MULTIPRODUCT COST MODELLING OF
CANADIAN TRUST COMPANIES

MULTIPRODUCT COST MODELLING OF THE CANADIAN TRUST INDUSTRY

by

Edmund Nii Kwaku Sowa, B.A. (Hons.), M.A.

A thesis

submitted to the School of Graduate Studies in partial fulfilment of the requirements

for the degree

Doctor of Philosophy

McMaster University

December, 1984

DOCTOR OF PHILOSOPHY (1985) McMaster University (ECONOMICS)

Hamilton, Ontario

TITLE: MULTIPRODUCT COST MODELLING OF CANADIAN TRUST COMPANIES

AUTHOR: Edmund Nii Kwaku Sowa, B.A. (Hons.), University of Ghana, Legon

> M.A., Queen's University, Kingston, Ontario

SUPERVISORY COMMITTEE: Professors F.T. Denton (Chairman)

A.L. Robb R.A. Muller

NUMBER OF PAGES: xi, 176

ABSTRACT

The main objectives of this thesis are to develop and interpret an econometric model of the cost of operations of trust companies in Canada. A two-stage model of production is set up. In the first stage of production labour and capital are used to service deposits. Thus deposits are intermediate outputs. In the second stage of production, labour, capital and deposits are used to produce the services of the management of estates, trusts and agencies, and of the management of loans and securities. Using duality techniques, a cost function corresponding to the final-stage production transformation function is formulated.

Two sets of data are employed in the empirical analyses. The first data set consists of trust companies operating in Ontario in the period 1976-1981, omitting only a few whose circumstances were obviously quite unusual, as evidenced by inordinately low labourshares. The second data set is a truncated form of the first data set -- it includes only observations with no zero outputs. The cost function was specified as a

generalized translog function, but for purposes of comparison with earlier studies, an ordinary translog cost function was also specified and estimated. The cost function was in both cases estimated together with the labour-share equation as a system of seemingly unrelated simultaneous equations.

Parameters obtained from the estimated cost functions were used to evaluate measures of economies of scale, economies of scope, and product-specific economies of scale. Some of the results obtained are comparable to earlier studies. For example, this study found an inverse relation between asset size and scale-economies. Some new results also emerged, especially relating to economies of scope: it was found that there exists a positive relation between scope-economies and amalgamations of firms.

ACKNOWLEDGEMENTS

I wish to thank my supervisory committee for their time, pieces of advice and guidance in the writing of my thesis. I thank especially, Professor Frank Denton for his patience and tolerance as Chairman of my Committee. His advice and recommendations have helped to enrich this thesis. To Professors Les Robb and Andy Muller, who always kept open doors for me, I express my deepest appreciation. I learnt a lot about being an economist and being a scholar from my several meetings with my committee.

I am indebted to Professors Robin Boadway and Jack Mintz of Queen's University for all the help and advice they have been giving me since my arrival in Canada. I thank Dr. John Murray of the Bank of Canada for making available to me a prior-to-publication copy of his 1983 paper with R. White referred to in the text. I thank also the various other teachers and scholars whose teachings and writings have shaped my thoughts.

I thank my father posthumously for all the encouragement he gave me in my school work. To my mother there is no better way to express my thanks than to say "I love you". In a similar voice, I express my

gratitude to my wife, Nora, for being there when

I needed a friend and for sharing my difficult

times with me. To my children Paa-Nii and Naa Anyeley,

thanks for understanding that Daddy was doing the best

he can even as a student.

I thank Mrs. Aloma Munian for the excellent typing of this thesis.

I thank the University of Ghana, Queen's University and McMaster University for their financial support at various times.

Finally, and most important of all, I thank God for making all this possible.

All errors and omissions remain my responsibility.

TABLE OF CONTENTS

			Page
CHAPTER	1.	INTRODUCTION	1
		Footnotes to Chapter 1	11
CHAPTER	2.	THE TRUST INDUSTRY OF CANADA	12
	2.1	Statutory Powers and Functions of Trust Companies Growth and Development	13 23
		Footnotes to Chapter 2	37
APPENDIX 2.1		ENTRIES, MERGERS AND EXITS OF COMPANIES BETWEEN 1976 AND 1981	38
CHAPTER	3.	A SURVEY OF THE LITERATURE	41
	3.1	Multiproduct Costs and Economies of Scale and of Scope Scale Studies in Financial Institutions	43
			58
		Footnotes to Chapter 3	72
CHAPTER	4.	THE MODEL	74
	4.1 4.2 4.3	The Structure of the Model The Specification of the Model Specific Formulation of Measures of Some Cost Concepts	75 81
			88
		Footnotes to Chapter 4	94
CHAPTER	5.	DATA AND DEFINITION OF VARIABLES	95
		Footnotes to Chapter 5	104
CHAPTER	6.	EMPIRICAL ANALYSES	105
	6.1 6.2	Estimation and Empirical Results Interpretation of the Results	107 124
		Footnotes to Chapter 6	143

APPENDIX 6.1	TRUST COMPANIES REGISTERED AND CONDUCTING BUSINESS IN ONTARIO THROUGHOUT ALL THE SIX YEARS (1976-1981)	144
APPENDIX 6.2	ESTIMATES OF MULTIPRODUCT- ECONOMIES-OF-SCALE ELASTICITIES FOR SELECTED TRUST COMPANIES USING GTMCF (DATA-1)	147
APPENDIX 6.3	ESTIMATES OF WEAK-ECONOMIES OF SCOPE ELASTICITIES FOR SELECTED TRUST COMPANIES USING GTMCF (DATA-1)	149
CHAPTER 7	CONCLUSION	
APPENDIX A	POOLED DATA ON TRUST COMPANIES OPERATING IN ONTARIO BETWEEN 1976 AND 1981	156
	Notes to Appendix A	163
APPENDIX B	RANGES OF VARIABLES IN THE COST FUNCTIONS	164
APPENDIX C	RAY AVERAGE COST	165
APPENDIX D	FORMAL DERIVATION OF THE MULTI- PRODUCT ECONOMIES OF SCALE MEASURE	166
BIBLIOGRAPHY		169

LIST OF TABLES, CHARTS, AND FIGURES

TABLES	<u>S</u>		Page
Table	2.1:	Trust Companies' Major Assets and Liabilities (31/12/80)	21
Table	2:2:	Assets of Selected Trust Companies in Ontario as at 31 December, 1981	26
Table	2.3:	Assets of Trust Companies Registered in Ontario from 1900 to 1981	28
Table	2.4:	Annual Percentage Distribution of Major Assets of Ontario Trust Companies, 1965 and 1976-1981	30
Table	2.5:	Mortgage Loans, Personal Loans and Personal Savings by Selected Financial Institutions in Canada (1981)	L 32
Table	5.1:	Calculated Values of Pt, Gt, rt	99
Table	5.2:	Price of Capital	102
Table	5.3:	Price of Labour	102
Table	6.1:	Search for θ for the GTMCF - Data-1	112
Table	6.2:	Parameter Estimates for the GTMCF With and Without Annual Dummies - Data-1	113
Table	6.3:	Descriptive Statistics for the GTMCF with Annual Dummies - Data-1	117
Table	6.4:	Parameter Estimates for GTMCF and TMCF Using Data-2	119
Table	6.5:	Test of the Production Structure - Data-2	121
Table	6.6:	Own- and Cross-Price Elasticities for Labour and Capital Evaluated at the Means Using TMCF (Data-2)	125

Table 6.7:	Own- and Cross-Price Elasticities for Labour and Capital Evaluated at the Means Using GTMCF (Data-1)	125
Table 6.8:	Multiproduct-Economies-of-Scale Estimates and Estimates of Some Global Measures of Economies of Scope at the Means	127
Table 6.9:	Estimates of Multiproduct-Economies- of-Scale Elasticities for Small and Large Companies in 1981 Using GTMCF (Data-1), GTMCF (Data-2), TMCF (Data-2)	129
Table 6.10:	Asset Size and Scale Elasticities for 15 Large Companies in 1981 (Data-1)	131
Table 6.11:	Estimates of Weak-Economies-of- Scope Elasticities for Small and Large Trust Companies, 1976-1981 (using GTMCF (Data-1))	137
Table 6.12:	Estimates of Weak-Economies-of- Scope Elasticities for Some New Entrants	139
Table 6.13:	Local Measures of Economies of Scope Evaluated at the Means	141
CHARTS AND F	TIGURES	
Chart 2.1:	Mortgage Loans, Personal Loans and Personal Savings of Selected Financial Institutions in Canada in 1981	33
Figure 6.1:	Ray Average Cost Curve for GTMCF (Data-1)	132
Figure 6.2:	Ray Average Cost Curves for TMCF	122

CHAPTER 1

INTRODUCTION

Any production unit incurs some kind of cost. Such cost can be a one-time cost, which is not further related to the output produced by the unit; this is termed fixed cost. Another kind of cost --variable cost -- relates to the amount of output the unit produces. Thus in the classic economic example of the mineral water producer, the cost of sinking of the well will constitute a fixed cost. If later on, the producer decides to bottle the mineral water, then the cost of the bottling will be a variable cost. Most production units incur both fixed and variable costs.

It is possible to formulate a relationship between costs and units of output produced. In this connection, textbook treatments tend to focus on the case of the single-product firm. In reality, though, a large proportion of producers must be regarded as multiproduct firms. Examples are, telecommunication firms, such as Bell Canada, railroad firms, such as Canadian Pacific, and financial institutions, such as Royal Trust. In the case of Bell Canada, for example,

the outputs include local telephone services, message toll services and overseas services¹. A railroad firm produces freight services and passenger services². A financial firm may produce outputs such as the services of loans, securities and deposits³.

There are certain economic hypotheses about cost-output relationships. Some are concerned with the variation of cost as the level of output changes. These hypotheses take on new meanings as one moves from the domain of the single-product firm to that of the multiproduct firm. For instance, one of the hypotheses concerns the fact that as a firm increases in size, its "unit cost" falls. This concept, as will be explained later, relates to "economies of scale". "Unit cost" or the cost of one unit of output is difficult to define when there are multiple outputs. In the case of a multiproduct firm one should distinguish between what happens to costs when all the outputs are expanded together and when only some of the outputs are expanded. The multiproduct analysis also brings into focus some new concepts. For instance, with multiproduct analysis, one can examine whether or not it is cheaper for a multiproduct firm to be producing its outputs jointly. Thus, one should be able to answer the question of whether or not a trust

company can more cheaply perform the functions of 'fiduciaries and financial intermediation' jointly or separately.

Cost studies of the kind undertaken here may be of interest to three groups. These are: (a) regulators, (b) firm managers, and (c) economic theorists.

Many multiproduct firms such as trust companies are regulated by governmental agencies. In Canada, for example, trust companies are subject to federal and provincial restrictions on their banking activities.

For instance, the level of borrowing of a trust company is based on a certain multiple of the company's capital base, with the present normal maximum multiple allowed being 20 times this base. In 1967, the Canada Deposit Corporation was incorporated to provide insurance against loss of up to \$20,000 for persons having a deposit with any member institution, provided that the term of the deposit is not in excess of five years.

Entry, mergers and expansions in the financial industry are subject to regulation. Estimates of the production and cost functions of such institutions can help the regulatory authorities in their decision making. As Fuss and Waverman (1981) pointed out, the following

are some of the questions posed by a regulatory body:

- i) What range of services is best supplied by a single firm?
- ii) What are the production 'economies of
 scale'?
 - iii) What are the 'economies of scope'?
- iv) What are the long-run marginal costs of producing one or more units of any one of the joint outputs?

Answers to these questions help to determine the appropriate size of the firm, the degree of competition to be allowed and the efficiency of any rate structure.

Cost studies can also benefit managers of an industry. From these studies they may be able to estimate the marginal costs of producing specific outputs. As Benston puts it, cost studies

"should help managers evaluate the efficiency of their operations and estimate the costs to their institutions by expanding by de novo branching, merger, or growth at a single location, increasing or decreasing specific types of loans and other portfolio decisions"⁴.

Cost studies are also important to the economic theorist. The definition of cost to the economist is different from that of the accountant. To the economist

cost is defined in terms of the 'opportunity cost' of producing the outputs; that is the benefits foregone by the producer in producing one set of outputs instead of another. However, most data used for cost studies are recorded by accountants and therefore based on the accountant's definition of cost. The economic researcher, therefore, must make the necessary adjustments in order to be able to use such data. Interest, then, will focus on whether the theoretical cost properties known to the economist are satisfied when such data are used.

The Canadian trust industry is unique. In Canada, only trust companies are allowed to perform the fiduciary function. In other words, trust companies are the only corporate bodies allowed to manage real and financial assets on behalf of clients. This function is sometimes called estates, trusts and agency administration (or E.T.A.), and is the main thing which distinguishes a trust company from all other Canadian financial institutions. In addition, the trust company performs a financial intermediation function which involves its borrowing of funds (incurring of liabilities) and the lending of funds (acquiring of assets) on the Canadian capital market.

In spite of the uniqueness of the Canadian trust industry, and some of the advantages of cost studies mentioned above, there has been no cost study of the trust industry in Canada. In fact, there are few cost studies of financial institutions in Canada. Murray and White (1980, 1983), did some cost studies of Canadian deposit-taking financial institutions, as represented by credit unions in British Columbia. The present study draws on, and in a sense extends, the work of Murray and White. However, there are some significant differences of approach.

Apart from the data, there are definitional and econometric differences between the two studies. For example, Murray and White (1983) defined cost to include interest paid to depositors while the way in which cost is modelled in the present study suggests exclusion of interest costs from the definition of operating costs. Benston (1969) explained the exclusion of interest from the calculation of operating costs by saying that interest cost is "determined primarily by market conditions, rather than by the operations," of the institution. Also in defining the price of capital, Murray and White summed the major capital expenses such as rent, depreciation and utilities, and

divided by the average dollar value of deposits. This author found very little rationale for the use of such a method in calculating the price of capital. Instead, we used what we refer to as the 'Jorgenson method' to calculate the price of capital. The rationale for this is given in chapter 5 of the thesis.

Econometrically, the two studies differ in the formulation of the functional form. Even though we recognize that the translog function, on which Murray and White based their study, is a useful 'flexible functional form', we have nevertheless used a more general 'flexible functional form' which can be used to give unambiguous meaning to a concept such as 'economies of scope'.

Thus, the motivation for this study is two-fold. The first motive is purely academic. It is to check whether the data on a service industry, with the necessary modifications, will satisfy some of the theoretical hypotheses relating to cost functions.

The second motive follows from the first:
that is, to provide estimates of the key parameters
describing the cost structure of the trust industry.
Some of these parameters are those relating to economies
of scale, economies of scope, and product-specific
economies of scale.

ORGANIZATION

The thesis is organized into 7 chapters, including the present one. Below is a summary of the contents of the remaining chapters.

Chapter 2. This chapter discusses the Canadian trust industry. It considers how the industry came into being and its role in the Canadian economy. It also considers the growth and development of the trust industry. The main aim of this chapter is to bring out the multiple functions of the trust industry from which we derive the definitions of multiple outputs. In other words, this chapter prepares the ground for the application of multiproduct analysis to the trust industry.

Chapter 3. Some of the literature relating to cost studies is reviewed here. Emphasis is placed on multiproduct cost studies and techniques of measuring economies of scale and scope. The chapter is divided into two sections. The first section discusses economies of scale/scope studies in general, giving examples from

other industries such as telecommunications and railroads. The second section discusses economies of scale/scope studies of financial institutions.

Chapter 4. This chapter models the structure of cost of a trust company from the point of view of a basic multiproduct technology. Inputs and outputs of the industry are clearly identified here. The second section specifies the 'generalized translog' model as the appropriate functional form to be used for the analysis. Using the specified functional form, the last section derives some of the hypotheses to be tested empirically.

Chapter 5. This chapter discusses the sources of data and its treatment. Attention here is focussed on how the 'accountant's data' is transformed into the 'economist's data'.

Chapter 6. All empirical estimation and analyses are handled in this chapter. Estimation and results of the regressions are analyzed in section one. Section two is devoted to the calculation and interpretation of some statistics derived from the cost function.

Chapter 7. This concludes the thesis by highlighting some of the results and their implication for policy- and decision-making.

FOOTNOTES

Chapter 1

- 1. See, for example, Melvyn Fuss and Leonard Waverman (1981).
- 2. See, for example, Douglas W. Caves, Laurits R. Christensen and Michael W. Trethway (1980).
- 3. See, for example, C.W. Sealey, Jr., and James T. Lindley (1970).
- 4. George J. Benston (1972), p. 315.
- 5. See, for example, George J. Benston (1969).

CHAPTER 2

THE TRUST INDUSTRY OF CANADA

The trust industry of Canada includes corporations chartered under the Trust Companies Act and corresponding provincial legislation.

Trust companies have 'dual personalities' in the performance of their two functions — the fiduciary function and the intermediary function. In their role as fiduciaries they act as agents working for a fee, while as financial intermediaries, they are the principals with their funds at risk. As an intermediary, a trust company takes in deposits from the public in the form of guaranteed investment certificates, savings deposits and time deposits. These funds are invested in first mortgates, securities and other loans. This aspect of their business is often referred to as "Guaranteed Funds" as opposed to "Company Funds" which refer to the management of the trust company's own capital.

The activities of trust companies have changed over the years. The industry has expanded both in number and by size.

Section 2.1 discusses the functions of the trust companies as laid down by the various types of legislations governing them. It is from these functions that later, we shall deduce the outputs and inputs to establish the production technology of the trust industry. Section 2.2 leads us through the development and growth of the trust industry. It highlights some of the structural changes within the trust industry.

2.1 STATUTORY POWERS AND FUNCTIONS OF TRUST COMPANIES

by either federal or provincial legislation.

Provincially incorporated trust companies proposing to do business in other provinces are required to qualify for deposit insurance under the Canada

Deposit Insurance Corporation or the Quebec Deposit

Insurance Board. The Superintendent of Insurance examines on behalf of the Deposit Insurance Corporation, the affairs of each federally incorporated trust company. Trust companies operating in Ontario are required to submit annual returns of their operations

to the Registrar of Loan and Trust Companies; reports from this registrar formed the major source of our data.

While not uniform throughout Canada, trust company legislation is sufficiently similar to permit a general summary of trust company powers under the various acts. From the legislations it is immediately clear that trust companies perform two main functions: "fiduciary services function," and "financial intermediary function".

The fiduciary or trustee function is unique to trust companies since they are the only corporate entities in Canada having trustee powers. In the United States and the United Kingdom, for example, trustee functions are also performed by financial institutions specifically chartered for other functions (for example, commercial banks, life insurance companies and savings institutions). In their fiduciary function, trust companies serve as administrators of estates, trusts and agencies (E.T.A.). As administrators, trust companies do not obtain ownership of the assets under their administration; instead, they act as the trustee of a property. The trust deed defines the powers that the trust manager has in administering his client' assets

and the client's rights to the income generated by the assets being so administered.

Benson (1962) summarized the fiduciary powers of the trust companies as follows:

- "...The trust company is empowered to receive property granted to it by persons, corporations, or courts, upon any trusts not contrary to law;
 - ...to hold property in safe-keeping;
 - ...to act as agents in management of property
 and collection of rents, interest, dividends,
 etc.;
 - ...to act as corporation agents (transfer
 agencies, etc.);
 - ...to act as executor, administrator,
 receiver, liquidator, custodian, trustee
 in bankruptcy, guardian of infant's
 property, committee for estates of
 mentally incompetent, etc.;
 - ... to invest trust monies;
- ...to perform all acts necessary in dealing
 with property;
- ... to guarantee investments;

- ...to own real estate necessary to carry on its
 business;
- ...to charge renumeration for its services" 1.

The financial intermediary function of the trust company is best considered according to the sources (liabilities) and uses (assets) of funds involved in this aspect of a trust company's operation. Because of similarities in the various pieces of legislation only one (the Ontario Loan and Trust Companies Act) is used as a model for this presentation.

a) Sources (Liabilities)

Apart from capital, trust companies have two sources of funds available to them: deposits and borrowed funds. With respect to deposits the Ontario Act empowers trust companies to "recieve deposits of money repayable upon demand or after notice..."

However, the law further specifies that any deposits received in the above manner are deemed to be trust monies in that they are held by the trust company as trustee for the depositors and the trust company

guarantees repayment of these deposits. The trust company is allowed to pay interest on demand and notice deposits. The act also stipulates that the liquidity requirements on deposits in trust companies must be an aggregate of at least 20 per cent of the amount of deposits and of funds received for guaranteed investment coming due in less than 100 days.

With respect to borrowing, although the law prohibits trust companies from borrowing by issuing debentures, it sanctions trust companies borrowing on the security of "all or any of the real or personal property, present or future, of the company other than property deemed by this act to be held by the company as trustee or received for investment"2. also allows trust companies to borrow by issuing quaranteed investment certificates. There are restrictions on the amount of borrowing a trust company can obtain. In general, the restriction on the level of borrowings is based on a certain multiple of a company's capital base, with the present normal maximum multiple allowed being 20 times this base³. Currently the Trust and Loan Companies Act is under review to bring their intermediary activities in line with banks.

b) Uses (Assets)

The major items on the assets side of a trust company's balance sheet are loans and investments. A registered trust company may lend its own funds and monies received for quaranteed investment, or as deposits, on the security of mortgages and assignments of life insurance policies, government bonds, bonds secured by trust deed, conventional mortgages to 75% of value, N.H.A. mortgages, insured mortgages, the bonds, debentures, or other securities of various The amount of investment in real estate is generally restricted to 10 per cent of the book value of the total assets of a trust company's funds. Restrictions on the type of investments made are usually intended to concentrate the use of funds on secure investments such as first mortgages and high-grade bonds.

Thus, the major difference between the financial intermediary function and the trustee function is that in the trustee business the trust company receives compensation or acts on a fee for service basis, while in the intermediary area it acts as a principal with its own funds and deposits at risk.

The financial intermediary function involves the companies receiving and borrowing deposits from the public in the form of demand deposits, notice deposits and guaranteed investment certificates. The proceeds are primarily invested in first mortgages, securities and other loans.

The above exposition of the legal powers of the trust companies brings into focus the peculiar characteristics distinguishing a trust company from any other financial institution. It demonstrates that the trust companies are unique in that they are the only financial institution operating as fiduciaries as well as financial intermediaries. Furthermore, in their intermediary capacity, the trust companies along with the loan companies have tended to the longer term maturities on both the asset and liability sides.

From the foregoing we realize that what constitutes the outputs of the trust industry can be deduced from the functions of a trust company as set out in the statutes.

In the process of performing their fiduciary function, they produce the services of estates, trusts and agency administration. The outputs under their intermediary function can be deduced from their sources and uses of funds as the services of loans, securities and deposits.

Table 2.1 shows major assets and liabilities of Canadian trust companies as at December 1, 1980.

Mortgages take the greatest percentage share of assets:
70.3% of total assets are in the form of mortgage loans.

With the definition of loans broadened to include mortgages, personal and collateral loans, the proportion increases to more than 75%.

We define securities to include treasury bills and short term deposits, bonds and stocks. So defined, securities represent about 18% of total assets.

On the liabilities side, out of a total deposit from the public of \$30,121 million, about \$22,472 million -- being 67.2% of total liabilities -- are in the form of term deposits. Total deposits (demand plus term) represent more than 90% of total liabilities, with shareholders' equity taking only about 4%.

The above figures are consistent with the view that "the industry's banking operations are straightforward, with term deposits being used to make mortgage loans" Broadly speaking, deposits are inputs in the making of loans and securities, according to this view.

TABLE 2.1

TRUST COMPANIES MAJOR ASSETS AND LIABILITIES (31/12/80) (\$ million)

	. .	
MAJOR ASSETS	AMOUNT	PERCENTAGE
Cash	337	1.0
Treasury Bills and Short Term Deposits	2399	7.2
Bonds	2359	7.0
Stocks	1479	4.4
Mortgages	23558	70.3
Personal and Collateral Loans	1953	5.8
Other Assets	1414	4.3
TOTAL	<u>33499</u>	100.0
MAJOR LIABILITIES		
Demand Deposits	7649	22.9
Term\ Deposits	22472	67.2
Accrued Interest	1102	3.3
Other Liabilities	847	2.5
Shareholders Equity	1343	4.1
TOTAL	33433	100.0

SOURCE: Report of the Registrar of Loan and Trust Corporations, Ontario, 1980.

22

On the other hand, people derive benefits from the services of deposits and hence deposits can be considered as outputs too.

Thus, under the two functions of trust companies, the outputs of the industry are:

- a) the services of loans;
- b) the services of securities;
- c) the services of estates, trusts, and agencies under administration.

Deposits are both inputs and outputs as will be further explained in chapter 4.

2.2 GROWTH AND DEVELOPMENT

Since the outputs of the industry are based on the functions of the trust companies as set out in the legislations establishing them, it follows that developments within the industry and legislative changes could affect our outputs. This section traces out the developments within the trust industry and the position of the trust industry in relation to other financial institutions.

The first trust company in Canada was incorporated in Ontario in 1872 and it started business in 1882. This was the Toronto General Trust Company.

Later other companies were also given fiduciary powers by federal and provincial acts. By 1900 there were 14 trust companies across Canada; and this rapid growth, in the number of trust companies continued till the beginning of the First World War. By 1914 the number of trust companies in Canada had increased to 23. During the Second World War, there was a slow-down of trust activities and that slowed the rapid growth of the industry⁵. But business soon picked up after the war

and by 1947 there were "60 companies of which 45 were provincially incorporated and accounted for 76% of total assets (company and quaranteed funds)"6. The number of companies declined again until by 1958 there were only 48 in total. After that there was a renewed expansion in the number of firms which continued till 1965 when there were 65 firms, 57 of which were provincially incorporated. Roughly a century after the advent of the first trust company in Canada, there are now over companies in the industry employing over 31,000 80 people, including 9,000 real estate employees. Throughout Canada, these companies together operate over 900 deposit-taking branches and over 500 real estate offices 7. Between 1976 and 1981, a period of six years, 20 firms were newly registered in Ontario to engage in trust business. (See Appendix 2.1(a).)

While the trust industry was expanding by means of increase in number of firms, existing firms were also expanding in size through mergers and increases in operations. Between 1976 and 1981, there was a total of 9 mergers. (See Appendix 2.1(b).) Such mergers and amalgamations resulted in the creation of a few big firms controlling a major proportion of the market. There are seven very big companies known in the industry circles

as "the big seven." It should be pointed out that the "big seven" in Ontario are the "big seven" in Canada also. These are the first seven listed companies in Table 2.2. In 1981 these big companies alone controlled more than 70 per cent of the total assets (E.T.A., company and guaranteed funds) of the industry. In fact, two of these companies (Royal Corporation (Canada) and Royal Trust) were under the same directorship, so that essentially three companies alone control over half of the Canadian trust business and just six control over two-thirds of the business. Table 2.2 shows fifteen large companies controlling over 88 per cent of total assets and over 75 per cent of the quaranteed funds in 1981. This leaves less than a quarter of the business to be shared by the remaining trust companies (42 in 1981). Thus, there is a high degree of concentration among trust companies operating in Ontario. Since trust companies in Ontario control over 85 per cent of the total assets of the Canadian trust industry, the analysis of Table 2.2 is a good representation of the Canadian trust industry as well. Further discussion of the representativeness of the Ontario data is left till Chapter 5.

As the number of trust companies grew, so did the number and volume of their services to the public.

Initially the strength of the trust industry came from

TABLE 2.2

ASSETS OF SELECTED TRUST COMPANIES OPERATING IN ONTARIO AS AT 31 DECEMBER, 1981

(MILLION DOLLARS)

TRUST COMPANY	GUARANTEED	COMPANY	E.T.A.	TOTAL	% OF ASSETS	CUMULATIVE %
Royal Trust Corporation	(Canada) 5,157	261	12,982	18,400	17.8	17.8
Canada Trust	3,722	265	9,497	13,484	13.1	30.9
Royal Trust	1,853	116	9,950	11,889	11.5	42.4
National	2,471	106	8,543	11,120	10.8	53.2
Canada Permanent	3,348	236	3,974	7,558	7.3	60.5
Quebec Trust	610	34	4,669	5,313	5.1	65.3
Victoria and Grey	3,529	178	1,195	4,902	4.8	70.1
Guaranty	2,411	120	2,037	4,568	4.4	74.9
First City	1,579	100	1,165	2,844	2.8	77.6
Co-Operative	566	39	2,081	2,686	2.6	80.2
Morguard	152	16	2,053	2,221	2.2	82.4
International	159	16	1,535	1,710	1.7	84.1
Crown	632	31	1,038	1,701	1.6	85.7
Investors	106	9	1,531	1,646	1.6	87.3
Savings and Investment	215	9	1,078	1,302	1.3	88.6
Subtotal	26,480	1,536	63,328	91,344	88.6	
42 Others	8,619	5 76	2,601	11,979	11.4	100.0
TOTALS	35,099	2,112	65,929	103,141	100.0	

SOURCE: Report of the Registrar of Loan and Trust Companies, Ontario, 1981.

their trustee business. In fact, the law incorporating some of the early trust companies limited their scope by stating:

"Nothing in this Act shall be construed to authorize the corporation to issue any note payable to the bearer thereof, or any promissory note intended to be circulated as money or as the note of a bank, or to engage in the business of banking or insurance." 8

Thus the early trust companies concentrated more on the trustee business. This forced specialization continued throughout the late nineteenth century and early twentiety century. Table 2.3 shows the assets of trust companies registered in Ontario between 1900 and 1981. By 1910 the size of assets under trustee services was about 12 times the size of the other assets of the trust industry But this kind of specialization did not hold out for long. A look at columns (1) and (2) of Table 2.3 reveal the rapid acceleration of company and guaranteed funds. Over the years, the financial intermediary function has become almost as important as the fiduciary function of the trust companies. Between 1960 and 1975, total assets under financial intermediation increased thirteen-fold.

ASSETS OF TRUST COMPANIES REGISTERED IN ONTARIO FROM 1900 to 1981 (SELECTED YEARS)

(THOUSAND DOLLARS)

		(THOODAID		Estates	
Year	Company Funds	Guaranteed Funds	Total	Trust and Agency Funds	(4)÷(3)
	(1)	(2)	(3)	(4)	(5)
1900	n.a.	n.a.	3,869	13,373	3.5
1910	n.a.	n.a.	10,812	132,416	12.3
1920	31,280	36,154	67,434	575,259	8.5
1930	60,849	147,472	208,321	1,867,622	9.0
1940	58,893	135,844	194,737	2,439,188	12.5
1950	72,730	319,719	392,449	3,262,472	8.3
1960	115,565	1,110,317	1,225,882	7,068,901	5.8
1970	450,529	5,511,943	5.962,472	21,986,464	3.7
1975	853,254	12,980,174	13,833,428	32,331,506	2.3
1976	1,123,144	16,457,313	17,580,457	37,018,700	2.1
1977	1,322,471	19,343,874	20,666,345	42,758,901	2.1
1978	1,443,528	23,193,945	24,637,473	50,080,197	2.0
1979	1,641,371	27,596,510	29,237,881	59,959,653	2.1
1980	1,859,176	31,691,512	33,550,688	60,732,001	1.8
1981	2,112,401	35,099,655	37,212,056	65,929,391	1.8

SOURCE: E.P. Neufeld, <u>The Financial System of Canada</u>, and Report of the Registrar of Loan and Trust Companies, Toronto, Annual.

n.a. indicated "not available".

Since 1940 the proportion of trustee services to total assets has fallen dramatically. By 1981 the volume of the trustee business of the trust companies was less than twice the volume of their intermediary business. By 1981 the intermediary assets of trust companies stood at over 37 billion dollars.

A combination of legislative amendments and "practical market initiatives" has encouraged the trust companies to increase their financial intermediation business over the years. The Dominion Act of 1914 restricted the sum of a trust company's borrowing and its funds under guarantee, to an amount not exceeding five times the company's paid-up capital. In 1931 this proportion was increased to seven times, in 1947 to ten times, in 1958 to twelve-and-a-half times, in 1965 to fifteen times, "the excess ... of assets ... over liabilities" and in 1970 to twenty times that amount -- and it has been so since 10. Column 2 of table 2.3 shows quaranteed funds increasing over the years. only time there was a fall in the trust companies' intermediary activities was during World War II. with the proportion for funds under quarantee increased from five to seven times paid-up capital, still the

TABLE 2.4

ANNUAL PERCENTAGE DISTRIBUTION OF MAJOR ASSETS OF

ONTARIO TRUST COMPANIES, 1965 AND 1976-1981

	1965	1976	1977	1978	1979	1980	1981
Mortgages	56.0	72.0	73.5	74.3	74.1	70.2	65.9
Bonds	33.1	8.8	8.5	6.9	6.9	7.0	8.5
Stocks	2.2	1.9	2.6	3.7	4.2	4.4	4.5
Collateral Loans	2.9	2.5	1.5	1.4	1.4	3.1	3.8
Cash and Short Term Deposits	2.7	8.6	8.1	8.2	7.1	8.2	9.0
Other Assets (1)	3.1	6.2	5.8	5.5	6.3	7.1	8.3
TOTAL ASSETS	100.0	100.0	100.0	100.0	100.0	100.0	100.0

⁽¹⁾Accrued interest and dividends on mortgages, bonds, stocks, and collateral loans are included in other assets.

SOURCE: Ontario, Report of the Registrar of Trust and Loan Companies, Toronto, Annually.

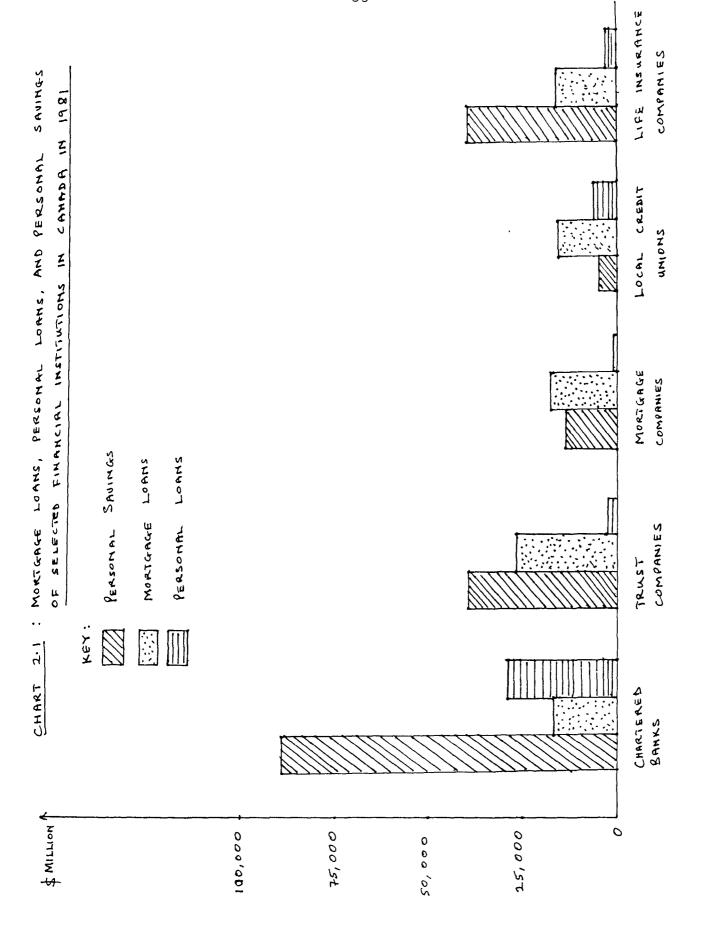
funds under guarantee in 1940 were less than it was in 1930. However, this trend was reversed after the war.

Much of the post-war growth of the trust industry can be attributed to investment in mortgages. In a brief submitted to the Department of Finance of the Government of Canada for the Review of the Bank Act (1977), the Trust Companies Association of Canada concluded that investment in mortgages of funds obtained via guaranteed investment certificates and receipts was the major factor behind the trust companies' post-war growth 1. Furthermore, the same factor -- mortgage investments -- underlies the fact that since the second World War the importance of the trust companies' financial intermediary role relative to their trustee role has been continually increasing 12.

Table 2.4 shows the annual percentage distribution of major assets of Ontario trust companies. We notice that a large percentage of guaranteed runos was invested in mortgages. In 1980 and 1981, high interest rates in Canada hurt the trust companies' investment in mortgages. Even though the shares of mortgages in total assets fell, still they were at levels above those of the sixties.

TABLE 2.5

MORTGAGE LOANS, PERSONAL LOANS AND PERSONAL SAVINGS BY


SELECTED FINANCIAL INSTITUTIONS IN CANADA (1981)

	MORTGAGE LOANS		PERSONAL LOANS		PERSONAL SAVINGS	
	(a)	(b)	(a)	(b)	(a)	(b)
Chartered Banks	16,380	4.68	29,548	8.45	89,968	25.72
Trust Companies	27,887	63.90	1,799	4.12	38.930	89.21
Mortgage Companies	17,403	82.81	79	.38	13,678	65.51
Local Credit Unions	16,038	49.27	6,083	18.69	5,330	16.37
Life Insurers	16,428	29.13	2,644	4.69	29,938	70.83

Column (a) shows amounts in million dollars.

Columb (b) shows variable as percentage of institutions' total assets.

SOURCES: Statistics Canada: Financial Institutions - Financial Statistics, 61-006, 1981.

Some people think of a trust company as a bank, others as a "real estate company". However, only a small percentage of the trust companies' assets (about 3 percent in 1981) involves real estates held for sale.

The legislative changes mentioned above have favoured the trust companies, sometimes at the expense of other financial institutions. Whereas no other financial institution is allowed to compete with the trust industry in their fiduciary function, the trust industry competes well with the other financial institutions in their intermediary function. Table 2.5 shows mortgage loans, personal loans and personal savings of selected financial institutions. This is represented pictorially in chart 2.1. In absolute dollars, trust companies have more mortgage loans outstanding in 1981 than even mortgage loan companies.

Unlike banks, trust companies are not under strict liquidity controls. Banks have to maintain cash reserve ratio but trust companies are only required to keep a liquidity ratio of 20 per cent. While the Bank Act restricts the investment by the banks in mortgages, the Trust Companies Act also restricts the investment by trust companies in personal

loans. Trust companies are allowed to give unsecured loans under what is termed the "basket clause". In 1981, the trust companies had one of the lowest shares of the personal loan business.

The trust companies also attract a good share of the personal savings market. In fact, in 1981, they had a greater proportion of their liabilities in personal savings than any other financial institution.

The federal Trust Companies Act and Loan Companies Act are now under review and will be replaced by the proposed Canada Savings Bank and Trust Companies Act.

A major objective of this new act is "to put the regulation of the savings deposit activities of trust and loan companies on essentially the same basis as that of the chartered banks" 13.

Meanwhile in their fiduciary function the trust companies do not face any competition. Trust companies still continue to be the only fiduciaries in Canada while at the same time competing with other financial institutions in their intermediary function.

From the foregoing we have learned that legislation and market forces may affect the kinds of

services the trust companies produce. In other words, the kinds of outputs produced by a trust company may be affected by legislative changes and developments in the Canadian capital market.

FOOTNOTES

Chapter 2

- 1. Winslow Benson (1982), p. 3.
- 2. Ontario Loan and Trust Corporation Act, 587(1).
- 3. Trust Companies Institute of Canada, (1980).
- 4. Trust Companies Association of Canada (1977).
- 5. E.P. Neufeld (1972).
- 6. E.P. Neufeld (1972), p. 301.
- 7. Trust Companies Institute of Canada, (1980).
- 8. Statutes of Canada (1895), 58-59 Vic., Cap. 84.
- 9. E.P. Neufeld (1972), p. 308.
- 10. E.P. Neufeld (1972), p. 299
- 11. Trust Companies Association of Canada (1977).
- 12. Trust Companies Association of Canada (1977).
- 13. Statistics Canada 61-006 (1984), p. xiii.

APPENDIX 2.1

ENTRIES, MERGERS AND EXITS OF COMPANIES BETWEEN 1976 AND 1981

a) ENTRIES (i)

- 1. Community Trust Company Limited, incorporated in Ontario in 1975 and registered 6 July, 1976.
- 2. Astra Trust Company, federally incorporated in 1976 and registered in Ontario, 1977.
- 3. Exchequer Trust Company, incorporated in Ontario and registered, 1977.
- 4. Financial Trust Company, incorporated in Ontario and registered in 1977.
- 5. Huronia Trust Company, was incorporated in Ontario and registered in 1977.
- 6. Security Trust Company was incorporated in Ontario and registered in 1977.
- 7. Effort Trust was incorporated and registered in Ontario, 1978.
- 8. McDonald-Cartier Trust Company was incorporated in Ontario in 1977 and registered in 1978.
- 9. Municipal Trust Company was incorporated in Ontario and registered in 1978.
- 10. Seaway Trust Company was incorporated and registered in Ontario in 1978.
- 11. Bayshore Trust Company was federally incorporated in 1977 and registered in Ontario in 1978.

- 12. The Merchant Trust Company, was federally incorporated and registered in Ontario in 1978.
- 13. Montreal Trust Company of Canada was federally incorporated and registered in Ontario in 1978.
- 14. Cabot Trust Company was incorporated in Ontario and registered in 1978.
- 15. Morgan Trust Company of Canada was federally incorporated and registered in Ontario in 1979.
- 16. Western Capital Trust Company was federally incorporated and registered in Ontario in 1979.
- 17. Executive Trust Company, Ontario incorporated, was registered in Ontario in 1981.
- 18. North Canadian Trust Company, federally incorporated, was registered in Ontario in 1981.

b) MERGERS

- 1. The Canada Trust Company, amalgamated with Ontario Trust Company and the Lincoln Trust and Savings Company as of December 10, 1976, to continue under the name of The Canada Trust Company.
- 2. The Eastern Canada Savings and Loan Company amalgamated with Central and Nova Scotia Trust Company both federally incorporated companies, as of 1 July, 1976, to form Central and Eastern Trust Company.
- 3. Canada Permanent Trust Company amalgamated with Hamilton Trust and Savings Company to continue under the name of Canada Permanent Trust Company in 1977.
- 4. Royal Trust Corporation of Canada amalgamated in 1977 with The Royal Trust Company (Ontario) to continue under the name of Royal Trust Corporation of Canada.

- 5. The Lambton Trust Company Limited was amalgamated with Victoria and Grey Trust Company to continue under the name Victoria and Grey Trust Company in 1978
- 6. Metropolitan Trust Company amalgamated with Victoria and Grey Trust Company under the name of Victoria and Grey Metro Trust Company in 1979. Victoria and Grey Metro Trust Company changed its name to Victoria and Grey Trust Company in 1980.
- 7. Fort Garry Trust Company, Manitoba, incorporated, merged into The Fidelity Trust Company in 1980.
- 8. Federal Trust Company, Ontario incorporated, merged with Central and Eastern Company, a federally incorporated company, which later changed its name to Central Trust Company, in 1981.
- 9. The Industrial Mortgage and Trust Company, Ontario incorporated, merged with Royal Trust Corporation of Canada, a federally incorporated company, in 1981.

c) EXITS

1. Effective June 13, 1980, The Clarkson Company Limited was appointed liquidator to wind up the affairs of Astra Trust Company, under the Winding-Up Act (Canada).

Source: Reports of the Registrar of Loans and Trust Companies. Ontario.

Entries exclude companies which have been incorporated and registered in other provinces before 1976 but were registered in Ontario between 1976 and 1981.

CHAPTER 3

A SURVEY OF THE LITERATURE

Considerable research has been conducted on cost functions in general. A number of these studies are concentrated on economies of scale in various kinds of industries, including both commodity output and service output industries. Until 1975, however, most researchers looked at economies of scale from the point of view of single output industry analysis.

As pointed out by Bailey and Friedlaender (1982), many industries in which the study of economies of scale may be of interest are multiproduct industries. Thus, for example, the railway industry has as outputs freight and passenger haulage; and banks have as outputs the services associated with loans, deposits and securities. A proper study of such industries requires multiproduct analysis, along the lines pioneered by Panzar and Willig (1977) and Baumol (1977). Multiproduct analysis allows a more detailed appraisal of the structure of an industry. In particular, it allows consideration of economies of scope and of product-specific economies of scale.

Financial institutions being multiproduct industries, one would expect cost analysis of banks and near banks to be done in a multiproduct fashion. However, except for some recent work by Murray and White (1983), it appears that none of the previous studies of economies of scale in financial institutions have taken a multiproduct approach.

This chapter attempts to establish that there is an important body of literature establishing methods for modelling multiproduct firms without collapsing output into a single dimension. There is also an indication that this multiproduct approach provides policy guidance not found in earlier studies.

In Section 1 of this chapter we review work on economies of scale in general, giving some particular attention to the question of functional form. Section 2 provides examples on economies of scale studies in the finance industry. Particular attention is paid to the problem of defining output variables.

3.1 <u>MULTIPRODUCT COSTS AND ECONOMIES OF</u> SCALE AND OF SCOPE

The historical development of the costfunction and its analytical properties are fully
discussed in McFadden (1978). He starts from
Hotelling's (1932) work on the properties of the price
derivatives of the cost function, discusses Shephard's
(1953) duality theory of cost and production functions
and goes on to discuss the works of Uzawa (1964),
McFadden (1962), Diewert (1974), Hanoch (1975), and
Lau (1976), all of which contributed to the economic
implications of the duality theory. This section,
therefore, will omit discussion of the cost function
itself and concentrate on concepts related to the cost
function. Specifically, we shall discuss works related
to the concepts of economies of scale, economies of
scope, and product-specific economies of scale.

Economies of scale is a concept which has interested research economists since Adam Smith first extolled the virtues of 'division of labour' and 'specialization' in his book, "The Wealth of Nations." Economies of scale is useful in evaluating the efficiency of market structures; hence it is useful to both regulators and managers of the firm alike.

There are three principal ways in which people study economies of scale. The first, which may be called the "engineering technique," makes use of engineers' cost estimates. Haldi and Whitcomb (1967) have argued that these cost estimates are useful in the study of economies of scale, "because they embody assumptions consistent with those underlying the envelope curve".

The second method is Stigler's "survivor technique"². This technique involves classification of firms in an industry by size, and calculation of the share of industry output coming from each class over time. If the share of a given class falls, that class is relatively inefficient, and in general is more inefficient the more rapidly its share falls.

The third technique, which we shall call the "statistical cost analysis," involves the analysis of the average cost curve of the industry. This is the technique used in the present research and hence the literature surveyed is more or less limited to studies using this technique.

Traditional economic analysis generally involves single product firms. Until the mid-1970s researchers of cost functions were forced to use single product techniques to analyze economies of scale for

multi-product firms. Such single product techniques failed to capture the structure of multiproduct firms. Johnston (1961) reviewed the statistical technique for analyzing cost functions. This technique usually involved the use of average cost and marginal cost functions. He applied his analysis to the railway and trucking industries. Analysts of economies of scale in single output firms normally check for scale economies by looking at the slope of the average cost curve within a particular range. The range within which the average cost curve falls indicates increasing returns to scale.

An example of work using single product approach is that of Christensen and Greene (1976). They estimated economies of scale for United States firms producing electric power. They used a translog cost function to analyze cross-section data for 1955 and 1970. Their model was a single output model, with economies of scale elasticity defined as

$$SCE = 1 - \frac{d \ln C}{d \ln Y}$$
 (3.1-1)

where C is operating cost and Y is output. There is economies of scale if SCE > 0 and diseconomies of scale if SCE < 0 and constant returns to scale if SCE = 0. They found that in 1955 there were significant scale economies available for all firms. In 1970, however, the bulk of U.S. electricity generation was by firms operating in the essentially flat area of the average cost curve. They concluded that a small number of extremely large firms are not required for efficient production and that policies designed to promote competition in electric power generation cannot be faulted in terms of sacrificing economies of scale.

There have been numerous formal discussions of the economies of multiproduct firms since Hicks (1939) early treatment. McFadden (1966), Jacobson (1968) and Shephard (1970) have used the principles of duality to demonstrate the existence of multiproduct cost functions corresponding to general production structures. Hall (1973) also showed the transformation of a separable production specification into a corresponding cost function. Most of the earlier analysts of multiproduct cost functions imposed theoretical restrictions on the cost structure though Brown, Caves and Christensen

(1979) have argued that, "the imposition of homogeneity and separability and greatly distort estimates of marginal costs and scale economies" 4.

Panzar and Willig (1977) and Baumol (1977), apparently independently, introduced new ways of looking at economies of scale in multiproduct industries. These new ways brought in new concepts, such as 'economies of scope,' and 'product-specific economies of scale'. Economies of scope refer to the cost advantages of providing a large number of diversified products in one multiproduct firm instead of many single product firms. The existence of economies of scope provides a raison d'etre for multiproduct industries.

Bailey and Friedlaender (1982), in a survey article, discussed some cost concepts for multiproduct firms. They based their discussion mainly on the works of Baumol (1977) and Panzar and Willig (1977). Their discussion was centred mainly on the concepts of economies of scale, economies of scope, and product-specific economies of scale. Assuming C(Y,r) is a multiproduct cost function, where Y is a vector of n outputs and r a vector of m input prices, they obtained a measure of multiproduct economies of scale by first

computing

$$d \ln C = \sum_{i=1}^{n} \frac{\partial \ln C}{\partial \ln Y_i} \frac{\partial Y_i}{\partial Y_i}$$
 (3.1-2)

Then assuming all outputs are increased by a proportion $\lambda = dY_{\dot{1}}/Y_{\dot{1}} = d \ln Y_{\dot{1}}, \text{ they defined the multiproduct}$ economies of scale measure as

$$S = 1/\varepsilon \tag{3.1-3}$$

where

$$\varepsilon = \frac{d \ln C}{\lambda} = \sum_{i=1}^{\infty} \frac{\partial \ln C}{\partial \ln Y_i}$$
 (3.1-4)

There is multiproduct economies of scale if S > 1, diseconomies of scale if S < 1 and constant returns to scale of S = 1.

Some of the behaviour of cost with respect to changes in output which are neglected by the multiproduct 'overall' measure of economies of scale are captured in a concept known as product-specific economies of scale. It is measured by calculating the cost elasticity of one output, holding all other outputs fixed.

Fuss and Waverman (1981) in a research on the Canadian Telecommunications Industry, claimed that "there is no unambiguous measure of output-specific returns to scale except in the case of non-joint production" 5. This is because they defined incremental cost as marginal cost. Defining incremental cost of output 1 as

$$IC_1 = C(Y_1, Y_2, ..., Y_n) - C(0, Y_2, ..., Y_n),$$
 (3.1-5)

Panzar and Willig (1978) provided an unambiguous measure of product-specific returns to scale. However, this measure requires knowledge of the cost function in regions where one or more of the outputs are zero. Fuss and Waverman could not use the Willig and Panzar (1978) definition as their translog cost function does not allow for zero outputs.

Panzar and Willig (1978) defined average incremental cost (AIC) as the incremental cost (IC) of producing that output divided by the output. Where IC is the additional cost of producing an output where previously it was not produced at all. Therefore for output 1 in a two output case,

$$AIC_{1}(Y) = \frac{C(Y_{1}, Y_{2}) - C(0, Y_{2})}{Y_{1}}$$
 (3.1-6)

Product-specific economies of scale for output 1 is measured by

$$S_1 = \frac{AIC_1(Y)}{MC_1} \tag{3.1-7}$$

Where MC_1 is the marginal cost of producing Y_1 .

If S_1 > 1 there are increasing returns to scale with respect to output 1; if S_1 = 1, constant returns and S_1 < 1, refers to decreasing returns to scale for product 1.

Another measure which captures the effect of changes in the composition of output on cost is the concept of economies of scope. Both global and local measures are suggested. According to Willig and Panzar (1975, 1981), economies of scope exist if the cost of producing a set of outputs jointly is less than the cost of producing them separately; that is, if

$$C(Y_1,Y_2) < C(Y_1,0) + C(0,Y_2)$$
 (3.1-8)

where Y_1 is the output level of product 1 and Y_2 is the output level of product 2.

Formally the degree of economies of scope is measured by

$$s_{c} = \frac{C(Y_{1},0) + C(0,Y_{2}) - C(Y_{1},Y_{2})}{C(Y_{1},Y_{2})}$$
 (3.1-9)

Thus, $S_{\rm c}$ is greater than zero if economies of scope exist and less than or equal to zero if no economies of scope exist.

Locally, economies of scope can be defined according to whether:

$$\frac{\partial^2 C}{\partial Y_1 \partial Y_2} \stackrel{?}{<} 0 \tag{3.1-10}$$

If the left hand side of (3.1-10) is less than zero, then the marginal cost of one output is reduced by the increase in the output of the other, and local economies of scope are said to exist.

Algebraic manipulation of (3.1-3) shows the relation between the three concepts of multiproduct economies of scale (S), product-specific economies of scale (S_1 , S_2) and global economies of scope (S_c) as

$$S = \frac{wS_1 + (1 - w)S_2}{1 - S_C}$$
 (3.1-11)

where

$$w = \frac{Y_1 \partial C / \partial Y_1}{Y_1 \partial C / \partial Y_1 + Y_2 \partial C / \partial Y_2}$$
 (3.1-12)

Bailey and Friedlaender (1982) concluded that an implication of (3.1-11) is that strong scope economies ($S_{\rm C}>0$) can confer scale economies (S>1) on an entire product set. In fact, it is possible to have multiproduct economies of scale with productspecific diseconomies of scale in each output if $S_{\rm C}$ is sufficiently large. Also the sensitivity of the cost function to both the scale and composition of output imply that as the firm changes its level of output and product mix, there will be different reactions at different output levels.

Empirical works on multiproduct economies of scale span a wide range of industries, including railways and trucking, airlines, telecommunications, and banking and finance.

In their work on the telecommunications industry in Canada, Fuss and Waverman (1981) used a

translog cost function. This kind of functional form limited their use of some of the definitions of some of the cost concepts listed above. Since their functional form does not allow for zero outputs, they had to limit themselves to only local definitions when it came to checking for economies of scope. In checking for economies of scope, they used a definition of local cost complementarities:

$$\frac{\partial^{2}C}{\partial Y_{i}\partial Y_{j}} < 0 \quad (i \neq j, i,j = 1,...,n)$$

But as shown by Panzar and Willig (1979) the existence of cost complementarities is only a sufficient condition for a twice differentiable multiproduct cost function to exhibit economies of scope. On multiproduct economies of scale they concluded that "estimates of the overall economies of scale elasticity are not sufficiently precise to enable one to reject the hypotheses of increasing, constant, or decreasing returns to scale" 6.

An example of multiproduct cost study of the trucking industry can be found in Wang-Chiang (1981) reported in Bailey and Friedlaender (1982). In an

effort to distinguish between the economies of scale and economies of scope in the trucking industry, Wang Chiang (1981) analyzed trucking costs by estimating a "translog cost function that incorporates a disaggregate output vector and variables that reflect the configuration and utilization of the network over which the firm operates" . She found out that returns to distribution networks appear to be sufficiently strong to generate fairly marked product-specific economies of scale and economies of scope in the intermediatehaul trucking markets. It is concluded that these economies of network utilization and of network configuration suggest that there are strong economies of joint production associated with short-haul and intermediatehaul trucking shipments, particularly of small and medium sized firms -- thus this explains the observed merger movement in the U.S. trucking industry. suggests that in the absence of regulations, firms would attempt to merge and to grow to obtain the full range of economies of joint production afforded by efficient network utilization. Wang Chiang (1981) also found that there was no evidence of global economies of

scale and that product-specific economies disappear for large firms, suggesting there may be a limit to the efficient growth of trucking firms.

An important work which provides evidence of the output disaggregation is Jara-Diaz and Winston (1981). They estimated a quadratic cost function at the totally disaggregate level of the point-to-point of shipment and compared it with a model with aggregate output measures. They found substantial biases resulted concerning measures of economies of scale and elasticities of substitution. They also found out that economies of scale existed with respect to shipments throughout the network.

An important part in the analyses of multiproduct cost functions is the formulation of the cost
function. Baumol, Panzar and Willig (1982) explained
some of the implications of the definitions of economies
of scale/scope as far as the functional form is concerned.
They argued that one should not let the functional form
determine the results of the analysis but that rather
should allow the data to do so. They warned that

"any function that, like the Cobb-Douglas or the translog, takes the value zero whenever the output of any product set is zero automatically precludes the possibility of economies of scope or of subadditivity, if C(Y) > 0 for other relevant values of Y. For then the costs of an industry can always be driven (ostensively) to zero by dividing its outputs among specialized firms, none of which produces every one of the industry's products" 8 .

They gave an example using a Cobb-Douglas cost function and showed that such a function "preimposes the conclusion that weak cost complimentarities are always absent and that, in fact, diseconomies of scope prevail in the absence of fixed costs"9 The Cobb-Douglas cost function, in fact, has nothing to recommend it except tractability. The translog, on the other hand, is a very useful flexible functional form, except that it cannot handle zero outputs. Caves, Christensen and Tretneway (1980) examined different functional forms which were flexible in nature. They proposed a new functional form which they called the Generalized Translog Multiproduct Cost Function (GTMCF). This functional form applies a Box-Cox transformation to the output variables. This kind of transformation allows for zero outputs. We shall learn more about GTMCF in Chapter 4.

In conclusion, it seems clear from existing econometric studies of multiproduct industries that explicit disaggregation of the output vector to take the heterogeneity of output into account provides information and policy guidance that cannot be gained from single-product analysis. Such multiproduct studies have taken place in the telecommunication, railroad and trucking industries, to mention a few. Discussion of studies on cost functions in the finance industries, including multiproduct studies are deferred till the next section.

3.2 SCALE STUDIES IN FINANCIAL INSTITUTIONS

Even though the concept of economies of scale has long been recognized, it was not until 1954 10 that it was tested for in the finance industry. delay might be due to conceptual and definitional problems which continue to plague analysts of the industry. Being a service industry, it has not been easy to find unambiguous definitions of outputs. some cases, there is limitation in the data on individual banks and near banks. This is particularly so with Canadian financial institutions. In the United States, data is readily available on banks belonging to the Federal Reserve's Functional Cost Analysis Program. Banks join the program to get the analyses of their operations and comparisons with other banks provided them by the Bank Relations Division of the district Federal Reserve Banks. Benston (1965, 1970, 1972) and Bell and Murphy (1968) utilized data from the Functional Cost Analysis Program.

As mentioned above, the definition of output is one of the problems researchers have faced. Benston (1965, 1970) and Bell and Murphy (1968) have defined output "in terms of what banks or savings and loan

associations do to cause them to incur operating costs" 11. They claim that

"the operating costs are related primarily to the number of documents handled and customers served rather than to the dollars deposited or loaned" 12.

Thus for Benston, and Bell and Murphy, outputs are represented by the numbers of loan and deposit accounts serviced. They also claimed that computing these numbers as averages per year allows the outputs to be interpreted as flows. In addition to using the numbers of accounts as outputs, they included in their estimation average dollar balances as "cost homogeneity variables".

estimate of "real value" of output in their analysis of commercial banking. Greenbaum argued that bank output "must be related to community well-being" 13. He and Powers measured the amount of "community well-being" produced by a bank with a variant of the bank's gross income. But these authors differ in other definitions; Powers' definition accounted for interbank differences in expected yields whereas Greenbaum's aid not. Powers therefore used gross operating income to measure output.

Alhadeff (1954), Horwitz (1963), Schweiger and McGee (1961), Brigham and Grebler (1963), Gramley (1962), and Brigham and Pettit (1970) all used real-valued unweighted indexes of bank output. Alhadeff and Horwitz used loans plus investments; Schweiger and McGee used total deposits and Gramley, Brigham and Grebler, and Brigham and Pettit used total assets. All these authors used dollar balances of accounts to represent output. Murray and White (1980, 1982) also used the dollar amounts of investments, loans and deposits as outputs.

Sealey and Lindley (1977), in a theoretical paper, concluded that the appropriate concept of output is "the services provided to the debtors of financial institutions". They also measured their output volumes in dollar units. Their model was a two-stage production model in which, in the first stage, loanable funds borrowed from depositors are serviced by the firm, and in the second stage the deposits are serviced by capital, labour and other inputs to produce earning assets.

Different researchers have used different techniques in analyzing economies of scale in financial institutions. Alhadeff (1954) and Horwitz (1963) analyzed economies of scale by relating total operating

costs per thousand dollars of loan and securities to banks classified in different size groups. They both used tabular analysis. Alhadeff used California bank data for the years 1938-1950 while Horwitz, who replicated Alhadeff's work, used data for all commercial banks for the period 1949-1960. Like Alhadeff, Horwitz concluded that

"once a bank reaches the relatively small size of \$5 million of deposits, additional size does not result in reduced costs to any great extent until a bank reaches the giant size of over \$500 million" 14

and that branch banks have uniformly higher unit costs than unit banks.

Schweiger and McGee (1961), Gramley (1962),
Grebler and Brigham (1963), Brigham and Pettit (1970),
Benston (1965, 1970), Bell and Murphy (1968) and Murray
and White (1980, 1982) all used multiple regression
analysis.

The following equation was estimated by Schweiger and McGee and Gramley for banks in 1959 (Schweiger and McGee used data for banks in Chicago and surrounding areas and Gramley used data from a sample of Tenth District member banks):

$$C_{i}/A_{i} = b_{0} + b_{1}S_{i} + b_{2}D_{i} + \sum_{j=1}^{2} b_{j}E_{ji}$$

$$+ b_{m}G_{i} + \sum_{j=1}^{2} b_{k}G_{ki} \qquad (3.2-1)$$

where

 C_i/A_i = total operating cost/total assets of the i^{th} bank.

D_i = time deposits/total deposits.

G = percentage growth of assets.

For both studies the coefficient of their size variable is negatively biased because it appears as the denominator of the dependent variable 15 . These scale coefficients, \mathbf{b}_1 , are also negative and of magnitudes that indicate large economies of scale.

Brigham and Grebler (1963) and Brigham and Pettit (1970) used similar equations to analyze the operating costs of savings and loan associations. Brigham and Pettit used 1961 data from 221 California loan associations (which held 96 percent of the industry's asset in the state). They ran separate regressions for subsamples of associations grouped according to location, type of charter and type of ownership. They found that the sign of the coefficient of the size variable was negative in all cases, and for the most part the coefficients were not statistically significant. Furthermore, their partial correlation coefficients were generally neither statistically significant nor large enough to be considered important in an economic This means, in effect, that no important economies of scale appeared in the 1961 data.

Brigham and Grebler analyzed a five-year data (1962-1966) from all associations in three markets: Los Angeles, Chicago, and Detroit-Cleveland. They

found consistent economies of scale for all subsamples in all the five years.

Greenbaum (1962) and Powers (1969) related their measure of output to unit cost as follows:

$$C_{i}/A_{i} = b_{0} + b_{1}R_{i}/A_{i} + b_{2}(R_{i}/A_{i})^{2} + b_{3}(R_{i}/A_{i})^{3}$$

$$(3.2-2)$$

where R_i is total operating revenue (or variant thereof) of the ith bank and C_i and A_i are as defined above. Both divided their samples into unit and branch banks and Greenbaum also added a code of 1-9 for the number of branches. Powers divided his sample into three asset size groups, each of which was subdivided into two groups according to the ratio of current operating revenue to total revenue. Powers also concluded that he found no "definitive conclusion as to the existence of either diseconomies of branching or economies of size in the entire banking industry" ¹⁶.

Benston (1965) and Bell and Murphy (1968) used multiple regression analysis to analyze the direct and indirect operating costs of individual banking services. They used data gathered by the Federal Reserve in its Functional Cost Analysis Program. Direct

costs were assigned to the deposits and loans departments and indirect costs were allocated between administration and business development and occupancy.

Bell and Murphy (1968) showed that if the underlying production function is Cobb-Douglas and banks are assumed to minimize costs, then the cost function is also Cobb-Douglas. However, there is no reason for the production function to be assumed to be Cobb-Douglas in the first place. The equation used by Bell and Murphy and Benston, with all variables in common logarithms, is as follows:

$$DC_{i} = b_{0} + b_{1}N_{i} + b_{2}S_{i} + b_{3}A_{i} + b_{4}M_{i}$$

$$+ b_{5}R_{i} + b_{i}C_{i} + b_{7}O_{i} + b_{8}W$$

$$+ \sum_{j=1}^{5} b_{j}B_{ij} \qquad (3.2-3)$$

where

DC_i = direct cost of each type of banking service of the ith bank.

 N_i = number of accounts serviced per year.

 $S_{i} = size of accounts.$

 A_i = activity per account.

M; = mixed types of accounts

R = riskiness of loans (average interest
 rate charged)

C_i = concentration in types of business (the ratio of time deposits to demand deposits for the deposit services, and business loans to total loans for the business loan services).

O; = other cost homogeneity factors.

 B_{ij} = structure variables for branching, where B_{il} = 1(log 10) for banks with one branch and zero otherwise, B_2 = 1 (log 10) for banks with 2 branches and zero otherwise, and so on.

The same formulation was used for indirect costs, with only definitional changes.

For savings and loan associations, Benston (1970) used the following equation:

$$C_{i} = a + bQP_{i} + \sum C_{j}QD_{ji} + \sum d_{K}QH_{Ki} + \sum g_{m}M_{mi}$$

$$+ h_{n}P_{ni}$$
(3.2-4)

where C_i = operating costs (salaries, occupancy, miscellaneous or total expenses) of the ith association.

- QP = primary output variable (number of loans made, number of loans serviced, or number of savings accounts serviced).
- QD = two variables that account for different proportions of output (ratio of number of loans made to the number serviced and percentage of borrowing to mortgates).
- $QH_{ki} = six$ output homogeneity variables.
 - M_{m;} = ten managerial and structural variables.
 - P_{ni} = six input price and other cost homogeneity variables.

Benston (1965) used data for 80 to 83 banks for the years 1959, 1960, and 1961. Bell and Murphy (1968) used data for 210 to 283 banks in Boston, New York and Philadelphia for the years 1963, 1964, and 1965. In both studies, consistent and significant economies of scale were found for the demand deposits and real estate loan functions. Time deposits and instalment loans have estimated scale elasticities that are significantly less than unity for Benston's sample

and less than unity but generally not significantly so for Bell's and Murphy's sample. Business loans also showed no significant economies of scale. Administration did not show consistently significant economies of scale.

Benston (1970), in analyzing operating costs for savings and loans associations, used a six-year data (1962-1966) to study 3159 of the 4332 insured associations (as of December 31, 1962). He excluded 205 firms because they merged during the period, 889 firms because some of their reports were missing and 79 firms because their data "failed to pass edit checks". He found relatively consistent economies of scale for savings and loan associations. Economies of scale do not appear to be proportionately greater for larger institutions than for smaller associations. For regulation purposes, Benston concluded that the existence of consistent and significant economies of scale indicate that larger firms are preferable, ceteris paribus. However, he advised that for specific decisions, the amount of expected savings in operating costs should be compared to an estimate of the disadvantages (like loss of effective competition).

Baltensperger (1973) used a much different

formulation from all of the ones discussed above. He feels that "operating cost analysis" neglects one important function of banks -- consolidation of risks. He said that

"to the extent that different debtors and creditors are independent, an increase in the number of customers reduces the bank's uncertainty about changes in cash reserves and capital account, and the inventory and adjustment costs associated with uncertainty. A large bank has thus an advantage over a small bank, as far as these costs are concerned." 17

Unfortunately, Baltensperger did not do any empirical work for us to compare the results with the operating cost analyses.

U.S. data. It appears that only Murray and White (1980, 1983) have done work using Canadian data. Murray and White analyzed economies of scale for deposit-taking financial institutions in Canada, using data for 152 credit unions in British Columbia, over the period 1972-1975. In their 1980 paper, they formulated a Cobb-Douglas cost function. They found no significant economies of scale in credit unions. Like all the other

papers cited above in this section, Murray and White (1980) did not really tackle economies of scale from a multiproduct angle. Their 1983 paper was full of new ideas on multiproduct analysis. They used a translog functional form and defined the outputs as mortgage loans, other loans and investments. defined costs to include all labour and real capital expenses, as well as the interest and dividends paid to depositors and shareholders. They defined the price of capital somewhat crudely as the sum of the major capital expenses (such as rent, depreciation and utilities) divided by the average dollar deposits in 1977. There is no theoretical reason given for defining the price of capital this way. Murray and White also incorporated other control variables, such as 'branch', 'risk', and 'growth'. They found that there exist economies of scale in all credit unions. Fuss and Waverman, Murray and White (1983) used the existence of cost complementarity as a sufficient criterion for the existence of economies of scope. Weak evidence of cost complementarity was found between investments and loans, but the results were not statistically significant. They also detected significant economies of scope between mortgage lending and other

lending activity.

In summary, numerous studies on economies of scale in financial institutions, have either failed to approach the problem from a multiproduct angle or have used a functional form which has limited the full interpretation of multiproduct concepts. None of the works I have surveyed so far have done anything on the Canadian trust industry. This will be our task in this paper.

FOOTNOTES

Chapter 3

- 1. John Haldi and David Whitcomb (1967), p. 374.
- 2. George Stigler (1968), p. 71.
- 3. If $f(Y_1, Y_2, ..., Y_m, X_1, X_2, ... X_n) = 0$ is a general multiproduct transformation function, separability implies:

$$F(h(Y_1, Y_2, ..., Y_m), X_1, X_2, ..., X_n) = 0$$

and homogeneity implies

$$f(\lambda^{r}Y_{1},...,\lambda^{r}Y_{m}; \quad \lambda X_{n},..., X_{n}) = f(Y_{1},...,Y_{m}; X_{n},...,X_{n}) = 0$$

where

 Y_i is output i = 1...m

 X_{j} is input j = 1...n

 $\boldsymbol{\lambda}$ is proportion in which inputs are increased.

r is degree of homogeneity.

- 4. Brown, Caves and Christensen (1979), p. 256.
- 5. Fuss and Waverman (1981) used the term 'joint production' to refer to either joint or common costs. Common costs are defined as the costs of inputs utilized by two or more outputs. Joint costs occur when two or more outputs are produced in fixed proportions. (p. 273-283.)
- 6. Fuss and Waverman (1981), p. 309.

- 7. E.E. Bailey and Ann F. Friedlaender (1982), p. 1036.
- 8. W. Baumol, J. Panzar and R. Willig (1982), p. 449
- 9. W. Baumol, J. Panzar and R. Willig (1982), p. 449.
- 10. D.A. Alhadeff (1954) is, according to Horwitz (1963), first economist to have examined empirical cost data in banking.
- 11. G. Benston (1972), p. 320.
- 12. G. Benston (1972), p. 320.
- 13. S. Greenbaum (1967), p. 466
- 14. P.M. Horwitz (1963), p. 37
- 15. G. Benston (1972), p. 321
- 16. J.A. Powers (1969), p. 164.
- 17. E. Baltensperger (1973), p. 601.

CHAPTER 4

THE MODEL

In chapter 2, we noted that the outputs for the trust industry are the services of loans, securities and the administration of estates, trusts and agencies. We also noted that deposits are both inputs as well as outputs.

In this chapter, we shall attempt to model the cost determination of the trust industry, by starting from a basic production structure using the said outputs of the trust industry and a set of inputs. We shall demonstrate that our cost function satisfies the homogeneity requirements and Shephera's lemma.

Section 1 will be concerned with the structure of the model. Section 2 will be devoted to model specification. We shall talk about two different functional forms here: translog multiproduct cost function and generalized translog multiproduct cost function. In Section 3, we shall use the two functional forms to derive some specific measures of multiproduct economies of scale, economies of scope and product specific economies of scale.

4.1 THE STRUCTURE OF THE MODEL

The trust industry has a two-stage production structure. In the first stage, labour and capital are used as inputs to produce the services of deposits. The production technology at this stage can be represented by

$$Y_4 = f(X_1, X_2)$$
 (4.1-1)

where

Y₄ = the services relating to deposits, measured in "dollar-years".

 $X_1 = labour, measured in "man-years".$

 X_2 = capital, measured in "machine-years".

In the second stage, the services of deposits (Y_4) joins labour (X_1) and capital (X_2) to produce the other set of outputs of the trust industry. These outputs are

- Y₁ services relating to the administration of estates, trusts and agencies.
- Y₂ services relating to loans (mortgages, personal and colateral).

Y₃ - services relating to securities held (bonds, stocks, and treasury bills).

Assume there is a direct proportional relationship between stocks and flows. Thus, we can write the following stock balance equation in flow form as

$$Y_2 + Y_3 = Y_4 + S$$
 (4.1-2)

where S is shareholders' equity and the other variables are as defined above.

Assume that at any point in time shareholders' equity, S, is given and that the firm, being a cost minimizer, considers output as exogenously determined. As Benston has observed, the assumption of "exogenously determined rates of output appears valid for most output of regulated financial institutions. Banks and savings and loan associations are limited, on the whole, to their local market areas" 1 . Given the above structure, Y_4 can be determined from (4.1-2).

The final stage production technology of the trust industry can, therefore, be represented as

$$g(Y_1, Y_2, Y_3; Y_4, X_1, X_2, S) = 0$$
 (4.1-3)

We assume that $g(\cdot)$ has continuous first and second order derivatives for positive values of the arguments, that it has positive first derivatives for the outputs and negative ones for the inputs, and that it is quasiconcave.

Total cost for a firm in the industry will be the sum of deposit costs, labour costs, and capital costs. That is, if

 C_1 = operating costs

 r_1 = unit price of labour

 r_2 = unit price of capital services

and

 r_d = unit price of deposits

then

$$c_1 = r_d Y_4 + r_1 X_1 + r_2 X_2$$
 (4.1-4)

Under the assumption of cost-minimization, we can minimize C_1 subject to (4.1-3). Note that our assumptions imply that Y_4 is already determined. With λ as a Lagrange multiplier, we can set up the problem as follows:

Min
$$Z = r_d Y_4 + r_1 X_1 + r_2 X_2$$

$$(X_1, X_2, \lambda)$$

$$- \lambda g(Y_1, Y_2, Y_3; Y_4, X_1, X_2, S) \qquad (4.1-5)$$

The first-order conditions for (4.1-5) are

$$\frac{\partial Z}{\partial X_1} = r_1 - \lambda \frac{\partial g}{\partial X_1} = 0 \qquad \dots (i)$$

$$\frac{\partial Z}{\partial X_2} = r_2 - \lambda \frac{\partial g}{\partial X_2} = 0 \qquad \dots (ii)$$

$$\frac{\partial Z}{\partial \lambda} = -g(Y_1, Y_2, Y_3; Y_4, X_1, X_2, S) = 0$$
 ...(iii)

We then solve (i), (ii) and (iii) for the input demand functions, as follows:

$$X_1^* = X_1(Y_1, Y_2, Y_3, Y_4, S, r_1, r_2)$$

$$X_2^* = X_2(Y_1, Y_2, Y_3, Y_4, S, r_1, r_2)$$

We can then write the minimized cost function as follows:

$$C_1^* = r_0 Y_4 + r_1 X_1^* + r_2 X_2^*$$
 (4.1-6)

or

$$c_1^* = c_1(Y_1, Y_2, Y_3, Y_4, S, r_1, r_2)$$
+ $r_d Y_4$ (4.1-7)

or

$$c_1^* - r_d Y_4 = c_1(Y_1, Y_2, Y_3, Y_4, S, r_1, r_2)$$
(4.1-8)

from (4.1-2), $S = Y_2 + Y_3 - Y_4$ so (4.1-8) can be written as

$$C = C(Y_1, Y_2, Y_3, Y_4, r_1, r_2)$$
 (4.1-9)

where

$$C = C_1^* - r_d Y_4 (4.1-10)$$

C is, therefore, operating cost minus deposit costs.

Since \mathbf{X}_1^\star and \mathbf{X}_2^\star are homogeneous of degree zero in \mathbf{r}_1 and \mathbf{r}_2 , the cost function \mathbf{C}_1^\star is homogeneous of degree one in all input prices. If we represent cost as operating cost less deposit cost, then C is homogeneous of degree one in \mathbf{r}_1 and \mathbf{r}_2 .

We can demonstrate Shepherd's Lemma as follows:

Write

$$z^* = r_d Y_4 + r_1 X_1^* + r_2 X_2^*$$

$$- \lambda g(Y_1, Y_2, Y_3; Y_4, X_1^*, X_2^*, S), \text{ where}$$

 \mathbf{Z}^{\star} is the minimized Lagrangian. Differentiating \mathbf{Z}^{\star} with respect to \mathbf{r}_{1} , gives

$$\frac{\partial Z^{\star}}{\partial r_{1}} = X_{1}^{\star} + r_{1} \frac{\partial X_{1}^{\star}}{\partial r_{1}} + r_{2} \frac{\partial X_{2}^{\star}}{\partial r_{1}} - \lambda \frac{\partial g}{\partial X_{1}^{\star}} \cdot \frac{\partial X_{1}^{\star}}{\partial r_{1}}$$

$$- \lambda \frac{\partial g}{\partial X_{2}^{\star}} \cdot \frac{\partial X_{2}^{\star}}{\partial r_{1}}$$

$$= X_{1}^{\star} + (r_{1} - \lambda \frac{\partial g}{\partial X_{1}^{\star}}) \frac{\partial X_{1}^{\star}}{\partial r_{1}} + (r_{2} - \lambda \frac{\partial g}{\partial X_{2}^{\star}}) \frac{\partial X_{2}^{\star}}{\partial r_{1}}$$

$$= X_{1}^{\star} \text{ (where the terms in parentheses equal zero by the first order conditions).}$$

$$\frac{\partial C_1^*}{\partial r_1} = \frac{\partial Z^*}{\partial r_1} = X_1^* \text{ (Shepherd's Lemma)}.$$

We can demonstrate a similar result for X_2^* .

4.2 THE SPECIFICATION OF THE MODEL

The choice of functional form is very important in the analysis of an industry. As noted in chapter 3, the function should not "prejudice the presence or absence of any cost properties" important to the analysis. A flexible functional form such as the translog is generally used to avoid the imposition of undue restrictions on the function.

Using the variables defined in Section 1, we write the translog multiproduct cost function (TMCF) for the cost equation in(4.1-9) as

$$\ln C = \alpha_0 + \sum_{i=1}^{4} \alpha_i \ln Y_i + \sum_{h=1}^{2} \beta_h \ln r_h \\
+ 1/2 \sum_{i=1}^{4} \sum_{j=1}^{4} \delta_{ij} \ln Y_i \ln Y_j \\
+ 1/2 \sum_{h=1}^{2} \sum_{k=1}^{2} \gamma_{hk} \ln r_h \ln r_k \\
+ \sum_{i=1}^{4} \sum_{h=1}^{2} \delta_{ih} \ln Y_i \ln r_h \quad (4.2-1)$$

For symmetry, we impose the restrictions

$$\gamma_{hk} = \gamma_{kh}$$
 (4.2-2a)

and

$$\delta_{ij} = \delta_{ji} \tag{4.2-2b}$$

For the cost function to be linearly homogeneous, we impose the further restrictions

$$\sum_{h=1}^{2} \beta_{h} = 1$$
 (4.2-3a)

$$\sum_{h=1}^{2} \gamma_{hk} = 0 \qquad k = 1,2 \qquad (4.2-3b)$$

$$\sum_{h=1}^{2} \delta_{ih} = 0 \qquad i = 1,2,3,4 \qquad (4.2-3c)$$

The translog cost function is a possible choice so long as there are no zero output quantities in our data set. Not all trust companies produce all specified outputs. There are some trust companies which produce only the services of loans and deposits; some

produce only the services of E.T.A. and loans, and so on. The translog is undefined for such data observations. In such a situation a general functional form which can take on zero outputs as well, is preferred. In choosing such a function, one must keep in mind some of the properties set down by Caves, Christensen and Trethway:

"To be attractive for empirical applications a flexible form for the MCF (Multiproduct Cost Function) should be linearly homogeneous in prices for all possible price and output levels; be parsimonious in parameters; and contain the value zero on permissible domain of output quantities." ²

All the conditions are satisfied by the TMCF except that which requires it to allow for zero output values. A Box-Cox transformation is therefore applied to the output values to circumvent this difficulty. This transformation defines a function

$$f_{i}(\theta) = \frac{Y_{i}^{\theta} - 1}{\theta}, \qquad \theta \neq 0 \qquad (4.2-4)$$

such that

$$\lim_{\theta \to 0} \left[\frac{Y_{i}^{\theta} - 1}{\theta} \right] = \ln Y_{i}$$
 (4.2-5)

Applying the Box-Cox transformation to all output variables in the TMCF in (4.2-1), we obtain

$$\ln C = \alpha_{0} + \sum_{i=1}^{4} \alpha_{i} \frac{Y_{i}^{\theta} - 1}{\theta} + \sum_{h=1}^{2} \beta_{h} \ln r_{h}$$

$$+ 1/2 \sum_{i=1}^{4} \sum_{j=1}^{4} \delta_{ij} \frac{Y_{i}^{\theta} - 1}{\theta} \frac{Y_{j}^{\theta} - 1}{\theta}$$

$$+ 1/2 \sum_{h=1}^{2} \sum_{k=1}^{2} \gamma_{hk} \ln r_{h} \ln r_{k}$$

$$+ \sum_{i=1}^{2} \sum_{h=1}^{2} \rho_{ih} \frac{Y_{i}^{\theta} - 1}{\theta} \ln r_{h}$$

$$(4.2-6)$$

This functional form, which is a hybrid of the translog multiproduct cost function and the Box-Cox transformation, was introduced, apparently independently, by Caves, Christensen and Trethway (1980) and by Fuss and Waverman (1981). It is generally referred to as the Generalized Translog Multiproduct Cost Function (GTMCF). Symmetry

and homogeneity restrictions are the same as for the TMCF. We note that the function in (4.2-6) is defined for zero outputs.

If we define cost as in (4.1-10), that is, total cost less deposit costs, then using Shepherd's Lemma, we can derive the input-share equations as follows:

For labour, we have

$$s_{1} = \frac{r_{1}x_{1}}{C} = \frac{\partial C}{\partial r_{1}} \cdot \frac{r_{1}}{C}$$

$$= \frac{\partial \ln C}{\partial \ln r_{1}}$$

$$= \beta_{1} + \sum_{k=1}^{2} \gamma_{1k} \ln r_{k} + \sum_{i=1}^{4} \rho_{i1} (\frac{Y_{i}^{\theta} - 1}{\theta})$$

$$(4.2-7)$$

Similarly, for capital, the share equation is

$$S_{2} = \frac{r_{2} x_{2}}{C}$$

$$= \beta_{2} + \sum_{h=1}^{4} \gamma_{h2} \ln r_{h} + \sum_{i=1}^{5} \rho_{i2} (\frac{Y_{i}^{\theta} - 1}{\theta})$$

$$(4.2-8)$$

If we impose the homogeneity and symmetry restrictions on the cost function and the share equations, our relevant system will look as follows:

$$\begin{split} & \ln \ C = \alpha_0 + \alpha_1 (\frac{\gamma_1^{\theta} - 1}{\theta}) + \alpha_2 (\frac{\gamma_2^{\theta} - 1}{\theta})^2 + \alpha_3 (\frac{\gamma_3^{\theta} - 1}{\theta}) \\ & + \alpha_4 (\frac{\gamma_4^{\theta} - 1}{\theta}) + 1/2 \delta_{11} (\frac{\gamma_1^{\theta} - 1}{\theta}) + 1/2 \delta_{22} (\frac{\gamma_2^{\theta} - 1}{\theta})^2 \\ & + 1/2 \delta_{33} (\frac{\gamma_3^{\theta} - 1}{\theta})^2 + 1/2 \delta_{44} (\frac{\gamma_4^{\theta} - 1}{\theta})^2 \\ & + \delta_{12} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_2^{\theta} - 1}{\theta}) + \delta_{13} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_3^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) + \delta_{23} (\frac{\gamma_2^{\theta} - 1}{\theta}) (\frac{\gamma_3^{\theta} - 1}{\theta}) \\ & + \delta_{24} (\frac{\gamma_2^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) + \delta_{34} (\frac{\gamma_3^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) + \delta_{34} (\frac{\gamma_3^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_3^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_3^{\theta} - 1}{\theta}) (\frac{\gamma_4^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma_1^{\theta} - 1}{\theta}) \\ & + \delta_{14} (\frac{\gamma_1^{\theta} - 1}{\theta}) (\frac{\gamma$$

...continued

$$+ \rho_{11} \left(\frac{Y_{1}^{\theta} - 1}{\theta} \right) [\ln r_{1} - \ln r_{2}]$$

$$+ \rho_{21} \left(\frac{Y_{2}^{\theta} - 1}{\theta} \right) [\ln r_{1} - \ln r_{2}]$$

$$+ \rho_{31} \left(\frac{Y_{3}^{\theta} - 1}{\theta} \right) [\ln r_{1} - \ln r_{2}]$$

$$+ \rho_{41} \left(\frac{Y_{4}^{\theta} - 1}{\theta} \right) [\ln r_{1} - \ln r_{2}]$$

$$(4.2-9)$$

The labour share equation is as follows:

$$S_{1} = \beta_{1} + \gamma_{11} [\ln r_{1} - \ln r_{2}]$$

$$+ \rho_{11} (\frac{Y_{1}^{\theta} - 1}{\theta}) + \rho_{21} (\frac{Y_{2}^{\theta} - 1}{\theta})$$

$$+ \rho_{31} (\frac{Y_{3}^{\theta} - 1}{\theta}) + \rho_{41} (\frac{Y_{4}^{\theta} - 1}{\theta})$$

$$(4.2-10)$$

The capital share equation is correspondingly defined. However, for the purposes of estimation we shall need the cost equation in (4.2-9) and only one share equation 3 . We shall use the labour share equation in (4.2-10).

4.3 SPECIFIC FORMULATION OF MEASURES OF SOME COST CONCEPTS

In chapter 3, we defined some measures of economies of scale, economies of scope, and product-specific economies of scale. In this section we shall use the generalized translog multiproduct cost function in (4.2-9) to give specific definition to these measures.

Multiproduct economies of scale measure has been defined in (3.1-3) as

$$S = 1/\varepsilon \tag{4.3-1}$$

where

$$\varepsilon = \sum_{i=1}^{\infty} \frac{\partial \ln C}{\partial \ln Y_1}$$
 (4.3-2)

Returning to the GTMCF in equation (4.2-9) we notice that we can define the elasticity of cost with respect to output 1 (estates, trusts and agency administration) as follows:

$$\frac{\partial \ln C}{\partial \ln Y_{1}} = \left[\alpha_{1} + \delta_{11}(Y_{1}^{\theta}-1)/\theta + \delta_{12}(Y_{2}^{\theta}-1)/\theta + \delta_{13}(Y_{3}^{\theta}-1)/\theta + \delta_{14}(Y_{4}^{\theta}-1)/\theta + \delta_{13}(Y_{3}^{\theta}-1)/\theta + \delta_{14}(Y_{4}^{\theta}-1)/\theta + \delta_{13}(R_{1}^{\theta}-R_{1}^{\theta}-R_{1}^{\theta}-R_{1}^{\theta})\right]$$

We can similarly define the elasticity of cost with respect to loans, securities, and deposits. It follows that, for the GTMCF,

$$\varepsilon = \int_{i=1}^{4} \left[\alpha_{i} + \int_{j=1}^{4} \delta_{ij} (Y_{j}^{\theta} - 1) / \theta + \rho_{i1} (\ln r_{1} - \ln r_{2}) \right] Y_{i}^{\theta}$$

$$(4.3-4)$$

For the translog multiproduct cost function (TMCF) in (4.1-1),

$$\varepsilon = \sum_{i=1}^{4} \left[\alpha_i + \sum_{j=1}^{4} \delta_{ij} \ln Y_j + \rho_{i1} (\ln r_1 - \ln r_2) \right]$$

$$(4.3-5)$$

There are two ways we can measure global economies of scope for the trust industry. The first measure which we shall call Scope-a, considers the cost of producing all outputs separately relative to the cost of producing them jointly. Thus Scope-a is given by

$$S_{ca} = \{C(Y_1, 0, 0, 0) + C(0, Y_2, 0, 0) + C(0, 0, Y_3, 0) + C(0, 0, 0, Y_4) - C(Y_1, Y_2, Y_3, Y_4)\}/C(Y_1, Y_2, Y_3, Y_4)$$

$$(4.3-6)$$

S is termed weak economies of scope 4.

The second global measure of economies of scope in the trust industry, separates the outputs into the two main functions. This measure we shall call Scope-b. The output under the trustee function is the services relating to the administration of estates, trusts, and agencies (Y_1) . Under financial intermediation the outputs are the services of loans (Y_2) , securities (Y_3) and deposits (Y_4) . Thus Scope-b is given by

$$s_{cb} = \frac{\frac{C(Y_{1}, 0,0,0) + C(0,Y_{2},Y_{3},Y_{4}) - C(Y_{1},Y_{2},Y_{3},Y_{4})}{C(Y_{1},Y_{2},Y_{3},Y_{4})}$$

(4.3-7)

S_{cb} is referred to by Mintz (1981) as incremental economies of scope⁵.

 $S_{\rm ca}$ checks whether there are cost advantages to a trust company for producing all the four outputs, while $S_{\rm cb}$ checks whether there is a cost advantage to a trust company for performing its two major functions. Because they involve zero outputs, both $S_{\rm ca}$ and $S_{\rm cb}$ can only be calculated using the generalized translog multiproduct cost function.

The sufficient condition for local economies of scope between \mathbf{Y}_1 and \mathbf{Y}_2 is given by

$$\frac{\partial^2 C}{\partial Y_1 \partial Y_2} < 0 \tag{4.3-8}$$

Using the translog function in (4.2-1) and differentiating it with respect to $Y_{\dot{1}}$, we obtain

$$\frac{\partial C}{\partial Y_{i}} = C Y_{i}^{-1} [\alpha_{i} + \sum_{j=1}^{4} \delta_{ij} \ln Y_{j} + \rho_{i1} (\ln r_{1} - \ln r_{2})], \quad i \dots 4$$

$$(4.3-9)$$

Second differentiation with respect to Y, yields

$$\frac{\partial^{2}C}{\partial Y_{i}\partial Y_{j}} = C Y_{i}^{-1}Y_{j}^{-1} \left[\delta_{ij} + (\alpha_{i} + \sum_{j=1}^{4} \delta_{ij} \ln Y_{j} + \beta_{ij} \ln Y_{j} + \beta_{ij} \ln Y_{j} + \beta_{ij} \ln Y_{i} + \beta_{ij$$

Since for local economies of scope we are only interested in the sign, the real test for scope between say Y_i and Y_j , is whether

where L-Scope (i:j) is to be evaluated at the means of the prices. Prices have been normalized to their means — see chapter 5.

For the generalized translog function (GTMCF), local economies of scope is tested for by examining whether

L-Scope(i:j) =
$$\begin{bmatrix} \delta_{ij} + (\alpha_{i} + \sum_{j=1}^{4} \delta_{ij} (\frac{Y_{j-1}^{\theta}}{\theta})) \\ (\alpha_{j} + \sum_{i=1}^{4} \delta_{ij} (\frac{Y_{i-1}^{\theta}}{\theta})) \end{bmatrix} \geq 0$$
$$i \neq j, i, j = 1...4$$
$$(4.3-12)$$

To check for local economies of scope between outputs under the intermediation and the fiduciary functions, assume that

$$\frac{dY_2}{Y_2} = \frac{dY_3}{Y_3} = \frac{dY_4}{Y_4}$$
 (4.3-13)

Let

$$C_{i} = \frac{\partial C}{\partial Y_{i}}$$
 and $C_{ij} = \frac{\partial^{2} C}{\partial Y_{i} \partial Y_{j}}$

Thus to check for economies of scope between outputs under the two distinct functions, we examine whether

Scope (1:2,3,4) =
$$\frac{\partial^2 C}{\partial Y_1 \partial Y_2} \left| \frac{dY_2}{Y_2} \right| = \frac{dY_3}{Y_3} = \frac{dY_4}{Y_4}$$

$$= \left[C_{12} + C_{13} \frac{Y_3}{Y_2} + C_{14} \frac{Y_4}{Y_2} \right] \geq 0$$
(4.3-14)

The condition for product-specific economies of scale is given by

$$S_{i} = AIC_{i} / \frac{\partial C}{\partial Y_{i}} > 1$$
 (4.3-15)

where
$$AIC_{i} = \frac{C(Y_{1}, Y_{2}, Y_{3}, Y_{4}) - C(Y_{1}, 0, Y_{3}, Y_{4})}{Y_{i}}$$
, if i=2,

FOOTNOTES

Chapter 4

- 1. George J. Benston (1972), p. 317.
- 2. D.W. Caves, L.R. Christensen, and M.W. Tretheway (1980), p. 478.
- 3. See L.R. Christensen and W. Greene (1976), and also Caves, D.W., L.R. Christensen, and M.W. Tretheway (1980).
- 4. J.M. Mintz (1981), p. 30.
- 5. J.M. Mintz (1981), p. 30.

CHAPTER 5

DATA AND DEFINITION OF VARIABLES

DATA

There were almost 90 firms in Canada by 1981 doing general trust business. Of this number, 57 were registered and doing business in Ontario. These 57 firms together control total guaranteed and company assets valued at 37 billion gollars, which is about 85 per cent of the guaranteed and company assets of all trust companies operating in Canada. Firms registered in Ontario also control about 88 per cent of the total assets under estates, trusts and agency administration controlled by all trust companies in Canada. In addition, all the major trust companies in Canada are also registered in Ontario. Thus, the data on trust companies operating in Ontario is representative of the Canadian trust industry.

The data used for analysis in this thesis has been obtained from reports submitted by the individual trust companies to the Ontario Registrar of Loan and Trust Companies. These reports are published annually by the Ontario Ministry of Consumer Affairs. Other

sources of data include Statistics Canada reports (catalogue numbers 13-211, 13-568, 61-006, and 72-002), and Bank of Canada reviews. The population consists of trust companies registered and doing business in Ontario between 1976 and 1981, inclusive. The number of firms is not the same from year to year because of entries, exits and mergers taking place over the years. (See Appendix 2.1 for details on these.)

Some firms were found to have unusually low labour shares in the order of 1% as opposed to the average of 46%. Such outliers distorted the initial regression runs and so were later excluded from the observations. It was not always the case that a firm with an unusually low share in one year continued to have low labour shares in subsequent years. Out of the initial 326 observations for the six years, 27 observations were dropped because they have low labour shares. The remaining data set, containing 299 observations, is referred to here as Data-1. Data-1 contains observations with zero output values for some firms for some of the This implies that Data-1 cannot use any functional form which takes logarithms of outputs or other transformations that would be undefined at zero outputs. A second data-set, Data-2, was

therefore prepared from Data-1. Data-2 excludes all observations with zero outputs. 39 observations were further lost in this way. Analyses of Data-2 allows for easy comparisons with previous studies which have used the translog functional form.

The data is shown in Appendix A. It contains all observations for the six years.

COST

Cost is defined in this thesis to reflect the 'economic' or 'opportunity cost' of operating a firm during a time period at a given rate of output. It refers in this case to cost of all inputs. That is, it is the cost of labour (wages, salaries and staff benefits, and real estate commissions) plus cost of deposits (interest incurred) plus cost of capital (rental cost and an imputed cost of capital). Capital in this case is defined to include all other inputs apart from labour and deposits.

'Total expenses' of the trust companies include wages and salaries and commissions plus interest incurred plus the cost of rented capital.

It does not, however, include the cost of capital the

firm owns. Thus, to get the opportunity cost of capital, an imputed cost of the capital the firm owns is added on to the cost of rented capital. Assume that the value of the firm's equity is an approximation of the replacement cost of capital.

 $\label{eq:cost} \mbox{ If we define the opportunity cost of capital} \\ \mbox{in Jorgenson's sense}^{\mbox{\it l}} \mbox{ to be}$

$$r_{2t} = r_t + \delta_t - g_t$$
 (4.1-1)

then the imputed cost of capital the firm owns shall be

$$r_{2t} \times equity$$

where

 r_t = the rate of interest on 3-5 year government bonds in period t. δ_t = depreciation rate = 5.5 2 g_t = $(P_{t+1}/P_{t-1})^{.5}$ - 1 = capital gain/loss

To obtain r_{t} , we calculated the geometric average for the monthly rates from July to June of each

year of the yields on 3-5 year Government of Canada Bonds. P_t is the price index for capital expenditure on plant and equipment³ by the finance, insurance and real estate industry, with 1971 as base year.

 P_{t} increases at the rate g_{t} calculated as

$$P_{t+1} = P_{t-1}(g_t + 1)^2$$

or

$$g_t + 1 = (\frac{P_{t+1}}{P_{t-1}}) \cdot 5$$

Table 5.1 shows the calculated values of P_t , g_t and r_t for the period 1975 to 1981.

TABLE 5.1

Calculated Values of P_t , g_t , r_t

Pt	g _t	r _t
143.4		
155.7	.042	.08
167.3	.037	.08
182.8	.045	.10
196.7	.037	.12
214.8	.045	.13
237.5	.052	.16
	143.4 155.7 167.3 182.8 196.7 214.8	143.4 155.7 .042 167.3 .037 182.8 .045 196.7 .037 214.8 .045

SOURCES: Computed from data obtained from Statistics Canada, Fixed Capital Flows and Stocks, Catalogue Nos. 13-568 and 13-211; Bank of Canada Reviews, various years.

Depreciation is already accounted for in the total expenses figure. So that the imputed cost of capital added on to 'total expenses' should exclude $\delta_{\,t}$ × equity. Hence, operating costs is calculated as follows:

Operating Costs = Total Expenses
+ (r_t - g_t) Equity
- Interest Incurred
(5.1-2)

OUTPUTS

In chapter 4, outputs in the trust industry have been defined as the services of estates, trusts, and agencies (Y_1) , loans (Y_2) , and securities (Y_3) . To obtain loans we summed mortgages and sale agreements, collateralloans and consumer loans. Securities are calculated as the sum of bonds, stocks and treasury bills. Deposits (Y_4) , which originally had been assumed to be both an input and an output turned out to be an argument in the cost function.

We have assumed in chapter 4 that there is

a direct and perfect relation between flows of outputs and their stock values. Thus, following Sealey and Lindley (1977) and Murray and White (1980, 1983), each of these services mentioned above is represented by the dollar amounts outstanding on the accounts.

INPUT PRICES

Let us assume that all firms in the finance industry buy their inputs from one competitive market. This implies that at any time the price of an input is the same for all financial institutions. The inputs for the trust industry are deposits, labour and capital; but the model specification in chapter 4 implies that only the prices of labour and capital will be needed. Capital in this case is defined to be all other inputs apart from labour and deposits. The price of capital is r_2 , already defined above. Since r_2 enters the cost equation in logarithmic form, evaluations at the mean are simplified by dividing each r_2 observation by the mean of r_2 . The normalized r_2 is called r_2^* and is shown in Table 5.2

Average weekly earnings of labour for the

TABLE 5.2

Price of Capital

	1976	1977	1978	1979	1980	1981
r ₂	0.093	0.098	0.110	0.138	.140	.163
r ₂ *	0.744	0.784	0.880	1.080	1.120	1.304

SOURCE:

Calculated from Table 5.1

finance, insurance and real estate industry is taken as the wage index (r_1) for the trust industry. This is shown in Table 5.3. Again, because of the way r_1 appears in the model, it is normalized by dividing each observation by the mean of r_1 to obtain r_1^* .

TABLE 5.3

PRICE OF LABOUR

	1976	1977	1978	1979	1980	1981
r _l	213.71	229.57	248.43	272.10	304.37	353.71
r ₁ *	.78	.83	.90	.99	1.11	1.29

SOURCE: Statistics Canada: Employment, Earnings and Hours. Catalogue #72-002.

INPUT SHARES

By defining variable cost as the cost of labour and capital, we can derive only two share equations. To obtain values for the share of labour (S1), we divided the sum of wages, salaries and real estate commissions by the operating net cost. To obtain values for S2, the share of capital, we subtracted S1 from unity.

FOOTNOTES

Chapter 5

- 1. See, for example, Frank Brechling (1975) p. 12.
- 2. Because of the complexity of the definition of capital in this study and for simplicity we just assumed the rate of depreciation of capital to be 5.5%. If we had a unique definition of capital we would have used one of the conventional methods of calculating depreciation like

$$d_i = 1 - \frac{1}{L} T$$
 $(T = 0, 1, ..., L-1)$

where L is the assumed life-span of the capital. (See for example, Statistics Canada, Catalogue #13-568.)

3. For the finance, insurance and real estate industry, the components of plant and equipment are building construction, and machinery and equipment.

CHAPTER 6

EMPIRICAL ANALYSIS

Studies on cost functions have used various functional forms in their econometric analyses of different industries. Murray and White (1980, 1983) for example, analyzed cost in deposit-taking financial institutions by using both Cobb-Douglas and translog functional forms. Fuss and Waverman (1981) analyzed the cost structure in the telecommunication industry by using the translog and other restricted forms of the translog. As we have pointed out in previous chapters, the use of the translog in a multiproduct context, limits the usefulness of such concepts as economies of scope and product specific economies. Chapter 4 we suggested the generalized translog multiproduct cost function (GTMCF) as a more general flexible functional form which overcomes some of the shortcomings of the translog multiproduct cost function (TMCF).

In chapter 5 we divided the data into two sets -- data-1 and data-2. The truncated data (data-2)

which contains no zero outputs and hence can accommodate the translog are analyzed to make our results comparable to earlier studies. Using data-2, the translog and the generalized translog are both estimated and tested for the best production structure that fits the data. We also estimated and analyzed data-1, which comprises all firms, except those with very low labour shares. Only the generalized translog is used in this case.

Section 1 of this chapter deals with the estimation and econometric analyses of the results. This section is subdivided into two parts: the first part deals with estimation and results using data-1, while the second part deals with analyses using data-2. The second section is devoted to the interpretation of results. Economic meanings are given to the theoretical hypotheses of cost functions enumerated in chapter 4.

107

6.1 ESTIMATION AND EMPIRICAL RESULTS

The cost equation can be estimated more efficiently as a simultaneous system along with the share equations than as a single equation 1. In this instance there are two share equations representing the two inputs: labour and capital. To avoid singularity, only one of the share equations is estimated, together with the cost equation. It is generally immaterial which of the two share equations is deleted. Here, the cost equation and the labour-share equation are treated as a simultaneous equation system. This system is treated as reduced form except for the error terms $(\mathbf{u_1},\ \mathbf{u_2})$ which are assumed to be contemporaneously related. This suggests that the procedure best suited for estimation would be Zellner's seemingly unrelated iterative technique. This technique yields estimates asymptotically equivalent to maximum likelihood estimates². The system to be estimated is the following:

$$\ln C - \ln r_2 = \alpha_0 + \alpha_1 \left(\frac{Y_1^{\theta} - 1}{\theta}\right) + \alpha_2 \left(\frac{Y_2^{\theta} - 1}{\theta}\right) + \alpha_3 \left(\frac{Y_3^{\theta} - 1}{\theta}\right) + \alpha_4 \left(\frac{Y_4^{\theta} - 1}{\theta}\right) + 1/2\delta_{11} \left(\frac{Y_1^{\theta} - 1}{\theta}\right)^2 + 1/2\delta_{22} \left(\frac{Y_2^{\theta} - 1}{\theta}\right)^2$$

...continued

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right)^{2} + \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right)^{2}$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{2}^{\theta}-1}{\theta} \right) + \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{3}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{2}^{\theta}-1}{\theta} \right) + \frac{1}{2} \left(\frac{x_{2}^{\theta}-1}{\theta} \right) \left(\frac{x_{3}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{2}^{\theta}-1}{\theta} \right) \left(\frac{x_{2}^{\theta}-1}{\theta} \right) + \frac{1}{2} \left(\frac{x_{2}^{\theta}-1}{\theta} \right) \left(\frac{x_{2}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) + \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_{1}^{\theta}-1}{\theta} \right)$$

$$+ \frac{1}{2} \left(\frac{x_{1}^{\theta}-1}{\theta} \right) \left(\frac{x_$$

$$s_1 = \beta_1 + \gamma_{11}(\ln r_1 - \ln r_2)$$

...continued

$$+ \rho_{11}(\frac{Y_{1}^{\theta}-1}{\theta}) + \rho_{21}(\frac{Y_{2}^{\theta}-1}{\theta}) + \rho_{31}(\frac{Y_{3}^{\theta}-1}{\theta}) + \rho_{41}(\frac{Y_{4}^{\theta}-1}{\theta}) + u_{2}$$

$$(6.1-2)$$

All variables are as defined previously. T_i (i=1...5) are time dummies. T_1 takes the value 1 in 1976 while all others are zero; T_2 takes the value 1 in 1977 while all others are zero, and so on. 1981 has no dummies at all. u_1 and u_2 are random disturbance terms (error terms). It is assumed that there is no autocorrelation within equations, but there exists cross-equation correlation since the share equation (6.1-2) is derived from the cost equation (4.2-9).

Zellner's seemingly unrelated iterative technique is applied to the two sets of data separately. In all cases the initial parameter values for the iterative process were changed several times to check for global convergence. For all regressions, the data are pooled over the six years to increase the efficiency of the parameter estimates. Since it has been assumed that the input prices are the same across firms in a given year, it implies that were we to

estimate cross-sectional equations, we would have to modify the model specification to exclude all price terms. If this is not done, cross-sectional estimations will encounter a perfect multicollinearity problem.

The problem of multicollinearity is avoided in the pooled data case when the dummies are introduced since only intercept dummies are allowed. Slope dummies attached to the input price terms, would again lead to perfect multicollinearity.

Using data-2, a third production structure is tested by estimating the translog cost function with the following constant returns to scale restrictions:

$$\sum_{i} \alpha_{i} = 1$$

$$\sum_{i} \delta_{ij} = 0 \qquad j = 1, \dots, 4 \qquad (4.1-3)$$

and

$$\sum_{i} \rho_{i1} = 0$$

The results of the estimation are presented below in two parts. The first part shows the results of estimation using data-1 and the second part shows that of data-2.

DATA-1 RESULTS

Data-1 contains all firms in the Canadian trust industry doing business in Ontario, except those with very low labour shares. Since this data-set contains some zero outputs, the translog production structure could not be estimated here. Instead only the generalized translog is examined with this data. Because of the presence of zero output values we could not allow Zellner's iterative process to iterate freely over all real values. When that is attempted, it iterated over zero theta (θ) values and that caused the zero output terms to be undefined. The best alternate way to estimate this nonlinear system is by first linearizing it by fixing values for theta (θ) . Theta (θ) is searched over the range 0.01 to 3.0. The result of the search is presented in Table 6.1. Theta $(\theta) = .15 \text{ maximizes}$ the likelihood function and is hence, selected as the best value of θ to linearize the system.

Two kinds of models are estimated (see Table 6.1). In the first model no time-dummies are included while the second included five time-dummies for the first five years. To distinguish between the two models we formulate the hypotheses

Values	Log of Likel	ihood Functions
of θ	No dummies	Intercept dummies
3.0	-241.595	-238.033
2.0	-205.372	-202.734
1.0	-91.1184	-89.4381
.30	80.7229	82.2886
. 25	86.5111	88.1231
.20	92.2528	93.9812
.15*	94.2805*	96.2076*
.10	90.3993	92.6987
.05	76.3492	79.2172
.015	50.6070	53.8548
.01	44.7309	47.9717

^{*} logs of the likelihood functions are at maximum where θ = .15

 H_{0} : GTMCF with no dummies

(6.1-4)

H, : GTMCF with dummies

If the likelihood function under the null hypothesis is \mathbf{L}_0 and that under the alternate hypothesis is \mathbf{L}_1 , then by the log-likelihood ratio test

$$-2\log(L_0/L_1) = -2[\log(L_0) - \log(L_1)] \sim \chi^2(r)$$

where r is the degrees of freedom.

The test statistic for the hypothesis in (6.1-4) is

$$-2[\log(L_0) - \log(L_1)] = -2[94.2805 - 96.2076]$$

= 3.8542

The critical value for $\chi^2(5)$ at 5% significance level is 11.07 and at 10% is 9.24. At either significance level, we do not reject the null-hypothesis (H_0). Moreover, all the dummy variables are not significantly different from zero. Hence, we choose the generalized translog model without time dummies as a better fit than the one with the time dummies. Our analysis will be based on the former only.

Ignoring cross-interactions between the outputs and the input prices in equation (6.1-1), Table 6.2 indicates that the marginal costs for E.T.A., loans, and securities are all positive while that for deposits is negative. The latter result may be due to the fact that deposits are inputs as well as outputs as noted earlier.

Table 6.3 provides the descriptive statistics for both the cost equation and the labour share equation.

To examine the goodness of fit of the two equations in the model, R^2 is calculated as follows:

$$R^2 = 1 - \frac{S^2}{Var(0)} (\frac{N-K}{N-1})$$
 (6.1-5)

where

R² is the coefficient of determination,
S is the standard error of the regression,
Var(Q) is the variance of the dependent
variable,

N is the number of observations, and
K is the number of parameters in the equation.

Thus, for the cost equation,

$$R^2 = 1 - \frac{.5485^2}{1.8166^2} \left(\frac{278}{298}\right) = .915$$

PARAMETER ESTIMATES FOR THE GTMCF WITH AND WITHOUT

ANNUAL DUMMIES -- DATA-1

Coefficients	GTMCF(1) With Dummies	GTMCF(1) Without Dummies
α	1.8843 (.1811)	1.9203 (.1687)
^α 1	.0535 (.0069)	.0540 (.0070)
^α 2	.0914 (.0344)	.0902 (.0344)
^α 3	.1176 (.0173)	.1181 (.0173)
^α 4	0354 (.0352)	0354 (.0352)
δ11	.0016 (.0005)	.0016 (.0005)
^δ 22	.0077 (.0023)	.0076 (.0023)
δ33	.0116 (.0024)	.0118 (.0023)
^δ 4 4	0074 (.0049)	0068 (.0048)
^δ 12	0021 (.0010)	0023 (.0010)
^δ 13	0031 (.0009)	0033 (.0009)
^δ 14	.0022 (.0011)	.0024 (.0010)
^δ 23	0080 (.0048)	0075 (.0048)

Coefficients	GTMCF(1) With Dummies	GTMCF(1) Without Dummies
^δ 2 4	.0046 (.0022)	.0043 (.0022)
δ 34	0006 (.0050)	0011 (.0049)
β1	.3419 (.0140)	.3424 (.0140)
^Y 11	.3457 (.1252)	.2488 (.0954)
ρ ₁₁	.0044	.0044
^ρ 21	0020 (.0021)	0020 (.0021)
^ρ 31	0031 (.0018)	0030 (.0018)
⁰ 41	.0058 (.0022)	.0057 (.0023)
Ψ1	.0215 (.0918)	
[¥] 2	.0994 (.0911)	
Ψ3	.1132 (.0841)	
$^{\Psi}4$	0242 (.0886)	
Ψ5	0129 (.0812)	
₆ (a)	.15	.15

⁽a) θ was estimated by searching over the range .01 to 3.0 for the best fit. See Table 6.1

NOTE: Asymptotic standard errors are reported in parentheses.

TABLE 6.3

Descriptive Statistics for the GTMCF Without

Annual Dummies -- Data-1

Description	Cost Equation	Labour Share Equation
Dependent Variable	ln(C) - ln(r ₂)	s ₁
Sum of Squared Residuals	89.9523	3.1473
Standard Error of the Regression	.5485	.1026
Mean of Dependent Variable	5.9205	.4625
Standard Deviation	1.8166	.1266
Number of Observa- tions	299	299
Sum of Residuals	6474E-01	1853E-01

Hence, 85% of the variation in the dependent variable is explained by variations in the independent variables. Adjusted for degrees of freedom, we find the adjusted coefficient of determination to be

$$\overline{R}^2 = 1 - (1 - R^2) \left(\frac{N-1}{N-k} \right) = .909$$
 (6.1-6)

Thus, the specification of the cost equation as GTMCF is a good fit for the data. Similarly, for the share equation, $R^2 = .354$ and $\overline{R}^2 = .343$. Thus the share equation is not a good fit.

DATA-2 RESULTS

Data-2, which includes only firms with non-zero outputs, is used to estimate three different functional forms: (i) generalized translog (GTMCF), (ii) translog (TMCF), and (iii) translog with constant returns to scale(TMCFCRS). Results of these regressions are reported in Table 6.4. Standard errors of the estimates appear under them in parentheses.

Comparing the results of the GTMCF and the TMCF models reported in Table 6.4, one notices that the signs on the parameters are the same for both models. Most of the estimates in both models are statistically significant. It is interesting to note that the estimate for theta (θ) is very close to zero and this indicates that the best fit equation could be the limiting case of θ approaching zero (the translog model). To be more precise on this matter, a comparison is made of the logs of the likelihood functions of the GTMCF and TMCF models. The result is tabulated in Table 6.5. To test which of the two models best describes the production structure that fits data-2, we formulated the null hypothesis (H_0) and compared it with the alternate hypothesis (H_1) .

TABLE 6.4

PARAMETER ESTIMATES FOR GTMCF AND TMCF (WITHOUT ANNUAL DUMMIES) USING DATA-2

Parameters	GTMCF	TMCF	TMCFCRS
θ	.0116 (.0391)	$\theta \rightarrow 0$	0→0
α	2.3328	2.6437	-1.3588
	(1.0644)	(.6956)	(.2382)
^α 1	.2030 (.0775)	.2119 (.0828)	
^α 2	1.9344 (.6323)	1.9894 (.6353)	3.2794 (.6569)
^α 3	.3838	.3910	.7304
	(.2380)	(.2719)	(.2412)
$^{lpha}4$	-2.4308	-2.6171	-3.2455
	(.9081)	(.6762)	(.7205)
δ11	.0369 (.0297)	.0466 (.0107)	
δ22	1.0242	1.2333	1.0099
	(.6362)	(.3151)	(.3416)
^δ 33	0448	0459	.0778
	(.0679)	(.0774)	(.0823)
δ ₄₄	.5467	.6270	.0663
	(.4659)	(.4094)	(.4361)
δ ₁₂	0041	0005	0752
	(.0758)	(.0923)	(.0847)
⁶ 13	0529	0627	0603
	(.0365)	(.0298)	(.0306)
^δ 14	.0093	.0060	.0720
	(.0919)	(.1122)	(.1071)
^δ 23	4311	5176	7481
	(.2580)	(.1963)	(.1879)

...continued

Parameters _	GTMCF	TMCF	TMCFCRS
δ 24	7634	8995	5005
	(.5094)	(.3311)	(.3524)
⁸ 3 4	.4895	.5856	.6965
	(.2871)	9.2016)	(.2082)
βl	.3220	.3164	.5203
	(.0377)	(.0357)	(.0120)
⁷ 11	.1592	.1580	.1491
	(.0795)	(.0796)	(.0857)
⁶ 11	.0193 (.0070)	.0214 (.0032)	
⁰ 21	.0338	.0396	0016
	(.0274)	(.0273)	(.0288)
⁰ 31	.0224	.0238	.0212
	(.0106)	(.0088)	(.0095)
⁰ 41	0549	0625	0405
	(.0341)	(.0309)	(.0333)

NOTE: Asymptotic standard errors are reported in parentheses.

Number of observations = 260.

TABLE 6.5

TEST OF THE PRODUCTION STRUCTURE -- DATA-2

Structure	Likelihood	Test Statistic $(-2 \log(L_1/L_0))$	Degrees of Freedom	Critical Value (5%)
GTMCF	117.327			
TMCF	117.375	096	1	3.841
Constant returns to scale - TMCF	73.9457	' 86.8586	4	9.488

 H_0 : Translog production structure ($\theta = 0$)

 H_1 : Generalized translog ($\theta \neq 0$)

(6.1-7)

The test statistic for the hypotheses in (6.1-6) is

$$-2[\log(L_0) - \log(L_1)] = -2[117.375 - 117.327]$$
$$= -.096$$

The critical value of $\chi^2\,(1)\,\text{is}$ 3.841 at the 5% significance level. Thus, since the calculated test

statistic is less than the critical value, we do not reject the null-hypothesis at the 5% significance level. Notice that the estimated value for θ in the GTMCF is .0116 and is not significantly different from zero. This implies that if we assume that all trust companies produce all the specified outputs then the production structure can be represented by the translog.

As part of the search for the production structure which best fits data-2, we estimated a restricted form of the translog cost function -- constant returns to scale was imposed on the structure. The hypothesis tested here is as follows:

 H_O : Translog with Constant Returns to Scale

 $\mathbf{H}_{\mathbf{1}}$: Unrestricted Translog

(6.1 - 8)

First, we treated the translog as an exact form and then imposed the restrictions in (6.1-3). The likelihood functions obtained from the two regressions are then used to test the hypotheses in (6.1-8) as follows:

$$-2[\log(L_0) - \log(L_1)] = -2[73.9457 - 117.357]$$
$$= 86.8586$$

The critical value of $\chi^2(4) = 9.488$ at 5% significance level. Hence we reject the null hypothesis at 5% significance level and in fact, even at .5% significance level. Thus even if we assume the translog to best describe the production structure, we must reject the hypothesis of constant returns to scale.

In summary, this sub-section has demonstrated that if we consider only firms that produce all the specified output set, then the translog model as opposed to the generalized translog, may best describe the production structure. This agrees with Murray and White (1983) and Fuss and Waverman (1981). Nevertheless, within the Canadian trust industry, there are some firms which do not produce all the specified outputs of loans, E.T.A. and securities at some particular times. Sometimes for lack of necessary staff or for legislative reasons, some companies produce only a few of the specified outputs. In 1976, for example, Central and Eastern Trust Company was registered in Ontario for limited purposes. (See Appendix 2.1(a)).

6.2 INTERPRETATION OF THE RESULTS

In this section, we evaluate and interpret in economic terms some of the measures of the cost concepts we have considered in chapter 4. Where possible we shall use results from estimations using the two data sets. With data-2, since we did not reject the translog cost function (TMCF) as a better fit than the generalized translog, results will mostly be based on TMCF. Nevertheless, we shall sometimes refer to the GTMCF results for data-2, for purposes of comparison. Data-1 results are solely based on GTMCF estimates.

Tables 6.6 and 6.7 show own- and cross-price elasticities for labour and capital evaluated at the means of the outputs and input prices. The cost-minimizing own-price elasticities are negative in the case of the TMCF; this is consistent with the theoretical hypothesis on the cost function.

In the case of the GTMCF (Data-1) the signs on the elasticities are quite the opposite of what are expected. However, in all cases, the elasticities are not statistically significant.

TABLE 6.6

OWN-AND CROSS-PRICE ELASTICITIES FOR LABOUR AND

CAPITAL EVALUATED AT THE MEANS USING TMCF (DATA-2)

	Labour	Capital
Labour	007 (.157)	.007 (.157)
Capital	.008	008 (.179)

NOTE: The first row refers to percentage changes in factor demands (dX_i/X_i) , and first column refers to percentage changes in factor prices (dr_i/r_i) . Standard errors are in parentheses.

TABLE 6.7

OWN-AND CROSS-PRICE ELASTICITIES FOR LABOUR AND CAPITAL EVALUATED AT THE MEANS USING GTMCF (DATA-1)

	Labour	Capital
Labour	.0005 (.2069)	0005 (.2069)
Capital	0004 (.1780)	.0004 (.1780)

NOTE: The first row refers to percentage changes in factor demands (dX_i/X_i) , and first column refers to percentage changes in factor prices (dr_i/r_i) . Standard errors are in parentheses.

The own-price elasticities are calculated as

$$\varepsilon_{ij} = \gamma_{ij}/S_i + S_i - 1$$

Most studies on economies of scale in financial institutions reported the existence of unexploited economies of scale for such institutions.

Murray and White (1983) 'decisively' rejected constant returns to scale production structure for credit unions of British Columbia. In section 6.1, we also 'decisively' rejected constant returns to scale production structure for the trust industry, using data-2.

Multiproduct-economies-of-scale estimates are provided in Tables 6.8, 6.9 and Appendix 6.3.

We notice from Table 6.8 that the multiproduct scale measure at the mean for the translog is 1.009 and for the GTMCF is 1.011. These figures indicate an almost constant returns to scale production structure for the trust industry at the mean value of outputs.

Considering the ranges of the outputs (see Appendix B) and also the high concentration in the industry (70% of total assets of trust companies in 1981 is controlled by only 7 firms), calculation of scale and scope at the means do not give us the true picture. We therefore calculated economies of scale at each observation point. This is presented in Appendix 6.2. Most firms in the industry have unex-

TABLE 6.8

ESTIMATES OF MULTIPRODUCT ECONOMIES OF SCALE, PRODUCTSPECIFIC ECONOMIES OF SCALE AND SOME GLOBAL MEASURES
OF ECONOMIES OF SCOPE EVALUATED AT THE MEANS

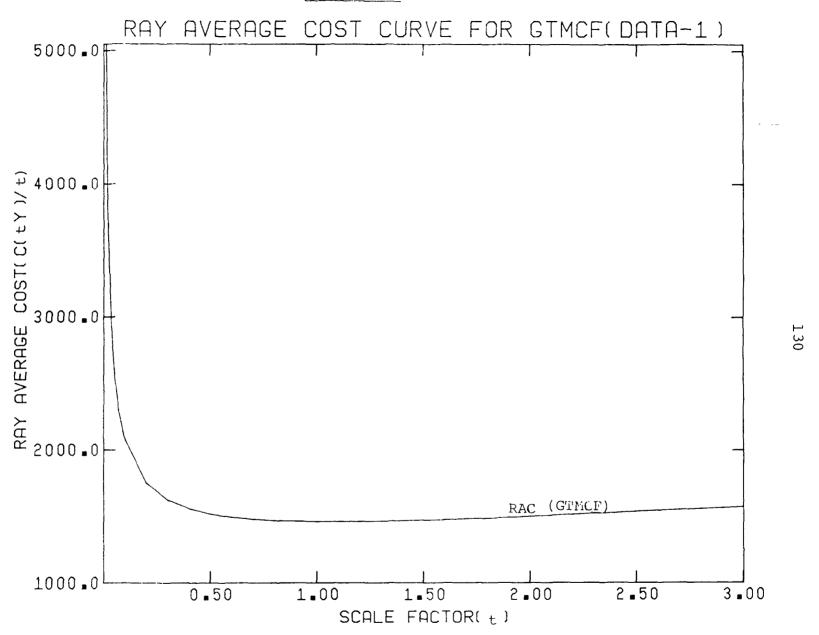
		GTMCF (Data-1)	TMCF (Data-2)
1.	Multiproduct- Economies-of-Scale, S	1.011	1.021
2.	Product-specific- Economies-of-Scale (E.T.A.),S ₁	3.761	n.a.
3.	Product-specific-economies-of-scale (loans), S ₂	.270	n.a.
4.	Product-specific-economies-of-scale (securities), S ₃	-4.865	n.a.
5.	Product-specific-economies-of-scale (deposits), S ₄	-3.639	n.a.
6.	Weak-economies-of-scope, Sca	1.236	n.a.
7.	Incremental-economies-of-scope, Scope	570	n.a.

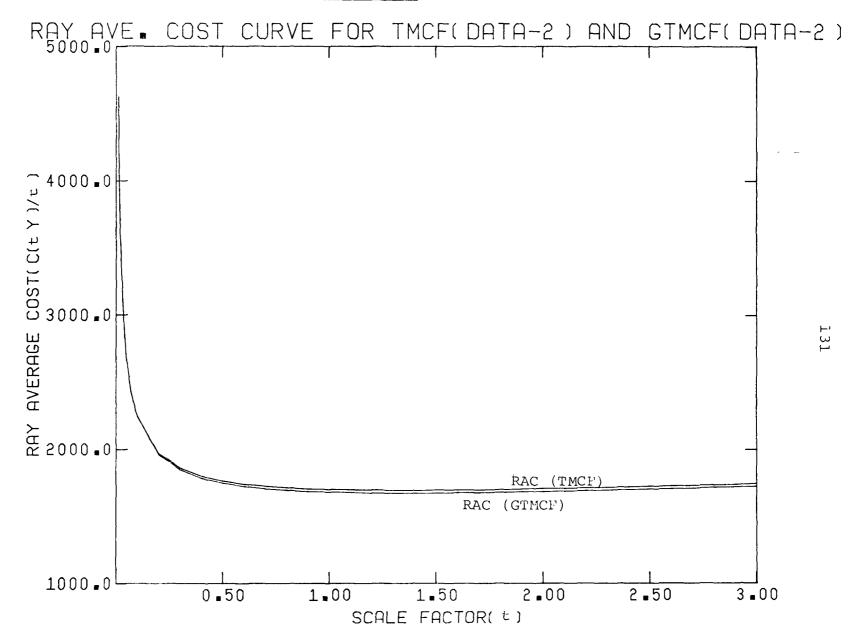
NOTE: n.a. = not available. Because the measures involve zero outputs, estimate with the translog are not obtainable.

TABLE 6.9
ESTIMATES OF MULTIPRODUCT-ECONOMIES-OF-SCALE ELASTICITIES
FOR SMALL AND LARGE COMPANIES IN 1981 USING GTMCF (DATA-1),
GTMCF (DATA-2), TMCF (DATA-2)

7 Largest Companies		GTMCF (DATA-1)	GTMCF (DATA-2)	TMCF (DATA-2)		
1.	Royal Trust (Canada)	. 809	.837	.852		
2.	Canada Trust	. 825	.902	.907		
3.	Royal Trust	.831	.931	.938		
4.	National Trust	.889	.883	.894		
5.	Canada Permanent	.781	.868	.878		
6.	Quebec Trust	.939	1.030	1.031		
7.	Victoria and Grey	.745	.860	.870		
7 Smallest Companies						
1.	Cabot Trust	1.673	1.323	1.325		
2.	Regional Trust	1.648	1.471	1.462		
3.	Family Trust	1.548	1.680	1.718		
4.	Effort Trust	1.807	1.680	1.685		
5.	Counsel Trust	1.962	n.a.	n.a.		
6.	Dominion Trust	2.066	n.a.	n.a.		
7.	Merchant Trust	1.717	n.a.	n.a.		

NOTE: Counsel, Dominion and Merchant Trusts were not included in Data-2 sample because they have some zero outputs in 1981.


ploited economies of scale throughout the six years under study. The scale factor remained almost the same throughout the six years, for most firms.


Out of a total of 37 firms which were in operation between 1976 and 1981, only 8 firms consistently showed decreasing returns to scale (S < 1). All these 8 firms were very large firms. The picture is much clearer when we look at Table 6.9. For data-1, all the 7 largest companies show economies of scale elasticity of less than unity (diseconomies of scale). All the 7 smallest firms in Table 6.9 have scale elasticities of greater than unity (economies of scale). The data-2 results with either the TMCF or the GTMCF showed estimates very similar to that obtained with the data-1 (GTMCF). Note, however, that with data-2 the TMCF was a better fit than the GTMCF. These results are also evident in Figures 6.1 and 6.2, showing the ray average cost curves for GTMCF (data-1), TMCF (data-2), and GTMCF (data-2). The ray average cost is calculated as

$$RAC = \frac{C(tY^{O})}{t}$$

where Y^{O} is composite output comprising the mean value of the outputs (E.T.A., loans, securities and deposits), and t is the scale factor.

FIGURE 6.1

To plot the ray average cost curves, different values of t $(.01 \le t \le 3)$ were matched against RAC. Using the GTMCF in data-1 and TMCF in data-2, we realize that not only do the shapes of the RAC look similar in both cases but also the minimum efficient scale is just about the average output level. The minimum efficient scale factor was 1.1 in the case of data 1 and 1.3 in the case of data-2. In the case of data-2, the RAC curves for both the GTMCF and the TMCF are almost close together.

Table 6.10 arranges scale elasticities by asset size of firms. The first 10 firms all seem to have exhausted all economies of scale. It seems the cut-off size is about that of Morguard Trust Company. It seems the distribution of the assets affect the size of the scale elasticity. The last 4 firms in Table 6.10 all have small guaranteed and company assets compared to E.T.A.; and all these firms still have unexploited economies of scale. On the other hand, a company like the Central Trust Company (number 11 in Appendix 6.2) which has a large financial intermediary asset but a small fiduciary asset, has exhausted all multiproduct economies of scale. Almost all the small companies have multiproduct economies of scale elasticities greater than unity.

TABLE 6.10

ASSET SIZE AND SCALE ELASTICITIES FOR 15 LARGE COMPANIES IN 1981 (DATA-1)

		ASSET		Scale		
		Guaranteed	Company	E.T.A.	Total	Elasticit
1.	Royal Trust (Canada)	5157	261	12982	18400	.809
2.	Canada Trust	3722	265	9497	13484	.825
3.	Royal Trust	1853	116	9950	11889	.831
4.	National	2471	106	8543	11120	.889
5.	Canada Permanent	3348	2 36	3974	7558	.781
6.	Quebec	610	34	4669	5313	.939
7.	Victoria and Grey	3529	178	1195	4902	.745
8.	Guaranty	2411	120	2037	4568	.827
9.	First City	1579	100	1165	2844	.895
0.	Co-Operative	566	39	2081	2686	.947
1.	Morguard	152	16	2053	2221	1.003
2.	International	159	16	1535	1710	1.178
3.	Crown	632	31	1038	1701	.944
4.	Investors	106	9	1531	1646	1.235
5.	Savings and Investment	215	9	1078	1302	1.178

Murray and White (1983) found all credit unions in their sample to have unexploited economies of scale. On the basis of either the translog estimation of data-2 or the GTMCF estimation of data-1, this study concludes that, very large trust companies have exhausted all multiproduct economies of scale while medium and small size firms continue to enjoy multiproduct economies of scale.

The above analysis suggests that whereas there are economies of scale in the production of some outputs, with others there are diseconomies. Estimates of product-specific economies of scale evaluated at the means are provided in Table 6.8. Some of the elasticities are negative in sign -- indicating that it costs less to produce the whole output set than to leave out some particular outputs. For example, deposits have negative sign on their product-specific scale elasticity. This implies that on the average it is generally cheaper for firms to service deposits than not to service deposits. Again, the negative sign could also be due to the fact that deposits are inputs as well. There is unexploited product-specific economies in the production of E.T.A. while firms in the industry have exhausted all product-specific economies with respect to loans.

The cost concept which may help us to understand the multiproduct nature of trust companies is the economies of scope measure. As explained in chapter 4, there are two measures of economies of scope -- local and global. Estimates of global economies of scope at the means are provided in Table 6.8 for data-1. Weak economies of scope are calculated based on the expression in (4.3-6) while the incremental economies of scope are calculated based on the expression in (4.3-7). The weak scope measure of 1.236 at the means indicate that trust companies benefit in their costs by producing all the specified output sets -- loans, E.T.A., securities and deposits -- jointly, rather than by producing them separately. That is, the weak economies of scope measure gives support to the fact that trust companies are multiproduct firms. The incremental economies of scope measure on the other hand has an estimated value of -.570 at the means. Thus, trust companies have diseconomies of scope in producing E.T.A. and financial intermediary services. That is, it costs more for a trust company to produce E.T.A. and financial intermediary services jointly than separately. Thus, on the basis of the incremental economies of scope, trust companies will be better off in their costs if they function only as trustees or simply as banks.

Individual weak economies of scope estimates are provided in Appendix 6.3. It is apparent that mergers increase the scope of a firm. Firms which merged with others had their scope elasticities increased substantially. For example, Victoria and Grey Trust Company (firm number 8 in Appendix 63.) had its scope elasticity increased from 3.606 to 6.125 after merging with Lambton Trust Company in 1978. Also Canada Trust (firm number 10 in Appendix 6.3) increased its scope economies in 1977 after merging with Lincoln Trust and Savings Company in December 1976. Similar results were observed for Central Trust (firm number 11 in Appendix 6.3) after merging in July, 1976; Fidelity Trust (firm number 17 in Appendix 6.3) after merging in 1980; and Royal Trust Corporation of Canada (firm number 34 in Appendix 6.3) after merging in 1977 with Royal Trust Company (Ontario) and in 1981 with Industrial Mortgage and Trust Company.

Table 6.11 shows estimates of weak economies of scope measures for some large and small firms.

We notice that all the seven large firms have substantial economies of scope in the production of loans, E.T.A., securities and deposits. On the other hand most small firms exhibit diseconomies of scope. In other words it will be cheaper for a small company to specialize in the production of one of the outputs than attempting to produce all the outputs jointly.

TABLE 6.11

ESTIMATES OF WEAK ECONOMIES OF SCOPE MEASURES FOR SOME SMALL AND LARGE TRUST COMPANIES, 1967-1981
(USING GTMCF (DATA-1))

		YEARS						
7 LARGE COMPANIES	1976	1977	1978	1979	1980	1981		
1. Royal Trust Canada	4.438	7.328	11.144	19.221	76.553	156.538		
2. Canada Trust	7.341	17.318	15.016	23.512	23.975	46.719		
3. Royal Trust	14.880	4.299	4.306	4.829	3.002	3.465		
4. National Trust	11.931	.147	10.601	9.703	16.842	39.391		
5. Canada Permanent	3.476	9.674	12.318	12.882	13.901	11.519		
6. Quebec Trust	.736	. 499	. 295	.666	.547	.623		
7. Victoria and Grey	2.871	3.606	6.125	7.086	9.108	11.961		
7 SMALL COMPANIES								
1. Cabot Trust	n.a.	n.a.	n.a.	.754	.299	.647		
2. Regional Trust	.272	. 460	. 306	.472	117	.970		
3. Family Trust	.049	695	435	418	453	414		
4. Effort Trust	n.a.	n.a.	.080	502	134	.074		
5. Counsel Trust	n.a.	n.a.	n.a.	.330	. 425	. 423		
6. Dominion Trust	1.458	1.395	1.446	1.633	1.754	1.929		
7. Merchant Trust	n.a.	n.a.	062	-,186	.190	.212		

NOTES: 1. Companies were ranked by their 1981 asset size.

2. n.a. implies the company was not registered in Ontario in that year.

Another interesting result on weak economies of scope is in connection with new entrants into the trust industry. Established firms generally showed economies or diseconomies of scope consistently over the six years. New entrants, on the other hand, generally have economies of scope in their year of entry before adjusting to either consistent economies or diseconomies of scope (see Table 6.12).

Local estimates of economies of scope are shown in Table 6.13. Calculations were based on expressions in (4.3-11), (4.3-12) and (4.3-14), evaluated at the means. Using Data-1, we find local economies of scope between E.T.A. (Y_1) and deposits (Y_4) ; loans (Y_2) and deposits (Y_4) ; and securities (Y_3) and deposits (Y_4) . Weak evidence of cost complementarities were found between E.T.A. and loans; E.T.A. and securities; loans and securities; and between E.T.A. on the one hand, and loans, securities and deposits on the other.

Using Data-2 we find economies of scope between E.T.A. and securities; loans and securities; and loans and deposits. Weak evidence of cost complementarities were found between E.T.A. and loans, E.T.A. and deposits, securities and deposits and between E.T.A. on the one hand, and loans, deposits and securities on the other.

TABLE 6.12

ESTIMATES OF WEAK-ECONOMIES-OF-SCOPE ELASTICITIES FOR SOME NEW ENTRANTS

Trust Company	1976	1977	1978	1979	1980	1981
Community Trust	. 369	.184	.030	023	.122	. 029
Exchequer Trust		.215	018	011	126	1.291
Huronia Trust		.519	. 134	027	.007	025
Security Trust		.115	1.293	.537	.478	.132
Effort Trust			.080	502	134	.074
McDonald-Cartier			.069	234	271	137
Seaway Trust			.167	. 159	.084	.133
Merchant Trust			062	186	.190	.212
Cabot Trust				. 754	. 299	.647
Western Capital				.135	. 382	065
North Canadian						.032

TABLE 6.13

LOCAL MEASURES OF ECONOMIES OF SCOPE EVALUATED AT THE MEANS

	GTMCF (DATA-1)	TMCF (DATA-2)
L-Scope (Y ₁ :Y ₂)	.232	.142
L-Scope (Y ₁ :Y ₃)	.020	051
L-Scope (Y ₁ :Y ₄)	068	.025
L-Scope (Y2:Y3)	.077	470
L-Scope (Y2:Y4)	247	866
L-Scope (Y ₃ :Y ₄)	026	. 854
L-Scope (Y ₁ :Y ₂ ,Y ₃ ,Y ₄)	.157	.130

NOTE: Y₁ is E.T.A.

 Y_2 is loans

 Y_3 is securities, and

Y₄ is deposits.

In summary, the economies of scope estimates indicate that most firms in the trust industry enjoy economies of scope in the production of E.T.A., loans, securities and deposits. After merging, firms increase their scope measures. Locally, there is economies of scope in the production of E.T.A. and deposits, loans and deposits, and securities and deposits.

To conclude, we have shown that if the full data set on trust companies is considered, then the GTMCF seems the appropriate functional form to use. On the other hand, with a truncated data set which contains no zero outputs, the translog function seems the most appropriate one. Scale parameters derived from GTMCF (data-1) and TMCF (data-2), however, indicate that similar conclusions can be reached with either It is observed that at the means, the trust industry tends to exhibit an almost constant returns to scale, with the minimum efficient scale being 1.1 and 1.3 times the mean output values for the Data-1 and Data-2, respectively. To calculate economies of scope and product-specific economies, however, we have to rely solely on the GTMCF. A lot of interesting results emerged concerning economies of scope. Most firms enjoy economies of scope -- giving credence to the fact that the trust industry is indeed a multiproduct industry. Most large firms, while enjoying strong economies of scope, have exhausted all economies of scale. There is a strong correlation between mergers among firms and economies of scope. Most of the Data-2 results agree in a general way with results obtained by Murray and White (1983) for the credit union industry of British Columbia.

FOOTNOTES

Chapter 6

- See, for example, Christensen and Greene (1976), Caves, Christensen and Tretheway (1980) and Murray and White (1983).
- 2. In TSP, all of the statistical techniques involve minimization of a criterion function, Q, over the parameters. For the Zellner's seemingly unrelated regression, the criterion, Q, is the negative of the log-likelihood function. Minimization of Q gives maximum likelihood estimates.

In multivariate regression, if λ is the log-likelihood function, then

$$-\lambda = \alpha + \log |\gamma|$$

where α is a constant and

 $|\hat{x}|$ is the determinant of the covariance matrix of the regression disturbances.

(See, for example, the TSP User's Manual, University of Western Ontario, London, Canada).

APPENDIX 6.1

TRUST COMPANIES REGISTERED AND CONDUCTING BUSINESS IN ONTARIO THROUGHOUT ALL THE SIX YEARS (1976-1981)*

- A. Ontario Incorporated Companies
- 1. Community Trust Company Limited.
- 2. Crown Trust Company.
- 3. District Trust Company.
- 4. The Dominion Trust Company.
- 5. Family Trust Company.
- 6. National Trust Company.
- 7. Vanguard Trust of Canada Limited.
- 8. Victoria and Grey Trust Company.
- B. Federal and Other Provinces Incorporated Companies
- 9. Canada Permanent Trust Company (Federal).
- 10. The Canada Trust Company (Federal).
- 11. Central Trust Company (Federal).
- 12. Continental Trust Company (Federal).
- 13. Co-Operative Trust Company of Canada (Federal).
- 14. Eaton Bay Trust Company (Alberta).
- 15. Eaton/Bay Trust Company (Federal).

145

- 16. The Equitable Trust Company (Federal).
- 17. The Fidelity Trust Company (Federal).
- 18. First City Trust Company (Alberta).
- 19. General Trust of Canada (Quebec).
- 20. Guaranty Trust Company of Canada (Federal).
- 21. Guardian Trust Company (Quebec).
- 22. Income Trust Company (Federal).
- 23. Citicorp Trust Company (Federal).
- 24. Investors Group Trust Company Limited (Manitoba).
- 25. Montreal Trust Company (Quebec).
- 26. The Morgan Trust Company (Federal).
- 27. Morguard Trust Company (Federal).
- 28. North America Trust (Quebec).
- 29. The International Trust Company (Federal).
- 30. The Premier Trust Company (Federal).
- 31. Quebec Trust (Quebec).
- 32. The Regional Trust Company (Federal).
- 33. The Royal Trust Company (Quebec).
- 34. Royal Trust Corporation of Canada (Federal).
- 35. Savings and Investment Trust (Quebec).
- 36. Standard Trust Company (Federal).
- 37. Sterling Trust Corporation (Federal).

^{*} Bankers Trust and Credit Foncier operated through all the six years but were excluded because they have extraordinarily low labour shares.

APPENDIX 6.2

ESTIMATES OF MULTIPRODUCT-ECONOMIES-OF-SCALE (b) ELASTI
CITIES FOR SELECTED TRUST COMPANIES USING GTMCF (DATA-1)

⁽a) Firm number corresponds to listings in Appendix 6.1

⁽b) Calculations based on equations (4.3-1) and (4.3-4).

APPENDIX 6.3

ESTIMATES OF WEAK ECONOMIES OF SCOPE (b) FOR SELECTED TRUST COMPANIES USING GTMCF (DATA-1)

Firm			YEA	RS		
Numbe	r ^(a) -1976	1977	1978	1979	1980	1981
1	. 369	.839	.030	023	.122	.029
2	124	.121	.228	095	.886	.842
3	.276	.335	.443	.578	.706	.308
4	1.458	1.395	1.446	1.633	1.754	1.929
5	.049	695	435	418	453	414
6	11.931	.147	10.601	9.703	16.842	39.391
7	127	245	.150	301	308	273
8	2.871	3.606	6.125+	7.086	9.108+	
9	3.476	9.674+	12.318	12.882	13.901	11.519
10	7.341	17.318+	15.016	23.512	23.975	46.719
11	1.921	2.327+	3.121	4.686	6.025	5.662
12	314	388	254	206	168	.169
13	1.052	1.291	1.064	.966	1.104	.407
14	1.394	1.940	1.432	2.401	1.188	1.375
15	307	226	232	.005	160	.971
16	261	330	331	452	187	123
17	.065	010	007	 035	.331	.418
18	1.621	1.654	2.354	2.927	4.343	3.803
19	2.092	3.113	8.310	5.607	6.554	12.341
20	4.807	12.328	9.530	6.184	6.992	10.802
21	371	207	108	042	0.142	1.207
22	211	340	284	025	208	201
23	260	 253	.442	.626	1.135	.928
24	 395	 378	354	384	082	.590
25	1.729	2.449	2.457	1.575	6.228	4.324
26	.061	145	082	077	213	208
27	407	435	421	504	522	513
28	.076	.726	076	.017	158	. 353
29	.298	129	105	089	019	.125
30	.459	.506	.598	.636	.465	.602
31	.736	. 499	. 295	.666	.547	.623
32	.329	512	212	270	173	066
33	4.880	4.299	4.306	4.829	3.002	3.465
34	4.438	7.328+	11.221	76.553		156.538+
35	. 272	.460	. 306	.472	117	.970
36	.224	.355	.582	1.279	1.506	2.444
37	.369	. 595	.532	.932	.886	1.382

⁽a) Calculation based on expression in (4.3-6).

⁽b) Firm number corresponds to listing in Appendix 6.1.

⁺ Post-merger scope measure.

CHAPTER 7

CONCLUSION

Trust companies in Canada, like most other financial institutions, are multiproduct firms. They have two main functions: (i) a fiduciary function, and (ii) a financial intermediation function. Under these two functions the outputs produced by a trust company are the services of the management of estates, trusts and agencies (E.T.A.) and of the management of loans and of securities. The services of deposits are both inputs and outputs. The services of deposits are produced by labour and capital, and are best viewed as an intermediate output. When labour and capital combine with the services of deposits to produce the services of loans and securities, then deposits join with labour and capital as inputs.

using the set of inputs and outputs we were able to formulate a production technology for Canadian trust companies. Using duality techniques, we derived a multiproduct cost function from the basic production transformation function.

Even though we consider the average trust

company as producing E.T.A., loans, deposits and securities, not all firms produce all these outputs at a particular time; sometimes for lack of manpower a trust company may produce only a subset of the specified output set. A trust company may also abstain from the production of a particular output based on market forces: for instance, if the company finds it less 'profitable' to invest in securities then it will not do so. A trust company may also be restricted by the law in its operations. For example, in 1976, Quebec Trust and Central Trust were registered in Ontario for 'limited purposes'. Because of these reasons we specified a cost function which could accommodate zero output values. This function is the generalized translog multiproduct cost function (GTMCF).

Aside from the fact that the GTMCF can accommodate zero output values it has the following advantage: one can meaningfully define economies of scope and product-specific economies of scale. It is more general than the translog but like the translog it is parsimonious in parameters.

Data on trust companies was obtained from

Reports of the Registrar of Loan and Trust Corporations

for Ontario. Based on their number, asset size and the

fact that all the large trust companies are registered in Ontario, the Ontario data is considered as representative of the Canadian trust industry data. After the initial editing of the data, two data sets were defined. Data-1 comprises the whole population except for a small number of firms dropped in consequence of the initial editing rule. Data-2 is a truncated form of Data-1, consisting only of observations with non-zero output points.

A generalized translog multiproduct cost function was fitted to Data-1 and both the generalized and an ordinary translog was fitted to Data-2. A hypothesis test revealed that we could not reject the translog as the best fit of the truncated data against the alternate hypothesis of the generalized translog. This suggests that Murray and White (1983) may be right in fitting a translog function to their data, although they did not provide tests against the more general function, the generalized translog.

A translog cost function restricted to be linearly homogeneous in output was also fitted to Data-2 but this was also rejected in favour of the translog cost function. Again, this result agrees with what Murray and White (1983) found for the credit unions in British Columbia.

151

Having satisfied ourselves that the translog cost function (TMCF) best represents Data-2 and that the generalized translog (GTMCF) best represents Data-1, we then evaluated measures of multiproduct economies of scale, product-specific economies of scale, and economies of scope. Unless otherwise stated, the summaries of the findings below apply to both Data-1 and Data-2.

- a) The minimum efficient scale for the trust industry is about the average size of all outputs.
- b) All small firms (firms of less than average size) have unexploited multiproduct economies of scale, while most firms of above average size have exhausted all multiproduct economies. This agrees with the Murray and White (1983) finding of the existence of an inverse relation between returns to scale and asset size. We should add that since the average size of a trust company is larger than the average size of a credit union, our model yielded a minimum efficient scale while that of Murray and White (1983) did not.
- c) It appears that firms with a large proportion of trustee assets have increasing returns to scale while those with a larger proportion of financial intermediary assets have decreasing returns to scale.

152

d) For most companies, multiproduct economies of scale elasticities remained the same over the six years.

- e) Using Data-1, we found that most firms have unexploited product-specific economies in the production of E.T.A., securities and deposits, and product-specific diseconomies in the production of loans.
- f) Most large firms appear to enjoy economies of scope in the production of loans, securities, deposits and E.T.A. while most small firms do not have economies of scope in the production of these outputs.
- g) Most firms entering the trust industry enjoy economies of scope in their years of entry but as they stay on most of them (especially the small ones) start having weak scope economies.
- h) After merging, most firms increase their scope economies.
- i) Local results of economies of scope differ between Data-1 and Data-2. With Data-1, scope economies were detected between deposits and E.T.A., between deposits and loans, and between deposits and securities. This is not a strange result since deposits were also considered a necessary input in producing loans and securities and E.T.A. Data-1, however, showed weak evidence of cost

complementarity between E.T.A. and loans, E.T.A. and securities, and loans and securities. With Data-2, scope economies were detected between E.T.A. and securities, between loans and securities, and between loans and deposits.

These results have important policy implications. Even though the larger trust companies are more cost efficient than small ones, care must be taken in granting permission for expansion. Firms which expand past the 'average firm size' start experiencing diseconomies of scale. It should be noted, however, that increases in say, average cost after the minimum efficient scale is very gradual; thus, such diseconomies arising from further expansion should be matched against other cost advantages of large firms. For instance, although large firms might have some diseconomies arising from expansion, these diseconomies may be offset because of a reduction in risk due to exposure to a wider geographical area. Also, if the aim of regulators is for trust companies to produce the diversified outputs specified in our model, then our results show that large firms are preferable. It should, however, be noted that most of our conclusions have not been subject to rigorous statistical tests. Care should be taken in using the product-specific economies of scale results since they do not seem precise enough -- probably an indication that the GTMCF does not behave well around zero values.

APPENDIX A.

TRUST COMPANIES OPERATING IN ONTARIO

DATA-1 (POOLED DATA FOR 1976 TO 1981)

FIRM NO	• EXPENSES	E • T • A	LOANS	SECURITY	EQUITY		INTEREST	DEPOSIT
1 2 3 4	4.0781 3175 959 58	72599 1250 0	38 25566 8805 124	9375515404188605542289895652232835730002072661908381024694631112783461438878910441 221 11658812948876 6 2 22 1 8 17 70 6	120 1101 1337 92	2.0819 667 122	.0102 2175 739 33	7.7 27771 9295 517
4 5 6 7 10	6.7921 1359 1532	3019 3695 11441	167 12097 16177	15 1491 1905	113 865 923	4.2993 184 148	1.1738 1016 1265	13264 17386
	12895 4803 42	306941 773741 36441 773753 11440529 187740 187788	94220 19621 271	41830 894 101	6295 1281 104	2499 1891 24	8973 1957 8.8435	122262 13672 260
1123 1467 147	11497 20056 21568	18793 227756 318886 26157	128821 146242 181216	9928 2 8948 3 8860	5407 9058 11851	636 4779 3303	10363 12871 16524	128078 16461 205750
18 19 20 21	9102 3316 2828 89.6894	26157 9423 15638 2655	8 116977601 1101742272241591 126949 882211991 124818891 124818881 1118822	8990 7045 6364 132	4085 1549 1332 123	800 350 235 50	2665 2413	89298 32779 28038
89012345678901234567 1122222222223333333333	982926532768268987168628263 97353288 495601288323832123337 11324 105133863931:7522337 122 8 6 1 41	2 94 238 1 52 94 27 1 52 94 27 3 22 56 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25861 3307 2065 9258	6712 418 129	1547 408 196	479 2.5000 55	2579 213	30414 0 3164
25 26 27	186 1138 726	2647 32563 5622	2065 9258 648 3 26165	178 2289 735	139 589 343	18 177 94	157 809 552	1973 10327 6572
29 30 31	11228 232 336	55424615 554286015 867333025 867333025 867333025 867333025 112	9245835441730944270 9641831730944270 9641831730944270	22965 112 542	5128 125 241	1 48 2 8 3 2 1	8835 91 283	113419 1042 3596
32 33 34	673 96 10763	80275 67379 578334	3983 210 61649	1433 282 18178	557 221 4075	107 60 2944	435] 6337	4959 302 78221
36 37 38	10 763 114 762 1945	36195 2170 129	3432 1417 0	895 617 403	373 152 362	244 18 6.0721	304 160 _31	3813 1862 13
38 39 40 412	3415 47	733 114129 0	5976 22586 1003 231041	1440 7010 67222 6590 2498	858 1544 129	68 675 8•6070 7583	541 2459 31 25853	6602 28216 807 305594
4433456 44444	441 744 916	2170 129 733 114129 1207995 1207995 28924 13334 5892 83830	4994 4657 8706	6590 2498 1030 2168	494 397 406	3 3 3 6 9 3 17229481914693005090587492317047482857317975596219843992373832 45 1 94 1 9 2 0 6 67 7 7 6 6 7 7 6 6 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 7 6 7	262 513 782	11615 5854 9228
46 47 48	1 734 31 3788	58 92 35 8 3830	1/1/8 511 30 924	2168 190 3 633	729 143 1746	7.2056 675	1434 17 2705	18050 569 35 3 64

...continued

Г		
(Ĵ	٦
•	*	

49	1251	1803	10954	1442	1341	130	1001	11922
50 51	56 12 54	0 0	143 0	482 125	10J 122	12 4.2795	35 J	51.5 0
52 53	1659	4270 7241	415 13262	2206	122 728	19 231	15 1236 •2648	296 15058
55 56	11	4 9 <u>5</u>	79 581	70 95	107 679	1.8899 8.8393	i i	68 0
58 59	3868 15797	495 90045 436923	30978 104992	9799 4260	3582 6699	569 3226 3.5474	2906 10659	39301 143043
61 61	11 106	1778	80 1481	68 136	148	28	0 62	1416
63	14317	23266 426	153018	12869 326	6520 130	806 14	12844	152003 836 222361
55555555566666666666666666666666666666	106 14317 59 24394 24678 10102	301890 345978 27001	190898 203876 95252	44858 60939 10647	11036 15329 4552	5416 3808 937	15682 18831 8532	222361 239316 101546
68 69 70	3950 3337	21281 15865 14003	35496 26173	8368 8266	2356 160	389 306	3222 2787	40863 33253
70 71	84	14003	361 33102	125	145 1989 310	34 698	3222 2787 9.6689 3254 394	314 3851 <u>1</u>
71 73 74	84 4427 549 1532	68085 4097 3415 37583	5217 2618	8829 307 122	310 152	70 27	394	5163 2384 15872
74 75 76 77	[] (/	3 7 5 8 3 1 1 4 2 9	15245	122 2247 _664	1191	262	203 1693 677	15872
77 78	5204 52444 501 284 501 782	11429 180476 92090	9012 28536 106137	15747 39204	753 1757 5899	129 1102 1611	3575 971:	9027 42662 139930
7 9 80	284 501	2930	1302 5074 7570	239 279	100 273	93 31	144 421 655	1445 4849
81 82 83	647	8885 1856 91759	7471	623 1806	298 735	48 107	435	7665 86 38
83 84	138 11998 253	79809 620340 3592 113994	243 68001	384 21888	253 4389	65 3341	26 6993	408 87521
845 85 86	1147	35 92 113994	1624 5705	421 1082	5 7 2 5 0 0	71 351 7.30	119 494	1601 6035
87 88	295 687 4095	113994 84 2358 697	2282 2282	362 1792	311 206	7.30 28 75	233	387 3
90	4095 126	741100	6146 26737 1204	1554 6728	937 1603 143	878	584 2798 92	6770 31788 1031
92	126 36464. 116 <u>36</u>	140 1288400 92791	214403	0 38916 2 <u>8</u> 930	14211 4838	20 6625	25641 5017 655	257735 117215
94	957 1093	30924	89741 5728 10288 20228	3172 1301	417 473	5116 209 86	655	7570 10933
88901234567	2183 95	7610 174	20228	3206	966 155	223 8•6760	928 1776 77	21812 1161
98 99	4247 1523	93008 2282	34578 13586	196 4460 1927	1845 1446	744	3065 1225	36382 13996
-					=			

100	55	۵	138	485	111	1.3	34	535
101	3.2131 77	7707 98	-65 260	122	121 261	1.1251 31 454	5.6232	103
103	657	5437	674	30	13 6	454	43	16681 16681
104 106	1754 58	115 91 53 3	14562 693	2428	931 163	215 9.8696	1361 35	16681 861
108	43	3	546	153	100 348	18 636	6.8851 3583	336
109	4743 22	91255 46	42315 533	9040 79	4107 116	535 3.6152	3583 17	502 78 483
112	22 17588 4.8922	486497	533 122520	44738 15	7299 110	3481	11975	163091
114	44	0 16	- 95 259	529	146	2.7297 7.750	19	692
115 116	241 18612	16 890	2918 199422	140 12935	284 7471	1062	194 16597	2708 196378
117	176	980	1227	868	167	25	113	1.8.52
119 120	11 30782	0 31 97 63	35 223775	62 51807	105 122 7 2	6.0556 6515	.3244 20891	.38250 261724
121	28665	50 97 81	230224	60626	11361	40 46	22263	276799 113022
122 123	11188	30845 2042	16522	14400 1699	4700 879	998	9496 874	17589
124	4106 178	211 67 140 91	34154 1295	7368	1498 210	398	334+	40156 1611
124 125 126 128	5611	102028	42759	461 8982 889	2396 3 7 5	4 ji 8 3 9	84 411+	47462
128	719	20675	6750 3070	889 217	3 7 5	839 53 32 306	554	7020
129 130	306 307 5258 136 136	6118 42531 29934 20360	3079 22916	217 2187 11483	163 1271	305	253 1725 4427	2857 23669 59078
131 132	5258 1398	299 34 20360	49615 12994	11483 1854	4050 680	398 195	4427 1003	59078 14226
133	סכצ כ	201	12994 33142	1854 18525 36167	1890	1212 1831	4162 1163.	14226 49708
133 134 135	14761 365	109235 3013	123115 1540	397	7641 150	120	1163.	153761 1832
136 137	649 941	11149 2596	6789 9489	467 558	304 3 71	-44 49	54+ 815	6452 9 3 52
138	189	108505	Ó	2441	444	6 0	45	2031
139 140	173 32	99548 5168	37 <u>1</u>	569 100	301 104	78 15	6.1514	632
141	13416	741147	73514	23033	4817	3798	7779	111 93941
143	400 1581	5111 133451	3680 8692	728 1340	343 508	76 409	238 745	3577 9400
145 146	407	4754	3604	651	165	409 35	337	4198
147	718 4501	7 95 2 42 0 77 3 46	6081 2 753 4	1775 6727	1014 1654 156	82 1044	631 2975	6849 322 73
148 149	145 31369.	346 1286472	1428	6727 27 38795	156 6141	1044 20 5469	2975 11) 22676 13479	32273 1209 228705
150	22111	335246	174532	47260	9502	6146	13479	215565

151	1125	535 33	6296	3118	434	240	780	9665
151 152	1125 1471	1454	15024	2078	635	93	1269	16179
153	2641	8775	25086	2933	1249	272	2155	26295
154	39	0	310	287	209	11	12	409
155 156	156 45	26 3	1589 316	172	176 248	10	134 13	1549 117
157	4868	146408	28040	2891	1876	793	3604	39656
158	1895	2831	17477	2359	1 42 8	155	1579	17910
159	69.6912	٥	118	531	123	14	46	566
160	123 889	673	250	_ 0	159	86	11	168
161 162	889 2100	6492	911	5 9 24 0 3	13 9	647	6] 16 7 8	712
163	184	13983 1482	15877 1792	2403 428	8 7 9	230 24	1673 131	17881 1952
164	133	128	1470	88	195 116	14	110	1458
166	208	603	2284	32	339	49	113	1971
167	99	40	1155	68	_ 130	6.2696	3.6	1057
169	21 591	607086	141268	45100	7648	3831	15443	181837
170 171	46 97	5 0	41 7 944	67 9	109 113	18 15	17 61	37 7 944
172	422	32 72	4861	103	321	33	354	4490
173	28304	100857	276159	24014	12 7 60	1835	24963	282024
175	11	0	276 1 59 83	24014	167 18101	5 • 6 887	24963 •9129 26635	9.3250
176	37411	350566	264937	53839	13101	7047	26635	294885
177	36818	625878	275392	76243	11318	4867	29384	329059
178 179	13690 2238	32214 2021	115401 22963	19958 1974	4796 821	1104 138	11784 1965	129268 24162
180	51 43	23693	36498	10379	1994	445	4312	45361
181	366	15701	2869	694	223 2327 632	46	4312	3214
182	6766	147322	47619	9066	2327	931	5135	54796
184	1060	22838	19566	1730	632	52	843	11262
185 186	395 3500	9557 42207	3431 27415	85 1606	169 1087	50 334	307 2851	3082 29174
187	8137	34550	64831	13444	4333	499	703	79421
188	2097	24318	16406	1498	4333 555	222	7035 1635	1.67.52
189	7 022	228 397	35352	22091	2466	1276	5063	56862
190	19058	139285	157676	29555	8261	2305	15284	179598
191	556	2992	2757	557	236	176	251 794	3034
192 193	952 1185	130 81 31 62	8584 11461	1278 832	357 398	54 54	1045	8828 11483
194	470	122049	3124	2126	494	88	275	4818
195	217	120542	486	549	356	93	63	709
196	57	5946	0	122	105	28	715 ⁷	43
197	13590	817379	54883	18158	4843	4192	7157	71687
198 199	2813 868	12890 8633	28769 6687	13177 913	22 0 9 380	325 122	2483 634	37347 6721
7 77	000	0033	0007	313	304	755	034	0121

123456789012345678901245678901 222222222222222222222222222222222222	955213018 1183757 4906632030067 856370377 450350284524144943597 1 5 16123 62 12 5 12 5 33	14 28 77 0 0 2 8 4 0 8 9 0 5 9 4 4 5 6 6 7 2 8 1 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 1	797041160 326778204004177963877 6233363677 609675915613045405020 946611279 8 2 60 1521413857532 12 42 1	544397230 605693496116034562189 9680 71806 3414851 822 2151 17 970344 82 3 9 1	425392105 94078862389417298061 557966148 11434183149441411561 520619849 3222244121721311111111 1 21	536552148 055516135469899196089 858223363 221136719793145422249 4 2 61213 91 71 834 63	143236079 239511477 939923675787 946614198 6 2 81 92131179819 3 25 1 2 42 1 8	8621114916 20261499862042685281 659545876 1 737741791038917223 8187396110 2 962016388998390748 9563195112 0 2 32 8213:1161148 4 11112 3 52 1
22222222222222222222222222222222222222	156	0	1508	81	166	24853461611329805862 033021 814 46393 28511 814 16393	117	1428

123456789012345678901 222222222222222222222222222222222222	1 351 452	130991 148734	8750 1829	3144 2102	1013	212 102	1000	11402 3478
253	2.8	40	٥	2102	114 5027 2828	8.6385	6.1637	1.4694
254 255	14264 5693	757 267	50 951 41 846	17510 13224	5027 2828	46 38 656	6896 5018	6 7938 50209
256	994	10394	8019	621	407	130	732	7543
257	199 2085	8289	1244	621 827	409 603	33	121	1787
258	∠085 785	162 7 18 1969	11541 5863	967	603	545	1114	11598
260	911	1969 689	8018	217 1477	253 1139	89 96	1114 609 762	5834 8462
261	7154	338338	43658	9374	1799	1289	5164	51499
262	193	665	43658 1710	106 30332	1799 176 5379	1289 27 5721	51.64 143	51499 1575 173884
263 264	27948. 58330.	1044042 1102405	151702	30332	5379 12976	5/21	18893	173884
265	1789	88261	321 819 9621 24239	127115 2320	475	12141 321 207 380	1897 1897 1897 1823 1631 2331	436121 13007
266	3079	1440	24239	5041	1 321	ž 0 7	2659	27918
267	3976	14895	33182	4834	1 423 229	380	330]	35523
269	234 278	13705	398 1326	1292 886	243	103	15	1428
ŽŽÓ	41 9 106	115 775	2 88 4 872	412	254	24 21 36	382	1428 2029 3176 716
271	106	0	872	31	254 250	35	_ [63	716
272 273	8782 3157	103833 3003	55565 2 0788	7639 1076	2549	891 181	7229	61280
274	3157 105 256	3003	102	7639 1076 605	404 149 273	14	2/59	61280 21821 685 750
274	256	1012	102 602	385	273	137	85	žšó
277	1873	6937	1241	89	169	1401	92	972
278 279	935 875	1902 1815	1241 5623 5872	3127 222	599 683	137 1401 103 93	23 62 9 9 2 6 2 7 2 7 2 7 6 5 7 6 6 7 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 6 7 6 6 7 6	$9103 \\ 6124$
280	31.2	307	2186	258 59 3 83562	153 173	25 13	267 274	2 325
2813 2884 2885 2886	294 32849	49 854340	1800 160405	83562	173 8479	4076	25952	2119 241811
284	81.5	887	9210	543	609	46	715	9536
285	309 743	78	9210 2290 5715	543 182 130	161	30 69	25952 715 250 	2297 5446
287	41739	3184 119588	5715 29 5581	130 44255	448 13557	2334		5446
290 291	55299	397461	261.898	51120	17087	9441	40385	328934 314579
291	55299 51168 23849	949779	248498	51120 101649	12771	9441 5945	4229í	304448
123456	23849 3672	36050 4614	150393 32100	23166	6639	1587	21055	171602
294	1395	19378	8554	3660 2183	2079 464	113 105 613	3419	34620 9586
295	1395 7396 4621	208146 1524	8554 47193 31184	7139 12374	2 656 1883	613	6296	52153
296	4621	1524	31184	12374	1883	264	789595995227 738951995227 732054152294 742134162464 1642164	39767
297 298	1865 7077	0 13060	13139 46563	1381 6634	865 2137	100 437	1692 6173	13053
299	357	13060 1259	2443	268	2137 171	19	6141 323	48694
		·= · · · ·						

APPENDIX A. (continued)

...continued

APPENDIX A. (continued)

301 301 301 301 301 301 301 301 301 301	512 513 515 515 515 515 515 515 515	51 19 4 3 3 1 4 1 5 1 8 3 5 3 6 1 5 7 8 6 3 8 4 4 5 4 5 6 3 8 6 1 5 7 9 6 6 3 6 1 3 3 3 3 6 1 5 7 9 6 6 3 6 1 3 3 3 6 1 3 7 8 1 5 6 1 3 3 3 6 1 3 7 8 1 5 6 1 3 3 3 6 1 3 7 8 1 5 6 1 3 3 3 6 1 3 7 8 1 5 6 1 3 3 3 6 1 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1 3 7 8 1 5 6 1	194471125188 19437425188 194371156428 1118112035236558 111135 111136 111136 1136 1136 1136	147752622538019860995743726 1477534171874382210150742 1 42 57 11	957090478 • 890339418340250 0398475822203611425338995 51143 11 281 6 18 76325 54325	8091855976 7156790268866747 8797110549 3293664184866747 78 1 16 25247	9080767380621846239039654 190759110 485568092737846 718044667 465277282606500 909478359 677542398181097 150234
323 5: 324 5:	142 3 593 15		8589 6808	1432 1294 446	9990 450 200	4445 4779 42?	

SOURCE: Reports of the Registrar of Loan and Trust Companies (1976-1981), Ontario.

NOTES TO APPENDIX A.

- Al. This appendix refers to data on trust companies used in the estimation of GTMCF. This data which consists of 299 observations is referred to as Data-l in the text.
- A2. Except for column 1, all other columns are in units of \$10,000.
- A3. "Firm No." refers to the 'pooled' position of a firm in the Report of the Registrar of Loan and Trust Companies, 1976 to 1981. There are gaps in the numbering of firms showing which firms were edited out by editing principles in the text.
- A4. "Expenses," include Interest Incurred, Salaries and Staff Benefits, Real Estate Commissions, Other Operating Expenses, and Depreciation.
- A5. "E.T.A." -- Estates, Trusts and Agencies under Administration.
- A6. "Loans," include Collateral Loans, Consumer Loans, Mortgages and Sale Agreements, and Commercial Loans.
- A7. "Security," include Bonds, Stocks and Treasury Bills and Short Term Deposits.
- A8. "Salary," include Salaries and Staff Benefits plus Real Estate Commissions.
- A9. "Interest" -- Interest Incurred.
- Alo. "Deposit" -- Demand and Term Deposits.

APPENDIX B

PANCES OF VARIABLES IN THE COST FUNCTIONS

	DATA-1				DATA-2			
Variable	Mean	S.D.	Minimum	Maximum	Mean	S.D.	Miminum	Maximum
Operating Cost (C)	1655	3204	8.63	22707	1896	3371	16	22707
E.T.A. (Y ₁)	105565	236875	0.	1298210	120861	250427	3	1298210
Loans (Y ₂)	40882	71087	0.	352092	46906	74393	210	352092
Securities (Y ₃)	9737	19905	0.	163152	11157	20984	19	163152
Deposits (Y ₄)	48156	85 3 3 0	0.	501679	55270	89373	103	501679
Price of labour (r ₁)	1.0	.174	.780	1.290	1	.175	.78	1.29
Price of capital (r ₂)	1.0	.198	.744	1.304	1	.200	.73	1.29

NOTE: Mean, Minimum and Maximum values are in units of \$10,000.

APPENDIX C.

RAY AVERAGE COST

	RAC	RAC	RAC
_t	(GTMCF - DATA-1)	(TMCF - DATA-2)	(GTMCF - DATA-2)
ΔI	5049.7	4617.9	4625.6
.01 .07	3679.6	3547.3	3559.9
.07	3113.1	3097.3	3107.5
.03	2788.7	2836.6	3107.5
.05	2573.6	2662.3	2667.4
.06	2418.5	2535.7	2538.7
.07	2300.3	2438.7	2439.8
.08	2216.7	2361.4	2361.0
.09	2140.1	2298.2	2296.3
.10	2076.3	2245.2	2242.1
.20	1750.8	1971.1	1960.4
.30	1623.8	1860.9	1846.4
.40	1557.2	1801.4	1784.6
.50	1517.9	1765.0	1746.6
.60	1493.4	1741.2	1721.6
.70	1477.8	1725.0	1704.7
.80	1468.1	1713.9	1692.9
.90	1462.5	1706.3	1684.8
1.0	1459.7	1701.2	1679.3
1.1	*1459.2	1697.9	1675.8
1.2	1460.2	1696.0	1673.8
1.3	1462.5	*1695.3	*1672.9
1.4	1465.9	1695.4	1672.9
1.5	1470.0	1696.2	1673.7
1.6	1474.8	1697.6	1675.1
1.7	1480.1	1699.4	1686.9
1.8	1485.9	1701.6	1679.2
1.9	1492.0	1704.1	1681.8
2.0	1498.4 1505.1	1706.9	1684.7
2.1	1512.0	170918 1713.0	1687.8
2.2	1512.0	1713.0	1691.1
2.3	1526.3	1710.4	1694.6 1698.2
2.4	1533.7	1723.4	1702.0
2.5 2.6	1541.1	1727.0	1702.0
2.6	1548.7	1730.8	1709.8
2.7	1556.3	1734.6	1713.8
2.8	1564.0	1738.5	1717.9
3.0	1571.8	1742.4	1722.0
J. U		·	1.22.0

^{*} Minimum RAC

APPENDIX D

FORMAL DERIVATION OF THE MULTIPRODUCT ECONOMIES OF SCALE MEASURE

Define a multiproduct transformation technology.

$$\phi(y_1...y_m,x_1,...x_n) = 0$$

where the y_{i} are outputs and x_{i} are inputs.

Let cost, $C = \sum_{i=1}^{n} x_{i}$ and minimize it subject to $\phi(y,x) \geq 0$.

Setting the Lagrangian, we have

$$\min_{\mathbf{x}} L = \sum_{i} r_{i} x_{i} - \gamma(\phi(y, \mathbf{x}))$$

The Kuhn-Tucker conditions are

a)
$$r_{i} - \gamma \frac{\partial \phi}{\partial x_{i}} \geq 0$$

$$x_{i}(r_{i} - \gamma \frac{\partial \phi}{\partial x_{i}}) = 0$$

c)
$$\phi(y,x) \geq 0, \quad \gamma \geq 0$$

$$d) \qquad \qquad \gamma \phi (y, x) = 0$$

Now suppose outputs increase by $\lambda^{\textstyle S}$ when inputs are increased by a factor λ . Then

$$H(\lambda) = \phi(\lambda^{S} y_{1} \dots \lambda^{S} y_{m}, \lambda x_{1} \dots \lambda x_{n}) = 0$$

To select the λ which maximizes $H(\lambda)$, differentiate $H(\lambda)$ with respect to . Thus,

$$\frac{dH(\lambda)}{d\lambda} = S \lambda^{S-1} \sum_{j} \frac{\partial \phi}{\partial y_{j}} y_{j} + \sum_{i} \frac{\partial \phi}{\partial x_{i}} x_{i} = 0$$

There is no loss of generality by setting = 1. Solving for S, we have

$$S = \frac{-\sum_{i} \frac{\partial \phi}{\partial x_{i}} x_{i}}{\sum_{j} \frac{\partial \phi}{\partial y_{i}} y_{i}}$$

S is a measure for multiproduct economies of scale.

Using the 'Envelope Theorem' and the Kuhn-Tucker conditions, it can be deduced that

$$\frac{\partial C}{\partial Y_{i}} = -\gamma \frac{\partial \phi}{\partial Y_{i}}$$

Also from the Kuhn-Tucker condition (b),

$$\sum w_{i} x_{i} = - \gamma \sum \frac{\partial \phi}{\partial x_{i}} x_{i}$$

Therefore,

$$S = \frac{\sum_{i} r_{i} x_{i}}{\sum_{j} \frac{\partial c}{\partial y_{j}} y_{j}}$$

$$= \frac{C(y,r)}{\sum_{j=0}^{\frac{\partial C}{\partial y_{j}}} y_{j}}$$

$$= \sum_{j=1}^{\frac{\partial \ln C}{\partial \ln y_j}}$$
 (This corresponds to S in (3.1-4).

BIBLIOGRAPHY

- Alhadeff, D.A. (1954), Monopoly and Competition in Banking, Berkeley: University of California.
- Alhadeff, D.A. (1968), <u>Competition and Controls in</u>
 <u>Banking</u>, Berkeley: <u>University of California</u>.
- Allen, R.G.D. (1959), Mathematical Economics, Second Edition, London: McMilland and Co.
- Amemiya, T. (1982), "Correction to a Lemma (The Maximum Likelihood and Non-Linear Three Stage Least Squares Estimator in the General Non-Linear Simultaneous Equations Model)", Econometrica, 50 (5), p. 1009-29.
- Arrow, Kenneth J. (1971), <u>Essays in The Theory of Risk</u> Bearing, Chicago, Illinois: Markham.
- Bailey, Elizabeth E., and Ann F. Friedlaender (1982), "Market Structure and Multiproduct Industries," Journal of Economic Literature, Vol. XX, p. 1024-48.
- Bain, J.S. (1956), <u>Barriers to New Competition</u>, Cambridge: Harvard University.
- Baltensperger, E. (1970), "Costs of Banking Activities Interactions Between Risk and Operating Costs,"
 Journal of Money, Credit and Banking.
- Baumol, William J. (1976), "Scale Economies, Average Cost and the Profitability of Marginal Cost Pricing,"

 Public and Urban Economics: Essays in Honour of William S. Vickery: Ed. Ronald E. Grieson,

 Lexington, MA: Lexington Books.
- Baumol, William J. (1977), "On the Proper Cost Tests for Natural Monopoly in a Multiproduct Industry," American Economic Review, 67 (5), p. 809-822.
- Baumol, William J., Panzar, J.C., and Willig, R.D. (1982), <u>Contestable Markets and the Theory of Industry</u> <u>Structure</u>, San Diego, CA: Harcourt Brace Jovanovich.
- Baumol, William J., Bailey, E., and Willig, R.D. (1977), "Weak Invisible Hand Theorems on the Sustainability of Multiproduct Natural Monopoly," American Economic Review, 67 (3), p. 350-365.

- Baumol, William J., and Fischer, Dietrich (1978),
 "Cost-Minimizing Number of Firms and Determination
 of Industry Structure," Quarterly Journal of Economics,
 92 (3), p. 439-467.
- Baumol, William J. and Willig, R.D. (1981), "Fixed Costs, Sunk Costs, Entry Barriers and Sustainability of Monopoly," Quarterly Journal of Economics, 96 (3), p. 405-431.
- Beazer, William F., (1975), Optimization of Bank Portfolios, Lexington: D.C. Heath & Co.
- Bell, F.W. and N.B. Murphy, (1976), "Economies of Scale and the Division of Labour in Commercial Banking,"

 The Southern Economic Journal, XXXV, p. 131-139.
- Bell, F.W., and N.B. Murphy, (1968), "Costs in Commercial Banking: A Quantitative Analysis of Bank Behaviour and its Relation to Bank Regulators," Research Report No. 41, Boston: Federal Reserve Bank of Boston.
- Benson, Winslow, (1962), <u>Business Methods of Canadian</u>
 <u>Trust Companies</u>, Toronto: The Ryerson Press.
- Benston, George J. (1964), "Commercial Bank Price Discrimination Against Small Loans: An Empirical Study," Journal of Finance, XIX, p. 631-643.
- Benston, George J. (1965a), "Economies of Scale and Marginal Costs in Banking Operations," The National Banking Review, 2, p. 507-49.
- Benston, George J. (1965), "Branch Banking and Economies of Scale," The Journal of Finance, XX, p. 312-331.
- Benston, George J. (1969), "Cost of Operations and Economies of Scale in Savings and Loan Associations," in Study of the Savings and Loan Industry, Vol. 2, Washington D.C.: U.S. Government Printing Office.
- Benston, George J. (1972), "Economies of Scale of Financial Institutions," Journal of Money, Credit and Banking, 4, p. 312-341.
- Berndt, E.R., and L.R. Christensen (1973), "The Translog Function and the Substitution of Equipment, Structures and Labour in U.S. Manufacturing, 1929-68," Journal of Econometrics, 1, p. 81-113.

- Binhammer, H.H. (1977), Money, Banking and the Canadian Financial System. (3rd edition), Toronto: Methuen.
- Bogert, G.C. (1962), "Trusts," in Encyclopedia Britannica, Vol. 22, p. 516-519.
- Bond, D.E., and R.A. Shearer (1972), The Economics of the Canadian Financial System: Theory, Policy and Institutions. Scarborough, Ontario: Prentice-Hall.
- Box, G.E.P., and D.R. Cox (1964), "An Analysis of Transformations," Journal of the Royal Statistical Society, Series B, 26, p. 211-243.
- Braeutigan, R.R., Daughety, A.F., and Turnquist, M.A. (1982), "The Estimation of a Hybrid Cost Function for a Railroad Firm," Review of Economics and Statistics, Vol. 64, No. 3.
- Brechling, Frank (1975), <u>Investment and Employment</u>

 <u>Decisions</u>. <u>Manchester (England)</u>: <u>Manchester</u>

 <u>University Press; Totowa, N.J.: Rowman and Littlefield</u>.
- Brigham, Eugene F. and R.R. Pettit (1970), "Effects of Structure on Performance in the Savings and Loan Industry," in Study of the Savings and Loan Industry, Federal Home Loan Bank Board, Washington: U.S. Government Printing Office, p. 971-1209.
- Brown, R.S., D.W. Caves, and L.R. Christensen (1979), "Modelling the Structure of Cost and Production for Multiproduct Firms," <u>Southern Economic Journal</u>, 46, p. 256-273.
- Brozen, Yale (1982), Concentration, Mergers and Public Policy, New York: MacMillan.
- Canada (1964), Report of the Royal Commission on Banking and Finance, Ottawa: Government of Canada.
- Carter, H. and I. Partington (1979), Applied Economics in Banking and Finance, New York: Oxford University Press.
- Caves, D.W., L.R. Christensen and M.W. Tretheway (1980),
 "Flexible Cost Functions for Multiproduct Firms,"
 Review of Economics and Statistics, 62 (3), p. 477-481.

- Cowes, R.E., J. Khalilzadeh-Shirazi and M.E. Porter (1975), "Scale Economies in Statistical Analyses of Market Power," Review of Economics and Statistics, p. 133-40.
- Christensen, L.R., and W.H. Greene (1976), "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, 84 (4), p. 655-676.
- Christensen, L.R., D.W. Jorgenson and L.J. Lau (1973), "Transcendental Logarithmic Production Frontiers," Review of Economics and Statistics, 55, p. 28-45.
- Christensen, L.R., and M.E. Manser (1977), "Estimating U.S. Consumer Preferences for Meat with a Flexible Utility Function," Journal of Econometrics, 5, p. 37-53.
- Chu, F.S., D.J. Aigner and M. Frankel (1970), "On the Log-Quadratic Law of Production," Southern Economic Journal, 37, p. 32-39.
- Cobb, C.W., and P.H. Douglas (1928), "A Theory of Production," American Economic Review, 18, Supplement, p. 139-165.
- Dhrymes, P.J., and B.M. Mitchell (1969), "Estimation of Joint Production Functions," Econometrica, 37, p. 732-736.
- Dhrymes, P.J. (1967), "On a Class of Utility and Production Functions Yielding Everywhere Differentiable Demand Functions," Review of Economic Studies, 34, p. 399-408.
- Diewert, W.E., (1974), "Applications of Duality Theory," in Frontiers of Quantitative Economics, Vol. 2, ed. M.D. Intriligator and D.A. Kendrick, Amsterdam: North-Holland.
- Diewert, W.E. (1971), "An Application of the Shepherd Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, 79, p. 481-507.
- Diewert, W.E. (1973), "Functional Forms for Profit and Transformation Functions," <u>Journal of Economic Theory</u>, 6, p. 284-316.
- Eads, G., M. Nerlove, and W. Raduchel (1969), "A Long-Run Cost Function for the local Service Airline Industry: An Experiment in Non-Linear Estimation,"
 Review of Economics and Statistics, 51, p. 258-270.

- Frankel, Dave (1972), The Law of Trusts, Second Edition, Vanvouver: Coast Legal Publications.
- Fuchs, V.R. (ed.), (1969), <u>Production and Productivity</u> in the Service Industries, New York: NBER and Columbia University Press.
- Fuss, Melvyn and Daniel McFadden (ed.), (1978), <u>Production</u>
 <u>Economics:</u> A Dual Approach to Theory and Applications, Vol. 1, Amsterdam: North-Holland.
- Fuss, Melvyn and Waverman, L. (1981), "Regulation of the Multiproduct Firm: The Case of Telecommunications in Canada," in Studies in Public Regulation, ed. Gary Fromm. Cambridge, MA: MIT Press.
- Gold, Bela (1981), "Changing Perspectives on Size, Scale, and Returns: An Interpretative Survey,"

 Journal of Economic Literature, Vol. XIX, p. 5-33.
- Gramley, L.E. (1962), A Study of Economies of Scale in Banking, Kansas City, MO: Federal Reserve Bank of Kansas City.
- Grebler, Leo and E.F. Brigham (1963), <u>Savings and Mortgage</u>

 <u>Markets in California</u>, Pasadena: <u>California Savings</u>

 <u>and Loan League</u>.
- Greenbaum, S.I. (1967), "Competition and Efficiency in the Banking System - Empirical Research and its Policy Implications," The Journal of Political Economy, 75, Supplement, p. 461-479.
- Guilkey, D.K., and C.A.K. Lovel (1980), "On the Flexibility of the Translog Approximation," <u>International</u> Economic Review, 21 (1), p. 137-147.
- Haldi, John and David Whitcomb, (1967), "Economies of Scale in Industrial Plants," <u>Journal of Political Economy</u>, 75, p. 373-385.
- Hall, R.E. (1973), "The Specification of Technologies with Several Kinds of Outputs," <u>Journal of Political Economy</u>, 81 (4), p. 878-892.
- Hanoch, G. (1970), "Homotheticity in Joint Production," Journal of Economic Theory, 2, p. 423-426.

- Hasenkamp, G. (1976), "A Study of Multiple-Output Production Functions: Klien's Railroad Study Revisited," Journal of Econometrics, 4 (3), p. 253-262.
- Hasenkamp, G. (1976), <u>Specification and Estimation of Multiple Output Production Functions</u>, Berlin: <u>Springer-Verlag</u>.
- Heaton, Ernest (1904), The Trust Company Idea and Its Development, Toronto: Hunter Rose Co.
- Henderson, J.M. and R.E. Quandt (1972), Microeconomic Theory, (second edition), New York: McGraw-Hill.
- Horwitz, Paul M. (1963), "Economies of Scale in Banking," in Private Financial Institutions, Englewood Cliffs, NJ: Prentice-Hall.
- Hotelling, H. (1932), "Eugeworth's Taxation Paradox and the Nature of Demand and Supply Functions,"

 Journal of Political Economy, 40, p. 577-616.
- Intriligator, Michael D. (1978), Econometric Models, Techniques, and Applications. Englewood Cliffs, NJ: Prentice-Hall.
- Jara-Diaz, S. and Winston, C. (1981), "Multiproduct Transportation Cost Functions: Scale and Scope in Railway Operations," Eighth European Association for Research in Industrial Economics, Vol. 1.

 Eds. Nicklaus Blattner, et. al., U. of Basle.
- Johnston, J. (1972), <u>Econometric Methods</u>, New York: McGraw-Hill.
- Johnston, J. (1960), <u>Statistical Cost Analysis</u>, New York: McGraw-Hill.
- Keeler, J.E. (1974), "Railroad Costs, Returns to Scale, and Excess Capacity," Review of Economic Statistics, 56 (2), p. 201-208.
- Khalilzadeh-Shirazi, J. (1974), "Market Structure and Price-Cost Margins in U.K. Manufacturing Industries," The Review of Economics and Statistics, 56, p. 67-76.
- Klein, L.R. (1953), A Textbook of Econometrics, Evanston, Illinois: Row Paterson and Co.
- Kmenta, J. (1971), <u>Elements of Econometrics</u>, New York: MacMillan.

- Knudsen, N.C. (1973), Production and Cost Models of a Multiproduct Firm A Mathematical Programming Approach. Odense University: Studies in History and Social Sciences. Vol. 13. Odense University Press.
- Koenker, Roger (1977), "Optimal Scale and the Size Distribution of American Trucking Firms," Journal of Transport Economics and Policy, 11 (1), p. 54-67.
- Koutsoyiannis, A. (1979), Theory of Econometrics, Toronto: MacMillan.
- Kuhn, H.W. and A. Tucker (1951), "Non-Linear Programming in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman, Berkeley and Los Angeles: University of California Press.
- Laitinen, Kenneth (1980), <u>A Theory of the Multiproduct</u> Firm, Amsterdam: North-Holland.
- Lau, L.J. (1972), "Profit Functions of Technologies With Multiple Inputs and Outputs," Review of Economics and Statistics, 54 (3), p. 281-289.
- Lau, L.J. (1976), "A Characterization of the Normalized Restricted Profit Function," Journal of Economic Theory, 12, p. 131-163.
- Layard, P.R.G. and Walters, A.A. (1978), Microeconomic Theory, London: McGraw-Hill.
- Magnen, S.D. (1971), The Cost of Funds to Commercial Banks An Econometric Analysis. New York: Dunellen.
- Matthews, John O. (1981), "Multiproduct Economies of Scale in the Securities Industry: An Application of Developing Theory," in Report of Securities and Exchange Commission.
- McFadden, Daniel (1978), "Cost, Revenue and Profit Functions," in <u>Production Economics: A Dual Approach to Theory and Applications</u>, Vol. 1, Melvyn Fuss and Daniel McFadden (eds.), Amsterdam: North-Holland.
- McFadden, Daniel (1963), "Constant Elasticity of Substitution Production Functions," Review of Economic Studies 30, p. 73-83.

- McIvor, R.C. (1973), "Postwar Trends in the Financing of Canadian Economic Activity," Transactions of the Royal Society of Canada, Series IV. Vol. XI.
- Mintz, J.N. (1981), "A Note on Multiproduct Economies of Scale and Economies of Scope," Economic Letters, 8 29-33.
- Murray, John D. and Robert W. White (1980),
 "Economies of Scale and Deposit-Taking Financial
 Institutions in Canada A Study of British Columbia
 Credit Unions," Journal of Money, Credit and Banking,
 12 (1), p. 58-70.
- Murray, John D. and Robert W. White (1983), "Economies of Scale and Economies of Scope in Multi-Product Financial Institutions," Journal of Finance, XXXVIII (3), p. 887-902.
- Neufeld, E.P. (1972), The Financial System of Canada Its Growth and Development. New York: St. Martin's Press.
- Panzar, J.C. and R.D. Willig (1977), "Economies of Scale in Multi-Output Production," Quarterly Journal of Economics, 91, p. 481-493.
- Panzar, J.C. and R.D. Willig (1977b), "Free Entry and the Sustainability of Natural Monopoly." Bell Journal of Economics, 8, p. 1-22.
- Panzar, J.C. and R.D. Willig (1981), "Economies of Scope,"

 American Economic Review, 71 (2), p. 268-72.
- Pegrum, Dudley F. (1965), Public Regulation of Business (second edition). Illinois: Richard D. Irwin, Inc.
- Pfouts, R.W. (1961), "The Theory of Cost and Production in the Multiproduct Firm," Econometrica, 29, p. 650-58.
- Phillips, P.C.B. (1982), "On the Consistency of Non-Linear FIML," Econometrica, 50 (5).
- Pindyck, R.S. and D.L. Rubinfeld (1976), Econometric Models and Economic Forecasts. New York: McGraw-Hill.
- Poapst, J.V. (1975), Studies for Decision Making -Liquidity in the Credit Union System. Study #1. National Association of Canadian Credit Unions.

175

- Pontecorve, Giulio, R.P. Snay and A.G. Hart (1967),

 Issues in Banking and Monetary Analyses. New York
 Holt, Rinehart and Winston, Inc.
- Powell, A.A. and F.H.G. Gruen (1968), "The Constant Elasticity of Transformation Production Frontier and Linear Supply System." <u>International</u> Economic Review, 9, p. 315-328.
- Powers, J.A. (1969), "Branch versus Unit Banking: Bank Output and Cost Economies," The Southern Economic Journal, XXXVI, p. 153-164.
- Rao, P. (1969), "A Note on Econometrics of Joint Production," Econometrica, 37, p. 737-738.
- Rousakis, E.N. (1977), <u>Managing Commercial Bank Funds</u>.

 New York: Praeger Publishers.
- Sakai, Y. (1974), "Substitution and Expansion Effects in Production: The Case of Joint Production,"

 Journal of Economic Theory, 9, p. 255-274.
- Scherer, F.M. (1980), <u>Industrial Market Structure and Economic Performance</u> (second edition). Chicago, II: Rand McNally College Publishing Co.
- Schweiger, I. and J.S. McGee (1961), "Chicago Banking: The Structure and Performance at Banks and Related Financial Institutions in Chicago and Other Areas," Journal of Business, XXXIV, p. 201-366.
- Sharkey, William W. (1982), The Theory of Natural Monopoly. Cambridge: Cambridge University Press.
- Shephard, R.W. (1970), Theory of Cost and Production Functions. Princeton: Princeton University Press.
- Smith, Adam (1974). The Wealth of Nations. Andrew Skinner (editor). New York: Penguin.
- Spady, Richard H. (1979), Econometric Estimation of Cost Functions for the Regulated Transportation Industry. New York: Garland Press.
- Starrett, David A. (1977), "Measuring Returns to Scale in the Aggregate and the Scale Effect of Public Goods," Econometrica, 45 (6), p. 1439-55.
- Statutes of Canada. (Elizabeth II) Vol. 1. 1969-70 (23), 63A1.

- Stigler, George J. (1968), The Organization of Industry, Homewood, IL: R.D. Irwin.
- Teece, David J. (1980), "Economies of Scope and the Scope of Enterprise," <u>Journal of Economic Behaviour</u> and Organization. 1(3), p. 223-247.
- Theil, H. (1980), The System-Wide Approach to Microeconomics.
 Chicago: University of Chicago Press.
- Trust Companies Institute of Canada (1980), The Canadian Trust Industry. Toronto: McGraw-Hill.
- Uzawa, H. (1964), Duality Principles in the Theory of Cost and Production." International Economic Review.
- Vinod, H.D. (1968), "Econometrics of Joint Production." Econometrica, 36, p. 322-336.
- Von Weizsacker, C.C. (1980), <u>Barriers to Entry: A</u>
 Theoretical Treatment. <u>New York: Springer-Verlag.</u>
- Walters, A.A. (1963), "Production and Cost Functions: An Econometric Survey," Econometrica, XXXI, p. 1-66.
- Wang Chiang, J. Shaw-er (1981), Economies of Scale and Scope in Multiproduct Industries: A Case Study of The Regulated U.S. Trucking Industry. Ph.D. Dissertation, Department of Civil Engineering, M.I.T.
- Willig, Robert D. (1979), "Multiproduct Technology and Market Structure," American Economic Review, 69 (2), p. 346-351.
- Wolken, John D. a-d Frank J. Navratil (1980), "Economies of Scale in Credit Unions: Further Evidence."

 Journal of Finance, Vol. XXXV No. 3.
- Yip, George S. (1982), <u>Barriers to Entry (A Corporate-Strategy Perspective</u>). Lexington: Lexington Books.
- Zarembka, P. (1974), "Transformation of Variables in Econometrics," in P. Zarembka, edited, Frontiers in Econometrics. New York: Academic.