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The determination of principal nite strains from measurements

. , _
made on a pair of deformed line elements|is _discussed. The deformation

PR
eous or pure homqgeneotub tn

~

process 1is assumed to be either homo

ogeneous mode since it leads

to a simpler finite strain tensor and this technique 13 applied to

nature. Emphasis {s placed on the pure h

determine the strain over the surface of  an\ industrial stamping. The

present work draws the distinction between homogeneous and pure homo-

4

geneous deformation. In the ‘lai.:ter mode, an prthogonal triad can be

identified (the principal Vaxes). which remains or ogona]: throughout the
deformation. An appropriate strain measure-in sucﬁ processes is that of
logarithmfe strain. Furthermore, its._, material derjvative equals the
rate of def‘onnati;)n tensor. Such a simple expression es not hold when
the deformation ‘gradient tensor 1is nonaymmetric, as \in homogeneous
Nses. ) |

Thedmaterial ~-derivative of th;: tensor logarithm is no longer
simply related to the rate of deformation té_nsor, and this 1is
exemplif‘ied herein. The resulting expression involves the spin of the
triad of the Eulerian and Lagrangian ellipsotds.
! Stress components vary as a result of material rotation and
constitutive equations whereby rotational eff‘ect of material has been

accounted for must be formulated. In finite deformation various

"rotation" tensors can be defined.  Consequently a wide choice of

* ili
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oWjective stress rates is avallable for adoptfon in constitu;ive
équations; and a number of objective stress rates are examined herein.
The utility of the resulting expressions is demonstrated for the case of
a hypoelastic material undergoing finite defgrmation in simple

+ (rectilinear) shear.
Another.aspect of this work has been an'attempt to establish an

approximate computer-aided technique for blank development, referred to

as Geometric Modelling, and the vestigation of possible strain

- 3fd15tributions in forming sheet metal companents. The technique is based

on the 161tial assumption (this can_be refinéd at a later stage) that a

sheet 'metall component s transformed from a flat sheet inte a non- ..

developable 5urfa;e'u1thout éhange in thickness. Alﬁboughhfeu practigalA
forming process occur in this way, many traditioﬁaf die design pro-
cedurgs are based on §ihilak notions; either there is no:- change in
surface area‘or that a line length on the undeformed blank is unchanged
during forming. Simple plasticity theory also gﬁggests that the

/ _ - § :
membrane stresses in a sheet would be minimized (in the absence of a

normal stresé) if no change in thickness occurred, therefore given the -

opportunity, the defermation 1is 1likely to take placé in this ideal'
manner. The method of geometric modelling simulates the traditional
manual calculations performed by‘ experienced tool deSigﬁers; The
technique does not aim to replace the skill and experience of the
designers but rather to enhance them.

The present work describes the formulation of the fundamgntal

theories of the method which comprise of the element-by-element mapping
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and remappipg procedures and teéhnique_s of surface adjustment. The

-

f
basic geometric assumptions employed in the development are also

descri_bed. Two parti‘cular automot ive stampings have been considered;

one is the corner section of a car seat panel and the other is an inner

- deck-1id of a mid-=size vehicl;. ' '

.
-

A computer-aided design package for tool/die designers has been

/ -
developed and the detalled analytical procedure 1is implemented 1in

Fortran code. “The analysis has _been performed without access to

LY

advanced computer graphics. However, it is carridégd~out in a way that

future modelling using interactive computer graphics may well be

attainable.
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CHAPTER 1

. INTRODUCTION

1.1 Preamblg

With the rapid advance in the technology of high speed computers
and the development of more flexible and reliable numerical techniques,
a solution to many cqpplex metal forming problems can now be realcsm.
Hoyever. the aPility to analyse practical sheet metal fBrming operations

has not developed as rapidly as was perhaps first envisaged. A number

- of researchers have created mathematical models which describe, by a

-

sequence of discrete steps, the manner in which a component is formed;
the calculations are continued until the final shape is realised or
until some imposed failure criterion - based on wrinkling, localized
necking, wunacceptable thinning and the like - is met. If the model
shows that the part cannot be formed, the input conditions are changed
and the calculations repeated.

In principle, this approach should facilitate an understanding of
the fonﬁing process and aid in finding the blank shape and the design of
the tools and dies. Some success has been achieved when dealing with
parts of simple geometry, particularly axi-symmetric components [1], but
the approach is less satisfactory when more complicated shapes are
considered. This stems in part from the 1mprecisehknowledge of the
initial and subsequent boundary conditicons, interfacial frictional

conditions between the tooling and the workplece, rheoclogical behaviour



of the material as a function of strain, strain rate and temperature,
and the mechanlsms which initiate bifurcations such as localized necks.
Furthermore, when using large finite elements codes, the computational
time 18 long and costs are high. Consequently, with the present
generation of computers, the step-by-step approach 1s still not
sufficlently we.ll developed to permit its embodimgnt into a computer-
alded design package whereby sheet metal forming operations are studied‘
and the tooling developed through an interactive graphics terminal.

In sheet metal forming industries, a sheet stamping is usudally
produced by a‘combination\gi’drawing and stretching. Having decided
upon the basic form of the tooling and dies, there is usually a series
of press trials which decide the level of clamping at the draw ring and
the location of draw beads in order_ to produce a successful pressing.
It will be appreciated that there is a complicated interplay of die
geometry, 1lubrication conditions, and the properties of the sheet
material which govern this pro;:eas. i.e. the clamping has to be-
sufficient to offer resistanc; to the material and so prevent wrinkling
or bucklink. but at the same time permit the materials to "draw-in", If
the material is over-restrained, the material will not draw-in and all
the deformation will take place by stretching; only very shallow parts
can be formed by this ;echnique. Although it is customary to use an
initial sheet metal blank dr simple geometric shapes, rectangular .or
circular, these are usually not the optimum shapes. The blank shape can

‘promote or inhibit t.hevinward flow of material in certain parts of the

flange, and the amount of scrap which arises in the trim operaf.ion Bty
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be minimi{zed with a correctly designed blank shape.

Quite often for simple shapes, a number of geometric and semi-
empirical relatlions found in sheet metal texts are employed._ However,
many sheet metal components are comprised of highly irregular geometries
which canndl be represented accurately by simple mathematical
expressions. For these-parts, manual measurements and the experlence of
the designer become important in establishing a suitable blank shape for
a given component. The process of finding the size and shape for
cutting the initia)l sheet or blink in order to make a given stamping is
called blank development. For complicated shapes, the design of dies
for sheet metal forming operations has relied more on technical
expertise than detailed analysis."The designer often considers the die
-io.be comprised of modules of simple geometric shapes, it 1s imagined
that these analytical elements areucombined together to form the entire
- surface geometry of the toél and line lengths across different sections
of the die are examined carefully. Although: the design methods may
appear crude, it will recognised that the tooling can be (and often 1;§T
very complex, and a successful pressing demonstrates the skill of the
designer. ‘

In many major aqpomotive companies, die designers have developed
models which permit the process to be displayed in a computer graphics
systems. It i3 a useful aid to the designer who may, during the course
of the design process, interact and instruct the computer to modify or
select suitable process parameters in order to establish the best

tooling geometry.



In the present work, results are presented of a new method for
asseising the shape of a blank for a sheet ‘metal pressing. The
technique is one of geometric modelling and is intended as a computer
aid for the expefiénded tool desiéner. It is the* first step 1p an
entirely different approach to computer-aided blank development. The
work does not aim to provide, in 2 mathematical sense, a aolutioﬁ to the
forming problem but rather it is a computer aid forxthe.toél designér in
dealing with some tradit-ional geometric problems. It is hoped that this
study will provide a good start;hg point for subsequent anéf}ses. such
that an understanding, although crude, of the shéet forming process is
obtained. Some features which ére unique in the proposed method are
perhaps worth mentioning and these.are summarized below:

(1) The" technique provides a more efficient way of utilizing the
skili and experience of the desigher. it allows him to 1nt;;act
with the computer. graphics system. In-the analysis, the designer
specifies the most desirable end result of the forming process.
‘This can be done essenﬁially in geometrical terms. The method
utilizes a computer techniﬁue for ffnding a suitable blank shape
and a strailn distribution, which are geometrically compatible
with the constraints imposed by the deg?gner. Forces, equili-
brium and mechanical properties of the sheet are not accounted
for ;;d ;énce the resulting strain distribution is kinematically
acceptable but not necessarily phyaiqally possible. Only

geometric constraints are satisfied in the model. This is where

Judgement and practical expertise of the designer is required in

»
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order to achieve a successful design.

(11) VThe surface 'geometry of the component 1is described by flat
triangular elements, the analy;is deals aonly with these elements

4% - and ﬁﬁe surface t? which it must conform aftey ;hé -stémping-
opération is coﬁpleted. The only restriction is that continﬁity
of_the elements must be maintained. Overlapping of elements is a
very unﬁesirable fegture however. overlapping during the initial
mapping operation may offer.the designer some information about
regions in the stamping which are diffiéult to form.‘ The mappiqg;

process is @ot an incremental one.

1.2 Scope of the Research

An examination of how complicated processes in other branches of
engineering are analysed has suggested that simplified models of forming
processes are useful even for parts of complex geometry [1]. Various

situations are presented herein and a number of idealization which are

employed in the present work are outlined below.

1.2.17 Ideal Finite Deformation Processes

Strain in a sheet metal stamping is typically evaluated from

measurements of a grid, wusually an array of clrcles, which has been
marked on the surface of the blank prior to‘forming. The grid method is
a surface phenomenon and the strain determination 1is reduced to a two-
dimensional problem. Any measurements taken on the initial and final

v grid configurations only, without knowing the deformation path, are



-t
ingufficient to determine the strains precisely. Nevertheless, in
practice, strains are determined Ey such a technique; and when grid
circles are employed it is further assumed that they deform into
ellipses, The deformation process which transforms circles to ellipses
and straight lines to straight lines 1is known as homogeneous
deformation, but such a mode does not necessarily define the straining
path. Under such a deformation mode strain path§ can be divided into
two main types: those where an initially orthogonal pair of principal
axes remain orthogonal throughout the deformation and those where they
do not. The same change in shape can be achleved by either type of
straining path, the distinction between each straining mode is discussed

herein and the results are presented in simple terms.

Emphasis is placed on pure homogeneous deformation, whereby the

principal axes do not rotate with .respect to the material element.
Under this jideal defdrmation mode, a very siﬁple formulation of large
strains is possible. This technique has been applied to the assessment
of surface strain on an industrial sheet metal stamping. The details
are described in Chaptef 2.

) N

In pure homogeneous deformation, an appropriate strain measure in

such processes 13 that of logarithmic strain. Fur;hermore, its material

—

gerivative _eau ls the rate of deformation tensor. In homoggneous
processes, thqfaeformation gradient tensor i3 unsymmetric, and there is
no trlad (the principal axes) which remains orthogonal throughout. This
can lead to a description of the actual qEﬁgrmation in terms of the

polar decomposition theorem. The material derivative of the tensor

e



’logarithm is no longer simply related to the rate of deformation tensor,
and this is exemplified in Chapter 4. As a result of materlial rotation,
the stress compqpents will - vary, and constitutive equations which_
involve stress réte must be formulated to compensate for the rotation.
A number of objéctive stress rates are examined herein and employed in a
constitutive equation describing a hypoelastlic solid. The effeci of
stress rate on the evaluation of stresses in the deforming solid is
demonstrated in. Chapter 4 for the case when the body undergoes simple

{rectilinear) shear. .

1.2.2 The Ideal Sheet Metal N

In some automotive industries, such as the ‘Ford Motor Company,
the tooling for automobile body panels is designed by experienced tool
designers with the assistance of computer graphics. The designer can

find the deformed shape.of a blank by fitting the desired component with

a developable surface. However; in stamping operations, the sheet is

transformed from a plane to a noh-ﬁ&evelopable surface, Ideally this
should be done by pure distortion rather than by.thinning. Hence, the
ideal sheet material should have an inrinite Strength or resistance to
deformation in the through-thickness direction.

No real sheet performs in this fashion, but it is remarkable that
one of thé most formable materials, namely drawing quality rimmed steel,
has some of these characteristics., The resistance to through-thickness
deformation is measured by the extent to which the plastic strain ratio
or r-value i.e., the ratio of width-to-thickness strains in a tensile

»

y
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test, exceeds unity. The r-value for rimmed steel is not infinity-as in
the ideal material, but_. £t is at least substantially greater than unity.
The analysis of- forming of the ideal sheet can be considered as
an essentially geometric problem. _If there is Ao thinning elements_
would deform by shear Hitﬁout cha'ngé in area. Many of the 't.r'aditidn_éxl
die design procedures indicate that they are based on a similar assump-
tion, consequently such a constant area“hypothe'si; m;ay provide a usef;l |
basis for tool and blank design. The problem i#ithét t.he_geometr.ical
analysis required can only be done manually for quite simple cases. It
seemed therefore a very useful cc;thputer aid would be to desién a‘mapf;ing
system which could transform elements from a flat sheet to a giv‘en
surface, permitting each element to _def“orm &thout.change in area and
_er_lsuring that'continuity is satisfied and each element fitted together

without gaps or overlapping. The basis of this computer-aiaeo_:l design

system is described in Chapter 3. ‘ ) i
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. CHAPTER 2

THE ANALYSIS OF FIHI%E STRAINS IN METALFORMING

2.1 -Introductioﬁ \ )

In metal deformation processes involving rinit;‘(plasticT strains
the materia) properties depend upen the curcpnt{staté ;f strain which
itself is a function of the deformaﬁion history. It is pustomnry.td

attempt an integration over the strain path, but in ggneral the ingegral

cannot be evaluated explicitly. Fprthermore it is usually impradtica

to méasure three dimensional strains, for instance. those arising in a

—— .
forging operation. In sheet metal forming process most strain

measurements are‘basgs on grid mﬁrkings on a free surface._ If the grid
i3 measured after a small increment in deformation the strain increment
is, in general, easily determined. The mode of deformation wi}l dictéte
how readily the strain increment 1n‘éach successive deformation sktep can
be evaluated from the distorted grid, and how easily the straln
.  ——— .
increments can be integrated.‘*Tn“mznvhinSQ?nces, however, it is either

a\-‘ . -
too time consuming or difficult practically, to make inc;imental

measurements and only measurements of the iniﬁial and final'shape of the
grid are made. . - ' ! -ii__

It is often asfumed that at a poiﬁt in the sheet metal stamping
one principal apis.of plastic strain increment is normal to the material
surface, with the other two principal directionss lying in' the planeﬁ
theﬁaheet. The ﬁ?ll known Qrid-cirgle technique, fotr the determination

»
- | 9
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of strains In shéet metal pressings, is based upon this hyp;theais. The
method also invokes the additional ass'umption that a grid circle, etched
or printéd onto an undefoémed blank, is transformed into an ellipse on
the surface of the pressing. By measuring the major and minor dlameter
of the deformed ellipse the principal surface strains can be determined.

Not, every element deforms in this manner, although over a large portion
(__/ .
J'of the surface circles do appear to have been transformed into the shape

_.of an egg when viewed by the naked eye or through a toolmakers

microscope. In' general the deformation path of an element in. an
- * -

industrial pressing is not known precisely. How well the meagurements X
o

of a grid circle reflpet the actual strain is a matter of conjecture,

but it uili depend upon the complexity of the strain path, In the

s .

presence of high strain gradients the grid clrcle method is inadequate, :
a grid circle will undergo severe distortign ang no loné;r ;esembie an

ellipse after deformation. The grid circle technique réduces the strain ’
determination to a two dimensional problem, since in order to obtain a '
reliable measure of the distortion ;he deformed ellipse must lie on a
relatively flat surface, ' In what rollows‘ attention is dévoted to
stfaiﬁs in t;o dimensions, and a distinction is drawm between two E A

important strajning modes.’

The deformation process which transforms strajght lines into

straight lines and c¢ircles ‘into ellipses. is usually referred to as

., g
homogeneous deformation. As already menttoﬁed. under this general mode i
there i{s not an orthogonal line'pair which remains orthogonal through f
the deformation; a classlcq& example i3 simple shear. When the Z

T

L]

VY
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principal axes are fixed within a material element the deformation 1is
- [
termed pure homogeneous strain, which 1is exemplified by the pure shear

mode. Note the principal axes only remain fixed in direction, all other
line elements would rotate. It {s well known (2] that the final shape
of a material element following a prescribed homogeneous strain, can

also be realised by imposing a pure homogenegus mode followed by a rigid

body rotation. This poses the question of equivalence of the strain
paths, It is the belief of the author that the two modes are not the
same. However, in standard texts on continuum mechahics deaiing with
finite st.ra.in [3,4], the deployment of classical finite strain tensors

would lead to the cohclusion of equivalence since the same strain

components would be evaluated in each case. {,‘

M.
In the present chapter the two straining modes are discussed—and-

the theories of which are presented without a detailed development. For

more detalls the readers are referred to Refs. [5,6,7). In presenting

€ analysis t.hé deformation of a square or quadrilateral element is
corisidered, with a view to using these types of grids on sheet metal
pres "gs for strain determination. This does not overcome certain
:;roblems also encountered with the grid circle technique, such as the
presence of strain gradients. However, the uncertainty of assessing the
major and minor axis of an ellipse {s eliminated, the location and
digitization of nodal points 1is accomplished more readily and an

improved averaging of the strain within an element becomes available.

Emphasis is placed on the pure homogeneous mode since it leads to a

simpler finite strain tensor and this technique is applied to the

-

v

-
’
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analysis of strain of an industrial stamping.

2.8 Theoretical Considerations

2.2.1 Finite Homogeneous Deformation

_In wﬁat follows the mathematical fundamentals of homogeneous
deformation is presented. In Appendix A the complefe analogf between
the components of a finite strain tensor (for pure homogeneous
deﬂonﬁation) and those of the classical 1nfinitesiﬁal strain tensor, is
discussed at greater length.

Homogeneous deformation in two dimensions 1is lillustrated in
Figure 2.1, which shows the initial and deformed state of a square grid.
To relate the initial and final shapes it is mathematically convenient
io consider reference coordinate axes which are fixed in space, in
?1gure 2.1 the reference axes have been arbitrarily selected to coincide
with the sides‘of the undeformed square grid. Hhen.uaing image analysis
techniques it would be usual, although not essential to employ a fixed
set of measuring axes,. With reference to Figure 2.1, the'new
coordinates (x,y) of a p;rticle_are a linear function of the initial

coordinates, say (XO.YO). and can be expressed as

x =F X +F Y .
FTT o F12 YO . (2. 1)
Y= Ll
or
x-f %X : (2.2)

where io is a vector in the undeformed configuration and is mapped into

P A L SRR B D
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Flgure 2.1 represents the homogeneous deformation of the initfal
aquare OABC.

13
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X. In general, F12 * F__ . The deformation gradient tensor, F depends

21
upon the basis selected, but the deformation tensor, C, where

C=E - F (2.3)

does not. The tensor C is symmetric and its elgenvalues are usually
referred to as the principal stretch values squared. It is considered ’
that the use of the word principal may be.misleading, since homogeneous
deformation does not provide a set of orthogonal dxes which remain

orthogonal throughout the deformation.

Equation (2.2) is the solution of the homogeneous velocity field
S o ow(x) =L -x (2.%)

where L is the spatial velocity gradient tensor and can be expressed as

‘i; = E - £_1 . . (2.5)

where

21 22

S o '-
F( " ‘2> (2.6)
~ \Fr. E_/. |

For a homogeneous velocity fieid the components of L are constants hence

it is proposed that ’ 4

L* = / Lt = n(E) , ‘ (2.7)

~ -~

P S
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and the right hand side of (2.7) can be expressed as

n

F.ny - 5

~

Ln(F)

where

15

(2.8)

{2.9)

is the matrix of the eigenvalues of f and E is the matrix of the

associated eigenvectors.

The eigenvalues of F can be expressed as

v F11 *Fa P F11 - F22)2 E_F
10 A5 ® 2 0= +FioFag
and
Fl /(= F ) Foo/ Ay = F )

ol
n

(2.10)

(2.11)

From (2.5) to (2.9), the components of L¥ can be expressed as

F - F
A | 11 22
¥ - — o
L11 3 2.n(x1 A2) + 2(A1 —~ A2) Ln(A1/k2)
~,
. : 1 f11 " a2
L] = -
) 1 2
F .
12 -
. - s @@
LYz = =) tald Ay

‘_-
=
1

F
21
21 7 QY =) L A .

-

(2.12)
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Note that the eigenvalues of F are not necessarily real and there is
some advantage in expressing the components of L* in terms of trigono-
metric functions, as was demonstrated by Bredendick [8]. A detailed

account of the theory can be found in Ref. [61].

2.2.2 Pure Homogeneous Deformation

As already menttoaﬂ(, the tensor F need not be symmetric but if

it is we have the particular case of pure homogeneous deformation.

Hence when F is symmetric, the principal values and the orientation can
be found in the wusual way. The'compoﬁeﬁts of f can be regarded as

L 4 .
strain components, note F = can be assoclated with the shear

12 F21
strain and (F11»1) and (F22-1) with the direct strain. Actually F11 and

: final length
F,, represent stretch ratios, i.e. Teris=I 0o

{eigenvalues) of F are also stretch ratioé. say x1 and Az. which can be

The principal values

determined from equation (2.10). The orientation of the principal axes

T

is obtained from

tan 28 = 12 ‘ (2.13)

¢ -

. The prineipal logarithmic {(or natural) surface strains,’ say €,

and €, are determined from

ve

I

=L A T 2. W
E‘,Z ﬂ('1'2) ’ ( _.)

while the third(%rlncipaljstraln. 53, is furnished by the incompress-

i
-

~
#
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ibility assumption

£ +€_+£c_=z=0. (2.15)

The representative or equivalent strain, €, is given by

€ =/ % &? + el 2y

: (2.16
2 (2.16)

2

Note also that for a symmetric F the components of (2.12) are given by

the standard transformation expression

L*

=C - C in A ' 2.1
£3 7 Cip Cyp " App (2.17)

where the Cip represent direction cosines, derivable from (2.13).

To further highlight the distinction between homogeneous and pure

homogeneous deformation the shape change produced in the simple

(rectilinear) shear process will be discussed. Figure 2.2(a) shows the

simple shear mode, where the initially orthogonal line pair OA and OB
have been deformed to QA and OB!'. The simple shear process is a
homogeneous deformation process and the deformation gradient tensor, E.

is unsymmetric with components

1 S
F= ) (2.18)
0 1

-
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HOMOGENEOUS CEFORMATION

SIMPLE SHEAR

(b).

Figure 2.2: (a) Simple shear mode.
(b) A circle is deformed into an ellipse by homogeneous
deformation. ' -
{c) Thef-saue shape change in (b} can be achieved by pure
homf)genous deformation.
[}
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where S iﬁ the shear displacement of point B. Figure 2.2(2) is redrawn
in greater detail in Fig. 2.2(b), the latter diagram also indicates a
circle deformed into an ellipse. The shape changes exhibited in Fig.
2.2(b) can 'also be realised by a pure homogeneous mode and this s
illustrated in Fig. 2.2{(c). The principal axes are denoted by 0D ana
OC; these axes remain fixed in Fig. 2.2(¢). Upon deformation D moves to
b' and C to C' while all other line elements rotate e.g. OB moves to OB'
and OA moves to OA'. DMNote that point A does not move in a circular arc
since OA change} in length during the deformation. However it is of the
~;ame length (say unit 1ength{ in both the initial and final position

OA'., For a shear displacement S the principa tretch ratios in Fig.

2.2(c) are given by

1 ..2.,,1/72 '8
App dy =5 (87 4 5 (2.19)

" and the orientation of the principal axes can be determined from (2.13)
R
where

. tan 28 = tan 2(90-£) = - tan 2€ = 75 , (2.20)

or <

SR 7]

cot X = 2 . (2.21)

Note that the deformation gradient tensor, say .U, producing the shape

-

chaﬁge,of Fig. 2.2(c) is not given by (2.18), but rather

1 2 s
Uzl : (2:¢2)
RCINE [s 2‘52]

As already remarked the deformed e?&ipse in Figs. 2.2(b) and {(c) are



20
'

identical in shape as are the co;figurations B'OA in Fig. 2.2(b) and
B'OA' in Fig. 2.2(c¢). The initial orthogonal line pair, 6D and 0C, are
identical- in each diagram. They remain orthogonal in Fig. 2.2(c) since
they are aligned with the principal axes. This is not the case in Fig.
2.2(b), and although the line pair start and finish orthogonal they do
not remain orthogonal throughout. Hence the distgﬂsgion between the
deformation modes of Figs. 2.2(b) and (c¢) is appareﬁt, the initial and
finéi configurations are the same but all intermediate configurations
,‘are distinet. If the deformation modes are intrinsically different, how
1s this difference made manifest? Sowerby and Chakravarti (6] have
demonstrated that the equivalent strain is minimised when the shape
change 1s achieved by a pure homogeneous deformation mode. As shown in
Ref. {5) the equivalent strain for the simple shear process of Fig.

2.2(b) is

e=5//73, (2.23)

while for the pure homogeneous mode of Fig. 2.2(c) it is

-

_ 2
€p.H. ° 7§-£n Ay oo (2.24)

where A1 is given by (2.19). Equa;ion (2.24) always result in a léuer
value than (2.23) and the difference 1ncreaa;s with increasing 8.
However in practical sheet forming operations the difference may not be
large. For example, a shear displacement of S = 1.5 constitutes a large

deformation in sheet forming, and yet the difference between (2.23) and
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(2.24) is only about 10 per cent. HNevertheless it has been,K the purpose \\\\

of this section to exemplify the differences between homogenecus and
pure homogeneous deformation.

As 13 well known it is always possible to create a symmetric
tensor out of the unsymmetric deformation gradient tensor of (2.18),
which characterises the simple shear mode. One way is the creation of
the deformation tensor (, defined in (2.3). .The eigenvalues of this
tensor are

2
AL = (% +1) + % (52+4)1/2
. (2.25)
2
S 5 2 1/2
= (3 +1) = 5 (5 +4) .

>
NN
1

¢

which are the squares of the quantities given in (2.19). Even though
the use of the deformation tensor C results in the same eigenvalues as
the pure stretch tensor U, eqn. (2.22), the deformation modes are
different as demonstrated above. Furthermore the use of the C tensor
would not reveal the difference in the equivalent strain accumulated in

each deformation process.

2.3 Strain Analysis of an Industrial Stamping

2.3.1 General Comments

Strain in a sheet metal stamping is typically evaluated from
measurements of a grid, which has been marked on the surface of an

undeformed blank. The technique is widely employed in sheet metal

stamping plants, and informs the tool designer or die-setter of the-

-———

h.
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location af the crilically stralned regions within the pressing. There
is no restriction on the geometry of a grid ich can be marked on a
blank, but an array of circles is often adoptgd. In evaluating the
principal strains it is implicit in the grid circle technique that

straining occurs by ‘pure homogenecus deformation, whereby circles are

transformed into elliﬁses _ﬁd measurements taken of the major and minor
axes determine the principSf*surface strains. In regions of high strain
- gradients, measurémenta become erronecus since a circle may be deformed
into an irregular, complex shape. Nevertheless, the grid circle
provides a convenient uay‘of assessing the ‘'strain at selected points
within a stamping, assuming the strain gradients gée not too severe. If
the objective is the determinati;n of the strain distribution over the
entire surface of the stamping, the grid'ci;éle technique can be very
time cﬁnsuming. and an array of square or rectangular grids is more
convenient. Coordinate ‘measuring machines allow‘a stylus to be moved
over the surface of the pressing, and the nodes of a square grid
facilitate the location of points in space‘and the digitizing of their

eoordinateﬁ. However, thelsquare grid does not obviate the problems
assoéfgﬁed with high atrain gradients, which could cause the grid to be
deformed into a ‘curvilinear quadrilateral. The nodal point measures
would still permit some assessment, albeit a highly inaccurate one, of
the strain; but even such a crude estimate might not be readily
available from a distorted grid circle. '

In the present Chapter, the surface strain distribution is

determined for two identical industrial stampings from measurements of

o
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A flow diagram 1indicating the complete logistics of the

atrain program.
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Flgure 2.5: A sample of a typical stencil of circle grid pattern.
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Figure 2.6: (.a) Initially undeformed square elements represented by
triangular facets. -
(b) The deformed configuration of {a).
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distorted square and circular grids, A computer program has been
developed, for the assessment of the magnitude and direction of the
principal finite strains from measurements made on a deforped pair of
lines. The technique is based on the work of Ref. [5] which has been
summarized in the preceding section and also discussed‘in Appendix A,
The determination of the distribution of natural strains over the entire
area of a deformed sheet  is a possible application of this program.
Details of the programing technique, user input variables,‘ operating
éroéedures and the like are not presented here but they can be found in
Ref . t9]. A Flow diagram indicating the philosophy of the program.

solution is presented in Figure 2, 3.

v

2.3.2 Experimental Strain Determination- - | _ :

A photograph of the autog;dy inner panel is shown in Figuré 2.4,
the left and right hand sides of the panel are symmetric. Two identical
panels were used to assess the resufting strain distribution. On one
panel an array of lines had been scribed, prior to deformation, to form
a network of squares of 1/2 in (12.7 mm) side. Hhi}e on the second
blank a grid of 1/2 in ,(12.7 mm) squares and 0.2 in (= 5 mm) dianetgr-
circles had been electrochemically etched. Thi; grid gﬁ;tern is.shoun'
in Figuée 2.5. Bothpkrids c;;ered only part of the panel, as inaicated
in Figure 2.4, Thg.full depth of the panel was gridded, corresponding
to aboqt 70 horizontal lines at 1/2 in intervais; Hhili the reg;on
extending from the extreme left hand side of the paﬁel was %omprised of

about 35 vertical lines at 1/2 i{n pitch. ‘Thus approximately 2500 nodes
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Wwere digitized for the seribed square grid, and a2 like number of circles
were meagured on the electro—g}ched grid. It will be noticed that the
grid patterns did embrace_the\ﬁost severely distorted regions of the
panel. The gridded domain was divided into two rggions along a line OX,
;ee figure 2.4, which 1is about half-way down “the panel. The sup—_
division was introduced for éhe convenieﬁcé of: plotting the‘ strain
contours, since theﬁf was insufficient capacity with our eéuipment to
handle all the nédes of the entire mesh on a single plot. The basic

theory of the contour ploﬁting routine is outlinéd in Appendix B.
The measurement of the vertices, of the hefqrmed'scribed squé}es,
Was peéformed manually with the aid of a milling machine. Thus each
de formed squ;re i3 now represented as four nodai points each lying on
the surface of.the panel. To arrive at an estimate of the strain, the
unde formed square‘gr}d i3 assumed to beldivided across a diagonal as
shown in Figure 2.6(a). After deformation, a ﬁriangular region lige OAB
in Figure,2.6(a3 would form a small flat facet (at least that [ the
bnly information_ thé nodal points such as O'A'B' would reveal, see
Figure 2L6(b))7on the deformed surface. The strain Wwithin the triangle
can be determined from a knowledge of the location of the deformed nodes
and the side length of the‘undefonned square. The ﬁechnique has already
been described in section 2.2.2, and is _based oh the assumption that the

’ -

straining has occurred by pure homogeneous deformation. The analysis

furnishes the magnitude and orientation of the principal surface strains
‘(either natural or engineering) within the triangle, the assumption of

incompressibility will provide the natural thickness strain. The

s

S . - '
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procedure is repeated for each successive triangle. To facilitate the

plotting of the strain contours, we execute this in the flat plan

the undeformed grid as a reference. A typical boundary node
or B, in Figure 2.6(a), forms a vertex for three triangles; while
interior node like C six triangles interseét. Therefore fghen
determining the strain at .al particular node.‘ an unweighted average of
the strain within each triangle is computed. Once. a strain value is
assigned‘/éo a nodal point, the plotting routine executes linear interpo-
lation between the nodres and can provide strain éontours at any desired
level. Any q‘uantity. such as thickness strain, largest surface strain,
equivalent str:;in etc., can be plotted. In the prelsent work contours of

\
equivalent strain are evaluated at 5 percent intervals, A typical

result for the upper half of the panel is shcn;rn in Figure 2._J. The
diagram, designated Figure 2.7(a), is a computer plot of the surface of
the panel as determined from the nodal coordinates of the deformed
squares; while Figure 2.7(b) shows strain contours in the undefOt;med
plane. Similarly, the sur!‘ace' strains for the lower half of the inner
o~

panel shown in Figure 2.4 are analysed in the like manner. The di..agram
of Figure 2,8{(a) is the computer p\lot of the lower portion of the panel
determined from the deformed nodal pbint.:s and Figure 2.8(b) is the
r'esul.ting contours of equivalent strain for the deformed portion of
Figur‘le 2.8(a). .

It was apparent from the two panels under.- investigation that

there was some misaligmment between the scribed square grid -and the

electro-etched grid pat.ter;i. The latter had been marked on the panel
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using a stencil to form contigf)ous patches, this had also resulted in a
slight mismatch so that there was not a continuous chequer board pattern
to the squares which circumscribed the grid circles (see Figure 2.5).
If the aligmment had been better then the electro—etched pattern would
have permitted the nodes of the squares to be digitized as well as
providing the strailn readings from t.he deformed cirecles.,™ In order to
provide identical reference points on each panel -- to facilitate the
plotting of the strain contours -- the two panels were placed on top of

each other and small holes were drilled through every other node of the

[

scribed grid 1into the electro-etched panel below, When plotting the

strain contours, calculated from the grid circle measurements, the
strain assigned to a node, i.e. the drilled hole, is in general the
average value of the strain in the four nearest grid circles. For the
sake of convenience, the computer plots of the deformed mesh of the
panel shown in Figure 2.4 are repe’éted in Figures 2.9{a) and 2.10(a).
The resulting equivalent strain distributions, determined from
measu’rements made of the major and minor axes of the deformed circles,
are illustrated in Figures 2.9(b) and 2.10(b). .'Ihese diagrams show the
strain contours of the upper and lower portion oﬂf the panel
respectively;,_ The major and minor strains obtained using the square
grid and the circle grid technique are plotted on a strain spa‘qe. i,e.

8

with the principal surface strains 51 and 52 as the co-~ordinate axes,

shown in Figure 2,11{(a) and 2.11(b) respectively. The well known

forming limit diagram (F.L.D.) [10] is constructed in 81-€2 space, and

therefore theoretically predicted or experimentally determined (from
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Figure 2.11: Element strains plotted in e - 52 strain space
{a) Square grid method,
(b) Circle grid method.
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laboratory tests) F.L.D.'s can be superimposed on such diagrams as Fig.
2.11, Hence a comparison is available between the anticipated F.L.D,
and the measured strain distribution. The expérimentally determined
points shown in Figs. 2.11(a) and (b) are ﬂ"l“or- tﬁe_ upper left hand
portion only of the panel shown in Fig. 2.4. The measured strains for
the lower left hand portion showed a similar distribution. Figure
2.11(a) indicates that 90% of points obtained are beloWw a major strain
of 0.1, This is expected since//n most sheet metal stamping operation
materials seldom deform Egtenﬁf:ely. However, some of the points in the
compre;sive region near a ‘minor strain of -0.1 to -0.2 may be spurious
because the analysis assumes chordal distances between adjacent nodes,
whereas at sharp corners in the’pre;Sing. the surface leggths may be
much longer. It may be that the hal f lnch grid sﬁacings are too coarse
for this particular applicatior. . Figure 2.11(b) illustrates
‘ 5 :

experimental strains determined from the circle grid analysis,
Measurements' were made of the deformed circles on the surface of'the
panel using an optical eye piece, and the maximum allowabli accuracy of
the instrument is about 0.02 inch; theref&re small diffe;ence be#ueen
adjacent ellipses cannot be measured and as such a point on the FLD may
represent more than just one measurement.

The plots shown in Figs. 2.11(a) and'(bY can serve as a useful
aid to the designer. It is well known that sheet metals do not deform

]
extensively when both principal surface strains are positive, i.e. tﬂ%

stretch mode. They tend to do better In the strebeh-draw mode when the

principal surface strains are of opposite sign. Furthermore when the
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surface strains are equal andlobpbsite there 1is no thiokening of the
sh;et and this is igpresentéd by the line with slope -1 in Figs. 2.11(a)
and (b}. Deférmatién Wwithout change in_tﬁickness can be-Eegarded as an
ideal mode, and the plots of Figs. 2.11{a) and (b) reveal ho;'close the .
designer 1s to achleving this. Furthermore, as already 1ndicated, the
anticipated #,L.C, can be superimposed on the  measured strain plots.
This permits the designer to decide whether any adjustments need to be’
made to the processing parameterg'if the measured strain is qlose tq tﬁe
proposed F.L.C. It also establishes the uéefulness ;f F.L.C.'s

particularly when these have been constructed theoretically as well as

determined experimentally from laboratory tests.

2.4 Diécussion

The present cﬁapter has demonstrated how the maénitude and
direction of the p:incipal strains can be determined from measuremééts
made on a deformed pair of lines. The application to the assessmen? of
strains on a sheet metgl component has 3130'béen illustrated.

Two techniques, namely the grid g}rclé- and the square ‘grid
techniqu;, have beeﬁ applied to the industrial stamping shown in Figure '
. 2.4, The grid circles used were initially Oué in (= 5 mm) diameter and
these were measured directly on.the surface of. the defarmed part. The
nodes of the square grids, initially of 1/2 in §12.7 mm) side, were
digi;ized using a miiling machine, A properly instrumented cqprdinate

=
measuring device would have considerably reduced the labour ipvolved-but

this was not available for this work. .
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Contours of equivaient strain distribvutions, over'.t:he surface of
the blarfk, measured by the usual circle grid method on t.;*!'n;:actual.part
and those computed from the square grid are summarised in Flgure 2.12
for the purpose of comparison, Figure 2.12(a) and (b) are composite'
diagrams, where the strain contours of Figs. 2.7(b) -and 2.8(b) have been
combined to produce Fig. 2.12(a) and Figs. 2.9(b) and 2.10(b)
amalgamated to provide Fig. 2.12(b}. Reglons of ru_ig'h and low strain
level are observed by the square and circle methods. The-magﬁitudes of
th; strains obtained by the square grid method 1is gener'élly 5% lower
than that of the measﬁrements made from the cir:éle grid.

With any moderately sophisticated computer-—graphic:’s system it
would be easy t.p encompass Aan-‘y area on the strain contour: diagram of -
Figure 2.12, -and have the corr‘espon_ding domain delineated on a plot of
the surface of the panel.r. This is not done in the current study,® but
strain contours were manually drawn on the surface of the pa;lel; t.hels.v,e

.

Wwere colopr.'coded to provided a betﬂ' visual repres tion of the

st}.rai‘n dils.tribution on the whole panel, and this ais ustrated in
Figure 2.13. Th shows th\at 'the smaller grid circle provides .a more
detailed account of. the “change in level of the strain tours, t;ut /bhfe—\ ‘
squares also reveal the same regi’bns of high and iow strain. t is_
debatable whether plotting contours of equivélent straln, as ted _ \
here, i3 the most ap}ropriate way of helping the designer assess
critically s{rained regioﬁs'of‘ a stamping. Contours'_ot‘ thicknéss‘strai‘n <
-could be Aetermined with equal ease, in ,t:h'is case excessive thinning or
thickening would indicate a propensi“py to tear(ing or buckling
[ . r

i
/-—\/ ¢
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respectively.

The tedious manual measurements techniqueé used here are entirely
unsuited for }ndustrial practice. T&aniqueﬁ gk,automaéic coordinate
measurement are avallable-and alsc image analysis systems have been
developed to determine major and ldfﬁak diameters of a ;dg?brmed grid
circle. \Knouing thaﬁ these aids exist, questions still femain about

which gﬁh&igﬁtterns should be usa%n how they should be measured, what '

strain parameters should be cachTated and !bw ‘they ahould be presented.

If no grid is used, measurements are limited to surveys of thinning.

These are useful but 1if ﬁore information is required thén, as menfioned
before, some sdr{?".ﬁarkings ﬁu;t be employed. If. it is d;sired only
to ascertaln strain at a siqgle point in the sheet, then Phe use of a
grid eircie-is the.most suitable pethod. If houever..distribution of
strain over. a lérge'regiéh is t%qﬁired then it 1is almost mandatory that
automatic measurement coqgled with a computer-aided method of strain
analysis and plotting will be employed This chapter has 111ustrated
how this can be achieved although a more efficient method of measuring

the q:gél polnts omr the deformed panel would he desirable.

It has been shown that using a simple but nonetheleas accurate

_ EfthOd of strain, analysis, the prind{ﬁsr\strains and. thelr directions

i L
than 1s/generally imagined,
~

\,
\\

can ‘pe derived from measurement of a deformed square grid Wwith greater
e

)



39

(b)

vy
c
Q
d
+
a
0
o~
.
- o
[’} d
~ T L
D~ w
. -
C we
et —t
N oo
L L L
7379
.QQ.
<2 n
= =
em.t
~
e =
> Q.
L
W.D..l
*3T9
fw.r-
°ad
2]
" o E
5£8
|8
Q
E.
C o~ o~
nwab
L
LE
[aY]
-
Ll
[4Y]
:
w
v
.,



.40

' |eA®T ujesnis Jo sepo) inojo) ()

enbjuyoe] puo ej2410 (q)
~enbjuyosej pux eisenbg (e)

papoo IN0J0D B10M UDIYM SUORNQIISIP UJRIIS BA1108}J0 JO SINoJuo) £1°Z inbiq.

(9)




P
41

2.5 Conclus ions
) The present Chapter has demonstrated how strain distributions can
be determined in certain finite deformation processes, based on measur e-
ments of the initial and final configurations of a grid marked on the
jv,u:ﬂace of the workpiece. gertain dit‘f'erenceé between homogeneous
deformation and pure homoge;ieous deformation have been drawn, when each
mode producés the sarié final sha{ie. The modqs' of -det‘ormatlion are
intrinsically different, an|d although the- initial and final shapes can
-be the same for each mode, all intermediate configurations are not., It
has been mentioned that pure homoéeneous deformation minimises the
accumulated equivalent strain when producing a given shape change, and
consequently the work done in such processes is likely to be minimised.
An example has been given of strain rnea.surement of two :_similar.
auto body inner panels, one using an array of grid circles elctro-etched
on the‘ blank and the other employing a blank on which é regular grid of
square elements hadl been scribed. The measurements \:rere taken manually,
but the analysis and plotting were performed usirié the pyber computer.
A computer program for the evaluation of finite Ftrain has been
developed, based on the assumption of pure hon;_ogeneo‘us‘ deformation, and
the principal surface strains within each grid element can be calculated
with relative ease.”” In general, this‘uill result fn an underest imate of
the actual strain 1ncurr‘d. The error may not ‘be large, but since the
strain path‘of elementsbhe surface of a pane.l is unknown, a lower

bound estimate of the strain has to be tolerated. It is' recommend'ed

that a square or rectangular grid of 1lines be employed for the

(G




L2

calcu{ation of strain over the surface of industrial stampings. ”

‘ Hitp the advent of coordinate measuring devices and computer-
aided techniques of ikhge analysis, it QE possible to obtain a quick
che&ﬁkgp thé strain distribution over certain chésen regions of interest
on the stamping. Thus, it allows a tool signér or die;setter to gain
more insight into the deformation of the com ent that he works with,

Thé'technique of. finite strain determination wii; be 1ﬁcorporated

intq a_computer-aided tool and die design package described in Appendix

D,

~



CHAFTER 3

GECMETRIC MODELLING

3.1 " Introduction
A sheet metal panel is usually produceg in a double-action press.
The tooling consists of two basic assemblies - a matching punch and die
vwhich define the shaperof the panel, and a draw ring or binder, which
surrounds the punch and die anq conéfols the flow of the sheet inwards
as it is formed to the required geomégry. In_order to design the punch
properly, the deformed shape of the blank must be kﬁoun after it is
preformed by the binder. The proper design would be the one in which
the prefonngq blank wraps around the descending punch gradually andt
uniformly with the avoldance of loose metal and hence the possigility of
wrinkling. When conforming to the binder there is no stretching or
distortion of the sheet under the clamping ac&}on of the press:;bnly
bending. As the punch descends and contacts the sheet, tensions are
developed and phe material is dragged inwards against Fhe restraint
’\exerted. by the binder. The process of forming a t‘lat. sheet of metal to
a complicated shape between matching dies in a press iS'\anyn_jﬁég
Stampiag. Considerable expenses afe involved in developing and
manufacturing the Fooling. and a fpical automotive stamping die may
cost as much as one hélf of a milliogsdollars.

Traditionally, tool geometry has been determined by experience or

by an experimental did try-out'process. If wrinkling occurg/during the

-
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) proéess then draw beads can be added into tpe tooling in order to reduce

the tendency of th'e material to draw-in. The process is repeated many

times untii a final acceptabie result is achieved. However, the

technique tends to bec;)cne very tedious when dealiﬁg with more complex

geometries and requires the engineering skill and experience of the tool

-~

designer.
3
In modern sheet metal engineering practice, the shape of the
"finished panel is specified in a master geometric data base within a
\omputer graphics system [11-14]. The tool designer will extend .this

data base to specify tooling in the regions outside catl the im line for

forming. Hé must also specify thé size a

controlling tension and restr‘aining the of the anel during
shape of the flat sheet

required to forp the part. This problem, known as blank development,

determines the size and shape of the initial sheet or blank, but in

order to ald the designer in devis'ing_ appropri‘abe tooling shapes, it

would be highly advantageous to know precisely where all points in the -

5

flat sheet are located "after forming; that is to' say, one needs in the

N . .‘,.
computer graphics system a tra‘nsformiﬁ'ﬁm) of points between their

initial and final position. As pointed out in the Introductory Remarks

, ©of Chapter 1 this can be a formidable task, and it seems worthwhile to
explore simpler, albeit more approximate, methqgs for achieving this.
In the present study some res‘ults am&_prese_;ited of a detailed

development of a_ct_)rnputer-aided die design sﬁt‘eism for assessing the
: ’ / :
shape of a blank for a sheet metal stamping. The technique is referred

to as geometrlic medelling and ’13 intended as a computer ald for the

—
N

L)

/ : :
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experienced tool designer. Fo attempt \.{s made to satisfy force
equilibrium point to point within the material, and the mechanical
. T

properties of tpe sheet material age not even coriiidered. Only

geometric constraints are accounted for.

.

. .
3.2 The Ideal Sheet Forming Process

The starting polnt in the process is some specified final part
shape that the designer would likqato achieve. Geometric modelling, as

the name implies, is a technique whereby a flat sheet is transformed to

the final part by purely geometric means. In fact the reverse procedure

is adopted herein and the proposed final shape is initially mapped back

into a flat sheet,. The mapping process does not reveal a unique

-

) soiution. merely a geometrically possible one. Hoidever on the basis of

.the mapping strategy a ﬁossible strain distribution can be calculated
fgr a deformation E:ocess~which is geometrically Teagkble.

In mos£ ifstances, the designer would like the sheet to transform
from the flat or developable surface to the complicated shape of the
final part without change in thiclness. This mode of deformation has
been alluded to in Chapter 1. Each glement wouls\be deformed by plastic
shearing so that its area remains consﬁént. Avoidance of thinning is
usually a practical objective and furthermore, «t may ﬂe shown that
failure by tensile necking or tearing 15 not likgly to occur in.this
mode [15]. The, process is less than "ideal" in afpractical sense since

wrinkling can\still occur.)

"y ,
In most sheet processes, the contact pressure between the sheet

Py
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and the tooling 1is quite small and we can consider that the only

stresses acting are those in the plane of the sheet as illustrated in

by T me——

Figure 3.1(3); i.e. a state of plane stress If the material is assumed

71
to be a rate~lnsengitive, isotrople solid, ocbeying the Von-Mises yield

criterion, the plane-stress yield locus is as shown in Figure 3.1(b).

The laws of plastic deformation indicate that the combined stresses
necessary to deform this element are related by the ellipse shown in
Figure 3.1(b). The process in which 01 = -02 results in a constant area
"deformation is usually referred to as "drawing"” and it can be seen that
the magnitude of the stresses required to deform the sheet are less éor
this process than for any other. in‘sheet ﬁetal forming, deformatioﬁ is
produced by tensions transmitted through the sheet, not by forces
applied to the surface és 1g_forg;ng, and therefore that deformation
process which occurs at the lowest value of stress is at least a likely
mode of deformation.

It is found that many of the traditional die design calculations
which are described in handbooks are based on this constant area rule
[16]. These die design formulae were devised for manual calculation

-techniqueé and are not appropriate for a computer-based system. The

method described here isAessentially'an extension of this approach to an

&lemental mapping technique which can be applied automatically in a

computer system and which provides the designer with ah indication of
the way in which a flat! sheet would deform if it obeyed the constant

“area E{FDthESis'
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Figure 3.1: (a) Deformation of an element in plane stress -
(b} A plane stress yield locus
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Figure 3.2: (a)' Part “of a surface in space
{b) Boundary conditions of Fig. 3.2(a) on a flat plane



3.3 Techniques for Mapping Elements

Results are presentéd of .a new method for finding‘the shape and

size of a blank for a sheet stamping. The present method is intended as

a computer aid for the experienced tool designer. This computer-aided

———

techniqué involves element-by-element mapping of an irregular mesh,
which has Seéﬁ marked on thé deformed surface, back into a flat blank.
The transformation of the elements requires a mappiﬂg proc?&ure and it
is the purpose of this section to provide.a detailed discussion of some
of the mapping strategies developed. The merits and drawbacks ofAeach

are also examined. In this system, no attempt is made to satisfy force

equilibrium from point to point within the material, in fact IpﬁE'

mechanical properties of the sheet material are nottﬁggn’éoqsidered.
Continuity of the elements is however maintained and ItheJ'resulting
. deforgation is geometrically possible. Whether or not the solution is
physically possible depends on the skill of the designer in guiding and

Fi
ad justing the process.

3.3.1 Baslic Method

ka) Mesh Generation

The surface geometry of a stamping can be specified by a physical

Eodel. an engineering drawing or in a computer graphics system. One may ¢

then generate a mesh to cover this surface, as for example,_in-paﬁt of a

spamping as shown schematically in Figure 3.2(a). The surface 1is

[

approximated by contiguous triangular elements, each‘pair composing a

e -
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quadrilaterial elemenf folded along one particular set of diagonals.
These elements approxiniate'the actual geometry of the given stamping and
furthermore these elements are arranged so that they form a rectangular

array of rows and colusns. This is lnown as a topologically rectangular’

' e

mesh .

The designer must bg aware/that two options of grid markings are

available if aan stamping is employed.
(1) The gfid can be a defarmedigrid of lines previously scribed on

—

the undeformed blank - such‘as the part shown in Figure 2.4,

and which is discussed in Chapter 2 but only id terms of

-

strain analysis. However the same grid could be used for {:he

N
mapping. /.‘

or (2) A @lg'gj.ca‘l grid is marked on the deformed blank, such as

i the seat stamping of Figure 3.3, using a felt marker pen.

u ) N
This technique is adopted in this Chaptg-_L.

Quite often ~An-the design process an actual stamping is not

o’

avallable and a élay or wooden model of the part is employed.'hence a

~
grid would have to be marked on the surface of the model. -

{b) Boundary Conditions

The

ethod requires that some appropriate displacement boundary
‘conditign; pecified for certain nodés.  In most sheet metal
pressings a plane of -symmetry. or alternatively a dividing line, can

—
always be identified. It is indicated in Figure.3.2(a) that planes Xxoz

. .
It is chosen so that a general sub-program for automatic numbering of

nodal points and elements on a given surface may be achieved.

- - .

(™ . /‘
.
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and YD;_;Fe planges of symmetry and hence the c%m nents of displacement&——f

2 perpendicular to these planes will be zero. In the initial mapping it
is also specified"that the distance between these boundary&odes doss
not ch{lge, .. the sheet deforms without extension along these lines
of symmetry. This particular boundary condition is an arbitrary onJ

\-)If the designer considers that the spacing between the nodes changes

.!f; along the axes of symmetry he can impose such a condition; h:nce ‘Bhe

(_/ "designer may change the input coWons in 1iéhb of his own experience. A

/L " The' boundary nodes can then be mapped in the XOY alane. as

ill‘ﬁstrated.in Figure 3.2(b). This provides a starting point in which

.r*ﬁh.l"ee vartices of‘wa quadrilateral have beeu\f‘ixed at the intersecting
j- corner of the axes of symmetry. The -prot'alem now is to map eaa of the
E- nodes opnto a flat plane accordi.ng fo some selt_a?:ted strategzi:i\ One
/ essential requirement is that. adjacent elements ;'emain contiguous during
,-/ the mapping process. - | (

An auto.mot_:ive st.ampirig is coﬁsider‘ed.. it 1is cht;sen for the
purpose of determining the f‘eawty of the mapping procedures, A
.grid of quadrilateral elements was drawn freehand on the part using a
marker pen and these elements are topologlecally rectangular. A
photograph of the original stamping from which the corner section was’
rem_oved. is ShOWl:l i_a Figure 3..3(a). The stamping is part of_a passenger
car seat. Figure 3.3(b) shows a phc;_fl‘..c_)qg_raph of ‘the piece removed from
the cornerf for modelling. Each ma;aping method déﬁeloped herein wil].
then be ad&pted to find the size and shape of a sheet metal blank which

could’ be transferred into the surface of the deformed part which is -

)

/
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defined by the grid of lines shown in the photograph. The nodes of the
grid were digitized with the aid of a milling machine and a computer

plot'of the surface is shown in Figure 3.4.

3.3.2 Mapping Strategies

1y Propoftional-Deformation:

fhe quadrilateral- element -IJKL in Fig. 3.5(a) "is assumed tg
represent part of a curved surface in three diménsional space.‘ The two
triangular "domains, IJK and ILK, actually represent two flat facets on
. the deformed éurface. We assume for the moment that .part of the mapping
process has been completed and the po}nts i,‘j and.k‘have bee;‘IOCated
in the flat plane X0Y, as shoun’in Figure 3.5(b). The area of the
triangle 1jk is known and the vertical héighb. h, of the new triangle
kil can now be determined, since this must satisfy_fhe condition of
equal area for the 1ni£1a1 and final quadrilateral.. The area of the
individual trianglés IJK and KIL do change in this mapplng process but
.the sum-of their areas is constant, i.e. Fhe area of the quadrilateral
IJKL is unchanged.
| The pqsition of % along the line shown in Figure 3.5(b) must now
be found. Proportional displacement is assumed, and this will be

apparent from Figure 3.5(c) where the initial triangle KLI and EEE~CLnﬂf/

- The constént area hypothesis is an arbitrary one. A designer may
change the area of elements in light of his own experience, however,

this assumption is a convenient and simple one. It is based on ‘thev

fact that under idealised conditions, materials tend to deform
without change in area (a pure shear mode).

UV UL SO

5 Lo
T e e e e ——



triangle kli are shown superimposed. The position of m along ki is
oL
&
determined by the assumption that the displacement of M will be

proportional such that

- T(T=T(-j_, (3. 1)

» "The new node % can then be located on the XOY plane. The mapping
of the rest of the elements is conducted in the same manper. |
This method was found wanting when applied to the part of the
stamping shown in Fig. 3.3(b) or Fig. 3.4. The mapping procedure failed
in the more severely deformed regions of the component. It can be
concluded that t.his par‘ticular mapping strategy develops unaccebtable
instabilities in the Shggg,lead.ing to overlapping of"elements as'lshown
in Figure 3.6. In an attempt to overcome this difficulty, an arbitrary
limit was imposed on the change in the ap_ei angle of any triangle during
the mapping process. This tended to dampen out severe changea. in the
shape of a triangular element, and a prelimiharf result is shown in
Figure 3.7. This is free from overlapping but deficiencies are stil]:
evident in that the boundary is very irregular. The edge of the mesh
was deliberately drawn near the edge of the actual stamping and hence a
realistic map would be much smoother at the boundary.
These results suggest that there are two possible hz;ndicaps

associated with the model under consideration. Firstly, it is obvious

that the imposed equal area hypothesis is likely to be too restrictive'.

‘Secondly, it is recognised that the imposed proporticnal deformation

. appears to restrict one of the principal directions to e along the

diagonal. This i{s unlikely to occur in actual forming procesées. and

54
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Figure 3.6: “Transformation of the mesh in Fig. 3.4 onto the flat plane,
) overlapping of some elements occurs with the proportional
deformation strategy.

V4

e —

1

- X

)

Figure 3.7: An improved transformation {nto the flat plane.
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(b)

Figure 3.8: (é) A facet on the curved surface

(b) Diagram showing the assumed proportional change of
angles. . : .



58

[

therefore other approaches were developed to provide the tool designers

with a system based on a more appropriate strategy.

| - |
(2) Proportional Change of Angles t

Many features that have already been discussed in part (1) will

be retained, and in particular the equal area hypothesis. Again the
element IJKL is asaumed to r‘epresent two triangular facets on a curved
surface shown in Figure’ 3.8(35 and in this instance the mapping has
proceeded up to the po‘in't wher;e the lower triangle IJK of t;.he

quadrilateral is located‘ onto the flat plane 'XOY, as shown in Figure

3.8(b). The vertical height, h, can be calculated such that the sum of

the area of triangles i{jk and jkiI 1is equal to the area of the
quadrilateral. The only problem is—.to map the remaining node £ on the
same plane. -

The positién of L along the line shown in Figure 3.8(b) is‘round
by relative deformation of the apex angles of the upper and lower
triangles of the quadrilateral IJKL with respect to the q%adrilaterial
ijkl on the flat plane. It is postulated from Figure 3.8 that the

change of the apex angles of-the triangles before and after the

deformation will be proportiona!l, such that

Angle KLJ _ Angle klj
Angle KIJ - Angle kij (3.2)

The new node £ on the flat sheet can then be found wupon
/
v
satisfying the previojisly stated conditions. The rest of the nodal
positions can also be obtained in the same manner.,

The method has been implemented in Fortran code in which an

v
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. iterative routine is involved to search for the location of the fourth
node of a quadrilateral. The routine consunes a large amount of
computer time and thus the mapping becomes very inefficient. Though
this mapping procedure seems to improve upon the technique discussed in
the preceding section it is by no means entirely adequate. It was found
that_in the vicinity of a severe bend or sharp corner, where hiéhly
irregular elements are present, it became difficult to identify the
posjtion of the fourth node in order to satisfy all the above required
conditions.

The occurrence of such a difficultxh would imply that large
surface area changes( are likely to take place in the actual pressing.
It indicates that there |is Ia déficiency in the imposeq_ geometric
strategy, i.e. the reqdirements that the deformed and undeformed
quadrilateral elements maintain the same surface area, and the mapping
proéess Hbich serves to satisfy tﬁia hypothesis. It is also noticed

- that the irregularity of the hand drawn elements is likely to affect the

-maﬁping. It is advisable to employ a finer me;h;_particularly for parts

t
with a more complex geometry, in order to provide a better

~

represenfﬁtion of the surface.

h
(3) Proportional Area Change

In an attempt to modify the constraint of area constancy, the
method discuaéed in this section provides a mapping strategy that would
allow for the area of each element to change. Again it is assumed that

‘the mapping process has proceeded up to the point where the triangle ijk
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has been located on the flat plane {as shown in Figure 3.8(b). The
remaining node £ of the )uadrilateral IJKL is now in a position to be
- transformed onto the 2D .lan’e X0Y. The transfo{r‘m/at:ion is governed by a
proportional change of ar'eq/ rule, It is appar&eﬁﬂ.:- from Figure 3.8 that
‘the area jkl may be obtained through.ﬁﬁhe relation

Area jkl _ Area ijk . (3.3)
Area JKL ~ Area IJK *

&

v

and in thi‘s case, the area ol‘,)che quadrilateral is changed.

The vertical height, h, of the triangleé jki can-pe calculated
from the known magnitude of the area ‘jkl. and the position of & along thj |
line shown in the diagram may be identified with the application ot? the

— .
procedure c;f proportiona'l deformation as described i;n part (1).
This technique was applied to part of the industrial stamping

shown in Figure 3.3(?). It generates a blank which is similar to thaﬁ
or. Figure 3.6, and therefore e;ny improvanenl; in the mapping process is
not immediately obvious. The overlai:ping of-elements also occurs in the
séme region as on Figure 3.6, but to Ja lesser extent. The overlapping
of the elements i3 reduced since a large cl’@nge in the area of a
triangular element of a quadrilateral has been compensated for by the
Same émount of area changes in the opposite. triangle and therefore this
smooths out some of the oscillations. It is ‘1nterest‘.ir':g to observe that
phe unacceptable instabilities occurred in a region where the trial
stamping showed severe urit;kling.

The non-conforming elements indicat‘.é‘s_ that there, is a deficiency

in the imposed geometric rule; again the assumed proportional

—
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F

deformation appears to give rise to severe distortions in the sharp

bends or other abrupt geometric changes in the stamping. MNonetheless

this technique may serve as a warning system at the preliminary design

stage to indicate regions where the stampings are likely to fail by

wrinkling.

(4) Intersection Method

!
So far no consideration has been given to the effect that the

mapping of an element may have on the deformation of the neighbour)fdg

!

’

quadrilateral elements. It ‘Is the aim of the present method to take

into account of the contribution of the local deformatigh of
neighbouring elements and hopefully this pr_ocedure will smooth out the
distortions on the whole sheet and a r:asonable blank shapg can then be
attained.

Suppose that the boundary nodes.‘ have already been transformed
onto the flat 'plane X0Y, this provides a starting point in which the
lower triangle—{Jk of the quadrilateral shown in ‘Figure 3.9(a) 1is known.
The remaining Problem is to,ma\p the node L onto the flat sheet, In this
technique three quadrilaterals\w.tll'be considered, thec\element IJKL and
two other adjacent elements, one on the right and one on>the left of the
element IJKL are also involved in the determination of the location of L
on the flat blank. The elements in question are shown in Figures 3.9(a)
- (e). Again the vertical height, h.l,,of‘ the triangle jkl can be

calculated for the area of .the triangle JKL to be unchanged durirlg

deformation; a line paralieled to” the base of the triangle along hhi‘gh
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the position of 11 lies may  then be constructed. This provides a

[

possible solution of the third node of the triangle under consideration,

but not a unique position for 11. f!j attention 1is now focussed on the
adjacent triangle ML of the neighbouring element, a similar con-

struction can be made where the height h_ is determined by the equal’

2

area hypothesis. [Likewise for the adjacent triangle XNL to provide the
distance h_.

3 | o

As can be seen the mapping technique will, in general, yield

three possible solutions for the position_ of the fourth node of a

quadrilateral. Since a single position of the node L is sufficient to

solve the problem, hence we must select the most probable one. In order

to do so a triangle 2.12. as 1illustrated in Figure 3.9(e), 1is

2*g
constructed. It is obt.a_i,n\e'd by the extension of the three parallel
lines discussed\reviously; iese lines would intersect and meet at

possible nodes !.1,.\!.2 and 2.3. Thus -a triangle which contains all
possible solutions to the node L is established. Any positions within
which will provide a possible solution to the mapping process. For-,'

simplicity it is assumed for the present time that the centroid of the.

riangle 2122’-3 is the most probable 1oc§tion of the fou;jth node of the
uadrilateral under consideration. 'Ihisrldetermines the position of -the
and the transformation of the re_st of fhe elements are performed
same manner.

it i-L-. observed that the area of the ﬁuadrilateral would change
slightly upon identifying the nodal posit‘ion of L. However, cpntinuity

of thickness changes across the sheet is not maintained, i.e.\the



thickness between one element to the next may be different de nding on
the severity of the deformation or the surface gecmetry of a stamping.
The above mentione(;l mapping. procedures were implement in
Fortran code and the technique was applied to t:he- industrial lé:ing
shown in- Figure 3.3(b}. The mapping technique does nof appear
satisfactory 1in regions where severe bends appeared Iin Ehe actual
stamping. In the vicinity of the bends, elements on the flat sheets
tend to spread out away from the bends in order to ascommodat‘.e sharp
changes in geometry which arise in the sheet. At some points where
elements are 3squeezed beyond the state where elements can be mapped
without interference between neighbouring eleménts,' overlapping of
e]..;nents occur. It appears that the mapping process is unable to smooth
out the deformation in the neighbourhood of the problem area. This 1‘:3
perhaps due to the fact that the location of the fourth node of an
element is dependent not only on the element 1tsﬁ but also on,ithe
d.eformation of the neighbouring elements. There fore, 211
oscillation in one elemen_t. may evefltually affect other element%nd. this
becomes a serious brqblem {instability) for the mapping process.
Nonetheless, as mentioned, such _a'n ins'bability of the mapping lﬁay serve
as a warning signal to problem areas where the sheet would fail by
wrinkling or tearing. 'Ihi's:_point; has to be verified by expérience.

This strategy emef'ges*'f‘rom the original work developed by

Professor 5.G. Wang of University of British Columbia.

Yy .

—~/
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Figure 3.9(a)-(e):
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(5) Area Criterion

In light of the difficulties discusled in part (4), the method

B described here{;_n is propo;ed in an attempt to provide a simple modified
mapping procedure which is physically sound and realistic. This new
\}pproaci'n retains many fea::.ures that have been examined previously. The

mapping technique is very similar to that described ‘in the above

section, the exception is that the modelling i{s focussed solely on a '

'sing::Le quadrilateral,. and does not involve neighbouring elerpents;..
However, the 16ca}:10n of the fourth node' is achieved in a like manner _to
that described in thg preceding sec‘t:fon.

It is assumed that the'nllap;‘)ing process has progressed up to the
‘element . IJKL, as illu.strated in Figure 3.10(a), and that the triangle
ijk 1s mapped onto the flat plane as shown in Figures 3.10(b)-(e).
Lines wl;nlch are parallel’ to the base lines jk, 1j and 1k can Pe
det.ermiﬁefi entirely by co -ide'ri‘ng _the.area of the correspand.ing
+ h

1 2

e, ‘ .- - - . o
and h3 .of these trirngles can then be calculated. = They define the

offset” distances of each possible location oi the node L from the base

/ _ . triangles JKL, IJL and IKL respectively; the vertical heights, h

of the ﬁriahgles. Upon extending these parallel lines the triangle
~ ' Ry %
o :
!.12.2"},30 is fo

 the vertices of 7whi%h ;foﬁld proyide 't,hre? possible
solutions Lo

~ . x .
position of the fourth node L on_the flat sheet, The

detgiled s
'

eﬁ-”inapping of the node has already b:gn scribed in
‘ e Z E : [
full In part {i4).; As before we select the cen 1d_of the ngle@s .

tr
the locabloyf the node L or the flat blank.. e mapping of the rest

“2 of the elege t.iis conducted in a ,!.‘ike'manner.
' e
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*

'I'h_e method éppears to function well when applled t;o the
industrial  pressing 1in Figure 3.3(b). The resuit of the mapping
procedure is g‘iven in Flgure 3.11, the uneven edges at the upper right
hand corner of the blank 'st;ggest that the ma;;ping procgss still is notr
entirely representatiye of an actual deformation process. It gederates
however a map which could be changed by various adjust:ment procedur'es by
the designer. The upper right corner illustr d in F{gure 3.1

suggests that the metal should be allowed to flow inward more to avoid/

L]
i

fracture in the st.amping. It is interesting to observe that in the
actual stanping a portion of material has been held baclé after forming
and the pressing has physically failed by tearing in this region. The
uneven elements at the t’.op and right hand boundaries also suggest that
in the actual operation draw beads might be added on the boundaries to
inhibit tco much inflow of material in order to ccntrollurinkling'of' the
sheet duriqg deformation.

The predictions of the current mapping techpique reveal certain

-

features displayed in the actual stamping. the _strat.egy'nb )

‘restrictions have been imposed on the 1nt‘low of the dal at the

boundaries. The actual physical restraint in ‘the part 13'

draw beads'e}— in the sé;amping operation. Consequent.ly the predic d -

flow of the material in certain regions will be larger than that which

’.
ccurs in practice. 'Iﬁ-lebis a further constraint ;'-ﬂjr?:h the e_xperiené_e{

" die designer could incorporate in the mapping strategy. - Nis

. . . ' ‘\
. - ’ ‘ B . ) _‘7(\
L .. : w“ [\

S__ | ;',\’i" . - \f\/)
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Figure 3.:&%& Diagrams indicating transformation procedures 'for .
finding the mosk probable  position of the node_L

using the method of area criterion,
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3.3.3 Comments on Mapping Strategies

-
It is shown in this section that many s!‘.ra':.egi.es'b exist for

element-by~element mapping of a mesh drawn on a surface of complicated

s
-

shape. Instabilities have been found to occur -1n some methods in

regtens'of‘ large strain. . l
A strategy which approximates to the eq{;’al area hypothesis was

f‘oun& to be the most suitable. In this 'stratregy.t:h(ree vertices of a

quadrilateral are known and three locations for the fourth vertex are

- established. These form, in general, a triangle and the procedure

. : adopted i3 to locate this vertex at the centroid of this‘triangle.

The various mapping strategies described in tri;le precedi
i:ctions have\lafen shown to effect the resulting blank shape uhe\_ tk’}#.

e ap'plied to an actual sheet metal stamping. The fifth strafegy,

named the Area*)Crit.er'ion, appeared to be the most appr_oprié’l:e. It is
worthwhile investigating whether this particular method would still show 2
advantages over the ot:.-her. techniques when applied to a.simple test case.

}C . 'Ille .i'equirements -rof the test cags ire that 1t should involve

large strains and displacements and that an exact analytical solution-of

-3

the deformation problém should be easily obtained. . is would provide a

T 2

. "correct" solution against which the actual mappin éould be compared.
4 In the present work the test ;ase considered is fhe forming of a hemi-

\/ 2 spherical shelll from a flat circular disc. 'Ihg exact blank shape 1is b
a g)enerated analyt.icélly. the resull‘; of which is compared with thg blank
de\.u'ﬂol:\eQa by the mappiné procedure. Var_-io types of mesh are also

. j ' . ployed in the test case to ascertain the seﬁaitivity of the result to
i

5

0. E{ T \/’_\j l"..i_\'
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the grid geometry. The study has demonstrated that the mapping
procedure, namely the area criterion, performs well and it /‘is
recommended that a r"easonably regular grid mesh should be constrmt;d.
and that the mesh should be made finer in regicns of abrupt geocmetry

.

changes on the stamping. Further details can be found in Appendix C.

T

A method has already been described in section 3.3.2 in which an \

-irregular grid drawn on a specified suri‘acé of general shape is mappe(

\_ .
onto a flat sheet following some geometric rule. Tool designers are

accustomed %0 thinking in the opposite way, i.e., how a regular grid

mzir'ked'on the flat blank would appear when the .sheet is deformed to the

(,

final shape. To accommodate this, a od” uill be developed for

superimposing a regular grid on the flat blank-\and mapping this back

onto the deformed surface. The technique is based }m interpolation from

the known diaplécements ‘of nelghbouring -ﬁ of the irregular grid.
‘%isualization m geometrically possible

a flat blank in a stamping™ procgess, and_ is par‘t of a

The method
deformation
computer-aided die design system which can be used b-y an experlenced

—
!

tool designer. : -

The mapping method can best he/described by a simple illustration

-

as shown4 in Figure 3.12, where the logzation of a regular mesh point Q,

established on th_eﬁ}t plane. 1‘1‘3 to*’%e ‘positionedy on the det‘ormed

~—— . ) i A
surface of the stamping. 'Ihe relocation of point; Q is obtained ‘_in the

followlng fay. As explained previously~ the surface of the ‘actual

Vains
A \ .
N s g
g - ‘ .
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mapped grid
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Illustrating the position of a remapped point on the

surface, -
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) . N )
stamping, or a model of the stamping, has been characterISed by

measuring the nodes of some topological grid. Hence points on the
surface, such as A',B',C' and D' in Fig. 3.12(a).qhave been digitized
and their spatial coordinates recorded. The selected mapping strategy
then locates each surface node in the r1;§_d§fgﬁé. thé four afbre-
mentioned hodes are shown as A,B,C and D respectively in the fld plane,
see Fig. 3.12(b). In general the mapping technique produces an
irregular two—dimensional grid, and this.is also shown schematically in

Fig. 3.12(b). A regular square or rectangular is then superimposed on

the irregular grid, and the regular grid is also illustrated in Fig.

3.12(b). .
The\tht step is to remap tﬁr‘nodes of the regular grid back to
generate a deformed: surface, If Q is a typical nodal point of the
regular ‘mesh as shown in Fig. 3.12(b), then following the remap
strategy, the'point will be located as Q' on the deformed surface as
1llustrated "in Fig. 3.12(a). A computer progr;m called "REMAP 1" has
been develgﬁed to arcomplish this task, and Fig. 3.13 shows a flowchart .
of théJstrategy involved. Obviously the remarging of Q to Q"is‘going
involve some degree of approximation as to the actual laaét}on of Q'
.on the deformed surface. Henge there will be some erosion of the éétuél 3
surface due to thé remapping technique. ' |
The problem of concéern is -to .51nd the three-diﬁenaional
coordinates of Q' given the gwo-dimensional coorgdinates of Q. Two‘stefr
are taken to solve this problem:-
Q\) Find the Er}angle defined by p?;gts on the blank 1n‘uhich a typical
o~
)

NEREEN e
- C_/J/’ «»t

ﬂﬁ)



S

74

point Q of the regular grid lies, .

The point Q must be tested to determine whether it _is within or
outside the quadrilateral ABCD, as shown in Figure 3.14, by applying a
vector cross-product rule. It makes use of the rait that the area of a
triangle equals half the vector croys-product of '1t.‘s sides, and is
positive or negative accordiné to the direction of sweeping of the
enclosed angle as determined by the right-hand rule. A point i{s said to
be within.@ Quadrilateral if the vector cross-products of the sides of 7
the quadrilateral all possess the same sign.. For instance, in Figure
3.14, Q is within the quadrilateral ABCD and therefofe t.h\\vector crosse
products, QA x QD, QD x QC, QC x QB, OB x- QA all have the same sign.
However, a sign change of any one of these produtts is sufficient to
indicate Q does not lie inside the quadrilateral being consider-.ed. then
other q;adrilaterals are tried until the quadrilateral that contains Q
is found. Once the quadrilateral containing point Q is located, it is
possible to find which triangle of the quadr"ilateral that [Q is in by-
repeatir;g the same sort of pfo;;edt':res as before. MNow t‘:he point Q can.
then be transformed onto the surface of the stamping. 1 .
2) Deduce where this typical point Q would rmové to in spade, ‘namely to

;oint Q' on the deep—draun ‘panel using an inverse transformation of
the déf"ormation_rule with linear interpolation. . L4

For the purpose c.:t'rillustration, it is .gsst‘zmec'l- that point Q- lies
in tr.iangle ABC as shown in Fiéure 3.15(a). The problem is normali zed

by taking\ the heights of AABc‘ to be unity, while the triangles AQAB and

:AQAC are us \d_d/er ne the par;}eters P1 and P2. The parameters P1 and

~
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-

Figure 3.14: The existeace of Q within .the quadrilateral ABCD is
determined by a vector cross-product rule,

a . (b)

113

Figure 3.15: !..icating the position of Q and the parameter: used
‘ to define Q.
(b) The position of Q' is determined by the corresponding
area rations P1 and P2 I{n space,

A .
; L.

N
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e

P2 are area ratios which are less than unity by normalization, thus the

&

height of AQAC eﬁuals P1. - LiLewise, it is true for the area ratio P2
which represents €he height of AQAB. . V

Now it is logical Po assume that these area ratios will also
apply to the’b-spatial triangle formed by points A', B' and\ C' of the
original panel. Since A', B' and C' are known points, the area ratids
(P1 and P2) can be used to locate point Q' on the surface” corresponding
to the point Q on the blank, see Figure 3.15(b).

Suppose that the perpendicular height from Q' to side A'B' is P2
and from Q' to A'C' is P1. The parameters, P1 and P2, define the offset
distance of twb lines which are phrallel to the bise of the triangles
8Q'A'B' and 4Q'A'C’ respe’ctiv‘ely. Upon extending these parallel lines,
ghe location of Q' is found at the point of intersection. The geometric

interpretation of the above procedures is illustrated in Figure 3.15.

f//,d/ e remapping of the rest of the element is conducted in a like manner.
- The above procedures are part of the program "REMAP 1", ~Details of

R the program, along with a complete listing, are to be found in an
' ~
\/ internal ?’:.Haster report prepared by the present author. For complete
- details the reader 1) referred to this report [17].
e

3.4.1 Gengral Commenté o » -

\., : This section has dealt with the _r-emapping'of a regular grid to

_ create the surface of the part. After the r'emapping‘ process, the
surface is repred;/nt d by triangular facets whose vertices are the nodal
f/]vl points of the regul%‘é‘?m menticned in the preéeding discuaaion-
. : ~ N '

Bl . ‘, , Ly .
o e | | < R . >

/_“._
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~
the surface created by the remapping operation is likely to be an

. .
erosion of the shape of the original stamping (or model). This arises

.

because of the degreéJof approximation involved in locating the nodes of
_the overlaid regular mesh with respeq? to those of the irregular

_mesh dufing the remapping operation. - However, both present

L)

stamping and from studies performed on other comparable stampings (one
of which will be. discussed in this C(hapter), the remapping technique
usually provided a part whose shape differed very little from the

starting stamping or wodel.

-~

- . -
Further details of the remapping strategy can be found in an

internal McMaster University report written by Chu and Soldaat [18].

3.5 <Ad1ustmeﬁt

The element-by-element mapping method discussed in the preceding
Ve

—

sections transfers an érnay of three dimensional coordinates to a two
dimensional array. While the remapping strategy converts a two

dimensional array back to a three dimensional array to éreate a surface.

-

These mapping and - remapping strategies satisfy, in an approximate

manner, the rule of constant surface area, and as a consequence they are

=

sometimes referred to as homalographic tfansformations.

’

[

As emphasised ealler the'mapping/}t?ategy can provide a
geometrically possible transformation but it does not necessarily
torrespond, e;en approxﬂ;ately. to the deformation experienced by the
actual éompoﬁent. _Conscquently thé designer must have other means of

“modifying the -solution in the 1light of his own experience. While

-
¢ o
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several methods are no doubt avallable the two main tq-chniqu}s of*

q

adjustment are mentioned below. ' S /_/
The first i{s to alter the shape of w(_émpm{nt-and/or" tooling »
p .

in 61-&31' to dggke the caﬁpbnent e‘asi'er. to form. Man_y options are
available, it could ‘be throlgh a shape change by providing extra
material .1n a region which was splitting or tearing_ [19{1.-;\'Ihe design of
the bindér and draw beads‘riri conjunction with ther ::hape of the tool_}ng\
can aid in the inf’low of the material to overcome tearing or restrain

the flow of the materal -to overgome both wrinkiing %nd slackmess of the

part, l.e. certain regions ‘of  the part have not been deformed

plastically. 1It-is not the f‘unctﬁibn of the present#tudy to design ther\;,

tooling for the creation'of_ a sheet metal component. The objective of
“the work is to provi;de an aid to the designer and let him or her_ i)e able
ta test the conseqlences of changes in design etc. both quickiy and
easily. The other kind of adjustorent which can :readﬂy be exec_uted. ‘is
to adjustA the ‘sh‘a'pe.\or/b_bie flat sh:‘.-et after the}niiial mapbing
operation. Note that the stretchirig or .c\ontracting of .regiops of f.he
flat sheet leads to a aeparture'f‘rom the constant surface area
hypothesis. This form of adg-,j-::itment can again be likened to
modificat}ons in the binder and draw beads. Here there is no quee;tion'
of alberihg the shape of the actual part. The original irregular grid
(following the mapﬁlng strategy) is adsusted’in t;he' flat plane, Aa
de'.-;cribed in the section on ‘remapping. a regular grid .‘can be overlaid on

the irregular (adjusted) grid and the nodes of the regular grid remapbed

to form the surface. The transformation will now of. course depart.Ofrom'



A

. Figure 3.16: Schematic representation of ad justment metfods.,

(a) Adjustment of a flat blank performed in
direction to the x axis, ’

79

a desired

- 4
(b} Adjustment of. an arbitrary re;ion over the surface of

a blank.
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‘the equal area hypothesis, but the. surface gegmet;ry of the part 1is
retained. )

Some procedures devoted to the adjustment of the irregular grid
before regapping, are described.herein.

It iswillustrated in Figure 3.16(a) that__‘a-n area ABCD, determined
by arc lengths AD and BC and an angle of sweep a, defines a region where
surface adjustment is performed. The angle, 6, alrlous the designer to
choose a desirable'_;otf?tion. A technique was also developed to pe‘r'mit,
the local distortién:cﬁ; a region within -the irregular ;rid is required
as shown in Figur® 3.16(b). The former method allows tﬁe desigf®r to
perform radial adjustménts only and the latter is a more general one
which permits surface modification to be done in an arbitrary way.
These methods allow the ‘tool designer to smooth out strain distributions
achiteved from the initial 'mappipg af the physical component.  In
conjunction with his own experience, the designer is able to arrive at a
solution which is physically possible although 1_t'may not be an obtimtm.
one-‘. A number of computer subroutiﬁes implemented in Fortran code are
available in order tc perform surface adjustmeft on the flat sheet.
Some methods c;f ad justment have been.performed on the herﬁispherical
she]ll tést case and the details can be ‘found in Appendix C, In the-.
present. work adjustment has not been carried out on an industrial
stamping. . There would be no difficulty in carrying out some arbitrary-
form of adjustment, but it really needs the experience of a tool

designer to equate the act of adjusting the flat sheet with

modifications te the draw bead and binder configuration. Notwith-
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standing ‘any advantages that ma} occur from adjustment, confidence has
First to be established with the mapping ahd remapping.methodsi This
‘can only be achieved by applying the technique }o_ many ‘different
industrial stanpfngs. It is the view of t;e author tﬁit the a&herence,
in the first instance, to mapping by the equal surface area hypothesis
may prove to be very useful., On a numbef of stampings examined by the
- author, portions of the component which were evidently difficult to
form, e.g. the suggestion’ or presence of wrinkles on the part and
domains where thinning-uas severe; these were also the regions that
caused some problems when perrorming equél area mapping. Thus the
designer 1is served with a warning, on the basis of homaibgraphic
qapping, that ”there may be some difficulty .in forming the part.
Alterations to the design of the part or .a departure from homalographic

mapping can then be introduced.

¢

3.6 The Evaluation of .Finite Strain _ @3?

The mapping, remapping and adjustment techniques.described in the
preceding sectioﬁs provide the tool"designer with a computer aided
package for analysing the forming of sheet metal stampings. The
consequence of these various strategiea‘on the resulting strain
distriﬁution in the part can also be predicted. _The predioted strains
may not correspond to those arisinglin an actual formed part, but they
provide the designér with additional 1nf;;mation prior to any Eress shop

trials. The theory of finite strain, based on a homogeneohs aerormation

mode, has been outlined in Section 2.2. This section describes in

»
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greater detail how the (principal strains are determined uﬁen_ the
quadrilateral elements aré irregular, as opposed to the hypotheticaf
square grid as discussed in Section 2.2. -

. Figure 3.17 shows two arbitrary triangular elements. Figure
3.17(b) shows a triangular element on the deformed surface, e.g. the
hand scribed gn!d. énd Fig. 3.17(a) shows the same element, say after
the mapping 'strategy. An ar¥itrary ortﬁbgonal set of reference axes is
constructed, the vertex of the undeformed triangle coincidés with the
origin of ﬁhe axes as shown in Fig. 3.17(a). 

It -has already been discussed in Chapter 2 that the coordinates
(x,¥) of a node can be eipre&seq as a linear func;ion. Hence

x =F, X +«F Y

2 .
o (3.4)
) y = F21X +‘F22Y
or
X = E 4 ) . (3.5

-, £
12 21
over the cegion when homogeneous deformation occurs. The coefficients

In generat, F but the four coefficlents id {3.4) are constants

‘can be evaluated from.the coordinates of three points before and after

deformation, typically points A, B and C of Figure 3.17(a).
The coefficients of equation (3.4) can be determined with

reference to Figure 3.17. -

-
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r =F X +F Y
17 11 121 .
yd A PELLPSLITR R PPLE
‘ (3.6}
. X, = FoX, + Frobs
. ' Yo = F oKy + Pty
or, in the matrix form. equatioﬁ (3.6) yields
X - X Y ;. . . F
1 1 7 o 1"
X X Y | F
2. |2 2 . 12 (3.7)
y X Y F
1 0 1 1 21 ‘
T F
Y2 _ X2 ¥s 22

The inversion of this matrix will resutt in the values of the four

4

coefficients

F : Y -Y ' X
11 2 1 0 1
F ~X X . T x '
, 121 p| 2 LI 2 (3. 8)
, oy ‘ 0 Y, Y, Y4
F . =X X 4

22 2 1 2

= XY -X.Y).

where D 1/( 1> 5 1) | |
As already mentiodediin section ,2.2 that, independent of the

selected axes, the coefficlents can be'comQ}ned in a particular way to

always yield the séme components of a symmetric second order tensor, C,

44
.

.

T\Hﬁh



known as Creen's deformation tensor such that

C = ET - F A (3.9) .

Upon expaﬁding the above equation, the cahponents of the symeetric

il

tensor are given by

Y 2
Cip=Fyy v Fy
“ .
. - - F < .
Cr2=fn = Fnfrfafe’ . I
2 L2 T . .
a2 = Fao * Fp : R

Hence the principal values of the glongation ratios squared, the
orientation of the principal axes and the principal logaritimic strains

in the initial ireferential configuration are derivable respectively from

s

C.. +C T+ C_ 2

2 .2 11 * 22, 11 * Y22 2
Ayyrdap = e T T2 ) * G
x,. - g ) :
tan 28 = -(C—'1(2:'—)- i L (3.11)
n " a2 : - _
and €197€0p & Ln()\”,l22)

The strain calculations'just desaribed jare simply another-aig for
thg d;signer. The cdmplepe program package including the mapping;
remapping routines etc..is exemplified in App¥ndix D through a number of
flow‘cﬁarts. An explanation of the purpose of each ;dbroutine is.giveﬁ
in Appendix E. :

As already indicated the‘usefulne of the modellcan onlgm be
established after_applying it to a number of industrial panels. In the
following section one further example of the modei is provided, as
applied to an industrial stamping. | :

**
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3.7 Modelling of an Automobile Inner Panel

An inner deck-11d of 'a mid-size vehicle was selected for thfa
study a photograph of \;hi'c‘hiis shown in Figure 2.4; the left- and right-
hénq sidesz of the panel are symmetric. - An array of square_‘_elc‘:ments' was
sc‘_ribed.- on the meta.l blank prior to forming, and measurements made on
the defb;'tned and una.efor:;ed grid_:;. determine the strains distributed on
the'sﬁrfaée of the component. Details of cxpe_r'iméntal strain evalua-
tions on .the zgurfa'ce of the panel have been previously desc?ibed in
Q".napter. 2

. ’ .
3.7.1 Mesh Generation and Boundary Conditions

A.ri intersecting palr of grid 1ines (preferably orthogonal lines}
hgs to be established on the surface before the mapping_ can proceed.
‘These are lines o'f‘ symmetry or dividing‘-lines. .such that poiril'ts can move
along these lines but not across them. On _the deformed panel of Fig.
2.4 the.';e.lines , marked X and Y are settled by "insbéctioﬁ'." The designer
ha‘s to decide upon the location of these houndary iine: ghen,markin'g the
‘grid on the surface, and in addition he decides whether any.change in-
line length has _ocl;zr.:"ed betwéen the nodes alohg these lines. The noddl
positiop of the eleménts :are thus known along these bouﬁdary lines in
the -.flat; plan\e and_ locating these 1is the fir'.'st‘ step in the mapping
process. - '

A grid of quadrilateral elements was drawn a.rbitrarily 0;1 the

deformed-panel using a marker pen, forming an airr:ay of squal number of

rows and columns, i{.e. the elements are topologically rectangular. A
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photograph of half of the original panel i3 shown in Figure 3.18, which
~ ' .

was removed from the original -stamping for the convenience of digitiz-

ing. The grid of lines marked on the sur face of:‘'the component is_

clear}y vi‘sible. (It is observed from the %hotograph that ad;iitional
pleces of shget metal were ;‘added—on"- to the boundaries of the panel_
such that- the hand—drawn gr.id may be extended bey;:gld the trim line.
These addipiona.nl pieces of mé-ta‘ls.ue;r'e simply bolted on_bo the peripheral
of the deformed part.) It will be appréciat.ed that in order-to control
the panel during fominé. the sheet must éxt._end beyond the boundary of
the final part to provide materlal for contr:olling tension and restrain-
ing the edge.:.. With any moder'at.ely_somisti'cated c:omputer-gr.a'plq'ica
system, 't.his‘ may be' achievea very eas‘ily. However, advanced compt;ter
graphics have nat been employec; in the. éurrenf study.

The mesh shown 1in Figure 3, 1'8.:was mea‘sured with the aid of a
millin-g machine. It will be|notic'e: tha‘t the 'are.a un-der- ipveatigation

embraces the most severely distorted regibns of the stamping. For

convenience the gridded domain ‘was subdivided into two regions. " Each

gocn;;ri.ses a grid sfze of 30 x 25 which is approximately 750 nodes. A

computer plot of part of the resulting mesh (léft—hand side of Figure

3.18) is illustrated in Figure 3.19; the dlagram provides a visual check

-

on the digitizing.

The displacement boundary conditions in the f plane'_are
specified in the same manner as described in section 3-.‘3..1(b) along the
pl‘anés ‘of symmef.ry ¥0Z and YOZ, and hence the "position of the bounldary

nodes 13 readily established.. ‘The 'élement':s can now be mapped_inﬁo a

o



88

flat plane using the method of the area criterion described previbusly;

the transformation i3 shown in Figure 3.20. A regular mesh 13 shown

overlaid on the resulting‘blénk in Figure 3.21, and remapped onto the

T

part surface. The resulting remap is shdwn in Figure 3.22. For com
pleteness, the samé analysis i; alsc performed on the right-hand side of
the p?nel as illustrated in Figure 3.18, and Figure 3.23, is the corres-
ponding c?uputer plot. Figure 3.24 is the resulting blank obtained “from
the mapping procedure as before a regular mesh i3 superimposed on :;é
irregular grid, see Figure 3.25, and 1is remapped to form ° ﬁﬂ; part

surface as shown in Figure 3.26.

3.7.2 .Discussion

The resulE of the mapping procedure for the complete stamping
illustrated in Figure 3.18, is shown 1niFigure §:27. The ungven edges
of the blank suggest thaé the modelling is not veéy‘realistic; neverthe-
less, the practical importance of'this s that the developed f{lat shape
could be considered as an initial blank. ‘This blank, at least theoreti-
cally, can be made to conform toe the surface in Figure 3.18 in such a
way that the area criterion 1mposgd previously is satisfied. It should
be noted that the blank generated is not the only one since it has been
Qemoﬁstrated in Appendix C that the mesh size and shape is likely to
play ah'important role when atﬁeﬁpting to represent the surfTace geometry
of a complex presslﬁg. It can be seen from Figure 3.18 that the hand-
drawn elements are relatively coarse and i{rregular. These produce large
errors in tbg,fcalculations of the basic variables of a triangle,

particularly in the regions of high strain gradient.

\

»

s
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Figure 3.19: Isometric projection of the left-hand irregular mesh shown
in Fig. 3.18.
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Figure 3.20: ~Constant area" mapping of the clement in Fig. 3.19 onto a
: " plane, | .
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Figure 3.22: . Remapping of the regular mesh onto the part surface,
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Figure 3.23: A computer plot of the right-hand irregular mesh on the
surface of the dsck-lid in Fig. 3.18.
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Figure 3.24: The mapping of "constant area" irregular patches onto a
plane.
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The surface obtained by remapping of the regular grid mesh (see
Figs. 3.22 and 3.26) is a smoothed version of the part surface since the
remapped nodes of the regular mesh do not represent precisely the
original surt‘acg. particular. in region of drawing-in. The erosion of
the surface becomes more significant if a coarse mesh 1s used to
represent the part surface, a corner or bend cannot be defined
accurately by plane triangular elements and that points within the
triangles do not lie on the actual part surface after remapping and
l;ence sharp corners will be eroded away. Bett.ér results might have been
obtained if smaller elements had been emplo'yed in areas where sharp
bends were present; however, a finer mesh may become very impractical
and difficult te mea:'.l::e. An examipation of the resulting remap grids
providé a good indication of how the sheet should form to achieve the
constant area deformation. For the purpose of clarity, the results of
the remapping shown in the above figures were also transferred to the
actual stamping and as already mentioned in Chapter 2 that holes were
drilled through the two identical panels ‘in order to provide some local
reference positions. These drilled holes were again utilized here to
establish the remapped points on the part surface. With nodes of the
hand drawn 1rreg;ﬁiar mesh as reference, then regular grid 'points were
manually located on the surface of th'e panel shown.in Figure 3.18 and
the relative positions of these points with respect to drilled holes
established. . Knowing the relative locations of the no;ies the resu1't1n-g'

remapping could then be cor_xatructe& on the second panel where positions

of drilled holes were marked. The resulting transformation is illus.-

o
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-
trated in Figure 3.28 and the following photographs show sSome
interesting features. In Figure 3.28, the;e is a region indicated by
the arrow where the shape of the part creates a‘local increase in area.
To satisfy this, material must be fed in from the edge. One cannot push
on the edge of the sheet but u;n this case, the tool desigﬁer has
provided draw beads near the corners to restrain the sheet here and
these beads are omitted in the middle to encourage feeding in the region
indicated. The direction of material flow is clearly illustrated by the
defo;mation of the regular mesh shown in the photograph and because tﬁs/
‘remap approximates a constant area transformation the material inflow is
greater than what has sctually happened. The (emapped grid also
provides a guide line to the dﬁsigner such that he may decide upon ngré
draw beads should be imposed on the sheet for controlling tension.
" The stamping has not been trimmed and was formed originally from
a rectangular sheet, If the .deformed mgsh accurately modelled the
actual deformation, grid lines at the edge would be parallel to the edge
of the metal. This is approximately so as Aillustrated in Figure 3.29
and measurement around the whole region modelled showed that the edge o}
the mapped grid departed by, at most, 4% of the blank gidth“f}mh the
actual metal edge. ' '
The strain distributions measured by the usual cifcle grid method

on the actual part and those computed from the mapping process are
coﬁpared in Figure 3.30. This shows the contours of effective strain
and while it may be seen that the character of the strain distribution

and magnitudes in the actual and modelled cases differ, the reglions of
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Flgure 3.28:

Pnotograph of the deck lid onto which the regular grid in
Figs, 3.22 and 3.25 has been transaferred, (The featuresa
in the region indicated have a large surface area.)
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Figure 3.29:

*

Pnotograph showing the approximate agreement between the
regular mesh and the edge of the stamping produced from a
rectangular blank.
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(c)

Figure 3,30: (b) Contours -of effective strains obtained from
measurenent of 0.2 in diameter grid circles on the
panel, _ . ‘

(¢)- Contours of effective strains computed from the
remapped regular mesh illustrated in :Fig. 3.28°
(region of points of peak strain, A to D are given in
(a)}. . ' ‘
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peak -strains in both cases coincide. 'ﬁ-e.designer‘ can ‘i?npose_
adjustments on the strain distribution in order to obtain a physically‘

~ mor'e feasible design.

3.8 Conclusions”

Experjence .needs to be obtained to determine the usefulness of
tﬁe modelling technique, however it Bas been shown that a geometrically
admissable transformation éar_l be produced between a f‘lqt:lsheet and a
formed part using the meth‘od of constant area pat.chesf. Computation
times for the mapping and remapping procedtlzres are relatively smail.\ In |
the p;'esent cas‘q_: it reqdired about 35 seconds on the P‘blﬁster Cybér
170/730 Central Computer to prévide the results shown in Figures 3.27
and 3.28. It suggests that the technique is suitab}je for an 1nterac§1ve
‘die de.sign system. . ,7 .

The method is pur.ely geometricl and do?:s‘nof. take account.of
equll@brium or’.ot‘ material  properties. - The r;|app1n.g 13,_éuid‘ed by
"arbitrary instructions fr_-o:it' the desigﬁer _bui'; even without ‘a;djustment. o
.the results obtai-riléd' on a complicated stamping appear to be very gaerul..
In the hands of-an' experiehced tool designer, it 13 expect.éd that this

will become a usef‘ul method of improving the speed and accuracy of tool B

design and will reduce the cost of tooling try-out and deveLopment.-

ey

\ The predictions of the current die design technique reveal
certain physical features occurred *in the actual pressing. In the
present study, restrictions have not been imposed on the movement of the

material at the boundaries, such as draw beads and the like in the
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stamping operation. Consequently, the predicted inflow of the mater ial
in certain regions will be larger than that which actually ocaués in
practice. This is a constraint which the designer could incorporate by
performing adjustment on the regular grid mesh before appiying the
- remapping process. By e¥ercising this, the analysis done by the
designer 1s performed as if draw beads were added on certain selected
areas of the part. This creates tensions and restricts the inflow of
the material pf the sheet, thus providing better control of the flow of

the material. ——
&

-
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CHAPTER 4

ON THE RATES OF STRESS AND STRAIN MEASURES IN FINITE DEFORMATION

4.1 Introduction

In plasticity any strain determined solely from the initial and
final shape of any observable element cannot be regarded as a state
parameter. The material state depends not only on the change in shape,
but also on the path along which the shape evolved [5,6]. For rate-

independent solids, the assumption of isotropic hardening can lead to a

simple relationship between the current representative stress (a measure

of the size of the yield surface) and the integral of the representative

straln increment, Sde. . As is well known df is a multiple of the second
invariant of the plastic strain increment tensor. fhis is an Eﬁlerian
description of the strain, since the components are measured with
respect.to the current configuration. The straiﬁ increment comﬁr;ses an
‘elastic and a ;;l-a;stic..part, and a number of investigators, see Refs
(20-23], have discussed how _t;.hese parts should be decomposed. The point
is not pursued here. ’

In sheet metal férming processes, the deformed component can
' experience iarge deformation: which may be essentially inhomogeneous in

nature., However, .in order to -btain a simple measure of straln, the

investigator 1is anticipating ‘that the straining will occur by

homogeneous deformation over a small local neighbourhood. Under this

postulation a square element will deform into a parallelogram, a circle

103
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into aﬁ ellipse and a sphere into an ellipsoid. The assumption -of
linear mapping is also embodied in theoretical studies of the geometry
of deformation, it is merely a matter of scale as to .whether the domaﬁn
of inspection is considered infinitesimai.or finite in extent This
‘presents no problems from a theoretical point of view, but in practice

the elements are finite and inhomogeneous straining may arise within the

boundary of a single element ., ‘

If the straining takes place by pure homogéneoué deformation

(pure stretching), the deformation gradient tepsor is symmetric and
. . «

there exists within a deforming cell an orthogonal triad which remains

orthogonal throwghout the deformation history. Without ambiguity this

triad represents the principal axes, and they remain fixed iqLSpace'

while all other line elements rotate. From the components of the

deformation gradient' tensor, the orientation and magnitude of' the

pﬁinc;pal stretches is readily detqrﬁin%&f ';ghe' total répresentative
strain is then a function of the natural logarithm of "the principal
stretches. In® pure stretch processes, it is sufficient“to measure

solely the initial and final shape of a grid element in- order to
evaluate the principal stretches. It is for the case of pure
homogeneocus de}ormation that Hill [24-26] proposed the tensor logarithm

as a conjugate strain.measure in his work on constitutive inequalities.

When the straining occurs by homogeneous deformation the deforma-

tion gradient tensor, say F, is uns ymmetric. However, an orthogonal

* The superposition of a rigid body rotation on the deformation by some
’ other agency {s not considered.
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triad'canr‘still be identifled in the ini‘tiall configuration (the
Lagrangian state) which is also orthogonal in the final {the Euler_ian
state} configuration. It must be emphasized that "this triad has not
remained orthogonal throughout the. defomation history,. .g.t undergoes
rotation and it is a moot point whether the name principal should be

ascribed to this triad. -,

When F is unsymmetric, this causes ‘s ome problems in i_’._hé__
evaluation of the ;ltrain, and"recoursé is made to techpifqués to devise 2z
symmetric tensor. The polar drecbmpositionAtﬁeorem allows F to be
exlpressed as either F =R -Uor FE =V - R. . The tensorr-s U and ¥
represent pure deformation "and are referred to as the right and lef‘t
Stretch tensor respectively, while R provides 2 rigﬁd body rg_tat.ion and
gT R b‘lt follows that u2 ;'ET ¢ F and 32 = F » ET, and ‘it is deemed

that’ the eigenvectors of V2 define the . orientation of an orthogonal_,

-

triad in the current. configuration and . those of U2 derine the
orientation of the same triad in the initial conf‘iguration._ ‘To the
associated strain ellipsoids, Hill [25,26] has ascribed t/he ‘name
Eulerian (for thé current strain ellipsoid) and Lagrangian ('t:or' the
init;.ial strain‘_;llipsoid). ‘ .

The above method of degomposit.ion is an artifice. Real
defomatioq processes do ﬁot oc;éur. i:n general, by some cqubipa?_on of
pure stretch and rigid body rotation or vice-versa. Neverthé;;ss. the
above theorem(is unique mathematjically and since the tensor F may be

regarded as a smooth and continuous function over a sufficiently smali

neighbourhood of interest, the polar decomposition could be applied to a
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Wwide range of practical problems. The components of F are functions of

time and spatial position. However, in prineiple if F is known, in the

~

above .sense, the deformation 1s uniquely defined. It follows from the
polar decomposition theorem that either one of the pure stretch tensors

U and V when acting alone will give the same shape change as_f. The

a

same change 1in shape does not {mply identical straining mod®s  as
% .

.di'scussed in Chapter 2. Sowerby and Chakravartl {6] have demonstrated
that pure homogeneous deformatiqn (pure:- strepch) brocesses minimise the
accumulated represen%&:ive strain, E, vis 3 vis tcl}e homogeneous deforma-
.e. This fact

entioned schemes which

tion mode {(unsymmetrical F) which produqes the sa
.
would not be realised through:any of the afore

produce a symmetric tensor.

The difference Anm repr-_esenta.tiye‘strain when the actual

deformation, E,' is replaced by the multiplicative dec“ompo_sitioh.,

Al

orm
\g_ H =V - E depends on the extent .of the deformation. | For
infinitesimal deformation increments, no disti/nct.ion 'uill be revealed,
because the antisymmetric part of _the de"fbrmation i3 ignored when
‘ , _
defining. iqi;nitiémal' strains. In numer-ical schemes such as finite
element met}lods, the error is likely to bg negligible for small deforma-,
tion steps. In fact, it may not be necessary to attempt to distinguish
between homogeneous deformation and pure stretch in practical sheet
metal forming operation, af least ae far as representative strain is
-J-..._,_,
concerned., As already illustrated in Chapter 2, a simple calculation

for the simple shear process, and also when the shape cﬁange is achieved

rby pure stretch, demonstrates 4here |{s about 10 peffent difference in

!

- P
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the repreéentative strain based on a shgar displaceﬁent of 1.5. This
would represent a large strain in sheet forming and an accumulated "€ of
about unity. It H{ll be realised that in real forming process the
straining path is“usually unknown, and therefpre if an estimate o( the
strain is required the only recourse is to assume a pure stretch @ode.

As alread} mentioned, when the process i3 one of pure stretch,

the logarithmic (natural) strain 1s an appropriate strain measure,-

Furthermore, for the‘pure_streteh mode the material derivative of the
-tensor logarithm, i.e., (&n E)i. is equal to the rate of deformation
‘tensor. D. Such a simple expression does not .hold when the deform?tion
gradient tensor, F is unsymmetric, but Gurtin- and Spear [27] derived a

-
relationship for arbltrary homogqneous deformation modes. Similar
results are developed in the present chapter, but-a different analytical
approach - is adopted. The utility of,tge cpsulting expressions in any
numerical scheme has still to be dgmoq;tratéd. Thé exﬁressi?ns involve
the spin of the triad.of th; Eulerian and Lagrangian ellipgoids. The
spins of~ the _ellig;oids have been déveloped by Biot [25] and more
recently by Hill [25,26]) when an infinitesimal deformation step is
,supéf{mposéd on finite stretches, and similar calculations are repeated
here but from a diffeﬁent staqdﬁoint.‘; In turn, the Lagrangian and
Eulerian rates of strain ‘are related to the corre;ponding spins.

‘ Anothér ';spect of the pr;sent Chapter i3 concerned witﬁ the
choice) of an appropria%e Stregs-'réte‘ to be used 1in Eonstitutive

equations for materials undergoing finite deformation. It has long beén

realized that when a material element experiences large deformation, the

Y.
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compbnents of stress_vary as a resul;\?f material rotation. .Thesze
changes occur even In the absence‘of additional strain. Apparently,
Zaremba [29,30] was the first to discovervthat when computing the rate
of> change of stress it {is necesséry to account for the effect of
materjial rotation. Since then élternative definitions of stress rate
have been introdugzazgy many investigators [31-34]. Yet, many seem to
have ignored the case Qﬁen material axes become strongly skewed owing to
;inite deformation and rotation. Recently, Dienes [35] has discussed
this phenomenon and proposed a stress rate tensor to account for the

skewing effect. ' .

. In finite deformation different "rotation"™ tensors can be,

—

defined. Consequently a wide choice of objective stress rates is
avalilable for adoption in constitutive equations., It is of interestuté
ascertain the influence of the stress rate on the eveolution of the
stresses in a deforming body. 1In this chaﬁter a number of different
'stress'rates are proposed and these can be shown-to be object;ve. The
utility of the résulting expressions is demonstrated for the case of a

&

hypoelastic material undergoing finite deformation 1in simple

(rectilinear) shear.

4,2  .Some Theoretical Fundamentals

‘ For simplicity, the analytical framawork uiil be expressed in

direct tensor notations in which the tensor .can be referred to its

]
A material is sald to be hypoelastie if the components of stress rate
are homogeneous linear function of the components: of the rate of
deformation.

Vs
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basis. Second order tensors are indicated by an underscore tilde on a
letter while vectors are indicated by a superposed bar on a letter.:

Some basic equations describing the deformation process are outlined'

-~

below.

4,.2.1 Deformatlon Gradient

The deformation of-an infiniéesimal neighbourhood dx(t) in the
deformed body V as shown in Figure 4.1 may be related to the initially
‘undeformed body by a linear affine mapping of the form {(the Lagrangian
description).

dx(t) = F(t) . df (4.1)
where dx(t) and df denote the current and initial positions of material

points and F(t) is the deformation gradient- tensor which is defined as

peey = 2208 - (u.2)
3X '
i
and its transpose is given by
v R(pT o X2 4.3)
X

At any given time, t, F(t) is a 3 x 3 wmatrix (for a three
dimensional . case) whose determinant 1is strictly positive and hence
admits the polar decOmpositfén

L. E(E) = R(E) + UCE) = V(B « RCE) : (4. 4)

In the above equation U(t) and ¥(t) represent purpe deformations and are

referred to as the right and Jeft stretch tenaorg fespectively, while

‘R(t) 1is an orthogonal tensor characterizing the rigid body rotation

S



Flgure 4,1

>l
X!

Diagram {llustrating the deformation of the vector d¥X.
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where

B(t)T z g(t)"

and
: T
R(L) - R(L) = 1. (4.5)
where 1 i3 an identity tensor. It follows from (4.4) and (4.5) that
y=8" -y 8, (5.6)

and omitted hereinafter is the notation indicating the dependence of

these tensors on time. Fyrthermore U can be expressed as

.l.’,=f,‘ﬁ‘2r- (4.7 a)

or

SNC a=pleyep | (4. o)

1]
Fia-)

where X is the diagonal ‘tensor (matrix) of U whose components are the

principal stretch values (eigenvalues). The entity P 1s another

-1 T

orthogonal tensor, P = P, with the unit eigenvectors (principal

directions) of U as columns of the matrix. It can be shown [6,36] that

thU =P -tn)- P, (4.8)

This relation suggests that the components of a tensor logarithm
transform exactly like ordinary tensor transfbrmation.
. .

4.2.2 Velocity Gradient

Utilizing the concept of material time derivative, the Eulerian
description of the process is given by
dv = I, - dX, g 9

where L 13 the spatfal velocity gradieht tensor and is equal to

L:zg .'5‘1 (4. 10a)

o o~



&

and
L=D+¥W. (4.10b)
The instantaneous rate of change of elements in the deformed

configuration is usually defined in terms of the rate of deformation

tensor (stretching tensor) D. It is the symmetric part of the velocity

r

gradient tensor, and the antisymmetric part His termed the spin tensor.

Hence -
D=eth
T
‘W=(L-Ly2. (u4.11)

Equation (4.9) can be solved explicitly to reveal (4.1), if the

components of L are constants in the chosen time interval. In a similar

manner to {4.7) it is formally possible to write

- -1 —
E=B-A-F o g=F'-g-

—~ —~

=]

(4.12)
where A 1s the diagonal tensor of the eigenvalues of F and P the asso-

ciated tensor of the eigenvectors. Note in this case F is not symmetric

—~

and hence the eligenvalues need not been real nor are the eigenvectors
orthogonal. It has already.been discussed in Chapter. 2 "that (4.10a)
could be ;ntegrated as

L*:[Ldt=tnF,
aﬁd in view of (4,8) and (4.12)

L =F- tan -5, (4.13)
The solution to the right hand side of the above equation has been given
in Ohapter 2 for finite homogeﬁeous deformation processes for the

special case wheén the components of'k are constants, 1.e. a homogeneous

velocity field. In practice the components of L are not known directly.
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Hence the components of L¥, in (4.13), are expressed in terms of the
components of F, since it is these latter quantities which are usually
determined following some deformation step. Typically thi; dis
accomplished by measuring a grid of lines which have been prjevi_.ous'ly
marked on the .'.u;rface of the component or workpiece.

In Ref. [6] a proposal is made for making the L¥® matrix

symmetric, and then caiculat.ing the resulting representative strain.

The technique is shown to bhe equivalent to splitting up the finite .

.

deformation 1into a .}arge (infinite) number of incremental .';teps. to
’. ) ‘ ! .

calculate at each step the representative strain increment and to sum

these for the total representative strain.

when F 1is symmetric, the components of L* are given by the

‘transformation of a dia"gonal inat.f'ix vhose ¢oiupc_ments,-are the princ_ipal
natural (logarithmic) strains. This will be-"apparent by regdgnising

that the right hand -side of (4.13) is now identical to (4.8).

P
.

4.3 Some Basic Measures of Stress and Strain

Some’ f‘u;mdauental ,definitions ol appropriate méésurea of stress,
strain and their rates, \.'fhic.h may be employed in t.lh§ basic formulation
of finite deformation problem.;. for either . elastic or elast.ic-:plastic
solids are pres;ented her;in. Often it 13 convenlient to choose an
Eulerian stress measure uhict; is associated ui.th an Eulerian strain or
the rate of deformation tensor’ D, The stress and the assoclated strain

i3 usually called a conJugéi‘.e palr. o

fl
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4.3.1 Conjugate Variables

Consider the possibility of having various stress and strain

pgirs all giving the same rate of work per unit volpne of material.
Define the rate of work done by the Cauchy stress ﬁer unit
current volume of maéerial as
— wWlg) =g :L=g:D (4. 14)
where ¢ i3 the Cauchy stress Lensor.
Gbserve that the rate of internal work per unit reference volume
remains unchanged from (4,14) if we write _
w=Jg:Ll=z1:l, . (4.15)
where J = po/p is calléd ;he Jacobian; po and p aré phe d?nsities in tﬁe
undeformed and deformed configuration fesbectively. In the\above I is
the Kirchhoff stress tensor, which is related to the Cauchy stress as
follows _ -
T=Jg (4.16)

Some well-known conjugate stress and deformation measures

-

saﬁisfyipg equations (4.15) are summarized below, see Refs. [24,37] for

further detaiis. It can be shown that

I:E=8:E=¢:

~

(.7

e
]

1

H{=)

where the pseudo-stress tensors are:

I=EF -1 — the first Piola-Kirchhoff stress tensor;
S = E_1 rx- E-T - the second Plola-Kirchhoff stress tensor;
t = ET c1-F - the covariant Kirchhoff stresﬁ tensor;
and
T

Green's strain tensor;

=
1}
~
™
[ ]
e
t
iz
S
'

™
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) -T
€=(1L~E  +F )/2 - the Almansi strain tensor.

4,3.2 Stress Rates
The material time rate of change of a tensor £ .is given by
. 1 3 *
E 32—+ v+ — : (4.18)
where v = ;(;.t) = the spatial description of the velocity field and

the material rate operator (spatial description) is expressed as

a
t

3 - ]
=3tV — . (4.19)

X 4

[

The above relationships are helpful when analyzing various types
of stress rates. For any arbitrarily chosen region the conservation of
mass requires that m = 0, gnd this condition can be expressed by the

equation of continuity,

5+p3:—-“'=0. T {4.20)
-ax
4 . “a
Wnen analyzing stress rates, it is necessary to evaluate the material
rate of change of the density ratio pofp. where porls'the initial
density and independent of position. In view of equétions (%.19) and

(4.20), we obtain

(..p_o.). :.p_o..a.:_.v.
P P %
or i~y
J=gL: o). (4.21)

Consider taking the material rate of change of the first



Picla-Kirchhoff stress such that

Tk gL s eaL: DY, (4.22)

while the material derivative of the second Piola-Kirchoff stress tensor

results in

2 - T -T

S=JE +fg~-L-g-g-+L +gll: D)«F . (4.23)
Many more stress rates can be formulated, other possible measures

are those which are observed in coordinate system whiech deforms and

moves together with the material i.e., the convected coordinates. For

completeness some well-known measures of stress-rates are given below
without proof,_'for further details the readers are referred to Ref.

(38]. The Cauchy stress rate is defined as

g -LTg-g-L, (4. 28)

-~

while the Jaumann or co-rotaltional stress-rate is

{ ' E:_E',_fg-yv_y‘-g. (4.25)

The Truesdell stress rate is expressed as

i

1=K

g% = —l;"c-.-U'L

—~ o~

+a(L : 1) . (4.26)
A family of objective stressfrétes. when evaluated with .the current

state as reference (i.,e., g momentarily equal to D), héé’been-proposed
s 2

by Hill [24) such that

g = FEomeiReD o), . ween

where

+ 1T W -W .-, L.
_~ ~ e~ . ‘

8.7
e
i

is the Jaumann-Zaremba, or material co-rotational rate of Kirchhoff
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stress 1 and m i3 any real scalar.

- "

4.3.3 Principle of Material Frame Indifference

Constitutive equations must he invariant under changes of frame
of ref;rence. That 1is two observers in different coordinate system
observe the same stress in a glven bodﬁ. even In relative motion with
respect to each other. The principle—of material frame-indifference is’
also called the principle of objectivity.

Consider a motion of -the body B in bhe- starred frame which
differs from the motion of the same body in the unstarred frame by a
superimposed rigid body rotation and translation at time t, as shﬁwn in
Figure 4.2. Thus , ‘

Be = E(t) « Q) - B  (4.28)
where E* and E are éosiiion vectors with ‘respect to two different
frames. C(t) is the relative position vector cohne;ting the origins of
the two framé;. and g(t) is an orthogonal tensor rotatiné frame (*} into
the orientation of the unstarred frame, Q(t) satisfies the conditions

-0, 0.9 =1 and detg=1.

[ »]

"~

Assuming that the two frames had the same reference confiéﬁraﬁion
at time 't0 such that di' ‘= d¥X, the transformation formula for the
deformation gradient F under a change of frame at time t has the form

i "f.' =Q - gﬂ_, . | (4.29)

and owing to the uniqueness of polar decomposition of equation (4.4) it

follows that



starred frame unstarred frame

Figure 4.2: Schematic {)llustration of two ref‘erénce frames,

’

bl
-
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=
=
n
o
.
=

(4.30)

and

ue = U, (4.31)

In genéral a second order tensor { is frame Indifferent if it

satisfies the transformation law

g#=9-8-Q, (4.32)

R Method Of Analysis

4.4.1. Spins of the Strain Ellipsoids

H111'[25.26] has considered the rotation of the Lagrangian and

o

Eulerian strain ellipsoids awing to an infinitesimal deformation step

1

superimposed on the existing stretches, denoted by A , A.+ A, In order

1 2 3
to be able to make a distinction between the two ellipsoids the prior

process must have beenléhe of homogenecus deformation as opposed to pure

]
homogeneous deformation, i.e. pure stretch. The axes of the Lagranglan

ellipsolid gre defined as being the ground state directions of the
embedded orthogonal triad which are the current axes of the Eulerian
ellipsoidtaa An infinitesimal deformation is then superimposed on the

current Eulerian ellipsoid and the ensuing rotation calculated i.e. the

change in orientation between the axes of.the new and current ell;;;:;A*
It is to be noted that'éhe orthogonal triad which forms the axes of the
_ new ellipsoid, was noﬁ an orthogonal set immediately before the
increment. 4 -

A3 an illustration fof rotation about the 1-;xis Hill, op. cit,,

superimposes a symmetric deformation gradient, say dﬂ, where
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T 1  dn A \ i
[ - 23] A : (4.33)
dn32 AN o

and all the. components are referred to the \,éf and 3 axes of the

ellipsoid.. The rotation is calculated to first order as .
f"\ ) )\g + Xg ‘ . ’ .
= ' ' i, 34
, S =2 293 (’/( _ (4.3
2 3

i . i +

for A, £ A The rate af. rotation is

2 3° \ ’
-, -
2 .2 - o
Ao + A ) Y
1 ° -————‘Z 35.23 . w3
: A - A
e 2 3 .
) r
where €y T €3, € components of the FEulerian rate {f deformation

{:h‘e incremental deformation is not pure
(4.35) must be augmented by the rigid body rotation 1/2 (e

tensor, D. H@:’én
32 T fa23
Similarly the rotation of the Lagrangian ellipsoid about its own axes,

due to the superposftion of dn, is r

(225 Aq) 4 . {2h, Ag) )
2 3 . %23 x §
5¢1L = 22 dn23 ‘or . T ——-—-—'—Ae,ﬂ -,\2 oy v i (4.36)
.27 73 2=

3
with similar expressions for .the rate of rotation about the 2 and 3

axes.: .
R

-

(‘3)4 Lagrangian Strain Ellipsoid

The det:o,rmatioﬁ just described is that of a small stwain
superimposed on a large prior deformation. If the total deformation is

characteri{zed-by F, where



"the 1-axls of the chosen reference frame. From (4.37)

~
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~ PR
dn = A = E\N..U =V R ' . (H_BT)

~

£

- . ~ ~

- . Ik .
then the rotations g'iven in (4.34) and (H4.36) can be calculated

precisely.” As an lllus,trat.ion consider evaluating the rotation about

s

F = (4.38)
F

[Faz Fa3
Fip Fig

¥
) [ 1 n23][l2 0 ] . ‘ Az n23A3
n3> , i 0 13 n32A2 13

Define the components of the rotation tensor R, in the 2-3 plane-as

cos 0 -3in 6
t B = ’ (4.39)
sin 6. cos ©

& . \

and it is then easy to-show that

-

. F, ~F n,, (A, = A)

32 "3 a3 Yo Ay o
tan 8. = = . ' (4. 40)
1 | F22 +F33 (.\24—137_

Thus the rigid body rotation is smwall and

. (A )
- 23 3
3 tan 91_' e1 = (kz — A3) - (4.41)

The orientation of the principal axes of the Lagrangian strain el;l.ipse.

in the 2-3 plane, is calculated ‘from the com'ponents ’of the stretch

-

tensor U where : I L

. ' V— .
tan 2¢ F/’ 2U23 2 O F32} 22 23) | (4. 42)
v, - Fz Fz ) )
. —~ 22 ( - F ) + ( 23

—

This is"’alsza viry~3mal1 ngle. hence

) , F_F. +F__ F_ .
> PO 33 3, 22 23 '
. A& [ Bl . (4.43)

ARt - e z - 2
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which is identical to (4.36) if the second order quantity (F§2 _ F§3) is

ignored. See also Appendix F for more details.

(b) Eulerfan Strain Ellipsoid

The rotation of the Eulerian ellipse, to use Hili's’terminology.
, )
in the 2-3 plane i3 sum of equations (U4.41) and (4.43) -

e

u,
iw (L. 44)

$g = ¢

" which to first order can be shown to be identical to (4.34).

Aléernatively the rotation can be found ffom

- 2Vyg 2 (Fpp Fap + F3g Fpq) ) N
tan 2¢ o = 3 — 3y = > > 5 (4.15)
where for small angles E - o i
o F22 F32 + F33 F23
¢ . {4, U46)
1E (Fe 2 y (52 _ 2 ) .
22 7 "337 T ‘32 723

- " -

It will be apparent -that equations (H,42) and‘ (4.45) define the

1 -.E and F - ET respectively. For

orientation of the eigenvectors of F
a detailied derivation of the above equations the readers are referred. to

Append ix F. ‘ '

4.4,2 -Choice of Strain and Straih Rate Measures

A vhriét? of deformation or strain measures can be generated from -

3

the tensors U and ¥ and these are usually classified és being Lagréngian
and Eulerian respectively, in description; 'Hill'[25.26] has proposed a

general class of strain measures where the prineipal values are defined

' [
.
L

\
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a3

A!i = f(ki). with f(1? =0and £'(1) =1,

and f(ki) 13 any smooth monotonic function. In particular when
- ‘V . . 2m
f(xi) = (§i -1)/2m
the most commonly used strain measures are revealed. Hill, op. ecit.,
claims that logarithmic stralin measures (when m=0) can be advéntaquus
in certain constitutive 1nequ511ties, but points out that a number of °

researchers have considered that such mgasures can give rise to

L - w - . " .
analytical difficulties. -8toren.and Rice .[39] adopted the logarithmic.

measure In their formulation of deformation-theory models, but concluded

that no simple relationéhip existed sjoetWeen the time rate i.e. (1n g)‘
© .
and the rate of deformation. tens D. However, Hill, op effﬁ had

eatablished a relatiohship'betﬁeen (1n 2)° and a~function of D.

We develop below a general relationship between the lbgarithmic__
strain rate and Ehe rate of deformation tensor. ~Thé analysis has been
performed in an alterpative manner by Gurtin and Spear [7].

From (4.4), (4.5) and (4.10a) it follows that

L=@®@.0+R-0« @ <"

S RO LIPS TG I TR S S . (4.47)
likewise
epetler o o gt | (4.48)
Now |
D= 12 (L +‘Et)‘~
. _ . s el =1 e T | .
: = V2[R« .V +y -8 R, (4.49)
‘ and . j . ﬁ\ )
‘_’ ' /
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=12 R W-UT oy DRI R-RL. (4.50)

Similar expressions to (4.47) - (4.50) can be derived involving the left
'stretch tensor V. The quantiQy'B . ET may be interpreted as the angular

veloclty of the material, see the discussion by Dienes [19]. It is
t v - . ‘ .
clear\from (4.50) that, in general, the angular velocity is distinct

from the spin tensor W.

From (4.8) the time derivative of &n U is
n " PPl i muy —(nwy B P e f a7 BT,
Hence

=1 T .

. ET = (In W) + (zn o - f.--g‘ - P gT + (zn D) (4.51)

>

-

e

~

, P

The entity P - ET is another skew symmetric tensor rebrgseﬁting the rate

{

of rotation of the principal axes of y. i.e. the.spin of the Lagrangian
ellipsoid." The righf hand side 'of (4.51). can be regarded as' a
co-rotational rate of (£n E). say (&n E)o. relative td»tﬁé-priqgipal

axes of U. Such that

(n0° - tn ) +an -2 -2l Cp P (W)
then equation (9.51) becomes . -
- P-dea «plz(nm® . (H.52)

It can be shown that.

u- URES S LUpry PRI TR S L - (4.53)
Ll ~ [ad b s ~ 4
and |
1 . ‘ : -1 . :
N A P N MRS LIS I SRS (4.54)
where ' : . . K ‘
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. “-\'
< '\’
P BT b el

It follows from (4.49) that )
. [ Tr—'l —T - T T
D=R-(nw® -8 _12(-F-P S A A A
=R « {2n g)o . ET - sym (F . P . ET (8.55)

Siwliarly, it can be shown that
. T =13 : '

D=n N _sym(F - B« P «F )Y (4.56)

- while

H=E'ET+R.£.£T.ET-unsm(E.E;ET.E-1)‘ (u.57)

It can easlly be seen from (4.47) and {(4.53) the velocity gradient

L]

tensor becomes

+

’

L:E'R +;B"E'PT'B‘T+B“(!-I'!E)O'

IR I LI (8.58)

~

5?

—

Hi1l [26) had established a relationship between the logarithmic

strain tensor fn U and the rate of deformation gradient D. Note that
B}

Hill's result 1s derivable from the present thedry and this is
deﬁonstrated here, Eduation'(u.s) is differentiated with respect to
time to yield

can =B Rl st -@nw B ep g i - B (a9
In particular Hill, —op ¢it, treats the rotation bf the Lagranglan
eiiipsoid about 1ts own axes for the spegiél case where they ‘coincide
with the frame of refer;nce. Consequently |

| Rl

and ‘ Lo

in E = 4in ﬁ.

In view of these conditions, Equatibo. (4.59) reduces to-
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T

N R RSO S R N S

- AT (4.60)

Tae

- Bowever, the spin of the Lagrangian triad can be evaluated from P - ET,

and as an illustration for the spin about the l-axis
4] -1

L ’ (4.61)

where iiL is defined in (4.36). Upon substitutiﬁg (4.61) into (4.60) we

have the components in the 2-3 plane,

- .

X7\ o, &n (A_/x)
Gn ) - 22 LT (4.62a)
by An 00 X3y
or
(zna )"’ o, 2n(A_/A.) :
(tn 2" =| . 2 L2403 (4.62b)
. o
) oL n({2/l3) ’ (&n A3)
and (&n 12) = A2/A2 = Espr which is a component ofx the rate of

deformation tensor D. The right hand side of (4.62b) gives Hill's

result [26]). A detailed Q:qof of equations (4.55) and , (U4.62) are

-

provided in Appendix F.

. (o
\

“

4.4.3 Choice of Stress Rafe Measures
yop o . . :

In finite deformation processes material rotatii? becomes very
siﬁyé;icant. As a result- of material rotation the sﬁ ess domponents.
\ -

‘

will vary, and constitutive equations which involve stréss rate must be
formulated to compensate for the rotation. A'number of Btfess ratads are
examined and employed in a constﬁﬁutive .equation descr hypo-

elastic solid. The effect of stress rate on the evaluation of stress in
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1. . -

the deforming solid is demonstrated for the case when the body ungergoes
. - J A - e .

Vs b1 . .

simple shear deformation. Dienes (3b] has. proposed an expression for

the -mg;l:';ure ‘of stress rate in term of material rotétion where the -
objeci:i:.re stress rate is defined as
d=gvg-8-0-g.
and
s -8

For the sake of completeness the above.result is derived from a
more general standpoint. In addition alternative stress ;ates_ are
proposed which are a function of t#tipin of the Langrangian or Eulerian
ellipsoid. |

In order to choose a symmet.ri:c stress tensor which is conjugate‘
to E (momentarily equal to D in the r:éference state)'. it is convenient
to consider equation (4.15), i.e. the rate of work done per unit current

volume of the material. By employing the velocity gradient L=D+¥

such that the rate of work equation reduces to

wzx:D, | {4.63)
Rewriting equatfon (4.,55) as . | ‘
. B:E-!-ET. “(u.eu)”
vhere the tensor 2‘13 given -in terms of the right stretch tensor U as
A D _amy e BBt gy . (4.65)

Substiﬁuting equation (4.64) into (U4,63), the rat’;e‘of: work done becomes
1:2:1:(5°£°§T).' (4.66)

From the definition of the scalar produot of two secdnd order tensors,

it can be shown that ;



pip-aT - p i (AeBD

where A, B are the general second order tensors and 1 is the identity

tensor. Then applying the tensor transformation to (4.66) yields

T .
lR.Ez(B_ ',1-.5)'52
and we obtain a conjugate stress tensor In of the forﬁ
R - TR (4.67)

~

iR
Taking the time derivative of (4.67), and using the relation

B . ET = - 5 . ET, it can be found that
- I LI R RIS R SIS
.y

'[i*'[L'B-E'L}‘E" S . (4.68)
where 8 = E . E which is a skew symmetric tensor representingﬁthe rate
of_rotation—of the material. The quéntity in the bracket of (4.68) can
be regarded as a co-rotaﬂional stress rate such that it 13 defined as

T = i +1 -2 -9- 1. ' .(4.69)

o~

The time derivatize of the Kirchhoff stress tensor is expressed as (see

equation (4.21))

:Ig_'-c-J:q'

1
"

= Jo(L = 1) + Jé. . {4.69a)
Upon substituting the above equation 1ﬁto (4.69) and using L = D+ W,
the co-rotational stress rate becomes : -

= J{

1Ll o]
tas

+ O *

o
10

- g+ gDl (u.vo.)/.-/‘

The modified Cauchy or co-rotatlonal stress rate may then be defined‘as‘k,;-

§
~R

tas

PR I

ta

+ af(

o

B (4.71)
For incompressible material the above expression reduces to that of-the

result of Dienes, i.e.

-
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+ 0 * 0 -2 - 0. ‘ - (8.72)
Analogous tosthe development of (U4.71), a;\alternative measure of

stress rate is proposed, it has the form
| -
g=d+9-¢-¢+a+0(D:1), - (8.T3)

where the skew symmetric second order tensor ¢ may be expressed in terms

of the spin of the Lagrangian strain ellipsoid as

. _'r 0 1 '
o= BB o (4.78)
- - AN 0

Again for an isochoric deformation (U.73) reduces to

, . G=zg+agc -9 0 (4.75)
i . ~ -~ -

The tensor‘i can also be expressed in terms of the rate of rotation of

the Eulerian triad and it is evaluated from

}? {0 1 [l <
- 4= b (4.76)
~ a4 0 '

where ;L-and.;s are defined.in equations (ﬂ.36) and (4.35) respectively.

Anticlockwise rotation is regarded as posiﬁive here, ) i
The stress rate ¢ defined in (4.75) takes into account of the

raté of rotation of the principal axes with respect to the material

element due to finite deformation. This rate equation in fact contains

two different stress rate measures depending on the choice of the rate

) . L) o ’

of rotation tensor 3. It will be shown late;h%hat such a stress rate
— L . ; :

seems to. be of value when applied to finite deformation problems;

Depails of the above development can be found in Appendix F.

¥ - b ¥
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8.4.4 Frame Indifference Ouantirties

It is demo@ted in this section that the conjugate variables

which have defined previously are frame indifferent, for instance the

- ®
tensors ¢ and g.

Consider a motion of the a)ntinuum l.;ﬁich differs from the motion-
_only by a superimposed rigid-bo?i.y rota'glion'at time t, suci-n that ' ‘

dx" = @ - dF, . 77)
where the orthogonal tensor Q which rotates one frame to the other i3 a

funcetion of t and satisfies the conditions

Q-Q -1, and det Q = 1. (4.78)

- —~

It follows from the above that the rate of rotation of the starred frame

‘Wwith respect tq!’the frame of reference is defined as

Y (4.79)

~

w =

1O

and in view of (4.78)
T

w +

lE

Upon ut‘ilizing equations (4.77) to (4.80), the corresponding tensor

quantities-in the rotated (%) frame are obtained as follows:

Frame Indifferent Quantities Frame Dependent Quantities
. ' - * ’
Veg-y-g L'=g L Qe
3
| ] - *
B =g-p-g Ho=Q-H-gQ v
] T T
H_Q':g'(w—ﬂ)'Q D =20Q 2 « Q +w
~ ~ ~ o~ ~ ~ ™~ ~

The derivations of the above quantities gave not been given in

. a’r
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detail but can be found in many standard texts on continuum mechanics

[2-8%,37]. For completeness tensor variables which are not frame
invariant quantities are also outlined below:
- | us = Ui talU®=2aU; {(2n g!)' = (tn E)'-
(tn H‘)O = (Ln H)o ; A" =X and P* = E>-

In view of the above tensor variables in the rotated (*) frame it

can be shown from equation (4.65) that

P é’i | | (4.85)
‘which is obvious as D = R . é . ET such that .
. D® ;-5! - y% - RET
. Sq-R-y-BD - gF
=900 | (4.82)

is frame invarlant. ‘ .

Some particﬁlar constitutive equations include the material time
.derivative é of the stress tensor ¢ among the constitutive variables.
Such equations do not satisfy the principle of material
frame-indifference for arbitrary motion, the difficulty lies in the fact
that the material derivative é does not transform according to equat{on
(4.32) under an orthogonal change of the spatial feference frame even
though g does, f.e. g is not EF;me-indirferent, though ¢ is. We shall
_demonstrate that some of the co-rotationai stress rates that have-been‘
lproposed previously arerframe invariant. From equation (.32) g' can be

written as
- " =Q-g-Q. | (4.83)

~

When (4.83) is differentiated with respect to time it follows that
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Q .g-o- 8, (4.84)

~

*=Q-3+Q +3-0-

~

since the rate of rotation of the field in the rotated frame is

exp?éésed as
pF Q-0+ Q +u . (4.85)

where g = E . BT and w =

LD

- QT are skew symmetric tensors. Rearranging

equation (4.85) and using Q - ST = 1, glves - ' -
d-mr-g-9-8
and | . (4.86)
QT =Q - QT - QT . Q.

Substituting (4.86) into the equation {4.84), yields

(g* +o* + QF - Q% - g%) = Q- (g+0+2~-0Q+a) +Q

(4.87)

-~
tow
»
1l
o
HE+})
10

N

This result permits a wide choicé;

I

of Jaumann type derivatives all of
i . \ - .
which are objective. A similar proof can be applied to the stress rate
" “
g, as defined in (4.75), by siméhy replacing 2 with ¢. In general ¢, a
skew symmetric tenser, i3 not frame-indifferent. Hence,
k. J
S Qg9 v

3 -

L]
=
=
.
f o]

|
0

.
e

and . | : (4.88)

T ‘
=9 Q- Q ¢ bR

1O

Upon utilizing equation (4.88), equation (4.84) becomes

- r~ .
(o* i ] g% . 2: - il .Egl) Q +« (g + g -

~ ~

e
1
133
Q
N
Fo}

or

tay
=
"
o
{=1]
10O

(4.89)



- 133

Any one of the stress rates that have been discussed previously
may be used to formulat‘er a péoper constitutive equation whereby the
rotational effect ot‘-the material has been taken into consideration. As
such the coﬁponents of the stress derived !‘rcx_n' the constitutive law are
frame indifferent, i.e. the stresse;is.of a deforming body observed by
different’ viewers are the same. The utility of the expressions in a
numerical :chéme will be demonstrated in .the next section. ~ The
aforementioned theory developed so far f‘orm.s the fundamental important

aspects of wmaterial rotations, stress rates and strain measures in

finite hanogéneods deformation processes.

k.5 Rotations and Stress Rates in Simple Shear

The explicit formulae for the various objective stress rates
developed in section 4.4.3 are empioyed to .ascertain- the influénce of
the stress rate on the evolution of the stresses in a d'eforg:ing body.
The rate equations are applied to the flow of a hyp’oelastié material
undergoing simple, rectilinear shear defoﬁﬁation.

The simple shear mode 1is illustrated in Figure 4.3, thg'
deformation mode has uide—spreéd- engineering apblications b'ecau‘se it s
considered to represent the torsion of a thin walled tubé. " In Figure
4.3(e), the point C is displaced horizontally a distanpehh‘ to C'. Ir
the initial length of OC is taken as unfity then OC' = /(14-82) while OA
does not alter in llengti;::' '&t Y r.epr.esent_the cha:"lée in t._g'g unit right

-4

angle and therefore

- .
N I

tany = S - . (4.90)



Finite simple-shear_defor_m tion,
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, deformed

The under formed unit cube.
The deformed element.
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The deformed configuration of ('b) + in 'two-dim‘ﬁslonal
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The homogeneous det‘bruLa—t;ion {s represented by the kinematic relations
_ A_ - ~ , :
x =X Ssy
. Q o [
Y = YO (H.9‘Ll
R Lo
z =27 . ~
- ° . T
\ For a shear displacement S the deformation gradient tensor is
NS " . 18 0 '
- E={0 o : (4.92)
. 0 071
The components-of the rotation tensor R are
Y ’ cos® sinB. O
i . . X
3 : _ ¥ 4 4. 93)
! R = ~sin®d cés8 O (4.93)
0 0 1
. ’therefore, S
— ) o4
S L fo 1 o
. “‘ °
Q=R ,rf =8 [-1 0 o0 ’ - (4.94)
0 0 o
. : ‘ ‘ *’
/\_l From equations [(4.4), (4.92) ‘and (%4.93) it follows that the angle of
rotation @ ) R |
S N Ttand = 572 S (4.95)

' uﬁlle rro?u' (4.42) ‘tihe "olr"ientation of the principal axes of the
i- ‘ ;' - :

Lagrangian'ellipsoid is obtained as (anticlockwise from x-axis)

N tan 2¢ = -2/8. - (4.96)

Likewise from (4.45) the orientation of the ‘prinecipal axes of t'h’e.

Eulerian ellipsold 1is

Ld

}' - tan é’s = 2/5. e
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Diff'erentiat‘ing (4.95) wirgl respect to time, yields ' i
Y . dsecs =582 L 14.98)
y -2 2.. = "
(8 + 2 tand 87) sec 8 'z §/2 , (4.99)

For the simple shear process if the element deforms with constant speed

. Y

”buch that S = 0 and therefore (4.99) becomes

8 + 2 tang 6° = 0 : (4.100)
Similarly from (4.96) .
2 - . 2 . .
. ) S ¢L = 5 cos 2¢L. (4.101)}
and with S = ¢
- - - 2 e - .
2¢E-SS+S ¢ =-25 ¢, sin uch,/ , (4.102)
where the quantity ¢ is defined in (4.36), it is the spin of the

L
Lagrangian ellipsoid.

The velbcity gradient tensor ¢an be obtained through (4. 10a) such

that L

L= o o o (4.103)

o
(7,1
[ ]

L]

"I‘hg separakion of the velocity gradient tens.or into the symmetric and
antisymmetric parts leads to the rate of deformation ten,;':or'
T o $/2 o

b={8%&2 o o C (4. 104)
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and the =pin tensor .
- =,

H=(-82 o o (4. 105)

.In order to illustrate the main rEaults of the 3tress
calculations, we consider the simplest form of a hypo—elastic material

of grade zero with the constitutive equation of the form

=" X trace (D) 1+ 2y D, ) - (4.106)
In the above equation A and u are Lame's constants, 1 the identity
tensor and E an objective stress_ rate, The stress rates discussed

previously are repeated here for convenience. The Jaumann stress rate

+2-H—t\2, _ (4.107)

" while Dienes [35]1 proposed the following' objective rate or equation

is defined as

laa
Q.

(4.72) , '

+g+2-02+4q. | (4.108)

las \

-

Another stress rate proposed in this work is defined as

| 3
g =

~

Qe

A0 d-¢ g, , (4.109) .
The above stres$ rates are employed to ascertain whHat effect the

rotations will ‘have on the resulting stresses.

~Af (4,107} is substituted into (4.106) we find that

I = S6yp = 0 , |
- - n-. = . u.
012 + S/2 011 S5/2 022 us ( 110)-
‘ - 22t 2 7 | -
combining these equations. and noting that S = 0, the following
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differential equation is obtained

2. -
do

11 .2 .2
5+ 5% 0y, = uST CRARLPE

dt

The above equation. can be solved explicitly, and -for an initially
stress;free state ,the solution for the .stresses is

m (1 - cos &)

- : 9491 "
g, = 1 3in Se (4.112)
.o 022 = -u (cos ét - 1)- -

The above equation predicts that thg.stresaes are periodic and th¥s 1is
physically incqrrect; The variation of the non-dimensional stresses
(011/u and 012/u) with the shear displacement S is.shown in Fiéure u.ﬁ.
It i{s to be noted that Nagtegaal and De Jong [39] have calculated
a periodic variatién in stresses f&? _both elasbic-plastic and

rigid-plastic solids undergoing rectilinear shear based on a kinematic

hardening model. The position of the centre o\t2 the yield locus was

cﬁaracterised by a shift (or back-stresé) tensorkg, and the objective
rate of change of this ténsor_uas taken to pe.the Jaumann derivative.
Lee and his co-workers {40] have cbnsifeﬁed alternative rotation terms
(different to any of .those employeduhere) iﬁ the” objectiye back stress
rate as means of elimihating the oscillation in the‘stressmcém;onents..
In‘poth Refs, [39 and 40] the Eesults were obtained numerically usiﬁg a
finite element anjjysia. _?ﬂulé.the implications of the findings are
clear, t:;M;?umerical scheme tended to mask ﬁhe_ grecisérlrole of a
particular objective stress rate, It is considered’ that the present

work demonstrates the influence in a much more direct and lucid manner.

(Y
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) ’ ) .- : Y
-Iﬂ\(ﬂ.d@&) is substituted into (4.106) we find
L= . am ﬂ = =-
P117F 9yq T FMyp0yy = AD, 2 0 |
812 = %12 = B0, + 9ty = D, (8.113)
= g Q = D :' ’
800 = 9gp * A9, = 2uD,, =0 :
The above equations can be combined to yleld
d2"11 do,, ’ 2 -
+ 2t5he + 4o = Upsec™0 ‘ (4. 114)

In solving (4.113) Dienes, op cit, assumed that 6=0, which is not true
if g = 0, as can be seen from (H4.100). With g = 0, the tan 6 term in
(4.114) vanishes, and the equagidn can be solved explicitly [35]. Aé_it
stands the eqﬁation mﬁgt be solved numerically, and this was done in the’

present work.  The corresponding shear stress is given by

do

o1 %%
%12 T2 Qe

(4. 115)

. ’

The variation of the non-dimersional stresses'311/u and ajz/u :}th S is

shown in Fig. 4.4, also fllustrated, is the result obtained by Dienes

[35]) by assuming 8 = 0. : ' °®
_ N _
Finally conjoining (4.109) with . (4,106), and adopting the same |

procedure leading to (4.11)) and (ﬂ2114) we obtain the differential

=~ - -

equation _
d2°11 49, - | oy %
- 4 cot 2¢, + o .= 8 u cosec™ 28, , . {4.116)
L L,

which has to be solv;;\hunerically.- The shear stress {s obtained from

. . : {
19, | .17
012 = 2 d¢ . -

The vafiation of 012/u with S is demonstrated/ih Fig. 4.4(b).

-
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. ’ 3
Rather than use the spin of the Lagrangian ellipso%d in (4.109),
which finally leads to (4,116) and (4.117), the spin of" the Eulerian
ellipsoid could have been adopted. ' The Eulerian spin tensor, defined by =

equation (4.76) can be evaluated from|(4.97) in a like manner to téj///’

"\
Lagrangian spin., * The solution of the stresses follows in an identical —

fashion, and instead of‘(u.116) and (4.117) the following differential

equations are determined

2
d"a doy
11 30y ot g + B0, = -Bu cosec” 2. . (4.118)

e 1
A T /f ! )

and

do | :{ ’ .
S12f Ta Sl 119)

)
which have to be solved»numericall&. It transpires that the variation
of 012/u with Ji is exactly the saﬁghas that obtalned when using the
Lagrangian spin. For more detaiia of the above derivations the readers
are referred to Appendix F. : :

.

-

4,5.1 Discussion

The result of the n&n—dimensional normal stress 011/u Yeraus the
shear, displacement S 1s Elott‘ in Figure 4.4(a) while that of the shear
' stress 012/u with S is_fiven ip Figure 4,4(b). It ‘is e;idenb from
Figurg 4.4 that the p;oposeq Bﬁs;ctive stress rates have a significant
influenqé on the evolution of the stresses: Only the Jaﬁmann rape leads

to an oséillation in the normal and shear components of stress, and as
e
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oy,
.

4
already remarked this is /physically unacceptable. However the

~

oscillation does not begin until a relatively large shear displacement

- -

has been attained. At small displacemeﬁt’all the objective rates give
essentially the same shear stress. In the present examination, the
modified Dienes solution provides a much lower stress level and it falls
within the domain ofrthe cla;sical Jaumann rate for large strain; notice
;hat the components of stress obtained 'would be erroneous, if 6 is
neglected when S = 0, as was done by Dienes. It has already been
demonstrated ;n equation (4,100) that this is inaccurate. Flgure 4.4
indicates that the difference in stresses of the two solutlons increases
when the shear strain is above 100 percent.

The objective r;te ihvolving the spin of ;ither the Eulerian or
Lagrangian ellipsoid results Iin a. shear stress variation that follows
vi;y closely the shear stress derived using the Jaumann rate, up to a
shear displacement in excess of unity. Although, the component of Fhe
non-dimensional normal stress 011/u obtained from the spin of the
Eulerian ellipsoid possesses entirelykdifferent behaviour from any one
of the s%ress rates described above_(see.Fig&re 4.4(a)). Due {o large
rotation ofumaterial element, the rate of rotation of the tégrangign

ad, éL' counteracts that of the Eulerian strain triad, éE' such that
the same shear stresas behaviour'reveals..although the dirgct stresses”

are completely differént. | .
It is suggested that the stress rates developed im this uork may

be employed for analyzing problems involving ‘large strain and/or large

rotations in order to assess the various components of stress.
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4,5,2 Conclusions

The earlier part of this chapter dealt with choice ‘of an

—

v/ e

_appropriate strain measure §6r pure homogeneous deformation. In keeping

withh previous pfoposals, to be found in earlier published work,
logarithmic (or natural) strain was deemed to be suitable. As is well

known the material time derivation of this strain measure 13 equal to

the rate of deformation tensor. HNo such simple relationship helds when

the deformation occurs by ar homogeneous mode 1{.e. an unsymmetric
deformation gradient tensor. However, aé attempt has been made to
establish_relationshipa betueeé a time derivative of fln E) and'thg rate
of deformation tgns;r.,g. The resulting expressions are qufte complex
and their utglity in any numerical scheme awaits demonstration.

As-mentisned herein a number of different "rotation™ tensors can
be defined in finite homoéeﬁeous deformation. A numbér Iof these
rotation\tensors have been defined in the chapter. Soméwhat'eérlier
Hill had evaluated the spin (or rate of rotation) of the so célled
Lagrangian and Eulerién 3traihl ellipsoids,, following a superimposed
infinitesimal defbrmatioh step on a prééggisting finite defé}mation
mode. Similar‘ calculations have been performed here but from a
different theoretical standpoint. and the writer believki;Fhe spin terms
have been determined in a more straightforward manner.

&he existence of different rotation tensors give rise to a number
of diffgr@ht' obJective atress ratés. which are all availaSIe for

- adoption in constitutive equations. The latter part of this chapter has

dealt with how the’ choice of a particular stress rate can influence the

—_—

. AN

’ ' ~
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evaluation of the stresses in finite deformation process, As an
illustration..stress calculations wére performed for hypoelastic
materlal undergoing simple (rectilinear) shear the results using the
different stress rates are compared with those obtalned using the
¢classical Jaumann Fate. It transpires that for small strain all the
objective stress rates can be employed. However, at strain in excéss of
.unity the Jaumann rate gives rise to unacceptable oscillaticns .in
stress. Such oscillations were hot present with the other pbjgctive
stress rates, and in particular those stress rates which were ;mfunctiqn_
. of the spin of‘the Eulerian or Lagrangian strain ellipsocids were shown
to bé appropriate. Nonetheless‘the utility of the'varioﬁs stress rates

adopted-herein in any numerical schemes for analyzing prSBIéms involving

large strgig‘and/or large rotations awaits further demonstration.

~
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APPENDIX A

The Evaluation of Finite Strain

If we consider the case of pure homogeneous deformation then the

deformation gradient tensor is a symmetfic second order tensor, say F =

U, and the eiéenvalues and eigenvectoré (the principal stretch ratios
and their orientation) can bhe obtaiéed in the usual ;ay. Consequently
it makes no difference whéther thé components of the tensor are finite
or infinitesimal in extent, as to the manner in which the qigenvalues
énd eigenvectors are det?rmined. i * //—’

For simplicity a two dimensionakj‘defo’rr.n’ati‘on mode is considered,
such as a ‘thin incompressible membrane being -deformed in its own plane.__
In such a case it is demonstrated below how the"eigenvalueé and
eigenvectors can be evaluated from a l‘bhn,:s\\circle construction, a

P
technique familiar to most engineers.

As already described in Chapter 2 the new coordinates (x,y) of a
point are a 1linear function of the initial coordinates, say (XO.YA).

such that
x=F « X . (A1)
~ o
However, under the pure homogeneous straining mode illustrated in Figure
2.1, the coefficients of F in (A.1) are’ symmetric. A geometric
interpretation of the coefficients is available from Figure 2.1 in
conj-unction with Equation (2.1).
On the basis of the deformation model shown in Figure 2.1, it is

v

145 ' -
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&
easily verified that i
Fo = 1/—2(1”'+ Ayp) + 1/2Qh = Ay )cos28
Fap = 1/20A, X ) = 17200 | = Aaz)'cosze (A.2)
Flo= f21 = _sinze(x'” - x22)/2 )

where A11. A__, are principal elongation ratios while 6, &Egjprincipal

22
orientation.
From (A.2) it is apparent that the coefficients are derivable
jf&

- N .
a rbhr‘s‘qirclq construction. The eircle has extreme values AII'-

122 and is of radius 1(2(}11,- 122). see Figure (A.1). The orientation

of the principal axes is &etermined from v -
2F12 K :
. tan 26 = ﬁ—F—-—' (A. 3)
N\ ‘ 11 22 .

|

/"\qgg/ggg,pr?noipal elongation ratios from -

F F -F
v o ot - Fp) (A1)
11722 2 - 2N\ cos2b )
. . .
or : ' Tl
/\) h
4 Fiq +F Fiq = Fop 2
A st re2,  nn- a2l 2 - (A.5)
1122 T .2 T2 R .

-

When interpreting the orientation of the eigenvectors, given by

(A.3), using 'Mohr's circle it is ﬁecessary to adopt a sign convention
. why

+when fixing the "shear" components, F12 and F21. on the circle. With

reference to Fig. 2.1, when the oriéinal right angle, /_COA, decreases

21
negative in Mohr's circleé\ as shown in Fig.. (A.1). Just the reverse

i . 3 —y N .
both F12 and F__ are regarded as positive in (A.3) but F21 is plottgd as

" occurs when the original right angle increases.

T *

™~ : /"’_ - . \ . \,
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oy - APPENDIX B
g . The Plotting of Strain Contours
Ihtrodﬁction ) | - ] | \Q v

One of the major problems with mény numerical tech_niques.'

particularly the f‘inite' element method, is the voluminous ocutput

produced by the analysis and the time required to interpr'et. these

-~
m;;}lts. Quite often the results are obtained ~at a great many discrete

points‘and “this makes the task of/@ng the results very dift‘icult.
The use of the automatic ‘plot.ter to produce a visual inl;erpretat;ion of

. ) . | | ,
the various aspects of the computed data alleviates this difficulty to a

. b

i : . o
great extent. A number of graphical methods may be used, some of uhi_ch

-are: . . : -

a) jsoclinic line@™&r lines of constant principal angle,

b) strain trajectories, uhich are the loci of t.he directions ot‘

_ constant principal 'strain, ]

c) . isostrain or strain lines — equai--‘ strain contouf's'.

d) pri_.nci..pal surface strain plot, using. e:‘ and 'c2 .a's’ ‘coordir?ate
axes.. The [;rincipal surface st.rains. -aluated wit.hin a grid
element .ia re i:ed by‘ one point (or vector@% thi# space, |

@)  isometric's o

an isometric ¥
Contours of strain level a,re one of the most convenient types or

P
L Y

display. They. may be drawn over the whcyﬁavea of t;he system or- over' :

» in which a straih-Msurfacé” is plotted in |

i




. projected onto the x-y plane.

‘ diacontinuity in strain from

-

cula 05r_’ea of Interest. Wnen regions of high strain gradients

rest, the contour plot is the most 'informat.ivg. The strain

- ‘ are essentially 'slices of equal magnitude of the surface

Regions of high strain gradients are

easily recognizable as contour lines that;' bunch together. Some of the

‘L'\methodsvmentioned above' have been discussed- in many finite element

texts.

As described in section 2.2.2, a new technique for grid strain

te

determinations from a deformed pair of lines has been discussed.

‘ §
analytjgeal procedures allow for the evaluation of the magnitude and

“These

B

orientation of ’iﬁé strain on the Surface of sheet metal stanpings

although in regions of high strairr grad\fents, elements may exhibit

one element . to the next across t.he sheet.~

1

In order to facilitate the interpretation of strain on the ini_tial

undeformed sheet, two’ typés of averaging of ,strains of two (@dj‘aeent

elements a}'e employed.'

In one where a quadrilatéral is formed from ¥wo
, .

defined triangles, the average strain of‘ the two triangles is taken as

—

the strain at the cent‘.roid ‘of the quadrilat.eral. In the mond—.h:pg,/'

the strains of a11 the triangular element.s connected to a _node are

summed and divided by t.he nunber of e}.ements as shom in Figure B.1,
i.e., the strain at A is equal to one-sixth of ‘the sum of the sgrains of

all six elementé\sdrromd- it. In this work, the latter methodfﬁis

employed for contour 'display. This technique usually gives a fairly

smooth _strain distribution,

»

however the boundary nodes and -nodes in

regions of high strain gradients are not necessarily well

i

smoothed.
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Figure B, 1: The Strain at A is the mean average of sum of strains of

the surroundlng elements connected to node A,



INPUT
LCOL, LROW, SCdd. LAB, KQQ,
Nodal coordinates (XY,
Nodal strains andg ISM

'

INPUT

NCON and valuss of CALL GERMH
- desired contours

GENERATE
Nodal conneclivity
ang Element connectivity

CALL CONTOUR

—

GENERATE
2 20 plot lor the
inpt._lt blank

]

CONDUCT
an element-by-element \
search for all contours :

{

15
the contour
contained In an
elemant
“« ?

INTERPOLATE
contour valiues lrom Lhe
glven nodal strain values

SMODTH OuT STORE
all contours by a ~ - Lhe calculated
Cubic Sptine Function ) comours
REPORT

all contours obisined
and generate the
reBulting plot

YES

Figure B.2: A flow chart of contour developments.
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Figure B.3: Diagram showing a contowr line formed by. straight segments
. - ‘between points, .
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Nonetheless. with the advance in the use of computer graphics, a visual
display of contour lines can be very convenient and helpful. Areas of
peak strain are immedi;tely obvious to a part designer, the necessary
chénges aﬁd adjustments to the component under consideration cén.thep be
made and a more desirable com;bnent ;ay be achieved.

In this Appendix, a céntour plqtting 'technique is discussed.
Though the.present‘toutine provides contour plbts onl& on a 2D plane,

ﬁhe dévelopnent is general enbugh that this could be modified to give a

‘30 contour display. The computer program uses the basic library
-plbtting subroutine PLOT td draw the contours. It -has been successfully

'ﬁépd on the Versatec and Calcomp plbtters. A program listing and user

procedures for running the program can be found in a report (41]
compiled by the writer. For completeness, a flow chart of the logical

development of the routine fs given in Figure B.2.

Basic Concept

-

The basic idea for contour plottings is explained by means of an
example as shown in Figure B.3. Values of nodal strain are indicated on-

the diagram. Suppose that 10% strain contour is required, i.e., strain

.value of -0.1. the computer will then perform an element-by-element

Search to establish which element the contour passes tbrough; Once the

_elemeht is identified, the intersections of the contour with the sides

of the element are determined by linear interpolation. This procedure
13 repeated as many times as there are ﬁumbers of elements and the

possible intersection points for the required strain .contour can be

p
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obtained. For simple contour plotting. all these points are joined
together in a successive order by segments of straight lines, The

contour will thig,be piecewise linear as shown in Figure B.3.

Cubic Spline Interpolation

In the present program, a more complicated method, the so—called
Cubic Spline method of interpolation and smoothing, is used to smooth:
the contour. The coordinations (x,y) of the points defiping the contour
are consecutively stored in arrays. The smoothing is done by coﬁneéting

these coordinations by a cubic spline function in such a way that the

resulﬁing curve possesses continuous first and second ‘derivatives; this

/

ensures that there are nQ'kinks in the contour. The distance along the
x—direction, between poiﬁts defining the cpntdur. are subdivided into
smaller intervals gnd the y intervals are }nterpolated_using the Spline
mephdd. TheAsub-intervgls are so close that they give the appearance of
a smboth_curve when Jjoined up by straight lines. The computer prégram
is aljj/ii?able of handling multi-valued contoﬁfs in x.

Given a §et pf bointsoxo. x1.
csey Yn. it is possible to best fit each

....'xn and a set.of corresponding

prescribed ordinates y , y

0. 1!

consecutive pair of points {x, ., ¥, .), (x,, yi) by a cubic functicn so

1-1" 711 i
chosen that the resulking curvs/i;;rzzhtinubus first and second
derivatives. In beam theory, it 13 we£l known that the Spline assumes
the shape which minimizes its potential energy and that this curve
closely &pproximahes the deflected cénfiguration of a simply supported

thin beam.
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Let us designate HO' H1,

node x, of the function S(x) of the resulting Spline. .The sécdnd

R Hn as the second derivatives at the

derivative S"(x) is ® 1linear function between the junctions, which

interpolates Hi' Thereforgy for x < x £ x_ we have

- ikt — i
T x . =x X-X
-1 _ 11
S"(x) = Hi-l T + Mi m (B.1)
i i
where h, = xi - x1_1
Integrating twice we have
) : 2
. - (xi-x)2 (x=x; _4)
] -
St(x) = —Hi-1 e + Hi 5 + Cf (B.2)
: i 1
(x -x)3 (x—x1 1)3 '
. - - ————— s -— 4 'D B.
SO = My —g— M e GO ey B

The integrating constants C1 and‘bi may be determiﬁed by setting S(xi 1)
=44 and S(xi) =Y hence

!

2
hy

Yioy =M 178+ Py

> »
= — +C,h D
A Hii SRR S
solving these equations, we obtain
Yy, =y h
1 "i-t ! -
) G =—f—+ MM =%
L 1
. . -
P he
7 _ 5 - 4 .
y , P =Y R T
Equations (B.2) -and {(B.3) become . ' » —~
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(x,-x)° (x-x )3 M he x, -x
S(x) = M . M i-1" ¢ i SN DY 2 S
=M1 T B8R i “‘EEI“‘ Yi-1q 5 By
Hihf e X
+ yy - =g (B.4)
i
2 ’ 2
(x —x) (x-x, ) ¥.-Y M, M, .
- i B P 1 {1 i 1-1
S' (l) = -Hi—1 -—vir—l-z—— + Hi Ehi + hi i 6 hi (B-S)

Though.tﬁe'quantities Hi.are as yét unknown, the continuity of
3(x) and 3"(x) are enforced by the choice‘df'the equations described

above.

Evaluating S'(x) at the-end points of the sub—interval gives

S N U = T s B O
! A L T R hy w6 {
h h, y,-Y
V¢ RE UL P
_‘Hi 3 + Hi-1 <+ ——-—hi (B.6)
STx. L) = P Yia¥s Mg . .
Xy TNy 2 h - 6 i+1
i+1 .
Yiay " L " Ry (B.7)
R =M T3 "M T . .
i+ . .

Since the formula S(x) holds only on the interval [xi. b J, and so the

i1
‘deriva{ives at the end points are one-sided derivatives. To ensure

continuity in S'(x), the following conditions must be 1imposed at the

~

interior node S'(x,) = S!(x,) 1s2, ..., n-1. This follows immediately

by equating equhtigns (B.6) and (B.T), Yields‘

=
oo
+

-

oy a1 M Tia s Y
% i-1 7 T3 £ *76  i+1 7 Tn - T
- ' iv1- i
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Setting u hi+-1 aﬁd ' 3 we obtai .
= ul = 1 -, obtain ‘ x
i hi+hi+1 i i .
/ i ViV
. h h
T 141 i
. - 6 B.8).
My Mg v 3y oM, =6 h + h . (B.8)
Yy i iv1 .

This is a system of i-1 equations to be satisfied By the n+1

unknowns HO. H1. cealy Hi. Hence two additional —conditio.ns must be

specified to u}iquely define the interpolating Spliné fpriction. It is

noticed that by setting the end conditions 'MO = Hi < Ojleads to simply

supported at the end points. For more general cases

Mg =M, =0 1>8>0. ‘ (B.9)

Nonetheless, 1t is more convenient to specii—‘y the slope at the

end of the curve instead. We have, from equations (B.4) and (B.6)

Yi=¥o hy hy* d
1 - - — - — -
. S.(xo) = h1 3 Mo ; H1 . (B. 10a)
' Y.y h,  h
. R U ™ U TV
S'(x,) = _hi_ﬂsj..ni =M (B. 10b)

In general, we employ the end conditions of

. = o1
‘ | EHO + |.10H1 do {B. 11a)
‘ ' = B. 1
uiHi—1 + 2Mi di . { b)_
Qhoosihg the following sets of combination of uo and d-O' equation
(B.11a) and (B.10a) will be completely satisfied respectively:
g = =28 and/d0 =0
' (B.12)
b e | '
- 28 30 o, -
Wy = 1 and do = h1 [ h1 -3 (xo)]
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Similarly, the condition . _ =
‘ -

M = M
i i-1

~ together with equations (B.11b) and (B.10b) are satisfied yhe

following chos.en situations:

u{:-ze; d, = 0

i P .
. (B.13)
—— \, and ' =z 1; d =6—-[S'(x)-z£y—i:l]
i . __.// i i hi i hi
ubon satisfying. eduation (B.11), the system of simulif;aneous-equations
indicated beioﬁr can nowW bBe solved: // ﬂ'
- . . !
My +uy B = dg
pf‘H0+2M1+A1H2 ' . .-.-.d‘I
. 1.|éH‘I + 2?12 + 12H3 = d2 ’
. .
‘ i M At sy
uiMi-1 + 2b_‘!1 b(: di.
~ .
A more comprehensive exposition of the theory of® splines and
their applic?:t ons can be found in refs. (41-44],
. — -

“r
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“ APPENDIX C

S
The Mapping of a Hemispherical Shell: a'Test Case

-
Introduction

In the early investigation of the mapping process, application of

. the modelling to a ty'pical car seat stamping indicated that the mapping

technique required improvement. Due. to the complexity of a stamped

s'.hap'e. it is necessary to derive an alternative means to ascertaln what

extent the effects of the size and configuration of the hand drawn mesh

might hav'_e on this computer-aided model.” In addition to mapping tests

with a reél stamping, an arti’ficial test case has been developed in hope

o ) -
o&providing a "correct;i:/lation against which "the actual mapping could

betcompared. ,

-

" 1In this gfppendix "the forming of a hemispherical shell from a

- flat, ecircular ‘dise fs described. The exact blank shape is generated

for an arlb.it.ra'rily chosen thickness dilstribution. The correct result is
compared with the _blénk developed by some of the map;ﬁﬁg procedures
described in Section 3.3.2 pf Chapter 3. Since the mapping follows
arbitrary inputs, t.hfe results may depénd' on the configuration of the

mesh. Various types of the mesh are employed in the test case to

" determine the sensitivity of the result to the grid geometry. In the

future development of this -'cqﬁiwter—aided Systém the designer can impose
adjushnen)é\on the strain distribution. The test case may serve as a

means of“_yindicat.lng the methods-of adjustment, surface modification and

159
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reverse mapping, etc. ,Ei’amples are glven of

e remapping and surface

adjubtment techniques. The-details of the investIgation can be found in

doremen case shus
an internal report [17); compiled by the author. present case s\‘.udy
e

~

permits future expansion in conjunction with the tgl‘rand die designer's *»

pe)

experience.

The Test Case

The case consideréd is the _defo'ru:‘lation of a flat, circular disc QQ
to a-hemisphericai shell. The deformation is axisymmetric and the \
thiclme.ﬁs around some circle of latitude defined by the #ngle 8 isi
assumed cons?;‘ as shown in Figure‘C.L The thickness distribution ean!

be defined by some arbitrary relation, for example,

. P
b oaae? | _ \/ _
- : o - ‘ . .
as?illustrated in Figure C.2, As the deformation is axisymmetric, the -
position of a generic point P(X,Y, Z)w‘ the hemisphene can be relocated

n. The position

onfo the flat ‘blank by a simple analytical relat
vector F_ of the .point p(x,y) on the flat blank~is related to the angle ‘"
8. Consider the volune of a circular element in the hemisphere shown in

Figure C.1 'and its corresponding volume on the blank. The following

equations hold

v = xr (C.1)
- ¢ o
o V = 2rr drt : ’ (C.2)
' 2
t = t + ke . . (C.B)
O

-

‘ where v i3 the volume of an element on the 2D plane, V 1s the volume of

. an element on the hemisphere~and the position vector_Fo = ‘x‘ol' + yoj.
¥

.
Ay

—
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Figure C, 1:

Figure C, 2:
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Schemat.ic of one quarter of the hemispherical shell “under

consid eration .

C

A typical thicknkas st.rain distribution of t
in Fig. c.1 )
\ . =

h{ hemisphere
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Upon ihtegrating. (C.2) “ov a circular

regtIts

27R sine_(Rde) t

latitutde  of angle 8 and

combining with (C/E v

5] C.

2
f 2nR° (t + x8°) sin © 4@
o O : o

r/=-21rﬂz [to - tc; cos@ + 2k sing - k62 cosd + 2kcos® - 2k]

The condition of incombres:ibility yields -

ﬁ, . . " ! ) .
T2 P | : ‘ 2
r_ = (t - 2k + 2k0 sin® + (2k -t = k6") cos8], (c.4)
o E 7 T ' © :
- o Lo - .
vhere
r2 =.£2 “ y2. _ {C.5)
) o o : .

Since each point can‘onl'y move radially, -the.coordinate position on the

flat blank, x;. Y o satisfies the relation : .. .
o : Sl . )
r.a L (c.6)
. - o : : '

The sotution is completely determined by -combining equations (C.4),
. (€.5) and (C.6). L,

IOne-.quartt_:r of the hemiSpHerical shell is. considered and an

p~J

-'irregular mesh of poini:s estaﬂ-iéhe‘d‘on the surface, as illuﬁt.r’-ated in
‘J' ' ) ! : . ’ ’
Figd C.3. In orderéto:ﬂtisfy- constraints in .the/ existing wapping

oc;ésa. this, mesh consists of.Tows and coltﬂh.s of eq';.lal numbers of

. ments. L "D
. o - R
| e

oo 5@?“‘3' ‘33““‘1“5 No Change in Thick\mss of Blank B

-

lf\"d. 1nt01}_?) hemisphere. a;suu?@ no change in thickness. Tt}e

/’ ¢
el:.u'cu.l.ar'
N

A, s - - s ) .
‘_\f"’a - R S PP T

"The xanple considered here . i3 the defomamg/of a A'lab'. .



{ .
, 7" flat plane using the strategy ot‘ proportionalkdet‘ormation, t e
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f'co;'rect" (ehalytical) map for the case 1s shown in Figure C.4. Each
nodal point of tﬁe irregular mesh in Figure C.3 is mapped onto the flat
pPlane using the analytical sol'ution. Considering the reverse processes,
from the flat blank to the hemisphere, I.t is obvious that the "constant
thickness" process involves compressive strains in the circumferential

directions and tensile strains in the radial directions.

\}n order to execute the various mapping st;ategiee}‘ it is

* necessary to establish some boundary nodes. As indicated in Figure C.3, r\

X0Z and 'YOZ planes are planes of symmetry.- and displacemenbs/_’u/

perpendicular to these planes vaniaﬂ’. In the present case, She . ;
analytical solution is used to establish the pos‘i_t*ion of the nodes on
'axes of symmetry on the ﬂat blank. The element.—by—element_technlques
can then be used to map elements ont.o the flat blank? Three mapping

techniquea will be adopted for the transt‘ormation - namely /the

proportional deformation, the intersection method qnd the‘area

1] 'F_-— )
criterion. : ¢ o

(a) Proportional Deformation

Initia’lly. the hemisphere ‘shown in Fig!&jc .3 is mapped onto a . -

USRI IR HF § -

4
4}

A [

description ot‘ theproportional displacement is described in Sect.ion'

J

. v/
3.3.2 ofxChapter 3. ‘The result of‘p;ve mapping is given in Figure C.5,

Superposition of the "correct" blank shape and the map ap{@gn/ . ﬁj
1ndicates ihadequacies in the mapping procedure. Wis arent that _— :
. '4 \' \ v‘ ) . ‘:
) C ) . ~ ’ . ‘. —f\) /' : g
. - . /_*_}* . ) ( . * . 3%

Il “- / )
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of part of
the hemisphere. S .

. 1Y ‘ 'Y '
- ‘ . x | - )
5 . ‘ ’ - r h
'S - B i ‘ ) : f'v"’/—
Figure C, 4 The "correct" analytical 'r'ﬁ‘ap of the shell surface
: -C.3 : ' -
¢ - ;

. ’
.' 3 . .’ ’ ' . \ \‘ . N
. b A y L K
: 3 . LA N | |
..‘. Y 1 . ” . “ y{ ' ., -
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the orientation of the element _uii:h respect to the "correct™ principal
direction influences its mapped shapc ‘in some {inappropriate fashion.

The sti‘ategies described in the following two sections are 'aimeq at

N R
: goming the shortcomings of “‘the proportiondl deformation method.
<y _ -

(b)  Intersection Method

> The intersection method is described in Section 3.3.2, Chapter 3,

and the blank developed by this technique is shown in Fig. C.6. It is

‘observed that a simple blank shape could not be generated, ‘and

‘overlapping of scme elements occurred., The method does not appear

satisfactory in regions uhere elemeéts are irregular. /l"he position of

the: rour node of an element is loﬂated by taking into account not only

the elem nt 1taelf but also the deformation of the neighbouring

elements, hence a small oscillation in one’element appears to exert a

L

"strong influence on the locabion of the nodal point. The technique is

" found wanting and the strategy_ described In the next Se&t.loh_ is shown to

be an improvement .

(e) Area Criterion o
P i
Again, 1n this case the analytical solution is use I:o estabﬁ.h

~ the boundary nodes on the flat pl_a_ne along the %es of .v?ymmetry.

mapping process can now Be conducted on each .element of the irregular

.. /
mesh shown in §igure C.3." The location of the fourth nade of}h

. element. is de@rmincd in such a way that. the t.hiclcness\{:f the resulting

element 1s approximately unchanged. Det.ai.ls of the mapping strategy cah

e . ’ !

‘lt
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Figure C.5: The resulting blank

[

@ Figure C.T:

el

obtained from,  the
assumed propoftional
deformation of Fig.
C.3.
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Figure C.6: The resulting map' of

e Fig. C.3. showing

' . collapse of elements

occurs with the
1nter3;§10n met d.

™M

on a flat blank./ - °

!conataﬁt'area"?}pénsfor@ation of the hemispherical shell



* which bisects the . angle XOY. iience. the corner nodes of Lhe last
: r . : .
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. be found in section 3.3.2. The blank developed by this technique is

]

. /
Upon superimposing of the mapped solution onto the "correct"

shown in Figure C.7. - v \

-blank shape e'::cellent agreement betyeen the two results is obtained.

- The ‘mapping technique does not provide a perfect match, nonetheless this

test suggests that ‘the présent method appears to function well when
applied to the hemispherical shell. Since the inpuf-of tl}e irregular
' A"

grid points is rather arbitrary, the small discrepancy that appeared in

the final blank shape indicates that this technique could be dependent

on the shape and size of the elements, i.e. the deformation of the sheet

is governed by geometry of the stamping and the irregularity of the mesh

which is used. to répresent "the surface geometry of the sténping.

Influence of Grid Shape

An artificial mesh of .the ki

shown in Figure C.8 is empl_oyeg to

ascertz what effect this ﬁave on the mapping process. 1This mesh
. . ] - A ' T .
i created im a that the elements are equally divided |

on bo .sides of the 45 degl"Q liue\_of the inemi:phere. i.Je‘.a' the very

last element of each row and column always meet at the ‘vertical plane

-

e

element iri"each row/cofumn are alua::');tuéted ‘on the 45° plane’. If the

mapping procedure fi:"-éorrect these nodes will remain on the angle

bia'egtqg\i.n the t\q dimensional blank. v The "correct® analytical map is

shown in Figure .C.9. The hemispherical shell can now be transformed
. . . A ‘ .

. onto"the flat blank using the te'éhnique of the area criterion.

>\ |

' wit
N~
~ :

»



Figuré C.8:
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An artificial mesh as shown is constructed over the surface

of the hedfiisphere,

o T | -
[~ N
— L | T - v ¥
Eungt TR
-_\\\\ o
™ [
y | A N
\\ “‘."--..-\ o
- LN
\J‘]r AW | ™ .
VAV I ANEAWA T
A N I U N
HEERENRN R [ 17
D-—-——’-Ax » X o
Figure C.9: . The "corra?" analy- - Figure C.10: The result.ing map ?
' ticgl /trahsformation - ! " the surface occurréd
of mesh in Fig., r.-~ . with the area criter- -
c.8 onJa plane,. : ion showing effect of
. | element geometry,

~ N



into triangular elements, one triangle has an exceedingly small syrface

.as overl&pping of elements,

' , 16
-~ g oo

ot
. | .
It transpired that tl-[e mapping technique i3 dependent on the
« ¢ ‘

shape of the elements used@&; represent the 3D surface. The result of

< 1 .
the mapping is shown in Figure C.10. Note that many of the quadri_lateral

lements on the 45° line of the 3-D surface are rather ill-conditioned,’

i.e. t.wb__contiguc:u.s sides are a;t such an_oblique angle they almost {form

‘a straight line. Therefore when these Quadrilaterals are sub-diviided
’ ; H

v

area. This causes some problems in the mapping process, and can be
seen from Fig. £.10 there is a depression in the mapped %Ke along the
us® axis. While the mapping has not been very successfyl with the mesh

shown in*Fig. C.8, the n"teat case” of the hemispherical sﬁell has
. 5 ‘ : '
resulted in some valuable conclusions.
1

!
'

It is apparent from the test case that the'shape and size of the

- mesh exerts an influence on the“shape of the mapped blank. - The effect .

may be more significant when attempting to represent the surface
gecuetry of a complex stamping. |lhless some care is taken when the qrtd

of lines {is drawn free hand oxthe surface of the stamping, some highly

irregular shaped quadrilaterails Vensue. Hence they may be £11-

conditioned in the manngr referr to above, and lead to problems, such

the surface of the st mping _is-characterifag_g by' the nodes 9!‘ t,%e

quadrilateraXs, then a. rather’ poor representath\of‘ the surg;ce can .

and the like ph the stmp‘ﬂng can all be eroded depending ypon the: shape
the mesh. Cohsequent.ly in reglons on the SQIJ when abrupt

. ) . /{
. .

n the mapping process. Furthermore ‘since

occur if the'mesh is badly drawn. For exaple, corners, bend'sw; e's_aes .

e
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changes 1in geomer.ry occur, a finer mesh size should be employed to

obtain a bet.ter representation of the '%ctual surface,

Remappin . /’/\__

The gnapping process demonstrated above carrelates nodal points
between the f‘.i.nal par; shapé and a flat blank., In general the element.s
on both surfaces are irregular and while the shape of the boundary is
clearly indicated, it is not easy to visualize the defomatlpn suffered
by each element. For this reason, it is convenie.nt to establish a ﬁeu
mesh which is at least regular in the flat blank. An array' §f‘
orthogorlal lines haa bjen selected and is overlalid on the {rregular grid
in Flgure c.11. lhing the displacements established for the, irregular
grid, the new nodal points cor:reaponding to the regular grid are no‘u
'lnapped onto the polyhedral surface of Fig. C.3 adopting the technique of‘
reverse mapping discussed in Sect.ion 3. k.

A new polyhedron is established by facets 'cl-eatedr by the new

nodes and is illustrated in Fig. C.12. It will be appreciated"that this

' ' .
surface is a further "erosion" of the initial ws_a{face of the real part.

) . BN
Ad justment - ‘ .

-

The afor.enentioqed homalographic tfansformation of surfaces

provides the designer with a" technique of evaluating the deformation
r : = . L

which will be suffered by a sheet formed in the t.oolingb Seing_,designed.
The solution obtained does not necessarily correspond- to the ac'tual

- "
deformation and there&ot} the designer must have further means to mdiit‘y
<’

/J
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the result in hope to achis#ve a more realistic design; '

The adjusbment'scheqes‘described in Chapter 3 are ;pplied to the
blank shape in Fig.  C.& —and- the results of two dirferent surface
. modifications Qrd-given in Figs. C\13 and C.14., Figure C.13 shouing
Surface adjustment on thé blank in a 85% direction with respect to the
x-axis while thhé technique of surface modification applied to a rfgion
within the blani shape in Fig. C.4 is demonstrated in Figure C.14. The
adjustmént generates a new set of nodal displacementi which again can be

used to péEform the remapping process between the adjusted blank and the

deformed part. These design procedur|§ cab\Ee repeated'as many times as

it is decided by the die designer. Since the reverse mapﬁlng of the new

blanks is. just another ‘computing exercise hence the remap has not been
Al

done here.
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Figure C.13: Diagram showing surface Ldjustment in a speciﬂed direction

applied to the blank in Fig. C.&.

]

[ 777
)

[~ [ [ T 17777

~ \\T\\\\\

»=- X 4

M‘n showing local dist.ort.ion of a region within the
. b]_.-n ig. C. lt .

N,

U S ' P



-

T

¢

S ' APPENDIX D

2 Flow Charts

5

This Appendix deh:gribes the phi y (see Figs. D.1(a) to
D.1(g)) of the logical development of a ccn;put.er—aided die.design systg_:‘n
baaec; on the theories discussed t.hropghgyt:. Chapter 3.‘ The die design
package comprises of the following functions:

/'(15 visual check - computer p}ot';bing ot.‘ the input surface;

{(2) blank development - performing an eleme‘nt'-'b;r—element. gapping'
procedure onto a flat plane usi‘ng the method of area'.criterion:

(3) remapping - ;-}erfo.r"m'in‘ig an elenel{b-by-elenent remapping of a regular

3ri& back on the part surface using l;nom' displac.ements, c‘t‘ the

’ S
nodes generated in (2); .
’

(4) adjustment -~ performing a possible modification of a blank surface -

\."’

in hope to achieve a more reasonable design;.
(5) plotting of the ret'.ulting blank shape, the resultin; remapped’ grid
and the adjusted blank’ surl_f‘acé; -
(6) strain detgr":’ninatién ~ evaluating the principal shraiins‘from t.'he:
nodal positions ,of'a mes?‘ the part surface ‘;_md tﬁe resulting

mesh on the flat plane or vice versa.

174
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coordinates {X,Y Z}-|=

Input data

djusi

Figure D, 1:

of the 3D surface

Y.

visual display
of 3D surface
r

Elenient by element
mapping begins

T

. . REPORT
the coordinates {X,Y)
of the resulting blank

(a)-(g):

N principal strains| -

_ and plot the §lank
.Lf L 4
RN AN

COMPUTE

< r

_REPORT
strain results

s

%
Flow charts indicating the ¢complet¥ logical | £
develomment of the uapping strabegy. -

v

A

. correct
input
data

—



( GENMH )

Y

" GENERATE
Elemaent connectivily tor idangular
and quadrilaters] slemants

% change of
boundary nodasl
displacements

INPUT

CALCULATE
The tolal line langths slong the

A

axes ol symmalry

PLT

CONVERT
3D quantities into 20.

RETURN

(b)

{ RECT )

r Yy

( cHeck )

1

/

176

Set up

plotting

area in 2D space

-

\

5

Plot X, Y and Z axes ] .

\

ik

[

identiry
coordinates

the Nodai

of an alement

Plot alement-by-slement in
ascending order

RETRIEVE

Node numbers of a
rectangular slament

Y
( RETURN )

YES

PSET

Y

INITIALIZE
one dlmin_skmnl
array




( sowve )

¥

GENERATE
Nodal connectivity

v

AVERA

REPORT

Input data, slement connc:livlty

and nodsl connectivity

‘E’

Y
( CALL AVERA )

RETRIEVE

30 coordinates of a quadrilaterat
elsment and 2D coordinaies of

a starting triangle

Y

J——_~ CALCULATE
all basic pacamaters of the
elements -

LOCATE
the dth node of an
slement

YES
( CALL BLANK )
) 4
PLOT

the resulling blank
shape

/
RETURN

TWOCO

i

Y

RETRAIEVE
(x, y) coordinates
ol a blank

Y
RETURN

CALCULATE
the height of sach

trlangular element

Y

FIND
the centroid of the
resulling triangle

Y

STORE
the coordinates of
the 4th node

f
RETURN

( TRECO )
Y
_ RETRIEVE

{X, Y, Z) coordinates
of a 3D surface

Y
RETURN

YES

NO
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‘(  HITE )

RETRIEVE
20 coordinatas and
30 coordinates ol &
triangle

Y
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BLANK

kf |

Set up the plotting area
and plot the x, y axes

Y

Retrieve the rectangular

FIND
the ares, the helght and
the slope of the bass of
s irlangle

ccordinates of a blank

CPLOT

- NO
RETURN

-
( ResuL )
: /

the developed blank

YES

RETURN

i

(f)

{ . ust )
Y

RAEPORT

{x, ¥} coordinates of the

fesulting blank

.

REPORT
(X. Y, Z) coordinstes, slement
connectivily and nodal
sconnectivity

Y

( RETURN )

Yy
t RETURN )

(9)



APPENDIX E

List of “Subprograms

Mapping: Blank develomment

MAIN PROGRAM

| Car

SUBROUTINE MAPPIN

-

SUBROUTINE GENMH

SUBROUTINE CHECK

SUBROUTINE SOLVE

. /
SUBROUTINE LIST

SUBROUTINE AVERA

to activate thé/Lybf tt{e mapping subroutine and
to establish the needed input storage dimensions
for each principal variable.

to input sets of orthogonal coordinatesf X, ¥ and
of a formed part. To g_enerate and calculate the
baslic required storage for e;ach ﬁriﬁcipal variable.
to generate nod‘e nunbers, glement numbers, element
connectivity and to_set up the positfon of boundary

nodes on a tw-dimensional XOY plane.

to check input data by plotting the geometry of a;

. deformed part graphically in 3D space using the

Versatec 1200A plotter.

to evaluate the nodal connectivity of a mesh and to
v . .

organize data for sequential mapping.

.to print the coordinates (X,Y,Zy of the input

surface. To prinD'g. results of the calculated nedal

-connectivity and element connectivity.

to perfbrm an element-by—-element mapping procedure

in order to develop the réduired blank shape. This

~routine {s implemented based on the method of area

179



SUBROUTINE

-

4

2 -

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

" SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

HITE
CAL
BLANK -

FRAM |

RESUL
RECT ¢

TWCCO

TRECO

STRAIN °

LOCAL

EVAL

PEF

STON

180

criterion.

to evaluate the height, and the slope of'the base
of a triangle. : -

an auxiliary subroutine for HITE, which computes
the area, the sifes and the angles of -a triangle.
td’ plot the developed blank using the Versatec or
Cq}comp plotter; .

an au;iliary subroutine fbr‘ﬁlotting results.

to output the final X and Y coordinates of the
transformed nodes of a blank. |

to.extract node numbers of a rectangular element.

to retriéve the X_énd Y coordinates of a blank.

to retrieve the coordinates- (X,Y, Z) of a stanp_qd-‘

"

L
=

bart in 3D space.

to determine the principal strains (51.52.53) of an

element and their orientations in the undeformed
. TN e My
¢onfiguration.

‘to set up a local reference coordinate axis for
straln evaluations. |

an duxliiary r&utine to activate all the necessary
calculations for _tﬁe determination of. principal
strains and orientation.

to compute.the deformation gradient tensor, C, the
principal Qtretches and thelir ori;nﬁations. |

to store the nodal prinecipal strains and their
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orientations. — ' ’
SUBRCUTINE STOZ2 - to store ‘the centroldal principal strain} and their
- - /i '

orientations of triangular elements.
t ’ .

§UBROUTINE'PSTRH - to ohtput results of principal nodal strains and
-principal element strains.
¥ - e
Remaggigg: Remapping of blank develcment
PROGRAM REMAP1 —- to generate the three dimenqionaltcoordinates on a

stamped panel of 'a regular arréy,of nodal points on

the flat blank. To read in the 3D coordinates of

the d;formed ;ufface. the 2D coofainates of the

blank developed_'hy 'the' m&pping and the 2D

céordinatés=o£‘§‘fegular mesh‘superimposed on this

blank. = - 7'

SUBRQUTINE DETQIN - fo determine if a regular grid point Q(X,Y) is
within a quadrilateral. ’

SUBROUTINE DETTIN - to determine which triangle of the quadrilateral

. ) obtalned in DETQIN the regular grid point Q(X,Y)

lies,
'SUBRUUTINE PT 3D - to compute the coordinates of a 3D remapped point,

Finite Strain Eva}papib?
PROGRAH STRN - . — to access strain distributions on the surface of a
. Stamping by measurements made of the deformed
squar? grids, to input the deformed suéface and to

. DR : 4
P



SUBROUTINE GERCON

SUBROUTINE EFAC.

SUBROUTINE EVAL
S
N

. . 182

- A
cutput the resulting principal strains.

‘to compute the baslc storage required for each

principal variable and to initialize all variable
arrays. To produce a 3D plot of the _input
stampling, to generate element connectivigy ahd-
noa;l-connectivity.

te sét up a lécal reference coordinate axis for
strain determinations.

to evaluate the coefficlents of deformation tensor

F, the components of the deformation gradient

tensor C, 'the principal stretches and thelir

orientations.

Plotting of the Strain Contours

SUBRQUTINE CONTOUR

SUBROUTINE INTERP

SUBROUTINE SPLINE

SUBROUTINE SPLIT

SUBROUTINE SOLN

- the location of a required contour and its position

to -input the coordinates (X,Y) of thé resulting

blank and strain values of each node. To identify

stored in an array for plotting purposes. g

‘to generate smoother contours from the positions of

' the defined dontours using a cubie function.

to perform a spline interpolation .or .the data
points in.vorder to compute intermediate values
between two points.

’td determihe thte sgcond~derivatives of the.spline
fic,

to solve a system of simultaneous equation.

[l



APPENDIX F

Strain Ellipscids

- Lagrangian Strain Ellipsoid

.- ) If Ahe total deformation is characterized by an unsymmetric

_deformation gradient F, then the theorem of polar decomposition, expreég

!

that

i

; F=R-U=Y «R (F.1)
or g':gT - F and g:g-gT. _ (F.2)
If (F.2) is expressed in matrix form, then from (ﬂ.17) the components_of

the right stretch tensor, U, in the 2-3 plane can be obtained as

U U 8 8 F -
[ 52 23 _ [ cos sin ] F22 23 ] . . (F.2)
U - 6 g F_ - F X .
U32 33 -31n@ cos 2 33 N
u = ' - '
Hence 25 - F22 cosd «+ F32 3int
U23 = F23 cos3d + F33 3in@ | | |
u. = 8 - 5] F.
1 F32 cos F,, sin ‘ (F.3)
u.. = F 6 - F ing
33 33 cos 23 sin
Since the tensor U is symmetric, then from (F.3) U1é =,U21 it follows
‘;hat
- F 5 F : .
tang = 3223 (R
22 33 '
Furthermore
+ F
cosf = - 2e 33 (F.5a)
JF.. +F. )% « (Fo. ~F.)° '
22 33 32 23

183
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[

. SEl e Lo
and - sin® = — 32 23 . (F.5b)
/ F.. ~F
(F22 +* F33) +« { 32 23,)

The orientation of the principal -axes of the Lagrangian ellipsoid is

obtained, after combining (F.3) and (F.5), as .

: U L 2( “F__F :
- 23 ] 2(F33F32 +Fos 23) -
tan 2¢L UL R = % - C(F.6)
22 33 { -F> ) +« (F > - F23)

. . 22 33 3

r

Eulerian Strain Ellipsoid

The orientation of the principal axes with respect to the current

configuration 1s derived in a similar fashion to the . above, The

starting point

‘\\\__' V=F - ET

and the steps leading to an equation like (F.3) are duplicated. The

‘orientation of the Eulerian ellipsoid is given as

| ; p3. 1 2Fpof3y + Fagfyg) F.7)
tan 2¢E = V. -V . = 2 ¥) > ) - (F.7
22 7 "33 (Fo, - FQy) - (Fo, - F.23> .

-

. o ' . , E
The orientation of the Lagzjrgian'or Eulerian ellipsoid can be

determined precisely from Equations’ (F.6) and (F.T) respectively. HI11

[ZSJ‘Has congidered the rotation of.the Lagrangian and Eulerian strain
ellipsolds due'tq an infinitesimal deformation step superimposed on a
large prior homogeneous deformation.—.‘The tota)l deformation gra&lent
tensor, E‘is characterized by Equation (4.38) as

X - Adn

F=dn-}-= 2 323 (F.8)

Azdn32 A3
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Hill, op cit, argued that for a small perturbation superimposed on the

large deformation the angle of rotation incurred {s small and that to a

b
Fa3
ignorga. It follows from (F.6) and (F.8)'thap the rotation of the

first order approximation, the second order quantity'(Fg2 - Yo is

principal axes of the Lagrangian ellipsoid is

(212X3) .
k 8¢ = ;5_:_15'dn23' . (F.9)
2 3

and similarly the rotatton of the Eulerian strain ellipsoid i3

A
6¢E =

2
.lz - A

The rigid body rotation is calculated from (F.4) as

‘ (R
dn23 ‘ _ { 0)

(WY R J OV N

A=)
2 dn__. _ (F.11)

- §6 = ———=
oMty

Equations (F.9) to (F.11} are identical to the results obtained by Hill

(25,26] ‘

Strain Measures

A relationship between the time derivative of &n U and the rate
of deformation tensor D can be developed by the following procedures.

From Equation (4.8) the time derivative of n Uis

(0 ' =B < tn A =B «P () -P P -gn) B (F.12)
Since the tensoé P is an o?thogonal tensor such that
PeBT=1 and B.plep-Blag, (F.13)
then using the relation &tn U =P - &n A - ~? equation (F.12) becomes
T T -1 T

(!ng).=goz -ﬂng'_anoE.

~

)

+P XA e P (FLIB)

~
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Hence . .
P .).t_l . ET_: (¢n 17+ 2n [ f .-gr -p 'Lf’_T *n U ('F;15)‘
or
RIP S LRI LI TN L (F.16)

where
(tn®® =W +anu-B . .2 -aquy

~

i3 the co-rotational rate of (in Q) relative to the principal axes of U.

Pa—

In view of (F.16) an&_the time rate of U = P - ) - ET, it can be

shown that

I ST L S R S CFAT)
and
.':’.-1‘Q=(£ng)°_E.ET'+g—1-E.ET.U_ > (F.18)
It follows from equation (4.49) that )
| 2 ’;" RS R TS I L , (F.19)

upon substituting (F.17) and (F 18) into the above equation, it follows

that ) .
= Recen 08T - JepegopToETt L gTpupTED) (F.20)
The spin tensor which is defined as
Wedh e @u oy o RT LR R (F.21)
and .upon combining with (F.17) and kF 18) results in
W= B..'E,T . E-'E'ET'ET _ ';'(—E'E‘E.T'E—1 . E‘T-.E.AET.'ET)  (F.22)
Hence the velocity gradient L can be calculated as ' E -
LDy |
= R-(2n D%g" + ReRT 4 g-PepTep’ _pebopTop! © o (F.23)

H{1ll [26] treats the rotation of the Lagrangian ellipsoid about
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its own axes for the special case where théy coincide with the frame of

- reference. Consequently

P=1and tn U= tn 2

therefore equation (F.14) reduces to

T T 1

{(F.2u)

(tn 07 = B-Pletn & - A-FePT o Rey
Since the spin of the Lagrangian triad is evaluated from
' 0 -1 :
EJPT = & : . (F.25)
T 1 0 _
upon substituting (F.25) into (F.2K), gives
. . -1
..o =1 {fema, 0o gad_ 0 [jo -1 A0
(2nd) = ¢ 2 - 2 b * 22 . -1
Lni 1 0] 0 AjA
100 eng 0 tm, 3
| e -1
\ 4] -1nA3 . qu —lnlz . X2l2 .0
B Y 0 T tn Lt o Al
in 2 nA3 0 A3 3
A/A ] b
) 2’5 ( nA2/l3)¢L
Zox_/X)é \
LN w2 :
mere © N - £§_2i3—_ € ’ .
. 22 2 a3 - T
2 3

Stress Rates
In order ‘to obtain an'objectivé stress rate, we define a tensor

quantity ¢ such that

o

= R-yeR ' ' (F.26)

where E = (&n g)o - Sym(E.E.PTLE“l)

—~

Employing the éqqation of the rate of work done per unit current volume,
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we have .
. ' T '
w=1:D=1:(R-¥R"), _— (F.27)
In view of the second order tensor transform
A:B = (ﬂr-a):l = (.ﬁ‘ET)=l- (F.28)
it can be showm that ‘ | o
. T -
w= (1 °(§_'3'ET)]:,]_
= (1?-R-2):g
= Rz Ry
= [R'- T -RY-y):]
_ T : )
.= (R =1-R):ys (F.29)

A : L. :
The first term on the right-side of equation (F.29) "can be

regarded as a pseudo .stress tensor, say \TR' such that
W o= I:P. = 13:31 g
and
’ T
Ip © R™ex-R. (F.30)
' The time derivative of (F.30) gives . . ’
I = RT-T.R + BlogeR « RY-c-i
= ~T-[i + E-BT-L + -E.E.-%T].B-
" ) = B’TOE; + r'ﬁo T - B:.RT'T]OR
- T B .
The rate of rotation of the material @ = R-R" i3 skew symmetric and

&,

. R . - v
- therefore 21 + ST = Q. We can then define a co-rotational stress rate T,

where

_iog _,-gtl . . . (F-31)

1A’
vl
A
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Stress Rates in Simple Shear

From equation (4.106) the constitutive equation of a hypoelastic

material has thg form

% = A trace(g)l + 2“2 (F.32)
where the Lamé constants are defined as
! . Ev N . __E
F v (12v) an S TE Rl

In the above expressions E is Young's modulus and Vv Poisson's ratio.

Upon expanding (F.32)}, the stress rate of an hypoelastic material

becomes

A+l P
(i+ u)D11 u

.
.9

D
[2
(A+2u)D22

(F.33)

tac

2uD
"o

Upon combining the above with the matrix of the deformation gradient
tensor D given in equation (4.104) yields

4] ué
3 - (F.34)

~ b us 0
When the rate type equations described in Chapter 4 are expanded we

obtain, »

-

Ve

]
Qs

+ g*Q = Q-q
o e e

i S PRSPPI PAL PN S PASE 1”12*“12“22.“’12“11'“22“1@
021+c12911+022921—011921-c12922 : 022+a12012-a12021

In view of equations (4.93) and (4.94) it can be seen that ﬂ11 = 922 =0

and = =1 ., After combining with (F.33), the above expreséion

21 12

reduces to



811 = 911 - 2912021 =0
= 3 - qt =
%127 %12 * H%1n T 2 T APy,
- o = g {1 = D =0
Opp = Gpp * 20, = 205,

) .
Upon applying ’tF.3H) and (4.94), equation {(F.35) becomes a

simultangouS equations of the. form

939 = 2%g4p = 0
Typ * 280y = s
Tpp + 209,, =0

Differentiating (F.36a) twice with respect to time yields
04y = 28012 - 26012 = 0.
When this expression is combined with the equations (F.36a) and

the following ordinary differential equation is obtained

11

- .2 ‘s
011.+-ﬂ8 gy = 2u8sS,

s |@

.

From equations (4.98).and (4.99), with S = 0, there results

o . e
2u8S = HuBZ sec26
and
g: ~2tang é. .
¢
Hence (F.37) reduces to '
d2°1r d°;1 2
= U 6
._ggz_a-_d.a_.?tane + lla” usec 0, .

which has to be solved numerically.
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(F.35)

set of

"(F.36)

(F.36b)

(F.37)

>

(F.38)

Finally combining the stress rate proposed in Chapter 4, 1i.e.

equagion (4.109) with (F.32)“and répeating the procedures described

above, an ordinary differential equation similar to that of (F.37) 1is
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cbtained, in particular

;11 -2 é11 * u$2011 = 2088 . (F.39)

¢

‘After differentiating equation (4.96) and (4.97) with respect to

time and rearranging terms, one obtains respectively

. 2 -
S = Heosec 2¢L ¢L _ (F.NAO_)
andg
§ - —cosec®2¢ . b (F.4Y)
- e % ¢ .
The time derivative of (F.U40) with S = 0 yields
N o2 .
; F. 2
¢L UCot2¢L ¢L | ( )
or.
¢ . '
T = Hoot2e b - : (F.43)
oL

.Similarly from equation (F.41), it follows that

.

A .
= - keot2y_ 4 (F.uu)
¢E . i

In view of equations (F.40) and (F.H3). the equation (F.39) can be

expressed In terms 6f the spin of the Lagrangian ellipse. Hence

~t 2 )
0 9%, 2 SN
- Ul = F.4
;;5—_ iy ucot2¢L + o Bucoseg 2¢L (F.45)
. 'L

i

Similarly adopting the spin of the Eulerian strain ellipsoid (F.39)

becomes
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2
4%, 9%, ' ' 2 ' ;
— u = -
;;2__ T Ucot2e, + Yo Bucosec”2¢, (F.46)
E ‘ ' :

Equation; (F.45) and (F.46) have been solved numerically and the results

are given in thapter 4,
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