DIRECT VISUAL SERVOING USING NETWORK-SYNCHRONIZED CAMERAS

By

DEREK C. SCHUURMAN, M.A.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
©Copyright by Derek C. Schuurman, April 2003

DIRECT VISUAL SERVOING USING NETWORK-SYNCHRONIZED CAMERAS

DOCTOR OF PHILOSOPHY (2003) MCMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontario
TITLE: DIRECT VISUAL SERVOING USING NETWORK-
SYNCHRONIZED CAMERAS
AUTHOR: Derek C. Schuurman
M.A.Sc.
SUPERVISOR: David W. Capson

NUMBER OF PAGES: xvi, 207

it

Abstract

A new strategy for direct visual servoing for robotic position control is described. The
approach does not rely on any external position or velocity sensors but directly sets motor
current using visual feedback alone. The method is novel in that it can be implemented
without specialized vision hardware and is capable of processing visual feedback at high
frame rates suitable for stable closed-loop position control of practical mechanical systems.
A single RS-170 camera has a maximum sampling rate of 60Hz that significantly limits vi-
sual servoing performance. This limitation is overcome with multiple RS-170 cameras
synchronized over a network in round-robin fashion to capture video fields at different
instants in time. “Vision nodes”, consisting of a camera and a dedicated computer, con-
tinuously process video at field rates to determine robot position. The vision algorithm,
which is based on principal component analysis, is demonstrated to be suitable for accu-
rate real-time position determination. Furthermore, the Euclidean distance in eigenspace
in the ptesence of random occlusions is shown to be statistically related to the position
measurement error variance. This leads to a novel approach for dealing with occlusions
by considering them as “noise”, the variance of which can be estimated directly from the
Euclidean distance in eigenspace. A Kalman filter is then introduced to provide sensor fu-
sion of the feedback from each vision node by weighting the position estimates from each
camera to provide an improved overall position estimate. The Kalman filter also models
the vision transport delays to reduce their effects on the visual feedback. Simulation results

illustrate improvement in dynamic performance as the number of cameras are increased.

ii

Further simulations predict robustness to simulated occlusions.

An experiment was designed and performed to experimentally verify the strategy for di-
rect visual servoing. A 1 DOF servo drive equipped with a rotating link constituted a simple
“planar robot” testbed for demonstrating the distributed vision and control techniques. The
testbed was built using “off the shelf components” consisting of a network of four RS-170
cameras and computers connected to a master servo computer over a 100Mbps Ethernet
network. An effective visual sampling rate of 240Hz was achieved. Several techniques
were developed to achieve deterministic communications over Ethernet. The limitations
on the number of cameras was analyzed and it was found that the Ethernet network could
theoretically support up to 826 cameras. The main limitation was found to be the processor
time on the master servo computer.

Experimental results are shown for the system performing direct visual servoing under
various different conditions. A direct visual servo employing four cameras exhibits a step
risetime of 190ms which closely matches the performance using traditional encoder feed-
back. Additional experimental results demonstrate the servo-hold performance and step
responses with and without occlusions. Both full occlusions in a subset of cameras and
partial occlusions in all cameras were investigated. The experiment results validate the
simulation results and verify that the strategy is capable of stable direct visual servoing and
is robust to occlusions.

Additional experiments are included that demonstrate performance under varying illu-

mination conditions and various tele-robotic extensions.

v

Acknowledgements

I would like to thank my supervisor, Dr. David Capson, for his generous help, excellent
guidance, consistent availability, and for providing me with an opportunity to pursue my
research.

I would also like to thank the other members of my thesis committee, Dr. Gary Bone
and Dr. Barna Szabados, for their comments and suggestions. I am also grateful for the
many helpful discussions with my fellow graduate students in the Machine Vision and
Image Analysis Lab.

I would also like to gratefully acknowledge the financial support provided by NSERC.

Last, but not least, I would like to thank my wife Carine for her love, patience, encour-

agement and support.

Of making many books there is no end,
and much study wearies the body.

Now all has been heard;

here is the conclusion of the matter:
Fear God and keep His commandments,
for this is the whole duty of man.
Ecclesiastes 12:12b-13

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Background
1.1.1 Advantages of Visual Servoing
1.1.2 Challenges of Visual Servoing
1.2 Visual Servoing Architectures oo
1.2.1 Position-Based versus Image-Based Visual Servoing
1.2.2 “Look-and-Move” versus Direct Visual servoing
1.2.3 A Taxonomy of Visual Servoing
1.3 Visual Servoing Applicationso oL
14 PreviousWork o . L e
1.5 ResearchOverview o i v i it e et e e e e
1.5.1 Motivation for Direct Visual Servoing
1.5.2 OutlineoftheThesis

153 Listof Contributions« . ¢« v i i i e e e e

2 Distributed Visual Processing in Subspace

Vi

jii

12
12
15
18
18
20
22

24

2.1 IntroduCton . . . v . . i e e e e e e e e e e e e e e e 24

2.2 Vision System Requirementso 25
23 Distributed VISION o o e e e 26
2.3.1 Achieving High VideoFrame Rates 26
232 ANetworkofCameras oo 28
2.4 TheVision Algorithm o oo 32
241 Model-BasedVisiono 33
2.42 Appearance BasedMethodso 34
2.5 Principal Component Analysis 36
2.5.1 Eigenspace Background Theory 37
2.5.2 Image Representation and Reconstruction 48
2.6 Vision System Performance oo 49
2.6.1 Experimental Setup oo 50
262 TheTrainingPhase 52
2.6.3 Accuracy of Position Feedback 54
2.6.4 Speed of Computation in the VisionNodes 56
2.6.5 Visual Feedback Latency Due to Transport Delays 58
2.6.6 Image Reconstruction Performance 59
2.7 OcClUSIONS . . v v v v v et e e e e e e e e e e e e e e e e e e 62
2.7.1 Simulating the Effects of Random Occlusions 65
2.7.2 Measurement Error Variance and Euclidean Distance 67
2.7.3 Sensor Fusion of Multiple Cameras with Occlusions 68
2.8 SUMMALY . . v v o v v v et e e e e e e e e e e e 69
System Modelling for Design and Simulation 70
3.0 Introduction o i e e e e e e e e e 70
3.2 SystemModelling. 71

vii

32.1 Model of the MechanicalLoad 71

322 TheMotorModel e 71
3.23 Power AmplifierModel 78
324 TheVisionModel o 79
3.3 Position Loop Compensatoro e 81
3.3.1 TheLinearized Plant Model 82
3.3.2 CompensatorDesign oo 82
3.3.3 Position and Velocity Control oo 85
3.3.4 Gravity Feedforward e 87
3.3.5 The Complete Compensator and Plant Model 88
3.3.6 Observability 89
34 TheKalmanFilter. oo i i v i 91
3.4.1 The Continuous State Equations 92
3.4.2 The Discrete-Time State and Output Equations 94
343 TheKalmanFilterEquations 98
3.4.4 The Stationary Kalman Filter. 99
3.4.5 The Non-Stationary KalmanFilter 101
34.6 NoiseandOcclusions. ool 103
3.5 Direct Visual Servo Simulation oo o e 106
3.5.1 Step Response Using Multiple Cameras 107
3.5.2 Distutbance Rejectiono 108
3.5.3 Simulated Occlusions o o 110
3.6 SUMMATY . . . v v v v v e e e e e e 113
Testbed Implementation 115
4.1 IntroduCtion o v vt i e e e e e e e e e e 115
42 Hardware it e e e e e e e 115

viii

42.1 The Mechanical Components 117

422 TheElectrical Components 117
423 TheNetwork Components 120
424 TheVisionNodes. o 121
425 TheMaster ServoComputer« 125
43 SOftware e e e e e e e e e e e 125
43.1 Real-TimeProcess Scheduling 127
43.2 Network Communications 130
44 Tele-Robotics Extensionso 140
4.4.1 Hardware to Support Tele-Robotic Operation 141
4.4.2 Software to Support Tele-Robotic Operation 142
4.5 Limitations on the NumberofCameras. 147
4.5.1 Network Limitations oo 148
452 Processor Time Limitations 153
4.5.3 Imaging Sensor Limitations 155
4.6 SUMINAIY .+ v v v v v e v vt e e et e e e e s 156
Experimental Results 157
5.1 Introduction o i it e e e e e 157
52 Experimental Setupo 158
52.1 Equipmento 158
5.2.2 Equipment Configuration., 159
523 Traifing v o oo e e e e e e e e e e e 160
5.3 Experimental Results Without Occlusions 160
5.3.1 Step Response Without Occlusions 160
5.3.2 Response to External Disturbances 164
5.4 Experimental Results In the Presence of Occlusions 166

ix

54.1 Servo-Hold with Full Occlusionsin OneCamera 166

5.4.2 Servo Hold with Partial Occlusions in All Cameras 170
5.4.3 Step Response with Full Occlusions in One Camera. 175
5.4.4 Step Response with Partial Occlusions in All Cameras 177

5.4.5 Response to External Disturbances in the Presence of Occlusions . 179

5.5 Experimental Results Under Varying [llumination 180
5.5.1 Servo-Hold Under Varying Illumination Using a Stationary Kalman
Filter . . . o o e e e 182
5.5.2 Servo-Hold Under Varying Illumination Using a Non-Stationary
KalmanFilter o o 185
5.6 Experiments in Robot Tele-Operation 185
57 SUMMALY . . v o o o v ettt e e e e e e 187
Conclusions 189
6.1 SummaryReview L 189
6.2 Results. o e e e e 190
6.2.1 SimulationResults 0 ... 190
6.22 ExperimentalResults 191
6.3 Conclusions o o i e e e e 192
6.3.1 Strengthsofthe Approach 192
6.3.2 Shortcomings ofthe Approach 193
6.3.3 Limitations on the Numberof Cameras 194
6.4 Research Contributions oo .. 194
6.5 FutureWork e 196
6.5.1 Future Theoretical Work 196
6.5.2 Future ImplementationWork L. 198

List of Figures

1.1
1.2
1.3
14
1.5
1.6

2.1

22

23
24
2.5
2.6
2.7
2.8
29
2.10

Fixed camera vs. “eye-in-hand” configuration.
Static “look-and-move” visual servoing. oL
Dynamic “look-and-move” visual servoing structures.
Direct visual servoing structures.
A taxonomy of visual servoing. oL

Timeline showing some of the major milestones in visual servoing research.

Network topology showing distributed vision nodes and the master servo

COMPULET. . .« v v e e i v et e e e et e e e e
Video waveforms showing the relative video synchronization of two cam-

eras forasystemwhere No=4.
Pattern recognition for position determination.
Theimageplane. e
Theplanarrobot. o
The average image and the eigenimages.
Eigenvaluemagnitudes. Lo
The first 3 dimensions of the eigenspace manifolds for 4 cameras.
Example of atypical SSDPlot.
Magnified plot showing odd video field images projected into an eigenspace

trained using even video fieldimages.

Xi

8

2.11
2.12

2.13
2.14
2.15
2.16
2.17

2.18
2.19

2.20

2.21

222
2.23
2.24
2.25

3.1
3.2
3.3
34
3.5
3.6

Percentage of the variance retained versus the number of eigenvectors used. 47

Diagram of experimental setup used to determine the performance of the

VISIONM SYSIEIML. .+« ¢ o v v v v v i v e e e e e e e e e 49
Average absolute position error vs. sub-image size. 51
Examples of training sub-images. oo 52
The parametric eigenspace manifold (plot of the first 3 dimensions). 53
Position error histogramresults.o 54
Digital Storage Oscilloscope plots of actual computation time for project-

ing an image into eigenspace running on a 550MHz AMD Athalon processor. 55

Digital Storage Oscilloscope measurement showing vision feedback latency. 57

Tracking performance showing actual position along with position from

vision feedback duringamove.o 58
Original image and reconstructed images using different numbers of eigen-

VECIOTS. © o v v v v e v e e e e e e e e e e e e e e e e e 60
Digital Storage Oscilloscope plots of video signal and actual eigenspace

computation times. 61
Occluded image point in eigenspace and its proximity to the manifold. . . . 63
Images with random rectangular occlusions. 65
Scatter plot of position error vs. Euclidean distance in eigenspace. 66
Position error variance vs. Euclidean distance in eigenspace. 67
Mechanical load with inertia and damping elements. 72
Bode plot of the mechanical transfer function. 73
Force of gravity acting on the single jointrobot. 75
Mechanical model of therobot. oL 76
Motor transfer function. o oo 77
Themotormodel. e 78

xii

3.7 Power AmplifierModel. 79

3.8 Block diagram of the vision subsystemmodel. 80
3.9 Plant model of the planar robot system.o 81
3.10 Linearized plant model of the planar robot system. 81
3.11 Bode plot of the linearized plant.o oo 83
3.12 Bode plot of uncompensated plant with zero damping. 84
3.13 Diagram of the inner velocity loop.o oo 85
3.14 Diagram of the position controller with an inner velocity loop. 86
3.15 Root locus of position loop with an inner velocity loop. 87
3.16 Final diagram of plant and compensator.o 88

3.17 Continuous-time step response of the complete plant with the final com-

PEMSALOT. « . o o v o v v i e e e e e e e e e e e e &9
3.18 Modelofthe KalmanFilter. o v v v oo o 91
3.19 Block diagram of a stationary Kalman filter. 100
3.20 Kalman gains vs. time.« . oo e 101
3.21 Block diagram of non-stationary Kalman filter. 102
3.22 Block diagram of the overall systemmodel. 106
3.23 Simulated response to a step input for systems employing different num-

bers of cameras. (Position units use 4000 counts/revolution). 107
3.24 Torque disturbance simulation. oo 108

3.25 Block diagram of the vision model augmented with a Euclidean distance

QUIPUL. .« v v v e v e e e e e e e e 110
3.26 Non-stationary system block diagram. 111
3.27 Simulated occlusion plots.o 112
4.1 Picture of the experimental setup. oo 116
4.2 Servo motor connection diagram. o ..o e e e e 119

Xiii

43
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11

4.12

5.1
52
53
54
5.5
5.6

5.1

5.8

5.9

Block diagram of avisionnode. Lo 120

Vertical synch generatorcircuit. 124
Experimental setup with 4 cameras. 126
Camera network packet diagram for the case of 2 cameras. 134
Network layers present in the distributed camera system. 137
Tele-robotic System Diagram. 142

Plot of the corresponding “expected appearance tube” around the manifold. 146
Structure of an Ethernet Frame encapsulating a UDP packet. 148

Experimental results of master servo computation time vs. the number of

CAMEIAS. « « « + v v v e e b e e e e e e e e e e e e e e e e s 152
Experimental results of master servo processor utilization vs. the number

of cameras. e e e e 154
Experimental setup.o 159
Step response using traditional encoder feedback. 161

Step responses for various input step magnitudes for a system with 4 cameras. 162
Transient response to an external disturbance applied to the robot. 165
Camera images as a full occlusion is gradually placed over the lens. 167
Euclidean distance and position vs. time during a servo-hold as a full oc-
clusion is introduced into camera #3 using a stationary Kalman filter. 168
Euclidean distance and position vs. time during a servo-hold as a full oc-
clusion is swept across all four cameras using a non-stationary Kalman filter. 169
Placing a wrench in directly front of the planar robot causes a partial oc-
clusiontooccurinalleameras. 171
Euclidean distance and position vs. time during a servo-hold as a partial

occlusion is introduced in all cameras using a stationary Kalman filter. . . . 172

Xiv

5.10

5.11

5.12

5.13

5.14

5.15
5.16

5.17

5.18

Euclidean distance and position vs. time during a servo-hold as a partial
occlusion is introduced in all cameras using a non-stationary Kalman filter.

Euclidean distance and position vs. time during a step input with a full

Fuclidean distance and position vs. time during a step input with partial
occlusions in all cameras using a non-stationary Kalman filter.
Buclidean distance vs. time in all cameras while an external disturbance is
applied to the robot in the presence of occlusions.
Transient response to an external disturbance applied to the robot in the
presence of partial occlusions. oo
Camera images as the illuminationis varied.
Euclidean distance and position vs. time under varying illumination using
astationary Kalmanfilter. oo
Euclidean distance and position vs. time under varying illumination using
anon-stationary Kalmanfilter.
Euclidean distance, robot ENABLE, and position vs. time during tele-robot

operation as a partial occlusion is introduced in the workeell.

). 9%

174

179

186

List of Tables

2.1
2.2

4.1

5.1

Times for each step in the computation. 55

Table of actual eigenspace computationtimes. 61

Tables summarizing the overhead of the various UDP Packets transmitted

inan Bthernet Frame. v v v i e e e e e e e e e e e 149

List of equipment used for the experiment. 158

Xvi

Chapter 1

Introduction

The purpose of this chapter is to provide an introduction to the topic of visual servoing and
to provide a snapshot of current research in the field. The chapter ends with an overview of

the research that will be described in subsequent chapters.

1.1 Background

Visual Servoing can be defined as the task of using “visual information to control the pose
of a robot’s end-effector relative to a target object or a set of target features” [28]. Visual
servoing is a multi-disciplinary field combining machine vision, robotics, and control the-
ory. A good overview of visual servoing can be found in [28]. Numerous publications on
the topic of visual servoing have been published over the past two decades and some books
on the topic have also been recently published [67]. Vision provides sensory feedback that
enables machines to observe and adapt to their environment. Visual servoing can improve
the accuracy and repeatability of a robot, but it remains a challenging engineering problem.
Visual servoing is a particularly demanding application because it requires high-speed vi-

sion in order to provide feedback at a sufficient rate.

Equipping robots with vision has the advantage of compensating for mechanical tol-
erances and improving adaptability, accuracy, and repeatability. Potential applications for
the control of machines abound, ranging from large space robotics to nano and micro po-
sitioners. This has led to a considerable amount of research effort being devoted to the
area of robot visual servoing. Despite the compelling advantages and the intuitive appeal
of using visual feedback, there remain numerous challenges in the area of visual servoing.
However, with the decreasing cost of vision hardware, increasing power of computers, and
active research continuing in the field, visual servoing shows much promise for improving

existing robot applications and enabling new possibilities.

1.1.1 Advantages of Visual Servoing

There are numerous advantages to employing visual servoing. In general, the use of visual
feedback enables a robot to be more flexible by adapting to the world around it. Visual
feedback enables a machine to operate on moving parts or on parts that are not precisely
positioned thus eliminating the need for costly fixtures for registering the position of ob-
jects. Even when an object can be precisely positioned, the absolute position accuracy of
the end-effector of a robot is limited by mechanical imperfections and tolerance stacks.
The position of a robot is normally controlled by sensors mounted on the rotors of the
servomotors which in turn drive mechanical transfer elements such as gears, belts, shafts,
or chains. These mechanical transfer elements invariably include imperfections such as
torsional compliance, friction, dead-zones, hysteresis, and backlash. The mechanical im-
perfections reduce accuracy and repeatability of the robot position at the end-effector. The
use of visual feedback provides absolute position information that can compensate for me-
chanical shortcomings correcting the position of the robot end-effector. Ultimately this
can provide cost savings by allowing robots to be constructed from cheaper and lighter

materials that are more compliant.

1.1.2 Challenges of Visual Servoing

Visual servoing is a multi-disciplinary engineering problem which presents numerous prac-
tical and theoretical challenges. The antiquated RS-170 video standard continues to domi-
nate the vision industry with its low 30Hz frame rates and long serial pixel transport delays.
The resulting low vision sample rates and feedback latencies are perennial problems in vi-
sual servoing. The 30Hz legacy of the RS-170 industry standard has limited the rate at
which many vision systems can sample their changing environments unless specialized
hardware is employed [46]. These vision sample rates are typically orders of magnitude
less than the electrical or mechanical bandwidth of most robot systems. Visual feedback
latencies are exacerbated by the additional time required to perform vision computations
which must be performed in real-time. As a result, directly closing the position loop of a
mechanical system using vision alone is a particularly challenging engineering problem.
To overcome these constraints normally requires the use of specialized vision and com-
puter hardware which can dramatically increase costs. Even with high frame-rate cameras,
various bottlenecks are encountered when interfacing cameras and transferring visual in-
formation into a computer for processing.

The vision sample rate and latencies do not provide the only engineering challenges.
Even if the extra cost of adding a vision system can be justified, it can require substantial
effort. Vision systems are also notoriously sensitive to slight image variations including
variations in illumination, background clutter, and occlusions. These effects reduce the
position accuracy and repeatability that can be achieved with vision feedback. Occlusions
present a particularly difficult challenge that often occurs during normal operation as a
robot or other objects are maneuvered in a workcell. A robot which uses visual feedback to

control position must be robust to unexpected changes to ensure safe and reliable operation.

Camera

RS ST RO I
O 2020 D g e Tl M I >
3322232300 ege T el

RS IOR
TR TE >
ZeZetetale

.

Fixed Camera "Eye—in—hand"”
Configuration Camera Configuration

Figure 1.1: Fixed camera vs. “eye-in-hand” configuration.
1.2 Visual Servoing Architectures

The topic of visual servoing can be best described by identifying and categorizing the vari-
ous approaches to visual servoing. There are numerous ways to categorize visual servoing
systems. One way to differentiate visual servo systems is whether the camera is mounted
on an end-effector (“eye-in-hand” configuration) or if a fixed camera is used as shown in
Figure 1.1.

In [55] image features were used in a control loop thus introducing the distinction be-
tween an image-based visual servo and a position-based visual servo. Another important
distinguishing characteristic is whether or not the visual servo is responsible for directly
closing the joint position loop. More recently, a formal scheme was described in [28] to

categorize all visual servo systems by posing two questions:

1. Is the control position-based or image-based?

2. Does the vision system provide setpoint inputs into the robot’s position controller or

does the visual controller directly control the joint position loop?

These two questions are discussed in more detail in the following sections and can be used

as a basis for creating a taxonomy of visual servoing.

4

1.2.1 Position-Based versus Image-Based Visual Servoing

The first question above distinguishes position-based control from image-based control.

These two approaches are discussed in detail below.

Position-Based Visual Servoing

Position-based visual servoing (PBVS) uses position in the control loop to guide a robot.
Image features are extracted from images and used in combination with a geometric ob-
ject model to deduce the position of an object. Position measurements may be planar or
they may be 3D measurements including orientation. The 3D position and orientation of
an object in space is normally specified using a six element vector which includes the 3D
Cartesian coordinates of an object along with its roll, pitch, and yaw rotations. The mea-
sured position is fed back and the robot setpoints are updated to reduce the position error.

The advantage of PBVS is the convenience of specifying tasks in terms of positions in
the real world coordinate frame. In addition, if the state equations are known, a predictor
can be optionally added to improve tracking the trajectory of a moving object in Cartesian
space.

There are various challenges in position-based approaches. The first challenge is to find
a way to determine position from image features which are subject to noise. After the im-
age features are identified, they must be mapped from feature space to position space. This
process can be computationally expensive. Also, accurate camera modelling and calibra-
tion is critical to accurately compute position from image plane measurements. As a result,
any calibration or modelling errors in the vision system will result in position measurement
errors. Finally, in addition to requiring a model of the camera, it is also necessary to have a

geometric model of the object being worked on.

Image-Based Visual Servoing

In contrast to PBVS, image-based visual servoing (IBVS) uses image features instead of
position as a basis for feedback and control. The desired pose of the robot is controlled by
specifying the desired image features which can be computed or specified using a “teach
by showing” approach. The robot is then controlled by making the image features in the
current view equal to the desired image features.

The process of selecting a set of features is critical to the performance of imaged-based
visual servoing. Typical image feature sets include image points, lines, or areas [70]. The
process of feature selection should take into account feature uniqueness, feature robustness,
and the computational complexity of the feature extraction [18].

Controlling the actual robot motion requires a mapping from end-effector velocities to
the image feature velocities [70]:

f=J,% (1.1)

where J, is the image Jacobian, % is the end-effector velocity vector, and f is the rate of
change in the image feature vector. The image Jacobian can be determined by solving the
image feature projection equations or it can be estimated experimentally.

Once the image Jacobian is determined, the robot can be controlled by setting the ve-
locity setpoints of the robot to drive the image features to the desired setpoint. If the image
Jacobian is square and non-singular this can be implemented using a simple proportional
control law [28]:

u=KJI ;- f) (1.2)

where (f; — f) is the difference between the desired image features and the current image
features, K is a gain matrix, and u is the vector of control inputs for the end-effector
velocities. If the image Jacobian is not square, a pseudoinverse J F can be used.

The image-based approach has several advantages. Image-based control offers the ad-

vantages of reduced computation delay because the additional step of determining position

from image features is not required. Also, the accuracy of the image-based approach is less
sensitive to camera calibration errors. Also, image-based techniques can provide a useful
“teach-by-showing” strategy for specifying tasks.

However, there are also some disadvantages to image-based visual servoing. The im-
age Jacobian J, is usually unknown and must somehow be determined. In addition, the
relationship between image features and robot motion can be highly non-linear or result
in singularities. The result is that small changes in image feature space can map to erratic
movements of the robot. Also, straight line trajectories that appear reasonable in feature
space can map to inefficient or impractical motions of the actual robot end-effector. There
is also no direct control over the Cartesian velocities of the robot end-effector. A phe-
nomenon known as camera retreat can also occur in which the robot will first move away
from the target direction before returning [13]. In extreme cases, a singularity in the image

Jacobian can cause the camera to retreat to a distance of infinity [9].

Hybrid Methods

Problems in image-based visual servoing have led some researchers to investigate hybrid
methods. Hybrid methods use IBVS to control some degrees of freedom and PBVS to

control the other degrees of freedom. One such approach is described in [42].

1.2.2 “Look-and-Move” versus Direct Visual servoing

The second question posed at the start of this section distinguishes whether or not a visual
servo is a look-and-move system or a direct visual servo system. A direct visual servo
uses vision feedback alone to provide closed-loop position control for a robot joint. Con-
sequently, direct visual servoing requires fast and accurate position determination from
images to ensure a stable control loop. Look-and-move visual servoing uses other position

sensors (such as encoders or resolvers) for feedback to internally stabilize the robot joints.

“Look-and-move” visual servoing can be further categorized as being static or dynamic.

STEP 1: "LOOK" STEP 2: "MOVE" STEP 3: Robot Maetion
Vision | . Compute AX) Robot
System Command Robet Motion Controller

|

Camera

Figure 1.2: Static “look-and-move” visual servoing.

Static “Look-and-Move” Visual Servoing

Static “look-and-move” visual servoing is the most primitive type of visual servoing. Static

“look-and-move” visual servoing consists of a simple sequence of three steps [70]:

Step 1: “LOOK” The first step is to “look” at the scene and determine the position of the

robot or object.

Step 2: “MOVE” The difference Ax between the desired position and the actual position

estimate is computed and the robot is commanded to move.

Step 3: “Robot Motion” The robot moves the commanded distance of Ax. Step 1 cannot

be repeated until the move is completed.

These three steps are illustrated in Figure 1.2 and may be repeated until a specified ac-
curacy is reached. This approach is static in the sense that the “look” and “move” steps
do not occur simultaneously but are executed sequentially. For this reason this technique

is sometimes referred to as the “look-then-move” approach. The robot must come to a

complete stop before the process can be repeated making this approach unsuitable for ap-

plications with moving objects. Although this approach is simple to implement, it can be

slow, particularly if the sequence needs to be repeated many times.

Joint
Controllers

Power
Amplifiers

¥

4

Joint Position Sensors |

Position
Estimation

ey
f Image Images
<l Feature <—-————g—————-———
Extraction

(a) Position-based dynamic look-and-move structure

Joint
Controllers

Power
Amplifiers

Camera

X4 Control
R Law
Py
X
fd + Control
_ Law

\

Joint Position Sensors

)
f Image Images
Feature T L —
Extraction

(b) Image-based dynamic look-and-move structure

Figure 1.3: Dynamic “look-and-move” visual servoing structures.

Dynamic “Look-and-Move’ Visual Servoing

Dynamic “look-and-move” visual servoing is achieved by performing the three steps de-

scribed in static “look-and-move” in parallel. Thus the vision system essentially forms

an outer control loop providing position corrections while the robot is moving. This ap-
proach can introduce additional system dynamics with interactions between the control
loops. However, the underlying position control loop is still closed using independent
position sensors such as resolvers or position encoders. Dynamic look-and-move visual

servoing can be image-based or position-based as shown in Figure 1.3.

Power
Amplifiers
Camera
Xg .+ O | Control
_ Law
Fay
b Position | f I}Z; ?E:‘e Images
Estimation Extraction
(a) Position-based direct visual servo structure
Power
Amplifiers
fd * Control
__ Law

Fal
f Image Images
Feature -4————3———-—-——-
Extraction

(b) Image-based direct visual servo structure

Figure 1.4: Direct visual servoing structures.

10

Direct Visual Servoing

In the past, the term “visual servo” used to imply a direct visual servo. However, because
direct visual servoing configurations are so rare the term “visual servo” has gradually be-
come accepted to mean any kind of visual robot control. Consequently, the term “direct” is
now used to avoid confusion with other types of visual servoing configurations [28]. Direct
visual servo systems use vision feedback alone to provide closed-loop position control for
robot joints. Direct visual servoing can be implemented using fixed cameras or using the
“gye-in-hand” configuration. Direct visual servoing can also be either position-based or
image-based as illustrated in Figure 1.4.

Direct visual servoing is difficult because it demands adequate vision sample rates and
timely feedback to ensure a stable control loop. The 30Hz legacy of the RS-170 indus-
try standard has limited the rate at which many vision systems can sample their changing
environments unless specialized hardware is employed. A general rule-of-thumb is to sam-
ple a system at a rate that is ten times higher than the closed-loop bandwidth [15]. This
would suggest that 30Hz video feedback would only be suitable to control plants where the
closed-loop bandwidth is approximately 3Hz or less. This is not adequate for the mechani-
cal time constants and dynamics of most practical robot plants. Typical robot control loops
run at several hundred Hertz to over 1kHz. A further problem is that typical image acqui-
sition and processing latencies result in substantial transport delays. The transport delays
inherent in vision feedback result in phase delays that cause instability in position loops.
As aresult, nearly all implementations adopt “look-and-move” visual servoing because low
vision sampling rates and image processing latencies make direct visual servoing of a robot
difficult [28].

In addition to low vision sample rates and long latencies there are several other practi-
cal obstacles to direct visual servoing. Researchers often use industrial robots as a platform

for experimentation. Most industrial robots use proprietary interfaces (frequently serial)

11

which accept position or velocity setpoints but prevent access to the inner control loops
and inner state variables. Also, the physical interface to most standard robots are typically
low bandwidth serial connections which are unsuitable for high speed closed loop opera-
tion. Finally, direct visual servoing also requires the vision system to deal with the robot

kinematics.

1.2.3 A Taxonomy of Visual Servoing

The categories described in the previous sections can be used to create a taxonomy of visual
servoing. Visual servoing structures can be categorized based on whether they employ
“look-and-move” or direct visual servoing and also based on whether they are image-based
or position-based. The various structures illustrated in Figures 1.2, 1.3 and 1.4 can be
classified based on these categories. The result is a taxonomy of visual servoing as shown

in Figure 1.5.

Visual Servoing

Static Dynamic Direct
"Look—and—Move" "Look—and-Move" Visual Servoing

| | N I

Image-Based Position-Based Image-Based Position-Based

Figure 1.5: A taxonomy of visual servoing.

1.3 Visual Servoing Applications

There is a plethora of potential applications for visual servoing. However, the use of visual

servoing is still limited for a variety of reasons. The restrictive cost of vision hardware

12

and the demanding computational requirements of real-time vision systems have tradition-
ally made visual servoing infeasible in the past. However, the increasing power of personal
computers and the decreasing cost of video sensors will make visual servoing a more attrac-
tive option. Already there have been numerous publications which describe the successful
use of visual servoing for many different applications. Some representative examples of

applications are summarized below.

Industrial Applications

Some of the earliest work in visual servoing described the use of visual feedback to guide
industrial robots for simple pick-and-place operations [58]. Robot tasks involving station-
ary objects can be implemented using a simple static look-and-move visual servoing struc-
ture and many early vision guided robot systems used this approach. However, many robot
tasks must deal with the more challenging problem of working with moving objects. These
operations include such diverse tasks as grasping moving objects from a conveyor [75], au-
tomating mining machinery [10], or even picking fruit [24]. More recently, visual servoing

has aided research in the area of cooperative robots for fixtureless assembly operations {4].

Space Applications

Robotics systems are becoming increasingly more important in space by performing haz-
ardous operations and enabling remote exploration. It is the vision systems which enable a
robot to adapt to the environment for exploration of remote planets or to perform hazardous
tasks that have traditionally required a human operator.

One area where visual servoing shows promise is in improving the operation of large
space manipulators which play a critical role in the operations of the space shuttle and the
International Space Station [62]. These robots use joint-angle sensors for position con-

trol but the flexible structure of the robot manipulator can lead to position errors or even

13

oscillations at the actual end-effector. In [61] a visual servo is explored for the precise po-
sitioning of payloads with flexible space manipulators. Visual servoing can also be used to
automate docking operations or grasp satellites. In these applications, visual systems can
also serve to provide redundant feedback for safety and backup purposes. In addition to
orbital maintenance and construction, visual sensing is enabling robotic systems to perform

remote planetary surface exploration [69].

Game Applications

Over time, the notion of a “seeing” robot has captured the imaginations of many researchers
in the field of visual servoing. Visual servoing allows a robot to interact with a changing
environment enabling a robot to “play” various games. In[17] a real-time 3D vision system
guides a robot for playing one-on-one volleyball with a human player. The robot system
is capable of picking up the ball, playing various game sequences, recognizing faces and
voice instructions, and even shaking hands with another player. In [7] a robot system is de-
scribed for catching a toy mouse attached to a moving model train. Others have investigated
robot juggling [53] and robot systems capable of playing ping-pong [2]. Robosoccer [8]
is another application requiring visual tracking and control which has gained popularity in
recent years. Although many of these applications are somewhat esoteric, they also serve

to demonstrate the impressive capabilities of vision guided robots.

Tele-robetics Applications

Visual servoing is an important enabling technology for tele-robotic applications. Tele-
robotics allows a remote user to operate robotic equipment from a distance in situations
where it is not practical or safe for a human to be present. One active research area in
tele-robotics is remote medical diagnosis and surgery (tele-medicine).

Visual servoing techniques can be applied to enable the remote control of robots. The

long round-trip delays associated with transmitting visual data to a remote site makes it

14

difficult or impossible to dynamically close a vision loop over a remote link. A task can be

specified in terms of visual features by a remote human operator, and visual servoing can

be used to execute the task locally [22]. Tele-robotics is an open research area which can

benefit greatly from advances in visual servoing.

First IBVS

A.C. Sanderson
and L.E. Weiss

PBVS with
Kalman Filter

W.J. Wilson and
D.B. Westmore

Hybrid
PBVS+IBVS

E. Malis and
F. Chaumette

1998

1973¢ >1980< > 1987 ¢ 21991«
Early Work Introduction of
Y. Shirai Image Jacobian

and H. Inoue

A.C. Sanderson
L.E. Weiss and
C.P. Neuman

Figure 1.6: Timeline showing some of the major milestones in visual servoing research.

1.4 Previous Work

A timeline marking some of the major publication milestones in visual servoing is shown

in Figure 1.6. Some of the first reported work in visual servoing is generally recognized to

be that of Shirai and Inoue [58] in 1973. This work described how vision feedback could

be used to improve the accuracy of a simple robot assembly operation. The progress of vi-

sual servoing systems remained slow for many years due to the demanding computational

requirements of real-time computer vision. The early accomplishments in visual servo-

ing are notable since this work was accomplished with only the modest computing power

15

available at the time. Early general purpose computers did not possess sufficient compu-
tational power for robot control. Most work required expensive pixel processing hardware
and other custom computing hardware. In the early 1990’s, Hulls and Wilson [27] demon-
strated the use of multiprocessor transputers to meet the computational demands associated
with visual servoing. It has only been in recent years that personal computers have reached
a point where the real-time processing of visual information has become practical. An
excellent tutorial on visual servoing has been written by Hutchinson, Hager, and Corke
in [28]. More recent overviews on the topic have been written by Corke and Hutchinson
in [12].

Image-based visual servoing uses image features in the control loop instead of position
information and was first described in 1980 by Sanderson and Weiss [55]. Later, the fea-
ture sensitivity matrix (or image Jacobian as it was later called) was identified by Weiss,
Sanderson and Neuman [70] in 1987 as a means of mapping end-effector velocities to
image features velocities. Subsequent researchers have investigated various image-based
approaches using the image Jacobian to map image features to robot motion [16] [34].

Other researchers have investigated position-based approaches to visual servoing. In
1991, Westmore and Wilson [71] successfully demonstrated 2D position-based visual ser-
voing using a Kalman filter with an end-point mounted camera. In 1992, Wang and Wil-
son [68] described a vision system capable of tracking the 3D relative pose of an object
using a Kalman filter. In 1996, Wilson, Hulls, and Bell [72] described a complete Cartesian
position-based visual servo system using a Kalman filter.

Various shortcomings in classic position-based and image-based ‘approaches have led
to subsequent research into hybrid approaches which seek to combine the best elements
from both. In 1999, Malis and Chaumette [42] described the use of a hybrid system called
Z%D visual servoing. This method has advantages over strictly position-based techniques
in that it does not require a 3D model nor precise camera calibration. This method also

has advantages over strictly image-based techniques in that it ensures convergence over

16

the entire task space. However, this technique is not as robust as others and is sensitive to
noise. Corke and Hutchinson have also suggested a partitioned approach to image-based
visual servoing in [13].

The stability problems are magnified in “direct” visual servoing systems where the
vision system must not only guide robot motion, but must also close the inner position loop.
The need for real-time machine vision has fueled research into custom vision chips [74].
Most direct visual servoing systems that have been described typically employ specialized
hardware to overcome the high computational requirements of real-time image processing
and to provide faster sample rates [32] [46] [31]. To compensate for the shortcomings of
the visual feedback, some systems have employed predictors or observers [26] [25]. Other
direct visual servo systems have used simple robots with low-frequency dynamics that can
be controlled using a standard 30Hz vision system [64]. Still other implementations that
close the position loop using vision have still relied on external velocity sensors to close
the velocity loop [21].

The one common theme in all the research has been the practical problems due to low
vision sampling rates and latencies. Regardless of their approach, all researchers have
had to contend with the low sample rates and high latencies intrinsic to standard vision
systems. Low sample rates and high latencies ultimately introduce instabilities in a control
loop [11]. Because of low vision sample rates and high latencies almost all visual servoing
systems described in the literature employ “look-and-move” rather than “direct” visual
servoing [28]. This research describes a novel approach to direct visual servoing that does
not require specialized hardware and does not require any external position or velocity

SENSOr1S.

17

1.5 Research Overview

This work explores direct visual servoing which forms the third branch of the taxonomy
shown in Figure 1.5. More specifically, this work describes a direct visual servoing system
that is position-based and uses multiple fixed cameras. The following sections describe the
motivation behind researching direct visual servoing followed by an outline of the thesis

and a list of contributions.

1.5.1 Motivation for Direct Visual Servoing

If the obstacles associated with the vision feedback can be overcome, there are several
motivations for employing direct visual servoing. Direct visual servoing can ultimately
eliminate the need for traditional position sensors, such as enéoders or resolvers, and hence
reduce the wiring complexity of a robot. Direct visual servoing can also serve as a “backup”
position loop configuration in critical applications in case the primary position sensors fail.
Direct visual servoing is of particular interest in applications where vision provides the
only practical means of measuring position or where the use of traditional position sensors
is not possible. Examples include micro or nano-positioners where the use of accurate
position sensors may be costly or impractical. Another example is the case of flexible
manipulators, where the position of the end-effector cannot be ecasily deduced from the
joint positions. Other examples include vehicle guidance applications where the position
of a vehicle can be measured with respect to other objects or visual landmarks. Examples
include underwater station-keeping or the visual docking of space vehicles.

Direct visual servoing has received relatively little attention and most of the previous
work describes the “look-and-move” type of visual servoing. This is likely due to the dif-
ficult challenges that arise when using machine vision alone for closing a position loop.
These challenges include low sample rates, feedback latency, noise, and occlusions. How-

ever, many recent developments in both computer hardware, networking and software have

18

yielded a ripe opportunity for revisiting the problems surrounding direct visual servoing
without relying on specialized hardware.

Recent advances in computer technology have produced desktop computers that now
have sufficient computational horsepower to be employed for real-time vision applications.
Moore’s Law is still intact as the power of computers has continued to approximately dou-
ble every 18 months with recent processors such as the Pentium IV reaching speeds of
several GigaFLOPs. The ubiquitous PC (personal computer) is both powerful and cost
effective due to the economies of scale. It is no longer advantageous nor necessary to
develop custom hardware platforms to solve machine vision problems. In applications
where more computing power is required, a Network of Workstations (NOW) can be con-
structed using multiple computers interconnected with high-speed off-the-shelf networking
components [1]. Network technology such as Ethernet are now beginning to find applica-
tions in industrial environments [38]. The Internet and network computing have fueled the
proliferation of fast and economical network components with the possibility for remote
tele-operation.

Recent developments in hardware have been paralleled by developments in software.
Many embedded operating systems are now available with a variety of tools. The Linux and
open-source community have developed robust and reliable platforms that are finding their
way into many embedded applications. Object-orientated software methods have matured
and have aided the software development process.

This research leverages many of these recent hardware and software developments by
combining new ideas with modern off-the-shelf components as the building blocks for a

direct visual servo system.

19

1.5.2 QOutline of the Thesis

This work describes a novel direct visual servo that is robust to occlusions. Throughout
the work, the concepts are demonstrated using a 1 DOF (Degree Of Freedom) servo drive
equipped with a rotating link which will be referred to as the “planar robot”. The reason for
working with a simplistic planar robot was to provide a reasonable testbed for the devel-
opment of the distributed vision and control techniques. This testbed is not intended as a
commercial product, but rather to facilitate the investigation of more fundamental problems
and to verify a new approach to direct visual servoing.

This first chapter is intended as an introduction to the area of visual servoing along with
relevant background information to provide a context for the work that will be described in
the following chapters. The various types of visual servoing are identified and the concept
of direct visual servoing is introduced.

Chapter 2 is devoted to describing the vision algorithm in detail. The limitation of 60Hz
video is overcome with multiple RS-170 cameras synchronized over a network in round-
robin fashion to capture video fields at different instants in time. This technique does not
suffer from the various bottlenecks present when using high frame-rate cameras. Each
RS-170 camera in the network has its own computer that processes video at field rates to
determine robot position. The vision algorithm is based on eigenspace methods, otherwise
known as Principal Component Analysis. The theoretical background and implementation
of the eigenspace vision techniques are described. The feasibility of eigenspace methods
for position determination is demonstrated using a simple 1 DOF robot testbed. The issues
associated with computational speed, latency and position accuracy are explored along with
the effects of occlusions on position measurements.

Chapter 3 describes various aspects of the modelling the direct visual servoing sys-

tem. The various component subsystems in the visual servoing system are modelled and

20

described in detail. These subsystems include the vision system, the servo motor and ampli-
fier, the position compensator, and a mechanical model of the planar robot. These models
serve to aid in the understanding of the system dynamics and for system simulations. The
models also form the basis of the discrete-time state equations for a Kalman filter to provide
improved state estimates. Simulations show that the Euclidean distance from the manifold
in eigenspace in the presence of random occlusions is statistically related to the position
measurement error. Occlusions are thus considered as “noise” and the measurement error
variance is estimated directly from Euclidean distance. The measurement error variance is
used by the Kalman filter to weight position samples which arrive sequentially in a round-
robin fashion from each of the cameras. The Kalman filter includes a model of the vision
transport delays and provides timely position estimates necessary for stable closed loop
servoing. A complete system model is constructed by combining models of the various
subsystems. Finally, the system model is used to simulate the direct visual servoing sys-
tem. Simulations predict the robot performance and illustrate the improvement in dynamic
performance as the number of cameras are increased.

The implementation of a direct visual servoing testbed is discussed in Chapter 4. This
chapter is significant since there are numerous practical constraints and implementation
issues that need to be addressed. Various hardware and software issues are highlighted and
the experimental setup is described in detail. System bottlenecks and the upper limits on
the number of cameras are also investigated.

Chapter 5 describes the experimental results. Experimental measurements were ob-
tained for a network of four cameras performing direct visual servoing of a simple planar
robot. The results demonstrate the step response as well as stabie servo-hold operation
in the presence of full occlusions in a subset of cameras or FWith partial occlusions in all
cameras. Other experiments demonstrate disturbance rejection, performance under varying
illumination, and tele-robotic operation. The experimental results agree with simulations

and show that the system performs well for direct visual servoing of the planar robot.

21

Chapter 6 provides a summary of the results along with the conclusions that were
drawn. The contributions of this work to the area of visual servoing are also summarized.

This chapter ends with some thoughts on possible directions for future work.

1.5.3 List of Contributions

The direct visual servo that is described is a position-based visual servo (PBVS) and is
characterized by the use of multiple fixed cameras to control a planar robot. This is dis-
tinctive since the vast majority of the literature in visual servoing describes work based on
the dynamic “look-and-move” approach which relies on an inner position loop using tra-
ditional position sensors. The work that has been done in direct visual servoing has either
relied on specialized hardware [46] or has relied on joint-level velocity sensors for stable
operation [21]. The approach described in this work is a pure direct visual servo in that
it relies neither on position nor velocity sensors but directly sets motor current based on
visual feedback alone. In addition, it is distinctive in that it does not rely on specialized
hardware but rather uses uses off-the-shelf cameras and components.

Direct visual servoing was selected because of the interesting challenges it presents,
particularly in association with the vision feedback. Typical computer vision problems
such as low sample rates and long transport delays tend to reduce the performance of “look-
and-move” visual servoing, whereas direct visual servoing is not even possible unless these
issues are addressed. Low sample rates and delays both lead to instability if vision alone is
used to close the position loop.

Several novel techniques were developed to overcome the barriers of low vision sample
rates and transport delays to realize stable direct visual servo control. A novel means of
increasing the visual sampling rate by using multiple cameras synchronized over a network
is described in this work. Using four cameras, an effective visual sampling rate of 240Hz

was experimentally demonstrated. This sample rate exceeds the rates reported in other

22

works that have relied on “off-the-shelf” components. Further analysis indicates that this
technique can achieve effective visual sampling rates approaching 1kHz. This technique
has several advantages including scalable visual sample rates and increased robustness to
occlusions.

The camera synchronization over an Ethernet network also required special techniques
to provide deterministic communications. These techniques included steps to avoid packet
collisions by suppressing superfluous packets on a dedicated network and managing multi-
ple access through the use of a master/slave round robin polling protocol. Furthermore, the
use of UDP (User Datagram Protocol) packets ensured low-overhead and efficient packet
exchanges.

Another contribution of this work is the development of a method for handling oc-
clusions when using eigenspace vision methods. Robustness to occlusions is achieved by
treating occlusions as “noise” and using a Kalman filter to weight the feedback from each
camera based on the measurement error variance. The discovery that the measurement error
variance from a camera can be determined directly from Euclidean distance in eigenspace
provides an elegant method for quickly computing the measurement error variance. The
result is a system which is robust to noise and occlusions.

Finally, it is shown that the ideas underlying the direct visual servo can be extended
to realize a tele-robotic system. Issues such as transmitting images for remote monitoring
and local task supervision can all be addressed using aspects inherent in the proposed di-
rect visual servoing system. The eigenspace vision techniques used to determine position
in the direct visual servo are also shown to be suitable for image compression to enable
remote monitoring. Local task supervision is also addressed by using Euclidean distances
in eigenspace or data readily available in the Kalman filter.

In the following chapters, the ideas behind these contributions are developed and de-
scribed in detail. These contributions are demonstrated using both simulations and real-

world experiments.

23

Chapter 2

Distributed Visual Processing in

Subspace

2.1 Introduction

In “look-and-move” visual servoing, traditional position sensors are used to stabilize the
position loop while the vision system provides additional information to improve accuracy
and repeatability. In direct visual servoing, the vision system alone is responsible for pro-
viding position feedback. To ensure stable operation of a robot, it is critical for a direct
visual servo to have a vision system that is both fast and accurate. This chapter describes a
novel vision system that comprises off-the-shelf components to provide real-time feedback
of the angular position of a planar robot.

The first section outlines the requirements of a vision system suitable for direct visual
servoing. A vision system that meets these requirements is then described which employs
multiple cameras and computers which are distributed over a network. The effective vi-
sual sample rate is increased by synchronizing the cameras over the network to interleave
their acquisition times. Machine vision algorithms are then discussed and an algorithm

based on Principal Component Analysis (or PCA) is selected. PCA is sometimes referred

24

to as eigenspace methods, and these two terms will be used interchangeably throughout this
chapter. The theoretical background on PCA is briefly summarized along with its practical
application to visual position determination. The feasibility of using PCA to determine
the angular position of a planar robot from raw brightness images is demonstrated experi-
mentally. The experimental results provide quantitative measures of computational speed,
latency and position accuracy.

PCA is not only a useful tool for position determination but it is also known to provide
highly compressed representations of images. This has potential uses in tele-robotic appli-
cations where PCA could simultaneously be employed to produce efficient image represen-
tations suitable for transmitting visual feedback to a remote user over a network. Therefore,
additional experiments are performed to investigate the suitability of PCA for compressing
images of a robot to enable remote monitoring.

Finally, the effects of occlusions are also explored since these often arise in practical
vision applications. An experiment is performed whereby a set of robot images is subjected
to numerous simulated occlusions. The results of this experiment indicate that there is a
statistical relationship between Euclidean distance in eigenspace and the corresponding
position measurement errors. This relationship is the key used in Chapter 3 to fuse data

from multiple cameras to ultimately enable robust direct visual servoing.

2.2 Vision System Requirements

The vision system in a direct visual servo serves as the only direct means of feedback in
the system. Consequently, it is important that the vision system meet certain requirements.

These requirements include:
e Accurate position measurements

e Ability to work with arbitrary backgrounds

25

e High sample rate
e Low latency feedback
e Robustness to noise and occlusions

Many of these items are desirable in a “look-and-move” visual servo, but for a direct visual
servo they are absolutely necessary in order for the system to be able to servo at all. First,
the vision system must provide accurate position feedback that is comparable or better
than that provided by traditional position sensors such a encoders. Since visual servoing
applications operate in a wide variety of environments, the vision system must be capable
of working with general images with arbitrary backgrounds to be practical. Since the vision
system alone is responsible for position feedback, the sample rate of the vision system must
exceed the mechanical time constants of the robot system in order to ensure a stable control
loop. Also, the vision feedback should not include delays which will decrease the phase
margin and lead to instability in the control loop. Finally, to prevent erratic motions in
the robot position loop, the vision feedback must be robust and have some tolerance to
noise and occasional occlusions. Lastly, it may be preferable to avoid costly proprietary

components by using “off-the-shelf” components wherever possible.

2.3 Distributed Vision

2.3.1 Achieving High Video Frame Rates

One of the key requirements that have been identified for the vision system is the need for
high vision sample rates. Most visual servoing systems operate at standard 30Hz frame
rates or even a sub-multiple of the frame rate due to computational limitations. Two basic

approaches were considered for addressing the issue of increasing the vision sample rates.

26

The first approach is to use high-speed digital cameras and the second approach is to syn-
chronize the acquisition times of multiple RS-170 cameras to increase the effective sample
rate.

One approach to achieving high video frame rates is to use high-speed digital cameras.
Assuming an appropriate high-speed camera can be sourced, this option seems at first to
be intuitive and straight—forWard. However, there are several drawbacks associated with
using a high-speed camera. One issue is that high-speed cameras are specialized devices
that often require proprietary software and interfaces in order to operate. In addition, high-
speed digital cameras cost significantly more than traditional vision systems. Even if the
increased cost can be justified, there are other issues to consider. The use of high-speed
cameras may necessitate the use of an appropriate multiprocessor architecture in order to
perform all the image computations in real-time. At some point, computational or /O bot—
tlenecks ultimately limit the frame rates that can be processed by one computer. Even with
processor clock speeds of several Gigahertz, the speed of memory in the standard desktop
PC remains slow in comparison presenting a bottleneck for image processing. Even a stan-
dard RS-170 video signal contains a significant amount of data to process. A standard 60Hz
video signal with a resolution of 640 x 480 pixels presents an effective data rate of over
18.4 Mbytes/second. Although modern computers equipped with a PCI bus are capable of
capturing video at this rate, complex image processing of this image data at higher frame
rates will present a computational challenge. For instance, capturing 640 x 480 pixel im-
ages at 1kHz results in a data rate of over 300 Mbytes/second which exceeds the bandwidth
of a typical 66MHz 32bit PCI bus. At high frame-rates, even the access time of the system
memory becomes an issue. On a typical PC using standard 133MHz DRAM, just accessing
each individual pixel once could take over 2 milliseconds. This is not nearly fast enough
for real-time processing since, at a 1KHz frame-rate, frames are arriving every millisecond.
Attempting to process images from a high frame-rate camera in real-time is like “drinking

from a firehose”.

27

Another approach to achieving high video frame rates is to use multiple RS-170 cam-
eras and synchronize the cameras to capture at different instants in time. This approach
has the disadvantage of increased implementation complexity due to the practical issues of
simultaneously controlling the synchronization of multiple cameras. However, assuming
this can be overcome, this approach has numerous potential advantages. Some of these

advantages include:

e use of off-the-shelf components with industry standard interfaces
e multiple cameras provide redundancy and improved reliability
e multiple cameras may increase robustness to some localized occlusions

e multiple vision computers can perform parallel computations to allow scalability

while increasing frame rates

These advantages correspond with many of the vision system requirements identified in
the previous section. For this reason, this approach was selected over the option of using a

high-speed digital camera.

2.3.2 A Network of Cameras

The limitation of traditional 30Hz video can be overcome by synchronizing multiple vi-
sion nodes to capture images at different instants in time to improve the effective vision
sampling rate. The use of multiple cameras has also been described for visual servoing to
observe different views [43], but here it is used to improve the vision sample rate. The sys-
tem consists of multiple RS-170 cameras which are each connected to a computer equipped
with a frame-grabber to form a “vision node”. Each vision node has the ability to control
its camera synchronization and to capture and process images. Although each vision node
logically consists of separate components, there is no reason why it could not be realized in

one physical package to form a “smart camera” [73]. The vision nodes are connected by a

28

Synch. Pulse ..
Vision
Computer #1

Vision
Computer #2

®
1
® :
[}
& i
H
®
Power Syne.
Amplifer Synch. Pulse 1~ { Gen. Vision
%V - Computer #N .
: | RS170
Camera N

100 Mbit Network

Master Servo Computer

Figure 2.1: Network topology showing distributed vision nodes and the master servo com-
puter.

network to form a distributed vision system controlled by a master computer as illustrated
in Figure 2.1. The master computer, in turn, is also connected to the robot which is to be
controlled. An image of the actual planar robot that was used is shown in Figure 2.5.
RS-170 video frames are sent at 30Hz and consist of an odd video field and an even
video field which are shifted in space by one horizontal scan line and shifted in time by
1/60%" of a second. Therefore, the vision nodes were configured to process video fields
rather than video frames to double the sample rate to 60Hz and decrease latency. The
limitation of traditional video rates is then overcome by synchronizing each vision node to
capture video fields at different instants in time to improve the effective vision sampling

rate.

29

7Illlilll||lllllllll|ll IIII]]I!llllllllllllllll

||llll||

IW

) [SCOPE].CH1 500 mV mS Video from Camera 1 ’
5) [SCOPE]L.CH2 500 mV m$ Video from Camera 2 | |] Lty I Lidld I L e bt

Figure 2.2: Video waveforms showing the relative video synchronization of two cameras
for a system where N, = 4.

The master computer communicates video synchronization information over the net-
work to each vision node in a round-robin fashion. The relative timing of video field
signals for two cameras measured in the network is illustrated in Figure 2.2. By synchro-
nizing the cameras to interleave their capture times, the effective video sample rate f; can
be increased from 60Hz to:

fs = 60N, 2.1

30

where N, is the number of cameras in the system. Each vision node has a dedicated com-
puter to perform its local image processing so that the computational load is naturally dis-
tributed over the network. After the image computations are completed, each vision node
sends the results in a small network packet to a master servo computer.

This technique is not bound to the use of standard RS-170 cameras. Even if high speed
digital cameras are employed, this approach can be used to multiply the effective sample
rate assuming the image acquisition time of the cameras can be controlled. More impor-
tantly, this approach serves to distribute the computational load over multiple computers.

This approach has the advantage of using off-the-shelf components and it is scalable
by adjusting the number of vision nodes (V). Using multiple cameras also presents new
possibilities for dealing with occlusions in situations where some cameras are occluded and
others have a better view of the target object. This approach can increase the vision sample
rate by N, but it cannot improve the transport delay associated with the transmission and
processing of the vision signal. Latency issues are discussed and dealt with in Chapter 3.

Sensor and
Object Models

i Image f .
Processing | = | Interpretation | ===$>X

Position
Image
(Tmage) Fc‘:(?ies) (Estimate)
Aray

Sensor Feature Classification
{Camera) Extraction

Figure 2.3: Pattern recognition for position determination.

31

2.4 The Vision Algorithm

Machine vision algorithms rely on pattern recognition technigues to extract information
from images. Pattern recognition is the process by which sensory input is sensed, features
are extracted, and the data is classified. The use of pattern recognition for machine vision
is illustrated in Figure 2.3. Machine vision employs a camera as the sensor and the patterns
to be recognized are image features. These image features may include points, lines, or
any other measurements suitable for a particular application. The image features extracted
from the sensed images form an image feature set that are used to classify the image. Clas-
sification proceeds by recognizing features in the feature set which compare with known
features based on previous learning or models. In the case of visual servoing, the classifier

must provide the pose of an object or of a robot end-effector.

y _ Feature Point

Figure 2.4: The image plane.

32

2.4.1 Model-Based Vision

Traditional machine vision systems perform pattern recognition on target objects using
information from CAD shape models. Physical features of the object in the view of a
camera are projected on the image plane and are extracted and classified. These features
normally include points, lines, surface areas, or centroids. Figure 2.4 depicts a point feature
P in 3D space which is projected onto [u,v] in the 2D image plane of the camera. To
classify the image features, a mapping between points in space and pixels in the image array
must be determined. This mapping requires knowledge of the extrinsic and intrinsic camera
parameters [35]. Extrinsic parameters are determined by the position and orientation of the
camera. Intrinsic parameters are determined by the internal geometry of the camera such as
the focal length and the principal point. Using perspective projection, one way to express

the mapping of a 3D point P into the image plane is described in [28] as:

=AP +c (2.2)
v

where [u, v] are the coordinates in the image plane, and A and c are matrices that take into
account the extrinsic and intrinsic camera parameters. These matrices must be determined
using a camera calibration procedure.

This is a common approach to machine vision but it has some drawbacks. Camera
calibration is often a cumbersome process. Small errors in calibration or camera position
can lead to poor accuracy in the position measurements. If internal lens distortions are
present in the camera, a complex calibration procedure will be necessary. Computational
requirements are high and may prohibit the processing of full resolution images at frame
rates. Consequently, vision systems must typically operate on small regions of interest
which contain key features. Generally, multiple feature points are selected to form an im-

age feature vector which is used to classify the pose of the target object. Features become

33

increasingly difficult to discern when arbitrary backgrounds are used. If inappropriate fea-
tures are selected, the overall performance and robustness of this approach is poor. Lastly,

this technique is sensitive to occlusions and noise.

Figure 2.5: The planar robot.

2.4.2 Appearance Based Methods

An alternative approach to machine vision is to use appearance based methods. Appearance
based methods rely on matching images with previously acquired images. In the simplest
case, matching can be determined by simply taking the sum of square differences (SSD)
over each pixel in two images. This will indicate how correlated one image is with another.
This approach, also known as template matching, requires numerous computations and

becomes unwieldy as the size and number of the images to compare increases. This simple

34

approach is not suitable for real-time applications where images need to be recognized
rapidly to meet critical time deadlines.

However, if the dimensions of the image can be reduced into a suitably compact “sub-
space”, this approach becomes more practical. PCA is one technique for obtaining a sub-
space called the eigenspace which is useful for reducing the dimensionality of an image
down to a size where pattern matching can be efficiently performed. For this reason, PCA
is sometimes referred to as eigenspace methods. Besides PCA, there are various other
subspace techniques such as Independent Component Analysis (ICA). PCA has been ex-
plored for many machine vision applications but ICA has recently shown promise in some
situations such as varying illumination conditions [19].

PCA techniques have been extensively explored for use in various vision applications
such as face recognition [65], object recognition [45] [48] [47] [66], visual inspection [49],
and visual positioning and tracking [49]. As described in section 2.4.1, traditional vision
systems require geometric models to identify key features such as points, lines, or areas. In
contrast to this approach, PCA uses an optimal set of orthonormal basis vectors to define
a low dimensional subspace determined using the Karhunen-Loéve Transform (or KLT).
Once images are projected into the subspace they can be classified by finding the closest
match in the low dimensional subspace [49].

PCA meets many of the vision system requirements listed in section 2.2. This approach
works with raw intensity images with arbitrary backgrounds. In addition, this approach
is based on appearance and does not require explicit knowledge of the geometry of an
object. Because PCA methods do not rely on measuring geometric features, they function
well despite the vertical distortion present when using video fields. This is desirable since
the distributed vision system described in section 2.3 is based on video fields rather than
video frames. Finally, PCA does not require any camera calibrations as long as the camera
position remains the same at run-time as during the learning process. Consequently, this

approach is tolerant to lens distortions and optical aberrations since these just form part

35

of the “appearance”. For these reasons, the machine vision algorithm that was selected is
based on PCA. Later in this chapter, the use of PCA will also prove useful for dealing with

noise and occlusions.

2.5 Principal Component Analysis

Traditional robot vision systems often use CAD shape models or geometric features. In
contrast to this approach, eigenspace methods use a low dimensional subspace for compar-
ing an image with a large set of possible images to determine the position of an object [49].
The KLT can be used to construct an optimal subspace for a set of correlated images. Since
the complete range of robot motion is learned a-priori, the subspace provides a compact
representation of all possible camera images. This low dimensional subspace can be used
to efficiently find the closest match for an image in a predetermined set of images [49]. The
compact image representation can also be employed to compress images.

The process begins with a learning phase to determine the eigenvectors and create the
eigenspace. Although the learning phase is time-intensive, the run-time position deter-
mination uses simple and efficient computations suitable for real-time implementations.
However, one constraint of this approach is that the illumination of the scene must re-
main constant. Difficulties associated with eigenspace methods include sensitivity to both
occlusions and variations in illumination conditions. It is assumed that the illumination
conditions around a robot can be controlled. However, occlusions are addressed later in
section 2.7 since they often occur as a robot or other objects are maneuvered in a workcell.

The following subsections provide background information on the use of eigenspace

methods for position determination and for image representation and reconstruction.

36

(a) Average image (b) Eigenvector #1 (c) Eigenvector #2

(d) Eigenvector #3 {e) Eigenvector #4 (f) Eigenvector #5

Figure 2.6: The average image and the eigen images.

2.5.1 Eigenspace Background Theory

The following section provides a summary review of the eigenspace vision method that was
used. This is provided to introduce terminology and techniques that form the background

to the vision work.

Creating the Eigenspace

The process begins by first learning the mapping between the appearance and position of
the planar robot. This is accomplished off-line by incrementally moving the robot over its

full range of motion while obtaining a set of n image vectors:
{i17 127 i37 e in}

Each image is represented as a 1 X p row vector where p is the number of pixels in an
image. Each camera simultaneously captures its own set of training images allowing the

learning to proceed in parallel for all N, cameras. Next, the average ¢ of each image set is

37

calculated using:

1 n
c=-%4, @3)
1

T =
J:
An example of the average image for the planar robot is shown in Figure 2.6(a). The

average image is subtracted from each image in the set to form a matrix P given by:

- -7
i1 - C
i2 — C
P=| " |- 2.4)
& in - c -

P has the dimensions p X n where p is the number of pixels in each image and n is the
total number of images in the set. Since all the images in a set for a given camera are of
the same robot and background, the set of images are highly correlated. The strong image
correlations allow raw brightness images to be projected into a low dimensional subspace
determined using the KLT. The KLT proceeds by finding the covariance matrix R formed
from the image set P:

R = PP7 (2.5)

The eigenvectors are then found using eigenvector decomposition:
AU =RU (2.6)

where A and U are the eigenvalues and eigenvectors of the covariance matrix R. These U
matrix contains n eigenvectors which are the size of an image and which can be used as
orthonormal basis vectors.

However, the covariance matrix R in Equation 2.5 is a p X p matrix whose dimensions
depend on the number of pixels p. As the number of pixels p increases, the storage require-
ments for R increase by O(p?). For images comprising thousands of pixels, the storage
requirements quickly exceed practical memory sizes. Fortunately, it is mathematically pos-

sible to also derive the same basis vectors using the Q covariance matrix [33]. The Q

38

covariance matrix is given by:

Q =PTP 2.7

which has dimensions n x n where the typical number of image samples 7 is substantially
smaller than the number of pixels p. This results in a more manageable matrix size that can
be manipulated by a computer with a practical memory size. The same basis vectors U in
equation 2.6 can be obtained from Q by using the singular value decomposition (SVD) of
P given by:

P=UZV’ (2.8)

The SVD of P can then be substituted into equation 2.5 to give the following:
R =PPT = USVTVZTU" 2.9)
Since the matrix V is orthogonal, the product with its transpose is given by:
Vv =1 (2.10)
Therefore, equation 2.9 can be simplified to:
R = UX*U” (2.11)

As expected, this equation is a restatement of equation 2.6 where the matrix U contains the
eigenvectors of R and X2 contains the eigenvalues.

Next, the SVD can be substituted into equation 2.7 to give the following:
Q =P7p = vxTUuTUuzU” (2.12)
Again, the matrix U is orthogonal such that:
Utu =1 (2.13)
Therefore, the equation 2.12 simplifies to:
Q=vzvT (2.14)

39

where the matrix V contains the eigenvectors of Q and X? contains the eigenvalues. The
eigenvectors of the Q covariance matrix can be related to the U basis vectors by rearranging
equation 2.8 as follows:

U=Z"'PV (2.15)

Since T is equal to the square root of the eigenvalues, the equation for the basis vectors U
can be rewritten as:

U=A"PV (2.16)

where V and A are the eigenvectors and eigenvalues respectively of the Q covariance
matrix, and P is the original image set matrix.

Because the planar robot sub-images consisted of 34001 pixels, determining the basis
vectors using the R covariance matrix in only 256Mbytes of available memory was not
possible. Therefore, equation 2.16 was used to compute the basis vectors from 101 sam-
ple images producing a Q covariance matrix with manageable dimensions. The resulting
eigenvalues are plotted in Figure 2.7 and the images corresponding to the first five basis
eigenvectors are shown in Figure 2.6(b) to (f). Since the eigenvector computations are
done off-line, they have no impact on the final run-time performance.

When using the KLT, the most significant basis vectors are those with the largest eigen-
values. Consequently, the number of dimensions can be reduced by using the £ most sig-
nificant eigenvectors:

{wl|i=12..k} @.17)

where u; is the ¢** basis vector in U and the the k most significant basis vectors are selected

with the largest corresponding eigenvalues such that:
MZ A2 2N (2.18)

A subspace based on the k most significant eigenvectors forms a set of orthonormal basis

vectors that define the eigenspace. Typically, eigenspaces of 20 dimensions or less have

40

=y
[=]

Magnitude
(o]

0 5 10 15 20 25 30
Eigenvector number

Figure 2.7: Eigenvalue magnitudes.

been shown to be more than adequate for performing recognition in most applications [49].
The exact number of eigenvectors required will depend on the application. In this appli-
cation, experimentation showed that increasing the number of eigenvectors beyond k£ = 5
yielded little improvement in position accuracy. This is readily apparent from the eigen-
value magnitudes plotted in Figure 2.7 which show that beyond the first five eigenvectors
the eigenvalue magnitudes rapidly diminish. Because each camera has a unique view of the

robot, a unique eigenspace must be constructed for each camera.

41

eigen vector 1

(a) Camera #1 (b) Camera #2

(c) Camera #3 {d) Camera #4

Figure 2.8: The first 3 dimensions of the eigenspace manifolds for 4 cameras.

42

The Parametric Manifold

Next, each image in the training set is projected to eigenspace using the k most significant

eigenvectors. The result of projecting an image i, into eigenspace is a point f.:

[]
u;

fo=| 0 | fie—cff 2.19)

L Uk

The complete set of images projected to eigenspace forms a set of points in eigenspace
called the manifold [45]. The manifold exists in a low dimensional space and is therefore
a compact representation of the appearance of an object. Plots of the eigenspace manifolds
produced by varying the position of the planar robot through an angular displacement of
7 radians are shown in Figure 2.8 for four different cameras. Each of the manifolds is
parameterized by the angular position of the planar robot that is varied throughout the set
of images to produce the parametric eigenspace [45]. The workspace manifolds exhibit a
smoothly varying plot for each set of images. The number of points in each manifold was
effectively increased by interpolating between training points on the manifold to achieve a
position quantization interval equivalent to the resolution of a 4000 count/revolution rotary

encoder.

Image Classification and Position Determination

Next, images of the robot in arbitrary positions as captured by a given camera can be
projected into subspace where they can be classified. The low dimensional subspace is
a computationally efficient space to perform matching of an image with a predetermined
set of images [49]. It has been established that the similarity between two images can be

approximated by the distance between the projected points in eigenspace [45]. By finding

43

10000 ? ! ? ! ! ! ? ! !
9000
8000
7000
6000
5000

4000

SSD in Eigenspace

3000

2000

1000

0) ' i \ 1 1 1 i il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Position Parameter

Figure 2.9: Example of a typical SSD Plot.

the closest point on the manifold, the image in the set that most closely matches the un-
known image can be determined and the position of the robot can be deduced [49]. The
classification of an image proceeds by finding the closest point on the manifold or “nearest-
neighbor”. The algorithm finds the sum-of-square differences (SSD) to each point on the

manifold and selects the smallest SSD as the closest:

min

d=1i |If.—£| (2.20)

where f, is an image projected into eigenspace and f; is a point on the manifold. Figure 2.9
is an example of a SSD vs. position parameter plot for a particular image. The minima

in Figure 2.9 corresponds to the closest point on the manifold. Once the manifold point

44

closest to a projected image point is found, it can be used to obtain an estimate of the
position of that image. This approach works well if images match those in the original
training set and hence will closely align with a point on the manifold. However, if noise,
occlusions or outliers occur, the corresponding projected point will stray from the manifold

and classification errors may be introduced.

4000

—8— Even Video Fleld
3500 -8B Odd Video Fleld

3000

eigen vector 3
N
(9]
(=]
(=]

N
Q
[
<

N
N \
9% % 1000 2000 3000 4000 5000 6000
eigen vector 2)
eigen vector 1

Figure 2.10: Magnified plot showing odd video field images projected into an eigenspace
trained using even video field images.

Odd and Even Video Fields in Eigenspace

Eigenspace methods are insensitive to the vertical distortion when using video fields since

the position is determined by appearance rather than geometry. However, the appearance

45

of odd and even video fields will differ slightly since the video fields are offset by one
horizontal scan line. Therefore, if the manifold is constructed using even video fields there
may be errors when matching with odd video fields or vice versa.

This is illustrated in Figure 2.10 where a magnified portion of the manifold trained using
even video field images is shown alongside the projected image points from corresponding
odd video field images. Clearly, the odd video field images do not project to points directly
on the manifold. The odd video field image points lie adjacent to the manifold following
the general shape of the manifold. Unfortunately, the odd video field points appear to be
slightly offset from the manifold points in such a way that a minimum Euclidean distance
search may result in small position errors.

There are several approaches that could be used to address this undesirable effect. One
solution would be to create two separate eigenspaces; one trained using only even video
fields and one trained using only odd video fields. This would result in the creation of
an odd and even eigenspace each with their own manifold. The vision node would run
and alternately project images into the even or odd eigenspace as appropriate and compare
them with the corresponding manifold. This would completely eliminate possible errors
due to appearance differences in the odd and even video fields. Although this approach
would not impact the run-time performance of the vision nodes it would require twice
the memory storage requirements. Memory requirements are not insignificant since each
eigenvector that must be stored contains as many floating point numbers as there are pixels
in an image. Also, the training phase will take almost twice as long if two distinct training
sets must be processed. Despite these drawbacks, this approach will be preferred if position
measurement accuracy is critical.

A less effective but easier approach is to “average” the odd and even video field images
during the learning phase. The raw odd and even video field images can be averaged to form
a training set that will yield an eigenspace and manifold based on the average appearance of

video field images. The time required to average the odd and even video filed will increase

46

the time require for the learning phase but it will be faster than that required to find two
separate eigenspaces. This manifold will not exactly match odd or even video field image
points but will provide a reasonable compromise for both. Small position errors will still
occur but the storage requirements will not increase.

Finally, if the errors introduced by the differences in the video fields are small and
tolerable, these artifacts can be ignored. This is particularly appropriate if errors introduced
due to odd and even video fields are small or comparable to other sources of error such as
image noise. This approach has the main advantage that no special considerations need to

addressed during the learning phase or during run-time.

100 ! ! ! ! ! ' =

Percentage of the Variance Captured

1
0 10 20 30 40 50 60 70 80 90 100
Number of Eigenvectors

Figure 2.11: Percentage of the variance retained versus the number of eigenvectors used.

47

2.5.2 Image Representation and Reconstruction

PCA is not only a useful tool for performing image classification but also for providing a
highly compressed representation of an image. Eigenspace techniques provide minimum
reconstruction error for a given number of basis vectors and have been explored in [50]
for image compression. This is a useful tool for tele-robotics applications, where PCA
could simultaneously be employed to produce efficient image representations suitable for
transmitting visual feedback of a robot operating at a remote worksite. Visual feedback
can be used to enable a user to monitor equipment from a distance in situations where
it is not practical or safe for a human to directly operate within a work-site. It would
be computationally efficient and elegant if a single vision algorithm could be employed
to perform both position determination and image compression. This section describes
how image eigenspace methods can be simultaneously employed for video-rate position
determination and for remote visual monitoring [57].

The theory of using PCA for image compression proceeds from the theory already
discussed in section 2.5.1. An n dimensional pattern vector y can be perfectly reconstructed
using:

y =Yz, @2.21)

=1

where u; is the 1" basis eigenvector and z; is the ith coefficient. If instead we use a subset

of k vectors where k < n the resulting approximation is given by:
k
¥=> zw (2.22)
=1

The error can be shown to be [14]:

n
e=Elly-9y-9T= 2 N (2.23)
i=k+1
Since all the images are known a-priori the image statistics are well known and an optimal

subspace can be constructed to represent compressed images. It can be shown that the basis

48

vectors that minimize the reconstruction error are in fact the eigenvectors [14] and that the

portion of the variance retained by mapping n dimensions down to k dimensions is:

kN
= =L 100% (2.24)
1 Ai

i=
A plot of 7 versus the number of dimensions k for the planar robot images is shown in
Figure 2.11. From this plot, we see that with only 20 eigenvectors, almost 95% of the
image variance is retained. Indeed, PCA provides the good image compression since it
is optimal in the mean-square error sense and therefore provides better compression when

compared to other techniques such as JPEG [50].

Vision Computer

e
RS-170 5
Power 2 B B |
Amplifer % o
Camera 4]]
 § .
v
i @ @
: - e
f L Oscilloscope
‘ - 100Mbps Network

Positioning Computer

Figure 2.12: Diagram of experimental setup used to determine the performance of the
vision system.

2.6 Vision System Performance

Before employing the vision system in a visual servo control loop the basic performance
was first analyzed. The key specifications that were experimentally verified included po-

sition measurement accuracy, speed of computation, and latency. Speed and latency are

49

critical factors since they directly affect the stability of the position loop in a direct visual
servo. The use of PCA for compact image representation was also evaluated in terms of the

computational effort and the quality of the reconstructed images.

2.6.1 Experimental Setup

The suitability of the PCA for video rate position determination was evaluated using the
experimental setup shown in Figure 2.12. The simple planar robot illustrated in Figure 2.5
provided a suitable testbed for performing angular position measurements. The setup was
constructed using off-the-shelf components including a 550MHz AMD Athalon computer
with a Matrox Meteor frame grabber card, a RS-170 grey-scale camera, a servo position-
ing system, and a digital storage oscilloscope. The oscilloscope was employed for timing
measurements by observing parallel port pins which were toggled at key steps in the com-
putation. The off-line calculations, including the determination of the eigenvectors and the
eigenspace manifold, was performed using Matlab. The on-line code was written under
the Linux operating system using the C' programming language. Real-time image process-
ing was ensured by using the POSIX.1b [29] real-time extensions to ensure memory page
locking and scheduling priorities. The servo positioning computer and the vision computer
were connected using a 100Mbps Ethernet.

Previously, it was determined that the vision system should process video fields rather
than video frames in order to increase the sampling rate and decrease latency. It is not
necessary to use an entire video field image since any of the points along the joint are an
indication of its position. In order to select a suitable sub-image size, an experiment was
performed in which the positions of a series of 50 test images were determined using vari-
ous sub-image sizes centered around the motor shaft. The results are plotted in Figure 2.13.
Clearly, for sub-image sizes less than roughly 10,000 pixels, the position measurement er-

ror is substantial. Sub-image sizes above 10,000 pixels are relatively fixed at an average

50

(o))
(=]

7 |
E 45 O R AN e —~
=3 :
) :
— 40 =
[+¥] : :
© .
8 :
& 35 -
< :
g BOF L -
t z
-5 25 R U T T T LR IR =
= :
O B
Q. DO oy el -
b :
=z :
8 15 -
° :
< :
8)10 -
(E :
Q mh UTRTRRR .
< V z
0 o i L ;
2 3 4 5 6
Sub-image size (number of pixels) x 10*

Figure 2.13: Average absolute position error vs. sub-image size.

position error of approximately 2 encoder counts. In order to provide a safe margin, a sub-
image comprising 36,811 pixels (281 x 131 pixels) was used. This sub-image size is well
above the “knee” at around 10,000 pixels, yet it is still small enough that it can be computed
in real-time by the vision nodes (see section 2.6.4). In addition to increasing computation
times, the use of larger sub-images is limited by memory size since the eigenvectors and the
P matrix grow by O(p) where p is the number of pixels. Some examples of the resulting

video field sub-images are shown in Figure 2.14.

51

Figure 2.14: Examples of training sub-images.

2.6.2 The Training Phase

The experimental setup in Figure 2.12 was configured for learning by employing a rotary
encoder with a resolution of 4000 counts per revolution to measure the actual position of
the robot. A set of 101 images like the ones depicted in Figure 2.14 were captured as the
joint was moved in 20 encoder count increments throughout a rotation of m radians. Next,
the eigenspace was determined using the procedure outlined in section 2.5.1. The images
were averaged to obtain the average image intensity of the image set. This average image
intensity was subtracted from each of the 101 images in the image set and placed in a single
matrix to form the P matrix.

Next, the covariance matrix and its corresponding eigenvalues and eigenvectors were
determined. The resulting eigenvalues are plotted in Figure 2.7. It is apparent that the
most significant eigenvalues correspond to roughly the first 5 to 10 eigenvectors. The five
eigenvectors with the largest eigenvalues are the most significant and were used to construct
the eigenspace. The images of the first four eigenvectors are shown in Figure 2.6.

The workspace manifold was created by using the eigenvectors to project each image in
the set into eigenspace. A plot of the most significant 3 dimensions of the eigenspace mani-
fold is shown in Figure 2.15. The workspace manifold exhibits a smoothly varying plot for
the set of images. Each image sample corresponds to a discrete point in eigenspace. The
number of points on the manifold was increased by interpolating between training points

using a cubic spline to achieve a position quantization interval equivalent to 4000 points

52

5000~ ..o : : R e T

2000 oo

eigen vector 3

1000 ... e L
~2000. ...

=8000. ...

~4000L) ...
-6000
-4000
-2000
0

) 2000 - -
eigen vector 2 y 4000
4000 : 0

2000
6000 “gooo 4000

eigen vector 1

Figure 2.15: The parametric eigenspace manifold (plot of the first 3 dimensions).

per revolution. The final manifold points were stored in an array data structure with each
array element corresponding to one encoder count such that the index into the manifold
array corresponds to the actual position in units equivalent to the encoder counts used for
training. Therefore, once the closest point on the manifold is located, the actual position
can be determined from the corresponding index in the array.

The results of the experiments are summarized in the following sections. The two main
performance metrics that were investigated were accuracy and speed of computation. The
position accuracy was determined by creating a histogram of the measured position errors
using 5 eigenvectors. Only even video fields were used in this experiment to decouple
the position accuracy measurements using eigenspace methods from odd/even video field
artifacts. The speed of computation was measured directly with a digital oscilloscope by

toggling port pins at the start and end of each step in the eigenspace computations.

53

Absolute Position Error (encoder counis)

Figure 2.16: Position error histogram results.

2.6.3 Accuracy of Position Feedback

The accuracy of the eigenspace technique to measure the angular position of the joint was
tested by taking various images with the joint held in various random positions. These
random positions were distributed throughout the possible range of travel of the joint and
included positions that were not used for the set of training images. All images were taken
under constant illamination conditions and with no occlusions present. These images were
then projected into eigenspace to find the point on the manifold with the closest sum-of-
squared-difference (SSD). The position estimates were subtracted from the actual position
(measured using a 4000 count/revolution rotary encoder) to determine the position error for
each of the various test images that were used. A histogram of the absolute position errors

using 50 test images was plotted and is shown in Figure 2.16. The experimental results

54

1lllllfll[1|lilllllllll|

fa—
-
]

! I 1

- e
- & & * & s [@ w @ -—
p= & & & L el & & * ® et
~ o ® & & —— & & @ -
T Y
—é & & » '3 L & & & & H -
3 { » Total Computation Time T+ . * * *) -
. . . . + -
'—'i‘:.blﬂl30000l-b'.'0000.0#"—-]—"*600'0'000b‘.'bt’ill.i——
—-é & & & - R ad & & & & s
Sl ° 4 I T, o N L b * w]
X ty et b-n-\-h!h’r-a—-—wun]v\‘ -
& & L L b al 4 & & & —
& & & & & & & B O & o & & & P B & F B oA syt P F & B & & & & &]l e & & b & & S} b G| P o=
! c el £2" [e3H Tta LR RS I
r 4 3‘(=3¢)ﬁ; 1
ad [] [& g & & El L —
- i : ? Ed R ad & £ 3 & &) e
) PN IR S PO SPES EFSPTEPTRE) PRIV NPEN SRS VT Y PRI | S

TYTTI’TTT]‘T TTTYTV '[Tf'(TTTT]"I’ \'TTT‘I’TT'{TY‘I’TIY\'
g~ & 1 4 L 4 * g o £ L & R |
od * & & L2 | L L2 & ®| o
—~ & [@ ¢ -~ & » ¢ & -
‘=l & & L L4 | & - & & wm—
‘——doooolloaltoobo:obDotibt——i—-i¢ot..)Obaotroto.ooiobtw
oo & > & & b od & & &> 4 —
— & & & -» g @ L] L 2 L] -
e & & & L R 2 & 2 * & -t
. . . . 4 . - . . L!_

WDi*.bﬁll.".bl.lb.i‘bil—l—-b‘ib..b'f‘.".i.l"l.Ob
& - & - b ad [2 [L & g
o & [2 & * - & L 2 L3 * ot
o @ L3 * & -+ # - & & —
-~ * * & & ke od & & L L2 R
'—-000'...00}.0.00..00‘00tO—k—OOOG.OiQOO‘.D'ﬁ'i#t..'..——
= & > & » A o & » & L —
- & & - - —B & &+ -* - —f
i~ & L] & & o~ & L & ® ——t
3 KLY tétlon Tildhin INEARE L - RETENARNERE R

Figure 2.17: Digital Storage Oscilloscope plots of actual computation time for projecting
an image into eigenspace running on a 550MHz AMD Athalon processor.

Label | Computation Time
i buffer copy and subtract average image | 1.08ms
123 compute eigenvector 1 coefficient 660us
t3 compute eigenvector 2 coefficient 680us
t4 compute eigenvector 3 coefficient 640us
ts compute eigenvector 4 coefficient 660us
ts compute eigenvector 5 coefficient 680us
t7 SSD minima search 220us
te Total computation time 4.62ms

Table 2.1: Times for each step in the computation.

55

show a position accuracy for every sample of less than 5 encoder counts (equivalent to
less than 0.45° of a rotation) using 5 eigenvectors. Experimentation showed that increasing
the number of eigenvectors beyond five yielded little improvement in accuracy. This is to
be expected since the eigenvalues in Figure 2.7 diminish very rapidly beyond the first few
eigenvectors. Some of the sources of position error include CCD noise, A/D noise, finite

wordlength effects, and interpolation errors in the manifold.

2.6.4 Speed of Computation in the Vision Nodes

The projection of an image into eigenspace is a simple computation which is one of its
advantages. However, the number of multiply-accumulate operations required per eigen-
vector is O(p) where p is the number of pixels in an image. If there are k eigenvectors, the
total number of operations is O(kp). This can result in substantial computational times for
large images with numerous eigenvectors. For a 281 x 121 pixel sub-image, the number of
required multiply-accumulate operations is 34001 per eigenvector. Modern processors with
advanced arithmetic units and super-scalar architectures have made arithmetic instructions
extremely fast and many provide single cycle multiply-accumulate instructions. However,
slow system memory combined with poor cache-hit ratios can result in significant bottle-
necks for getting image data and eigenvectors in and out of the processor.

The computations were implemented in C and ran on a 550MHz AMD Athalon pro-
cessor with a 100MHz memory bus. Timing information was measured using a digital
storage oscilloscope on port pins which were toggled by the processor at the start and fin-
ish of each computational step. The oscilloscope plots and timing measurements for each
computational step are shown in Figure 2.17 and summarized in Table 2.1. These results
show a detailed breakdown of the various computational steps that contribute to the overall
computation time. The position is determined from a 281 x 121 pixel raw intensity image

using five eigenvectors in approximately 4.62ms after the image is received by the frame

56

grabber. The initial buffer copy and average image subtraction take about 1.08ms and each
eigenvector coefficient computation takes about 670us. The eigenvector computations are
performed sequentially, but since they are independent calculations, they could be com-
puted in parallel to further improve the computation time. The last step of the computation
performs the SSD minima search and takes about 220us. The computation time is more

than adequate to ensure that the computations can be performed at video field rates.

—lllllllllillll[l‘ll|lllll lll![lllllllllllll‘[l]]l_d
- Computation]
- : Time ; =
: | - , s ,._,_.@
- : delay T -
N 4 ¥
I--lIllillllillllillllillll-"-l 1 ll'llllil Illlllllililli_
N 'TY!I’ITTFYYI”!I’Y"!I[I -_IIIIIIUUU!'UT:I[lfl‘l[l‘rl N
- i& Video Field Time T . :) : : .
R N . 1 . . P . ;
- :Pixels ... ‘!I I l=1 “ . ..g.:....:...
JUIR I H S

‘Exposed
* |“
e

1} Computation Active Flag 2 ¥V 2.5 mS : . . .
R} Video Signal 500 mV 2.5 mS Toooaboeaabonaabasva by

Figure 2.18: Digital Storage Oscilloscope measurement showing vision feedback latency.

57

800

; T T T T T T f 1
—— Actual Encoder Position : : : N1 :
— — Vision Feedback Position : : : : "l : :
700k - e I" ot

600

500

400

300

200

Angular Position {(encoder counts)

100

i | I i i ! i
100 200 300 400 500 600 700 800 200 1000
Time {ms)

~100 i i
0

Figure 2.19: Tracking performance showing actual position along with position from vision
feedback during a move.

2.6.5 Visual Feedback Latency Due to Transport Delays

When an image is captured, it must be first transmitted from the camera to the framegrab-
ber. Once the framegrabber has received an image, the computations can proceed. There-
fore, the total latency ? 4.4, from the time the pixels are exposed to the time the position

information is determined is as follows:
tdelay =t, + 1 (225)

where t, is the RS-170 video field transmission time and £, is the total eigenspace compu-

tation time. For RS-170 video signals, the video field transmission time t,, is approximately

58

16.67m.s. From section 2.6.4, the total computation time ¢, was found to be approximately
4.62ms. Therefore, using equation 2.25, the total latency tqeiay is approximately 21ms.

This is illustrated by the waveforms in Figure 2.18, where the latency from the time
the pixels are exposed to the time the computations are complete is approximately 21ms.
Most of the delay (about 16.67ms) is contributed by the serial transmission of pixels in the
video signal shown on channel 2 in Figure 2.18. Thus, the computation time is only a small
portion of the overall delay in the vision feedback. Figure 2.19 illustrates how the vision
feedback tracks the actual position of the robot during a move. The transport delay ¢geiqy in
the vision feedback is readily apparent along with the discrete sample-and-hold operation
of the vision system.

The significant latency in the vision system will cause it to be unstable when used in
a closed position loop in direct visual servoing systems. However, the computation time
required to project images into eigenspace is constant regardless of image content. This
fact will be exploited in Chapter 3 where the image computation delay will be modelled in
a Kalman filter by fixed unit delays. The Kalman filter provides a state predictor to reduce

the effects of the transport delay in the vision system.

2.6.6 Image Reconstruction Performance

If PCA is being used in a tele-robotic application it can also be used to provide a compact
subspace representation of an image as described in section 2.5.2. However, the application
of PCA for image reconstruction is quite different from image interpretation. The number
of eigenvectors required for accurate image position determination can differ greatly from
the number required for reasonable image reconstruction.

Figure 2.7 shows a plot of the resulting eigenvalues illustrating that there are relatively
few significant eigenvectors. Consequently, only the first five eigenvectors were used for

position determination. However, it was found that many more eigenvectors were required

59

(a) Original image. {b) Reconstructed image (¢c) Reconstructed image
using 5 eigenvectors. using 10 eigenvectors.

(d) Reconstructed image {e) Reconstructed image (f) Reconstructed image us-
using 20 eigenvectors. using 30 eigenvectors. ing 40 eigenvectors.

Figure 2.20: Original image and reconstructed images using different numbers of eigen-
vectors.

to reconstruct an image of reasonable quality. Figure 2.20 illustrates the image quality
as the number of eigenvectors are varied from 5 to 40. It was experimentally determined
that there was sufficient time to compute coefficients for 25 eigenvectors and still maintain
video field rates on the vision nodes. From Figure 2.11 it was determined that with 25
eigenvectors (k = 25) roughly 94% of the image variance would be captured.

The timing information shown in Figure 2.21 was measured using the digital storage
oscilloscope on port pins which were toggled by the processor at the start and finish of each
computational step. The initial buffer copy of the sub-image and average image subtraction
occur during ¢; and takes about 1.1ms. The computation of the first five eigenvector coef-
ficients occurs during ¢, and takes approximately 2.8ms. The next step of the computation
(t3) takes 300us and includes the manifold search and the transmission of the resulting

position to the servo computer. In order to provide images of sufficient quality for remote

60

Illllllllllll‘lllllllil Illllllll‘llllllllll‘lll

g<TotaI Computation Time + () - "\ .

oo v , e
- ts I -
L N ¥ -

Itll'llll

IIIIIII

chl

b

. ° .

llllllll!llllllllll Illllllll‘l

LIS T T 0 N A B R AR AN Ny AR RRELAN BLERBLALEN I
H

A Video Field Time (t,) ¥ n
S : .(V) + 3 E
- IR R EELLL A s F
- Synch ; I

ch2fTim M ml] JTERR FTRFTLAR LR
[| LI HEHE L.

) Timing Waveform 2 V. 2.5m$

b} Video Signal 500 mV 2.5 mS NSRS NENEENERERERENR NN

Figure 2.21: Digital Storage Oscilloscope plots of video signal and actual eigenspace com-
putation times.

Label | Computation Time
t Buffer copy and subtract average image | 1.1ms
to Compute eigenvectors 1-5 2.8ms
t3 Manifold search 0.3ms
14 Compute eigenvectors 6-25 11.2ms
te Total computation time 15.4ms
t, | Video Field time 16.7ms

Table 2.2: Table of actual eigenspace computation times.

61

monitoring an additional 20 eigenvector coefficients are then computed during time inter-
val 4. These are combined with the first five eigenvector coefficients and transmitted to the
remote workstation. The net CPU utilization is the ratio of the total computation time (.)

and the video field time (¢,):

If PCA is to be used for image representation and assuming 25 eigenvectors are necessary,
the computational requirements will increase significantly from 28% to 92% CPU utiliza-

tion.

2.7 Occlusions

Occlusions are a reality in all real-world applications and must be addressed if the direct
visual servoing system is to be robust. Occlusions will vary from camera to camera and
will vary over time as work proceeds around a robot. Occlusions can occur when someone
walks past a camera, when objects are moved, or when the pose of the robot itself obscures
the view of one or more cameras, Measurement errors will increase dramatically when
occlusions are introduced rendering eigenspace methods inefficacious unless special steps
are taken to compensate. Occlusions present a particular challenge in eigenspace meth-
ods since the appearance of an image can change dramatically with occlusions. In [40]
occlusions are dealt with by selecting various subsets of the image which are then applied
to an algorithm composed of hypothesize, selection, and fitting steps which add vcomputa—
tional complexity undesirable for real-time, video-rate, vision applications. In [39] small
image patches select several features and are matched using a median statistic which is
suitable for applications with only partial occlusions. In contrast to these approaches, this
section describes a real-time error estimation approach which treats occlusions as sources

of “noise”.

62

Sources of Noise

Typical sources of measurement noise include CCD noise, A/D noise and finite wordlength
effects. In addition, eigenspace methods have manifold errors introduced by noise in the
original training images or errors due to finite wordlength effects and inaccurate interpo-
lations between training points. Under ideal conditions, the effective noise variance from
these sources should remain relatively constant. The position measurement error due to
this noise was quantified in section 2.6.3 and are shown in Figure 2.16. This provides
an initial estimate of the measurement noise variance which is intrinsic to the camera and
system which should normally remain relatively stationary. However, in the presence of

occlusions, the measurement error variance can change both suddenly and dramatically.

eigenvector 3

6000

-2000 O
eigenvector 1

8000 " gog0 —4000

Figure 2.22: Occluded image point in eigenspace and its proximity to the manifold.

63

The position of a corresponding camera image is determined by projecting an im-
age into eigenspace and finding the closest point on the manifold. The closest point in
eigenspace is determined using a minimum Euclidean distance metric. An exact match
with an image in the training set provides an exact match with a point on the manifold
and yields a Euclidean distance of zero. As the appearance of an image diverges from the
training set, its Euclidean distance increases since the distance in eigenspace is a measure
of the similarity of appearance of images [45]. Under these conditions the image projected
into the subspace can stray far from the parametric manifold making pattern matching un-
reliable. The magnitude of the Euclidean distance from the manifold can be used as an
indicator of how far the sample image is from the set of learned images. As the Euclidean
distance grows larger, the degree of uncertainty in the pattern match also grows. Extending
this concept suggests there may be information about the degree of classification error and
hence the measurement noise based on the size of the Euclidean distance. The process of

projecting an image into eigenspace is found by:

[+51

f=| 2 |- (2.26)

Uy

i o

where 1 is the raw brightness image and f is the projected point in eigenspace using the
matrix of k eigenvectors. Therefore, it follows that changes in an image will cause corre-

sponding changes to the location of the projected point in subspace:

u;
[
Af=| °|aAfT (2.27)

Uy

k. -4

This effect is illustrated in Figure 2.22 where an occluded image has its corresponding

point in subspace stray from the manifold. The changes to a point in subspace Af due to

64

corresponding image changes caused by specific occlusions cannot be generalized since it
depends entirely on the k eigenvectors which, in turn, are unique to every application. The
eigenvectors select features of maximum variance, hence the effect of occlusions will vary

depending on how they coincide with important features.

(a) (b

©) @)

Figure 2.23: Images with random rectangular occlusions.

2.7.1 Simulating the Effects of Random Occlusions

A simulation study was performed to determine whether any information about the position
error statistics could be derived from Euclidean distance measurements. The experiment
selected random images from the training set and random occlusions were introduced into
each image. The occlusions were rectangular patches of random size and brightness that
were placed at random locations in each image as shown in the examples in Figure 2.23.

The brightness of each patch ranged randomly from brightness values of 50 to 200. The

65

width and height dimensions of the rectangular patches were independently and randomly
varied from 2 pixels to the full size of the image. These occluded images were then pro-
jected into eigenspace and the minimum Euclidean distance and position error were com-
puted. This process was then repeated 10,000 times. The results are shown in the scatter
plot of position error vs. Euclidean distance in Figure 2.24. For Euclidean distances of
less than approximately 2500, the majority of the position errors are clustered within a
gradually increasing distinct error band. Beyond a Euclidean distance of roughly 2500, the

corresponding position errors gradually become more scattered outside of this band.

Position Error

400'..

~BOOE -

~1000 1 ; ; i i ‘
0 1000 2000 3000 4000 5000 6000
Euclidean Distance from Manifold

Figure 2.24: Scatter plot of position error vs. Euclidean distance in eigenspace.

The experiment was repeated but the square of the position errors were summed and
placed in histogram bins organized into various Euclidean distance ranges. From the data in

Figure 2.24, it is evident that the errors are generally centered around zero and appear to fall

66

within a certain envelop. The resulting histogram bins were then processed to determine
the variance of the position errors as a function of Euclidean distance. The final results are
plotted in Figure 2.25. It is apparent from these plots that, for a given range of Euclidean
distances, there is a statistical relationship between position error and Euclidean distance.

This relationship will be investigated further in the following section.

2500

1
—— Actual Data
- — Curve Fit

2000

—
[¢)]
[&]
o

Error Variance

pry
(=]
Q
o

500

0 500 1000 1500 2000 2500
Euclidean Distance from Manifold

Figure 2.25: Position error variance vs. Euclidean distance in eigenspace.

2.7.2 Measurement Error Variance and Euclidean Distance

A plot of the position error variance vs. Euclidean distance in eigenspace is illustrated in

Figure 2.25. A simple square law was used to determine an approximate curve to fit the

67

actual data as given by:

o? ~m-d? (2.28)

where o is the estimated position error variance, d is the Euclidean distance from the man-
ifold, and m is a constant. For this particular application, m was found to be approximately
equal to 0.00027. Conveniently, d? is equal to the sum-of-squared differences (S5 D) which
is the native value computed in the actual code running in the vision nodes. This enables

the measurement error variance to be computed using a single multiplication as follows:
o~ m-8SD (2.29)

This simple relationship enables the error variance to be rapidly calculated and is well-
suited for use in time-critical real-time control loops. Equation 2.29 will begin to break
down for Euclidean distances greater than approximately 2500 at which point the errors in
Figure 2.24 appear to become more scattered. The effects of all other sources of noise such
as CCD noise and A/D noise result in changes to single pixel values in a manner that is
indistinguishable from single pixel occlusions. Hence there is no need to discriminate be-
tween occlusions and noise, they may be considered one in the same since they both cause
projected points in eigenspace to stray from the manifold. Therefore the net measurement

error variance due to occlusions and/or other noise can be generalized using Equation 2.29.

2.7.3 Sensor Fusion of Multiple Cameras with Occlusions

The Buclidean distances in each individual vision node will differ since occlusions may
be present in the view of one camera but not in others. The Euclidean distance for each
camera will also vary dynamically with time as varying degrees of noise and occlusions
occur in each camera. If at least one camera remains free of occlusions, an accurate position
estimate can be maintained. This suggests that using multiple cameras not only provides
higher vision sample rates, but also has the advantage of being more robust in the presence

of occlusions.

68

It is therefore possible to maintain good position estimates in the presence of partial
occlusions by employing appropriate sensor fusion of the visual feedback from all the
cameras. One possible approach to sensor fusion would be to reject feedback from vi-
sion nodes that report Euclidean distances above a predefined threshold. More complex
approaches would seek to weight the feedback from each of the vision nodes based on es-
timates of the confidence in the measurement. This approach is desirable since feedback
from a partially occluded camera still contains some useful information. The measurement
error variance o2 given in equation 2.29 provides the key for adjusting the weighting of the
measurements. The approach to sensor fusion that was used is based around the Kalman

filter and is described in detail in section 3.4.6.

2.8 Summary

The experimental results show that the eigenspace methods are suitable for use in real-
time position tracking applications without using specialized hardware. The speed of the
eigenspace computations using off-the-shelf components and the accuracy of the results
obtained indicate that the performance is adequate for use in robot position tracking or as a
feedback sensor at video field rates. With 5 eigenvectors, a position accuracy of 0.45° of a
rotation or less can be achieved with a computation time of under 5ms. By using additional
eigenvectors, compact eigenspace image representations can also be used to provide an
efficient means for transmitting images for remote monitoring in tele-robotic applications.

Finally, the effects of occlusions on position measurement error was simulated. The re-
sults indicate that a statistical relationship exists between Euclidean distance in eigenspace
and the position measurement error variance. This discovery will be used with a Kalman
filter in Chapter 3 to fuse data from multiple cameras and to provide robustness to occlu-

sions.

69

Chapter 3

System Modelling for Design and

Simulation

3.1 Introduction

This chapter describes the modelling and simulation work which was performed to describe
the dynamics of the visual servoing system. The chapter begins by describing the models
of each of the individual subsystems. Next, the subsystem models are arranged to provide a
complete model of the planar robot plant. The plant model is analyzed and used to design a
suitable compensator. A Kalman filter is developed to provide timely estimates of the state
variables used in the feedback loop. Finally, the entire system is simulated to verify that
stable direct visual servoing can be achieved.

The motivation behind detailed system modelling is threefold. First, the exercise of
modelling the system improves the understanding of the system and the issues associated
with controlling the system. Second, the modelling enables the system to be simulated
and verified before it is implemented. Finally, the modelling of the planar robot plant
produces the required state equations necessary to implement the Kalman filter predictor

in section 3.4. In particular, the performance of the predictor is dependent on accurate and

70

detailed system models. These models are described in the following section.

3.2 System Modelling

The visual servoing system comprises various subsystems which were each modelled in-

dependently. The individual subsystem models include:

e Mechanical load model
e Motor model
e Power amplifier model
e Vision model

These subsystem models are each described in detail in the following sections.

3.2.1 Model of the Mechanical Load

The planar robot is a simple mechanical system consisting of a single fiberglass link cou-
pled directly to the shaft of a servo motor. The use of a simple direct drive mechanism
eliminates many of the non-linearities often associated with gears or chain drives such as
backlash and dead-zones. However, direct drive systems experience higher load inertias
that require more motor torque to accelerate and lead to higher inertia mismatches between
the motor and load. Inertia mismatches should be minimized in servo drive systems be-
cause they reduce the maximum power transfer to the load and can lead to instability in
the control loop. Despite these challenges, direct drive systems have been successfully
employed in a wide variety of systems. The direct drive system is simple to model with
the major mechanical load components consisting of inertia and viscous damping. Unless
the robot joint is operating in a plane that is parallel with the ground, it also experiences a

gravitational load that varies with angular position.

71

Jmotor —° Jload T B

Motor Load Damping
Inertia Inertia

Figure 3.1: Mechanical load with inertia and damping elements.

Inertia and Damping

The servo motors used by the robot will drive a mechanical load which consists of inertia
and damping elements as illustrated in Figure 3.1.

The rotational inertia Jyo,4 is given by [23]:

Lmdzi/r2mn G.1)

where dm is a particle of mass and r is the distance of the particle from the axis of rotation.
The inertia of the single arm of length L on the planar robot can be approximated by a thin
rod with the same mass and length. The expression for the mass in terms of the distance dr

from the axis of rotation is given by:

dm = —A{— dr (3.2)

where M is the total mass of the robot joint and L is the total length of the joint. Substituting

equation 3.2 into equation 3.1 to integrate over the full length of the robot arm yields:
M [t ’
Toud == [r?dr 3.3)
L Jo

Solving the integral in equation 3.3 yields:

L
M3
Jioad =

73 (3.4)

0

72

The result is an expression for the equivalent load inertia in terms of the total mass and

length given by:
MIL?
J load — 3 (35)
The total inertia J is the sum of all the inertias:
J = Jmotor + Jload (36)

where Jor 15 the rotor inertia of the motor as specified in the manufacturer’s datasheet

and Jy,.q is the inertia of the robot joint using equation 3.5.

Magnitude (dB)
o

Phase (deg)
t
5

JET-Ys) SOV U VORI SIS Y ST SR SR U0 S OO TOUE BN I 0 s o2
10

Frequency (Hz)

Figure 3.2: Bode plot of the mechanical transfer function.

In additional to the inertial load there is also some viscous damping and friction arising

from the motor bearings and windage losses. The total mechanical load torque is due to the

73

combination of the inertia and damping elements [23]:

d?0 df
T = JE—L;Z— -+ Ba—t— 3.7)

Next, this equation can be converted to the Laplace domain:
T(s) = Js*0(s) + Bsb(s) (3.8)

Rearranging equation 3.8 to solve for angular position yields:

1

Y TRY (39)

6(s)

The mechanical transfer function G(s) can be obtained by rearranging equation 3.9 to

express the equation in terms of the position output over the torque input as follows:

_0(s) _ 1
Gls) = T(s) Js?2+ Bs (3-10)

This is a second order transfer function with two distinct poles. One pole is located at zero
and the other pole is dependent on the inertia and damping coefficients and is located at
—l} radians. Figure 3.2 shows the Bode plot of the transfer function in equation 3.10 using
inertia and damping values based on the planar robot. Clearly, the system behaves like a
double integrator at higher frequencies with a phase shift approaching 180° near the 0dB
crossover point. The low phase margin suggests that this system will require a phase-lead

compensator design to provide stable operation in a closed-loop configuration.

Gravity

Gravity also applies forces on the joints of a robot. The effects of gravity vary with the pose
of the robot. The effects of gravity are greatest when the robot arm is horizontally posi-
tioned and zero when the arm is vertically aligned. Between these two extremes, the single
joint robot experiences gravity as a continuously varying torque function proportional to

the cosine of the joint angle.

74

Center of
Mass

Axis of rotation

Figure 3.3: Force of gravity acting on the single joint robot.

The torque T resulting from the force of gravity acting on a point mass m; in the robot
arm is given by [23]:
T=rxF (3.11)

where F is the force of gravity on the mass and r is the distance from the fulcrum. There-

fore, the torque 7; acting on a point mass can be expressed as:
7; = mygr; cos(6) (3.12)

where g is the acceleration due to gravity and 6 is the angle shown in Figure 3.3. The total

torque due to gravity Tyrauiry i given by the summation of all the torques due to all the

75

particles in the robot arm:
Toravity = 3 Ti = geos(8) Y myr (3.13)
The sum of all the particles and distances can be replaced by the center of mass as follows:
TemM =Y myr; (3.14)

where M is the total mass of the robot arm and where 7., is the distance from the axis of
rotation to the center of mass as illustrated in Figure 3.3. Equation 3.14 can be substituted

into equation 3.13 to yield the torque due to gravity:
Tgmm‘ty (9) = Mgrem COS(G) (3.15)

The net torque delivered to the load T},,q is the applied motor torque 7, minus the torque
due to gravity:

Tload =T — Tgmvity (0) (316)

The resulting model for the plant, including transfer function from equation 3.10 and the

gravitational load from equation 3.15, is illustrated in Figure 3.4.

m*g*rcos(u) |€—
Gravity

.
,
> J.s24B.s N

Torque Position

Input Mechanical
Transfer Function

Figure 3.4: Mechanical model of the robot.

76

Torque

Z

Current

Figure 3.5: Motor transfer function.

3.2.2 The Motor Model

The servo motor that was selected for the planar robot was a brushless DC motor. Brush-
less DC motors have a permanent magnet rotor and stator windings that rely on hall-effect
sensors to provide feedback for phase commutation. A brushless DC motor was selected
over a brushed DC motor because it provides higher torque densities and it does not suffer
from brush losses and wear. The general relationship between motor current and motor
torque is shown in the conceptualized diagram in Figure 3.5. There is a linear relationship
between motor current and motor torque up until a certain point at which magnetic satura-

tion occurs. In addition to magnetic saturation, there are various internal losses that reduce

77

the torque output of the motor. These losses include armature reaction, hysteresis losses,

eddy current losses, and stray load losses [52].

Current (Nm)

(Amperes) Motor
Constant

Figure 3.6: The motor model.

Assuming a motor is operated within its ratings, a reasonable estimate of the motor
torque described in [52] as:

T, = Kilmotor (3.17)

where T, is the torque produced by the motor in Newton-meters, K is the torque constant,
and J,0t0r 18 the motor current in Amperes. The torque constant K, is a lumped parameter
which is determined by various motor design parameters such as the number of pole pairs

and the number of stator windings. The resulting motor model is depicted in Figure 3.6

3.2.3 Power Amplifier Model

The power amplifier controls the motor current to correspond with the current setpoint
input. The ideal model of the power amplifier is that of a controlled current source. A more
realistic model of the power amplifier will take into consideration shortcomings such as
limited current handling capability, finite amplifier bandwidth, and output current noise. A
practical amplifier has a PWM current control loop that cannot respond instantaneously to
input changes and has a finite bandwidth. The inductance of the motor also limits the rate

of change in the current. The finite bandwidth of the amplifier can be accounted for in the

78

A

Random
Current Loop
Noise

1 1)
Current (te) s + 1 Motor
Setpoint Peak Amplifier Current

Current Bandwidth
Saturation

Figure 3.7: Power Amplifier Model.

model by introducing a single pole transfer function:

1
T Tes+1

Gamplifier (S) (3.18)

where 7, is a dominant time constant that defines the bandwidth of the power amplifier and
is normally specified by the manufacturer. The current rating of the power amplifier also
limits the maximum current that can be handled by the amplifier. This can be modelled by a
non-linear saturation block which limits the current setpoint from exceeding the maximum
rated current. Finally, the power amplifier also introduces noise in the output current. This
noise includes PWM switching noise, power supply regulation noise, current sensor noise,
and commutation noise. A Gaussian noise source is used to approximately model the sum
of all the noise sources. The resulting block diagram model of the power amplifier is

illustrated in Figure 3.7.

3.2.4 The Vision Model

The vision subsystem model is shown in Figure 3.8. The input to the vision model is the

actual robot position and the output is the measured position. The output approximates the

79

1 2000/pi *, T g _Pq_ g Dw L D%(

Position -] F4S
. Quantizer Zero~Order RS-170 Eigenspace
Raguans to : Hold Transmission Computation
encoder counts {Pixel Capture) Delay1 Delay1
Position Error
Variance P R{::pdor;
due to Noise osition Erer
Generator

or-Occlusions

Figure 3.8: Block diagram of the vision subsystem model.

operation of the actual vision system by simulating the pixel capture using a zero-order
hold at a sample rate f; (see equation 2.1). A quantizer block also serves to simulate the
position quantization interval used in the parametric manifold. The model also includes
representative noise and delays.

A block is used to set the measurement error variance R for the simulation. This block
controls the variance of a Gaussian noise source used to introduce position errors in the
model. Thus the value for R is an adjustable parameter in the simulation. An initial
estimate for R was obtained from the error histogram results in Figure 2.16.

The position measurement z; also passes through a transport delay. The transport de-
lays in the vision system were set using experimentally determined timing information
from section 2.6.5. The total delay {44, from the time the pixels are exposed to the time
the position information is determined was determined to be approximately 21ms. The
eigenspace computations require approximately 4.6ms once the image is received by the
frame-grabber. Most of the delay (about 16.67ms) is due to the transmission time of the
video signal. The delays were incorporated into the vision model by using two separate
transport delays representing the video transmission time and the eigenspace computation

time.

80

l ‘ _’ ‘ m*g*rem*cos{u)
Random :
Current Loop %{a;‘t‘y
Noise ode
Motor Motor
1 Current Torque 1
1 2
Current (1/we)s+1 J.&°+B.s Position
Setpoint Peak Amplifier Motor Mechanical
Current Bandwidth Constant Transfer Function
Saturation

Figure 3.9: Plant model of the planar robot system.
3.3 Position Loop Compensator

Once the model of the planar robot plant is established it can be used to evaluate an appro-
priate control strategy. Various compensator topologies were explored for stable position
control of the robot arm. In order to simplify the initial compensator investigation, the
complexities associated with the vision feedback were temporarily set aside and the states
variables were assumed to be available. The techniques used to obtain the actual state
estimates using a Kalman filter are described in a subsequent section. This approach al-
lows different compensator schemes to be compared based on their relative merits, while

deferring the issue of state estimation till later.

Motor Motor Motor
Current 1 i
1 Torque Velocity > _13_ D
Current (1/we)s+1 J.s+B Motor
Setpoint Amplifier Motor Mechanical integrator Position
Bandwidth Constant Transfer Function

81

Figure 3.10: Linearized plant model of the planar robot system.

3.3.1 The Linearized Plant Model

A complete model of the plant including the amplifier, servo motor, and mechanical load is
shown in Figure 3.9. The effects of noise can be set aside and the model can be linearized
around an operating point to produce a plant suitable for classical analysis techniques. The
effect of gravity is constant around any operating point, so it is ignored for the transient
analysis. The current saturation block can be ignored by limiting the range of the input
signals. The linearized plant model can be obtained by cascading the linear subsystem
models defined in equations 3.18, 3.17, and 3.10 to form the transfer function:

K

C) = s (s + B)

(3.19)

The block diagram of this linearized plant model is illustrated in Figure 3.10. By substi-
tuting the parameter values for the planar robot into equation 3.19, the Bode plot can be
generated and is shown in Figure 3.11. The three poles contribute to a total phase shift of

270° and the uncompensated phase margin is approximately 11°.

3.3.2 Compensator Design

In order to provide stable closed-loop position control for the system described by equa-
tion 3.19, the phase margin will need to be improved considerably. The first pole is located
at zero and the second largest pole is located at :‘3’—3- radians. The third pole is due to the am-
plifier bandwidth and is located at ;—: radians. This pole will normally be at a sufficiently
high frequency that it will not contribute significant phase lag and thus will have no effect
on the stability analysis. Therefore, considering just the two dominant poles, the resulting

second order plant is given by:

Gls) == K

J52 1 Bs (3.20)

The damping coefficient B is generally very small because it is primarily due only to the

friction in the motor bearings. Therefore, the existing phase margin is tenuous since it very

82

100~

Magnitude (dB)
(1)
[(=

LNy
o o o«
& B o

~200L

|
0
(=]

-135}:

Phase (deg)
1
®
(]

~225}

__270 ..,;A....,....n

Frequency (Hz)

Figure 3.11: Bode plot of the linearized plant.

sensitive to changes in the uncontrolled damping coefficient. If B were of a reasonable
magnitude, then one of the poles at zero could be shifted to a higher frequency, but adding
mechanical damping to the system is not desirable. A suitable compensator will need to be
developed.

As the damping coefficient approaches zero, the second pole slides to zero and the
system approaches that of a double integrator. In the worst case, the damping coefficient is
equal to zero and the open-loop transfer function becomes:

K,

=33 (3.21)

G(s)
The Bode plot for this transfer function, using the planar robot parameters, is shown in

83

100 T T ¥ T YT T T i T T Y

Magnitude (dB)

Phase (deg)

Frequency (Hz)

Figure 3.12: Bode plot of uncompensated plant with zero damping.

Figure 3.12. This system has double poles at zero creating a phase shift of 180° at all
frequencies which leaves no phase margin. A simple proportional controller will not be
adequate because it cannot provide any phase advance. Another possible option is to em-
ploy phase-lead compensation but phase-lead compensators are susceptible to noise and
the amount of phase margin that can be added is limited. Alternatively, the use of an in-
ner velocity loop was explored to improve the phase margin and it is described in the next

section.

84

Velocity 1 . Motor
Setpoint Js © Velocity
Velocity Motor Mechanical
Proportional Constant Transfer Function

Gain

Velocity Feedback

Figure 3.13: Diagram of the inner velocity loop.

3.3.3 Position and Velocity Control

A common approach to servo compensator design is to add “electronic damping” by adding
an inner velocity loop within the position loop. The inner velocity loop increases stability
by shifting up one of the poles at or near zero so that a reasonable phase margin can be
maintained for closing the position loop. By controlling higher order state variables, such
as velocity, the overall motion of the robot can also be made smoother.

An inner velocity loop is easily employed when tachometer feedback is available but
this is not the case with a direct visual servo. Therefore, for the purposes of the compen-
sator design, the observability of the velocity state variable will be assumed. The issue of
extracting the velocity state variable from visual feedback will be addressed later in the
chapter.

A velocity loop was formed around the simplified plant model in equation 3.21 and is
illustrated in Figure 3.13. The closed-loop transfer function of the velocity loop is given
by:

K, K,

GU(S) = m (322)

where K, is the proportional gain for the velocity loop. The velocity loop is stable because

there is only one system pole contributing at most a 90° phase shift. Next, the closed

85

Position 1 I 1 l . Position
Setpoint s s ? Qutput
Position Velocity Motor Mechanical integrator
Proportional Proportional Constant Transfer Function

Gain Gain

Velocity Feedback

Position Feedback

Figure 3.14: Diagram of the position controller with an inner velocity loop.

velocity loop is placed within the position loop as shown in Figure 3.14. The resulting

open-loop position transfer function is given by:

KKK, EERR
T U+ K,Kis s(s+ —K%,-I—{-‘)

Gpo(5) (3.23)

where K, is the proportional gain for the position loop.

The physical effect of the K, K, term is to provide electronic damping which performs
the same function as mechanical damping would. The inner velocity loop has the effect
of shifting one of the poles from zero up in frequency. As the pole approaches cross-over
frequency it will increase the phase margin. The resulting system has one pole at zero and
one at a frequency of 513’—9 radians/second. The position of the pole is determined in part
by K, and J which are system parameters that cannot be controlled. The pole location
also depends on the velocity gain K, which can be tuned to adjust pole frequency and
thereby control the resulting phase margin. However, the K, term also appears as a gain in
the numerator of the transfer function, thereby limiting the amount by which the gain can
be increased. This is evident in the root locus plot, shown in Figure 3.15, when the gain
is raised and the poles separate from the real-axis becoming underdamped. The K, term
must therefore be judiciously tuned to improve the phase margin without counteracting the

improved stability with too much gain.

86

40_ e
30_
20k e S S R
10, A
) : :
¢ : :
<[: :
o ol P G S e SR e .
© : i
£ : e
_10__ : ..
E
: e
__20_ I
: 1
: 1
B0 Pire .
z ¥
: 1:
_40.. '5 ... -]
1 i 11 i 1
-100 -80 -60 -40 -20 0 20
Real Axis

Figure 3.15: Root locus of position loop with an inner velocity loop.

3.3.4 Gravity Feedforward

The effects of gravity on the planar robot also influence the performance of the controller.
As the arm rotates, the torque due to gravity varies sinusoidally reaching a maximum when
the arm is held parallel to the ground. This torque can contribute to a significant steady state
error in the position. This can be countered by adding a feedforward term to counteract

the torque due to gravity. The torque due to gravity is described by equation 3.15. The

additional current required to cancel the effects due to gravity is given by:

I gravity (0) -

87

_ Mgrem cos(6)

Ky

(3.24)

where M is the mass of the robot arm, g is the acceleration due to gravity, ., is the location
of the center of mass, § is the angular position of the robot arm, and K, is the torque
constant. A look-up table is used to evaluate the cos(f) term to speed up the computation

since it occurs within the control loop.

Gravity Feedforward

T
z—; | m*g*rem*cos(u) g
Discrete-Time integral Gravity
Integrator with Gain Model
anti-wind-up
1
—t in Out b) 1 >
Position J.s+B Position
Setpoint Position Power Motor Mechanioal Integrator Output
Gain Gain Amplifier ~ Constant Transfer
Function

Velocity Feedback

Position Feedback

Figure 3.16: Final diagram of plant and compensator.

3.3.5 The Complete Compensator and Plant Model

Both the inner velocity loop and the outer position loop use a simple proportional gain
compensator. The addition of a gravity feedforward term will counteract errors due to
gravity but a steady state position error is still possible. To eliminate any steady state er-
rors, an integral gain can be added to the outer position loop to form a PI compensator.
The integrator includes a saturation limit which limits the magnitude of the integral term
to prevent integral wind-up. A block diagram of the entire plant along with the final com-
pensator structure including the proportional velocity loop, the proportional-plus-integral

position loop, and the gravity feedforward is shown in Figure 3.16. The final compensator

88

design was tested by tuning the gains to achieve a reasonable step response as shown in
Figure 3.17. This model is a continuous-time model and will eventually be converted to

discrete time for implementation in the master servo computer.

12k P O AR e n

Position (radians)

b
0 0.05 0.1 0.15 0.2 0.25
Time (seconds)

Figure 3.17: Continuous-time step response of the complete plant with the final compen-
sator.

3.3.6 Observability

In the preceding section, a compensator was constructed assuming that both the position
and the velocity state variables are observable. In reality, there are no dedicated position
or velocity sensors available for feedback. The state variables will need to be obtained

from the vision system alone, since it is the only source of feedback in a direct visual

89

servoing system. However, the vision feedback has numerous shortcomings as described
in Chapter 2. There are three major challenges that need to be addressed before the vision
system can provide suitable state feedback for the compensator described in the previous
section.

The first issue is that there is a large transport delay in the vision feedback. This delay
is due primarily to the RS-170 transmission time and the eigenspace computation time.
The position measurements provided by the vision system are typically delayed by up to
21ms (see section 2.6.5). This delay results in substantial phase delays and a negative
phase margin. A stable position loop can only be realized with timely position and velocity
feedback.

The second issue is that the vision algorithm does not directly provide a velocity mea-
surement for the inner velocity loop. The velocity can be obtained by differentiating the
position measurement but this produces a slightly delayed signal which is also highly sen-
sitive to any noise present in the position signal. Differentiating position to obtain velocity
also performs poorly at low motor speeds. A more elegant approach to determining velocity
will need to be employed.

The third issue is that the vision feedback is subject to various sources of noise. Sources
of noise in the vision feedback include CCD noise, amplifier noise, RS-170 transmission
noise, and A/D conversion noise. Other “numerical noise” is also present due to finite
wordlength effects and interpolation errors in the eigenspace manifold. As discovered in
section 2.7, the overall noise increases substantially in the presence of occlusions.

Each of these issues will need to be addressed to find a solution. The Kalman filter
was explored as a possible solution to address all of these issues and it is described in the

following section.

90

3.4 The Kalman Filter

The Kalman Filter was published by R.E. Kalman in [36] as a new approach to linear filter-
ing. The filter is essentially a recursive algorithm for the least squares estimation problem.
The Kalman filter can optimally estimate in real-time the state variables of a system based
on measurements of noisy outputs. The Kalman filter has been successtully employed
in numerous applications including space exploration, GPS systems, and navigation sys-
tems [37]. The Kalman filter has found many useful applications in vision systems due to
its ability to estimate in real-time the state variables of a system based on noisy measure-
ments. The Kalman filter has also been employed in the area of visual servoing. Westmore
and Wilson [71] have described the use of a Kalman filter for position-based visual ser-
voing. The Kalman filter algorithm is summarized in Figure 3.18 and includes two main

steps: a state prediction step and a measurement update step.

Measurement Update
Time Update "Corrector”
7t by " ' A
Predictor” \ 1) Compute Kalman Gain
1) Project next state K, = P}; CT[CP; cT+ R]-'l

X o= Ax + Bu
k+1™ %% k .

* 2) Update State Estimates

2) Project error covariance Xyeq 1= X+ Kz — Cxy)

- T
R =AP_ A+Q 3) Update Error Covariance

Figure 3.18: Model of the Kalman Filter.

91

3.4.1 The Continuous State Equations

To perform the state prediction step, the Kalman filter must have a discrete-time state model
for the plant. However, the planar robot plant is best described using a continuous-time
model. Therefore, the continuous-time model of the robot is first determined and then later
converted to discrete time for use in the Kalman filter prediction equations. The continuous-

time state-space equations are given by:

% = Ax + Bu (3.25)
y = Cx+ Du (3.26)

where u is the system input, y is the system output, and x represents the continuous-time
state vector. The continuous-time state equations for the planar robot can be easily de-
rived using the linearized physical plant models that were determined earlier in the chapter.
The state vector X contains the state variables, which were chosen for the planar robot as

foliows:

z; = motor torque
zo = motor speed
23 = motor position
The continuous-time state matrices are determined using differential equations describing

each of the state variables listed above.

Motor Torque State Equation

The state equation for the first state variable (motor torque) can be obtained using equa-
tions 3.17 and 3.18:

Xi(s) = To(s) = —t

— T T 4motor 2
TeS+1I tor(5) (3-27)

where X (s) is the Laplace transform of the state variable z; and I'motor () is the Laplace

transform of the motor current. This equation can then be rearranged to obtain the following

92

expression:
K
+ —ilmotor(s) (328)

Te

sXi(s) = %Xl(s)

Finally, the inverse Laplace Transform is applied to produce the first continuous-time state

equation:

K
i = —1~:1:1 + =ty (3.29)
Te Te

where the system input u is defined to be the motor current (Zy,4t0r)-

Motor Speed State Equation

The state equation for the second state variable z, (motor speed) can be derived using the

Laplace expression from equation 3.10:

L T (330)

Xo(s) = 55T

where X,(s) is the Laplace transform of the state variable z, and 7,(s) is the Laplace
transform of the motor torque. Replacing T,(s) with the corresponding state variable X (s)
and then rearranging gives:

Xo(s)(Js + B) = X1(s) (3.31)

The equation can then be further rearranged to obtain the following expression:

5 Xy(s) = —}Xl(s) - gxz(s) (332)

Finally, the inverse Laplace Transform is applied to produce the state equation:

. 1 B
Ig = -:,'331 - :—]-1172 (333)

Motor Pesition State Equation

The state equation for the motor position proceeds by observing that the derivative of posi-
tion is simply velocity:

T3 = Ty (3.34)

93

The Continuous State Equation for the Planar Robot

The A and B matrices can be formed using equations 3.29, 3.33 and 3.34. Therefore, the

continuous state space equations for the planar robot are given by:

= g 0 Ky

X = -} :JQ 0lx+] 0 lu (3.35)
0 1 0} 0
y= [0 01]X (3.36)

where

X = [z 2o 73]7 (the state vector)

u = motor current setpoint (system input)
y = motor position (system output)

K = motor torque constant

7. = electrical time constant

B = load damping

J = load inertia

3.4.2 The Discrete-Time State and Output Equations

The Kalman filter requires a discrete-time representation of the system. The discrete-time

state and output equations are given by:

Xg41 = <I>xk+Auk (337)
Vier = Cxppr (3.38)

where

94

x; = the state vector at time step &

u; = motor current setpoint (system input) at time step &
A = input matrix

& = the state transition matrix

Vi, = system output measurement (position) at time step &

C = output matrix

The ® and A matrices are a function of the the continuous state equation and the sampling
time [15]. Using forward integration on the continuous state equation in Equation 3.25, the

& and A matrices can be found as follows:

P

Q

I+AT; (3.39)
~ 17,8 (3.40)

where the A and B matrices are from the continuous state equation, I is the identity matrix,

and 7 is the sample time.

Modelling the Transport Delay

These discrete equations must somehow represent the sizable transport delay inherent in
the vision feedback. The transport delay is described in equation 2.25 as the sum of the
RS-170 transmission time and the vision computation time. One approach for employing
a Kalman Filter in systems with a large transport delay involves augmenting the discrete-
time state vector with states to represent the delay [3]. Thus, the transport delay can be
accounted for in the discrete-time state-space equations by delaying the position state by

the number of sampling intervals equivalent to the vision delay. This introduces n new

95

states as follows:

Ty = 27 x4
Ty = 2" 1wy = 27 %13

L position delay states
Ty =2y = 2~ (3 gy

— o1 e H— T
Tptz =2 Tpya =2 T3 |

where z,, 3 represents the delayed position measurement from the vision system. The delay
states are easily updated at each time step by shifting the values from one state variable to

the next. This can be expressed in matrix form as follows:

e - - - -

za(k +1) 100 0 0 -] zk)
zs(k + 1) 610 0 0 - z4(k)
zo(k+1) | _ {001 0 0 || (k) Gan
: 000 :
Tns2(k +1) 0 00 1 0 Zns1(k)
| Tas(k+1) | [0 00 0 1 || Zagalk)]

The value n is the number of discrete delay states in the transport delay rounded up to the

nearest integer given by:

tdelay.l
= | tdelay 42
n [5 (3.42)

where 4.4, is the actual vision transport delay and T is the sample time equal to f% (see

Equation 2.1). One disadvantage of this approach is that the dimensions of the state equa-

tions increase by O(n) as the effective sample time decreases.

The Discrete State Equations for the Planar Robot

Next, the complete discrete-time state equations for the planar robot can be determined. As

mentioned previously, the @ and A matrices for the discrete state equation can be obtained

96

from the continuous-time equation using equations 3.39 and 3.40. The number of position
delay states n can be determined vsing Equation 3.42. The discrete state vector is then
augmented with n additional states and updated according to equation 3.41. Thus, the

complete discrete state equations for the planar robot are given by:

- - - - - -

z1(k + 1) 1-L4 0 0 0 z1(k)
zo(k + 1) i, 1-&3)71, 0 0 z2(k)
z3(k +1) 0 Ts 1 0 z3(k)
ok +1) | = 0 0 1 0 z4(k)
zs(k + 1) o1 0 -- z5(k)
| o3k +1)]] _ B o 01 04| Zny3(k) I a3
0
0
+1 o |u(k)
0
L 0 J

If 7, approaches the sample time 7 (or if it less than T) then the sample rate is not adequate
to observe the electrical time constants associated with the power amplifier. In this case,
the electrical time constants can be safely ignored since the system response is dominated
by the slower mechanical time constants. The model of the electrical time constant can be
eliminated by setting the first row of the state transition matrix to zeroes and updating z,
to Ku. This will simply update the motor torque based on the motor current setpoint. The

last state variable x,,, 5 represents the delayed position measurement output from the vision

97

system. Hence, the measurement equation becomes:

z1(k)
ZEQ(]{I)
zZk)=10 0 0 --- 0 1] z3(k) (3.44)

:En+3(k)

where z, is the position measurement provided by the vision system.

3.4.3 The Kalman Filter Equations

The discrete state equations stated in equations 3.37 and 3.38 can be used to model a ran-

dom process by adding process and measurement noise signals as follows:

X1 = Pxp+ Ay +T'wy, (3.45)

Zpr1r = COXppr + Vi (3.46)

where

w}, = system noise input at time step k&
I' = system noise coupling matrix
z;, = output measurement at time step k

v}, = measurement noise at time step £

The covariance matrices for the w;, and the v noise signals are assumed to be known [6]

and are given by:

Ry, i=k

Elvgv]] = { (3.47)
0, i#k

E[w,wT] = { Qi o=k (3.48)
0, i#k

The wy, and the vy signals must also be uncorrelated such that:
Elwv!] =0 forall k and i (3.49)

The Q and R matrices can be constant or they can change with time. In practice, the noise
covariance matrices are often difficult to determine.

However, once the discrete state equations and the noise covariance matrices have been
determined, the optimal state estimates can be computed using the Kalman filter recursive

equations [6]:

Revip = PRy + Auy, (3.50)
Prap = ®Py®" +TQI7 (3.51)
Kiy1 = PrupCT[CPLupCT + R]™ (3.52)
Riripr1 = Kpgip + Keg1[Zrrr — CRegp) (3.53)
Priipr1 = [I—Kp1ClPriip (3.54)

where

X = the state estimate

R = the covariance matrix of the measurement noise

Q = the covariance matrix of the system noise

P = the covariance matrix of the state estimation error

K = the Kalman gain matrix
At each time step k, a position measurement z;, arrives from one of the vision nodes which
are operating in a round-robin fashion. The Kalman filter equations are thus performed

every time a new position measurement arrives from a vision node.

3.4.4 The Stationary Kalman Filter

In some situations the values of the Q and R matrices can be assumed to be constant. If

the noise is considered constant, a stationary Kalman filter can be used to implement a

99

B

States [Torque
x1

Kalman
Gain

position

x(k+ 1)/}

(i 1)/ (k+1) 5
! Peak nit Delayi Delayed
Current ey X6 Position
Saturation 1 States
x{k) - | X7
) z X8
Phi Unit Delay?2

Figure 3.19: Block diagram of a stationary Kalman filter.

direct visual servo controller [56]. The Kalman gains using a stationary noise model of the
planar robot system will converge after iterative computations and settle to a constant value.
Figure 3.20 shows the rapid convergence of the Kalman gains for the planar robot system.
In these situations, the Kalman gain K may be pre-computed off-line and “hard-coded”
to reduce the computational effort at run-time. The precomputed Kalman gains can then
be used to construct a stationary Kalman observer as illustrated in Figure 3.19. However,
any changes in the system or measurement error variances will result in poor performance.
Therefore, this approach is of limited use since it assumes ideal conditions and is not robust
in the face unexpected noise sources. If the variance of the measurement noise R changes
over time, such as in the case of occlusions, it will be necessary to use a non-stationary
Kalman filter and all the iterative Kalman equations will need to be computed at each and

every time step.

100

T T
£
o R Y T . R R I I N -
o
Iy —— i ——————
s o e o o + e 11D 6 om0 a0 am 1 o s) o G+ W o amw) w0 am
..................... 18 tsssesttoiasaiciossioihasiosnssriensniisnetrisy
0.05 0.075 01

Time (seconds)

Figure 3.20: Kalman gains vs. time.

3.4.5 The Non-Stationary Kalman Filter

A block diagram depicting the full set of Kalman filter equations is shown in Figure 3.21.
If the Q and R matrices are not constant, then the filter is referred to as a non-stationary
Kalman filter. Determining the Q and R matrices is crucial for good system performance.
The relative values of Q and R determine the extent to which the Kalman filter relies on the
output measurements as compared to the observer predictions. The efficacy of the Kalman
filter for this application in estimating the actual position without the transport delay is
highly dependent on the accuracy of the observer state model. Inaccurate models of the &

and A matrices diminish the confidence in the observer output and increase the values in

101

gamma*Q*gamma’

Process Noise
crpro pee Covariance
Plk- phi* u U *phi’
phi * P * phi’ P * phi’
Pk
Measurefnent X
D Error Variance ‘ . Q P Matix | Pll+1),] 1
A .) Multiply z
Kalman Gain K*C oot Unit Delay3
Kalman _C.-. [identity
Gain Matrix
Position Measurement
% Matrix
Multiply
States — ¥§:§Ee
Product of x1
Crx Kalman Gain
and Error -
velocity
position
x{hc-1)/(k) Wt *(k+1V(k+1)
x5
L . Delayed
Unit Delay1 delta* u X6 Position
Saturation 1], <7 States
z x8
Unit Delay2

Figure 3.21: Block diagram of non-stationary Kalman filter.

the Q matrix. Large values in the Q matrix have the effect of adjusting the Kalman gains
to increase the weighting of the delayed position feedback in the overall position estimate.
As the Kalman filter relies more heavily on the delayed position feedback, the effective
phase margin of the control system decreases and the dynamic performance of the system

is reduced.

102

3.4.6 Noise and Occlusions

Before the Kalman filter can be implemented, the measurement noise R must be identified
and somehow quantified. In this work, occlusions will be regarded as additional dynamic
“noise” in the system. Occlusions therefore render the assumption of constant measurement
noise invalid since the measurement noise variance R will be unique for each camera and
may change over time. This implies that a non-stationary Kalman filter will be required.
The process noise Q is independent of the cameras and can therefore still be considered a

constant. The Kalman gain computations then become:
K1 = PrppCT[CP1kCT + Rii1] ™ (3.55)

where Ry.1 is the time varying measurement noise variance which will also depend on the
camera currently being considered. This equation determines the Kalman gain by relating
the process noise to the measurement noise for the current camera. Given a finite process
noise estimate, as the measurement noise approaches zero, the Kalman gain will tend to-
wards one. As the Kalman gain approaches one, the state outputs will be based on the
measured feedback alone and not at all on the state model. Conversely, as the measurement
noise approaches infinity, the Kalman gain will tend towards zero. When the Kalman gain
is zero, the state outputs are based on the state model alone and not at all on the measured
feedback. Thus the state estimates produced by the Kalman filter are based on a blend of the
state model and the vision measurements in a manner which is optimal in the least-squares
sense. This works well in theory, but the practical problem remains of how to determine
the measurement noise variance R at each time step for each camera.

There are no direct ways of knowing the exact measurement noise variance for any
given camera. It is proposed that Ry can be estimated from the statistical relationship
between Euclidean distance and error variance that was identified in Chapter 2. This sta-
tistical relationship is illustrated in Figure 2.25 and described in section 2.7. The key idea

is that Euclidean distance d, from the manifold can be used to compute an estimate of the

103

error variance according to equation 2.29. This equation can be rewritten by substituting

the variance o7 with the measurement error variance Ry, as follows:

R, m - SSDy, dp <2500 (3.56)
00, dy > 2500

where S5 Dy is the sum-of-square differences in eigenspace at time step k and m is a con-
stant. This expression is conditional reflecting the threshold beyond which the Euclidean
distance measurements no longer fall within a distinct error band and begin to scatter as
illustrated in Figure 2.24. The result from equation 3.56 can be fed directly into into
the Kalman gain computation in equation 3.55. When none of the cameras are occluded,
the Kalman gains should converge to values similar to those precomputed for a stationary
Kalman filter. When occlusions occur, R will increase and the Kalman filter will dynami-
cally adjust the gains to maintain good position estimates. Thus, some useful information
can still be gleaned from partially occluded cameras. The weighting of visual feedback
from occluded cameras will gradually diminish as the Euclidean distance grows. When the
Euclidean distance reaches a threshold distance of 2500, the statistical relationship with
error variance breaks down. Therefore, for cameras reporting distances greater than 2500,
the measurement will be simply rejected by considering R to be infinite, which has the
effect of setting the Kalman gains to zero. Thus, if the occlusions in a certain camera be-
come too severe (i.e. d; > 2500) then the Kalman filter will proceed to reject the vision
feedback from that camera. With multiple cameras all possessing slightly different views
of the scene, it is possible that one or more of the cameras will experience differing degrees
of occlusion at various times as work proceeds around a robot. Therefore, while some
cameras may be occluded, other cameras may still be able to provide accurate feedback
measurements. In fact, even if only one camera remains free of occlusions, an accurate
position estimate can be maintained. Therefore, multiple cameras not only provide advan-
tages in terms of higher sample rates, they also provide more robustness in the presence of

occlusions. The computed measurement error variance R simply adjusts the weighting of

104

every measurement from each camera.

If all cameras experience severe occlusions, then the Kalman filter will rely exclusively
on the predictor estimates. The predictor is not exact and will ultimately stray from the
actual values over time when there is no suitable feedback available to use for correction.
However, the Kalman filter will continue to track the overall accuracy of the state estimates
in the P, covariance matrix. As a safety precaution, there should be a strategy to prevent
run-away if all the cameras become severely occluded. For example, the servo computer
could shutdown the robot when the values in the P, matrix exceed a predetermined thresh-
old.

All noise sources ultimately cause projected points in eigenspace to stray from the
manifold. Therefore, other noise sources such as CCD noise and small variations in illumi-
nation can be treated in a similar fashion as occlusions. The optimal least-squares operation
of the Kalman filter will ensure that all feedback will be weighted accordingly to ensure
good position estimates. Even errors due to the differences in odd and even video fields
can be dealt with by the Kalman filter albeit with a reduction in the overall accuracy of the
measurements.

One major advantage of this approach is that the estimate for Ry has no delays asso-
ciated with it since it is not based on past history but relies only on the current measure-
ment data. Equation 3.56 provides an elegant solution to the problem of identifying the
non-stationary measurement noise in a computationally efficient manner. This equation
requires only one multiplication operation making it suitable for use in the time-critical
control loops. In addition, this approach provides an effective means of sensor fusion by
integrating the feedback from multiple camera sensors and weighting each of them appro-
priately to provide improved state estimates. Finally, this approach provides a degree of

robustness to noise and occlusions.

105

f{u)

Gravity Feedforward

T

; mrgremrcos(u) 14
7z

Discrete-Time Integral Gravity
integrator with ~ Gain Mode!
anti-wind-up
1 1
m i Out Torqu ¢ Brper Vetocny’. ‘
Step Position Velocity Power Motor M : Integrator
: : echanical 9
fnput Gain Gain Amplifier Constant Transfer Function

Velocity Feedback Position

velocity u

Position Feedback

position il 2k Position

Kalman Filter Vision Subsystern

Figure 3.22: Block diagram of the overall system model.
3.5 Direct Visual Servo Simulation

Once the models of the various subsystems are determined they can be combined to build a
model of the overall visual servoing system. The different component subsystems models
include the planar robot mechanical system, the motor, the servo amplifier, the vision sys-
tem, and the Kalman filter and controller. The outputs of the Kalman filter provide velocity
and position state feedback to the controller. The controller uses a PI position loop with
velocity compensation and a feed-forward path to counter the gravitational forces on the
planar robot joint. The models of each subsystem can be interconnected to form an overall
system model as shown in Figure 3.22.

The system model allow simulations to be performed to predict the performance of this
approach for direct visual servoing of a planar robot. Three specific performance issues
were explored in simulation and are described in the following subsections. First, the dy-

namic performance of the planar robot was determined under a varying number of cameras.

106

Second, the effect of external disturbances on the robot were explored. Finally, the perfor-

mance of the direct visual servo was evaluated during a simulated dynamic occlusion.

600 1 ¥

0] S e PTLL Lty |
@ " —
£ 400 Step Input |
2 —— 16 cameras
Y B 7 8 cameras
g - - 4 cameras
(o]
::% 300 == 1 camera
@
Q . .
5 $i |
‘q') 200 R e
"g:y P : :
fod : :
:g] : .
-a 100 .-.I]
o by, . .
o : :

0 .. .
~100 : 3
0 0.5 1 1.5

Time (seconds)

Figure 3.23: Simulated response to a step input for systems employing different numbers
of cameras. (Position units use 4000 counts/revolution).

3.5.1 Step Response Using Multiple Cameras

Simulations were performed using Matlab and Simulink for systems employing different
numbers of cameras for direct visual servoing of the planar robot. The simulations were
performed using stationary noise sources allowing the Kalman gains to be pre-computed
and fixed using the structure shown in Figure 3.19. The compensator gains were adjusted

for critical damping in the step response. The simulation results for systems with 1, 4, 8

107

and 16 cameras are plotted in Figure 3.23. Clearly, the use of multiple cameras improves
the transient step response time since more cameras increase the effective sample rate. A
system with 16 cameras has an effective sample time of about 1ms and exhibits a step
risetime of approximately 75ms which is comparable to the time required for two standard
RS-170 video frames. The risetime using 16 cameras approaches the risetime achieved us-
ing continuous-time state-feedback shown in Figure 3.17. Clearly, the use of more cameras

improves the dynamic performance of the visual servo system.

05k S .

oab o b
€ g
€ : 5 ; 5 : 3
3 P R e RN R - e | ;
: » ;
B koo E U SRRV POL VRV P PURE POTRPPR S8 Ldog
3 % 5 z r ' : g
g 5
o =
71 SR R 3

o1 Y] oz 03 0.4 05 o6 o7 o8 o o1 oz a3 o4 o5 Y o7 08

Time (seconds) Time (seconds)
(a) Torque Disturbance vs. time. (b) Position vs. time. .

Figure 3.24: Torque disturbance simulation.

3.5.2 Disturbance Rejection

The predictor in the Kalman filter is able to accurately predict the response of the system
to any changes in the input. This allows the Kalman filter to provide timely state estimates
despite the transport delay in the vision feedback. A shortcoming of this approach is that
the predictor will not work for unmodelled target motion since it cannot anticipate external

disturbance inputs. Therefore, a direct visual servoing system cannot sense an external

108

disturbance until it propagates through the vision system. This implies that the system
response to disturbance inputs is dominated by a substantial vision transport delay.

The system response to an external disturbance input can be simulated to predict how
the system will perform. A system model was configured assuming four cameras and
the planar robot system. A external torque disturbance with a magnitude of 0.5Nm was
temporarily applied to the robot model as shown in Figure 3.24(a). The simulated transient
position response of the direct visual servo and the estimated position from the Kalman
filter are plotted in Figure 3.24(b). Because the torque disturbance is not modelled, it
cannot be anticipated by the Kalman filter predictor. Consequently, the estimated position
momentarily remains unchanged while the actual position changes dramatically in response
to the external torque pulse. The latency in the estimated position measurement is labeled
as tresponse 10 Figure 3.24(b). The time ¢response 18 the time necessary for the disturbance
to be captured by a camera and for the measurement to propagate through the various
transport delays described in section 2.6.5. It is not until the Kalman filter “sees” the
external disturbance that it begins to converge on the new state of the system. It is only after
this time that the controller can begin to respond to the external disturbance. The minimum
delay for t,esponse OCcUrs when the torque disturbance occurs just prior to the acquisition
time of a camera. The maximum delay for ¢,¢spense OCCUrs when a torque disturbance occurs
just after an image is acquired by a camera so that one additional sample time must pass
before the disturbance can be captured by the next camera. Therefore, the range of the
tresponse 1S given by:

tdelay < tresponse < tdelay + Ts (357)

where T is the sample time (EGINZ)’ and fge1qy 18 the transport delay from the time the pixels
are captured until the position measurement is available (see Figure 2.18). Therefore, as
the number of cameras N, increases, T, decreases, and the maximum response time to an

external disturbance also decreases.

109

2000/pi

A RN R D

zk

Position

. Quantizer Zero-Order RS-170 Eigenspace
Radians 1o Hold Transmission Computation
encoder counts (Pixel Capture) Delay1 Delay1
Random
Position Error
Generator
R > M LR R —>D
dk
Position Error Variance Error Vatianceto Zero-Order RS-170 Eigenspace
due to Noise Euclidean Distance Hold Transmission Computation
or Occlusions Delay2 Delay2

Figure 3.25: Block diagram of the vision model augmented with a Euclidean distance
output.

3.5.3 Simulated Occlusions

The performance of the direct visual servo in the presence of dynamic occlusions can also
be simulated with some small enhancements to the system model. Since occlusions are
treated as “noise”, the error variance in the vision model can be made time-varying to
simulate dynamic occlusions. The vision model in Figure 3.8 can be augmented with an
additional output to provide Euclidean distance information. The Euclidean distance output

can be simulated using the inverse of equation 3.56 as follows:

dr =4/ —I;nﬁ (3.58)

where Ry is the value of the variance used in the vision model and m is the constant found
in section 2.7. The Buclidean distance output from the vision model must also be delayed
with a transport delay equivalent to the output position measurement. The augmented vi-
sion model with the delayed Euclidean distance output is illustrated in Figure 3.25. The
Euclidean distance information can then be used to determine the measurement error vari-

ance and then fed into a non-stationary Kalman filter as shown in Figure 3.21. The final

110

f(u)
Gravity Feedforward

T

e

— m*g*rem”cos(u)
z-1
Discrete-Time Integral Gravity
Integrator with ~ Gain Model
anti-wind-up
In Out Torgue e 1 Velogit
J.s+B
ISTeP f Velocity Power Motor Madhanical Integrator
nput Gain Gain Amplitir ~ Constant Transfer Function
Velocity Feedbacy L Uk
velogity
P Position Estimate
zki zK .
. Position g Position
Position Feedback _ 1 tion Al Error Variance) e Euclidean Distance | N
Non-stationary Euclidean Distance Vision Subsystem
Kalman Filter ta Error Variance

Figure 3.26: Non-stationary system block diagram.

system model suitable for simulating the effects of occlusions is shown in Figure 3.26.
The model parameters were adjusted to simulate 4 cameras performing a servo hold
on the planar robot. A simulation was run with a step change in the variance to simulate
a large sudden occlusion. The variance vs. time profile is shown in Figure 3.27(a). The
peak variance corresponds to an occlusion producing a Euclidean distance of 2000. This
distance represents a significant occlusion that is still less than the maximum Euclidean
distance threshold of 2500. The simulation was run first with a stationary Kalman filter and
then with a non-stationary Kalman filter. Figure 3.27(c) shows the estimated position using
a stationary Kalman filter which assumes a fixed measurement error variance. The esti-
mated position is seen to vary wildly from the actual position when the step change occurs
in the actual measurement variance. These variations have a magnitude of several hundred
encoder counts and would result in erratic robot motion. Figure 3.27(d) shows the esti-

mated position using a non-stationary Kalman filter which determines measurement error

111

1200 y T T T
1000} .
aool- - J
. .%
Q
2 : o
5 soof S R 1 =
= : 0
@ : &
< :]
X2 :)4
T 400k i .
200} g
o o1 0z o3 Y 0.5 02 53
Time (seconds) Time (seconds)
{a) Variance vs. time. {(b) Non-stationary Kalman filter gains vs. time.
300 ; T T 300 T r T
;1 — Estimated Position . L Estimated Position
200k e] 2001+t T N

))
€ qoof oo bl LR L E 100} E
Q Q
© [5]
5 o
3 . 3) :
2 o g 9 :
w i .
) W :
5 g :
g -100} G -t00r - 4
a @ :
....... ZBOBJ e
H ; i i i i ; i
3060 -300
() 0.1 03 0.4 05] 0.1 ’ 0.4 0.5

02
Time (seconds)

(c) Estimated position using stationary Kalman

filter

(d) Estimated position using non-stationary
Kalman filter

Figure 3.27: Simulated occlusion plots.

112

variance from Euclidean distance. The resulting position estimation error is substantially
reduced as compared with the stationary Kalman filter. The simulated Kalman gains for
the non-stationary Kalman filter are shown in Figure 3.27(b). The beginning of the Kalman
gain plot shows a transient as the Kalman gains initially converges at the beginning of the
simulation. During the time that the simulated occlusions occur, the Kalman gains are re-
duced to lower the weighting of the measurement feedback. The Kalman gains return to
their previous values once the simulated occlusion is removed. Clearly, the non-stationary
Kalman filter is capable of providing reasonable position estimates even in the presence of

sizable measurement noise.

3.6 Summary

This chapter has provided a detailed description of the modelling and simulation of the
direct visual servo system. The various subsystems in the robot were individually modelled.
The system model provided insight and understanding of the system dynamics. The system
model was linearized so that classical control analysis could be performed using Bode
plots. A suitable compensator was designed which required both position and velocity
state feedback. The systems models were then used to construct the state equations for a
Kalman filter to provide the position and velocity state feedback. The Kalman filter works
well in the presence of noise and serves to overcome the latency of the vision feedback by
modelling the transport delay and providing timely state estimates.

Through numerous simulations, a statistical relationship between Euclidean distance in
eigenspace and measurement error variance was discovered. This insight provided the key
to the sensor fusion of the multiple cameras. The measurement error variance was fed into
a non-stationary Kalman filter to provide robustness to occlusions.

Finally, several simulations of the entire system verified various aspects of the direct

visual servoing system. Simulations confirmed that the dynamic step response could be

113

improved by employing more cameras. Further simulations demonstrated the response time
to an external torque disturbance can also be improved by using multiple cameras. Lastly,
simulations of the direct visual servo showed that providing the error variance estimate to
a non-stationary Kalman filter can dramatically improve the position state estimates in the

presence of dynamic occlusions.

114

Chapter 4

Testbed Implementation

4.1 Introduction

Simulations can provide useful insights into the feasibility and performance of the proposed
direct visual servoing system. However, the accuracy and dependability of simulations
only extends as far as the accuracy of the models and the underlying assumptions. For this
reason, a working testbed was built and various experiments were performed to verify the
practicality of the overall concept.

The implementation of an experimental testbed uncovered many thorny practical is-
sues. This chapter is organized into the hardware and software issues and concludes with a

section on how the implementation could be extended to support tele-robotic applications.

4.2 Hardware

An experimental testbed system consisting of four RS-170 grey-scale cameras, four vision
computers equipped with frame-grabbers, and a master servo computer was assembled us-
ing off-the-shelf components. Figure 4.1 shows a picture of the experimental setup wherein

the planar robot, cameras, along with the four vision node computers are all visible. The

115

Figure 4.1: Picture of the experimental setup.

components were connected according to the scheme illustrated in Figure 2.1. The robot
itself was built to allow access to all inner control loops.
The various components that were used to implement the system can be organized into

the following categories:

Mechanical components

Electrical components

Network hardware

Vision nodes

Master servo computer

116

The components in these categories are described in further detail in the following subsec-

tions.

4.2.1 The Mechanical Components

The servo motor was mounted in a metal frame with the rotor paraliel to the ground. A
single robot joint was constructed out of fiberglass and attached to the motor shaft. The
robot did not employ any reduction gears and provides direct drive control of the planar
robot joint. As a result, the load inertia and angular velocity are reflected directly back
to the motor shaft. The inertia and friction associated with this mechanical configuration

present some control challenges that were addressed in section 3.3.

4.2.2 The Electrical Components

The main electrical components include the servo motor and the power amplifier. The
torque produced by the servo motor is regulated by the current provided by the power
amplifier. The power amplifier, in turn, is controlled by the master servo computer. Several
cables serve to connect various signals between the electrical components. The final wiring
diagram showing the interconnection of the computer, servo motor, and power amplifier is
shown in Figure 4.2. Each of the electrical components are described in the following

subsections.

The Servo Motor

In the past, many robots were built using DC motors because of the relatively low cost of
both motors and controllers. The DC motor has a wound rotor that is switched mechani-
cally with a commutator and brushes. One disadvantage of brushed DC motors is that the
commutator and brushes increase the motor volume and tend to wear over time. This has

led to an increasing use of brushless DC motors which provide high performance with high

117

reliability. Brushless DC motors have permanent magnet rotors and a wound stator that
is electronically switched to produce a rotating flux. Hall effect sensors provide absolute
position feedback to control the commutation of the motor phases.

The motor selected for the experimental setup was a Reliance Electric Brushless DC
Motor (model #1842419031). The motor was chosen because it had a rated torque that
was more than capable of providing a reasonable acceleration under peak mechanical load

without exceeding the rated motor current. The motor was selected such that:
Trated > Jmaa;amam + Tgravity(e = 900) (41)

where T} 4.4 is the rated torque of the motor, Jy,e, is the maximum load inertia, Qg 18
the maximum angular acceleration, and 6 = 90° is the angle at which the force of gravity
is maximum on the robot joint. Also, the rated speed and voltage were selected to be more
than adequate.

A Dynapar (model M15) modular encoder was attached to one end of the motor shaft
and was read by an I/O card in the master servo computer. The encoder provides angular
position measurements with a resolution of 4000 counts/revolution. Because the system
uses direct visual servoing, the encoder was not used in the position feedback loop. The
encoder was only required during the eigenspace training phase to provide the mapping
from appearance to position. The encoder was also employed during various experiments

to independently log the actual motor position.

The Power Amplifier

The power amplifier regulates the motor current in proportion to a small-signal reference
input. The servo amplifier uses power electronic switches to produce a high frequency
pulse-width modulation (PWM) signal which regulates the current in the motor windings.

The power amplifier is also responsible for electronically commutating the motor phases

118

Encoder

Encoder .| ‘;“.MW:
Fault - o s | Network
Power —Isetpoint D
Motor Phases | Amplifer Enable £
48\IDC Master
Power Supply Serve Computer

Figure 4.2: Servo motor connection diagram.

according to the hall sensor feedback. The power amplifier also normally provides over-
current, over-voltage, and over-temperature protection.

The current and voltage ratings of the power amplifier were selected based on the motor
ratings and the expected duty cycle of the robot. The amplifier that was chosen was an
AMC brushless PWM servo amplifier (model #B15A8F) with a rating of 15 Amperes at a
maximum of 80 volts. The specified bandwidth of the current loop is 2.5kHz. The power
to the amplifier was supplied by an external 48Volt DC power supply rated at 300 Watts.
This power supply was selected on the basis of its power rating and its voltage rating. The
voltage was selected to provide sufficient voltage headroom to ensure that the current can
be properly regulated above the back em f of the motor when running at top speed.

The average operating duty cycle for the robot resulted in a relatively small power
dissipation so no special thermal mounting considerations were necessary. The amplifier
did require some initial tuning to set the current loop gain and offset. Once the loop gain
was set, the motor and amplifier were configured to perform the various experiments. The
inputs to the power amplifier from the master servo computer include a digital enable input

and an analog setpoint input. The outputs from the power amplifier to the computer include

119

an analog signal proportional to the actual motor current and a digital output to indicate

when a fault occurs. These signals are shown on the wiring diagram in Figure 4.2.

4.2.3 The Network Components

Ethernet has become ubiquitous in computer networks and is increasing in popularity for in-
dustrial automation applications [38]. Ethernet was selected because it provides high-speed
communications using off-the-shelf components. The issues associated with providing de-
terministic communications over Ethernet are described in section 4.3.2. The vision nodes
and master servo computer were all connected via 100Mb/s Ethernet through a common
hub. The hub is a dedicated hub so it is isolated from any outside network traffic. The use
of an Ethernet hub is preferred because it is more cost-effective and the use of an Ethernet
switch or bridge can introduce short routing delays. Ethernet switches buffer all or part of
incoming packets before routing them to the proper destination port [63]. The advantage
of an Ethernet switch is that it provides multiple collision domains but this is unnecessary
for this application since collisions are prevented by coordinating the traffic with the mas-
ter servo computer. The protocol and collision prevention details are described in greater

detail in section 4.3.2.

. T TN
Synch Slgna] Video Synch

Generator

Network
Interface
RS170

Camera

Computer
(Image Processor)

Figure 4.3: Block diagram of a vision node.

120

4.2.4 The Vision Nodes

The vision nodes are identical and logically consist of the following components:
o Camera
e Frame-grabber
e Video synchronization generator
e Computer connected to the network

Although each vision node was constructed using discrete components, there is no reason
why the components could not be consolidated into one “smart camera” package. A smart
camera would provide a useful building block for many vision applications beyond the one
described here. A block diagram of a vision node is illustrated in Figure 4.3 and each of

the components are described in detail in the following subsections.

The Cameras

The cameras are grey-scale CCD RS-170 cameras with a resolution of 640 x 480 pixels.
The video signals are fed over 5002 co-axial cable allowing the computers to be located
remotely from the cameras. Each camera has two BNC connectors for the video signal
output and the video synch input. The video synch inputs on the cameras allow the video
output to be synchronized by an external source. The video output is an interlaced video
signal with 60Hz alternating odd and even video fields which can be combined to provide
30 frames per second.

RS-170 video frames consist of an odd video field and an even video field which are
shifted in space by one horizontal scan line and shifted in time by 1/60% of a second.
Therefore, the vision nodes were configured to process video fields rather than video frames

to increase the sampling rate to 60Hz and to decrease the latency. The eigenspace vision

121

methods that were employed are insensitive to the vertical distortion present in video fields
because they are based on appearance rather than geometry. Multiple vision nodes are used
to overcome the limitation of traditional video rates by synchronizing each vision node to
capture video fields at different instants in time to improve the effective vision sampling
rate.

Significant interlacing artifacts can occur during motion in a scene when two video
fields are combined into a single video frame. This is due to the fact that a video {rame
contains two fields which are taken at two different instants in time. Therefore, half the
rows of a video frame will show an object at one point in time and the other half will show
the object 1/60®" of a second later. By processing video fields instead of video frames,
these artifacts during motion are removed.

Motion blur is another issue that can arise during periods of fast motion. Most stan-
dard cameras have relatively large CCD integration times that are commensurate with their
frame-rates. Motion blur can be dealt with in the same way as ordinary image noise or
occlusions as described in section 3.4.6. As the effects of motion blur increase, the cor-
responding projected point in subspace will tend to stray further from the manifold and
the position measurement error variance will increase. However, the Kalman filter will
continue to provide estimates of the actual position. Motion blur will be most pronounced
during the midpoint of a robot motion when joint velocities are at a maximum becoming
negligible near the end of a motion when the joint velocities are approaching zero. This
may be tolerable for applications which only require precise positioning when a robot ap-
proaches its destination position. If accurate position measurements are critical during fast
motion, a camera with an electronic shutter control should be used.

There were no special considerations taken for the selection of camera lenses. The aper-
ture was set to allow adequate light and provide a reasonable depth of field. Characterizing
lens distortions and camera calibration is not necessary with the eigenspace approach as

long as the camera parameters remain the same at run-time as during the learning process.

122

The placement of the cameras was based on several considerations. Primarily, the cam-
eras were placed so the region of interest around the moving joint was visible at a sufficient
resolution. Other factors for camera placement took into consideration such factors as

field-of-view and anticipating views that would be less affected by possible occlusions.

The Frame-Grabber Card

The vision nodes were equipped with a PCI frame-grabber card. Video is captured and
converted by the frame-grabber card and the information is then transferred using DMA
directly into a reserved area in RAM. The DMA operation requires that the destination
memory block be a contiguous portion of memory. Consequently, a patch was applied
to the Linux kernel to reserve contiguous pages of physical memory space at boot time.
The kernel patch was necessary to ensure that a reserved contiguous block of memory of
sufficient size can always be allocated for the frame-grabber even when the memory is
highly fragmented.

A driver provided an interface for configuring and controlling the operation of the video
frame-grabber. Like all devices in Linux[54], the frame-grabber device is accessed logi-
cally as a file which appears in the device directory. Once the video driver was installed,
it was configured to continuously acquire video fields. The driver asserts a signal (SI-
GUSR2) when the DMA transfer of each video field is completed. The vision nodes were
programmed to respond to the signal by performing a video buffer copy followed by the

eigenspace computations.

The Synchronization Circuit

The schematic diagram for the video synchronization circuit is shown in Figure 4.4. Each
vision node was equipped with one video sync generator to control the acquisition time
of its camera. The circuit is based on the 74ACT715 programmable video sync generator

integrated circuit which is available in a single 20 pin package. The 74ACT715 contains

123

Load O

Input
Ul
1 20
2 19
3 18 . @
4 17
0.1lup ;— 5 16 C?mposite
I3 15 1K Q 4700 iN9id O video Sync
— 8 13 (BNC Connector)
ClearC 9 13
Iaput 10 11 = - =
T4ACTT715

—_— ¥l

- out!| 14.318180 MHz | OE Ay 1uF
[Oscillator TS

Figure 4.4: Vertical synch generator circuit.

various registers, counters, and comparators which can be programmed to generate the
desired timing intervals for both the horizontal and vertical sync pulses. The timing for
the circuit is derived from a single clock input pin which is fed with a 14.318180 MHz
oscillator to produce the necessary timing for RS-170 video. A single composite video
output signal is fed from the sync generator into an external resistor divider to attenuate
the output TTL signal to a level appropriate for a video input. This video output signal
was then fed through 75 coaxial cable to the video sync inputs on each of the cameras.
The two control inputs labeled “Load” and “Clear” in Figure 4.4 control and initialize the
74ACT715 sync generator. These control inputs were interfaced to parallel port pins on
each of the vision nodes. By toggling these control lines, the timing of the video sync

signal and hence the acquisition time of the cameras could be controlled.

124

The Vision Computers

The vision nodes were built around a standard desktop PC with a 550MHz AMD Athalon
processor and 128 MBytes of RAM running the Linux operating system. The synch gen-
erator circuit described in section 4.2.4 was mounted in a small cabinet and attached to
the side of each of the vision nodes. The control inputs were connected via a signal cable
to the parallel port and the video synch output was connected with a co-axial cable to the
cameras. Finally, each computer was equipped with a 100Mbps PCI Ethernet adapter to

facilitate the communications with the master servo computer.

4.2.5 The Master Servo Computer

The master servo computer was implemented using a 400MHz Intel Pentium IT with 128 MBytes
of RAM and was connected to the vision nodes via a 100Mbps Ethernet card. The com-
puter was also equipped with an I/O card to provide the interface to the external power
amplifier. The I/O card also provided inputs for an incremental encoder that was used for
vision training and to provide an independent measure of actual position during various
experiments. The I/O card also included a programmable timer chip which provided the

time base for the entire system.

4.3 Software

The software is responsible for controlling a real-world mechanical system and must there-
fore operate in real-time. A real-time system is one where the correctness of the system
depends not only on the logical result of a computation, but also on the time at which the
results are produced [59]. Both the vision nodes and the master servo computer need to run
periodic real-time tasks.

Not all processes associated with the direct visual servo require real-time performance.

125

Figure 4.5: Experimental setup with 4 cameras.

The learning phase, which included the calculations of the eigenvectors and parametric
manifold, does not require real-time operation and was performed off-line using Matlab.
On the contrary, the run-time control loop computations do require real-time performance.
Thus the run-time code was implemented using the C programming language running under
the Linux operating system using various real-time extensions. The performance of the
software relies on the operating system to provide real-time and deterministic service. This

is particularly important in the following areas:
e Real-time process scheduling
e Deterministic network communications

First, the scheduler is an absolutely critical component of real-time systems since it is re-

sponsible for ensuring that the execution of urgent tasks meets specified deadlines. Second,

126

the network forms part of the closed-loop feedback path from the vision nodes so it must
operate in a fast and deterministic manner. Both of these issues are addressed in the fol-

lowing sections.

4.3.1 Real-Time Process Scheduling

Standard desktop operating systems typically schedule processes to provide fairness. This
is normally accomplished by decreasing the average response time which in turn causes
the worst-case response time to increase. In addition, user processes can be routinely pre-
empted at any time by the operating system or by other processes. Other factors such as
demand paging and swapping of memory can further delay the execution of a process.
In order to provide deterministic operation, the underlying operating system must provide
“real-time” scheduling and control over memory swapping.

Real-time operating systems provide scheduling guarantees instead of fairness to ensure
that high priority tasks are not pre-empted by lower priority tasks. Real-time operating
systems also ensure that real-time tasks are not swapped from memory. There are numerous
different types of real-time operating systems which can be grouped into two categories:
hard real-time systems and soff real-time systems. Hard real-time systems have strict time
deadlines which must be met whereas soft real-time systems can tolerate an occasional
minor delay.

The master servo computer and the vision nodes both require an operating system that
can provide real-time services. However, the vision nodes and the master servo computer
require different degrees of determinism. The vision nodes run at a fixed rate and must
perform eigenspace computations on each video field every 16.67ms. Consequently, the
vision nodes use a soft real-time system since an occasional timing jitter on the order of a
fraction of a millisecond is tolerable. In contrast, the master servo computer has a control

loop that runs at a rate that is N, times faster than that of the vision nodes and could

127

conceivably run at frequencies on the order of 1kHz. The effects of occasional delays
worsen as the frequency of the control loop increases. Any jitter in the control loop on
the master servo computer affects the synchronization of all the vision nodes. Jitter in the
control loop computations also leads to noise in the current loop which introduces torque
pulsations that cause excess heating in the motor windings. Therefore, a hard real-time

operating system was used on the master servo computer.

The Vision Nodes

The operating system selected for the vision nodes was Linux using POSIX.1b extensions.
The POSIX (Portable Operating System Interface) standard defines a common interface to
improve the portability of source code. The POSIX standard defines numerous operating
system functions with the POSIX.1b standard [29] focusing on real-time operations. The

key features in POSIX.1b include [20]:
e Memory locking
e Soft real-time scheduling
e Improved signals
e Improved Inter-process communications

The first two features, memory locking and soft real-time scheduling, are required for the
vision nodes. The standard provides for soft real-time processes and related data to be
locked in memory to prevent them from being swapped to the hard disk. Pages of memory
that are swapped to a hard disk can cause paging delays on the order of tens of milliseconds
to retrieve. This can be avoided by locking memory pages associated with the video driver
and the eigenspace computations. In addition, the eigenvector and parametric manifold ar-
rays located in data memory must also be locked to ensure that the eigenspace calculations

can proceed quickly when a video field is captured.

128

The POSIX.1b scheduling enhancements ensure a predictable order of execution. The

standard defines three basic scheduling classes [20]:

e SCHED _FIFO
e SCHED RR

e SCHED_OTHER

The SCHED_FIFO policy provides preemptive priority-based scheduling without time-
slicing. A SCHED _FIFO process will always preempt a lower priority process and will
continue to run until it is preempted by a higher priority process or until it voluntarily
yields the processor. The SCHED_RR policy provides preemptive priority-based round-
robin scheduling whereby priority processes are run for a specified time quantum. In Linux,
the SCHED_OTHER policy implements the standard Linux scheduler [5].

The SCHED_FIFO policy was selected to provide simple priority scheduling for the
real-time vision computations in the vision nodes and for all network communications. The
SCHED_FIFO policy was used to set the process performing the eigenspace computations
to run at the highest priority level. Thus, when the capture of a video field is complete, the
eigenspace computations can preempt all other running process and then run to completion.
However, there will still be a finite dispatch latency before a SCHED_FIFO process can
run resulting in a small amount of timing jitter which depends on the performance of the
computer hardware and the amount of other system activity [20]. The amount of timing
jitter when running on a 550MHz AMD Athalon is negligible for the vision computations
which run at a modest rate of 60Hz.

The master servo computer has tighter timing constraints and was implemented using a
hard real-time operating system. A hardware timer interrupt running on IRQ 5 was placed
at the highest priority. The hardware interrupt was configured to perform the control loop
computations and drive the network timing. All other processes running on the master

servo computer were set to lower priorities using rate monotonic scheduling (41}

129

All real-time processes must also be schedulable. A real-time process is schedulable

if [59]:

g~

m
>
i=1

where m is the number of periodic processes, and where process 7 occurs with period 7; and

<1 4.2)

3

requires P, seconds of processor time. The eigenspace computations in the vision nodes
are performed by one main process (m = 1) which runs at video field rates with a period
T, = 16.67ms. From section 2.6.4, the process time for the computations P, was measured

at 4.62ms. Therefore, the process is schedulable since:

P, 4.62ms
T, 16.7ms

I

~ 28% (4.3)

The low CPU utilization ensures that the eigenspace computations are easily schedulable
at normal video field rates.

However, the CPU utilization for the controller computations on the master servo com-
puter is more complicated. The frequency of the control loop depends on the number of
cameras N,. For this reason, the number of cameras presents a potential limitation to the
schedulability of processes running on the master servo computer. This issue is explored

further in section 4.5.

4.3.2 Network Communications

The network is implemented using the Internet Protocol (IP) over 100Mbps Ethernet. The
motivations for using Ethernet are numerous. Ethernet is faster than most proprietary net-
works with current speeds reaching up to 1Gbps. Also, Ethernet has become ubiquitous in
Jocal area networks and uses “off-the-shelf” cards and cables that are cost-effective due to
the economy of scales. Finally, the use of Ethernet for manufacturing applications enables
automation machinery to interface with ease to existing networks and even the Internet.

However, there are some challenges associated with using Ethernet. Traditionally, one

130

of the biggest drawbacks to using Ethernet for real-time applications is the lack of de-
terminism. Access contention in Ethernet networks is handled using CSMA/CD (Carrier
Sense Multiple Access with Collision Detection) [30]. Although each station listens before
transmitting, a packet “collision” can occur if another station attempts to transmit at the
same time. When a packet collision occurs, each station will retry the transmission after a
random period of time determined by a binary exponential back-off algorithm. This results
in a probability that a message sent over Ethernet will be delayed for a nondeterministic
period of time. In the extreme, if each retransmission results in another collision, a message
can be lost entirely. If Ethernet is to provide the feedback path for a direct visual servo, it
must be deterministic.

A multifaceted approach was developed to provide deterministic communications over
Ethernet. This was necessary before proceeding with the direct vision servoing application.
The strategy hinges on the ability to prevent collisions and providing low-overhead packet
exchanges. The techniques that were employed to ensure deterministic communications

include the following:

e Suppressing superfluous packets
e Master/Slave round-robin network polling

e Use of the UDP protocol

These items are discussed in detail in the following subsections.

Suppressing Superfluous Packets

The first step to improving network performance and determinism is to eliminate all super-
fluous network traffic. Typical local area networks provide numerous services that result
in increased network “chatter” which increases the probability of collisions. Consequently,
a private dedicated network was constructed that was completely isolated from other net-

works to eliminate the possibility of remote traffic interfering with local traffic.

131

Next, all network services such as e-mail, file sharing, and web servers were turned
off. However, there is still traffic that occurs periodically as part of the normal operation of
an Ethernet network. This traffic includes DHCP (Dynamic Host Configuration Protocol)
requests, DNS (Domain Name Server) requests, and ARP (Address Resolution Protocol)
requests. Special considerations need to be made for each of these services to ensure that
they do not interfere with real-time traffic.

DHCP traffic is common on many networks to manage IP addresses for network clients
and configure various network settings. Shared IP addresses are “leased” to client com-
puters by a DHCP server for a specified period of time after which they can be renewed.
Initial DHCP requests take the form of broadcast packets that pass throughout a network
in search of a DHCP server. After a reply is obtained from a DHCP server each client can
configure its network settings. However, whenever the network address expires new traffic
will be generated to renew the address lease. This traffic can potentially collide with real-
time traffic. Consequently, all DHCP traffic was eliminated by assigning fixed IP addresses
to each vision node and to the master servo computer.

DNS traffic routinely occurs over networks to resolve hostnames to IP addresses [51].
Before the master servo computer can connect with any of the vision nodes it must resolve
each of the vision node hostnames to IP addresses. Normally, the master servo computer
would perform name resolution by sending a query to a DNS server. By assigning static IP
numbers to each vision node on the network, the hostname to IP number resolution can be
determined a-priori. In Linux, the name resolution can performed using a local “fetc/hosts”
file which contains a table that associates hostnames to IP addresses. The use of a local
look-up file eliminates the need for any DNS traffic on the network. The DNS network
service can therefore be safely disabled to eliminate the possibility of DNS traffic causing
collisions when the vision nodes are running.

Even with DNS traffic disabled, there will still be traffic due to ARP requests. Before

132

any packet can be sent by the link-layer over an Ethernet network to a destination IP ad-
dress, the corresponding Ethernet hardware MAC (Media Access Control) address must be
known. The hardware MAC addresses are normally obtained using the Address Resolution
Protocol (ARP) [44]. An ARP request packet is broadcast on the local network and an ARP
reply is sent containing the destination MAC address being requested. Every time an ARP
request/reply sequence completes, a temporary entry is made in an ARP cache so that ARP
requests do not need to be repeated for every packet exchange. The ARP cache provides a
table which maps the IP address of a station with its corresponding Ethernet MAC address.
The ARP cache entries are normally considered temporary and will trigger new ARP re-
quests after a certain timeout period. The ARP timeout period defaults to 60 seconds for the
Linux kernel that was used. Although this timeout period is relatively infrequent compared
to the vision node traffic, the periodic ARP requests generate Ethernet frames that have a
finite probability of colliding with regular network traffic. ARP requests can be eliminated
by making permanent entries in the ARP cache. Permanent entries in the ARP cache do
not require ARP requests and are not subject to timeouts. Since all the computers are part
of an isolated network, all the MAC addresses can be collected a-priori and used to create
permanent ARP cache entries in all the vision nodes and in the master servo computer.
With permanent ARP cache entries established, there will be no ARP requests or replies
generated. At this point the ARP protocol may optionally be disabled. With ARP requests

and replies eliminated, there is no possibility of collisions with normal traffic.

Master/Slave Round-Robin Network Polling

With all superfluous traffic eliminated from the network, the problem remains of how to
manage the flow of normal traffic to prevent collisions. All the lower protocol layers in
Figure 4.7 from the physical layer up to the transport layer are unable to provide guarantees
of no collisions. Therefore, collisions on the physical layer will need to be prevented at the

application layer. This is accomplished by employing a master/slave round-robin polling

133

Camera Master Servo Camera

Node 1 Computer Node 2
o swen
Video Field Time t=Ts SYNCH
(L/60)s I —
“‘_-_S}"I:I—(_:E______,_,_ t=2Ts Video Field Time
Computation (1/60)s
Time
GET_POSITION =3Ts SYNCH
o Computation
POSITION_REPLY Time

Ti POSITION_REPLY
ime

Computation ¢
_ CErposITON =TS SYNCH

POSITION_REPLY i Computation
Time
SYNCH t=61s _GET POSITION _
Computation /
Time POSITION_REPLY
GET__POSITION t=7Ts SYNCH
POSITION_REPLY ¢ Computation
Time

SYNCH t=8TS _ GET POSITION _

4/ /
POSITION_REPLY

I | f
l] !

Figure 4.6: Camera network packet diagram for the case of 2 cameras.

protocol. The master servo computer serves as a network master responsible for polling
each of the vision nodes which act as nerwork slaves that “speak” only when “spoken” to.
The polling proceeds in a round-robin fashion at times governed by a real-time hardware
clock on the master servo computer.

The master servo computer acts as the network master so all network transmissions and

sample times are derived from its clock. Thus the polling scheme serves two purposes: to

134

prevent collisions and to to synchronize the vision nodes. Polling allows the master com-
puter to control network access thus eliminating the possibility of collisions. The polling
also allows the master servo computer to drive the overall system timing. Alongside the
polling packets, the master servo computer also sends synchronization packets at video
rates to each vision node in a round-robin fashion. Upon receipt of a synchronization
packet, each vision node will adjust its camera synchronization to ensure that the camera
remains properly synchronized and does not drift with respect to other cameras. This is
done by toggling a port pin connected to the video synchronization circuit shown in Fig-
ure 4.4. At the end of every video field, each vision node computes robot position using
the eigenspace methods described in Chapter 2. When a vision node is polled, it replies
with the most recent results which are sent over the Ethernet network to the master servo
computer. This ensures that all transmissions remain synchronous with the master servo
computer and that the feedback delays remain an integer multiple of the sampling time
T,. This is important for the predictor in the Kalman filter since the transport delays were
modelled using a series of unit delays.

The master servo computer thus forms the time-base upon which all vision nodes syn-
chronize their acquisition times and remain in lock-step relative to one another. Conse-
quently, the master servo computer is equipped with a real-time operating system to min-
imize timing jitter, particularly as the number of cameras N, becomes large. Each of the
vision nodes acquire video fields at sample times that are offset from each other to increase
the effective sample rate as described in section 2.3. Each vision node thus completes
their respective vision computations at times offset by T, seconds from each other (where
T, = —50—15,:). Conveniently, this provides natural time windows of T, seconds where each
vision node can be polled for results while other vision nodes are in different stages of
image acquisition or image computation. Collisions are thus avoided since vision nodes
no longer compete for network access but are granted an opportunity to transmit at a rate

equal to the video field time.

135

Therefore, the network has three distinct types of packets associated with video syn-
chronization, polling, and replies. The three different packet types defined in the applica-

tion layer are as follows:

SYNCH Packet a packet sent from the master servo computer to each vision node to syn-

chronize the video signals (1 byte payload)

GET _POSITION Packet a packet originating from the master servo computer requesting

a vision node to send its latest position feedback (1 byte payload)

POSITION_REPLY Packet areply packet from a vision node containing a position mea-

surement and the corresponding Euclidean distance (8 byte payload)

The SYNCH packets and GET_POSITION packets are both small packets which contain a
payload of one byte to differentiate the packet type. The POSITION_REPLY packet pay-
loads consist of one 32-bit integer for the position measurement and one 32-bit floating
point number representing the square of the Euclidean distance. The square of the Eu-
clidean distance is required to determine measurement error variance for the Kalman filter
according to Equation 2.29. The master servo computer receives all the results from each
vision node as interleaved packets arriving in the same relative order as the cameras are
synchronized. Upon receipt of the vision feedback at each time step, the master servo
computer performs the Kalman filter and controller computations and updates the servo
outputs.

A diagram illustrating the sequence of packets exchanged between a system comprising
two vision nodes and a master servo computer is shown in Figure 4.6. The diagram starts
at time ¢ = 0 when the first SYNCH packet is sent to the first camera node followed by
a SYNCH packet to the second vision node T seconds later. The SYNCH packets are
continuously sent at rate of 60Hz to each vision node with the sample time T, forming

the timebase upon which all network traffic is based. Position measurement results are

136

available in the vision nodes after a time equal to the transport delay (video field time plus
computation time) after the SYNCH packets are received. After an initial synchronization
startup time, the results from the vision nodes become available and the network begins
continuously polling and synchronizing the vision nodes.

Although this scheme works well, it has some shortcomings. One major disadvantage
is that the master servo computer forms a single point of failure. The system could po-
tentially tolerate the loss of one or more vision nodes but not the loss of the master servo
computer which is responsible for for both the control of the robot and the network. Al-
though polling solves network contention problems and provides synchronization, it also
requires significant network overhead. The effect of network polling overhead on the max-
imum number of vision nodes is discussed in section 4.5. For this reason, this scheme may

not be appropriate for general automation applications.

Application Layer | - - - ~ = = = - - ~ Application Layer
(Vision Node) > (Master Servo) A
Transport Layer € - - — ===~ - > Transport Layer
(TCP/UDP) (TCP/UDP)
Network Layer Network Layer
€ -~~~ ——— = =~
(IPv4) > (IPv4)
Link Layer Link Layer
<-------- - >
(Ethernet) (Ethernet)
Physical Layer Physical Layer
¥ o L
100baseT Ethernet

Figure 4.7: Network layers present in the distributed camera system.

137

Using the UDP Protocol

The exchange of packets must not only be free of collisions, it must be fast and efficient.
Networks normally use different layers to provide different services that facilitate commu-
nication between a sender and a receiver. The standard OSI (Open Systems Interconnect)
reference model defines 7 different protocol layers [63]. A message sent from one appli-
cation program must pass down through each of the layers in the protocol stack then pass
over a physical medium before ascending back up the protocol stack to a remote applica-
tion. The time required to pass a message through the network layers is determined in part
by the network protocols being used. Because the network forms part of the feedback path
in a closed control loop it must provide fast and deterministic service.

The layers typically found in networks employing the Internet Protocol (IP) are illus-
trated in Figure 4.7. The two main transport layer protocols used in conjunction with
the Internet Protocol are UDP (User Datagram Protocol) and TCP (Transmission Control
Protocol). UDP is a simple “send and forget” protocol, whereas TCP provides numerous

services including [60]:
e windowed flow control
e slow-start and congestion avoidance
e acknowledgments and retransmission of lost packets

However, these services provided by TCP are unnecessary for this application and would
only serve to increase the overhead and delays in the network. The windowed flow control
provided by TCP is used to prevent a sender from exceeding the buffer space available at
the receiver. This feature is not required since the packet size and rate of data exchange
between the vision nodes and the master servo computer is extremely low. In fact, the real-
time operation and latency model in the Kalman filter would be invalidated if any packets

in the network were to be subjected to unpredictable delays that could be imposed by flow

138

control mechanisms. The packet sizes are 1 byte for SYNCH and GET-POSITION pack-
ets and 8 bytes for POSITION_REPLY packets which are only sent at a rate of 60Hz for
each vision node. The slow-start feature in TCP is also problematic since it would prevent
real-time and deterministic packet exchanges in the network. Congestion avoidance is also
unnecessary since the packet exchanges are controlled to ensure there are no collisions and
there are no routing queues in the path since a direct connection exists between all nodes
in the network. Finally, acknowledgments and packet retransmission are not needed. Ac-
knowledgments increase overhead and are not necessary since there can be no collisions
and the probability of dropping a packet is almost zero. In the unlikely event of packet loss
due to a large noise spike or hardware “glitch”, the controller can continue to operate. Ifa
synchronization packet is missed by a vision node, the video synch generator continues to
run with its own built-in oscillator. Synchronization packets are currently sent every video
field time to simplify the implementation of the software state machine. Theoretically, syn-
chronization packets are only necessary occasionally to ensure that the internal oscillators
do not drift too far from the master servo computer clock. If a position reply packet is lost,
the Kalman filter can simply estimate the current position until the next position measure-
ment is received. In this application, quality of service (QoS) for real-time performance
takes precedence over reliable communications. Therefore, the advantages normally pro-
vided by TCP connections are liabilities for this particular real-time application.

The advantages of UDP include the following [60]:

e support for broadcasting and multi-casting
e requires no connection setup or tear-down

e requires less code to implement

Broadcasting and multi-casting are not required for this application but low-overhead and
deterministic communications are critical. UDP provides fewer services than TCP but ex-

periments comparing latency and throughput show that UDP performs better than TCP [51].

139

Unlike normal /O devices in Linux, which are controlled with a device file, the network
interface receives data from the network directly into kernel memory [5]. Thus network
I/0 is not performed with the regular device file system calls but rather using special socket
communication system calls. The communications were implemented using UDP socket
communications [60] with connections established between the master servo and each vi-
sion node on a preassigned port number and using a special “connect” packet. Once the
connections are established, UDP packets can be exchanged between the vision nodes and
the master servo computer without any additional overhead. The use of the UDP protocol
ensures that the propagation delay of a UDP packet through the protocol stack to the remote

computer is as fast and efficient as possible.

4.4 Tele-Robotics Extensions

Tele-robotics allows a remote user to operate robotic equipment from a distance in situa-
tions where it is not practical or safe for a human to be present. Tele-robotics applications
are becoming increasingly important and span applications ranging from remote surgery to
space exploration. For this reason this section was included to demonstrate how the direct
visual servoing concepts can be readily extended to support tele-robotic applications.

The long round-trip delays associated with transmitting visual data to a remote site
makes it difficult or impossible to dynamically close a vision loop over a remote link.
Communication delays and a lack of adequate QoS (Quality of Service) guarantees imply
that the network connection to the remote site should not form part of a closed-loop feed-
back path. The transport delays also mean that the remote operator may not have adequate
time to respond to unexpected events that may occur at the remote worksite. This is par-
ticularly a concern for space exploration where the round-trip delay time can become quite
large. Visual servoing is an important enabling technology for tele-robotics. Visual servo-

ing allows a task to be specified in terms of visual features by a remote human operator

140

and visual servoing can be used to execute the task locally [22]. Tele-robotics is an open
research area which can benefit greatly from advances in visual servoing.

The implementation described in the preceding sections has several attractive features
that enable it to be easily adapted for tele-robotic applications. First, the network imple-
mentation is based on the standard IP protocol which allows interconnection with most ex-
isting communication infrastructures including the Internet. Second, the image processing
is performed using eigenspace techniques which provide a compact representation suitable
not only for analysis but also for image compression. Eigenspace representations can be
used to compress images for transmission with minimum reconstruction errors as described
in section 2.5.2.

The tele-robot extensions that were implemented allow a user working from a remote
client computer to specify robot tasks to be performed by the visual servo. Images com-
pressed using eigenspace techniques are simultaneously streamed back to the client com-
puter to enable the remote user to monitor and observe the operation of the of the visual
servo. In the following section, the additional hardware and software necessary to to sup-

port these tele-robotic operations over the Internet will be described.

4.4.1 Hardware to Support Tele-Robotic Operation

The tele-robotic setup was based on the same distributed network of vision nodes shown
in Figure 2.1. The setup uses the same off-the-shelf components including S50MHz AMD
Athalon computers coupled with RS-170 grey-scale cameras for the vision nodes. The
master servo computer hardware remained the same except for the addition of a second
network interface card. The extra network interface provides a connection to the Internet to
allow communication with a remote client computer. The internal network of vision nodes
remains isolated from the outside world because packets are not permitted to be forwarded

from the Internet to the internal network. This ensures that the internal network continues

141

) Synch. Pulse Syne. | — :
: yneh: Gen. Vision .
: %?// RS170 - Computer #1 :
. . =4 : !
Client Workstation : Camera | e i
Connected via 1 Svnech. Pulse Sync. L} :
the Internet ! yaer Gen. isi !
:) Y 4 % Vision \
. Computer #2 1
: & % RS1 [
| Camera 2 !
i ® :
|
. ° :
[
1 Power ' ¢ :
: Amplifer @ 1
— 1
X | Synch. Pulse Syne. !
X Gen. Vision X
: Computer #N |
l ' \
1
: Network Network Camera N !
The + Interface #2 1 Interface #1 :
Internet : :
' i
' T — i
: Master Servo Computer 100Mbit Ethernet Hub :

Figure 4.8: Tele-robotic System Diagram.

to function without the threat of packet collisions even while packets are exchanged with
the outside world. A diagram of the internal network with the external connection to a

remote client through the Internet is shown in Figure 4.8.

4.4.2 Software to Support Tele-Robetic Operation

Although the additional hardware requirements for tele-robotic operation are minimal,
there is a substantial amount of additional software required. The extra software includes
communication and control software for the master servo computer and software for the
remote client computer. Priority scheduling is used in the master servo computer to ensure

that the additional overhead of tele-robotic functions do not effect the determinism of the

142

underlying visual servo loop. The two main functions provided by the tele-robotics exten-
sions are facilities for sending remote commands to the robot and the ability to send visual

information for remote monitoring.

Software for Remote Monitoring

Eigenspace methods offer a convenient subspace for image compression to efficiently trans-
mit images to a remote computer for visual monitoring. As described in section 2.5.2, an
image can be reconstructed from an n dimensional pattern vector with minimum recon-

struction error using a subset of k vectors where k < n as follows:
k
y=> zy 4.4
=1

where ¥ is the reconstructed image and z; and u; are the it eigenvector coefficient and
eigenvector respectively. Although 5 eigenvectors are used for position determination, in
section 2.6.6 it was shown that more eigenvectors (k >> 5) are required to reconstruct an
image of good quality.

The k eigenvectors must be sent to the remote client computer before any image recon-
struction can proceed. Once the eigenvectors are received, the master servo computer can
begin to stream images of the robot operation by sending only the eigenvector coefficients.
However, before this can be done, the master servo computer must obtain the eigenvector
coefficients from the vision nodes. Up to this point, the vision nodes have been discarding
the eigenvector coefficients after sending the position and Euclidean distance information
in the POSITION_REPLY packets. Therefore, to support the image transmission to the
remote computer, the POSITION_REPLY packets described in section 4.3.2 will need to
be expanded to include the eigenvector coefficients. This will require an additional packet
overhead of 80 bytes assuming 20 eigenvector coefficients represented with single preci-
sion floating-point numbers. The images are then forwarded to the remote client worksta-

tion using only 80 bytes to represent a 34001 pixel image resulting in a compression ratio

143

of approximately 425 : 1. This high compression ratio comes at the cost of increased pro-
cessor utilization for the subspace computations in both the vision nodes and the remote
client computer.

The number of eigenvectors required for image reconstruction will be more than the 5
eigenvectors required for accurate position determination. The extra computation time re-
quired for the additional eigenvectors can significantly increase the latency in the position
feedback. Consequently, the computation of the first 5 eigenvector coefficients and the po-
sition are given first priority in the vision nodes since the latency of the position feedback
directly affects the performance of the visual servo. In contrast, the streaming of eigen-
vector coefficients for remote monitoring can be performed on a best-effort basis. Thus
after the POSITION_REPLY packet is sent the remaining eigenvector coefficients can be
computed using whatever spare processor time is available before the next video field is ac-
quired. As a result, the eigenvector coefficients are delayed by one video field time before
they are sent with the POSITION_REPLY packet. Therefore, the position and Euclidean
distance information in the POSITION_REPLY packets are always the most recent values,

whereas the eigenvector coefficients are stale by one video field time.

Remote Client Computer Software

Before a remote client computer can begin any tele-robotic operations it must first initiate
a connection with the master servo computer over the Internet. A TCP socket connection is
made to a predefined port on the master servo computer to download the image eigenvec-
tors. A TCP connection is used to ensure that the initial eigenvectors are reliably received
before image reconstruction begins. Once the eigenvectors have been received the TCP
connection is closed and the images begin by simply transmitting the coefficients for each
image. A UDP connection is established to “stream” the coefficients since UDP packets
provide a low-overhead protocol suitable for streaming images. If a UDP packet gets lost

or dropped in transit, a video frame is simply dropped with little or no consequences to the

144

remote user. A second TCP connection is established to allow the client to send command
and control information to the robot. These commands allow the remote user to enable or
disable the servo loop, to set destination position setpoints, and to set loop gains. The TCP
protocol is used to provide reliable transport for user commands and messages since loss
of command packets can result in serious consequences.

The remote client was implemented using Java because it has strong built-in support
for networking and graphics and it is platform independent. The Java Native Interface
(JNI) was used to unmarshall the contents of binary packets into native Java data types.
The remote workstation used various built-in Java classes to render the resulting images
on a graphics display. Because the images are based on video fields rather than video
frames, the aspect ratio of the reconstructed images is distorted in the vertical dimension.
This can be corrected by either reconstructing video frames from two consecutive video
fields or by vertically interpolating each video field to restore the aspect ratio. Besides the
overhead required to render the images, the computational effort for image reconstruction
is similar to projecting an image into eigenspace. Consequently, the sustainable video
rate at the remote monitoring workstation is limited by available computing power and
is also dependent on network congestion and available bandwidth. Finally, although only
images from one camera were used, the master servo computer could be configured to allow
the remote user to select the coefficients that are sent to switch views between different

cameras.

Local Task Supervision

In cases where the round-trip communication delays are substantial, the remote user can
monitor the robot but may not have time to intervene if something unexpected occurs while
the robot is performing a task. Unexpected events that can occur while performing a task
may include unanticipated obstacles, occlusions, or the malfunction of the robot itself. In

situations such as space exploration with substantial round-trip delays, the actual visual

145

feedback from a robot can arrive long affer a robot task has actually completed. In such
cases, it is impossible for a remote user to supervise the robot. Consequently, there is a
strong motivation to enable the robot itself to automatically respond to unexpected events

while performing a task.

4000
3000\ :
: P i
o 5 e A 3} 3‘;8.'2'.\ :
..... S : NN :
40004 TSI W27
2 2
A R o, W ¥4 %, (R :
: N R N
C S .A,
R O A<,
m ‘-‘.A.‘.”.-‘
<2000 ... A | -- |
[UEETRPERRE R L = '
: LR W)»‘ v"l S %
zl i
..... A.:': ----"' " i \“‘ ‘ .
e S (Y 2 DI
000" B KIS

’ A \\\‘ e L A

...... OGN e 3

NG A g .. H o~
O : o000 ~4000 8000
> 5

2000
eigen vector 1

Figure 4.9: Plot of the corresponding “expected appearance tube” around the manifold.

The appearance based methods used in the vision system can be employed to supervise
a task while it is being performed. Normally, a specified task will involve a position tra-
jectory which will have a corresponding trajectory along the manifold in subspace. Ideally,
each image captured during a motion should project directly to a point on the manifold.
However, various sources of image noise will cause the projected image points to stray
from the manifold. Unexpected events, such as unanticipated objects entering the scene or
occlusions, will result in projected points that will generally stray further from the mani-

fold. Consequently, a Buclidean distance threshold can be established to detect when the

146

images captured during a task stray too far from the manifold. This corresponds to ensuring
that each step in the task does not stray too far from an “expected appearance” based on the
training images. The expected appearance essentially forms a “tube” around the manifold
where the radius of the tube is equal to the Euclidean distance threshold. An example of an
“expected appearance tube” for the planar robot is illustrated in Figure 4.9.

If a projected point falls outside the “expected appearance tube” the robot can be
stopped or disabled until the remote user decides if it is safe to proceed. If the appear-
ance of the task changes due to unexpected motion of the robot or due to stray objects
entering the workcell the robot can be shut down. This technique can be further enhanced
by reducing the Euclidean distance threshold around critical regions of the manifold where
more precise positioning is required resulting in a tube of varying thickness. However, this
technique also has some shortcomings, namely that the robot could be disabled due to a
single large noise spike in the image.

Another option is to perform local task supervision based on state information available
in the Kalman filter. As described in section 3.4.6, the Kalman filter tracks the overall
accuracy of the state estimates in the P, covariance matrix. Therefore, the servo computer
could supervise the operation of the robot by monitoring the values in the Py and taking

appropriate steps if the matrix values exceed a predetermined threshold.

4.5 Limitations on the Number of Cameras

The theoretical upper limit on the number of cameras NV, that could be used in this scheme
has not been tested but it can be calculated. The concept of network-synchronized cameras
is not bound to one particular type of network but the limitations are a function of the
network bandwidth and the available processor time.

The limitation on the number of vision nodes depends on two fundamental constraints:
e Network bandwidth

147

e Processor time for the main control loop in the master servo computer

The actual limit will be determined by which of these two limitations are encountered first.

4.5.1 Network Limitations

As the number of vision nodes increase the demands on the network also increase. The
system depends on real-time communications between all the vision nodes so all packets
must be sent immediately with no packets being queued or delayed. Ethernet is the network
that was chosen for the implementation so it will be examined in detail. However, the

analysis for other types of network implementations will proceed in a similar fashion.

UDP Packet
Ethernet Destination Source Data P Upp UDP Ethernet | Frame Check
Preamble * MAC Address | MAC Address | Length | Header Header Data Pad Sequence
|
Start of
fi delimit Vv
fame delimiter Ethernet Data Field
(IP Packet)

Figure 4.10: Structure of an Ethernet Frame encapsulating a UDP packet.

To determine the network limitations the Ethernet frame lengths and packet rates must
be analyzed. The application layer sends all information encapsulated in UDP packets.
The UDP packets are encapsulated in IP packets, which in turn are encapsulated in Eth-
ernet frames. The structure of an Ethernet frame containing a UDP packet is shown in
Figure 4.10. The IEEE 802.3 standard [30] states that a valid frame must have a maximum
length of 1518 bytes and a minimum length of 64 bytes. If the frame length falls below
64 bytes a special Ethernet Pad field is used to automatically add bytes to satisfy the min-
imum frame length. The minimum frame length restrictions are necessary to ensure that

collisions can be properly detected.

148

Size Size
Label (bytes) Label (bytes)
Ethernet Preamble 7 - Ethernet Preamble 7
Start of Frame 1 Start of Frame 1
Destination MAC Address 6 Destination MAC Address 6
Source MAC Address 6 Source MAC Address 6
Ethernet Data Length 2 Ethernet Data Length 2
IP Header 20 1P Header 20
UDP Header 8 UDP Header 8
SYNCH Byte 1 GET_POSITION Byte 1
Ethernet Pad 17 Ethernet Pad 17
Ethernet Checksum 4 Ethernet Checksum 4
Total Bytes 72 Total Bytes 72

(a) SYNCH Packet (b) GET POSITION Packet

Size Size
Label (bytes) Label (bytes)
Ethernet Preamble 7 Ethernet Preamble 7
Start of Frame 1 Start of Frame 1
Destination MAC Address 6 Destination MAC Address 6
Source MAC Address 6 Source MAC Address 6
Ethernet Data Length 2 Ethernet Data Length 2
IP Header 20 IP Header 20
UDP Header 3 UDP Header 8
Position Data 8 Position and Coefficients 108
Ethernet Pad 10 Ethernet Pad 0
FEthernet Checksum 4 Ethernet Checksum 4
Total Bytes 72 Total Bytes 162

(c) POSITION REPLY Packet (with no

eigenspace coefficients)

(d) POSITION_REPLY Packet (with 25
floating-point eigenspace coefficients)

Table 4.1: Tables summarizing the overhead of the various UDP Packets transmitted in an
Ethernet Frame.

149

Computing Network Limits

The size of the Ethernet frames for each of the packet types used in the system are sum-
marized in Table 4.1 (a) to (d). The size of the Ethernet frames for SYNCH packets and
GET _POSITION packets are shown in Table 4.1 (a) and (b) respectively. The SYNCH and
GET _POSITION packets both contain one byte which is used to differentiate the packets.
Since both these packets contain only one data byte the resulting Ethernet frame requires
an additional 17 bytes of padding to meet the minimum frame length requirement. The
resulting frame, including the preamble and start of framé delimiter, require a total of 72
bytes. The POSITION_REPLY packet summarized in Table 4.1 (c) contains 4 bytes for
the position estimate and 4 bytes for the Euclidean distance measurement for a total data
length of 8 bytes. The resulting Ethernet frame length with 8 data bytes still requires an
additional 10 byte pad to meet the minimum frame length requirement resulting in a total
frame length that is also 72 bytes. The time to send a 72 byte Ethernet frame t¢,4,,, using
100Mbps Ethernet is:

y _ tbits 72 x 8bits
frame = Bondwidth 100 x 108bits/s

= 5.76us 4.5)

In addition, the IEEE 802.3 specification [30] requires that each packet must be separated
by a minimum inter-frame gap of 96 bit times or 0.964:s. Thus the minimum time required

to send one packet is:
tpacket = Lirame + tgap = 5.76ps + 0.96us = 6.72us (4.6)

During each video field three packets are exchanged between each vision node and the
master servo computer. First a synch packet is sent to each vision node which are later
followed by position request and reply packets. Thus the total network traffic per vision
node comprises three UDP packets per video field time. The network traffic for all IV,

vision nodes must occur within one video field time:
1
Ne X (3 X tpacket) < @second “.7n

150

The network traffic will increase linearly with the number of vision nodes IV, until the
network utilization saturates. Hence, the maximum number of vision nodes supported by
fast Ethernet can be found by rearranging Equation 4.7 to solve for the number of cameras:

N, < [. J @.8)

60 X 3 X fpacket

Substituting the time per packet ¢pqexe¢ determined in Equation 4.6 into Equation 4.8 results
in a maximum of 826 cameras that can be supported by fast Ethernet. This limit represents
an upper bound at which point the network is saturated. Therefore it is possible to contem-
plate systems ranging from two standard cameras to systems comprising several hundred

inexpensive cameras.

Network Limits with Tele-robotic Extensions

However, if the tele-robotic extensions described in section 4.4 are employed, the size
of the packets will increase. The tele-robotic implementation requires that, in addition
to position and Buclidean distance, the vision nodes must also transmit several eigenspace
coefficients. The eigenspace coefficients are sent to a remote client computer where they are
used to reconstruct an image of the robot to enable remote monitoring. Assuming that 25
single-precision floating-point eigenspace coefficients are used for reconstruction, the total
size of the POSITION_REPLY Ethernet frames will increase to 162 bytes as indicated in
Table 4.1 (d). The time to send a 162 byte Ethernet frame £ srome2 Using 100Mbps Ethernet
is:
#Dbits 162 x 8bits

tframe2 = N = - = 12.96 4.
frame2 = Bondwidth 100 x 106bits/s Hs “49)

With the minimum inter-frame gap of 96 bit times, the minimum time required to send the

reply packet is:

tackerz = framez + toap = 12.96s + 0.965 = 13.92us (4.10)

151

The SYNCH and GET_POSITION packets remain the same size so equation 4.8 can be

modified to give the maximum number of cameras as:

1
N, < 4.11
[60 X (2 x tpacket + tpacket?)J ()

Substituting the packet times results in a maximum of 609 cameras that can be supported by

fast Ethernet. Even with the increased packet payloads required for tele-robotic operations,

a large number of cameras can be supported.

1.2 T T T T T T 7 T T by
G D n
80.8 e .
(V]
£
'._
.50.6
8
=
joR
g04_ Tt SRS SR =
I3 .
D2k vt -
q
0 ; : : ; ; . ; ; i
4 5 53 7 8 9 i0 11 12 13 i4

Figure 4.11: Experimental results of master servo computation time vs. the number of

cameras.

Number of Cameras

152

4.5.2 Processor Time Limitations

Another limitation to the number of vision nodes is available processor time. The compu-
tation time required on each individual vision node is constant since the vision nodes run
independently and in parallel with all the other vision nodes. However, the processor time
required for the control loop on the master servo computer will increase as the number
of vision nodes increases. Hence the schedulability of the main control loop becomes a
limitation as the number of vision nodes increase.

To analyze the schedulability of the control loop requires information regarding both
the computation time and the frequency of the control loop. The frequency of the control
loop is simply f, = 60N, (from Equation 2.1). Unfortunately, the computation time of the
control loop is not constant but also increases as the number of vision nodes increase. This

can be shown by noting that 7; = 'fl; and substituting this into Equation 3.42 to form:

t eta
n= [del y} = [tgetay X 60N,] (4.12)
60N,

where n is the number of transport delay states, ¢4e1q4y is the overall transport delay, and
N, is the number of vision nodes. Clearly the number of delay states and hence the total
number of state variables increase linearly as the number of vision nodes increase. The
dimensions of the matrices in the Kalman filter are determined by the number of state
variables. The state estimate matrix, the Kalman gain matrix, and the state input matrix are
(n x 1) column vectors where n is the number of state variables. The storage requirements
for these vectors will grow by O(n). The state transition matrix, the system covariance
matrix, and the state covariance matrix are all (n X n) square matrices where n is number of
state variables. The storage requirements for these matrices will grow by O(n?). In addition
to increasing storage requirements, the computational requirements for the Kalman filter
will also increase as the number of state variables increase. The number of operations to
perform multiplication of a (n X n) matrix with a (n x 1) column vector will grow by O(n?).

The number of operations to perform matrix multiplications of two (n x n) matrices will

153

grow by O(n?). Therefore as the number of vision nodes increase the matrix dimensions in

the Kalman filter also increase resulting in a quadratic increase in both storage requirements

and computation time for the control loop.

Percentage Processor Utilization

100 T 7 ! T g ; T T T
Q0L SRS S SO N i
BOL oo ...)
ot
GOk .. |
o T T . 4 N _
ol U T NS /40 N S _
ol NN T 7 S O O Y _
b RS V7S T T o -
oo o T T . _
4 5 6 7 8 9 10 11 12 13 14

Number of Cameras

Figure 4.12: Experimental results of master servo processor utilization vs. the number of

cameras.

The actual processor time required on the master servo computer for the main control

loop including the Kalman filter computations was determined experimentally. A digital

storage oscilloscope was employed to measure the computation time for the control loop

running on a 400MHz Pentium II processor. Several experimental measurements were

repeated for the computation time of the control loop as the number of state variables were

varied to simulate the presence of more vision nodes. The results are shown in Figure 4.11

with a plot of the computation time vs. the number of simulated vision nodes. This plot

154

verifies that the computation time is increasing quadratically with the number of cameras.
From this data it is possible to determine the processor utilization for the control loop in the
master servo computer. The processor utilization of the main control loop can be expressed
as:

T

C_Z"f x 100% (4.13)

where 7T, is the computation time of the control loop and T is the period of control loop.
T. can be obtained from Figure 4.11 and T is é‘blzv: where N, represents the number of
cameras or vision nodes. Substituting these values into Equation 4.13 and plotting yields
the results shown in Figure 4.12. The plot shows that the processor utilization increases
quadratically with the number of vision nodes. The upper limit is evident as the processor
utilization approaches 100% as the system approaches 14 cameras. Hence the processor
time required by the main control loop on the master servo computer represents the main
limiting factor in determining the maximum number of vision nodes. A system employing
14 cameras corresponds to an effective visual sampling rate of 840Hz.

For the system components used in this experiment, the limits dictated by available
processor time will be encountered long before any network saturation occurs. This up-
per limit on the number of vision nodes is not fixed but can be increased by optimizing
the code in the control loop, by using a faster processor, or by using multiple processors.
Alternatively the computation time of the Kalman filter could be reduced by employing
a stationary Kalman filter. However, this is not an attractive option since the stationary
Kalman filter performs poorly under varying noise and becomes unstable in the presence

of occlusions.

4.5.3 Imaging Sensor Limitations

The imaging sensors also have limitations due to the required integration time when cap-

turing an image. This can become significant as the number of cameras and hence the

155

effective sample rate of the system increase. If the pixel exposure time exceeds the effec-
tive sample time, there will be cameras with overlapping samples. Pixel exposure time can
be reduced when using a camera equipped with an electronic shutter but only up to a certain
point. Therefore, increasing the number of cameras beyond a certain point will only have

a limited effect.

4.6 Summary

This chapter has described both the hardware and software implementation details for a
direct visual servoing planar robot. The hardware uses off-the-shelf components with a
network of distributed vision nodes connected via Ethernet to a master servo computer.
Various techniques to ensure a quiet Ethernet network capable of providing determinis-
tic service were described. These techniques included steps to avoid packet collisions by
suppressing superfluous packets and managing multiple access through the use of a mas-
ter/slave round robin polling protocol using UDP packets. The vision nodes employ a soft
real-time operating system based on the POSIX.1b standard. The master servo computer
uses a hard real-time operating system with priority scheduling to drive the overall system
timing and control loops. Some practical extensions for tele-robotic applications were also
described including support for remote visual monitoring and local task supervision. Fi-
nally, the practical limits to the maximum number of vision nodes was analyzed. It was
found that the fast Ethernet network could theoretically support up to 826 vision nodes.
However, the main limitation was found to be the processor time on the master servo com-
puter. Using a 400MHz Pentium 1I processor, the limit was found to be 14 cameras, which
corresponds to an effective visual sampling rate of 840Hz. However, this limit is not fixed

and can be increased by using a faster computer.

156

Chapter 5

Experimental Results

5.1 Introduction

A direct visual servo system was implemented as described in Chapter 4 and a variety of
experiments were performed. The actual performance of the direct visual servoing sys-
tem was tested under different conditions. The experimental results add confidence to the
simulation results and verify that the concept can be practically implemented in the “real
world”. Each of the experiments described in the following sections are accompanied by
actual plots of various state variables that was logged in real-time by the master servo com-
puter while the robot was running. The experiments that were performed include the tran-
sient step response, servo-hold performance, and external disturbance rejection. The first
experiments were run without any occlusions, then later, repeated under full and partial
occlusions. The occlusions used for the experiment were arbitrary “real-world” occlusions
that varied over time. An experiment was also performed to gauge the performance of the
direct visual servo under varying illumination conditions. Finally, a simple tele-robotic
experiment was also run to verify that the operation of the tele-robotic extensions were

feasible.

157

5.2 Experimental Setup

The master servo computer was configured to close the position loop using only vision
feedback to form a direct visual servoing system. The system was configured with four
cameras using the scheme illustrated in Figure 2.1. Using four cameras the effective sample
rate is 4 times 60Hz or 240Hz (from Equation 2.1). The equipment and its configuration

are described in the following subsections.

Component Description

Vision Node Computer | AMD Athalon (550MHz) with 128M DRAM
Frame-Grabber Matrox Meteor 1 PCI Card

Master Servo Computer | Intel Pentium II (400MHz) with 128M DRAM
Network Adapters 100baseT Ethernet PCI Card

Ethernet Hub 3COM 8 port Hub

Camera Panasonic WV-BP334

Servo I/O Card Servo-To-Go Model 2 Servo I/O ISA Card
Power Amplifier AMC B15A8F

Servo Motor Reliance Electric model #1842419031
Oscilloscope Tektronix TDS 210

Table 5.1: List of equipment used for the experiment.

5.2.1 Equipment

The hardware that was used for the experiments was described in section 4.2. The key
components are all based on off-the-shelf hardware and are summarized in Table 5.1. The
vision nodes used a Linux kernel which was compiled to eliminate all superfluous features
and to provide built-in support for the network card. A kernel patch was applied to reserve
a large contiguous memory space for a buffer for the frame-grabber card. The master servo
computer used a real-time Linux kernel and was equipped with a servo I/O card to control

the power amplifier. A rotary encoder with a resolution of 4000 counts/revolution was

158

attached to the servo motor as a position reference for training and for logging the actual

position during experiments.

R}

Oscilliscope for
timing measurements

Vision
Node #3

Power
Amplifer

J §
v

-1 Interface #1

|

Interface #2

100 Mbit Network Hub

Master
Servo Computer

To Internet Gateway €
(for Tele—~Robot operation) Workstation

Figure 5.1: Experimental setup.

5.2.2 Equipment Configuration

The components listed in Table 5.1 were connected as illustrated in Figure 5.1. A total of
four vision nodes were assembled and inter-connected using 100baseT Ethernet. The mas-
ter servo computer was also connected to the network and was responsible for controlling
the planar robot. A second network interface connected to the Internet was added to the

master servo computer to support the tele-robotic experiments. An additional workstation

159

was introduced to enable remote logins to each of the network nodes from a central console
for the configuration of software and settings and for the retrieval of data logging informa-
tion. The workstation also served to assist in protocol verification by “sniffing” the network
traffic between the master servo computer and the vision nodes allowing all the network
packets to be observed and time-stamped. An oscilloscope was also employed to monitor

software timing and verify sample times.

5.2.3 Training

The experimental setup was first configured for learning by using the 4000 count/rev rotary
encoder as a reference to measure the actual position of the planar robot joint. A set of 101
images like the ones depicted in Figure 2.14 were captured by each of the four cameras as
the joint was moved in 20 encoder count increments throughout a rotation of 180°. Once the
parameterized manifolds for each vision node were computed and interpolated, the system
was configured for direct visual servoing by closing the position loop using feedback from

four vision nodes arranged according to the scheme depicted in Figure 5.1.

5.3 Experimental Results Without Occlusions

This section presents the first set of experiments which were performed without any oc-
clusions present. These experiments include measurements of the step response and the

response to external disturbances using both stationary and non-stationary Kalman filters.

5.3.1 Step Response Without Occlusions

The experiments described in this section explore direct visual servoing using four cameras
with no occlusions present and with varying step magnitudes. The transient step response

using traditional encoder feedback is used as a basis for comparison.

160

600_ e e
~—— Position Setpoint | : '_ ‘;
- - Actual Position
500_ ’
. - Pa
:@‘ . : ’
o !
g {
o 400._ ’I ..
5 '
°
(o] !
Q]
[:
3300- LT L R LR
fod i
2 '
B !
o i :
n_ 200_ i ‘
S i
= i
D i
=)
< T110] EEISTRPRRRPRIORIRR: :
11
i1
11
0 L 72 I
i I i\ 1.] 1 i J
0 0.25 0.5 0.75 1 1.25 15 1.75 2

Time (seconds)
Figure 5.2: Step response using traditional encoder feedback.

Step Response Using Encoder Feedback

The step response using encoder feedback was obtained to provide a benchmark for com-
parison with the step response of the direct visual servo system. In contrast to a direct visual
servo system, the latency of encoder feedback is negligible. The step response of the planar
robot using only a traditional rotary encoder for position feedback is shown in Figure 5.2.
A PID controller was employed having a sample rate of 240Hz which matches the sample
rate of a direct visual servo using four cameras. The gains were adjusted for a critically

damped response resulting in a rise-time of approximately 150ms with no overshoot and

no steady state errors.

161

600._ e e et SR IETIIE [RRAEERTERE wierenenees PN 600- ... L KR REEEETY
-~ Position Setpoint ‘ : ; ; ; — Paosition Setpoint : ;
~ = Actual Position ; : ; : ; - - Actual Position

g :)
5 f 5
8 : <3
= 400} 2 400t
g f g
3 ‘ 3
‘gfaoo— i ’F"soo—
£ £
8 ‘g I/
o : fa.
5200" ;I"' T I T T III O IETIIE EZOO“’l.v
L¢ 4 L4 f
100} . i!. 100k s "..
k4 7
P : 1
’ N ’
_____ H . i H ; H ; ; = z H H 5
00 0.25 05 0.75 1 1.25 15 1.75 2 00 0.5 1 15 2
Time (seconds) Time (seconds)
(a) Step magnitude of 200 counts. (b) Step magnitude of 300 counts.
GO0
2 a
(= c
3 =
8§ 3
- 400 ° 400
2 g
] g
© [~
& 3
=300 i g0l
2 2
8 l’ : 3
% ' o
5 200F- i : ;_3200
=) 1) N =
54 ' 2
< + 4 R
100} ,". . 100 e :
] : h :
1 : : :
: > : : ! : :
2 i H . ; ; ; H = 2 H i H ; H ;
o 0.25 05 0.75 1 125 15 1.75 2 UO 0.25 0.5 075 1 1.25 1.5 1.75 2
Time {(seconds) Time {(seconds)
{c) Step magnitude of 400 counts. (d) Step magnitude of 500 counts.

Figure 5.3: Step responses for various input step magnitudes for a system with 4 cameras.

162

Step Response Using Multiple Cameras

In contrast to encoder feedback, vision feedback involves a substantial latency so the direct
visual servo relies on the Kalman filter predictor for stability.

The first experiment demonstrated the transient step response using a direct visual servo
employing a non-stationary Kalman filter and using a PI position loop with an inner veloc-
ity loop. Four vision nodes were used yielding an effective sample rate of 4 times 60Hz
or 240Hz. After fine tuning the system gains, a measurement of the actual transient step
responses for various input step magnitudes were obtained. Step responses for step magni-
tudes of 200, 300, 400, and 500 counts are shown in Figure 5.3(a)-(d). The system gains
were fine-tuned for each step input to achieve a response that was close to critical damping.
Small amounts of noise in the state estimates when using vision feedback limit the mag-
nitude to which the gains can be increased before vibrations begin to occur in the planar
robot. The actual position in each plot was measured using a 4000 count/revolution refer-
ence encoder. The encoder was attached to the motor shaft and was used for training and
data logging purposes only.

The results show a rise time of approximately 190ms with a slight overshoot for a
500 count input step. This closely matches the predicted risetime for four cameras shown
in Figure 3.23. The transient oscillations are due to higher order effects which are not
modelled in the Kalman filter predictor. Some positions exhibit small steady state errors.
This occurs when the gravity feed-forward does not exactly cancel the actual holding torque
causing the predictor to assume a slight acceleration. The actual holding torque is due to
a combination of gravity and torque ripple due to the saliency in the motor poles. The
feedback from the cameras corrects the predictor estimates but the effect produces a small
increase in error for the overall state estimate.

These results are also comparable to the rise-time using only encoder feedbgck shown

in Figure 5.2 which was also run at a sample rate of 240Hz. The performance using encoder

163

feedback shows a somewhat faster risetime and does not exhibit the small transient oscilla-
tions which are present in the direct visual servo. The encoder feedback is better because
it does not require a predictor and it does not need to contend with long feedback delays.
Hence the gains using encoder feedback can be made larger before the onset of instability.
The proportional gain in the PID loop used with encoder feedback was an order of magni-
tude higher than the K, K, gain product used with vision feedback. This high gain resulted

in some output current saturation when using encoder feedback with large step inputs.

5.3.2 Response to External Disturbances

Another experiment was performed to observe the response to an external torque distur-
bance. An external torque disturbance was applied by hitting the planar robot joint during
a servo-hold and observing the response. The actual transient position response along with
the estimated position from the Kalman filter is shown in Figure 5.4. The performance of
the step responses shown in the preceding sections indicates that the Kalman filter predictor
is generally able to accurately predict the output position of the system under normal condi-
tions. However, the Kalman filter predictor cannot anticipate any unmodelled target motion
such as external disturbance inputs. Therefore, a direct visual servoing system cannot sense
an external disturbance until is propagates through the entire vision transport delay. This
explains the initial lag between the actual measured position and the estimated position in
Figure 5.4(a). The estimated position momentarily remains unchanged for approximately
30ms while the actual position changes dramatically in response to the external hit. The
delay in the response of the position estimate is due to the transport delay in the vision feed-
back. The position estimation error vs. time shown in Figure 5.4(b) indicates a large initial
position error from the disturbance. The state estimates are corrected when the vision feed-
back eventually propagates through forcing the Kalman filter to converge and the position

error returns to zero. These results are similar to the simulated results in Figure 3.24.

164

o
8

o
o
Q

counts)

Angular Position (encoder

]
=]

250

200 ; 1 i ;
0 1
Time (seconds)

(2) Actual and estimated position vs. time.

150 ! ! T

ey
D
(=)

9]
[=]

1
o
[=]

Angular Position Error (encoder counts)
o

-100

150 ; ; ;
¢ 0.5 1 1.5 2
Time (seconds)

(b) Position estimate error vs. time.

Figure 5.4: Transient response to an external disturbance applied to the robot.

165

5.4 Experimental Results In the Presence of Occlusions

This section presents the second set of experiments which were performed in the presence
of various occlusions. The types of occlusions that were explored include both full occlu-
sions in one camera and partial occlusions in all cameras. The full occlusion in one camera
was accomplished by placing a hand over the lens of a camera as illustrated in Figure 5.5.
Partial occlusions in all cameras were accomplished by placing a wrench in front of the
robot joint as illustrated in Figure 5.8. The experiments proceeded by observing the per-
formance of the robot as these occlusions were dynamically introduced and removed from
the scene. Both the actual position of the robot and the Euclidean distance over time were
recorded. The experiments include the analysis of the servo-hold performance, the step

response, and the response to external disturbances.

54.1 Servo-Hold with Full Occlusions in One Camera

The servo-hold performance was investigated when a full occlusion is placed in front of
one of the cameras. A hand was placed in front of a camera to fully occlude its view as
illustrated in Figure 5.5. Experiments were performed using both a stationary and a non-

stationary Kalman filter.

Servo-Hold with Full Occlusions in One Camera Using Stationary Kalman Filter

The servo-hold performance was first investigated using a stationary Kalman filter using
fixed Kalman gains that were precomputed off-line. One camera was exposed to a full
occlusion as a hand was moved in front of the lens of camera #3. The effect was as shown
in Figure 5.5. Actual plots of the Euclidean distance vs. time is shown in Figure 5.6(a)
showing the change in Euclidean distance in camera #3 as a hand occluded the lens and
then was removed. The corresponding position disturbance is illustrated in Figure 5.6(b).

This indicates a high sensitivity to the presence of occlusions as the planar robot begins

166

(a) Camera image as a hand moves towards (b) Camera image with a partially occluded
the lens. lens.

{c) Camera image of almost fully occluded (d) Camera image of fully occluded lens.
lens.

Figure 5.5: Camera images as a full occlusion is gradually placed over the lens.

to oscillate and becomes unstable. The instability is dramatic despite the fact that the
occlusion is isolated to only one of the four cameras in the system. Stability is regained
once the occlusion is removed from the camera. Clearly, the stationary Kalman filter is

unable to cope with full occlusions even in only one of the cameras.

Servo-Hold with Full Occlusions in One Camera Using Non-Stationary Kalman Filter

Next, the experiment was repeated with the non-stationary Kalman filter using an estimate
of measurement error variance R obtained using Equation 3.56. Once again, a full oc-
clusion was introduced into one camera while the robot was performing a servo hold. The

occlusion was introduced by arbitrarily sweeping a hand over each camera lens in sequence

167

7000- R R e . s o et e

: : — Camera #1 |
-~ Camera #2 |:
= Camera #3 |-

6000 :
-~ Camera #4 |
5000,.
8
g
(]
<
3
=
3
w . N : . N
2000F -

Time {seconds)

(a) Euclidean distance vs. Time

a ~ a [<]

Position (Encoder Counts)

550

500}

450, ...

400 1 ; J. i X j
Q 0.5 1 1.5 2 25 3

Time (séconds)

(b) Actual position vs. Time

Figure 5.6: Euclidean distance and position vs. time during a servo-hold as a full occlusion
is introduced into camera #3 using a stationary Kalman filter.

168

8000F T e
- Camera #1 |:
-« Camera #2 |
70001 ~— Camera #3 ||
-~ Camera #4 |:
6000+ : '
?:35000,
8
7}
=}
C4000_
©
[
B
23000_ ...
]
2000_ ...
1000,
0 L " iy By 2 fifinoa | Ashbod Riies
0 0.5 1 15 2 2.5 3
Time (seconds)
(a) Euclidean distance vs. Time
600
580
560
540
3
O
© 520
)
w
§500_ SO SO0 ST TIPS STIRIPHEIT) (AT St
w
g4
§
n-460_ ..
420k e - . S R S
400t ; ; i ; ; .
[6] 0.5 1 1.5 2 2.5 3

Time (séconds)

(b) Actual position vs. Time

Figure 5.7: Euclidean distance and position vs. time during a servo-hold as a full occlusion
is swept across all four cameras using a non-stationary Kalman filter.

169

producing full occlusions in each camera similar to those shown in Figure 5.5. Figure 5.7(a)
shows actual plots of the Euclidean distances vs. time as the occlusion passes in front of
each camera lens in turn. Because pairs of cameras are located close together as shown in
Figure 4.5, there are moments when two cameras are simultaneously occluded. This is due
to overlap as the occlusion remains briefly in the view of one camera as it enters the view
of the adjacent camera. The corresponding actual position of the robot during this time
is illustrated in Figure 5.7(b) and demonstrates good stability even in the presence of full
occlusions in one or two of the cameras. Further experiments indicated that even if three of
the four cameras are completely occluded the robot remained stable although the Kalman
filter had to rely on only one camera and the predictor which results in poorer dynamic
performance. Experiments with partial occlusions in all cameras were further explored in

the next section.

542 Servo Hold with Partial Occlusions in All Cameras

Next, the servo-hold performance was investigated when partial occlusions were present in
all cameras. A wrench was placed in front of the planar robot thereby occluding the view
for all cameras as illustrated by the sequence of images shown in Figure 5.8. The position
of the wrench was strategically selected to occlude the view in all cameras. However, the
degree of the occlusion varied in each camera depending on the angle of the camera with
respect to the robot. Consequently, the cameras to the left of the robot experienced slightly

greater occlusions than the cameras on the ri ght.

Servo Hold with Partial Occlusions Using a Stationary Kalman Filter

First, a system running a stationary Kalman filter was configured using the same pre-
computed Kalman gains as were used in section 5.4.1. All cameras were exposed to a

partial occlusion as a wrench was placed in front of the planar robot as shown in Figure 5.8.

170

(a) Camera image free of occlu- (b) Camera image as a wrench is
sions. placed in the scene.

(c) Camera image as the wrench {d) Camera image of the wrench
begins to occlude the motor partially occluding the robot.
shaft.

Figure 5.8: Placing a wrench in directly front of the planar robot causes a partial occlusion
to occur in all cameras.

An actual plot of the Euclidean distance vs. time is shown in Figure 5.9(a) which indicate
the change in Euclidean distance as a wrench occluded the robot and then was removed.
Each camera reported varying degrees of occlusions with peak Euclidean distances varying
from 1500 to over 5000. Camera #1 experienced the greatest occlusion due to the fact that
the wrench entered the scene from the same side that camera #1 was located. The peak
Euclidean distances diminished for camera #2 through camera #4 which were sequentially

positioned to the right of the robot.

171

: : : : e Camera#1 :
—— Camera #2 |:

: : : : == Camera #3 |.
5000 4 - Camera#4 .
84000 [EPRU PRI W
c R : : N :
bt
O : :
= 3000 el
o
(]
=
K=
3
WEpQQOE v eevree e R
1000 AR
.2 3
0 : i anih
0 0.5 1 15 2 2.5 3

Time (seconds)

(a) Euclidean distance vs. Time

600_ e R LT AL AL AL LA LA AL
: : : - Actual Position :
- - Estimated Position |:
550} y ,..'.,..:
‘I nﬂ“ i ‘ﬂ"“‘l i |‘ : 5

n:

{" q 5“{“1"1 nﬂ “4," ey
!
"ﬁ

g

Position (Encoder Counts)
£ P
8 3

350

300 ; i ; ; ; ;
0 0.5 1 15 2 25 3
Time (seconds)

{b) Actual position vs. Time

Figure 5.9: Euclidean distance and position vs. time during a servo-hold as a partial occlu-
sion is introduced in all cameras using a stationary Kalman filter.

172

The corresponding actual and estimated position are shown in Figure 5.9(b). The po-
sition estimated by the stationary Kalman filter becomes quite noisy in the presence of
occlusions. The large noise present in the position estimates form the feedback to the po-
sition compensator which produces correspondingly large variations in the output current.
These output current variations cause large torque variations in the servo motor. However,
the frequency of the torque variations is large compared to the mechanical bandwidth of
the robot so only a small amount of variation in the actual robot position is visible. Never-
theless, the variations in motor current do cause a large increase in the RMS motor current
which increases the power dissipation and temperature in both the servo motor and the

power amplifier.

Servo Hold with Partial Occlusions Using a Non-Stationary Kalman Filter

The robustness of the system employing a non-stationary Kalman filter when all cameras
are simultaneously subjected to a partial occlusion was also investigated. Once again, a
partial occlusion was introduced in all cameras by placing a wrench in front of the robot
as shown in Figure 5.8. Actual plots of the Euclidean distance vs. time are shown in
Figure 5.10(a) showing the change in Euclidean distance in each camera as the partial
occlusion is introduced in front of the robot. The peak Euclidean distances varied from
approximately 4200 for camera #1 which was located to the left of the robot down to
1800 for camera #4 which was located to the far right of the robot. Since the occlusion
was introduced from the left side of the robot as shown in Figure 5.8, the cameras placed
farther to the right of the robot experienced less of an occlusion. A Euclidean distance of
2500 corresponds to the threshold where the vision feedback is considered “too noisy” and
the position measurement is effectively ignored. The corresponding actual position of the
robot during this time is illustrated in Figure 5.10(b). The results demonstrate good stability
during a servo-hold despite the partial occlusion and the wild oscillations that were evident

with the stationary Kalman filter are completely gone. The estimated position does stray

173

| — Camera #2
~ = Camera #3 |:
-~ Camera #4 ;!

3500

©w

(=]

[«3

[=]
T

Euclidean Distance

P »n]
g 8 g
g 8 8

0 , , . e
0 05 1 1.5 2 25 3
Time (seconds)
{a) Euclidean distance vs. Time
600._ RRREREEEE TR L . RREREEE R DI R RSS!
: : : -~ Actual Position

— Estimated Position

BBOL e e ST

o
Q

Position (Encoder Counts)
B
3

4001

BEOF e TR U

300 1 ; 1 L. L e
¢} 0.5 1 1.5 2 25 3

Time (séconds)

{b) Actual position vs. Time

Figure 5.10: Euclidean distance and position vs. time during a servo-hold as a partial
occlusion is introduced in all cameras using a non-stationary Kalman filter.

174

from the actual position by up to 25 encoder counts when the Euclidean distance reaches
its peak. This is due in part to the fact that cameras #3 and #4 have exceeded a Euclidean
distance of 2500 and are therefore ignored. The result is that the Kalman filter relies on
the predictor without any corrective feedback for half of the sample times which causes the
position estimate to stray somewhat from the actual position. This suggests that strategic
camera placement can help ensure that some cameras always have a partially unobstructed
view can make the system robust to partial occlusions when using a non-stationary Kalman

filter.

5.4.3 Step Response with Full Occlusions in One Camera

The step response performance of the four camera system with one camera fully occluded
was also experimentally investigated. The step responses was only obtained using a non-
stationary Kalman filter since the stationary Kalman filter was not even capable of main-
taining a stable servo-hold as indicated in section 5.4.1. Camera #1 was fully occluded and
the remaining three cameras were free of occlusions. This is apparent in Figure 5.11(a)
where a constant large Euclidean distance is apparent in camera #1 while the remaining
three cameras report small Euclidean distances. The Euclidean distance for camera #1 18
fixed at around 6800 which is well above the limit of 2500 causing all measurements from
this camera to be discarded by the Kalman filter. Therefore every fourth sample time, only
the predictor will be used to yield the position estimate which will reduce the rate at which
the actual vision feedback can correct the state estimates. Despite the loss of one camera,
the system maintained a stable servo-hold. Next, a 500 count step input was applied and the
response is shown in Figure 5.11(b). The plot shows a risetime of roughly 190ms which
is identical to the risetime for the unoccluded step response using the same gains plotted in
Figure 5.3. However, the magnitude and the duration of the oscillations in the step response

is greater for the occluded step response. This is due to the degraded state estimates which

175

9000 T T v
: : meme Camera #1
TR -~ Camera #2 ||
—-- Camera #4
7000_ . R -
6000__ .. —
g
=
[R R L R R TR -
55000
[= : : .
g : : z
g4000_ : e - -
= : :
=
W 3000f 4
2000k S —— -
1000 e . \\, ‘, ,: -
______ e T e At SR
0 1] A s
0 0.5 1 1.5 2
Time (seconds)
(a) Euclidean distance vs. Time
700,. P T R R SR SR
: : —— Position Setpoint |:
~ ~ Actual Position
600.4. S
42500. / - - =)
o 7
8 /
%400 ;
Q i
&
=300
[=4
o
.§
a 200
100
/
s
0 ““““““““ 1 1 H
3] 0.5 1 1.5 2

Time (seconds)

(b) Actual position vs. Time

Figure 5.11: Buclidean distance and position vs. time during a step input with a full occlu-

sion in one camera using a non-stationary Kalman filter.

176

are produced without the benefit of visual feedback from one of the four cameras.

5.4.4 Step Response with Partial Occlusions in All Cameras

The step response performance of the four camera system with all the cameras partially
occluded was also experimentally investigated. Once again, the step response was only
obtained using a non-stationary Kalman filter. All cameras were exposed to a partial oc-
clusion with a wrench which was statically placed in front of the planar robot as shown in
Figure 5.8. An actual plot of the Euclidean distance vs. time is shown in Figure 5.12(a)
and the corresponding actual position vs. time is shown in Figure 5.12(b). The Euclidean
distance ranges from just under 1000 to over 1500 which are all well below the limit of
2500. Despite the fact that the wrench did not move during the robot move, the Euclidean
distance is seen to change and even oscillate in a fashion similar to that shown in the posi-
tion plot. This is due to the fact that as the robot moves, the static occlusion covers different
parts of the robot corresponding to different parts of the feature vectors. The result is that
the position oscillations are visible in the Euclidean distance plot since the Euclidean dis-
tance is now also a function of robot position. The response to a 500 count step input is
shown in Figure 5.12(b). Once again, the plot shows a risetime of roughly the same as the
risetime for the unoccluded step response using the same gains plotted in Figure 5.3 but
with substantially larger oscillations. The oscillations with partial occlusions in all cam-
eras are also larger than those observed in the previous section with a full occlusion in one
camera. This is due to the fact that the remaining three cameras in the previous section
were still providing good feedback, whereas in this case the feedback from all cameras is
degraded and thus weighted lower in the overall state estimation process in the Kalman
filter. This results in state estimates which rely more heavily on the predictor and less on
actual feedback reducing the dynamic performance. Nevertheless, these results indicate

that the system is robust and can still function in the presence of partial occlusions.

177

1600 . : . : T

: Do — o » : -)
: \‘/ o \/\ e N A I AT EL LR
1400 RRRRCRRRIRTE TRTRERE:: [P T B R SHIRCLLRTITEES EERCLEREERD "f""’l -

1200

-
[=]
Q
(=]

Euclidean Distance
o @
8 8
T
!

Py DR A Te— S— L

: 5 : : === Camera #1
DOO - vrvmee e i —— Camera #2 |

: : ; == Camera #3
- - Camera #4

0 05 1 1.5 2 2.5 3
Time (seconds)

(a) Euclidean distance vs. Time

— Position Setpoint |:
: : : - - Actual Position |-
600 LT UTIRE
500} A P s
! :

Position (Encoder Counts)
g 5
3 3

g

—
(=)
[<]

05 1 1.5 2 2.5 3
Time (seconds)

(b) Actual position vs. Time

Figure 5.12: Euclidean distance and position vs. time during a step input with partial
occlusions in all cameras using a non-stationary Kalman filter.

178

1} — - Camera #1
i} —— Camera #2
| == Camera #3
| ——— Camera #4

g 1000 : ‘ : :

é "“\un,\sfx\ w‘a_{'«-u)}luprﬁwé.sgnﬁnw,lp

7] . : : :

2 :

[

[}

Q

B

O : : : : :

= : N : : . .

L 500, e
0 ; i j ; i :
0 0.5 1 1.5 2 25 3 3.5

Time (seconds)

Figure 5.13: Euclidean distance vs. time in all cameras while an external disturbance is
applied to the robot in the presence of occlusions.

5.4.5 Response to External Disturbances in the Presence of Occlusions

Another experiment was performed to observe the response to an external torque distur-
bance in the presence of partial occlusions. An occlusion similar to the one shown in
Figure 5.8 was introduced in front of the robot. The resulting Euclidean distance is shown
in Figure 5.13. An external torque disturbance was applied by hitting the planar robot joint
during a servo-hold and observing the response. The actual position and the estimated posi-
tion are plotted in Figure 5.14(a) and the position estimate error vs. time is shown below in
Figure 5.14(b). Once again, the Kalman filter predictor is unable to anticipate any unmod-
elled target motion such as external disturbance inputs. Therefore an initial delay occurs
in the response of the position estimate due to the transport delay in the vision feedback.

This explains the large initial position error in Figure 5.14 which was also predicted by

179

the simulation in Figure 3.24. However, the performance has degraded in comparison to
the disturbance response with no occlusions shown in Figure 5.4. With no occlusions the
position estimation error decays to almost zero in less than one second, whereas with occlu-
sions the estimation error oscillates for almost 3 seconds. Once again, the partial occlusions
present in all cameras degrade the feedback and make the Kalman filter more reliant on the
predictor which is totally unable to predict external torque disturbances. Hence the visual
feedback is weighted lower and it takes longer for the Kalman filter to converge to the ac-
tual position. Despite the decrease in dynamic performance, the direct visual servo is still

stable in the presence of external disturbances with partial occlusions.

5.5 Experimental Results Under Varying Illumination

Although occlusions were the focus of much of the experiments, the effects of varying
illumination were also briefly explored. In section 3.4.6, it was hypothesized that the er-
ror variance as determined by Euclidean distance could potentially improve robustness to
variations in illumination. A simple experiment was performed with the planar robot per-
forming a servo-hold under changing illumination. The illumination around the planar
robot was varied by gradually covering and uncovering the main source of light (an incan-
descent lamp equipped with a 100 Watt bulb). This had the effect of varying the intensity
of illumination while the direction of the illumination remained fixed. The background
room lighting remained constant but by covering the lamp an dramatic change in lighting
appearance was obtained as shown in Figure 5.15. The experiment was repeated using both

a stationary and a non-stationary Kalman filter.

180

7007

: : — Actual Position :
BB0F i 7 2 Kalman Filter Position _Estimate ;

)

513
(@]
(=]

o0
[51]
o

Angular Position (encoder counis

W
|-
Q

250

200 ; ; ;
4] 0.5 1 1.5 2 2.5 3 35
Time (seconds)

(a) Actual and estimated position vs. time.

100 T T ! ! T T

Position Error {encoder counts)

1 1

0 05 1 1.5 2 25 3 3.5
Time (seconds)

(b) Position estimate error vs. time.

Figure 5.14: Transient response to an external disturbance applied to the robot in the pres-
ence of partial occlusions.

181

(a) Planar robot under normal illumi- (b) Planar robot with lamp covered.
nation.

Figure 5.15: Camera images as the illumination is varied.

5.5.1 Servo-Hold Under Varying Illumination Using a Stationary Kalman
Filter

First, a system running a stationary Kalman filter was configured using the pre-computed
Kalman gains. The workcell was then exposed to large variation in illumination as shown
in Figure 5.5. Actual plots of the Euclidean distance vs. time are shown in Figure 5.16(a)
which show the change in Euclidean distance as the primary light source is gradually cov-
ered and then uncovered. The Euclidean distances all change simultaneously and by a
similar amount since the illumination variation is global for all cameras except for the
small variations in background lighting. The corresponding position disturbance illustrated
in Figure 5.16(b) indicates a sensitivity to illumination variation as the planar robot begins
to oscillate and becomes unstable. Stability is restored once the illumination is returned to

normal (i.e. the same as it was during the training phase).

182

5000

45001

4000

3500

w
(=
(=]
o

Euclidean Distance
N N
8 8
o [==]

g
(=]

1000

500

i

Time (séconds)

(a) Buclidean distance for all four cameras vs. Time

BOO oo emmmmme e g e
= Actual Pos:tlon :
: -~ Estimated Position |:
: : ol : : :
BEOE - G :...i ﬁ\'
: L | lnh [: :
: ol :{‘l‘”"' l! ‘h W “|"}}’ ..h‘&‘i 2 E
3 ' hj*j'}"g'nh' ! H NilR, W 5
£ soohivibmntuty 's"xj" ,, w (o AT AN GV
: ' PA RR SR) e
§ : ntf,mlld' b !l“ '} :
] i LA R b :
3 ”i(}'“u\“\‘ il e
450k e T T
2 il ﬂ“\:hh\l’l il Yy
wi 1 W him\\! ! bty
b iy i z
o rﬂ“}‘ ‘lm !]q
= N‘]‘h‘}'(:
8400— 11‘1
a | ", :
| : :
! : :
350_ .. :
I :
3000 0.5 1 1.8 2 2.5 3

Time (seconds)

(b) Actual and estimated position vs. Time

Figure 5.16: Euclidean distance and position vs. time under varying illumination using a
stationary Kalman filter.

183

5000

7

"

45001 - .v...lv,l(,\:"
o

4000- A

3000F- -

Euclidean Distance
NN
g g
QD
I ER=)
.

15008 PO
1000k i RE— FE— R

500 B

(2) Euclidean distance for all four cameras vs. Time

600- SRRREEEEEREE B REEREER R R e iy
: EoLeq = Actual Position :
R : - - Estimated Position |:

550

: : : ;o
i RA e ‘\!l"“A‘\nqlnéluq.‘,’nn‘:

o
[}
[=]

Position (Encoder Counts)
5 &
3 3

350+

300 ; ; ; : ; j
¢ 0.5 1 15 2 2.5 3
Time (seconds)

(b) Actual and estimated position vs. Time

Figure 5.17: Euclidean distance and position vs. time under varying illumination using a
non-stationary Kalman filter.

184

5.5.2 Servo-Hold Under Varying Illumination Using a Non-Stationary

Kalman Filter

Next, the robustness of the system employing a non-stationary Kalman filter under varying
illumination was also investigated. Once again, the workcell was then exposed to large
variation in illumination as shown in Figure 5.15. Actual plots of the Euclidean distance
vs. time are shown in Figure 5.17(a) showing the change in Euclidean distance as the pri-
mary light source is covered and then uncovered. The actual position of the robot during
this time is illustrated in Figure 5.17(b). The robot demonstrates good stability until the
change in illumination becomes large. A problem appears when the change in illumina-
tion is severe enough to result in Euclidean distances that exceed 2500, at which point the
robot position begins to stray. A Euclidean distance of 2500 corresponds to the threshold
where the vision feedback is considered “too noisy” and the position measurement is ef-
fectively ignored. The position begins to stray as the predictor errors accumulate causing
the estimated position to diverge from the actual position. However, once the light is re-
stored to the point where the Euclidean distance falls below 2500, the estimated position
quickly converges back to the actual position. These results indicate that the non-stationary
Kalman filter shows promise for operation under small variations in illumination that result

in BEuclidean distances that are below the maximum threshold.

5.6 Experiments in Robot Tele-Operation

A final experiment was performed to demonstrate local task supervision during tele-operation
of the planar robot. The planar robot was remotely operated using a workstation connected
over a Local Area Network to the master servo computer as shown in Figure 5.1. The
workstation performed a TCP connection to the master servo computer and the image di-

mensions and image eigenvectors were transmitted. Once the basis vectors were received,

185

~- Camera #1 |
—— Camera #2
== Camera#3
GO0 o] DD Cameradd |
g 1
§4000 2
$ u
a g
53000 zZ
g b
5 3
meom_ mo-
10001 - .
B
[Lol i ; H ; H
Gf) 0.5 1 1.5 2] 3 o} 0.5 1 1.6 2 25 3
Time (seconds) Time (seconds)
(a) Euclidean distance vs. Time (b) Robot ENABLE Signal vs. Time
200,. AR .
150-
7
[>4 .
3 :
© :
§ ;
&
5
2 o
& :
-19% 0.5 1 2 25 3

1.5
Time (seconds)

(¢) Actual Position vs. Time

Figure 5.18: Euclidean distance, robot ENABLE, and position vs. time during tele-robot
operation as a partial occlusion is introduced in the workeell.

186

the coefficients were streamed via a UDP connection to reconstruct an image of the robot
on the display of the workstation. Next, an occlusion was introduced into the view of
the cameras after commanding the robot to perform a servo-hold. As the occlusion grew,
the Euclidean distance increased, as shown in Figure 5.18(a). As the Euclidean distance
increased, the position measurement error variance increased. As the measurement error
variance increased, the entries in the state estimation error matrix P in the Kalman filter
also grew. This continued until the position state estimation error exceeded a predetermined
threshold. At this point, the master servo computer disabled the robot without human inter-
vention as shown ion Figure 5.18(b). The robot enable signal is an internal boolean variable
that is set to “1” to enable the robot and set to “0” to disable the robot. With the robot dis-
abled, the applied motor torque becomes zero and gravity takes over causing the robot joint
to sag to its lowest position as shown in Figure 5.18(c). This sequence demonstrates the lo-
cal task supervision that can be realized using data from the Kalman filter to automatically
disable the robot when the visual feedback is sufficiently degraded even when no human is

present to intervene.

5.7 Summary

The direct visual servoing system described in Chapter 4 was built using four network-
synchronized cameras. This system was used to performed various experiments involving
the direct visual servoing of a planar robot. The experimental results demonstrate excellent
servo-hold performance and a good step response closely matching the step response simu-
lated in Chapter 3. Further experiments demonstrated the response to external disturbance
inputs and once again closely matched the predictions simulated in Chapter 3. The robust-
ness of the system was investigated by repeating the experiments with full occlusions in
one camera and with partial occlusions in all cameras. The performance of the stationary

and non-stationary Kalman filter were also compared and contrasted. As predicted, the

187

non-stationary Kalman filter proved to be robust in the presence of various degrees of oc-
clusions whereas the stationary Kalman filter was unstable. A final experiment tested the
robustness of the direct visual servo under varying illumination intensity. Experimental re-
sults show that, besides robustness to occlusions, the approach developed in this work also
shows promise for dealing with small variations in illumination. All the results presented
in this chapter serve to confirm the efficacy of the approach proposed by this research.
Finally, an experiment was also performed to demonstrate how the system could be ex-
tended for tele-robotic applications. The tele-robotic experiment successfully demonstrated

remote servoing and local task supervision.

188

Chapter 6

Conclusions

6.1 Summary Review

This chapter provides a summary of the results along with the conclusions and recommen-
dations for future work. The concept of a robust direct visual servo has been developed
in the preceding chapters starting with an introduction to the area of visual servoing in
Chapter 1. The following chapters have all focused on different aspects of the direct visual
servo culminating with the construction and testing of a working prototype in Chapter 5.
Chapter 2 focused on the details of the vision system which was designed to overcome the
limitation of 60Hz video by using multiple RS-170 cameras synchronized over a network.
Each camera is equipped with a computer to processes video at field rates and Principal
Component Analysis is used to determine the position of a planar robot. The effect of oc-
clusions on position measurement errors was simulated and a statistical relationship was
discovered between Euclidean distance in eigenspace and the position measurement error.
This insight became the key to sensor fusion in Chapter 3 where a non-stationary Kalman
filter was developed to weight the feedback from multiple cameras. The Kalman filter also
accounts for the transport delay in the vision system and provides timely state estimates

necessary for stable closed loop servoing. Chapter 3 also introduced detailed models of

189

the vision system, the servo motor, the amplifier, the position compensator, and the planar
robot. These models were used in simulation to predict the performance of a planar robot
‘using direct visual servoing. Chapter 4 describes the implementation of a working direct
visual servo to validate the simulation results of Chapter 3. Chapter 4 highlights numer-
ous practical hardware and software issues including the system bottlenecks that dictate
an upper limit to the number of cameras. Chapter 4 leads to the construction of a system
consisting of four cameras which is used to perform the various experiments described
in Chapter 5. The experiments focused on the transient step response, servo-hold perfor-
mance, and external disturbance rejection. The experiments were first run without any
occlusions then repeated under full and partial occlusions. Additional experiments demon-
strated the performance under varying illumination and illustrated local task supervision in

a tele-robotic application.

6.2 Results

Both simulated and experimental results are provided in Chapter 3 and Chapter 5 respec-
tively. All results are based on the direct visual servoing of a planar robot. The results are

summarized in the following subsections.

6.2.1 Simulation Results

The simulations predicted that the multiple synchronized cameras combined with a suit-
able Kalman filter could provide stable closed loop position control for a direct visual servo.
The simulations also demonstrated how increasing the number of synchronized cameras in-
creased the effective vision sample rate and improved the transient response time. Another
simulation that was performed predicted that the response to a disturbance input would re-

quire a time equal to the latency in the vision system before the controller could respond.

190

This is due to the fact that a disturbance input is an unmodelled event that cannot be an-
ticipated by the predictor. Finally, a modest occlusion was simulated and the estimated
positions were plotted for both the stationary and the non-stationary Kalman filter. The
stationary Kalman filter shows a large sensitivity to occlusions and the estimated position
exhibits large variations. In contrast, the position estimates produced by the non-stationary

Kalman filter remains much closer to the actual position in the presence of occlusions.

6.2.2 Experimental Results

Actual experimental results were also obtained for the direct visual servoing of a planar
robot using the implementation described in Chapter 4. The risetime of the step response
of the direct visual servo was experimentally shown to closely match that of a traditional
encoder based position loop and the simulated predictions. The response to an input dis-
turbance also closely matched the simulated results.

Experiments were performed introducing various occlusions ranging from full occlu-
sions in a subset of the cameras to partial occlusions in all cameras. The stationary Kalman
filter exhibited instability in the presence of full occlusions in one camera. In contrast,
a system employing a non-stationary Kalman filter maintained a stable servo-hold in the
presence of various occlusions. The step response of systems employing a non-stationary
Kalman filter in the presence of occlusions was stable but exhibited larger oscillations due
to the degraded feedback from the cameras. Likewise, the response to an external dis-
turbance remained stable in the presence of occlusions but with a poorer dynamic perfor-
mance. Yet another experiment demonstrated that the non-stationary Kalman filter also
shows promise for improved performance in the presence of small variations in illumina-
tion. In general, the experimental results demonstrate that a direct visual servoing system
employing a non-stationary Kalman filter is robust to occlusions.

Finally, an experiment was performed to demonstrate the tele-operation of the planar

191

robot. The results demonstrate that the proposed approach also holds promise for tele-

robotic applications and can provide a degree of local task supervision.

6.3 Conclusions

Several conclusions can be drawn from this work. The results confirm that the effective
vision sample rate of the system can be increased by using multiple network-synchronized
cameras. When combined with an appropriate Kalman filter, this approach provides a
system capable of direct visual servoing. The use of a non-stationary Kalman filter is rec-
ommended over that of the simpler stationary Kalman filter. All the results indicate that the
non-stationary Kalman filter is far superior in coping with noise and occlusions. The statis-
tical relationship uncovered between Euclidean distance and measurement error variance
predicted in simulation works well for improving the robustness of the system. However,
each new application will need to determine the constant factor m in equation 3.56 and the
maximum Euclidean distance over which this equation is valid. Before determining the
constant factor m, each new application will require the selection of a suitable sub-image
size and an appropriate number of eigenvectors based on position accuracy specifications
and available computational power.

The experimental results also manifest several advantages and shortcomings of this
approach to direct visual servoing. These aspects are summarized in the following subsec-

tions.

6.3.1 Strengths of the Approach

The advantages of this approach are numerous. Firstly, the system does not rely on any
proprietary hardware but uses off-the-shelf components. The approach uses flexible and
computationally efficient eigenspace vision methods which work for general objects and

backgrounds and require no camera calibrations. Also, the distributed computing power

192

provides scalable vision sample rates by selecting the number of vision nodes. The number
of vision nodes is only limited by the network and the processor utilization of the master
servo computer. Besides improving the visual sample rate, the multiple vision nodes pro-
vide a measure of redundancy allowing the system to continue functioning even when one
camera completely fails. This is evident in the experimental results when the robot con-
tinues to servo even when one camera is completely occluded. Besides being resilient to
partial failure, the use of multiple cameras improves the likelihood that when some cameras
are occluded that others may still have a clear view of the target object. Finally, the results

show that this approach is robust in the presence of noise and occlusions.

6.3.2 Shortcomings of the Approach

This approach also has some shortcomings. The Kalman filter predicts the state outputs to
reduce the effects of latency in the vision system and provide stable closed loop control.
The performance of the predictor is highly sensitive to modelling accuracy and a poor
mode! of the system will lead to inaccurate state estimates and reduced position accuracy
in the robot. The model used for feedforward is also critical. If the torque feedforward does
not match the amount required to hold the joint in a given position then the torque error
will be taken up by the position loop. This torque error will appear to the predictor like an
accelerating torque which will result in increased errors in the position predictions. Also,
the Kalman filter predictor cannot anticipate unmodelled target motion such as external
disturbances. This results in a delayed response to external disturbances due to the latency
in the vision feedback.

Another shortcoming of this approach is the difficulty in extending this work to robots
with multiple degrees of freedom. Multiple degrees of freedom imply a more comprehen-

sive learning phase when using eigenspace vision methods. This can become unwieldy

193

since the number of points on the manifold grows exponentially with the number of de-
grees of freedom of the robot. It is not practical to obtain training images for a typical six
degree-of-freedom robot for all robot positions. Therefore, for higher degree-of-freedom
robots, the training images may need to be limited to points surrounding predetermined
regions of interest.

Despite these shortcomings, with an appropriate number of off-the-shelf cameras and
computers, this approach shows promise for many high-speed vision applications such as

the direct visual servoing of many practical robotic systems.

6.3.3 Limitations on the Number of Cameras

Finally, this approach has some practical limitations as to the number of cameras that can
be supported as discussed in section 4.5. A 100Mbps Ethernet network has sufficient band-
width to support a maximum of 826 cameras. This number is reduced to 609 cameras if the
packet payloads are increased to support tele-robotic operations. However, the main limi-
tation turns out to be available processor time on the master servo computer. The processor
utilization on the master servo computer was exhausted long before the before the limita-
tion due to network bandwidth was encountered. The number of states (n) grow linearly
as the number of cameras (IN,) increase. The Kalman filter and controller computations
grow by O(n?) as the number of states increase. Subsequent analysis showed a limit of 14
cameras when using a 400MHz Pentium II processor for the master servo computer. This
corresponds to an effective visual sampling rate of 840Hz. This limit is not fixed but can

be increased by optimizing code and using faster processors.

6.4 Research Contributions

There are several distinctive aspects to this work. First, to be able to perform direct vi-

sual servoing without using any traditional position or velocity feedback to stabilize the

194

position loop is unique. The visual feedback is being used to directly control the motor
current and hence the torque without the use of any other sensors. Almost all the litera-
ture in visual servoing describes work based on the dynamic “look-and-move” approach
which relies on an inner position loop using traditional position sensors. Direct visual ser-
voing was selected because of the unique challenges it presents. Direct visual servo control
has the potential to achieve faster responses than “look-and-move” systems. Direct visual
servoing presents a variety of difficult practical and theoretical design problems including
overcoming slow vision sample rates and long transport delays. The direct visual servo
described is position-based and is characterized by the use of multiple fixed cameras and
planar positioning.

The use of multiple cameras synchronized over a network to increase the vision sample
rate is also novel. The technique has the further advantage that the visual sample rate
is completely scalable. Furthermore, the network-synchronized cameras do not rely on
eigenspace techniques and can therefore be employed with alternative vision algorithms
in traditional visual servoing applications. The techniques that were used to avoid packet
collisions and perform round-robin polling demonstrate how a common Ethernet network
can be adapted to provide deterministic performance for use in industrial control systems.

Although the use of eigenspace vision methods is not new, this work has addressed
the problem of occlusions and noise which are a particular challenge when employing
eigenspace methods. The determination of measurement error variance directly from Eu-
clidean distance provides an elegant means for employing a non-stationary Kalman filter.
Often the measurement error variance used in conjunction with a Kalman filter is difficult
to obtain and the practical issues of identifying them are seldom discussed in the literature.
The technique developed in this work provides a method for quickly computing the mea-
surement error variance which results in a system which is robust to noise and occlusions.

Finally, the tele-robotic extensions demonstrate how eigenspace methods can be used

195

to simultaneously provide position measurements and compress images for remote moni-
toring. The issue of local task supervision is also addressed by using information available
in the Euclidean distance and the Kalman filter.

Although this work explores a specific category of visual servoing, many of the re-
sults can be applied to other types of visual servoing or other machine vision problems.
For instance, the techniques used to increase vision sample rates can be applied to “look-
and-move” visual servoing to improve dynamic performance. The network synchronized
cameras can be applied to general high speed vision problems beyond visual servoing.
Likewise, the solutions in this work relating to issues associated with noise and long trans-
port delays are perennial problems in machine vision. In particular, the novel technique
for dealing with occlusions can not only be applied to any visual servoing structure but is

relevant to a wide variety of machine vision problems.

6.5 Future Work

The area of direct visual servoing as a whole is one branch in the taxonomy of visual servo-
ing which has received very little attention in the literature and is ripe for further research.
The lack of work in this area is due in part to numerous practical barriers including limited
video frame rates and the latency associated with image processing. This work has strived
to address some of these challenges and demonstrate a working concept for direct visual

servoing. However, there are numerous opportunities for future work in this area.

6.5.1 Future Theoretical Work

There are some recommended areas that could form the focus for future work. One ob-
vious research task would be to extend the eigenspace methods from the planar robot to
robots with more degrees of freedom. This is a challenging problem since the number

of points on the manifold grow exponentially with the number of degrees of freedom of

196

the robot. Therefore, new techniques will need to be found to support higher degree-of-
freedom robots.

Another area for further study is examining further the robustness to variations in illu-
mination. The problem of illumination is a perennial problem for machine vision in general
and any advances in this area would be welcome in many applications. This may involve
evaluating subspaces based on something other than Principal Component Analysis.

The accuracy of the state estimator could be improved by using additional available
feedback. There is observable state information that can be gleaned from within the servo
motor itself such as the back emf, The back emf can provide a low latency measurement of
motor velocity which could greatly improve position predictions and the response time to
external disturbances.

Other future work could rely more heavily on system simulation, especially if the simu-
lation models were improved. The servo motor model could be enhanced to include higher
order effects such as magnetic hysteresis, eddy current losses, armature reaction, and com-
mutation effects. The servo amplifier model could also be improved to include higher order
effects relating to the PWM control. These effects include power switch conduction and
switching losses and current loop dynamics. The physical model of the robot could also be
enhanced by more accurately modelling motor inertia along with the friction and windage
losses. Some of the improvements to the simulation models could then be incorporated into
the state predictor to improve the state estimates produced by the Kalman filter. The torque
feedforward could also be improved by modelling not only gravitational effects but other
forces such as the cogging torque due to the saliency in the motor poles. This would reduce
the state estimation errors produced by the predictor when the torque feedforward does not
exactly cancel the static forces on the robot.

Finally, there are opportunities for future work relating to visual servoing in the area of
tele-robotics. Some of the challenges include tele-operation over channels with long and

sometimes variable transport delays. The difficulties are compounded when a robot must

197

work in unstructured environments. The applications that could benefit from this research

include tele-medicine and space exploration.

6.5.2 Future Implementation Work

There are also several possibilities for future work which could focus more on various
implementation issues surrounding the network and the vision nodes.

There are numerous alternatives to using an Ethernet network. All video images are
processed within every vision node so the network is not required to transmit any large
video frames. The only information passing over the network consists of position and
Euclidean distance information. Since the packets consist of a modest 8 byte payload, the
network demands are small. This enables this technique to be implemented using networks
that have a small MTU (Maximum Transfer Unit) and modest bandwidths such as wireless
networks. The most important network attribute is deterministic delays since the Kalman
filter system model assumes a fixed transport delay. Consequently, this approach would be
suitable for use with with a variety of wireless protocols. Therefore, is is possible to create
a wireless network of vision nodes which would result in a reduction in wiring complexity
and enable remote control.

Finally, work could be done to consolidate all the components of a vision node into one
compact package. This package would constitute a “smart camera” that could be used to
form ad-hoc networks of intelligent visual sensors. Such intelligent cameras would be both
flexible and convenient. Each camera could be capable of training itself to perform pattern
recognition and report only the results back to a central host. As computers continue to
increase in performance and decrease in size and cost, the notion of a “smart camera” will

become increasingly attractive for a wide variety of machine vision applications.

198

Bibliography

1] T.E. Anderson, D.E. Culler, and D.A. Patterson. A case for NOW (Networks Of
Workstations). IEEE Micro Magazine, pages 54-64, February 1995.

[2] R.L. Andersson. Dynamic sensing in a ping-pong playing robot. IEEE Transactions
on Robotics and Automation, 5(6):728-739, December 1989.

[3] W.L. Bialkowski. Application of Kalman filters to the regulation of dead time pro-
cesses. IEEE Transactions on Automatic Control, AC-28(3):400-406, March 1983.

[4] G.M. Bone and D.W. Capson. Vision-guided fixtureless assembly of automotive com-

ponents. Accepted for the journal Robotics and Computer-Integrated Manufacturing.

[5] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly & Associates
Inc., 2001.

[6] R.G. Brown and P.Y.C. Hwang. Introduction to Random Signals and Applied Kalman
Filtering. John Wiley & Sons, third edition, 1997.

[7]1 G.C.Buttazzo, B. Allotta, and F.P. Fanizza. Mousebuster: A robot system for catching

fast moving objects by vision. In Proceedings of the International Conference on

Robotics and Automation, Atlanta, GA, May 1993. IEEE.

[8] S.Cass. Robosoccer: A new breed of robots takes to the playing field. IEEE Spectrum,
May 2001.

199

[9] F. Chaumette. Potential problems of stability and convergence in image-based and
position-based visual servoing. In D. Kriegman, G. Hager, and S. Morse, editors, The

Confluence of Vision and Control, volume 237, pages 66-78. Springer-Verlag, 1998.

[10] P. Corke, J. Roberts, and G. Winstanley. Vision-based control for mining automation.

IEEE Robotics and Automation Magazine, pages 44-49, December 1998.

[11] PL Corke and M.C. Good. Dynamic effects in visual closed-loop systems. IEEE
Transactions on Robotics and Automation, 12(5):671-683, October 1996.

[12] PI. Corke and S.A. Hutchinson. Real-time vision, tracking and control. In Proceed-
ings of the International Conference on Robotics and Automation, San Francisco, CA,

April 2000. TEEE.

[13] PIL Corke and S.A. Hutchinson. A new partitioned approach to image-based visual
servo control. IEEE Transactions on Robotics and Automation, 17(4):507-515, Au-
gust 2001.

[14] P.A. Devijver and J. Kittler. Patrern Recognition: A Statistical Approach. Prentice
Hall Inc., 1982.

[15] K. Dutton, S. Thompson, and B. Barraclough. The Art of Control Engineering.
Addison-Wesley, 1998.

[16] B.Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in robotics.

IEEE Transactions on Robotics and Automation, 8(2):313-326, June 1992.

[17] H. Nakai et al. A volleyball playing robot. In Proceedings of the International Con-

ference on Robotics and Automation, Leuven, Belgium, May 1998. IEEE.

[18] J.T. Feddema, C.S.G. Lee, and O.R. Mitchell. Weighted selection of image features
for resolved rate visual feedback control. IEEE Transactions on Robotics and Au-

tomation, 7(1):31-47, February 1991.

200

[19] J. Fortuna, D.C. Schuurman, and D.W. Capson. A comparison of PCA and ICA
for object recognition under varying illumination. In Proceedings of the International
Conference on Pattern Recognition, volume 3, pages 11-15, Quebec City, PQ, August
2002. IAPR.

[20] B.O. Gallmeister. POSIX.4: Programming for the Real World. O’Reilly & Associates
Inc., 1995.

[21] J.A. Gangloff and M.E. de Mathelin. High speed visual servoing of a 6 DOF manipu-
lator using mimo predictive control. In Proceedings of the International Conference

on Robotics and Automation, San Francisco, CA, April 2000. IEEE.

[22] G.D. Hager, G. Grunwald, and G. Hirzinger. Feature-based visual servoing and its
application to telerobotics. In Proceedings of the International Conference on Intelli-

gent Robots and Systems, Munich, Germany, September 1994.

[23] D. Halliday and R. Resnick. Fundamentals of Physics. John Wiley & Sons, second
edition, 1986.

[24] R.C. Harrell, D.C. Slaughter, and P.D. Adsit. A fruit-tracking system for robotic
harvesting. Machine Vision and Applications, 2(2):69-80, 1989.

[25] K. Hashimoto and H. Kimura. Visual servoing with nonlinear observer. In Proceed-
ings of the International Conference on Robotics and Automation, pages 484-489.

IEEE, 1995.

[26] K. Hashimoto and T. Noritsugu. Visual servoing with linearized observer. In Pro-
ceedings of the International Conference on Robotics and Automation, Detroit, ML,

May 1999. IEEE.

201

[27] C.C.W. Hulls and W.J. Wilson. Design of a real-time computer systems for relative
position robot control. In Proceedings of the Fourth Euromicro Workshop on Real-

Time Systems, pages 3843, June 1992.

[28] S. Hutchinson, G.D. Hager, and PI. Corke. A tutorial on visual servo control. JEEE
. Transactions on Robotics and Automation, 12(5):651-670, October 1996.

[29] IEEE, New York, NY. Portable Operating System Interface (POSIX) - Part 1: System
Application Program Interface (API) - Amendment 1: Realtime Extension [C Lan-
guage], 1994. IEEE Standard 1003.1b-1993.

[30] IEEE, New York, NY. IEEE Standard 802.3 Part 3: Carrier sense multiple access
with collision detection (CSMA/CD) access method and physical layer specifictions,
2002. IEEE Standard 802.3-2002.

[31] M. Ishikawa and T. Komuro. Digital vision chips and high-speed vision systems. In
Symposium on VLSI Circuits Digest of Technical Papers. IEEE, 2001.

[32] M. Ishikawa, A. Morita, and N. Takayanagi. High speed vision system using mas-
sively parallel processing. In Proceedings of the International Conference on Intelli-

gent Robots and Systems, Raleigh, NC, July 1992. IEEE/RSJ.
[33] J.E. Jackson. A User’s Guide to Principal Components. John Wiley & Sons, 1991.

[34] M. Jigersand, O. Fuentes, and R. Nelson. Experimental evaluation of uncalibrated
visual servoing for precision manipulation. In Proceedings of the International Con-

ference on Robotics and Automation, Albuquerque, NM, April 1997. IEEE.

[35] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Introduction to Machine

Vision. McGraw-Hill Ryerson Limited, 1995.

202

[36] R.E. Kalman. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME — Journal of Basic Engineering, pages 3545, 1960.

[37] IEEE Transactions on Automatic Control, Special Issue on Kalman Filter Applica-
tions, AC-28(3), March 1983.

[38] G.Kaplan. Ethernet’s winning ways. IEEE Spectrum, pages 113-115, January 2001.

[39] J. Krumm. Eigenfeatures for planar pose measurement of partially occluded objects.
In Proceedings of the Conference on Computer Vision and Pattern Recognition, pages

55-60. IEEE, 1996.

[40] A.Leonardis and H. Bischof. Dealing with occlusions in the eigenspace approach. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, pages

453-458. IEEE, 1996.

[41] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20:46-61, January 1973.

[42] E. Malis, F. Chaumette, and S. Boudet. 2-1/2-D visual servoing. IEEE Transactions
on Robotics and Automation, 15(2):238-250, April 1999.

[43] E.Malis, F. Chaumette, and S. Boudet. Multi-cameras visual servoing. In Proceedings

of the International Conference on Robotics and Automation, San Francisco, CA.,

April 2000. IEEE.
[44] S. Mann. Linux TCP/IP Network Administration. Prentice Hall, 2002.

[45] H. Murase and S.K. Nayar. Visual learning and recognition of 3D objects from ap-

pearance. International Journal of Computer Vision, 14(1), 1995.

203

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Y. Nakabo, M. Ishikawa, H. Toyoda, and S. Mizuno. 1ms column parallel vision
system and it’s application of high speed target tracking. In Proceedings of the In-
ternational Conference on Robotics and Automation, San Francisco, CA, April 2000.

IEEE.

S.K. Nayar, H. Murase, and S.A. Nene. Learning, positioning, and tracking visual
appearance. In Proceedings of the International Conference on Robotics and Au-

tomation, San Diego, May 1994. IEEE.

§.K. Nayar, S.A. Nene, and H. Murase. Real-time 100 object recognition system. In
Proceedings of the International Conference on Robotics and Automation, Minneapo-

lis, MN., April 1996. IEEE.

S.K. Nayar, S.A. Nene, and H. Murase. Subspace methods for robot vision. IEEE
Transactions on Robotics and Automation, 12(5):750-758, October 1996.

PR. Oliveira and R.E. Romero. A comparison between PCA and neural networks and
the JPEG standard for performing image compression. In Proceedings of the IEEE
Workshop on Cybernetic Vision. IEEE, 1996.

L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach. Morgan
Kaufmann Publishers Inc., 1996.

R. Ramshaw and R.G. Van Heeswijk. Energy Conversion, Electric Motors & Gener-

ators. Saunders College Publishing, 1990.

A.A. Rizzi and D.E. Koditschek. Progress in spatial robot juggling. In Proceedings of
the International Conference on Robotics and Automation, Nice, France, May 1992,

IEEE.

A. Rubini. Linux Device Drivers. O’Reilly & Associates Inc., 1998.

204

[55] A. C. Sanderson and L. E. Weiss. Image-based visual servo control using relational
graph error signals. In Proceedings of the International Conference on Cybernetics

and Society, pages 1074-1077. IEEE, 1980.

[56] D.C. Schuurman and D.W. Capson. Direct visual servoing using network-
synchronized cameras and Kalman filter. In Proceedings of the International Con-
ference on Robotics and Automation, pages 4191-4197, Washington, DC, May 2002.
IEEE.

[57] D.C. Schuurman and D.W. Capson. Video-rate eigenspace methods for position track-
ing and remote monitoring. In Proceedings of the Southwest Symposium on Image

Analysis and Interpretation, pages 45-49, Santa Fe, NM, April 2002. IEEE.

[58] Y. Shirai and H. Inoue. Guiding a robot by visual fedback in assembling tasks. Pattern
Recognition, 5:99-108, 1973.

[59] W. Stallings. Operating Systems. Prentice Hall, fourth edition, 2001.

[60] W.R. Stevens. UNIX Network Programming, volume 1. Prentice Hall, second edition,
1998.

[61] M.E. Stieber, M. McKay, G. Vukovich, and E. Petriu. Vision-based sensng and control
for space robotics applications. IEEE Transactions on Instrumentation and Measure-

ment, 48(4):807-812, August 1999.

[62] M.E. Stieber, C.P. Trudel, and D.G. Hunter. Robotics systems for the international
space station. In Proceedings of the International Conference on Robotics and Au-

tomation, Albuquerque, NM, April 1997. IEEE.

[63] A.S. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

205

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

F. Tendick, J. Voichick, G. Tharp, and L. Stark. A supervisory telerobotic control

system using model-based vision feedback. In Proceedings of the International Con-

ference on Robotics and Automation, Sacramento, CA, April 1991.

M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, pages 586-591. IEEE,
June 1991.

M. Uenohara and T. Kanade. Use of Fourier and Karhunen-Loé&ve decomposition for
fast pattern matching with a large set of templates. IEEE Transactions on FPattern

Analysis and Machine Intelligence, 19(8), August 1997.

Markus Vincze and Gregory D. Hager. Robust Vision for Vision-Based Control of
Motion. SPIE Optical Engineering Press and IEEE Press, 2000.

J. Wang and W.J. Wilson. 3D relative position and orientation estimation using
Kalman filtering for robot control. In Proceedings of the International Conference

on Robotics and Automation, pages 2638-2645, Nice, France, May 1992. IEEE.

C.R. Weisbin and G. Rodriguez. NASA robotics research for planetary surface explo-
ration. IEEE Robotics and Automation Magazine, pages 25-34, December 2000.

L.E. Weiss, A.C. Sanderson, and C.P. Neuman. Dynamic sensor-based control of
robots with visual feedback. IEEE Transactions on Robotics and Automation, RA-

3(5):404-417, October 1987.

D.B. Westmore and W.J. Wilson. Direct dynamic control of a robot using an end-point
mounted camera and Kalman filter position estimation. In Proceedings of the Interna-
tional Conference on Robotics and Automation, pages 2376-2384, Sacramento, CA,

April 1991. IEEE.

206

[72] W.J. Wilson, C.C. Williams, and G.S. Bell. Relative end-effector control using carte-
sian position based visual servoing. IEEE Transactions on Robotics and Automation,

pages 684-696, October 1996.

[73] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded systems. IEEE Computer,
pages 48-53, September 2002.

[74] J.L. Wyatt, D.L. Standley, and W. Yang. The MIT vision chip project: Analog VLSI
systems for fast image acquisition and early vision processing. In Proceedings of the
International Conference on Robotics and Automation, Sacramento, CA, April 1991.

IEEE.

[75] D.B. Zhang, L. Van Gool, and A. Oosterlinck. Stochastic predictive control of robot
tracking systems with dynamic visual feedback. In Proceedings of the International

Conference on Robotics and Automation, Cincinnati, OH, May 1990. IEEE.

207

