, Figure 6.21(b) shows 

the histogram of absolute the error in the y-direction and Figure 6.21(c) shows the 

histogram of the absolute error in the z-direction. The absolute mean errors were 0.113 

mm in the x-direction, 0.126 mm in the y-direction and 0.237 mm in the z-direction 

(9.04 %, 10.1%, and 18.9 % of the distance between training images respectively). 

Compared to the first camera alone the z-direction error is much lower, but also 

significantly lower than for the second camera by itself (0.237 mm versus 0.313 mm). 

Thus the combined images provide additional accuracy in this direction above and 
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Figure 6.21: Histograms of Absolute Position Error, Fused Images, (a) x-direction, 
(b) y-direction, (c) z-direction 

beyond the individual cameras. 

The error in the other directions was similar to that of the first camera alone. 

Compared to the second camera, the error in the x-direction was superior (0.113 mm 

versus 0.660 mm), again as would be expected due to the presence over the entire 

fused images of a high level of image feature change in this direction. Figure 6.22 

shows the first four visualized eigenvectors to illustrate the types of feature vectors 

formed with the combined images. It can be clearly seen that both image regions 

contribute to the responses of the eigenvectors shown. 

Thus from these results, it is shown that the performance of 3D translation posi­

tioning can be significantly enhanced through the use of multiple cameras, especially 

using the fused images approach. Conceivably the performance in the z-direction or 

optical axis of the first camera could be enhanced by the use of a third offset camera, 

positioned similarly to the second but such that their optical axes were perpendicular. 

This would enhance the visual information available pertaining to the movement of 

the first camera along its optical axis and allow accuracy along this axis to be brought 

closer to the level of the other two directions. Potentially, fusing only the images of 

the two offset cameras could produce feature vectors that are especially responsive to 
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Figure 6.22: Combined Camera Visualized Eigenvectors, First Through Fourth 
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the z-direction of movement (relative to the first camera). Ideally one could imagine 

a specially constructed sensor, consisting of three cameras aligned as in these exper­

iments. The sensor could then be mounted on the end-effector of a robot to allow 

precise visual servoing with eigenspace positioning in relation to a part. 

An issue for 3D positioning and higher dimensional positioning ignored to this 

point, is the large number of images required to obtain reasonable accuracy. As 

shown in the previous example, each camera required 4913 images for the training 

projection coefficients to acquire only a relatively small number (17) of images in 

each direction. The next section describes methods to reduce the requirements for 

the number of images when using the decoupled cameras technique. 

6.4 Use of Partial-Invariant Properties of Multiple 

cameras 

An important issue for performing higher dimensional eigenspace positioning and 

perhaps the prime reason why eigenspace positioning has not to date been exploited 

for industrial manufacturing applications and remains primarily an academic novelty 

is the requirements for huge sets of training images. Considering the large number 

of images required for the previous experiments with 3D translational movement, 

adding a small amount of rotation movement in even one direction is coming close 

to the limits of practical feasibility. Adding in multiple cameras only exacerbates the 

problem. 

The number of training images required to provide a dense sampling in each direc­

tion (> 10000) can be impractical due to the difficulties in acquiring them, including 

time, as well as increased search time and massive storage requirements including 

keeping a large number of interpolated projection coefficients in main memory for 
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fast access. Thus ways of reducing the number of images required is an important 

research goal. 

A possibility for reducing the number of images required for accurate higher di­

mensional eigenspace positioning is the exploitation of different amounts of image 

feature change with regards to the direction of movement of a camera. As shown 

previously, for 3D translational camera movement the image feature change in the 

direction of the optical axis for one camera is significantly less than in the other 

two directions. Thus while the images are not invariant to camera movement in this 

direction, they certainly change significantly less than the other two directions of 

translational movement. We term the images as partially-invariant with regards to 

the optical axis. 

This partial-invariant property can be combined with the decoupled cameras ap­

proach. Since the images change in appearance comparatively less along the optical 

axis, they can be represented at a lower level of sampling in this direction and still al­

low the position in the other two directions of movement to be ascertained accurately. 

For multiple camera configurations with decoupled cameras, the sampling rate could 

be lowered for each camera in their respective optical axis direction. 

The partial-invariant procedure is then as follows: instead of obtaining an equal 

distribution of training images across all directions, acquire a lower number in the 

direction of movement along the optical axis of the camera. Perform the standard 

eigenspace analysis with these reduced training images. Produce a set of projection 

coefficients corresponding to the training images. At this stage interpolation can 

then be performed in two ways. First the training projection coefficients can be in­

terpolated directly with equal number of interpolated projection coefficients between 

training images in each direction. Alternatively, the training images projection coef­

ficients can first be interpolated along the optical axis to produce a set with an equal 

number of positions in each direction and then subsequently interpolated equally in 
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each direction. This gives a set of projection coefficients similar to that if the number 

of training images was equal in each direction. This has no advantage, except for 

facilitating the technique for use with the fused projection coefficients technique and 

allowing comparison for finding position along the optical axis with the full set of 

training images. We used this approach in our experiments for consistency with the 

previous experiments. Position in each direction can then be determined as per the 

normal nearest neighbor search. 

To demonstrate the feasibility of this technique the data set for the first camera 

of the 3D translation experiment was used. As an illustration of the lowered image 

feature change, Figure 6.22(a) shows an image with the camera at a corner of the 

movement range. Figure 6.23(b) shows an image for moving the camera laterally 

while Figure 6.23(c) shows an image produced by moving along the optical axis of 

the camera. 

Figure 6.23: Image Change Comparison, (a) Original Position, (b) After Lateral 
Camera Movement, (c) After Zoom Camera Movement 

Note that the camera movement per pixel of image feature change Dx, Dy and Dz 

were estimated to be 0.22,0.20 and 1.28 mm per pixel, such that image feature change 

was approximately six times less along the optical axis direction of camera movement. 

Since the original set of training images consisted of 4913 images corresponding to 

17 by 17 by 17 camera positions, three layers of 17 by 17 images perpendicular to 

the optical axis were used since 17 /3 ~ 6, is close to the ratio of the image feature 
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change between the optical axis direction of camera movement and the remaining two 

directions. The layers consisted of the top, middle and bottom layers with regards to 

the optical axis. 

This set of 867 images was used to derive the eigenvectors. The projection coeffi­

cients corresponding to the 867 images were then calculated using these eigenvectors. 

These projection coefficients were first interpolated in the optical axis direction to 

obtain the 4913 positions corresponding to the original training image set and then 

these were subsequently interpolated to provide 7 positions in each direction between 

each of the projection coefficients. Position in each direction was determined via the 

nearest neighbor search described in section 6.3.l. 

Figure 6.24(a) shows the histogram of the absolute error in the x-direction (as 

previously defined), Figure 6.24(b) shows the error in the y-direction and Figure 

6.24(c) shows the error in the z-direction. The absolute mean errors were 0.0956 mm, 

0.113 mm and 3.34 mm in the x, y and z-directions respectively. Recalling that for 

the full set of training images, the absolute mean errors were 0.128 mm, 0.118 mm 

and 2.36 mm, it is clear that although the performance is significantly worse in the 

z-direction as would be expected, the results with the partial-invariant technique were 

similar to the full set of training images and in fact slightly improved. 

Considering that only 17.6 percent of the full training set was used, this was a 

remarkable performance, illustrating that the partial-invariant technique exploiting 

the differences in image feature change can be quite useful for reducing the number 

of images required. Conceivably, the decoupled cameras approach could be used to 

obtain a reduced set of training images for the second camera to obtain higher accu­

racy in the optical axis direction of the first camera. This would require an additional 

867 camera positions or 35.3 percent of the original 4913 positions, which is still a 

significant reduction in the number of separate camera positions. Alternatively, the 

fused projection coefficients approach could also be used if the projection coefficients 
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Figure 6.24: Histograms of Absolute Position Error, Pseudo-Invariant Technique, (a) 
x-direction, (b) y-direction, (c) z-direction 

are interpolated to provide equal numbers in each direction. A future area of investi­

gation could include how to best optimize accuracy with regards to the locations of 

the training images. 

Potentially this approach could be expanded to incorporate rotational information 

as well. Rotating a camera around the optical axis will produce a large amount of 

image feature change for an image of an object. With the camera aimed at the center 

of an object, rotation in the other two directions will produce considerably less image 

feature change. With a three camera setup, each of the three rotational dimensions 

of movement could be covered by one camera where the rotational movement would 

be around the optical axis and the image feature change is greatest. Then for each 

camera, a set of images could be collected where the sampling was higher in the 

optical axis rotation direction and lower in the other two directions similar to the 3D 

translation case. 

Further pursuit of these training image reduction techniques could eventually allow 

full six dimensional eigenspace positioning to be performed relative to an object over 

a small range in each direction. This could be used for final positioning for the end­

effector of a robot over a limited range of positions relative to a larger part where 
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insertion or a similar task is to be performed. Ideally, a highly accurate XYZ table 

combining with a 3 dimensional rotational stage could be used to acquire the training 

images relative to the part with a three camera sensor. The sensor could then could 

be mounted on the end-effector of a robot and the high accuracy from the XYZ table 

and rotational stages could be transferred to the robot via the eigenspace technique. 

However considerable work remains in the future to achieve this goal. 

6.5 Chapter Summary 

Multiple offset cameras were introduced as a technique to obtain additional visual 

information to achieve similar accuracy in all directions. The decoupled cameras 

technique was then demonstrated via a simple example of combining information 

for multiple cameras; each camera determined position in the directions it was most 

suited towards. Fusing the images of multiple cameras under a single eigenspace 

was also shown to be effective at increasing accuracy, outperforming the decoupled 

camera approach without the direction needing to be specified. Fusing the projection 

coefficients of multiple cameras each with their own eigenspace was also shown to be 

effective. 

The multiple camera techniques were applied to the task of 3D translational posi­

tioning. The decoupled cameras technique improved accuracy over one camera. Using 

the fused images approach gave even better performance. 

Finally, the concept of partial-invariance was introduced for the task of reducing 

the number of training images required for higher dimensional eigenspace position­

ing. Lower sampling along the direction of the optical axis of the camera proved to 

provide similar levels of accuracy in the other directions as a full sampling in all three 

directions. 



Chapter 7 

Conclusions 

7.1 Eigenspace and Accuracy 

The concept of image feature change was introduced as a technique for explaining 

eigenspace positioning performance. The amount of image feature change over the 

movement range of the camera or object as determining the limit of accuracy was 

discussed. Amongst the controllable parameters available, the number of training 

images used to form the projection coefficients had the largest effect on the accuracy. 

Initially increasing this number had a large effect, however as the number approached 

the limits of the image feature change, almost no improvement in accuracy was shown. 

The number of training images used for forming the eigenvectors also had an effect 

on accuracy, but not to the same extent. For situations where the number of training 

images was low compared to the image feature change, filtering the eigenvectors to 

smooth out artifacts from the implicit covariance matrix was shown to be effective 

at improving mean accuracy. For the number of eigenvectors to use, it was shown 

that the later eigenvectors had projection coefficient manifolds that were of higher 

frequency in nature, consequently the number of training projection coefficients could 

195 
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be too low for proper sampling, resulting in inaccurate interpolation and little dis­

criminant value. 

7.2 Occlusion and Occlusion Detection 

The main work of the thesis was developing a technique to make eigenspace po­

sitioning robust to occlusion. The effects of occlusion on positional accuracy were 

demonstrated, showing that for proportionally small occlusions (or those little differ­

ent in appearance from the original pixels) positional accuracy suffered little. Com­

paratively, as occlusion became proportionally larger (or substantially different from 

the original pixels) the effect on the positional accuracy could become catastrophic 

due to the large distance from the original manifold of the highly occluded eigenspace 

projection coefficients. 

Overcoming occlusion was implemented through the use of local information 

within the image as opposed to the global information of the standard eigenspace 

coefficients which were vulnerable to error with occlusion in any part of an image. 

Dividing the image into specific sections allowed (providing occlusion detection could 

be performed relatively accurately) the preservation of information that could be used 

to determine position for unoccluded sections. It was shown that naively proceed­

ing with each section as functioning independently from each other, with its own 

eigenspace and projection coefficients and thus determining a separate position for 

each section was not an adequate solution. This was due to the fact that with small 

individual sections, ambiguous situations could arise wherein images over ranges of 

camera movement would be similar even for where the entire image was unambiguous. 

This lead to potentially large errors for the individual sections and consequently poor 

accuracy overall. 

Thus rather than sacrificing the global information present across the entire image 
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that gives resistance to such locally ambiguous situations, sub sectioning and recom­

bination was suggested as a technique to incorporate local information as a hedge 

against occlusion while maintaining global information for resistance to ambiguity. 

Subsectioning and recombination was based on the observation that the problem of 

position determination was different than that of eigenspace reconstruction in that the 

requirement is for the eigenspace projection coefficients to vary across the movement 

range of the camera or object enough to allow position to be accurately determined. 

Thus the global eigenvectors were still used, however for each section the subtotal of 

the projection coefficients was stored. Summing these projection coefficients for every 

section gave the standard global projection coefficients, however removing several sec­

tions still gave a set of modified global projection coefficients that could be adequately 

used to determine position. Thus at the additional cost of storing the local projection 

coefficients and a few additions for each search term to find the new global projection 

coefficients, occluded sections could be removed and position still determined. It was 

then demonstrated that even with substantial amounts of occlusion, performance was 

often similar to that with no occlusion and in any case superior to the uncorrected 

basic technique. 

For occlusion detection, it was shown that thresholding eigenspace reconstruction 

was an effective technique for evaluating whether an image from a constrained visual 

subspace contained an occlusion or not. The technique became much more effective 

as the occlusion became larger as a proportion of the image as well as for occlusions 

differing significantly from the original pixels at their location. One strength of the 

eigenspace reconstruction approach was that for images with occlusions, not only were 

the reconstructed pixel values different in the location of the occlusion, but also in 

other regions of the image, since the altered eigenspace coefficients resulted in slightly 

different combinations of the basis vectors across the entire image, increasing the 

sensitivity to occlusion. The ability to detect small occlusions in an image improved 
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through dividing the images into sections and then deriving separate eigenspaces for 

each. This was important for subsectioning and recombination because it allowed the 

detection of any occlusion large and/or different in appearance enough to impact on 

the positional accuracy and thus allow subsectioning and recombination to be a viable 

method for overcoming occlusion. Using the distance from the eigenspace manifold as 

a thresholding technique to detect occlusion also showed good performance, however 

compared to eigenspace reconstruction there was a slightly higher chance of incorrect 

classification. 

7.3 Multiple Cameras and Higher Dimensions 

It was demonstrated that for instances of problems where part of the movement 

of the camera was along its optical axis, there was a significant difference between the 

error in that direction and the perpendicular directions. This was due to the much 

smaller image feature change along the optical axis. The use of multiple cameras 

offset from one another's optical axis was suggested as a technique to increase the 

quality of the information available and achieve similar performance in the different 

directions. Three techniques for combining this information were demonstrated. De­

coupled cameras, whereby each camera was responsible for movement in only one 

direction was shown to be effective at increasing positional accuracy. Fused images, 

whereby the images of individual cameras were fused into one super-image with its 

own eigenspace was shown to also increase accuracy over a single camera. Fused 

projection coefficients, where each camera had its own eigenspace and the projections 

combined also showed good performance. 

The use of multiple cameras was then applied to the problem of three dimensional 

translational positioning. The decoupled camera technique was shown to be effective 

at improving the determination of 3D position compared to only a single camera. The 
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fused images approach gave even better results. Also demonstrated was the concept 

of partial-invariance for higher dimensional problems, whereby sampling less images 

over directions where the images changed little relatively, still allowed satisfactory 

accuracy over the other directions. 

7.4 Future Directions 

For camera and object positioning, standard PCA has been the usual choice for 

feature vectors although it is well known that PCA is optimized for reconstruction 

error rather than for determining position. An interesting avenue of future research 

would be to explore alternative feature vectors that were more suited to the task of 

finding accurate position information. 

The performance of sub sectioning and recombination using the standard global 

eigenvectors was effective, however it could still be improved. In addition to the 

global eigenvectors, extra feature vectors could also be included. These would be 

produced by suppressing to zero large regions of the input images. Consequently 

these eigenvectors would be concentrated on the remaining regions and determining 

position with only this information. With several of these eigenvectors to cover all the 

image, this would provide extra local information that would provide extra accuracy 

with a high degree of occlusion. 

An interesting possible use for subsectioning and recombination would be its ap­

plication to face recognition, namely situations where parts of the face are subject to 

occlusion. This could have advantages over previous approaches where separate parts 

of the face were treated independently and thus gestalt information of the entire face 

was neglected. 

Occlusion detection via eigenspace methods has possible uses beyond that of a 
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front-end for subsectioning and recombination. Potentially, it could be used for secu­

rity purposes, whereby a camera was moved via a pan and tilt unit to cover a larger 

range of territory. Building up an eigenspace for individual image sections for this 

visual subspace, would allow changes in the scene to be detected as the camera sweeps 

over the preset range. As well with individual image sections, the location of scene 

changes (i.e. possible intruders) within the image could be determined. Such a setup 

could also be used as a front end to a face detection algorithm over a large area. Only 

changed areas would be searched for the presence of faces. 

In terms of multiple cameras, it would appear that their use would be well suited 

to higher dimensional problems. Certainly solving higher dimensional problems would 

open up possibilities in applying eigenspace positioning to manufacturing problems. 

In real applicat~ons it is unlikely that movement will be confined to only planar 

translations, as rotations and three dimensions are the norm. Thus it is imperative 

to develop eigenspace based techniques that can handle the higher dimensions. 

The partial-invariant property with regards to cameras aligned in specific direc­

tions and the amount of image feature change across different directions of movement 

has definite potential for accommodating the main issue with higher dimensions. 

Namely that for full six degree of freedom movement, the traditional eigenspace ap­

proach would require an inordinate amount of training images. Potentially using the 

partial-invariant property and decoupled cameras could allow a full range of motion 

to be accommodated, provided that in some directions the movement was limited. 

Thus for moving a part to an eventual mating position, small amounts of rotation 

movement could be compensated with the appropriate alignment of cameras. 

Potentially, one use for higher dimensional eigenspace approaches would be the 

use of a highly accurate XYZ position system combined with a three dimensional 

rotational stage to acquire a highly accurate set of training images about an object 

for positioning with a multiple camera sensor. Deriving an accurate eigenspace for 
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this range of motion would allow the sensor to be placed on the end-effector of a robot 

and then allow compensation for inaccurate robot positioning with the knowledge of 

the highly accurate position of the sensor in relation to the object. 

More work is required on illumination invariance for eigenspace positioning. Early 

work has been done mainly for object recognition, but to perform accurate positioning 

for manufacturing, techniques that are tolerant to reasonable levels of varied lighting 

are required. Possibly with a dedicated multiple camera sensor, a strong light source 

could be incorporated to keep object pixel values constant as in the work of Nayar et. 

al. [37]. Alternatively, another possibility would be using sensors beyond the visual 

spectrum with their own source of appropriate energy provided so that other visible 

light sources do not interfere with the pixel values. 



Bibliography 

[1] H. Bischoff and A. Leonardis. Robust Recognition of Scaled Eigenimages 

Through a Hierarchical Approach. Proceedings of the IEEE Conference on Com­

puter Vision and Pattern Recognition, pages 664-670, 1998. 

[2] H. Bischoff, A. Leonardis, and F. Pezzei. A Robust Subspace Classifier. Proceed­

ings of the International Conference on Pattern Recognition, 1:114-116, 1998. 

[3] H. Bischoff, H. Wildnauer, and A. Leonardis. Illumination Invariant Eigenspaces. 

Proceedings of the International Conference on Computer Vision, 1:233-238, 

2001. 

[4] M. Black and A. Jepson. EigenTracking: Robust Matching and Tracking of Artic­

ulated Objects Using a View-Based Representation. Proceedings of the European 

Conference on Computer Vision, pages 666-666, 1996. 

[5] H. Borotschnig, L. Paletta, M. Prantl, and A. Pinz. A Comparison of Proba­

blistic, Possiblistic and Evidence Theoretic Fusion Schemes for Active Object 

Recognition. Computing, 4(62):293-319, 1999. 

[6] R. Campbell and P. Flynn. Eigenshape for 3D Object Recognition in Range 

Data. Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2:505-510, 1999. 

202 



BIBLIOGRAPHY 203 

[7] P. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Pren­

tice/Hall, Inc., 1982. 

[8] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-Based Navigation and Envi­

ronmental Representation with an Omnidirectional Camera. IEEE Transactions 

on Robotics and Automation, 16(6):890-898, 2000. 

[9] A. Goldstein, C. Harmon, and A. Lisk. Identification of Human Facess. Proceed­

ings of the IEEE, 59:748-760, 1971. 

[10] G. Golub and C. Van Loan. Matrix Computations. John Hopkins University 

Press, 1996. 

[11] D. Huttenlocher, R. Lilien, and C. Olson. View-Base Recognition Using an 

Eigenspace Approximation to the Hausdorff Measure. IEEE Transactions of 

Pattern Analysis and Machine Intelligence, 21(9):951-955, 1999. 

[12] M. Jagersand. Image Based View Synthesis of Articulated Agents. Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 

1047-1053, 1997. 

[13] M. Jagersand. Hierarchical uncalibrated predictive display for a 16 DOF 

Utah/MIT hand. Proceedings of IEEE International Conference on Intelligent 

Robots and Systems, 1:124-129, 1999. 

[14] M. Jagersand. Image Based Predictive Display for Tele-Manipulation. Proceed­

ings of IEEE International Conference on Robotics and Automation, 1:550-556, 

1999. 

[15] A. Jepson, D. Fleet, and T. EI-Maraghi. Robust Online Appearance Models for 

Visual Tracking. Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 1:415-422, 2001. 



BIBLIOGRAPHY 204 

[16] M Jogan and A Leonardis. Robust Localization of Spinning Images. IEEE 

Workshop on Omnidirectional Vision, pages 37-44, 2000. 

[17] M. Jogan and A. Leonardis. Robust Localization Using Panoramic View Based 

Recognition. Proceedings of the International Conference on Pattern Recognition, 

4: 136-139, 2000. 

[18] I. Joliffe. Principal Component Analysis. Springer-Verlag, Inc., 1986. 

[19] Takeo Kanade. Picture processing system by computer complex and recognition 

of human faces. In doctoral dissertation, Kyoto University. November 1973. 

[20] M. Kirby and L. Sirovich. Procedure for the Characterization of Human Faces. 

IEEE Transactions of Pattern Analysis and Machine Intelligence, 12(1):103-108, 

1990. 

[21] J. Krumm. Eigenfeatures for Planar Pose Measurement of Partially Occluded 

Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, pages 55-60, 1996. 

[22] A. Leonardis and H. Bischof. Dealing with Occlusions in the Eigenspace Ap­

proach. Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, pages 453-458, 1996. 

[23] A. Leonardis and H. Bischof. Robust Recognition Using Eigenimages. Computer 

Vision and Image Understanding, 12(1):99-118, 2000. 

[24] M. Loeve. Probability Theory. Van Nostrand, 1955. 

[25] A. Martinez. Recognition of Partially Occluded and/or Imprecisely Localized 

Faces Using a Probabilistic Approach. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, pages 712-717, 2000. 



BIBLIOGRAPHY 205 

[26] A. Martinez. Recognizing Imprecisely Localized, Partially Occluded, and Ex­

pression Variant Faces from a Single Sample per Class. IEEE Transactions of 

Pattern Analysis and Machine Intelligence, 14(6):748-763, 2002. 

[27] A. Martinez and J. Vitria. Clustering in Image Space for Place Recognition 

and Visual Annotations for Human-Robot Interaction. IEEE Transactions on 

Systems} Man, and Cybernetics-Part B: Cybernetics, 31(5):669-682, 2001. 

[28] G. Matheron. Random Sets and Integral Geometry. John Wiley, 1975. 

[29] B. Moghaddam, C. Nastar, and A. Pentland. Bayesian Face Recognition using 

Deformable Intensity Surfaces. Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pages 638-645, 1996. 

[30] B. Moghaddam and A. Pentland. Probabilistic Visual Learning for Object De­

tection. Proceedings of the International Conference on Computer Vision, pages 

786-793, 1995. 

[31] H. Murakami and B. Kumar. Primary Images From a Set of Images. IEEE 

Transactions of Pattern Analysis and Machine Intelligence, 5(4):39-50, 1982. 

[32] H. Murase and S. Nayar. Learning and Recognition of 3D Objects from Appear­

ance. Proceedings of the IEEE Workshop on Qualitative Vision, pages 511-515, 

1993. 

[33] H. Murase and S. Nayar. Visual Learning and Recognition of 3D Objects from 

Appearance. International Journal of Computer Vision, 14(1):5-24, 1995. 

[34] S. Nayar and H. Murase. Dimensionality of Illumination in Appearance Match­

ing. Proceedings of IEEE International Conference on Robotics and Automation, 

2: 1326-1332, 1996. 



BIBLIOGRAPHY 206 

[35] S. Nayar, H. Murase, and S. Nene. Learning, Positioning and Tracking Visual 

Appearance. Proceedings of IEEE International Conference on Robotics and 

Automation, 4:3237-3244, 1994. 

[36] S. Nayar, S. Nene, and H. Murase. Real-Time 100 Object Recognition System. 

Proceedings of ARPA Image Understanding Workshop, 3:2321-2325, 1996. 

[37] S. Nayar, S. Nene, and H. Murase. Subspace Methods for Robot Vision. IEEE 

Transactions on Robotics and Automation, 12(5):750-758, 1996. 

[38] S. Nene and S. Nayar. Closest Point Search in High Dimensions. Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 

859-865, 1996. 

[39] K. Ohba, Y. Sato, and K. Ikeuchi. Appearance-based Visual Learning and Ob­

ject Recognition with Illumination Invariance. Machine Vision Applications, 

12(4):189-196, 2000. 

[40] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press" 1983. 

[41] A. Pentland, B. Moghaddam, and T. Starner. View-based and Modular 

Eigenspaces for Face Recognition. Proceedings of the IEEE Conference on Com­

puter Vision and Pattern Recognition, pages 84-91, 1994. 

[42] P. Quick and D. Capson. Combating Occlusion and Scene Changes for Camera 

Position Determination. Proceedings of the IAPR Workshop on Machine Vision 

Applications, 2000. 

[43] P. Quick and D. Capson. Subspace Position Measurement in the Presence of 

Occlusion. Pattern Recognition Letters, 23(14):1721-1733, 2002. 



BIBLIOGRAPHY 207 

[44] C. E. Shannon. Communication in the Presence of Noise. Proceedings of the 

IRE, 37:10-21, 1949. 

[45] M. Turk and A. Pentland. Eigenspaces for Recognition. Journal of Cognitive 

Neuroscience, 3(1):586-591, 1991. 

[46] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor. Omni-directional Vision 

for Robot Navigation. IEEE Workshop on Omnidirectional Vision, pages 21-28, 

2000. 


