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ABSTRACT

An amalgam of Lp and 2% is .a Banach space (Lp, Qq)(G)
m(l <P, q £ ®) of (classes of) functions on a locaily compact abelian
group G which belong locally to L’ and globally to &£%. Similarly,
the space of unbounded measures of type q is a Banach spéée ﬂq(C)
(1 <gq < «©) of unbounded measures which belong locally to the space of
bounded, regular, Borel measures on G and globally to lq.
The Fourler transform of funcions in (Lp, Rq) and measures in
Mq is defined toc be a lineér functional on the subspace AC(G) of the
Fourier algebra A(G), and its relatién with other known definitions
.of Fourier transforms 1s established.
We introduce the space of strong resonance class of fudttions
relative to the test space .¢q and find its relatilon with respect to
the linear space generated by the positive definite funcions for

1
190,

(L
We generalize known results for amalgam spaces on the real line
to locally compact a lian groups, extend some results in the theory of

Lp spaces to amalgams and develop a theory of multipliers for amalgam

spaces and spaces of unbounded measures of type d.
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INTRODUCTION

Briefly, an amalgam of 1P and 29 is a Banach space

p’ Qq)(G) (1 £ p, q £ ®) of measurable (classes of) functions on a

{L
locally compact abellan group- G which belong locally to Lp aﬁd have
2% behavior at infinity. | ,

Several authors have introduced specilal cases of amalgams dur-
ing the last half century. Among others N. Wiener [54], P. Szeptycki
{53], T. S. Liu, A. van Rooij and J. K. Wang [42], H. E. Krpgstad [39]
and H. G. Feichtinger [23]. (For a historical background of_amalgams
see [27]).

The first systematiclstudy of amalgams on pée real line was
undertaken by F. Holland.tSA] and'their.generalizatidn to locally cgé—
pact groups was done independently by J. P. Bertrandias, C. Datry and
C. Dupuis [8], J. Stewart [49], and R. C. Busby and H. A. Smith [12].

In Section 1 we give their definitions and prove that they are equiva-
lent.

J. Stewart's definition suits best our needslaﬁd we use 1t
throughoﬁt tPe work. ‘ -

The study of amalgam spaces leads to the study of the Banach

- -

space Hq (1 <4q i:w) of .unbounded measures of type q. The particular

case M, , has been studied by L. Argabright and J. Gil de Lamadrid [1].
' - ' ]
In Chapter I we study the properties of duality and reflexivity

of (Lp, Rq), density and translation invariance of (Lp, 23y  and Mq'
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and the product and convelution operations on (Lp, hq) and Mq.
Chapter II 1is about the Fourier transform of func£ions in
(Lp, .Q.q) and measures in Mq.
" In Section 5 we study the Fourier transform of functions in

(Lp, LY for 1 <p<%, 1l <q<2 following Holland's ideas in [34].

FA

In Section 6 we give W. Bloom's definition of the Fourier

transform of functions in (Lp, Zq) for 1 < p

[l A

w, 2 <q <= and

extend his definition to measures in Mq (1 <gq

A

=), This approach is
different from that of Bertrandias and Dupuis [7], and- Feichtinger [25].
' We study tﬁe relation between the Fourier transform of unbound-
ed measures of type q and the Fourier transform of transformable mea-
suFes as it was defined by Argabfigh£ agd Gil de Lamadrid in (1]..
The next thing we try to ;0 is to generalize to locally compact
abelian groups some.of Hﬁlland's results that appeared in [34] and [351(
In Section 7 we give Simon's generalization of Cesaro summa-
. bility for locally compact ébelian groups and study some of 1ts proper-
ties rei%ted to amalgams in order to generalize Theorem 9 of [341.
% In Section.B we introducg the space SR(¢q) (1 £q95= of
functions strongly resonant relative to the test space ¢q based on
Holland's definition of the_;pace R(¢q) (1 £ g £») of functions
resonant relative to '¢q' We‘frove {Theorem 8.20) that < P(Lq', 21) >
is dense in SR(¢q) for 1<q<2 ,'<'P(L2,‘21) > 1is equal to
. SR(¢2) and SR(¢q) is included in < P(qu, 21) > for 2 < qgw,
lwhere < P(Lq', 21) > 1s the linear space generated by the space of

. . 1 1
positive definite functions for (Lq s 21). Also we give a representa-



tion of functions in SR(¢q) (1 £q < 2) in terms of the ?ourier tran;;
form of measures of type gq (Theorem 8.2%3. This representation is sim-
{lar to the one given by F. Helland in [35].

An important aspect of the theory of ;;algam spaces 1s that the—
Lp(G) Spaces are particular cases of amalgams. This opens immediately
thelpossibility-of extending knowﬁ results in the theory of P spaces
to amalgams. Chapters IV and V are in this direction.

J. J. F. Fourﬁier [22, Theorems 1 and 2] proved that:
a) If 6 is not discrete and E is not locally null then fdr 1l <px2

PlEd v Ym.

. ep!
b} If E 1s not compact and 1 <p <2 then
IO ERACH ‘
q<p’
c) If G is neither compact nor discrete and 1 < p £ 2 then

@ ¢ u 1L%w).
qtp’

In Chapter'IV we prove the following.

A) If 8 is not discrete and E 1is not locally null then for 1 < p <2

A, M EE U @l D@
ax q>p'

B) If G  is not compact and 1 < p < 2 then

a?, 2He & v @l 29y (&),
q<p'

C) If G is neither compact nor discrete and 1 < p £ 2 then

P e U@, 0l 2
qfp'
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Since (L , Rp) and (L P

l -
, L7) are proper subspaces of L

for 1 @, and Lq is a proper subspace of (Lq, Em), (Ll, ﬂq)

el

for 1

A

P

1A

© and (Lq, £m) N (Ll, 29 for 1 < q < <, A), B), C)

I~

q

A

extend a), b), ¢) respectively.

Chapter V is about the theory of muitipliers for amalgam spaces

/

and spaces of unbounded measures of type. q. ' /////

If A and B are any amalgam sphce or any spaces of“measures

Mq "then we define M(A,B) £t0 be the linear space of multipliers from

A to B (continuqus linear operators from A to B which commute

L

with translations).

3

P

If ‘A is (L, il) (1 < p éﬁ), (Cy» 21) or Ml_'and B is as

above then c¢~M(A,B) d1is the linear space of convolution multipliers
from & fo B (continuous linear operators from‘ A to B which
commute with conv;lution). In this case we establish an inclusion rela-
tion between M(A,B) and c-M(A,B). For séﬁe A and B we prove that
M(A,B) 1is equal to c-M(A,B). |

We alsc look for a characterization of the eiements "T of
M(A,B). or c—M(A,E) of the type:‘

{1 For all  f ¢ A, Tf = u*f for a unique | in some linear space.

~

(2) ~ For all f e A, (Tf) =¢f for a uﬁique ¢ 1in some linear

spacé, whefe (Tf)A and f are theﬂFoufiér transforms of TE

Cd
g

and £ respectively.

'

If A = Ll(G) ‘and B 1is any amalgam space or ény gpace 'Mq

then the characterizations (1) and (2) of elements of c—M(Ll,B) hold

-



P

and they are equivalent when B is equal to (L°, LY 1< P, q < ©),

c,, 4B, @, c)y @2y W cq<cm, @' 1 G <q<m) or

0
(Cy» Rl) (Section 13).

If A= M) and B 1is any amalgam space or any space Mq then’
thé characterizations (1) and (2) of elegents of c-M(A,B) hold and are
equivalent (Section 14).

P

(=]
If B=L and A is equal to (L', 21) (L < p < ®) or

ot El) then the characterizatiéns (1) and (2) hold for elements of

(c
‘oo P q P
M(A,L ); 1f A is equal to (L, £7) (L < p, @ < =), (L, co)

£3) (1 < q < =) then (1) holds

W<p<ay, &2 1 <qg or(c,,

for the elements of H(A,Lm) {Section 15).

Finally in Section 16 we prove (Theorem 16.11) that if A 1is
equal to (LP, 21) (1 < p <) or (Cy, 21) and VB is any amalgam space
or any épace of unbounded measures of type g then the characterizations
(1) and (2) for elements of <¢-M(A,B} hold and are equivalent.

This implies a characterization for elements of M(A,B) (A, B
ahy amalgam space.or any Space Mq; simila; to (1) and (2). Specificaiiy,'
A contaiﬁs an algebra 5, such that }or— T 4in M(A,B) there exist

unique YU and ¢ 1in asome linear spaces such that TEf = p*f and

(1£)" = @f for all £ € S, (Theorem 16.18).

ni



CHAPTER 1

aMaLGaMs oF 1P anp 29

We begin this chapter by introduéing the notation we will use
throughout the whole work.
For a locally compact compact group G with Haar measure m,

P

p - .
L(Gy=1L, 1 < p <=, will be, as usual, the Banach space of measur-

able {(classes of) functions £ such that J Lf(x)|p dm{x) is finite
G )

'oo
and L (G) = L® will be the Banach space of measurable {(classes of)
functions which are essentially bounded. For a subset E of G the

quantity sﬁp 1f(x)[ will mean ess sup |f(x)|.
E .

The integration of a measurable function § on G will be al-

ways with respect to m and we might write J £t or [ f(x) dx in-
J

stead of J £(x) dm(x) .
G

CC(G) = Co» CO(G)C;—GD will denote the linear space of contin-
uous functions on G, which have compact support, vanish at infinity,
respectively.

The characteristic function of a subset E of G will be denoted

-

by XE'

J will

If J 1is a linear space of functions on G then J loc

C’
be the set of functions f in J such that f has compact support, £

restricted to any compact subset E of G, that is, fxE = fIE belongs

to J. For any subset E of G, J|E = {f|E |f ¢ J}.

- -



By a measure } on G we will mean a complex-valued set func-
tion on G which locally is a complex measure. That is, for any compact
subget E of G, Mg(B) = u(BNE) is a complex measure as in [43,
Chapter 6].

This 1s consistent with the functional approach?of Bourbaki be-
cause the functioz u(E) = ff du!= fE f dug (f € CC(G) with support
E) is a continuous linear functional on C,{G) topologiied as the in-
ternal inductivé limit of the :paces CE(G) = {f g CC(G)| supp £ < E}.

V(G) will denote the linear space of (Radon) measures on G.

. We will use additive notation fot the operation on abelian
groups and its identity will be denoted by O.

If 8 is the dual group of G then fBr % ¢ E we will write
[x,%] instéad of %(x) (x € G). )

The differende-of two sets A, B will be denoted by A ~ B,
that is, A~ B = {x € A| x ¢ B}. |

If f ig a function on G then f', E will be the functions
on G defiped by £'(x) -Vf(—x). E(x) = £(-x). respectively.

If Yy is a measure on G then Lp(p) will always mean

Plu)).



§ 1.  AMALGAMS OF LF

AND &% AND SPACES OF UNBOUNDED MEASURES

OF TYPE gq.

Several definitions of amalgams of Lp and 29 as well as of
unbounded measures of type q have appeared recently as a consequence °
of research done in differeﬁt areas. We shall give here these defini-
tions in chronological order of publication and immediately after we
will proéeed to prove their equivalence. . '

First‘in 1975 F. Holland [34] defined the amalgam spaces
(LP, Eq) and the spaces of unbounded measures M_ for the réal line as

follows:

DEFINITION 1.l. For f € LI])_ (R), 1 < p <=, ye define
ocC —

| “afp | 1/q _ v
||f|lpq= ;U |-£ |p] ' 1f 1 £ p,q < =
n ' i .
H q1/q
IERINE DR NEY ™ eeeeigaes
= 2 [n,ntl]
n+l p 1/p
||f[|ﬁm=supj £ | If 1<p<w, g=ow
: 2 n . ‘ ..

s

P
Then the amalgam of L  and 23 is the linear space
. P q P . -
L, & = {f ¢ L: R £ < =} 1< < @,
@, 2% ‘10c(.)fll Ilpq SPa s
Special cases of-(Lp, Eq) have appeared before ;. see ‘for example

e
[54] and ([53]. -



DEFINITION 1.2. For a measure Y on R, we define

: l/q
||UI|q=[;|u|([n,n+1])q] 1

q<e

A

[l wll, =sup | v [n o+]
Z

Then the space of unbounded measures of type q 1s the linear

space

M = { V(R < = } 1 < q < o,
. woe ()|||qu <q <

Later in 1978 J. P. Bertrandias, C. Datry and C. Dﬁpuis (8]
defined the spaces lq(Lp), lq(M) as a consequence of an earlier paper
due: to J. P, Bertrandias [5] about tﬁe Riesz spaces ¥ and U%. ‘Their
definition is as follows:

Let é be a locally compact abelian group and E be a nonempty,
relatively compact, Borel set of G.

DEFINITION 1.3, A tiling of G by E is a pairwise disjoint family

{E4| 1 € 1} = {t; + E|] ty € G, 1 € I} of translates of E.

~ DEFINITION 1.4. Let P be the set of all tilings of G by E and

1 ;~p’q <= For f ¢ Lp c(G)' define
' »

lo
q/p | Y/q :
|| £ l| = sup E [ J | f |p] if 1 < q,p < ®
® {g;leP| ier1{’E
1/q )
q L
€ [lge = sup { 7 sup | £ ] } ifp=w, 1<q<®.
{Ei} § Pliel E
e 1= o [[ 1207] . ttigpema-=
X E x+~E .
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Then the amalgam of P and 23 is the linear space

p

Qe Py - »
23(L") {feLloc(G)| || £ ||qp< } 1

fi A

Pq £ *®

DEFINITION 1.5. For a measu;e H on G, define

q 1/q
How = sup [Z lul(Ei)]
T gdePlier

[Twlly, = sup | wlG=-BE
X € G '

Then the space of unbounded measures of type q 1is the lipnear
space

LAy = { u e v(©G)| IIullqlw} o l12qge.

1
bt

REMARK. Origiﬁally the spaces Rq(Lp) and 2q(M) were defined on
locally comﬁéct abelian groups, but it is clear that this definition is
equally valid for nomabelian groups. ‘

The dependence on the set E is in essence irrelevant because the
spaces lq(Lp) and_ﬂq(M) defined from two different subsets are isomor-
phic [ 8, 87 a)l.

In 1979 J. Stewart extended the definition of F. Holland-to
locally compact abelian groubs using the Structure Theorem for locally.
compact groups L49].-

Let G be a locally compact abelian group. By thé Structure
Theorem (37, Theorem 24.30], G is topologically isomorphic with e x ¢
where a 1is a nonnegative integer and G; is a locally coﬁpact abelilan
group which contains an open cbmpacﬁ subgroup H.

If G, is compact we can take H = G,, 1f G is discrete and infi-

nite we can take H = {0}, Otherwise H is arbitrary but fixed.
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I
The ‘Haar measure m on Gy, 1s normalized so that m,(H) = l.

1
e then take the Haar measure m on G to be the product of the

' a
Lebesgue measure on R and m .

DEFINITION 1.6. Define L = (0,1)® x H and K = [0,11% x n.

Then we can write b as a union of compact sets G = U Ku and as a
ae J
union of relatively compact, Borel sets G = ] LU. where J = Za x T,
aeJ
T being a transversal of H.in G;, that is G; = FU g + H, and
g e T
Ly=a+L, Ka = ga + K. (Note that m(La) = m(Ku) =1 for all a £ J).

“

DEFINITION 1.7. For f ¢ Lp (G) 1<vp £ = defipne

loc
) q/p] 1/q .
|| £]] = ) [ J | £ 1p] : if 1 < p,q <
Pq o e JL K,
1/q _
|| £ [l = J osup | £ 19 iffpe=w, 1 <qg<w®
*q aedJ K ‘ .
41 A
1/p
el = s || 1€ f1gp <o g
P ogeJ Ka ‘ .

' q
Then the amalgam of Lp and £ ig the linear space

p
1

p

w, hH=lter @] [|f Ilpq-<°°} 1<p,g<w

REMARK 1.8. From the definition of the families {Ly}, {K,} and

the nature of the Haar measure m, it 1s clear that

_ a/p | 1/q ”
etlgem |1 [ rer] €1 <pa<n
o e JLILy .
‘ l/q o
||f1|.,,q-[ ) sup|f|~Q] lepam 1cqce
ca e J La -
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l/p
el m o [ 1217)
a e J LO’. ifl;p<m’q=m-

DEFINITION 1.9. For a measure y on G, define

q l/q
Tw = ¥ | vl 1<q<e
1 ae J )

Al Tl = sup | v [y

a e J
Then the space_of unbounded measures of type q 1s the linear
space ~

Moo= Luev@] [l u]l <=} W<qge.

REMARK. If G = R then the family {Ka} becomes the collection of
intervals [n, ntl] (n € 2). Hence, in this case, Definition 1.1 énd
Definition 1.7 coincide.

Finally in 1980 R. C. Busby and H. A. Smith'liz]used the space

Pq

for locally compact, not necessarily abeliaﬁ, groups and is based on 4

n C -
L to solve problems in compact operator theory. Their:definition. is

so called (U-V) uniform partition of the group.

Let G be a locally compact group. ’

-
- . -

DEFINETION 1.10. Let U, V be two relative1§ compact open neigh—

&

borhoods of the identity with U € V. A partition 7 of B into disjoint

Borel subsets is (U<V) uniform if for each W e 7 there ‘exists x é G

-

such that xU E W £ xv,’= -

DEFINITION 1.11. For 1 £ p,q £ .and a (U-V) uniform paftition‘

- .-

T on G, we define, for a measurable function £ such that le e)Lp(W)

‘ - -
* -

’

- . ) ’
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for all W e T,

eI, (£15pce

n
=
™~
=
| nas—
A
x
]
o
| S
Ka]
~—
o
—
S
Mo
Fal

]
8

if p y 1 £ q <=

1/p
sup J | £ |p if 1 £ p <=, = oo,
W -

£
el

n
e |
1
0
[~
-
n
fa]
—
—
S
Fal

[} €]
Po  wen

Then the amalgam of Lp and .lq 1s the linear space

= LI NT <o) Lipage '

m
The dependence of qu on the partition T is irrelevant because

]

for m, ' uniform partitions, the spaces qu, qu are isomorphic [12,

Proposition 3.81,

Each of the spaces £1(LF), (P, &%y, qu, 340, Mo1g Paq < @

TT ...
, R TRTTRI
'[|q respectively ([8, §7, b)], [49, Theorem 3.2], [12, Definition

is a Banach spéce under the norm, ||'||
1

3.61). 3 ' .

-

Hereafter and throughout the whole work, G will be a locally
compact abellan group, the Haar measure m, the set$ L, K and the fam-
ilies {La}i"{ku}ﬁ will be as in Definition 1.6 -and the number a will

always correspond to the nonnegative integer which appears in the

" decomposition of G, unless otherwise stated.

There are several facts we ought to know before we proceed to

.

prove the equivalence of Rq(Lp); (LP, Eq), qu IR Mq)f

These are:
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1) If Li -'ti + L 1s a translate of the set L, then the set
S(Ly) = {Kq | Ky N Ly $ 0} has cardinality less than or equal to 2%,
2) Let m™ be a (U-V) uniform partition on G.

a) The sets S(K,) = {W & 7| Ky n W + 0}, s(W) = {Kyl XKy n ¥ $ $}
have cardinality less than or equal to the integers n(V,K),
24q(K,V), where n(V,K), n(K,V) are the greatest integers in the

~ real numbers m(K - V + U)/m(U); Q(%'— K + U)/m(Uj respectively.

b) Let 1 < p g £e LV  iff £[W e LP(W) for all We m.

Part 1) 1s clear. Part 2), a) follows from the proposition 5éié§;__'

its proof can be found in (12, Propositions 3.4 and 3.5]. Part b) is

clear.

PROPOSITION 1.12, If 7 is a (U - V) uniform partition on G

then for each W & m there exists Xy € G such that xytUcWe Xy + V.
Let F_= {xw| W e n} and E be a relatively compact Borel'set.
i) Every translate of E meets (and so is covered by) at most n(V,E) mem-
bers of .
11) Each translate of a membé} of T meets at most n(E,V) of the trans-
lates xy; + E (;W e F).
LEMMA 1.13. {12, Proposition 2.1]. Let {g1,...an} be nonnegative

real numbersl ) |
a) If 1 < p < © then

. (a; + a, +-$'+~an)p;§ np-l (alp + azp.+"°°+-anp).
b) prcp:l then '

P

(a, + az o+ an)p < a, 4"°'+,anp=
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-

Now we are ready to prove the next three theorems about the

spaces 23(LPy, P, b, qu, 29(M) and M- -

THEOREM 1.14. The space lq(Lp) defined from the set L is iso-
morphic (as a Banach space) to (Lp, 29y for 1 L p,q £,
PROOF. We note that the family {L,}; is a tiling of G by L.

Then by the definition of ||| and Remark 1.8, we have that

for all f e 23D, [.Ifllpq < ellg, @ 2p.q<®). Hence

2Py < P, o)
q)

Now take f € (Lp, L and {Li}I a tiling of G by L. Then for

1 <p,g <®and each 1 € L,

| 1ePs 1 [ 0P am ewlfl®s ] su [
Jiy Kq € S(Ly) 'Ky Ly Ky € S(Ly) Ky

where S(Li) is as in 1) above.

Applying. Lemma 1.13 we have that

alp a/p-1 - q/p
L] e p o T[]
ieIl’Ly .- 1el Kye s(Lyl K,

] sup |£]%c § I sup |g]? ,
el 1, 1 el Kye S(Ly Ky .
o [ e T s e [ 1]
xeG x~L xEG K, € S(Li) Ka

This implies that for 1 < p,q < =

q/p {1/q  a/p
] s e,
e ILL . '

_i K i

1/q a/q
2*--sup_|f|“] <2 b gl
tel 14 - M
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VR

1/p
|fP] <2l
L - peo

up [ [
x € GL Jx-

Since {Li} 1s arbitrary we conclude that for 1 < p,q < ®

a/

Pl el <2
2 £ ’ f < 2
pPq Q> =

A

1 e |1 : :
e Fell,  and

a
2 ], f Ilpm' Therefore (Lp, Rq) [« lq(Lp) for 1 < p,q £ =,

in

1€ o .

T
THEOREM 1.15. The space qu is isomorphic (as a Banach space) to

P, 29y,

PROOF. The .argument is identical to the one used in the last
part of the previous theorem.

- - !
Let 7 be a .(U-V) uniform partition on G and £ € (Lp, Rq). By

b

Lémma 1.13 and 2), a). above we have that for 1 < p,q <@

S 7 Jale ) q/p-1 ' q/P
o] e ™y T o°] ™"
Wemnkb'w - ) B Wemw KQES(W) Kd

I osup je|T< T I . sup |£]|?
WenW ye

3 i . . -
.

. ~ . l/‘p . 3 . b . 1/p
sup [JIfP] "L sup, ~_Z [J |ﬂp} L,
Wem W o Wem K € S(W) K, °,

This implies that for 1 < p,q <, =

Wp ool
a &8 1 .. - -
@ a1

A

el

]

e ‘
@* a7,

. m a B
e 102 2w 11 £ 1] .

L
£
RERTS

(7

-

~



Therefore LTT. C-ttp :Eq)
pq.= T RO

THEOREM 1.16. The ‘gpace lg(M) defined from the set L is isomor-

phic (as a Banach spact) to M for 1 £ q <=,
PROOF. As in Theorem 1.14, the faﬁxily {La} is a tiling of G Ey L
and we have t:vhat for all u e i) || 11-.'||q < || w ||q1 if 1 £ q <=,
On the other hand, since K is éover}ad by a finite number of
translates ty - L 1 = 1,..,n, each Ka =g+ K (aeJ) 'is covered by

the finite family { ¢ + £, - L} i=1,...,n of translates of L. So,

i

for each ax £ J

i} . .
wl) 2§ v+t -0 <o |lulfe, 1f we & ®D).
: o3 i=1 . i 1

This implies that Hulle <0 | ]u] le and therefore E.q(M) = Hq
or” l"; q; @, -,

If peM and {L,} is a tiling of G by L, then by 1)

q i :L g I
‘above N ‘b' _
maep s T gy
« . KO. £ S(Li) ".
S NI I SR IS
B K, € S(x-L)

L
B)'r Lemma 113 we have that for 1 £q<e

-, ; g1+ q
T hap® e Hull, e osw [ufeeo- 1y <2 [l
-1 eI i 1 XEeEG

Hence, ||UH < (2 )1 -l/q if 1'5 q < ® and

T _
Ilullml hS | |u]|,. Therefore Mq c Eq(M).+

»
-

REMARK 1.17. i) Note that the space M; 1is just the -space of

bounded regular measures M(G).
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ii) The space M, corresponds to what Argabright and Gil de Lamadrid call

the space of translation bounded measures [1, p. 5].

We will write (Lp, Rq)(G), Mq(G) to emphasize the group on which

the spaces (LP, 29), Mq are defined.

We define co(J) to be the linear space of nets (aa)J (aa £ C,

>

a e J) such that 1lim a, = 0. That is, given € > 0 there exists a com-
a ]
pact subset E of G such that |ag| < e for all «a ¢ E.

DEFINITION 1.18. For 1<t < ®, (Co, £°) = Co 0 (L%, 2¥) and

W, e = {£ e @5, D] (JIE]] . Dje el
. L (KG) .

PROPOSITION 1.19. Let 1 < r < =, (Cy, £7) 1s equal to the set

[+
of continuous functions in (L , Er).

; ’ © - r
PROOF. Let £ be a continuous function in (L , &), and

V= {Vi] i € I} be the set of finite unions of 'Ku's__(a € J), directed

by vy 2 Vj iff Vi C'Vj. Since f e (Lm, Rr), the series. - )
Z ||f|]'m ‘ converges, and consequently the net {z ||f|[ o }U.
vV, 7 L (K) : v, - L (K.)
. . (o3
i i o ¥ ’/,f _ i
converges to zero, Then for any € > 0 there exists Vj such that
. 7] R
yollg]] < e for all V; > V.. Therefore |f(x)| < e for all
oo A =] .
Vy Lo (K, | v %
X € Vi, Vi 2 Vj, and this implies that |f(x)| < e for all x ¢ Vj.

Hence £ ¢ Cn.+

Definition 1.1 and Proposition 1.19 show clearly that the amal-~

éam space (Co, EI)GR) is-the algebra defined by N. Wiener in [54].

“

<4
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I#
Pq
defined in Theorem 1.2l -first introduced in [8 , Proposition VIII]-

-

" We will use the next lemma to prove that the norm |

is equivalent to the norm I |pq'

The importance of | will Qﬁ seen in Chapter v.

K
Pq o

N ..
LEMMA 1.20. If FT ={G1,-y,,0¢e 6] yg € (0,1} 1= 1,..,a)

and F = {(y;,..,¥,,0) € 6| y; € {0,-1} 1 = 1,..,a} then

1) 'For all xe G, X+ L ¢ U{Lal x+yekLyy E'F+}

Y

ii) For al% x € Ly, (o e J),-La cx + F + L.

PROOF. 1) For x = (xl,..,xa,x') in G, there exists a unique
L, = [nl,n;-{-l)x"'xfna,na-i-l)x(t:+H), nyez 1=1,..,a, teT (.SEé
Definition 1.6), such that' x € L,. Hence ny x5 <oyl 1=1,..,a
and x' £ t+H.

On the other hand, =x+L = [x,, x1+1),..,[xa, xa+1)¥(x'+H), and
we have that for =z = (z;,..,za,z') in x+L, xy £ éi <xgtl,i = 1,4
and z' € x'+H. | '

- Define for 1 =1,..,a

0 if Xy éxzi < ni+1
Yy = ‘

1 if ni+1 i.zi < xi+1 .
Hence y = (yl,..,ya,O) belongs to.F' and for i = 1,..,a
*i if xi hS zy < ni+1

Xy + Yy - ) .
xi+1 if ni+l < zq < xi+1

Now, if x + vy € LB' LB = [my, m1+1)x"'xfma, md+1)x(t+H)
my €2 i=1,..,a4, t€ T, for some 8, then z' £ t+H since

x'" € t+H and oy £ zy < mi+l i=1,..,84 because for 1 =1,..,a

ﬁg&

<
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i i =

if Xy +lyi = Xy then m, = n and my = ny < xy < nyt+l = mi+l
and 1f xy + y; = xy + 1 then my =ny +1 and |

my = ngtl < zy < xi+1 < ni+2 = mi+1; in either case my < zi'< my+l
i=1,..,4. Thereforeg z ¢ LB and this implies that

+
x+Lcev{Lg x+yelg yeF L

ii) First we will prove that if 'x = (xl,..,xa,x') belongs to
I then L Ex+ F + L., Let =z = (zl,..,za,z') be in L. Then x',z'

’ ~
belong to H and x4,z; are in [0,1) 1 =1,..,a. So, ¥or 1 =1,..,a,

02z < xy or xy <z < 1. Define

- <
I 1f 0%z <x

Yy %
y : 0 if Xy Lzy < 1
Clearly y = (yl,..,ya,O) belongs to F and we have that

.\
[x,,x,+1) 1if x, £ z; <1
i="°1
Xy + ¥y + [0,1) = 17

1=1,..,d.
E . [xi—l,xi) if 0<z; <x :

i

Therefore z € x +y + L.

Now, we take any 2z 1in Ly, L,

o ot L. Then z =a+ x for

Q"-): P

some x € L. By our previous result L £ x + F + L hence

Ly ca+x+F +L=z+ F~ + L and the proof is complete. i
N

THEOREM 1.21. 1) A function f belongs to (L, 2%, 1 <p,qa <=,

1ff the function _Ef on G defined by’

f '
£ x) =] £1]]
LP(x + L)
q
belongs to L .

it [1ell? =l €|l then
Pq q -

-a # a '
2 f < £ < 2 f .
L Ilpq.gll Ilpq_ |] ||pq
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1i) A measure | be]:ongs to M 1 £ q £= iff the function

q.

Eﬁ defined by
, |

Wy - |uf(c + L)

belqngs to LqV ' ;

f# .
e [fwll =l w' Tl then

q o q

' o a
274 u < u < 2 u .
[ I|q=|| ||Cl= IR

PROOF. 1) For x e G, x & La‘for some o, define the function .

£9¢x) = | [£]| . Bince m(La)‘='1 for all a we have that if
- Py

1 <q <= -then

opd Ly q q q q
et =0 [ el = s it mag = DN = (lel]E and
1 oL, a LP(L,) o L7 (L) Pq

e, = sup 1€°] = sup Hel] | = [l£l].
¢ : (1)
Therefore
e Hellg = Hellpy  for 1<piase

By Lemma 1.20, for any x € G

f#(x) < X . £9(x + y) and £O(x) <. z _fE(x+y).
yeF Yy €
. - ‘a
Since the cardinality of ‘F' and F~ 1is 2 ,» and for t € G and

any measurable function g, ||Ttg||q = ||g||q (1 £ ¢ £ =) where

Teg{x) = g(x + t) (x e G), we have from (1) that .

[N

# i [ a 0 a
£ = ||£ T, f = 2 £ = 2 fr
ety = 1l s 1 Tl =2 el = 2 el

Al

A

el = llellg s ]

#t a # a )
T f = 2 f =2 f .
LU el = 2 I =2 el

F

This implies 1),
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i1) As in 1), for x e G, x € La for some a, define the func-
tdon u'(x) = [u](Ky). Then |[u®||q = [lullg t<a < @) and by

Lemma 1.20 for any x € G u#(x) < z + W (x-+ y) and
y e F

W) < W+ 9.
yePF

Hence, for 1 £ q £ =

d ft
Hubl? = 1fl1g e 3
y €

Phull, = o1 < X
q q—ye

) 0 - a 0 - a .
" gl = 27 Tl = 27 Hullg

et = 2 = 2

This implies ii).f

From Theorem 1.21 Beztpandias, Datry and Dupuis [ 8 ] established
a relation between (LP, Eq) and the mixed-norm spaces qu defined by
Benedek and Panzone [11].This relation is as follows:

P4

is the normed linear space of measurable (classes of)

functions ¢ on GXG such that

< ™

[ q/p | 1/q
ol o | [ [ ] ocem1? o]
G G

with the usual modifications if p = @ or q = . .

‘We associate to a function f € (Lp, 29y the function F in P4
defined by F(x,y) = £(x)X (x -~ y) and to a function ¢ in qu the

L
function ¢ defined by p(x) = J d(x,y)dy.
. x+L
# 1(Pq
By Theorem 1.21 ||£||" = ||F||"" and as in [ 8, Proposition IX]
‘ Pq
# Pq

< |{d .
o118 < 1l

These imply that

é) The map £ —+ F 1is an 1sometric, linear isomorphism £rom
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El

(Lp,.Eq) onto a linear subspace Squ of qu consiéting?of the func-
. o .

tions F in LPY of the form F(x,y) = f(x)xL(y - x) with f E‘(Lp, 2?).
b) The map ® — ¢ 1s a continuous liﬁggr map from 1P 1ato
w?, 2h.
c¢) The comﬁosition of f¥v— F and ¢ F4+A¢ ,1s the identity
map. ‘

d) The composition of ®+— ¢ and f+— F is a continuous

linear map from qu onto Squ.

Busby and Smith have also pointed out another relation in {12,

p. 316].

v

REMARK 1,22. It follows from Theorem 1.2]1 that the spaces‘
Ve 1)mu, fV;,‘ﬁip and 1U; (1 £ p £ =) defined in [42] are isomorphic
to the spaces (Ll, zp), (Ll, Cg), (Lm, £p), (Co, lp) and Mp respectively.

REMARK 1.23. 1) If G is compact then we can take the family of
Ka's to be simply G. Hence (Lp, Eq) = Lp, 1 <p,qg g w, )

11) If G is discrete,theﬂ we can take K = {0} and therefore the
family {Ky} 1s 2. Hence (LP, £%) - 23,1 <pyq g

~ ,Then the amalgam spaces (Lp, Qq) are only of interest when G is

neilther compact nor discrete.

If G is the dual grgup of G then 8 = 6axal and El contains
the op;n compact subgré;p'g which is the annihilator of H, .
.élﬂ {x € 6| [x,8]1 = 1 for all % € H}. Hence we can-choose A to define

the families {Lg} {kglg ¢ ¢ 1n G by Lg = B + L, Kg = B + K

Be 1’
where I = ZaxT', T' being a transversal of A in 61, £ = [0,1)%A and

K = [0,1]%A.

3
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Using {KB}I we define as in Definitions 1.7 and 1.9, the amal-

gam spacé (L?, zq)(é) and the space of unbounded measures  of type q

-

M (G). ,
q( ) } . . |
< Throughout the whole work,~{LB}I, {KB}I, L and K will ‘correspond

"to the sets so defined here, unless otherwise stated.

’



§ 2, INEQUALITIES AND INCLUSION RELATIONS

-

During our work we will make constant use of the lnequalities’

and inclusion relations studied in this section.

PROPQSITION 2.1. For 1 < p < @

2.1y +  @P, P =P,

- ',?
PRCOF. Definition 1.7: . N

We see from Proposition 2.1 that the theory of amalgam spaces

on locally compact groups embraces the theory of. LP spaces,
¥

'PROPOSITION 2.2. e | o
(2.2) e, < Thllg L<qgpzsw® g
(2.3) ellpg, < el . 12aisd, s=1cpse
1
@® HEll, 4 S Hf”pzq Lipsp, £ 18ase

PROOF. Sincé |p{(KgT < I |ul(k) for all & € J, it is
a e J

- o

clear that

il mlee <| T Iul¢ ﬂ]”q [l
Hjj, = sBUP vl (Kg) £ Ul {K = Y .
§ed ° [u €.J @ - 1

/
If p 4is finite then (2.2) follows from Jensen's 1lnequality (as

in [ 4, p.18]) with x = |u|(xa);

If q, = « then,

d 1/q,
el o= e fell <[ T 1117, - 1lell -
¢ e J L (K,) aeJ LK) Pq

25
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If q, < = then again by Jensen's inequality with

L..aaj-/

A'§a = 1|£]] we have that for gq; < g,

LP(K,)

»

. ; 1/q2 . 1/q,
7] |9 <L el® . Hence |[£|] < [|£]] .
o Lp(Ka) o LP(KU) - P4, Pq,

-

If p, = ® then for each a € J

|[f[|‘ p '\é sup lf(x)lm(l{a) = Ilf“ o since m(Ka) = 1.
-~ LK) x e Ky - L (Ky)

" Therefore ||fl|plq i”f”ooq 1 < q<w,

T If pé < @ then by Holdér's inequality (as in [37, Corol-

lary 12:5%) with £, = [£]K,|P%, £, = Xg,r O = P1/P2r @3 = 1 = (p,/p,)

we have that for any o € J N

~

%a

| o
It e | et = el

o . 4 :

N (AR (R

again this is because m(K,) = 1. This implies that ||f|| §‘|If||£-q
P.q
1 s

for 1< qZ< =y : : *
COROLLARY 2.3. ‘

(2.5) el 2 1<q cq,cm 1gpge

(2.6) Pz, e e P, 2Y 1<p <p, e l<qgw

2.7) af, oYy ¢ P a1t 1<qepgw

(2:8) ¥ vle @f, 2% 1<p<q<e

(2.9) Mngq lpLqs=

.PROOF. It is clear.that (2.5) and (2.6) follow from the inequal-

ities (2.3) and {2.4) respectively, while (2.7) and (2.8) follow from

» L h-1



(2.5), (2.6) and (2.1). Finaily (2.2) implies (2.9).

-

THEOREM 2.4. Of the inclusions below 1) and 8) are strict if G is
noncompact, 2) 1is strict 1f G is nondiscrete and 3); 4) and 5) are strict

1f G 'is neither compact nor discrete.

noowf, 2ty e w?, 299 Lsgy ©qy <=, L<p s
2) (pr, LY < (Lpl, Eq) L <py ~p, == 1 <q<w
3 P, Y Pl L qop <
s tteat, Haah L 1vqaw
sy tPe® Yaal, L<pegqew
6y 9, thyn @, % el 1 < g < w
7) (Lp. Qq) N (Lq, 21) < Lq 1 <q<p<w
5 eal, 2 1<q<w,
PROOF. Let {L,} be a countable subfamily of {Lu} and @ be'a real
pumber in [l,%). Since m is regular and m(L ) =1 for all n, given

o
{(1/n) there exists a compact subset I, <L such that

1

o
m(L,) - (1/a) m(I,). This implies that

o .
m{ly v 1) = M(Ip) - m(I) < (1/n) . Define £ : L — R by

n X Ln v In
0 otherwise, ’

’fn(x) = 1

Hence for 1 £py, g <=

. L
J |fn|p = J |fn|p = nP (L, v I ) < nP/n® = (1/n) P and
L anIn

sup |£n| = 0>, Therefore for f = X,f
[l

L n

n .



| @3—p)q/p},1/q'
- £ - | 1 ‘
el ‘[é am- |
- a-p/py . -
el =sup {arm) ~ §
Py

el =frae] ’
. wg [N‘ } o v
i Then S X ;
a) £e @l oY 1 (@-plae >l
b) £¢ P, 2D 1f (@- pla/p el - .
¢) fe (LP,.Qé)' 16 (@ =-p)p >0 | '
d) £ ¢ gﬁp, 9y if (o = p)/p < 0 _

4+

e) & (L7, Eq)| for 1 <q<w=

28

1) For 1 £q < qrz < and 1 < p‘< ®, we\take a = (p/q,) + p.

Fl

Then (a - p)qzlp = (qzlql) > 1 and (a - p)q17p = 1 Therefore by a)-

and b) £ e (1P, 292y and £ ¢ P, 0. If q, ==and I ¢’p < @

then (LP, qu) < (Lp, 27) because for any q, qp < q<® S

A

P, 2y S P, 1Y ¢ @f, 2).

Suppose p ==, 1 S_ql_< gz < @ and take o -such that
- — - ‘ L] v

1/q, < o < 1#q;, and define g: G— R by: T

) (1)n~)0l N g-eﬁLn"- - .
. g{x) =9 - .
: 0

otherwise
~ P -

Hence sup lgﬂx)1 = (l?n)a and- this implies that '
L ] ) )
L .

‘.

l»/ql -t ) llqz
(t/ >aQI and ||l =[1 Cl/nlaqz]
6 |y = [z 0 oy = T @/t

. -2} q [ - .
‘Therefore g ¢ (L, &'') since aq; <1 and ge (L, 32y

-

since aq, > 1.

-



.

Suppose p = q, = *® and 1 <q; < «. Define the function

g: G—* R by

1/q
(1/n) ! x £ L
n
g(x) =
0 otherwise
1/qa < © and

Hence, |Ig||m = sup (1/n)
N

a

\ llq @ q V «
N |8I|mq “[Z lln:} ! a w, Therefore g iﬁ(L , &Y and ge.L .
1 N

2) For 1 £p, <pp;<>® and 1< q <=, take a = (p,/q) + p,.
Then - (@ - p,)a/p, =1 and a > (p,/q) + p,. This means that
(é_" p,)a/p: > 1. Therefore by a) and b) f § (LPZ, 2%y and .
£ e (LP?, 29, .

C1f p2 =%, 1 <p, <= and 1< q<= then

(ﬂmf Eq),: P!, 29 because for any p, Py <.p < o
@”, 2 c@P, b S P, Y.

Suppose gq = @, 1 < p; < p, <« Take p; < a < p,;, s0
(@ - py)/py >0 and (o ~ p,)/p, < 0. Hence by ¢) and d), £ € (Lp , fw)
and £ ¢ (L2, 2).

[++] - pl -5 . ) *

If q=p, == thenl _ (L » 2 ) because for p, <p <=
" c @l 2 s ak, .

3) For 1 <q<p < » take a = (p/q) + p. Hence (a - p)g/p = 1,
a-p=pfg>1,a>1+4q, so a-g> l.Then according to a) and b)

£et? nLd and £ ¢ (@F, 29).

0 otherwise




a 9
Clearly geL , sup |g(x)|' =1/n and
L

0 -
J gt = J 1/n = 1/n2. Therefore ||g|]| =] 1/n and
L, L _ e S VA

] N 1 /q‘ - [=:] q q L]
||g|]q -[z llnz] . This implies that g ¢ (L , &) and ge L nL.
- N i

A

4) Let a=1+4q, so” (@ - 1)q = q* > 1. (g -q)g =1/q >0
- ) 1 ' q q [++]
and o~ g =1, Hence by a), b) and ¢) f e (L°, £°) n (L, £ ) and

£ %19, i}

5) Let a=p+1, 80 (@-plg/p=qfp>1, (a-1p=p>>1
A Ay -
R . Y
. - and o - p = 1. Hence by q) and b) f € (Lp, L ho@, Ep) and
f‘¢ Lp- . AN ‘ .. e
. .oy -

6) Let o = 2q, §§ (a-q)/fq=1, a - 4'=:q > i. Heﬁce b;-b)
bl 2, by e £ 4 (L7, 2% “and by a) £ e L.
- 7) Let o = m}nf_p/q +p, 29), so aip/gtp and o £ 2q;
this implies that (a - f)q/p‘ézl and (a —;q)/q < 1. Hen;e by b)

f ¢ (Lp; lq), i i (Lq, 21). But © > 1 + q .and this means that

@ - q >!'1l, therefore by a) f ¢ Lq. '

I

8) Consider the function g: G—* R defined by

- 1/q
(1/n) x € L
glx) = . .
0 . otherwise

n

1 : q
Then I gl = 1/n, and we have that ||g|| =]} l/n ,
T . T In

n
o0

’ |]8||qm.‘ sup l/n4 Therefore g ¢ LY and g e (Lq, 2 ).t
N ‘

CORQLLARY 2.5. The following inclusions are strict if G is

noncompact.

4
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9 al,thc? 1<peam

10) LP ¢ (P, 21 1 <p <ﬁ'5§\\i
1 g

e, 1<qee \

]

n

12) LY c P, 2 1gpcqgw

==

In

13) @, 2H c1d 1<q<m,
PROOF. 9) and 10) follow from 1). While 11) and 12) are conse-

quences of ?3. Since (Lm, Rq) c (Lp, Rq) § L3 for 1 < q<p<m, we

.

see that 13)'Hblds.+

v

-
S

REMARK "2.6. From (2.5) and ﬁ2.6) we see that

=]

» > - - 1
, 21) [ (LR, Rq) < (Ll, gm) 1 < p,q £ =. In other words (L”, &) is
the smallest and (L}, 2) is the biggest of the amalgam spaces. At the
same time, Ml is the smallest and M, is the biggest of the spaces of

unbounded measures of type q.

A function f in (Ll, ﬂq) .(1 £qXw ) considered as the
measure fm, where fgdfm = fgfdm, belongs to M, and Hf|[lq = L|fm||q.
Hence fh— fdm 1s a"natural embedding from (Ll, Eq) into Mq. In

this sense, we say thag

=

(2.10) !, 29 ¢ M 1< q< e, | »
Note that for 1 < p,q <> and f ¢ (Lp, Eq)

@1y af, b e al, 1 en

(2.12) ||fm||q'= llfl'llqs. l[fllpq-
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§ 3. PROPERTIES OF (LP, 2}) AND Mg, -

]

Tpe results presented here are not new. Hoﬁéve; for the s=ake o%
complétness and uniformity we shall prove them using the &efinition of
the amalgam space (LP, 29). Alternative proofs can-bé found in [ 8 ].

Let {E }; be a family of Banach-spaces.tFoilowing G. Kothe
t38, § 26 p. 3591. Eq(Ea)'ois the linear-space ;f'nets (kalJ’ Xy € Eg

such that z I]xu||q < o, Rq(Ea) is a Banach spade,undef‘the norm
5 ; iy :

1 x| =[§ gl |

&, ) :
]llq if q is finite and ||(xa)]] = sup ||xq4}]
' J
a .

Ef
if q is 1infinite.

We see that (Lp, Qq),_Mq, 1 <p,q <> are particulér cases of

Eq(Ea). Indegd‘ if E, = Lp(La) (a0 e J) thenrthe map f+— (fa)J’

£

£y = fILOl 1s an isometric isomorphism from (1P, Eq) onto Rq(Ea). S

Similarly, if Ey = M(K,) (¢ € J) then M_, is isometrically isomorphic

q

to L9(E,) via the map ub— (ua)Js'ua(B) = u(B n K,) (B a Borel sub-
. )

set of G). ‘ Y

This fact together with § 26, 8 of [38] implies the next result.

’ 1 1 pl 1
THEOREM 3.1. Let 1 <p,gq <= (LP, 29) ( @P, &) ) is
- P pqy¥ P *
isometrically isomorphic to (L%, &%) ( (LY, cg)” ) wvia the map

. !
g— < .8 >, < f,g > = f fgax , g e P', 24"y ( @', 1)),
. G '

£e (P, 29 ( (P, co) ).

39 ‘ A
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Hence, ,

(3.1) ' |< £,8 >|

(31i>//—— I< £.g > < TIEll5 el lpre Lip<e,

PROOF. The case p = q = 1 follows from [18, IV 8.5, p: 290]

iA

el lsll iy 1 <pia<e

I

anjy[és, Appendix E. 10]. -

IR

1 .
The proof for (Lp s 21) is identical to that for the case

@P', 29" 1n [38, 5§26, p. 3597., - Qg\

THEOREM 3.2. Let 1 < q <. If T 4is a linear functional on

(C;, Rq) then there exists a unique measure | ¢ MqL such that
M6 - [ fa (e, 19)
G _
and _ .
. . a
Hrll g [ell <27 [11]] ifl<qg<e
- q , .
elT= if.q = o
Moreover ) )

R e S AT RN LI

E]

- T
£ (Cpy 1Y), g e h, 29).
PROOF. The case q = @ is the Riesz Representation Theorem.

For 1 &rq < = , the first part is Theorem 4.3 in [49]. What
-l__'_’-'_. . 3 b

-follows 1is a sketch of the proof.
Let E, be the space of continuous functions on Ky (¢ e J) with

e
the usual topology and let £q(Ea) be the linear, space of nets (fa)J’

¥ . s
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f & E_ such that || ||f’|| |] <o,
o a 6 q

1 8= {(f); e RUEY| £, = fg on K,Kg} chen (Cp, &%)
is isometrica}ly isomorphic to § via f+H— (fa)J where fa = f|Ku.

* .

Since T € (Co..lq)* =5 , T can be extended without changing

its norm %ugaflinear functignal T in lq(Ea)*.
- . * ' - .
By [38,826, 1)], ﬂq(Ea) = ¢4 (Ea*) and this implies that there

. ® -
exists T_ € Eu » @ £ J, such that

a
10 < D1 e o2 and ] = 1Ll e
!3 By the Riesz Representation The;rém there exists a unique mea-
sure W, € K, such that '1|ua|| = I|Ta|| and )
T, (8) =.JK g du, ‘(g € Eg).

o . , .
Therefore. T(f) = z J fOl dua .o (f & (Co, Rg)).
o ‘K .

(o]
The measure U(E) = { ua(EnKa) (E a Borel subset of G) be- *
o ,
longs to Mq" T(f) = deu (£ € (Cgq, Rq)) and I|T|| =,]| ]Iuall |[q"
b}
Now, |ul (k) <] [u |y € ] lngl (Ky)  where
KY o o KY Ka £ S(KY) a i
S(K) = K, | Ky 7 K, + 0},
So, by Lemma 1.13
M p® < @HTT T gl for 1<q" <=
; Ky E S(KY)

Since the cardinality of S(KY) is Za we conclyde that

. ' )
Z |UI(Kx) b zaq' E I|ﬂa||q if 1 < q'" < @ and also
o o .



sup Rl (k) < 2% sup || {].
v Y o Q
. ‘ a a
This implies that IIUIlq. <20 | gt !Iq, =2 |{r|]

for 1 < q<=,

On the other hand, by the Holder inequality, we have that for

£ e (Co, .Q,q)
T [ el s 1] telall <3 s Tl Tul gy
‘ o Ka | o KQ:
1/q . 17 1/q" '
f‘[z o 'flq} [z [} & ) } RTINS
- Lok, “la 1 4

Therefore []T|| < Ilu|]q..

Finally if g € (Ll, £9)  then by (2.10) gme M and by our

previous regult and (2.12) LI

I< fug 2] = |reagal = | resaxt < (1] leml 10 = 1€l g8l 1oy

The expressions-(3.1), (3.2) and (3.3) will be called Holder

inequality for amalgans.

REMARK. In Theorem 3.1 |l?|| + ||u||q, _fof 1 <q<®. To see
this consider the linear map T on (Co, Zq);defined by. T(f).= £(0).
fhep T e (Cy, Eq)f and the measure associated to T is S84.. Since
T|| = -/, and \||50|Iq' =1-= (Za/q)(Z_a/qI we conclude that

~a ’
1911 = 273 $isof ],

-

COROLLARY 3.3. The amalgam space (Lp, Zq) (1l < p,q <= is a

reflexive Banach space.

Note that 1f E 1s a compact subset of G, then £ 1s covered

by. a finite number -of translates of K, because the interior.of K is .
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nonempty. Since cach translate of K meets at most ZGKu‘s we conclude

that E is covered by a finite number of Ka's. Therefore the cardinality

El

!S(E)| of the set S(E) = {Ka| Ka nE$ d} is finite.

P
c?

PROPOSITION 3.4. If g & L l <p <=, and E 1is its compact

support then for f‘i q < =, ||gllpq < |S(E)|l/q ||8|Ip and

el e £ 151 sl

PROOF
o Hell = [Z\I gl } el I el a
P e Py Ky € S(E) LP(x,)
<ls@] " sl -
el | o = sup ||g||Lp(Ku) = KGSEPS(E)’llgllLP(Ka) sls®] el -,

- - _

DEFINITION 3.5. For ne M , 1 £ q<» and E a compact sub-

”

set of Gj; Mg will be the bounded measure defined by uE(B)'= u(EnB)

. a, o - v
B a Borel set of G. MEP will denote the linear subspace of Ml consis-

ting of the measures g, E S G Eompact and, U E Mq.

THEOREM 3.6. 1) LE is a deﬁ;&ﬁsubspace of (Lp, Rq) for
1<pgeo 1<q<m.

- ii) Lz is a dense subspace of (Lp, cg) for 1 <

A
o
A

iii) Mg is a dense subspace of Mq for 1 < q < =,

PROOF. Let V = {Vi] 1 € I} be the set of finite unions of Ka's.

If f e (Lp, £q) then f = Zfa where £ = £lLy and

' q 1/q v _ . :
- Z'||fa|| ; this implies that 1lim Z fu = f in
o LP (L, A

-

f
el
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p

(L, 9. since Z fa helongs to LE for each V, ¢ V, LE is dense in
v i '

P, 9.
To prove 11} take a function f in the closure of LE in

L . @
(Lp, £ )Y, So given € > 0 there exists g ¢ Lz such that

||f - g]lpm_< € . This implies by the definition of | 'I|pm that for

all aeJ, ||f~-gl] P < g . Hence ||f]] P <e+ ||g|[
Py L (Ky) LP (Ky)
for all a e J.
Now, sidce g has compact éupport, ||g|| is zero for
all but finitely many K,'s, therefore (|{g|| )j-€ cy. Since € is

\. LP(K,)

independent of o, this implies that lim ||f]|

"

b < € and we con-
| o L'(Ka)
clude that lim ||f||_p = 0. In other words f € (Lp, cp) and this
o L (K,
proves 1i)}. '
If pe Mq then lim Z |Q|(Ka)q = I[u||q. This means that
V v, a -
1 - .

lim Z Uy = M in M where p_ = u . Since .Z U belongs to Hq for
q o K a c
v Vi v’ vy

each V; € V, the proof is complete., -
a!

THEOREM 3.7. 1) C. is dense in (Coy £7) for 1 <g é!w .

1i) €, is dense in.(Lp, 23y for 1 < p,q < =,
- 1il) Cc is dense in (LP, co) for 1 ip <=,

PROOF. First we note that CC is included in all amalgam spaces.
D)

e8] . -
Let f be a function in the closure of Cc in (L , 27). Hence, there

exists a sequence {¢n} in C. such that lim |J¢n - f]|.q = 0.

This means that given € > 0 there exists n; such that”for all

-
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n > ng H(I)n - f|| = }j sup M’n(x) - f(x)[q < £, Since

o K&
|¢n(x) - £ (x)q f;||¢ - f|[mq for all x &€ G, ¢  converges uniformly to
f on G, therefore f is continuous and by Proposition 1.19, f € (Co, Rq)
if q is finite. If q 1s infinite (Cy, lw) = Ca and it is well known
that C. is dense in Co.

Let f e (Lp, Eq). By Theorem 3.6 i), given € > 0 there
exists g ¢ Lp such that ||f - gf| < gf2.

c Pq -

If E is the compact support of g then there exists h in
CC(E) such that ||g - h||p < E/ZlS(E)[I/?, because Cc(E) is dense in 3
Lp(E). Hence by Proposition 3.4, ' |lg - hl]pq < [S(E)|l/q g - h||p
"therefore i|g - h||pq < €/2. This implies that
IEER R gllpq + ||g - h||pq < E.lSimilarly, since L} is
dense in (LP, cg) (Theorem 3.6 ii)) and CC(E) is dense in LP(E) for all

compact subset E of G, we conclude as in ii) that C. is dense in

(I-fps CD)--I- . ;- .

r .
COROLLARY 3.8. i) (Co, &) is dense in (LP,127) for 1 < p < =,

l <r<gq<om, . -
i1) (LY, 2°%) is‘dense in (LP, £9) for 1 <p <t <,
l <5< q¢<=
- S , R o q
1ii) (L, &) is dense in (L , %7) for 1 < s < q < =._,
iv) (Lr, cg) 1s dense in (Lp, cog) for 1 < p <r <

o :
PROOF. These are direct consequences of (2¢5) and (2.6),

Theorem 3.7 and Theorem 3.6.+
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REMARK 3.9. € is a (dense) subspace of (Lp, cg) for 1 < p ¥ w

(1 < p < ®). Indeed, if f ¢ Co and € > 0 then there exists a compact

set ,E such that

[E(x)| <& for all x ¥ L, Since

E ¢ uf xail t=1l.n } n finitc,‘|{f|LLp(K ) < e for al{ ot
o
i=1;..,n¢ Tﬁe?efore (Hf]|Lp(K ))J belongs to cp. By Theorem 3.7
a
C, is dense in (ﬁp, co) for I < p <o, - ) - >

r

-
-4 [

(CD,-lq), (L?, ¢, 1 < p,q <= For each t £ G, <

.~ translation operator on A or on M ,1 <s

.

,a—th(s) - £(s - t)

i

. ItU(B). u(~t.+ B)

The next theorem shows that for each ¢t ¢ G, Tt

~
operator.
» .

-
-

bl

. and ‘ €EM
- H q

~ I

o
o 0 el <2 el

~

"DEFINITION 3.10. Let A- be any of the amalgam spaces (L7, 29),

¢ will denote the

@ “defined by

-
- L

(f € A, s €G)

(u E.Ms, B a Borel set of G).

RS

i$ a4 bounded

i

» L}

_ THEOREM 3.11. Let 1 <p,q £ For each t e G, f g (Lp, Eq)

4 j '

a
ii) T U < 27| . : o
el l, < 2% Iull ¢

PROOF. For KY (yelJ) and t e G let

St +K) ={K, | K, n K, b 1.

Hrefl] o = sup

UKy

[£E(x - €} = sup |£(x)]

A

z sup |f(x)]
tHK,, S(t+K,) K,

it
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= 1 g
5(t+i%) L (Ka)
_ 1/ 1/
LA A J |f<x-t>|p] p [f |ﬂbﬂlp} i
Ty B4y

\ < Jlfmt" Py JW’ i
-'_S(t+KY) Ky - S(t+KW£} Ko

By Lemma 1.13 and the fact that cardinality of S(t + ) is less
y

and for 1 < p <=

—

It

a
than or equal to 2 we have that

q -1 ¢ ‘
W el <@t I
L (k) o S(EeHKY) - L(KY) J
.
@ el @Y 1T (E])°
L™ (K) S(t+K ) LP(K )

This implies that for 1 < p,q < =

1/q
Xl =[z||ff||‘t,,
|y LK)

13

[(2“)“”12 IR }

Y S(t+K) Lm(Ka)

l/q

A

A

a l/a g
2“5 11el]9 ] = 2% ||e]]
[a LK) “d

8]
et = sup legell o <o 3 [lgl]
Y B T S (t+K,) LP (kg
a
<o s ey, =2 el
o (f:;_.%j(l{a) _p T
zﬁ/' ir . /
q a q-1 qQ . 1/q
el = [ 3 N ;.[m“ -1 hend
P4 y L Y S(EHK ) L (Ky)
q 1 a
sEpnar, |72 e
& L' (Ky) pd
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Since 1Ttp|(sz = |u|(—t + 5Y) < s ZKy) |u](Ka), \ :‘\/
, ~tF

a
[reul o = sup Fraukx)) < 2% sup 1l &) = 27 [Iul |-
Y - a

-

Now, if 1 < q.< = then oncé more by Lemma 1.13

l/q

[E |U|(1§Y)q ]l/q' < [(za)q—l ) IHI(Ka)q]

|t ull
t 9 Y S(—t+KYl

"

[

l/q - )
a q a
2 Elul(m.] =2l

The next couple, of lemmas will be used to prove Theorem 3.l4.

-

LEMMA 3.12, Let 1 < p < wand g € Lz.olf “E is the support of

g and E_ is the support of T,g - g “(t € G) then

sup - I8(EQ| < %+ D]s@®|
teG

%

where |[S(E)| is as in page 36.
PROOF. Clearly Et c {(t + E) v E. Since

. ' h : A

i
t +Ecult + Ky K, € S(E)} and |S(t + K,)| <2 | for each t € G,

we conclude that |S(t + E)| < 24 |S(E)| for all t £ G. Therefqye

sup |S(Et)|
te G .

A

2% |s(B)] + |S(E)| .4
LEMMA 3.13. i) If £ € Cp then lim ||t f - £]]_ = 0.
)

1) if f£el® (1 <p<® then lim [[rf - £][; = 0.
. £+0

PROOF. 1) follows from [37, Theorem 15.4]. Indeed, given € > 0

there exlsts a neighbogbood U of 0 such that |[f(x) - £(y)| < e for



Fas
[ %

all y - xc U. So for ¢t + U and x v G

[f(x - t) - ()| = Jltf(x) - f(x)] < ¢ bucuus;. t =x - (x - t).

Since % is arbitrary and U does not depend on x  we conclude that

||th - fl[m <« for all ¢ v U.
ii) is a well known fact, see for example [37, Theorem 20.4].. .

~

-

L. Argabright and Jo Gil de Lamadrid have showed [2, p. 3-201
LY « l w
that the next theorem does not hold for' functions in (L, % ).

THEQREM 3.14. Let 1 < pyq <@ If f belongs to (Lp, ﬂq), to

P ' .
(L, co) or, to (Cy, 2%y, 1 £ s < @, then the map t ».ch is contin-
- . L 3 i

uous on G.

PROOF. 1f £ € (Co, £%) and € > 0 then by Theorem 3.7 i),

‘there exists g ¢ C. such that

3 11 - gldeg < e{

- —— .

Let E be the support of g. By Lemma 3.13 i) fhere exists a
neighborhood /U of 0 such that for all teu

]|Ttg_— g||w.< g/ % 4 l)!S(E)|). If E. is as in Lemma 3.12 then

a

S

<

HTtg - g”uo_

s sl = D1s®] |ltee - sl e

This together wit and Theorem 3.1l implies that Bor 211

we v s gl lns = vl e = ellog 4 o - flley 77

- . -

- . a
- <2a||f-g||mq+€+5<(2+2)e:. ]

Therefore lim ||t f - £llwg = 0. The proof for f e L?, cq)
t + 0 ‘ -

-

-,

is similar. ' ) <\\;> - jﬂ

L/



Now, since (QQ, 29 is dense in (Lp, L4y {Corallary 3.8)
given f g—}ksj 29) and ¢ » 0 there exists g £ (Cy, LY such that
£ -g < £.
e - ull
So, by Theorem 3.1l and inequalicy SZ.A)

et = £l < et = sl + es = sl + e - €l

b

N

2“1 - gl + || # [lg - ]
£ - el B T8 87 Tilpg

qu

A

2% + e + ||Ttg - g||mq.

Since € does not depend on t, we have that

|Lth - f!|pq < ]|Ttg - g|]mq. Hence, by our previous result

lim ||T f';;f]| = 0. The case q = «. is Lemma 3.13.
ot pq

t+0 .
\

We have shown, up to here, that the map t+—— T.f 1is ContiiFf
uwous at 0, but this is gnough because by Theorem 3.]11, for &, ty € G

-(.- j . a - i
pq ||Tc(Tto-tf B f)||Pq 22 ||Tto‘tf ) fllpq'$

||th"— Tt0f||

- 0



8 4. CONVOLUTION AND POINTWISE "PRODUCT

In this section we introduce two operations on the amalgam
’ '

spaces: pointwise produét and convolution; and two operations on the
- spaces of unbounded measures of type q: ptéhuct and .convolution.
These operations have been studied previéusly (Csl.[12D anﬁ
with the exception of Theorem 4.8, the results presented here are not
new. o )
Two important facts for our study of multipliers are (1) that

under convolution all amalpgam spaces angd all spaces of unbounded mea-

Banach modules, and (25 that uﬁder

sures of type qfare- Ll and - Ml

the amalgam spaces (LP, Rl) -y

convolution and the norm | |£l

(1 £ p <=, (C, 21y are Segal algebras.

Our first result is an easy generalization of the pointwise,

product of Lp'spaces.
'\ : . A

PROPOSITION 4.1. If 1 £ p,q,r,s < @ are such that .

}fp + 1/r = 1/m 1 and 1/q+ 1/s = 1/n <1 then

m n

a @l ahar, % e at ¢
) (Cos 2N (Co, 2D (o, 2™ .
e) (P, ead (€5, cp) ¢ (L7 co)- -

r S
Moreover, 1if f € (Lp, Rq) and /g €:(L , &£ ) then
e

el < Hell el

mn =

PROOF. We will prove the case when p,q,r,s are finite. The re-

maining cases are proved (mutatis mutandis) in the same way.

44

—
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Let £ E.(Lp, Rq), g E (Lr, RS). We apply twice the Holder

inequality (as in E;},Corolla;§A12.5]). First'with o) = m/p, a2 = m/r,

= |f|p and f, = |g|r we have that 5
/ . m/p m/
[ e =] aem™® qam® [ T4 I I AP R
Ko Ko Ko Ko
Second with o; = n/q, a, = nfs, f ]If[]q . andr .
. Pk )
£, = ||gl|] r we conclude that
K,)
{ .
ro n/ n/q r/s
[Vealn, =[1 | lesl® ;X[an | {ng |
o 7K, a LP (Ky) Lk (K)
. n/q g n/s 3
< E | bed | Lllell ¢ S ’
P (K,) a L (Ka)

theretore: |}58] 1, < 1¢l1pq sl

b) follows from a) and Broposition 1.19 (the case when q = s = ®
is well known).

Now, if £ ¢ (LP, co) and g E (Lr, cuf_ then by a)

fg e 0® 2D and |lg|] o < |lg]] ||g[] . This implies
Py LT
a \ o]
that lim Ilfgl[ o £ lim ||f|| p ||g|| = 0. Thgrefore
Q. LK) o - L Lk )
a (o4
fg [ (Lm, Cu).:[; !

L ]

~

_ A
To define the space of unbounded measures of type:a on GXG we

use the family of compact sets {K }J I where Kay

clear that this is consistent with Definition 1.7 and for v, U mea-

=Ka><KY. It is

sures on G, uxv(KuY) = uéKa)v(KY).

This last fact implies‘Bur next result, which is stated but not



Ao

proved in [ 8 ].

PROPOSITION 4.2. If

46

‘1 < gq,s <@ then M (Gy * M (G) ¢ M _(G * G)
- - q. v 8 T 0

where = max{q,s) and for u ¢ Mq, v e Ms’ : . )

[w = vL < Wl IIvIIS |
PROOF. Let 4 € M, and Ve M 1aFd Koy € {KGY| (a,Y) € JxJ}.
rBy inequality (2.2) we have that — R

ﬁ}\ﬁ vk, )7 = Tl

oy

" NESEES RIS ARICEY
o Y. 2

_ n o n n
= Tl T < Hab g T

Therefore |[u %X v||

-

L Tl ey

Since the convolution of two measures does not always exist,

we” establish (as in (10, Chapterf 8]) that two measures 7, V Tare

convolvable if fof all g £ CL(G) -the\function gl (x,y) = glx +7y) on

GX6 is qu v‘JEntegrable.

equation

In this case W*V-is defined by the

- : ' ' h"
ukv(g) = Jg dpky = JI glx +y) du(xgdv(y) = II glx + y) dv (y)ditx)’

for gt CC(GE.

|

N

THEOREM 4.3. Let 1 < q,s < ® be so that 1l/q + l/s = 1= 1/n £1.

If ue Mq and v e MS then u, Vv are convoyyable and p*v € Mn.

Moreaqyer ||u*\)||n <

& :
PROOF. We wily prove

remaining cases are proved (?utatis mutandis) using the same argument.

r

222 [ ful]_ (1],

the case when q and s are finite. The



First we note that

-

P
these imply that

(1) q(l/n + 1/s") =1; s(l/n+ 1/q") = 1; n'(l/q" + 1/s") = 1.
Now, since K + K 1is covered by 2a KQJS {see Definition 1.6)
we have that for each pajr Ka’ ‘KY, o, Yy € J,
\44 - »a
K + =q +K+Kec u ao+y+a, +K. That is K + is co-
% ‘\ ,
d b 2 K 's.
vered by oS »
So, if g ¢ C.(G) then
. A
@ swp e+ | x+yer +x}I< I llell " '
' i=1 L (a+;y+ai+1<)
‘\'\ 2a /
= 1 Hell,
! i=1 L Kai
o/
For g itfiﬁg) (1) implies that .
lgGe + Y duGaviy) £ sup [gle + 3| [u (R [V]TKy)
5 5y kol
A .
= |lgt| IuI(K)IvI(K)
v/ - .‘\"/’ ”
G /s’ q/s' /q'
= et llg || by O™ vl k)™ vl k) *
L7 (K Kmr) Y
Y }
i/q' ' /s’
Theene e (et et ]
L KOFY) ' L (KCIY)

/g = 1/n + 1/s'

47

and 1l/s = 1/n + 1/q',

.. 1/n
[IuI(KY)quI(Kd)S] :

il
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Applying the Holder inequality (as in [37, Corollary 12.51)

with o, = 1/q', o, = l/s.', a, =1/n, 1 (o,Y) = | |g® || |\)|(1(.G)S,
L

(KGY)

f20,m) = |1g%1", wu&ﬁ, £y (y) = ful &Iyl &)®

L(K

‘,:
we see that o

) J ' J lgtx + y)idfulod|v]
oy KU.

KY .
R R A

On the other hand, by (2) and Lemma 1.13

z £y =§§sup {. |g(x+y)| | x +y € KY+Koc }n |_\)|(Ka)“sh

“

a
an'-1 ¢ s :
SR W NS
oy i=1 Le (oty+o, +K) . o
-1
<2 Z 2% llgl] vl ky®
_ o
an' n' : s an' . n' s
=2 Hell 1 lkp™ =27 ell vl
! 41
L ' .
Similarly, { £, < 2™ ||gl|:n‘||u||q and
q s
Zh=ff|ﬂm)lﬂm) = {|ul| " [[v]l
oy a Y S'q s

[y

This implies by (1) that

[ {
j}h@+yﬂﬂﬂ&mwuw Z}{ lgx + yv)|d|u] GHd|v] ()
ay K

1/s? 1
O A D Z

5

n' i
<o (sl ol (S <||g||«,n.||u||
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a
= 2 .
= 2 gl I vl Il |
Therefore |, v’ are convolvable and the linear functional

T(g) = fgdu*v (g € CC(G)) is such that

. a ‘.
'T(g)| <2 ]Igl[mn,||v||s||u||q. Since C. is dense in (Cy, " ) T has
a unique continuous extension T in (C4, ln')* such that
a .
Tl < 2% [IvI _Hull .
s q
Finally by Theorem 3.2 we conclude that

-a a a ’ .
* 2
27 [ e || <2 ||u||q [Toll- Hence  [fuxv]! < 2 el TtV -y

?

: !
COROLLARY 4.4. If fe (L, %), 1<q<m pue M, 1

A

§ < =,

and l/q + 1/s =1 =1/n < l then f as a Peasure is convolvable with
p, f*u is an absolutely continB®ous measure with_gensity

J
(e = [e - 0w

E 1
B4 belongs to (1, £ and ||ewu] < 22 (]| {Iul],.

PROOF. f as a measure belongs to Mq (see (2.10)), so by Theo-~
. b
rém 4.3 f is convolvable with y and £*u ¢ Mn;
On the other hand, it is well known (see for example [1, Propo-~

sition 1.1J)) cthat f*U is a functicdh g?iéh by (3).

\

Finally, by (2.12) ||gwu]|_ |(%1m| | and this ends the

proof.+

COROLLARY 4.5. Let 1< q,s < If fe (L', 29y, g e (L}, 25

n

iy 1.
and 1l/p + 1/s = 1l/n <1 then f*g g (L7, 2.),

fxg(t) = Jf(t - x)g(x)dx —



[} b.l.

v,
/ l'
: 2a
and  [|exgl]) <27 e[y el

PROOY . (2.}0), (2.12) and Corollary 4.4.+

COROLLARY 4.6. If £ e L1(6) and e My (1< q <™, then

: 1 q i # LA
e ety 2 ana ([l < (el [ ully shere [[+1]? s che
norm defined in Theorem 1.21.

PROOF. The first part follows from Corollary bhob.

Now,

o ‘
ey = [ 1£xn] Goax EJ Jlf(x - oy [d]u] (s)dx
4L e+L, .

e o
. J £ = 9] x, &~ 0 ax djul(s)
= | [£(w)] J x,(u + s =ty datuj(s) du .

. f
= | [£)] Jul(t - v+ L) du .

f
=1 [£)] w (& - w) au = |f|*u#(t)-

Since u# £ Lq we have by the Young inequality that

< || |&]=u®[]

=

(A

Hesull]. = |1 et
q Q

The next theorem is basically 87 i) of [8] and Theorem 4.2 of

[12]but with the improvement that in Young's inequality for amalgams
. o

-

(4.1) and (4.2) there is an explicic constant coming from the Struc-

ture Theorem. - s
?
THEOREM 4.7. If p, q, r, s are exponents such that
l/p+1l/r-1V=1/mf1 and lL/fq+ l/s-1= l/n< 1 then

1) aP, 2N x of, 2% o a® ™M

RIS TR IR

50

t
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1y P, 2% x @, 2%

1r.

C, l < p <oy L < g

(CO»Q’n) l‘?p,sf_m,l<q<m

' f:‘;

111y (P, 2%y x P, 2%

e

1
iv) P, 2 % @F, %) W, o) 1 <pr<w, 1<q<w®.,
Moreover 1f f € (Lp, 29) and‘/g 3 (Lr, Rs) then

oo
2% 1el] |

[[Fa)

g"||rs > if w4l

.1 |iexel]

+

@2 Ilesll

————

1A

2a :

g ™~

PROOF. If p =r1r =1 then 1) and (4.2) follow from Corol-
lary 4.5. . <
The argument to prove i) is similar to the proof of Theorem 4.3

and for the same reason given in that theorem we will prove i) for

1< PsQ,T,8 < =, \.»

First we note that

fn

(4) p(l/m + 1/r') = 1; r(l/m + 1/p") 1; wm'(l/p' + /")

I
—

Ty e

”~

(5 q(l/n +'1/s™) =1; s(l/n+ 1/q")

1
et

!

13 n'(l/q" + L/s")
For ¢ ¢ Cc(G)’ o,Y € J we have by (4) that

j lox + | 1£60] 1g() | dxdy
Ky
1/ ' 1/r!
A Plad 5 "o + »|™ [£@ P
o KY . . M

-

ml x l/pl
(Jotx + | {e )7 dxdy.
The Holder inequality {(as in {37, Corollary 12.5]) with

oy = Um, ap = 1/t oy = 1/p', £,000) = [£GPle]7,

f6) = [0+ 0[P [e0TH B200n) = [oGa N7 [E60IT tmples

R
ra
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[ el 1200 TeG)] axay
IK

o 5y
. o, oy [ Oy
< J[u J £, (x,y)dxdy [ J Ez(x,y)d-xdy [ J f,(x,y)dxdy
KRS . Ko Ky KKy
But £
\
[ ] sy = [ lsol®ay | 1rcotPa - sl 1911,
Ka By 'Ky 5 L Ky LK)
£ (x,y)dxdy = [ loGe + y) | | €0x)|Paxdy”
2
Ky Ky TR IK, |
[ t
= If(x)[p J Id)'(—x - y)]m\dydx
JE% ‘ Ka 7‘ 2
,
- e [ jeren|® dydx
J}& IxHK,, .‘7“
< el IIfII’I’p
Lo (KFKy) L (lgr)
f o'
statlarly | [ £y Gey)andy & |]¢|| Nell*, -
Ky - Ka+KY) L™ (K,)

Hence by (4) and (5)

.
[J IMx+yH|f&H|g@Hcﬁ®I‘
X .

o

1/m /5"
<[Uell?y  Tlell, 4—\[|l¢|t anpp-- }
) . o 1/p'
el ]
| (Ka+K'Y) L™ (&)
ol g el Well, ¢ \
i'l I | ILm (Ka"'K-Y P(KY).L-/g L (Ka) -



'. s  n o x 1/s"
el sl | el I, J
P LR L ) L)
— . S l/qr
\ ‘ [||¢||“m. 1el1®, }
L (KE1+KY> L (KG.)

8

¥ =l/5'l/ 3 = 1/CI'. fl(a:Y) =||f||qp ||g|[ ’-

. LK) L(K)

fa(,y) = !|¢|l el .
‘ (&;KQ LPWY)
1 v ’
£3(5y) = [fe]|" Hlgll”
' L (Ku-’rK ) Lt (K ) we have that
/N .
/ : ) J J |9Gc + yY| £ |g(y)| dxdy
oy Ko: k& -
. e 5] Qa : Q3
;[szx(u-Y)] {foz(uﬂ)} [fo (OL»Y.).]
\f_' . oY oY . @

Now, as in Theorem 4.3, K +\52 u (o + Y1+ a, + K), hence

. b
by Lemma 1.13 ) <
) '3' ‘ 2a
']
y ||¢|| o s )< 42 XIII¢IIL oyt 0
/‘ Iw \\ ) ! a

This implies thats

\

i f 1|¢|| JHIR ‘
o (KGHLY) L (igr)
T caITL e JHIN
. \ . oy i=1 L (a+Y411 +K) L (KY)

Il A

T eI, e
Y mn LK)

sa \ b ".
-applying the Heolder inequality, this time with a; = l/n, .



2" [tel1” 11l
mn
~

- L] ] -
Similarly 1§ }.£,(a,v) < 2 |]¢]|" |isll” .
oy m'n’ rs

q
Since | J.fi(a,y) = [1£]] {|8}]®
6y Pq

j

<

we conclude that

|o(x + y)| [£G)] [g(y)| dxdy

]

|6 + y)| [£6)] |g(y)| dxdy
K'Y .

a Al q 1/s’
2 [Hm},ufu-}
m'n P4

J

o R S——

)
L

s

I

—

r
This means that the linear functional T{¢) = J ¢(t) f*g(t) dc

1 1
is dense in (L™ s Rg

(¢ € C.(G)) satisfies | T () | < 2a [|¢||m,n,|[f||pq|]gl|rs Sincg CC(G)

1

) .(?n (Lm ,~Z}liif n 1), T has a unique contin-
uous extension T in (Lm . Rel}f = (Lm{ ™ ( in (Lm‘, co)* = (Lmﬂ 2?))
such that ||T|] i 2% ||f|lpq||g|| . By Theorem 3.1 we have that

- IS
a
* -
|]£ g]lmn <2 llfl]pqlla#lrs’ this proves i} and (4.1).

sumé.that p is finite. We have

frg(t) = J £(t - x)g(s}ds J th(s)g'(s)ds =

<t f,g' >
so by Theorem. 3.1,

1 1]
Let f ¢ (Lp, Eq) and g € (Lp . g ). By i) f*g ¢ L”. As-

imt.

1/q’ - 1/
q S
L] [engnene
ol Ll el

S5&
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)

s k-4
|f*g(t) - f*g(s)’ = l< thsg' > - % 15%:1{\1 - o= I< th - ‘.Isfrg' ”
1 i - )
. g e = el
Since 1lim ||th T TSEII = 0 by Thearem 3.14 we conclude
£t + s Pq .

that f*g 1is a continuous function.’
1 - ' 1
Now, since Cc is dens%/}n (L?, lq) and Lp is dense in (LP , 24 )

' c

given £ > 0 there exists ¢ £ C. and h e Lz such that .

1o = £l lpq < e/lel g and 1o = sl < e/l [0l These smp1y

by (4.1) that : T

-

I~

lown = exgl 1o < |lown - oxal]_+ [love - togl|_
"/ <2 1ol 1t = ellpoge + 2 sl g 1o = £l
< 2% e, ““\J%

Since ¢ is arbitrary and ¢*h € Cc(G)' this means thag f*g }s
in the closure of Cc-&“ the space of continuous functions on G, since
CC is dense in C, we conclude that f*g £ Cp.

If p is ‘1nanite then this proof with the roles of £ and
g exchanéed yields the same result.

. ] w
Let fe (L%, 2% and ge (P, 25). By i) frge (L, LY.

‘ t ' p' = P' Q'
Since 1/s = 1/n + 1/q' > 1/q", (L, £7) < (L* , £ ) (relation
(2.5)); by ii)‘ f*g € Cy. Then 1iii) is proved.
] ' '
Let f e (Lp, Zq) and g e (LY, %), since LE; Lz are dense
P q r ] . p
in (LY, %), (L, &7) respectively, given € > 0 there exists ¢ € LC
and Y E\Lz such that
- < - < .
e -l < o/llsll g ana s = vl < </l Ly,

Hence by (4.1)



o~

| {exg - pru]

- m ™ o . ) m -2}
the closure of L_ in (L, & ) because by i) f%*g e (L7, % ); since

m
C

then

v

I A

HlExg = wgl [+ Hoks - oyl .

’ a
o< 2% (el atle - oll 20 (1ol Nlg - wll -
rq pPq pPq 'rq

a
< 27e.

Fal

Since £ is arbitrary‘and ¢*Y € L?,-this means that f*g 1is in

c
.

—_—

L is dense in (Lm, cp) we conclude that f#*g Ec(Lm; r.:g);_f

THEOREM 4.8. Let 1 < p,q,s <= If 1/q+ 1/s ~'l = 1/n < 1

1) (P, 29 * Mg (LP, &%) . .

11) (LP, 29) = M€ (®, c) 1

n

1A

o
A

;w,l<q<m

1i1) (Coy 2%) ¥ M < (Cos 4™ 1 Laq <

(4.3)

.4

Hence (CO,Rq) * M

q]ECO 1_iq<wo

Moreover, if f ¢ (LP, 2% and pe M_  then

A

el s 2 el Il ae e § 1.

22(1 |

-

Hewll HIPRTI

PROOF. If p = 1 then i) and (4.4) follow from Corollary 4.4.

We will prove i) for 1 < p,q,s5 < ® using the same argument of

b

Theorem 4.7 i)}. The remaining cases are proved (mutatis mutandis) in the

same way.

(6)

Again'weAhave that
q(l/n + 1/s") =1, n'(1/q" + 1/s") = 15 s(i/n + L/q") = 1.

Let ¢ E'CC(G) and consider the following:

"

A
N S
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e
P' l/P' P l/P '
- | w9 [P ax [ reeol® | alulo)
Y LY 5
- ) .
' 1/p v
ety [ e ealPe | el o)
L (KY) Ky |7 vy .
- 1/p )
< et f [t lPex| alulo
L (KY) KQL Ka+K_Y S e
< 11l Hall el (k)
LP(KY) LP (Ko #Ky) o -
_ 1/n 1 1/s'
- [||f||cl iuicKG)S] {||f||“ lel1®, ]
LP(KY) Ky) LP (RgHKy)
. 1 l/q‘
o~ [ b”]
A S A )
§ .
Applying the Holder inequality with &y = l/n, a, = 1/s’,
oy = 1/a By = €] ulky®,
- ' |L"( )M e
ety = [IEl%, (1ol s £3@y = of17 [IICeN
. /\ L (K,) LP (RgtKy) | . L (KG+K.Y)
we see that : R
11 et ] lew] e alul o
oY 'Ky K.ﬁ\ )
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7
_( / S _ q {8
So, )1 f1le,y) =N\ |]£] wl O™ = TLEN | uld
ay o Lp(_KY ' Pq 5
. q N
LI gatam = D0 1Iell,  d1el1",
oy . oy (K)) L" (KyHK)
<@V TIIT el 1el1® ’
Y o i=1 LP (otyhar +K) Lp(KY)

A

an' n' .. .q an' !
2 T Alell el <2 qlel1®, L 11E] L2
y pla” Px) p'n Pq

an' n'
DI et = 2 [Jol17, 1l 12 '
ay ] SN | ' :
The%agpre ‘ o '

[[ 166+l teeol exaluton < T3] | ot Y1 1260 ] axalul o
. . ay _ .

K.Y
S[EEDNIH ”“'[ i ST

Ka

1/s!

s ]1/a’
Alsl1?

’ N an! n'
ﬂ ] _ _.[2 el P
73 . P
= 2 1l e Tl

n

Since \

I ¢(y)df*p(y) = J o*f' (y)du(y) = JT $x + y)E(x)dxdu(y)

(see [1, Proposition 1.4]) we tonclude that the linear functional /

T($) = J ¢(y) df*u(x) k¢ € C.) 1s such that
' %
~ [ 1

. “ . . A o
L:( ) | <2 l[¢||p'n"lf]|pq||ull§' Since Cc is dense in (L° , R ) T

' 1 4 n 1]
hag a unique continuous extension T on (LP » £ ) such that

a - a .
[l < 2% 1gl] [Iull,- By heorem 3.1 Lgsul| < 2° [1el] [lull,.



rd
e

This proves i) and (4.3). . =~

5
Let f & (Lp, lq) and u € Mq.. By Theorem 3.6, given € > 0

B |
there exists g € LE and v e Mg such that

e = sl <erllully ane Iy = ull, < /sl

- Q .
I' Similarly to Theorem 4.7 i) these, imply that

&,
[ Teru = gl ], < 2%. Now, by i) f*u e (LP, £7) and gtv e LE. Since
- ) ey 3 .
(Lp, cg) 1is a closed subspace of (LP, 2 ) and LE is dense ini(Lp, cyg)

we conclude that £*p ¢ (Lp, cg).

A
Fidally if £ e (C,, ﬂq) and Y € MS then by Theorems 3,6 and

3.7 given € > 0 ‘there exists g ¢ C. and v € Mi such that

- -
[If _!gllmq < E/||p||s and IIv - Uils'< €/|Ig||mq'

£

Again byw(4.1) |£xu - gav[|_ < 2% By 1)) mrg e (L7, 2%

-
~

and g*v e C because _g*%v has compact support and for ﬁ, s in G
C ‘\ " v
e & : .
|gxv(e) - gxvu(s)| = [F(g(t - x) - g(s — x))dv(x)| (o~ -

[fr_tg(—x) - T_sgf—x)dv(x)] 2

]

. N
NT_,& - F_Sg)*3£0%4\3§\5£(T_tgf- T_sg)*lea;\\ v
2 <

y .

e - gl [vlly-

Since tb— _¢8 from G to Cy is coh{inuous (Thectrem 3.14)

LI s

this implies.that g*v is continuous. ¢

L4

Therefore f*v i§ in the closure of CC in (Lm, Qn), that is,

£%v € (Cq, 12) (Theorem 3.7).4 €

A |

. 1
DEFINITION 4.9. [19, Definitiouét .1] Ket A be either. L (G) or

. - . TN
MI(G)' A Banach space B 1s said to be a Banach A—mégulejif there ex-
L g

A
-~

ists a billinear operation *: AxB — B such that =~

. -
-

= -

A

(’;_

-~y
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(B~-1) (f*g)*b = £+ (g*b)

(B-2) For some constant C > 1

bl 2 c ||f||A |[b||B for all f € A, b € B.

t-

A
@
i~
R

—~ It follows from Theorems 4.3, 4.7, 4.8 that-all Ms (1<

L_‘féggzs and all amalgam spaces (Lp, 2?), (Cq, Eq),.(LP, cg) (1 < p,q < )

"satisfy ‘%%e condition (B=2) for Ll éne?;ai‘——“dn\\\

Also, if ML Mg € M) and veM (1<s<w th\n by (10, VIII

A

-7 83 Proposition 1], (ul*uz)*v = ul*(uz*v) Hence by (2.11) Mq (Lp, ﬁq),
. . 1 .
(Co,-R.q Ly (Lp, ce) (1 £ P,q £ =) satisfy the condition ﬁB—lD for L and

M . THerefore all thése spaces are Banach A- modules.

. L .
& | ' 1 v ‘
' h DEFINITION 4.10. Let B be a Banach L -module and - y
Bops = (£°b| £ €L, b e B}. B 1s sald to be an essential Ll-module if

& 'linear subspace generated by B,ps 15 dense in B. If B = Babs then

? { B I% an absolutely continuous Ll—module.

-

«The definition of absolutely continubdus Ll—module is due to //////,

Gulick,Liv and Roozj [31]. C,

. N _
4£ B is a Banach L}:@ﬁaule_theﬁ its dual B  becomes a Banach

) o ;] )
Ll—quule under the 6peratI3nb4’>7 . !

*‘ : 3 * . 7 P
£+b"(b) = b*(£+b) " eB,bes, £¢L. s .
. \ T “u

o

DEFINITION %4.11. A net {ea}\ﬁn a commutative, normed algebra A-.
. - /.

is an approximete identity, abbreviated a.i., if for all a € A

lim e a =-a _ in A. ?
a Q ‘-..b‘,___(/ . .
The nex heorem shows the equivalence of essential and abso—_



6l

: . 1 .
lutely continuous L -modulgs and gives two characterizations of

essential Llémodules.

» THEOREM 4.12. If B 1is a Banach L1~module then the following
statments are equivalent

i) B is an essential Ll—module.

1i)} B is an absolutely continuous Ll-module. ~

iii) ljm ||ea.b - bllg =0 for 2all b € B and any a.i. {ey} in L.

* * 1

iv) B® is order free (if for b* ¢ B, £-b* = 0 for all f ¢ L! then

b = 0).
PROOF. The equivalence of i), ii1) and iii) was proved by

M. A. Rieffel in [48, p. 4531].

* 13

*
Suppose ‘that B = B and foy b* €eB, f-b =0 fo%\a&%/; £ L".

abs
N - 1 R
If B\e B then b = ¥+b1 for some £ € L™ and some b; € B, So,
] k____’_ N i
* " *
b (b) = b (£+b1) = f+b (b;) = 0 since £+b* = Q. Therefore b* = 0. This

—_

shows‘that 1i) dimplies iv). — .

Now consider’ the inclusion map 4: B . —*r B. Since 4 is

abs

) KA %
linear and continuous .its adjoint map 4 : B —* B 1s also contin-

abs
Tk % : 1
uous. If L {(b") = 0 then for all fe L and b £ B,v
Kk * * *
4 (b )(f-b) = b (£*b) = £*b (b) = 0, this implies that f-b =0 for
1 ) ‘ * : .k
all f e L". Hence, B iv) holds then b” = 0. This means that 4 is

injective and this.implies that Bab %g dense in B [44, Corollary 4.12

s
p.-94]: Therefore B i1s an essential Ll—module. That is, iv) implies i)
and the proof is cqmplete.f

/

D



A1) (Cy, 2% 1

. * * *
“the theorem. Suppose that for a ¢ A, f*a

PROPOSITION 4.13. The following amalgam spaces are absolutely

cont inuous Ll—modules.

1) @P, 29 1<p,qe= :

FA

IhA
B8
t

q
1ii) (LP, co) 1< p < =, ¢
PROOF. Let A be any of the spaces listed in the statment of

0 for all f ¢ Ll. In

]

* .
particular g*a =0 for all g e C.. This implies that

62

=l

< g,a* > = g*a*(o) =0 for 2ll g¢c C.- Siﬁce Cc is dense in A (IhEo—.

% .
rem 3.7), we conclude that < a,a > = 0 for all a ¢ A. Hence a* =0

and the conclusion follows from Theorem 4.12.+ -

TN

" CORQLLARY 4.14. Let A be any of the amalgam sbaces listed in

Proposition 4.13. If {eaj is anlapproximate identi in L1 then

h

léml]ea*f—f||A=0 . N \

for all £ e A.

PROOF. Theorem 4.12 and Pfoposition 4.13.+
NOTATION. We™will denote by (LP, ¢H'. ¢, o, P, ¢,
s F

#

,i - A
[L -defined in. Theorem 1.21

# # #
o M2 11112, 1

respectively. ~

norm

-— -

DEFINITION 4.15. A linear subspace § of‘L1 is said to be a

Segal algebra if it satisfies the foliowing conditions

(3-0) S 4s dense in Ll.

%ﬂ_ (1 < p,q £ ©) the spaces (Lp, Rq), (Cy» £q), (Lp,-co), Hq with the



r

N

~—
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¥}

-

(s-1) 8 is a Banach space under some norm | |S’ and there exists

a constant ( such that for all f e §

el ;"E[]|f«15

(5-2) S is invariant under translations (f € S implies Tsf £ 8 for

red

al& s € G) and for all f ¢ $ the mapping shb— 1, f from G tg' S is

continuous., ‘#’rdfi::7,

-

(§-3) . The norm | 'I|S is inyariant in the sense1that . //:5<
IITSflls = ||E|IS for all s e G, f §/S. 8 f’?E*: .
> { AN
AL . . .
P L. '

THEOREM 4.16. (L

- L.
y 47) _(l < p < ®) jpd (Cgy L7) are Segal \\\£J/J

PROOF. By Coroll;:y 3.8, (Lp, 21) and (Cy, Rl) are dense 1in Ll.

algebras.

(LP, 21)# satisfies (5-1) ((2.43 and Theorem 1.21) and (S-2) '(Theo-

—

rem 3.11 and Theof;$“3,lﬁ):fo}“/l <p < e, ' '

Finally if _.s € G and f ¢ (Lp, 21) {1 <p < ®) then

.0
tt B¢y = 6T o= g - £ (g - T_sf#(t).
s 5 LP(e + Ly LP(s + t +L) A 1
This implies that ’
o o I S #
gt 1%, = g1y = e e = N, - el

Hence (Lp, 11) {1 <p < @) implies (5-3) and the proof is

complete because (Cq, El) = (Lw,_il).* >

. - . :
\ PROPOSITION 4.17. (LP: 21)# R 12 p.< =, and (C,, 9,1)# satisfy

the following e -

1) For all fe L', pe M, be (P, by, g e (cq, 2H

I

# # f # -
* . &
Rk hllpl < IIflllllhllpl o exell ) 2 Ilflllllgl[ml
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(Dl'

A # f# # #
IIu*hllpl < ilulllllhllpl s Thel < Tl Hel - |

il) (Cu, 21)# has an a.i. {en} such that Ilen||1 = 1 for all n.
1. #

) (1 < p <), f'

PROOF. 1) follows from [46, 54 ?roposicion 1 1) and Proposi—r

Hence {en} is an a.i. in (Lp, 2

tion 2]. The first part of ii) follows from [46, 58 Proposition 1 1i)]

A
and the second part is a consequence of inclusions (2.6) and inequality™

w

- -

(2.4) .

bl

L —
3
]



CHAPTER II

THE FOURLER TRANSFORM oN (LP, 2%) anD Mq

§ 5. THE FOURIER TRANSFORM oN (P, 2% (1 < p,q = 2)

.In order to study the Fouriler tra;sform'of functiﬁ:j in (LP?, lq)
for 1 < p,g < 2 we proceed as F. Holland has done for the;real case
(34, Theorem 8]. First we generalize the Riesz-Thorin Th%orem for amal-
gam spaces and then we use Theorems 3.4 and 3.5 of [49] to locate thg!lg»
image of (Lp, 29) under the Fourier transform and to estaglish the
correéponding Hausdorff-Young inequality.

Bertran&ias and Dupuis [ 7, §3] used another method. They find
the Fourier transform of functions in the extreme cases (Lz, 1%);

(Ll, Rz) and Ase a particuiéf case of the Riesz-ihorin Theorgm for
mixéd—norm spaces established by Benedek and Panzone.
for the definitPon of the (invéfée) Fourier-Stieltjes transform

of a measure U € Ml we follow [ 37, Definition 23.9 (Definition 31.2)].-
. ; - -3 Tep .

DEFINITION S.1. The Fourier-Stieltjes (inverse Fourier-Stieltjes)

transform of a measure § in Hl(G) (Ml(G)) is a function il (ﬁ) on G

(6) defined by 4L\\\ﬁu/ ) ' .

r f
A(r) = [%,%] du(x) = | [-x,%) du(x)
’G e
. K
v i . o B
) . - x) = j. [x,X] dp(x) ' :
B N'e! _

65
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Throughout the rest of our work we will make constdnt use of

the next theorem due to J. Stewart.

THEOREM 5.2. [49, Theorem 3.1J). Let 1~< p,q £ =. If E 1is a
compact subset of G then there exists a function g € CC(G) such’ that

g1 onE and ge (LP, 2@ (g ¢ (Cor AN 1f p = ®).

THEOREM 5.3. [49,Theorem 3.41. Let £ e LP(G), 1 < p < 2. If
~ T ~
supp £ ¢ E, E being a compact subset of G, then £ £ (Co, 2P }(G) and

‘there exists a constant Cp depending only on E and p such that .

JHIE

- The next theorem was proved for the real line by Holland (35,
Theorem 8] and for locally compact abelian groups by Stewart [49, Theo-
rem 3.5].

THEOREM 5.4. If £ e (L7, £1)(6)5 1 < p éé}\fhgn

a ]
~ t ~ H . .
fe EEE},ip Y{G) and there exists a constant Cp depending only g“r

lﬁﬁég-that ' , .

W . E <C |If .
|| Ilmp. < pII IIpl

‘ ®

NOTATION. (La’ Ba’ ma)‘ (e € J) will be the me;surable subspace
of (G, B, m) where {La}_is the family of skts defined in Defimition 1.6
and By, m, are the réstrictions of the U-algebra B and the Haar measure
m o; L, respecfively.

Similarly (LB’ Bg, mB) (B e I) (see p.z{?\is ﬁhe corresponding

measurable subspace of (8, ﬁ, ). .

-~

»
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e

For L1 <1 €= R;(J) will denote the subspace of Rr(J)

consisting of all nets (aa)J such that a, = 0 for all but finetely

many o.

»- l
The direct sum

B s,
£ J

.

o

-

-

of the linear spaces Su of

my-measurable simple functions on La’ wlll be denoted by Ef(m). That is,

(xa)J £ jlhn) iff'.xa £ Sa and x_ = 0 for all but finetely many .

;ﬁ(u) is defined similarly.

REMARK 5.5. i) The space

(:g;;h compact support can be identified with L(m). ‘Indeed, if s € §

(]

LY

S. of measurable simple functions

c

then the support of s meets finetely many La's, so the net (sa)J

thre Sq = s|La

belongs to Ef(m). Conversely if (Sa) £ ;t(m) then

n
.Sy + 0 for ai,..,0q sa&, so the function s = _Elsai is a simple func-
- l:

tion whose support is contained in

LY

THEOREM 5.6. (Riesz-Thorin). Let 1

G4

i1) S_ is dense in (P, oY for 1

n
- g%
iul Kayg and therefore s g S%.

1 < q < @, because

i A

ps>,

S is dense in LE and Lg is dense in (Lp,.iq) (Theorem 3.6).

-

o

A

Pi» 94> T4i» 54 A

& =

1/s

H

1/q = 8/4; + (1 - 6)/q,.

£

, 2. Given 0 <8 <1-set l/r =0/r, + (l»—ﬂl!rzn

8/s, + (I - 0)/sy, 1/p = 8/p; + (1 - 8)/py and

Let T be %/linear operator on ;ﬂﬁn) such that

2 rdm e a¥, HE) 1

constants Ci 1=1,2

=1, 2

such that

and suppose that there exist positive
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T <c. | -1, 2
sl <o I, o=,
Then T L(m) ¢ 19, 2%)(G).
Furthermore for all x ¢ Sfﬁn)
B 1-8
ol g s6ice NIl - i L<qgm Lesce
8 1-6 ,
||irx|llsiC1~'Cz =] tes s

PROOF. Consider the following diagrams (for notation see §3

T °~ 5. ¢
@ s,— 2 @ )

S X Koy
u ) .
| o l
7 T(]B qi . . . Fa

where xak+ ;; is. the canonical inclusion map and HB is the B-th

A R

—
projection. -

> —
Since each x ¢ & S, can be expressed as g x, (x, € sa),

o

Be 1 That is, ,HBOTX = g TdB(xa?.'We

we have that Tx = {g T&B(xd)}

——
LY

think of T as a JXI watrix of operators_[Ta J. For 0£6¢<1 we

B

have the numbers p, q, r, s and for these we define A(BS to be the set
Fe ' .‘. -~ B -
of (a, y, b, x) in 9,_; (1) & f(u)@n;u) &b i(m)\‘élch that

Hall <1 llygll s 21 foreach Bex, [[b]] <1 and |lxg[l, <1

for each o € J. @

Now we define. for 0 < 8 <1
A . =

L

b



Ly

M(8) < ]|T(bx)1|qs. This implies that M(0) < C,

"
Lemma 7 p. 522] the function logM(0)

« M{8) = sup
A(0)

EB aB ba JLB Y aB(x ) dUB L;_j

Note that if (a, y, b, x) ¢ A(8) for some § then ay = (aByB)

1
belongs to 2° (L1 (L)) and flay|] , , <1

q' s'/q’ s'[ ] q’ sU/eT s’ s’
(], pow |7 T [ 37 sl g

. Indeed

~

T

] 1
<Ll = Tlally <

\

Similarly bx = (byx,)j belongs to Er(Lp(La)) and

||bx||p £ 1. S0, by the HSlder inequality
r =

.=
1, jLB aatd @ | 1, [ Tagrpl gt alblg

< ¥ |lagypll 4 | [M,0T (bx) | |
B g BBg (Lg) B Lq(LB)

S‘ 1/S| s 1/5
D2 d-Hagyell s | L LTger o[,
B LY (L) B L*(Lg)

a3 ] oo 11700 |4

I~

el
%

Since this ig true for any-(a, v, b, x) £ A(9),

and M(1) < C,. By U8,

on [0,1] is convex and we con-

- 1-
clude that M(0) < C1 C, B.

We will see mnext that
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0 1-0
@ |1 e wyg | sa e Nl ikl
B ‘Lg
for all x, y € &D(m)x i(u). . .

e

The case when x = 0 or y = 0 is trivial. So we take nonzero

X, ¥ in f(m), i(u) and consider

vo/llygllyr vgt 0

yg' = ag = |lygll o /Hyll
B 0 otherwise B Bllq q's’
rd
0 otherwise

Then a = (aB)I, y' = (yB')I, b= (byly, x = (xu')J belong to

A(8) and we have that

Ce Cine 2z 1;1(8) 2 Z agb J y," ,0T(x") du
! = = B a B B B
—~ aB LB
' = Z agy 4T _(b.x ') du .
GR JLB 8 BC&‘ o 7 7B
- - _ I‘
. ) EB J[LB vl LIyl g1 g Tap Cra Ixl o) duB" )
=1/ 1 T 3 d
Ul grgr e | T JLB o Tglé) g |1
N {1) implies that the map Tx: i(u) — C given by’
_“‘yi—-—a- z J yB HBOT(x) duB is a c:mtinuo'us,l*ine_ar funéticmal on
. B - LB - * e - B
(Lo, 11l a0 and x| cciex™ Il e L.
P g's ) pr
> N -
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Since ;f(p) is a linear subspace of (Lq , " 1, (Cyq, 25 ),
1 . 3 -

(L%, cq) and the duals of these Bpaces are (Lq, Rb), Ms, (LY, 21)

respectively we conclude that T f(m) ¢ (Lq, 25y. "—\\\wT

L

Finally if 1 £ s € @ then by Theorem 3.1
8 1-6
= < < @ .
IlTxl'qs | |zx] | 2C G, I’x|!pr if 1 <q< and by Theorem 3.2
_---'-‘ﬂ—\
a 8 l—e ad 5 r %
|lTx||IS =2 ||l gcrec, 2 I|x||pr-+
— i '
The next theorem yas proved for the real line by Holland { 34,
Theorem 8] and for locally compact abelian groups by Bertrandias and
Dupuis [ 7, Theorem II].
THEbREM 5.7. If ‘l 2 pPyg £ 2 then the Fourier transform f of
a function f e (Lp, Rq)(G) belongs to
1] 1 ~
L, 2P () 1f 1<pqg2
C ptia R
/GCo.l ) (G) ifq=1,1<pc<2
g 1 ~
7w, e) () ifp=1,1<q<2.
Moreover there exists a constant Cpq depending only on either .
P or q such that
|r§|| to1 S C8 ||fr| (Ha;sdorfmeoung inequality)
9P = pq Pq
where
p'(l/q - 1/p) ifl1<q<p
1
8 =9q'(l/p - 1/q) if 1 <p<gq
1 . ifp=1orq-=1.

PROOF. Case 1) q =1, L < p < 2. By Theorem 5.4, if

Ve W :
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: <
P 1 ~ pl ~ ‘
fe (L, )G then f e (Cq, 2% Y(G) and there exists a constant Cp

depending on p such that
A

@ el e < ey el

Case 2) 1< gq<p. If fe (LP, BN then by (2.7) £ ¢ LF(6)

and by the Hausdorff-Young inequality
(3) [l < TEl]

- »
Applying Tﬁgﬁrem 5.6 to f ¢ Sc with 9, =@ 9, T 5 % s5p= P,

2
]

2 =Py =P, =p,r; =1, 8=p"(l/q-1/p), C, = < (as in (2)) and
. <.

c, =1 {as 1in (5)), we have that % € (Lq', zp')(é) and
¢ .
(4) | [1£]] < ¢ |lg]]
qtpl = "p _pq' . ’3

Since Sc is dense in (Lp, Rq) the Fourfgéﬁzm‘nsfoﬁa\ian be ex-
tended to all (LP, 29) and case 2) is proved. - Ififét:> ‘
Case 3) l1<p<aq. T%b fe LP and” € € (Lq ZPZ(G), heace

g E Lp(G) by (2.7). So by a generalization of Parseval's identity {as

in [37, 31.48 a)1).

IA £R) 3 az = f B(x) £(x) dx.
G ) G n

On the other hand by Theorem 5.3, f g5 (Cq» Ep )(G) and by

case  2) g £ (Lp s Eq )(G), therefore by Theorem 3.1

) J £(R) 2R) df
. _

<[ ool Lol ex < 1 Il

\-)

This implies by (2) and (4) that

'y
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O,
cq Heily 1l
. J; E®) @) a8 | < o
Y6 _ Cq ellgp HEN, 1B pF1

where Cq is a constant depending oniy on qand 6 = q'(1/p - 1/q). Hence
the map ghk—* JAg(x)f(ﬁ)dﬁ is a linear functional on (Lq, zp)(E). By

- G N

l‘,\ ' pl ~ -
Theorem 3.1, f € (Lq , L5 )Y{(G) and

~ C f
qp =

g
C £l if 1
O lell,, it

® ~ ‘
- Moreover, if p = 1 then f € C; and by Remark 3.9

~ " o~
fe W, coo).
Since LE is dense in (Lp* Qq), the Fourier transform.céh be ex-

~ 1 ]
tended to all of (Lp, 29) and we have that (Lp, JAST= wl, P
W

~ L} 1
1, Rq) < (Lq , ¢p) (remember that (Lq s Cp) is a

1f p$ 1 and (L
= T
closed sgggﬁhpe of (L9 . Rw)).

N\
S .

RiC’5.8. 1f £e (L7, 2% 1< q<.2, 2<p<®chen by (2.6)

4

i///ﬁhé\;ijsheorém 5.7 g E (qu, 22). : *
N
|\

\
\ -, ‘o b‘
- Y M §
) . =)
o ’
4 \h T % .
L
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§ 6. _THE FOURIER TRANSFORM ON _(LP, &%) (2 < q < =)

AND MS (1l < 5 = )

We start this section with the definitions of G. I. Gaudry (28,
§1 p. 478] and W. R. Bloom [ 3, p- 206] for the Fourier transform of

functions in LF(G), 1 f£r <=, and (Lp, @), 1 < p,q £ =, respec-

tively. We will see that when p = q both definitions coincide.
We will then proceed to extend Bloom's definition to the space
’

Mg, 1 < sfi w, and study the relation between the transformable measures

S? =

defined by L. Argabright and J. Gil de Lamadrid [1], and ‘the measures

M.

5 . . .

Finally we will give a brief account of other ‘definitions of the

—“f“‘_;;;:;£} transform of measures in (LP, Rq)’ l1 < p,g £w, and Mg,

e 1 éf% £ ®; one due to J. P. Bertrandias and C. ﬁupﬁis,_and another due

-

to H. G. Feichtinger. :

E
NOTATION. For a compact subset E of G, Ce = C ;6) will be the

linear space of functions £ ¢ C. such that supp f c E, endowedbwith

. the supremum horm, .
& DE(G) will denote the linear space

y

D(c)={hlh=if*g,f.gec(c>,leflllig o) .
E 2 ! 1 By i i :jv

e,

and AE(G) = {g ¢ Cc(G)l g = g', g € Ll(a) and supp g < {?

L N - < . . ~ 74 . /

L}
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-
For h ¢ DE(G) and - g € AE(G) we define ::ﬁ
. T E -
IR ENIRI MR EAER AR
. Zz
“ RIENIRIENIREE
v
lell, =1lg Ii, = Iig I1;-
Ap Ay - 1
' E+E )
REMARK 6.1. a) D (G) € € "(G) and |-z is well defined.
b) [Inll, <= [|n|l;  (h e Dy(G))
-0 lelle 2 11g 11 = ll_g.llAE (g e Ag©)
d) (AE(G), ||;|[A ) and (Dp(G), ]I-l[E)'.are Banach spaces
E
{40, Theorem 5.1.1.1.
v
DEFINITION 6.2. D(G) is the internal inductive limit of thé. °
Banéch spaces Dg(G). That is, D(G) = U{DE(G)] E c G compact} and a
basic neighborhdod of the origen is of the type
Ue = E{h e Dg(6)| ||n|fg < €} (e >0).°
3\ Similarly AC(G) and .Cc(Gf are the internal inductive limits

of the Banach spaces AE(G) and CE(G) respectively.

REHARK 6.}. It is known [16, Theorem 3.1] that the spaces D(G)

and AC(G) are homeomorphic and isomorphic as spaces of functions on G;

and that D(G) is dense in CC(G) [40, Theorem 5.1.2], hence so is AC(G)T
. o~ .

LEMMA 6.4. AC(G) ={¢ ¢ CC(G)| $ £ (Cq, 21)}. Here %v (2.5) and
> ~ ‘ n
(2.6) ¢ ¢ (LP, p,q)(c;), 1 <p,q'2 m},‘forgall $ € AC(G). J(;t
| ¢ ~
( . ' - Cow L
[' N | }]\" | \ &
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. BROOF. If ¢ e C .:nd be (Co, 2 then by (2.6) ¢ LI(E)I

and this implies that ¢ = @. Therefore ¢ € A, (G).

Now take g € AE(G) and let fg € (Cu, Rl)(a) such that

EE =1 on E and ~¥E € C.(G) (Theorem 5.2). Since g = 5, ‘g e Ll(a)

we have that g = §¥E e (g*fE)V. By Theorem 4.7 g*fp € (Cy, 21), 50

; ='(g*fE)V = g*fy becaus (g*fE)V £ Ll(a). Hence g £ (Cq,jll) and

therefore g € {$ € bcl $ é\TCU, 11)}.+ ‘

' i 8

Pﬁ@POSITION 6.5. Let A be any of the fol;péing amalgam soéces:
@, ¢ 1¥pac<e

(Co, 2D 14 q<w

(LP, co) 1 <p< o,

A

Then D(G)  is demse in (C_, [[-]],) . Hence by Theorem 3.7 and
ﬁemark 6.3 D(G) and AC(G) are dense in A and the topology on D(G)
and A.(G) 1s sorOnger than the one induced by A.
Egggg. Let {ea} be an ayi. iq’Ll such that for all, a,

.l[ea|[1 ; 1 and ;ea E CE(GS ‘for affixed E. Since A is an absolutely
contilnuous Ll—module,/%or all f e A lim Ilffem - f[lA =0 (Corol-

ary 4.14). In particular for all p € Co(G) 1lim ]|¢*e - ¢||A

nce ¢*e§€: D(G) for all o weg’ conclude t:hat D(G) is dense in

r[°]]A). Now, ,if ¢ € CC(G) then by Proﬁosition 3.4 there exists a _

c®nstant Cg depending on E and q such that ||¢|l E l|¢l] . Since

1011w < oll, and (16114 < TT#llag by (2.6), ehe xest of the

proof foLlows from Reqerk.ﬁ.l parts b) and c).+
' . 4 } .

- . o . s i
L S\ ‘ o '
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DEFINITION 6.6. The dual of—D(G)‘is called the space of

. Quasimeasures and it is dedoted by gg ) . .

The palring between D(G) and Q(G) will be-written as e

, . b

< h,o > (h € D(G), 0 € Q(Q)). Y

-
[

| DEFINITION 6.7. (28, 1.1 p. 478]. Let’ 1 < p < . The Fourier

transform of £ € Lp(G) is a quasimeasure _E_ defined by

~ { v ~
<hf>=<h',f>= J h(-t)_£££) dt (h € D(G)).
%
DEFINITION 6.8. [ 3, p. 266]. Let 1 < p,q < «. The Fourier

transform i of £ & (Lp, Rq)(G) is an element of the dual of AC(G)

defined by ¥
v - = v ‘
<gEo=< g e | o £e) & T (g e A@).
1G
NG{;/that by Lemma 6.4, g E (Lp 29y(6) for all g E A (G)
V L
and g = g*fE, g c LI(G), fg € (Co, R )(G) Hence < g ,f > is well
. EaN
defined and by Theorem 4.7 ' e

<nEol s LB < Ll g 1ol < sl el

2a
<2 | lokpkheel gl =

.
- R N
/\—_;/—Me fe AC (&)

If p‘= q then 1t‘f6116WBg£r m Remark 6.3 that Definition 6.7 and

Y

AIPRIETR ||g||A

-~

¢

e Fourier transform of £ e_(Lp, £q) as



- LD
was proVed in (49,

T ot
-~

" . . o ! '
agjelement oflgt\_coincides with the function f_ in (Lq R 2Py given

-

by Theorem 5.7, Indeed, by the Hausdorff-Young inequality (Theorem 5.7)
p A

there exists a constant C such that for all g € A_(G)

o~ V v ’
< f>l = l<g' £ > < £ < C £ .
nd =Bl < T el se el sl

f ' “~ * ~
This implies that £ e (A, |]-||qp) . Since A_(G) is dense in

(Lq, ap)(é) {(Proposition 6.5), E has a unique continuous extension

~

~ ' v
f on (Lq, 2P) and by Theorem 3.1, f & e, 2P )(G).

78

- DEFINITION 6.9. For 'y € MS(G), l < s < =, we define its Fourier

~ ~ %k
transform u as an element of Aé(G) defined by

~ o ~ .V “~
ToRcgu>=<ghu>= ! E(-t) du(r) (g € AL(G)).
G -

° 1 ~
A&Fin,fby Lemma 6.4, E.E (Cq, 2° 1(6) for all g e A.(G) and

we have as above that

Ial

~ v
l<g\n > < [lellggr Il = [lg*Ep lagr [Tl < TH T HERT oo T Tu]]
S 2} s S 1 E 5

il

[1Egl ol Tull 1 el |AE-

~ A*
Therefore | € AC(G) .

1

In particular if u € Ms; 1l <s <2, then | € (Ls , ﬂm) (as it
L
_IZ;

1%

orem 5.7 there exists a constant depending on s such that

~ v v g "
< gon > = [<ghu > £ [lellagrHull, < cg Ll el

This means that 1 € (AC(G), | |sl)*' Again sin (8) is
- :

s

sion G on (LS, 21) and by Theorem 3.1, R

orem 4.2 itii; Indeed, if _g‘e A.(G) then by Zhe-
Cs

.<T—AU—T

dense in (LS, 21) (Proposition 6.5) fl has a unique continuoqs exten:ii
;



~ =t . o ~
(6.1) £ w®,'2) and HUHSrw <C

o Hhully
REMARK 6.10. If

-~

Q

f e (Lp, 9y (1 < p,q £ ®) then its Fourier
transform as an element of (\

Lp, Rq) and as an element of M coincide.

L3

[
If there exists a constant C such that for all g € AL (G}
< gm>l <c l|g||mq,

for some 1 < q}i «, then by the density ef
Ac(a) in (Cq, iq')(a), a has a-unique continuous extension on

) L ~ @
-(Cq, 29 )(¢) and by Theorem 3.2, :Q?re exists a unique measure

~ ~ ] ~
ue M (G) such that for all h e (Co¥ 2% )(G)

. ) r -
-~ ~ ~ “
.., <hu s Jh h(R) dfi®).
G
In this case for u considered as a measure we say that
HE Mq. That is:
’ ' -
™  PROPOSITION 6.11. Let
. . L

uEMs(G), 1 <5 &= uE:Mq for some

iff there exists a constant C such that.for all gnE Ac(G)
I

o T o
AN < gl <c Hs?Qq.- -

1 <qgw

1 ~ '
< Moreover, for all h € (c9,29 ) (G) "“‘\
. ‘E o
' < h,fl > = J.A h(X) di(R) -
. . t G
o ' % T . ~ ’
o and for all g £ A_(G) :
v v ~ . PPN ~
Fe0 aneo =5 B s <a > J,\ 2®) i)
G 4 ' G
. . !“‘ .
v : / - \/ &
- . .
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PROPQSLTION 6.12. Let v € Mj(G), h € (Cg,&)(G), 1 < g < =, and

g € Ac(a). Then

1) e (Cg 29)(6)

i1) gv e A(G).

o~

~

PROOF . i) Since W is a uniformly bounded functien on G [37,

bl

. a A -~
Theorem 31.5], hv e (Co, LN (@),

ii) By Lemma 6.4 é 3 (C\; 21) and (C,, R.l) c Ll. So by [37,

-~

o

Theorem 31.27] gu = (E*\))". Since E*\J e (Cg, 21) (Theorem 4.8)-26nd »
EV € CC(G)-, bccausu has compact support, we conclude that .

(gG)V = E*U and therefore gG € Ac(a)..1.

Proposition 6.12 allows us to define the prdduct of an element

of Ac(a)* (Mq(a)) and v (v € Mj) as follows:

]

~ % L
DEFINITION 6.13. If F e AL(G) (Mq(G), 1 <q%< @) and

. - ) ~ % ' ~ -
v € Mj(G) then Fv 1is an element of Ac(G) (Mq(G)) defined by.

A ~ . ”~ 1 ~
J < gFv > = < gu,F > -8 € AG) (g € (Co, 23 )(G)).
. "; . ,\\ R . 1
PROPOSITION 6.14. Let U.E MS(G) (1 i S i ®) and f e L°(G).
-~ lf\ - @ . ~ nn
*v) = pv for all v E M,(G). H *f) = uf.
i)  (urv) wv  for a 1 1(6)7 Hence (u*f) u

i) If u e Mq(G),'l < q <%, Then (u*f)" E'cha) and for all

h e (Co, 29 )(8) -- | BN

i -

1( @) f@®) du®)

—

. ~ [
- "JA h(R) d(u*f) (R) = J,\
. G . G
and for all g EQAC(V(E)'
A

"

J §(-x) prE(x) dx\\j J,\ g®) IR di®).
) G ) G
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b N, .

PROQF. i) Let Qit A.(G). Since gv = (g*v) for all v & Ml(G)

(see the proof of Proposition 6.12) we have that for Vv ¢ MI(G)
g > = < gull > = < (3RV) 0> = < (B0 e

= f Efv(—t) du(r) = J J g(-t -s) dv(s) du(t)

=< gV, vk > = < g’(v*U)A >,

{

,Sihce this is true for all g ¢ ﬁc(G) we conclude that
Wy = {u*xv) for all v e M;(G).
ii) By i), Proposition 6.11 and Proposition 4.1 there exists a

constant.C such that for all g & AC(G)

f

< ey 3] = < gt >] = < gfh 2] <o [kl

N

¢ 1o 8] g '
The;efore by Proposition 6.11 h(u*f)A € Mq(a).

Finally by the same Proposition 6.11
'?

-

N
A
o
o
=>
v

< h,(*f)” > = < h,nf >

1]

LR due) (®)
[c N

]

T

'IA h(R) £(R) dR(R)
G

v 5
fpr all h e (C,, &7 )(G) and -

B(-x) URE(x) dx = < E',U%E > = < g, (uxE) > } X ; R) dn(R - .
JG g{-x) u*f(x) dx B M g, (U*f) ﬁ fﬁ g(X) £(X) du(x) ~_ v
74

S e ~ ‘
- for all g € AL(G). ) . , ~

. /r”7

(Remember that u*f ¢ (Ll, RS) by Corollary 4.4) .4

L] . * ]
I ) .

) v
DEFINITION 6.15. The inverse of the Fourier transform u of[a

. . . . - _ _
- measure Y 1n Mg (1 £ g < ©) is an element of AS&G) defined by ' 1

-

< ¢’)lv-l > =< $',11 > o= Ja\ $("ﬁ) d]—-‘(ﬁ) - - {% e Ac(a))
G ) . . .

) - L8 - | &M
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Before we continue we should remember that for 1 < p,q L

(Lp, Rq)‘g (Ll, Rq%fg Mq € Mo and therefore Proposition 6.11, Proposi-
tion 6.12, Proposition 6.14, Definition 6.15 and ghe results that follow

hold for elements of 'any amalgam space and any measure space of typg 4-

Also, when considering an element, ¢, of D(G) W@:Sﬂould bear in

- mind that D(G) ¢ A (G) and by Lemma 6.4

Ry

v

"

3

4

A.(G) = {¢¢ CC(C)I & e (Cp, nl)(é) } = 9(G). Thought of as an element
of A.(G), ¢ = ¥: ¢ € Ll(a); and thought of a%ﬁgn element of ¢(G),. /'
e (o, 21 @).

’ - - ~

»

“THEOREM 6.16. (Inversion Theorem). Let u € M_(G). If. u'E M. (G)

apd for ‘all ¢ e A.(G) h "'.
< d,u > = J ¢(x) du(x) = [h O(-R) dU(R) = < ¢b,p > N
G g u

X
then U=
PROOF, Let ¢ ¢ Ac(G)' By definition of 1 we have that

v
< d,p>=<d",u>=<d,u > Since U e M, and AL(G) is dense in

v , y
{Co, 21)(G) we conclude that u e M, (Propos?fion_6.ll) and W = UH.q
-, .

. Our next goal will be to see which measures in M, satisfy the
condition of Theorem 6.16. To this end we introduce the jconcept of

transformable measure as defined by L. Argabright and J. Gil de Lamadrid

[11. ¢ .
e

\ ( | ) ¢ 1 ‘
DEFINITI 6.17. A measure vV is transformable if there exists

a measure EE on G such éhat for all ¢ € Cé(G), the function

~ A ' ~ -
£ b— |¢|2(—ﬁ) on G  belongs to Ll('G') and

5
k
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J $*(x) du(x) = [A HEEI O
G )G

MTCG) = MT will denote the set of transformable measures and
c,(6) = { ¢%p | ¢ € c (&) }.

Note that if £, h belong to CC(C) then f*h ¢ < C,(G) >, the
linear subspace of CC(G) spanned by Cz\(G). Clearly < C2(G) > < D(G).

'C\

4

REMARK 6.18, 1) If v g MT then V' is unique and "V ¢ M@(a)

[1l, Theorem 2.1 and Theorem 2.5].
ii) If v € My then $ £ Ll(TT) for all ¢ ¢ ¢(G), because

$ e (Cqys 21)(6). Therefore by [1, Corollary 3.1]
f d{x) dulx) = [A $(—ﬁ) dV(R) for all ¢ € ¢(G).
G IG

Therefore a measure W £ M, satisfies the condition of Theo-

rem 6.16 1f p belongs to MT and a = .

The next two theorems will show that all measures in Mq for

} £q <2, and all functions w*f, where. f € Ll and HEeM is

\

such that a e M, , satiéfy these conditions.

THEOREM 6.19. (Inclusion Theorem). If p ¢ Mq’ 1 < q £ R, -thend

~ ¥ ’ ' : ’ .
UEMT and "y’ = p, Hence M = u. . j

PROOF. Let V € 1«12 (see Definition 3.5). By the Extended

: v
Parseval Formula {49, Lemma 4.1] for all h € AC(G) ‘
. J h(x) dv(x) = fh'ﬁ(—i)’s(ﬁ) dRk. -
G G

(

Now, the linear functionals T{(v) = J h(x) dv(x) and

Y



L

T(V) = J h(-%) V(R) d® on Mq are continuous because

i

[T(Vy | ||v||q|lﬁ||mq, by Theorem 3.2 and

v
u

]

Hal o O gue < 1Ly g TIvIl (see (6.1) page 79), where
“\:' 1 -

Cq is a comstant depénding only on q. Since MY is dense in Mq-(Theo—
c

T |

[

rem 3.6) and T =T on Mg we conclude that T = T on Mq and this

implies that
. ——

[ - '
hx) dulx) = h{-%) p(¥) d% for all h € A _(G).
.JG j JG : ¢
Since C,(G) < AC(G), U e MT and"ﬁ‘= ﬁ.f

THEOREM 6.20. Let -1 € Mo and £ € LI(G). If 1l € Mo(G) then

i - ~ r———\ x
fxu e My and (p¥f) = (u*f) . Hence W*f = (U*f)".
. - ’ .
PROOF. Let ¢ € A.(G) and {ea} be an a.i. in Ll(G) such that
. {eg} < CC(G)’ £29,-11 7.1] and [45, 2.6.61. In the next chapter we will

actuafﬁy conssiggg,sﬁgh an approximate identity having further proper-

&

//5}éé {(p. 94).

By Proposition 4.1

||¢fea - ¢f||w1 < l|$|[m1|lf o~ £l

< 1ol gy 1E%e, = £l 14
. This implies that 1i II&EEQ - $E[[m1 = 0. So, by Proposif ')
thon 6.14 (u*£)" € Mm(a) and we have that . P

d

NS -JA FRAAAD @) = < §, ()" > = < §,uE > = < §E,0 >
G )

'. - AAA ~ o~

N lim < fey,H > = lim < dey,uf >

r
lim < dey, (W*E)" >,

_ S G

<>
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~

Now, de, € Ac(G) because (IJ € Ca, ey € C. and

d¥e = (&;Ea)v. Then by definitfon of (u*£)”

(2)  Lim < ey, (uRE)" > = Lim < (¢Fey) ', wiE >

i

lim [ prey (-x) pxf (x) dx
IG

[ $p{-x) p*f(x) dx.
G

. -
Remember that u*f ¢ (L', 2%) by Theorem 4.8. The last equal-

ity holds because lim ||¢J=‘fele - ¢ ‘ml = 0 by Coxollary 4.14.

Hence from (1) and (2) we conclude that
J px) PREG) dx = [ BR) dGrE)R)
IG

for all ¢ € -A.(G). Since C2(G) ¢ A (G), this implies that u*f € My

—
and  (WFE)" = () 4

A N

-

THEQ

I

6.21. Let e M_. If 1 € Mo(G) then u & My~ and

I = T.wence Ho= 0. y : -

PROOF. Let f € A.(G) and g € D(G). By Corollary 4.4 £*yu

as a ’measure belongs to M,(G}, so by Proposition 6.14 and Theorem 6.20
(E%1)" € M,(G) and / ‘
[ s st ax = [ 3R an @) = |80 2@ d®).
G G 1G .
‘Note that i.em:ha 6.4 g<'((Co, 511)(?;).
But [ g(_} £(x) d (x) = j j [x.8] g(x) dx £(R) dp(R)

o

. - [ et [ 81 RR) ali®) ax. ~

. - \:u
) ] N
. ‘ N K . . .
. : ' : &

ERURN
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We can apply Fubini's theorem because g ¢ L} and
z.

[ lexr Bl alil@ < 1R 11511, °

Then we conclude +hgt %6; all g e D(G)

*

. ro. n .
( g(x)- £*u(x) dx = J g(x) Jh[x,§3 E(x) du(R) dx.
1G G - G )

Since D(G) is dense in C.(G) {40, Theorem 5.1.2], this implies

(]
that _
{2 ~ ~
BuG) = | ECx - y) du(y) = [PRERSRICOR e
G G )

locally almost everywhere.
A

Now, £ e (Cq, 21) and therefore J—[x,ﬁ] f(ﬁ) dﬁ(ﬁ). is a

continuous function on G. On the other hand f£*u is also a continudus
“Ponction on G. Therefore fxp(x) = J [(x,%] f(ﬁ) diR) - for all x € G.
S0, for x = 0 we have that

[ f(x - y) duly) = I” g(ﬁ) dﬁ(ﬁ) for ali £f e A(G).
G G

Lo |

This implies that W e My and p= T .4

-~
REMARK 6.22. From the proof of theorem 6.21 we see that for

W E M,(G) such that 1 e M,(G)

-

[ - @ = [ or @ d®
oG - JG

for all f ¢ AC(G) and all x € G.

THEOREM 6.23. If h e Mp n My then | = .

PROOF. By Remark 6.18 p ¢ Mm(a) and for all g e Ac(G)



e

. . | -
..J‘(G) = -{_ we Mp(e)| Ve MT(a) } and proved that if v & (3=(G) then .

87
S

V *
< gt j gx) dux) = JA g (-%) d’TI(SE)(: < EM PN
. f G . ' .
Then by Proposition 6.1l and the density of AC(G) WQL)(G)
. “ v ‘ A RO
v -~
this implies that p = T, Hé)r_g/by Theorem 6.21, W =7 = Mot

» ‘ .

1}

. L. Argabright ar;& J. Gil de Lamadrid defined Ehe set -

-

v="u.
at follows is a characterization of ol(G). .This wa? also
< a different method, by H. G. 'Feicht'i\_gger (25, Theorem Cl].
s - ( U * B
THEOREM 6.24. oh(G) = { w e M, | 1 e M ). B *.
~> ) ] . .
PROOF. Take Vv € J.(G). Since v = v, v belongs to My(G).
So by Theorem 6.23 v= . Therefore v £ {p e M_}. L
. . ' ~
Now take U € M, such that u £ M_. By Theorem 6.21 | € MT
A v v R v .
cand u/ py= yu. So, ETHS M_(G), and T e Mm'(G). Again“by Theo-
o — ~
rem 6.21 TR MT(G)'"f' .
4 ) . - ‘n N )
. REMARK 6.25. We see that Theodem 6.24 implies "the Second
.- A - ’ RETEE .
Inclusion Theqrem" proved in [ 1, Theorem 3{5].
o 2GR 29y 1< o < ¢ ‘ o
o Moreover, (L, &%), 1 £ p <=, 1 <q 2, and Mg, 1 <5 £ 2,
JK‘ s v - - ° - -
;a-fe included in- J—(G).

—

I~; _Rich’ar.:ds pro{rided an examplé of zi.transformable mleasure"

which s not in M, [1, g?].' 'I‘h-.:Ls implies~tilat_ MT &M, an.d(- C,P.(.G)‘ is a
proper subset c;f Mp\That is, there exists- v € My such that W 4: Mp.
Since V' E M, , this means that M, é MT. Mo;:eover, from Theorem 6.24

v

4
AN

.-

’.
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we have that CQ(C) =M, i MT {(sec¢ |30, Theorem 3] and [ 25, Theo-

Fem C11).

F. Holland [ 35, §4] defined the test spaces ¢q, 1 < q < w; on

the real line. Its generalizations to locally compact groups are due to

J. P. Bertrandias and C. Dupuis\[ 7, 82 ).

- DEFINITION 6.26. Let 1 < q < =, ¢q = @q(G) is the linear

84

space { ¢ € Cc(G)] &35 (Co, 2Y) } endowed with the norm ¢+H— |]¢|imq.

[es]

By (2.5) it is c¢lear that ¢l < @q ¢ d,, 1 < q < e, and by

Theorem 5.7, there exists a continuous linear isomorphism from C. onto

¢q for 2 < q < o

A

.

F. Holland proved that for 1 < q <2 ¢q(R) $ CC(R) (35, 34

p. 3501].

DEFINITION 6.27. [7, §4 a)]. Let g be a function in (LP, 29y

(1 £p,qg £*) or a measure in M; (1 < s < ®), The Fourier transform

F¢(g}‘ of g 'i§ an element of the continuous dual of ¢, defined by

< ¢,F¢(g) >. = < ¥',g > -—-’j-é(-t) g(t) dt (p ¢ fbl(a)).

since (LP, 24 ¢ (!, 2% ¢ Mo <M, 1<p,q 5, and
, |
1

¢ € (Co, &) for all ¢ e &, Fp(g) 1is well defined and

. v v
|< ¢, Fpe) >| = [<¢",8 > < C |[e]],y

where- C = ||g||m' if geMg or C~= |lem]l, if g e (P, 29).

~ ok
Therefore Fg(g) belongs to ¢,(G) .

By Lemma 6.4, A.(G) = ¢1(G). Moreover for all ¢ E‘AE(a),

'y
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CLH@), g e (€ A0 and T, i1 on

[+]

v . "o .
o= *fE where ¢ = ¢, &
E  (sce the proof of Lemma 6.4). So, by (2.3) and Theorem 4.7 we sce

that J

v

v ° o
(.2)  [letla, = el < Hellg, = He™segll, < 2% 1171 11 ]

- 2 (gl Loy ol -

" This implies that the embedding of Ac(a) onto ¢1(8) is contin-
ucus and the norms f b—+ ll;l'“l' f b= IrfllAE _6n AE(a) are equiv-
alent. Therefore_)¢1(a)* c Ac(a)*~ and we have that ‘ ,
{ Fog | g eMe el e lgen, i qr

H. G. Feichtinger [25] has given another alternative definition

for the Fburier transform Fou of a measure y € M,(G), as an element )
of the dual SD(G)* of a rather special Segal algebra 5¢(G) defined
in [26]. This algebra S;(G) has the following properties: '
oD AC(G) is dense in SD(G)f:‘-'J
2) The inclusion of A, (G) into Se(éj.is cﬁﬁf&nuous.

3) Sp(G)” = S, (G).

4) M, U Mp € Se(6)* € Q(G). | B

——

Then Feidﬁtinger's definition is as follows:

- . * -
DEFINITION 6.28. [25, Theorem B2]. Let 0 e S,(G) . Then its

Fourier transform Fs0 is an element of So(G) defined by

V ) ~
< £,Fp0 > =< f£,0 >. ( £ e 5,(G)).

4) above it is clear that Fqo is well defined and

By property
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rd * .
Foo indeed belongs to Su(G) - In particular if 1 ¢ M_ we have by 2)

that Fou [A,(G) =.ﬁ ,msq_ )
{ Fo“ l uweM, } < { a | uE M, }; and a = Fou 1iff there exists a con-
stant C such that for all f e Ac(a), | < E,u >l < ¢ ||fnSo (proper-
ty 1)). ¥ A

Feichtinger also proved {25, Theore}n Cl ii)] that

LuweM | Fone Mo b =MonM = {pen, | Fouc M_ I Hence, we

T
conclude from Theorem 6.24 that if u € cQ(G) then G = Fo“‘
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CHAPTER IIL

|

REPRESENTATION QF FUNCTIONS AS FOURIER TRANSFORMS

OF MEASURES IN M

§ 7. SIMON'S GENERALIZATION OF CESARO SUMMABILITY

In this sdction we will generalize to locally compact abelian

groups the fol%?wing theorem proved by F. Holland {34, 87 Theorem 9)
for the real line,

r

THEOREM 7.1. Let 1<q <2 and p € M- Then as N+ =
~ . |
. J oixt duce)

v 2n J-N

1 oo ~
converges in the norm of (Lq » £ ) to a function N and

-

J h(x) H(x) dx = J h() dux)
i .

e @, ey .
Further

. — '
/2 u(x) = (C,1) J e " au(e)
almost everywhere. _

% (C,1) means that the integral on the right 1is _summable by the
Cesaro method of order ! to the value V2T u(x).

We note immediately that if p e Hq(G), 1 £ q£2, then by

Theorem 3.6 there exists a sequence . Y, of measures in Mg(G), hence in

]
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M, (G), such that lim || - “||q = Q. Then by (6.1)
lim llﬁn - “||qrm = Q. Therefore the first part of Theorem 7.1 is a
particular case of this fact.

To generalize the rest of the theorem we introduce A. :B. Simon's
R ‘ ) _ ‘
generalization of Cesdro summability [15] and study some of its proper-

‘ties related to amalgam spaces.
A

-~

The set of basic neigﬁborhoods of an element x of G in G will

{

be denoted by N, (G).
o - a .
We consider G.to be the product R *G1, where a4, Gy and N are

as in page 10. . -

.

Since H 1is an apen subgroup of Gy, any U ¢ NO(G) contains

a product neighborhood (—61,5f)x"'"X(-da,da)XUH where UH £ NO(GI),

UHEH and 6i>0, i""l,..,a-

For 1 =1,..,a set U = (—ﬁi,di) and N; = 1/84. Then define
. 1 - cos(Nit)
t) = - t € R}.
T e en
i

ﬁe\gﬁe that

((q //’17*11 Each UU is a contlnuous, nonnegative functlon on R,

\\\\E%Eﬁxf L*(R) - and ||an|| = 1. ‘

Now we define au: R *R  to be

. : oy (t)

1

n=a

an(ti)r/' . t = (t1’°:"ta)-

i=1

From (7.1) we see that

(7.2) &;; 1is a' continuous, nonnegative function on rZ.

-



7.3) oy e L'@®  and eyl = 1.

Since m 1is a regular measure, given m(UH) there exists
Ve No(H) compact’stch that Ve Uy and m(Uy) - n(Up? < m(v).

So, by the normality of H (H is Hausdorff and compact), we can

define for this V, a continuous function g: H—+ R as follows

1
m(UH) . s £V
' - g
g{s) =4 m (Uy) s € Hn Uy
m(Up) < g(s) < 1 s ey vy
m (Uyp) :

Applying the Stone-Weierstrass Theorem to the space of continu-

ous functions on the compact space H, we get a trigonometric polynomial

P, (P is a finite lincar combination of characteres) such that

||'g = PHm < m(UH)'
' m ~
If r is the real part of P then r = z Aij » A: ER,

;j: H— R j=1,..,m and |lg - r]lm < m(UH).
Heﬂ?e for all\ s e H, -m(Uy) < r'(s) - g(s) and this implies

that 0 < g(s) - m(Uy) < r(s) for all s e H.

¢

. We then define the function BU: Gt * R to be
' 1 r(s) s £ H
T
1
. By(s) =
0 s ¢ H

It is clear that



(7.4)
and |[8yl]; = 1.
(7.5) sup- |B U(S)l = BU < w,

s e G

Finally we define

N
~.
~

}. ¢ylt,s) = ot By(s)

94

BU is a continuogs, nongegative fuanction on Gy, bU L Ll(Gl)

(t,s) € G.-

THEOREM 7.2, Each ¢S (U e NO(G)) has the following properties:

i) ¢U is a real-valued, continuous, nonnegative function on G.

1) ¢y e Lhe) and |[foyll,_= 1.

iii) $U € CC(E) and |]$U[]m < 1.
iv)  ¢ylx) = I“ &U(i) (x,%] dR
TG
Moreover . __- o

v) For € >0 and U € No(G) given,

V' ¢V then ] by < E.
o
. vi)  lim $y(R) = 1. -
U
vii) {¢y} is an a.i. in'L1(6).
PROOF.

proof of iii},

v

oy e (P, 2y,

b4
ig. ¢U = 9.

.

we can find a V suéh that if

[
\

1) and ii) follow from (7.2), (7.3) and (7.4). For a

iv)} v), vi) and vii) sce [15].

PROPOSITION 7.3. Lt 1 < p < @. For each U ¢ Ng (G),

PROOF. By (2.53) it is enough to @rove that . oy € (Lé, ll)(Ra)'

”

B



First we note that since ayy l,..,4, 1is an even Funcrion,

for n » 0

-~

S

sup ay, (t + n) = sup GU'(I -t + n)
t £ 70,11 - e [0,1] %
. = sup an(t - {1 + n)) for i = },..,a.
t £ [0,1]
2 1
Then we conclude that sup an(t +n} <— —
t e [0,1] N;7 a2
(i =1,..,a), for all ne Z~ {0,-1}.
‘ Ny . . I - cos Ni(n + t)
Also sup dUi(t + 1) =— sup .
t e [0,1] moote (0,11 (N;(n+ £))2
N
i
— G

il

(i =1,..,a) if n e {0,-1} for a conétant C;, because
_ 1 - cos Ni(n + t)
lim - > exists.

Tt o+ o-n .(Ni(n + t))

Therefore for.all 1= 1,.,a and all n e Z
méup Iaui(t + n)I £ Ca, where € = max '(2/(Niw),NiCi/n)
t e [0,1] l<i<a
and
1/n? nezn {0,-1)
a -
n
1 ~ne {0,1} -

So for 1 =1,..,a

| | I]m = Z sup |y, (8) ] Z Sup |uU.(t + n)|
Ui el Z t e [n,n+l} 'l Z tel(0,1] *

o]

A
[}
Nt
:!‘J
N
.
i
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is : t {c o, ot .
This means tha {uUi} < (LT, ) (R)
Now,

aylly, = 1 sup loy (£ + n) |
Lh 628 ¢ (0,114

a
= E I sup ,|an(t + “i)|
ne 2% i=1 t e [0,1]
a
= E IR X H sup - lan(t +n1)|
n; £ 2 n, €2 i=l ce [0,1] )
a £

_i..

I fog, [l <=
=1 Myl lel ,

COROLLARY 7.4. Let 1 < p < «. Each ¢y & (LP, 21)(G)

(U &Ny(G)). Hence {¢y} = (Cq, ly.
PROOF. By definition of ¢y , for all (t,s) € G

¢U(s,t) = gy (t) BU(S) < Byoy(t) where sup |BU(S)| = BU (see (7.5)).
5 £ Gi .
Hence

Hoglley =5 sup  |og(e)By(s)| < B, I sup oy (2|
v a (t,s) € Ky v v =y nez% t+n € [o,11¢ "

1

Therefore by Proposition 7.3, ¢y € (L”, 2°) and by (2.5)

9y € P, ehyy
We will use the following lemma to prove Theorem 7.6.

LEMMA-7.5. Let U, V be two elements of NO(G) of the form

¢

U= (-61.é1jx; v X (8,805 6y

120, _UH c H, ?H € NO(GfQ and

n

Vo= [=y1,y; 1% = » -x[—ya Ya]XVHf- Yy > 0, VH ﬁ, Vi € NO(GII compact.
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If for 1 < p < =, ng = min( 6§P'Yi Yy i=1,..,a and
Wy = int V, then W = (=ny,nydxe 'X[‘na,naJXWH belongs to Np(G) and

for a fixed y = (yg,sq) in G, yq = (yl,..,ya), Wy = y + W has the

a

following properties:
1) W < + V.

y = ¥
2) If & = [-mty;,mtyy e o ox[-n 4y ingtye)  then

' > 1/p a )
| e wPax | =0T 5.

Ma //’“1—1

1) R*~nlla cu L, {In} being a countable family of compact subsets
: N
of R? and
1/p a
2 J ay(y, = x)P dx =0(nm §,). -

N[ i=1

4) There exists a constant C such that sup f(In) £ C where ﬁ(ln)
. N .

is the cardinality of the set {m € Za[ (m + [O,IJh) n I, +0 ).
PROOF. Several conétants will appear during the proof and.since'
their specific value is ilrrelevant for our needs we just write Ciy Cz..
From the definition of W, 1) is clear.

Ny 1 - cos Njt

Remember that for i =1,..,4, an(t) = 7
T (Nit)

is continuous'By (7.1), hence oy is bounded on [—ni,ni] and we have

that for Jy = [—ni + yi, Ny + yi], ‘i = 1,..,4

. 1/p ny 1/p
(1 [ J

an(yi - x)P dx = an(x)? dx

JJi -—ni



1/p

. 2
< Cy Ny ny < C;(1/65) 61 = Cy 64

This impiies 2) because

p

1/p
f ayly - x)p dx = dx <

la i

1 3aOfn

y; - x)
1 JJiaUl ;

Let J, ='[~ni +y;ng +yy) and Hi = Jpxe s oexJ o,

Observe that

R~ J, =

17 (omny +yg) v (ng oy,
cul-n-1- Ni + yj,-n - ny + yi]
v (n + nj + yi,n +1 + ni
N
= UL uu Im+ and
] N
P d ]
[-QU (yi—x)pdx% L) J_ * 7 = Cy tSia
I, A \TRy In (y; - x)
1 1
where ap = - .
(yy + 2P (y; +n + 1)2p71
‘ 1/p
Since I a, converges we conclude that
§ .
> 1/p
) J _.an(yi - x)" dx < Cudy.
R [
Similarly
( P g . p dx p
jpr Cugs - 0T dx =€ 6y IR 25 - Cq %1 @
m ) i n g%
. : 1/p
and therefore Z [ + O (y; - x)p dx < 06.51-
N| J1, Ui

98
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Llearly sup TZ(I;) and sup E(I;) are less than or equal to
N ]

2. Hence, for 1 =1,..,a

(2) R J; =u In, I~ compact, sup f(In) < 2 and
. N N
‘ . 1/p
z J U.Ui(yi - x) dx = O(Gi).
RS ‘ .
n

Since R = (R Ja) u Ja and J, is compact, by (1) and .(2)

we see that R = u -I_; , z compact for all n,
N ;

sup Kf(-I;) < max (2, $(J)) = C7 and
N ‘

1 . l/p
(3) ) J_% (yg - %) dx = 0(8p)-
N a ’

n

We will prove 3) and 4).by induction on &. The case a =1

follows from (2). Suppose that 3) and &) hold for @ - 1. That is,

a-1

R v Jla-1 '5 uI, L,c g1 compact, sup J(I,) < Cs and
N 3]
i a-1 ' 1/p . a-1 : 7
(4) é J it aui(yi - xi)P fix =.O( M 51) x = (xl"’xa)'

In i=1 . i=1
By (2) with 1 = a we have that R " Jg c u Iy, T E,R' cotﬂpact
. N ‘
L )
sup ﬁ(Ik) <2 and . .o
N . ~ .

o, Ifp
(5) ) 1 ay (y, - x)° dx = 0 (3a) -
Ny @ o :



Then Ra nfla = (Raul x'R) v (Tlla-1 x Jq?

= R A fa-1) x R v Ma-1 x (R ~ 3,

n

(vl XER)U,Ha—lx(uI)
N " ( 'Nk)

= v (I x E;) v u (lfa-1 x Iijf
n,m N

I, % Tu: and Jla-1 x I, are compact subsets of R , for all n, m, k
in N. Since [la-1 1is compact, pH(lla-1) = Cy and we have that

sup g(ln X ﬂ) £ Cy Cy and sup f(ﬂa_—l x Ik) £ Cy2 = Cypy. Therefore
NxN N :

4) holds with C = max( CyCy,Cyp ).

Finally, by (3) and (4)

: ' 1/p

) J _ ogylye = x)P ax =
n,mn LIy )

I -a-1 ) 0 i/p . 1/p
- T o (v - x)P ax J_ (v, - x)P dx
nJI g WL IT,,%C‘('L v

H n =

a-1 11/p , 1/p
o) U T ooy (yg - x)P dx ) U_ ay, (Vg - x)P dan
Nt 1=1 | N LT

a
- O(H 51).

By (1) and (5)

. ‘ B P I/P : =
) J agly, - %7 dx
N Ha-1 Ik K .
a-1 . 1/p p 1./15
}: 1) J dui(yi - x) dx J oy (¥q = x)° dx
N| =1 ‘34 I, a ‘

100
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a-1 1/p 1/p
= 1 J chi(yi - x)p dx X [ J aUa(ya - x)P dx]
i=1 Ji ‘ N Jk
a
=0 I &)
i=1"

~

THEOREM 7.6. Let f e (LP, £7), 1 < p <, and y € G. For each

Ue NO(G) and all vy £ Ny(c)

[ oyly = x) £(x) dx——— 0 _ as U+ 0.
IG vV ’ .
y N .
a
PROOE. We write y = (¥4,50)s Yo = (F15.+2Yq) in R, sg € Gy -

Let Vy € Ny(G) and take V g NO(G) such that. y + Ve Vy and V. ..y

has the form [-yy,y1lxs « « x[-v, v Jxvy , Yi-> 0, i=1,..,a, Vy c H
compact and Vy ENO(GI)‘ Also, U contains ?fproaﬁét neighborhood

(=G1,8 )xe + . "X(—GQ,GA)XU 8> 0,.i ='{,...,a;" U._cH and

H’ i H

UH £ No(G.).V

v -

' -1-t'.."--
Set ng = min ( 5§p , Yi)’ i=1,..,a4, and Wy = int VH' {-x‘”:
Then W = [-n;,n1]xs = -XE-na,nd]wa satisfies the conditions listed .

in Lemma 7.5.

By 1) of Lemma 7.5, - Wy & Vy and therefore it is enocugh to

prove that o e

= .

J oyly - x) £(x) dx—— 0 as U~ 0.
‘G W

By 2)‘9f Lemma 7.5, Wy = [la. x (so + Wy). Hence

G.'\J/WY' = (Ra X G1) v (Jla x (so + Wy)) = ([Ra“ v Ha)'x G1

Ulla x (G, v (s + Wy)).
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This implies that

(6) ( Coyly - x) f(x) dx-
JG wy

~ {
Pyly - x)E(x)dx + ¢yly - 2 f (x)dx.

(®%~dia) %G, Slax (Gyv (so+iy))
If x = (t,s) in G then by definition of by s

¢U(y -x) = GU(yg - t)BU(SO - s5) =0 if s; - s ¢ H. Hence,

dyly - x)f(x)dx = byly - x}E(x)dx

(R®1a) %G1 (REIIa) % (s 0+H) ]
f
pply = x)E(x)dx = ¢U(y - x)YE(x)dx.
LHaX(GIN(s;+WHL) HaX(so+(Hme))

Let I, € {1, {In}N as in 3) above. So, by Holder's in-

equality’
. /!
f . . /p
oply - x)E(x)dx < l|fXInx(Sg+H)[|P duly - x)F dx
"Iox(soHH) | I, x(so+H)
. 1/p"
< | ¢ l, B (v - )P dx

n

where By is the constant in (7.5).
By 4) |S(Ip x (so + H)| < C for all n € N (see page 36 and

Definition 1.6). This implies that for all n e N

A

||fX1nf(So+H)r|p b |S(Iﬁ % (sot+ H)[ |.|f||pcn <C Ilfllpm. Then we con-

clude from 3) that
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(7) ogly - x)f(x}dx < Ei J dyly = %) [£(x)]| dx

(R*a) <G, N L (s,+H)

1/p!

. 1
solleil ooy I] [ wyby T0f o
N S

n

Applying again the Holder inequality

oply - x) [EG)] dx
JHaX(so+(Hme))

pr l-/Pl
= ||fxﬂax(so+(HmWH))[|p ¢U(y - x)° dx
Mlax (s + (VM) )

. ' 1/P'
< BU ||f||pcn |S(Hax(so+(H’\rWH))|L Jﬂa QU(YQ - x)p dx] .

Note that fa x (s, + (H Wy)) 1is compact (H is compact and
H™v Wy 1s closed) and that by definition of BU (pp. 93 and 94).
By~ 0 ;s U +-0.

Now, since [la +y as U+ 0 and ég/;(H U WH) € sy +H is
independent of U, we have that IS(Ha X (SB + (H v WH))I +1. as U -+ Q.

Therefore by 2)

(8) ¢U(y - x) ]f(x)] dx + 0 as U - 0.

Max(sp +(HWy))

Hence we conclude from (6), (7) and (8) that
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f

| oyly = x) £(x) dx =0 as  U-» 0.,
GW
b
COROLLARY 7.7. For all f e (LP, 2), 2 < p < =,
lim J ¢U(y - x) f£(x);dx = £(y) a.e.
v-0 Jo |
In other words, lim 3¢ *f(y) = f(y) a.e.
)
u-+0
PROOF. Let Vy £ Ny(G) compact. Since
[ byly - %) £(x) dx = [ duly - x) £(x) dx + [ Gyly - x) £{x) dx
~JG Jew v
y y
and by Theorem 7.6 J dply ~ x) f(x) dx >~ Q0 as U > 0 - we jusc

n
& Vy

have to prove that J ¢U(y - x) f(x} dx + £(y) as U -+ 0.
v
y .

By (2.5) (1P, 2) = (12

2

an¢ the function
loc

s Qm), so f elL
g = f|v, = fx belongs to LZ(G).
y Vy
. 2 |
By Corollary 7.4 and (2.7), {¢U} € L (G) and by the Parseval

identity [ 37, Theorem 31.19]

J op(y = x) £(x) dx = J byly - x) g(x) dx = J $U(ﬁ) g(-%x)Ly,x]dx,
v G G
7 )
Since ' lim ¢, (%) (k%€ 6), sup_|pyR)] 21,°
Uu-+20 XeG

n
[

¢, € Ll(a) (Theorem 7.2) and g € Lw(a), we can apply Lebésgue's
U 4 Y

Domonated Convergence Theorem and we see that
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1im J QU(y - x) £(x) dx (x) g( x) fy 8] dx
v

lim
v-0 v -

\__._'

v
JA g(-%) [y,x] dx = g(y)
G

n

g(y) a.e.
X
Note that g =g a.e. by [37, 31.46 a) 1)].;
The next theorem is the generalization of ‘the Theorem 7.1.

THEOREM 7.8. Let W e Mg, 1 < q < 2.

\% . '
1) J.\ £(X) n(R) dz = [ £(x) du(x) for all £ e (L9, 1) (G).
G JG

11) (c.l)'J TR] duGo) t= lim j dyt) TOET dutx) = 1) a.e.
G ) ' u=-+20 G -
35995: We pointed out at the beginning of this secti;n tbat
there exists a sequence (up) in My (G) such that
m {fu - ullq =0 and Lim |[0y - uf]gr,, = 0. |
’Bx the Extended Parseval Formula (as in [49, Lemma 4.11),for

a1l £ e (L3, 21)G)
l ' —=xc "~ A ~ v
(9 | TG u R) df = | £(x) dp,(x).
Now, by the Holder inequality and Theorem 5.7,

JA e | [0, - n@)| ar
G

:é UK £(%)]9 d?c] %/qU

~ ~ 1 1/q'
o () - u@ |1 dﬁ}

B Kg



< ||f Jln - o
||.Hq1||“ Hq.

V V
Similarly J FE(x) | d|un—u!(x)i']lf[[mq.Hun-qu.

G

Therefore the'right side of (9) converges to I

G

V .
-E(x) du(x)

and the left side converges to JA f(X) u{x) d%. This proves™1).
G .

By Corollary 7.4 {¢U} c (L9, Rl)(a), so from 1)

~ v )
{A dyly - &) u(X) dk = { £x,§1 hy (x) du(x).
G G -

(Remember that ¢; is a real functionm).

Therefore by Corollary 7.7

~ ~ N v
B = L o) = 1im | b (0 [x,5] dnto
U~+0 Uu-+.0 Jg

almost everywhere..

-
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& 8. STRONG RESONANCE CLASS OF FUNCTIQONS

'

F. Holland [35] introduced the ;pace R(®q) (1 £ q £ =) of func-
tions resonant relative to the space ¢q fof tﬁg\real line and estab-
lished a correspondence beﬁween the elements of R(¢q) and the space
of unéounded measures Mq. \

We will define the space SR(¢q) (1 £ q £ =) of functions
strongly resonant relative to the space ¢q for locally compact abelian
gfoups, characterize SR(¢q) and R(¢q) in term; of transformable
measureﬁ, study-the relation of SR(¢q) with the set of-positive
definite functions for (Lq', El) and prove two theorems for SR(¢q)

(1< q < 2), similar to Theorems 7 and 9 of [35]., Furthermore we will
show that both representations are equivalgnt.*

From now on and for the rest of cur work {9y} will be the
summability kernel defined in §7.

First we will recall the definition of the spaces ¢ and

prove some of their already known properties [ 7,82].

DEFINITION 8.1. Let 1

L£q =, ¢q is the linear subspace of
A .
c ¢ € (Cy, 29) endowed with the norm

Klandi 1111y

Wé write ¢ for 9;.

C. of functions ¢ such that

REMARK 8.2. If ¢ ¢ Qq’ 1 £ q 2=, then it is clear that ¢!, $,

T (teB), ¥ e 6) also belong to ¢q.

107 N
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PROPOSITION 8.3. i) ¢ ¢ ¢ o ¢

q—m’l<q<w‘

'w 11) @ = C

q c for 2 <.q < w,

ii1) ¢4 is dense in Cc for 1 < q <o,

iv) (Qq) is dense in (Cy, 2%y Q1 < 5 < ™}, (LE, cy) (1 < r <=®),
and (LT, 25) tl <r,s <= for 1 <gq <.

*
v} T ¢ Qq(G) (1 < q <w) iff there exists a unique measure

uE Mqr(a) such that for all ¢ ¢ ¢q(G)

- . . - ) X h
T(¢) = [A ¢ (-%) du(x).
. ¥ G

PROOF. 1) follows from (2.5) and 1i) is a direct consequence
of the Hausdor§f~Y§ung inequality (Theorem 5.7).

By Remafk 6.3 and Lemma 6.4, D{G) is dense in CC(G) and
D(C) < &. So, by 1) @, is dense in Ce (G-

Let A be any of the amalgam spaces listed in iv). Take f € Ce-

Since {¢U} is an a.i. in Ll

(Theorem 7.2) lim ¢y*f = £ in A {Cor-

) ~ - ~ A A A A Y
ollary 4.14). But {¢U*f} = (¢q) because {¢Uf} £ C.(G), dy*f = (¢yf)
and ¢U*f £ (Co, El) (Corollary 7.4). Since C. is dense in A (Theo-
rem 3.7) this proves iv).

' *
The necessity part of v} follows from Theorem 3.2. If T € ®q

then the map T($) = T($') belongs to ( (¢q)ﬁ, e

* ~
Imq) . Since (¢q)

is dense in (Co, 2£9), T has a unique continuous extension T on

{Co, Rq). By Theorem 3.2 there exists a unique p e Mqr(G) such that

for all f ¢ (Co, &%), T(F) = I £(%) du(R). Therefore for ¢ ¢ o
. . -

1) = TG = [ 3D aw® -4
G
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DEFINITION 8.4. Let 1 < q < =. A measurable function f on Ce

is strongly resonant relative to the space ¢q if

(R-1) £ e LI(G) for all ¢ € ¢
(R-2) The linear functional ¢+ Sfd on ¢q is continuous.

That 1s, there exists a constant C such that for all ¢ ¢ Qq

The linear space of~funcions strongly resomant relative to ¢q

c el .
< Hfbl'mq

will be denoted by SR(Qq).

REMARK B8.5. If f e SR(¢q) (1 < q £ =), then by Remark 8.2, £',

£, T,f (teG), Rf (& € &), also belong to SR(%y)-

THEOREM 8.6. 1) SR(®,) € SR(®y) = SR(®) 1< q <=
i1) A measurable function f satisfies the condition (R-1)
q
iff .f £ Lloc'
q
11i) f € SR(¢q) (1 <qs= iff f e Lioe? fe MT _and

e

‘e n, (®. ‘
v) SR(¥g) € (LY, &) for 2<q S
v) fe SR(¢d) for 2<q<® iff f e My and 'Ené Mgn
wi) If FeSR(O) and £20 cthen £e (L}, i7).
PROOF. 1) follows immediately from Proposition 8.3; i).
The sufficlency part of i1) is clear. Suppose £¢ € 19(¢¢) for

all ¢ € 9. Let E € G compact and take ¢ € @ such that ¢ =1 on E

(Theorem 5.2). Since f¢ € LY and | €11 < ||£¢]] we conclude
o Li(E) L4
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that f e L .. Let f & SR(Pg), 1 < q < w. Then the map T(¢) = [Hf
(b € ¢q) belongs to ¢q*. So by Proposition 8.3, v) there exists a

unique measure | € Mq-l such that for all ¢ ¢ tbq‘

J f(x) $(x) dx = T($) = [n &(—ﬁ) du(®). -
G- _ G

Since D(G) ¢ ¥ ¢ ¢q we conclude that f E'MT and 'f = U.
Conversely, 1if f € MT and f € M.t then for b € ¢q, & £ Ll( )

q
and by [ 1, Corollary 3.11

J $(x) £(x) dx = Jr,\ $(—ﬁ) d?(ﬁj.
TG - ' G
This implies that |/ffd] < H']?[Iq,||$|[ooq for all ¢ E-¢q.
Hence f satisfies the condition (R-2). This proves iii). -
A_If f e HT and T e Mg, 1 < q' < 2, then ' £ MT- and
T = T (Theorem. 6.19). But £ =T (Remark 6.25) and £ e (L3, 2)

Therefore £ e (L9, £ ). This together with 1ii) implies iv) and v).
Now take f € SR(9), f > 0. Let g e ¢ such that g=1 on

K. Then 7,8 =1 onK, for all a e J, 1,8 € ¢ and

I|(Ta$)n||m1 = ||§||m1 for all o e J.

Since f € My we have that .

J

f(x) dx

J £ (x) |Tag(x)|2 dx.§:J E(x) |t () | 2dx
Ko Ka ¢

il

JA- (1,8) *(T8) dT®).
c .

Therefore by Theorem 4.7, for each a € J



[ te ax < T e * @ 11,
Ky
—

a - A
Tl 2 e Ny, HED 1,
— a A ~
= [17E 1] 2 ||g||m1 Hell-
This implies Qhat f e (Ll, R&).+

REMARK B.7. We deduce from Theorem 8.6 that ‘

1

i) SR($) = lec n MT .{part iii) and Remark 6.18).

ii) . If f e SR(¢q), 1 ijq < «, then there exists a unique measure

f e Mq. such that for all ¢ € ¢q .

[ £ o ax - J 30 AT @)
G ) G )

(See the proof of part iii)).
Following Holland [35, §5)] we define:

DEFINITION 8.8. A measurable function f on G is resonant
° g
relative to the space @q, l < q <=, if

o (R-1)' £ £ L1(G) for a1l ¢ e %

and f satiéfies {R-2) of Definition 8.4.

" The linear space of functions resonant relative to ¢é will

be denoted by R(¢q).

The proof of the next theorem is very similar to Theorem 8.6

and it will be omitted.
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5 THEOREM 8.9. 1) R(2,) ¢ R(¥y) < R(&) for 1 < q <
ii) A measurable function f satisfies the condition (é—l)“

iff £ erl . ]

loe .
v 3 l .
iii) feR(®q), 1 Sq < iff fel ., feM and
?EMqr. .
[e ]
iv) R(%g) < (L9, ) for *2 < q < =, -

. . R — -
v) f E_R(¢q), 2 <gq ; =, iff £ g MT and f ¢ ﬁq'f -

‘We conclude easily from Theorem 8.6 and Théorem 8.9 that .
R($) = SR(¢), R(¢q) = SR(¢q), 2 <-q < =, SR(¢q) E“R(¢q), 1 < g < 2, and .

_ q
SR(qu) = R((bq) n L

loc’ L<aq<2

is equiv-~

~ L]

We do not know if strong resonant relative to ¢q

¥ .
alent to resonant relative to -¢q for 1 < q°< =, In this direccion

we have a partial result (see Remark 8.21).

- .

We modify ‘Holland's, definition because by imposing  the condi-

I3

q

ti0n gB—l) we have thgt SR(¢q) < LlOC

for all .1 < q < 2, and this
allow us to endow ”SR(¢q).with‘a loemlly convex topology with r%specﬁ
Lo Ghich‘the linear space spanned by the set of pos;tiye defiq}te
functions for (Lq', ll) is dense in SR(¢q). Aiso we see that Theofem 3
and Theorem 7 of [ 35] fﬁr R(¢q), 1 < q <2 are valid for SR(¢q),
1< q <2,
Observe that vi} of iheérem 8.6 isla éeneralization of (35,

Theorem B.i)]. . -

_ THE next theorem was proved feor the rea} line by Holland £35,

Theorem 6] and for locally compact abelian groups by Stewart [49, Theo-

rem 4.4].
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THEOREM 8.10. Let 2 < q <. ¢ ¢ skccbq)' Lff there exists a

~

'uniqug measufe ‘U B ch(ﬁ) such that _fv='u.f

PROOF. The necessity ﬁartffollgws from the proof of Theo-
rem 8.6 ;v).'Suppose_ f=-u, ue Mér: Then £.¢ MT bECausé-Mqr < cl(&)
(Remérk_6.255. Since a E (Lq, ¥y e M, f ?.Mm:n M-

—

So by Thedrem 6.23 and Tﬁeorém"ﬁ.Zl; £.

Ly

]
[ o ]
Ir

fore f ¢ SR(¢q) (Theo}?m-8.6 v))lT_- ] L :

- . - . L

REMARK 8.11. It follows from [ 1, Theorem 3.3] that for A
£ eSR(Q), 1 q™= - .-

-

1) If ¢ € Ll(G), ¢ is convolvable with f and $\£ PL(??)
‘then for locally. almost all x € G S

* £ (x) = j E(y) o(y - x) dy = J 3R [x,314T @ .
= 'G " * - G -~ o T e . v

ii) For any u € G such that the integral on tﬁd léfg_ista
continuous function of x in the néighborﬁood df'u,.the formﬁlavin i)
fs valid for x =.u. Under this hypothesis-for u = 0

[ £(y) ¢(~y) dy = J PR AT,
lc i ‘ el -,

DEFINITION 8.12. Let F be a set of complex-valued functioné.r

-

A complex valued function f is positive definite for F if the in-

-

tegral

J j E(x - y) ¢(x).3(y) dx dy

o

L

exists as a Lebesgue integral over the product set GXG and . noﬁnega-
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tive for aT® ¢ v T,
P(F) will denote the set of positive definite functions for F.

We list in the following remark the properties and results

about positive definite functions we will need to prove Theorem 8.20.

’

REMARK 8.13. 1) It is clear that if F, ¢ F, then P(F,) c P(F,).

1) PB) e 1P and PCP, by = PP, 2, 1< p < =,
f loc . S

where P = { ﬁ | MeM, u>01} (17, 56 Theorem II1].

11i) If £ e P(C.) then £ ¢ My and E > 0 [ 1, Theorem 4.1].

iv) By 1) of Remark 8.7 and iii), P(CC) c SR(d).

~ DEFINITION 8.14. For E c G compact we define the seminorm

PE on SR(8), L < q < =, by pg(f) = |]£]] and endow SR(¥,)
) - ' ‘ LA(E)s

with the loéally convex tppology.generated by the family

{ pg | E< G compact }.

1

1
o We want to prove that < P(L%, &%) », 1 < q < 2, the linear

‘ T )
space spanned by P9 ,-21), is dense in SR($_). For that we need to
3P q

'
y o

introduce the concept of summability function of type I and establish

some results. - -

DEFINITION 8.15. éiveﬁ U e Ny(G) compact, let Y, be a func-
tion with the following properties. '
(8.1) wU ié continuoug with supporg_ U
(8.2 yy >0 and -J Py = 1

(8.3) $U' 0 and .@U E“Ll(a)

[i v
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Then Yy will be called a summability function of type 1 on

N

DEFINITION 8.16. If U ¢ NO(G), let V o NO(C) compact such
a

that V - V< U and V = v, = Vo, where V, « R and V, ¢ Gp.

For i = 1, 2 let Bi be a positive L2 function having support
in V; and integral equal to 1.°

Set BU(s,t) = B1(s)B,(t) and Wy = Py*Py- Then _@u_-i? a
summability function of type I on G. Morcover
8.4y  {yy) c o
8.5 [fwgll, =1

Indeed, BU £ L2 and therefore BU o (LZ, 21).'Hencg“by Theo-

- C "':— o a )

rem 5.4 ,BU £ {Cos 22). This implies that by = aUBU"belongs to -
{Cq, 1) (Proposition 4.1). _
Since ||¢U|Lm = ||¢1U||1 we have by (8.2) that ||lpU|[m < 1.

For a proof of the next theorem see [50, II §2 Theorem 4].

- < -

THEOREM 8.17. Any summability“ke?;el {wy} of type I has che
- .

following properties: !

(8.6)  Lin ||y - £}, = 0 for any f cdPC), L <p <
vro U P v

'

(8.7) ¥y converges pointwise to l on G as U ~» 0 ™~ '

Hereafter and throughout the whole work {y;} ,will be the

.

summability kernel of type I as defined in Definition 8.16.



PROPOSITION 8.18. 1f f & Li and there exists a measure
oc-

Mok yq,(&) (1 < g < =) such that

[~
£x) = lim | yy(R) [x,%1 du(®)
U-+0 IG

where the limit exists in L4 over any compact subget-of G, then

—1

£ v SR(@q) and £ = pu. :

PROOF. Let ¢ ¢ @, E = supp ¢. Set Fy(x) = J by () (%] du(®).

T
Since Fy converges to f in LI9(E) and ¢ € LY (E)

£(x) 6(x) .dx = lim J Fy(x) $(x) dx
G u-+0-c :

Iy
&

= i [ [ B®) D081 a® 060 ax
Uu-+01J6G G

+

[}
[
=
g
o
“-_ﬁ
()

- f
Uy (%) J o(x) [x,8] dx dp(R)
. G

by R) $(-2) du(®)

n

J 3(=x) ducR).

'The last equality follows from the Lebesgue Dbmingted ConQer——
‘gence Theorem. Remeerr that %'é Ll(u), ||@U||oo <1 and @U(g) + 1
as U >0 ((8.5), (8.7)). | | |
Since ¢ is arbitrary, this iﬁplieé that f € My and o= .

Therefore by Theorem 8.6 1ii) £ E'SR(¢q).+

The next proposition is the converse of Proposition 8.18.

Y,
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PROPOSITION 8.19. Lf € ¢ SR(@q), 1 ~ q < «, then

£(x) = lim J Bu(®) 1x,81 dT(&)
u»-0-aG

- where the limit exises in LY over any compact subset ot G.
PROOF. Since {wU} © o oc ¢q by (B.4) we have by Remark 8.7 ii) -

that

PR (5,21 dTQ).

’ f
Exly (x) = [G )y =y dy = |y

G
By Theorem 8.17, {8.6), f*wU converges to f in LY over any

compact subset of G because f ¢ L4 i ) -

. loc

If u is a real-valued measure in Mq (1< q <) then

u o= u+ -y where u+ = sup ( 0,u )& uh = sup ( O0,-u ). Hence

W< ful, < |y} ,and eherefore u*, 117 belong to Mq. Also

-

then p = yy + iy, where

© Mg and lu] = |inf + Py

1 1 -

t 1
Pt 2hy, <P, &'y >, is dense in SR(%)\

ci1) < P2, ely > = srey) .
1i4) SR(8.) = < Pd’, 21y > for 2 < q < .

PROOF. By Remark 8.13 i) and iv) P(L , %) ¢ P(C.) € SR($).

1

'
Let £ e P(LY, 2°), 1 < q < 2. Again by Remark 8.13 ii) and

~

141) £ e (LI, &), fe My and E- > 0.



. ) _ .
Let g o CC(G) such that g I on K and g (Cyq, El). Set

h = é*é . Since é £ (Cq, 21), h £ (C,, ﬂl) and h = BE = 'g|2. There-

~

fore h >0, heC. and h 1 on &. s0 for ¥ . G, and ?1# as

defined in Theorem 1.21.

—_—
o
+
rohs
e
i
b

< JA 3h(8) dT ().
G

1

Now, h £ L%, h is 'convolvable with 'f and h ¢ Ll(??), {re-—

member that £ & M,) and f*h is continuous on G. Indeed, note that
¥

for %, s in G

A

( -
| £%h(x) - E*h(s)] J FEW ] [blx - v) - his - y)| dy

T

[1£]1

g ||Txh' - Tsh'!lq'l

LA

||f||Qm ||Tx}‘I| - Tsh'||m1

.and the function xt— Txh' is continuous on G (Theorem 3.14).

By Remark 8.11 we have that

[ % G(g) drfkg) =J f{x) h'(x) [-x,8] dx = (fh')A(Q).

N

Since f & (Lq, Rm), h' € (Cq, Rl), fh' ¢ (L9, 21) c Lq, s0

~

(fh'") ¢ th and this implies.that

'?1# e L. By Theorem 1.21 we

conclude that E'-€ M 1. By Theorem 8.6 iii), f ¢ SR(%,) and therefore

'—
<P, 2y 5 ¢ SR(¢) for 1 <q< 2.

Now, take f ¢ SR(¢q), 1 < g <™, Thep F e Mqt and by our

118
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previous comment o= My = W, t iy - 1.y where hi e and
) q

~

by 0,1 = L,.o.,4. IE 2 < g <« then f = o= ho- ﬁ: + i(hs - 31,0
(see the proof of Theorem 8.6 iii)). Since My o :P n (LY, Rm),

i =1,..,4 we conclude by Remark 8.13 that £ i < P(Lq', by - and
thislprOVeshii) and iii).

Assume 1 < gq < 2, and set
-~ i -~ ~ ~ ~ >
Fy (x) = 6 ¢U(x) [x,%) dui(x) i=1,..,4.

. ' '
We will show that Fy' ¢ P(LY ,21) and this will imply that

\ .
Fy(x) = J‘ Pu(xX) [x,%} d f (X) belongs to < Pl . 21) > since
G - .

Fy = FU1 - FUZ + i(FU3 - FU“). Hence by Proposition B.19 we conclude

that £ e < P, b

\¥4
.

Let ¢ E (Lq', Rl). Since |FU;(x)| S'I[ui||q'||$U|lmq for all
x £ G, FUi K Loc and we can apply Fubini's theorem because
¢*$ £ (Lq', 21) ot Ll, 50 -
¢

F i(x) d)*c;(x) dx = J J“ LTJU(;C) [x,%] du, (%) QJ*E,(,{) dx
g U G ’C '

=JA Iy ) J *d(x) [%,8] dx duj (R)
G G-

- [ 8@ 130 @,
G

By (8.3) we hhve that

J [ FUi(x - y) ¢(x) &(y) dx dy = J FUi(x) ¢*$(x) dx
J .

. 1
is nonnegative and therefore FUi e P9 ; 21). +
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E

REMARK 8.21. We sce from the proof of Theorem 8.20 that
1

cpat, 2h s erep, 1 e a2,

[e3]

Since < P(L9', 2}y > < (9, ), 1 < q < 2, (Remark 8.13) we

have that R(¢q), 1 < q < 2, contains a linear subspace of (LY, QW).

THEOREM 8.22. SR(%_) is dense in SR(¢q1, 1 < g < =, Hence

SR(¢q) is dense in SR(%,), 1 '

”

s < q < .

S

PROOF. Let £ € SR(¥q). Set Fy(x) = S R [x,R) AR,
Since f € My and {¢U} < ¢ by (8.4) we have by Remark 8.7 ii) that

WIREGY = [ E(y) U (y - x) dy = [ 9y®) Lx,&) dFGE) = Fy(x).
: U U U ,

' 1 I . _
Yy'*f belongs to L° because f ¢ L oc and . {wU} < C., 80 by Theo
rem 6.19 wu';f E‘MT and

-— IS - ~ ~ ~
(wU'*f) = (wU'*f) = (wu'}_ (EXU) . Since (fyxy) € C, and oo

Wy € (Co, 21,7 (Uy'*6)" & M_. Therefore yy'*f belongs to SR(%,)
(Theorem 8.6 v)). This implies by Proposition 8.19 that SR(%_ ) is
dense 1n SR(Qq). .

Finally by Theorem 8.6 i) we conclude that'SR(¢q) ié dense in

SR(¢g) if I <5 < q < =y

The next two thecrems are generalizations of Theorems 3 and 7

of [35].

THEOREM 8.23. If £ ¢ SR(¢q), 1 < q < =, then

[ 260 800 ax = [ e aT@
G G

1

for all ¢ ¢ L: such that @ e (Co, 2%).



Hencoe

’J £ p(x) dx| < [TTI 14
G q g

PROOF. If ¢ € Lg and ¢ ¢ (C,, 29) thén 4 € Lh, o s
- Rl

. - ~ 1 —
convolvable with f and ¢ ¢ L {f). This means that ¢ satisfies 1)
of Remark 8.11.

Let V, & NO(G) compacf, s« V, and E = supp ¢.

Case 1) 1 < g < =,

1

Since ¢ & Lq , the map xl——~"lx¢' is continuous on G (Theo-,
C -

rem 3.14). So given ¢ » 0 there exists V2 € NO(G) such that for all

x £ V2
. o 1 <
| Ty 140 Hq‘ EllleVmEl'q'
Then -for x ¢ V, NV, we have by the Holder inequality that
| £ (%) - E*¢(s) | <[ £ ] oG = y) = ¢(s = y)| dy ‘
= [ £y | 1e" &y = x) = ¢'(y = )| dy
JV E .
1
,é.llfxvlma||q [ryp' —rsotllge < e
Therefore f*¢ 1s continuous at s.
Case 2} q = 1.
Similarly to case 1), the map x+F— Tx(fxv mE)| is contin-
' 1
uous on G. So given « » 0 there exists V, ¢ NO(G) "such that for all
x eV
: 2

||Tx(fXV1mE)‘ - Ts(fXVImE)"ll < €/||¢||m-

Then for x € vln V2

~r
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|£%¢(x) - £%¢(s)|

A

,J e | [Ex - y) - £(s - )| dy
E
-

I~

JG o 1£xy g = DXy pls - 9 dy

A

= |I¢||0:) ||Tx(fXV1%E)I - TS(EXVI'\;E)T||1 < €.

Again f*$ 1s continuous at s.

‘Applying Remark 8.11 we conclude that

T e o0 ax = -9 dE &) .4
1G , IG ’

THEOREM 8.24. Let ‘1< q < 2. If £ € SR(§q) then
Q m
(c.1) J h(x) £(x) dx = J“ h(-8) dFR)
G G
for all h e (Cy, 29)(G).

*

2
Furthermore 1f p = SLL then
2g - 1

J J £(x - y) o(x) ¥(y) dx dy = J PR PR dTR) -

for all ¢, ¥ € (pr”zl). The double integral .exists not necessarily as. a

Lebesgue integral but as the.limit of theﬁintegral

o

where V,, VB are finite unions of the sets Ka {a e J).

I- £(x - y) ¢(x) V() dx dy over o, B
Vg ¢

That is, as the sum of the absolutely convergent series
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): Z J J f{x - y) ¢+(x) TJ)_(_y_j_ dx dy.
Vv Vv

2y (Remark 5.8).

~ [}
PROOF. 1f h ¢ (Cg, 29)(C) cthen f o (LY, 3
Si { }Cé (T 7.2y oo LY I h*y M)~ So b
sorem 7. ( an VE, = . So
ince ch . heore ‘bU L ¢ d U upu y
Thtorem 8.23
v v ) —
¢ (x) h{x) £(x) dx = J‘” hxgy (-%) d £ (%)
ic Y G

Since £ € M_, and lim ||h*¢y - h||_ =0 (Theorem 7.2
q U 0 vq

and Ggrollary 4.14), the integral on the right converges to

Sh(-%) d£(%). Therefore

. ) -

. v . '-.»- —
{C.1) [ hi{x) £(x) dx = JA h{-x) d £ (%)

g G -
P oy __2q
Let ¢, y e L,. Since p =—— and 1 < q < 2 we have that
. 2q - 1
l_29-1 | - 1 . Since 1, 1. 1, this implies that
P 2q 2q 4L 2q - 2 .
1 . 1 1 l . 3, therefore 1 < p < 2. If ¢ € LP  then
= = = =< = c
2 2qg p 4

L]
b £ (Cy, 2P ), because ¢ € (Lp, S?,l). Hence by Proposition 4.1

(@*ap)A =$|;TJ belonge to (Cy, L9) because 1 1

:l—(i_.___:..._._’

1
p' 2q 2q

that is, p' = 2q. So by Thecorem 8.23

(L) J J flx - v) ¢(x) U(y) dxdy J( F(x) d*P(x) dx

= [ bR B dTR). :
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Set  B(p,u) = [ J E(x = y) o(x) w(y) dxdy (v LS).

By the Hausdorff-Young inequality (Theorem 5.7) we have that

for all ¢, y & LD

B(d,u < F ' AT N T ' ‘A f 1
ool ST R, < P16

1, |
ST e, ol el

where Cp is a constant depending on p and a.

1
If he (LP, 29 then\ks‘can write b = z h, where h, = h Lu
_— o

@e . so [lnl] ) = E [hgl],. Then for ¢, ¢ e (P, &b

IBlog, v | 2 €, ll'?flq,l!¢8||plllwa!lp1-

So the double series . X B(¢B,wa) 1s absolutedly convergent.
o,
. That is, the left side of (1) exists as the sum of the absolutely

convergent series

Ba'Kg K,

Moreover since h =,z b, 1is uniformly convergent and z h,,
. a T ~ o -
converges in the norm of (C,, P Y to h _we have that

) [ [ £ - y).0(x) U(y) dxdy.
a .

) J b () Pplx) 4TG0 = J b IR dTR).
a B

This ends the proof.+



THEOREM 8.25. Let 1 < q < 2. The fo_lluwing‘ statments are
equivalent:
i? fe SR(Qq)
ii) f e L%oc "and there exists a unique measure F' in Mq' such that
for all b, Ve (Lp, Ql) where p = 2q/(2q - 1) the integral

J J E(x = y) ¢(x) Y{y) dxdy =.J 3 (%) ;TJ(:?) d 7§ (R)

existss in the sense of the Theorem 8.24.

q

| e 8
iii) f ¢ Lloc and there exists a unique measure £ g Mq' such that

£(x) = lin J&U(ﬁ) [x,%] dF(R)
U0
where the limit exists in Lq_ovef any compact subset of G.
PROQF. i) implies ii) follows from Theorem $.22.
iii) implies 1) is Proposition 8.18. It remains to prove that
ii) implies iii).
Yy = Bu*éU’ By € Li '(Definition 8.16). So by ii) there

exists a unique £’ € Mq, sﬁch‘that for all t ¢ G
I’ [ R — . f ~ = -,
L EGy) TeByG) Byly) dxdy.= | GreBp) R By(R) 4T
Now, the left side of this equality is equal to

[ fi(x) BU*éU(t - %) dx = f £(x) wu(t - x) dx = f*wu(t)
J . - - ) .
and the right side 1s equal to

J[ By By®) [6,8) £ Q) - [ by 6,81 dTR).
| ! :



126

Since W *f converges to f  in the sense of the part ii) we
U I

conclude that ii) implies fii) .4

Compare Theorem 8.25 with [51, Theorem 4.1 and Theorem 4.2].



CHAPTER IV

GENERALIZATIONS OF FOURNIER'S THEQREMS ON LOCAL

COMPLEMENTS TO THE HAUSDORFF-YOUNG THEOREM

§ 9, THE CASE WHERE G IS NOT DISCRETE

~

For a subset E of G, the Fourier transform of a function f

restricted to E will be denoted by fIE.

>

(Lp, 29y will be the set of Fourier transforms of functions
in (Lp, lq)ﬁ and (Lp, Rq)A|E will be the set of functions in (Lp, Lq)A
restricted to E. -

We will keep this notation f{or the rest of our work.

J. Fournier [22, Theorem 1] proved the following theorem.

THEOREM 9.1. If & is nondiscrete and E < G is not locally
null then for l1<pg2

Plee v Llm.
a>p’

Here we Shal} see, that under the same conditions

' -] ~ o
(- ) @, lEd uoald, 2)mE.
: q>p'
If G is neither compact nor discrete.then'(l) extends Theo-
Py

rem 9.1 because (Lm, L and LY are proper subspaces of P and

(Lq, &m) (1L £p, q% @) respectively .(Theorem 2.4).

- 127
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A ' LS : .
THEQREM 9.2. If G -is nondiscrete and E < G is not locally null,

then for 1 < p < 2
L, 2P [e¢ v, 2w, |
q-p’ :
PROOF. Since E is not locally null, it contains a subset of

positive measure. By the inner pegularity of the Haar measure this sub-

set contains a compact set of positive measure. Therefore it is enough
‘ : : )

to prove the theorem for compact sets E of positive measure.
In this case (LY, ) (E) is equal to Lq(E), but it will be con-
venient. for our proof to consider (L4, 27)(E).

Suppose that .

. (Lm, Py 1E < e, 2 m for some a e (p',®).

11
[
Q
=
=

Take f e LP(G) and let ¢ ;.CC(E) such thHat ¢ =
and 9 ¢ (LP', 219(G) (Theorem 5.2). By (2.6) (LB', 2!y < t!, so the
Fourier transform .E of ¥ {s equal to ¢ [37, 31.44 b)].

Applying Theorem 4.7, we have that f*$ e (L%, PY(q). fhe;e-
fore by our assumption (f*¢)A|E o (Lq, Rw)(E), hence E|E e LY(E)

(see above). Since f is arbitrary, we conclude that LP |E c LY(E).
. )

This contradicts Theorem 9.1. Therefore

\

@ a®, ™ Ed @, 8B for all p' < q < .

T

For p' < q < ®», define the function F on (L”, %P) by

3

(3) F(£) = || §|E||ém.

By (2) F takes the infinite value.
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Clearly F(uf) = oF(f) for alL/;onnegativc real w-and fer all
£, g e (L7, 2Py, F(f - g) < F(E)\4fffg). These propertie§-of-F imply

that for all real o, the set V, = {f ¢ (L7, 2P)y| F(£) > u} is dense in-

© - e
(L", tP). Indeed, suppose that vV, 1is not dense for some real-«., Thén
« %0 since Vq= (L7, %)~ {0}
Take g € (L%, PR V;. Then - there exists € > 0 such that for
all Llf||mp <g, E+g4 V. That is T
(4) F(f +g) <a  for all [|f|l, < €. ' o
. = =P = _ -
—— - N w N —_ . .
Let £ be a function in (L , 2P) such that F(f) = «=. Then
|IE1|m? >0 and f = (€/|]f1|ﬁp)?' belongs to (L7,  2P). Since W
: : ¥
Hf||<,c,p =g and f = £+ g - g we have by (4) that
(/||| lwp)F(E) = F(E) S F(E + ) + Flg) S ot = 20
This contradiction'shows that Va is dense in (Lm, Py for .-
all o. ' o .
. _ . N
Moreover F is lower semicontinucus. Indeed, let
, ) ) )
Us={ge @?, b ||g||qu < 1} and define for each g€ w?, 5
the function Fg on (L ,JRP) by
- T
fé(f) F\k‘.
Sirice (Lm, 2Py C.LP by/(2.6) and p < 2, the Fourier transform . -

s

- 4 - .
f of £ belongs to LP. . Then for g e U, g|E ¢ LP. So, by the

" r
Hausdorff-Young inequality we have that -

[RIeIL, alel s 11E el s Vel sl

F, (f)
< ellap el

WA
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where the last inequality is due to (2.4) and (2.3). Therefore Fg is
continuous for all g v U.

We want to prove next that
(3) F = sup {Fg| g = U},

. First we note that (LP, 21) c (Lq', 21) as p » q'. Since
(LP, El) is dense in (qu, Ql) (Corollary 3.8; U is dense in the
unit ball B of (Lq', Rl) and theréfore

sup {Fgl g £ Ul = sup {Fgl g L'Bf.

By the converse of the Holder inequality (as in [36, 191 p.142]
| 1/q

with G =1, k' =.q', k = g, F = sup {Fg| g ¢ B}) we have that for
all B |
4 g 1/q
[ |£]E| < sup {Fg(f)| g ¢ B}.
JL T
8 .
[ A
- This implies that _|]f|E||q7§ sup {Fg(f)l g e U},
Now, if ||f|13||qoo < @, that is E]E £ (Lq, 2°Y(E),, then for

all ge U -

< HRE gl T8l g, < 1Bl g -

F(f)=H g
& L

~ Therefore Fg(f) < ||E|E]|q®‘ Hence (5) holds and this implies

that F is lower semicontinuous.

o

By.§3}re's theorem {f & (L%, &P)| F(f) = =} = U V, 1s a set
: — . N
of type Gg- -

.Now, -choose a strictly decreasing sequence {qn} converging to

”

. Again_ by Baire's theorem (as in [43, Corollary of Theorem 5.6])

P

» the set {f e (Lm, 2P | |]§|ELLqﬁm = @ for all n € N} is.a dense Gg set

-

T
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¢

because 1s equal to 3 {fF L, 20y 1[E|E\iqnw = w}, Therefore
nonempty.

Take E in this set. Since (L7, 2) < (L}, 29) (see (2.6)) we
have by Theorem 5.7 that ElE €. (Lq', LY (E). If also E|E £ (Lq, £y
then by (2.6), E|E £ (Egn, 2°Y(E) for all sufficiently large n and

this contradicts the choice of f. Therefore EIE e (L9, 1) for all

q > p and this ends the proof..

COROLLARY 9.3. If G is nondisdrete and 1l < p <2 rthen

: o>, P & U 1, 250,
q>p’ .

»

W. Bloom provid [ 3, Theorem 1] the following theorem.

THEOREM 9.4. If @ 1s a nonempty open subset of G and G is

noncompact, then for 1 < p < q < » there exists f ¢ (L%, L9 (G)

VY A
such that f - g does not vanish on Q for all g ¢ (Ll, 2Py (G).

In other wdrds, ﬁhe 16ca£ inclusion (Ll, RP)A c (Lw, %q)A is
striét. |
For the.particular case 1 < q < 2, Theorem 9.2 proves Theo-
rem 9.4. Indeed, ff 1 < p < q < 2,‘6 is noncompact and {1 is a nonempty
open set of G, then G is nondiscrete and @ is-not locally null. So,

Theorem 9.2 with p = g and q = r says that

w”, eHY]ad v @f, W), That is, there exists £ e (L, 29),
: . r>q' : . .

such that ¥|Q ¢ (LY, £2)(Q) for all r > qQ'. So, for g € (Ll, LM (®),

v N pr o v v
g e (LY , 2)(G) (Theorem 5.7) and therefore f - g does not vanish

-

" on {2 since p' > q'.



§ 10. THE CASE WHERE G IS5 NONCOMPACT

Theorem 2, b) of [22] is as follows.

THEOREM 10.1. If G is noncompact and Ll < p i 2 then

¢ v L.
. a<p’

We will generalize this result b§ proving the next theorem.

THEQOREM 10.2. If G, is ndncombact and 1 < p <2 then

j af, hh e vl .
. q<p’

Theorem 10.2 indédd extends Theorem 10.1 if G is neither:

1

compact for discrete, because (Lp, 11) and Lq are proper subspdces-
1 . )

of L and (L7, 29) respectively (Theorem 2.4) for 1 <py g5

In order to prove Theorem 10.2 we need the following two results

4

which appeared in [7, p. 194 and Theorem IV].

PROPOSITION 10.3. Let ¢ = {¢ € Ccl $ e (Cy, Rl)} endowed with

the norm ¢ — |l ¢ |Ipq y 1 £p, q <> If-TE€ $* then there exists

T 1 A
a unique function h in (Lp , 24 Y(G) such that for all $ e ¢

) ),(/1"7\(‘13) = J,\ ;(—-'fc) h(X) d% .
v . 7 G

-

- .
PROQF. We p;oceed as in Proposition 8.3. If T € ¢* then the g

-
~

| )*. Since ¢ 1§/aénse in
Pq -

(Lp, kq)(G) {(Proposition 8.3, iﬁ)) there exists a unique continuous

map T(a) = T{¢') belongs to (¢A, |

extension T on (Lp, IASH By Theorem 3.1 there exists a unique h in
)

P 29')(3) such that for all £ in (P, 29 (@); T(E) = SERNK)AR.

.
4.

132
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So for all ¢ ¢ ¢ we have that

s .

T(4) = T(3') = [ B(-%) h(R) d8

PROPOSITION 10.4. Let u € M. Lf there exists a constant C

S

such that for all-¢ e ¢

Pf pGx) dutx) | < cl|s]! (1< p,q < ®)

G i Pq p

then 1 e @', 2%y,
égggg. Set T(¢) = fp(x)du(x). Then T € $*, ¢ as in Propo-
sition 10;3. So by our previous result there exists a unique h in
(LP', 297) () such that T(¢) = [H(x)du(x) = So(-RIh(R)dR. This implies
that p € MT and W= h (Definition 6.1). By Theorem 6.23 we conclude

/ 1
that {i = and therefore B ¢ (Lp', g9 )'f

PROOF OF THEOREM 10.2. We consider two cases.

.

Case 1) p = 2. Let E be a compact subset of G of positive measure with

interior Q:’and .ig}q < 2. Since G s noncompact and  is nonempty,

. ~ v v
therg}exists f in (L%, 22)(G) such that £ - g does not_vanish on @ for

a1l g ¢ (L}, 2% (@) (Theorem 9.4):
v o p2)
Let ¢ € CC(G) such that \$EL on E. Now £ e- L. .as £ € (L ,%,)

and (L%, 22) C,LZ. Since ¢ £ (Lw, 12) we have by Proposition 4.l that

Voo . v
£ e @2, the. so fo e Ll by (2.7). This fmplies ngt the
v Y
inverse of the Fourier transform of (£¢)” is equal to f¢. Therefore

v - v v

(£4)° ¢ (Ll, ﬁq)(G) because f - f¢ does vanish on {i. S0, there exists
‘ v 2 1 Yoo . ..l g

a function f¢ € (L%, £7)(G) such that (£¢) ¢ {(L”, £)(G). This means

Lc
that
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(1) _(L2, 21)(G)A ¢ (Ll, lq)(a) for all 1 < q « 2,

Furthermore, we note that (¥¢)A[E 4 (Ll' 29y (E). Therefore
(2) . w?, eHa” ¢ (LY, 19 E) for all gq < 2
?nd compact E of positive measure.

- Case 2) ﬁ < 2. We want to prove that

(3) P, hT d @l 1 @6 for all 1< q<p'.

If 1 < q< 2, we know.by (1) that (3) holds, because p < 2 and
this implies that (Lz; ey < (LP, Rl). So we will consider the case
when 2 < q < p'.~Suppose not, that is, (LP, Rl)h c (Ll, QQ)(E) for some

2 < q < P'.By the Closed Graph Theorem (as in [32, Corollary p. 70])the

map T: (LP, 21) = (L1, 29)(G) given by T(f) = f is bounded. Indeed,
lep {fn} be a sequence in {LP, Rl) such that’ f, = 0. Then

lim ||f = 0.,

allpy
Assume En - g.in (Ll, lq)(é) and take ¢.£ C., since
$ & (L7, 29y n (!, 2P) we have that |< g, >| = Lim |< £ ¢ >
(remember that (L, quj = (LI; 2q3*)- |

But by Theorem 3.1
< Fast ol = 17 By@omar] < gl 1ol

30, by the Hausdorff-Young inequality for émalgams

o

fl

|< g6 > = lim [< £5,6 >| < lim HEallap oty

[Hel1,, ¢, am el = o.

PN

We conclude that < g,¢ > = 0 for all $ € Cc. Since any g in

' ok

1, lq) can be considered as an element of Mq, (Co’ 29 )y = Mq,.and CC

(L
T
is dense in (Cq, 24 ), we conclude that < g,f > = 0 for all f in

L] . * .
(Cyp, 24 y.and this 4mplies that g = Q. Hence T is continuous.
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Let g ¢ (L%, 19 )(8) and 4 € ¢(C). Then
gt 2| = [fe(ReR)IAR] = Ifgc?c)gcsz)d:?i‘= | 78 (R)T($) (R)ak |
el g 11311y 5 el g 11T 11011,

By Proposition 10.4, E £ (Lpl, Qw)(G). This implies that
", 9@ Ye P, M ©).

(We have given an alternative proof of this last inclusion
based on ideas of Fournier [ 22, p. 269lin Remark‘lO.S).

Now, 8 noncompact implies G nohdi;crete and bf Corollary 9.3,
=, 19" € @WP', 2@ bécause q' €2 and p" > q = (q')'. This
co;:;hdiction shows (3).

From cases l) and 2) we conclude that for 1< P <2
(4) @P, the) " ¢ wl, 29y @) for all 1< q < p'.

For'q E [1,p') definé the fuﬁcti&h F-on (Lp, 21)(G) by

. F(I) = || & ||1q- ) ‘ . ‘

By (4) F takes the infinite value, F(a{;—:\;F(f) for all

nonnegativerpea1 u and all £,g € (Lp, 21), F(f - g) < F(f) + F(g).
.Similarly tec Theorem 9.2 these properties of F imbly that the
set Va = {f ¢ (Lp, il)| F{f) > a} is dense in (Lp, 21) for all real a.

Also, F is lower semicontinuous. Indeed, for a finite subset E

of J, define the function FE on (Lp, 21) by -
o P = 1 [LE ]S
A . E a e E o 1

e
£

where fOl = fXLa
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Since l| £ ||q = E || Ed |IT we have that lim FE1= Fd.
Note that {FE} {s an increasing net of functions and hence
F = sup {FE| E < J finitel.
- l < d < p' 1implies that Lp‘(LQ) c Lq(La) for qll a, so by the
Hausdorff-Young inequality, we have that for all a

°d P $114 q
(NIRRT THINERIHIEERTHIRS

-
A

Therefore F_(f) < |E| ||f||§1 where [E| is the cardinality, of .

E. This shows that each FE‘ is continuous and we concl@de that FI is

lower semicontinuous, so 1s F. Hence, the set

(e (1P, 2y F(E) ==} = n{f e (P, 2')] F(E) > n} is 4 dense set of

"IN
type Gg. If {qu} is a strictly increasing sequence converging to p',

then by Baire's theorem the set {f € (Lp, Q1)| ||E||lq = « for all n}
) . - - , n

is a dense set of type Gg. Henge it is nonempty. Take £ in this set; let

q £ {1, p'). Since f.E (LP, Ql), fe (CO, 2?)  (Theorem 5.4), 1if also

. ~ 1 ~
e L, 2% then by 2.5) fe ', 29 for all sufficiently large

>

=]

and this contradicts the choice of f. Therefore £ ¢ (Ll, zq)(é) for

;all 1 < q < p' and this proves the theorem.

REMARK 10.5. Let 1 <p <2, 2 <gq < p'. If the map

_— X }
~ . L} ~

+ (Ll, Eq)(G) defined by,?Tf = f is continuous then

T @wP, b
w”, 29 e @l 5.
Indeed, 1f T is continuous then its Ehal map
T*: (Lm, lq')-——+ (Lp', Rw) is also continuous [44, Theorem 4.101. Let

g € LZ(G) with support E. Hence g © LP(E) and by Theorem 3.1 we have

that for £ e P, 21)(@)
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. ‘

F(R) (R) di.

~

@ - |
G

e
1 ,
Since f ¢ L by (2.7) we apply the Parseval's identity (as in

-

(37 , 31.48 a)]) and we get .-

T G (£) = f £(x) 8(x) dx.
¢

3
|

\\ * = ~ A, . Sk N .
Hence T (g) = g. Since T is linear 1 (g))k 2. So for all g in

1L7(G) [~ S

c

o
(5) gt < [T r™ 0] | el

o ! i 73} o '

Let- g ¢ (L%, 29)(C). Since LY is dense in (L, 27 ) (Theo-
rem 3.6) there. exists a sequence {gn} in L: suth that lim B, = 8 in

t .
(Lm, 4 Y. Since gq' < 2 and (Lm, Eqr) < (Ll, 29y, we have by the

! G . - , Y.
Hausdorff-Younyg inequality for amalgams that lim ITin - g||qm = 0.
r
Now, by (5) {gn} is a Cauchy sequence in (Lq s Rw). Therefore

t v .
there exists h E (Lp , Em) such that 1lim ||gn - h|fp,

v [ed] v
plies that lim 8y = h in (L%, 2) by (2.4), as p' > q. Hence h = g and

= 0. This im-

@ ' '
we conclude that (L, 2 )V c (LP, im), since g is arbitrary.t

COROLLARY 10.6. If E © G is not locally null, G-is not compact

and 1 < p < 2 cthen

-

af, tHmr e uoal, HE

(6)
j 9P’ \
PROOF. As in Theorem 9.2 it is enough to prove the corollary for
y(g ‘
compact sets of pasitive measure. .
e [»

By (2) of the case 1) of Tﬁeorem 10.2.
P, ehe ¢ @l 29 for all g < 2.
Using the same argument as in the case 2)_of the proof of

S
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Theorem 10.2 and Theorem 9.2 we have that *
1 - 1 - g
WP, 2@ & @, 29 for all 2 < q < p'.

1 ~
Again the function F on (LP, 2 )(E) defined by F(f) = ||f||lq

is lower semicontinuous and by a Baire's categorical argument we
L g g

conclude (6).+

¥
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511, E IS NEITHER COMPACT NOR DISCRETE

Finally we will generalize the following theorem {22, Theo-

rem 2, c)].

~

THEOREM 11.1. If G 1is neither compact nor discrete and

I < p <2 then

P ¢.y . LYo).
1
atp
‘ .

We will prove that under the same hypothesis

q

P e uoad, 0N al, 1Y,

atp’

This jmproves Ehe right side of Theorem 11.1, because Lq is

—_—.

éq‘”lq
a proper subspace o (€%, 2 n @, Y for 1 < q < @ {(Theorem 2.4).

(%FEOREM 11.2. If G is neither cogpact nor discrete then for

e v al el 9. -

o - L 3
. PROOF. By)corollarf 9.3 there exists f € (Lm, lp) such that

(1) Ed;u, o

] : ’ -
. By Theorem 10.2 there exists h ¢ (LP, 21) such that

(2) he uooal, .
" q<p’ . e

We shall see that one of thehthree functions £, h, £ + h ia |

-~

)
L/

139
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P (note that (LW, 2Py anda (LP, RI) are included in LP by (2.5) and

(2.6} does not belong to U (L%, 2% n (1.}, o9y,
. qtp'

Suppose not, that is, E + ﬁ € (qu, Rw) N (Ll, lqo),
Ee.a®™ ™ n b, 29 and he %, 1 0 @l 19)  for some
9y» 9;» 9 distinct from p'. '

Since E é (qu, Qm) iélql > p' and ﬁ ¢ (Ll, qu) if
g, < p' . we have that q, < p' < gq,. So, T~
a) If p' < q, £ 9, then ﬁ £ (qu, Rm) < (qu, Rm). Hence

f=(f+h) - b e (an, 27). This contradicts (1) as qy > p'

b) If q, <gq, <q, then f+he (LI, 27) < (192, £). Hence

frm (E + h) - ﬁ €_(qu, 2?). This contradicts (1) as gq, > p'.
) ’ ~ 1 -‘.
¢) If q, <qo<p' then fe ', 9 e @, 299, Hence
.~ ~ - 1 040 . . - t
h=(f+h) - £e (L, 21). This contradicts (2) as qofz’p .

~ o 1
d) If qo <q, <p' then . f+Th ¢ (Ll, 299 < 7, 2. Hence
h = (f + ﬂ) -fe (Ll, 2q1). Tﬁis contradicts (2) as q1 < p'.

- -

It follows from a) - d) that qu="p'. This contradiction

)

T v

. 4 ' g

{e BN

.
-

proves the theorem,+ ' <. \



~ CHAPTER V

MULTIPLIERS

In this chapter we will characterize the multipliers from A to

B, where A and B are any amalgam space or any space of unbounded mea-
sures of type q.

Specifically, for a continuous linear operator T: A-—— B
such that for all s £ G, Tt, = 14T where 1, 1is the translation
operator on A and B respéctively, defined in Defig}tion 3.;0, we want

to ffind a " u ' such that &
(L) in = yxf for all £ € A.-
| In the particular case when A = B ='L1(Gj it is knoyn that

such a u‘beiongs to Ml(G). ﬁoreover, we have the following theorem
{40, fhoerem 0.1.; and Corollary 0.1.1].

THEOREM I. If T:‘LlﬁG)———+xLl(G) ;s a continuos lineér oper-
ator, then the following are equivalent:
1) Tty = '.rs'l‘ for. all s '€ G

1
1i) T(f*g) = Tf*g . for 4ll £, ge L (G)/

. h
*

i11) There exists a unique contingous boundéq function ¢ on G such

”~ ~ l'
that (Tf) = @f ?ﬁor all f e L (G)

iv) There exists a unique 1y ¢ MI(P) such that Tf = pu*f for all

f e L1(G). f"/

Furthermore, the linear space of multipliers from Ll‘tq Ll is

isometric and lfﬁearly isometric with'Ml.

141
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i) aﬂd 11) say that T commutes with transiations and convo-
lution respézlively white iii) Justifies the name multiplier. So, the
) .
reason we pursue a charactérization like (1) is because once we have
found such a p, in some.qases, we shall be able to vindicate our choice
of the word multiplier by taking the Fourier transform @ of p and con-
clude t;ét for all f e A, (Tf)A = @E- .
Currently there are‘different definitions of.a multiplier
dccording to the spaces involved. Indeed,
1y If A and B are translatlon invariant topological #linear spaces of
functions on G (for all s € G and all f ¢ A, the function
Isf(t) = fqt - 8) belongs to A) then a multipli;r from A to B iS5 a
continuous linear operator T: A-—f+ B such that T commutes with
translatiodg. That is, Tt = T T .for all s £ G.
2) 1f A 15 a topological algebra and B is a topologlcal A—module then

a multiplier from A to B is a contlnuous l1near operator T: A—+ B

such that T commutes with convolution. That is, T(f*g) = Tf*g for

all Y,'g £ A. (Note that * on hﬁefieff denotes thi>ppera§ion on A, and

on the right the module operation on.B).

w

3) If A, B are gemisimple, commutative, Bqnabh algebras then a multi-
plier from A to B 15 a functicn  on the regular maximal idegl space
of A such that @X € ﬁ whenever X e K, where ¥ is the Gelfaﬁd.transform
of x.

It is clear from Definition 3.10,that the first definition is
meaningful for all aﬁalgam spaces and all spaces Mq. For tﬂls reason
we have chosen this as our definition of a multiplier on amalgams and

measure spaces Mq'
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However, the second definition is also meaningful when A is any

of the spaces (Cq, Rl), (Lp, ﬂl) (I < p <= or Ml and B is any amal-

gam space or any measure space Mq, because iﬁ this case A is a subalpge-

bra L1 ((2.6). and Theorem 4.7) or A = M; and B is both a-L1 and
j-module (84 p. 60). |

So, in order to distinguish between these two definitions we

gill say that if A and B are as above ¥nd T is as, in the second defi-

~ ' " . ’ /

\ﬁFtion then T is a convolution multiplier,_abbféviéted, c-multiplier,
. _ o

In general multipljers and c-multipliers are not the same [29,

. .
pPp. 89 and 94}. Hence, whenever the definition of a c-multiplier makes

sense, we will be interested in knowing the relation between these two

. -
concepts.

S~

In this dlrection, we should observe thar if 4 multtiplier

(c~multiplier) 2_298 thef form (1) for some U then b;-the properties of
‘ . . . .

3,

‘convolut T~is a c~iu1ciplier (multiplier).
As in Theorem I, once we characterize the multipliers for cer-
tain amalgam or measure spaces A, B, we will try to establish-a linear

¢
isomorphism between the linear space of multipliers from A to B and

some line;r space C, ”j(iz

Sincé the LP(G) spaces are particular cases of amalgams (see
(2.1)) 1t is natural for us to follow véqyﬂglosely the theorey of mul-
tipl?ers from LP to Lq and through generalizations try to develop and
ch;;:;terize a theory of multipliers for amalgams and M_ #paces.

Our main gource of information about the theory of multipliers

for LP(G) spaces Will beg[40]. p g
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M(A,B). a

by (LY, 29" 1£ 1 < q < =, Al cy) 1€ g

o -
512, SPACES OF MULTIPLIERS

Let B be a linear space of functions on G. For s € G and f € B,
T,f " is the finction on G -defined by T,£(t) = £(t - s). If t.f € B for
h ;

all £/t B then B is said to be translation invariant.

yIf B is translation invariant then the linear operator

¢

T, B B, fk—+ 1,f 1is called a translation operator.

e N

DEFINITION 12.1. Let A, B be two tramslation invariant linear

spaces. A multiplier T from A to B is a continuous linear operator

T: A— B .which commutes with translations. That is, for all s ¢ G,
N

TTg = T4T where Tg is the translation operator on A and B.
. -~
The linear space of multipliers from A to B will pe denoted by

I

-

( .
Since~f97fJRQ) - b, 78

(Theorem 3.1), (L%, 24 can

£ V—ﬁ,w
1<q<=and (L7, 21 = @l, ¢p*

e"éndowed with the weak*-topology induced

1. We will write (L, .29)"

[}

for this spacef. Similarly (LP, lm)w, l <p <, Mq w' 1 < q <= are the

o

w X [ B
spaces (LP, pr Mg endowed with the weak*-topology induced by (P, ol
e .
1
and (Cp, 29 ) respectively.

By [40, Theorem D.4.1] the continuous linear functionals on

(Lm, Eq)w, (Lp, Qm)w and qu can be identified with (Ll, Rq') if -

) ' . T . .
1, (P , ll) and (Cu’ 2 ) respectively by -

n

1 <q<e, (Ll, cy) if q
the formula _ .

(12.1) . < f,g > m I' £(-x) g(x) dx.
G

144 ‘ .
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e 3]

= v 1 1
£« (L, Rq), g & (Ll, g4 ) I <qg<es £ o (L, £, ge (L, cy);

fe P 2™, e P, 2y 1cpcw

(12.2) <M E > o= J £(-x) du(x)
G

H £ Hq, f e (C;, ﬂq'). _

We should mention thaﬁ this is one way to represent a-ﬁ;h;inuous
linear functional and we choose this because in this case
< f,g > = £*g(0), < p,f > = pu*f(0), (see Corollary 4.4 and Corollary 4.5).

PROPOSITION 12.2. Let A,B be any of the following spaces

(P, 2% 1 <p,g<o _ ' S

Il A

(Cor 2 1<qca
a

\‘.\
/'?T\\\(Lp, o) l1<p<w . ‘ _

M 1 <g<=
q =9z

IfsT is a multiplier from A to B then‘its adjoint T is a multi-

plier from B* to A*.

PROOQF. T:.A—* B is a continuous linear operator and its ad-

*

joint T* is a continuous linear operator T™: B ¥ A* defined by
*
<f,T"g>=<TE,g> feA geB [4, Theorem 4.10]

"S0, for s € G, f g A, g & B* we have that

n
]

g f,T*TSg > =< Tf,ng > = f TE(-x)T g(x)dx = JTE(-x)g(x - s)dx
: s .

1l

S Tf(~x - s)g(x)ax = f TsTf(—x)g(x)dx

. *
<t Th,g > =< Tt f,8 > = < 7,£,Tg > | -

B |

< £,7 17 >,



o
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r
. ot W
Since this holds for any t  in A, we conclude that T 1 g = Isl 4

* # L *
for all gt B . Hence T & M(B*,A )

The next two results are generalizations of'LEmma 3.5.1 and Theo-
. R
rem 5.2.5 of [40) and their proofs are based on Hormander's original theo-

\.

rem for R© [33} Theorem L\l .

LEMMA 12,3, Assume G Is noncompact. Then

-+

iy If f e (Lp, Eq), 1 < p,g < =, then Lim P+ 7

[ LT

1/¢ ‘
fll g =2 e
pq

ii) 1f £ ¢ (Lw, 2 or I v (CO, Lq), I <q < w, then.

Lim ||f + v f]f, = 2l/q||fr|m .
G oW q q

ifi) If f ¢ (LP, cg)y 1 < p <, orf ¢ fo then 1im||f + Tsf1|pm = ||f||pw

g+ @

- P

i N
. ’ - N 1
iv) i p = Mq, 1 < g < =, then lim ||u +‘?;ui|q = 2 /qllu‘ih'

g5 -+ @
PROQ¥. If g E.LP(G), E = supp g and E = U{K |K N E }. then
— c o3

for s ¢ E - E, g and T,8 have disjoint support. 5o

*

N

» P ) p
lg + 1,8|" = g + tgel” = le + 1 g]® + g + T gl .
K, K, (EUS+E) KNk K N (s+E)
) )
0 ,
1P e 1 (el .
Ku __J-—s+K(1
and . _ ,f“\>
§up.ig + ngl = sup { lg + ng| | (Ka n E) u (KG n (5 + E)) }
K - ' '
8] : —
= max ( sup g+ 18l , "sup [g+7Tgl) (
KNE KoN (s+E) \\\
= max ( sup lg| , SUP,|T58| )
. ' K,NE KoN(s+E) - :
= max ( sup [g| , sup |g| ) j
Ky ~s+Ky —
o8
7’\
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By the definicion of the norm |

| it follows
pq

1/
1 + - 2704 1
() e + 78l llgllpq

\
(2) e + teell o= llellpw 1se

2N

pL= lfq<w

fin

o

Now, if p € M ' and £ Mq »  v(4)
q c

/

Definition 3.5) then for s E-E+L-/L

(A N E), E € G compact (see

'“y#(t) t € E —‘L
# ' # \
(3) (v + rsv) {t) =« TSU‘(t) tes+E-L
0 . otherwise

{see Theorem 1.21).

]

-,
To see this we consider two cases.
N . .
Case 1) v is a real valued measufe.:By the decomposition of Vv + T V
: : s

-

(p.117) we have that

(v + %év)#(t) = v+ TSUI(t +L) = (v+ jsu)+(t YL + (v + Tsv)—(t + L)
wherelgb ﬁ Tsv)+ = max (v + TSU, 0) and/ (v +-Tsv)— = max (-v - Tsv, 0).
Now, (v + T W)(£+ L) = u((e b LINE) + u((-s + t + LINE),

since s € E-E+L-1L, (t+L)NME+ ¢ and-(-s +t + L)NE = § if
-t € E-L; (t +L)nE = ¢ and (-s + t + L)NE + b ifee s1+ E.—-L;

(t + L)nE = (-s + t + L)IE = § otherwise. Hence

” [vitt + L) teE-L .
' = - :
v+ T V) (€)= lv + Tsvl(t +L)y =¢(|v[(-s+t+L) tes+E-~-L

-

) s 0‘\' otherwise
Therefore (3) holds.
Case 2) v is a complex valued measure. Then v = v, + ivz, vy real
valued measure i = },2. So, v +‘Tsv = v; + TSU1 + i(vz + Tsvz) and
.J Bi?ow Copy
‘ AGE'TACHEE
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vt o= v+ rsvl‘ + |v, + TSU?|.

ft N
Hence (v + Tsv)# (v, + Tsvl) + (v, + Isvz) . From case 1) we

] L3

have that
' # #
vy, (t) + va (t)/. t « E-L
# f i g'
(v+T1TV) (t) = T (v, + v, ) (3) t e s+ E-L
s : 5 /
. 0 { " otherwise’
v#(t) g teE-L
##
= TV (t) t€s+E-1L
0 otherwise ‘

By (3) we have that for 1 < q < =,

q q

i
dt + J (v + TSU){(t) dt

#, 9 #
(v + Tsv) (t) dt (v + TSU) (L)

G K E-L : S+E-L

al
i

: 4 a
= v#(t) dt  + J Tsv#(t) dt

. E-L s+E-L

q q
= v#(t) dt + J v#(t) dt

E-L E-L
' q
= 2 [ v#(t) dt
E-L
This implies ghat
~ S g a #
(4) Tv+rv [l =2 |1 v]]
q q
Let € > 0. If f € (Lp, Eq) 1 gp <= 1<q<® then there

e/3(2%)  (Theorem 3.6).

Fal

exists g in LE such that ||f - g||pq

-~ ' | /)
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For s ¢ E - E, E as in the beginning of the proof, we have by

(1) and Theorem 3.1} that

_ ol/q
1 fle gl - 29 el

1

A

N R R R AT IS TT

i

. | ’
1= sl + gt = wgal 29 1g - ]|

S

Pq

/302 + %732y + 2179

Fas

N a
(ef3(27)) < e, k
This proves 1).-
Similarly if p = < we have by (l) -dnd Theorem 3.1l that

1
e+ el o - 29 el |

[vs]
q
_ X l/q _,l/q
< ] ||f+TSf|lmq |ls+ngI_Imq | + | - ||8||mq 2 ||f||mq~|
e - glla 1t - gl + 2% lg - ]l < e
= g =q - 5 Sg mq & g
N - P

Therefore i1) holds for f € (Lm, 29) and hence for f ¢ (Cy» 29y,

The proof of iii) is the same, but taking g € C, and using (2). The case

feC, s [40, Lemma 3.5.1].

f
q

Finally t?;Brove iv) we keep in mind that the norms |

S

and ] 'f{q are equivalent. ’ , &

If ne Mq “then b& Theorem 3.6 there exists v e Mg such that
. $
v(a) = WA N E), Ec G compact and ||p - v]|z < £/3(2% where € > 0

is given. >
As before, we Have by (4) that for all s § E-E+ L - L

‘ l/q

#
b= el = 2l | <oy

-~
_Lr/
1



-
150
- -4
THEQREM 12.4. If G 1s noncompact then the following linear .
spaces of multipliers are trivial. That 1s, the zero \multiplier is the
only\,eiement in these spaées.
0 hea?, oh,at, n lsr,psiw 15s<q<e
i1) Ml 29, c,, 2% L<p<w 1<s<q<w
-—/ - Nl
. |
114)  M((C,, 2B, @, %) L l<r<w, l<s<g<®=
v) M((Cy, £D),(C,, 2N 1<s< q<=
r 8
W oMEP, e, 2% l<p rsw Lgs<e
P 2 &) “
‘Lj_-_l M((Llco)_l(cﬂi'q‘)) 1;1’;‘“:1;5(“
Vi) MMM . 1<s<qc<w
vitd) MO, @5, %) l<r<w, lss<qew
ix) MO, (Co, £°)) l<s<q<w
%) M(LP, E,q),MS) : L <p <o, 1<s<gqg<o®
x1)  M((Cq, 2%),Mg). l1<s<g<e
x11) M(_(Lp, cy),M,) o Spi® lisc<e
o q w r 8
xiid) M@, £ ,@, 2 ) l<p<=® 1l<s<q<e
Y n = o
-] w :
xiv) ML, 2D, (C, 7)) l1<s<gge ,
’ o W .
' we, aH7, 0%, gD TT 1<s<age
me@P, 29, @, 25" l<p<w, l<s<qg<m
1) 1'{\(‘(Cnnfaq).(14m.ls)w) - 1l<s<qg® or Lgs<q<m
] : p @ S.wW )
Wiii) M((Licu)!(le)) 1;P<°°, l <5 <
. r
xix) M(@®, )Y, @, ) l<pgw lgr<m 1<g<w
xx) MO@P, 2DV, (c,, 2% 1<p<m, 1<6<m,

PROOF. The proof of each of the first twelve cases are the same;

so we will prove only 1). \ T U/\
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Suppose T € M((Lp,‘lq),(Lr, ls)) and T + 0. Then for

P
fe (L, 29 and e £ G we have that

||T¢ + rSTf||rs « ||TE + T‘rsfllrs < |IT]] |{f + Tsf||pq.

Taking the limit on both sides we have by Lemma 12.3 that -~

oy
278 el | < 2" )] lgb]
Trs pq

This implies that [T|| < 2l/q - s []]

1/q - 1/s

and we have a

contradiction because «2 is strictly less than one. Therefore

T = 0.
“The proofs of the remaining cases are similar to each other.
So we will prove only =xiii).

Let T e M((L , 2DY, (", £%)). By Proposition 12.2 its adjoint

1 T 1

® '
7" belongs to M((LT , 2% ),(, 29)). since 1< q' <s' <®, . .

* C
T = 0 by case i). This implies that T = 0.4

The next theorem corresponds to Theorem 5.2.1 of [40] and the ¥

proof is the same.

— ’

THEOREM 12.5. Let 1 < p, q, ¥, s <. M(@P, 29, @’, 2% is
- - ' S' pt ql *
isometrically isomagphic to M({(L , & ),(L" , &° )).
: *
PROOF. By Proposition 12.2, T——+ T

t L 1

defines a linear map from
r : ' ) ’
_ M((Lp,,iq),(Lr, £%)) into ML , 25 ),(Lp R 21 Y). Moreover since

8

Izt = ||T*|| [44, Theorem 4.101 and (7, &%), ", 2°%) are

reflexive (Corollary 3.3) the map is continuous and onto.



Similarly to Theorem 5.3.

152
>

! of [40] we will apply the Riesz-

.

) T‘orin Theorem for amalgams (Theorem 5.6) to prove the next result.

THEOREM 12.6. Let

/
that, for some 0 < 8 <1, '
1 1-8 68 ; 1 1 -6 0
_ = + —_— —_ = + —
P P P2 q c—{l 92

1 T e Py, oy @t o8

unique element. of

M((LP, nq),(L‘, 25))

if 1<

MY meaP &%, aF, %) 11 <

S FUAP, ) G, 1) 1<
~

M(Co, (LT, £%)) T iF p o= g

PROOF. Let of(m) be as

i=1, 2, T restficted to d&(m)

ek,

1 _S Pi>» 94y Ty{» 5§ ‘:: @, 1 = 1, 2. Suﬁpose
} L = 1 - 8 + .e_r > L = 1 - 8 4 g_
r r s 5 S 33
L]
i)), =1, 2, then T defines a

__(_ co, q = o

< w’ q = o

: . Pi qi
in 85 p.67. Since l;f(m) o (L L),

is a continuous operator from .f(m) to

T 54, -
Li, g i), i \I\ 2, which commutes with translations. Sg,*if ||T| li'

i=1, 2, is the nomm of‘-‘i‘\l\M((Lpi, qu) (L l, g° 1y} then for all

_ a
x e J(m)
T < T i=1, 2
el s Ul Tl o tm s “
Bﬁ the Riesz-Thorin Theorem T I(m) c (Lr, S.&S) and for all
X E ci(m) -
B8 -9 £
[l g < Tl 1T, sl sf1<rso 1gsgw
~ 3] 1-6 a
I,y < LTl Tl [Ixll,, =1 1gsge

Therefore T restricted to I{m) defines a continuous linear



A

operator from ( f(m), |

+

~lations. Since F(m) is dense in (Lp, 29y 4f 1 <p<w, 1 <g<w (Re-

r 3 Y
|Pq) to {L , Qb) which commutes with trans-

mark 5.5), (LP, im)w if 1 < p < =, (Lp, cg) if Ll < p < »,7and Co, T

has a unique continuous extension, also called T, of the same norm on

-
L]
these -spaces.

e

By the continuity of T4 on (LP, 2D, 1 <p,q<@ (Theorem 3.11)
. p w, W . : L
and on (L¥, &£ ) ;, we conclude that T is a multiplier.
, L

A -
To see that T4 is in-fact continuous on (Lp, '3 )w, take {fn},

£ in (LP,27) such thatr lim £ = f in (LP, £,
1

p Car
Let ge (L , 21) and € > 0. Since Tgg € (Lp . Rl

)s

v

|< ng,fn - £ >| < e for all n > N. This implies that, for n > N,

| < g,Tan - Tt > | < T8 f, - £ >] < €. Therefore the translation

W
operator T_ on (Lp, 29" 1is continuous.4

COROLLARY 12.7. M((-Lp, _2")',-(?’, 1ty e M(Lz', L, 1< pa g2
PROOF. let T € M((Lp, Rq),(Lp, 29)). By Theorem 12.5 T !
belongs to M((Lp', iq'),(Lp'} Rq')). Applying Theorem 12.; with
p1 ='E1 = p, pz = r=p', q, =.sl =g, q» = S3 = q' we have that for

B= 1/2; 1/2 = (1 - 8)/p+6/p' = (1 - 8)/q + qu"-

Therefore T defines a unique T in M(L?,Lz).T
1 ]

"DEFINITION m.g?.A'Lec A be a Banach algebra apd/B be a Banach
Vol . y

A-module. A continugus linear operator

from A to B if T commutes with convolu

.T(f*g) = Tf*g,



O

-

e

’ﬂ B \

o~ ,
ihear space of cEgpitipliers_from A to B will be denoted

» I—‘

v

. THEOREM 12.9. Let A be any of_the spaces (Co’ 21), (Lm, Rl)w,
(Lp, El) (1 < p < w), le; and let B be ény of the spaces (Lp, 29y
(L<p, qg<=), (€, 4D A <qsm), (P, ¢) (1<p<w, ELm; LY
A<pew, @ 9% A <pco, u¥ (U <qem, 0P, 19"
(1 <p, gq<=, If T is a linear opef;tor f;;E\ﬁ.to B such thac T
commutes with translations then T commutes with con&olution.

* T o .
PROOF. Note that A" is Mw, (L1, ¢p), (P, 2°) or (C,, 2™ and

_B* is either an amalgam space or easure Sspace Mq(l £q £ w).

- * )
Suppose A, B* are amalgam spaces. Let ™: B — A" qbe the

adjoint of T, f, g in A apd-h in 8", By Theorem 3.1 or (12.1)

i ‘
f TE(t) h(~t) dt = < Tf,h > = < f,T*h > = J f(t) T*(—t)_dt.

So, we have that : ) . -

< Tf*g,h > = [ TE*g(t) h(-t) dt = J ! TE(t - s) g(s) ds h(-t) dt

= j g(s} J TgTE(L) h(-t) dt ds Z-ﬁ_\‘x\
= J g(s) J Trgf(e) h(-t) dt ds=~. -
= J g(s) J T f(t) T"h' (t) dt ds
| >
p‘
= f f f(t = s) g(s) ds T*R'(t) dt
) :

e

n

[ f*g(t)-T*h'(t) dt = J'T(f*g)(t) h(-t) dt
J
<

’) .

T(f*g),h >.
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We can abply Fubini*s theopfe /gecause f, g are ing, hence g

1 * .
is in L ; and T'h ds in A . -~ v AR

*
Since this holds for all h &€ B we conclude by the Hahn-Banach
theorem that T£%g = T(f*g) for all £, g £ A.

The proof of the remaining cases is similar.; 3

~,
O

-~
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U £ B such that Tf = p*f for all f ¢ Ll G). Hence
. j \

§ 13. MULTIPLIERS FROM Ll TO AMALGAM SPACES AND SPACES OF MEASURES Mq—
, ')

The mulfipliers which 'have the most satisfactory characteriza-
) <

tion are those from Ll to amalgam spaces and spaces of measures Mq.

This is so because of the nature of the algebra Lt

¥ —_

We QQll consider the cases: c-multipliers from L! to (Lpl Rl),

1 <p <=, c-multipliers from L1 to (Lp, zq), 1 < p, 9 £ =, and c-multi-

. pliers from Ll eo ul, Y, 1 < ¢ < =, )

Our first theorem is an extension of Theorem 3.11 of (40] first
’ 0

introduced by Re E. Edwards [21, Theorem l].

Y . ) :
"THEOREM 13.1. Let B VYe any of the spaces (Lp, Ry, 1 < p < oo

1 < q25 M&T~l E?q < w, If T ¢ c—M(Ll,B) then there exists a unique
B v N -

(!, B) e u@l,B). \{m : L F
X @
. t . ) . <y

: PROOF. Yer A be P, 2% B = (P Y, 1 &, < a,

¥

1 . '
(WP, co) 1 B £ P, 2), 1 <p <o) (Cp, 2 ) if'B Mgy 1S

fa]

b
!

)
Na)
I A

ml
Thep'Af ="B and C_ is dense in A (Theorem}3.7). Let {QU} be the a. i.

in LI(G) defined in 87. So for f Qﬁ} we have that

e L Ta NS
[ I7e - Togsed [y = e - T 2 111 1TE - ol
This shows that \\\ n :
(L) lim Toy*f = Tf in B\ﬁ/ s

On’ ther;ther hand, ]IT¢Ul|B 5_||T[th4///] IT[I for all U.-

Thegefore {T¢U} lies in a norm-bounded subset of B A . By Alaoglu's

h —
156
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yﬁfff (:_ convolution with p and T are continuous linear transformations from.L

157

theorem there exists a sw m
r h

I .
{T¢V} converges to U in the weak*-topology o(B,A). That is,. for each

{T¢,} of {T¢y} and p € B such that
v u

heA -

Aim < h,Toy > = < h,u >,

[} .
£2) : _
7 v ‘-;. 0 " . . B - ‘
L ) . - *
. Now, by (1) and the faet_;haﬁﬁgnxi;% < B we hgve that for all
f?hg in C. o ‘ _

\}

Lim < g, Toy*E > = < g, B >.
V0 :

~

This together with (2) implies that for all f, g in Cc'

il

g,Tf > = lim & g,Tey*f > = lim g*(Thy*£)(0) = Lim Toy*(f*g)(0)

< f*g)T¢V > =% f*gsu > =< g'si-l_*f >, . .:)

T?ﬁféfo}e Tf = py*f for all f e C,, because C. is demse in A%
Then Tf = u*f for all f ;LLl because C. is dense-in Ll and

1

-

to B (Theorem 4.7).

]

. Suppose that w*f = 0 for all f ¢ Li. In particular for all ;//’

S o 1 -
e Cy, < £,4~2_= UX£(0) for all £ € L. In particular for all £ € §Z
. | - , -, :
< f,u > = u*f(0). This implies that n = 0 since W e A and C_. is

’ ! \'/\' / v - €

dense in A. Hence g is unique. L : . !

1

Finally, if fel" and s, t £ G then for T € cFM(Ll,B)

i

T (TE) (L) = TE(t - 5) = wrf(t - 8) = £(t - s = x) du(x)
At . .

JTE(t 2x) dplx)'= wkTgE(t) = T(Tg) (t).

v .
Therefore 'T commutes with franslations.}

A



~

. N, tion implies the following result.
=N —

2

™
A
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COROLLARY 13.2. Let 1 < p < w, L < q < w, If T; LI—r (LP,29)

‘;s a bounded linear operator then the_followiné are equivalent:

i) Ttg = tsT for all s e G.

ii) T(f*g) = Ti*g for all f,. g e Ll.

iii) There exists a unique u € (Lp, 29)  such that Tf = py*f for all
fe Ll B B

tence c-M@},@P, 29) = nal,a?, H).

PROOF. 1) implies ii) follows from Theorem 12.9. By Theorem 13

ii) implies iii) implies 1).+

.1

'_Theorem 3.1.1 of [40] says that T belongs to M(Ll,Lw) iff there

exists a unique p € L” such that Tf = p*f for all f € Ll. o
This together with Theorem 13.1 and the propertié&dpéf;onvolu—

-

4

%

o
b " THEOREM 13.3. Let T: Ll———+ L be a bounded linear operator.

Then the following are equivalent:
i) ETS é{TST for all s e G.

i1) . Tf*g = T(f*g) for all £, g e L.

.

1ii) There exists a unique 4y € L such that Tf = u*f "for all f € L.

Hence c—M(Ll,Lm) = M(ﬁl,Lm).

Now we are able to characterize the multipliers from Ll to

(Lp, 21), 1 <pc« ®, in terms of bounded functions on G and eEtab;jsh

‘/“
an }S

tric algebra isomorphism between c—M(Ll,(LP, 21)#) and the

‘ it
algebra (Lp, %;) (see Theorems 1.21 and 4.16}).

. / “‘\\ .
™~ e\

— . :
. -,

- R

1
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‘ (9,,/£ ) if 2 < p € =, such that (Tf) w@ for all f ¢ L™,

159

In [46] is proved that a Segal algebra S 1s a semisimple, reg- w
ular, commutative, Banach algebra with maximal ideal space homeomoiEL}p

. .
to G, such that the Gelfand transform is the Fourier transform restric-

Fa

ed to S. Hence, for £, g in 5, |lf|l

|[1£]], and if £(R) - g (%) ™

for all %€ G then f = g- S

1
Theorem 13.4. Let T: Ll———+ (Lp, £°), 1 < p <=, be a linear

operator. Then the following are equivalent:

1 1enetar, 2y, i ;

ii) There exists a unique u ¢ (LP, Ql) such that TEf = p*f for a1l
. ! ]

1ii) fgere exists a unique @ € (CD, Zp (6) ;ﬁﬂl\< p < i?\or in

The correapondence between T and i establishes an isometric

algeﬁif(lsomorphlsm from M(L1 (Lp ') )#) onto (LP, Rl)# . .
R

PROOF. i) implies ii) 1mp11es iii) follow from Corollary 13.2 Y .

and the p:;BEfEiés of the Fourier transform on-(LP, % ) (Theorem 5.4,

Remark 5.8, Proposition 6.14}. Y

Supposéii;i).

Since (1.£)" = [s,-] £ forall s e G and f eL!

we have

that (Ttgf) = tp('tsf)A = [s,-]mg = (TSTE) . Therefore Tig = TST. This

means that T commutes witﬁ translations.
Let {f }, £ be in L! such that lim | 1€, - £]1{.= 0 and
lim | |T£, - g||pl = 0.

So bj the previous observation anq (2.4) we have that

'I"



/"

160

L/ ]

¢ty - gl

-/

1A

|:_n

[1ere)y” - g I, + e )" - g

1A

[Tote - £) [l + ||7E, - 8],
<lolle 15 - £l 1) + e, -8l
This implies that (Tf)h = g. Hence Tf = g and by the Closed

Graph Theorem we.conclude that T is continuous. Therefore E,bélongs to
. y

meLt, (P, 2lyy, ‘
since M(L, (P, ehy = mc Ll @P, ohf give;PfIr;j;;%? byt

'y

-
the llnear operator T defined by Tf p*f (f Egh ) belongs to///,
—~ | ‘ -

~

Ml P, ¢H?y and by Proposition 4. 17( T .

j .
l[Tf||# - ||u*f||# < |lf||l ||u|| i?r all fetrl. . \\‘J//
.\ .
This implies that ||T|| Ilu|| ,
W
On the other hand, if {en} is the a. i. in (P, 21)# as in
Pr0p051t10n %.17 1i) then lim J[en*u - p||g1 = 0. So given € >0 <
there exits ;;\Eh éuch ghﬁt |]en*u||g1 > ]|u|[# - €. Since 'e“JF Ll_
“and ||en[|1 Tl we conclude that I|TI| Ilullpl -+

f \ : .
e, - ,\'ﬂ\
13.5. Thecrem 13.4 is a particular pdsé-of a more gener-
h.,____—"’
al result proved by Rieffel [48]. This was restated in terms of abso-
lutely continuous Banach Ll—modules by Gulick t}b\gnd van Rooij [31,
Theorem 5.2]. This says that if B is an absolutely continuous Ll-module
then the relation ubl— TU’ TUf = u*f gg £ Ll) establisheé an iso-
metric, linear homeomorphism erm“Er onto C—M(LI,B*). Indeed, (Lp, 21) is
. 1
the dual of the absolutely cqg&inuous Ll—module P » co) (Proposi-~

b

tion 4.13).
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S

We will make use of the work done by Burnham and Goldberg [Y]
about c-multipliers from L1 to Segal algebras to charactéfize
et (co, 2h).

In what follows .S will be a Segal algebra\jﬁé}inition 4.15)

and ||f]|S will be the normof £ in S.

. ' .A— -
DEFINITION 13.6. (14, Definition 3]. The relative. completion S

-

of S is the set of all f ¢ LI such that

fe U Bs(x)1

where Bs(x) = {f E‘S| ||f1|s

i A

%} and E' 1is the closure of E in i,
N e : ’
" Thus, f ¢ 8 1iff therg exists a sequence {f } in S such that
. .
sup ||fn||S < x <® and Ilfn - f|[1 + 0.

r
-

n - Z T -
a H For £ £ S we define FITE[]] = inf {x] £ ¢ Bg(x}'}. Then
(s, ||

bedding of (S, ||]°

|[) 1s a Banach algebra, 5 is a closed ideal of S and the em-
: n

[{) into (g, [

{{ ) is an isometry [14].
t -
LEMMA 13.7. [14, Theorem 5). £ ¢ § 1ff fe L' and
sup ||f*enL|S < « where {en} is an a. i, in S.
Moreover |||£[|| = sup ||f*e,|]q-
- Since S 1s a subalgebra of Ll (pefinition 4.15) it is clear

that a c—multinier T from L! to S must be a c-multiplier from L1 to Ll.

Hence there exists a unique measure W € M; (6} such that

(3) Tf = p*f for all f ¢ Ll (Theorem I).7

<

If Ac Ml‘ we will writéi'M(Ll;S) c A if every T € c-H(Ll,S)
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-
has the form {(3) for some Y € A. Thus c—M(Ll,S) < MI(G)‘

1

THEOREM 13.8.[ 9, Theorem 2.6]. If c—M(Ll.S) < L then

c—M(Ll,S) = 5_ In this case, if for p ¢ S we define T“ , by
Tuf = py*f (f Ll) then the correspondence phb—r Ty is an isometric

algebra isomorphism from S onto c—M(Ll,S).

"THEOREM 13.9. [ g, Théoreh 2.3]. Let W EM Vand. {en} “as in
Lemma 13.7. Then the following ére equivalent: -
1) sup ||uken||g < =
ii) ﬁ £ c-M(Ll,S). ) Y.

ii1) b e c-M(LL,S).

.

Hereafter and for the rest of our work {e,} will be.the a.i.

in {Co, 2{)#, hence the a. 1. in (Lp} 21)#! 1 < p < =, given by

.~

Proposition 4.17. e o :
Applying Theorem 13.8 and Theorem 13.9 to the Segal algebra

(LP, 21)# we have the following theorem.

162
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THEOREM 13.10. Let 1 < p < =,
&

5 «P, ehHt = @P, s1?. Hence l|f||§1 = |1I£]]| for all £ in

P, eh.
: Pl 5l re 111, ¢ op
i1) fe (P, 2°) iff felp and sup [|f en||p1 Cor,

- . y . .
M?reover [|f||pl = sup |ff*en|l;1 for all‘ 3 Q_LLP, Wby,

-

| 1
141) Let e M{(®). b g e-M(L, (P, RY)) 1ff _Supkplu*en||g1 <,

N
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PROOF. By Theorem 13.4 c-M(LL,(LP, 21)) < (P, 21y < L!. Then
i) follows from Theorem 13.8. ii) is a direct consequence of i) and

Lemma 13.7. i1i1) follows from i) and Theorem 13.9.+

-

THEOREM 13.11. (' 9, Theorem 4.5]. (Co, 21)# = (L ,‘2}) ‘and the

|ml are equiva‘%nt in (Lw, Ql).

1l and |

norms ||

COROLLARY 13.12. f e (L, 1y iff fe ! and
#
sup ||f*e“||®l < o=,

PROOF. Lemma 13.7 and Theorem 13.11.;

Similarly to [ 9, Theorem 4.6] we will characterize

e-M(L}, (Co, 21)).

. ‘.

[[). If T is in

THEOREM 13.13. Let S~ = ((L=, &%), |

c—M(Ll,(Co, 21)),_then theredff;scs a unique W e (L%, Rl) such that
Tf = yw*f for all f ¢ Ll and the correspendence of T and p defines an
isometric i’bebra_isomorphism from c—M(Ll,(Cofjll)) onto S™.

PROOF. Let T £ c—M(Ll,(Co, Rl)). Then there exists a unique
S— -

--p gjyj such that Tf = pu*f  for all f E'Ll (see (3) above). On the
other hand& (Co, El) < L” and therefore T ¢ c—M(Ll,Lw), s0 by Theo-

rem 13.3 there exists a unique ® € L such that Tf = @*f for all -
1

» »

£ ¢ L, This implies that for all f'e L

. p o
J £(-t) du(e) = f*uﬁo) = f*@(0) = J f(~t) w(r) dc.

In particular for a measurable E éh\f. ; : -

-



Lb4

ufE) = f Xg du = J P(x} dx.
E

This means that | is absolutely continuous. Therefore ¢ € L!
- )
and @wdx = u. So c—M(Ll,(CO, 21)) c1®n Ll c Ll. Then the conclusion

follows from Theorem 13.11 and Theorem,lB.B.+

COEOLLARY 13.14. Let 1 € My. Then the following are equivalent:
£ sup | lwregllay < o | -
i1) ‘u e c-M(LY, (Co, 2b)). g
111) u e e-Mm(Ll, 0%, 2hy).

v) u e M, (Co, 2y,
PROOF. i), il) and iii) are equivalent by Theorem 13.9 and TheOf

rem 13.13. By Theorem 13.13 and the propertieé of convolution, 1i) im;

plies iv). Finally by Theorem 12.é, iv) implies ii).4

THEQOREM 13.15. Let T: Ll — (Co, 9,1) be a linear %perator.

Then the following are esufézlent:

1) T enl, (co, 2. _ , S
1i) There exists a unique' U E (Lw, 21) -such that Tf = p*f for all
- ' ﬁ S
feLl.
' a 9 n -~ ~
1i1) There exists a unique ¢ ¢ (Co, £°)(Gy*.such that (Tf) = @¥f

for all £ ¢ L1.

PROQF. 1) implie; ii) follows from Corollary 13:14 and Theo-
rem 13.13. Singg/(Lm, 21) < (Lz, 21), the Fourier transform ¢ of u
in (Lm, 21) belongs to (Co, 22) {Theorem 5.4). Therefore 1if 1i) holds‘

" then (Tf)T:B ©F f&r ali £ e Ll Clearly @ is unique. |

= The proof ,of iii) implies 1) is the same as in Theorem 13.4..
Ve
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REMARK 13.16. Note that by Corollary l3.14

eom(Ll, (Co, 21y = m@l, (Cos 2Yy) and em@l, @, 2ly) < w2ty

Similarly to [40, Theorem 0.1.2] we have the following. Let ¥

1

. in (P, 2), 1 < p < @ T, will be the c-multiplier from Ll to f,

n
defined by Tug = p*g,

hnd

k.

THEOREM 13.17. For each T e c-M(LL,(@P, ¢1)), 1 < p < =,

there exists a net {in} in (Co, 21) sucﬁi}hat
ol
i - = f .
lim ||Tinf Tf[|pl 0 forall fel
That 1is, {Tin} is strong operator convergent to T and there-
fore {Iul u e (Co, kl)} is strong operator dense in c—M(Ll,(LP, Zl)).
i PROOF. Take_ fe Ll. and e > 0. then'there exists ¢ € Cg

such that ||f - ¢||1 < g/4. Since {ey} is an a. 1. in (Co, 21y, there

exists N such that, for all n > N, ||en*¢ - ¢||w1 < gf2. By (2.4), ‘

T Heats— oll1 < e/2 for all ~n.> N. Then for all n > N
. e = €11 < lleg e — eqxeliy + [legre = offy + [1e - £[1)
< leglly 110 = €11, + Hegso = olly + 116 - €1l
<2 lho = €]l + [legx - ol]y < e |
Therefore —
(&) - lim ||e *f - £]]; = 0. _

This means that {en} is an a.i. in L%i’//

Let p be the g}ement-in (L.P, 21) associategd to T and set

- e *u .'By Theorem 4.7 {ip} < (Co,2!) and
. 4

e



=~

5

T

||Tinfv— TEH o) = [15g%E - w*E] ]y = [[egtuse - weE]| o)

W

Fal

a
2 ||U||pl I|en.kf - f||]_‘

. By (4) we conclude that lim [|Tinf - Tfllpl = 0.+ 3

I "
Now we will characterize the c-multipliers from Ll to (Lp, 29y

L<p, g ' )
We know that the amalgam (LP, 29), 1 < p, g9 £, is a Banach
in

Ll—module (84 p. 60). Then there exists an equivalent norm |

1
i |pq

(LP, 29) such that for a1l f e L}, p e P, 29 ‘
] T E_,-
*
Hexll g < el [Tull g
e , .

- ' -
We will write (Lp, 29y for (LP, 29) endowed with the norm

-

|pg [19s 14.4].

-~

g (Lp, lq) is a

: 1
THEOREM 13.18. Let 1 < p, q <® If T: L
linear operator then the following are equivalent:
i) T e e-M(LL, (LP, 29)).

A -

ii} There exists a unique p € (Lp, lq) such that Tf = p*f for all
1

f e 5.

The correspondence between T and | defines a continuous linear
isomorphiém from c—M(Ll,(Lp,_Eq)) onto (LP, %),

If 1 <p, g <‘m then the isomorphism is an isometry from
c+M£L1,(Lp, 29"y onto (P, 29y .

PROOF. The case p = q = @ ig Theorem 13.3,

By Theorem 13.1, 1) implies 1i).

LY

166
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If pe (Lp, 29y and Tf = psE (£ ¢ Ll) ~then clearly T cdm—

mutes with convolution and by Theorem 4.7
17811 pq = 11wl I < 2% [1El]y Iullyq foranr el -

Hence T is cohtinuou;cdnd ||T||.§ 24 ||u||pq. The;efore

T c c—M(Ll,(Lp,'Eq)) and the equation Tf = p*f defines a continuous
linear isomorphism from c—M(Ll,(Lp, £9)) onto (LP, 29).

: 1
If 1 <p, q<<e and T ¢ c—M(Li,(Lp, 29) ) then for all f in

1 1 _ ' ' '
Lzl 1= el < el Tl tence 121] < [ul] -

Now, by Corollary 4.14 and Theorem 7.2,

- ~ lm [ fegre - ull, = 0.
U 0 Pq

o L
So given € > O there exists a ¢y such that ||¢U*u - u||pq < E.

This implies that ||oy*u|[pq > ||u|[;q - ¢. Since ¢y € L} and

||¢U||l =1 we conélude that |{T|| = ||u||;q_+-
( LS

REMARK 13.19. By Theorem 4.7, f*u € (Cq, 29) ((L9, cy)) for all
fe L} and ue (L2, 2D (LY, Qw))‘(l < q < ®), Hence by Theorem 13.18
for 1 < q < =, e-M(LY, (2] 29)) = c-M(!, (Co, 29))

(e-M(Ll, w8, £y = c-ut, @l o). ?

This implies the next theorém whose first part is already

known [42,vTheorem‘4;2].

THEOREM 13.26>\§?t l <« q <=, If T Ll —s (Co, 29) (LY, <o)
is a linear operator then the following are equivalent:

1) T c~H(5;,(0q, 2yy  (c-M(LY, (19, co))
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ii) There exlsts a unique u € (Lw,_iq} (9, Rw)) such that Tf = p*f

for all f ¢ Ll. ) /ﬂ\\\F,x

The correspondence between T and p defines a continuous isomor-

phism from c-M(Ll, (Co, 29)) (c-M(Ll,(Lq, cg))) onto (Cq, £
((Lq, CU))- . ;-'—*—--.\b
RPMARK 13.21. From Theorem 12.9 and Theorem 13.20 we conclude

that for 1 < g < m,/Z:M(Ll,(Co, L9y = M(LL, (Ce, 29)) and . i~

M(ﬁl,(Lq, co)). Then by Remark 13.19, for I < q < =

e-M(LY, (L9, co))

oMLl (1%, 29)) = oML, (Co, 29)) = ML, (Co, 29)) and

I
1

It
il

e-M(LL, (19, co)) meLt, L, Cgl)-

A

c-M(LL, (L9, £))-

The next theorem is the counterpart to the-uniqueness theorem
in the theory of Lp spaces and we will use it to characterize

\\\ c~M(L1,(Lp, £9)) in terms of functions on 8.

_ THEORFM 13.22. (Uniqueness Theorem for Amalgams)./

i) Let u,v  be in M_(G). if ﬁ = G then M = V.

ii) Let £, g be 1in (LP, 29, 1 élb, q £ @ If E = g {as lin-
ear functicnals on Ac(ai if q > 2) then f = g q.e}

ggggg.-i) 1f a,= G then by definition of the Fourier trans-—
form (Definition 6.9) for all ¢ € @(6) '(see Lemma 6.4)
<Y u> =< >R <9,V =< o,

Since (9(6))“ is dense'in {Co, 21) (Propositioﬁ 8.3 iv)) and
W, V ‘belong to M, = {(Cyg, 21)* {Theorem 3ﬂ20 we conclude that y = v.

r~i—=\\\ i} £, g as measures belong to Mq. That is,u = fdx,v = gdx

-

.~



<

-

belong to Mq, hence toe M, by (2.9). Since the Fourier transform of

f as a function of (LP, 29) and as a measure of Mq is the same (§6, p.79)
ﬁ = (fdx) = £ = é = (gdx)n = O. By the uniqueness of the Fourier trans-

form ﬁ =9 as Mq and M, transform. Thereﬁdgg\By\i) U = v. This im-

e,

plies that fdx = gdx “and we concluge that £ = g a.e.+

[

THEOREM 13.73. Let 1 < p, q < =. Tf T: L}
x <

linear operator then the following are equivalent:

» (LP,"Y  is a

i) T ?'c-ﬁ(Ll,(LP, 1Y),
ii? There exists a unique iﬁ-Ac(a)*, in (Lqr, QPT)(E) if
1 <p,qg<g2 in (Lq', 2,2)(6) if .1 <*q <2, 2:< P i:,. such that
()" = @t foghéil ~f £ L1. (See §5 pp. 71 a65'73).
. PROOF. If f.e c-M(Ll,(Lp, Rq)l,;uﬁén by Theorem 13.18, fﬁéée
exists a unique HE (Lp, 29 such thagﬁbf?ﬁn u*f for all f e Ll.
Then by Proposition 6.14, (Tf)A = ﬁf = ¢E,ﬁ = belo gi;ﬁ;“?Lq', lp')
{f 1<p, q<2 (Theorem 5.7), to ', 22y 151 <.q <2,2<p<w
(Remark 5.8). Clearly % 1s unique. Therefore i) implies :i).

If ii) holds then for f, g in L!
(texg)” = (T6) § = (@) & = o(Fa) = w(Exe)” = (T(Exg)”.

By Tﬁéorem 13.22, Tf*g = T(f*g) for all £, g‘}n LL. That is,
T commutes with convolution. . “ —

To prove.that'T is coﬁtinuous;{take {£,}, £ in Ll such that
lim ||fn_~ flll = 0 and suppese that lim HTfn - g”pq ='0.

In any case we‘will think of ¢ as a linear functional on Ac(a).

So for Y e Ac(a), @ e (Co, 21) (Lemma 6.4) and by Definition 6.6 and

169
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Y,
the Holder inequality for amalgams (Theorem 3.l) we have that
~ ~ . » ~ Lkl ~ ~
< u,(TE) - g >[i< [< 9, (TE) - (¥£) >| + |< ¢, (€ - g >
= [< d.0f - wE, >| + |< $*,18, - g >

. ~ v .
SlewtE —En e sl el o e, < el

i A

. ~ \'
Lol T Hwee - ) Hz + [[WHaf 175, - &l

]

ol | Tce = e 11y + 13l Ly ey - el

*

]

» ,
- = Mot Tty T1e = gg11y + Tty Ty - el
v

- v
Ja— This implies that < y,(Tf) - g > = 0 for all Y e A (C)

Hence (Tf) = g and by Theorem 13.22 Tf g a.e. Therefore by the
Closed Graph Theorem T is” continuous and ii) implies 1).+

COROLLARY 13.24. Let 1 < q <, If T: L*—+ (Cp, 29)

> (Lq, ce)) is a linear operator, then the following are

1
fﬂ"

e Q{Tiant: ‘
-

D) BEMIL, (o, 2D a1, @, eo))” i |
ii)//}ﬁggédé ts a unique @ in Ac(®)" (A (®)), in @', 2% if

1 <q < 2, suc at (Tf)A = wf for all f g Llr o , v

R 7

PROOF. C ollary/;3.2 and Theorem 13.23 (remember that

(Co, 29) & L7, 29) and (19, co) = (L9, D)) .4

o ‘ SR | : ,
y  To cRaracterize the ctfgjtipliers from L to Mq we need the

) following_lemmg. : © Oy



[

i

11} First we ‘note that f*u(t)
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LEMMA 13.25+Let p e Mg, 1 < q < .

q!
1 . ° - f
1) If £ e L' and £ >0 then £*u" = (£x{p])".
- . . &'. .
ii) 1f £ = oxp where a is a nonmegative real number and T is

a measurable subset of G then (f*uj# = f*u#.

PROOF.

1) f*u#(X) =

—

f(x - ey ulf () de = j £(x - t) |ul(t + 1) dt

[t -0 Xe_g, (8)7dul(s) dt

r r

= f(u

s) xL(u“— x) du d|u|(s)

.
= | | £Qu - 8) Xpr(w) du dfuf(s)

= XX‘FL(U)J f(u - s) dlul(s) du -

= £xlu () do = (ex[u]d 6.

< x+L

a J xg(t = x) du(x) = a u(c - E).
If p is real-valued theh by the definition of (f*u)+_(see p.117)

we have that for t € G

(ex)yP(E) = sup (£*u,0) = a sup (u(t - E),0) = o ufft - E)
= o (xgrut(o) = pat(o). S - )
’ . ' {
(f—-Similarly (£*)~ =. f*n”. Hence
(6) [£xpu] = £rut + £xp~ = £%|u.
' . 4 # }k\ ! : ..
Thus, by part 1) (£xu)* = (£x|u])" = £xuf . :
’ . ) A
If ¢ is complex-valued then yu = J; + in, whexe i:?}/; 12
: e gy )
is a real valued measure in Mq. So, by (6) no /’ijﬁg#::
. . > Y
r )
. NN | AR ,
. & N E’ . 5
\\\ o~ s -
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e’ ’ . -

f*|p[ = f*|u1[ + £x|p2| = |£*p1| + | £%u,| = | £%u] .

Again by part i) (f*u)# = f* u#.+ .

THEOREM 13.26. Let 1 < gq <. If T: L + Mq ia a linear

operator then the following are equivalent:

i) Te CrM(Ll,MqJ.

ii) There exists a uni&ue Rt £ Mq such that Tf = p*f for all f ¢ Ll.

The correspondence between T and Y defines an isometric linear

isomorphism from c—M(Ll,Mq) onto ,Mq#. .

PROOF. The case q = @ was proved by Feichtinger [24, Theo-
rem 1.3]. It should be mention that the definition of a multiplier used

throughout [24] corresponds to what we call c-multiplier and not the one

-

given in [24, p. 342]. . i
aa I * L]

Assume 1 < q < «. By Theorem 13.1, 1) implies ii).

Now, if £ M
+ * H L I

mutes with comvolution and by Corxollary 4.6

and Tf = y*f (f ¢ Ll) then clear1§ T com-

T

o o ennl 1 # ' # . 1
|1T£] g —rllf*ullq = [lemulliq < THEHy Hullg,  for all fe L.
This shows that T is continuous, hénce ,T £ c-M(Ul,Mq), and

[T} < ]|u||2. Since u# € LY (see Theorem 1.21) and q is finite, .

given € > O;hhere exists a neighborhood U of 0 such that

»

||h'*u#-u#||q<e for all hs\_g.l, Hnlly =1, h;OandJ h=0 -

-

G
)
[37, Theorem 20.}5]. Let f = 1/m(U) xy. Clearly £ sa;isfies all the
. ' o B
above conditions and therefore ||f*u# - u#1|q <g. - i
. 4 \ .
- By Lemma 13.25 we have tha £
i -
| \C
) Y ‘ xS
¢ o
. N ]f ‘.
. A \ ‘
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Tl 1 o o iy 2 #\,#_.
- llifil?_llf*ulllq' [T Ty = et > T - e
Silace ||U#||q = ||U||ﬁ we conclude that ||T|} = ||u||ﬁ{+ ~
<“\ REMARK 13.27.-1f T ¢ c—M(Ll,Mq), 1 < q <= then Tf = p*f

for some W€ Mq. So by Corollary 4.4 Tf ¢ ,(Ll, LY for all f e Ll.

Hence c—M(Ll,M ?f:_c-M(Ll,(Ll, 29)). Now, since fh—r fdx from ’
el !
(Ll, Rq)# to M; is a natural embedding which is an isometry we con-
2 1 ’ 1 71 qyy > :
clude that c-M(L ,Mq) = ¢-M(L*,(L*, ¢9)). This implies the next a?eo—

rem which is already known [42, Corollary 6.3].

\_,/TEESEEM 13.28. Let 1 <gqg <= If T: Ll

linear operator then the followihg»are equivalent:

» (Ll, Eq) iz a

1) T e M@, @, 29)).

-

ii) There exists a unique y € Hq sucﬁ that Tf = p*f for 511 f e Ll.

The correspondence between T and U defines an isometric linear

isoﬁorphism from c—M(Ll,(L;, Eq)#) onto Mq#.

/) .
REMARK. Aj alternativég3pproch to Theorem 13.28 might be to use

Feichtinger's THeorem 1.5 in [24] and sﬁ%w'that (Ll, 29y, = Hq'

QY REMARK 13.29, Froé&Theorems 13.26 and 13.28, for 1

A

q =%

R c—I-{'(Ll,Mq) c H(Ll,Mq) and e, 0}, 29y e m@l, @l 29). Then by

" Theorem 12.9, o-M(LL,(Ll, £3)) = m@!, ! 29)) for 1 < q < =. There-
fore for 1 < g <= — '

Mg oM < emat, @l 2% = wal @l o).

We do not know 1if for 1 € q £ =, c—M(Ll,Mq) = H(Ll,Mq).

S _ v - ) ® .
: . ' '
-~ J .- . > .

- . "\‘,\
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THEOREM 13.30. Let 1 < q < w. 1f .T: L'— (!, 2% is a

linear operator then the following are equivalent:
1) Tecmh,@l, b, | =
f)

11) There exists a unique @ in Ac(a)*, in (Lq', co)(a) if 1 < d'i 2,
Fl

sucﬁ that _(Tf}é = w% for all f ¢ Ll.

e
NS

- ‘ The proof is similar to the proof of Theorem 13.23.

THEOREM 13.31. Let 1 < gq < @, If T: Ll-——* M is a linear

operatéor then the following *are @quﬁvalgﬁt: o _

1 .
1) T e c-M(L',Mg) . . .

Nk T @ A
1) There exists a unique ® in A.(G)", in (L1, 2)(6) if 1 < g

such that (Tf) = f for all fe Ll.

< 2,

'

o~ ‘ The proof of this theorem is also similar to the proef of Theo~.

\\r65/13 23 but using the Holder inequallty as in Theorem 3.2, -

?

‘l/THEOREM 13.32. Let p e M, 12 q <=, and feg wh, _zs),
1 ;-q'é=s < w, If ﬁ =f on AC(G)* then f € (L}, 29}, u is the imagé
of f under the embedding of Remark g% 27 and dp = fdx.
PROOF. Let Tes Tu be the c-multipliers in c—M(L ,(L , 9,
c—M(Ll,Mq) associated to f and 1 respectively. Then byxyypethesls o RN

(Tgg) = (f*@"ﬁ—gg = pg =.'(u*g) ) for all g€ L' (see Def- -
~

and L, 9 < @!, 5, .
1

ﬁion £.13). Since u*g € (L1

(ng)

Tog="Fhg S

(Tug) ~as (Ll, 2%y /transform for all g e L
.

. By Thedrem 13.22

kg = T.g forfall g e L .‘This implies that du = fdx and

ﬁq' Hence £ € (L Rq) ok

u
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,fFKEMARK 13.33. In the particular case U « Mq, 1 <q < 2,

£ e (L1, 22), Theorem 13.32 says that 1f 1| = f a.e. on & then f be-
longs'té (Ll, 29y and u is the image of f under the embedding of re-

mark 13.27 and dp = fdx. This generalizes the result in [37, Theo- *

"

rem 31.33] because when q =1 and f ¢ Lp, 1 < p <2, then f belongs

ro (L, 22y as P, 2P) = !, 2P) < !, 22). so by Theorem 13.32

fe Ll, |l is absolutely continuous and 'du = fdx.

COROLLARY 13.34. Let 1 <q<®», 1 <q<s<w® If gt w29y,
fe (Ll,‘ls) and § = f on Ac(ﬁ)‘ then £ =g a.e.
. ©  PROPOSITION 13.35. Let 1 <pgr<w, L<s<qgew If
f e (Lp; Eq), g € (Lr, ES)' and f = § on Ac(a), then f =g a.e.
o ZROOF. Similarly to Theorem 13.32; lef T, T, be in
c-M(Ll,(Lp, 29y), c—M(ﬁl,(Lr, 25)) assoclated to £, g respectively.
By hypothesis '(Tfh)h'= (f*h)i = th = §ﬁ = (g;h)h = (Tgh)f
for all h e Ll. since (LF, £5) c (LP, &9y,  (T¢n) = (Tgh)A as
(LP, Qq)‘ transﬁorm, so by Theorem 13.22, for all h ¢ Ll,
= g*h = Ty h. . This implies that f = g a.e.y P "
VS;J end this fection with the following c?njecture5 _\H\\\\

By Theorem 13.18 c-d(L!, (L™, 21)) < mel, @, 29) anﬁ
c-M(Ll,(Lq, L)) < M(Ll,(Lq, lw)) for 1 < q < «, We believe that

e-mLl, @, 29) 4 mal,@”, 29) and c-mel, (%—e‘i)) Fuat, w2

.-
Lo fof all 1<gq<wm, J
'1/" s, £ N

»

‘i “- | i \

4 : ™~

.



§ 14. MULTIPLIERS FROM M; TO AMALGAM SPACES AND SPACES

A

OF MEASURES Hq'

; The c-multipliers from Ml(G) to any Banach Mj-module A (Defini-

L}

‘tion ;.9) are easiiy characterizéhhlndeed, if T Ml———riktis a linear
operator and T has the form Tv = p*v (v ¢ Ml) for some p € A then
Sy th; properties of convolugion and Mj-module (see (B-f) p. 60 ) T is
a c-multiplier from My tq/7A.
) Conversely if T commutes wi;h‘cghvolution and 8§ is the iden-
tity in M; then, for v e M), Tv = T(8*V) = IG*U = pky with | = TS.
Hence, T e c—M(Hl,A). iff there exists a unique 4 € A such

that Tv = p*v for all we Mj.

By 84 p. 60 we immediately have the following theorem.
T~ _

THEOREM 14.1. Let A be any amalgam space (Lp, iq),.(Co,'Rq),

b4

1 .
(LP’ co), 1 £p,q<® ora mgpsgii-space Mg, 1 <'s %[Q, If
-

T: Mj—— A 1is a linear operator then the followingﬁzré equivalent:

,_i) T g C"M(MI,A). <

T

. N
'Y 11) There exists a unique u € A such that Tv = v for all v e M). B

L

i iii) There &xists a unique @ ¢ Ac(a)* such}that (Tv) = uﬁ for all
L A ven NN

= (P, M, 2<p<ew, 1 <q<2,or
\ s £q5

7 ] i
}fK-= (Ca, Qq), 1 < qv< 2; P e (Lq , Rm) if/A = Mshl.é:s < 2.

9

N

O S ’ 176 )
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1 .
The correspondence between T and | establishes an isometric

linear isomorphism from c-M(Ml,A') onto A (see 813 p. 166).

PROOF. As we have already said, 1) is equivalent to ii). If ii)
holds then by Proposition 6.14 i) (Tv) = (u*v) = v = @ for all
v EaMI' where = ﬁ. Clearly ¢ is unique. The remaining clauses in iii)
follow from Theorem 5.7 aQQ:Remark 5.8. . '
Now suppose that (Tv)" = wu for all Vv & My, ® € Ac(a)*. Then
for v, n in M t @3
(o)™ = eI = @HF = 0GR = o) = (Turn))”.
Hence by Theorem 13.22 . Tvin = T(v*n). This means that T com-

mutes with convolution. Therefore Tv = u*v (v € My) with p = Té as

we saw at the beginning of the section. This shows that ii) 1s equiv-
-

‘alent to iii).

Finally, by the Ml—modularity of A', for v e My,

“Hllar = hellar < e 1911
Henc® | |T}| < ||u||A.. Since . 4 = TS and ||6]|1 =1,
]|UI|AT §=l|T|J. Therefore ||TI|‘= ||u||A,) and'the proof is complete.+

© &

- A"

REMARK 14.2.°It follows from Theorem lﬁ.l that
c—M(Ml,A) < M{M},A). But we know that there exists a T in M(M;,M)) such
that T is not define& by the convolption with an element of M; 29, v\
p. 941. SUfc-M(Ml,Mq) # M(Ml,Mq) fCr 1 < q < @, Indeed, if
c-M(M,My) = M(Mi,Mq) then for T e M(M},M;), T belongs to MQMj,Mq)

since Ml c Mq

v B
by (2.9). Therefore T E,c—M(Ml,Mq). So Tv = phv

(v € M)) where u = TS, heq§3 U € Mj. This contradiction proves our



..

178

J,

¥

-

claim. (We do not know if\bciuﬁh,A) = M(HL,A) for somg amalgam spa‘=‘A).
However the situation is different when we consider le (see

§12 p. 144).

THEOREM 14.3. Suppose A 1s an amalgam or measure space of type
q such that § satisfies the following twd conditions:
(14—1) There exists a Banach space B such tﬁat B*5= A.

(14-2) For all f e B and g e A, f*g e Cq.

If T: le » AY is a linear operator then the following ‘are

equivalent:
L w oW '
1) T e MM} ,A).. ) : .

11) T e c-M(My",A").
iii) - There exists a unique p:'e A such that Tv = pu*v  for all v ¢ Ml.

iv) There exists a unique @ € Acgﬁ)*- such that (Tv)A = mG for all
vV E M. '
SN

The correspondence between T and t Mefines a linear isomorphism

from M(M;",A") ongo A.

PROOF. By Theorem 12.9,1) implies ii). As in Theorem 14.1 ii)

implies iii) with p = T8 and iii) is equ%yalent to iv). . - )
: \__\f‘

Now suppose iii)e, By the propertieg of convolution T commutes
®

v

' : : : ' ~

'with translations. . . /,f/T

To prove that T is continuous take {v,}, d‘in.Ml such -that
R
* -

lim v, = v in M;”. That is, for all he Co, lim < vp,h > = <v,h >, )
Let f € B.iBy condition (14-2), “"f*u e €, and we have that g i ]

. ) , " ey,
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S

'l

£

‘By ?), gn*h € Qo

_closed subspace of L” and lim gn*h = g*h in L”. Since C. is dense in

< Tv,f >

H

=
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< pky,f > = < y,ERy > = 1im < vn,f*u > = lim < ui*,f >,

lim < Tv,,f >.

This implies that T is continuous a&d therefore T £ M(MIW,AW).-

The rest of the theorem 1s clear.s L]

, 8

PROPOSITION 14.4. The following spaces satisfy conditions (l4-1)

s

PROOF. a) and b) follow from Theorems 4.7 and 4.8 with

and (14-2).

a) (1P, Rqa l <p, g <o
b) Mé lﬁé‘q <

o P,y 1<pew

dy (LP, 29 L < p < w

e) (L7, 29 l<gcw

. '

Let h e C, with support E and g ¢ (LP, &

P
sequence {gn} 1im L. such that 1im g, = g in (LP, 21y (The

@',
N

clude that

(P,

1]
29) and B = (Cy, 99 ) . 1

"
espectively.

. : .
c) (LP?, El) satisfies (14-1) with B = (LP., cq) (Theorem 3.1).

f*g € Cq.

and this implies that } g¥h'e Cq, because C

/// d) is similar to ¢).

1). Then there exists a

em 3.6).

' .
cg) and ft— fxg from (LP , co) to L i§ continuous, we con-

a8

\ e) (L%, ll) satisfies (l4-1) with B QﬁkLl, cu).ILet f in

wl, co)

T
- B

from L} to (Qﬁ; 21). That is, T

and g & (L7, &

AN

1

). By Theqf

g

em 13.13, g defines a c-multiplier

h = g*h beldngg to {(Co, Rl) for

. -J‘G—h
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1
all h e Ll. In particular for all ¢ € Cc,fg*¢ £ (Cg, ) and hence is

in Co. Since C; is dense in (Ll,‘cu) and convolution with g is a contin-
uous linear map from (Ll, cy) into L” we conclude that f*g € Cp.

(L™, 29) satisfies (14-1) with B = (L!, 29') for 1 < q < =,
: q

and by Theorem 4.7, (L%, 29 satisfies (14_2)'T

\ .
REMARK 14.5. We should mention<that in Theorem 14.3 the function

. 1
¢ of iv) belongs to (LqJ, 2P y if A = (LP, 2, 1 <p <2,1¢%

Fas

q £ 2;

- 1.

to (L9, 2% 1f A= (P, 2Y, 2<pcm 1<q<2; orto@d, 89 if

A = Mq, 1 < q £ 2. (See the proof of Theorem 14.1).
. -
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§ 15, MULTIPLIERS FROM AMALGAM SPACES AND SPACES OF MEASURES

M To LT
L S

i

PROPOSITION 15.1. Let A be (LP? 2%), 1 < p, q < =, or (LP, ¢;)

l < p < =, Then A" has the following properties:

-

T

* q

' ‘ 1
(15-1) A =(Lpa£ Y, L <p', q' <=, or (Lp s 21):‘1<P'<°‘°--°

N
(15-2) For all f € A and g € A* f*g € Cy and

g1 < TN, o]l pu-
(15-3) If Te¢e M(Ll,A*) then there exists a unique p € A* sucﬁ that
Tf = u*€ for all f e Ll.

PROOF. (15-1) follows from Theorem 3.1. (15-2) is a direct
'

cqnsegdénce of the Holder inequality for amalgams (Theorem 3.1) and-

Proposition 14.4. : -3) follows from Corollary 13.2.+' A

The next fesult extends Edwards' theorem for Lp spaces [21, The-

orem 3], and its proof is similar to his. .

THEOREM 15.2.\Let A be as in Proposition 15.1. If T: A—> Lm

.@
el

"~ is a linear operator then‘thg following are equivalent: . .

v : !

-

1) T € M(a,L).

ii) Theré exists a unique u e A* such that Tf = p*f for .all "

4. | .

f e A.

. [ 4
" Moreoveér, the correspondence between T and u\gggines and iso-

. : x ©
metric isopdrphism from M(A,Lm) onto A ,-M(A,L ) (A,Cy) and p =T*6

[

’ o181
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-
-

#®
where. T is the adjoint operator of T and § is the identity of M. ’ .
~ L
PROQF. If ii)} holds then T commutes with translations and by

(15-2) T is continuous. Hence 1i) implies i).

* *
Suppose 1). Let T : Lm*———+ A be the adjeint operator of T.

* .
We shall see that T* restricted to Ll belongs to M(Ll,A ). Since ilh

* 1
LL < L *, < f£,T h »= < Tf,;h > for all h ¢ Ll and f ¢ A. Then for

s€C, fcaand he L S v
. it A
< £,T"t h > = < TE,Tih > = < TTE,h > = < Trgf,h > = < 1f,T°h >

= < f,TST*h >.

Therefore T*Tsh = TST*h. That is, T* commutes with téans—

1

*
lations. This implies that T*|L! ¢ M(LL,AT). so by (15-3)

* : \
(1) _Jhere exists a unique u e A  such that "¢ = p*f  for all..,

f € Ll.

1 . o

Noéw-take f £ A, h € L= and consider the following

(2); ®< TE,h > = < £,T°h > = < £,u%h > = < p*f,h >.

. X
Therefgre Tf = H:f for all f € A. Clearly p is,unique. Hence

F

i) implies ii).

Now, by (15-2) M(A,L”) = M(A,Co) and if T e M(A,Cy) then

C s % ) ~
ilT|| hY IIU||A* /and T : Ml———+ A _
To prove that ™ € c-M(Ml,A*) we take v, n in M; and h € A : )
’ L .
and we see that .
e _
(3) < T (\)*n) ,_h > o= é,\m"[h > = < ykn,u*h > = < v,ukh*n >

* .
8 < »,T(h*n) > = < T v,h*n > = < T*v*n h >.

Therefore T (vin) =T u*n This implies that T‘\E.c—M(Ml,A )

So by Theorem 1%.1 T = T%8*v { for all v E\ﬂLL In particular for
~
=
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* *
fe Ll, T f =T 8*%f. Then it follows from the uniqueness of u in (1)

L1

T*G and we have that

that
, —

R .
T8 by T T8I, = LTI = 1]

» By ii) and (15-2) we conclude that |]T]| £ I1ul‘A*. Therefore

]

Hullas

[Tl

||U]|A* and the proof is complete.t

' - ] ¥ =8}
THEOREM 15.3. Let 1 < g <. If T: (L, &) —> L 1is a lin-

ear operator then the following a¥e eﬁuivalent:
1) T e M, 2%,
' T
1i) There exists a unique W € (L=, &ﬂ } such that Tf = y*f for

all fe @l, 9. . .

. The correspondence between T and u defines a continuous linear

1]
isomorphism from M((Ll, Qq),Lm) onto (L7, Qq }. If 1 < g < = then

ml, 29,15 = meal, 29,c,), u = T"6 where T is the adjoint
operator of T and the isomorphism is an isometryﬁ *

PROOF. If ii) holds then by the properties of convolution T

commutes with translations and T.is bounded because

T

SIEsul | < £l 1ol legr for all £ e al, N, ve @®, %)
(Theorem 3.1). . . hvv“z
Suppose i}. Since for all 1 < q < (Ll, 2 )* < (L%, Rq')
(note that (Ll, co)* = (L7, 21) and (Ll, Em)* c (Ll, Cu)*)
P ow g o . .
and (L, ' ) c L we can consider the adjoint operator

* ook *
T : L ———+-(Ll, Qq) of T, to be a linear continuous operator from

i

* %
L™ into L™ So, T : L®—> L~ and T*|L1 commutes with translations

because if s e G and £, g € L1 then



4

t o l 184

-

* *
ST rgf,g > =< 1f,Tg » = < £,1,Tg > = < g » =< T f,t.8 >
i . -

*
< 1T £,g >.

3
1

*
This implies that T*?Sf =1, T £ for all f ¢ L, Using the

Py
: *
same argument as in Tﬁé}?g; 12.9 we shall prove that T |L1 commutes

1
with convolut%@n. Let f, g in L . Then

T -

,c -

_;< T*f*é,h > = J T*f*g(t) h(-t) dc = [ J T*f(t - ;) g(s) ds h(—ti de
- = I g(s) J T*f(t - 5) h(-£) dt ds ; '_ '
= J g(s) J ST*f(t) h'(t) dt ds
- N\
[ . - '
= J g(s) [ Tt f(e) h'(r) dt ds
J .

A ]

= J g(s) J Tsf(F) Th'(t) dt ds : k\

= [ £(t - s) g(s) ds Th'(t) dt . _ \
D . |

f ' ]
= | Frg(e) Th?ta\ dt = | T"(f*g) h(-t) dt
_ J

4

]

< T*(f*g),h >.

"We can apply Fubihi's tHeorem because 'Th e-I” and f, g E‘Ll.

* .
gHence T f*g = T*(f*g) an e conclude that T [L belongs to

c-M(Ll,(Lw, Zq )). By Corollany 13 14, Theor;m 13.15 and Theorem 13.18
there e;ists a unlque HE (L q') such that T f = u*f for all
¥ 8 Ll. Clearly B is unique and as in the. proof of Theorem 15. 2 it fol-.
lows that Tf = TLI N Therefore iy implles ii). T

| It i;\clear thaé the relati;n'.Tf = u*f defines a linéar‘igo; _

T
morphism from M((Ll Rq) L ) onto (L, Rq ) and I|T|L.é ||U|qu‘-

-~ .

(fl,
Na) )
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[¥s] L]
If 1 < g <« then (L , 29 ) satisfies condition (14-2) of

Theorem 14.3 (Proposition 14.4). Hence M((Lw, Zq),Lm) = M((Lm, Rq),CG).

* o '
That is, T: (L', 2% — C, and this implies that T : My o~ (7,49,

Using the argument (3) of the proof of Theorem 15.2 we have that

* —_— * ’ q %k *
bw=T38. So, [Iullgq- = (178 e < T L i8I, = 177 = []l]
Therefore ||Tl[ = ||u|]mq,.+

-
- -

THEOREM .15.4. Let 1 < p < ». If T: (LP, 1)

« . r
» L is a.lin-

- ear operatof then the following are equivalent:
1) T e Ml 2by, L.
11) T(f*g) = Tf*g for all £ e (LP, 21) and ge L.
ii1) There exists a unique- T (Lp', 2¥) such that Tf = p*f for all
£ e (LP, 2hy.

The correspondence between T and u defineslan isometric isomor—.
phism from M((Lp, 21);Lm) onto (Lp', Em), M((Lp, il),Lm) is equal to
M((Lp, 21),CD) and uy = T*S . where T* is the adjoint operator of T.

PROOF. Let Tf: 1™ (P, ¢®) be the adjoint operator of T.

Suppose 1), Using ﬁhe same argument as in Theorem 12.9 we have

b ¢ pfxg,h > = < T(E*g),h >.

ThereforemTf*g = T(f*g3 for all . f ¢ (Lp, 21) and g € Ll.

that for f ¢ (LP, Rl) and g, h e L

- 1
Suppose ii). Take f ¢ (Lp, £, g, he Ll. So

*
(4) < T g*h,f > = < T*g,h*f > =< g, T(h*f) > = < g, Tf*h >

< T"(g*n), £ >.

[}

< g*h,Tf >

This implies that T*g*h
1

T*(g*h) for all h, g ¢ Ll. There-

] - .
fore T |L! ¢ c—M(Ll,(Lp , 2. By Theorem 13.18 there exists a
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]
unique e (LP, 2) such that T*f = u*f for all f : L'.

Similarly to (2) of the proof of Theorem 15.2, Tf= y*f for all
¢ 1
fe (Lp, %7). Hence 1i) implies iii).

If i1i) holds then by the properties of convolution T commutes

with convolution and by Theorem 3.1

Tf = *f < £ .
Hefle = Hhellg < Hull e 1] 1,

Hence T is continuoﬁs and ||T|} < [ {n . Therefore iii)

) [
implies 1i). .
. }
Since (Lp . ﬁw) satisfies condigion (15-2) of Theorem 14.3
P 1 @ p 1 .
M((L", £7),L ) = M{(L", 27),Cy). Similarly to the argument (3) of Theo-

rem 15.2 we have that u = T8 and IITII = ||u|1p.m.+

COROLLARY 15.5. M((LP, 21,1 = c-m(P, ¢h,L) for 1 < p <o

PROOF. By Theorem 15.4, M((Lp, 21);§m) < c-M((LP, Rl),Lm) for
1 < p <« To prove the other inclusion we shall see that #f T belongs

to c-M((LP, 21),L“)"'then;irf*g = T(f%g) --for all f e (P, 2}y and

g € L. So by Theorem 15.4 T ¢ M((LP, 21),L).
Let g € L!. Then there existd€ a sequence {g,} in (LP, 21)
such that lim g, = g in Ll (Corollary 3.8). So for f ¢ (Lp, 21)

|ITe%g - T*gqlle < |[TE] |, 18 - 8oli)- Hence

= lim Tf*g, = lim T(f*gy) in L . Since lim |[fxg - £xgy[],) = 0
(Thedrem 4.7) we conclude that Tf*g = T(f*g) for all f ¢ (Lp, 21)

and £ L1 and the proof is éomplete.+

The proof of the next theorem is based on [40, Theorem 3.4.3].
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THEOREM 15.6, Let 1 < q < o. If T: (Cq, 2H)— 1% is a

linear operator then the following are equivalent:

1) T & M{(Cu, 29),L7).

ii) There exists-a unique u € Mq‘ such that Tf - u*f for all
£ e (Co, 29).

Moreovef, M((Ca, 2%),L™) = M((Co, 2%),Cq), u = T*6 where T
is thuhadjoint-of T and the corresp;;dence between T and U defines an
igometric isomorphism frem M((Cq, £9),L”) onto Mq..

* PROOF. If 1{) holds then T commutes with translations and T is
continuous by Theorem 4.8. ‘

Suppose 1)}. For f € (Cy, LY and s e G
18 = 1l = 1176 = T8} ], < (11| [figf - €]

Since Vs —+ 1 f 1is a continuous function frog G to (Cy, PAM!
(Theormn%;éf and Lemma 3.13) Tf is uniformly continuous on (Co, 29).
Hence, it makes sense to define "F(f) = T£(0) (f € (Co, 29)). Clearly
F is linea:'and for f g (Cy, Rq)

P = 172 < 117l < lTl] 18l lage

Therefore F is continuous. That is, F ¢ (Co, Rq)*. By Theo-
rem 3.2 tﬁgre exists ; uniéue U e Mq, such.that F(f) = S £(-t) du(r).
So, for f e (Co, 29) and s e G.

(TE)(s) = T_ TE(0) = T1_S£(0) = F(wn. f) =/ £(s - t) du(r) = f*ru(s).

Therefore TE = p*xf for_all f e (Cq, 29y, B& Theorem 3.2
T[] < ||u||q} and u. is unique. .

The rest of the proof is similar to Theorem 15.2, using the

)



. 188

fact thatr (C,, Rq) has the property (15-2» of Propesition 15.2 (Theo-

rem 4.8).+

For the special case of the Wiener algebra we have the follow-
—_
ing resulr.

v Y

COROLLARY 15.7.

M((Co, 21,1 = M((cy, 21),C0) = e-M((Cy, 21).Cy) = cmm((c,, 21),L).
Hence M{(Cy, ll),Lm) MM
PROOF. By Theorem 15.6 M((Cy, 21),L™) = M((c,, 2),Co) and
M((Ca, 21),LT) < el(Cy, 21,17, M((C,, 21,60 < e(lc,, &1),c,).
Let T € c~M((Cy, £1),1™) and consiﬁer its adjoint

x ook 1 1

T:L ——M_. For h, £fe (Coj, L7) and gcl

* A
< h,T"g*f > = < h*f,T'g > = < T(h*f),g > = < Th*f,g > = < Th,g*f >
*
= < h,T (gkf) >.
* * 1 1
Hence T g*f = T (g*f) for all f € (Cq, 27}, g € L™
For £ ¢ (Co, 21, g, he L} -

*
< T (h*g),f >

n
]

X *®
< h,T(f*g) > = < T h,f*g > = < T h*g,f >

< h*g,Tf > = < h,Tf*g >.
Hence T(f*g) = Tf*g for all f ¢ (Cu;.ll), g £ Ll.
l ' . .
For £ e (Cp, 73, g, h e L1
< £,T%(g*h) > = < Tf,g*h > = < Tf*g,h > = < T(f*g),h >
e < fxg,T'h > = < £ T h*g >.
* ' * 1 3
Hence T (f*g) = T f*g for all f, ge L.

Therefore T*[L1 - belongs to c—ﬁ(Ll.Mm). By Remark 13.29,
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*
T |L1 £ M(Ll,Mm). So, for s e G, { + (Cg, Ql) and g v L1 we have
that

. * * *
< BTtk > = < Tig,( f > =< 1gT'g,f > = <71 Tg8:f > = < 1.g,Tf >

= < g,TBTf >,

-
-

Hence TTSE = 1;Tf for all s e G, f e (Cq, Rl). Therefore
T € M({Cyg, 21),Lm) and we conclude that
M((Co, 21,1 = cM((cy, £1),19).

Finally, since Co & L” it is clear that

c-M((Cy, 11),Cg) < c-M{(Cq, 21),Lm) and this ends the proof.+

) S
THEOREM 15.8. Let A be any of the algebras (Lp, 27, 1 < p <o,

or (Cyp, 21). If T: A~ L~ is a linear operator then the following
are equivalent: i ' \

i) T & M(4,L%).

ii) There éxists a uniq;e Y e AC(G)* such thﬁt (Tf)ﬂ = wE‘ for
all £ ¢ A.

PROOF. If T & M(A,L”) then by Theorem 15.4 or Theorem'15.6.
there exists a uniqué K in (Lp', Em) or M; such that Tf = p*f for ail
f ¢ A, Since A c Ll we have by Proposition 6.14 that GTf)A = ﬁf = ¢E,
@ = ﬁ. It is clear that ¢ is unique. Therefore i) implies ii). The

proof of ii) implies 1) 1is the same as Theorem 13.23. Remember that by

(2.4), 1f lim ||£, - £][4 = 0 then lim ||f, - £]]| = 0.4

It is not known, not even for LP spaces, if M((Lp,,ﬂq),(Lr,ls))_

is isomorphic to an amalgam space (L*, &”) for some p, q, r, s. In this
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direction we have a partial result, similar to {40, Theorem 5.3.3).

THEOREM 15.9. Let 1l < p < r <, 1 <p, s, x, y <= If
sfr = y/x, 1/p - l/r =1-1/x and 1l/q - 1/s =1 - 1/y thén there
exists a continuous linear isomorphism from (Lx,.ly) into
MeP, ohH,a’, 2. |

PROQOF. By Theorem 13.18 and Theorem 15.2, the mapping
e ?U , Tug = u¥g on (Lx, 2¥) is an isometric linear isomorphism
from (L¥, 2¥) onto M(Ll,(Lx, 2¥}) and onto M((Lx', iy'),Lm) (see Cor-
ollary 13.2). If IJTU1|1' ||TUI|m are the norms of Tu i?
H(Ll.ka, 2¥yy, H((Lx‘. Ry'),Lm) respectively then
il = Nzl 1y = 1zl |

By hypothesis 1/p - 1/r = 1 - 1/x, hence x/r = x/p - x + 1 < 1

because x/p - x < 0. Therefore 0 < I - x/r < l.

Let 0 = 1 - x/r. Since s/r = y/x, | - x/r = 8 =1 - y/s. So,

1/r (1 - 8)/x and 1l/s = (1 - 8)/y, also

o

Sl -l _xalp 1o x gl -1 lex x 1
r x| r x' r|x X r X x r rx x
,£+L'{1-z] 1-8,90
r x r X
Similarly 1/q. =1 - 9 + 8/y"'. )
Applying Theorem 12.6 with pz=gq, =1, p, = x', q, = v,
I, =X, 8, ~y , r, =8, = we conclude that .

Tu £ M((Lp, £q),(Lr, Qs)) and the norm |1TUI| of TU in

M((LP, 2%, (¥, 2%)) is such that
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8 1 -0 U 1 ¢ U _
< Tl Tl [eliyy Hull [Tl g

Therefore y+—— Tp defines a continuous linear isomorphism

from (L, 2¥) into M((LP, 29), (LT, 2%)) 4



§ 16, CHARACTERIZATION OF MULTIPLIERS IN TERMS OF ELEMENTS

.o OF So(G)*

In Eff:;on 6 we gave a brief account of the Segal algebra

Sifflroriginall; defined by H. G. Feichtinger [25] and studied indepen-

—

/// dently by J. P. Bertrandias [ 6].

(

A

In this last section we will study this algebra $¢{(G) in more
detail and characterize the c-multipliers from the algebras (LP, 21),

I'< p £ =, (Co, Rl) and M; to any amalgam space or any space of mea-

.

* 7
sures Mq, in terms of elements of S,(G) . {

First we will prove some results about the multipliers and

c-multipliers from the Segal algebras (Lp, Ql) (1 <p <=, (C4, 21)

to amalgam spaces and to the space Mq (1 £ q <=,

THEOREM 16.1. Let § be any of the Segal algebras (Lp, £l)

(1 <p <, (Co,-il) and B be any of the spaces (Lp, L9y, (1P, Cols
1 <p, g <=, (Co, 2°), 1 < s < », Then M(S,B) < c-M(S,B).

=

PROOF. Let f, g€ S and Y € S*. A simple calculation shows

that
—TN
(1) < frg . > = [ g(s) < Tsf,w > ds.
' J
1 * .
Now observe that for h ¢ L™, k € B.and F € B
(2) < h*k,F > = [ h(s) < Tk F > ds.

J

-
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*
Take T £ M(S,B). For a fixed F £ B the map AF(f) =< Tf,F >

is a bounded linear functional on S. That is,

< f,AF'> = < Tf,F > for all f ¢ S. 4/‘\

This together with (1) and (2) implies that for £, g € § and

*
FeB

< TEXE,E > s [ g(s) < T,(TE),F > ds = [ g(s) < T(1.f),F > ds
J ) :

= J gls) < TSE,AF > ds.= < ffg,AF > = < T(f*g),F >,

Since F 1s arbitrary, T(f*g) = Tf*g for all f, g & 5.4

THEQREM 16.2. Let S be as in Theorem 16.1 and B be any of
the spaces (Lp, Qq), (Lp, cg)y 1 < p, q < ©. Then M(S,B) = c-M(S,B).

PROOF. Take T & c-M(S,B), s € G, f € Sand h e C_. So,

< T f,h > = TT f*h(0) = T(14E%h) (0) = T(f*T4h)(0) = TE*TSh(0)
= < TE,Th > = < T_Tf,h >. ‘
Hence < TTSf,h > = < 14Tf,h > for all h ¢ Ce. SinceICC is dense
in B*; (B* is either—(Lp', Rq') or (LP';-El), 1 <p',qg' <« we con-
'cludé that <'irsf,h > =< TsTf;h > for all h € B*. Therefore

Tt f = 1 ,Tf for all s e G, f € S. This means that T € M(S,B). The

conclusion follows ff6m~Theorem 6.1+

THEOREM 16.3. Let S be as in Theorem 16.1 and B be any of

1A

the spaces (L%, lq), Mq, 1 q < », (Lp, Qm), (LP, 21),,1 < p < =, Then

M(S,B) = c-M(S,B).
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PROOF. First we note that B is the dual of an amalgam séace c.
O .
So for h e Ll, ke C and F e B

ds.

A

(3) < h*k,F > = J h{s) < Tsk,F

As in the proof of Theorem 16.1, using_(l) and (3) we see that
if T € M(S,B) then T commutes with.convolution. Henece M(S,B) is includ-
ed in c-M({S,B).

Conversely, as in the proof of Theorem 16.2, we have that for

TE c-M(S,B), s €G, £ €5, and h ¢ C, < Tﬁﬁf,h > = < 1_Tf,h>. Since

C. is demse in C we conclude that < Tr f,h > = < TSTf,h > for all

h e C. This implies that T € M(S,B).y

DEFINITION 16.4. The Fourier algebra A(G) is the linear space
of functions £ dn Cy{G) such that, f = z, 4 E-Ll(G), endowed with
the norm l]fHA = |16]|1.

A(G) is an algebra under pointwise multiplication.

DEFINITION 16.5. Consider the following function f: R—— R

defined by

0 if x| > 1
f(x) = '
1 - |x| 1f |x| g 1.

The Fourier transform of f is equal to 2//5? (1 - cost/tz)
and therefore f € AC(R) and supp'f‘= [-1,1].

For n € 2 we define the function,fn to be Tnf. Then it is

-

clear that for each n £_ ¢ AC(R) and supp fn = n + supp f£.

n

Moreover for each x £ R Z fn(x) = 1 because if
n .
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x € [m~ 1,m] for some me Z then

DEGY)=E 1) +E ()=~ @m=-x) +x-(m-1) = L.
n

g a
Now, by the Decomposition Thedrem G =R x G, (see p. 10) and

for s = (x,t) in G, we define the function g: G— R by

Wls) = £0aa)e = = E(x )%y (t) X = (X1,.0,%,).
- N
It is clear that 1 ¢ AC(G) and supp ¢ = [-1 l]a x H. Then

for o = (ml,..,ma,t) in J (J as in Definition 1.6) he function

= L = s & . - ) .
wu T fm1 fma Xt+H_'has the following properties

(1), e AG)
(2) 7 supp ¥, = a + supp ¥ :
(3) z wa(s) =1 for each s ¢ G.

]

- e

DEFINITION 16.6. Let {y,} be the family defined fn Defini-

tion 16.5. Then Sy = S4(G) 1is the linear space of continuous func-

tions f e A(G) such that E llfwallA < =, endowed with the norm

Yells, = I Hew [,
[}

#,

It follows from (41, Proposition 1] that Definition 16.6 is
equivalent to Feichtingér original definition of 5,(6) in [26].
The following are some of the properties of §,(G). For a ﬁroef/’
#

see [26] and'[&l]; -

1) So0{G) is a Segal_algebra. Hence it is a Banach L1 and Ml module.
2) AC(G) 1s dense in S,(G).
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) M UM, $,(6)" < Qo).
4 5,(6) < {f e (Co, M| E e (Cp, 2D},

5)  S¢(G) = Sq(C).

DEFINITION 16.7. The Fourier transform Faog of g ¢ SD(G)*

is an element of So(a)* defined by

v ~ ~
<hpFoG>=<h"0>“<h,U> i ‘-(hESU(G))'

It is clear from 5) that F,0 is well defined.

REMARK 16.8. i) ﬁy 4) any h in $,(G) is equgl'to the inverse
of its Fourier transform. That is, h = h. Hence for any wa, (as in
Definition 16.5) ||h¢a[|A = |[ﬁ*$a||l and {hy };c (co,ozl).

'ii) If o€ 30(6)* then its Fourier transform FVO isgde-
fined as |

- v .
<hF,o0>=<h"'yo0>=<h,0> (h £ 5,(G)).

"o (o€ So(a)*)-

]

Therefore by 1) Fo(FVUJ-

PROPOSITION 16.9. Let p E M,. Then u as in Definition 6.9

coincides with Fyp as in Pefinition 16.7 iff there exists a constant

C such that ’
|< hyu>| < ¢ [In] g, . 'f?r all h e A_(G).

PROOF. This is a direct consequence of Definition 6.9 and

property 2).4

' *
By property l} we can define g*f (o*v) for o e $5,(G) and
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£ eL1(G) (veM(G) tobe an element of S,(G)* given by

It

(16.1) < h,c*f > = < h*f,g >

(16.2) < h,0%y > = < h*y,g > (h £ Sp(G)).

»

Moreover, 1f f e Ll(a) (v e Ml(a)) and h € $,(G)  then

. > V [
h¥ (hv) belongs to S,(G) because for any a € J

kw1, = [isdgrell < lel]) [ asdgl ] ~
V Ead o~
similarly flwou,|| < ]v]], Ilh*walllg

Hence by Remark 16.8 1)

v
(e.3  nellg < Ul Hullg,

1A

\4
6.4y [[nv[g < [|v[l; {Inllg ..

£
V) X - ~
Then .we "define gﬁ (ov) for o€ 5,(G), f ¢« Ll(G)

~ - *
{v e Ml(GI) to be the element in §,(G) given by

¥

v
(16.5) < h,of > = < ht,g >

v v '
(16.6) < h,ov > = < hv,g > (h € 5,(G)).

PROPOSITION 16.10. Let 0 € SD(G)*, fe Ll(G) (v e M;(G)), giﬁ
g c L1(6) {ne Ml(a)). Then
1) Fo(o%f) = Foo(E) . ( Fy(o%v) = F,o(9) )
i1) F_(0g) = Foorg ( F,(om) = Foo%n ).
PROOF. Let h e S (G). By (16.5) and the definition of Fa,
we have- that
< h,Fuo(E) > = < hE,Foc > =< (h%)v',o'> = < (ﬁ*f)',o >

v v
= < h'*%f,6 > = < h',0%f > = g‘h,Fo(o*f) >,
N \
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Therefore 1) holds.

Now, by Remar:’if.B i) and part i)
FV(FDU;S) = FV(FOO)E U§-~This implies that FOU*8'= Fg(Ug) and

’ 'Fhié proves ii}. ' -

The proof for v %nd N is the same.; .

THEOREM 16.11; Let 1 ; p, @ £ = If B is'any of the'spagés .
(Lp; %q), (Lp, cq)y (Cq, Rq) or M, S is any of the algeb}as (Lp, Rl),

q

(Co, 21) and T: § — B‘ is a linear operator then the following are
equivalent:
1) Te CHMkS,B) _
i1) There exits a uniﬁue g€ Sn(a)* such that (Tf)A ;_UE for all
f e 8. ' J
iii) 'There exists a unique U € SO(G)* such‘thaF ‘TE = ﬁ*f for all
fe S: T | - -

PROOF. We will prove that i) is eduivalgnt to ii) and ii) is
equivalent to 1iii). |

_ First we ohserve that if for all h e Ac(a) and f £ 5,

< b,(Tf) > = < h,0f > | for some O € S5,(8)" then by (16.5) and (16.3)"
[« 00 5| = J< nof > = [<nEo 2] < Lol [1nél g, |
<ot el IRl g,

- Therefore by Proposition 16.9 FO(Tf) = (TT) for all £ € §S.

1A

-

Hencé if ii1) holds then by Remark 16:8 ii) and Proposition 16.10 for

all £ 8§ Tfm= FV(FU(Tf)) = FV(Tf) = Fv(?f) = Fvo*f.
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e

Then we conclude that ii) implies iii) with w = F 0.

Conversely if iii) holds then by, Proposition 16.10 and (16.3)

we have that for all ‘f € S and h € nc(é)

~ Y v
|< h,(TE) >| = [< h',TE >| = {< h',pxe >| = |< h,Fy(urf) > 7
= [< 0o Fouf 2] = < nE,Fou > < [Foul| [ngl]
< 1Faull bl inlls,.

Again by Proposition 16.9 (Tf)A = Fo(TE).

Applyi;g Proposition 16.10 once more we have thgt
(Tf)A = F, (Tf) = Fo(uﬁf);= Foug and therefore ii) holds with
o = Fou.

Suppose 1). Since either B* is an amalgam space Or a measure
space of type q, or B is the dual of an amalgam space C, we have by
the Holder inequality for amalgams (Theorems 3.1 and 3.2) that

|< f,g >|

[t A

) *
f f B
Hellge Hlsll, e, £ e

|<_f:g >|

HIPN

et Ilell, (e, £ec). -
This implies by (2.3) and (2.4) that

(4) l< £,8 >] < ||=g||B ||f||ml for all g e B, f e (Cy, gt

).

Now, for £, g € S, Tf*g = T(f*g) = Tg*f. So by Proposition 6.14
part-i?, (Tf)hg = (Tg)AE . This implies by Definition 6.13’Ehaq for
all £, g € S and h € A_(6) _

(5) < hg,(TE) > = < h,(T6) 8 > = < h3(Te) £ > = < hE,(Te) >.
B Let {wa} c Ac(a) be as in Definitién 1%.5 and ‘W = supp {.

To each ¢ we associate a function Aa in (C,, 21)(d) as follows.

Take Aw' in (Cg,.ﬂl)(G) such that Aw =1 on W and

Aw £ Cc(G).-Then la = [-,a]Aw. It is clear that each Ay has the fol-
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lowing properties:
1
a) Ayt (Coy 2 )(G).

b)Y Ay = Tukw. Hence by (2) X, =1 on o+ W = supp y ..

) Ay £ C_(B).

O aliny = N,

We define g on Ac(e) by
< h,g > = g < hyy, (TA) > (h € A(G)).
. First we note that if h € AE(a) then hwu belongs to AE(a)
v v v Vv 1

because hyy € C(E), ()Y = B*y, and h*y, € (Cy, &') (Theorem 4.7),
so by Lemma 6.4 hy, € AE(E). Also by b) hy, = hy X, and this implies
 that

A v Vv . ) v V
[T [y = Hsgiag oy < Al e llh*walll_

S A ey TTnwg ]l -

-

Therefore by {(4) )

’ ” Vi v
<y, (Thg)  >[ = < (V' TA, > < A g ] hg) | e

T TG TIx T, Hwgl],

2
< 1Tl T gl

I

Hence 0 is well defined and for all h & A_(G)
112
<moal s il gl el -
1f AW' is .another function in (Cg, E})(G) with the same prop~
erties as-?\W and Aq' = [',u]lw' then by (5).we have that for all

‘h g AC(G)
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< nwa,(ma)ﬁ > = < hwu/Aa\',mu)“ b= < hwuia',mu')“ .
= < hwu,(TAa') >

This shows that the definition of o does not depend on the
choice of the function Aw.

By the density ;f Ac(a) in_SD(a), ¢ has a unique continuous
extension\O on 50(8). | _

Now, if h 8 AE(E) then {(hy,} < AE(E), hy, = 0 for all but
finfitely many a's and by (3) h = z hy, pointwise. Then for f & S
<h, e s =< T by, (TF) > = § < B, (TE) >. |

This toggther'with {5} a:d (16.5) implies that for £ € § and

h € AE(G)

< hrcg > m hE,G > = ): < h‘f\wo;'(TACt)” > = E < hwaka'(Tf) >
' o o .
=} < hy,(Tf) > = < h,(T) >.
a

By the observation we made at the beginning of the proof we
~ ~ K- -~ ~
conclude that  (TEf) € 5,(G) . Since AC(G) is dense in S,(G),
(Tf) = cf for all £ ¢ S.
N

~, If he AE(G) and AE is a function in (Cq, 21)(G) such that

Fal
AE =1 on E then we have that
(6) < h,g > = <_hAE,o > = < h,ohp > = < h,(TAE) >,

Finally i1f ¢' 41s another functional in SD(G)* such that
- (T£) = o'f for all f € S, then by (6) for all h € Ag(G)

< h,0 > = < h,(Thg) > =< h,oké > = < hA,0 > = < h,o >,
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Hence o = 0¢' and therefore i) implies 1i).

Conversely if ii} holds then for £, g e 8

AN

(1(exg)) = o(*0)” = o(Eg) = (B = (TD) g = (TD)*g) .
By Theorem 13.22 T(f*g) = Tf*g.
To prove that T is continuous we proceed as in Theoreé 13.23.
Let [fn}, f € S such that lim ||fn - f||S =0 and assu;e
that lim }[Tf - g||B = 0.
Take h € Ac(a). So, by (16.3) and (4) we have that

< b, (t6)" - g 2] < ben, e - ey >+ Y n,(rE)” - g |

< l<moti, - 5 >+ |<n,1E - g >l

< lente, - 070 2]+ e, - sl 1By
<ol Hne, = 0 Hg, + Hrey - sl [IRI1
<ol | nlls, Heq - €11, + 1tey = lly 1] e

Therefore (Tf) =g on Ac(a) and by Theorem 13.22, Tf = g.
By the Closed Graph Theorem T is continuous and this implies that

T € M(5,B) and the proof is compiete.f

The proof of the next theorem is very similar to Theorem 16.11

and it will be omitted.

THEQREM 16.12. If B is as in Theorem 16.11 and T: Ml—~—+ B

is a linear operator then the following are equivalent:
1) T € c-M(M),B).

. ~ K i ~ ~ ..
1) There exists a unique 0 € §5,{(G) such that (Tv) = gv for all

-V E My.
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i1i) There exists a unique L ¢ So{(G) such that Tv = py*v for all

Ve M. &

REMARK 16.13. It follows from Theorem 16.11 that

c-M(58,B) < M(é,B) (5, B as in Theorem 16.11). Indeed if T ¢ c-M(S,B)
tﬁen for s € Gand £ € S
(11,5 = 0,8 = o(ls, 1D = [s,-1068) = [5,-108)" = (r5(160) "
Hence by Theorem 13.%2 T commutes with translations and this
implies that c-M(S,B) < M(S,B).
We conclude that if S is as in Theorem l6.1 and B is as in
Theorem 16.11 then c¢-M(S,B) = M(S,B).
| Observe that c—M(S,(Ll, Rm)) < ¢-M(S,M_), and by Theorem 16.3
¢-M(S,M,)} = M(S,M ). Therefore c.—1~_1(s_,(L1, £y s, @, £y, sim-
ilarly by Theorem 16.3 c-M(S,({ZZ cg)) © c—M(S,Lm) = M(S,Lw), 50

e-M(S, (L, c0)) < M(S, (L™, cy)) .

COROLLARY 16.14. Let S be as in Theorem 16.11 and B be any

A

qg<2). If T: S— B is

space P, b, (Cy» 2y, Mq (1 gpgel

a linear operator then the following are equivalent:

i) T & c-M(S,B)
L

ii) There exists a unique @ E (Lq s z“)(a) such that (Tf) = f
for all £ £ S. . %
PROOF. Let X € E and wg be a function in S such that

Va(R) = 1. Define ©(R) = (wg)ﬂ(ﬁ) (% € G).-

wo

If T e c-M(5,B) then ¢ is independent of the choice of w§
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because if ¢§' £ § and wﬁ‘(i) = | then
(10" @ = (1) D' = (Thxu,) B = (Mg v ()
- (10" B = () -

Also for f € 5

ER) = (i) RIER) = (Tyr) " (R) = (180 R) = (1) R ()
= (1) (%)

Let wT be the element in AC(G)* associated to T by Theo-

rem 16.11. Then by (6) of Theorem 16.11 for h & AL(G)

< oy > = < h,(TAE)A > = J h(K) (TAE)A(ﬁ) d%

Therefore < h,® ‘= f h(®) e{(X) d¥ for all h e A (6).
T c

*

~ ~ v -
Now take Lk ¢ Cc(G) such that k = on K and k € S. Then

1
~ - ~ v _ . .
. RS = TBk belongs to QC(G), kB =1 on KB, kB = { ,B]K belongs to S

v .
and |[kB||s = ||k|ls for all 8.

.By‘the‘definitién of the norm ] .Ilq'r y 1 £ r £ it is
1 h < .
crear ehat o |15 o 1],

If B is the space (Lp, Rq), !l < p, q £ 2 then by Theorem 5.7

- Y
Hox Il < ||wwLB||q.p, ;:Ilwk81|q'p:-= kgl
)y’ <o limall  <c Tl |lk,l]
- B) ||q|p|.:_C]TBHpq= " B S

¢ it 1K)
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If B 1s the space (Lp, R.q), (Co' 2q), 1 £q2£2<p<=, then

2
B (L, Eq) and as in the previous case

v {
qréll(pksllqrzéc ||TH||kHS ( y
Stmilarly 18 B = M, |lox || , < Ilwlfsllq.m:. ezl el

Since this is for all ¢, in any case @ & (Lq , 7). Hdnce 1) implies

[oxyg 1

111). !
1

Conversely 1f ¢ ¢ (Lq ’ 27) and (Tf)

wf (£ € S) then we

define mT

as above < h,¢& > e < h,(TAE)A >, Therefore by Theorem 16.11, 11)

on AC(E) by <ho > =/ h® o) & (he A_(G)). Then'

implies 1). (See (6) of the proof of Theorem 16.11) .4

B
THEQREM 16.15.Let S be any of the algebras (L., 21),

2<pxw, or (Co,.Rl). The correspondence between c—M(S,Lz) and
(Lz, Em) established by Corollary 16.14 defines a continuous isomorphism
from c—M(S,Lz) onto (L?, lm).

PROOF. If f e S then £ € (Lzl Rl). Hence by Theorem 5.2,

~ -

~ 2 2 .
fe (Co' Rz). By Proposition 4.1, fel for we (L, Em). Then
2 ~ ~
there exists a unique Tf € L  such that (Tf) = ¢f. It is clear that
. 7 9 -
T so defined is a linear operatior from S to L and the conclusion fol-

lows from Theorem 16,11 and the fact that for f € §

zelly = Hlan 11, = [lof]], < 1ol u [1EHa, < Hell, 0 11l
< el e © 1l g4

COROLLARY 16.16. Let S be as in Theorem 16.15 and B be
: . ¥ » R

2 . . ‘ .
(Lr, £, 1<r £2, or M,. Then c—H(S,LZ) = ¢-M(5,B).

2
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PROOF. Since L2 < B it.is clear that c-M(S,Lz) < c¢-M(S8,B).
If T e c-M(5,B) then by Corollary 16.1l4 there exists a.unique
e (Lz, Qm) such that (Tf)ﬁ = @E for all f ¢ 8.

By Theorem 16.15, there exists T' in c—M(S,LZ) such that
(t'f) = ¢f for all f e s,

Therefore (Tf)A = (TRf)A for all f € S. This implies by

Theorem 13.22 that T = T'. Hende c-M(§,B) < c—M(S_.LZ).+
S

COROLLARY"16.17;/£9x § be as in Theorem 16.15 and B be

(Lp, 22), 2 <p <=, or (Cy, 22). Then c¢-M({5,B) < c—M(S,LZ).

L4

PROOF. Let T ¢ c—M(S;B). By Corollary 16.l4 there exists a

~

2- oo, -
unique @ e (L, £ ) such that (Tf) = ¢@f for all f e S.
Similarly to Corollary 16.16, this implies that T = T' for

T' € o-M(5,L%) .y

Let A be any of the amalgam spaces (Lp, LYy, (Co» Rq), -

P

(L', ¢,) 1 £p, g £ and B be as in Theorem 6.11.

We assoclate to A the biggest algebra SA such that

c~M(S,,B) = M(S,,B).

B, e

= (Cqy El) for the

By Remark 16.13 we see that if A is (Lp, L

(lgp<o®, 1<qgw) then s, = (P, ¢1) and s

A A

remaining cases. . / , .

THEOREM 16.18. Let A be any of the spaces (LP, oY), (¢, &%),

p
(L, cg) (1 £p, g<*®) and B be as in Theorem 16.11, If T e M(A,B)

and SA is as above then
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A* ~ ~
1) There exists a unique @ E SU(G) such that (Tf) = ¢f for all

feS5,. ‘ )
ii) There exists a unique W E SO(G)* such that Tf = p*f ‘for all
fe SA'

PROOF. If T € M(A,B) then T|5, € M(S,,B). By Remark 16.13

T SA E.c—M(SA,B) and the conclusions follow from Theorem 16.11.%

Compare Theorem 16.18 with [25, Theorem C2].

THEQOREM 16.19. Let A be any of the spageé (LP, iq), (Cqy 29},

l1<p<w I <qZ2, and let B be- any of the spaces (LY, %),
(Co, 25)51L§ r<e® 1 <s<2 If T: A—* B is a linear opefator
_ then the fqllowing are equivalent:
1) Te M(A,B)
ii) There exists a unique ¢ € (LS', z“)(a) such that (Tf)A = wE
for all £ € A.
PROOF. We will prove the theorem for A = (Lp, 23y and
“ B = (Lr, 28y, 1 <r, s <2. The remainig cases are similar.
Suppose T £ M(A,B). Then T](Lp, il)_ belongs to
GM((LP, 21),(Lr, RS)). So by.Corollary 16.14 there exists a unique
Qe (LST, 2“) suﬁh tﬁat (TE)A = m% for all £ ¢ (Lp, 21).

‘Now, we note that for f ¢ (Lp, 21)

ot 1yope = 11D ] < e el e Tl TN .

=

A 1
Therefore the map £ +— @f from (P, 2 )

. t
' [, to

| BN
(LS-, .t ) is continucus. Since (Lp, 21) is dense in (Lp. A
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(Corollary 3.8) this map has a unique continuous extension on (Lp, qu)

and this implies that (Tf) = ¢f for all f € (Lp, lq). \‘
Conversely if 1i) holds then by Corollary 16.14 and Remark 16.13

P 1 ) 1 :
T|(Lp, Rl) belongs to M({L , & T,(Lr, RH)). Again since (Lp, L) is

P

~

, lq) and the map f

dense in (L - Tsf on A and B is continuous ‘for

all s ¢ G, {(Theorem 3.14) we-conclude that T has a unique continuous

- P ) , ) —
extension T on (L, Rq) which commutes with translations. Hence T

r .
belongs to M((Lp, %q),(L , Qb)). So, by the previous case there exists

. 1 w0 A q

a unique @' € (LS , £ ) such that (?f) = w'% for all f ¢ (Lp, L7y,
1 ~ — ~ - -~ ’ ~ N ~
Then for f ¢ (Lp, L), w'f = (TE) =.(Tf) = @f. For X € G, let
1 ~ ~ ~ ”~ -~ ol )
f; € (Lp, £7)  such that fﬁ(x) =1, so @' (%) = w'fx(x) = me(x) = @(X).

This implies that ¢ = ¢’ and therefore (Tf) = (Tf) for all

q —_
fe (Lp, 2 ). By Theorem 13.22 we conclude that T = Tt

Now we will prove again (Theorem 12.4 1)) that for 1 < p < =,
' q 1 s
l1<s<qZ<2, M((LP, £),(L°, 2 )) is a trivial space, to show an
application of Theorem 9.2 and Theorem 16.19.

~ -

PROPOSITION 16.20. Let G be nondiscrete and 1 < p < «,

. ) . 1
1 < s <q < 2. Then the only multiplier from (Lp, Rq) te (L, Es) is

-

the zero multiplier.

PROCF. Suppose the contrary. That is, there exists a nonzero

~

. ~ 1 s . . .
function @ such thar ©f e (L , &) for a%l f e (Lp, lq) Theo=

rem 16, 19). Then for some € > 0, the set

E={%¢ alluxﬁ)l'; e }
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) 1 s ~ ! o«
is not locally null. Since (L , %) |E c (LS , L_JEE) by Theorem 5.7;
P q,” 1 s, " s’ : ] .
@(L", %) IE < (L7, L) lE < (L , £ )(E). Hence by definition of E we
. )

-~ s Y
have the relation (Lp, Eq) [E < (L , Rw)(E). (Note that 1if
q ’ ~ ~ .
£e (L%, £7) then [TEEl] e < e loElE L),
But this is .a contradiction because by Theorem 9.2 there exists
w q P q -~ S' w
fe (L, L), hence in (L , £7), such that EIE ¢.(L s 2 )(E) as

1

s' > q'. This ends the proof.;
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