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ABSTRAC

The determination of principal nl:t.e strains from measurements
I

made on a pa~r of deformed line elements.is .discussed.

since it leads

The deformation'
" .-~'.. ~... ~

pure homogeneQ~~ in
5,

ogeneous and P.}Ire homo-

,.
technique is applied to

industrial stamping. The

ei theris assumed to be

present work draws the distinction bet,ween

process

to a' simpler finite strain tensor

nature. Emphasis is placed on the
..<:...:c~..:=~z..::..:..;=::::.

determine the strain over the surface

geneous deformation. In the 'latter mode, an rthogonar triad can be

identified (the principal axe'll, which remains or ogonal throughout the

deformation. An appropriate strain measure'in such processes is that of

logari thmic strain. Furthermore, its material der vative equals 'the

rate of deformation tensor. Such a simple expression es not hold when

the deformation gradient tensor is nonsymmetric, as .in homogeneous,

~ses. "

Thet.,lmaterial -derivative of the tensor logarithm is no longer

simply related /to the rate of deformation tensor, and this is

ex empl Hied herein. The resul ting ex pression involves the ,spin of the

. .
tri ad of the Eulerian and Lagrangian <!llipsoids.

Stress components vary as a resul t 0 f material rotation and

"
constitutive equations whereby rotational effect of material has been

accounted for must be formulated. In finite deformation various :.

"rotation" tensors can be defined • Consequently a wide choice of

• iii



-~ ---- --------

•

.'
o1'jective stress rates is ava1lable for adoption in constitutive

equations; and a number of objective stress rates are examined herein.

The ~tility of the resulting expressions is demonstrated for the case of

a hyp()elastic material undergoing finite deformation in simple

(rectilinear) shear.

Another aspect of this work has been an attempt to establish an

approximate computer'-aided technique for blank developnent. referred to

as Geometric Modelling, and the

_'i distributions in forming sheet. metal

on the initial assumption (this can, be

vestigation of possible strain

The technique is based

at a later stage) that a

sheetm<!tal component is trans formed from a fiat sheet into a non- __,

deVelopable surface without change in thickness. Al though 'few practical

forming process occur in this way, many traditional die design pro-

cedures are based on similar notions; ei ther there is no' change in

surface area or that a line length on the undeformed blank is unchanged

during forming. Simple plasticity theory also suggests that the

!
membrane stresses in a sheet would be minimized (in the absence of a

normal stre~s) if no change in thickness occurred. therefore given the,

opportunity, the deformation is likely to take place in this ideal

manner. The method of geometric modelling simulates the traditional

manual calculations per formed by ex perienced tool designers, Th.e

technique does not aim to replace the skill and experience of the

designers but rather to enhance them.

The present work describes the formulation of the fundamental

theorLes of the method which comprise of the element-by-element mapping
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and remappi~g procedure~ and technique,~ of ~urface adju~tment. The ..

(
•

I
ba~ic geometric' a~~umption~ employed in the development are al~o

described . Two particular autOlllotive ~tamping~ have been considered;

one i~ the corner ~ection of a car ~eat'panel and the,other is an inner

deck-lid of a mid~~ize vehicle.
I 0,

0'

A computer-aided design package for tool/die de~igners has been
/"

developed and the detailed analytical proce<lure is '--plemented in

Fortran code. The anal ysis has been per formed wi thout access to

•
advanced cOlllputer graphic~.' Ibwever. it is carri~ut in, a way that

future modellin~ using interactive computer gr~phicsmay well be

attainable.
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