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ABSTRACT

The possibility of establishing accurate timing on board a navigation
satellite in inclined orbit using a timing reference from either an earth station or
geostationary satellite has been an important task in the last fifteen years. More
recently, there has been considerable effort placed in designing and developing the
NAVSTAR system which uses atomic clocks on-board satellites in inclined orbits to

" establish accurate time.
In this thesis we discuss another possible mode of operation which is based

on the transponding of timing information from an earth station to a navigation

sdtellite in inclined orbit through a satellite in geostationary orbit. Assuming that -

the satellite in the geostaﬁonary orbit has constant space delay with an earth station,

- then the only change in the space delay between the earth station and the sateilite in

inclineci orbit occurs between the two satellites.
The main advantages of our solution to this problem areé:

D The atomic cloc%cs on board the navigation satellite are no longerl required.

2) A commt.mication link now exists between the earth station and all users of
the system through the navigation satellite. This is due to the fact that the
satellite in geostationary orbit has the capability of observing both the
navigation sateliite in inclined orbit and the earth station located inside its
covernge area.

We assume the following:

1) The location of‘geostationﬁry satellite is accurately known. This is usually
true since its motion with respect to earth‘stations is small.

2) . The space delay from earth.station to geostationary satellite” can be
determined to within less than 1 ns using conventional timing methods in

TDMA. Thus, accurate time at the geostationary satellite is established.
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3) The distance between the geostationary satellite and the navigation
satellite varies smoothly with time. EY
4} The location of the navigation satellite is known to lie within a sphere of

certain radius centred at a known point.

If we calculate in advance the actual space delay 'betw:een a geostationary
satellite and a_ navigath‘)n satellite; and know the timing on-board the geostationary
satellite, we can establish timing on-board the navigation satellite. The tech;yique
which we use in computing the uplink and downlink delays between the two satellites
depends on the estimat‘ion ofth-e navigation satellite location. The error in estimating
the location of the navigation .satellite dbes not affect the calculation of the space
delay between the two satellites directly, but it;; effect will be reflected by the change
in the space delay. . |

The computed results show that the estimated uplink and downlink space
delay between thé two satellites can be calculated to a high degree of accuracy (a
fraction of a nanosecond or less). Thus it appgur‘s that this system could be practical

especially for commercial use which may include communications links as well as

navigation information.
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T:m;_.': " the estimated vafue of T,,.
Togn = . thetheoretical value of T,,.
T, = the time delay in pais':s‘i_‘ng through the navigation satellite
receiving-transmission circuits.
: >
T, = _the total delay for a round trip.
TT = | theinitial time phase of the navigation satellite,
U= " the universal gravitational constant.
WEQ = the width of SST ut the equator. _
N N - :
W = themaximum width of {he SST. : . -
afly = the directions of the normal to the E)!a;nu MM,
8= Plongy =~ Wt + By .
n= Plangy .‘.,(;t’[muu
. | |
Ng = the difference in longitude between the satellite subpoint and-
the earth station. '
= ~, theangle I){:L\-.'r:u'ru.hu geostationary satellitgand the navigation

sutellite meusured from the center of the carth,
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DL qJ'Lungn = the latitude and the longitude of th(.f node of the SST'

.

FUREEN - s
My = . the maximum value of ) at th&mgy}ent when the communications
between the two satellites is blocked. -
. ) \ 1
o= the minimum angle of visibility.
wg =, 'the angular velocity of the earth. . 7 . . L
wg = ' theangular velocity of the navigation satellite. . ] ) o
’ v .
| | £ e
A= half the coverage angle measured f'rom’kh‘e tellite, ' S -
' o ”
e= the angle between the earth station and the satellite subpmnt
measured [rom the center of the carth O ' o f?ﬂ-"-".\
" G4
. Wﬂ
O = the angle rotated by the earth during time t",

A= PLongG ~ @gt + gy

+

b, cbg' = the 'lo.ngitudes of two points on the;{seﬁ?ldary of the ICA with

the sarre latitude of the satellite subpoint,

" Dy zpm"gb = thelatitude and longitude of any point on the boundary of the ICA.

A}

DLk ¢LnngE = - the latitude and longitude of the earth station.
Ppay q;wgi = the latitude and longitude of any point inside the boundary of the
B ICA. |

q)l.am,:anngm = the latitude and longitude of the ‘center of the ith subantenna
footprint. - s
. L
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the longitude of the point of intersection between the equator
and the orbital projection of the navigation satellite on the

surface of the earthatt = 0.
the latitude of the navigation satellite subpoint.

the minimum latitude reached by the nuvigation satellite subpoint

before observing the whole geostationary orbit.

the longitudes of two successive crossing points by the satellite

through the equatorial plane.
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the Iongitude of the geostationary satellite.

the longitude of the navigation satellite subpﬁint.

the nlfxximtlm latitude reached by LI;e- sutellite.

LHe projection oft.he angle Q on the equatorial plane. -

the longitude ut'which the satlell_ite cmssed.the equatorial plane.

the latitude and the longitude of any point on the surface of

the earth located in the projection of the shadow zone on the earth,
the lungitude of the two points on the edges of the blind segments.
the halfare observed angle. '

the angle between the satellite subpoint and any peint inside the
ICA.
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CHAPTER 1

INTRODUCTION

\
1.1 Historical Review

Almost exactl} eleven years ago the idea of a plan that would révolutionize the art
- and science of navigation was born: The plan is named NAVSTAR Global Positioning System
(GPS) and is being developed to fulfill the requirements of the Department of Defernce in the
United States (1, 2, 3].

The main reason behind this new program is the outstanding success of a simpler
satelhte network called the Navy Navigation Sateilite System (NNSS), former[y known as
TRANSIT. NNSS has been providing reliable service to the United States Navy submarines
for nearly a decade [4, 5]. Also, NNSS has found ever- inqreasing use in the domestic and
international communities. . |

NNSS consists of five satellites in cir::ulur polar orbit of approximately 1100- km
altitude. Satellites broadcast their orbital parameters from an on-board memory systém
which is updated ev'ér_y 12 hours. The user computes his position based on data collected
during a single safe[lit'e pass every 90 minutes. These data include the measured Doppler
frequéncy shift, satellite orbital Q;'trameters gnd accurate time marks. The V.major problem
with this system, aIthouéh its coverage is global, is that position data are available only onc’é
every 90 minutes on the average. This waiting perio@ is longer at the equator and shorter at
the polar regions. The limited data rate of position determi;latiori makes the versatility of the
NNSS quite limited [6, 7, 8], |

1In spite of such limitation, the NNSS has proved ‘highly. reliable through its _

satellite service. These satellites were originally designed to last up to two or three years in

orbit. To insure the continued validity of the system the'Navy put in stock several additional



satellites, not knowing that most of the satellites would aperate for 16 yeurs.‘ For this reason
the NNSS has continued to provide service for almost twenty years,. and there are severai of
those original satellites in stock whicH can still give life Lo the‘s_ystcm at least through the
1980’s. Such a success has encouraged both the Navy and the Air Force in the United States
‘ to investigate more advanced systlems for a s{puce-hused nuvigat.ior.m thut..\ would provide
continuous position location information. The Air Force project was known simply as
"Program 621B", while the Navy advanced program was called "TIMATION". )
| The TIMATION issue was basically a two-dimensional system and lacked the

abilit} to provide continuous positibn updates in a high-dynamic aircralt environment. Thi%s

was not surprising, since the Navy envisioned TIMATION as a system for use primarily by

ships and submarines(1, 9, 10]. The Air Force conéept would have provided the high-dynamic

capacity, but the basic design of the system required at least four separate satellite

constellations, each se}ed by an independent ground-control station, to provide global

coverage. This need for several ground-control stations {at least two of which would have Lo
‘be located outside of the United States territory) was not uccept'ahle from a survivubilitx

standpo.int.

At first the complete NAVSTAR system was planned to be implemented with a
total of 24 satellites equally distributed between three inclined orbit planes (with inclination
angle equal to 63°) Al the satellites are located at 20183 ki (12 hour orbits) i;1 order to
provide wholé globe coverage with at least four (and often, 6 to 9 sutellites) in view ';vith user
position atc;:ﬁrﬁcies predicted to be in the ten meter range. Also it was planned that by 1984,

180f24 satellites were to be availuble, providing for Lhe first time a global three-dimensional _
cqpuhility (ie., latitude, longitude and altitude) {11, 12},
Due to funding reduction amounting to nearly $50d million, there was a reductjon

in the number of satellites for the fully operational system from Lhe 24 originally planned to

18. Not only that, but due to the complexity of the system, the lunding constraints and the



major technical advances required to develop the system equipment, it is not surprising that
the g:ime schedule has slipped four more years. Thus, the expected date for the project to be

implemented is now 198811, 13|.

1.2 ' Satellite Navigation Technique

U;uafly four satellites are required for navigation purposes and those four .
satellitesloﬂering the best geometfy can be selectgd by users using ephemeris information
transmitt;d by .the satelli.te {14]. By measuring the space delays from each one of the four
satellites and multiplying by the propagation velocity (neglecting relatwlstm effects) the user
can calculate the distance from his location to each of the four satellites {11, 12). Also, the
transmitted message contains ephemens parameters that enable the user to caleulate the
position of each sutellite at the t.1me of transmission of the signal. Now the user solves four
equations of four spheres with centers located at the satellite in order to determine four
unknowns. Those unknowns are the thfee dimersional locations of the user and the correction
of the user’sclock. It is clear that if the user is equipped with a lo?:al accurate clock which is
synchronized with the satellite clock and the GPS system time, the user needs only to be
viewed by three satelhtes Also by measuring the derwatwes of the space delavs the user can
solve for his own velocity[11,12}.

It is obvious that the oberation of the system requires pArecise synchronization of
" the satelI&es clocks with the GPS system time. The suggested way to accémplish this is to use

an atomic frequency standard in each satellite (11, 12,15].

1.3 Precise Timing Reflerences
1.3.1 Atomic Clock ‘ ) . .

"In order to keep accurate timing on-board the navigation satellite, it appears that

the development of precise atomic clocks will open a new era for the achievement of such

v



a purpose. Until now these precise frequency standards hold _-the key to the GPS concept
where the satellitgs do not simply act as transponders for the ground-éenerated navigation
and timing signals, but maintain and generate the navigation and timing signals on-board {1,
11,12},

Although data on the exact performance of these advanced space-qualified clocks
are n.ot generally available, iﬁ can be expected that they will routinely achieve fractional long-
term frequency stability in the range of a few parts in 10' per day - about 1 s in 3,000,000
" years[1].- T.his long-term stability is one of the keys to the operation of GPS, since it allows
the autonomous, synchronized generation and transmission of the navigation and timing
signals on-board each of the GPS satellites (15, 16, 17].

The main disadvantageé with using atomic frequency standards on-board a
satellite are that they are e:;pensive and fragile. For example, seven satellites were Iaunch;.d

L)

in the period from 1978 to mid-1983. Of these, six are still"operational although one of these
Operates on its quartz crystal oscil!al:c‘w rather than the more stable atomic frequency
standard, ie., tywo atomic clocks were shut down on two satellites vtvhile another ¢rystal clock
on one of those two satellites is also out of order [1].

Although the satellit_es carry atomic startdards on hoard, even these clocks are
subject to drift and clock errors with time [12]. For this reason the_clock timing errors are
continually chécked by receivers at ground monitor stations, and at least once per day a clock

correction signal is uploaded to each satellite for relay down to each user as part of the
satellite data stream, along with the satellite position information (ephemeris).
In addition to these slowly varying oscillator generated clock errors, there are also

general and special relativistic clock shifts. The received clock frequency differs from the

transmitted clock frequency by the expression givenin[12).



S 1.3.2 Quartz Crvstal Clock

élosely related to the GPS atomic fre‘quency standard and to the user equipment
that recei.ves and processes the satellite navigation and timing signals, is the quartz crystal
_ cleck similar to those commonly used in modern digital watches. These clocks show excellent
;hort—term stability{1, 12, 18]. ‘

- Similar clocks are used in the user equipment, but for a much different reason. As
described before the user equipment measures the range to three or more GPS satellites by
measur{ng the time lapse from transmission to reception of the satellite signals. Clea}ly, to
perform this measurement, the user equipment must have knowledge of common GPS time
(ie., the master time reference to which all GPS satellite transmissions are synchromzed)
However, requiring each user to maintain a time reference as precise as an ato m1c standard
would be prohibitively expensive. For this reason, the need for the user to be observed by four
or more satellites is an essential need for the users cl.ock to be in synchronization with the

GPS standard time in order to provide the proper correction.

1.4 GPS Orbit Configuration and Multiple Access

Here, we discuss in more detail the description of the orhit configuration. The 18-
satellite configuration will be equally distributed between six inclined orbital planes [1,7].
These planes will be equally spaced 60° apart in longitude and inclined to the equator at 55°.
Three satellites will be located in each of the six orbital planes with equal mterSpacmg of 120/'
between satellites in the same orbxt satellite phasmg from plane to plane wxll be 40° - that is,
a satellite in one plane will have a satellite 40° "ahead" or North of it in the plane directly to
the East, as depicted in Fig. 1-1. -
| Table; 1.1 giveé the orbit speciﬁcat.ion values for this configuration, including the.

three on-orbit spares which are located in every other orbit plane to provide quick reaction

J






REFERENCE ORBIT PARAMETERS

BASELINE SATELLITE DEPLOYMENT

Longit..ude of Crossing

Longitude of Orbital

Satellite Orbit
Number. Plane the Equatorial Plane [ntersection and Equatorial
(Northerly) . Plane.

1 1 0°, 180° 30°E
2 1 120°W,60°E 30°E
3 1 60°W, 120°E 30°E
4 2 100° W, 80° E 90° E
5 2 40°W, 140°E 90° E
6 2 20°E, 160° W 90° E
7 3 | 20°W, 160°E 150°E
8 3 | 40°E, 140° W 150°E
9 3 100°E, 80° W '~ 150° E
10 4 60°E, 120° W 150°W .
(- 4 120°E, 60° W 150° W
12 4 180°, 0° 150° W
13 5 140°E, 40° W 90° W
14 5 160° W, 20°E 90° W
15 5 80°E, 100°W 90° W
s 6 140° W, 40° E 30w
17 6 80° W, 100°E 30° W
18 B 160° E, 20° W 30° W

Spar;as | ' '
19 ! 165° W, 15°E 30° K

7 20 5 145" W, 35° E 90° W
21 3 25°E, 155° W 150° I

TABLE 1.1



and recovery in the event of a primary satellite failure. The satellites are all in inclined
‘eircular orbfts, at altitudes of approximately 20183 km (12 hour orbits). :

This selection of parameters results in repeating daily the satelhte subpoint trace,

\

k
orin other wordsan orbltal period that causes each satelhte to pass over the same pomt on the

earth every 23 h 55 min 56.6 s (a sidereal day), thus the orbital alt1tude was selected to
provide a period emctly one half synchronous ie. 11 h 57 min and 58.3 S. Another way to look
at this is to imagine that each satellite completes two revolutions at the same time the earth
completes.one revolution around its axis which will produce the duplication of the satellite
subpoint trace each.sidereal day which will cause the satellite to pass over the same pomt on
the earth almost four minutes earlier. The main purpose of this fact of the system is to aIlow .

:__each satellxto to be viewed by a control earth station at least once a day.

1.5 . Scope of Thesis : v

. The main ijective of this thesis is to find and develop a straight forward method

O
for establishing accurate timing on board a navigatio’n satellite in inclined orbit.. Such a
method should eliminate the use of the expensive and fragile atomic clocks on board the

/‘
navigation satellite. The research plan includes the study and analysis of certain aspects of

the satelhte system, which were mainly dependent upon computer simulation.

In Chapter 2 a complete study of the satellite subpoint trace (SST) for any satellite
in circular orbit has been analyzed and studied. Also the specification of SS'I‘. has been
demonsl.:rated. In addition, the SST of a satellite consteilation using a common r\eference time
has been developed. 4

The basic concept of so.Iving the problem of any satellite system coverage is
ostablished in Chapter 3, by deriving the equation of the instantaneous coverage area (ICA).
This equation plays an 1mportant role in exammmg different-kinds of coverage in both space

and time,



{

In Chapter 4, the visibility and theAspace delay for two cases are discussed. In the
first case, we consider a ground based system wi‘th different earth stations locatgd at different
locations on the sur.face of thel earth. In this system, the ‘study shows that the visibility is
poor. In the second case, we conside‘r an earth station-based satellite-to-éatellite system using.
a geostatiodary satellite as an intérmedial:e link. This la§£ system shows a significant
improvement in both the visibility and the s;pace delay performance.

| An accurate method has been .developed in Chapter 5 for establishing accurate
timing on board a nnvigation‘-ﬁatellite in inclined orbit. This method is based on the
transpondmg of time information from an earth station to a navigation satellite through a
sa__telllte in geostatlonary orblt. [t is shown that timing can be estabhshed on board the
navigation satellite with a high degree of accuracy (few nanoseconds or [ess) dependmg upon
the accuracy of‘estlmutmg the location of the navigation satellite. . -

Finally, conclusions and recommendations for ﬁ,;rt.her research are presented in

Chapter 6. ‘ T ~



CHAPTER 2

SATELLITE SUBPOINT TRACE (SST)

2.1 SUMMARY OF THE CHAPTER

\) . This chapter deals with the problem of the satellite subpoint trace (SSTJ whtcl; is
the set of points Lr.lccd on the surface of the earth by the line connecting the center of the
earth to the satellite. Assume that a reference elock is used at an earth station, und such a
clock tracks a satellite constellation; thus, there will be more than one sat-ellite under
investigation, and all of themn will use the same rel‘err-_{n.ce time. The SS'P‘.is an importan£ buse
for the design of navigation systems and the solution to the problems of whole globe coverage,
partiul cover.age and earth based synchronization for any satellite constellation.

Section 2.2 of this chapter deals with deriving the equations of the SST in its
general form, for anylsatellile‘ rotating in any circular orbit., To implement these eQuafions,
we_found that four initial conditions must be defined for each sateliite and these initial
conditions are: 1) the orbital inclination ungle i: 2) the nonsvnchronous factor K, which is
;lirectly relat;cd to Lhe .;sut_ellite angulur velocity: 3) the longitude of the p9int. of intersection
between the equator-and the projection of the orbit on the surface of the earth at the starting
t.ime' measured by the ref;:rence clock, and, 4} initial time phase of the satellite in its orbit.
" After defining tbcse four initiul conditions, the location of satellite subpoint is only a i'uncti;n
e of the time meusured by the reference clock.

In Section 2.3 the specifications of any satellite subpoint trace are discu;.;sed and
defined in terms of the four initial conditions. These specificutions are: 1) the maximum

latitude-to-latitude variation, 2) the width of the truce at the equator, 3) the maximum width

3

:“

10
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of the trace and the necessary condition for its existence .md 4) the node of the trace .md~ the .

requnred cundlttons to exist.

-..'

Sectmn 2.4 deals mainly with the plots of the SST f\ comptuter progmm is used” I'nr ‘

this purpose nssummg & constellation of four satellites lmtmllv located bymmetrlcally ..u'ound

the equatonat plane. The plots are drawn for the cuse of 48, 24, 16 and 12, hbur orblts wlth an
inclination angle equal to 60%and for successive values of the time meusured"by the reference

clock. The aim is to show the effect of the initial conditions upon both the shape of the trace

. : }
and the direction of motion of the satellite subpoint on its trace.

.
"
i
‘

25  SATELLITE SUBPGINT LOCUS

First, we assume that the earth is stationary and ﬁnd the locus of the satellite
subpoint. This locus is simply the projection of the orbit on the earth's surfa;e, which “is the
- great circle of intersection between the earth and the orbital ;;lane. Second, we take account
of the rotation of the earth, The eur;_.h rotates with angular veiocity wg,"and, after tirﬁe t
rotates through the angle 8. Note that due to the rotation of the eurth, each point on the
projection is delayed by the cor;'espunding rotation uﬁgle O and this delay -is opposite.in
direction to the rotation of the earth. -

Assume the earth is stationaey and the satellite subpoint starts at point S on Lhe.
equator and moves to point §°, i‘n time U, %s shown in Fig. ‘é.l In moving from S to §', the
sat;ellite su:hpoint moves through u|-1 ;mglt-e of Q which corresponds o u change in longitude of
(p'l.ung' S’ is the in_terscction between a lalitude circle, with radius RR and lutitude angle
D and a longitude circle corresponding to a variation :p'[nng in longitude, measured from
the longitude of S. \Iote Lhat(p Long is the prnjectmn of the angle Q, meusured in the mt.llned ﬁ
'

orbltal plane, on the cquatox tal plane.

From the geometry illustrated in Fig. 2.2, we find

&
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S'C = Rsin Q where R is the radius of the earth.
Since the angle S'CB is eﬁual to the inclination angle i, then the distance S'B, is given by

S'B=RsinQsini

and ‘
¢y ., = arcsin (S'B/R)
or "
| $ ¢ = arcsin [sin Q sin i} 2.1)
Also, |
' @2

RR = R\/l—sm Qsm i

The projection of the locus of the pomt 5’ on the equatorial plane is an ellipse with

the following equation in polar coordinates

. 2.
RR? sin“¢ ‘ ’ 2.3
—- (cosztpumg+ —-—;""g ):1 (2.3)
R — cos”i ‘

Substituting for RR in (2.3), from(2.2) and solving for qa'umg, we gét
' cos i sin @

V'1-sin?Qsin?i _
So far we have assumed that the earth is statmnary Now, in order to f'md the

e ‘/‘(
exact longitude vanatmn q> Long' W€ sum from ¢

= arcsin | (2.4) -

cbhmg

g (GE is the angle of rotat.ion of‘ the

earth) Thus,

S

(2.5)

cos i sin Q ] 8 B
V1 - sin®Qsin?i
Note that the latitude of S’ (dp,,) does not vary. with the rotation of the earth.

- cphmg = arcsin

Substituting Q = K0 in Eq. (2.5) yields

cos i sin KB
q)[ang = arcsin {

E —0. (2.6)
(1— sin®i sin? KBE)U? :
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where K = nonsynchronous factor [19], which is the ratio between the satellite angular

velocity wg and the earth angular velocity wp. Also K is related to the satellite altitude h by

the formula ) J - | 7 o ?,/_\f
K = (thsyn + R)(h + R)J%? (2.7)
where
hsyn’ = the altitude of the satellite in a 24 hour orbit
= 35784 km | L
R = the radius of the ¢irth
ke J

Equatit::-ns (2.:1) and (2.8} give the locus of the satellite subpoiﬁt on the surface ofdtﬁa
earth when the satellite subpoint crosses the equator at zero longitude and when t’ = 0. For
t.hg satellite at §', it is clear that |
' B = wgt'” ‘
and . (2.8)

Q= gt _ ’

Suppose. that the satellite subpoint crosses Lhe cquator.at a point with longitude d,". We

_ obtain the absolute value of the satellite subpoeint longitude at time t’ by adding $, to (D"Lonr;

inFg.(2.6)as follows:

‘phmu =¢IA'II\L: + b,

(1}

or
ws i sin KO, .
= arcsin - -0. 4+
N PR 2 E
(1 —sin”i sin KOF)U "

(2.9}
(phmg ’

where Prong = the value of the satellite subpoint longitude ut time t'. [n order to put Eq. (2.9)

in the general form, let us assume I.htgl. a reference clock is used, by an carth station, and such

a clock tracks the satellite constellativa.
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Atthe instantt = 0, measured by the reference clock, it is clear that every satellite

will be located at a specified point in its orbit. Now consider the case of a leading satellite,

which passes through the equatorial plane ut L = —TT as shown in Fig. 2.3, where the time
TT issimply eunul to Q'/wg. By making use of Eqg. l(2.8}, one can rewrite Eq. (2.1) as follows
(notingt' =t + TTand Q = RBE):

Prae = arc sin [sinisin{Kwg (t + TT)| (2.10)
Similarly.,"Eq. (2.9) will be
cos i sin (KmE (t + TTY

' ¢ = argsin -
~Long [t - sin®i sin® (Kwg (¢ + TTH|'2

_mE(HTT){q;; ) (2.11)
Note that if TT > 0, th? satellite has a leading phase wh;areas if TT < 0, tbe satellite has a
lagging phase. Atlso, TT is the time taken by ‘uny satel]ite. [rom the point at which the satellite
crosses thie equatorial plane tosts initial location at t = 0, where t is the time measured -byitq‘;
referenceclock. |
For every satellite in a given orbit, there is a specific value of phase angle ', Itis
more convenient, however, t.c:) find cpu' i_n terms of TT. 3
Figure 2.4 shows the satellite subpoint S’ at the timet = —~TT, and the satellite
subpoint S at t = 0. Let ¢, be the longitude at point P’, which is the point‘of tntersection
between the equator and the orbital projection on the surface nft}lo ecarthatt = 0. H‘Sinhli‘lairly,
when t = =TT, the point of intersection is at longitude b l)unling this interval of time, Lhe
- _
earth rotates through an angie equal to t ~ T\'[‘) measured between OP’ and OS‘TT, where O
is the center of the earth.
Hence, we can get the lollowing relation.
X ', = b, + wp TT . (2.12)

Substituting Eq. (2.12) into Eq. (2.11) yields
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cos i sin (K (t + TT)

¢ = arcsin [
Long [1 — sin?i sin? (Kwg (¢ + TTHIY?

—w t+ TT) + ¢, + wg TT)
After simplification, we have

cos | sin (KmE t + TTY

¢ = arcsin [
Lang [1 - sin?i sin? (Kag (& + TTH

—wgt + b, . - ' | - (2.13}
/> " Equations .(2.‘10) and (2.13) give the exact form for the satellite subp;oint trace on
the surface of the earth, at any‘altitude in any constellation. |
To implement Eq. (2.10) and (2. 13), two se.ts of ini_ti:ﬂ conditions must be defined for
each satellite, and they are:.
1) The initial orbital location in space at time t = 0
- This con.dii.:ion requires the following definitions:
1} ¢, = the longitude of the point of' intersectiqn between the orbital préjection
on the surface of the earth and the equatoratt = 0. |
i) i= inclination angle. .
iji) K = nonsynchronou:la factor.
2) The initial time phase of eac!_: satellite in its orbit. This is the'time taken for the
sateilite to move from its initial location at t = 0 to the point at which it crosses the -
equatorial plane. This time phase is g‘ive‘n by TT. These initial conditions are

shown in Fig. 2.3.

2.3 THE SPECIFICATION OF SST

. In implementing Eq. (2.10) and (2.13), we use a redtangu[ar map to represent the
surface of the earth. All the easternly longitudes with respect to the prime meridian at

Greenwich, are considered to be positive. Thus, the longitudes start with a value —180° and
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end with a value + 180°. In the same map we assume that all the northerljr latitudes have
positive signs, and the southerly latitudes will have negative signs.
As a general note for calculating the value of the satellite subpoint longi‘tude {bLong’

‘great care must be taken when evaluating the angle .

cos i sih,(KmE (t + TT)

aresin

{1~ sin’i sin® (Kag (¢ + TT)Y2
inthe nght hand side of Eq. (2.13). There are two possible angles with the same sine. For this |
reason Eq. (2.13) will be written with the f'ollowmg mod1ﬁcatwns

s

1. f2>Q> - w2

oos i sin (Ka, (t + TT)
' q)um-:arcsin[A > > -2 7 |~ @et T, (2.14)
one [1 - sin®i sin® (Kawg (¢ + TT))
- v
2. If3w2 > Q> w2
€0s 1 sin (Kawpg (¢ + TT)) (2.15)

] wt+¢o

¢ =m—arcsin [
Long (1 - sin?i sin? (Kag (t + TT))]

Let us examine some specific cases.

[. The Peak-to-Peak Latitude Variation

This is height of the trace, recalling Eq. (2.10) which is given by
' Dra = arcsin [sin i sin[Kag (t + TT)]]
Sin‘ce t};e time t is the only indep;endent vhrié_ble after the initial condi‘tions are defined, we
c‘onclude that $y 4 1S maximum iwhen sin(KmE(t + TT)) =.-t'1. 'fherefore,
Bpaumag = i AT

and the peak-to-peak latitude variation equals twice the inclination angle i,

t
T
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I1. The Width of the Trace at the Equator

21

This is the variation in longitude between two successive intersections hetween the

satellite subpoint trace and the equator.

Since any point on the equator has ¢, | = 0, [rom Eq. (2.10) we get

. ' 0 = sin i sin{Kwg(t + TT)

Assuming thatsin i = 0, t.e, the satellite orbit is not located in the equatorial plane.

0= sinthE(L + T, thus

Q= KmE(t+TT)=nu in=10,1,2, .. (217
or
" nn
t = - TT n=40,12, .. (2.18)
KmE .

i For the first intersection n = 0, hence, L = =TT and the cdrrespor}ding longitude,

-according to Eq. (2.14), will be
Plong = 0 + wpTT + ¢, (2.19)

For the second intersectionn = 1, hencet = t/Kwp = TT. But we notice herethat’

Q = anwhich is greater than w2. From Eqy. (2.18) we get

1

=0 =tw, + o T+ ¢
‘ E Ko E b"

(b[.ung”
E

The variation in longitude between (p[mwl and Plonall is then equal to the width of

the trace at the equator, wl-:Q' where

Weq = Pl = Pronat
i.e.,
1]
W, =i - @,
EQ [ KME
or

=
S
N

WEQ =n (.l__'

-

(2.200

(2.21)

b

=
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From Eq. (2.21)we ﬁ‘nd that ifK < I (i.e. the altitude of the satellite is higher than
that of the synchronous orbit) the valuei of WEQ in Eq. (2.21) will have negative sign: thus, the
;ateﬁite subpoint is always moving in the direetion of nEEutive longitude, i.c., it moves
towards the west. I[fTK > 1, WE:Q is positive and the satellite subpoint moves towards the east.
For the cuse of K = 1, i.e., for the case of a2 24 hour orbit, the width of the pattern ut the
equator, according to Eq. (2.21), WEQ is equal to zero, and that is because of the motion of the
satellite subpoint from the equator to the peak of the pattern is always\towards the west
_(negative longitude). On the other hand, the motion from the peak to the equator is always
towards the east {positive longitude). Thﬁs. the satellite subpoint crosses the equator every
12 hours at the ;ume point, which is the node :Jl' the pattern. In order to show the effect of: the
non-synchronous factor K upon the width lol'the trace at the equator WEQ' Fig. 2.5 isdrawn to
show the SST for the cuse of three satellites with different values of K. Note that, in Fig. 2.5;

the three satellites have the same inclination angle 60° and they start their motion from the

same point on the equatorial plane at t=0.

[1I. The Maximum Width of the Trace

The width of the trace can be defined as the difference in two consecutive values of
longitude at a given latitude for a specific satellite subpoint trace (nole that the width can be

positive or negative). Let us recull Eq. (2.11), which is

' cosisinQ . Q. 7 :
— H _ . 9 e
¢Imu.; =uresin . K + b {2.22)

IETE ?
i1 = sin™i sin® QI"“ "

where
. Q= KmE(t + T
[n order to find the maximum width of the trace, i.e., the maximum longitude
change in-lwo consecutive quarters of Lhe trace, we differentiate ‘t’l,nng in Eq. 62.221 with

respect to Q and equate the result with zero, yieldiné
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1y . cosQ
(-2)oca =
0 1 . 2 sin” Q 1 - (2.23)
1 sin? Q e’ i (_'1 sin® i)m ®
1-sio” Q sin? § sin?Q

Assuming thatsin Q = 0, Eq. (2.23) reduces to-

= : v 05105 Q (2.24)
( 0 Q )”2 {1 —sin® Q sin? )32 :

2.

i

Al

1—sin? Q sin

. Assuming that cos Q = 0, (i.e. the maximum width does not occur at the equator) -

implies
1 csit: - (2.25)
K. 1—sin2i5in2Q '
Therefore
snQ = ﬁ_ﬂﬂ_ C BT (2.26)
sin i

Substituting—_for sin Q in Eq. (2.22), we get the maximum value of the longitude q:mg max &t

which the maximum width occurs ) y

1 —=Keosi . cosi)

=arcsin(\/ - —
¢L°"8’ max : ~Keos i sin i

L ( B v )_+ (2.27)
— = aresin -
K sin i ¥

Equation (2.27) gives the value of the longitude at which the maximum ocecurs.
Hence, to find the maximum width of the trace, W . we must find the differenc_e between
(pLong max 20d the longitude of the peak of the trace. The peak of the trace occurs when Q =

/2, hence; the corresponding longitude will be (/2) (1 — VK) + P,

" Thus,

‘W _ =2 *(the longitude of the peak < PLong max!

- n(l—'é-)-2 amsin(\/I—KmSi . 08 i)

Keos i sin i

+

sin 1

2 ( ‘\'/I-Kcosi) (2.28)
+Earc51n :
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Equation (2.28) provides the maxiquum width of the trace as well as the upper and
tower values for the non-synchronous factor K, to guaranrtee the presence of maximum width.

This implies that the'maximum should occur for 0 < Q < w2, 'i‘he_lnwer limit for K can be

-

found as follows:

Note that 1 - Kcos i > 0in Eq. (2.28) for a solution to exist,

Thus,

1 .
~ =cosi s o (2.29)
K .

To find the upper limit for K, from Eq. (2.28), we consider the term

\/l'-Kcosi . cos i

arcsin .

Keosi  sini

Note that the maximum value for the sine is equal to 1. Consequently,

1—Keosi cosiy-
(\/ — ¢ .5_) =

Kcos i sin

or '
s +tan®i ’
] K cos. i

Therefore,

" seci = - (2.30

sec i = K ( . .

Combining Eq. (2.29) and (2.30), we get -

. ' seci > K > cosi ‘ . {2.31)

Equation (2.31) gives the upper and the lower limits For‘ the nonsynchronvus factor K (in
terms of i) to guarantee lh‘e presence of the maximum wi(l.th for the (SST). This width nccurs
for the vuluesp\l‘_n/? >Q=0 ,

P K = cos i, i.e. K has the critical value of the lower limit in LEq. (2,31), then -
substituting for this value of K in Eq. (2.26) and (2.28) vields -
Q= w2 . O 2,32

and ‘
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W =0 (2.33)

11}

Equations (2.32) and (2.33) indicate that the maximum width of the paltern is zero

and it occurs at the peak of the trace due to the following arguments. Since K = cos i, i.e. K is

iess than anity, then the angular velocity of the satellite is slower than that of the earth.
tHence, the satellite subpoint moves towards the negative longitude (towards the West). Thus
the width of the trace is always less than or equal to zero. AL the peak of the pattern, the
width of the trace will be zero.-
-
- -If‘fé = seci, i.e. when K is equal to the upper limit of Eq. (2.31), by substituting for

Kin Eq.(2.26) und (2.28) we get

Wm'=_n(1— ) . (2.34)

1

K

'anc{ .
. ) /!

"Q=nn n=0,1,2 .. ° , (2.35)

Equations (I2.34l and (2.35) are exactly the same as equations (2.21) and (2.17) respectively,

thus, the maximum width is equal to the width of the trace at equator (W},

Q
Now, if K meets the conditions of E'q:'(2.3l).' the presence of :1 maximum in width

for the trace is ensured. - -

IV. ' The Node of the Trace

9 .
The node ol the trace is défined as the point of intersection between two successive

quarters of the trace, i.e. the latitude of the node must satisfy Eq. (2100 for the two. .
conseculive quarters of the trace and its longitude mtist.su!.isf_v both Eq. 12.14) and t2.15).
To check the existence of a node in the trace let us assume that Q! and Q2 are the

.angles rotated by the satellite (measured from the equatorial plane) when the satellite

: v s .
subpoint passes through the node dugjng the first and the second quarters of the trace,
respectively. Substituting Q1 and Q2 in Lq. (2.10) yields -

-

.-
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sing,,, =sinisin Q1 = sinisin Q2

“where Py, is the latitude of the node, therefore, - .
Ql=n-Qq2 : , .7 (2.36).

a

By substituting QI and Q2 in Eq. (2.14) and (2.13) respectively, and solving by making use of |

4
Eq. (2.36), we get the longitude of any node by the formula .
=2 ( LV ip vt (2.37)
(bhmg'n_g l—E‘+¢ra+mE T . )

This is the longitude of the peak of the trace. To find the value Q1 at which the

node cecurs, we substitute PLongn from Eq. (2.3‘}:) in Eq.(2.14), yielding . - )
. .10 ' isi 1 1
- E(l-—):arésin[ ms,‘.s'"(: m'“& (2.38)
2 K [t ~'sin®iein® QU211 -~ K -

) E?quation (2.38) can be reduced to

“ cos l(g—m) - Sn QU wsi C 239

K “(1 = sin? i sin QI)V2
Alzon, )
. N I WA ' s QU ) '
| sin —K-( E-_Ql ) = s s (2.40)

| , (1,— sin® i sin? Q1) .
D\widir;g Eq.(2.40) by Eq. (‘2..‘39), we get '

. A . ) ' .'. n — . -
. - tan K-(?. —Ql)l = wtQl seci X
- . . Tom
or .
! ‘l(;[ | = seci (2.41)
tan Q1 tan % 2_—&{!.1) —;?cl . . S v

Note here that'0 < Q1 < w2 and see i > 1 ¢ondequently, to find a solution for Eq.
(2.41) K must be less than unity. Lett , be the time measured by the reference clock, when

the satellite subpoint reaches the node, in the lirst quarter of the truee.

’

;, Noting that Q1 =®Wwpt and w, = W12 rad/hr, then L,i can be caleulated by thé ™

-
)

formula .

) A
12Q1 S .- '
Q ~TT . (2.42)

. o t'nl nK

s
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and

12 : .
) te= g = bu — 2TP~ . (2.43)

. ;
wheret , is the time measured by the reference clock, when the satellite subpoint reaches the

’ »

node of the trace in the second quarter. Figure 2.6 shows tr.rhe relation between the
nonsynchronous factor K and the tiffie tA“l (assuming that TT = 0) for different values of
inclinu(‘:ion angle i. B |

. "Figure 2.7 shows the SST for the case oftl;lreelsatellite.;. in a 48 hour orbit (K = 0.5)
with inclination angles i = 40°, 60° and 80°. Note heré that when the inclination angle i =
80°, we h;ive -

- sec80° > K > cos 80°and K < 1.

Thus the presence of a node is guaranteed, which agrees with plots of Fig. 2.7. By using Flg
2.6, we note the qatell:te subpoint takes 6.8 hours to reach the node for the case of inclination

= 80°. Substituting for t = 6.8 hours in Eq. (2. 10) we find the latltude of the node is

approxxmutely 50°, which agrees with the ploLs of F‘zg 2.7. é

2.4 COMPUTER PLOTS

A computer program has been developed to plof. the satellite subpoint for a case of

“four satellites with equal angular spacing in the same orbit. They are. initially located

-

éymmetricu[ly around the equatorial plane at the instant t = 0. Thus, we can calculate the

initial'time phuse TT for each-satellite. The initial orbital location is defined byd, = 0andi
- - o

= 60°. We consider four values for the nonsynchronous factor K which are 0.5, 1.0, 1.5and 2.

For each value of K, the four satellite subpoint traces are plotted omhme graph.

Referring to Fig: 2.8, we lind TT for each satellite as follows:

C o
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TT = Q— = Q
c""S K E
24
12 Q'
! = — 9- hours ' (2.44)
. : . n K _

- In order to show the starting point and the directién of motion for each satellite
subpoint, and the relative motion hetween the four sutel.lite subpoints, the plot i's drawn [live
times for progressively longer time intervals. Also, each satellite subpoint is caleulated 72
times during"e‘ath interval. Table 2.1 shows the values of these intervals and the period of
time between two suecessive calculations. )

( Figures 2.9(a), through (e) show the satellite subpoint trace for the case of K = 0.5,
which is the 48 hour orbit. S1 S, 55" and S," are the initial locations of the four satellite
subpmnts at the instant t = 0 The arrows indicate the direction of motion for each satellite
subpoint. . Using Eq. {2.44); tfle time phase TT of S, wiil be 6 hours, similarly, the
correbpondmg values of TT for S,. S and S, are —6, 18, —18 hours respectively. [l is also
clear, for dll figures, thut the maximum latitude reached by any sate]hte subpoint is 60°,
which equals the inclination ang]e t. Alsoitisclear, from Fig. 2.9(e), that after 24 hourg, each
satellite compietes one half of a revolution; hence, the satellite subpoi.nt crosses the equator
once. Note here that uftt;r 24 hours the earth completes one revolution and at the same time -
the satellite S, will reach the initial .location of S,. Simi]arly,'S4 will reach the injtial location

'

ofSI. The same situation holds for 82 and S:J'

From tq. (2.21), we can find the width of the pattern at the equator which is given
..b{ |
. WEQ =l - 1/K)= —n
This value of WEQ agrees with the result of Fig. 2.9(a) to 2.9(e) which show the width WE:Q to

be equul to —n. _ _ .

The maximum width for the pattern Wm is given by Eq. (2.28) as follows:
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TABLE 2.1
Interval Period between Two Calculations
No. From To
a 0.0 " 48hours 4 min.
b 0.0 9.6 hours " 8min.
T 0.0 13.4 hours _ © 12 min.
0.0 19.2 hours ~ 16 min.
e 0.0 24.0 hours ‘ ' 20 min._
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(0. -\ 2
W = n(l-— L)— 2arcsin(-9_i--“\/3 )-{- — arcsin(l1.0) (2.45)
m 0.5 Y 0.5 -

~ . _,

" This arises due to the fact that K, which has a value of 0.5, me.ets the__lower limit of
Eq. (2.31), which is ; |
| 2>05-05 7 (2.46)
The value of K is a critical value for the lower limit of. Eq. (2.31), and the maximum width
shrinks to zero at the peak of the pattern. ' A ' ".
Figures 2.10(a), through (e) represent. the satellite subpoint traces for the four
sate[htes when the nonsynchronous factor K is equal to unity (for example, the well known

1

case oi'a 24 hour orbit). The satellite subpoint trace for each satellite will then have the shape
L

ofa figure 8. All the specxﬁcatxons for this case have been studied previously [19],
Itis notedlhere in Fig. 2.10(e), that the four nodes of the 8 patterns are separated ‘
by a 90° in longitude, since the four satellites are equally separated tn their orbit,
| Also, it is clear that the peak-to-peak latitude “variation is equal to 120°, which
equals twice the inclination angle i,
"I"o check the width of each pattern at the equator, we substitute. K=1 in‘Eq. (-2.21)
to get
Weo = n(l - UK) = 0° o (2.47)
‘This is the width at the node, as shown in Figure 2.10(e).
Also, to check the presence of maximum width, we let K = 1 in Eq.(2.31)
ser;iz 1>cosi - ‘ (2.48)
The last equation islvalid for all va1‘u35 of i; thus, for the case of the 24 hour orbit, it is
Wguaranteed to have a pattern with maximum width, and that maximum width occurs between
the equator and the peak of the pattern. Substituting for K = 1,in Eq. (2.2'8_). in érder to find

Wm yields
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. : . . w (1—1) - 2 arcsi (cos'i*\/l.—cosi‘j
) 4 = —_ — od mn
~ . m e ‘sin i * cosi
. 1 — cosi
+‘2;1rc'sin(\/ ‘cc.)sx)
or . sini. r ,
ol . ] R ’ 1 s i .
- ‘ w =2arcsin( )-—' Zarcsin(\/-&j) C o (2.49)
, ' m MV 1+ cosi . 1 +costi .
Similarly, from Eq. (2.26), we get
' ' 1 .
Q =an.:si-1£ _ ) (2.50)
) . : oA V1 +cosi N
J“‘\/ : ' Y e . |
T . To-Q --an:sin( \/ﬂ‘__) (2.51)
' TR ‘ 2 . V1+ cosi .
Substituting Egs. (2.50) and (2.51) in Eq. (2.49) we get 4
. ' . e } V -
. W =4Q~-n {2.52)
‘ | From Eq. (2.52), Q must be greater than /4, i.e. the satellite takes more than 3
3 .

hours to move from the node of the F‘i\gure 8 to the point of ma-ximum‘ width, which agrees
/\ * .. with previously obtained resuilts [19-,.201. ' -
' ¥ . Now, coasider the case of inclination angle equal to 60° where the values for Q and
. W _ are Q = 54.7356° and W= 38.9(“’, respectively. These results agree with the v:_).lues
meas:u’red from Fig. 2. 10(e).. o - - . | .

Note here that the time phase, for the four satellites is given by Eq. (2.44) as

v .

follows: _
T 12 w4 |
: < S: TT1l = — * — =3 hours
- ‘ sl n K
12 3wa ¥
—* = 9 hours
o K-
: 12, ~n/4 an
—_— —— = rs
- K ou
12 " -3w4
— = -9 houm\

o K N



Figure 2.11(a) through (e) represent the case of a nonsynchronous factor equal to

1.5 (the 16 hour orbit). According to Eq. (2.7), the altitude of the satellite will be 25798 km,

-

which is less than that for thé case o_f'the synchronous orbit,
Since we have 2 16 hour orbit, we expect that the satellite subpoint crosses t_he
equ;itur 3times every 24 hours, and thisis in agreement with Fig 2.1 l‘te)._
Also, we notice here that the peuk'-to-peuk latitude variation (as in the p‘revious

figures) equals 120°. The width of the pattern at the equator WEQ cun be found by

'
-

substituting for K in Eq. (2.21).

- Wiq = (1;{2/3) *n=60° . (2.53)

which is exactly the same as shown in [“ig-.' 2.11(8). . . -

-

To check the pllesence of malximum width, we substitule for K = 1.5 in Eq. {2.31).

N * . -

This yields

2>1.5>05

e

Clearl‘y. there is a-maximum width between the equator and the peak. Substituting

for Kandiiniq. (2.28), we get . ‘ e

[ 2 - . l . 4 P ’ 'l 4 .

W :u(l—-)-—2‘umsin(—)A—_'—‘arr:ﬁin(——_.) .

LT’ _ 3. -3 3 V3 ' 254
J- = 868.08° : . )

Note that W . is greater than WEQ asshownin Fig. 2.1e). - - '

Note here that the time pQTT for each satellite can be caleuluted using [q.
: ]

- L e
{2.44) as follows: 7"' . ‘
- Y
' 12 Q 1 0.25n0
S TTl= —* — ==« — —9 hows
L T T Y '
- - [2 0 75" . ’
S, TT2 = — *.——— = G hours , _
. n ‘l.5 : .
12 .—U.ZSH = ( . ' ' .
S, TT3 = —* ——— ="_92 hours ] :
¥ o I 1.5 . )
12 —0.75n L /
S TT = — ¢ ——— = 26 hours
4 1| 15 ' s
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Figures 2.12(x) through te) show the satellitti subpoint traces when K = 2.

P

According to Eq. (2.7), the altitude of the suLcllitQua[s 20182 Km, which is the case of the

NAVSTAR System (12 hour orbit), f#Pthis reason, we expect that the sutellite subpoint will

gvery 24 hours. This agrees with Fig. 2.12(e). Also, the peak-to-

cross the equator 4 tim
pea‘xk latitude variation ist ¥ same us the previous figures, which is 120°. »
| To find the width at the equator, we sqhs!.i.tutu for K = 2in Eq. (2.21) this yields
Wy = u(l = VK), = 90° . ' 258
whic}ugrees with the value measured from Fig. 2.12(c).

[

To check the existence of 4 maximum width for the trace, we put K = 2 in equution

(2.31) ' : S - K
C seci > K = cos i

i.e., M '

2=22>05 : 12.56)

~

Thus it is a critécal case of the upper limit of Eq. (2.31), hence, W, will be equal to WI—:Q'

- 14
Substituting for K = 2.0 in Eq. (2.28), we get

i ) ( 0.5 1 =1 C{V1-2%05
W = = — 2 arcsin — - )-I— aresin. = )
w2 V32 2*05 V' 3/2 {2.57)

w2 —0-=0=q/2
which is equai to the width of the pattern at the equator WI,_.Q as shown in Fig. 2.12(e}.
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( CHAPTER 3
THE INSTANTANEOUS COVERAGE AREA (ICA)
) - " \) . ~
3.1 - SUMMARY OF THE CHAPTER R '
In‘ - .
\3 The use of satellite based systems in pavigation and positioning has received
} increasing consideration in the past few yeaz:s. The need for improved performance agdj

N

reliability in navigation and posmonmg systems has led to this mte@\izhe/use of satellites

asa feas1ble alternatwe,to ground-based and air-based system [22 23],

In order that the satelhte can be used by different users, it must be v:sxble to them.
>

This 1mp[1es thq the users should be located inside what is called the instantaneous coverage _

" area of the satellite. ' \

-

Most of the research done in the area of satelhze coverage is based upon computer
T ta

. - D,
modeling which may lead to an error. In fact, only the problem of pnrtmlaoverage for a
. . [ 5

specxﬁc zone of the earth had been solved analyticallfysing geostationary satelhtbcovermg a )

fixed area (around the equator) on the surface of the earth. On the other hand the analytic

solution of the prob[em of partial coverage prov:ded by a satellite in any nonstatxonnry orbit
does not appear in the htemture Also the problem of the ‘whole globe coverage had bedn
solved theoretically by assuming a network of satefhtes equally dw:ded betweerQEumber of

\_ ; xrbxts In each orblt ‘the sate[lrtes are umformly distributed, such that the Ljame orbit
. . - -
ile a strip of coverage around the whole globe‘[24 25 261 Simi[arly each

L 22
network will produce a rephca of this coverage strip. Those coverage btnps

satellites can pro

.
.
) ‘ \—/

. . ) - 58 - ' \ .y
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globe coverage. This method.has a disadventege of redundancz in the coverage and the.ektess

-

in the number of satellites which leads to increasey cost. = L .
In this chapter we derive the equatmn of the mstantanws coverage area for any
s

«

satellite in any circular orb:t. and verify such an equation. ’

The equation of the ins,tantaneous coverage area derived in this chapter represents
the corner stone for solving any kind of coverage problern. Also in this chapter, we give some
ekambles to show how to implemerlt'the equation of the ICA. These examples prove that the
implementation of such an equfltion is rather easier and versati'le, thzx:t is because such an
equation depends only on the satellite subpoint which was studied comprehenslvely in

Chapter 2. : .

- 32 - DEF[N[T[ONS
The-Instantaneous. Coverage Area (ICA) is that spherical segment ol‘ the earth
(from which the satelhte can be viewed) with half arc observed angle yr measured by the great
are from the satellite subpoint to'the small circle bounding the observed segment. In practice,
an earth sl:atmn can use the satellite effectively if it is above the th‘lZOl’l o/e mintmum
: v .
angle oat wluch the earth s atmosphere will not etcesswely impat tran{mlssxon This angle

-
is called the minimum angle of visibility, and its value is usually l to or greater than.5°,

For a sphencal earth of radius R, Fig. 3.1 -shows the geometrlc relations for

}ietermmmg the ICA ofa satellite at'distance h+R from th cm the earth O'Where h
and R are-the alt:tude of' the satelhte and the radll;s of thc earth, respectively. The coverage

boundary lies at an angle Wy with respect to the earth's center l‘rom the sa

andata satell:te angle A as shown.

Consxder the tnangle Oﬁﬁ—F\rom the law of sines, we ob
R R+km -

- ' sinA_-sm(SO-f-o,l | M /
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h
el
or R -
\ R _ R +h
. sin[90 ~ (y +0}] ; cosg
Equation (3.1) can be reduced to
= + [( R ) (3.2)
¢ = —0 + arccos Ren ) @50 3.

For constant angular velocities of the satellite W, and the earth wl we have the

nonsynchronous factor K, which'is defined by

. : W . . -
. Kz — _ L 3.3)
g : @ :
From the law of Gravity [27], we have +
M. M., . : . -
U——= Ml R+h) (3.4)
(R+h) .

U= Universal gravitatiomal coqsta;_nt 3

M = Mass of the earth

_ M. = Mass ‘ofthe sazgllife

By applying Eq. (3.‘_&) in o_rdef to‘compare the angular velocity ofz;ny satelite wg at

altitude h and the angular velocity of any synchl_'onou-s satellite wg at altitude i’xsyn = 35784

km, we get .
.. k=3 =(hs"“+R)3'2 @ .38
. - w. =\ h+R : :
Substimng Eq. (3.5} in Eq. (3.2) and s;implifying we obtain
. ' . : ‘
‘ ¥ = -0+ arccos[Q* K3 * ¢o5¢) /-r (3.6)
. ) k
where : ! _ _ :
' - R
‘ — R+hsyn

Fig: 3.2 shows the half arc Observed angle pl;)tted against the nonsynchronous
. i :

" Tactor K for g = 0°5° 10°and 15°. i - T )
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The ICA as a percentage of the total area of tPe earth is plotted.in Fig, 3.3 against K

for o = 0°,5°% 10° and 15°, where the percentage ratio is givenby M

1 —cosy

Ratio = (3.7
PY .

5
3.3 EQUATION OF THE ICA

No;v, in order tle derive the equation of the [CA, the satellite subpoint S’ must be 'a
well defined point on.the surface of the earth at any instant t. Let the latitude and longitude-
of the satellite subpoint §' be chM arﬁi ¢Lung respectwely . / )

Ref'errmg to Fig. 3.4 wh:ch shows the sateilite subpomt S’ at instant t, the equation
of the [CA is simply the equation of the circle of intersectidn between the earth and the plane
MM which passes through the pomt S* and perpendmular to the line connectmg the satelite

1

subpoint S ‘and the center of the earth O such that .

. O "=R . 3.
S cosy . S { 33
. Referring to Fig. 3.5 the Cartesian equation of the plane MM in the normal form is
b
gl‘i'en Y :
. Xy C0Sa + yy cosB + 2, cosy = 08" . (3.9

where Xy Yye 2y 2re the Cartesian coordinates of any point in the plane MM, 0S” is the
perpendicular distance from the rigin.(the center of the earth) to the plane MM and cosa,
cosP, cosy are the direction cosines of the normal OS". For any point in the plane MM, with

(S

Cartesian coordinates XM Yy and z,,, we havy

T oM T T CoSby g 0sy .
IM=T cosq)Lut\d smq)l.cng\{ . ‘ (3.10)
. \
. T AMEN squLntM }

where Cat Pracnt and chonEM are the polal: coordmates I‘or the same pomt in the piane VI‘\i

Subs(\l‘éutmg in Eq. (3.9) for OS" from Eq (3.8}, x,yand z from Eq. (3.10) yields

| 4

t ¢ M g /
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T COSRpgon COSDy g ©OST Hry 0Py e SNy oag 0SB (3.11)

% g =
+ Ty smqaw_M oosy = R cosy

. Now, from Fig. 3.5, the direction cosines of the normal OS”", can bedufinéd by using the

coordinates of the satellite subpeint R, ¢, and q:,_mg as follows:

o~
X
csa = E =.cosd, cosq:'umg ~
(3.12)
Y . )
cosf = R= cosp, . sin ¢ng
' t
» 2z .
oSy = = =sing .
, ™
where x, y and z are the Cartesian coordinates of the satellite subpomt s
_ Substituting for cost, cosf, cosy in Eq (3.11) and simplifying, we get . -
Tl 0SB, 05Dy S~ Prgngr! s Gay

+ sing éind)uml = Rceosyy -
Equation (3.13) gives the equation oi‘ the p[ane M\«I as a functxon of the satell:teiuhpomt

coordinates on the surface ofthe earth at any instant of‘the time. - '

By solving Eq. (3.13) with the équation of the earth -which is thé ehquution of u
sphere defined by ry = Rwe obtam the equation of'the interséction (which is the equatmn of
the boundary of the ICA) given by

0Pt OSP4y, é°5(¢Long‘ PLongy’

-+ sinq>[_m sinq)Ln & = cosy .
where, Py and ‘bp)ngb are the latitude -and longitude of'any point on the boundary of the
ICA ;espectively’,_-For any point on the surface of earth located at latitude ‘t’L;: . and longitude
q;[_ongi inside the ICA, r.he angle y, between the satellite subpeint and this pomt measured
from the center of the earth, must beless than y ‘thus

Oy 0SBy oS (b~ ) (3.15)

T+ sin(ph“sinq)um = coswy,

(3{14) -

%
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) Now, thé a.ngle W, is less than lp, hence, co\‘T‘l iqngz'euter than cusuy Therefore,
.« : comp.lnng Eq. (3.14) and (@15) we cun say that ..G;pn\\lqn ithe su‘rl‘acc of the e..lrth located
J inside the f(\ZA must safisfv the I'nllowmq ln(_‘([lldlll.\'

COH'IJ[.QL COHb[.uLt L'US‘( (ph:nu_

+ sin(';)I At

A Hitl(bl‘nﬁ - cosip = 0
Y ' o )
R 3.4 VALIDITY OF THE ICA EQUATION :
l i L2 - :
Fquation (3.14) provides the exact formula which represents the boundury of the
ICA with size y lor any satellite subpoint located at pruL and (bum!g duge to the following
arguments?’ N
- -~ ' I

1)

A &

I.Hruugh thi

The ICA boundury is a circle l-ocixted 0 f the earth tsphere): thercfofe.

\\' .
the equat:on which representb the bounddrv of the ICA (ufter definmg W, &, and

‘pumg) must bé a funcr.mn of two \dl"ldble‘i namely l““l: und (ph,.,gh,,which is clear

in Eq. (314}, -t

. ’ -
Any circle, with any size, on the surface of the earth must be located symmétricully'

aroynd the longitude plunc which pu::':‘»es tl"n'ough its center. After deﬁning the

' H.lte“tle subpumt hpl o pth, and from Eq. (3. l-H we Fn{hat there are ¢wo ‘

. pmnta on the boundary ufct.hu [CA with the sume latitude but with twp dlfl‘etenl.
)

vdlues of longitude ‘-Lth lhal :pl g 1 Lhc average of lhcn longitude. Thus, we can

say Lhal thé ICA i lm ated symmetr ically around 1he lnnutudc planu which passes

¢ '

»satellite subpuint. o ' -4

Consider th )be of a ‘u.lt('”lt(. wtdtuw; in u[\mtm utl mH‘ul whutu ll,)l « = O thus,

\u

'l‘q 3. 14)ruduces‘to : A .. : Y

-

} = cosp

- m.s‘pl.u!.b cos ( ‘blanw. - lp[""gh

Pum. o " 3.16)

\
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From the above equation, it is clear that the maximum latitude reached by any
point on the houndary of the ICA is equal to *+ ly {when &0y, = :p[mg). Also, from
FEq. (3.17) the maximum varTation in longitude for the boundury of th‘é) ICA
(measured from the Iongit:ude.of the satellite subpoint on the eauutor qu"g) is
equal to X, thus: the' ICA for a satellite in equatorial arbit is located
- symmetrically around the satellite subpoint with a size y measured from the
center of the earth,

4 + Here, we are going to use the geometry of the earth in order to find t.h.é’é-quation for
the longitude of two points or;_the boundary of the ICA, such that both have the
same latitude as the satellite subpoint S, namely Pru. N.ote that a solution for this
equation must exist for the case of a gircle.

Refer to Fig. 3.6{a}, which shows a sect'ion of the earth produced by a plane pussing

through the poles und the satellite subpoint $’. From the geometry we can say

- . (3.18)
RR = R(:Uhq)lm . _
where v
RR = the radius of the lutitude ¢irele . ' i
S'S" = R{1 — costy) . . 3.19) ..

and

_ Ril —coswp)

cos cplnl.

- S'E (3.20)

LY

Referring to Fig. 3.6(h} which shows the latitude circle Py, of the satellite subpoint
S, it is obvious Lhat the point g and g’ are located onthe boundary of the ICA. Also, from the

same ﬁéure, the dilference in longitude between S’ and cither g or g’ equals * {cpl'”“u - ¢,

as given by -
RR-S'E
cos{ ¢ -t )= — {3.21)
Lamg 4 RR

Substituting Eq. (3.18) and Eq. (3.20) in Eq. {3.21) we get
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Fig. 3.6a Vertical section of the earth by longitude plane passes t

satellite Subpoint &'«

L -
Fig.3.6b"  Latitude circle of the satelljte subpoint S

70

ugh the



R cosp, | — [R(1 —cosxp]/coscphll

{3.22)
cos( ~¢. )=
Long .
b ® Rm@lnt
Eq. (3.22)reduces to
Cﬂﬁztbul— l + coswy (3.23)
COS((t) - (b 1=
. long o 2 “
oS (b[.-u
3
or
" o) cos\Y — sin rbLm (3.24)
Cos L _— =
Long fid 2
. oS ((bl_“)
Note here a solution for Eq. (3.24) always exists, because the R.H.S. is less than
unity. )
e )
Substituting in Eq. (3.14) for bray, = &, and Glong, = (pg ) J
2 . 2 N
Los ‘p[mcosl :phmu— -pz) + 5in rp“1L = cosy (3.25)
or -~
L2
oS = STy, (3.26)

COs (,(pl“nu— (pu) = - 24)
§
Lat

Fquation {3.24) is identical with Fq. (3.26) Thus, from arguments 1,2,3 and 4, we can say
that Eq. (3.14) represents the ICA for any satellite.

The Instantancous Coverage Area is plotted in Fig 3.7 for the case of a satellite
rotating in a 12 hour orbit with inclinution angle i=60° The satellite starts motion at t =0
(meusu'red by the reference c‘luck.) when ity sul;p()int on the surface of t/th earth is located at
the equator at longitude 45° \Ve.;;t: The ICA is also plntied whent = 3.6(311 9 hour, where the
satellite subpoint S_2 Sn'.uncl 54' i locuted at (60° latitude N and 0° longitude), (0° latitude

and 45° longitude 1) and (60° latitude S and 90° tongitude ) respectively.
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3.5 IMPLEMENTATION OF THE ICA EQUATION

Now, in order to show how to implement Eq. (3.18), for designing satellite

constellations to provide single fold 6r multifold coverage for either the whole globe, or
specified zones on the earth (partial coverage), we use Eq. (3,16) and Monte Carlo analysis for
this purpose. l

Monte Carlo analysis is an optimization method which allows us to approximate

the coverage area on the surface of the earth by a specified geometric shape; for example,

square, recﬁang[é, circle, ellipses, ... etc. Then, by calling one point from the perimeter of this

-speciﬁed shape and substituting the coordinates of this point in Eq. (3.14) for different values

of time (to represent the migration of the ICA on the surface of the earth), we are able to

determine if this point is always located either inside or outside the ICA. Ifit is located inside

the ICA, we repeat the same procedure for another point on the pegimeter of the specified

L

geometric shape and so on. Thus we can determiné if the whole shape is located inside the

boundary of the ICA during its migration, If the specified shape is completely located inside

.the (CA for all values of time, we enlarge the dimensions of this shape by a certain amount,

then repeat the same procedure.. , . :

‘In order to give an .example, we consider two cases for single fold coverage fpr a
satellite in 24 hour orbit. The first éase we assume a satellite in geostationary orbit, and we
ap'p'roximate the covefnge area of partial coverage {on the surf’ace of the earth) by a square
located symmetrically around the satellite subg;oint‘on the equator, such that the sides of this
séuare coincide \,\_rith the latitudes and [on‘gitudes. The result from applying Eq. (3.16) and

Monte Carlo analysis shows that a square with sides coincident with #60° longitude and

latitude with respect to the satellite subpoint fits inside the ICA. Thus three satellites in

. geostationary orbit can provide the partial coverage of a strip around the earth and this strip

PR
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- =
* is located symmetrically around the equator with width extending from 60° latitude N to 60°

latitude S, which is a well known resuit.

The second case we assume is a satellite in 24 hour orbit with inclination angle
. equal to 15°. [n this case, the maximum square (which receives single fold continuous
coverage) fits inside the [CA during ité migratior_'n on the earth and has a span of 96° located
symmetrically arousd the node of the satellite subpoint trace.

In Appendix 1 we give.af example which illustrates another possible application
for the equation of the instantaneous coverage area. Assuming a satellite from a seurch and
rescue by satellites system (SARSAT), we showed(t.he effect on the coverage timé provided by
the satellite for (a specified point on the earth) if the single beam antenna on board the

satellite is replaced by a four beam antenna. It is also shown in Appendix 1, how the rotation

of the four beam antenna will effect the coverage time. __/

=%

L

The rn‘ethod wh-ich we developed can provide the required information about the
areas on the surface of the earth, Qinich receive a coverage for specified ir;terval of the time
{not continuous cov;rage). [n addition to that, we can design the optimal satellite
constellation which consists of m satellites to provide n-fold coverage (m > n) of the who]e_‘
globe or a specified zone of it, in such situation any point on the specified coverage area must
satisfy at least n equations of the m equations of the instantaneous coverage areas at any

instant of the time t, and we can adjust the initial cond:t:ons (28] of one or more satellites to

reach the optimal constellation.

*
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CHAPTER 4
THE SPACE DELAY
4.1 SUMMARY OF THE CHAPTER

The ;'Jossibility of using geostationary satellites for communicatior;s was discussed
in the popular literature as early as 1956 [29]. Tj“i‘e first detailed proposal for a synchronous
tracking satellite system for the purposes of orbit determination was provided by Vonbun in
4967 [30). Since then a number of papers {31,32] have considered the use of satellite-to-
satellite tracking for orbit determination and for gravity field modp;i refinement. [t was clear
that with regard to coverage, a satellite-to-satellite tracking system has a significant
advantage over a ground based tracking system. The future earf:h apﬁlications missions are

likely to require satellite orbits with high—%ﬁc‘{ina'tion angle for global coverage, and low

" altitude for sensitivity. -7 '

For instance, with a single geostationary satellite, a satellite-to-satellite tracking
system is capable of observmg an earth orbiting satellite during almost half of every orbit.
Equivalent coverage ofa satellite in a high inclination angle orbit would be difficult to obtain
with a ground based system. .

In this Chapter the visibility and the space delay for two cases are discussed. In the
first case we consider a. ground based system with different earth stati;)ns located at different
locations on the surface of the earth. In this system the study shows that the vnsﬂnhty is poor
in the second case we consider an earth statx;n based-satellite to satellite system using a

geostationary satellite as intermediate link. This last system shows a signiﬂcant

improvement in both the visibility and the space delay performance.

75
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4.2 . THE SPACE [jlil,AY BETWEEN AN EARTH STATION AND A SATELLITE

The space delay between an earth stat,i:)n Egnd a satellite S is defined as the

distance between the earth station und the satellite divided by the propagation velocity.
| " Before evaluating the spa.xce delay T, we note that, both th earth stutic;n and the

satellite ure moving relative to cach other in the space; thus, we are dealing with a dynamie
cuse where the relative distance, velocily und.accclerution are continually varyingr in
magnitude and direction.

In order to*lind the space delay betwec-:n an earth station und a satellite at any
instunt'ofthe time t, we proceed as follows:

i) Define the satellite subpoint on the surfuce of the earth at any instant L. The

equations which define the satellite subpoint givenby Eq.{2.10) and (2.13} are

®;,. = arcsinlsinisin Kaglt + T o {4.1)
and '
0s i sin Kw, (t+TT
‘ U ° R . (4.2)
(p] = arnesin - - ~ | —w,t +
Ay P S S . 172 . E a
{1 =sin® i sin" K (1 +TT)}
. F
where .
t = the time measured by a reference clock at the earth station
P = thelatitude of the satellite subpoint at any instant t
Prone = thelongitude of the satelite subpoint at any instant t
- . .
i = theorbital inclination angle
K = the nonsynchronous factor
wg = the angular velocity of the earth
TT = theinitial time phase of the satellite in its orbit
b, = the longitude of the point of interscetion between the equator and the

orbital projection on the surface of the earth at t = 0.
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Now, for any satellite, the subpoint is a well defined point on the surface of the

earth at any instant t. By knowing the coordinates of the given earth station ES,
we can form a plane passiig through the earth station, the satellity subpoint and
the center of the earth, intersecting the earth in a great circle as shown in Fig. 41
The size of the smallest arc ¢ between the earth station and the satellite subpoint

can be found by forming a spherical segment on the siurface of the earth located

) symmetrically around the satellite subpoint such that the earth station is located

on its boundary, therefore from Eq. (3.14) we have:
£ = arccos (sinc[)Lat Sian.E +cos

05y, 008 @ ong = PLonge (4.3)
where (:,’L.o;:g'E and ¢, ..g are longitude and latitude of the earth station,
respectively. Note that in Eq. (4.3) e depends on the coordinates of both the satelli.te i
subpoint and the earth station. As well, we note that the location of the satellite
subpoint depends upon time, while the location of the earth station is a ﬁxet;l valuel,
thus, the angle ¢ aepends upon time through the coordinates of the satellite

. 2

subpoint.
By solving the plane triangle with sides being the linqg connecting the center of the
earth, the satellite and the earth station {noting that the radius of ther earth and
the satellite altitude are known in ;xddition to the angle ¢ as shown in Fig. 4.1) t?e
distance measured between the earth station and the satellite dg is given by

dg = [(h+R)? + R%-2R(h +R) cose]'2 (4.4)
or ' 3

dg = [2R(h+R) (1-cos &) + h?]*? ' (4.5)

where
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. The great circle

Equator

¢long

Pig. 4.1 Geometry pf

a satellite in inclined orbit and un earth station.
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h = the satellite altitude

Recalling Eq-(2.7) we can write the satellite altitude h as follows:

h = (hsyn + RMK2% _ R o - (4.6)
hsyn = altitude ol a 2fj_hour or‘hit . ‘

R = radius of Lthe earth.
iv) « Now, the space delay Tgbetween the earth.station and the sutellite (at any instant .
t)issimply d/C, where C is the.velocity of the propagation.

[t is clear that, in order to guarantee the presence of a sutellite-earth station link,

the earth station must be located inside the boundary of the [CA. Hence, the angie ¢ between

‘the earth station and the satellite must be less than or equal to the half arc angle w: otherwise
*
the satellite is below horizon.

The space delay Ty between four earth stations at different locations on the surface

of the earth, and a satellite located in an inclined orbit, has been evaluated and plotted versus
the time of navigation measured by. the reference clock. The earth stations are located at

lutitude and longitude of [0°, 0°], [30°, 30°], {60°, §0°] and (90°, 50r°|. . v
~ .
In our calculations we assume that the radius of the earth R = 6378 km, the

altltude of the 24 hour orbit Hsyn = 35784 km, the velocity of propdgatlon C =300 000 km/s

.md aminimum angle ofv:tzlhxllty o= 5"

}
l'lgurcs (4.2, (4.3) and (4.4) show the space delay Tg in ms l)otween Lthose edrt.h

stations and a satellite in 24 hour nrhlt w1th lanlndLIOl"l angles 30°, f‘0° and 90° respectively.

As a general nole, for all the coming Figures, the dt%contmunty in all the curves repreaents
the interval in which the communications is blocked, ie., when ¢ > .
Figures 4.5, 4.6 and 4.7 show the space delay Tg between the same four carth

stations and a satellite in a 12 hou? orbit with inclination angle 30°, 60° and 90° respectively.
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4.3 CHANGE IN SPACE DELAY WITH TIME

In order to find the change in the space delay with respect to the time meusured by |
the reference clock t, we differentiate Fq. t4.4) and divide by the velocity of propagation C.
Noting that ¢ is the only l.imadcpende\nt variable, we lind:

A ~Rh+ 1 acose (4.7
at d.-C at

To find dcos ¢/at , we rewrite Eq. (4.3) as follows
CoSE = oosrme COS(PLHLE cos (q)lnng - (pl.nngl-:]
\
. . : (4.8)
+ smtpu“_ sing e

Differentiating Eq. (4.8) with respect to t, noting that $raep and $Longg are

independent of t, yields

deose ) ' 9P
at - mﬂpl.nl.E ! Slnrpl.ur. cos ((p[nng - q)LnngE) at
r Lung
+ mS(pl.aL sin (‘thn - (Plnnzh‘) dt l
o LT 4.9
sin ‘pl.illf‘: COHbL:IL at
aor
Xost _ &DL.'IL r . . -
o o i cosby - COSPrESIIP Ly Ot = by )]
*y
- - . . Lang 4.10)
-can)l;tt co"‘bl.utl'_' bm((plnnu - ‘pl.nnuii) ot

Let Kw (it +TT) = Qand Plone T Wit — ¢, = 8inbothofl Eq. (4.1) and (4.2). From

these equations we can get the following relations:

- R PTN .] 410D
cosp, =11 —sin l. sin” Q)
sin Q cos i
sin § = _’Q T (4.12)
[1 —sin”isin~ Q|
and
v
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»

. 2 2.
sin® @ cos‘i :
c0s? =1 _ - - : C {41
1 —s5in”isin“Q
therefore
.2
1l —-sn“Q . )
0s2 § = - - (4.14)
1 —sin“1isin“Q
or .
cos § = 08 Q {4.15)

[1 — sin?i sin2Q)¥2

Differentiating Eq. (4.1) with respect to t, we get

DL aQ -
2 = _ {(4.16)
cosp, " sin i cos Q p
Noting that 6Q/at = Kawg, the last Equation will be
a(bLa
0sdy,, —= “= Koy sin i 005 Q (4.17)
Substituting in Eq. (4.17) from Eq. (4.11) gives
a‘bur.:__ KmEsmzcosQ (4.18)
* (1 -sin®isin?Q)?
Now, substituting Eq. (4.15) in Eq. (4.18), we obtain = v
% .
i Kw_ sin i c0s§ (4.19)
at E

Also, by differentiating Eq. (4.12) with respect to t, noting that b, is constant and

(bLong + wpt — ¢, weget
od

Long

cos i cos Q (4.20)
- . LY
(1 — sin®i’sin? Q)32

Substituting for cos§ from Eq. (4.15), in Eq. (4.20) (after algebraic manipulation),

cosﬁ( £

+wE)= Kw

we arrive at

-

3 Long cos i - (4.21)
= Kag 2. 2. W
ot (1 — sin“i s5in“ Q)

By making use of Eq. (4.11): Eq. (4.21) reduces to

<7
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&pung K W oS |

= (4.22)
at

= ) — W
cos ¢Lu'l

Substituting both Eq. (4.19) and (4.22) in Fq. (4.10) reduces to (alter

E

simplifications)

JPF

7&—‘ =A W K ¢eosd sin | {B2 cos quin(me— Hl cn.wpml}

‘ K cosi
+ B sin Mg [ _— —cns:pl‘m] l (4.23)
0 Lo, -
*

where

A= R(R+h)/(dr_: -C)
6= ¢'l.onu + mEt - ‘bu
g = (bLung ~ PLongg

= sin ¢’La|lE

—

B, = cos bra
Equation (4.23) gives the exact formula for the change of the space delay

JI‘E

at
for u satellite-earth station link.
Note that for the special case of polar orbit, where | = 90°, Eq. (4.1) and 4.2}

reduces to

t., = Q | (4.24)

= —mpl + b (4.25)

ih
I[um:

FHlence, the relation between the latitude and the longitude of Lhe satellite subpoint is a linear

relation. Thus, we have
b
{:
AL Kuw. . {4.26).

and
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a(bl.mu: (4.27)

x “E

< Therefore, substituting Eq. (4.26)ind Fq. (4.27) in Eq. (4.10} and inserting it in Eq.
(4.7}, we obtain
dT .
T =AmE K {B__, €os N sin Q - chos Q}

+ B, sin n, cos Q) i4.28)

Now let the inclination angle i = 0, i.e., the satellite subpoint is alwuys.lucutud an

the equator, therefore -
b, =0 N (4.29)
Prong = A — wgt + &, (4.30)

Substituting in Eq. (4.23) this yields to

. dJT

_Bt._ —B_zh!ﬂ qE(K— 1

IfK = 1,ie,the satellite is o geostationary Eq. (4.31) will be

. Ty

which is Lrue, since the spuce delay from any earth station lo any geostationary satellite is

assumed Lo be fixed.

Figures (4.8), (4.9} and (4.10) show the change in the space delay

at

versus the time measured by the reference clock for the curves shown by Figures (4.2), (4.3)
.and (4.4) respectively |

* Figures 4.11, 412 and 4.13 are ploltcld for the case of the 12 hour orbit satellite as
in[figures 4.5, 4.6 and 4.7. The main dimcully demu'nsl.rulud iy the ["igL{rcs from (4.2) Lo (4.7)

is that the satellite is below the horizon for a long period.

b
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44  THESPACE DELAY BETWEEN TWO SATELLITES

At this point, let us define the spaéé dei‘ay‘ l-)ctween two satellites at an instant of
Lirr;e as the distance between the two divided by the vke‘l('aci‘ty of propagation. Note that thisis
not the samé us the uplink or downlink space de[ug;' when relativ?a’r-notion exists h‘eLween the
two satellites; ;5 will be investigated in Chapter 5. Refer to Fig. 4.14 which shows two
satetlites S, and S, in two different orbits, The satellite S, rotates ‘aL an altitude h| while the
corresponding altitude for S, .is h,. :\t-.iun__v instant of time t the subpoints for S, and S, on the
surface of the ?urth are S and S,", respectively. From Chapter 2, the locations of §," and '82'
ar;a well defined ut any instant, by forming a plane passing through the .center of the earth O
and the two satellite subpoints, this plane intersects the surface of the earth in a great circle.

The size of the smallest arc A between the two satellite subpoints, measured from the center of

the earth, as shown in Fig. 4.14, is given by
s = Co‘qp[.ml CUSLPL.'IL? cos ((plﬂng! - (phmg;’) ) )
+ simpl-_lll sing (4.32)
where q)i_ml, Plong, are the !utitude and longitude of the satellite subpoint S," and, PLats,

PLong, are the corresponding values [or the satellite subpoint S,". Solving for the plane

triangle §,S,0 we get

— 5 (4.33)
d = V|R+hﬂ“+(R+hﬁ"—2(R+hﬁ(R+thﬁA

where Ris the__rudius of the earth and d is the distance between the two satellites.

Assume that Lhe sulellite S, is u navigation sutellite in inclined orbit (S," has
latitude b, .~ and longitude 'pl'.nngN]‘ Further, we eonsider the satellite S, is a gevstationary
satellite with latitude P = Oand longitude ‘pl,ungG' Substituting these values in Eqg. (4,32}
and (4.33), we get .

— . {4.34)
cosd = mS(pl.atN cm"(q}bmgN - (b[nnuG)

and

o S (4.35)
d= VHS + HE - 211 1, cos)



Fig. 4.14

Geometry of two satellites in different orbits.
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where H, and Hg are the distance measured from the center of the earth to the navigation
satellite and the geostationary sateilite respectively. Dividing d by the velocity of

\ :
propagation C, we can evaluate the space delay T between two satellites at any instant t.

. T =d/C ' . (4.36)
C‘onsider the case of a navigation satellite S: ina 12 hour inclined orbit with initial conditions
TT = 0, oy = 0°and i = 60°. The space delay T between this satellite and each of six
satellites S, in geostationary orbit with initial condition TT = 0 and ¢LongG = 0°, 30°,_60°, 90°,
120° and 150° is plotted, as a function of time, in Fig.‘4.15. Figure 4.16 represents the space
delay T for the same set of six geostationary satellite locations and a navigation sat'ellite in 16
hour orbit,

[t is clear that the communication between any two satellites depends upon the
relative locations of both satellites and the earth, i.e., the communications between the two
satellites is guaranteed except for the case when the earth is located between the two
satellites which produces the shadow zone of the earth. For two satellites, the shadow zone is
defined by the condition when line connecting them is tangent to or intersecting‘the surface of
the earth [28,33). Thus, the communication link is blocked if

. C—— (4.37)
dzVH, - R + VHS - R?

It is clear, from Fig. 4.15 that the satellite in inelin

it always sees the
geostationary satellites located at longitudes 30°, 60°, and 150°. However, if the
geostationary satellite is located at longitudes 0° and 90° theshadow zo-ne exists for a period of

almost 1.76 hdurs every 24 hours.

4.5 CHANGE [N SPACE DELAY WITH TIME i '

.To find the change in the space delay for the curves of Fig. 4.15 and 4.16, we

differentiate Eq. (4.36) with respéct to the time t measured by the-ref‘grence clock. Note that
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>

Eq. (4.36) depends on the time t through the location of the subpoint of the navigation
satellite on the surface of the earth only, hecause the latitude of any geostationary satellite
equals zero and its longitude is a fixed value. By substituting Eq. (4.34) and (4.35) in Eq.

(4.36), and making use of Eq. {3.19} and (3.22) we have after simplification

Jr
— = [N, | Kcosh sini cosn sin
x W cOs0 SN n s (b[‘“‘N 4.38]
. ( K cosi "
sinn {"———— —cosp )
“’“pm\, PN
i
where : (\ .
1, H |
N G
D=
d-C
8= q)Luu-m[._:l.'\l' + wEt' - (puN
Py = thelatitude of the subpoint of the navigalion satellite

q)ng = th:ﬂlongitude of the subpoeint of the nuvigation satellite

b, N = the longitude of the point of intersection between the cqualor and the
orbital projection of the navigation satellite orbit ton the surfuce of the
earthatt = 0

n = PLongy = Plongg

Pranp = the longitude of the subpoint of the geostationary satellite.

From Eq. (4.38), we see Lhat by choosing the inclinzlli(;n angle i, we can force the
change in the space delay (2T/0t) to be equal th zero w.hen the navigation sa;llellite PASSeS
through the equutorial plane, ie., (31ft) = 0 wh'en«pl_;u_\. =0, Such a value of the inclination
angleiis given hy

i = arecos(1/K) (1391}
which is the lower critical limit for the nunsynchronous factor K given by Eq. (2.31). For

example if K = 2, then the proper inclination angle i must be 60°. Fig. 4.17 shows the chunge
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in the space delay (3T/st) versus the navigation time t in hours, for the case plotted in Fig.
4.15. From F:g 4.17, it is clear that the change in the space delay equals : zero when the
satellite crosses the equatorial plane, i.e. every six hours. Also it is clear that the maximum
change in the space delay for the case of 12 hour orbit is equal to + 10 n s/S. Fig. 4.18
represents the case of a 16 hour orbit. ’

In order to find the higher order derivatives of the space delay T, it i; more
convenient to reformulate Eq. (4.33) in a format suitable for differentiation.

Let us consider the difference in longitude ¢LongN - ¢’LongG given in Eq. (4.33').
This angle can be written in the form
ProngN — Plongs = (-(b{..ongN togt—d ) -

= D pnge + wgt — ) (40

or

(pl.ongN _ (bLongG =5—-A {4.41)
where § is defined in Eq. (4.38) and
A=ty o+ ogt~ b, - (4.42)
Substituting from Eq. (4.41) in Eq. (4.33) yields ’
c0s A = cosd,, (€035 cos A + sin 5 sin A) | (4.43)
| Substituting in Eq. (4.43) for cos ¢LacN’ sin §, cos § from Eq. (4.11), (4.12) and {4.15),

respectively, we get after simplification
cosh = cos Qcos A + cosisin Qsin A (4 44)
We notice here thm: Q and A are the only time dependent variables in Eq. (4. 44]

leferentlatmg Eq. (4.44) with respect to time notmg that

. dA
ﬁ = Km and — =g _,
at ot E
yields
dcosi . . .
P =—mE(KstcosA + cos Q sin A)

) {4.45)
+ Wg ©05 1 (Kcos Q sin A +sin Q cos A)
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or

decos A

el = (cos i—=K)sin Q cos A
dt ‘ . (4.46)

+ (Kecosi—1)cos Q sin A

Diﬂ'erentiafing Eg. (4.36} with respect to ffme, making use of Eq. (4.34) and (4.35);
and noting that A is the only time dependent variable, we get

T _ ~HyHg gc0s) ‘ ' (4.47)

]

at dC
Substituting in Eq. (4.47) from Eq. (4.45), yields

aT
; = Dmé [(K — cos i}sin Q cos A

_ + (1=Kcosi)eos Q sin A
where : DU : : . | e
_ i ' (4.49)
d-C
Equation (4.38) and (4.48) are identical but Eq. {(4.48) is more suitable for further

differentiation.
To prove that the change in the space delay can be represented by either Eq. (4.38) or
(4.48), we will show that the two equations are identical.

Let us put Eq. (4.38) in the form

ar
— = DmE (A + B)

at
where,
A = Kcos8sinicosnsin Qum (4.50)
and ‘ .
. K cosi
B=sing | ——— _ cosgp_ . (4.51)
c:o:schm_N E
Substituting Eq. (4.1), (4.15) and (4.41) in Eq. (4.50) we get
A=K &-smimsta-A)smisinQ T (4.52)
Cos ¢Lat.N -

By expanding the term cos (6=A) in Eq. (4.52) and using Eq. (4.12) and (4.15) we get

(4.48)
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{
. 2., . . ’
sin“icos @ sin sin i
A=K RINQ e —25Q + sin o SBQc0si (4.53)
OS P ey 05Dy - OSbpy H
The last equation is reduced to
Ksin®icosQsinQ | '
A= i [cos A cosQ + sin A sin Q cos ] (4.54)
. c032¢
. LarN
Now, consider the remaining terms given by B in Eq. (4.51).
. Substituting from Eq. (A1.12) in Eq. (A1.21) we have:
- " Koosi . :
B ={sin5cosA ~ cosSsin A [ 23 cosxpumj _ (4.55)
coSq)t.mN

‘ Substituting from Eq. (4.11)in Eq.(4.12) and (4.15) and then, in Eq. (4.55), thi's-yiei.ds:

B=[sichosicos_A—costinA][ BRoosi ’ (4.56)

cos ¢mN

v By adding Eq. (4.53) and (4.56) and examining the terms with sin A as a common

factor we get:

Ksinzicostiancosi —KcosicosQ

E=sinA - + msql (4.57)
cos -q’[.m.N
The last equation can be reduced to
| K cosi(sin® Qsin?i — 1) ' ' o
E=sinAcosQ[ 2 + 1‘ (4.58)

2 .
S DL pen
Noting that cos Loy = [1-35in° Qsin®i1*?, Eq. (4.58) will be-

E = sin AcosQI1-Kcosi] (4.59)

-

Now consider the remaining term from A+ B, we find that cos A is a common factor, -

these remaining terms are given by: o 5/-
. K§n2im52 sinQ + K cos®|sin :
F=cosA“ 9 2Q Q —sichosi] (4.60)
cos: q)LuLN
or
' K sin Q (c0s® Q sin®i + cos?i) '
F=cosA“ Q Q I —sichosi] . (4.61)

.
oS q)LaLN
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Substituting in Eq. (4.61) for cos?i = 1-sin?iand cos oy from Eq. (4:11) and after
'simpliﬁcation we have:
KsinQ(1 —sin®isin? Q) N (4.62)

in?isin Q)

F=cosA“ —sichosi’

or _
F =cos AsinQ (K -cos i) (4.63)
Now, by adding E+F and multiplying by Dwg, we can get the change in the space

delay dT/at, this is given by

; = DmE [cosAsin Q (K = cosi) + sin A 0sQ (1 — Kcosi)] (4.64)

Equation (4.64) is the same as Eq. (4.48), therefore, both Eq. (4.38) and (4.48) are
identical. |

Now, to find the change in the éhange in the space delay (second order derivative) we
differentiate Eq. (4.48) with respect tc; t taking in consideration that d, A and Q are tim;a

¢’

dependent variables such that, . P

an Q aT
—=m,-g=Km and — =C —
at E' a E at at

Therefore

2T : .
;2- = Dm_E (K - cosi}(mscosAcosQ —?EsinAsinQ)

+(1 - Kcos;i)(mE cosAcosQ — g sin A sin Q)] . (4.65)

(T 9-5%

Noting that &/C = T and wg = K wg and after simplifications we get
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2T s -
— = Dag [(K® — 2K cosi+1) cosA cosQ -
at” :
L+ (K’cosi- 2K + cosilsinAsinQ)  © - . 4.66)
. ¥ . ) . . - e - !
1 (JT 2 S A

Figures 4.19 show the change in the change in the spuce delay for the case plotted
in I"lg‘ 4.15and 4.17. Figure 4. 19 bhowq Lhat the maximum Lh.mge m the change in the space .
delay is + 4 ns/s2. Figure 4.20 is plotted for lhe case oFLhe 16 hour orblt satelhte iflustrated in
Fig. 4. lﬁand418 ‘r

Now to find the third order derivative we differentiate Eq. (4.66) with respect to time

noting that D = Hy, H/d.C this gives

r]I'
— = Dm [AA(-—m alnAcosQ W, cosA:,mQ))
ot
+BB(chos/\5inQ+mssin[\cusQ)l . (4.67)
(a"r WL !\ od ’
(AN L)
a* That d*/ a
. (1 , azr,) (_19171‘ (Jl‘)-
- T at th B 'I"z Jt al
where N

AA = K® — 2K cosi + 1

and

BB = K% cosi — 2K + cosi

tquation (4.67) can be reduced to
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— = Do} [(K® c0si—~3K + 3K cosi~1) sin A cos Q
at

- (K® = 3K? cosi + 3K — cos i) cos A sin Q] (4.68)

331‘621‘

Tat at

The higher order derivatives can be obtained following the same procedure.

4.6 BLIND SEGMENTS ON GEOSTATIONARY ORB[T

In order to find the segments on the geostationary orbit, from which the navigation
satellite in any mclmed orbit can be seen 24 hours a day, we form a circle on the surf‘ar:-e of the
earth, loc_ated symmetrically around the subpoint of the navigation satellite, such that the
| size of !:hi; circle (measured from the center of th&-earth) corresponds to the equality in Eq.
(4.37). Let this angle be Aag [t is clear that Aax 1S the maximum angle between the

navigation satelhte and any point on the geostationary orbit maintaining visibility [28]. 'I‘hls

vaIueof?xmu isgiven by’ ) - o P

: R ’ R
A =ar‘ccos(—-)+urcoos(—) . (4.69)

Substituting for R = 6378 km, H, = R + hsyn = 42162 and by making ulsg' of Eq. {3.5); Eq.
(4.69) can be reduced to . | L
Amax = 813" + arccos (0.15127 « K23) 3 L @
Note here that if the angle between the navigation satellite and any point on the
geostaﬁ:onary orbit (measured from the center of the earth) is greater than \ ¢ the projection
of such a point on the surface of the earth is located in the projection of the shadow zone. Thus
for any point on the surface of the earth to be located ia the protection of the shadow zone, it
must satisfy the following equation: v

(S
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mschnLN cos‘bl'.at cos ( ¢LAngN - cI“’Long)|
+ Si’nq)LaLN sinm5cosA - (471

where ®y,, and q>umg are the latitude and the longitude of any peint m the projection of the

Y

a3
shadow zone, respectively, $Laty and ¢L0ﬂgN are the correspondmg values for the subpomt

of the navigation sateilite. Now, the projection of the shadow zone on the surface of the earth
moves with the motion of the navigation satellite; hence, may or may not intersect with the
equator (which is the projection of the geostationary orbit). If it intersects with the equator

the existence of a blind segment on the geostationary orbit (from which the communications is
v *
blocked}) i is ensured But we know that any point on the geostationary orbit has a latitude

equal to zero. Substituting for brae = 0 in Eq. (4.71) we get the longitude of the point of {-A
intersection between the equator and the boundary of the shadow zone und this is given by -

max

S ) (4.72)

¢ =4 +are cos (
Long LongiN ) -
cos ¢L'1LN

It is clear that the maximum size for the blind segment occurs when $rar, = 0, i.e.,
when the navigation satellite passes through the equatorial p[ane and the mAximum value

for longitudes of the edge points on the boundary of the shadow zone are given by

_ (4.73) -
q)Longmmr. - ¢o £ max

where $’, is the longitude of the subpeint for the navigation satellite when it crosses the

equator. From Eq. (2.21), we know that the satellite subpoint crosses the equator every

' n(1-1/K) radians in longitude; thus, Eq. (4.73) is rewritten as
e ,

¢unmu=¢o+nq(l-—z);&1\mu; n=0,12,3,.. . (4:74) e

By applying Eq. (4.70) for the case of a 12 hour orbit, where K = 2, we get A =

max

157.4°. Substituting for Aty and K in Eq. (4.74) \Je {ind that four blind segments with width
45.2° exist on the geostationary orbit, centered at longitudes 0°, 90°, 180° and 270° with

respect to the point at which the navigation satellite crosses the equatorial plane.

_ //;
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In order to find the maximum time for the geostationary satellite to remain in the
shadow zone hidden from the navigation satellite, we consider the worst location on the
geostationarf orbit with respect to the navigation satellite. This worst location is opposite to
the point at which the navigation sate[li;e crosses the equatorial plane; i.e., $Long, - ¢Long =
n.  SubStituting in Eq. (4.72) we can evaluate the minimum latitude reached by the
navigation satellite subpoint before observing the whole geostationary orbit; this latitude is
given by ‘

‘pl-af-Nmin = +99.6° (4.75)
By ussﬁming an inclination angle i = 60°, we substitute for both PrLaty,,, and iin Eq. (4.1) we
can'calculate the maximum time for the communications to be blocked. This time equnls
1.756 hours every 24 hours of nav1g'z;t|on

« Thus, we conclude that there exist four segments on the geostationary orbit with
angle = 44.8° located symmetrically at longitudes 45°, 135° 225° and .'315" with respect to the

point at which the 12 hour satellite crosses the equatorial plane. If any geostationary

satellite is located at any point on those segments, such a satellite cun $rovide 24 hour

visibil\ily'or this 12 hour satellite.



CHAPTERS5

ESTABLISHMENT OF ACCURATE TIMING ON-BOARD A NAVIGATION

SATELLITE [N INCLINED ORBIT

. )

8.1 SUMMARY OF CHAPTER

The establishment of :;ccurate timing on-board a navigation satellite in inclined

orbit using a timing reference from either an earth station or geostationary satellite is

. importunt-[l,2_l. More recently, there has been considerubie effort placed in designing and

developing the NAVSTAR system which uses at'urnic clocks on-board satellites in inclined
orbits to establish accurate time [ 1,11,12).

In this chupt"cr, we are going to di;;cuss another possible mode of operation which is
based on the transponding of timing information from an earth station to a navigation
satellite in inclined orbits through a satellite in geo‘stutionury orbit. Assuming that the
satellite in the geostationary orbit has constant space delay with an earth station, then the

only change in the space delay between the earth station and the satellite in inclined orbit

—~l

occurs between the two satellites,
The main advantages of vur solution to this problem are:
1) The dtomic clocks on-board the navigation satellite are no longer required.

2) A communication link now exists between the earth stulign and all users of the
geoslationary orbil has (he cupubility of observing hoth the navigation satellite in

inclined orbit und the earth station locuted inside its coveruge area,

We assume the following:

114

system through the navigation satellite. ‘This is due to the fuct that the satellite ,ifl.—r/
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1) The location of the geostationary satellite is accurately known. This is usually true
since its motion with respect to earth station is small.
2) The space delay from earth station to geostationary satellite can be determined to
within less than 1 ns usi.ng conventional timing methods in TDMA. Thus, accurate
time at the geostlationary satellite is established [34].
3) The' disi:ance between the geostationary satellite and the navigation satellite
varies smoothly with time (28,33],  *
4) The location of the navigation satellite is known to e within a sphere of certain
radius centred at a known point, i |
If we calculate in advance the actual uplink delay between a geostatiqnary satellite
apd a navigation satellite; and know the timing on—board the geostationary satellite, we can
establish timing on-board the navigation satellite. The technique which we use in computing
the uplink and downlink delays between the two satellites depends on the estimation of the
navigation satellite location. The error in esiimating the location of the:navigation satellite
does not strongl)_r affect the caiculation of the uplink delays between the two satelljtes.
The computed results show that the estimated uplink and downlink space delay

between the two satellites can be calculated to a high degree of accuracy (a fraction of a

nanosecond or less).

52 DESIGN CONFIGURATION

In our procedure to solve.the problem of estimating the uplink delay between a

geostationary satellite and a navigation satellite in inclined orbit, we assume that the

location of the geostationary satellite is known at any instant of time with high degree of
" »
accuracy, which is in fact true.



116

Before going into further details, we want to emphaéize that the expression space
delay is used to define the distan::e between the two satellites at any instant of time divided
by the propagation velocity; on the other hand the expression uplink deélay or downlink dela);
is used to define the actual space delay taken by a message to propagate between the two
satellites. The term 'fixed’ is used here to denote the location of a satellite at the instant when
a signal is received. The sate{lité continues to move, but the location when the signal was
received is kept fixed. ' -

" Refer to Fig. 5.1 which shows the location of the geoséationar:y s;atellite G, and the
navigation satellite N, at time t = ‘t;.  Let the geostationary satellite G, start its
transmission at time t;- The transmitted message takes time T, to reach the navigation
satell%te at N, wﬁere NIN2 i;v, the distance moved by the navigation satellite during the
uplink delay T,,. Now, the navigation satellite at N, loops this message back such that it is
received by the geostationary satellite at location G, after a downlink delay Toq. Upon
receiving the message at Ga; the first piece of information we can calcuiate is the sum of the
lﬁﬁnk deI.ay and - .thek_ downlink delays (Tu. + Ty) which is then available at the

L)

geostationary satellite at G,.
-" Note that the total delays measured by the geostationary satellite at G, will
include the time delay in passing through the navigation satellite receiving-transmission.
circuits Tg, (which is of the order of nanoéeconds). Such a delay is known}in advance and a
proper compensation for its value can be done at G,. |

Assuming that the geostationary satellite has clock information from the earth _
station, therefore, the round trip delay ’I‘t can be measured, where: .

| Ty=Ty+ Ty (5.1
From Fig. 5.1 it is clear that T,, and Tyq are related as space delays if the

navigation satellite is held fixed at N, and the geostationary satellite moves from G, to G,
&
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Fig. 5.1 The relation between the space delay, uplink and downlink

J& delays
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during the time At = T It was shown hefore 5,6] that the change in the space delay
between the two satellites is u smooth, slowly varying function of time when hoth satellites
are in motion. Now, if N is held fixed at N, we expect that the-change in the space delay will
still have this same property. Thergelore, the space delays Tza and T\, can be related by

Taylor Series given by

LT (5.2
+ higherorder terms

(ll.N = N2

dgT
T,):]:le-i-ﬁtl_— +'2—'—,
dt G.N=N, L

Substituting for At, =T, + T,, in the last equation, and ignoring the higher order terms we

get
.. N 2 o
To=T 4T +T. O +wﬂ (5.3)
BRI gl g Nan 2! 2l N=n
Ve ’ a” LG N=N,
where - '
an = the change in the space delay when G is at G, (moving) and N
a g N=N, is at N, (fixed).”
9T = the chunge in the'change in the spuce delay when G is at Gl
o N (maving) and N is at N, tfixed).
at GI'N_'\Q moving) an 15 ab N, {hixe )

Therefore, if the valuesof

ar
at

Ealy
and -

GN=N, at

(}l,N =N2

are known, one can solve hoth of Eq. (5.1) and Eq. (5.3) for the values of T\,and T,.,. These

values are given by:

)
Jr - JaT
T":s =05 'I‘L 1+ — +0.5T . — (5.4}
- t g N=N ot e N=N
1 2 [ 2
and .
" Jo
ar aT A
T1<:=0-5TL[1 o —O.STL‘ ...._,I . . (5.5)
dat G,.N=N, a” G N=N,
\ .
. - - -
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If.

dT

at ’.Gl'N=N2

2

5T

>> 0.5 T‘ L — -
a? le N=N

the downlink delay. Ty, given by Eq. (5.4) can be rewritten as: - l

‘

y 3’[‘
Ty, =0.5 TL(I + - (5.6)

at

G, N=N, )
[n order to solve either Eq. (5.4) or Eq. (5.5), we need an expression for the ¢hange
in the space delay and the change in the change of the space delay under the condition that
the navigatio_ri satellite is held fixed while the geo‘stationary satellite is moving. .
Until now, we did not show how to predict the néw value of the uplink delay which
establishes timing on-board the navigation satellite. Referring to Fig. 5.1, let the
geoétationary satellite upon receiving the routed back message at G, retransmit a new
message which reaches the navigation satellite at N, Now, the new uplink delay which we
want to calculate is T, which is thetime taken by the messa;ge to propagate from GytoN,.
From Fig. 5.11t is clgar that T,; and T,, are related to each other as space delays if

G is held fixed at G, and N moves from N, to N, during a short period of time Aty = Tyy +

T,,- Since the space delay varies slowly with time, T,44 and Ty are related by the Taylor

Series: -
2
ar Ty + Ty &T (5.7)
T34=T23+CT23+T34).§ + 20 2 | T
: G=03.N2 -~ dt G=’G3.N2

where

aT [ _ = the change in the space delay if the geostationary satellite is -

at G=G,N,

fixed at G, and the navigation satellilte moves from N,.

Eew|f_‘5¢

' aT
© = | thechangein —
‘ at G=G,N, . .

G=GyN,

2
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From Eq. (5.7, T;4 can be calculated directly if the c.ierivutives of T are known
when N is at N, and moving and G is at G4 and fixed in addition to the calculated downlink
delay T,, from either Eq. (5.4) or Eq. (5.6). Therefore upon receiving the looped back message

‘\"\‘ Q)Lg\e geostalionary sutellite.ut 01 (before Lransmitting the new message at G,), we can solve
Eq.{5.7) an;! the value of the new uplink.dc!uy Ty can be caleulated. Thus, an expression for
the derivatives of lhé space delay under the previous condition should be available. As it will
be shown later, the derivatives of the space delay required to solve Fq. (5.4) and Eq. (5.6) are
dependént on the location of the geostationary satellite at G, and G, which are known
accurately, also they depend upon the location of the navigation satellite at N, which is the
second piece of information needed to predict the new uplink delay, ;I‘:]J..
Solving Eq. (5.7) lor Lhe value Ty4. we obtain
T

3
2] A

G=GyN,

. )
G—-G.,I.N2

2

/ ar |’ 2 dri -
-V{i-= ) ~(at, — )] — (5.8)
a G=0,N :

oo E B 2 J N
G=t,N, at” Ny o Te=G,N,
Ir
( ar 2 ('-l FT :
] — — ) >> (4T, — )
i ;=l:3,:~:_3 « a{-’ (}=I}3.N2'

which is always true since the LHS is of the order of unity and the REIS is approximately 107,

- -
then Eq. (5 8) reduces to: -
dr
1+ —
at G=GyN, _
T, =T, " 15.9)
14 A dr
A R
& lg=c .
L/"‘ - (:—(,3.N2
' -
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.
5.3 THE CHANGE IN THE SPACE DELAY [F THE NAVIGATION SATELLITE IS

FIXED §

At any instant of time t, the angle \ between the geostationary satellite subpoint

—/:;d the navigation satellite subpoint meuasured from the center of the earth is given hy Eq.

L

T (4.44)
cos\ = coskd cosA + cosisinQ sinA l (5.1
where |
Q = the angle rotated by the .nuvigution satellite in its orbit measured from the
equatorial plane. ‘-
Q ‘ ‘ = twylt + TT)
TT = the initial time phase of the navigation sutellite
i = theinclination angle of the navigatiop satellite arbit
A = Dngs T Opt- by
‘Dl.ungc- = the longitude of the geos_ta!.'i‘onury satellite subpuint.‘
$,n = the longitude of the intersection point between the orbital projection of Lhe
‘ .
navigation satellite and the equator att = (), }
- g = the'ungular velocity of the earth.
W = theungular velocity of the navigation satellite.
t = the reference time.
‘The spuce delay T at time tis given by:
T =d/C (S.Il}-
or ) - .
. T =(Hy" + H* =2 H Hg cosAC (5.12)
where . .
d = thedistance between the two satellites at any instant ¢, CTN
\
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.HN,HG = ‘the dis;tanée measured from the centgf of the earth to the navigation satellite
and the geostationary satellite respeétive!y.
C = the propagation velocity. .
Assumiﬁg that the navigation satellite is fixed, Q does not change with time. Thus
differentiating T in Eq. (5.12) with respect to time, noting that ) is the only time dependent

variable, yields:

g = (/2) — (_ H, H, %‘q"\ ) (5.13)
GN=N. (HN+HG—2HNHGmsA) -C GN=
Equation (5.13) can be rewritten as ' ) ‘
N
aT - HyHg acos A (5.14)

at | g \;_N‘_ d-C - at
By differentiating Eq (5.10) with respect to time keepmg Q fixed, (noting that

(AYL) = w ¢} we get

deos A E —
=[cosQ(—w sin A) + cosisin Q (w_ cos A)| (5.15) -
at GN=N E - E
. fix
or -
, ‘ Y
dcos A ‘/ . L ~
p - = wp[-cosQ sinA + cosisinQ cosA] . (5.16)

(.'r.N=Nrix

Substituting Eq. (5.16) into Eq.(5.14) gives:

-H,H, @ (5.17)

N E .
s [—cosQ sinA+c0515chosA]
G,N=Nr d-C

T
t

The last Equation provides the change in the space delay with respect to t1me

assuming that the navigation satellite is held fixed starting fron this specified 1nstant of

o

time.

Equation (5.17) can be expressed in terms of the latitude and longitude of the

, _ . .
satellite subpoint given in Appendix 2 by Eq. (A.2.13) as'follows:
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ar - Hy U o, _, ' (5.18)
— = cus sinn
t lgN=N_ d-C Lb[_u.r.N
_ L lix
where ) .
Pl = the latitude of the navigation sutellite subpoint at the instdnt ol time t.
n = (bLongN - ‘bl.ong(}

= thedifference in longitude between the two satellite subpoints at any instant of

4

Llimet.

Figures 5.2 and 5.3 show the chunge in the space delay

Y

Jr
o . :
1L TN = ’
. ‘ G N—ﬁx :
between a geostationary satellite and o navigation satellite Ipcaltcd in a 12 hour orbit (K=2),

/
The inclination angle varies from zerv degrees to 60° in 15° steps, such that TT'=0, and, the
. ¥

dif:ference in longitude c{)!_‘;ng(; — ¢ yis 15%asin Fig. 5.2 and 45° as i;l Fig. 5.3, Note hcré that
the discontinuity in all the plotted c-:l-u'ves represents L.hu situation when the contmunications
is blocked between the two satellites due to the location of the carth hétween them.
| Figures 5.4 and 5.5 are the sume u:s. Lhe .l"igs. 5.2 .and 5.3 except that the navigation

sulellit_e ';é It;cu!.cd in 16 hour orbit, il.e., K=135 where K is the nons$ynchronous lactor.
Figures 5.4 and 5.5 are plotted for an ihte:;vz;l of 48 hours in order to cover two revolutions by
the geostationary satellite und L-hree revolutions })y the nuviogat.ion satellite.

Let us now calculate the change in the chunge of the space delay with respect to
time when the navigation sutellite isfived

Recalling Eq."(4.48) which gives the formula for the change in the space delay

(when both satellites are mn'ving),'we have

. ¢
ar - _HN H(‘

% = ac 9K - oossinQeos At (1 —Keosileos Q sin A (5.19)




\‘t.

-

4.0

240

-2 .0

-4 IU

Fig. 5.2

«0

S

U 8.0
Let
n
~
&l
wn 8'0
=

124

Fa
t - [ 1 ] 1 ] I ) t !
o e ) o < o o o o o o o <
- ] - a a ~ & L] L] [ ] L] L] . - -
[4¥] - (4] ox o [a¥) -r o [=) o . o -
. ' ‘ e — - —~ o YA V)
. ' TIME-HQOURS
1] / -
‘ .
The change in the space delay ¢
- ' . - dr )
‘ - & —
, d lgN=N_ ' -
. . lix

between a geostationary satellite and 12 hour navigition satellite with

PlongG = Pon = 15% 1 = 02, 15%, 30°, 45° and 60°

-,



125

8,0  SE—— T = | T T | T T

6.0

USEC/SEC

4.0

W0
_210‘

"'4 -U

—-8,0 L i i ] ] ] 1 H 1 l
- a - - L] - a a - [} a - -
v - ] - D~ o o -~ w @ o tu ~
— — - - — o [\¥] o
TIME-HOURS
~ ﬁ”
-l
. 5
. Figfs3 The change in the space delay -\{\ :
ar |
at =
G.N _Nﬁx

between u geostationary satellite and 12 hour navigatinsatellite with

¢I.nngC - ¢0N = 45°vi = OD. l50. 30°, 45% and 60° - °



126

W09 PUR (GF " 0E "oG1 e0 = 17,61 = ™9 ~ V)" '}

Yus 911]]218s uoreSiAnu anoy gq pue jonsiieuce}sedd v usamiag

’\/

AR .:..m.. i o
- P )
1
Avjap aouds ayy ur adunyo ay, ¥¢ iy
SHNOH-3WI L . )
S - S [8] [N n n ) [ [
w0 b o, o mn [+« T b ) (e ] o n o -
5 5 5 5 5 5 5 N5 5 5 5 5 5
T T j T T T \, m T T T - T
- {007~

L 02T

J3s5/33sN

{

)

8

vy



127

. 09 PUB Gp 08,61 "0 = 1'.ap = N% — D3U"y

Yiim o.::B.mm uonBIATRY IN0Y g1 puR 331[1911s K10U0NBYS0aS © usaM)aq

| YN=No |

i . . 1P

o - Aujap aodds ayj uy 98ueyd oy,

SHNOH-3IWIL . " . .

- - + w w Cro n > - [N
oo L o [on] no w -~ o 12 n [=2]
- - . - - L} E ] » L] L -
[=] o ) o o o o o o o o o

~

ST=75

4 o*ot1

027

235/23sN



128

both A and d are functions of time, gi

o4 HN ”G ‘
— = q.C 'mE (K~cosidsinQ = sinA) + (1 —'Kcosi)cnsQ(mF cos A) | +
at” TGN=N. ’ o |
HNII.. o . - _ — 1\ ad
W [(K—cosilsinQcos A + (1 —~Kosiicos Q sin ;'\I-( — ) —
o
c d= 7t lgN=N
. Fis
(5.20)
i . S
Using Eq;!(S. 19) the last Equation can be reduced to:
. .
T %“;{9 “[Ccosi—K)sinQsin A + (1 —Keos i) cos Q cos A |
— = w $i— : - $1)¢0s Q cos
2 |oney : g0 '
v \i\_/
ar 1 x| (5.21)
dt d 4t lgn=N
' fix
where:
aT/at = thechange in the space delay.

Consider the last term in Eq. (5.21) which is given hy

dat' 1 o df 1 ad/C |
—. .= = —_— = (5.22)
ot d ot ;

GN=N_ - dt /C a iNan
) Fis fix
This reduces to:

dT 1 od dgit 1 JT
—-. - = === (5.23)
Mt d NigNn=v_ T algnav,
] fix ' Fix
Substituting from £q. (5.23) into Fq. (5.21) vields
PR H ol 7™ _ .
— = ———— [lcosi—KNsinQsin A + (1 = Keos i) cos (QQ cos Al
a” lon=x~_ d-C -
fix
5 dT 1 4T
_—— {5.24) .

dt T ot Ign=n._
T lix
The change of the change in the space delay has been plotted in Figs 5.6, 5.7, 5.8

and 5.9 for the same cusc:; plotted in Figs. 52, 5.3.5.4 and 5 5. re

speetively. From Fig. 5.6 to
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Fig. 5.9, it is clear that the chung}: of the change in the space delay varies very slowly with

time (maximum value is slightly greater thun 1 n‘s/sl‘z) which shows that Eq. (5.6)"ill perform
. @

toa high degree ol accuracy by tcomparing the values of

dr S o7
— te the valueof0.5 T = _
| ot ”'N=NI'1\ - (":\2'\1'1,\
see Kq. (5.5)), \,
8.4 THE CHANGE IN THE SPACE DELAY IF THE GEQSTATIONARY SATELLITE

He;'e, we want to find an expression for the cHange in the space delay between the
navigation‘sutellite and Lhe_geostutit;nury satellite when the latter is h::ld fixed over a short
-interval of time starting [rom any instant t,

As in Section (5.3) we are oing to differentiate the expressipn of the space dela
g ssip p y

LY

while holding the geostutionury satellite fixed, i.e., the angle A does not change with time

stacting from this instant. Reculling kq. (5.12) und differentiating under the previous

condition noting that \ is only dependent on time, vields T

JT 1/2 ocos A
— = — 1 =2Il_H,
d-C_ NTGooy

] ) (5.25)
tlg=g, ~ G=G. N

(KRN Fia

Differentiating Eq. 15.10) with respect to t while hoiding the geostationary satellite

fixed, noting that Q is the only time dependent varinble, gives:

X0s A = R . . -
=l —wm sinQlens A F cosido, cos Wisin A 15.26)
! ot G=t; N -0 5
fiv’
or
dcus A N~ . ] )
= wl-sinQeos A + cosi cos Q sin A {5.27)
a I . S
(:—h!.“,.\

Substituting Eq. (5.27) in Fq. (5.25) und simplifving produces:

\ BN
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HN-HG

l i (5.28)
G=G, N d-C
1X

ar y
Et- mg(sichosA — cosicosQsin A)
The last equation can be expressed in terms af latitude and the longitude of the two satellites.
They are givén in Appendix 2 by Eq. (A2.24) as follows:

ar

at

H_ H
_ By Hg (5.29)

et N = 4o W [sin icos8 cosn sin ¢y T sinn ms:lmS(plmN)I
ST i : - ,
L)

The chun;ge in the space delay

' aT
‘ ®IG=G. N .

from Eq. (5.28) or (5.29) has been plotted'versus time in Figures 5.10 and 5.11 for a navigation

sutellite located in a 12 hour orbit. ’I‘-he inclination angle varies from 0° to 60° in 15° steps

while the difference in Iongitude ¢'Lnng(} -¢,5 = 15°in Fig. 5.10 and ¢an_:G -,y = 45%in

Fig.5.11. . - |

Figures 5.12 ahd 5.13 give the change in the space delay as-.in Fiés. 5.10 and 5.11
respectively but for the case of 16 hour orbit.

Figures from 5.10 to 5.13 show that the maximum value for the change ir.l t!r;e spuce
delay is £12 ps!s which is higher than thut shown in Figures from 5.2 1o §. 5 when the
navigation satellite is held fixed. The reason is simply bEC'\lle the nungatlon c,atelhte m-
12 or 16 hour orbit is much faster than the geostationary satellite in a 24 hour orbit.

'To lind the change in the change of the space delay when the geostutionary sat‘elliw_
is Mxed,.we follow t..he sume steps which we followed in Section (5.3). Here, however, with G

» . .
fixed we keep El}e angle A constant, thus by differentiating Eq. (5.19) under the previous

.

condition and after simplification, we have:

2T gl
- = m ((K—cosi)osQ cos A — (1 — Kcos i) sthmt\]
at- G:Gr. N d- C
[ 3,4
ar 1 ar : | 15.30)

gt T at G=(,. N
: fix
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The change in the change in space delay given by Eq. (5.30) has been blotted, in

F‘igur;‘s 5.14, 5.15, 5.16 and 5.17 for the same cases plotted in Figures 5.10, 5.11,°5.12 and
5.13, respectively. :

Figures 5.14 to 5.17 show that the maximum change if the ch'unge in the space
delay does not cxcce_d the value 9f3ns/52: thf_:refn‘t"e,_f'lq. (5.9) is a suitable fermula to
calculate'T,, with high degre‘e of accuracy.

X

5.5 ., THE CALCULATION OF THE UPLINK AND DOWNLINK DELAYS

It is now clear that if the location of the navaganon satellite is known accurately,
the space delay derivatives given by Eq. (5.17), -Eq. (5 24), Bq. (5.28) and Eq. (5. 30) rﬁ\n be

calculated. Hence, substltutmg these derivativeg in Eq. (5.4) and Eq. (5.8) the new uplmk

- delayTan be determined.

. Al.thoug'h ihe location ol"Lhe navigation satellite is not known precisely, we assu
that its location in spacé does lie within a sphere which has a known center and radius. We
designate this the sphér‘g\o%-rlor and find the maximum effect of thiserrur upon the

‘gprwut.wes ofthe space delav given by Eq. (5.17) and (5.28) if the navigalion satellite located

int insidé such a sphere. The reason why we consider the effect ofthe sphere of error

ch_u_nge in the spa_ce delays given by Eq. (5.17) und (5.28) o-nly ‘is'that the computed
cesults using Eq. (5.6) and Eq. (5.9) give a high accuracy in.culculafing the new uplink delay.

Now- to find the effect of the chunge_ in nu\jigution satellite location upon the change

in the space'delays, we find the gradient of the change in the sp:\ce delay given by the Eqgs.

(5.17T)and (5.28)7in three .orthugonal directions in spuce al the center of the sphere of ervor. By

calculating the magnitude of the gradiem; at the center of the sphere of erro;, the maximum

change in the space delay per unit length is obtained in the direction of the gradient., As

) . . ¢, . L.
assumed before, the navigation satellite may be located at ady point inside the sphere of

‘ . | »
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error, therefore; for certain; one diameter of such a sphere will coincide with the direction of
the gradient. Thus tMrror in the change in the space delay due to the location of
the navigation satellite inside the sphere of error will be equal. to the magnitude of the

gradient- miultiplied by the sphere of error.radius. Such an error should be added to or
subtracted from the chdnge in the space delay (as we will explain later) in order to calculate

the estimated value of the change in the space delay with maximum error. Now, the

*—f“""\

estimated changes in space delays are available; therefore, substituting in Eq. (5.6) and then,

L]
-

Eq.(5.9), we can find the neéw estimated uplink delay. v »

551  ESTABLISHING THE PROPER COORDINATES g
’ In order to find the gradient of Eq. (5.17) and Eq. (5.28), we should sélect the prope;
coordinates suitable for using such equatiQns. Refer to Fig. 5.13 which shows the orbital‘
projection ofbo_th the equatorial orbit and the navigation sateilite at any instant 'of'timg ton -
| the surface of the earth. FN——
It is clear that A is the pd'int of .i;terséction between the. two orbitzﬂ projections at

time t, such a point will have a longitude equal to b, —wgt . where ¢_; is the longitude of the

point of intersectionat t = 0,

» : ~ Let the navigation satellite subpoint N’ have a latitude and longitude Doy and - ;'

- fbungNgespectively.

The Cartesian c‘cnordinates X, ¥, 2 of"N' is given by: ' .
Xy. = R cos Pp oo €08 (pLongN 7 . | {5.31)
Yy = Reosdy ,osin ‘pLongN : (5.32)
Zy = Rsindy, . o (5.33)
where R. is the radius of the earth. | \/’,
_ N .,

</
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By rotating the x axis and the y axis Lthrough an angle G,n — @et in Lthe equatorial

plane, the x axis becomes x' {coinciding with the line OA) und the y axis becomes y'.

The 'ncw

values for the navigation satellite subpoint coordinates <’y und y'\. in the Cartesian

coordihu(ﬂf;ystem ¥, y'isgiven by

Xy = Xy €0 (Do —wgt) + yN.sin(q.)nN-mEL)

Yy = —xN.sin(cpoN -wgt) + yN.cos(¢uNer£)
Substituting from Eq. (5.31) and Eq. (5.32) in Eq. (5.34) yields

X'y = Rcos b [0S (N —wgt) cos (pu)ngN + sin (q)nN—mEtlsincp[mgN

this reduced to

N = Re0S Dy COS I,y + wgt=d,y) )

From Eq. (4.11) und (4.15}, we have

( .cusQ
O Ploney * 9t~ Oand = 2 LN
L

Substituting from Eq. (5.38} into Eq. (5.37) gives .
. 'y = ReosQ
Similarly, substituting for 'xb;ﬁndryN‘ in Eq. {5.35) yields

‘Y'N' = Rcos tl"'l."lt.N sin f‘plnugN + wEL_q)t)N)

Recalling Eq. (4.2) which is given by -
- i | '_ ons 18in QQ
sm(q)ungN + Wy = —

AL .
~H OS Bt en

Substituting into Kq. (5.40) vields

- ¥y = Reos t__v . -

Substituting for sin G o 0BG 15.33) from Fg. (4.1) gives.

N L}
z'ye = RsinisinQ i
1

(5.34)

(5.35)
(5.36)

(5.37)

(5.38)

{5.39)

(5.40)

(5.41)

(5.42)

(5.43)

Now if we repluce the dimections x. ¥,z by Z, X, Y respectively we can rewrite Eq.

(5.39), Bq. (5.42) ind Eq. (5.43) us ma?ﬁws:m




Equations-(5.44), (5.45)

Xy = R sin Q cos i
. YN. = Rsianini

ZN. = RecosQ

147

{5.44)
{5.45)

(5.48)

and (5.46) give us u new set of Curtesian coordinates,

Comparing these equations with the relation between the Cartesian and polar coordinates,

~ wecan say that the equiv

i. Thus the gradient can be caleulated using the formula:

v

where apy, a,, and a; are the unit vectors in the directions H
N2 i

-5.5.2 " THE GRADIENT OF THE CHANGE IN THE SPAC.E DELAYS

9 LN I
= —q — —a —— —a
o "My g 0Q TR HsinQ 3

N+ Q and i, respectively.

alent polar coordinates for the navigation satellite will he Hy, Qand

(5.47)

Now to find the gradient of the change in the space delays with either of the Lwo

satellitesbeing fixed, we a

-
I

: — ‘ .
make the derivations shorter we are going to use the following formula:

-

JdT o
V — = —(1vD)
- at dt

Substituting lorthe-gradient from Eq. (5.47) thig gives:.

iy

2 LV —=
ot

ghere Tis given by Eq. (5.12), noting that X in Eq. (5.12) is given by Eq. (5.10).

u(a’l‘ 1 4T 1

- — a + — -
ataHy My T HaQ A H,, sinQ

JdT
-— a.
di '

)

pply Eq. (5.47) directly to cither Eq. (5.17) or Bq. (5.28). In order to

(5.48)

(5.49)

Ctmside{ the cumpnn‘enl, of the gradient in the H direction. This is given by:

2 2 .
o1 _ J \/ “\ + H(: —‘2 “N I[Gg)hl\
ally — allg, i C
ar _ 2 H';., -2 H(} cos \
atll - 2 2, )
. N _ 2C\(HN+ll”—2HNHGc0:»,\

(5.50)

5.50
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The last equation may bhe put in the form
oy - H cosd) (5.52)
' BHN d-C ) ‘
Now, consider the component of the gradient in the Q direction noting that ) is the only
variable in Q. This gives: : ’ . ~
L 4T 1 3 v HZN + H'é -2 ”N H(;cns.\ (5.53)
HN aQ HN aq - C o : .

H, 6 2 2 Ny Q
N N \/(HN +HG_2”N“Gmh'\} C

Substituting for cos A from Eq. (5.10) and 4dfter simplification we get:

i1 47 HG .
‘G.O(. H—N‘ 5 = c-i? [s'Lchqu — cosicosQ sin A : X (5'55)
Consider the componentoflf!e gradient in the i ditkction: .
. ' | 2 2 . ' iy
[ ar 1 3 \./HN +He -2 H, H cos ) ‘ (5.56)
HysinQ i HysinQ ai ) C
Substituting for cos A and d yields:
1 4T 1 —2HH, 5 - - .
—_— — = 2 G —{cosQeosA + cosisinQ sin A (5.57)
HN. sinQ o H\J sinQ 2d-C al i
B . [\ . ) ,'\
After simplification we get: - o . ‘-
) i
i Jarv c {5.58)

—_— = — sinisin A
t,sinQ ai d-C

Now the grudient component of the change in the space delay ifone satellite is Nixed

can be caleulated siqiply by differentiuting Eq. (5.52), Eq. (5.55)and Fq. {5.58) \vilh\i‘eépect to
time-for two-cases. \

vl

——
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LN R \ Fl
Case 1 - The Gradient of the Change in the Spuce Delay if N is Féd: ]

€. ’ : a

Consider the n: jgation satellite is held fixed, therefore, Q does not change when
we differentiate the componer_ml of the gradient of the space delay with respect to time.

Differentiating the rat;iial cmu;.)onenl. of the gradient given by Eq. {5.52) wilh
respect Lo time gives:

9 J’l‘
r)t ﬂl[

d
=— ( E (Il - l‘[ccos‘\l)

t5.59)

GN= GN=N
fix

Note here,fﬁut cos A and d are the only variables dependent or;—t.i_rn-é, t.hex;e!'ore Eq.

(5.59) can be written as

o )
99T Y 'ms'\)( od ) L, Gosd (5.60)
toH - T at - TdC 6 a .
dtaHToN=n, k,-d C CN=Ng d 3 CN=Np,
» JSuhstitLitmg for . .
= U5 acosh |
d-C at CN=N o
. < fix
from Eq. (5.14) and noting that .
Calgnan. & lon=n, -
fix lix :
" we can write Eq. (5.60 as follows:
J g‘[‘ 3 l’l\4 _ ”(:L'()S.\ ( JII )+ l (:rll, (5‘61)
dllN at GN=N. d° gt GN =N I-{N at CGN=N.

The last Equation cun he reduced to;

}l (.ns\—[l 1

J 3 (’][,. ¢ .'-3\
- 1 L )__. | 5627
Jf‘lN G.N.= \, ”N M lgN= Nt'ix .

Let us consider the Lhd.!'ll.,(.‘ in the gradient of the space delay in Q direction; that is:
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. ' \)" 2o
9 1 4T s H
—_—_— = —( & {sin Q cos A — cosicos Qsin /\)) (5.63)
a Hy Q lgn=n. ét v d-C GN=N.
: fix A fix
or -
1 g ar Hg sinoos . Q"A) x :
-_— = . = 2 114 CUS I\ — COS1C0S sin - )
HyaQoat lon=n. 42 . R -
H (.a \\ ' — )
G E : ) — (5H.64) .
. + {—sinQsinA - cosicosQecos M .(
d-C .
Noting that - .
b 1 ad o dr
C.atlgn=n_ & lgynay _
fix S fix L .
* Thé last equation can be written in the form: ¥ . 4
L aar Hg l{odsicostinA —sin Q SIWATT | |
— = s = = =
f INe= d =
Q%t GNeN . i) _ ¢t lons=

W

~ —Z (cosicopQ - ?_ (5.65)

cC .
apgnest | Jdirecting of ¢fre chahge in the space
delay. The gradient component of the ciwge it

" The last equation gives the gradient ¢
. \Va -~
. - -
i 1ms #¥ in the i direction can be -
calculated by differentiating Eq

- (5.58) with respect to time: notigg that A %e
dependent on time. ‘This gives: :

Sin A)

a 1 qr ) a Hg 5
— - — — == ginisin A :
it HNs:nQ di lon=n. a d-C GN=N.
‘ ' fix ' fix
‘Thus, we have -
— __t 2 E}I = -E..I._ sin i ‘-——-Hm Az ’ : ...__mE s A = {5,67) - >
HosinQ ai ot lgnay. - 2 GN=N_ d '
.ot ' ‘fn lix .
‘T'he lust equalion can be reduced to
1 aar Hg - JwposA Gaa ap (5.68) "
—_— = — sini - —
H stan at. N=N_ d sin C d dt lgNn=N
[ 59

X 4
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‘. The magnitude of the gradlent of the change in the slﬁce delay and its Lhree'
erpendlcul'ar components given by Eq. (5 62}, (5.65) and (5.68) have been plottcd in Figs.
5.19, .5.‘20. 5.21 and 5.22, where the magnitude of the gradient is equal to the vector addition
of its components. | |
Figure 5.19 represents the case of a navigation :,dtelllt.e in a 12-hour .orbit with
mclmatmn angle | 1 = 15°, TT = 0 and the difference in lnngttude (¢Lmu_(; (pnN) =0. l':gure
5 20 is plotted for incljnation angle = 45°, TT = 0, aund ((bngG $,n) = 30°
Figures 5.21 and 5.22 are plotted when the inclination angle i = 60° with ((plmn;G -
N = 157 and(tpI apG ~ $on) = 45° respectwely
The cbrresponding gradient components of the' change in the spuce delay in the
radial direction H, the latitide d1rectmn b and the Iongltude dlrectmn (bngN for Lhe-

case when the navigation satelhte is lixed have been derwed in Appendw 3, and dre given by

: H A~ H .
a_ar =(l_ L 67" )__ (5.69)
. . ) 2 TN
r)HN at (,'_V:.\ﬁx H.\' ' d Soat b, —@(“\
+ 4r
i P 3 ‘ - ”G sin bn ot N=Ng.  wgsing {5.70)
Hy 950t Ton= Nrix d ¢ ¢
| L. 4o _ "M |sing ar iy BT
l[.\.cnmp[‘uw Ay o O GN =N !d d dat G,N.—.Nﬁ.\ - C
wherg i - - : )

n= (b[.lllll;N - (blmu;(}

Case 2 - The Gr adlent of the Chagm the Spa.ce De[ay if the Geostatlundrv Satelllte is Fixed

§ Now, to [md the gmdlent of the change in the space delay whtle keeping the
goostatmnary satellite fixed momenturily, we dilTerentiute Eq*(5.52), (5.55) and (5.58) with
? ) i . ?

-
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“respect Lo time while holding A fixed. The gradient cumponeht of the change iri the spuace
delaf_n the radial direction apy is given by: - P
/‘ . . kS .
ar a 1
i —[-[— = - d_é H c:)s\l “ﬂ(5-72)
®ly Te=gpn A G=Gp N
Noting that d and A are the only variubles dependent on time, the lust equation
becomes: an
4 4T dd/e
cia_H__ . =——2(H —ll cos\) — -
Y (J=Gfix'N d , G=(.rﬁx.N
L ( b, 2222 ) (5.73)
T ac C dt G=G, N
Now, recalling Eq. {5.10) which gives cos A and dlfferentmtlng it with respect to t
while keeping A = constant this gives
) deos A +
ud . = e (~sinQeos A + cosicosQsin A) (5.74)
dt lg=g, N ’ T . .
fix’
Substituting Eq (5.74) in £q. (5.73) and ulter simplifying we get
d 4T : 1 dr ‘ _
———— = - (H — H_.cos)) — /
dH, &t {go =N d? G dt lg=G. N ‘ _ ~
! Hix ' lix .
. . , : ‘ (5.75)
wg H

& {sin Q cos A —osicos Q sin A)

4
d-C
By making use of Eq. (5.28) the last equatlon can be tewntten in the form:’ -

(H cn%A.—H L )J[‘ ' _-5\‘(5.761 -

(.u(.r

dr

alf,. Jat |52 C\N > H
The lust ecqudtion gives Lhc gradient uf the change in the spuce delay in the |

direction 1fG i5 fixed.

To find the gradijent of thechange in the space delay in Q direction if G is fixed,

differentiate Eq. (5.55) with respect to time 'u/nd}tbe conditiﬁ that A is coSstant. This,
' _ \ ‘ )
* . -
N

- .

N " -

yiclds:



-

‘ kector addition of its components given by Eq. (5.76), (5.7 Aqd\ \
. (5.82) . o > <
) Ny )b "'J\\

B

157
X H '
1 .9 a1 d 3
—_— —l = — '-—[sichosA—cosicnstinAI’ (5.77)
HN aQ d lg=g. N at d- : : G=G. N ‘
fix’ fix
Noting that Q@ and d are the only variables dependent on iimc, we get
1 a ar ~H; , o adiC
r (ﬁ I . =_ 3 [sin Qcos A — cosicosQ sineh\] —— L
N G=G, N d : G=G. N
_ He g ' r
e -d—c—;\[cosqcoszx + cosisinQsin Al ¥ (5.78)

By making use of Eq. (5.10) the gradient of the change in the space delay‘in the 3

-

direction will be: . _ @ -
: ~H : - '
1 a dr ar
E— (ﬁ I - = 2G [sichos;’{-cos,jcostinM; e
v 9.2 =g d ! - G=G, N
H . w ‘ .
+ 25 s | . - (5.79)

The last component of the gradient which is in the a; direction can be found by

differentiating Fq.(5.58) with respect to time.yielding: \
> - : . )
I adr g H | '
T~ “" -, == = (—G* si0 i sin A)l e ; (5.80)
HN:;an Al g=G. N a d-C C=G. N :
L . lix* fix
. s Al
Keeping A fixed, the last equation becomes * .

1 ¢ o
H\,sinQ di ot

: -\ H o _
\ 3 -3d/C R .
. = .(lsinlsin/\- p l ‘ f T {5.81)
~ 2 . v
G=tig N d L4t Te=g,

(.4
Thus, the gradient of the chunge in the spuce delay in a; direction if G is fixed will

be given by: .

{0 o aT e  ar

: - — = - —sinisin A —

Qai a G=G_ N dz at G=G,. N
R fix 4 WX

(5.82)

1¢ total gradient of the change in the space delay il the geostationary satellite is

fixed can be calculuted't
~

-

L3 * . ‘_\_J !

" : -_. . A
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The gradient and its components has been plottesi, in Figs. 5.23, 5.24, 5.25 and
5.26, where the vertical axis represents the gradient or its components in ns/(s-Km) and the
 horizontal axis represents the time measured by the reference clock.

Figures 5.23 and 5.24 are plotted for Lhe case when the navigation satellit

- :
located in 12 hour orbit with an inclination angle equal to 30° with TT = 0, ‘bl.ung'(} —d,n =

anc{ ¢LongG _(buN = 45°,‘respectively. N

~
Flgures 5.25 and 5.26 are the same as the pre\uous thureb“&:t the mclmntlon

angle equals 60° with Plonge =P = 30%in I‘lg. 5.24 and ¢LungG-¢DN = 45%in Fig. 5.25. . i
. 3 o

5.6 WQCOMPUTED RESULTS AND THE ERROR

From the previous analysis it is clear that the new uplink delay can be estimated
) 3

by knowing the approximate location of the navigation sa;:ellite. A computer program has
been developed to calculate the new estimated uplmk delay and to find the error in bts
calculation,” The program can be divided into two. parts., The ﬁlbt part .Jz-,aumes that-the
location of the geostat:onury satelfite at G, and Gy is known precisely: the localion of Lhe
navigation satellite at N, (and consequently at N,) is precisely known: und the tound trip

time T, is accyratel\ measured. Then, ’1‘12.'[‘,J and)"!:H can all be caleulated precise!y.
]
S ' S
T}»e second part Assumes the same cond:@ns as the first part except now the

navngauon :.dtelllt\éTBtJtmn at N, is not prccnbely knnwn The values for T Ty, and T,, are
b
recalculated and compared with the previously computed accurate values. The di[Terer}_ce is
e ) . i
then the error. _ o : i

" 7 Note that all the caleculation of the second part should take plau, on board the

genstatlondrv satelllte before Lransmlttmg the new messages. .

<
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With the aid of Fig. 5.27.:, we can summarize the st";ps a‘s follows: '
- By knowing the location oFG1 dnd‘:l atany instant of time t. we can calculate the
. e
space deluy T (g using Eq. {(5.10) and Eq. (5.12).
2) Holding the geostationury sutelhte fixed at Crl we caleulate: 1
a) .The change in’the space delay and the change inYqe change in the space
delay if the navigation satellite is at-N | and mnvir.lg fdam Eq: (5.2§},und
* (5.30) respectively. ]
e b) Using Taylor Series we can calculate thé theoretichl value of the uplink~
delay which is given by:
' T =Ty + Ty < * r_fl f}j ' ‘ o83l
J‘ A le=gN, 20 5? C=GN, s~
' ¢ Moving the navi'gaf.iop satellite from its location at N] un‘angullur distanc'c
e | corrésponding to the theoretical delay T/ 9n the Lrue spuce delay T, can he
. .'l;‘"“!:v caleulated using Eqs. (5.100and (5.12). - . " .
* ", The dlﬂ'erence between the true value of space dglo.y FU and the
-
" theoretical value Ty, in ns is plol.ted in Fig. 5.28 lor the case of a
. nuvig'ul.ion satellite in'l2 hour orbit with inclinution angle it having values
/ U°, 15°, 30°, 45° ;..lnd 60° while the diffecence in lungitude Prong; - oy =
45‘0_".
’ d) Moving the navigation satellite a distunce( correspondi

$,

¢

-

Uty ’l'l., meuysured
- . L

.from itsdnitial location at N, we can find the exact loca

navigation satellite Ny, upoen receiving the message transmitte by the

. . t
geostutionary satellite at G
b

/\;*b .
-' o, “../

ion of t.he;\

<

Lty
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Moving the geostationary satellite an angular distance corresponding to the true _

up-link space delay T, o we can find its location G, when the message was received

by the navigation satellite at N2 Thus, from Eq. (5.10) and (5.12) we can calculate

the space delay T,, between G, and N,.

Holding the navigation satellite fixed at Nz we calculate:

a)

b)

c)

d)

The change in the space delay and the change in the change of the space
delay from Eq. (5.17) and Eq. (5.24) respectively.

-
Using Taylor Series we can find the theoretical value for the downlink

¥’

space delay T,,,, from the relation:

| T2 21
aT "22 d
Toawn =T+ Ty o Tor 2

= 2t =
G2.N N2 at G,_,,N N,

L

Moving the geostationary :satellite from: position -G, a dis:‘zrﬁce
corresponding to Toswn anﬂ recalling Eq. (5.10) and Eq. (5.12) we can find
the true space delay Ty,

Moving the geostationary satellitg from G, a distance correspondiné to Tps,

we find the location of the geostationary satellite at G,

Now the information available on-board the geostationary satellite after the

complete transmission loop G, N, G, is given by

1.

2,

. The total space delay T, =Ty + Ty from the steps 2)cand 4) c.

The location of the navigation satellite at N, (which is the center of the sphere of

error) from the step 2) d and the location of the geostationary satellite at G, and G,

from'steps 1) and 4) d hsing the same procedures, we find the precise value for the

new uplink delay T,,.
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Part2

Now we start the second part of the program which is developed to estimate the
new Qplink delay T, .. By knowingthe location of G, the cénte_r of the sphere of error N, and
it.s‘ radius r we cun calculate the estimate values for the uplink delay Ty and the estimate

-

downlink delay T, - as follows:

D The total space delay for round tgip which is
( : T, =Tog + Toge | (5.85)
2) Substituting the location N, and G, in Eq. (5. 16) we can calculate true value of the

change in the-'spuce delay if the navigation satellite is fixed at Ny and G, is moving.

3) Substituting the locutions.?f the geostationary satellite at G, and the navigation
satellite at N, in Eqs. (5.62), (5.65) and (5.68) we can calculate the gradient
components of the change in the space-delay if.the navigation satellite is fixed at N,
and the geostationary is at G, and moving.

4) From step 3 we can.calculate the total gradient, and b‘y knowing the radius of the
sphere of error r, the maximum error ERRI in culcu[dting the change in the space
delay-can be found simply by multipls ing the total gz:ucli{gﬁhy the radius r.

5 By addifig the maximum error ERR1 culeglated from step 4 to the change in the

-
space delay calculated from step 2 we can find the estimate value for the change in

the spuce delay. -
Substituting this value in Flg. (5.6) we cun {ind the estimated downlink '[‘._,SE .
' ar
Ty =05 "[‘L 1+ — + BERI ' (5.86)
- g N=N, ‘
) e . 1 2 ) )
6) Repeat step 5 but this time subtract EI’{RI from the change in the space delay. Find

another vglue for T4z and comparing Lhe?. two values with the true space delay Eéa

calculated from step 2.c in the first part. We then select the value of Ty which has

J

the higher error.
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By

Now, we start to calculate the estimated value of the new uplink dela?a.m.

substituting the location N2 and G, iﬁ Eqs. (5.28), (5.76), (5.79) and‘(5.82), the
change in the space delay and the compunents of the gradient can be calculated
respectively if the geostationary satellite is [ixed at G, and the navigation satellite
isat N, mm:ring. )

The total gradient of step 7 can be calculated and the maximum error of the change

in the space delay ERR2 equals the total gradient multiplied by the radius of the

_sphereoferror r.

By adding ERR2 to the change in the space delay calculated from step 7 we can
calculate the estimated value of the change in the space deluy. Substituting this

value and the estimated downlink delay Tyyp culculated from step § in Eq. (5.9) we

cun calculate’the estimated value of the new uplink delay T, which is given by:

“ 4T
( L+ = + ERR2)
dt G=G,N, (5.88) *
Tyae = Toge a '
(1 _= ' + l-".lmz)
A ta=g N,

Repeating step 9 but now subtract ERR2 from the chunge in the space delay, we get
another value for the estimated uplink delay Tysg. Comparing the two values of
T, With the precise value tpart 1), wé choose the value of T, Which has the

highererror.

The highest, the lowest and the average values of the maximum error (in ns) in the

estimated value of the uplink delay Ty oceurring over a period of 24 hours are tabulated in

Tables 5.1 to 5.6. We assume a navigation satellite located in a 12 hour orbit with TT = 0,

and five different values of the inclination angle i. Also we assume five different values of the

angle drong - P, and six dilferent values of the radius r for the sphere of error (1 km, 2 km,

5km, 10km, 50 km and 100 km).
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Tables 5.7 to 5.12 document the same information for a navigation satellite in 16~
hour orbit. Here the errors are calculated over a period of 48 hours to cover two complete

revolutions by the geostationary satellite and three compiete revolutions by the navigation

‘satellite.

Figure 5.29 is plotted for the maximum values of the maximum error versus the

radius r of the sphere of error. It is clear that Fig. 5.29 presents the design chart for the

muximum pessible error (occurring in practical) in estimating the new uplink delay Task

57 .  CONCLUSIONS

This report examines the possibility of establishing accurate timing on board a
navigation satellite in inclined orbit using a timing reference from an earth station. By using

a geostationary sa.l.ellite as an intermediate link between Lhé. earth station and the
navigalion satellite; an effective method for predicting the uplink and downlink delays
hel.Qeen the two satellites has .heen established. This method depends upon esti':jnuting the
locution of the navigation satellite in the space within a sphere of different radii. Such a
method has L_he advantages of easy i‘inplcmentution and high degree of accuracy. -
Based on the results presented in the preceding sections, we can conclude that: '
l. For navigation satellites at lower altitude than the synchronou_s _satcllite:;_,’u
- -guostu'l.ionury satellite 1s capuble ul"obsc-rving the navigation satéllite throughout
its entire orbit [28,33,35).

»

2. An accuracy on the order of few nanoscconds or much less, can be achieved for

- predicting the uplink and downlink delays by using this method.
3. The accuracy of the predicted uplink downlink delays can be improved by

estimating the location of the navigation satellite within u smaller sphere, which is

available in practice {36,37,38). _
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-

Now, since accurate timing can be established on board the navigation satellite,

the need for the fragile atomic clock on board the satellites can be e[iminute_d.

-
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12 Hour Orbit Navigation Satellite and Sphere of Error Radius = 1 km

[ne. Anale i MAX ERR MIN ERR AVER ERR
¢!n|1gG_¢uN ne. Angled ns ns ns
0.0° 0.2658 0.1139 0.1662
15.0° 0.2670 0.1105 0.1647
0.0° 30.0° 0.2627 0.1021 0.1559
g 45.0° 0.2620 0.0904 "0.1437
60.0° 0.2633 0.0815 0.1314
0.0° 0.2663 0.1143 0.1652
15.0° 0.2630 0.1117 0.1642
15.0° 30.0° 0.2589 0.1065 0.1602
45.0° 0.2419 0.1013 0.1496
60.0° 0.1993 0.0996 0.1337
0.0° 0.2667 0.1146 0.1657
15.0° 0.2604 0.1127 0.1655
30.0° 30.0° 0.2456 0.1114 0.1652
45.0° 0.2071 0.1051 0.1539
60.0° 0.1859 0.0838 0.1403
- 0.0° 0.2672 0.1139 0.1659
15.0° 0.2621 0.11354 0.1660
45.0° 30.0° 0.2405 AL 11352 0.1657
45.0° 0.2232 0.0979 0.1548
60.0° 0.2216 0.0739 0.1419
0.0° 0.2676 0.1132 . 1662
15.0° 0.2650 0.1130 _0.1643
¢ 60.0° 30.0° 0.2575 01112 0.1652 -
. 45.0° 0.2513 ~ " 0.0925 0.154Q,
- .60.0° 0.2502 0.0703 0.1404

Table 5.1
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12 Hour Orbit Navigation Satellite and Sphere of Error Radius = 2 km

Ine. Angle MAX ERR MIN ERR AVER ERR
(blnngt}_{buN ne. Angiet ns ns ns

0.0° 0.4337 0.2488 -0.3041

15.0° 0.4348 0.2439 0.3013

0.0° 30.0° 0.4287 0.2312 0.2388
45.0° 0.4274 0.2054 0.2701

60.0° 0.4290 0.1680 0.2487

0.0° 0.4343 0.2486 03031

15.0° 0.4288 0.2472 1.3013

15.0° 30.0° 0.4213 0.2395 0.2943
45.0° 0.3961 0.2204 0.2754

60.0° 0.3219 0.1866 0.2471

0.0° 0.4349 0.2487 0.3032

15.0° 0.4246 0.2489 0.3022

30.0° 30.0° 0.4006 0.2495 0.2962
45.0° 0.3425 0.2130 0.2767

60.0° 0.3253 01734 0.2534

0.0° 0.4354 0.2489 0.3034

15.0° 0.4269 0.2479 0.3023

45.0° 30.0° 0.3934 0.2453. 0.2969
45.0° 0.3739 0.1939 0.2781

60.0° 0.3720 0.1584 0.2573

0.0° 0.4360 0.2490 0,3039

15.0° 0.4318 0.2440 0.3003

60.0° 30.0° 0.4200 0.2288 0.2973
45.0° 0.4125- .1935 0.2803

60 0° 0.4113 0.1590 0.2617

Table 5.2
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12 Hour Orbit Navigation Satellite and Sphere of Error Radius = 5 km

. MAX ERR MIN ERR AVER ERR
Plonec=Pun [ne. Angle i ns ns ns
" 0.0° 0.9375 0.6594 0.7481
15.0° 0.9385 0.6535 0.7412
0.0° 30.0° 0.9267 0.61861 0.7134
45.0° 0.9235 0.5370 0.6698
60.0° 0.9262 0.4275 0.6172
0.0° 0.9384 0.6594 0.7467-
15.0° 0.9262 0.6495 0.7409
15.0° 3a.0° 0.9085 06116 0.7208
45.0° 0.8587 0.5446 0.6769
60.0° 0.7840 0.4471 0.6174
0.0° 0.9393 0.6594 0.74863
) 15.0° 09173 0.6517 0.7424
30.0° 30.0° 0.8657 0.6287 0.7253
45.0° 0.7485 0.5929 0.6839
6n.0° 0.7500 0.5036 0.6326
0.0° ~ 0.9401 0.6595 0.7464
15.0° 0.9213 0.6547 0.7432
45.0° 30.0° 0.85632 0.6400 0.7287
45.0° 0.8298 0.5831 0.6902
60.0° 0.8289 0.4653 .0.6413
0.0° 0.9401 0.6595 0.7470
15.0¢ 0.9321 0.6494 0.7406
60.0°- 30.0° 0.9091 - 0.6145 0.7304
45.0° 0.8978 0.5540 (0.6930
60.0° 0.8969 0.4534 0.6444

Tahle 5.3




12 Hour Orbit Navigation Satellite and Sphere of Error Radius
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10 km

-

. MAX ERR MIN ERR AVER ERR
’phmuc"t’o.\‘ Inc. Angle i ‘ns ns ns
0.0° 1.7770 1.3220 1.4956 -
15.0° 1.7779 1.3136 1.4818
0.0° 30.0° 1.7567 1.2482 1.4262
45.0° 1.7504 1.0875 1.3401
60.0° 1.7549 0.8598 1.2349
0.0° 1.7785 13220 1.4935
15.0° 1.7551 1.3031 1.4807
15.0° 30.0° 1.7206 1.2255 1.4377
45.0° 1.6298 1.0835 1.3531
60.0° 1.5956 0.8811 1.2426'
0.0° 1.7799 1.3220 1.4931
15.0° 1.7384 1.3052 1.4842
30.0° 30.0° 1.6409 1.2532 1.4537
45.0° 1.5372 1.1680 1.3732
60.0° 1.5390 * 0.9820 1.2722
0.0° 1.7813 1.3221 1.4929
15.0° 1.7453 1.3129 . 1.4865
15.0° 30.0° 1.6310 1.2890 < 1.4575
45.0° 1.5924 1.2354 1.3807
60.0° 1.5935 '0.9768 1.2828
0.0° 1.7827 1.3221 1.4935
15.0° 1.7661 1.3030 1.4818
60.0° 30.0° 1.7251 1.2383 1.4579
45.0° 1.7077 1.1288 1.3810
60.0° 1. 7069 0.9318 1.2822

[

Table 5.4
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12 Hour Orbit Navigation Satetlite und Sphere of Error Radius =.50 km

ine. Anele i MAX ERR MIN ERR AVER ERR
q)lxmuG_(buN ne. Anglet ns ns ns
0.0° 8.5409 6.6142 7.4757
15.0° - 8.5409 6.5836 7.4069
0.0° 30.0° 8.5409 6.2937 7.1290
45.0° 8.4930 5.4898 6.7028
60.0° 8.4930 4.3189 6.1764
0.0° 8.5073 6.6144 7.4677
15.0° 8.4355 6.5230 7.3984
15.0° 30.0° 8.2969 6.1300 71731
15.0° 8.3026 5.3908 67622
60.0° 8.3099 4.3534 6.2440
0.0° 8.5193 6.6151 7.4682
15.0° 8.3355 6.5259 7.4186
30.0° - 30.0° 8.0753 6.2407 7.2806
45.0° 8.0230 5.7663 6.8876
60.0° 8.0278 1.8099 6.3897
0.0° 8.5287 6.6148 7.4647
15.0° " 8.3374 6.5772 7.4327
45.0° 30.0° 7.8401 6.4790 7.2878
45.0° 7.7042 6.3661 6.9041
60.0° 7.7162 5.0687 6.4151
0.0° 8.5355 6.6145 7.4655
15.0° .8.4376 6.5224 7.4121
60.0° 30.0° 8.2580 6.2276 7.2784
45.0° 8.1938 5.7253 6.8847
60.0° 8.1966 4.7596 6.3845
Tuble 5.5
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12 Hour Orbit Navigation Satellite und Sphere of Error Radius = 100 km

.

lne. Anle i MAX FERR MIN ERR AVER ERR
(pbmu(}-(puN ne. Angle ns ns ns
0.0° 17.0578 13.2287 14.9509
15.0° 17.0578 13.1686 14.8133
0.0° 30.0° 17.0578 12.5986 14.2574
15.0° 17.0099 10.9928 13.4060
60.0° 17.0099 8.6427 12.3533
0.0°  17.0073 13.2287 . 14.9355
15.0° 16.8957 13.0479 14,7956
15.0° 30.0° 16.6918 12.2607 14.3424
45.0° 16.7037 10.7743 - 13.5237
60.0° 16.7186 8.6938 12.4958
0.0° 17.0148 13.2297 14.9369
15.0° 16.6643 13.0501 14.8367
30.0° 30.0° 16.2419 12.4749- 14.5643
45.0° " 16.1314 11.5122 . 13.7805
60.0° 16.1401 9.5946 12.7866
0.0° 17.0336 13.2305 14.9294
15.0° 16.5793 13.1553 14.8655
. 45.0° 30.0° 15.6034 12.9637 14,5756
15.0° . . 15.3441 12.7489 ~13.8084
© 60.0° © 7153719 10.1835 |-~ 12:8305
0.0°. 17.0471 13.2294 14.9305
15.0° 16.7770 13.0463 14.8250
60.0° - 30.0° 16.4246 12.4616 14.5539
45.0° ° 16.3022 11.4710 13.7643
60.0° 16.3088

9.5443

12,7623

Table 5.6 .
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16 Hour Orbit Navigation Satellite and Sphere of Error Radius = 1 km

) T

oo Inc. Angle i MAX ERR MIN ERR/ AVER ERR
¢LﬂngG_¢uN ne. Angle ns ns . ns
0.0° 0.1999 0.0838 0.1175 "
. 15.0° 0.1992 - 0.0837 . 0.1180- -
0.0° 30.0° 0.1968 0.0835  0.1153
h 45.0° 0.1964 0.0693 0.1089
60.0° 0.1957. - 0.0562 "™ 0.1009
0.0° 0.2003 0.0838 . 0.1177 .
15.0° 0.1973 00827 0.1190
15.0° 30.0° 0.1885 " 0.0768 0.1173
45.0° 10,1728 0.0707 0.1098
¢ 60.0° 0.1749 0.0574 0.1005
0.0° 0.2005 0.0837 Q.1177
15.0° 0.1976 0.0824 0.1180
30.0°° 30.0° 0.1911 0.0796 0.1189
45.0° 0.1902 0.0760 0.1123
60.0° 0.1811 ™~ 0.0552 ;' 0.1039
0.0° 0.1999 0.0838 0.1174
15.0° 0.2001 0.0834 0.1171
45.0° 30.0° 0.2003. _0.0829 0.1152
45.0° .2007 .0.07686 0.1108
60.0° 0.2010 0.0561 0.1034
0.0° 0.2003 0.08385 0.1176 ...
15.0° 0.1996 0.08381- 0.1180
$0.0° . 30.0° 0.1974 0.0835 - (. .. 0153
45.0° . 0.1973 0.0692" 0.1088
60.05 -0.1980 0.0562 0.1009
Table 5.7
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) MAX ERR MIN ERR AVER ERR
(p[nngc;_(bnl\' [nc. Angie ' ns ’ ns ns
0.0° 0.3344 0.1755 0.2213
15.0° 0.3330 0.1786 0.2222
0.0°" 30.0° 0.3290 0.1723 0.2193
. 45.0° 0.3283 0.1548 0.2103
" gb.0° 0.3273 0.1288 0.1966
0.0° 0.3348 0.1755 0.2212
15.0° 0.3296 0.1771 0.2237
15.0° 30.0° 0.3157 0.1799 0.2216
45.0° 0.2966 0.1578 0.2097
60.0° 0.2995 0.1242 0.1947
0.0° 0.3352 0.1755 0.2213
15.0° 0.3304 0.1767 0.2217
3.0 30.0° 0.3216 0.1786 0.2216
45.0° 0.3207 - 0.1606 0.2119
60.0° . 0.3219 0.1347 0.1984
- 0.3344 0.1755" 0.2210
S 0.3346 0.1765 0.2201
45.0° ~0.3349 0.1745 02173
0.3354 0.1638 0.2112
0.3359 0.1397 1.1990
0.0° 0.3348 0.1755 n.2211
15.0° 0.3335 0.1786 0.2221
60.0° 30.0° 0.3300 0.1724 0.2190
: 15.0° . 0.3297 0.1548 0.2100
60.0° 0.3308 0.1288 0.1963
Table 5.8
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16 Hour Orbit :\‘u'vigation Satellite and Sphere'of Ereror Radius = 5 km

-

: . MAX ERR MIN ERR AVER ERR
¢I_nngu_(pnN Inc. Angle i ns ns ny’

0.0° 0.7378 0.4401 0.5535
' 15.0° - 0.7343 0.4490 0.5558
0.0° 30.0° 0.72583 0.4378 0.5483
' 45.0° 0.7241 0.4051 0.5259
60.0° 0.7222 0.3458 0.4917
0.0° 0.7385 0.4401 0.5533
15.0° . 0.7266 0.4444 0.5570
15.0° 30.0° . 0.6972 0.4500 0.5509
45.0° 0.6686 0.3991 0.5255
60.0° 0.6742 0.3243 0.4901
0.0° 0.7391 0.4401 0.5531
: 15.0° 0.7289 0.4433 0.5546
30.0° 30.0° 0.7135" 0.4524 0.5538
45.0° 0.7125 0.4143 0.5296
60.0° 0.7151 0.3376 0.4961
0.0° 0.7378 0.04401 0.5523
- 15.0° 0.7381 0.4435 - 0.5528
45.0° 30.0° " 0.7387 0,4442 0.5462
45.0° . 0.7395 0.4050 0.5266
60.0° 0¥7405 0.3413 0.4940
0.0° 0.7385 0.4401 0.5530
: 15.0° 0.7353 . 0.4490 0.5549
60.0° 30.0° - 0.7277 0.4379 0.5476
45.0° 0.7269 0.4050 0.5248
60.0° 0.7291 0.3456 0.4911

Table 5.9
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16 Hour Orbit Navigation Satellite and Sphere of Error Radius = 10 km

. . MAX ERR MIN ERR AVER ERR
¢la)llgu—¢:hN : [ne. Angle i ' ns ns ns

0.0° 1.4102 ©0.8805 1.1071

L1500 1.4032 0.8988 1.1116

0.0° _ 30.0° 1.3872 0.8797 ) 1.0967
45.0° 1.3838 0.8222 1.0518

£0.0° 1.3804 0.7064 0.9835

0.0° - 1.4114 0.8805 1.1068

15.0° 1.3884 0.8889 1.1126

15.0° ., 30.0° 1.3331 0.8984 1.0996
: 45.0° 1.2889 0.8012 1.0517
60.0° - 1.2989 0.6571 0.9825

0.0° 1.4125 * 0.8806 1.1061

N 15.0° 1.3930 . 0.8871 1.1095
30.0° 30.0° 1.3671 0.9058 1.1075
15.0° 1.3657 0.8370 1.0591

60.0° 1.3704 0.6758 0.9922

: 0.0° 1.4102 ‘ 0.8805 1.1046

— 15.0° 1.4105 0.8882 1.1072
45.0° - 30.0° 1.4116 0.8924 1.0943
\ 45.0° 1.4131 0.8070 1.0522

60.0° 1.4148 (.6743 0.9858

0.0° 1.4114 ).8805 1.1060

. 15.0° 1.4050 1.8987 1.1095
60.0° - 30.0° 1.3906 0.8796 1.0954
45.0° 1.3888 01.8221 1.0494

60.0° 1.3929 0.7063 0.9823

— v

S/

7 Table 5.10
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16 Hour Orbit Navigation Satellite and Sphere of Error Radius = 50 km .

/
lne. Angle i MAX ERR MIN ERR AVER ERR
lblunp\G—‘boN ’ g ns ns ns ‘
S 0.0° 6.8043 4.4033 5.5358
15.0° 6.8042 14948 5.5585
0.0° 30.0° 6.8042 4.4135" 5.4839
45.0° . 6.8042 1.1580 5.2595
60.0° 6.8042 3.5909 4.9180
0.0° 6.8074 4.4030 5.5348
15.0° 6.7145 4.4440 - 5.5574
15.0° 30.0° 6.6592 4.4813 5.4893
45.0° £.6654 1.0182 5.2620
60.0° 6.6718 3.3199 4.9219
0.0° 6.8190 4.4032 5.5300
15.0° 6.7058 4.4373 5.5485
30.0° 30.0° - 6.5955 4.5316 5.5373
45.0° 6.5920 1.2185 5.2954
60.0° 6.6130 3.3814 4.9612
0.0° 6.8229 4.4033 5.5226
15.0° 6.7905 1.4425 5.5422
45.0° 30.0° 6.7952 4.4760 5.4793
45.0° . @ 6.8019 1,0229 5.2573
60.0° 6.8092 3.3387 4.9196
0.0° 6.8074 4.4030 5.5305
15.0° 6.8063 4.4952 5.5467
80.0° 30.0° 6.8019 4.4137 54774
45.0° 6.7964 4.1589 5.2462
£0.0° 6.8102 3.5819 4.9122

Table 5.11
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16 Hour Orbit Navigation Satellite and Sphere of Error Radius = 100 km

AVER ERR

Inc. Anele i MAX ERR MIN ERR
‘b[‘ung(‘:_(’pm\f ne. Angle ns ns ns

0.0° 13.6179 8.8067 11.0718

15.0° 136178 8.9895 11.1170

0.0° 30.0° 13.6178 8.8304 10.9679
45.0° 13.6178 8.3278 10.5192

60.0° 13.6179 7.1966 9.8360

0.0° 13.6101 8.8061 11.0698

15.0° 13.4400 8.8873 11.1133

15.0° 30.0° 13.3838 8.9597 10.9764
45.0° 13.3964 8.0395 10.5248

60.0° 13.4094 6.6483 9.8461

0.0° 13.6287 8.8065 11.0598

15.0° 13.3468 8.8749 11.0973

30.0° 30.0° 13.1313 9.0638 i1.0745
45.0° 13.1253 8.4455 10.5907

60.0° 13.1661 6.7634 9.9224

0.0° 13.6364 8.8067 11.0450

15.0° 13.5155 8.8853 11.0860

45.0° 30.0° 13.5247 8.9846 10,9607
15.0° 13.5378 8.0429 10,5137

60.0° 13.5522. 6.6692 9.8369

0.0° 13.6101 8.8061 11.0610

15.0° 13.6095 8.9902 11.0931

60.0° 30.0° 13.6073 8.8313 10.9550
45.0° 13.6022 8.3296 10.4922

60.0° 13.6112 7.1990 9.82.45

Table 5.12
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navigation satellite in a dynamic satellite constellation in which the navigation satellite is

)

CHHAPTER6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCII

Conclustons

This thesis presents a theoretical basis lor establishing accurate timing on board a

lncated in any inclined circular orbit. The theoretical basis not only eliminates the need lor

computer modelling but also corrects some previously publishéd mathematical and computer

results. In addition, all the implemented eduations are casy to handle, widely applicable and

in terms of one reference time and initial location conditions of the satellites.

n

2)

3

@

Specifically, Lhe thesis provides t.hc fullowing contributions:

A detailed study of the satellite subpoint trace (S.5.T.} for any satellite located i.n
any circular orbit has been presented in a new analytical form. All the
specifications of 5.S.T. are studied and expressed mathematically in terms of Lhe
satelhite init?al conditions. Computer plots .are used to verifly the muthemutical
forms.

‘A new analytical expression of the instantaneous coverage arca (1.C.A} lor any

satellite located in any circular orbit  We show how such an expression’can be

-

widely implemented for solving the problems of either single-fold coverage or -

. . L]
multi-fold coverage  Also, by using u simple optimization technique it is

demonstrated that the coverage pattern can be sized and measured to determine
whether ahy holes in the coveruge pattern exist.

A new theoretical methaod for caleulating the space delays for twn cases. [n the first
cuse, the space delay hetween a navigation satellite and an earth station is

cafcultated while in the second case the curth station is replaced by a geostationary

4 0h

-~
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satellite. The method is suppm_"ted by computer plots in order to show the

advantages and disadvantages in each case.

A new theoreticul express.ion for the derivalives of the change in the space delay,
formulated in a suitable format for higher order di'l'ferent.iution.

A new theoretical definition for the blind segments on the geostationary orbit.
Outside these blind segments are other segments which guarantee the existence of
a continuous communications link with any navigation satellite in inclined orbit.
Also a theoretical expression is developed for the time period of which the
cummunicatior;s is blocked il the geostationary satellite is located,in a blind
segment. |

A new theoretical analysis for establishing accurate timing on hoard a navigation

satellite using timing reference from either an eurth station or geostationary

“satellite. This method depends only upon estimating the location of the navigation

sutellite within spheres of different radii und shows a high degree of 'uccuruc_v in
establishing timing at the navigation satellite. Such a method has the advantage of
eliminating the fragile atomic clocks on board the navigation satellite.

Recommendations for Future Research . \

[Lis recommended that: -
The design of.a geosl:ulionury satellite nelwork which can view all navigation

satellites simultaneousty be investigated.

The coverage provided by the geostationary satellites and the navigation satellites

1
-

be evaluated,
A method for accurately locating navigation satellites, with respect o
geostationary satellites, by using the precisely determined space delays be

developed.
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The problem of passing control of navigation satellites to different geestaticnary

satellites be studied.

The cost of this system us compared to the NAVSTAR system be determined.
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APPENDIX 1 -

COVERAGE TIME PROVIDED B8Y A SINGLE AND MULTIPLE BEAM

ANTENNA ASSUMING A SATELLITE FROM SARSAT SYSTEM

1

Here we are going to ine another example of how to apply the equation of the
instantuneous coverage area derived in Section 3.3: for the case of implementing multiple
beam antenna on bourd a satellite instead of using singlle Beam antenna and we will show
what will be the effect upon the coveraée time provided by the satellipt.: for a specific point on
the earth if the multiple beam antenna is rota’téd’ around its axis. |

- In'this examplé we assume a satellite {rom the Search And Rescue by Satellite Aided
T;'acking system (SARSAT). Basically t.he §ystem-operur.es ;vith a number of satellites in low
polar orbits taltitude 860 km).

[f a distressed aircraft is equipped with an Emergency Locator Transmitter (ELT), u
transmitted signal will be picked up by the approaching satellite.

Substituting the.altitude of the SARSAT satellite in Eq. '13 3) the nonsynchronous
factor K can be calculated, which will be equal to 12.522, This value for the nonsv’nchronous
factor K corresponds to un orbital period ofulmo:,t 115 min. Substituting the v.:.lye/:)f' K in Eq.
(3.6) and assuming o = 0, the half arc observed angle  will he equal to 35:34° which is the
angle covered by the satellite single beam antenna.

. By cﬁilling Eq. (2.10), Eq. {2.14) and Eq. (2.i5] which describe the SST; and by
substituting for the inclination angle i = 90° assuming that at t = 0 sate\[l:ite subpoint is.

.. located on the equator at the point with longitude equals zero, therefore, TT = 0 und 4;0 =0

Thus the equation representing t.l';e SST will be given by

190 B
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L3
_ . (AT 1)
¢L3L_ K("EL
n n
= - - (Al1.2)
(phmg = —wpt S > KmEL > 3
e 3n n (AL.D)

= - —_—. > -
Lblill];_: n (dst . 2 . KLOF:L g >

Figure Al.1 shows the SST of this specific case (which is a lincar relation hetween _
’ b, and q:Lnng) for one revolution by the satellite around the earth,

[Lis clear that during the motion of the satellite in its orbit: the satellite subpoint on

. ) ' ) .
the surface of the earth will be.the center of the antenna footprint, therefore, the satellite
. : :
subpoint coordmath should be deﬁned at an) tnstant of time which is given hy Eqs. (Al l)

AAL2)and (AL, 3)

Assumtqg that we are going to replace the single beam u‘ntennu b.y four subantennas.
Their footprints can be represented by'r the shape-shown in Fig. A1.2 which shows that each
subantenna footprint will have half arc observed angle equals w/2. While the satellite moves
in its orbit, the footprints of its subantennas are moving on the surface ul' the ear th The

shape and the size of the Fom,pl int should alwaya be kept fixed during its motion. A%ummg
N
A"
" the satellite subpoint is S'“(whlch is the center of Lthe fnotprlnt of u 'r.mg!e antenna) we should

find the location of §,”, S,'. 83" and S’ which are the centers of the subantennas footprints at

any instant of time as a funetion of the sutellite subpoint §'. th\. can be done as follows,

Suppose that',lve want to find the Iumtmn of the center Sl . Le., to find its latitude and
longitude ¢\ and Pl t'un.p-c{tivcly First, we should establish the location of the point
', Second, knowing that the Sllp;;;{;n_llil footprints are located symmetrically around 8 with
hall'arc angle yw/2 and for the specific shape given by Fig. A1.2 the angle between Lhe'lungentr
drawn at §' to the arce 3'S," and the :lél‘th direction will be equal Lo 45;’ as shown in IFig. A1.3.

:Third, by solving the spherical Lriungl.c S'NSI' in Fig.. AL.3 whose sides are arcs frm.n greuat

[y

circle we get:
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.

Fig. A1.3  Geometric relation between the centers of Lhe single antenna und the

/( subantenna footprints.
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1 t
sin PLaere = Sin by, 08 Ey +cosg,  sin Ey cos 45 (A1.4)

From the last equation, the latitude P01, Cun be calculated. F‘ouréh, in order to find
xpl_“"glc we form a semisphere located symmetrically around S’ and its half arc measured from
Lhc center of Lthe earth equals @/2, thus the peints 5, S'_"- S3' and S, must be localed on the
boundary of this semisphere. By substituting in Eq. (3.14) by the value lp/‘2 instead of w and

D a1 this yields to H .

Wy ) . - .
COS(E_) - cOb(l:‘l.nt cﬂsq)[.ar.lc L‘Ob(q)umg - q)Lmiglc) t sin lI)l.nl. sn ‘pl_'zf.lc (ALS)

From the last Equation we can calculate the difference in longitude dLong -

-_— + H
(pl..unglc = = Diff, therefore,

_ o (A1.6)
q)i.ouglc - (blung + 0T . ‘

We choose the positive sign because the direction of the tangent is positive.
From the symmetric shape of the subuntenna footprint we can say that the center
coordinates of the second subantenna footprint S,,' will be:

- (AL
Pracze = Pratie :

and
Plonge = Prong + Dif AL8)

Repeuting the same procedure inorder to evaluate P g butin -such a case the angle
between the tangent and the north direction will be 135°, thus, replacing the 45° tangent
angle in l']lq. (A1.4) hy 135° we can cﬁléulute & 3. Which equals Sl then substituting
Dy ege in Eq.(A1.5) .inchucl 0f 1.1 We can find Py wngeae and ‘bl.ungdc‘

Figures Al.d.a, Al.db and Al 4.c show Lhe lootprints for both a single antenna and
the four subantennas at time equals 0, 4+ and 8 minutes after the satellite crossed the
cquaterial orbitat ¢ ' = 0.

Now Sl'. S,_,’, Sa’ and S," are well defined points on the surface of the earth at any

instant t; hence; the Equation which represents the boundary of the footprint for any

-~
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subantenna will'be given by Eq. (A1.5) as lollows:

Lath ™

j=1,2,3.4. ‘ (A19) . 5

where ¢ and Bt g, are the latitude and longitude of any point on the jth footprint

.

A N ) L .
cos 2 ) = cos :pl_mc_cnr. q;mh cos (¢ ) + sin (bl.nljc sin

Lomge ¢[.ung‘b

houndary respectively.
For any point located inside the jth footprint (the lutitude and longitude of this point,

namely pay and g, must satisly Eq. (3.16) which is

mS(pLuljc ms¢Lﬂti cos ((bumg]c - ‘bl/ongi) + sin ¢L;njc _Sm ‘pLam' ’

‘—cos(iz{)zo; i=1,2.3,4 - (AL10)

‘Thus, the footprints of both the single antenna and the four pattern antenna, ure well
;deﬁ-ned znneé upon the surface of the earth at any instant t. By assuming a distressed aireralt
located near Toronto a'rpért: i.e. at latitude = 44° and lognitude = -80°, substituting these
coordinates in both of Wund {AL.10), we can detern&ine t.hé coverage ttme provided by
hoth of the single beam antenna and the four beam antenna.

A compuler program hu.s been used for tt:is purpose, and we checked the location of.
the aireraft to hg either inside or vutside the used paltern every 12 seconds and for a total
interval of T0 hours. to cover the time period of five complete revolutions by the satellite. The
results are drawn in Fig. A1.5 wh.i::h shows for the first revolution by the satellite, there is no
‘chance to pick a signal from the distressed aireraft but-in the sccond revolution Lthere is a
possibility of picking the ELT signal for an interval uf'lO.Z r;linuu:s if o singlo‘ antenna is
used, for the three next revolutions Fig. AL.5 shows the cbvcra;m Lime received by each

subantenna und the holes which would not oceur if we used o single antenna.
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By rotating the antenna of the sutélliic, around its axis by an angle of 45°, the shape of

the footprints of the four pattern anlenna will he as shown in ["ig.‘!\l‘ﬁ.u, AlGband Al.Ge,

These Figures ure obtained at t = 0, 4, and 8 minutes respectively.

Using the same procedure which we used before, the coverage Lime will be ax shown in

Fig.*AL.7T during five complete revalutions b_v' the satellite which is different from the

coverage time demonstrated in Fig. Al1.5.
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.
TAPPENDIX 2

THE CHANGCE IN SP!\:C[:I DELAY BETWEEN A GEOSTATIONARY SATELLITE

AND A NAVIGATION SATELLITE IF EITHER ONE ISFIXED

- Here, we are going to find an e'cprebsmn for the chdnge in the space delay if cither

L3

the navigation aatcihtc or the geostat.lonary satellite is fixed in terms of the latitude and

longitude of the navigation satellite subpoint,

The angle A between the navigation satellite subpoint and the geostutaonarv

satell:te subpoint measured from the center of the earth at any instant of time t is given by

Fq.(4.34) whichis, _. - ~

cos\ = cu:-;«p!'_' (A2.1)

AN cos{ ‘p[nngN -‘p_[,nna.:{})

and the space delay between two satellites at this specified instant of time is given hy Eq.

(4.36) .
T=dC (A2.2)
or
T =[H + 1} = 24, H ; wsAlYiC (2.3}
where:
-d ; the distuance between the two sutellites.
Hy = the distance measured I':"Olﬁ the center ol the earth to the navigat.ion satellite.
g, = the distance measured feom the center of the carth to the geostationary satellile.
C- = the propagation veloetty .
Also, we have from I-:'q‘ G Thand B, 14 2) Lhe fullowing relations:
‘ sin P TSN sinQ . (A2.4)
‘ sinld, Gt gl = )= s isin Q- (A2.5)

(1 — sin®isin? Q)”‘)

206




A

207

where

i = the orbital inclination ungle of the navigation satellite.

Q = Lbe angle rotated by the navigation satellite in its orbit measured from the
center of the earth starting from the equatorial orbit.

Q = wglt + TT)

wg = the angular velocity of the navigutior.t satellite.

TT . = - initial time phase of the navigation satellitf;.

Wy -, = " the lungular v.elocit‘y of the earth.

$on = longitude of the intersection point between the navigation satellite orbital

- n

projection on the surfuce of the earth and the equator at t=0.
To find the change in the space delay when the navigation satellite is fixed, we
differentiate Eq. (A2.3) with respect to tine, while keeping Q constant, noting that cos A is

the only time dependent‘variable in Eq. (A2.3). This yields
(-2 HNHGIC)

ar _ deos A (A2.6}
Hlenwoy “ T3 e 2 -
‘ CN=Np - 2HY + 11 -—gHNHGs‘OS:\I C-N=Ngy

Now‘by differentiating cos A in .Fiq. (A2.1) with respect to t under the previous

condition this gives:

dcos A .. *PLan
’ N GN=N _mh(¢lnz1gN - q)lAi"L,"(;) = sm(pl.at.\' ) at CN=N
< iy ' . R (N
ckp .
‘ . LaonaziN \ - {A2.7)
TP l (sm((plﬂ"uh’ = Prong! ) o GN=N.
.. Now to find ) i
a‘bl.ﬂlN
a lgn=n
. b, loN =N
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we differentiate Eq. (A2.4) with respect to t while holding Q constant. Noting that i is

independent of time, this gives:

v

&bbuN
LatN N

-0 {A2.8)

QN:Nﬁx ’

cos ¢

Therelore:

(A2.9)
d‘bLum

J
m GN=N..
fix

[norderto find

&b[ﬂngN )
at -

fix

GN=N

we differentiate Eq. (A2.5) with respect to t under the mentioned condition this gives:

(&bhmgN
oS (q)[muzN + wl':t_tpnN)

Fy

(A2.10}

+m‘_:)=0

IN=N
OGN Neo

RSP / (A2.11)

==y

at T
G.N Nﬁ\

Substituting Eq. (A2.9) and Eq. (A2.11) in Eq. (A2.7) this yields: -

“deos A

—

dt

—_— . : ' - ' Q ¥
= wg cnmp““N sin ((,I)h"”:N - iphmgc) ({A2.12)

(J'NzNﬁx

Substituting Eq. (A2.12) in Eq. (A2.6) and alter simplification we get:

= w, cas TN, ai
3 : 0, CO .bl,-m\ﬁmq

. (. '
ﬂ,] M N (A2.13)
GN=N CHEGE

[

where

n =¢l4mgN - '(pl.uuu(.}

Now, to find the change in the space delay if the geostulionary satellite is fixed, e,
'wFt = constant, we follow the same steps followed before but now Q is time dependent.

Equations (A2.6) and Eq. (A2.7) can be written as follows:

v,
'

4



g1

‘ "”NH(; dous A
at G=Grix'N —J’ d.C a

deos A ( . a(b[.'nlN
. =cosn| —sin
o 6=G. N | N Pran
ix
+c8 b ( N &DU)llgN )
¢ —sing ——
LutN Jt. -
! G—Gfix'N
To ind

4? ' : ’ a(meN
¢ o s N
G=(’f’ix'N

we dilferentiate Eq. (A2.4) with respect to t, this gives:

R LN .
. cosd % oo n = S»lﬂl (wg cos Q)
fix®
Therefore:
¢ pl.-nN wg sinicos Q)
at =

G=G N wsd N
Noting that;
B cos Q

e )
G=G, N

cos (q)[nnj:;\'_ + wF,'t -¢nN) =

WD N L
‘ = g sin icosd
. lg= N '
fix N
Also,
&blungN
. ¥
. dat (;L(; N
fix

can be obtained hy diﬂ'ercntiaiting Eq. (A2.5) us follows:

™~
L
!

PN
Il —sin"isin Q]m

By putting (blnligN twpt — ¢ =8, Kq. (A2.17) can be written as:

209

{A2.14)

£

{A2.15)
M

(A2.16)

(A2.17)

(A2.18)

(A2.19)

n
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- ® o &b[ungN [ wgcos Q
cosld,. +tw t—¢ ) ——— = :
“ " TLongN E ulN B G:Grix'N (1 ‘—Sinlisir‘IgQI“g
» -1 .2, . . | .
(T)st{_—-sm't)(Z sin Q)mg {A2.20)
+ = S cusi
[1-sin“isin"Q]
or
I N . sin?isin?Q (A2.21)
— | - = wg cosi 1+ TP
at G=G, N 1 —sin“isin“Q
The last Equation can be reduced to:
X ongn = o l0si . (A2.22)
at =G N S edy
. o 070N SR JPN .
K Substituting Eq. (A2.19) and Eq. (A2.22) in Eq. (A2.15) this gives:
dcos A cosi
: 1 = —jcosnsing sinisd+ ——— sinq |w, ' (A2.23)
® lg=c, N LatN, oS PN S

Substituting Eq. (A2.23) in Eq. (A2.14) we o_bi.ain the formula for the change in the space
2

delay if the geostationar)‘r satellite is fixed - _ c

cos isin q (A2.24)

sinicos8 conn sing, Nt

S .
dt G:Gfix N d.C . cos (b[.ut.\'
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APPENDIX 3

THE GRADIENT OF TH# CHANGE [N THE SPACE DELAY

In this Appendix we calculate the gradient of the change in the space delay between
the navigation sateilite and the geostationary satellite assuming either G or N is fixed. The
calculated gradient will be expressed in polar coordinates of the navigation satellite which

has the di;‘ections of its altitude Hy, its subpoint latitude $pn 2nd longitude ¢Long.\1‘

The gradient form for these particular c:)ordinatrs will be
-
3 1 =3 o
V= — iy a '
C]HN N ”N ‘}‘b[‘mN (bLnLN .
(A3.1)
1 d
a
ll)I.nu;:N

HN coSq)LulN mb[nngl’%
in the directions H, ¢, . and PLongN

where AN APy N uq)l.nng.\' are the. unit vector§
' «‘.-ﬁ_/

t
respectively, ‘
Now, the gradient of the changein the spuce delay @1/t is given by: .
JT 3 (A3.2)
V—=-—-VT
o at
ar 1 [ —qT I T
S L ,
Mo TN M a7 P Hgeosby o dby o Planen

Substituting for T from Eq. (A2.3) into Eq. (A3.3) and by considering only the radial

component of the gradient which is given by:
T 9 e i .A3;
_— = “N+”G_2”N”Gcos'\.) (A3.4)

ot ()“N
The last equation alter differentiation and substituting for range d = (I{N‘z + HGZ -

.

2 H H, cos V2 will be
1., =t .cos\

ik ~ ~He
atl - d-C

Consider the component in the latitude direction and after substituting for cos \ such

acomponent will be given by
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]

2 2 . s 12 ‘
1 ar 1 Jar (”\] + “C -2 ”N“G COh¢uLN cos f']) (A3.6)
Hy 300N iy 90,y ¢ -
‘ ar
'(l‘)( 2H H_}(~sing )
—H-2 —sin Jeosn
LN S S NG L™ (A3.7)
. 2 "
Uy 9P Ay oo -1 -2 HH ®s, . cosn)
Alter simplification, the last equation can he written as:
1 aT o (A3.8)
-—-If[— =—d Sin(plqlN | '
N IPLan C ‘
Now the component in the longitude direction should be given by:
I dar - 1 d 4
Hyosd I ey Hyoosd o IPLong
f
2 2 a
( Hy+H; - 2H Hcos gy cosy ) (A3.9)
C .

Noting that n = ¢’LongN - ¢LongG the last equation after simplification is given by:

1 o _Hg i (A3.10)
Hy cosd 3 pney dC '

A3.[  The Gradient of the Change in the Space Delay il the Navigation Satellite is Fixed:

To find the gradient of the change in the space delay if the navigation satellite is

fixed, we differentiate its components given by Fq. (A3.5), Eq. (A3.8) and Eq. (A3.10) with

respect to time while holding Q constant.

Consider the radial component of the change in the spuce delay which is given by:

o ar g (Hy—H_cos\)

(A3.11)

t gH SN=N_+ dt d-C . =N
ot aH,, GN =N ; GN=N.

Noting that d and A are the only dependent on time in Eq. (A3.11), this yields:
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t N = B 2 T =
at aH GN=N_ d N=Ng
~Hs\ cos ) ;
+(____) : (A3.12)
d-C an GN=N.
fix
From Eq. (A2.3) we can say
aT l Co Mg "COS'“ (A3.13)
o loN=n_ d-C d loN=N_
fix . : fix
Noting that
’ ad/Cl T
&t G.N-—:Nﬁx at GN=N_

in Eq. ({A3.12) and by substituting Eq. (A3.13) in £q.(A3.12)and after,simplification we get:

_-(HccosJ\—HN+ . )JP
d2 Hy

d 4T

(A3.I4D
dt GI[N

GN=N_ dt
fix

GN=N
fix
Consider the component in a, direction of the change int he space delay, which is

given by:

a(—l aT )
A He 9N

We notice here Lthat PrLan 15 const. [Q = const.], therefore d and  are the only time

H
g G
- _( snd, Nmsn)‘ (A3.15)
GN=N_ at d-C: Lat! CN=N_ )

* fix fix

dependent in Eq. (A3.15) thus we have:

a( ~1 ar ) H sing (cosr] ~3d/C
- — = —H. .sin _
: . G [N 2 g ot
‘]t‘ [lN aq}léiLN (.:.N = erN i d ) {]L (:..\ =I\ﬁ.\ \
LY
—_ . d ; : .
p 1 —”( ) - (A3.16)
\ ' d-C  dtlgn=n
fix
Knowing thatn = ¢lnugN —(taumgG . theréfore from Eq. (A2, [ 1) we have:
C_lﬂ _ a¢[amgN _ @ ‘ (A3.1T)
dt GN=N_ a GN=N_ E '
ix fix

Substituting Eq. (A3.17} in Eq.(A3.16) and after simplification, this vields:
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9T
LI

Hcg-;in DN GN=N_ Wg sinn - (A3.18)

d C

a(—l ar )
at HN a¢[.atN

The component of the gradient in the fongitude direction can be obtained by

= d
G.N—Nﬁx

differentiating Eq. (A3.10)

dJ -1 ar

= (A3.19)
dt HN cos ‘pL:IlN a-(p[.nn;:N

a(”c . )
=—| —=sinn
GN=N ' d-C

GN=N

fix fix
ndnd d are the only time de%ﬂ'e-{t variables, therefore, the last equation becomes:

3 1 ar ~Hs  sarc
2t H 3 L |
stHycosd iy ¢LnngN GN=Ng d” GN=Npy \
H
) - , (A3.20)
+ 1C cosn (—wy)
%
or
a1 a1 _ Mo sing a7 L 2e®n (A3.21)
o Hyoos@iun I lon=ng  d | d atlgnan, C.

The gradient can be calculated by the vector addition of its components given byEq.
'(A3.14), Eq. (A3.18) and Eq. (A3.21).
The gradient and its components represented by the above equations is plottéd in Fig.
{A3, l). for the case of a 12 hour nuvigat.iop satellite with inclination angte 30°,
Qo = 0%and ¢ .= 45"
The same case is plotted using Eq. (5.62) and Eq. (?.65) and Eq. (5,68} in Fig. (A3.2)

which shows that the two sets of equations are representing the same gradient.

+

A3.[l The Gradientof the Change in the Space Delav if the Geostationary Satellite is Fixed:

Here, we follow the sume steps as im Section {A3.1), except we consider that the
geosmtidnary satellite is fixed, ie, wet = const,
To find the components of the gradient under the previous condition we differentiate

‘Eq. {A3.5), Eq. (A3.8), and Eq. (A3.10) with respect to time, this viclds:

a

5
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represented by Eq. (A3.14), Eq. (A3.18) and Eq. (A3..21).

«50 T T T T T T T T T T T
230
«10
. .].0
~a 3 0
-.50 1 L ] 1 l ! L PlongN 1 !
C: O. o o o o o o o [aw] f=} o o
[38] -t (83 (s 43 [om ) oJ - w o] (o= [y V] -
- -~ - - - [y¥] [3¥] o
TIME-HOURS
Fig. A3.1  The gradient of the chunge in the space delay and its componeni.s

-5 ! | | 1 I 1 1 1 I i |
o o =) o o = o o = o o o )
L] L] a L] a n [ ] [ ] L L] L ] - a
[a¥ ] -+ o @ o o -t w @ +«2 (3] . -t
— — - - L B o o
/TIME-HQURS
- .[Fig. A3.2  The gradient of the change in the space delay and its components

e

represented by Eq. (A3.62), Eq. (A3.65) and Eq. (A3.68).
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J JT d‘“ --”_COS,\

£ e N & | . (A3,22)
at gt o0 . PP
N (‘_(Jﬁx N at d-C ("—(Jl'ix'N .
Noting that both of d and \ are time dependent this yields:
3 aT H, — Hcos ) (‘ ad!C) ’ -
at aH G, N » 2 - e
N G=Cq N d "o leseg N oy,
—H . . ,
+( G) dcos A 1 (A3.23)
d: dat $=G,. N
. fix
Substituting for : AN
| dcosh
i dt G=Gp N
from Eq. (A2.14) and alter simplification we have: .
a 4T _ HGCOS'\_HN Jt N 1 JT (A3.24)
H, lg=c. N 2 5=¢. N =Gl N
gt atylG=6, N d d 6=, N x Mie=G, N
or
aar _( "[cc"""*”.\r+L)£ (A3.25)
at Holgeg, ~ 2 e
N G=Gy N d- Hy oot lg=g; ~

The last equation gives the gradient radial compnner-n of the change in space delay if
G is fixed.

Now, consider the comppnent of_the change in the space delay in the latitude direction
which can be obtained by differentiating l';lq. {A3.8), Lhis gives:

g =1 4T

at HN a(bl.-u.N

Jd (A3.26)

G=G. N d iu:nu N

— I,
( G
— sl 0%
C ® I)l.;u.l\it') ﬂ)
fix ™ Fix

d-

We notice here thatd, g yandn = Ploney = Prones vre time dependent, therefore

[iq. tA3.26) will be:

d =1 Jr HGSIn‘p[.'lr.N xl/iC
T =
‘ N Ibpun G0, N d ¢ =Gy N
' I, .
I'IG (cosp . !-llN .
- ( , CO5 ‘
d-C LatN n GG N

fixg
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T
. o Py | (A3.27)
—-smo sinnp ————
LatN at G=G. N
. fix'
Substituting in Eq. (A3.27) for_
I N
at G=G. N
Q‘ lix
"~ Sind
. . a¢LotmN ;
at G=G. N ' :
fix
from Eq. (A2.20) and (A2.22) respectively and after simplification we get: o
a3 —1 ar Hesind o o7
A H, a¢ N . Ny
N LatN (J=(;nx.N d D=Gﬁx N

(A3.28)

sini
d-C osd,
The gradient component in the longitude direction can be obtained by differentiating
Eq (A3.10)as follows: -+ .
2 t ar : a. Hg - (A3.29)
Rl RS TRk
o N LUNb!.;uN bllmg!\' G=Gp N G‘-'(-’[',-_.(-N .
or .
a ! v FoHG o _adre
=— sinn )
G=G. N d° at G=Gy N

My oosy N M

' N g cos oy ! (A3 30)
dz : f o LU=0 N
) fix*

Substituling from Eq. tA3.22) in [q. (A3.30) and after simplificution we have:
1 aT ’ -
. N

g
: Q—-(]t H.\' C::Hbl.nl.\' &blnnul\' Gz(;[‘”'
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H, | wgcosncosi sing ol ‘ (A3.30)
q I Tod oo lgog
C-cos (pl.ur.N fix
e . \
a D
i





