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bstract

This thesis explores two problems in target tracking and identification: (1) robust track
state filtering, and (2) decision-level identity fusion.

In the first part of the thesis, a novel finite-horizon, discrete-time, time-varying state
estimation method based on the robust semidefinite programming technique is proposed.
The proposed method is robust to norm bounded parameter uncertainties in the system
model as well as to uncertainties in the noise statistics. The robust performance of the
proposed method is achieved by minimizing an upper bound on the worst case variance of
the estimation error for all admissible systems.

In the second part of the thesis, two decision-level identity fusion models are proposed:
Similar Sensor Fusion (SSF) model and Dissimilar Sensor Fusion (DSF) model. In the SSF
model, sensors provide reports on a set of common characteristics of a target, and the fusion
objective is to find a fusion result which is most consistent with all the sensor reports. In
comparison, sensors in the DSF model explore different characteristics of a target. Their
reports are fused in a manner that leads to decreased uncertainty on the target identity. In
other words, these reports reinforce each other to generate increased certainty on the target
identity, rather than being averaged to minimize inconsistency. Furthermore, we propose
several fundamental principles for identity fusion, based on which all existing and future
identity fusion methods can be evaluated and compared.

For the SSF model, two fusion methods are proposed: Convex quadratic fusion method
and K-L fusion method. In the first method, inconsistencies between the fusion result and
the sensor reports are measured by quadratic functions, and the problem is formulated as a

convex quadratic programming problem. In the second method, Kullback-Leibler distance
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is used to measure the inconsistencies among the probabilistic sensor reports. The resulting
formulation leads to a generalized analytic center problem.

For the DSF model, we use a special objective function in the optimization formulation
to accumulate the physical characteristics on a target explored by each sensor. The resulting
fusion method involves solving an analytic center problem.

Compared with the two classical decision-level identity fusion methods: Bayesian infer-
ence method and Dempster-Shafer evidential inference method, the three new fusion methods
require no @ priori information on the target, and enjoy small computation complexity. In
addition, we show that the three new fusion methods, as well as the two classical methods,
all satisfy the fundamental principles for identity fusion. The performance of the proposed

fusion methods are illustrated in several numerical examples.

v



nowledgements

Ack

First T would like to thank my supervisor Dr. Zhi-Quan (Tom) Luo, whose enthusiasm,
encouragement and expert supervision were essential to the completion of this project.

Further more, I would like to express my sincere gratitude to my two other supervisors,
Dr. K. M. Wong and Dr. Eloi Bossé, for their supervision and encouragement.

I am also very grateful to Dr. Tim Davidson from the Department of Electrical and
Computer Engineering for his great assistance on numerous related research topics.

I am fortunate to be a member of the Advanced Signal Processing for Communications
group led by Dr. Luo and Dr. Wong. During my Ph.D. program I have learned a great deal
from my fellow group colleagues. I would like to thank the Department of Electrical and
Computer Engineering and its staff, especially Cheryl Gies and Helen Jachna, who solved
many of my non-research related problems. Also, I would like to acknowledge the financial
support provided by McMaster University and Defence Research Establishment Valcartier.

Last but least, I would like to thank my wife Xiang Lan and my whole family, their love,

understanding and support played an important role in me completing this project.



1 Introduction

1.1 Imtroductiontodatafusion. . . . .. ... ... .. ... . .
1.2 Multiple Target Tracking (MTT) .. ... .. ... ... .. ... ....
1.3 Identity fusion . . . . . . . . L Lo e
1.4 Major contributions of the thesis . . . . . ... ... ... ... ..., ...
1.5 Structure of the thesis . . . . . . . . . . . .. .. ...
1.6 Related publications . . . . .. ... ... ... . o

2 Robust Filtering via SDP for Target Tracking

2.1 Background . . . .. ... e
2.2 Problem formulation . . . .. .. .. ...
2.3 Robust semidefinite programming solution . . . . . .. ... ... ... ..
231 Therobust SDP. . . .. ... .. ... ... ... ... ..
2.4 Numericalexamples. . . . . . . . . . .. . e
2.4.1 Examplel . . . . . . e e e
2.4.2 A target trackingexample . . . . . ... ... L oo
2.5 Remarks . . . . . . e e e e e e e

3 Decision Fusion Models and Principles

3.1 Introduction to decision level identity fusion . . . . .. ... ... ... ...

3.1.1 Decision fusion problem . . . . .. ... ... Lo
3.2 Bayesian inference method . . . . . . . .. ... oL Lo
3.3 Dempster-Shafer evidential inference method . . . . . . . .. ... .. .. ..

vi

He RN e B i

11
12

13
13
16
24
26
31
31
34
36



3.4 Decision level identity fusion models . . . . . . .. ... oo 47
3.5 Degree of Confidence (DoC) . . . .. ... ... .. ... .. ... . ... 51
3.6 Decision fusion principles . . . . . . .. .. L oo e 52

3.6.1 Fundamental principle 1: fusion result consistency with single sensor
TEPOTE « o o v e e e e 52

3.6.2 Fundamental principle 2: fusion result consistency with different fusion

OTAEIS . . . v v e e e e e e e e e e e e e e 03
3.6.3 Fundamental principle 3: unbiasedness . . . . . ... ... ... ... 54
3.6.4 Fundamental principle 4: Sensor report reinforcement . . . . . . . .. 55

3.6.5 Fundamental principle 5: Asymptotic fusion result with identical sen-

SOT TEPOIES . . . . .« o o o i e e e e e e 60

3.7 Additional DoC principles . . . . . . . . ... . o 64
3.8 Two classical methods revisited . . . . ... .. ... . ... ... .. ... 65
3.8.1 Analysis of Bayesian inference method . . ... ... ... ... ... 65
3.8.2 Analysis of Dempster-Shafer evidential inference method . . . . . .. 69
Convex Quadratic Fusion Method 83
4.1 SenSOT TEPOTES . .« o v v v v it i e e e e e e e e e 83
4.2 Problem formulation . . . . .. . ... ... e 84
4.3 Degree of Confidence for the fusionresult . . . . .. . ............. 88
4.4 Appropriate sensor report form . . . . ... ..o oo 91
4.5 Fusion of Dempster-Shafer type sensor reports . . . . . . . .. ... .. ... 94
4.6 Robustnessanalysis . . . . . . . .. ... 96
4.7 Satisfaction of decision fusion principles. . . . . . . . . ... .. oL 99
4.8 Numerical example . . . . . . . .. L L e 108
K-L Fusion Method 110
5.1 Kullback-Leibler's measure of cross-entropy . . . . . . . . . . .. ... ... 110
5.2 SensorreportS . . . v . v o it e e e e e e e e e e e 111
5.3 Problem formulation . . . . . . . et e e e e 112

vii



5.4 Interior point method solution . . . . . . . . ... ...
5.5 Degree of Confidence for the fusion result . . . . .. . ... .. ... ... ..
5.6 Discussion on sensor report form . . . . . Lo Lo oo
5.7 Satisfaction of decision fusion principles. . . . . . . . .. ... 0oL

58 Numerical examples. . . . . . . . .« e

6 Analytic Center Fusion Method

6.1 Problem formulation . . . . . .. . . . .. e
6.2 Solving the analytic center formulation . . . . . .. ... ... .. ... ...

6.2.1 Primal-dual Newton procedure . . . .. ... . ... ... ......

6.2.2 Primal-dual potential algorithm . . . . . . . ... ... ... ... ..

6.2.3 Starting point for primal-dual potential algorithm . . . . . . . .. ..
6.3 Satisfaction of decision fusion principles . . . . . . .. . ... ... ...
6.4 Numerical examples. . . . . . .« . . L e

7 Fusion Using DRDC Valcatier Data Set

7.1 Introduction to DRDC Valcatierdataset . . . . . .. ... ... ... ...,
7.2 Fusion results and discussion . . . . . . . . . ... oo o

8 Conclusion and Future Work
81 Concludingremarks. . . .. . .. ...

82 TFuture work . . . . . L e e e e e e e e e e e e e e

A DRDC Valcatier Data Set

viil

131
131
135
137
138
139
141
156

160
160
163

169
169
171

173



2.1 Steady-state estimation error variances for different filters. . . . . . . .. .. 32

2.2 Steady-state estimation error variances. . . . . . . . ... ... ... 33
2.3 Steady-state estimation error variances for the tracking example. . . . . . . . 35
4.4 Fusion results for Example 4.8.1. . . .. ... . ... . . 109
5.5 Fusion results for Example 5.8.1. . . . .. .. ... .. oL 129
7.6 Examples of propositionsin Q.. . . . . ... o Lo oo 161
7.7 Theninthdatagroup. . . ... ... .. .. .. ... . ... 162
7.8 The transformed sensor reports in the ninth data group. . .. ... ... .. 163
7.9 Fusion results of all data groups. . . . . . ... ... L 164
7.10 Sensor reports in the fifth data group. . . . . . . ... ... ..o L. 165
AllDatagroup 1 (pagel). . . . . . . . . . 174
Al2Datagroup 1 (page 2). . . . . . . .. 175
Al3Datagroup 1 (page 3). . . . . . .o e 176
AldDatagroup 1l (paged). . . . . . . . . . 177
Al5Datagroup 1 {(page 5). . . . . . .. . e 178
Al6Datagroup 1 (page 6). . . . . . . . .. 179
Al7Datagroup 1 {(page 7). . . . . . . o e 180
A8 Data group 2. . . . . . i e e e e e 180
A19Datagroup 3 (PAage 1), « o o o ot e 181
A20Datagroup 3 (Page 2). . . . . . ... e 182
A21Datagroup 3 (Page 3). - « v v v i 183
A22Datagroup 3 {(page 4). . . . . ... 184

ix



A23Datagroup 3 (page b). . . . . . 185

A24Datagroup 3 (page 6). . . . . . .. 186
A25Datagroup 3 (page 7). . .« . o e 187
A26 Datagroup 3(page 8). . . . . . . .. 188
A27Datagroup 3 (page 9). . . . . . ... 189
A28 Data group 3 (page 10). . . . . . . ..o 190
A29 Datagroup 3 (page 11). . . . . . . ... 191
A.30 Data group 3 (page 12). . . . . . ... 192
A3l Datagroup4 (pagel). . . . .. . ... 192
A32Datagroup 4 (page 2). . . . . ... e 193
A33Datagroup 4 (page3). . . . . . ... e 194
A34Datagroup 4 (paged). . . . . . . 195
A35Datagroup 4 (page 5). . . . . . ... 196
A36Datagroupd (page 6). . . . . . ... 197
A37Datagroup 4 (page 7). . . .« i 198
A.38 Datagroup 4 (page 8). . . . . . . ... 199
A39Datagroup4 (page 9). . . . . . . e e 200
Ad0Datagroup 4 (page 10). . . . . . . .. ..o 201
A4l Datagroup4 (page 11). . . . . . . . .. 202
Ad2Data group 5. . . . . . .o e e 203
Ad3Datagroup 6. . . . . . .. L e 204
Add4Datagroup 7 (page 1). . . . . . . . L 204
Ad5Datagroup 7 (Page 2). . . . . . . . e e e 205
AdBDatagroup 8. . . . . . . .. e e e e e e 206
Ad7Datagroup 9. . . . . . . . e e e 207
Ad48Datagroup 10. . . . . . L L e 208
Ad9Datagroup 11. . . . . . L e 209
AB0Datagroup 12. . . . . .. L e 210
AbIDatagroup 13. . . . . .. Lo e 211
Ab2Datagroup 14. . . . . L L e 212



A.53 Data group 15.

xi



1.1
1.2
2.1
3.1
7.1
7.2
7.3
7.4

Functional blocks of a typical MTT system. . . ... .. ... ... .. ... 5

Identity\fusion architecture with two sensors. . . . . . . . . .. .. .. ... 8
Target trajectories: ¢ = —0.05 (left), 6 = 0 (middle), § = 0.05 (right). . ... 34
Architecture of decision level identity fusion. . . . . . . . .. ... ... ... 38
Convergence comparison: data group 4. . . . . . . .. .. ... .. 166
Convergence comparison: datagroup 8. . . . . . .. ... . ... ... .. 166
Convergence comparison: datagroup 14. . . . . . . ... .. ... .. ... 167
CPU time: data group 4. . . . . . . . . o o v i e 168



Introduction

1.1 Introduction to data fusion

With the rapid development and proliferation of sensor technology, it is now possible to
gather large amount of information in real time from a multitude of information sources.
Such information must be processed (or fused) appropriately in order to generate an optimal
decision or estimation. This process is usually called data fusion.

Data fusion has existed in the natural world for a long time. Human brains, for example,
fuse five different kinds of information (sight, sound, smell, taste and touch) from five human
sensors (eyes, ears, nose, tongue and skin) to achieve various fusion results. These fusion
results range from identification and tracking of subjects, understanding of the surrounding
environment, to movement control and so on. With training (experience from the past),
human brains normally achieve optimal fusion results in real time with almost no error.
Many data fusion techniques are developed to emulate the fusion process of human brains.

A multi-sensor system with data fusion can offer many benefits over the traditional single
sensor systems. In the simplest sense, a multi-sensor system usually has larger space-time
coverage over a single sensor system. This is because that in a multi-sensor system, when a
target is out of the space-time range of one sensor, it may be sensed by another sensor. The

other major benefits of multi-sensor systems include:

e increased detection performance: information from different sensors can be efficiently
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fused to improve the detection performance of the system;

e increased confidence: information from one sensor can be confirmed and reinforced by

other sensors:

e increased robustness and reliability: the system will still function with the failure of

some sensors, despite having a reduced performance.

Data fusion has been used in many different applications. Its earliest and (still) the
biggest application is in the military domain. Here data fusion is used in air-to-air and
surface-to-air defense, ocean surveillance, battlefield command, control, communication and
intelligence, strategic warning and so on. Various tasks, including detection, identification
and tracking of targets, battlefield situation assessment, threat analysis, fire control and
intelligence collections, use data fusion to process information from sensors. In the non-
military domain, data fusion has been used in remote sensing (to fuse information from
satellites), medical diagnosis, robotics (to identify objects, interpret the environment, etc.),
weather prediction, air traffic control, automatic manufacturing and so on.

Data fusion is a relatively new area of research which, at present, spans across a collection
of several well established disciplines. The multidisciplinary nature of data fusion stems
from the diversity of the data fusion applications and enables the application of various
techniques. The major techniques used in data fusion include: statistics, signal processing,
pattern recognition, artificial intelligence, expert system and information theory.

According to the widely accepted functional model developed by Joint Directors of Lab-

oratories Data Fusion Sub-panel, data fusion can be divided into three levels of processing:
e Level-1: position and identity estimation,
e Level-2: military situation assessment,
e Level-3: hostile force threat assessment.

Among the three levels of processing, Level-1 is the most mature level and is relatively
well-developed in theory as well as in practice. Level-1 processing involves mostly numerical

methods such as linear and nonlinear estimation, pattern recognition and statistical analysis.
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In comparison, Level-2 and Level-3 are less mature and typically use symbolic reasoning
methods such as those from artificial intelligence.

Level-1 processing has four different fusion objectives: data alignment, data association,
target tracking and target identification. Data alignment transforms multiple sensor inputs
into a common space-time reference frame. Data association separates multiple sensor inputs
into different groups according to target identities. Target tracking combines observations of
positional and velocity data from a single sensor or multiple sensors to estimate position and
velocity of a target. Finally, target identification fuses identity declarations or parametric
information related to identity.

Level-2 processing involves situation abstraction and situation assessment. Situation
abstraction represents the situation in a generalized way based on the fusion results from
Level-1. Situation assessment interprets and expresses the situation, and in military context
provides fusion results on plans of action, force distribution, enemy objectives and so on.

Once Level-2 processing has generated situation abstraction and assessment, Level-3
processing proceeds to determine the possible consequences and appropriate responses. In
military context, this involves the assessment of vulnerability of “our force” when being
attacked by the “enemy force”, or the lethality and risk when “our force” attacks the “enemy

force”.

1.2 Multiple Target Tracking (MTT)

The basic principle of Multiple Target Tracking (MTT) was first recognized by Wax [1].
Since then great progress has been made in this field. The major breakthroughs during this
process include the paper by Sittler [2] which provided a Bayesian formulation background
for the later developments, and the papers by Bar-Shalom [3,4] and Singer [5, 6] which
combined correlation and Kalman filtering theory and initiated the development of modern
MTT technology. So far, many MTT systems have been developed for various applications,
all showing remarkable capabilities. The classic books by Bar-Shalom [7] and Blackman [8]

provide an excellent introduction and reference to MTT.
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Roughly speaking, a MTT system consists of a (group of) tracking sensor(s) and a track-
ing processor. A tracking sensor provides kinematics measurements on targets in its surveil-
lance region. The measurements are usually inaccurate, and there is generally no indication
to which target a measurement belongs. There also exist measurements which belong to
no target, but are results of noise and enemy jamming signals. Using the provided mea-
surements, the tracking processor estimates the kinematics parameters of each target and
maintains a trajectory for it, which is called “track” of the target. The classical tracking
theory is based on the so-called Tracking-While-Scanning {(TWS) model in which the track-
ing sensor provides kinematics measurements periodically. A typical example of the TWS
model is the traditional radar system whereby a radar scans its surveillance region period-
ically, providing updated measurements on a target each time it is hit by the radar beam.
The word “scan” in MTT theory is therefore used to represent the arrival time of a group
of new measurements provided by a tracking sensor.

Figure 1.1 gives a representation of a typical MTT system with the following func-
tional blocks: measurement formation, gating, data association/correlation, track state fil-
tering /predication and track management.

Specifically, the output data from the tracking sensor is first processed by the measure-
ment formation block. Here, the data first undergoes a target detection procedure to separate
targets from noise, the output of which consist of kinematics measurements of the targets
or simply called observations. Two kinds of observations are possible: observations which
belong to true targets, and false alarms which are the results of background noise sources,
system thermal noise and possible enemy jamming signals. It is generally assumed that one
target generates only one observation at any time, and one observation can correspond to
only one target.

The output observations from the measurement formation block goes through a two-stage
processing to form a single observation for each target and its track updating. The first stage
of the processing is depicted as the gating block in Figure 1.1. This block determines for
each observation whether it is a candidate for a track update or an initial observation for
a potential new track. Usually, for each target we form a “gate” which is a neighborhood

region centered at the most likely place predicted from the previous scan. Gating is then
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performed by comparing the observations with these gates. If an observation is within the
gate of a target, it is considered as a candidate for updating the track of this target. On the
other hand, if an observation is outside all the gates of existing targets, it is treated as an
initial observation for a potential new track. Note that the first stage processing can generate
multiple observations per gate and an observation may fall into multiple gates. Moreover, it
is possible that no observation exists in a particular gate. The task of determining a single
observation for updating a track is accomplished by the second stage of the processing, the
so-called data association/correlation block in Figure 1.1. Specifically, this single observation
can be the most likely observation among the candidates in a given gate, or a combined new
observation from some or all of the candidates.

After data association and correlation, the unique observation associated with each target
is processed by some adaptive filtering method in the track state filtering/prediction block
to update kinematic parameter estimates for this target. A predicted observation for the
next scan as well as its uncertainty are then computed for each target. This information
is used to create the gate for this target in the next scan. In the case that no observation
exists for a certain target, the parameter estimation and prediction are performed based on
previous data.

The track management block in Figure 1.1 is responsible for track initiation, confirmation
and deletion. Usually, observations not used to update the existing tracks are used to initiate
new tentative tracks. The tentative tracks are either confirmed as new tracks or discarded
through a confirmation procedure using observations from subsequent data scans. When a
track terminates or moves out of the surveillance region of the tracking sensor, it no longer
generates any observation. The lack of observation associated with an existing track can be

used as evidence to terminate this track.

1.3 Identity fusion

Another important objective of Level-1 data fusion processing is target identification.
Here, sensor data is processed to obtain identity estimates of targets. In military applications,

these identity estimates may be in the form of either a target class (e.g., friend or foe),
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membership within a class (e.g., F-18 or MIG-29), or specific “serial number ” within a
class.

Let us first take a look at the process of target identity declaration using a single sensor.
In typical military applications, the sensor can be a radar, an Infrared (IR) sensor, a video
camera and so on. The resulting radar cross-section data, infrared or visible spectra, or
imagery data are then processed to extract features on the target such as size information,
kinematics parameters, movement pattern and shape patterns. In the end, an identity
declaration is made through a pattern recognition process.

When there are multiple sensors capable of making ideritity estimates on a target, identity
fusion is needed to combine identity information from the sensors to obtain a joint identity
declaration. In general, the identity declaration obtained through identity fusion should be
more specific and accurate than that from any individual sensor.

Identity fusion can be performed on three different levels: raw data level (before target
feature extraction), feature level (before target identity estimation), or decision level (after
target identity estimation). These choices are shown in Figure 1.2 in an illustrative two-
sensor identity fusion configuration. The choice of at which level to perform fusion depends
upon a number of factors such as sensor type and gquality, available computing power, data
transmission capability, required operator intervention, and most importantly, optimization
of the fusion result.

Compared with MTT, target identification is a much broader problem. Physical models
for identity declaration are generally very difficult to develop and often do not exist. So far,
numerous technigues have been proposed, most of which are heuristic and lack mathematical
rigor. Moreover, there is no universal way to compare and evaluate the existing identity
fusion methods. This has in fact hindered the development of new fusion techniques.

The existing identity fusion techniques can be roughly classified into three categories:
physical models, parametric classification and cognitive-based models. In principle, Physical
model methods make identity declarations by matching the actual data with certain phys-
ical models. Unfortunately, such physical models, though conceptually possible, are very
difficult to obtain. Parametric classification methods make identity declarations based on

parametric data without the help of any physical models. Methods within this category
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include classical inference, Bayesian inference, Dempster-Shafer evidential inference and in-
formation theoretic methods. Finally, cognitive-based model methods attempt to mimic
the human reasoning process to make identity declarations. Methods within this category

include logical templates, expert systems and fuzzy set theory.

1.4 Major contributions of the thesis

This thesis studies the Level-1 data fusion problem. The major contributions of the thesis
are twofold: (1) robust track state filtering via semidefinite programming, (2) decision level
identity fusion models, principles and new fusion methods.

As introduced in section 1.2, in the track state filtering/prediction part of a target track-
ing system, adaptive filters are deployed to update (for each scan) track states using new
observations. The most popular adaptive filter used here is the Kalman filter. When the
system model and noise statistics are known accurately, Kalman filter achieves optimal fil-
tering in the minimal mean squared error sense. However, in applications including target
tracking, there exist uncertainties in the system model and noise statistics. Under such cir-
cumstances, Kalman filter may suffer substantial performance loss. Therefore, it is necessary
to develop filtering methods which are robust to small deviations in the system model and
noise statistics.

In the first part of the thesis, a robust filtering method based on the robust semidefinite
programming technique is proposed. The method is robust to norm bounded parameter
uncertainties in the systemn model and noise statistics. Its robust performance is achieved
by minimizing an upper bound on the worst case variance of the estimation error for all
admissible systems. Our method is recursive in the sense that each subproblem has a fixed
size, and it guarantees robust performance with respect to uncertainties that are known to
lie within a certain a priori bounds. The latter is in contrast to the earlier robust H*
designs which accommodate all bounded energy uncertainties and therefore often lead to
overly conservative solutions. From simulation results, the new method compares favorably
in performance with some of the existing robust filtering approaches [11,21,23]. When

applied to target tracking, the new method has led to a significant improvement in tracking
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performance.

The second part of the thesis focuses on the decision level identity fusion problem using
parameter classification techniques. Here, the most widely used methods in the literature
are Bayesian inference and Dempster-Shafer evidential inference theory [30,33]. The former
method is well developed in statistical decision theory, but requires the knowledge of a priori
distribution of the possible identity propositions as well as the knowledge of the conditional
probabilities of all possible sensor reports. Such a priori knowledge is difficult if not impos-
sible, to obtain. In contrast, Dempster-Shafer evidential inference does not require such a
priori knowledge. However, it suffers from exponentially growing computational complexity.
It is highly desirable to develop new fusion methods which can overcome the drawbacks of
the existing methods. Moreover, a more important issue in identity fusion is the lack of
a common framework in which fusion methods can be evaluated and compared with each
other. In our opinion, this is a major problem in the development of new identity fusion
methods.

In this thesis, we propose a theoretical framework for decision level identity fusion. This
framework includes two fusion models and several decision fusion principles with which we
can evaluate existing and future fusion methods. Specifically, two decision-level identity
fusion models are proposed: Similar Sensor Fusion (SSF) model and Dissimilar Sensor Fu-
sion (DSF) model. In the Similar Sensor Fusion model, sensors provide reports on a set of
common characteristics of a target, and the fusion objective is to find a fusion result which
is most consistent with all sensor reports. In comparison, sensors in the Dissimilar Sensor
Fusion model explore different characteristics of a target. Their reports are fused in a man-
ner that decreases the uncertainty in target identity. In other words, these reports reinforce
each other to increase the certainty on the target identity, rather than being averaged to
minimize inconsistency. In addition, we propose several identity fusion principles. These
principles are based on mathematical characterizations of some common requirements of
identity fusion systems such as reinforcement requirement. The aforementioned two classi-
cal fusion methods: Bayesian inference and Dempster-Shafer evidential inference, are both
for the DSF model. We also establish that these two methods satisfy the identity fusion

principles.
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In addition, we propose three new decision level identity fusion methods, two for the SSF
model and one for the DSF model. All three methods have been shown to satisfy the identity
fusion principles as outlined above. In addition, they are highly efficient computationally
and require no a priori knowledge of the targets.

Specifically, the two fusion methods for the SSF model are based on convex quadratic
formulation and K-L formulation respectively. The basic idea of these two methods is to rep-
resent the inconsistency between the fusion result and each sensor report by a cost function,
and to minimize the sum of all the cost functions. The difference between the two methods
lies in the choice of cost functions: the first method uses convex quadratic functions, while
the second method uses Kullback-Leibler distance measure to construct the cost functions.
It turns out the K-L formulation leads to a generalized analytic center problem in linear
programming, while the former corresponds to a convex quadratic programming problem.
Both problems can be efficiently solved by interior point methods.

For the DSF model, a new method based on analytic centers and convex optimization is
proposed. Although this new method is also optimization based, it differs from the previous
two in that its objective function no longer represents inconsistencies between the fusion re-
sult and sensor reports. Instead, here the objective function has a special form to accumulate
knowledge on a target explored by sensors. As a result, sensor reports reinforce each other
through the minimization of the objective function to decreases the uncertainty in target

identity. The resulting fusion method involves solving an analytic center problem.

1.5 Structure of the thesis

The thesis is structured as follows. In Chapter 2, the tracking filtering problem is studied,
and the robust semidefinite programming filtering method is proposed. In Chapter 3, the
two decision level identity fusion models as well as the identity fusion principles are proposed.
Also given in this chapter are the proofs that the two classical decision level identity fusion
methods, Bayesian inference and Dempster-Shafer evidential inference, satisfy these decision
fusion principles. Chapter 4 formulates the convex quadratic fusion method for the SSF

model. This is followed by Chapter 5 where another fusion method for the SSF model, the



CHAPTER 1. INTRODUCTION 12

K-L fusion method, is presented. In Chapter 6, a new fusion method called the analytic
center fusion method is proposed for the DSF model. Chapter 7 provides fusion examples
using data provided by Defence Research and Development Canada (DRDC) Valcatier. The

conclusion and possible extensions of the thesis are given in Chapter 8.

1.6 Related publications

Part of the research results presented in this thesis has been published. The research
results in Chapter 2 has been published on SIAM Journal on Optimization in 2002 [35]. Part
of Chapter 4 has also been published both in the Proceedings of SPIE Symposium on Sensor
Fusion in 1999 and IEEE Transactions on System, Man, and Cybernetics in 2001 [36, 37].



Robust Filtering via SDP for Target
Tracking

2.1 Background

Target state estimation, which typically includes state filtering and predication, is a
basic part of a target tracking system. As introduced in section 1.2, target state estimation
uses output observations from the data association/correlation block to estimate and predict
target kinematics parameters such as position, velocity and acceleration.

In classical target tracking theory, state filtering and prediction is solved as an adaptive
filtering problem using the standard discrete-time linear state-space model. This model can
be written as

z,., = Fiz,+ Gy, z,given,
B i %o 8 (2.1.1)

y, = Hiz;+1, 120,

=4

where F; € R**®, G; € R"™ and H; € RP*" are known matrices which describe the dynamic
system, and z; describes the state of the system at time 4, while u; and y; denote the process
and measurement noise terms, respectively. In a target tracking system, gz, consists of the
kinematics parameters of the target which is estimated using observation y's. A popular

solution to this problem is given by the Kalman filter [14,16,19] which, under some standard

13
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assumptions on the statistics of the noise sources and initial state, recursively updates a
minimal mean squared error (MMSE) estimator Z; of the state z;. Such MMSE estimator
minimizes the trace of the error covariance matrix £{(z; — £;)(z; — £;)7}, where & denotes
the statistical expectation. Moreover, the Kalman filter is recursive and computationally

efficient. In its ‘innovation form’, the Kalman filter is given by
i =¥+ Kx, (21 - Hz@.z)a Z, =0, (2.1.2)

where the so-called ‘Kalman gain matrix’ Kx; can be computed via the following (analytic)

recursion

KK,i = FZP,Hi (Rz + H,’Png’)—l 3
Q: 0 GY (2.1.3)

Py = (F; — K H;) P; (F; - K H)" + [Gi —KK,,;]

where Q; = £{uul } and R; = £{v,vT} are the noise covariance matrices. (The statistical
assumptions made here are stated in section 2.2.) The matrix P; in the recursion is the error
covariance matrix £{(z; — #;)(z; — £;)¥}. However, one drawback of the Kalman filter is that
it requires the precise knowledge of the system matrices F;, G; and H;, and noise covariances
Q; and R;, because even a small deviation from the ‘nominal’ values of these matrices can
induce substantial performance loss in the Kalman filter. As a result, the Kalman filter
can be ineffective in practice especially when we are faced with imprecise knowledge of the
dynamic system mode, or in other words, when the matrices F;, G, and H, are only known
approximately. This sensitivity of the Kalman filter has led researchers to tackle robust
filtering problems, in which the objective is to design estimators which provide acceptable
performance in the presence of uncertainties in the models of the dynamic system and the
noise.

One approach for robust filtering is that of H* filtering (see [13] and references therein).
In that approach no statistical model of the disturbances u; and »; is employed; they are
merely assumed to have finite energy. The idea is to obtain an estimator which minimizes

(or, in the suboptimal case, bounds) the maximal energy gain from the disturbances to the
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estimation errors. This modelling paradigm also allows us to incorporate unstructured uncer-
tainties in the dynamic system model (2.1.1) (see for example [12,25]). An advantage of the
H*®® approach is that the solution closely resembles the Kalman filter, and can be efficiently
implemented. Therefore, in applications where statistical knowledge of the disturbances and
information regarding the structure of the modelling uncertainties are difficult to acquire,
H<> filters are appropriate choices. Unfortunately, when the system model and the noise
processes are known quite accurately, the Kalman filter may actually perform substantially
better than the H* filter. This is because the uncertainty model for the H* filter is unstruc-
tured, and hence the H* filter may be attempting to provide robustness to disturbances and
modelling errors which rarely, or never, occur, at the expense of filter performance in the
presence of more likely disturbances and modelling errors. In many applications including
target tracking, we have some knowledge on the structure of the uncertainties in the system
model and partial knowledge of disturbance statistics. It is natural to expect that careful
incorporation of this knowledge into the estimator will lead to appreciable improvement in
estimator performance. A major challenge is to determine whether this can be done in a
computationally efficient manner. From recent work in the control field, it appears that
determining filters which provide optimal robustness to highly structured uncertainties can
be computationally expensive [9].

An alternative to the Kalman and H* filtering methods is to find a ‘robust Kalman filter’
which minimizes (an upper bound on) the variance of the estimation error in the presence
of a system model with norm-bounded structured parametric uncertainty and bounded un-
certainty in the noise statistics. Models of this type are common in control theory (e.g., [15]
and references therein), and are particularly appropriate in the context of target tracking.
Previous approaches to this problem, with no uncertainty in the noise statistics, have been
based on analytic recursions on some performance bounds [21,23]. Note that robust H®
designs which bound the worst case error energy gain in the presence of the same system
model uncertainties are also available [17,24].

In this chapter we derive a new robust filtering algorithm using the recently developed
robust semidefinite programming (SDP) technique [10]. The new method is recursive in

the sense that the subproblem solved at each step depends on the solution at the previous
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step, and is computationally efficient since each subproblem is a semidefinite program of a
fixed size which can be efficiently solved by an interior point algorithm. We demonstrate the
performance of the novel algorithm in a standard benchmark example and in a target tracking
example, and show that it can provide superior performance to the existing approaches to
this particular problem [21,23], and to the Kalman and H* approaches. Our work shows
that the robust SDP technique and the interior point algorithms [20,22] can bring about
substantial benefits to a practically important engineering problem. Note that the research
results presented in this chapter has been published in [35].

Throughout this chapter, for a square matrix X, the notation X > 0 (resp. X < 0)

means X is symmetric and positive semidefinite (resp. negative semidefinite).

2.2 Problem formulation

Consider the following time-varying, discrete-time, uncertain linear state-space model

Ly = [Fi -+ AF;’] z; + Gy, zo,
Yy = [Hi+AHi]§i+y_ﬂ 7’207

Z4

(2.2.4)

where F; € R G; € R*™™™, and H; € RP*", are known matrices which describe the
nominal system. The matrices AF; and AH; represent the parameter uncertainties in the
dynamic model. They are assumed to have the following structure:
AF; Cy;
Y= | M| ZE; with 277 <1, (2.2.5)
A:Eie CZ,i
where C;; € R, Cy; € RP*", and BE; € R" are known matrices. We remark that
the above model (2.2.5) of uncertainties has been used extensively in the robust control
literature, (e.g., [15] and references therein). The process noise {u,}, the measurement noise
{v;}, and the initial state z, in model (2.2.4) are all assumed to be random. These random

variables have known mean values, which we can take to be zero without loss of generality,
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and partially known covariances, as follows:

Uy Uy
3 y.] ? (226)
Lo £y

where ¢;; denotes the Kronecker delta function that is equal to unity for ¢ = j and zero
elsewhere, Q; = Q; + AQ; and R; = R; + AR,. The matrices Q; € R™*™, R; € RP*?, and
I, € R™*" are assumed to be known and describe the nominal second order statistics of the
noise and the initial state. The matrices AQ; and AR, represent the uncertainties in the

noise statistics and satisfy the following bounds:
-l < AQ; <el, —ed<AR; <€l (2.2.7)

Notice that when there is no uncertainty in the system model (2.2.4), namely ¢ = 0 and
E; = 0, then we recover the standard linear time-varying state-space model (2.1.1).
Let us use ©; = {AQ;, AR;, Z;} to denote the uncertainty variable at stage ¢ and define

the uncertainty region at stage ¢ as
; = { ©; : ©; satisfies (2.2.5) and (2.2.7) }. (2.2.8)

The problem is to estimate the state-sequence {z;, ¢ > 0}, or some linear combinations of
these sequences {s; = L;z;,¢ > 0} where L; is a known matrix, from the corrupted mea-
surements. The goal of the robust filter is to provide a uniformly small estimation error for
any process and measurement noise satisfying (2.2.6) and (2.2.7) and for all admissible mod-
elling uncertainties satisfying (2.2.5). These a priori bounds on the uncertainties represent
the designer’s partial knowledge of the noise statistics and system model. They are to be
incorporated into the problem formulation to guarantee robust performance.

To formulate the robust filtering problem, consider the following form of state estimator

Zip = A + Ky, — Hidy), 2,=0, (2.2.9)
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where A;, K; are filtering matrices to be determined, and £, denotes the estimate of the state
z;. The above estimator is written in an innovation form that is similar to the structure of
the Kalman filter given in (2.1.2). Notice that we use the nominal innovation (y. — Hig;),
even though AH,; may be nonzero. This structure is used for convenience, but it is general
enough to generate all the full-order estimators, since A; and K, are free parameters. The
goal of a robust filtering algorithm is to choose these free parameters to minimize (a function
of) the estimation error covariance £{(z; — £,)(z; — £,)"}-

To express that goal precisely, we consider the following augmented system, which rep-

resents the cascade of the system in (2.2.4) and the estimator in (2.2.9):

Zi = [Fi+ CiZE] 2, + G, (2.2.10)
where
Z; U, - F;0 = G0
ii = 3 Ei = 3 F'i = y G’z = y
-@—i Y, KZH,Az — K@Hz OKi
(2.2.11)
- Cl,i _
Cz = 3 Ei = {Ez 0]
K;C,;

Note that the state vector of the cascade, Z,, contains both g; (the states of the model) and
the estimates Z;, and hence the dimension of the state vector is doubled. The Lyapunov
equation that governs the evolution of the covariance matrix I; = £{%,Z7} can be written

as
Zi+1 = [Fg -+ C,ZQE,] p3 [ﬁz + CiZiEz']T + GiW,-G;f", (2212)

where W; = blockdiag (Q;,R;). The error covariance P;,; can be obtained from equa-

tion (2.2.12) by pre-multiplying (I - I] and post-multiplying [I — 17 e,

Pia= Fiziﬁ‘? + GiQiG? + KiRiK?, (2.2.13)
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where

~

F;= [ (F; + C1,Z;E; — K,H; — K,C,,Z,E;) (K,H, — A)) } , (2.2.14)

Now the finite-horizon robust state estimator problem can be stated as follows:
PROBLEM. At each stage i, choose the filiering matrices {A;}:_y and {K;}i_, so as to

minimize the worst case weighted error covariance matriz DP;.;; i.e.,

min max Tr(DP;y), (2.2.15)

Kj,A;Yi<i ©;60; %<4

or equivalently

i max Tr (DI ~gzft -17). (2.2.16)
where Tr(-) denotes the trace of a matriz (), and D € R™*" is a positive semidefinile
weighling matriz.

We have stated the robust state estimation problem in a rather general weighted form
which includes many special cases. If we wish to estimate {z;}, then choosing D = I will
suffice, whereas to estimate {s; = L;z;}, then choosing D = L;L{ will suffice. We can also
weight the estimation accuracy of the states as desired, or add additional terms to D, as long
as it remains positive semidefinite. As we will observe later in section 2.4, adding additional
terms to D may improve the numerical stability of the finite horizon filtering solutions.

The above minimax formulation is intended to incorporate robustness into the filter
solution. In particular, Tr (DP;,), as recursively defined by (2.2.13), depends on all the
uncertainties Oy, . .. , ©; as well as on the filtering matrices Ky, Ay, ... , K;, A;. The maximal

weighted trace of P44,
max Tr (DPH-I):

o;en; Yi<i
represents the worst case weighted error covariance when subject to the prescribed uncer-
tainties. Therefore, the goal of robust filter design is to select the filtering matrices so that

the worst case weighted error covariance is minimized.
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As given by (2.2.15) or (2.2.16), the robust filter design problem is non-linear and non-
smooth, hence is computationally difficult. Furthermore, the problem apparently lacks con-
vexity which is essential in the development of computationally efficient algorithms. A
further difficulty with the formulation (2.2.15) or (2.2.16) is that it is non-recursive, in the
sense that the problem dimension increases linearly in ¢. This non-recursive feature makes
it necessary to solve from scratch for the filtering matrices Ky, Ag, ... ,K;, A; at each stage
1, which is clearly undesirable and impractical.

In practice, we typically fix Kg, Ag,... ,K;_1, A;_; at stage 7 and solve only for K;, A;.
But such simplification only partially fixes the problem since the uncertainties ©g,... ,0;
still enter into the maximization of Tr (DP;,), indicating that the problem dimension still
increases linearly with ¢. Qur objective is to reformulate the problem (2.2.15) in a recursive
way such that at each stage i, we only have to determine K;, A; by solving a subproblem
with a fixed dimension (i.e., independent of 7).

To reformulate the problem (2.2.15), we consider a sequence of matrices
{Pi.‘,l(K,‘,Ai) = 1, 2, N }

which are not dependent on the uncertainties {©; : ¢ = 1,2,...}. These matrices will serve
as upper bounds for the covariance matrices {£;;; : 7 = 1,2,...} which are dependent on
the uncertainty vectors {©, : i = 1,2,...}, as well as on K;, and A;. In particular, we will

have
DKy Aj) > g, VO €, i=1,2,.... (2.2.17)

There are, of course, many choices for an upper bound I'; ;1 (K, A;) which satisfies (2.2.17).
Our objective should be to choose the one which, together with some K; and A;, will yield

the minimal weighted error covariance DP;,;. By the relation
T
P = [ I -1 ] Zit1 [ I I ] , (2.2.18)

we see that an upper bound on 2;,; naturally leads to an upper bound on P, ;. Thus we



CHAPTER 2. ROBUST FILTERING VIA SDP FOR TARGET TRACKING 21

can approximately minimize DP,;,; by minimizing the trace of the matrix
T
D [ I -I ] i (K Ay) { I -1 ]
which is an upper bound of DP;;;. In particular, we choose I';,;, K;, and A; to

T
minimize Tr (D { I I ] L { I - } }
(2.2.19)
subject to I'j1q, K;, A, satisfying (2.2.17).

The optimization problem (2.2.19) involves the constraint (2.2.17) which involves all of
the uncertainty vectors {©; : ¢ = 1,2,..} and {K;,A; : i = 1,2,...}, thus making the
amount of computation increase with ¢. To resolve this issue of dimensionality increase, we
shall define the constraint recursively as follows. Specifically, let b > 0 be a chosen scalar
bound and let £y = 4. For i > 0, suppose ¥;, an upper bound on ¥;, has been computed
and is already available. Consider the following minimization problem in the matrix variables

{Tis1, Ki, A}

subject to Tir > [Fi + CiZE] & [Fy + C:z.B]” + GW.GF, ve,eq, (2220
)

Tr(Ti1) <0

We choose ¥,;,; to be the optimal value of [yt in (2.2.20). Therefore our reformulation
of (2.2.15) can now be stated as the following;:

RFORMULATION OF THE ROBUST FILTERING PROBLEM. Let SG = Yg. For each i > 0,
compute, recursively, the matriz 2, , and the robust filtering matrices A; and K; as the
minimizing solution of (2.2.20).

We remark that the second constraint in (2.2.20), Tr (T';41) < b, is used to ensure that the
matrix I';;; is bounded. This is important because otherwise the optimal solution of (2.2.20),

%41, may become progressively ill-conditioned as ¢ becomes large. An alternative way of
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preventing ill-conditioning is to impose the following structure on I'; 4,

T+0 T _ .
Uiy = _ 1, for some symmetric matrices [, ', (2.2.21)

a1}
=

and to use the following constraint:
Tr (1) > 8 Tr (D), (2.2.22)

where 8 > 0 is a constant. The above structure (2.2.21) for I';;; mimics the structure of
the joint covariance matrix of the state of a system and its optimal estimate in the Kalman
sense, and is maintained in [21]. The bound (2.2.22) is used to ensure that the condition
number of T';,; does not become unbounded when I' and I' become large. Indeed, notice

that

=
et
e

I+

+

I

, (2.2.23)

I o 10
Lipp =
0

Tl|I11

|

r 0 I
so we only need to bound the condition number for the matrix blockdiag{l’,'}. By the above
factorization of I';,; and the fact that the right hand side of the first constraint in (2.2.20)
is bounded from below by a positive definite matrix, we obtain that blockdiag{l’,T'} is
bounded from below by a positive definite matrix. Thus, the smallest eigenvalue of the
matrix blockdiag{l’, '} is bounded away from zero. In the meantime, the constraint (2.2.22)
and the fact we are minimizing [" implies the largest eigenvalue of the matrix blockdiag{f, r'}
is also bounded. This implies the boundedness of the condition number of I';; at optimal
solution.

As a result of above discussion, we have the following alternative formulation (to (2.2.20)):

minimize Tr (D [ I —I ] Tint [ [ _1 }T)
SUbjeCt to Fi-{—l 2 [?i -+ @z’zéEé] iz’ [Fz + C,’Z@'EJT -+ G,’Wigrf, ¥ @i & Qh (2224)

;41 satisfying (2.2.21) and (2.2.22).
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In the remainder of this chapter, we will focus on the first formulation (2.2.19), but that the
second formulation (2.2.24) can also be treated in an analogous fashion.

We point out that the dimension of problem (2.2.20) is fixed rather than growing linearly
with i. Moreover, it will be shown that (2.2.20) is convex and can be reformulated as a
semidefinite program. The latter can be solved very efficiently via interior point methods [18,
20,22]. Before we explain how to solve (2.2.20), we need to show that ¥; defined by (2.2.20)

does provide an upper bound for £;, for all i > 0. We have the following theorem.

Theorem 2.2.1 Let £y = Zg. Fori > 1, let ; be defined (2.2.20). Then there holds

>, V6;€Q,, j=1,2,..,i—1. (2.2.25)

Proof. The theorem can be proved by mathematical induction. In particular, for i = 0,

we have &g = Zo. Suppose (2.2.25) holds for i = k. Since Zj41 is the optimal solution
of (2.2.20), it follows from the constraint of (2.2.20) that

Sin > [Fr+ CLZiBy) 4 [Fi + CiZeEr]” + GiWiGE, VO e (2.2.26)
By the inductive hypothesis we have
Ti>%, VO, €Q, j=1,2,..,(k-1). (2.2.27)
Combining this with (2.‘2.26) we obtain

2k+1 > [Fk + @kZpEk} g [Fk + @kaEki{T -+ kakég,
= Zg41, v @j € Qj: i=1,...,k, (2228)
where the last step is due to (2.2.12) for the particular value of ©; which represents the

actual error in the model. This completes the induction proof. O

In common with the existing approaches to the finite-horizon robust filtering problem,
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we do not have a sufficient condition for the convergence of the estimator 2; as ¢ tends
to infinity. However, we now provide some necessary conditions. (These conditions are

analogous to those in [21].)

Theorem 2.2.2 Suppose the system (2.2.4)—(2.2.7) is time invariant in the sense that the
data matrices H;, Cy;, Cy;, Gy, E;, R; and Q, are fixed and independent of i. Then
the solution &; converges to some & only if the set of uncertain systems (2.2.4)-(2.2.5) is

guadratically stable.

Proof. Let u; and vy, be zero. By the constraint (2.2.20) and the fact that = %, we

have
$> [F+CZE| £ [F+CZE]", VZ with |Z] < 1. (2.2.29)

This shows that the augmented linear system (2.2.10) is quadratically stable. This is because
the above relation easily implies that the quadratic Lyapunov function V(Z,1) = ~Z; 2Z; > 0
and that for all admissible systems, V(Z,i + 1) < V(Z,4) if the process noise &; = 0.
By construction, g, is a component of Z;, therefore the quadratic stability of (2.2.10) (in
this time-invariant case) implies the quadratic stability of {2.2.4)-(2.2.5) for all admissible

systems. O

2.3 Robust semidefinite programming solution

In this section, we shall develop a semidefinite programming (SDP) [22] formulation for
the robust state estimator problem (in particular, the problem (2.2.20)). This will then allow
for efficient numerical solutions via recent interior point methods.

We begin by noting that the finite-horizon robust state estimator problem (2.2.20) has a
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constraint of the form

(2.3.30)

which contains an uncertainty vector ©; = (AQ;, AR;, Z;). Recall that W; = blockdiag(Q;+
AQ;, R; + AR,), and that by (2.2.7), we have

—el < AQ; <el, —el<AR; <l (2.3.31)

Therefore, by choosing the upper-bound for W, the constraint (2.3.30) holds for all ©; =
(AQ;, AR,, Z;) € €); if and only if the following holds

iy > [Fi + CZE] & [Fi + CZE] + GW,GT, V Z; with |Z] <1,  (23.32)

W, = blockdiag(Q; + €I, R; + €I). (2.3.33)

We re-arrange the above inequality as follows:

T, Y 0 . .7
Tiv1 — [Fi + CZE; Gi] _ [F,; + C,Z;E; Gi] >0, VZ;:||Z] £ 1.
6 W,
(2.3.34)
By the Schur complement, the above constraint is equivalent to
Nt 0 (F;+CZE)
0 w;t GT >0, VZ; with ||Z;]] < 1. (2.3.35)
(F; + CZE) G Fina

Note that both &; and W, are positive definite and hence invertible.

For each fixed Z; with ||Z;|| < 1, the above constraint (2.3.35) is a so-called linear matrix
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inequality (LMI) in the matrix variables {T';;1, A;, K;} which is convex. (Recall that the
matrix variables {A;, K;} are buried, linearly, in F;, G, and C;.) Thus the feasible region
described by the above constraint is the intersection of convex regions described by an infinite
number of linear matrix inequalities parameterized by Z;. This implies the feasible region
of (2.2.20) is convex. It is now clear that the original robust filtering problem (2.2.20) is

equivalent to

T
minimize Tr (D [ I -1 } | [ I —I } >
subject to {1, A;, K;} satisfying (2.3.35), (2.3.36)

Tr (Tiz1) < b.

The formulation (2.3.36) is given as an SDP, except that the data matrices are subject to
uncertainty Z;. Therefore it cannot be solved by standard SDP methods. The constraints
in (2.3.36) imply that the solution must remain feasible for all allowable perturbations. This
is precisely the intent of a robust filter solution. An SDP problem for which the data matrices
are uncertain is called a robust SDP. In the next subsection, we introduce a technique for
converting a robust SDP into a standard SDP which can then be solved efficiently by the

recent interior point methods.

2.3.1 The robust SDP

Semidefinite programming is a convex optimization problem and can be solved in polyno-
mial time using efficient algorithms such as the primal-dual interior point methods [18,20,22].

An SDP consists of minimizing a linear objective subject to an LMI constraint,

minimize cfa
q (2.3.37)
subject to B(a) = By + Z%Bk > 0,
k=1
where ¢ € RY, a = (04,0,...,0,)7 and the symmetric matrices By = Bj € R k=

0,...,q, are some given data matrices. In our case, these data matrices are subject to
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uncertainty. We can incorporate some linear uncertainty in B(q) in the following way: Let

B{g, A) be a symmetric matrix-valued function of two variables @ and A of the form
B(a, A) = B(a) + NAM(a) + M(a)TATNT, (2.3.38)

where B(a) is defined in (2.3.37), N and M(q) are given matrices, A is a perturbation which
is unknown but bounded. We define the robust feasible set by

A={aeR?|B(g,A) >0 for every A with [|A]| < 1}. (2.3.39)

The robust Semidefinite Problem is then defined as

minimize ‘o

(2.3.40)
subject to «a € A.

The following lemma shows how such a robust SDP can be solved using a conventional
SDP. It is a simple corollary of a classical result on quadratic inequalities referred to as the

S-procedure and its proof is detailed in [10].

Lemma 2.3.1 Let B = BT, N, and M be real mairices of appropriate size. We have
B +NAM + MTATNT > 0 (2.3.41)

for every A, ||A]| < 1, if and only if there exzists a scalar p such that

B - pNN7 MT
> 0. (2.3.42)
M pl
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As a consequence, the robust semidefinite problem (2.3.40) can be formulated as the following

standard SDP in variables o and p:

minimize ca

subject to {B(g_) ~ PNNE M(Q)T} > 0. (2389
M(a) I

We now return to the problem (2.3.36) and factorize the LMI constraint matrix (2.3.35)

according to the structure in (2.3.38). In such factorization, the decision variable ¢ of (2.3.38)

will correspond to a concatenation of the elements of the matrix variables I';;4, A; and

K; of (2.3.35), and the perturbation A of (2.3.38) will correspond to Z; of (2.3.35). The

factorization is given by:

¥t o FT
B@=| o W &r |, (2.3.44)
Fz Gi Fz—}—l
where
_ F; 0 N G; 0 - Q:+el 0
F,; = ; Gi = P Wi = Q -~ y (2345)
KéH,; A..L' has K,;Hi 0 K¢ 0 Ri + el
and
0 0 (CZE)”
NAM(a) + M(a)TATNT = 0 © 0 (2.3.46)
C,Z;E; © 0
with

(2.3.47)
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The matrices N and M(qa) are given by

M(a)=[0 0 CI, CLKF|, N= . (2.3.48)

Now we are in a position to apply Lemma 2.3.1 to convert the robust SDP (2.3.36) to the
following standard SDP in the variables I';;1, A;, K; and p:

minimize Tr (D [ I -1 } Lita [ I -1 ]T>

B(a) — pNNT M(a)T
subject to (o) —p (@) >0, (2.3.49)
M(a) pl
Tr (I‘H—l) § b7

where the variable o contains columns of the matrices I';;;, K; and A;, and the matrices
B(a), N and M(q) are given by (2.3.44) and (2.3.48), respectively.

Note that, for each i, the problem (2.3.49) is fixed in dimension (i.e., does not grow
with 7). It is a standard SDP problem which has a unique solution and satisfies the usual
regularity condition provided that the primal and dual of (2.3.49) are strictly feasible and
for every o, M(a) # 0 and [ N M%{(a) ]T is full column-rank. As such, the problem
can be solved very efficiently by an interior point method, in particular, by the homogeneous
self-dual method [18,20]. In our computational experience, the number of iterations required
to solve each SDP is fixed (no more than 8), and therefore the proposed technique can be
regarded as a recursive filtering method.

To make a formal comparison of the computational complexity of our robust filtering
method with those of [21,23], we need to recall the notations of our model (2.2.4): n de-
notes the number of states, m denotes the number of inputs, and p denotes the number of

measured outputs. Then, Xie’s method [23) is a “one-shot” method, and hence the robust
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observer matrix is only calculated once. The cost of this computation is O((n + p)°*). How-
ever, Xie’s method [23] works only for time-invariant systems. On the other hand, Theodor’s
method [21] is iterative. The cost per iteration O((n + p)® + n’*m). Our method is also it-
erative. Using a general purpose interior point Semi-definite programming solver requires
O ((n +m+p)* (n?+ np)2> per filtering iteration. It is interesting to examine the above
costs as the number of states in the model, n, grows. In that case, the total computational
cost of Xie’s method [23] is O(n®), while the the cost per (filtering) iteration of Theodor’s
method [21] and our proposed method are O(n?) and O(n®®) respectively. It is also inter-
esting to examine the above costs as the number of measured outputs, p, grows. In that
case, the total cost of Xie’s method [23] is O(p®), while the cost per (filtering) iteration of
Theodor’s method [21] and our method are O(p®) and O(p*®) respectively. We believe it
is possible to reduce the complexity per iteration for our method by exploiting the sparsity
structure present in our problem. This is interesting issue for future investigation.

We now make an observation regarding the scaling of the matrices C; and E;. In partic-
ular, these two matrices can be scaled and replaced by C;/u and uE; respectively. Such a
scaling does not change the formulation of (2.3.36), nor does it affect the formulation (2.3.49),
because the latter is completely equivalent to the former. This shows that the solutions to
our reformulated robust filtering problem are independent of the scaling factor p. This
property is in contrast to the robust filter proposed in [21] where the solutions are “highly
sensitive” [21] to the choice of i. The scale invariance of our method with the choice of u is
a clear advantage.

However, our method also has a disadvantage in that it is sensitive to the choice of b in
the second constraint in (2.3.49), Tr (T';11) < b. This constraint is used to ensure that the
matrix I';;; is bounded. This is important because otherwise the optimal solution of (2.3.49),
Y11, may become progressively ill-conditioned as i becomes large. This phenomenon has
been observed in computer simulations. In general, large values of b will allow the matrices
{Z; : i = 1,2,..} to become rather ill-conditioned, while small values of b may render
the subproblem (2.3.49) infeasible. The same remark applies to the alternative formula-
tion (2.2.24) where a value of § > 0 needs to be selected. Through computer experiments

we found both formulations led to filters with similar behavior and performance.
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2.4 Numerical examples

In this section, the performance of the proposed robust state estimation method is illus-
trated via simulation results. Two numerical examples are given here, the first one is the

same problem as that used in [21,23], and the second one is a target tracking problem.

2.4.1 Example 1

In this example the following discrete-time linear uncertain state-space model is used

0 —0.5 —6
Ty = z; + ui, 16| < 0.3,
1 146 1
Y = [—100 10] z; + g, (2.4.50)
so= [10|as

where u; and v; are uncorrelated zero-mean white noise signals with variances = 1 and
R =1, respectively. The value of € in (2.2.7) is set to zero, so that there is no uncertainty

in the knowledge of noise statistics. The uncertainty in (2.4.50) is described by the matrices
C,=1{0 10]%, C;=0, E=[0 0.03] (2.4.51)

and the scalar parameter z, |z] < 1.

To determine the robust filter at each instant i, we use the MATLAB toolbox SeDuMi {20]
to solve the robust SDP (2.3.49). This code requires no initialization since it is based on the
self-dual formulation of the SDP. Solving the SDP (2.3.49) at each instant ¢ with b = 900
and D = diag(1,5) yields a robust state estimator {of the form (2.2.9)] which converges to

—0.1711 -0.4624 —0.0051
A= and K= . (2.4.52)

1.4080 1.1786 0.0047

Note that for stability reasons the estimator weights (as seen in D) the second component
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Filter §=-036=016=03
Nominal Kalman filter 551.2 | 36.0| 8352.8
Nominal H* filter 96.0 | 47.2 893.9
The robust filter of [21] 51.4| 51.3 54.4
The robust filter of [23 64.0 | 61.4 64.4
The robust filter of [11] 51.5 | 49.1 53.8
Proposed robust filter 46.2 | 45.6 51.9

Table 2.1: Steady-state estimation error variances for different filters.

of z, more heavily than the first component even though the goal is to estimate the first
component of z,. In our simulation studies, the proposed technique is compared with the
Kalman and H® filters and the robust filters of [21,23]. For this purpose, steady-state
Kalman and H® filters are designed for the nominal system of (2.4.50), i.e., § = 0. We then
apply these filters to system in (2.4.50) with § = 0, § = 0.3 and § = —~0.3. The steady-
state estimation error variances (i.e., £{(s; — §;)*} for sufficiently large ¢) for the filters are
displayed in Table 2.1 where results are averaged over 100 runs. It is clear from the table
that the proposed robust filter performs far better than the nominal Kalman and H™ filters
in the presence of modelling error.

Both our method and the methods of [21,23] require the tuning of a certain parameter. In
our case, we need to adjust the parameter b in order to prevent the iterates from becoming
ill-conditioned, and the diagonal elements of D in order to get the best estimator. The
methods of [21,23] require the adjustment of the factor 4 in the scaling of C;/u and pE;.
Our experiments suggest that our method works for b € [880, 5000], while the method of [21]
converges for p € (0,1.703], and diverges for values outside this range. The best performance
is achieved with g = 1.703. (Note that the authors of [21] reported their choice of y = 2.2,
but our own implementation of their method showed this value of u leads to divergence
instead.)

The filter performance for the robust filter of [23] stated in Table 2.1 is quoted from [21].
We should point out that we could not reproduce the design of the robust filter {21} using
their design method. With our own (simple) Matlab implementation of their method, we

could only produce a filter with (g = 1.703) whose error covariances are 51.4, 51.3 and 54.4,
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Filter d=-0096=0|d6d=0.09
The robust filter of [11] 37.75 | 38.19 41.47
Proposed robust filter 37.38 | 37.78 40.31

Table 2.2: Steady-state estimation error variances.

rather than 46.6, 45.2 and 54.1 (as claimed in [21]) for model errors of § = —0.3, 0 and 0.3,
respectively. From Table 2.1, we can see that the performance of the robust filters [21, 23]
are inferior to the filter designed by the robust SDP method: the worst case performance
(for 6 = —0.3, O; 0.3) is 51.9 for our proposed robust filter, and is 54.2 and 64.4 respectively
for the robust filters of [21] and [23]. From this example, it appears that our robust filter
design is slightly superior.

Recently our approach has been further extended by Fu etf. al. [11] who introduced
multiple scaling factors in the SDP formulation and showed performance improvement when
compared to the single scaling factor case. It should be pointed out that the single scaling
factor case of [11] corresponds to the algorithm considered in this thesis, except that we
have an additional boundedness constraint Tr(I';;;) < b in our SDP subproblem (2.3.49).
We simulated the single scaling factor case of {11] in Table 2.2 for comparison. From the
simulation results, our method is slightly superior to the method of [11] in the single scaling
factor case. This is due to the differences in the way the ill-conditioning of the bound on
the covariance matrix is handled. The simulation results stated in [11] are for C; = [0 3]T
(instead of C; = [0 10]T), which means the simulated cases in [11] have only 30% of the
uncertainty considered in Table 2.1. We also compared our method with the method of [11]
for the case C; = [0 3]7, and the simulation results show that our method is still slightly

superior to the method of [11] (Table 2.2).
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Figure 2.1: Target trajectories: § = —0.05 (left), § = 0 (middle), § = 0.05 (right).

2.4.2 A target tracking example

In this example a target tracking case is considered. The discrete-time state-space model

is given by
095 —0.1+494¢ 1
Ziyy = z; + u;, |6] < 0.05,
0.05 0.95 1
Yi = {1 O] z; + v, (2.4.53)
8 = [1 O} L,

where u; and v; are uncorrelated zero-mean white noise signals with variances Q = 1 and
R = 1, respectively. The value of € in (2.2.7) is set to zero, so that there is no uncertainty

in the knowledge of noise statistics. The uncertainty in (2.4.53) is described by the matrices
C,=10.05 0]F, C;=0, E=[0 1], (2.4.54)

and the uncertainty parameter z, |z| < 1.

In this model, the state vector z, represents the position of a target in a two-dimensional
coordinate system, and the observation y; is a noise-corrupted version of the first coordinate.
The target is making a counter-clockwise turn starting from the position z, = [500,500]%.
The unknown parameter ¢ describes the uncertainty in the turning rate of the trajectory.

Three possible trajectories from this model are shown in Figure 2.1.
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Filter §=-0056=0]|6=0.05
Nominal Kalman filter 6425.2 1.4 | 11404.0
The robust filter of [21] 199.7 | 53.6 703.5
The robust filter of [23] 1309.6 | 666.9 549.2
Proposed robust filter 187.9 1 52.8 693.4

Table 2.3: Steady-state estimation error variances for the tracking example.

Solving the SDP (2.3.49) for each value of 1, with b = 1100 and D = diag(1,7) yields a

robust state estimator [of the form (2.2.9)] which converges to

0.9500 —0.1016 0.7560
A= and K = . (2.4.55)

0.0500 0.9644 0.0130

We have compared our method with the methods of [21,23], as well as the nominal Kalman
filter. The is shown in Table 2.3 where results are averaged over 100 runs. From the
simulation results, it appears that the filter designed by our method is superior to the filters
obtained via the methods of {21,23]. In designing the filters by the methods of [21,23], we
have adjusted their corresponding adjustable parameters (e.g., the parameter u in the scaling
of C;/p and pE;), and picked the filters which generate the best performance guarantees.
The method of [23] requires an additional parameter, denoted ¢ in [23] to be tuned. We
tuned this parameter to a value of 10 in our implementation. Note that, in the presence of
uncertainty, the nominal Kalman filter performs far worse than the robust filters, as expected.

We have also compared our robust filter design to the robust filters of [21,23] in higher
dimensional cases. We found that the relative steady-state performance of these filters is
similar to that in the above examples. From computational standpoint, our method is quite
efficient as the semidefinite program solved at each instant has a fixed dimension and the
interior point method used to solve it is fast. However, our method does incur a greater per-
sample computational cost than methods based on analytic recursions, such as the Kalman
filter and the robust Kalman filter in [21]. (The robust filter in [23] is a ‘one-shot’ filter which
does not vary with ¢.) For example, on a 200MHz Pentium Pro workstation, using a general

purpose SDP solver [20] under the MATLAB environment, the per-sample computation time
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of our method in the above examples was around 1s, where as that of the method in [21]
was around 5ms. (Recall, however, that the performance of the method in [21] is “highly
sensitive” to the parameter which must be tuned.) In future work, it will be useful to design
special purpose interior point algorithms which exploit the matrix structure of the SDP
in (2.3.49) to reduce the per-sample computational complexity of our new method. Such
a reduction of computational complexity is essential if one is to implement the proposed

robust filtering algorithm on a DSP (digital signal processing) chip for a real time filtering

application.

2.5 Remarks

In this chapter, we proposed a new state estimator for linear uncertain systems. The
method is robust to norm bounded parameter uncertainties on the system model as well as
bounded uncertainties on the noise statistics. In the new technique, the estimation problem
was formulated as a convex optimization problem, which is then solved using the recent
primal-dual self-dual interior point method. This requires at most 8 iterations (or matrix
inversions), and therefore, can be regarded as a recursive filtering method. The formulation
guarantees the existence of robust solutions via a semidefinite program and, under some
conditions, the solution to that semidefinite program is unique. The proposed technique
compared favorably with the well known Kalman and H* filters and the ‘robust’ filters
of {21,23]. When applied to the problem of target tracking, the new method has led to a

significant improvement in tracking performance.



Decision Fusion Models and Principles

3.1 Introduction to decision level identity fusion

As introduced in Chapter 1, identity information can be fused on three levels: data
level, feature level and decision level. Among these levels, decision level identity fusion
(decision fusion) fuses identity estimates from individual sensors to generate joint target
identity declarations. Figure 3.1 illustrates the basic architecture of decision level identity
fusion through a configuration of N sensors and a fusion center. Here, the N sensors make
observations on a target. Each sensor performs feature extraction and identity estimation,
and sends its resulting identity estimates on the target (called a sensor report) to the fusion
center. The fusion center then performs decision level fusion on these sensor reports to
develop the final joint identity declaration (called a fusion result).

Compared with fusion on the other two levels, decision level identity fusion has advantages
such as requiring minimal data transmission between the fusion center and individual sensors,
and less processing at the fusion center. In addition, it can fuse information from different
types of sensors, which is impossible on the other two levels. Decision level identity fusion

has been used in many applications including:
e multiple-sensor target detection,

e threat-warning system on tactical aircraft to identify targets,

37
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Figure 3.1: Architecture of decision level identity fusion.
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e naval and aerial target identification system on battle ship,
e image processing for robotic vision.

The most widely used decision level identity fusion approaches in the literature are
Bayesian inference method and Dempster-Shafer evidential inference method [30,33]. The
former is well developed in statistical decision theory, but requires the knowledge of a prior:
distribution of the possible identity propositions as well as the knowledge of conditional prob-
abilities of all possible sensor reports. Such a priori knowledge is difficult, if not impossible,
to obtain. In contrast, Dempster-Shafer evidential inference method does not require such a
priori knowledge. However, it suffers from exponentially growing computational complexity.
It is highly desirable to develop new fusion methods which can overcome the drawbacks of
these existing methods.

A more important issue in identity fusion is the lack of common framework in which
fusion methods can be evaluated and compared with each other. In our opinion, this is a
major problem in the development of new identity fusion methods. A common framework
for decision fusion may consist of some fusion models, each associated with a number of
fusion principles characterizing the model. With such a framework, fusion methods can
be categorized under fusion models, and their performance can be evaluated and compared
using the fusion principles.

In the following we will formulate the decision fusion problem, after which detailed dis-
cussion on Bayesian inference method and Dempster-Shafer evidential inference method will

be given in sections 3.2 and 3.3.

3.1.1 Decision fusion problem

Suppose there are a set of NV exhaustive and mutually exclusive propositions for the

target identity,

Q={a,...,ax} (3.1.1)
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For example, these propositions may take the form

( a; = the target is a friendly fighter,

as = the target is a friendly bomber,
4 (3.1.2)

as = the target is a hostile fighter,

Q= the target is a hostile bomber.

A sensor report may consist of some subsets of (2 and associated likelihood values. In
addition, a sensor report may be associated with a so-called Degree of Confidence (DoC)
value if the sensors have varying degree of reliability. A DoC value is typically represented as
a non-negative number. The objective of decision fusion is to generate a fusion result which
assigns appropriate likelihood values to subsets of £} based on available sensor reports.

For example, suppose (0 = {ai,a,,as,a4}, where the g;’s are given by (3.1.2). Also
suppose that there are two sensors, each sending a sensor report to the fusion center. Let
the report from sensor 1 (denoted by D; for “decision from sensor 17) be given by D; =
{Pi(Q) = 0.3, Pi(a1 V az) = 0.7}, where Pi(a; V a3) denotes the probability assigned to
the disjunction of propositions a; and a3, and P;({2) denotes the probability assigned to the
whole set which represents the uncertainty in report D;. This report indicates that sensor
1 believes with 0.7 probability the target is a fighter, and with 0.3 probability the target
identity is uncertain (can be any proposition in §1). The report from sensor 2 is in the
same probability form, given as Dy, = {P(Q2) = 0.2, Py(a3 V a4) = 0.8}. These two sensor
reports can be fused by Dempster-Shafer evidential inference method (to be explained later

in section 3.3), which yields the following fusion result:
Df = {Pf(Q) = 006, Pf(al vV ag) = 014, Pf(ag) = 956, Pf(ag A% a4) = 024} (313)

Note that D; consists of probability assignments to subsets of {). Here the suffix f denotes
that the probability assignments are from the fusion result.
In this thesis, a sensor report is denoted by the notation D; where 7 is a pumber. A

probability assignment to subset w in report D; is denoted by P,(w). Similarly, a fusion
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result is denoted by Dy, and a probability assignment to subset w in Dy, is denoted by
Py, (w)

We also define two fusion modes as follows.

e Sequential fusion mode

The fuston result is achieved by fusing the sensor reports in a sequential manner. Each

time a new sensor report is fused with the current interim fusion result.

e Batch fusion mode

For a group of sensor reports, their fusion result is obtained by fusing all the reporis

simultaneously.

The two fusion modes may be jointly used in decision fusion. For example, we can separate a
group of sensor reports into some sub-groups, obtain intermediate fusion results for the sub-
groups using the sequential fusion mode, then fuse these intermediate fusion results using
the batch mode to reach the final fusion result.

Note that if a fusion method can operate in the batch fusion mode, it can also operate
in the sequential fusion mode. However, there are fusion methods which can only operate in
the sequential fusion mode because of their inability to fuse more than two sensor reports at
the same time. Such methods cannot operate in the batch fusion mode.

Obviously, for the sequential mode, only a interim fusion result needs to be maintained
for future fusion steps, while in the batch mode all sensor reports (or some functions keeping
identity information in these reports) need to be kept. Consider a scenario where new
sensor reports arrive in a dynamic fashion. The sequential fusion mode will fuse each new
report one at a time with the current interim fusion result, while the batch mode will fuse
all available sensor reports simultaneously. Intuitively, it seems that the sequential fusion
mode has the advantage of requiring less memory and/or computation than the batch fusion
model. However, in practice this may not be true, since keeping a interim fusion result
may not be more memory efficient than keeping all the sensor reports. A good example is
Dempster-Shafer evidential inference method (to be introduced in section 3.3) in which a

interim fusion result may have more subsets in its representation than the total of all sensor
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reports and thus requires more memory to maintain. Moreover, replacing individual sensor
reports with a interim fusion result aims to data compression which can result in the lose of
important information on the history of the target and on the surveillance system. Secondly,
from the computational point of view, it is not necessarily true that the sequential mode is
more efficient than the batch mode since some fusion methods have the same computational
complexity when they try to fuse two or more sensor reports. See for example, the convex
quadratic fusion method to be introduced in Chapter 4.

For some fusion methods, the sequential fusion mode and the batch fusion mode give the
same final fusion results. However, there are also fusion methods for which the two modes
of operation will give different fusion results. We will see examples of such fusion methods
in later chapters where we describe the differences of the two modes of operation for these

fusion methods in some detail.

3.2 Bayesian inference method

The Bayesian inference method is based on the knowledge of a priori probability distri-
bution Fy(a;) over ) (defined in (3.1.1)), and the knowledge of conditional probabilities of

the form:
P(Dyla;) = probability of receiving report Dy, given the true proposition a;. (3.2.4)

These conditional probabilities are assumed to be known and constant (time invariant).
Bayesian inference method can operate in both the sequential fusion mode and the batch
fusion mode (proposed in the previous section). In the sequential fusion mode, the new

interim fusion result D} = {P/{a;), i=1,...,N} is obtained by Bayes’ rule:

Py(a;), when no sensor report is available,

Pia:) = § P(Dyla:)Ps(a; 329
7(a:) (Dela:) Py (a;) , when sensor report D is fused,
P(Dy)

where P(Dy) = Ej\;z P(Dela;)Py(a;), and Dy = {Psa;), ¢ = 1,...,N} is the interim
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fusion result before the fusion of sensor report Dj. In other words, Bayes’ rule can be
implemented recursively as new sensor reports arrive.

Alternatively, we can fuse the reports all at once using the batch fusion mode. Using
this approach, for K sensor reports: Dy, ..., Dg, Bayesian inference method assigns the

following probability to proposition a; in the fusion result:

Polai)P(Dylas) - - - P(Dxlay)

P(ai|Dy,...,Dg) = Soie: Pola;)P(Dilag) - - P(Dila;)’

=1,...,N. (3.2.6)

Here we assume that the sensor reports are conditionally independent with each other.
Bayesian inference method yields the same fusion result using the sequential fusion mode

and the batch fusion mode, which can be verified by induction. First, Egs. (3.2.6) and (3.2.5)

are identical when K = 0. Secondly, if this is true for K, then for K + 1, Eq. (3.2.5) yields

P(Dg1]a:) Py(as)
Z?,:I P(Dx 11laj)Ps(a;)
. Pola;)P(D1la;)-P(Dga;)
P(DKH ldz) >r 1 Polam)P(D1lam)~P(Dg|am)

N _ Pola;)P(Dila;)P(Dxla;)
2 j=1 P(Dxalay) S Po(om)P(D1lon)—P(Dxlon)

Pila;) =

Po(ai)P(Difa;) - - - P(Dic4alas)

>N Po(a;)P(Dilay) - P(Dalay) (3.2.7)

which matches Eq. (3.2.6).

In practice, the a priori probability distribution Py(a;) is determined based on the fusion
center’s past experience on the target identity. In the case that no past experience is available,
Py(a;)’s should be chosen as uniform distribution.

As we can see, Bayes’ rule requires the knowledge of prior probabilities and conditional
probabilities (3.2.4). In practice these probabilities are usually estimated using past experi-
ence. As a result, they can sometimes be ad hoc and difficult to justify. Another limitation
of Bayesian inference method is that it has no explicit mechanism to differentiate the quali-
ties of individual sensor reports. This is unfortunate because in practical applications sensor

report qualities are varied because sensors usually have different levels of reliability.
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3.3

npster-Shafer evidential inference method

Another method of combining possibly conflicting information from various sources is to
use Dempster-Shafer evidential inference theory [30,33]. This method has been shown to be
effective in medical diagnosis, approximate reasoning and artificial intelligence.

Dempster-Shafer evidential inference method can assign a probability to any of the orig-
inal NV propositions in ) or to a union of the propositions. For example, a union of a; and
ay (denoted by a; V az) may be assigned a probability P(a; V ay). The probability of a sub-
set of {1 (called a probability mass) is defined as the sum of the probabilities of individual
propositions in the subset. Note that there are a total of 2/ — 1 different possible subsets
in € that may be assigned probabilities. Mathematically, the knowledge of sensor k on the
target identities is summarized in its sensor report Dy, in the form of a probability mass

P(wh), ie.,

Dy ={P(wf), wiCQ, £=1,...,L}, (3.3.8)

Ly
where Py (wf) € [0,1] and ZPk(w,‘;) = 1. Not all of the possible subsets must be assigned

probabilities. The a,ssigne(f:plrobabﬂities must sum to unity. We emphasis here that in the
Dempster-Shafer model a probability mass Py(wt) generally is not the total probability of
subset wf, since some other probability mass Py(w]) with wf Nw! # 0 (@ denotes the null
set) will also contribute to the total probability of wf. It should also be pointed out that
this general form of representation is different from the Bayesian approach in which the
probabilities are assigned only to individual propositions rather than subsets.

In the Dempster-Shafer model, the total probability 1 is assigned, part by part, to propo-
sitions or unions of propositions according to the available evidence. It is possible that due
to the lack of evidence, the total probability 1 is not completely assigned. The reserved prob-
ability which is not assigned to any proposition or union of propositions, brings uncertainty
to the corresponding sensor report. This probability, represented by P(2) = P(a;V---Vay),
is therefore called the probability of uncertainty. P({2) has a inverse relationship with the
Degree of Confidence (DoC}): the bigger the P(£1), the smaller the DoC. For example, when
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P(Q) = 0 the corresponding sensor report has maximal DoC, since zero uncertainty in the
sensor report implies complete reliability. In contrast, if P(Q2) = 1, the corresponding sensor
report has minimal DoC, in other words, nothing said in the report is reliable.

In Eq. (3.3.8), the DoC of sensor report Dy (represented by Pi((2)) is not separated from
the rest of the report. Specifically, if P,({}) changes, the rest of Dy also changes no matter
whether the identity information contained in Dy changes or not. As a remedy, we define

, P (w?
Pi(wf) = TH)

Y O wh # Q. (3.3.9)

This is a normalization process, therefore 2 Pj(wf) = 1 and the P(wf)’s remain constant
£ wﬁ,—éﬂ
when P,(Q) changes. We believe that the P{(wf)’s contain all the identity information in

report Dy, while P () represents the DoC of the report. For a better understanding, let us
look at two subsets w}, and wé in report Dy. The identity information concerning only these
two subsets is represented in their relative likelihood ratio: Py(w}) : Pi(w]), which should
not change with Px(Q). Because Pi(wi) : Pl(w]) = Pu(wi) : Pe(w]) V i,4, the identity
information concerning only wi and w,’; is also contained in the normalized probabilities
P}(wf)’s. Moreover, the Pj{wf)’s do not contain any DoC information because they do not
change with P(0).

Dempster-Shafer evidential inference method has two useful concepts: support spt(w®)

and plausibility pls(w?), for any subset w® C Q. They are defined as

spt(w) = 3 P),
e (3.3.10)
pls{w*) =1— z Pw).
whw=0
It can be seen that spt(w') < pls(w?) for all w® C . spt(w') and pls(w') serve as lower and
upper bounds for the total probability of w’ respectively.
Similar to Bayesian inference method, Dempster-Shafer evidential inference method can
operate in both the sequential fusion mode and the batch fusion mode. In the sequential

fusion mode, to obtain the fusion result D} = {P}(we), ¢=1,...,L%} of sensor report Dy
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and interim fusion result Dy, we first compute

pwh = > Piwf )P, (3.3.11)

£
L5 4y wf'f ﬂwi’“ =t

and then perform the following normalization to obtain probabilities for all w® # § (§§ denotes

the null set):

¢

Piof) = -1-{5_%—(% (3.3.12)

Here, Dy = {Pf(wf;f ), €5 =1,...,Ly} is the interim fusion result before the fusion of sensor

report Dy. In other words, the fusion result is updated recursively as new sensor reports
arrive.

In the batch fusion mode, K sensor reports D;,..., D, are fused all at once. Let us

denote the final fusion result for the reports as Dy, = {Pp, (wf;ﬁf), by = 1,..., Ly}
Then,

Ly
¢ P (Wi X)
PfK(wf;K) = ﬁ;ﬁg@)‘, (3313)
where
)
pie (W) = > Pi(wf') - P(wg). (3.3.14)

£y, 8K
4
K

& fx
wy ﬂ-nﬂwg —wa

We now prove that the sequential fusion mode gives the same fusion result with the batch
fusion mode regardless of the order in which the sensor reports are fused. First of all, when
K = 1, both Egs. (3.3.11) and (3.3.14) yields gy, (w™) = Py(w?). In other words, Dy, is
identical to D;. Next, suppose the fusion result (given by Eqgs. (3.3.13) and (3.3.14)) matches

that given by the batch fusion mode for some K > 1. Then, to fuse a new sensor report
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Dy 1, we use Eq. (3.3.11) to compute

Crrin Lt LK1
By (wa+1 )= § : PfK(wa )PK+1(WK+1)
bt =L
s ¢ s
i Nyt = e it
— P, £ P 17% P Ly
= {wi') - - k(W) K+1(WK+1)
Lpprticys s . Livene s lg s s
(wilﬂu-ﬂw;{x)ﬂw;gi';‘l=wfz:i'*1'1 w;lﬁ-uﬂw;{K:wf;K
— . £ fray
= > Pi(wyt) - Prya (W), (3.3.15)

S et o
“y TtV T

which establishes Eq. (3.3.14) for K + 1. This completes the induction proof.

Since there are exponentially (2% — 1) many subsets of Q, the above fusion rule suffers
from exponentially growing complexity as N and K increases. For large values of IV and
K, the computation may be difficult to perform in real time. The numerical example in
subsection 3.1.1 illustrates how Dempster-Shafer evidential inference method fuses identity

declarations from two sensors.

3.4 Decision level identity fusion models

In this section we propose two decision level identity fusion models: the Similar Sensor
Fusion (SSF) model and the Dissimilar Sensor Fusion (DSF) model. We first illustrate the

basic concepts of these models through two simple examples.

Example 3.4.1 Suppose a target is either a fighter aircraft or a bomber aircraft, i.e., Q) =

{a;, a2} with

a; = the target is a bomber aircraft,
(3.4.16)
ay = the target is a fighter aircraft.



CHAPTER 3. DECISION FUSION MODELS AND PRINCIPLES 48

Also suppose there are three independent sensors: a radar, an Infrared (IR) sensor and an
Electronic Supporting Measurement (ESM) sensor. Each sensor sends a report to the fusion
center.

The radar explores size, speed and maneuvering pattern characteristics on the target.
It observes that the target has a large size, a low speed, and few maneuverings. All these
characteristics favor bombers more than fighters. As a result, the radar sends the following
report to the fusion center assigning more probability to ay than to ay: Dy = {Pi{a;) =
0.70, Pi(as) = 0.30}. In comparison, the IR sensor identifies the target according to its
IR appearance. Because the IR appearance of the target looks more like o bomber than a
Jighter, the IR sensor sends a report similar to the one from the radar. The report is given
as Dy = {Ps(a1) = 0.65, Py(ay) = 0.35}. Finally, the ESM sensor classifies radar signals
emitied from the target and finds that the target has a radar signature more commonly used
by bombers than by fighters. As a result, the ESM sensor assigns more probability to a; with
the following report: D3 = {Ps(a;) = 0.75, P3(az) = 0.25}.

To obtain a reasonable fusion result, we take into consideration that these sensors all
favor proposition a;. Moreover, each sensor explores different physical characteristics of
the target, their reports provide independent confirmation of the target identity. Such cross
validation of sensor reports should lead to increased assurance that the target is a bomber
other than a fighter. This increased assurance is represented by a high probability assigned
to a; in the fusion result. For example, using Bayesian inference method and assuming an
equal a priori probability distribution, we obtain the following fusion result: Dy = {Ps(a;) =
0.938, Pf(ag) = 0.062}. Note that proposition a; has a much larger probability assigned to

it in the fusion result than in any of the sensor reporis.

Example 3.4.2 Suppose the target proposition set ) is the same as in Example 3.4.1. How-
ever, instead of having sensors of different types, here we have three identical and independent
radars. This scenario happens, for ezample, when three battle ships of the same type form a
fleet and their identity declarations on a target are fused.

For comparison purposes, we assume that the three sensor reports sent to the fusion center

by these radars are identical to the reports Dy, Dy and Dy in Ezample 3.4.1 respectively. All



CHAPTER 3. DECISION FUSION MODELS AND PRINCIPLES 49

three radars explore common physical characteristics of the targel: size, speed and manevver-
ing pattern. The radars observe that the target has big size, low speed and few maneuverings,
which result in a higher probability assigned to a; than to ay in their reports.

Although the three sensor reports are the same as in the last example, they are based
on common physical characteristics of the target rather then the different characteristics
explored in Example 3.4.1. As a result, these reports should agree with each other excepi
for possible noise corruption, human factors, weather conditions and so on. An appropriate
fuston result for this case should be the one that is most consistent with all the sensor reports,
e.g., Dy = {P(a1) = 0.70, Ps(az) = 0.30}. Note that Ps(a,) is within the range spanned by
Pi(ay), Py(a1) and Ps(ay).

The above examples illustrate that the certainty in target identity in the fusion result
should be based on the fusion center’s knowledge on available characteristics attributes of the
target. The more characteristics attributes explored, the more certainty can be built up at
the fusion center. In contrast, sensor reports on common characteristics do not increase the
certainty in target identity at the fusion center. They only help to eliminate inconsistencies
among reports.

In fact, this idea is used everyday by human brains in their fusion process. For example,
we identify a friend (Bob) by characteristics such as sound, appearance, clothes and move-
ment. When all the information is consistent with the characteristics of Bob, we can identify
Bob with more assurance. However, it is not easy to identity Bob just by talking to him
over the phone since in this case only the sound characteristic is available. Moreover, having
more people to listen to the person on the phone generally does not help much. This is a
typical fusion example with identical sensors.

Based on the above discussion, we propose two decision level identity fusion models as

follows.

e Dissimilar Sensor Fusion (DSF) model

In this fusion model, dissimilar and independent sensors explore different characteris-
tics of a target. Reports from these sensors can reinforce each other to decrease the

uncertainty in target ideniity. The fusion objective of this model is to find a fusion
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result which best represents the increased certainty in target identity from the sensor

Teports.

e Similar Sensor Fusion (SSF) model

In this fuston model, independent sensors are similar to each other, and they explore g
set of common characteristics of a target. The sensors can only confirm each other’s
reports instead of decrease the uncertainty in target identity. The fusion objective of

this model is to find a fusion result which is most consistent with all the sensor reports.

Obviously, the above Example 3.4.1 belongs to the DSF model, while Example 3.4.2 belongs
to the SSF model.

Note that we use “similar/dissimilar sensors” instead of “same/different type sensors”.
This is because that two sensors of the same type may not explore the same target charac-
teristics. For example, two radars of different frequencies may explore quite different target
characteristics because a target may have different reflection patterns on the two frequencies.
In comparison, two sensors of different types may explore the same target characteristics.
For example, an IR sensor and an imaging radar may all provide information on target size
and front appearance. As a result of these considerations, we classify sensors by the target
characteristics they explore instead of the types they belong to. Sensors exploring a set
of common characteristics are classified as similar sensors, while sensors exploring different
target characteristics are classified as dissimilar sensors.

The definition of the two fusion models are fundamental to the research of decision level
identity fusion methods because for different models the fusion goals are completely different.
A fusion method which provides appropriate fusion results under one model may be useless
under the other model. In the following section 3.6, we define some decision fusion principles
which further reveal the commonalities and differences of these two models.

It should be pointed out that these two models should be viewed as “extreme cases” of
decision level identity fusion. There are many practical cases in which the sensors are neither
completely similar nor completely dissimilar. These cases are not discussed in this thesis and

will be left as a topic of future research.
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3.5 Degree of Confidence (DoC)

In decision level identity fusion, Degree of Confidence {DoC) is an important concept.
DoC is usually a single positive value associated with a sensor report. It represents the extent
to which this sensor report can be trusted, i.e., how accurate the report is. For example, in
Dempster-Shafer evidential inference model, DoC can be defined in terms of P(Q2) (called
the probability of uncertainty). Since fusion of inaccurate sensor reports naturally generates
inaccurate fusion results, a fusion result should also have an associated DoC level.

Although DaC can be expressed in terms of probability assignment, it should not be
confused with the probability assignments in the corresponding sensor report. The reason is
as follows. In decision level identity fusion, each sensor explores certain physical character-
istics of a target. On the one hand, because physical characteristics are usually associated
with more than one subset of (2, identity declarations in a sensor report are associated with
probabilities to represent the likelihood of occurrence. On the other hand, factors such as
weather and human factor reduce the accuracy of sensor reports. Such inaccuracy is not
based on any physical characteristics, and as a result does not help to identify the target. In
fact, it generates inaccuracy in the fusion result if the corresponding sensor report is fused.
It is this inaccuracy that DoC attempts to model.

Let DoCyy, and DoCl,,, denote the minimal and maximal DoC values respectively. If
a sensor report has its DoC value equal to DoCh;y, it is completely unreliable (inaccurate).
The fusion result should not change after the fusion of this report, i.e., the sensor report
should be ignored by the fusion process. In comparison, if a sensor report has its DoC equals
to DoCpraz, the report is completely reliable. In other words, the report is fully accurate
based on the target physical characteristics it explores. In the SSF model, sensors explore
common target characteristics, their reports confirm each other on the target identity. If a
sensor report Dy has DoCy,,, as its DoC value, the fusion result Dy should agree with it.
That is, for any subsets wi and wf in D, Pi(wi) : Pi(w]) = Py(wi) : Ps(w!). In the DSF
model, sensors explore different target characteristics, their reports reinforce each other to
decrease the uncertainty in target identity. As a result, if a sensor report D; has maximal

DoC value, it has maximal reinforcement effort on the fusion result. However, the fusion
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result in general does not agree with D.
It should be pointed out that Bayesian inference method does not have any mechanism

to represent DoC. Not surprisingly, this is viewed as a major drawback of the method.

3.6 Decision fusion principles

In this section we continue our discussion on the decision fusion models by summarizing
the mathematical characteristics of the two models in terms of some decision fusion principles.
These principles are essential to a decision fusion model and should be satisfied by all decision
fusion methods.

Ideally, to ensure that a fusion method is applicable to a decision fusion model, we should
test it for all possible fusion scenarios using either experimental data or data generated
from appropriate physical models. However, due to the large number of decision fusion
applications and the difficulty in obtaining physical models for some of these applications,
this evaluation approach is impractical. As a remedy, we propose to use the aforementioned
decision fusion principles to benchmark all the existing and future decision fusion methods.
As will be seen later, the proposed decision fusion principles are reasonably broad so that we
can use this benchmarking process to ensure the appropriateness of decision fusion methods.

It should be pointed out that if a fusion method fails to satisfy a fundamental principle,
the method may still be used in practice. However, this failure indicates that this method
has some shortage in the characteristics summarized by the failed principle, and the extent

of the shortage depends on how the method fails the principle.

3.6.1 Fundamental principle 1: fusion result consistency with sin-
gle sensor report

This principle considers the situation in which only one sensor report is available. In
addition, the fusion center has no past experience on the target identity. In other words, the
a priori probabilities on the target identity, if any, are uniformly distributed. As a result,

all the information contained in the fusion result comes from this single report, implying
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that the fusion result should have its probability assignments agree with those in the single
report. We define this property as follows.
Fundamental principle 1: fusion result consistency with single sensor report
Consider the case where there is no a priori knowledge on the target or the prior is
uniformly distributed. Suppose there is only one sensor report Dy to fuse, and let Dy denote
the fusion result. For any subset wi of Q in Dy, let Pi(wi) and Py(w!) denote the probabilities
assigned to wi in Dy and Dy respectively. Then, Py(wi) = Py(wt). In addition, if D is
associated with DoC, then Dy has the same DoC value. In other words, the fusion result

should be consistent with the single report.

3.6.2 Fundamental principle 2: fusion result consistency with dif-

ferent fusion orders

This principle considers the case in which a number of sensor reports D.,...,Dx are
fused in different orders. For example, using a fusion method in the sequential mode, we can
fuse D; with Dy to obtain a interim fusion result which is subsequently fused with D3, and so
on until all reports are fused. Alternatively, we can use the inverse order which begins with
Dyg and finishes with D;. Similarly, in the batch mode the indexing of the sensor reports
can be permuted. However, no matter what order we use to fuse the sensor reports in the
sequential mode, or what indexing is used in the batch mode, the final fusion result should
always be the same. The principle is defined as follows.

Fundamental principle 2: fusion result consistency with different fusion orders

Suppose there are a number of sensor reports to fuse. The fusion result should remain
the same when the indexing of sensor reports is arbitrarily permuted.

The principle is illustrated in the following fusion example using Dempster-Shafer evi-

dential inference method (discussed in section 3.3).
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Example 3.6.1 Let Q = {a;,a9,03}. Suppose there are three sensor reports:

Dy = {Py(a1) = 0.4, Pi{ay) = 0.3, P,(as) = 0.3},
D2 = {Pg(a]_ \Y ag) = 06, Pz(ag) = 04}, (3617)
D3 = {Pg(a]_ V (’1.2) = 08, Pg(d@) = 02}

We can first fuse Dy with Dy, which gives Dy, = {Py,(a1) = 0.4, Py,(as) = 0.3, Py, (a3) =
0.3}, then fuse the result Dy, with Dy to generate the final fusion result Dy, = {P,(a1) =
0.53, Pj,(az) = 0.40, Pj(a3z) = 0.07}. Alternatively, we can first fuse Dy with Dy to
obtain Dy,, = {Pf23 (a1 V a2) = 0.86, Pp,(as) = 0.14}, then fuse Dy,, with Dy to generate
the following final fusion result Dy, = {Psy(a1) = 0.53, Py, (az) = 0.40, Py (as3) = 0.07}.
Note that Dy, is identical to Dy,. In other words, the fusion result of these reports is not
changed for the two fusion orders. It will be shown later in section 3.8 that Dempster-Shafer

evidential inference method always satisfies the fundamental principle 2.

3.6.3 Fundamental principle 3: unbiasedness

First we define the notion of Cyclic sensor reports.

Definition 3.6.1 Cyclic sensor reports

Let Q = {ay,... ,an}. Suppose there is no a priori knowledge on the target identily, or
the prior is uniformly disiributed. Suppose there are N sensor reports Dy, ... ,Dy given as
Dl ={P1(a1) =T, Pl(az):Tg, Pl(a3) = T3, ey P1(aN) =TN },
Dy ={Pye) =mn, Plas) =7, Plas)=rs, ..., Pany)=ry-1 }
Ds = {Ps(a1) = rnv-1, Pilax)=rwn, Ps(as)=ri, ..., Pslan)=ry-2 }, (3.6.18)
Dy = {Pn(a1) =72, Pnlaz)=rs, Pylas)=74, ..., Pylan)=r }
N
where 0 < 7ry,...,rny <1 and ZT@' < 1. In addition, these sensor reporis are associated

i=1
with the same Degree of Confidence value. We say that these sensor reports are cyclic, based

on the fact that they form a cyclic pattern.
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For example, let ) = {a;,as}. The following two reports form a group of cyclic sensor

reports:
D1 = {Pl(a]_) = 07, P1((12) = 03}, DQ = {Pz(al) = 03, Pz(ag) = 07} (3619)

Although very rare in real fusion scenarios, cyclic sensor reports do exist. The importance
of these sensor reports lies in their cyclic structure. This unique structure makes each
proposition in ) equally supported. In other words, all the propositions should have the
same probability assignments in the fusion result. This is summarized in the following
fundamental principle.
Fundamental principle 3: unbiasedness

Let Q = {as,...,an}. Suppose there are a group of cyclic reports from independent

sensors as defined in Definition 3.6.1. The fusion result of these reports should be
sz{Pf(.ai)::'rfo, 1= 1,... ,N}, (3620)

where 14, € {0,1] is a constant. In other words, the fusion result should be unbiased when
reports are cyclic.
Satisfaction of the above fundamental principle ensures that there is no inherent bias in

the fusion method.

3.6.4 Fundamental principle 4: Sensor report reinforcement

The three fundamental principles introduced so far are applicable to both the DSF and
SSF fusion models. They reveal some commonalities of the two fusion models. In contrast,
the following two fundamental principles explore the differences between the two models. As
a result, these two principles have different definitions for the two models.

As introduced in section 3.4, sensor reports in the DSF model are fused in a manner
that leads to decreased uncertainty in target identity, while in the SSF model sensor reports
are averaged to eliminate inconsistencies among them. Such characteristics are expressed

mathematically in the so-called sensor report reinforcement principle which explores the
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influence of a sensor report on the fusion result. The influence is revealed by comparing
fusion results before and after the fusion of the sensor report.

We first define the sensor report reinforcement principle for the DSF model as follows.
Fundamental principle 4 for DSF model: Sensor report reinforcement

Consider the Dissimilar Sensor Fusion model. Let Q = {ay,... ,an} and let D; denote a
sensor report with DoC value wy € [DoCoin, DoClnaz]. Further denote the fusion result before
and after the fusion of Dy as Dy, and Dy, respectively. Also, for any subset wi C Q, we denote
the total probabilities assigned to wi in Dy, and Dy, as Py, (wi) and Py, (w!) respectively. Let
Dy be given as Dy = {Pi(wf), £=1,...,L}, where wi Nw! =0 for i # j. In other words,

all the subsets are mutually exclusive. Suppose that in D;,
Pi(wi) > Pi(wf), YE#1, (3.6.21)

then in the fusion result,

sz(wll) = Pf1(w11)> wy = DoCpin,
Pf2(w:1[) > Pfl(w%)a wy > Docmin-

(3.6.22)

Moreover, if wy increases, Py, (wi) also increases.

This principle indicates that if in sensor report Dy, subset w! is the most likely subset,
then after the fusion of D; the probability of w! increases. Moreover, when the DoC value
of D, increases, Py,(w}) also increases, showing that the impact of D; on the fusion result
increases.

The above principle only concerns the most likely subset w! in report D;. The idea
can be extended to all subsets in Dy, which results in the following restricted reinforcement
principle.

Restricted fundamental principle 4 for DSF model: Sensor report reinforcement

Consider the Dissimilar Sensor Fusion model. Let = {ay,... ,an} and let D; denote a
sensor report with DoC value wy € [DoCoyp, ,‘DoCmm]. Further denote the fusion result before
and after the fusion of Dy as Dy, and Dy, respectively. Also, for any subset wi C Q, we denote
the total probabilities assigned to wi in Dy, and Dy, as Py (wi) and Py, (w}) respectively.
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Suppose in Dy, there are two mutually exclusive subsets wi and w{, each of them s also

mutually exclusive with other subsets in Dy, i.e.,
WNwi=0,VL#i and winwt=0, VL+#] (3.6.23)

Also suppose that wi and wi are assigned probabilities Py(w') and Py(w!) respectively. These

two probabilities are assigned to wi and wi directly, not to their subsets. Then,

P; (Wt P (Wi
fZ(w;) — fl(w;), wy = DOCmin, (36.24)
Py, (w1) Py, (wi)
and
) . P; (Wi i
Pl(wi) > Pl(w{) = fz(““’;) > Pfl(w;)’
Py, (w1) Py, (w])
p p P ; wy > DOCmm. (3625)
) < Pwd) = ) Paled)
Py, (w1) Py, (wi)

sz(wi.) _ Pfl(wi)

i > also
Py, (Wl) Py, (wl)

Moreover, if D, changes so that |Py(wi) — Py(w?)| or w, increases,

ncreases.

Note that the restricted principle is a special case of the fundamental principle 4 for DSF
model.

In comparison with the fundamental principle 4 for DSF model, the above restricted
principle requires that if in sensor report D;, subset w? is more (or less) likely than w!, then
the fusion of D; with Dy, increases (or decreases) the relative likelihood ratio of wi to w?.
This change in relative likelihood ratio reflects the impact of D;. Moreover, when the DoC
value of D, increases, the impact of D; on the fusion result also increases.

Although it is desirable for a fusion result to satisfy the above restricted principle, it
may become a great restriction on the fusion method to request the relative likelihood re-
lationships (3.6.25) to be satisfied between any pair of subsets. In practice, satisfaction of
this restriction is not absolutely necessary, since it does not matter if (3.6.25) is violated

between two subsets with trivial probability assignments. As a result, satisfaction of the
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fundamental principle 4 for DSF model is more important than satisfaction of the above
restricted principle.

Next, we define the reinforcement principle for the SSF model.
Fundamental principle 4 for SSF model: Sensor report reinforcement

Consider the Similar Sensor Fusion model. Let O = {a1,... ,an} and let Dy denote a
sensor report with DoC value wy € [DoCumin, DoCires]. Further denote the fusion results
before and after the fusion of Dy as Dy and Dy, respectively. For any subset wi CQ,
we denote the total probabilities assigned to wi in Dy, Dy, and Dy, as Pi(w}), Py, (W) and

Py, (w}) respectively. Then,

dz’st(sz, Df1) = (, wy = DoCryin,
dist(Dl,Dh) Z dist(Dl,sz), DOCmaz >wy > Docmina (3626)
d’iSt(Dl, .sz) = 0, Wy = Docmawv

for some properly chosen distance measure dist(-,-). Moreover, if wy increases, dist(Dy, Dy,)
decreases.

The distance measure dist{-,-) used in the above principle should satisfy the following

properties:
1. dist(Dy, D) is a continuous function of P;(w)’s and Pi(w5?)’s.

2. dist(Dy,D,) > 0, and dist(Dy, D;) = 0 if and only if D; and D, are identical with

each other.
3. dist(Dy, D;) is a convex function of Py(wf')’s and P {wf?)’s.

4. dist{Dy, D,) is independent of the DoC values of D; and Dy (if exist).

See here we do not insist on the symmetry condition, i.e., dist(Dy, Dy) = dist(Ds, D).
Such a condition appears to be restrictive and unnecessary. For example the well-known
Kullback-Leibler’s measure of cross-entropy (K-L measure) does not satisfy the symmetry
condition.

The above principle can be rationalized as follows. For the SSF model the fusion result

should have minimal inconsistencies with sensor reports. Therefore when a new sensor
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report is fused, the current fusion result should “move” towards this new report to minimize
inconsistencies. When w; increases, D; is more reliable and accurate, and the fusion result
“moves” closer to D;. Eventually, the fusion result completely “agrees” with D; when w,
reaches its maximal value.

The above principle uses some properly chosen distance measure for the differences be-
tween sensor reports and the fusion result. If we use probability to measure these differences,
we have the following restricted principle.

Restricted fundamental principle 4 for SSF model: Sensor report reinforcement

Consider the Similar Sensor Fusion model. Let Q = {ay,... ,an} and let D; denote a
sensor report with DoC value wy € [DoChyin, DoCiros]. Further denote the fusion results
before and after the fusion of Dy as Dy, and Dy, respectively. For any subset wi C Q,
we denote the total probabilities assigned to w} in Dy, Dy and Dy, as Pi(wi), Py, (i) and

Py, (w?) respectively. Then for subset w?,

sz(“"’i) = Pfi(w{): wy = DOCmim

. . (3.6.27)
sz(w;) = Pl(w;)a Wy = Docma:c)

and

Py(wi) > Pp(w}) = Pi(wi) > Py (w]) > Pr(w)),

) ) ] ] ) DOGmaa: > wi > DOCmin. (3628)
Pl(wi) < Pf1 (wi) = Pl(wi) < sz(w;) < Pfl(wi)v

Moreover, if Dy changes so that |Py(w}) — Py, (w})| or w; increases, | Py, (wi) — Py, (wi)] also
increases.

Note that the above restricted principle is a special case of the fundamental principle 4
for SSF model.

Recall that in decision level identity fusion, the sensor reports and fusion results are
usually expressed in the form of probability assignments. The above restricted principle is
desirable because it also uses probability to measure the differences between sensor reports
and fusion results. However, because probability is not the only appropriate choice of the dis-

tance measure, satisfaction of the restricted principle is less important than the satisfaction
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of the fundamental principle 4 for SSF model.

Note that for both the DSF and SSF models, when w; is at its minimal value, the fusion
result remains unchanged. In other words, sensor report D; with minimal DoC is completely
ignored. Also note that the above principles concern subsets wi and w{. For identity fusion
methods such as Bayesian inference and the analytic center fusion method (to be introduced
in Chapter 6), only original propositions of {} are permitted. As a result, the above principles

should be applied to propositions a; and a; instead of subsets w! and w{ .

3.6.5 Fundamental principle 5: Asymptotic fusion result with iden-

tical sensor reports

In this subsection we continue to study the influence of a sensor report on the fusion
result by defining the convergence of the fusion result with an increasing number of identical
sensor reports. This is summarized in the following fundamental principle of asymptotic
fusion result with identical sensor reports. This principle further characterizes the extent of
reinforcement in light of infinite number of identical sensor reports.

We first define the principle for the DSF model.

Fundamental principle 5 for DSF model: Asymptotic fusion result with identical
sensor reports

Consider the Dissimilar Sensor Fusion model. Let Q = {ay,... ,an}. Suppose there are
K 1identical reports from dissimilar and independent sensors, each given by Dy = {Py(w}),
i=1,...,01}, where wi C Q and Py(wi) € [0,1] fori=1,...,L;, wiNw! =0 fori# 3.
Let wy denote the DoC associated with Dy and suppose that wy > DoCpy, (the minimal
DoC value). Also suppose Pi(w}) > P(wl), Vi # 1. We further denote the fusion result of
these sensor reports as D2, the probability assigned to wi in DY} as Ppl{(wi), and the DoC
associated with DY} as wi.. Then,

lim D¥! = Dy, (3.6.29)

K-—o0
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and
Ki'%o wye = DoCinaz, (3.6.30)
where
P (wl) =1,
D;, = oo (1) : (3.6.31)

P (wi)y=0,Vi#1

Moreover, suppose wy changes from wi, to wip, then
wyy > wia = PPP(wi) > PPe(w}), VK >1 (3.6.32)

The above principle can be easily rationalized as follows. When an infinite number of identi-
cal sensor reports (from dissimilar and independent sensors) all point to wj as the most likely
subset, the fusion result should make w! as the only likely target identity. In other words,
these sensor reports corroborate each other’s findings to generate a fusion outcome w}. The
bigger the DoC values of these sensor reports, the stronger the reinforcement, and therefore
the faster the fusion result convergence. Moreover, when K increases to infinity, more and
more identical sensor reports support the final fusion result, resulting in the convergence of
ws: t0 DoCrgz-

Note that in the above principle, the subsets wi’s are required to be mutually exclusive.
If this is not the case, their intersection may have a probability as the sum of all their
probabilities, which may be larger than Pi(wi). As a result, when K — co, Dy, may
not converge to Dy given in Eq. (3.6.31). This phenomenon is illustrated in the following

example using Dempster-Shafer evidential inference method.

Example 3.6.2 Let O = {a;,a2,a3,04}. Suppose there are K identical sensor reports (each
denoted by D;) from dissimilar and independent sensors. We consider the following two
cases.

Case 1: D, is given by Dy = {P(a;) = 04, Pi(az) = 0.3, Pi(az V as) = 0.3}. By
Dempster-Shafer evidential inference method, the fusion result is Dy, = {Py.(a1), Ppe(a2),
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Py, (as V aq)}, where

P ( ) _ Pl(a,l)K . 04K
1\ = B )E + Pi(ap)X + Pi(az V ag)X  0.4% +0.3K 4+ 0.35’
P]_(CLQ)K ' 03K
Py, = = 3.6.
fK(az) Pl(al)K + Pl(G;Q)K -+ Pl(ag vV (l4)K 041( -+ 03K + G.BK’ ( 33)
Pl(ag 4 G,4)K 03K

P Vag) = - '
(a3 V as) Pi(ai)® + Py(az)® + Pi(as V ag)® 045 4 0.35 +0.3K

Obviously, I}im Dy, = Dy,,, where Dy, = {Ps_(a1) =1, Ps_(a2) =0, P;_(as3V aq) = 0}.
~$00

Case 2: D; is given by Dy = {Pi(a:) = 04, Pi(aaVas) = 0.3, Pi(azVay) = 0.3}. When

K > 1, fusion result Dy, is given by Dy, = {Pp(a1), Pj,(a2), Pr(a2V as), Py (azVaq)},

where
_ Pa)® 04X
PfK (al) - 1= ﬂf;{(w) - 1— ,u'fK(ﬁ) y
1

Prelag) = 1,0 (Pi(a2 V a3) Py, (a3 V @) + Pi(az V ag)Pp,_, (a2 V ag)
K

+Pg_,(a2)(Piaz V a3) + Py(az V as)))
0.3% +0.3% +0.6Py,_ (a2) (3.6.34)
1= puge () ’
Pi(agVaz)® = 03K
L= pge(@) 1= pp(0)
Pi(az Vag)® _ 0.3%
L—-ppe(@) 1~ pg(0)

Pfx (ag v a3) =

Pfx (ag A% a4)

and pip, (0) = 1 — ((0.3% +0.3% +0.6Pf,_, (a2)) + 0.3% + 0.3% + 0.4%) is the probability
assigned to the null set in Dy, before normalization. It is easy to verify that I}im Dy, = Dy,
-0

where Dy, = {P(a1) =0, Py (a2) =1, Pr (a2 Vas) =0, Ps_(azVay) =0}

In Case 1, the subsets are mutually exclusive. The converged fusion result assigns all the
probability to the most likely proposition a; as expected. In contrast, the subsets in Case
2 are not mutually exclusive. The converged fusion result assigns all the probability to the
intersection of subsets a; V az and a, V a4 instead of a; which has the highest probability in

report D;.
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Next, we turn our attention to the SSF model.
Fundamental principle 5 for SSF model: Asymptotic fusion result with identical
sensor reports

Consider the Similar Sensor Fusion model. Suppose there are K identical sensor reports
from similar and independent sensors, each denoted by Dy. Let w; denote the DoC associated
with Dy and suppose that wy > DoCpyy, (the minimal DoC value). Let Dy, and D}"; (with
DoC value w;’; ) denote the fusion results before and after the fusion of these identical reports.

Then,

Kl'ij)[clm D}”; =Dy, (3.6.35)
and
I}ijnoo wi: = DoCrgs. (3.6.36)

Moreover, suppose w; changes from wi, to wy,, then
Wi > Wie = dz’st(Dl,D}’:") < dist(Dl,D}”;“). (3.6.37)

for some properly chosen distance measure dist(-,-).

Here, the distance measure dist(-,-) should satisfy the same properties as it does for the
fundamental principle 4 for SSF model (see page 58).

For the SSF model, the fusion objective is to find a fusion result that is most consistent
with all the sensor reports. This results in the convergence of the fusion result to D; as K
increases to infinity. The higher the DoC value associated with the identical sensor reports,
the faster the convergence. Moreover, when K increases to infinity, more and more identical
sensor reports confirm with the fusion result, resulting in the convergence of w?; to DoClos-

The above principles concerns subsets wi’s. For identity fusion methods such as Bayesian
inference and the analytic center fusion method (to be introduced in Chapter 6), only original
propositions of {} are permitted. As a result, the above principles should be applied to

propositions a;’s instead of subsets w!’s.
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3.7 Additional DoC principles

In this section, we propose some additional principles associated with Degree of Confi-
dence. First, we consider the DSF model and define a DoC principle for this fusion model.
DoC principle 1 for DSF mode

Let Dy denote the fusion result of sensor reports Dy, ..., Dg. Let wy denote the DoC
value of report Dy, and wy denote the DoC value of Dy. Then, if any wy, increases, wy also
InCTEases.

The above principle can be rationalized as following. As a joint identity declaration based
on all sensor reports, the fusion result naturally has its accuracy based on the accuracy of
each fused report. In other words, the DoC value of the fusion result is based on the DoC
values of all sensor reports. In the DSF model, each sensor explores some unique target
characteristics, and the fusion result is therefore based on all the characteristics explored by
the sensors. If the DoC value of a sensor report increases, it indicates that this sensor has an
increased accuracy on the explored target characteristics, and in turn indicates an increased
accuracy on the overall characteristics upon which the fusion result is based. This naturally
leads to a higher DoC value for the fusion result.

In contrast, sensors in the SSF model explore common target characteristics. Their
reports confirm each other in the fusion process. As a result, the DoC of the fusion result
depends not only on the DoC values of the sensor reports, but also on the extent to which
each report agrees with the fusion result. We explore this idea in the following DoC principles
for the SSF model.

DoC principle 1 for SSF mode

Let Dy, denote the fusion resuli of sensor reports Dyi, ..., Dig, and Dy, denote the
Juston result of sensor reporis Doy, ..., Dog. Let w;; denote the DoC value associated with
report Di;, and wy, denote the DoC value associated with fusion result Dy,. Assume that
Dy = Dy,, and wyg = woi for k = 1,... K. We further assume that sensor reports Diy

and Dgy have the same subsets. Then,

diSt(D}_k,Dfl) > diSt(Dzk,Dﬁ), k= 1, e ,K = Wy, < Wy, (3738)
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for some properly chosen distance measure dist(-,-).

Here, the distance measure disi(-, -) should satisfy the same properties as it does for the
fundamental principle 4 for SSF model in the previous section (see page 58).

This principle indicates that when the DoC values associated with the reports remain
unchanged but the reports drift away from the fusion result, the reports no longer confirm
with the fusion result as strongly as before. Therefore, the DoC value of the fusion result
decreases.

DoC principle 2 for SSF mode

Let Dy, denote the fusion result of sensor reports DY, ..., DE*, where wy, is the DoC
associated with the k’th report. Let Dy, denote the fusion result of DP**, ... D% In

other words, the DoC of the k’th report changes from wy, to fwy, where B > 0 is a constant.

Also let wy, denote the DoC value associated with fusion result Dy,. Then,
B>1 = wy>wy. (3.7.39)

In other words, when the DoC values of all the sensor reports increase with the same extent,

the fusion result should have a higher Degree of Confidence level.

3.8 Two classical methods revisited

In the previous sections, we proposed two fusion models, some fundamental principles
and additional DoC principles. In this section, we analyze Bayesian inference method and
Dempster-Shafer evidential inference method using these principles, which shows that the

two classical methods are for the DSF model.

3.8.1 Analysis of Bayesian inference method

Theorem 3.8.1 Bayesian inference method satisfies fundamental principles 1, 2, 3, re-

stricted fundamental principle 4 and fundamental principle 5 for DSF model.
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Proof. Let Q = {a1,...,an}. Suppose all the a priori probabilities Py(a1), ..., Po(ay)

are known. Let Dy = {P(Dila;), i@ = 1,...,N} denote the report from sensor %k, and
assume that all semsor reports are conditionally independent. We examine the decision
fusion principles one by one.

a) Fundamental principle 1: Suppose the a priors probability distribution is uniformly
distributed, i.e., Pp(a;) = 1/Nfori=1,...,N. Also suppose there is only one sensor report
D, available. According to Bayes’ rule (Eq. (3.2.5)), the fusion result assigns the following
probability to proposition a;: P(a;|D,) = P(Dy|a;) fori =1,... ,N. Thus, the fusion result
is a restatement of sensor report Dj.

b) Fundamental principle 2: This is straightforward. Bayesian inference method yields
the same fusion result in both the sequential fusion mode and the batch fusion mode. In par-
ticular, for a group of sensor reports Dy, ..., Dg, the fusion result assigns P(a;|Dy, ..., Dg)

to proposition a;, which is given by Eq. (3.2.6):

P(a;|Dy,...,Dg) = Py(a;)P(Dia;) - - - P(Dxla;)

- . i=1,...,N.  (3.8.40)
>_j=1 Po(a;)P(Dilag) - - - P(Dklay)

This is obviously independent of the fusion order in the sequential mode and the indexing
of sensor reports in the batch mode. As a result, in both the sequential and batch fusion
modes, Bayesian inference method satisfies the fundamental principle 2.

¢) Fundamental principle 3: Suppose the a priori probability distribution is uniformly
distributed, i.e., Py(a;) = 1/N for i = 1,...,N. Also suppose there are N cyclic sensor

reports Dy, Dy, ..., Dy. The above assumptions imply the following “cyclic” conditional
probabilities:

P(Dilay) =14, P(Dilag) =12, P{Dilag) =r1s,..., P{Dilan) =rn;

P(Dg!az) =TN; P(Dglaz) = T1, P(Dglag) =gy, P(Dg!aN) = TN-1;

P(Dslai) =rn-1, P(Dslas) =7rn, P(Dslas) =r1,..., P(Dslay)=ry_z; (3.841)

P(DNlal) =Ta, P(DNfag) =73, P(DN}ag) = P4y, P(DN|aN) =Ti.
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Using the fact that the sensor reports are conditionally independent with each other, we

obtain the probability assigned to a; in the fusion result as

Pola;)P(D1las) - - - P{Dyla;)

P(aiIDl,Dz,... :DN) ==
> ie1 Po(a;)P(Dile;) - - - P(Dylay) 55.2)
8.42
%H?fzi i 1

N(x H;iﬂ rj) NV

In other words, all the propositions have the same probability assignment in the fusion result.
d) Restricted fundamental principle 4 for DSF model: In Bayesian inference method,
all the sensor reports are considered as equally reliable. In other words, these reports have
the same DoC value which is definitely greater than DoC,,;,. As a result, we do not con-
sider Eq. (3.6.24) which involves varying DoC values. Also note that Bayesian inference
method does not permit disjunctions of propositions a;’s, therefore here we only consider
basic propositions.

Suppose there are K sensor reports Dy, D,, ..., Dg. Further denote the fusion result
before the fusion of D, as Dy, = {Py(a;), i¢=1,...,N}, and the fusion result after the
fusion of Dy as Dy, = {Py,(a;), i=1,...,N}. Note that D;, can be viewed as the fusion
result of Dy, and report D;. By Bayes’ rule (Eq. 3.2.5), the probability assignments in Dy,

are given as

P(Di|a;) Py, (a:)

N , i=1,...,N, (3.8.43)
> e=1 P(Dilag) Py, (ar)

sz (ai) =

and the relative likelihood ratio of proposition «; to a; is

Prla;) _ P(Dilas) Pp(a:)

Py(a;)  P(Dila;) Pp(a;) (3.8.44)
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Obviously,

Py, (a;) . Py (a;
sz(“j) Pfl(aj
Py, (as) < Pn (a;
sz(a‘j) Pfl(a’j

P(Dila;) > P(Dhla;) =

) bl
) (3.8.45)
P(Dila;) < P(Dila;) = g

Moreover, it can be seen from (3.8.45) that if Dy changes so that |P(D1|a;) — P(Dyla;)| or
sz(ai) _ Pfl(ai)

Py (a;)  Prlay)
e) Fundamental principle 5 for DSF model: As previously mentioned, in Bayesian

wy increases, also increases.
inference method all sensor reports have equal DoC. As a result, we do not consider Eq.
(3.6.32) which involves varying DoC values. In addition, here we do not consider disjunctions
of propositions because they are not permitted in Bayesian inference method.

Suppose there are K identical sensor reports from dissimilar and independent sensors,

each denoted by D;. Suppose that D; favors proposition a; more than other propositions,

ie.,
P(D1lay) .
D e L > 8.
Tl"P(leai) >rp>1, Vi#l, (3.8.46)
and let
Po(a,]_) R
> > 8.4
Tor 2 Po(ai) _T02>0, V'L#l, (38 7)

where 71, 79, o1 and gz are some positive constants.

In the fusion result, the probability assigned to proposition a; is given by

Pre(n) = )P Dr[n)” (3.8.48)

N Po(a)P(Dyla)k

It is easy to verify that

1 1 1

PfK(al) = N B < =
{a;) P(Dila;)X — N 1 1 B R S |
143 s pﬁ,’(a,; ’ P((Dijlf:l%ff' 1+ 3 i ro1 K 1+ (N 1)?‘01 K

, (3.8.49)
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and
1Py () > ! (3.8.50)
fK 1) = 1_{_“’]::1_71017‘{(' O,
Similarly,
1— P (a1) < ! (3.8.51)
le_l‘l'ﬁl:{?'oz?"K. .8,

Since r; > 73 > 1, (3.8.50) and (3.8.51) guarantee that I}im Py, (ay) converges to 1 expo-
. —00

nentially. O

Note that in Bayesian inference method all sensor reports have equal DoC, the additional

DoC principles do not apply to this fusion method.

3.8.2 Analysis of Dempster-Shafer evidential inference method

We first introduce a Lemma which will be used in later analysis.

Lemma 3.8.1 If y1,92, 21,22 > 0, ;://l > —? and v, > v9 > 1, then
2 2

+ +
N T4 > hra (3.8.52)
T2Y2+22 Yt

Proof. Because all the variables are positive, Inequality (3.8.52) is equivalent to

(my + 20)(y2 + 22) > (v + 22) (11 + 21), (3.8.53)
which can be expanded as
MiY1¥e + Y221 + Mili%e + 2122 > YalaYe + YaZe + Yayez1 + 21 2. (3.8.54)

This can be further szmphﬁeé as Yg21 + Vi 2z > Y2y +v3Ya2:, OF (’}/j_ - 1)y122 > (’)’2 - 1)y221.

The inequality obviously holds in light of the assumption 9 > A This completes the proof

Y2 2
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of Lemma 3.8.1. O

We now propose the following theorem for Dempster-Shafer evidential inference method.

Theorem 3.8.2 Dempster-Shafer evidential inference method satisfies fundamental princi-
ples 1, 2, 8, restricted fundamental principle { and fundamental principle 5 for DSF model.
Moreover, the fusion method satisfies DoC principle 1 for DSF model.

Proof. Let Q = {ai,...,ay}. Suppose all available sensors are independent with each

other, and a sensor report Dy takes the following form:
Dy, ={P(wf), £=1,...,L}, (3.8.55)

where wf C Q, Pi(w}) € [0,1] and Zfﬁl P.(wf) = 1. We examine the decision fusion princi-
ples one by one.

a) Fundamental principle 1: By definition, if there is only one sensor report available,
the fusion result will be the same with the sensor report.

b) Fundamental principle 2: As shown in section 3.3, Dempster-Shafer evidential infer-
ence method yields the same fusion result in both the sequential and batch fusion modes. In
particular, suppose there are K sensor reports Py,..., Px. The corresponding fusion result
Dy, = {PfK(w;f{K), ls, = 1,...,Ls } is given by equations (3.3.13) and (3.3.14), which
are restated here as follows:

14
éfK) _ Mg (wf;f{)

Prelo) = 125 2, (3.8.56)

where

£
pp (w%) = > Py(wht) -+ Pr(wiF). (3.8.57)

83,0 .8 :
th

4 [ .
Wyt N Nwgs —wfx

Both (3.8.56) and (3.8.57) are independent of the fusion order. As a result, in both the

sequential and batch fusion modes, Dempster-Shafer evidential inference method satisfies



CHAPTER 3. DECISION FUSION MODELS AND PRINCIPLES 71

the fundamental principle 2.
¢) Fundamental principle 3: Suppose there are N cyclic sensor reports Dy, ..., Dy with

Dy given as

Pk(Q) = Tq,
Dy = : (3.8.58)
Pk(ai):ri@k, ’i:l,... ,N

N
where 0 <7y, ... ,ry,rg <1, TQ+Zri:1andi€Bk:i+k—1 mod N.

i=1

Because all the sensor reports assign probabilities only to £ and basic propositions g;’s,

the fusion result D can be denoted as

p. - P,

F= , (3.8.59)
Pf(ai), 7= 1,... ,N

where Pg(a;) = i-% and pg(a;) denotes the probability assigned to a; in Dy before

normalization (see page 46). By Eq. (3.3.14), us(a;) is given as

pila) = Y. Biwft)- Pr(wi). (3.8.60)

LT o

£ £
wllﬂ-”ﬂuNN =ga;

. 4, . . . .
Since the w;’’s in the above equation can only be Q or a;, we can rewrite the above equation

N
as pg(a;) = Z im(a;), where
m=1
I'J'm(a'i) = Z (at T ij (ai)})jm-}-l (Q) U PjN (Q) (3'8'61)
C#Fin

In other words, yi5(a;) consists of N terms. The m’th term (denoted by tm(a;)) represents

the case that m of the N subsets w?,. .. ,wN in Eqg. (3.8.60) are equal to a;, and the rest
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are equal to 2. Using the cyclic structure of the sensor reports, we can compute pn,(a;) as

N
pm(a:) = D ey ™ (3.8.62)
B = e =1
A Edm

Now it is clear that pp(a;) is independent of 4, implying that p,(a1) = -+ = um{an). This
further implies that ps(a:) = -+ = us(an). As a result, the probability assigned to a; in the

fusion result Dy is given by

pf(a:) _ pis(ar)

Pya;) = ST gl R+ Near) i=1,...,N. (3.8.63)

In other words, all the propositions have the same probability in the fusion result.

d) Restricted fundamental principle 4 for DSF model: Suppose sensor report D is
given as D; = {P(w}), £=1,...,L;}. Without any loss of generality, we consider two
mutually exclusive subsets wi and w?, each of them is also mutually exclusive with other

subsets in Dy, i.e.,
winwi=0,V£#1 and w?Nuwf=0, VI#£2. (3.8.64)

Note that Pi{wj) and Pj(w?) are the total probabilities assigned to w! and w? respectively.

Also suppose that the fusion result before the fusion of D, is

Pfl(wféu), £=1, 7Lf11’
Dfl -l Pfl (wf;u% § = 1, e !Lfm? ) (3865)
Pfl(wf;l), 521,... 3Lf1

where

wh, C W, ¢=1,...,Ly,, (3.8.66)
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In Dy, the total probabilities assigned to wi and w? are

L1 L1y
PL(w)=> Pn(wh,) and Pf(w}) ZPﬁ wh ). (3.8.67)

Note that Dy may have a probability mass Py (wi) which has a different meaning with
P{(w}). In the Dempster-Shafer model, Pf,(w}) means that this probability is assigned
to (or add to) subset w; instead of being the total probability of w}. Therefore, the total
probability of wi is the sum of all probabilities assigned to wj and its subsets, as presented

by Pf (wi) in the above equation. The fusion result after the fusion of D; can be denoted as

sz(wfn), £=1,... ,Lfn,

Dy, =4 Pn(wh,), £=1,...,Lg,, ¢ (3.8.68)
Pf2(w§2), £=1,... ,Lf2 K
where
wiNwh, =0, winwi =0, £=1,...,Ly,. (3.8.69)

In Dy,, the total probabilities assigned to w! and w? are
Lfy Ly,
Pf(wi) =Y Pp(w},) and PL(wd) Zsz(wfm (3.8.70)

£=1

Also note that there is no probability of uncertainty in D;, Dy, or Dy,.

Using Dempster-Shafer evidential inference method, we have
PL(wh,) = pPi(w])Pr(w},) and PL(wf,) = uPy(w)Pr(wh,), (3.8.71)

where u is the normalization factor, and

1 L 1
P}g’(w%) _ fl sz (wfll) Pl(wll) Eﬁ_f ! Pfl (W§11) Pl(wl) P}Z;(wfl)
ACT ze W PL(wh,)  Pued) T Ph(wh,) D)) PR

(3.8.72)
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It is now obvious that

Pi(wi) > P(w}) = Ew 3 ;g:li’
1 o 1) (3.8.73)
Piwi) < Pw}) = Ewli < (Zi)

1t is also obvious from Eq. (3.8.72) that when D; changes so that | P (wl)— P;(w?)| increases,
Pr(wi) _ P (wi)

sz(wl) Pfl(wl)
e) Fundamental principle 5 for DSF model: Suppose that there are K identical sensor

also increases.

reports from dissimilar and independent sensors, each given as
D, = , (3.8.74)

Ly

where P(Q) + ZPl(wf) =1, wf CQ, and wi Nw] = @ for i # j. In other words, subsets
£=1

wt’s are mutually exclusive. To separate the DoC of Dy from the rest of the report, we use

Eq. (3.3.9) to define

Py (wf)

L
Note that Z P{(wf) = 1. As discussed in section 3.3 (see page 44), the P/(w?)’s represent

£=1
the identity information contained in Dy, while P;(Q2) reflects the DoC of D;. Without any

loss of generality, let

Pw)) > Pywl), VE#1. (3.8.76)
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Py (w!
In other words, 71 > Pl Eﬂi; > 79 > 1for £ # 1, where vy and r9 are some positive constants.
1y
The fusion result of these reports can be denoted as
P (£),
Dy = () . (3.8.77)
PfK((x)f), gzl,...,Ll

Obviously, the probability of uncertainty in Dy, before normalization (see page 46) is
L1 (Q) = PL{Q)F. (3.8.78)
We claim that the probability assigned to subset wf in Dy, before normalization is
pie (@) = (Pi(w) + A(Q)" ~ P)F, (3.8.79)

which is proven by induction as follows.

When K = 1, Eq. (3.8.79) yields
p(0f) = (P(wi) + Pi(Q)) — P(Q) = P(w1), (3.8.80)

which holds trivially. Assume that Eq. (3.8.79) is correct for K identical sensor reports Dy’s,
and consider the case where another report D; is fused. By Dempster-Shafer fusion rule and

using the fact that the wf’s are mutually exclusive, we obtain

Mg,y (Wf) = Pl(wf))u’fx(n) + (Pl(wf) + PI(Q)) /J'fx(wf)
= PAHR@F + () + B(@) ((Bieh) + @) - P@)F)
= () +P(@)" - P, (3.8.81)

which establishes Eq. (3.8.79) for K + 1.
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Using Eqgs. (3.8.78) and (3.8.79), we compute the probability assigned to wy in Dy, (after

normalization) as

(P (w}) + P(Q)" — P(Q)F

- : B . (3.8.82)
St (P + (@) - B(@)F) + P()%

PfK (w%) =

The largest exponential term in both the denominator and numerator is (P (wl) + Py (Q))".

Therefore, I}im Py, (w1) converges to 1 exponentially. Similarly,
—00

. ' . P()%
lim P () = lim =, 8.
e e = s (P + A)" - AUQ)X) + PUX bR

which establishes the property (3.6.30).

It remains to prove the property (3.6.32). We assume that the DoC value of D; changes
from wy, to wy, with wyy > wy,. Because the DoC of D; has a inverse relationship with
P;(Q), this implies that P;(Q2) changes from P;"¢(Q) to P"*(Q), with P=(Q) > P (Q).
Note that the normalized probabilities P}{w!)’s remain unchanged.

The probability assigned to subset w? in Dfie is

(Pi(w) (1 — PP=(Q)) + P= () — PPr= ()X

P"”“(w‘) —
f 1 j Wia Wia K Wia Win
- St (Piwd) (1= PRe()) + Poe(@)) = P (@) ) + Pre(@)F
K _
N )k S (3.8.84)
2im G+ DF -1 +1
1—-PP(Q) _,,

where ¢, = W - Pj{w;) for £ = 1,...,L;. Note that by Eq. (3.8.76), ¢c; > ¢, > 0

for £ # 1. Similarly, we can write

(,362 -+ 1)K — 1
S (B + X —1)+1

Pl (wi) = (3.8.85)
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pre() 1-P(Q)

where 3 = PP (q) 1= PP () Note that 3 > 1. We observe that for all £ # 1,
PrRiwi) _(Ba+1)F -1 o Yo (Ba+1) (3:8.56)
P W) (Ba+DE-1 o szal(ﬁCe + 1)E e
and
prle DE -1 1)
e ) _ (ot S ol a, Z o (a1 +1) (3.8.87)
Prd) " (et DX =1 o YK (4Dt
Define

m K m 1 m
PR Bat '+ 3t o ko1 (3888)

(ce+1)m Ek TN (Beg + 1)+ > peolce + 1)F ’

Then, we can write

Pwlb( ) Cl Ek—l ()801 + 1)k +1 C1

= —fo, 3.8.89
PErwh) e S NBe+1)k+1 el ( )
and
Pwl“ w 1
ww( 1) _a k»o (61 + 1)* f_l_val' (3.8.90)
% wf) e Z (Cg + 1)k <
We now claim that
fm > fmt, m=0,...,K-2. (3.8.91)

To prove this, we derive that
(1 + 1™ Sp ™ HBey + 1)F + Top e + 1)
(c+1)m K TP Beg + 1)k + 0 (e + 1)F

(Bey + V(e + 1)’" K2 (Bey + 1% + or (e + 1)
(Bee + 1){cg + )™ “’" 2(Bey + 1)k + S oreolee + 1)

fm =

(3.8.92)



CHAPTER 3. DECISION FUSION MODELS AND PRINCIPLES 78

and

s = D™ e + D+ 3 (e + D
(co+ 1) S0P 2 (B + 1)F + S (g + 1)k

(e + D)™ 502 (Ber + 1) + (e + D™ 4 3 (e + 1)F

(ce + 1)mti ZK e 2(ﬁCf -+ 1) + (e + 1ym+t ZZL:O(CZ + 1)k

(c+ (e + )™ 5 2By + 1F + 07 (en + 1)F

(ce+ 1)(ee + 1) K o (Be+ 1)+ YR e+ 1)

(3.8.93)

Now we are in a position to invoke Lemma 3.8.1. In particular, inequality (3.8.91) is equiv-

alent to inequality (3.8.52), i.e

+ Z + z
MY 1 > k31 1

, (3.8.94)
YoYa + 22 Yo+ 2

where

K—m-2

n=pa+l, y=(c+1)" Z (Ber + 1),z = Z(Cl + 1)k,
k=0

K~m-—2

Yo =Pce+1, yo=(c+1)™ Z (Beg+1)F, 2= Z(q—{—l

k=0

(3.8.95)

Note that the assumptions in Lemma 3.8.1 are all satisfied. In particular, vy > 75 > 1,

Y1, Y2, 21, 22 > 0, and gl > -; which is readily seen because
2 2

(Cl -+ 1)m ——m 2(,361 -+ 1)k (01 -+ 1)m
v (et 1)m f:;m“"’(ﬂcl +1)F 7 (e + 1™’

(3.8.96)

and

L > oeoler +1)F (i +1)™
z E%:Z(Cg +1)E T (e + D)™ (3.8.97)
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Combining Eqgs. (3.8.89), (3.8.90) and inequality (3.8.91), we obtain

Pwlb (wi) Cy 1 €1 P}Ula (wi)
——;U—w—-——:—— > —=fi > o0 > —fg = S ——. 3.8.98
P (wi) szﬂ e’ CefK ' Pee(wr) ( )
Finally, we use (3.8.84), (3.8.85) and (3.8.98) to derive that
1
Wi, 1y =
=2 (B +1)" -1 T (Ba+1) -1
1 ,
> = PP (wi) (3.8.99)
L1 (e+1)%-1 1 fx \T10
1+ 25*12 (cl+1 1T {ci+1)% =1

which establishes the property (3.6.32).

f) DoC principle 1 for DSF model: As proven earlier, Dempster-Shafer evidential
inference method satisfies the fundamental principle 2, which implies that the fusion of
report D, with a group of other reports is equivalent to the fusion of D; with the fusion
result of the same group of reports. Therefore, to prove the principle, we only need to
consider the simple case of two sensor reports. In particular, Let D; denote the fusion result
of reports D; and Ds. Then, if w; increases, wy also increases, i.e., if P;(Q2) decreases, Pr(Q)
also decreases.

Let the two reports be given as

P(Q),
Dy = H(€) . k=1,2, (3.8.100)

Pk(w,f), 221,.“ ,Lk

where wi C § for £ = 1,..., L;. To separate the identity information in Dy from the DoC
(represented by P.(f2)), we use Eq. (3.3.9) to define

Pe(wp)

Hwh)= 8 p=1,... = 8.101
k(wk) 1 __Pk(ﬂ)y 14 17 1Lk7 k 1729 (3 )
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and

pp@) = > Pl(wp)Pyws). (3.8.102)

£ 4
£y, Nw,y? =0

Note that the Py(wg)’s and p/;(0) are independent of Py(2) and P3($2). The probability of

uncertainty in the fusion result is given as P(2) = W, where
1— ps(0)
w@= D PP)Pwp) = (1-P(Q) 1~ (@) p(0).  (38.103)

) Z £
51,32&011 ﬂw22 =0

Suppose that the probability of uncertainty for D; decreases from P;(Q2) to P (Q), where
f € [0,1). Then, the probability of uncertainty for D; changes from P;(2) to P;(Q) which

can be written as

BR(Q)P(Q2) P () P(R)

~ _ B
1= PREO)A-RO)K0) 1RO )

P}(9) (3.8.104)

We can derive that
Pi(Q) P ()

- w®+ (5-1) + (1- L) ws®
P (Q)P(9)

1 — s (0) + (-;- - 1) + (1 - I_i;-fg—m) 15(0)

P(Q)P(Q)
1 — ﬂf(@) + (% _ 1) 1~Py () —pr(0)

PiQ) =

1—-P1(ﬂ)
P (2)P()

N P (). (3.8.105)

O

Further discussion on DoC: In Dempster-Shafer evidential inference method, the DoC

of a sensor report Dy is represented by the probability of uncertainty Py(2) which can
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be assigned to any subset in Dy (see page 44). If P,(Q) # 0, the total probabilities of the
subsets wi’s in Dy cannot be determined. Therefore in the proof of the restricted fundamental
principle 4 for DSF model which involves total probabilities of subsets, we assume that there
is no probability of uncertainty in any sensor report or fusion result. However, from the
introduction in section 3.3, we know that all the identity information contained in report
Dy, (as given in Eq. (3.3.8)) is represented by the normalized probabilities PJ(wf)’s (as given
by Eq. (3.3.9)). As a result, when Py(£2) > 0, we should use P;(wf)’s to compute the total
probabilities of wf's as well as the relative likelihood of any two subsets wi and w], and treat
P,(2) only as representing the DoC of Dy. In particular, for the fundamental principle 4 for
DSF model, we assume that a sensor report D; is given as

P (),
D = 1) , (3.8.106)

Pl((l.)f), Ezl, ,L1

where w! C Q, wi Nw] = 0 for i # j, and suppose that in Dy, P;(w?!) > P(w?) for £ # 1.

We also assume that the fusion result before the fusion of D; is given as

P, (Q),
Dy, = 7 () , (3.8.107)

Pfl(wf,;]), {= 1,. .o ,Lfl
and the fusion result after the fusion of IJ; is given as

P,(%),
Dy, = (8 . (3.8.108)

sz(wfiz), {= 1, see ,sz
Then, according to the fundamental principle 4 for DSF model,

P}z(w%) = }1(w%)7 P (Q) =0,
Pt (wi) > P (w), P(Q) >0,

(3.8.109)

P fi (w% )
1-P fi (Q)
be shown in the following example, Dempster-Shafer evidential inference method does not

where the normalized probabilities are given as Py (wy) = for i = 1,2. As will
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satisfy the inequality in (3.8.109). In other words, if total probabilities are computed using
the normalized probabilities (e.g., Pi(wf)’s for Dy), the fundamental principle 4 for DSF

model is not satisfied.

Example 3.8.1 Let 0 = {a;,a}. Suppose Dy and the fusion result before the fusion of D;
(Dy,) are given as Dy = {Pi(a1) = 0.4, Pi(az) = 0.3, Pi(Q) = 0.3} and Dy, = {Pj,(a1) =
0.6, Pj,(as) = 0.4}. By Dempster-Shafer evidential inference method, the fusion result after
the fusion of Dy is Dy, = {Py(a1), Pp,(a2)}, where

Py, (a1) (Pi(a1) + P ()
Ps,(a1) (Pi(ay) + Pi()) + Py, (a2) (Pi(a2) + Pi(£2))
0.6 x (0.4 4 0.3)

= = (.54 3.8.110
0.6 x (0.4+0.3)+0.4 x (0.3+0.3) ’ ( )

Pp(ar)

and Pj,{az) = 1 — Pp,(ay) = 0.46. The fusion result violates the fundamental principle 4 for
DSF model which requires that

Pi(a1) > P(wh), Vi #a; = Ppla) > Pplar). (3.8.111)

Recall that in the proof of the restricted fundamental principle 4 for DSF model, we
showed that when there is no probability of uncertainty, the identity information in sensor
reports are fused together very well. Therefore the above example only indicates that there
is some problem with the way DoC values are introduced in Dempster-Shafer evidential

inference method.



apter 4

Convex Quadratic Fusion Method

In the previous chapter, we have proposed two models for decision level identity fusion:
the Dissimilar Sensor Fusion (DSF) model and the Similar Sensor Fusion (SSF) model.
In this chapter, we introduce a new decision fusion method for the SSF model, which we
call the convex quadratic fusion method. The new method is based on the minimization
of inconsistencies between the fusion result and sensor reports, which yields a probability
distribution with an overall best “fit” of the potentially inconsistent sensor reports. It
turns out that this formulation leads to a convex quadratic minimization problem which
can be solved efficiently in polynomial time. This compares favorably to Dempster-Shafer
evidential inference method which has an exponential complexity. In addition, our method
can handle probabilistic, inconsistent or incomplete sensor reports without the knowledge
of prior probabilities or conditional probabilities. Note that part of the research results

presented in this chapter has been published {36, 37].

4.1 Sensor reports

The proposed convex quadratic fusion method fuses the so-called ratio type sensor reports.

A sensor report Dy is of the form

For subsets wl, ..., w'™ of U, their relative likelihood are given by vk, ..., rp*
respectively, with r& > 0 for £ =1,..., Ly. The summation 7} + --- + rf" = Wy,

83
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which is required to lie in [0, 00), represents the Degree of Confidence (DoC) of

the report.
In other words, the sensor declares, with certainty wy, that the probabilities of w}, ..., w,f’“
satisfy Pp(wi) @ -+ Pk(w;:”“) =7l ... :r% Note that DoCpin = 0 and DoCp, = o0.

This form has no restriction imposed on how the subsets are selected. The selected subsets

are not necessarily mutually exclusive or exhaustive.

4.2 Problem formulation

Suppose there are a total of K sensors making observations on a target within a surveil-
lance region. All the sensors explore some common physical characteristics of the target.
Each sensor, based on its own observation and local data processing, generates a ratio type

report which is sent to the fusion center. Let us denote these reports by

wkzri+...+rl€k7
Dy = k=1, K (4.2.1)
Pe(wl):- - Pk(w,f") =rkieee: T,f”

The fusion goal is to determine a set of probabilities Py(a;) = p; for i = 1,... , N that best

fits the given sensor reports. Clearly, the chosen probabilities must satisfy
n+-+pyv=1 p, >0, i=1,...,N. (4.2.2)

The basic idea of our fusion method is to first set up a cost function for each sensor report, and
then minimize a weighted sum of all the cost functions subject to the probability constraint
(4.2.2). Intuitively, the cost function for D; should measure the discrepancy between the
probability given to subset wf in sensor report Dy and that in the fusion result D;. The

former is given by Pi(wf), and the later, denoted as P(wf), is given by

Prwh)= > ps (4.2.3)

3: cJLjwae
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In particular, the cost should reach its minimal value when Py(wf) = P;(wi) and should
increase as Py(wf) drifts away from Py(wf).

We propose to use the following cost function Cy(P) for sensor report Dy:

—c 2Lk Ié_Pf(wﬁ) ’
cmm~mmzxm %wJ’ (4.2.4)

where Py(wf) is given by (4.2.3), and
ex(P) = P(w}) + - -+ + Pr{wi®). (4.2.5)

) Pelwt 2
Tk _ ——’iﬂ‘l) is the normalized discrepancy
wy  cx(P)

between sensor report Dy and fusion result D;. This discrepancy is then weighted by ¢;(P)?

Ly,
In the cost function Ci(P), the term Z (
=1

to reflect the likely importance of the report.
It can be seen that Cp(P) > 0 and is zero whenever Py(wf) = Ps(wf). The latter is

because if Py(wf) = Ps(wf), then the condition rl : - : ri* = Py(wh) : -+ : Py(wy*) implies

TE _ i Py(w}) _ Pp(wh)

= = . 4.2.6
wp  rld et Prwl) 4o+ Prwpt)  a(P) ( )

This further implies Cy,(P) = 0. Also note that Cy(P) satisfies all the properties for the
distance measure dist(-,-) in section 3.6.4 (see page 58).

The overall cost function for the K sensor reports is defined as

X K I
Cre(P) =Y (@ )?’Cu(P) = 33 (el PYrt — wiPr(wi))”. (4.2.7)
k=1 k=1 £=1

Here, each individual cost function Cy(P) is weighted by (w;)? to reflect the DoC of report
Dy. Also note that Cf, (P) is a convex quadratic function of the variables P = {py,... ,pn}-

Now we can formulate the identity fusion problem as the following convex quadratic
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programiming problem:

K K I
minimize Cp, (P) = Z(wk)ZC’k(P) = Z Z (ex(P)rs — kaf(w,i)y
k=1 k=1 £=1
N (4.2.8)
subject to 2]91- =1, p;,>20,:=12,... ,N.
i=1

The above linearly constrained convex quadratic programming problem has N variables
and a simplex constraint. As such, it can be solved very efficiently (i.e., in polynomial
time) [32]. This is in contrast to Dempster-Shafer evidential inference approach which suffers
from exponentially growing computational complexity as K and N increase.

Next, we discuss the uniqueness of the fusion result. Problem (4.2.8) has a convex objec-
tive function and a simplex constraint, which ensures its optimal solution. The uniqueness
of the solution dependents on the Hessian matrix of (4.2.8). Formally, (4.2.8) can be written

in the following standard form:

minimize pTHgp + 2fEp
(4.2.9)

subject to ATp=b, p>0,

where Hx € RV*V, £ € RV A € RVM p = [p, - py] € RY*L and b € RM*L, It
is easy to verify that for the convex quadratic formulation (4.2.8), A=1{1 --- 1]5, b =1,
fx = 0, M=1, and Hy is given by

K L

Hyg =Y > HYHLT, (4.2.10)

k=1 £=1

where Hf € £*?, and the i’th element of H{ is given by

| o, a; ¢ Uk wt,
(Hi); = — T, a € Utiwt, a; ¢ uf, (4.2.11)

£
| we —muri, o € Wi,
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and my, is the number of all wi’s (€ = 1,... , ;) with a; € wf. The solution to problem (4.2.8)
is unique if and only if Hg > 0, which is equivalent to the condition that Hy is of full rank
(Hx # 0).

In the special case where all the K sensors assign probabilities to all and only the basic
propositions, the k’th sensor report can be written as Dy = {Pi(a1) : - -+ : Pi(ay) = wip}

- : wxpy }, where wy, is the DoC of Dy, and Py(a;) = p. represents the probability assigned
N

to proposition a; in report Dy, with z pi = 1. The objective function is
i=1

Cy(P) = Z(wku(prpk Z(wk ZZ(p?—Zpipﬁ(Pi)z)

i=1
N K K K
i iy2
= > ((Z(wk)2> -2 (Z(wk)2pk) pi+ Y _(wi)? (ph) )
i=1 E=1 k=1 k=1
N /K . N K , X
= > (Z('wk)2> =P+ D0 (w)? (B1)° - D (1?2, (4.2.12)
=1 k=1 =1 k=1 =1
Zkﬂ(wk)zpk Ny .
where r} = == =% Because Ty = (we)*pi, = 1, the fusion re-
T (e 2. T=5E 1<wk>2 ZZ
sult for this case is simply
K 2
Pia) =1t = Zp Wy (4.2.13)

Zf:l(wk)z ’

This solution has an attractive interpretation: the optimal fusion result is obtained by aver-
aging sensor reports using DoC values w?’s. Such an averaging minimizes the inconsistencies
in the sensor reports. Therefore, this special case provides a positive justification for the
new method.

The convex quadratic fusion method can operate in both the sequential and batch fusion
modes. However, the fusion method does not generate the same final fusion results for the
two fusion modes. This is because if we use the sequential fusion mode to fuse the interim
fusion result with a new sensor report, the corresponding cost function is different from the

one using the batch mode, and therefore does not correctly represent the discrepancies among
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the sensor reports. Moreover, when operating in the sequential fusion mode, the method does
not satisfy most of the decision fusion principles. For this reason, we do not advise the use of
the convex quadratic fusion method in the sequential fusion mode. Note that fusing sensor
reports all at once incurs little extra computation as the number of sensor reports increases.
The reason is that the fusion involves solving a convex optimization problem whose worst
case complexity is independent of the number of sensor reports. In addition, the overall cost
function to be minimized can be recursively updated as new sensor reports are fused. In
particular, if we denote the overall cost function for sensor report Dy,... ,Dg as Cy (P),
then, when a new sensor report Dy ., is fused, the overall cost function is updated as

K+1

Ctens(P) = 3 Cu(P) = Cpe(P) + Cica(P). (4.2.14)

k=1
Alternatively, we can recursively update the Hessian matrix Hy in (4.2.9), i.e.,

Lg
Hg = Hy + ) HE (HL)T (4.2.15)

=1
The above update equations suggest that it is unnecessary to keep the cost functions C(P)’s
for the fusion (keeping the overall cost function Cy, (P) or its Hessian matrix H, is sufficient).
However, as will be introduced in the next section, computation of the DoC of the fusion

result requires these cost functions. As a result, all the cost functions need to be maintained

for future fusion steps.

4.3 Degree of Confidence for the fusion result

The DoC of the fusion result should be determined in such a way that the two DoC
principles for SSF model (proposed in section 3.7) can be satisfied. In particular, we choose
the quadratic cost function given in Eq. (4.2.4) as the proper distance measure in the DoC
principle 1 for SSF model. The DoC of the fusion result should also satisfy property (3.6.36)
in the fundamental principle 5 for SSF model. Moreover, as stated in the fundamental

principle 1, when there is only one sensor report to fuse, the DoC of the fusion result should
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be the same with that of the single report.
Let w; denote the DoC associated with the fusion result D;. We propose to define wy

as follows:

wp = w- Chmes = C’“(Df), (4.3.16)

where Cy(Dy) is the value of cost function Cyx(P) in Eq. (4.2.4) evaluated using the proba-

bility assignments in fusion result Dy, and Cy,,, is given by:

Ly, ¢ N 2
r P (wg)
max cx(P)? ——
+(P) ; (wk e (P)
- (4.3.17)
Ly
subject to Zrl =wy, >0, 0=1,..., L.
=1
Since (4.3.17) is a concave optimization problem, the optimal solution is at one of the vertices

of the feasible region. Therefore,

(P’
o max cp(P)? (L — ——f———i‘-) ) 4.3.18
¢ i=1,...,N: k( )g Wi Ck(P) ( )

ri=1, im0, Vi

It is easy to verify that w; determined by Eq. (4.3.16) satisfies all the requirements discussed
above.

Eq. (4.3.16) can be rationalized as follows. In the SSF model, w; is determined by the
DoC values of all the reports and how strong each report confirms with D;. Specifically, wy
should be the sum of contributions from each wy. The stronger Dy, agrees with Dy, the more
wy, should contribute to wy. In the extreme case that Dy fully agrees with Dy (Cr(Dy) = 0),
all the confidence associated with D should be contributed to D;. In contrast, if Dy
completely disagree with Dy (Cx(Dy) = Ck,,.. ), fusion of Dy does not affect the confidence
of the fusion result at all. In other words, no part of wy should be added to wy. These two

cases are illustrated in the following example.

Example 4.3.1 Let Q = {a1,a2}. Suppose there are two similar and independent sensors
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each sending a report to the fusion center. We consider the following two cases.
Case 1: The two sensor reports are identical to each other except their DoC values. The

TepoTis are given as

wy = 1, Wy = 2,
D, = , Dy= . (4.3.19)
Pl(al) = 03, Pl(az) = 0.7 Pz(aq) = 03, Pz(@g) =0.7

Obviously, the fusion result should be the same with the two reports: D;y = {Ps(a;) =
0.3, Ps(as) = 0.7}. In addition, Dy should have all the confidence associated with D, and
Dz, i.€. P

C — Cy(D C
wf.,zwk bnae — Cr(Dp) _ 5~ Conae gy =3 (43.20)

Case 2: The two sensor reports are given by

wy = 1, Wy = 1,
D, = , Dy= . (43.21)
P]_(al) = 1, Pl((lg) = O Pg(al) = 0, Pz(ag) =1

Note that Dy and D; are cyclic sensor reports. In the conver quadratic fusion method, the

cost functions for report Dy and D, are
Ci(P) = (pr ~ Pi(a1))* + (p1 — Pa(a2))* = (o1 — 1)* + (p2)%, (4.3.22)
and
C2(P) = (p1 — Po(@1))* + (p2 — Pa(@2))* = (1)* + (p — 1)%. (4.3.23)

By minimizing Cy(P)+ Cy(P) with the probabilistic constraints (4.2.2), we obtain the fusion
result as Dy = {P;{a;) = 0.5, Ps(ay) = 0.5}. We also compute that C1(Dy) = (0.5 — 1) +



CHAPTER 4. CONVEX QUADRATIC FUSION METHOD 91

0.5% = 0.5, Cy(Dy) = 0.5 + (0.5 — 1)? = 0.5, and

Chiee™ max (r' =052+ (r2 = 0.5 = (1-0.5)*+ (0~ 0.5)* = 0.5. (4.3.24)
i=1,2:
ri=1, p7 =0, i

= 0. Here, Dy and Dy completely

2
— Cy(D
Therefore, the DoC of Dy is wy = Zwk . Chmae w(Dy)
k=1 Ckmaw
disagree with each other, and both of them disagree with the fusion result to the mazimal

extent. As o result, Dy has no confidence at all.

Note that in Eq. (4.3.16), both Cj,,,, and Dy(Dy) varies with the fusion result Dy.
Therefore, when a new sensor report is fused, we need to compute the Cy,, , and Di(Dy)
again for each D; using the new fusion result. In other words, wys can not be recursively
updated like the cost function Cy, (P) (Eq. (4.2.14)). Moreover, we need to maintain the

cost function forms (Cy(P)’s) for future fusion steps.

4.4 Appropriate sensor report form

As introduced in section 4.1, a ratio type sensor report can always be expressed in the

form of the following comparison:
Po(wp) : -t Po(wi®) = 7o om0 pik, (4.4.25)

From probabilistic point of view, this comparison can be expressed in various forms using
intersections and unions of the wi’s without changing the probabilities of the original subsets.
It can also be broken into multiple comparisons. For example, Pi{ay) : Pi(az) : Pias) =
1:1:1 can be expressed as Pi(a; V aa) : Pi{az) : Pi{as) = 2 :1: 1, or be broken into two
comparisons: Pi(a;) : Pi(az) = 1:1 and Pi(a;) : Pi(a3) = 1: 1. Although the above forms
are equivalent in the probability sense, their corresponding cost functions are different in the
convex quadratic fusion method, leading to different fusion results. This is illustrated in the

following example.
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Example 4.4.1 Let O = {a1,ay,a3}. Suppose there are two similar and independent sen-
sors, each of them sends a report to the fusion center. Report Dy is gwen by Dy = {P;(a;) :

Pi(ay) : Pi(az) = 0.70 : 0.15 : 0.15}, and report Dy 1s given in the following two forms:

Dzl = {le(CLl) : le(az) : P21(CE3) = (.90:0.05: 005},

(4.4.26)
Doy = {Pss(a1) : Pag(a) = 0.90:0.05, Py(a1) : Pylas) = 0.90:0.05}.

Note that Doy and Dyy are equivalent in the probabilistic sense. By the conver gquadratic
fusion method, the fusion result of Dy and Dy is Dy, = {Py(a1) = 0.80, Py, (az) = 0.10,
Py (a3) = 0,10},‘and the fusion result of Dy and Dy is Dy, = {Py,(a1) = 0.7850, Py,(az) =
0.1075, Py, (as) = 0.1075}. Note that Dy, and Dy, are different.

It is now clear that we need to choose an appropriate sensor report form. To do this, we

break the comparison in (4.4.25) into the following group of comparisons:
Ly ‘
Pe(wi): > Pu(w]) =rhiwy, £=1,... L. (4.4.27)
=1

The weighted cost function for (4.4.25), i.e., the cost term used in the optimization prob-

lem (4.2.8), is
Ly )
Cy(P) = (we)*Cu(P) = > (cx(P)rf — wiPy(w))”, (4.4.28)

=1

while the weighted cost function for (4.4.27) is

Ly
CUP) = (u+riPCP) = 3 (((celP) + Prlwd) ot — (w + 1Py (o)
=1
+ ((Ck(P) + P;(wﬁ)) Wy — (wk + 'rﬁ)ck(P))2> = 20;6(}}) (4.4,29)

The equivalence of Ci(P) to Cy(P) shown in Eq. (4.4.29) means that comparison (4.4.25) can
be replaced by the group of comparisons in {4.4.27). In other words, including a subset into

a comparison is equivalent to comparing it with the union of all subsets in that comparison.
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Recall that the basic idea of the convex quadratic fusion method is to minimize the weighted
summation of normalized errors between the fusion result and all sensor reports. Therefore
if we break a comparison into multiple comparisons, the union of all subsets changes; if we
use intersections or unions of the original subsets, we change the original subsets. In both
cases, the normalized errors of the original subsets change, and the new cost function no
longer represents the same information on discrepancy between the fusion result and sensor
reports as it does before.

It is now clear that the appropriate sensor report form is to generate a single ratio type
report based on each observed evidence, and the subsets in the comparison should be the
ones directly involved in the observation. For example, if a sensor detects whether a target

is hostile (a; ), neutral (ap) or friendly (as), then its report should be of the following form:
Pi(ay) : Pi(ap) : Pi(as) =7y :r?:rid. (4.4.30)
The report should not be represented in the following alternative forms:

Pi(a; V ag) : Piag) : Pi(as) = (ri +73) 17} o rd, (4.4.31)

Pi(ay): Pi(ay) =71 : 72 and Py(a;): Piag) =71 :75. (4.4.32)

The reason is that in (4.4.31) subset a; V ay is not directly used in the observation, and in
(4.4.32) the unions of subsets, i.e., a1 V ap and a; V a3 are not the one (a; Vaz v as) used in
the observation. As such, these alternative forms cannot appropriately represent the identity

information from the sensor.
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4.5

sion of Dempster-Shafer type sensor reports

In Dempster-Shafer evidential inference method, a sensor assigns probabilities to some

subsets of {1. A sensor report Dy is in the form of

Dy = , (4.5.33)

where Po(Q) + Yo0%, P(wh) = 1, wt € Q, P(Q) € [0,1] and P(wf) € [0, 1).

As discussed in section 3.3, in the above sensor report a probability mass Py(wf) may
only be part of the total probability for subset wf. Other probability mass Pk(w{;) with
winuw! # 6 will also contribute to the total probability for wt (see page 44). This is different
from a ratio type sensor report which compares the total probabilities of subsets. As a result,
a Dempster-Shafer type sensor report cannot be directly fused using the convex quadratic

fusion method. This is illustrated in the following example.

Example 4.5.1 Let Q = {a;,as,a3}. Consider the following Dempster-Shafer type sensor
report: Dy = {Pi(a1) = 0.6, Pi(as) = 0.2, Pi(a3) = 0.1, P(a; V az) = 0.1}. Note that the
probability mass Py(a1V ag) in the above report is not the total probability of a1V ay. In other
words, Py(a; V ay) is only added to a; V ay. If directly treated as a ratio type sensor report,
D, should be replaced by the following comparison: Pl (ay) : P {a3) : PT(as) : PT(a;Vay) =
0.6:0.2:0.1:0.1, where we use PT(w}) to represent the total probability of subset wi. This

comparison is incorrect because P (a;) : PT(a; V az) = 0.6 : 0.1 is never true.

As a remedy, we propose the following procedure to transform Dempster-Shafer type
sensor reports into ratio type reports, so that they can be fused by the convex guadratic

fusion method. Consider a Dempster-Shafer type sensor report Dy given in (4.5.33). Suppose

.. . i, )

a; is included in each of the subsets wil, cee, wkM‘. In the transformation procedure, we first
. " . s 2 ¢
introduce for each proposition a; the so-called sub-propositions af‘, ooy 0, where a € wy
. ¢ ) L, .

forj=1,...,M; ¢ Naf™ =0 for j # m, and af‘ U---Ug;™ = a;. In other words, a; is

. . . cos £ .
separated into some mutually exclusive and exhaustive sub-propositions a;’’s. A subset wf, is
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then replaced by U a; and its probability mass P, (wf) is replaced by z P,(af), where

i:aiEwi i:aiEcufc

P (af) is the total probability of sub-proposition af in report Dy. Now we can transform

report Dy into the following ratio type report:

U ail:“': U afk:'r}c:“vlrfk, (4534)
L

iia; €w, i:a;€w
where 7§ = wy, - %, and wy = — In P(Q) represents the DoC of report I;. Note that
wy and P (Q) has a il;werse relationship. Specifically, when Po(Q2) = 1, w; = 0 represents
minimal DoC. In contrast, when P(Q) = 0, w; — oo represents maximal DoC.
If the transformed report is fused by the convex quadratic fusion method, its correspond-

ing cost function is given by

Ck(P)=(c’(P))2§Lf e Bl )2 (4.5.35)
T qP) )

Ly,
where ¢,(P) = Z Z p(af), and Pi(wp) = Z pf for £ = 1,...,L;. Here, p is the
&=1¢: a;Ewi i a,'wa,

probability assigned to sub-proposition afj in the fusion result. In addition, the following

new probability constraints must be added into (4.2.8):
M;
Spf=p,i=1,...,N, pf>0,Vi,5j. (4.5.36)
j=1

The transformation procedure is illustrated in the following example.

Example 4.5.2 Let us reconsider sensor report Dy in Ezample 4.5.1. Using the above
procedure, we introduce sub-propositions a} and o} such that a! Nad = ¢ and ol Uad = ay.
Similarly, we introduce sub-propositions a} and o such that a Na} = 0 and ab U a3 = as.

Also let pz denote the probability assigned te sub-proposition a{ in the fusion resuli. Then,



CHAPTER 4. CONVEX QUADRATIC FUSION METHOD 96

D can be transformed as the following ratio type report:
Py(al): Pi(ay) : Pilas): P(a®Vad) =06:02:0.1:0.1. (4.5.37)
By the convex gquadratic fusion method, the cost function for Dy is given by
C1(P) = (p} — 0.6)% + (p3 — 0.2)% + (ps — 0.1)* + (p? + p3 — 0.1)2 (4.5.38)
If only Dy is qu-ed by the conver quadratic fusion method, the fusion result is given by

mazimize C1(P) = (pj — 0.6)% + (p; — 0.2)% + (p3 — 0.1)% + (p3 + p5 — 0.1)?
subject to p1+p2+p3=1, pi+pd=p, p3+05=0ps, (4.5.39)
pi>0,i=1,23, pl>0,4j=12

which is Dy = {p; = 0.6, p} = 0.2, ps = 0.1, p} + p} = 0.1}. As ezpected, the fusion result

15 a restatement of Dy.

4.6 Robustness analysis

In this section, we analyze the robustness of the convex quadratic fusion method. In
particular, we consider the situation where all the P,(wf)’s are perturbed versions of P(wf)’s
which represent the true probabilities, and study the sensitivity of the resulting solution

P(wf)’s to the perturbation. Assume that
Py(wh) = P(wh) + nf, (4.6.40)

where n{ is a stochastic disturbance with zerc mean. We assume that the disturbances {nf}
are independent. Then the sensor report from the k’th sensor is

Wy = T4+ o ok
Dy={ KT i , (4.6.41)

Pe(wi) «-»:Pk(w{;") =7 -»-‘:7";5"‘c
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with rf = By Py (wl) = Bu(P(wh) + nt) for some B, > 0. Note that the DoC of Dy can be

written as
Ly,
Wk = Z% Pr Z (Plwg) +mg) = éck(P) +> né> : (4.6.42)
=1

where ¢;(P) = P(w}) + -+ -+ P(wi*). The overall cost function Cy, (P) is

Cre(P) =Y () (P =35 (ck(P ka(wk)>
k=1 k=1 ¢=1
K L Ly 2
= Z (ck(P)ﬁk ( (wi) + nk) Br (ck(P) + Zni) Pf(wf;))
k=1 £=1 j=1
K Ly Ly ?
=Y By, (ck(P)P(wf;) + cx(P)ng — e (P)Py(wf) — Pr(wi) D ni)
k=1 £=1 Jj=1
K Ly Ly 2
N> ( (cx(P)P(f) ~ cx(P)Py(wf) + (k (Pnf — Prwf) Y ni) ) (46.43)
k=1 =1 j=1

Here, the third step follows from (4.6.42). Taking expectation in the above expression with

respect to {n’} and noting that {n{} have zero mean, we obtain

K Ly
B0 = 3AY( (Peh - a@reh)

k=1 £=1

Ly )
+2 (c(P)P(of) — ex(P)Py(u)) (ck<P>E<n%;) ~ )Y E(ni))
j=1

Ly 2
E (Ck(P)”i ~ Pp(wf) Zni) )
F=1

K Ly
= Y (4(P)PEh) - e PIPy(eA))

k=1 £=1

K Ly L, \?°
2 BB (Ck(P)ni - Pr(wf) ni) : (4.6.44)
j=1

k=1 £=1
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where F (Cy, (P)) denotes the expectation of Cy, (P) with respect to P. Note that

Ly Ly z Ly Ly, ) z
ZE(ck<P>ni—Pf<wi>Zni) =) E ((ck<P)—Pf(wi>) ng — Prlwf) ) n;)

=1 j=1 =1 j=1,57¢
Ly Ly, .

=3 ((ckw)—Pf<wf;>)2E[<nf;>21+<Pf(wf;)>2 ) E[nz]2>, (4:6.45)
£=1 =158

where all the cross terms vanish because the nf’s are independent with each other and have

zero mean. Now suppose
Enil*=---= En*)* = ol (4.6.46)

Then we can further simplify (4.6.45) as
Ly Ly, X 2
S B | aPinf~ Py(w) 3 mi
i=1 Jj=1

=1 J=1,5#L

= Z ((Ck(P) P wk))2E[(nk) 1+ (Pr(w Z E[( )
Ly, 2 Ly
= o} (Z (ce(P) = Prwf)) "+ (T = 1) Z(Pf(wi))2>

£=1 £=1

Ly
= g ((Lk — 2)(ex{P) )2 + Ly Z(Pf wk))2) (4.6.47)

=1

We can now substitute (4.6.47) to (4.6.44) to obtain

k=1 =1

K Ly
ElCi (P)] = 3.6 (Z (ce(PYP(wf) - ck(P)PAwi))z}

+> Bioi (:(Lk ~ 2)(ex(P))* + Ly i(Pf(wﬁ))“’} . (4.6.48)
k=1 =1

It can be seen from the above expression that E(C/, (P)) consists of two terms, the second

of which is proportional to the disturbance variance ¢2’s. Minimizing the first term will make
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Pi{wf) proportional to P(wf) (the true distribution), while minimizing the second term will
drive Pr(wf) (and thus ¢;(P)) to zero. This implies that the deviation of our estimate P
(given as the optimal solution of (4.2.8)) from the true distribution P is proportional to
the magnitude o}’s. This result is intuitively appealing: unreliable reports will lead to an
unreliable fusion result. On the other hand, if the disturbances n}’s are absent, then the
second term of (4.6.48) vanishes, and minimizing the cost function E(Cy, (P)) will lead to

the identification of the true probability distribution P;(wé) = P(w}) for all k and /.

4.7 Satisfaction of decision fusion principles

In this section, we analyze the convex quadratic fusion method using the decision fusion

principles proposed in the previous chapter.

Theorem 4.7.1 The convez quadratic fusion method satisfies fundamental principles 1, 2,
3, and fundamental principles 4 and § for SSF model. The fusion method also satisfies DoC
principles 1 and 2 for SSF model.

Proof. Let 1= {a1,...,an}. Suppose a sensor report Dy, takes the following form:

L
wy =Ty A e+ TE,

. . (4.7.49)
Pe(wi) -t Po(wp®) = rp oo e iry®

S
i

3

where vt > 0 for £=1,..., Ly, and wy, is the DoC of D;. Also define the distance measure
dist(Dy, D) as the cost function Cyp(Dy) for Dy (4.2.4), where Ci(Dy) denotes the value of
cost function Cy{P) using the probability assignments in D;. As introduced in the previous
chapter, dist(Dg, Dy) is used in the fundamental principles 4 and 5 for SSF model, and DoC
principle 1 for SSF model. Note that Ci(Dy) satisfies the properties proposed in section
3.6.4 (see page 58). We Now examine the decision fusion principles one by one.

a) Fundamental principle 1: Suppose there is only one sensor report D to fuse. The

overall cost function is Cp, (P) = (w1)? Ci(P) = 3¢, (cu(P)rt — wlpf(wf))z. Obviously, if
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we choose

Pilwt) =L, 2=1,... L, (4.7.50)

wy

the cost function reaches its minimal value:

C(Dy) = i <i (g) ot (%» 2 = 0. (4.7.51)

£=1 \m=1

In other words, (4.7.50) is the optimal fusion result. The DoC of the fusion result can be
Clies — C1(Dy)

5 = w;. As such, the fusion result is identical with
1maz

calculated as wy = w; -
Dy.

b) Fundamental principle 2: This is straight forward. As discussed on page 87, we only
use the convex quadratic fusion method in the batch fusion mode. Specifically, sensor reports
are fused all at once by minimizing a cost function (Eq. (4.2.7)) which is constructed using
original sensor reports. The cost function is obviously invariant with the permutation of the
indexing of the sensor reports, and so is the fusion result.

¢) Fundamental principle 3: Suppose there are N cyclic sensor reports Dy, ... , Dy with

Dy, given as

N N
Wy = E Tiok = E Ty
Dy, i=1

= i=1

(4.7.52)
Pk(ai) = Tigk, § = ]_,,_, ,N
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where r; > 0for¢=1,...,N,andi®k =i +%k —1 mod N. Note that the DoC values of

all sensor reports are the same. The overall cost function is

Cre(P) = Z(wk )" Ci(P) ZZZ Tigh — WiPi)"

k=1 i=1
N N
= z Z (T?@k — 2’!‘1‘@].;11}2?2' -+ ('wz)zpf)
k=1 i=1
N N
= N () —2N(wi)® + Nw)* Y g, (4.7.53)
=1 i=1

Obviously, minimization of the above cost function yields the following fusion result: p; =
1/N for i = 1,...,N, In other words, the convex quadratic fusion method satisfies the
fundamental principle 3.

d) Fundamental principle 4 for SSF model: Suppose there are K sensor reports
Dy, ..., Dg. Let Dy, and Dy, denote the fusion results before and after the fusion of sensor
report D;. Let us denote the cost function before the fusion of D; as Cy, (P), which is given

as

Cr(P) = (wi)’ Cx(P), (4.7.54)

k=2

and the cost function after the fusion of Dy as Cp,(P), which is given as
K
Ch(P) =" (i Cu(P) = (wi) Co(P) + C1(P). (4.7.55)

Also let Cy(Dy;) and Cf,(Dy;) (4,5 = 1,2) denote cost functions Cy(P) and Cy,(P) using
the probability assignments in Dy,. Then, it is obvious that Dy, is identical with Dy, when

wy = 0, and is identical with D; (except the DoC values) when w; — co. Therefore,

diSt(wa Dfl) = 0, Wy = DOCmim
dist(Dl, Df2) == Q, Wy = DOCmam.

(4.7.56)
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Moreover, Cy, (P) reaches its minimal value at Dy, , which gives Cy, (Dy,) < Cf,(Dy,). Simi-
larly, sz(Dh) 2 sz(sz)» or

Cf?(D.fl) = (wl)z Cl(Dh) + Cf1(Df1) 2 sz(sz) - (w1)2 Cl(sz) + Cfl(sz)' (4°7'57>
It is obvious from the above inequalities that C1(Dy,) > C1(Dy,), or
diSt(Dl, Dfl) > diSt(D]_, Df2). (4758)

Note that the above inequality applies to any cost function which is additive.
Now assume that the DoC value of D; changes from wi, to wqp, with wyy > wy,. Let
D" denote D; with DoC value wy;, and D;fz“ denote the fusion result after the fusion of

D" (i = a,b). We also define normalized ratios 7¢’s as

r
=L L=1,...,L. (4.7.59)
Un
Ly
Note that Z?’f =1, i.e., the #¥’s are independent of w;. The 7’s contain all the identity
=1

information in D, because the identity information is expressed in the relative likelihood
ratios between the subsets w{’s, which is also maintained in the #%’s. This is similar to
the normalized probabilities P{(w§)’s (as given in Eq. (3.3.9)) in Dempster-Shafer evidential
inference method. The weighted cost function corresponding to D™, i.e., the cost term

corresponding to D" in the overall cost function Cy, (P), can be written as

L 2
Wip! = 2 sy oy 2,2 - fl_Pf(wf)
() = (s O (B)= (cxPPeh 3 (- ) )

Ly 2 Ly 2
— @y, 3 (7= 2DV ey, - i) S (- 2D (ar.60)
a(P) a(P)

=1 =1

Let Dy denote a new sensor report which is identical to D; except that its DoC value
is wi, = y/w¥ —wi,. Then from the above equation, the fusion of D* is equivalent to

the fusion of D}"* and DY*. In other words, increasing the DoC of D; from wy, to wip is
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equivalent to the fusion of a new sensor report D¢, Similar to (4.7.58), we have
dist(D;, D) > dist(Dy, DY), (4.7.61)

i.e., when w, increases, dist(Dy, Dy,) decreases.

e) Fundamental principle 5 for SSF model: Suppose there are K identical sensor
reports from similar and independent sensors, each denoted by Dj", where w; denotes the
DoC value and suppose that w; > DoCpp. Let Dy, and D“’1 (with DoC value w ) denote
the fusion results before and after the fusion of these reports. We further denote the cost
function before and after the fusion of these reports as Cy,(P) and C7.(P) respectively.
Then,

CPHP) = K(w,)*C{ (P) + Cy,(P), (4.7.62)

where C7*(P) is the cost function for report D}*. Note that C}"*(D;) = 0, where C7"*(D;) is
the value of Cy"*(P) using the probability assignments in D}*. C}!(P) reaches its minimal

value at D¢, ie.,
K
K(w1)*C*(D1) + Cp,y(D1) > K(w)*CY(Dye) + Cro (DY), (4.7.63)

which implies Cy, (D) > K(w)*Cy*(Dy, ), or

i Pwl(wl)) . (4.7.64)

20D 2 (DR’ Wz(i‘?" (oF)

=1
1
Note that Cy (D) is a positive constant and I}im ‘ECfO(.Dl) = (. Eq. (4.7.64) shows that
—+00

if I}l}& a(D7r) # 0, then

Hm (PEH(wi) -« PR (wit)) =rfce-eirp?, (4.7.65)

K—oo



CHAPTER 4. CONVEX QUADRATIC FUSION METHOD 104

ar

lim D¥ = D. (4.7.66)

K—o0

. . " . w1y . - . - A w1 ¥4 . .
In the trivial case that | 15220 ci(D%;) =0, it is obvious that Igl_r)xgo P (w) =0 for £ =
1,..., Ly, and the comparison Py (wj) : --- : P}Z:(wfl) is undetermined. As a remedy,

we define that when P (wf) =0for £=1,... L,
P(wi) st PR W) =)o rpt, (4.7.67)

Therefore the principle is also satisfied for this trivial case.

To prove property (3.6.36), we write the DoC of DY} as

Clma:c - Cy (D}Ué)

Cl maz

wey = Kw; - + wg (Dyy ), (4.7.68)

where the first part represents the contribution from the K identical reports, and the second

part represents the contribution from other reports in the fusion. Eq. (4.7.66) implies that
which helps to derive that

Climas — CL(D
lim w? > lim Kuwy - —— {Oh) _ i Ky = oo, (4.7.70)

K—oo 15X 7 Koo Clmes K—oo

thus establishes property (3.6.36).

To prove property (3.6.37), suppose that the DoC value of w; changes from ws, t0 wis,
with wiy > wi,. From the proof of the fundamental principle 4 for SSF model (see page
102}, the fusion of a sensor report D} is equivalent to the fusion of two sensor reports: a
report Di™** and a report DY with DoC value wy, = m. As a result, increasing
w; from wy, to wip is equivalent to the fusion of an additional group of K identical reports

Dyie’s. Similar to (4.7.61), we have dist(D;, D<) > dist(Dy, D2).
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f) DoC principle 1 for SSF model: Here we follow the assumptions made in DoC
principle 1 for SSF model (see page 64). That is, let Dy, denote the fusion result of sensor
reports Dy, ..., Dix, and Dy, denote the fusion result of sensor reports Dsy, ..., Dyg.
Let w;; denote the DoC value associated with report D;;, and wy, denote the DoC value
associated with fusion result Dy,. Assume that Dy = Dy,, and wy, = wo for k =1,... , K.
We further assume that sensor reports Dy, and Dy have the same subsets. Moreover, assume

that
diSt(le, Dfl) > diSt(ng, sz), k=1,... K, (4771)

and note that dist(Dy, Dy,) = Cy(Dy,) for i = 1,2, we derive that

Chns — Cix(D
> ) g e fl):wfl. (4.7.72)

g) DoC principle 2 for SSF model: This is straight forward. Follow the assumptions
made in DoC principle 2 for SSF model (see page 65). That is, let Dy, denote the fusion result
of sensor reports DY, ..., DE¥, where wy is the DoC associated with the k’th report. Let
Dy, denote the fusion result of Df i, Df{wx . In other words, the DoC of the k’th report
changes from wy to fwg. Also let wy, denote the DoC value associated with fusion result Dy,.
Then, it is obvious that by the convex quadratic fusion method, Dy, and Dy, are identical
to each other except their DoC values. Since both Cy(Dy) and Cy,,,, are independent of wy,

we can compute that

K K
Crrue — Ce(Dy, Cr,a — Cu( Dy,
wp, = ) P «Dr) =fY_ we— KDn) _ gy, (4.7.73)
k:I kmaz kzl kmaz
which establishes property (3.7.39), i.e.,, 8 > 1 = wy, > wy,. O

Discussion on the restricted fundamental principle 4 for SSF model
Theorem 4.7.1 shows that the convex quadratic fusion method satisfies the decision fusion
principles proposed in Chapter 3. However, the method only satisfies the restricted funda-

mental principle 4 for SSF model in the special case where the K sensors assign probabilities
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to all and only the basic propositions a;’s. To prove this, we observe that in this case the

k’th sensor report can be written as

DoC' = wy,
Dy = : , (4.7.74)

Pk(al) Deee Pk(aN) = wkp,lc el wkp{f

where Py(a;) = pl, represents the probability assigned to proposition a; in report Dy, with
N
Z p}, = 1. Denote the fusion result before and after the fusion of report D; as Dy, and Dy,.

1=1
Then, from (4.2.13), Dy, is given by Dy, = {Pj,(a1), ..., Py (an)}, where
X 2,0
Pr(a;) = —Z’“?————E"-’“—)—’i, i=1,... N (4.7.75)
Zk‘:2(wk)2
Similarly, Dy, is given by Dy, = {Py(a1), ..., Pp(an)}, where
K 2,0
Py (a;) = W, i=1,...,N. (4.7.76)
Zk:l(wk}

It is easy to verify that Dy, is identical to Dy, when w; = 0, and is identical to D; when

w; — oo. This establishes property (3.6.27).
To prove property (3.6.28), we first derive that

TR o)k + (wi)2ph T, (wi)ph
St (wi)? + (w2 Y pa(wp)?

= - ((i(wk)zpi +(’w1)2Pi) Zk G (Z(w +w2)>
SR + (w)? \\= R ) \& '

1 <( )Zz_M’i)_ﬁh( )>

T YK () + TE S (wn)?

w 2
= mzf(( 1() KT (Pr(as) — Pr,{es)) - (4.7.77)
E=1\W

Py, (a;) — Pp,(a;) =
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From (4.7.77), it is obvious that if w; € (0,00) and Pi(a;) > Pf(a;), then Py, (a;) > Py, (a;).

Moreover, Py, (a;) < Pi(a;) since

2
Wy
Pale) = Pre) = =i (P(a) - Py (a) < Pu(a) ~ Prla).  (4.7.78)
Zk:l(wk)
Similarly, we can prove that
Pi(a;) < Pr(a;) = Pya;) < Pp(a;) < P(a;), wy € (0,00). (4.7.79)

In addition, it is obvious from (4.7.77) that if Dy changes so that |P;(a;) — Py, (a;)] or w;
increases, |Py(a;) — Py, (a;)] also increases.

In general, the convex quadratic fusion method does not satisfy the restricted fundamental
principle 4 for SSF model. This is illustrated in the following example. However, this should
not be viewed as a weakness of the new fusion method since the principle is not absolutely

necessary in practice (see discussion on page 59).

Example 4.7.1 Let Q = {a1,a5,a3}. Suppose there are three similar and independent sen-

sors each sending a report to the fusion center. The sensor reports are given as

Wy = 1,
D1 =
Pi(a1) : Py(as) : Pi(az) = 0.70: 0.15: 0.15
Wy =1,
Dy={ ° , (4.7.80)
Pg(al) : Pg(az Vv ag) = (.20 : 0.80

Wy = 1)
D3 - .
{ Ps(ay) : Ps(az) : Ps(as) = 0.20: 0.20 : 0.60 }

By the conver quadratic fusion method, the fusion result before the fusion of Dy, i.e., the
fusion result of Dy and D, is given by Dy, = {Py(a1) = 0.20, Pf,(az) = 0.20, Py, (a3) =
0.60}, and the fusion result after the fusion of Dy, i.e., the fusion result of D:, Do and
Dy, is Dy, = {Pp,(a1) = 0.350, Pp(az) = 0.225, Pj,(a3) = 0.4250}. Here, the restricted
fundamental principle { for SSF model is not satisfied, since Py(a) = 0.15 < P, (ag) = 0.20
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but Py, (as) = 0.225 > Py (as) = 0.20, violating property (3.6.28).

4.8 Numerical example

In this section, a numerical example is given to illustrate the performance of the convex

quadratic fusion method.

Example 4.8.1

Let © = {ai,0a2,a3,04}. Suppose the corresponding true probability distribution is
P(Q) = {0.05,0.20,0.60,0.15}. Suppose there are three independent sensors making ob-
servations on a target. All the sensors explore common physical characteristics of the target.

Assume each sensor files one report to the fusion center which are given as follows:

wy =ri+7ri=1,

D =
PiasVay):P{a;Vag)=r:r2=07:03

we =715 +712=10.8,
Dy=¢{ = 2772 , (4.8.81)

Pyas) 1 Pya; Vas) =713 :72=0.6:0.2

ws =13 +712=0.7,

D3 =
Ps(a1) : Ps{ay) =75 1 72 = 0.28 : 0.42

Using the convex quadratic fusion method, we first construct the following cost function as

Cp,(P) = (w1)*Ci(P)+ (w2)*Co(P) + (w3)*Cs(P)
= ({(ps +ps) = 0.0)" + ((pr + p2) — 0.3)°)
+0.64 ((0.75(p1 + ps + ps) — p3)* + (0.25(p1 + ps +p4) — (p1 + p4))2)

+0.49 ((0.4(p1 + pa) — p1)* + (0.6(p1 + pa) — p2)7) (4.8.82)
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where we have used the fact p; -+ py + p3 + p4 = 1. The convex quadratic programming

problem (4.2.8) then becomes

minimize Ct,(P)
subject to pL+pe+ps+Hpa=1, (4.8.83)
p; 20, i=1,2,3,4.

The resulting optimal fused probabilities are shown in Table 4.4. They closely match the

actual probabilities P as expected.

Propositions a Qo a3 Qs
True probabilities 0.06 10.20 |06 0.15
Optimally fused probabilities | 0.078 | 0.222 | 0.583 | 0.117

Table 4.4: Fusion results for Example 4.8.1.

Finally, The DoC of the fusion result is calculated as

3
- C(D

1.49 — 0.09 1.125— 0 0.72 -0
i tindd : +0.7-

The fusion is performed on a 800MHz Pentium PC under the MATLAB environment. The
CPU time used is less than 0.5 second, showing that the fusion method is computationally

efficient.



K-L Fusion Method

In the previous chapter, we have introduced the convex quadratic fusion method for
the Similar Sensor Fusion (SSF) model. In this chapter, we continue our study of deci-
sion fusion and propose another method for the SSF model: a fusion method based on
Kullback-Leibler’s measure of cross-entropy or called K-L fusion method in short. Similar
to the convex quadratic fusion method, the K-L fusion method is based on the minimization
of inconsistencies between the fusion result and sensor reports. However, instead of using
quadratic cost function to measure the inconsistencies, we use Kullback-Leibler’s measure of
cross-entropy. The new formulation leads to a generalized analytic center problem in linear
programming which can be solved efficiently in polynomial time. Moreover, the method does
not require any prior knowledge on the target. This is in contrast to Dempster-Shafer evi-
dential inference method which suffers from exponential complexity, and Bayesian inference

method which requires prior knowledge on the target.

5.1 Kullback-Leibler’s measure of cross-entropy

Kullback-Leibler's measure of cross-entropy (also called K-L measure) is a fundamental
measure of cross-entropy between two probability distributions. It provides discrimination
information or directed divergence information on two probability distributions. Let p =

{p1,...,pn} and q = {q1,...,g,} be two probability distributions. The K-L measure is

110
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defined as

D(p:a)= Epzln— (5.1.1)

where we assume p; is zero whenever ¢; = 0, and define Olng- = 0. The following are some

important properties of K-L measure:
1. D(p:q) is a continuous function of p = {p1,... ,put and q={¢,... ,q.}.

2. D(p : q) is permutationally symmetric, which means that the value of K-L measure

does not change if the pairs (p1,¢1), - , (Pn: ¢n) are permuted among themselves,
3. D(p:q)>0,and D(p:q)=0ifand only if p = q.
4. D(p : q) is a convex function of both p and q.

Note that the K-L measure D(p : q) can be used as the distance measure dist(D;, D;)
proposed in section 3.6.4 (see page 58). Here we assume that reports D; and D, are rep-
resented by probability distributions p and q respectively. Obviously, D(p : q) satisfies all
the properties for dist(D;, Dy). Also note that K-L measure does not satisfy the symmetry
condition, i.e., in general, D(p : q) # D(q : p).

5.2 Sensor reports

The proposed K-L fusion method fuses the so-called partition type sensor reports. A

sensor report Dy is of the form

For a group of mutually exclusive and exhaustive subsets in (, their relative
likelihood are given by i, ..., r,f" respectively, with rf > 0, £=1,... ,L;. The
summation Tl + -+ -+ ri* = wy, which is required to lie in [0, 00), represents the

Degree of Confidence (DoC) of the report.

In other words, a sensor can declare, with DoC equals to wyg, that the probabilities of wj,

7 satisfy P(wp) 1+ : P(wi*) =1} 1 -+ : 7%, where k is the sensor index, and P(w?)
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is the probability of occurrence of subset wi. Partition type sensor reports are special cases
of the ratio type reports introduced in section 4.1. While the latter put no restriction on
the subsets, the former require the selected subsets to be mutually exclusive and exhaustive

(thus forming a partition of {2).

5.3 Problem formulation

Suppose that in the SSF model, K independent sensors observe a target in a surveillance
region. The sensors explore some common target characteristics. Each sensor summarizes
its identity declaration on the target in a sensor report which is sent to the fusion center.
Let us denote these reports by

’U]k :’]";-—*—....—}_"'ik,

D, Ck=1,..K, (5.3.2)
P(wi):---: Pk(w,’;’") =rp e r,f"’

I

where wi Nw] = 0 for i # 7, and w} U---Uwi* = Q.
Similar to the convex quadratic fusion method, our fusion goal is to determine a set of

probabilities
Pf(a,i) = Di, 1= 1, ,N : (533)

that best fit the sensor reports. To achieve this, we first use a cost function to measure the
discrepancy between the fusion result and each sensor report, and then minimize a weighted
sum of these cost functions to obtain the optimal fusion result (denoted by Dj). The cost

function we choose for report Dy is

Ly 7"2 r
Ci(P) = -1 Yk 5.3.4
k( ) ;wk n Pf(w]g) 9 ( )

where Pf(wﬁ) = z p; is the probability assigned to wf in the fusion result D;. Ci(P)
j: a‘,-ef.w,‘e
represents the normalized discrepancy in the sensor report. It is the K-L measure between
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1 Ly
probability distributions {g}—k‘, e %——} and {Ps(w}), ..., Pr(wy*)}. The overall cost func-
k k

tion for the K sensor reports is a weighted sum of the Cy(P)’s, i.e.,

¢ K L,
CfK Zwka Zwkz Tk ] (;Z) e Zwk;Z Z]—iln (Pf(w,i)) . (535)
k=1 =1

Here, each Cy(P) is weighted by wy to reflect the DoC of report Dy.
Now we can formulate the identity fusion problem as the following convex optimization

problem:

minimize Cj, (P Zwkz—ln( ) Zwkz——ln Pf(‘“k))
k=1 k=1

subject to Zpizl, p;>0,i=1,... ,N.

=1

(5.3.6)

Since the first part of the above objective function is constant, the above formulation is

equivalent to

K L
minimize — Z Z ri In (P(wf))
k=1 £=1
. (5.3.7)
subject to Zpi =1 p,>20,¢=1,...,N.
i=1

We now consider the special case where K sensor reports are available, each assigns
probabilities to all and only the a;’s. We can write the k’th sensor report as Dy, = {Py(a;) :
: Pelan) = wepp ¢ -+ s wepl }, :;/here Py(a;) = p. represents the probability assigned to
proposition g, in report Dy, with Z pi = 1. The overall cost function for these reports can

i=1
be written as

K N N
Ci(P) = z z wipy Inp; = — z r§ In p;, (5.3.8)
=1

k=1 i=1
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K
where r? = Z wgpy. Minimization of this cost function yields
k=1

Tff Ef:l wipf
Pglas) = — F = = , t=1,..., N (6.3.9)
A D D
In other words, the optimal fusion result is obtained by averaging sensor reports using DoC
values w;’s. Similar to Eq. (4.2.13), this special case provides a positive justification for the
new method.

Like the convex quadratic fusion method, the K-L fusion method also minimizes an
additive cost function. Therefore the discussion on page 87 also applies to the K-L fusion
method. Specifically, although the K-L fusion method can operate in both the sequential
and batch fusion modes, we do not advise the use of the method in the sequential fusion
mode. Moreover, the method requires little extra computation as more sensor reports are
fused. Similar to the convex quadratic fusion method, the overall cost function (5.3.5) can

be updated when a new sensor report Dg, arrives, i.e.,

Crxn(P) = Zwka(P) = C(P) + Cra(P). (5.3.10)

However, as will be seen in section 5.5, computing the DoC of the fusion result requires the

cost functions. As a result, we need to maintain the cost functions for future fusion steps.

5.4 Interior point method solution

The optimization problem given in (5.3.7) is a special case of the following general

optimization problem:

M
minimize — 2 rmlnelx
— " (5.4.11)

subject to Ax=Db, x>0,
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where x € VX1 is the decision vector, vector ¢,, € RV}, matrix A € RV b e REX1 and
rm > 0 for m = 1,... M. This is actually a generalized analytic center problem in linear

programming [34]. For the K-L formulation (5.3.7), we have

X:[pl ...pN]T7 A:[l _'_1]7 b:l, L:l,
rmo=r wherem =L+ -+ Ly +fand 1 << Ly,

(5.4.12)

: ‘
_ . 1, ifa; €uwp,
Crm = [Cm1 - .- Cmn]T, where ¢y =

0, otherwise,
and M is the number of different subsets in the K sensor reports. The optimal solution to
(5.4.11) can be found by interior point methods [34]. In the following, we first derive the
optimality conditions for (5.4.11), then define the Newton step and the starting point.
The Lagrangian for (5.4.11) is

M
L(x,y) = — Z rmilnclx — y'(Ax — b), (5.4.13)
m=1

where y € RE*! is a multiplier vector. We know that if x takes the optimal solution to

(5.4.11), then VL(x,y) =0, i.e.,

M
-y I (yTA) =0, i=1,..,N, (5.4.14)
m=1 M

where (yTA); is the :’th element of yTA. Let

"m
Sm — ti(?‘;—jﬂn:)?{—’ m = 1, ,M. (5415)
Note that s,, > 0form =1,...,M. Then r, = ¢Lxs,, form=1,... ,M, orr = SC'x

where S = diag(s1,...,sm), C=[c1 ... ey and r = [r; ... ry|¥. Using (5.4.15), we

rewrite (5.4.14) as

A
—> Cmism— (yTA); =0, i=1,...,N, (5.4.16)

m==1
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or simply Cs + A%y = 0, where s = [s; ... sy|7. The optimality conditions for (5.4.11)

can be summarized as follows:

SCTx =r, (5.4.17)
Ax=b, x>0, (5.4.18)
Cs+ATy =0, s>0. (5.4.19)

In addition, when VL(x,y) = 0, the Lagrangian is

M M
L = =S rmlncfx—yT(Ax—b) =-S5 1, In ™ —yTA Th
;T ncpx -y (Ax ~ b) T;r n - yTAx+y
M M M
= by + ) rnlnsn = Y ralnrn+ Y 1, (5.4.20)
m=1 m=1 m=1

and the dual problem of (5.4.11) can be derived as

M
minimize bTy + Z rmlns,

e (5.4.21)
subject to Cs+ ATy =0, s> 0.

To derive the Newton step, we assume that (x,s,y) is updated to (x + dx,s + ds,y +
dy), both of which satisfy the primal-dual feasibility conditions (5.4.18) and (5.4.19). Let
(S +dS)CT(x + dx) = r, which can be expanded as

SCTx +8SCTdx 4 dS - CTx +dS - CT -dx =r. (5.4.22)

By defining H;, = SC7, hy, = CTx, H, = diag(ha1, ... , hap) where Ry, is the m’th element
of hy, and ignoring the trivial term dS - C7 . dx, we can simplify (5.4.22) as

Hidx + Hyds = r — SCTx. (5.4.23)

Linearizing (5.4.18) and (5.4.19) for (x +dx, s +ds,y +dy), and using primal-dual feasibility
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Ax = b and Cs + ATy = 0, we obtain Adx = 0 and Cds + ATdy = 0. The Newton step

can be summarized as

H, ¢ H, dx r—SCTx
A 0 0 dy | = 0 : (5.4.24)
0 AT C ds 0

The starting point of the iterative algorithm (denoted by (xq, ¥o,80)) should be a primal-
dual feasible point satisfying the following conditions:

Axyg=b, x>0,
° ° (5.4.25)

Csy + ATYQ =0, sp>0.

A qualified starting point can be easily found by existing linear programming methods [34].

Problem (5.4.11) has a convex objective function and a simplex constraint, which ensures
the existence of the optimal solution. For the solution to be unique, the objective function
has to be strictly convex, or equivalently, its Hessian matrix has to be positive definite. Let
us denote the Hessian matrix as H(x), and let H;;(x) denote its element at the :"th row and

j’th column. Then,

d? (— M rmln cfnx)
dzidz;

M TmCmiCms
=3 IOt (5.4.26)

Hz’j X)= )
> mmt (€hX)

Therefore, the fusion result D is unique if H(D;) > 0, where H(Dy) is the value of H(x)

using the probabilities in Dy.

5.5 Degree of Confidence for the fusion result

Since the K-L fusion method is for the SSF model, its generated fusion result should have
a DoC satisfying the two DoC principles for SSF model proposed in section 3.7. Here we
choose the K-L measure in Eq. (5.3.4) as the distance function dis¢(Dy, Dy) in DoC principle
1 for SSF model.
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Let w; denote the DoC associated with the fusion result Dy. We propose to define wy

as follows:

wp = i wye” O P1), (5.5.27)
k=1
where Ci(Dy) is the value of cost function Ci(P) evaluated using the probability assignments
in the fusion result Dy.

Eq. (5.5.27) can be motivated in the same way as Eq. (4.3.16) for the convex quadratic
fusion method. Basically, w; is accumulated from the DoC values of all sensor reports. The
stronger Dy, agrees with Dy, the more w;, should contribute to wy. In the extreme case that
sensor report Dy fully agrees with Dy (Cy(Djy) = 0), all the confidence associated with Dy
is contributed to Dy. However, if Dy largely disagrees with Dy (Cy(Dy) — 00), little of wy
is added to wy.

It is easy to verify that wy given by Eq. (5.5.27) satisfies the two DoC principles for SSF
model. In addition, as required in the fundamental principle 1, when there is only one sensor
report D; to fuse, the DoC of the fusion result is the same as that of the single report. In
section 5.7, we will prove that w; determined by Eq. (5.5.27) satisfies Eq. (3.6.36) in the
fundamental principle 5 for SSF model as well.

Note that when a new sensor report D is fused, the DoC of the new fusion result D
is given by

K+1 K
wy = Z wie Pp) = Zwke"c"w}) + wipe” Cr11(Ds) (5.5.28)
=1

k=1

which cannot be recursively updated from wj. Therefore, we need to maintain the function

X
form f(D) = z wye” D) for future fusion steps.
k=1

5.6 Discussion on sensor report form

The K-L fusion method uses K-L measure to represent the discrepancies between sensor

reports and the fusion result. As introduced in section 5.1, K-L measure applies to a pair
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of probability distributions and measures the cross-entropy between them. As a result, the
subsets in a sensor report are required to be mutually exclusive and exhaustive. Otherwise,
property 3 in section 5.1 is no longer true, and the new fusion method may generate incorrect
fusion results (as illustrated in the following example). This is the reason why the K-L fusion

method only fuses partition type reports instead of general ratio type reports.

Example 5.6.1 Let Q = {ay, as, a3,a4,a5}. Suppose there is a single sensor report D given

by
Dl = {Pl(al V ag) : Pl(ag) : Pl(a3) : Pl(a4) : Pl(a5) ={0.65:0.15:0.15:0.1: 02} (5629)

Note that Dy is a Tatio type report but not a partition type report, since the subsets in D,
are not mutually exclusive. According to the fundamental principle 1, the fusion result of

this single report should be:
Df = {Pf(al) == (.40, Pf(az) = 0.15, Pf(ag) = (.15, Pf(a4) = .10, Pf(ag) = 0.20}. (5.6.30)
However, if we use the K-L fusion method to fuse Dy, the fusion result is

D} = {Pj(a1) = 0.004, P}(as) = 0.604, P}(as) = 0.131, Pj(as) = 0.087, Pi(as) = 0.174},  (5.6.31)

which is incorrect because it is not consistent with D;. Note that if we use the convex

quadratic fuston method, the fusion result will be the same with (5.6.30).

Dempster-Shafer type sensor reports can be transformed into partition type reports by
the transformation procedure proposed in section 4.5, and therefore can be properly fused by
the K-L fusion method. Specifically, a Dempster-Shafer type sensor report Dy in the form
of

Dy = (), (5.6.32)

Pk(wﬁ), £: 1,... ,Lk
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is transformed into the following partition type report:

U ay i U af’“:r}c:«w:r,fk, (5.6.33)
i:agewi i:aiewfk
where
¢ &G . & bty _ -
o] €w, g=1,...,M;;, a*U---Ug/ " =qa;i=1,...,N,
; (5.6.34)

¢ . Prw
a; Nar =0, ¥j #m, E = wy - i-f%ﬁ———'z)m, w = —In P, (Q).

If the subsets are not exhaustive, i.e., wiU--- U w,f”“ # (Q, the following equivalent form

should be used:

U a;iee-: U al® U @i =Tp it 0, (5.6.35)

iiai €wy i:aiew:" i:a;éuf_jlwé
Note that the following additional constraints must be added into (5.3.7) when the trans-

formed report (5.6.33) is fused by the K-L fusion method:

M;
Spd=p,i=1,...,N; pf>0, Vij (5.6.36)
i=1

Here, pf’ is the probability assigned to sub-proposition a,fj in the fusion result.

5.7 Satisfaction of decision fusion principles

In this section, we analyze the K-L fusion method using the decision fusion principles

proposed in Chapter 3.

Theorem 5.7.1 The K-L fusion method satisfies fundamental principles 1, 2, 3, and fun-
damental principles 4 and 5 for SSF model. The fusion method also satisfies DoC principles
1 and 2 for SSF model.
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Proof. Let O = {a1,...,an}. Suppose a partition type sensor report Dy takes the

following form:

L
Pk(w,i):---:Pk(w,f’“):r,i:»w:r,f"f

where wi Nw! = @ for i # j, and w} U --- Uw* = 0. In addition, 7§ > 0 for £=1,..., L,

and wy, is the DoC of Dy. Also define the distance measure dist(Dg, Dy) as

Ly ot i
dist(Dy, Dy) = Cy(Dy) = Y | Ek‘ In 75%_"37 : (5.7.38)
t=1 F P

where Ci(D;) denotes the value of cost function Cy(P) using the probability assignments
in Dy. Obviously the dist(Dy, Dy) defined above satisfies the properties proposed for the
distance function in section 3.6.4 (see page 58). We examine the decision fusion principles
one by one. |

a) Fundamental principle 1: Suppose there is only one sensor report D, to fuse. The over-

L g Lt ¢

r T
11 cost function is P) = ~Ly L . iously, i Pl = 2+
all cost function is Cf, (P) = wy g—l ” n X Obviously, if we choose Py(wy) o
for £ = 1,..., L, the cost function reaches its minimal value: C;(P) = 0. In other words,

this is the optimal fusion result. The DoC of the fusion result is wy = w, cemBGODy) = gy,

As such, the fusion result is identical to D;.

b) Fundamental principle 2: This is straight forward. The K-L fusion method is only
used in the batch fusion mode (see discussions on page 114), i.e., sensor reports are fused
all at once by minimizing a cost function which is constructed using original sensor reports.
The principle is satisfied because the cost function for a group of sensor reports is invariant

with the permutation of sensor report indexing.



CHAPTER 5. K-L FUSION METHOD 122

¢) Fundamental principle 3: Suppose there are N cyclic sensor reports Dy, ... , Dy with

Dy, given as

, (5.7.39)

where r; > 0fori=1,...,N,and i®k =i+ %k —1 mod N. Note that the DoC values of

all the reports are the same. We can write the overall cost function as

N N N Timh
Cin(P) = D wpCi(P)=> w Tf’“ In (i‘i) .
k=1 k=1  i=1 F bi
N N N
= w Y Y Tigeln (Twi’“) — Nw; » lnp;, (5.7.40)
k=1 i=1 i=1

1
which naturally leads to the following desired fusion result: p; = N fori=1,...,N.
d) Fundamental principle 4 for SSF model: Suppose there are K sensor reports
Dy, ..., Dg. Let Dy, and Dy, denote the fusion results before and after the fusion of sensor

report ;. Denote the cost function before the fusion of Dy as
K
Cr(P) =) wiCi(P), (5.7.41)
k=2
and the cost function after the fusion of Dy as
K
Cp(P) = wCi(P) = wiCy(P) + C1,(P). (5.7.42)
k=1

Also let Cy(Dy,) and C,(Dy,) (4,7 = 1, 2) denote cost functions Cy(P) and Cy,(P) using the

probability assignments in Dy,. Obviously, Dy, is identical with Dy, when w; = 0, and is
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identical with Dy (except the DoC values) when w; — o0, i.e.,

diSt(sz,Dfl) = 0, wy = D()Cmm,
dist(Dy,Dg) =0, wy = DoCras.

(5.7.43)

Note that the overall cost functions (5.7.41) and (5.7.42) are additive. Therefore we can
follow the same proof as that in section 4.7 (see page 102) for the convex quadratic fusion

method. In particular, we have Cy(Dy,) > C1(Dy,), or
dist(Dy, Dy,) > dist(Dy, Dy,). (5.7.44)

This establishes the desired property (3.6.26).
Now assume that the DoC of D; changes from wy, to wyp, with wyy > wi,. Let DYV
denote D; with DoC value wy;, and D“’“ denote the fusion result after the fusion of D",

i = a,b. Also define normalized ratios #%’s as in Eq. (4.7.59), i.e.,

F=11 =1, L. (5.7.45)

As discussed on page 102, #f is independent of w;. In the overall cost function, the term

corresponding to D}'* can be written as

wi! Wik P
oh wpCY ™ (P)= wyp Z Filn ( P; (w‘))
Ly

=wi, Y 7iln (P : e)) + (wip — Wia Zrl In (szil)) :

£=1

(5.7.46)

The above equation suggests that increasing the DoC of D; from w;, to wy; is equivalent to
the fusion of another sensor report D' which is identical to Dy except that its DoC value

is Wy = Wiy — Wi, Similar to inequality (5.7.44), we have

dist(Dy, D7) > dist(Dy, DEF), (5.7.47)
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L.e., when w; increases, dist(Dy, Dy,) decreases.

e) Fundamental principle 5 for SSF model: Suppose there are K identical sensor
reports from similar and independent sensors, each denoted by DY, where w; denotes the
DoC associated with D; and suppose that w; > DoCp,. Let Dy, and D}”; (with DoC
value wy?) denote the fusion results before and after the fusion of these reports. We further
denote the cost function before and after the fusion of these reports as Cf,(P) and C7L(P)

respectively. Then,
Cha(P) = Kw,Cy*(P) + Cy, (P), (5.7.48)

where C7"(P) is the cost function for report Di*. Note that C{*(D;) = 0, where C"(D;)
is the value of C}"*(P) using the probability assignments in D}*.

C}e(P) reaches its minimal value at D}, ie.,
Ku G (D1) + Cp(D1) > KuCP*(Dy) + Cr, (DY), (5.7.49)

which implies that Cy,(Dy) > Kw,C{*(Dy,), or

1 2t o
—=Ce (D) > —1 e 5.7.50
gO6(P) 2w e | 5oy (5:7:50)
Since lim ~=Cy,(D1) = 0, we h
ince lim —Cp,(D1) =0, we have
Ig::t_xgo (P;‘;;’{‘(w%) Do P}‘;(wf’l)) =rl.opl (5.7.51)
or
lim D¥ = D;. (5.7.52)

K00
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To prove property (3.6.36), we note that DoC of DY is
W = Kwe™ P 4w, (DY), (5.7.53)

where the first part represents the contribution from the K identical reports, and the second

part represents the contribution from other reports in the fusion. Since Eq. (5.7.52) implies

that
I}er(lyo Ci(D%)) = hm Cy(Dp) =0, (5.7.54)
we have
lim wy? > hm Kwe “a0h) = lim Kuw; = o0, (5.7.55)

K-e0 Koo

ie., I}I—{go 'wf = DoCpas.
To prove property (3.6.37), suppose that the DoC value of w; changes from wi, t0 wy,
with wyy > wy,. Using the same rational for inequality (5.7.47), we know that increasing
the DoC of the K identical sensor reports from w;, to w;; is equivalent to the fusion of
an additional group of K identical reports D"<’s. Similar to inequality (5.7.47), we have
dist(Dy, Dy.*) > dist(Dq, D}*). This establishes the desired property (3.6.37).
f) DoC principle 1 for SSF model: Here we follow the assumptions made in DoC
principle 1 for SSF model in section 3.7. That is, let Dy, denote the fusion result of sensor
reports Diyi, ..., D1k, and Dy, denote the fusion result of sensor reports Dy, ..., Dak.
Let w;; denote the DoC value associated with report Dy;, and wy, denote the DoC value

associated with fusion result Dy,. Assume that Dy, = Dy, and wy =wy fork=1,... , K.

We further assume that sensor reports Dy, and Dy, have the same subsets. Then, inequalities

diSt(le, Dfl) > diSt(ng, D-fz), k=1,... , K (5756)
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imply that

K K
wfg — Zkae_CZk(sz) > Zwlke_clk(Dfl) = wfl’ (5.7‘57>

which proves property (3.7.38).
g) DoC principle 2 for SSF model: This is straight forward. Suppose the assumptions
made in DoC principle 2 for SSF model are satisfied. That is, let Dy, denote the fusion

result of sensor reports D, ... , DF¥, where wy is the DoC associated with the &’th report.
Let Dy, denote the fusion result of Df R Df{w"‘. In other words, the DoC of the k’th

report changes from wy to fwy. Also let wy, denote the DoC value associated with fusion
result Dy,. Then by the K-L fusion method, Dy, and Dy, are identical to each other except

their DoC values. Since Cy(Dy) is independent of wy, we have

K K
wp =) fue™ PN =3 June™ M0 = puy,, (5.7.58)
k=1 k=1
which establishes property (3.7.39). O

Discussion on the restricted fundamental principle 4 for SSF model

Theorem 5.7.1 shows that the K-L fusion method satisfies the decision fusion principles
proposed in Chapter 3. However, the method only satisfies the restricted fundamental prin-
ciple 4 for SSF model in the special case where the K sensors assign probabilities to all and
only the basic propositions a;’s. To prove this, we write the sensor reports in the following
ratio type form:

DoC = w;,

Dy = LK, (5.7.59)

Pi(ay) : -+ : Pelan) = wepy ¢ - - waph

where Py(a;) = pl represents the probability assigned to proposition a; in report Dy, with
k

N
Z pi = 1. Denote the fusion result before and after the fusion of report D; as Dy, and Dy,.
g=1
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Then, from Eq. (5.3.9), Dy, = {Pp(a1), ..., Pp(an)} where
K :
Pyla;) = Zﬁ}l————“*pk, i=1,...,N. (5.7.60)
D ke W
Similarly, Dy, = {Py,(a1), ..., Pp(an)} where
K i
Pila;) = Z—k%—z‘i—’*’ﬁ, i=1,...,N. (5.7.61)
k=1 W

Note that Eqgs. (5.7.60) and (5.7.61) are identical to Eqgs. (4.7.75) and (4.7.76) respectively
except the weighting factors. Therefore we can follow the same proof for the convex quadratic

fusion method (see pages 106 to 107). Specifically, similar to Eq. (4.7.77), here we have

Ppy(a:) = Pp{a:) = ——— (Pi(as) — P (as)), (5.7.62)
2 k1 Wh

from which we can establish properties (3.6.27) and (3.6.28). It can also be seen from
Eq. (5.7.62) that if D; changes so that |P(a;) — Py, (a;)| or w; increases, |Py,(a;) — Py, (a;)]
also increases.

In general, the K-L fusion method does not satisfy the fundamental principle 4 for SSF
model. This is illustrated in the following example. However, this should not be viewed as a
weakness of the new fusion method since the principle is not absolutely necessary in practice

(see discussion on page 59).

Example 5.7.1 Let Q = {a1, as,a3}. Suppose there are three similar and independent sen-

sors each sending a report to the fusion cenier. The sensor reports are the same as in
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Brample 4.7.1, i.e.,

wy = 17
Dl = ’
{ Pi(a1) : Pi(aq) : Pi{az) =0.70:0.15:0.15 }

Wy = 1,

Dy = , (5.7.63)
Pz(a,l) : Pz(ag \% a3) =0.20: 0.80
wy =1,

Dg - ’

P3(G.1) : Pg(ag) : Pg(ag) = (.20 :0.20 : 0.60

By the K-L fusion method, the fusion result before the fusion of D, i.e., the fusion result
of Dy and Ds, s given by Dy, = {Py(a1) = 0.20, Py (az) = 0.20, Py (a3) = 0.60}, and
the fusion result after the fusion of Dy, i.e., the fusion result of Dy, Dy and Ds, is Dy, =
{Pp(a1) = 0.3667, Pp,(as) = 0.2015, Py,(as) = 0.4318}. Here, property (3.6.28) is not
satisfied, since Pi(az) = 0.15 < Py (az) = 0.20, but Pp,(ap) = 0.2015 > Py, (ag) = 0.20.

5.8 Numerical examples

In this section, a numerical example is given to illustrate the performance of the K-L
fusion method.
Example 5.8.1

Let Q = {a1, as,as,a4}. Suppose there are three independent sensors making observations

on a target. All the sensors explore common physical characteristics of the target. Assume
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that each sensor sends a report to the fusion center given as follows:

=l 4+ r? = (.6,
Dy = “ b ! 3
Pl(a-l \% ag) : Pl(az \% a4) == ’i“% : ?‘% =0.6:0

Do = wy =13 + 75 =07,
2 = : (5.8.64)
PylayVay): PalasVay) =rl:r2=0:07

{ wy =71 +rE+71d+7f =08,

Dy = .
P3(a1) : Pg(ag) . Pg(ag) : P3((14) = 7"’% : ?‘% : ‘f‘;’ : rg =0.1:02:03:0.2 }

In the K-L fusion method, the overall cost function is

C,(P) = C1(P) + Co(P) + C3(P) = —0.6 In(p; + p3) — 0.7 In(ps + p4)
—0.8(0.125Inp; + 0.251nps + 0.375Inps + 0.25Inpy) . (5.8.65)

To achieve the optimal fusion result, the method minimizes Cy,(P) subject to the probability

constraint, i.e.,

minimize Cr(P)
subject to P14+ Py 4 D3+ ps =1, (5.8.66)
pi >0, 1:=1,2,3,4.

The fusion result is shown in Table 5.5. Also shown in the table is the fusion result by the
convex quadratic fusion method. Note that the results from the two fusion methods match

with each other very well.

Propositions ay as as Qg
fusion result: K-L fusion method 0.082 | 0.108 | 0.630 | 0.180
fusion result: convex quadratic fusion method | 0.078 | 0.222 | 0.583 | 0.117

Table 5.5: Fusion results for Example 5.8.1.
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By the K-L fusion method, the DoC of the fusion result is

3
wy = > we-eH*PD =067 0.7 7 4 0.8 70 = 1.048, (5.8.67)
k=1

while the DoC of the fusion result by the convex quadratic fusion method is

0.874 — 0.230 0.605 — 0.527 0.8 1.253 — 0.064

0.874 + . -‘————(—)-’—565—— + . 1.253 = 1.292.(5«8.68)

The fusion is performed on a 800MHz Pentium PC under the MATLAB environment. The
CPU time used is less than one second, showing that the fusion method is computationally

efficient.



Analytic Center Fusion Method

In the two previous chapters, we have proposed two fusion methods for the Similar
Sensor Fusion (SSF) model. In this chapter, we turn our attention to the Dissimilar Sensor
Fusion (DSF) model and propose a so-called analytic center fusion method which is based on
analytic centers and optimization. Similar to the two previous methods, the new method also
minimizes a cost function to achieve the optimal fusion result. However, the cost function we
choose for the new method has a special structure to accumulate identity information from
all sensor reports, enabling the reinforcement among the reports. As a result, the fusion
result obtained by the new method represents the decreased uncertainty in target identity
from the sensor reports, which is a crucial feature desired in the DSF model. Moreover,
the new method has merits similar to the previously proposed methods: it can be solved
efficiently in polynomial time, and does not need the knowledge of prior probabilities or

conditional probabilities.

6.1 Problem formulation

Suppose there are a total of K independent sensors making observations on a target
within a surveillance region. Each sensor explores some different target characteristics and

sends its own target identity declarations in a sensor report to the fusion center. Let us

131
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denote these reports by

Degree of Confidence = wy, ‘
D, = , k=1, K, (6.1.1)
P;c(ai):ch, ’L‘—'L,N

N
where i € [0,1] for i=1,...,N, zmi =1, and wy € [0,1]. In other words, a probability
is assigned to each of the N basic plrzolpositions in 2.

Note that wy € [0,1], i.e., DoCine; = 1. This is different from the ratio type sensor
reports introduced in section 4.1, where we define DoC,,,, = co. The different definitions
for DoCiy,; result from the different natures of the DSF model and the SSF model. In the SSF
model, sensors explore a set of common target characteristics. The sensor reports confirm
each other on the target identity, and the fusion result should have minimal discrepancies
with the sensor reports. If a sensor report has maximal DoC, the fusion result must agree
with it. As a result, we define DoC,,4, = 00. In the DSF model, each sensor explores some
different target characteristics. The sensor reports reinforce each other to generate a fusion
result which represents the decreased uncertainty in target identity. If a sensor report has
maximal DoC, it means that the report is fully accurate based on the target characteristics
it explores. However, in this case the fusion result does not necessarily agree with the report,
i.e., the probability assignments in the fusion result generally do not match with the ones
in the sensor report. This is because that the fusion result is based on target characteristics
explored by all sensor reports. Therefore a report with a DoC value equals to DoCmaz does
not carry as much weight in the DSF model as it would in the SSF model. This motivates
us to define a finite DoCmaz value for the DSF model and an infinite DoCmaz for the SSF
model.

It should be pointed out that a Dempster-Shafer type sensor report Dy as defined
in (4.5.33) can be transformed into the report form in (6.1.1) and be fused by the new

fusion method. Specifically, let a Dempster-Shafer type sensor report D, be given as
Ly,

Dy = {Py(wi), £ = 1,..., L}, where ZPk(wﬁ) =1, wf C Q and Pp(w}) € [0,1]. Let
=1

m{ denote the number of propositions included in wf. Then Dy, can be transformed into the
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following report Dj:

Degree of Confidence = wj,
D, = , k=1,.,K, (6.1.2)

Plle;))=ri, i=1,...,N
where

1 . .
. z E[Pk@d’i)v ifa; € Uf:hl e
SR (6.13)

0, otherwise,

and w, = 1 — (). Basically, each probability mass Py(wf) is evenly separated among the
1

propositions included in wg, i.e., probability pf(a;) = —; Pi(wf) is assigned to each a; € w?.
m

k
the total probability for each a; is the normalized of all the pé(as)'s for £=1,...  Ly. Note

N
that Z ri’ = 1, and DoC w}, increases inversely with P, ().
i=1

For the new fusion method, the fusion goal is to determine a set of probabilities
Prpla)=p, i=1,...,N (6.1.4)

that best represent the decreased uncertainty in target identity from the given sensor reports.
Similar to the two fusion methods introduced in the previous chapters, we formulate the
fusion problem as an optimization problem in which a cost function is minimized subject to

some probability constraints. We propose to use the following cost function:

K N 1 N
Cre(P)=> wp Y —pi— p lnp: (6.1.5)
k=1 i=1 & §=1

In this cost function, the first part accumulates identity information from all the sensor

reports. Specifically, the contribution of the k’th sensor report is summarized in the term

N
1 . . . 1 .
Wi Z P Here, the weight wy signifies the importance of the term Z —p;. The coefficient
i=1 'k , i=1 'k .
of p;, i.e,, 1/ry, is used to guide the assignment of probability p; so that a large r;, will tend

to give rise to a large p; in the final fusion result. The second part in the above cost function
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is also called the logarithmic barrier function, its value increases when any p; approaches
p; = 0. Moreover, the closer p; approaches p; = 0, the faster the value increases. When
Ct (P) is minimized, this part keeps p; away from p; = 0. Note that the second function
part is independent of the sensor reports, it is used to balance the first cost function part so
that the fusion result can appropriately represent the reinforcement among sensor reports.

Now we can formulate the identity fusion problem as the following convex optimization

problem:
= 1
inimi Cr.(P)= : —p; — In p;
minimize Cf, (P) Zwkzr;cp Z np
N k=1 i=1 =1 (616)
subject to Zpi =1, p,20,i=1,... ,N.
i=1

Let wy, denote the DoC associated with fusion result Dy, . We propose to define wy, as

follows:

K

wpe = 1= [J(1 = wy). (6.1.7)
k=1
Note that this definition of DoC is independent of the fusion result. This is in contrast to the
definition of DoC of the fusion result in the SSF model (Egs. (4.3.16) and (5.5.27)). As will be
shown later in section 6.3, wy, determined by Eq. (6.1.7) satisfies the fundamental principle
1, property (3.6.30) in the fundamental principle 5 for DSF model and DoC principle 1 for
DSF model.

The analytic center fusion method can operate in both the batch and the sequential fusion
modes (introduced in section 3.1.1). However, similar to the two fusion methods proposed
in previous chapters (see discussion on page 87 and page 114), we only recommend to use
the new fusion method in the batch fusion mode. In addition, both the objective function in

(6.1.6) and the DoC of the fusion result {6.1.7) can be recursively updated when new sensor
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reports are fused. Specifically,

K41 N N N 1

1
Cren(P) =D wx ) =pi= ) lnpi=Cp(P) +wiar ), =i (6.1.8)
k=1 = =1 =

and

(6.1.9)

Therefore we only need to maintain Cy, (P) and wy, for future fusion steps. In other words,
compared with fusing sensor reports sequentially, fusing all sensor reports simultaneously
does not require any extra memory. It does not incur any extra computation either, since
the new method involves solving an optimization problem whose worst case complexity is

invariant with the number of sensor reports to be fused.

6.2 Solving the analytic center formulation

The convex optimization problem in (6.1.6) is actually a special case of the following

analytic center problem in linear programming [34]:
N
minimize c¢fx — pu Z Inz;
j=1 (6.2.10)

subject to Ax=Db, x>0,

where x € RV*L, c € RV*1, A € R¥*N b e RM*E and i > 0 is a scalar. The relationships

between the analytic center formulation (6.1.6) and the above (6.2.10) are:

Tt (6.2.11)
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To find the optimal solution to (6.2.10), we first derive its optimality conditions. Here, the

Lagrangian for (6.2.10) is

N

Lix,y)=c'x —p Zln z; —y (Ax — b), (6.2.12)
=1
where ¥ = [y1,... ,yum|T € R¥*! is an unknown vector. For x to be the optimal solution of
(6.2.10), we must have VL(x,y) =0, i.e.,
1, .
C,""/J,'x“—(y A).LZO, Z:l,...,N, (62.13)

z

where ¢; and (yTA); are the 7’th elements of ¢ and yT A respectively. Let
=2 i=1,...,N (6.2.14)

Note that s; > O fori = 1,... ,N. Then z;5;, = pfor i = 1,... N, or Xs = ue, where
X = diag(zy,...,zn) € RV*N e =[1 ... 1]T € RV*1. Using (6.2.14), we can rewrite
(6.2.13) as

ci—s—(yTA); =0, i=1,...,N, (6.2.15)
or simply ATy +s = ¢. The optimality conditions for (6.2.10) can be summarized as follows:

Xs = ue,
Ax=b, x>0, (6.2.16)
ATy +s=c¢c, s>0.

In addition, when VL{(x,y) = 0, the Lagrangian is

N
L = ¢"x- nZlnxi —yT(Ax ~b)
=1

I

N N
1
(ATy +8)Tx — p % ln; ~y(Ax —b)=bTy + u % Ins; + N, (6.2.17)

j=1 7 j=1
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and the dual problem of (6.2.10) can be formed as

N
maximize b Ty + u z Ins;
=1 (6.2.18)

subject to ATy +s=¢c, s>0.

There are several algorithms which can solve the above analytic center problem efficiently,
among which the primal-dual interior point algorithm [34] is the most popular and efficient
one. In the following, we discuss the primal-dual algorithm in three steps: in subsection
6.2.1 we discuss the primal-dual Newton procedure which converges to the optimal solution
(x%,y9,s%), in subsection 6.2.2 we discuss the primal-dual potential algorithm which provides
an initial point for the primal-dual Newton procedure, and finally in subsection 6.2.3 we

discuss the generation of a starting point for the primal-dual potential algorithm.

6.2.1 Primal-dual Newton procedure

The primal-dual interior point algorithm starts from a primal-dual feasible point in the
feasible region of (6.2.10) and (6.2.18), and iteratively takes the so-called Newton steps,
moving an iterate towards the optimal solution. Note that in each iteration, the iterate

(x,¥,s) is always a primal-dual feasible point, i.e., it satisfies

Ax=b, x>0, AYy+s=c¢, s>0. (6.2.19)
At the next iteration, (x,y,s) is updated to (x*,y*,s%):

xT=x+dx, y"=y+dy, st=s+ds. (6.2.20)
The update should satisfy the following conditions (cf. (6.2.16)):

Sdx +Xds = pe— Xs,
Adx = 0, (6.2.21)
—ATdy —~ds = o,



CHAPTER 6. ANALYTIC CENTER FUSION METHOD 138

from which dx, dy, ds can be derived as

dy = —(ASTIXAT)"'AS!(ue— Xs),
ds = —ATdy, (6.2.22)
dx = S !(ue— Xs)— S™1Xds,

where S = diag(si, ... ,su). To verify that (dx,dy, ds) satisfies (6.2.21), we observe that

Sdx+Xds = S (S7(ue— Xs)— S7'Xds) + Xds
= ((ue — Xs) — Xds) + Xds = pe — Xs, (6.2.23)

and

Adx = A(S7'(ne—Xs)—-S'Xds) = AS7 (ue — Xs) + AS"'XATdy
= AS7'(ue-Xs)— ASTIXAT ((ASTIXAT)TTAS ! (pe — Xs)) = 0. (6.2.24)

The iterative process is terminated when the iterate is close enough to the optimal solution.
A generally used termination criterion is n(x,s) < ¢, where € is a very small positive value
and n(x,s) =|| Xs — pe ||. Here, n(x,s) measures the difference between the temporary
solution and the optimal solution. Note that 5(x,s) = 0 when (x,y,s) = (x*,y*,s*).

It is proven in [34] that if we choose an initial point satisfying n(x,s) < %, the above
Newton procedure will generate a iterate sequence {x*,y*, s*} converging to the optimal

solution (x°,y*%,s%).

6.2.2 Primal-dual potential algorithm

The primal-dual Newton procedure discussed in the previous subsection needs an initial
point (x,y,s) which is primal-dual feasible and satisfies 5(x,s) < 2/3. In this subsection,
we discuss the primal-dual potential algorithm which can provide such a point.

The primal-dual potential algorithm starts from a primal-dual feasible point (x°,y?, 2%)
with x®7s® = N. It takes iterative steps to converge to a required solution. At each

iteration, the current primal-dual interior peint (x,y,s) is updated to (x*,y*,st), with
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xt =x+8dx, yt =1y+8dy, st = s+ 8ds, where dx, dy, ds are calculated through
(6.2.22), and 6 is given by

g~ ovmin(Xs) (6.2.25)

I (XS) e —Xs) ||

Here o € (0,1) is a constant, and min(v € R") = min;{y;| =1,... ,N}.

It is proven in [34] that if (x,s) > 7 for a positive constant 7 < 1, we can choose «
such that ¥y (x + 0dx,s + 8ds) — ¥ (x,8) < =4, for a positive constant §. Here ¢y(x,8) =
Nln(xTs) - Zjvz In(z;s;) is the so-called primal-dual potential function. Therefore, in
O(wn(x°,s%)— N In N) iterations, the algorithm can generate a pair (x, s) such that 7(x,s) <

<1l

6.2.3 Starting point for primal-dual potential algorithm

The above primal-dual potential algorithm needs a primal-dual feasible point (x,y,s)

with xTs = N. In other words, the starting point (x,y,s) should satisfy
Ax=b, x>0, ATy+s=c, s>0, x"s=N. (6.2.26)

For the analytic center formulation, the above conditions can be rewritten as

pitetpy = 1, (6.2.27)
i > 0, i=1,...,N, (6.2.28)
s > 0, i=1,...,N, (6.2.29)
y+s = ;1- i=1,...,N, (6.2.30)
N
Y psi = N (6.2.31)

i=1

Let us assume without losing any generality that r; > r; for j # 1. We suggest the

following procedure to generate the required starting point:
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Step 1: choose Ap such that

. 1 1
0 < Ap < min T = (_1— - }_) (6.2.32)
=2 \ r; 731
Step 2: compute p;’s as
1—(N-1Ap, i=1,
Di = (6.2.33)
Ap, otherwise.
Step 3: compute ¥ as
N
1 1 1
y=—+Ap (——- ~> - N. (6.2.34)
"1 i \Ti T
Step 4: compute s;’s as
1

It is easy to verify that the starting point generated by the above procedure satisfies
conditions (6.2.27) through (6.2.31). First of all, it is obvious that the p,’s computed by
(6.2.33) satisfy the probability constraints in (6.2.27) and (6.2.28). The condition (6.2.29) is

also satisfied since

1 1 Y11
=y >~ —y=N-A — - . .2.36
= oY2Z -y p;(ﬁ_ 7‘1) >0 (6.2.36)

The condition (6.2.30) is identical with (6.2.35). Finally, (6.2.31) is satisfied because

=2 s

_ LA i(i_i>_g\r (6.2.37)
71 Y pg:z TR ) o
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6.3 Satisfaction of decision fusion principles

In this section, we analyze the analytic center fusion method using the decision fusion
principles proposed in Chapter 3. We start by introducing two propositions which will be

used in subsequent analysis.

Proposition 6.3.1 Let (p$,...,0%) denote the optimal solution of the following optimiza-
1 N

tion problem:

N o4 N
MInImize E —p; — E In p;

T

i=1 1

=

N (6.3.38)
subject to Zpi =1, p;20,i=1,...,N,
i=1
and (Pl‘", cee p%) denote the optimal solution of the following optimization problem:
N o4 N
minimize Z Fp: - Z In p;
i=1 i=1
N (6.3.39)
subject to Zp: =1, p;>0,i=1,...,N,
i=1
where
ri=r+Ar, = i=2,...,N. (6.3.40)
Then
Ary>0 = p>p8 pf <8 i=2,...,N, (6.3.41)
Ary <0 = p¥<p® p¥ >p8 i=2,...,N. (6.3.42)

In other words, increasing 7y resulls in increasing P{ and decreasing all the other P£’s

(i=2,...,N) in the optimal solution.
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Proof. In the following we prove (6.3.41). (6.3.42) can be proven in a similar way.
Assume Ar; = 7] — r; > 0. We start by observing that the above problem (6.3.38) is
a special case of problem (6.2.10). Therefore, we can modify (6.2.18) to obtain the dual
problem of (6.3.38):
N

maximize Y-+ z Ins;
j=1 (6.3.43)

1
subject to y+s;=—, s5;2>20,i=1,...,N,
and modify (6.2.16) to obtain the optimality conditions for (6.3.38) and its dual prob-
lem (6.3.43):

pisi=1, i=1,...,N, (6.3.44)
N
Spi=1 p>0, i=1,..,N, (6.3.45)
i=1
1
Y+ & =—, S,;ZO, izl,...,N. (6346)

]

Similarly, the optimality conditions for problem (6.3.39) are given by:

pisi = 1, i=1,...,N; (6.3.47)
N
>oph =1, p;>0, i=1,...,N, (6.3.48)
=1
1
Y+ = 5 620, i=1..,N, (6.3.49)

where the s’s are the dual variables. Let Ay = ¢ — y. It is obvious from (6.3.46) and
(6.3.49) that

1 1 1 1 1
i= - '=-—~y'+(-——y>—<—j——y>=s,~+<};——~_—>~—Ay, i=1,...,N, (6.3.50)
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or

'f‘ll Ty

1 1
sy =81 + (~ - —> - Ay, si=s— Ay, Vi#L (6.3.51)

1 1
Note that — — — < 0. There are three possible cases for Ay, i.e.,

e case A: Ay > 0,

1 1
e case B: Ay < 0 and <—7——>——Ay20,

7‘1 7'1
‘ 1 1
e case C: Ay <0and | - — | - Ay <0

We now show that case A and case B cannot hold, and case C implies the desired result
(6.3.41).
Case A: It is obvious from Eq. (6.3.50) and condition (6.3.40) that

8y < s1, si<sy, 1=2,...,N, (6.3.52)

which by Egs. (6.3.44) and (6.3.47) imply that p{ > py, pl > p; for i = 2,... , N. This means
that Egs. (6.3.45) and (6.3.48) cannot be both true. As a result, Ay > 0 cannot hold.
Case B: In this case, we have s} > s1, 5; > s, for i = 2,... | N, and p} < py, p) < p; for
i=2,...,N. Similar to case A, this case is impossible either.

Case C: Here we have

1 1
s'lzsl-i—(—,—-———) — Ay < s1,
LE WA (6.3.53)
si=s8—~Ay>s, i=2,...,N,
and pj > p1, p; < p; for i =2,..., N, which is exactly the desired result (6.3.41). O

Proposition 6.3.2 Let pX denote the solution to the following optimization problem:

L. o, l-m
minimize C =K |=+ )—-in + (N -1 In(1 -
o) = K (24222 — (tagy + (¥ - )intt - 1) 6550

subject to 1> p; >0,
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where vy > 1y > 0, N > 2, K > 1. Then,

1

T - < . — 3
Prsar g (6.3.55)
N-—-1
where ¢; = v, and
rs 1
1
K > max (K, K;) = 1~—pf{202-}€, (6.3.56)
N -2 N? 1
where Ky = ———, K= - N czz—T———1-.
mT 2N -3) (L - 1) 2(-1)

Proof. We start by observing that 1 > pf > 0 since Cx(p;) is a convex function in p; and

111%11 Cx(p1) = oo. Therefore, the optimal solution p¥ satisfies
P14,

i%f;%’ﬁ ~0 (6.3.57)
where
9%5(1@ N KGT%;) B (pil_(N_l)l-lth)
N r(1 1—— p1) A= p) = (= p) (V= D)
= o (68— (8- N - 1), (6:3.58)
Here, =K (;1; - %) Note that § > 0 by assumption r; > 7o > 0. Now condi-

tion (6.3.57) can be rewritten as Bp? — (8 — N)p, — 1 = 0. The optimal solution is equal

to the positive root of the equation, i.e.,

pc BN+ BN+ 1p

35 (6.3.59)
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Now we can derive that

 B-N+/(B-NP+48 B+N-—+/(B-N)?>+4f
28 B 26
8+N—~-(B-N+2) N-1_ N-1 1

2 g I-1 K

1-pF =1

(6.3.60)

which proves inequality (6.3.55). Here the inequality follows from the fact that N > 2.
To prove (6.3.56), let

NZ
= — - N 4 2. 3.
y % + (6.3.61)
When
N -2
K>K, = T T (6.3.62)
re | T
we have
N? 1 1)
Bry=0+|—=-N+2]>0-N+2>K|——— | -N+2=0, (6.3.63)
2)6 T2 T
and

2

(ﬁ+y)2zﬁ2+2ﬂy+y22ﬁ2+2ﬂy=ﬂ2+2ﬁ(%—zv+2) =(B-N)2+48. (6.3.64)

Combining (6.3.63) and (6.3.64), we have

V(B-NP+48 < B+y, (6.3.65)

when y is given in Eq. (6.3.61), and K satisfies condition (6.3.62).
With (6.3.65), we can derive that

[k - BAN-VB-NP+4B f+N-(f+y) N-y

= 28 = 23 28
1 N? _ 1 N?
_ %<N~(§an+z}>,%<m-z.—5ﬁ_>, (6.3.66)
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N2

Under the condition that K > K5 =
2N = 8L~ L)

, the above inequality (6.3.66) be-

comes
1 N? 1 N? 1
1- K>—-(2N—2—_—>=—~ pJ (D S S S—
Pr=2p 26) " 26 2 k(2-3%)
T2 T1
1 N? 1 1
> |oN-2-" " = (2N-2-(2N -
2 3 5 K(}__i) 55 (2N —2— (2N - 3))
2 T2 1
1 1
—_— 3.6
T2 1
which proves inequality (6.3.56). 0

With the help of Propositions 6.3.1 and 6.3.2, we now prove the following theorem.

Theorem 6.3.1 The analytic center fusion method satisfies fundamental principles 2,3, and
fundamental principles 4 and 5 for DSF model. In general, it does not satisfy fundamental
principle 1. Moreover, the fusion method satisfies DoC principle 1 for DSF model.

Proof. Let Q = {ay,...,an}. Suppose a sensor report Dy takes the following form:

Degree of Confidence = wy,
Dy = , k=1,..,K, (6.3.68)
Pk(a.,;):?"z, 'L=1,,N

N

where 7i € [0,1] for ¢ =1,...,N, Zr}; =1, and w € [0,1]. We examine the decision
(=31

fusion principles one by one.

a) Fundamental principle 1: Suppose there is only one sensor report D to fuse, and

assume without any loss of generality that r} > r2 > ... > r¥. The analytic center fusion
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method solves the following convex optimization problem:

N N
1
. Py = I
minimize Cy, (P) wlzﬁp Z np
N =1 =t (6.3.69)
subject to Zpi’ =1, p;20,i=1,... N.
i=1
Let Dy = {Pf(a;) = p;, ¢ = 1,...,N} denote the fusion result, then the optimality
conditions can be obtained from Egs. (6.2.11) and (6.2.16):

Disi = 17 Z: 1, e ,Na : (6370)
p1+...+pN:1’ piZO, i:2,,_,,N, (6371)
y+s;=¢, 8 >0, ’I:‘:].,...,,N, (6372)

1
where ¢; = wy - s Combination of Egs. (6.3.70) and (6.3.72) gives
1

pi= , i=1,...,N, (6.3.73)

which implies that a bigger ri corresponds to a bigger value of p;, i.e., p1 > py > -+ > pu.
We now prove that increasing w; results in the increasing of relative likelihood ratio il

Dj
for i < j. We start by combining Eq. (6.3.71) with Eq. (6.3.73) to obtain

1 1
R
G-y N Y

=1. (6.3.74)

Suppose that the DoC of Dy increases from w; to w) = Bw; with § > 1, and let D} =
{Pia;) = p;, i=1,...,N} denote the new fusion result. Then, the new optimal fusion

fori=1,...,N, and

1
Be; — '

1 - 1
Be; —y' Beny — ¢

result pi,... ,py should satisfy p =

=1. (6.3.75)
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It is obvious that ' > By, for otherwise the condition 4 < By would imply

1 et 1 < 1 4. +____.1.*._——_1;
Be; — o Ben —y' = Bei - Py Bey — By f

<1, (6.3.76)

violating Eq. (6.3.75).

Let ¢ < j, then 7! > 7’{, ¢ < ¢, p; > p; and p} > pl. Moreover,

(ﬁ) / (&) ﬁCil——‘y’ / 5_1:1:/_ _ (Be; —y') e — o)

p; bj chj—lq gl_—y (Bei = y')(e; — ¢)

N . o —— I " — “ ’
peic; — y'e; — Bejy + yy S (6.3.77)
Beic; — y'c; — Besy + vy

where the last step follows the inequality (¢; — ¢;)(y' — By) > 0.
We have now characterized the behavior of fused result p; as w; increases within [0, 1].

Let us consider two extreme cases. First, w; = 1, i.e., w; = DoC,,,,. Here problem (6.3.69)

becomes
N o4 N
inimi Cs(P) = —p; — Inp;
minimize (Y, (P) Z m -D; Z np
N =1 =1 (6.3.78)
subject to ZP5=1, piz0,i=1,...,N,
i=1
which yields optimal fusion result p; = r{ for ¢ = 1,... ,N. This obviously satisfies the

fundamental principle 1. Secondly, w; = 0 (DoCpy,). In this case, problem (6.3.69) becomes

minimize Cp(P) = Zln Di

N
subject to » py=1, p; 20, i=1,...,N,

=1

(6.3.79)

and the fusion result is p; = 1/N for ¢ = 1,...,N. Note that in all cases the DoC of the
fusion result is always wy =1 — (1 — w;) = w;.

The above analysis can be summarized as follows.

e When w; = 1, the fusion result is identical with D;.
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e Assume that r{ > --. > rI. Then, when w, decreases, P;(a;)/P;(a;) decreases for

i < j. However, it is always true that Ps(a;) > Ps(a;) for i < j.
e When w; = 0, the fusion result is an equal probability distribution.

In other words, the analytic center fusion method satisfies the fundamental principle 1 in the
special case of wy = 1. However, in general the fusion method does not satisfy the principle.
b) Fundamental principle 2: This is straight forward. The analytic center fusion method
only operates in the batch fusion mode (see discussion on page 134). Similar to the two fusion
methods proposed in previous chapters, the analytic center fusion method also minimizes a
cost function constructed using original sensor reports. The principle is satisfied since the
cost function is invariant with permutation on sensor report indexing.

c¢) Fundamental principle 3: Suppose there are N symmetric sensor reports D;, ... , Dy,
with Dy given as

DoC = w,,
Dy = , (6.3.80)

Pk(ai) = Tidpk, 7= 1, ,N

where r; > 0fori=1,...,N,and i®k=4i+k —1 mod N. Note that the DoC values of

all the reports are the same. The overall cost function can be written as

N N 1 N N 1 N
CfN(P) :ZwrZ;;pg—-—Zlnpi ::Nw,Z;*Zlnpi, (6381)
k=1 i=1 ° =1 i=1 ¢ i=1

which obviously leads to the following fusion result: p; = 1/N for i = 1,...,N. In other
words, the analytic center fusion method satisfies the fundamental principle 3.

d) Fundamental principle 4 for DSF model: As introduced in section 6.1, the ana-
lytic center fusion method does not permit disjunctions of propositions. Therefore we only
consider the basic propositions g;’s. Denote the fusion result before and after the fusion

of report D; as Dy, and Dy,. Then, Dy, = {Ps,(a;), i=1,...,N} is the solution to the
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following optimization problem:

N N
1
minimize Cf(P) = —p; — In p;
WPI= 2 emm -
N (' " )
subject to Zpizl, p;>0,i=1,...,N.

i=1

Similarly, D' = {P{*(a;), ¢=1,...,N} is the solution to the following optimization prob-

lem:
Ny N
minimize C3'(P) = Z ;?pi - }: In p;
== (6.3.83)
N
subject to Zp,» =1 p;2>20,i=1,...,N,
7=1
1 1 1 . . .
where el + wl;-{ fori=1,...,N. Without any loss of generality, we assume that
fa bil 1

in Dy, r{ > r] > -+ > . Then, it is obvious that when w; = 0, problem (6.3.82) is
identical to problem (6.3.83), which establishes the first part of property (3.6.22). To prove
the second part of property (3.6.22), we use the following procedure. We start by increasing
the value of r{¥ to be equal to r{. As a result, problem (6.3.83) is modified to be the following

optimization problem:

1 1 N~-1
minimize C}(P) = (;—1— +wy ;1‘) p1+ Z (

1 1 1 1 al
S twiy pit | twiy pN—ZlnPa'
fl 1 Py r 7 T 7'1

kil 1 fi 1=1
N

subject to Y pi=1, p; >0, i=1,...,N. (6.3.84)
i=1

Let P:{a;) denote the probability of a; in the solution of the above new problem. Then

according to Proposition 6.3.1,

P¥(a;) > Pi(ay). (6.3.85)



CHAPTER 6. ANALYTIC CENTER FUSION METHOD 151

We continue this procedure iteratively, increasing one by one the values of 73,. .. AR

be equal to 7?. Eventually, problem (6.3.83) is modified to be the following optimization

problem:

L ; 1 1 N1 1 ol
minimize Cf(P): T“*'wlﬁ p1+z ;—i—+w1;—g pi~zmpi

=1 (6.3.86)
subject to Zpi =1, p;>20,¢=1,...,N.

g==1

Let Pf(a;) denote the probability of a; in the solution of the above optimization problem,

then similar to (6.3.85), we have
P}Zl(al) Z P}'(al). (6387)

The cost function in (6.3.86) can be simplified as

| il 1 Y1
C}'(P) = Z i Zlnpi + Wy (;r'fpl + Z ;,;5191')
i=1 N1 i=1 1 i=2 1
1 1 1
= Cfl(P) -+ Wy (;—%' - ;—%-) p1 + 11)1;;2~
N N
1 1 1 1 1
= (;‘1‘-‘3"101 (;T";E))pl"'z;{"pi*zlnpi‘*“wlﬁ’ (6.3.88)
fa 1 1 PE] b =1 1
1 1 . i
where T3 < 0. according to Proposition 6.3.1,
1 1
P}'(al) > Pfl(al). (6389)

Summarizing (6.3.87) and (6.3.89), we have P;*(a:1) > Py (a:1), which is the desired result.
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Moreover, if w; increases from wy_ to wy,, i.e., wy, > w,, then

N N

N
w 1 1 1
Cf;b(P) = Cf1 +’LU1 z;{ ; Of1 +w1az;‘7pi+ wlb—wla)Z—pz
=1 1 =1 1 i=1 "
.1
Cp (P + (wy, —w,) )~ (6.3.90)
i=1 1

Let D' denote a new sensor report which is identical to D, except that its DoC value is
wie = wi, — wi,. Then from the above equation, the fusion of D¥* is equivalent to the
fusion of D"** and D}*¢. That is, increasing the DoC of D; from wy, to wy is equivalent to
the fusion of a new sensor report Dj”*c. Similar to the above derivation, we can prove that
P} (a1) > P (a1). In other words, if w; increases, P (a;) also increases.

e) Fundamental principle 5 for DSF model: As mentioned before, we only consider
basic propositions a;’s since the analytic center fusion method does not permit disjunctions of
a;'s. Suppose there are K identical sensor reports from dissimilar and independent sensors,
each denoted by Di*, where w; is the DoC associated with D; and suppose that w; >
DoCryin. Let DYY = {P;Xa;), 4 = 1,...,N} (with DoC value wy:) denote the fusion
result of these identical reports. We further assume without any loss of generality that in
report Dy, v} > 72 > -+ > . Then, D%} is the solution to the following optimization

problem:

N
o . 1 1
minimize Kw, (7131 oot —ﬁpw) - Zlnpi
N 1 T i
subject to Zp,»zl, p; >0, i=1,...,N.

=1

(6.3.91)

If we decrease the value of r{ ' to r{’, problem (6.3.91) is transformed to the following

optimization problem:

1 1
minimize Kuwy (;Tpl +~=+ pN 1 -+ Np;y} Zinp,
' (6.3.92)

subject to Xm:i, p;=>0,¢=1,... ,N.

i=1
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Let P(a;) denote the probability of a; in the new fusion result (the solution of the above

problem (6.3.92)). Then according to Proposition 6.3.1,
P (a1) < Pi(a). (6.3.93)

We continue this procedure iteratively, reducing one by one the values of 72,73 ...+ to

be equal to riV. As a result, we have the following optimization problem:

. 1 1
minimize Kun (}—-fpl + P2 + - NpN> zmpi
' ' (6.3.94)

N
subject to ZPiZl, p;>0,¢i=1,... ,N.

=1

Let P{(a;) denote the probability of a; in the solution of the above optimization problem,

then similar to (6.3.93), we have
P:'(a1) < Pf(aq). (6.3.95)

In (6.3.94), variables p,,... ,py are treated equally, which implies that in the solution,
p2 = ... = py. Therefore, the problem (6.3.94) can be simplified as

1 1
minimize Kuw; (—1:-1-]91 + (N — 1)—T—ﬁpN) — (Inp; + (N — 1) Inpy)
1 1

(6.3.96)
subject to py+ (N —1)py=1, p1 20, pv > 0,
or equivalently,
minimize Kw (1;0 +1 p) (lnp; + (N — DIn(1 — py))
1 1 = -
! rl ' ' (6.3.97)

subject to 1> p; > 0.

According to Proposition 6.3.2,

K 2 max (K};,Kg) = 1- p;i(al) >co- Ei:, (63«98)
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where
N -2 N? 1
Kl = -°—‘—1—*““‘—1"‘", Kg = 1 N Co = N 1 (639g)
w (G~ %) 2un (2N ~3) (& ~ %) 2 (G~ %)
Similarly, if in problem (6.3.91), we increase the values of 7%,..., 7 to r{, then we have
the following problem:
i 1 1-p
minimize Kw; | —p1 + —(lnp, + (N = 1) In(1 — py))
1 i (6.3.100)
subject to 1> p; > 0.
Let P}”(al) denote the probability of a; in the solution of the above problem, then
P (a1) > Pf'(ar). (6.3.101)
Moreover, from Proposition 6.3.2, there holds
1 “ < 1 6.3.102
"pf(a'l)__cl'"f(-'a (6.3.102)
where
N —
! (6.3.103)

¢ = — .
1 1
w (?? ?’?)

Summarizing (6.3.95), (6.3.98), (6.3.101) and (6.3.102), we have

1 1
K 2 max(Kl,Kg) = (1 }Z > 1- P}‘;{‘(al) 2 Co * flf{*, (531@4)
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where K, K, ¢; and c; are given in (6.3.99) and (6.3.103). In other words, Kljm pﬁ(al) =1,
—+C0

with 1 — Pff (1) decreases at the rate of O(1/K). This establishes property (3.6.29). More-

over,

lim ,w}v; possd llm 1* — 17 (63105)

K—o0 K—o00

which proves property (3.6.30).
To prove property (3.6.32), consider problem (6.3.91). Following the same argument as
that in the proof of the fundamental principle 1, we have

Pwlb(a ) Pwla (a )
e \*11 fx \™1 .

=2 ..., N. 6.3.106
Pp(a) " Ppee) 1T O ( )

Wip > Wi =

This establishes property (3.6.32), i.e., w1y > Wi, = P;”;" (a;) > P (a1).
f) DoC principle 1 for DSF model: This is straight forward. Let D; denote the fusion

result of sensor reports Dy,... , Dg, wy, denote the DoC value of report Dy, and wy denote
K

the DoC value of Dy. Then, from Eq. (6.1.7), wy is computed as w; =1 — H(l —wg). It
k=1
is obvious from the above equation that if any wy increases, w; also increases. O

Discussion on the restricted fundamental principle 4 for DSF model

Theorem 6.3.1 shows that the analytic center fusion method satisfies the decision fusion
principles proposed in Chapter 3. However, the following example illustrates that the method
in general does not satisfy the restricted fundamental principle 4 for DSF model. This should
not be viewed as a weakness of the new fusion method since the principle is not absolutely

necessary in practice (see discussion on page 57).
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Example 6.3.1 Let O = {ay,as,a3}. Suppose there are two dissimilar and independent

sensors each sending a repori to the fusion center. The sensor reports are given as

wy = 17
D1 - ?
Pl(aCL) = 08, Pl(az) = 011, P1<CL3) = (.09
(6.3.107)
we == 1,
D=3

Py(a1) = 0.4, Py(ag) = 0.5, Pyas) = 0.1

Note that Dy serves as the fusion result Dy, before the fusion of Dy. By the analytic center
fusion method, the fusion result after the fusion of Dy is Dy, = {Py,(a;) = 0.829, Pj,(ay) =
0.117, Py,(as) = 0.054}. Here, the restricted fundamental principle 4 for SSF model is not

. . Pf (a,g) 0.117 Pf (a2) 0.5
tisfied P, = 0.11 > P = (. but —2 E= L =
satisfied, since Pi(a3) 1 (as) 09, bu By (as) ~ 0.054 Pr(a) ~ 01

violating property (3.6.25).

6.4 Numerical examples

In this section, two numerical examples are given. The first one is a simple two-
dimensional example which illustrates the behavior of the analytic center fusion method
when there is no sensor report, a single sensor report or multiple sensor reports. The sec-
ond example compares the analytic center fusion method with Dempster-Shafer evidential

inference method.

Example 6.4.1

Suppose there are three independent sensors, each explores some unique characteristics of

a target. Assume each sensor files one report to the fusion center which are given as follows:

¢ 3\

wy = 08,

P;_(al) = 68, Pl(a,g) = 0.2 ) Pg(al) = 07, Pz(g,2) =0.3

4 3
Wy = 083

Dy = ¢ . (6.4.108)
\ Pg(al) = 04, Pg(az) =0.6 )
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We consider the following four cases:
o case A: there is no sensor report available at the fusion center,
e case B: only D is fused,
e case C: D; and D, are fused,
s case D: all three sensor reports, Dy, Dy and Djs, are fused.

We examine the four cases one by one.
Case A: The fusion result for this case is

wf1 = 0,
Dy = : (6.4.109)

Py (a1) = 0.5, Py,(az) = 0.5

In other words, Dy, assigns equal probabilities to each propositions because of lack of infor-
mation on the target identity.
Case B: The fusion result is

Wy, = 0.8,
Dj, = , (6.4.110)

Pp,(a;) = 0.768, P, (as) = 0.232

which is not consistent with the single sensor report D;. However, it preserves the informa-
tion in D, that a; is much more likely than a,.
Case C: The fusion result is

Wy, = 0.98,

Dy, = (6.4.111)

Py,(a1) = 0.831, Py, (az) = 0.169 |

Here, both D; and D, declare that a; is more likely to happen than a,. As a result,
the fusion result assigns a higher probability to a; than to a;. In addition, Pgla:) >

max{Pi(a;), P(a,)} because of the reinforcement between D; and Ds.
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Case IJ: The fusion result for this case is

Wy, = 0996,

Dy, = (6.4.112)

Py (ay) = 0.811, Py,(az) = 0.189 |

Compared with Case C, the new sensor report Dj provides evidence that ay is more likely
Ps(ay) 0.6 . i

= — ig not big, showin
that the evidence provided in Dj is not strong. As a result, in Dy,, the probability of a;

decreases slightly (from Pf,(a;) = 0.85) to Py, (a;) = 0.83.

Note that in all these cases the analytic center formulation involves only one variable,

to happen than a;. However, in D3 the relative likelihood

and can be solved analytically.

Example 6.4.2

Suppose there are two independent sensors exploring different characteristics of a target.
Each sensor sends a Dempster-Shafer type sensor report to the fusion center. The sensor

reports are given as follows:

D1 = {Pl(al \Y CLQ) = 02, Pl(ag,) == 04, P]_(Q) = 04},
D2 = {Pz(al) = 01, Pg(az) = 02, Pz(ag \ a4) = 0.5, Pz(Q) = 02}

(6.4.113)

The two sensor reports can be fused by Dempster-Shafer evidential inference, which gives
the following fusion result:

Ps (a1) = 0.077, Py lag) = 0.154, P v = (.051,
Df _ fl( 1) fl( 2) fl(al 0‘2) ‘ (6.4.114)

" | Pr(as) =0.359, Py (asV as) = 0.256, Py, (Q) = 0.103

We can also use the procedure introduced in section 6.1 (see page 133) to transform the
reports into the form of (6.1.1) and use the analytic center fusion method to fuse them. Let

D] and D; denote the transformed reports of Dy and D;. Then,

w; = 0.6,

D, = (6.4.115)

Pl{a;) = 0.2, P/{az) =0.2, P{(a3) =0.5, P/(as) =0.1
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why = 0.8,
D, = , (6.4.116)

PZI(G:;() = 015, Pé(az) = 025, PZI(CZ;;) = 63, PQI((L;) ={.3
and the fusion result is

wy, = 0.92,
Dy, = . (6.4.117)

Py, (a1) = 0.153, Pp,(ag) = 0.226, Py, (as) = 0.476, Py, (a3) = 0.145

The two fusion results match with each other very well, showing that the two fusion methods

are compatible with each other for this example.



apter

Fusion Using DRDC Valcatier Data
Set

In the previous chapters, we proposed two identity fusion models (the DSF model and
the SSF model) and some decision fusion principles. We also proposed two fusion methods
for the SSF model and one fusion method for the DSF model. In this chapter, we perform
fusion on a simulated data set provided by Defence Research and Development Canada
(DRDC) Valcartier. Since the data is from DSF scenarios, we fuse them using Dempster-
Shafer evidential inference method and the analytic center fusion method. As can be seen
later in the chapter, the fusion results by these two methods match with each other very

well.

7.1 Introduction to DRDC Valcatier data set

The simulated data used in this chapter is provided by Defence Research and Development
Canada (DRDC) Valcartier of the Department of National Defence of Canada. There are
a total of 15 groups of data, each from a target tracking and identification scenario. The
sensors in each scenario are independent, and explore some different physical characteristics
of a target. In other words, all the scenarios belong to the DSF model. A target belongs

to a set {} which has 142 propositions, some of which are listed in Table 7.6. As can be

160



CHAPTER 7. FUSION USING DRDC VALCATIER DATA SET 161

PROPOSITION NO. | IDENTITY TYPE SUBTYPE | ACRO
017 VIRGINIA SURMILI | CRUISER | USAM
040 NIMITZ SURMILI | CARRIER | USAM
045 KARA-AZOV SURMILI | CRUISER | RUSS
075 TU22MA AIRMILI BOMBERS | RUSS
093 F16-FALCON AIRMILI FIGHTIN | ISRA
095 BOEING-747-400 | AIRCOMM | JETPROP | VAR
102 CONCORDE AIRCOMM | JETPROP | FRAN

Table 7.6: Examples of propositions in 1.

seen from the table, a target proposition is typically a specific target identity belonging to a
particular party.. For example, proposition no. 093 is a F16-Falcon fighter aircraft of Isreal.
In some cases a target proposition is so unique that it corresponds to only one target, e.g.,
proposition no. 040 is actually the U.S. aircraft carrier Nimitz. In the table, the target types
include surface-military (SURMILI), subsurface (SURSURF), air-military (AIRMILI) and
air-commute (AIRCOMM). The target is further specified by a target subtype. The last
column in the table corresponds to the party (usually a country) each proposition belongs
to. Here, we see parties like U.S.A. miliary (USAM), Rusia (RUSS), Isreal (ISRA), France
(FRAN) and various (VARI). There are also some other parameters associated with each
proposition, e.g, list of electro-magnetic emitters, length, hight, velocity range and so on.
These parameters are not important for our fusion purpose and are not listed in the table.

Bach group of data consists of a number of Dempster-Shafer type sensor reports which
provide identity estimates on a target. As introduced in section 3.3, a Dempster-Shafer type
sensor report consists of some probability masses assigned to subsets in 2. Note that each
sensor only has one report in the data. In order to have a better understanding of the original
data, we provide the ninth data group in Table 7.7. Let a; represent the i’th proposition in
2. Then, the two subsets in Table 7.7 are

Wy = arg V Qg3 V G199 V G114 V G121, (7.1.1)

wy=amnVarpV---VaprVan Vass Vasr V-V dus.

Here, w represents a military aircraft belonging to a country other than U.S.A and Russia,

and w, represents an airborne target. Note that w; C wo. From the table we see that the
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data group has seven Dempster-Shafer type sensor reports, e.g., the second report is given
by Dy = {P(Q2) = 0.08, Py(w,) = 0.6, Po{wz) = 0.32}. It is clear from the table that all
sensors believe the target is a military aircraft belonging to some country other than U.S.A.
and Russia (subset w;). Therefore, the fusion result should assign a very high probability to
wy. We will see from Table 7.9 that this is true for both Dempster-Shafer evidential inference

method and the analytic center fusion method.

Dk Pk(wl) Pk(LUg) Pk(Q)
Dy | 0.600 0.400
Dy | 0.600 | 0.320 | 0.080
Dy | 0.840 | 0.128 | 0.032
Dy} 0.837 | 0.153 | 0.010
Ds | 0.929 | 0.061 | 0.010
D¢ | 0.922 | 0.068 | 0.010
D; | 0914 | 0.076 | 0.010

Table 7.7: The ninth data group.

As introduced previously, all the 15 groups of data are for the DSF model. Therefore
we use Dempster-Shafer evidential inference method and the proposed analytic center fusion
method to fuse them. Note that Bayesian inference method, which is also for the DSF
model, can not be directly used to fuse these Dempster-Shafer type reports (see section
3.2). Also note that before applying the analytic center fusion method, the data need to be
transformed using the procedure proposed in section 6.1 (see page 133). For example, for
the ninth data group shown in Table 7.7, we first construct the following new proposition

set ) = {a},a},al} where

a; = a military aircraft belonging to countries other than U.S.A and Russia,

a, = an airborne target other than a,, (7.1.2)

| o} = a non-airborne target.

Then, the sensor reports can be transformed into the form shown in Table 7.8. The reason for
us to construct a new {2 is that the three propositions in (' are the ones actually used in the

sensor reports. Therefore further dividing them into smaller propositions has no meaning, it
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can even lead to incorrect fusion results since it unreasonably changes the relative likelihood

ratios in the sensor reports.

report | Pylal) | Pu(ah) | Pelay) | wi
Dy 0.7333 | 0.1333 | 0.0133 | 0.600
D 0.7867 | 0.1867 | 0.0267 | 0.920
Dy 0.9147 | 0.0747 | 0.0107 | 0.968
Dj 0.9168 | 0.0799 | 0.0033 | 0.990
Dy 0.9629 | 0.0338 | 0.0033 | 0.990
Dj 0.9592 | 0.0375 | 0.0033 | 0.990
D’ 0.9555 | 0.0412 | 0.0033 | 0.990

Table 7.8: The transformed sensor reports in the ninth data group.

7.2 Fusion results and discussion

In this section, we introduce the fusion results of the 15 data groups by Dempster-Shafer
evidential inference method and the analytic center fusion method. We compare the fusion
results by these methods in two ways: (1) the fusion results of all sensor reports in each data
group, (2) the convergence performances assuming the sensor reports arrive in a dynamic
fashion. First, we present the fusion result of all sensor reports in each data group in Table
7.9. Note that for each data group only the most probable target identity and its likelihood
is shown in the table. Also shown in the table are the true target identities in the data
groups. Here, subsets w; and wq are given by Eq. {(7.1.1). Note that the fusion results in the
table are rounded to four decimal places. Therefore, a zero value for P;(Q)) actually means
that P;(€) is a very small positive value, and probability 1 is actually a value smaller but
very close to 1. Similarly, wy in the analytic center fusion method, if having a value 1, means
that the DoC of the fusion result is very close to 1.

From Table 7.9, we see that the fusion results by the two fusion methods match exactly
for all but two data groups (data group 5 and 13). For data group 5, the sensor reports are
given in Table 7.10. Here, six sensor reports prefer subset we (Py(we) > 0.5) while another
seven sensor reports support proposition ays (Py(azs) > 0.5). The fusion result by Dempster-

Shafer evidential inference method is Dy, = {Pf,{wq) = 0.7255, P;,(a7) = 0.2745}, while
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data | no. of | no. of Dempster-Shafer Analytic 4‘ true |
group | reports | subsets | P;(Q) | prob. [ subset wy prob. | subset | identity
1 40 32 0 1 Qgg 1 0.9992 |  agg (1
2 3 1 0.0001 | 0.9999 Wo 0.9999 | 0.9960 Wo wo
3 61 39 0 1 a5 1109977 | ay a |
4 56 29 0 1 ag 1 109996 | aq agy
5 13 4 0 0.7255 Wo 1 0.9977 Wo 7y
6 3 1 0.0001 1 Wy 0.9999 | 0.9960 Wy wWs
7 18 3 0 1 G139 1 0.9989 139 139
8 11 3 0 1 Wy 1 0.9904 w1 Gog
9 7 2 0 1 wy 1 0.9900 wh Wy
10 7 2 0 0.988 wq 1 0.9871 wq W)
11 7 2 0 1 w1 1 0.9934 Wy Wi
12 7 2 0 1 Wy 1 0.9870 w1 W
13 4 3 0 0.6043 Qgg Y dgg 1 0.6811 Wo Ugg
14 11 3 0 1 Wi 1 0.9934 Wi dgg
15 7 2 0 1 Wy 1 0.9916 wr wy

Table 7.9: Fusion results of all data groups.

the fusion result by the analytic center fusion method is Dy, = {Py,(ws) = 0.9977}. Here in
Dy, and Dy, we omitted all other subsets with negligible probability. Obviously both fusion
methods believe that ws is the true target identity. However, due to the contradictions anmong
sensor reports, the final fusion results by the two methods assign different probabilities to
wsy. Therefore, we believe that for this data group, the two fusion methods essentially agree
with each other, and the difference between the final assigned probabilities to wy in Dy, and
Dy, is acceptable. The situation for data group 13 is similar: two of the four sensor reports
support subset w; while the other two support subset ags V ags. As a result, the two fusion
methods support the two subsets respectively. Note that the corresponding probabilities are
not very big: Py (ags V ags) = 0.6043 by Dempster-Shafer evidential inference method, and
P, (w1) = 0.6811 by the analytic center fusion method. This shows that both methods think
the evidence Contained in the data group is not strong.

From Table 7.9, we also notice that the most probable target identity does not always
match with the true target identity for each data group. This is because in the data sets
enemy counter-measures are also simulated. Asa result, we may have incorrect sensor reports

and in turn wrong fusion results.
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Dy | Py{w2) | Prlars) | Py(aea V aes V ags) | Prlasa V aaz V ass Vaes V ags V ags) | Pi(€))
1 0.8 0.2
2 .96 0.04
3 0.99 0.01
4 0.99 0.01
5 | 0.9516 | 0.0384 0.01
6 1 0.7958 | 0.1942 0.01
7 1 0.4360 | 0.5540 0.01
8 | 0.1330 | 0.8570 .01
9 1 0.1278 | 0.8237 $0.0384 0.01
16 | 0.1069 | 0.6889 0.1608 0.0335 0.01
11 | 0.0280 | 0.9113 0.0420 0.0087 0.01
12 | 0.0059 | 0.9733 0.0089 0.0019 0.01
13 | 0.0012 | 0.9866 0.0018 0.0004 0.01

Table 7.10: Sensor reports in the fifth data group.

We also compare the convergence performance of the two fusion methods in Figures 7.1
to 7.3. Here, we look at the probability of the most likely target identity in the fusion
result, and show how it changes when more and more sensor reports are fused. Recall
that in section 3.3, we have proven that Dempster-Shafer evidential inference fusion method
converges exponentially when fusing a increasing number of sensor reports (see page 76). In
contrast, the analytic center fusion method converges at the rate of O(1/K) when fusing K
sensor reports (see page 155). From Figure 7.1, we see that the convergence curves for data
group 4 match with the above theoretical results. However, for the other two data groups
(Figures 7.2 and 7.3), since the sensor reports are far from identical with each other, the
convergence curves by the two methods do not show too much difference.

Our fusion is performed on a 800MHz Pentium PC under the MATLAB environment.
We self-coded the two fusion methods as well as the data input and output interfaces. In
Figure 7.4, we show the CPU time consumed by the two methods fusing data group 4.
Here, two CPU times are shown: the overall CPU time to fuse K sensor reports, and the
time to fuse a new sensor report along with K — 1 other sensor reports. Let us denote the
former by Tou(K) and the latter by 73(K). It can be seen from the figure that Dempster-
Shafer evidential inference method has exponentially increasing T,(K) and T3(K) when K

increases. In contrast, the analytic center fusion method has an almost constant T,;(K) when
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Convergence comparison for data group 4
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Figure 7.1: Convergence comparison: data group 4.
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Convergence comparison for data group 14
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Figure 7.3: Convergence comparison: data group 14.

K is bigger than a small number. This has a simple explanation. Basically, the analytic
center fusion method solves the fusion problem in three steps: transforms the Dempster-
Shafer type sensor reports, constructs the objective function in (6.1.6), and solves the analytic
center formulation (6.1.6). Here, the analytic center formulation (6.1.6) has a fixed worst
case complexity which is invariant with the number of fused sensor reports (K). In addition,
when K increases, fewer new subsets are involved in the new sensor reports, and the increased
computation to transform the new reports and construct their cost function terms only
consumes a very small part of T,;(K). As a result, T,;(K) almost stops increasing when K
is big enough. Also note that the T3(K) for the analytic center fusion method is very small
(less than 0.01 second). This is because that we can iteratively update the cost function in
the analytic center formulation and the DoC for the fusion result when new sensor reports
arrive (see page 135). Moreover, we can initiate the interior-point method using the fusion
result before the fusion of the new sensor report, reducing the time to reach the optimal

fusion result dramatically.
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Overall CPU time comparison (data group 4)
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Figure 7.4: CPU time: data group 4.



Conclusion and Future Work

8.1 Concluding remarks

This thesis studies two important problems in target tracking and identification: (1)
robust track state filtering, and (2) decision-level identity fusion.

In Chapter 2 of the thesis, we have proposed a robust filtering method which minimizes
an upper bound on the worst case variance of the estimation error for all admissible systems.
The method is based on robust semidefinite programming technique and is robust to norm
bounded parameter uncertainties in the system model and noise statistics. Our method is
recursive, with each subproblem having a fixed size and can be solved efficiently in polynomial
time. As shown in the simulation results, the new method compares favorably with some
of the existing robust filtering approaches. When applied to the MTT problem to update
track states using new observations, the new method has led to a significant improvement
in tracking performance.

The major part of the thesis (Chapters 3 to 7) focuses on the decision fusion problem. In
Chapter 3, we have proposed two decision fusion models: the Similar Sensor Fusion (SSF)
model and the Dissimilar Sensor Fusion (DSF) model. In the SSF model, sensors explore
a set of common target characteristics. As a result, the sensor reports can confirm with
each other, and the fusion can eliminate inconsistencies among sensor reports to achieve a

more accurate target declaration. In comparison, sensors in the DSF model explore some
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different target characteristics. Therefore when their reports are fused, decreased uncertainty
in target identity can be achieved. We also proposed five fundamental principles and three
additional DoC principles for decision fusion. These principles reveal the commonalities
and differences of the two fusion models. Fusion methods can be classified and compared
with each other using these principles. This axiomatic approach has provided a rigorous
mathematical framework for the study, analysis and comparison of existing fusion methods.
Moreover, we hope it will facilitate future development of new decision fusion methods.

Using the proposed decision fusion principles, we have analyzed the two classical deci-
sion fusion methods: Bayesian inference method and Dempster-Shafer evidential inference
method. The analysis shows that the two methods are all for the DSF model, and satisfy all
the proposed principles. However, as shown at the end of Chapter 3, Dempster-Shafer evi-
dential inference method has some problem introducing DoC values into the fusion process.

In Chapters 4 and 5, we have proposed two new decision fusion methods for the SSF
model: the convex quadratic fusion method and the K-L fusion method. The two methods
are all based on the minimization of inconsistencies between the fusion result and sensor
reports. The difference between the two methods lies in the functions they use to measure
the inconsistencies: the former method uses the quadratic function while the latter method
uses Kullback-Leibler’s cross entropy. We have proven that the two methods satisfy all the
decision fusion principles we proposed in Chapter 3. This suggests that the methods should
have good fusion performances.

In Chapter 6, we have proposed the analytic center fusion method for the DSF model.
Similar to the two new methods for the SSF model, this method also minimizes a cost function
constructed using sensor reports. However, the cost function we choose for the analytic center
fusion method has a unigue structure to enable the reinforcement among sensor reports. In
this way, the analytic center fusion method is able to decrease the uncertainty in target
identity, which is the fusion goal of the DSF model. We have analyzed the new method
using the proposed decision fusion principles proposed in Chapter 3. In deed, it is shown
that the method satisfies all principles except fundamental principle 1. The latter is the

main weakness of the method.



CHAPTER 8. CONCLUSION AND FUTURE WORK 171

8.2 uture work

This thesis has laid a mathematical foundation for decision fusion. However, much
more remains to be done. Below we enumerate a number of research directions for future

investigation.

1. The new robust adaptive filtering method proposed in Chapter 2 minimizes an upper
bound on the variance of the estimation error for all admissible systems. While this
approach guarantees robustness to the norm bounded uncertainties in the system model
and noise statistics, the performance of the resulting filters depends on how tight the
minimized bound is. Basically, the tighter the bound, the better the performance of the
resulting filters. Therefore, it is important to explore approaches which further tighten
the upper bound. One possible way is to explore the structure of the estimation error
covariance matrix. Intuitively, this should lead to better filters since it only minimizes

an upper bound for a subset of all possible error covariance matrices.

2. The proposed robust adaptive filtering method is a recursive method. The convergence
of the method may require many iterations. Therefore it is important to study ways
to reduce the number of iterations before convergence. In other words, we suggest as
a future study the analysis of transient performance of the method. Such transient
performance is closely related with the efficiency of the method, and largely decides

the tracking performance of the method when system model changes.

3. For the decision fusion problem, one important future research topic is to further
develop the mathematical framework proposed in Chapter 3. For one thing, the two
proposed fusion models (the DSF model and the SSF model) can be viewed as extreme
fusion cases (as mentioned in section 3.4). There are many scenarios where the sensors
are neither fully dissimilar nor fully similar. These scenarios should be studied in future
research. New fusion methods should be developed for these scenarios. A potential
approach is to intelligently combine the two classes of fusion methods developed for
the DSF model and the SSF model. Furthermore, modified versions of decision fusion

principles for such hybrid fusion environment should be studied. In addition, there
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may be other important decision fusion principles which have not been incorporated in
the current framework. We should continue to explore possible new principles or new

mathematical ways to characterize practical fusion processes.

4. Last but least, a major task for decision fusion research is to find new fusion methods
which can generate better fusion results while remain computationally efficient and
easy to apply in practice (e.g., does not require prior target information which can be

difficult to obtain). This is always an important future research topic.



ypendix
DRDC Valcatier Data Set

This appendix lists the data set provided by Defence Research and Development Canada
(DRDC) Valcartier, which is used in Chapter 7. The data set consists of 15 data groups,
each has a number of Dempster-Shafer type sensor reports. All the sensor reports are based
on a comumon proposition set {2 with 142 propositions. A sensor report has some probability
masses each occupying a line. The data are shown in three columns. The no. column
enumerate the probability masses in each sensor report. It begins from 0 and increases.
Therefore if we find on the next line the no. value returns to 0, it indicates that the current
report is over and the next report begins. The second column lists the probabilities of the
probability masses. Note that for each sensor report, all the assigned probabilities sum up
to 1. The last column lists the subsets in the probability masses. Each line represents one
subset. Its 40-digit Hex value, when extended to binary format, has 160 digits, each is either
1 or 0. Here, the first 142 binary digits are corresponding to the 142 propositions in (. If a
digit is 1, it indicates that the corresponding proposition is included in the subset, and vise
versa. For example, a subset w = a; V ag V a;32 is represented by 9000 6000 0000 0000 6000
0000 0000 0000 1000 0000, and 2 is represented by a group of 40 F’s.
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no. prob. subset
0 1| 1.000000 y FFFFFFEFF FFFFFYFF FFFFFFFF  FFFFFFFF  FEFFFFFE
0 | 0.200000 | FFFFFFFF FFFFFFFF FPFFFFFFF  FFFFFFFF  FEFFFFFF
1 | 0.800000 | 00000000 000060000 O13FFFFF FFFFFFFE  22FC0000
0 | 0.040000 | FFFFFFFF FFFFFFFF FFFFEFFFF  FFFFFFFF  FFFFFFFF
1 1 0.960000 | 00000000 000600000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFY FFFFFFFF FFFFEFFF FFEFFFFF  FEFFFFFF
1 | 0.980000 ; 00000000 00000000 O013FFFFF  FFFFFFFE  22FCO0000
0 | 0.010000 | FFFFFFFF FYFFFFFF FFFFFFFF  FFFFFFFF  FEFFFFFF
1 10.990000 | 060660000 00000000 013FFFFF FFFFFFFE  22FC0000
¢ | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFPFFFFF  FFFFFFFF
1 ] 0.951553 | 00000000 00006000 013FFFFF FFFFFFFE  22FC0000
2 | 0.038447 | 00000000 00006000 68000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFPFFF  FFFFFFFF  FFFFFFFF
1 10.795784 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 10.160764 | 00000000 00660000 68000000 60066000 00000000
3 | 0.033452 | 00000301 80300001 F8000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFY FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.436018 | 000000600 80000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.440422 | 000000GO 00006000 58000000 00000000 00000000
] 3 {0.113560 | 00000301 80300001 E8000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.290828 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.293765 | 00000000 00000000 68000000 00000000 00000000
3 | 0.075745 | 00000301 80300001 ¥8000000 00000000 00000000
4 10.329662 | 00000001 00300001 90000600 00000000 00000000
| 0 |0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF  FFFFFEFF
1 | 0114798 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 10715175 00000000 00000000 68000000 0000000 00000000
3 | 0.029899 | 00000301 30300001 F8000000 00000000 00000000
4 | 0.130127 | 00000001 00300001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFEFFFF |
1 |0.025084 § 06000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.781344 | (00000000 06000600 68000000 00000000 00000000
3 ]0.041405 | 00000301 80300001 F8000000 00000000 0000000
4 10.142167 | 00000001 0300001 900000060 00000000 00000000
0 0.010000 FFFFFFFF FFFFFFFY FFFFFFFF  FFFFFFFE  FFFFFFFF
1 | 0.005079 | 00600000 00600000 O013FFFFF FFFFFFFE  22FCO0000
2 | 0.158197 | 00000000 00000000 63000000 00000000 00000000
3 | 0.008383 | 00000301 80300001 F8000000 00000000 00000000
4 10.143921 | ©00000CL 003060001 90000000 00000000 00000000
5 | 0.00808% | 00000005 90318001 B3000000 00000000 00000000
6 | 0.632788 { 00000000 00000000 28000000 00000000 00000000
7 | 0.033533 | 00000001 80300001 B8000O000 00000060 00000060
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 10.001012 | (OO0OO00 00060000 O13FFFFF  FFFFFFFE  22FC0000
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5 | 0.031514 | 00000000 00000000 68000000 00000000  00G00000
3 | 0.001670 | 00000301 80300001  F8000000 00000000 00000000
4 | 0.143351 | 00000001 00300001 90000000 00000000  000000GO
5 | 0.016035 | 00000005 90318001  B800D0000 00000000 00000000
6 | 0.756338 | 00000000 00000000 28000000 00000000 00000000
7 | 0.040080 | 00000001 80300001  B8000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFE FRFFFEFF FRFFRFRF FRFRRFFE
1 [ 0.913267 | 00000000 00000000 28000000 00000000 00000000
2 | 0.032182 | 00000001 00300001 90000000  0000OOOOG 00000000
3 | 0.014399 | 00000004 10018000 28000000 00000000 00000000
4 [0.008998 | 00000001 80300001  BSO0O0000 00000000 00000000
5 | 0.068980 | 00207F04 70018002 28000000 00000000 00000000
6 | 0.007075 | 00000000 00000000 68000000 00000000 00000000
7 | 0.003600 | 00000005 90318001  BS000000 00000000  0000G000
8 [ 0.001500 | 00000300  000O0000G 28000000 00000000 00000000
0 | 0.010695 | FFFFFFFF FFRFFFPF FFFRFFEFE FEFFFFRF  FFFEFFFE
1 | 0.913267 | 00000000 00000000 28000000 00000000 00000000
2 | 0.025745 | 00000001 00000000 90000000 00000000 00000000
3 | 0.014309 | 00000004 10018000 28000000 00000000 00000000
4 [ 0.008000 | 00200307  S0OF8000  FR000000 00000000 00000000
5 | 0.007198 | 00000001 80000000  BS80000G0 00000000 00000000
6 | 0.007184 | 00200304 10018000 28000000 00000000 00000000
7 | 0.007075 | 00000000 00000000 68000000 00000000 00000000
8 | 0.006436 | 00000001 00300001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFPFRFFF FEPFFRFF FEFEPFRF FPFFFFPFRE
1 | 0.942946 | 00000000 00000000 28000000 00000000 00000000
2 | 0.014684 | 00000004 10018000 28000000 00000000 00000000
3 | 0.013852 | 00200304 10018000 28000000 00000000 00000000
4 | 0.008725 | 00207F04 70018002 28000000 00000000 00000000
5 | 0.005251 | 00DODO001  00OOO0O00 90000000 00006000 00000000
6 | 0.001632 | 00200307  900F8000  F8000000 00000000 00000000
7 | 0.001468 | 00000001 80000000  B300000G 00000000 00000000
§ | 0.001443 | 00000000  00DGOOOC 68000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEPFFFFF FPFRFFPFF FRFPFPFR FFFFFFEF
1 [ 0.937110 | 00000000  0000O000 28000000 00000000 00000000
9 1 0.032503 | 00000004 10018000 28000000 00000000 00000000
3 | 0.007941 | 00000005 00318001  BS0O0OO0OO 00000006 00000000
4 | 0.005212 | 00000001 00000000 90000000 00000000 00000000
5 | 0.002750 | 00200304 10018000 28000000 00000000 00000000
6 | 0.001732 | 00207F04 70018002 28000000 00000000 00000000
7 | 0.001457 | 00000001 80000000  BS000000 00000000 00000000
g | 0.001296 | 00000005 90018000  B80D00O0O 00000000 00000000
0 | 0.010000 | FERFFFFF FFEFPFFF FRPEFFFF FRFFRFFF FFFEFERE
1 | 0.034650 | 00000000  000O0ODO0 28000000 00000000 60000000
2 | 0.039738 | 00000004 10018000 28000000 00000000 00000000

Table A.12: Data group 1 (page 2).
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3 | 0.001582 | 00000005 90318001  B80000OO 00000000 00000000
4 | 0.001038 | 00000001 00000000 90000000 00000000 00000000
5 | 0.002739 | 00200304 10018000 280000600 000000600 00000000
6 | 0.000605 | 00207F04 70018002 28000000 00000006 00000000
7 | 0.000290 | 00000001 80000000  BS00OOO0O 00000000 000060000
8 | 0.000258 | 00000005 90018000  B8000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFR FFFEFFFF FPFREFFR FRFFEFFE
1 [ 0.660262 | 00000000 00000000 28000000 00000000 00000000
2 | 0.007949 | 0000IFO0 00000001  B800000OC 00000000 00000000
3| 0.007897 | 00000004 10018000 28000000 00000000 00000000
4 [ 0.007706 | OODOIFOD 00000000 28000000 00000000  0000D0OO
5 | 0.002177 | 00000300 00000000 28000000 00000000 00000000
6 | 0.001026 | 00207F04 70018002 28000000 00000000 00000000
7 | 0.001258 | 00000000 00000001  B8000ODO0 00000000 00000000
8 | 0.000825 | 00000000 00000000 90000000 00000000 00000000
0 | 0010332 | FFFFFFFF FFPFFFFEF FFFFFFFF FFPREFFFEF FRERFEEE
1 | 0.916537 | 00000000 00000000 28000000 00000006 60000000
2 | 0045534 | 00006000 40000000 00000000 00000000 00000000
37| 0.007587 | 00001F0OD 00000001  BS00ODOOO 00000000 00000000
4 | 0.007537 | 00000004 10018000 28000000 00000000 00000000
5 | 0.007355 | DOOOIFOD 00000000 28000000 00000000  000000OG
6 | 0.002078 | 00000300 00000000 28000000 00000000 00060000
7 | 0.001830 | 00207F04 70018002 28000000 00000000 00000000
§ | 0.001200 | 00000000 00000001  BS8G0OOOGO  00DOOO0OD 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FEPFFFFFF FFFFRFFF  FFFFEFFF
1 | 0.010204 | 00000000 00000000 28000000 00000000 00000000
2 | 0.045172 | 00006000 40000000 00060000 00000000 00000000
3 | 0.001505 | 0GOOIFO0 00000001  Bs0O0OGO0 00000000 00000000
4 | 0.007477 | 00000004 10018000 28000000 00000000 00000000
5 | 0.013318 | 00001F00 00000000 28000000 00000000 00000000
6 | 0.002062 | 00000300 00000000 28000000 00000000 00000000
7 | 0.010024 | 00207F04 70018002 28000000 00000000 00000000
8 | 0.000238 | 00000000 00000001  B800OO0G 00000000 00000000
0 | 0.010000 | FFFFFFFF FPFFEFFF FFFFFEFEF FFFFFFFF FFEFRFFF
T | 0.758500 | 000000C0 00000000 08000000 00000000 00000000
2| 6,183080 | 00000000 00000000 28000000 00000000 00000000
3 | 0.019293 | 00000800 00000000 08000000  6000000G 00000000
4 | 0.009334 | 00006000 40000000 00000000 00000000 00000000
5 | 0.008265 | 00000900  0D100001 58000000 00000000 00000000
6 | 0.002752 | OOOOIFOO 0000000 28000000 00000000 00000000
7 | 0.002071 | D0207F04 70018002 28000000  000O0000 00000000
8 | 0.001704 | 00000100 00000000 08000000  00GODODOO 00000000
0 | 0.011254 | FFFFFFRF FFFFFFFF FRFFFFRF FPFFFFFE  FRERFERT
1 | 0.729327 | 00000000 00000000 08000006 00000000 60006000
2 | 0.180846 | 00000000 00000000 28000006 00000000 00000000
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3 | 0.018551 | 00000900 00000000 08000000 000000600 00000000
4 | 0.038462 | 00000000 50000000 O013FFFFF FFFFFFFE  22FCO000
5 | 0.008875 | 00006000 40000000 060060000 00000000 00000000
6 | 0.007947 | (00000900 00100001 58000000 00000000 00000000
7 1 0.002646 | DO001FOO 00000000 28000000 00000000 00000000
8 10.001992 | 00207F04 70018002 2800060060 00000000 060006000
0 | 0.010000 | FFFFFFFF FPFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFEFF
1 10.607973 | 00000000 00000000 (8060000 000060000 00000000
2. ] 9.150755 | 00000000 00000000 28000000 00000000 00000000
3 | 0.015464 | 006000900 00000000 (8000000 00000060 00000060
4 [0.197835 | 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
5 ] 0.007482 | D00OG0O0 46000000 00000000 00000000 60000000
6 | 0.006625 ; 00000900 00100001 58000000 00000000 00000000
7 | 0.002206 | 00001F00 00000000 28000000 00000000 000000060
8 | 0.001660 | 00207F04 70018002 28000000 000060000 00000000
0 | 0.010000 { FFFFFFFF FFFFFFFF FFFFFFFF FFFFFERFF FRFFFFEF |
1 | 0.330487 | 00000000 00000000 08000000 00000000 00000000
2 | 0.081944 | 00000000 60000000 280000600 60000000 00000000
3 | 0.008406 | 00000300 000600000 (8000000 00000000 00000000
4 |1 0.559414 | 000006000 000006000 013FFFFF FFFFFFFE  22FC0000
5 | 0.004067 | 00006000 40000000 60000000 00000000 000000600
6 | 0.003601 | 00000900 001060001 58000000 00000000 00000000
7 | 0.001199 | 0C001F00 66000000 28000000 00000000 00000000
8 | 0.000902 | 00207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFR
1 | 0.716467 | 00000000 00000000 (8000000 00000000 00000000
2 | 0.029650 | 00000000 00000000 28000000 00000000 00000000
3 1 0.018249 | 00000900 00600000 08000000 00000000 00000000
4 | 0.202414 | 00000000 08000000 O13FFFFF FFFFFFFE  22FC0000
5 | 0.001471 1 00606000 406000000 00000000 00000000 000606000
6 | 0.020988 | 00000900 00100001 58000000 00000000 800600000
7 | 0.000434 | 00001F00 00000000 -~ 28000000 00000000 00000000
8 10.000327 | 00207F04 76018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEFFFFFF FRPFFFFF  FFFPFFFF  FRFFFFER
1 }0.385563 | 00000000 00000000 08000000 00000000 00000000
2 | 0.015956 | 00000000 00600000 28000000 00000000 00000000
3 ] 0.009821 | 00000900 00000000 88000000 00000000 00000000
4 | 0.566165 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
5 | 0.000792 | 00006000 460600000 000006000 00000000 00600000
6 10.011285 | 00000960 00100001 5800600600 800000600 (0000000
7 | 0.000233 | O000IF0O0 280000000 28000000 00000000 60000000
8 | 0.000176 | 00207F04 70018002 28000000 60000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFY FFFFFFFF FFFFFFFF FFFFFFFF
|1 | 0.369202 1 00006000 00000000 08000000 00000000 80000000
2 ] 0.015279 | 00060000 06000000 28000000 00000000 000600000
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3| 0.009404 | 00000900 00000000 08000000 00000000 00000000
4 | 0.542141 | 00000000 00000000 O013FFFFF FFFEFFFE  22FC0000
5 | 0.042767 | 00006000 40000000 00000000 00000000 00000000
6 | 0.010815 | 00000900 00100001 58000000 00000000 00000000
7 | 0.000224 | 00001FO0 0000000 28000000 00000000 00000000
8 | 0.000168 | 00207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFRFFFF FFFRPRFE FFFFFFFF FFFPFFEF
1 | 0.500265 | 00000000 00000000 OI3FFFFF FRFFFFFE  22FC0000
2 | 0.340685 | 00000000 00000000 08000000 00000000 00000000
3 | 0.039920 | 00000000 00000001 10000000 00000000 00000000
4 | 0.014099 | 00000000 00000000 28000000 00000000 00000000
5 | 0.039464 | 00006000 40000000 00000000 00000000 00000000
6 | 0.036910 | 00000061 00000001 90000000 00000000 00000000
7 | 0.009980 | 00000900 00100001 58000000 00000000 00000000
8 | 0.008677 | 00000900 00000000 08000000 00000000 00000000
0 | 0.034075 | FFRPFFFF FFEFFFFE FPFFREFF FFRFFFFE  FEFFFFFE
1 | 0.599568 | 00000000 00000000 08000000  0000060G  000C0000
2 | 0.176082 | 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
3 [70.070255 | 00000000 00000001 10000000 00000000 00000000
4 [ 0.051867 | 00000000 00000001 90000000 00000000  000000GO
5 | 0.024812 | 00000000 00000000 28000000 00000000 00000000
€ | 0.015271 | 00000900  00DOOO0O0 08000000 00000000 00000000
7 | 0.013890 | 00006000 40000000 00000000 00000000 00000000
8 | 0.014079 | O0D001IFG0 00000001  B80000G0 00000000 00000000
0 | 0.028500 | FFFFFEFEF FFFFFFFF FFFFFFFF  FFFFFFFF  FEFEFFFF
1 [0.503051 | 00000000 00000000 08000000 00000000 00000000
2 | 0.147737 | 00000000 00000000 O13FFFFF FFFEFFFE  22FC0000
37| 0.058946 | 00000000 00000001 10000000  0000OODO0 00000000
4 | 0.043601 | 00000000 00000001 90000000  00000DOO 00000000
5 | 0.020818 | 00000000 00000000 28000000 00000000 00000000
6 | 0.012813 | 00000900  000ODO00 08000000 00000000 00000000
7 | 0.172631 | 00006000 40000000 00000000 00000000 00000000
8 | 0.011813 | O0COIF0O0 00000001  BE0O00OO0 00000000 00000000
0 | 0.020484 | FFFFFFFF FFRFFRFF FFFEVFFE FFFFFEFF  FFRFFFFF
1 | 0.382587 | 00002000 00000000 00000000  0000G000 00000000 |
2 | 0.278717 | 00000000 00000000 03000000  0000DOGG 00000000
3 | 0.095647 | 00006000 40000000 00000000 00000000 00000000
4 | 0.081854 | 00000000 00000000  OISFFFFF FFFFFFFE _ 22FC0000
5 | 0.063361 | 00202000 00000002 00000000 00000000  0OG0GGO0
6 | 0.032650 | 00000000 00000001 10000000 00000000 00000000
7 | 0.011534 | 0O0D00000 00000000 28000000  0000000C 06000000
8 | 0.024157 | 00000000  0000G00I 90000000 00000000 00000000
0 | 0.012067 | FFEFFFREF FFFEFFFF FFPFFPFF FRFFFFEER  FPPEFFEF
1 | 0.430325 | 00002000  00000D0G 00000000 00000000 00000000
2 | 0.313404 | (0000000 00000000 08000000 00000000  00000GO0
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3 | 0.107581 | 00006000 40000000 00000000 00000000 00000000
4 | 0.071267 | 00202000 00000002 00000000 00000000 06000000
5 | 0.012973 | 00000000 000060000 28000000 00000000 00000000
6 | 0.026531 | 00207F04 70018002 286060000 00000060 00000000
7 | 0.018414 | 00006000 00000000  OI3FFFFE FFFFEFFFE  22FC0000
8 | 0.007347 | 00000000 00000001 10000000 000060000 00000000
0 | 0.010000 | FFFFFFFF FPFFFFFF FFFEFFFF FFFPFFPFF  FFFFFFRR
1 | 0.436061 | 00002000 00006000 00000000 000000060 00000000
2 | 0.317673 | 00000000 00000000 08000000 00000000 00000000
37 10.1089015 | 00006000 40000000 00000000 000060000 00000000
4 10072217 | 00202000 00000002 00000000 00000000 00000000
5 | 0.013146 | 00000000 06000000 28000000 00000000 00000000
6 | 0.036666 | 00207F04 70018002 38000000 00000000 00000000
7 1 0.003732 | 00000000 00000000  013FFFFF FFFEFFFE  22FC0000
8 | 0.001489 | 00000000 00000001 10000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFRF  FPFFFFFF  FFPFFRFR
1 [ 0502894 | 00002000 00060000 00000000 00000000 00000000
2 | 0.148224 | 00006000 40000000 06000000 00000000 00000000
37| 0.098191 | 00202000 00000002 00000000 00000000 00000000
"4 [ 0.086385 | 00000000 00000000 08000000 00000000 00000000
5 10.030883 | 00206000 60000002 00000000 000060000 0000000
6 | 0.010877 | 00206002 60060002 00000000 00000000 06000000
7 1 0.009971 | 00207F04 70018002 23000000 00000000 00000000
§ | 0.003575 | 00000000 00000000 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEFFFFFF FFFEFFFF  FFFFFFEF  FRFFFEFR
1 |0.718384 | 00002000 00000000 00000000 00000000 00000000
2 | 0.187408 | 00006000 000060000 00000000 00000000 000600000
3 1 0.018485 | 00000000 00000600 08000000 00000000 00000000
4 | 0.031717 | 00006000 40000000 0000000 00000000 00000000
5 | 0.021011 | 00202000 00000002 00000000 000006000 00000000
6 | 0.008534 | 00206000 60000002 00000000 00000000 00000000
7 | 0.002328 | 00206002 60060002 00000000 000000600 00000000
g | 0.002134 | 00207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FRFFFFFF  FFFRFFFF  FEFFRFFF  FREFFEFE
"1 [ 0.723343 | 00002000 00000000 00000000 00000000 00000000
2 | 0.188702 | 00006000 00000000 000000600 60000000 00000000
3 1 0.003722 | 00000000 00000000 08000000 00000000 00000000
4 | 0.031936 | 00006000 40000000 (00600600 00600000 00000000 |
5 | 0.021156 | 00202000 006000002 00000000 00000000 (0000000
6 | 0.010312 | 00206000 60000002 00000000 00000000 00000000
7 10.010399 | 00206002 60060002 06000000 (00006000 00000000
& | 0.000430 | 00D207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFEFF PFFFFFEF FFEFFFFF FFFFFFFF  FRFRFFRE
1 | 0.885312 | 00002000 00000000 00000000 00000000 00000000
3 | 0.037550 | 00006000 00000000 00000000 00000000 00000000
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0.010000 | FFFFFEFF FPRFFFFF  FFEFFFFF  FPRFPRFE  FPEFPEFRE

0.996000

00000060

00000000

013FFFFF FFFFFFFE

22FC0000

no: prob. subset
3 | 0.000741 | 00000000 000060000 08000000 00000000 00000000
4 | 0.006355 | 00006000 40000000 000000600 00000000 00000000
5 | 0.045836 | 00202000 00000002 40000000 00000000 00000000
6 | 0.002052 | 00206000 60000002 00000000 00000000 00000000
7 | 0.002069 | 00206002 60060002 00000000 00000000 60000000
8 | 0.000085 | 00207F04 70018002 28000000 00000600 00000000
0 | 0.010000 | FFFFRFFEF FFFFFFEF FREFFPFF PFFFFFEF FREFRPRFER
1 10925059 | 00002000 00006600 00000000 00000000 00000000
2 10037271 | 00006000 00000000 00000000 00000000 00000000
3 | 0.000147 | 000000060 00000000 08000000 00000000 00000000
4 1 0.017589 | 00006000 40000000 00000000 00000000 00000000
5 | 0.000009 | 00202000 00000002 00000000 00000000 (0000000
6 | 0.000407 | 00206000 60000002 00000000 00000000 00000000
7 | 0.000411 | 00206002 60060002 00000000 06000000 00600000
8 | 0.000017 | 00207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFPFFFFF FFFPFFFRF  FRFFFFFF  FPEFFFERE
1 |0.924974 | 00002000 00000000 00000000 00000000 00000000
2 | 0.059536 | 00006000 00006000 00060000 00000000 00060600
3 | 0.000029 | 00000000 00000000 08000000 00000000 00000000
4 10.003490 | 00006060 40000000 00000000 00000000 00000000
5 | 0.001805 | 00202000 00000002 (0000000 00000000 00000000
6 | 0.000081 | 00206000 60000002 00000000 00000000 00000000
7 | 0.000082 | 00206002 60060002 00000000 00000000 00000000
8 | 0.000003 | 00207F04 70018002 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFPFFFFF  FFRPFFEFRF
1 | 0.967598 | 00002000 00000000 00000000 00000000 06000000
2 | 0.011812 | 00006000 00000000 00000000 00000000 00000000
3] 0.000006 | 00000000 00000000 08000000 00000000 00000000
4 | 0.000692 | 00006000 40000000 00000600 00000000 00000000
5 | 0.009859 | 00202000 00000002 00000000 00000000 60000000
6 | 0.000016 | 00206000 60000002 00000600 00000000 00060000
7 | 0.000016 | 00206002 60060002 00000000 00000000 60000000
8 | 0.000001 | 00207F04 70018002 28000000 00000000 00000000
Table A.17: Data group 1 (page 7).
no. prob. subset
0 | 1.000000 | FFFFFFFF FFFFFFFE FFFPEPEFF FRFFFFEF  FFEFRFFPR
0 | 0.200000 | FFFFFFFF FFPPFFEF FFEFEFFEF  FRFFPPFF  FPRRREER
1 | 0.800000 | 00000000 00000000  OI3FFFPF FREFFREFE  22FC0000
0 | 0.040000 | FFFFFFFF FFPFFFFF FRPFPRPF FRERFFFFF  FFEFFEER |
1 | 0.960000 | 00000000 00000000  GI3FFFFF FPFREPFFE  22FCO0000
0
1

Table A.18: Data group 2.
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0 | 1.000000 | FRFFFFFF FFRFFFFF FRRPFFFE FFFFFFFE  FEFFFFEF
0 | 0.200000 | FFFFFFFF FFFFFFFF FRFFFFFF FRFFFFFF  FEFPFFRF
1 | 0.800000 | 00000000 00000000  O13FFFFF FFFFFFFE  22FC0000
0 | 0.040000 | FFFFFFFF FRFFFFFF FFFPFFEF FFFFFFFF  FFFFFERE
1 | 0.960000 | 00000000 00000000  OI3FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFRPFFFF FFRFFEFF FEFFFEEFEF  FRFFFEPF
1 | 0.990000 | 00000006 00000000  013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFPFFFE FRBFFFFF FFFFFEFF  FEFFFFFR
1 | 0.590000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFRFFF FFFFFFFF  FFFFFEFF FFFEFREE
1 | 0.051553 | 00000000 00000000 OISFFFFF FFFFFFFE  22FC0000
2 | 0.038447 | 00000002  AO3E0000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFE FFEFFFFF  FFEFFPFF
1 | 0.795784 | 00000000 00000000 O13FFFFF FFFFFFFE  22FCO0000
3 | 0.032153 | 00000002  AO3E0O000 00000000 00000000 00000000
3 | 0.033452 | 00000301 80300001  Fs000000 00000000 00000000
4 | 0.128611 | 00000000 80300000  0000DODDO 00000000 00000000
0 | 0.010000 | FFFFFFFF FEPFFFFF FFFFFFFF FFFFFFFY  FFFFFFEF
1 | 0.436018 | 00000000 00000000 2 OI3FFFFF FFFFFFFE  22FC0000
2 | 0.110001 | 00000002  AO3E0O000 00000000 00000000 00000000
3 | 0.018329 | 00000301 80300001  F8000000 00000000 00000000

{4 | 0425652 | 00000000 80300000 00000000 00000000 00000000
0 | 0.010000 | FFFFFEFF FFFEFFFF FPPPFFFEEF FRFFFFFF  FEFFFERF
1 | 0.132984 | 00000000 00000000 OI3FFFFF FFEFFFFE  22FC0000
2 | 0.033550 | 00000002  AO3E0000 00000000 00000000 00000000
3 [ 0.006590 | 00000301 80300001  F8000000 00000000 00000000
4 |0.129823 | 00000000 80300000 00060000 00000000 00000000
5 | 0.012200 | 00000900 00100001 58000000 00000006 00000000
6 | 0.653492 | 00000000 00100000 00000000  000D0000 00000000
7 | 0.022361 | 00000100 00100001 58000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FRFFFEFF FFPFFFFF FRFFPFFF FFFFFRER
1 [ 0.113086 | 00000000 00000000 OI3FFFFF FFFFFFFE  22FC0000
2 | 0.028530 | 00000002  AO3E00D00 00000000 00000000 00000000
3 1 0.004754 | 00000301 80300001  F8000000 00000000 00000000
4 10.110397 | 00000000 80300000 00000000 00000000 00000000
"5 | 0.010374 | 00000900 00100001 58000000 00000000 00000000
6 | 0.555709 | 00000000 00100000 00000000 00000000 0DOGO00D
7 | 0.019015 | 00000100 00100001 58000000 00000000 00000000
8 | 0.148134 | 00000002  200EC000  000OD0OCO 00000000  GO0DOOOC
0 | 0010000 | FFFFRFFF FFRFFFFF FFVFFFFF FFFFFFFF FFFFPFEF
1 | 0.024672 | 00000000 00000000  O13FFFFF FFFFFFFE  22FC0000
2 | 0.030849 | 00000002  AOG3EOO00 00000000 00000000 00000000
3 | 0.001037 | 00000301 80300001  F8000000 00000000 00000000
4 [0.124578 | 00000000 80300000 00000000 00000000 00000000
5 | 0.002263 | 00000900 00100001 58000000 00000000 00000000
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6 | 0.631856 | 06000000 00100000 00000000 00000000  000000CG
7 | 0.004149 | 00000100 00100001 58000000 00000000 00000000
8 |0.161595 | 00000002  200E0000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFRRRFF  FFERERRE
1 |[0.645063 | 00000000 00100000 00000000  000GOOOG 00000000
2 | 0.130916 | 00000000 00030000 00000000 00000060 00000000
3 | 0.126998 | 000000060 80300000 00000000 00000000 00000000
4 [0.040385 | 00000000 80380000  0000OOO0  00OO0OOG 00000000
5 | 0.032729 | 00000002  200E0000 00000000 00000000 00000000
6 | 0.008071 | 00000002  AO3E0000 00000000 00000000 00000000
7 | 0.004997 | 00000000 00000000  013FFFFF FFEFFFFE  29FC0000
8 [0.000840 | 00000100 00100001 58000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEPFFFFF FPREFFFF FEFFFFEF  FFFFFFFF
1 10.430323 | 00000000 ~ 00080000 00000000 00000000 00000000
2 |0.340128 | 00000000 00100000 00000000 00000000 00000000
3 [0.107143 ] 00000002  OCOEQOO0 00000000  00000GOD 00000000
4 | 0.066963 | 00000000 80300000 00000000 00000000 00000000
5 | 0.021294 | 00000000 80380000 00000000  0000ODO00  G000000D
6 | 0.017257 | 00000002  200E0000 00000060 00000000 00000000
7 {0.004256 | 00000002  AO3EOCO0 00000000 00000000 00000000
8 [0.002635 | 00000000 00000000 O13FFFFF FFFERFFE  22FCO0000
0 | 0.014101 | FFFFFFFF FFFFFFFF FFPFFFFF FEFFFFFF FFFPFFER
1 |0.592904 | 00000000 00080000 00000000 00000000 00000000
2 |0.166644 | 00000002  0OOEOOOC 00000000 00000000 00000000
3 ] 0.093726 | 00000000 00100000 00000000 00000000 00000000
4 [0.073810 | 00000000 80000000  0000OODO0 00000000 00000000
5 |0.023472 | 00000000 80080000 00000000 00000000 00000000
6 | 0.018453 | 00000000 80300000  000GOOO0  000OOGOOD 00000000
7 [0.011022 | 00200307  900F8000  F8000000 00000000 00000000
8 | 0.005868 | 00DDOGOO0 80380000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFY FFFFFEFE  FFFFFFFF  FFFRFFER
1 10.636495 | 00000000  0O0OSGOO0  000OOOOO0 00000000 GOO0O00D
2 | 0178806 | 00000002  OOOEOODO  00DGOOOG 00000000 00000000
3 |0.620123 | 00000000 00100000  GOOOCDOO  00OGG00C 00000000
4 [70.095084 | 00000000 80000000 00000000 00000000 00000000
5 |0.030237 | 00000000 80080000 00000000 00000000 00000000
6 | 0.003962 | 00000000 80300000 00000000 0000000 00000000
7 | 0.023943 | 00200307  900F8000  F8000000 00000000 00000000
8 | 0.001260 | 00000000 80380000 00000000  000OG0000 00000000
0 | 0.010000 | FFFFFFFF FFFRFFFF FFFPFIFF FRFFPEFF FRERFERE
1 | 0.726553 | 00000000  GOOS0000 00000000 00000000 00000000
2 [ 0.196432 | 00000002  0GOEQOOC 00000000 00000000 00000000
3 ]0.020881 | 00000000 80000000  0000000G 00000000 00000000
4 10.021032 | 00000002  0GOCEOOOC 28000000 00000000 00000000
5 10.008784 | 00000002  200ECO0C 28000000 00000000 00000000
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6 | 0.006640 | 00000000 30080000 00000000 000000600 00060000
7 1 0.005258 | 00200307 900F8000  F8000000 00000000 00000000
8 | 0.004419 | 00000000 00100000 00000000 000000600 00000000
0 | 0.010000 | FFFFFFFF FFFFFFEF FFRFFEREF  FREFRRFF  FEFFFRFE
1 | 0.741698 | 006000000 00080000 000060000 00000600 000006000
2 | 0.220386 | 00000002  OODEOGOG 00000000 00000000 00000000
3 | 0.015229 | 00000002 200E0000 00000000 60000060 00000000
4 [ 0.004263 | 00000002 000E0000 28000000 000000600 00000000
5 [ 0.004232 | 00000000 80000600 00000000 00000000 00000000
6 | 0.001780 | 00000002 200E0000 280600000 00000000 60000000
7 1 0.001346 | 00000000 80080000 00000000 00000000 000600000
8 |0.001066 | 00200307  900F8000  F8000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFEEF FFFFFFFF  FRFRFFFE  FFREEFRE
1 [ 0.736172 | 00000000 00080000 00000000 00000000 00000000
5 | 0.222129 | 00000002  GOOE0000 00000000 00000000 00000000
3 | 0.016530 | 00000002 200E0000 60000000 00000000 00000000
4 [ 0.007940 | 00000002  AO3E0000 00000000 00000000 00000000
5 | 0.004201 | 00000000 80000000 00000000 006000000 00000000
6 | 0.001336 | 00000000 80080000 00000000 00000000 000600000
7 | 0.000846 | 00000002 000ED000 28000000 00000000 00000000
8 | 0.000846 | 00000002 800E0000 00000000 00000000 £0000000
0 | 0.010000 | FFFFFFFF FRFFFFFF FPFFEFFEF FEFRFFFF  FEFERFER
1 | 0.731615 | 00000000 00080000 00000000 00000000 000000600
2 | 0.234376 | 00000002  OODEO0000 00000000 00060000 00000000
{73 | 0.007944 | 00201F02  803F8000 00000000 00000000 00000000
4 |0.006308 | 00000002 803K£0000 00000000 00000000 00000000
5 | 0.004171 | 00000000 80000000 00000000 00006000 00000000
6 | 0.003283 | 00000002 200E0000 000060000 00000000 00000000
7 | 0.001677 | 00000002  AOG3E0000 00000000 00000000 00000000
8 1 0.001326 | 00000000 80080000 00000000 00000000 60000000
0 [ 0.010000 | FFFFFEFF FFFFFEFF FFFPFFFF FFFFPFEF FEFEFREF
|77 10729070 | 00000000 00080000 00000000 60000000 00000000 |
{2 |0.238439 | 060000002 DOOEO0O00 00000000 00000000 DOO0000D
3 | 0.007967 | 00001606 700F0000 00000000 00000000 00000000
4 | 0.006329 | 00001602 000F0000 00000000 00000000 00000000
5 | 0.004526 | 00000002 200E0000 00000000 00000000 00000000
6 | 0.001582 | 00201F02  803F8000 00000000 000666000 00000000 |
7 | 0.001256 | 00000002  SOSEOO0C 00000000  0000000G 00000000
§ | 0.000831 | 00000000 800000060 00000000 00000000 000660000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFRFFFFF FFFPFFPF FREREFEF
1 | 0.724839 | 00000000 00080000 60000000 00000000 00000000
2 | 0.241674 | 000006002 000E0000 00000000 00600000 000600000
3 [ 0.007954 | 00000006 000F8000 00000000 00000000 00000000
4 | 0.006337 | 00000006 000F0000 00000000 00000000 00000000
5 | 0.005034 | 00000002 000F0000 00000000 00000000 000060000
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6 | 0.001584 | 00001606  700F000G 00000000 00000000 00000000
7 | 0.001259 | 00001602  OOOFGO0G 00000000 00000000 00000000
8 | 0.001259 | 00000002  00OFS000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEFFFFFEF FFFFPRRF FFRFFFFF FEFFRFER
1 [0.720225 | 00000000 00080000  0ODOOOOD 00000000 00000000
2 | 0.240116 | (00000002  OOGE0O000 00000000 00000000 00000000
3 | 0.007948 | 00001806  OOOFS8000 00000000 00000000 00000000
4 [ 0.007903 | 00000006  0OOFS000 00000000 00000000 00000000
5 | 0.006296 | 00000006  OOOFO000 00000000 00000000 00000000
6 | 0.005002 | 00000002  OCOF0000 00000006 00000000 00000000
7 | 0.001259 | 00001006  OOOFG000 00000000 00000000 00000000
8 | 0.001250 | 00000002  OOCFS000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FRFFEFFF FFFFFPEF  FFFFFFFF  FFFFEFRF
1 |0.718297 | 00000000  0008000G 00000000 00000000 00000000
2 | 0.191578 | 00000002  OUOAGOO0 00000000 00000000 00000000
3 |0.047895 | 00000002  OOOEO00O0 00000000 00000000 00000000
4 [0.012647 | 00000006  000BB000 00000000 00000000 00000000
5 | 0.007979 | 00000006  000BSO0OI 80000006  0OOOODOO 00000000
6 | 0.006028 | 00000006  000BO0OOG 00000000 00000000 00000000
7 |0.003991 | 00000002  000BOOO0 00000000 00000000 00000000
8 | 0.001585 | 00001806  0OOFS000  00000D0OO0 00000000 00000000
0 | 0.010000 | FFEFFFFF FFFFFFFF FFFFEFRF FFFFFFEER  BFRFFFREPE
1 [ 0.712765 | 000DDODO0 00080000  0000DOOD 00000000 00000000
2 [ 0.180103 | 00000002  ODOAOOOO 00000000  000ODOOOD 00000000
3 | 0.047526 | 00000002 _ OOGEOOGO 00000000 00000000 00000000
4 |0.018883 | 00000006  000BS80G0 00000000 00000000 00000000
5 | 0.009197 | 00000006  OOOF80060 00000000 00000000 00000000
6 | 0.005982 | 00000006  000BOOOD 00000000 00000000 00000000
7 | 0.003960 | 00000002  OOOBOGOC  00OOODO0 00000000 00000000
§ | 0.001583 | 00000006  000BS8001 80000000 00000000 00000000
0 | 0011138 | FFFFFFFF FEFFFFFF FEEFFFFF FFFRPFFF  FERFPFFER
1 | 0.685351 | 000DOO000 00080000 00000000 00000000 00000000
2 | 0.182791 | 00000002  OOOAGOCO 00000000 00000000 60000000
371 0.045698 | 00000002  OODDEGOO0 00000000 00000000 00000000
4 | 0.038462 | 00000000 00000000  O13FFFFF FREFFFFE  22FC0000
5 | 0.018157 | 00000006  00OB8000 00000000 00000000 00000000
6 | 0.008843 | 00000006 OOOFS8000 00000000  0000OOO0 00000000
7 | 0.005752 | 00000006  000BO0OO 00000000 00000000 00000000
8 | 0.003808 | 00000002  000B0O00O0 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFRFFFF FRFEFFFF FFFFFFFF  FFFEFFFR
1 | 0571482 | 00000000  0OOS0000C  0OODOOOO  00O0ODDO 00000000
2 | 0.152421 | 00000002  0OCAO000 00000000 00000000 00000000
3 | 0.038105 | 00000002  OOOEG000 00000000 00000000 0DO000000
4 [ 0.187506 | 00000000 00000000 OISFFFEF FFFRFEFE  22FC0000
E | 0.015140 | 00000006 OODBS000 _ 0DO000OD 00000000 00000000
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6 |0.007374 | 00000006  OOOF8000 00000000 00000000 00000000
7 | 0.004796 | 00000006  0OOGBOOOG  0000000G 000000006 0GO00000
8 |0.003175 | 00000002  000BO000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFERF FFFFFFFF  FREFFFFE  FEFFFFFE
1 |0.310857 | 00000000 00080000  0000DOOG 00000000 00000000
2 | 0.082909 | 00000002  OO0CAGO00 00000000 00000000 00000000
3 | 0.020727 | 00000002  OOCEGOO0 00000000 00000000 00000000
4 | 0.558924 | 00000000 — 00000000 O13FFFFF FFFFFFFE  22FC0000
5 | 0.008236 | 00000006  000BS8000 00000000 00000000 00000000
6 | 0.004011 | 00000006  OOOF8000  0000G0OO0 00000000 0000G000
7 | 0.002609 | 00000006  000BOOOO 00000000 00000000 00000000
8 |0.001727 | 00000002 — 000BO0OO0 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FPFFFFFF FREPFFFFR  FFFFFREE
1 ]0.004237 | 00000000 00080000  0GOOOOOO 00000000 00000000
2 [0.025134 | 00000002 OOOAG000 00000000 00000000 00000000
3 | 0.006284 | 00000002  GOOEOOOG 00000000 00000000 GO0DOGO0
4 |0.859319 | 00000000 00000000  OI13FFFFF FEFFFFFE  22FC0000
5 | 0.002497 | 00000006  000BS80G0 00000000 00000000 00000000
6 | 0.001216 | 00000006 _ OO0OF8000 00000000 00000000 00000000
7 | 0.000791 | 00000006  000BOOOO 00000000 00000000 00000000
8 | 0.000524 | 00000002  000BOOOD  0OODOOOO 00000000 00000000
0 | 0.010567 | FFFFFFFF FFFFFFFF FFREFFFF FEFFEEFF  FEFFFFEF
1 |0.724687 | 00000000 00000000  OI3FFFFF FEFFEFFFE  22FCO0000
2 | 0.097641 | 00000002 00020000  00000OOD  00DOOOOO 00000000
3 | 0.079473 | 00000000 00080000 00000000  GO00DOO0 00000000
4 | 0.025298 | 00000002 00060000 00000000 00000000 00000000
5 | 0.021196 | 00000002 ~ 0OOA0OO00  000OGOD0 00000000 00000000
6 | 0.033733 | 00206002 60060002 00000000 00000000 00000000
7 10.005299 | 00000002  0O0EO000 00000000  00ODOOOD  00000G00
8 |0.002105 | 00000006  0O0BS30OO 00000000 00000000 00000000
0 | 0010000 | FFFFFFFF FFFFFFFF FFFFEFRF FEFFFFFF  FFFFFFEE
1 10.344033 | 00000000 00000000  OI3FFFFF FFFFFEFE  22FC0000
_2 |0.343863 | 00000002 00020060 0000COD0 00000000 00000000
3 | 0.188641 | 00000000 00080000  00OOOOGO  000OGO0O0  00OGOO0D
4 0060375 | 00000002  00OAGG00  00OOODOC 00000000 00000000
5 | 0.012010 | 00000002 0006000 G000DOD0  00O0DOGOO 00000000
6 | 0.020066 | 00000006 000BR001 80000000 00000000 00000000
7 | 0016014 | 00206002 60060002  0000DO00 00000000 00000000
8 | 0.004998 | 00000006 000BSO00 00000000 00000000 00000000
0 | 0.010000 | FFFFFEFF FFFFFFRF PFFPEFFE  FPFFFEFF  FPFFFRET
1 | 0.599679 | 00000000 00080000 00000000 00000000 00000000
2 |0.160556 | 00000000 00000000 OISFFFFF FPFEFEFFE  22FC0000
3 | 0.160477 | 00000002 00020000 0ODODOOD  0OOOOOOO 00000000
4 |0.028177 | 00000002 — ODOAOOOO  GOOOOODO 00000000  GOO0000O0
5 |0.018668 | 00000000 80380000  000GO0000 00000000 00000000
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6 | 0.000365 | 00000006  000B8001I 80000000 00000000 00000000
7 | 0.007474 | 00206002 60060002 00000000 00000000 06000000
8 [ 0.005605 | 00000002 00060000 000006000 00000000 00600000
0 | 0.012590 | FFFFFFFF FFFEFFEF BFFEFFFF FFFRFFFF  FRFFREFR
1 | 0.688056 | 00000000 00080000 00000000 00000000 00000000
2 [ 0.184128 | 00000002 00020000 00000000 60000600 00000000
3 | 0.032329 | 00000002  0OCAOD00 00000000 00000000 00000000
4 {0.036844 | 00000000 00000000  D13FFFFE FEFEFFFE  22FC0000
5 | 0.021419 | 00000000 80380000 00000000 00000000 60000000
6 | 0.000179 | 00201F02  803F8000 00000000 00000000 00000000
7 | 0.008506 | 00000002  000B80O0 00000000 00000000 00000000
8 | 0.006860 | 00200002 00060000 00000000 00000000 00000000
0 | 0.012085 | FFFFFFFF FFRFFEFF FFREFFFEF FFPRFFFE FPRFFEFP
1 | 0.726608 | 00000000 00080000 00000000 00000000 000600000
2 | 0.189720 | 00000002 00020000 00000000 00000000 00000000
3 | 0.033311 | 00000002  OOOAG000 00000000 00000000 00000000
4 | 0.010378 | 00001606  700F0000 00000000 00000000 00000000
5 | 0.007593 | 00000000 00000000  O13FFEFF FFFEFFFE  22FC0000
6 | 0.007566 | 00001602  OOOF0000 00000000 00000000 00000000
7 | 0.007086 | 00000002  000B00OO0 00000000 000060000 000600000
8 | 0.005655 | 00000002 00060000 00000000 00000000 00000000
0 |0.010000 | FEFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFEFF

™1 {0.727442 | 00000000 00080000 00000000 000000600 00000000
2 | 0.194466 | 00000002 00020000 00000000 £0000000 60000000
3 | 0.033349 | 00000002  OO0A0G00 00000000 00000000 00000000
4 1 0.013154 | 00000002  000BOOO0 00000000 00000000 00000000
51 0.009679 | 00000006  000B8001 80000000 00000000 00000000
6 | 0.008312 | 00000006  000BOOOO 00000000 00000000 00000000
7 [0.002078 | 00001606 700F0000 00000000 00000000 00000000
& | 0.001520 | 00000000 00000000  O13FFFFF FEFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFYF FFEFFFPF FRFFFEFF FRFFFFFFF  FPFFFFRE
1 | 0722491 | 00000000 00080000 00000000 000000600 00000000
2 | 0.193143 | 00000002 00020000 00000000 00000000 00000000
3 10033122 | 00000002  OOOAOGO0 00000000 00000000 00000000
4 | 0.013064 | 00000002  000BO0OOO 00000000 00000000 00000000
"5 | 0.017559 | 00000006  000BS8001 80000000 00000000 00000000
6 | 0.000906 | 00DOOC0O6  00OBOOOO 00000000 00000000 00000000
7 | 0.000413 | 00001606  700F0000 00000000 00000000 00000000
8 [ 0.000302 | 00000000 00000000  O13FFFFF FEEFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFRFFF FPFFFFFFF FRFFFFEF  FFFFFRFE
1 | 0.716617 | 00000000 0008G0O0G  000O00OD 00060000 00000000
7 | 0.191653 | 00000002 00020000 00000060 00000000 00000000
3 | 0.065040 | 00000002  ODOADOG0 00000000 000000600 00000000
4 | 0.008266 | 00000002 20080000 00000000 00000000 00000000
5 | 0.003485 | 00000006  ODOBS00I 80060000 00000000 00000000
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6 | 0.002593 | 00000002  000BOOOO 0000000 00000000 00000000
7 | 0.001966 | 00000006  000BOOOO 00000000 00000000 0000GO00
§ [ 0.000082 | 00001606  7OOFOOOO 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FRFFFFFF FRFPEFFE  FRREFFER
1 | 0.711170 | 00000000 00080000 00000000 00000006 00000000
2 | 0.190116 | 00000002 00020000 00000000 06000000  000000CO
3 | 0.071078 | 00000002  O000A0DODG 00000000 00000000 00006000
4 | 0.001640 | 00000002  200E0000 00000000 00000000 00000000
5 | 0.011393 | 00000006  000BSOO1 80000000 00000000 00000000
6 | 0.002572 | 00000002  000BOOO0 00000000 000000600 00000000
7 | 0.002015 | 00000006  000BO0OO0 00000000 00000060 00060000
8 | 0.000016 | 00001606  700F0000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FRFFFFFF FERFFEFF FFRFFFFE FEFEFRER
1 | 0.705460 | 00000000 00086000 00000000 00000000 00000000
2 | 0.188592 | 00000002 00020000  0O0GOD000 00000000 00000000
3 | 0.070508 | 00000002  OOCADO00 00000000 00000000 00000000
4 | 0.001627 | 00000002  200E0000 00000000 00000000 00000000
5 [ 0.002260 | 00000006  000BSOOL  B00000G0 00000000  000000GD
6 | 0.002551 | 00000002  000B0OO00  00DDOOOO0 00000000 00000000
7 | 0.011040 | 00000006  000BO0O0 00000000 00000000 00000000
8 | 0.007952 | 00001606 700FO000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FRFFFPFF FFEPFERF FRFERFFE
1 [ 0700042 ] 00000000 00080000 0000000 00000000 00000000
2 | 0.187142 | 00000002 00020000 00000000 00000000 00000000
3 | 0.082549 | 00000002  0OCAO000  00000D00 00000000 00000000
4 | 0.015543 | 00000002  OOOEOCOD  000O0OG0 00000000 00000000
5 | 0.002191 | 00000006  000BO0OOO 00000000 00000000 00000000
6 | 0.001578 | 00001606  700FOO00  000OO0OO0 00000000 00000000
7 | 0.000506 | 00000002  000BOOGOG 00000000 00000000 00000000
8 | 0.000449 | 00000006  0OOBSO0OI 80000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFEFF FFFFFFEF  FFERFFFE
1 | 0.604431 | 00000000 00080000 00000000 00000000 00000000
2 | 0.185641 | 00000002 00020000 00000000 00000000 00000000
3 | 0.094222 | 00000002  000AOG0O0 00000000 00000000 00000060
4 | 0.003084 | 00000002 OOOEODO0 00000000 00000000 00000000
5 | 0.003426 | 00DDOD06  000BOOO0 00000000 00000000 00000000
6 | 0.000313 | 00001606  7OOFO000  0000D000 00000000 00000000
7 | 0.000502 | 00000002  000B00GC 00000000 00000000 00000000
€ | 0.008381 | 00000006  000B8ODI  S000000C 00000000 00000000
0 | 0.016000 | FFFFFFFF FFFFEFFE FFFPFFFF FRERFFFF FRFREFFE
1 | 0.688864 | 00000000 00080000  (0O0DOODO 00000006 00000000
2 | 0.184153 | 00000002 00020000 00000000 00000000 00006000
3 | 0.003467 | 00000002  OOCAG000 00000000 00000000 00600000
4 | 0.003059 | 00000002  0OOCEO000 00000000  00GO00DOC 00000000
5 | 0.010049 | 00000006  000BOOGO 00000000  0000000C 00000000
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6 | 0.008246 | 00001606 700F0000 00000000 000060000 00000000
7 | 0.000488 | 00000002 (060B0000 00000000 00060000 (60000000
8 | 0.001663 | 00000008 000B8001 &0000000 (0000000 000000060
0 | 0.01000C | FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF  FEFFEFFF
1 | 0.683410 | 00000000 £0080000 60000000 00600000 00000000
2 10.182695 | 00000002 00020000 00000000 00000000 00000000
3 | 0.102418 | 00000002 000A0000 00000600 (0000000 (0000000
4 10.014482 | 00000002 200E0000 00000000 00000000 00000000
5 1 0.003035 | 00000002 000EQ000 00000000 60000000 00000000
6 | 0.001994 | 00000006 000B0000 00000000 60000000 00000000
7 | 0.001636 | 00001606 760F0000 00000000 (0000000 00000000
8 | 0.000330 | 00000006 000B8001 80000000 000006000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FEFFFFFF
1 | 0.677932 | 00000000 000800060 £0000000 (0060000 00000000
2 | 0.181231 | 00000002 00020000 00000000 00000000 00000000
3 10.103441 | 00000002 000A0000 000000600 (6000000 00000000
4 | 0.002873 { 00000002 200E0000 000000060 00000000 00000000
5 10.028737 | 00000002 000E0000 00000000 00000000 00000000
6 | 0.000396 | - 00000006 000B0000 00000000 000000060 000600000
7 | 0.000325 { 00001606 700F0000 000008060 00000000 00000000
8 | 0.000065 | 00000006 00088001 80000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1] 0.672639 § 00000000 00080000 060000000 00000000 00000000
2 | 0.179816 | 00000002 00020000 000000060 00000000 00000000
3 0102633 | 00000002 000A0000 00000000 00000000 £0060000
4 10.025832 | 00000002 000E0000 00000000 00600000 000000600
5 10.007938 | 00201F02 803F8000 00000000 00000000 (0000000
6 |.0.000570 | 00000062 200E0000 00000000 00000000 00000000
7 | 0.000314 | 00000002 000B000C 00000000 00006000 00000000
8 | 0.000258 | 00DU1602 000F0000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FEFFFFFF  FFFFFFFF
1 |0.667457 | 00000000 00080000 000000060 00000000 00000000
2 1 0.178431 | 00000002 00020000 00000000 000600000 006000000
3 10.101843 | 00000002 000A0000 (0000000 00000000 00000000
4 0.655633 00000002 000EQ000 600600000 00000000 00000000
5 | 0.007938 | 00001606 7000000 00000000 00000000 000600000
6 | 0.006557 | 00001602 BOOF0000 00000000 $0000000 00000000
7 | 0.001575 ;| D0201F02 803F8000 00000000 00000000 00000000
8 | D.000566 | 00000002 206010000 60600000 000000600 £0000000
0 | 0.010159 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 |0.641786 | 00000000 00080600 80000000 080000000 00000000
2 10.171568 | 00000002 00020000 50000000 60000000 00000000
3 | 0.097926 4 00000002 000A0000 000006000 00000000 000600000
4 10.038462 { 00000000 00000000 013FFFFF FFEFFFFE  22FC0000
5 | 0.0246847 | 00000002 000EQ000 00000000 60000000 00000000
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6 | 0.007633 | 00001606  700F0000 00000000 00000000 00000000
7 | 0.006305 | 00001602 OOOFO000 00000000 00000000 00000000
8 | 0.001515 | 00201F02  803F8000 00000000  00000G00 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFEFF FREFRFPR  FRFFEFRE
1 | 0.536481 | 00000000 00080000 00000000 00000000 00000000
2 | 0.143417 | 00000002 00020000 00000000 00000000 DO0CO000
3 | 0.081858 | 00000002  000A0000 00000000  00000G00 00000000
4 [0.194723 | 00000000 00000000  0I3FFFFF FFREFFFEE  22FC0000
5 10.020603 | 00000002  OOOEOO00  000D0OO0 00000600 00000000
6 |0.006381 | 00001606  700FC0D0 00000000 00000000 60000000
7 ]0.005270 | 00001602  OOOFO000 00000000 00000000 00000000
8 10.001266 | 00201F02 _ 803F8000 00000000 00000000 00000000
0 |0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FRFFRFEF  FRFFERER
1 10.293614 | 00000000 00080000 00000000 00000000 00000000
2 | 0078492 | 00000002 00020000 00000000 00000000 00600000
3 ] 0.044801 | 00000002  00DAOOOGC 00000000 00000000 00000000
4 10.554748 | 00000000 00000000 OI3FFFEF FFEEFFFE  29FCD000
5 | 0.011276 | 00000002  OOOE0000 00000000 00000000 0G000DOO0
6 | 0.003492 | 00001606  700F0000 00000000 00000000 00000000
7 | 0.002884 | 00001602  OOOF0O000  000DGOGG  000DOOOO 00000000
8 | 0.000693 | 00201F02  803F8000 00000000 00000000 00000000
0 |0.010000 | FFFFFFFF FFFFFFFF FFFFFFEF FFFFFEFF  FFFFFRRE
1 |0.526368 | 00000000 00080000 00000000 00000000 06000000
2 10198902 | 00000000 00000000  OISFFFFF FFFFFFFE  22FC0000
3 | 0.140713 | 00000002 00020000 00000000 00000000 00000000
4 |0.080315 | 00000002  OODAOGOD 00000000 00000000 00000000
5 | 0.020215 | 00000002  OOOEO0OD 00000000 00000000 000060600
6 |0.014342 | 00000006 OODF8000 00000000 00000000 (0000000
7 | 0.005008 | 00000006  0OOFDO00 _ 0000DOOD 00000000 00000000
8 | 0.004137 | 00000002  OODOFO000 00000000  0000OGOO 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFEFFEF PRPFFFFF FRFFEFFE
1 10.285442 | 00000000 00080000 00000000 00000000 00000000
2 |'0.560999 | 00000000 00000000  OI3FFFFF FEFFFFFE  22FC0000
3 10.076307 | 00000002 00020000 00000000 00000000 00000000
4 [0.043554 | 00000002  0OOOAO000  000DOODD  0ODOODGO 00000000
5 10.010962 | 00000002  0OOEOOOC 00000000 00000000 00000000
6 | 0.007777 | 00000006  OOOF8000  000OOG00 60000000 00000000
7 | 0.002716 | 00000006 0O0FO000 00000000 00000000 00000000
8 [ 0.002243 | 00000002 OOOFO000  00ODOOCO 00000000 DOGO0000
0 ]0.010000 | FFFFFFFF FFEFFFFF FFRRFFRFEF FEFFFFFF  FEFFFRRE
1 |0.514543 | 00000000 00080000 00000000 00000000 00060000
2 | 0202254 | 00000000 00000000 OISFFFFF FFFFFFFE  22FC0000
3 | 0.137552 | 00000002 000620000 0006006000 00060000 00000000
4 10.078510 | 00000002  OOOADGO0  GOODO00D 00000000 00000000
5 | 0.019761 | 00000002  OOOE00O0 00000000 00000000 00000000
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6 | 0.028441 000006006 000F8000 00600000 00000000 00060000
7 | 0.004896 | 00000006 _ OOOFO000 00000000 00000000 000GO0G0
8 | 0.004044 | 00000002  OOOFO000 00000000 00000000 00000000
0 | 0.010340 | FFFFFFFF FRFFFFFEF FEFFRFFF PFFFFFER  FFFFRFRE
1 [ 0.613869 | 00000000 00080000 00000600 00000000 00000000
2 | 0.164105 | 00000002 00020000 00000000 00000000 0000DOOO
3 | 0.093666 | 00000002  000A0000 00000000 00000000 00000000
4 | 0.048259 | 00000000 00000000  OI3FFFFF FRFFFFFE  22FC0000
5 | 0.027144 | 00000002  OOCFS8000 00000000 00000000 00000000
6 | 0.023575 | 00000002 _ OOOEOOO0 00000000 00000000 00000000
7 | 0.000544 | 00201F02  803F8000 00000000 _ 0000000C 00000000
8 | 0.009497 | 00000002  0OOFO000 00000000 00000000 00000000
0 | 0.027217 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFEFFFEE
1 | 0.568640 | 00000000 00080000 00000000 00000000 00000000
2 | 0.152014 | 00000002 00020000 00000000 00000006 00000000
3 [ 0.086765 | 00000002  OODA0000 00000000 00000000 00000000
4 | 0.044704 | 00000000 00000000  OI3FFFFF FFEEFEFE  22FC0000
5 | 0.038314 | 0O00LFO0 00000001 _ B8000000  (0000CCD 00000000
6 | 0.035364 | 00001FO0  000ODOODO 00000000 00000000 00000000
7 | 0.025145 | 00000002  ODOF8000 00000000 00000000 00000000
8 | 0.021838 | 00000002 _ OOOEOOG0 00000000 00000060 00000000
|70 | 0.013592 | FFFFFFFF FEFFFFFF FEFRPFFF FFFRFFFF  FRFRFFEFE
1 | 0.580730 | 00000000 00080000 00000000 00000000 00000000
2 | 0.157652 | 00000002 00020000 00000000 00000000 00000000
3 [ 0.089983 | 00000002 _ 0O0OAG000 00000000 00000000 00000000
4 | 0.068464 | 0000IF00 00000000  0OODOO00 00000000 00000000
5 | 0.026077 | 00000002 _ OOOFS000 00000000 00000000 00000000
6 | 0.022648 | 00000002 _ 000EOOG0 00000000 00600000 00000000
"7 | 0.022581 | 00201F02  803F8000 00000000 00000000 00000000
8 | 0.009272 | 00000000 00000000  OI3FFFFF FFFFFFFE  22FCO0000
0 | 0.010000 | FEFFFFFE FRFPFFFF FFFFPFFF  FFFFFFRFE  FFEFFFRF
1 [ 0.628641 | 000D0O0OD0 00080000 00000000 00000000 00000000
"2 | 0.168054 | 00000002 00020000 00000000 00000000 00000000
3 | 0.115234 | 00000002  OOOAGOO0  000000D0 00000000 00000000
4 [0.041495 | 00000002 GOOBSO00___ 00000000 00000000 00000000
5 | 0.014596 | 0000IF00 00000000 00000000 00000000 00000000
6 | 0.011591 | 00000006  000BS0DI 80000000 00000000 00000000
7 | 0.005560 | 00000002  OOOFS000 00000000 00000000 00000000
8 | 0.004829 | 00000002 _ O00OEOG00 00000000 00000000  00DOD00O
0 | 0.010000 | FFFFFFFF FFFPPFFF FEFFFFFF FFFFFFFF  FREFFREE
1 | 0.807731 | 00000000 000S0000  0000OO00  0DOOOOO0 00000000
2 | 0.039105 | 00000002 00020000 00000000 00000000 00000000
3 | 0.026814 | 00000002  OOCAO000 00000000 00000000 60000000
4 | 0.009655 | 00000002  DOOBB000 00000000 00000000 00000000
5 {0.009308 | 00000000 80380000 00000000 00000000 00000000
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6 | 0.003396 | 0000IFO0 00000000 00000000 00000000 00000000
7 | 0.002697 | 00000006  000B8001 80000000 00000006 60000000
8 | 0.001294 | 00000002  OOOFS8000 00000000 00000000 00000000
G | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FEFEFFER
1 | 0.901095 | 00000000 00080000 00000000 00000000 00000000
2 | 0.038928 | 00000002 00020000 00000000 00000000 00DO000O
3 | 0.036531 | 00000002  OO0ADOO0 00000000 00000000 00000000
4 10.007964 | 00000002  200E0000 00000000 00000000 00000000
5 |0.001922 | 00000002  000B8000 00000000 00000000 00000000
6 | 0.001853 | 00000000 80380000 00000000 00000000 00000000
7 10.001030 | 00000002  0OOEOOO0 00000000 00000000 00000000
8 10.000676 | ODDOIFDO 00000000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFEF FEFFPFFF  FFFFFFFF  FPFEFFEF
1 | 0.894478 | 00000000 00080000 00000000  00000000. 00000000
2 | 0.038642 | 00000002 00020000 00000000 00000000 00000000
3 10.036262 | 00000002  00CACO00 00000000 00000000 00000000
4 10.007941 | 00201F02  803F8000 00000000 00000000 00000000
5 10.007347 | 00000002  OOOEOO00 00000000 00000000 00000000
6 | 0.001908 | 00000002  0OOBS0O00  0DOODOOO 00000000 00000000
7 | 0.001840 | 00000000 80380000 00000000 00000000 00000000
8 | 0.001581 | 00000002  200E0000  00D0DO0O00 00000000 00000000
0 ]0.010000 | FFFFFFFF FREFRFFF FFFFEFFF FPFFFFFF  FFFFEFFE
1 | 0.889056 | 00000000 00080000 00000000 00000000 00000000
2 | 0.038408 | 00000002 00020000 00000000 00000000 00000000
3 | 0.037560 | 00000002  0O0OAD000 00000000 00000000 00000000
4 10.007952 | 00000002  AO3E0000 00000000 00000000 00000000
5 | 0.007303 | 00000002  OOOEOO0G 00000000 00000000 00000000
6 | 0.006314 | 00000002  S8O3EO000 00000000 00000000 00000000
7 10.001828 | 00000000 80380000 00000000 00000000 00000000
8 | 0.001579 | 00201F02  803FS000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFEF FRFFFFFF FRFFFEFE  FFFFFFFE
1 [0.883984 | 00000000 0D0OS0000 00000000 00000000 00000000
2 | 0.054412 | 00000002  0OODAODO0  0OO0DOO0 00000000 00000000
3 | 0.038126 | 00000002 00020000 00000000 00000000 00000000
4 ]0.007941 | 00000006  000BSOO1 80000000 00000000 00000000
5 | 0.001579 | 00000002 AO3EO0000  00D0OGG0 00000000 00000000
6 | 0.001450 | 00000002  OOOEOOOD  0O0OOD000 00000000  0DDOUOOO
7 | 0.001254 | 00000002  803E0000 00000000 0DOODO00 00000000
8 [0.001254 | 00600002  00OBSOO0 00000000  000GODOD 00000000
0 | 0.010000 | FFFFFFFF FFFFFEFEF FREFFFFF FEPRFFFF  FPFEFEFFF
1 | 0.876898 | 00000000 00080000  0O000D00  0DOOODO0 00000000
2 | 0.057374 | 00000002  O0OAGOO0  00DOOGO0  00ODOG0OO 00000000
3 | 0.037821 | 00000002 00020000 00000000 00000000 00000000
4 1°0.015814 | 00000006  000B8G01 80000000 00000000 00000000
5 [0.000813 | 00000002  AO3E0OG0 00000000 00000000 00000000
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6 | 0.000288 | 00000002 (000ED0000 006000060 00000000 00000000
7 | 0.000248 | (0000002 803E0000 60000000 00000000 00060000
8 | 0.001244 | 00000002 80088000 00000000 00600000 00000000
0 | 0.010000 | FFFFFFFF FPFFFFFFY FFFFFYFF  FFFPFFFF  FFFFFFET
1 1 0.869869 | 00060000 (00806000 00000000 (0000000 00000000
2 | B.057589 | 00000002 000A0000 000000600 00000000 00000000
3 1 0.037518 | 00000002 00020000 60000000 (0000000 00000000
4 | 0.023623 | 00000006 000B8001 80000060 £0000000 00000000
5 | 0.000062 | 00000002 AB3E0000 00600000 00000000 00000000
6 | 0.000057 | 00000CO2 000E0000 00000000 00000000 00000000
7 | 0.000049 | 00000002 803E0000 60000000 00000000 00000000
8 | 0.001234 | 00000002 000B8000 60000000 (0000006 (0000066

Table A.30: Data group 3 (page 12).

no. prob. subset
¢ | 1.600000 | FFFFFFFF  FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
0 |0.200000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFEF
1 1 0.800000 | 00006000 00000080 013FFFFF FFFFFFFE  22FC0000
0 | 0.040000 | FFFFFFFF FFFFFFFF FRFEFFFF FREFFFFF FFFFFFEE |
1 | 0.960000 { 00000000 00000000 0I13FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFPFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.996000 | - 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF F FFFFF"?F FFFFFFFF FFFFFFFF FFFFFFFF
1 1.0.980000 | 000060000 00000000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFEF
1 {0.951553 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 1D.038447 | 00006000 40000000 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.795784 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 1 0.194216 | 00006000 40000000 00000000 00000000 00000000
0 10.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.436018 | 00000000 00000060 013FFFFF FFFFFFFE  22FC0000

Table A.31: Data group 4 (page 1).
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2 | 0.532066 | 00008000 40000000 00000000 00800000 00066000
3 | 0.021916 | 00207F04 70018002 23000000 06000000 00000000
0 | 0.010000 | ¥FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF PFFFFFEFF
1 | 0.386214 | 00000060 000000600 013FFFFF FFFFFFTE  22FCO0000
2 | 0.471290 | 00006600 40000000 000000600 00000060 0G0000060
3 1 0.019413 | 00207TF04 70018002 28000000 000006000 00000000
4 | 0.035431 | 00000005 90318001 B8B00000 60000000 00600000
5 | 0.077652 | 00000004 100618000 28000000 (40000000 00000000
0 {0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFYF  FFFFFFPF
1 | 0.127757 1 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 1 0.779496 | 00006000 40000000 60000000 00000000 500060000
3 1 0.006422 | 00207F04 70018002 28000000 66000000 00060000
4 1.0.011726 1 00000005 90318001 B8000000 00000000 00000000
5 1 0.026687 | 00000004 10018000 28000000 00000000 00000000
6 | 0.013232 1 00206002 60060002 00000000 00000000 00006000
7 10.025687 | 00206000 60000002 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 10.028238 | 00000000 00000000 Q13FFFFF  FFFFFFFE  22FC0000
2 | 0.861471 | 00006000 40000000 00000000 00000000 60000000
3 | 0.015938 | 00207F04 70018002 28000000 00000000 00000000
4 1 0.002581 | 00000005 90318001 BB000000 00600000 00000000
5 [0.038750 | 00000004 160618000 28000000 00000000 00000000
6 | 0.002925 | 00206002 60060002 £0000000 00000000 00000000
7 | 0.040087 | 00206000 60000002 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.724434 | 00002000 00000000 60000000 000000060 00000000
2 10.181108 | 00006000 40000000 00000000 00006000 000660000
3 1.0.057981 | 00202000 00000002 006060000 00000000 00000000
4 1{0.008427 | 00206000 60000002 00000000 00000000 00000000
5 | 0.008147 | 00000004 10018600 28000000 06000000 00000000
6 | 0.005937 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000 |
7 10.003351 | 00207F04 70018002 28000000 0()000000 00000000
8 | 0.000615 | 00206002 606060002 00000000 00600000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 }0.872198 1 00002000 00000000 00000000 000600000 00000000
2 | 0.036342 | 00006000 40000000 £60006000 00000000 000000060
3 | 0.076147 | 00202000 00000002 00000000 60000000 00000000
4 | 0.001601 | 00206000 60000002 80000000 000060000 00600000
5 | 6001635 | 00000004 1651@000 28000000 00000000 00000000
6 10.001191 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000 |
7 | 0.000672 | 00207F04 70018002 28000000 00000000 00000000
8 10.000123 1 00206002 60060002 00000000 0000060 46000000
0 | D.010000 | FFFFFFFF FPFFFFFF FFFFPFFF  FEFFFFFF  FFFFFFFF
1 | 0.867171 | 00002000 0000000 60000000 06000000 00000000
2 | 0.036132 | 00006000 40060000 00000000 000006000 (0000000
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3 | 0.075708 | 00202000 00000002 00000000 00000000 00000000

4 | 0.002216 | 00206000 60000002 00000000 00000000 00006000

5 | 0.000325 | 00000004 10018000 28000000 00000000 $0000000

6 | 0.000237 | 00000000 ~ 0000000G  OI3FFFFF FEFFFREFE  22FC0000

7 | 0.000134 | 00207F04 70018002 28000000 00000000 06000000

8 | 0.008077 | 00206002 60060002 00000000 00000000 00000000

0 [0.010000 | FFFFFFFF FFFFFEFF FFFFFFFF PFFPRFFF FRFERFRE
1 [ 0.860608 | 00002000 00000000 00000000 00000000 00000000

2 | 0.035859 | 00006000 40000000 00000000 00000000 00000000

3 | 0.075135 | 00202000 00000002 00000000 00000000 00000600

4 | 0.002305 | 00206000 60000002 00000000 00000000 00000600

5 | 0.000065 | 00000004 10018000 28000000 00000000 00000000

6 | 0.000047 | 00000000 00000000 OI3FFFFF FFFFFFFE  22FC0000

7 | 0.000027 | 00207F04 70018002 28000000 00000000 60000000

8 | 0.015955 | 00206002 60060002 00000000 00000000 00000000

0 | 0.010000 | FFFFFFFF FRFEFFEEF FFFFFFEFE  FFRFFEFE  FRFFFFEF
1 | 0.853741 | 00002000 00000000 00000000 00000000 00000000

2 | 0.035573 | 00006000 40000000 00000000 00000000 00000000

3 | 0.074536 | 00202000 00000002  0000000C 00000000 00000000

4 | 0.014940 | 00206000 60000002 00000000 00000000 00000000

5 | 0.000064 | 00000004 10018000 28000000 00000000 00000000

6 | 0.000009 | 00000000 00000000 O13FFFFF FFFFFFEE  22FC0000 |
7 | 0.007962 | 00207F04 70018002 28000000 00000000 00000000

8 | 0.003166 | 00206002 60060002 00000000 00000000 00000000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFEFF FFFEFFFF  FFFFFFEF
1 | 0.906101 | 00002000 00000000 00000000 00000000 00000000

2 | 0.063922 | 00006000 40000000 00000000 00000000 00000000

3 [0.014789 | 00202000 00000002 00000000 00000000 00000000

4 10.002966 | 00206006 60000002 00000000 00060000 00000000

5 | 0.000013 | 00000004 10018000 28000000 00000000 00000000

6 | 0.000002 | 00000000 00000000 OISFFFFF FFFFFFFE  22FC0000

7 | 0.001580 | 00207F04 70018002 28000000 00000000 00000000

8 | 0.000628 | 00206002 60060002 00000000 000006000 00000000

0 | 0.010000 | FFFFFFFF FFFFFFFF PFFFFFFF PFFFFFFF FFEFFPFR
1 [0.910585 | 00002000 00000000 00000000 00000000 00000000

2 | 0.062770 | 00006000 00000000 00000000 00000000 00000000

3 | 0.012682 | 00006000 40000000 00000000 00000000 00000000

4 | 0002034 | 00202000 00000002 00000000 00000000 00000000

5 | 0.000588 | 00206000 60000002 00000000  000000GC 00000000

6 | 0.000313 | 00207F04 70018002 28000000 00000000 00000000

7 | 0.000125 | 00206002 60060002 00000000 00000000 00000000

8 | 0.000003 | 00000004 10018000 28000000 00000000 00000000

0 | 0.010000 | FFFFFFFF FRFFFEFEF FBRFRFFFF KFFFFFFF FPEFRFRE
1 | 0.963165 | 00002000 00000000  00000GOC  DOOOODCO 60000000

2 | 0.012453 | 00006000 00000000 00000000 00000000 60000000

Table A.33: Data group 4 (page 3).
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3 | 0.002516 | 00006000 40000000 00000000 60000000 00000000
4 |0.011661 | 00202000 00000002 (0600000 00000000 000600000
5 | 0.000117 ] 00206000 60000002 00000600 00000000 00000000
6 | 0.000062 | D0207F04 70018002 28060000 00000000 00000000
7 | 0.000025 | 00206002 60060002 00000000 00060000 (0000000
8 | 0.000000 | 00000004 10018000 28000000 00000000 000000600
0 | 0.016000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FEFEFFFEF
1 10.967325 | 00002000 80000000 00000000 000006000 00000000
2 | 0.002471 | 00006000 006060000 00000000 00000000 60000000
3 | 0.000499 | 00006000 40000000 00000000 (0000000 00000000
4 | 0.019665 | 00202000 (00000002 00000000 000000600 00000000
5 1 0.000023 1 00206000 60000002 00000000 00000000 00000000
6 | 0.000012 | 00207F04 70018002 28000000 06000000 0000000
7 | 0.000005 | 00206002 60060002 60600000 00600000 000060000
8. {0.000000 | 00000004 10018000 28000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFEFFEFFF  FFFEFFFF FFFFFFFFE
1 1 0.929759 { - 60002000 00000000 00000000 00000000 00000000
2 1-0.018961 | 00202000 (0000002 00000000 00000000 (0000000
3 | 0.038447 | 00000001 £0000001 90000000 000000600 00000000
4 10.002375 | 00006000 00000000 00000000 00000000 00600000
5 | 0.000480 | 00006000 40000000 60000000 00000000 800060000
6 | 0.000022 | 00206000 60000002 00000000 00000000 00000000
7 1 0.000012 | 00207F04 70018002 28000000 00000000 06000000
& 1 0.000005 § 00206002 60060002 00000000 00000600 00000060
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEF
1 | 0.051634 | 00002000 00000660 00000000 00000000 00000000
2 | 0.019346 | 00202000 00000002 00000000 00000000 00000000
3 | 0.007870 { 00000001 00000001 90000000 00000000 00000000
4 |0.002431 | 00006000 00000000 00600000 000000600 00000000
5 | 0.000481 | 00006000 40000000 00000000 00000000 000600000
6 | 0.000032 | 006206000 60000002 00000000 00000000 00000000
7 | 0.000002 | 00207F04 70018002 28000000 00000000 00000000
8 | 0.008193 | 00206002 60060002 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FPFFFFFF FFFFRFFF FEFFRPRER
1 | 0.861383 00002000 06000000 (0000000 00000000 00000000
2 |0.029664 | 00000002 00020000 O(TOOOOOO 00000000 00000000
3 | 0.028495 | 00000000 00000001 80000000 00000000 00000000
4 | 0.017511 | 00202000 000060002 06000000 (0000000 00000000
5 | 0.036206 1 00000006 00088001 80000000 00000000 60000000
6 | 0.007416 | 00206002 60060002 00000000 000060000 000060006
7 | 0.007124 | 00000001 00000001 800000060 000060060 00000000
& | 0.002200 | 00006000 (0000000 00000000 00000000 000000600
0 | 0.011731 | FFFFFFFF PFFFFFRF FRFFFFFF  PRFFFFFE  FEFFFFPFR
1 10.828253 | 00002000 $0000000 (0000000 00000000 00000000
2 | 0.028523 | 00000002 000620000 00000000 000000600 (0060000
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3 | 0.027399 | 00000000 00000001 80000000 00000000 00000000
4 |[0.016838 | 00202000 00000002 00000000 00000000 00000000
5 | 0.038462 | 00000000 00000000 O13FFFFF FEFFFFFE  22FC0000
6 | 0.034814 | 00000006  000BS001 80000000 00000000 00000000
7 | 0.007131 | 00206002 60060002 00000000 00000000 00000000
8 | 0.006850 | 0000000 00000001 90000000 00000000 00000000
0 | 0.010000 | FRFFFFFF FFFFRPFF FFFFFRFF FPFFFFRF FEFFFRFFR
1 | 0.680608 | 00002000 00000000 00000000 00000000 00000000
2 | 0.023749 | 00000002 00020000 00000000 00000000 00000000
3 | 0.022813 | 00000000 00000001 80000000 00000000 00000000
4 [ 0.014019 | 00202000 00000002 000000600  0000G00G 00000000
5 | 0.199185 | 00000000 00000000 OI3FFFFF FFFFFFFE  22FC0000
6 | 0.028986 | 00000006  000BSOOI 80000000 00000000 00000000
7 | 0.005937 | 00206002 60060002 00000000 00000000 00000000
8 | 0.005703 | 00000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FEFFFFFF FRFFFFFF FEFFFFFF FFFFFFFF FEFFFFFE
1 [0.405166 | 00002000 00000000 00000000 00000000 00000000
7 [ 0.102315 | 00000002 00020006 00000000 00000000 00000000
3 [0.008283 | 00000000 00000001 80000000  000DDOGO 00000000
4 |0.010066 | 00202000 00000002 00000000 00000000 00000000
5 | 0.143023 | 00000000 00000000 OI3FFFFF FFFFFFFE  22FC0000
6 | 0.132788 | 00000006  000BS00I 80000000 00000000 00000000
7 | 0.004263 | 00206002 60060002 000000600 00000000 00000000
8 | 0.004095 | 00000001 00000001 90000000 00000000 60000000
0 | 0.010000 | FFFFFFFF FFEFFFFF FEFFEFFF FFFFFFFF FFFFFFFF
1 | 0.611485 | 00002000 00000060 00000000 00000000 00000000
2 | 0.257534 | 00000002 00020000 00000000 00000000 00000000
3 | 0.024274 | 0000000G 00000001 80000000 00000000 00000000
4 | 0.012431 | 00202000 00000002 00000000 00000000 D00000OD
5 | 0.035324 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
6 | 0.032796 | D0000OD06  000B80D1 80000000 00000000 00000000
7 | 0.015144 | 00206002 60060002 00000000 00000000 00000000
8 | 0.001011 | 00000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FEFFRFFF FFFFFFFF FFFFFFFF FFFFEFFE
1 | 0.516838 | 00002000 00000000 _ 00000000  000G0OOC 00000000
2 | 0.217672 | 00000002 00020000 00000000  0OOGOOGO0 00000000
3 | 0.020517 | 00000000 00000001 80000000 00000000 00000000
4 | 0.010507 | 00202000 00000002  00DOGDO0  0000ODO00 00000000
5 | 0.183091 | 0000000 00000000 OI3FFFFF FFFFFFFE  22FC0000
6 | 0.027720 | 00000006  000BSO61 80000000 00000000 00000000
7 | 0.012800 | 00206002 60060002 00000000 00000000 00000000
8 | 0.000855 | 00000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FRFFFFFEF FFFFFFFF FFFFFEFF FFRFFEFF FEFFFRFF
1 | 0.290331 | 00002000  0000000G 00000000 00000000 00000000
2 | 0.122276 | 00000002 00020000  0000000G 00000000 00000000
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3 | 0.011525 { 00000000 00000001 80000000 $0000000 06000000
4 | 0.005902 | 00202000 00000002 00000000 £6000060 00000000
5 | 0.536723 | 00000000 00000600 013FFFFF FFFFFFFE  22FC0000
6 | 0.015572 | 00000006 00088001 80000000 00000000 00000000
7 10.007190 00206002 60060002 00000000 (0000000 00000000
8 | 0.000480 | 00000001 00000001 90000600 60000000 00000000
0 | 0.010000 | FFFPFFFF - FFFFFFFF  FEFFFFFF  FFFFEFFF  FFFFFFFFE
1 |0.252061 { 00002000 00006000 00000000 00000000 00000000
2 | 0106159 | 00000002 00020000 00000000 (0000000 00000000
3 | 0.104107 | 00000000 00000001 80000000 00000000 000006000
4 1 0.005124 | 006202000 (0000002 00600000 00000000 00000000
5 | 0.465976 | 00000000 (0000600 013FFFFF FFFFFFFE  22FC0000
6 | 0.013519 | 00000006 00088001 80000000 00000000 000060000
710006242 | 00206002 60060002 06000000 00000000 000000600
8 | 0.036812 | 00000001 00000001 90600000 00000600 00000600
0- | 0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF FFFFFFFE  FEFFFFFFF
14 0.698789 | 00002000 00000000 00000000 00000000 006000000
2 | 0.050437 { 000006002 00020000 00000000 00000000 600066000
3 10.049462 | 00000000 £0000001 80000000 00000000 00000000
4 | 0.043041 | 00202000 00000002 00000600 00000000 00000000
5 |0.221391 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
6. 0.006423 | 00000006 00088001 80000000 60000000 00000000
7 1 0.002966 | 00206002 60060002 00000000 00000000 00000000
8 | 0.017490 | 06000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF  FFFFFFFF  FFFFFFFF FFFFEFFF  FFPFFFFF
1 10.821240 ] 00002000 00000000 00000000 00000000 00000000
2 10013835 | 00000002 00020000 00000000 00000000 00000000
3 | 0.013568 | 00000000 00000001 80000000 00000000 00000000
4 1 0.073257 | 00202000 00000002 06000000 06000000 000600000
5 | 0060728 | 00000000 00000000 Q13FFFFF FFFFFFFE  22FC0000
6 {0.001762 | 00000006 000B8001 80000000 000006000 00000000
7 | 0.000814 | 00206002 60060002 00000000 00000000 00000000
| 8 10.004797 | 00000001 00000001 90600000 00000000 (60006000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.732659 | 00002000 00000000 00600000 00000000 00000000
2 | 0.066808 | 00000000 00000001 800060000 00000000 00000000
3 | 0.065355 | 00202000 00066002 00000000 £00600000 00600000
4 | 0.654177 | 00000GOO £0000000 013FFFFF FFFFFFFE  22FC0000
5 10.012343 | = 00000002 00020000 00000000 00000000 00000000
6 |0.035686 | 006000001 00300001 96000000 00000000 00000000
7 | 0.021400 | 00000001 00000001 90000000 80000000 0000608060
8 [ 0.001572 { 00000006 000B8001 80000000 006000600 00000000
0 | 0.011127 | FFFFFFFYF FFFFFFFF  FFFFFFFF  FFFFFFFF  FFFFFEFF
1 | 0.704480 | 00002000 00000000 600000060 00000000 00000000
2 1 0.064238 | 00000000 006000601 80000000 00600000 00000000
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3 10.062842 | 00202000 £0000002 (0000000 000066000 0000000
4 | 0.052084 |~ 00000000 00000000 O013FFFFEF FEFFFPFE - 22FC0000
5 | 0.011868 | 00000002 00020000 (0000000 (0000000 0000600
6 | 0.038462 | 00000000 00000600 68000000 00000000 060000000
7 | 0.034313 | 00000001 00300001 90000000 60000000 00000000
8 | 0.020577 | 00000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFEFFF  FEFFFFFF  FEFEFFFFF
1 10.913276 | 00002000 (6000000 40000060 (00006000 00000000
2 ] 0.015546 | 00000000 00000001 86000000 00000000 $00000060
3 | 0010771 { 00006000 06000000 00000000 00000000 40000000
4 1 0.015208 | 00202000 00000002 00000000 00000000 00000000
5 | 0.812607 | 00000000 00000000 O013FFFFF FFFFFFFE  22FC0000
6 | 0.009308 | 00000000 00000000 68000600 00000000 00600600
7 | 0.008304 | 00000001 00300001 90000000 060000000 60060000
8 | 0.004980 | 00000001 00000001 900006000 00000000 00000000
0 | 0.0100006 | F'FFFFFF FFFFFFPF FFFFFFFF FFFEFFFFF  FFFFFFFF
1 | 0.957947 . 00002000 00000000 00000000 00000060 00000000
2 | 0:011149 | 00006000 00600000 000600060 00000000 00000000
3 |0.008281{ 00006000 40000000 00000000 00000000 00000000

-4 | 0.003218 | 00000000 00000601 80000000 00000000 00000000
5 10.003148 | 00202000 00000002 00000000 00000000 00600000
6 | 0.002610 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
7 10.001927 | 00000000 00000000 68000000 (0000000 00000000
8 | 0.001718 | 00000001 00300001 90000000 00000000 0000600600
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.803422 | 00002000 00000000 00000000 00000000 000600000
2 | 0.010515 | 00006000 00000000 00000000 00000000 00000000
3 1 0.007810 | 00006000 40000000 00000000 00000000 006000060
4 | 0.015176 | 00000000 00000001 80000000 00000000 00000000
5 1 0.002069 | 00202000 00000002 00000000 (0000000 (0000000
6 | 0.002461 00060000 00000000 013FFFFF FFFFFFFE  22FC0000
7 | 0.001817 | 00000000 00000000 68000000 £0000000 000000600
8 | 0.045830 | 00000001 00300001 90000000 00000000 00000000
0 ,0.0105“()*6“ FFFFFFFY FFFFFFFF  FFFFFFFF  FFFFFFFF  FFFFFFFF
1| 0.703021 ¢ 00002000 00000000 OOz)OOOOO 00000000 000060000
2 | 0.173781 | 006000001 00000001 50000000 00000000 00000000
3 0.0mg £0000000 06000001 80000000 000000600 00000000
4 1 0.035664 | 00000001 00300001 90000000 00000000 00000000
5 | 0.008182 | 00006000 00000000 00000000 00000600 60000000
6 | 0.006077 | 00006000 460060000 00000000 000000600 00000000
7 | 0.002311 | 00202000 60000002 (0000000 000060000 00000000
8 | 0.001915 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FPRFFFPFF FRFFFRFF  FEFEFFFER
1 | 0.892727 | 00002000 00000000 00000000 00000000 00000000
2 | 0.044018 | 00000001 00000001 900600006 0000000 (0000000

Table A.37: Data group 4 (page 7).

198



APPENDIX A. DRDC VALCATIER DATA SET

no. prob. subset

3 1 0.014957 | 00000000 00000001 20000000 000006000 00000000
4 | 0.008034 | 00000001 00300001 90000000 60000000 00000000
5 | 0.026653 | 00006000 00000000 00000000 00000000 000006000
6 | 0.001530 | 00006000 40000000 060060000 00000000 00000000
7 | 0.000585 | 00202000 §0060002 00000000 00000000 00060000
& | 0.000485 | 00000000 00000006  O13FFFFF FFFFFFFE  22FC0000
0 | 0.016406 | FFFFFFFF FRFFFFFEF FRFFFRFF FRFFPRFE  FERRFFEE
1 | 0.680411 | 00002000 00000000 06000000 00000000 000006000
2 | 0.134201 | 00000000 00000001 10000000 60000000 00000000
3 | 0.045600 | 00000000 00000001 00000000 00000000 00060000
4 10020314 | 00006000 60000600 60000000 00000000 00000600
5 | 0.011400 | 00000000 00000001 80000000 00000000 00000000
6 | 0.027541 | 00000000 00100001 10000000 000000600 00000000
7 | 0.033550 | 00000001 00000001 90000000 00000000 00000000
8 | 0.030487 | 00000900 00100001 58000000 00000000 00000000
0 [ 0.010000 | FFFFEFFF FEFFFFFF FFEFFFFF PRPFFFFF  FFFFFFRE
1 | 0.876867 | 00002000 00000000 60000000 000600000 00000000
2 | 0.011753 | 00000000 00000001 60000000 06000000 000000060
3 | 0.034590 | 00000000 00000001 10000000 00006000 00000000
4 | 0.026179 | 00006000 00000000 00000000 00000000 00000000
5 | 0.017007 | 00206002 60060002 60000000 000000600 00000000
6 | 0.008647 | 00000001 00000001 90000000 00000000 00000000
7 | 0.007858 | 00000900 00100001 58000000 00000000 00000000
& | 0.007099 | 000600000 00100001 10000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFPFFFEF FFFFPFFF FFFEFFFFE  FEFFERFE
1 | 0.921506 | 00002000 00000000 00000000 00000000 00000000
2 | 0.002470 | 00000000 00000001 00000000 00000000 00000000
3 | 0.007270 | 00000000 00000001 10000000 00000000 00000000
4 | 0.050218 | 00006000 00000000 00000000 00000000 00000000
5 | 0.003575 | 00206002 60060002 00000000 00000000 00000000
6 | 0.001818 | 00000001 00000001 90000000 00000000 00000000

|7 10.001652 | 00000900 00100001 £8000000 00000000 00000000
§ | 0.001492 | 00000000 00100001 10000000 00000000 00000000
0 | 0.010000 | FFEFFFFF FEFFFFFF FFFRFRFFF FRFFEFFF FEEFFFRR
1 10.837882 | 00002000 60000000 60000000 00000000 00000000

72 10011231 | 00000000 600600001 00000000 00000000 60600000
3 | 0.044485 | 00000000 00000001 10000000 00000000 000006000
4 | 0.045660 | 00006000 (0000000 00000000 000000600 60060000
5 | 0.003250 | 00206002 60060002 06000000 00000000 00000000
6 | 0.044633 | 00000001 00000001 90060000 000000600 00000000
7 | 0.001502 | 00000900 00100001 58000000 00000000 00000000
8 | 0.001357 | 00000000 00100001 16000000 60000000 00000000
0 | 0.010000 | FFFFFFFF FERPFFFF FPFFFFFF FERFFEFF  FRFEFFRF
1 | 0.806131 | 00002000 00000000 00000000 00000000 (0000000
2 | 0.602429 | 00000000 00000001 00000000 (0000000 06000000

Table A.38: Data group 4 (page 8).

199



APPENDIX A. DRDC VALCATIER DATA SET

no. prob. subset

3 [ 0.009622 | 00000000 0000000 10000000 00000000 00000000
4 | 0.060843 | 00006000 00000000 00000000 00000000 00000000
5 | 0.000703 | 00206002 60060002 00000000 00000000 00000000
6 | 0.009654 | 00000001 00000001 90000000 00000000  0000G000
7 | 0.000325 | 00000900 00100001 58000000  0000000C 00000000
8 | 0.000293 | 00000000 00100001 10000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FRFPFFFF FFFFRFFF FRFFFFEF  FERFFFRE
1 [ 0.871190 | 00002000 00000000 00000000 00000COO 00000000
2 | 0.058407 | 00006000  000000GO 00000000 00000000 00000000
3 [ 0.038458 | 00000000 00000000  O13FFFFF FFEFFFFE  22FC0000
4 [0.009281 | 00000001 00000001 90000000 00000000  000000BO
5 | 0.009251 | 00000000 00000001 10000000 00000000 00000000
6 | 0.002335 | 00000000 0000000 00000000 00000000 00000000
7 | 0.000676 | 00206002 60060002 00000000 00000000 00000000
§ | 0.000312 | 00000900 00100001 58000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFRFFRF FFRFFFFFF  FFFFEFFR
1 | 0.728549 | 00002000 00000000 00000000 00000000 00000000
2 | 0.048919 | 00006000 00000000 00000000 000DODOO 00000000
3 [ 0.194255 | 00000000 00000000  OI3FFFFF FPFFFFFE  22FCO0000
4 | 0.007762 | 00000001 00000001 90000000 00000000 00000000
5 | 0.007736 | 00000000 00000001 10000000 00000000 00000000
6 | 0.001953 | 00000000 00000001 00000000 60000000 00000000
7 | 0.000565 | 00206002 60060002 00000000 00000000 00000000
8 | 0.000261 | 00000900 00100001 58000000 00000000 00000000
0 | 0.010400 | FFFFFFFF FFFFFFFF FEPFFFFF FFFFFFER  FEFFFFFE
1 | 0.699825 | 00002000 00000000 00000000 00000000 00000000
2 | 0.186596 | 00000000 00000000 O13FFFFF FFFFFFFE  22EC0000
3 | 0.046991 | 00006000 00000000 00000000 00000000 00000000
4 [0.038423 | 00000000 00000000 68000000 00000000 00000000
5 | 0.007456 | 00000001 00000001 90000000 00000000 00000000
6 | 0.007431 | 00000000 00000001 10000000 00000000 00000000
7 | 0.001876 | 00000000 00000001 00000000 00000000 00000000
8 | 0.001603 | 00000000 00000000 48000000 00000000 00000000
0 [ 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FRFFFRFF FEFFFERE
1 | 0.908589 | 00002000 00000000 00000000 00000000 00000000
2 [ 0.011580 | 00006060  00DOGODD0  00DOGOOG 00000000 00000000
3 | 0.010251 | 00202000 00000002 00000000 00000000 00000000
4 [0.045082 | 0O0OOODOG 00000000  OL3FFFFF FRFFFRFE  22FC0000
5 | 0.009468 | 00000000 00000006 68000000  0000000G 00000000
6 | 0.001837 | 00000001 0000000 90000000 00000000 00000000
"7 | 0.001831 | 0000000 00000001 10006000 00000000 00000000
8 | 0.000462 | 00000000 00000001 00000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFEFFFFF FFFFFFFF BPFFRFFF FRFFEPFE
1 | 0.740085 | 00002060 00000000 00000000 00000000 00000000
2 | 0.009444 | 00006000 00000000 00000000 00000000 00000000

Table A.39: Data group 4 (page 9).
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3 |0.008360 | 00202000 00000002 00000000 00000000 60000600
4 1 0.220121 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
5 10007722 | 00000000 $0000009 63000000 00000000 £0000000
6 10.001498 | 00000001 80000001 90000000 00000000 00000000
7 | 8.001493 | 00000000 60060001 10000000 00000000 00006000
8 | 0.800377 | 00000000 00000001 00000000 00000000 00000000
0 | 6.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFREFF  FFRPFPFRE
1 ]0.383974 | - 00002000 00000000 00000000 00060000 00000000
2 ] 0.004894 | 00006000 00600000 00000000 00000060 00000000
3 10.004332 | 00202000 00000002 00000000 060006000 00000600
4 | 0.591053 | 060000000 $0000000 013FFFFF FFFFFFFE  22FC0000
5 1.0.004001 | 60000000 00000000 68000000 00000000 00000000
6 | 0.000776 | 00000001 000060001 90000000 00066000 00000000
7 | 0.000774 | 00000000 00000001 10000000 00000000 00000000
8 |0.000195 | 00000000 00000001 $0000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFRFFFFF FFRPPERER
1 10.568208 | 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
2 | 0.369132 | 00002000 00000000 00000000 600000600 00000000
3 | 0.038454°} 00000000 80380000 00000000 00000080 000000600
4 10.004704 | 00006000 00000009 60000000 00000000 00000000

5 | 0.004165 | 00202000 00000002 000060000 00000000 00000000
6 | 0.003847 | 00000000 60000000 68000000 00000000 00000000
7 | 0.000746| 060600001 00000001 96000000 00000000 00000000
8 1 0.000744 | 00000000 00000001 100600000 000060000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF = FFFFFFER FFFFFFFF
1 |0.542998 | 00000000 00000000 013FFFFF. FFFFFFFE = 22FC0000
2 | 0.352755 | 00002000 00000600 £0000000 00000000 00000000
3. | 0.036748 | 00000000 80380000 00000000 00000000 00000000
4 | 0.004496 | 00006000 00000000 00000000 00000000 00000000
5 |0.003980 | 00202000 00000002 00000000 - 00000000 00000000
6 ,0.0035"7 6 | 00000000 000060000 68000000 0000000 00000000
7 | 0.041792 | 00000001 00000001 80000000 00000000 00000000
8 1 0.003555 | 00000000 06000001 10000000 00000000 $0000000
0 | 0.013358 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEFF FRFFFFRFER
1 |0.392600 | 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
2 | 0.255050 | 00002000 00000060 00000000 00060000 00000000
3 | 0.1561083 | 00000001 00000001 90000000 60000600 00000000
4 | 0.106278 | 00000000 80300000 00000000 00060000 60000000
5 1 0.012851 | 00000000 00000001 10000000 (0800000 00000000
6 | 0.013289 | 00000000 00000000 68000000 00000000 00000000
7 1 0028921 | 00000301 80300001 ¥8000000 060600000 00000000
& | 0.026570 | 00000000 80380000 00000000 000006000 £0000600
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFPFFFF FREFFFRE
I 1 0.214560 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 10.139388 | 00002000 00000000 00000000 00000000 80000000

Table A.40: Data group 4 (page 10).
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3 | 0.505265 | 00000001 00000001 96000000 00000000 00000060
4 | 0.058082 | 000600000 80300000 00000000 00000000 00000000
5 ] 0.035116 | 00000000 00000001 10000000 00000000 (0000060
6 | 0.007263 | 60000000 00000000 68000000 06000000 00000000
7 | 0.015806 | 00000301 80300001 F8000000 (0000000 00000000
8 | 0.014521 { 506000000 80380000 (6000000 000000006 (60000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FPFFFFFF  FFEFEFFF
1 {0.059430 { 00000000 000006000 013FFFFF FFFFFFFE  22FC0000
2 | 0.038608 | 080002000 00000000 000060000 00000000 06006000
3 ]0.698753 | 60000001 00000001 90600000 00000000 000000060
4 | 8.096527 | 006000000 80300000 00000000 000000060 00060000
5 10.048633 | 00000000 £0000001 10000000 (0000000 000600000
6 1| 0.010058 | 00000000 00060000 68000000 00000060 000600600
7 | 0.032969 | 00000301 50300001 F&8000000 00000000 060000000
8 | 0.004022 ; - 00000000 80380000 00000000 000060000 00000000
0 | 0.012381 | PFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.759306 | 00000001 00000001 90060000 000000600 00000000
2 1 0.108233 | 00000000 803000060 00000000 00000000 00060000
3.1 8.052771 | 00000000 00000001 10000000 00000000 (0000000
4 | 0.028620 | 00000001 80300001 B8000000 00000000 (60000600
5 | 0:012888 | 00000000 06000000 013FFFFF FFFFFFFE  22FC0000
6 | 0.008732 | 00000000 00000000 28000000 000060000 060000000
7 | 0.008681 | 00000005 90318001 B8000000 000000060 00000000
8 | 0.008379 | 000062000 000000600 00000000 00000000 00000000
0 {0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF  FYFFFFEF
1 10.677276 1 00000000 (0000001 90000000 000600000 006000000
2 |0.169319 | 00000001 00000001 90000000 00000000 000006000
3 | 0.058838 | G0000000 00000001 100600000 006000000 00000000
4 10.024135 | 00000000 80300000 00000000 000006000 00000000
5 | 0.033271 | 00000000 00000001 B8000000 00000000 00000000
6 {0.011043 | 00001FO00 00000001 B8000000 00000000 00000000
7 | 0.009735 [ (6000000 £0060000 28000000 00000000 60000000
8 1 0.006382 | 00000001 80300001 B3000000 00066000 00000000

Table A.41: Data group 4 (page 11).
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0 | 1.000000 | FEFFFFFP FEFFFFFF FFFFOPFFF  FFFFFFFF  FEFFEFFR
0 | 0.200000 | FFFEFFFF FFPFFFFF FPFREFFP FFEFFFFFF FREFFRER
1 | 0.800000 | 00000000 00000000  O13FFFFF FFFFFFFE  22FC0000
0 | 0.040000 | FRFFFFFFF FEFFFFFF FFFFFFFEF  FFEFFFFF FFFFFRERER
1 170.960000 | 00000000 00000000  OI13FFFFF FRFFFFEE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FEFFFEFF FFREFFFFEF  FPRRFFFRER
1 | 0.6900006 | 00000000 00000000  OI3FFFFF FFEFFFFFE  22FCO0000
0 | 0.010000 | FFFFFFFF FFRFFFFF FFFFFFFF FIFFFFFF  FRFFFFER
1 | 0.990000 | 00000000 00000000 O13FFFFF FFFFFEFE  22FC0000
0 | 0.010000 | FFFFFFFF FFEFRFRFF FFFFFFFF  FFFPFFFF  FREFPFFE
1 [0.951553 | 00000000 00000000  O13FFEFF FEFFFFREE  22FC0000
2 | 0.038447 | 00000000 00000000 00400000 000060000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFEFFF FRFFPFFEF  FFFFFFET
1 | 0.795784 | 00000000 00000000  O13FFFFF FEFFFFEE  22FC0000
2 | 0.104216 | 00000000 00000000 00400000 00000000 00000000
0 | 0.010000 | FFFFFFEF FFFFFFFF FEFFEFFF  FFRFFFFFF  FEFFFFEE
1 | 0.436018 | 00000000 00000000  OI13FFFFF FFFFFFFE  22FC0000
2 | 0.553982 | 00000000 00000000 $0400000 00000000 00000000
0 | 0010000 | FFFFFFFF FRFFFFFF FPPFFPFF  FFFFFFFF FFFFFFFR
1 | 0.132084 | 00000000 00000000  O13FFFFF FFFEFFFE  22FC0000
2 | 0.857016 | 00000000 00000000 00400000 000600000 000000600
0 | 0.010000 | FFFFFFFF FPEFFFFF FEFFFFFF FEFFEFPF  FEFPPFRF
1 10.127820 | 00000000 00000000  OI3FFFFF FFFFEFFE  22FC0000
2 | 0.823733 | 00000000 00000000 00400000 00000000 00000000
3 | 0.038447 | 00000001 00000001 90000000 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFEFFRPF FERPFEREF  FERFFERE

{1 [0.106896 | 00000000 00000000  DI3FFFFF FEFFFPFFFE  22FC0000
2 | 0.688888 | 00000000 00000000 00400000 00000000 00000000
3 | 0.160764 | 00000001 00000001 90000600 00000000 60000000
4 | 0.033452 | 00000001 00300001 90000000 00000000 00000000
"0 | 0.010000 | FFFFEFFF  FFFPFFFF FPREFFFFF FFFFFFFF  FFPRFERE
1 | 0.027955 | 00000000 00000000  O13FFFFF FFFFFFEE  22FCO0000
2 | 0911253 | 00000000 00000000 00400000 (0000000 60000000
3 | 0.042043 | 00000001 00000001 90000000 00000000 (0000000
4 [ 0.008748 | 00000001 00300001 90000000 00600000 ©0000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FEPFFFREF FFFFREFF FPEPFEFRE
1 | 0.005920 | 00000000 00000000  O13FFFFF FFFEFEFE  22FC0000
9 | 0.073324 | 00000000 (0000000 00400000 00000000 00000000
3 1 0.008903 | 00000001 60000001 90000000 00600000 00000000
4 | 0.001853 | 00000001 00300001 90000000 00000000 00000000
0 | 0.010000 | FRFFFFFF FFPFFFFFF FPFFFFFP FRFFPFRF  FREFFFEF
1 [ 0.001160 | 00000000 00000000 O13FFFFF FREREEFE  22FC0O000
2 | 0.986647 | 00000000 p0000000 00400000 00000000 00000000
3 | 0.001790 | 00000001 00000001 90000000 00000000 00000000
4 10.000373 | 00000001 00300001 90000000 00000000 00000060

Table A.42: Data group 5.
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0 | 1.000000 | FFFFFFFF FFFFFFFF FFFFFFFF YFFFFFFFF  FFFFFYFRLR
0 | 0.200000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFPFFFFF
1 | 0.800000 | 00000600 00000000 013FFFFF  FFFFFFFE  22FC0O000

0 | 0.040000 | FFFFFFFF FFFFFFFF FFFFFFFF  TFFFFFFFF  FFPFFFFF
1 | 6.960000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFR
1 | 0.990000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

Table A.43: Data group 6.

no. prob. subset

0 | 1.000000 | FFFFFFFF FFFFFFFF FEFFFFFF  FEFFFFFFEF  FEFEFFFF
0 | 0.400000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFEF
1 | 0.600000 | 00000000 00000000 00100008 00084080 00000000

0 | 0.080000 | FFFFFFFF FFFFFFFF FFFFPEFF FFFEFFFF  FFFFFPFE
1 | 0.606000 | 00000000 00000000 00100008 00084080 00000000

2 | 0.320000 | 00000000 00006000  013FFFFF FFFFFFFE  22FC0000

0 |0.032000 | FFEFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF  FEFFFFEF
1 | 0.840000 | 00000000 00000000 00100008 00084080 00000000

2 1 0.128000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FRFFFFFF FFFFFFFF FFFFFFFF
1 | 0.836957 | 00000000 00000000 00100008 00084080 00000000

2 10.158043 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFEFFFF
1 | 0.830247 | 00000000 00000000 00100008 00084080 00000000

2 | 0.159753 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFEF
1 10.926484 | 00000000 (0000000 00100008 00084080 00000000

2 | 0.063516 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.918057 | 00000000 00000000 00100008 00084080 00000000

2 | 0.070943 | 00000000 00000060 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF

Table A.44: Data group 7 (page 1).
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1 [0.692561 | 06000000 00000000 001000608 00084080 60000000
2 | 0.053459 | 00000000 00000000  013FFFFF FEFFFFFE  22FC0000
3 | 0.243980 | 00000000 00000000 00000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FPFFFFFFEF FFFFFFFF  FRFFERFR
1 | 0.308879 | 006000000 (0000000 00100008 00084080 600006060
2 170.023843 | 00000000 00000000  OI3FFFFF FFFFFFFE  22FC0000
3 | 0.657279 | 060000000 00000000 606000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FEFFFFFF FRFFFFFE FERFFEFE
1 | 0.541680 | 00600000 00000000 00100008 00084080 00000000
2 | 0.015693 | 00000000 00000000 OI3FFFFF FRFFFFFE  22FCO0000
3 | 0.432627 | 00000000 00000000 00000000 00000000 00200000
0 |0.010000 | FFFFFFFF FFFFFFFF FRFRFFFF  FFFPFFPF  FFEFREFRE
1 1 0.189943 { 00000000 00000000 00160008 00084080 00000000
2 | 0.005503 | 00000000 00000000  OI13FFFFF FRFFFFFE  22FC0000
31 0.794554 | 00000000 00000000 00000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FRFFFFFF FEFFFFFF FFFFFFFF  FEPRPEERR
1 | 0044452 | 00000060 00000000 00100008 00084080 00000000
2 1 0.001288 | 00000000 00000000  013FFFFF FFFFFFFE  22FC0000
3 10.944260 | 00000000 00000000 00000000 00000000 00200000
0 |0.010000 | FFFFFFFF FPFFFFFF FRFFFFFF FFFFRFFE  FFPFFFER
1 | 0.009145 | 00000000 00600000 00100008 00084080 00000000
2 170.000265 | 00000000 00000000 O13FFFFF FFRFRFEFE  22FC0000
3 10.980590 | 00000000 00000000 00000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FEFFFFEE
1 | 0.001828 | 00000000 00000000 00100008 00084080 00000000
2 | 0.000053 | 060000000 00000000 O13FFFFF FFPFRFFEE  22FC0000
3 | 0.988119 | 00000000 00000000 00000000 80060000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFPFFFF FPFFFFEF  FFPFFFEE
1 | 0.000363 | 00000000 00000000 00100008 00084080 000006000
2 | 0.000011 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
3 1 0.989626 | 00000000 00000000 00000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FREFFFFF FPFPRRFF FEFFFFRER
1 | 0.000072 | 00000000 000000600 00100008 00084080 (06000000
2 | 0.000002 | 00000000 00000000 OIL3FFFFF FRFOFFFE  22FC0000
3 | 0.989926 | 00000000 00000000 00000000 00000000 00200000
0 | 0.010000 | FFFFFFFF FFFFFFFF FRFPFFFF FFBPFRFFE  FREPRFRR
1 |0.000014 | 00000000 00000000 00100008 00084080 000600000
2" | 0.600000 | 00600000 00000000 OIL3FFFFF FFFFEFFE  22FC0000
3 1 0.989985 | 00000000 00000000 000000060 00008000 00200000
0 |0.010000 | FFFFFFFF FFEFFFFF FPFEFEFF FRPFRRFR  FRFFFRER
1 | 0.000003 | 000600000 00000000 00100008 00084080 00000000
2 | 0.0000006 | 00000000 00000000  OI13FFFFF FRFFEFEE  22FC0000
3 | 0989997 | 00000000 60000000 00000000 60000000 00200000

Table A.45: Data group 7 (page 2).

205



APPENDIX A. DRDC VALCATIER DATA SET
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0 | 1.000000 | FFFFFFFF FFFFFFFF  FFEFFFFFEF  FEFFFFFE FFFFFFFF
0 | 0.200000 | FFFFFFFF FFFFFFFFY FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.800000-] 000060000 000006000 013FFFFF  FFFFFFFE  22FC0000
0 | 0.080000 | FFFFFFFF FFFYFFFF FFFFFFFF FFFFFFFF  FFPYFFFE
1 | 0.320000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.600000 | 000600600 000600000 00100008 00084080 00080000
0 | 0.016000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.384000 | 00000000 £0000000 G13FFFFF FFFFFFFE  22FC0000
2 | 0.600000 | 00000000 000060000 00100008 (0084080 600060060
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFPFFFE  FFFFFFFF  FFFFFFFF
1 10.153643 | 000600000 00600000 O13FFFFF FFFFFFFE  22FCO000
2 1 0.836957 | 00000000 00000000 00100008 00084080 00600000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FEFFFFFF
1 10.159753 { 006000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.830247 | 00000000 00006000 00100008 ‘00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.063516 | 600000600 00000060 013FFFFF FFFFFFFE  22FC0000
2 | 0.926484 | 00000000 00000000 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0070943 { 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.919057 | 00000000 00000000. -~ 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 1 0.053459 1 00000060 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.692561 | 00000000 00000000 00100008 00084080 00000000
3 | 0.243980 | 00000000 00000000 00000003 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
1 10.024917 [ 000000060 00000000 013FFFFF  FFFFFFFE  22FC0000
2 | 0.851365 | 00000000 006000000 001060008 00084080 06000000
3 | 0.113718 | 000600000 00000000 00006003 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 ]0.015568 | 00000000 00000000  O013FFFFF FFFFFFFE  22FC0000
2 {0.:531922 | 00000000 00000000 00100008 00084080 00000000
3 | 0.442510 | 00000000 00000000 06000003 00000000 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFR
1 | 0.005385 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.183978 | 00000000 06000000 00100008 00084080 00000000
3 | 0.800637 | 00000000 (6000600 00000003 000006000 00000000

Table A.46: Data group 8.
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0 | 1.000000 | FFFFFFFF FFYFFFFFF  FFFFFFFF  FPFFFFEF  FEFPFFFF
0 | 0.400000 | FFFFFFFF FFFFFFFF FPFFFFFF  FFEFFFFF  FFFFEFEFF
1 | 0.6000600 | 00000000 (0000000 00100008 00084080 00000000
0 | 0.0R000C | FFFFFFFF FFFFFPFFF FEFFFFFFF  FFPFFFFE  FPTEFFREE
1 | 0.600000 | Q0000000 00000000 00100008 00084080 00000000
2 10.320000 | 00000000 00000000 013FFFFF FFFFFFFE = 22FC0000
0 | 0.032000 | FFFFFFFF  FFFFFPEF  FFFFFFFF  FFEFFFEF - FPPFFEFF
1 4 0.840000 | 60000000 £0006000 00100008 00084080 £0000000
2 | 6.128000 | 00006600 00000000 013FFFFF FFFFFFFE  22FC0000
¢ | 0.010000 | FFFFFFFY FFFFFFEF FFFFFFFF  FFEFFFFF  FEFFFFEF
1 | 0.836957 { 000060000 00600000 00100008 00084080 00060000
2 | 0.153043 | 00000000 00000000 013FFFFF. FFFFFFFE  22FC0000
G ] 0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FEFFFFFFF  FFFFEFFE
1 10.929151 | 00000000 $0000000 00100008 00084080 00000600
2 | 0.060849 | 00000000 00000000 01SFFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFEFFFFFF
1 ] 6921703 | 00000000 000000060 00100008 00084080 00000000
2 | 0.068297 | (00000000 00000000 O13FFFFF FFFFFFFE . 22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF  FFFFFFFF  FFEFFFFF  FFFFFFFE
1 {0.914315 | 00000000 00000000 00100008 00084080 (0000000
2 | 0.075685 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

Table A.47: Data group 9.
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0 | 1.000000 | FFFFFFFF FFFFFFFF FFFFFFTF  FFFEFFFF  FEFFFYFEF
0 | 0.200000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFEFFFE
1 | 6.800000 | 00000GCO 00000000 QI3FFFFF FFFFFFFE  22FC0O000
0 | 6.080000 | FFFFFFFF FFFFEFFF  FYFFFFFFF  FFFFFFFF  FFPFFFFF
1 | 0.320000 { 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2| 0.600000 | 00000000 00000000 00160008 00084080 00600000
0 | 0.016000 | FFFFFFFF  FFFFFFFF  FFPFFFFF . FFFFFFFF  FEFFFFEFF
1 10.3840060 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.600000 | 00000000 00000000 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFE  FFFFFFFF
1 | 0.153043 | 00000000 00000000 013FFFFF FFFFFFFE = 22FC0000
2 | 0.836957 | 00600000 00000000 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEF
1 10.159753 | 006000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.830247 | 00000000 00000000 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FPFFFFFFF FFFFFFFF  FFFFFFFF  FFFEFFFF
1 1 0.063516 { 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 1 0.926484 | 00000000 00000000 00100008 00084080 00000000
0 | 0.010000 { FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFE
1-10.070943 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.919057 | 00000000 000000600 (0100008 00084080 000060000

Table A.48: Data group 10.
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0 1 1.000000 | FI'FFFFFF FFFFFFFF FFFFFFFF  FFFEFFFF  FEFFFFFFF
0 | 0.400000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFEFFF FEFFFFFFF
1 | 0.6000006 | 00000000 (0000000 00100008 £0084080 00000000
0 | 0.080000 | ¥YFFFFYFFF FFIFFFFFF FFFFFFFY FFFFFPFF  FEFFPFEE
1 | 8.600600 | 00000000 80000000 00100008 00084080 00000000
2 | 6.320000 | 00000000 00000000 013FFFFF FFFEFFFE  22FC0000
0 | 0.032000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 | 0.840000 { 00006000 00000000 00100608 00084080 00000000
2°10.128000 | 00000000 000600000 OI3FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.836957 | 00000000 06000000 00100008 00084080 (0000000
2 ] 0.153043 | -00000000 00000000 013FFFFY FPFFFFFE  22FC0O000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FEFFFFFY  FFFFFFFF
1 10.928151 | (00000000 06060000 00100008 00084080 06000600
2 ] 0.060849 | 60000000 006600000 Q13FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FL[FFFFFFF FEFFFFFFF FFFFFFFF  FFFFFFEF
1 | 0.965807 | 00000000 (0000000 00100008 00084080 06000000
2 | 0.024183 | 00000000 06000000 013FFFFF FFFFFFFE  22FC0000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.958065 ; 00000000 00000000 00100008 00084080 00000000
2 1.0.031935 1 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

Table A.49: Data group 11.
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no. prob. subset
0 | 1.000000 | FFFFFFFF FFFFFFFF FFFPFFFF FFFFFFFE  FEFFFFER
0 | 0.200000 | FFFFFPFF FFIFFFFF FFFFFFFF  FFFFFFFE  FEEFFFFF
1 | 6.800000 | 00000000 £00060000 013FFFFF . FFFFFFFE  22FC0000
0 | 0.080000 | FFFFFFFF FPFFFFFFF FFFFFFFF FFFFFFFF  FPFFFFEFFF
I 10.320000 | - 00000030 00000000 Q13FFFFF FFFFFFFE  22FC0000
2 | 0.600000 | 900000000 00000000 00100008 00084080 06000006
0 | 0.016000 | FFFFFFFF FFFFFFFF PFFFFFFF  FFFFFFFF  FFFFFFFF
1| 0.384000 | 000006000 00000000 013FFFFF  FFFFFFFE  22FC0000
2 | 0.600000 | 00000000 00060000 00100008 00084080 000060000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFY  FEFFEFEFF
1°10.153043 | 00000000 000060000 013FFFFF FFFFFFFE  22FC0000
2 | 0.836957 | 00000000 00000000 0100008 (0084080 00000060
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFY
1 10.158753 | (0000000 000600000 013FFFFF FFFFFFFE  22FC0000
2 1°0.830247 | 00000000 - 00000000 00100008 00084080 $0000000
0 | 0.010000 | FFPFFFFF FFFFFFFF FFFFFFFF FFFFPEFFF  FRFFFFEFF
i | 6.063516 | 0GG0O0CCO 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.926484 | 00000000 00000000 00100008 00084080 00000000
0 |0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF FEFFFFFF
1 | 0.070943 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.919057 | 00000000 00000000 00100008 00084080 00000000

Table A.50: Data group 12.
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no. prob. subset
0 | 1.000000 | FFFFFFFF FFFFFFFF  PFFFPFEFF FFFFFPFF  FFFFFEFFE
0 | 0.200000 | FFFFFFFF - FFFFFFFF FFFFFFFF FFFFFFFF  FFFFEFFF
1 | 0.800000 ; 000600000 00000000 013FFFEF FFFFFFFE  22FCO0000
0 | 0.080000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFPFFFFF
1 | 0.326006 | 00000000 600060000 OL3FFFFF FFFFFFFE  22FC0000
2 | 0.600000 | 00000000 00000000 00100008 00084080 00000000
0 | 0.030769 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFPFFF  FFFFFFEFF
1 10.123077 | 00000000 (80000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.230765 | 00000000 00060000 00100008 080084080 00000000
3 | 0.615385 | 00008000 00000000 00800003 00000000 00000000
0 1|0.010000 | FFFFFFFF FFFFFFFF  FFFPFFFEF  FFEFFFFF | FFFFFFFE
1 | 0.147121 { 00000000 000006000 013FFFFF FFEFFFFFE  22FC0000
2 | 0.229876 | 00000000 000060000 00160008 00084080 00000000
3 ] 0613003 | 00000000 00000000 00000003 00000000 00000000

Table A.51: Data group 13.
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APPENDIX A. DRDC VALCATIER DATA SET

no. prob. subset
¢ | 1.000000 | FFFIFFFFY FPFFFFFF FFFFFFFF FFFFFFFF  FFFFFFEF
{0 | 0.200000 | FFFFYFFYF FEFFFFFFF  FFFFFFFF  FFFFFFFF  FFFEFFFF
1 | 0.8000600 | 006000006 006060000 O13FFFFEF FFFFFFFE 22FC0000
0 | 0.080000 | FFFFF¥FF FFPFFFFFF FFPFFFFF  FFFFFFFF  FFEFFFFFR
1 1 0.320000 | 00000000 0000006060 013FFFFF FFFFFFFE  22FC0000
2 1 0.600000 | 00000000 00000000 00100008 00084080 00000000
0 | 0.016000 | FFFFFFFF FFFFYFFF FRFFFFFFF  FFFFFFFF  FEFFFEFRE
1 1 0.384000 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.600600 | 00000000 060000000 60100008 00084080 06000000
G ] 0.010060 | FFFFEFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 |0.153043 | 00000060 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.836957 ; 00000000 00000000 001060008 00084080 £0000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFEFFFF  FFFFFEFE
1 | 0.159753 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000
2 |0.830247 | 00000000 000600000 00100008 00084080 006000000
0 10.010000 { FFFFFFFF FFFFFEFF FFFFFFFF - FPFFFFFF  FFEFFFPF
1 7 0.063516 | 00006000 00000000 D13FFFFF - FFFFFFFE  22FC0000
210926484 | 00000000 00000000 060100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFFFFF
1 1 0.070943 | 00000000 (0600000 013FFFFF FFFFFFFE  22FC0000
2 {0.919057 | 00000000 00000000 00100008 00084080 00000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFPEFFFF FPFFEFFFF  FFFFFFFF
1 | 0.028206 | 00000000 00000000 O13FFFFF FFFFFFFE  22FC0000
2 | 0.961794 | 00000000 00000000 00100008 00084080 000006000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 1 D0.024434 | 00000060 00000000 013FFFFF  FFEFFFFE  22FC0000
2 | 0.833178 ¢ 00000000 00000000 00100008 0084080 00000600
3 |0.132388 | 00000000 00000000 00000003 06000000 (6000000
0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFPFFF  FFEETFFF
1 1.0.014586 | 00000000 00000000 013FFFFF FFFFFFFE = 22FC0000
2 | 0.497708 | 00000000 00000000 00100608 00084080 00000000
3 | 0.477696 | 00000000 00000000 00000003 00000000 00000000
0 | 0.010000 | FFFFFFFF FFPFFEFF FFFFFFFF FFEFFFFY  FRFFFPEFR
1 | 8.004818 | 000600000 00000000 013FFFFF FFFFFFFE  22FC0000
2 | 0.16428% | 00000000 00000000 00100008 00084080 $6000000
3 | 0.820893 | 00000000 (0000060 00000003 000600000 00000000

Table A.52: Data group 14.
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APPENDIX A. DRDC VALCATIER DATA SET

no. prob. subset

0 | 1.000000 | FFFFFFEF FFFFFFFF FFPFFFFF FFFFFFFF  FFFFFFFF
0 | 0.400000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FFFFEFFFF
1 | 0.600000 | 00060000 00060000 00100008 00084080 000000006

0 | 0.080000 | FFFFFFPFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFEFEFEFT
1 | 0.600000 | 00800000 00800000 00100008 00084080 000006000

2 | 0.320000 | - 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

0 | 0.032000 | FFFFFFFF  FFPFFFFF  FPFFFFFF  FFFFFFFF - FFFFFFFF
1 | 0.840000 | ©£060000C 06000000 00160008 00084080 (0000000

2 | 8.128000 | 000600000 000060600 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF  FEFFFFFFF
1 | 0.836957 { 00000000 00000000 00100008 00084080 00000060

2 | 0.153043 | 00000000 00006000 013FFFFF FFFFFFFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 | 0.830247 | 00000000 00000000 00100008 (0084080 00000000

2 10.159753 | - 00000000 00000000 013FFFFF  FFFFFFPE  22FC0000

0 |0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
1 10.926484 | (60000000 £0000000 00100008 00084080 00000000

2 1.0.063516 | 00000000 £00006000 O13FFFFF  FFFFFEFE  22FC0000

0 | 0.010000 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  FFFFFFFF
I 1 0.964747 | 00000000 00000000 00100008 00084080 00000600

2 10.025253 | 00000000 00000000 013FFFFF FFFFFFFE  22FC0000

Table A.53: Data group 15.
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