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ABSTRACT

The field of concept formatiDn has been dominated until recently by

the abstractiDn perspecfive, whi~ holds that categ01s are mentally represented

by abstract summaries 'of their members. Two variants of this view are the

prototype- models, which employ singular, central representation via an abstracted
" .. ~.

central tendency, alid strength models, which represent categories thr0':l9h

abstracted counts of the fr~liuencyof their members' feature compounds. In

conflict with these notions are instance models, which reject summary .

representation ,in favour of separate encedings of individual experiences Df

, category members. The :hreelypesof models make similar generalriation

predictions in stimulu~ dDmains whose density is greatest near the central

/

- .
tendency, but make importantly different predictions in other domains.

\
_ The assumptions 0\abstraction modEils reg~rding the. rep.resentatiqr'

,of v:-:-iability and ~Dntingency JlatiOnShiPs of stimulus features were formalized, .

and a variety of"~delsdiffering in the complexity of their assumptions were

tested, ,employing perceptual id~tification,recognition and categorifation tasks.

Models liased on traditional assumpti~sof the prototype perspective could not

aCcount for the vadety of generalization patterns obtained, .while the assumptions
.

Of models which I"ere sUco;'ssful in accounting fcr the data were argue,d to violate

the cardin~prototypevalues of economital and summary representation.

A new' instance ~odel, thE! "elJisode model", was proposed. This model

,'was found to account successfully fcr a wide variety of patterns of generalization
"' .

in a variety ·of domains of diffl'ring density, thrDugh parallel processing of

, , '
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multiple, prior encodings. An important aspect of the model is its emphasis on the
t r1

degree of integration of prior encodings, which is held by ,the model to determine

the breadth of general~ationof performanC2 supported by prior ,episodes. This-aspect of the model reflects its concern with the effects of processing differences

on performance. ".

..

,
One class of feature-frequency models was also found to be capable of

accounting for the patterns of results. However, the ln~~ account was argued
" I i ranl

to be preferab~e on grounds of economy and simplicity of representation, n

sensitivi,ty to prOCEssing context and differences in processing, and heuristic

utility in directing attention to important adaptive abilities'Clf the organism.. . . .
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CHAPTER 1

Introduction

I Structure and Representation of Natural Categories

It is generally agreed that th.JZ hallmark of "knowing a concept" is

the ability to deal with classes and members of classes; People are evidently able

not only to deal with events as individual, isolated occurrences, but also able to

'group events, and to make judgements about membership of events in group's.

Considerable controversy exists about the knowledge structures which underlie this

ability. At one extreme, e~planationsemphasitE the learning of class knowledge;

that is, in forming a concept people learn some information that is generally true

or typi~ of category members, and do not retain (or at least do not use)

information about the particular events experienced. The other extreme emphasi:z:es

knowledge about the individual events. Under this perspective the knowledge

structure representing the concept consists 'only of the various events as they were

experienced; class-level information is thought not to be abstracted during

,concept learning. The purpose of thi? pap~r is to deny the necessity of the

class-levei 'explanati~nof concept nlpresentation by demonstrating the sufficiency

of event-level explanation. The intention is not to deny that people ever engage

in learning summary information, but rather to indicate that the automatic

assumption of this level of explanation is unwarranted, and that consideration of
\ ".

the event level of explanation has important heuristic advantages.
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Much of the recent work employing the class-knowledge explanation has

been motivated by the common observation that people think that the members of many

natural concepts differ in how' well they fit their category. For example, people

generally regard robins as better examples of the class of. birds than are ducks and

.- .
geese, while hawks are of interme?iate goodness as examples; similarly deer are

rated as better examples of the class of mammals than bears, and bears better than

pigs ,Rips, Shoben and Smith, (973). 'In general, people respond in a graded

fashion to members of categories. This phenomenon is extremely reliable, and has, ,

been encountered in a wide variety of categories <Rosch, 19731. '

Rosch and her colleagues (Rosch 1973, 1975, 1977; Rosch, Simpson' and

Miller, 1976; Mervis, Catlin and Rosch, 1976) utilized this observation in

promoting a perspective that had previously had little impact on the concept

~formatipn literature. They pointed out that the w,?rld does not pres~nt to the -- ,
I ,

concept learner a uniform, unstructured set of stimUli which can only b.e divided
,

arbitrarily. The objects which a learner encounters Can generally be thought of as.. " , ... ,

possessing..a clu~ter structure, consisting of the clustering of the objects into.

non-arbitrarily separate groups. 'This str~ure afforded by the world is atJstract:

it is not a property observable in any event, but arises in an overview of

suc~ssiveevents. Such abshact structure could be a major resource for concept
I . • •

learners sensitive to it, since if the world already contains natural groupings,

then the most efficient way for the learner to divide the world,may be along the

naturally-oceurring divisions. In support' for the notion that people actually. .

employ this resourCe in concept formatio~, Rosch noted that naturai concepts, like

"bird'; and "chair", parallel, natural groupings of objects in the world. She

speculated ,that, in general, categories arise to reflect the infonr;ation made
































































































































































































































































































































































































































































































































