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Abstract

The focus of this thesis is on blind identification techniques for multi-input, multi-output

(MIMO) systems. In this respect we study three problems:

1. The joint diagonalization problem:
Joint diagonalizatidn is an efficient tool for blind identification techniques for MIMO
systems. In this thesis we discuss new adaptive joint orthogonal diagonalization algo-

rithms based on optimization methods over the Stiefel manifold.

2. Blind identification of MIMO systems:
We demonstrate that by using the second-oder statistics of the system outputs, by
exploiting the non-stationarity of sources, and some mild conditions on the sources
and the system, the impulse response of the MIMO system can be identified up to
an inherent scaling and permutation ambiguity. An efficient two-step frequency do-
main algorithm for identifying the MIMO system then has been proposed. Numerical

simulations verify the theoretical results and the performance of the new algorithm.

3. Real room blind source separation problem:
The final part of the thesis focuses on the practical problem of blind source separation
of mixed audio signals in a real room. The new proposed algorithm exploits the
non-stationarity of audio signals to separate them from their mixtures recorded in
a reverberant environment. This method has successfully been applied to real data
acquired during extensive recording experiments done in different office rooms on the

McMaster campus.
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Notation and Acronyms

NOTATIONAL CONVENTIONS

a Scalar
a Vector
Matrix
AT Matrix transpose
Al Hermitian transpose
det(A) Determinant of A
Tr(A) Trace of A
E{} Expectation Operator
diag(a) Forms a diagonal matrix from

the vector a
diag(A) Forms a column vector from
the diagonal elements of A
ddiag(A) Forms a diagonal matrix from
the diagonal elements of A
vec{A} Forms a column vector by
stacking the columns of A
mat{a} Forms a J x J matrix from
a J% x 1 column vector a
AT Pseudo Inverse of the matrix A

Off(A) Sum of squared off-diagonal values of A




1Al

Hlal2
R
C
zZ

R{c}

S{c}

Frobenius norm of matrix A
Fuclidean norm of vector a

Set of real numbers

Set of complex numbers

Set of integer numbers

Real part of the complex variable ¢

Imaginary part of complex variable ¢

PRINCIPAL SYMBOLS

J
N
H(1)

Number of observed signals

Number of sources

Impulse response of a MIMO system
Discrete time Fourier transform of H(#)
Permutation matrix

Noise Vector

Noise Variance

Vector of sources

Vector of observed signals

y(t) Vector of output signals
R, Covariance matrix of the observations
P;(w,m) Cross power spectral density matrix
of x(t) evaluated at time epoch m
ABBREVIATIONS

ALS Alternating least-squares .
ALSP Alternating least-squares with projection

AR Autoregressive

BSS Blind source separation
CDMA Code division multiple accesss
CPSD Cross Power Spectral Density
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CRLB Cramér-rao lower bound

DFT Discrete Fourier transform
DTFT Discrete time Fourier transform
FFT Fast Fourier transform
FIR Finite-duration impulse response
HOS Higher-order statistics
Hz Hertz
iid Independent and identically distributed
IIR Infinite-duration impulse responce
ISR Interference-to-signal ratio
MIMO Multi-input multi-output
ML Maximum likelihood
mse Mean squared error
pdf Probability density function
s Second
SDMA Space division multiple access
SIMO Single-input multi-output
SISO Single-input single-output
SIR Signal-to-interference ratio
SNR Signal-to-noise ratio
SOS Second-order statistics
SVD Singular value decomposition
STFT Short time Fourier transform

TITO Two-input Two-output
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Chapter 1

Introduction

Multichannel blind estimation techniques are of great interest in many fields of study includ-
ing signal processing, communication, biomedicine etc., mainly due to their potentially wide
range of applications in all of these fields. In general these techniques address the following
problem. Consider the unknown multi-input, multi-output system A, shown in Figure 1.1
where si(t),...,sn(t), the inputs to the system, are inaccessible and only z1(t),...,zs(t),
the outputs of the system, are observable. The objective is to identify the system A or its
inputs or both using only the observed signals. The problem is called ”blind” because no
knowledge is available about the system A nor its input, and also to distinguish it from

standard identification methods where either the system A or the inputs are known. Most

81@) xl.(t)
oA

D RREEEEEEEE Unknowrnr------------ >

Figure 1.1: Blind estimation problem: A and s;1(t),...,sy(t) are unknown.
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of the known techniques for blind identification are presented under one of the following

categories:

e Blind Signal Separation: In blind signal separation (Cardoso, 1998) the objective is
to separate the sources s1(t), ..., sy(t) which are mixed through an unknown system
A. For the blind source separation we require N > 2, and although in general there
is no requirement on the number of output signals, the most common one, as is the

case in this thesis, is that J > N.

e Blind Equalization: Blind equalization (Ding and Li, 2001) (Tong et al., 1994)(Proakis,
2001), in its most common form is defined for the case where there is one source,
N =1, but the number of observed signals is one or more than one; ie., J > 1. A
common application of blind equalization is in communication systems. The objective
of blind equalization is to recover the original source, s(t), given only the observed
signals z1(t),...,zs(t). For N > 2 the objectives of blind source separation and
blind equalization become similar. Note that the desired objective in blind source
separation is more flexible compared with the objective in blind equalization. More
specifically, in blind source separation we may allow the outputs, although separated,
to be a filtered version or a non-linearly distorted version of the original sources, while
in blind equalization it is desired that the output be at worst a scaled and delayed

version of the original sources.

e Blind System Identification: Blind system identification(Abed-Meraim et al., 1997a)
deals with the case where the objective is to identify the system A using only its
output, without any access to the inputs. The commonly discussed form for blind

identification is when N =1 and J > 1. Fewer works discuss the more general form

when N > 1 and J > 1.

All the problems discussed above are closely related to each other and solving one can often
help to solve the others. In the following we discuss in detail the blind source separation

and blind system identification problems for the case where J > N > 2. Note that blind
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equalization for this case can be considered as one of the solutions to the blind source

separation problem.

1.1 The Blind Source Separation (BSS) Problem

The blind source separation problem can be explained through the following cocktail party

example:

1.1.1 A cocktail party scenario

Consider a room where several people are talking simultaneously to each other and there
is background music and other sources of sound such as moving fans etc. The sounds
in the room are recorded using multiple microphones located randomly around the room.
Note that the recorded sound is a mixture of different speech signals, music and sound,
caused for example by the moving fans. In this example room acoustics can be considered
as the unknown system A, the speech, music and noise generated by the moving fans are
considered as the input to this system, and the recorded signal can be considered as the
output of the system. For this scenario the objective of blind source separation is to separate
all the different sounds from each other, given only the recorded signals and without any

knowledge about the characteristics of the room nor the original sound sources.

1.1.2 Models

The most common model used in the blind source separation problem is the linear model;
in other words, the system A is linear. The linear model by itself can be categorized into

two major models:

1. Instantaneous mizing: In the instantaneous mixing model (Comon, 1994) (Bell and
Sejnowski, 1995) (Cardoso and Laheld, 1996) we assume the system A is a matrix
of real or complex scalars. In this case the outputs of the system A are a linear

combination of the inputs and we use the following to describe the relationship between



CHAPTER 1. INTRODUCTION 4

the inputs and outputs of A
x(t) = As(t) + n(t) (1.1)

where A € C/*V is the mixing system, s(t) = (s1(t),...,sn(t))T are the sources,
n(t) = (n1(t),...,nn(t))T represents the additive noise and x(t) = (z;(t),...,zs(¢))T
represent the observed signals. The most common assumptions used in instantaneous

mixing models are

e J>N>2.

o A has full column rank.

The sources s1(t),...,sn(t) are statistically independent from each other.

The noise n(t) is spatially and temporally white and is independent from the

sources!.

The objective in the instantaneous BSS problem is to find a separating matrix W
whose outputs

y(t) = Wx(t) (1.2)

are an estimate of s(t), the vector of source signals. In recovering the sources in
the instantaneous mixing problem some indeterminacies may arise depending on the
amount of a-priori knowledge available about the sources or the mixing system. If
no a-priori knowledge is available about the ordering of sources and their power nor
about the structure of the mixing system then one at best can estimate the sources
up to a scaling and permutation ambiguity (Cardoso, 1998) (Tong et al., 1991); in

other words, the outputs of the separating matrix W are given as
yi(t)=aijsj(t)+m(t) t=1,...,N, j=1,...,N, aijEC ‘ (13)

where o;; represent the scaling ambiguities that exist in recovering the sources and

ni(t) is the additive noise due to n(t). This also can be expressed as

WA = IID (1.4)

'For simplicity most often it is assumed the additive noise has zero power which corresponds to a noise
free model.
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Sl(t)

SQ(t)

Figure 1.2: A 2 x 2 Convolutive mixing BSS problem.

where IT is a permutation matrix and D is a diagonal matrix.

2. convolutive mizing: In the convolutive mixing model (Sahlin and Broman, 2000)
(Yellin and Weinstein, 1994) (Weinstein et al., 1993) (Tugnait, 1999) the mixing sys-

tem A is a matrix of complex or real filters and it can be written as:

ann(t) ... ain(t)
A(t) = P (1.5)

an(t) ... ayn(t)
where a;;(t) is the impulse response of the ijy;, filter in the mixing system. Figure 1.2
shows the convolutive blind source separation problem for a two-input, two-output

system. The relationship between the outputs and inputs of the mixing system in a

convolved BSS problem can be written as

o0
x(t)= Y A(r)s(t—1)+n(). (1.6)
T=—00
As can be seen, in the convolutive mixing problem the sources are convolved with the

elements of the mixing system. Note that instantaneous mixing BSS can be considered

as a special case of convolutive mixing BSS when a;;(t) are constant for all ¢.
The common assumptions used in convolutive mixing models are
e J>N2>2

e a;;(t) is causal and has a finite impulse response (FIR mixing model).
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o A(w), the DTFT of A(t), has full column rank for all w € [0, 27).
e The sources s1(t),...,sn(t) are statistically independent from each other.

o The noise n(t) is spatially and temporally white and is independent from the

sources.

Similar to the instantaneous case, the objective in the convolutive BSS case is to find
a separating matrix W (t) whose outputs
oo
y&)= > WEx(t-7) (1.7)
T=—00
are an estimate of the original sources. In the ideal case, the set of indeterminacies
are similar to instantaneous case; i.e., without any a-priori knowledge, at best we can
recover the sources up to a scaling and permutation ambiguity as given in (1.3). A less
restrictive set of indeterminacies also exists by allowing the outputs to be a permuted

and filtered version of the original sources; i.e.,

o0

yi(t) = Z hij(T)Sj(t - 7‘) + m(t) (1.8)

T=—00
where h;;(7) represents the filter ambiguity which exists in recovering the source
5j(t). The above makes the convolutive BSS case distinct from a multichannel blind
equalization problem where the objective is to recover the sources up to a scaling and

permutation ambiguity.

1.1.3 Applications

Blind source separation has a wide range of applications in audio, communication, mechan-
ical vibration analysis, biomedical signal processing and computer imaging. In the audio
application, blind source separation can be used for speech enhancement to separate the
unwanted signals from the desired speech signals. Hands-free telephony, teleconferencing,
music recording and hearing aid devices are some of the examples where blind source sepa-
ration can be useful. See also the references in (Parra and Spence, 2000), (Torkkola, 1999),

(Schobben and Sommen, 1998) for applications of blind source separation in audio. Blind
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source separation can also be used as a preprocessing stage in speech recognition devices
to enhance the quality of the input speech. In communication systems in the case of a
multi-antenna receiver, blind source separation can be used for separating SDMA signals
coming from different locations but using the same frequency band and time slot(Feng and
Kammeyer, 1999). See also (Sidiropoulos et al., 1998) for applications of BSS in direct se-
quence CDMA systems. In biomedical signal processing, blind source separation also seems
to have lots of applications. For example BSS can be used to remove the artifacts from
noninvasive measurements of bioelectrical process such as EEG(electroencephalograph) or
MEG(magnetoneurography). The main source of artifact in these measurements is the
heart beat signal which is usually an order of magnitude higher than the signal of interest.
Using blind source separation methods, the multichannel measurement vector can be trans-
formed into a representation of independent components which then allow us to distinguish
between the signal of interest and the artifacts. More information about this subject can
be found in (Ziehe et al., 1998). Also see (Makeig et al., 2000) and (Jung et al., 2000) for

more applications of BSS in biomedical signal processing.

1.1.4 Approaches

In this section we give an introductory discussion on approaches that can be used for solving
the blind source separation problem. One general approach is shown in Figure 1.3 where s,
x and y are random vectors representing respectively the sources, observed signals and the
outputs of the separating system W. As can be seen from the figure the sepafa’cing system
W is calculated by minimizing the contrast function ¢[y]. Note that ¢[y] is a function of the
statistics of y rather than the instantaneous value of random variable y. In BSS terminology
a contrast function is a real valued function of the statistics of the output signals such that
its value is minimized when the outputs have been separated. In an instantaneous mixing
model, if A is the mixing matrix and W is the separating matrix and we define the global

system C = WA, then if ¢[] is a contrast function we expect

#[Cs] > ¢]s] (1.9)
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>
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o[y

Continue

Figure 1.3: Approach I to the BSS problem.

with equality when C = ITD where D is a diagonal matrix and II is a permutation matrix.
As can be seen, a contrast function in general is invariant to any scaling of the sources
or any permutation of the order of the sources. Refer to (Comon, 1994) for a rigorous
definition of the contrast functions. A good example for a contrast function in a blind
source separation context is a probabilistic measure of the statistical independence of the
outputs. The motivation behind this is based on the works in (Comon, 1994) where it is
shown that if the random variables in s are statistically independent from each other and
at most one of them is Gaussian then the random variables in y = Cs become independent
when C = IID. In other words the independence of the outputs is equivalent to them being
separated. Let p(y;) represent the probability density function of random variable y;. From
statistics we know that the random vector y = (y1,...,y~)T has mutually independent

components if and only if
N
p(y) = [ [ p(w) - (1.10)
i=1

where p(y) represents the joint probability density function of 3;,...,ynx. Based on the
relationship in (1.10) we can check the independence of the output random variable y by
measuring how close the joint probability distribution of the outputs is to the product of

their marginal probability distributions. In statistics, to measure such a distance between
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two probability density functions p(x) and g(x), we use the Kullback-Leibler distance defined

as

K(plg) = /xp(X) log (g%)dx. (1.11)

An important property of the Kullback-Leibler distance is that (p|q) > 0 with equality if
and only if p(x) and g(x) are equal. For an independence check we can choose p(x) = p(y)
and g(x) = [JX,p(y) and then using the Kullback-Leibler distance the independence
measure can be defined as

I(y) = / p(y)log (—,\?(L)dy- (1.12)

y i=1 P(Yi)

The above measure in information theory is known as mutual information and for random
variables y1,...,yn is notated by the symbol I(yi,...,yn). Notice that I(y,...,yn) >0
with equality if and only if 41, ...,yn are mutually independent. Also note that mutual
information is invariant with respect to scaling of random variables y; and the permutation
of their order. As can be seen the mutual information I(y) has all the characteristics of a
contrast function and it can be used as the ¢[y] in Figure 1.3, as long as the independence
and non-Gaussianity assumptions are satisfied.

To calculate the mutual information one needs to estimate first the marginal probability
distributions of the outputs and express them in terms of separating parameters of W. In
(Comon, 1994) the author suggests an approximate way of calculating the mutual informa-
tion based on a fourth-order Edgeworth expansion of the probability density function. The
method in (Pham, 1996) also uses the criterion in (1.12) to separate independent sources
by replacing the unknown density functions in (1.12) with their kernel estimates.

Another approach for solving blind source separation problem is illustrated in Figure 1.4.
This approach shows clearly the link between the blind source separation and the the blind
system identification problem. As can be seen from the figure here we first estimate the
mixing system A from the observed data x by minimizing an estimation function F(A, x)
with respect to A, an estimate of A. Having the estimated value of A and assuming that
A is invertible, we then separate the sources by applying the inverse of A to the observed

signals. An example of an estimation function for the instantaneous mixing scenario is the



CHAPTER 1. INTRODUCTION 10

_— A WA

F(A,x)

Continue
?

Figure 1.4: Approach II to the BSS problem.

following least-squares criterion

L-1
F(A,x) =} |R.(l) - AA(DAT| % (1.13)
=0

where A(l) are unknown diagonal matrices with real diagonal values and R (1) is an estimate
of the covariance matrix of the observed signals evaluated at time lag ! and is calculated

from

. 1 T-1 '
Ro() = 7 > x(®)x'(t +1), (1.14)
t=0

where T is the observation time. Notice that F(A, x) > 0. Also in the above criterion since
both A and A(l) are unknown, any scaling or permutation exchange between the columns
of A and diagonal values of A(l) does not change the value of F. When an exact estimate
of Rg(l) is available then it can be shown that, under the conditions listed below, when
F(A, x) = 0 then A = AIID where IT is a permutation matrix and D is a diagonal matrix.
The identifiability conditions of A are as follows (see Chapter 2):

1. The mixing system A has full column rank.
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2. Noise n(t) is spatially and temporally white with known variance.

3. Rg(l), the covariance matrix of the sources, is diagonal for all I = 0,..., L —1 and the

vectors d(l) = vec{R;(l)} are linearly independent.

Based on Condition 3, to identify A, we require that the sources be uncorrelated over
the range of [ = 0,...,L — 1, and also that their autocorrelation coefficients be linearly
independent from each other. In practice only an approximate estimate of R, (l) is available;
in 'this case the optimum point of (1.13) is an approximate estimate of A up to a permutation
and scaling ambiguity.

So far we have discussed methods for blind source separation for the instantaneous mix-
ing. In general, blind source separation of convolved mixtures is more challenging compared
to its instantaneous counterpart. At the same time relative to instantaneous mixing, the
convolutive BSS algorithms are of higher interest because they are more likely to be used in
a practical application. For example, separation of audio signals in a room environment is
a convolutive mixing problem, due to the reflection of sound from the walls, furniture etc.

Here are some key differences between instantaneous and convolutive mixing algorithms:

¢ The number of unknown parameters in a convolved BSS problem is much higher than
that in an instantaneous BSS problem. Note for an N-input, J-output mixing system,
for instantaneous mixing the unmixing system is an N x J matrix with JN unknown
elements. For convolutive mixing if we model the mixing system as a matrix of FIR,
filters, then JNL, where L is length of the mixing filters, parameters are needed
to identify the mixing system. Note for the FIR mixing system, if one decides to
directly estimate the unmixing system, then the number of unknown parameters is
usually higher than JNN L. This can explain one motivation to first estimate the mixing

system and then use its inverse to recover the sources in a convolutive mixing problem.

¢ In instantaneous mixing at each time instant the observed signals are a linear combi-
nation of the sources, while in convolutive mixing the observed signals are given by

the convolution of the mixing system and the sources. To recover the sources they
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Figure 1.5: Example of a 2 x 2 convolutive mixing, unmixing systems.

need to be deconvolved from the unknown mixing system. Because of this, compared
to the instantaneous mixing BSS methods, the convolutive BSS algorithms are more
complicated with usually slower convergence and a higher chance of a suboptimal

solution.

Most time-domain convolutive BSS methods assume an FIR model for the mixing and
unmixing system (Chan et al., 1996)(Reilly and Mendoza, 1999)(Gorokhov and Loubaton,
1997). This is shown in Figure 1.5 for a 2 x 2 mixing and unmixing system where a;;(t)
and wj;(t) are FIR filters. Note that in general if the mixing system is an FIR system,
one may not recover the sources up to a scaling and permutation ambiguity using an FIR
unmixing system. Nevertheless it can be shown that one can always separate the sources
up to a permutation and a filter ambiguity when using an FIR separating system. Let’s
assume that A(z) represents the transfer function of an N-input, N-output FIR mixing
system with L being maximum order of its elements. Also let A,4(z) represent the adjoint
of A(z). Then

Aqgi(2)A(z) = D(z) (1.15)

where D(z) is a diagonal matrix for all z and with diagonal elements all equal to det(A(z)),
the determinant of A(z). Since A(z) is a polynomial FIR matrix its adjoint is also an FIR
polynomial matrix with maximum element order equal to L(/N — 1). Based on equation
(1.15), we can see that for any polynomial mixing system A(z), there exists a polynomial

unmixing system A,g4(z) which can separate the sources up to a filter ambiguity given by
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diagonal elements of D(z).

Only under the condition that the FIR mixing system A(z) has full column rank for all
z € C (A(z) is irreducible), can it be shown there exists an FIR, unmixing system which not
only separates the sources, but also recovers them up to some scaling and delay ambiguities
(Gorokhov and Loubaton, 1997). This condition on A(z) guaranties the FIR invertibility
of an FIR multi-input, multi-output system. For the special case where A(z) is a square
polynomial matrix, irreducibility of A(z) can easily be verified from (1.15) by noticing that
the above condition corresponds to det(A(z)) being constant for all z € C.

‘Time-domain algorithms for blind source separation under convolutive mixing can be
designed using similar concepts discussed for instantaneous mixing algorithms. In this
instance one can use a contrast function at the outputs of the unmixing system W(t)
and minimize the value of the chosen contrast function with respect to all the elements of
the unmixing filters w;;(t). Some of contrast functions used in instantaneous mixing BSS
can be extended to convolutive case. In (Yellin and Weinstein, 1994) the authors show
that for blind source separation of convolved non-Gaussian iid sources, in a fashion similar
to the instantaneous case, one can use the independence of the output signals to achieve
separation. Note that in general not all the contrast functions used in the instantaneous
mixing problem can be extended to the convolutive case. For example for instantaneously
mixed sources, it is known that under the condition that the sources are uncorrelated colored
signals with linearly independent autocorrelation coefficients, then the sum squared of the
cross-correlation functions of the output signals of unmixing system, evaluated at different
lags, can be used as a contrast function. In general assuming the same set of conditions on
the sources, the above contrast function is not suitable for a convolutive mixing problem
unless the mixing system has a specific structure (e.g it is column-wise coprime as has been
discussed in (Hua and Tugnait, 2000)).

The main disadvantage of a time domain convolutive BSS approach is its slow conver-
gence and computational cost. For a large scale convolutive mixing problem such as blind
source separation of audio signals in a real reverberant environment where the size of the

mixing filters can be a few thousand taps, time domain BSS algorithms are inefficient and
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impractical. A rather convenient way of solving the convolutive BSS problem is to use a
frequency domain approach. The advantage of using a frequency domain rather than a time
domain approach is that using the frequency domain method, one can decompose a time
domain estimation problem, with a large number of parameters, into multiple, indepen-
dent estimation problems, with much fewer parameters to be estimated at each frequency
bin. As a result, in general the frequency domain estimation algorithms have a simpler
implementation and better convergence properties.

Based on the model (1.6), in the frequency domain we have:
x(w,m) = A(w)s(w, m) + n{w, m) (1.16)

where x(w, t), s(w,t) and n(w,t) are respectively the short-time Fourier transform (STFT)
of x(t), s(t) and n(t) at time m and A(w) is the DTFT of A(7)2. As can be seen using a
frequency domain transformation, at each frequency we have an instantaneous BSS problem
where the mixing matrix is given by the complex matrix A(w). Note that w € [0,27) is a
continuous variable. In practice we use a discretize version of w given as wy = 2—}2’9, k=
0,...,K —1 where K is total number of frequency bins.

As shown in Figure 1.6, at each frequency bin we can use an instantaneous blind source
separation algorithm to separate the sources. The final output then is calculated by taking
an inverse Fourier transform of each of the separated outputs. The suggested frequency
domain approach, although simple, has some serious drawbacks, which unless they are
treated properly, can make the frequency domain algorithm impractical.

The main drawback of a frequency domain convolutive BSS approach is that at each
frequency bin, the permutation and scaling of the separated outputs can be different from
those of other frequency bins. Because of the random permutations across the frequency
spectrum, even if the frequency domain outputs are separated at each frequency bin, after

being transformed back to the time domain, the resulting outputs may not be separated at

all. In addition, the effect of random scaling of the outputs across the frequency spectrum

*In practice we use the DFT(FFT) rather than the DTFT; in this case, (1.16) only approximately holds
when the number of data samples (and as a result number of DFT samples) is much higher than the maximum
order of elements of A(z).
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Figure 1.6: Frequency domain approach to BSS problem.

will appear as an arbitrary filtering of the output signals in the time domain. For audio
sources these random filtering may severely distort the audio quality of the output signals.

Apart from random permutations and scaling factors, other problems may arise when one
wants to implement the frequency domain structure shown in Figure 1.6 using off-the-shelf
instantaneous BSS algorithms. For example, the group of instantaneous BSS algorithms
which use independence and non-Gaussianity of the source signals to achieve separation
may not perform well in the frequency domain structure shown in Figure 1.6, due to the
fact that the signals at the output of an FFT process tend to become more Gaussian as
the number of the FFT points increases (Serviere, 1998). The algorithms used in (Westner,
1998) are examples of the frequency domain scheme described above, used for separation
of speech signals in real reverberant environments. In this case, as shown by experimental
results, for some instances the quality of the output signals not only has not improved, but
it has even been degraded compared to the quality of the original input mixed audio signals.

In Chapter 4 of this thesis we propose an alternative frequency domain approach shown
in Figure 1.7. In this approach we use the time varying second-order cross spectral param-

eters of the observed signal to estimate the mixing system A(wy) at each frequency bin.
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Figure 1.7: Proposed frequency domain BSS algorithm for convolutive mixing,.

The separating matrix W(¢) is then obtained by calculating the inverse Fourier transform
of A~}(wg). In this proposed algorithm, as has been discussed in Chapter 4 of thesis,
we use an efficient method to prevent frequency dependent, arbitrary permutations of the
columns of A(wg). Also we propose a novel initialization procedure to alleviate the effect

of frequency dependent scaling ambiguities in recovering the columns of A (wy).

1.2 MIMO System Blind Identification

The multi-channel blind identification problem is closely related to the blind source sepa-
ration problem, since in practice one can always identify the channel first and then use its
inverse to recover the sources. Note that the blind identification problem is more general
compared to the blind source separation problem. For example blind source separation does
not apply to the case when there is only one source and one or multiple observed signals.
On the other hand, one can apply blind identification techniques to identify the channel
between each of the observed signals and each source in this case. Note that in the liter-
ature, some of the proposed methods for blind identification of multi-input, multi-output
(MIMO) systems are extensions of the methods for single-input, multiple-output (SIMO)
or single-input, single-output (SISO) blind identification methods, and in this respect they
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Figure 1.8: Example of a SISO blind system identification problem: objective is to identify
h(t) using only z(t).

use a different approach than the commonly used methods for the blind source separation
problem. In this section we first discuss the blind identification problem in its general form
including some examples of its applications. We also discuss in more detail some of the

existing approaches for solving this problem.

1.2.1 Problem Description

In its most common form, the objective of a blind system identification problem is to
estimate the impulse response of a linear, time-invariant system h(t), shown in Figure
1.8, using only the system output without access to the system input. Note that this is
in contrast to classical system identification where both the input and the output of the
unknown system are accessible. The most common system models in the blind identification
literature are the SISO model (Tong et al., 1994) (Giannakis and Mendel, 1989) ( see Figure
1.8) and the SIMO model (Abed-Meraim et al., 1997b) (Hua and Wax, 1996) (see Figure
1.9). Note that the SIMO model can be used for blind identification of a SISO system. For
example, in digital communication, one known approach for blind identification of a SISO
channel is to sample the received signal at a higher rate than the baud rate. In this case
the processed received signal shows cyclostationary behavior, and equivalently it can be
represented as a stationary process with an underlying SIMO model (Tong et al., 1994).
There are two advantages of using a SIMO model rather than a SISO model. The

first advantage is that it can be shown that a non-minimum phase? FIR SIMO system

3For blind identification of minimum phase FIR channels, second-order statistics are known to be sufficient
even for SISO systems.
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Figure 1.9: Example of a single-input, multiple-output blind system identification problem:
objective is to identify hi(¢),...,hs(t) using z1(t),...,zs(¢).

can be identified using the second-order statistics of the observed signals if the channels
hi(t),...,hs(t) do not share common zeros. Another advantage of using the SIMO model
is that under the above condition it is FIR invertible; in other words, if hy(t),..., hs(t) are
FIR filters which do not share common zeros, then based on the Bézout’s identity (Kailath,
1980) (Vaidyanathan, 1993) there exists a multi-input, single-output system with set of FIR,
filters g1(t), ..., gs(t) such that the combined impulse response of the two systems is a pure
delay. In literature there are a few works related to the more general case of the MIMO

system. These works are mostly an extension from the SIMO case.

1.2.2 Problem Formulation

We consider the following N-input, J-output FIR mathematical model for the MIMO blind

identification problem
L—1
x(t) = Y H(l)s(t — 1) +n(t) ©(1.17)
1==0

where H(l) € R/*¥ is the unknown FIR system with a maximum element order of L,
s(t) € RV*1 js the source vector, x(t) € R7*! is the vector of observed signals, and n(t)
is the additive noise vector. The objective is to identify the systermn H(l) using only the

observed signals x(t) and without any knowledge about s(¢).
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e The SIMO Model:

For the SIMO model we have N =1 and J > 2. For a block of Q consecutive samples

(1.17) can be represented as
Xq(t) = Hysg(t) + ng(t) (1.18)

where x,(t) € R7@X1, s,(t) € R@+LX1 p (¢) € RI9X1 are respectively the observed

signal, source and noise data matrices given as

x(t) s(t) n(t)
xq(t) = : , Sq(t) = : , Dg(t) = :
x(t-Q+1) s(t—Q—-L+1) n(t—Q+1)
(1.19)

and H; € R@IX(L+Q) g the system matrix having the following Sylvester structure
h(0) ... h(L)
H, = (1.20)
h(©) ... h(D)

where h(t) = (hi(¢),...,hy(t))T is the impulse response vector of the SIMO system.
Most of the methods for blind identification of SIMO channels use one or all of the
assumptions listed below (Tong and Perreau, 1998):

1. The subchannels h;(t),..., h (t) are coprime; in other words, their z-transforms

hi(2),...,hj(z) do not share common zeros.

2. Persistence of excitation of the sources, as defined in (Tong and Perreau, 1998)

3. The noise n(t) is zero mean, white with known variance.

4. The channel has known order.

Under the conditions 1 and 2 it can be shown that h(t) can be identified up to a

constant factor from the noiseless observation x(t).
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e The MIMO Model

The MIMO model, where N > 2 and J > 2, for a block of W consecutive samples
can be represented as

Xy (t) = HyySy (t) + ny, () (1.21)

where x,,(t) € R7WX1 5, (t) € RWHLNX1 1y (+) € R7W*1 are respectively observed
signals, source and noise vectors and H,, € R/WXW+LIN g the channel matrix given

as

H, = (1.22)
H(0) ... H(L)
where H(t) is the impulse response of the MIMO system.

Most of the MIMO blind identification methods make one or all of these assumptions
on the system (Abed-Meraim et al., 1997a)

1. J> N.
2. H(z) the z-transform of H(¢) has full column rank for all z except z = 0.

3. [h1(M1) ho(M3) ... hy(Mp)] has full column rank where h;(t) is the 4 column
of H(t) with M; being the maximum element order of h;(2).

4. The elements of each column of H(z) do not share common zeros (column-wise

coprimeness assumption).

Note that the first three assumptions also guarantee the invertibility of the MIMO
FIR system H(z). Based on the last assumption (column-wise coprimeness), in (Hua
and Tugnait, 2000) it is shown that when the sources are uncorrelated colored signals
with distinct power spectra, then a MIMO channel can be identified up to a constant
diagonal scaling and permutation matrix using only the second-order statistics of the
observed signals. When the input signals are stationary white signals then second-

order statistics are not enough to identify the system. Nevertheless it can be shown
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that under the first three assumptions in this case the MIMO system can be identified

up to a scalar mixing system (Giannakis et al., 2001).

1.2.3 Applications

The need for blind system identification arises from many applications, including data com-
munication, echo cancellation for hands-free telephony, teleconferencing, speech recognition
systems, image restoration and seismic signal processing.

The main application of blind system identification to data communication systems is
to remove the intersymbol interference (ISI) caused by the communication channel’s finite
bandwidth. For an application which eliminates ISI, the channel response is first identified
without using any training sequences. The identified channel is then used to equalize the
received data and remove ISI. The fact that no training sequence is required is a major
advantage of blind identification methods since non-blind methods for channel identification
and equalization require a significant fraction of the channel capacity for sending training
sequences.

For speech and audio signals the main application of blind system identification is for
echo cancellation and dereverberation. In a hands-free telephone application, the speech
signals received by the telephone’s microphone may get distorted due to a reverberant room
environment. To remove the reverberation effects an equalization process is used which by
itself requires knowledge of the impulse response of the room. Since the impulse response
of the room can change depending on the room characteristic and on the location of the
handset inside the room, a blind system identification can be very useful in identifying the
impulse response of a room which then can be used to equalize the received speech signal.

In image processing the main application of blind system identification is to restore a
distorted image. In applications such as astronomy and medical imaging, blurring effects
may occur which can be the result of camera motion during exposure or inaccurately focused
lenses. The blurring effect can be represented by the convolution of the original undistorted
image with the point spread function of the blurring system. Having the point spread

function, one can restore the original image. Unfortunately in many practical situations
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the point spread function is unknown and so a blind system identification algorithm can be
used to identify the blurring system that is used to restore the image.

Blind system identification has also application to seismology where the objective is to
identify the physical characteristics of various layers in the earth. In this application, an
explosion in the earth is used to create excitation signals and the resulting reflection and
diffraction signals caused by different layers of the earth are measured through installed
geophones. Since the exact waveform of the excitation signal responsible for generating the
signal received through the geophones are unknown, identifying the impulse response of the

system representing the various layers of earth is a blind system identification problem.

1.2.4 Approaches

The main focus of this section is on the theoretical approaches used for blind identification
of MIMO systems. Since some of the MIMO blind identification algorithms are an extension
of blind identification algorithms for SIMO systems, we start with describing some of the

methods for blind identification of SIMO systems.

e SIMO blind identification: Many recent SIMO blind estimation techniques exploit
the subspace structure of the observation signals. The key idea in subspace methods is
that the channel vector lies in a unique direction specified by observation statistics or
a block of noiseless observations. One of the attractive features of subspace methods
is that most often a closed from solution can be found. The disadvantage is that they
may not be robust against modelling error, especially when the channel matrix H, is
close to being singular. Another disadvantage of subspace methods is that, compared

to other methods, they are usually computationally expensive.

One of the frequently used approaches is the signal-noise subspace decomposition.
From equation (1.18) we can write
1 Tl
R, = lim = Z xq(t)qu(t)
Toe T = (1.23)
= HR,HT + 0’1
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where R is the covariance matrix of the sources and ¢? is the power of the noise.
Note that if hy(t),..., h;(t) do not share common zeros then H, has full column rank
and its range space, which is the same as the signal subspace, is represented by the
L + Q dominant eigenvectors of R, and is orthogonal to the noise subspace, spanned
by remaining eigenvectors of R;. The motivation behind using a signal-noise subspace
decomposition is based on the results in (Moulines et al., 1995), where it is shown that
if the channels hi(t),...,h;(t) do not share common zeros, then for Q > L + 1 the
range space of H, uniquely determines h(t) up to a scaling factor. In practice, when
the exact estimate of R, is not available, using the orthogonality between the range
space of H, and the noise subspace, the channel vector can be estimated from the
following least-squares criterion (Abed-Meraim et al., 1997a)

h=arg min ||ETH|? (1.24)

|Ihj}=1

where h = (h1(0),...,hy (L), h2(0),. .., ha(L),- .., hs(0),..., hy(L))T and E, is a ma-
trix which consists of the noise subspace eigenvectors of R, the sample estimate of

Rx-

e MIMO blind identification:

The subspace method described above can be extended to MIMO channels. Note that
subspace MIMO channel blind identification algorithms require stricter conditions on
the channel structure; e.g., H(z) should have full column rank for all z. This condition
is equivalent to the Sylvester matrix H,, given in (1.21) having full column rank.
Similar to subspace methods for the SIMO case, the left null space of H,, can be
identified from the noise eigenspace of the observed signal covariance matrix. Note
that contrary to the SIMO case where the null space of H, is unique up to a constant
scalar, the null space of H,, is unique only up to a constant invertible matrix. In other

words if A is a constant invertible N x N matrix, then the left null space of H,, given
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in (1.22) and the matrix given below will be the same (Giannakis et al., 2001):

H, = . (1.25)

Because of this, the subspace methods for MIMO blind identification can at best identify
the MIMO system up to an unknown constant matrix A. To identify A, one can use the
instantaneous blind source separation methods discussed in previous sections. Note that
with this approach there may be problems, such as in a non-ideal situation A may not be
a constant matrix but it could be time-variant. In this case, using an instantaneous BSS
algorithm as the second stage will not be effective.

In (Hua and Tugnait, 2000) a method for blind identification of MIMO systems has been
described which uses a bank of decorrelators to transform a MIMO system into a bank of
SIMO systems. The resulting SIMO systems can be identified using the standard SIMO
blind identification methods. The main assumptions that are used in this approach are that
sources are colored signals with linearly independent spectra and the unknown system H(z)
is column-wise coprime.

All the methods described above use the second-order statistics of the observed signal
to identify the unknown system?. For the SIMO case, the second-order statistics subspace
method described above is enough to completely reveal the underlaying system up to a
scaling factor without making any assumptions on the sources. In other words the sources
can be white or colored, Gaussian or non-Gaussian signals. For blind identification of MIMO
systems on the other hand, second-order statistics may not be enough to completely identify
the system without making assumptions on the sources or the system. '

Higher-order statistics (HOS) methods are other alternatives which are usually used
for blind identification of single-input, single-output systems. Compared with second-order
statistics methods, the advantage of using higher-order statistics algorithms is that they

usually require a less restrictive set of assumptions on the unknown system. Nevertheless

“For more references on SOS MIMO blind identification methods see also (Loubaton and Moulines, 2000),
(Loubaton and Moulines, 1999), (Shen and Ding, 2001) and (Zhu et al., 1998)
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most of the higher-order statistical methods still require certain conditions on the statistics
of the sources. Notice that in general non-Gaussianity is a necessary condition for all HOS
methods. Some of HOS based blind identification methods exploit higher-order spectra to
identify the system transfer function including the ones described in (Chen and Petropulu,
2001)(Shamsunder and Giannakis, 1997)(Tugnait, 1997).

The method in (Chen and Petropulu, 2001) uses the cross-bispectrum and cross spec-
trum of observed signal to identify the channel. The cross-bispectrum of a random process
by definition is the two-dimensional discrete Fourier transform of the third order cumu-

lant of that process®

. Note that in general the third order cumulant of a symmetrically
distributed random process is zero(Mendel, 1991). Due to this restriction the method in
(Chen and Petropulu, 2001) requires that the sources be non-Gaussian, nonsymetrically
distributed (for example the sources cannot be Gaussian or Laplacian distributed).

Apart from these limitations of HOS methods with respect to statistics of the sources,
another disadvantage of the HOS methods is that they require large sample sizes for accurate
time-averaged approximation of higher-order cumulants or spectra and they usually suffer

from slow convergence due to the large estimation variance of the higher-order statistics

(Abed-Meraim et al., 1997b).

1.3 Non-stationarity, joint diagonalization methods and their

applications to BSS and MIMO System Identification

In the previous section we discussed some of the second-order and higher-order statistics
approaches for blind source separation and blind identification of MIMO systems. Note that
in all the discussed methods, the sources are assumed stationary. In this thesis we discuss
blind source separation and blind identification methods which exploit the non-stationarity

of the observed signals.

e Motivation for using a non-stationarity assumption

®Third order cumulant of a random process z(t) by definition is C3,2(71,72) = Elz(t)z(t + t1)z(t + 72].
Also refer to (Mendel, 1991) for a tutorial on higher-order statistic (spectra) in signal processing.
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A non-stationarity assumption can be justified by noticing that most real world signals
including speech, biomedical signals etc. are inherently non-stationary. In commu-
nication systems non-stationarity in the form of cyclostationarity can be created by
over-sampling the received signals (Tong et al., 1994), or as suggested in (Serpedin

and Giannakis, 1998), cyclostationarity can be induced in the transmitted signal.

We can use non-stationarity for instances where standard HOS or SOS blind system
identification (or blind source separation) methods developed for stationary signals

both fail; e.g., when the sources are both Gaussian distributed and temporally white.

In the previous section we mentioned some of the advantages of the second-order
statistics methods compared to the higher-order statistics methods; e.g. SOS methods
are insensitive to the sources’ statistical distribution, they require less data samples
and they usually have a simple implementation. The main disadvantage of SOS
methods is that they require a more restrictive set of assumptions on the channel
and the sources. By exploiting the non-stationarity of the input signals one can now
develop second-order statistics solutions to problems where only higher-order statistics
methods were previously applicable; e.g., blind identification of non-minimum phase

MIMO systems driven by temporally white signals.

In large scale problems such as blind source separation of audio signals in a reverberant
room, where the number of unknown parameters is usually very high, a frequency do-
main approach will be effective. As mentioned earlier, a major drawback of frequency
domain approaches for blind source separation and blind MIMO system identification
is the arbitrary frequency dependent permutation problem. As will be shown later in
this thesis, non-stationarity of the sources can be used to eliminate this major problem

of frequency domain methods.

¢ Previous works

In (Pham and Cardoso, 2001), (Souloumiac, 1995) and (Tsatsanis and Zhang, 2001),
(Chang et al., 2000) the authors propose non-stationary blind source separation al-

gorithms for instantaneous mixing. In (Parra and Spence, 2000) a frequency domain
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algorithm is used for blind source separation of convolved non-stationary sources. The
method presented in (Parra and Spence, 2000) has some limitations with respect to
solving the frequency domain permutation problem. These limitations, as have been
discussed recently in (Ikram and Morgan, 2000) and later on in (Ikram and Morgan,
2001) and (Araki et al., 2001), degrade the performance of the algorithm in a long
reverberant environment. The method in (Parra and Spence, 2000) also requires the
diagonal elements of the convolutive mixing system to be constant. This is a rather
strong condition on the mixing system and in practice will result in the separated

outputs being a filtered version of the original sources.

e Connection with the joint diagonalization problem

The joint diagonalization problem, which has recently been discussed in (Cardoso and
Souloumiac, 1993)(Pham, 2000)(Yeredor, 2000), has a close connection with blind
source separation and blind MIMO identification problems. This connection is more

evident when one uses non-stationarity to solve these blind identification problems.

The joint diagonalization problem can be expressed as follows. Assume that there
exists a set of matrices Py,..., Py where P; is a J x J real or complex matrix. Also

assume that these matrices are related as
Pn=AA AT m=1.. M (1.26)

where A isa J x N (J > N) unknown matrix and A(m) are N x N diagonal matrices
which are also unknown. The objective in the joint diagonalization problem is to
find a matrix W such that it jointly diagonalizes the set of matrices Py, ... , Par; ie,
we wish to find a W such that WP{Wt, ... WP, W are all diagonal matrices.
Given A of full column rank, then one trivial solution to the above problem is to set
W = A" where A% is the pseudoinverse of A. Note that in general there are many
possible solutions to the above problem; e.g., if W is a joint diagonalizer of a set of
Pi,..., Py then WDII where D is a diagonal matrix and IT is a permutation matrix

will also be a joint diagonalizer of the same set.
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Let dn, = diag{A(m)} be vectors, organized from the diagonal elements of A(m).
Then it can be shown that under the conditions that A has full column rank and the
set of N-dimensional vectors d,,, m = 1,..., M span R¥, then for any full column
rank matrix W that jointly diagonalizes the set of matrices P1,..., Py, defined in
(1.26), we have®

WA =T1ID (1.27)

where D is a diagonal matrix and IT is a permutation matrix. We can also show that
the same set of conditions guaranties a unique estimation of A up to some permutation
and scaling ambiguity from the set of matrices Py,...,Pps. In other words if there is

a matrix B and diagonal matrices A(m) such that
P,, = BA(m)B' (1.28)

then we should have B = ADII.

In a blind source separation context, assuming that the sources are non-stationary
with time-varying variances, the quantities Py,...,Pjs can be considered as the set
of covariance matrices of the observed signals evaluated at different time instances; in

other words, we can set
Pn = Ex(tm)x (tm)] = ARs(m)AY m=1,...,M (1.29)

where x(t,) is the noiseless observed data at time instance ¢,, described by (1.1) and
R (m) is the covariance matrix of sources at epoch m. Assuming that the sources are
statistically independent from each other, Rs(m) is diagonal for all m. Based on the
previous discussion we can easily see that if A and Rg(m) satisfy the identifiability
conditions described above then W, the joint diagonalizer of set of Py,...,Pyy, is

also the separating matrix; i.e., WA = IID.

We can also extend the concept of joint diagonalization techniques to blind identifica-

tion of MIMO systems. This is done by using the frequency domain model for MIMO

SRefer to Chapter 2 for a related Theorem and its proof.
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Figure 1.10: Illustration of a real room blind source separation problem with multipath
effects between the talkers and the microphones.

blind identification. As will be discussed in this thesis, assuming a second-order non-
stationary statistical model for sources, blind MIMO identification can be expressed
as an extended version of the joint diagonalization problem where the objective is to
estimate H(w), the DTFT of the channel matrix, from a set of functional matrices

Pi(w),...,Py(w) related as
Ppn(w) =HwWAMHN W), m=1,....M (1.30)

where A(m) are diagonal matrices for all m.

1.4 Blind Source Separation for Real Acoustic Environments

In this section we consider blind source separation of audio signals in a real reverberant
environment. This problem is of high practical interest. We start by explaining the problem
and some of the difficulties that exist. We also discuss some of the limitations of the existing
BSS algorithms in their application to real reverberant environments.

In many practical applications it is necessary to record the speech of a talker in a
reverberant room. In some situations there may also be additiona) talkers or other sources

of sound such as a TV inside the room (Figure 1.10). In this case the microphones will
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Figure 1.11: The measured impulse response between a sound source (speaker) and an
omnidirectional microphone in an office room.

pick up a mixture of the direct sounds (if there are any) from the talkers and the TV,
and also indirect sound waveforms caused by reflections from the walls or furniture inside
the room. Figure 1.10 shows only one reflection between each sound source and each
microphone. In practice there may be multiple reflections between the sound sources and
the microphones. As the number of these reflections increases, it takes more time for the
sound waves to reach the microphones and the energy of the sound waves reaching the
microphone decreases. Due to these effects the impulse response between each sound source
and microphone will appear as a decaying exponential. Figure 1.11 shows an example
of a room acoustic impulse response, measured in a moderate reverberant room, between
a sound source (a speaker) and an omnidirectional microphone with 1.5m spacing, using
an 8.0 kHz sampling rate. Note that an omnidirectional microphone picks up the sounds
from every direction, and as a result, the recorded signals are more reverberant compared
to recordings done with a directional microphone. As can be seen from Figure 111, the
measured impulse response is quite dense and rather long. To use blind source separation
algorithms for mixed audio signals recorded in a reverberant room, there are a couple of

issues that need to be considered, the most important ones being:

¢ The transfer functions between the sound sources and the microphones are typically
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non-minimum phase (Neely and Allen, 1979).

e The length of the impulse response even for a moderate reverberant environment is
large. Even ignoring the small tails, these acoustic impulse responses can have a few
thousand taps. Most of the existing blind source separation/blind MIMO identifi-
cation methods cannot handle long impulse responses because of the computational
cost, convergence problems, memory capacity etc. Also most of the blind source
separation/MIMO blind identification methods assume an FIR model for the mixing
filter, and for identifiability they need at least an over-estimate of the length of the
channel. Notice that for room acoustics an over-estimate of the length of the mixing
filters is not available because there is no way to measure when the impulse responses
end. Of course one can always approximately measure the length of acoustics impulse
responses by ignoring the very small tails. Note that the tails are most difficult to
estimate and ignoring them as has been mentioned in (Wilbur, 2000), will greatly

affect the perceptual quality of the recovered sound signals.

¢ The effect of sensor noise due to microphones or preamplifiers can affect algorithms
that use a noise-free model. Also the microphones and preamplifiers are not perfectly
linear. The non-linearity can degrade the performance of those algorithms that assume

' a linear model for BSS /MIMO blind identification problems.

e A real room environment can be a dynamic mixing system, caused e.g., when the sound
sources are moving inside the reverberant room. This usually will put a constraint on
the adaptation time of the algorithm and also on the number of data points needed

for reliable identification of the mixing system or separation of the sources.

Above are some examples of the difficulties that may exist when one wants to apply a
blind source separation method in a real reverberant environment. Most of the existing BSS
algorithms only have been tested using computer simulations based on synthetically gener-

ated mixing systems and sources. Among these algorithms that do consider the convolutive
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mixing problem, the performance of the algorithms is demonstrated using synthetically gen-
erated convolutive mixing with the order of the mixing filters limited to few taps. There
are only a few algorithms whose results are presented for a real reverberant room (Parra
and Spence, 2000)(Ikram and Morgan, 2001). Nevertheless the reported performances of
these methods are limited and do not exceed more than few dBs separation in a moderate

reverberant office room using omnidirectional microphones.

1.5 Scope of the Thesis

This thesis contributes to the body of active research in blind source separation and blind
MIMO identification problems. The main contribution of this thesis is to provide new
insights in solving these two problems with some promising results in their real-world appli-
cations. Although the main focus of this thesis is on the blind source separation and MIMO
blind identification problems, as side results, some additional contributed works are related
to solving the algebraic problem of joint diagonalization, which has recently received a lot
of attention and has immediate application to the two former problems.

A summary of the contributions can be listed as follows:

1. New algorithms for solving the joint diagonalization problem based on optimization

methods over the Stiefel manifold have been proposed (Chapter 2).

¢ New methods for solving the joint diagonalization problem based on gradient
descent and conjugate gradient methods over the Stiefel manifold and their ap-
plications to second-order statistics blind source separation for the instantaneous
mixing case.

e Newton based algorithms for joint diagonalization of complex matrices v;rith ap-

plication to blind source separation of convolved and instantaneous mixtures.

¢ A new maximum likelihood algorithm for joint orthogonal diagonalization using

optimization methods over Stiefel manifold.
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2. A novel frequency domain approach to blind identification of MIMO systems by ex-

ploiting the non-stationarity of sources has been developed (Chapter 3).

e Sufficient identifiability conditions for blind identifiability of a MIMO system in
the frequency domain under a second-order non-stationarity assumption of the

inputs have been proved.

e It has been proved that a limited number of frequency samples is sufficient to
identify the channel and to this end an upper bound on the smallest number
of frequency samples sufficient for blind identification of the MIMO system has

been derived.
e New frequency domain algorithms for blind identification of MIMO systems have

been proposed.

3. New algorithms for blind source separation of convolved audio mixtures, which include

the following features (Chapter 4).

e New frequency domain algorithms based on the extension of joint diagonalization

techniques to blind source separation of convolved non-stationary sources.
e A new method for resolving the frequency domain permutation problem.
e A new method for improving the audio quality of the separated output signals.

e Successful application of the proposed blind source separation algorithm for blind

separation of audio signals in a real reverberant environment.
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1.6 Outline of Thesis

This thesis has been divided into three main chapters, plus two chapters for the Introduction

and the Conclusions.

1. The first chapter introduces the blind source separation and blind identification prob-
lems. It outlines their applications, some of the main concepts for solving these two
problems, some of the short-comings of the past approaches and how these two prob-
lems are related to the joint diagonalization problem. The chapter also discusses the

difficult task of blind separation of audio signals in a real reverberant room.

2. The focus of the second chapter is on the joint diagonalization problem. A survey of
past methods has been presented. Some identifiability results in connection with the
blind source separation problem have also been discussed. Four new algorithms have

been introduced including computer simulations to show their performance.

3. In Chapter 3 we consider blind identification of MIMO systems. The first part of
this chapter establishes new MIMO channel identifiability results based only on the
second-order statistics and the quasi-stationarity property of the input signals. The
rest of the chapter discusses a new two-step frequency-domain algorithm for blind
identification of MIMO systems. At the end, simulation results are provided which

verify some of the theoretical arguments presented in this chapter.

4. Chapter 4 deals with blind source separation of convolved sources for audio appli-
cation. The first part of this chapter discusses a new method for non-orthogonal
Joint diagonalization, and the second part of the chapter discusses its application to
frequency domain blind source separation of convolved sources. A new diadic permu-
tation algorithm has also been discussed which can be used to remove the arbitrary
permutations across the frequency spectrum. The last part of this chapter is dedicated
to the experimental results gathered from applying the new algorithm to recordings

done in reverberant environments.

5. Chapter 5 gives Conclusions.
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6. Appendices are included at the end of the thesis.

35



Chapter 2

The Joint Diagonalization Problem

In this chapter we discuss the joint diagonalization problem for real and complex matrices
and its application to the blind source separation problem. We present new algorithms for
orthogonal joint diagonalization using optimization techniques over the Stiefel manifold.
Simulation results are provided to demonstrate the performance of the new algorithms and

also to compare the proposed methods with existing joint diagonalization techniques.

2.1 Introduction

Joint diagonalization of matrices has direct application in the blind source separation
problem. The problem first was introduced by Flury (Flury, 1984) as a method to find
the common eigenvectors of a set of covariance matrices Ry = {Ry, € CVXV|R,, =
QALQf, 1<m< M } for some orthogonal matrix Q € CV*¥ and diagonal matrices
Ai,...,Ap € RN*N1 Tater on in (Cardoso and Souloumiac, 1993) the authors reinstated
the joint diagonalization problem as maximizing the following criterion with respect to the

orthogonal matrix Q

M
Ca(Q,Ry) = Y _ || diag{Q'RnQ}|I3. (2.1)
m=1

Note in practice the set R may not be available, nevertheless it can be estimated from the available data
samples. In this case the exact joint diagonalization of the sample estimates Rl, . RM may not feasible
and the objective is to find a matrix Q that approximately jointly diagonalizes R;, .., Rum.

36
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Using the fact that the Frobenious norm of a matrix is invariant to orthonormal trans-
formation of that matrix, it can be easily shown that maximizing the criterion in (2.1)
with respect to Q is equivalent to minimizing the sum of off-diagonal values of all matrices
Q'R,,Q; i.e, minimizing y
Co(Q,Rg) = D Of(Q'RmQ) (22)
m=1
is equivalent to maximizing the criterion in (2.1) where Off(Q'R,,Q) represents the sum of
squared off-diagonal values of Q'R.,,Q. Notice that in general C,(Q, R4) > 0 and becomes
zero when Q'R,,,Q is diagonal for all m. In (Wax, 1997) it is shown that the criterion in

(2.2) is equivalent to the following least-squares criterion

M
Crs(Q,Ry) = ) |Rm — QALQT|I% (23)

m=1
for estimating Q.

The common point among the criteria introduced above is that all assume that the joint
diagonalizer matrix Q is orthogonal. Orthogonal joint diagonalization methods have also
been discussed in (Flury, 1984) (Cardoso and Souloumiac, 1993) (Rahbar and Reilly, 2000)
(Rahbar and Reilly, 2001a) (Joho and Rahbar, 2002). In (Cardoso and Souloumiac, 1993)
the authors propose an extended Jacobi algorithm to achieve joint diagonalization while
(Rahbar and Reilly, 2000) (Rahbar and Reilly, 2001a) propose adaptive algorithms, using
gradient based optimization methods over the Stiefel manifold, to estimate the orthogonal
diagonalizer matrix.

In recent years there has been some interest in non-orthogonal joint diagonalization
methods; i.e., when the joint diagonalizer is not necessarily an orthogonal matrix. In a
manner similar to the orthogonal case, the non-orthogonal joint diagonalization problem
can be expressed as finding a matrix W € CV*V such that it jointly diagonalizes the set
of matrices R, = {R,, € C”|R,, = AALAY; 1 < m < M} where A € C/*N jp
general is a non-square, non-orthogonal matrix. The criteria (2.2) and (2.3), discussed for
the orthogonal joint diagonalization, can be directly extended to the non-orthogonal case

by substituting the orthogonal matrix Q with the general-form matrix A. Note that for
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(2.2) some additional constraints are required to prevent the trivial solution A = 0. In
(Pham, 2000), the author proposes a method for non-orthogonal joint diagonalization of
sample estimates of real covariance matrices. It is known that sample covariance matrix
estimates R, ..., Ry which are estimated from M independent populations of multivariate
observations distributed according to zero-mean Gaussian probability density functions with
true covariance matrices Ry,..., Ry, are distributed according to the Wishart distribution

with log-likelihood function is given as:

M
c-; mz=1 nmllog det Rom + Tr(R1R,m)] (2.4)

where C is a constant and n,, is the sample size used to estimate the covariance matrix
f{,m. Now considering that the covariance matrices R,, are related as R,, = AA,, AT m =
1...,M, for some real matrix A € RV*¥ and diagonal matrices A,, with positive diagonal
elements, the maximum likelihood method for estimating A from sample estimates R,
corresponds to minimizing the following criterion(Pham, 2000)

M
Cvi(A,Ry) = D npllog det Am + Tr(A; WT R, W) — log det(WWT)] (2.5)

m=1
where W is pseudo-inverse of A. W can be considered to be the matrix that jointly
diagonalizes the set of covariance matrices fil, . ,ﬁM.

The algorithm in (Pham, 2000) is based on minimizing an upper-bound of (2.5) using
successive sweeps where each sweep includes pair-wise transformations of the rows of the
matrix W such that at each transformation the criterion in (2.5) decreases. The algorithm
performs iterative sweeps until convergence is achieved. Another iterative method is the
ACDC algorithm in (Yeredor, 2000) which uses a least-squares criterion similar to (2.3) for
non-orthogonal diagonalization of a set of complex symmetric matrices?. Also the méthod in
(van der Veen, 2001) solves the joint diagonalization problem via weighted subspace fitting
techniques by minimizing a criterion similar to (2.3) using a Gauss-Newton optimization

algorithm.

2See also (Yeredor, 2002) for a more in depth discussion of ACDC method.
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It should be noted that in general for the joint diagonalization problem there is no
unique solution. This can be easily seen by looking at the criteria discussed above. For
example for the non-orthogonal criterion of (2.2), if Qopt is the optimum minimizer of this
criterion then DIIQ,,:, where IT is a permutation matrix and D is diagonal matrix, is also
a minimizer of (2.2).

In this chapter we first show some applications of joint diagonalization techniques to
the blind source separation problem. We also derive some previously known identifiability
results for second-order blind source separation methods in a new context using identifiabil-
ity results for the joint diagonalization problem. We then discuss developing new adaptive,
orthogonal joint diagonalization algorithms based on optimization methods over the Stiefel
manifold. At the end of this chapter we also discuss briefly the non-orthogonal joint diago-
nalization problem. Simulation results are provided to demonstrate the performance of the

new algorithms and comparisons are made to some existing joint diagonalization methods.

2.2 Joint Diagonalization and BSS

In this section we give an example of how the joint diagonalization can be used for blind
source separation of instantaneous mixtures using only second-order statistics of the ob-
served signals.

We consider the following instantaneous mixing model for the BSS problem
x(t) = As(t) + n(t) (2.6)

where x(t) € C’/*! is the observed signals, A € C/*V is the mixing system, s(t) € CNx1
are the source signals (assumed to have zero mean), and n(t) € C’*! is the additive noise,
which for now we consider to be white, Gaussian, with zero mean. The objective of the

source separation problem is to find a W € CVN*J such that
WA =TIID (2.7)

where IT is a N x N permutation matrix and D € CV*¥ is a diagonal matrix. To estimate

the W we can use the second-order statistics of the observed signal x(t). To this end we
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use the covariance matrices of the observed signal evaluated for a range of lags.

R.(l) = AR;(DAT +0%1 1=0 25
= AR;()AT 0<I<L-1

where R;(1) is the covariance matrix of the sources at time lag [ and ¢? is the power of the
noise. Assuming that the sources are uncorrelated then R(l) is a diagonal matrix for all
l. We now show that under some assumptions on the sources and the mixing system, the

separation matrix W can be obtained by joint diagonalization of set of covariance matrices
Rz = {Re(0) — 0?1, Re(1),...,Re(L — 1)}. (2.9)

Theorem 1 Consider the set of matrices
R ={Rn, € C"|R,, = AApAt m=0,...,M -1} (2.10)

where A € CT*N s some full column rank matriz and Ay, € RVY*N are diagonal matrices
such that the set of vectors Ay, = diag{A,,} spans RY. Now if the full row rank matriz
W € CIXN is the joint diagonalizer of the set R such that

WR, Wl =A,, Vm=0,...,M-1 (2.11)
where A, are diagonal matrices; then we have:
WA =1ID (2.12)

where II € RV*N s o permutation matriz and D € CNXN s ¢ non-singular diagonal

matriz.

Proof:
From (2.11) by substituting R,, with AA,,A! we can write

WAALATWI =A,, m=0,...,M—1. (2.13)
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Based on (2.13) for any sequence of scalars a = (ag, ...,apr—1) we can write

M-1 M-1
> an(WAARATW) = 3" g A (2.14)
m=0 m=0
Now defining
M-1 -1
2a=) tmAm, Za= ) amAm, am€R, (2.15)
m=0 m=0

and C = WA and rearranging the terms in (2.14) we have
cx,C=3%,. (2.16)

Since by assumption A and W have full rank, then C is a full rank matrix. Also since the
diagonal values of A,, span RY, X, can be made equal to any real valued diagonal matrix
by an appropriate choice of a. In this instance for any %, choose a such that all elements of
3, are zero except for the 4y, diagonal element which is unity. Then CX,C = cicz where
c; is the 44 column of C. Moreover, since the RHS of (2.16) is diagonal, all the off-diagonal
elements of cicz are zero. Because c,-c;r has rank one at most, it can have at most one
non-zero diagonal element. It follows immediately that every column of C has precisely
one non-zero element, and moreover, because C is invertible, every row has precisely one
non-zero element too; i.e.,

C =1IID (2.17)

where D is some non-singular diagonal matrix and II is a permutation matrix. Equation

(2.12) follows immediately from (2.17). a

If we substitute the set of R in Theorem 1 with set of R, from (2.9) we can easily
deduce the identifiability conditions for instantaneous blind source separation based on
second-order statistics. The first condition is that the mixing matrix A should have full
column rank. The next condition is that the set of vectors diag{Rs({)} ! =0,...,L —1
should span R¥, which by itself means that the autocorrelation coefficients of the sources,
re;(l) 1=0,...,L—1 ¢=1,...,N, should be mutually lineally independent. This is a

known identifiability result which also has been reported in (Meraim et al., 2000). However
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here we used joint diagonalization theorem to prove it. Using Theorem 1 we can also see
that a sufficient minimum number of covariance matrices required is N, where N is the
number of the sources. In practice we only have access to f{z(l), the sample estimates of
R;(1). Hence the joint diagonalization will be approximate. Because of this in practice we

need more than /N covariance matrices to get a good estimate of W.

2.2.1 Orthogonal Joint Diagonalization and BSS

In the blind source separation problem, since there is an inherent ambiguity in recovering
the scale of the sources, without loss of generality we can assume the sources have unit
power. We base the development on the assumption that the covariance matrix of the

observed signal at lag zero can be written as:

R.(0) = AR (0)A' + o1

(2.18)
= AAT + o1
where we have set R;(0) = I. Replacing A with its singular value decomposition
b))
A=U VN vt uec?®, vecNrN (2.19)
0—myxnN
(2.18) can be written as:
24 0% Os_ -

R,(0)=U (J=N)x(T=N) ) gt (2.20)

0(—Nyx(J-N) 0’1
As can be seen from (2.20) for J > N, o2 can be estimated from the J — N smallest eigen-

values of R;(0). Nevertheless, assuming o2 is known, we can obtain ¥ from N dominant

eigenvalues of R;(0) — 01 and from there we can define the whitening matrix K as
K= (21 0Onyu-n) U (2.21)
By applying K to the observed signals we have
z(t) £Kx(t) = KAs(t) + Kn(t)

(2.22)
= Vis(t) + Kn(t).
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As can be seen using the whitening stage, the BSS problem can be simplified to finding an

orthogonal matrix V. Note the covariance matrix of the whitened data is now given as
R.() = VIR,()V + ¢’KK', 1=0,...,L—1. (2.23)

We can estimate V by joint approximate diagonalization of the set R, = {R,,(1),..., R (L—
1)}. Note that assuming that a perfect estimate of R,(l) is available then only in the
noiseless case or at least when o2 is known can we exactly diagonalize R,.

The SOBI algorithm, explained in (Belouchrani et al., 1997), is a second-order statistics
blind source separation method which uses orthogonal diagonalization of set of whitened co-
variance matrices R,. The algorithm is based on an extension of Jacobi algorithm ((Golub
and VanLoan, 1996)) to the joint approximate diagonalization of a set of covariance matrices.
In the next section we propose an alternative approach for joint orthogonal diagonalization
using optimization methods over the Stiefel manifold. In general the geometry of an orthog-
onality constraint can be represented by the Stiefel manifold. By exploiting this geometry,
we can solve optimization problems with orthogonality constraints using unconstrained op-
timization methods (such as gradient descent) over the Stiefel manifold. Notice that an
advantage of using such an optimization method is that we can develop adaptive joint di-
agonalization algorithms that can, for example, track the variation of a set of covariance

matrices.

2.3 Joint Approximate Diagonalization Based on Geometric

Optimization Methods

In this section we discuss how the joint diagonalization problem can be solved using op-
timization methods that exploit orthogonality constraints. We start by proposing cost
functions for the joint diagonalization problem. We then explain some fundamentals of
optimization methods over the Stiefel manifold and based on this, we develop gradient and
Newton based algorithms for joint orthogonal diagonalization problems. The optimization

methods used in this section are based on the works of (Edelman et al., 1998) and (Manton,
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2002). Since some of the optimization methods used in this section have been developed
only for real matrices (for example the conjugate gradient method), throughout this section
for consistency we assume real valued matrices. Nevertheless the extension to the complex
case for the rest of algorithms (Algorithms I, III and IV) is straightforward and in most
cases can be done by changing the ”transpose” operator to ”transpose and Hermitian”. The

details of derivations for the complex case can be found in Appendix C.

2.3.1 The Cost Function

Given the set of square symmetric matrices R = {Ry,..., R}, the orthogonal joint diag-

onalizer of this set, denoted as Q, can be estimated by minimizing the sum of squared off

-diagonal values of QTR,,Q for all m = 1,..., M; i.e., we have the following optimization
problem
min Coff (R) Q))
Q (2.24)
subject to QTQ =1
where
Cofs (R, Q) = Z IQ"RnQ — ddiag{Q"RnQ}|I3, (2.25)
m=1

and ddiag(X) is an operator which forms a diagonal matrix of diagonal values of the matrix
X. Since the Frobeneous norm of a matrix does not change by post- or pre-multiplication
by a orthogonal matrix, rather than minimizing the sum of squared off-diagonal values we

can maximize the sum of squared diagonal values; i.e.,

max Cd(Ra Q)a
Q (2.26)
subject to QTQ =1 '
where C4(R,Q) = M || diag{QTR.»,Q}||2 and diag(X) is an operator which forms a

column vector of diagonal values of the matrix X.
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Let a;;(m) represent the 4y, diagonal value of QTR,,Q. We then have

N
| diag{Q"RmQ}IE = > _ afi(m)

i1=1 N (2.27)
= ﬁ(zaii) + N Z (ai(m) — ajj(m))2'
i=1 i<j
ij=1

The first term of the RHS of equation (2.27) is equivalent to %(TT{QTR,,"Q}V = %(TT{R,,"})2
and is invariant with respect to Q. Hence for maximizing (2.27) we only need to maximize
the second term of the RHS of (2.27). We therefore propose minimizing the following

criterion subject to the orthogonality constraint QT Q = I:

_ 1 M N
Ca(R,Q) = =5 > D (as(m) — az(m))?, (2:28)

m=1 i<j
t,j=1

where the extra factor of % is introduced for convenience in derivations appearing later on.

We now discuss the optimization methods that we can use to minimize the cost function

given in (2.28).

2.3.2 Optimization Methods Over the Stiefel Manifold

The geometry of the orthogonality constraint QTQ = I can be represented by the non-
linear space known as the Stiefel manifold. In (Edelman et al., 1998) and (Manton, 2002) the
authors provide a framework for solving optimization problems that involve such constraints.
The key idea is that optimization problems with orthogonality constraints can be treated
as unconstrained ones over the Stiefel manifold. In the linear Euclidean space, the update

rule for smooth unconstrained optimization of an objective function f(x) is given by
Xp = Xg—1 +thg_1 (2.29)

where hy_; is the search direction at iteration k — 1 and is calculated based on the knowl-
edge of the gradient or Hessian of the objective function, and ¢ is the step size parameter

typically chosen using line search methods such as Armijo’s rule (Bertsekas, 1999)(also see
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Appendix B). Similar concepts can be carried over to optimization on a manifold by re-
defining operations such as line update (2.29) and the gradient or Hessian of a function, to
the appropriate operators over the manifold. For example, analogous to the definition of a
straight line in Euclidean space, the geodesic is defined as the curve with the shortest length
between two points on a manifold. As shown in (Edelman et al., 1998), on the Stiefel man-
ifold the equation for the geodesic emanating from Qj_; in the direction of Hy_;, where
Q-1 and Hyg_; are J X N matrices such that Qf_le_l = Iy and A = Q{_lHk_l is
skew-symmetric, is given by

Qi = Qk—1E(t) + VF(¢) (2.30)
where E(t) and F(t) are N x N matrices calculated from

E(t A -—-RT I
® =exp |t i (2.31)
F(t) R 0 0

and V and R are the QR decomposition of

VR = (I - Qx-1Qf_1)Hk-1. (2.32)

When Q-1 is a square orthogonal matrix, the update rule over a geodesic, given by equation

(2.30),(2.31) and (2.32), simplifies to

Qi = Qp-1exp [tQf_ Hg-1]. (2.33)

In (Manton, 2002) an alternative approach is suggested by first using the standard linear

update rule given in (2.29) and then projecting it onto the Stiefel manifold; i.e.,
Qi = m(Qp—1 + tHg—1) (2.34)
where 7 is the projection operator which is defined for a matrix X € R/*V as
m(X) = U,I;yVT (2.35)

where U, and V; are obtained from singular value decomposition of X; i.e., X = U, EzV;";.
For minimizing (2.28) we can use either equation (2.33) or (2.34) for updating the value

of Q. The remaining task is to calculate the search direction Hy on the Stiefel manifold.
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Similar to the Euclidean space, to calculate the search direction on the Stiefel manifold,
we can use the gradient or Hessian information of the function. For example, the steepest
descent direction Hy = —Gy for minimizing the function f(X), X7X = I on Stiefel
manifold is calculated from: (Manton, 2002)(Edelman et al., 1998)

Gy = —-X;D%, X + Dy, (2.36)

where Dy, is the gradient of f(X) evaluated at Xj.

We can also define the Newton direction over the Stiefel manifold. Compared to steepest
descent, calculating the Newton direction is more complicated and computationally more
expensive. Nevertheless the Newton method can have quadratic convergence, while for gra-
dient descent, the rate of convergence is linear. In (Manton, 2002) a method for finding
the Newton step over the Stiefel manifold has been proposed, that uses quadratic approx-
imation of the function f(n(X + H)), where H is some vector in the tangent space of the
manifold.

In optimization over a linear space, a method which is faster than steepest descent, but
still only needs gradient information of the objective function, is the conjugate gradient
method (Bertsekas, 1999). The search direction (hg) in the conjugate gradient method
at each step is calculated using a linear combination of the gradient (gi) of the objective

function at the current step and the search direction at the previous step; i.e,

hy = —gi + Brhg—1 (2.37)
where (B is given by:
T
B = k8 (2.38)
8r-18k—1

As is shown in (Bertsekas, 1999) for quadratic problems, conjugate gradient methods can
converge in a finite number of steps. For non-quadratic problems convergence may not
happen after a finite number of steps but nevertheless convergence can still be faster than a
steepest descent method. In a manner similar to the Euclidean space, a conjugate gradient
step on the Stiefel manifold is done first by parallel transporting the previous search direction

to the point corresponding to the new step, and then choosing the new search direction to
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be a combination of the parallel transported version of the old search direction and the
new gradient. In the Euclidean space, parallel transporting a vector is done by moving
the base of the arrow. On an embedded manifold, if we use the same concept to move a
tangent vector the result won’t necessarily be a tangent vector. For parallel transport of
tangent vectors on a manifold we can parallel transport the vector in infinitesimal steps in a
similar way as in a Euclidean space, and then in each step we remove the normal component
of the transferred vector such that the remaining portion is still tangent to the manifold.
According to (Edelman et al., 1998), for parallel translation along geodesics there is no
simple, general formula. Nevertheless if the vector is tangent to a geodesic, then it is easy
to find the parallel transport result by noticing that a geodesic always parallel transports
its own tangent vector. Let Hy_; be the parallel transform of the tangent vector Hy_4 from

point Qg_1 to point Q. Then
Hy; = Hy1E(t) - QRTF(2) (2.39)

where E(t) and F(t) are calculated from (2.31) and R is given by (2.32). When Qy is a

square matrix then the above equation simplifies to
Hy_y = Hy_qelt Q-1 Hea] (2.40)

Having (2.40), the conjugate gradient step on the Stiefel manifold is given as

Hy = -Gy + 5Hy, (2.41)
where (3 is given by
<Gka Gk>
== "8 2.42
P (Gk-1,Gr-1) (2.42)

and (Aj, Az) represents the inner product between two tangent vectors on the Stiefel

manifold and is defined as: (Edelman et al., 1998)
1
(A1, Ag) = Tr(A (I - §QkQ{)A2). (2.43)
Notice that when Q is a square matrix, the above equation simplifies to

(A, Ag) = %TT(A{AZ). (2.44)
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The conjugate gradient step with G given as (2.42) is known as the Fletcher-Reeves con-
jugate gradient. Another way of calculating 3, known as Polak-Ribiere conjugate gradient,

is
(Gk — Gg—-1,Gg)
(Gg—1,Gk-1)

B = (2.45)

2.3.3 Algorithms

We can now derive orthogonal joint diagonalization algorithms based on the three optimiza-
tion methods discussed above. To use these optimization methods we first need to calculate
the gradient and Hessian of the cost function given in (2.28), rewritten below for ease of

reference:

iR, 1 Z Z (as(m) — aj;(m))>. (2.46)

m—-l i<j
i,j=1

Let Dg represent the matrix of partial derivatives of éd('R, Q) with respect to elements of

Q. Then the rsy, element of D is given as

8C4(R, Q) 1 & Bags(m)
[Dglrs = e =N > Bers Z ass(m) — aj;(m)) (2.47)
m=1 Jj#s
=1

where here we use the fact that

Baﬁ (m)

9., =0 for s#71, (2.48)

where a;;(m) = q;erm%- and q; is the i, column of Q. Note that

N
> _(ass(m) — ajj(m)) = Nags(m) — Tr(Q"RmQ)

P (2.49)
= N(ass(m) — c(m))
where c¢(m) = yTr(Q"R,Q) = #Tr(R.,) and is independent of Q. Also we can write3
Oass(m)
_a_%s—— - 2[R'mQ]rs~ (2'50)

3Here we use the assumption that R, = RT,
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From (2.47), (2.49) and (2.50) we have:

M
Do =-2) RnQX(m) (2.51)

m=1
where 3(m) = ddiag{ QT R,, Q} —c(m)I. Having D¢, the gradient over the Stiefel manifold

is calculated from (2.36) as

M M T
G=-2)" RnQ¥(m)+2Q( Y RnQE(m)) Q
m=1 m=1

M M
=-2> QQ"R,QI(m) +2 Y QE(m)QTR.Q (2.52)
m=1 m=1
M
=2Q( 3 [Bm)Ry (m) ~ Ry(m)S(m) ),
m=1

where Ry (m) = QTR,,Q.
Using (2.52) we now can design steepest descent and conjugate gradient direction al-
gorithms for optimizing the cost function in (2.46) as is summarized below. Note that for

these two methods we use Armijo’s rule for choosing the step size ¢.

Algorithm I: Joint Orthogonal Diagonalization Using The Steepest Descent
Method Over The Stiefel Manifold

1. Initialize Q to some random matrix such that QTQ = I and set ¢(m) = £Tr(Ry), m=

1,...,M.
2. Choose the initial value for step size ¢ = 1.
3. for k =1 to Max_Numitr

e Set
%(m) — ddiag{QTRmQ} — c(m)T

e Calculate

R

G = 2Q( > [E(m)Ry(m) — Rq,(m)E(m)]),

m=1

where Ry,(m) = QTR,,,Q.
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e Calculate the value of cost function at Q from*

M
CiR,Q) = 3 [ lTr(Ra) ~ 2d5(Q)dn(Q)]
m=1

where d,(Q) = diag{ QT R,,Q}.

o If £ > 1 then
_ 1 lC(R, Q) -GN (R, Q)]
C§(R,Q)

e Use Armijo’s rule to find the step size t

< €, where 0 < € < 1, then STOP

(a) Propose a new point Q, by setting Q, = Q exp [tQTH] where H = —G.
(b) if C4(R,Q,) — Ca(R, Q) < tadTr(GTH) ,where 0 < a < 1, then
—t=72t
- Qp=Qexp [tQTH] and repeat from step b.
(c) if Ca(R, Qp) — C4(R, Q) > taiTr(GTH) then

- t=5t

DOf=

- Qp = Qexp [tQTH] and repeat from step c.

e Q = Q, and continue the loop from step 3.

Algorithm II: Joint Orthogonal Diagonalization Using The Conjugate Gra-
dient Method Over The Stiefel Manifold

1. Initialize Qo to some random matrix such that Q7 Q = I and set c¢(m) = LTr(Ry) m=

1,...,M.

2. Choose the initial value for step size t = 1.

“To calculate C4(R, Q) we use (2.27) by noticing that:

1 N

1 ) N
N o (@is(m) — ajj(m))2 = N(; aii) — ; a?i(m)~
4,5=1

Note also that 3=, aZ(m) = d%(Q)dm(Q) and (TN, ax)® = [Tr(R.))2.
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3. for k =1 to Max_Numitr

e Set
%(m) = ddiag{Q"RnQ} — ¢(m)I

Calculate the gradient over the Stiefel manifold
M
G =2Q( Y [B(m)R, (m) - Ry(m)E(m)] ),
m=1

where R, (m) = QTR,,Q.

calculate the value of cost function at Q from

M

iR Q)= 3 [l Rl - 37@)dn(@)
where d,,(Q) = diag{QTR,.Q}
o If £ > 1 then
— if Ca(R, Q~) _ é";_l(R’ Q) < €, where 0 < € < 1, then STOP
C§(R,Q)

Initialize with a gradient step after N(N — 1)/2 iterations

— if k=1or k Mod N(N —1)/2 = 0 then
H=-G

— else
H = —G + SHel'Q™H
Tr(GTG)
Tr(GE Gy-1)
e Use Armijo’s rule to find the step size ¢

where 8 =

(a) Propose a new point Q, by setting Q, = Qexp [tQTH].
(b) if C4(R,Qp) — Ca(R, Q) < talTr(GTH), where 0 < o < 1 then
— =2t

- Qp = Qexp [tQTH} and repeat from step b.

52
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(c) if Ca(R, Qp) — C4(R, Q) > tiTr(GTH) then

- t=5t

2O

~ Qp = Qexp [tQTH] and repeat from step ¢

o Set Q = Q, and continue the loop from step 3

For the Newton method over the Stiefel manifold we first need to calculate the Hessian
matrix of the objective function given in (2.46). To do this we can write the objective

function of the optimization problem in (2.46) as:

. 1M XN 2
CaR,Q) = -5 3 > (a"Ayi(m)a) (2.53)
m=1 i<j
ij=1
where q = vec{Q} and
Aij(m) = Ei; ® Rin (2.54)

where E;; is an N x N diagonal matrix such that its i, diagonal element is 1 and its jg,
diagonal element is —1 and all other elements are equal to zero. Note that A;j(m) is a
symmetric matrix®; i.e., Ayj(m) = Ayj(m)T. The Hessian of C4(R, Q) is found to be (see

Appendix C for derivation):

M N
Doe=-5 3 [4A,~j (m)aqT As(m) + 2qT Asj(m)qAy (m)]. (2.55)
m=1 i<j
4,j=1
In (Manton, 2002), new optimization methods over the Stiefel manifold have been proposed
which are based on optimizing a local parameterization of the cost function f(X) at each
iteration. Based on this approach the Newton step over the Stiefel manifold is calculated by

finding the turning points of the second-order Taylor series approximation of the local cost

function g(H) = f(m(X+H))), where m(X) is defined in (2.35) and H is in the tangent space

SAL(m) = Ef®RY, = E;;®R. = Ayj(m) where here we have used the property of Kronecker products
where for any two matrices A and B we have (A ® B)T = AT @ B”.
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of the Stiefel manifold at point X5 As demonstrated in (Manton, 2002), the second-order

Taylor series approximation of g(H) is given as

g(H) = f(X)-l-Tr(HTDX)—f—% vec{H)T [DXX—%((XTDX+D§X)T®I)] vec{H}+O(||H|[%)

(2.56)
where Dx and Dxx are respectively the gradient and Hessian of the f(X). The Newton
step is calculated by finding the turning point of the function g(H), defined in (2.56),
subject to the constraint that H is a tangent vector at point X. A detailed description for
finding the turning point of g(H) is beyond the scope of this chapter, but further details
can be found in (Manton, 2002). Also in (Manton, 2002) a Matlab function, ¢point, has
been provided for calculating the turning point of (2.56). For ease of reference this Matlab
function has been included in appendix A.

Note that the computational complexity of the Newton algorithm is much higher com-
pared to the steepest descent or conjugate gradient methods; also, there is no guarantee that
the Newton method will converge to a local minimum, since it can very well converge to a
saddle point. To prevent this, as shown in our simulation results, we can use a few iterations
of the steepest decent algorithm to minimize the cost function such that the value of the

cost function is close enough to a local minimum before we apply the Newton algorithm.

Algorithm III: Joint Orthogonal Diagonalization Using
The Newton Method Over The Stiefel Manifold

1. Initialize Qo to some random matrix such that QTQ = I and set c(m) = #Tr(Ryy) m =

1,...,M.
2. for k =1 to Max_Numitr

e Set
(m) = ddiag{Q"RmQ} — c¢(m)I

®The tangent space at point X on the Stiefel manifold is defined as (Manton, 2002) the set of matrices
Tx(N,N) = {H ERM*NH=XA, AcRV*N A4 AT = 0}.
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e Calculate the first and second-order derivatives of C(R, Q):

M
Do =-2) RnQX(m)

m=1

M N
Dgg = — Z Z {4Aij(m)quAij(m) +2qT Ay (m)inj(m)}

m=1 i<j
1,j=1

where A;j(m) = E;; ® R, and E;; is an N x N diagonal matrix such that its 4,
diagonal element is 1 and its j;, diagonal element is —1 and all other elements

are equal to zero.

o Calculate the value of cost function at Q from

M

CaRQ) = Y [soTr(Rm)]? - 25 (Q)dn(Q)]

m=1

where d,(Q) = diag{QTR,»,Q}.

o If Kk > 1 then
_ ¢ lGR.Q) -G (R, Q)]
Ci(R. Q)

e Calculate the Newton step from

< €, where 0 < € < 1, then STOP.

H = tpoint(Q, Dg, Dog — %[(QTDQ +D3Q)" ® 1])

where tpoint is defined in Appendix A.
e Propose a new point Q, by setting Q, = 7(Q + H).

e if C4(R,Q) < Cy(R, Qp) then abort.

Qp, = Q and continue the loop from step 2.
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2.4 A Maximum Likelihood Approach to the Joint Diagonal-

ization Problem

In the previous section we derived joint diagonalization algorithms based on least-squares
criteria using optimization methods over the Stiefel manifold. In this section we derive a
maximum likelihood algorithm to estimate the parameters of Q from the sample estimates
of a set of positive definite covariance matrices R = {ftl, e ,f{M}, with true estimates
given as the set R = {Rm[Rm = QTA(M)Q, m =1,..., M}, where A(m) are diagonal
matrices with positive diagonal values. Assuming that R;,..., Ry are respectively sam-
ple covariance matrices of M independent populations of zero-mean Gaussian distributed
multivariate observations of size L, then they are distributed according to the Wishart
distribution which is given as (Anderson, 1971):

M

~ Qy 1 —19

Rn~ [] ﬂ—:—e 2Tr(Bm Rom) (2.57)
m=1

where oy, is a nonnegative constant and 3; = det(Ri)L/ 2, where L is the number of snapshots
used to estimate the covariance matrices R,,. The log-likelihood function of (2.57) can be

written as
M

C(R,Q) =C - % Y- [Llog(det(Rm) + Tr(RyRom)] (2.58)

m=1
where C is some constant. Substituting R, = QTA(m)Q and assuming an orthogonal-
ity constraint on Q, the maximum likelihood method for estimating Q and A(m) can be

expressed as maximization of the following log-likelihood function:

M
C(R,Q)=C~ 7 3" [Llog(det(Am) + Tr@A (m)QTR)|  (259)
m=1 . .

where here we used the fact that for any square orthogonal matrix Q, det(Q) = 1. For
a given Q, it can be verified that the criterion in (2.59) is maximized when A(m) =

ddiag{QTR.,Q}. Substituting A(m) with ddiag{QTR,»Q}, (2.59) can be written as

C(R,Q) = C — % i [L log (det (ddiag{QTRmQ)) + N]. (2.60)

m=1
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Based on (2.60) we can write the following optimization problem for estimating the Q:

Q = argmin él(,]é” Q))
Q (2.61)
subject to QTQ =1

where C;(R,Q) = 1 "M log (det (ddlag{QTR,,nQ))
We use similar algorithms discussed in the previous section to optimize the above cri-
terion. To do so we first calculate the gradient and Hessian of the above cost function. We

have

N
log ( det(ddiag{Q"RnQ})) = 3 log(al Rma) (2.62)
=1

where q; is the ig, column of Q. Substituting (2.62) in (2.60), and taking the derivative

with respect to q; we get

3 (R,Q) Z
T

Mq, i=1,...,N. (2.63)
aq’ m—1 9; R'rn(h '

and from this it follows that the gradient of the cost function in (2.61) can be calculated

from:

M
Dg =) RnQA,'(m) (2.64)

m=1
where Ay(m) = ddiag{QTR,,Q}.
To calculate the Hessian we can use the same approach as in the previous section. First

we write the objective function of the optimization problem in (2.61) as

G(R,Q) = Z Zlog(uTq> ) (2.65)

m_lz 1

where v = vec{Q} and ®;(m) = E; ® R,,, where E; is a N x N matrix with the ish, diagonal
element equal to one and all other elements equal to zero. The Hessian is then calculated

to be (see Appendix C):

f: i:: [ 2<I>i(m)uuT<I>,~(m)] (2.66)

o VT‘P,(m)u WT®;(m)v)?
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Having the gradient and Hessian of the likelihood function, we can easily derive steepest
decent or Newton algorithms over the Stiefel manifold, similar to the ones in the previous

section. For example the steepest decent direction is easily calculated to be
H=QD{Q - Dg

M
=Y QRAQA; (M) Q — RnQA; (m)

m=1

(2.67)
—Z[QA m)QTR»Q — QQTR,QA;  (m)]

= Z Q[A; ! (m)Ry(m) — Ry(m)Ay " (m)]

where Ry(m) = QTR,,Q.

For the Newton step we can use the same procedure as in Algorithm III of the previous
section. All that is required is to substitute Dg and Dgg with values given by (2.64) and
(2.66) respectively.

Algorithm IV: Joint Orthogonal Diagonalization using the ML Criterion and
Newton Method Over the Stiefel Manifold

1. Initialize Qo to some random matrix such that QTQ =1.
2. for k = 1 to Max_Numitr

e Set
A(m) = ddiag{Q"R,nQ}

e Calculate the first and second-order derivatives of G (72, Q):

M
Do =) RnQA~'(m)

m=1

2‘I’i(m)uuT<I>,-(m)
Z Z [VT@ (m)v VT®;(m)v)?2 ]

m=1 i=1
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where v = vec{Q}, ®;(m) = E; ® R, and E; is an N x N diagonal matrix such
that only its 4¢, diagonal element is equal to 1 and all other elements are equal

to zero.
o Calculate the value of cost function at Q from
M
- . 1 _ -
G(R,Q) = Emzzjl log (det (ddiag{Q R,,,,Q))
e If £ > 1 then
(R, Q) - 1R, Q)

CHR,Q)
e Calculate the Newton step from

< €, where 0 < € < 1 then STOP

H = tpoint(Q, Dg,Dgq — % [(QTDQ +D5Q) ® I])
where tpoint is defined in Appendix A.
e Propose a new point Q, by setting Q, = 7(Q + H).
e if G(R,Q) < G(R, Qp) then abort.
o otherwise Q, = Q.

e end

Although one can argue the proposed algorithms are computationally more expensive
than the extended Jacobi method, nevertheless for applications where the objective is to
track the joint diagonalizer rather to estimate it from scratch, the gradient-based algorithms
can be more efficient than fixed point methods such as extended Jacobi algorithm used in
JADE. Notice in general as shown in (Hori, 2000) a gradient step of the proposed algorithm
over the Stiefel manifold is computationally less expensive than a sweep of extended Jacobi

method.

2.5 Simulation Results

In this section we use numerical simulations to show the performance and convergence prop-

erties of the joint diagonalization algorithms discussed above, comparing the performance
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of the new algorithms to the JADE method (Cardoso and Souloumiac, 1993).

2.5.1 Example 1

In this example we compare the convergence of the Newton based algorithm with the one
of steepest descent and conjugate gradient based methods. To this end we apply the Al-
gorithms LII and III to the joint diagonalization of a set of matrices R = {R;|,R; =
QA()QT, i=1,...,M} where in this case Q € R®*% is a randomly selected orthogonal
matrix and A(7) are randomly chosen diagonal matrices with diagonal values in the range
[0,1]. The objective is to calculate the common eigenvectors of Ry, ... Rz, which in fact are
the columns of Q, using the joint diagonalization algorithms I,II and III. We set the initial
value for Q for the steepest descent method to be an identity matrix and we initialize the
conjugate gradient and Newton algorithms using ten steps of the steepest descent algorithm
such that the initial value of these algorithms is close enough to ensure convergence with
high probability. |

We use the following measure of performance

Error = [|Q - QIf% (2.68)

where Q is the estimated value of Q using the respective joint diagonalization algorithm.
Since we can only estimate Q up to a permutation ambiguity, before calculating the error
using (2.68) we manually correct the permutations of the columns of Q As can be seen
from Figure 2.1, the steepest descent algorithm has the slowest convergence, the conjugate
gradient algorithm has better convergence compared to the steepest descent method, but

certainly the Newton algorithm is the one which demonstrates the fastest convergence.

2.5.2 Example 2

In this example we show the application of the joint diagonalization algorithm to an esti-
mation problem. Assume that we have data vectors x,,, m = 1,..., M generated using
the model

Xm=Qsy, m=1,...,.M (2.69)
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Error (log)
=

10+ .
~b~ Algorithm | (Steepest Descent)
-6~ Algorithm 1l (Conjugate Gradient)

02k & Algorithm 1Il {Newton}) i

lteration

Figure 2.1: Estimation error for Q versus number of iterations for Algorithms I,II and IIL
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where in this case s, € R5%6 are iid, zero-mean, Gaussian distributed with covariance
matrix X.,, where X, are diagonal matrices, with diagonal values in this case uniformly
distributed between zero and one. Given that X, are unknown, the objective of this
example is to estimate Q using only the data samples x,,. The covariance matrix of x,, is
given as

Ry =Exnxl]=Q%nQl m=1,...,M. (2.70)

If R;, were given, as shown in Example 1, a perfect estimate of Q is achievable. Since we
only have access to snapshots of x;, we can only calculate Ry, the sample estimate of Ry,

using
. 1 Y
B = N;; Xm(m)Xi(n) M=1,..., M, 271)

where N, is the total number of snapshots. Note in this case we can only approximately
diagonalize the set of matrices fll, .. ,RM. In this example we use N, = 50 snapshots and
we use Algorithms IIIIV and also the extended Jacobi method associated with the JADE
algorithm (Cardoso and Souloumiac, 1993) to estimate the value of Q. For Algorithms
HI and the extended Jacobi (JADE) method, we choose the initial Q to be the identity
matrix. For Algorithm IV we use the estimated Q, obtained using Algorithm III, as its
initial value’. We choose the performance measure to be the mean squared error (mse)

between the estimated and the true value of Q calculated from

M,
1 <X, -
mse = o > 11Qi - QllF (2.72)
¢ i=1

where Q; is the estimated Q at 4;;, Monte Carlo run and M, is the total number of the Monte
Carlo runs. Table 2.1 shows the resulting mse for algorithms III and IV and JADE method
versus M, the number of the covariance matrices used in the joint diagonalization process.
As can be seen from the table, Algorithm IIT and the extended Jacobi of JADE method

have exactly the same errors. This is not surprising because both algorithms are minimizing

"In our simulations we noticed that if we initialize Algorithm IV to an identity matrix it may not
converge to its optimum value. This can be explained by noticing that the maximum likelihood function
used in Algorithm IV is highly nonlinear and unless Algorithm IV is properly initialized it can very well
converge to a local minimum. For Algorithms I,IT and III this does not seem to be the case and they always
converge to their optimal point, when initialized to the identity matrix.
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M 20 40 60 100
Extended Jacobi Method (JADE) | 0.0221 0.0103 0.0067 0.0038
Algorithm III 0.0221 0.0103 0.0067 0.0038
Algorithm IV 0.0031 0.0005 0.0003 0.0001

Table 2.1: Example 2, mse versus M for algorithms III, IV and the extended Jacobi of
JADE method using M, = 50 Monte Carlo runs.

the same criterion, which is the sum of squared off-diagonal values of Ry,...,Rp. The
difference between the two algorithms is that extended Jacobi algorithm is a fixed-point
method based on recursive minimization of the least-squares criterion discussed above with
respect to the Jacobi angles, while Algorithm III uses unconstrained minimization over a
manifold to optimize the same criterion. Table 2.1 shows that these two algorithms converge
to exactly the same point. On the other hand the mse for the Algorithm IV, which is based
on a maximum likelihood criterion, is much lower than the other two algorithms, which
use least-squares criteria. Note also that for all the algorithms, the mse decreases as M

increases.

2.5.3 Example 3

In this example we demonstrate the application of the joint diagonalization to a blind source

separation problem. We consider the following instantaneous mixing model
x(t) = As(t) (2.73)

where A € RV*V is the mixing system, and s(t) is a vector of samples of N speech
processes, which we assume to have zero mean and are statistically independent from each
other. The objective is, given the observed signals x(t), to separate the speech signals up to
a scaling and permutation ambiguity. As explained previously we can use orthogonal joint

diagonalization method by first pre-whitening the observed signals using the matrix

W =A"2VT (2.74)
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where V and A correspond respectively to the matrix of eigenvectors and eigenvalues of the
matrix R, the observed signals’ covariance matrix. In practice R; can be estimated from

the observed signals using
Nz—1

. 1
R,=— x(n)xT (n 2.75
<=, 2 KT (2.75)
where N, is the length of the data samples available. We have
z(t) = Wx(t)
= Qs(t)

(2.76)

where Q is some orthogonal matrix and z(t) are the whitened signals. To estimate the
orthogonal matrix Q we can exploit the non-stationarity of the speech signals®by choosing
R ={R,(0),...,R,(M — 1)}, to be the set of covariance matrices of the whitened signal
z(t), evaluated at time epochs 0,..., M — 1, using

Lz-1

> zm(t)zh(t) m=0,...,M ~1 (2.77)
t=0

1
where z,(0: L, —1) =z((m—1)L, : mL,—1) and L, is the epoch length. The orthogonal
matrix Q is then estimated by joint diagonalization of the set of matrices R, 0),..., RZ(M -

1). The separating matrix B is then calculated from
B=Q™w. (2.78)

In this example we choose the sources to be two male and one female speech signals. We
also choose the elements of A € R3*3 randomly from a zero-mean, unit variance Gaussian
distribution. We use Algorithm III and Algorithm IV in combination with the pre-whitening
stage described above to separate the sources. We also compare our results with the well-
known BSS algorithm JADE (Cardoso and Souloumiac, 1993). Note that JADE is a higher-
oder statistics method and is based on the joint diagonalization of the fourth order cumulant

matrices of the whitened observed signals. To measure the performance we use the following

_ SWe can also use the fact that speech signals are colored signals and so the set of covariance matrices
R: ={R:(1),...,R;(L — 1)}, where R, (I) = E[z(t)z(t — l)] can be used to estimate Q. Notice that in this
case R;(l) are not necessary positive definite and so Algorithm IV is not applicable.
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Figure 2.2: Distribution of ISR for random mixing systems for Algorithm III, Algorithm IV
and JADE method

separation measure

ISR = 101 (ii[M—lb k=1,...,N (2.79)
- ©810 N Lmax(|cix|?) S .

where c;; is the ij;;, element of global system C = BA. Note that equation (2.79) measures
the average interference to signal ratio for the all outputs of the separating system B. For
this experiment we generated 500 randomly chosen mixing systems, and for each one the
resulting mixed signals were used as the inputs for all three algorithms mentioned above. We
then measured the separation performance using (2.79). Figure 2.2 shows the distribution
of the measured ISR for each of the three algorithms. Also Table 2.2 shows the average

performance for each of these three algorithms. As can be seen from the results, Algorithm

Algorithm IIT  Algorithm IV JADE Method
Average ISR (dB) -32.64 -35.41 -27.74

Table 2.2: Example 3, Average ISR using 500 random mixing systems for algorithms III,
IV and JADE method

IIT and IV outperform the JADE method. Note that, as mentioned before, Algorithm III
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and the extended Jacobi method, associated with JADE algorithm, both use the same least-
squares criterion for the joint diagonalization and as is shown in the previous example, they
have the same performance. Nevertheless for blind source separation, the JADE method
is based on joint diagonalization of fourth-order cumulant matrices of the observed signals,
while in this example we separate the speech signals by jointly diagonalizing the covariance
matrices of the observed signals evaluated at different time epochs. For this example the
results show that compared to using higher-order statistics, exploiting the second-order
non-stationarity of the observed signals gives better separation performance.

Another interesting result of this example is the invariance performance of the proposed
BSS algorithms with respect to the mixing system. By ”invariance”, we mean the per-
formance of the BSS algorithm does not depend on the mixing system. This property is
clearly shown in Figure 2.2, where it can be seen the separation performance for all three
algorithms does not change (within some tolerance) with any of the 500 mixing systems
used in this example. As has been indicated in (Cardoso, 1994), this invariance property is
an attribute of the orthogonal joint diagonalization methods.

Notice that in this example, Algorithm IV is the least sensitive to the mixing system
compared with the other two algorithms. For this example the standard deviation of the
measured ISR for 500 mixing systems for Algorithm IV is 1.3 x 10~7 dB while for the JADE
method the same quantity is found to be 3.5 x 10~3 dB.

It is worthy to note that the maximum likelihood procedure of Algorithm IV is only
optimum with Gaussian source signals. In this example the sources are speech signals
which are known to be non-Gaussian. Nevertheless it seems Algorithm IV still behaves
the best among the other algorithms tested. Although here the performance gap between
the Algorithm IV and the two other algorithms seems to be smaller compared to previous

example where we used Gaussian signals.
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2.6 Joint Non-Orthogonal Diagonalization

In the previous sections we discussed methods for joint diagonalization of a set of matrices
R,,..., Ry using an orthogonal square matrix Q. We also discussed the application of
orthogonal joint diagonalization to the blind source separation problem. Notice that to
be able to use an orthogonal joint diagonalizer in a blind source separation context, an
extra pre-whitening stage is required. One of the advantages of using an orthogonal joint
diagonalizer for a BSS problem is its potential invariance property in the absence of noise.
This property was clearly demonstrated through simulation in Example III of the previous
section. The down side of using orthogonal BSS algorithms?, as discussed in (Cardoso,
1994), is that in noisy environments their performance is bounded by the prewhitening
stage. In other words, the errors in the whitening step, which may occur due to the noise,
cannot be compensated later on by the second step, which is an orthogonal estimator, no
matter how well the second step can perform the estimation task. It is shown in (Cardoso,
1994) that for the case where the noise is 4d the performance of an orthogonal BSS algorithm
depends on the matrix o2(AtA)~! where A is the mixing system and o2 is the variance
of the noise. Because of this, one may think of improving the whitening stage or using
a non-orthogonal stage; i.e., estimating the matrix A, the mixing system, directly and in
one step. This explains the motivation behind finding a more general form for the joint
diagonalizer matrix Q rather than assuming that it is square and orthogonal. Following a
similar path for finding an orthogonal joint diagonalizer, we can propose least-squares or

maximum likelihood criteria. A least-squares criterion for estimating the parameters of a

J X N complex matrix A from a set of measured covariance matrices fll, . ,f{.M is given
as
M
A=arg | min > IRy — AA(m)AT|Z (2.80)
M) Bom—1

where A(m) € R¥*N are diagonal matrices. A few methods have been discussed for

optimizing the above criterion including methods in (van der Veen, 2001) and (Yeredor,

9By orthogonal BSS algorithms we mean those algorithms that perform a whitening step as a prepro-
cessing stage to an orthogonal matrix estimation.
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2000). A simple although effective method has also been developed in Chapter 4 of this
thesis. A detailed description of this new algorithm is postponed until later, when we discuss
the blind source separation problem for convolutive mixing.

Another possible choice for a non-orthogonal criterion is a maximum likelihood proce-
dure similar to the one discussed in the previous section. A suboptimal method has been
discussed in (Pham, 2000) which minimizes an upper bound of the mentioned likelihood
criterion.

For the special case of joint diagonalization of two matrices using a non-orthogonal
matrix A, a closed form solution may exist as shown below. Assume R; = RJ{ € C/*J
and Ry = R£ € C’*J are two Hermitian matrices with R; being non-singular. Then
it can be shown (Horn and Johnson, 1985) that R; and Ry are jointly diagonalizable if
the generalized characteristic polynomial det(AR; — Ry) has J distinct zeros. The joint
diagonalizer of the set of matrices (R, Rp) is given by the matrix of the eigenvectors of
R{!R,.

Note when R; = AD; Al and Ry = ADyA! where D; and D, are diagonal matrices

and A is a square complex matrix then

det(AR1 — Ry) = det(A(AD; — Dy)At)

= (det(A))? det(AD; — Dy) (2.81)

J
= (det(A))? [ [(Adk — d2)
=1

where dl, and dZ are respectively the iy, diagonal elements of D; and Dj. If the above
polynomial has J distinct zeros then we should have D; # AD, for some non-zero M.
Notice this is the same condition we obtained in Theorem 1. When applied to this case, it
requires the two vectors vec{D;} and vec{D3} to be linearly independent. Also note that
this condition is only necessary for the above polynomial to have J distinct zeros but it
is not sufficient (it is sufficient only when J = 2). This closed form joint diagonalization

algorithm is useful for initialization purposes as is explained in later chapters.
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2.7 Summary

In this chapter we discussed joint diagonalization methods and their application to the
blind source separation problem. We proposed four new methods for joint orthogonal
diagonalization of a set of symmetric matrices based on optimization methods over the
Stiefel manifold. The first three algorithms are based on a least-squares criterion while
the fourth algorithm uses a maximum likelihood method. We showed that the maximum
likelihood method shows superior performance compared to least-squares based algorithms
at least for white Gaussian noise and speech signals. We also compared our results with the
extended Jacobi method which is used for the joint diagonalization in the JADE method.
The simulation showed that the first three algorithms have exactly the same performance as
the extended Jacobi method, while the fourth algorithm outperforms it. We also compared
our results with the JADE method for a blind source separation scenario where we exploited
the non-stationarity of speech signals, in the case of algorithms III and IV, and their non-
Gaussianity, in the case of the JADE method, to separate them.

The results showed that, for this example, exploiting the non-stationarity of speech sig-
nals can result in a better separation performance. We also showed the invariance property

of the orthogonal joint diagonalizer through these simulations.



Chapter 3

Blind Identification of MIMO

Systems

In this Chapter we discuss a frequency domain method for blind identification of MIMO
convolutive channels driven by white quasi-stationary sources. We demonstrate that by
using the second-order statistics of the channel outputs, under mild conditions on the non-
stationarity of sources, and under the condition that channel is column-wise coprime, the
impulse response of the MIMO channel can be identified up to an inherent scaling and per-
mutation ambiguity. We further present an efficient, two step frequency domain algorithm
for identifying the channel. We show that the new algorithm, under the stated assump-
tions, does not experience the problem of frequency-dependent, arbitrary permutations and
scaling factors across the frequency spectrum as is the case with previous frequency domain
algorithms. Numerical simulations are presented to demonstrate the performance of the

new algorithm.

3.1 Introduction

Multichannel blind identification has been of great interest to both the communications and

signal processing communities and there have been numerous publications in both societies

70
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on this subject. Some of the literature on blind identification was already discussed in the
introductory chapter of this thesis. See also (Tong and Perreau, 1998) for a review of recent
blind channel estimation and identification techniques.

In this chapter we consider the problem of blind identification of MIMO channels with fi-
nite memory. Previous work in this area can be divided into two groups. The first group uses
higher-oder statistical (HOS) methods that exploit the higher—order moments (or higher—
order spectra) of the output signals to identify the channel; e.g., (Tugnait, 1999)(Chen and
Petropulu, 2001). The second group are the second-order statistical (SOS) methods that
rely only on the second-order moments of the output signals to identify the channel (Sahlin
and Broman, 2000)(Hua et al., 2001)(Gorokhov and Loubaton, 1997).

The proposed method is a frequency domain approach that exploits second-order non-
stationarity of the input signals. Previously, for both HOS and SOS identification methods,
the inputs have mostly been assumed stationary. However, some methods have been pro-
posed that exploit non-stationarity of the input signals. So far, most blind identification
methods that exploit non-stationarity (mostly in the form of cyclostationarity) address
only the SISO case. In (Pham and Cardoso, 2001) (Abed_Meraim et al., 2001), methods
have been proposed for blind source separation of instantaneously mixed, non-stationary
(cyclostationary in the second reference) signals. References (Parra and Spence, 2000) and
(Rahbar and Reilly, 2001b) (Ma et al., 2000) consider blind source separation of colored
non-stationary signals when the mixing system is convolutive.

In this chapter we exploit the non-stationarity of the observed signals for blind identifica-
tion of MIMO systems. We assume that the statistics of the input signals are slowly varying
with time; i.e., we assume that they are quasi-stationary (Papoulis, 1984). Furthermore,
we rely only on the second-order statistics of the input signal. This gives us the advantages
of SOS methods, and also permits identification in situations where stationary-based SOS
and HOS methods fail; e.g., when the input signals are temporally white and Gaussian
distributed. Although the main focus of this chapter is on white, non-stationary signals,
we show that under some additional conditions the same algoﬁthm can also be applied to

colored non-stationary signals.
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In this chapter we demonstrate sufficient identifiability conditions for blind identifia-
bility of a MIMO system in the frequency domain under a second-order non-stationarity
assumption of the inputs. We also prove that a limited number of frequency samples are
enough to identify the channel and to this end we derive an upper bound on the smallest
number of frequency samples sufficient for blind identification of the MIMO system. This
bound is lower than what has been perviously used in frequency domain blind identification
or blind source separation methods ((Chen and Petropulu, 2001) (Parra and Spence, 2000))
and results in significant computational savings for the proposed algorithm.

As mentioned in the introductory chapter of this thesis, the main difficulties with
frequency-domain blind identification of MIMO channels are the arbitrary column per-
mutations and scaling ambiguities of the estimated frequency response of the channel at
each frequency bin. In this chapter we exploit the quasi-stationary nature of input sig-
nals, such that the proposed algorithm results in a common permutation for the estimated
channel frequency response across all frequency bins. Further we demonstrate that if the
channel is column-wise coprime, then the problem of arbitrary scaling factors across the
frequency bins can be resolved, thus avoiding the limitations of frequency domain methods.

This chapter is organized in the following manner: The problem formulation including
the set of required assumptions is presented in Section 3.2. Section 3.3 establishes channel
identifiability results based on only the second-order statistics and the quasi-stationarity
property of the input signals. In Section 3.4 we present a two-stage frequency domain
algorithm for blind identification of MIMO channels. Simulation results are described in
Section 3.5. The first simulation scenario is a synthetic data case where two inputs are
quasi-stationary zero-mean Gaussian noise signals. The second simulation uses colored
sources, which are created by passing the white signals in the first simulation through
an AR filter. The third simulation uses two speech signals as inputs. In each of these
cases, the underlying channel was successfully identified. We also compare our results with
those obtained using the HOS blind identification method in (Chen and Petropulu, 2001).

Conclusions and final remarks are presented in Section 3.6.
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3.2 Problem statement

We consider the following N-source J-sensor MIMO linear model for the received signal for

the convolutive mixing problem:

x(t) = EL:H(l)s(t -0 +n(t) teZ (3.1)
=0
where x(t) = (z1(t), - ,zs(t))T € R/¥1 is the vector of observed signals,
s(t) = (s1(¢), -+ ,sn(t))T € RV*! is the vector of sources, H(t) € R7*N is the channel
matrix where the maximum order of its elements is L and n(t) = (n1(t),--- ,n;(t))T € R/*!

is the additive noise vector. The objective is to estimate the H(t) up to a scaling and
permutation factor from the observed signals x(¢). In other words, we are interested in

finding H(t) such that for all 0 < t < L we have
H(t) = H(t)[ID (3.2)

where D € R¥*N and I € RV*V are respectively constant diagonal and permutation

matrices. In the frequency domain this is equivalent to finding an H(w) € C7*N such that:

~

H(w) =H(w)IID VYwe|0,n) (3.3)

where H(w) is the DTFT of the H(t). Notice that in (3.3), since we assume that the
elements of the channel are real numbers, we only need to estimate H(w) over half of the

frequency range; i.e., w € [0, 7).

3.2.1 Main Assumptions

A0: J > N > 2; i.e, we have at least as many sensors as sources and number of the sources

is at least two.

Al: The sources s(t) are zero mean, second-order quasi-stationary white signals. The
cross—spectral density matrices of the sources P;(w,m) are diagonal for all w and m

where w denotes frequency and m is the time epoch index.
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A2: Let \j(m) denote the variance of the 7;, source at epoch m. We assume the matrix I’

given by:
A(0) .. 0 o Mq(M=1)

T = ' ' eRV*M pr > N (3.4)

Anv(©0) . . . An(M-1)
has full row rank where M is the total number of epochs, available from the observed

data.

A3: The channel is modelled by a causal FIR system of the form H(t) = [hy(2), ..., hy(t)]
and does not change over the entire observation interval. Also H(w), the DTFT of

H(t), has full column rank for all w € [0, 27).

A4: The noise n(t) is zero mean, iid across sensors, with power 2. The noise is assumed

independent of the sources.

A5: H(z), the z-transform of H(t), is column-wise coprime, i.e. the elements in each

column of H(z) do not share common zeros.

Assumption Al is the core assumption here. As is shown later, this non-stationarity as-
sumption enables us to identify a MIMO channel using only the second-order statistics of
the observed signal. Although in our assumptions we consider white signals, the identi-
fiability results and the algorithm can be extended to the colored signal case under the
condition that the spectra of the sources stay constant over the observation interval and
only their variances change between epochs. As is shown later, this condition will guarantee
a uniform permutation across all frequency bins. The reason behind imposing assumptions
A2,..., A4 will become clear when we explain the identifiability proof. Notice that assump-
tions Al, ..., A4 are sufficient to identify the frequency response of a MIMO channel up to a
constant permutation but a frequency dependent scaling ambiguity. This means that if we
use the estimated channel to recover the sources, the outputs correspond to a separated but

filtered version of the original sources. Assumption A5 enables us to remove the frequency



CHAPTER 3. BLIND IDENTIFICATION OF MIMO SYSTEMS 75

dependent scaling ambiguity so the channel can be identified up to a constant scaling and
permutation ambiguity which is the best that can be achieved in MIMO blind identification

problems.

3.3 Blind Identifiability

In this section we present frequency domain blind identifiability results based on the above
assumptions using only the second-order statistics of the observed signals. Let P,(w,m)
represent the cross-spectral density matrix of the observed signal at frequency w and time

epoch m. Using Al, A3 and A4 we have:
P, (w,m) = Hw)P,(w,m)H! (W) + oI (3.5)

where P,(w,m) by assumption is diagonal for all w and m. Notice that for white sources

we have Py(w,m) = A(m) where A(m) € RVX¥ is a diagonal matrix for each m and its

itn, diagonal value, \;(m), represents the variance of the 4z, source at epoch m. Based on

assumption A2 we can immediately see that the vectors diag{A(m)}, m =0,..., M -1,

span RY. For identifiability purposes, we assume that o is known although for J > N,
2

o“ can be estimated from the smallest eigenvalue of the matrix P, (w,m); so for now we

consider the following noise free case
Pq(wk, m) = H(wk) A(m)H' (wy) (3.6)

where wy = (27k)/K is the discretized version of w and K is the number of frequency

samples.
Theorem 2 Consider the cross spectral density matrices
Py (wk, m) = H(we) A(m)H (wi) (3.7)

fork=0,...,K—1landm=0,...,M —1. Under the assumptions that the H(wy) € CIXN
have full column rank and the vectors diag{A(m)} e R¥Y, m =0,...,M — 1, span RN, of

there exist matrices B(wg) € C*N and A(m) € RVXN | with A(m) diagonal, such that

Py (wk, m) = B(wi) A(m)B (wi) (3.8)
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then B(wy) must be related to H(wy) in the following way:
B(wi) = H(wg ) IIDe 75k (3.9)

where TL € RVN*N s a permutation matriz, Sy € RV*N and D € RV*N gre diagonal

matrices with D being non-singular.

Proof:

The proof is similar to that of Theorem 1. It must be shown that
B(we)A(m)B' (wy) = H(wg) A(m)HT (wy) (3.10)

implies (3.9).

For any sequence of scalars a = (ay, ...,ap—1), define the diagonal matrices

M-1 ) M-1
o= Y amA(m), Ea= Y anA(m), am€R. (3.11)
m=0 m=0
Therefore, an arbitrary linear combination of (3.10) over different epochs can be written as
B(wk)EeB (wi) = H(wi) S H (wy). (3.12)

Since the vectors diag{A(m)} m =0,...,M — 1 span RY, 3, can be made equal to any
real valued diagonal matrix by an appropriate choice of a. In this instance, choose a such
that 3, is the identity matrix. Then since by assumption H(wy) has full column rank for
all k =0,..,K — 1, the RHS of (3.12) has rank N implying B(wy) has full column rank
for all k. In particular, B¥ (wg)B(wg) is the identity matrix. Thus B(wy) can be cancelled
from the LHS of (3.12), giving ‘

¥, = Cx2,Cl, (3.13)

where Cy, = BT (wx)H(wg). Observe that if X, is the identity matrix then (3.12) implies
3, has full rank and thus (3.13) implies Cy is invertible for all k.
It is first shown that
C. ! = IIDe75* (3.14)
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where II is a permutation matrix and D and Sy are diagonal matrices. For any i, choose a
such that all elements of 33, are zero except for the iy, diagonal element which is unity. Then
CkEaCL = c¢;(k)c;(k)! where ci(k) is the iy, column of Ck. Moreover, since the LHS of
(3.13) is diagonal, all the off-diagonal elements of ci(k)cl(k) are zero. Because ci(k)c;'(k) has
rank one at most, it can have at most one non-zero diagonal element. It follows immediately
that every column of Cy has precisely one non-zero element, and moreover, because Cy is
invertible, every row has precisely one non-zero element too. Clearly the same is true for
C,:l; ie.,

C;l'=1ID; (3.15)

where Dy are non-singular diagonal matrices for all k. Because the LHS of (3.13) is inde-
pendent of k, Cy, CL and thus D,CD;fC is independent from k too; this means only the phase

and not the magnitude of elements of Dy change with k; i.e.,
Dy, = De 5%, (3.16)
Substituting Cy = B™ (wk)H(wk) into (3.14) and rearranging gives
B(wk) = B(wk)B T (wr)H(w;)IIDe 75k, (3.17)

Notice that B(wg)B*(wg) is a projector matrix onto the range space of B(wy). Choosing
3, to be the identity matrix in (3.12) reveals that the range space of B(wy) must contain

the range space of H(wy). Therefore,
B (wi)B (wi)H(wk) = H(wg) (3.18)

and (3.9) follows immediately from (3.18) and (3.17). O

In (3.9) De™75k represents a frequency dependent diagonal matrix where the magnitudes
of the diagonal values are constant and only their phase varies with k. Theorem 2 has one
important implication which is that under the assumptions A0, ... , A4, equation (3.6) can
be used to estimate the channel up to a constant permutation, but a frequency dependent

phase ambiguity, across all frequency bins. Thus, the commonly—-experienced difficulty



CHAPTER 3. BLIND IDENTIFICATION OF MIMO SYSTEMS 78

with frequency domain approaches to blind identification problems of ensuring a constant
permutation over all frequency bins can be alleviated with the proposed approach.

We can easily extend the above theorem to colored sources under a more restrictive
assumption. More specifically we assume that only the scale of the power spectral density

of each source changes with time. In other words we have:
Ps(wg,m) = Aj(wg)A(m) (3.19)

where A;(wg) and A(m) are diagonal matrices for wy and m. Based on this, the power

spectral density of the observed signals can be written as:
P (we, m) = H(wg) A1 (wr) A(m)H (wy). (3.20)

. 1
Define Hi(wk) = H(wg)A? (wi) then Pg(wg, m) = Hl(wk)A(m)HJ{(wk) and based on The-

orem 2 we have, for any B(wy,) satisfying (3.8)

B(wi) = Hj (wy)ITDe 75k

N , (3.21)
= H(w) A (wy)IIDe 75k,
Notice here that (3.21) in its general form can be written as
B(wy) = H(wg)TID(wg) (3.22)

where D(wg) = Alé (wg)De 75k is diagonal for all wy. In other words, when the sources are
colored H(w) can be identified up to a constant permutation and a frequency dependent
scaling factor of it’s columns. Notice that Equation (3.9) can be considered as a special
case of (3.22).

We now show that under the additional assumption A5, D(wy) in equation (3.22) is

constant for all frequency bins.

Theorem 3 Let H(w) = Zf___o H(t)e 7t € CI*N be the transfer function of a MIMO FIR
channel of order L. Similarly let B(w) € C/*¥ be the transfer function of a MIMO FIR
channel of unknown order. Assume that B(w) and H(w), evaluated at K uniformly spaced
samples, satisfy

B(wy) = H@i)ID(wk), we= o k=0,...,K —1 (3.23)
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for some permutation matriz TI € RV*V

CN*N_ If K > 2L + 1 and B(z) and H(z), the corresponding z-transforms of B(w) and

and non-singular diagonal matrices D(wy) €

H(w), are column-wise coprime then (3.23) implies
B(t) = H@IID, t=0,...,L (3.24)
for some non-singular diagonal matriz D € RVXN,

Proof:

Let b(wg) be an arbitrary column of B(wy) and let h(wy) be the corresponding column
of H(w)IT. It assumed that elements of b(z), the corresponding z-transform of b(w), are
coprime, as are the elements of h(z), the corresponding z-transform of h(w). It will be
proved that

2k
K
implies b(t) = ah(t), t=0,..., L, for some non-zero o € C provided K > 2L + 1, where

b(wk) = dkh(wk), Wg = , dr€C, dp #£0, k=0,...,K—-1 (3.25)

L is the order of h(z). The theorem then follows immediately.
Let b(t) and h(t) be the impulse responses of b(w) and h(w) respectively, so that

L L
b(w) =Y b(t)e™ ™!, h(w)=Y_ h(t)e I (3.26)
t=0

t=0
where the order L is unknown but finite. The proof below repeatedly uses the fact that, for
any Q > L—1, a SIMO FIR channel of order L having impulse response b(0),...,b(L) e R’

is coprime if and only if the block Sylvester matrix

b(0) b(l) ... b(L) 0 ... o0
Sg(b;) = O b(O) bL—=1) b.(L) 0 e RIV@+Dx(L+Q+1) (3.27)
0 ... 0 b0 b ... b(lL)

has full column rank (Serpedin and Giannakis, 1999).
It is first proved that L < L. Assume to the contrary that L > L. By substituting
(3.26) into (3.25), it follows that, for the choice Q = K — L — 1,

So(b)F = [So(h) 0J(Q+1)x(L—L)]FA- (3.28)
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where Sg(h) is a J(Q + 1) X (L + Q + 1) matrix having the same form as Sg(b), F is the

non-singular DF'T' matrix

1 1 ... 1
1 e—J2m/K ... e im(K-1)/K

F=|1 /K g ianlK-1/K (3.29)
1 e J2m(K-1)/K  o—j2n(K-1)?/K

and A = diag{dp,...,dx—1}. The LHS of (3.28) has full column rank because b(z) is
coprimeand Q=K —-L—-1>L—1 by assumption that K > 2L +1 and L > L. However,
the RHS of (3.28) clearly does not have full column rank, a contradiction.
This time, choose Q = K — L—1. Analogous to (3.28), but this time because it is known
L>1L,
[Sq(b) 0J(Q+1)x(L—Z,)]F = Sq(h)FA. (3.30)

Define C = FAF™L; since F is a DFT matrix, C is circulant:

c0) (1) ... (K-1)
C— c(K.— 1) c'(O) c(K.—— 2) ' (3:31)
c(1) c(2) c(0)
Then
[So(b) 050 11)x(z-1)] = Se(h)C. (3.32)

Even if L = L, the first JQ elements of the last column of the LHS of (3.32) are zero.

Therefore, .
Sg-1(h)c =0, (3.33)
where ¢ € RK~! is the vector formed from the first K — 1 elements of the last column of
C. Because @ —1 = K — L —2 > L — 1 by assumption that K > 2L + 1, Sg_1(h) has
full column rank, and in particular, ¢ = 0. Since C is circulant, ¢ = 0 implies C = oI for

some o € R. It follows from (3.32) that b(t) = ah(t) for t = 0, ..., L. Notice that a # 0
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for otherwise the coprimeness of the elements of b(z) would be contradicted. The theorem

then follows O

One implication of Theorem 3 is that under the further assumption that the columns of
H(z) are coprime we can remove the frequency dependent scaling ambiguity D(wy) given
in equation (3.22). Note that d;;(wg), the iy, diagonal value of D(wy), is common to the
elements of the iy, column of H(wg). If di;(wg) varies with frequency then it will appear
as common zeros (or poles) between the elements of the iz, column of H(z), thus violating
the assumptions.

Another important result that can be deduced from Theorem 3 is that the number of
frequency bins required for identification need only be at least 2L + 1. This number is
significantly less than what was used in previous frequency domain approaches (Chen and
Petropulu, 2001)(Parra and Spence, 2000); hence, significant computational savings can be

realized with the proposed identification procedure.

3.4 The Algorithm

In this section we propose a two step algorithm. The first step estimates the channel up to
a frequency dependent scaling ambiguity and constant permutation factor. In other words,

the first step finds a B(wy) such that:
B(wg) = H(wg)IID (wg) (3.34)

where II is a permutation matrix and D(wy) represents the frequency dependent scaling
ambiguity. The second step removes the frequency dependent scaling ambiguity D(wi) by

exploiting the column-wise coprimeness of the channel H(z).
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3.4.1 Stepl

For the first part of the algorithm we propose to estimate B(wy) via the following weighted

least-squares criterion:

K—-1M-1
min Y Y Wil|Pg(wr,m) — Blwi) A(m)BT (we) |3 (3.35)
B(wk)vA(m) k=0 m=0

where P (wk, m) is a sample estimate of the observed signal cross spectral density matrix at
frequency bin wy and time epoch m, A(m) is a diagonal matrix representing the unknown
cross-spectral density matrix of the sources at epoch m, and Wi,k = 0,...,K — 1 are
positive scalars.

The rational for introducing the weight factor Wy into the optimization criterion is to
emphasize the contribution of those frequency bins that are known to give a more reliable
estimate of the channel. In case where such prior information is not available we set W; = 1
forallk=0,...,K - 1.

To estimate the observed signals’ cross-spectral density matrices, Py(wg,m), m =
0,....M—1, £k=0,...,K -1, we first divide the observed sequence into M epochs, where
stationarity can be assumed within the epoch but not over more than one epoch. We then

apply the following formula to estimate the cross-spectral density matrix at the my, epoch:

Ny—1
A 1
P(wg,m) = A Z xi(wk,m)xz(wk,m) (3.36)
$ =0
where
o0
xi(wp,m) = Y x@w(t —iT, —mT)e* k=0,...,K -1 (3.37)
t=—00

where N; is the number of overlapping windows inside each epoch, T} is the size of each
epoch, T; is the time shift between two overlapping windows and w(t) is the windowing
sequence. Note that x;(wg, m)) in (3.37) is computed using the FFT.

To minimize (3.35) we propose an alternating least-squares method (ALS). The basic
idea behind ALS is that in the optimization process we divide the parameter space into
multiple sets. At each iteration of the algorithm we minimize the criterion with respect

to one set conditioned on the previously estimated sets of the parameters. The newly
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estimated set is then used to update the remaining sets. This process continues until
convergence is achieved. Notice that the convergence of ALS is guaranteed because at each
iteration we either improve or maintain the value of the cost function (Sidiropoulos et al.,
2000). Alternating least-squares methods have been used for blind source separation of finite
alphabet signals in (Talwar et al., 1996) and (Li and Sidiropoulos, 2000) and parallel factor
analysis (PARAFAC) in (Sidiropoulos et al., 2000). The advantage of using ALS (rather
than gradient based optimization methods) is that it is simple to implement and there
are no parameters to adjust. One disadvantage, shared by most non-linear optimization
techniques, is that unless it is properly initialized, it can fall into a local minimum. Later
on in this section we introduce a procedure for initializing the algorithm to diminish this
possibility.

The quantity B(wg)A(m)Bf(w) in (3.35) can be written as Zﬁ__l i (m) b (wi)bi(wi),

where b;(wy) is the 4, column of B(wy). Then equation (3.35) can be written as:

K-1M-1
fen, Wil[ps(wr, m) — Glwr)d(m)]l; 3.38
sy 2 22 Wellbe(,m) = Gl d(m) (3.39)

where Py (wg, m) = vec{lsx(wk,m)} is a J? x 1 column vector, g;(wy) is the 4 column of
G(wg) = [vec{b (wk)bJ{ (wr)}s--- ,vec{bN(wk)b;r\,(wk)}] which is a J2 x N tall matrix, and
d(m) = diag(A(m)) is an N x 1 column vector. Since there is an inherent scaling ambiguity
in calculating b;(wg) form (3.35), without loss of generality we can assume ||b;(wg)||23 = 1.

Also the constraint set  C C7**! ig defined as:
Q = {vec{®}|® = vvif, v e CT¥L, ||v||2 =1}. (3.39)

Following the ALS procedure, we can first minimize (3.38) with respect to g;(wy) conditioned
on d(m), the previously estimated values of d(m). To do this we form the matrices T\(wy) =

[B(wk,0), ..., p(wk, M — 1)] and F = [d(0), ...,d(M — 1)] and we write equation (3.35) as:

K—1
min Wel|T(wi) — G(wi)F||%. 3.40
gi@%)mkzzo k|| T(wk) — G(wk)F||7 (3.40)

Notice that (3.40) is a constrained least-squares problem. One simple, although approxi-

mate, way to minimize (3.40) is to first find the unconstrained least-squares minimizer of
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(3.40) by setting
G(wi) = T(wi)FT. (3.41)

We then project each column of G(wk) onto £; i.e.,

&i(wk) = proj o[&i(wk)] (3.42)

where g;(wg) is the iy, column of G(wk).
We now discuss a convenient method of performing the projection operation. The
projection operation can be effected by the following minimization:

min _||gi(wk) — gi(we)][3- (3.43)
Bi(wk)EN

Since gi(wk) = vec{bi(wk)b](wk)}, by defining Y;(wx) = mat{g;(ws)} we can write the

above equation as:

min Y;(wg) — by(w btw 2 =
”bi(wk)“2=1” (wk) (wr) z( k)| 7

by (ruii)rl]]2=1(b;( (wi)bi(wk))? + Tr (Y] (wk) Yi(wr)) — 26} (wi) Yi(w)bs(wi) = (3.44)

i C - QbT Y, b;
||bi(g}cl)rlllz=1 i (Wi) Yi(wi )by (we)

where C = 14 Tr (YZ (wk)Yi(wk)) is a constant termm. The above minimization can be
done easily by choosing Bi(wk), the estimated s, column of B(wyg), to be the dominant
eigenvector of Y;(wy). To find the dominant eigenvector of a matrix we can use the power
iteration method described in (Golub and VanLoan, 1996). Since an initial estimate of
b;(wy) is available (as is explained later), Y;(wy) is nearly a rank one matrix. Hence, the
ratio of the largest eigenvalue of Y;(wi) to the second-largest (this ratio determines the
convergence of the power method), is large. Hence, we need to apply only few iterations of
the power method to minimize (3.44) .

To minimize (3.35) with respect to d(m) conditioned on the previous estimate of B(wy)

we concatenate the vectors p(wg, m) and the matrices

In our simulations we use only one power iteration per ALS iteration. Increasing the number of iterations
beyond one did not noticeably improve the convergence nor the performance of the algorithm.
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Glwg) = [vec{Bl(wk)f)];(wk)},...,vec{BN(wk)f);‘V(wk)}] for all values of k = 0,..., K — 1.

For each m we have:

Wb | [ e | [
min ' - ' d(m) (3.45)

d(m) .
VWk-1Ppwk-1,m)| |V WK—1G(wK—1)_ )

Minimizing (3.45) with respect to d(m) we get:

_ R =+ r
vVWoG(wo) vVWob(wo, m) ]
d(m) = ' ' m=0,.,M—1.  (3.46)
RY WK—IG(wK—l)_ VWk-1D(wk—1,m) ]

Using equation (3.41), (3.42) and (3.46) we can repeatedly update the values of d(m) and
G (wyg) until convergence is achieved.

As mentioned previously, to avoid being trapped in local minima, we need to properly
initialize the algorithm. One simple way of doing this is to use the following closed form
algorithm for joint diagonalization of two matrices based on the previous discussion in

Chapter 2:

3.4.2 Initialization

To initialize the algorithm we can select two matrices p(wk, mi), P(wk, mg), m1 # mg. We
then choose the initial estimate for B(wy) to be the matrix consisting of the N dominant
generalized eigenvectors of the matrix couple (?(wk, mi), Ia(wk, m3)). Although no optimum
selection for m, and mq can be given at this stage, in our simulations we choose f’(wk, m1)

and ls(wk, mg) such that their non-zero generalized eigenvalues are not all repeated.

Summary of Step I of the Algorithm for Blind Identification
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1. Estimate the observed signals’ cross spectral density matrices, P, (wk,m), based on

(3.36) and set T(wk) = [Pz (wk, 0), -.., Pz (W, M — 1)] where p(wy) = vec{Py(wg, m)}

2. Set B%(wy), the initial value for the B(wy), based on the method described in Section
3.4.2

3. for v == 0 to Max_itr

e Calculate d“(m) m=0,..,M —1 from (3.46)

e Set F¥ = [d¥(0),...,d*(M — 1)]

e fork=0to K -1
— G¥(wr) = [vec{bY (wi)bl" (wk)}, .., vec{BX (wk)bly (wi)}]
~ G¥(wx) = T(we)(F)*

fori=1to N

* Y = mat{g; (wk)}
* q = YbY(wg)
* lf)i-’“(wk) =

.
||C1||2
— end

e end

4. Calculate the cost value C¥ = sz_Ol Wi||T(wi) — G¥ (wp)F¥||%

v _ -1
5- iflc’—yl

C < € where 0 < € < 1 then stop

6. end

3.4.3 Step I1

Step II removes the frequency dependent scaling ambiguity by exploiting A5 via Theorem

3. Let the frequency domain quantity b;(wi) denote the iy, column of B(wy) obtained in
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Step I of the algorithm. Without loss of generality we can assume the permutation matrix

IT in (3.34) is an identity matrix and we can write:
bi(wk) = hi(wk)dii(w) (3.47)

where h;(wy) is the g, column of H(wg) and dj;(wg) is the 4y, diagonal element of D(wy).
Assumption A5 states the elements of h;(z) are coprime; i.e., they do not share common

zeros. In the time domain this corresponds to the matrix

hi(0) . . . h(L;) O . . 0
So(h;) = ' ' € R7(Q+)x(Li+Q+1) (3.48)

0 . . 0 h(0) . . . h(L
having full column rank for Q > L; — 1 where L; is the maximum order of the elements
of h;(t) (Serpedin and Giannakis, 1999),(Tong et al, 1995). To remove the frequency
dependent scaling ambiguities, di;(wy), we use the following steps. In the time domain
(3.47) can be expressed as the circular convolution of d;;(t), the K-point IDFT of di;(wy),
with h;(t), the K-point IDFT of h;(wg). Assuming that K > L;, (3.47) can therefore be

written as:
(bi(0), ..., bi (K — 1)) = (h3(0), ..., hi(Ls), 0 (5 —L,—1)) D& (3.49)
where
di(0)  di(1) . : di(K —1)
LSO o wE =) 550
di(1) .. di(K—-1)  di(0)

is a circulant matrix. To remove the scaling ambiguities d;;(wy) we need to find a circulant
matrix ®% given as:
$i(0)  #i(1) . : ¢i(K — 1)

- $(K —1) ¢:(0) . . %K =2) | _ ok as0)

$i(1) - - k(K —1)  44(0)
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such that

i H

where « is a constant scalar. Having found such a ®% we can then calculate ﬁi(t), the

estimated %, column of H(t), by setting
hi(t) = bi(t) ® ¢5(t), t=0,..,K—1 (3.53)

where ® represents the circular convolution operation. Notice that in general Dic is un-
known so we cannot find ®%, from (3.52). To calculate ® we exploit the full column rank
property of the matrix Sg(h;) for @ > L; — 1. For K = L; + Q + 1, from equations (3.48)

and (3.49) we can write:

Bt = [Sq-1(hi) 040x1]Dg (3.54)
where
b;(0) bi(1) . . bi(K-1)
1.0 _ bi(K — 1) b;(0) . . bi(K~-2) c RIOXK (3.55)
bi(K—Q-i—l) . .. bz(K—Q)

Multiplying both sides of equation (3.54) by ®% yields:
c®6 = [Sg-1(hs) 0ygx1|DEC. (3.56)

Define I:I’C = BL®.. We now show for Q > L;, if we find a non-zero ®% that makes the
last column of I:I’C equal to zero, then it also satisfies equation (3.52); i.e., I:I’C becomes a

scaled version of BY,. Assign AL = D‘g 4., which is also a circulant matrix written as
A(0) a1 . Ai(K —1)

Co|MESD MO - ME =D e (3.57)

A1) L NE-1D N0
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Then the last column of }APC is equal to:
hy(K —1) Ai(K —1)

= Sg-1(hy) . . (3.58)

hy(K - Q) Ai(1)
For Q > L;, Sg-1(h;) has full column rank. Therefore, if the vector on the LHS of (3.58) is
to have all zero elements, then A(K — 1), ..., A\(1) must also be all zeros; i.e., the matrix A%,
is diagonal with all diagonal elements equal to A\(0), and the proof is complete. Following
what was said above we need to choose ®%, such that the elements of last column of I:I‘C
become all zeros. In other words, we find the vector ¢; = (¢;(K — 1), .., ;(0))T, the last

column of the circulant matrix ®%, such that
Lo, = 0. (3.59)
To find ¢; we minimize the quantity ||B%¢;||2 , or equivalently:

min  ¢TBL BLg;. (3.60)
l1@;ll2=1

The solution is given by choosing ¢; to be the eigenvector of B’g ¢ corresponding to it’s

minimum eigenvalue. The last step is to compute h;(t) from (3.53).

Summary of Step II of the Algorithm for Blind Identification

1. fori=1to N

e Choose K > 2L; +1

Calculate Q = K — L; — 1

Calculate b;(t) = IDFT{b;(wx)} k=0,...,K—1t=0,...,K—1

Form the matrix B%, from (3.55)

Set ¢; to be the minimum eigenvector of BiCTBiC
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e Calculate ¢;(wg) = DFT{¢;(0),...,¢:(K — 1)}
e Calculate hy(t) = IDFT{b;(wi)¢i(wr)} k=0,..., K —1t=0,...,K -1

e end

3.5 Simulation Results

3.5.1 Example I, White Sources

For the first simulation, the sources are two independent white Gaussian signals, multiplied
by slowly varying sine and cosine signals to create the desired quasi—stationary effect. The
purpose of this example is to show that the algorithm is capable of identifying the channel
even when the sources are white and Gaussian. Note that none of the previous SOS and HOS
methods can identify the channel in this case because they require the sources to be colored
in the case of SOS methods and non-Gaussian in the case of HOS methods. We choose

the channel to be a 3 X 2 system whose impulse response H(t) is given in Table 3.1. The

t 0 1 2 3 1 5 6 7
Hii(t) | 0528 -0.153 0.631 0.942 -0.221 -0.701 0.274 -0.681
Hy(t) | 0.696 1.952 0234 -0.938 0.856 1.347 0.341 0.213
Hy(t) | 0.963 -0.927 -0.085 0.322 -0.963 0.049 -0.614 0.000
Hy(t) | 0675 0056 -0.143 0.180 1.054 0230 1.704 0.704
Hs(t) | 0719 0538 -1.070 -1.351 0.105 -1.493 0224 0.144
Hap(t) | 0774 0047 -0.147 -0.381 0.287 -0.047 0.649 0.147

Table 3.1: Impulse Response of the MIMO system for Examples I & II & III

epoch size is kept constant at 500 and the data length was varied between 10000 and 50000
samples, corresponding to M, the number of epochs, ranging between 20 to 100 epochs.
White Gaussian noise was added to the output of the system at a level corresponding to the

desired value of averaged SNR over all epochs?. At each epoch, 128-point FFTs, applied

2The power of the noise was kept constant at all epochs.
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to time segments overlapping by 50%, weighted by Hanning windows were used to estimate
the cross-spectral density matrices. At each epoch, only K = 16 cross-spectral density
matrices?, evaluated at uniformly spaced frequency samples, were calculated as input to

the algorithm. We also choose the W, in (3.35) to be:

1
Wy = —— . (3.61)
20 P2 (wr, m)| I

Notice that by this choice of W}, we put more emphasis on those frequency bins where aver-

age norm of the cross spectral density matrices is small. For white sources this corresponds
to those frequency bins where channel parameters have small values and as a result are
harder to estimate. Compared to the case when all Wy are set to ones, our simulations
show that this choice of W), improves the overall estimation error. To measure the estima-
tion error, since a scaling ambiguity exists in the final results, we use the following measure
for mean-squared error (mse) based on a method suggested in (Morgan et al., 1998) for

evaluating the estimated impulse responses*

M. ( hThk 2
MSE = i > (3.62)
JNM ZZZ [l

k=1 j=1 i=1

where h;j = (hi;(0), ..., hij(Li;))T is the true ijy, impulse response of the channel and ﬁfj
is the estimated response at Monte Carlo run k. The quantity M, is the total number of
Monte Carlo runs.

Table 3.2 shows the mse, calculated from (3.62), for different SNR’s and varying M,
using M, = 50 Monte-Carlo runs. As can be seen from Table 3.2, by increasing the number
of epochs, which corresponds to increasing the data length, the mse decreases.

To get a visual impression of the results in Table 3.2, Figures 3.1 and 3.2 illustrate
the corresponding time domain impulse responses and frequency domain responses of the
estimated and true channel for SNR=30dB, M = 60 epochs, and a data length of 10000

samples. In all of the simulations the algorithm converges between 7 and 17 iterations.

3This value satisfies the bound K > 2L + 1, where in this case L = 7.

4 Also refer to (Manton, 2001) where the author proves that the mathematically correct way of measuring
errors when scale ambiguity is present is to use a distance function on the complex projective space. In fact,
(3.62) is one of a number of well known distance functions on the complex projective space.
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Figure 3.1: 50 superimposed independently estimated time-domain responses I:I(t) shown
as dot-dashed lines, along with the true H(t), shown by the solid lines with squares at the
true data points. The horizontal axis is the time index. M = 60, SNR=30dB, and K = 16.

Figure 3.2: Same as Figure 3.1, except the impulse responses are shown in the frequency
domain.
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M 20 40 60 100
SNR=30 dB | 0.0423 0.0212 0.0148 0.0068
SNR=15dB | 0.0531 0.0282 0.0180 0.0114
SNR=10 dB | 0.0714 0.0324 0.0235 0.0153

Table 3.2: Example I, showing mse for different SNRs and varying M using M, = 50 Monte
Carlo runs.
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Figure 3.3: mse versus K, number of frequency samples, for M=20 and M=60 and for
SNR=10dB using M, = 50 Monte Carlo.

Further, in Figure 3.3, we show the results for varying K. As can be seen from the
figure, for K = 15 we have a sudden drop in the estimation error. These results match our
theoretical bound, derived in Theorem 3, which states that K > 2L + 1 frequency samples
are required for identifiability of H(t). Since L = 7, in theory the number of frequency
samples should be K > 14 4+ 1 = 15.
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3.5.2 Example II, Colored Sources

In this example we show the performance of the algorithm when the sources are colored
signals. For this simulation, to create the colored sources we pass the source signals in the
previous example through a first order AR filter with the pole located at z = 0.8. Notice
that contrary to some second-order statistics methods which require the sources to have
distinct spectral shapes (Hua and Tugnait, 2000), here the shape of spectrum of the sources
can be identical. The sources are mixed through the same channel as example I and we
apply the algorithm using the same parameters used in the previous example. The results
are shown in Table 3.3. It can be seen the results are close to what were obtained for the

white source case.

M 20 40 60 100
SNR=30 dB | 0.0566 0.0231 0.0154 0.0124
SNR=15dB | 0.0695 0.0298 0.0236 0.0160
SNR=10 dB | 0.0983 0.0774 0.0511 0.0358

Table 3.3: Example II, showing mse for different SNR’s and varying M using M, = 50
Monte Carlo runs.

3.5.3 Example III, Speech Signals

The purpose of this next example is to show the performance of the algorithm when the
sources are speech signals. Note that for speech signals not only the power but the whole
spectrum of the signal changes with time. This violates (3.19) which we require for colored
signals; therefore, we can expect degradation in performance. We use the same channel
given in example 1; however, for the sources, we use two female speech sequences sampled
at 8.0 KHz with a total duration of 2.0 seconds. White Gaussian noise is added to the
output of the system commensurate with the specified value of SNR. In a manner similar
to Example 1, we use 128-point FFTs, with the CPSD matrices being computed at only
16 FFT points for each epoch. Table 3.4 shows the computed mse for M = 50 epochs for

varying values of SNR. As can be seen from the results, the performance has been degraded
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somewhat compared to the previous example, especially at low values of SNR. However, for
high signal to noise ratios it can be observed that the channel can be identified to within
a reasonable error. One explanation for this is that in general the speech signals do not
satisfy the spectral condition given in (3.19); i.e., the shape of spectrum of speech signals
may change over the observation time. Due to this modelling error, we can expect more
errors in estimating the channel, using the criterion given in (3.35), when the inputs to the
channel are speech signals. We can make the criterion (3.35) more general, so it is also
applicable to speech signals, through representing the cross power spectral density matrices
of the sources by A(wg,m) rather then A(m). The down-side of doing this is that the new
criterion will then be prone to the permutation problem; i.e., at each frequency bin we may
get a different permutation. Nevertheless since the spectral envelope of speech signals are
correlated across frequency spectrum, one can exploit this property to remove the arbitrarily
frequency dependent permutations. The details of this new approach for the case when the
input to the mixing system are speech (or in general audio) signals are given in the next
chapter. Note that in current example no post-processing for removing permutation errors

has been done.

SNR (dB) | 30 15 10
0.1201 0.4478 0.5195

Table 3.4: Example II, showing the estimation mse for varying SNR, for M, = 50 Monte
Carlo runs in the case of speech sources, with M = 50.

3.5.4 Example IV

In this example we compare the performance of our method with other existing MIMO
channel identification approaches. Since most of the current methods for MIMO blind iden-
tification assume stationary sources, a direct comparison with our method, which explicitly
exploits the non-stationarity of the sources, is not possible. The closest method to the pro-

posed approach is the one recently proposed in (Chen and Petropulu, 2001). Their method
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is also a frequency domain approach with the major difference that they use higher-oder
statistics of the observed signal to identify the channel. Note that the method in (Chen and
Petropulu, 2001) can only be applied to non-Gaussian signals with non-symmetrical pdfs
while the proposed method can be applied to signals with arbitrary pdfs as long as they sat-
isfy the non-stationarity assumption. Also the proposed method can be directly extended
to colored signals under assumption (3.19) while the method in (Chen and Petropulu, 2001)
is restricted to white signals. To compare our results we use the same channel, data length,
signal to noise ratio and number of FFT points used in example (1) of (Chen and Petrop-
ulu, 2001). The only exceptions are the sources; in (Chen and Petropulu, 2001) the sources
are non-Gaussian stationary signals while for the proposed method we use non-stationary
white Gaussian sources. Also to measure the estimation error we use the same performance
measure given by equation (53) in (Chen and Petropulu, 2001). The comparative results are
shown in Figure (3.4), where we have used the mean square error data in Table 1 of (Chen
and Petropulu, 2001) to compare with our results. As can be seen from the figure, the per-
formance of the two methods are very close. For shorter data lengths the method in (Chen
and Petropulu, 2001) has a slightly better performance over the proposed method while for
a higher number of data samples (more epochs), specially at low SNR, the proposed method
has the advantage over the method in (Chen and Petropulu, 2001).

3.6 Summary

In this chapter we have derived sufficient conditions for identifiability of a MIMO system,
driven by white quasi-stationary sources, in the frequency domain using only second-order
statistics of the observed signals. We also showed that the same results can be directly
extended to quasi stationary colored sources when only the power of the signal is slowly
varying with time. We also proposed a two stage algorithm. The first stage estimates the
channel parameters up to a constant permutation and frequency dependent scaling factor,
based on a alternating least-squares method, while the second stage removes the frequency

dependent scaling ambiguity using a closed form algorithm. The results of applying the new
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Figure 3.4: Comparison of the new proposed algorithm with the method in (Chen and
Petropulu, 2001).

algorithm to white and colored sources under the stated assumptions verifies the identifia-
bility conditions, as well as the performance of the algorithm. Application of the proposed

algorithm to speech signals was also demonstrated.



Chapter 4

Real Room Blind Source

Separation Problem

In this chapter we propose a new frequency domain algorithm for blind source separation of
audio signals, mixed in a reverberant environment. The proposed algorithm is an extension
of the MIMO identification procedure described in previous chapter. The first part of the
algorithm uses joint diagonalization of the cross spectral density matrices of the output of
the mixing system to identify the mixing system at each frequency bin up to a scaling and
permutation ambiguity. The inverse of the estimated mixing system is then used to separate
the sources. The second part of the algorithm uses a novel procedure to resolve the frequency
dependent permutation problem by exploiting the inherent non-stationarity of the audio
sources. Also the frequency dependent scaling ambiguity problem is partially resolved by
means of a novel initialization procedure for the first step of the algorithm. We demonstrate
the performance of the proposed algorithm using real room experiments, by blind separation
of audio signals mixed in reverberant environments. In all of our experiments the aléorithm
demonstrates good separation performance and enhanced output audio quality. We also
compare the proposed algorithm to the one in (Parra and Spence, 2000). The results show

fast convergence and superior separation performance of the new algorithm.

98



CHAPTER 4. REAL ROOM BLIND SOURCE SEPARATION PROBLEM 99

4.1 Introduction

The MIMO blind identification method, discussed in the previous chapter, has direct ap-
plication in blind source separation of convolved mixed sources, in that having the esti-
mated mixing system we can use standard multichannel equalization techniques to recover
the sources. As mentioned before an advantage of using the MIMO blind identification
method, discussed in the previous section, is that we not only can separate the sources but
we also can equalize them; i.e., we can can recover the sources up to a constant scaling and
permutation ambiguity.

In this chapter we are interested in one particular application of blind source separation,
which is blind separation of mixed audio signals in a reverberant environment. In theory this
case can be modeled as a convolutive mixing blind source separation problem. Nevertheless,
as has already been discussed in the introductory chapter of this thesis, when one actually
uses a convolutive BSS algorithm in a real reverberant environment there are few challenges
that need to be considered. For example the MIMO blind identification algorithm presented
in the previous chapter cannot be used directly for blind separation of audio signals in a
reverberant environment. One important reason, which is also discussed in the previous
chapter, is that audio signals, although inherently non-stationary, do not necessarily satisfy
the condition that the shape of the their spectrum stays the same with time, and only the
scale of the spectrum changes. Another reason that we may not be able to use the algorithm
in the previous chapter is that, we assume the mixing system has an FIR structure and the
elements in each column of the mixing system do not share common zeros. We also assume
that the order of the mixing system is known beforehand. For a real reverberant acoustic
environment, none of these assumptions are practical. Note that acoustic impulse responses
(AIR) are not FIR and even if we approximate them with FIR filters, their orders are not
known beforehand.

Due to these problems, in this chapter we propose a new convolutive BSS algorithm
that can be applied in a real reverberant acoustic environment. The proposed algorithm

is a modified version of the algorithm presented in the previous chapter and resolves some
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of the problems mentioned above. Note that using the proposed algorithm, we can only
separate the sources up to some filter ambiguity. Nevertheless the distortions caused by
this filtering ambiguity, as shown by our listening tests, can be minimized using a novel
initialization approach as discussed in this chapter.

Comparison to existing methods: So far, the results shown for most of the convolutive
blind source separation methods, especially the HOS methods, are limited to computer
simulations, using synthetically generated mixing channels with small orders, far from re-
sembling a real mixing environment. Among these methods there are some that only con-
sider two-input two-output (TITO) mixing systems (Lindgren and Broman, 1998)(Yellin
and Weinstein, 1994)(Weinstein et al., 1993) and some that assume mixing systems with
the same number of inputs and outputs (Lee et al., 1997). There are few methods that
consider blind source separation of audio signals in real room situations (Parra and Spence,
2000)(Schobben and Sommen, 1998). Nevertheless the real performance of these algorithms
seems to be poor when they are operating in a highly reverberant environment.

In this chapter we show the results of our new BSS algorithm for real room experiments
with long reverberation times. The proposed method is not limited to the mixing systems
with fixed dimensions nor to ones with same number of outputs and inputs. The only
requirement is that the number of outputs for the mixing system should be greater than or
equal to the number of inputs.

The method in (Parra and Spence, 2000) is rare among methods presented so far in that
it considers blind separation in a real room environment, with some promising results. The
method exploits the non-stationarity of the observed signals in the frequency domain and
proposes a constrained least-squares criterion at each frequency bin which then is minimized
using a steepest descent approach. One of the assumptions made in (Parra and Spence,
2000) is that the length of the un-mixing filters is finite and is much smaller than the
number of frequency bins. Although not explicitly proven, it’s been shown in (Parra and
Spence, 2000) that the constraint on the filter size helps to resolve the frequency domain
permutation problem. The main limitation of using this approach to solve the permutation

problem has been discussed in (Ikram and Morgan, 2000)and later on in (Ikram and Morgan,
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2001). Also in (Araki et al., 2001), through experimental results, the authors show for the
long room reverberation case, as the length of the un-mixing filters increases, the separation
performance decreases and they conclude that the length constraint is not efficient in a long
reverberant environment.

The algorithm proposed in this chapter does not experience the problems mentioned
above, mainly because of the different approach that has been used to solve the permu-
tation problem. In this method, rather than constraining the length of the un-mixing
filters, we exploit the non-stationarity of the input signals to resolve permutation errors. In
the previous chapter we proved theoretically that for white non-stationary signals, mixed
through a convolutive system, a frequency domain algorithm can be derived which has a
uniform permutation across all frequency bins. Although the results do not hold for speech
signals, nevertheless, as is shown in this chapter, by using the spectral correlation between
the adjacent frequency bins the permutation problem can be resolved in new way through
solving a discrete optimization problem for each pair of frequency bins (see also (Rahbar
and Reilly, 2001a)). To prevent any catastrophic situation (as will be explained later in
this chapter), that can happen as a result of a missed or wrongly adjusted permutation, we
propose a diadic sorting scheme to achieve a uniform permutation across all frequency bins.

Similar to the algorithm for MIMO blind identification, here for the first step of the
algorithm we use an alternating least-squares (ALS) method to optimize a criterion used
for joint diagonalization of the cross-spectral density matrices (CPSD)estimated at differ-
ent time epochs. The advantage of the new algorithm compared to the one presented in
(Parra and Spence, 2000) is its fast convergence and significantly better performance as is
demonstrated in our real room experimental results.

The organization of this chapter is as follows: The problem formulation including the set
of required assumptions is presented in Section 4.2. In Section 4.3 we present a frequency
domain algorithm for convolutive blind source separation. The permutation problem, in-
cluding the proposed solution, is discussed in Section 4.4. Simulation results for synthetic
convolutive mixing scenarios are described in section 4.5 and real room experimental results

are described in Section 4.6. The first set of experiments are based on real room recordings
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done in a small office environment with moderate reverberation time. The second set of
experiments are done in a conference room with a highly reverberant characteristic. In all
these experiments the original sources (speech signals) are successfully recovered with good
audio quality. We also compare our results with those obtained using the method in (Parra

and Spence, 2000). Conclusions and final remarks are presented in Section 4.7.

4.2 Problem statement

We consider the following N-source J-sensor MIMO linear model for the received signal for

the convolutive mixing problem?:
x(t) = [H(2)|s(t) +n(t) teZ (4.1)

where x(t) = (z1(t), -+ ,z(t))7 is the vector of observed signals,

s(t) = (s1(t),--- ,sn(t))T is the vector of sources, H(z) is the J X N transfer function
of mixing system and n(t) = (n1(t),--- ,ns(t))T is the additive noise vector. Notice that
here, contrary to previous chapter, we assume h;;(z), the ijy, element of H(z), to be a
rational function of z. For the special case where the hy;j(z) are causal FIR filters, we
have H(z) = Ztl;o H(t)2* where L is the highest polynomial degree of hjj(z) for all
t,j =0,...,N. The objective of the blind source separation algorithm is to estimate the

un-mixing filters W(z) from the observed signals x(t) such that
W(z)H(z) = IID(2) (4.2)

where IT € RV*V is a permutation matrix and D(z) is a diagonal matrix with diagonal
elements which are rational functions of 2. In the frequency domain this is equivalent to
finding an W(w) € C/*¥ gsuch that:

W(W)H(w) = ID(w) Yw € [0,7) (4.3)

where H(w) is the corresponding DTFT for H(z). Notice that in (4.3), since we assume

that the elements of the channel are real numbers, we only need to estimate W(w) over

'Here we use the notation [H(z)]s(¢) to denote the convolution between a system with z-transform H(z)
and source vectors s(t).
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half of the frequency range; i.e., w € [0,7). Equation (4.3) corresponds to the case when
the outputs of the un-mixing filter, although separated, are a filtered version of the original

sources.

4.2.1 Main Assumptions

AQ0: J > N > 2;i.e, we have at least as many sensors as sources and the number of sources

are at least two.

A1l: The sources s(t) are zero mean, second-order non-stationary signals. The cross—
spectral density matrices of the sources Ps(w, m) are diagonal for all w and m where

w denotes frequency and m is the epoch index.

A2: The mixing system is modelled by a causal system of the form H(z) = [h;(2), ..., hx(2)]

and does not change over the entire observation interval.

A3; H(wg), the DFT of H(z), has full column rank for all wg, £=10,...,K -1, wy =
(2m)k

7k

A5: The noise n(t) is zero mean, iid across sensors, with power o2. The noise is assumed

independent of the sources.

Note that the assumptions used in this chapter are similar to the ones in Chapter 3,
and so the identifiability conditions are similar to the ones given by Theorem 2 in that
chapter. Note that here we use a less restrictive set of assumptions; e.g., we do not make
any assumption on the structure of the channel and because of this we can only estimate
the channel at each frequency bin up to some arbitrary scaling ambiguity. Also since
we do not make any assumption on the temporal structure of the sources (they can be
colored or white), the proposed identification algorithm is somewhat different from the
one presented in the previous chapter and hence requires a second step to eliminate the
frequency dependent permutation errors. In the next section we discuss a method whereby
jointly diagonalizing the set of matrices Py(wg,m) m = 0,...,M — 1 we can estimate

H{(wg) up to a permutation and scaling ambiguity. The separating matrix W(wy) is then
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calculated by finding the pseudo inverse of H(wy), the estimated value of H(wg). In the
following sections we also discuss efficient methods for eliminating the frequency dependent

permutation and alleviating the effect of frequency dependent scaling ambiguities.

4.3 The Algorithm

Based on the assumptions in the previous section, the cross-spectral density matrix of the

observed signal at frequency wy and time epoch m can be written as
P, (w,m) = H(w)Ps(w,m)H () + ¢°I, (4.4)

where P,(w, m) is a diagonal matrix which represents the cross-spectral density matrices of
the sources at epoch m. To estimate the separating matrix W (wy) we propose the following
least-squares based joint diagonalization criterion for the case when a sample estimate of

P, (wg, m) is available.

K-1M-1
min > > ||Ps(wk, m) — B(wk) Alwg, m)BT (wi)l|%, (4.5)
Bk, A(m) = 2=

where B(w) is an estimate of the mixing system H(wy), Pz(wk, m) is a sample estimate of
the observed signals cross spectral density matrix at frequency bin wy and time epoch m,
A(wg,m) is a diagonal matrix, representing the unknown cross-spectral density matrix of
the sources at epoch m. Note that there are some differences between the above criterion
and the one presented in the previous chapter. The main difference is that in the above
criterion, the cross power spectral density matrices of sources are modeled by A(wg,m)
which is a function of both wy and m while for the criterion used in previous chapter,
the cross power spectral density matrices of sources are modeled by A(m) which is only
a function of m. As mentioned before, the use of A(m) is not a good model to represent
audio signals.

In (Parra and Spence, 2000) a similar criterion has been used with the main difference
being that their proposed criterion uses a backward model which directly estimates the

separating matrix W(wg). Using the criterion in (4.5) allows us to implement the ALS
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algorithm which is described later in this section. In (Parra and Spence, 2000), an additional
FIR constraint on the de-mixing matrix is required to prevent arbitrary frequency dependent
permutations. As shown in (Ikram and Morgan, 2000) and (Araki et al., 2001) such a
constraint is not effective for a long reverberant environment and the performance of the
algorithm may degrade as the length of the separating filter increases. In the proposed
method we do not require an FIR constraint on the mixing model nor on the un-mixing
system, mainly because we use a different approach for resolving the permutation problem.

To resolve the permutation problem we follow the same approach as in (Rahbar and
Reilly, 2001a) by exploiting the inherent non-stationarity of the input signals, which basi-
cally is done through the second stage of the algorithm by solving a discrete optimization
problem.

For the first stage of the algorithm, similar to the approach used in the previous chapter,
we optimize the criterion given by (4.5) using an alternating least-squares method(ALS).
Note that the separation algorithm in (Parra and Spence, 2000) is based on using a gradient
method to minimize the suggested cost function. The advantage of using ALS (rather
than gradient based optimization methods) is that it usually has fast convergence (as is
demonstrated in simulations) and there are no parameters to adjust.

Most of the steps for minimizing the criterion (4.5) are similar to the ones in the previous
chapter. Nevertheless to be complete and for ease of reference the whole procedure including
those steps that are similar to the ones in the previous chapter are written below.

Using the properties of Kronecker products (Brewer, 1979), the quantity B(wg)A(wg, m)B' (wg)

in (4.5) can be written as
vee{B(wi)A(wk, m)Bl ()} = B(wy) © B(wy) diag{A(wk, m)} (46)
where @ is the Khatri-Rao product and is defined as:
B(w) © B(w) = [b1(wk) @ br(wg), ..., b (wk) ® by (wg)] (4.7)

where b;(wi) is the 4;, column of B(wg) and ® represents the Kronecker product. Setting

G(wi) = B(w) ©B(w), d(wk, m) = diag{A(wk,m))} and Py (ws, m) = vec{Ps(wi, m)} we
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can rewrite (4.5) as:

K-1M-1
min Dz (wi, m) — G(wg)d(wg, m 2 48
) By 2 2 Bt ) = Gl e, (48)

where g;(wg) is the iy column of G(wg). Since there is an inherent scaling ambiguity
between b;(wy) and d;(wg, m), the iy, diagonal value of d(wg, m), in (4.5), without loss
of generality we can assume ||b;(wk)||2 = 1. Based on this we define the constraint set
QcCl as:

Q = {vec{®}|® = vu!, v e C7X, ||| = 1}. (4.9)

In defining the constraint set {2 we used the fact that for the column vector v we have
v @ v = vec{vr'}. We first minimize (4.8) with respect to g;(wy) conditioned on d(wk,m),
the previously estimated values of d(wg,m). To do this we form the matrices T(wg) =
[D(wk, 0), ..., P(wi, M — 1)] and F(wg) = [d(wk,0), ..., d(wk, M — 1)] and we write equation
(4.8) as:

K-1
gi(r£:§169 kg=0 H (wk) (wk) (Wk)”F . ( )

To minimize (4.10) we first find the unconstrained least-squares minimizer of (4.10) by
setting

G(wr) = T(wi)F T (wk)- (4.11)

We then project each column of G(wk) onto ; i.e.,

8i(wk) = proj o[&:(wk)] (4.12)

where g;(wg) is the iz, column of G(wy).
Similar to what is discussed in the previous chapter a convenient method of performing

the projection operation is to solve the following minimization:

gi(wr) = arg min _||&i(wk) — gi(wk)|I3- (4.13)
gi(wk)eQ

Since gi(wg) = vec{bi(wk)bz (wk)}, by defining Y;(wg) = mat{g;(wk)} we can write the
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above equation as:

min || Y;(wk) — bi(wi)b] (we)]|% =
bsue)ll2=1 (4.14)

D C— 2b] (wi) Yi(wp)bs (wi)

where C = 1+1Tr (YJ (wi)Y(wk)) is a constant term. The above minimization can be done
by choosing b; (wk), the estimated 4y, column of B(wy), to be the dominant eigenvector of
Y;(wk). In the manner used in the previous chapter, to find the dominant eigenvector we
use the power iteration method, described in (Golub and VanLoan, 1996), with one power
iteration per ALS iteration.

To minimize (4.5) with respect to d(wg, m), conditioned on the previous estimate of

G(wg), we solve the following least-squares problem.
d(wk,m) = arg_min_||pz(wk, m) — Gwe)d(wk, m)|3 (4.15)
d(wg,m)
Minimizing (4.15) with respect to d(wg, m) we get:
d(wk,m) = GH(wp)p(we,m) m=0,..,.M—~1, k=0,..., K —1. (4.16)

Using equations (4.11), (4.12) and (4.16), we can repeatedly update the values of d(m) and
G(wy) until convergence is achieved.

As mentioned previously, to avoid being trapped in local minima, we need to properly
initialize the algorithm. The initialization procedure can be similar to that in the previous
chapter where at each frequency bin we can choose the initial estimate for H(wg) using a
closed-form joint diagonalization procedure as described before. Note that since we need to
apply this initialization for each frequency bin, for real room experiments where we need a
large number of frequency bins, this initialization procedure is computationally inefficient.
In the following we describe another initialization method which not only is computationally

efficient but also improves dramatically the perceptual quality of the separated audio signals.

4.3.1 Initialization

To initialize the algorithm we have different options. The first option is that a rough estimate

of the mixing system at each frequency bin (up to some scaling and permutation ambiguity)



CHAPTER 4. REAL ROOM BLIND SOURCE SEPARATION PROBLEM 108

can be obtained using the closed-form, exact joint diagonalization procedure described in
previous chapter. Since we need to use this initialization procedure at each frequency bin,
one draw-back of this initialization method will be its computational complexity.

An alternative, novel, ad hoc initialization method which not only requires less computa-
tion, but also dramatically improves the quality of the separated audio signals, is described
as follows. The main idea of this initialization procedure, is that first we choose the initial
value of B(wp), the first frequency bin, using the exact closed form joint diagonalization
method mentioned above. We then apply the ALS algorithm to find the final estimate of
B(wp). This final estimate is then used as an initial value for the next adjacent frequency
bin, which is B(w;). The outcome of this frequency bin is also used as an initial value for
the next frequency bin and this procedure continues until all the frequency bins have been
covered. Note that in this way we need to apply the exact closed form joint diagonalization
algorithm only for one frequency bin.

As has been demonstrated in our simulation results, this initialization procedure signif-
icantly improves the quality of the separated audio signals. An intuitive explanation for
this is as follows. We realize that the estimate of B(wy) is not unique because each col-
umn b;(wy) is still subject to a multiplicative phase ambiguity, even though the condition
|| b |l2= 1 in the solution of (4.5) has been enforced?. Fast variation of this phase ambi-
guity in frequency can cause the resulting time-domain estimate Hﬂ(t) of the channel to be
excessively long. By initializing the algorithm in the manner proposed, this phase ambigu-
ity varies smoothly with frequency, therefore creating an HA(t) which can be of moderate
length. As is shown in our simulations, the resulting overall system (channel + inverse)
is then much more localized in time. This property is known to minimize degradation in

audio quality due to reverberative effects.

Summary of Stage I of the Algorithm for Blind Source Separation

ZNote that placing a constraint on both the norm and the phase of the columns b; would lead to a less
computationally efficient algorithm.
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1. Estimate the normalized observed signals’ cross spectral density matrices, P, (wg,m)

and set T(wg) = [Pg(wk, 0), ..., Pz (wk, M — 1)] where pz(wi) = vec{pz(wk,m)}

2. Set Bo(wk), the initial value for the B(wg), based on the method described in section

4.3.1
3. fork=0to K -1

e for v = 0 to Max_itr
~ Set G¥(wi) = [bY (wk) ® BY(wk), - - - , DY (wk) ® b (wp)]
— Calculate d¥(wg, m) = (G¥(wp)) Pwk,m) m=0,..,M—1
— Set F*(wg) = [d”(wk, 0), ..., d* (wi, M — 1)]
~ Calculate G¥(wg) = T(wi)(F* (w))t
—fori=1to N
* Y = mat{g} (wi)}
* q = YDb}(w)
* by (we) = ﬂ—:lll_iz

— end

— Calculate the cost value C¥ = ||T(wg) — G (wi)F” (wi)||%

o 1CE -G

— if ————C—;C/— < €, where 0 < € < 1, then stop, go to the next frequency
bin

— end

e end

4.4 Resolving Permutations

One potential problem with the cost function in (4.5) is that it is insensitive to permutations

of the columns of B(wy). More specifically if Boy(wy) is an optimum solution to (4.5) then
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Bopi (wi )Ty, where Il is an arbitrary permutation matrix for each wg, will also be a
optimum solution. Since in general IIj can vary for different frequency bins, this will result
in overall poor separation performance.

In this section we suggest a novel solution for solving the permutation problem which
exploits the cross-frequency correlation between diagonal values of A(wy, m) and A(wgy1,m)
given in (4.5). Notice that A(wg,m) can be considered as an estimate of the sources’ cross-
power spectral density at epoch m. When the sources are speech signals the temporal
trajectories of the power spectral density of speech, known as spectrum modulation of
speech, are correlated across the frequency spectrum. Using this correlation we can adjust
the wrong permutations as shown in this example for the two source case.

Assume that A(wg,m) m = 0,---,M — 1 represents the estimated cross-spectral
density of the two sources at frequency bin wy. We want to adjust the permutation at
frequency w; such that it has the same permutation as in frequency bin wg. To do so we
first calculate the cross frequency correlation between the diagonal elements of A(wj,m)

and A(wg, m) using the following measure:

an\f;ol /\q(wlm m))‘p(wj: m) (4.17)
VM N ke, m) M A2 (w, m)

where pg,(wg, w;) represents the cross frequency correlation between,(wg, m), the gy, di-

Pap(Wk, wj) =

agonal element of A(wg,m), and Ap(wj, m), the py, diagonal element of A(wj,m). If the

frequency bins wy and w; have the same permutation then we expect that

p11(wk, w;) + paa(wi, wj)
p12(wi, w;) + p21(we, w;)

> 1; (4.18)

otherwise, we need to change the permutation at one of frequency bins wy or wj such that
the above condition is satisfied. We can apply the above ratio test to all frequency.bins to
detect and adjust the wrong permutations. In general when number of sources are greater
than two, the ratio test given in (4.18) can be written as following discrete optimization
problem

Hniaé trace (T E(wi)ET (w;)) (4.19)
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where P is the set of N x N permutation matrices including the identity matrix, and E(wy)

is an N x M matrix given as

Ml 1 Mwe,0) oo Ar{wk, M - 1)
E(wy) = (Z AQ(wk,m)> : : . (4.20)
= AW 0) oo An(wr, M —1)

The discrete optimization criterion in (4.19) can be solved by enumerating over all
possible selections for IT;. This means for a set of N x N permutation matrices we need
to calculate the criterion in (4.19) N! times to find the optimum solution for I1;. For large
values of N this may not be computationally efficient. A more computationally efficient
but less optimal approach to estimate the permutation matrix between the two frequency

bins is given by the following algorithm.

Adjusting Permutations

1. initialize the NV x N matrix IT; to an all zeros matrix.

2. For 1 = j and 7 = k set up the matrices

M—1 _% Al(wi,O) Al(wi,M— 1)
E(w;) = <Z Az(wz’,m)) : : (4.21)
e (@i 0) ... An(wi, M —1)

3. Form the multiplication Ty; = E(wi)ET (w;)

4. Find the row number 74, and column number ¢4, corresponding to the element of
T with largest absolute value. Zero all elements of T corresponding to this row and

column numbers and set Ilg(cmaz; Tmaz) = 1.

5. Recursively repeat the previous step for the remaining elements of matrix Ty, until

only one non-zero element remains. Set

M (csrf) =1 (4.22)
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Figure 4.1: An example of the diadic permutation sorting algorithm for the case when the
total number of frequency bins is eight.

where r¢ and c; are the corresponding row and column numbers of the remaining

non-zero element.

Notice that the above algorithm calculates the permutation matrix II; between .two fre-
quency bins wy and w;. To obtain a uniform permutation across the whole frequency
spectrum, we need to apply the above algorithm repeatedly to all pairs of frequency bins.
One way of doing this is to adjust the permutation between adjacent frequency bins in
a sequential order where, for example, starting from frequency bin wg we adjust the per-
mutation of each bin relative to it’s previous bin. This approach, although simple, has a
major drawback as explained as follows. Consider the situation where an error is made in
estimating the correct permutation matrix for frequency bin wg. In this case, all frequency
bins placed after wy will receive a different permutation than the ones placed before wg. In
the worst case scenario we will have half of the frequency bins with one permutation and
the other half with different permutation, which will result in no or very poor separation.
To prevent such a catastrophic situation we propose following hierarchical sorting scheme
to sort the permutations across all frequency bins. For clarity we explain the algorithm for
the case when we have only eight frequency bins (Figure 4.1). Extension to general case of

arbitrary frequency bins can be easily deduced.
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Diadic Sorting Algorithm

1. Divide the frequency bins into groups of two bins® each with group index p.

2. Let k and k + 1 be the indices to the frequency bins inside the group p and Hg
be the permutation matrix estimated from the criterion given in (4.19). Also let
39(m) = A(wg,m) and 22+1(m) = A(wk+1,m). Then for all p = 0,...,3, update

the order of diagonal values of X%(m) using

2(m) = MISY(m)MY  k=0,2,4,6

3. Update the order of columns of B(wy) using

B(wi) = INB(w) k=0,2,4,6

4. For each group calculate

Bi(m) =ZY(m) + 2p,,(m) k=0,2,46 p=0,1,2,3

5. Divide the set of £j(m),...,£i(m) into groups of two elements and for each of the
new groups estimate the permutation matrices H}, p = 0,2 using the diagonal values
of Zrl,(m) based on the criterion given in (4.19). Also for all p = 0,2 update the order

of diagonal values of 2;,(m) using
T
Ezl,(m) = H;,Ezl,(m)ﬂzl, p=0,2

6. Update the order of columns of B(wg) using

B(wyp) = HIIJB(W%)

B(wop+1) = H;)B(W2p+1) p=0,2

3Here we assume that K, the total number of the frequency bins, is a multiple integer of 2.
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7. For the new groups calculate

X2(m) = Bp(m) + B}, (m)

p=0,2 ¢=0,1

114

(4.23)

8. Finally calculate ITZ, by substituting ¥2(m) and $2(m) in (4.19). Update the columns

of B(wy) k=0,...,3 using

B(wi) = TI§B (w)

k=0,...

,3

4.5 Simulation Results

4.5.1 Example I, FIR Convolutive Mixing

The objective of this first simulation is to characterize the performance of the algorithm

under a controlled mixing environment. For this purpose we use an 8-tap FIR convolutive

mixing system where the impulse responses of its elements are selected randomly from a

uniform distribution (Table 4.1). For the sources, we use two independent white Gaussian

signals, multiplied by slowly varying sine and cosine signals to create the required non-

stationary effect. For this example we kept the epoch size at 500 and the total data length

n 0 1 2 3 4 5 6 7
Hp(n) | -0143 0232 -0129 -0.075 0.116 0.484 -0.131 0.147
Hya(n) | -0.227 -0.183 -0.107 0.473 0.465 -0.087 0.416 -0.199
Hy(n) | 0180 0.060 0.366 0.049 -0.183 0.483 -0.218 0.346
Hy(n) | 0.088  0.287 -0.130 0.187 -0.112 0.442 0.046 -0.227
H(n) | -0.460 -0.4334 0.293 0456 0407 0.310 -0.193 -0.176
Hsy(n) | -0.245 -0.340 0.129 0487 -0.108 0.132 0.058 0.022

Table 4.1: Impulse Response of the MIMO system for Examples I & II

was varied between 10000 and 50000 samples, corresponding to M, the number of epochs,

ranging between 20 to 100 epochs. White Gaussian noise was added to the output of the
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system at a level corresponding to the desired value of averaged SNR over all epochs?®. At
each epoch, 128-point FFTs, applied to time segments overlapping by 50%, weighted by
Hanning windows were used to estimate the cross-spectral density matrices. For the joint
diagonalization algorithm, for all frequency bins, we chose the initial estimate of the channel
to be an identity matrix.

Let C(wg) represents the global system frequency response
Clwr) = W(wp) H(wy) (4.24)

where ijy, element is c;j(wy). To measure the separation performance we can use following
formula:

Yoty | max;(SE)

Sgss {1 % — max; ()}

where Sfj = Zsz‘bl ]cfj (wr)|?, q is an index to the g, Monte Carlo run and the quantity

SIR(3) = (4.25)

M, is the total number of Monte Carlo runs. Notice that (4.25) implicitly measures the
signal to interference ratio (SIR) for each output of the separating system. Here, at each
output, the signal is the separated source that has the maximum power and the interference
is considered as the contribution of the other sources. Figure 4.2 shows the variation of each
outputs’ SIR with M, number of epochs for a fixed signal to noise ratio (SNR=20dB). As
can be seen from the figure, by increasing the number of epochs, which corresponds to
increasing the data length, the output SIR improves (increases). Also Figure 4.3 shows how
the separation performance changes with observed signals’ signal to noise ratio for a fixed
number of epochs M = 50. To demonstrate the effectiveness of the permutation algorithm,
Table 4.2 shows the separation performance before and after the permutations have been
resolved. Also refer to Figures 4.4 and 4.5 for a graphical visualization of the effects of
arbitrary permutations at different frequency bins and the improvement caused by using
the proposed permutation algorithm. As can be seen from the table and also the figures,

the frequency dependent permutation ambiguity can severely degrade the overall separation

4The power of the noise was kept constant at all epochs.

50f course we can use the initialization method described in previous section. Nevertheless the motivation
of using an identity matrix for initialization in this example is to show that the algorithm may still converge,
with reasonable error, even if we do not know of a good initialization point.
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Figure 4.2: Example I, SIR versus M, number of epochs, for SNR=20dB and using M, = 50
Monte Carlo runs.
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.3: Example I, SIR versus SNR, for M=50 and using M, = 50 Monte Carlo runs.
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performance. Nevertheless the proposed algorithm is able to significantly improve the results

by resolving these permutation ambiguities.

Output SIR (dB) SIR(1) SIR(2)
Before applying the permutation algorithm | 3.5 dB 4.2 dB
After applying the permutation algorithm | 27 dB 26 dB

Table 4.2: Example I, Output SIR before and after applying the permutation algorithm.
SNR=20dB, M=50 and using M, = 50 Monte Carlo Runs.

4.5.2 Example II, ITR Convolutive Mixing

The purpose of this example is to show how the algorithm can perform when there are
more than two sources and when the mixing system is a matrix of stable IIR filters. Most
of the existing algorithms in the literature consider only the case when the mixing system
is a matrix of FIR filters. This simulation shows that the proposed algorithm, given enough
data samples at each epoch to estimate the cross spectral density matrices, can perform
well for the IIR case. For this example we use a 3 x 3 IIR mixing system where the impulse

response of its ij, element is given as:

hz] (Z) - 1— aijz_l (426)
where 0 < a;; < 1 and b;; are given as:
0.555 0.761 0.198 -150 -0.19 1.21
o € | 0.921 0.432 0633 |, by € | —0.52 253 —0.27 |. (4.27)
0.144 0.188 0.231 -0.95 —-0.03 0.38

We use three sources here where the first two are the same as example I and third one
is a white Gaussian signal with a slowly decaying exponential envelope. Source 3 is also
statistically independent from the previous two sources. The sources were mixed using the
Matlab "filter” command and similar to example I, white Gaussian noise was added to the

results of mixture at a variable power depending on the desired average signal to noise ratio.
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Figure 4.4: Example 1: Effects of random permutations in the frequency domain before
applying the permutation algorithm,(M=>50, SNR=20dB), c;;(wk) is the iji, element of
global system C(wg) = W (wi)H(wg).
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Figure 4.5: Example 1: Results after applying the permutation algorithm,(M=50,
SNR=20dB), c;;{(wg) is the ij, element of global system C(wy) = W (wg)H(wg).
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Figure 4.6: Example II, SIR versus M, for SNR=20dB and using M. = 50 Monte Carlo
runs.

For this example the epoch size was increased to 4000 data samples and at each epoch we
used 256-point FFTs, applied to time segments overlapping by 80%, weighted by Hanning
windows to estimate the cross-spectral density matrices. For each output the signal to
interference ratio was measured using the criterion in (4.25) and the results are shown in
Figure 4.6 for varying number of epochs and 20dB signal to noise ratio. Also Figure 4.7
shows the variation of output SIR with respect to the observed signals’ signal to noise ratio

for a fixed number of epochs (M=50).

4.6 Real Room Experiments

In this section we present the results of applying our algorithm to blind source septation of
speech signals in a real reverberant environment. All recordings were done using 8.0 Khz,

16 bits sampling format.
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Figure 4.7: Example II, SIR versus SNR, for M=50 and using M, = 50 Monte Carlo runs.

4.6.1 Real Room Experiment I

For the first set of experiments the recording were performed in an office room. We used
two speakers as the sources and four omnidirectional microphones for recording the signals
(Figure 4.8). Sources were created by catenating multiple speech segments from the TIMIT
speech database. The speech signals then were played simultaneously through two speakers
with approximately the same sound volume. The duration of the recording was around three
minutes. To measure the separation performance, using the same setup, we also recorded
white noise signals that were played through each speaker one at a time (One source was
active at each time). Let 62(z;,5;) = S~ z2(t) represent the power of the recorded signal
at the s, microphone when only speaker j is active and all other speakers (sources) are
inactive. By playing white noise through each speaker at a time we can measure the signal

to interference ratio for the recorded signal at the output of the iy, microphone using

22
max; o, .\T;, 84
SIR, (i) = N"o 5 05 (®i ’)A2 .

ijl 62(x;, 85) — max; 52(z;, s5)

(4.28)
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Figure 4.8: Real Room Experiments, Recording setup in an office room.

Using the above formula we can also measure the SIR for each output of the separating
network by substituting 62(z;, s;) with 55(%‘, s;), the power of the signal at the 4, output
of the separating matrix when only source j is active. To perform the separation, in a
manner similar to examples I and II, we first divided the recorded signal into multiple time
segments (epochs), where we chose the size of each epoch to be around 10000 data samples
long. For each epoch we calculated the cross spectral density matrices in a similar way
as previous examples with these parameters: Number of FFT-points=4096, and overlap-
percentage=80%. Figure 4.9 shows the output SIR versus M, the number of epochs. As
can be seen for M = 100 an average SIR of more than 20dB is reached for each output.
As a reference, Table 4.3 shows the SIRs for the recorded signals. By comparing the SIRs
before and after applying the separating algorithm, it can easily be seen that the output
SIRs have been improved by 19 to 20dB.

As mentioned in previous sections in this algorithm we can recover the sources up to a
frequency dependent scaling ambiguity. The effect of the scaling ambiguity can deteriorate

the quality of the separated audio signals.
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Figure 4.9: Results of separation for recordings in an Office room: SIR versus M, number
of epochs, K = 4096.

MIC 1 MIC 2 MIC 3 MIC 4
SIR | 2.6945 dB 1.2282 dB (.3266 dB 1.4031 dB

Table 4.3: Input SIRs for the recorded signals in an office environment

The listening tests show that the sequential initialization suggested in our algorithm

dramatically improves the quality of the separated speeches in these experiments® .

4.6.2 Real Room Experiment II

In the next set of experiments, we performed real recordings in a highly reverberant con-
ference room. The recording setup is similar to the previous experiment with the difference
that the room dimension and the distance between the microphones and speakers are in-
creased for this experiment (Figure 4.10). To compare the reverberation characteristic of

the room used in this experiment to the one in the previous experiment, we measured the

5To hear the recordings and also the separation results please refer to the following website:
"www.ece.mcmaster.ca/ reilly /kamran”
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Figure 4.10: Real Room Experiments, Recording setup in a conference room.

reverberation times’of both rooms using our recording system and the software package
"WINMLS2000”. The results are shown in Figure 4.11. As can be seen from the figure,
on average the reverberation time of the conference room, used in this experiment, is much
higher than the reverberation time of the office room, used in the previous experiment. Due
to the long reverberation time of the room, we expect more frequency bins are needed to
estimate the cross spectral density matrices of the recorded signals. In this experiment the
size of the epochs were kept the same as in the previous experiment® . Figure 4.12 shows
how the performance of the algorithm improves by increasing the number of frequency bins
used to estimate the cross spectral density matrices. As can be seen, a total number of
16384 frequency bins is needed to achieve a separation performance around 16dB. Also sim-
ilar to the previous examples, the algorithm shows consistency with regards to improving

the separation performance versus increasing the number of the epochs (Figure 4.13).

"The reverberation time in a room at a given frequency is the time required for the mean-square sound
pressure in that room to decay from a steady state value by 60dB after the sound suddenly ceases(see also
(Schroeder, 1965)).

8For K = 16384, since the epoch size was 10000, we used zero padding to compensate for the missing
samples
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Figure 4.12: Separation performance versus number of frequency bins (K) for recordings in
a conference room, M = 140.



CHAPTER 4. REAL ROOM BLIND SOURCE SEPARATION PROBLEM 126

7 ' ; ! ! ! ! .'

—&— Output 1 : : : : [ S — e —a
16 0B Output 2 | o e T TTTTTT T UT D .

L L 1 L 1 L 1
20 30 40 50 60 70 80 90 100
M (Number of epochs)

Figure 4.13: Results of separation for recordings in an Office room: SIR versus M, number
of epochs, K = 16384

4.6.3 Comparisons with existing methods

In this section we compare the performance of our method with that of (Parra and Spence,
2000). Similar to the proposed algorithm, the method in (Parra and Spence, 2000) uses the
estimated CPSD matrices over different time segments to calculate the un-mixing filters.
Because of this we use the set of the CPSD matrices, evaluated previously in real room
experiment I, as the input to both the proposed method and the algorithm in (Parra and
Spence, 2000). Notice since the algorithm in (Parra and Spence, 2000) uses a finite length
constraint on the size of un-mixing filters, the length of the un-mixing filters needs to be set
beforehand in the program. Figure 4.14 shows the separation performance results for the
algorithm in (Parra and Spence, 2000) versus the size of the un-mixing filters. As can be
seen from the figure, the maximum SIR, which is around 4.5 dB, happens when the length
of the un-mixing filters is around 512. Increasing the filter lengths after that degrades the
separation performance. The comparative results, for the proposed method and the method

in (Parra and Spence, 2000), are shown in Figure 4.15. For this experiment, based on the



CHAPTER 4. REAL ROOM BLIND SOURCE SEPARATION PROBLEM 127

I T
—&— Output 1
-f- Qutput 2

450 : : RUUTTITe L L L L DS L 4

asbk.... /.. o o L L NG L D R R .

SIR (dB)
%)
T

P SRR L L L L LD e L SR N

16 B ST e e B e RRRRRRR LN ST _

9 i 1 1 ) ) i ) L
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
size of the un—mixinf filters

Figure 4.14: Results of separation for method in (Parra and Spence, 2000) for the set of
recordings in an office room: SIR versus @, size of un-mixing filters, M = 20.

previous simulation, we chose the length of un-mixing filter to be 512 for the algorithm
in (Parra and Spence, 2000). As can be seen from the figure, the proposed algorithm
outperforms the method in (Parra and Spence, 2000) by more than 15dB.

4.7 Summary

In this chapter we discussed a new recursive algorithm for blind source separation of con-
volved non-stationary sources. We proposed a two stage frequency domain algorithm to
estimate the un-mixing filters. The main contribution of this work is that, unlike most of
the existing algorithms, we do not make any assumptions on the structure of the mixing
system; i.e. the elements of the mixing system can be FIR or IIR filters. Another strong
point of the algorithm is its use of a recursive least-squares algorithm which has the advan-
tage of fast convergence and no parameter tuning is required. We discussed the frequency
domain permutation problem and we proposed efficient methods for solving this problem.

We proposed an initialization procedure that helps alleviate the frequency dependent scaling
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Figure 4.15: Comparison of the new proposed algorithm with the method in (Parra and
Spence, 2000), Averaged output SIR versus M, number of epochs.

ambiguity problem and results in significantly improved perceptual quality of the output
audio signal. We demonstrated the performance of the new algorithm using computer gen-
erated sources and mixing systems for different mixing scenarios. We also demonstrated the
performance of the algorithm using real world data obtained by recording speech signals in
different acoustic environments. We showed that algorithm can perform well in real envi-
ronments with more than 20dB improvement in signal to interference ratio for a moderately
reverberant office area. We showed for the real world source separation case the proposed

algorithm outperforms the method in (Parra and Spence, 2000).



Chapter 5

Conclusions

This thesis discussed new algorithms for blind source separation of convolved mixtures and
blind identification of MIMO systems. We showed how these problems can be solved by
exploiting the non-stationarity of sources and using only the second order statistics of the
observed signals. We also proposed efficient frequency domain approaches for solving these
two problems.

This thesis presented a novel extension of joint diagonalization methods to the blind
source separation of convolved mixtures and blind identification of MIMO systems. Be-
cause of the close relationship between the joint diagonalization problem, the blind source
separation and MIMO blind identification problems, part of the material presented in this
thesis was dedicated to developing new algorithms for the joint diagonalization problem in-
cluding adaptive joint diagonalization methods using unconstrained optimization over the
Stiefel manifold.

One of the key contributions of this thesis is that the proposed blind source separation
algorithms can be applied in real world situations. Very few BSS methods so far have been
proposed that can actually work in the real world scenarios and their performance is poor
compare to the proposed algorithm.

Overall in the course of this thesis we addressed the following problems:

1. A set of adaptive algorithms for joint diagonalization problem was developed. We

129
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employed the recently developed unconstrained optimization methods over the Stiefel
manifold to minimize the proposed least-squares and maximum likelihood joint diag-

onalization criteria.

As shown by simulation results, the least-squares based algorithms have the same
performance as that of the extended Jacobi joint diagonalization method of JADE.
Nevertheless the new proposed methods have the additional advantage of being adap-
tive. Also the presented maximum likelihood method shows superior performance

compared to the extended Jacobi joint diagonalization method of JADE.

2. The next problem that was discussed in this thesis is blind identification of FIR
MIMO systems. We derived sufficient conditions for identifying a FIR MIMO system,
driven by non-stationary sources, in the frequency domain, using only the second-
order statistics of the observed signals. We also discussed the minimum number of
frequency bins sufficient to identify the MIMO system in this case. A two stage
frequency domain algorithm was presented. The first stage of algorithm, based on a
alternating least-squares method, identifies the channel at each frequency bin up to a
constant permutation, but frequency dependent scaling ambiguity. The second stage
of algorithm removes the frequency dependent scaling ambiguity using a closed form

method.

3. The last problem discussed in this thesis is the blind source separation of convolved
audio(speech) signals. The presented algorithm is an extension of our frequency do-
main algorithm for blind identification of FIR MIMO systems. In this algorithm we
do not make any assumptions on the structure of the mixing system; i.e., the impulse
response of the mixing system can be FIR or IIR. Compared to the MIMQ blind
identification algorithm, we also use a less restrictive set of assumptions on the non-
stationarity of sources. Due to this, the algorithm requires an extra step for removing
the frequency dependent arbitrary permutations. Nevertheless, as has been verified
by numerous real world experiments, the proposed algorithm can successfully separate

recorded, mixed audio signals in a real reverberant environment.
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5.0.1 Contribution to the Scientific Literature

Most of the work presented in Chapters 2, 3 and 4 of this thesis has been published in various
conference papers. Part of the material in Chapter 2 has not yet been previously published
but is under preparation to be submitted for publication. The material in Chapter 3 of this
thesis has been submitted as a full journal paper. The material of Chapter 4 has also been

organized into a full journal paper.

e Journal Papers

— Blind identification of MIMO FIR systems driven by quasi-stationary sources
using second order statistics: A frequency domain approach. (Rahbar et al.,

2002b) Submitted to IEEE Transactions on Signal Processing, Feb 2002.
— A new frequency domain method for blind source separation of convolutive audio
miztures Under Preparation.

e Conference Papers

~ A frequency domain approach to blind identification of MIMO FIR channels
driven by non-stationary sources (Rahbar et al., 2002c) SAM2002.

— Joint diagonalization of correlation matrices by using Newton methods with ap-

plication to blind signal separation (Joho and Rahbar, 2002) SAM2002.

— A frequency domain approach to blind identification of MIMO FIR systems driven
by quasi-stationary signals (Rahbar et al., 2002a) ICASSP2002.

— A new blind source separation algorithm for MIMO convolutive miztures (Rahbar

and Reilly, 2001a) ICA2001.

— Blind source separation of convolved sources by joint approrimate diagonalization

of cross spectral density matrices (Rahbar and Reilly, 2001b) ICASSP2001.

— Geometric Optimization Methods for Blind Source Separation of Convolutive

Miztures (Rahbar and Reilly, 2000) ICA2000.
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5.0.2 Suggestions for Future Research

e Blind MIMO Identification: The proposed MIMO blind identification algorithm is
based on the batch processing of the observed data. For some practical applications
it is desirable that the algorithm be adaptive; i.e., the algorithm should update its
current estimate of the unknown MIMO system with each new sample of the observed
signals. Note that in this case the adaptive algorithm can be used both for iden-
tification and tracking the unknown MIMO system. Further research is required to
make the necessary changes into the algorithm such that it can be used in an adaptive

application. Other suggestions are

1 Investigate the case where the order of the system is unknown or is under-

estimated.

2. Further research on improving the performance of the algorithm by using a max-
imum likelihood criterion rather than the least-squares criterion used in the cur-

rent algorithm.

3. Further research on how to take advantage of the a-priori known sensor array

geometry to improve the performance of the blind identification algorithm.

e Blind Source Separation: Similar to the above, it is desirable to make the proposed
convolutive blind source separation algorithm adaptive such that it can cope with a
chahging acoustic environment or moving speakers. Other related topics that can be

suggested for future research are:

1. Investigating the case when the number of sources is unknown.

2. Further research for the case where the number of sources are greater than the

number of the sensors.

3. Investigating the effect of the diffused noise source on the performance of the

BSS algorithm.
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4. Further research on how to incorporate the geometry of the array of sensors as

a constraint into the optimization criteria for the BSS algorithm.



Appendix A

Matlab Program for tpoint

function

The following code has been extracted from (Manton, 2002) and it has been modified
for complex square orthogonal matrices. The program calculates the turning points of a

quadratic function
1 1
g(Z) = Real{Tr(Z'D) + 3 vec{Z} H vec{Z} + —2-Real{vec{Z}TC vec{Z}}

where D € CVNXN_ H,C € CN**N? are arbitrary matrices such that H = Ht and C = CT
and Z is restricted to be of the form Z = XA with A being skew-hermitian and X € CV*¥

require to be an orthogonal matrix such that XX! =1
e function [Z]=tpoint(X,D,H,C); [n,n]=size(X);
e d=n*n;
% Form basis for tangent space
o E = zeros(n,n,d); i=1;
e for r=I:n

%Diagonal elements of A
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— M=zeros(n,n); M(r,r)=1j; E(:,:;,i))=X*M; i=i+1;
e end
e for r=1n-1

% Off diagonal elements of A

— for c=r+I1m
x M=zeros(n,n); M(r,c)=1; M(c,r)=-1; E(:,:,i)=X*M; i=i+1;
x M(r,c)=1j5; M(c,r)=1j; E(:,:,i)=X*M; i=i+1;
— end
e end

% Form linear equation and solve for alpha,
o A=zeros(d,d); b=zeros(d,1); vD=reshape(D,d,1);
e for r=1:d

— vBr=reshape(E(:,:,r),d,1); vErHC=vEr’*H+vEr. *C;

for c=1:d
* A(r,c)=real(vErHC*reshape(E(:,:,c),d,1));
— end

— b(r)=real(vEr’*uvD);

e end

alpha=-(A \ b);

%Recover Z

=zeros(n,n);

fori=1:d
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— Z=Z+alpha(i)*E(:,:,i);

o end



Appendix B

Armijo’s Rule

In this section we discuss Armijo’s rule for selecting the step size in gradient based uncon-
straint optimization method. The material in this section are taken form (Bertsekas, 1999).

Consider the unconstrained minimization of a function f(x). At each iteration we have
Xk = Xp—1 + o*hyg_; (B.1)

where hy is the search direction and o is the step size at iteration k. There are a number
of rules for choosing the step size o in a gradient based method. One way is to select o

by line minimization; i.e.,
o = argmin f(xk—1 + ahg_1). (B.2)
>0

To avoid the considerable computational burden of line minimization methods, in practice a
successive reduction of step size is employed. One simple method for successive reduction of
step size is to select an initial value for o¥; e.g. of = s. Now if f(x3_1 + shz_1) > f(xk—-1)
then the value of s is reduced by some certain factor until f(xg—1+ shx—1) < f(xk_1). This
method although simple, in theory may not guarantee convergence to minimum. Refer to
(Bertsekas, 1999) for more details on this issue. Armijo’s rule eliminates the theoretical
convergence problem of successive reduction rule described above by modifying it so that

for fixed scalars s, 0 < 8 < 1 and 0 < o < 1, the step size o* is chosen as o* = 8™s where
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m is the first nonnegative integer for which
Fxe-1) = f(xk—1 + BMshg_1) > 0™V f(x5-1) hg-1. (B.3)

where V f(xk_1) is the gradient of f(x) at point xx_;.
The initial value of s is usually chosen to be one, the reduction factor 3 is chosen usually

from 1/2 to 1/10 and o is chosen close to zero; i.e., o € [107°,1071].



Appendix C

Supplement to Chapter 2

Newton and gradient descent optimization methods over complex Stiefel manifold have been
explained in (Manton, 2002). In this section we derive the complex version of Hessian and

gradient of the cost functions used in Algorithms I, III, and IV, presented in Chapter 2.

C.0.3 Algorithm I

When Q is a complex matrix, D, the matrix of partial derivatives of Cg(R, Q) with respect

to elements of Q, is evaluated from

Qlrs ORgys I 0S¢5

(C.4)

and following the same procedure given in Section 2.3.3 of Chapter 2 it is easily found to

be equal to:

M
Do =-2) RnQ3(m) (C.5)

m=1

which is the same as its real counterpart. Note that for complex Q, the steepest descent

search direction over the complex Stiefel manifold is calculated from (Manton, 2002):

G =-QDLQ +Dg
M (C.6)
=2Q( Y [B(m)R,(m) - Ry (m)%(m)))
m=1
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C.0.4 Algorithm III

For algorithm III we also need to calculate the Hessian of the objective function éd(R, Q).
The second-order Taylor series approximation of the function éd(R, Q) for the case Q is a

complex orthogonal matrix is given as:
~ ~ 2
Ca(R, Q+tH) = C4(R, Q) +tR{Tr(H'DQ)} + = (hTDQQh+m{thQQh}) +O(£3) (C.7)

where h = vec{H} and the matrices Dgq € CN*xN? Coo € CN**N? gre the Hessian of Cq
evaluated at Q and to ensure uniqueness they must satisfy Dgg = DTQQ and Cgg = CgQ.
We have

l\DIr—a

M N
Ca(R,Q+th) = =3 3~ 3 ((a+th) Ag(m)(a + th)’
m=1 ,j<_71
1 M N
= -2 3" 3 (a'Aw(m)a+ *h' Ay (m)h + 2R{th! Ay (m)q})
m=1 i<j
1,5=1

M N
= _% > 2 {(qTAij (m)q)? + 4t(q” Ay (m)q)R{hT Ay (m)q}+
m=1 i<j
i,j=1

2[4(hT Ayj(m)a)® + 2<qTA,-]-<m>q (hTA,-j<m>h)}} +0()
M N

it
M N
>° 3 {4As(m)ad Ay(m) + 24" Ag(m)ads(m) } )b+ O(F)
m=1 i<j
i5=1

2nt ( —

DO | b=

(C.8)

and by comparing the last equation with (C.7) it follows that

DQQ = — Z Z [4A'ij (m)quAW(m) + QCITAij (m)quJ(m)]7 (Cg)

m=1 i<j
i,j=1

and Cgg = 0. Similar to real case the Newton search direction over the complex Stiefel

manifold can be obtained by inserting D¢gg and Dg into the tpoint function.
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C.0.5 Algorithm IV

The matrix of partial derivatives of C~l(7§,, Q) for the case where Q is complex is similar to

its real counterpart and is given by
M
Do =Y RnQA;'(m) (C.10)
m=1

where Ay(m) = ddiag{QTf{,mQ}. To calculate the Hessian we use the second-order Taylor

series expansion of the cost function C;(R, Q), which is similar to (C.7). We have

M N
5 s 1
Ci(R,Q+th) = 5 >0 log{(v + th)!®;(m) (v + th)]
m=1 z'-—l
1 2tR{h'®;(m)v} + t?hf®;(m)h
Z t i i
=3 m=1; (log ®;(m)v) + log(1l + By ))
(C.11)
Using the power series expansion log(l + z) = z — ””—; + ’”:,’—3 — ... we can continue
t2h1®;(m)h + 2¢tR{h'®;(m)v}
t i v —
G(R,Q+th) = 2;21 (log(u &;(m)v) + T )y
(tzhf@i(m)h + 2t§R{hT<I>i(m)u})2 n
2(v1®;(m)v)? )
(C.12)

s (£

eni (2 3 e M’&fﬁ'&"{;ﬁ;&"") Dh+ 0@,

m=1 i=1

Comparing the last equation of the above with the second-order Taylor series of C;(R, Q)

we can easily see that

1(m) 2<I>1(m)uuf<1>i(m)
Do = Z Z L,’up Wi1®;(m)v)? ]’ (C.13)

m=1 i=1

and Cgpg = 0.
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